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Preface

These notes cover the material from the second half of a two-semester se-
quence of mathematical methods courses given to first year physics graduate
students at the University of Illinois. They consist of three loosely connected
parts: i) an introduction to modern “calculus on manifolds”, the exterior
differential calculus, and algebraic topology; ii) an introduction to group rep-
resentation theory and its physical applications; iii) a fairly standard course
on complex variables.
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Chapter 1

Tensors in Euclidean Space

In this chapter we explain how a vector space V gives rise to a family of
associated tensor spaces, and how mathematical objects such as linear maps
or quadratic forms should be understood as being elements of these spaces.
We then apply these ideas to physics. We make extensive use of notions and
notations from the appendix on linear algebra, so it may help to review that
material before we begin.

1.1 Covariant and Contravariant Vectors

When we have a vector space V over R, and {e1, e2, . . . , en} and {e′
1, e

′
2, . . . , e

′
n}

are both bases for V , then we may expand each of the basis vectors eµ in
terms of the e′

µ as
eν = aµνe

′
µ. (1.1)

We are here, as usual, using the Einstein summation convention that repeated
indices are to be summed over. Written out in full for a three-dimensional
space, the expansion would be

e1 = a1
1e

′
1 + a2

1e
′
2 + a3

1e
′
3,

e2 = a1
2e

′
1 + a2

2e
′
2 + a3

2e
′
3,

e3 = a1
3e

′
1 + a2

3e
′
2 + a3

3e
′
3.

We could also have expanded the e′
µ in terms of the eµ as

e′
ν = (a−1)µνe

′
µ. (1.2)

1



2 CHAPTER 1. TENSORS IN EUCLIDEAN SPACE

As the notation implies, the matrices of coefficients aµν and (a−1)µν are inverses
of each other:

aµν (a
−1)νσ = (a−1)µνa

ν
σ = δµσ . (1.3)

If we know the components xµ of a vector x in the eµ basis then the compo-
nents x′µ of x in the e′

µ basis are obtained from

x = x′µe′
µ = xνeν = (xνaµν ) e′

µ (1.4)

by comparing the coefficients of e′
µ. We find that x′µ = aµνx

ν . Observe how
the eµ and the xµ transform in “opposite” directions. The components xµ

are therefore said to transform contravariantly .
Associated with the vector space V is its dual space V ∗, whose elements

are covectors, i.e. linear maps f : V → R. If f ∈ V ∗ and x = xµeµ, we use
the linearity property to evaluate f(x) as

f(x) = f(xµeµ) = xµf(eµ) = xµ fµ. (1.5)

Here, the set of numbers fµ = f(eµ) are the components of the covector f . If
we change basis so that eν = aµνe

′
µ then

fν = f(eν) = f(aµνe
′
µ) = aµν f(e

′
µ) = aµνf

′
µ. (1.6)

We conclude that fν = aµνf
′
µ. The fµ components transform in the same man-

ner as the basis. They are therefore said to transform covariantly . In physics
it is traditional to call the the set of numbers xµ with upstairs indices (the
components of) a contravariant vector . Similarly, the set of numbers fµ with
downstairs indices is called (the components of) a covariant vector . Thus,
contravariant vectors are elements of V and covariant vectors are elements
of V ∗.

The relationship between V and V ∗ is one of mutual duality, and to
mathematicians it is only a matter of convenience which space is V and
which space is V ∗. The evaluation of f ∈ V ∗ on x ∈ V is therefore often
written as a “pairing” (f ,x), which gives equal status to the objects being
put togther to get a number. A physics example of such a mutually dual pair
is provided by the space of displacements x and the space of wave-numbers
k. The units of x and k are different (meters versus meters−1). There is
therefore no meaning to “x + k,” and x and k are not elements of the same
vector space. The “dot” in expressions such as

ψ(x) = eik·x (1.7)
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cannot be a true inner product (which requires the objects it links to be in
the same vector space) but is instead a pairing

(k,x) ≡ k(x) = kµx
µ. (1.8)

In describing the physical world we usually give priority to the space in which
we live, breathe and move, and so treat it as being “V ”. The displacement
vector x then becomes the contravariant vector, and the Fourier-space wave-
number k, being the more abstract quantity, becomes the covariant covector.

Our vector space may come equipped with a metric that is derived from
a non-degenerate inner product. We regard the inner product as being a
bilinear form g : V × V → R, so the length ‖x‖ of a vector x is

√
g(x,x).

The set of numbers
gµν = g(eµ, eν) (1.9)

comprises the (components of) the metric tensor . In terms of them, the
inner of product 〈x,y〉 of pair of vectors x = xµeµ and y = yµeµ becomes

〈x,y〉 ≡ g(x,y) = gµνx
µyν. (1.10)

Real-valued inner products are always symmetric, so g(x,y) = g(y,x) and
gµν = gνµ. As the product is non-degenerate, the matrix gµν has an inverse,
which is traditionally written as gµν . Thus

gµνg
νλ = gλνgνµ = δλµ. (1.11)

The additional structure provided by the metric permits us to identify V
with V ∗. The identification is possible, because, given any f ∈ V ∗, we can
find a vector f̃ ∈ V such that

f(x) = 〈f̃ ,x〉. (1.12)

We obtain f̃ by solving the equation

fµ = gµν f̃
ν (1.13)

to get f̃ ν = gνµfµ. We may now drop the tilde and identify f with f̃ , and
hence V with V ∗. When we do this, we say that the covariant components
fµ are related to the contravariant components fµ by raising

fµ = gµνfν , (1.14)
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or lowering

fµ = gµνf
ν , (1.15)

the index µ using the metric tensor. Bear in mind that this V ∼= V ∗ identi-
fication depends crucially on the metric. A different metric will, in general,
identify an f ∈ V ∗ with a completely different f̃ ∈ V .

We may play this game in the Euclidean space En with its “dot” inner
product. Given a vector x and a basis eµ for which gµν = eµ · eν , we can
define two sets of components for the same vector. Firstly the coefficients xµ

appearing in the basis expansion

x = xµeµ, (1.16)

and secondly the “components”

xµ = eµ · x = g(eµ,x) = g(eµ, x
νeν) = g(eµ, eν)x

ν = gµνx
ν (1.17)

of x along the basis vectors. These two set of numbers are then respectively
called the contravariant and covariant components of the vector x. If the
eµ constitute an orthonormal basis, where gµν = δµν , then the two sets of
components (covariant and contravariant) are numerically coincident. In a
non-orthogonal basis they will be different, and we must take care never to
add contravariant components to covariant ones.

1.2 Tensors

We now introduce tensors in two ways: firstly as sets of numbers labelled by
indices and equipped with transformation laws that tell us how these numbers
change as we change basis; and secondly as basis-independent objects that
are elements of a vector space constructed by taking multiple tensor products
of the spaces V and V ∗.

1.2.1 Transformation rules

After we change basis eµ → e′
µ, where eν = aµνe

′
µ, the metric tensor will be

represented by a new set of components

g′µν = g(e′
µ, e

′
ν). (1.18)
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These are be related to the old components by

gµν = g(eµ, eν) = g(aρµe
′
ρ, a

σ
νe

′
σ) = aρµa

σ
νg(e′

ρ, e
′
σ) = aρµa

σ
ν g

′
ρσ. (1.19)

This transformation rule for gµν has both of its subscripts behaving like the
downstairs indices of a covector. We therefore say that gµν transforms as a
doubly covariant tensor . Written out in full, for a two-dimensional space,
the transformation law is

g11 = a1
1a

1
1g

′
11 + a1

1a
2
1g

′
12 + a2

1a
1
1g

′
21 + a2

1a
2
1g

′
22,

g12 = a1
1a

1
2g

′
11 + a1

1a
2
2g

′
12 + a2

1a
1
2g

′
21 + a2

1a
2
2g

′
22,

g21 = a1
2a

1
1g

′
11 + a1

2a
2
1g

′
12 + a2

2a
1
1g

′
21 + a2

2a
2
1g

′
22,

g22 = a1
2a

1
2g

′
11 + a1

2a
2
2g

′
12 + a2

2a
1
2g

′
21 + a2

2a
2
2g

′
22.

In three dimensions each row would have nine terms, and sixteen in four
dimensions. We see why Einstein was driven to invent his summation con-
vention!

A set of numbers Qαβ
γδε, whose indices range from 1 to the dimension of

the space and that transforms as

Qαβ
γδε = (a−1)αα′(a−1)ββ′ a

γ′

γ a
δ′

δ a
ε′

ε Q
′α′β′

γ′δ′ε′, (1.20)

or conversely as

Q′αβ
γδε = aαα′a

β
β′(a

−1)γ
′

γ (a−1)δ
′

δ (a−1)ε
′

ε Q
α′β′

γ′δ′ε′, (1.21)

comprises the components of a doubly contravariant, triply covariant tensor.
More compactly, the Qαβ

γδε are the components of a tensor of type (2, 3).
Tensors of type (p, q) are defined analogously. The total number of indices
p+ q is called the rank of the tensor.

Note how the indices are wired up in the transformation rules (1.20) and
(1.21): free (not summed over) upstairs indices on the left hand side of the
equations match to free upstairs indices on the right hand side, similarly for
the downstairs indices. Also upstairs indices are summed only with down-
stairs ones.

Similar conditions apply to equations relating tensors in any particular
basis. If they are violated you do not have a valid tensor equation — meaning
that an equation valid in one basis will not be valid in another basis. Thus
an equation

Aµνλ = Bµτ
νλτ + Cµ

νλ (1.22)
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is fine, but

Aµνλ
?
= Bν

µλ + Cµ
νλσσ +Dµ

νλτ (1.23)

has something wrong in each term.
Incidentally, although not illegal, it is a good idea not to write tensor

indices directly underneath one another — i.e. do not write Qij
kjl — because

if you raise or lower indices using the metric tensor, and some pages later in
a calculation try to put them back where they were, they might end up in
the wrong order.

Tensor algebra

The sum of two tensors of a given type is also a tensor of that type. The sum
of two tensors of different types is not a tensor. Thus each particular type of
tensor constitutes a distinct vector space, but one derived from the common
underlying vector space whose change-of-basis formula is being utilized.

Tensors can be combined by multiplication: if Aµνλ and Bµ
νλτ are tensors

of type (1, 2) and (1, 3) respectively, then

Cαβ
νλρστ = AανλB

β
ρστ (1.24)

is a tensor of type (2, 5).
An important operation is contraction, which consists of setting one or

more contravariant index index equal to a covariant index and summing over
the repeated indices. This reduces the rank of the tensor. So, for example,

Dρστ = Cαβ
αβρστ (1.25)

is a tensor of type (0, 3). Similarly f(x) = fµx
µ is a type (0, 0) tensor, i.e. an

invariant — a number that takes the same value in all bases. Upper indices
can only be contracted with lower indices, and vice versa. For example, the
array of numbers Aα = Bαββ obtained from the type (0, 3) tensor Bαβγ is not

a tensor of type (0, 1).
The contraction procedure outputs a tensor because setting an upper

index and a lower index to a common value µ and summing over µ, leads to
the factor . . . (a−1)µαa

β
µ . . . appearing in the transformation rule. Now

(a−1)µαa
β
µ = δβα, (1.26)

and the Kronecker delta effects a summation over the corresponding pair of
indices in the transformed tensor.
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Although often associated with general relativity, tensors occur in many
places in physics. They are used, for example, in elasticity theory, where the
word “tensor” in its modern meaning was introduced by Woldemar Voigt
in 1898. Voigt, following Cauchy and Green, described the infinitesimal
deformation of an elastic body by the strain tensor eαβ , which is a tensor
of type (0,2). The forces to which the strain gives rise are described by the
stress tensor σλµ. A generalization of Hooke’s law relates stress to strain via
a tensor of elastic constants cαβγδ as

σαβ = cαβγδeγδ. (1.27)

We study stress and strain in more detail later in this chapter.

Exercise 1.1: Show that gµν , the matrix inverse of the metric tensor gµν , is
indeed a doubly contravariant tensor, as the position of its indices suggests.

1.2.2 Tensor character of linear maps and quadratic

forms

As an illustration of the tensor concept and of the need to distinguish be-
tween upstairs and downstairs indices, we contrast the properties of matrices
representing linear maps and those representing quadratic forms.

A linear map M : V → V is an object that exists independently of any
basis. Given a basis, however, it is represented by a matrix Mµ

ν obtained
by examining the action of the map on the basis elements:

M(eµ) = eνM
ν
µ. (1.28)

Acting on x we get a new vector y = M(x), where

yνeν = y = M(x) = M(xµeµ) = xµM(eµ) = xµMν
µeν = Mν

µx
µ eν . (1.29)

We therefore have
yν = Mν

µx
µ, (1.30)

which is the usual matrix multiplication y = Mx. When we change basis,
eν = aµνe

′
µ, then

eνM
ν
µ = M(eµ) = M(aρµe

′
ρ) = aρµM(e′

ρ) = aρµe
′
σM

′σ
ρ = aρµ(a

−1)νσeνM
′σ
ρ.

(1.31)
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Comparing coefficients of eν , we find

Mν
µ = aρµ(a

−1)νσM
′σ
ρ, (1.32)

or, conversely,
M ′ν

µ = (a−1)ρµa
ν
σM

σ
ρ. (1.33)

Thus a matrix representing a linear map has the tensor character suggested
by the position of its indices, i.e. it transforms as a type (1, 1) tensor. We can
derive the same formula in matrix notation. In the new basis the vectors x
and y have new components x′ = Ax, and y′ = Ay. Consequently y = Mx
becomes

y′ = Ay = AMx = AMA−1x′, (1.34)

and the matrix representing the map M has new components

M′ = AMA−1. (1.35)

Now consider the quadratic form Q : V → R that is obtained from a
symmetric bilinear form Q : V × V → R by setting Q(x) = Q(x,x). We can
write

Q(x) = Qµνx
µxν = xµQµν x

ν = xTQx, (1.36)

where Qµν ≡ Q(eµ, eν) are the entries in the symmetric matrix Q, the suffix T
denotes transposition, and xTQx is standard matrix-multiplication notation.
Just as does the metric tensor, the coefficients Qµν transform as a type (0, 2)
tensor:

Qµν = aαµa
β
νQ

′
αβ . (1.37)

In matrix notation the vector x again transforms to have new components
x′ = Ax, but x′T = xTAT . Consequently

x′TQ′x′ = xTATQ′Ax. (1.38)

Thus
Q = ATQ′A. (1.39)

The message is that linear maps and quadratic forms can both be represented
by matrices, but these matrices correspond to distinct types of tensor and
transform differently under a change of basis.

A matrix representing a linear map has a basis-independent determinant.
Similarly the trace of a matrix representing a linear map

trM
def
= Mµ

µ (1.40)
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is a tensor of type (0, 0), i.e. a scalar, and therefore basis independent. On
the other hand, while you can certainly compute the determinant or the trace
of the matrix representing a quadratic form in some particular basis, when
you change basis and calculate the determinant or trace of the transformed
matrix, you will get a different number.

It is possible to make a quadratic form out of a linear map, but this
requires using the metric to lower the contravariant index on the matrix
representing the map:

Q(x) = xµgµνQ
ν
λx

λ = x ·Qx. (1.41)

Be careful, therefore: the matrices “Q” in xTQx and in x·Qx are representing
different mathematical objects.

Exercise 1.2: In this problem we will use the distinction between the trans-
formation law of a quadratic form and that of a linear map to resolve the
following “paradox”:

• In quantum mechanics we are taught that the matrices representing two
operators can be simultaneously diagonalized only if they commute.

• In classical mechanics we are taught how, given the Lagrangian

L =
∑

ij

(
1

2
q̇iMij q̇j −

1

2
qiVijqj

)
,

to construct normal co-ordinates Qi such that L becomes

L =
∑

i

(
1

2
Q̇2
i −

1

2
ω2
iQ

2
i

)
.

We have apparantly managed to simultaneously diagonize the matrices Mij →
diag (1, . . . , 1) and Vij → diag (ω2

1 , . . . , ω
2
n), even though there is no reason for

them to commute with each other!

Show that when M and V are a pair of symmetric matrices, with M being
positive definite, then there exits an invertible matrix A such that ATMA and
ATVA are simultaneously diagonal. (Hint: Consider M as defining an inner
product, and use the Gramm-Schmidt procedure to first find a orthonormal
frame in which M ′

ij = δij . Then show that the matrix corresponding to V

in this frame can be diagonalized by a further transformation that does not
perturb the already diagonal M ′

ij.)
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1.2.3 Tensor product spaces

We may regard the set of numbers Qαβ
γδε as being the components of an

object Q that is element of the vector space of type (2, 3) tensors. We
denote this vector space by the symbol V ⊗ V ⊗ V ∗⊗ V ∗⊗ V ∗, the notation
indicating that it is derived from the original V and its dual V ∗ by taking
tensor products of these spaces. The tensor Q is to be thought of as existing
as an element of V ⊗V ⊗V ∗⊗V ∗⊗V ∗ independently of any basis, but given
a basis {eµ} for V , and the dual basis {e∗ν} for V ∗, we expand it as

Q = Qαβ
γδε eα ⊗ eβ ⊗ e∗γ ⊗ e∗δ ⊗ e∗ε. (1.42)

Here the tensor product symbol “⊗” is distributive

a⊗ (b + c) = a⊗ b + a⊗ c,

(a + b)⊗ c = a⊗ c + b⊗ c, (1.43)

and associative
(a⊗ b)⊗ c = a⊗ (b⊗ c), (1.44)

but is not commutative
a⊗ b 6= b⊗ a. (1.45)

Everything commutes with the field, however,

λ(a⊗ b) = (λa)⊗ b = a⊗ (λb). (1.46)

If we change basis eα = aβαe
′
β then these rules lead, for example, to

eα ⊗ eβ = aλαa
µ
β e′

λ ⊗ e′
µ. (1.47)

From this change-of-basis formula, we deduce that

T αβeα ⊗ eβ = T αβaλαa
µ
β e′

λ ⊗ e′
µ = T ′λµ e′

λ ⊗ e′
µ, (1.48)

where
T ′λµ = T αβaλαa

µ
β . (1.49)

The analogous formula for eα⊗ eβ ⊗ e∗γ ⊗ e∗δ ⊗ e∗ε reproduces the transfor-
mation rule for the components of Q.

The meaning of the tensor product of a collection of vector spaces should
now be clear: If eµ consititute a basis for V , the space V ⊗V is, for example,
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the space of all linear combinations1 of the abstract symbols eµ ⊗ eν , which
we declare by fiat to constitute a basis for this space. There is no geometric
significance (as there is with a vector product a× b) to the tensor product
a⊗ b, so the eµ ⊗ eν are simply useful place-keepers. Remember that these
are ordered pairs, eµ ⊗ eν 6= eν ⊗ eµ.

Although there is no geometric meaning, it is possible, however, to give
an algebraic meaning to a product like e∗λ ⊗ e∗µ ⊗ e∗ν by viewing it as a
multilinear form V × V × V :→ R. We define

e∗λ ⊗ e∗µ ⊗ e∗ν (eα, eβ, eγ) = δλα δ
µ
β δ

ν
γ . (1.50)

We may also regard it as a linear map V ⊗ V ⊗ V :→ R by defining

e∗λ ⊗ e∗µ ⊗ e∗ν (eα ⊗ eβ ⊗ eγ) = δλα δ
µ
β δ

ν
γ (1.51)

and extending the definition to general elements of V ⊗ V ⊗ V by linearity.
In this way we establish an isomorphism

V ∗ ⊗ V ∗ ⊗ V ∗ ∼= (V ⊗ V ⊗ V )∗. (1.52)

This multiple personality is typical of tensor spaces. We have already seen
that the metric tensor is simultaneously an element of V ∗ ⊗ V ∗ and a map
g : V → V ∗.

Tensor products and quantum mechanics

When we have two quantum-mechanical systems having Hilbert spaces H(1)

and H(2), the Hilbert space for the combined system is H(1)⊗H(2). Quantum
mechanics books usually denote the vectors in these spaces by the Dirac “bra-
ket” notation in which the basis vectors of the separate spaces are denoted
by2 |n1〉 and |n2〉, and that of the combined space by |n1, n2〉. In this notation,
a state in the combined system is a linear combination

|Ψ〉 =
∑

n1,n2

|n1, n2〉〈n1, n2|Ψ〉, (1.53)

1Do not confuse the tensor-product space V ⊗W with the Cartesian product V ×W .
The latter is the set of all ordered pairs (x,y), x ∈ V , y ∈W . The tensor product includes
also formal sums of such pairs. The Cartesian product of two vector spaces can be given
the structure of a vector space by defining an addition operation λ(x1,y1) + µ(x2,y2) =
(λx1 +µx2, λy1 +µy2), but this construction does not lead to the tensor product. Instead
it defines the direct sum V ⊕W .

2We assume for notational convenience that the Hilbert spaces are finite dimensional.
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This is the tensor product in disguise. To unmask it, we simply make the
notational translation

|Ψ〉 → Ψ

〈n1, n2|Ψ〉 → ψn1,n2

|n1〉 → e(1)
n1

|n2〉 → e(2)
n2

|n1, n2〉 → e(1)
n1
⊗ e(2)

n2
. (1.54)

Then (1.53) becomes

Ψ = ψn1,n2 e(1)
n1
⊗ e(2)

n2
. (1.55)

Entanglement: Suppose that H(1) has basis e
(1)
1 , . . . , e

(1)
m and H(2) has basis

e
(2)
1 , . . . , e

(2)
n . The Hilbert spaceH(1)⊗H(2) is then nm dimensional. Consider

a state

Ψ = ψije
(1)
i ⊗ e

(2)
j ∈ H(1) ⊗H(2). (1.56)

If we can find vectors

Φ ≡ φie
(1)
i ∈ H(1),

X ≡ χje
(2)
j ∈ H(2), (1.57)

such that

Ψ = Φ⊗X ≡ φiχje
(1)
i ⊗ e

(2)
j (1.58)

then the tensor Ψ is said to be decomposable and the two quantum systems
are said to be unentangled . If there are no such vectors then the two systems
are entangled in the sense of the Einstein-Podolski-Rosen (EPR) paradox.

Quantum states are really in one-to-one correspondence with rays in the
Hilbert space, rather than vectors. If we denote the n dimensional vector
space over the field of the complex numbers as Cn , the space of rays, in which
we do not distinguish between the vectors x and λx when λ 6= 0, is denoted
by CP n−1 and is called complex projective space. Complex projective space is
where algebraic geometry is studied. The set of decomposable states may be
thought of as a subset of the complex projective space CP nm−1, and, since,
as the following excercise shows, this subset is defined by a finite number of
homogeneous polynomial equations, it forms what algebraic geometers call a
variety . This particular subset is known as the Segre variety .
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Exercise 1.3: The Segre conditions for a state to be decomposable:

i) By counting the number of independent components that are at our dis-
posal in Ψ, and comparing that number with the number of free param-
eters in Φ⊗X, show that the coefficients ψij must satisfy (n−1)(m−1)
relations if the state is to be decomposable.

ii) If the state is decomposable, show that

0 =

∣∣∣∣
ψij ψil

ψkj ψkl

∣∣∣∣

for all sets of indices i, j, k, l.
iii) Assume that ψ11 is not zero. Using your count from part (i) as a guide,

find a subset of the relations from part (ii) that constitute a necessary and
sufficient set of conditions for the state Ψ to be decomposable. Include
a proof that your set is indeed sufficient.

1.2.4 Symmetric and skew-symmetric tensors

By examining the transformation rule you may see that if a pair of up-
stairs or downstairs indices is symmetric (say Qµν

ρστ = Qνµ
ρστ ) or skew-

symmetric (Qµν
ρστ = −Qνµ

ρστ ) in one basis, it remains so after the basis
has been changed. (This is not true of a pair composed of one upstairs
and one downstairs index.) It makes sense, therefore, to define symmetric
and skew-symmetric tensor product spaces. Thus skew-symmetric doubly-
contravariant tensors can be regarded as belonging to the space denoted by∧2 V and expanded as

A =
1

2
Aµν eµ ∧ eν , (1.59)

where the coefficients are skew-symmetric, Aµν = −Aνµ, and the wedge prod-

uct of the basis elements is associative and distributive, as is the tensor
product, but in addition obeys eµ ∧ eν = −eν ∧ eµ. The “1/2” (replaced
by 1/p! when there are p indices) is convenient in that each independent
component only appears once in the sum. For example, in three dimensions,

1

2
Aµν eµ ∧ eν = A12 e1 ∧ e2 + A23 e2 ∧ e3 + A31 e3 ∧ e1. (1.60)

Symmetric doubly-contravariant tensors can be regarded as belonging to
the space sym2V and expanded as

S = Sαβ eα � eβ (1.61)
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where eα � eβ = eβ � eα and Sαβ = Sβα. (We do not insert a “1/2” here
because including it leads to no particular simplification in any consequent
equations.)

We can treat these symmetric and skew-symmetric products as symmetric
or skew multilinear forms. Define, for example,

e∗α ∧ e∗β (eµ, eν) = δαµδ
β
ν − δαν δβµ , (1.62)

and
e∗α ∧ e∗β (eµ ∧ eν) = δαµδ

β
ν − δαν δβµ . (1.63)

We need two terms on the right-hand-side of these examples because the
skew-symmetry of e∗α ∧ e∗β( , ) in its slots does not allow us the luxury
of demanding that the eµ be inserted in the exact order of the e∗α to get a
non-zero answer. Because the p-th order analogue of (1.62) form has p! terms
on its right-hand side, some authors like to divide the right-hand-side by p!
in this definition. We prefer the one above, though. With our definition, and
with A = 1

2
Aµνe

∗µ ∧ e∗ν and B = 1
2
Bαβeα ∧ eβ , we have

A(B) =
1

2
AµνB

µν =
∑

µ<ν

AµνB
µν , (1.64)

so the sum is only over independent terms.
The wedge (∧) product notation is standard in mathematics wherever

skew-symmetry is implied.3 The “sym” and � are not. Different authors use
different notations for spaces of symmetric tensors. This reflects the fact that
skew-symmetric tensors are extremely useful and appear in many different
parts of mathematics, while symmetric ones have fewer special properties
(although they are common in physics). Compare the relative usefulness of
determinants and permanents.

Exercise 1.4: Show that in d dimensions:

i) the dimension of the space of skew-symmetric covariant tensors with p
indices is d!/p!(d − p)!;

ii) the dimension of the space of symmetric covariant tensors with p indices
is (d+ p− 1)!/p!(d − 1)!.

3Skew products, along with the first formulation of the idea of an abstract vector
space, were introduced in Hermann Grassmann’s Ausdehnungslehre (1844). Grassmann’s
mathematics was not appreciated in his lifetime. In his disappointment he turned to other
fields, making significant contributions to the theory of colour mixtures (Grassmann’s
law), and to the philology of Indo-European languages (another Grassmann’s law).
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Bosons and fermions

Spaces of symmetric and skew-symmetric tensors appear whenever we deal
with the quantum mechanics of many indistinguishable particles possessing
Bose or Fermi statistics. If we have a Hilbert space H of single-particle states
with basis ei then the N -boson space is SymNH which consists of states

Φ = Φi1i2...iNei1 � ei2 � · · · � eiiN , (1.65)

and the N -fermion space is
∧NH, which contains states

Ψ =
1

N !
Ψi1i2...iN ei1 ∧ ei2 ∧ · · · ∧ eiN . (1.66)

The symmetry of the Bose wavefunction

Φi1...iα...iβ ...iN = Φi2...iβ ...iα...iN , (1.67)

and the skew-symmetry of the Fermion wavefunction

Ψi1...iα...iβ ...iN = −Ψi2...iβ ...iα...iN , (1.68)

under the interchange of the particle labels α, β is then natural.
Slater Determinants and the Plücker Relations: Some N -fermion states can
be decomposed into a product of single-particle states

Ψ = ψ1 ∧ψ2 ∧ · · · ∧ψN

= ψi11 ψ
i2
2 · · ·ψiNN ei1 ∧ ei2 ∧ · · · ∧ eiN . (1.69)

Comparing the coefficients of ei1 ∧ ei2 ∧ · · · ∧ eiN in (1.66) and (1.69) shows
that the many-body wavefunction can then be written as

Ψi1i2...iN =

∣∣∣∣∣∣∣∣

ψi11 ψi21 · · · ψiN1
ψi12 ψi22 · · · ψiN2
...

...
. . .

...
ψi1N ψi2N · · · ψiNN

∣∣∣∣∣∣∣∣
. (1.70)

The wavefunction is therefore given by a single Slater determinant . Such
wavefunctions correspond to a very special class of states. The general
many-fermion state is not decomposable, and its wavefunction can only be
expressed as a sum of many Slater determinants. The Hartree-Fock method
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of quantum chemistry is a variational approximation that takes such a single
Slater determinant as its trial wavefunction and varies only the one-particle
wavefunctions 〈i|ψa〉 ≡ ψia. It is a remarkably successful approximation,
given the very restricted class of wavefunctions it explores.

As with the Segre condition for two distinguishable quantum systems to
be unentangled, there is a set of necessary and sufficient conditions on the
Ψi1i2...iN for the state Ψ to be decomposable into single-particle states. The
conditions are that

Ψi1i2...iN−1[j1Ψj1j2...jN+1] = 0 (1.71)

for any choice of indices i1, . . . iN−1 and j1, . . . , jN+1. The square brackets
[. . .] indicate that the expression is to be antisymmetrized over the indices
enclosed in the brackets. For example, a three-particle state is decomposable
if and only if

Ψi1i2j1Ψj2j3j4 −Ψi1i2j2Ψj1j3j4 + Ψi1i2j3Ψj1j2j4 −Ψi1i2j4Ψj1j2j3 = 0. (1.72)

These conditions are called the Plücker relations after Julius Plücker who
discovered them long before before the advent of quantum mechanics.4 It is
easy to show that Plücker’s relations are necessary conditions for decompos-
ability. It takes more sophistication to show that they are sufficient. We will
therefore defer this task to the exercises as the end of the chapter. As far as
we are aware, the Plücker relations are not exploited by quantum chemists,
but, in disguise as the Hirota bilinear equations, they constitute the geometric
condition underpinning the many-soliton solutions of the Korteweg-de-Vries
and other soliton equations.

1.2.5 Kronecker and Levi-Civita tensors

Suppose the tensor δµν is defined, with respect to some basis, to be unity if
µ = ν and zero otherwise. In a new basis it will transform to

δ′µν = aµρ(a
−1)σνδ

ρ
σ = aµρ(a

−1)νρ = δµν . (1.73)

In other words the Kronecker delta symbol of type (1, 1) has the same numer-
ical components in all co-ordinate systems. This is not true of the Kroneker
delta symbol of type (0, 2), i.e. of δµν .

4As well as his extensive work in algebraic geometry, Plücker (1801-68) made important
discoveries in experimental physics. He was, for example, the first person to observe the
deflection of cathode rays — beams of electrons — by a magnetic field, and the first to
point out that each element had its characteristic emission spectrum.
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Now consider an n-dimensional space with a tensor ηµ1µ2...µn whose com-
ponents, in some basis, coincides with the Levi-Civita symbol εµ1µ2...µn . We
find that in a new frame the components are

η′µ1µ2...µn
= (a−1)ν1µ1

(a−1)ν2µ2
· · · (a−1)νn

µn
εν1ν2...νn

= εµ1µ2...µn (a−1)ν11 (a−1)ν22 · · · (a−1)νn
n εν1ν2...νn

= εµ1µ2...µn detA−1

= ηµ1µ2...µn detA−1. (1.74)

Thus, unlike the δµν , the Levi-Civita symbol is not quite a tensor.
Consider also the quantity

√
g

def
=
√

det [gµν ]. (1.75)

Here we assume that the metric is positive-definite, so that the square root
is real, and that we have taken the positive square root. Since

det [g′µν ] = det [(a−1)ρµ(a
−1)σνgρσ] = (detA)−2det [gµν ], (1.76)

we see that √
g′ = |detA|−1√g (1.77)

Thus
√
g is also not quite an invariant. This is only to be expected, because

g( , ) is a quadratic form and we know that there is no basis-independent
meaning to the determinant of such an object.

Now define

εµ1µ2...µn =
√
g εµ1µ2...µn , (1.78)

and assume that εµ1µ2...µn has the type (0, n) tensor character implied by
its indices. When we look at how this transforms, and restrict ourselves
to orientation preserving changes of of bases, i.e. ones for which detA is
positive, we see that factors of detA conspire to give

ε′µ1µ2...µn
=
√
g′ εµ1µ2...µn . (1.79)

A similar exercise indictes that if we define εµ1µ2...in to be numerically equal
to εi1i2...µn then

εµ1µ2...µn =
1√
g
εµ1µ2...µn (1.80)
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also transforms as a tensor — in this case a type (n, 0) contravariant one
— provided that the factor of 1/

√
g is always calculated with respect to the

current basis.
If the dimension n is even and we are given a skew-symetric tensor Fµν ,

we can therefore construct an invariant

εµ1µ2...µnFµ1µ2
· · ·Fµn−1µn =

1√
g
εµ1µ2...µnFµ1µ2

· · ·Fµn−1µn . (1.81)

Similarly, given an skew-symmetric covariant tensor Fµ1...µm with m (≤ n)
indices we can form its dual , denoted by F ∗, a (n−m)-contravariant tensor
with components

(F ∗)µm−1...µn =
1

m!
εµ1µ2...µnFµ1...µm =

1√
g

1

m!
εµ1µ2...µnFµ1...µm . (1.82)

We meet this “dual” tensor again, when we study differential forms.

1.3 Cartesian Tensors

If we restrict ourselves to Cartesian co-ordinate systems having orthonormal
basis vectors, so that gij = δij , then there are considerable simplifications.
In particular, we do not have to make a distinction between co- and contra-
variant indices. We shall usually write their indices as roman-alphabet suf-
fixes.

A change of basis from one orthogonal n-dimensional basis ei to another
e′
i will set

e′
i = Oijej , (1.83)

where the numbers Oij are the entries in an orthogonal matrix O, i.e. a real
matrix obeying OTO = OOT = I, where T denotes the transpose. The set
of n-by-n orthogonal matrices constitutes the orthogonal group O(n).

1.3.1 Isotropic tensors

The Kronecker δij with both indices downstairs is unchanged by O(n) trans-
formations,

δ′ij = OikOjlδkl = OikOjk = OikO
T
kj = δij , (1.84)
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and has the same components in any Cartesian frame. We say that its
components are numerically invariant . A similar property holds for tensors
made up of products of δij, such as

Tijklmn = δijδklδmn. (1.85)

It is possible to show5 that any tensor whose components are numerically
invariant under all orthogonal transformations is a sum of products of this
form. The most general O(n) invariant tensor of rank four is, for example.

αδijδkl + βδikδlj + γδilδjk. (1.86)

The determinant of an orthogonal transformation must be ±1. If we only
allow orientation-preserving changes of basis then we restrict ourselves to
orthogonal transformations Oij with detO = 1. These are the proper or-
thogonal transformations. In n dimensions they constitute the group SO(n).
Under SO(n) transformations, both δij and εi1i2...in are numerically invariant
and the most general SO(n) invariant tensors consist of sums of products of
δij ’s and εi1i2...in’s. The most general SO(4)-invariant rank-four tensor is, for
example,

αδijδkl + βδikδlj + γδilδjk + λεijkl. (1.87)

Tensors that are numerically invariant under SO(n) are known as isotropic

tensors.
As there is no longer any distinction between co- and contravariant in-

dices, we can now contract any pair of indices. In three dimensions, for
example,

Bijkl = εnijεnkl (1.88)

is a rank-four isotropic tensor. Now εi1...in is not invariant when we transform
via an orthogonal transformation with detO = −1, but the product of two
ε’s is invariant under such transformations. The tensor Bijkl is therefore
numerically invariant under the larger group O(3) and must be expressible
as

Bijkl = αδijδkl + βδikδlj + γδilδjk (1.89)

for some coefficients α, β and γ. The following exercise explores some con-
sequences of this and related facts.

5The proof is surprisingly complicated. See, for example, M. Spivak, A Comprehensive
Introduction to Differential Geometry (second edition) Vol. V, pp. 466-481.
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Exercise 1.5: We defined the n-dimensional Levi-Civita symbol by requiring
that εi1i2...in be antisymmetric in all pairs of indices, and ε12...n = 1.

a) Show that ε123 = ε231 = ε312, but that ε1234 = −ε2341 = ε3412 = −ε4123.
b) Show that

εijkεi′j′k′ = δii′δjj′δkk′ + five other terms,

where you should write out all six terms explicitly.
c) Show that εijkεij′k′ = δjj′δkk′ − δjk′δkj′.
d) For dimension n = 4, write out εijklεij′k′l′ as a sum of products of δ’s

similar to the one in part (c).

Exercise 1.6: Vector Products. The vector product of two three-vectors may
be written in Cartesian components as (a× b)i = εijkajbk. Use this and your
results about εijk from the previous exercise to show that

i) a · (b× c) = b · (c× a) = c · (a× b),
ii) a× (b× c) = (a · c)b− (a · b)c,
iii) (a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c).
iv) If we take a, b, c and d, with d ≡ b, to be unit vectors, show that

the identities (i) and (iii) become the sine and cosine rule, respectively,
of spherical trigonometry. (Hint: for the spherical sine rule, begin by
showing that a · [(a× b)× (a× c)] = a · (b× c).)

1.3.2 Stress and strain

As an illustration of the utility of Cartesian tensors, we consider their appli-
cation to elasticity.

Suppose that an elastic body is slightly deformed so that the particle that
was originally at the point with Cartesian co-ordinates xi is moved to xi+ηi.
We define the (infinitesimal) strain tensor eij by

eij =
1

2

(
∂ηj
∂xi

+
∂ηi
∂xj

)
. (1.90)

It is automatically symmetric: eij = eji. We will leave for later (exercise
2.3) a discussion of why this is the natural definition of strain, and also
the modifications necessary were we to employ a non-Cartesian co-ordinate
system.

To define the stress tensor σij we consider the portion Ω of the body in
figure 1.1, and an element of area dS = n d|S| on its boundary. Here, n is
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the unit normal vector pointing out of Ω. The force F exerted on this surface
element by the parts of the body exterior to Ω has components

Fi = σijnj d|S|. (1.91)

Ω

d

F

n
|S|

Figure 1.1: Stress forces.

That F is a linear function of n d|S| can be seen by considering the forces
on an small tetrahedron, three of whose sides coincide with the co-ordinate
planes, the fourth side having n as its normal. In the limit that the lengths
of the sides go to zero as ε, the mass of the body scales to zero as ε3, but
the forces are proprtional to the areas of the sides and go to zero only as ε2.
Only if the linear relation holds true can the acceleration of the tetrahedron
remain finite. A similar argument applied to torques and the moment of
intertia of a small cube shows that σij = σji.

A generalization of Hooke’s law,

σij = cijklekl, (1.92)

relates the stress to the strain via the tensor of elastic constants cijkl. This
rank-four tensor has the symmetry properties

cijkl = cklij = cjikl = cijlk. (1.93)

In other words, the tensor is symmetric under the interchange of the first
and second pairs of indices, and also under the interchange of the individual
indices in either pair.

For an isotropic material — a material whose properties are invariant
under the rotation group SO(3) — the tensor of elastic constants must be an
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isotropic tensor. The most general such tensor with the required symmetries
is

cijkl = λδijδkl + µ(δikδjl + δilδjk). (1.94)

As isotropic material is therefore characterized by only two independent pa-
rameters, λ and µ. These are called the Lamé constants after the mathemat-
ical engineer Gabriel Lamé. In terms of them the generalized Hooke’s law
becomes

σij = λδijekk + 2µeij. (1.95)

By considering particular deformations, we can express the more directly
measurable bulk modulus , shear modulus, Young’s modulus and Poisson’s

ratio in terms of λ and µ.

The bulk modulus κ is defined by

dV

V
= −κdP, (1.96)

where an infinitesimal isotropic external pressure dP causes a change V →
V + dV in the volume of the material. This applied pressure corresponds to
a surface stress of σij = −δij dP . An isotropic expansion displaces points in
the material so that

ηi =
1

3

dV

V
xi. (1.97)

The strains are therefore given by

eij =
1

3
δij
dV

V
. (1.98)

Inserting this strain into the stress-strain relation gives

σij = δij(λ+
2

3
µ)
dV

V
= −δijdP. (1.99)

Thus

κ = λ+
2

3
µ. (1.100)

To define the shear modulus, we assume a deformation η1 = θx2, so
e12 = e21 = θ/2, with all other eij vanishing.
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σ21
σ21

σ12

σ12

θ

Figure 1.2: Shear strain. The arrows show the direction of the applied
stresses. The σ21 on the vertical faces are necessary to stop the body ro-
tating.

The applied shear stress is σ12 = σ21. The shear modulus, is defined to be
σ12/θ. Inserting the strain components into the stress-strain relation gives

σ12 = µθ, (1.101)

and so the shear modulus is equal to the Lamé constant µ. We can therefore
write the generalized Hooke’s law as

σij = 2µ(eij − 1
3
δijekk) + κekkδij, (1.102)

which reveals that the shear modulus is associated with the traceless part of
the strain tensor, and the bulk modulus with the trace.

Young’s modulus Y is measured by stretching a wire of initial length L
and square cross section of side W under a tension T = σ33W

2.

L

σ 33σ
33

W

Figure 1.3: Forces on a stretched wire.

We define Y so that

σ33 = Y
dL

L
. (1.103)

At the same time as the wire stretches, its width changes W → W + dW .
Poisson’s ratio σ is defined by

dW

W
= −σdL

L
, (1.104)



24 CHAPTER 1. TENSORS IN EUCLIDEAN SPACE

so that σ is positive if the wire gets thinner as it gets longer. The displace-
ments are

η3 = z

(
dL

L

)
,

η1 = x

(
dW

W

)
= −σx

(
dL

L

)
,

η2 = y

(
dW

W

)
= −σy

(
dL

L

)
, (1.105)

so the strain components are

e33 =
dL

L
, e11 = e22 =

dW

W
= −σe33. (1.106)

We therefore have

σ33 = (λ(1− 2σ) + 2µ)

(
dL

L

)
, (1.107)

leading to

Y = λ(1− 2σ) + 2µ. (1.108)

Now, the side of the wire is a free surface with no forces acting on it, so

0 = σ22 = σ11 = (λ(1− 2σ)− 2σµ)

(
dL

L

)
. (1.109)

This tells us that6

σ =
1

2

λ

λ+ µ
, (1.110)

and

Y = µ

(
3λ+ 2µ

λ+ µ

)
. (1.111)

Other relations, following from those above, are

Y = 3κ(1− 2σ),

= 2µ(1 + σ). (1.112)

6Poisson and Cauchy believed that λ = µ, and hence that σ = 1/4.
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Exercise 1.7: Show that the symmetries

cijkl = cklij = cjikl = cijlk

imply that a general homogeneous material has 21 independent elastic con-
stants. (This result was originally obtained by George Green, of Green func-
tion fame.)

Exercise 1.8: A steel beam is forged so that its cross section has the shape of
a region Γ ∈ R2. When undeformed, it lies along the z axis. The centroid O
of each cross section is defined so that

∫

Γ
x dxdy =

∫

Γ
y dxdy = 0,

when the co-ordinates x, y are taken with the centroid O as the origin. The
beam is slightly bent away from the z axis so that the line of centroids remains
in the y, z plane. At a particular cross section with centroid O, the line of
centroids has radius of curvature R.

Γ
z

x

y

O

Figure 1.4: Bent beam.

Assume that the deformation in the vicinity of O is such that

ηx = − σ
R
xy,

ηy =
1

2R

{
σ(x2 − y2)− z2

}
,

ηz =
1

R
yz.
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O

Γ

x

y

Figure 1.5: The original (dashed) and anticlastically deformed (full) cross-
section.

For positive Poisson ratio, the cross section deforms anticlastically — the sides
bend up as the beam bends down.

Compute the strain tensor resulting from the given deformation, and show
that its only non-zero components are

exx = − σ
R
y, eyy = − σ

R
y, ezz =

1

R
y.

Next, show that

σzz =

(
Y

R

)
y,

and that all other components of the stress tensor vanish. Deduce from this
vanishing that the assumed deformation satisfies the free-surface boundary
condition, and so is indeed the way the beam responds when it is bent by
forces applied at its ends.

The work done in bending the beam
∫

beam

1

2
eijcijklekl d

3x

is stored as elastic energy. Show that for our bent rod this energy is equal to
∫
Y I

2

(
1

R2

)
ds ≈

∫
Y I

2
(y′′)2dz,

where s is the arc-length taken along the line of centroids of the beam,

I =

∫

Γ
y2 dxdy

is the moment of inertia of the region Γ about the x axis, and y′′ denotes
the second derivative of the deflection of the beam with respect to z (which
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approximates the arc-length). This last formula for the strain energy has been
used in a number of our calculus-of-variations problems.

y

z

Figure 1.6: The distribution of forces σzz exerted on the left-hand part of the
bent rod by the material to its right.

1.3.3 Maxwell stress tensor

Consider a small cubical element of an elastic body. If the stress tensor were
position independent, the external forces on each pair of opposing faces of
the cube would be equal in magnitude but pointing in opposite directions.
There would therefore be no net external force on the cube. When σij is not

constant then we claim that the total force acting on an infinitesimal element
of volume dV is

Fi = ∂jσij dV. (1.113)

To see that this assertion is correct, consider a finite region Ω with boundary
∂Ω, and use the divergence theorem to write the total force on Ω as

F tot
i =

∫

∂Ω

σijnjd|S| =
∫

Ω

∂jσijdV. (1.114)

Whenever the force-per-unit-volume fi acting on a body can be written
in the form fi = ∂jσij , we refer to σij as a “stress tensor,” by analogy with
stress in an elastic solid. As an example, let E and B be electric and magnetic
fields. For simplicity, initially assume them to be static. The force per unit
volume exerted by these fields on a distribution of charge ρ and current j is

f = ρE + j×B. (1.115)

From Gauss’ law ρ = div D, and with D = ε0E, we find that the force per
unit volume due the electric field has components

ρEi = (∂jDj)Ei = ε0

(
∂j(EiEj)− Ej ∂jEi

)
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= ε0

(
∂j(EiEj)− Ej ∂iEj

)

= ε0∂j

(
EiEj −

1

2
δij |E|2

)
. (1.116)

Here, in passing from the first line to the second, we have used the fact that
curlE is zero for static fields, and so ∂jEi = ∂iEj . Similarly, using j = curlH,
together with B = µ0H and div B = 0, we find that the force per unit volume
due the magnetic field has components

(j×B)i = µ0∂j

(
HiHj −

1

2
δij|H|2

)
. (1.117)

The quantity

σij = ε0

(
EiEj −

1

2
δij|E|2

)
+ µ0

(
HiHj −

1

2
δij|H|2

)
(1.118)

is called the Maxwell stress tensor . Its utility lies in in the fact that the
total electromagnetic force on an isolated body is the integral of the Maxwell
stress over its surface. We do not need to know the fields within the body.

Michael Faraday was the first to intuit a picture of electromagnetic stresses
and attributed both a longitudinal tension and a mutual lateral repulsion to
the field lines. Maxwell’s tensor expresses this idea mathematically.

Exercise 1.9: Allow the fields in the preceding calculation to be time depen-
dent. Show that Maxwell’s equations

curlE = −∂B
∂t
, divB = 0,

curlH = j +
∂D

∂t
, divD = ρ,

with B = µ0H, D = ε0E, and c = 1/
√
µ0ε0, lead to

(ρE + j×B)i +
∂

∂t

{
1

c2
(E×H)i

}
= ∂jσij .

The left-hand side is the time rate of change of the mechanical (first term)
and electromagnetic (second term) momentum density. Observe that we can
equivalently write

∂

∂t

{
1

c2
(E ×H)i

}
+ ∂j(−σij) = −(ρE + j×B)i,
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and think of this a local field-momentum conservation law. In this interpre-
tation −σij is thought of as the momentum flux tensor, its entries being the
flux in direction j of the component of field momentum in direction i. The
term on the right-hand side is the rate at which momentum is being supplied
to the electro-magnetic field by the charges and currents.

1.4 Further Exercises and Problems

Exercise 1.10: Quotient theorem. Suppose that you have come up with some
recipe for generating an array of numbers T ijk in any co-ordinate frame, and
want to know whether these numbers are the components of a triply con-
travariant tensor. Suppose further that you know that, given the components
aij of an arbitrary doubly covariant tensor, the numbers

T ijkajk = vi

transform as the components of a contravariant vector. Show that T ijk does
indeed transform as a triply contravariant tensor. (The natural generalization
of this result to arbitrary tensor types is known as the quotient theorem.)

Exercise 1.11: Let T ij be the 3-by-3 array of components of a tensor. Show
that the quantities

a = T ii, b = T ijT
j
i, c = T ijT

j
kT

k
i

are invariant. Further show that the eigenvalues of the linear map represented
by the matrix T ij can be found by solving the cubic equation

λ3 − aλ2 +
1

2
(a2 − b)λ− 1

6
(a3 − 3ab+ 2c) = 0.

Exercise 1.12: Let the covariant tensor Rijkl possess the following symme-
tries:

i) Rijkl = −Rjikl,
ii) Rijkl = −Rijlk,
iii) Rijkl +Riklj +Riljk = 0.

Use the properties i),ii), iii) to show that:

a) Rijkl = Rklij.
b) If Rijklx

iyjxkyl = 0 for all vectors xi, yi, then Rijkl = 0.
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c) If Bij is a symmetric covariant tensor and set we Aijkl = BikBjl−BilBjk,
then Aijkl has the same symmetries as Rijkl.

Exercise 1.13: Write out Euler’s equation for fluid motion

v̇ + (v · ∇)v = −∇h

in Cartesian tensor notation. Transform it into

v̇− v × ω = −∇
(

1

2
v2 + h

)
,

where ω = ∇×v is the vorticity. Deduce Bernoulli’s theorem, that for steady
(v̇ = 0) flow the quantity 1

2v
2 + h is constant along streamlines.

Exercise 1.14: Symmetric integration. Show that the n-dimensional integral

Iαβγδ =

∫
dnk

(2π)n
(kαkβkγkδ) f(k2),

is equal to

A(δαβδγδ + δαγδβδ + δαδδβγ)

where

A =
1

n(n+ 2)

∫
dnk

(2π)n
(k2)2f(k2).

Similarly evaluate

Iαβγδε =

∫
dnk

(2π)n
(kαkβkγkδkε) f(k2).

Exercise 1.15: Write down the most general three-dimensional isotropic ten-
sors of rank two and three.

In piezoelectric materials, the application of an electric field Ei induces a
mechanical strain that is described by a rank-two symmetric tensor

eij = dijkEk,

where dijk is a third-rank tensor that depends only on the material. Show
that eij can only be non-zero in an anisotropic material.
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Exercise 1.16: In three dimensions, a rank-five isotropic tensor Tijklm is a
linear combination of expressions of the form εi1i2i3δi4i5 for some assignment
of the indices i, j, k, l,m to the i1, . . . , i5. Show that, on taking into account
the symmetries of the Kronecker and Levi-Civita symbols, we can construct
ten distinct products εi1i2i3δi4i5 . Only six of these are linearly independent,
however. Show, for example, that

εijkδlm − εjklδim + εkliδjm − εlijδkm = 0,

and find the three other independent relations of this sort.7

(Hint: Begin by showing that, in three dimensions,

δi1i2i3i4i5i6i7i8

def
=

∣∣∣∣∣∣∣∣

δi1i5 δi1i6 δi1i7 δi1i8
δi2i5 δi2i6 δi2i7 δi2i8
δi3i5 δi3i6 δi3i7 δi3i8
δi4i5 δi4i6 δi4i7 δi4i8

∣∣∣∣∣∣∣∣
= 0,

and contract with εi6i7i8 .)

Problem 1.17: The Plücker Relations. This problem provides a challenging
test of your understanding of linear algebra. It leads you through the task of
deriving the necessary and sufficient conditions for

A = Ai1...ik ei1 ∧ . . . ∧ eik ∈
∧

kV

to be decomposable as
A = f1 ∧ f2 ∧ . . . ∧ fk.

The trick is to introduce two subspaces of V ,

i) W , the smallest subspace of V such that A ∈ ∧kW ,
ii) W ′ = {v ∈ V : v ∧A = 0},

and explore their relationship.

a) Show that if {w1,w2, . . . ,wn} constitute a basis for W ′, then

A = w1 ∧w2 ∧ · · · ∧wn ∧ϕ

for some ϕ ∈ ∧k−n V . Conclude that that W ′ ⊆ W , and that equal-
ity holds if and only if A is decomposable, in which case W = W ′ =
span{f1 . . . fk}.

7Such relations are called syzygies. A recipe for constructing linearly independent basis
sets of isotropic tensors can be found in: G. F. Smith, Tensor , 19 (1968) 79-88.
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b) Now show that W is the image space of
∧k−1 V ∗ under the map that

takes
Ξ = Ξi1...ik−1

e∗i1 ∧ . . . ∧ e∗ik−1 ∈
∧

k−1V ∗

to
i(Ξ)A

def
= Ξi1...ik−1

Ai1...ik−1jej ∈ V
Deduce that the condition W ⊆W ′ is that

(
i(Ξ)A

)
∧A = 0, ∀Ξ ∈

∧
k−1V ∗.

c) By taking
Ξ = e∗i1 ∧ . . . ∧ e∗ik−1 ,

show that the condition in part b) can be written as

Ai1...ik−1j1Aj2j3...jk+1ej1 ∧ . . . ∧ ejk+1
= 0.

Deduce that the necessary and sufficient conditions for decomposibility
are that

Ai1...ik−1[j1Aj2j3...jk+1] = 0,

for all possible index sets i1, . . . , ik−1, j1, . . . jk+1. Here [. . .] denotes anti-
symmetrization of the enclosed indices.



Chapter 2

Differential Calculus on
Manifolds

In this section we will apply what we have learned about vectors and tensors
in a linear space to the case of vector and tensor fields in a general curvilinear
co-ordinate system. Our aim is to introduce the reader to the modern lan-
guage of advanced calculus, and in particular to the calculus of differential
forms on surfaces and manifolds.

2.1 Vector and Covector Fields

Vector fields — electric, magnetic, velocity fields, and so on — appear every-
where in physics. After perhaps struggling with it in introductory courses, we
rather take the field concept for granted. There remain subtleties, however.
Consider an electric field. It makes sense to add two field vectors at a single
point, but there is no physical meaning to the sum of field vectors E(x1) and
E(x2) at two distinct points. We should therefore regard all possible electric
fields at a single point as living in a vector space, but each different point
in space comes with its own field-vector space. This view seems even more
reasonable when we consider velocity vectors describing motion on a curved
surface.

A velocity vector lives in the tangent space to the surface at each point,
and each of these spaces is a differently oriented subspace of the higher-
dimensional ambient space.

33
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Figure 2.1: Each point on a surface has its own vector space of tangents.

Mathematicians call such a collection of vector spaces — one for each of
the points in a surface — a vector bundle over the surface. Thus the tangent

bundle over a surface is the totality of all vector spaces tangent to the surface.
Why a bundle? This word is used because the individual tangent spaces are
not completely independent, but are tied together in a rather non-obvious
way. Try to construct a smooth field of unit vectors tangent to the surface
of a sphere. However hard you work you will end up in trouble somewhere.
You cannot comb a hairy ball. On the surface of torus you will have no
problems. You can comb a hairy doughnut. The tangent spaces collectively
know something about the surface they are tangent to.

Although we spoke in the previous paragraph of vectors tangent to a
curved surface, it is useful to generalize this idea to vectors lying in the
tangent space of an n-dimensional manifold . An n-manifold M is essentially
a space that locally looks like a part of Rn. This means that some open
neighbourhood of each point can be parametrized by an n-dimensional co-
ordinate system. Such a parametrization is called a chart . Unless M is Rn

itself (or part of it), a chart will cover only part of M , and more than one
will be required for complete coverage. Where a pair of charts overlap we
demand that the transformation formula giving one set of co-ordinates as a
function of the other be a smooth (C∞) function, and to possess a smooth
inverse.1 A collection of such smoothly related co-ordinate charts covering
all of M is called an atlas . The advantage of thinking in terms of manifolds
is that we do not have to understand their properties as arising from some
embedding in a higher dimensional space. Whatever structure they have,
they possess in, and of, themselves

1A formal definition of a manifold contains some further technical restrictions (that the
space be Hausdorff and paracompact) that are designed to eliminate pathologies. We are
more interested in doing calculus than in proving theorems, and so we will ignore these
niceties.
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Classical mechanics provides a familiar illustration of these ideas. The
configuration space M of a mechanical system is usually a manifold. When
the system has n degrees of freedom we use generalized co-ordinates qi, i =
1, . . . , n to parameterize M . The tangent bundle of M then provides the
setting for Lagrangian mechanics. This bundle, denoted by TM , is the 2n-
dimensional space whose points consist of a point p in M together with a
tangent vector lying in the tangent space TMp at that point. If we think
of the tangent vector as a velocity, the natural co-ordinates on TM become
(q1, q2, . . . , qn ; q̇1, q̇2, . . . , q̇n), and these are the variables that appear in the
Lagrangian of the system.

If we consider a vector tangent to some curved surface, it will stick out
of it. If we have a vector tangent to a manifold, it is a straight arrow lying
atop bent co-ordinates. Should we restrict the length of the vector so that
it does not stick out too far? Are we restricted to only infinitesimal vectors?
It’s best to avoid all this by inventing a clever notion of what a vector in
a tangent space is. The idea is to focus on a well-defined object such as
a derivative. Suppose our space has co-ordinates xµ (These are not the
contravariant components of some vector). A directional derivative is an
object such as Xµ∂µ where ∂µ is shorthand for ∂/∂xµ. When the numbers
Xµ are functions of the co-ordinates xσ, this object is called a tangent-vector
field, and we write2

X = Xµ∂µ. (2.1)

We regard the ∂µ at a point x as a basis for TMx, the tangent-vector space at
x, and the Xµ(x) as the (contravariant) components of the vector X at that
point. Although they are not little arrows, what the ∂µ are is mathematically
clear, and so we know perfectly well how to deal with them.

When we change co-ordinate system from xµ to zν by regarding the xµ’s
as invertable functions of the zν ’s, i.e.

x1 = x1(z1, z2, . . . , zn),

x2 = x2(z1, z2, . . . , zn),
...

xn = xn(z1, z2, . . . , zn), (2.2)

2We are going to stop using bold symbols to distinguish between intrinsic objects and
their components, because from now on almost everything will be something other than a
number, and too much black ink would just be confusing.
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then the chain rule for partial differentiation gives

∂µ ≡
∂

∂xµ
=
∂zν

∂xµ
∂

∂zν
=

(
∂zν

∂xµ

)
∂′ν , (2.3)

where ∂′ν is shorthand for ∂/∂zν . By demanding that

X = Xµ∂µ = X ′ν∂′ν (2.4)

we find the components in the zν co-ordinate frame to be

X ′ν =

(
∂zν

∂xµ

)
Xµ. (2.5)

Conversely, using
∂xσ

∂zν
∂zν

∂xµ
=
∂xσ

∂xν
= δσµ , (2.6)

we have

Xν =

(
∂xν

∂zµ

)
X ′µ. (2.7)

This, then, is the transformation law for a contravariant vector.
It is worth pointing out that the basis vectors ∂µ are not unit vectors. As

we have no metric, and therefore no notion of length anyway, we cannot try
to normalize them. If you insist on drawing (small?) arrows, think of ∂1 as
starting at a point (x1, x2, . . . , xn) and with its head at (x1 + 1, x2, . . . , xn).
Of course this is only a good picture if the co-ordinates are not too “curvy.”

x =2 x =3 x =4

x =5

x =4

x =6

1 1 1

2

2

2

2

1

Figure 2.2: Approximate picture of the vectors ∂1 and ∂2 at the point
(x1, x2) = (2, 4).

Example: The surface of the unit sphere is a manifold. It is usually denoted
by S2. We may label its points with spherical polar co-ordinates θ and φ,
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and these will be useful everywhere except at the north and south poles,
where they become singular because at θ = 0 or π all values of φ correspond
to the same point. In this co-ordinate basis, the tangent vector representing
the velocity field due to a rigid rotation of one radian per second about the
z axis is

Vz = ∂φ. (2.8)

Similarly

Vx = − sinφ ∂θ − cot θ cosφ ∂φ,

Vy = cosφ ∂θ − cot θ sinφ∂φ, (2.9)

represent rigid rotations about the x and y axes.
We now know how to think about vectors. What about their dual-space

partners, the covectors? These live in the cotangent bundle T ∗M , and for
them a cute notational game, due to Élie Cartan, is played. We write the
basis vectors dual to the ∂µ as dxµ( ). Thus

dxµ(∂ν) = δµν . (2.10)

When evaluated on a vector field X = Xµ∂µ, the basis covectors dxµ return
its components

dxµ(X) = dxµ(Xν∂ν) = Xνdxµ(∂ν) = Xνδµν = Xµ. (2.11)

Now, any smooth function f ∈ C∞(M) will give rise to a field of covectors
in T ∗M . This is because a vector field X acts on the scalar function f as

Xf = Xµ∂µf (2.12)

and Xf is another scalar function. This new function gives a number — and
thus an element of the field R — at each point x ∈ M . But this is exactly
what a covector does: it takes in a vector at a point and returns a number.
We will call this covector field “df .” It is essentially the gradient of f . Thus

df(X)
def
= Xf = Xµ ∂f

∂xµ
. (2.13)

If we take f to be the co-ordinate xν , we have

dxν(X) = Xµ ∂x
ν

∂xµ
= Xµδνµ = Xν , (2.14)
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so this viewpoint is consistent with our previous definition of dxν . Thus

df(X) =
∂f

∂xµ
Xµ =

∂f

∂xµ
dxµ(X) (2.15)

for any vector field X. In other words, we can expand df as

df =
∂f

∂xµ
dxµ. (2.16)

This is not some approximation to a change in f , but is an exact expansion
of the covector field df in terms of the basis covectors dxµ.

We may retain something of the notion that dxµ represents the (con-
travariant) components of a small displacement in x provided that we think
of dxµ as a machine into which we insert the small displacement (a vector)
and have it spit out the numerical components δxµ. This is the same dis-
tinction that we make between sin( ) as a function into which one can plug
x, and sin x, the number that results from inserting in this particular value
of x. Although seemingly innocent, we know that it is a distinction of great
power.

The change of co-ordinates transformation law for a covector field fµ is
found from

fµ dx
µ = f ′

ν dz
ν , (2.17)

by using

dxµ =

(
∂xµ

∂zν

)
dzν . (2.18)

We find

f ′
ν =

(
∂xµ

∂zν

)
fµ. (2.19)

A general tensor such as Qλµ
ρστ transforms as

Q′λµ
ρστ (z) =

∂zλ

∂xα
∂zµ

∂xβ
∂xγ

∂zρ
∂xδ

∂zσ
∂xε

∂zτ
Qαβ

γδε(x). (2.20)

Observe how the indices are wired up: Those for the new tensor coefficients
in the new co-ordinates, z, are attached to the new z’s, and those for the old
coefficients are attached to the old x’s. Upstairs indices go in the numerator
of each partial derivative, and downstairs ones are in the denominator.
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The language of bundles and sections

At the beginning of this section, we introduced the notion of a vector bundle.
This is a particular example of the more general concept of a fibre bundle,
where the vector space at each point in the manifold is replaced by a “fibre”
over that point. The fibre can be any mathematical object, such as a set,
tensor space, or another manifold. Mathematicians visualize the bundle as
a collection of fibres growing out of the manifold, much as stalks of wheat
grow out the soil. When one slices through a patch of wheat with a scythe,
the blade exposes a cross-section of the stalks. By analogy, a choice of an
element of the the fibre over each point in the manifold is called a cross-

section, or, more commonly, a section of the bundle. In this language a
tangent-vector field becomes a section of the tangent bundle, and a field of
covectors becomes a section of the cotangent bundle.

We provide a more detailed account of bundles in chapter 7.

2.2 Differentiating Tensors

If f is a function then ∂µf are components of the covariant vector df . Suppose
that aµ is a contravariant vector. Are ∂νa

µ the components of a type (1, 1)
tensor? The answer is no! In general, differentiating the components of a
tensor does not give rise to another tensor. One can see why at two levels:

a) Consider the transformation laws. They contain expressions of the form
∂xµ/∂zν . If we differentiate both sides of the transformation law of a
tensor, these factors are also differentiated, but tensor transformation
laws never contain second derivatives, such as ∂2xµ/∂zν∂zσ .

b) Differentiation requires subtracting vectors or tensors at different points
— but vectors at different points are in different vector spaces, so their
difference is not defined.

These two reasons are really one and the same. We need to be cleverer to
get new tensors by differentiating old ones.

2.2.1 Lie Bracket

One way to proceed is to note that the vector field X is an operator . It makes
sense, therefore, to try to compose two of them to make another. Look at
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XY , for example:

XY = Xµ∂µ(Y
ν∂ν) = XµY ν∂2

µν +Xµ

(
∂Y ν

∂xµ

)
∂ν . (2.21)

What are we to make of this? Not much! There is no particular interpretation
for the second derivative, and as we saw above, it does not transform nicely.
But suppose we take a commutator :

[X, Y ] = XY − Y X = (Xµ(∂µY
ν)− Y µ(∂µX

ν)) ∂ν . (2.22)

The second derivatives have cancelled, and what remains is a directional
derivative and so a bona-fide vector field. The components

[X, Y ]ν ≡ Xµ(∂µY
ν)− Y µ(∂µX

ν) (2.23)

are the components of a new contravariant vector field made from the two
old vector fields. It is called the Lie bracket of the two fields, and has a
geometric interpretation.

To understand the geometry of the Lie bracket, we first define the flow

associated with a tangent-vector field X. This is the map that takes a point
x0 and maps it to x(t) by solving the family of equations

dxµ

dt
= Xµ(x1, x2, . . . , xd), (2.24)

with initial condition xµ(0) = xµ0 . In words, we regard X as the velocity field
of a flowing fluid, and let x ride along with the fluid.

Now envisage X and Y as two velocity fields. Suppose we flow along X
for a brief time t, then along Y for another brief interval s. Next we switch
back to X, but with a minus sign, for time t, and then to −Y for a final
interval of s. We have tried to retrace our path, but a short exercise with
Taylor’s theorem shows that we will fail to return to our exact starting point.
We will miss by δxµ = st[X, Y ]µ, plus corrections of cubic order in s and t.
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−sY
tX

sY

−tX

X,Y[      ]st

Figure 2.3: The Lie bracket.

