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Preface

These notes were prepared for PHYCS-498MMA, a fairly traditional one-
semester mathematical methods course for begining graduate students in
physics. The emphasis is on linear operators and stresses the analogy between
such operators acting on function spaces and matrices acting on finite dimen-
sional spaces. The operator language then provides a unified framework for
investigating ordinary differential equations, partial differential equations,
and integral equations.

Although this mathematics is applicable to a wide range physical phenom-
ena, the illustrative examples are mostly drawn from classical and quantum
mechanics. Classical mechanics is a subject familiar to all physics students
and the point being illustrated is immediately understandable without any
further specialized knowledge. Similarly all physics students have studied
quantum mechanics, and here the matrix/differential-operator analogy lies
at the heart of the subject.

The mathematical prerequisites for the course are a sound grasp of un-
dergraduate calculus (including the vector calculus needed for electricity and
magnetism courses), linear algebra (the more the better), and competence
at complex arithmetic. Fourier sums and integrals, as well as basic ordinary
differential equation theory receive a quick review, but it would help if the
reader had some prior experience to build on. Contour integration is not
required.
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Chapter 1

Calculus of Variations

In this chapter we will study what is called the calculus of variations. Many
physics problems can be formulated in the language of this calculus, and once
they are there are useful tools to hand. In the text and associated exercises
we will meet some of the equations whose solution will occupy us for the rest
of the course.

1.1 What is it good for?

The classical problems of the calculus of variations include:

i) Dido’s problem: In Virgil’s Aeneid , Queen Dido of Carthage needs to
find largest area that can be enclosed by a curve (a strip of bull’s hide)
of fixed length.

ii) Plateau’s problem: Find the surface of minimum area for a given set of
bounding curves. A soap film on a wire frame will adopt this minimal-
area configuration.

iii) Johann Bernoulli’s Brachistochrone: A bead slides down a curve with
fixed ends. Assuming that the total energy 1

2
mv2 + V (x) is constant,

find the curve that gives the most rapid descent.
iv) Catenary : Find the form of a hanging heavy chain of fixed length by

minimizing its potential energy.

All these problems involve finding maxima or minima, and hence equating
some sort of derivative to zero. In the next section we will define this deriva-
tive, and show how to compute it.

1



2 CHAPTER 1. CALCULUS OF VARIATIONS

1.2 Functionals

In variational problems we are provided with an expression J [y] that “eats”
whole functions y(x) and returns a single number. Such objects are often
called functionals to distinguish them from ordinary functions. An ordinary
function is a map f : R→ R. A functional, J , is a map J : C∞(R)→ R

where C∞(R) is the space of smooth (having derivatives of all orders) func-
tions. To find the function y(x) that maximizes or minimizes a given func-
tional J [y] we need to define, and evaluate, its functional derivative.

1.2.1 The Functional Derivative

We will restrict ourselves to expressions of the form

J [y] =
∫ x2

x1

f(x, y, y′, y′′, · · · y(n)) dx, (1.1)

depending on the value of y(x) and only finitely many of its derivatives. Such
functionals are said to be local in x.

Consider first a functional depending only on x, y and y′. We vary y(x)→
y(x) + εη(x) where ε is an x-independent constant, and write

J [y + εη]− J [y] =
∫ x2

x1

{f(x, y + εη, y′ + εη′)− f(x, y, y′)} dx

=
∫ x2

x1

{

εη
∂f

∂y
+ ε

dη

dx

∂f

∂y′
+O(ε2)

}

dx

=

[

εη
∂f

∂y′

]x2

x1

+
∫ x2

x1

(εη(x))

{

∂f

∂y
− d

dx

(

∂f

∂y′

)}

dx +O(ε2).

For the moment let us assume that η(x1) = η(x2) = 0. That is, we are using
“fixed endpoint” variations. In this case the integrated-out part vanishes,
and

δJ =
∫ x2

x1

(εη(x))

{

∂f

∂y
− d

dx

(

∂f

∂y′

)}

dx

=
∫ x2

x1

δy(x)

(

δJ

δy(x)

)

dx. (1.2)

Here δy(x) ≡ εη(x), and the quantity

δJ

δy(x)
≡ ∂f

∂y
− d

dx

(

∂f

∂y′

)

(1.3)
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is called the functional (or Fréchet) derivative of J with respect to y(x). We
can think of it as a kind of generalization of the notion of a partial derivative
∂J/∂yi, with the discrete subscript “i” on y being replaced by a continuous
label, “x”. Thus

δJ =
∑

i

∂J

∂yi
δyi →

∫ x2

x1

dx

(

δJ

δy(x)

)

δy(x). (1.4)

The condition for the functional to be stationary under variations y →
y + δy is

δJ

δy(x)
=
∂f

∂y
− d

dx

(

∂f

∂y′

)

= 0, (1.5)

and this is usually called the Euler-Lagrange equation.
If the functional depends on more than one function y, then stationarity

under all possible variations requires one equation

δJ

δyi(x)
=
∂f

∂yi
− d

dx

(

∂f

∂y′i

)

= 0 (1.6)

for each function yi(x).
If the function depends on higher derivatives, y′′, y(3), etc., then we have

to integrate by parts more times, and we end up with

δJ

δy(x)
=
∂f

∂y
− d

dx

(

∂f

∂y′

)

+
d2

dx2

(

∂f

∂y′′

)

− d3

dx3

(

∂f

∂y(3)

)

+ · · · . (1.7)

1.2.2 Examples

Now we apply our new derivative to solve some simple problems.
Soap film supported by a pair of coaxial rings.

x
y(x)

1 xx2



4 CHAPTER 1. CALCULUS OF VARIATIONS

Here we wish to minimize the free energy of the film, which is equal to twice
(once for each liquid-air interface) the surface tension σ of the soap solution
times the area of the film. We therefore need to minimize

J [y] = 4σπ
∫ x2

x1

y
√

1 + y′2 dx. (1.8)

with y(x1) = y1 and y(x2) = y2. We form the partial derivatives

∂f

∂y
= 4πσ

√

1 + y′2,
∂f

∂y′
=

4πσyy′
√

1 + y′2
(1.9)

and thus write down the Euler-Lagrange equation

√

1 + y′2 − d

dx




yy′

√

1 + y′2



 = 0. (1.10)

Performing the indicated derivative with respect to x gives

√

1 + y′2 − (y′)2

√

1 + y′2
− yy′′
√

1 + y′2
+

y(y′)2y′′

(1 + y′2)3/2
= 0. (1.11)

Collecting terms, this is

1
√

1 + y′2
− yy′′

(1 + y′2)3/2
= 0. (1.12)

This differential equation looks a trifle intimidating. To simplify, we multiply
by y′ to get

0 =
y′

√

1 + y′2
− yy′y′′

(1 + y′2)3/2

=
d

dx




y

√

1 + y′2



 . (1.13)

The solution to the minimization problem therefore reduces to solving

y
√

1 + y′2
= κ, (1.14)



1.2. FUNCTIONALS 5

where κ is an as yet undetermined integration constant. Fortunately this
non-linear, first order, differential equation is elementary. We write it as

dy

dx
=

√

y2

κ2
− 1 (1.15)

and separate variables
∫

dx =
∫

dy
√

y2

κ2 − 1
. (1.16)

We now make the natural substitution y = κ cosh t, whence

∫

dx = κ
∫

dt. (1.17)

Thus we find that x + a = κt, leading to

y = κ cosh
x + a

κ
. (1.18)

We select κ and a to fit the endpoints y(x1) = y1 and y(x2) = y2.

Heavy Chain over Pulleys. We cannot yet consider the form of a hanging
chain of fixed length, but we can solve a simpler problem of a heavy cable
draped over a pair of pulleys located at x = ±L, y = h, and with the excess
cable resting on a horizontal surface.

h

−L +L

The potential energy of the system is

P.E. =
∑

mgy = ρg
∫ L

−L
y
√

1 + (y′)2dx+ const. (1.19)
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Here the constant refers to the unchanging potential energy of the vertically
hanging cable and the cable on the horizontal surface. Notice that the tension
in the cable is being tacitly determined by the weight of the vertical segments.

The Euler-Lagrange equations coincide with those of the soap film, so

y = κ cosh
(x+ a)

κ
(1.20)

where we have to find κ and a. We have

h = κ cosh(−L + a)/κ,

= κ cosh(L+ a)/κ, (1.21)

so a = 0 and h = κ coshL/κ. Setting t = L/κ this reduces to

(

h

L

)

t = cosh t. (1.22)

By considering the intersection of the line y = ht/L with y = cosh t we see
that if h/L is too small there is no solution (the weight of the suspended
cable is too big for the tension supplied by the dangling ends) and once h/L
is large enough there will be two possible solutions.

y

y= ht/L

y=cosh t

t=L/κ

Intersection of y = ht/L with y = cosh t.

Further investigation will show that only one of these is stable.
Example: The Brachistochrone. This problem was posed as a challenge by
Johann Bernoulli in 1696. He asked what shape should a wire with endpoints
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(0, 0) and (a, b) take in order that a frictionless bead will slide from rest down
the wire in the shortest possible time (βραχιστoς: shortest, χρoνoς: time).

x

y

g

(a,b)

When presented with an ostensibly anonymous solution, Johann made his
famous remark: Tanquam ex unguem leonem1, — meaning that he recognized
that the author was Isaac Newton.

Johann gave a solution himself, but that of his brother Jacob Bernoulli
was superior and Johann tried to pass it off as his. This was not atypical.
Johann later misrepresented the publication date of his book on hydraulics
to make it seem that he had priority in this field over his own son, Daniel
Bernoulli.

We begin our solution of the problem by observing that the total energy

E =
1

2
m(ẋ2 + ẏ2)−mgy =

1

2
mẋ2(1 + y′2)−mgy, (1.23)

of the bead will be constant. From the initial condition we see that this
constant is zero. We therefore wish to minimize

T =
∫ T

0
dt =

∫ a

0

1

ẋ
dx =

∫ a

0

√

1 + y′2

2gy
dx (1.24)

so as find y(x), given that y(0) = 0 and y(a) = b. The Euler-Lagrange
equation is

yy′′ +
1

2
(1 + y′2) = 0. (1.25)

Again this looks intimidating, but we can use the same trick of multiplying
through by y′ to get

y′
(

yy′′ +
1

2
(1 + y′2)

)

=
1

2

d

dx

{

y(1 + y′2)
}

= 0. (1.26)

1I recognize the lion by his clawmark.
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Thus
2c = y(1 + y ′2). (1.27)

This has a parametric solution

x = c(θ − sin θ),

y = c(1− cos θ), (1.28)

(as you should verify) and the solution is a cycloid.

x

y

(0,0)

(a,b)

θ
θ

(x,y)

A wheel rolls on the x axis. The dot, which is fixed to the rim of the wheel,
traces out a cycloid.

The parameter c is determined by requiring that the curve does in fact pass
through the point (a, b).

1.2.3 First Integral

How did we know that we could simplify both the soap-film problem and
the brachistochrone by multiplying the Euler equation by y′? The answer
is that there is a general principle, closely related to energy conservation in
mechanics, that tells us when and how we can make such a simplification. It
works when the f is of the form f(y, y′), i.e. has no explicit dependence on
x. In this case the last term in

df

dx
= y′

∂f

∂y
+ y′′

∂f

∂y′
+
∂f

∂x
(1.29)

is absent, and we have

d

dx

(

f − y′ ∂f
∂y′

)

= y′
∂f

∂y
+ y′′

∂f

∂y′
− y′′ ∂f

∂y′
− y′ d

dx

(

∂f

∂y′

)
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= y′
(

∂f

∂y
− d

dx

(

∂f

∂y′

))

, (1.30)

and this is zero if the Euler-Lagrange equation is satisfied. The quantity

I = f − y′ ∂f
∂y′

(1.31)

is thus a first integral of the Euler-Lagrange equation. In the soap-film case

f − y′ ∂f
∂y′

= y
√

1 + (y′)2 − y(y′)2

√

1 + (y′)2
=

y
√

1 + (y′)2
. (1.32)

When there are a number of dependent variable yi, so that we have

J [y1, y2, . . . yn] =
∫

dxf(y1, y2, . . . yn; y
′
1, y

′
2, . . . y

′
n) (1.33)

then the first integral becomes

I = f −
∑

i

y′i
∂f

∂y′i
. (1.34)

Again

dI

dx
=

d

dx

(

f −
∑

i

y′
∂f

∂y′i

)

=
∑

i

(

y′i
∂f

∂yi
+ y′′i

∂f

∂y′i
− y′′i

∂f

∂y′i
− y′i

d

dx

(

∂f

∂y′i

))

=
∑

i

y′i

(

∂f

∂yi
− d

dx

(

∂f

∂y′i

))

, (1.35)

and this zero if the Euler-Lagrange equation is satisfied for each yi.
Note that there is only one first integral, no matter how many y’s there

are.

1.3 Lagrangian Mechanics

In his Mécanique Analytique (1788) Joseph-Louis de La Grange, following
d’Alembert (1742) and Maupertuis (1744), showed that most of classical
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mechanics can be recast as a variational principle: the principle of least

action. The idea is to introduce the Lagrangian function L = T −V where T
is the kinetic energy of the system and V the potential energy, both expressed
in terms of generalized coordinates qi and their time derivatives q̇i. Then
Lagrange showed that the multitude of Newton’s F = ma equations, one for
each particle in the system, could be reduced to

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
= 0, (1.36)

one equation for each generalized coordinate q. Quite remarkably — given
that Lagrange’s derivation contains no mention of maxima or minima — we
observe that this is the precisely the condition that the action integral

S =
∫ tfinal

tinitial

L(qi; q′
i
) dt (1.37)

be stationary with respect to variations of the trajectory qi(t) which leave the
initial and final points fixed. This fact so impressed its discoverers that they
believed they had uncovered the unifying principle of the universe. Mauper-
tuis, for one, tried to base a proof of the existence of God on it. Today the
action integral, through its starring role in the Feynman path integral for-
mulation of quantum mechanics, remains at the heart of theoretical physics.

1.3.1 One Degree of Freedom

We will not attempt to derive Lagrange from Newton and D’Alembert’s
extension of the principle of virtual work – leaving this task to a mechanics
course — but will satisfy ourselves with some examples which illustrate the
computational advantages of Lagrange’s approach, as well as a subtle pitfall.

Example: Atwood’s Machine. This device, invented in 1784 but still a fa-
miliar sight in undergraduate laboratories, is used to demonstrate Newton’s
laws of motion and to measure g. It consists of two weights connected by a
light string which passes over a light and frictionless pulley.
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m2

1m

T
1x

T x
2

g

The elementary approach is to write an equation of motion for each of the
two weights

m1ẍ1 = m1g − T,
m2ẍ2 = m2g − T. (1.38)

We then take into account the constraint ẋ1 = −ẋ2 to get

m1ẍ1 = m1g − T,
−m2ẍ1 = m2g − T. (1.39)

Finally we eliminate the constraint force, the tension T , to get the accelera-
tion

(m1 +m2)ẍ1 = (m1 −m2)g. (1.40)

The Lagrangian solution takes the constraint into account from the very
beginning by introducing a single generalized coordinate q = x1 = −x2, and
writing

L = T − V =
1

2
(m1 +m2)q̇

2 − (m2 −m1)gq. (1.41)

From this we obtain a single equation of motion

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
= 0 ⇒ (m1 +m2)q̈ = (m1 −m2)g. (1.42)
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The advantage of the the Lagrangian method is that constraint forces, which
do no net work, never appear. The disadvantage is exactly the same: if we
need to find the constraint forces – in this case the tension in the string —
we cannot use Lagrange alone.
Example: Polar Coordinates

ϑ

r

y

x

ar

aϑ

Consider a central force problem with Fr = −∂rV (r). The Newtonian
method begins by computing the acceleration in polar coordinates. This
is most easily done by setting z = reiθ and differentiating twice:

ż = (ṙ + irθ̇)eiθ,

z̈ = (r̈ − rθ̇2)eiθ + i(2ṙθ̇ + rθ̈)eiθ. (1.43)

Reading off the components parallel and perpendicular to eiθ gives for the
acceleration

ar = r̈ − rθ̇2,

aθ = rθ̈ + 2ṙθ̇, (1.44)

Newton’s equations therefore become

m(r̈ − rθ̇2) = −∂V
∂r

m(rθ̈ + 2ṙθ̇) = 0, ⇒ d

dt
(mr2θ̇) = 0. (1.45)

Setting l = mr2θ̇, the conserved angular momentum, and eliminating θ̇ gives

mr̈ − l2

mr3
= −∂V

∂r
. (1.46)
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(If this were Kepler’s problem, where V = GmM/r, we would now proceed
to simplify this equation by substituting r = 1/u, but that is another story.)

Following Lagrange we first compute the kinetic energy in polar coordi-
nates (this requires one less derivative than computing the acceleration) and
set

L = T − V =
1

2
m(ṙ2 + r2θ̇2)− V (r). (1.47)

The Euler-Lagrange equations are now

d

dt

(

∂L

∂ṙ

)

− ∂L

∂r
= 0, ⇒ mr̈ − r2θ̇2 +

∂V

∂r
= 0

d

dt

(

∂L

∂θ̇

)

− ∂L

∂θ
= 0, ⇒ d

dt
(mr2θ̇) = 0. (1.48)

The first integral for this problem is

E = ṙ
∂L

∂ṙ
+ θ̇

∂L

∂ṙ
− L

=
1

2
m(ṙ2 + r2θ̇2) + V (r) (1.49)

which is the total energy. Thus the constancy of the first integral states that

dE

dt
= 0, (1.50)

or that energy is conserved.
Warning: We might realize, without having gone to the trouble of deriving
it from the Lagrange equations, that rotational invariance guarantees that
the angular momentum l = mr2θ̇ will be a constant. Having done so, it is
almost irresistible to try to short-circuit some of the arithmetic by plugging
this prior knowledge into

L =
1

2
m(ṙ2 + r2θ̇2)− V (r) (1.51)

so as to eliminate the variable θ̇ in favour of the constant l. If we try this we
get

L
?→ 1

2
mṙ2 +

l2

mr2
− V (r). (1.52)
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We can now directly write down the Lagrange equation r, which is

mr̈ +
l2

mr3

?
= −∂V

∂r
. (1.53)

Unfortunately this has the wrong sign before the l2/mr3 term! The lesson is
that we must be very careful in using consequences of a variational principle
to modify the principle. It can be done, and in mechanics it leads to the
Routhian or, in more modern language to Hamiltonian reduction, but it
requires using a Legendre transform. The reader should consult a book on
mechanics for details.

1.3.2 Noether’s Theorem

The time-independence of the first integral

d

dt

{

q̇
∂L

∂q̇
− L

}

= 0, (1.54)

and of angular momentum

d

dt
{mr2θ̇} = 0, (1.55)

are examples of conservation laws. We obtained them both by manipulating
the Euler-Lagrange equations of motion, but also indicated that they were
in some way connected with symmetries. One of the chief advantages of a
variational formulation of a physical problem is that this connection

Symmetry ⇔ Conservation Law

can be made explicit by exploiting a strategy due to Emmy Noether. She
showed how to proceed directly from the action integral to the conserved
quantity without having to fiddle about with the equations of motion. We
begin by illustrating her technique in the case of angular momentum, whose
conservation is a consequence the rotational symmetry of the central force
problem. The action integral for the central force problem is

S =
∫ T

0

{
1

2
m(ṙ2 + r2θ̇2)− V (r)

}

dt. (1.56)

Noether observes that the integrand is left unchanged if we make the variation

θ(t)→ θ(t) + εα (1.57)
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where α is a fixed angle and ε is a small, time-independent, parameter. This
invariance is the symmetry we shall exploit. It is a mathematical identity:
it does not require that r and θ obey the equations of motion. She next
observes that since the equations of motion are equivalent to the statement
that S is left stationary under any infinitesimal variations in r and θ, they
necessarily imply that S is stationary under the specific variation

θ(t)→ θ(t) + ε(t)α (1.58)

where now ε is allowed to be time-dependent. This stationarity of the action
is no longer a mathematical identity, but, because it requires r, θ, to obey
the equations of motion, has physical content. Inserting δθ = ε(t)α into our
expression for S gives

δS = α
∫ T

0

{

r2θ̇
}

ε̇ dt. (1.59)

Note that this variation depends only on the time derivative of ε, and not ε
itself. This is because of the invariance of S under time-independent rota-
tions. We now assume that ε(t) = 0 at t = 0 and t = T , and integrate by
parts to take the time derivative off ε and put it on the rest of the integrand:

δS = −α
∫
{

d

dt
(r2θ̇)

}

ε(t) dt. (1.60)

Since the equations of motion say that δS = 0 under all infinitesimal varia-
tions, and in particular those due to any time dependent rotation ε(t)α, we
deduce that the equations of motion imply that the coefficient of ε(t) must
be zero, and so, provided r(t), θ(t), obey the equations of motion, we have

0 =
d

dt
(r2θ̇). (1.61)

As a second illustration we derive energy (first integral) conservation for
the case that the system is invariant under time translations — meaning
that L does not depend explicitly on time. In this case the action integral
is invariant under constant time shifts t → t + ε in the argument of the
dynamical variable:

q(t)→ q(t+ ε) ≈ q(t) + εq̇. (1.62)

The equations of motion tell us that that the action will be stationary under
the variation

δq(t) = ε(t)q̇, (1.63)
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where again we now permit the parameter ε to depend on t. We insert this
variation into

S =
∫ T

0
Ldt (1.64)

and find

δS =
∫ T

0

{

∂L

∂q
q̇ε +

∂L

∂q̇
(q̈ε+ q̇ε̇)

}

dt. (1.65)

This expression contains undotted ε’s. Because of this the change in S is not
obviously zero when ε is time independent — but the absence of any explicit
t dependence in L tells us that

dL

dt
=

{

∂L

∂q
q̇ +

∂L

∂q̇
q̈

}

. (1.66)

As a consequence, for time independent ε, we have

δS =
∫ T

0

{

ε
dL

dt

}

dt = ε[L]T0 , (1.67)

showing that the change in S comes entirely from the endpoints of the time
interval. These fixed endpoints explicitly break time-translation invariance,
but in a trivial manner. For general ε(t) we have

δS =
∫ T

0

{

ε(t)
dL

dt
+
∂L

∂q̇
q̇ε̇

}

dt. (1.68)

This equation is an identity. It does not rely on q obeying the equation of
motion. After an integration by parts, taking ε(t) to be zero at t = 0, T , it
is equivalent to

δS =
∫ T

0
ε(t)

d

dt

{

L− ∂L

∂q̇
q̇

}

dt. (1.69)

Now we assume that q(t) does obey the equations of motion. The variation
principle then says that δS = 0 for any ε(t), and we deduce that for q(t)
satisfying the equations of motion we have

d

dt

{

L− ∂L

∂q̇
q̇

}

= 0. (1.70)

The general strategy that constitutes “Noether’s theorem” must now be
obvious: we look for an invariance of the action under a symmetry trans-
formation with a time-independent parameter. We then observe that if the
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dynamical variables obey the equations of motion, then the action principle
tells us that the action will remain stationary under such a variation of the
dynamical variables even after the parameter is promoted to being time de-
pendent. The resultant variation of S can only depend on time derivatives of
the parameter. We integrate by parts so as to take all the time derivatives off
it, and on to the rest of the integrand. Since the parameter is arbitrary, we
deduce that the equations of motion tell us that that its coefficient in the in-
tegral must be zero. Since this coefficient is the time derivative of something,
this something is conserved.

1.3.3 Many Degrees of Freedom

The extension of the action principle to many degrees of freedom is straight-
forward. As an example consider the small oscillations about equilibrium of
a system with N degrees of freedom. We parametrize the system in terms of
deviations from the equilibrium position and expand out to quadratic order.
We obtain a Lagrangian

L =
N∑

i,j=1

{
1

2
Mij q̇

iq̇j − 1

2
Vijq

iqj
}

, (1.71)

where Mij and Vij are N ×N symmetric matrices encoding the inertial and
potential energy properties of the system. Now we have one equation

0 =
d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi
=

N∑

j=1

(

Mij q̈
j + Vijq

j
)

(1.72)

for each i.

1.3.4 Continuous Systems

The action principle can be extended to field theories and to continuum me-
chanics. Here one has a continuous infinity of dynamical degrees of freedom,
either one for each point in space and time or one for each point in the mate-
rial, but the extension of the variational derivative to functions of more than
one variable should possess no conceptual difficulties.

Suppose we are given an action S depending on a field ϕ(xµ) and its first
derivatives

ϕµ ≡
∂ϕ

∂xµ
. (1.73)
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Here xµ, µ = 0, 1, . . . , d, are the coordinates of d+1 dimensional space-time.
It is traditional to take x0 ≡ t and the other coordinates spacelike. Suppose
further that

S =
∫

Ldt =
∫

L(ϕ, ϕµ) d
d+1x, (1.74)

where L is the Lagrangian density , in terms of which

L =
∫

L ddx, (1.75)

where the integral is over the space coordinates. Now

δS =
∫
{

δϕ(x)
∂L

∂ϕ(x)
+ δ(ϕµ(x))

∂L
∂ϕµ(x)

}

dd+1x

=
∫

δϕ(x)

{

∂L
∂ϕ(x)

− ∂

∂xµ

(

∂L
∂ϕµ(x)

)}

dd+1x. (1.76)

In going from the first line to the second, we have observed that

δ(ϕµ(x)) =
∂

∂xµ
δϕ(x) (1.77)

and used the divergence theorem,

∫

Ω

(

∂Aµ

∂xµ

)

dn+1x =
∫

∂Ω
AµnµdS, (1.78)

where Ω is some space-time region and ∂Ω its boundary, to integrate by
parts. Here dS is the element of area on the boundary, and nµ the outward
normal. As before, we take δϕ to vanish on the boundary, and hence there
is no boundary contribution to variation of S. The result is that

δS

δϕ(x)
=

∂L
∂ϕ(x)

− ∂

∂xµ

(

∂L
∂ϕµ(x)

)

, (1.79)

and the equation of motion comes from setting this to zero. Note that a sum
over the repeated coordinate index µ is implied. In practice, however, it is
easier not to use this formula, but instead do the variation explicitly as in
the following examples.
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The Vibrating string

The simplest continuous dynamical system is the vibrating string. We de-
scribe the string displacement by y(x, t).

0 L
y(x,t)

Let us suppose that the string has fixed ends, a mass per unit length of ρ, and
is under tension T . If we assume only small displacements from equilibrium,
the Lagrangian is

L =
∫ L

0
dx
{

1

2
ρẏ2 − 1

2
Ty′

2
}

. (1.80)

The variation of the action is

δS =
∫∫ L

0
dtdx {ρẏδẏ − Ty′δy′}

=
∫∫ L

0
dtdx {δy(x, t) (−ρÿ + Ty′′)} . (1.81)

To reach the second line we have integrated by parts, and, because the ends
are fixed, and therefore δy = 0 at x = 0 and L, there is no boundary term.
Requiring that δS = 0 for all allowed variations δy then gives the equation
of motion

ρ
∂2y

∂t2
− T ∂

2y

∂x2
= 0. (1.82)

This is the wave equation for waves with speed c =
√

T/ρ. Observe that

from (1.81) we can read off the functional derivative of S with respect to the
variable y(x, t) as being

δS

δy(x, t)
= −ρÿ(x, t) + Ty′′(x, t). (1.83)

In writing down the first integral for this continuous system, we must
replace the sum over discrete indices by an integral:

E =
∑

i

q̇i
∂L

∂q̇i
− L→

∫

dx

{

ẏ(x)
δL

δẏ(x)

}

− L. (1.84)
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When computing δL/δẏ(x) from

L =
∫ L

0
dx
{

1

2
ρẏ2 − 1

2
Ty′

2
}

,

we must remember that it is the continuous analogue of ∂L/∂q̇i, and so, in
contrast to what we do when computating δS/δy(x), we must treat ẏ(x) as
a variable independent of y(x). We then have

δL

δẏ(x)
= ρẏ(x), (1.85)

leading to

E =
∫ L

0
dx
{

1

2
ρẏ2 +

1

2
Ty′

2
}

. (1.86)

This, as expected, is the total energy, kinetic plus potential, of the string.
Exercise: Consider an action of the form

S =
∫

dd+1xL(ϕ, ∂µϕ) (1.87)

which does not depend explicitly on xµ. Generalize the Noether derivation
of the energy conservation law to one exploiting variations of the form

δϕ = εµ(x)∂µϕ, (1.88)

where ε depends on space and time, and hence show that

∂µT
µ
ν = 0, (1.89)

where

T µν =
∂L

∂(∂µϕ)
∂νϕ− δµνL (1.90)

is known as the canonical energy-momentum tensor .
Exercise: Apply the results of the previous exercise to the Lagrangian of
the vibrating string, and so establish the two following local conservation
equations:

∂

∂t

{
ρ

2
ẏ2 +

T

2
y′2
}

+
∂

∂x
{−T ẏy′} = 0, (1.91)

and
∂

∂t
{−ρẏy′}+

∂

∂x

{
ρ

2
ẏ2 +

T

2
y′2
}

= 0. (1.92)
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Verify that these are indeed consequences of the wave equation.
The two equations obtained in the last exercise are “local” conservation

laws because they are of the form

∂q

∂t
+∇ · J = 0, (1.93)

where q is the local density, and J the flux, of the globally conserved quantity
Q =

∫

q ddx. In the first case, the local density q is

T 0
0 =

ρ

2
ẏ2 +

T

2
y′2, (1.94)

which is the energy density. The energy flux is given by T1
0 ≡ −T ẏy′, which

is the rate of working by one piece of string on its neighbour. Integrating
over x, and observing that the fixed-end boundary conditions are such that

∫ L

0

∂

∂x
{−T ẏy′} dx = [−T ẏy′]L0 = 0, (1.95)

gives us
d

dt

∫ L

0

{
ρ

2
ẏ2 +

T

2
y′2
}

dx = 0, (1.96)

which is the global energy conservation law we obtained earlier.
The physical interpretation of T 0

1 = −ρẏy′, the locally conserved quan-
tity in the second case, is less obvious. If this were a relativistic system,
we would have no difficulty in identifying

∫

T 0
1 dx as the x-component of the

energy-momentum 4-vector, and therefore T 0
1 as the density of x-momentum.

Our transversely vibrating string has no signicant motion in the x direction,
though, so T 0

1 cannot be the string’s x-momentum density. Instead, it is
the density of something called pseudo-momentum. The distinction between
true and pseudo- momentum is best understood by considering the corre-
sponding Noether symmetry. The symmetry associated with Newtonian mo-
mentum is the invariance of the action integral under an x translation of
the entire apparatus: the string, and any wave on it. The symmetry asso-
ciated with pseudomomentum is the invariance of the action under a shift,
y(x) → y(x − a), of the location of the wave on the string — the string
itself not being translated. Newtonian momentum is conserved if the ambi-

ent space is translationally invariant. Pseudo-momentum is conserved if the
string is translationally invariant — i.e. if ρ and T are position independent.
A failure to realize that the presence of a medium (here the string) requires us
to distinguish between these two symmetries is the origin of many paradoxes
involving “wave momentum.”
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Maxwell’s Equations

Faraday and Maxwell’s description of electromagnetism in terms of dynam-
ical vector fields gave us the first modern field theory. D’ Alembert and
Maupertuis would have been delighted to discover that the famous equations
of Maxwell’s Electricity and Magnetism (1873) follow from an action princi-
ple. There is a slight complication stemming from gauge invariance but, as
long as we are not interested in exhibiting the covariance of Maxwell under
Lorentz transformations, we can sweep this under the rug by working in the
axial gauge, where the scalar electric potential does not appear.

We will start from Maxwell’s equations

∇ ·B = 0,

∇× E = −Ḃ,

∇×H = J + Ḋ,

∇ ·D = ρ, (1.97)

and show that they can be obtained from an action principle. For convenience
we shall use natural units in which µ0 = ε0 = 1, and so c = 1 and D ≡ E

and B ≡ H.
The first equation ∇ ·B = 0 is non-dynamical, but is a constraint which

we satisfy by introducing a vector potential A such that B =∇ ×A. If we
set

E = −Ȧ, (1.98)

then this automatically implies Faraday’s law of induction

∇× E = −Ḃ. (1.99)

We now guess that the Lagrangian is

L =
∫

d3x
[
1

2

{

E2 −B2
}

+ J ·A
]

. (1.100)

The motivation is that L looks very like T − V if we regard 1
2
E2 ≡ 1

2
Ȧ2 as

being the kinetic energy and 1
2
B2 = 1

2
(∇×A)2 as being the potential energy.

The term in J represents the interaction of the fields with an external current
source. In the axial gauge the electric charge density ρ does not appear in
the Lagrangian. The corresponding action is therefore

S =
∫

Ldt =
∫∫

d3x
[
1

2
Ȧ2 − 1

2
(∇×A)2 + J ·A

]

dt. (1.101)
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Now vary A to A + δA, whence

δS =
∫∫

d3x
[

−Ä · δA− (∇×A) · (∇× δA) + J · δA
]

dt. (1.102)

Here, we have already removed the time derivative from δA by integrating
by parts in the time direction. Now we do the integration by parts in the
space directions by using the identity

∇ · (δA× (∇×A)) = (∇×A) · (∇× δA)− δA · (∇× (∇×A)) (1.103)

and taking δA to vanish at spatial infinity, so the surface term, which would
come from the integral of the total divergence, is zero. We end up with

δS =
∫∫

d3x
{

δA ·
[

−Ä−∇× (∇×A) + J
]}

dt. (1.104)

Demanding that the variation of S be zero thus requires

Ä = −∇× (∇×A) + J, (1.105)

or, in terms of the physical fields,

∇×B = J + Ė. (1.106)

This is Ampère’s law, as modified by Maxwell so as to include the displace-
ment current.

How do we deal with the last Maxwell equation, Gauss’ law, which asserts
that ∇·E = ρ? If ρ were equal to zero, this equation would hold if ∇·A = 0,
i.e. if A were solenoidal. In this case we might be tempted to impose the
constraint ∇ · A = 0 on the vector potential, but doing so would undo all
our good work, as we have been assuming that we can vary A freely.

We notice, however, that the three Maxwell equations we already have
tell us that

∂

∂t
(∇ ·E− ρ) = ∇ · (∇×B)−

(

∇ · J +
∂ρ

∂t

)

. (1.107)

Since ∇·(∇×B) = 0, the left-hand side is zero provided charge is conserved,
i.e. provided

ρ̇+∇ · J = 0, (1.108)



24 CHAPTER 1. CALCULUS OF VARIATIONS

and we assume that this is so. Thus, if Gauss’ law holds initially, it holds
eternally. We arrange for it to hold at t = 0 by imposing initial conditions
on A. We first choose A|t=0 by requiring it to satisfy

B|t=0 = ∇× (A|t=0) . (1.109)

The solution is not unique, because may we add any ∇φ to A|t=0, but this
does not affect the physical E and B fields. The initial “velocities” Ȧ|t=0

are then fixed uniquely by Ȧ|t=0 = −E|t=0, where the initial E satisfies
Gauss’ law. The subsequent evolution of A is then uniquely determined by
integrating the second-order equation (1.105).

The first integral for Maxwell is

E =
3∑

i=1

∫

d3x

{

Ȧi
δL

δȦi

}

− L

=
∫

d3x
[
1

2

{

E2 + B2
}

− J ·A
]

. (1.110)

This will be conserved if J is time independent. If J = 0, it is the total field
energy.

Suppose J is neither zero nor time independent. Then, looking back at
the derivation of the time-independence of the first integral, we see that if L
does depend on time, we instead have

dE

dt
= −∂L

∂t
. (1.111)

In the present case we have

−∂L
∂t

= −
∫

J̇ ·A d3x, (1.112)

so that

−
∫

J̇ ·A d3x =
dE

dt
=

d

dt
(Field Energy)−

∫ {

J · Ȧ + J̇ ·A
}

d3x. (1.113)

Thus, cancelling the duplicated term and using E = −Ȧ, we find

d

dt
(Field Energy) = −

∫

J ·E d3x. (1.114)

Now
∫

J · (−E) d3x is the rate at which the power source driving the current
is doing work against the field. The result is therefore physically sensible.
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Continuum Mechanics

Since the mechanics of discrete objects can be derived from an action prin-
ciple, it seems obvious that so must the mechanics of continua. This is
certainly true if we use the Lagrangian description, where we follow the his-
tory of each particle composing the continuous material as it moves through
space. In fluid mechanics, though, it is more natural to describe the motion
by using the Eulerian description, where we focus on what is going on at a
particular point in space by introducing a velocity field v(r, t). Eulerian ac-
tion principles can still be found, but they seem to be logically distinct from
the Lagrangian mechanics action principle, and mostly were not discovered
until the 20th century.

Here, we will show that Euler’s equation for the irrotational motion of a
compressible fluid can be obtained from the Lagrangian

L =
∫

d3x
{

ρφ̇ +
1

2
ρ(∇φ)2 + u(ρ)

}

, (1.115)

Here, ρ is the mass density, the flow velocity is determined from the velocity
potential φ by v = ∇φ, and the function u is the internal energy density.

Varying with respect to ρ is straightforward, and gives Bernoulli’s equa-
tion

φ̇+
1

2
v2 + h(ρ) = 0. (1.116)

Here h(ρ) ≡ du/dρ, is the specific enthalpy2. Varying with respect to φ
requires an integration by parts, based on

∇ · (ρ δφ∇φ) = ρ(∇δφ) · (∇φ)− δφ∇ · (ρ∇φ), (1.117)

and gives the equation of mass conservation

ρ̇ +∇ · (ρv) = 0. (1.118)

Taking the gradient of Bernoulli’s equation, and using the fact that ω ≡
∇× v = 0, leads to

v̇ + (v · ∇)v = −∇h. (1.119)

2The enthalpy, H = U + PV , per unit mass. In a more general case u and h will be
functions of both the density and the specific entropy. We are here assuming that the
specific entropy is constant, and so the fluid is barotropic, meaning that the pressure is a
function of the density only.
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On introducing the pressure P , which is related to h by

h(P ) =
∫ P

0

dP

ρ(P )
, (1.120)

we obtain Euler’s equation

ρ
(

v̇ + (v · ∇)v
)

= −∇P. (1.121)

For future reference, we observe that combining the mass-conservation equa-
tion

∂tρ+ ∂j {ρvj} = 0 (1.122)

with Euler’s equation
ρ(∂tvi + vj∂jvi) = −∂iP (1.123)

yields
∂t {ρvi}+ ∂j {ρvivj + δijP} = 0, (1.124)

which expresses the local conservation of momentum. The quantity

Πij = ρvivj + δijP (1.125)

is the momentum-flux tensor , and is the j-th component of the flux of the
i-th component pi = ρvi of momentum density.

The relations h = du/dρ and ρ = dP/dh show that P and u are related
by a Legendre transformation: P = ρh− u(ρ). From this, and the Bernoulli
equation, we see that the Lagrangian density (1.115) is equal to minus the
pressure:

−P = ρφ̇+
1

2
ρ(∇φ)2 + u(ρ). (1.126)

This formulation cannot be a “follow the particle” action principle in
a clever disguise. The mass conservation law is only a consequence of the
equation of motion, and is not built in from the beginning as a constraint.
Our variations in φ are therefore conjuring up new matter rather than merely
moving it around.

1.4 Variable End Points

In this section we will relax our previous assumption that all boundary or
surface terms coming from integrations by parts may be ignored. We will find
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that variation principles can be very useful for figuring out what boundary
conditions we should impose on our differential equations.

Consider the problem of building a railway across a parallel sided isthmus.

)y(x1

y(x2)

x

y

Assume that the cost of construction is proportional to the length of the
track, but the cost of sea transport being negligeable, we may locate the
terminal seaports wherever we like. We therefore wish to minimize the length

L[y] =
∫ x2

x1

√

1 + (y′)2dx, (1.127)

by allowing both the path y(x) and the endpoints y(x1) and y(x2) to vary.
Then

L[y + δy]− L[y] =
∫ x2

x1

(δy′)
y′

√

1 + (y′)2
dx

=
∫ x2

x1







d

dx



δy
y′

√

1 + (y′)2



− δy d
dx




y′

√

1 + (y′)2










dx

= δy(x1)
y′(x1)

√

1 + (y′)2
− δy(x2)

y′(x1)
√

1 + (y′)2

+
∫ x2

x1

δy
d

dx




y′

√

1 + (y′)2



 dx (1.128)

We have stationarity when both
i) the coefficient of δy(x) in the integral,

d

dx




y′

√

1 + (y′)2



 , (1.129)



28 CHAPTER 1. CALCULUS OF VARIATIONS

is zero. This requires that y′ =const., i.e. the track should be straight.
ii) The coefficients of δy(x1) and δy(x2) vanish. For this we need

0 =
y′(x1)

√

1 + (y′)2
=

y′(x2)
√

1 + (y′)2
. (1.130)

This in turn requires that y′(x1) = y′(x2) = 0.
The integrated-out bits have determined the boundary conditions that are to
be imposed on the solution of the differential equation. In the present case
they require us to build perpendicular to the coastline, and so we go straight
across the isthmus. When boundary conditions are obtained from endpoint
variations in this way, they are called natural boundary conditions.
Example: Sliding String . A massive string of linear density ρ is stretched
between two smooth posts separated by distance 2L. The string is under
tension T , and is free to slide up and down the posts. We will consider only
a small deviations of the string from the horizontal.

x

y

+L−L

As we saw earlier, the Lagrangian for a stretched string is

L =
∫ L

−L

{
1

2
ρẏ2 − 1

2
T (y′)2

}

dx. (1.131)

Now, Lagrange’s principle says that the equation of motion is found by re-
quiring the action

S =
∫ tf

ti
Ldt (1.132)

to be stationary under variations of y(x, t) that vanish at the initial and final
times, ti and tf . It does not demand that δy vanish at ends of the string,
x = ±L. So, when we make the variation, we must not assume this. Taking
care not to discard the results of the integration by parts in the x direction,
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we find

δS =
∫ tf

ti

∫ L

−L
δy(x, t) {ρÿ − Ty′′} dxdt−

∫ tf

ti
δy(L, t)Ty′(L) dt

+
∫ tf

ti
δy(−L, t)Ty′(−L) dt. (1.133)

The equation of motion, which arises from the variation within the interval,
is therefore the wave equation

ρÿ − Ty′′ = 0. (1.134)

The boundary conditions, which come from the variations at the endpoints,
are

y′(L, t) = y′(−L, t) = 0, (1.135)

at all times t. These are the physically correct boundary conditions, because
any up-or-down component of the tension would provide a finite force on an
infinitesimal mass. The string must therefore be horizontal at its endpoints.
Easy Exercise: Bead and String . Suppose a bead of mass M is free to slide
up and down the y axis.

x

y

y(0)

0 L

A bead connected to a string.
It is attached to the x = 0 end of a string in such a way that the Lagrangian
for the string-bead system is

L =
1

2
M [ẏ(0)]2 +

∫ L

0

{
1

2
ρẏ2 − 1

2
Ty′2

}

dx. (1.136)

Here, ρ is the mass per unit length of the string and T is its tension. The
end of the string at x = L is fixed. By varying the action S =

∫

Ldt, and
taking care not to throw away the boundary part at x = 0, show that

ρÿ(x)− Ty′′(x) = 0, 0 < x < L,

Mÿ(0)− Ty′(0) = 0, y(L) = 0. (1.137)
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The boundary condition at x = 0 is the equation of motion for the bead. It
is clearly correct, because Ty′(0) is the vertical component of the force that
the string tension exerts on the bead.

This exercise and the previous example led to boundary conditions that
we could easily have figured out for ourselves without the variational princi-
ple. The next example shows that a variational formulation can be exploited
to obtain a set of boundary conditions that might be difficult to write down
by purely “physical” reasoning.

y

x

0

0
P

h(x,t)

ρ

g

Harder example: Surface Waves on Water. An action suitable for describing
waves on the surface of water is given by3 S =

∫

Ldt, where

L =
∫

dx
∫ h(x,t)

0
ρ0

{

φ̇+
1

2
(∇φ)2 + gy

}

dy (1.138)

Here ρ0 is the density of the water, which is being treated as being incom-
pressible, and the flow velocity is v = ∇φ. By varying φ(x, y, t) and the
depth h(x, t), and taking care not to throw away any integrated-out parts of
the variation at the physical boundaries, we obtain:

∇2φ = 0, within the fluid.

φ̇+
1

2
(∇φ)2 + gy = 0, on the free surface.

∂φ

∂y
= 0, on y = 0.

ḣ− ∂φ

∂y
+
∂h

∂x

∂φ

∂x
= 0, on the free surface. (1.139)

3J. C. Luke, J. Fluid Dynamics, 27 (1967) 395.
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The first equation comes from varying φ within the fluid, and it simply
confirms that the flow is incompressible, i.e. obeys ∇ · v = 0. The second
comes from varying h, and is the Bernoulli equation stating that we have
P = P0 (atmospheric pressure) everywhere on the free surface. The third,
from the variation of φ at y = 0, states that no fluid escapes through the
lower boundary.

Obtaining and interpreting the last equation, involving ḣ, is somewhat
trickier. It comes from the variation of φ on the upper boundary. The ḣ
arises because, in integrating by parts to take the time derivative off δφ̇, we
must use

d

dt

∫ h(t)

0
δφ dy =

∫ h(t)

0
δφ̇ dy + δφ(x, h, t)

∂h

∂t
. (1.140)

The remaining two terms come from
∫

δφ(n ·∇)φ ds on the upper boundary,
with the outward normal n and arc length ds expressed in terms of h as

n =



1 +

(

∂h

∂x

)2




−1/2 [

−∂h
∂x
, 1

]

,

ds =

√
√
√
√1 +

(

∂h

∂x

)2

dx. (1.141)

Combining these contributions with the ḣ term gives the upper boundary
variation

δS|y=h =
∫
{

∂h

∂t
− ∂φ

∂y
+
∂h

∂x

∂φ

∂x

}

δφ
(

x, h(x, t), t
)

dxdt. (1.142)

Requiring this to be zero for arbitrary δφ
(

x, h(x, t), t
)

leads to

∂h

∂t
− ∂φ

∂y
+
∂h

∂x

∂φ

∂x
= 0. (1.143)

This last boundary condition ensures that a fluid particle initially on the
surface stays on the surface. To see this define f(x, y, t) = h(x, t)− y, so the
free surface is given by f(x, y, t) = 0. If the surface particles are carried with
the flow then the convective derivative of f ,

df

dt
≡ ∂f

∂t
+ (v · ∇)f, (1.144)
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must vanish on the free surface. Using v = ∇φ and the definition of f , this
reduces to

∂h

∂t
+
∂φ

∂x

∂h

∂x
− ∂φ

∂y
= 0, (1.145)

which is indeed the last boundary condition.

Exercise: Suppose that an elastic body Ω of density ρ is slightly deformed
so that the point that was at cartesian co-ordinate xi is moved to xi + ηi(x).
We define the resulting strain tensor eij by

eij =
1

2

(

∂ηj
∂xi

+
∂ηi
∂xj

)

.

It is automatically symmetric in its indices. The Lagrangian for small-
amplitude elastic motion of the body is

L =
∫

Ω

{
1

2
ρη̇2

i −
1

2
eijcijklekl

}

d3x.

Here, cijkl is the tensor of elastic constants, which has the symmetries

cijkl = cklij = cjikl = cijlk.

By varying the ηi, show that the equation of motion for the body is

ρ
∂2ηi
∂t2
− ∂

∂xj
σji = 0,

where

σij = cijklekl

is the stress tensor . Show that variations of ηi on the boundary ∂Ω give as
boundary conditions

σijnj = 0,

where ni are the components of the outward normal on ∂Ω.
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1.5 Lagrange Multipliers

y

x

The figure shows the contour map of hill of height h = f(x, y) traversed by
a road given by the equation g(x, y) = 0. Our problem is to find the highest
point on the road.

When r changes by dr = (dx, dy), the height f changes by

df = ∇f · dr, (1.146)

where ∇f = (∂xf, ∂yf). The highest point will have df = 0 for all displace-
ments dr that stay on the road — that is for all dr such that dg = 0. Thus
∇f · dr must be zero for those dr such that 0 = ∇g · dr. In other words, ∇f
must be orthogonal to all vectors that are orthogonal to ∇g. This is possible
only if the vectors ∇f and ∇g are parallel, and so ∇f = λ∇g for some λ.
To find the stationary point, therefore, we solve the equations

∇f − λ∇g = 0,

g(x, y) = 0, (1.147)

simultaneously.

Example: Let f = x2 + y2 and g = x + y − 1. Then ∇f = 2(x, y) and
∇g = (1, 1). So

2(x, y)− λ(1, 1) = 0, ⇒ (x, y) =
λ

2
(1, 1)

x + y = 1, ⇒ λ = 1, =⇒ (x, y) = (
1

2
,
1

2
).
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In general, if there are n constraints, g1 = g2 = · · · = gn = 0, we will want
∇f to lie in

(< ∇gi >⊥)⊥ =< ∇gi >, (1.148)

where < ei > denotes the space spanned by the vectors ei and < ei >
⊥ is

the its orthogonal complement. Thus ∇f lies in the space spanned by the
vectors ∇gi, so there must exist n numbers λi such that

∇f =
n∑

i=1

λi∇gi. (1.149)

The numbers λi are called Lagrange multipliers. We can therefore regard our
problem as one of finding the stationary points of an auxilliary function

F = f −
∑

i

λigi, (1.150)

with the undetermined multipliers λi subsequently being fixed by imposing
the requirement that gi = 0.
Example: Find the stationary points of

F (x) =
1

2
x ·Ax =

1

2
xiAijxj (1.151)

on the surface x · x = 1. Here Aij is a symmetric matrix.
Solution: We look for stationary points of

G(x) = F (x)− 1

2
λ|x|2. (1.152)

The derivatives we need are

∂F

∂xk
=

1

2
δkiAijxj +

1

2
xiAijδjk

= Akjxj , (1.153)

and
∂

∂xk

(

λ

2
xjxj

)

= λxk. (1.154)

Thus, the stationary points must satisfy

Akjxj = λxk,

xixi = 1, (1.155)
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and so are the normalized eigenvectors of the matrix A. The Lagrange
multiplier at each stationary point is the corresponding eigenvalue.
Example: Statistical Mechanics. Let Γ denote the classical phase space of a
mechanical system of n particles governed by Hamiltonian H(p, q). Let dΓ
be the Liouville measure d3np d3nq. In statistical mechanics we work with
a probability density ρ(p, q) such that ρ(p, q)dΓ is the probability of the
system being in a state in the small region dΓ. The entropy associated with
the probability distribution is the functional

S[ρ] = −
∫

Γ
ρ ln ρ dΓ. (1.156)

We wish to find the ρ(p, q) that maximizes the entropy for a given total
energy

E =
∫

Γ
ρH dΓ. (1.157)

We cannot vary ρ freely as we should preserve both the energy and the
normalization condition ∫

Γ
ρ dΓ = 1 (1.158)

that is required of any probability distribution. We therefore introduce two
Lagrange multipliers, 1 + α and β, to enforce the normalization and energy
conditions, and look for stationary points of

F [ρ] =
∫

Γ
{−ρ ln ρ + (α+ 1)ρ− βρH} dΓ. (1.159)

Now we can vary ρ freely, and hence find that

δF =
∫

Γ
{− ln ρ + α− βH} δρ dΓ. (1.160)

Requiring this to be zero gives us

ρ(p, q) = eα−βH(p,q), (1.161)

where α, β are determined by imposing the normalization and energy con-
straints. This probability density is known as the canonical distribution.
Example: The Catenary. At last we can solve the problem of the hanging
chain of fixed length. We wish to minimize the potential energy

E[y] =
∫ L

−L
y
√

1 + (y′)2dx, (1.162)
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subject to the constraint

l[y] =
∫ L

−L

√

1 + (y′)2dx = const., (1.163)

where the constant is the length of the chain. We introduce a Lagrange
multiplier λ and find the stationary points of

F [y] =
∫

(y − λ)
√

1 + (y′)2dx, (1.164)

so, following our earlier methods, we find

y = λ+ κ cosh
(x+ a)

κ
. (1.165)

We choose κ, λ, a to fix the two endpoints (two conditions) and the length
(one condition).
Example: Sturm-Liouville Problem. We wish to find the stationary points
of the quadratic functional

J [y] =
∫ x2

x1

1

2

{

p(x)(y′)2 + q(x)y2
}

dx, (1.166)

subject to the boundary conditions y(x) = 0 at the endpoints x1, x2 and the
normalization

K[y] =
∫ x2

x1

y2 dx = 1. (1.167)

Taking the variation of J − λK, we find

δJ =
∫ x2

x1

{−(py′)′ + qy − λy} δy dx. (1.168)

Stationarity therefore requires

−(py′)′ + qy = λy, y(x1) = y(x2) = 0. (1.169)

This is the Sturm-Liouville eigenvalue problem. It is an infinite dimensional
analogue of the F (x) = 1

2
x ·Ax problem.

Example: Irrotational Flow Again. Consider the Lagrange density

L =
∫ {

−1

2
ρv2 + u(ρ)− φ (ρ̇ +∇ · ρv)

}

d3x (1.170)



1.5. LAGRANGE MULTIPLIERS 37

This is similar to our previous Lgrangian for irrotational barotropic flow, but
here φ is playing the role of a Lagrange multiplier enforcing the condition of
mass conservation. Varying v shows that v = ∇φ, and the Bernoulli and
Euler equations follow almost as before. Because the equation v = ∇φ does
not involve time derivatives, this is one of the cases where it is legitimate
to substitute a consequence of the action principle back into the action, and
this gives us back our previous formulation.
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Chapter 2

Function Spaces

We are going consider the differential equations of physics as relations in-
volving linear differential operators. These operators, like matrices, are lin-
ear maps acting on vector spaces, but the elements of the vector spaces are
functions. Such spaces are infinite dimensional. We will try to survive by
relying on our experience in finite dimensions, but sometimes this fails, and
more sophistication is required.

2.1 Motivation

In the previous chapter we looked at two variational problems:
1) Find the stationary points of

F (x) =
1

2
x ·Ax =

1

2
xiAijxj (2.1)

on the surface x · x = 1. This led to the matrix eigenvalue equation

Ax = λx. (2.2)

2) Find the stationary points of

J [y] =
∫ x2

x1

1

2

{

p(x)(y′)2 + q(x)y2
}

dx, (2.3)

subject to the conditions y(x1) = y(x2) = 0 and

K[y] =
∫ x2

x1

y2 dx = 1. (2.4)

39
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This led to the differential equation

−(py′)′ + qy = λy, y(x1) = y(x2) = 0. (2.5)

There will be a solution that satisfies the boundary conditions only for
a discrete set of values of λ.

The stationary points of both function and functional are therefore deter-
mined by linear eigenvalue problems. The only difference is that the finite
matrix in the first is replaced in the second by a linear differential operator.
The theme of the next few chapters is an exploration of the similarities and
differences between finite matrices and linear differential operators. In this
chapter we will focus on how the functions on which the derivatives act can
be thought of as vectors.

2.1.1 Functions as Vectors

Consider F [a, b], the set of all real (or complex) valued functions f(x) on the
interval [a, b]. This is a vector space over the field of the real (or complex)
numbers because, given two functions f1(x) and f2(x), and two numbers λ1

and λ2, we can form the sum λ1f1(x)+λ2f2(x) and the result is still a function
on the same interval. Examination of the axioms listed in the appendix
will show that F [a, b] possesses all the other attributes of a vector space as
well. We may think of the collection of numbers {f(x)} for x ∈ [a, b] as
being the components of the vector. Since there is an infinity of independent
components, the space of functions is infinite dimensional.