Example: Let

Vx = − sinφ ∂θ − cot θ cosφ ∂φ,

Vy = cosφ ∂θ − cot θ sinφ ∂φ

be two vector fields in T (S2). We find that

[Vx, Vy] = −Vz,

where Vz = ∂φ.

Frobenius’ Theorem

Suppose that in some region of a d-dimensional manifold M we are given
n < d linearly independent tangent-vector fields Xi. Such a set is called a
distribution by differential geometers. (The concept has nothing to do with
probability, or with objects like “δ(x)” which are also called “distributions.”)
At each point x, the span 〈Xi(x)〉 of the field vectors vectors forms a subspace
of the tangent space TMx, and we can picture this subspace as a fragment
of an n-dimensional surface passing through x. It is possible that these
surface fragments fit together to make a stack of smooth surfaces — called a
foliation — that fill out the d-dimensional space, and have the given Xi as
their tangent vectors.
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X 1
X 2

x

N

Figure 2.4: A local foliation.

If this is the case then starting from x and taking steps only along the Xi

we find ourselves restricted to the n-surface, or n-submanifold , N passing
though the original point x.

Alternatively, the surface fragments may form such an incoherent jumble
that starting from x and moving only along the Xi we can find our way to any
point in the neighbourhood of x. It is also possible that some intermediate
case applies, so that moving along the Xi restricts us to an m-surface, where
d > m > n. The Lie bracket provides us with the appropriate tool with
which to investigate these possibilities.

First a definition: If there are functions c k
ij (x) such that

[Xi, Xj] = c k
ij (x)Xk, (2.25)

i.e. the Lie brackets close within the set {Xi} at each point x, then the
distribution is said to be involutive. When our given distribution is involutive,
then the first case holds, and, at least locally, there is a foliation by n-
submanifolds N . A formal statement of this is:
Theorem (Frobenius): A smooth (C∞) involutive distribution is completely

integrable: locally, there are co-ordinates xµ, µ = 1, . . . , d such that Xi =∑n
µ=1X

µ
i ∂µ, and the surfaces N through each point are in the form xµ =

const. for µ = n + 1, . . . , d. Conversely, if such co-ordinates exist then the
distribution is involutive.
Sketch of Proof : If such co-ordinates exist then it is obvious that the Lie
bracket of any pair of vectors in the form Xi =

∑n
µ=1X

µ
i ∂µ can also be ex-

panded in terms of the first n basis vectors. A logically equivalent statement
exploits the geometric interpretation of the Lie bracket: If the Lie brackets
of the fields Xi do not close within the n-dimensional span of the Xi, then a
sequence of back-and-forth manouvres along the Xi allows us to escape into a
new direction, and so the Xi cannot be tangent to an n-surface. Establishing
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the converse — that closure implies the existence of the foliation — is rather
more technical, and we will not attempt it.

The physicist’s version of Frobenius’ theorem is usually expressed in the
language of holonomic or anholonomic constraints.

For example, consider a particle moving in three dimensions. If we are
told that the velocity vector is constrained to be perpendicular to the radius
vector, i.e. v · r = 0, we realize that the particle is being forced to move on a
the sphere |r| = r0 passing through the initial point. In spherical co-ordinates
the associated distribution is the set {∂θ, ∂φ}, which is clearly involutive.
The foliation is the family of nested spheres whose centre is the origin. The
foliation is not global because it becomes singular at r = 0. Constraints like
this, which restrict the motion to a surface, are called holonomic.

Suppose, on the other hand, we have a ball rolling on a table. Here, we
have a five-dimensional configuration manifold M = R2 × S3 parameterized
by the centre of mass (x, y) ∈ R2 of the ball and the three Euler angles
(θ, φ, ψ) ∈ S3 defining its orientation. Three no-slip rolling conditions

ẋ = ψ̇ sin θ sinφ+ θ̇ cosφ,

ẏ = −ψ̇ sin θ cosφ+ θ̇ sinφ,

0 = ψ̇ cos θ + φ̇, (2.26)

(see exercise 2.17) link the rate of change of the Euler angles to the velocity
of the centre of mass. At each point in this five-dimensional manifold we are
free to roll the ball in two directions, and so might expect that the reachable
configurations constitute a two-dimensional surface embedded in the full five-
dimensional space. The two vector fields

rollx = ∂x − sinφ cot θ ∂φ + cosφ ∂θ + cosec θ sinφ ∂ψ,

rolly = ∂y + cosφ cot θ ∂φ + sinφ ∂θ − cosec θ cos φ ∂ψ, (2.27)

describing the x- and y-direction rolling motion are not in involution, how-
ever. By calculating enough Lie brackets we eventually obtain five linearly
independent velocity vector fields, and starting from one configuration we can
reach any other. The no-slip rolling condition is said to be non-integrable, or
anholonomic. Such systems are tricky to deal with in Lagrangian dynamics.

For a d-dimensional mechanical system, a set of m independent con-
straints of the form ωiµ(q)q̇

µ = 0, i = 1, . . . , m determines an n = d − m
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dimensional distribution. In terms of the vector q̇ ≡ q̇µ∂µ and the covectors

ωi =
d∑

µ=1

ωiµ(q)dq
µ, i = 1 ≤ i ≤ m (2.28)

we can write the these constraints as ωi(q̇) = 0. This is known a Pfaffian

system of equations. The Pfaffian system is said to be integrable if the
distribution it implicitly defines is in involution, and hence itself integrable.
In this case there is a set of m functions gi(q) and an invertible m-by-m
matrix f ij(q) such that

ωi =

m∑

j=1

f ij(q)dg
j. (2.29)

The functions gi(q) can, for example, be taken to be the co-ordinate func-
tions xµ, µ = n+ 1, . . . , d, that label the foliating surfaces N in the state-
ment of Frobenius’ theorem. The system of integrable constraints ωi(q̇) = 0
thus restricts us to the surfaces gi(q) = constant. Integrable constraints are
therefore holonomic.

The following exercise provides a familiar example of the utility of non-
holonomic constraints:

Exercise 2.1: Parallel Parking using Lie Brackets.

θ

(x,y)

drive

park

φ

Figure 2.5: Co-ordinates for car parking
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The configuration space of a car is four dimensional, and parameterized by
co-ordinates (x, y, θ, φ), as shown in figure 2.5.

Define the following vector fields:

a) (front wheel) drive = cosφ(cos θ ∂x + sin θ ∂y) + sinφ∂θ.
b) steer = ∂φ.
c) (front wheel) skid = − sinφ(cos θ ∂x + sin θ ∂y) + cosφ∂θ.
d) park = − sin θ ∂x + cos θ ∂y.

Explain why these are apt names for the vector fields, and compute the Lie
brackets:

[steer,drive], [steer, skid], [skid,drive],

[park,drive], [park,park], [park, skid].

The driver can use only the operations (±)drive and (±) steer to manouvre
the car. Use the geometric interpretation of the Lie bracket to explain how a
suitable sequence of motions (forward, reverse, and turning the steering wheel)
can be used to manoeuvre a car sideways into a parking space.

2.2.2 Lie Derivative

Another derivative we can define is the Lie derivative along a vector field X.
It is defined by its action on a scalar function f as

LXf def
= Xf, (2.30)

on a vector field by

LXY def
= [X, Y ], (2.31)

and on anything else by requiring it to be a derivation, meaning that it obeys
Leibniz’ rule. For example, let us compute the Lie derivative of a covector
F . We first introduce an arbitrary vector field Y and plug it into F to get
the scalar function F (Y ). Leibniz’ rule is then the statement that

LXF (Y ) = (LXF )(Y ) + F (LXY ). (2.32)

Since F (Y ) is a function and Y a vector, both of whose derivatives we know
how to compute, we know two of the three terms in this equation. From
LXF (Y ) = XF (Y ) and F (LXY ) = F ([X, Y ]), we have

XF (Y ) = (LXF )(Y ) + F ([X, Y ]), (2.33)
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and so
(LXF )(Y ) = XF (Y )− F ([X, Y ]). (2.34)

In components, this becomes

(LXF )(Y ) = Xν∂ν(FµY
µ)− Fν(Xµ∂µY

ν − Y µ∂µX
ν)

= (Xν∂νFµ + Fν∂µX
ν)Y µ. (2.35)

Note how all the derivatives of Y µ have cancelled, so LXF ( ) depends only
on the local value of Y . The Lie derivative of F is therefore still a covector
field. This is true in general: the Lie derivative does not change the tensor
character of the objects on which it acts. Dropping the passive spectator
field Y ν , we have a formula for LXF in components:

(LXF )µ = Xν∂νFµ + Fν∂µX
ν . (2.36)

Another example is provided by the Lie derivative of a type (0, 2) tensor,
such as a metric tensor. This is

(LXg)µν = Xα∂αgµν + gµα∂νX
α + gαν∂µX

α. (2.37)

The Lie derivative of a metric measures the extent to which the displacement
xα → xα + εXα(x) deforms the geometry. If we write the metric as

g( , ) = gµν(x) dx
µ ⊗ dxν , (2.38)

we can understand both this geometric interpretation and the origin of the
three terms appearing in the Lie derivative. We simply make the displace-
ment xα → xα + εXα in the coefficients gµν(x) and in the two dxα. In the
latter we write

d(xα + εXα) = dxα + ε
∂Xα

∂xβ
dxβ. (2.39)

Then we see that

gµν(x) dx
µ ⊗ dxν → [gµν(x) + ε(Xα∂αgµν + gµα∂νX

α + gαν∂µX
α)] dxµ ⊗ dxν

= [gµν + ε(LXg)µν ] dxµ ⊗ dxν . (2.40)

A displacement field X that does not change distances between points, i.e.

one that gives rise to an isometry , must therefore satisfy LXg = 0. Such an
X is said to be a Killing field after Wilhelm Killing who introduced them
in his study of non-euclidean geometries.
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The geometric interpretation of the Lie derivative of a vector field is as
follows: In order to compute the X directional derivative of a vector field Y ,
we need to be able to subtract the vector Y (x) from the vector Y (x + εX),
divide by ε, and take the limit ε→ 0. To do this we have somehow to get the
vector Y (x) from the point x, where it normally resides, to the new point
x + εX, so both vectors are elements of the same vector space. The Lie
derivative achieves this by carrying the old vector to the new point along the
field X.

Xε
x

Lε
Xε

YX

Y(x+εX)

Y(x)

Figure 2.6: Computing the Lie derivative of a vector.

Imagine the vector Y as drawn in ink in a flowing fluid whose velocity field
is X. Initially the tail of Y is at x and its head is at x + Y . After flowing
for a time ε, its tail is at x + εX — i.e exactly where the tail of Y (x+ εX)
lies. Where the head of transported vector ends up depends how the flow has
stretched and rotated the ink, but it is this distorted vector that is subtracted
from Y (x+ εX) to get εLXY = ε[X, Y ].

Exercise 2.2: The metric on the unit sphere equipped with polar co-ordinates
is

g( , ) = dθ ⊗ dθ + sin2 θdφ⊗ dφ.
Consider

Vx = − sinφ∂θ − cot θ cosφ∂φ,

the vector field of a rigid rotation about the x axis. Compute the Lie derivative
LVxg, and show that it is zero.

Exercise 2.3: Suppose we have an unstrained block of material in real space.
A co-ordinate system ξ1, ξ2, ξ3, is attached to the atoms of the body. The
point with co-ordinate ξ is located at (x1(ξ), x2(ξ), x3(ξ)) where x1, x2, x3 are
the usual R3 Cartesian co-ordinates.
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a) Show that the induced metric in the ξ co-ordinate system is

gµν(ξ) =
3∑

a=1

∂xa

∂ξµ
∂xa

∂ξν
.

b) The body is now deformed by an infinitesimal strain vector field η(ξ).
The atom with co-ordinate ξµ is moved to what was ξµ+ηµ(ξ), or equiv-
alently, the atom initially at Cartesian co-ordinate xa(ξ) is moved to
xa + ηµ∂xa/∂ξµ. Show that the new induced metric is

gµν + δgµν = gµν + Lηgµν .

c) Define the strain tensor to be 1/2 of the Lie derivative of the metric
with respect to the deformation. If the original ξ co-ordinate system
coincided with the Cartesian one, show that this definition reduces to
the familiar form

eab =
1

2

(
∂ηa
∂xb

+
∂ηb
∂xa

)
,

all tensors being Cartesian.
d) Part c) gave us the geometric definitition of infinitesimal strain. If the

body is deformed substantially, the Cauchy-Green finite strain tensor is
defined as

Eµν(ξ) =
1

2

(
gµν − g(0)

µν

)
,

where g
(0)
µν is the metric in the undeformed body and gµν that of the

deformed body. Explain why this is a reasonable definition.

2.3 Exterior Calculus

2.3.1 Differential Forms

The objects we introduced in section 2.1, the dxµ, are called one-forms, or
differential one-forms. They are fields living in the cotangent bundle T ∗M
of M . More precisely, they are sections of the cotangent bundle. Sections
of the bundle whose fibre above x ∈ M is the p-th skew-symmetric tensor
power

∧p(T ∗Mx) of the cotangent space are known as p-forms.
For example,

A = Aµdx
µ = A1dx

1 + A2dx
2 + A3dx

3, (2.41)
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is a 1-form,

F =
1

2
Fµνdx

µ ∧ dxν = F12dx
1 ∧ dx2 + F23dx

2 ∧ dx3 + F31dx
3 ∧ dx1, (2.42)

is a 2-form, and

Ω =
1

3!
Ωµνσ dx

µ ∧ dxν ∧ dxσ

= Ω123 dx
1 ∧ dx2 ∧ dx3, (2.43)

is a 3-form. All the coefficients are skew-symmetric tensors, so, for example,

Ωµνσ = Ωνσµ = Ωσµν = −Ωνµσ = −Ωµσν = −Ωσνµ. (2.44)

In each example we have explicitly written out all the independent terms for
the case of three dimensions. Note how the p! disappears when we do this
and keep only distinct components. In d dimensions the space of p-forms is
d!/p!(d− p)! dimensional, and all p-forms with p > d vanish identically.

As with the wedge products in chapter one, we regard a p-form as a p-
linear skew-symetric function with p slots into which we can drop vectors to
get a number. For example the basis two-forms give

dxµ ∧ dxν(∂α, ∂β) = δµαδ
ν
β − δµβδνα. (2.45)

The analogous expression for a p-form would have p! terms. We can define
an algebra of differential forms by “wedging” them together in the obvious
way, so that the product of a p form with a q form is a (p + q)-form. The
wedge product is associative and distributive but not, of course, commuta-
tive. Instead, if a is a p-form and b a q-form, then

a ∧ b = (−1)pq b ∧ a. (2.46)

Actually it is customary in this game to suppress the “∧” and simply write
F = 1

2
Fµν dx

µdxν , it being assumed that you know that dxµdxν = −dxνdxµ
— what else could it be?

2.3.2 The Exterior Derivative

These p-forms may seem rather complicated, so it is perhaps surprising that
all the vector calculus (div, grad, curl, the divergence theorem and Stokes’
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theorem, etc.) that you have learned in the past reduce, in terms of them,
to two simple formulæ! Indeed Élie Cartan’s calculus of p-forms is slowly
supplanting traditional vector calculus, much as Willard Gibbs’ and Oliver
Heaviside’s vector calculus supplanted the tedious component-by-component
formulæ you find in Maxwell’s Treatise on Electricity and Magnetism.

The basic tool is the exterior derivative “d”, which we now define ax-
iomatically:

i) If f is a function (0-form), then df coincides with the previous defini-
tion, i.e. df(X) = Xf for any vector field X.

ii) d is an anti-derivation: If a is a p-form and b a q-form then

d(a ∧ b) = da ∧ b+ (−1)pa ∧ db. (2.47)

iii) Poincaré’s lemma: d2 = 0, meaning that d(da) = 0 for any p-form a.
iv) d is linear. That d(αa) = αda, for constant α follows already from i)

and ii), so the new fact is that d(a+ b) = da+ db.

It is not immediately obvious that axioms i), ii) and iii) are compatible
with one another. If we use axiom i), ii) and d(dxi) = 0 to compute the d of
Ω = 1

p!
Ωi1,...,ipdx

i1 · · · dxip , we find

dΩ =
1

p!
(dΩi1,...,ip) dx

i1 · · · dxip

=
1

p!
∂kΩi1,...,ip dx

kdxi1 · · · dxip . (2.48)

Now compute

d(dΩ) =
1

p!

(
∂l∂kΩi1,...,ip

)
dxldxkdxi1 · · · dxip. (2.49)

Fortunately this is zero because ∂l∂kΩ = ∂k∂lΩ, while dxldxk = −dxkdxl.
If A = A1dx

1 + A2dx
2 + A3dx

3 then

dA =

(
∂A2

∂x1
− ∂A1

∂x2

)
dx1dx2 +

(
∂A1

∂x3
− ∂A3

∂x1

)
dx3dx1 +

(
∂A3

∂x2
− ∂A2

∂x3

)
dx2dx3

=
1

2
Fµνdx

µdxν , (2.50)

where
Fµν ≡ ∂µAν − ∂νAµ. (2.51)



2.3. EXTERIOR CALCULUS 51

You will recognize the components of curlA hiding in here.
Similarly, if F = F12dx

1dx2 + F23dx
2dx3 + F31dx

3dx1 then

dF =

(
∂F23

∂x1
+
∂F31

∂x2
+
∂F12

∂x3

)
dx1dx2dx3. (2.52)

This looks like a divergence.
The axiom d2 = 0 encompasses both “curl grad = 0” and “div curl =

0”, together with an infinite number of higher-dimensional analogues. The
familiar “curl =∇×”, meanwhile, is only defined in three dimensional space.

The exterior derivative takes p-forms to (p+1)-forms i.e. skew-symmetric
type (0, p) tensors to skew-symmetric (0, p + 1) tensors. How does “d” get
around the fact that the derivative of a tensor is not a tensor? Well, if
you apply the transformation law for Aµ, and the chain rule to ∂

∂xµ to find
the transformation law for Fµν = ∂µAν − ∂νAµ, you will see why: all the
derivatives of the ∂zν

∂xµ cancel, and Fµν is a bona-fide tensor of type (0, 2). This
sort of cancellation is why skew-symmetric objects are useful, and symmetric
ones less so.

Exercise 2.4: Use axiom ii) to compute d(d(a∧ b)) and confirm that it is zero.

Closed and exact forms

The Poincaré lemma. d2 = 0, leads to some important terminology:
i) A p-form ω is said to be closed if dω = 0.
ii) A p-form ω is said to exact if ω = dη for some (p− 1)-form η.

An exact form is necessarily closed, but a closed form is not necessarily exact.
The question of when closed ⇒ exact is one involving the global topology of
the space in which the forms are defined, and will be subject of chapter 4.

Cartan’s formulæ

It is sometimes useful to have expressions for the action of d coupled with
the evaluation of the subsequent (p+ 1) forms.

If f, η, ω, are 0, 1, 2-forms, respectively, then df, dη, dω, are 1, 2, 3-forms.
When we plug in the appropriate number of vector fields X, Y, Z, then, after
some labour, we will find

df(X) = Xf. (2.53)
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dη(X, Y ) = Xη(Y )− Y η(X)− η([X, Y ]). (2.54)

dω(X, Y, Z) = Xω(Y, Z) + Y ω(Z,X) + Zω(X, Y )

−ω([X, Y ], Z)− ω([Y, Z], X)− ω([Z,X], Y ). (2.55)

These formulæ, and their higher-p analogues, express d in terms of geometric
objects, and so make it clear that the exterior derivative is itself a geometric
object, independent of any particular co-ordinate choice.

Let us demonstate the correctness of the second formula. With η = ηµdx
µ,

the left-hand side, dη(X, Y ), is equal to

∂µην dx
µdxν(X, Y ) = ∂µην(X

µY ν −XνY µ). (2.56)

The right hand side is equal to

Xµ∂µ(ηνY
ν)− Y µ∂µ(ηνX

ν)− ην(Xµ∂µY
ν − Y µ∂µX

ν). (2.57)

On using the product rule for the derivatives in the first two terms, we find
that all derivatives of the components of X and Y cancel, and are left with
exactly those terms appearing on left.

Exercise 2.5: Let ωi, i = 1, . . . , r be a linearly independent set of one-forms
defining a Pfaffian system (see sec. 2.2.1) in d dimensions.

i) Use Cartan’s formulæ to show that the corresponding (d−r)-dimensional
distribution is involutive if and only if there is an r-by-r matrix of 1-forms
θij such that

dωi =

r∑

j=1

θij ∧ ωj.

ii) Show that the conditions in part i) are satisfied if there are r functions
gi and an invertible r-by-r matrix of functions f ij such that

ωi =
r∑

j=1

f ijdg
i.

In this case foliation surfaces are given by the conditions gi(x) = const.,
i = 1, . . . , r.

It is also possible, but considerably harder, to show that i) ⇒ ii). Doing so
would constitute a proof of Frobenius’ theorem.

Exercise 2.6: Let ω be a closed two-form, and let Null(ω) be the space of
vector fields X such that ω(X, ) = 0. Use the Cartan formulæ to show that
if X,Y ∈ Null(ω), then [X,Y ] ∈ Null(ω).
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Lie Derivative of Forms

Given a p-form ω and a vector field X, we can form a (p − 1)-form called
iXω by writing

iXω( . . . . . .︸ ︷︷ ︸
p−1 slots

) = ω(

p slots︷ ︸︸ ︷
X, . . . . . .︸ ︷︷ ︸

p−1 slots

). (2.58)

Acting on a 0-form, iX is defined to be 0. This procedure is called the interior

multiplication by X. It is simply a contraction

ωjij2...jp → ωkj2...jpX
k, (2.59)

but it is convenient to have a special symbol for this operation. It is perhaps
surprising that iX turns out to be an anti-derivation, just as is d. If η and ω
are p and q forms respectively, then

iX(η ∧ ω) = (iXη) ∧ ω + (−1)pη ∧ (iXω), (2.60)

even though iX involves no differentiation. For example, if X = Xµ∂µ, then

iX(dxµ ∧ dxν) = dxµ ∧ dxν(Xα∂α, ),

= Xµdxν − dxµXν ,

= (iXdx
µ) ∧ (dxν)− dxµ ∧ (iXdx

ν). (2.61)

One reason for introducing iX is that there is a nice (and profound)
formula for the Lie derivative of a p-form in terms of iX . The formula is
called the infinitesimal homotopy relation. It reads

LXω = (d iX + iXd)ω. (2.62)

This formula is proved by verifying that it is true for functions and one-
forms, and then showing that it is a derivation – in other words that it
satisfies Leibniz’ rule. From the derivation property of the Lie derivative, we
immediately deduce that that the formula works for any p-form.

That the formula is true for functions should be obvious: Since iXf = 0
by definition, we have

(d iX + iXd)f = iXdf = df(X) = Xf = LXf. (2.63)
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To show that the formula works for one forms, we evaluate

(d iX + iXd)(fν dx
ν) = d(fνX

ν) + iX(∂µfν dx
µdxν)

= ∂µ(fνX
ν)dxµ + ∂µfν(X

µdxν −Xνdxµ)

= (Xν∂νfµ + fν∂µX
ν)dxµ. (2.64)

In going from the second to the third line, we have interchanged the dummy
labels µ ↔ ν in the term containing dxν . We recognize that the 1-form in
the last line is indeed LXf .

To show that diX + iXd is a derivation we must apply d iX + iXd to a∧ b
and use the anti-derivation property of ix and d. This is straightforward once
we recall that d takes a p-form to a (p + 1)-form while iX takes a p-form to
a (p− 1)-form.

Exercise 2.7: Let

ω =
1

p!
ωi1...ip dx

i1 · · · dxip .

Use the anti-derivation property of iX to show that

iXω =
1

(p − 1)!
ωαi2...ipX

αdxi2 · · · dxip ,

and so verify the equivalence of (2.58) and (2.59).

Exercise 2.8: Use the infinitesimal homotopy relation to show that L and d
commute, i.e. for ω a p-form, we have

d (LXω) = LX(dω).

2.4 Physical Applications

2.4.1 Maxwell’s Equations

In relativistic3 four-dimensional tensor notation the two source-free Maxwell’s
equations

curlE = −∂B
∂t
,

divB = 0, (2.65)

3In this section we will use units in which c = ε0 = µ0 = 1. We take the Minkowski
metric to be gµν = diag (−1, 1, 1, 1) where x0 = t, x1 = x , etc.
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reduce to the single equation

∂Fµν
∂xλ

+
∂Fνλ
∂xµ

+
∂Fλµ
∂xν

= 0. (2.66)

where

Fµν =




0 −Ex −Ey −Ez
Ex 0 Bz −By

Ey −Bz 0 Bx

Ez By −Bx 0


 . (2.67)

The “F” is traditional, for Michael Faraday. In form language, the relativistic
equation becomes the even more compact expression dF = 0, where

F ≡ 1

2
Fµνdx

µdxν

= Bxdydz +Bydzdx+Bzdxdy + Exdxdt+ Eydydt+ Ezdzdt,

(2.68)

is a Minkowski-space 2-form.

Exercise 2.9: Verify that the source-free Maxwell equations are indeed equiv-
alent to dF = 0.

The equation dF = 0 is automatically satisfied if we introduce a 4-vector
1-form potential A = −φdt+ Axdx+ Aydy + Azdz and set F = dA.

The two Maxwell equations with sources

divD = ρ,

curlH = j +
∂D

∂t
, (2.69)

reduce in 4-tensor notation to the single equation

∂µF
µν = Jν . (2.70)

Here Jµ = (ρ, j) is the current 4-vector.
This source equation takes a little more work to express in form language,

but it can be done. We need a new concept: the Hodge “star” dual of a form.
In d dimensions the “?” map takes a p-form to a (d − p)-form. It depends
on both the metric and the orientation. The latter means a canonical choice
of the order in which to write our basis forms, with orderings that differ
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by an even permutation being counted as the same. The full d-dimensional
definition involves the Levi-Civita duality operation of chapter 1 , combined
with the use of the metric tensor to raise indices. Recall that

√
g =

√
det gµν .

(In Minkowski-signature metrics we should replace
√
g by

√−g.) We define
“?” to be a linear map

? :

p∧
(T ∗M)→

(d−p)∧
(T ∗M) (2.71)

such that

? dxi1 . . . dxip
def
=

1

(d− p)!
√
ggi1j1 . . . gipjpεj1···jpjp+1···jddx

jp+1 . . . dxjd. (2.72)

Although this definition looks a trifle involved, computations involving it are
not so intimidating. The trick is to work, whenever possible, with oriented
orthonormal frames. If we are in euclidean space and {e∗i1 , e∗i2, . . . , e∗id} is an
ordering of the orthonormal basis for (T ∗M)x whose orientation is equivalent
to {e∗1, e∗2, . . . , e∗d} then

? (e∗i1 ∧ e∗i2 ∧ · · · ∧ e∗ip) = e∗ip+1 ∧ e∗ip+2 ∧ · · · ∧ e∗id . (2.73)

For example, in three dimensions, and with x, y, z, our usual Cartesian co-
ordinates, we have

? dx = dydz,

? dy = dzdx,

? dz = dxdy. (2.74)

An analogous method works for Minkowski-signature (−,+,+,+) metrics,
except that now we must include a minus sign for each negatively normed
dt factor in the form being “starred.” Taking {dt, dx, dy, dz} as our oriented
basis, we therefore find4

? dxdy = −dzdt,
? dydz = −dxdt,
? dzdx = −dydt,
? dxdt = dydz,

? dydt = dzdx,

? dzdt = dxdy. (2.75)

4See for example: Misner, Thorn and Wheeler, Gravitation, (MTW) page 108.
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For example, the first of these equations is derived by observing that (dxdy)(−dzdt) =
dtdxdydz, and that there is no “dt” in the product dxdy. The fourth fol-
lows from observing that that (dxdt)(−dydx) = dtdxdydz, but there is a
negative-normed “dt” in the product dxdt.

The ? map is constructed so that if

α =
1

p!
αi1i2...ipdx

i1dxi2 · · · dxip , (2.76)

and

β =
1

p!
βi1i2...ipdx

i1dxi2 · · · dxip, (2.77)

then
α ∧ (?β) = β ∧ (?α) = 〈α, β〉σ, (2.78)

where the inner product 〈α, β〉 is defined to be the invariant

〈α, β〉 =
1

p!
gi1j1gi2j2 · · · gipjpαi1i2...ipβj1j2...jp, (2.79)

and σ is the volume form

σ =
√
g dx1dx2 · · · dxd. (2.80)

In future we will write α ? β for α ∧ (?β). Bear in mind that the “?” in this
expression is acting β and is not some new kind of binary operation.

We now apply these ideas to Maxwell. From the field-strength 2-form

F = Bxdydz +Bydzdx+Bzdxdy + Exdxdt+ Eydydt+ Ezdzdt, (2.81)

we get a dual 2-form

?F = −Bxdxdt− Bydydt− Bzdzdt+ Exdydz + Eydzdx+ Ezdxdy. (2.82)

We can check that we have correctly computed the Hodge star of F by taking
the wedge product, for which we find

F ? F =
1

2
(FµνF

µν)σ = (B2
x +B2

y +B2
z −E2

x − E2
y − E2

z )dtdxdydz. (2.83)

Observe that the expression B2−E2 is a Lorentz scalar. Similarly, from the
current 1-form

J ≡ Jµdx
µ = −ρ dt+ jxdx+ jydy + jzdz, (2.84)
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we derive the dual current 3-form

?J = ρ dxdydz − jxdtdydz − jydtdzdx− jzdtdxdy, (2.85)

and check that

J ? J = (JµJ
µ)σ = (−ρ2 + j2

x + j2
y + j2

z )dtdxdydz. (2.86)

Observe that

d ? J =

(
∂ρ

∂t
+ div j

)
dtdxdydz = 0, (2.87)

expresses the charge conservation law.
Writing out the terms explicitly shows that the source-containing Maxwell

equations reduce to d?F = ?J. All four Maxwell equations are therefore very
compactly expressed as

dF = 0, d ? F = ?J.

Observe that current conservation d?J = 0 follows from the second Maxwell
equation as a consequence of d2 = 0.

Exercise 2.10: Show that for a p-form ω in d euclidean dimensions we have

? ? ω = (−1)p(d−p)ω.

Show, further, that for a Minkowski metric an additional minus sign has to be
inserted. (For example, ? ? F = −F , even though (−1)2(4−2) = +1.)

2.4.2 Hamilton’s Equations

Hamiltonian dynamics takes place in phase space, a manifold with co-ordinates
(q1, . . . , qn, p1, . . . , pn). Since momentum is a naturally covariant vector5,
phase space is usually the co-tangent bundle T ∗M of the configuration man-
ifold M . We are writing the indices on the p’s upstairs though, because we
are considering them as co-ordinates in T ∗M .

We expect that you are familiar with Hamilton’s equation in their q, p
setting. Here, we shall describe them as they appear in a modern book on
Mechanics, such as Abrahams and Marsden’s Foundations of Mechanics, or
V. I. Arnold’s Mathematical Methods of Classical Mechanics.

5To convince yourself of this, remember that in quantum mechanics p̂µ = −i~ ∂
∂xµ , and

the gradient of a function is a covector.



2.4. PHYSICAL APPLICATIONS 59

Phase space is an example of a symplectic manifold, a manifold equiped
with a symplectic form — a non-degenerate 2-form field

ω =
1

2
ωijdx

idxj . (2.88)

Recall that the word closed means that dω = 0. Non-degenerate means that
for any point x the statement that ω(X, Y ) = 0 for all vectors Y ∈ TMx

implies that X = 0 at that point (or equivalently that for all x the matrix
ωij(x) has an inverse ωij(x)).

Given a Hamiltonian function H on our symplectic manifold, we define
a velocity vector-field vH by solving

dH = −ivH
ω = −ω(vH , ) (2.89)

for vH . If the symplectic form is ω = dp1dq1 + dp2dq2 + · · ·+ dpndqn, this is
nothing but a fancy form of Hamilton’s equations. To see this, we write

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi (2.90)

and use the customary notation (q̇i, ṗi) for the velocity-in-phase-space com-
ponents, so that

vH = q̇i
∂

∂qi
+ ṗi

∂

∂pi
. (2.91)

Now we work out

ivH
ω = dpidqi(q̇j∂qj + ṗj∂pj , )

= ṗidqi − q̇idpi, (2.92)

so, comparing coefficients of dpi and dqi on the two sides of dH = −ivH
ω, we

read off

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2.93)

Darboux’ theorem, which we will not try to prove, says that for any point x
we can always find co-ordinates p, q, valid in some neigbourhood of x, such
that ω = dp1dq1 +dp2dq2 + · · ·dpndqn. Given this fact, it is not unreasonable
to think that there is little to gained by using the abstract differential-form
language. In simple cases this is so, and the traditional methods are fine.
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It may be, however, that the neigbourhood of x where the Darboux co-
ordinates work is not the entire phase space, and we need to cover the space
with overlapping p, q co-ordinate charts. Then, what is a p in one chart
will usually be a combination of p’s and q’s in another. In this case, the
traditional form of Hamilton’s equations loses its appeal in comparison to
the co-ordinate-free dH = −ivH

ω.
Given two functions H1, H2 we can define their Poisson bracket {H1, H2}.

Its importance lies in Dirac’s observation that the passage from classical
mechanics to quantum mechanics is accomplished by replacing the Poisson
bracket of two quantities, A and B, with the commutator of the correspond-
ing operators Â, and B̂:

i[Â, B̂] ←→ ~{A,B}+O
(
~2
)
. (2.94)

We define the Poisson bracket by6

{H1, H2} def
=

dH2

dt

∣∣∣∣
H1

= vH1
H2. (2.95)

Now, vH1
H2 = dH2(vH1

), and Hamilton’s equations say that dH2(vH1
) =

ω(vH1
, vH2

). Thus,

{H1, H2} = ω(vH1
, vH2

). (2.96)

The skew symmetry of ω(vH1
, vH2

) shows that despite the asymmetrical ap-
pearance of the definition we have skew symmetry: {H1, H2} = −{H2, H1}.

Moreover, since

vH1
(H2H3) = (vH1

H2)H3 +H2(vH1
H3), (2.97)

the Poisson bracket is a derivation:

{H1, H2H3} = {H1, H2}H3 +H2{H1, H3}. (2.98)

Neither the skew symmetry nor the derivation property require the con-
dition that dω = 0. What does need ω to be closed is the Jacobi identity :

{{H1, H2}, H3}+ {{H2, H3}, H1}+ {{H3, H1}, H2} = 0. (2.99)

6Our definition differs in sign from the traditional one, but has the advantage of mini-
mizing the number of minus signs in subsequent equations.
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We establish Jacobi by using Cartan’s formula in the form

dω(vH1
, vH2

, vH3
) = vH1

ω(vH2
, vH3

) + vH2
ω(vH3

, vH1
) + vH3

ω(vH1
, vH2

)

−ω([vH1
, vH2

], vH3
)− ω([vH2

, vH3
], vH1

)− ω([vH3
, vH1

], vH2
).

(2.100)

It is relatively straight-forward to interpret each term in the first of these
lines as Poisson brackets. For example,

vH1
ω(vH2

, vH3
) = vH1

{H2, H3} = {H1, {H2, H3}}. (2.101)

Relating the terms in the second line to Poisson brackets requires a little
more effort. We proceed as follows:

ω([vH1
, vH2

], vH3
) = −ω(vH3

, [vH1
, vH2

])

= dH3([vH1
, vH2

])

= [vH1
, vH2

]H3

= vH1
(vH2

H3)− vH2
(vH1

H3)

= {H1, {H2, H3}} − {H2, {H1, H3}}
= {H1, {H2, H3}}+ {H2, {H3, H1}}. (2.102)

Adding everything togther now shows that

0 = dω(vH1
, vH2

, vH3
)

= −{{H1, H2}, H3} − {{H2, H3}, H1} − {{H3, H1}, H2}. (2.103)

If we rearrange the Jacobi identity as

{H1, {H2, H3}} − {H2, {H1, H3}} = {{H1, H2}, H3}, (2.104)

we see that it is equivalent to

[vH1
, vH2

] = v{H1,H2}.

The algebra of Poisson brackets is therefore homomorphic to the algebra of
the Lie brackets. The correspondence is not an isomorphism, however: the
assignment H 7→ vH fails to be one-to-one because constant functions map
to the zero vector field.

Exercise 2.11: Use the infinitesimal homotopy relation, to show that LvH
ω =

0, where vH is the vector field corresponding toH. Suppose now that the phase
space is 2n dimensional. Show that in local Darboux co-ordinates the 2n-form
ωn/n! is, up to a sign, the phase-space volume element dnp dnq. Show that
LvH

ωn/n! = 0 and that this result is Liouville’s theorem on the conservation
of phase-space volume.
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The classical mechanics of spin

It is sometimes said in books on quantum mechanics that the spin of an elec-
tron, or other elementary particle, is a purely quantum concept and cannot
be described by classical mechanics. This statement is false, but spin is the
simplest system in which traditional physicist’s methods become ugly and it
helps to use the modern symplectic language. A “spin” S can be regarded
as a fixed length vector that can point in any direction in R3. We will take
it to be of unit length so that its components are

Sx = sin θ cosφ,

Sy = sin θ sinφ,

Sz = cos θ, (2.105)

where θ and φ are polar co-ordinates on the two-sphere S2.
The surface of the sphere turns out to be both the configuration space

and the phase space. In particular the phase space for a spin is not the
cotangent bundle of the configuration space. This has to be so: we learned
from Niels Bohr that a 2n-dimensional phase space contains roughly one
quantum state for every ~n of phase-space volume. A cotangent bundle
always has infinite volume, so its corresponding Hilbert space is necessarily
infinite dimensional. A quantum spin, however, has a finite-dimensional

Hilbert space so its classical phase space must have a finite total volume.
This finite-volume phase space seems un-natural in the traditional view of
mechanics, but it fits comfortably into the modern symplectic picture.

We want to treat all points on the sphere alike, and so it is natural to take
the symplectic 2-form to be proportional to the element of area. Suppose that
ω = sin θ dθdφ. We could write ω = d cos θ dφ and regard φ as “q” and cos θ
as “p’ (Darboux’ theorem in action!), but this identification is singular at the
north and south poles of the sphere, and, besides, it obscures the spherical
symmetry of the problem, which is manifest when we think of ω as d(area).

Let us take our hamiltonian to be H = BSx, corresponding to an applied
magnetic field in the x direction, and see what Hamilton’s equations give for
the motion. First we take the exterior derivative

d(BSx) = B(cos θ cos φdθ − sin θ sin φdφ). (2.106)

This is to be set equal to

−ω(vBSx , ) = vθ(− sin θ)dφ+ vφ sin θdθ. (2.107)
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Comparing coefficients of dθ and dφ, we get

v(BSx) = vθ∂θ + vφ∂φ = B(sinφ∂θ + cos φ cot θ∂φ), (2.108)

i.e. B times the velocity vector for a rotation about the x axis. This velocity
field therefore describes a steady Larmor precession of the spin about the
applied field. This is exactly the motion predicted by quantum mechanics.
Similarly, setting B = 1, we find

vSy = − cosφ∂θ + sin φ cot θ∂φ,

vSz = −∂φ. (2.109)

From these velocity fields we can compute the Poisson brackets:

{Sx, Sy} = ω(vSx, vSy)

= sin θdθdφ(sinφ∂θ + cos φ cot θ∂φ,− cosφ∂θ + sinφ cot θ∂φ)

= sin θ(sin2 φ cot θ + cos2 φ cot θ)

= cos θ = Sz.

Repeating the exercise leads to

{Sx, Sy} = Sz,

{Sy, Sz} = Sx,

{Sz, Sx} = Sy. (2.110)

These Poisson brackets for our classical “spin” are to be compared with the
commutation relations [Ŝx, Ŝy] = i~Ŝz etc. for the quantum spin operators

Ŝi.

2.5 Covariant Derivatives

Covariant derivatives are a general class of derivatives that act on sections
of a vector or tensor bundle over a manifold. We will begin by considering
derivatives on the tangent bundle, and in the exercises indicate how the idea
generalizes to other bundles.
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2.5.1 Connections

The Lie and exterior derivatives require no structure beyond that which
comes for free with our manifold. Another type of derivative that can act on
tangent-space vectors and tensors is the covariant derivative ∇X ≡ Xµ∇µ.
This requires an additional mathematical object called an affine connection.

The covariant derivative is defined by:
i) Its action on scalar functions as

∇Xf = Xf. (2.111)

ii) Its action a basis set of tangent-vector fields ea(x) = eµa(x)∂µ (a local
frame, or vielbein7) by introducing a set of functions ωijk(x) and setting

∇ek
ej = eiω

i
jk. (2.112)

ii) Extending this definition to any other type of tensor by requiring ∇X

to be a derivation.
iii) Requiring that the result of applying ∇X to a tensor is a tensor of the

same type.
The set of functions ωijk(x) is the connection. In any local co-ordinate chart
we can choose them at will, and different choices define different covariant
derivatives. (There may be global compatibility constraints, however, which
appear when we assemble the charts into an atlas.)
Warning: Despite having the appearance of one, ωijk is not a tensor. It
transforms inhomogeneously under a change of frame or co-ordinates — see
equation (2.131).

We can, of course, take as our basis vectors the co-ordinate vectors eµ ≡
∂µ. When we do this it is traditional to use the symbol Γ for the co-ordinate
frame connection instead of ω. Thus,

∇µeν ≡ ∇eµeν = eλΓ
λ
νµ. (2.113)

The numbers Γλνµ are often called Christoffel symbols.
As an example consider the covariant derivative of a vector f νeν . Using

the derivation property we have

∇µ(f
νeν) = (∂µf

ν)eν + f ν∇µeν

= (∂µf
ν)eν + f νeλΓ

λ
νµ

= eν
{
∂µf

ν + fλΓνλµ
}
. (2.114)

7In practice viel , “many”, is replaced by the appropriate German numeral: ein-, zwei-,
drei-, vier-, fünf-, . . ., indicating the dimension. The word bein means “leg.”
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In the first line we have used the defining property that ∇eµ acts on the
functions f ν as ∂µ, and in the last line we interchanged the dummy indices
ν and λ. We often abuse the notation by writing only the components, and
set

∇µf
ν = ∂µf

ν + fλΓνλµ. (2.115)

Similarly, acting on the components of a mixed tensor, we would write

∇µA
α
βγ = ∂µA

α
βγ + ΓαλµA

λ
βγ − ΓλβµA

α
λγ − ΓλγµA

α
βλ. (2.116)

When we use this notation, we are no longer regarding the tensor components
as “functions.”

Observe that the plus and minus signs in (2.116) are required so that, for
example, the covariant derivative of the scalar function fαg

α is

∇µ (fαg
α) = ∂µ (fαg

α)

= (∂µfα) g
α + fα (∂µg

α)

=
(
∂µfα − fλΓλαµ

)
gα + fα

(
∂µg

α + gλΓαλµ
)

= (∇µfα) g
α + fα (∇µg

α) , (2.117)

and so satisfies the derivation property.

Parallel transport

We have defined the covariant derivative via its formal calculus properties.
It has, however, a geometrical interpretation. As with the Lie derivative, in
order to compute the derivative along X of the vector field Y , we have to
somehow carry the vector Y (x) from the tangent space TMx to the tangent
space TMx+εX, where we can subtract it from Y (x+εX) . The Lie derivative
carries Y along with the X flow. The covariant derivative implicitly carries
Y by “parallel transport”. If γ : s 7→ xµ(s) is a parameterized curve with
tangent vector Xµ∂µ, where

Xµ =
dxµ

ds
, (2.118)

then we say that the vector field Y (xµ(s)) is parallel transported along the
curve γ if

∇XY = 0, (2.119)
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at each point xµ(s). Thus, a vector that in the vielbein frame ei at x has
components Y i will, after being parallel transported to x+ εX, end up com-
ponents

Y i − εωijkY jXk. (2.120)

In a co-ordinate frame, after parallel transport through an infinitesimal dis-
placement δxµ, the vector Y ν∂ν will have components

Y ν → Y ν − ΓνλµY
λδxµ, (2.121)

and so

δxµ∇µY
ν = Y ν(xµ + δxµ)− {Y ν(x)− ΓνλµY

λδxµ}
= δxµ{∂µY ν + ΓνλµY

λ}. (2.122)

Curvature and Torsion

As we said earlier, the connection ωijk(x) is not itself a tensor. Two important
quantities which are tensors, are associated with ∇X :

i) The torsion

T (X, Y ) = ∇XY −∇YX − [X, Y ]. (2.123)

The quantity T (X, Y ) is a vector depending linearly on X, Y , so T at
the point x is a map TMx × TMx → TMx, and so a tensor of type
(1,2). In a co-ordinate frame it has components

T λµν = Γλµν − Γλνµ. (2.124)

ii) The Riemann curvature tensor

R(X, Y )Z = ∇X∇Y Z −∇Y∇ZZ −∇[X,Y ]Z. (2.125)

The quantity R(X, Y )Z is also a vector, so R(X, Y ) is a linear map
TMx → TMx, and thus R itself is a tensor of type (1,3). Written out
in a co-ordinate frame, we have

Rα
βµν = ∂µΓ

α
βν − ∂νΓαβµ + ΓαλµΓ

λ
βν − ΓαλνΓ

λ
βµ. (2.126)

If our manifold comes equipped with a metric tensor gµν (and is thus
a Riemann manifold), and if we require both that T = 0 and ∇µgαβ = 0,



2.5. COVARIANT DERIVATIVES 67

then the connection is uniquely determined, and is called the Riemann, or
Levi-Civita, connection. In a co-ordinate frame it is given by

Γαµν =
1

2
gαλ (∂µgλν + ∂νgµλ − ∂λgµν) . (2.127)

This is the connection that appears in General Relativity.
The curvature tensor measures the degree of path dependence in parallel

transport: if Y ν(x) is parallel transported along a path γ : s 7→ xµ(s) from
a to b, and if we deform γ so that xµ(s)→ xµ(s) + δxµ(s) while keeping the
endpoints a, b fixed, then

δY α(b) = −
∫ b

a

Rα
βµν(x)Y

β(x)δxµ dxν . (2.128)

If Rα
βµν ≡ 0 then the effect of parallel transport from a to b will be indepen-

dent of the route taken.
The geometric interpretation of Tµν is less transparent. On a two-dimensional

surface a connection is torsion free when the tangent space “rolls without
slipping” along the curve γ.

Exercise 2.12: Metric compatibility . Show that the Riemann connection

Γαµν =
1

2
gαλ (∂µgλν + ∂νgµλ − ∂λgµν) .

follows from the torsion-free condition Γαµν = Γανµ together with the metric
compatibility condition

∇µgαβ ≡ ∂µ gαβ − Γναµ gνβ − Γναµ gαν = 0.

Show that “metric compatibility” means that that the operation of raising or
lowering indices commutes with covariant derivation.

Exercise 2.13: Geodesic equation. Let γ : s 7→ xµ(s) be a parametrized
path from a to b. Show that the Euler-Lagrange equation that follows from
minimizing the distance functional

S(γ) =

∫ b

a

√
gµν ẋµẋν ds,

where the dots denote differentiation with respect to the parameter s, is

d2xµ

ds2
+ Γµαβ

dxα

ds

dxβ

ds
= 0.

Here Γµαβ is the Riemann connection (2.127).
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Exercise 2.14: Show that if Aµ is a vector field then, for the Riemann connec-
tion,

∇µAµ =
1√
g

∂
√
gAµ

∂xµ
.

In other words, show that

Γααµ =
1√
g

∂
√
g

∂xµ
.

Deduce that the Laplacian acting on a scalar field φ can be defined by setting
either

∇2φ = gµν∇µ∇νφ,
or

∇2φ =
1√
g

∂

∂xµ

(√
ggµν

∂φ

∂xν

)
,

the two definitions being equivalent.

2.5.2 Cartan’s Form Viewpoint

Let e∗j(x) = e∗jµ(x)dx
µ be the basis of one-forms dual to the vielbein frame

ei(x) = eµi (x)∂µ. Since
δij = e∗i(ej) = e∗jµe

µ
i , (2.129)

the matrices e∗jµ and eµi are inverses of one-another. We can use them to
change from roman vielbein indices to greek co-ordinate frame indices. For
example:

gij = g(ei, ej) = eµi gµνe
ν
j , (2.130)

and
ωijk = e∗iν(∂µe

ν
j )e

µ
k + e∗iλe

ν
j e
µ
k Γλνµ. (2.131)

Cartan regards the connection as being a matrix Ω of one-forms with
entries ωij = ωijµdx

µ. In this language equation (2.112) becomes

∇Xej = eiω
i
j(X). (2.132)

Cartan’s viewpoint separates off the index µ, which refers to the direction
δxµ ∝ Xµ in which we are differentiating, from the matrix indices i and
j that act on the components of the vector or tensor being differentiated.
This separation becomes very natural when the vector space spanned by the
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ei(x) is no longer the tangent space, but some other “internal” vector space
attached to the point x. Such internal spaces are common in physics, an im-
portant example being the “colour space” of gauge field theories. Physicists,
following Hermann Weyl, call a connection on an internal space a “gauge po-
tential.” To mathematicians it is simply a connection on the vector bundle
that has the internal spaces as its fibres.

Cartan also regards the torsion T and curvature R as forms; in this case
vector- and matrix-valued two-forms, respectively, with entries

T i =
1

2
T iµνdx

µdxν , (2.133)

Ri
k =

1

2
Ri

kµνdx
µdxν . (2.134)

In his form language the equations defining the torsion and curvature become
Cartan’s structure equations:

de∗i + ωij ∧ e∗j = T i, (2.135)

and

dωik + ωij ∧ ωjk = Ri
k. (2.136)

The last equation can be written more compactly as

dΩ + Ω ∧Ω = R. (2.137)

From this, by taking the exterior derivative, we obtain the Bianchi identity

dR−R ∧Ω + Ω ∧R = 0. (2.138)

On a Riemann manifold, we can take the vielbein frame ei to be orthonor-
mal. In this case the roman-index metric gij = g(ei, ej) becomes δij. There
is then no distinction between covariant and contravariant roman indices,
and the connection and curvature forms, Ω, R, being infinitesimal rotations,
become skew symmetric matrices:

ωij = −ωji, Rij = −Rji. (2.139)
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2.6 Further Exercises and Problems

Exercise 2.15: Consider the vector fields X = y∂x, Y = ∂y in R2. Find the
flows associated with these fields, and use them to verify the statements made
in section 2.2.1 about the geometric interpretation of the Lie bracket.

Exercise 2.16: Show that the pair of vector fields Lz = x∂y − y∂x and Ly =
z∂x−x∂z in R3 is in involution wherever they are both non-zero. Show further
that the general solution of the system of partial differential equations

(x∂y − y∂x)f = 0,

(x∂z − z∂x)f = 0,

in R3 is f(x, y, z) = F (x2 + y2 + z2), where F is an arbitrary function.

Exercise 2.17: In the rolling conditions (2.26) we are using the “Y ” convention
for Euler angles. In this convention θ and φ are the usual spherical polar co-
ordinate angles with respect to the space-fixed xyz axes. They specify the
direction of the body-fixed Z axis about which we make the final ψ rotation.

θ

φ

z

y

x

Z

Y

YX

ψ

Figure 2.7: Euler angles: we first rotate the ball through an angle φ about
the z axis, thus taking y → Y ′, then through θ about Y ′, and finally through
ψ about Z, so taking Y ′ → Y .

a) Show that (2.26) are indeed the no-slip rolling conditions

ẋ = ωy,

ẏ = −ωx,
0 = ωz,
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where (ωx, ωy, ωz) are the components of the ball’s angular velocity in
the xyz space-fixed frame.

b) Solve the three constraints in (2.26) so as to obtain the vector fields
(2.27).

c) Show that
[rollx, rolly] = −spinz,

where spinz ≡ ∂φ, corresponds to a rotation about a vertical axis through
the point of contact. This is a new motion, being forbidden by the ωz = 0
condition.

d) Show that

[spinz, rollx] = spinx,

[spinz, rolly] = spiny,

where the new vector fields

spinx ≡ −(rolly − ∂y),
spiny ≡ (rollx − ∂x),

correspond to rotations of the ball about the space-fixed x and y axes
through its centre, and with the centre of mass held fixed.

We have generated five independent vector fields from the original two. There-
fore, by sufficient rolling to-and-fro, we can position the ball anywhere on the
table, and in any orientation.

Exercise 2.18: The semi-classical dynamics of charge −e electrons in a mag-
netic solid are governed by the equations8

ṙ =
∂ε(k)

∂k
− k̇×Ω,

k̇ = −∂V
∂r
− eṙ×B.

Here k is the Bloch momentum of the electron, r is its position, ε(k) its band
energy (in the extended-zone scheme), and B(r) is the external magnetic field.
The components Ωi of the Berry curvature Ω(k) are given in terms of the
periodic part |u(k)〉 of the Bloch wavefunctions of the band by

Ωi = iεijk
1

2

(〈
∂u

∂kj

∣∣∣∣∣
∂u

∂kk

〉
−
〈
∂u

∂kk

∣∣∣∣∣
∂u

∂kj

〉)
.

8M. C. Chang, Q. Niu, Phys. Rev. Lett. 75 (1995) 1348.
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The only property of Ω(k) needed for the present problem, however, is that
divkΩ = 0.

a) Show that these equations are Hamiltonian, with

H(r,k) = ε(k) + V (r)

and with

ω = dkidxi −
e

2
εijkBi(r)dxjdxk +

1

2
εijkΩi(k)dkjdkk.

as the symplectic form.9

b) Confirm that the ω defined in part b) is closed, and that the Poisson
brackets are given by

{xi, xj} = − εijkΩk

(1 + eB ·Ω)
,

{xi, kj} = − δij + ΩiBj
(1 + eB ·Ω)

,

{ki, kj} =
εijkBk

(1 + eB ·Ω)
.

c) Show that the conserved phase-space volume ω3/3! is equal to

(1 + eB ·Ω)d3kd3x,

instead of the näıvely expected d3kd3x.

The following pair of exercises show that Cartan’s expression for the curva-
ture tensor remains valid for covariant differentiation in “internal” spaces.
There is, however, no natural concept analogous to the torsion tensor for
internal spaces.

Exercise 2.19: Non-abelian gauge fields as matrix-valued forms. In a non-
abelian Yang-Mills gauge theory, such as QCD, the vector potential

A = Aµdx
µ

is matrix-valued, meaning that the components Aµ are matrices which do not
necessarily commute with each other. (These matrices are elements of the Lie

9C. Duval, Z. Horváth, P. A. Horváthy, L. Martina, P. C. Stichel, Modern Physics
Letters B 20 (2006) 373.
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algebra of the gauge group, but we won’t need this fact here.) The matrix-
valued curvature, or field-strength, 2-form F is defined by

F = dA+A2 =
1

2
Fµνdx

µdxν .

Here a combined matrix and wedge product is to be understood:

(A2)ab ≡ Aac ∧Acb = AacµA
c
bν dx

µdxν .

i) Show that A2 = 1
2 [Aµ, Aν ]dx

µdxν , and hence show that

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ].

ii) Define the gauge-covariant derivatives

∇µ = ∂µ +Aµ,

and show that the commutator [∇µ,∇ν ] of two of these is equal to Fµν .
Show further that if X, Y are two vector fields with Lie bracket [X,Y ]
and ∇X ≡ Xµ∇µ, then

F (X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

iii) Show that F obeys the Bianchi identity

dF − FA+AF = 0.

Again wedge and matrix products are to be understood. This equation
is the non-abelian version of the source-free Maxwell equation dF = 0.

iv) Show that, in any number of dimensions, the Bianchi identity implies
that the 4-form tr (F 2) is closed, i.e. that d tr (F 2) = 0. Similarly show
that the 2n-form tr (Fn) is closed. (Here the “tr” means a trace over the
roman matrix indices, and not over the greek space-time indices.)

v) Show that,

tr (F 2) = d

{
tr

(
AdA+

2

3
A3

)}
.

The 3-form tr (AdA + 2
3A

3) is called a Chern-Simons form.

Exercise 2.20: Gauge transformations. Here we consider how the matrix-
valued vector potential transforms when we make a change of gauge. In other
words, we seek the non-abelian version of Aµ → Aµ + ∂µφ.
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i) Let g be an invertable matrix, and δg a matrix describing a small change
in g. Show that the corresponding change in the inverse matrix is given
by δ(g−1) = −g−1(δg)g−1.

ii) Show that under the gauge transformation

A→ Ag ≡ g−1Ag + g−1dg,

we have F → g−1Fg. (Hint: The labour is minimized by exploiting the
covariant derivative identity in part ii) of the previous exercise).

iii) Deduce that tr (Fn) is gauge invariant .
iv) Show that a necessary condition for the matrix-valued gauge field A to

be “pure gauge”, i.e. for there to be a position dependent matrix g such
that A = g−1dg, is that F = 0, where F is the curvature two-form of the
previous exercise.

In a gauge theory based on a Lie group G, the matrices g will be elements of
the group, or, more generally, they will form a matrix representation of the
group.



Chapter 3

Integration on Manifolds

One usually thinks of integration as requiring measure – a notion of volume,
and hence of size and length, and so a metric. A metric however is not
required for integrating differential forms. They come pre-equipped with
whatever notion of length, area, or volume is required.

3.1 Basic Notions

3.1.1 Line Integrals

Consider, for example, the form df . We want to try to give a meaning to the
symbol

I1 =

∫

Γ

df. (3.1)

Here Γ is a path in our space starting at some point P0 and ending at the point
P1. Any reasonable definition of I1 should end up with the answer we would
immediately write down if we saw an expression like I1 in an elementary
calculus class. This answer is

I1 =

∫

Γ

df = f(P1)− f(P0). (3.2)

No notion of a metric is needed here. There is however a geometric picture of
what we have done. We draw in our space the surfaces . . . , f(x) = −1, f(x) =
0, f(x) = 1, . . ., and perhaps fill in intermediate values if necessary. We
then start at P0 and travel from there to P1, keeping track of how many of

75
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these surfaces we pass through (with sign -1, if we pass back through them).
The integral of df is this number. Figure 3.1 illustrates a case in which∫
Γ
df = 5.5− 1.5 = 4.

P1

f=1  2 3 4 5 6

Γ

P0

Figure 3.1: The integral of a one-form

What we have defined is a signed integral. If we parameterise the path as
x(s), 0 ≤ s ≤ 1, and with x(0) = P0, x(1) = P1 we have

I1 =

∫ 1

0

(
df

ds

)
ds (3.3)

where the right hand side is an ordinary one-variable integral. It is important
that we did not write

∣∣ df
ds

∣∣ in this integral. The absence of the modulus sign
ensures that if we partially retrace our route, so that we pass over some part
of Γ three times—twice forward and once back—we obtain the same answer
as if we went only forward.

3.1.2 Skew-symmetry and Orientations

What about integrating 2 and 3-forms? Why the skew-symmetry? To answer
these questions, think about assigning some sort of “area” in R2 to the par-
allelogram defined by the two vectors x,y. This is going to be some function
of the two vectors. Let us call it ω(x,y). What properties do we demand of
this function? There are at least three:

i) Scaling: If we double the length of one of the vectors, we expect the
area to double. Generalizing this, we demand ω(λx, µy) = (λµ)ω(x,y).
(Note that we are not putting modulus signs on the lengths, so we are
allowing negative “areas”, and for the sign to change when we reverse
the direction of a vector.)
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ii) Additivity: The drawing in figure 3.2 shows that we ought to have

ω(x1 + x2,y) = ω(x1,y) + ω(x2,y), (3.4)

similarly for the second slots.

x

x

y

x+x21

2

1

Figure 3.2: Additivity of ω(x,y).

iii) Degeneration: If the two sides coincide, the area should be zero. Thus
ω(x,x) = 0.

The first two properties, show that ω should be a multilinear form. The
third shows that it must be skew-symmetric!

0 = ω(x + y,x + y) = ω(x,x) + ω(x,y) + ω(y,x) + ω(y,y)

= ω(x,y) + ω(y,x). (3.5)

So
ω(x,y) = −ω(y,x). (3.6)

These are exactly the properties possessed by a 2-form. Similarly, a 3-form
outputs a volume element.

These volume elements are oriented . Remember that an orientation of a
set of vectors is a choice of order in which to write them. If we interchange
two vectors, the orientation changes sign. We do not distinguish orientations
related by an even number of interchanges. A p-form assigns a signed (±)
p-dimensional volume element to an orientated set of vectors. If we change
the orientation, we change the sign of the volume element.

Orientable and Non-orientable Manifolds

In the classic video game Asteroids you could select periodic boundary con-
ditions so that your spaceship would leave the right-hand side of the screen
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a) b)

T RP2 2

Figure 3.3: A spaceship leaves one side of the screen and returns on the other
with a) torus boundary conditions, b) projective-plane boundary conditions.
Observe how, in case b), the spaceship has changed from being left handed
to being right-handed.

and re-appear on the left. The game universe was topologically a torus T 2.
Suppose that we modify the game code so that each bit of the spaceship
re-appears at the point diametrically opposite the point it left. This does not
seem like a drastic change until you play a game with a left-hand-drive (US)
spaceship. If you send the ship off the screen and watch as it re-appears on the
opposite side, you will observe the ship transmogrify into a right-hand-drive
(British) craft. If we ourselves made such an excursion, we would end up
starving to death because all our left-handed digestive enzymes would have
been converted to right-handed ones. The manifold we have constructed is
topologically equivalent to the real projective plane RP 2. The lack of a global
notion of being left or right-handed makes it an example of a non-orientable

manifold.
A manifold or surface is orientable if we can choose a global orientation

for the tangent bundle. The simplest way to do this would be to find a
smoothly varying set of basis-vector fields, eµ(x), on the surface and define
the orientation by chosing an order, e1(x), e2(x), . . . , ed(x), in which to write
them. In general, however, a globally-defined smooth basis will not exist
(try to construct one for the two-sphere, S2!). We will, however, be able to

find a continously varying orientated basis e
(i)
1 (x), e

(i)
2 (x), . . . , e

(i)
d (x) for each

member, labelled by (i), of an atlas of coordinate charts. We should chose
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the charts so the intersection of any pair forms a connected set. Assuming
that this has been done, the orientation of pair of overlapping charts is said
to coincide if the determinant, detA, of the map e

(i)
µ = Aνµe

(j)
ν relating the

bases in the region of overlap, is positive.1 If bases can be chosen so that all
overlap determinants are positive, the manifold is orientable and the selected
bases define the orientation. If bases cannot be so chosen, the manifold or
surface is non-orientable.

Exercise 3.1: Consider a three-dimensional ball B3 with diametrically oppo-
site points of its surface identified. What would happen to an aircraft flying
through the surface of the ball? Would it change handedness, turn inside out,
or simply turn upside down? Is this ball an orientable 3-manifold?

3.2 Integrating p-Forms

A p-form is naturally integrated over an oriented p-dimensional surface or
manifold. Rather than start with an abstract definition, We will first explain
this pictorially, and then translate the pictures into mathematics.

3.2.1 Counting Boxes

To visualize integrating 2-forms let us try to make sense of

∫

Ω

dfdg, (3.7)

where Ω is an oriented region embedded in three dimensions. The surfaces
f = const. and g = const. break the space up into a series of tubes. The
oriented surface Ω cuts these tubes in a two-dimensional mesh of (oriented)
parallelograms.

1The determinant will have the same sign in the entire overlap region. If it did not,
continuity and connectedness would force it to be zero somewhere, implying that one of
the putative bases was not linearly independent there
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f=1
f=2

f=3

g=2

g=3

g=4

Ω

Figure 3.4: The integration region cuts the tubes into parallelograms.

We define an integral by counting how many parallelograms (including frac-
tions of a parallelogram) there are, taking the number to be positive if the
parallelogram given by the mesh is oriented in the same way as the surface,
and negative otherwise. To compute

∫

Ω

hdfdg (3.8)

we do the same, but weight each parallelogram, by the value of h at that
point. The integral

∫
Ω
fdxdy, over a region in R2 thus ends up being the

number we would compute in a multivariate calculus class, but the integral∫
Ω
fdydx, would be minus this. Similarly we compute

∫

Ξ

df dg dh (3.9)

of the 3-form df dg dh over the oriented volume Ξ, by counting how many
boxes defined by the surfaces f, g, h = constant, are included in Ξ.

An equivalent way of thinking of the integral of a p-form uses its definition
as a skew-symmetric p-linear function. Accordingly we evaluate

I2 =

∫

Ω

ω, (3.10)

where ω is a 2-form, and Ω is an oriented 2-surface, by plugging vectors
into ω. We tile the surface Ω with collection of (small) parallelograms, each
defined by an oriented pair of basis vectors v1 and v2.
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Ω
x

1v2 v

Figure 3.5: We tile Ω with small oriented parallelograms and compute∑
x∈Ω ω(v1(x),v2(x)).

At each base point x we insert these vectors into the 2-form (in the order spec-
ified by their orientation) to get ω(v1,v2), and then sum the resulting num-
bers to get I2. Similarly, we integrate p-form over an oriented p-dimensional
region by decomposing the region into infinitesimal p-dimensional oriented
parallelepipeds, inserting their defining vectors into the form, and summing
their contributions.

3.2.2 Relation to conventional integrals

The previous section explained how to think pictorially about the integral.
Here we interpret the pictures as multi-variable calculus.

We begin by motivating our recipe by considering a change of variables
in an integral in R2. Suppose we set x1 = x(y1, y2), x2 = x2(y1, y2) in

I4 =

∫

Ω

f(x)dx1dx2 (3.11)

and use

dx1 =
∂x1

∂y1
dy1 +

∂x1

∂y2
dy2,

dx2 =
∂x2

∂y1
dy1 +

∂x2

∂y2
dy2. (3.12)

Since dy1dy2 = −dy2dy1, we have

dx1dx2 =

(
∂x1

∂y1

∂x2

∂y2
− ∂x2

∂y1

∂x1

∂y2

)
dy1dy2. (3.13)
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Thus ∫

Ω

f(x)dx1dx2 =

∫

Ω′

f(x(y))
∂(x1, x2)

∂(y1, y2)
dy1dy2 (3.14)

where ∂(x1,y1)
∂(y1,y2)

is the Jacobean determinant

∂(x1, y1)

∂(y1, y2)
≡
(
∂x1

∂y1

∂x2

∂y2
− ∂x2

∂y1

∂x1

∂y2

)
, (3.15)

and Ω′ the integration region in the new variables. There is therefore no need
to include an explicit Jacobean factor when changing variables in an integral
of a p-form over a p-dimensional space—it comes for free with the form.

This observation leads us to the general prescription: To evaluate
∫
Ω
ω,

the integral of a p-form

ω =
1

p!
ωµ1µ2...µpdx

µ1 · · · dxµp (3.16)

over the region Ω of a p dimensional surface in a d ≥ p dimensional space,
substitute a paramaterization

x1 = x1(ξ1, ξ2, . . . , ξp),
...

xd = xd(ξ1, ξ2, . . . , ξp), (3.17)

of the surface into ω. Next, use

dxµ =
∂xµ

∂ξi
dξi, (3.18)

so that

ω → ω(x(ξ))i1i2...ip
∂xi1

∂ξ1
· · · ∂x

ip

∂ξp
dξ1 · · · dξp, (3.19)

which we regard as a p-form on Ω. (Our customary 1/p! is absent here
because we have chosen a particular order for the dξ’s.) Then

∫

Ω

ω
def
=

∫

Ω

ω(x(ξ))i1i2...ip
∂xi1

∂ξ1
· · · ∂x

ip

∂ξp
dξ1 · · · dξp, (3.20)

where the right hand side is an ordinary multiple integral. This recipe is a
generalization of the formula (3.3) which reduced the integral of a one-form
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to an ordinary single-variable integral. Because the appropriate Jacobean
factor appears automatically, the numerical value of the integral does not
depend on the choice of parameterization of the surface.
Example: To integrate the 2-form x dydz over the surface of a two dimen-
sional sphere of radius R, we parameterize the surface with polar angles as

x = R sinφ sin θ,

y = R cosφ sin θ,

z = R cos θ. (3.21)

Then

dy = −R sinφ sin θdφ+R cosφ cos θdθ,

dz = −R sin θdθ, (3.22)

and so
x dydz = R3sin2φ sin3θ dφdθ. (3.23)

We therefore evaluate
∫

sphere

x dydz = R3

∫ 2π

0

∫ π

0

sin2φ sin3θ dφdθ

= R3

∫ 2π

0

sin2φ dφ

∫ π

0

sin3θ dθ

= R3π

∫ 1

−1

(1− cos2 θ) d cos θ

=
4

3
πR3. (3.24)

The volume form

Although we do not need any notion of length to integrate a differential
form, a p-dimensional surface embedded or immersed in Rd does inherit a
distance scale from the Rd Euclidean metric, and this is used to define the
area or volume of the surface. When the Cartesian co-ordinates x1, . . . , xd

of a point in the surface are given as xa(ξ1, . . . , ξp), where the ξ1, . . . , ξp, are
co-ordinates on the surface, then the inherited, or induced , metric is

“ds2 ” ≡ g( , ) ≡ gµν dξ
µ ⊗ dξν (3.25)
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where

gµν =

d∑

a=1

∂xa

∂ξµ
∂xa

∂ξν
. (3.26)

The volume form associated with the induced metric is

d(Volume) =
√
g dξ1 · · ·dξp, (3.27)

where g = det (gµν). The integral of this p-form over the surface gives the
area, or p-dimensional volume, of the surface.

If we change the parameterization of the surface from ξµ to ζµ, neither
the dξ1 · · ·dξp nor the

√
g are separately invariant, but the Jacobean arising

from the change of the p-form, dξ1 · · · dξp → dζ1 · · · dζp cancels against the
factor coming from the transformation law of the metric tensor gµν → g′µν ,
leading to √

g dξ1 · · ·dξp =
√
g′dζ1 · · · dζp. (3.28)

The volume of the surface is therefore independent of the co-ordinate system
used to evaluate it.
Example: The induced metric on the surface of a unit-radius two-sphere
embedded in R3, is, expressed in polar angles,

“ds2 ” = g( , ) = dθ ⊗ dθ + sin2θ dφ⊗ dφ.

Thus

g =

∣∣∣∣
1 0
0 sin2 θ

∣∣∣∣ = sin2 θ,

and

d(Area) = sin θ dθdφ.

3.3 Stokes’ Theorem

All the integral theorems of classical vector calculus are special cases of
Stokes’ Theorem: If ∂Ω denotes the (oriented) boundary of the (oriented)
region Ω, then

∫

Ω

dω =

∫

∂Ω

ω.
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We will not provide a detailed proof. Apart from notation, it would
parallel the proof of Stokes’ or Green’s theorems in ordinary vector calculus:
The exterior derivative d has been defined so that the theorem holds for
an infinitesimal square, cube, or hypercube. We therefore divide Ω into
many such small regions. We then observe that the contributions of the
interior boundary faces cancel because all interior faces are shared between
two adjacent regions, and so occur twice with opposite orientations. Only
the contribution of the outer boundary remains.
Example: If Ω is a region of R2, then from

d

[
1

2
(x dy − y dx)

]
= dxdy,

we have

Area (Ω) =

∫

Ω

dxdy =
1

2

∫

∂Ω

(x dy − y dx).

Example: Again, if Ω is a region of R2, then from d[r2dθ/2] = r drdθ we have

Area (Ω) =

∫

Ω

r drdθ =
1

2

∫

∂Ω

r2dθ.

Example: If Ω is the interior of a sphere of radius R, then

∫

Ω

dxdydz =

∫

∂Ω

x dydx =
4

3
πR3.

Here we have referred back to (3.24) to evaluate the surface integral.
Example: Archimedes’ tombstone.
Archimedes of Syracuse gave instructions that his tombstone should have
displayed on it a diagram consisting of a sphere and circumscribed cylinder.
Cicero, while serving as quæstor in Sicily, had the stone restored.2 This
has been said to be the only significant contribution by a Roman to pure
mathematics. The carving on the stone was to commemorate Archimedes’
results about the areas and volumes of spheres, including the one illustrated
in figure 3.6, that the area of the spherical cap cut off by slicing through the
cylinder is equal to the area cut off on the cylinder.

We can understand this result via Stokes’ theorem: If the two-sphere S2

is parameterized by spherical polar co-ordinates θ, φ, and Ω is a region on

2Marcus Tullius Cicero, Tusculan Disputations, Book V, Sections 64− 66
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1−cos 
0

0
θ

θ

Figure 3.6: Sphere and circumscribed cylinder.

the sphere, then

Area (Ω) =

∫

Ω

sin θdθdφ =

∫

∂Ω

(1− cos θ)dφ,

and applying this to the figure, where the cap is defined by θ < θ0 gives

Area (cap) = 2π(1− cos θ0)

which is indeed the area of the blue cylinder.

Exercise 3.2: The sphere Sn can be thought of as the locus of points in Rn+1

obeying
∑n+1

i=1 (xi)2 = 1. Use its invariance under orthogonal transformations
to show that the element of surface “volume” of the n-sphere can be written
as

d(Volume on Sn) =
1

n!
εα1α2...αn+1

xα1 dxα2 . . . dxαn+1 .

Use Stokes’ theorem to relate the integral of this form over the surface of the
sphere to the volume of the solid unit sphere. Confirm that we get the correct
proportionality between the volume of the solid unit sphere and the volume
or area of its surface.
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3.4 Applications

We now know how to integrate forms. What sort of forms should we seek
to integrate? For a physicist working with a classical or quantum field, a
plentiful supply of intesting forms is obtained by using the field to pull back

geometric objects.

3.4.1 Pull-backs and Push-forwards

If we have a map φ from a manifold M to another manifold N , and we choose
a point x ∈ M , we can push forward a vector from TMx to TNφ(x), in the
obvious way (map head-to-head and tail-to-tail). This map is denoted by
φ∗ : TMx → TNφ(x).

x

x+X
X Xφ

*φ(x)

φ(x+X)

M N

φ

Figure 3.7: Pushing forward a vector X from TMx to TNφ(x).

If the vector X has components Xµ and the map takes the point with coor-
dinates xµ to one with coordinates ξµ(x), the vector φ∗X has components

(φ∗X)µ =
∂ξµ

∂xν
Xν . (3.29)

This looks very like the transformation formula for contravariant vector com-
ponents under a change of coordinate system. What we are doing here is
conceptually different, however. A change of co-ordinates produces a passive

transformation — i.e. a new description for an unchanging vector. A push
forward is an active transformation — we are changing a vector into differ-
ent one. Furthermore, the map from M → N is not being assumed to be
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one-to-one, so, contrary to the requirement imposed on a co-ordinate trans-
formation, it may not be possible to invert the functions ξµ(x) and write the
xν ’s as functions of the ξµ’s.

While we can push forward individual vectors, we cannot always push
forward a vector field X from TM to TN . If two distinct points x1 and x2,
chanced to map to the same point ξ ∈ N , and X(x1) 6= X(x2), we would not
know whether to chose φ∗[X(x1)] or φ∗[X(x2)] as [φ∗X](ξ). This problem
does not occur for differential forms. A map φ : M → N induces a natural,
and always well defined, pull-back map φ∗ :

∧p (T ∗N) → ∧p (T ∗M) which
works as follows: Given a form ω ∈ ∧p (T ∗N), we define φ∗ω as a form on M
by specifying what we get when we plug the vectors X1, X2, . . . , Xp ∈ TM
into it. We evaluate the form at x ∈M by pushing the vectors Xi(x) forward
from TMx to TNφ(x), plugging them into ω at φ(x) and declaring the result
to be the evaluation of φ∗ω on the Xi at x. Symbolically

[φ∗ω](X1, X2, . . . , Xp) = ω(φ∗X1, φ∗X2, . . . , φ∗Xp). (3.30)

This may seem rather abstract, but the idea is in practice quite simple:
If the map takes x ∈M → ξ(x) ∈ N , and

ω =
1

p!
ωi1...ip(ξ)dξ

i1 . . . dξip, (3.31)

then

φ∗ω =
1

p!
ωi1i2...ip[ξ(x)]dξ

i1(x)dξi2(x) · · · dξip(x)

=
1

p!
ωi1i2...ip[ξ(x)]

∂ξi1

∂xµ1

∂ξi2

∂xµ2
· · · ∂ξ

ip

∂xµ1
dxµ1 · · · dxµp . (3.32)

Computationally, the process of pulling back a form is so transparent that
it easy to confuse it with a simple change of variable. That it is not the same
operation will become clear in the next few sections where we consider maps
that are many-to-one.

Exercise 3.3: Show that the operation of taking an exterior derivative com-
mutes with a pull back:

d [φ∗ω] = φ∗(dω).

Exercise 3.4: If the map φ : M → N is invertible then we may push forward
a vector field X on M to get a vector field φ∗X on N . Show that

LX [φ∗ω] = φ∗ [Lφ∗Xω] .
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Exercise 3.5: Again assume that φ : M → N is invertible. By using the co-
ordinate expressions for the Lie bracket and the effect of a push-forward, show
that if X, Y are vector fields on TM then

φ∗([X,Y ]) = [φ∗X,φ∗Y ],

as vector fields on TN .

3.4.2 Spin textures

As an application of pull-backs we will consider some of the topological as-
pects of spin textures which are fields of unit vectors n, or “spins”, in two or
three dimensions.

Consider a smooth map n : R2 → S2 that assigns x 7→ n(x), where n is a
three-dimensional unit vector whose tip defines a point on the 2-sphere S2.
A physical example of such an n(x) would be the local direction of the spin
polarization in a ferromagnetically-coupled two-dimensional electron gas.

In terms of n, the area 2-form on the sphere becomes

Ω =
1

2
n · (dn× dn) ≡ 1

2
εijkn

idnjdnk. (3.33)

The n map pulls this area-form back to

F ≡ n∗Ω =
1

2
(εijkn

i∂µn
j∂νn

k)dxµdxν = (εijkn
i∂1n

j∂2n
k) dx1dx2 (3.34)

which is a differential form in R2. We will call it the topological charge

density . It measures the area on the two-sphere swept out by the n vectors
as we explore a square in R2 of side dx1 by dx2.

Suppose now that the vector n tends some fixed direction at large dis-
tance. This allows us to think of “infinity” as a single point, and the assign-
ment x 7→ n(x) as a map from S2 to S2. Such maps are characterized topo-
logically by their “topological charge,” or winding number N which counts
the number of times the image of the originating x sphere wraps round the
target n-sphere. A mathematician would call this number the Brouwer de-

gree of the map n. It is intuitively plausible that a continuous map from a
sphere to itself will wrap a whole number of times, and so we expect

N =
1

4π

∫

R2

{
εijkn

i∂1n
j∂2n

k
}
dx1dx2, (3.35)
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to be an integer. We will soon show that this is indeed so, but first we will
demonstrate that N is a topological invariant .

In two dimensions the form F = n∗Ω is automatically closed because
the exterior derivative of any two-form is zero — there being no three-forms
in two dimensions. Even if we consider an n(x1, . . . , xm) field in m > 2
dimensions, however, we still have dF = 0. This is because

dF =
1

2
εijk∂σn

i∂µn
j∂νn

kdxσdxµdxν . (3.36)

If we insert infinitesimal vectors into the dxµ to get their components δxµ,
we have to evaluate the triple-product of three vectors δni = ∂µn

iδxµ, each
of which is tangent to the two-sphere. But the tangent space of S2 is two-
dimensional, so any three tangent vectors t1, t2, t3, are linearly dependent
and their triple-product t1 · (t2 × t3) is zero.

Although it is closed, F = n∗Ω will not generally be the d of a globally
defined one-form. Suppose, however, that we vary the map, n → n + δn.
The change in the topological charge density is

δF = n∗[n · (d(δn)× dn)], (3.37)

and this variation can be written as a total derivative

δF = d{n∗[n · (δn× dn)]} ≡ d{εijkniδnj∂µnkdxµ}. (3.38)

In these manipulations we have used δn · (dn×dn) = dn · (δn×dn) = 0, the
triple-products being zero for the same reason adduced earlier. From Stokes’
theorem, we have

δN =

∫

S2

δF =

∫

∂S2

εijkn
iδnj∂µn

kdxµ. (3.39)

Since ∂S2 = ∅, we conclude that δN = 0 under any smooth deformation of
the map n(x). This is what we mean when we say that N is a topological
invariant. Equivalently, on R2, with n constant at infinity, we have

δN =

∫

R2

δF =

∫

Γ

εijkn
iδnj∂µn

kdxµ, (3.40)

where Γ is a curve surrounding the origin at large distance. Again δN = 0,
this time because ∂µn

k = 0 everywhere on Γ.
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In some physical applications, the field n winds in localized regions called
Skyrmions. These knots in the spin field behave very much as elementary
particles, retaining their identity as they move through the material. The
winding number counts how many Skyrmions (minus the number of anti-
Skyrmions, which wind with opposite orientation) there are. To construct a
smooth multi-Skyrmion map R2 → S2 with positive winding number N , take
a set of N + 1 complex numbers λ, a1, . . . , aN and another set of N numbers
b1, . . . , bN such that no b coincides with any a. Then set

eiφ tan
θ

2
= λ

(z − a1) . . . (z − aN)

(z − b1) . . . (z − bN)
(3.41)

where z = x1 + ix2, and θ and φ are spherical polar co-ordinates specifying
the direction n. At the points ai the vector n points straight up, and at the
points bi it points straight down. You will show in exercise 3.12 that this
particular n-field configuration minimizes the energy functional

E[n] =
1

2

∫
(∂1n · ∂1n + ∂2n · ∂2n) dx1dx2

=
1

2

∫ (
|∇n1|2 + |∇n2|2 + |∇n3|2

)
dx1dx2 (3.42)

for the given winding number N . The next section will explain the geometric
origin of the mysterious combination eiφ tan θ/2.

3.4.3 The Hopf Map

You may recall that in section 1.2.3 we defined complex projective space

CP n to be the set of rays in a complex n + 1 dimensional vector space.
A ray is an equivalence classes of vectors [ζ1, ζ2, . . . , ζn+1], where the ζi are
not all zero, and where we do not distinguish between [ζ1, ζ2, . . . , ζn+1] and
[λζ1, λζ2, . . . , λζn+1] for non-zero λ. The space of rays is a 2n-dimensional real
manifold: in a region where ζn+1 does not vanish, we can take as co-ordinates
the real numbers ξ1, . . . , ξn, η1, . . . , ηn where

ξ1 + iη1 =
ζ1
ζn+1

, ξ2 + iη2 =
ζ2
ζn+1

, . . . , ξn + iηn =
ζn
ζn+1

. (3.43)

Similar co-ordinate charts can be constructed in the regions where other ζi are
non-zero. Every point in CP n lies in at least one of these co-ordinate charts,
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and the co-ordinate transformation rules for going from chart to another are
smooth.

The simplest complex projective space, CP 1, is the real two-sphere S2 in
disguise. This rather non-obvious fact is revealed by the use of a stereographic

map to make the equivalence class [ζ1, ζ2] ∈ CP 1 correspond to a point n on
the sphere. When ζ1 is non zero, the class [ζ1, ζ2] is uniquely determined by
the ratio ζ2/ζ1 = |ζ2/ζ1|eiφ, which we plot on the complex plane. We think
of this copy of C as being the x, y plane in R3. We then draw a straight line
connecting the plotted point to the south pole of a unit sphere circumscribed
about the origin in R3. The point where this line (continued if necessary)
intersects the sphere is the tip of the unit vector n.

θ

θ/2

S
2

n

1
ζ  /ζ 

2 1
=ζ

N

S

z

y

n ζ

x

S

N

Figure 3.8: Two views of the sterographic map between the two-sphere and
the complex plane. The point ζ = ζ2/ζ1 ∈ C corresponds to the unit vector
n ∈ S2.

If ζ2, were zero, we would end up at the north pole where the R3 co-ordinate
z takes the value z = 1. If ζ1 goes to zero with ζ2 fixed, we move smoothly to
the south pole z = −1. We therefore extend the definition of our map to the
case ζ1 = 0 by making the equivalence class [0, ζ2] correspond to the south
pole. We can find an explicit formula for this map. Figure 3.8 shows that
ζ2/ζ1 = eiφ tan θ/2, and this relation suggests the use of the “t”-substitution
formulae

sin θ =
2t

1 + t2
, cos θ =

1− t2
1 + t2

, (3.44)

where t = tan θ/2. Since the x, y, z components of n are given by

n1 = sin θ cosφ,
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n2 = sin θ sinφ,

n3 = cos θ,

we find that

n1 + in2 =
2(ζ2/ζ1)

1 + |ζ2/ζ1|2
, n3 =

1− |ζ2/ζ1|2
1 + |ζ2/ζ1|2

. (3.45)

We can multiply through by |ζ1|2 = ζ1ζ1, and so write this correspondence
in a more symmetrical manner:

n1 =
ζ1ζ2 + ζ2ζ1
|ζ1|2 + |ζ2|2

n2 =
1

i

(
ζ1ζ2 − ζ2ζ1
|ζ1|2 + |ζ2|2

)
,

n3 =
|ζ1|2 − |ζ2|2
|ζ1|2 + |ζ2|2

. (3.46)

This last form can be conveniently expressed in terms of the Pauli sigma
matrices

σ̂1 =

(
0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
. (3.47)

as

n1 = (z1, z2)

(
0 1
1 0

)(
z1
z2

)
,

n2 = (z1, z2)

(
0 −i
i 0

)(
z1
z2

)
,

n3 = (z1, z2)

(
1 0
0 −1

)(
z1
z2

)
, (3.48)

where (
z1
z2

)
=

1√
|ζ1|2 + |ζ2|2

(
ζ1
ζ2

)
(3.49)

is a normalized 2-vector, which we think of as a spinor .
The CP 1 ' S2 correspondence now has a quantum mechanical interpre-

tation: Any unit three-vector n can be obtained as the expectation value



94 CHAPTER 3. INTEGRATION ON MANIFOLDS

of the σ̂ matrices in a normalized spinor state. Conversly, any normalized
spinor ψ = (z1, z2)

T gives rise to a unit vector via

ni = ψ†σ̂iψ. (3.50)

Now, since
1 = |z1|2 + |z2|2, (3.51)

the normalized spinor can be thought of as defining a point in S3. This
means that the one-to-one correspondence [z1, z2] ↔ n also gives rise to a
map from S3 → S2. This is called the Hopf map:

Hopf : S3 → S2. (3.52)

The dimension reduces from three to two, so the Hopf map cannot be one-to-
one. Even after we have normalized [ζ1, ζ2], we are still left with a choice of
overall phase. Both (z1, z2) and (z1e

iθ, z2e
iθ), although distinct points in S3,

correspond to the same point in CP 1, and hence in S2. The inverse image
of a point in S2 is a geodesic circle in S3. Later we will show that any two
such geodesic circles are linked, and this makes the Hopf map topologically
non-trivial in that it cannot be continuously deformed to a constant map,
i.e. to a map that takes all of S3 to a single point in S2.

Exercise 3.6: We have seen that the stereographic map relates the point with
spherical polar co-ordinates θ, φ to the complex number

ζ = eiφ tan θ/2.

We can therefore set ζ = ξ + iη and take ξ, η as stereographic co-ordinates on
the sphere. Show that in these co-ordinates the sphere metric is given by

g( , ) ≡ dθ ⊗ dθ + sin2θ dφ⊗ dφ
=

2

(1 + |ζ|2)2 (dζ ⊗ dζ + dζ ⊗ dζ)

=
4

(1 + ξ2 + |η|2)2 (dξ ⊗ dξ + dη ⊗ dη),

and the area 2-form becomes

Ω ≡ sin θ dθ ∧ dφ
=

2i

(1 + |ζ|2)2 dζ ∧ dζ

=
4

(1 + ξ2 + η2)2
dξ ∧ dη. (3.53)
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3.4.4 Homotopy and the Hopf map

We can use the Hopf map to factor the map n : x 7→ n(x) through the three-
sphere by specifying the spinor ψ at each point, instead of the vector n, and
so mapping indirectly

R2 ψ→ S3 Hopf→ S2.

It might seem that for a given spin-field n(x) we can choose the overall
phase of ψ(x) ≡ (z1(x), z2(x))

T as we like, but if we demand that the zi’s be
continuous functions of x there is a rather non-obvious topological restriction
which has important physical consequences. To see how this comes about we
first express the winding number in terms of the zi. We find (after a page or
two of algebra)

F = (εijkn
i∂1n

j∂2n
k) dx1dx2 =

2

i

2∑

i=1

(∂1zi∂2zi − ∂2zi∂1zi) dx
1dx2, (3.54)

and so the topological charge N is given by

N =
1

2πi

∫ 2∑

i=1

(∂1zi∂2zi − ∂2zi∂1zi) dx
1dx2. (3.55)

Now, when written in terms of the zi variables, the form F becomes a total
derivative:

F =
2

i

2∑

i=1

(∂1zi∂2zi − ∂2zi∂1zi) dx
1dx2

= d

{
1

i

2∑

i=1

(zi∂µzi − (∂µzi)zi) dx
µ

}
. (3.56)

Further, because n is fixed at large distance, we have (z1, z2) = eiθ(c1, c2)
near infinity, where c1, c2 are constants with |c1|2 + |c2|2 = 1. Thus, near
infinity,

1

2i

2∑

i=1

(zi∂µzi − (∂µzi)zi)→ (|c1|2 + |c2|2)dθ = dθ. (3.57)

We combine this observation with Stokes’ theorem to obtain

N =
1

2πi

∫

Γ

1

2

2∑

i=1

(zi∂µzi − (∂µzi)zi) dx
µ =

1

2π

∫

Γ

dθ. (3.58)
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Here, as in the previous section, Γ is a curve surrounding the origin at large
distance. Now

∫
dθ is the total change in θ as we circle the boundary. While

the phase eiθ has to return to its original value after a round trip, the angle
θ can increase by an integer multiple of 2π. The winding number

∮
dθ/2π

can therefore be non-zero, but must be an integer.
We have uncovered the rather surpring fact that the topological charge

of the map n : S2 → S2 is equal to the winding number of the phase angle
θ at infinity. This is the topological constraint refered to earlier. As a
byproduct, we have confirmed our conjecture that the topological charge N
is an integer. The existence of this integer invariant shows that the smooth
maps n : S2 → S2 fall into distinct homotopy classes labeled by N . Maps
with different values of N cannot be continuously deformed into one another,
and, while we have not shown that it is so, two maps with the same value of
N can be deformed into each other.

Maps that can be continuously deformed one into the other are said to
be homotopic. The set of homotopy classes of the maps of the n-sphere into
a manifold M is denoted by πn(M). In the present case M = S2. We are
therefore claiming that

π2(S
2) = Z, (3.59)

where we are identifying the homotopy class with its winding number N ∈ Z.

3.4.5 The Hopf index

We have so far discussed maps from S2 to S2. It is perhaps not too surprising
that such maps are classified by a winding number. What is rather more
surprising is that maps n : S3 → S2 also have an associated topological
number. If we continue to assume that n tends to a constant direction at
infinity so that we can think of R3∪{∞} as being S3, this number will label
the homotopy classes π3(S

2) of fields of unit vectors n in three dimensions.
We will think of the third dimension as being time. In this situation an
interesting set of n fields to consider are the n(x, t) corresponding moving
Skyrmions. The world lines of these Skyrmions will be tubes outside of which
n is constant, and such that on any slice through the tube, n will cover the
target n-sphere once.

To motivate the formula we will find for the topological number, we begin
with a problem from magnetostatics. Suppose we are given a cable originally
made up of a bundle of many parallel wires. The cable is then twisted N
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I

Figure 3.9: A twisted cable with N = 5.

times about its axis and bent into a closed loop, the end of each individual
wire being attached to its begining to make a continuous circuit. A current
I flows in the cable in such a manner that each individual wire carries only
a small part δIi of the total. The sense of the current is such that as we flow
with it around the cable each wire wraps N times anticlockwise about all
the others. The current produces a magnetic field B. Can we determine the
integer twisting number N knowing only this B field?
The answer is yes . We use Ampere’s law in integral form,

∮

Γ

B · dr = (current encircled by Γ). (3.60)

We also observe that the current density ∇ × B = J at a point is directed
along the tangent to the wire passing through that point. We therefore
integrate along each individual wire as it encircles the others, and sum over
the wires to find

∑

wires i

δIi

∮
B · dri =

∫
B · J d3x =

∫
B · (∇×B) d3x = NI2. (3.61)

We now apply this insight to our three-dimensional field of unit vectors n(x).
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The quantity playing the role of the current density J is the topological cur-

rent

Jσ =
1

2
εσµνεijkn

i∂µn
j∂νn

k. (3.62)

We note that ∇·J = 0. This is simply another way of saying that the 2-form
F = n∗Ω is closed.

The flux of J through a surface S is
∫

S

J · dS =

∫

S

F (3.63)

and this is the area of the spherical surface covered by the n’s. A Skyrmion,
for example, has total topological current I = 4π, the total surface area of
the 2-sphere. The Skyrmion world-line will play the role of the cable, and
the inverse images in R3 of points on S2 correspond to the individual wires.

If form language, the field corresponding to B can be any one-form A
such that dA = F . Thus

NHopf =
1

I2

∫

R3

B · J d3x =
1

16π2

∫

R3

AF (3.64)

will be an integer. This integer is the Hopf linking number, or Hopf index,
and counts the number of times the Skyrmion twists before it bites its tail
to form a closed-loop world-line.

There is another way of obtaining this formula, and of understanding the
number 16π2. We observe that the two-form F and the one-form A are the
pull-back from S3 to R3 along ψ of the forms

F =
1

i

2∑

i=1

(dzidzi − dzidzi) ,

A =
1

i

2∑

i=1

(zidzi − zidzi) , (3.65)

respectively. If we substitute z1,2 = ξ1,2 + iη1,2, we find that

AF = 8(ξ1dη1dξ2dη2 − η1dξ1dξ2dη2 + ξ2dη2dξ1dη1 − η2dξ2dξ1dη1). (3.66)

We know from exercise 3.2 that this expression is eight times the volume
3-form on the three-sphere. Now the total volume of the unit three-sphere is
2π2, and so, from our factored map x 7→ ψ 7→ n we have that

NHopf =
1

16π2

∫

R3

ψ∗(AF ) =
1

2π2

∫

R3

ψ∗d(Volume on S3) (3.67)
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is the number of times the normalized spinor ψ(x) covers S3 as x covers R3.
For the Hopf map itself, this number is unity, and so the loop in S3 which
is the inverse image of a point in S2 will twist once around any other such
inverse image loop.

We have now established that

π3(S
2) = Z. (3.68)

This result, implying that there are many maps from the three-sphere to
the two-sphere that are not smoothly deformable to a constant map, was an
great surprise when Hopf discovered it.

One of the principal physics consequences of the existence of the Hopf
index is that “quantum lump” quasi-particles like the Skyrmion can be
fermions, even though they are described by commuting (and therefore bo-
son) fields. To understand how this can be, we first explain that the collection
of homotopy classes πn(M) is not just a set . It has the additional structure
of being a group: we can compose two homotopy classes to get a third, the
composition is associative, and each homotopy class has an inverse. To define
the group composition law, we think of Sn as the interior of an n-dimensional
cube with the map f : Sn → M taking a fixed value m0 ∈ M at all points
on the boundary of the cube. The boundary can then be considered to be a
single point on Sn. We then take one of the n dimensions as being “time”
and place two cubes and their maps f1, f2 into contact, with f1 being “ear-
lier” and f2 being “later.” We thus get a continuous map from a bigger box
into M . The homotopy class of this map, after we relax the condition that
the map takes the value m0 on the common boundary, defines the composi-
tion [f2] ◦ [f1] of the two homotopy classes corresponding to f1 and f2. The
composition may be shown to be independent of the choice of representative
functions in the two classes. The inverse of a homotopy class [f ] is obtained
by reversing the direction of “time” for each of the maps in the class. This
group structure appears to depend on the fixed point m0. As long as M
is arcwise connected, however, the groups obtained from different m0’s are
isomorphic, or equivalent. In the case of π2(S

2) = Z and π3(S
2) = Z, the

composition law is simply the addition of the integers N ∈ Z that label the
classes. A full account of homotopy theory for working physicists is to be
found in a readable review article by David Mermin.3

3N. D. Mermin, “The topological theory of defects in ordered media.” Rev. Mod. Phys.
51 (1979) 591.
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When we quantize using Feynman’s “sum over histories” path integral, we
may multiply the contributions of histories f that are not deformable into
one another by different phase factors exp{iφ([f ])}. The choice of phases
must, however, be compatible with the composition of histories by concate-
nating one after the other – essentially the same operation as composing
homotopy classes. This means that the product exp{iφ([f1]))} exp{iφ([f2])}
of the phase factors for two possible histories must be the phase factor
exp{iφ([f2] ◦ [f1])} assigned to the composition of their homotopy classes.
If our quantum system consists of spins n in two space and one time di-
mension we can consistently assign a phase factor exp(iπNHopf) to a history.
The rotation of a single Skyrmion through 2π makes NHopf = 1 and so the
wavefunction changes sign. We will show in the next section, that a his-
tory where two particles change places can be continuously deformed into a
history where they do not interchange, but instead one of them is twisted
through 2π. The wavefunction of a pair of Skyrmions therefore changes sign
when they are interchanged. This means that the quantized Skyrmion is a
fermion.

3.4.6 Twist and Writhe

Consider two oriented non-intersecting closed curves γ1 and γ2. We can use
Ampère’s law to count the number of times γ1 encircles γ2 by imagining that
γ2 carries a unit current in the direction of its orientation, and evaluating

Lk(γ1, γ2) =

∮

γ1

B(r1) · dr1

=
1

4π

∮

γ1

∮

γ2

(r1 − r2) · (dr1 × dr2)

|r1 − r2|3
. (3.69)

Here the second line follows from the first by an application of the Biot-Savart
law to compute the B field due the current. The second line shows that the
Gauss linking number Lk(γ1, γ2) is symmetric under the interchange γ1 ↔ γ2

of the two curves. It changes sign, however, if one of the curves changes
orientation, or if the pair of curves is reflected in a mirror.

Introduce parameters t1, t2 with 0 < t1, t2 ≤ 1 to label points on the two
curves. The curves are closed, so r1(0) = r1(1), and similarly for r2. Let us
also define a unit vector

n(t1, t2) =
r1(t1)− r2(t2)

|r1(t1)− r2(t2)|
. (3.70)
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Then

Lk(γ1, γ2) =
1

4π

∮

γ1

∮

γ2

r1(t1)− r2(t2)

|r1(t1)− r2(t2)|3
·
(
∂r1

∂t1
× ∂r2

∂t2

)
dt1dt2

= − 1

4π

∫

T 2

n ·
(
∂n

∂t1
× ∂n

∂t2

)
dt1dt2. (3.71)

is seen to be (minus) the winding number of the map

n : [0, 1]× [0, 1]→ S2. (3.72)

of the 2-torus into the sphere. Our previous results on maps into the 2-sphere
therefore confirm our Ampère-law intuition that Lk(γ1, γ2) is an integer. The
linking number is also topological invariant, being unchanged under any de-
formation of the curves that does not cause one to pass through the other.

An important application of these ideas occurs in biology, where the
curves are the two complementary strands of a closed loop of DNA. We can
think of two such parallel curves as forming the edges of a ribbon {γ1, γ2} of
width ε. Let use denote by γ the curve r(t) running along the axis of the
ribbon midway between γ1 and γ2. The unit tangent to γ at the point r(t) is

t(t) =
ṙ(t)

|ṙ(t)| , (3.73)

where the dots denote differentiation with respect to t. We also introduce a
unit vector u(t) that is perpendicular to t(t) and lies in the ribbon, pointing
from r1(t) to r2(t).

t

u

γ γ
1 2

Figure 3.10: An oriented ribbon {γ1, γ2} showing the vectors t and u.
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We will assign a common value of the parameter t to a point on γ and the
points nearest to r(t) on γ1 and γ2. Consequently

r1(t) = r(t)− 1

2
εu(t)

r2(t) = r(t) +
1

2
εu(t) (3.74)

We can express u̇ as
u̇ = ω × u (3.75)

for some angular-velocity vector ω(t). The quantity

Tw =
1

2π

∮

γ

(ω · t) dt (3.76)

is called the Twist of the ribbon. It is not usually an integer, and is a
property of the ribbon {γ1, γ2} itself, being independent of the choice of
parameterization t.

If we set r1(t) and r2(t) equal to the single axis curve r(t) in the integrand
of (3.69), the resulting “self-linking” integral, or Writhe,

Wr
def
=

1

4π

∮

γ

∮

γ

(r(t1)− r(t2)) · (ṙ(t1)× ṙ(t2))

|r(t1)− r(t2)|3
dt1dt2. (3.77)

remains convergent despite the factor of |r(t1)− r(t2)|3 in the denominator.
However, if we try to achieve this substitution by making the width of the
ribbon ε tend to zero, we find that the vector n(t1, t2) abruptly reverses its
direction as t1 passes t2. In the limit of infinitesimal width this violent motion
provides a delta-function contribution

−(ω · t)δ(t1 − t2) dt1 ∧ dt2 (3.78)

to the 2-sphere area swept out by n, and this contribution is invisible to the
Writhe integral. The Writhe is a property only of the overall shape of the
axis curve γ, and is independent both of the ribbon that contains it, and of
the choice of parameterization. The linking number, on the other hand, is
independent of ε, so the ε→ 0 limit of the linking-number integral is not the
integral of the ε→ 0 limit of its integrand. Instead we have

Lk(γ1, γ2) =
1

2π

∮

γ

(ω · t) dt+ 1

4π

∮

γ

∮

γ

(r(t1)− r(t2)) · (ṙ(t1)× ṙ(t2))

|r(t1)− r(t2)|3
dt1dt2

(3.79)
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This formula
Lk = Tw + Wr (3.80)

is known as the Calugareanu-White-Fuller relation, and is the basis for the
claim, made in the previous section, that the worldline of an extended particle
with an exchange (Wr = ±1) can be deformed into a worldline with a 2π
rotation (Tw = ±1) without changing the topologically invariant linking
number.

1

t
2

t
1

10

t
−t

Γ Γ
t t( )

−t t( )

Figure 3.11: Cutting and reassembling the domain of integration in (3.82).

By setting

n(t1, t2) =
r(t1)− r(t2)

|r(t1)− r(t2)|
. (3.81)

we can express the Writhe as

Wr = − 1

4π

∫

T 2

n ·
(
∂n

∂t1
× ∂n

∂t2

)
dt1dt2, (3.82)

but we must take care to recognize that this new n(t1, t2) is discontinuous
across the line t = t1 = t2. It is equal to t(t) for t1 infinitesimally larger
than t2, and equal to −t(t) when t1 is infinitesimally smaller than t2. By
cutting the square domain of integration and reassembling it into a rhom-
boid, as shown in figure 3.11, we obtain a continuous integrand and see that
the Writhe is (minus) the 2-sphere area (counted with multiplicies and di-
vided by 4π) of a region whose boundary is composed of two curves Γ, the
tangent indicatrix , or tantrix , on which n = t(t), and its oppositely oriented
antipodal counterpart Γ′ on which n = −t(t).

The 2-sphere area Ω(Γ) bounded by Γ is only determined by Γ up to the
addition of integer multiples of 4π. Taking note that the “wrong” orientation
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of the boundary Γ (see figure 3.11 again) compensates for the minus sign
before the integral in (3.82), we have

4πWr = 2Ω(Γ) + 4πn. (3.83)

Thus,

Wr =
1

2π
Ω(Γ), mod 1. (3.84)

We can do better than (3.84) once we realize that by allowing crossings we
can continuously deform any closed curve into a perfect circle. Each self-
crossing causes Lk and Wr (but not Tw which, being a local functional, does
not care about crossings) to jump by ±2. For a perfect circle Wr = 0 whilst
Ω = 2π. We therefore have an improved estimate of the additive integer that
is left undetermined by Γ, and from it we obtain

Wr = 1 +
1

2π
Ω(Γ), mod 2. (3.85)

This result is due to Brock Fuller.4

We can use our ribbon language to describe conformational transitions in
long molecules. The elastic energy of a closed rod (or DNA molecule) can be
approximated by

E =

∫

γ

{
1

2
α(ω · t)2 +

1

2
βκ2

}
ds (3.86)

Here we are parameterizing the curve by its arc-length s. The constant α is
the torsional stiffness coefficient, β is the flexural stiffness, and

κ(s) =

∣∣∣∣
d2r(s)

ds2

∣∣∣∣ =

∣∣∣∣
dt(s)

ds

∣∣∣∣ , (3.87)

is the local curvature. Suppose that our molecule has linking number n, i.e

it was twisted n times before the ends were joined together to make a loop.

4F. Brock Fuller, Proc. Natl. Acad. Sci. USA, 75 (1978) 3557 - 61.
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Figure 3.12: A molecule initially with Lk = 3, Tw = 3, Wr = 0 writhes to a
new configuration with Lk = 3, Tw = 0, Wr = 3.

When β � α the molecule will minimize its bending energy by forming a
planar circle with Wr ≈ 0 and Tw ≈ n. If we increase α, or decrease β, there
will come a point at which the molecule will seek to save torsional energy at
the expense of bending, and will suddenly writhe into a new configuration
with Wr ≈ n and Tw ≈ 0. Such twist-to-writhe transformations will be
familiar to anyone who has struggled to coil a garden hose or electric cable.

3.5 Exercises and Problems

Exercise 3.7: Old exam problem. A two-form is expressed in Cartesian coor-
dinates as,

ω =
1

r3
(zdxdy + xdydz + ydzdx)

where r =
√
x2 + y2 + z2.

a) Evaluate dω for r 6= 0.
b) Evaluate the integral

Φ =

∫

P
ω

over the infinite plane P = {−∞ < x <∞,−∞ < y <∞, z = 1}.
c) A sphere is embedded into R3 by the map ϕ, which takes the point

(θ, φ) ∈ S2 to the point (x, y, z) ∈ R3, where

x = R cosφ sin θ

y = R sinφ sin θ

z = R cos θ.

Pull back ω and find the 2-form ϕ∗ω on the sphere. (Hint: The form
ϕ∗ω is both familiar and simple. If you end up with an intractable mess
of trigonometric functions, you have made an algebraic error.)
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d) By exploiting the result of part c), or otherwise, evaluate the integral

Φ =

∫

S2(R)
ω

where S2(R) is the surface of a two-sphere of radius R centered at the
origin.

The following four exercises all explore the same geometric facts relating to
Stokes’ theorem and the area 2-form of a sphere, but in different physical
settings.

Exercise 3.8: A flywheel of moment of inertia I can rotate without friction
about an axle whose direction is specified by a unit vector n. The flywheel and
axle are initially stationary. The direction n of the axle is made to describe a
simple closed curve γ = ∂Ω on the unit sphere, and is then left stationary.

γ

Ω
n

Figure 3.13: Flywheel

Show that once the axle has returned to rest in its initial direction, the flywheel
has also returned to rest, but has rotated through an angle θ = Area(Ω)
when compared with its initial orientation. The area of Ω is to be counted as
positive if the path γ surrounds it in a clockwise sense, and negative otherwise.
Observe that the path γ bounds two regions with opposite orientations. Taking
into account that we cannot define the rotation angle at intermediate steps,
show that the area of either region can be used to compute θ, the results
being physically indistinguishable. (Hint: Show that the component LZ =
I(ψ̇+ φ̇ cos θ) of the flywheel’s angular momentum along the axle is a constant
of the motion.)
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Exercise 3.9: A ball of unit radius rolls without slipping on a table. The ball
moves in such a way that the point in contact with table describes a closed
path γ = ∂Ω on the ball . (The corresponding path on the table will not
necessarily be closed.) Show that the final orientation of the ball will be such
that it has rotated, when compared with its initial orientation, through an
angle φ = Area(Ω) about a vertical axis through its center, As in the previous
problem, the area is counted positive if γ encircles Ω in an anti-clockwise sense.
(Hint: recall the no-slip rolling condition φ̇+ ψ̇ cos θ = 0 from (2.26).)

Exercise 3.10: Let a curve in R3 be parameterized by its arc length s as r(s).
Then the unit tangent to the curve is given by

t(s) = ṙ ≡ dr

ds
.

The principal normal n(s) and the binormal b(s) are defined by the require-
ment that ṫ = κn with the curvature κ(s) positive, and that t, n and b = t×n

form a right-handed orthonormal frame.

t

b

n

n b t

Figure 3.14: Serret-Frenet frames.

a) Show that there exists a scalar τ(s), the torsion of the curve, such that
t, n and b obey the Serret-Frenet relations




ṫ

ṅ

ḃ


 =




0 κ 0
−κ 0 τ
0 −τ 0






t

n

b


 .

b) Any pair of mutually orthogonal unit vectors e1(s), e2(s) perpendicular
to t and such that e1 × e2 = t can serve as an orthonormal frame for
vectors in the normal plane. A basis pair e1, e2 with the property

ė1 · e2 − ė2 · e1 = 0



108 CHAPTER 3. INTEGRATION ON MANIFOLDS

is said to be parallel , or Fermi-Walker, transported along the curve. In
other words, a parallel-transported 3-frame t, e1, e2 slides along the
curve r(s) in such a way that the component of its angular velocity in
the t direction is always zero. Show that the Serret-Frenet frame e1 = n,
e2 = b is not parallel transported, but instead rotates at angular velocity
θ̇ = τ with respect to a parallel-transported frame.

c) Consider a finite segment of curve such that the initial and final Serret-
Frenet frames are parallel, and so t(s) defines a closed path γ = ∂Ω
on the unit sphere. Fill in the line-by-line justications for the following
sequence of manipulations:

∫

γ
τ ds =

1

2

∫

γ
(b · ṅ− n · ḃ) ds

=
1

2

∫

γ
(b · dn− n · db)

=
1

2

∫

Ω
(db · dn− dn · db) (∗)

=
1

2

∫

Ω
{(db · t)(t · dn)− (dn · t)(t · db)}

=
1

2

∫

Ω
{(b · dt)(dt · n)− (n · dt)(dt · b)}

= −1

2

∫

Ω
t · (dt × dt)

= −Area(Ω).

(The line marked ‘∗’ is the one that requires most thought. How can we
define “b” and “n” in the interior of Ω?)

d) Conclude that a Fermi-Walker transported frame will have rotated through
an angle θ = Area(Ω), compared to its initial orientation, by the time it
reaches the end of the curve.

The plane of transversely polarized light propagating in a monomode optical
fibre is Fermi-Walker transported, and this rotation can be studied experimen-
tally.5

Exercise 3.11: Foucault’s pendulum (in disguise). A particle of mass m is
constrained by a pair of frictionless plates to move in a plane Π that passes
through the origin O. The particle is attracted to O by a force −κr, and it
therefore executes simple harmonic motion within Π. The orientation of the

5A. Tomita, R. Y. Chao, Phys. Rev. Lett. 57 (1986) 937-940.
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plane, specified by a normal vector n, can be altered in such a way that Π
continues to pass through the centre of attraction O.

a) Show that the constrained motion is described by the equation

mr̈ + κr = λ(t)n,

and determine λ(t) in terms of m, n and r̈.
b) Seek a solution in the form

r(t) = A(t) cos(ωt+ φ),

and, by assuming that n changes direction slowly compared to the fre-
quency ω =

√
κ/m, show that Ȧ = −n(ṅ ·A). Deduce that |A| remains

constant, and so Ȧ = ω ×A for some angular velocity vector ω. Show
that ω is perpendicular to n.

c) Show that the results of part b) imply that the direction of oscillation A

is “parallel transported” in the sense of the previous problem. Conclude
that if n slowly describes a closed loop γ = ∂Ω on the unit sphere,
then the direction of oscillation A ends up rotated through an angle
θ = Area(Ω).

The next exercise introduces an clever trick for solving some of the non-linear
partial differential equations of field theory. The class of equations to which
it and its generalizations are applicable is rather restricted, but when they
work they provide a complete multi-soliton solution.

Problem 3.12: In this problem you will find the spin field n(x) that minimizes
the energy functional

E[n] =
1

2

∫

R2

(
|∇n1|2 + |∇n2|2 + |∇n3|2

)
dx1dx2

for a given positive winding number N .

a) Use the results of exercise 3.6 to write the winding number N , defined
in (3.35), and the energy functional E[n] as

4πN =

∫
4

(1 + ξ2 + η2)2
(∂1ξ∂2η − ∂1η∂2ξ) dx

1dx2,

E[n] =
1

2

∫
4

(1 + ξ2 + η2)2
(
(∂1ξ)

2 + (∂2ξ)
2 + (∂1η)

2 + (∂2η)
2
)
dx1dx2,

where ξ and η are stereographic co-ordinates on S2 specifying the direc-
tion of the unit vector n.
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b) Deduce the inequality

E − 4πN ≡ 1

2

∫
4

(1 + ξ2 + η2)2
|(∂1 + i∂2)(ξ + iη)|2 dx1dx2 > 0.

c) Deduce that for winding number N > 0 the minimum energy solutions
have energy E = 4πN and are obtained by solving the first-order linear
equation (

∂

∂x1
+ i

∂

∂x2

)
(ξ + iη) = 0.

d) Solve the equation in part c) and show that the minimal energy solutions
with winding number N > 0 are given by

ξ + iη = λ
(z − a1) . . . (z − aN )

(z − b1) . . . (z − bN )

where z = x1 + ix2, and λ, a1, . . . , aN , and b1, . . . , bN , are arbitrary
complex numbers—except that no a may coincide with any b. This is
the solution we displayed at the end of section 3.4.2.

e) Repeat the analysis for N < 0. Show that the solutions are given in
terms of rational functions of z̄ = x1 − ix2.

The idea of combining the energy functional and the topological charge into a
single, manifestly positive, functional is due to Evgueny Bogomol’nyi. The the
resulting first order linear equation is therefore called a Bogomolnyi equation.
If we had tried to find a solution directly in terms of n, we would have ended
up with a horribly non-linear second-order partial differential equation..

Exercise 3.13: Lobachevski space. The hyperbolic plane of Lobachevski ge-
ometry can be realized by embedding the Z ≥ R branch of the two-sheeted
hyperboloid Z2 − X2 − Y 2 = R2 into a Minkowski space with metric ds2 =
−dZ2 + dX2 + dY 2.

We can parametrize the emebedded surface by making an “imaginary radius”
version of the stereographic map, in which the point P on the hyperboloid is
labelled by the co-ordinates of the point Q on the X-Y plane (see figure 3.15).

i) Show that the embedding induces the metric

g( , ) =
4R4

(R2 −X2 − Y 2)2
(dX ⊗ dX + dY ⊗ dY ), X2 + Y 2 < R2

of the Poincaré disc model (see problem ??.??) on the hyperboloid.
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P

Q
X

Z

R−R

Figure 3.15: A slice through the embedding of two-dimensional Lobachevski
space into three-dimensional Minkowski space, showing the sterographic pa-
rameterization of the embedded space by the Poincaré disc X2 + Y 2 < R2.

ii) Use the induced metric to show that the area of a disc of hyperbolic
radius ρ is given by

Area = 4πR2sinh2
( ρ

2R

)
= 2πR2(cosh(ρ/R)− 1),

and so is only given by πρ2 when ρ is small compared to the scale R of
the hyperbolic space. It suffices to consider circles with their centres at
the origin. You will first need to show that the hyperbolic distance ρ
from the center of the disc to a point at Euclidean distance r is

ρ = R ln

(
R+ r

R− r

)
.

Exercise 3.14: Faraday’s “flux rule” for computing the electromotive force E
in a circuit containing a thin moving wire is usually derived by the following
manipulations:

E ≡
∮

∂Ω
(E + v ×B) · dr

=

∫

Ω
curlE · dS−

∮

∂Ω
B · (v × dr)

= −
∫

Ω

∂B

∂t
· dS−

∮

∂Ω
B · (v × dr)

= − d

dt

∫

Ω
B · dS.
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a) Show that if we parameterize the surface Ω as xµ(u, v, τ), with u, v la-
belling points on Ω and τ parametrizing the evolution of Ω, then the
corresponding manipulations in the covariant differential-form version of
Maxwell’s equations lead to

d

dτ

∫

Ω
F =

∫

Ω
LV F =

∫

∂Ω
iV F = −

∫

∂Ω
f

where V µ = ∂xµ/∂τ and f = −iV F .
b) Show that if we take τ to be the proper time along the world-line of each

element of Ω, then V is the 4-velocity

V µ =
1√

1− v2
(1,v),

and f = −iV F becomes the one-form corresponding to the Lorentz-force
4-vector.

It is not clear that the terms in this covariant form of Farday’s law can be
given any physical interpretation outside the low-velocity limit. When parts
of ∂Ω have different velocities, the relation of the integrals to measurements
made at fixed co-ordinate time requires thought.6

The next pair of exercises explores some physics appearances of the contin-
uum Hopf linking number (3.64).

Exercise 3.15: The equations governing the motion of an incompressible in-
viscid fluid are ∇ · v = 0 and Euler’s equation

Dv

Dt
≡ ∂v

∂t
+ (v · ∇)v = −∇P.

Recall that the operator ∂/∂t + v · ∇, here written as D/Dt, is called the
convective derivative.

a) Take the curl of Euler’s equation to show that if ω = ∇×v is the vorticity
then

Dω

Dt
≡ ∂ω

∂t
+ (v · ∇)ω = (ω · ∇)v.

b) Combine Euler’s equation with part a) to show that

D

Dt
(v · ω) = ∇ ·

{
ω

(
1

2
v2 − P

)}
.

6See E. Marx, Journal of the Franklin Institute, 300 (1975) 353-364.
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c) Show that if Ω is a volume moving with the fluid, then

d

dt

∫

Ω
f(r, t) dV =

∫

Ω

Df

Dt
dV.

e) Conclude that when ω is zero at infinity the helicity

I =

∫
v · (∇× v) dV =

∫
v · ω dV

is a constant of the motion.

The helicity measures the Hopf linking number of the vortex lines. The dis-
covery7 of its conservation founded the field of topological fluid dynamics.

Exercise 3.16: Let B = ∇ × A and E = −∂A/∂t − ∇φ be the electric and
magnetic field in an incompressible and perfectly conducting fluid. In such a
fluid the co-moving electromotive force E+v×B must vanish everywhere.

a) Use Maxwell’s equations to show that

∂A

∂t
= v × (∇×A)−∇φ,

∂B

∂t
= ∇× (v ×B).

b) From part a) show that the convective derivative of A ·B is given by

D

Dt
(A ·B) = ∇ · {B (A · v − φ)} .

c) By using the same reasoning as the previous problem, and assuming that
B is zero at infinity, conclude that Woltjer’s invariant

I =

∫
(A ·B) dV =

∫
εijkAi∂jAkd

3x =

∫
AF

is a constant of the motion.

This result shows that the Hopf linking number of the magnetic field lines is
independent of time. It is an essential ingredient in the geodynamo theory of
the Earth’s magnetic field.

7H. K. Moffatt, J. Fluid Mech. 35 (1969) 117.
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Chapter 4

An Introduction to Topology

Topology is the study of the consequences of continuity. We all know that
a continuous real function defined on a connected interval and positive at
one point and negative at another must take the value zero at some point
between. This fact seems obvious—although a course of real analysis will
convince you of the need for a proof. A less obvious fact, but one that
follows from the previous one, is that a continuous function defined on the
unit circle must posses two diametrically opposite points at which it takes the
same value. To see that this is so, consider f(θ + π)− f(θ). This difference
(if not initially zero, in which case there is nothing further to prove) changes
sign as θ is advanced through π, because the two terms exchange roles. It was
therefore zero somewhere. This observation has practical application in daily
life: Our local coffee shop contains four-legged tables that wobble because
the floor is not level. They are round tables, however, and because they
possess no misguided levelling screws all four legs have the same length. We
are therefore guaranteed that by rotating the table about its center through
an angle of less than π/2 we will find a stable location. A ninety-degree
rotation interchanges the pair of legs that are both on the ground with the
pair that are rocking, and at the change-over point all four legs must be
simultaneously on the ground.

Similar effects with a practical significance for physics appear when we
try to extend our vector and tensor calculus from a local region to an entire
manifold. A smooth field of vectors tangent to the sphere S2 will always
possess a zero — i.e. a point at which the the vector field vanishes. On
the torus T 2, however, we can construct a nowhere-zero vector field. This
shows that the global topology of the manifold influences the way in which

115
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the tangent spaces are glued together to form the tangent bundle. To study
this influence in a systematic manner we need first to understand how to
characterize the global structure of a manifold, and then to see how this
structure affects the mathematical and physical objects that live on it.

4.1 Homeomorphism and Diffeomorphism

In the previous chapter we met with a number of topological invariants,
quantities that are unaffected by continuous deformations. Some invariants
help to distinguish topologically distinct manifolds. An important example is
the set of Betti numbers of the manifold. If two manifolds have different Betti
numbers they are certainly distinct. If, however, they have the same Betti
numbers, we cannot be sure that they are topologically identical. It is a holy
grail of topology to find a complete set of invariants such that having them
all coincide would be enough to say that two manifolds were topologically
the same.

In the previous paragraph we were deliberately vague in our use of the
terms “distinct” and the “same”. Two topological spaces (spaces equipped
with a definition of what is to be considered an open set) are regarded as be-
ing the “same”, or homeomorphic, if there is a one-to-one, onto, continuous
map between them whose inverse is also continuous. Manifolds come with the
additional structure of differentiability: we may therefore talk of “smooth”
maps, meaning that their expression in coordinates is infinitely (C∞) differ-
entiable. We regard two manifolds as being the “same”, or diffeomorphic, if
there is a one-to-one onto C∞ map between them whose inverse is also C∞.
The distinction between homeomorphism and diffeomorphism sounds like a
mere technical nicety, but it has consequences for physics. Edward Witten
discovered1 that there are 992 distinct 11-spheres. These are manifolds that
are all homeomorphic to the 11-sphere, but diffeomorphically inequivalent.
This fact is crucial for the cancellation of global graviational anomalies in
the E8 × E8 or SO(32) symmetric superstring theories.

Since we are interested in the consequences of topology for calculus, we
will restrict ourselves to the interpretation “same” = diffeomorphic.

1E. Witten, Comm. Math. Phys. 117 (1986), 197.
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4.2 Cohomology

Betti numbers arise in answer to what seems like a simple calculus problem:
when can a vector field whose divergence vanishes be written as the curl of
something? We will see that the answer depends on the global structure of
the space the field inhabits.

4.2.1 Retractable Spaces: Converse of Poincaré Lemma

Poincaré’s lemma asserts that d2 = 0. In traditional vector calculus language
this reduces to the statements curl (gradφ) = 0 and div (curlw) = 0. We
often assume that the converse is true: If curlv = 0, we expect that we can
find a φ such that v = gradφ, and, if divv = 0, that we can find a w such
that v = curl w. You know a formula for the first case:

φ(x) =

∫ x

x0

v · dx, (4.1)

but probably do not know the corresponding formula for w. Using differ-
ential forms, and provided the space in which these forms live has suitable
topological properties, it is straightforward to find a solution for the general
problem: If ω is closed, meaning that dω = 0, find χ such that ω = dχ.

The “suitable topological properties” referred to in the previous para-
graph is that the space be retractable. Suppose that the closed form ω is
defined in a domain Ω. We say that Ω is retractable to the point O if there
exists a smooth map ϕt : Ω→ Ω which depends continuously on a parameter
t ∈ [0, 1] and for which ϕ1(x) = x and ϕ0(x) = O. Applying this retraction
map to the form, we will then have ϕ∗

1ω = ω and ϕ∗
0ω = 0. Let us set

ϕt(x
µ) = xµ(t). Define η(x, t) to be the velocity-vector field that corresponds

to the co-ordinate flow:
dxµ

dt
= ηµ(x, t). (4.2)

An easy exercise, using the interpretation of the Lie derivative in (2.40),
shows that

d

dt
(ϕ∗

tω) = Lη(ϕ∗
tω). (4.3)

We now use the infinitesimal homotopy relation and our assumption that
dω = 0, and hence (from exercise 3.3) that d(ϕ∗

tω) = 0, to write

Lη(ϕ∗
tω) = (iηd+ diη)(ϕ

∗
tω) = d[iη(ϕ

∗
tω)]. (4.4)
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Using this we can integrate up with respect to t to find

ω = ϕ∗
1ω − ϕ∗

0ω = d

(∫ 1

0

iη(ϕ
∗
tω)dt

)
. (4.5)

Thus

χ =

∫ 1

0

iη(ϕ
∗
tω)dt, (4.6)

solves our problem.
This magic formula for χ makes use of the nearly all the “calculus on

manifolds” concepts that we have introduced so far. The notation is so pow-
erful that it has suppressed nearly everything that a traditionally-educated
physicist would find familiar. We will therefore unpack the symbols by means
of a concrete example. Let us take Ω to be the whole of R3. This can be
retracted to the origin via the map ϕt(x

µ) = xµ(t) = txµ. The velocity field
whose flow gives

xµ(t) = t xµ(0)

is ηµ(x, t) = xµ/t. To verify this, compute

dxµ(t)

dt
= xµ(0) =

1

t
xµ(t),

so xµ(t) is indeed the solution to

dxµ

dt
= ηµ(x(t), t).

Now let us apply this retraction to ω = Adydz +Bdzdx+ Cdxdy with

dω =

(
∂A

∂x
+
∂B

∂y
+
∂C

∂z

)
dxdydz = 0. (4.7)

The pull-back ϕ∗
t gives

ϕ∗
tω = A(tx, ty, tz)d(ty)d(tz) + (two similar terms). (4.8)

The interior product with

η =
1

t

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
(4.9)
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then gives

iηϕ
∗
tω = tA(tx, ty, tz)(y dz − z dy) + (two similar terms). (4.10)

Finally we form the ordinary integral over t to get

χ =

∫ 1

0

iη(ϕ
∗
tω)dt

=

[∫ 1

0

A(tx, ty, tz)t dt

]
(ydz − zdy)

+

[∫ 1

0

B(tx, ty, tz)t dt

]
(zdx− xdz)

+

[∫ 1

0

C(tx, ty, tz)t dt

]
(xdy − ydx). (4.11)

In this expression the integrals in the square brackets are just numerical
coefficients, i.e., the “dt” is not part of the one-form. It is instructive,
because not entirely trivial, to let “d” act on χ and verify that the con-
struction works. If we focus first on the term involving A, we find that
d[
∫ 1

0
A(tx, ty, tz)t dt](ydz − zdy) can be grouped as

[∫ 1

0

{
2tA+ t2

(
x
∂A

∂x
+ y

∂A

∂y
+ z

∂A

∂z

)}
dt

]
dydz

−
∫ 1

0

t2
∂A

∂x
dt (xdydz + ydzdx+ zdxdy). (4.12)

The first of these terms is equal to

[∫ 1

0

d

dt

{
t2A(tx, ty, tz)

}
dt

]
dydz = A(x, y, x) dydz, (4.13)

which is part of ω. The second term will combine with the terms involving
B, C, to become

−
∫ 1

0

t2
(
∂A

∂x
+
∂B

∂y
+
∂C

∂z

)
dt (xdydz + ydzdx+ zdxdy), (4.14)

which is zero by our hypothesis. Putting togther the A, B, C, terms does
therefore reconstitute ω.
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4.2.2 Obstructions to Exactness

The condition that Ω be retractable plays an essential role in the converse to
Poincaré’s lemma. In its absence dω = 0 does not guarantee that there is an
χ such that ω = dχ. Consider, for example, a vector field v with curlv ≡ 0
in an annulus Ω = {R0 < |r| < R1}. In the annulus (a non-retractable space)
the condition that curlv ≡ 0 does not prohibit

∮
Γ
v · dr being non zero for

some closed path Γ encircling the central hole. When this line integral is
non-zero then there can be no single-valued χ such that v = ∇χ. If there
were such a χ, then

∮

Γ

v · dr = χ(0)− χ(0) = 0. (4.15)

A non-zero value for
∮
Γ
v · dr therefore consititutes an obstruction to the

existence of an φ such that v = ∇χ.
Example: The sphere S2 is not retractable. The area 2-form sin θdθdφ is
closed, but, although we can write

sin θdθdφ = d[(1− cos θ)dφ], (4.16)

the 1-form (1− cos θ)dφ is singular at the south pole, θ = π. We could try

sin θdθdφ = d[(−1− cos θ)dφ], (4.17)

but this is singular at the north pole, θ = 0. There is no escape: we know
that ∫

S2

sin θdθdφ = 4π, (4.18)

but if sin θdθdφ = dχ then Stokes says that
∫

S2

sin θdθdφ
?
=

∫

∂S2

χ = 0 (4.19)

because ∂S2 = 0. Again, a non-zero value for
∫
ω over some boundary-less

region has provided an obstruction to finding an χ such that ω = dχ.

4.2.3 De Rham Cohomology

We have seen that sometimes the condition dω = 0 allows us to find an χ such
that ω = dχ, and sometimes it does not. If the region in which we seek χ is
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retractable, we can always construct it. If the region is not retractable there
may be an obstruction to the existence of χ. In order to describe the various
possibilities we introduce the language of cohomology , or more precisely de

Rham cohomology , named for the Swiss mathematician Georges de Rham
who did the most to create it.

The significance of cohomology for physics is that many important quan-
tities can be expressed as integrals of differential forms that lie in some co-
homology space.

For simplicity suppose that we are working in a compact manifold M
without boundary. Let Ωp(M) =

∧p(T ∗M) be the space of all smooth p-form
fields. It is a vector space over R: we can add p-form fields and multiply them
by real constants, but, as is the vector space C∞(M) of smooth functions on
M , it is infinite dimensional. The subspace Zp(M) of closed forms—those
with dω = 0—is also an infinite dimensional vector space, and the same
is true of the space Bp(M) of exact forms — those that can be written as
ω = dχ for some globally defined (p − 1)-form χ. Now consider the space
Hp = Zp/Bp, which is the space of closed forms modulo exact forms. In this
space we do not distinguish between two forms, ω1 and ω2 when there an χ,
such that ω1 = ω2 + dχ. We say that ω1 and ω2 are cohomologous , and write
ω1 ∼ ω2 ∈ Hp(M). We will use the symbol [ω] to denote the equivalence
class of forms cohomologous to ω. Now a miracle happens! For a compact
manifold M the space Hp(M) is finite dimensional! It is called the p-th (de
Rham) cohomology space of the manifold, and depends only on the global
topology of M . In particular, it does not depend on any metric we may have
chosen for M .

Sometimes we write Hp
DR(M,R) to make clear that we are dealing with

de Rham cohomolgy, and that we are working with vector spaces over the
real numbers. This is because there is also a space Hp

DR(M,Z), where we
only allow multiplication by integers.

The cohomology space Hp
DR(M,R) codifies all potential obstructions to

solving the problem of finding a (p − 1)-form χ such that dχ = ω: we can
find such a χ if and only if ω is cohomologous to zero in Hp

DR(M,R). If
Hp

DR(M,R) = {0}, which is the case if M is retractable, then all closed p-
forms are cohomologous to zero. If Hp

DR(M,R) 6= {0}, then some closed
p-forms ω will not be cohomologous to zero. We can test whether ω ∼ 0 ∈
Hp

DR(M,R) by forming suitable integrals.
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4.3 Homology

The language of cohomology seems rather abstract. To understand its origin
it may be more intuitive to think about the spaces that are the cohomology
spaces’ vector-space duals. These homology spaces are simple to understand
pictorially.

The basic idea is that, given a region Ω, we can find its boundary ∂Ω.
Inspection of a few simple cases will soon lead to the conclusion that the
“boundary of a boundary” consists of nothing. In symbols, ∂2 = 0. The
statement “∂2 = 0” is clearly analgous to “d2 = 0,” and, pursuing the anal-
ogy, we can construct a vector space of “regions” and define two “regions”
as being homologous if they differ by the boundary of another “region.”

4.3.1 Chains, Cycles and Boundaries

We begin by making precise the vague notions of region and boundary.

Simplicial Complexes

The set of all curves and surfaces in a manifold M is infinite dimensional, but
the homology spaces are finite dimensional. Life would be much easier if we
could use finite dimensional spaces throughout. Mathematicians therefore
do what any computationally-minded physicist would do: they approximate
the smooth manifold by a discrete polygonal grid . Were they interested in
distances, they would necessarily use many small polygons so as to obtain
a good approximation to the detailed shape of the manifold. The global
topology, though, can often be captured by a rather coarse discretization.
The result of this process is to reduce a complicated problem in differential
geometry to one of simple algebra. The resulting theory is therefore known
as algebraic topology.

It turns out to be convenient to approximate the manifold by generalized
triangles. We therefore dissect M into line segments (if one dimensional),
triangles, (if two dimensional), tetrahedra (if three dimensional) or higher
dimensional p-simplices (singular: simplex ). The rules for the dissection are:

a) Every point must belong to at least one simplex.
b) A point can belong to only a finite number of simplices.
c) Two different simplices either have no points in common, or

i) one is a face (or edge, or vertex) of the other,
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a) b)

Figure 4.1: Triangles, or 2-simplices, that are a) allowed, b) not allowed in a
dissection. In b) only parts of edges are in common.