The set of all functions is usually too large for us. We will restrict our-
selves to subspaces of functions with nice properties, such as being continuous
or differentiable. There is some fairly standard notation for these spaces: The
space of Cn functions (those which have n continuous derivatives) is called
Cn[a, b]. For smooth functions (those with derivatives of all orders) we write
C∞[a, b]. For the space of analytic functions (those whose Taylor expan-
sion actually converges to the function) we write Cω[a, b]. For C∞ functions
defined on the whole real line we write C∞(R). For the subset of func-
tions with compact support (those that vanish outside some finite interval)
we write C∞

0 (R). There are no analytic functions with compact support:
Cω

0 (R) = ∅.
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2.2 Norms and Inner Products

We are often interested in “how large” a function is. This leads to the
notion of normed function spaces. There are many measures of function size.
Suppose R(t) is the number of inches per hour of rainfall. If your are a farmer
you are probably most concerned with the total amount of rain that falls.
A big rain has big

∫ |R(t)| dt. If you are a city engineer worried about the
capacity of the sewer system to cope with a downpour, you are primarily
concerned with the maximum value of R(t). For you a big rain has a big
“sup |R(t)|”1.

2.2.1 Norms and Convergence

We can seldom write down an exact solution to a real-world problem. We
are usually forced to use numerical methods, or to expand as a power series
in some small parameter. The result is a sequence of approximate solutions
fn(x), which we hope will converge to the desired exact solution f(x) as we
make the numerical grid smaller, or take more terms in the power series.

Because there is more than one way to measure of the “size” of a function,
the convergence of a sequence of functions, fn, to a limit function f is not
as simple a concept as the convergence of a sequence of numbers, xn, to a
limit x. Convergence means that the distance between the fn and the limit
function, f , gets smaller and smaller as n increases, so each different measure
of how “small” the distance is provides a new notion of what it means to
“converge.” We are not going to make much use of ε, δ style analysis in this
book, but you need to realize that this distinction between different forms of
convergence is not merely academic: Real world engineers must be precise
about the kind of errors they are prepared to tolerate, or else a bridge they
design might collapse. Therefore, if you look at the syllabus of a graduate-
level engineering course in mathematical methods, such as TAM 474/CSE
417, you will see that they devote much time to these issues. While physicists
do not normally face the same legal liabilities as engineers, we should at least
take care to know what we mean when we assert fn → f .

1Here “sup”, short for supremum, is synonymous with the “least upper bound” of a set
of numbers, i.e. the smallest number that is larger than all the numbers in the set. This
concept is more useful than “maximum” because the supremum need not be an element
of the set. It is an axiom of the real number system that any bounded set of real numbers
has a least upper bound.
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Here are some common forms of convergence:

i) If, for all x in its domain of definition D, the set of numbers fn(x)
converges to f(x), then we say the sequence converges pointwise.

ii) If the maximum separation

sup
x∈D
|fn(x)− f(x)| (2.6)

goes to zero as n → ∞, then we say that fn converges to f uniformly

on D.
iii) If

∫

D
|fn(x)− f(x)| dx (2.7)

goes to zero as n → ∞, then we say that fn converges in the mean to
f on D.

Uniform convergence implies pointwise convergence, but not vice versa. If
D is a finite interval, then uniform convergence implies convergence in the
mean, but convergence in the mean implies neither uniform nor pointwise
convergence.

Example: Consider the sequence fn = xn (n = 1, 2, . . .) and D = [0, 1).
Here, the round bracket means that the point x = 1 is excluded from the
interval.

x

x x

x

1

3

2

1

xn → 0 on [0, 1), but not uniformly.

As n becomes large we have fn(x)→ 0 pointwise in D, but the convergence
is not uniform because

sup
x∈D
|fn(x)− f(x)| = 1 (2.8)

for all n.
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Example: Let fn = xn with D = [0, 1]. Here, the square bracket means
that the point x = 1 is included in the interval. In this case, we have neither
uniform nor pointwise convergence of the fn to zero, but fn → 0 in the mean.

We can describe uniform convergence by using the notion of a norm — a
generalization of the usual notion of the length of a vector. A norm, denoted
by ‖f‖, of a vector f (a function, in our case) is a real number that obeys

i) positivity: ‖f‖ ≥ 0, and ‖f‖ = 0⇔ f = 0,
ii) the triangle inequality : ‖f + g‖ ≤ ‖f‖+ ‖g‖,
iii) linear homogeneity: ‖λf‖ = |λ|‖f‖.

One example is the “sup” norm, which is defined by

‖f‖∞ = sup
x∈D
|f(x)|. (2.9)

This number is guaranteed to be finite if f is continuous and D is compact.
In terms of the sup norm, uniform convergence is the statement that

lim
n→∞ ‖fn − f‖∞ = 0. (2.10)

2.2.2 Norms from Integrals

The space Lp[a, b], for 1 ≤ p <∞, is defined to be our F [a, b] equipped with

‖f‖p =

(
∫ b

a
|f(x)|p dx

)1/p

, (2.11)

as the measure of length, and with a restriction to functions for which ‖f‖p
is finite.

We say that fn → f in Lp iff2 the Lp distance ‖f−fn‖p tends to zero. We
have already seen the L1 measure of distance in the definition of convergence
in the mean. As in that case, convergence in Lp says nothing about pointwise
convergence.

We would like to regard ‖f‖p as a norm. It is possible, however, for a
function to have ‖f‖p = 0 without being identically zero — a function that
vanishes at all but a finite set of values, for example. This pathology violates
number i) in our list of requirements for something to be called a norm, but
we circumvent the problem by simply declaring such functions to be zero.
This means that elements of the Lp spaces are not really functions, but only

2“iff”: mathspeak for if, and only if .
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equivalence classes of functions — two functions being regarded as the same
is they differ by a function of zero length. Clearly these spaces are not for use
when anything significant depends on the value of the function at any precise
point. They are useful in physics, however, because we can never measure
a quantity at an exact position in space or time. We usually measure some
sort of local average.

All the Lp norms satisfy the triangle inequality, although, for general p,
this is not exactly trivial to prove.

An important property for any space to have is that of being complete.
Roughly speaking, a space is complete if when some sequence of elements of
the space look as if they are converging, then they are indeed converging,
and their limit is an element of the space. To make this concept precise, we
need to say what we mean by the phrase “look as if they are converging”.
This requires the notion of a Cauchy sequence.

Definition: A sequence fn in a normed vector space is said to be Cauchy if for
any ε > 0 we can find an N such that n,m > N implies that ‖fm − fn‖ < ε.

In other words, the elements of a Cauchy sequence get arbitrarily close to
each other as n→∞. A normed vector space is then complete with respect
to its norm if every Cauchy sequence actually converges to some element in
the space.

Exercise: Show that any convergent sequence is Cauchy.

Example: Consider the space Qn, the space of vectors in Rn with rational
coefficients. The sequence

x1 = (1.0, 0, . . . , 0),

x2 = (1.4, 0, . . . , 0),

x3 = (1.41, 0, . . . , 0),

x4 = (1.414, 0, . . . , 0),
...

where the first component consists of succesive approximations to
√

2, is
Cauchy. It has no limit in Qn, however, so Qn is not complete.

A complete normed vector space is called a Banach space. All the Lp[a, b]
are complete, and therefore Banach spaces, but showing this requires the
Lebesgue integral3, and so is not appropriate for us.

3The “L” in Lp honours Henri Lebesgue. Banach spaces are named after Stefan Banach,
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People who solve partial differential equations for living often measure
the accuracy of their work by using the Sobolev norms

‖f‖p,m =

(
m∑

n=0

∫ b

a

∣
∣
∣
∣
∣

dnf

dxn

∣
∣
∣
∣
∣

p

dx

)1/p

,

and their generalization to higher dimensions. Two functions are therefore
nearby in the ‖f‖p,m norm only if their numerical values and those of all of
their first m derivatives are close. The resulting Sobolev spaces are denoted
by Wm,p[a, b]. The special case where p = 2 is often denoted by Hm[a, b].

2.2.3 Hilbert Space

The Banach space L2 and the Sobolev space Hm are special in that they are
also a Hilbert space. This means that their norm is derived from an inner
product. We define the inner product

〈f, g〉 =
∫ b

a
f ∗g dx (2.12)

and then the L2 norm can be written

‖f‖2 =
√

〈f, f〉. (2.13)

If we omit the subscript on a norm, we mean it to be this one. You are
probably familiar with Hilbert space from your quantum mechanics classes.

Being positive definite, the inner product satisfies the Cauchy-Schwarz-

Bunyakovsky inequality

|〈f, g〉| ≤ ‖f‖‖g‖. (2.14)

That this is so can be seen by looking at

0 ≤ 〈λf + µg, λf + µg〉 = (λ∗, µ∗ )
( ‖f‖2 〈f, g〉
〈f, g〉∗ ‖g‖2

)(
λ
µ

)

, (2.15)

and observing that if the matrix is to be positive definite, then its determinant

‖f‖2‖g‖2 − |〈f, g〉|2 (2.16)

who was one of the founders of functional analysis, a subject largely developed by the
habitués of the Scottish Café in Lvov, Poland.
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must be positive.
From Cauchy-Schwarz-Bunyakovsky we can also establish the triangle

inequality:

‖f + g‖2 = ‖f‖2 + ‖g‖2 + 2Re〈f, g〉
≤ ‖f‖2 + ‖g‖2 + 2|〈f, g〉|,
≤ ‖f‖2 + ‖g‖2 + 2‖f‖‖g‖,
= (‖f‖+ ‖g‖)2, (2.17)

so
‖f + g‖ ≤ ‖f‖+ ‖g‖. (2.18)

Orthonormal Sets of Functions

Once we have an inner product, we have the notion of an orthonormal set of
vectors. We say that a set of functions {un} is orthonormal iff

〈un, um〉 = δnm. (2.19)

For example, we have

2
∫ 1

0
sin(nπx) sin(mπx) dx = δnm, n,m = 1, 2, . . . (2.20)

so the set of functions un =
√

2 sinnπx is orthonormal on [0, 1]. This set of
functions is also complete — in a different sense, however, from the earlier
use of this word. A orthonormal set of functions is said to be complete on
the interval [0, 1] iff any function f for which

‖f‖2 =
∫ 1

0
|f(x)|2 dx (2.21)

is finite, and hence f an element of L2[0, 1], has a convergent expansion

f(x) =
∞∑

n=0

anun(x).

If we assume that such an expansion exists, and that we can freely interchange
the order of the sum and integral, we can multiply both sides of this expansion
by u∗m(x) and use the orthonormality of the un’s to read off the expansion
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coefficients as an = 〈un, f〉. When un =
√

2 sin(nπx), the result is the (sine)
Fourier series.
Example: expanding unity. Suppose f(x) = 1. Since

∫ 1
0 |f |2dx = 1 is finite,

the function f(x) = 1 can be represented as a convergent sum of the un =√
2 sin(nπx).

The inner product of f with the un’s is

〈un, f〉 =
∫ 1

0

√
2 sin(nπx) dx =

{
0, n even,
2
√

2
nπ
, n odd.

Thus,

1 =
∞∑

n=0

4

(2n+ 1)π
sin
(

(2n+ 1)πx
)

, x ∈ [0, 1]. (2.22)

It is important to understand that the convergence of the sum is guaranteed
only in the L2 sense. Obviously the series does not converge pointwise to
unity at x = 0 or x = 1 — every term is zero at these points.

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

The sum of the first 31 terms in the sine expansion of f(x) = 1

The figure shows the sum of the series up to and including the term with
n = 30. The L2 measure of the distance between f(x) = 1 and this sum is

∫ 1

0

∣
∣
∣
∣
∣
1−

30∑

n=0

4

(2n+ 1)π
sin
(

(2n+ 1)πx
)
∣
∣
∣
∣
∣

2

dx = 0.00654, (2.23)

which is already quite small.
It is perhaps surprising that a set of functions that vanish at the endpoints

of the interval can be used to expand a function that does not vanish at
the ends. This exposes an important technical issue: Any finite sum of
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continuous functions vanishing at the endpoints is also a continuous function
vanishing at the endpoints. One is tempted to talk about the “subspace”
of functions vanishing in this way. This set is indeed a vector space, and a
subset of the Hilbert space, but it is not itself a Hilbert space. The example
above shows that a Cauchy sequence of functions vanishing at the endpoints
of an interval can converge to a function that does not vanish there. The
“subspace” is therefore not complete in our original meaning of the term.
The set of continuous functions vanishing at the endpoints fits into the whole
Hilbert space much as the rational numbers fit into the real numbers. A finite
sum of rationals is a rational number, but an infinite sum of rationals is not
in general a rational number. Furthermore, we can express any real number
as the limit of a sequence of rational numbers. We say that the rationals Q

are a dense subset of the reals, and that the reals are obtained by completing

the set of rationals by adding to this set its limit points. In the same sense,
the set of continuous functions vanishing at the endpoints is a dense subset
of the whole Hilbert space and the whole Hilbert space is its completion.

Best Approximation

Let un(x) be an orthonormal set of functions. The sum of the first N terms of
the Fourier expansion of f(x) in the un, is the closest— measuring distance
with the L2 norm — that one can get to f whilst remaining in the space
spanned by u1, u2, . . . , uN .

To see this, consider

∆ ≡ ‖f −
N∑

1

anun‖2 = 〈f −
N∑

m=1

amum, f −
N∑

n=1

anun〉

= ‖f‖2 −
N∑

n=1

an〈f, un〉 −
N∑

m=1

a∗m〈um, f〉+
N∑

n,m=1

a∗man〈um, un〉

= ‖f‖2 −
N∑

n=1

an〈f, un〉 −
N∑

m=1

a∗m〈um, f〉+
N∑

n=1

|an|2, (2.24)

where at the last line we have used the orthonormality of the un. We can
complete the squares, and rewrite this as

∆ = ‖f‖2 −
N∑

n=1

|〈un, f〉|2 +
N∑

n=1

|an − 〈un, f〉|2. (2.25)
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We seek to minimize ∆ by a suitable choice of coefficients an. The smallest
we can make ∆ is

∆min = ‖f‖2 −
N∑

n=1

|〈un, f〉|2, (2.26)

and we attain this bound by setting each of the |an − 〈un, f〉| equal to zero.
That is by taking

an = 〈un, f〉. (2.27)

Thus the Fourier coefficients 〈un, f〉 are the optimal choice for the an.
Suppose we have some non-orthogonal collection of functions gn, n =

1, . . . N , and we find the best approximation
∑N
n=1 angn(x) to f(x). Now

suppose we are given a gN+1 to add to our collection. We can then find
an improved approximation

∑N+1
n=1 a

′
ngn(x) by including this new function

— but finding this better fit will generally involve tweaking all the an, not
just trying different values of aN+1. The great advantage of approximating by
orthogonal functions is that, given another member of an orthonormal family,
we can improve the precision of the fit by adjusting only the coefficient of the
new term. We will not have to perturb the previously obtained coefficients.

Parseval’s Theorem

The “best approximation” result from the previous section allows us to give
a alternative definition of a “complete orthonormal set”, and to obtain the
formula an = 〈un, f〉 for the expansion coefficients without having to assume
that we can integrate the infinite series

∑
anun term-by-term. Recall that we

said that a set of points S is a dense subset of a space T if any given point
x ∈ T is the limit of a sequence of points in S, i.e. there are elements of S
lying arbitrarily close to x. For example, the set of rational numbers Q is
a dense subset of R. Using this language, we say that a set of orthonormal
functions {un(x)} is complete if the set of all finite linear combinations of
the un is a dense subset of the entire Hilbert space. This guarantees that, by
taking N sufficently large, our best approximation will approach arbitrarily
close to our target function f(x). Since the best approximation containing
all the un up to uN is the N -th partial sum of the Fourier series, this shows
that the Fourier series actually converges to f .

We have therefore proved that if we are given un(x), n = 1, 2, . . . , a
complete orthonormal set of functions on [a, b], then any function for which
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‖f‖2 is finite can be expanded as a convergent Fourier series

f(x) =
∞∑

n=1

anun(x), (2.28)

where

an = 〈un, f〉 =
∫ b

a
u∗n(x)f(x) dx. (2.29)

The convergence is guaranteed only in the L2 sense that

lim
N→∞

∫ b

a

∣
∣
∣
∣
∣
f(x)−

N∑

n=1

anun(x)

∣
∣
∣
∣
∣

2

dx = 0. (2.30)

Equivalently

∆N = ‖f −
N∑

n=1

anun‖2 → 0 (2.31)

as N →∞. Now we showed in the previous section that

∆N = ‖f‖2 −
N∑

n=1

|〈un, f〉|2

= ‖f‖2 −
N∑

n=1

|an|2, (2.32)

and so the L2 convergence is equivalent to the statement that

‖f‖2 =
∞∑

n=1

|an|2. (2.33)

This last result is called Parseval’s theorem.
Example: In the expansion (2.22), we have ‖f2‖ = 1 and

|an|2 =
{

8/(n2π2), n odd,
0, n even.

(2.34)

Parseval therefore tells us tells us that

∞∑

n=0

1

(2n+ 1)2
= 1 +

1

32
+

1

52
+ · · · = π2

8
. (2.35)
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Example: The functions un(x) = 1√
2π
einx, n ∈ Z form a complete orthonor-

mal set on the interval [−π, π]. Let f(x) = 1√
2π
eiζx. Then its Fourier expan-

sion is

eiζx =
∞∑

n=−∞
cne

inx, −π < x < π, (2.36)

where

cn =
1

2π

∫ π

−π
eiζxe−inx dx =

sin(π(ζ − n))

π(ζ − n)
. (2.37)

We also have that

‖f‖2 =
∫ π

−π

1

2π
dx = 1. (2.38)

Now Parseval tells us that

‖f‖2 =
∞∑

n=−∞

sin2(π(ζ − n))

π2(ζ − n)2
, (2.39)

the left hand side being unity.
Finally, as sin2(π(ζ − n)) = sin2(πζ), we have

cosec2(πζ) ≡ 1

sin2(πζ)
=

∞∑

n=−∞

1

π2(ζ − n)2
. (2.40)

The end result is a quite non-trivial expansion for the square of the cosecant.

2.2.4 Orthogonal Polynomials

A useful class of orthonormal functions are the sets of orthogonal polynomials

associated with an interval [a, b] and a positive weight function w(x). We
introduce a real inner product

〈u, v〉w =
∫ b

a
w(x)u(x)v(x) dx, (2.41)

and apply the Gram-Schmidt procedure to the monomial powers 1, x, x2, x3, . . .
so as to produce an orthonomal set. We begin with

p0(x) ≡ 1/‖1‖w, (2.42)

where ‖1‖w =
√
∫ b
a w(x) dx, and define recursively

pn+1(x) =
xpn(x)−

∑n
0 pi(x)〈pi, xpn〉w

‖xpn −
∑n

0 pi〈pi, xpn〉‖w
. (2.43)
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Clearly pn(x) is an n-th order polynomial, and by construction

〈pn, pm〉w = δnm. (2.44)

All such sets of polynomials obey a three-term recurrence relation

xpn(x) = βnpn+1(x) + αnpn(x) + βn−1pn−1(x). (2.45)

That there are only three terms, and that the coefficients of pn+1 and pn−1

are related, is due to the identity

〈pn, xpm〉w = 〈xpn, pm〉w. (2.46)

This means that the matrix (in the pn basis) representing the operation of
multiplication by x is symmetric. Since multiplication by x takes us from pn
only to pn+1, the matrix has just one non-zero entry above the main diagonal,
and hence, by symmetry, only one below.

We will find use for the polynomials named after Legendre, Hermite, and
Tchebychef.

Legendre Polynomials

These are defined by a = −1, b = 1 and w = 1. The standard Legendre
polynomials are not normalized by the scalar product, but instead by setting
Pn(1) = 1. They are given by Rodriguez’ formula

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n. (2.47)

The first few are

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1),

P3(x) =
1

2
(5x3 − 3x3),

P4(x) =
1

8
(35x4 − 30x2 + 3).

The inner product is
∫ 1

−1
Pn(x)Pm(x) dx =

2

2n+ 1
δnm. (2.48)
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The three-term recurrence relation is

(2n+ 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x). (2.49)

The Pn form a complete set for expanding functions on [−1, 1].

Hermite Polynomials

The Hermite polynomials have a = −∞, b = +∞ and w(x) = e−x
2

, and are
defined by the generating function

e2tx−t
2

=
∞∑

0

1

n!
Hn(x)t

n. (2.50)

If we write

e2tx−t
2

= ex
2−(x−t)2 , (2.51)

we may use Taylor’s theorem to find

Hn(x) =
dn

dtn
ex

2−(x−t)2
∣
∣
∣
∣
∣
t=0

= (−1)nex
2 dn

dxn
e−x

2

, (2.52)

which is a a useful alternative definition. The first few Hermite polynomials
are

H1(x) = 1,

H2(x) = 2x,

H3(x) = 8x3 − 12x,

H4(x) = 16x4 − 48x2 + 12,

H5(x) = 32x5 − 160x3 + 120x.

The normalization is such that
∫ ∞

−∞
Hn(x)Hm(x)e−x

2

dx = 2nn!
√
πδnm, (2.53)

as may be proved by using the generating function. The three-term recur-
rence relation is

2xHn(x) = Hn+1(x)− 2nHn−1(x). (2.54)
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Tchebychef Polynomials

These are defined by taking a = −1, b = +1 and w(x) = (1− x2)±1/2. The
Tchebychef polynomials of the first kind are

Tn(x) = cos(n cos−1 x). (2.55)

The first few are

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x.

The Tchebychef polynomials of the second kind are

Un−1(x) =
sin(n cos−1 x)

sin(cos−1 x)
=

1

n
T ′
n(x). (2.56)

and the first few are

U−1(x) = 0,

U0(x) = 1,

U1(x) = 2x,

U2(x) = 4x2 − 1,

U3(x) = 8x3 − 4x.

Tn and Un obey the same recurrence relation

2xTn = Tn+1 + Tn−1,

2xUn = Un+1 + Un−1,

which are disguised forms of elementary trigonometric identities. Their or-
thogonality is also a disgused form of the orthogonality of the functions cosnθ
and sin nθ. After setting x = cos θ we have

∫ π

0
cosnθ cosmθ dθ =

∫ 1

−1

1√
1− x2

Tn(x)Tm(x) dx = hnδnm, n,m,≥ 0,

(2.57)
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where h0 = π, hn = π/2, n > 0, and

∫ π

0
sinnθ sinmθ dθ =

∫ 1

−1

√
1− x2Un−1(x)Um−1(x) dx =

π

2
δnm, n,m > 0.

(2.58)
Both the set {Tn(x)} and the set {Un(x)} are complete, and any L2 function
on [−1, 1] can be expanded in terms of them.

2.3 Linear Operators and Distributions

Our theme is the analogy between linear differential operators and matrices.
It is therefore useful to understand how we can think of a differential operator
as a continuously indexed “matrix”.

2.3.1 Linear Operators

The action of a finite matrix on a vector x = Ay is given in components by

yi = Aijxj . (2.59)

The function-space analogue of this, g = Af , is naturally to be thought of as

g(x) =
∫ b

a
A(x, y)f(y) dy, (2.60)

where the summation over adjacent indices has been replaced by an inte-
gration over the dummy variable y. If A(x, y) is an ordinary function then
A(x, y) is called an integral kernel . We will study such linear operators in
the chapter on integral equations.

The identity operation is

f(x) =
∫ b

a
δ(x− y)f(y) dy, (2.61)

and so the Dirac delta function, which is not an ordinary function, plays the
role of the identity matrix. Once we admit distributions such as δ(x), we can
think of differential operators as continuously indexed matrices by using the
distribution

δ′(x) = “
d

dx
δ(x)”. (2.62)
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The quotes are to warn us that we are not really taking the derivative of the
highly singular delta function. The symbol δ′(x) is properly defined by its
behaviour in an integral

∫ b

a
δ′(x− y)f(y) dy =

∫ b

a

d

dx
δ(x− y)f(y) dy

= −
∫ b

a

d

dy
δ(x− y)f(y) dy

=
∫ b

a
δ(x− y)f ′(y) dy

= f ′(x).

The manipulations here are purely formal, and serve only to motivate the
defining property

∫ b

a
δ′(x− y)f(y) dy = f ′(x). (2.63)

It is, however, sometimes useful to think of a smooth approximation to
δ′(x− a) being the genuine derivative of a smooth approximation to δ(x−a).

a a
x x

(x−a)δ (x−a)δ

Smooth approximations to δ(x− a) and δ′(x− a).
We can now define higher “derivatives” of δ(x) by

∫ b

a
δ(n)(x)ϕ(x)dx = (−1)nϕ(n)(0), (2.64)

and use them to represent any linear differential operator as a formal integral
kernel.
Exercise: Consider the distributional kernel

k(x, y) = a2(y)δ
′′(x− y) + a1(y)δ

′(x− y) + a0(y)δ(x− y). (2.65)
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Show that
∫

k(x, y)u(y) dy = (a2(x)u(x))
′′ + (a1(x)u(x))

′ + a0(x)u(x), (2.66)

and that

k(x, y) = a2(x)δ
′′(x− y) + a1(x)δ

′(x− y) + a0(x)δ(x− y), (2.67)

leads to
∫

k(x, y)u(y) dy = a2(x)u
′′(x) + a1(x)u

′(x) + a0(x)u(x). (2.68)

These examples show that linear differential operators are continuously-
infinite matrices having entries only infinitesimally close to the main diagonal.

2.3.2 Distributions

It is possible to work all the problems in this book with no deeper under-
standing of what a delta-function is than that presented in section 2.3.1. At
some point however, the more careful reader will wonder about the logical
structure of what we are doing, and will soon have qualms about the free
use objects such as δ(x). How do such creatures fit into the function-space
picture, and how do we avoid the contradictions and paradoxes that soon
appear if we manipulate them without thinking?

We usually think of δ(x) as being a “limit” of a sequence of functions
whose graphs are getting narrower and narrower while their height grows
to keep the area under the curve fixed. An example would be the function
δε(x− a) in the figure

ε

ε1/

a
x

Approximation δε(x− a) to δ(x− a).
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The L2 norm of δε,

‖δε‖2 =
∫

|δε(x)|2 dx =
1

ε
, (2.69)

tends to infinity as ε → 0, so δε cannot be tending to any function in L2.
Dirac’s delta has infinite “length,” and so is not an element of our Hilbert
space.

The proper way to think of δ(x) requires a notion from linear algebra.
Recall that the dual space V ∗ of a vector space V is the vector space of linear
functions from the original vector space V to the field over which it is defined.
We consider δ(x) to be an element of the dual space of a vector space T of test

functions. When a test function ϕ(x) is plugged in, the δ-machine returns
the number ϕ(0). This operation is a linear map because the action of δ on
λϕ(x)+µχ(x) is to return λϕ(0)+µχ(0). Test functions are smooth (infinitely
differentiable) functions that tend rapidly to zero at infinity. Exactly what
class of function we chose for T depends on the problem at hand. If we are
going to make extensive use of Fourier transforms, for example, we mght
select the Schwartz space, S. This is the space of infinitely differentiable
functions ϕ(x) such that the seminorms4

|ϕ|m,n =
∫ ∞

−∞
(1 + |x|)n

∣
∣
∣
∣
∣

dmϕ

dxm

∣
∣
∣
∣
∣
dx (2.70)

are finite for all positive integers m and n. The Schwartz space has the
advantage that if ϕ is in S, then so is its Fourier transform.

The “nice” behaviour of the test functions compensates for the “nasty”
behaviour of δ(x) and its relatives. The objects, such as δ(x), composing the
dual space T ∗ are called generalized functions, or distributions. Actually, not
all linear maps T → R are included in T ∗, because we require distributions
to be continuous linear maps. In other words, if ϕn → ϕ, we want all
distributions u to obey u(ϕn) → u(ϕ). Making precise what we mean by
ϕn → ϕ is part of the task of specifying T . For example, in the Schwartz
space, we declare that ϕn → ϕ iff |ϕn − ϕ|n,m → 0, for all positive m,n.

When they wish to stress the dual-space aspect of distribution theory,
mathematically minded authors use the notation

δ(ϕ) = ϕ(0), (2.71)

4A seminorm | | is like a norm, except that |ϕ| = 0 does not imply that ϕ = 0.
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or
(δ, ϕ) = ϕ(0), (2.72)

in place of the common, but purely formal,
∫

δ(x)ϕ(x) dx = ϕ(0). (2.73)

The expression (δ, ϕ) here represents the pairing of the element ϕ of the
vector space T with the element δ of its dual space T ∗. It should not be
thought of as an inner product as the distribution and the test function lie in
different spaces. The “integral” in the common notation is purely symbolic,
of course, but the common notation should not be despised even by those in
quest of rigour. It suggests correct results, such as

∫

δ(ax− b)ϕ(x) dx =
1

|a|ϕ(b/a), (2.74)

which would look quite unmotivated in the dual-space notation.
The distribution δ′(x) is now defined by the pairing

(δ′, ϕ) = −ϕ′(0), (2.75)

where the minus sign comes from imagining an integration by parts that
takes the “derivative” off δ(x) and puts it on to the smooth function ϕ(x):

“
∫

δ′(x)ϕ(x) dx” = −
∫

δ(x)ϕ′(x) dx. (2.76)

Similarly δ(n)(x) is now defined by the pairing

(δ′, ϕ) = (−1)nϕ(n)(0). (2.77)

The “nicer” the class of test function we take, the “nastier” the class
of distributions we can handle. For example, the Hilbert space L2 is its
own dual: the Riesz-Fréchet theorem asserts that any continuous linear
map F : L2 → R can be written as F (f) = 〈u, f〉 for some u ∈ L2. The
delta-function map is not continuous, however. An arbitrarily small change,
f → f + δf , in a function (small in the L2 sense of ‖δf‖ being small) can
produce an arbitrarily large change in f(0). Thus L2 functions are not “nice”
enough for their dual space to be able accommodate the delta function. An-
other way of understanding this is to remember that we regard two L2 func-
tions as being the same whenever ‖f1 − f2‖ = 0. This distance will be zero
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even if f1 and f2 differ from one another on a countable set of points. As
we have remarked earlier, this means that elements of L2 are not really func-
tions at all — they do not have an assigned valued at each point. They
are, instead, only equivalence classes of functions. Since f(0) is undefined,
an any attempt to interpret the statement

∫

δ(x)f(x) dx = f(0) for f an
arbitrary element L2 is necessarily doomed to failure. Continuous functions,
however, do have well-defined values at every point. If we take the space of
test of functions T to consist of all continuous functions, but not demand
that they be differentiable, then T ∗ will include the delta function, but not
its “derivative” δ′(x), as this requires us to evaluate f ′(0). If we require the
test functions to be once-differentiable, then T ∗ will include δ′(x) but not
δ′′(x), and so on.

When we add suitable spaces T and T ∗ to our toolkit, we are constructing
what is called a rigged5 Hilbert space. In such a rigged space we have the
inclusion

T ⊂ L2 ≡ [L2]∗ ⊂ T ∗. (2.78)

The idea is to take the space T ∗ big enough to contain objects such as the
limit of our sequence of “approximate” delta functions δε, which does not
converge to anything in L2.

Ordinary functions can also be regarded as distributions, and this helps
illuminate the different senses in which a sequence un can converge. For
example, we can consider the functions

un = sin nπx, 0 < x < 1, (2.79)

as being either elements of L2[0, 1] or as distributions. As distributions we
evaluate them on a smooth function ϕ as

(un, ϕ) =
∫ 1

0
ϕ(x)un(x) dx. (2.80)

Now
lim
n→∞

(un, ϕ) = 0, (2.81)

since the high-frequency Fourier coefficients of any smooth function tend to
zero. We deduce that as a distribution we have limn→∞ un = 0. Considered
as elements of L2, however, the un do not tend to zero. Their norm obeys
‖un‖ = 1/2 and so all the un remain at the same fixed distance from 0.

5“Rigged” as in a sailing ship ready for sea, not “rigged” as in a corrupt election.
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Weak Derivatives

We have already met the “derivative” of the delta function. The notion of
distributions also allows us to define the “derivative” of ordinary functions
that would not ordinarily be regarded as being differentiable. We say that
v(x) is the weak derivative of u(x) if

∫

v(x)ϕ(x) dx = −
∫

u(x)ϕ′(x) dx (2.82)

for all test functions ϕ ∈ T . When u(x) is differentiable in the usual sense, the
weak derivative coincides with the ordinary derivative. In general, however,
the weak derivative does not assign a numerical value to the derivative at
each point, and so is a distribution and not a function. In the weak sense

d

dx
|x| = sgn(x), (2.83)

d

dx
sgn(x) = 2δ(x), (2.84)

and so on. The object |x| is an ordinary function, but sgn(x) has no definite
value at x = 0, whilst δ(x) has no definite value at any x.

The elements of L2 are also not quite functions — having no well-defined
value at a point — but are particularly mild-mannered distributions, and
have weak derivatives that may themselves be elements of L2. It is this weak
sense that we will, in later chapters, allow differential operators to act on L2

“functions”.

For further reading we recommend M. J. Lighthill Fourier Analysis and

Generalized Functions or F. G. Friedlander Introduction to the Theory of

Distributions Both books are published by Cambridge University Press.

2.4 Fourier Series and Integrals.

We are not going to provide formal proofs of the completeness of any of
the sets of orthogonal functions we meet. It is, however, psychologically
useful to develop confidence in the effectiveness of Fourier series and Fourier
transforms.
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2.4.1 Fourier Series

We begin with finite dimensional spaces. Suppose we replace the interval
[0, L] by a discrete lattice of N points x = na with a a small lattice spacing.
Instead of a continuum function, f(x), we will have a finite set of numbers
fn = f(na). If we stand back and blur our vision so that we can no longer
perceive the individual lattice points, a plot of this discrete function will
look little different from the original continuum f(x). In other words, if f is
slowly varying on the scale of the lattice spacing, f(an) can be regarded as
a smooth function of x = an.

The basic “integration rule” for such functions is

a
∑

n

f(an)→
∫

f(an)adn→
∫

f(x)dx. (2.85)

A sum involving a Kronecker δ goes over to an integral as

a
∑

n

f(na)
1

a
δnm = f(ma)→

∫

f(x)δ(x− y)dx = f(y). (2.86)

We can therefore think of the Dirac delta function as

δnn′

a
→ δ(x− x′). (2.87)

In particular, the divergent quantity δ(0) (in x space) is obtained by setting
n = n′, and is thus to be understood as the reciprocal of the lattice spacing.
As we will see, this is the same as the number of Fourier modes per unit
volume.

The finite Fourier sum is obtained by summing the geometric progression

N−1∑

m=0

eikm(n−n′) =
e2πi(n−n

′) − 1

e2πi(n−n′)/N − 1
, (2.88)

where km = 2πm
N

. The right hand side is zero unless n − n′ is an integer
multiple of N , in which case it is equal to N . Thus

N−1∑

m=0

eikm(n−n′) = Nδnn′ . (2.89)

This formula is correct provided we restrict n, n′ to lie between 0 and N − 1.
If we allow more general values of n, n′ then we have

N−1∑

m=0

eikm(n−n′) =
∞∑

m=−∞
Nδn,n′+mN , (2.90)
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so the sum extends to a periodic function of n with period N . We can make
the km sum more symmetric by taking N to be an odd number and setting
the summation limits to be ±(N − 1)/2:

(N−1)/2
∑

m=(N−1)/2

eikm(n−n′) =
sin π(n− n′)
sin π

N
(n− n′)

=
∞∑

p=−∞
Nδn,n′+pN . (2.91)

Inserting (2.91) into
N−1∑

p=0

f(pa)δpn = f(na), (2.92)

we easily see that

f(na) =
(N−1)/2
∑

m=(N−1)/2

Ame
ikmn, where Am =

1

N

N−1∑

n=0

f(na)e−ikmn, (2.93)

for n in the range 0 to N − 1. This is the finite Fourier representation. It is
an algebraic identity, and is all we need when we numerically Fourier analyze
a discrete set of experimental data.

Now consider the continuum limit. We take a → 0 and N → ∞ with
with Na = L fixed. The finite sum

f(na) =
(N−1)/2
∑

m=−(N−1)/2

Ame
2πim
Na

na (2.94)

becomes

f(x) =
∞∑

m=−∞
Ame

2πim
L

x, (2.95)

where the coefficients become

Am =
a

Na

N−1∑

n=0

f(na)e−
2πim
Na

na → 1

L

∫ L

0
f(x)e−

2πim
L

x dx. (2.96)

This is the basic Fourier series for a function on a finite interval. It is only
equal to f(x) in the interval [0, L]. Outside, it produces L-periodic translates
of the original f .

Our derivation of the continuum limit is only heuristic. A careful ex-
amination would show that, provided f(x) is sufficiently well behaved, the
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Fourier series converges pointwise to f(x). Sufficient conditions for a “well
behaved” function are given by the following:
Theorem: Let f(t) be defined arbitrarily in the interval −π ≤ x < π, and
extended to a periodic function outside this interval by setting f(t + 2π) =
f(t). Suppose that the Riemann integral

∫ π
−π f(x) dx exists, and if this is an

improper integral, that it is absolutely convergent. Then, if x is an interior
point of any interval in which f(x) has bounded variation6, the Fourier series
is pointwise convergent to the function

F (x) =
1

2
lim
ε→0

(f(x+ ε) + f(x− ε)) . (2.97)

If f is continuous at x, this expression reduces to f(x).
A proof of these statements can be found in Whittaker and Watson’s A

Course of Modern Analysis (Cambridge University Press 1902) § 9.42. All
functions of interest in practical engineering mathematics satisfy the condi-
tions of this theorem.

For our work in Hilbert space, we can consider an even wider class of
functions. In Hilbert space we only demand convergence in the L2 sense, and
this is guaranteed whenever ‖f‖2 is finite.

2.4.2 Fourier Integral Transforms

We can use intervals other than [0, L]. The same formulæ hold, mutatis

mutandis, for any interval of length L. In particular, for [−L/2, L/2] we
have

f(x) =
∞∑

m=−∞
Ame

2πim
L

x, (2.98)

where

Am =
1

L

∫ L/2

−L/2
f(x)e−

2πim
L

x dx. (2.99)

6A function has bounded variation in a closed interval [a, b] iff there is a constant C,
such that, given a ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ b, we have

|f(a)− f(x1)|+ |f(x1)− f(x2)|+ · · ·+ |f(xn)− f(b)| < C

for all choices of n and the xi. Such a function can be expressed as the difference of two
positive and monotonically increasing functions. Bounded variation also guarantees the
existence of the limits f(x + 0) and f(x− 0).
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Consider what happens in this case if we take N , and hence L, to infinity
at fixed a. We set kmn = (km/a)na → kx, and scale k so the continuum
wavenumber is km/a→ k. The dimensionless km lies between −π to +π, so
the the continuum k ranges between −π

a
and +π

a
. Now

δ(x− x′)← δnn′

a
=

1

Na

∑

m

eikm(n−n′) →
∫ π/a

−π/a

dk

2π
eik(x−x

′) →
∫ ∞

−∞

dk

2π
eik(x−x

′).

(2.100)
At the last step we have either taken a to zero, or restricted ourselves to
functions smooth on the scale of a. In either case, the limits on the integral
become infinite.

Thus

δ(x− x′) =
∫ ∞

−∞

dk

2π
eik(x−x

′), (2.101)

and we deduce that

f(x) =
∫ ∞

−∞

dk

2π
f̃(k)e−ikx, (2.102)

where
f̃(k) =

∫ ∞

−∞
f(x)eikx dx. (2.103)

This is the Fourier integral transform and its inverse.
It is good practice when doing Fourier transforms in physics to treat x

and k asymmetrically: put the 2π’s with the dk’s. This is because dk
2π

has the
physical meaning of the number of normal modes per unit (spatial) volume
with wavenumber between k and k + dk. In other words,

∑

m

f(km/a) =
∑

m

f(k)↔ Na
∫
dk

2π
f(k) = (V olume)

∫
dk

2π
f(k). (2.104)

Exchanging x and k in the integral representation of δ(x − x′) gives us
the Fourier integral for δ(k − k′)

∫ ∞

−∞
ei(k−k

′)x dx = 2πδ(k − k′). (2.105)

Thus 2πδ(0) (in k space), although again mathematically divergent, has the
physical meaning

∫

dx, the volume of the system. Again it is good practice
to put a 2π with each δ(k), because this combination has a direct physical
interpretation.

Note that the symbol δ(0) has a very different physical interpretation
depending on whether δ is a delta function in x or in k space.
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Convolutions

One of the most useful properties of Fourier transforms in the convolution

theorem. Let f(t) and g(t) be functions on the real line. We define their
convolution, f ∗ g, by

[f ∗ g](t) =
∫ ∞

−∞
f(t− τ)g(τ) dτ. (2.106)

Despite the apparent asymmetry of the definition, the ∗ product obeys f ∗g =
g ∗ f . Now, let F [f ](ω) denote the Fourier transform of f ,

F [f ](ω) =
∫ ∞

−∞
eiωtf(t) dt, (2.107)

then
F [f ∗ g] = F [f ]F [g]. (2.108)

To see this, we simply compute

F [f ∗ g](ω) =
∫ ∞

−∞
eiωt

∫ ∞

−∞
f(t− τ)g(τ) dτ dt

=
∫ ∞

−∞

∫ ∞

−∞
eiωtf(t− τ)g(τ) dτ dt

=
∫ ∞

−∞

∫ ∞

−∞
eiω(t−τ)eiωτf(t− τ)g(τ) dτ dt

=
∫ ∞

−∞

∫ ∞

−∞
eiωt

′

eiωτf(t′)g(τ) dτ dt′

=
∫ ∞

−∞
eiωt

′

f(t′) dt′
∫ ∞

−∞
eiωτg(τ) dτ

= F [f ](ω)F [g](ω). (2.109)

Here, we have freely used Fubini’s theorem to interchange the order of inte-
grations, so we do require both

∫ ∞

−∞
|f(t)| dt and

∫ ∞

−∞
|g(t)| dt (2.110)

to converge.

2.4.3 The Poisson Summation Formula

The continuum limit of
(N−1)/2
∑

m=−(N−1)/2

eikm(n−n′) =
∞∑

p=−∞
Nδn,n′+pN , (2.111)
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is
1

L

∞∑

m=−∞
e

2πim
L

x =
∞∑

p=−∞
δ(x− pL). (2.112)

The right-hand side is sometimes called a “Dirac comb”. This Fourier series

has a useful consequence for Fourier integrals. Let f(x) be a function defined
on all R and having a well behaved Fourier transform. Multiply both sides
by f(x) and integrate over the whole real line. We find

1

L

∞∑

m=−∞
f̃
(

2πim

L

)

=
∞∑

p=−∞
f(pL). (2.113)

Here,

f̃(k) ≡
∫ ∞

−∞
eikxf(x) dx (2.114)

denotes the Fourier transform of f . This equality of sums is called the Poisson

summation formula.
Example: Since the Fourier transform of a Gaussian is another Gaussian, the
Poisson formula gives

∞∑

m=−∞
e−κm

2

=

√
π

κ

∞∑

m=−∞
e−m

2π2/κ. (2.115)

and, more usefully,

√

2π

t

∞∑

n=−∞
e−

1

2t
(θ+2πn)2 =

∞∑

n=−∞
e−

1

2
n2t+inθ. (2.116)

The last identity is known as Jacobi’s imaginary transformation. It states the
equivalence of the eigenmode expansion and the method of images solution
of the heat equation

1

2

∂2ϕ

∂x2
=
∂ϕ

∂t
(2.117)

on the unit circle. Notice that when t is small the sum on the right-hand side
converges very slowly, while the sum on the left converges very rapidly. The
opposite is true for large t. The conversion of a slowly converging series into
a rapidly converging one is a standard application of the Poisson summation
formula.
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Chapter 3

Linear Ordinary Differential

Equations

In this chapter we will discuss linear ordinary differential equations. We will
not describe tricks for solving any particular equation, but instead focus on
those aspects the general theory that we will need later.

We will consider either homogeneous equations, Ly = 0 with

Ly ≡ p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y, (3.1)

or inhomogeneous equations Ly = f . In full,

p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y = f(x). (3.2)

We will begin with homogeneous equations.

3.1 Existence and Uniqueness of Solutions

The fundamental result in the theory of differential equations is the existence
and uniqueness theorem for systems of first order equations.

3.1.1 Flows for First-Order Equations

Consider a general first order non-linear differential equation in Rn

dx1

dt
= X1(x1, x2, . . . , xn, t),

69
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dx2

dt
= X2(x1, x2, . . . , xn, t),

...
dxn

dt
= Xn(x1, x2, . . . , xn, t). (3.3)

For a sufficiently smooth vector field (X1, X2, . . . , Xn) there is a unique solu-
tion xi(t) for any initial condition xi(0) = xi0. Rigorous proofs of this claim,
including a statement of exactly what “sufficiently smooth” means, can be
found in any standard book on differential equations. Here, we will simply
assume the result. It is of course “physically” plausible. Regard the Xi as
being the components of the velocity field in a fluid flow, and the solution
xi(t) as the trajectory of a particle carried by the flow. An particle initially at
xi(0) = xi0 certainly goes somewhere, and unless something seriously patho-
logical is happening, that “somewhere” will be unique.

Now introduce a single function y(t), and set

x1 = y,

x2 = ẏ,

x3 = ÿ,
...

xn = y(n−1), (3.4)

and, given smooth functions p0, . . . , pn with p0 nowhere vanishing, look at
the particular system of equations

dx1

dt
= x2,

dx2

dt
= x3,

...
dxn−1

dt
= xn,

dxn

dt
= − 1

p0(t)

(

p1x
n + p2x

n−1 + · · ·+ pnx
1
)

. (3.5)

Clearly this is equivalent to

p0(t)
dny

dtn
+ p1(t)

dn−1y

dtn−1
+ · · ·+ pn−1(t)

dy

dt
+ pn(t)y(t) = 0. (3.6)
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Thus an n-th order ordinary differential equation (ODE) can be written as a
first-order equation in n dimensions, and we can exploit the uniqueness result
cited above. We conclude, provided p0 never vanishes, that the differential
equation Ly = 0 has a unique solution, y(t), for each set of initial data
(y(0), ẏ(0), ÿ(0), . . . , y(n−1)(0)). Thus,

i) If Ly = 0 and y(0) = 0, ẏ(0) = 0, ÿ(0) = 0, . . ., y (n−1)(0) = 0, we
deduce that y ≡ 0.

ii) If y1(t) and y2(t) obey the same equation Ly = 0, and have the same
initial data, then y1(t) = y2(t).

3.1.2 Linear Independence

Suppose we are given an n-th order equation

p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y = 0. (3.7)

In this section we will assume that p0 does not vanish in the region of x we are
interested in, and that all the pi remain finite and differentiable sufficiently
many times for our formulæ to make sense.

Let y1(x) be a solution with initial data

y1(0) = 1,

y′1(0) = 0,
...

y
(n−1)
1 = 0. (3.8)

Let y2(x) be a solution with

y2(0) = 0,

y′2(0) = 1,
...

y
(n−1)
2 = 0, (3.9)

and so on, up to yn(x), which has

yn(0) = 0,

y′n(0) = 0,
...

y(n−1)
n = 1. (3.10)
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Now suppose that there are constants λ1, . . . , λn such that

0 = λ1y1(x) + λ2y2(x) + · · ·+ λnyn(x); (3.11)

then
0 = λ1y1(0) + λ2y2(0) + · · ·+ λnyn(0) ⇒ λ1 = 0. (3.12)

Differentiating once and setting x = 0 gives

0 = λ1y
′
1(0) + λ2y

′
2(0) + · · ·+ λny

′
n(0) ⇒ λ2 = 0. (3.13)

We continue in this manner all the way to

0 = λ1y
(n−1)
1 (0) + λ2y

(n−1)
2 (0) + · · ·+ λny

(n−1)
n (0) ⇒ λn = 0. (3.14)

Thus all the λi must be zero, and so there is no non-trivial linear relation
between the yi(x). They are therefore linearly independent .

These solutions also span the solution space, because the unique solution
with intial data y(0) = a1, y

′(0) = a2, . . ., y
(n−1)(0) = an, is

y(x) = a1y1(x) + a2y2(x) + · · ·anyn(x). (3.15)

Our chosen set of solutions is therefore a basis for the solution space of the
differential equation.

3.1.3 The Wronskian

If we manage to find a different set of n solutions, how will we know whether
they are also linearly independent? The essential tool is the Wronskian:

W (y1, . . . , yn; x)
def
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y1 y2 . . . yn
y′1 y′2 . . . y′n
...

...
. . .

...
y

(n−1)
1 y

(n−1)
2 . . . y(n−1)

n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (3.16)

Recall that the derivative of a determinant

D =

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

(3.17)



3.1. EXISTENCE AND UNIQUENESS OF SOLUTIONS 73

may be evaluated by differentiating row-by-row:

dD

dx
=

∣
∣
∣
∣
∣
∣
∣
∣
∣

a′11 a′12 . . . a′1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 . . . a1n

a′21 a′22 . . . a′2n
...

...
. . .

...
an1 an2 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+· · ·+

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
a′n1 a′n2 . . . a′nn

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Applying this to the derivative of the Wronskian, we find

dW

dx
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y1 y2 . . . yn
y′1 y′2 . . . y′n
...

...
. . .

...
y

(n)
1 y

(n)
2 . . . y(n)

n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (3.18)

Only the term where the very last row is being differentiated survives. All
the other row derivatives gives zero because they lead to a determinant with
two identical rows. Now, if the yi are all solutions of

p0y
(n) + p1y

(n−1) + · · ·+ pny = 0, (3.19)

we can substitute

y
(n)
i = − 1

p0

(

p1y
(n−1)
i + p2y

(n−2)
i + · · ·+ pnyi

)

, (3.20)

use the row-by-row linearity of determinants,

∣
∣
∣
∣
∣
∣
∣
∣
∣

λa11 + µb11 λa12 + µb12 . . . λa1n + µb1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

∣
∣
∣
∣
∣
∣
∣
∣
∣

= λ

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 . . . a1n

c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

∣
∣
∣
∣
∣
∣
∣
∣
∣

+ µ

∣
∣
∣
∣
∣
∣
∣
∣
∣

b11 b12 . . . b1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (3.21)

and find, again because most terms have two identical rows, that only the
terms with p1 survive. The end result is

dW

dx
= −

(

p1

p0

)

W. (3.22)
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Solving this first order equation gives

W (yi; x) = W (yi; x0) exp

{

−
∫ x

x0

(

p1(ξ)

p0(ξ)

)

dξ

}

. (3.23)

Since the exponential function itself never vanishes, W (x) either vanishes at
all x, or never. This is Liouville’s theorem.

Now suppose that y1, . . . , yn are a set of Cn functions of x, not necessarily
solutions of an ODE. If there are constants λi, not all zero, such that

λ1y1(x) + λ2y2(x) + · · ·+ λnyn(x) ≡ 0, (3.24)

(i.e. the functions are linearly dependent) then the set of equations

λ1y1(x) + λ2y2(x) + · · ·+ λnyn(x) = 0,

λ1y
′
1(x) + λ2y

′
2(x) + · · ·+ λny

′
n(x) = 0,

...

λ1y
(n−1)
1 (x) + λ2y

(n−1)
2 (x) + · · ·+ λny

(n−1)
n (x) = 0, (3.25)

has a non-trivial solution λ1, λ2, . . . , λn, and so the determinant of the coef-
ficients,

W =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y1 y2 . . . yn
y′1 y′2 . . . y′n
...

...
. . .

...
y

(n−1)
1 y

(n−1)
2 . . . y(n−1)

n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (3.26)

must vanish. Thus

linear dependence ⇒ W ≡ 0.

There is a partial converse of this result: If y1, . . . , yn are solutions to an n-th
order ODE and W (yi; x) = 0 at x = x0 then there are λi, not all zero, such
that

Y (x) = λ1y1(x) + λ2y2(x) + · · ·+ λnyn(x) (3.27)

has 0 = Y (x0) = Y ′(x0) = · · · = Y (n−1)(x0). This is because the system of
linear equations determining the λi has the Wronskian as its determinant.
Since Y (x) is a solution of the ODE and has vanishing initial data, it is
identically zero. Thus

ODE and W = 0 ⇒ linear dependence.
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If there is no OED, the Wronskian may vanish without the functions
being linearly dependent. As an example, consider

y1(x) =
{

0, x ≤ 0,
exp{−1/x2}, x > 0.

y2(x) =
{

exp{−1/x2}, x ≤ 0,
0, x > 0.

(3.28)

We have W (y1, y2; x) ≡ 0, but y1, y2 are not proportional to one another, and
so not linearly dependent. (Note y1,2 are smooth functions. In particular thay
have derivatives of all orders at x = 0.)

Example: Given n linearly independent smooth functions yi, can we al-
ways find an n-th order differential equation that has them as its solutions?

Solution: The answer had better be “no”, or there would be a contradic-
tion between the preceeding theorem and the counterexample to its exten-
sion. If the functions do satisfy a common equation, however, we can use a
Wronskian to construct it: Let

Ly = p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y (3.29)

be the differential polynomial in y(x) that results from expanding

D(y) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y(n) y(n−1) . . . y
y

(n)
1 y

(n−1)
1 . . . y1

...
...

. . .
...

y(n)
n y(n−1)

n . . . yn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (3.30)

Whenever y coincides with any of the yi, the determinant will have two
identical rows, and so Ly = 0. The yi are indeed n solutions of Ly = 0. As
we have noted, this construction cannot always work. To see what can go
wrong, observe that it gives

p0(x) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y
(n−1)
1 y

(n−2)
1 . . . y1

y
(n−1)
2 y

(n−2)
2 . . . y2

...
...

. . .
...

y(n−1)
n y(n−2)

n . . . yn

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= W (y; x). (3.31)

If this Wronskian is zero, then our construction fails to deliver an n-th order
equation. Indeed, taking y1 and y2 to be the functions in the example above
yields an equation in which all three coeffecients p0, p1, p2 are identically
zero.
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3.2 Normal Form

Recall from elementary algebra that an algebraic equation

a0x
n + a1x

n−1 + · · ·an = 0, (3.32)

with a0 6= 0, is said to be in normal form if a1 = 0. Clearly we can always
put such an equation in normal form by defining a new variable x̃ with
x = x̃− a1(na0)

−1.
By analogy, an n-th order linear ODE with no y(n−1) term is also said to be

in normal form. We can always put an ODE in the form by the substitution
y = wỹ, for a suitable function w(x). Let

p0y
(n) + p1y

(n−1) + · · ·+ pny = 0. (3.33)

Set y = wỹ. Using Leibniz’ rule, we expand out

(wỹ)(n) = wỹ(n) + nw′ỹ(n−1) +
n(n− 1)

2!
w′′ỹ(n−2) + · · ·+ w(n)ỹ. (3.34)

The differential equation becomes, therefore,

(wp0)ỹ
(n) + (p1w + p0nw

′)ỹ(n−1) + · · · = 0. (3.35)

We see that if we chose w to be a solution of

p1w + p0nw
′ = 0, (3.36)

for example

w(x) = exp

{

−1

n

∫ x

0

(

p1(ξ)

p0(ξ)

)

dξ

}

, (3.37)

then ỹ obeys the equation

(wp0)ỹ
(n) + p̃2ỹ

(n−2) + · · · = 0, (3.38)

with no second-highest derivative.
Example: For a second order equation,

y′′ + p1y
′ + p2y = 0, (3.39)

we set y(x) = v(x) exp{−1
2

∫ x
0 p1(ξ)dξ} and find that v obeys

v′′ + Ωv = 0, (3.40)



3.3. INHOMOGENEOUS EQUATIONS 77

where

Ω = p2 −
1

2
p′1 −

1

4
p2

1. (3.41)

Reducing an equation to normal form gives us the best chance of solving
it by inspection. For physicists, another advantage is that a second-order
equation in normal form can be thought of as a Schrödinger equation,

−d
2ψ

dx2
+ (V (x)− E)ψ = 0, (3.42)

and we can gain insight into the properties of the solution by bringing our
physics intuition and experience to bear.