ββ

P P

PP

α

α

γ

a) b)

2

1

γ
β

P

α

1

2

Figure 4.2: A triangulation of the 2-torus. a) The torus as a rectangle
with periodic boundary conditions: The two edges labled α will be glued
togther point-by-point along the arrows when we reassemble the torus, and
so are to be regarded as a single edge. The two sides labeled β will be glued
similarly. b) The assembled torus: All four P’s are now in the same place,
and correspond to a single point.

ii) the set of points in common is the whole of a shared face (or edge,
or vertex).

The collection of simplices composing the dissected space is called a simplicial

complex . We will denote it by S.

We may not need many triangles to capture the global topology. For
example, figure 4.2 shows how a two-dimensional torus can be decomposed
into two 2-simplices (triangles) bounded by three 1-simplices (edges) α, β, γ,
and with only a single 0-simplex (vertex) P . Computations are easier to
describe, however, if each simplex in the decomposition is uniquely specified
by its vertices. For this we usually need a slightly finer dissection. Figure
4.3 shows a decomposition of the torus into 18 triangles each of which is
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P1 P2
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Figure 4.3: A second triangulation of the 2-torus.
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4

P
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P

P

Figure 4.4: A tetrahedral triangulation of the 2-sphere. The circulating
arrows on the faces indicate the choice of orientation P1P2P4 and P2P3P4.

uniquely labeled by three points drawn from a set of nine vertices. In this
figure vertices with identical labels are to be regarded as the same vertex,
as are the corresponding sides of triangles. Thus, each of the edges P1P2,
P2P3, P3P1, at the top of the figure are to be glued point-by-point to the
corresponding edges on bottom of the figure. Similarly along the sides. The
resulting simplicial complex then has 27 edges.

We may triangulate the sphere S2 as a tetrahedron with vertices P1, P2,
P3, P4. This dissection has six edges: P1P2, P1P3, P1P4, P2P3, P2P4, P3P4,
and four faces: P2P3P4, P1P3P4, P1P2P4 and P1P2P3.
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p-Chains

We assign to simplices an orientation defined by the order in which we write
their defining vertices. The interchange of of any pair of vertices reverses the
orientation, and we consider there to be a relative minus sign between oppo-
sitely oriented but otherwise identical simplices: P2P1P3P4 = −P1P2P3P4.

We now construct abstract vector spaces Cp(S,R) of p-chains which have
the oriented p-simplices as their basis vectors. The most general elements of
C2(S,R), with S being the tetrahedral triangulation of the sphere S2, would
be

a1P2P3P4 + a2P1P3P4 + a3P1P2P4 + a4P1P2P3, (4.20)

where a1, . . . , a4, are real numbers. We regard the distinct faces as being
linearly independent basis elements for C2(S,R). The space is therefore four
dimensional. If we had triangulated the sphere so that it had 16 triangular
faces, the space C2 would be 16 dimensional.

Similarly, the general element of C1(S,R) would be

b1P1P2 + b2P1P3 + b3P1P4 + b4P2P3 + b5P2P4 + b6P3P4, (4.21)

and so C1(S,R) is a six-dimensional space spanned by the edges of the tetra-
hedron. For C0(S,R) we have

c1P1 + c2P2 + c3P3 + c4P4, (4.22)

and so C0(S,R) is four dimensional, and spanned by the vertices.

Our manifold comprises only the surface of the two-sphere, so there is no
such thing as C3(S,R).

The reason for making the field R explicit in these definitions is that we
sometimes gain more information about the topology if we allow only integer
coefficients. The space of such p-chains is then denoted by Cp(S,Z). Be-
cause a vector space requires that coefficients be drawn from a field, these
objects are no longer vector spaces. They can be thought of as either mod-

ules—“vector spaces” whose coefficient are drawn from a ring—or as additive
abelian groups.
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P2 P3

P4

Figure 4.5: The oriented triangle P2P3P4 has boundary P3P4 +P4P2 +P2P3.

The Boundary Operator

We now introduce a linear map ∂p : Cp → Cp−1, called the boundary operator.
Its action on a p-simplex is

∂pPi1Pi2 · · ·Pip+1
=

p+1∑

j=1

(−1)j+1Pi1 . . . P̂ij . . . Pip+1
, (4.23)

where the “hat” indicates that Pij is to be omitted. The resulting (p − 1)-
chain is called the boundary of the simplex. For example

∂2(P2P3P4) = P3P4 − P2P4 + P2P3,

= P3P4 + P4P2 + P2P3. (4.24)

The boundary of a line segment is the difference of its endpoints

∂1(P1P2) = P2 − P1. (4.25)

Finally, for any point,
∂Pi = 0. (4.26)

Because ∂ is defined to be a linear map, when it is applied to a p-chain
c = a1s1 + a2s2 + · · · + ansn, where the si are p-simplices, we have ∂pc =
a1∂ps1 + a2∂ps2 + · · ·+ an∂psn.
When we take the “∂” of a chain of compatibly oriented simplices that to-
gether make up some region, the internal boundaries cancel in pairs, and
the “boundary” of the chain really is the oriented geometric boundary of the
region. For example in figure 4.6 we find that

∂(P1P5P2+P2P5P4+P3P4P5+P1P3P5) = P1P3+P3P4+P4P2+P2P1, (4.27)
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P4

2PP1

P3

P5

Figure 4.6: Compatibly oriented simplices.

which is the counter-clockwise directed boundary of the square.
For each of the examples we find that ∂p−1∂p s = 0. From the definition

(4.23) we can easily establish that this identity holds for any p-simplex s. As
chains are sums of simplices and ∂p is linear, it remains true for any c ∈ Cp.
Thus ∂p−1∂p = 0. We will usually abbreviate this statement as ∂2 = 0.

Cycles, Boundaries and Homology

A chain complex is a doubly infinite sequence of spaces (these can be vector
spaces, modules, abelian groups, or many other mathematical objects) such
as . . . , C−2, C−1, C0, C1, C2 . . ., together with structure-preserving maps

. . .
∂p+1→ Cp

∂p→ Cp−1
∂p−1→ Cp−2

∂p−1→ . . . , (4.28)

with the property that ∂p−1∂p = 0. The finite sequence of Cp’s we constructed
from our simplicial complex is an example of a chain complex where Cp is
zero-dimensional for p < 0 or p > d. Chain complexes are a useful tool in
mathematics, and the ideas we explain in this section have many applications.

Given any chain complex we can define two important linear subspaces
of each of the Cp’s. The first is the space Zp of p-cycles . This consists of
those z ∈ Cp such that ∂pz = 0. The second is the space Bp of p-boundaries,
and consists of those b ∈ Cp such that b = ∂p+1c for some c ∈ Cp+1. Because
∂2 = 0, the boundaries Bp constitute a subspace of Zp. From these spaces
we form the quotient space Hp = Zp/Bp, consisting of equivalence classes of
p-cycles, where we deem z1 and z2 to be equivalent, or homologous , if they
differ by a boundary: z2 = z1 + ∂c. We will write the equivalence class of
cycles homologous zi to as [zi]. The space Hp, or more accurately, Hp(R), is
called the p-th (simplicial) homology space of the chain complex. It becomes
the p-th homology group if R is replaced by the integers.
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We can construct these homology spaces for any chain complex. When
the chain complex is derived from a simplicial complex decomposition of a
manifold M a remarkable thing happens. The spaces Cp, Zp, and Bp, all
depend on the details of how the manifold M has been dissected to form
the simplicial complex S. The homology space Hp, however, is independent
the dissection. This is neither obvious nor easy to prove. We will rely on
examples to make it plausible. Granted this independence, we will write
Hp(M), or Hp(M,R), so as to make it clear that Hp is a property of M . The
dimension bp of Hp(M) is called the p-th Betti number of the manifold:

bp
def
= dimHp(M). (4.29)

Example: The Two-Sphere. For the tetrahedral dissection of the two-sphere,
any vertex is Pi homologous to any other, as Pi − Pj = ∂(PjPi) and all
PjPi belong to C2. Furthermore, ∂Pi = 0, so H0(S

2) is one dimensional.
In general, the dimension of H0(M) is the number of disconnected pieces
making up M . We will write H0(S

2) = R, regarding R as the archetype of a
one-dimensional vector space.

Now let us consider H1(S
2). We first find the space of 1-cycles Z1. An

element of C1 will be in Z1 only if each vertex that is the begining of an edge
is also the end of an edge, and that these edges have the same coefficient.
Thus

z1 = P2P3 + P3P4 + P4P2

is a cycle, as is
z2 = P1P4 + P4P2 + P2P1.

These are both boundaries of faces of the tetrahedron. It should be fairly
easy to convince yourself that Z1 is the space of linear combinations of these
together with boundaries of the other faces

z3 = P1P4 + P4P3 + P3P1,

z4 = P1P3 + P3P2 + P2P1.

Any three of these are linearly independent, and so Z1 is three dimensional.
Because all of the cycles are boundaries, every element of Z1 is homologous
to 0, and so H1(S

2) = {0}.
We also see that H2(S

2) = R. Here the basis element is

P2P3P4 − P1P3P4 + P1P2P4 − P1P2P3 (4.30)
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which is the 2-chain corresponding to the entire surface of the sphere. It
would be the boundary of the solid tedrahedron, but does not count as a
boundary as the interior of the tetrahedron is not part of the simplicial
complex.

Example: The Torus. Consider the 2-torus T 2.We will see that H0(T
2) = R,

H1(T
2) = R2 ≡ R ⊕ R, and H2(T

2) = R. A natural basis for the two-
dimensional H1(T

2) consists of the 1-cycles α, β portrayed in figure 4.7.

α

β

Figure 4.7: A basis of 1-cycles on the 2-torus.

The cycle γ that, in figure 4.2, winds once around the torus is homologous
to α + β. In terms of the second triangulation of the torus (figure 4.3) we
would have

α = P1P2 + P2P3 + P3P1

β = P1P7 + P7P4 + P4P1 (4.31)

and

γ = P1P8 + P8P6 + P6P1

= α+ β + ∂(P1P8P2 + P8P9P2 + P2P9P3 + · · ·). (4.32)

Example: The Projective Plane. The projective plane RP 2 can be regarded
as a rectangle with diametrically opposite points identified. Suppose we
decompose RP 2 into eight triangles, as in figure 4.8.



130 CHAPTER 4. AN INTRODUCTION TO TOPOLOGY

P1

P1

P

P

P2

P2

3

P4P4

3

P5

Figure 4.8: A triangulation of the projective plane.

Consider the “entire surface”

σ = P1P2P5 + P1P5P4 + · · · ∈ C2(RP
2), (4.33)

consisting of the sum of all eight 2-simplices with the orientation indicated
in the figure. Let α = P1P2 + P2P3 and β = P1P4 + P4P3 be the sides of the
rectangle running along the bottom horizontal and left vertical sides of the
figure, respectively. In each case they run from P1 to P3. Then

∂(σ) = P1P2 + P2P3 + P3P4 + P4P1 + P1P2 + P2P3 + P3P4 + P1P2

= 2(α− β) 6= 0. (4.34)

Although RP 2 has no actual edge that we can fall off, from the homological
viewpoint it does have a boundary! This represents the conflict between local
orientation of each of the 2-simplices and the global non-orientability of RP 2.
The surface σ of RP 2 is not a two-cycle, therefore. Indeed Z2(RP

2), and a

fortiori H2(RP
2), contain only the zero vector. The only one-cycle is α− β

which runs from P1 to P1 via P2, P3 and P4, but (4.34) shows that this is
the boundary of 1

2
σ. Thus H2(RP

2,R) = {0} and H1(RP
2,R) = {0}, while

H0(RP
2,R) = R.

We can now see the advantage of restricting ourselves to integer coeffi-
cients. When we are not allowed fractions, the cycle γ = (α−β) is no longer
a boundary, although 2(α−β) is the boundary of σ. Thus, using the symbol
Z2 to denote the additive group of the integers modulo two, we can write
H1(RP

2,Z) = Z2. This homology space is a set with only two members
{0γ, 1γ}. The finite group H1(RP

2,Z) = Z2 is said to be the torsion part
of the homology — a confusing terminology because this torsion has nothing
to do with the torsion tensor of Riemannian geometry.
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We introduced real-number homology first, because the theory of vector
spaces is simpler than that of modules, and more familiar to physicists. The
torsion is, however, invisible to the real-number homology. We were therefore
buying a simplification at the expense of throwing away information.

The Euler Character

The sum

χ(M)
def
=

d∑

p=0

(−1)p dimHp(M,R) (4.35)

is called the Euler character of the manifold M . For example, the 2-sphere
has χ(S2) = 2, the projective plane has χ(RP 2) = 1, and the n-torus has
χ(T n) = 0. This number is manifestly a topological invariant because the
individual dimHp(M,R) are. We will show that that the Euler character is
also equal to V − E + F − · · · where V is the number of vertices, E is the
number of edges and F is the number of faces in the simplicial dissection. The
dots are for higher dimensional spaces, where the alternating sum continues
with (−1)p times the number of p-simplices. In other words, we are claiming
that

χ(M) =
d∑

p=0

(−1)p dimCp(M). (4.36)

It is not so obvious that this new sum is a topological invariant. The indi-
vidual dimensions of the spaces of p-chains depend on the details of how we
dissect M into simplices. If our claim is to be correct, the dependence must
somehow drop out when we take the alternating sum.

A useful tool for working with alternating sums of vector-space dimen-
sions is provided by the notion of an exact sequence. We say that a set
of vector spaces Vp with maps fp : Vp → Vp+1 is an exact sequence if
Ker (fp) = Im (fp−1). For example, if all cycles were boundaries then the
set of spaces Cp with the maps ∂p taking us from Cp to Cp−1 would consi-
tute an exact sequence—albeit with p decreasing rather than increasing, but
this is irrelevent. When the homology is non-zero, however, we only have
Im (fp−1) ⊂ Ker (fp), and the number dimHp = dim (Ker fp)−dim (Im fp−1)
provides a measure of how far this set inclusion falls short of being an equal-
ity.
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Suppose that

{0} f0−→ V1
f1−→ V2

f2−→ . . .
fn−1−→ Vn

fn−→ {0} (4.37)

is a finite-length exact sequence. Here, {0} is the vector space containing
only the zero vector. Being linear, f0 maps 0 to 0. Also fn maps everything
in Vn to 0. Since this last map takes everything to zero, and what is mapped
to zero is the image of the penultimate map, we have Vn = Im fn−1. Similarly,
the fact that Ker f1 = Im f0 = {0} shows that Im f1 ⊆ V2 is an isomorphic
image of V1. This situation is represented pictorially in figure 4.9.

}{ V1 V2 V3 V4 V5

fIm Im f Imf Imf

}{
f0 f f f f4 f5

0

0 0 0

21 3 4

0
1 2 3

0 0 0 0

Figure 4.9: A schematic representation of an exact sequence.

Now the range-nullspace theorem tells us that

dimVp = dim (Im fp) + dim (Ker fp)

= dim (Im fp) + dim (Im fp−1). (4.38)

When we take the alternating sum of the dimensions, and use dim (Im f0) = 0
and dim (Im fn) = 0, we find that the sum telescopes to give

n∑

p=0

(−1)p dim Vp = 0. (4.39)

The vanishing of this alternating sum is one of the principal properties of an
exact sequence.

Now, for our sequence of spaces Cp with the maps ∂p : Cp → Cp−1, we have
dim (Ker ∂p) = dim (Im ∂p+1) + dimHp. Using this and the range-nullspace
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theorem in the same manner as above, shows that

d∑

p=0

(−1)pdimCp(M) =

d∑

p=0

(−1)pdimHp(M). (4.40)

This confirms our claim.

Exercise 4.1: Count the number of vertices, edges, and faces in the triangu-
lation we used to compute the homology groups of the real projective plane
RP 2. Verify that V − E + F = 1, and that this is the same number that we
get by evaluating

χ(RP 2) = dimH0(RP
2,R)− dimH1(RP

2,R) + dimH2(RP
2,R).

Exercise 4.2: Show that the sequence

{0} → V
φ→W → {0}

of vector spaces being exact means that the map φ : V → W is one-to-one
and onto, and hence an isomorphism V ∼= W .

Exercise 4.3: Show that a short exact sequence

{0} → A
i→ B

π→ C → {0}

of vector spaces is just a sophisticated way of asserting that C ∼= B/A. More
precisely, show that the map i is injective (one-to-one), so A can be considered
to be a subspace of B. Then show that the map π is surjective (onto), and
can be regarded as projecting B onto the equivalence classes B/A.

Exercise 4.4: Let α : A→ B be a linear map. Show that

{0}→Kerα
i→ A

α→ B
π→ Cokerα→ {0}

is an exact sequence. (Recall that Cokerα ≡ B/Imα.)

4.3.2 Relative homology

Mathematicians have invented powerful tools for computing homology. In
this section we introduce one of them: the exact sequence of a pair . We
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describe this tool in detail because a homotopy analogue of this exact se-
quence is used in physics to classify defects such as dislocations, vortices and
monopoles. Homotopy theory is however harder and requires more technical
apparatus than homology, so the ideas are easier to explain here.

We have seen that it is useful to think of complicated manifolds as being
assembled out of simpler ones. We constructed the torus, for example, by
gluing together edges of a rectangle. Another construction technique involves
shrinking parts of a manifold to a point. Think, for example, of the unit 2-
disc as a being circle of cloth with a drawstring sewn into its boundary. Now
pull the string tight to form a spherical bag. The continuous functions on
the resulting 2-sphere are those continuous functions on the disc that took
the same value at all points on its boundary. Recall that we used this idea in
3.4.2, where we claimed that those spin textures in R2 that point in a fixed
direction at infinity can be thought of as spin textures on the 2-sphere. We
now extend this shrinking trick to homology.

Suppose that we have a chain complex consisting of spaces Cp and bound-
ary operations ∂p. We wiill denote this chain complex by (C, ∂). Another
set of of spaces and boundary operations (C ′, ∂′) is a subcomplex of (C, ∂) if
each C ′

p ⊆ Cp and ∂′p(c) = ∂p(c) for each c ∈ C ′
p. This situation arises if we

have a simplical complex S and a some subset S ′ that is itself a simplicial
complex, and take C ′

p = Cp(S
′)

Since each C ′
p is subspace of Cp we can form the quotient spaces Cp/C

′
p

and make them into a chain complex by defining, for c+ C ′
p ∈ Cp/C ′

p,

∂p(c+ C ′
p) = ∂pc + C ′

p−1. (4.41)

It easy to see that this operation is well defined (i.e. it gives the same output
independent of the choice of representative in the equivalence class c + C ′

p),

that ∂p : Cp → Cp−1 is a linear map, and that ∂p−1∂p = 0. We have
constructed a new chain complex (C/C ′, ∂). We can therefore form its ho-
mology spaces in the usual way. The resulting vector space, or abelian group,
Hp(C/C

′) is the p-th relative homology group of C modulo C ′. When C ′ and
C arise from simplicial complexes S ′ ⊆ S, these spaces are what remains of
the homology of S after every chain in S ′ has been shrunk to a point. In
this case, it is customary to write Hp(S, S

′) instead of Hp(C/C
′), and simi-

larly write the chain, cycle and boundary spaces as Cp(S, S
′), Zp(S, S

′) and
Bp(S, S

′) respectively.
Example: Constructing the two-sphere S2 from the two-ball (or disc) B2.
We regard B2 to be the triangular simplex P1P2P3, and its boundary, the
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one-sphere or circle S1, to be the simplicial complex containing the points P1,
P2, P3 and the sides P1P2, P2P3, P3P1, but not the interior of the triangle.
We wish to contract this boundary complex to a point, and form the relative
chain complexes and their homology spaces. Of the spaces we quotient by,
C0(S

1) is spanned by the points P1, P2, P3, the 1-chain space C1(S
1) is

spanned by the sides P1P2, P2P3, P3P1, while C2(S
1) = {0}. The space of

relative chains C2(B
1, S1) consists of multiples of P1P2P3 + C2(S

1), and the
boundary

∂2

(
P1P2P3 + C2(S

1)
)

= (P2P3 + P3P1 + P1P2) + C1(S
1) (4.42)

is equivalent to zero because P2P3 + P3P1 + P1P2 ∈ C1(S
1). Thus P1P2P3 +

C2(S
1) is a non-bounding cycle and spans H2(B

2, S1), which is therefore
one dimensional. This space is isomorphic to the one-dimensional H2(S

2).
Similarly H1(B

2, S1) is zero dimensional, and so isomorphic to H1(S
2). This

is because all chains in C1(B
2, S1) are in C1(S

1) and therefore equivalent to
zero.

A peculiarity, however, is that H0(B
2, S1) is not isomorphic to H0(S

2) =
R. Instead, we find that H0(B

2, S1) = {0} because all the points are equiva-
lent to zero. This vanishing is characteristic of the zeroth relative homology
space H0(S, S

′) for the simplicial triangulation of any connected manifold.
It occurs because S being connected means that any point P in S can be
reached by walking along edges from any other point, in particular from a
point P ′ in S ′. This makes P homologous to P ′, and so equivalent to to zero
in H0(S, S

′).

Exact homology sequence of a pair

Homological algebra is full of miracles. Here we describe one of them. From
the ingredients we have at hand, we can construct a semi-infinite sequence
of spaces and linear maps between them

· · · ∂∗p+1−→ Hp(S
′)

i∗p−→ Hp(S)
π∗p−→ Hp(S, S

′)
∂∗p−→

Hp−1(S
′)
i∗p−1−→ Hp−1(S)

π∗p−1−→ Hp−1(S, S
′)
∂∗p−1−→

...
∂∗1−→ H0(S

′)
i∗0−→ H0(S)

π∗0−→ H0(S, S
′)

∂∗0−→ {0}. (4.43)
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The maps i∗p and π∗p are induced by the natural injection ip : Cp(S
′)→ Cp(S)

and projection πp : Cp(S)→ Cp(S)/Cp(S
′). It is only necessary to check that

πp−1∂p = ∂pπp,

ip−1∂p = ∂pip, (4.44)

to see that they are compatible with the passage from the chain spaces to
the homology spaces. More discussion is required of the connection map ∂∗p
that takes us from one row to the next in the displayed form of (4.43).

Let h ∈ Hp(S, S
′), then h = z+Bp(S, S

′) for some cycle z ∈ Z(S, S ′), and
in turn z = c+Cp(S

′) for some c ∈ Cp(S). (So two choices of representative
of equivalence class are being made here.) Now ∂pz = 0 which means that
∂pc ∈ Cp−1(S

′). This fact, when combined with ∂p−1∂p = 0, tells us that
∂pc ∈ Zp−1(S

′). We now set

∂∗p(h) = ∂pc+Bp−1(S
′). (4.45)

This sounds rather involved, but let’s say it again in words: an element of
Hp(S, S

′) is a relative p-cycle modulo S ′. This means that its boundary is
not necessarily zero, but may be a non-zero element of Cp−1(S

′). Since this
element is the boundary of something its own boundary vanishes, so it is
(p − 1)-cycle in Cp−1(S

′) and hence a representative of a homology class in
Hp−1(S

′). This homology class is the output of the ∂∗p map.
The miracle is that the sequence of maps (4.43) is exact . It is an example

of a standard homological algebra construction of a long exact sequence out
of a family of short exact sequences, in this case out the sequences

{0} → Cp(S
′)→ Cp(S)→ Cp(S, S

′)→ {0}. (4.46)

Proving that the long sequence is exact is straightforward. All one must do
is check each map to see that it has the properties required. This exercise in
diagram chasing is left to the reader.

This long exact sequence is called the exact homology sequence of a pair .
If we know that certain homology spaces are zero dimensional, it provides a
powerful tool for computing other spaces in the sequence. As an illustration,
consider the sequence of the pair Bn+1 and Sn for n > 0:

· · · i∗p−→ Hp(B
n+1)︸ ︷︷ ︸

= {0}

π∗p−→ Hp(B
n+1, Sn)

∂∗p−→ Hp−1(S
n)
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i∗p−1−→ Hp−1(B
n+1)︸ ︷︷ ︸

= {0}

π∗p−1−→ Hp−1(B
n+1, Sn)

∂∗p−1−→ Hp−2(S
n)

...
i∗1−→ H1(B

n+1)︸ ︷︷ ︸
= {0}

π∗1−→ H1(B
n+1, Sn)

∂∗1−→ H0(S
n)︸ ︷︷ ︸

= R

i∗0−→ H0(B
n+1)︸ ︷︷ ︸

= R

π∗0−→ H0(B
n+1, Sn)

∂∗0−→ {0}. (4.47)

We have inserted here the easily established data that Hp(B
n+1) = {0} for

p > 0 (which is a consequence of the (n+1)-ball being a contractible space),
and that H0(B

n+1) and H0(S
n) are one dimensional because they consist of

a single connected component. We read off, from the {0} → A→ B → {0}
exact subsequences, the isomorphisms

Hp(B
n+1, Sn) ∼= Hp−1(S

n), p > 1, (4.48)

and from the exact sequence

{0} → H1(B
n+1, S1)→ R→ R→ H0(B

n+1, Sn)→ {0} (4.49)

that H1(B
n+1, Sn) = {0} = H0(B

n+1, Sn). The first of these equalities holds
because H1(B

n+1, Sn) is the kernel of the isomorphism R → R, and the
second because H0(B

n+1, Sn) is the range of a surjective null map.
In the case n = 0, we have to modify our last conclusion becauseH0(S

0) =
R ⊕ R is two dimensional. (Remember that H0(M) counts the number of
disconnected components of M , and the zero-sphere S0 consists of the two
disconnected points P1, P2 lying in the boundary of the interval B1 = P1P2.)
As a consequence, the last five maps become

{0} → H1(B
1, S0)→ R⊕R→ R→ H0(B

1, S0)→ {0}. (4.50)

This tells us that H1(B
1, S0) = R and H0(B

1, S0) = {0}.

Exact homotopy sequence of a pair

We have met the homotopy groups πn(M) in section 3.4.4. As we saw there,
homotopy groups can be used to classify defects or solitons in physical sys-
tems in which some field takes values in the manifold M . When the system
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has undergone spontaneous symmetry breaking from a larger symmetry G
to a subgroup H , the relevant manifold is the coset G/H . The group πn(G)
can be taken to be the set of continuous maps of an n-dimensional cube into
G, with the surface of the cube mapping to the identity element e ∈ G. We
similarly define the relative homotopy group πn(G,H) of G modulo H to be
the set of continuous maps of the cube into G, with all-but-one face of the
cube mapping to e, but with the remaining face mapping to the subgroup H .
It can then be shown that πn(G/H) ' πn(G,H) (the hard part is to show
that any continuous map into G/H can be represented as the projection of
some continuous map into G).

The short exact sequence

{e} → H
i→ G

π→ G/H → {e} (4.51)

of group homomorphisms (where {e} is the group consisting only of the
identity element) then gives rise to the long exact sequence

· · · → πn(H)→ πn(G)→ πn(G,H)→ πn−1(H)→ · · · (4.52)

The derivation and utility of this exact sequence is very well described in the
review article by Mermin cited in section 3.4.4. We have therefore contented
ourselves with simply displaying the result so that the reader can see the
similarity between the homology theorem and its homotopy-theory analogue.

4.4 De Rham’s Theorem

We still have not related homology to cohomology. The link is provided by
integration.

The integral provides a natural pairing of a p-chain c and a p-form ω: if
c = a1s1 + a2s2 + · · ·+ ansn, where the si are simplices, we set

(c, ω) =
∑

i

ai

∫

si

ω. (4.53)

The perhaps mysterious notion of “adding” geometric simplices is thus given
a concrete interpretation in terms of adding real numbers.

Stokes’ theorem now reads

(∂c, ω) = (c, dω), (4.54)
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suggesting that d and ∂ should be regarded as adjoints of each other. From
this observation follows the key fact that the pairing between chains and
forms descends to a pairing between homology classes and cohomology classes.
In other words,

(z + ∂c, ω + dχ) = (z, ω), (4.55)

so it does not matter which representative of the equivalence classes we take
when we compute the integral. Let us see why this is so:

Suppose z ∈ Zp and ω2 = ω1 + dη. Then

(z, ω2) =

∫

z

ω2 =

∫

z

ω1 +

∫

z

dη

=

∫

z

ω1 +

∫

∂z

η

=

∫

z

ω1

= (z, ω1) (4.56)

because ∂z = 0. Thus, all elements of the cohomology class of ω return the
same answer when integrated over a cycle.

Similarly, if ω ∈ Zp and c2 = c1 + ∂a then

(c2, ω) =

∫

c1

ω +

∫

∂a

ω

=

∫

c1

ω +

∫

a

dω

=

∫

c1

ω

= (c1, ω),

since dω = 0.
All this means that we can consider the equivalence classes of closed forms

composing Hp
DR(M) to be elements of (Hp(M))∗, the dual space of Hp(M)

— hence the “co” in cohomology. The existence of the pairing does not
automatically mean that Hp

DR is the dual space to Hp(M), however, because
there might be elements of the dual space that are not in Hp

DR, and there
might be distinct elements ofHp

DR that give identical answers when integrated
over any cycle, and so correspond to the same element in (Hp(M))∗. This
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does not happen, however, when the manifold is compact : De Rham showed
that, for compact manifolds, (Hp(M,R))∗ = Hp

DR(M,R). We will not try to
prove this, but be satisfied with some examples.

The statement (Hp(M))∗ = Hp
DR(M) neatly summarizes de Rham’s re-

sults, but, in practice, the more explicit statements below are more useful.

Theorem: (de Rham) Suppose that M is a compact manifold.
1) A closed p-form ω is exact if and only if

∫

zi

ω = 0 (4.57)

for all cycles zi ∈ Zp. It suffices to check this for one representative of
each homology class.

2) If zi ∈ Zp, i = 1, . . . , dimHp, is a basis for the p-th homology space,
and αi a set of numbers, one for each zi, then there exists a closed
p-form ω such that ∫

zi

ω = αi. (4.58)

If ωi constitute a basis of the vector space Hp(M) then the matrix of numbers

Ωi
j = (zi, ω

j) =

∫

zi

ωj (4.59)

is called the period matrix , and the Ωi
j themselves are the periods.

Example: H1(T
2) = R ⊕ R is two-dimensional. Since a finite-dimensional

vector space and its dual have the same dimension, de Rham tells us that
H1

DR(T 2) is also two-dimensional. If we take as coordinates on T 2 the angles
θ and φ, then the basis elements, or generators, of the cohomology spaces are
the forms “dθ” and “dφ”. We have inserted the quotes to stress that these
expressions are not the d of a function. The angles θ and φ are not functions
on the torus, since they are not single-valued. The homology basis 1-cycles
can be taken as zθ running from θ = 0 to θ = 2π along φ = π, and zφ running
from φ = 0 to φ = 2π along θ = π. Clearly, ω = αθdθ/2π+ αφdφ/2π returns∫
zθ
ω = αθ and

∫
zφ
ω = αφ for any αθ, απ, so {dθ/2π, dφ/2π} and {zθ, zφ} are

dual bases.
Example: We have earlier computed H2(RP

2,R) = {0} and H1(RP
2,R) =

{0}. De Rham therefore tells us that H2(RP 2,R) = {0} and H1(RP 2,R) =
{0}. From this we deduce that all closed one- and two-forms on the projective
plane RP 2 are exact.
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Example: As an illustration of de Rham part 1), observe that it is easy to
show that a closed one-forms φ can be written as df , provided that

∫
zi
φ = 0

for all cycles. We simply define f =
∫ x
x0
φ, and observe that the proviso

ensures that f is not multivalued.
Example: A more subtle problem is to show that, given a two-form ω on S2,
with

∫
S2 ω = 0, then there is a globally defined χ such that ω = dχ. We

begin by covering S2 by two open sets D+ and D− which have the form of
caps such that D+ includes all of S2 except for a neighbourhood of the south
pole, while D− includes everything except a neighbourhood of the north pole,
and the intersection, D+ ∩D−, has the topology of an annulus, or cingulum,
encircling the equator.

D

D

+

_

Γ

Figure 4.10: A covering the sphere by two contractable caps.

Since both D+ and D− are contractable, there are one-forms χ+ and χ− such
that ω = dχ+ in D+ and ω = dχ− in D−. Thus,

d(χ+ − χ−) = 0, in D+ ∩D−. (4.60)

Dividing the sphere into two disjoint sets with a common (but oppositely
oriented) boundary Γ ∈ D+ ∩D− we have

0 =

∫

S2

ω =

∮

Γ

(χ+ − χ−), (4.61)

and this is true for any such curve Γ. Thus, by the previous example,

φ ≡ (χ+ − χ−) = df (4.62)

for some smooth function f defined inD+∩D−. We now introduce a partition

of unity subordinate to the cover of S2 by D+ and D−. This partition is a
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pair of non-negative smooth functions, ρ±, such that ρ+ is non-zero only in
D+, ρ− is non-zero only in D−, and ρ+ + ρ− = 1. Now

f = ρ+f − (−ρ−)f, (4.63)

and f− = ρ+f is a function defined everywhere on D−. Similarly f+ =
(−ρ−)f is a function on D+. Notice the interchange of ± labels! This is not
a mistake. The function f is not defined outside D+∩D−, but we can define
ρ−f everywhere on D+ because f gets multiplied by zero wherever we have
no specific value to assign to it.

We now observe that

χ+ + df+ = χ− + df−, in D+ ∩D−. (4.64)

Thus ω = dχ, where χ is defined everywhere by the rule

χ =

{
χ+ + df+, in D+,
χ− + df−, in D−.

(4.65)

It does not matter which definition we take in the cingular region D+ ∩D−,
because the two definitions coincide there.

The methods of this example, a special case of the Mayer-Vietoris prin-

ciple, can be extended to give a proof of de Rham’s claims.

4.5 Poincaré Duality

De Rham’s theorem does not require that our manifold M be orientable. Our
next results do, however, require orientablity. We therefore assume through-
out this section that M is a compact, orientable, D-dimensional manifold.

We begin with the observation that if the forms ω1 and ω2 are closed then
so is ω1 ∧ ω2. Furthermore if one or both of ω1, ω2 is exact then the product
ω1∧ω2 is also exact. It follows that the cohomology class [ω1∧ω2] of ω1∧ω2

depends only on the cohomology classes [ω1] and [ω2]. The wedge product
thus induces a map

Hp(M,R)×Hq(M,R)
∧→ Hp+q(M,R), (4.66)

which is called the “cup product” of the cohomology classes. It is written
as

[ω1 ∧ ω2] = [ω1] ∪ [ω2], (4.67)
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and gives the cohomology the structure of a graded-commutative ring, de-
noted by H•(M,R)

More significant for us than the ring structure is that, given ω ∈ HD(M,R),
we can obtain a real number by forming

∫
M
ω (This is the point at which

we need orientability. We only know how to integrate over orientable chains,
and so cannot even define

∫
M
ω when M is not orientable.) and can com-

bine this integral with the cup product to make any cohomology class [f ] ∈
HD−p(M,R) into an element F of (Hp(M,R))∗. We do this by setting

F ([g]) =

∫

M

f ∧ g (4.68)

for each [g] ∈ Hp(M,R). Furthermore, it is possible to show that we can
get any element F of (Hp(M,R))∗ in this way, and the corresponding [f ] is
unique. But de Rham has already given us a way of identifying the elements
of (Hp(M,R))∗ with the cycles in Hp(M,R)! There is, therefore, a 1-1 onto
map

Hp(M,R)↔ HD−p(M,R). (4.69)

In particular the dimensions of these two spaces must coincide

bp(M) = bD−p(M). (4.70)

This equality of Betti numbers is called Poincaré duality . Poincaré originally
conceived of it geometrically. His idea was to construct from each simplicial
triangulation S ofM a new “dual” triangulation S ′, where, in two dimensions
for example, we place a new vertex at the centre of each triangle, and join the
vertices by lines through each side of the old triangles to make new cells —
each new cell containing one of the old vertices. If we are lucky, this process
will have the effect of replacing each p-simplex by a (D− p)-simplex, and so
set up a map between Cp(S) and CD−p(S

′) that turns the homolgy “upside
down.” The new cells are not always simplices, however, and it is hard to
make this construction systematic. Poincaré’s original recipe was flawed.

Our present approach to Poincaré’s result is asserting that for each basis
p-cycle class [zpi ] there is a unique (up to cohomology) (D − p)-form ωD−p

i

such that ∫

zp
i

f =

∫

M

ωD−p
i ∧ f. (4.71)

We can construct this ωD−p
i “physically” by taking a representative cycle zpi

in the homology class [zpi ] and thinking of it as a surface with a conserved
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unit (d − p)-form current flowing in its vicinity. An example would be the
two-form topological current running along the one-dimensional worldline of
a Skyrmion. (See the discussion surrounding equation (3.63).) The ωD−p

i

form a basis for HD−p(M,R). We can therefore expand f ∼ f iωD−p
i , and

similarly for the closed p-form g, to obtain

∫

M

g ∧ f = f igjI(i, j) (4.72)

where the matrix

I(i, j) ≡ I(zpi , z
D−p
j ) =

∫

M

ωD−p
i ∧ ωpj (4.73)

is called the intersection form. From the definition we have

I(i, j) = (−1)p(D−p)I(j, i). (4.74)

Less obvious is that I(i, j) is an integer that reports the number of times
(counted with orientation) that the cycles zpi and zD−p

j intersect. This latter
fact can be understood from our construction of the ωpi as unit currents
localized near the zD−p

i cycles. The integrand in (4.73) is non-zero only in the
neighbourhood of the intersections of zpi with zD−p

j , and at each intersection
constitutes a D-form that integrates up to give ±1.

+1 +1−1+1 α α

β β

Figure 4.11: The intersection of two cycles: I(α, β) = 1 = 1− 1 + 1.

This claim is illustrated in the left-hand part of figure 4.11, which shows a
region surrounding the intersection of the α and β one-cycles on the 2-torus.
The co-ordinate system has been chosen so that the α cycle runs along the
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x axis and the β cycle along then y axis. Each cycle is surrounded by the
narrow shaded regions −w < y < w and −w < x < w, respectively. To
construct suitable forms ωα and ωβ we select a smooth function f(x) that
vanishes for |x| ≥ w and such that

∫
f dx = 1. In the local chart we can then

set

ωα = f(y) dy,

ωβ = −f(x) dx,

both these forms being closed. The intersection number is given by the
integral

I(α, β) =

∫
ωα ∧ ωβ =

∫∫
f(x)f(y) dxdy = 1. (4.75)

The right-hand part of figure 4.11 illustrates why this intersection number
depends only on the homology classes of the two one-cycles, and not on their
particular instantiation as curves.

We can more conveniently re-express (4.72) terms of the periods of the
forms

fi ≡
∫

zp
i

f = I(i, k)fk, gj ≡
∫

zD−p
j

g = I(j, l)gl, (4.76)

as ∫

M

f ∧ g =
∑

i,j

K(i, j)

∫

zp
i

f

∫

zD−p
j

g, (4.77)

where

K(i, j) = I−1(i, k)I−1(j, l)I(k, l) = I−1(j, i) (4.78)

is the transpose of the inverse of the intersection-form matrix. The decom-
position (4.77) of the integral of the product of a pair of closed forms into
a bilinear form in their periods is one of the two principal results of this
section, the other being (4.70).

In simple cases we can obtain the decomposition (4.77) by more direct
methods. Suppose, for example, that we label the cycles generating the
homology group H1(T

2) of the 2-torus as α and β, and that a and b are
closed (da = db = 0), but not necessarily exact, one-forms. We will show
that ∫

T 2

a ∧ b =

∫

α

a

∫

β

b−
∫

α

b

∫

β

a. (4.79)
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To do this, we cut the torus along the cycles α and β and open it out into
a rectangle with sides of length Lx and Ly. The cycles α and β will form
the sides of the rectangle and we will take them as lying parallel to the x
and y axes, respectively. Functions on the torus now become functions on
the rectangle. Not all functions on the rectangle descend from functions on
the torus, however. Only those functions that satisfy the periodic bound-
ary conditions f(0, y) = f(Lx, y) and f(x, 0) = f(x, Ly) can be considered
(mathematicians would say “can be lifted”) to be functions on the torus.

2
T

α
α

α

β ββ

Figure 4.12: Cut-open torus

Since the rectangle (but not the torus) is retractable, we can write a = df
where f is a function on the rectangle — but not necessarily a function on
the torus, i.e., f will not, in general, be periodic. Since a ∧ b = d(fb), we
can now use Stokes’ theorem to evaluate

∫

T 2

a ∧ b =

∫

T 2

d(fb) =

∫

∂T 2

fb. (4.80)

The two integrals on the two vertical sides of the rectangle can be combined
to a single integral over the points of the one-cycle β:

∫

vertical

fb =

∫

β

[f(Lx, y)− f(0, y)]b. (4.81)

We now observe that [f(Lx, y)− f(0, y)] is a constant, and so can be taken
out of the integral. It is a constant because all paths from the point (0, y) to
(Lx, y) are homologous to the one-cycle α, so the difference f(Lx, y)−f(0, y)
is equal to

∫
α
a. Thus

∫

β

[f(Lx, y)− f(0, y)]b =

∫

α

a

∫

β

b. (4.82)
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Similarly, the contributions of the two horizontal sides is

∫

α

[f(x, 0)− f((x, Ly)]b = −
∫

β

a

∫

α

b. (4.83)

On putting the contributions of both pairs of sides together, the claimed
result follows.

4.6 Characteristic Classes

A supply of elements ofH2m(M,R) andH2m(M,Z) is provided by the charac-

teristic classes associated with connections on vector bundles over the man-
ifold M .

Recall that connections appear in covariant derivatives

∇µ ≡ ∂µ + Aµ, (4.84)

and are to be thought of as matrix-valued one-forms A = Aµdx
µ. In the

quantum mechanics of charged particles the covariant derivative that appears
in the Schrödinger equation is

∇µ =
∂

∂xµ
− ieAMaxwell

µ . (4.85)

Here e is the charge of the particle on whose wavefunction the derivative acts,
and AMaxwell

µ is the usual electromagnetic vector potential. The matrix-valued
connection one-form is therefore

A = −ieAMaxwell
µ dxµ. (4.86)

In this case the matrix is one-by-one.
In a non-abelian gauge theory with gauge groupG the connection becomes

A = iλ̂aA
a
µdx

µ (4.87)

The λ̂a are hermitian matrices that have commutation relations [λ̂a, λ̂b] =
if cabλ̂c, where the f cab are the structure constants of the Lie algebra of G. The

λ̂a therefore form a representation of the Lie algebra, and this representation
plays the role of the “charge” of the non-abelian gauge particle.
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For covariant derivatives acting on a tangent vector field faea on a Rie-
mann n-manifold, where the ea are an orthonormal vielbein frame, we have

A = ωabµdx
µ, (4.88)

where, for each µ, the coefficients ωabµ = −ωbaµ can be thought of as the
entries in a skew symmetric n-by-n matrix. These matrices are elements of
the Lie algebra o(n) of O(n).

In all these cases we define the curvature two-form to be F = dA + A2,
where a combined matrix and wedge product is to be understood in A2.
In exercises 2.19 and 2.20 you used the Bianchi identity to show that the
gauge-invariant 2n-forms tr (F n) were closed. The integrals of these forms
over cycles provide numbers that are topological invariants of the bundle.
For example, in four-dimensional QCD, the integral

c2 = − 1

8π2

∫

Ω

tr (F 2), (4.89)

over a compactified four-dimensional manifold Ω is an integer that a math-
ematician would call the second Chern number of the non-abelian gauge
bundle, and that a physicist would call the instanton number of the gauge
field configuration.

In this section we will show that the integrals of such characteristic classes
are indeed topological invariants. We also explain something of what these
invariants are measuring, and illustrate why, when suitably normalized, cer-
tain of them are integer valued.

4.6.1 Topological invariance

Suppose that we have been given a connection A and slightly deform it
A→ A+ δA, then

δF = d(δA) + δAA+ AδA. (4.90)

Using the Bianchi identity dF = FA− AF , we find that

δ tr(F n) = n tr(δF F n−1)

= n tr(d(δA)F n−1) + n tr(δAAF n−1) + n tr(AδAF n−1)

= n tr(d(δA)F n−1) + n tr(δAAF n−1)− n tr(δAF n−1A)

= d
{
n tr(δAF n−1)

}
. (4.91)
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The last line of (4.91) is equal to the penultimate line because all but the first
and last terms arising from the dF ’s in d {tr(δAF n−1)} cancel in pairs. A
globally defined change in A therefore changes tr(F n) by the d of something,
and so does not change its cohomology class, or its integral over a cycle.

At first sight, this invariance under deformation suggests that all the
tr(F n) are exact forms — they can apparently all be written as tr(F n) =
dω2n−1(A) for some (2n− 1)-form ω2n−1(A). To find ω2n−1(A) all we have to
do is deform the connection to zero by setting At = t A and

Ft = dAt + A2
t = tdA+ t2A2. (4.92)

Then δAt = Aδt, and

d

dt
tr(F n

t ) = d
{
n tr(AF n−1

t )
}
. (4.93)

Integrating up from t = 0, we find

tr(F n) = d

{
n

∫ 1

0

tr(AF n−1
t ) dt

}
. (4.94)

For example

tr(F 2) = d

{
2

∫ 1

0

tr(A(tdA+ t2A2) dt

}

= d

{
tr

(
AdA +

2

3
A3

)}
. (4.95)

You should recognize here the ω3(A) = tr(AdA+ 2
3
A3) Chern-Simons form of

exercise 2.19. The näıve conclusion — that all the tr(F n) are exact — is false,
however. What the computation actually shows is that when

∫
tr(F n) 6= 0

we cannot find a globally defined one-form A representing the connection or
gauge field. With no global A, we cannot globally deform A to zero.

Consider, for example, an Abelian U(1) gauge field on the two-sphere S2.
When the first Chern-number

c1 =
1

2πi

∫

S2

F (4.96)

is non-zero, there can be no globally defined one-form A such that F =
dA. Glance back, however, at figure 4.10 on page 141. There we see that
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the retractability of the spherical caps D± guarantees that there are one-
forms A± defined on D± such that F = dA± in D±. In the cingular region
D+∩D− where they are both defined, A+ and A− will be related by a gauge
transformation. For a U(1) gauge field, the matrix g appearing in the general
gauge transformation rule

A→ Ag ≡ g−1Ag + g−1dg, (4.97)

of exercise 2.20 becomes the phase eiχ ∈ U(1). Consequently

A+ = A− + e−iχdeiχ = A− + idχ in D+ ∩D−. (4.98)

The U(1) group element eiχ is required to be single valued in D+ ∩D−, but
the angle χ may be multivalued. We now write c1 as the sum of integrals over
the north and south hemispheres of S2, and use Stokes theorem to reduce
this sum to a single integral over the hemispheres’ common boundary, the
equator Γ.

c1 =
1

2πi

∫

north

F +
1

2πi

∫

south

F

=
1

2πi

∫

north

dA+ +
1

2πi

∫

south

dA−

=
1

2πi

∫

Γ

A+ −
1

2πi

∫

Γ

A−

=
1

2π

∫

Γ

dχ (4.99)

We see that c1 is the integer counting the winding of χ as we circle Γ. An
integer cannot be continuously reduced to zero, and if we attempt to deform
A→ tA→ 0, we will violate the required single-valuedness of the U(1) group
element eiχ.

Although the Chern-Simons forms ω2n−1(A) cannot be defined globally,
they are still very useful in physics. They occur as Wess-Zumino terms

describing the low energy properties of various quantum field theories, the
prototype being the Skyrme-Witten model of Hadrons.2

2E. Witten, Nucl. Phys. B223 (1983) 422; ibid. B223 (1983) 433.
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4.6.2 Chern characters and Chern classes

Any gauge-invariant polynomial (with exterior multiplication of forms un-
derstood) in F provides a closed, topologically invariant, differential form.
Certain combinations, however, have additional desirable properties, and so
have been given names.

The form

chn(F ) = tr

{
1

n!

(
i

2π
F

)n}
(4.100)

is called the n-th Chern character . It is convenient to think of this 2n-form
as being the n-th term in a generating-function expansion

ch(F )
def
= tr

{
exp

(
i

2π
F

)}
= ch0(F ) + ch1(F ) + ch2(F ) + · · · , (4.101)

where ch0(F ) ≡ tr I is the dimension of the space on which the λ̂a act. This
formal sum of forms of different degree is called the total Chern character .
The n! normalization is chosen because it makes the Chern character behave
nicely when we combine vector bundles.

Given two vector bundles over the same manifold, having fibres Ux and Vx
over the point x, we can make a new bundle with the direct sum Ux ⊕ Vx as
fibre over x. This resulting bundle is called the Whitney sum of the bundles.
Similarly we can make a tensor-product bundle whose fibre over x is Ux⊗Vx.

Let us use the notation ch(U) to represent the Chern character of the
bundle with fibres Ux, and U ⊕V to denote the Whitney sum. Then we have

ch(U ⊕ V ) = ch(U) + ch(V ), (4.102)

and
ch(U ⊗ V ) = ch(U) ∧ ch(V ). (4.103)

The second of these formulæ comes about because if λ̂
(1)
a is a Lie algebra

element acting on V (1) and λ̂
(2)
a the corresponding element acting on V (2),

then they act on the tensor product V (1) ⊗ V (2) as

λ̂(1⊗2)
a = λ̂(1)

a ⊗ I + I ⊗ λ̂(2)
a , (4.104)

where I is the identity operator, and for matrices A, B,

tr {exp (A⊗ I + I ⊗ B)} = tr {expA⊗ expB} = tr {expA} tr {expB} .
(4.105)
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In terms of the individual chn(V ) equations (4.102) and (4.103) read

chn(U ⊕ V ) = chn(U) + chn(V ), (4.106)

and

chn(U ⊗ V ) =

n∑

m=0

chn−m(U) ∧ chm(V ). (4.107)

Related to the Chern characters are the Chern classes. These are wedge-
product polynomials in the Chern characters, and are defined, via the matrix
expansion

det (I + A) = 1 + trA +
1

2

(
(trA)2 − trA2

)
+ . . . , (4.108)

by the generating function for the total Chern class

c(F ) = det

(
I +

i

2π
F

)
= 1 + c1(F ) + c2(F ) + · · · . (4.109)

Thus

c1(F ) = ch1(F ), c2(F ) =
1

2
ch1(F ) ∧ ch1(F )− ch2(F ), (4.110)

and so on.
For matrices A and B we have det(A ⊕ B) = det(A) det(B), and this

leads to
c(U ⊕ V ) = c(U) ∧ c(V ). (4.111)

Although the Chern classes are more complicated in appearance than the
Chern characters, they are introduced because their integrals over cycles are
integers, and this property remains true of integer-coefficient sums of prod-
ucts of Chern-classes. The cohomology classes [cn(F )] are therefore elements
of the integer cohomology ring H•(M,Z). This property does not hold for
the Chern characters, whose integrals over cycles can be fractions. The co-
homology classes [chn(F )] are therefore only elements of H•(M,Q).

When we integrate products of Chern classes of total degree 2m over
a closed 2m-dimensional orientable manifold we get integer Chern numbers.
These integers can be related to generalized winding numbers, and character-
ize the extent to which the gauge transformations that relate the connection
fields in different patches serve to twist the vector bundle. Unfortunately
it requires a considerable amount of machinery (the Schubert calculus of
complex Grassmannians) to explain these integers.
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Pontryagin and Euler classes

When the fibres of a vector bundle are vector spaces over R, the complex
skew-hermitian matrices iλ̂a are replaced by real skew symmetric matrices.
The Lie algebra of the n-by-n matrices iλ̂a was a subalgebra of u(n). The Lie
algebra of the n-by-n real, skew symmetric, matrices is a subalgebra of o(n).
Now the trace of an odd power of any skew symmetric matrix is zero. As a
consequence, Chern characters and Chern classes containing an odd number
of F ’s all vanish. The remaining real 4n-forms are known as Pontryagin

classes . The precise definition is

pk(V ) = (−1)kc2k(V ). (4.112)

Pontryagin classes help to classify bundles whose gauge transformations
are elements of O(n). If we restrict ourselves to gauge transformations that lie
in SO(n), as we would when considering the tangent bundle of an orientable

Riemann manifold, then we can make a gauge-invariant polynomial out of
the skew-symmetric matrix-valued F by forming its Pfaffian.

Recall (or see exercise ??.??) that the Pfaffian of a skew symmetric 2n-
by-2n matrix A with entries aij is

Pf A =
1

2nn!
εi1,...i2nai1i2 · · ·ai2n−1i2n . (4.113)

The Euler class of the tangent bundle of a 2n-dimensional orientable manifold
is defined via its skew-symmetric Riemann-curvature form

R =
1

2
Rab,µνdx

µdxν (4.114)

to be

e(R) = Pf

(
1

2π
R

)
. (4.115)

In four dimensions, for example, this becomes the 4-form

e(R) =
1

32π2
εabcdRabRcd. (4.116)

The generalized Gauss-Bonnet theorem asserts, for an oriented, even-dimensional,
manifold without boundary, that the Euler character is given by

χ(M) =

∫

M

e(R). (4.117)
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We will not prove this theorem, but in section 7.3.6 we will illustrate the
strategy that leads to Chern’s influential proof.

Exercise 4.5: Show that

c3(F ) =
1

6

(
(ch1(F ))3 − 6 ch1(F )ch2(F ) + 12 ch3(F )

)
.

4.7 Hodge Theory and the Morse Index

The Laplacian, when acting on a scalar function φ in R3 is simply div (gradφ),
but when acting on a vector v it becomes

∇2v = grad (div v)− curl (curlv). (4.118)

Is there a general construction that would have allowed us to write down this
second expression? What about the Laplacian on other types of fields?

The Laplacian acting on any vector or tensor field T in Rn is given,
in general curvilinear co-ordinates, by ∇2T = gµν∇µ∇νT where ∇µ is the
flat-space covariant derivative. This is the unique co-ordinate independent
object that reduces in Cartesian co-ordinates to the ordinary Laplacian acting
on the individual components of T. The proof that the rather different-
seeming (4.118) holds for vectors is that it too is constructed out of co-
ordinate independent operations and in Cartesian co-ordinates reduces to
the ordinary Laplacian acting on the individual components of v. It must
therefore coincide with the covariant derivative definition. Why it should
work out this way is not exactly obvious. Now div, grad and curl can all be
expressed in differential form language, and therefore so can the scalar and
vector Laplacian. Moreover, when we let the Laplacian act on any p-form
the general pattern becomes clear. The differential form definition of the
Laplacian, and the exploration of its consequences, was the work of William
Hodge in the 1930’s. His theory has natural applications to the topology of
manifolds.

4.7.1 The Laplacian on p-forms

Suppose that M is an oriented, compact, D-dimensional manifold without
boundary. We can make the space Ωp(M) of p-form fields on M into an L2
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Hilbert space by introducing the positive-definite inner product

〈a, b〉p = 〈b, a〉p =

∫

M

a ? b =
1

p!

∫
dDx
√
g ai1i2...ipb

i1i2...ip. (4.119)

Here the subscript p denotes the order of the forms in the product, and should
not to be confused with the p we have elsewhere used to label the norm in
Lp Banach spaces. The presence of the

√
g and the Hodge ? operator tells

us that this inner product depends on both the metric on M and the global
orientation.

We can use our new product to define a “hermitian adjoint” δ ≡ d† of
the exterior differential operator d. The “. . .” are because this is not quite
an adjoint operator in the normal sense — d takes us from one vector space
to another — but it is constructed in an analogous manner. We define δ by
requiring that

〈da, b〉p+1 = 〈a, δb〉p, (4.120)

where a is an arbitrary p-form and b and arbitrary (p+ 1)-form. Now recall
that ? takes p-forms to (D− p) forms, and so d ? b is a (D− p) form. Acting
twice on a (D− p)-form with ? gives us back the original form multiplied by
(−1)p(D−p). We use this to compute

d(a ? b) = da ? b+ (−1)pa(d ? b)

= da ? b+ (−1)p(−1)p(D−p)a ? (?d ? b)

= da ? b− (−1)Dp+1a ? (? d ? b). (4.121)

In obtaining the last line we have observed that p(p − 1) is an even integer
and so (−1)p(1−p) = 1. Now, using Stokes’ theorem, and the absence of a
boundary to discard the integrated-out part, we conclude that

∫

M

(da) ? b = (−1)Dp+1

∫

M

a ? (? d ? b), (4.122)

or

〈da, b〉p+1 = (−1)Dp+1〈a, (? d ?)b〉p (4.123)

and so δb = (−1)Dp+1(? d ?)b. This was for δ acting on a (p−1) form. Acting
on a p form we have

δ = (−1)Dp+D+1 ? d ? . (4.124)
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Observe how the sequence of maps in ? d ? works:

Ωp(M)
?−→ ΩD−p(M)

d−→ ΩD−p+1(M)
?−→ Ωp−1(M). (4.125)

The net effect is that δ takes a p-form to a (p− 1)-form. Observe also that
δ2 ∝ ? d2 ? = 0.

We now define a second-order partial differential operator ∆p to be the
combination

∆p = δd+ dδ, (4.126)

acting on p-forms This maps a p-form to a p-form. A slightly tedious calcu-
lation in cartesian co-ordinates will show that, for flat space,

∆p = −∇2 (4.127)

on each component of a p-form. This ∆p is therefore the natural definition
for (minus) the Laplacian acting on differential forms. It is usually called the
Laplace-Beltrami operator.

Using 〈a, db〉 = 〈δa, b〉 we have

〈(δd+ dδ)a, b〉p = 〈δa, δb〉p−1 + 〈da, db〉p+1 = 〈a, (δd+ dδ)b〉p, (4.128)

and so we deduce that ∆p is self-adjoint on Ωp(M). The middle terms in
(4.128) are both positive, so we also see that ∆p is a positive operator — i.e.

all its eigenvalues are positive or zero.
Suppose that ∆pa = 0, then (4.128) for a = b becomes that

0 = 〈δa, δa〉p−1 + 〈da, da〉p+1. (4.129)

Because both these inner products are positive or zero, the vanishing of
their sum requires them to be individually zero. Thus ∆pa = 0 implies that
da = δa = 0. By analogy with harmonic functions, we call a form that is
annihilated by ∆p a harmonic form. Recall that a form a is closed if da = 0.
We correspondingly say that a is co-closed if δa=0. A differential form is
therefore harmonic if and only if it is both closed and co-closed.

When a self-adjoint operator A is Fredholm (i.e the solutions of the equa-
tion Ax = y are governed by the Fredholm alternative) the vector space on
which it acts is decomposed into a direct sum of the kernel and range of the
operator

V = Ker (A)⊕ Im (A). (4.130)
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It may be shown that our Laplace-Beltrami ∆p is a Fredholm operator, and
so for any p-form ω there is an η such that ω can be written as

ω = (dδ + δd)η + γ

= dα+ δβ + γ, (4.131)

where α = δη, β = dη, and γ is harmonic. This result is known as the
Hodge decomposition of ω. It is a form-language generalization of the of the
Hodge-Weyl and Helmholtz-Hodge decompositions of chapter ??. It is easy
to see that α, β and γ are uniquely determined by ω. If they were not then
we could find some α, β and γ such that

0 = dα + δβ + γ (4.132)

with non-zero dα, δβ and γ. To see that this is not possible, take the d of
(4.132) and then the inner product of the result with β. Because d(dα) =
dγ = 0, we end up with

0 = 〈β, dδβ〉
= 〈δβ, δβ〉. (4.133)

Thus δβ = 0. Now apply δ to the two remaining terms of (4.132) and take an
inner product with α. Because δγ = 0, we find 〈dα, dα〉 = 0, and so dα = 0.
What now remains of (4.132) asserts that γ = 0.

Suppose that ω is closed. Then our strategy of taking the d of the de-
composition

ω = dα+ δβ + γ, (4.134)

followed by an inner product with β leads to δβ = 0. A closed form can thus
be decomposed as

ω = dα + γ (4.135)

with α and γ unique. Each cohomology class in Hp(M) therefore contains
a unique harmonic representative. Since any harmonic function is closed,
and hence a representative of some cohomology class, we conclude that there
is a 1-1 correspondence between p-form solutions of Laplace’s equation and
elements of Hp(M). In particular

dim(Ker ∆p) = dim (Hp(M)) = bp. (4.136)
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Here bp is the p-th Betti number. From this we immediately deduce that

χ(M) =

D∑

p=0

(−1)pdim(Ker ∆p), (4.137)

where χ(M) is the Euler character of M . There is therefore an intimate
relationship between the null-spaces of the second-order partial differential
operators ∆p and the global topology of the manifold in which they live.
This is an example of an index theorem.

Just as for the ordinary Laplace operator, ∆p has a complete set of eigen-
functions with associated eigenvalues λ. Because the the manifold is compact
and hence has finite volume, the spectrum will be discrete. Remarkably, the
topological influence we uncovered above is restricted to the zero-eigenvalue
spaces. Suppose that we have a p-form eigenfunction uλ for ∆p:

∆puλ = λuλ. (4.138)

Then

λ duλ = d∆puλ

= d(dδ + δd)uλ

= (dδ)duλ

= (δd+ dδ)duλ

= ∆p+1duλ. (4.139)

Thus, provided it is not identically zero, duλ is an (p+1)-form eigenfunction
of ∆(p+1) with eigenvalue λ. Similarly, δuλ is a (p − 1)-form eigenfunction
also with eigenvalue λ.

Can duλ be zero? Yes! It will certainly be zero if uλ itself is the d of
something. What is less obvious is that it will be zero only if it is the d of
something. To see this suppose that duλ = 0 and λ 6= 0. Then

λuλ = (δd+ dδ)uλ = d(δuλ). (4.140)

Thus duλ = 0 implies that uλ = dη, where η = δuλ/λ. We see that for λ
non-zero, the operators d and δ map the λ eigenspaces of ∆ into one another,
and the kernel of d acting on p-form eigenfunctions is precisely the image of
d acting on (p− 1)-form eigenfunctions. In other words, when restricted to
positive λ eigenspaces of ∆, the cohomology is trivial.
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The set of spaces V λ
p together with the maps d : V λ

p → V λ
p+1 therefore

constitute an exact sequence when λ 6= 0, and so the alternating sum of their
dimension must be zero. We have therefore established that

∑

p

(−1)pdimV λ
p =

{
χ(M), λ = 0,
0, λ 6= 0.

(4.141)

All the topology resides in the null-spaces, therefore.

Exercise 4.6: Show that if ω is closed and co-closed then so is ?ω. Deduce
that in a for a compact orientable D-manifold we have bp = bD−p . This
observation therefore gives another way of understanding Poincaré duality.

4.7.2 Morse Theory

Suppose, as in the previous section, M is a D-dimensional compact manifold
without boundary and V : M → R a smooth function. The global topology
of M imposes some constraints on the possible maxima, minima and saddle
points of V . Suppose that P is a stationary point of V . Taking co-ordinates
such that P is at xµ = 0, we can expand

V (x) = V (0) +
1

2
Hµνx

µxν + . . . . (4.142)

Here, the matrix Hµν is the Hessian

Hµν =
∂2V

∂xµ∂xν

∣∣∣∣
0

. (4.143)

We can change co-ordinates so as reduce the Hessian to a canonical form
with only ±1, 0 on the diagonal:

Hµν =



−Im

In
0D−m−n


 . (4.144)

If there are no zero’s on the diagonal then the stationary points is said to be
non-degenerate. The the number m of downward-bending directions is then
called the index of V at P. If P were a local maximum, then m = D, n = 0.
If it were a local minimum then m = 0, n = D. When all its stationary
points are non-degenerate, V is said to be a Morse function. This is the
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generic case. Degenerate stationary points can be regarded as arising from
the merging of two or more non-degenerate points.

The Morse index theorem asserts that if V is a Morse function, and if
we define N0 to be the number of stationary points with index 0 (i.e. local
minima), and N1 to be the number of stationary points with index 1 etc.,
then

D∑

m=0

(−1)mNm = χ(M). (4.145)

Here χ(M) is the Euler character of M . Thus, a function on the two-
dimensional torus, which has χ = 0, can have a local maximum, a local
minimum and two saddle points, but cannot have only one local maximum,
one local minimum and no saddle points. On a two-sphere (χ = 2), if V has
one local maximum and one local minimum it can have no saddle points.

Closely related to the Morse index theorem is the Poincaré-Hopf theorem.

It counts the isolated zeros of a tangent-vector field X on a compact D-
manifold and, among other things, explains why we cannot comb a hairy
ball. An isolated zero is a point zn at which X becomes zero, and that has a
neighbourhood in which there is no other zero. If there are only finitely many
zeros then each of them will be isolated. We can define a vector field index at
zn by surrounding it with a small (D−1)-sphere on which X does not vanish.
The direction of X at each point on this sphere then provides a map from the
sphere to itself. The index i(zn) is defined to be the winding number (Brouwer
degree) of this map. The index can be any integer, but in the special case
that X is the gradient of a Morse function we have i(zn) = (−1)mn where m
is the Morse index at zn.

a) b) c)

Figure 4.13: Two-dimensional vector-fields and their streamlines near zeros
with indices a) i(za) = +1, b) i(zb) = −1, c) i(zc) = +1.
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The Poincaré-Hopf theorem now states that, for a compact manifold with-
out boundary, and for a tangent vector field with only finitely many zeros,

∑

zeros n

i(zn) = χ(M). (4.146)

A tangent-vector field must therefore always have at least one zero unless
χ(M) = 0. Since the two-sphere has χ = 2, it cannot be combed.

Figure 4.14: Gradient vector field and streamilines in a two-simplex.

If one is prepared to believe that
∑

zeros i(zn) is the same integer for all
tangent vector fields X on M , it is simple to show that this integer must
be equal to the Euler character of M . Consider, for ease of visualization,
a two-manifold. Triangulate M and take X to be the gradient field of a
function with local minima at each vertices, saddle points on the edges, and
local maxima at the centre of each face (see figure 4.14). It must be clear
that this particular field X has

∑

zeros n

i(zn) = V −E + F = χ(M). (4.147)

In the case of a two-dimensional oriented surface equipped with a smooth
metric, it is also simple to demonstrate the invariance of the index sum.
Consider two vector fields X and Y . Triangulate M so that all zeros of both
fields lie in the interior of the faces of the simplices. The metric allows us
to compute the angle θ between X and Y wherever they are both non-zero,
and in particular on the edges of the simplices. For each two-simplex σ we
compute the total change ∆θ in the angle as we circumnavigate its boundary.
This change is an integral multiple of 2π, with the integer counting the
difference ∑

zeros of X∈σ
i(zn)−

∑

zeros of Y ∈σ
i(zn) (4.148)
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of the indices of the zeros within σ. On summing over all triangles σ, each
edge is traversed twice, once in each direction, so

∑
σ ∆θ vanishes . The total

index of X is therefore the same as that of Y .
This pairwise cancellation argument can be extended to non-orientable

surfaces, such as the projective plane, In this case the edges constituting the
homological “boundary” of the closed surface are traversed twice in the same

direction, but the angle θ at a point on one edge is paired with −θ at the
corresponding point of the other edge.

Supersymmetric Quantum Mechanics

Edward Witten gave a beautiful proof of the Morse index theorem for an
orientable manifold by re-interpreting the Laplace-Beltrami operator as the
Hamiltonian of supersymmetric quantum mechanics onM . Witten’s idea had
a profound impact, and led to quantum physics serving as a rich source of
inspiration and insight for mathematicians. We have seen most of the ingre-
dients of this re-interpretation in previous chapters. Indeed you should have
experienced a sense of déjà vu when you saw d and δ mapping eigenfunctions
of one differential operator into eigenfunctions of a related operator.

We begin with an novel way to think of the calculus of differential forms.
We introduce a set of fermion annihilation and creation operators ψµ and
ψ†µ which anti-commute, ψµψν = −ψνψµ, and obey

{ψ†µ, ψν} ≡ ψ†µψν + ψνψ†µ = gµν . (4.149)

Here µ runs from 1 to D. As is usual when we are given such operators,
we also introduce a vacuum state |0〉 which is killed by all the annihilation
operators: ψµ|0〉 = 0. The states

(ψ†1)p1(ψ†2)p2 . . . (ψ†n)pn|0〉, (4.150)

with each of the pi taking the value one or zero, then constitute a basis for
2D-dimensional space. We call p =

∑
i pi the fermion number of the state.

We now assume that 〈0|0〉 = 1 and use the anti-commutation relations to
show that

〈0|ψµp . . . ψµ2ψµ1 . . . ψ†ν1ψ†ν2 . . . ψ†νq |0〉
is zero unless p = q, in which case it is equal to

gµ1ν1gµ2ν2 . . . gµpνp ± (permutations).
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We now make the correspondence

1

p!
fµ1µ2...µp(x)ψ

†µ1
ψ†µ2

. . . ψ†µp |0〉 ↔ 1

p!
fµ1µ2...µp(x)dx

µ1dxµ2 . . . dxµp,

(4.151)
to identify p-fermion states with p-forms. We think of fµ1µ2...µp(x) as being
the wavefunction of a particle moving on M , with the subscripts informing
us there are fermions occupying the states µi. It is then natural to take the
inner product of

|a〉 =
1

p!
aµ1µ2...µp(x)ψ

†µ1
ψ†µ2

. . . ψ†µp |0〉 (4.152)

and

|b〉 =
1

q!
bµ1µ2...µq(x)ψ

†µ1
ψ†µ2

. . . ψ†µq |0〉 (4.153)

to be

〈a, b〉 =

∫

M

dDx
√
g

1

p!q!
a∗µ1µ2...µp

bν1ν2...νq〈0|ψµp . . . ψµ1ψ†ν1 . . . ψ†νq |0〉

= δpq

∫

M

dDx
√
g

1

p!
a∗µ1µ2...µp

bµ1µ2...µp . (4.154)

This coincides the Hodge inner product of the corresponding forms.
If we lower the index by setting ψµ to be gµνψ

µ then the action of Xµψµ
on a p-fermion state coincides with the action of the interior multiplication
iX on the corresponding p-form. All the other operations of the exterior
calculus can also be expressed in terms of the ψ’s. In particular, in Cartesian
co-ordinates where gµν = δµν , we can identify d with ψ†µ∂µ. To find the
operator that corresponds to the Hodge δ, we compute

δ = d† = (ψ†µ∂µ)
† = ∂†µψ

µ = −∂µψµ = −ψµ∂µ. (4.155)

The hermitian adjoint of ∂µ is here being taken with respect to the standard
L2(RD) inner product. This computation becomes more complicated when
when gµν becomes position dependent. The adjoint ∂†µ then involves the
derivative of

√
g, and ψ and ∂µ no longer commute. For this reason, and

because such complications are inessential for what follows, we will delay
discussing this general case until the end of this section.

Having found a simple formula for δ, it is now automatic to compute

dδ + δd = −{ψ†µ, ψν} ∂µ∂ν = −δµν∂µ∂ν = −∇2. (4.156)



164 CHAPTER 4. AN INTRODUCTION TO TOPOLOGY

This much easier than deriving the same result by using δ = (−1)Dp+D+1?d?.
Witten’s fermionic formalism simplifies a number of compuations involv-

ing δ, but his real innovation was to consider a deformation of the exterior
calculus by introducing the operators

dt = e−tV (x)d etV (x), δt = etV (x)δ e−tV (x), (4.157)

and
∆t = dtδt + δtdt. (4.158)

Here V (x) is the Morse function whose stationary points we are seeking to
count.

The deformed derivative continues to obey d2
t = 0, and dω = 0 if and only

if dte
−tV ω = 0. Similarly, if ω = dη then e−tV ω = dte

−tV η. The cohomol-
ogy of d and dt are therefore transformed into each other by multiplication
by e−tV . Since the exponential function is never zero, this correspondence
is invertible and the mapping is an isomorphism. In particular, the Betti
numbers bp, the dimensions of Ker (dt)p/Im (dt)p−1, are t independent. Fur-
ther, the t-deformed Laplace-Beltrami operator remains Fredholm with only
positive or zero eigenvalues. We can make a Hodge decomposition

ω = dtα + δtβ + γ, (4.159)

where ∆tγ = 0, and concude that

dim (Ker (∆t)p) = bp (4.160)

as before. The non-zero eigenvalue spaces will also continue to form exact
sequences. Nothing seems to have changed! Why do we introduce dt then?
The motivation is that when t becomes large we can use our knowledge of
quantum mechanics to compute the Morse index.

To do this, we expand out

dt = ψ†µ(∂µ + t∂µV )

δt = −ψµ(∂µ − t∂µV ) (4.161)

and find
dtδt + δtdt = −∇2 + t2|∇V |2 + t[ψ†µ, ψν ] ∂2

µνV. (4.162)

This can be thought of as a Schrödinger Hamiltonian on M containing a
potential and a fermionic term. When t is large and positive the potential
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t2|∇V |2 will be large everywhere except near those points where ∇V = 0.
The wavefunctions of all low-energy states, and in particular all zero-energy
states, will therefore be concentrated at precisely the stationary points we are
investigating. Let us focus on a particular stationary point, which we will
take as the origin of our co-ordinate system, and identify any zero-energy
state localized there. We first rotate the coordinate system about the origin
so that the Hessian matrix ∂2

µνV |0 becomes diagonal with eigenvalues λn.
The Schrödinger problem can then be approximated by a sum of harmonic
oscillator hamiltonians

∆p,t ≈
D∑

i=1

{
− ∂2

∂x2
i

+ t2λ2
ix

2
i + tλi[ψ

†i, ψi]

}
. (4.163)

The commutator [ψ†i, ψi] takes the value +1 if the i’th fermion state is oc-
cupied, and −1 if it is not. The spectrum of the approximate Hamiltonian
is therefore

t
D∑

i=1

{|λi|(1 + 2ni)± λi} . (4.164)

Here the ni label the harmonic oscillator states. The lowest energy states
will have all the ni = 0. To get a state with zero energy we must arrange
for the ± sign to be negative (no fermion in state i) whenever λi is positive,
and to be positive (fermion state i occupied) whenever λi is negative. The
fermion number “p” of the zero-energy state is therefore equal to the the
number of negative λi — i.e. to the index of the critical point! We can,
in this manner, find one zero-energy state for each critical point. All other
states have energies proportional t, and therefore large. Since the number
of zero energy states having fermion number p is the Betti number bp, the
harmonic oscillator approximation suggests that bp = Np.

If we could trust our computation of the energy spectrum, we would have
established the Morse theorem

D∑

p=0

(−1)pNp =
D∑

p=0

(−1)pbp = χ(M), (4.165)

by having the two sums agree term by term. Our computation is only ap-
proximate, however. While there can be no more zero-energy states than
those we have found, some states that appear to be zero modes may instead



166 CHAPTER 4. AN INTRODUCTION TO TOPOLOGY

have small positive energy. This might arise from tunnelling between the
different potential minima, or from the higher-order corrections to the har-
monic oscillator potentials, both effects we have neglected. We can therefore
only be confident that

Np ≥ bp. (4.166)

The remarkable thing is that, for the Morse index, this does not matter ! If
one of our putative zero modes gains a small positive energy, it is now in
the non-zero eigenvalue sector of the spectrum. The exact-sequence property
therefore tells us that one of the other putative zero modes must also be a
not-quite-zero mode state with exactly the same energy. This second state
will have a fermion number that differs from the first by plus or minus one.
Our error in counting the zero energy states therefore cancels out when we
take the alternating sum. Our unreliable estimate bp ≈ Np has thus provided
us with an exact computation of the Morse index.

We have described Witten’s argument as if the manifold M were flat.
When the manifold M is not flat, however, the curvature will not affect
our computations. Once the parameter t is large the low-energy eigenfunc-
tions will be so tightly localized about the critical points that they will be
hard-pressed to detect the curvature. Even if the curvature can effect an
infintesimal energy shift, the exact-sequence argument again shows that this
does not affect the alternating sum.

The Weitzenböck Formula

Although we we were able to evade them when proving the Morse index
theorem, it is interesting to uncover the workings of the nitty-gritty Rie-
mann tensor index machinary that lie concealed behind the polished facade
of Hodge’s d, δ calculus.

Let us assume that our manifold M is equipped with a torsion-free con-
nection Γµνλ = Γµλν , and use this connection to define the action of an
operator ∇̂µ by specifying its commutators with c-number functions f , and
with the ψµ and ψ†µ’s:

[∇̂µ, f ] = ∂µf,

[∇̂µ, ψ
†ν ] = −Γνµλψ

†λ,

[∇̂µ, ψ
ν ] = −Γνµλψ

λ. (4.167)
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We also set ∇̂µ|0〉 = 0. These rules allow us to compute the action of ∇̂µ on
fµ1µ2...µp(x)ψ

†µ1 . . . ψ†µp |0〉. For example

∇̂µ

(
fνψ

†ν |0〉
)

=
(
[∇̂µ, fνψ

†ν ] + fνψ
†ν∇̂µ

)
|0〉

=
(
[∇̂µ, fν ]ψ

†ν + fα[∇̂µ, ψ
†α]
)
|0〉

= (∂µfν − fαΓαµν)ψ†ν |0〉
= (∇µfν)ψ

†ν |0〉, (4.168)

where
∇µfv = ∂µfν − Γαµνfα, (4.169)

is the usual covariant derivative acting on the componenents of a covariant
vector.

The metric gµν counts as a c-number function, and so [∇̂α, g
µµ] is not

zero, but is instead ∂αg
µν . This might be disturbing—being able pass the

metric through a covariant derivative is a basic compatibilty condition in
Riemann geometry—but all is not lost. ∇̂µ (with a caret) is not quite the
same beast as ∇µ. We proceed as follows:

∂αg
µν = [∇̂α, g

µµ]

= [∇̂α, {ψ†µ, ψν}]
= [∇̂α, ψ

†µψν ] + [∇̂α, ψ
νψ†µ, ]

= −{ψ†µ, ψλ}Γναλ − {ψ†ν , ψλ}Γµαλ
= −gµλ Γναλ − gνλ Γµαλ. (4.170)

We conclude that

∂αg
µν + gµλΓναλ + gλνΓµαλ ≡ ∇αg

µν = 0. (4.171)

Metric compatibility is therefore satisfied, and the connection is therefore the
standard Riemannian

Γαµν =
1

2
gαλ (∂µgλν + ∂νgµλ − ∂λgµν) . (4.172)

Knowing this, we can compute the adjoint of ∇̂µ:
(
∇̂µ

)†
= − 1√

g
∇̂µ
√
g

= −
(
∇̂µ + ∂µ ln

√
g
)

= −(∇̂µ + Γννµ). (4.173)
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That Γννµ is the logarithmic derivative of
√
g is a standard identity for the

Riemann connection (see exercise 2.14). The resultant formula for (∇̂µ)
†

can be used to verify that the second and third equations in (4.167) are
compatible with each other.

We can also compute [[∇̂µ, ∇̂ν ], ψ
α] and from it deduce that

[∇̂µ, ∇̂ν ] = Rσλµνψ
†σψλ, (4.174)

where

Rα
βµν = ∂µΓ

α
βν − ∂νΓαβµ + ΓαλµΓ

λ
βν − ΓαλνΓ

λ
βµ (4.175)

is the Riemann curvature tensor.
We now define d to be

d = ψ†µ∇̂µ. (4.176)

Its action coincides with the usual d because the symmetry of the Γαµν ’s
ensures that their contributions cancel. From this we find that δ is

δ ≡
(
ψ†µ∇̂µ

)†

= ∇̂†
µ ψ

µ

= −(∇̂µ + Γνµν)ψ
µ

= −ψµ(∇̂µ + Γνµν) + Γµµνψ
ν

= −ψµ∇̂µ. (4.177)

The Laplace-Beltrami operator can now be worked out as

dδ + δd = −
(
ψ†µ∇̂µψ

ν∇̂ν + ψν∇̂νψ
†µ∇̂µ

)

= −
(
{ψ†µ, ψν}(∇̂µ∇̂ν − Γσµν∇̂σ) + ψνψ†µ[∇̂ν , ∇̂µ]

)

= −
(
gµν(∇̂µ∇̂ν − Γαµν∇̂σ) + ψνψ†µψ†σψλRσλνµ

)
(4.178)

By making use of the symmetries Rσλνµ = Rνµσλ and Rσλνµ = −Rσλµν we
can tidy up the curvature term to get

dδ + δd = −gµν(∇̂µ∇̂ν − Γσµν∇̂σ)− ψ†αψβψ†µψνRαβµν . (4.179)

This result is called the Weitzenböck formula. An equivalent formula can be
derived directly from (4.124), but only with a great deal more effort. The part



4.7. HODGE THEORY AND THE MORSE INDEX 169

without the curvature tensor is called the Bochner Laplacian. It is normally
written as B = −gµν∇µ∇ν with ∇µ being understood to be acting on the
index ν, and therefore tacitly containing the extra Γσµν that must be made

explicit when we define the action of ∇̂µ via commutators. The Bochner
Laplacian can also be written as

B = ∇̂†
µ g

µν ∇̂ν (4.180)

which shows that it is a positive operator.
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Chapter 5

Groups and Group
Representations

Groups appear in physics as symmetries of the system we are studying. Often
the symmetry operation involves a linear transformation, and this naturally
leads to the idea of finding sets of matrices having the same multiplication
table as the group. These sets are called representations of the group. Given
a group, we endeavour to find and classify all possible representations.

5.1 Basic Ideas

We begin with a rapid review of basic group theory.

5.1.1 Group Axioms

A group G is a set with a binary operation that assigns to each ordered pair
(g1, g2) of elements a third element, g3, usually written with multiplicative
notation as g3 = g1g2. The binary operation, or product , obeys the following
rules:

i) Associativity: g1(g2g3) = (g1g2)g3.
ii) Existence of an identity: There is an element1 e ∈ G such that eg = g

for all g ∈ G.

1The symbol “e” is often used for the identity element, from the German Einheit ,
meaning “unity.”

171
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iii) Existence of an inverse: For each g ∈ G there is an element g−1 such
that g−1g = e.

From these axioms there follow some conclusions that are so basic that
they are often included in the axioms themselves, but since they are not
independent, we state them as corollaries.

Corollary i): gg−1 = e.

Proof : Start from g−1g = e, and multiply on the right by g−1 to get
g−1gg−1 = eg−1 = g−1, where we have used the left identity property of
e at the last step. Now multiply on the left by (g−1)−1, and use associativity
to get gg−1 = e.

Corollary ii): ge = g.

Proof : Write ge = g(g−1g) = (gg−1)g = eg = g.

Corollary iii): The identity e is unique.

Proof : Suppose there is another element e1 such that e1g = eg = g. Multiply
on the right by g−1 to get e1e = e2 = e, but e1e = e1, so e1 = e.

Corollary iv): The inverse of a given element g is unique.

Proof : Let g1g = g2g = e. Use the result of corollary (i), that any left
inverse is also a right inverse, to multiply on the right by g−1

1 , and so find
that g1 = g2.

Two elements g1 and g2 are said to commute if g1g2 = g2g1. If the group
has the property that g1g2 = g2g1 for all g1, g2 ∈ G, it is said to be Abelian,
otherwise it is non-Abelian.

If the set G contains only finitely many elements, the group G is said to
be finite. The number of elements in the group, |G|, is called the order of
the group.

Examples of Groups:

1) The integers Z under addition. The binary operation is (n,m) 7→ n+m,
and “0” plays the role of the identity element. This is not a finite group.

2) The integers modulo n under addition. (m,m′) 7→ m+m′, modn. This
group is denoted by Zn.

3) The non-zero integers modulo p (a prime) under multiplication (m,m′) 7→
mm′, mod p. Here “1” is the identity element. If the modulus is not
a prime number, we do not get a group (why not?). This group is
sometimes denoted by (Zp)

×.
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4) The set of numbers {2, 4, 6, 8} under multication modulo 10. Here, the
number “6” plays the role of the identity!

5) The set of functions

f1(z) = z, f2(z) =
1

1− z , f3(z) =
z − 1

z

f4(z) =
1

z
, f5(z) = 1− z, f6(z) =

z

z − 1

with (fi, fj) 7→ fi ◦ fj . Here the “◦” is a standard notation for compo-
sition of functions: (fi ◦ fj)(z) = fi(fj(z)).

6) The set of rotations in three dimensions, equivalently the set of 3-by-3
real matrices O, obeying OTO = I, and detO = 1. This is the group
SO(3). SO(n) is defined analogously as the group of rotations in n
dimensions. If we relax the condition on the determinant we get the
orthogonal group O(n). Both SO(n) and O(n) are examples of Lie

groups. A Lie group a group that is also a manifold M , and whose
multiplication law is a smooth function M ×M → M .

7) Groups are often specified by giving a list of generators and relations.
For example the cyclic group of order n, denoted by Cn, is specified by
giving the generator a and relation an = e. Similarly, the dihedral group

Dn has two generators a, b and relations an = e, b2 = e, (ab)2 = e.
This group has order 2n.

5.1.2 Elementary Properties

Here are the basic properties of groups that we need:

i) Subgroups: If a subset of elements of a group forms a group, it is
called a subgroup. For example, Z12 has a subgroup of consisting of
{0, 3, 6, 9}. All groups have at least two subgroups: the trivial sub-
groups G itself, and {e}. Any other subgroups are called proper sub-
groups.

ii) Cosets: Given a subgroup H ⊆ G, having elements {h1, h2, . . .}, and
an element g ∈ G, we form the (left) coset gH = {gh1, gh2, . . .}. If two
cosets g1H and g2H intersect, they coincide. (Proof: if g1h1 = g2h2,
then g2 = g1(h1h

−1
2 ) and so g1H = g2H .) If H is a finite group,

each coset has the same number of distinct elements as H . (Proof: if
gh1 = gh2 then left multiplication by g−1 shows that h1 = h2.) If the
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order of G is also finite, the group G is decomposed into an integer
number of cosets,

G = g1H + g2H + · · · , (5.1)

where “+”denotes the union of disjoint sets. From this we see that the
order of H must divide the order of G. This result is called Lagrange’s

theorem. The set whose elements are the cosets is denoted by G/H .
iii) Normal subgroups and quotient groups: A subgroup H of G is said

to be normal , or invariant , if g−1Hg = H for all g ∈ G. Given a
normal subgroup H , we can define a multiplication rule on the coset
space cosets G/H ≡ {g1H , g2H, . . .} by taking a representative element
from each of giH , and gjH , taking the product of these elements, and
defining (giH)(gjH) to be the coset in which this product lies. This
coset is independent of the representative elements chosen (this would
not be so if the subgroup was not normal). The resulting group is
called the quotient group G/H . (Note that the symbol “G/H” is used
to denote both the set of cosets, and, when it exists, the group whose
elements are these cosets.)

iv) Simple groups: A group G with no normal subgroups is said to be sim-

ple. The finite simple groups have been classified. They fall into various
infinite families (Cyclic groups, Alternating groups, 16 families of Lie
type) together with 26 sporadic groups, the largest of which, the Mon-

ster , has order 808,017,424,794,512,875,886,459,904,961,710,757,005, 754,
368,000,000,000. The mysterious “Monstrous moonshine” links its rep-
resentation theory to the elliptic modular function J(τ) and to string
theory.

iv) Conjugacy and Conjugacy Classes: Two group elements g1, g2 are said
to be conjugate in G if there is an element g ∈ G such that g2 = g−1g1g.
If g1 is conjugate to g2, we write g1 ∼ g2. Conjugacy is an equivalence

relation,2 and, for finite groups, the resulting conjugacy classes have
order that divide the order of G. To see this, consider the conjugacy
class containing an element g. Observe that the set H of elements
h ∈ G such that h−1gh = g forms a subgroup. The set of elements

2An equivalence relation, ∼, is a binary relation that is
i) Reflexive: A ∼ A.
ii) Symmetric: A ∼ B ⇐⇒ B ∼ A.
iii) Transitive: A ∼ B, B ∼ C =⇒ A ∼ C

Such a relation breaks a set up into disjoint equivalence classes.
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conjugate to g can be identified with the coset space G/H . The order
of G divided by the order of the conjugacy class is therefore |H|.

Example: In the rotation group SO(3), the conjugacy classes are the sets of
rotations through the same angle, but about different axes.
Example: In the group U(n), of n-by-n unitary matrices, the conjugacy
classes are the set of matrices possessing the same eigenvalues.
Example: Permutations. The permutation group on n objects, Sn, has order
n!. Suppose we consider permutations π1, π2 in S8 such that π1 that maps

π1 :




1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
2 3 1 5 4 7 6 8



 ,

and π2 maps

π2 :




1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
2 3 4 5 6 7 8 1


 .

The product π2 ◦ π1 then takes

π2 ◦ π1 :




1 2 3 4 5 6 7 8
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
3 4 2 6 5 8 7 1



 .

We can write these partitions out more compactly by using Paolo Ruffini’s
cycle notation:

π1 = (123)(45)(67)(8), π2 = (12345678), π2 ◦ π1 = (132468)(5)(7).

In this notation, each number is mapped to the one immediately to its right,
with the last number in each bracket, or cycle, wrapping round to map to
the first. Thus π1(1) = 2, π1(2) = 3, π1(3) = 1. The “8”, being both first
and last in its cycle, maps to itself: π1(8) = 8. Any permutation with this
cycle pattern, (∗ ∗ ∗)(∗∗)(∗∗)(∗), is in the same conjugacy class as π1. We
say that π1 possesses one 1-cycle, two 2-cycles, and one 3-cycle. The class
(r1, r2, . . . rn) having r1 1-cycles, r2 2-cycles etc., where r1+2r2+· · ·+nrn = n,
contains

N(r1,r2,...) =
n!

1r1(r1!) 2r2 (r2!) · · ·nrn (rn!)

elements. The sign of the permutation,

sgn π = επ(1)π(2)π(3)...π(n)
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is equal to
sgn π = (+1)r1(−1)r2(+1)r3(−1)r4 · · · .

We have, for any two permutations π1, π2

sgn (π1)sgn (π2) = sgn (π1 ◦ π2),

so the even (sgn π = +1) permutations form an invariant subgroup called
the Alternating group, An. The group An is simple for n ≥ 5, and Ruffini
(1801) showed that this simplicity prevents the solution of the general quin-
tic by radicals. His work was ignored, however, and later independently
rediscovered by Abel (1824) and Galois (1829).

If we write out the group elements in some order {e, g1, g2, . . .}, and then
multiply on the left

g{e, g1, g2, . . .} = {g, gg1, gg2, . . .}

then the ordered list {g, gg1, gg2, . . .} is a permutation of the original list.
Any group is therefore a subgroup of S|G|. This is called Cayley’s Theorem.

Exercise 5.1: Let H1, H2 be two subgroups of a group G. Show that H1 ∩H2

is also a subgroup.

Exercise 5.2: Let G be any group.

a) The subset Z(G) of G consisting of those g ∈ G that commute with all
other elements of the group is called the center of the group. Show that
Z(G) is a subgroup of G.

b) If g is an element of G, the set CG(g) of elements of G that commute
with g is called the centeralizer of g in G. Show that it is a subgroup of
G.

c) If H is a subgroup, the set of elements of G that commute with all
elements of H is the centralizer CG(H) of H in G. Show that it is a
subgroup of G.

d) If H is a subgroup, the set NG(H) ⊂ G consisting of those g such that
g−1Hg = H is called the normalizer of H in G. Show that NG(H) is a
subgroup of G, and that H is a normal subgroup of NG(H).

Exercise 5.3: Show that the set of powers an of an element a ∈ G form a
subgroup. Let p be prime. Recall that the set {1, 2, . . . p− 1} forms the group
(Zp)

× under multiplication modulo p. By appealing to Lagrange’s theorem,
prove Fermat’s little theorem that for any prime p and integer a, we have
ap−1 = 1, mod p.
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Exercise 5.4: Use Fermat’s theorem from the previous excercise to establish
the mathematical identity underlying the RSA algorithm for public-key cryp-
tography: Let p, q be prime and N = pq. First use Euclid’s algorithm for the
HCF of two numbers to show that if the integer e is co-prime to3 (p−1)(q−1),
then there is an integer d such that

de = 1, mod (p− 1)(q − 1).

Then show that if,

C = Me, modN, (encryption)

then
M = Cd, modN. (decryption).

The numbers e and N can be made known to the public, but it is hard to find
the secret decoding key, d, unless the factors p and q of N are known.

Exercise 5.5: Consider the group G with multiplication table shown in table
5.1.

G I A B C D E

I I A B C D E

A A B I E C D

B B I A D E C

C C D E I A B

D D E C B I A

E E C D A B I

Table 5.1: Multiplication table of G. To find AB look in row A column B.

This group has proper a subgroup H = {I,A,B}, and corresponding (left)
cosets are IH = {I,A,B} and CH = {C,D,E}.

(i) Construct the conjugacy classes of this group.
(ii) Show that {I,A,B} and {C,D,E} are indeed the left cosets of H.
(iii) Determine whether H is a normal subgroup.
(iv) If so, construct the group multiplication table for the corresponding quo-

tient group.

3Has no factors in common with.
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Exercise 5.6: Let H and K, be groups. Make the cartesian productG = H×K
into a group by introducing a multiplication rule for elements of the Cartesian
product by setting:

(h1, k1) ∗ (h2, k2) = (h1h2, k1k2).

Show that G, equipped with ∗ as its product, satsifies the group axioms. The
resultant group is called the direct product of H and K.

Exercise 5.7: If F andG are groups, a map ϕ : F → G that preserves the group
structure, i.e. if ϕ(g1)ϕ(g2) = ϕ(g1g2), is called a group homomorphism. If
ϕ is such a homomorphism show that ϕ(eF ) = eG, where eF , and eG are the
identity element in F , G respectively.

Exercise 5.8:. If ϕ : F → G is a group homomorphism, and if we define Ker(ϕ)
as the set of elements f ∈ F that map to eG, show that Ker(ϕ) is a normal
subgroup of F .

5.1.3 Group Actions on Sets

Groups usually appear in physics as symmetries: they act on a physical
object to change it in some way, perhaps while leaving some other property
invariant.

Suppose X is a set. We call its elements “points.” A group action on X
is a map g ∈ G : X → X that takes a point x ∈ X to a new point that we
denote by gx ∈ X, and such that g2(g1x) = (g1g2)x, and ex = x. There is
some standard vocabulary for group actions:

i) Given a a point x ∈ X we define the orbit of x to be the set Gx ≡
{gx : g ∈ G} ⊆ X.

ii) The action of the group is transitive if any orbit is the whole of X.
iii) The action is effective, or faithful , if the map g : X → X being the

identity map implies that g = e. Another way of saying this is that
the action is effective if the map G → Map (X → X) is one-to-one. If
the action of G is not faithful, the set of g ∈ G that act as the identity
map forms an invariant subgroup H of G, and the quotient group G/H
has a faithful action.

iv) The action is free if the existence of an x such that gx = x implies that
g = e. In this case, we also say that g acts without fixed points.
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If the group acts freely and transitively, then having chosen a fiducial
point x0, we can uniquely label every point in X by the group element g
such that x = gx0. (If g1 and g2 both take x0 → x, then g−1

1 g2x0 = x0. By
the free action property we deduce that g−1

1 g2 = e, and g1 = g2.). In this
case we might, for some purposes, identify X with G.

Suppose the group acts transitively, but not freely. Let H be the set
of elements that leaves x0 fixed. This is clearly a subgroup of G, and if
g1x0 = g2x0 we have g−1

1 g2 ∈ H , or g1H = g2H . The space X can therefore
be identified with the space of cosets G/H . Such sets are called quotient

spaces or Homogeneous spaces. Many spaces of significance in physics can be
though of as cosets in this way.
Example: The rotation group SO(3) acts transitively on the two-sphere S2.
The SO(2) subgroup of rotations about the z axis, leaves the north pole of
the sphere fixed. We can therefore identify S2 ' SO(3)/SO(2).

Many phase transitions are a result of spontaneous symmetry breaking .
For example the water → ice transition results in the continuous translation
invariance of the liquid water being broken down to the discrete translation
invariance of the crystal lattice of the solid ice. When a system with symme-
try group G spontaneously breaks the symmetry to a subgroup H , the set
of inequivalent ground states can be identified with the homogeneous space
G/H .

5.2 Representations

An n-dimensional representation of a group is formally defined to be a homo-
morphism from G to a subgroup of GL(n,C), the group of invertible n-by-n
matrices with complex entries. In effect, it is a set of n-by-n matrices that
obeys the group multiplication rules

D(g1)D(g2) = D(g1g2), D(g−1) = [D(g)]−1. (5.2)

Given such a representation, we can form another one D′(g) by conjuga-
tion with any fixed invertible matrix C

D′(g) = C−1D(g)C. (5.3)

If D′(g) is obtained from D(g) in this way, we say that they are equivalent

representations and write D ∼ D′. We can think of D and D′ as being



180 CHAPTER 5. GROUPS AND GROUP REPRESENTATIONS

matrices representing the same linear map, but in different bases. Our task
in the rest of this chapter is to find and classify all representations of a finite
group G up to equivalence.

Real and pseudo-real representations

We can form a new representation from D(g) by setting

D′(g) = D∗(g),

where D∗(g) denotes the matrix whose entries are the complex conjugates
of those in D(g). Suppose D∗ ∼ D. It may then be possible to find a
basis in which the matrices have only real entries. In this case we say the
representation is real . It may be, however, be that D∗ ∼ D but we cannot
find a basis in which the matrices become real. In this case we say that D is
pseudo-real .

Example: Consider the defining representation of SU(2) (the group of 2-by-2
unitary matrices with unit determinant.) Such matrices are necessarily of
the form

U =

(
a −b∗
b a∗

)
, (5.4)

where a and b are complex numbers with |a|2 + |b|2 = 1. They are there-
fore specified by three real parameters, and so the group manifold is three
dimensional. Now

(
a −b∗
b a∗

)∗
=

(
a∗ −b
b∗ a

)
,

=

(
0 1
−1 0

)(
a −b∗
b a∗

)(
0 −1
1 0

)
,

=

(
0 −1
1 0

)−1(
a −b∗
b a∗

)(
0 −1
1 0

)
, (5.5)

and so U ∼ U∗. It is not possible to find a basis in which all SU(2) matrices
are simultaneously real, however. If such a basis existed we could specify the
matrices by only two real parameters—but we have seen that we need three
real numbers to describe all possible SU(2) matrices.
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Direct Sum and Direct Product

We can obtain new representations from old by combining them.
Given two representations D(1)(g), D(2)(g), we can form their direct sum

D(1) ⊕D(2) as the block-diagonal matrix
(
D(1)(g) 0

0 D(2)(g)

)
. (5.6)

We are particularly interested in taking a representation and breaking it up
as a direct sum of irreducible representations.

Given two representations D(1)(g), D(2)(g), we can combine them in a
different way by taking their direct product D(1) ⊗ D(2), the natural action
of the group on the tensor product of the representation spaces. In other
words, if D(1)(g)e

(1)
j = e

(1)
i D

(1)
ij (g) and D(2)(g)e

(2)
j = e

(2)
i D

(2)
ij (g) we define

[D(1) ⊗D(2)](g)(e
(1)
i ⊗ e

(2)
j ) = (e

(1)
k ⊗ e

(2)
l )D

(1)
ki (g)D

(2)
lj (g). (5.7)

We think of D
(1)
ki (g)D

(2)
lj (g) being the entries in the direct-product matrix

matrix
[D(1)(g)⊗D(2)(g)]kl,ij,

whose rows and columns are indexed by pairs of numbers. The dimension of
the product representation is therefore the product of the dimensions of its
factors.

Exercise 5.9: Show that if D(g) is a representation, then so is

D′(g) = [D(g−1)]T ,

where the superscript T denotes the transposed matrix.

Exercise 5.10: Show that a map that assigns every element of a group G to
the 1-by-1 identity matrix is a representation. It is, not unreasonably, called
the trivial representation.

Exercise 5.11: A representation D : G → GL(n,C) that assigns an element
g ∈ G to the n-by-n identity matrix In if and only if g = e is said to be
faithful . Let D be a non-trivial, but non-faithful, representation of G by n-
by-n matrices. Let H ⊂ G consist of those elements h such that D(h) = In.
Show that H is a normal subgroup of G, and that D projects to a faithful
representation of the quotient group G/H.
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Exercise 5.12: Let A and B be linear maps from U → U and C and D be
linear maps from V → V . Then the direct products A ⊗ C and B ⊗ D are
linear maps from U ⊗ V → U ⊗ V . Show that

(A⊗ C)(B ⊗D) = (AB)⊗ (CD).

Show also that

(A⊕ C)(B ⊕D) = (AB)⊕ (CD).

Exercise 5.13: Let A and B be m-by-m and n-by-n matrices respectively, and
let In denote the n-by-n unit matrix. Show that:

i) tr(A⊕B) = tr(A) + tr(B).
ii) tr(A⊗B) = tr(A) tr(B).
iii) exp(A⊕B) = exp(A)⊕ exp(B).
iv) exp(A⊗ In + Im ⊗B) = exp(A)⊗ exp(B).
v) det(A⊕B) = det(A) det(B).
vi) det(A⊗B) = (det(A))n(det(B))m.

5.2.1 Reducibility and Irreducibility

The “atoms” of representation theory are those representations that cannot,
by a clever choice of basis, be decomposed into, or reduced to, a direct sum
of smaller representations. Such a representation is said to be irreducible. It
is not easy to tell by just looking at a representation whether is is reducible
or not. We need to develop some tools. We begin with a more powerful
definition of irreducibilty.

We first introduce the notion of an invariant subspace. Suppose we have
a set {Aα} of linear maps acting on a vector space V . A subspace U ⊆ V
is an invariant subspace for the set if x ∈ U ⇒ Aαx ∈ U for all Aα.
The set {Aα} is irreducible if the only invariant subspaces are V itself and
{0}. Conversely, if there is a non-trivial invariant subspace, then the set4 of
operators is reducible.

If the Aα’s posses a non-trivial invariant subspace U , and we decompose
V = U⊕U ′, where U ′ is a complementary subspace, then, in a basis adapted
to this decomposition, the matrices Aα take the block-partitioned form of
figure 5.1.

4Irreducibility is a property of the set as a whole. Any individual matrix always has a
non-trivial invariant subspace because it possesses at least one eigenvector.
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Figure 5.1: Block partitioned reducible matrices.

If we can find a5 complementary subspace U ′ which is also invariant, then
we have the block partitioned form of figure 5.2.
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0

0
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U

U

Figure 5.2: Completely reducible matrices.

We say that such matrices are completely reducible. When our linear op-
erators are unitary with respect to some inner product, we can take the
complementary subspace to be the orthogonal complement . This, by unitar-
ity, is automatically be invariant. Thus, unitarity and reducibility implies
complete reducibility.

Schur’s Lemma

The most useful results concerning irreducibility come from:
Schur’s Lemma: Suppose we have two sets of linear operators Aα : U → U ,
and Bα : V → V , that act irreducibly on their spaces, and an intertwining

operator Λ : U → V such that

ΛAα = BαΛ, (5.8)

for all α, then either

a) Λ = 0,
or

5Remember that complementary subspaces are not unique.
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b) Λ is 1-1 and onto (and hence invertible), in which case U and V have
the same dimension and Aα = Λ−1BαΛ.

The proof is straightforward: The relation (5.8 ) shows that Ker (Λ) ⊆ U and
Im(Λ) ⊆ V are invariant subspaces for the sets {Aα} and {Bα} respectively.
Consequently, either Λ = 0, or Ker (Λ) = {0} and Im(Λ) = V . In the latter
case Λ is 1-1 and onto, and hence invertible.
Corollary: If {Aα} acts irreducibly on an n-dimensional vector space, and
there is an operator Λ such that

ΛAα = AαΛ, (5.9)

then either Λ = 0 or Λ = λI. To see this observe that (5.9) remains true if
Λ is replaced by (Λ− xI). Now det (Λ− xI) is a polynomial in x of degree
n, and, by the fundamental theorem of algebra, has at least one root, x = λ.
Since its determinant is zero, (Λ− λI) is not invertible, and so must vanish
by Schur’s lemma.

5.2.2 Characters and Orthogonality

Unitary Representations of Finite Groups

Let G be a finite group and let g 7→ D(g) be a representation of G by matrices
acting on a vector space V . Let (x,y) denote a positive-definite, conjugate-
symmetric, sesquilinear inner product of two vectors in V . From ( , ) we
construct a new inner product 〈 , 〉 by averaging over the group

〈x,y〉 =
∑

g∈G
(D(g)x, D(g)y). (5.10)

It is easy to see that this new inner product remains positive definite, and in
addition has the property that

〈D(g)x, D(g)y〉 = 〈x,y〉. (5.11)

This means that the maps D(g) : V → V are unitary with respect to the
new product. If we change basis to one that is orthonormal with respect to
this new product then the D(g) become unitary matrices, with D(g−1) =
D−1(g) = D†(g), where D†

ij(g) = D∗
ji(g) denotes the conjugate-transposed

matrix.
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We conclude that representations of finite groups can always be taken
to be unitary. This leads to the important consequence that for such rep-
resentations reducibility implies complete reducibility. Warning: In this
construction it is essential that the sum over the g ∈ G converge. This is
guaranteed for a finite group, but may not work for infinite groups. In par-
ticular, non-compact Lie groups, such as the Lorentz group, have no finite
dimensional unitary representations.

Orthogonality of the Matrix Elements

Now let DJ(g) : VJ → VJ be the matrices of an irreducible representation
or irrep. Here J is a label which distinguishes inequivalent irreps from one
another. We will use the symbol dim J to denote the dimension of the rep-
resentation vector space VJ .

Let DK be an irrep that is either identical to DJ or inequivalent, and let
Mij be a matrix possessing the appropriate number of rows and columns for
product DJMDK to be defined, but otherwise arbitrary. The sum

Λ =
∑

g∈G
DJ(g−1)MDK(g) (5.12)

obeys DJ(g)Λ = ΛDK(g) for any g. Consequently, Schur’s lemma tells us
that

Λil =
∑

g∈G
DJ
ij(g

−1)MjkD
K
kl(g) = λ(M)δilδ

JK . (5.13)

We have written λ(M) to stress that the number λ depends on the chosen
matrix M . Now take M to be zero everywhere except for one entry of unity
in row j column k. Then we have

∑

g∈G
DJ
ij(g

−1)DK
kl(g) = λjkδil, δ

JK (5.14)

where we have relabelled λ to indicate its dependence on the location (j, k)
of the non-zero entry in M . We can find the constants λjk by assuming that
K = J , setting i = l, and summing over i. We find

|G|δjk = λjk dim J. (5.15)

Putting these results together we find that

1

|G|
∑

g∈G
DJ
ij(g

−1)DK
kl(g) = (dim J)−1δjkδilδ

JK . (5.16)
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When our matrices D(g) are unitary, we can write this as

1

|G|
∑

g∈G

(
DJ
ij(g)

)∗
DK
kl(g) = (dim J)−1δikδjlδ

JK . (5.17)

If we consider complex-valued functions G → C as forming a vector space,
then the DJ

ij are elements of this space and are mutually orthogonal with
respect to its natural inner product.

There can be no more orthogonal functions on G than the dimension of
the function space itself, which is |G|. We therefore have a constraint

∑

J

(dim J)2 ≤ |G| (5.18)

that places a limit on how many inequivalent representations can exist. In
fact, as you will show later, the equality holds: the sum of the squares of the
dimensions of the inequivalent irreducible representations is equal to the or-
der of G, and consequently the matrix elements form a complete orthonormal
set of functions on G.

Class functions and characters

Because
tr (C−1DC) = trD, (5.19)

the trace of a representation matrix is the same for equivalent representations.
Further, because

trD(g−1
1 gg1) = tr

(
D−1(g1)D(g)D(g1)

)
= trD(g), (5.20)

the trace is the same for all group elements in a conjugacy class. The char-

acter ,

χ(g)
def
= trD(g), (5.21)

is therefore said to be a class function.
By taking the trace of the matrix-element orthogonality relation we see

that the characters χJ = trDJ of the irreducible representations obey

1

|G|
∑

g∈G

(
χJ(g)

)∗
χK(g) =

1

|G|
∑

i

di
(
χJi
)∗
χKi = δJK , (5.22)
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where di is the number of elements in the i-th conjugacy class.
The completeness of the matrix elements as functions on G implies that

the characters form a complete orthogonal set of functions on the space of
conjugacy classes equipped with inner product

〈χ1, χ2〉 def
=

1

|G|
∑

i

di
(
χ1
i

)∗
χ2
i . (5.23)

Conseqently there are exactly as many inequivalent irreducible representa-
tions as there are conjugacy classes in the group.

Given a reducible representation, D(g), we can find out exactly which
irreps J it contains, and how many times, nJ , they occur. We do this forming
the compound character

χ(g) = trD(g) (5.24)

and observing that if we can find a basis in which

D(g) = (D1(g)⊕D1(g)⊕ · · ·)︸ ︷︷ ︸
n1 terms

⊕ (D2(g)⊕D2(g)⊕ · · ·)︸ ︷︷ ︸
n2 terms

⊕ · · · , (5.25)

then
χ(g) = n1χ

1(g) + n2χ
2(g) + · · · (5.26)

From this we find

nJ = 〈χ, χJ〉 =
1

|G|
∑

i

di (χi)
∗ χJi . (5.27)

There are extensive tables of group characters. Table 5.2 shows, for ex-
ample, the characters of the group S4 of permutations on 4 objects.

Typical element and class size
S4 (1) (12) (123) (1234) (12)(34)
Irrep 1 6 8 6 3
A1 1 1 1 1 1
A2 1 -1 1 -1 1
E 2 0 -1 0 2
T1 3 1 0 -1 -1
T2 3 -1 0 1 -1

Table 5.2: Character table of S4
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Since χJ(e) = dim J we see that the irreps A1 and A2 are one dimensional,
that E is two dimensional, and that T1,2 are both three dimensional. Also
we confirm that the sum of the squares of the dimensions

1 + 1 + 22 + 32 + 32 = 24 = 4!

is equal to the order of the group.
As a further illustration of how to read table 5.2, let us verify the or-

thonormality of the characters of the representations T1 and T2. We have

〈χT1, χT2〉 =
1

|G|
∑

i

di
(
χT1

i

)∗
χT2

i =
1

24
[1·3·3−6·1·1+8·0·0−6·1·1+3·1·1] = 0,

while

〈χT1, χT1〉 =
1

|G|
∑

i

di
(
χT1

i

)∗
χT1

i =
1

24
[1·3·3+6·1·1+8·0·0+6·1·1+3·1·1] = 1.

The sum giving 〈χT2, χT2〉 = 1 is identical to this.

Exercise 5.14: Let D1 and D2 be representations with characters χ1(g) and
χ2(g) respectively. Show that the character of the direct product representa-
tion D1 ⊗D2 is given by

χ1⊗2(g) = χ1(g)χ2(g).

5.2.3 The Group Algebra

Given a finite group G, we construct a vector space C(G) whose basis vectors
are in one-to-one correspondence with the elements of the group. We denote
the vector corresponding to the group element g by the boldface symbol g.
A general element of C(G) is therefore a formal sum

x = x1g1 + x2g2 + · · ·+ x|G|g|G|. (5.28)

We take products of these sums by using the group multiplication rule. If
g1g2 = g3 we set g1g2 = g3, and require the product to be distributive with
respect to vector-space addition. Thus

gx = x1gg1 + x2gg2 + · · ·+ x|G|gg|G|. (5.29)
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The resulting mathematical structure is called the group algebra. It was
introduced by Frobenius.

The group algebra, considered as a vector space, is automatically a rep-
resentation. We define the natural action of G on C(G) by setting

D(g)gi = g gi = gjDji(g). (5.30)

The matrices Dji(g) make up the regular representation. Because the list
g g1, g g2, . . . is a permutation of the list g1, g2, . . ., their entries consist of 1’s
and 0’s, with exactly one non-zero entry in each row and each column.

Exercise 5.15: Show that the character of the regular representation has χ(e) =
|G|, and χ(g) = 0, for g 6= e.

Exercise 5.16: Use the previous exercise to show that the number of times
an n dimensional irrep occurs in the regular representation is n. Deduce that
|G| =

∑
J(dim J)2, and from this construct the completeness proof for the

representations and characters.

Projection Operators

A representation DJ of the group automatically provides a representation of
the group algebra. We simply set

DJ(x1g1 + x2g2 + · · ·) def
= x1D

J(g1) + x2D
J(g2) + · · · . (5.31)

Certain linear combinations of group elements turn out to be very useful
because the corresponding matrices can be used to project out vectors with
desirable symmetry properties.

Consider the elements

eJαβ =
dim J

|G|
∑

g∈G

[
DJ
αβ(g)

]∗
g (5.32)

of the group algebra. These have the property that

g1e
J
αβ =

dim J

|G|
∑

g∈G

[
DJ
αβ(g)

]∗
(g1g)

=
dim J

|G|
∑

g∈G

[
DJ
αβ(g

−1
1 g)

]∗
g
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=
[
DJ
αγ(g

−1
1 )
]∗ dim J

|G|
∑

g∈G

[
DJ
γβ(g)

]∗
g

= eJγβD
J
γα(g1). (5.33)

In going from the first to the second line we have changed summation vari-
ables from g → g−1

1 g, and going from the second to the third line we have
used the representation property to write DJ(g−1

1 g) = DJ(g−1
1 )DJ(g).

From g1e
J
αβ = eJγβD

J
γα(g1) and the matrix-element orthogonality, it fol-

lows that

eJαβ eKγδ =
dim J

|G|
∑

g∈G

[
DJ
αβ(g)

]∗
g eKγδ

=
dim J

|G|
∑

g∈G

[
DJ
αβ(g)

]∗
DK
εγ(g)e

K
εδ

= δJKδαεδβγ eKεδ
= δJKδβγ eJαδ. (5.34)

For each J , this multiplication rule of the eJαβ is identical to that of matrices
having zero entries everywhere except for the (α, β)-th, which is a “1.” There
are (dim J)2 of these eJαβ for each n-dimensional representation J , and they
are linearly independent. Because

∑
J(dim J)2 = |G|, they form a basis for

the algebra. In particular every element of G can be reconstructed as

g =
∑

J

DJ
ij(g)e

J
ij. (5.35)

We can also define the useful objects

PJ =
∑

i

eJii =
dim J

|G|
∑

g∈G

[
χJ(g)

]∗
g. (5.36)

They have the property

PJPK = δJKPK ,
∑

J

PJ = I, (5.37)

where I is the identity element of C(G). The PJ are therefore projection
operators composing a resolution of the identity. Their utility resides in the
fact that when D(g) is a reducible representation acting on a linear space

V =
⊕

J

VJ , (5.38)
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then setting g → D(g) in the formula for PJ results in a projection matrix
from V onto the irreducible component VJ . To see how this comes about, let
v ∈ V and, for any fixed p, set

vi = eJipv, (5.39)

where eJipv should be understood as shorthand for D(eJip)v. Then

D(g)vi = geJipv = eJjpvD
J
ji(g) = vjD

J
ji(g). (5.40)

We see the vi, if not all zero, are basis vectors for VJ . Since PJ is a sum of
the eJij, the vector PJv is a sum of such vectors, and therefore lies in VJ . The
advantage of using PJ over any individual eJip is that PJ can be computed
from character table, i.e. its construction does not require knowledge of the
irreducible representation matrices.

The algebra of classes

If a conjugacy class Ci consists of the elements {g1, g2, . . . gdi
}, we can define

Ci to be the corresponding element of the group algebra:

Ci =
1

di
(g1 + g2 + · · ·gdi

). (5.41)

(The factor of 1/di is a conventional normalization.) Because conjugation
merely permutes the elements of a conjugacy class, we have g−1Cig = Ci

for all g ∈ C(G). The Ci therefore commute with every element of C(G).
Conversely any element of C(G) that commutes with everything in C(G)
must be a linear combination C = c1C1 + c2C2 + . . .. The subspace of C(G)
consisting of sums of the classes is therefore the centre Z[C(G)] of the group
algebra. Because the product CiCj commutes with everything, it lies in
Z[C(G)] and so there are constants cij

k such that

CiCj =
∑

k

cij
kCk. (5.42)

We can regard the Ci as being linear maps from Z[C(G)] to itself, whose
associated matrices have entries (Ci)

k
j = cij

k. These matrices commute,
and can be simultaneously diagonalized. We will leave it as exercise for the
reader to demonstrate that

CiP
J =

(
χJi
χJ0

)
PJ . (5.43)



192 CHAPTER 5. GROUPS AND GROUP REPRESENTATIONS

Here χJ0 ≡ χJ{e} = dim J . The common eigenvectors of the Ci are therefore

the projection operators PJ , and the eigenvalues λJi = χJi /χ
J
0 are, up to nor-

malization, the characters. Equation (5.43) provides a convenient method
for computing the characters from knowledge only of the coefficients cij

k

appearing in the class multiplication table. Once we have found the eigen-
values λJi , we recover the χJi by noting that χJ0 is real and positive, and that∑

i di|χJi |2 = |G|.

Exercise 5.17: Use Schur’s lemma to show that for an irrep DJ(g) we have

1

di

∑

g∈Ci

DJ
jk(g) =

1

dimJ
δjkχ

J
i ,

and hence establish (5.43).

5.3 Physics Applications

5.3.1 Quantum Mechanics

When a group G = {gi} acts on a mechanical system, then G will act as set of
linear operators D(g) on the Hilbert space H of the corresponding quantum
system. Thus H will be a representation6 space for G. If the group is a
symmetry of the system then the D(g) will commute with the hamiltonian
Ĥ. If this is so, and if we can decompose

H =
⊕

irrepsJ

HJ (5.44)

into Ĥ-invariant irreps of G then Schur’s lemma tells us that in each HJ the
hamiltonian Ĥ will act as a multiple of the identity operator. In other words
every state in HJ will be an eigenstate of Ĥ with a common energy EJ .

This fact can greatly simplify the task of finding the energy levels. If
an irrep J occurs only once in the decomposition of H then we can find the
eigenstates directly by applying the projection operator PJ to vectors in H.

6The rules of quantum mechanics only require that D(g1)D(g2) = eiφ(g1,g2)D(g1g2).
A set of matrices that obeys the group multiplication rule “up to a phase” is called a
projective (or ray) representation. In many cases, however, we can choose the D(g) so
that φ is not needed. This is the case in all the examples we discuss.
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If the irrep occurs nJ times in the decomposition, then PJ will project to the
reducible subspace

HJ ⊕HJ ⊕ · · ·HJ︸ ︷︷ ︸
nJ copies

=M⊗HJ .

HereM is an nJ dimensional multiplicity space. The hamiltonian Ĥ will act
inM as an nJ -by-nJ matrix. In other words, if the vectors

|n, i〉 ≡ |n〉 ⊗ |i〉 ∈ M⊗HJ (5.45)

form a basior M⊗HJ , with n labelling which copy of HJ the vector |n, i〉
lies in, then

Ĥ|n, i〉 = |m, i〉HJ
mn,

D(g)|n, i〉 = |n, j〉DJ
ji(g). (5.46)

Diagonalizing HJ
nm provides us with nj Ĥ-invariant copies of HJ and gives

us the energy eigenstates.
Consider, for example, the molecule C60 (buckminsterfullerine) consisting

of 60 carbon atoms in the form of a soccer ball. The chemically active
electrons can be treated in a tight-binding approximation in which the Hilbert
space has dimension 60 — one π-orbital basis state for each each carbon atom.
The geometric symmetry group of the molecule is Yh = Y × Z2, where Y is
the rotational symmetry group of the icosohedron (a subgroup of SO(3)) and
Z2 is the parity inversion σ : r 7→ −r. The characters of Y are displayed in
table 5.3.

Typical element and class size
Y e C5 C2

5 C2 C3

Irrep 1 12 12 15 20
A 1 1 1 1 1
T1 3 τ−1 −τ -1 0
T2 3 −τ τ−1 -1 0
G 4 -1 -1 0 1
H 5 0 0 1 -1

Table 5.3: Character table for the group Y .
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In this table τ = 1
2
(
√

5 − 1) denotes the golden mean. The class C5 is the
set of 2π/5 rotations about an axis through the centres of a pair of antipodal
pentagonal faces, the class C3 is the set of of 2π/3 rotations about an axis
through the centres of a pair of antipodal hexagonal faces, and C2 is the set
of π rotatations through the midpoints of a pair of antipodal edges, each
lying between two adjacent hexagonal faces.
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Figure 5.3: A sketch of the tight-binding electronic energy levels of C60.

The geometric symmetry group acts on the 60-dimensional Hilbert space by
permuting the basis states concurrently with their associated atoms. Figure
5.3 shows how the 60 states are disposed into energy levels.7 Each level is
labelled by a lower case letter specifying the irrep of Y , and by a subscript
g or u standing for gerade (German for even) or ungerade (German for odd)
that indicates whether the wavefunction is even or odd under the inversion
σ : r 7→ −r.

The buckyball is roughly spherical, and the lowest 25 states can be
thought as being derived from the angular-momentum eigenstates with L =
0, 1, 2, 3, 4, that classify the energy levels for an electron moving on a perfect
sphere. In the many-electron ground-state, the 30 single-particle states with
energy below E < 0 are each occupied by pairs of spin up/down electrons.
The 30 states with E > 0 are empty.

7After R. C. Haddon, L. E. Brus, K. Raghavachari, Chem. Phys. Lett. 125 (1986) 459.
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To explain, for example, why three copies of T1 appear, and why two
of these are T1u and one T1g, we must investigate the manner in which the
60-dimensional Hilbert space decomposes into irreducible representations of
120-element group Yh. Problem 5.23 leads us through this computation, and
shows that no irrep of Yh occurs more that three times. In finding the energy
levels, we therefore never have to diagonalize a bigger than 3-by-3 matrix.

The equality of the energies of the hg and gg levels at E = −1 is an
accidental degeneracy . It is not required by the symmetry, and will presum-
ably disappear in a more sophisticated calculation. The appearance of many
“accidental” degeneracies in an energy spectrum hints that there may be a
hidden symmetry that arises from something beyond geometry. For example,
in the Schrödinger spectrum of the hydrogen atom all states with the same
principal quantum number n have the same energy although they correspond
to different irreps L = 1, . . . , n− 1 of O(3). This degeneracy occurs because
the classical Kepler-orbit problem has symmetry group O(4), rather than the
näıvely expected O(3) rotational symmetry.

5.3.2 Vibrational spectrum of H2O

The small vibrations of a mechanical system with n degrees of freedom are
governed by a Lagrangian of the form

L =
1

2
ẋTM ẋ− 1

2
xTV x (5.47)

where M and V are symmetric n-by-n matrices, and with M being positive
definite. This Lagrangian leads to the equations of motion

M ẍ = V x (5.48)

We look for normal mode solutions x(t) ∝ eiωitxi, where the vectors xi obey

−ω2
iMxi = V xi. (5.49)

The normal-mode frequencies are solutions of the secular equation

det (V − ω2M) = 0, (5.50)

and modes with distinct frequencies are orthogonal with respect to the inner
product defined by M ,

〈x,y〉 = xTMy. (5.51)
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We are interested in solving this problem for vibrations about the equi-
librium configuration of a molecule. Suppose this equilibrium configuration
has a symmetry group G. This gives rise to an n-dimensional representation
on the space of x’s in which

g : x 7→ D(g)x, (5.52)

leaves both the intertia matrix M and the potential matrix V unchanged.

[D(g)]TMD(g) = M, [D(g)]TV D(g) = V. (5.53)

Consequently, if we have an eigenvector xi with frequency ωi,

−ω2
iMxi = V xi (5.54)

we see that D(g)xi also satisfies this equation. The frequency eigenspaces
are therefore left invariant by the action of D(g), and barring accidental
degeneracy, there will be a one-to-one correspondence between the frequency
eigenspaces and the irreducible representations occurring in D(g).

Consider, for example, the vibrational modes of the water molecule H2O.
This familiar molecule has symmetry group C2v which is generated by two
elements: a rotation a through π about an axis through the oxygen atom,
and a reflection b in the plane through the oxygen atom and bisecting the
angle between the two hydrogens. The product ab is a reflection in the plane
defined by the equilibrium position of the three atoms. The relations are
a2 = b2 = (ab)2 = e, and the characters are displayed in table 5.4.

class and size
C2v e a b ab
Irrep 1 1 1 1
A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1

Table 5.4: Character table of C2v.

The group C2v is Abelian, so all the representations are one dimensional.
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To find out what representations occur when C2v acts, we need to find
the character of its action D(g) on the nine-dimensional vector

x = (xO, yO, zO, xH1
, yH1

, zH1
, xH2

, yH2
, zH2

). (5.55)

Here the coordinates xH2
, yH2

, zH2
etc. denote the displacements of the la-

belled atom from its equilibrium position.
We take the molecule as lying in the xy plane, with the z pointing towards

us.
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Figure 5.4: Water Molecule.

The effect of the symmetry operations on the atomic displacements is

D(a)x = (−xO,+yO,−zO,−xH2
,+yH2

,−zH2
,−xH1

,+yH1
,−zH1

)

D(b)x = (−xO,+yO,+zO,−xH2
,+yH2

,+zH2
,−xH1

,+yH1
,+zH1

)

D(ab)x = (+xO,+yO,−zO,+xH1
,+yH1

,−zH1
,+xH2

,+yH2
,−zH2

).

Notice how the transformations D(a), D(b) have interchanged the displace-
ment co-ordinates of the two hydrogen atoms. In calculating the character
of a transformation we need look only at the effect on atoms that are left
fixed — those that are moved have matrix elements only in non-diagonal
positions. Thus, when computing the compound characters for a b, we can
focus on the oxygen atom. For ab we need to look at all three atoms. We
find

χD(e) = 9,

χD(a) = −1 + 1− 1 = −1,

χD(b) = −1 + 1 + 1 = 1,

χD(ab) = 1 + 1− 1 + 1 + 1− 1 + 1 + 1− 1 = 3.
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By using the orthogonality relations, we find the decomposition



9
−1
1
3


 = 3




1
1
1
1


+




1
1
−1
−1


+ 2




1
−1
1
−1


 + 3




1
−1
−1
1


 (5.56)

or
χD = 3χA1 + χA2 + 2χB1 + 3χB2. (5.57)

Thus, the nine-dimensional representation decomposes as

D = 3A1 ⊕ A2 ⊕ 2B1 ⊕ 3B2. (5.58)

How do we exploit this? First we cut out the junk. Out of the nine
modes, six correspond to easily identified zero-frequency motions – three of
translation and three rotations. A translation in the x direction would have
xO = xH1

= xH2
= ξ, all other entries being zero. This displacement vector

changes sign under both a and b, but is left fixed by ab. This behaviour
is characteristic of the representation B2. Similarly we can identify A1 as
translation in y, and B1 as translation in z. A rotation about the y axis
makes zH1

= −zH2
= φ. This is left fixed by a, but changes sign under b and

ab, so the y rotation mode is A2. Similarly, rotations about the x and z axes
correspond to B1 and B2 respectively. All that is left for genuine vibrational
modes is 2A1 ⊕B2.

We now apply the projection operator

PA1 =
1

4
[(χA1(e))∗D(e) + (χA1(a))∗D(b) + (χA1(b))∗D(b) + (χA1(ab))∗D(ab)]

(5.59)
to vH1,x, a small displacement of H1 in the x direction. We find

PA1vH1,x =
1

4
(vH1,x − vH2,x − vH2,x + vH1,x)

=
1

2
(vH1,x − vH2,x). (5.60)

This mode is an eigenvector for the vibration problem.
If we apply PA1 to vH1,y and vO,y we find

PA1vH1,y =
1

2
(vH1,y + vH2,y),

PA1vO,y = vO,y, (5.61)
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but we are not quite done. These modes are contaminated by the y trans-
lation direction zero mode, which is also in an A1 representation. After
we make our modes orthogonal to this, there is only one left, and this has
yH1

= yH2
= −yOmO/(2mH) = a1, all other components vanishing.

We can similarly find vectors corresponding to B2 as

PB2vH1,x =
1

2
(vH1,x + vH2,x)

PB2vH1,y =
1

2
(vH1,y − vH2,y)

PB2vO,x = vO,x

and these need to be cleared of both translations in the x direction and
rotations about the z axis, both of which transform under B2. Again there
is only one mode left and it is

yH1
= −yH2

= αxH1
= αxH2

= βx0 = a2 (5.62)

where α is chosen to ensure that there is no angular momentum about O,
and β to make the total x linear momentum vanish. We have therefore
found three true vibration eigenmodes, two transforming under A1 and one
under B2 as advertised earlier. The eigenfrequencies, of course, depend on
the details of the spring constants, but now that we have the eigenvectors we
can just plug them in to find these.

5.3.3 Crystal Field Splittings

A quantum mechanical system has a symmetry G if the hamiltonian Ĥ obeys

D−1(g)ĤD(g) = Ĥ, (5.63)

for some group action D(g) : H → H on the Hilbert space. If follows that
the eigenspaces, Hλ, of states with a common eigenvalue, λ, are invariant
subspaces for the representation D(g).

We often need to understand how a degeneracy is lifted by perturbations
that break G down to a smaller subgroup H . An n-dimensional irreducible
representation of G is automatically a representation of any subgroup of G,
but in general it is no longer be irreducible. Thus the n-fold degenerate
level is split into multiplets, one for each of the irreducible representations
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of H contained in the original representation. The manner in which an orig-
inally irreducible representation decomposes under restriction to a subgroup
is known as the branching rule for the representation.

A physically important case is given by the breaking of the full SO(3)
rotation symmetry of an isolated atomic hamiltonian by a crystal field Sup-
pose the crystal has octohedral symmetry. The characters of the octohedral
group are displayed in table 5.5.

Class(size)
O e C3(8) C2

4(3) C2(6) C4(6)
A1 1 1 1 1 1
A2 1 1 1 -1 -1
E 2 -1 2 0 0
F2 3 0 -1 1 -1
F1 3 0 -1 -1 1

Table 5.5: Character table of the octohedral group O.

The classes are lableled by the rotation angles, C2 being a twofold rotation
axis (θ = π), C3 a threefold axis (θ = 2π/3), etc..

The chacter of the J = l representation of SO(3) is

χl(θ) =
sin(2l + 1)θ/2

sin θ/2
, (5.64)

and the first few χl’s evaluated on the rotation angles of the classes of O are
dsiplayed in table 5.6.

Class(size)
l e C3(8) C2

4(3) C2(6) C4(6)
0 1 1 1 1 1
1 3 0 -1 -1 -1
2 5 -1 1 1 -1
3 7 1 -1 -1 -1
4 9 0 1 1 1

Table 5.6: Characters evaluated on rotation classes
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The 9-fold degenerate l = 4 multiplet therefore decomposes as
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1
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1




+
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2
0
0




+




3
0
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−1
1




+




3
0
−1
1
−1



, (5.65)

or
χ4
SO(3) = χA1 + χE + χF1 + χF2. (5.66)

The octohedral crystal field splits the nine states into four multiplets with
symmetries A1, E, F1, F2 and degeneracies 1, 2, 3 and 3, respectively.

We have considered only the simplest case here, ignoring the complica-
tions introduced by reflection symmetries, and by 2-valued spinor represen-
tations of the rotation group.

5.4 Further Exercises and Problems

We begin with some technologically important applications of group theory
to cryptography and number theory.

Exercise 5.18: The set Zn forms a group under multiplication only when n is
a prime number. Show, however, that the subset U(Zn) ⊂ Zn of elements of
Zn that are co-prime to n is a group. It is the group of units of the ring Zn.

Exercise 5.19: Cyclic groups. A group G is said to be cyclic if its elements
consist of powers an of of an element a, called the generator . The group will
be of finite order |G| = m if am = a0 = e for some m ∈ Z+.

a) Show that a group of prime order is necessarily cyclic, and that any
element other than the identity can serve as its generator. (Hint: Let
a be any element other than e and consider the subgroup consisting of
powers am.)

b) Show that any subgroup of a cyclic group is itself cyclic.

Exercise 5.20: Cyclic groups and cryptography. In a large cyclic group G
it can be relatively easy to compute ax, but to recover x given h = ax one
might have to compute ay and compare it with h for every 1 < y < |G|. If
|G| has several hundred digits, such a brute force search could take longer
than the age of the universe. Rather more efficient algorithms for this discrete
logarithm problem exist, but the difficulty is still sufficient for it to be useful
in cryptopgraphy.
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a) Diffie-Hellman key exchange. This algorithm allows Alice and Bob to
establish a secret key that can be used with a conventional cypher with-
out Eve, who is listening to their conversation, being able to reconstruct
it. Alice choses a random element g ∈ G and an integer x between 1 and
|G| and computes gx. She sends g and gx to Bob, but keeps x to herself.
Bob chooses an integer y and computes gy and gxy = (gx)y. He keeps
y secret and sends gy to Alice, who computes gxy = (gy)x. Show that,
although Eve knows g, gy and gx, she cannot obtain Alice and Bob’s
secret key gxy without solving the discrete logarithm problem.

b) ElGamal public key encryption. This algorithm, based on Diffie-Hellman,
was invented by the Egyptian cryptographer Taher Elgamal. It is a
component of PGP and and other modern encryption packages. To use
it, Alice first chooses a random integer x in the range 1 to |G| and
computes h = ax. She publishes a description of G, together with the
elements h and a, as her public key. She keeps the integer x secret. To
send a message m to Alice, Bob chooses an integer y in the same range
and computes c1 = ay, c2 = mhy. He transmits c1 and c2 to Alice, but
keeps y secret. Alice can recover m from c1, c2 by computing c2(c

x
1)−1.