3.3 Inhomogeneous Equations

A linear inhomogeneous equation is one with a source term:

p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y = f(x). (3.43)

It is called “inhomogeneous” because the source term f(x) does not contain
y, and so is different from the rest. We will devote an entire chapter to
the solution of such equations by the method of Green functions. Here, we
simply review some elementary material.

3.3.1 Particular Integral and Complementary Function

One method of dealing with inhomogeneous problems, one that is especially
effective when the equation has constant coefficients, is simply to try and
guess a solution to (3.43). If you are successful, the guessed solution yPI
is then called a particular integral . We may add any solution yCF of the
homogeneous equation

p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y = 0 (3.44)

to yPI and it will still be a solution of the inhomogeneous problem. We
use this freedom to satisfy the boundary or initial conditions. The added
solution, yCF , is called the complementary function.
Example: Charging capacitor. The capacitor is initially uncharged, and the
switch is closed at t = 0



78 CHAPTER 3. LINEAR ORDINARY DIFFERENTIAL EQUATIONS

R

C
QV

The charge on the capacitor, Q, obeys

R
dQ

dt
+
Q

C
= V, (3.45)

where R, C, V are constants. A particular integral is given by Q(t) = CV .
The complementary-function solution of the homogeneous problem is

Q(t) = Q0e
−t/RC , (3.46)

where Q0 is constant. The solution satisfying the initial conditions is

Q(t) = CV
(

1− e−t/RC
)

. (3.47)

3.3.2 Variation of Parameters

We now follow Lagrange, and solve

p0(x)y
(n) + p1(x)y

(n−1) + · · ·+ pn(x)y = f(x) (3.48)

by writing
y = v1y1 + v2y2 + · · ·+ vnyn (3.49)

where the yi are the n linearly independent solutions of the homogeneous
equation and the vi are functions of x that we have to determine. This
method is called variation of parameters.

Now, differentiating gives

y′ = v1y
′
1 + v2y

′
2 + · · ·+ vny

′
n + {v′1y1 + v′2y2 + · · ·+ v′nyn} . (3.50)

We will chose the v’s so as to make the terms in the braces vanish. Differen-
tiate again:

y′′ = v1y
′′
1 + v2y

′′
2 + · · ·+ vny

′′
n + {v′1y′1 + v′2y

′
2 + · · ·+ v′ny

′
n} . (3.51)
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Again, we will chose the v’s to make the terms in the braces vanish. We
proceed in this way until the very last step, at which we demand

{

v′1y
(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

n−1
n

}

= f(x)/p0(x). (3.52)

If you substitute the resulting y into the differential equation, you will see
that the equation is satisfied.

We have imposed the following conditions on v′i:

v′1y1 + v′2y2 + · · ·+ v′nyn = 0,

v′1y
′
1 + v′2y

′
2 + · · ·+ v′ny

′
n = 0,

...

v′1y
(n−1)
1 + v′2y

(n−1)
2 + · · ·+ v′ny

n−1
n = f(x)/p0(x). (3.53)

This system of linear equations will have a solution for v′1, . . . , v
′
n, provided

the Wronskian of the yi is non-zero. This, however, is guaranteed by the
assumed linear independence of the yi. Having found the v′1, . . . , v

′
n, we obtain

the v1, . . . , vn themselves by a single integration.
Example: First-order linear equation. A simple and useful application of this
method solves

dy

dx
+ P (x)y = f(x). (3.54)

The solution to the homogeneous equation is

y1 = e−
∫ x

a
P (s) ds. (3.55)

We therefore set
y = v(x)e−

∫ x

a
P (s) ds, (3.56)

and find that
v′(x)e−

∫ x

a
P (s) ds = f(x). (3.57)

We integrate once to find

v(x) =
∫ x

b
f(ξ)e

∫ ξ

a
P (s) dsdξ, (3.58)

and so

y(x) =
∫ x

b
f(ξ)

{

e
−
∫ x

ξ
P (s) ds

}

dξ. (3.59)

We select b to satisfy the initial condition.
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3.4 Singular Points

So far in this chapter, we have been assuming, either explicitly or tacitly,
that our coefficients pi are smooth, and that p0 never vanishes. If p0 does
become zero then bad things happen, and the location of the zero of p0 is
called a singular point of the differential equation. All other points are called
ordinary points.

If, in the differential equation

p0y
′′ + p1y

′ + p2y = 0, (3.60)

we have a point x = a such that

p0(x) = (x− a)2P (x), p1(x) = (x− a)Q(x), p2(x) = R(x), (3.61)

where P andQ and R are analytic1 and P andQ non-zero in a neighbourhood
of a then the point x = a is called a regular singular point of the equation.
All other singular points are said to be irregular . Close to a regular singular
point a the equation looks like

P (a)(x− a)2y′′ +Q(a)(x− a)y′ +R(a)y = 0. (3.62)

The solutions of this reduced equation are

y1 = (x− a)λ1 , y2 = (x− a)λ2 , (3.63)

where λ1,2 are the roots of the indicial equation

λ(λ− 1)P (a) + λQ(a) +R(a) = 0. (3.64)

The solutions of the full equation are then

y1 = (x− a)λ1f1(x), y2 = (x− a)λ2f2(x), (3.65)

where f1,2 have power series solutions convergent in a neighbourhood of a.
An exception is when λ1 and λ2 coincide or differ by an integer, in which
case the second solution is of the form

y2 = (x− a)λ1

(

ln(x− a)f1(x) + f2(x)
)

, (3.66)

1A function is analytic at a point iff it has a power-series expansion that is convergent
to the function in a neighbourhood of the point.
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where f1 is the same power series that occurs in the first solution, and f2 is
a new power series. You will probably have seen these statements proved by
the tedious procedure of setting

f1(x) = b0 + b1(x− a) + b2(x− a)2 + · · · , (3.67)

and obtaining a recurrence relation determining the bi. Far more insight is
obtained, however, by extending the equation and its solution to the com-
plex plane, where the structure of the solution is related to its monodromy

properties. If you are familiar with complex analytic methods, you might like
to look at the discussion of monodromy in 9.2.1 of the MMB lecture notes.
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Chapter 4

Linear Differential Operators

In this chapter we will begin to take a more sophisticated approach to dif-
ferential equations. We will define, with some care, the notion of a linear
differential operator, and explore the analogy between such operators and
matrices. In particular, we will investigate what is required for a differential
operator to have a complete set of eigenfunctions.

4.1 Formal vs. Concrete Operators

We will call the object

L = p0(x)
dn

dxn
+ p1(x)

dn−1

dxn−1
+ · · ·+ pn(x), (4.1)

which we also write as

p0(x)∂
n
x + p1(x)∂

n−1
x + · · ·+ pn(x), (4.2)

a formal linear differential operator . The word “formal” refers to the fact
that we are not yet worrying about what sort of functions the operator is
applied to.

4.1.1 The Algebra of Formal Operators

Even though they are not acting on anything in particular, we can still form
products of operators. For example if v and w are smooth functions of x we
can define the operators ∂x + v(x) and ∂x + w(x) and find

(∂x + v)(∂x + w) = ∂2
x + w′ + (w + v)∂x + vw, (4.3)

83
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or
(∂x + w)(∂x + v) = ∂2

x + v′ + (w + v)∂x + vw, (4.4)

We see from this example that the operator algebra is not usually commuta-
tive.

The algebra of formal operators has some deep applications. Consider,
for example, the operators

L = −∂2
x + q(x) (4.5)

and
P = ∂3

x + a(x)∂x + ∂xa(x). (4.6)

In the last expression, the combination ∂xa(x) means “first multiply by a(x),
and then differentiate the result,” so we could also write

∂xa = a∂x + a′. (4.7)

We can now form the commutator [P, L] ≡ PL − LP . After a little effort,
we find

[P, L] = (3q′ + 4a′)∂2
x + (3q′′ + 4a′′)∂x + q′′′ + 2aq′ + a′′′. (4.8)

If we choose a = −3
4
q, the commutator becomes a pure multiplication oper-

ator, with no differential part:

[P, L] =
1

4
q′′′ − 3

2
qq′. (4.9)

The equation
dL

dt
= [P, L], (4.10)

or, equivalently,

q̇ =
1

4
q′′′ − 3

2
qq′, (4.11)

has solution
L(t) = etPL(0)e−tP , (4.12)

showing that the time evolution of L is given by a similarity transformation,
which (at least formally) does not change its eigenvalues. The partial dif-
ferential equation (4.11) is the famous Korteweg de Vries (KdV) equation,
which has “soliton” solutions whose existence is intimately connected with
the fact that it can be written as (4.10). The operators P and L are called
a Lax pair , after Peter Lax who uncovered much of the structure.
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4.1.2 Concrete Operators

We want to explore the analogies between linear differential operators and
matrices acting on a finite-dimensional vector space. Now the theory of
matrix operators makes much use of inner products and orthogonality. Con-
sequently the analogy is closest if we work with a function space equipped
with these same notions. We therefore let our differential operators act on
L2[a, b], the Hilbert space of square integrable functions on [a, b]. A differ-
ential operator cannot act on all functions in the Hilbert space, however,
because not all of them are differentiable. We must at least demand that the
domain D, the subset of functions on which we allow the operator to act,
contain only functions that are sufficiently differentiable that the function
resulting from applying the operator is itself an element of L2[a, b]. We will
usually restrict the set of functions even further, by imposing boundary con-
ditions at the endpoints of the interval. A linear differential operator is now
defined as a formal linear differential operator, together with a specification
of its domain D.

The boundary conditions that we will impose will always be linear and
homogeneous. We require this so that the domain of definition is a linear
space. In other words we demand that if y1 and y2 obey the boundary
conditions then so does λy1 + µy2. Thus, for a second-order operator

L = p0∂
2
x + p1∂x + p2 (4.13)

on the interval [a, b], we might impose

B1[y] = α11y(a) + α12y
′(a) + β11y(b) + β12y

′(b) = 0,

B2[y] = α21y(a) + α22y
′(a) + β21y(b) + β22y

′(b) = 0 (4.14)

but we will not, in defining the differential operator , impose inhomogeneous

conditions, such as

B1[y] = α11y(a) + α12y
′(a) + β11y(b) + β12y

′(b) = A,

B2[y] = α21y(a) + α22y
′(a) + β21y(b) + β22y

′(b) = B, (4.15)

with non-zero A,B — even though we will solve differential equations with
such boundary conditions.

Also, for an n-th order operator, we will not constrain derivatives of order
higher than n−1. This is reasonable1: If we seek solutions of Ly = f with L

1There is a deeper reason which we will explain in chapter 9.
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a second-order operator, for example, then the values of y′′ at the endpoints
are already determined in terms of y′ and y by the differential equation. We
cannot choose to impose some other value. By differentiating the equation
enough times, we can similarly determine all higher endpoint derivatives in
terms of y and y′. These two derivatives, therefore, are all we can fix by fiat.

The boundary and differentiability conditions that we impose make D a
subset of the entire Hilbert space. This subset will always be dense: any
element of the Hilbert space can be obtained as a limit of functions in D. In
particular, there will never be a function in L2[a, b] that is orthogonal to all
functions in D.

4.2 The Adjoint Operator

One of the important properties of matrices, established in the appendix,
is that a matrix that is self-adjoint, or Hermitian, may be diagonalized . In
other words, the matrix has sufficiently many eigenvectors for them to form
a basis for the space on which it acts. A similar property holds for self-
adjoint differential operators, but we must be careful in our definition of
self-adjointness.

Before reading this section, We suggest you review the material on adjoint
operators on finite-dimensional spaces that appears in the appendix.

4.2.1 The Formal Adjoint

Given a formal differential operator

L = p0(x)
dn

dxn
+ p1(x)

dn−1

dxn−1
+ · · ·+ pn(x), (4.16)

and a weight function w(x), real and positive on the interval (a, b), we can
find another such operator L†, such that, for any sufficiently differentiable
u(x) and v(x), we have

w
(

u∗Lv − v(L†u)∗
)

=
d

dx
Q[u, v], (4.17)

for some function Q, which depends bilinearly on u and v and their first n−1
derivatives. We call L† the formal adjoint of L with respect to the weight w.
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The equation (4.17) is called Lagrange’s identity. The reason for the name
“adjoint” is that if we define an inner product

〈u, v〉w =
∫ b

a
wu∗v dx, (4.18)

and if the functions u and v have boundary conditions that make Q[u, v]|ba =
0, then

〈u, Lv〉w = 〈L†u, v〉w, (4.19)

which is the defining property of the adjoint operator on a vector space. The
word “formal” means, as before, that we are not yet specifying the domain
of the operator.

The method for finding the formal adjoint is straightforward: integrate
by parts enough times to get all the derivatives off v and on to u.
Example: If

L = −i d
dx

(4.20)

then let us find the adjoint L† with respect to the weight w ≡ 1. We have

u∗
(

−i d
dx
v

)

− v
(

−i d
dx
u

)∗
= −i d

dx
(u∗v). (4.21)

Thus

L† = −i d
dx

= L. (4.22)

This operator (which you should recognize as the “momentum” operator
from quantum mechanics) is, therefore, formally self-adjoint , or Hermitian.
Example: Let

L = p0
d2

dx2
+ p1

d

dx
+ p2, (4.23)

with the pi all real. Again let us find the adjoint L† with respect to the inner
product with w ≡ 1. Now

u∗ [p0v
′′ + p1v

′ + p2v]− v [(p0u)
′′ − (p1u)

′ + p2u]
∗

=
d

dx

[

p0(u
∗′v − v′u∗) + (p1 − p′0)u∗v

]

, (4.24)

so

L† = p0
d2

dx2
+ (2p′0 − p1)

d

dx
+ (p′′0 − p′1 + p2). (4.25)
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What conditions do we need to impose on p0,1,2 for L to be formally self-
adjoint with respect to the inner product with w ≡ 1? For L = L† we
need

p0 = p0

2p′0 − p1 = p1 ⇒ p′0 = p1

p′′0 − p′1 + p2 = p2 ⇒ p′′0 = p′1. (4.26)

We therefore require that p1 = p′0, and so

L =
d

dx

(

p0
d

dx

)

+ p2, (4.27)

which is a Sturm-Liouville operator.
Example: Reduction to Sturm-Liouville form. Another way to make the
operator

L = p0
d2

dx2
+ p1

d

dx
+ p2, (4.28)

self-adjoint is by a suitable choice of weight function w. Suppose that p0 is
positive on the interval (a, b), and that p0, p1, p2 are all real. Then we may
define

w =
1

p0
exp

∫ x

a

(

p1

p0

)

dx′ (4.29)

and observe that it is positive on (a, b), and that

Ly =
1

w
(wp0y

′)′ + p2y. (4.30)

Now
〈u, Lv〉w − 〈Lu, v〉w = [wp0(u

∗v′ − u∗′v)]ba, (4.31)

where

〈u, v〉w =
∫ b

a
wu∗v dx. (4.32)

Thus, provided p0 does not vanish, there is always some inner product with
respect to which a real second-order differential operator is formally self-
adjoint.

Note that with

Ly =
1

w
(wp0y

′)′ + p2y, (4.33)
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the eigenvalue equation
Ly = λy (4.34)

can be written
(wp0y

′)′ + p2wy = λwy. (4.35)

When you come across a differential equation where, in the term containing
the eigenvalue λ, the eigenfunction is being multiplied by some other function,
you should immediately suspect that the operator will turn out to be self-
adjoint with respect to the inner product having this other function as its
weight.
Illustration (Bargmann-Fock space): This is a more exotic example of a
formal adjoint, although you may have met with it in a course on quantum
mechanics. Consider the space of polynomials P (z) in the complex variable
z = x + iy. Define an inner product by

〈P,Q〉 =
1

π

∫

d2z e−z
∗z [P (z)]∗Q(z),

where d2z ≡ dx dy and the integration is over the entire x, y plane. With
this inner product, we have

〈zn, zm〉 = n!δnm.

If we define

â =
d

dz
,

then

〈P, âQ〉 =
1

π

∫

d2z e−z
∗z [P (z)]∗

d

dz
Q(z)

= − 1

π

∫

d2z

(

d

dz
e−z

∗z [P (z)]∗
)

Q(z)

=
1

π

∫

d2z e−z
∗zz∗ [P (z)]∗Q(z)

=
1

π

∫

d2z e−z
∗z [zP (z)]∗Q(z)

= 〈â†P, Q̂〉

where â† = z, i.e. the operation of multiplication by z. In this case, the
adjoint is not even a differential operator2.

2In deriving this result we have observed that z and z∗ can be treated as independent
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4.2.2 A Simple Eigenvalue Problem

A finite Hermitian matrix has a complete set of orthonormal eigenvectors.
Does the same property hold for a Hermitian differential operator?

Consider the differential operator

T = −∂2
x, D(T ) = {y, Ty ∈ L2[0, 1] : y(0) = y(1) = 0}. (4.36)

With the inner product

〈y1, y2〉 =
∫ 1

0
y∗1y2 dx (4.37)

we have
〈y1, T y2〉 − 〈Ty1, y2〉 = [y′1

∗
y2 − y∗1y′2]10 = 0. (4.38)

The integrated-out part is zero because both y1 and y2 satisfy the boundary
conditions. We see that

〈y1, T y2〉 = 〈Ty1, y2〉 (4.39)

and so T is Hermitian or symmetric.
The eigenfunctions and eigenvalues of T are

yn(x) = sin nπx
λn = n2π2

}

n = 1, 2, . . . . (4.40)

We see that:
i) the eigenvalues are real ;

variables so that
d

dz
e−z∗z = −z∗e−z∗z,

and that [P (z)]
∗

is a function of z∗ only, so that

d

dz
[P (z)]

∗

= 0.

If you are uneasy at regarding z, z∗ as independent, you may confirm these formulae by
expressing z and z∗ in terms of x and y, and writing

d

dz
≡ 1

2

(
∂

∂x
− i

∂

∂y

)

,
d

dz∗
≡ 1

2

(
∂

∂x
+ i

∂

∂y

)

.
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ii) the eigenfunctions for different λn are orthogonal ,

2
∫ 1

0
sinnπx sinmπxdx = δnm, n = 1, 2, . . . (4.41)

iii) the normalized eigenfunctions ϕn(x) =
√

2 sinnπx are complete: any
function in L2[0, 1] has an (L2) convergent expansion as

y(x) =
∞∑

n=1

an
√

2 sin nπx (4.42)

where

an =
∫ 1

0
y(x)
√

2 sin nπx dx. (4.43)

This all looks very good — exactly the properties we expect for finite Her-
mitian matrices! Can we carry over all the results of finite matrix theory to
these Hermitian operators? The answer sadly is no! Here is a counterexam-
ple:

Let

T = −i∂x, D(T ) = {y, Ty ∈ L2[0, 1] : y(0) = y(1) = 0}. (4.44)

Again

〈y1, T y2〉 − 〈Ty1, y2〉 =
∫ 1

0
dx {y∗1(−i∂xy2)− (−i∂xy1)

∗y2}
= −i[y∗1y2]

1
0 = 0. (4.45)

Once more, the integrated out part vanishes due to the boundary conditions
satisfied by y1 and y2, so T is nicely Hermitian. Unfortunately, T with these
boundary conditions has no eigenfunctions at all — never mind a complete
set! Any function satisfying Ty = λy will be proportional to eiλx, but an ex-
ponential function is never zero, and cannot satisfy the boundary conditions.

It seems clear that the boundary conditions are the problem. We need
a better definition of “adjoint” than the formal one — one that pays more
attention to boundary conditions. We will then be forced to distinguish
between mere Hermiticity, or symmetry , and true self-adjointness.
Another disconcerting example: Let p = −i∂x. Show that the following
operator on the infinite real line is formally self-adjoint:

H = x3p+ px3. (4.46)
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Now let

ψλ(x) = |x|−3/2 exp

{

− λ

4x2

}

, (4.47)

where λ is real and positive. Show that

Hψλ = −iλψλ, (4.48)

so ψλ is an eigenfunction with a purely imaginary eigenvalue. Examine the
usual proof that Hermitian operators have real eigenvalues, and identify at
which point it breaks down.

4.2.3 Adjoint Boundary Conditions

The usual definition of the adjoint operator in linear algebra is as follows:
Given the operator T : V → V and an inner product 〈 , 〉, we look at
〈u, Tv〉, and ask if there is a w such that 〈w, v〉 = 〈u, Tv〉 for all v. If there
is, then u is in the domain of T †, and T †u = w.

For finite-dimensional vector spaces V there always is such a w, and so
the domain of T † is the entire space. In an infinite dimensional Hilbert space,
however, not all 〈u, Tv〉 can be written as 〈w, v〉with w a finite-length element
of L2. In particular δ-functions are not allowed — but these are exactly what
we would need if we were to express the boundary values appearing in the
integrated out part, Q(u, v), as an inner-product integral. We must therefore
ensure that u is such that Q(u, v) vanishes, but then accept any u with this
property into the domain of T †. What this means in practice is that we look
at the integrated out term Q(u, v) and see what is required of u to make
Q(u, v) zero for any v satisfying the boundary conditions appearing in D(T ).
These conditions on u are the adjoint boundary conditions, and define the
domain of T †.
Example: Consider

T = −i∂x, D(T ) = {y, Ty ∈ L2[0, 1] : y(1) = 0}. (4.49)

Now,

∫ 1

0
dx u∗(−i∂xv) = −i[u∗(1)v(1)− u∗(0)v(0)] +

∫ 1

0
dx(−i∂xu)∗v

= −i[u∗(1)v(1)− u∗(0)v(0)] + 〈w, v〉, (4.50)
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where w = −i∂xu. Since v(x) is in the domain of T , we have v(1) = 0, and
so the first term in the integrated out bit vanishes whatever value we take
for u(1). On the other hand, v(0) could be anything, so to be sure that the
second term vanishes we must demand that u(0) = 0. This, then, is the
adjoint boundary condition. It defines the domain of T †:

T † = −i∂x, D(T †) = {y, Ty ∈ L2[0, 1] : y(0) = 0}. (4.51)

For our problematic operator

T = −i∂x, D(T ) = {y, Ty ∈ L2[0, 1] : y(0) = y(1) = 0}, (4.52)

we have
∫ 1

0
dx u∗(−i∂xv) = −i[u∗v]10 +

∫ 1

0
dx(−i∂xu)∗v

= 0 + 〈w, v〉, (4.53)

where again w = −i∂xu. This time no boundary conditions need be imposed
on u to make the integrated out part vanish. Thus

T † = −i∂x, D(T †) = {y, Ty ∈ L2[0, 1]}. (4.54)

Although any of these operators “T = −i∂x” is formally self-adjoint we
have,

D(T ) 6= D(T †), (4.55)

so T and T † are not the same operator and none of them is truly self-adjoint.

4.2.4 Self-adjoint Boundary Conditions

A formally self-adjoint operator T is truly self adjoint only if the domains of
T † and T coincide. From now on, the unqualified phrase “self-adjoint” will
always mean “truly self-adjoint”.

Self-adjointness is often desirable in physics problems. It is therefore
useful to investigate what boundary conditions lead to self-adjoint operators.
For example, what are the most general boundary conditions we can impose
on T = −i∂x if we require the resultant operator to be self-adjoint? Now,

∫ 1

0
dx u∗(−i∂xv)−

∫ 1

0
dx(−i∂xu)∗v = −i

(

u∗(1)v(1)− u∗(0)v(0)
)

. (4.56)
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Demanding that the right-hand side be zero gives us, after division by u∗(0)v(1),

u∗(1)

u∗(0)
=
v(0)

v(1)
. (4.57)

We require this to be true for any u and v obeying the same boundary
conditions. Since u and v are unrelated, both sides must equal the same
constant κ, and this constant must obey κ∗ = κ−1. Thus, the boundary
condition is

u(1)

u(0)
=
v(1)

v(0)
= eiθ (4.58)

for some real angle θ. The domain is therefore

D(T ) = {y, Ty ∈ L2[0, 1] : y(1) = eiθy(0)}. (4.59)

These are twisted periodic boundary conditions.
With these generalized periodic boundary conditions, everything we ex-

pect of a self-adjoint operator actually works:
i) The functions un = ei(2πn+θ)x, with n = . . . ,−2,−1, 0, 1, 2 . . . are eigen-

functions of T with eigenvalues kn ≡ 2πn+ θ.
ii) The eigenvalues are real.
iii) The eigenfunctions form a complete orthonormal set.

Because self-adjoint operators possess a complete set of mutually orthogo-
nal eigenfunctions, they are compatible with the interpretational postulates
of quantum mechanics, where the square of the inner product of a state
vector with an eigenstate gives the probability of measuring the associated
eigenvalue. In quantum mechanics, self-adjoint operators are therefore called
observables.
Example: The Sturm-Liouville equation. With

L =
d

dx
p(x)

d

dx
+ q(x), x ∈ [a, b], (4.60)

we have

〈u, Lv〉 − 〈Lu, v〉 = [p(u∗v′ − u′∗v)]ba. (4.61)

Let us seek to impose boundary conditions separately at the two ends. Thus,
at x = a we want

(u∗v′ − u′∗v)|a = 0, (4.62)
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or
u′∗(a)

u∗(a)
=
v′(a)

v(a)
, (4.63)

and similarly at b. If we want the boundary conditions imposed on v (which
define the domain of L) to coincide with those for u (which define the domain
of L†) then we must have

v′(a)

v(a)
=
u′(a)

u(a)
= tan θa (4.64)

for some real angle θa, and similar boundary conditions with a θb at b. We
can also write these boundary conditions as

αay(a) + βay
′(a) = 0,

αby(b) + βby
′(b) = 0. (4.65)

Deficiency Indices

There is a general theory of self-adjoint boundary conditions, due to Hermann
Weyl and John von Neumann. We will not describe this theory in any detail,
but simply quote their recipe for counting the number of parameters in the
most general self-adjoint boundary condition: To find this number you should
first impose the strictest possible boundary conditions by setting to zero the
boundary values of all the y(n) with n less than the order of the equation.
Next count the number of square-integrable eigenfunctions of the resulting
adjoint operator T † corresponding to eigenvalue ±i. The numbers, n+ and
n−, of these eigenfunctions are called the deficiency indices. If they are not
equal then there is no possible way to make the operator self-adjoint. If
they are equal, n+ = n− = n, then there is an n2 real-parameter family of
self-adjoint boundary conditions.
Example: The sad case of the “radial momentum operator.” We wish to
define the operator Pr = −i∂r on the half-line 0 < r <∞. We start with the
restrictive domain

Pr = −i∂r, D(T ) = {y, Pry ∈ L2[0,∞] : y(0) = 0}. (4.66)

We then have

P †
r = −i∂r, D(P †

r ) = {y, P †
r y ∈ L2[0,∞]} (4.67)
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with no boundary conditions. The equation P †
r y = iy has a normalizable

solution y = e−r. The equation P †
r y = −iy has no normalizable solution.

The deficiency indices are therefore n+ = 1, n− = 0, and this operator
cannot be rescued and made self adjoint.
Example: The Schrödinger operator. We now consider −∂2

x on the half-line.
Set

T = −∂2
x, D(T ) = {y, Ty ∈ L2[0,∞] : y(0) = y ′(0) = 0}. (4.68)

We then have

T † = −∂2
x, D(T †) = {y, T †

r y ∈ L2[0,∞]}. (4.69)

Again T † comes with no boundary conditions. The eigenvalue equation
T †y = iy has one normalizable solution y(x) = e(i−1)x/

√
2, and the equation

T †y = −iy also has one normalizable solution y(x) = e−(i+1)x/
√

2. The defi-
ciency indices are therefore n+ = n− = 1. The Weyl-von Neumann theory
now says that, by relaxing the restrictive conditions y(0) = y′(0) = 0, we
can extend the domain of definition of the operator to find a one-parameter
family of self-adjoint boundary conditions. These will be the conditions
y′(0)/y(0) = tan θ that we found above.

If we consider the operator −∂2
x on the finite interval [a, b], then both

solutions of (T † ± i)y = 0 are normalizable, and the deficiency indices will
be n+ = n− = 2. There should therefore be 22 = 4 real parameters in the
self-adjoint boundary conditions. This is a larger class than those we found
in (4.65), because it includes generalized boundary conditions of the form

B1[y] = α11y(a) + α12y
′(a) + β11y(b) + β12y

′(b) = 0,

B2[y] = α21y(a) + α22y
′(a) + β21y(b) + β22y

′(b) = 0

The next problem illustrates why we have spent so much time on identify-
ing self-adjoint boundary conditions: the technique is important in practical
physics problems.
Physics Application: Semiconductor Heterojunction. A heterojunction is
fabricated with two semiconductors, say GaAs and AlxGa1−xAs, having dif-
ferent band-masses. We wish to describe the conduction electrons in the
material by an effective Schrödinger equation containing these band masses.
What matching condition should we impose on the wavefunction ψ(x) at
the interface between the two materials? A first guess is that the wavefunc-
tion must be continuous, but this is not correct because the “wavefunction”
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in an effective-mass band-theory Hamiltonian is not the actual wavefunc-
tion (which is continuous) but instead a slowly varying envelope function
multiplying a Bloch wavefunction. The Bloch function is rapidly varying,
fluctuating strongly on the scale of a single atom. Because the Bloch form
of the solution is no longer valid at a discontinuity, the envelope function is
not even defined in the neighbourhood of the interface, and certainly has no
reason to be continuous. There must still be some linear relation beween the
ψ’s in the two materials, but finding it will involve a detailed calculation on
the atomic scale. In the absence of these calculations, we must use general
principles to constrain the form of the relation. What are these principles?

ψ  
L R

ψ  

x?

GaAs: mL AlGaAs:mR

Heterojunction wavefunctions.

We know that, were we to do the atomic-scale calculation, the resulting
connection between the right and left wavefunctions would:
• be linear,
• involve no more than ψ(x) and its first derivative ψ′(x),
• make Hamiltonian into a self-adjoint operator.

We want to find the most general connection formula compatible with these
principles. The first two are easy to satisfy. We therefore investigate what
matching conditions are compatible with self-adjointness.

Suppose that the band masses are mL and mR, so that

H = − 1

2mL

d2

dx2
+ VL(x), x < 0,

= − 1

2mR

d2

dx2
+ VR(x), x > 0. (4.70)

Integrating by parts, and keeping the terms at the interface gives us

〈ψ1, Hψ2〉−〈Hψ1, ψ2〉 =
1

2mL

{

ψ∗
1Lψ

′
2L − ψ′∗

1Lψ2L

}

− 1

2mR

{

ψ∗
1Rψ

′
2R − ψ′∗

1Rψ2R

}

.

(4.71)
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Here, ψL,R refers to the boundary values of ψ immediately to the left or right
of the junction, respectively. Now we impose general linear homogeneous
boundary conditions on ψ2:

(
ψ2L

ψ′
2L

)

=
(
a b
c d

)(
ψ2R

ψ′
2R

)

. (4.72)

This relation involves four complex, and therefore eight real, parameters.
Demanding that

〈ψ1, Hψ2〉 = 〈Hψ1, ψ2〉, (4.73)

we find

1

2mL

{

ψ∗
1L(cψ2R + dψ′

2R)− ψ′∗
1L(aψ2R + bψ′

2R)
}

=
1

2mR

{

ψ∗
1Rψ

′
2R − ψ′∗

1Rψ2R

}

,

(4.74)
and this must hold for arbitrary ψ2R, ψ′

2R, so, picking off the coefficients of
these expressions and complex conjugating, we find

(
ψ1R

ψ′
1R

)

=
(
mR

mL

)(
a∗ −b∗
−c∗ d∗

)(
ψ1L

ψ′
1L

)

. (4.75)

Because we wish the domain of H† to coincide with that of H, these must
be same conditions that we imposed on ψ2. Thus we must have

(
a b
c d

)−1

=
(
mR

mL

)(
a∗ −b∗
−c∗ d∗

)

. (4.76)

Since
(
a b
c d

)−1

=
1

ad− bc
(

a −b
−c d

)

, (4.77)

we see that this requires

(
a b
c d

)

= eiφ
√

mL

mR

(
A B
C D

)

, (4.78)

where φ, A, B, C, D are real, and AD−BC = 1. Demanding self-adjointness
has therefore cut the original eight real parameters down to four. These
can be determined either by experiment or by performing the microscopic
calculation3. Note that 4 = 22, a perfect square, as required by the Weyl-
Von Neumann theory.

3T. Ando, S. Mori, Surface Science 113 (1982) 124.
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4.3 Completeness of Eigenfunctions

Now that we have a clear understanding of what it means to be self-adjoint,
we can reiterate the basic claim: an operator, self-adjoint with respect to
an L2 inner product, possesses a complete set of mutually orthogonal eigen-
functions. The proof that the eigenfunctions are orthogonal is identical to
that for finite matrices. We will provide a proof of completeness in the next
section.

The set of eigenvalues is, with some mathematical cavils, called the spec-

trum of the operator. It is usually denoted by σ(L). An eigenvalue is said to
belong to the point spectrum when its associated eigenfunction is normaliz-
able i.e is a bona-fide member of L2 having a finite length. Usually (but not
always) the eigenvalues of the point spectrum form a discrete set. When the
operator acts on functions on an infinite interval, the eigenfunctions may fail
to be normalizable. The associated eigenvalues are then said to belong to
the continuous spectrum. Sometimes, e.g. the hydrogen atom, the spectrum
is partly discrete and partly continuous. There is also something called the
residual spectrum, but this does not occur for self-adjoint operators.

4.3.1 Discrete Spectrum

The simplest problems have a purely discrete spectrum. We have eigenfunc-
tions φn(x) such that

Lφn(x) = λnφn(x), (4.79)

where n is an integer. After multiplication by suitable constants, the φn are
orthonormal,

∫

φ∗
n(x)φm(x′) dx = δnm, (4.80)

and complete. We can express the completeness condition as the statement
that

∑

n

φn(x)φ
∗
n(x

′) = δ(x− x′). (4.81)

If we take this representation of the delta function and multiply it by f(x′)
and integrate over x′, we find

f(x) =
∑

n

φn(x)
∫

φ∗
n(x

′)f(x′) dx′. (4.82)
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So,
f(x) =

∑

n

anφn(x) (4.83)

with
an =

∫

φ∗
n(x

′)f(x′) dx′. (4.84)

This means that if we can expand a delta function in terms of the φn(x), we
can expand any (square integrable) function.
Note: The convergence of the series

∑

n φn(x)φ
∗
n(x

′) to δ(x − x′) is neither
pointwise nor in the L2 sense. The sum tends to a limit only in the sense
of a distribution — meaning that we must multiply the partial sums by a
smooth test function and integrate over x before we have something that
actually converges in any meaningful manner. As an illustration consider
our favourite orthonormal set: φn(x) =

√
2 sin(nπx) on the interval [0, 1]. A

plot of the first m terms in the sum
∞∑

n=1

√
2 sin(nπx)

√
2 sin(nπx′) = δ(x− x′)

will show “wiggles” away from x = x′ whose amplitude does not decrease as

m becomes large — although they become of higher and higher frequency.
When multiplied by a smooth function and integrated, the contributions
from adjacent positive and negative wiggle regions tend to cancel, and it is
only after this integration that the sum tends to zero away from the spike at
x = x′.

0.2 0.4 0.6 0.8 1

20

40

60

The sum
∑70
n=1 2 sin(nπx) sin(nπx′) for x′ = 0.4.
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Rayleigh-Ritz and Completeness

For the Schrödinger eigenvalue problem

Ly = −y′′ + q(x)y = λy, x ∈ [a, b], (4.85)

the large eigenvalues are λn ≈ n2π2/(a − b)2. This is because the term qy
eventually becomes negligeable compared to λy, and then we can solve the
problem with sines and cosines. We see that there is no upper limit to the
magnitude of the eigenvalues. It can be shown that the eigenvalues of the
Sturm-Liouville problem

Ly = −(py′)′ + qy = λy, x ∈ [a, b], (4.86)

are similarly unbounded. We will use this unboundedness of the spectrum to
make an estimate of the rate of convergence of the eigenfunction expansion
for functions in the domain of L, and extend this result to prove that the
eigenfunctions form a complete set.

We know from chapter one that the Sturm-Liouville eigenvalues are the
stationary values of 〈y, Ly〉 when the function y is constrained to have unit
length, 〈y, y〉 = 1. The lowest eigenvalue, λ0, is therefore given by

λ0 = inf
y∈D(L)

〈y, Ly〉
〈y, y〉 . (4.87)

As the variational principle, this formula provides a well-known method of
obtaining approximate ground state energies in quantum mechanics. Part of
its effectiveness comes from the stationary nature of 〈y, Ly〉 at the minimum:
a crude approximation to y often gives a tolerably good approximation to λ0.
In the wider world of eigenvalue problems, the variational principle is named
after Rayleigh and Ritz4.

Suppose we have already found the first n normalized eigenfunctions
y0, y1, . . . , yn−1. Let the space spanned by these functions be Vn. Then an
obvious extension of the variational principle gives

λn = inf
y∈V ⊥

n

〈y, Ly〉
〈y, y〉 . (4.88)

4J. W. Strutt (later Lord Rayleigh), In Finding the Correction for the Open End of

an Organ-Pipe. Phil. Trans. 161 (1870) 77; W. Ritz, Über eine neue Methode zur Lösung

gewisser Variationsprobleme der mathematischen Physik. J. reine angew. Math. 135

(1908)
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We now exploit this variational estimate to show that if we expand an arbi-
trary y in the domain of L in terms of the full set of eigenfunctions ym,

y =
∞∑

m=0

amym, (4.89)

where
am = 〈ym, y〉, (4.90)

then the sum does indeed converge to y.
Let

hn = y −
n−1∑

m=0

amym (4.91)

be the residual error after the first n terms. By definition, hn ∈ V ⊥
n . Let

us assume that we have adjusted, by adding a constant to q if necessary, L
so that all the λm are positive. This adjustment will not affect the ym. We
expand out

〈hn, Lhn〉 = 〈y, Ly〉 −
n−1∑

m=0

λm|am|2, (4.92)

where we have made use of the orthonormality of the ym. The subtracted
sum is guaranteed positive, so

〈hn, Lhn〉 ≤ 〈y, Ly〉. (4.93)

Combining this inequality with Rayleigh-Ritz tells us that

〈y, Ly〉
〈hn, hn〉

≥ 〈hn, Lhn〉〈hn, hn〉
≥ λn. (4.94)

In other words
〈y, Ly〉
λn

≥ ‖y −
n−1∑

m=0

amym‖2. (4.95)

Since 〈y, Ly〉 is independent of n, and λn →∞, we have ‖y −∑n−1
0 amym‖2 → 0.

Thus the eigenfunction expansion indeed converges to y, and does so faster
than λ−1

n goes to zero.
Our estimate of the rate of convergence applies only to the expansion of

functions y for which 〈y, Ly〉 is defined — i.e. to functions y ∈ D (L). The
domain D (L) is always a dense subset of the entire Hilbert space L2[a, b],
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however, and, since a dense subset of a dense subset is also dense in the larger
space, we have shown that the linear span of the eigenfunctions is a dense
subset of L2[a, b]. Combining this observation with the alternative definition
of completeness in 2.2.3, we see that the eigenfunctions do indeed form a
complete orthonormal set. Any square integrable function therefore has a
convergent expansion in terms of the ym, but the rate of convergence may
well be slower than that for functions y ∈ D (L).

Operator Methods

Sometimes there are tricks for solving the eigenvalue problem.
Example: Harmonic Oscillator. Consider the operator

H = (−∂x + x)(∂x + x) + 1 = −∂2
x + x2. (4.96)

This is in the form Q†Q+1, where Q = (∂x+x), and Q† is its formal adjoint.
If we write these in the other order we have

QQ† = (∂x + x)(−∂x + x) = −∂2
x + x2 + 1 = H + 1. (4.97)

Now, if ψ is an eigenfunction of Q†Q with non-zero eigenvalue λ then Qψ is
eigenfunction of QQ† with the same eigenvalue. This is because

Q†Qψ = λψ (4.98)

implies that
Q(Q†Qψ) = Qψ, (4.99)

or
QQ†(Qψ) = λ(Qψ). (4.100)

The only way that this can go wrong is if Qψ = 0, but this implies that
Q†Qψ = 0 and so the eigenvalue was zero. Conversely, if the eigenvalue is

zero then
0 = 〈ψ,Q†Qψ〉 = 〈Qψ,Qψ〉, (4.101)

and so Qψ = 0. In this way, we see that the Q†Q and QQ† have exactly the
same spectrum, with the possible exception of any zero eigenvalue.

Now notice that Q†Q does have a zero eigenvalue because

ψ0 = e−
1

2
x2

(4.102)



104 CHAPTER 4. LINEAR DIFFERENTIAL OPERATORS

obeys Qψ0 = 0 and is normalizable. The operator QQ†, considered as an
operator on L2[−∞,∞], does not have a zero eigenvalue because this would
require Q†ψ = 0, and so

ψ = e+
1

2
x2

, (4.103)

which is not normalizable, and so not an element of L2[−∞,∞].
Since

H = Q†Q + 1 = QQ† − 1, (4.104)

we see that ψ0 is an eigenfunction ofH with eigenvalue 1, and so an eigenfunc-
tion of QQ† with eigenvalue 2. Hence Q†ψ0 is an eigenfunction of Q†Q with
eigenvalue 2 and so an eigenfunction H with eigenfunction 3. Proceeding in
the way we find that

ψn = (Q†)nψ0 (4.105)

is an eigenfunction of H with eigenvalue 2n+ 1.
Since Q† = −e 1

2
x2

∂xe
− 1

2
x2

, we can write

ψn(x) = Hn(x)e
− 1

2
x2

, (4.106)

where

Hn(x) = (−1)nex
2 dn

dxn
e−x

2

(4.107)

are the Hermite Polynomials.
Exercise: Show that these are the only eigenfunctions and eigenvalues. Hint:
Show that Q lowers the eigenvalue by 2 and use the fact that Q†Q cannot
have negative eigenvalues.

This is a useful technique for any second-order operator that can be fac-
torized — and a surprising number of the equations for “special functions”
can be. You will see it later, both in the exercises and in connection with
Bessel functions.

4.3.2 Continuous spectrum

Rather than a give formal discussion, we will illustrate this subject with some
examples drawn from quantum mechanics.

The simplest example is the free particle on the real line. We have

H = −∂2
x. (4.108)
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We eventually want to apply this to functions on the entire real line, but we
will begin with the interval [−L/2, L/2], and then take the limit L→∞

The operator H has formal eigenfunctions

ϕk(x) = eikx, (4.109)

corresponding to eigenvalues λ = k2. Suppose we impose periodic boundary
conditions at x = ±L/2:

ϕk(−L/2) = ϕk(+L/2). (4.110)

This selects kn = 2πn/L, where n is any positive, negative or zero integer,
and allows us to find the normalized eigenfunctions

χn(x) =
1√
L
eiknx. (4.111)

The completeness relation is

∞∑

n=−∞

1

L
eiknxe−iknx′ = δ(x− x′), x, x′ ∈ [−L/2, L/2]. (4.112)

As L becomes large, the eigenvalues become so close that they can hardly be
distinguished; hence the name continuous spectrum5, and the spectrum σ(H)
becomes the entire positive real line. In this limit, the sum on n becomes an
integral

∞∑

n=−∞

{

. . .

}

→
∫

dn

{

. . .

}

=
∫

dk

(

dn

dk

){

. . .

}

, (4.113)

where
dn

dk
=

L

2π
(4.114)

is called the (momentum) density of states. If we divide this by L to get a
density of states per unit length, we get an L independent “finite” quantity,
the local density of states. We will often write

dn

dk
= ρ(k). (4.115)

5When L is strictly infinite, ϕk(x) is no longer normalizable. Mathematicians do not
allow such un-normalizable functions to be considered as true eigenfunctions, and so a
point in the continuous spectrum is not, to them, actually an eigenvalue. Instead, mathe-
maticians say that a point λ lies in the continuous spectrum if for any ε > 0 there exists
an approximate eigenfunction ϕε such that ‖ϕε‖ = 1, but ‖Lϕε − λϕε‖ < ε. This is not a
profitable definition for us.
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If we express the density of states in terms of the eigenvalue λ then, by
an abuse of notation, we have

ρ(λ) ≡ dn

dλ
=

L

2π
√
λ
. (4.116)

Note that
dn

dλ
= 2

dn

dk

dk

dλ
, (4.117)

which looks a bit weird, but remember that two states, ±kn, correspond to
the same λ and that the symbols

dn

dk
,

dn

dλ
(4.118)

are ratios of measures, i.e. Radon-Nykodym derivatives, not ordinary deriva-
tives.

In the L→∞ limit, the completeness relation becomes

∫ ∞

−∞

dk

2π
eik(x−x

′) = δ(x− x′), (4.119)

and the length L has disappeared.
Suppose that we now apply boundary conditions y = 0 on x = ±L. The

normalized eigenfunctions are then

χn =

√

2

L
sin kn(x + L/2), (4.120)

where kn = nπ/L. We see that the allowed k’s are twice as close together as
they were with periodic boundary conditions, but now n is restricted to being
a positive non-zero integer. The momentum density of states is therefore

ρ(k) =
dn

dk
=
L

π
, (4.121)

which is twice as large as in the periodic case, but the eigenvalue density of
states is

ρ(λ) =
L

2π
√
λ
, (4.122)

which is exactly the same as before.
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That the number of states per unit energy per unit volume does not
depend on the boundary conditions at infinity makes physical sense: no
local property of the sublunary realm should depend on what happens in
the sphere of fixed stars. This point was not fully grasped by physicists,
however, until Rudolph Peierls6 explained that the quantum particle had to
actually travel to the distant boundary and back before the precise nature
of the boundary could be felt. This journey takes time T (depending on
the particle’s energy) and from the energy-time uncertainty principle, we
can distinguish one boundary condition from another only by examining the
spectrum with an energy resolution finer than h̄/T . Neither the distance nor
the nature of the boundary can affect the coarse details, such as the local
density of states.

The dependence of the spectrum of a general differential operator on
boundary conditions was investigated by Hermann Weyl. Weyl distinguished
two classes of singular boundary points: limit-circle, where the sepctrum
depends on the choice of boundary conditions, and limit-point , where it does
not. For the Schrödinger operator, the point at infinity, which is “singular”
simply because it is at infinity, is in the limit-point class. We will discuss the
Weyl’s theory of singular endpoints in chapter 8.

Phase-shifts

Consider the eigenvalue problem

(

− d2

dr2
+ V (r)

)

ψ = Eψ (4.123)

on the interval [0, R], and with boundary conditions ψ(0) = 0 = ψ(R). This
problem arises when we solve the Schrödinger equation for a central potential
in spherical polar coordinates, and assume that the wavefunction is a function
of r only (i.e. S-wave, or l = 0). Again, we want the boundary at R to be
infinitely far away, but we will start with R at a large but finite distance,
and then take the R → ∞ limit. Let us first deal with the simple case that
V (r) ≡ 0; then the solutions are

ψk(r) ∝ sin kr, (4.124)

6Peierls was justifying why the phonon contribution to the specific heat of a crystal
could be calculated by using periodic boundary conditions. Some sceptics thought that
his calculation might be wrong by factors of two.
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with eigenvalue E = k2, and with the allowed values of being given by
knR = nπ. Since

∫ R

0
sin2(knr) dr =

R

2
, (4.125)

the normalized wavefunctions are

ψk =

√

2

R
sin kr, (4.126)

and completeness reads

∞∑

n=1

(
2

R

)

sin(knr) sin(knr
′) = δ(r − r′). (4.127)

As R becomes large, this sum goes over to an integral:

∞∑

n=1

(
2

R

)

sin(knr) sin(knr
′) →

∫ ∞

0
dn
(

2

R

)

sin(kr) sin(kr′),

=
∫ ∞

0

Rdk

π

(
2

R

)

sin(kr) sin(kr′).(4.128)

Thus,
(

2

π

)∫ ∞

0
dk sin(kr) sin(kr′) = δ(r − r′). (4.129)

As before, the large distance, here R, no longer appears.

Now consider the more interesting problem which has the potential V (r)
included. We will assume, for simplicity, that there is an R0 such that V (r)
is zero for r > R0. In this case, we know that the solution for r > R0 is of
the form

ψk(r) = Nk sin (kr + δ(k)) , (4.130)

where the phase shift δ(k) is a functional of the potential V . The eigenvalue
is still E = k2.

Example: A delta-function shell. We take V (r) = λδ(r − a).
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a
x

λδ (r−a)
ψ

Delta function shell potential.

A solution with eigenvalue E = k2 and satisfying the boundary condition at
r = 0 is

ψ(r) =
{
A sin(kr), r < a,
sin(kr + δ), r > a.

(4.131)

The conditions to be satisfied at r = a are:

i) continuity, ψ(a− ε) = ψ(a+ ε) ≡ ψ(a), and
ii) jump in slope, −ψ′(a+ ε) + ψ′(a− ε) + λψ(a) = 0.

Therefore,

ψ′(a+ ε)

ψ(a)
− ψ′(a− ε)

ψ(a)
= λ, (4.132)

or

k cos(ka+ δ)

sin(ka + δ)
− k cos(ka)

sin(ka)
= λ. (4.133)

Thus,

cot(ka+ δ)− cot(ka) =
λ

k
, (4.134)

and

δ(k) = −ka + cot−1

(

λ

k
+ cot ka

)

. (4.135)
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ka

δ(k)

−π

π 2π 3π 4π

Phase shift as a function of k.

The graph of δ(k) is shown in the figure. The allowed values of k are
required by the boundary condition

sin(kR + δ(k)) = 0 (4.136)

to satisfy

kR + δ(k) = nπ. (4.137)

This is a transcendental equation for k, and so finding the individual solutions
kn is not simple. We can, however, write

n =
1

π

(

kR + δ(k)
)

(4.138)

and observe that, when R becomes large, only an infinitesimal change in k
is required to make n increment by unity. We may therefore regard n as a
“continuous” variable which we can differentiate with respect to k to find

dn

dk
=

1

π

{

R +
∂δ

∂k

}

. (4.139)

The density of allowed k values is therefore

ρ(k) =
1

π

{

R +
∂δ

∂k

}

. (4.140)

For our delta-shell example, a plot of ρ(k) looks like
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The density of states for a system with resonances. The extended states are
so close in energy that we need an optical aid to resolve individual levels.
The almost-bound resonance levels have to squeeze in between them.
which is understood as the resonant bound states at ka = nπ superposed
on the background continuum density of states appropriate to a large box of
length (R−a). Each “spike” contains one extra state, so the average density
of states is that of a box of length R. We see that changing the potential
does not create or destroy eigenstates, it just moves them around.

The spike is not exactly a delta function because of level repulsion between
nearly degenerate eigenstates. The interloper elbows the nearby levels out of
the way, and all the neighbours have to make do with a bit less room. The
stronger the coupling between the states on either side of the delta-shell, the
stronger is the inter-level repulsion, and the broader the resonance spike.

Normalization Factor

We now evaluate
∫ R

0
dr|ψk|2 = N−2

k , (4.141)

so as to find the the normalized wavefunctions

χk = Nkψk. (4.142)

Let ψk(r) be a solution of

Hψ =

(

− d2

dr2
+ V (r)

)

ψ = k2ψ (4.143)
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satisfying the boundary condition ψk(0) = 0, but not necessarily the bound-
ary condition at r = R. Such a solution exists for any k. We scale ψk
by requiring that ψk(r) = sin(kr + δ) for r > R0. We now use Lagrange’s
identity to write

(k2 − k′2)
∫ R

0
dr ψk ψk′ =

∫ R

0
dr {(Hψk)ψk′ − ψk(Hψk′)}

= [ψkψ
′
k′ − ψ′

kψk′]
R
0

= sin(kR + δ)k′ cos(k′R + δ)

−k cos(kR + δ) sin(k′R + δ). (4.144)

Here, we have used ψk,k′(0) = 0, so the integrated out part vanishes at the
lower limit, and have used the explicit form of ψk,k′ at the upper limit.

Now differentiate with respect to k, and then set k = k′. We find

2k
∫ R

0
dr(ψk)

2 = −1

2
sin
(

2(kR + δ)
)

+ k

{

R +
∂δ

∂k

}

. (4.145)

In other words,

∫ R

0
dr(ψk)

2 =
1

2

{

R +
∂δ

∂k

}

− 1

4k
sin
(

2(kR + δ)
)

. (4.146)

At this point, we impose the boundary condition at r = R. We therefore
have kR + δ = nπ and the last term on the right hand side vanishes. The
final result for the normalization integral is therefore

∫ R

0
dr|ψk|2 =

1

2

{

R +
∂δ

∂k

}

. (4.147)

Observe that the same expression occurs in both the density of states and
the normalization integral.

The sum over the continuous spectrum in the completeness integral is
therefore

∫ ∞

0
dk

(

dn

dk

)

N2
kψk(r)ψk(r

′) =
(

2

π

) ∫ ∞

0
dk ψk(r)ψk(r

′). (4.148)

Both the density of states and the normalization factor have disappeared
from the end result. This is a general feature of scattering problems: The
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completeness relation must give a delta function when evaluated far from
the scatterer where the wavefunctions look like those of a free particle. So,
provided we normalize ψk so that it reduces to a free particle wavefunction
at large distance, the measure in the integral over k must also be the same
as for the free particle.

Including any bound states in the discrete spectrum, the full statement
of completeness is therefore

∑

bound states

ψn(r)ψn(r
′) +

(
2

π

)∫ ∞

0
dk ψk(r)ψk(r

′) = δ(r − r′). (4.149)

Example: We will exhibit a completeness relation for a problem on the entire
real line. We have already met the Pöschel-Teller equation,

Hψ =

(

− d2

dx2
− l(l + 1) sech2x

)

ψ = Eψ (4.150)

in the homework. When l is an integer, the potential in this Schrödinger
equation has the special property that it is reflectionless.

The simplest non-trivial example is l = 1. In this case, H has a single
discrete bound state at E0 = −1. The normalized eigenfunction is

ψ0(x) =
1√
2
sech x. (4.151)

The rest of the spectrum consists of a continuum of unbound states with
eigenvalues E(k) = k2 and eigenfunctions

ψk(x) =
1√

1 + k2
eikx(−ik + tanh x). (4.152)

Here, k is any real number. The normalization of ψk(x) has been chosen so
that, at large |x|, where tanh x→ ±1, we have

ψ∗
k(x)ψk(x

′)→ e−ik(x−x
′). (4.153)

The measure in the completeness integral must therefore be dk/2π, the same
as that for a free particle.
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Let us compute the difference

I =
∫ ∞

−∞

dk

2π
ψ∗
k(x)ψk(x

′)− δ(x− x′)

=
∫ ∞

−∞

dk

2π

(

ψ∗
k(x)ψk(x

′)− e−ik(x−x′)
)

=
∫ ∞

−∞

dk

2π
e−ik(x−x

′) ik(tanh x− tanh x′) + tanhx tanh x′ − 1

1 + k2
.