Show that, although Eve knows Alice’s public key and has overheard c1
and c2, she nonetheless cannot decrypt the message without solving the
discrete logarithm problem.

Popular choices for G are subgroups of (Zp)
×, for large prime p. (Zp)

× is itself
cyclic (can you prove this?), but is unsuitable for technical reasons.

Exercise 5.21: Modular arithmetic and number theory . An integer a is said
to be a quadratic residue mod p if there is an r such that a = r2 (mod p).
Let p be an odd prime. Show that if r21 = r22 (mod p) then r1 = ±r2 (mod p),
and that r 6= −r (mod p). Deduce that exactly one half of the p− 1 non-zero
elements of Zp are quadratic residues.

Now consider the Legendre symbol

(
a

p

)
def
=





0, a = 0,
1, a a quadratic residue (mod p),
−1 a not a quadratic residue (mod p).

Show that (
a

p

)(
b

p

)
=

(
ab

p

)
,

and so the Legendre symbol forms a one-dimensional representation of the
multiplicative group (Zp)

×. Combine this fact with the character orthogonality
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theorem to give an alternative proof that precisely half the p − 1 elements of
(Zp)

× are quadratic residues. (Hint: To show that the product of two non-
residues is a residue, observe that the set of residues is a normal subgroup of
(Zp)

×, and consider the multiplication table of the resulting quotient group.)

Exercise 5.22: More practice with modular arithmetic. Again let p be an odd
prime. Prove Euler’s theorem that

a(p−1)/2 (mod p) =

(
a

p

)
.

(Hint: Begin by showing that the usual school-algebra proof that an equa-
tion of degree n can have no more than n solutions remains valid for arith-
metic modulo a prime number, and so a(p−1)/2 = 1 (mod p) can have no more
than(p− 1)/2 roots. Cite Fermat’s little theorem to show that these roots
must be the quadratic residues. Cite Fermat again to show that the quadratic
non-residues must then have a(p−1)/2 = −1 (mod p).)

The harder-to-prove law of quadratic reciprocity asserts that for p, q odd primes,
we have

(−1)(p−1)(q−1)/4

(
p

q

)
=

(
q

p

)
.

Problem 5.23: Buckyball spectrum. Consider the symmetry group of the C60

buckyball molecule of figure 5.3.

a) Starting from the character table of the orientation-preserving icosohe-
dral group Y (table 5.3), and using the fact that the Z2 parity inversion
σ : r → −r combines with g ∈ Y so that DJg(σg) = DJg(g), whilst
DJu(σg) = −DJu(g), write down the character table of the extended
group Yh = Y ×Z2 that acts as a symmetry on the C60 molecule. There
are now ten conjugacy classes, and the ten representations will be la-
belled Ag, Au, etc. Verify that your character table has the expected
row-orthogonality properties.

b) By counting the number of atoms left fixed by each group operation,
compute the compound character of the action of Yh on the C60 molecule.
(Hint: Examine the pattern of panels on a regulation soccer ball, and
deduce that four carbon atoms are left unmoved by operations in the
class σC2.)

c) Use your compound character from part b), to show that the 60-dimensional
Hillbert space decomposes as

HC60
= Ag ⊕ T1g ⊕ 2T1u ⊕ T2g ⊕ 2T2u ⊕ 2Gg ⊕ 2Gu ⊕ 3Hg ⊕ 2Hu,

consistent with the energy-levels sketched in figure 5.3.
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Problem 5.24: The Frobenius-Schur Indicator. Recall that a real or pseudo-
real representation is one such that D(g) ∼ D∗(g), and for unitary matrices D
we have D∗(g) = [DT (g)]−1. In this unitary case D(g) being real or pseudo-
real is equivalent to the statement that there exists an invertible matrix F
such that

FD(g)F−1 = [DT (g)]−1.

We can rewrite this statement as DT (g)FD(g) = F , and so F can be inter-
preted as the matrix representing a G-invariant quadratic form.

i) Use Schur’s lemma to show that when D is irreducible the matrix F is
unique up to an overall constant. In other words, DT (g)F1D(g) = F1

and DT (g)F2D(g) = F2 for all g ∈ G implies that F2 = λF1. Deduce
that for irreducible D we have F T = ±F .

ii) By reducing F to a suitable canonical form, show that F is symmetric
(F = F T ) in the case that D(g) is a real representation, and F is skew
symmetric (F = −F T ) when D(g) is a pseudo-real representation.

iii) Now let G be a finite group. For any matrix U , the sum

FU =
1

|G|
∑

g∈G
DT (g)UD(g)

is a G-invariant matrix. Deduce that FU is always zero when D(g) is
neither real nor pseudo-real, and, by specializing both U and the indices
on FU , show that in the real or pseudo-real case

∑

g∈G
χ(g2) = ±

∑

g∈G
χ(g)χ(g),

where χ(g) = trD(g) is the character of the irreducible representation
D(g). Deduce that the Frobenius-Schur indicator

κ
def
=

1

|G|
∑

g∈G
χ(g2)

takes the value +1, −1, or 0 when D(g) is, respectively, real, pseudo-real,
or not real.

iv) Show that the identity representation occurs in the decomposition of the
tensor product D(g) ⊗D(g) of an irrep with itself if, and only if, D(g)
is real or pseudo-real. Given a basis ei for the vector space V on which
D(g) acts, show the matrix F can be used to construct the basis for the
identity-representation subspace V id in the decomposition

V ⊗ V =
⊕

irreps J

V J .
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Problem 5.25: Induced Representations. Suppose we know a representation
DW (h) : W → W for a subgroup H ⊂ G. From this representation we can
construct an induced representation IndGH(DW ) for the larger group G. The
construction cleverly combines the coset space G/H with the representation
space W to make a (usually reducible) representation space IndGH(W ) of di-
mension |G/H| × dimW .

Recall that there is a natural action of G on the coset space G/H. If x =
{g1, g2, . . .} ∈ G/H then gx is the coset {gg1, gg2, . . .}. We select from each
coset x ∈ G/H a representative element ax, and observe that the product gax
can be decomposed as gax = agxh, where agx is the selected representative
from the coset gx and h is some element of H. Next we introduce a basis
|n, x〉 for IndGH(W ). We use the symbol “0” to label the coset {e}, and take
|n, 0〉 to be the basis vectors for W . For h ∈ H we can therefore set

D(h)|n, 0〉 def
= |m, 0〉DW

mn(h).

We also define the result of the action of ax on |n, 0〉 to be the vector |n, x〉:

D(ax)|n, 0〉 def
= |n, x〉.

We may now obtain the the action of a general element of G on the vectors
|n, x〉 by requiring D(g) to be representation, and so computing

D(g)|n, x〉 = D(g)D(ax)|n, 0〉
= D(gax)|n, 0〉
= D(agxh)|n, 0〉
= D(agx)D(h)|n, 0〉
= D(agx)|m, 0〉DW

mn(h)

= |m, gx〉DW
mn(h).

i) Confirm that the action D(g)|n, x〉 = |m, gx〉DW
mn(h), with h obtained

from g and x via the decomposition gax = agxh, does indeed define a
representation of G. Show also that if we set |f〉 =

∑
n,x fn(x)|n, x〉,

then the action of g on the components takes

fn(x) 7→ DW
nm(h)fm(g−1x).

ii) Let f(h) be a class function on H. Let us extend it to a function on G
by setting f(g) = 0 if g /∈ H, and define

IndGH [f ](s) =
1

|H|
∑

g∈G
f(g−1sg).
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Show that IndGH [f ](s) is a class function on G, and further show that if
χW is the character of the starting representation for H then IndGH [χW ]
is the character of the induced representation of G. (Hint, only fixed
points of the G-action on G/H contribute to the character, and gx = x
means that gax = axh. Thus DW (h) = DW (a−1

x gax).)
iii) Given a representation DV (g) : V → V of G we can trivially obtain a

(generally reducible) representation ResGH(V ) of H ⊂ G by restricting G
to H. Define the usual inner product on the group functions by

〈φ1, φ2〉G =
1

|G|
∑

g∈G
φ1(g

−1)φ2(g),

and show that if ψ is a class function on H and φ a class function on G
then

〈ψ,ResGH [φ]〉H = 〈IndGH [ψ], φ〉G.
Thus, IndGH and ResGH are, in some sense, adjoint operations. Mathe-
maticians would call them a pair of mutually adjoint functors.

iv) By applying the result from part (iii) to the characters of the irreducible
representations of G and H, deduce Frobenius’ reciprocity theorem: The
number of times an irrepDJ(g) of G occurs in the representation induced
from an irrepDK(h) of H is equal to the number of times that DK occurs
in the decomposition of DJ into irreps of H.

The representation of the Poincaré group (= the SO(1, 3) Lorentz group to-
gether with space-time translations) that classifies the states of a spin-J ele-
mentary particle are those induced from the spin-J representation of its SO(3)
rotation subgroup. The quantum state of a mass m elementary particle is
therefore of the form |k, σ〉 where k is the particle’s four-momentum, which
lies is the coset SO(1, 3)/SO(3), and σ is the label from the |J, σ〉 spin state.



Chapter 6

Lie Groups

Lie groups are named after the Norwegian mathematician Sophus Lie. They
consist of a manifoldG equipped with a group multiplication rule (g1, g2) 7→ g3

which is a smooth function of the g’s, as is the operation of taking the inverse
of a group element. The most commonly met examples in physics are the
infinite families of matrix groups GL(n), SL(n), O(n), SO(n), U(n), SU(n),
and Sp(n), togther with the family of five exceptional Lie groups: G2, F4,
E6, E7, and E8, which have applications in string theory.

One of the properties of a Lie group is that, considered as a manifold,
the neighbourhood of any point looks exactly like that of any other. The
group’s dimension and most of its structure can be understood by examining
the immediate vicinity any chosen point, which we may as well take to be
the identity element. The vectors lying in the tangent space at the identity
element make up the Lie algebra of the group. Computations in the Lie
algebra are often easier than those in the group, and provide much of the
same information. This chapter will be devoted to studying the interplay
between the Lie group itself and this Lie algebra of infinitesimal elements.

6.1 Matrix Groups

The Classical Groups are described in a book with this title by Hermann
Weyl. They are subgroups of the general linear group, GL(n,F), which con-
sists of invertible n-by-n matrices over the field F. We will mostly consider
the cases F = C or F = R.

A near-identity matrix in GL(n,R) can be written g = I + εA where A

207
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is an arbitrary n-by-n real matrix. This matrix contains n2 real entries, so
we can move away from the identity in n2 distinct directions. The tangent
space at the identity, and hence the group manifold itself, is therefore n2

dimensional. The manifold of GL(n,C) has n2 complex dimensions, and this
corresponds to 2n2 real dimensions.

If we restrict the determinant of a GL(n,F) matrix to be unity, we get
the special linear group, SL(n,F). An element near the identity in this group
can still be written as g = I + εA, but since

det (I + εA) = 1 + ε tr(A) +O(ε2) (6.1)

this requires tr(A) = 0. The restriction on the trace means that SL(n,R)
has dimension n2 − 1.

6.1.1 The Unitary and Orthogonal Groups

Perhaps the most important of the matrix groups are the unitary and or-
thogonal groups.

The Unitary group

The unitary group U(n) comprises the set of n-by-n complex matrices U such
that U † = U−1. If we consider matrices near the identity

U = I + εA, (6.2)

with ε real, then unitarity requires

I +O(ε2) = (I + εA)(I + εA†)

= I + ε(A + A†) +O(ε2), (6.3)

so Aij = −A∗
ji and A is skew hermitian. A complex skew-hermitian matrix

contains

n+ 2× 1

2
n(n− 1) = n2

real parameters. In this counting the first “n” is the number of entries on
the diagonal, each of which must be of the form i times a real number. The
n(n− 1)/2 is the number of entries above the main diagonal, each of which
can be an arbitrary complex number. The number of real dimensions in the
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group manifold is therefore n2. The rows or columns in the matrix U form
an orthonormal set of vectors. Their entries are therefore bounded, |Uij | ≤ 1,
and this property leads to the n2 dimensional group manifold of U(n) being
a compact set.

When a group manifold is compact, we say that the group itself is a
compact group. There is a natural notion of volume on a group manifold
and compact Lie groups have finite total volume. Because of this, they have
many properties in common with the finite groups we studied in the last
chapter.

Recall that a group is simple if it possesses no invariant subgroups. U(n)
is not simple. Its centre is an invariant U(1) subgroup consisting of matrices
of the form U = eiθ I. The special unitary group SU(n), consists of n-by-n
unimodular (having determinant +1 ) unitary matrices. It is not strictly
simple because its center Z consists of the discrete subgroup of matrices
Um = ωm I with ω an n-th root of unity, and this is an invariant subgroup.
Because Z, its only invariant subgroup, is not a continuous group, SU(n)
is counted as being simple in Lie theory. With U = I + εA, as above, the
unimodularity imposes the additional constraint on A that trA = 0, so the
SU(n) group manifold is n2 − 1 dimensional.

The Orthogonal Group

The orthogonal group O(n), consists of the the set of real matrices O with
the property that OT = O−1. For a matrix in the neighbourhood of the
identity, O = I + εA, this condition requires that A be skew symmetric:
Aij = −Aij . Skew symmetric real matrices have n(n − 1)/2 independent
entries, and so the group manifold of O(n) is n(n − 1)/2 dimensional. The
condition OTO = I means that the rows or columns of O, considered as row
or column vectors, are orthonormal. All entries are bounded |Oij| ≤ 1, and
again this leads to O(n) being a compact group.

The identity

1 = det (OTO) = detOTdetO = (detO)2 (6.4)

tells us that detO = ±1. The subset of orthogonal matrices with detO = +1
constitute a subgroup of O(n) called the special orthogonal group, SO(n). The
unimodularity condition discards a disconnected part of the group manifold
and does not reduce its dimension, which remains n(n− 1)/2.
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6.1.2 Symplectic Groups

The symplectic groups (named from Greek meaning to “fold together”) are
probably less familiar than the other matrix groups.

We start with a non-degenerate skew-symmetric matrix ω. The symplec-
tic group Sp(2n,F) is then defined by

Sp(2n,F) = {S ∈ GL(2n,F) : STωS = ω}. (6.5)

Here F can be R or C. When F = C, we still use the transpose “T ,” not †, in
this definition. Setting S = I2n + εA and demanding that STωS = ω shows
that ATω + ωA = 0.

It does not matter what skew matrix ω we start from, because we can
always find a basis in which ω takes its canonical form:

ω =

(
0 −In
In 0

)
. (6.6)

In this basis we find, after a short computation, that the most general form
for A is

A =

(
a b
c −aT

)
. (6.7)

Here a is any n-by-n matrix, and b and c are symmetric ( bT = b and
cT = c) n-by-n matrices. If the matrices are real, then counting the degrees
of freedom gives the dimension of the real symplectic group as

dim Sp(2n,R) = n2 + 2× n

2
(n+ 1) = n(2n+ 1). (6.8)

The entries in a, b, c can be arbitrarily large. Sp(2n,R) is not compact.
The determinant of any symplectic matrix is +1. To see this take the

elements of ω to be ωij, and let

ω(x, y) = ωijx
iyj (6.9)

be the associated skew bilinear (not sesquilinear) form . Then Weyl’s identity
from exercise ??.?? shows that

Pf (ω) (detM) det |x1, . . . x2n|
=

1

2nn!

∑

π∈S2n

sgn (π)ω(Mxπ(1),Mxπ(2)) · · ·ω(Mxπ(2n−1),Mxπ(2n)),
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for any linear map M . If ω(x, y) = ω(Mx,My), we conclude that detM =
1 — but preserving ω is exactly the condition that M be an element of
the symplectic group. Since the matrices in Sp(2n,F) are automatically
unimodular there is no “special symplectic” group.

Unitary Symplectic Group

The intersection of two groups is also a group. We therefore define the unitary

symplectic group as

Sp(n) = Sp(2n,C) ∩U(2n). (6.10)

This group is compact. We will see that its dimension is n(2n+1), the same
as the non-compact Sp(2n,R). Sp(n) may also be defined as U(n,H) where
H denotes the skew field of quaternions.
Warning: Physics papers often make no distinction between Sp(n), which
is a compact group, and Sp(2n,R) which is non-compact. To add to the
confusion the compact Sp(n) is also sometimes called Sp(2n). You have to
judge from the context what group the author has in mind.
Physics Application: Kramers’ degeneracy. Let C = iσ̂2. Therefore

C−1σ̂nC = −σ̂∗
n. (6.11)

A time-reversal invariant Hamiltonian containing L ·S spin-orbit interactions
obeys

C−1HC = H∗. (6.12)

If we regard the 2n-by-2n matrix H as being an n-by-n matrix whose entries
Hij are themselves 2-by-2 matrices, which we expand as

Hij = h0
ij + i

3∑

n=1

hnij σ̂n,

then the condition (6.12) implies that the haij are real numbers. We say
that H is real quaternionic. This is because the Pauli sigma matrices are
algebraically isomorphic to Hamilton’s quaternions under the identification

iσ̂1 ↔ i,
iσ̂2 ↔ j,
iσ̂3 ↔ k.

(6.13)
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The hermiticity of H requires that Hji = Hij where the overbar denotes
quaternionic conjugation

q0 + iq1σ̂1 + iq2σ̂2 + iq3σ̂3 → q0 − iq1σ̂1 − iq2σ̂2 − iq3σ̂3. (6.14)

If Hψ = Eψ, then HCψ∗ = Eψ∗. Since C is skew, ψ and Cψ∗ are necessarily
orthogonal. Therefore all states are doubly degenerate. This is Kramers’

degeneracy.
H may be diagonalized by a matrix in U(n,H), where U(n,H) consists

of those elements of U(2n) that satisfy C−1UC = U∗. We may rewrite this
condition as

C−1UC = U∗ ⇒ UCUT = C,

so U(n,H) consists of the unitary matrices that preserve the skew matrix C.
Thus U(n,H) ⊆ Sp(n). Further investigation shows that U(n,H) = Sp(n).

We can exploit the quaternionic viewpoint to count the dimensions. Let
U = I+εB be in U(n,H), then Bij+Bji = 0. The diagonal elements of B are
thus pure “imaginary” quaternions having no part proportional to I. There
are therefore 3 parameters for each diagonal element. The upper triangle has
n(n− 1)/2 independent elements, each with 4 parameters. Counting up, we
find

dim U(n,H) = dim Sp(n) = 3n + 4× n

2
(n− 1) = n(2n+ 1). (6.15)

Thus, as promised, we see that the compact group Sp(n) and the non-
compact group Sp(2n,R) have the same dimension.

We can also count the dimension of Sp(n) by looking at our previous
matrices

A =

(
a b
c −aT

)

where a b and c are now allowed to be complex, but with the restriction that
S = I + εA be unitary. This requires A to be skew-hermitian, so a = −a†,
and c = −b†, while b (and hence c) remains symmetric. There are n2 free
real parameters in a, and n(n + 1) in b, so

dim Sp(n) = (n2) + n(n+ 1) = n(2n+ 1)

as before.
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Exercise 6.1: Show that

SO(2N) ∩ Sp(2N,R) ∼= U(N).

Hint: Group the 2N basis vectors on which O(2N) acts into pairs xn and yn,
n = 1, . . . , N . Assemble these pairs into zn = xn + iyn and z̄ = xn − iyn. Let
ω be the linear map that takes xn → yn and yn → −xn. Show that the subset
of SO(2N) that commutes with ω mixes zi’s only with zi’s and z̄i’s only with
z̄i’s.

6.2 Geometry of SU(2)

To get a sense of Lie groups as geometric objects, we will study the simplest
non-trivial case of SU(2) in some detail.

A general 2-by-2 complex matrix can be parametrized as

U =

(
x0 + ix3 ix1 + x2

ix1 − x2 x0 − ix3

)
. (6.16)

The determinant of this matrix is unity provided

(x0)2 + (x1)2 + (x2)2 + (x3)2 = 1. (6.17)

When this condition is met, and if in addition the xi are real, the matrix is
unitary: U † = U−1. The group manifold of SU(2) can therefore be identified
with the three-sphere S3. We will take as local co-ordinates x1, x2, x3. When
we desire to know x0 we will find it from x0 =

√
1− (x1)2 − (x2)2 − (x3)2.

This co-ordinate chart only labels the points in the half of the three-sphere
with x0 > 0, but this is typical of any non-trivial manifold. A complete atlas
of charts can be constructed if needed.

We can simplify our notation by using the Pauli sigma matrices

σ̂1 =

(
0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
. (6.18)

These obey

[σ̂i, σ̂j] = 2iεijkσ̂k, and σi, σ̂j + σ̂j σ̂i = 2δijI. (6.19)

In terms of them, we can write

g = U = x0I + ix1σ̂1 + ix2σ̂2 + ix3σ̂3. (6.20)
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Elements of the group in the neighbourhood of the identity differ from e ≡ I
by real linear combinations of the iσ̂i. The three-dimensional vector space
spanned by these matrices is therefore the tangent space TGe at the identity
element. For any Lie group this tangent space is called the Lie algebra,
g = LieG of the group. There will be a similar set of matrices iλ̂i for any
matrix group. They are called the generators of the Lie algebra, and satisfy
commutation relations of the form

[iλ̂i, iλ̂j ] = −f k
ij (iλ̂k), (6.21)

or equivalently
[λ̂i, λ̂j] = if k

ij λ̂k (6.22)

The f k
ij are called the structure constants of the algebra. The “i”’s associ-

ated with the λ̂’s in this expression are conventional in physics texts because
for quantum mechanics application we usually desire the λ̂i to be hermitian.
They are usually absent in books written for mathematicians.

Exercise 6.2: Let λ̂1 and λ̂2 be hermitian matrices. Show that if we define λ̂3

by the relation [λ̂1, λ̂2] = iλ̂3, then λ̂3 is also a hermitian matrix.

Exercise 6.3: For the group O(n) the matrices “iλ̂” are real n-by-n skew
symmetric matrices A. Show that if A1 and A2 are real skew symmetric
matrices, then so is [A1, A2].

Exercise 6.4: For the group Sp(2n,R) the iλ̂ matrices are of the form

A =

(
a b
c −aT

)

where a is any real n-by-n matrix and b and c are symmetric (aT = a and
bT = b) real n-by-n matrices. Show that the commutator of any two matrices
of this form is also of this form.

6.2.1 Invariant vector fields

Consider a matrix group, and in it a group element I + iελ̂i lying close to
the identity e ≡ I. Draw an arrow connecting I to I + iελ̂i, and regard
this arrow as a vector Li lying in TGe. Next map the infinitesimal element
I + iελ̂i to the neighbourhood an arbitrary group element g by multiplying
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on the left to get g(I + iελ̂i). By drawing an arrow from g to g(I + iελ̂i), we
obtain a vector Li(g) lying in TGg. This vector at g is the push forward of
the vector at e by left multiplication by g. For example, consider SU(2) with
infinitesimal element I + iεσ̂3. We find

g(I + iεσ̂3) = (x0 + ix1σ̂1 + ix2σ̂2 + ix3σ̂3)(I + iεσ̂3)

= (x0 − εx3) + iσ̂1(x
1 − εx2) + iσ̂2(x

2 + εx1) + iσ̂3(x
3 + εx0).

(6.23)

This computation can also be interpreted as showing that the multiplication
of g ∈ SU(2) on the right by (I + iεσ̂3) displaces the point g, changing its xi

parameters by an amount

δ




x0

x1

x2

x3


 = ε




−x3

−x2

x1

x0


 . (6.24)

Knowing how the displacement looks in terms of the x1, x2, x3 co-ordinate
system lets us read off the ∂/∂xµ components of the vector L3 lying in TGg

L3 = −x2∂1 + x1∂2 + x0∂3. (6.25)

Since g can be any point in the group, we have constructed a globally defined
vector field L3 that acts on a function F (g) on the group manifold as

L3F (g) = lim
ε→0

{
1

ε
[F (g(I + iεσ̂3))− F (g)]

}
. (6.26)

Similarly we obtain

L1 = x0∂1 − x3∂2 + x2∂3

L2 = x3∂1 + x0∂2 − x1∂3. (6.27)

The vector fields Li are said to be left invariant because the push-forward
of the vector Li(g) lying in the tangent space at g by multiplication on the
left by any g′ produces a vector g′∗[Li(g)] lying in the tangent space at g′g,
and this pushed-forward vector coincides with the Li(g

′g) already there. We
can express this statement tersely as g∗Li = Li.
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Using ∂ix
0 = −xi/x0, i = 1, 2, 3, we can compute the Lie brackets and

find
[L1, L2] = −2L3. (6.28)

In general
[Li, Lj] = −2εijkLk, (6.29)

which coincides with the matrix commutator of the iσ̂i.
This construction works for all Lie groups. For each basis vector Li in the

tangent space at the identity e, we push it forward to the tangent space at g
by left multiplication by g, and so construct the global left-invariant vector
field Li. The Lie bracket of these vector fields will be

[Li, Lj ] = −f k
ij Lk, (6.30)

where the coefficients f k
ij are guaranteed to be position independent because

(see exercise 3.5) the operation of taking the Lie bracket of two vector fields
commutes with the operation of pushing-forward the vector fields. Con-
sequently the Lie bracket at any point is just the image of the Lie bracket
calculated at the identity. When the group is a matrix group, this Lie bracket
will coincide with the commutator of the iλ̂i, that group’s analogue of the
iσ̂i matrices.

The Exponential Map

Recall that given a vector field X ≡ Xµ∂µ we define associated flow by
solving the equation

dxµ

dt
= Xµ(x(t)). (6.31)

If we do this for the left-invariant vector field L, with initial condition
x(0) = e, we obtain a t-dependent group element g(x(t)), which we denote
by Exp (tL). The symbol “Exp ” stands for the exponential map which takes
elements of the Lie algebra to elements of the Lie group. The reason for the
name and notation is that for matrix groups this operation corresponds to
the usual exponentiation of matrices. Elements of the matrix Lie group are
therefore exponentials of matrices in the the Lie algebra. To see this suppose
that Li is the left invariant vector field derived from iλ̂i. Then the matrix

g(t) = exp(itλ̂i) ≡ I + itλ̂i −
1

2
t2λ̂2 − i 1

3!
t3λ̂3 + · · · (6.32)
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is an element of the group, and

g(t+ ε) = exp(itλ̂) exp(iελ̂i) = g(t)
(
I + iελ̂i + O(ε2)

)
. (6.33)

From this we deduce that

d

dt
g(t) = lim

ε→0

{
1

ε
[g(t)(I + iελ̂i)− g(t)]

}
= Lig(t). (6.34)

Since exp(itλ̂) = I when t = 0, we deduce that Exp (tLi) = exp(itλ̂i).

Right-invariant vector fields

We can use multiplication on the right to push forward an infinitesimal group
element. For example:

(I + iεσ̂3)g = (I + iεσ̂3)(x
0 + ix1σ̂1 + ix2σ̂2 + ix3σ̂3)

= (x0 − εx3) + iσ̂1(x
1 + εx2) + iσ̂2(x

2 − εx1) + iσ̂3(x
3 + εx0).

(6.35)

This motion corresponds to the right-invariant vector field

R3 = x2∂1 − x1∂2 + x0∂3. (6.36)

Similarly, we obtain

R1 = x3∂1 − x0∂2 + x1∂3

R2 = x0∂1 + x3∂2 − x2∂3, (6.37)

and find that
[R1, R2] = +2R3. (6.38)

In general,
[Ri, Rj] = +2εijkRk. (6.39)

For any Lie group, the Lie brackets of the right-invariant fields will be

[Ri, Rj] = +fij
kRk. (6.40)

whenever
[Li, Lj ] = −fijkLk, (6.41)
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are the Lie brackets of the left-invariant fields. The relative minus sign be-
tween the bracket algebra of the left and right invariant vector fields has
the same origin as the relative sign between the commutators of space- and
body-fixed rotations in classical mechanics. Because multiplication from the
left does not interfere with multiplication from the right, the left and right
invariant fields commute:

[Li, Rj ] = 0. (6.42)

6.2.2 Maurer-Cartan Forms

If g ∈ G, then dg g−1 ∈ LieG. For example, starting from

g = x0 + ix1σ̂1 + ix2σ̂2 + ix3σ̂3

g−1 = x0 − ix1σ̂1 − ix2σ̂2 − ix3σ̂3 (6.43)

we have

dg = dx0 + idx1σ̂1 + idx2σ̂2 + idx3σ̂3

= (x0)−1(−x1dx1 − x2dx2 − x3dx3) + idx1σ̂1 + idx2σ̂2 + idx3σ̂3.

(6.44)

From this we find

dgg−1 = iσ̂1

(
(x0 + (x1)2/x0)dx1 + (x3 + (x1x2)/x0)dx2 + (−x2 + (x1x3)/x0)dx3

)

+iσ̂2

(
(−x3 + (x2x1)/x0)dx1 + (x0 + (x2)2/x0)dx2 + (x1 + (x2x3)/x0)dx3

)

+iσ̂3

(
(x2 + (x3x1)/x0)dx1 + (−x1 + (x3x2)/x0)dx2 + (x0 + (x3)2/x0)dx3

)
.

(6.45)

The part proportional to the identity matrix has cancelled. The result is
therefore a Lie algebra-valued 1-form. We define the (right invariant) Maurer-
Cartan forms ωiR by

dgg−1 = ωR = (iσ̂i)ω
i
R. (6.46)

If we evaluate one-form ω1
R on the right invariant vector field R1, we find

ω1
R(R1) = (x0 + (x1)2/x0)x0 + (x3 + (x1x2)/x0)x3 + (−x2 + (x1x3)/x0)(−x2)

= (x0)2 + (x1)2 + (x2)2 + (x3)2

= 1. (6.47)
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Working similarly, we find

ω1
R(R2) = (x0 + (x1)2/x0)(−x3) + (x3 + (x1x2)/x0)x0 + (−x2 + (x1x3)/x0)x1

= 0. (6.48)

In general we discover that ωiR(Rj) = δij . These Maurer-Cartan forms there-
fore constitute the dual basis to the right-invariant vector fields.

We may also define the left invariant Maurer-Cartan forms

g−1dg = ωL = (iσ̂i)ω
i
L. (6.49)

These obey ωiL(Lj) = δij , showing that the ωiL are the dual basis to the
left-invariant vector fields.

Acting with the exterior derivative d on gg−1 = I tells us that d(g−1) =
−g−1dgg−1. By exploiting this fact, together with the anti-derivation prop-
erty

d(a ∧ b) = da ∧ b+ (−1)pa ∧ db,
we may compute the exterior derivative of ωR. We find that

dωR = d(dgg−1) = (dgg−1) ∧ (dgg−1) = ωR ∧ ωR. (6.50)

A matrix product is implicit here. If it were not, the product of the two
identical 1-forms on the right would automatically be zero. If we make this
matrix structure explicit we find that

ωR ∧ ωR = ωiR ∧ ωjR(iσ̂i)(iσ̂j)

=
1

2
ωiR ∧ ωjR [iσ̂i, iσ̂j ]

= −1

2
f k
ij (iσ̂k)ω

i
R ∧ ωjR, (6.51)

so

dωkR = −1

2
f k
ij ω

i
R ∧ ωjR. (6.52)

These equations are known as the Maurer-Cartan relations for the right-
invariant forms.

For the left-invariant forms we have

dωL = d(g−1dg) = −(g−1dg) ∧ (g−1dg) = −ωL ∧ ωL, (6.53)
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or

dωkL = +
1

2
f k
ij ω

i
L ∧ ωjL. (6.54)

The Maurer-Cartan relations appear when we quantize gauge theories.
They are one part of the BRST transformations of the Fadeev-Popov ghost
fields.

6.2.3 Euler Angles

In physics it is common to use Euler angles to parameterize SU(2). We can
write an arbitrary SU(2) matrix U as a product

U = exp{−iφσ̂3/2} exp{−iθσ̂2/2} exp{−iψσ̂3/2},

=

(
e−iφ/2 0

0 eiφ/2

)(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)(
e−iψ/2 0

0 eiψ/2

)
,

=

(
e−i(φ+ψ)/2 cos θ/2 −ei(ψ−φ)/2 sin θ/2
ei(φ−ψ)/2 sin θ/2 e+i(ψ+φ)/2 cos θ/2

)
. (6.55)

Comparing with the earlier expression for U in terms of the xµ, we obtain
the Euler-angle parameterization of the three-sphere

x0 = cos θ/2 cos(ψ + φ)/2,

x1 = sin θ/2 sin(φ− ψ)/2,

x2 = − sin θ/2 cos(φ− ψ)/2,

x3 = − cos θ/2 sin(ψ + φ)/2. (6.56)

If the angles are taken in the range 0 ≤ φ < 2π, 0 ≤ θ < π, 0 ≤ ψ < 4π we
cover the entire three-sphere once.

Exercise 6.5: Show that the Hopf map, defined in chapter 3, Hopf : S3 → S2

is the “forgetful” map (θ, φ, ψ) → (θ, φ), where θ and φ are spherical polar
co-ordinates on the two-sphere.

Exercise 6.6: Show that

U−1dU = − i
2
σ̂iΩ

i
L,

where

Ω1
L = sinψ dθ − sin θ cosψ dφ,

Ω2
L = cosψ dθ − sin θ sinψ dφ,

Ω3
L = dψ + cos θ dφ.
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Compare these 1-forms with the components

ωX = sinψ θ̇ − sin θ cosψ φ̇,

ωY = cosψ θ̇ − sin θ sinψ φ̇,

ωZ = ψ̇ + cos θ φ̇.

of the angular velocity ω of a body with respect to the body-fixed XY Z axes
in the Euler-angle conventions of exercise 2.17.

Similarly show that

dUU−1 = − i
2
σ̂i Ω

i
R,

where

Ω1
R = − sinφdθ + sin θ cosψ dψ,

Ω2
R = cosφdθ + sin θ sinψ dψ,

Ω3
R = dφ+ cos θ dψ,

Compare these 1-forms with components ωx, ωy, ωz of the same angular ve-
locity vector ω, but now with respect to the space-fixed xyz frame.

6.2.4 Volume and Metric

The manifold of any Lie group has a natural metric which is obtained by
transporting the Killing form (see section 6.3.2) from the tangent space at
the identity to any other point g by either left or right multiplication by
g. In the case of a compact group, the resultant left and right invariant
metrics coincide. In the case of SU(2) this metric is the usual metric on the
three-sphere.

Using the Euler angle expression for the xµ to compute the dxµ, we can
express the metric on the sphere as

“ds2′′ = (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2,

=
1

4

(
dθ2 + cos2θ/2(dψ + dφ)2 + sin2θ/2(dψ − dφ)2

)
,

=
1

4

(
dθ2 + dψ2 + dφ2 + 2 cos θdφdψ

)
. (6.57)

Here, to save space, we have used the traditional physics way of writing a
metric. In the more formal notation, where we think of the metric as being
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a bilinear function, we would write the last line as

g( , ) =
1

4
(dθ ⊗ dθ + dψ ⊗ dψ + dφ⊗ dφ+ cos θ(dφ⊗ dψ + dψ ⊗ dφ))

(6.58)
From (6.58) we find

g = det (gµν) =
1

43

∣∣∣∣∣∣

1 0 0
0 1 cos θ
0 cos θ 1

∣∣∣∣∣∣

=
1

64
(1− cos2θ) =

1

64
sin2θ. (6.59)

The volume element,
√
g dθdφdψ, is therefore

d(Volume) =
1

8
sin θdθdφdψ, (6.60)

and the total volume of the sphere is

Vol(S3) =
1

8

∫ π

0

sin θdθ

∫ 2π

0

dφ

∫ 4π

0

dψ = 2π2. (6.61)

This coincides with the standard expression for the volume of Sd−1, the
surface of the d-dimensional unit ball,

Vol(Sd−1) =
2πd/2

Γ(d
2
)
, (6.62)

when d = 4.

Exercise 6.7: Evaluate the Maurer-Cartan form ω3
L in terms of the Euler angle

parameterization and show that

iω3
L =

1

2
tr (σ̂3U

−1dU) = − i
2
(dψ + cos θ dφ).

Now recall that the Hopf map takes the point on the three-sphere with Euler
angle co-ordinates (θ, φ, ψ) to the point on the two-sphere with spherical polar
co-ordinates (θ, φ). Thus, if we set A = −dψ − cos θ dφ, then we find

F ≡ dA = sin θ dθ dφ = Hopf∗(d[AreaS2]).
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Also observe that

A ∧ F = − sin θ dθ dφ dψ.

From this show that Hopf index of the Hopf map itself is equal to

1

16π2

∫

S3

A ∧ F = −1.

Exercise 6.8: Show that for U the defining two-by-two matrices of SU(2), we
have ∫

SU(2)
tr [(U−1dU)3] = 24π2.

Suppose we have a map g : R3 → SU(2) such that g(x) goes to the identity
element at infinity. Consider the integral

S[g] =
1

24π2

∫

R3

tr (g−1dg)3,

where the 3-form tr (g−1dg)3 is the pull-back to R3 of the form tr [(U−1dU)3]
on SU(2). Show that if we vary g → g + δg, then

δS[g] =
1

24π2

∫

R3

d
{

3 tr
(
(g−1δg)(g−1dg)2

)}
= 0,

and so S[g] is topological invariant of the map g. Conclude that the functional
S[g] is an integer, that integer being the Brouwer degree, or winding number,
of the map g : S3 → S3.

Exercise 6.9: Generalize the result of the previous problem to show, for any
mapping x 7→ g(x) into a Lie group G, and for n an odd integer, that the
n-form tr (g−1dg)n constructed from the Maurer-Cartan form is closed, and
that

δ tr (g−1dg)n = d
{
n tr

(
(g−1δg)(g−1dg)n−1

)}
.

(Note that for even n the trace of (g−1dg)n vanishes identically.)

6.2.5 SO(3) ' SU(2)/Z2

The groups SU(2) and SO(3) are locally isomorphic. They have the same
Lie algebra, but differ in their global topology. Although rotations in space
are elements of SO(3), electrons respond to these rotations by transforming
under the two-dimensional defining representation of SU(2). As we shall see,
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this means that after a rotation through 2π the electron wavefunction comes
back to minus itself. The resulting topological entanglement is characteristic
of the spinor representation of rotations and is intimately connected with
the Fermi statistics of the electron. The spin representations were discovered
by Élie Cartan in 1913, long before they were needed in physics.

The simplest way to motivate the spin/rotation connection is via the
Pauli sigma matrices. These matrices are hermitian, traceless, and obey

σ̂iσ̂j + σ̂j σ̂i = 2δijI, (6.63)

If, for any U ∈ SU(2), we define

σ̂′
i = Uσ̂iU

−1, (6.64)

then the σ̂′
i are also hermitian, traceless, and obey (6.63). Since the original

σ̂i form a basis for the space of hermitian traceless matrices, we must have

σ̂′
i = σ̂jRji (6.65)

for some real 3-by-3 matrix having entries Rij . From (6.63) we find that

2δij = σ̂′
iσ̂

′
j + σ̂′

j σ̂
′
i

= (σ̂lRli)(σ̂mRmj) + (σ̂mRmj)(σ̂lRli)

= (σ̂lσ̂m + σ̂mσ̂l)RliRmj

= 2δlmRliRmj .

Thus

RmiRmk = δik. (6.66)

In other words, RTR = I, and R is an element of O(3). Now the determinant
of any orthogonal matrix is ±1, but the manifold of SU(2) is a connected set
and R = I when U = I. Since a continuous map from a connected set to
the integers must be a constant, we conclude that detR = 1 for all U . The
R matrices are therefore in SO(3).

We now exploit the principle of the sextant to show that the correspon-
dance goes both ways, i.e. we can find a U(R) for any element R ∈ SO(3).
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Figure 6.1: The sextant.

This familiar instrument is used to measure the altitude of the sun above the
horizon while standing on the pitching deck of a ship at sea. A theodolite or
similar device would be rendered useless by the ship’s motion. The sextant
exploits the fact that successive reflection in two mirrors inclined at an angle
θ to one another serves to rotate the image through an angle 2θ about the
line of intersection of the mirror planes. This rotation is used to superimpose
the image of the sun onto the image of the horizon, where it stays even if
the instrument is rocked back and forth. Exactly the same trick is used in
constructing the spinor representations of the rotation group.

To do this, consider a vector x with components xi and form the matrix
x̂ = xiσ̂i. Now, if n is a unit vector with components ni, then

(−σ̂ini)x̂(σ̂kn
k) =

(
xj − 2(n · x)(nj)

)
σ̂j = x̂− 2(n · x)n̂ (6.67)

The vector x−2(n·x)n is the result of reflecting x in the plane perpendicular
to n. Consequently

−(σ̂1 cos θ/2 + σ̂2 sin θ/2)(−σ̂1) x̂ (σ̂1)(σ̂1 cos θ/2 + σ̂2 sin θ/2) (6.68)
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performs two successive reflections on x, first in the “1” plane, and then in
a plane at an angle θ/2 to it. Multiplying out the factors, and using the σ̂i
algebra, we find

(cos θ/2− σ̂1σ̂2 sin θ/2)x̂(cos θ/2 + σ̂1σ̂2 sin θ/2)

= σ̂1(cos θ x1 − sin θ x2) + σ̂2(sin θ x
1 + cos θ x2) + σ̂3x

3. (6.69)

The effect on x is a rotation through θ, as claimed. We can drop the xi and
re-express (6.69) as

Uσ̂iU
−1 = σ̂jRji, (6.70)

where Rij is the 3-by-3 rotation matrix for a rotation through angle θ in the
1-2 plane, and

U = exp

{
− i

2
σ̂3θ

}
= exp

{
−i 1

4i
[σ̂1, σ̂2]θ

}
(6.71)

is an element of SU(2). We have exhibited two ways of writing the exponents
in (6.71) because the subscript 3 on σ̂3 indicates the axis about which we are
rotating, while the 1, 2 in [σ̂1, σ̂2] indicates the plane in which the rotation
occurs. It is the second language that generalizes to higher dimensions. More
on the use of mirrors for creating and combining rotations can be found in
the the appendix to Misner, Thorn, and Wheeler’s Gravitation.

The mirror construction shows that for any R ∈ SO(3) there is a two-
dimensional unitary matrix U(R) such that

U(R)σ̂iU
−1(R) = σ̂jRji. (6.72)

This U(R) is not unique however. If U ∈ SU(2) then so is −U . Furthermore

U(R)σ̂iU
−1(R) = (−U(R))σ̂i(−U(R))−1, (6.73)

and so U(R) and −U(R) implement exactly the same rotation R. Conversely,
if two SU(2) matrices U , V obey

UσiU
−1 = V σiV

−1 (6.74)

then V −1U commutes with all 2-by-2 matrices and, by Schur’s lemma, must
be a multiple of the identity. But if λI ∈ SU(2) then λ = ±1. Thus U = ±V .
The mapping between SU(2) and SO(3) is therefore two-to-one. Since U and
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−U correspond to the same R, the group manifold of SO(3) is the three-
sphere with antipodal points identified . Unlike the two-sphere, where the
identification of antipodal points gives the non-orientable projective plane,
this three-manifold is is orientable. It is not, however, simply connected: a
path on the three-sphere from a point to its antipode forms a closed loop
in SO(3), but one not contractable to a point. If we continue on from the
antipode back to the original point, the combined path is contractable. This
means that the first Homotopy group, the group of based paths with composi-
tion given by concatenation, is π1(SO(3)) = Z2. This is the topology behind
the Phillipine (or Balinese) Candle Dance, and is how the electron knows
whether a sequence of rotations that eventually bring it back to its original
orientation should be counted as a 360◦ rotation (U = −I) or a 720◦ ∼ 0◦

rotation (U = +I).

Exercise 6.10: Verify that

U(R)σ̂iU
−1(R) = σ̂jRji

is consistent with U(R2)U(R1) = ±U(R2R1).

Spinor representations of SO(N)

The mirror trick can be extended to perform rotations in N dimensions. We
replace the three σ̂i matrices by a set of N Dirac gamma matrices, which
obey the defining relations of a Clifford algebra

γ̂µγ̂ν + γ̂ν γ̂µ = 2δµνI. (6.75)

These relations are a generalization of the key algebraic property of the Pauli
sigma matrices.

If N (= 2n) is even, then we can find 2n-by-2n hermitian matrices, γ̂µ,
satisfying this algebra. If N (= 2n+1) is odd, we append to the matrices for
N = 2n the hermitian matrix γ̂2n+1 = −(i)nγ̂1γ̂2 · · · γ̂2n which obeys γ̂2

2n+1 =
1 and anti-commutes with all the other γ̂µ. The γ̂ matrices therefore act on
a 2[N/2] dimensional space, where the square brackets denote the integer part

of N/2.
The γ̂’s do not form a Lie algebra as they stand, but a rotation through

θ in the mn-plane is obtained from

e−i
1
4i

[γ̂m,γ̂n]θ γ̂i e
i 1
4i

[γ̂m,γ̂n]θ = γ̂jRji, (6.76)
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and we find that the hermitian matrices Γ̂mn = 1
4i

[γ̂m, γ̂n] form a basis for the
Lie algebra of SO(N). The 2[N/2] dimensional space on which they act is the
Dirac spinor representation of SO(N). Although the matrices exp{iΓ̂µνθµν}
are unitary, they are not, in general, the entirety of U(2[N/2]), but instead
constitute a subgroup called Spin(N).

If N is even then we can still construct the matrix γ̂2n+1 that anti-
commutes with all the other γ̂µ’s. It cannot be the identity matrix, therefore,
but it commutes with all the Γmn. By Schur’s lemma, this means that the
SO(2n) Dirac spinor representation space V is reducible. Now γ̂2

2n+1 = I,
and so γ̂2n+1 has eigenvalues ±1. The two eigenspaces are invariant under
the action of the group, and thus the Dirac spinor space decomposes into two
irreducible Weyl spinor representations

V = Vodd ⊕ Veven. (6.77)

Here Veven and Vodd, the plus and minus eigenspaces of γ̂2n+1, are called the
spaces of right and left chirality . When N is odd the spinor representation
is irreducible.

Exercise 6.11: Starting from the defining relations of the Clifford algebra (6.75)
show that, for N = 2n,

tr (γ̂µ) = 0,

tr (γ̂2n+1) = 0,

tr (γ̂µγ̂ν) = tr (I) δµν ,

tr (γ̂µγ̂ν γ̂σ) = 0,

tr (γ̂µγ̂ν γ̂σγ̂τ ) = tr (I) (δµνδστ − δµσδντ + δµτ δνσ).

Exercise 6.12: Consider the space Ω(C) =
⊕

p Ωp(C) of complex-valued skew
symmetric tensors Aµ1...µp for 0 ≤ p ≤ N = 2n. Let

ψαβ =
N∑

p=0

1

p!

(
γ̂µ1
· · · γ̂µp

)
αβ
Aµ1...µp

define a mapping from Ω(C) into the space of complex matrices of the same
size as the γ̂µ. Show that this mapping is invertible — i.e. given ψαβ you can
recover the Aµ1...µp . By showing that the dimension of Ω(C) is 2N , deduce
that the γ̂µ must be at least 2n-by-2n matrices.
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Exercise 6.13: Show that the R2n Dirac operator D = γ̂µ∂µ obeys D2 = ∇2.
Recall that Hodge operator d− δ from section 4.7.1 is also a “square root” of
the Laplacian:

(d− δ)2 = −(dδ + δd) = ∇2.

Show that

ψαβ → (Dψ)αβ = (γ̂µ)αα′∂µψα′β

corresponds to the action of d− δ on the space Ω(R2n,C) of differential forms

A =
1

p!
Aµ1...µp(x)dx

µ1 · · · dxµp

The space of complex-valued differential forms has thus been made to look like
a collection of 2n Dirac spinor fields, one for each value of the “flavour index”
β. These ψαβ are called Kähler-Dirac fields. They are not really flavoured
spinors because a rotation transforms both the α and β indices.

Exercise 6.14: That a set of 2n Dirac γ’s have a 2n-by-2n matrix representation
is most naturally established by using the tools of second quantization. To this
end, let ai, a

†
i i = 1, . . . , n be set of anti-commuting annihilation and creation

operators obeying

aiaj + ajai = 0, aia
†
j + a†jai = δijI,

and let |0〉 be the “no particle” state such that ai|0〉 = 0, i = 1, . . . , n. Then
the 2n states

|m1, . . . ,mn〉 = (a†1)
m1 · · · (a†n)mn |0〉,

where the mi take the value 0 or 1, constitute a basis for a space on which the
ai and a†i act irreducibly. Show that the 2n operators

γi = ai + a†i
γi+n = i(ai − a†i )

obey

γµγν + γνγµ = 2δµνI,

and hence can be represented by 2n-by-2n matrices. Deduce further that
spaces specs of left and right chirality are the spaces of odd or even “particle
number.”
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The Adjoint Representation

The spin/rotation correspondence involves conjugation: σ̂i → Uσ̂iU
−1. The

idea of obtaining a representation by conjugation works for an arbitrary Lie
group. It is easiest, however, to describe in the case of a matrix group
where we consider an infinitesimal element I + iελ̂i. The conjugate element
g(I + iελ̂i)g

−1 will also be an infinitesimal element. Since gIg−1 = I, this
means that g(iλ̂i)g

−1 must be expressible as a linear combination of the iλ̂i
matrices. Consequently we can define a linear map acting on the element
X = ξiλ̂i of the Lie algebra by setting

Ad(g)λ̂i ≡ gλ̂ig
−1 = λ̂j [Ad (g)]ji. (6.78)

The matrices with entries [Ad (g)]ji form the adjoint representation of the
group. The dimension of the adjoint representation coincides with that of
the group manifold. The spinor construction shows that the defining repre-
sentation of SO(3) is the adjoint representation of SU(2).

For a general Lie group, we make Ad(g) act on a vector in the tangent
space at the identity by pushing the vector forward to TGg by left multiplica-
tion by g, and then pushing it back from TGg to TGe by right multiplication
by g−1.

Exercise 6.15: Show that

[Ad (g1g2)]
j
i = [Ad (g1)]

j
k[Ad (g2)]

k
i,

thus confirming that Ad(g) is a representation.

6.2.6 Peter-Weyl Theorem

The volume element constructed in section 6.2.4 has the feature that it is
invariant. In other words if we have a subset Ω of the group manifold with
volume V , then the image set gΩ under left multiplication has the exactly the
same volume. We can also construct a volume element that is invariant under
right multiplication by g, and in general these will be different. For a group
whose manifold is a compact set, however, both left- and right-invariant
volume elements coincide. The resulting measure on the group manifold is
called the Haar measure.

For a compact group, therefore, we can replace the sums over the group
elements that occur in the representation theory of finite groups, by con-
vergent integrals over the group elements using the invariant Haar measure,
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which is usually denoted by d[g] . The invariance property is expressed by
d[g1g] = d[g] for any constant element g1. This allows us to make a change-
of-variables transformation, g → g1g, identical to that which played such an
important role in deriving the finite group theorems. Consequently, all the
results from finite groups, such as the existence of an invariant inner product
and the orthogonality theorems, can be taken over by the simple replacement
of a sum by an integral. In particular, if we normalize the measure so that
the volume of the group manifold is unity, we have the orthogonality relation

∫
d[g]

(
DJ
ij(g)

)∗
DK
lm(g) =

1

dim J
δJKδilδjm. (6.79)

The Peter-Weyl theorem asserts that the representation matrices, DJ
mn(g),

form a complete set of orthogonal functions on the group manifold. In the
case of SU(2) this tells us that the spin J representation matrices

DJ
mn(θ, φ, ψ) = 〈J,m|e−iJ3φe−iJ2θe−iJ3ψ|J, n〉,

= e−imφdJmn(θ)e
−inψ, (6.80)

which you will know from quantum mechanics courses,1 are a complete set
of functions on the three-sphere with

1

16π2

∫ π

0

sin θdθ

∫ 2π

0

dφ

∫ 4π

0

dψ
(
DJ
mn(θ, φ, ψ)

)∗
DJ ′

m′n′(θ, φ, ψ)

=
1

2J + 1
δJJ

′

δmm′δnn′ . (6.81)

Since the DL
m0 (where L has to be an integer for n = 0 to be possible) are

independent of the third Euler angle, ψ, we can do the trivial integral over
ψ to get

1

4π

∫ π

0

sin θdθ

∫ 2π

0

dφ
(
DL
m0(θ, φ)

)∗
DL′

m′0(θ, φ) =
1

2L+ 1
δLL

′

δmm′ . (6.82)

Comparing with the definition of the spherical harmonics, we see that we can
identify

Y L
m(θ, φ) =

√
2L+ 1

4π

(
DL
m0(θ, φ, ψ)

)∗
. (6.83)

1See, for example, G. Baym Lectures on Quantum Mechanics , Ch 17.
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The complex conjugation is necessary here because DJ
mn(θ, φ, ψ) ∝ e−imφ,

while Y L
m (θ, φ) ∝ eimφ.

The character, χJ(g) =
∑

nD
J
nn(g) will be a function only of the angle θ

we have rotated through, not the axis of rotation — all rotations through a
common angle being conjugate to one another. Because of this χJ(θ) can be
found most simply by looking at rotations about the z axis, since these give
rise to easily computed diagonal matrices. We find

χ(θ) = eiJθ + ei(J−1)θ + · · ·+ e−i(J−1)θ + e−iJθ,

=
sin(2J + 1)θ/2

sin θ/2
. (6.84)

Warning: The angle θ in this formula and the next is the not the Euler
angle.

For integer J , corresponding to non-spinor rotations, a rotation through
an angle θ about an axis n and a rotation though an angle 2π− θ about −n
are the same operation. The maximum rotation angle is therefore π. For
spinor rotations this equivalence does not hold, and the rotation angle θ runs
from 0 to 2π. The character orthogonality must therefore be

1

π

∫ 2π

0

χJ(θ)χJ
′

(θ) sin2

(
θ

2

)
dθ = δJJ

′

, (6.85)

implying that the volume fraction of the rotation group containing rotations
through angles between θ and θ + dθ is sin2(θ/2)dθ/π.

Exercise 6.16: Prove this last statement about the volume of the equivalence
classes by showing that the volume of the unit three-sphere that lies between
a rotation angle of θ and θ + dθ is 2π sin2(θ/2)dθ.

6.2.7 Lie Brackets vs. Commutators

There is an irritating minus sign problem that needs to be acknowledged.
The Lie bracket [X, Y ] of of two vector fields is defined by first running along
X, then Y and then back in the reverse order. If we do this for the action of
matrices, X̂ and Ŷ , on a vector space, however, then, reading from right to
left as we always do for matrix operations, we have

e−t2Ŷ e−t1X̂et2Ŷ et1X̂ = I − t1t2[X̂, Ŷ ] + · · · , (6.86)
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which has the other sign. Consider for example rotations about the x, y, z
axes, and look at effect these have on the co-ordinates of a point:

Lx :

{
δy = −z δθx
δz = +y δθx

}
=⇒ Lx = y∂z − z∂y , L̂x =




0 0 0
0 0 −1
0 1 0


 ,

Ly :

{
δz = −x δθy
δx = +z δθy

}
=⇒ Ly = z∂x − x∂z , L̂y =




0 0 1
0 0 0
−1 0 0


 ,

Lz :

{
δx = −y δθz
δy = +x δθz

}
=⇒ Lz = x∂y − y∂x, L̂y =




0 −1 0
1 0 0
0 0 0


 .

From this we find

[Lx, Ly] = −Lz , (6.87)

as a Lie bracket of vector fields, but

[L̂x, L̂y] = +L̂z, (6.88)

as a commutator of matrices. This is the reason why it is the left invariant
vector fields whose Lie bracket coincides with the commutator of the iλ̂i
matrices.

Some insight into all this can be had by considering the action of the left
invariant fields on the representation matrices, DJ

mn(g). For example

LiD
J
mn(g) = lim

ε→0

[
1

ε

(
DJ
mn(g(1 + iελ̂i))−DJ

mn(g)
)]

= lim
ε→0

[
1

ε

(
DJ
mn′(g)DJ

n′n(1 + iελ̂i)−DJ
mn(g)

)]

= lim
ε→0

[
1

ε

(
DJ
mn′(g)(δn′n + iε(Λ̂J

i )n′n)−DJ
mn(g)

)]

= DJ
mn′(g)(iΛ̂J

i )n′n (6.89)

where Λ̂J
i is the matrix representing λ̂i in the representation J . Repeating

this exercise we find that

Li
(
LjD

J
mn(g)

)
= DJ

mn′′(g)(iΛ̂J
i )n′′n′(iΛ̂J

j )n′n, (6.90)
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Thus

[Li, Lj]D
J
mn(g) = DJ

mn′(g)[iΛ̂J
i , iΛ̂

J
j ]n′n, (6.91)

and we get the commutator of the representation matrices in the “correct”
order only if we multiply the infinitesimal elements in successively from the
right.

There appears to be no escape from this sign problem. Many texts simply
ignore it, a few define the Lie bracket of vector fields with the opposite sign,
and a few simply point out the inconvenience and get on the with the job.
We will follow the last route.

6.3 Lie Algebras

A Lie algebra g is a (real or complex) finite-dimensional vector space with a
non-associative binary operation g× g→ g that assigns to each ordered pair
of elements, X1, X2, a third element called the Lie bracket, [X1, X2]. The
bracket is:

a) Skew symmetric: [X, Y ] = −[Y,X],
b) Linear: [λX + µY, Z] = λ[X,Z] + µ[Y, Z],

and in place of associativity, obeys

c) The Jacobi identity: [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0.

Example: Let M(n) denote the algebra of real n-by-n matrices. As a vector
space over R, this algebra is n2 dimensional. Setting [A,B] = AB − BA,
makes M(n) into a Lie Algebra.

Example: Let b+ denote the subset of M(n) consisting of upper triangular
matrices with any number (including zero) allowed on the diagonal. Then
b+ with the above bracket is a Lie algebra. (The “b” stands for the French
mathematician and statesman Émile Borel).

Example: Let n+ denote the subset of b+ consisting of strictly upper trian-
gular matrices — those with zero on the diagonal. Then n+ with the above
bracket is a Lie algebra. (The “n” stands for nilpotent.)

Example: Let G be a Lie group, and Li the left invariant vector fields. We
know that

[Li, Lj] = f k
ij Lk (6.92)

where [ , ] is the Lie bracket of vector fields. The resulting Lie algebra,
g = LieG is the Lie algebra of the group.



6.3. LIE ALGEBRAS 235

Example: The set N+ of upper triangular matrices with 1’s on the diagonal
forms a Lie group and has n+ as its Lie algebra. Similarly, the set B+

consisting of upper triangular matrices, with any non-zero number allowed
on the diagonal, is also a Lie group, and has b+ as its Lie algebra.

Ideals and Quotient algebras

As we saw in the examples, we can define subalgebras of a Lie algebra. If
we want to define quotient algebras by analogy to quotient groups, we need
a concept analogous to that of invariant subgroups. This is provided by the
notion of an ideal . A ideal is a subalgebra i ⊆ g with the property that

[i, g] ⊆ i. (6.93)

In other words, taking the bracket of any element of g with any element
of i gives an element in i. With this definition we can form g−i by identifying
X ∼ X + I for any I ∈ i. Then

[X + i, Y + i] = [X, Y ] + i, (6.94)

and the bracket of two equivalence classes is insensitive to the choice of
representatives.

If a Lie group G has an invariant subgroup H which is also a Lie group,
then the Lie algebra h of the subgroup is an ideal in g = LieG and the Lie
algebra of the quotient group G/H is the quotient algebra g− h.

If the Lie algebra has no non-trivial ideals, then it is said to be simple.
The Lie algebra of a simple Lie group will be simple.

Exercise 6.17: Let i1 and i2 be ideals in g. Show that i1 ∩ i2 is also an ideal in
g.

6.3.1 Adjoint Representation

Given an element X ∈ g let it act on the Lie algebra considered as a vector
space by a linear map ad (x) defined by

ad (X)Y = [X, Y ]. (6.95)

The Jacobi identity is then equivalent to the statement

(ad (X)ad (Y )− ad (Y )ad (X))Z = ad ([X, Y ])Z. (6.96)
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Thus
(ad (X)ad (Y )− ad (Y )ad (X)) = ad ([X, Y ]), (6.97)

or
[ad (X), ad (Y )] = ad ([X, Y ]), (6.98)

and the map X → ad (X) is a representation of the algebra called the adjoint

representation.
The linear map “ad (X)” exponentiates to give a map exp[ad (tX)] defined

by

exp[ad (tX)]Y = Y + t[X, Y ] +
1

2
t2[X, [X, Y ]] + · · · . (6.99)

You probably know the matrix identity2

etABe−tA = B + t[A,B] +
1

2
t2[A, [A,B]] + · · · . (6.100)

Now, earlier in the chapter, we defined the adjoint representation “Ad ” of
the group on the vector space of the Lie algebra. We did this setting gXg−1 =
Ad (g)X. Comparing the two previous equations we see that

Ad (ExpY ) = exp(ad (Y )). (6.101)

6.3.2 The Killing form

Using “ad ” we can define an inner product 〈 , 〉 on a real Lie algebra by
setting

〈X, Y 〉 = tr (ad (X)ad (Y )). (6.102)

This inner product is called the Killing form, after Wilhelm Killing. Using
the Jacobi identity, and the cyclic property of the trace, we find that

〈ad (X)Y, Z〉+ 〈Y, ad (X)Z〉 = 0, (6.103)

or, equivalently,
〈[X, Y ], Z〉+ 〈Y, [X,Z]〉 = 0. (6.104)

From this we deduce (by differentiating with respect to t) that

〈exp(ad (tX))Y, exp(ad (tX))Z〉 = 〈Y, Z〉, (6.105)

2In case you do not, it is easily proved by setting F (t) = etABe−tA, noting that
d
dtF (t) = [A,F (t)], and observing that the RHS is the unique series solution to this
equation satisfying the boundary condition F (0) = B.
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so the Killing form is invariant under the action of the adjoint representation
of the group on the algebra. When our group is simple, any other invariant
inner product will be proportional to this Killing-form product.

Exercise 6.18: Let i be an ideal in g. Show that for I1, I2 ∈ i

〈I1, I2〉g = 〈I1, I2〉i

where 〈 , 〉i is the Killing form on i considered as a Lie algebra in its own
right. (This equality of inner products is not true for subalgebras that are not
ideals.)

Semi-simplicity

Recall that a Lie algebra containing no non-trivial ideals is said to be simple.
When the Killing form is non degenerate, the Lie Algebra is said to be semi-

simple. The reason for this name is that a semi-simple algebra is almost

simple, in that it can be decomposed into a direct sum of decoupled simple
algebras

g = s1 ⊕ s2 ⊕ · · · ⊕ sn. (6.106)

Here the direct sum symbol “⊕” implies not only a direct sum of vector
spaces but also that [si, sj] = 0 for i 6= j .

The Lie algebra of all the matrix groups O(n), Sp(n), SU(n), etc. are
semi-simple (indeed they are usually simple) but this is not true of the alge-
bras n+ and b+.

Cartan showed that our Killing-form definition of semi-simplicity is equiv-
alent his original definition of a Lie algebra being semi-simple if it contains
no abelian ideal — i.e. no ideal with [Ii, Ij] = 0 for all Ii ∈ i. The following
exercises establish the direct sum decomposition, and, en passant , the easy
half of Cartan’s result.

Exercise 6.19: Use the identity (6.104) to show that if i ⊂ g is an ideal, then
i⊥, the set of elements orthogonal to i with respect to the Killing form, is also
an ideal.

Exercise 6.20: Show that if a is an abelian ideal, then every element of a is
Killing perpendicular to the entire Lie algebra. (Thus non-degeneracy ⇒ no
non-trivial abelian ideal. The null space of the Killing form is not necessarily
an abelian ideal, though, so establishing the converse is harder.)
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Exercise 6.21: Let g be semi-simple and i ⊂ g an ideal. We know from exercise
6.17 that i ∩ i⊥ is an ideal. Use (6.104) coupled with the non-degeneracy of
the Killing form to show that it is an abelian ideal. Use the previous exercise
to conclude that i ∩ i⊥ = {0}, and from this that [i, i⊥] = 0.

Exercise 6.22: Let 〈 , 〉 be a non-degenerate inner product on a vector space
V . Let W ⊆ V be a subspace. Show that

dimW + dimW⊥ = dimV.

(This is not as obvious as it looks. For a non-positive-definite inner product
W and W⊥ can have a non-trivial intersection. Consider two-dimensional
Minkowski space. If W is the space of right-going, light-like, vectors then
W ≡W⊥, but dimW + dimW⊥ still equals two.)

Exercise 6.23: Put the two preceding exercises together to show that

g = i⊕ i⊥.

Show that i and i⊥ are semi-simple in their own right as Lie algebras. We can
therefore continue to break up i and i⊥ until we end with g decomposed into
a direct sum of simple algebras.

Compactness

If the Killing form is negative definite, a real Lie Algebra is said to be com-

pact , and is the Lie algebra of a compact group. With the physicist’s habit
of writing iXi for the generators of the Lie algebra, a compact group has
Killing metric tensor

gij = tr {ad (Xi)ad (Xj)} (6.107)

that is a positive definite matrix. In a basis where gij = δij , the exp(adX)
matrices of the adjoint representations of a compact groupG form a subgroup
of the orthogonal group O(N), where N is the dimension of G.