(4.154)

We use the standard result,

∫ ∞

−∞

dk

2π
e−ik(x−x

′) 1

1 + k2
=

1

2
e−|x−x′|, (4.155)

together with its x′ derivative,

∫ ∞

−∞

dk

2π
e−ik(x−x

′) ik

1 + k2
= sgn (x− x′)1

2
e−|x−x′|, (4.156)

to find

I =
1

2

{

sgn (x− x′)(tanh x− tanh x′) + tanhx tanh x′ − 1
}

e−|x−x′|. (4.157)

Assume, without loss of generality, that x > x′; then this reduces to

−1

2
(1 + tanhx)(1− tanh x′)e−(x−x′) = −1

2
sech x sech x′

= −ψ0(x)ψ0(x
′). (4.158)

Thus, the expected completeness relation

ψ0(x)ψ0(x
′) +

∫ ∞

−∞

dk

2π
ψ∗
k(x)ψk(x

′) = δ(x− x′), (4.159)

is confirmed.



Chapter 5

Green Functions

In this chapter we will study strategies for solving the inhomogeneous linear
differential equation Ly = f . The tool we use is the Green function, which
is an integral kernel representing the inverse operator L−1. Apart from their
use in solving inhomogeneous equations, Green functions play an important
role in many areas of physics.

5.1 Inhomogeneous Linear equations

We wish to solve Ly = f for y. Before we set about doing this, we should
ask ourselves whether a solution exists, and, if it does, whether it is unique.
The answers to these questions are summarized by the Fredholm alternative.

5.1.1 Fredholm Alternative

The Fredholm alternative for operators on a finite-dimensional vector space
is discussed in detail in the appendix on linear algebra. You will want to
make sure that you have read and understood this material. Here, we merely
restate the results.

Let V be finite-dimensional vector space, and A be a linear operator
A : V → V on this space. Then

I. Either

i) Ax = b has a unique solution,
or

ii) Ax = 0 has a non-trivial solution.

115
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II. If Ax = 0 has n linearly independent solutions, then so does A†x = 0.
III. If alternative ii) holds, then Ax = b has no solution unless b is perpen-

dicular to all solutions of A†x = 0.
What is important for us in the present chapter is that this result continues
to hold for linear differential operators L on a finite interval — provided that
we define L† as in the previous chapter, and provided the number of boundary

conditions is equal to the order of the equation.

If the number of boundary conditions is not equal to the order of the
equation then the number of solutions to Ly = 0 and L†y = 0 will differ in
general. It is still true, however, that Ly = f has no solution unless f is
perpendicular to all solutions of L†y = 0.
Example: Let

Ly =
dy

dx
, y(0) = y(1) = 0. (5.1)

Clearly Ly = 0 has only the trivial solution y ≡ 0. If a solution to Ly = f
exists, therefore, it will be unique.

We know that L† = −dy
dx

, with no boundary conditions on the functions
in its domain. The equation L†y = 0 therefore has the non-trivial solution
y = 1. This means that there is no solution to Ly = f unless

〈1, f〉 =
∫ 1

0
f dx = 0. (5.2)

If this condition is satisfied then

y(x) =
∫ x

0
f(x) dx (5.3)

satisfies both the differential equation and the boundary conditions at x =
0, 1. If this condition is not satisfied, y(x) is not a solution, because y(1) 6= 0.

Initially we will discuss only solutions of Ly = f with homogeneous
boundary conditions. After we have understood how to do this, we will
extend our methods to deal with differential equations with inhomogeneous
boundary conditions.

5.2 Constructing Green Functions

We wish to solve Ly = f , a differential equation with homogeneous boundary
conditions, by finding an inverse operator L−1, so that y = L−1f . This inverse
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operator L−1 will be represented by an integral kernel

(L−1)x,y = G(x, y), (5.4)

with the property
LxG(x, y) = δ(x− y). (5.5)

Here, the subscript x on L indicates that L acts on the first argument of G.
Then

y(x) =
∫

G(x, y)f(y) dy (5.6)

will obey

Lxy =
∫

LxG(x, y)f(y) dy =
∫

δ(x− y)f(y) dy = f(x). (5.7)

The problem is how to construct G(x, y). There are three necessary ingredi-
ents:
• the function χ(x) ≡ G(x, y) must have some discontinuous behaviour

at x = y in order to generate the delta function;
• away from x = y, the function χ(x) must obey Lχ = 0;
• the function χ(x) must obey the homogeneous boundary conditions

required of y at the ends of the interval.
The last ingredient ensures that the resulting solution, y(x), obeys the bound-
ary conditions. It also ensures that the range of the integral operator, G,
coincides with the domain of L, a prerequisite if the product LG = I is
to make sense. The manner in which these ingredients are assembled to
construct G(x, y) is best explained through examples.

5.2.1 Sturm-Liouville equation

We want to find a function G(x, x′) such that χ(x) = G(x, x′) obeys

Lχ = (pχ′)′ + qχ = δ(x− x′), (5.8)

The function χ(x) must also obey the homogeneous boundary conditions that
are to be imposed on the solutions of Ly = f .

Now (5.8) tells us that χ(x) must be continuous at x = x′. For if not, the
two differentiations applied to a jump function would give us the derivative
of a delta function, and we want only a plain δ(x− x′). If we write

G(x, x′) =
{
AyL(x)yR(x′), x < x′,
AyL(x

′)yR(x), x > x′,
(5.9)
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then χ(x) = G(x, x′) is automatically continuous at x = x′. We take yL(x)
to be a solution of Ly = 0, chosen to satisfy the boundary condition at the
left hand end of the interval. Similarly yR should solve Ly = 0 and satisfy
the boundary condition at the right hand end. With these choices we satisfy
(5.8) at all points away from x = x′.

To figure out how to satisfy the equation exactly at the location of the
delta-function, we integrate (5.8) from x′ − ε to x′ + ε and find that

[pχ′]
x′+ε
x′−ε = 1 (5.10)

This determines the constant A via

Ap(x′)
(

yL(x
′)y′R(x′)− y′L(x′)yR(x′)

)

= 1. (5.11)

We recognize the Wronskian W (yL, yR; x′) on the left hand side of this equa-
tion. We therefore have

G(x, x′) =

{ 1
Wp
yL(x)yR(x′), x < x′,

1
Wp
yL(x

′)yR(x), x > x′.
(5.12)

Now, for the Sturm-Liouville equation, the product pW is constant. This
follows from Liouville’s formula,

W (x) = W (0) exp

{

−
∫ x

0

(

p1

p0

)

dx′
}

, (5.13)

and from p1 = p′0 = p′ in the Sturm-Liouville equation. Thus

W (x) = W (0) exp
(

− ln(p(x)/p(0)
)

= W (0)
p(0)

p(x)
. (5.14)

The constancy of pW means that G(x, x′) is symmetric:

G(x, x′) = G(x′, x). (5.15)

This is as it should be. The inverse of a symmetric matrix (and the real,
self-adjoint, Sturm-Liouville operator is the function-space analogue of a real
symmetric matrix) is itself symmetric.

The solution to
Ly = (p0y

′)′ + qy = f(x) (5.16)
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is therefore

y(x) =
1

Wp

{

yL(x)
∫ b

x
yR(x′)f(x′) dx′ + yR(x)

∫ x

a
yL(x

′)f(x′) dx′
}

. (5.17)

Take care to understand the ranges of integration in this formula. In the first
integral x′ > x and we use G(x, x′) ∝ yL(x)yR(x′). In the second integral
x′ < x and we use G(x, x′) ∝ yL(x

′)yR(x). It is easy to get these the wrong
way round.

It is necessary that the Wronskian W (yL, yR) not be zero. This is reason-
able. If W were zero then yL ∝ yR, and a single function satisfies both Ly = 0
and the boundary conditions. This means that the differential operator L
has a zero-mode, and there can be no unique solution to Ly = f .
Example: Solve

−∂2
xy = f(x), y(0) = y(1) = 0. (5.18)

We have
yL = x

yR = 1− x
}

⇒ y′LyR − yLy′R ≡ 1. (5.19)

We find that

G(x, x′) =
{
x(1− x′), x < x′,
x′(1− x), x > x′,

(5.20)

x’0 1

The function χ(x) = G(x, x′) .

and

y(x) = (1− x)
∫ x

0
x′f(x′) dx′ + x

∫ 1

x
(1− x′)f(x′) dx′. (5.21)

5.2.2 Initial Value Problems

Initial value problems are those boundary-value problems where all boundary
conditions are imposed at one end of the interval, instead of some conditions
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at one end and some at the other. The same set of ingredients go into to
constructing the Green function, though.

Consider the problem

dy

dt
−Q(t)y = F (t), y(0) = 0. (5.22)

We seek a Green function such that

LtG(t, t′) ≡
(

d

dt
−Q(t)

)

G(t, t′) = δ(t− t′) (5.23)

and G(0, t′) = 0.

We need χ(t) = G(t, t′) to satisfy Ltχ = 0, except at t = t′ and need
G(0, t′) = 0. The unique solution of Ltχ = 0 with χ(0) = 0 is χ(t) ≡ 0. This
means that G(t, 0) = 0 for all t < t′. Near t = t′ we need

G(t′ + ε, t′)−G(t′ − ε, t′) = 1 (5.24)

The unique solution is

G(t, t′) = θ(t− t′) exp
{∫ t

t′
Q(s)ds

}

, (5.25)

where θ(t− t′) is the Heaviside step function

θ(t) =
{

0, t < 0,
1, t > 0.

(5.26)

1

t

t’

G(t,t’)

The Green function G(t, t′) for the first-order initial value problem .



5.2. CONSTRUCTING GREEN FUNCTIONS 121

Therefore

y(t) =
∫ ∞

0
G(t, t)F (t′)dt′,

=
∫ t

0
exp

{∫ t

t′
Q(s) ds

}

F (t′) dt′

= exp
{∫ t

0
Q(s) ds

} ∫ t

0
exp

{

−
∫ t′

0
Q(s) ds

}

F (t′) dt′. (5.27)

In chapter 3 we solved this problem by the method of variation of parameters.
Example: Forced, Damped, Harmonic Oscillator. An oscillator obeys the
equation

ẍ+ 2γẋ + (Ω2 + γ2)x = F (t). (5.28)

Here γ > 0 is the friction coeffecient. Assuming that the oscillator is at rest
at the origin at t = 0, we show that

x(t) =
(

1

Ω

) ∫ t

0
e−γ(t−τ) sin Ω(t− τ)F (τ)dτ. (5.29)

We seek a Green function G(t, τ) such that χ(t) = G(t, τ) obeys χ(0) =
χ′(0) = 0. Again, the unique solution of the differential equation with this
initial data is χ(t) ≡ 0. The Green function must be continuous at t = τ ,
but its derivative must be discontinuous there, jumping from zero to unity
to provide the delta function. Thereafter, it must satisfy the homogeneous
equation. The unique function satisfying all these requirements is

G(t, τ) = θ(t− τ) 1

Ω
e−γ(t−τ) sin Ω(t− τ). (5.30)

τ
t

G(t, τ )

The Green function G(t, τ) for the damped oscillator problem .
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Both these initial-value Green functions G(t, t′) are identically zero when
t < t′. This is because the Green function is the response of the system to
a kick at time t = t′, and in physical problems, no effect comes before its
cause. Such Green functions are said to be causal .

Physics Application: Friction without Friction — The Caldeira-

Leggett Model in Real Time.

This is an application of the initial-value problem Green function we found
in the preceding example.

When studying the quantum mechanics of systems with friction, such as
the viscously damped oscillator of the previous example, we need a tractable
model of the dissipative process. Such a model was introduced by Caldeira
and Leggett1. They consider the Lagrangian

L =
1

2

(

Q̇2 − Ω2Q2
)

−Q
∑

i

fiq
i+
∑

i

1

2

(

q̇2
i − ω2

i q
2
i

)

− 1

2

∑

i

(

f 2
i

ω2
i

)

Q2, (5.31)

which describes a macroscopic variable Q(t), linearly coupled to an oscillator

bath of very many simple systems representing the environment. The last sum
in the Lagrangian is a counter-term which is inserted cancel the shift

1

2
Ω2Q2 ≡ V (Q)→ Veff (Q) = V (Q)− 1

2

∑

i

(

f 2
i

ω2
i

)

Q2, (5.32)

caused by the bath. The shift arises because a slowly varying Q gives fiqi =
−(f 2

i /ω
2
i )Q, and substituting these values for the qi, we have

Q
∑

i

fiq
i +

1

2
ω2
i q

2
i = −1

2

(

f 2
i

ω2
i

)

Q2. (5.33)

We will denote the counter-term by 1
2
∆Ω2Q2.

The equations of motion are

Q̈+ (Ω2 −∆Ω2)Q+
∑

i

fiq
i = 0,

q̈i + ω2
i q + fiQ = 0. (5.34)

1A. Caldiera, A. J. Leggett, Physical Review Letters 46 (1981) 211.
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Using our initial value Green function, we solve for the qi in terms of Q(t)

fiqi = −
∫ t

−∞

(

f 2
i

ωi

)

sinωi(t− τ)Q(τ)dτ. (5.35)

The resulting motion of the qi feeds back into the equation for Q to give

Q̈ + (Ω2 −∆Ω2)Q+
∫ t

−∞
F (t− τ)Q(τ) dτ = 0, (5.36)

where

F (t) =
∑

i

(

f 2
i

ωi

)

sinωi(t) (5.37)

is a memory function.

Caldeira and Leggett define a spectral function

J(ω) =
π

2

∑

i

(

f 2
i

ωi

)

δ(ω − ωi), (5.38)

in terms of which

F (t) = − 2

π

∫ ∞

0
J(ω) sinω(t) dω. (5.39)

By taking different forms for J(ω) we can represent a wide range of environ-
ments. To obtain a friction force proportional to Q̇ we need J ∝ ω. We will
actually set

J(ω) = ηω

[

Λ2

Λ2 + ω2

]

, (5.40)

where Λ is a high-frequency cutoff, introduced to make the integral over ω
well-behaved. With this choice

−2

π

∫ ∞

0
J(ω) sin(ωt) dω =

2

2πi

∫ ∞

−∞

η ωΛ2eiωt

Λ2 + ω2
dω = sgn (t)ηΛ2e−Λ|t|. (5.41)

Therefore,

∫ t

−∞
F (t− τ)Q(τ) dτ = −

∫ t

−∞
ηΛ2e−Λ|t−τ |Q(τ) dτ

= −ηΛQ(t) + ηQ̇(t)− η

2Λ
Q̈(t) + · · · . (5.42)
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Now,

−∆Ω2 ≡
∑

i

(

f 2
i

ω2
i

)

=
2

π

∫ ∞

0

J(ω)

ω
dω =

2

π

∫ ∞

0

ηΛ2

Λ2 + ω2
dω = ηΛ. (5.43)

The counter-term thus cancels the O(Λ) frequency shift, and, ignoring terms
with negative powers of the cutoff, we end up with viscously damped motion

Q̈ + ηQ̇+ Ω2Q = 0. (5.44)

The oscillators in the bath absorb energy but, unlike a pair of coupled oscil-
lators which trade energy rhythmically back and forth, the incommensurate
motion of the many qi prevents them from cooperating for long enough to
return any energy to Q(t).

5.2.3 Modified Green Functions

When the equation Ly = 0 has a non trivial-solution, there can be no unique
solution to Ly = f , but there still will be solutions provided f is orthogonal
to all solutions of L†y = 0.
Example: Consider

Ly ≡ −∂2
xy = f(x), y′(0) = y′(1) = 0. (5.45)

The equation Ly = 0 has one non-trivial solution, y(x) = 1. The operator
L is self-adjoint, L† = L, and so there will be solutions to Ly = f provided
〈1, f〉 = ∫ 1

0 f dx = 0.
We cannot define the the green function as a solution to

−∂2
xG(x, x′) = δ(x− x′), (5.46)

because
∫ 1
0 δ(x− x′) dx = 1 6= 0, but we can seek a solution to

−∂2
xG(x, x′) = δ(x− x′)− 1 (5.47)

as the right-hand integrates to zero.
A general solution to −∂2

xy = −1 is

y = A+Bx+
1

2
x2, (5.48)
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and the functions

yL = A+
1

2
x2,

yR = C − x+
1

2
x2, (5.49)

obey the boundary conditions at the left and right ends of the interval, re-
spectively. Continuity at x = x′ demands that A = C − x′, and we are left
with

G(x, x′) =

{

C − x′ + 1
2
x2, 0 < x < x′

C − x + 1
2
x2, x′ < x < 1,

(5.50)

There is no freedom left to impose the condition

G′(x′ − ε, x′)−G′(x′ + ε, x′) = 1, (5.51)

but it is automatically satisfied ! Indeed,

G′(x′ − ε, x′) = x′

G′(x′ + ε, x′) = −1 + x′. (5.52)

We may select a different value of C for each x′, and a convenient choice
is

C =
1

2
x′

2
+

1

3
(5.53)

which makes G symmetric:

G(x, x′) =







1
3
− x′ + x2+x′2

2
, 0 < x < x′

1
3
− x + x2+x′2

2
, x′ < x < 1,

. (5.54)

It also makes
∫ 1
0 G(x, x′) dx = 0.

x’

The modified Green function.
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The solution to Ly = f is

y(x) =
∫ 1

0
G(x, x′)f(x) d+ A, (5.55)

where A is arbitrary.

5.3 Applications of Lagrange’s Identity

5.3.1 Hermiticity of Green function

Earlier we noted the symmetry of the Green function for the Sturm-Liouville
equation. We will now establish this formally.

Let G(x, x′) obey LxG(x, x′) = δ(x − x′) with homogeneous boundary
conditions B, and let G†(x, x′) obey L†

xG
†(x, x′) = δ(x − x′) with adjoint

boundary conditions B†. Then, from Lagrange’s identity, we have

Q(G,G†) =
∫

dx
{(

L†
xG

†(x, x′)
)∗
G(x, x′′)− (G†(x, x′))∗LG(x, x′′)

}

=
∫

dx
{

δ(x− x′)G(x, x′′)−
(

G†(x, x′)
)∗
δ(x− x′′)

}

= G(x′, x′′)−
(

G†(x′′, x′)
)∗
. (5.56)

Thus, provided Q(G,G†) = 0, which is indeed the case because the boundary
conditions for L, L† are mutually adjoint, we have

G†(x′, x) =
(

G(x, x′)
)∗
, (5.57)

and the Green functions, regarded as matrices with continuous rows and
columns, are Hermitian conjugates of one another.
Example: Let

L =
d

dx
, D(L) = {y, Ly ∈ L2[0, 1] : y(0) = 0}. (5.58)

In this case G(x, x′) = θ(x− x′).
Now, we have

L† = − d

dx
, D(L) = {y, Ly ∈ L2[0, 1] : y(1) = 0} (5.59)



5.3. APPLICATIONS OF LAGRANGE’S IDENTITY 127

and G†(x, x′) = θ(x′ − x).

0 1 0 1

1 1

x’ x’

G(x, x
′) G†(x, x′)

5.3.2 Inhomogeneous Boundary Conditions

Our differential operators have been defined with linear homogeneous bound-
ary conditions. We can, however, use them, and their Green-function in-
verses, to solve differential equations with inhomogeneous boundary condi-
tions.

Suppose, for example, we wish to solve

−∂2
xy = f(x), y(0) = a, y(1) = b. (5.60)

We already know the Green function for the homogeneous boundary-condition
problem with operator

L = −∂2
x, D(L) = {y, Ly ∈ L2[0, 1] : y(0) = 0, y(1) = 0}. (5.61)

It is

G(x, x′) =
{
x(1− x′), x < x′,
x′(1− x), x > x′.

(5.62)

Now we apply Lagrange’s identity to χ(x) = G(x, x′) and y(x) to get

∫ 1

0
dx
{

G(x, x′)
(

−∂2
xy(x)

)

− y(x)
(

−∂2
xG(x, x′)

)}

= [G′(x, x′)y(x)−G(x, x′)y′(x)]10.

(5.63)
Here, as usual, G′(x, y) = ∂xG(x, y). The integral is equal to
∫

dx {G(x, x′)f(x)− y(x)δ(x− x′)} =
∫

G(x, x′)f(x) dx− y(x′), (5.64)

whilst the integrated-out bit is

−(1− x′)y(0)− 0y′(0)− x′y(1) + 0y ′(1). (5.65)
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Therefore, we have

y(x′) =
∫

G(x, x′)f(x) dx+ (1− x′)y(0) + x′y(1). (5.66)

Here the term with f(x) is the particular integral, whilst the remaining terms
constitute the complementary function (obeying the differential equation
without the source term) which serves to satisfy the boundary conditions.
Observe that the arguments in G(x, x′) are not in the usual order, but, in
the present example, this does not matter because G is symmetric.

When the operator L is not self-adjoint, we need to distinguish between
L and L†, and G and G†. We then apply Lagrange’s identity to the unknown
function u(x) and χ(x) = G†(x, y).
Example: We will use the Green-function method to solve the differential
equation

du

dx
= f(x), x ∈ [0, 1], u(0) = a. (5.67)

You can, we hope, write down the answer to this problem directly, but it
is interesting to see how the general strategy produces the answer. We first
find the Green function G(x, y) for the operator with the corresponding ho-
mogeneous boundary conditions. In the present case, this operator is

L = ∂x, D(L) = {u, Lu ∈ L2[0, 1] : u(0) = 0}, (5.68)

and the appropriate Green function is G(x, y) = θ(x− y). From G we then

read off the adjoint Green function as G†(x, y) =
(

G(y, x)
)∗

. In the present

example, we have G†(x, y) = θ(y − x). We now use Lagrange’s identity in
the form
∫ 1

0
dx
{(

L†
xG

†(x, y)
)∗
u(x)−

(

G†(x, y)
)∗
Lxu(x)

}

=
[

Q
(

G†, u
)]1

0
. (5.69)

In all cases, the left hand side is equal to

∫ 1

0
dx
{

δ(x− y)u(x)−GT (x, y)f(x)
}

, (5.70)

where T denotes transpose, GT (x, y) = G(y, x). The left hand side is there-
fore equal to

u(y)−
∫ 1

0
dxG(y, x)f(x). (5.71)
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The right hand side depends on the details of the problem. In the present
case, the integrated out part is

[

Q(G†, u)
]1

0
= −

[

GT (x, y)u(x)
]1

0
= u(0). (5.72)

At the last step we have used the specific form GT = θ(y − x) to find that
only the lower limit contributes. The end result is therefore the expected
one:

u(y) = u(0) +
∫ y

0
f(x) dx. (5.73)

It should be clear that variations of this strategy enable us to solve any
inhomogeneous boundary-value problem in terms of the Green function for
the corresponding homogeneous boundary-value problem.

5.4 Eigenfunction Expansions

Self-adjoint operators possess a complete set of eigenfunctions, and we can
expand the Green function in terms of these. Let

Lϕn = λnϕn. (5.74)

Let us further suppose that none of the λn are zero. Then the Green function
has the eigenfunction expansion

G(x, x′) =
∑

n

ϕn(x)ϕ
∗
n(x

′)

λn
. (5.75)

That this is so follows from

Lx

(
∑

n

ϕn(x)ϕ
∗
n(x

′)

λn

)

=
∑

n

(

Lxϕn(x)
)

ϕ∗
n(x

′)

λn

=
∑

n

λnϕn(x)ϕ
∗
n(x

′)

λn

=
∑

n

ϕn(x)ϕ
∗
n(x

′)

= δ(x− x′). (5.76)

Example: : Consider our familiar exemplar

L = −∂2
x, D(L) = {y, Ly ∈ L2[0, 1] : y(0) = y(1) = 0}, (5.77)
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for which

G(x, x′) =
{
x(1− x′), x < x′,
x′(1− x), x > x′.

(5.78)

Performing the Fourier series shows that

G(x, x′) =
∞∑

n=1

(
2

n2π2

)

sin(nπx) sin(nπx′). (5.79)

Modified Green function

If one or more of the eigenvalues is zero then the modified Green function is
obtained by simply omitting the corresponding terms from the series.

Gmod(x, x
′) =

∑

λn 6=0

ϕn(x)ϕ
∗
n(x

′)

λn
. (5.80)

Then

LxGmod(x, x
′) = δ(x− x′)−

∑

λn=0

ϕn(x)ϕ
∗
n(x

′). (5.81)

We see that this Gmod is still hermitian, and, as a function of x, is orthogonal
to the zero modes. These are the properties we elected in our earlier example.

5.5 Analytic Properties of Green Functions

In this section we will study some of the properties of Green functions con-
sidered as functions of a complex variable. Some of the formulæ are slightly
easier to derive using contour integral methods, but these are not necessary
and we will not use them here. The only complex-variable prerequisite is a
familiarity with complex arithmetic and, in particular, knowledge of how to
take the logarithm and the square root of a complex number.

5.5.1 Causality Implies Analyticity

If we have a causal Green function of the form G(t − τ) with the property
G(t− τ) = 0, for t < τ , then if the integral defining its Fourier transform,

G̃(ω) =
∫ ∞

0
eiωtG(t) dt, (5.82)
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converges for real ω, it will converge even better when ω has a positive
imaginary part. This means that G̃(ω) will be a well-behaved function of
the complex variable ω everywhere in the upper half of the complex plane.
Indeed it is analytic there, meaning that its Taylor series expansion about any
point actually converges to the function. For example, the Green function
for the damped oscillator

G(t) =

{
1
Ω
e−γt sin(Ωt), t > 0,

0, t < 0,
(5.83)

has Fourier transform

G̃(ω) =
1

Ω2 − (ω + iγ)2
, (5.84)

which is always finite in the upper half-plane, although it has pole singulari-
ties at ω = −iγ ± Ω in the lower half-plane.

The only way that the Fourier transform G̃ of a causal Green function
can have a singularity in the upper half-plane is if G contains a exponential
factor growing in time, in which case the system is unstable to perturbations.
This observation is at the heart of the Nyquist criterion for the stability of
linear electronic devices.

Inverting the Fourier transform, we have

G(t) = θ(t)
1

Ω
e−γt sin(Ωt) =

∫ ∞

−∞

1

Ω2 − (ω + iγ)2
e−iωt

dω

2π
. (5.85)

It perhaps surprising that this integral is identically zero if t < 0, and non-
zero if t > 0. This is one of the places where contour integral methods might
cast some light, but as long as we have confidence in the Fourier inversion
formula, we know that it must be correct.

We now observe that reversing the sign of γ on the right hand side of
(5.85) does more than just change e−γt → eγt on the left hand side. Instead

∫ ∞

−∞

1

Ω2 − (ω − iγ)2
e−iωt

dω

2π
= −θ(−t) 1

Ω
eγt sin(Ωt). (5.86)

This is obtained from (5.85) by noting that changing γ → −γ in the denom-
inator integral is equivalent to complex conjugation followed by a change of
sign t → −t. The result is an exponentially growing oscillation which is
suddenly silenced at t = 0.
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ιγ= +ιε ιγ=−ιε

t t
t=0 t=0

The effect on G(t), the Green function of an undamped oscillator, of changing
iγ from +iε to −iε.
The effect of taking the damping parameter γ from an infitesimally small pos-
tive value ε to an infinitesimally small negative value −ε is therefore to turn
the causal Green function (no motion before the delta-function kick) of the
undamped oscillator into an anti-causal Green function (no motion after the
kick). Ultimately, this is because the the differential operator corresponding
to a harmonic oscillator with initial -value data is not self-adjoint, and the
adjoint operator corresponds to a harmonic oscillator with final -value data.

This discontinuous dependence on an infinitesimal damping parameter is
the subject of the next few sections.

Physics Application: Caldeira-Leggett in Frequency Space

If we write the Caldeira-Leggett equations of motion (5.34) in Fourier fre-
quency space by setting

Q(t) =
∫ ∞

−∞

dω

2π
Q(ω)e−iωt, (5.87)

and

qi(t) =
∫ ∞

−∞

dω

2π
qi(ω)e−iωt, (5.88)

we have (after including an external force Fext to drive the system)

(

−ω2 + (Ω2 −∆Ω2)
)

Q(ω)−
∑

i

fiqi(ω) = Fext(ω),

(−ω2 + ω2
i )qi(ω) + fiQ(ω) = 0. (5.89)
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Eliminating the qi, we obtain

(

−ω2 + (Ω2 −∆Ω2)
)

Q(ω)−
∑

i

f 2
i

ω2
i − ω2

Q(ω) = Fext(ω). (5.90)

As before, sums over the index i are replaced by integrals over the spectral
function

∑

i

f 2
i

ω2
i − ω2

→ 2

π

∫ ∞

0

ω′J(ω′)

ω′2 − ω2
dω′, (5.91)

and

∆Ω2 ≡
∑

i

(

f 2
i

ω2
i

)

→ 2

π

∫ ∞

0

J(ω′)

ω′ dω′. (5.92)

Then

Q(ω) =

(

1

Ω2 − ω2 + Π(ω)

)

Fext(ω), (5.93)

where the self-energy Π(ω) is given by

Π(ω) =
2

π

∫ ∞

0

{

J(ω′)

ω′ −
ω′J(ω′)

ω′2 − ω2

}

dω′ = −ω2 2

π

∫ ∞

0

J(ω′)

ω′(ω′2 − ω2)
dω′.

(5.94)
The expression

G(ω) ≡ 1

Ω2 − ω2 + Π(ω)
(5.95)

a typical response function. Analogous objects occur in all branches of
physics.

For viscous damping we know that J(ω) = ηω. Let us evaluate the
integral occuring in Π(ω) for this case:

I(ω) =
∫ ∞

0

dω′

ω′2 − ω2
. (5.96)

We will assume that ω is positive. Now,

1

ω′2 − ω2
=

1

2ω

(
1

ω′ − ω −
1

ω′ + ω

)

, (5.97)

so

I =
[

1

2ω

(

ln(ω′ − ω)− ln(ω′ + ω)
)]∞

ω′=0
. (5.98)
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At the upper limit we have ln
(

(∞− ω)/(∞ + ω)
)

= ln 1 = 0. The lower
limit contributes

− 1

2ω

(

ln(−ω)− ln(ω)
)

. (5.99)

To evaluate the logarithm of a negative quantity we must use

lnω = ln |ω|+ i argω, (5.100)

where we will take argω to lie in the range −π < argω < π.

Im

Re

arg

ω

(−ω)

ω
−ω

ω

When ω has a small positive imaginary part, arg (−ω) ≈ −π.

To get an unambiguous answer, we need to give ω an infinitesimal imaginary
part ±iε. Depending on the sign of this imaginary part, we find that

I(ω ± iε) = ± iπ
2ω
, (5.101)

so
Π(ω ± iε) = ∓iηω. (5.102)

Now the frequency-space version of

Q̈(t) + ηQ̇+ Ω2Q = Fext(t) (5.103)

is
(−ω2 − iηω + Ω2)Q(ω) = Fext(ω), (5.104)

so we must opt for the displacement that gives Π(ω) = −iηω. This means
that we must regard ω as having a positive infinitesimal imaginary part,
ω → ω + iε. This imaginary part is a good and needful thing: it effects the
replacement of the ill-defined singular integrals

I
?
=
∫ ∞

0

1

ω2
i − ω2

e−iωt dω, (5.105)
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which arise as we transform back to real time, with the unambiguous expres-
sions

Iε =
∫ ∞

0

1

ω2
i − (ω + iε)2

e−iωt dω. (5.106)

The latter, we know, give rise to properly causal real-time Green functions.

5.5.2 Plemelj Formulæ

The functions we are meeting can all be cast in the form

f(ω) =
1

π

∫ b

a

ρ(ω′)

ω′ − ω dω
′. (5.107)

If ω lies in the integration range [a, b], then we divide by zero as we integrate
over ω′ = ω. We ought to avoid doing this, but this interval is often exactly
where we desire to evaluate f . As before, we evade the division by zero by
giving ω an infintesimally small imaginary part: ω → ω ± iε. We can then
apply the Plemelj formulæ, which say that

1

2

(

f(ω + iε)− f(ω − iε)
)

= iρ(ω),

1

2

(

f(ω + iε) + f(ω − iε)
)

=
1

π
P
∫

Γ

ρ(ω′)

ω′ − ω dω
′. (5.108)

Here, the “P” in front of the integral stands for principal part . It means that
we are to delete an infinitesimal segment of the ω′ integral lying symmetrically
about the singular point ω′ = ω.

The Plemelj formula mean that the otherwise smooth and analytic func-
tion f(ω) is discontinuous across the real axis between a and b. If the dis-
continuity ρ(ω) is itself an analytic function then the line joining the points
a and b is a branch cut , and the endpoints of the integral are branch-point

singularities of f(ω).

a b
Im ω

Re ω ω

The analytic function f(ω) is discontinuous across the real axis between a and b.
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The Plemelj formulae may be understood by considering the following
figure:

ω
ω

Im gRe g

ω ω

Sketch of the real and imaginary parts of g(ω′) = 1/(ω′ − (ω + iε)).

The singular integrand is a product of ρ(ω′) with

1

ω′ − (ω ± iε) =
ω − ω′

(ω′ − ω)2 + ε2
± iε

(ω′ − ω)2 + ε2
. (5.109)

The first term on the right is a symmetrically cut-off version 1/(ω′− ω) and
provides the principal part integral. The the second term sharpens and tends
to the delta function ±iπδ(ω′− ω) as ε→ 0, and so gives ±iπρ(ω). Because
of this explanation, the Plemelj equations are commonly encoded in physics
papers via the “iε” cabbala

1

ω′ − (ω ± iε) =
P

ω′ − ω ± iπδ(ω
′ − ω). (5.110)

If ρ is real, as it often is, then f(ω+iη) =
(

f(ω−iη)
)∗

. The discontinuity
across the real axis is then purely imaginary, and

1

2

(

f(ω + iε) + f(ω − iε)
)

(5.111)

is purely real. We therefore have

Re f(ω) =
1

π
P
∫ b

a

Im f(ω′)

ω′ − ω dω′. (5.112)

This is typical of the relations linking the real and imaginary parts of causal
response functions.
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Example: A practical illustration of such a relation is provided by the com-
plex, frequency-dependent, refractive index , n(ω), of a medium. This is
defined so that a travelling electromagnetic wave takes the form

E(x, t) = E0 e
in(ω)kx−iωt. (5.113)

Here, k = ω/c is the in vacuuo wavenumber. We can decompose n into its
real and imaginary parts:

n(ω) = nR + inI

= nR(ω) +
i

2k
γ(ω), (5.114)

where γ is the extinction coefficient, defined so that the intensity falls off as
I = I0 exp(−γx). A non-zero γ can arise from either energy absorbtion or
scattering out of the forward direction2. For the refractive index, we have
the Kramers-Kronig relation

nR(ω) = 1 +
c

π
P
∫ ∞

0

γ(ω′)

ω′2 − ω2
dω′. (5.115)

Formulæ like this will be rigorously derived later by the use of contour-
integral methods.

5.5.3 Resolvent Operator

Given a differential operator L, we define the resolvent operator to be Rλ ≡
(L− λI)−1. The resolvent is an analytic function of λ, except when λ lies in
the spectrum of L.

We expand Rλ in terms of the eigenfunctions as

Rλ(x, x
′) =

∑

n

ϕn(x)ϕ
∗
n(x

′)

λn − λ
. (5.116)

When the spectrum is discrete, the resolvent has poles at the eigenvalues
L. When the operator L has a continuous spectrum, the sum becomes an
integral:

Rλ(x, x
′) =

∫

µ∈σ(L)
ρ(µ)

ϕµ(x)ϕ
∗
µ(x

′)

µ− λ dµ, (5.117)

2For a dilute medium of incoherent scatterers, such as the air molecules resposible for
Rayleigh scattering, γ = Nσtot, where N is the density of scatterers and σtot is the total
scattering cross section of each.
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where ρ(µ) is the eigenvalue density of states. This is of the form that
we saw in connection with the Plemelj formulæ. Consequently, when the
spectrum comprises segements of the real axis, the resulting analytic function
Rλ will be discontinuous across the real axis within them. The endpoints
of the segements will branch point singularities of Rλ, and the segements
themselves, considered as subsets of the complex plane, are the branch cuts.

The trace of the resolvent TrRλ is defined by

TrRλ =
∫

dx {Rλ(x, x)}

=
∫

dx

{
∑

n

ϕn(x)ϕ
∗
n(x)

λn − λ

}

=
∑

n

1

λn − λ

→
∫

ρ(µ)

µ− λ dµ. (5.118)

Applying Plemelj to Rλ, we have

Im
[

lim
ε→0

{

TrRλ+iε

}]

= πρ(λ). (5.119)

Here, we have used that fact that ρ is real, so

TrRλ−iε =
(

TrRλ+iε

)∗
. (5.120)

The non-zero imaginary part therefore shows that Rλ is discontinuous across
the real axis at points lying in the continuous spectrum.
Example: Consider

L = −∂2
x +m2, D(L) = {y, Ly ∈ L2[−∞,∞]}. (5.121)

As we know, this operator has a continuous spectrum, with eigenfunctions

ϕk =
1√
L
eikx. (5.122)

Here, L is the (very large) length of the interval. The eigenvalues are E =
k2 + m2, so the spectrum is all positive numbers greater than m2. The
momentum density of states is

ρ(k) =
L

2π
. (5.123)
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The completeness relation is
∫ ∞

−∞

dk

2π
eik(x−x

′) = δ(x− x′), (5.124)

which is just the Fourier integral formula for the delta function.
The Green function for L is

G(x− y) =
∫ ∞

−∞
dk

(

dn

dk

)

ϕk(x)ϕ
∗
k(y)

k2 +m2
=
∫ ∞

−∞

dk

2π

eik(x−y)

k2 +m2
=

1

2m
e−m|x−y|.

(5.125)
We can use the same calculation to look at the resolvent Rλ = (−∂2

x − λ)−1.
Replacing m2 by −λ, we have

Rλ(x, y) =
1

2
√
−λe

−
√
−λ|x−y|. (5.126)

To appreciate this expression, we need to know how to evaluate
√
z where

z is complex. We write z = |z|eiφ where we require −π < φ < π. We now
define √

z =
√

|z|eiφ/2. (5.127)

When we evaluate
√
z for z just below the negative real axis then this defini-

tion gives −i
√

|z|, and just above the axis we find +i
√

|z|. The discontinuity
means that the negative real axis is a branch cut for the the square-root
function. The

√
−λ’s appearing in Rλ therefore mean that the positive real

axis will be a branch cut for Rλ. This branch cut therefore coincides with
the spectrum of L, as promised earlier.

−λ

Im

Re

λ

λ
arg(−λ)/2

λ

−λ

If Imλ > 0, and with the branch cut for
√
z in its usual place along the

negative real axis, then
√
−λ has negative imaginary part and positive real

part.
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If λ is positive and we shift λ→ λ+ iε then

1

2
√
−λe

−
√
−λ|x−y| → i√

λ
e−i

√
λ|x−y|−ε|x−y|/2

√
λ. (5.128)

Notice that this decays away as |x − y| → ∞. The square root retains a
positive real part when λ is shifted to λ− iε, and so the decay is still present:

1

2
√
−λe

−
√
−λ|x−y| → − i√

λ
e+i

√
λ|x−y|−ε|x−y|/2

√
λ. (5.129)

In each case, with λ either immediately above or immediately below the
cut, the small imaginary part tempers the oscillatory behaviour of the Green
function so that χ(x) = G(x, y) is square integrable and remains an element
of L2[R].

We now take the trace of R by setting x = y and integrating:

TrRλ+iε = iπ
L

2π
√

|λ|
. (5.130)

Thus,

ρ(λ) = θ(λ)
L

2π
√

|λ|
, (5.131)

which coincides with our direct calculation.
Example: Let

L = −i∂x, D(L) = {y, Ly ∈ L2[R]}. (5.132)

This has eigenfunctions eikx with eigenvalues k. The spectrum is therefore
the entire real line. The local eigenvalue density of states is 1/2π. The
resolvent is therefore

(−i∂x − λ)−1
x,x′ =

1

2π

∫ ∞

−∞
eik(x−x

′) 1

k − λdk. (5.133)

To evaluate this, first consider the Fourier transforms of

F1(x) = θ(x)e−κx,

F2(x) = −θ(−x)eκx, (5.134)

where κ is a positive real number.
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xx

1

−1

The functions F1(x) = θ(x)e−κx and F2(x) = −θ(−x)eκx .

We have
∫ ∞

−∞

{

θ(x)e−κx
}

e−ikx dx =
1

i

1

k − iκ, (5.135)

∫ ∞

−∞

{

−θ(−x)eκx
}

e−ikx dx =
1

i

1

k + iκ
. (5.136)

Inverting the transforms gives

θ(x)e−κx =
1

2πi

∫ ∞

−∞

1

k − iκe
ikx dk,

−θ(−x)eκx =
1

2πi

∫ ∞

−∞

1

k + iκ
eikx dk. (5.137)

These are important formulæ in their own right, and you should take care
to understand them. Now we apply them to evaluating the integral defining
Rλ.

If we write λ = µ+ iν, we find

1

2π

∫ ∞

−∞
eik(x−x

′) 1

k − λ dk =

{

iθ(x− x′)eiµ(x−x′)e−ν(x−x
′), ν > 0,

−iθ(x′ − x)eiµ(x−x′)e−ν(x−x
′), ν < 0,

(5.138)

In each case, the resolvent is ∝ eiλx away from x′, and has jump of +i at
x = x′ so as produce the delta function. It decays either to the right or to
the left, depending on the sign of ν. The Heaviside factor ensures that it is
multiplied by zero on the exponentially growing side of e−νx, so as to satisfy
the requirement of square integrability.

Taking the trace of this resolvent is a little problematic. We are to set x =
x′ and integrate — but what value do we associate with θ(0)? Remembering
that Fourier transforms always give to the mean of the two values at a jump
discontinuity, it seems reasonable to set θ(0) = 1

2
. With this definition, we
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have

TrRλ =







i
2
L, Imλ > 0,

− i
2
L, Imλ < 0.

(5.139)

Our choice is therefore compatible with TrRλ+iε = πρ = L/2π. We have
been lucky. The ambiguous expression θ(0) is not always safely evaluated as
1/2.

5.6 Locality and the Gelfand-Dikii equation

The answers to many quantum physics problems can be expressed either as
sums over wavefunctions or as expressions involving Green functions. One
of the advantages writing the answer in terms of Green functions is that
these typically depend only on the local properties of the differential oper-
ator whose inverse they are. This locality is in contrast to the individual
wavefunctions and their eigenvalues, both of which are sensitive to the dis-
tant boundaries. Since physics is usually local, it follows that the Green
function provides a more efficient route to the answer.

By the Green function being local we mean that its value for x, y near
some point can be computed in terms of the coefficients in the equations
evaluated near this point. To illustrate this claim, consider the Green func-
tion G(x, y) for the differential operator −∂2

x + q(x) + λ on the entire real
line. We will show that there is a, not exactly obvious but easy to obtain
once you know the trick, local gradient expansion for the diagonal elements
G(x, x). We begin by recalling that we can write

G(x, y) ∝ u(x)v(y)

where u(x), v(x) are solutions of (−∂2
x + q(x) + λ)y = 0 satisfying suitable

boundary conditions to the right and left. Suppose we set R(x) = G(x, x)
and differentiate three times with respect to x. We find

∂3
xR(x) = u(3)v + 3u′′v′ + 3u′v′′ + uv(3)

= (∂x(q + λ)u) v + 3(q + λ)∂x(uv) + (∂x(q + λ)v)u.

Here, in passing from the first to second line, we have used the differential
equation obeyed by u and v. We can re-express the second line as

(q∂x + ∂xq −
1

2
∂3
x)R(x) = −2λ∂xR(x). (5.140)
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This is known as the Gelfand-Dikii equation. Using it we can find an ex-
pansion for the diagonal element R(x) in terms of q and its derivatives. We
begin by observing that for q(x) ≡ 0 we know that R(x) = 1/(2

√
λ). We

therefore conjecture that we can expand

R(x) =
1

2
√
λ

(

1− b1(x)

2λ
+
b2(x)

(2λ)2
+ · · ·+ (−1)n

bn(x)

(2λ)n
+ · · ·

)

.

If we insert this expansion into (5.140) we see that we get the recurrence
relation

(q∂x + ∂xq −
1

2
∂3
x)bn = ∂xbn+1. (5.141)

We can therefore find bn+1 from bn by means of a single integration. Re-
markably, ∂xbn+1 is always the exact derivative of a polynomal in q and its
derivatives. Further, the integration constants must be be zero so that we
recover the q ≡ 0 result. If we carry out this process, we find

b1(x) = q(x),

b2(x) =
3 q(x)2

2
− q′′(x)

2
,

b3(x) =
5 q(x)3

2
− 5 q′(x)2

4
− 5 q(x) q′′(x)

2
+
q(4)(x)

4
,

b4(x) =
35 q(x)4

8
− 35 q(x) q′(x)2

4
− 35 q(x)2 q′′(x)

4
+

21 q′′(x)2

8

+
7 q′(x) q(3)(x)

2
+

7 q(x) q(4)(x)

4
− q(6)(x)

8
, (5.142)

and so on. (Note how the terms in the expansion are graded: Each bn
is homogeneous in powers of q and its derivatives, provided we count two
x derivatives as being worth one q(x).) Keeping a few terms in this series
expansion can provide an effective approximation for G(x, x), but, in general,
the series is not convergent, being only an asymptotic expansion for R(x).

A similar strategy produces expansions for the diagonal element of the
Green function of other one-dimensional differential operators. Such gradient
expansions also exist in in higher dimensions but the higher-dimensional
Seeley-coefficient functions are not as easy to compute. Gradient expansions
for the off-diagonal elements also exist, but, again, they are harder to obtain.
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Chapter 6

Partial Differential Equations

Most differential equations of physics involve quantities depending on both
space and time. Inevitably they involve partial derivatives, and so are partial
differential equations (PDE’s).

6.1 Classification of PDE’s

We will focus on second order equations in two variable such as the wave
equation

∂2ϕ

∂x2
− 1

c2
∂2ϕ

∂t2
= f(x, t), (Hyperbolic) (6.1)

Laplace or Poisson’s equation

∂2ϕ

∂x2
+
∂2ϕ

∂y2
= f(x, y), (Elliptic) (6.2)

or Fourier’s heat equation

∂2ϕ

∂x2
− κ∂ϕ

∂t
= f(x, t). (Parabolic) (6.3)

What do the names hyperbolic, elliptic and parabolic mean? Recall from
high-school co-ordinate geometry that a quadratic curve

ax2 + 2bxy + cy2 + fx+ gy + h = 0 (6.4)

represents a hyperbola, an ellipse or a parabola depending on whether the
discriminant , ac − b2, is less than zero, greater than zero, or equal to zero.

145
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Later in life we learn to say that this means that the matrix
[
a b
b c

]

(6.5)

has signature (+,−), (+,+) or (+, 0).
Similarly, the equation

a(x, y)
∂2ϕ

∂x2
+ 2b(x, y)

∂2ϕ

∂x∂y
+ c(x, y)

∂2ϕ

∂y2
+ (lower orders) = 0, (6.6)

is said to hyperbolic, elliptic, or parabolic at a point (x, y) if
∣
∣
∣
∣

a(x, y) b(x, y)
b(x, y) c(x, y)

∣
∣
∣
∣ = (ac− b2)|x,y, (6.7)

is less than, greater than, or equal to zero, respectively. This classification
helps us understand what sort of initial or boundary data we need to specify
the problem.

There are three broad classes of boundary conditions:
a) Dirichlet boundary conditions: The value of the dependent vari-

able is specified on the boundary.
b) Neumann boundary conditions: The normal derivative of the de-

pendent variable is specified on the boundary.
c) Cauchy boundary conditions: Both the value and the normal deriva-

tive of the dependent variable are specified on the boundary.
Less commonly met with are:

d) Robin boundary conditions: The value of a linear combination of
the dependent variable and the normal derivative of the dependent
variable is specified on the boundary.

Cauchy boundary conditions are analogous to the initial conditions for a
second-order ordinary differential equation. These are given at one end of
the interval only. The other three classes of boundary condition are higher-
dimensional analogues of the conditions we impose on an ODE at both ends
of the interval.

Each class of PDE’s requires a different class of boundary conditions in
order to have a unique, stable solution.

1) Elliptic equations require either Dirichlet or Neumann boundary con-
ditions on a closed boundary surrounding the region of interest. Other
boundary conditions are either insufficient to determine a unique solu-
tion, overly restrictive, or lead to instabilities.



6.1. CLASSIFICATION OF PDE’S 147

2) Hyperbolic equations require Cauchy boundary conditions on a open
surface. Other boundary conditions are either too restrictive for a
solution to exist, or insufficient to determine a unique solution.

3) Parabolic equations require Dirichlet or Neumann boundary condi-
tions on a open surface. Other boundary conditions are too restrictive.

6.1.1 Cauchy Data

Given a second-order ordinary differential equation

p0y
′′ + p1y

′ + p2y = f (6.8)

with initial data y(a), y′(a) we can construct the solution incrementally. We
take a step δx = ε and use the initial slope to find y(a + ε) = y(a) + εy′(a).
Next we find y′′(a) from the differential equation

y′′(a) = − 1

p0
(p1y

′(a) + p2y(a)− f(a)), (6.9)

and use it to obtain y′(a + ε) = y′(a) + εy′′(a). We now have initial data,
y(a+ ε), y′(a+ ε), at the point a+ ε, and can play the same game to proceed
to a + 2ε, and onwards.

Suppose now that we have the analogous situation of a second order
partial differential equation

aµν(xi)
∂2ϕ

∂xµ∂xν
+ (lower orders) = 0. (6.10)

in Rn. We are also given initial data on a surface, Γ, of co-dimension one in
Rn.

t

t

1

2

n

p

The surface Γ on which we are given Cauchy Data.
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At each point p on Γ we erect a basis n, t1, t2, . . . of normal and tangents,
and the information we have been given consists of the value of ϕ at every
point p together with

∂ϕ

∂n
def
= nµ

∂ϕ

∂xµ
, (6.11)

the normal derivative of ϕ at p. We want to know if this Cauchy data

is sufficient to find the second derivative in the normal direction, and so
construct similar Cauchy data on the adjacent surface Γ + εn. If so, we can
repeat the process and systematically propagate the solution forward through
Rn.

From the given data, we can construct

∂2ϕ

∂n∂ti

def
= nµtνi

∂2ϕ

∂xµ∂xν
,

∂2ϕ

∂ti∂tj

def
= tνi t

ν
j

∂2ϕ

∂xµ∂xν
, (6.12)

but we do not yet have enough information to determine

∂2ϕ

∂n∂n
def
= nµnν

∂2ϕ

∂xµ∂xν
. (6.13)

Can we fill the data gap by using the differential equation (6.10)? Suppose
that

∂2ϕ

∂xµ∂xν
= φµν0 + nµnνΦ (6.14)

where φµν0 is a guess that is consistent with (6.12), and Φ is as yet unknown,
and, because of the factor of nµnν , does not affect the derivatives (6.12). We
plug into

aµν(xi)
∂2ϕ

∂xµ∂xν
+ (known lower orders) = 0. (6.15)

and get
aµνn

µnνΦ + (known) = 0. (6.16)

We can therefore find Φ provided that

aµνn
µnν 6= 0. (6.17)

If this expression is zero, we are stuck. It is like having p0(x) = 0 in an
ordinary differential equation. On the other hand, knowing Φ tells us the
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second normal derivative, and we can proceed to the adjacent surface where
we play the same game once more.

Definition: A characteristic surface is a surface Σ such that aµνn
µnν = 0

at all points on Σ. We can therefore propagate our data forward, provided
that the initial-data surface Γ is nowhere tangent to a characteristic surface.
In two dimensions the characteristic surfaces become one-dimensional curves.
An equation in two dimensions is hyperbolic, parabolic, or elliptic at at a
point (x, y) if it has two, one or zero characteristic curves through that point,
respectively.

Characteristics are both a curse and blessing . They are a barrier to
Cauchy data, but are also the curves along which information is transmitted.

6.1.2 Characteristics and first-order equations

Suppose we have a linear first-order partial differential equation

a(x, y)
∂u

∂x
+ b(x, y)

∂u

∂y
+ c(x, y)u = f(x, y). (6.18)

We can write this in vector notation as (v · ∇)u + cu = F , where v is the
vector field v = (a, b). If we define the flow of the vector field to be the
family of parametrized curves x(t), y(t) satisfying

dx

dt
= a(x, y),

dy

dt
= b(x, y), (6.19)

then (6.18) reduces to an ordinary differential equation

du

dt
+ c(t)u(t) = f(t) (6.20)

along each flow line. Here,

u(t) ≡ u(x(t), y(t)),

c(t) ≡ c(x(t), y(t)),

f(t) ≡ f(x(t), y(t)). (6.21)

If we have been given the initial value of u on a curve Γ that is nowhere
tangent to any of the flow lines, we can propagate this data forward along
the flow by solving (6.20). If the curve Γ did become tangent to one of the



150 CHAPTER 6. PARTIAL DIFFERENTIAL EQUATIONS

flow lines at some point, the data will generally be inconsistent with (6.18)
at that point, and no solution can exist. The flow lines are therefore play
a role analagous to the characteristics of a second-order partial differential
equation, and are therefore also called characteristics.

6.2 Wave Equation

6.2.1 d’Alembert’s Solution

Let ϕ(x, t) obey the wave equation

∂2ϕ

∂x2
− 1

c2
∂2ϕ

∂t2
= 0, −∞ < x <∞. (6.22)

We begin with a change of variables. Let

ξ = x + ct,

η = x− ct. (6.23)

be light-cone co-ordinates. In terms of them, we have

x =
1

2
(ξ + η),

t =
1

2c
(ξ − η). (6.24)

Now,
∂

∂ξ
=
∂x

∂ξ

∂

∂x
+
∂t

∂ξ

∂

∂t
=

1

2

(

∂

∂x
+

1

c

∂

∂t

)

. (6.25)

Similarly
∂

∂η
=

1

2

(

∂

∂x
− 1

c

∂

∂t

)

. (6.26)

Thus
(

∂2

∂x2
− 1

c2
∂2

∂t2

)

=

(

∂

∂x
+

1

c

∂

∂t

)(

∂

∂x
− 1

c

∂

∂t

)

= 4
∂2

∂ξ∂η
. (6.27)

The characteristics of the equation

4
∂2ϕ

∂ξ∂η
= 0 (6.28)
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are ξ = const. or η = const. There are two characteristics curves through
each point, so the equation is hyperbolic.