Totally anti-symmetric structure constants

Given a basis iXi for the Lie-algebra vector space, we define the structure
constants fij

k by

[Xi, Xj ] = ifij
kXk. (6.108)
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In terms of the fij
k, the skew symmetry of ad (Xi), as expressed by equation

(6.103), becomes

0 = 〈ad (Xk)Xi, Xj〉+ 〈Xi, ad (Xk)Xj〉
≡ 〈[Xk, Xi], Xj〉+ 〈Xi, [Xk, Xj]〉
= i(fki

lglj + gilfkj
l)

= i(fkij + fkji). (6.109)

In the last line we have used the Killing metric to “lower” the index l and so
define the symbol fijk. Thus fijk is skew symmetric under the interchange
of its second pair of indices. Since the skew symmetry of the Lie bracket
ensures that fijk is skew symmetric under the interchange of the first pair of
indices, it follows that fijk is skew symmetric under the interchange of any

pair of its indices.
By comparing the definition of the structure constants with

[Xi, Xj ] = ad (Xi)Xj = Xk[ad (Xi)]
k
j , (6.110)

we read-off that the matrix representing ad (Xi) has entries

[(ad (Xi)]
k
j = ifij

k. (6.111)

Consequently
gij = tr {ad (Xi)ad (Xj)} = −fiklfjlk. (6.112)

The quadratic Casimir

The only “product” that is defined in the abstract Lie algebra g is the Lie
bracket [X, Y ]. Once we have found matrices forming a representation of
the Lie algebra, however, we can form the ordinary matrix product of these.
Suppose that we have a Lie algebra g with basis Xi and have found matrices
X̂i with the same commutation relations as the Xi. Suppose further that the
algebra is semisimple and so gij, the inverse of the Killing metric, exists. We
can use gij to construct the matrix

Ĉ2 = gijX̂iX̂j. (6.113)

This matrix is called the quadratic Casimir operator, after Hendrik Casimir.
Its chief property is that it commutes with all the X̂i:

[Ĉ2, X̂i] = 0. (6.114)
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If our representation is irreducible then Shur’s lemma tells us that

Ĉ2 = c2I (6.115)

where the number c2 is referred to as the “value” of the quadratic Casimir
in that irrep.3

Exercise 6.24: Show that [Ĉ2,Xi] = 0 is another consequence of the complete
skew symmetry of the fijk.

6.3.3 Roots and Weights

We now want to study the representation theory of Lie groups. It is, in fact,
easier to study the representations of the Lie algebra, and then exponentiate
these to find the representations of the group. In other words given an
abstract Lie algebra with bracket

[Xi, Xj ] = ifij
kXk, (6.116)

we seek to find all matrices X̂J
i such that

[X̂J
i , X̂

J
j ] = ifij

kX̂J
k . (6.117)

(Here, as with the representations of finite groups, we use the superscript J to
distinguish one representation from another.) Then, given a representation
X̂J
i of the Lie algebra, the matrices

DJ(g(ξ)) = exp
{
iξiX̂J

i

}
, (6.118)

where g(ξ) = Exp {iξiXi}, will form a representation of the Lie group. To
be more precise, they will form a representation of that part of the group
which is connected to the identity element. The numbers ξi will serve as
co-ordinates for some neighbourhood of the identity. For compact groups
there will be a restriction on the range of the ξi because there must be ξi for

which exp
{
iξiX̂J

i

}
= I.

3Mathematicians do sometimes consider formal products of Lie algebra elementsX,Y ∈
g. When they do, they equip them with the rule that XY − Y X − [X,Y ] = 0, where XY
and Y X are formal products, and [X,Y ] is the Lie algebra product. These formal products
are not elements of the Lie algebra, but instead live in an extended mathematical structure
called the Universal enveloping algebra of g, and denoted by U(g). The quadratic Casimir
can then be considered to be an element of this larger algebra.
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SU(2)

The quantum-mechanical angular momentum algebra consists of the com-
mutation relation

[J1, J2] = i~J3, (6.119)

together with two similar equations related by cyclic permutations. This,
once we set ~ = 1, is the Lie algebra su(2) of the group SU(2). The goal
of representation theory is to find all possible sets of matrices which have
the same commutation relations as these operators. Since the group SU(2) is
compact, we can use the group-averaging trick from section 5.2.2 to define an
inner product with respect to which these representations are unitary, and
the matrices Ji hermitian.

Remember how this problem is solved in quantum mechanics courses,
where we find a representation for each spin j = 1

2
, 1, 3

2
, etc. We begin by

constructing “ladder” operators

J+ = J1 + iJ2, J− = J†
+ = J1 − iJ2, (6.120)

which are eigenvectors of ad (J3)

ad (J3)J± = [J3, J±] = ±J±. (6.121)

From (6.121) we see that if |j,m〉 is an eigenstate of J3 with eigenvalue m,
then J±|j,m〉 is an eigenstate of J3 with eigenvalue m± 1.

Now in any finite-dimensional representation there must be a highest

weight state, |j, j〉, such that J3|j, j〉 = j|j, j〉 for some real number j, and
such that J+|j, j〉 = 0. From |j, j〉 we work down by successive applications
of J− to find |j, j − 1〉, |j, j − 2〉... We can find the normalization factors of
the states |j,m〉 ∝ (J−)j−m|j, j〉 by repeated use of the identities

J+J− = (J2
1 + J2

2 + J2
3 )− (J2

3 − J3),

J−J+ = (J2
1 + J2

2 + J2
3 )− (J2

3 + J3). (6.122)

The combination J2 ≡ J2
1 + J2

2 + J2
3 is the quadratic Casimir of su(2), and

hence in any irrep is proportional to the identity matrix: J2 = c2I. Because

0 = ‖J+|j, j〉‖2
= 〈j, j|J†

+J+|j, j〉
= 〈j, j|J−J+|j, j〉
= 〈j, j|

(
J2 − J3(J3 + 1)

)
|j, j〉

= [c2 − j(j + 1)]〈j, j|j, j〉, (6.123)
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and 〈j, j|j, j〉 ≡ ‖|j, j〉‖2 is not zero, we must have c2 = j(j + 1).
We now compute

‖J−|j,m〉‖2 = 〈j,m|J†
−J−|j,m〉

= 〈j,m|J+J−|j,m〉
= 〈j,m|

(
J2 − J3(J3 − 1)

)
|j,m〉

= [j(j + 1)−m(m− 1)]〈j,m|j,m〉, (6.124)

and deduce that the resulting set of normalized states |j,m〉 can be chosen
to obey

J3|j,m〉 = m|j,m〉,
J−|j,m〉 =

√
j(j + 1)−m(m− 1)|j,m− 1〉,

J+|j,m〉 =
√
j(j + 1)−m(m+ 1)|j,m+ 1〉. (6.125)

If we take j to be an integer or a half-integer, we will find that J−|j,−j〉 = 0.
In this case we are able to construct a total of 2j + 1 states, one for each
integer-spaced m in the range −j ≤ m ≤ j. If we select some other fractional
value for j, then the set of states will not terminate gracefully, and we will
find an infinity of states with m < −j. These will have ‖J−|j,m〉‖2 < 0, so
the resultant representation cannot be unitary.

SU(3)

The strategy of finding ladder operators works for any semi-simple Lie al-
gebra. Consider, for example, su(3) = Lie(SU(3)). The matrix Lie algebra
su(3) is spanned by the Gell-Mann λ-matrices

λ̂1 =




0 1 0
1 0 0
0 0 0


 , λ̂2 =




0 −i 0
i 0 0
0 0 0


 , λ̂3 =




1 0 0
0 −1 0
0 0 0


 ,

λ̂4 =




0 0 1
0 0 0
1 0 0


 , λ̂5 =




0 0 −i
0 0 0
i 0 0


 , λ̂6 =




0 0 0
0 0 1
0 1 0


 ,

λ̂7 =




0 0 0
0 0 −i
0 i 0


 , λ̂8 =

1√
3




1 0 0
0 1 0
0 0 −2


 , (6.126)
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which form a basis for the real vector space of 3-by-3 traceless, hermitian
matrices. They have been chosen and normalized so that

tr (λ̂iλ̂j) = 2δij , (6.127)

by analogy with the properties of the Pauli matrices. Notice that λ̂3 and λ̂8

commute with each other, and that this will be true in any representation.
The matrices

t± =
1

2
(λ̂1 ± iλ̂2),

v± =
1

2
(λ̂4 ± iλ̂5),

u± =
1

2
(λ̂6 ± iλ̂7). (6.128)

have unit entries, rather like the step up and step down matrices σ± =
1
2
(σ̂1 ± iσ̂2).

Let us define Λi to be abstract operators with the same commutation
relations as λ̂i, and define

T± =
1

2
(Λ1 ± iΛ2),

V± =
1

2
(Λ4 ± iΛ5),

U± =
1

2
(Λ6 ± iΛ7). (6.129)

These are simultaneous eigenvectors of the commuting pair of operators
ad (Λ3) and ad (Λ8):

ad (Λ3)T± = [Λ3, T±] = ±2T±,

ad (Λ3)V± = [Λ3, V±] = ±V±,
ad (Λ3)U± = [Λ3, U±] = ∓U±,

ad (Λ8)T± = [Λ8, T±] = 0

ad (Λ8)V± = [Λ8, V±] = ±
√

3V±,

ad (Λ8)U± = [Λ8, U±] = ±
√

3U±, (6.130)

Thus, in any representation, the T±, U±, V±, act as ladder operators, chang-
ing the simultaneous eigenvalues of the commuting pair Λ3, Λ8. Their eigen-
values, λ3, λ8, are called the weights , and there will be a set of such weights
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for each possible representation. By using the ladder operators one can go
from any weight in a representation to any other, but you cannot get outside
this set. The amount by which the ladder operators change the weights are
called the roots or root vectors, and the root diagram characterizes the Lie
algebra.

+

−

+

−

T+T−

U

U

V

V

λ8

λ3

3

2−2

−  3

Figure 6.2: The root vectors of su(3).

In a finite-dimensional representation there must be a highest weight state
|λ3, λ8〉 that is killed by all three of U+, T+ and V+. We can then obtain
all other states in the representation by repeatedly acting on the highest
weight state with U−, T− or V− and their products. Since there is usually
more than one route by which we can step down from the highest weight
to another weight, the weight spaces may be degenerate —i.e there may be
more than one linearly independent state with the same eigenvalues of Λ3

and Λ8. Exactly what states are obtained, and with what multiplicity, is not
immediately obvious. We will therefore restrict ourselves to describing the
outcome of this procedure without giving proofs.

What we find is that the weights in a finite-dimensional representation of
su(3) form a hexagonally symmetric “crystal” lying on a triangular lattice,
and the representations may be labelled by pairs of integers (zero allowed)
p, q which give the length of the sides of the crystal. These representations
have dimension d = 1

2
(p+ 1)(q + 1)(p+ q + 2).
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3

3

3

3

3

λ 8

5

2

−7

−4

−1

0 λ3−4 −3 −2 −1 2 41 3

Figure 6.3: The weight diagram of the 24 dimensional irrep with p = 3,
q = 1. The highest weight is shaded.

Figure 6.3 shows the set of weights occurring in the representation of SU(3)
with p = 3 and q = 1. Each circle represents a state, whose weight (λ3, λ8)
may be read off from the displayed axes. A double circle indicates that there
are two linearly independent vectors with the same weight. A count confirms
that the number of independent weights, and hence the dimension of the
representation, is 24. For SU(3) representations the degeneracy—i.e. the
number of states with a given weight—increases by unity at each “layer”
until we reach a triangular inner core, all of whose weights have the same
degeneracy.

In particle physics applications representations are often labelled by their
dimension. The defining representation of SU(3) and its complex conjugate
are denoted by 3 and 3̄,
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3

3

3

3

λ 8

λ3−1 10

1

λ3

λ8

−1 10

2

−1−2

Figure 6.4: The weight diagrams of the irreps with p = 1, q = 0, and p = 0,
q = 1, also known, respectively, as the 3 and the 3.

while the weight diagrams of the eight dimensional adjoint represention and
the 10 have shape shown in figure 6.5.

Figure 6.5: The irreps 8 (the adjoint) and 10.

Cartan algebras: roots and co-roots

For a general simple Lie algebra we may play the same game. We first find a
maximal linearly independent set of commuting generators, hi. The hi form
a basis for the Cartan algebra, h, whose dimension is the rank of the Lie
algbera. We next find ladder operators by diagonalizing the “ad” action of
the hi on the rest of the algebra.

ad (hi)eα = [hi, eα] = αieα. (6.131)

The simultaneous eigenvectors eα are the ladder operators that change the
eigenvalues of the hi. The corresponding eigenvalues α, thought of as vectors
with components αi, are the roots, or root vectors. The roots are therefore
the weights of the adjoint representation. It is possible to put factors of “i”
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in the appropriate places so that the αi are real, and we will assume that this
has been done. For example in su(3) we have already seen that αT = (2, 0),
αV = (1,

√
3), αU = (−1,

√
3).

Here are the basic properties and ideas that emerge from this process:
i) Since αi〈eα, hj〉 = 〈ad (hi)eα, hj〉 = −〈eα, [hi, hj]〉 = 0 we see that
〈hi, eα〉 = 0.

ii) Similarly, we see that (αi + βi)〈eα, eβ〉 = 0, so the eα are orthogonal to
one another unless α+ β = 0. Since our Lie algebra is semisimple, and
consequently the Killing form non-degenerate, we deduce that if α is a
root, so is −α.

iii) Since the Killing form is non-degenerate, yet the hi are orthogonal to
all the eα, it must also be non-degenerate when restricted to the Cartan
algebra. Thus the metric tensor, gij = 〈hi, hj〉, must be invertible with
inverse gij. We will use the notation α · β to represent αiβjg

ij.
iv) If α, β are roots, then the Jacobi identity shows that

[hi, [eα, eβ]] = (αi + βi)[eα, eβ],

so if [eα, eβ] is non-zero then α+ β is also a root, and [eα, eβ] ∝ eα+β.
v) It follows from iv), that [eα, e−α] commutes with all the hi, and since h

was assumed maximal, it must either be zero or a linear combination
of the hi. A short calculation shows that

〈hi, [eα, e−α]〉 = αi〈eα, e−α〉,

and, since 〈eα, e−α〉 does not vanish, [eα, e−α] is non-zero. Thus

[eα, e−α] ∝
2αi

α2
hi ≡ hα

where αi = gijαj, and hα obeys

[hα, e±α] = ±2e±α.

The hα are called the co-roots.
vi) The importance of the co-roots stems from the observation that the

triad hα, e±α obey the same commutation relations as σ̂3 and σ±, and
so form an su(2) subalgebra of g. In particular hα (being the analogue
of 2J3) has only integer eigenvalues. For example in su(3)

[T+, T−] = hT = Λ3,



248 CHAPTER 6. LIE GROUPS

[V+, V−] = hV =
1

2
Λ3 +

√
3

2
Λ8,

[U+, U−] = hU = −1

2
Λ3 +

√
3

2
Λ8,

and in the defining representation

hT =




1 0 0
0 −1 0
0 0 0




hV =




1 0 0
0 0 0
0 0 −1




hU =




0 0 0
0 1 0
0 0 −1


 ,

have eigenvalues ±1.
vii) Since

ad (hα)eβ = [hα, eβ] =
2α · β
α2

eβ,

we conclude that 2α · β/α2 must be an integer for any pair of roots α,
β.

viii) Finally, there can only be one eα for each root α. If not, and there
were an independent e′α, we could take linear combinations so that e−α
and e′α are Killing orthogonal, and hence [e−α, e

′
α] = αihi〈e−α, e′α〉 = 0.

Thus ad (e−α)e
′
α = 0, and e′α is killed by the step-down operator. It

would therefore be the lowest weight in some su(2) representation. At
the same time, however, ad (hα)e

′
α = 2e′α, and we know that the lowest

weight in any spin J representation cannot have positive eigenvalue.

The conditions that
2α · β
α2

∈ Z

for any pair of roots tightly constrains the possible root systems, and is the
key to Cartan and Killing’s classification of the semisimple Lie algebras. For
example the angle θ between any pair of roots obeys cos2 θ = n/4 so θ can
take only the values 0◦, 30◦, 45◦, 60◦, 90◦, 120◦, 135◦, 150◦, or 180◦.
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These constraints lead to a complete classification of possible root systems
into the infinite families

An, n = 1, 2, · · · . sl(n+ 1,C),

Bn, n = 2, 3, · · · . so(2n + 1,C),

Cn, n = 3, 3, · · · . sp(2n,C),

Dn, n = 4, 5, · · · . so(2n,C),

together with the root systems G2, F4, E6, E7, and E8 of the exceptional
algebras. The latter do not correspond to any of the classical matrix groups.
For example G2 is the root system of g2, the Lie algebra of the group G2 of
automorphisms of the octonions . This group is also the subgroup of SL(7)
preserving the general totally antisymmetric trilinear form.

The restrictions on n’s are to avoid repeats arising from “accidental”
isomorphisms. If we allow n = 1, 2, 3, in each series, then C1 = D1 = A1.
This corresponds to sp(2,C) ∼= so(3,C) ∼= sl(2,C). Similarly D2 = A1 + A1,
corresponding to isomorphism SO(4) ∼= SU(2) × SU(2)/Z2, while C2 = B2

implies that, locally, the compact Sp(2) ∼= SO(5). Finally D3 = A3 implies
that SU(4)/Z2

∼= SO(6).

6.3.4 Product Representations

Given two representations Λ
(1)
i and Λ

(2)
i of g, we can form a new representa-

tion that exponentiates to the tensor product of the corresponding represen-
tations of the group G. Motivated by the result of exercise 5.13:

exp(A⊗ In + Im ⊗ B) = exp(A)⊗ exp(B) (6.132)

we set

Λ
(1⊗2)
i = Λ

(1)
i ⊗ I(2) + I(1) ⊗ Λ

(2)
i . (6.133)

Then

[Λ
(1⊗2)
i ,Λ

(1⊗2)
j ] = ([Λ

(1)
i ⊗ I(2) + I(1) ⊗ Λ

(2)
i ), (Λ

(1)
j ⊗ I(2) + I(1) ⊗ Λ

(2)
j )]

= [Λ
(1)
i ,Λ

(1)
j ]⊗ I(2) + [Λ

(1)
i , I(1)]⊗ Λ

(2)
j

+Λ
(1)
i ⊗ [I(2),Λ

(2)
j ] + I(1) ⊗ [Λ

(2)
i ,Λ

(2)
j ]

= [Λ
(1)
i ,Λ

(1)
j ]⊗ I(2) + I(1) ⊗ [Λ

(2)
i ,Λ

(2)
j ], (6.134)
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showing that the Λ
(1⊗2)
i also obey the Lie algebra.

This process of combining representations is analogous to the addition
of angular momentum in quantum mechanics. Perhaps more precisely, the
addition of angular momentum is an example of this general construction.
If representation Λ

(1)
i has weights m

(1)
i , i.e. h

(1)
i |m(1)〉 = m

(1)
i |m(1)〉, and Λ

(2)
i

has weights m
(2)
i , then, writing |m(1), m(2)〉 for |m(1)〉 ⊗ |m(2)〉, we have

h
(1⊗2)
i |m(1), m(2)〉 = (h

(1)
i ⊗ 1 + 1⊗ h(2)

i )|m(1), m(2)〉
= (m

(1)
i +m

(2)
i )|m(1), m(2)〉 (6.135)

so the weights appearing in the representation Λ
(1⊗2)
i are m

(1)
i +m

(2)
i .

The new representation is usually decomposible. We are familiar with
this decomposition for angular momentum where, if j > j′,

j ⊗ j′ = (j + j′)⊕ (j + j′ − 1)⊕ · · · (j − j′). (6.136)

This can be understood from adding weights. For example consider adding
the weights of j = 1/2, which are m = ±1/2 to those of j = 1, which are
m = −1, 0, 1. We get m = −3/2, −1/2 (twice) +1/2 (twice) and m = 3/2.
These decompose as shown in figure 6.6.

=

Figure 6.6: The weights for 1/2⊗ 1 = 3/2⊕ 1/2.

The rules for decomposing products in other groups are more compli-
cated than for SU(2), but can be obtained from weight diagrams in the same
manner. In SU(3), we have, for example

3⊗ 3̄ = 1⊕ 8,

3⊗ 8 = 3⊕ 6̄⊕ 15,

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27. (6.137)

To illustrate the first of these we show, in figure 6.7 the addition of the
weights in 3̄ ) to each of the weights in the 3.
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=

Figure 6.7: Adding the weights of 3 and 3̄.

The resultant weights decompose (uniquely) into the weight diagrams for the
8 together with a singlet.

6.3.5 Sub-algebras and branching rules

As with finite groups, a representation that is irreducible under the full Lie
group or algebra will in general become reducible when restricted to a sub-
group or sub-algebra. The pattern of the decomposition is again called a
branching rule. Here we provide some examples to illustrate the ideas.

The three operators V± and hV = 1
2
Λ3 +

√
3

2
Λ8 of su(3) form a Lie sub-

algebra that is isomorphic to su(2) under the map that takes them to σ±
and σ3 respectively. When restricted to this sub-algebra, the 8 dimensional
representation of su(3) becomes reducible, decomposing as

8 = 3⊕ 2⊕ 2⊕ 1, (6.138)

where the 3, 2 and 1 are the j = 1, 1
2

and 0 representations of su(2).

We can visualize this decomposition coming about by first projecting the
(λ3, λ8) weights to the “m” of the |j,m〉 labelling of su(2) as

m =
1

4
λ3 +

√
3

4
λ8 (6.139)

and then stripping off the su(2) irreps as we did when decomposing product
representions.
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m=1

m=1/2

m=0

m=−1/2

m=−1  

Figure 6.8: Projection of the su(3) weights onto su(2), and the decomposition
8 = 3⊕ 2⊕ 2⊕ 1.

This branching pattern occurs in the strong interactions where the mass
of the strange quark s being much larger than that of the light quarks u and
d causes the octet of pseudo-scalar mesons, which would all have the same
mass if SU(3) flavour symmetry was exact, to decompose into the triplet of
pions π+ ,π0 and π−, the pair K+ and K0, their antiparticles K− and K̄0,
and the singlet η.

There are obviously other su(2) sub-algebras consisting of {T±, hT} and
{U±, hU}, each giving rise to similar decompositions. These sub-algebras,
and a continuous infinity of related ones, are obtained from the {V±, hV }
algebra by conjugation by elements of SU(3).

Another, unrelated, su(2) sub-algebra consists of

σ+ '
√

2(U+ + T+),

σ− '
√

2(U− + T−),

σ3 ' 2hV = (Λ3 +
√

3Λ8). (6.140)

The factor of two between the assignment σ3 ' hV of our previous example
and the present assignment σ3 ' 2hV has a non-trivial effect on the branching
rules. Under restriction to this new subalgebra, the 8 of su(3) decomposes
as

8 = 5⊕ 3 (6.141)
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m=2

m=1

m=0

m=−1

m=−2  

Figure 6.9: The projection and decomposition for 8 = 5⊕ 3.

where the 5 and 3 are the j = 2 and j = 1 representations of su(2). A clue
to the origin and significance of this sub-algebra is found by noting that the
3 and 3̄ representations of su(3) both remain irreducible, but project to the
same j = 1 representation of su(2). Interpreting this j = 1 representation
as the defining vector representation of so(3) suggests (correctly) that our
new su(2) sub-algebra is the Lie algebra of the SO(3) subgroup of SU(3)
consisting of SU(3) matrices with real entries.

6.4 Further Exercises and Problems

Exercise 6.25: Campbell-Baker-Hausdorff Formulae. Here are some useful
formula for working with exponentials of matrices that do not commute with
each other.

a) Let X and X be matrices. Show that

etXY e−tX = Y + t[X,Y ] +
1

2
t2[X, [X,Y ]] + · · · ,

the terms on the right being the series expansion of exp[ad(tX)]Y .
b) Let X and δX be matrices. Show that

e−XeX+δX = 1 +

∫ 1

0
e−tXδXetXdt+O

[
(δX)2

]

= 1 + δX − 1

2
[X, δX] +

1

3!
[X, [X, δX]] + · · ·+O

[
(δX)2

]

= 1 +

(
1− ead(X)

ad(X)

)
δX +O

[
(δX)2

]
(6.142)

c) By expanding out the exponentials, show that

eXeY = eX+Y+ 1
2
[X,Y ]+higher,
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where “higher” means terms higher order in X,Y . The next two terms
are, in fact, 1

12 [X, [X,Y ]]+ 1
12 [Y, [Y,X]]. You will find the general formula

in part d).
d) By using the formula from part b), show that that eXeY can be written

as eZ , where

Z = X +

∫ 1

0
g(ead(X)ead(tY ))Y dt.

Here

g(z) ≡ ln z

1− 1/z

has a power series expansion

g(z) = 1 +
1

2
(z − 1) +

1

6
(z − 1)2 +

1

12
(z − 1)3 + · · · ,

which is convergent for |z| < 1. Show that g(ead(X)ead(tY )) can be ex-
panded as a double power series in ad(X) and ad(tY ), provided X and
Y are small enough. This ad(X), ad(tY ) expansion allows us to evaluate
the product of two matrix exponentials as a third matrix exponential
provided we know their commutator algebra.

Exercise 6.26: SU(2) Disentangling theorems: Almost any 2 × 2 matrix can
be factored (Gaussian decomposition) as

(
a b
c d

)
=

(
1 α
0 1

)(
λ 0
0 µ

)(
1 0
β 1

)
.

Use this trick to work the following problems:

a) Show that

exp

{
θ

2
(eiφσ̂+ − e−iφσ̂−)

}
= exp(ασ̂+) exp(λσ̂3) exp(βσ̂−),

where σ̂± = (σ̂1 ± iσ̂2)/2, and

α = eiφ tan θ/2,

λ = − ln cos θ/2,

β = −e−iφ tan θ/2.

b) Use the fact that the spin-1
2 representation of SU(2) is faithful, to show

that

exp

{
θ

2
(eiφĴ+ − e−iφĴ−)

}
= exp(αĴ+) exp(2λĴ3) exp(βĴ−),
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where Ĵ± = Ĵ1 ± iĴ2. Take care, the reasoning here is subtle! Notice
that the series expansion of exponentials of σ̂± truncates after the second
term, but the same is not true of the expansion of exponentials of the Ĵ±.
You need to explain why the formula continues to hold in the absence of
this truncation.

Exercise 6.27: Invariant tensors for SU(3). Let λi be the Gell-Mann lambda
matrices. The totally antisymmetric structure constants, fijk, and a set of
totally symmetric constants dijk are defined by

fijk =
1

2
tr (λi[λj , λk]), dijk =

1

2
tr (λi{λj , λk}).

Let D8
ij(g) be the matrices representing SU(3) in “8” — the eight-dimensional

adjoint representation.

a) Show that

fijk = D8
il(g)D

8
jm(g)D8

kn(g)flmn,

dijk = D8
il(g)D

8
jm(g)D8

kn(g)dlmn,

and so fijk and dijk are invariant tensors in the same sense that δij and
εi1...in are invariant tensors for SO(n).

b) Let wi = fijkujvk. Show that if ui → D8
ij(g)uk and vi → D8

ij(g)vk, then

wi → D8
ij(g)wk. Similarly for wi = dijkujvk. (Hint: show first that

the D8 matrices are real and orthogonal.) Deduce that fijk and dijk are
Clebsh-Gordan coefficients for the 8⊕ 8 part of the decomposition

8⊗ 8 = 1⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27.

c) Similarly show that δαβ and the lambda matrices (λi)αβ can be regarded
as Clebsch-Gordan coefficients for the decomposition

3̄⊗ 3 = 1⊕ 8.

d) Use the graphical method of plotting weights and peeling off irreps to
obtain the tensor product decomposition in part b).
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Chapter 7

The Geometry of Fibre Bundles

In earlier chapters we have used the language of bundles and connections, but
in a relatively casual manner. We deferred proper mathematical definitions
until now, because, for the applications we meet in physics, it helps to first
have acquired an understanding of the geometry of Lie groups.

7.1 Fibre Bundles

We begin with a formal definition of a bundle and then illustrate the defini-
tion with examples from quantum mechanics. These allow us to appreciate
the physics that the definition is designed to capture.

7.1.1 Definitions

A smooth bundle is a triple (E, π,M) where E and M are manifolds, and
π : E → M is a smooth map. The manifold E is called the total space, M
is the base space and π the projection map. The inverse image π−1(x) of a
point in M (i.e. the set of points in E that map to x in M), is the fibre over
x.

We usually require that all fibres be diffeomorphic to some fixed manifold
F . The bundle is then a fibre bundle, and F is “the fibre” of the bundle. In
a similar vein, we sometimes also refer to the total space E as “the bundle.”
Examples of possible fibres are vector spaces (in which case we have a vector

bundle), spheres (in which case we have a sphere bundle), and Lie groups.
When the fibre is a Lie group we speak of a principal bundle. A principal

257
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bundle can be thought of the parent of various associated bundles , which are
constructed by allowing the Lie group to act on a fibre. A bundle whose fibre
is a one dimensional vector space is called a line bundle.

The simplest example of a fibre bundle consists of setting E equal to the
Cartesian product M × F of the base space and the fibre. In this case the
projection just “forgets” the point f ∈ F , and so π : (x, f) 7→ x.

A more interesting example can be constructed by taking M to be the
circle S1, and F as the one-dimensionsional interval I = [−1, 1]. We can
assemble these ingredients to make E into a Möbius strip. We do this by
gluing the copy of I over θ = 2π to that over θ = 0 with a half twist so that
the end −1 ∈ [−1, 1] is attached to +1, and vice versa.

+1

φ

−1

−1

+1

0 2π

0

S

E

1
π

Figure 7.1: Möbius strip bundle, together with a section φ.

A bundle that is a product E = M ×F , is said to be trivial . The Möbius
strip is not a Cartesian product, and is said to be a twisted bundle. The
Möbius strip is, however, locally trivial in that for each x ∈ M there is an
open retractable neighbourhood U ⊂M of x in which E looks like a product
U×F . We will assume that all our bundles are locally trivial in this sense. If
{Ui} is a cover of M (i.e. if M =

⋃
Ui) by such retractable neighbourhoods,

and F is a fixed fibre, then a bundle can be assembled out of the collection
of Ui × F product bundles by giving gluing rules that identify points on the
fibre over x ∈ Ui in the product Ui × F with points in the fibre over x ∈ Uj
in Uj × F for each x ∈ Ui ∩ Uj . These identifications are made by means of
invertible maps ϕUiUj

(x) : F → F that are defined for each x in the overlap
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Ui ∩Uj . The ϕUiUj
are known as transition functions. They must satisfy the

consistency conditions

ϕUiUi
(x) = Identity,

ϕUiUj
(x) = φ−1

UjUi
(x)

ϕUiUj
(x)ϕUjUk

(x) = ϕUiUk
(x), x ∈ Ui ∩ Uj ∩ Uk 6= ∅. (7.1)

A section of a fibre bundle (E, π,M) is a smooth map φ : M → E such
that φ(x) lies in the fibre π−1(x) over x. Thus π ◦ φ = Identity. When the
total space E is a product M × F this φ is simply a function φ : M → F .
When the bundle is twisted, as is the Möbius strip, then the section is no
longer a function as it takes no unique value at the points x above which
the fibres are being glued together. Observe that in the Möbius strip the
half-twist forces the section φ(x) to pass through 0 ∈ [−1, 1]. The Möbius
bundle therefore has no nowhere-zero globally defined sections. Many twisted
bundles have no globally defined sections at all.

7.2 Physics Examples

We now provide three applications where the bundle concept appears in
quantum mechanics. The first two illustrations are re-expressions of well-
known physics. The third, the geometric approach to quantization, is perhaps
less familiar.

7.2.1 Landau levels

Consider the Schrödinger eigenvalue problem

− 1

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
= Eψ (7.2)

for a particle moving on a flat two-dimensional torus. We think of the torus
as a Lx × Ly rectangle with the understanding that as a particle disappears
through the right-hand boundary it immediately re-appears at the point with
the same y co-ordinate on the left-hand boundary; similarly for the upper
and lower boundaries. In quantum mechanics we implement these rules by
imposing periodic boundary conditions on the wave function:

ψ(0, y) = ψ(Lx, y) ψ(x, 0) = ψ(x, Ly). (7.3)
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These conditions make the wavefunction a well-defined and continuous func-
tion on the torus, in the sense that after pasting the edges of the rectangle
together to make a real toroidal surface the function has no jumps, and each
point on the surface assigns a unique value to ψ. The wavefunction is a
section of an untwisted line bundle with the torus as its base-space, the fi-
bre over (x, y) being the one-dimensional complex vector space C in which
ψ(x, y) takes its value.

Now try to carry out the same program for a particle of charge emoving in
a uniform magnetic field B perpendicular to the x−y plane. The Schrödinger
equation becomes

− 1

2m

(
∂

∂x
− ieAx

)2

ψ − 1

2m

(
∂

∂y
− ieAy

)2

ψ = Eψ, (7.4)

where (Ax, Ay) is the vector potential. We at once meet a problem. Although
the magnetic field is constant, the vector potential cannot be chosen to be
constant — or even periodic. In the Landau gauge, for example, where we set
Ax = 0, the remaining component becomes Ay = Bx. This means that as the
particle moves out of the right-hand edge of the rectangle representing the
torus we must perform a gauge transformation that prepares it for motion
in the (Ax, Ay) field it will encounter when it reappears at the left. If (7.4)
holds, then it continues to hold after the simultaneous change

ψ(x, y) → e−ieBLxyψ(x, y)

−ieAy → −ieAy + e−iBLxy
∂

∂y
e+ieBLxy = −ie(Ay −BLx). (7.5)

At the right-hand boundary x = Lx this gauge transformation resets the
vector potential Ay back to its value at the left-hand boundary. Accordingly,
we modify the boundary conditions to

ψ(0, y) = e−ieBLxyψ(Lx, y), ψ(x, 0) = ψ(x, Ly). (7.6)

The new boundary conditions make the wavefunction into a section1 of a —it
twisted line bundle over the torus. The fibre is again the one-dimensional
complex vector space C.

1That the wave “function” is no longer a function should not be disturbing.
Schrödinger’s ψ is never really a function of space-time. Seen from a frame moving at
velocity v, ψ(x, t) acquires factor of exp(−imvx−mv2t/2), and this is no way for a self-
respecting function of x and t to behave.
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We have already met the language in which the gauge field −ieAµ is a
called connection on the bundle, and the associated ieB field is the curvature.
We will explain how connections fit into the formal bundle language in section
7.3.

The twisting of the boundary conditions by the gauge transformation
seems innocent, but within it lurks an important constraint related to the
consistency conditions in (7.1). We can find the value of ψ(Lx, Ly) from that
of ψ(0, 0) by using the relations in (7.6) in the order ψ(0, 0) → ψ(0, Ly) →
ψ(Lx, Ly), or in the order ψ(0, 0) → ψ(Lx, 0) → ψ(Lx, Ly). Since we must
obtain the same ψ(Lx, Ly) whichever route we use, we need to satisfy the
condition

eieBLxLy = 1. (7.7)

This tells us that the Schrödinger problem makes sense only when the mag-
netic flux BLxLy through the torus obeys

eBLxLy = 2πN (7.8)

for some integer N . We cannot continuously vary the flux through a fi-
nite torus. This means that if we introduce torus boundary conditions as a
mathematical convenience in a calculation, then physical effects may depend
discontinuously on the field.

The integer N counts the number of times the phase of the wavefunction
is twisted as we travel from x = Lx, y = 0 to x = Lx, y = Ly gluing the
right-hand edge wavefunction to back to the left-hand edge wavefunction.
This twisting number is a topological invariant. We have met this invariant
before, in section 4.6. It is the first Chern number of the wavefunction
bundle. If we permit B to become position without altering the total twist N ,
then quantities such as energies and expectation values can change smoothly
with B. If N is allowed to change, however, the these quantities may jump
discontinuously.

The energy E = En solutions to (7.4) with boundary conditions (7.6) are
given by

Ψn,k(x, y) =

∞∑

p=−∞
ψn

(
x− k

B
− pLx

)
ei(eBpLx+k)y. (7.9)

Here ψn(x) is a harmonic-oscillator wavefunction obeying

− 1

2m

d2ψn
dx2

+
1

2
mω2ψn = Enψn, (7.10)
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with ω = eB/m the classical cyclotron frequency, and En = ω(n+1/2). The
parameter k takes the values 2πq/Ly for q an integer. At each energy En we
obtain N independent eigenfunctions as q runs from 1 to eBLxLy/2π. These
N -fold degenerate states are the Landau levels . The degeneracy, being of
necessity an integer, provides yet another explanation for why the flux must
be quantized.

7.2.2 The Berry connection

Suppose we are in possession of a quantum-mechanical hamiltonian Ĥ(ξ) de-
pending on some parameters ξ = (ξ1, ξ2, . . .) ∈M , and know the eigenstates
|n; ξ〉 that obey

Ĥ(ξ)|n; ξ〉 = En(ξ)|n; ξ〉. (7.11)

If, for fixed n, we can find a smooth family of eigenstates |n; ξ〉, one for
every ξ in the parameter space M , we have a vector bundle over the space
M . The fibre above ξ is the one-dimensional vector space spanned by |n; ξ〉.
This bundle is a sub-bundle of the product bundle M × H where H is the
Hilbert space on which Ĥ acts. Although the larger bundle is not twisted,
the sub-bundle may be. It may also not exist: if the state |n; ξ〉 become
degenerate with another state |m; ξ〉 at some value of ξ, then both states
can vary discontinuously with the parameters, and we wish to exclude this
possibility.

In the previous paragraph we considered the evolution of the eigenstates
of a time-independent Hamiltonian as we varied its parameters. Another,
more physical, evolution is given by solving the time-dependent Schrödinger
equation

i∂t|ψ(t)〉 = Ĥ(ξ(t))|ψ(t)〉 (7.12)

so as to follow the evolution of a state |ψ(t)〉 as the parameters are slowly var-
ied. If the initial state |ψ(0)〉 coincides with with the eigenstate |0, ξ(0)〉, and
if the time evolution of the parameters is slow enough, then |ψ〉 is expected to
remain close to the corresponding eigenstate |0; ξ(t)〉 of the time-independent
Schrödinger equation for the hamiltonian Ĥ(ξ(t)). To determine exactly how
“close” it stays, insert the expansion

|ψ(t)〉 =
∑

n

an(t)|n; ξ(t)〉 exp

{
−i
∫ t

0

E0(ξ(t)) dt

}
. (7.13)
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into (7.12) and take the inner-product with |m; ξ〉. For m 6= 0, we expect
that the overlap 〈m; ξ|ψ(t)〉 will be small and of order O(∂ξ/∂t). Assuming
that this is so, we read off that

ȧ0 + a0〈0; ξ|∂µ|0; ξ〉∂ξ
µ

∂t
= 0, (m = 0) (7.14)

am = ia0
〈m; ξ|∂µ|0; ξ〉
Em − E0

∂ξµ

∂t
, (m 6= 0) (7.15)

up to first-order accuracy in time derivatives of the |n; ξ(t)〉. Hence

|ψ(t)〉 = eiγBerry(t)

{
|0; ξ〉+ i

∑

m6=0

|m; ξ〉〈m; ξ|∂µ|0; ξ〉
Em − E0

∂ξµ

∂t
+ . . .

}
e−i

R t
0
E0(t)dt,

(7.16)
where the dots refer to terms of higher order in time derivatives.

Equation (7.16) constitutes the first two terms in a systematic adiabatic

series expansion. The factor a0(t) = exp{iγBerry(t)} is the solution of the
differential equation (7.14). The angle γBerry is known as Berry’s phase after
the British mathematical physicist Michael Berry. It is needed to take up the
slack between the arbitrary ξ-dependent phase choice at our disposal when
defining the |0; ξ〉, and the specific phase selected by the Schrödinger equation
as it evolves the state |ψ(t)〉. Berry’s phase is also called the geometric phase

because it depends only on the Hillbert-space geometry of the family of states
|0; ξ〉, and not on their energies. We can write

γBerry(t) = i

∫ t

0

〈0; ξ|∂µ|0; ξ〉∂ξ
µ

∂t
dt (7.17)

and regard the one-form

ABerry
def
= 〈0; ξ|∂µ|0; ξ〉dξµ = 〈0; ξ|d|0; ξ〉 (7.18)

as a connection on the bundle of states over the space of parameters. The
equation

ξ̇µ
(

∂

∂ξµ
+ ABerry ,µ

)
ψ = 0 (7.19)

then identifies the Schrödinger time evolution with parallel transport. It
seems reasonable to refer to this particular parallel transport as “Berry trans-
port.”
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In order for corrections to the approximation |ψ(t)〉 ≈ (phase)|0; ξ(t)〉 to
remain small, we need the denominator (Em − E0) to remain large when
compared to its numerator. The state that we are following must therefore
never become degenerate with any other state.

Monople bundle

Consider, for example a spin-1/2 particle in a magnetic field. If the field
points in direction n, the Hamiltonian is

Ĥ(n) = µ|B| σ̂ · n (7.20)

There are are two eigenstates with energy E± = ±µ|B|. Let is focus on
the eigenstate |ψ+〉 corresponding to E+. For each n we can obtain an E+

eigenstate by applying the projection operator

P̂ =
1

2
(I + n · σ̂) =

1

2

(
1 + nz nx − iny
nx + iny 1− nz

)
(7.21)

to almost any vector, and then multiplying by a real normalization constant
N . Applying P̂ to a “spin-up” state, for example gives

= N 1

2
(I + n · σ̂)

(
1
0

)
=

(
cos θ/2
eiφ sin θ/2

)
. (7.22)

Here θ and φ are spherical polar angles on S2 that specify the direction of n.

Although the bundle of E = E+ eigenstates is globally defined, the family

of states |ψ(1)
+ (n)〉 that we have obtained, and would like to use as base for

the fibre over n, becomes singular when n is in the vicinity of the south pole
θ = π. This is because the factor eiφ is multivalued at the south pole. There
is no problem at the north pole because the ambiguous phase eiφ multiples
sin θ/2, which is zero there.

Near the south pole, however, we can project from a “spin-down” state
to find.

|ψ(2)
+ (n)〉 = N 1

2
(I + n · σ̂)

(
0
1

)
=

(
e−iφ cos θ/2

sin θ/2

)
. (7.23)

This family of eigenstates is smooth near the south pole, but is ill-defined at
the north pole. As in section 4.6, we are compelled to cover the sphere S2
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by two caps D+ and D−, and use |ψ(1)
+ 〉 in D+ and |ψ(2)

+ 〉 in D−. The two
families are related by

|ψ(1)
+ (n)〉 = eiφ|ψ(2)

+ (n)〉 (7.24)

in the cingular overlap region D+ ∩D−. Here eiφ is the transition function
that glues the two families of eigenstates together.

The Berry connections are

A
(1)
+ = 〈ψ(1)

+ |d|ψ(1)
+ 〉 =

i

2
(cos θ − 1)dφ

A
(2)
+ = 〈ψ(2)

+ |d|ψ(2)
+ 〉 =

i

2
(cos θ + 1)dφ. (7.25)

In their common domain of definition, they are related by a gauge transfor-
mation

A
(2)
+ = A

(1)
+ + idφ. (7.26)

The curvature of either connection is

dA = − i
2

sin θdθdφ = − i
2
d(Area). (7.27)

The curvature being the area two-form tells us that when we slowly change
the direction of B and bring it back to its original orientation the spin state
will, in addition to the dynamical phase exp{−iE+t}, have accumulated a
phase equal to (minus) one-half of the area enclosed by the trajectory of n
on S2. The two-form field dA can be though of as the flux of a magnetic
monople residing at the centre of the sphere. The bundle of one-dimensional
vector spaces span[|ψ+(n)〉] over S2 is therefore called the monople bundle.

7.2.3 Quantization

In this section we provide a short introduction to geometric quantization.
This idea, due largely to Kirilov, Kostant and Souriau, extends the famil-
iar technique of canonical quantization to phase spaces with more structure
than that of the harmonic oscillator. We illustrate the formalism by quan-
tizing spin, and show how the resulting Hilbert space provides an example of
the Borel-Weil-Bott construction of the representations of a semi-simple Lie
group as spaces of sections of holomorphic line bundles.
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Prequantization

The passage from classical mechanics to quantum mechanics involves re-
placing the classical variables by operators in such a way that the classical
Poisson-bracket algebra is mirrored by the operator commutator algebra. In
general, this process of quantization is not possible without making some
compromises. It is, however, usually possible to pre-quantize a phase-space
with its associated Poisson algebra.

Let M be a 2n-dimensional classical phase-space with its closed symplec-
tic form ω. Classically a function f : M → R give rise to a Hamiltonian
vector field vf via Hamilton’s equations

df = −ivf
ω. (7.28)

We saw in section 2.4.2 that the closure condition dω = 0 ensures that that
the Poisson bracket

{f, g}=vfg = ω(vf , vg) (7.29)

obeys
[vf , vg] = v{f,g,}. (7.30)

Now suppose that the cohomology class of (2π~)−1ω in H2(M,R) has the
property that its integrals over cycles in H2(M,Z) are integers. Then (it can
be shown) there exists a line bundle L over M with curvature F = −i~−1ω.
If we locally write ω = dη, where η = ηµdx

µ, then the connection one-form
is A = −i~−1η and the covariant derivative

∇v ≡ vµ(∂µ − i~−1ηµ), (7.31)

acts on sections of the Line bundle. The corresponding curvature is

F (u, v)= [∇u,∇v]−∇[u,v] = −i~−1ω(u, v). (7.32)

We define a pre-quantized operator ρ̂(f) that acting on sections Ψ(x) of
the line bundle corresponds to the classical function f :

ρ̂(f)
def
= −i~∇vf

+ f. (7.33)

For hamiltonian vector fields vf and vg we have

[~∇vf
+ if,∇vg ] = ~∇[vf ,vg] − iω(vf , vg) + i[f,∇vg ]

= ~∇[vf ,vg] − i(ivf
ω + df)(vg)

= ~∇[vf ,vg], (7.34)
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and so

[−i~∇vf
+ f,−i~∇vg + g] = −~2∇[vf ,vg] − i~ vfg

= −i~(−i~∇[vf ,vg] + {f, g})
= −i~(−i~∇v{f,g}

+ {f, g}). (7.35)

Equation (7.35) is Dirac’s quantization rule:

i [ρ̂(f), ρ̂(g)] = ~ ρ̂({f, g}). (7.36)

The process of quantization is completed, when possible, by defining a
polarization. This is a restriction on the variables that we allow the wave-
functions to depend on. For example, if there is a global set of Darboux
co-ordinates p, q we may demand that the wavefunction depend only on q,
or only on the combination p + iq. Such a restriction is necessary so that
the representation f 7→ ρ̂(f) is irreducible. Since globally defined Darboux
co-ordinates do not usually exist, this step is the hard part of quantization.

The precise definition of a polarized section is rather complicated. We
can only sketch it here, but give a concrete example in the next section. At
each point x ∈M the symplectic form defines a skew bilinear form. We seek
a Lagrangian subspace of Vx ⊂ TMp for this form. A Lagrangian subspace
is one such that Vx = V ⊥

x . For example, if

ω = dp1 ∧ dq1 + dp2 ∧ dq2, (7.37)

then the space spanned by the ∂q’s is Lagrangian, as is the space spanned by
the ∂p’s. We allow the coefficients of the vectors in Vx to be complex numbers.
The vectors fields spanning the Vx’s form a distribution. We require it to be
integrable, so that the Vx are the tangent spaces to a global foliation of M .
A section Ψ of the Line bundle is polarized if ∇ξΨ = 0 for all ξ̄ ∈ Vx.

We define an inner product on the space of polarized sections by using
the Liouville measure ωn/n! on the phase space. The quantum Hilbert space
then consists of finite-norm polarized sections of L. Only classical functions
that give rise to polarization-compatible vector fields will have their Poisson-
bracket algebra coincide with the quantum commutator algebra.

Quantizing spin

To illustrate these ideas, we quantize spin. The classical mechanics of spin
was discussed in section 2.4.2. There we showed that the appropriate phase
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space is the 2-sphere equipped with a symplectic form proportional to the
area form. Here we must be specific about the constant of proportionality.
We choose units in which ~→ 1, and take ω = j d(Area). The integrality of
ω/2π requires that j be an integer or half integer. We will assume that j is
positive.

We parametrize the 2-sphere with complex sterographic co-ordinates z,
z which are constructed similarly to those in section 3.4.3. This choice will
allow us to impose a natural complex polarization on the wavefunctions. In
contrast to section 3.4.3, however, it is here convenient to make the point
z = 0 correspond to the south pole, so the polar co-ordinates θ, φ, on the
sphere are related to z, z via

cos θ =
|z|2 − 1

|z|2 + 1
,

eiφ sin θ =
2z

|z|2 + 1
,

e−iφ sin θ =
2z

|z|2 + 1
. (7.38)

In terms of the z, z co-ordinates

ω =
2ij

(1 + |z|2)2
dz ∧ dz. (7.39)

As long as we avoid the north pole where z =∞, we can write

ω = d

{
ij
z dz − z dz

1 + |z|2
}

= dη, (7.40)

and so the local connection form has components proportional to

ηz = −ij z

|z|2 + 1
, ηz = ij

z

|z|2 + 1
. (7.41)

The covariant derivatives are therefore

∇z =
∂

∂z
− j z

|z|2 + 1
, ∇z =

∂

∂z
+ j

z

|z|2 + 1
. (7.42)

We impose the polarization condition that ∇zΨ = 0. This condition
requires the allowed sections to be of the form

Ψ(z, z) = (1 + |z|2)−jψ(z), (7.43)
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where ψ depends only on z. It is natural to combine the (1+ |z|2)−j prefactor
with the Liouville measure so that the inner product becomes

〈ψ|χ〉 = 2j + 1

2πi

∫

C

dz ∧ dz
(1 + |z|2)2j+2

ψ(z)χ(z). (7.44)

The normalizable wavefunctions are then polynomials in z of degree less than
or equal to 2j, and a complete orthonormal set is given by

ψm(z) =

√
2j!

(j −m)!(j +m)!
zj+m, −j ≤ m ≤ j. (7.45)

We desire to find the quantum operators ρ̂(Ji) corresponding to the com-
ponents

J1 = j sin θ cos φ, J2 = j sin θ sinφ, J3 = j cos θ, (7.46)

of a classical spin J of magnitude j, and also to the ladder-operator compo-
nents J± = J1 ± iJ2. In our complex co-ordinates these functions become

J3 = j
|z|2 − 1

|z|2 + 1
,

J+ = j
2z

|z|2 + 1
,

J− = j
2z

|z|2 + 1
. (7.47)

Hamilton’s equations read

ż = i
(1 + |z|2)2

2j

∂H

∂z
,

ż = −i(1 + |z|2)2

2j

∂H

∂z
, (7.48)

and the Hamiltonian vector fields corresponding to the classical phase space
functions J3, J+ and J− are

vJ3
= iz∂z − iz∂z,

vJ+
= −iz2∂z − i∂z ,

vJ− = i∂z + iz2∂z. (7.49)



270 CHAPTER 7. THE GEOMETRY OF FIBRE BUNDLES

Using the recipe (7.33) for ρ̂(H) from the previous section, and the fact
that ∇zΨ = 0, we find, for example, that

ρ̂(J+)(1 + |z|2)−jψ(z) =

[
−z2

(
∂

∂z
− jz

(1 + |z|2)

)
+

2jz

(1 + |z|2)

]
(1 + |z|2)−jψ(z),

= (1 + |z|2)−j
[
−z2 ∂

∂z
+ 2jz

]
ψ (7.50)

It is natural to define operators

Ĵi = (1 + |z|2)j ρ̂(Ji)(1 + |z|2)−j (7.51)

that act only on the z-polynomial part ψ(z) of the section Ψ(z, z). We then
have

Ĵ+ = −z2 ∂

∂z
+ 2jz. (7.52)

Similarly, we find that

Ĵ− =
∂

∂z
, (7.53)

Ĵ3 = z
∂

∂z
− j. (7.54)

These operators obey the su(2) Lie algebra relations

[Ĵ3, Ĵ±] = ±Ĵ±,
[Ĵ+, Ĵ−] = 2Ĵ3, (7.55)

and act on the ψm(z) monomials as

Ĵ3ψm(z) = mψm(z)

Ĵ±ψm(z) =
√
j(j + 1)−m(m± 1)ψm±1(z). (7.56)

This is the familiar action of the su(2) generators on |j,m〉 basis states.

Exercise 7.1: Show that with respect to the inner product (7.44) we have

Ĵ†
3 = Ĵ3, Ĵ†

+ = Ĵ−.
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Coherent states and the Borel-Weil-Bott theorem

We now explain how the spin wavefunctions ψm(z) can be understood as
sections of a holomorphic line bundle.

Suppose that we have a compact Lie group G and a unitary irreducible
representation g ∈ G 7→ DJ(g). Let |0〉 be the normalized highest (or lowest)
weight state in the representation space. Consider the states

|g〉 = DJ(g)|0〉, 〈g| = 〈0|
[
DJ(g)

]†
. (7.57)

The |g〉 compose a family of generalized coherent states.2 There is a contin-
uous infinity of the |g〉, and so they cannot constitute an orthonormal set on
the finite dimensional representation space. The matrix-element orthogonal-
ity property (6.79), however, provides us us with a useful over-completeness

relation

I =
dim(J)

VolG

∫

G

|g〉〈g|. (7.58)

The integral is over all of G, but many points in G give the same contri-
bution. The maximal torus T is the abelian subgroup of G obtained by
exponentiating elements of the Cartan algebra. Because any weight vector is
a common eigenvector of the Cartan algebra, elements of T leave |0〉 fixed up
to a phase. The set of distinct |g〉 in the integral can therefore be identified
with G/T . This coset space is always an even dimensional manifold, and
thus a candidate phase space.

Consider in particular the spin-j representation of SU(2). The coset space
G/T is then SU(2)/U(1) ' S2. We can write a general element of SU(2) as

U = exp(zJ+) exp(θJ3) exp(γJ−) (7.59)

for some complex parameters z, θ and γ which are functions of the three real
co-ordinates that parameterize SU(2). We let U act on the lowest-weight
state |j,−j〉. The rightmost factor has no effect on the lowest weight state,
and the middle factor only multiplies it by a constant. We therefore restrict
our attention to the states

|z〉 = exp(zJ+)|j,−j〉, 〈z| = 〈j,−j| exp(zJ−) = (|z〉)†. (7.60)

2A. Perelomov, Generalized Coherent States and their Applications , (Springer-Verlag,
Berlin 1986).
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These states are not normalized, but have the advantage that the 〈z| are
holomorphic in the parameter z — i.e. they depend on z, but not on z.

The set of distinct |z〉 can still be identified with the 2-sphere, and z, z
are its complex sterographic co-ordinates. This identification is an example
of a general property of compact Lie groups:

G/T ∼= GC/B+. (7.61)

Here GC is the complexification of G — the group G, but with its parameters
allowed to be complex — andB+ is the Borel group whose Lie algebra consists
of the Cartan algebra together with the step-up ladder operators.

The inner product of two |z〉 states is

〈z′|z〉 = (1 + zz′)2j, (7.62)

and the eigenstates |j,m〉 of J2 and J3 possess coherent state wavefunctions

ψ(1)
m (z) ≡ 〈z|j,m〉 =

√
2j!

(j −m)!(j +m)!
zj+m. (7.63)

We recognize these as our spin wavefunctions from the previous section.
The over-completeness relation can be written as

I =
2j + 1

2πi

∫
dz ∧ dz

(1 + zz)2j+2
|z〉〈z|, (7.64)

and provides the inner product for the coherent-state wavefunctions. If
ψ(z) = 〈z|ψ〉 and χ(z) = 〈z|χ〉 then

〈ψ|χ〉 =
2j + 1

2πi

∫
dz ∧ dz

(1 + zz)2j+2
〈ψ|z〉〈z|χ〉

=
2j + 1

2πi

∫
dz ∧ dz

(1 + zz)2j+2
ψ(z)χ(z), (7.65)

which coincides with (7.44).

The wavefunctions ψ
(1)
m (z) are singular at the north pole where z = ∞.

Indeed there is no actual state 〈∞| because the phase of this putative limiting
state would depend on the direction from which we approach the point at
infinity. We may, however, define a second family of coherent states

|ζ〉2 = exp(ζJ−)|j, j〉, 2〈ζ | = 〈j, j| exp(ζJ+), (7.66)
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and form the wavefunctions

ψ(2)
m (ζ) = 2〈ζ |j,m〉. (7.67)

These new states and wavefunctions are well defined in the vicinity of the
north pole, but singular near the south pole.

To find the relation between ψ(2)(ζ) and ψ(1)(z) we note that the matrix
identity

[
0 −1
1 0

] [
1 0
z 1

]
=

[
1 0
−z−1 1

] [
−z 0
0 −z−1

] [
1 z−1

0 1

]
, (7.68)

coupled with the faithfulness of the spin-1
2

representation of SU(2), implies
the relation

ŵ exp(zJ+) = exp (−z−1J−)(−z)2J3 exp (z−1J+), (7.69)

where ŵ = exp(−iπJ2). We also note that

〈j, j|ŵ = (−1)2j〈j,−j|, 〈j,−j|ŵ = 〈j, j|. (7.70)

Thus,

ψ(1)
m (z) = 〈j,−j|ezJ−|j,m〉

= (−1)2j〈j, j|ŵ ezJ−|j,m〉
= (−1)2j〈j, j|e−z−1J−(−z)2J3ez

−1J+ |j,m〉
= (−1)2j(−z)2j〈j, j|ez−1J+ |j,m〉
= z2jψ(2)

m (z−1). (7.71)

The transition function z2j that relates ψ
(1)
m (z) to ψ

(2)
m (ζ ≡ 1/z) depends only

on z. We therefore say that the wavefunctions ψ
(1)
m (z) and ψ

(2)
m (ζ) are the local

components of a global section ψm ↔ |j,m〉 of a holomorphic line bundle.
The requirement that the transition function and its inverse be holomorphic
and single valued in the overlap of the z and ζ coordinate patches forces 2j
to be an integer. The ψm form a basis for the space of global holomorphic
sections of this bundle.

Borel, Weil and Bott showed that any finite-dimensional representation of
a semi-simple Lie group G can be realized as the space of global holomorphic
sections of a line bundle over GC/B+. This bundle is constructed from the



274 CHAPTER 7. THE GEOMETRY OF FIBRE BUNDLES

highest (or lowest) weight vectors in the representation by a natural gener-
alization of the method we have used for spin. This idea has been extended
by Ed Witten and others to infinite dimensional Lie groups, where it can be
used, for example, to quantize two-dimensional gravity.

Exercise 7.2: Normalize the states |z〉, 〈z|, by multiplying them byN = (1 + |z|2)−j .
Show that

N2〈z|J3|z〉 = j
|z|2 − 1

|z|2 + 1
,

N2〈z|J+|z〉 = j
2z

|z|2 + 1
,

N2〈z|J−|z〉 = j
2z

|z|2 + 1
,

thus confirming the identification of z, z with the complex stereographic co-
ordinates on the sphere.

7.3 Working in the Total Space

We have mostly considered a bundle to be a collection of mathematical ob-
jects attached to a base space, rather than treating the bundle as a geometric
object in its own right. In this section we will demonstrate the advantages
to be gained from the latter viewpoint.

7.3.1 Principal Bundles and Associated bundles

The fibre bundles that arise in a gauge theory with Lie group G are called
principal G-Bundles, and the fields and wavefunctions are sections of associ-

ated bundles. A principal G-bundle comprises the total space, which we here
call P , together with the projection, π, to the base space M . The fibre can
be regarded as a copy of G

π : P →M, π−1(x) ∼= G. (7.72)

Strictly speaking, the fibre is only required to be a homogeneous space on
which G acts freely and transitively on the right ; x → xg. Such a set can
be identified with G after we have selected a fiducial point f0 ∈ F to be
the group identity. There is no canonical choice for f0 and, if the bundle is



7.3. WORKING IN THE TOTAL SPACE 275

twisted, there can be no globally smooth choice. This is because a smooth
choice for f0 in the fibres above an open subset U ⊆ M makes P locally
into a product U × G. Being able to extend U to the entirety of M means
that P is trivial. We will, however, make use of local assignments f0 7→ e
to introduce bundle co-ordinate charts in which P is locally a product, and
therefore parametrized by ordered pairs (x, g) with x ∈ U and g ∈ G.

To understand the bundles associated with P , it is simplest to define the
sections of the associated bundle. Let ϕi(x, g) be a function on the total
space P with a set of indices i carrying some representation g 7→ D(g) of
G. We say that ϕi(x, g) is a section of an associated bundle if it varies in a
particular way as we run up and down the fibres by acting on them from the
right with elements of G. We require

ϕi(x, gh) = Dij(h
−1)ϕj(x, g). (7.73)

These sections can be thought of as wavefunctions for a particle moving in
a gauge field on the base space. The choice of representation D plays the
role of “charge,” and (7.73) are the gauge transformations. Note that we
must take h−1 as the argument of D in order for the transformation to be
consistent under group multiplication:

ϕi(x, gh1h2) = Dij(h
−1
2 )ϕj(x, gh1)

= Dij(h
−1
2 )Djk(h

−1
1 )ϕk(x, g)

= Dik(h
−1
2 h−1

1 )ϕk(x, g)

= Dik((h1h1)
−1)ϕk(x, g). (7.74)

The construction of the associated bundle itself requires rather more ab-
straction. Suppose that the matrices D(g) act on the vector space V . Then
the total space PV of the associated bundle consists of equivalence classes
of P × V under the relation ((x, g),v) ∼ ((x, gh), D(h−1)v) for all v ∈ V ,
(x, g) ∈ P and h ∈ G. The set of G-action equivalence classes in a Cartesian
product A× B is usually denoted by A×G B. Our total space is therefore

PV = P ×G V. (7.75)

We find it conceptually easier to work with the sections as defined above,
rather than with these equivalence classes.
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7.3.2 Connections

A gauge field is a connection on a principal bundle. The formal definition of
a connection is a decomposition of the tangent space TPp of P at p ∈ P into
a horizontal subspace Hp(P ) and a vertical subspace Vp(P ). We require that
Vp(P ) be the tangent space to the fibres and Hp(P ) to be a complementary
subspace, i.e., the direct sum should be the whole tangent space

TPp = Hp(P )⊕ Vp(P ). (7.76)

The horizontal subspaces must also be invariant under the push-forward
induced from the action on the fibres from the right of a fixed element
of G. More formally, if R[g] : P → P acts to take p → pg, i.e. by
R[g](x, g′) = (x, g′g), we require

R[g]∗Hp(P ) = Hpg(P ). (7.77)

Thus, we get to chose one horizontal subspace in each fibre, the rest being
determined by the right-invariance condition.

Given a curve x(t) in the base space we can, by solving the equation

ġ +
∂xµ

∂t
Aµ(x)g = 0, (7.78)

lift it to a curve (x(t), g(t)) in the total space, whose tangent is everywhere
horizontal. This lifting operation corresponds to parallel transporting the
initial value g(0) along the curve x(t) to get g(t). The Aµ = iλ̂aAaµ are a set of
Lie-algebra-valued functions that are determined by our choice of horizontal
subspace. They are defined so that the vector (δx,−Aµδxµg) is horizontal
for each small displacement δxµ in the tangent space of M . Here −Aµδxµg is
to be understood as the displacement that takes g → (1−Aµδxµ)g. Because
we are multiplying A in from the left , the lifted curve can be slid rigidly
up and down the fibres by the right action of any fixed group element. The
right-invariance condition is therefore automatically satisfied.

The directional derivative along the lifted curve is

ẋµDµ = ẋµ

((
∂

∂xµ

)

g

−AaµRa

)
, (7.79)

where Ra is a right-invariant vector field on G, i.e., a differential operator on
functions defined on the fibres. The Dµ are a set of vector fields in TP . These
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covariant derivatives span the horizontal subspace at each point p ∈ P , and
have Lie brackets

[Dµ,Dν ] = −FaµνRa. (7.80)

Here Fµν , is given in terms of the structure constants appearing in the Lie
brackets [Ra, Rb] = f cabRc by

F cµν = ∂µAcν − ∂νAcµ − f cabAaµAbν . (7.81)

We can also write

Fµν = ∂µAν − ∂νAµ + [Aµ,Aν ]. (7.82)

where Fµν = iλ̂aFaµν and [λ̂a, λ̂b] = if cabλ̂c.
Because the Lie bracket of the Dµ is a linear combination of the Ra, it lies

entirely in the vertical subspace. Consequently, when Fµν 6= 0, the Dµ are not
in involution, and Frobenius’ theorem tells us that the horizontal subspaces
cannot fit together to form the tangent spaces to a smooth foliation of P .

We make contact with the more familiar definitions of covariant deriva-
tives by remembering that right invariant vector fields are derivatives that
involve infinitesimal multiplication from the left . Their definition is

Raϕi(x, g) = lim
ε→0

1

ε

(
ϕi(x, (1 + iελ̂a)g)− ϕi(x, g)

)
, (7.83)

where [λ̂a, λ̂b] = if cabλ̂c.
Since ϕi(x, g) is a section of the associated bundle, we know how it varies

when we multiply group elements in on the right. We therefore write

(1 + iελ̂a)g = g g−1(1 + iελ̂a)g, (7.84)

and from this, (and writing g for D(g) where it makes for compact notation)
we find

Raϕi(x, g) = lim
ε→0

(
Dij(g

−1(1− iελ̂a)g)ϕj(x, g)− ϕi(x, g)
)
/ε

= −Dij(g
−1)(iλ̂a)jkDkl(g)ϕl(x, g)

= −i(g−1λ̂ag)ijϕj. (7.85)

Here i(λ̂a)ij is the matrix representing the Lie algebra generator iλ̂a in the
representation g 7→ D(g). Acting on sections, we therefore have

Dµϕ = (∂µϕ)g + (g−1Aµg)ϕ. (7.86)
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This still does not look too familiar because the derivatives with respect to
xµ are being taken at fixed g. We normally fix a gauge by making a choice of
g = σ(x) for each xµ. The conventional wavefunction ϕ(x) is then ϕ(x, σ(x)).
We can use ϕ(x, σ(x)) = σ−1(x)ϕ(x, e), to obtain

∂µϕ = (∂µϕ)σ +
(
∂µσ

−1
)
σϕ = (∂µϕ)σ −

(
σ−1∂µσ

)
ϕ. (7.87)

From this we get a derivative

∇µ
def
= ∂µ + (σ−1Aµσ + σ−1∂µσ) = ∂µ + Aµ. (7.88)

on functions ϕ(x) ≡ ϕ(x, σ(x)) defined (locally) on the base space M . This
is the conventional covariant derivative, now containing gauge fields Aµ(x)
that are gauge transformations of our g-independent Aµ. The derivative has
been constructed so that

∇µϕ(x) = Dµϕ(x, g)|g=σ(x) , (7.89)

and has commutator

[∇µ,∇ν] = σ−1Fµνσ = Fµν . (7.90)

Note the sign change vis-a-vis equation (7.80).
It is the curvature tensor Fµν that we have met previously. Recall that it

provides a Lie algebra valued two-form

F ≡ 1

2
Fµνdx

µdxν = dA+ A2 (7.91)

on the base space. The connection A ≡ Aµdx
µ is a one-form on the base

space, and both F and A have been defined only in the region U ⊂ M where
the smooth gauge-choice section σ(x) has been selected.