With lightcone coordinates it is easy to see that a general solution to

(

∂2

∂x2
− 1

c2
∂2

∂t2

)

ϕ = 4
∂2ϕ

∂ξ∂η
= 0 (6.29)

is

ϕ = f(ξ) + g(η) = f(x+ ct) + g(x− ct). (6.30)

The curve t = 0 is not a characteristic, so we can propagate a solution
from Cauchy data ϕ(x, t = 0) ≡ ϕ0(x) and ϕ̇(x, t = 0) ≡ v0(x). We use this
data to fit f and g in

ϕ(x, t) = f(x+ ct) + g(x− ct). (6.31)

We have

f(x) + g(x) = ϕ0(x),

c(f ′(x)− g′(x)) = v0(x), (6.32)

so

f(x)− g(x) =
1

c

∫ x

0
v0(ξ) dξ + A. (6.33)

Therefore

f(x) =
1

2
ϕ0(x) +

1

2c

∫ x

0
v0(ξ) dξ +

1

2
A,

g(x) =
1

2
ϕ0(x)−

1

2c

∫ x

0
v0(ξ) dξ −

1

2
A. (6.34)

Thus

ϕ(x, t) =
1

2
{ϕ0(x + ct) + ϕ0(x− ct)}+

1

2c

∫ x+ct

x−ct
v0(ξ) dξ. (6.35)

This is called d’Alembert’s solution of the wave equation.
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x

t

x−ct x+ct

(x,t)

Range of Cauchy data influencing ϕ(x, t).

The value of ϕ at x, t, is determined by only a finite interval of the initial
Cauchy data. In more generality, ϕ(x, t) depends only on what happens in
the past line-cone of the point, which is bounded by pair of characteristic
curves.

We can bring out the role of characteristics in the d’Alembert solution by
writing the wave equation as

0 =

(

∂2ϕ

∂x2
− 1

c2
∂2ϕ

∂t2

)

=

(

∂

∂x
+

1

c

∂

∂t

)(

∂ϕ

∂x
− 1

c

∂ϕ

∂t

)

. (6.36)

This tells us that
(

∂

∂x
+

1

c

∂

∂t

)

(u− v) = 0, (6.37)

where

u =
∂ϕ

∂x
, v =

1

c

∂ϕ

∂t
. (6.38)

Thus the quantity u− v is constant along the curve

x− ct = const, (6.39)

which is a characteristic. Similarly u+ v is constant along the characteristic

x + ct = const . (6.40)

This provides another route to the construction of d’Alembert’s solution.
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6.2.2 Fourier’s Solution

Starting from the same Cauchy data as d’Alembert, Fourier proposed a com-
pletely different approach to solving the wave equation. He sought a solution
in the form

ϕ(x, t) =
∫ ∞

−∞

dk

2π

{

a(k)eikx−iωkt + a∗(k)e−ikx+iωkt
}

, (6.41)

where ωk ≡ c|k| is the positive root of ω2 = c2k2. The terms being summed
by the integral are all individually of the form f(x− ct), or f(x+ ct), and so
ϕ(x, t) is indeed a solution of the wave equation. The positive-root convention
means that positive k corresponds to right-going waves, and negative k to
left-going waves.

We find the amplitudes a(k) by fitting to the Fourier transforms of the
initial data

ϕ(x, t = 0) =
∫ ∞

−∞

dk

2π
Φ(k)eikx,

ϕ̇(x, t = 0) =
∫ ∞

−∞

dk

2π
χ(k)eikx, (6.42)

so

Φ(k) = a(k) + a∗(−k),
χ(k) = iωk

(

a∗(−k)− a(k)
)

. (6.43)

Solving, we find

a(k) =
1

2

(

Φ(k) +
i

ωk
χ(k)

)

,

a∗(k) =
1

2

(

Φ(−k)− i

ωk
χ(−k)

)

. (6.44)

For some years after Fourier’s trigonometric series solution was proposed,
doubts persisted as to whether it was as general as that of d’Alembert. It is,
of course, completely equivalent.

6.2.3 Causal Green Function

We now add a source term:

1

c2
∂2ϕ

∂t2
− ∂2ϕ

∂x2
= q(x, t). (6.45)
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We will solve this by finding a Green function such that

(

1

c2
∂2

∂t2
− ∂2

∂x2

)

G(x, t; ξ, τ) = δ(x− ξ)δ(t− τ). (6.46)

If the only waves in the system are those produced by the source, we should
demand that the Green function be causal , in that G(x, t; ξ, τ) = 0 if t < τ .

To construct the causal Green function, we integrate the equation over
an infinitesimal time interval from τ − ε to τ + ε and so find Cauchy data

G(x, τ + ε; ξ, τ) = 0,

d

dt
G(x, τ + ε; ξ, τ) = c2δ(x− ξ). (6.47)

We plug this into d’Alembert’s solution to get

G(x, t; ξ, τ) = θ(t− τ)c
2

∫ x+c(t−τ)

x−c(t−τ)
δ(ζ − ξ)dζ

=
c

2
θ(t− τ)

{

θ
(

x− ξ + c(t− τ)
)

− θ
(

x− ξ − c(t− τ)
)}

.

(6.48)

x

t

(ξ,τ)

Support of G(x, t; ξ, τ) for fixed ξ, τ , or the “domain of influence”.
Using this we have

ϕ(x, t) =
c

2

∫ t

−∞
dτ
∫ x+c(t−τ)

x−c(t−τ)
q(ξ, τ)dξ

=
c

2

∫∫

Ω
q(ξ, τ)dτdξ (6.49)

where the domain of integration Ω is shown in the figure.
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(ξ,τ)
τx-c(t-  ) τx+c(t-  ) 

τ

ξ

(x,t)

The region Ω, or the “domain of dependence”.
We can write the causal Green function in the form of Fourier’s solution of
the wave equation. We claim that

G(x, t; ξ, τ) = c2
∫ ∞

−∞

dω

2π

∫ ∞

−∞

dk

2π

{

eik(x−ξ)e−iω(t−τ)

c2k2 − (ω + iε)2

}

, (6.50)

where the iε plays the same role in enforcing causality as it does for the
harmonic oscillator in one dimension. This is only to be expected. If we
decompose a vibrating string into normal modes, then each mode is an in-
dependent oscillator of with ω2

k = c2k2, and the Green function for the PDE
is simply the sum of the ODE Green functions for each k mode. Using our
previous results for the single-oscillator Green function to do the integral
over ω, we find

G(x, t; 0, 0) = θ(t)c2
∫ ∞

−∞

dk

2π
eikx

1

c|k| sin(|k|ct). (6.51)

Despite the factor of 1/|k|, there is no singularity at k = 0, so no iε is
needed to make the integral over k well defined. We can do the k integral
by recognizing that the integrand is nothing but the Fourier representation,
1
k

sin ak, of a square-wave pulse. We end up with

G(x, t; 0, 0) = θ(t)
c

2
{θ(x+ ct)− θ(x− ct)} , (6.52)

the same expression as from our direct construction. We can also write

G(x, t; 0, 0) =
c

2

∫ ∞

−∞

dk

2π

(

i

|k|

)
{

eikx−i|k|ct − e−ikx+ic|k|t
}

, t > 0, (6.53)
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which is in explicit Fourier-solution form with a(k) = ic/2|k|.
Illustration: Radiation Damping. A bead of mass M slides without friction
on the y axis. It is attached to an infinite string which is initially undisturbed
and lying along the x axis. The string has tension T , and a density such that
the speed of waves on the string is c. Show that the wave energy emitted by
the moving bead gives rise to an effective viscous damping force on it.

v

x

y

T

A bead connected to a string.

From the figure we see that Mv̇ = Ty′(0, t), and from the condition of no
incoming waves we know that

y(x, t) = y(x− ct). (6.54)

Thus y′(0, t) = −ẏ(0, t)/c. But the bead is attached to the string, so v(t) =
ẏ(0, t), and therefore

Mv̇ = −
(
T

c

)

v. (6.55)

The effective viscosity coefficient is thus η = T/c. Note that we need an
infinitely long string for this formula to be true for all time. If the string has
a finite length L, then, after a period of 2L/c, energy will be reflected back
to the bead and will complicate matters.

We can also derive the radiation damping from the Caldeira-Leggett anal-
ysis of chapter 5. Our bead-string contraption has Lagrangian

L =
M

2
[ẏ(0, t)]2 − V [y(0, t)] +

∫ L

0

{
ρ

2
ẏ2 − T

2
y′

2
}

dx. (6.56)

Here V [y] is some potential energy for the bead. Introduce a function φ0(x)
such that φ0(0) = 1 and φ0(x) decreases rapidly to zero as x increases.
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x

’(x)
0

(x)
0

φ

− φ1

The function φ0(x) and its derivative.
We therefore have −φ′0(x) ≈ δ(x). Expand y(x, t) in terms of φ0(x) and the
normal modes of a string with fixed ends as

y(x, t) = y(0, t)φ0(x) +
∑

n

qn(t)

√

2

Lρ
sin knx. (6.57)

Here knL = nπ. Because y(0, t)φ0(x) describes the motion of only an in-
finitesimal length of string, y(0, t) makes a negligeable contribution to the
string kinetic energy, but it provides a linear coupling of the bead to the string
normal modes, qn(t), through the Ty′2/2 term. Plugging the expansion into
L, and after about half a page of arithmetic, we end up with

L =
M

2
[ẏ(0)]2−V [y(0)]+y(0)

∑

n

fnqn+
∑

n

(
1

2
q̇2
n − ω2

nq
2
n

)

−1

2

∑

n

(

f 2
n

ω2
n

)

y(0)2,

(6.58)
where ωn = ckn, and

fn = T

√

2

Lρ
kn. (6.59)

This is exactly the Caldeira-Leggett Lagrangian, including the frequency-
shift counter-term. When L becomes large, the eigenvalue density of states

ρ(ω) =
∑

n

δ(ω − ωn) (6.60)

becomes

ρ(ω) =
L

πc
. (6.61)

The Caldeira-Leggett spectral function

J(ω) =
π

2

∑

n

(

f 2
n

ωn

)

δ(ω − ωn), (6.62)
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is therefore

J(ω) =
π

2
· 2T

2k2

Lρ
· 1

kc
· L
πc

=
(
T

c

)

ω, (6.63)

where we have used c =
√

T/ρ. Comparing with Caldeira-Leggett’s J(ω) =

ηω, we see that the effective viscosity is given by η = T/c, as before. The
necessity of having an infinitely long string here translates into the require-
ment that we must have a continuum of oscillator modes. It is only after the
sum over discrete modes ωi is replaced by an integral over the continuum of
ω’s that no energy is ever returned to the system being damped.

This formalism can be extended to other radiation damping problems.
For example we may consider1 the drag forces induced by the emission of
radiation from accelerated charged particles. We end up with a deeper un-
derstanding of the traditional, but pathological, Abraham-Lorentz equation,

M(v̇ − τ v̈) = Fext, (6.64)

which is plagued by runaway solutions. (Here

τ =
2

3

e2

c3
1

M

[
1

4πε0

]

, (6.65)

the factor in square brackets being needed for SI units. It is absent in Gaus-
sian units.)

6.2.4 Odd vs. Even Dimensions

Consider the wave equation for sound in the three dimensions. We have a
velocity potential φ which obeys the wave equation

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
− 1

c2
∂2φ

∂t2
= 0, (6.66)

and from which the velocity, density, and pressure fluctuations can be ex-
tracted as

v1 = ∇φ,
ρ1 = −ρ0

c2
φ̇,

P1 = c2ρ1. (6.67)

1G. W. Ford, R. F. O’Connell, Phys. Lett. A 157 (1991) 217.



6.2. WAVE EQUATION 159

In three dimensions, and considering only spherically symmetric waves,
the wave equation becomes

∂2(rφ)

∂r2
− 1

c2
∂2(rφ)

∂t2
= 0, (6.68)

with solution

φ(r, t) =
1

r
f
(

t− r

c

)

+
1

r
g
(

t+
r

c

)

. (6.69)

Consider what happens if we put a point volume source at the origin (the
sudden conversion of a negligeable volume of solid explosive to a large volume
of hot gas, for example). Let the rate at which volume is being intruded be
q̇. The gas velocity very close to the origin will be

v(r, t) =
q̇(t)

4πr2
. (6.70)

Matching this to an outgoing wave gives

q̇(t)

4πr2
= v1(r, t) =

∂φ

∂r
= − 1

r2
f
(

t− r

c

)

− 1

rc
f ′
(

t− r

c

)

. (6.71)

Close to the origin, in the near field , the term ∝ f/r2 will dominate, and so

− 1

4π
q̇(t) = f(t). (6.72)

Further away, in the far field or radiation field , only the second term will
survive, and so

v1 =
∂φ

∂r
≈ − 1

rc
f ′
(

t− r

c

)

. (6.73)

The far-field velocity-pulse profile v1 is therefore the derivative of the near-
field v1 pulse-profile.

The pressure pulse

P1 = −ρ0φ̇ =
ρ0

4πr
q̈
(

t− r

c

)

(6.74)

is also of this form. Thus, a sudden localized expansion of gas produces an
outgoing pressure pulse which is first positive and then negative.
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v

x

Near field Far field

x

v or P

Three-dimensional blast wave.

This phenomenon can be seen in (hopefully old) news footage of bomb blasts
in tropical regions. A spherical vapour condensation wave can been seen
spreading out from the explosion. The condensation cloud is caused by the
air cooling below the dew-point in the low-pressure region which tails the
over-pressure blast.

Now consider what happens if we have a sheet of explosive, the simultane-
ous detonation of every part of which gives us a one-dimensional plane-wave
pulse. We can obtain the plane wave by adding up the individual spherical
waves from each point on the sheet.

r

x
s

P

Sheet-source geometry.
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Using the notation defined in the figure, we have

φ(x, t) = 2π
∫ ∞

0

1√
x2 + s2

f

(

t−
√
x2 + s2

c

)

sds (6.75)

with f(t) = −q̇(t)/4π, where now q̇ is the rate at which volume is being
intruded per unit area of the sheet. We can write this as

2π
∫ ∞

0
f

(

t−
√
x2 + s2

c

)

d
√
x2 + s2,

= 2πc
∫ t−x/c

−∞
f(τ) dτ,

= − c
2

∫ t−x/c

−∞
q̇(τ) dτ. (6.76)

In the second line we have defined τ = t −
√
x2 + s2/c, which, inter alia,

interchanged the role of the upper and lower limits on the integral.
Thus, v1 = φ′(x, t) = 1

2
q̇(t − x/c). Since the near field motion produced

by the intruding gas is v1(r) = 1
2
q̇(t), the far-field displacement exactly re-

produces the initial motion, suitably delayed of course. (The factor 1/2 is
because half the intruded volume goes towards producing a pulse in the neg-
ative direction.)

In three dimensions, the far-field motion is the first derivative of the near-
field motion. In one dimension, the far-field motion is exactly the same as
the near-field motion. In two dimensions the far-field motion should there-
fore be the half-derivative of the near-field motion — but how do you half
differentiate a function?

An answer is suggested by the theory of Laplace transformations as

(

d

dt

) 1

2

F (t)
def
=

1√
π

∫ t

−∞

Ḟ (τ)√
t− τ dτ. (6.77)

Exercise: Use the calculus of improper integrals to show that, provided
F (−∞) = 0, we have

d

dt

(

1√
π

∫ t

−∞

Ḟ (τ)√
t− τ dτ

)

=
1√
π

∫ t

−∞

F̈ (τ)√
t− τ dτ. (6.78)

This means that
d

dt

(

d

dt

) 1

2

F (t) =

(

d

dt

) 1

2 d

dt
F (t). (6.79)
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Let us now repeat the explosive sheet calculation for an exploding wire.

s
r

P
x

Line-source geometry.
Using

ds = d
(√

r2 − x2
)

=
r dr√
r2 − x2

, (6.80)

and combining the contributions of the two parts of the wire that are the
same distance from p, we can write

φ(x, t) =
∫ ∞

x

1

r
f
(

t− r

c

)
2r dr√
r2 − x2

= 2
∫ ∞

x
f
(

t− r

c

)
dr√
r2 − s2

, (6.81)

with f(t) = −q̇(t)/4π, where now q̇ is the volume intruded per unit length.
We may approximate r2−x2 ≈ 2x(r−x) for the near parts of the wire where
r ≈ x, since these make the dominant contribution to the integral. We also
set τ = t− r/c, and then have

φ(x, t) =
2c√
2x

∫ (t−x/c)

−∞
f (τ)

dr
√

(ct− x)− cτ
,

= − 1

2π

√

2c

x

∫ (t−x/c)

−∞
q̇ (τ)

dτ
√

(t− x/c)− τ
. (6.82)

The far-field velocity is the x gradient of this,

v1(r, t) =
1

2πc

√

2c

x

∫ (t−x/c)

−∞
q̈ (τ)

dτ
√

(t− x/c)− τ
, (6.83)
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and is therefore proportional to the 1/2-derivative of q̇(t− r/c).

Near field Far field

v v

r r

In two dimensions the far-field pulse has a long tail.

The far-field pulse never completely dies away to zero, and this long tail
means that one cannot use digital signalling in two dimensions.

Moral Tale: A couple of years ago one of our colleagues was performing
numerical work on earthquake propagation. The source of his waves was a
long deep linear fault, so he used the two-dimensional wave equation. Not
wanting to be troubled by the actual creation of the wave-pulse, he took as
initial data an outgoing finite-width pulse. After a short propagation time
his numerics always went crazy. He wasted several months in vain attempt to
improve the stability of his code before it was pointed out him that what he
was seeing was real. The lack of a long tail on his pulse meant that it could
not have been created by a well-behaved line source. The numerical craziness
was a consequence of the source striving to do the impossible. Moral : Always
check that a solution actually exists before you waste your time trying to
compute it.

6.3 Heat Equation

Fourier’s heat equation

∂φ

∂t
= κ

∂2φ

∂x2
(6.84)

is the archetypal parabolic equation. It often comes with initial data φ(x, t = 0),
but this is not Cauchy data, as the curve t = const. is a characteristic.

The heat equation is also known as the diffusion equation.
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6.3.1 Heat Kernel

If we Fourier transform the initial data

φ(x, t = 0) =
∫ ∞

−∞

dk

2π
φ̃(k)eikx, (6.85)

and write

φ(x, t) =
∫ ∞

−∞

dk

2π
φ̃(k, t)eikx, (6.86)

we can plug this into the heat equation and find that

∂φ̃

∂t
= −κk2φ̃. (6.87)

Hence,

φ(x, t) =
∫ ∞

−∞

dk

2π
φ̃(k, t)eikx

=
∫ ∞

−∞

dk

2π
φ̃(k, 0)eikx−κk

2t. (6.88)

We may now express φ̃(k, 0) in terms of φ(x, 0) and rearrange the order of
integration to get

φ(x, t) =
∫ ∞

−∞

dk

2π

(∫ ∞

−∞
φ(ξ, 0)eikξ dξ

)

eikx−κk
2t

=
∫ ∞

−∞

(
∫ ∞

−∞

dk

2π
eik(x−ξ)−κk

2t

)

φ(ξ, 0)dξ

=
∫ ∞

−∞
G(x, ξ, t)φ(ξ, 0) dξ, (6.89)

where

G(x, ξ, t) =
∫ ∞

−∞

dk

2π
eik(x−ξ)−κk

2t =
1√

4πκt
exp

{

− 1

4κt
(x− ξ)2

}

. (6.90)

Here, G(x, ξ, t) is the heat kernel . It represents the spreading of a unit blob
of heat.
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G(x, ξ ,t)

ξ
x

The heat kernel at three successive times.
As the heat spreads, the area under the curve remains constant:

∫ ∞

−∞

1√
4πκt

exp
{

− 1

4κt
(x− ξ)2

}

dx = 1. (6.91)

The heat kernel possesses a semigroup property

G(x, ξ, t1 + t2) =
∫ ∞

−∞
G(x, η, t2)G(η, ξ, t1)dη. (6.92)

Exercise: Prove this.

6.3.2 Causal Green Function

Now we consider the inhomogeneous heat equation

∂u

∂t
− ∂2u

∂x2
= q(x, t), (6.93)

with initial data u(x, 0) = u0(x). We define a Causal Green function by
(

∂

∂t
− ∂2

∂x2

)

G(x, t; ξ, τ) = δ(x− ξ)δ(t− τ) (6.94)

and the requirement that G(x, t; ξ, τ) = 0 if t < τ . Integrating the equation
from t = τ − ε to t = τ + ε tells us that

G(x, τ + ε; ξ, τ) = δ(x− ξ). (6.95)
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Taking this delta function as initial data φ(x, t = τ) and inserting into (6.89)
we read off

G(x, t; ξ, τ) = θ(t− τ) 1
√

4π(t− τ)
exp

{

− 1

4(t− τ)(x− ξ)
2

}

. (6.96)

We apply this Green function to the solution of a problem involving both
a heat source and initial data given at t = 0 on the entire real line. We
exploit a variant of the Lagrange identity method we used for solving one-
dimensional ODE’s with inhomogeneous boundary conditions. Let

Dx,t ≡
∂

∂t
− ∂2

∂x2
, (6.97)

and observe that its formal adjoint,

D†
x,t ≡ −

∂

∂t
− ∂2

∂x2
. (6.98)

is a “backward” heat-equation operator. The corresponding “backward”
Green function

G†(x, t; ξ, τ) = θ(τ − t) 1
√

4π(τ − t)
exp

{

− 1

4(τ − t)(x− ξ)
2

}

(6.99)

obeys
D†
x,tG

†(x, t; ξ, τ) = δ(x− ξ)δ(t− τ), (6.100)

with adjoint boundary conditions. These makeG† anti-causal , in thatG†(t− τ)
vanishes when t > τ . Now we make use of the two-dimensional Lagrange
identity

∫ ∞

−∞
dx
∫ T

0
dt
{

u(x, t)D†
x,tG

†(x, t; ξ, τ)−
(

Dx,tu(x, t)
)

G†(x, t; ξ, τ)
}

=
∫ ∞

−∞
dx
{

u(x, 0)G†(x, 0; ξ, τ)
}

−
∫ ∞

−∞
dx
{

u(x, T )G†(x, T ; ξ, τ)
}

. (6.101)

Assume that (ξ, τ) lies within the region of integration. Then the left hand
side is equal to

u(ξ, τ)−
∫ ∞

−∞
dx
∫ T

0
dt
{

q(x, t)G†(x, t; ξ, τ)
}

. (6.102)
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On the right hand side, the second integral vanishes because G† is zero on
t = T . Thus,

u(ξ, τ) =
∫ ∞

−∞
dx
∫ T

0
dt
{

q(x, t)G†(x, t; ξ, τ)
}

+
∫ ∞

−∞

{

u(x, 0)G†(x, 0; ξ, τ)
}

dx

(6.103)
Rewriting this by using

G†(x, t; ξ, τ) = G(ξ, τ ; x, t), (6.104)

and relabeling x↔ ξ and t↔ τ , we have

u(x, t) =
∫ ∞

−∞
G(x, t; ξ, 0)u0(ξ) dξ +

∫ ∞

−∞

∫ t

0
G(x, t; ξ, τ)q(ξ, τ)dξdτ. (6.105)

Note how the effects of any heat source q(x, t) active prior to the initial-data
epoch at t = 0 have been subsumed into the evolution of the initial data.

6.3.3 Duhamel’s Principle

Often, the temperature of the spatial boundary of a region is specified in
addition to the initial data. Dealing with this type of problem leads us to a
new strategy.

Suppose we are required to solve

∂u

∂t
= κ

∂2u

∂x2
(6.106)

for a semi-infinite rod 0 ≤ x < ∞. We are given a specified temperature,
u(0, t) = h(t), at the end x = 0, and for all other points x > 0 we are given
an initial condition u(x, 0) = 0.

x

h(t)

u(x,t)

u

Semi-infinite rod heated at one end.
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We begin by finding a solution w(x, t) that satisfies the heat equation with
w(0, t) = 1 and initial data w(x, 0) = 0, x > 0. This solution is constructed
in the problems, and is

w = θ(t)

{

1− erf

(

x

2
√
t

)}

. (6.107)

Here erf(x) is the error function

erf(x) =
2√
π

∫ x

0
e−z

2

dz. (6.108)

which obeys erf(0) = 0 and erf(x)→ 1 as x→∞.

1

x

erf(x)

Error function.
If we were given

h(t) = h0θ(t− t0), (6.109)

then the desired solution would be

u(x, t) = h0w(x, t− t0). (6.110)

For a sum
h(t) =

∑

n

hnθ(t− tn), (6.111)

the principle of superposition (i.e. the linearity of the problem) tell us that
the solution is the corresponding sum

u(x, t) =
∑

n

hnw(x, t− tn). (6.112)

We therefore decompose h(t) into a sum of step functions

h(t) = h(0) +
∫ t

0
ḣ(τ) dτ

= h(0) +
∫ ∞

0
θ(t− τ)ḣ(τ) dτ. (6.113)
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It is should now be clear that

u(x, t) =
∫ t

0
w(x, t− τ)ḣ(τ) dτ + h(0)w(x, t)

= −
∫ t

0

(

∂

∂τ
w(x, t− τ)

)

h(τ) dτ

=
∫ t

0

(

∂

∂t
w(x, t− τ)

)

h(τ) dτ. (6.114)

This is called Duhamel’s solution, and the trick of expressing the data as a
sum of Heaviside functions is called Duhamel’s principle.

We do not need to be as clever as Duhamel. We could have obtained
this result by using the method of images to find a suitable causal Green
function for the half line, and then using the same Lagrange-identity method
as before.

6.4 Laplace’s Equation

The topic of potential theory , as problems involving the Laplacian are known,
is quite extensive. Here we will only explore the foothills.

Poisson’s equation, −∇2χ = f(r), r ∈ Ω, and the Laplace equation
to which it reduces when f(r) ≡ 0, come with various kinds of boundary
conditions, of which the commonest are

χ = ρ(x) on ∂Ω, (Dirichlet)

(n · ∇)χ = q(x) on ∂Ω. (Neumann) (6.115)

A function for which ∇2χ = 0 in some region Ω is said to be harmonic there.

6.4.1 Separation of Variables

Cartesian Coordinates

Let
∂2χ

∂x2
+
∂2χ

∂y2
= 0, (6.116)

and write
χ = X(x)Y (y), (6.117)
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so that
1

X

∂2X

∂x2
+

1

Y

∂2Y

∂y2
= 0. (6.118)

Since the first term is a function of x only, and the second of y only, both
must be constants and the sum of these constants must be zero. Therefore

∂2X

∂x2
+ k2X = 0,

∂2X

∂x2
− k2X = 0. (6.119)

The solutions are X = e±ikx and Y = e±ky. Thus

χ = e±ikxe±ky, (6.120)

or a sum of such terms, where the allowed k’s are determined by the boundary
conditions.
Example: We have three conducting sheets, each infinite in the z direction.
The central one has width a, and is held at voltage V0. The outer two extend
to infinity also in the y direction, and are grounded. The resulting potential
should tend to zero as |x|, |y| → ∞.

V0

x

y

z

a

O

Conducting sheets.
The voltage in the x = 0 plane is

ϕ(0, y, z) =
∫ ∞

−∞

dk

2π
a(k)e−iky, (6.121)
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where

a(k) = V0

∫ a/2

−a/2
eiky dy =

2V0

k
sin(ka/2). (6.122)

Then, taking into account the boundary condition at large x, the solution to
∇2ϕ = 0 is

ϕ(x, y, z) =
∫ ∞

−∞

dk

2π
a(k)e−ikye−|k||x|. (6.123)

The evaluation of this integral, and finding the charge distribution on the
sheets, is left as an exercise .

The Cauchy Problem is Ill-posed

Although the Laplace equation has no characteristics, the Cauchy data prob-
lem is ill-posed , meaning that the solution is not a continuous function of the
data. To see this, suppose we are given ∇2ϕ = 0 with Cauchy data on y = 0:

ϕ(x, 0) = 0,

∂ϕ

∂y

∣
∣
∣
∣
∣
y=0

= ε sin kx. (6.124)

Then
ϕ(x, y) =

ε

k
sin(kx) sinh(ky). (6.125)

Provided k is large enough — even if ε is tiny — the exponential growth of the
hyperbolic sine will make this arbitrarily large. Any infinitesimal uncertainty
in the high frequency part of the initial data will be vastly amplified, and
the solution, although formally correct, is useless in practice.

Eigenfunction Expansions

Elliptic operators are the natural analogues of the one-dimensional linear
differential operators we studied in earlier chapters.

The operator L = −∇2 is formally self-adjoint with respect to the inner
product

〈φ, χ〉 =
∫∫

φ∗χ dxdy. (6.126)

This follows from Green’s identity
∫∫

Ω

{

φ∗(−∇2χ)− (−∇2φ)∗χ
}

dxdy =
∫

∂Ω
{φ∗(−∇χ)− (−∇φ)∗χ} · nds

(6.127)
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where ∂Ω is the boundary of the region Ω and n is the outward normal on
the boundary.

The method of separation of variables also allows us to solve eigenvalue
problems involving the Laplace operator. For example, the Dirichlet eigen-
value problem requires us to find the eigenfunctions and eigenvalues of the
operator

L = −∇2, D(L) = {φ ∈ L2[Ω] : φ = 0, on ∂Ω}. (6.128)

Suppose Ω is the rectangle 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly. The normalized
eigenfunctions are

φn,m(x, y) =

√

4

LxLy
sin

(
nπx

Lx

)

sin

(

mπy

Ly

)

, (6.129)

with eigenvalues

λn,m =

(

n2π2

L2
x

)

+

(

m2π2

L2
y

)

. (6.130)

The eigenfunctions are orthonormal,

∫

φn,mφn′,m′ dxdy = δnn′δmm′ , (6.131)

and complete. Thus, any function in L2[Ω] can be expanded as

f(x, y) =
∞∑

m,n=1

Anmφn,m(x, y), (6.132)

where

Anm =
∫∫

φn,m(x, y)f(x, y) dxdy. (6.133)

A similar formula will hold for any connected domain Ω – only the eigen-
functions may not be so easy to find!

Polar coordinates

We can use the separation of variables method in polar coordinates. Here,

∇2χ =
∂2χ

∂r2
+

1

r

∂χ

∂r
+

1

r2

∂2χ

∂θ2
. (6.134)
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Set

χ(r, θ) = R(r)Θ(θ). (6.135)

Then ∇2χ = 0 implies

0 =
r2

R

(

∂2R

∂r2
+

1

r

∂R

∂r

)

+
1

Θ

∂2Θ

∂θ2

= m2 − m2 (6.136)

Therefore,
d2Θ

dθ2
+m2Θ = 0, (6.137)

implying that Θ = eimθ, where m must be an integer if Θ is to be single-
valued, and

r2d
2R

dr2
+ r

dR

dr
−m2R = 0, (6.138)

whose solutions are R = r±m when m 6= 0, and 1, ln r, when m = 0. The
general solution is therefore a sum of these

χ = A0 +B0 ln r +
∑

m6=0

(Amr
|m| +Bmr

−|m|)eimθ. (6.139)

The singular terms, ln r and r−|m|, are not solutions at the origin, and should
be omitted when that point is part of the region where ∇2χ = 0.

Example: Dirichlet problem in the interior of the unit circle. Solve ∇2χ = 0
in Ω = {r ∈ R2 : |r| < 1} with χ = f(θ) on ∂Ω ≡ {|r| = 1}.

r,θ

θ’

Dirichlet problem in the unit circle.
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We expand

χ(r.θ) =
∞∑

m=−∞
Amr

|m|eimθ, (6.140)

and read off the coefficients from the boundary data as

Am =
1

2π

∫ 2π

0
e−imθ

′

f(θ′) dθ′. (6.141)

Thus,

χ =
1

2π

∫ 2π

0

[ ∞∑

m=−∞
r|m|eim(θ−θ′)

]

f(θ′) dθ′. (6.142)

We can sum the geometric progression

∞∑

m=−∞
r|m|eim(θ−θ′) =

(

1

1− rei(θ−θ′) +
re−i(θ−θ

′)

1− re−i(θ−θ′)
)

=
1− r2

1− 2r cos(θ − θ′) + r2
. (6.143)

Therefore,

χ(r, θ) =
1

2π

∫ 2π

0

(

1− r2

1− 2r cos(θ − θ′) + r2

)

f(θ′) dθ′. (6.144)

This is known as the Poisson kernel formula.
If we set r = 0 in the Poisson formula we find

χ(0, θ) =
1

2π

∫ 2π

0
f(θ′) dθ′. (6.145)

We deduce that if ∇2χ = 0 in some domain then the value of χ at a point
in the domain is the average of its values on any circle centred on the chosen
point and lying wholly in the domain.

From this is should be clear that χ can have no local maxima or minima
within Ω. The same result holds in Rn, and a formal theorem to this effect
can be proved:
Theorem (The mean-value theorem for harmonic functions): If χ is harmonic
(∇2χ = 0) within the bounded (open, connected) domain Ω ∈ Rn, and is
continuous on its closure Ω, and if m ≤ χ ≤ M on ∂Ω, then m < χ < M in
Ω — unless, that is, m = M , when χ is constant.
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6.4.2 Green Functions

The Green function for the Laplacian in the entire Rn is given by the sum
over eigenfunctions

g(r, r′) =
∫ dnk

(2π)n
eik·(r−r′)

k2
. (6.146)

It obeys
−∇2

r
g(r, r′) = δn(r− r′). (6.147)

We can evaluate the integral for any n by using Schwinger’s trick to turn the
integrand into a Gaussian:

g(r, r′) =
∫ ∞

0
ds
∫

dnk

(2π)n
eik·(r−r

′)e−sk
2

=
∫ ∞

0
ds
(√

π

s

)n 1

(2π)n
e−

1

4s
|r−r′|2

=
1

2nπn/2

∫ ∞

0
dt t

n
2
−2e−t|r−r′|2/4

=
1

2nπn/2
Γ
(
n

2
− 1

)( |r− r′|2
4

)1−n/2
. (6.148)

Here, Γ(x) is Euler’s gamma function:

Γ(x) =
∫ ∞

0
dt tx−1e−t. (6.149)

For three dimensions we find

g(r, r′) =
1

4π

1

|r− r′| , n = 3. (6.150)

In two dimensions the Fourier integral is divergent for small k, and one has
to use

Γ(x) =
1

x
Γ(x+ 1) (6.151)

and
ax = ea ln x = 1 + a ln x+ · · · (6.152)

to examine the behaviour of g(r, r′) near n = 2:

g(r, r′) =
1

4π

Γ(n/2)

(n/2− 1)

(

1− (n/2− 1) ln(π|r− r′|2) +O
[

(n− 2)2
])

=
1

4π

(

1

n/2− 1
− 2 ln |r− r′| − ln π + · · ·

)

. (6.153)
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The pole 1/(n− 2) is divergent, but independent of position. We can absorb
it, and the − ln π, into an undetermined additive constant. Once we have
done this, the limit n→ 2 can be taken and we find

g(r, r′) = − 1

2π
ln |r− r′|+ const., n = 2. (6.154)

We now look at the general interior Dirichlet problem in a region Ω.

Ω

r’
r

n

Interior Dirichlet problem.
We wish to solve −∇2ϕ = q(r) for r ∈ Ω and with ϕ(r) = f(r) for r ∈ ∂Ω.

Suppose we have found a Green function that obeys

−∇2
r
g(r, r′) = δn(r− r′), r, r′ ∈ Ω, g(r, r′) = 0, r ∈ ∂Ω. (6.155)

We can show that g(r, r′) = g(r′, r) by the same methods we used for one-
dimensional self-adjoint operators. Next we follow the same strategy that
we used for the heat equation. We use Lagrange’s identity (in this context
called Green’s theorem) to write

∫

Ω
dnr

{

g(r, r′)∇2
r
ϕ(r)− ϕ(r)∇2

r
g(r, r′)

}

=
∫

∂Ω
dS · {g(r, r′)∇rϕ(r)− ϕ(r)∇rg(r, r

′)} ,(6.156)

where dS = n dS, with n the outward normal to ∂Ω. The left hand side is

L.H.S. =
∫

Ω
dnr {−g(r, r′)q(r) + ϕ(r)δn(r− r′)} ,

= −
∫

Ω
dnr g(r, r′) q(r) + ϕ(r′),

= −
∫

Ω
dnr g(r′, r) q(r) + ϕ(r′). (6.157)
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On the right hand side, the boundary condition on g(r, r′) makes the first
term zero, so

R.H.S = −
∫

∂Ω
dSf(r)(n · ∇r)g(r, r

′). (6.158)

Therefore,

ϕ(r′) =
∫

Ω
g(r′, r) q(r) dnr −

∫

∂Ω
f(r)(n · ∇r)g(r, r

′) dS. (6.159)

In the language of chapter 3, the first term is a particular integral and the
second (the boundary integral term) is the complementary function.
Exercise: Show that the limit of ϕ(r′) as r′ approaches the boundary is indeed
f(r′). (Hint: When r, r′ are very close to it, assume that the boundary can
be approximated by a straight line segment, and so g(r, r′) can be found by
the method of images.)

A similar method works for the exterior Dirichlet problem.

Ω

r

Exterior Dirichlet problem.
Here we seek a Green function obeying

−∇2
r
g(r, r′) = δn(r− r′), r, r′ ∈ Rn \Ω g(r, r′) = 0, r ∈ ∂Ω. (6.160)

(The notation Rn \Ω means the region outside Ω.) We also impose a further
boundary condition by requiring g(r, r′), and hence ϕ(r), to tend to zero as
|r| → ∞. The final formula for ϕ(r) is the same except for the region of
integration and the sign of the boundary term.

The hard part of both the interior and exterior problems is to find the
Green function for the given domain.

6.4.3 Method of Images

When Ω is a sphere or a circle we can find the Green functions by using the
method of images.
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Consider a circle of radius R.

A BO

X

Points inverse with respect to a circle.

Given B outside the circle, and a point X on the circle, we construct A inside,
so that 6 OBX = 6 OXA. We observe that 4XOA is similar to 4BOX, and
so

OA

OX
=

OX

OB
. (6.161)

Thus, OA × OB = (OX)2 ≡ R2, and the points A and B are mutually

inverse with respect to the circle. In particular, the point A does not depend
on which point X was chosen.

Now let AX= ri, BX= r0 and OB= B. Then, using similarity again, we
have

AX

OX
=

BX

OB
, (6.162)

or
R

ri
=
B

r0
, (6.163)

and so
1

ri

(
R

B

)

− 1

r0
= 0. (6.164)

Interpreting the figure as a slice through the centre of a sphere of radius R,
we see that if we put a unit charge at B, then the insertion of an image charge

of magnitude q = −R/B at A serves to the keep the entire surface of the
sphere at zero potential.

Thus, in three dimensions, and with Ω the region exterior to the sphere,
we have

gΩ(r, rB) =
1

4π

(

1

|r− rB|
−
(

R

|rB|

)

1

|r− rA|

)

. (6.165)
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In two dimensions, we find similarly that

gΩ(r, rB) = − 1

2π

(

ln |r− rB| − ln |r− rA| − ln (|rB|/R)
)

, (6.166)

has gΩ(r, rB) = 0 for r on the circle. Thus, this is the Dirichlet Green function
for Ω, the region exterior to the circle.

We can use the same method to construct the interior Green functions
for the sphere and circle.

6.4.4 Kirchhoff vs. Huygens

Even if we do not have a Green function tailored for the specific region in
which were are interested, we can still use the whole-space Green function
to convert the differential equation into an integral equation, and so make
progress. An example of this technique is provided by Kirchhoff’s partial
justification of Huygens’ construction.

The Green function G(r, r′) for the elliptic Helmholtz equation

(−∇2 + κ2)G(r, r′) = δ3(r− r′) (6.167)

in R3 is given by

∫
d3k

(2π)3

eik·(r−r′)

k2 + κ2
=

1

4π|r− r′|e
−κ|r−r

′|. (6.168)

Exercise: Perform the k integration and confirm this.
For solutions of the wave equation with e−iωt time dependence, we want

a Green function such that
[

−∇2 −
(

ω2

c2

)]

G(r, r′) = δ3(r− r′), (6.169)

and so we have to take κ2 negative. We therefore have two possible Green
functions

G±(r, r′) =
1

4π|r− r′|e
±ik|r−r′|, (6.170)

where k = |ω|/c. These correspond to taking the real part of κ2 negative, but
giving it an infinitesimal imaginary part, as we did when discussing resolvent
operators in chapter 5. If we want outgoing waves, we must take G ≡ G+.
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Now suppose we want to solve

(−∇2 − k2)ψ = 0 (6.171)

in an arbitrary region Ω. As before, we use Green’s theorem to write

∫

Ω

{

G(r, r′)(∇2
r
+ k2)ψ(r)− ψ(r)(∇2

r
+ k2)G(r, r′)

}

dnx

=
∫

∂Ω
{G(r, r′)∇rψ(r)− ψ(r)∇rG(r, r′)} · dSr (6.172)

where dSr = n dSr, with n the outward normal to ∂Ω at the point r. The
left hand side is

∫

Ω
ψ(r)δn(r− r′) dnx = ψ(r′), r′ ∈ Ω (6.173)

and so

ψ(r′) =
∫

∂Ω
{G(r, r′)(n · ∇x)ψ(r)− ψ(r)(n · ∇r)G(r, r′)} dSr, r′ ∈ Ω.

(6.174)
This must not be thought of as solution to the wave equation in terms of an
integral over the boundary, analogous to the solution of the Dirichlet problem
we found earlier. Here, unlike that earlier case, G(r, r′) knows nothing of the
boundary ∂Ω, and so both terms in the surface integral contribute to ψ. We
therefore have a formula for ψ(r) in the interior in terms of both Dirichlet
and Neumann data on the boundary ∂Ω, and giving both over-prescribes the
problem. If we take arbitrary values for ψ and (n ·∇)ψ on the boundary, and
use our formula to compute ψ(r) as r approaches the boundary, then there
is no reason why the resulting ψ(r) should reproduce the assumed boundary
values of ψ and (n ·∇)ψ. If we demand that it does reproduce the boundary
data, then this is equivalent to demanding that the boundary data come from
a solution of the differential equation in a region encompassing Ω.

The mathematical inconsistency of assuming arbitrary boundary data
notwithstanding, this is exactly what we do when we follow Kirchhoff and
use this formula to provide a justification of Huygens’ construction as used in
optics. Consider the problem of a plane wave, ψ = eikx, incident on a screen
from the left and passing though the aperture labelled AB in the following
figure.
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B

A

θ
R

n r

r’

Ω

Huygens’ construction.
We take the region Ω to be everything to the right of the obstacle.

The Kirchhoff approximation consists of assuming that the values of ψ and
(n · ∇)ψ on the surface AB are eikx and −ikeikx, the same as they would be
if the obstacle were not there, and that they are identically zero on all other
parts of the boundary. In other words, we completely ignore any scattering
by the material in which the aperture resides. We can then use our formula
to estimate ψ in the region to the right of the aperture. If we further set

∇rG(r, r′) ≈ ik
(r− r′)

|r− r′|2 e
ik|r−r′|, (6.175)

which is a good approximation provided we are more than a few wavelengths
away from the aperture, we find

ψ(r′) ≈ k

4πi

∫

aperture

eik|r−r
′|

|r− r′| (1 + cos θ)dSr. (6.176)

Thus, each part of the wavefront on the surface AB acts as a source for the
diffracted wave in Ω.

This result, although still an approximation, provides two substantial
improvements to the näıve form of Huygens’ construction as presented in
elementary courses:
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i) There is factor of (1 + cos θ) which suppresses backward propagating
waves. The traditional exposition of Huygens construction takes no
notice of which way the wave is going, and so provides no explanation
as to why a wavefront does not act a source for a backward wave.

ii) There is a factor of i−1 = e−iπ/2 which corrects a 90◦ error in the phase
made by the näıve Huygens construction. For two-dimensional slit
geometry we must use the more complicated two-dimensional Green
function (it is a Bessel function), and this provides an e−iπ/4 factor
which corrects for the 45◦ phase error that is manifest in the Cornu
spiral of Fresnel diffraction.

Exercise: Use the method of images to construct i) the Dirichlet, and ii) the
Neumann, Green function for the region Ω, consisting of everything to the
right of the screen. Use your Green functions to write the solution to the
diffraction problem in this region a) in terms of the values of ψ on the aperture
surface AB, b) in terms of the values of (n · ∇)ψ on the aperture surface.
In each case, assume that the boundary data are identically zero on the
dark side of the screen. Your expressions should coincide with the Rayleigh-

Sommerfeld diffraction integrals of the first and second kind, respectively2.
Explore the differences between the predictions of these two formulæ and
that of Kirchhoff for case of the diffraction of a plane wave incident on the
aperture from the left.

2M. Born and E. Wolf Principles of Optics 7th (expanded) edition, section 8.11.



Chapter 7

The Mathematics of Real

Waves

Waves are found everywhere in the physical world, but we often need more
than the simple wave equation to understand them. The principal compli-
cations are non-linearity and dispersion. In this chapter we will digress a
little from our monotonous catalogue of linear problems, and describe the
mathematics lying behind some commonly observed, but still fascinating,
phenomena.

7.1 Dispersive waves

In this section we will investigate the effects of dispersion, the dependence
of the speed of propagation on the frequency of the wave. We will see that
dispersion has a profound effect on the behaviour of a wave-packet.

7.1.1 Ocean Waves

The most commonly seen dispersive waves are those on the surface of water.
Although often used to illustrate wave motion in class demonstrations, these
waves are not as simple as they seem.

In chapter one we derived the equations governing the motion of water
with a free surface. Now we will solve these equations. Recall that we
described the flow by introducing a velocity potential φ such that, v = ∇φ,
and a variable h(x, t) which is the depth of the water at abscissa x.
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y

x

0

0
P

h(x,t)

ρ

g

Water with a free surface.

Again looking back to chapter one, we see that the fluid motion is determined
by imposing

∇2φ = 0 (7.1)

everywhere in the bulk of the fluid, together with boundary conditions

∂φ

∂y
= 0, on y = 0, (7.2)

∂φ

∂t
+

1

2
(∇φ)2 + gy = 0, on the free surface y = h, (7.3)

∂h

∂t
− ∂φ

∂y
+
∂h

∂x

∂φ

∂x
= 0, on the free surface y = h. (7.4)

Recall the physical interpretation of these equations: The vanishing of the
Laplacian of the velocity potential simply means that the bulk flow is incom-
pressible

∇ · v ≡ ∇2φ = 0. (7.5)

The first two of the boundary conditions are also easy to interpret: The first
says that no water escapes through the lower boundary at y = 0. The second,
a form of Bernoulli’s equation, asserts that the free surface is everywhere at
constant (atmospheric) pressure. The remaining boundary condition is more
obscure. It states that a fluid particle initially on the surface stays on the
surface. Remember that we set f(x, y, t) = h(x, t) − y, so the water surface
is given by f(x, y, t) = 0. If the surface particles are carried with the flow
then the convective derivative of f ,

df

dt
≡ ∂f

∂t
+ (v · ∇)f, (7.6)
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should vanish on the free surface. Using v = ∇φ and the definition of f , this
reduces to

∂h

∂t
+
∂φ

∂x

∂h

∂x
− ∂φ

∂y
= 0, (7.7)

which is indeed the last boundary condition.
Using our knowledge of solutions of Laplace’s equation, we can immedi-

ately write down a wave-like solution satisfying the boundary condition at
y = 0

φ(x, y, t) = a cosh(ky) cos(kx− ωt). (7.8)

The tricky part is satisfying the remaining two boundary conditions. The
difficulty is that they are non-linear, and so couple modes with different
wave-numbers. We will get around the difficulty by restricting ourselves to
small amplitude waves, for which the boundary conditions can be linearized.
Suppressing all terms that contain a product of two or more small quantities,
we are left with

∂φ

∂t
+ gh = 0, (7.9)

∂h

∂t
− ∂φ

∂y
= 0. (7.10)

Because of the linearization, these equations should be applied at y = h0,
the equilibrium surface of the fluid. It is convenient to eliminate h to get

∂2φ

∂t2
+ g

∂φ

∂y
= 0, on y = h0. (7.11)

Enforcing this condition on φ leads to the dispersion equation

ω2 = gk tanh kh0, (7.12)

relating the frequency to the wave-number.
Two limiting cases are of interest:

i) Long waves on shallow water: Here kh0 � 1, and, in this limit,

ω = k
√

gh0.

ii) Waves on deep water: Here, kh0 � 1, leading to ω =
√
gk.
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For deep water, the velocity potential becomes

φ(x, y, t) = aek(y−h0) cos(kx− ωt). (7.13)

We see that the disturbance due to the surface wave dies away exponentially,
and becomes very small only a few wavelengths below the surface.

Remember that the velocity of the fuid is v = ∇φ. To follow the motion
of individual particles of fluid we must solve the equations

dx

dt
= vx = −akek(y−h0) sin(kx− ωt),

dy

dt
= vy = akek(y−h0) cos(kx− ωt). (7.14)

This is a system of non-linear differential equations, but to find the small
amplitude motion of particles at the surface we may, to a first approximation,
set x = x0, y = h0 on the right-hand side. The orbits of the surface particles
are therefore approximately

x(t) = x0 −
ak

ω
cos(kx0 − ωt),

y(t) = y0 −
ak

ω
sin(kx0 − ωt). (7.15)

x

y

Surface waves on deep water.

For right-moving waves, the particle orbits are clockwise circles. At the
wave-crest the particles move in the direction of the wave propagation; in
the troughs they move in the opposite direction. The figure shows that this
results in a characteristic up-down asymmetry in the wave profile.

When the effect of the bottom becomes significant, the circular orbits
deform into ellipses. For shallow water waves, the motion is principally back
and forth with motion in the y direction almost negligeable.
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7.1.2 Group Velocity

The most important effect of dispersion is that the group velocity of the waves
— the speed at which a wave-packet travels — differs from the phase velocity

— the speed at which individual wave-crests move. The group velocity is
also the speed at which the energy associated with the waves travels.

Suppose that we have waves with dispersion equation ω = ω(k). A right-
going wave-packet of finite extent, and with initial profile ϕ(x), can be Fourier
analyzed to give

ϕ(x) =
∫ ∞

−∞

dk

2π
A(k)eikx. (7.16)

x

A right-going wavepacket.

At later times this will evolve to

ϕ(x, t) =
∫ ∞

−∞

dk

2π
A(k)eikx−iω(k)t. (7.17)

Let us suppose for the moment that A(k) is non-zero only for a narrow band
of wavenumbers around k0, and that, restricted to this narrow band, we can
approximate the full ω(k) dispersion equation by

ω(k) ≈ ω0 + U(k − k0). (7.18)

Thus

ϕ(x, t) =
∫ ∞

−∞

dk

2π
A(k)eik(x−Ut)−i(ω0−Uk0)t. (7.19)

Comparing this with the Fourier expression for the initial profile, we find
that

ϕ(x, t) = e−i(ω0−Uk0)tϕ(x− Ut). (7.20)
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The pulse envelope therefore travels at speed U . This velocity

U ≡ ∂ω

∂k
(7.21)

is the group velocity . The individual wave crests, on the other hand, move
at the phase velocity ω(k)/k.

When the intial pulse contains a broad range of frequencies we can still
explore its evolution. We make use of a powerful tool for estimating the be-
havior of integrals that contain a large parameter. In this case the parameter
is the time t. We begin by writing the Fourier representation of the wave as

ϕ(x, t) =
∫ ∞

−∞

dk

2π
A(k)eitψ(k) (7.22)

where

ψ(k) = k
(
x

t

)

− ω(k). (7.23)

Now look at the behaviour of this integral as t becomes large, but while we
keep the ratio x/t fixed. Since t is very large, any variation of ψ with k
will make the integrand a very rapidly oscillating function of k. Cancellation
between adjacent intervals with opposite phase will cause the net contribution
from such a region of the k integration to be very small. The principal
contribution will come from the neighbourhood of stationary phase points,
i.e. points where

0 =
dψ

dk
=
x

t
− ∂ω

∂k
. (7.24)

This means that, at points in space where x/t = U , we will only get contri-
butions from the Fourier components with wave-number satisfying

U =
∂ω

∂k
. (7.25)

The initial packet will therefore spread out, with those components of the
wave having wave-number k travelling at speed

vgroup =
∂ω

∂k
. (7.26)

This is the same expression for the group velocity that we obtained in the
narrow-band case. Again this speed of propagation should be contrasted
with that of the wave-crests, which travel at

vphase =
ω

k
. (7.27)
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The “stationary phase” argument may seem a little hand-waving, but it can
be developed into a systematic approximation scheme. We will do this in
later chapters.

Example: Water Waves. The dispersion equation for waves on deep water is
ω =
√
gk. The phase velocity is therefore

vphase =

√
g

k
, (7.28)

whilst the group velocity is

vgroup =
1

2

√
g

k
=

1

2
vphase. (7.29)

This difference is easily demonstrated by tossing a stone into a pool and
observing how individual wave-crests overtake the circular wave packet and
die out at the leading edge, while new crests and troughs come into being at
the rear and make their way to the front.

This result can be extended to three dimensions with

vigroup =
∂ω

∂ki
(7.30)

Example: de Broglie Waves. The plane-wave solutions of the time-dependent
Schrödinger equation

i
∂ψ

∂t
= − 1

2m
∇2ψ, (7.31)

are

ψ = eik·r−iωt, (7.32)

with

ω(k) =
1

2m
k2. (7.33)

The group velocity is therefore

vgroup =
1

m
k, (7.34)

which is the classical velocity of the particle.
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7.1.3 Wakes

There are many circumstances when waves are excited by object moving at
a constant velocity through a background medium, or by a stationary object
immersed in a flow. The resulting wakes carry off energy, and therefore
create wave drag . Wakes are involved, for example, in sonic booms, Čerenkov
radiation, the Landau criterion for superfluidity, and Landau damping of
plasma oscillations. Here, we will consider some simple water-wave analogues
of these effects. The common principle for all wakes is that the resulting wave
pattern is time independent when observed from the object exciting it.

Example: Obstacle in a Stream. Consider a log lying submerged in a rapidly
flowing stream.

v v

Log in a stream.

The obstacle disturbs the water and generates a train of waves. If the log lies
athwart the stream, the problem is essentially one-dimensional and easy to
analyse. The essential point is that the distance of the wavecrests from the log
does not change with time, and therefore the wavelength of the disturbance
the log creates is selected by the condition that the phase velocity of the wave,
coincide with the velocity of the mean flow1. The group velocity does come
into play, however. If the group velocity of the waves is less that the phase
velocity, the energy being deposited in the wave-train by the disturbance will
be swept downstream, and the wake will lie behind the obstacle. If the group
velocity is higher than the phase velocity, and this is the case with very short
wavelength ripples on water where surface tension is more important than
gravity, the energy will propagate against the flow, and so the ripples appear
upstream of the obstacle.

1In his book Waves in Fluids , M. J. Lighthill quotes Robert Frost on this phenomenon:

The black stream, catching on a sunken rock,
Flung backward on itself in one white wave,
And the white water rode the black forever,
Not gaining but not losing.
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Example: Kelvin Ship Waves. A more subtle problem is the pattern of waves
left behind by a ship on deep water. The shape of the pattern is determined
by the group velocity for deep-water waves being one-half that of the phase
velocity.

A B

C

D

θ
O

Kelvin’s ship-wave construction.

In order that the wave pattern be time independent, the waves emitted in
the direction AC must have phase velocity such that their crests travel from
A to C while the ship goes from A to B. The crest of the wave emitted from
the bow of the ship in the direction AC will therefore lie along the line BC —
or at least there would be a wave crest on this line if the emitted wave energy
travelled at the phase velocity. The angle at C must be a right angle because
the direction of propagation is perpendicular to the wave-crests. Euclid, by
virtue of his angle-in-a-semicircle theorem, now tells us that the locus of
all possible points C (for all directions of wave emission) is the larger circle.
Because, however, the wave energy only travels at one-half the phase velocity,
the waves going in the direction AC actually have significant amplitude only
on the smaller circle, which has half the radius of the larger. The wake
therefore lies on, and within, the Kelvin wedge, whose boundary lies at an
angle θ to the ship’s path. This angle is determined by the ratio OD/OB=1/3
to be

θ = sin−1(1/3) = 19.5◦. (7.35)

Remarkably, this angle, and hence the width of the wake, is independent of
the speed of the ship.

The waves actually on the edge of the wedge are usually the most promi-
nent, and they will have crests perpendicular to the line AD. This orientation
is indicated on the left hand figure, and reproduced as the predicted pattern
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of wavecrests on the right. The prediction should be compared with the wave
systems in the image below.

Large-scale Kelvin wakes. (Image source: US Navy)

Small-scale Kelvin wake.
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7.1.4 Hamilton’s Theory of Rays

We have seen that wave packets travel at a frequency-dependent group ve-
locity. We can extend this result to study the motion of waves in weakly
inhomogeneous media, and so derive an analogy between the “geometric op-
tics” limit of wave motion and classical dynamics.

Consider a packet composed of a roughly uniformly train of waves spread
out over a region that is substantially longer and wider than their mean wave-
length. The essential feature of such a wave train is that at any particular
point of space and time, x and t, it has a definite phase Θ(x, t). Once we
know this phase, we can define the local frequency, ω, and wave-vector, k,
by

ω = −
(

∂Θ

∂t

)

x

, ki =

(

∂Θ

∂xi

)

t

. (7.36)

These definitions are motivated by the idea that

Θ(x, t) ∼ k · x− ωt, (7.37)

at least locally.
We wish to understand how k changes as the wave propagates through a

slowly varying medium. We introduce the inhomogeneity by assuming that
the dispersion equation is of the form ω = ω(k,x), where the x dependence
arises, for example, as a result of a slowly varying refractive index.

Applying the equality of mixed partials to the definitions of k and ω gives
us (

∂ω

∂xi

)

t

= −
(

∂ki
∂t

)

x

,

(

∂ki
∂xj

)

xi

=

(

∂kj
∂xi

)

xj

. (7.38)

The subscripts indicate what is being left fixed when we differentiate. We
must be careful about this, because we want to use the dispersion equation
to express ω as a function of k and x, and the wave-vector k will itself be a
function of x and t.

Taking this dependence into account, we write
(

∂ω

∂xi

)

t

=

(

∂ω

∂xi

)

k

+

(

∂ω

∂kj

)

x

(

∂kj
∂xi

)

t

. (7.39)

We now use (7.38) to rewrite this as
(

∂ki
∂t

)

x

+

(

∂ω

∂kj

)

x

(

∂ki
∂xj

)

t

= −
(

∂ω

∂xi

)

k

. (7.40)
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Interpreting the left hand side as a convective derivative

dki
dt

=

(

∂ki
∂t

)

x

+ (vg · ∇)ki,

we read off that

dki
dt

= −
(

∂ω

∂xi

)

k

(7.41)

provided we are moving at velocity

dxi
dt

= (vg)i =

(

∂ω

∂ki

)

x

. (7.42)

Since this is the group velocity, the packet of waves is actually travelling at
this speed. The last two equations therefore tell us how the orientation and
wavelength of the wave train evolve if we ride along with the packet as it is
refracted by the inhomogeneity.

The formulæ

k̇ = −∂ω
∂x

,

ẋ =
∂ω

∂k
, (7.43)

are Hamilton’s ray equations. These Hamilton equations are identical in form
to Hamilton’s equations for classical mechanics

ṗ = −∂H
∂x

,

ẋ =
∂H

∂p
, (7.44)

except that k is playing the role of the canonical momentum, p, and ω(k,x)
replaces the Hamiltonian, H(p,x). This formal equivalence of geometric
optics and classical mechanics was mystery in Hamilton’s time. Today we
understand that classical mechanics is nothing but the geometric optics limit
of wave mechanics.
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7.2 Making Waves

Many waves occuring in nature are generated by the energy of some steady
flow being stolen away to drive an oscillatory motion. Familiar examples
include the music of a flute and the waves raised on the surface of water by
the wind. The latter process is quite subtle and was not understood until the
work of J. W. Miles in 1957. Miles showed that in order to excite waves the
wind speed has to vary with the height above the water, and that waves of
a given wavelength take energy only from the wind at that height where the
windspeed matches the phase velocity of the wave. The resulting resonant
energy transfer turns out to have analogues in many branches of science. In
this section we will exhibit this phenomenon in the simpler situation where
the varying flow is that of the water itself.

7.2.1 Rayleigh’s Equation

Consider water flowing in a shallow channel where friction forces keep the
water in contact the stream-bed from moving. We will show that the resulting
shear flow is unstable to the formation of waves on the water surface. The
consequences of this instability are most often seen in a thin sheet of water
running down the face of a dam. The sheet starts off flowing smoothly, but,
as the water descends, waves form and break, and the water reaches the
bottom in irregular pulses called roll waves.

It is easiest to describe what is happening from the vantage of a reference
frame that rides along with the surface water. In this frame the velocity
profile of the flow will be as shown in the figure.

y

y

h U(y)

0

x

The velocity profile U(y) in a frame at which the surface is at rest.

Since the flow is incompressible but not irrotational, we will describe the
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motion by using a stream function Ψ, in terms of which the fluid velocity is
given by

vx = −∂yΨ,
vy = ∂xΨ. (7.45)

This parameterization automatically satisfies ∇ · v = 0, while the (z compo-
nent of) the vorticity becomes

Ω ≡ ∂xvy − ∂yvx = ∇2Ψ. (7.46)

We will consider a stream function of the form2

Ψ(x, y, t) = ψ0(y) + ψ(y)eikx−iωt, (7.47)

where ψ0 obeys −∂yψ0 = vx = U(y), and describes the horizontal mean flow.
The term containing ψ(y) represents a small-amplitude wave disturbance
superposed on the mean flow. We will investigate whether this disturbance
grows or decreases with time.

Euler’s equation can be written as,

v̇ + v × Ω = −∇
(

P +
v2

2
+ gy

)

= 0. (7.48)

Taking the curl of this, and taking into account the two dimensional character
of the problem, we find that

∂tΩ + (v · ∇)Ω = 0. (7.49)

This, a general property of two-dimensional incompressible motion, says that
vorticity is convected with the flow. We now express (7.49) in terms of Ψ,
when it becomes

∇2Ψ̇ + (v · ∇)∇2Ψ = 0. (7.50)

Subsituting the expression (7.47) into (7.50), and keeping only terms of first
order in ψ, gives

−iω
(

d2

dy2
− k2

)

ψ + iUk

(

d2

dy2
− k2

)

ψ + ikψ∂y(−∂yU) = 0,

2The physical stream function is, of course, the real part of this expression.
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or (

d2

dy2
− k2

)

ψ −
(

∂2U

∂y2

)

1

(U − ω/k)ψ = 0. (7.51)

This is Rayleigh’s equation3. If only the first term were present, it would
have solutions ψ ∝ e±ky, and we would have recovered the results of section
7.1.1. The second term is significant, however. It will diverge if there is a
point yc such that U(yc) = ω/k. In other words, if there is a depth at which
the flow speed coincides with the phase velocity of the wave disturbance, thus
allowing a resonant interaction between the wave and flow. An actual infinity
in (7.51) will be evaded, though, because ω will gain a small imaginary part
ω → ωR + iγ. A positive imaginary part means that the wave amplitude is
growing exponentially with time. A negative imaginary part means that the
wave is being damped. With γ included, we then have

1

(U − ω/k) ≈
U − ωR/k

(U − ωR/k)2 + γ2
+ iπ sgn

(
γ

k

)

δ
(

U(y)− ωR/k
)

=
U − ωR/k

(U − ωR/k)2 + γ2
+ iπ sgn

(
γ

k

)
∣
∣
∣
∣
∣

∂U

∂y

∣
∣
∣
∣
∣

−1

yc

δ(y − yc).

(7.52)

To specify the problem fully we need to impose boundary conditions on
ψ(y). On the lower surface we can set ψ(0) = 0, as this will keep the fluid
at rest there. On the upper surface y = h we apply Euler’s equation

v̇ + v × Ω = −∇
(

P +
v2

2
+ gh

)

= 0. (7.53)

We observe that P is constant, being atmostpheric pressure, and the v2/2 can
be neglected as it is of second order in the disturbance. Then, considering
the x component, we have

−∇xgh = −g∂x
∫ t

vydt = −g
(

k2

iω

)

ψ (7.54)

on the free surface. To lowest order we can apply the boundary condition on
the equilibrium free surface y = y0. The boundary condition is therefore

1

ψ

dψ

dy
+
k

ω

∂U

∂y
= g

k2

ω2
, y = y0. (7.55)

3Lord Rayleigh. On the stability or instability of certain fluid motions. Proc. Lond.
Math. Soc. Vol. 11 (1880)
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We usually have ∂U/∂y = 0 near the surface, so this simplifies to

1

ψ

dψ

dy
= g

k2

ω2
. (7.56)

That this is sensible can be confirmed by considering the case of waves on
still, deep water, where ψ(y) = e|k|y. The boundary condition then reduces
to |k| = gk2/ω2, or ω2 = g|k|, which is the correct dispersion equation for
such waves.

We find the corresponding dispersion equation for waves on shallow flow-
ing water by computing

1

ψ

dψ

dy

∣
∣
∣
∣
∣
y0

, (7.57)

from Rayleigh’s equation (7.51). Multiplying by ψ∗ and integrating gives

0 =
∫ y0

0
dy

{

ψ∗
(

d2

dy2
− k2

)

ψ + k

(

∂2U

∂y2

)

1

(ω − Uk) |ψ|
2

}

. (7.58)

An integration by parts then gives

[

ψ∗dψ

dy

]y0

0

=
∫ y0

0
dy

{∣
∣
∣
∣
∣

dψ

dy

∣
∣
∣
∣
∣
+ k2|ψ|2 +

(

∂2U

∂y2

)

1

(U − ω/k) |ψ|
2

}

. (7.59)

The lower limit makes no contribution, since ψ∗ is zero there. On using (7.52)
and taking the imaginary part, we find

Im

(

ψ∗dψ

dy

)

y0

= sgn
(
γ

k

)

π

(

∂2U

∂y2

)

yc

∣
∣
∣
∣
∣

∂U

∂y

∣
∣
∣
∣
∣

−1

yc

|ψ(yc)|, (7.60)

or

Im

(

1

ψ

dψ

dy

)

y0

= sgn
(
γ

k

)

π

(

∂2U

∂y2

)

yc

∣
∣
∣
∣
∣

∂U

∂y

∣
∣
∣
∣
∣

−1

yc

|ψ(yc)|2
|ψ(y0)|2

. (7.61)

This equation is most useful if the interaction with the flow does not sub-
stantially perturb ψ(y) away from the still-water result ψ(y) = sinh(|k|y),
and assuming this is so provides a reasonable first approximation.

If we insert (7.61) into (7.56), where we approximate,

g

(

k2

ω2

)

≈ g

(

k2

ω2
R

)

− 2ig

(

k2

ω3
R

)

γ,
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we find

γ =
ω3
R

2gk2
Im

(

1

ψ

dψ

dy

)

y0

= sgn
(
γ

k

)

π
ω3
R

2gk2

(

∂2U

∂y2

)

yc

∣
∣
∣
∣
∣

∂U

∂y

∣
∣
∣
∣
∣

−1

yc

|ψ(yc)|2
|ψ(y0)|2

. (7.62)

We see that either sign of γ is allowed by our analysis. Thus the resonant
interaction between the shear flow and wave appears to lead to either ex-
ponential growth or damping of the wave. This is inevitable because our
inviscid fluid contains no mechanism for dissipation, and its motion is neces-
sarily time-reversal invariant. Nonetheless, as in our discussion of “friction
without friction” in section 5.2.2, only one sign of γ is actually observed.
This sign is determined by the initial conditions, but a rigorous explanation
of how this works mathematically is not easy, and is the subject of many
papers. These show that the correct sign is given by

γ = −π ω3
R

2gk2

(

∂2U

∂y2

)

yc

∣
∣
∣
∣
∣

∂U

∂y

∣
∣
∣
∣
∣

−1

yc

|ψ(yc)|2
|ψ(y0)|2

. (7.63)

Since our velocity profile has ∂2U/∂y2 < 0, this means that the waves grow
in amplitude.

We can also establish the correct sign for γ by a computing the change of
momentum in the background flow due to the wave. Details may be found in
G. E. Vekstein Landau resonance mechanism for plasma and wind-generated

water waves. American Journal of Physics, vol.66 (1998) pages 886-92. The
crucial element is whether, in the neighbourhood of the critical depth, more
fluid is overtaking the wave than lagging behind it. This is exactly what the
the quantity ∂2U/∂y2 measures.

7.3 Non-linear Waves

Non-linear effects become important when some dimensionless measure of
the amplitude of the disturbance, say ∆P/P for a sound wave, or ∆h/λ for
a water wave, is no longer � 1.
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7.3.1 Sound in Air

The simplest non-linear wave system is one-dimensional sound propagation
in a gas. This problem was studied by Riemann.

The one dimensional motion of a fluid is determined by the mass conser-
vation equation

∂tρ + ∂x(ρv) = 0, (7.64)

and Euler’s equation of motion

ρ(∂tv + v∂xv) = −∂xP. (7.65)

In a fluid with equation of state P = P (ρ), the speed of sound, c, is given by

c2 =
dP

dρ
. (7.66)

It will in general depend on P , the speed of propagation being usually higher
when the pressure is higher.

Riemann was able to simplify these equations by defining a new thermo-
dynamic variable π(P ) as

π =
∫ P

P0

1

ρc
dP, (7.67)

were P0 is the equilibrium pressure of the undisturbed air. The quantity π
obeys

dπ

dP
=

1

ρc
. (7.68)

In terms of π, Euler’s equation divided by ρ becomes

∂tv + v∂xv + c∂xπ = 0, (7.69)

whilst the equation of mass conservation divided by ρ/c becomes

∂tπ + v∂xπ + c∂xv = 0. (7.70)

Adding and subtracting, we get Riemann’s equations

∂t(v + π) + (v + c)∂x(v + π) = 0,

∂t(v − π) + (v − c)∂x(v − π) = 0. (7.71)
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These assert that the Riemann invariants v±π are constant along the char-

acteristic curves
dx

dt
= v ± c. (7.72)

This tell us that signals travel at the speed v ± c. In other words, they
travel, with respect to the fluid, at the speed of sound c. Using the Riemann
equations, we can propagate initial data v(x, t = 0), π(x, t = 0) into the
future by using the method of characteristics.

B
C

C
−

A
+

t

x
A B

P

Characteristic curves.

In the figure, the value of v+π is constant along the characteristic curve CA
+

which is the solution of
dx

dt
= v + c (7.73)

passing through A, while the value of v − π is constant along CB
− which is

the solution of
dx

dt
= v − c (7.74)

passing through B. Thus the values of π and v at the point P can be found if
we know the initial values of v + π at the point A and v − π at the point B.
Having found v and π at P we can invert π(P ) to find the pressure P , and
hence c, and so continue the characteristics into the future, as indicated by
the dotted lines. We need, of course, to know v and c at every point along
the characteristics CA

+ and CB
− in order to construct them, and this requires

us to to treat every point as a “P”. The values of the dynamical quantities
at P therefore depend on the initial data at all points lying between A and
B. This is the domain of dependence of P
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A sound wave caused by a localized excess of pressure will eventually
break up into two distinct pulses, one going forwards and one going back-
wards. Once these pulses are sufficiently separated that they no longer inter-
act with one another they are simple waves. Consider a forward-going pulse
propagating into undisturbed air. The backward characteristics are coming
from the undisturbed region where both π and v are zero. Clearly π − v is
zero everywhere on these characteristics, and so π = v. Now π+v = 2v = 2π
is constant the forward characteristics, and so π and v are individually con-
stant along them. Since π is constant, so is c. With v also being constant,
this means that c + v is constant. In other words, for a simple wave, the

characteristics are straight lines.
This simple-wave simplification contains within it the seeds of its own

destruction. Suppose we have a positive pressure pulse in a fluid whose
speed of sound increases with the pressure.

P

x

t

?

Simple wave characteristics.

The figure shows that the straight-line characteristics travel faster in the high
pressure region, and eventually catch up with and intersect the slower-moving
characteristics. When this happens the dynamical variables will become
multivalued. How do we deal with this?

7.3.2 Shocks

Let us untangle the multivaluedness by drawing another set of pictures. Sup-
pose u obeys the non-linear “half” wave equation

(∂t + u∂x)u = 0. (7.75)

The velocity of propagation of the wave is therefore u itself, so the parts of
the wave with large u will overtake those with smaller u, and the wave will
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“break”.

u u

u u

a) b)

d)c)
?

A breaking non-linear wave.

Physics does not permit such multivalued solutions, and what usually hap-
pens is that the assumptions underlying the model which gave rise to the
nonlinear equation will no longer be valid. New terms should be included in
the equation which prevent the solution becoming multivalued, and instead
a steep “shock” will form.

u
d’)

Formation of a shock.

Examples of an equation with such additional terms are Burgers’ equation

(∂t + u∂x)u = ν∂2
xxu, (7.76)

and the Korteweg de-Vries (KdV) equation (4.11), which, by a suitable rescal-
ing of x and t, we can write as

(∂t + u∂x)u = δ ∂3
xxxu. (7.77)

Burgers’ equation, for example, can be thought of as including the effects of
thermal conductivity, which was not included in the derivation of Riemann’s
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equations. In both these modified equations, the right hand side is negligeable
when u is slowly varying, but it completely changes the character of the
solution when the waves steepen and try to break.

Although these extra terms are essential for the stabilization of the shock,
once we know that such a discontinuous solution has formed, we can find
many of its properties — for example the propagation velocity — from general
principles, without needing their detailed form. All we need is to know what
conservation laws are applicable.

Multiplying (∂t + u∂x)u = 0 by un−1, we deduce that

∂t

{
1

n
un
}

+ ∂x

{
1

n+ 1
un+1

}

= 0, (7.78)

and this implies that

Qn =
∫ ∞

−∞
un dx (7.79)

is time independent. There are infinitely many of these conservation laws,
one for each n. Suppose that the n-th conservation law continues to hold even
in the presence of the shock, and that the discontinuity is at X(t). Then

d

dt

{
∫ X(t)

−∞
un dx+

∫ ∞

X(t)
un dx

}

= 0. (7.80)

This is equal to

un−(X)Ẋ − un+(X)Ẋ +
∫ X(t)

−∞
∂tu

n dx+
∫ ∞

X(t)
∂tu

n dx = 0, (7.81)

where un−(X) ≡ un(X−ε) and un+(X) ≡ un(X+ε). Now, using (∂t+u∂x)u = 0
in the regions away from the shock, where it is reliable, we can write this as

(un+ − un−)Ẋ = − n

n+ 1

∫ X(t)

−∞
∂xu

n dx− n

n + 1

∫ ∞

X(t)
∂xu

n dx

=
(

n

n+ 1

)

(un+1
+ − un+1

− ). (7.82)

The velocity at which the shock moves is therefore

Ẋ =
(

n

n+ 1

)
(un+1

+ − un+1
− )

(un+ − un−)
. (7.83)
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Since the shock can only move at one velocity, only one of the infinitely many
conservation laws can continue to hold in the modified theory!
Example: Burgers’ equation. From

(∂t + u∂x)u = ν∂2
xxu, (7.84)

we deduce that

∂tu+ ∂x

{
1

2
u2 − ν∂xu

}

= 0, (7.85)

so that Q1 =
∫

u dx is conserved, but further investigation shows that no
other conservation law survives. The shock speed is therefore

Ẋ =
1

2

(u2
+ − u2

−)

(u+ − u−)
=

1

2
(u+ + u−). (7.86)

Example: KdV equation. From

(∂t + u∂x)u = δ ∂3
xxxu, (7.87)

we deduce that

∂tu+ ∂x

{
1

2
u2 − δ ∂2

xxu
}

= 0,

∂t

{
1

2
u2
}

+ ∂x

{
1

3
u3 − δu∂2

xxu+
1

2
δ(∂xu)

2
}

= 0

...

where the dots refer to an infinite sequence of (not exactly obvious) conserva-
tion laws. Since more than one conservation law survives, the KdV equation
cannot have shock-like solutions. Instead, the steepening wave breaks up
into a sequence of solitons. A movie of this phenomenon can be seen on the
course home-page.
Example: Hydraulic Jump, or Bore

v 1

v
2

h1

h
2

A Hydraulic Jump.
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A stationary hydraulic jump is a place in a stream where the fluid abruptly
increases in depth from h1 to h2, and simultaneously slows down from super-
critical (faster than wave-speed) flow to subcritical (slower than wave-speed)
flow. Such jumps are commonly seen near weirs, and whitewater rapids4. A
circular hydraulic jump is easily created in your kitchen sink. The moving
equivalent is the the tidal bore. A link to pictures of hydraulic jumps and
bores is provided on the course web-site.

The equations governing uniform (meaning that v is independent of the
depth) flow in channels are mass conservation

∂th + ∂x {hv} = 0, (7.88)

and Euler’s equation
∂tv + v∂xv = −∂x{gh}. (7.89)

We could manipulate these into the Riemann form, and work from there, but
it is more direct to combine them to derive the momentum conservation law

∂t{hv}+ ∂x

{

hv2 +
1

2
gh2

}

= 0. (7.90)

From Euler’s equation, assuming steady flow, v̇ = 0, we can also deduce
Bernoulli’s equation

1

2
v2 + gh = const., (7.91)

which is an energy conservation law. At the jump, mass and momentum
must be conserved:

h1v1 = h2v2,

h1v
2
1 +

1

2
gh2

1 = h2v
2
2 +

1

2
gh2

2, (7.92)

and v2 may be eliminated to find

v2
1 =

1

2
g

(

h2

h1

)

(h1 + h2). (7.93)

A change of frame reveals that v1 is the speed at which a wall of water of
height h = (h2 − h1) would propagate into stationary water of depth h1.

4The breaking crest of Frost’s “white wave” is probably as much as an example of a
hydraulic jump as of a smooth downstream wake.
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Bernoulli’s equation is inconsistent with the two equations we have used,
and so

1

2
v2
1 + gh1 6=

1

2
v2
2 + gh2. (7.94)

This means that energy is being dissipated: for strong jumps, the fluid down-
stream is turbulent. For weaker jumps, the energy is radiated away in a train
of waves – the so-called “undular bore”.

Example: Shock Wave in Air: At a shock wave in air we have conservation
of mass

ρ1v1 = ρ2v2, (7.95)

momentum

ρ1v
2
1 + P1 = ρ2v

2
2 + P2. (7.96)

In this case, however, Bernoulli’s equation does hold5, so

1

2
v2
1 + h1 =

1

2
v2
2 + h2. (7.97)

Here, h is the specific enthalpy (E+PV per unit mass). Entropy, though, is
not conserved, so we cannot use PV γ = const. across the shock. From mass
and momentum conservation alone we find

v2
1 =

(

ρ2

ρ1

)

P2 − P1

ρ2 − ρ1

. (7.98)

For an ideal gas with cp/cv = γ, we can use energy conservation to to elimi-
nate the densities, and find

v1 = c0

√

1 +
γ + 1

2γ

P2 − P1

P1
. (7.99)

Here, c0 is the speed of sound in the undisturbed gas.

5Recall that enthalpy is conserved in a throttling process , even in the presence of dissi-
pation. Bernoulli’s equation for a gas is the generalization of this thermodynamic result to
include the kinetic energy of the gas. The difference between the shock wave in air, where
Bernoulli holds, and the hydraulic jump, where it does not, is that the enthalpy of the gas
keeps track of the lost mechanical energy, which has been absorbed by the internal degrees
of freedom. The Bernoulli equation for channel flow keeps track only of the mechanical
energy of the mean flow.
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7.3.3 Weak Solutions

We want to make mathematically precise the sense in which a function u
with a discontinuity can be a solution to the differential equation

∂t

{
1

n
un
}

+ ∂x

{
1

n+ 1
un+1

}

= 0, (7.100)

even though the equation is surely meaningless if the functions to which the
derivatives are being applied are not in fact differentiable.

We could play around with distributions like the Heaviside step function
or the Dirac delta, but this is unsafe for non-linear equations, because the
product of two distributions is generally not meaningful. What we do is
introduce a new concept. We say that u is a weak solution to (7.100) if

∫

R2

dx dt
{

un∂tϕ+
n

n + 1
un+1∂xϕ

}

= 0, (7.101)

for all test functions ϕ is some suitable space T . This equation has formally
been obtained from (7.100) by multiplying it by ϕ(x, t), integrating over
all space-time, and then integrating by parts to move the derivatives off u,
and onto the smooth function ϕ. If u is assumed smooth then all these
manipulations are legitimate and the new equation (7.101) contains no new
information. A conventional solution to (7.100) is therefore also a weak
solution. The new formulation (7.101), however, admits solutions in which u
has shocks.

Let us see what is required of a weak solution if we assume that u is
everywhere smooth except for a single jump from u−(t) to u+(t) at the point
X(t).

x

t
X(t)

D− D+

n

A weak solution.
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We therefore have

0 =
∫

D−

dx dt
{

un∂tϕ+
n

n + 1
un+1∂xϕ

}

+
∫

D+

dx dt
{

un∂tϕ+
n

n+ 1
un+1∂xϕ

}

.

(7.102)
Let

n =




1

√

1 + |Ẋ|2
,
−Ẋ

√

1 + |Ẋ|2



 (7.103)

be the unit outward normal to D−, then, using the divergence theorem, we
have
∫

D−

dx dt
{

un∂tϕ+
n

n + 1
un+1∂xϕ

}

=
∫

D−

dx dt
{

−ϕ
(

∂tu
n +

n

n+ 1
∂xu

n+1
)}

+
∫

∂D−

dt
{

ϕ
(

−Ẋ(t)un− +
n

n + 1
un+1
−

)}

(7.104)

Here we have written the integration measure over the boundary as

ds =
√

1 + |Ẋ|2 dt. (7.105)

Performing the same manoeuvre for D+, and observing that ϕ can be any
smooth function, we deduce that

i) ∂tu
n + n

n+1
∂xu

n+1 = 0 within D±.

ii) Ẋ(un+ − un−) = n
n+1

(un+1
+ − un+1

− ) on X(t).
The reasoning here is identical to that in chapter one, where we considered
variations at endpoints to obtain natural boundary conditions. We therefore
end up with the same equations for the motion of the shock as before.

The notion of weak solutions is widely used in applied mathematics, and it
is the principal ingredient of the finite element method of numerical analysis
in continuum dynamics.

7.4 Solitons

A localized disturbance in a dispersive medium soon falls apart, since its
various frequency components travel at differing speeds. At the same time,
non-linear effects will distort the wave profile. In some systems, however,
these effects of dispersion and non-linearity can compensate each other and
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give rise to solitons, stable solitary waves which propagate for long distances
without changing their form. Not all equations possessing wave-like solutions
also possess solitary wave solutions. The best known example of equations
that do, are:

1) The Korteweg-de-Viries (KdV) equation, which in the form

∂u

∂t
+ u

∂u

∂x
= −∂

3u

∂x3
, (7.106)

has a solitary wave solution

u = 2α2sech2(αx− α3t) (7.107)

which travels at speed α2. The larger the amplitude, therefore, the
faster the solitary wave travels. This equation applies to steep waves
in shallow water.

2) The non-linear Shrödinger (NLS) equation with attractive interactions

i
∂ψ

∂t
= − 1

2m

∂2ψ

∂x2
− λ|ψ|2ψ, (7.108)

where λ > 0. It has solitary-wave solution

ψ = eikx−iωt
√

α

mλ
sech
√
α(x− Ut), (7.109)

where

k = mU, ω =
1

2
mU2 − α

2m
. (7.110)

In this case, the speed is independent of the amplitude, and the moving
solution can be obtained from a stationary one by means of a Galilean
boost. (You should remember how this works from homework set zero!)
The nonlinear equation for the stationary wavepacket may be solved
by observing that

(−∂2
x − 2sech2x)ψ0 = −ψ0 (7.111)

where ψ0(x) = sech x. This is the bound-state of the Pöschl-Teller
equation that we have met several times in the homework. The non-
linear Schrodinger equation describes many systems, including the dy-
namics of tornados, where the solitons manifest as the knot-like kinks
sometimes seen winding their way up thin funnel clouds6.

6H.Hasimoto, J. Fluid Mech. 51 (1972) 477.
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3) The sine-Gordon (SG) equation is

∂2ϕ

∂t2
− ∂2ϕ

∂x2
+
m2

β
sin βϕ = 0. (7.112)

This has solitary-wave solutions

ϕ =
4

β
tan−1

{

e±mγ(x−Ut)
}

, (7.113)

where γ = (1− U2)−
1

2 and |U | < 1. Again, the velocity is not related
to the amplitude, and the moving soliton can be obtained by boost-
ing a stationary soliton. The boost is now a Lorentz transformation,
and so we only get subluminal solitons, whose width is Lorentz con-
tracted by the usual relativistic factor of γ. The sine-Gordon equation
describes, for example, the evolution of light pulses whose frequency is
in resonance with an atomic transition in the propagation medium7.

In the case of the sine-Gordon soliton, the origin of the solitary wave is
particularly easy to understand, as it can be realized as a “twist” in a chain
of coupled pendulums. The handedness of the twist determines whether we
take the + or − sign in the solution given above.

A sine-Gordon solitary wave as a twist in a ribbon of coupled pendulums.

Exercise: Find the expression for the sine-Gordon soliton, by first showing
that the static sine-Gordon equation

−∂
2ϕ

∂x2
+
m2

β
sin βϕ = 0 (7.114)

implies that
1

2
ϕ′2 +

m2

β2
cos βϕ = const., (7.115)

7See G. L. Lamb, Rev. Mod. Phys. 43(1971) 99, for a nice review.
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and solving this equation (for a suitable choice of the constant) by separation
of variables. Next, show that if f(x) is solution of the static equation, then
f(γ(x− Ut)), γ = (1− U2)−1/2, |U | < 1 is a solution of the time-dependent
equation.

The existence of solitary-wave solutions is interesting in its own right. It
was the fortuitous observation of such a wave by Scott Russell on the Union
Canal, near Hermiston in England, that founded the subject8. Even more
remarkable was Scott Russell’s subsequent discovery (made in a specially
constructed trough in his garden) of what is now called the soliton property :
two colliding solitary waves interact in a complicated manner yet emerge
from the encounter with their form unchanged, having suffered no more than
a slight time delay. Each of the three equations given above has exact multi-

soliton solutions which show this phenomenon.
After languishing for more than a century, soliton theory has grown to

be a huge subject. It is, for example, studied by electrical engineers who
use soliton pulses in fibre-optic communications. No other type of signal
can propagate though thousands of kilometers of undersea cable without
degredation. Solitons, or “quantum lumps” are also important in particle
physics. The nucleon can be thought of as a knotted soliton (in this case
called a “skyrmion”) in the pion field, and gauge-field monopole solitons
appear in many string and field theories. The soliton equations themselves
are aristrocrats among partial differential equations, with ties into almost
every other branch of mathematics.
Exercise: Lax pair for the non-linear Schrödinger equation. Let L be the
matrix differential operator

L =
[
i∂x χ∗

χ i∂x

]

, (7.116)

8“I was observing the motion of a boat which was rapidly drawn along a narrow channel
by a pair of horses, when the boat suddenly stopped - not so the mass of water in the
channel which it had put in motion; it accumulated round the prow of the vessel in a state
of violent agitation, then suddenly leaving it behind, rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap
of water, which continued its course along the channel apparently without change of form
or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate
of some eight or nine miles an hour, preserving its original figure some thirty feet long and
a foot to a foot and a half in height. Its height gradually diminished, and after a chase of
one or two miles I lost it in the windings of the channel. Such, in the month of August
1834, was my first chance interview with that singular and beautiful phenomenon which I
have called the Wave of Translation.” —John Scott Russell, 1844
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and let P the matrix

P =
[
i|χ|2 χ′∗

−χ′ −i|χ|2
]

. (7.117)

Show that the equation

L̇ = [L, P ] (7.118)

is equivalent to the non-linear Shrödinger equation

iχ̇ = −χ′′ − 2|χ|2χ. (7.119)

Physics Illustration: Solitons in Optical Fibres. We wish to transmit picosec-
ond pulses of light with a carrier frequency ω0. Suppose that the dispersive
properties of the fibre are such that the associated wavenumber for frequen-
cies near ω0 can be expanded as

k = ∆k + k0 + β1(ω − ω0) +
1

2
β2(ω − ω0)

2 + · · · . (7.120)

Here, β1 is the reciprocal of the group velocity, and β2 is a parameter called
the group velocity dispersion (GVD). The term ∆k parameterizes the change
in refractive index due to non-linear effects. It is proportional to the square
of the electric field. Let us write the electric field as

E(x, t) = A(x, t)eik0z−ω0t, (7.121)

where A(x, t) is a slowly varying envelope function. When we transform from
Fourier variables to space and time we have

(ω − ω0)→ i
∂

∂t
, (k − k0)→ −i

∂

∂z
, (7.122)

and so the equation determining A becomes

−i∂A
∂z

= iβ1
∂A

∂t
− β2

2

∂2A

∂t2
+ ∆kA. (7.123)

If we set ∆k = γ|A2|, where γ is normally positive, we have

i

(

∂A

∂z
+ β1

∂A

∂t

)

=
β2

2

∂2A

∂t2
− γ|A|2A. (7.124)
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We may get rid of the first-order time derivative by transforming to a frame
moving at the group velocity. We do this by setting

τ = t− β1z,

ζ = z (7.125)

and using the chain rule, as we did for the Galilean transformation in home-
work set 0. The equation for A ends up being

i
∂A

∂ζ
=
β2

2

∂2A

∂τ2
− γ|A|2A. (7.126)

This looks like our non-linear Schrödinger equation, but with the role of
space and time interchanged! Also, the coefficient of the second derivative
has the wrong sign so, to make it coincide with the Schrödinger equation we
studied earlier, we must have β2 < 0. When this condition holds, we are
said to be in the “anomalous dispersion” regime — although this is rather
a misnomer since it is the group refractive index , Ng = c/vgroup, that is
decreasing with frequency, not the ordinary refractive index. For pure SiO2

glass, β2 is negative for wavelengths greater than 1.27µm. We therefore have
anomalous dispersion in the technologically important region near 1.55µm,
where the glass is most transparant. In the anomalous dispersion regime we
have solitons with

A(ζ, τ) = eiα|β2|ζ/2
√

β2α

γ
sech
√
α(τ), (7.127)

leading to

E(z, t) =

√

β2α

γ
sech
√
α(t− β1z)e

iα|β2|z/2eik0z−iω0t. (7.128)

This equation describes a pulse propagating at β−1
1 , which is the group ve-

locity.



Chapter 8

Special Functions I

In solving Laplace’s equation by the method of separation of variables we
come across the most important of the special functions of mathematical
physics. These functions have been studied for many years, and books such as
the Bateman manuscript project1 summarize the results. Any serious student
theoretical physics needs to be familiar with this material, and should at least
read the standard text: A Course of Modern Analysis by E. T. Whittaker
and G. N. Watson (Cambridge University Press). Although it was originally
published in 1902, nothing has superseded this book in its accessibility and
usefulness.

In this chapter we will focus only on the properties that all physics stu-
dents should know by heart.

8.1 Curvilinear Co-ordinates

Laplace’s equation can be separated in a number of coordinate systems.
These are all orthogonal systems in that the local coordinate axes cross at
right angles.

1The Bateman manuscript project contains the formulæ collected by Harry Bateman,
who was professor of Mathematics, Theoretical Physics, and Aeronautics at the California
Institute of Technology. After his death in 1946, several dozen shoe boxes full of file cards
were found in his garage. These proved to be the index to a mountain of paper contain-
ing his detailed notes. A subset of the material was eventually published as the three
volume series Higher Transcendental Functions , and the two volume Tables of Integral

Transformations , A. Erdelyi et al. eds.
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To any system of orthogonal curvilinear coordinates is associated a metric

of the form

ds2 = h2
1(dx

1)2 + h2
2(dx

2)2 + h2
3(dx

3)2. (8.1)

This expression tells us the distance
√
ds2 between the adjacent points

(x1 + dx1, x2 + dx2, x3 + dx3) and (x1, x2, x3). In general, the hi will depend
on the co-ordinates xi.

The most commonly used orthogonal curvilinear co-ordinate systems are
plane polars, spherical polars, and cylindrical polars. The Laplacian also
separates in plane elliptic, or three-dimensional ellipsoidal coordinates and
their degenerate limits, such as parabolic cylindrical co-ordinates — but these
are not so often encountered, and we refer the reader to more comprehensive
treatises, such Morse and Feshbach’s Methods of Theoretical Physics.

Plane Polar Co-ordinates

θ

P

y

x

r

Plane polar co-ordinates.

Plane polar co-ordinates have metric

ds2 = dr2 + r2dθ2, (8.2)

so hr = 1, hθ = r.



8.1. CURVILINEAR CO-ORDINATES 217

Spherical Polar Co-ordinates

x

y

z

r
P

θ
φ

Spherical co-ordinates.

This system has metric

ds2 = dr2 + r2dθ2 + r2 sin2 θdφ2, (8.3)

so hr = 1, hθ = r, hφ = r sin θ,

Cylindrical Polar Co-ordinates

x

y

z

Pr

z

θ

Cylindrical co-ordinates.

These have metric

ds2 = dr2 + r2dθ2 + dz2, (8.4)

so hr = 1, hθ = r, hz = 1.
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8.1.1 Div, Grad and Curl in Curvilinear Co-ordinates

It is very useful to know how to write the curvilinear co-ordinate expressions
for the common operations of the vector calculus. Knowing these, we can
then write down the expression for the Laplace operator.

The gradient operator

We begin with the gradient operator. This is a vector quantity, and to
express it we need to understand how to associate a set of basis vectors with
our co-ordinate system. The simplest thing to do is to take unit vectors ei
tangential to the local co-ordinate axes. Because the coordinate system is
orthogonal, these unit vectors will then constitute an orthonormal system.

e
e

r

θ

Unit basis vectors in plane polar co-rdinates.
The vector corresponding to an infinitsimal co-ordinate displacement dxi is
then given by

dr = h1dx
1e1 + h2dx

2e2 + h3dx
3e3. (8.5)

Using the orthonormality of the basis vectors, we find that

ds2 ≡ |dr|2 = h2
1(dx

1)2 + h2
2(dx

2)2 + h2
3(dx

3)2, (8.6)

as before.
In the unit-vector basis, the gradient vector is

gradφ ≡ ∇φ =
1

h 1

(

∂φ

∂x1

)

e1 +
1

h2

(

∂φ

∂x2

)

e2 +
1

h3

(

∂φ

∂x3

)

e3, (8.7)

so that

(gradφ) · dr =
∂φ

∂x1
dx1 +

∂φ

∂x2
dx2 +

∂φ

∂x3
dx3, (8.8)

which is the change in the value φ due the displacement.
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The numbers (h1dx
1, h2dx

2, h3dx
3) are often called the physical compo-

nents of the displacement dr, to distinguish them from the numbers (dx1, dx2, dx3)
which are the co-ordinate components of dr. The physical components of a
displacent vector all have the dimensions of length. The co-ordinate compo-
nents may have different dimensions and units for each component. In plane
polar co-ordinates, for example, the units will be meters and radians. This
distinction extends to the gradient itself: the co-ordinate components of an
electric field expressed in polar co-ordinates will have units of volts per me-
ter and volts per radian for the radial and angular components, respectively.
The factor 1/hθ = r−1 serves to convert the latter to volts per meter.

The divergence

The divergence of a vector field A is defined to be the flux of A out of an
infinitesimal region, divided by volume of the region.

dx

dx

3

1

3

1h

h2
2

dxh

Flux out of an infinitesimal volume with sides of length h1dx
1, h2dx

2, h3dx
3 .

In the figure, the flux out of the two end faces is

dx2dx3
[

A1h2h3|(x1+dx1,x2,x3) − A1h2h3|(x1,x2,x3)

]

≈ dx1dx2dx3∂(A1h2h3)

∂x1
.

(8.9)
Adding the contributions from the other two pairs of faces, and dividing by
the volume, h2h2h3dx

1dx2dx3, gives

div A =
1

h1h2h3

{

∂

∂x1
(h2h3A1) +

∂

∂x2
(h1h3A2) +

∂

∂x3
(h1h2A3)

}

. (8.10)
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Note that in curvilinear coordinates div A is no longer simply ∇·A, although
one often writes it as such.

The curl

The curl of a vector field A is a vector whose component in the direction of
the normal to an infinitesimal area element, is line integral of A round the
infinitsimal area, divided by the area.

h dx 

h dx 

e

1

2

3

1

2

Line integral round infinitesimal area with sides of length h1dx
1, h2dx

2, and
normal e3 .

The third component is, for example,

(curlA)3 =
1

h1h2

(

∂h2A2

∂x1
− ∂h1A1

∂x2

)

. (8.11)

The other two components are found by cyclically permuting 1→ 2→ 3→ 1
in this formula. The curl is thus is no longer equal to ∇×A, although it is
common to write it as if it were.

Note that the factors of hi are disposed so that the vector identies

curl gradϕ = 0, (8.12)

and

div curlA = 0, (8.13)

continue to hold for any scalar field ϕ, and any vector field A.
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8.1.2 The Laplacian in Curvilinear Co-ordinates

The Laplacian acting on scalars, is “div grad”, and is therefore

∇2φ =
1

h1h2h3

{

∂

∂x1

(

h2h3

h1

∂φ

∂x1

)

+
∂

∂x2

(

h1h3

h2

∂φ

∂x2

)

+
∂

∂x3

(

h1h2

h3

∂φ

∂x3

)}

.

(8.14)
This formula is worth commiting to memory.

When the Laplacian is to act on vectors, we must use

∇2A = grad div A− curl curlA. (8.15)

In curvilinear co-ordinates this is no longer equivalent to the Laplacian acting
on each component of A, treating it as if it were a scalar.

In spherical polars the Laplace operator acting on the scalar field φ is

∇2ϕ =
1

r2

∂

∂r

(

r2∂ϕ

∂r

)

+
1

r2 sin θ

∂

∂θ

(

sin θ
∂ϕ

∂θ

)

+
1

r2 sin2 θ

∂2ϕ

∂φ2

=
1

r

∂2(rϕ)

∂r2
+

1

r2

{

1

sin θ

∂

∂θ

(

sin θ
∂ϕ

∂θ

)

+
1

sin2 θ

∂2ϕ

∂φ2

}

=
1

r

∂2(rϕ)

∂r2
− L̂2

r2
ϕ, (8.16)

where

L̂2 = − 1

sin θ

∂

∂θ
sin θ

∂

∂θ
− 1

sin2 θ

∂2

∂φ2
, (8.17)

is (after multiplication by h̄2) the operator representing the square of the
angular momentum in quantum mechanics.

In cylindrical polars the Laplacian is

∇2 =
1

r

∂

∂r
r
∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
. (8.18)

8.2 Spherical Harmonics

We saw that Laplace’s equation in spherical polars is

0 =
1

r

∂2(rϕ)

∂r2
− L̂2

r2
ϕ. (8.19)
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To solve this by the method of separation of variables, we factorize

ϕ = R(r)Y (θ, φ), (8.20)

so that
1

Rr

d2(rR)

dr2
− 1

r2

(
1

Y
L̂2Y

)

= 0. (8.21)

Taking the separation constant to be l(l + 1), we have

r2d(rR)

dr2
− l(l + 1)(rR) = 0, (8.22)

and
L̂2Y = l(l + 1)Y. (8.23)

The solution for R is rl or r−l−1. The equation for Y can be further decom-
posed by setting Y = Θ(θ)Φ(φ). Looking back at the definition of L̂2, we see
that we can take

Φ(φ) = eimφ (8.24)

with m an integer to ensure single valuedness. The equation for Θ is then

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

− m2

sin2 θ
Θ = −l(l + 1)Θ. (8.25)

It is convenient to set x = cos θ; then

(

d

dx
(1− x2)

d

dx
+ l(l + 1)− m2

1− x2

)

Θ = 0. (8.26)

8.2.1 Legendre Polynomials

We first look at the axially symmetric case where m = 0. We are left with

(

d

dx
(1− x2)

d

dx
+ l(l + 1)

)

Θ = 0. (8.27)

This is Legendre’s equation. We can think of it as an eigenvalue problem

−
(

d

dx
(1− x2)

d

dx

)

Θ(x) = l(l + 1)Θ(x), (8.28)
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on the interval −1 ≤ x ≤ 1, this being the range of cos θ for real θ. Legendre’s
equation is of Sturm-Liouville form, but with regular singular points at x =
±1. Because the endpoints of the interval are singular, we cannot impose
as boundary conditions that Θ, Θ′, or some linear combination of these, be
zero there. We do need some boundary conditions, however, so as to have a
self-adjoint operator and hence a complete set of eigenfunctions.

Given one or more singular endpoints, one possible route to a well-defined
eigenvalue problem is to demand solutions that are square-integrable, and so
normalizable. This works for the harmonic oscillator equation, for example,
and, as we will describe in detail later in the chpater, the oscillator equation’s
singular endpoints at x = ±∞ are in Weyl’s limit-point class. For Legen-
dre’s equation with l = 0, the two independent solutions are Θ(x) = 1 and
Θ(x) = ln(1 + x) − ln(1 − x). Both of these solutions have finite L2[−1, 1]
norms, and this square integrability persists for all values of l. Thus, requir-
ing normalizability is not enough to select a unique boundary condition. This
means that both of the Legendre equation’s singular endpoints are in Weyl’s
limit-circle class, and there is therefore a family of boundary conditions all
of which give rise to self-adjoint operators. We therefore make the more re-
strictive demand that the allowed eigenfunctions be finite at the endpoints.
Because the the north and south pole of the sphere are not special points,
this is a physically reasonable condition. If we start with a finite Θ(x) at one
end of the interval and demand that the solution remain finite at the other
end, we obtain a discrete spectrum of eigenvalues. When l is an integer,
then one of the solutions, Pl(x), becomes a polynomial, and so is finite at
x = ±1. The second solution, Ql(x), is diveregent at both ends, and so is not
an allowed solution. When l is not an integer, neither solution is finite. The
eigenvalues are therefore l(l+1) with l zero or a positive integer. Despite its
unfamiliar form, the “finite” boundary condition makes the Legendre opera-
tor self-adjoint, and the eigenfunctions Pl(x) form a complete orthogonal set
for L2[−1, 1].

The Pl(x) are the Legendre Polynomials. They can be expressed in closed
form as

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l. (8.29)

This is Rodriguez’ formula. The polynomials are here normalized in the
traditional way, so that

Pl(1) = 1. (8.30)
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They have simple symmetry properties

Pl(−x) = (−1)lPl(x), (8.31)

and the first few are

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1),

P3(x) =
1

2
(5x3 − 3x3),

P4(x) =
1

8
(35x4 − 30x2 + 3).

Being Sturm-Liouville eigenfunctions, the Pl for different n are orthogonal

∫ 1

−1
Pl(x)Pm(x) dx =

2

2l + 1
δlm. (8.32)

Indeed, the Pl can be obtained by applying the Gram-Schmidt proceedure to
the sequence 1, x, x2, . . . so as to obtain polynomials orthogonal with respect
to this inner product, and then fixing the normalization constant so that
Pl(1) = 1.

For us, the essential property of the Pl(x) is that the general axisymmetric
solution of ∇2ϕ = 0 can be expanded in terms of them as

ϕ(r, θ) =
∞∑

l=0

(

Alr
l +Blr

−l−1
)

Pl(cos θ). (8.33)

You should memorize this formula. You should also know by heart the ex-
plicit expressions for the first four Pl(x), and the factor of 2/(2l + 1) in the
orthogonality formula.

Example: Point charge. Put a unit charge at the point R, and find an ex-
pansion for the potential as a Legendre polynomial series in a neighbourhood
of the origin.
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R

|

θ

r

R−r |

O
Geometry for generating function.

Let start by assuming that |r| < |R|. We know that in this region the point
charge potential 1/|r−R| is a solution of Laplace’s equation , and so we can
expand

1

|r−R| ≡
1√

r2 +R2 − 2rR cos θ
=

∞∑

l=0

Alr
lPl(cos θ). (8.34)

We also know that the coefficients Bl are zero because ϕ is finite when r = 0.
We can find the coefficients Al by setting θ = 0 and Taylor expanding

1

|r−R| =
1

R− r =
1

R

(

1 +
(
r

R

)

+
(
r

R

)2

+ · · ·
)

, r < R. (8.35)

By comparing the two series, we find that Al = R−l−1. Thus

1√
r2 +R2 − 2rR cos θ

=
1

R

∞∑

l=0

(
r

R

)l

Pl(cos θ), r < R. (8.36)

This last expression is the generating function formula for Legendre polyno-
mials. It is also a useful formula to have in your long-term memory.

If |r| > |R|, then we must take

1

|r−R| ≡
1√

r2 +R2 − 2rR cos θ
=

∞∑

l=0

Blr
−l−1Pl(cos θ), (8.37)

because we know that ϕ tends to zero when r = ∞. We now set θ = 0 and
compare with

1

|r−R| =
1

r − R =
1

r

(

1 +
(
R

r

)

+
(
R

r

)2

+ · · ·
)

, R < r, (8.38)

to get

1√
r2 +R2 − 2rR cos θ

=
1

r

∞∑

l=0

(
R

r

)l

Pl(cos θ), R < r. (8.39)
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Example: A planet is spinning on its axis and so its shape deviates slightly
from a perfect sphere. The position of its surface is given by

R(θ, φ) = R0 + ηP2(cos θ). (8.40)

Observe that, to first order in η, this deformation does not alter the volume
of the body. Assuming that the planet has a uniform density ρ0, compute
the external gravitational potential of the planet.

θ R
0R

Deformed planet.
The gravitational potential obeys Poisson’s equation

∇2φ = 4πGρ(x), (8.41)

where G is Newton’s gravitational constant. We decompose the gravitating
mass into a uniform undeformed sphere, which has external potential

φ0,ext = −
(

4

3
πR3

0ρ0

)
G

r
, r > R0, (8.42)

and a thin spherical shell of areal mass-density

σ(θ) = ρ0ηP2(cos θ). (8.43)

The thin shell gives rise to a potential

φ1,int(r, θ) = Ar2P2(cos θ), r < R0, (8.44)

and

φ1,ext(r, θ) = B
1

r3
P2(cos θ), r > R0. (8.45)
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At the shell we must have φ1,int = φ1,ext and

∂φ1,ext

∂r
− ∂φ1,int

∂r
= 4πGσ(θ). (8.46)

Thus A = BR−5
0 , and

B = −4

5
πGηρ0R

4
0. (8.47)

Putting this together, we have

φ(r, θ) = −
(

4

3
πGρ0R

3
0

)
1

r
− 4

5

(

πGηρ0R
4
0

) P2(cos θ)

r3
+O(η2), r > R0.

(8.48)

8.2.2 Spherical Harmonics

When we do not have axisymmetry, we need the full set of spherical harmon-
ics. These involve solutions of

(

d

dx
(1− x2)

d

dx
+ l(l + 1)− m2

1− x2

)

Φ = 0, (?) (8.49)

which is the associated Legendre equation and has solutions, P l
|m|(x), for inte-

ger l and m. By substituting y = (1−x2)m/2z(x) into (?), and comparing the
resulting equation for z(x) with the m-th derivative of Legendre’s equation,
we find that

P l
|m|(x) = (−1)m(1− x2)m/2

dm

dxm
Pl(x). (8.50)

Since Pl is a polynomial of degree l we observe that P l
|m|(x) = 0 if m > l.

For each l, the allowed values of m are −l,−(l − 1), . . . , (l − 1), l, a total of
2l + 1 possibilities.

The spherical harmonics are the normalized product of these associated

Legendre functions with the corresponding eimφ:

Y l
m(θ, φ) ∝ P l

|m|(cos θ)eimφ. (8.51)

The first few are

l = 0 Y 0
0 = 1√

4π
(8.52)
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l = 1







Y 1
1 = −

√
3
8π

sin θ eiφ,

Y 1
0 =

√
3
4π

cos θ,

Y 1
−1 =

√
3
8π

sin θ e−iφ.

(8.53)

l = 2







Y 2
2 = −1

4

√
15
2π

sin2 θ e2iφ,

Y 2
1 = −

√
15
8π

sin θ cos θ eiφ,

Y 2
0 =

√
5
4π

(
3
2
cos2 θ − 1

2

)

,

Y 2
−1 =

√
15
8π

sin θ cos θ e−iφ,

Y 2
−2 = −1

4

√
15
2π

sin2 θ e−2iφ.

(8.54)

When m = 0, the spherical harmonics are independent of the azimuthal
angle φ, and so must be proportional to the Legendre polynomials. The exact
relation is

Y l
0 (θ, φ) =

√

2l + 1

4π
Pl(cos θ). (8.55)

If we use a unit vector n to denote a point on the unit sphere, we have
the symmetry properties

[Y l
m(n)]∗ = (−1)mY l

−m(n), Y l
m(−n) = (−1)lY l

m(n). (8.56)

These identities are useful when we wish to know how quantum mechanical
wavefunctions transform under time reversal or parity.

Exercise: Show that

Y 1
1 ∝ x + iy,

Y 1
0 ∝ z,

Y 1
−1 ∝ x− iy,
Y 2

2 ∝ (x + iy)2,

Y 2
1 ∝ (x + iy)z,

Y 2
0 ∝ x2 + y2 − 2z2,

Y 2
−1 ∝ (x− iy)z,
Y 2
−2 ∝ (x− iy)2,

where x2 + y2 + z2 = 1 are the usual Cartesian co-ordinates, restricted to the
unit sphere.
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The spherical harmonics form a complete set of orthonormal functions on
the unit sphere

∫ 2π

0
dφ
∫ π

0
d(cos θ)

[

Y l
m(θ, φ)

]∗
Y l′

m′(θ, φ) = δll′δmm′ , (8.57)

and

∞∑

l=0

l∑

m=−l
[Y l
m(θ′, φ′)]∗Y l

m(θ, φ) = δ(φ− φ′)δ(cos θ′ − cos θ). (8.58)

In terms of them, the general solution to ∇2ϕ = 0 is

ϕ(r, θ, φ) =
∞∑

l=0

l∑

m=−l

(

Almr
l +Blmr

−l−1
)

Y l
m(θ, φ). (8.59)

This is definitely a formula to remember.
There is an addition theorem

Pl(cos γ) =
4π

2l + 1

l∑

m=−l
[Y l
m(θ′, φ′)]∗Y l

m(θ, φ), (8.60)

where γ is the angle between the directions (θ, φ) and (θ′, φ′), and is found
from

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′). (8.61)

The addition theorem is established by first showing that the right-hand side
is rotationally invariant, and then setting the direction (θ′, φ′) to point along
the z axis. Addition theorems of this sort are useful because they allow one
to replace a simple function of an entangled variable by a sum of functions
of unentangled variables. For example, the point-charge potential can be
disentangled as

1

|r− r′| =
∞∑

l=0

l∑

m=−l

4π

2l + 1

(

rl<
rl+1
>

)

Y ∗l
m (θ′, φ′)Y l

m(θ, φ) (8.62)

where r< is the smaller of |r| or |r′|, and r> is the greater and (θ, φ), (θ′, φ′)
specify the direction of r, r′ respectively. This expansion is derived by com-
bining the generating function for the Legendre polynomials with the addition
formula. It is useful for defining and evaluating multipole expansions.
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8.3 Bessel Functions

In cylindrical polars, Laplace’s is

0 = ∇2ϕ =
1

r

∂

∂r
r
∂ϕ

∂r
+

1

r2

∂2ϕ

∂θ2
+
∂2ϕ

∂z2
. (8.63)

If we set ϕ = R(r)eimφe±kx we find that R(r) obeys

d2R

dr2
+

1

r

dR

dr
+

(

k2 − m2

r2

)

R = 0. (8.64)

Now
d2y

dx2
+

1

x

dy

dx
+

(

1− ν2

x2

)

y(x) = 0 (8.65)

is Bessel’s equation and its solutions are Bessel functions of order ν. The
solutions for R will therefore be Bessel functions of order m, and with x
replaced by kr.

8.3.1 Cylindrical Bessel Functions

We now set about solving Bessel’s equation,

d2y

dx2
+

1

x

dy

dx
+

(

1− ν2

x2

)

y(x) = 0. (8.66)

This has a regular singular point at the origin, and an irregular singular point
at infinity. We seek a series solution of the form

y = xλ(1 + a1x+ a2x
2 + · · ·), (8.67)

and find from the indicial equation that λ = ±ν. Setting λ = ν and in-
serting the series into the equation, we find, with a conventional choice for
normalization, that

y = Jν(x)
def
=
(
x

2

)ν ∞∑

n=0

(−1)n

n!(n + ν)!

(
x

2

)2n

. (8.68)

Here (n+ ν)! ≡ Γ(n+ ν + 1).
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If ν is an integer we find that J−n(x) = (−1)nJn(x), so we have only
found one of the two independent solutions. Because of this, it is traditional
to define the Neumann function

Nν(x) =
Jν(x) cos νπ − J−ν(x)

sin νπ
, (8.69)

as this remains an independent second solution even when ν becomes integral.
At short distance, and for ν not an integer

Jν(x) =
(
x

2

)ν 1

Γ(ν + 1)
+ · · · ,

Nν(x) =
1

π

(
x

2

)−ν
Γ(ν) + · · · . (8.70)

When ν tends to zero, we have

J0(x) = 1− 1

4
x2 + · · ·

N0(x) =
(

2

π

)

(ln x/2 + γ) + · · · , (8.71)

where γ = −Γ′(1) = .57721 . . . is the Euler-Mascheroni constant. For fixed
l, and x� l we have the asymptotic expansions

Jν(x) ∼
√

2

πx
cos(x− 1

2
νπ − 1

4
π)
(

1 +O
(

1

x

))

, (8.72)

Nν(x) ∼
√

2

πx
sin(x− 1

2
νπ − 1

4
π)
(

1 +O
(

1

x

))

. (8.73)

It is therefore natural to define the Hankel functions

H(1)
ν (x) = Jν(x) + iNν(x) ∼

√

2

πx
eix, (8.74)

H(2)
ν (x) = Jν(x)− iNν(x) ∼

√

2

πx
e−ix. (8.75)

We will derive these asymptotic forms later.
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Generating Function

The two-dimensional wave equation
(

∇2 − 1

c2
∂2

∂t2

)

Φ(r, θ, t) = 0 (8.76)

has solutions
Φ = eiωteinθJn(kr), (8.77)

where k = |ω|/c. Equivalently, the two dimensional Helmholtz equation

(∇2 + k2)Φ = 0, (8.78)

has solutions einθJn(kr). It also has solutions with Jn(kr) replaced byNn(kr),
but these are not finite at the origin. Since the einθJn(kr) are the only
solutions that are finite at the origin, any other finite solution should be
expandable in terms of them. In particular, we should be able to expand a
plane wave solution in terms of them. For example,

eiky = eikr sin θ =
∑

n

ane
inθJn(kr). (8.79)

As we will see in a moment, the an’s are all unity, so in fact

eikr sin θ =
∞∑

n=−∞
einθJn(kr). (8.80)

This generating function is the historical origin of the Bessel functions. They
were introduced by Bessel as a method of expressing the eccentric anomaly
of a planetary position as a Fourier sine series in the mean anomaly — a
modern version of Hipparchus’ epicycles.

From the generating function we see that

Jn(x) =
1

2π

∫ 2π

0
e−inθ+ix sin θ dθ. (8.81)

Whenever you come across a formula like this, involving the Fourier integral
of the exponential of a trigonometric function, you are probably dealing with
a Bessel function.

The generating function can also be written as

e
x
2 (t−

1

t ) =
∞∑

n=−∞
tnJn(x). (8.82)
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Expanding the left-hand side and using the binomial theorem, we find

LHS =
∞∑

m=0

(
x

2

)m 1

m!

[
∑

r+s=m

(r + s)!

r!s!
(−1)strt−s

]

,

=
∞∑

r=0

∞∑

s=0

(−1)s
(
x

2

)r+s tr−s

r!s!
,

=
∞∑

n=−∞
tn
{ ∞∑

s=0

(−1)s

s!(s+ n)!

(
x

2

)2s+n
}

. (8.83)

We recognize that the sum in the braces is the series expansion defining
Jn(x). This therefore proves the generating function formula.

Bessel Identies

There are many identies and integrals involving Bessel functions. The most
common can be found in in the monumental Treatise on the Theory of Bessel

Functions by G. N. Watson. Here are just a few for your delectation:
i) Starting from the generating function

exp
{

1
2
x
(

t− 1

t

)}

=
∞∑

n=−∞
Jn(x)t

n, (8.84)

we can, with a few lines of work, show that

2J ′
n(x) = Jn−1(x)− Jn+1(x), (8.85)

2n

x
Jn(x) = Jn−1(x) + Jn+1(x), (8.86)

J ′
0(x) = −J1(x), (8.87)

Jn(x + y) =
∞∑

r=−∞
Jr(x)Jn−r(y). (8.88)

ii) From the series expansion for Jn(x) we find

d

dx
{xnJn(x)} = xnJn−1(x). (8.89)

iii) By similar methods, we find
(

1

x

d

dx

)m {

x−nJn(x)
}

= (−1)mx−n−mJn+m(x). (8.90)
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iv) Again from the series expansion, we find

∫ ∞

0
J0(ax)e

−pxdx =
1√

a2 + p2
. (8.91)

Semi-classical picture

The Schrödinger equation

− h̄2

2m
∇2ψ = Eψ (8.92)

can be separated in cylindrical polars, and has eigenfunctions

ψk,l(r, θ) = Jl(kr)e
ilθ. (8.93)

The eigenvalues are E = h̄2k2/2m. The quantity L = h̄l is the angular
momentum of the Schrödinger particle about the origin. If we impose rigid-
wall boundary conditions that ψk,l(r, θ) vanish on the circle r = R, then the
allowed k form a discrete set kl,n, where Jl(kl,nR) = 0. To find the energy
eigenvalues we therefore need to know the location of the zeros of Jl(x).
There is no closed form eqution for these numbers, but they are tabulated.
The zeros for kR � l are also approximated by the zeros of the asymptotic
expression

Jl(kR) ∼
√

2

πkR
cos(kR− 1

2
lπ − 1

4
π), (8.94)

which are located at

kl,nR =
1

2
lπ +

1

4
π + (2n+ 1)

π

2
. (8.95)

If we let R→∞, then the spectrum becomes continuous and we are de-
scribing unconfined scattering states. Since the particles are free, their classi-
cal motion is in a straight line at constant velocity. A classical particle mak-
ing a closest approach at a distance rmin, has angular momentum L = prmin.
Since p = h̄k is the particle’s linear momentum, we have l = krmin. Be-
cause the classical particle is never closer than rmin, the quantum mechanical
wavefunction representing such a particle will become evanescent (i.e. tend
rapidly to zero) as soon as r is smaller than rmin. We therefore expect that
Jl(kr) ≈ 0 if kr < l. This effect is dramatically illustrated by the following
MathematicaTM plot.
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An improved asymptotic expression, which gives a better estimate of the
zeros, is the approximation

Jn(kr) ≈
√

2

πkx
sin(kx− lθ − π/4), r � rmin. (8.96)

Here x = r sin θ and θ = cos−1(rmin/r) are functions of r. They have a
geometric interpretation in the right-angled triangle

x

θ
rminr

The parameter x has the physical interpretation of being the distance along
the straight-line semiclassical trajectory. The approximation is quite accurate
once r exceeds rmin by more than a few percent.

Exercise: Show that that this expression in the WKB approximation to the
solution of Bessel’s equation. It is therefore accurate once we are away from
the classical turning point at r = rmin

The asymptotic r−1/2 fall-off of the Bessel function is also understandable in
the semiclassical picture.
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An ensemble of trajectories, each missing the origin by rmin, leaves a “hole”.

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

The hole is visible in the real part of ψk,20(rθ) = ei20θJ20(kr)
By the uncertainly principle, a particle with definite angular momentum must
have completely uncertain angular position. The wavefunction Jl(kr)e

ilθ
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therefore represents an ensemble of particles approaching from all directions,
but all missing the origin by the same distance. The density of classical par-
ticle trajectories is infinite at r = rmin, forming a caustic. By “conservation
of lines”, the particle density falls off as 1/r as we move outwards. The par-
ticle density is proportional to |ϕ|2, so ϕ itself decreases as r−1/2. In contrast
to the classical particle density, the quantum mechanical wavefunction am-
plitude remains finite at the caustic — the “geometric optics” infinity being
tempered by diffraction effects.

8.3.2 Orthogonality and Completeness

We can write the equation obeyed by Jn(kr) in Sturm-Liouville form. We
have

1

r

d

dr

(

r
dy

dr

)

+

(

k2 − m2

r2

)

y = 0. (8.97)

Comparison with the standard Sturm-Liouville equation shows that the weight
function, w(r), is r, and the eigenvalues are k2.

From Lagrange’s identity we obtain

(k2
1−k2

2)
∫ R

0
Jm(k1r)Jm(k2r)r dr = R [k2Jm(k1R)J ′

m(k2R)− k1Jm(k2R)J ′
m(k1R)] .

(8.98)
We have no contribution from the origin on the right-hand side because all
Jm Bessel functions except J0 vanish there, whilst J ′

0(0) = 0. For each m we
get get a set of orthogonal functions, Jm(knx), provided the knR are chosen
to be roots of Jm(knR) = 0 or J ′

m(knR) = 0.
We can find the normalization constants by differentiating with respect

to k1 and then setting k1 = k2 in the result. We find

∫ R

0

[

Jm(kr)
]2
r dr =

1

2
R2

[
[

J ′
m(kR)

]2
+

(

1− m2

k2R2

)
[

Jm(kR)
]2
]

,

=
1

2
R2
[

[Jn(kR)]2 − Jn−1(kR)Jn+1(kR)
]

. (8.99)

(The second equality follows on applying the recurrence relations for the
Jn(kr), and provides an expression that is perhaps easier to remember.) For
Dirichlet boundary conditions we will require knR to be zero of Jm, and so
we have

∫ R

0

[

Jm(kr)
]2
r dr =

1

2
R2
[

J ′
m(kR)

]2
. (8.100)
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For Neumann boundary conditions we require knR to be a zero of J ′
m. In

this case

∫ R

0

[

Jm(kr)
]2
r dr =

1

2
R2

(

1− m2

k2R2

)
[

Jm(kR)
]2
. (8.101)

Example: Harmonic function in cylinder.

z

r
a

L

We wish to solve∇2V = 0 within a cylinder of hight L and radius a. The volt-
age is prescribed on the upper surface of the cylinder: V (r, θ, L) = U(r, θ).
We are told that V = 0 on all other parts of boundary.

The general solution of Laplace’s equation in will be sum of terms such
as {

sinh(kz)

cosh(kz)

}

×
{

Jm(kr)

Nm(kr)

}

×
{

sin(mθ)

cos(mθ)

}

, (8.102)

where the braces indice a choice of upper or lower functions. We must take
only the sinh(kz) terms because we know that V = 0 at z = 0, and only the
Jm(kr) terms because V is finite at r = 0. The k’s are also restricted by the
boundary condition on the sides of the cylinder to be such that Jm(ka) = 0.
We therefore expand the prescribed voltage as

U(r, θ) =
∑

m,n

sinh(knmL)Jm(kmnr) [Anm sin(mθ) +Bnm cos(mθ)] , (8.103)

and use the orthonormality of the trigonometric and Bessel function to find
the coefficients to be

Anm =
2cosech(knmL)

πa2[J ′
m(knma)]2

∫ 2π

0
dθ
∫ a

0
U(r, θ)Jm(knmr) sin(mθ) rdr, (8.104)
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Bnm =
2cosech(knmL)

πa2[J ′
m(knma)]2

∫ 2π

0
dθ
∫ a

0
U(r, θ)Jm(knmr) cos(mθ) rdr, m 6= 0,

(8.105)
and

Bn0 =
1

2

2cosech(kn0L)

πa2[J ′
0(kn0a)]2

∫ 2π

0
dθ
∫ a

0
U(r, θ)J0(kn0r) rdr. (8.106)

Then we fit the boundary data expansion to the general solution, and so find

V (r, θ, z) =
∑

m,n

sinh(knmz)Jm(kmnr) [Anm sin(mθ) +Bnm cos(mθ)] . (8.107)

Hankel Transforms

When the radius, R, of the region in which we performing our eigenfunction
expansion becomes infinite, the eigenvalue spectrum will become continuous,
and the sum over the discrete kn Bessel-function zeros must be replaced by
an integral over k. By using the asymptotic approximation

Jn(kR) ∼
√

2

πkR
cos(kR− 1

2
nπ − 1

4
π), (8.108)

we may estimate the normalization integral as
∫ R

0

[

Jm(kr)
]2
r dr ∼ R

πk
+O(1). (8.109)

We also find that the asymptotic density of Bessel zeros is

dn

dk
=
R

π
. (8.110)

Putting these two results together shows that the continuous-spectrum or-
thogonality and completeness relations are

∫ ∞

0
Jn(kr)Jn(k

′r) rdr =
1

k
δ(k − k′), (8.111)

∫ ∞

0
Jn(kr)Jn(kr

′) kdk =
1

r
δ(r − r′), (8.112)

respectively. These two equations establish that the Hankel transform (also
called the Fourier-Bessel transform) of a function f(r), which is defined by

F (k) =
∫ ∞

0
rdrJn(kr)f(r)r dr, (8.113)

has as its inverse
f(r) =

∫ ∞

0
rdrJn(kr)F (k)k dk. (8.114)
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8.3.3 Modified Bessel Functions

The Bessel function Jn(kr) and the Neumann Nn(kr) function oscillate at
large distance, provided that k is real. When k is purely imaginary, it is
convenient to combine them so as to have functions that grow or decay ex-
ponentially. These are the modified Bessel functions.

We define

Iν(x) = i−νJν(ix), (8.115)

Kν(x) =
π

2 sin νπ
[I−ν(x)− Iν(x)]. (8.116)

At short distance

Iν(x) =
(
x

2

)ν 1

Γ(ν + 1)
+ · · · , (8.117)

Kν(x) =
1

2
Γ(ν)

(
x

2

)−ν
+ · · · . (8.118)

When ν becomes and integer we must take limits, and in particular

I0(x) = 1 +
1

4
x2 + · · · , (8.119)

K0(x) = −(ln x/2 + γ) + · · · . (8.120)

The large x asymptotic behaviour is

Iν(x) ∼
1√
2πx

ex, x→∞, (8.121)

Kν(x) ∼
π√
2x
e−x, x→∞. (8.122)

The factor of i−ν in the definition of Iν(x) is to make Iν real.
From the expression for Jn(x) as an integral, we have

In(x) =
1

2π

∫ 2π

0
einθex cos θdθ =

1

π

∫ π

0
cos(nθ)ex cos θdθ (8.123)

for integer n. When n is not an integer we still have an expression for Iν(x)
as an integral, but now it is

Iν(x) =
1

π

∫ π

0
cos(νθ)ex cos θdθ − sin νπ

π

∫ ∞

0
e−x cosh t−νtdt. (8.124)
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Here we need |arg x| < π/2 for the second integral to converge. The reason for
the “extra” infinite integral when ν in not an integer will not become obvious
until we learn how to use complex integral methods for solving differential
equations. We will do this later. From the definition of Kν(x) in terms of Iν
we find

Kν(x) =
∫ ∞

0
e−x cosh t cosh(νt) dt, |arg x| < π/2. (8.125)

Physics Illustration: Light propagation in optical fibres. Consider the propa-
gation of light of frequency ω0 down a straight section of optical fibre. Typical
fibres are made of two materials. An outer layer, or cladding, with refractive
index n2, and an inner core with refractive index n1 > n2. The core of a fibre
used for communication is usually less than 10µm in diameter.

We will treat the light field E as a scalar. This is not a particularly good
approximation for real fibres, but the complications due the vector character
of the electromagnetic field are considerable. We suppose that E obeys

∂2E

∂x2
+
∂2E

∂y2
+
∂2E

∂z2
− n2(x, y)

c2
∂2E

∂t2
= 0. (8.126)

Here n(x, y) is the refractive index of of the fibre, which is assumed to lie
along the z axis. We set

E(x, y, z, t) = ψ(x, y, z)eik0z−iω0t (8.127)

where k0 = ω0/c. The amplitude ψ is a (relatively) slowly varying envelope
function. Plugging into the wave equation we find that

∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
+ 2ik0

∂ψ

∂z
+

(

n2(x, y)

c2
ω2

0 − k2
0

)

ψ = 0. (8.128)

Because ψ is slowly varying, we neglect the second derivative of ψ with
respect to z, and this becomes

2ik0
∂ψ

∂z
= −∇2

x,yψ + k2
0

(

1− n2(x, y)
)

ψ, (8.129)

which is the two-dimensional time dependent Schrödinger equation, but with
t replaced by z, the distance down the fibre. The wave-modes that will be
trapped and guided by the fibre will be those corresponding to bound states
of the axisymmetric potential

V (x, y) = k2
0(1− n2(r)). (8.130)
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If these bound states have (negative) “energy” En, then ψ ∝ e−iEnz/2k0 , and
so the actual wavenumber for frequency ω0 is

k = k0 − En/2k0. (8.131)

In order to have a unique propagation velocity for signals on the fibre, it
is therefore necessary that the potential support one, and only one, bound
state.

If

n(r) = n1, r < a,

= n2, r > a, (8.132)

then the bound state solutions will be of the form

ψ(r, θ) =

{

einθeiβzJn(κr), r < a,
AeinθeiβzKn(γr), r > a,

(8.133)

where

κ2 = (n2
1k

2
0 − β2), (8.134)

γ2 = (β2 − n2
2k

2
0). (8.135)

To ensure that we have a solution decaying away from the core, we need β
to be such that both κ and γ are real. We therefore require

n2
1 >

β2

k2
0

> n2
2. (8.136)

At the interface both ψ and its radial derivative must be continuous, and so
we will have a solution only if β is such that

κ
J ′
n(κa)

Jn(κa)
= γ

K ′
n(γa)

Kn(γa)
.

This Shrödinger approximation to the wave equation has other applica-
tions. It is called the paraxial approximation.
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8.3.4 Spherical Bessel Functions

Consider the wave equation

(

∇2 − 1

c2
∂2

∂t2

)

ϕ(r, θ, φ, t) = 0 (8.137)

in spherical polar coordinates. To apply separation of variables, we set

ϕ = eiωtY l
m(θ, φ)χ(r), (8.138)

and find that
d2χ

dr2
+

2

r

dχ

dr
− l(l + 1)

r2
χ+

ω2

c2
χ = 0. (8.139)

Substitute χ = r−1/2R(r) and we have

d2R

dr2
+

1

r

dR

dr
+

(

ω2

c2
− (l + 1

2
)2

r2

)

R = 0. (8.140)

This is Bessel’s equation with ν2 → (l + 1
2
)2. Therefore the general solution

is
R = AJl+ 1

2

(kr) +BJ−l− 1

2

(krr) , (8.141)

where k = |omega|/c. Now inspection of the series definition of the Jν reveals
that

J 1

2

(x) =

√

2

πx
sin x, (8.142)

J− 1

2

(x) =

√

2

πx
cos x, (8.143)

so these Bessel functions are actually elementary functions. This is true of
all Bessel functions of half-integer order, ν = ±1/2, ±3/2, . . .. We define the
spherical Bessel functions by2

jl(x) =

√
π

2x
Jl+ 1

2

(x), (8.144)

nl(x) = (−1)l+1

√
π

2x
J−(l+ 1

2
)(x). (8.145)

2We are using the definitions from Schiff’s Quantum Mechanics .
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The first few are

j0(x) =
1

x
sin x,

j1(x) =
1

x2
sin x− 1

x
cos x,

j2(x) =
(

3

x3
− 1

x

)

sin x− 3

x2
cos x,

n0(x) = −1

x
cos x,

n1(x) = − 1

x2
cos x− 1

x
sin x,

n2(x) = −
(

3

x3
− 1

x

)

cos x− 3

x2
sin x.

Despite the appearance of negative powers of x, the jn(x) are all finite at
x = 0. The nn(x) all diverge to −∞ as x→ 0. In general

jn(x) = fn(x) sin x+ gn(x) cos(x), (8.146)

nn(x) = −fn(x) cos(x)− gn(x) sin x, (8.147)

where fn(x) and g(x) are polynomials in 1/x.
We also define the spherical Hankel functions by

h
(1)
l (x) = jl(x) + inl(x), (8.148)

h
(2)
l (x) = jl(x)− inl(x). (8.149)

These behave like

h
(1)
l (x) ∼ 1

x
ei(x−[n+1]π/2), (8.150)

h
(2)
l (x) ∼ 1

x
e−i(x−[n+1]π/2), (8.151)

at large x.
The solution to the wave equation regular at the origin is therefore a sum

of terms such as

ϕk,l,m(r, θ, φ, t) = jl(kr)Y
l
m(θ, φ)e−iωt, (8.152)

where ω = ±ck, with k > 0. For example, the plane wave eikz has expansion

eikz = eikr cos θ =
∞∑

l=0

(2l + 1)iljl(kr)Pl(cos θ). (8.153)
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Example: Peierls’ Problem. Critical Mass. The core of a fast breeder reactor
consists of a sphere of fissile 235U of radius R. It is surrounded by a thick
shell of non-fissile material which acts as a neutron reflector, or tamper .

R

DF

D
T

Fast breeder reactor.
In the core, the fast neutron density n(r, t) obeys

∂n

∂t
= ν n+DF∇2n. (8.154)

Here the term with ν (≈ 108 sec−1) accounts for the production of additional
neutrons due to induced fission. The term with DF (≈ 6 × 109 cm2 sec−1)
describes the diffusion of the fast neutrons. In the tamper the neutron flux
obeys

∂n

∂t
= DT∇2n. (8.155)

Both the neutron density n and flux j ≡ DF,T∇n, are continuous across
the interface between the two materials. Find an equation determining the
critical radius Rc above which the neutron density grows without bound.
Show that the critical radius for an assembly with a tamper consisting of 238U
(DT = DF ) is one-half of that for a core surrounded only by air (DT =∞),
and so the use of a thick 238U tamper reduces the critical mass by a factor
of eight.

Factorization and Recurrence

The equation obeyed by the spherical Bessel function is

−d
2χl
dx2
− 2

x

dχl
dx

+
l(l + 1)

x2
χl = k2χl, (8.156)
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or, in Sturm-Liouville form,

− 1

x2

d

dx

(

x2dχl
dx

)

+
l(l + 1)

x2
χl = k2χl. (8.157)

The corresponding differential operator is formally self-adjoint with respect
to the inner product

〈f, g〉 =
∫

(f ∗g)x2dx. (8.158)

Now, the operator

Dl = − d2

dx2
− 2

x

d

dx
+
l(l + 1)

x2
(8.159)

factorizes as

Dl =

(

− d

dx
+
l − 1

x

)(

d

dx
+
l + 1

x

)

, (8.160)

or as

Dl =

(

d

dx
+
l + 2

x

)(

− d

dx
+
l

x

)

. (8.161)

Since, with respect to the w = x2 inner product, we have

(

d

dx

)†
= − 1

x2

d

dx
x2 = − d

dx
− 2

x
, (8.162)

we can write

Dl = A†
lAl = Al+1A

†
l+1, (8.163)

where

Al =

(

d

dx
+
l + 1

x

)

. (8.164)

From this we can deduce

Aljl ∝ jl−1, (8.165)

A†
l+1jl ∝ jl+1. (8.166)

Actually the constants of proportionality are in each case unity. The same
formulæ hold with jl → nl.
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8.4 Singular Endpoints

In this section we will exploit our understanding of the Laplace eigenfunctions
in spherical and polar coordinates to explore Weyl’s theory of self adjoint
boundary conditions at singular endpoints. We also connect it with concepts
from scattering theory.

8.4.1 Weyl’s Theorem

Consider the Sturm-Liouville eigenvalue problem

−[p(r)y′)]′ + q(r)y = λw(r)y (8.167)

on the interval [0, R]. Here p(r) q(r) and w(r) are all supposed real so the
equation is formally self-adjoint with respect to the inner product

〈u, v〉w =
∫ R

0
wu∗v dr. (8.168)

The endpoint x = 0 is singular if p(0) = 0. When this is so, we will not be
able to impose self-adjoint boundary conditions of our accustomed form

ay(0) + by′(0) = 0 (8.169)

because one or both of y(r) and y′(r) will diverge at r = 0. The various
possibilites are ennumerated by by Weyl’s theorem:

Theorem (Weyl, 1910): Suppose that r = 0 is a singular point and r = R a
regular point of the differential equation (8.167). Then

I. Either:
a) Limit-circle case: There exists a λ0 such that both solutions of

(8.167) have convergent w norm in the vicinity of r = 0. In this
case both solutions have convergent w norm for all values of λ.

Or
b) limit-point case : No more than one solution has convergent w

norm for any λ.
II. In either case, whenever Imλ 6= 0, there is at least one finite-norm

solution. When λ lies on the real axis there may or may not exist a
finite norm solution.



248 CHAPTER 8. SPECIAL FUNCTIONS I

We will not attempt to prove Weyl’s theorem. The proof is not difficult and
may be found in many standard texts3, but it is just a little more technical
than the level of this text. We will instead illustrate it with enough examples
to make the result plausible, and its practical consequences clear.

When we come to construct the Green function G(r, r′;λ) obeying

−[pG]′ + (q − λw)G = δ(r − r′) (8.170)

we are obliged to choose a normalizable function for the r < r′ solution,
because otherwise the range of G will not be in L2[0, R]. When we are in the
limit point case, and Imλ 6= 0 there is a unique choice for this function, a
unique Green function, and hence a unique self-adjoint operator of which G is
the inverse. When λ is on the real axis then there may be no such functions,
andG cannot exist. This will occur only when λ is in the continuous spectrum
of the differential operator.

When we have the limit-circle case there is more than one choice and
hence more than one way of obtaining a self-adjoint operator. How do we
characterize the boundary conditions to which these corespond?

Suppose that the two normalizable solutions for λ = λ0 are y1(r) and
y2(r). The proof of Weyl’s theorem reveals that once we are sufficiently close
to r = 0 all solutions behave as a linear combination of these two, and we
can therefore impose as a boundary condition that the allowed solutions be
proportional to a specified real linear combination

y(r) ∼ ay1(r) + by2(r), r → 0. (8.171)

This is a natural generalization of the regular case, where we have solutions
y1(r), y2(r) with boundary conditions y1(0) = 1, y′1(0) = 0, so y1(r) ∼ 1,
and y2(0) = 0, y′2(0) = 1, so y2(r) ∼ r. The regular self-adjoint boundary
condition

au(0) + bu′(0) = 0 (8.172)

with real a, b then forces y(r) to behave as

y(r) ∼ by1(r)− ay2(r) ∼ b 1− a r, r → 0. (8.173)

Example: Consider the radial equation that arises when we separate the
Laplacian in spherical polar coordinates.

−
(

d

dr
r2dψ

dr

)

+ l(l + 1)ψ = k2r2ψ. (8.174)

3For example: Ivar Stackgold Boundary Value Problems of Mathematical Physics , Vol-
ume I (SIAM 2000).



8.4. SINGULAR ENDPOINTS 249

When k = 0 this has solutions ψ = rl, r−l−1. For non-zero l only the first of
the normalization integrals

∫ R

0
r2lr2 dr,

∫ R

0
r−2l−2r2 dr (8.175)

is finite. Thus, for for l 6= 0, we are in the limit-point case, and the boundary
condition at the origin is uniquely determined by the requirement that the
solution be normalizable.

When l = 0, however, the two solutions are ψ1(r) = 1 and ψ2(r) = 1/r.
Both integrals

∫ R

0
r2 dr,

∫ R

0
r−2r2 dr (8.176)

converge and we are in the limit-circle case.
For l = 0 and general k, the solutions can be taken to be

ψ1,k(r) = j0(kr) =
sin kr

kr
, ψ2,k(r) = −kn0(kr) =

cos kr

r
(8.177)

and ψ1,k ∼ 1 and ψ2,k ∼ 1/r near r = 0. This is the same behaviour as the
k = 0 solutions, and so both remain normalizable in conformity with Weyl’s
theorem.

We obtain a self-adjoint operator if we choose a constant as and demand
that all functions in the domain be proportional to

ψ(r) ∼ 1− as
r

(8.178)

when we are sufficiently close to r = 0. If we write the solution with this
boundary condition as

ψk(r) =
sin(kr + δ)

r
= cos δ

(

sin(kr)

r
+ tan δ

cos(kr)

r

)

∼ k cos δ

(

1 +
tan δ

kr

)

, (8.179)

we read off the phase shift δ as

tan δ(k) = −kas. (8.180)

These boundary conditions arise in quantum mechanics when we study
the potential scattering of particles whose de Broglie wavelength is much
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larger than the range of the potential. The incident wave is unable to resolve
any of the internal structure of the potential and perceives it only as a singular
point at the origin. In this context the constant as is called the scattering

length. This physical model explains why only the l = 0 partial waves have a
choice of boundary condition: particles with angular momentum l 6= 0 miss
the origin by a distance rmin = l/k and never see the potential.
Example: Consider the radial part of the Laplace eigenvalue problem in two
dimensions.

−d
2ψ

dr2
− 1

r

dψ

dr
+
m2ψ

r2
= k2ψ. (8.181)

When k2 = 0, the m = 0 equation has solutions ψ1(r) = 1 and ψ2(r) = ln r.
Both these are normalizable, and we are in the limit-circle case at r = 0.
When k2 > 0 the solutions are

J0(kr) = 1− 1

4
(kr)2 + · · · .

N0(kr) =
(

2

π

)

[ln(kr/2) + γ] + · · · , (8.182)

and again the short distance behaviour of the general solution coincides with
that of the k2 = 0 solution. The self-adjoint boundary conditions at r → r
are therefore that all allowed functions be proportional to

1 + α ln r (8.183)

with α a real constant.
Exercise: Two-dimensional delta-function potential. Consider the quantum
mechanical problem (

−∇2 + V (|r|)
)

ψ = Eψ

with V an attractive circular square well.

V (r) =
{−λ/πa2, r < a

0, r > a.

The factor of πa2 has been inserted to make this a regulated version of

V (r) = −λδ3(r). Let µ =
√

λ/πa2.

i) By matching the functions

ψ(r) ∝
{
J0 (µr) , r < a
K0(κr), r > a,
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at r = a, show that in the limit a→ 0, we can scale λ→∞ in such a
way that there remains a single bound state with binding energy

E0 ≡ κ2 =
4

a2
e−2γe−4π/λ.

ii) Show that the associated wavefunction obeys

ψ(r)→ 1 + α ln r, r → 0

where

α =
1

γ + ln κ/2
.

Observe that this can be any real number, and so the entire range of
possible boundary conditions can be obtained by specifying the binding
energy of an attractive potential.

iii) Assume that we have fixed the boundary conditions by specifying κ,
and consider the scattering of unbound particles off the origin. We
define phase shift δ(k) so that

ψk(r) = cos δJ0(kr)− sin δN0(kr)

∼
√

2

πkr
cos(kr − π/4 + δ), r →∞.

Show that

cot δ =
(

2

π

)

ln k/κ.

Exercise: Three-dimensional delta-function potential. Repeat the calculation
of the previous exercise for the case of a three-dimensional delta-function
potential

V (r) =
{−λ/(4πa3/3), r < a

0, r > a.

i) Show that in the limit a → 0, the delta-function strength λ can be
scaled to infinity so that the scattering length

as =

(

λ

4πa2
− 1

a

)−1

remains finite.
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ii) Show that when this as is positive, the attractive potential supports a
single bound state with external wavefuction

ψ(r) ∝ 1

r
e−κr

where κ = a−1
s .

Exercise: The pseudo-potential. Consider a particle of mass µ confined in
a large sphere of radius R. At the center of the sphere is a singular poten-
tial whose effects can be parameterized by its scattering length as and the
resultant phase shift

δ(k) ≈ tan δ(k) = −ask.
i) Show that the presence of the singular potential changes the energy En

of the l = 0, kn = nπ/R eigenstate by an amount

∆En =
h̄2

2µ

2ask
2
n

R
.

ii) Show that the unperturbed normalized wavefunction is

ψkn
(r) =

√

1

2πR

sin knr

r
.

iii) Show the energy shift can be written as if it were the result of applying
first-order perturbation theory

∆En ≈ 〈n|Vps|n〉 ≡
∫

d3r|ψkn
|2Vps(r)

to a pseudo-potential

Vps(r) =
4πash̄

2

2µ
δ3(r).

Although the energy shift is small, it is not a first order-effect, and even the
sign of this “potential” may differ from the sign of the actual short distance
potential4.

4The pseudo-potential formula is often used to parameterize the pairwise interaction
of a dilute gas of particles of mass m, where it reads

Vps(r) =
4πash̄

2

m
δ3(r).

The factor of two difference in the denominator arises because the µ in the excercise must
be understood as the reduced mass µ = m2/(m + m) = m/2 of the pair of interacting
particles.
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Example: The “l=0” part of the Laplace operator in n dimensions is

d2

dr2
+

(n− 1)

r

d

dr
.

This is formally self adjoint with respect to the natural inner product

〈u, v〉n =
∫ ∞

0
rn−1u∗v dr. (8.184)

The zero eigenvalue solutions are ψ1(r) = 1 and ψ2(r) = r2−n. The second of
these ceases to be normalizable once n ≥ 4. In four dimensions and above,
therefore, we are in the limit-point case and no point interaction — no matter
how strong — can affect the physics.
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Chapter 9

Integral Equations

A problem involving a differential equation can often be recast as one involv-
ing an integral equation. Sometimes this new formulation suggests a method
of attack that would not have been apparent in the original language. It is
also sometimes easier to extract general properties of the solution when the
problem is expressed as an integral equation.

9.1 Illustrations

Here are some examples:
A boundary-value problem: Consider the differential equation for the un-
known u(x)

−u′′ + λV (x)u = 0 (9.1)

with the boundary conditions u(0) = u(L) = 0. To turn this into an integral
equation we introduce the Green function

G(x, y) =

{ 1
L
x(y − L), 0 ≤ x ≤ y ≤ L,

1
L
y(x− L), 0 ≤ y ≤ x ≤ L,

(9.2)

so that

− d2

dx2
G(x, y) = δ(x− y). (9.3)

Then we can pretend that V (x)u(x) in the differential equation is a known
source term, and substitute it for “f(x)” in the usual Green function solution.
We end up with

u(x) + λ
∫ L

0
G(x, y)V (y)u(y) dx = 0. (9.4)

255
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This integral equation for u has not not solved the problem, but is equivalent
to the original problem. Note, in particular, that the boundary conditions
are implicit in this formulation: if we set x = 0 or L in the second term, it
becomes zero because the Green function is zero at those points. The integral
equation then says that u(0) and u(L) are both zero.
An intitial value problem: Consider essentially the same differential equation
as before, but now with intial data:

−u′′ + V (x)u = 0, u(0) = 0, u′(0) = 1. (9.5)

In this case, we claim that the inhomogeneous integral equation

u(x)−
∫ x

0
(x− t)V (t)u(t) dt = x, (9.6)

is equivalent to the given problem. Let us check the claim. First, the initial
conditions. Rewrite the integral equation as

u(x) = x +
∫ x

0
(x− t)V (t)u(t) dt, (9.7)

so it is manifest that u(0) = 0. Now differentiate to get

u′(x) = 1 +
∫ x

0
V (t)u(t) dt. (9.8)

This shows that u′(0) = 1, as required. Differentiating once more confirms
that u′′ = V (x)u.

These examples reveal that one advantage of the integral equation for-
mulation is that the boundary or intial value conditions are automatically
encoded in the integral equation itself, and do not have to be added as riders.

9.2 Classification of Integral Equations

The classification of linear integral equations is best described by a list:
A) i) Limits on integrals fixed ⇒ Fredholm equation.

ii) One integration limit is x ⇒ Volterra equation.
B) i) Unkown under integral only ⇒ Type I.

ii) Unknow also outside integral ⇒ Type II.
C) i) Homogeneous.
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ii) Inhomogeneous.
For example,

u(x) =
∫ L

0
G(x, y)u(y) dx (9.9)

is a Type II homogeneous Fredholm equation, whilst

u(x) = x +
∫ x

0
(x− t)V (t)u(t) dt (9.10)

is a Type II inhomogeneous Volterra equation.
The equation

f(x) =
∫ b

a
K(x, y)u(y) dy, (9.11)

an inhomogeneous Type I Fredholm equation, is analogous to the matrix
equation

Kx = b. (9.12)

On the other hand, the equation

u(x) =
1

λ

∫ b

a
K(x, y)u(y) dy, (9.13)

a homogeneous Type II Fredholm equation, is analogous to the matrix eigen-
value problem

Kx = λx. (9.14)

Finally,

f(x) =
∫ x

a
K(x, y)u(y) dy (9.15)

an inhomogeneous Type I Volterra equation, is the analogue of a system of
linear equations involving an upper triangular matrix.

9.3 Integral Transforms

When a Fredholm Kernel is of the form K(x−y), with x and y taking values
on the entire real line, then it is translation invariant, and we can solve the
integral equation by using the Fourier transformation

ũ(k) = F(u) =
∫ ∞

−∞
u(x)eikx dx (9.16)

u(x) = F−1(ũ) =
∫ ∞

−∞
ũ(k)e−ikx

dk

2π
(9.17)
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Integral equations involving translation invariant Volterra kernels usually
succumb to a Laplace transform

ũ(p) = L(u) =
∫ ∞

0
u(x)e−px dx (9.18)

u(x) = L−1(ũ) =
1

2πi

∫ γ+i∞

γ−i∞
ũ(p)epx dp. (9.19)

The Laplace inversion formula is the Bromwich contour integral, where γ is
chosen so that all the sigularities of ũ(p) lie to the left of the contour. In
practice one finds the inverse Laplace transform by using a table of Laplace
transforms, such as the Bateman tables of integral transforms mentioned in
the introduction to chapter 8.

For kernels of the form K(x/y) the Mellin transform,

ũ(σ) = M(u) =
∫ ∞

0
u(x)xσ−1 dx (9.20)

u(x) = M−1(ũ) =
1

2πi

∫ γ+i∞

γ−i∞
ũ(σ)x−σ dσ, (9.21)

is the tool of choice. Again the inversion formula requires a Bromwich contour
integral, and so usually recourse to tables of Mellin transforms.

9.3.1 Fourier Methods

Consider the integral equation

u(x) = f(x) + λ
∫ ∞

−∞
K(x− y)u(y) dy, (9.22)

where we are given f(x) and λ and are required to find u(x). The convolution
theorem for Fourier transforms allows us to write this as

ũ(k) = f̃(k) + λK̃(k)ũ(k), (9.23)

where
ũ(k) =

∫ ∞

−∞
eikxu(x), etc. (9.24)

Thus

ũ(k) =
f̃(k)

1− λK̃(k)
, (9.25)

and u(x) is found by inverting the transform, ũ(k).
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Wiener-Hopf equations

As we have seen, equations of the form
∫ ∞

−∞
K(x− y) u(y)dy = f(x), −∞ < x <∞ (9.26)

with translation invariant kernels are easily solved for u by Fourier trans-
forms.
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The matrix form of the equation
∫∞
−∞K(x− y)u(y) dy = f(x)

This equation can be though of as involving a matrix whose entries depend
only on the distance of the element from the main diagonal.

The apparently innocent modification
∫ ∞

0
K(x− y)u(y) dy = f(x), 0 < x <∞ (9.27)

leads to an equation that is much harder to deal with. In these Wiener-Hopf

equations, we are only interested in the upper left quadrant of the matrix.
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u fK
=

The matrix K(x− y) still has entries depending only on their distance from
the main diagonal, and we are still using all values of K(x) for −∞ < x <∞.
If we were to try to solve this new equation by taking a Fourier transform of
both sides, we would need to integrate over the entire real line and, therefore,
would need to know the values of f(x) for negative values of x — but we
have not been given this information (and do not really need it). The trick
is to make the replacement

f(x)→ f(x) + g(x), (9.28)
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where f(x) is non-zero only for positive x, and g(x) non-zero only for negative
x, and then to solve

∫ ∞

0
K(x− y)u(y) dy =

{
f(x), 0 < x <∞,
g(x), −∞ < x < 0,

(9.29)

so as to find u and g at the same time.
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The matrix form of the equation with both f and g
This is not easy however, and requires the use of complex analysis. We will
return to this problem in MMB.

9.3.2 Laplace Transform Methods

Much easier is the Volterra problem
∫ x

0
K(x− y)u(y) dy = f(x), 0 < x <∞. (9.30)

Here, the value of K(x) is only needed for positive x, and so we can Laplace
transform over the positive real axis.

	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	
	�	�	�	�	�	


�
�
�
�


�
�
�
�


�
�
�
�


�
�
�
�


�
�
�
�


�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������
���������


�
�


�
�


�
�


�
�


�
�


�����
�����
�����
�����
�����

���
���
���
���
���

���
���
���
���
���

0 u f0
K

0 0 0 0
=

We only require the value of K(x) for x positive

Abel’s equation

As an example of Laplace methods, consider Abel’s equation

f(x) =
∫ x

0

1√
x− yu(y) dy. (9.31)
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Here it is clear that we need f(0) = 0 for the equation to make sense. We
have met this integral transformation before in the definition of the “half-
derivative”. It is an example of the more general equation of the form

f(x) =
∫ x

0
K(x− y)u(y) dy. (9.32)

Let us take the Laplace transform of both sides of (9.32):

Lf(p) =
∫ ∞

0
e−px

(∫ x

0
K(x− y)u(y) dy

)

dx

=
∫ ∞

0
dx
∫ x

0
dy e−pxK(x− y)u(y). (9.33)

Now we make the change of variables

x = ξ + η,

y = η. (9.34)

x

y

x

y
x=y

 a) b)

ξ=0

dx dξ

Regions of integration for the convolution theorem: a) Integrating over y at
fixed x, then over x; b) Integrating over η at fixed ξ, then over ξ.
This has Jacobian

∂(x, y)

∂(ξ, η)
= 1, (9.35)

and the integral becomes

Lf(p) =
∫ ∞

0

∫ ∞

0
e−p(ξ+η)K(ξ)u(η) dξ dη

=
∫ ∞

0
e−pξK(ξ) dξ

∫ ∞

0
e−pηu(η) dη

= LK(p) Lu(p). (9.36)
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Thus the Laplace transform of a Volterra convolution is the product of the
Laplace transforms. We can now invert

u = L−1
(

Lf/LK). (9.37)

For Abel’s equation, we have

K(x) =
1√
x
, (9.38)

the Laplace transform of which is

LK(p) =
∫ ∞

0
x

1

2
−1e−px dx = p−1/2Γ

(
1

2

)

= p−1/2
√
π. (9.39)

Therefore, the Laplace transform of the solution u(x) is

Lu(p) =
1√
π
p1/2(Lf) =

1

π
(
√
πp−1/2pLf). (9.40)

Now, Laplace transforms have the property that

pLF = L
(

d

dx
F

)

, (9.41)

as may be seen by an integration by parts in the definition. Using this, and
depending on whether we put the p next to f or outside the parenthesis, we
conclude that the solution of Abel’s equation can be written in two equivalent
ways:

u(x) =
1

π

d

dx

∫ x

0

1√
x− yf(y) dy =

1

π

∫ x

0

1√
x− yf

′(y) dy. (9.42)

Proving the equality of these two expressions was a problem we set ourselves
in chapter 6.

Here is another way of establishing the equality: Assume for the moment
that K(0) is finite, and that, as we have already noted, f(0) = 0. Then,

d

dx

∫ x

0
K(x− y)f(y) dy (9.43)
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is equal to

K(0)f(x) +
∫ x

0
∂xK(x− y)f(y) dy,

= K(0)f(x)−
∫ x

0
∂yK(x− y)f(y) dy

= K(0)f(x)−
∫ x

0
∂y
(

K(x− y)f(y)
)

dy +
∫ x

0
K(x− y)f ′(y) dy

= K(0)f(x)−K(0)f(x)−K(x)f(0) +
∫ x

0
K(x− y)f ′(y) dy

=
∫ x

0
K(x− y)f ′(y) dy. (9.44)

Since K(0) cancelled out, we need not worry that it is divergent! More
rigorously, we should regularize the improper integral by raising the lower
limit on the integral to a small positive quantity, and then taking the limit
that this goes to zero at the end of the calculation.

9.4 Separable Kernels

Let

K(x, y) =
N∑

i=1

pi(x)qi(y), (9.45)

where {pi} and {qi} are two linearly independent sets of functions. The
range of K is therefore the span 〈pi〉 of the set {pi}. Such kernels are said
to be separable. The theory of integral equations containing such kernels is
especially transparant.

9.4.1 Eigenvalue problem

Consider the eigenvalue problem

λu(x) =
∫

D
K(x, y)u(y) dy (9.46)

for a separable kernel. Here D is some range of integration, and x ∈ D If
λ 6= 0, we know that u has to be in the range of K, so we can write

u(x) =
∑

i

ξipi(x). (9.47)
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Inserting this into the integral, we find that our problem reduces to the finite
matrix eigenvalue equation

λξi = Aijξj, (9.48)

where

Aij =
∫

D
qi(y)pj(y) dy. (9.49)

Matters are especially simple when qi = p∗i . In this case Aij = A∗
ji so the

matrix A is Hermitian, and therefore has N linearly independent eigenvec-
tors. Observe that none of the N associated eigenvalues can be zero. To see
this, suppose that v(x) =

∑

i ζipi(x) is an eigenvector with zero eigenvalue.
In other words, suppose that

0 =
∑

i

pi(x)
∫

D
p∗i (y)pj(y)ζj dy. (9.50)

Since the pi(x) are linearly independent, we must have

0 =
∫

D
p∗i (y)pj(y)ζj dy = 0, (9.51)

for each i separately. Multiplying by ζ∗i and summing we find

0 =
∫

D
|
∑

j

pj(y)ζj|2 dy, (9.52)

and v(x) itself must have been zero. The remaining (infinite in number)
eigenfunctions span 〈qi〉⊥ and have λ = 0.

9.4.2 Inhomogeneous problem

It is easiest to discuss inhomogeneous separable-kernel problems by example.
Consider the equation

u(x) = f(x) + µ
∫ 1

0
K(x, y)u(y) dy, (9.53)

where K(x, y) = xy. Here, f(x) and µ are given, and u(x) is to be found.
We know that u(x) must be of the form

u(x) = f(x) + ax, (9.54)
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and the only task is to find the constant a. We plug u into the integral
equation and, after cancelling a common factor of x, we find

a = µ
∫ 1

0
yu(y) dy = µ

∫ 1

0
yf(y) dy+ aµ

∫ 1

0
y2 dy. (9.55)

The last integral is equal to µa/3, so

a
(

1− 1

3
µ
)

= µ
∫ 1

0
yf(y) dy, (9.56)

and finally

u(x) = f(x) + x
µ

(1− µ/3)

∫ 1

0
yf(y) dy. (9.57)

Notice that this solution is meaningless if µ = 3. We can relate this to the
eigenvalues of the kernel K(x, y) = xy. The eigenvalue problem for this
kernel is

λu(x) =
∫ 1

0
xyu(x) dy. (9.58)

On substituting u(x) = ax, this reduces to λax = ax/3, and so λ = 1/3. All
other eigenvalues are zero. Our inhomogeneous equation was of the form

(1− µK)u = f (9.59)

and the operator (1−µK) has an infinite set of eigenfunctions with eigenvalue
1, and a single eigenfunction, u0(x) = x, with eigenvalue (1 − µ/3). The
eigenvalue becomes zero, and hence the inverse ceases to exist, when µ = 3.

A solution to the problem (1−µK)u = f may still exist even when µ = 3.
But now, applying the Fredholm alternative, we see that f must satisfy the
condition that it be orthogonal to all solutions of (1− µK)†v = 0. Since our
kernel is Hermitian, this means that f must be orthogonal to the zero mode
u0(x) = x. For the case of µ = 3, the equation is

u(x) = f(x) + 3
∫ 1

0
xyu(y) dy, (9.60)

and to have a solution f must obey
∫ 1
0 yf(y) dy = 0. We again set u =

f(x) + ax, and find

a = 3
∫ 1

0
yf(y) dy+ a3

∫ 1

0
y2 dy, (9.61)

but now this reduces to a = a. The general solution is therefore

u = f(x) + ax (9.62)

with a arbitrary.
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9.5 Singular Integral Equations

Equations involving principal-part integrals, such as

P

π

∫ 1

−1
ϕ(x)

1

x− y dx = f(y), (9.63)

in which f is known and we are to find ϕ, are called singular integral equa-

tions. Their solution depends on what conditions are imposed on the un-
known function ϕ(x) at the endpoints of the integration region. We will
consider only the simplest examples here.1

9.5.1 Solution via Tchebychef Polynomials

Recall the definition of the Tchebychef polynomials from chapter 2. We set

Tn(x) = cos(n cos−1 x), (9.64)

Un−1(x) =
sin(n cos−1 x)

sin(cos−1 x)
=

1

n
T ′
n(x). (9.65)

These are the Tchebychef Polynomials of the first and second kind, respec-
tively. The orthogonality of the functions cosnθ and sinnθ over the interval
[0, π] translates into

∫ 1

−1

1√
1− x2

Tn(x)Tm(x) dx = hn δnm, n,m ≥ 0, (9.66)

where h0 = π, hn = π/2, n > 0, and

∫ 1

−1

√
1− x2 Un−1(x)Um−1(x) dx =

π

2
δnm, n,m > 0. (9.67)

Either of the sets {Tn(x)} and {Un(x)} are complete, and any L2 function
on [−1, 1] can be expanded in terms of them.

We also have the identities

P
∫ 1

−1

1√
1− x2

1

x− y dx = 0, (9.68)

P
∫ 1

−1

1√
1− x2

Tn(x)
1

x− y dx = π Un−1(y), n > 0, (9.69)

1The classic text is N. I. Muskhelishvili Singular Integral Equations .
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and

P
∫ 1

−1

√
1− x2 Un−1(x)

1

x− y dx = −π Tn(y). (9.70)

These are equivalent to the trigonometric integrals

P
∫ π

0

cosnθ

cos θ − cosφ
dθ = π

sinnφ

sin φ
, (9.71)

and

P
∫ π

0

sin θ sin nθ

cos θ − cosφ
dθ = −π cosnφ, (9.72)

respectively. We will motivate and derive these formulæ at the end of this
section.

From these principal-part integrals we can solve the integral equation

P

π

∫ 1

−1
ϕ(x)

1

x− y dx = f(y), y ∈ [−1, 1], (9.73)

for ϕ in terms of f , subject to the condition that ϕ be bounded at x = ±1.
We will see that no solution exists unless f satisfies the condition

∫ 1

−1

1√
1− x2

f(x) dx = 0, (9.74)

but if f does satisfy this condition then the solution is

ϕ(y) = −
√

1− y2

π
P
∫ 1

−1

1√
1− x2

f(x)
1

x− y dx. (9.75)

To understand why this is the solution, and why there is a condition on f ,
expand

f(x) =
∞∑

n=1

bnTn(x). (9.76)

Here, the condition on f translates into the absence of a term involving
T0 ≡ 1 in the expansion. Then,

ϕ(x) =
√

1− x2
∞∑

n=1

bnUn−1(x), (9.77)

with bn the coeffecients that appear in the expansion of f , solves the problem.
That this is so may be seen on substituting this expansion for ϕ into the



268 CHAPTER 9. INTEGRAL EQUATIONS

integral equation and using second of the principal-part identities. Note that
that this identity provides no way to generate a term with T0; hence the
constraint. Next we observe that the expansion for ϕ is generated term-by-
term from the expansion for f by substituting this into the integral form of
the solution and using the first principal-part identity.

Similarly, we can solve the for ϕ(y) in

P

π

∫ 1

−1
ϕ(x)

1

x− y dx = f(y), y ∈ [−1, 1], (9.78)

where now ϕ is permitted to be singular at x = ±1. The solution is now

ϕ(y) =
1

π
√

1− y2
P
∫ 1

−1

√
1− x2f(x)

1

x− y dx+
C√

1− y2
, (9.79)

where C is an arbitrary constant. To see this, expand

f(x) =
∞∑

n=1

anUn−1(x), (9.80)

and then

ϕ(x) =
1√

1− x2

( ∞∑

n=1

anTn(x) + CT0

)

, (9.81)

satisfies the equation for any value of the constant C. Again the expansion
for ϕ is generated from that of f by use of the second principal-part identity.

Explanation of the Principal-Part Identities

Suppose we want to solve

un+1 + un−1 − (2 cosφ)un = δn0, (?) (9.82)

for un. The eigenfunctions for the homogeneous problem

un+1 + un−1 = λun (9.83)

are
un = e±inθ, (9.84)

with eigenvalues λ = 2 cos θ. The solution to (9.82) is therefore given by

un =
∫ π

−π

einθ

2 cos θ − 2 cosφ

dθ

2π
=

1

2i sinφ
ei|n|φ, Imφ > 0. (9.85)
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The expression for the integral can be confirmed by noting that it is the
evaluation of the Fourier coefficient of the elementary double geometric series

∞∑

n=−∞
e−inθei|n|φ =

2i sinφ

2 cos θ − 2 cosφ
, Imφ > 0. (9.86)

By using einθ = cosnθ + i sinnθ and observing that the sine term integrates
to zero, we have

∫ π

0

cos nθ

cos θ − cosφ
dθ =

π

i sinφ
(cosnφ+ i sin nφ), (9.87)

where n > 0, and again we have taken Imφ > 0. Now take φ on to the real
axis and apply the Plemelj formula. We find

P
∫ π

0

cosnθ

cos θ − cosφ
dθ = π

sinnφ

sin φ
. (9.88)

This is the first principal-part integral indentity. The second integral,

P
∫ π

0

sin θ sin nθ

cos θ − cos φ
dθ = −πcos nφ, (9.89)

can be obtained by using the first, coupled with the addition theorems for
the sine and cosine.

9.6 Some Functional Analysis

Here is a quick overview of some functional analysis for those readers who
know what it means for a set to be compact.

9.6.1 Bounded and Compact Operators

i) A linear operator K : L2 → L2 is bounded iff there is a positive number
M such that

‖Kx‖ ≤M‖x‖, ∀x ∈ L2. (9.90)

If K is bounded then smallest such M is the norm of K, whch we
denote by ‖K‖ . Thus

‖Kx‖ ≤ ‖K‖ ‖x‖. (9.91)
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For a finite-dimensional matrix, ‖K‖ is the largest eigenvalue of K. A
linear operator is a continuous function of its argument iff it is bounded.
“Bounded” and “continuous” are therefore synonyms. Linear differen-
tial operators are never bounded, and this is the source of most of the
complications in their theory.

ii) If the operators A and B are bounded, then so is AB and

‖AB‖ ≤ ‖A‖‖B‖. (9.92)

iii) A linear operator K : L2 → L2 is compact (or completely continuous)
iff it maps bounded sets to relatively compact sets (sets whose closure is
compact). Equivalently, K is compact iff the image sequence, Kxn, of
every bounded sequence of functions, xn, contains a convergent subse-
quence. Compact⇒ continuous, but not vice versa. Given any positive
number M , a compact self-adjoint operator has only a finite number of
eigenvalues with λ outside the interval [−M,M ]. The eigenvectors un
with non-zero eigenvalues span the range of the operator. Any vector
can therefore be written

u = u0 +
∑

i

aiui, (9.93)

where u0 lies in the null space of K. The Green function of a linear
differential operator defined on a finite interval is usually compact.

iv) If K is compact then
H = I +K (9.94)

is Fredholm. This means that H has a finite dimensional kernel and
co-kernel, and that the Fredholm alternative applies.

v) An integral kernel is Hilbert-Schmidt iff
∫

|K(ξ, η)|2 dξdη <∞. (9.95)

This means thatK can be expanded in terms of a complete orthonormal
set {φm} as

K(x, y) =
∞∑

n,m=1

Anmφn(x)φ
∗
m(y) (9.96)

in the sense that

‖
N,M
∑

n,m=1

Anmφnφ
∗
m −K‖ → 0. (9.97)
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Now the finite sum
N,M
∑

n,m=1

Anmφn(x)φ
∗
m(y) (9.98)

is automatically compact since it is bounded and has finite-dimensional
range. (The unit ball in a Hilbert space is relatively compact ⇔ the
space is finite dimensional). Thus, Hilbert-Schmidt implies that K is
approximated in norm by compact operators. But a limit of compact
operators is compact, so K itself is compact. Thus

Hilbert-Schmidt ⇒ compact.

It is easy to test a given kernel to see if it is Hilbert-Schmidt (simply
use the definition) and therein lies the utility of the concept.

If we have a Hilbert-Schmidt Green function g, we can reacast our differen-
tial equation as an integral equation with g as kernel, and this is why the
Fredholm alternative works for a large class of linear differential equations.
Example: Consider the Legendre equation operator

Lu = −[(1− x2)u′]′ (9.99)

on the interval [−1, 1] with boundary conditions that u be finite at the end-
points. This operator has normalized zero mode u0 = 1/

√
2, so it does not

have an inverse. There exists, however, a modified Green function g(x, x′)
that satisfies

Lu = δ(x− x′)− 1

2
. (9.100)

It is

g(x, x′) = ln 2− 1

2
− 1

2
ln(1 + x>)(1− x<), (9.101)

where x> is the greater of x and x′, and x< the lesser. We may verify that

∫ 1

−1

∫ 1

−1
|g(x, x′)|2 dxdx′ <∞, (9.102)

so g is Hilbert-Schmidt and therefore the kernel of a compact operator. The
eigenvalue problem

Lun = λnun (9.103)

can be recast as as the inetgral equation

µnun =
∫ 1

−1
g(x, x′)un(x

′) dx′ (9.104)
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with µn = λ−1
n . The compactness of g guarantees that there is a complete

set of eigenfunctions (these being the Legendre polynomials Pn(x) for n > 0)
having eigenvalues µn = 1/n(n+1). The operator g also has the eigenfunction
P0 with eigenvalue µ0 = 0. This example provides the justification for the
claim that the “finite” boundary conditions we adopted for the Legendre
equation in chpater 8 give us a self adjoint operataor.

Note that K(x, y) does not have to be bounded for K to be Hilbert-
Schmidt.
Example: The kernel

K(x, y) =
1

(x− y)α , |x|, |y| < 1 (9.105)

is Hilbert-Schmidt provided α < 1
2
.

Example: The kernel

K(x, y) =
1

2m
e−m|x−y|, x, y ∈ R (9.106)

is not Hilbert-Schmidt because |K(x − y)| is constant along the the lines
x − y = constant, which lie parallel to the diagonal. K has a continuous
spectrum consisting of all real numbers less than 1/m2. It cannot be compact,
therefore, but it is bounded, and ‖K‖ = 1/m2.

9.6.2 Closed Operators

One motivation for our including a brief account of functional analysis is that
the astute reader will have realized that some of the statements we have made
in earlier chapters appear inconsistent. We have asserted in chapter 2 that no
significance can be attached to the value of an L2 function at any particular
point — only integrated averages matter. In later chapters, though, we have
happily imposed boundary conditions that require these very functions to
take specified values at the endpoints of our interval. In this section we will
resolve this paradox. The apparent contradiction is intimately connected
with our imposing boundary conditions only on derivatives of lower order
than than that of the differential equation, but understanding why this is so
requires some analytical language.

Differential operators L are never continuous. We cannot deduce from
un → u that Lun → Lu. Differential operators can be closed however. A
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closed operator is one for which whenever a sequence un converges to a limit
u and at the same time the image sequence Lun also converges to a limit
f , then u is in the domain of L and Lu = f . The name is not meant to
imply that the domain of definition is closed, but instead that the graph of
L — this being the set {u, Lu} considered as a subset of L2[a, b]×L2[a, b] —
contains its limit points and so is a closed set.

i) The property of being closed is desirable because a closed operator has
a closed null-space: Suppose L is closed and we have a sequence such
that Lzn = 0, and zn → z. Then z is in the domain of L and Lz = 0.
A closed null-space is necessary prerequisite to satisfying the Fredholm
alternative.

ii) A deep result states that a closed operator defined on a closed domain
is bounded. Since they are always unbounded, the domain of a closed
differential operator can never be a closed set.

An operator may not be closed but may be closable, in that we can make it
closed by including additional functions in its domain. The essential require-
ment for closability is that we never have two sequences un and vn which
converge to the same limit, w, while Lun and Lvn both converge, but to
different limits. Closability is equivalent to requiring that if un → 0 and
Lun converges, then Lun converges to zero.

Example: Let L = d/dx. Suppose that un → 0 and Lun → f . If ϕ is a
smooth L2 function that vanishes at 0, 1, then

∫ 1

0
ϕf dx = lim

n→∞

∫ 1

0
ϕ
dun
dx

dx = − lim
n→∞

∫ 1

0
φ′un dx = 0. (9.107)

Here we have used the continuity of the inner product (a property that follows
from the Cauchy-Schwarz-Bunyakovsky inequality) to justify the interchange
the order of limit and integral. By the same arguments we used when dealing
with the calculus of variations, we deduce that f = 0. Thus d/dx is closable.

If an operator is closable, we may as well add the extra functions to its
domain and make it closed. Let us consider what closure means for the
operator

L =
d

dx
, D(L) = {y ∈ C1[0, 1] : y′(0) = 0}. (9.108)

Here, in fixing the derivative at the endpoint, we are imposing a boundary
condition of higher order than we ought.

Consider a sequence of differentiable functions ya which have vanishing
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derivative at x = 0, but tend in L2 to a function y whose derivative is non-
zero at x = 0.

a

ya
y

lima→0 ya = y in L2[0, 1] .

The derivative of these functions also converges in L2.

a

ay’ y’

y′a → y′ in L2[0, 1] .

If we want L to be closed, we should therefore extend the domain of definition
of L to include functions with non-vanishing endpoint derivative. We can also
use this method to add to the domain of L functions that are only piecewise

differentiable — i.e. functions with a discontinuous derivative.

Now consider what happens if we try to extend the domain of

L =
d

dx
, D(L) = {y, y′ ∈ L2 : y(0) = 0}, (9.109)

to include functions that do not vanish at the endpoint. Take a sequence of
functions ya that vanish at the origin, and converge in L2 to a function that
does not vanish at the origin:
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a

ya
y

1 1

lima→0 ya = y in L2[0, 1].

Now the derivatives converge towards the derivative of the limit function —
together with a delta function near the origin. The area under the functions
|y′a(x)|2 grows without bound and the sequence Lya becomes infinitely far
from the derivative of the limit function when distance is measured in the L2

norm.

a

a

1/a

y’

δ(x)

y′a → δ(x), but the delta function is not an element of L2[0, 1] .

We therefore cannot use closure to extend the domain to include these func-
tions.

This story repeats for differential operators of any order: If we try to
impose boundary conditions of too high an order, they are washed out in the
process of closing the operator. Boundary conditions of lower order cannot
be eliminated, however, and so make sense as statements involving functions
in L2.
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9.7 Series Solutions

9.7.1 Neumann Series

The geometric series
S = 1− x+ x2 − x3 + · · · (9.110)

converges to 1/(1 + x) provided |x| < 1. Suppose we wish to solve

(I + λK)ϕ = f (9.111)

where K is a an integral operator. It is then natural to write

ϕ = (I + λK)−1f = (1− λK + λ2K2 − λ3K3 + · · ·)f (9.112)

where

K2(x, y) =
∫

K(x, z)K(z, y) dz, K3(x, y) =
∫

K(x, z1)K(z1, z2)K(z2, y) dz1dz2,

(9.113)
and so on. This Neumann series will converge, and yield a solution to the
problem, provided that λ‖K‖ < 1.

9.7.2 Fredholm Series

A familiar result from high-school algebra is Cramer’s rule which gives the
solution of a set of linear equations in terms of ratios of determinants. For
example, the system of equations

a11x1 + a12x2 + a13x3 = b1,

a21x1 + a22x2 + a23x3 = b2,

a31x1 + a32x2 + a33x3 = b3,

has solution

x1 =
1

D

∣
∣
∣
∣
∣
∣
∣

b1 a12 a13

b2 a22 a23

b3 a32 a33

∣
∣
∣
∣
∣
∣
∣

, x2 =
1

D

∣
∣
∣
∣
∣
∣
∣

a11 b1 a13

a21 b2 a23

a31 b3 a33

∣
∣
∣
∣
∣
∣
∣

, x3 =
1

D

∣
∣
∣
∣
∣
∣
∣

a11 a12 b1
a21 a22 b2
a31 a32 b3

∣
∣
∣
∣
∣
∣
∣

,

where

D =

∣
∣
∣
∣
∣
∣
∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣
∣
∣
∣
∣
∣
∣

.
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Although not as useful as standard Gaussian elimination, Cramer’s rule is
useful as it is a closed-form solution. It is equivalent to the statment that
the inverse of a matrix is given by the transposed matrix of the co-factors,
divided by the determinant.

A similar formula for integral quations was given by Fredholm. The
equations he considered were of the form

(I + λK)ϕ = f. (9.114)

We motivate Fredholm’s formula by giving an expansion for the determinant
of a finite matrix. Let

D(λ) = det (I + λK) ≡

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 + λK11 λK12 · · · λK1n

λK21 1 + λK22 · · · λK2n
...

...
. . .

...
λKn1 λKn2 · · · 1 + λKnn

∣
∣
∣
∣
∣
∣
∣
∣
∣

, (9.115)

then

D(λ) =
n∑

m=0

λm

m!
Am, (9.116)

where A0 = 1, A1 = trK ≡ ∑iKii,

A2 =
n∑

i1,i2=1

∣
∣
∣
∣

Ki1i1 Ki1i2

Ki2i1 Ki2i2

∣
∣
∣
∣ , A3 =

n∑

i1,i2,i3=1

∣
∣
∣
∣
∣
∣
∣

Ki1i1 Ki1i2 Ki1i3

Ki2i1 Ki2i2 Ki2i3

Ki3i1 Ki3i2 Ki3i3

∣
∣
∣
∣
∣
∣
∣

. (9.117)

The pattern for the rest of the terms should be obvious, as should the proof.
As observed above, the inverse of a matrix is the reciprocal of the deter-

minant of the matrix multiplied by the transposed matrix of the co-factors.
So, if Dµν is the co-factor of the term in D(λ) associated with Kνµ, then the
solution of the equation

(I + λK)x = b (9.118)

is

xµ =
Dµ1b1 +Dµ2b2 + · · ·+Dµnbn

D(λ)
. (9.119)

If µ 6= ν we have

Dµν = λKµν + λ2
∑

i

∣
∣
∣
∣

Kµν Kµi

Kiν Kii

∣
∣
∣
∣+ λ3 1

2!

∑

i1i2

∣
∣
∣
∣
∣
∣
∣

Kµν Kµi1 Kµi2

Ki1ν Ki1i1 Ki1i2

Ki2ν Ki2i1 Ki2i2

∣
∣
∣
∣
∣
∣
∣

+ · · · .

(9.120)
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When µ = ν we have

Dµν = δµνD̃(λ) (9.121)

where D̃(λ) is the expression analogous to D(λ), but with the µ’th row and
column deleted.

These elementary results suggests the definition of the Fredholm determi-

nant of the integral kernel K(x, y) a < x, y < b, as

D(λ) = Det |I + λK| ≡
∞∑

m=0

λm

m!
Am, (9.122)

where A0 = 1, A1 = TrK ≡ ∫ ba K(x, x) dx,

A2 =
∫ b

a

∫ b

a

∣
∣
∣
∣

K(x1, x1) K(x1, x2)
K(x2, x1) K(x2, x2)

∣
∣
∣
∣ dx1dx2,

A3 =
∫ b

a

∫ b

a

∫ b

a

∣
∣
∣
∣
∣
∣
∣

K(x1, x1) K(x1, x2) K(x1, x3)
K(x2, x1) K(x2, x2) K(x2, x3)
K(x3, x1) K(x3, x2) K(x3, x3)

∣
∣
∣
∣
∣
∣
∣

dx1dx2dx3. (9.123)

etc.. We also define

D(x, y, λ) = λK(x, y) + λ2
∫ b

a

∣
∣
∣
∣

K(x, y) K(x, ξ)
K(ξ, y) K(ξ, ξ)

∣
∣
∣
∣ dξ

+λ3 1

2!

∫ b

a

∫ b

a

∣
∣
∣
∣
∣
∣
∣

K(x, y) K(x, ξ1) K(x, ξ2)
K(ξ1, y) K(ξ1, ξ1) K(ξ1, ξ2)
K(ξ2, y) K(ξ2, ξ1) K(ξ2, ξ2)

∣
∣
∣
∣
∣
∣
∣

dξ1dξ2 + · · · ,

(9.124)

and then

ϕ(x) = f(x) +
1

D(λ)

∫ b

a
D(x, y, λ)f(y) dy (9.125)

is the solution of the equation

ϕ(x) + λ
∫ b

a
K(x, y)ϕ(y) dy = f(x). (9.126)

If |K(x, y)| < M in [a, b]× [a, b], the Fredholm series for D(λ) and D(x, y, λ)
converge for all λ, and define entire functions. In this it is unlike the Neumann
series, which has a finite radius of convergence.
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The proof of these claims follows from the identiy

D(x, y, λ) + λD(λ)K(x, y) + λ
∫ b

a
D(x, ξ, λ)K(ξ, y) dξ = 0, (9.127)

or, more compactly with G(x, y) = D(x, y, λ)/D(λ),

(I +G)(I + λK) = I. (9.128)

For details see Whitaker and Watson §11.2.
Example: The equation

ϕ(x) = x + λ
∫ 1

0
xyϕ(y) dy (9.129)

gives us

D(λ) = 1− 1

3
λ, D(x, y, λ) = λxy (9.130)

and so

ϕ(x) =
3x

3− λ. (9.131)

(We have seen this equation and solution before)
Exercise: Show that the equation

ϕ(x) = x + λ
∫ 1

0
(xy + y2)ϕ(y) dy

gives

D(λ) = 1− 2

3
λ− 1

72
λ2

and

D(x, y, λ) = λ(xy + y2) + λ2(
1

2
xy2 − 1

3
xy − 1

3
y2 +

1

4
y).
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Appendix A

Elementary Linear Algebra

In solving the differential equations of physics we have to work with infinite
dimensional vector spaces. Navigating these spaces is much easier if you
have a sound grasp of the theory of finite dimensional spaces. Most physics
students have studied this as undergraduates, but not always in a systematic
way. In this appendix we gather together and review those parts of linear
algebra that we will find useful in the main text.

A.1 Vector Space

A.1.1 Axioms

A vector space V over a field F is a set with two binary operations, vector

addition which assigns to each pair of elements x, y ∈ V a third element
denoted by x + y, and scalar multiplication which assigns to an element
x ∈ V and λ ∈ F a new element λx ∈ V . There is also a distinguished
element 0 ∈ V such that the following axioms are obeyed1:

1) Vector addition is commutative: x + y = y + x.
2) Vector addition is associative: (x + y) + z = x + (y + z).
3) Additive identity: 0 + x = x.
4) Existence of additive inverse: ∀x ∈ V, ∃(−x) ∈ V , such that x +

(−x) = 0.
5) Scalar distributive law i) λ(x + y) = λx + λy.
6) Scalar distributive law ii) (λ+ µ)x = λx + µx.

1In this list 1, λ, µ,∈ F and x, y,0 ∈ V .

281
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7) Scalar multiplicative associativity: (λµ)x = λ(µx).
8) Multiplicative identity: 1x = x.

The elements of V are called vectors.
In the sequel, we will only consider vector spaces over the field of the real

numbers, F = R, or the complex numbers, F = C.

A.1.2 Bases and Components

Let V be a vector space over F . For the moment, this space has no additional
structure beyond that of the previous section — no inner product and so no
notion of what it means for two vectors to be orthogonal. There is still much
that can be done, though. Here are the most basic concepts and properties
that you should understand:

i) A set of vectors {e1, e2, . . . , en} is linearly dependent iff there exist
λµ ∈ F , not all zero, such that

λ1e1 + λ2e2 + · · ·+ λnen = 0. (A.1)

ii) A set of vectors {e1, e2, . . . , en} is linearly independent iff

λ1e1 + λ2e2 + · · ·+ λnen = 0 ⇒ λµ = 0, ∀µ. (A.2)

iii) A set of vectors {e1, e2, . . . , en} is a spanning set iff for any x ∈ V there
are numbers xµ such that x can be written (not necessarily uniquely)
as

x = x1e1 + x2e2 + · · ·+ xnen. (A.3)

A vector space is finite dimensional iff a finite spanning set exists.
iv) A set of vectors {e1, e2, . . . , en} is said to be a basis if it is a maximal

linearly independent set (i.e. adding any other vector makes the set
linearly dependent). An alternative definition declares a basis to be a
minimal spanning set (i.e. deleting any vector destroys the spanning
property). Exercise: Show that these two definitions are equivalent.

v) If {e1, e2, . . . , en} is a basis then any x ∈ V can be written

x = x1e1 + x2e2 + . . . xnen, (A.4)

where the xµ, the components of the vector, are unique in that two
vectors coincide iff they have the same components.
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vi) Fundamental Theorem: If the sets {e1, e2, . . . , en} and {f1, f2, . . . , fm}
are both bases for the space V then m = n. This invariant number is
the dimension, dim (V ), of the space. For a proof (not difficult) see
a mathematics text such as Birkhoff and McLane’s Survey of Modern
Algebra, or Halmos’ Finite Dimensional Vector Spaces.

Suppose that {e1, e2, . . . , en} and {e′
1, e

′
2, . . . , e

′
n} are both bases, and that

eν = aµνe
′
µ, (A.5)

where the spanning properties and linear independence demand that aµν be an
invertable matrix. (Note that we are, as usual, using the Einstein summation
convention that repeated indices are to be summed over.) The components
x′µ of x in the new basis are then found from

x = x′µe′
µ = xνeν = (xνaµν) e′

µ (A.6)

as x′µ = aµνx
ν , or equivalently, xν = (a−1)νµ x

′µ. Note how the eµ and the xµ

transform in opposite directions. The components xµ are therefore said to
transform contravariantly .

A.2 Linear Maps

Let V and W be vector spaces. A linear map, or linear operator, A is a
function A : V →W with the property that

A(λx + µy) = λA(x) + µA(y). (A.7)

It is an object that exists independently of any basis. Given bases {eµ} for
V and {fν} for W , however, it may be represented by a matrix . We obtain
this matrix A, having entries Aνµ, by looking at the action of the map on
the basis elements:

A(eµ) = fνA
ν
µ . (A.8)

The “backward” wiring of the indices is deliberate2. It is set up so that if
y = A(x), then

y ≡ yνfν = A(x) = A(xµeµ) = xµA(eµ) = xµ(fνA
ν
µ) = (Aν

µx
µ)fν . (A.9)

2You will have seen this “backward” action before in quantum mechanics. If we use
Dirac notation |n〉 for an orthonormal basis, and insert a complete set of states, |m〉〈m|,
then A|n〉 = |m〉〈m|A|n〉, and so the matrix 〈m|A|n〉 representing the operator A naturally
appears to the right of the vector on which it acts.
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Comparing coefficients of fν , we have

yν = Aνµx
µ, (A.10)

which is the usual matrix multiplication y = Ax.

A.2.1 Range-Nullspace Theorem

Given a linear map A : V →W , we can define two important subspaces:
i) The kernel or nullspace is defined by

KerA = {x ∈ V : A(x) = 0}. (A.11)

It is a subspace of V .
ii) The range or image space is defined by

ImA = {y ∈ W : y = A(x),x ∈ V }. (A.12)

It is a subspace of the target space W .
The key result linking these spaces is the range-nullspace theorem which
states that

dim (KerA) + dim (ImA) = dimV

It is proved by taking a basis, nµ, for KerA and extending it to a basis for the
whole of V by appending (dimV − dim (KerA)) extra vectors, eν . It is easy
to see that the vectors A(eν) are linearly independent and span ImA ⊆ W .
Note that this result is meaningless unless V is finite dimensional.

If dim V = n and dimW = m, then the linear map will represented by an
n×m matrix. The number dim (ImA) is the number of linearly independent
columns in the matrix, and is often called the (column) rank of the matrix.

A.2.2 The Dual Space

Associated with the vector space V is its dual space, V ∗, which is the set
of linear maps f : V → F . In other words the set of linear functions f( )
that take in a vector and return a number. These functions are often called
covectors. (Mathematicians often stick the prefix co in front of a word to
indicate a dual class of objects, which is always the set of structure-preserving
maps of the objects into the field over which they are defined.)
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Using linearity we have

f(x) = f(xµeµ) = xµf(eµ) = xµ fµ. (A.13)

The set of numbers fµ = f(eµ) are the components of the covector f ∈ V ∗.
If eν = aµνe

′
µ then

fν = f(eν) = f(aµνe
′
µ) = aµνf(e′

µ) = aµνf
′
µ. (A.14)

Thus fν = aµνf
′
µ and the fµ components transform in the same direction as

the basis. They are therefore said to transform covariantly .
Given a basis eµ of V , we can define a dual basis for V ∗ as the set of

covectors e∗µ ∈ V ∗ such that

e∗µ(eν) = δµν . (A.15)

It is clear that this is a basis for V ∗, and that f can be expanded

f = fµe
∗µ. (A.16)

Although the spaces V and V ∗ have the same dimension, and are therefore
isomorphic, there is no natural map between them. The assignment eµ → e∗µ

is unnatural because it depends on the choice of basis.
One way of driving home the distinction between V and V ∗ is to consider

the space V of fruit orders at a grocers. Assume that the grocer stocks only
apples, oranges and pears. The elements of V are then vectors such as

x = 3kg apples + 4.5kg oranges + 2kg pears. (A.17)

Take V ∗ to be the space of possible price lists, an example element being

f = (£3.00/kg) apples∗ + (£2.00/kg) oranges∗ + (£1.50/kg)pears∗.
(A.18)

The evaluation of f on x

f(x) = 3× £3.00 + 4.5× £2.00 + 2× £1.50 = £21.00, (A.19)

then returns the total cost of the order. You should have no difficulty in
distinguishing between a price list and box of fruit!

We may consider the original vector space V to be the dual space of V ∗

since, given vectors in x ∈ V and f ∈ V ∗, we naturally define x(f) to be
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f(x). Thus (V ∗)∗ = V . Instead of giving one space priority as being the set
of linear functions on the other, we can treat V and V ∗ on an equal footing.
We then speak of the pairing of x ∈ V with f ∈ V ∗ to get a number in the
field. It is then common to use the notation (f,x) to mean either of f(x) or
x(f). Warning: despite the similarity of the notation, do not fall into the
trap of thinking of the pairing (f,x) as an inner product (see next section) of
f with x. The two objects being paired live in different spaces. In an inner
product, the vectors being multiplied live in the same space.

A.3 Inner-Product Spaces

Some vector spaces V come equipped with an inner (or scalar) product. This
is an object that takes in two vectors in V and returns an element of the field.

A.3.1 Inner Products

If our field is the complex numbers, C, we will use the symbol 〈x,y〉 to denote
a conjugate-symmetric, sesquilinear, inner product of two elements of V . In
this string of jargon, conjugate symmetric means that

〈x,y〉 = 〈y,x〉∗, (A.20)

where the “∗” denotes complex conjugation, and sesquilinear3 means

〈x, λy + µz〉 = λ〈x,y〉+ µ〈x, z〉, (A.21)

〈λx + µy, z〉 = λ∗〈x, z〉+ µ∗〈y, z〉. (A.22)

If our field is the real numbers, R, then the conjugation is redundant, and
the product will be symmetric,

〈x,y〉 = 〈y,x〉, (A.23)

and bilinear

〈x, λy + µz〉 = λ〈x,y)〉+ µ〈x, z〉, (A.24)

〈λx + µy, z〉 = λ〈x, z〉+ µ〈y, z〉. (A.25)

3Sesqui is a Latin prefix meaning “one-and-a-half”.
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Whatever the field, we will always require that an inner product be non-

degenerate, meaning that 〈x,y〉 = 0 for all y implies that x = 0. A stronger
condition is that the inner product be positive definite, which means that
〈x,x〉 > 0, unless x = 0, when 〈x,x〉 = 0. Positive definiteness implies
non-degeneracy, but not vice-versa.

Given a basis eµ, we can form the pairwise products

〈eµ, eν〉 = gµν. (A.26)

If the metric tensor gµν turns out to be gµν = δµν , we say that the basis
is orthonormal with respect to the inner product. We will not assume or-
thonormality without specifically saying so. The non-degeneracy of the inner
product guarantees the existence of a matrix gµν which is the inverse of gµν,
i.e. gµνg

νλ = δλµ.
If we take our field to be the real numbers, R, then the additional struc-

ture provided by a non-degenerate inner product allows us to identify V with
V ∗. For any f ∈ V ∗ we can find a vector f ∈ V such that

f(x) = 〈f ,x〉. (A.27)

In components, we solve the equation

fµ = gµνf
ν (A.28)

for f ν . We find fν = gνµfµ. Usually, we simply identify f with f , and hence
V with V ∗. We say that the covariant components fµ are related to the
contravariant components f µ by raising

fµ = gµνfν , (A.29)

or lowering

fµ = gµνf
ν , (A.30)

the indices using the metric tensor. Obviously, this identification depends
crucially on the inner product; a different inner product would, in general,
identify an f ∈ V ∗ with a completely different f ∈ V .

For vectors in ordinary Euclidean space, for which 〈x,y〉 ≡ x·y, the usual
“dot product”, there is another way to think of the operations of raising and
lowering indices. Given a vector x, we can consider the numbers

xµ = 〈eµ,x〉. (A.31)
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These are called the covariant components of the vector x. If x = xµeµ, we
have

xµ = 〈eµ,x〉 = 〈eµ, xνeν〉 = gµνx
ν , (A.32)

so the xµ are obtained from the xµ by the same lowering operation as before.
In an orthonormal basis, the covariant and contravariant components of a
Euclidean vector x are numerically coincident.

Orthogonal Complements

Another use of the inner product is to define the orthogonal complement4 of
a subspace U ⊂ V . We define U⊥ to be the set

U⊥ = {x ∈ V : 〈x,y〉 = 0, ∀y ∈ U}. (A.33)

It is easy to see that this is a linear subspace. For finite dimensional spaces

dimU⊥ = dimV − dimU

and (U⊥)⊥ = U . For infinite dimensional spaces we only have (U⊥)⊥ ⊆ U .

A.3.2 Adjoint Operators

Given an inner product, we can use it to define the adjoint or hermitian

conjugate of an operator A : V → V . We first observe that for any linear
map f : V → C, there is a vector f such that f(x) = 〈f ,x〉. (To find it we
simply solve fν = (fµ)∗gµν for fµ.) We next observe that x → 〈y, Ax〉 is
such a linear map, and so there is a z such that 〈y, Ax〉 = 〈z,x〉. It should
be clear that z depends linearly on y, so we may define the adjoint linear
map, A†, by setting A†y = z. This gives us the identity

〈y, Ax〉 = 〈A†y,x〉
The adjoint of A depends on the inner product being used to define it. Dif-
ferent inner products give different A†’s.

4As an aside, we should warn you not to use the phrase orthogonal complement without
specifying an inner product. There is a more general concept of a complementary subspace

to U ⊂ V , and this is perhaps what you have in mind. A complementary space is any
space W ∈ V such that we can decompose v = u + w with u ∈ U , w ∈ W , and with u, w
unique. This only requires that U ∩W = {0} (here “{0}” is the vector space consisting of
only one element: the zero vector. It is not the empty set) and dim U + dim W = dim V .
Such complementary spaces are not unique.
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In the particular case that our chosen basis eµ is orthonormal, (eµ, eν) =
δµν , with respect to the inner product, the hermitian conjugate A† of an
operator A is represented by the hermitian conjugate matrix A† which is
obtained from the matrix A by interchanging rows and columns and complex
conjugating the entries.
Exercise: When the basis is not orthonormal, show that

(A†)ρσ = (gσµA
µ
νg

νρ)∗. (A.34)

A.4 Inhomogeneous Linear Equations

Suppose we wish to solve the system of linear equations

a11y1 + a12y2 + · · ·+ a1nyn = b1

a21y1 + a22y2 + · · ·+ a2nyn = b2
...

...

am1y1 + am2y2 + · · ·+ amnyn = bm

or, in matrix notation,
Ay = b, (A.35)

where A is the n × m matrix with entries aij . Faced with such a problem,
we should start by asking ourselves the questions:

i) Does a solution exist?
ii) If a solution does exist, is it unique?

These issues are best addressed by considering the matrix A as a linear
operator A : V → W , where V is n dimensional and W is m dimensional.
The natural language is then that of the range and nullspaces of A. There
is no solution to the equation Ay = b when Im A is not the whole of W
and b does not lie in Im A. Similarly, the solution will not be unique if
there are distinct vectors x1, x2 such that Ax1 = Ax2. This means that
A(x1 − x2) = 0, or (x1 − x2) ∈ KerA. These situations are linked, as we
have seen, by the range null-space theorem:

dim (KerA) + dim (ImA) = dimV. (A.36)

Thus, if m > n there are bound to be some vectors b for which no solution
exists. When m < n the solution cannot be unique.
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Suppose V ≡ W (so m = n and the matrix is square) and we chose an
inner product, 〈x,y〉, on V . Then x ∈ KerA implies that, for all y

0 = 〈y, Ax〉 = 〈A†y,x〉, (A.37)

or that x is perpendicular to the range of A†. Conversely, let x be perpen-
dicular to the range of A†; then

〈x, A†y〉 = 0, ∀y ∈ V, (A.38)

which means that

〈Ax,y〉 = 0, ∀y ∈ V, (A.39)

and, by the non-degeneracy of the inner product, this means that Ax = 0.
The net result is that

KerA = (ImA†)⊥. (A.40)

Similarly

KerA† = (ImA)⊥. (A.41)

Now

dim (KerA) + dim (ImA) = dimV,

dim (KerA†) + dim (ImA†) = dimV, (A.42)

but

dim (KerA) = dim (ImA†)⊥

= dim V − dim (ImA†)

= dim (KerA†).

Thus, for finite-dimensional square matrices, we have

dim (KerA) = dim (KerA†)

In particular, the row and column rank of a square matrix coincide.
Example: Consider the matrix

A =






1 2 3
1 1 1
2 3 4





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Clearly, the number of linearly independent rows is two, since the third row
is the sum of the other two. The number of linearly independent columns is
also two — although less obviously so — because

−






1
1
2




+ 2






2
1
3




 =






3
1
4




 .

Warning: The equality dim (KerA) = dim (KerA†), need not hold in infi-
nite dimensional spaces. Consider the space with basis e1, e2, e3, . . . indexed
by the positive integers. Define Ae1 = e2, Ae2 = e3, and so on. This op-
erator has dim (KerA) = 0. The adjoint with respect to the natural inner
product has A†e1 = 0, A†e2 = e1, A

†e3 = e2. Thus KerA† = {e1}, and
dim (KerA†) = 1. The difference dim (KerA)−dim (KerA†) is called the in-

dex of the operator. The index of an operator is often related to topological
properties of the space on which it acts, and in this way appears in physics
as the origin of anomalies in quantum field theory.

A.4.1 Fredholm Alternative

The results of the previous section can be summarized as saying that the
Fredholm Alternative holds for finite square matrices. The Fredholm Alter-
native is the set of statements

I. Either

i) Ax = b has a unique solution,
or

ii) Ax = 0 has a solution.
II. If Ax = 0 has n linearly independent solutions, then so does A†x = 0.

III. If alternative ii) holds, then Ax = b has no solution unless b is perpen-
dicular to all solutions of A†x = 0.

It should be obvious that this is a recasting of the statements that

dim (KerA) = dim (KerA†),

and

(KerA†)⊥ = ImA. (A.43)

Notice that finite-dimensionality is essential here. Neither of these statement
is guaranteed to be true in infinite dimensional spaces.
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A.5 Determinants

A.5.1 Skew-symmetric n-linear Forms

You should be familiar with the elementary definition of the determinant of
an n-by-n matrix A having entries aij . We have

detA ≡

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

= εi1i2...ina1i1a2i2 . . . anin . (A.44)

Here, εi1i2...in is the Levi-Civita symbol, which is skew-symmetric in all its
indices and ε12...n = 1. From this definition we see that the determinant
changes sign if any pair of its rows are interchanged, and that it is linear in
each row. In other words

∣
∣
∣
∣
∣
∣
∣
∣
∣

λa11 + µb11 λa12 + µb12 . . . λa1n + µb1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

∣
∣
∣
∣
∣
∣
∣
∣
∣

= λ

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 . . . a1n

c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

∣
∣
∣
∣
∣
∣
∣
∣
∣

+ µ

∣
∣
∣
∣
∣
∣
∣
∣
∣

b11 b12 . . . b1n
c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

∣
∣
∣
∣
∣
∣
∣
∣
∣

.

If we consider each row as being the components of a vector in an n-dimensional
vector space V , we may regard the determinant as being a skew-symmetric
n-linear form, i.e. a map

ω :

n factors
︷ ︸︸ ︷

V × V × . . . V → F (A.45)

which is linear in each slot,

ω(λa + µb, c2, . . . , cn) = λω(a, c2, . . . , cn) + µω(b, c2, . . . , cn), (A.46)

and changes sign when any two arguments are interchanged,

ω(. . . , ai, . . . , aj , . . .) = −ω(. . . , aj , . . . , ai, . . .). (A.47)
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We will denote the space of skew-symmetric n-linear forms on V by the
symbol

∧n(V ∗). Let ω be an arbitrary skew-symmetric n-linear form in
∧n(V ∗), and let {e1, e2, . . . , en} be a basis for V . If ai = aijej (i = 1, . . . , n)
is a collection of n vectors5, we compute

ω(a1, a2, . . . , an) = a1i1a2i2 . . . aninω(ei1, ei2 , . . . , ein)

= a1i1a2i2 . . . aninεi1i2...,inω(e1, e2, . . . , en). (A.48)

In the first line we have exploited the linearity of ω in each slot, and in going
from the first to the second line we have used skew-symmetry to rearrange
the basis vectors in their canonical order. We deduce that all skew-symmetric
n-forms are proportional to the determinant

ω(a1, a2, . . . , an) ∝

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

and that the proportionality factor is the number ω(e1, e2, . . . , en). When
the number of its slots is equal to the dimension of the vector space, there is
therefore essentially only one skew-symmetric multilinear form and

∧n(V ∗)
is a one-dimensional vector space.
Exercise: Let ω be a skew-symmetric n-linear form on an n-dimensional
vector space. Assuming that ω does not vanish identically, show that a set
of n vectors x1,x2, . . . ,xn is linearly independent, and hence forms a basis,
if, and only if, ω(x1,x2, . . . ,xn) 6= 0.

Now we use the notion of skew-symmetric n-linear forms to give a pow-
erful definition of the determinant of an endomorphism, i.e. a linear map
A : V → V . Let ω be a non-zero skew-symmetric n-linear form. The object

ωA(x1,x2, . . . ,xn) = ω(Ax1, Ax2, . . . , Axn). (A.49)

is also a skew-symmetric n-linear form. Since there is only one such object
up to multiplicative constants, we must have

ω(Ax1, Ax2, . . . , Axn) ∝ ω(x1,x2, . . . ,xn). (A.50)

5The index j on aij should really be a superscript since aij is the j-th contravariant
component of the vector ai. We are writing it as a subscript only for compatibility with
other equations in this section.
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We define “detA” to be the constant of proportionality. Thus

ω(Ax1, Ax2, . . . , Axn) = det (A)ω(x1,x2, . . . ,xn). (A.51)

By writing this out in a basis where the linear map A is represented by the
matrix A, we easily see that

detA = detA. (A.52)

The new definition is therefore compatible with the old one. The advantage
of this more sophisticated definition is that it makes no appeal to a basis, and
so shows that the determinant of an endomorphism is a basis-independent
concept. A byproduct is an easy proof that det (AB) = det (A)det (B), a
result that is not so easy to establish with the elementary definition. We
write

det (AB)ω(x1,x2, . . . ,xn) = ω(ABx1, ABx2, . . . , ABxn)

= ω(A(Bx1), A(Bx2), . . . , A(Bxn))

= det (A)ω(Bx1, Bx2, . . . , Bxn)

= det (A)det (B)ω(x1,x2, . . . ,xn).

(A.53)

Cancelling the common factor of ω(x1,x2, . . . ,xn) completes the proof.

A.5.2 The Adjugate Matrix

Given a matrix

A =








a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann








(A.54)

and an element aij, we define the corresponding minor Mij to be the deter-
minant of the (n − 1)× (n − 1) matrix constructed by deleting from A the
row and column containing aij . The number

Aij = (−1)i+jMij (A.55)

is then called the co-factor of the element aij . (It is traditional to use up-
percase letters to denote co-factors.) The basic result involving co-factors is
that

∑

j

aijAi′j = δii′det A. (A.56)
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When i = i′, this is simply the elementary definition of the determinant
(although some signs need checking if i 6= 1). We get zero when i 6= i′

because we are effectively expanding out a determinant with two equal rows.
We now define the adjugate matrix6, AdjA, to be the transposed matrix of
the co-factors:

(AdjA)ij = Aji. (A.57)

In terms of this we have

A(AdjA) = (detA)I. (A.58)

In other words

A−1 =
1

detA
AdjA. (A.59)

Each entry in the adjugate matrix is a polynomial of degree n − 1 in the
entries of the original matrix. Thus, no division is required to form it, and
the adjugate matrix exists even if the inverse matrix does not.

Cayley’s Theorem

You should be familiar with the observation that the possible eigenvalues of
the n× n matrix A are given by the roots of its characteristic equation

0 = det (A− λI) = (−1)n
(

λn − tr (A)λn−1 + · · ·+ (−1)ndet (A)
)

, (A.60)

and with Cayley’s Theorem which asserts that every matrix obeys its own
characteristic equation.

An − tr (A)An−1 + · · ·+ (−1)ndet (A)I = 0. (A.61)

The proof of Cayley’s theorem involves the adjugate matrix. We write

det (A− λI) = (−1)n
(

λn + α1λ
n−1 + · · ·+ αn

)

(A.62)

and observe that

det (A− λI)I = (A− λI)Adj (A− λI). (A.63)

Now Adj (A− λI) is a matrix-valued polynomial in λ of degree n− 1, and it
can be written

Adj (A− λI) = C0λ
n−1 + C1λ

n−2 + · · ·+ Cn−1, (A.64)
6Some authors rather confusingly call this the adjoint matrix .
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for some matrix coefficients Ci. On multiplying out the equation

(−1)n
(

λn + α1λ
n−1 + · · ·+ αn

)

I = (A−λI)(C0λ
n−1 +C1λ

n−2 + · · ·+Cn−1)

(A.65)
and comparing like powers of λ, we find the relations

(−1)nI = −C0,

(−1)nα1I = −C1 + AC0,

(−1)nα2I = −C2 + AC1,
...

(−1)nαn−1I = −Cn−1 + ACn−2,

(−1)nαnI = ACn−1.

Multiply the first equation on the left by An, the second by An−1, and so
on down the last equation which we multiply by A0 ≡ I. Now add. We find
that the sum telescopes to give Cayley’s theorem,

An + α1A
n−1 + · · ·+ αnI = 0,

as advertised.

A.5.3 Differentiating Determinants

Suppose that the elements of A depend on some parameter x. From the
elementary definition

detA = εi1i2...ina1i1a2i2 . . . anin ,

we find

d

dx
detA = εi1i2...in

(

a′1i1a2i2 . . . anin + a1i1a
′
2i2 . . . anin + · · ·+ a1i1a2i2 . . . a

′
nin

)

.

(A.66)
In other words,

d

dx
detA =

∣
∣
∣
∣
∣
∣
∣
∣
∣

a′11 a′12 . . . a′1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 . . . a1n

a′21 a′22 . . . a′2n
...

...
. . .

...
an1 an2 . . . ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+· · ·+

∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
a′n1 a′n2 . . . a′nn

∣
∣
∣
∣
∣
∣
∣
∣
∣

.
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The same result can also be written more compactly as

d

dx
detA =

∑

ij

daij
dx

Aij , (A.67)

where Aij is cofactor of aij . Using the connection between the adjugate
matrix and the inverse, this is equivalent to

1

detA

d

dx
detA = tr

{

dA

dx
A−1

}

, (A.68)

or
d

dx
ln (detA) = tr

{

dA

dx
A−1

}

. (A.69)

A special case of this formula is the result

∂

∂aij
ln (detA) =

(

A−1
)

ji
. (A.70)

A.6 Diagonalization and Canonical Forms

An essential part of the linear algebra tool-kit is the set of techniques for the
reduction of a matrix to its simplest, canonical form. This is often a diagonal
matrix.

A.6.1 Diagonalizing Linear Maps

A common task is the diagonalization of a matrix A representing a linear
map A. Let us recall some standard material relating to this:

i) If Ax = λx, the vector x is said to be an eigenvector of A with eigen-

value λ.
ii) A linear operator A on a finite-dimensional vector space is said to be

hermitian, or self-adjoint , with respect to the inner product 〈 , 〉 if
A = A†, or equivalently 〈x, Ay〉 = 〈Ax,y〉 for all x, y.

iii) If A is hermitian with respect to 〈 , 〉, then λ is real. To see this,
write

λ〈x,x〉 = 〈x, λx〉 = 〈x, Ax〉 = 〈Ax,x〉 = 〈λx,x〉 = λ∗〈x,x〉. (A.71)
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iii) If A is hermitian and λi and λj are two distinct eigenvalues with eigen-
vectors xi and xj , then 〈xi,xj〉 = 0. To see this, write

λj〈xi,xj〉 = 〈xi, Axj〉 = 〈Axi,xj〉 = 〈λixi,xj〉 = λ∗
i 〈xi,xj〉, (A.72)

but λ∗i = λi, and so

(λi − λj)〈xi,xj〉 = 0. (A.73)

iv) An operator A is said to be diagonalizable if we can find a basis for V
that consists of eigenvectors of A. In this basis, A is represented by the
matrix A = diag (λ1, λ2, . . . , λn), where the λi are the eigenvalues.

Not all linear operators can be diagonalized. The key element determining
the diagonalizability of a matrix is the minimal polynomial equation obeyed
by the matrix representing the operator. As mentioned in the previous sec-
tion, the possible eigenvalues an n × n matrix A are given by the roots of
the characteristic equation

0 = det (A− λI) = (−1)n
(

λn − tr (A)λn−1 + · · ·+ (−1)ndet (A)
)

.

This is because a non-trivial solution to the equation

Ax = λx (A.74)

requires the matrix A−λI to have a non-trivial nullspace, and so det (A− λI)
must vanish. Now Cayley’s Theorem, which we proved in the previous sec-
tion, asserts that every matrix obeys its own characteristic equation:

An − tr (A)An−1 + · · ·+ (−1)ndet (A)I = 0.

The matrix A may, however, satisfy an equation of lower degree.
Example: The characteristic equation of the matrix

A =
(
λ1 0
0 λ1

)

(A.75)

is (λ − λ1)
2. Cayley therefore asserts that (A − λ1I)

2 = 0. This is clearly
true, but A also satisfies the equation of first degree (A− λ1I) = 0.
Worked Exercise: Suppose that A is hermitian with respect to a positive def-
inite inner product 〈 , 〉. Show that the minimal equation has no repeated
roots.
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Solution: Suppose A has minimal equation (A − λI)2Q = 0 where Q is a
polynomial in A. Then, for all vectors x we have

0 = 〈Qx, (A− λI)2Qx〉 = 〈(A− λI)Qx, (A− λI)Qx〉. (A.76)

Now the vanishing of the rightmost expression shows that 0 = (A− λI)Qx

for all x. In other words

(A− λI)Q = 0. (A.77)

The equation with the repeated factor was not minimal therefore.
If the equation of lowest degree satisfied by the matrix has no repeated

roots, the matrix is diagonalizable; if there are repeated roots, it is not. The
last statement should be obvious, because a diagonalized matrix satisfies an
equation with no repeated roots, and this equation will hold in all bases,
including the original one. The first statement, in combination with with
the observation that the minimal equation for a hermitian matrix has no
repeated roots, shows that any hermitian matrix can be diagonalized.

To establish the first statement, suppose that A obeys the equation

0 = P (A) ≡ (A− λ1I)(A− λ2I) · · · (A− λnI), (A.78)

where the λi are all distinct. Then, setting x→ A in the identity7

1 =
(x− λ2)(x− λ3) · · · (x− λn)

(λ1 − λ2)(λ1 − λ3) · · · (λ1 − λn)
+

(x− λ1)(x− λ3) · · · (x− λn)
(λ2 − λ1)(λ2 − λ3) · · · (λ2 − λn)

+ · · ·

+
(x− λ1)(x− λ2) · · · (x− λn−1)

(λn − λ1)(λn − λ2) · · · (λn − λn−1)
, (A.79)

where in each term one of the factors of the polynomial is omitted in both
numerator an denominator, we may write

I = P1 + P2 + · · ·+ Pn, (∗) (A.80)

where

P1 =
(A− λ2I)(A− λ3I) · · · (A− λnI)
(λ1 − λ2)(λ1 − λ3) · · · (λ1 − λn)

, (A.81)

7The identity is true because the difference of the left and right hand sides is a poly-
nomial of degree n − 1, which, by inspection, vanishes at the n points x = λi. But a
polynomial which has more zeros than its degree, must be identically zero.
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etc. Clearly PiPj = 0 if i 6= j, because the product contains the minimal
equation as a factor. Multiplying (∗) by Pi therefore gives P2

i = Pi, showing
that the Pi are projection operators. Further (A− λiI)(Pi) = 0, so

(A− λiI)(Pix) = 0 (A.82)

for any vector x, and we see that Pix is an eigenvector with eigenvalue
λi. Thus Pi projects onto the i-th eigenspace. Any vector can therefore be
decomposed

x = P1x + P2x + · · ·+ Pnx

= x1 + x2 + · · ·+ xn, (A.83)

where xi is an eigenvector with eigenvalue λi. Since any x can be written as
a sum of eigenvectors, the eigenvectors span the space.

Jordan Decomposition

If the minimal polynomial has repeated roots, the matrix can still be re-
duced to the Jordan canonical form, which is diagonal except for some 1’s
immediately above the diagonal.

For example, suppose the characteristic equation for a 6× 6 matrix A is

0 = det (A− λI) = (λ1 − λ)3(λ2 − λ)2(λ3 − λ), (A.84)

and that this equation is also the minimal polynomial equation. Then the
Jordan form is

T−1AT =













λ1 1 0 0 0 0
0 λ1 1 0 0 0
0 0 λ1 0 0 0
0 0 0 λ2 1 0
0 0 0 0 λ2 0
0 0 0 0 0 λ3













. (A.85)

One may easily see that the equation above is the minimal equation.
It is rather tedious, but quite straightforward, to show that any linear

map can be reduced to Jordan form. The proof is along the lines of the
example in homework set 0.
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A.6.2 Quadratic Forms

Do not confuse the notion of diagonalizing the matrix representing a lin-

ear map A : V → V with that of diagonalizing the matrix representing a
quadratic form. A (real) quadratic form is a map Q : V → R, which is
obtained from a symmetric bilinear form B : V × V → R by setting the two
arguments, x and y, in B(x,y) equal:

Q(x) = B(x,x). (A.86)

No information is lost by this specialization. We can recover the non-diagonal
(x 6= y) values of B from the diagonal values, Q(x), by using the polarization

trick

B(x,y) =
1

2
[Q(x + y)−Q(x)−Q(y)]. (A.87)

An example of a real quadratic form is the kinetic energy term

T (ẋ) =
1

2
mij ẋ

iẋj =
1

2
ẋ ·Mẋ (A.88)

in a “small vibrations” Lagrangian. Here, M, with entries mij , is the mass
matrix.

Whilst one can diagonalize such forms by the tedious procedure of finding
the eigenvalues and eigenvectors of the associated matrix, it is simpler to use
Lagrange’s method, which is based on repeatedly completing squares.

Consider, for example, the quadratic form

Q = x2 − y2 − z2 + 2xy − 4xz + 6yz = ( x, y, z )






1 1 −2
1 −1 3
−2 3 −1











x
y
z




 .

(A.89)
We complete the square involving x:

Q = (x+ y − 2z)2 − 2y2 + 10yz − 5z2, (A.90)

where the terms outside the squared group no longer involve x. We now
complete the square in y:

Q = (x+ y − 2z)2 − (
√

2y − 5√
2
z)2 +

15

2
z2, (A.91)
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so that the remaining term no longer contains y. Thus, on setting

ξ = x+ y − 2z,

η =
√

2y − 5√
2
z,

ζ =

√

15

2
z,

we have

Q = ξ2 − η2 + ζ2 = ( ξ, η, ζ )






1 0 0
0 −1 0
0 0 1











ξ
η
ζ




 . (A.92)

If there are no x2, y2, or z2 terms to get us started, then we can proceed by
using (x + y)2 and (x− y)2. For example, consider

Q = 2xy + 2yz + 2zy,

=
1

2
(x+ y)2 − 1

2
(x− y)2 + 2xz + 2yz

=
1

2
(x+ y)2 + 2(x+ y)z − 1

2
(x− y)2

=
1

2
(x+ y + 2z)2 − 1

2
(x− y)2 − 4z2

= ξ2 − η2 − ζ2,

where

ξ =
1√
2
(x+ y + 2z),

η =
1√
2
(x− y),

ζ =
√

2z.

A judicious combination of these two tactics will reduce the matrix represent-
ing any real quadratic form to a matrix with ±1’s and 0’s on the diagonal,
and zeros elsewhere. As the egregiously asymmetric treatment of x, y, z
in the last example indicates, this can be done in many ways, but Cayley’s

Law of Inertia asserts that the number of +1’s, −1’s and 0’s will always be
the same. Naturally, if we allow complex numbers in the redefinitions of the
variables, we can always reduce the form to one with only +1’s and 0’s.
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The essential difference between diagonalizing linear maps and diagonal-
izing quadratic forms is that in the former case we seek matrices A such that
A−1MA is diagonal, whereas in the latter case we seek matrices A such that
ATMA is diagonal. Here, the superscript T denotes transposition.
Exercise: Show that the matrix representing the quadratic form

Q = ax2 + 2bxy + cy2

may be reduced to

(
1 0
0 1

)

,
(

1 0
0 −1

)

, or
(

1 0
0 0

)

,

depending on whether the discriminant , ac− b2, is respectively greater than
zero, less than zero, or equal to zero.
Warning: There is no such thing as the determinant of a quadratic form. Of
course you can always compute the determinant of the matrix representing
the quadratic form in some basis, but if you change basis and repeat the
calculation you will get a different answer.

A.6.3 Symplectic Forms

A skew-symmetric bilinear form ω : V × V → R is often called a symplectic

form. Such forms play an important role in Hamiltonian dynamics and in
optics. Let

ω(ei, ej) = ωij, (A.93)

where ωij compose a real skew symmetric matrix. We will write

ω =
1

2
ωije

∗i∧, e∗j (A.94)

where the wedge (or exterior) product, e∗j ∧ e∗j ∈ ∧2(V ∗), of a pair of basis
vectors in V ∗ is defined by

e∗i ∧ e∗j(eα, eβ) = δiαδ
j
β − δiβδjα. (A.95)

Thus, if x = xiei and y = yiei, we have

ω(x,y) = ωijx
iyj. (A.96)
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We then extend the definition of the wedge product to other elements of V ∗

by requiring “∧” to be associative and be distributive.
Theorem: For any ω ∈ ∧2(V ∗) there exists a basis {f∗i} of V ∗ such that

ω = f∗1 ∧ f∗2 + f∗3 ∧ f∗4 + · · ·+ f ∗(p−1) ∧ f∗p. (A.97)

Here, the integer p ≤ n is the rank of ω. It is necessarily an even number.
Proof: The proof is a skew-analogue of Lagrange’s method of completing the
square. If

ω =
1

2
ωije

∗i ∧ e∗j (A.98)

is not identically zero, we can, after re-ordering the basis if neceessary, assume
that ω12 6= 0. Then

ω =
(

e∗1 − 1

ω12
(ω23e

∗3 + · · ·+ ω2ne
∗n)
)

∧(ω12e
∗2+ω13e

∗3+ · · ·ω1ne
∗n)+ω{3}

(A.99)
where ω{3} ∈ ∧2(V ∗) does not contain e∗1 or e∗2. We set

f∗1 = e∗1 − 1

ω12
(ω23e

∗3 + · · ·+ ω2ne
∗n) (A.100)

and
f∗2 = ω12e

∗2 + ω13e
∗3 + · · ·ω1ne

∗n. (A.101)

Thus,
ω = f∗1 ∧ f∗2 + ω{3}. (A.102)

If the remainder ω{3} is identically zero, we are done. Otherwise, we apply
the same same process to ω{3} so as to construct f∗3, f∗4 and ω{5}; we continue
in this manner until we find a remainder, ω{p+1}, that vanishes.

If {fi} is the basis for V dual to the basis {f∗i} then ω(f1, f2) = −ω(f2, f1) =
ω(f3, f4) = −ω(f4, f3) = 1, and so on, all other values being zero. Suppose that
we define the coefficients aij by expressing f∗i = aije

∗j , and hence ei = fja
j
i.

Then the matrix Ω, with entries ωij, that represents the skew bilinear form
has been expressed as

Ω = AT Ω̃A, (A.103)

where A is the matrix with entries aij, and Ω̃ is the matrix

Ω̃ =











0 1
−1 0

0 1
−1 0

. . .











, (A.104)
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which contains p/2 diagonal blocks of

(
0 1
−1 0

)

, (A.105)

and all other entries are zero.
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