7.3.3 Monople harmonics

The total-space operations and definitions seem rather abstract. We demon-
strate their power by solving the Schrödinger problem for a charged particle
confined to a unit sphere surrounding a magnetic monopole. The conven-
tional approach to this problem involves first selecting a gauge for vector
the potential A, which, because of the monopole, is necessarily singular at a
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Dirac string located somewhere on the sphere, and then delving into prop-
erties of Gegenbauer polynomials. Eventually we find the gauge-dependent
wavefunction. By working with the total space, however, we can solve the
problem in all gauges at once, and the problem becomes a simple exercise in
Lie group geometry.

Recall that the SU(2) representation matrices DJ
mn(θ, φ, ψ) form a com-

plete orthonormal set of functions on the group manifold S3. There will be a
similar complete orthonormal set of representation matrices on the manifold
of any compact Lie group G. Given a subgroup H ∈ G, we will use these
matrices to construct bundles associated to a principal H-bundle that has G
as its total space, and the coset space G/H as its base space. The fibres will
be copies of H , and the projection π the usual projection G→ G/H .

The functions DJ(g) are not in general functions on the coset space
G/H as they depend on the choice of representative. Instead, because of
the representation property, they vary with the choice of representative in a
well-defined way,

DJ
mn(gh) = DJ

mn′(g)DJ
n′n(h). (7.92)

Since we are dealing with compact groups, the representations can be taken
to be unitary and

[DJ
mn(gh)]

∗ = [DJ
mn′(g)]∗[DJ

n′n(h)]
∗ (7.93)

= DJ
nn′(h−1)[DJ

mn′(g)]∗. (7.94)

This is the correct variation under the right action of the group H for the
set of functions [DJ

mn(gh)]
∗ to be sections of a bundle associated with the

principal fibre bundle G→ G/H . The representation h 7→ D(h) of H is not
necessarily that defined by the label J because irreducible representations of
G may be reducible under H ; D depends on what representation of H the
index n belongs to. If D is the identity representation, then the functions
are functions on G/H in the ordinary sense. For G = SU(2) and H the U(1)
subgroup generated by J3, the quotient space is just S2, and projection is the
Hopf map: S3 → S2. The resulting bundle can be called the Hopf bundle.
It is not a really new object however, because it is a generalization of the
monopole bundle of the preceding section. Parameterizing SU(2) with Euler
angles, so that

DJ
mn(θ, φ, ψ) = 〈J,m|e−iφJ3e−iθJ2e−iψJ3 |J, n〉, (7.95)
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shows that the Hopf map consists of simply forgetting about ψ, so

Hopf : [(θ, φ, ψ) ∈ S3] 7→ [(θ, φ) ∈ S2]. (7.96)

The bundle is twisted because S3 is not a product S2×S1. Taking n = 0 gives
us functions independent of ψ, and we obtain the well-known identification
of the spherical harmonics with representation matrices

Y L
m(θ, φ) =

√
2L+ 1

4π
[D

(L)
m0 (θ, φ, 0)]∗. (7.97)

For n = Λ 6= 0 we get sections of a bundle with Chern number 2Λ. These
sections are the monopole harmonics

YJm;Λ(θ, φ, ψ) =

√
2J + 1

4π
[DJ

mΛ(θ, φ, ψ)]∗ (7.98)

for a monopole of flux
∫
eB d(Area) = 4πΛ. The integrality of the Chern

number tells us that the flux 4πΛ must be an integer multiple of 2π. This
gives us a geometric reason for why the eigenvalues m of J3 can only be an
integer or half integer.

The monopole harmonics have a non-trivial ∝ eiψΛ dependence on the
choice we make for ψ at each point on S2, and we cannot make a globally
smooth choice; we always encounter a point where there is a singularity.
These sections of the twisted bundle have to be constructed in patches and
glued together transition functions.

We now show that the monopole harmonics are eigenfunctions of the
Schrödinger operator, −∇2, containing the gauge field connection, just as the
spherical harmonics are eigenfunctions of the Laplacian on the sphere. This
is a simple geometrical exercise. Because they are irreducible representations,
theDJ(g) are automatically eigenfunctions of the quadratic Casimir operator

(J2
1 + J2

2 + J2
3 )DJ(g) = J(J + 1)DJ(g). (7.99)

The Ji can be either right or left-invariant vector fields on G; the quadratic
Casimir is the same second-order differential operator in either case, and it
is a good guess that it is proportional to the Laplacian on the group mani-
fold. Taking a locally geodesic co-ordinate system (in which the connection
vanishes) confirms this: J2 = −∇2 on the three-sphere. The operator in
(7.99) is not the Laplacian we want, however. What we need is the ∇2 on
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the two-sphere S2 = G/H , including the the connection. This ∇2 operator
differs from the one on the total space since it must contain only differential
operators lying in the horizontal subspaces. There is a natural notion of or-
thogonality in the Lie group, deriving from the Killing form, and it is natural
to choose the horizontal subspaces to be orthogonal to the fibres of G/H .
Since multiplication on the right by the subgroup generated by J3 moves
one up and down the fibres, the orthogonal displacements are obtained by
multiplication on the right by infinitesimal elements made by exponentiating
J1 and J2. The desired ∇2 is thus made out of the left-invariant vector fields
(which act by multiplication on the right), J1 and J2 only. The wave operator
must be

−∇2 = J2
1 + J2

2 = J2 − J2
3 . (7.100)

Applying this to the YJm;Λ we see that they are eigenfunctions of −∇2 on S2

with eigenvalues J(J + 1) − Λ2. The Laplace eigenvalues for our flux 4πΛ
monopole problem are therefore

EJ,m = (J(J + 1)− Λ2), J ≥ |Λ|, −J ≤ m ≤ J. (7.101)

The utility of the monopole Harmonics is not restricted to exotic monopole
physics. They occur in molecular and nuclear physics as the wavefunctions
for the rotational degrees of freedom of diatomic molecules and uniaxially
deformed nuclei that possess angular momentum Λ about their axis of sym-
metry.3

Exercise 7.3: Compare these energy levels for a particle on a sphere with those
of the Landau level problem on the plane. Show that for any fixed flux the
low-lying energies remain close to E = (eB/mparticle)(n + 1/2), n zero or a
positive integer, but their degeneracy is is equal to the number of flux units
penetrating the sphere plus one.

7.3.4 Bundle connection and curvature forms

Recall that in section 7.3.2 we introduced the Lie-Algebra-valued functions
Aµ(x). We now use these functions to introduce the bundle connection form

A that lives in T ∗P . We set

A = Aµ dxµ (7.102)

3This is explained, with chararacteristic terseness, in a footnote on page 317 of Landau
and Lifshitz’ Quantum Mechanics (Third Edition).



282 CHAPTER 7. THE GEOMETRY OF FIBRE BUNDLES

and
A

def
= g−1

(
A+ δg g−1

)
g. (7.103)

In these definitions, x and g are the local co-ordinates in which points in
the total space are labelled as (x, g), and d acts on functions of x, and the
“δ” is used to denote the exterior derivative acting on the fibre.4 We have,
then, that δxµ = 0 and dg = 0. The combinations δg g−1 and g−1δg are
respectively the right- and left-invariant Maurer-Cartan form on the group.

The complete exterior derivative in the total space requires us to differen-
tiate both with respect to g and with respect to x, and is given by dtot = d+δ.
Because d2 , δ2 and (d+ δ)2 = d2 + δ2 + dδ + δd are all zero, we must have

δd+ dδ = 0. (7.104)

We now define the bundle curvature form in terms of A to be

F
def
= dtotA + A2. (7.105)

To compute F in terms of A(x) and g we need the ingredients

dA = g−1(dA)g, (7.106)

and
δA = −(g−1δg)A−A(g−1δg)− (g−1δg)2. (7.107)

We find that

F = (d+ δ)A + A2 = g−1
(
dA+A2

)
g

= g−1Fg, (7.108)

where

F =
1

2
Fµνdxµdxν , (7.109)

and
Fµν = ∂µAν − ∂νAµ + [Aµ,Aν]. (7.110)

Although we have defined the connection form A in terms of the local
bundle co-ordinates (x, g), it is, in fact, an intrinsic quantity, i.e. it is has a
global existence independent of the choice of these co-ordinates. A has been
constructed so that

4It is not therefore to be confused with the Hodge δ = d† operator.
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• A vector is annihilated by A if and only if it is horizontal. In particular
A(Dµ) = 0 for all covariant derivatives Dµ.
• The connection form is constant on left-invariant vector fields on the

fibres. In particular A(La) = iλ̂a.
Between them, the globally defined fields Dµ ∈ Hp(P ) and La ∈ Vp(P ) span
the tangent space TPp. Consequently the two properties listed above tell us
how to evaluate A on any vector, and so define it uniquely and globally.

From the globally defined and gauge invariant A and its associated cur-
vature F, and for any local gauge-choice section σ : (U ⊂ M) → P , we can
recover the gauge-dependent base-space forms A and F as the pull-backs

A = σ∗A, F = σ∗F, (7.111)

to U ⊂M of the total-space forms. The resulting forms are

A =
(
σ−1Aµσ + σ−1∂µσ

)
dxµ, F =

1

2

(
σ−1Fµνσ

)
dxµdxν , (7.112)

and coincide with the equations connecting Aµ with Aµ and Fµν with Fµν
that we obtained in section 7.3.2. We should take care to note that the dxµ

that appear in A and F are differential forms on M , while the dxµ that
appear in A and F are differential forms on P . Now the projection π is a left
inverse of the gauge-choice section σ, i.e. π ◦ σ = identity. The associated
pull-backs are also inverses, but with the order reversed: σ∗ ◦ π∗ = identity.
These maps relate the two sets of “dxµ” by

dxµ|M = σ∗ (dxµ|P ) , or dxµ|P = π∗ (dxµ|M) . (7.113)

We now explain the advantage of knowing the total space connection and
curvature forms. Consider the Chern character ∝ trF 2 on the base-space
M . We can use the bundle projection π to pull this form back to total space.
From

Fµν = (gσ−1)−1Fµν(gσ
−1), (7.114)

we find that
π∗ (trF 2

)
= tr F2. (7.115)

Now A, F and dtot have the same calculus properties as A , F and d. The
manipulations that give

trF 2 = d tr

(
AdA+

2

3
A3

)
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also show, therefore, that

tr F2 = dtot tr

(
A dtotA +

2

3
A3

)
. (7.116)

There is a big difference in the significance of the computation, however. The
bundle connection A is globally defined. Consequently, the form

ω3(A) ≡ tr

(
A dtotA +

2

3
A3

)
(7.117)

is also globally defined. The pull-back to the total space of the Chern char-
acter is dtot exact! This miracle works for all characteristic classes: on the
base-space they are exact only when the bundle is trivial; on the total space
they are always exact.

We have seen this phonomenon before, for example in exercise 6.7. The
area form d[Area] = sin θ dθdφ is closed but not exact on S2. When pulled
back to S3 by the Hopf map, the area form becomes exact:

Hopf∗d[Area] = sin θ dθdφ = d(− cos θdφ+ dψ). (7.118)

7.3.5 Characteristic classes as obstructions

The generalized Gauss-Bonnet theorem states that, for a compact orientable
even-dimensional manifold M , the integral of the Euler class over M is equal
to the Euler character χ(M). Shiing-Shen Chern used the exactness of the
pull-back of the Euler class to give an elegant intrinsic proof5 of this theorem.
Chern showed that the integral of the Euler class over M was equal to the
sum of the Poincare-Hopf indices of any tangent vector field on M , a sum
we independently know to equal the Euler character χ(M). We illustrate his
strategy by showing how a non-zero ch2(F ) provides a similar index sum for
the singularities of any section of an SU(2)-bundle over a four-dimensional
base space. This result provides an interpretation of characteristic classes as
obstructions to the existence of global sections.

Let σ : M → P be a section of an SU(2) principal bundle P over a
four-dimensional compact orientable manifold M without boundary. For
any SU(n) group we have ch1(F ) ≡ 0, but

∫

M

ch2(F ) = − 1

8π2

∫

M

tr (F 2) = n, (7.119)

5S-J. Chern, Ann. Math. 47 (1946) 85-121. This paper is a readable classic.
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can be non-zero.
The section σ will, in general, have points xi where it becomes singular.

We punch infinitesimal holes in M surrounding the singular points. The
manifold M ′ = (M \ holes) will have as its boundary ∂M ′ a disjoint union
of small three-spheres. We denote by Σ the image of M ′ under the map
σ : M ′ → P . This Σ will be a submanifold of P , whose boundary will be
equal in homology to a linear combination of the boundary components of
M ′ with integer coefficients. We show that the Chern number n is equal to
the sum of these coefficients.

We begin by using the projection π to pull back ch2(F ), to the bundle,
where we know that

π∗ch2(F ) = − 1

8π2
dtot ω3(A). (7.120)

Now we can decompose ω3(A) into terms of different bi-degree, i.e. into
terms that are p-forms in d and q-forms in δ.

ω3(A) = ω0
3 + ω1

2 + ω2
1 + ω3

0. (7.121)

Here the superscript counts the form-degree in δ, and the subscript the form-
degree in d. The only term we need to know explicitly is ω3

0. This comes
from the g−1δg part of A, and is

ω3
0 = tr

(
(g−1δg) δ(g−1δg) +

2

3
(g−1δg)3

)

= tr

(
−(g−1δg)3 +

2

3
(g−1δg)3

)

= −1

3
(g−1δg)3. (7.122)

We next use the map σ : M ′ → P to pull the right-hand side of (7.120)
back from P to M ′. We recall that acting on forms on M ′ we have σ∗ ◦ π∗ =
identity. Thus

∫

M

ch2(F ) =

∫

M ′

ch2(F ) =

∫

M ′

σ∗ ◦ π∗ch2(F )

= − 1

8π2

∫

M ′

σ∗dtot ω3(A)

= − 1

8π2

∫

Σ

dtot ω3(A)
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= − 1

8π2

∫

∂Σ

ω3(A)

=
1

24π2

∫

∂Σ

(g−1δg)3. (7.123)

At the first step we have observed that the omitted spheres make a negligeable
contribution to the integral over M , and at the last step we have used the
fact that the boundary of Σ, has significant extent only along the fibres,
so all contributions to the integral over ∂Σ come from the purely vertical
component of ω3(A), which is ω3

0 = −1
3
(g−1dg).

We know (see exercise 6.8) that for maps g 7→ U ∈ SU(2) we have

∫
tr (g−1dg)3 = 24π2 × winding number

We conclude that
∫

M

ch2(F ) =
1

24π2

∫

∂Σ

(g−1δg)3 =
∑

singularitiesxi

Ni (7.124)

where Ni is the Brouwer degree of the map σ : S3 → SU(2) ∼= S3 on the
small sphere surrounding xi.

It turns out that for any SU(n) the integral of tr (g−1δg)3 is 24π2 times
an integer winding number of g about homology spheres. The second Chern
number of a SU(n)-bundle is therefore also equal to the sum of the winding-
number indices of the section about its singularities. Chern’s strategy can
be used to relate other characteristic classes to obstructions to the existence
of global sections of appropriate bundles.

7.3.6 Stora-Zumino descent equations

In the previous sections we met the forms

A = g−1Ag + g−1δg (7.125)

and
A = σ−1Aσ + σ−1dσ. (7.126)

The group element g labeled points on the fibres and was independent x,
while σ(x) was the gauge-choice section of the bundle and depended on x.
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The two quantities A and A look similar, but are not identical. A third
superficially similar but distinct object is met with in the BRST (Becchi-
Rouet-Stora-Tyutin) approach to quantizing gauge theories, and also in the
geometric theory of anomalies. We describe it here to alert the reader to the
potential for confusion.

Rather than attempting to define this new differential form rigorously,
we will first explain how to calculate with it, and only then indicate what it
is. We begin by considering a fixed connection form A on M , and its orbit
under the action of the group G of gauge transformations. This elements of
this infinite dimensional group are maps g : M → G equipped with pointwise
product g1g2(x) = g1(x)g2(x). This g(x) is neither the fibre co-ordinate g,
nor the gauge choice section σ(x). The gauge transformation g(x) acts on A
to give Ag where

Ag = g−1Ag + g−1dg. (7.127)

We now introduce an object

v(x) = g−1δg, (7.128)

and consider
A = Ag + v = g−1Ag + g−1dg + g−1δg. (7.129)

This 1-form appears to be a hybrid of the earlier quantities, but we will
see that it has to be considered as something new. The essential difference
from what has gone before is that we want v to behave like g−1δg, in that
δv = −v2, and yet to depend on x. In particular we want δ to behave as
an exterior derivative that implements an infinitesimal gauge transformation
that takes g → g + δg. Thus,

δ(g−1dg) = −(g−1δg)(g−1dg) + g−1δdg

= −(g−1δg)(g−1dg)− (g−1dg)(g−1δg) + (g−1dg)(g−1δg)− g−1dδg

= −v(g−1dg)− (g−1dg)v − dv, (7.130)

and hence
δAg = −vAg −Agv − dv. (7.131)

Previously g−1dg ≡ 0, and so there was no “dv” in δ(gauge field).
We can define a curvature associated with A

F
def
= dtotA + A2, (7.132)



288 CHAPTER 7. THE GEOMETRY OF FIBRE BUNDLES

and compute

F = (d+ δ)(Ag + v) + (Ag + v)2

= dAg + dv + δAg + δv + (Ag)2 + Agv + vAg + v2

= dAg + (Ag)2

= g−1Fg, (7.133)

Stora calls (7.133) the Russian formula.
Because F is yet another gauge transform of F , we have

trF 2 = trF2 = (d+ δ) tr

(
A(d+ δ)A +

2

3
A3

)
(7.134)

and can decompose the right-hand side into terms that are simultaneously
p-foms in d and q-forms in δ.

The left hand side, trF2 = trF 2, of (7.134) is independent of v. The right
hand side of (7.134) contains ω3(A) which we expand as

ω3(A
g + v) = ω0

3(A
g) + ω1

2(v, A
g) + ω2

1(v, A
g) + ω3

0(v). (7.135)

As in the previous section, the superscript counts the form-degree in δ, and
the subscript the form-degree in d. Explicit computation shows that

ω0
3(A

g) = tr
(
Ag dAg + 2

3
(Ag)3

)
,

ω1
2(v, A

g) = tr (v dAg),

ω2
1(v, A

g) = −tr (Agv2),

ω3
0(v) = −1

3
v3 (7.136)

For example,

ω3
0(v) = tr

(
v δv +

2

3
v3

)
= tr

(
v(−v2) +

2

3
v3

)
= −1

3
v3. (7.137)

With this decomposition, (7.116) falls apart into the chain of descent equa-

tions

trF 2 = dω0
3(A

g),

δω0
3(A

g) = −d ω1
2(v, A

g),

δω1
2(v, A

g) = −d ω2
1(v, A

g),

δω2
1(v, A

g) = −d ω3
0(v),

δω3
0(v) = 0. (7.138)
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Let us verify, for example, the penultimate equation δω2
1(v, A

g) = −d ω3
0(v).

The left-hand side is

−δ tr (Agv2) = −tr (−Av3 − vAgv2 − dv v2) = tr (dv v2), (7.139)

the terms involving Ag having cancelled via the cyclic property of the trace
and the fact that Ag anticommutes with v. The right-hand side is

−d
(
−1

3
tr v3

)
= tr (dv v2) (7.140)

as required.
The descent equations were introduced by Raymond Stora and Bruno Zu-

mino as a tool for obtaining and systematizing information about anomalies

in the quantum field theory of fermions interacting with the gauge field Ag.
The ωqp(v, A

g) are p-forms in the dxµ, and before use they are integrated over
p-cycles in M . This process is understood to produce local functionals of Ag

that remain q-forms in δg. For example, in 2n space-time dimensions, the
integral

I[g−1δg, Ag] =

∫

M

ω1
2n(g

−1δg, Ag) (7.141)

has the properties required for it to be a candidate for the anomalous vari-
ation δS[Ag] of the fermion effective action due to an infinitesimal gauge
transformation g → g + δg. In particular, when ∂M = ∅, we have

δI[g−1δg, Ag] =

∫

M

δω1
2n(v, A

g) = −
∫

M

dω2
2n−1(v, A

g) = 0. (7.142)

This is the Wess-Zumino consistency condition that δ(δS) must obey as a
consequence of δ2 = 0.

In addition to producing a convenient solution of the Wess-Zumino condi-
tion, the descent equations provide a compact derivation of the gauge trans-
formation properties of useful differential forms. We will not seek to explain
further the physical meaning of these forms, leaving this to a field theory
course.

The similarity between A and A lead various authors to attempt to iden-
tify them, and in particular to identify v(x) with the g−1δg Maurer-cartan
form appearing in A. However the physical meaning of expressions such as
d(g−1δg) precludes such a simple interpretation. In evaluating dv ∼ d(g−1δg)
on a vector field ξa(x)La representing an infinitesimal gauge transformation,
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we are to first to insert the field into v ∼ g−1δg to obtain the x dependent
Lie algebra element iξa(x)λ̂a, and only then to take the exterior derivative
to obtain iλ̂a∂µξ

a dxµ. The result therefore involves derivatives of the com-
ponents ξa(x). The evaluation of an ordinary differential form on a vector
field never produces derivatives of the vector components.

To understand what the Stora-Zumino forms are, imagine that we equip a
two dimensional fibre bundle E = M ×F with base-space co-ordinate x and
fibre co-ordinate y. A p = 1, q = 1 form on E will then be F = f(x, y) dx δy
for some function f(x, y). There is only one object δy, and there is no
meaning to integrating F over x to leave a 1-form in δy on E. The space
of forms introduced by Stora and Zumino, on the other hand, would contain
elements such as

J =

∫

M

j(x, y) dx δyx (7.143)

where there is a distinct δyx for each x ∈ M . If we take, for example,
j(x, y) = δ′(x− a). we evaluate J on the vector field Y (x, y)∂y as

J [Y (x, y)∂y] =

∫
δ′(x− a)Y (x, y) dx = −Y ′(a, y). (7.144)

The conclusion is that that the 1-form form field v(x) ∼ g−1δg must be
considered as the left-invariant Maurer-Cartan form on the infinite dimen-
sional Lie group G, rather than a Maurer-Cartan form on the finite dimen-
sional Lie group G. The

∫
M
ωq2n(v, A

g) are therefore elements of the coho-
mology group Hq(AG) of the G orbit of A, a rather complicated object. For
a thorough discussion see: J. A. de Azcárraga, J. M. Izquierdo, Lie groups,

Lie Algebras, Cohomology and some Applications in Physics , published by
Cambridge University Press.



Chapter 8

Complex Analysis I

Although this chapter is called complex analysis , we will try to develop
the subject as complex calculus — meaning that we shall follow the calculus
course tradition of telling you how to do things, and explaining why theorems
are true, with arguments that would not pass for rigorous proofs in a course
on real analysis. We try, however, to tell no lies.

This chapter will focus on the basic ideas that need to be understood
before we apply complex methods to evaluating integrals, analysing data,
and solving differential equations.

8.1 Cauchy-Riemann equations

We focus on functions, f(z), of a single complex variable, z, where z = x+iy.
We can think of these as being complex valued functions of two real variables,
x and y. For example

f(z) = sin z ≡ sin(x+ iy) = sin x cos iy + cosx sin iy

= sin x cosh y + i cosx sinh y. (8.1)

Here, we have used

sin x =
1

2i

(
eix − e−ix

)
, sinh x =

1

2

(
ex − e−x

)
,

cosx =
1

2

(
eix + e−ix

)
, cosh x =

1

2

(
ex + e−x

)
,

291
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to make the connection between the circular and hyperbolic functions. We
shall often write f(z) = u+ iv, where u and v are real functions of x and y.
In the present example, u = sin x cosh y and v = cosx sinh y.

If all four partial derivatives

∂u

∂x
,

∂v

∂y
,

∂v

∂x
,

∂u

∂y
, (8.2)

exist and are continuous then f = u + iv is differentiable as a complex-
valued function of two real variables. This means that we can approximate
the variation in f as

δf =
∂f

∂x
δx+

∂f

∂y
δy + · · · , (8.3)

where the dots represent a remainder that goes to zero faster than linearly
as δx, δy go to zero. We now regroup the terms, setting δz = δx + iδy,
δz = δx− iδy, so that

δf =
∂f

∂z
δz +

∂f

∂z
δz + · · · , (8.4)

where we have defined

∂f

∂z
≡ 1

2

(
∂f

∂x
− i∂f

∂y

)
,

∂f

∂z
≡ 1

2

(
∂f

∂x
+ i

∂f

∂y

)
. (8.5)

Now our function f(z) does not depend on z, and so it must satisfy

∂f

∂z
= 0. (8.6)

Thus, with f = u+ iv,

1

2

(
∂

∂x
+ i

∂

∂y

)
(u+ iv) = 0 (8.7)

i.e. (
∂u

∂x
− ∂v

∂y

)
+ i

(
∂v

∂x
+
∂u

∂y

)
= 0. (8.8)
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Since the vanishing of a complex number requires the real and imaginary
parts to be separately zero, this implies that

∂u

∂x
= +

∂v

∂y
,

∂v

∂x
= −∂u

∂y
. (8.9)

These two relations between u and v are known as the Cauchy-Riemann

equations , although they were probably discovered by Gauss. If our continu-
ous partial derivatives satisfy the Cauchy-Riemann equations at z0 = x0+iy0

then we say that the function is complex differentiable (or just differentiable)
at that point. By taking δz = z − z0, we have

δf ≡ f(z)− f(z0) =
∂f

∂z
(z − z0) + · · · , (8.10)

where the remainder, represented by the dots, tends to zero faster than |z−z0|
as z → z0. This validity of this linear approximation to the variation in f(z)
is equivalent to the statement that the ratio

f(z)− f(z0)

z − z0
(8.11)

tends to a definite limit as z → z0 from any direction. It is the direction-
independence of this limit that provides a proper meaning to the phrase
“does not depend on z.” Since we are not allowing dependence on z̄, it is
natural to drop the partial derivative signs and write the limit as an ordinary
derivative

lim
z→z0

f(z)− f(z0)

z − z0
=
df

dz
. (8.12)

We will also use Newton’s fluxion notation

df

dz
≡ f ′(z). (8.13)

The complex derivative obeys exactly the same calculus rules as ordinary
real derivatives:

d

dz
zn = nzn−1,

d

dz
sin z = cos z,

d

dz
(fg) =

df

dz
g + f

dg

dz
, etc. (8.14)



294 CHAPTER 8. COMPLEX ANALYSIS I

If the function is differentiable at all points in an arcwise-connected1 open
set, or domain, D, the function is said to be analytic there. The words regular

or holomorphic are also used.

8.1.1 Conjugate pairs

The functions u and v comprising the real and imaginary parts of an analytic
function are said to form a pair of harmonic conjugate functions. Such pairs
have many properties that are useful for solving physical problems.

From the Cauchy-Riemann equations we deduce that
(
∂2

∂x2
+

∂2

∂y2

)
u = 0,

(
∂2

∂x2
+

∂2

∂y2

)
v = 0. (8.15)

and so both the real and imaginary parts of f(z) are automatically harmonic

functions of x, y.
Further, from the Cauchy-Riemann conditions, we deduce that

∂u

∂x

∂v

∂x
+
∂u

∂y

∂v

∂y
= 0. (8.16)

This means that ∇u · ∇v = 0. We conclude that, provided that neither
of these gradients vanishes, the pair of curves u = const. and v = const.
intersect at right angles. If we regard u as the potential φ solving some
electrostatics problem ∇2φ = 0, then the curves v = const. are the associated
field lines.

Another application is to fluid mechanics. If v is the velocity field of an
irrotational (∇× v = 0) flow, then we can (perhaps only locally) write the
flow field as a gradient

vx = ∂xφ,

vy = ∂yφ, (8.17)

where φ is a velocity potential . If the flow is incompressible (∇·v = 0), then
we can (locally) write it as a curl

vx = ∂yχ,

vy = −∂xχ, (8.18)

1Arcwise connected means that any two points in D can be joined by a continuous path
that lies wholely within D.
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where χ is a stream function. The curves χ = const. are the flow streamlines.
If the flow is both irrotational and incompressible, then we may use either φ
or χ to represent the flow, and, since the two representations must agree, we
have

∂xφ = +∂yχ,

∂yφ = −∂xχ. (8.19)

Thus φ and χ are harmonic conjugates, and so the complex combination
Φ = φ+ iχ is an analytic function called the complex stream function.

A conjugate v exists (at least locally) for any harmonic function u. To
see why, assume first that we have a (u, v) pair obeying the Cauchy-Riemann
equations. Then we can write

dv =
∂v

∂x
dx+

∂v

∂y
dy

= −∂u
∂y
dx+

∂u

∂x
dy. (8.20)

This observation suggests that if we are given a harmonic function u in some
simply connected domain D, we can define a v by setting

v(z) =

∫ z

z0

(
−∂u
∂y
dx+

∂u

∂x
dy

)
+ v(z0), (8.21)

for some real constant v(z0) and point z0. The integral does not depend on
choice of path from z0 to z, and so v(z) is well defined. The path indepen-
dence comes about because the curl

∂

∂y

(
−∂u
∂y

)
− ∂

∂x

(
∂u

∂x

)
= −∇2u (8.22)

vanishes, and because in a simply connected domain all paths connecting the
same endpoints are homologous.

We now verify that this candidate v(z) satisfies the Cauchy-Riemann
realtions. The path independence, allows us to make our final approach to
z = x+ iy along a straight line segment lying on either the x or y axis. If we
approach along the x axis, we have

v(z) =

∫ x(
−∂u
∂y

)
dx′ + rest of integral, (8.23)
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and may use
d

dx

∫ x

f(x′, y) dx′ = f(x, y) (8.24)

to see that
∂v

∂x
= −∂u

∂y
(8.25)

at (x, y). If, instead, we approach along the y axis, we may similarly compute

∂v

∂y
=
∂u

∂x
. (8.26)

Thus v(z) does indeed obey the Cauchy-Riemann equations.
Because of the utility the harmonic conjugate it is worth giving a practical

recipe for finding it, and so obtaining f(z) when given only its real part
u(x, y). The method we give below is one we learned from John d’Angelo.
It is more efficient than those given in most textbooks. We first observe that
if f is a function of z only, then f(z) depends only on z. We can therefore
define a function f of z by setting f(z) = f(z). Now

1

2

(
f(z) + f(z)

)
= u(x, y). (8.27)

Set

x =
1

2
(z + z), y =

1

2i
(z − z), (8.28)

so

u

(
1

2
(z + z),

1

2i
(z − z)

)
=

1

2

(
f(z) + f(z)

)
. (8.29)

Now set z = 0, while keeping z fixed! Thus

f(z) + f(0) = 2u
(z

2
,
z

2i

)
. (8.30)

The function f is not completely determined of course, because we can always
add a constant to v, and so we have the result

f(z) = 2u
(z

2
,
z

2i

)
+ iC, C ∈ R. (8.31)

For example, let u = x2 − y2. We find

f(z) + f(0) = 2
(z

2

)2

− 2
( z

2i

)2

= z2, (8.32)
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or

f(z) = z2 + iC, C ∈ R. (8.33)

The business of setting setting z = 0, while keeping z fixed, may feel like
a dirty trick, but it can be justified by the (as yet to be proved) fact that f
has a convergent expansion as a power series in z = x+ iy. In this expansion
it is meaningful to let x and y themselves be complex, and so allow z and
z to become two independent complex variables. Anyway, you can always
check ex post facto that your answer is correct.

8.1.2 Conformal Mapping

An analytic function w = f(z) maps subsets of its domain of definition in
the “z” plane on to subsets in the “w” plane. These maps are often useful
for solving problems in two dimensional electrostatics or fluid flow. Their
simplest property is geometrical: such maps are conformal .

Z

Z

10

1−Z

Z
1

Z

1−Z

1

1−Z

Z−1
Z

Figure 8.1: An illustration of conformal mapping. The unshaded “triangle”
marked z is mapped into the other five unshaded regions by the functions
labeling them. Observe that although the regions are distorted, the angles of
the “triangle” are preserved by the maps (with the exception of those corners
that get mapped to infinity).

Suppose that the derivative of f(z) at a point z0 is non-zero. Then, for z
near z0 we have

f(z)− f(z0) ≈ A(z − z0), (8.34)
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where

A =
df

dz

∣∣∣∣
z0

. (8.35)

If you think about the geometric interpretation of complex multiplication
(multiply the magnitudes, add the arguments) you will see that the “f”
image of a small neighbourhood of z0 is stretched by a factor |A|, and rotated
through an angle argA — but relative angles are not altered. The map z 7→
f(z) = w is therefore isogonal . Our map also preserves orientation (the sense
of rotation of the relative angle) and these two properties, isogonality and
orientation-preservation, are what make the map conformal.2 The conformal
property fails at points where the derivative vanishes or becomes infinite.

If we can find a conformal map z (≡ x + iy) 7→ w (≡ u + iv) of some
domain D to another D′ then a function f(z) that solves a potential theory
problem (a Dirichlet boundary-value problem, for example) in D will lead to
f(z(w)) solving an analogous problem in D′.

Consider, for example, the map z 7→ w = z + ez. This map takes the
strip −∞ < x <∞, −π ≤ y ≤ π to the entire complex plane with cuts from
−∞+ iπ to −1 + iπ and from −∞− iπ to −1− iπ. The cuts occur because
the images of the lines y = ±π get folded back on themselves at w = −1±iπ,
where the derivative of w(z) vanishes. (See figure 8.2)

In this case, the imaginary part of the function f(z) = x + iy trivially
solves the Dirichlet problem ∇2

x,y y = 0 in the infinite strip, with y = π
on the upper boundary and y = −π on the lower boundary. The function
y(u, v), now quite non-trivially, solves ∇2

u,v y = 0 in the entire w plane, with
y = π on the half-line running from −∞+ iπ to −1 + iπ, and y = −π on the
half-line running from −∞− iπ to −1− iπ. We may regard the images of
the lines y = const. (solid curves) as being the streamlines of an irrotational
and incompressible flow out of the end of a tube into an infinite region, or as
the equipotentials near the edge of a pair of capacitor plates. In the latter
case, the images of the lines x = const. (dotted curves) are the corresponding
field-lines
Example: The Joukowski map. This map is famous in the history of aero-
nautics because it can be used to map the exterior of a circle to the exterior
of an aerofoil-shaped region. We can use the Milne-Thomson circle theorem

(see 8.3.2) to find the streamlines for the flow past a circle in the z plane,

2If f were a function of z only, then the map would still be isogonal, but would reverse
the orientation. We call such maps antiholomorphic or anti-conformal .
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-4

-2

2
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6

Figure 8.2: Image of part of the strip −π ≤ y ≤ π, −∞ < x <∞ under the
map z 7→ w = z + ez.
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and then use Joukowski’s transformation,

w = f(z) =
1

2

(
z +

1

z

)
, (8.36)

to map this simple flow to the flow past the aerofoil. To produce an aerofoil
shape, the circle must go through the point z = 1, where the derivative of f
vanishes, and the image of this point becomes the sharp trailing edge of the
aerofoil.

The Riemann Mapping Theorem

There are tables of conformal maps for D, D′ pairs, but an underlying prin-
ciple is provided by the Riemann mapping theorem:

Theorem: The interior of any simply connected domain D in C whose bound-
ary consists of more that one point can be mapped conformally one-to-one
and onto the interior of the unit circle. It is possible to choose an arbitrary
interior point w0 of D and map it to the origin, and to take an arbitrary
direction through w0 and make it the direction of the real axis. With these
two choices the mapping is unique.

fD
w0

w

O

z

Figure 8.3: The Riemann mapping theorem.

This theorem was first stated in Riemann’s PhD thesis in 1851. He re-
garded it as “obvious” for the reason that we will give as a physical “proof.”
Riemann’s argument is not rigorous, however, and it was not until 1912 that
a real proof was obtained by Constantin Carathéodory. A proof that is both
shorter and more in spirit of Riemann’s ideas was given by Leopold Fejér
and Frigyes Riesz in 1922.
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For the physical “proof,” observe that in the function

− 1

2π
ln z = − 1

2π
{ln |z|+ iθ} , (8.37)

the real part φ = − 1
2π

ln |z| is the potential of a unit charge at the origin,
and with the additive constant chosen so that φ = 0 on the circle |z| = 1.
Now imagine that we have solved the two-dimensional electrostatics problem
of finding the potential for a unit charge located at w0 ∈ D, also with the
boundary of D being held at zero potential. We have

∇2φ1 = −δ2(w − w0), φ1 = 0 on ∂D. (8.38)

Now find the φ2 that is harmonically conjugate to φ1. Set

φ1 + iφ2 = Φ(w) = − 1

2π
ln(zeiα) (8.39)

where α is a real constant. We see that the transformation w 7→ z, or

z = e−iαe−2πΦ(w), (8.40)

does the job of mapping the interior of D into the interior of the unit circle,
and the boundary of D to the boundary of the unit circle. Note how our
freedom to choose the constant α is what allows us to “take an arbitrary
direction through w0 and make it the direction of the real axis.”
Example: To find the map that takes the upper half-plane into the unit
circle, with the point z = i mapping to the origin, we use the method of
images to solve for the complex potential of a unit charge at w = i:

φ1 + iφ2 = − 1

2π
(ln(w − i)− ln(w + i))

= − 1

2π
ln(eiαz).

Therefore

z = e−iα
w − i
w + i

. (8.41)

We immediately verify that that this works: we have |z| = 1 when w is real,
and z = 0 at w = i.

The difficulty with the physical argument is that it is not clear that a so-
lution to the point-charge electrostatics problem exists. In three dimensions,
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for example, there is no solution when the boundary has a sharp inward
directed spike. (We cannot physically realize such a situation either: the
electric field becomes unboundedly large near the tip of a spike, and bound-
ary charge will leak off and neutralize the point charge.) There might well
be analogous difficulties in two dimensions if the boundary of D is patho-
logical. However, the fact that there is a proof of the Riemann mapping
theorem shows that the two-dimensional electrostatics problem does always
have a solution, at least in the interior of D — even if the boundary is an
infinite-length fractal. However, unless ∂D is reasonably smooth the result-
ing Riemann map cannot be continuously extended to the boundary. When
the boundary of D is a smooth closed curve, then the the boundary of D
will map one-to-one and continuously onto the boundary of the unit circle.

Exercise 8.1: Van der Pauw’s Theorem.3 This problem explains a practical
method of for determining the conductivity σ of a material, given a sample in
the form of of a wafer of uniform thickness d, but of irregular shape. In practice
at the Phillips company in Eindhoven, this was a wafer of semiconductor cut
from an unmachined boule.

A

B

D

C

Figure 8.4: A thin semiconductor wafer with attached leads.

We attach leads to point contacts A,B,C,D, taken in anticlockwise order, on
the periphery of the wafer and drive a current IAB from A to B. We record the
potential difference VD − VC and so find RAB,DC = (VD − VC)/IAB . Similarly
we measure RBC,AD. The current flow in the wafer is assumed to be two
dimensional, and to obey

J = −(σd)∇V, ∇ · J = 0,

3L. J. Van der Pauw, Phillips Research Reps . 13 (1958) 1. See also A. M. Thompson,
D. G. Lampard, Nature 177 (1956) 888, and D. G. Lampard. Proc. Inst. Elec. Eng. C.
104 (1957) 271, for the “Calculable Capacitor.”
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and n · J = 0 at the boundary (except at the current source and drain). The
potential V is therefore harmonic, with Neumann boundary conditions.

Van der Pauw claims that

exp{−πσdRAB,DC}+ exp{−πσdRBC,AD} = 1.

From this σd can be found numerically.

a) First show that Van der Pauw’s claim is true if the wafer were the entire
upper half-plane with A,B,C,D on the real axis with xA < xB < xC <
xD.

b) Next, taking care to consider the transformation of the current source
terms and the Neumann boundary conditions, show that the claim is
invariant under conformal maps, and, by mapping the wafer to the upper
half-plane, show that it is true in general.

8.2 Complex Integration: Cauchy and Stokes

In this section we will define the integral of an analytic function, and make
contact with the exterior calculus from chapters 2-4. The most obvious
difference between the real and complex integral is that in evaluating the
definite integral of a function in the complex plane we must specify the path
along which we integrate. When this path of integration is the boundary of
a region, it is often called a contour from the use of the word in the graphic
arts to describe the outline of something. The integrals themselves are then
called contour integrals.

8.2.1 The Complex Integral

The complex integral ∫

Γ

f(z)dz (8.42)

over a path Γ may be defined by expanding out the real and imaginary parts
∫

Γ

f(z)dz ≡
∫

Γ

(u+ iv)(dx+ idy) =

∫

Γ

(udx−vdy)+ i

∫

Γ

(vdx+udy). (8.43)

and treating the two integrals on the right hand side as standard vector-
calculus line-integrals of the form

∫
v ·dr, one with v→ (u,−v) and and one

with v→ (v, u).
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0
z

1

ξ1 ξ 2 2
z

z
N

N−1 ξ
N

Γ

zza= =b a b

Figure 8.5: A chain approximation to the curve Γ.

The complex integral can also be constructed as the limit of a Riemann sum
in a manner parallel to the definition of the real-variable Riemann integral
of elementary calculus. Replace the path Γ with a chain composed of of N
line-segments z0-to-z1, z1-to-z2, all the way to zN−1-to-zN . Now let ξm lie
on the line segment joining zm−1 and zm. Then the integral

∫
Γ
f(z)dz is the

limit of the (Riemann) sum

N∑

m=1

f(ξm)(zm − zm−1) (8.44)

as N gets large and all the |zm − zm−1| → 0. For this definition to make
sense and be useful, the limit must be independent of both how we chop up
the curve and how we select the points ξm. This may be shown to be the
case when the integration path is smooth and the function being integrated
is continuous.

The Riemann-sum definition of the integral leads to a useful inequality:
combining the triangle inequality |a + b| ≤ |a| + |b| with |ab| = |a| |b| we
deduce that

∣∣∣∣∣

N∑

m=1

f(ξm)(zm − zm−1)

∣∣∣∣∣ ≤
N∑

m=1

|f(ξm)(zm − zm−1)|

=
N∑

m=1

|f(ξm)| |(zm − zm−1)|. (8.45)

For sufficiently smooth curves the last sum converges to the real integral∫
Γ
|f(z)| |dz|, and we deduce that

∣∣∣∣
∫

Γ

f(z) dz

∣∣∣∣ ≤
∫

Γ

|f(z)| |dz|. (8.46)
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For curves Γ that are smooth enough to have a well-defined length |Γ|, we
will have

∫
Γ
|dz| = |Γ|. From this we conclude that if |f | ≤M on Γ, then we

have the Darboux inequality

∣∣∣∣
∫

Γ

f(z) dz

∣∣∣∣ ≤M |Γ|. (8.47)

We shall find many uses for this inequality.
The Riemann sum definition also makes it clear that if f(z) is the deriva-

tive of another analytic function g(z), i.e.

f(z) =
dg

dz
, (8.48)

then, for Γ a smooth path from z = a to z = b, we have
∫

Γ

f(z)dz = g(b)− g(a). (8.49)

This follows by approximating f(ξm) ≈ (g(zm)− g(zm−1))/(zm − zm−1), and
observing that the resultant Riemann sum

N∑

m=1

(
g(zm)− g(zm−1)

)
(8.50)

telescopes. The approximation to the derivative will become exact in the
limit |zm−zm−1| → 0. Thus, when f(z) is the derivative of another function,
the integral is independent of the route that Γ takes from a to b.

We shall see that any analytic function is (at least locally) the derivative
of another analytic function, and so this path independence holds generally
— provided that we do not try to move the integration contour over a place
where f ceases to be differentiable. This is the essence of what is known as
Cauchy’s Theorem — although, as with much of complex analysis, the result
was known to Gauss.

8.2.2 Cauchy’s theorem

Before we state and prove Cauchy’s theorem, we must introduce an orien-
tation convention and some traditional notation. Recall that a p-chain is a
finite formal sum of p-dimensional oriented surfaces or curves, and that a
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p-cycle is a p-chain Γ whose boundary vanishes: ∂Γ = 0. A 1-cycle that con-
sists of only a single connected component is a closed curve. We will mostly
consider integrals over simple closed curves — these being curves that do not
self intersect — or 1-cycles consisting of finite formal sums of such curves.
The orientation of a simple closed curve can be described by the sense, clock-
wise or anticlockwise, in which we traverse it. We will adopt the convention
that a positively oriented curve is one such that the integration is performed
in a anticlockwise direction. The integral over a chain Γ of oriented simple
closed curves will be denoted by the symbol

∮
Γ
f dz.

We now establish Cauchy’s theorem by relating it to our previous work
with exterior derivatives: Suppose that f is analytic with a a domain D, so
that ∂zf = 0 within D. We therefore have that the the exterior derivative of
f is

df = ∂zf dz + ∂zf dz = ∂zf dz. (8.51)

Now suppose that the simple closed curve Γ is the boundary of a region
Ω ⊂ D. We can exploit Stokes’ theorem to deduce that

∮

Γ=∂Ω

f(z)dz =

∫

Ω

d(f(z)dz) =

∫

Ω

(∂zf) dz ∧ dz = 0. (8.52)

The last integral is zero because dz ∧ dz = 0. We may state our result as:
Theorem (Cauchy, in modern language): The integral of an analytic function
over a 1-cycle that is homologous to zero vanishes.

The zero result is only guaranteed if the function f is analytic throughout
the region Ω. For example, if Γ is the unit circle z = eiθ then

∮

Γ

(
1

z

)
dz =

∫ 2π

0

e−iθ d
(
eiθ
)

= i

∫ 2π

0

dθ = 2πi. (8.53)

Cauchy’s theorem is not applicable because 1/z is singular , i.e. not differen-
tiable, at z = 0. The formula (8.53) will hold for Γ any contour homologous
to the unit circle in C \ 0, the complex plane punctured by the removal of
the point z = 0. Thus ∮

Γ

(
1

z

)
dz = 2πi (8.54)

for any contour Γ that encloses the origin. We can deduce a rather remarkable
formula from (8.54): Writing Γ = ∂Ω with anticlockwise orientation, we use
Stokes’ theorem to obtain∮

∂Ω

(
1

z

)
dz =

∫

Ω

∂z

(
1

z

)
dz ∧ dz =

{
2πi, 0 ∈ Ω,
0, 0 /∈ Ω.

(8.55)
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Since dz ∧ dz = 2idx ∧ dy, we have established that

∂z

(
1

z

)
= πδ2(x, y). (8.56)

This rather cryptic formula encodes one of the most useful results in math-
ematics.

Perhaps perversely, functions that are more singular than 1/z have van-
ishing integrals about their singularities. With Γ again the unit circle, we
have ∮

Γ

(
1

z2

)
dz =

∫ 2π

0

e−2iθ d
(
eiθ
)

= i

∫ 2π

0

e−iθ dθ = 0. (8.57)

The same is true for all higher integer powers:
∮

Γ

(
1

zn

)
dz = 0, n ≥ 2. (8.58)

We can understand this vanishing in another way, by evaluating the in-
tegral as
∮

Γ

(
1

zn

)
dz =

∮

Γ

d

dz

(
− 1

n− 1

1

zn−1

)
dz =

[
− 1

n− 1

1

zn−1

]

Γ

= 0, n 6= 1.

(8.59)
Here, the notation [A]Γ means the difference in the value of A at two ends
of the integration path Γ. For a closed curve the difference is zero because
the two ends are at the same point. This approach reinforces the fact that
the complex integral can be computed from the “anti-derivative” in the same
way as the real-variable integral. We also see why 1/z is special. It is the
derivative of ln z = ln |z| + i arg z, and ln z is not really a function, as it is
multivalued. In evaluating [ln z]Γ we must follow the continuous evolution
of arg z as we traverse the contour. As the origin is within the contour, this
angle increases by 2π, and so

[ln z]Γ = [i arg z]Γ = i
(
arg e2πi − arg e0i

)
= 2πi. (8.60)

Exercise 8.2: Suppose f(z) is analytic in a simply-connected domain D, and
z0 ∈ D. Set g(z) =

∫ z
z0
f(z) dz along some path in D from z0 to z. Use the

path-independence of the integral to compute the derivative of g(z) and show
that

f(z) =
dg

dz
.

This confirms our earlier claim that any analytic function is the derivative of
some other analytic function.
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Exercise 8.3:The “D-bar” problem: Suppose we are given a simply-connected
domain Ω, and a function f(z, z) defined on it, and wish to find a function
F (z, z) such that

∂F (z, z)

∂z
= f(z, z), (z, z) ∈ Ω.

Use (8.56) to argue formally that the general solution is

F (ζ, ζ̄) = − 1

π

∫

Ω

f(z, z)

z − ζ dx ∧ dy + g(ζ),

where g(ζ) is an arbitrary analytic function. This result can be shown to be
correct by more rigorous reasoning.

8.2.3 The residue theorem

The essential tool for computations with complex integrals is provided by
the residue theorem. With the aid of this theorem, the evaluation of contour
integrals becomes easy. All one has to do is identify points at which the
function being integrated blows up, and examine just how it blows up.

If, near the point zi, the function can be written

f(z) =

{
a

(i)
N

(z − zi)N
+ · · ·+ a

(i)
2

(z − zi)2
+

a
(i)
1

(z − zi)

}
g(i)(z), (8.61)

where g(i)(z) is analytic and non-zero at zi, then f(z) has a pole of order N at
zi. If N = 1 then f(z) is said to have a simple pole at zi. We can normalize

g(i)(z) so that g(i)(zi) = 1, and then the coefficient, a
(i)
1 , of 1/(z − zi) is

called the residue of the pole at zi. The coefficients of the more singular
terms do not influence the result of the integral, but N must be finite for the
singularity to be called a pole.
Theorem: Let the function f(z) be analytic within and on the boundary
Γ = ∂D of a simply connected domain D, with the exception of finite number
of points at which f(z) has poles. Then

∮

Γ

f(z) dz =
∑

poles ∈ D
2πi (residue at pole), (8.62)

the integral being traversed in the positive (anticlockwise) sense.
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We prove the residue theorem by drawing small circles Ci about each
singular point zi in D.

z
3

z
2

z
1

Γ

D

1C

3

C

C

2

Ω

Figure 8.6: Circles for the residue theorem.

We now assert that
∮

Γ

f(z) dz =
∑

i

∮

Ci

f(z) dz, (8.63)

because the 1-cycle

C ≡ Γ−
∑

i

Ci = ∂Ω (8.64)

is the boundary of a region Ω in which f is analytic, and hence C is homol-
ogous to zero. If we make the radius Ri of the circle Ci sufficiently small, we
may replace each g(i)(z) by its limit g(i)(zi) = 1, and so take

f(z) →
{

a
(i)
1

(z − zi)
+

a
(i)
2

(z − zi)2
+ · · ·+ a

(i)
N

(z − zi)N

}
g(i)(zi)

=
a

(i)
1

(z − zi)
+

a
(i)
2

(z − zi)2
+ · · ·+ a

(i)
N

(z − zi)N
, (8.65)

on Ci. We then evaluate the integral over Ci by using our previous results
to get ∮

Ci

f(z) dz = 2πia
(i)
1 . (8.66)

The integral around Γ is therefore equal to 2πi
∑

i a
(i)
1 .
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The restriction to contours containing only finitely many poles arises for
two reasons: Firstly, with infinitely many poles, the sum over i might not
converge; secondly, there may be a point whose every neighbourhood contains
infinitely many of the poles, and there our construction of drawing circles
around each individual pole would not be possible.

Exercise 8.4: Poisson’s Formula. The function f(z) is analytic in |z| < R′.
Prove that if |a| < R < R′,

f(a) =
1

2πi

∮

|z|=R

R2 − āa
(z − a)(R2 − āz)f(z)dz.

Deduce that, for 0 < r < R,

f(reiθ) =
1

2π

∫ 2π

0

R2 − r2
R2 − 2Rr cos(θ − φ) + r2

f(Reiφ)dφ.

Show that this formula solves the boundary-value problem for Laplace’s equa-
tion in the disc |z| < R.

Exercise 8.5: Bergman Kernel. The Hilbert space of analytic functions on a
domain D with inner product

〈f, g〉 =

∫

D
f̄ g dxdy

is called the Bergman4 space of D.

a) Suppose that ϕn(z), n = 0, 1, 2, . . ., are a complete set of orthonormal
functions on the Bergman space. Show that

K(ζ, z) =
∞∑

m=0

ϕm(ζ)ϕm(z).

has the property that

g(ζ) =

∫∫

D
K(ζ, z)g(z) dxdy.

4This space should not be confused with the Bargmann-Fock space of analytic functions
on the entirety of C with inner product

〈f, g〉 =
∫

C

e−|z|2 f̄ g d2z.

Stefan Bergman and Valentine Bargmann are two different people.
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for any function g analytic in D. Thus K(ζ, z) plays the role of the delta
function on the space of analytic functions on D. This object is called
the reproducing or Bergman kernel . By taking g(z) = ϕn(z), show that
it is the unique integral kernel with the reproducing property.

b) Consider the case of D being the unit circle. Use the Gramm-Schmidt
procedure to construct an orthonormal set from the functions zn, n =
0, 1, 2, . . .. Use the result of part a) to conjecture (because we have not
proved that the set is complete) that, for the unit circle,

K(ζ, z) =
1

π

1

(1− ζz̄)2 .

c) For any smooth, complex valued, function g defined on a domain D and
its boundary, use Stokes’ theorem to show that

∫∫

D
∂zg(z, z)dxdy =

1

2i

∮

∂D
g(z, z)dz.

Use this to verify that this the K(ζ, z) you constructed in part b) is
indeed a (and hence “the”) reproducing kernel.

d) Now suppose that D is a simply connected domain whose boundary ∂D
is a smooth curve. We know from the Riemann mapping theorem that
there exists an analytic function f(z) = f(z; ζ) that maps D onto the
interior of the unit circle in such a way that f(ζ) = 0 and f ′(ζ) is real
and non-zero. Show that if we set K(ζ, z) = f ′(z)f ′(ζ)/π, then, by using
part c) together with the residue theorem to evaluate the integral over
the boundary, we have

g(ζ) =

∫∫

D
K(ζ, z)g(z) dxdy.

This K(ζ, z) must therefore be the reproducing kernel. We see that if we
know K we can recover the map f from

f ′(z; ζ) =

√
π

K(ζ, ζ)
K(z, ζ).

e) Apply the formula from part d) to the unit circle, and so deduce that

f(z; ζ) =
z − ζ
1− ζ̄z

is the unique function that maps the unit circle onto itself with the point
ζ mapping to the origin and with the horizontal direction through ζ
remaining horizontal.
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8.3 Applications

We now know enough about complex variables to work through some inter-
esting applications, including the mechanism by which an aeroplane flies.

8.3.1 Two-dimensional vector calculus

It is often convenient to use complex co-ordinates for vectors and tensors. In
these co-ordinates the standard metric on R2 becomes

“ds2” = dx⊗ dx+ dy ⊗ dy
= dz ⊗ dz
= gzzdz ⊗ dz + gzzdz ⊗ dz + gzzdz ⊗ dz + gzzdz ⊗ dz, (8.67)

so the complex co-ordinate components of the metric tensor are gzz = gzz = 0,
gzz = gzz = 1

2
. The inverse metric tensor is gzz = gzz = 2, gzz = gzz = 0.

In these co-ordinates the Laplacian is

∇2 = gij∂2
ij = 2(∂z∂z + ∂z∂z). (8.68)

When f has singularities, it is not safe to assume that ∂z∂zf = ∂z∂zf . For
example, from

∂z

(
1

z

)
= πδ2(x, y), (8.69)

we deduce that
∂z∂z ln z = πδ2(x, y). (8.70)

When we evaluate the derivatives in the opposite order, however, we have

∂z∂z ln z = 0. (8.71)

To understand the source of the non-commutativity, take real and imaginary
parts of these last two equations. Write ln z = ln |z| + iθ, where θ = arg z,
and add and subtract. We find

∇2 ln |z| = 2πδ2(x, y),

(∂x∂y − ∂y∂x)θ = 2πδ2(x, y). (8.72)

The first of these shows that 1
2π

ln |z| is the Green function for the Laplace
operator, and the second reveals that the vector field ∇θ is singular, having
a delta function “curl” at the origin.
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If we have a vector field v with contravariant components (vx, vy) and (nu-
merically equal) covariant components (vx, vy) then the covariant components
in the complex co-ordinate system are vz = 1

2
(vx− ivy) and vz = 1

2
(vx + ivy).

This can be obtained by a using the change of co-ordinates rule, but a quicker
route is to observe that

v · dr = vxdx+ vydy = vzdz + vzdz. (8.73)

Now

∂zvz =
1

4
(∂xvx + ∂yvy) + i

1

4
(∂yvx − ∂xvy). (8.74)

Thus the statement that ∂zvz = 0 is equivalent to the vector field v being
both solenoidal (incompressible) and irrotational. This can also be expressed
in form language by setting η = vz dz and saying that dη = 0 means that the
corresponding vector field is both solenoidal and irrotational.

8.3.2 Milne-Thomson Circle Theorem

As we mentioned earlier, we can describe an irrotational and incompressible
fluid motion either by a velocity potential

vx = ∂xφ, vy = ∂yφ, (8.75)

where v is automatically irrotational but incompressibilty requires ∇2φ = 0,
or by a stream function

vx = ∂yχ, vy = −∂xχ, (8.76)

where v is automatically incompressible but irrotationality requires ∇2χ = 0.
We can combine these into a single complex stream function Φ = φ + iχ
which, for an irrotational incompressible flow, satisfies the Cauchy-Riemann
equations and is therefore an analytic function of z. We see that

2vz =
dΦ

dz
, (8.77)

φ and χ making equal contributions.
The Milne-Thomson theorem says that if Φ is the complex stream func-

tion for a flow in unobstructed space, then

Φ̃ = Φ(z) + Φ

(
a2

z

)
(8.78)
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is the stream function after the cylindrical obstacle |z| = a is inserted into
the flow. Here Φ(z) denotes the analytic function defined by Φ(z) = Φ(z).
To see that this works, observe that a2/z = z on the curve |z| = a, and so on

this curve Im Φ̃ = χ = 0. The surface of the cylinder has therefore become
a streamline, and so the flow does not penetrate into the cylinder. If the
original flow is created by souces and sinks exterior to |z| = a, which will be
singularities of Φ, the additional term has singularites that lie only within
|z| = a. These will be the “images” of the sources and sinks in the sense of
the “method of images.”
Example: A uniform flow with speed U in the x direction has Φ(z) = Uz.
Inserting a cylinder makes this

Φ̃(z) = U

(
z +

a2

z

)
. (8.79)

Because vz is the derivative of this, we see that the perturbing effect of the
obstacle on the velocity field falls off as the square of the distance from the
cylinder. This is a general result for obstructed flows.

-2 -1 0 1 2
-2

-1

0

1

2

Figure 8.7: The real and imaginary parts of the function z+ z−1 provide the
velocity potentials and streamlines for irrotational incompressible flow past
a cylinder of unit radius.

8.3.3 Blasius and Kutta-Joukowski Theorems

We now derive the celebrated result, discovered independently by Martin
Wilhelm Kutta (1902) and Nikolai Egorovich Joukowski (1906), that the
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lift per unit span of an aircraft wing is equal to the product of the density
of the air ρ, the circulation κ ≡

∮
v · dr about the wing, and the forward

velocity U of the wing through the air. Their theory treats the air as being
incompressible—a good approximation unless the flow-velocities approach
the speed of sound—and assumes that the wing is long enough that the flow
can be regarded as being two dimensional.

U

F

Figure 8.8: Flow past an aerofoil.

Begin by recalling how the momentum flux tensor

Tij = ρvivj + gijP (8.80)

enters fluid mechanics. In cartesian co-ordinates, and in the presence of an
external body force fi acting on the fluid, the Euler equation of motion for
the fluid is

ρ(∂tvi + vj∂jvi) = −∂iP + fi. (8.81)

Here P is the pressure and we are distinguishing between co and contravariant
components, although at the moment gij ≡ δij. We can combine Euler’s
equation with the law of mass conservation,

∂tρ+ ∂i(ρvi) = 0, (8.82)

to obtain
∂t(ρvi) + ∂j(ρvjvi + gijP ) = fi. (8.83)

This momemtum-tracking equation shows that the external force acts as a
source of momentum, and that for steady flow fi is equal to the divergence
of the momentum flux tensor:

fi = ∂lTli = gkl∂kTli. (8.84)
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As we are interested in steady, irrotational motion with uniform density we
may use Bernoulli’s theorem, P + 1

2
ρ|v|2 = const., to substitute −1

2
ρ|v|2 in

place of P . (The constant will not affect the momentum flux.) With this
substitution Tij becomes a traceless symmetric tensor:

Tij = ρ(vivj −
1

2
gij|v|2). (8.85)

Using vz = 1
2
(vx − ivy) and

Tzz =
∂xi

∂z

∂xj

∂z
Tij , (8.86)

together with

x ≡ x1 =
1

2
(z + z), y ≡ x2 =

1

2i
(z − z) (8.87)

we find

T ≡ Tzz =
1

4
(Txx − Tyy − 2iTxy) = ρ(vz)

2. (8.88)

This is the only component of Tij that we will need to consider. Tzz is simply
T , whereas Tzz = 0 = Tzz because Tij is traceless.

In our complex co-ordinates, the equation

fi = gkl∂kTli (8.89)

reads
fz = gzz∂zTzz + gzz∂zTzz = 2∂zT. (8.90)

We see that in steady flow the net momentum flux Ṗi out of a region Ω is
given by

Ṗz=

∫

Ω

fz dxdy =
1

2i

∫

Ω

fz dzdz =
1

i

∫

Ω

∂zT dzdz =
1

i

∮

∂Ω

T dz. (8.91)

We have used Stokes’ theorem at the last step. In regions where there is no
external force, T is analytic, ∂zT = 0, and the integral will be independent
of the choice of contour ∂Ω. We can subsititute T = ρv2

z to get

Ṗz = −iρ
∮

∂Ω

v2
z dz. (8.92)
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To apply this result to our aerofoil we take can take ∂Ω to be its boundary.
Then Ṗz is the total force exerted on the fluid by the wing, and, by Newton’s
third law, this is minus the force exerted by the fluid on the wing. The total
force on the aerofoil is therefore

Fz = iρ

∮

∂Ω

v2
z dz. (8.93)

The result (8.93) is often called Blasius’ theorem.
Evaluating the integral in (8.93) is not immediately possible because the

velocity v on the boundary will be a complicated function of the shape of
the body. We can, however, exploit the contour independence of the integral
and evaluate it over a path encircling the aerofoil at large distance where the
flow field takes the asymptotic form

vz = Uz +
κ

4πi

1

z
+O

(
1

z2

)
. (8.94)

The O(1/z2) term is the velocity perturbation due to the air having to flow
round the wing, as with the cylinder in a free flow. To confirm that this flow
has the correct circulation we compute

∮
v · dr =

∮
vzdz +

∮
vz dz = κ. (8.95)

Substituting vz in (8.93) we find that the O(1/z2) term cannot contribute as
it cannot affect the residue of any pole. The only part that does contribute
is the cross term that arises from multiplying Uz by κ/(4πiz). This gives

Fz = iρ

(
Uzκ

2πi

)∮
dz

z
= iρκUz (8.96)

so that
1

2
(Fx − iFy) = iρκ

1

2
(Ux − iUy). (8.97)

Thus, in conventional co-ordinates, the reaction force on the body is

Fx = ρκUy,

Fy = −ρκUx. (8.98)

The fluid therefore provides a lift force proportional to the product of the
circulation with the asymptotic velocity. The force is at right angles to the
incident airstream, so there is no drag .
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The circulation around the wing is determined by the Kutta condition

that the velocity of the flow at the sharp trailing edge of the wing be finite.
If the wing starts moving into the air and the requisite circulation is not
yet established then the flow under the wing does not leave the trailing edge
smoothly but tries to whip round to the topside. The velocity gradients
become very large and viscous forces become important and prevent the air
from making the sharp turn. Instead, a starting vortex is shed from the
trailing edge. Kelvin’s theorem on the conservation of vorticity shows that
this causes a circulation of equal and opposite strength to be induced about
the wing.

For finite wings, the path independence of
∮

v · dr means that the wings
must leave a pair of trailing wingtip vortices of strength κ that connect back
to the starting vortex to form a closed loop. The velocity field induced by the
trailing vortices cause the airstream incident on the aerofoil to come from a
slighly different direction than the asymptotic flow. Consequently, the lift is
not quite perpendicular to the motion of the wing. For finite-length wings,
therefore, lift comes at the expense of an inevitable induced drag force. The
work that has to be done against this drag force in driving the wing forwards
provides the kinetic energy in the trailing vortices.

8.4 Applications of Cauchy’s Theorem

Cauchy’s theorem provides the Royal Road to complex analysis. It is possible
to develop the theory without it, but the path is harder going.

8.4.1 Cauchy’s Integral Formula

If f(z) is analytic within and on the boundary of a simply connected domain
Ω, with ∂Ω = Γ, and if ζ is a point in Ω, then, noting that the the integrand
has a simple pole at z = ζ and applying the residue formula, we have Cauchy’s

integral formula

f(ζ) =
1

2πi

∮

Γ

f(z)

z − ζ dz, ζ ∈ Ω. (8.99)
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Γ
ζ

Ω

Figure 8.9: Cauchy contour.

This formula holds only if ζ lies within Ω. If it lies outside, then the integrand
is analytic everywhere inside Ω, and so the integral gives zero.

We may show that it is legitimate to differentiate under the integral sign
in Cauchy’s formula. If we do so n times, we have the useful corollary that

f (n)(ζ) =
n!

2πi

∮

Γ

f(z)

(z − ζ)n+1
dz. (8.100)

This shows that being once differentiable (analytic) in a region automatically
implies that f(z) is differentiable arbitrarily many times!

Exercise 8.6: The generalized Cauchy formula. Suppose that we have solved a
D-bar problem (see exercise 8.3), and so found an F (z, z) with ∂zF = f(z, z)
in a region Ω. Compute the exterior derivative of

F (z, z)

z − ζ

using (8.56). Now, manipulating formally with delta functions, apply Stokes’
theorem to show that, for (ζ, ζ̄) in the interior of Ω, we have

F (ζ, ζ̄) =
1

2πi

∮

∂Ω

F (z, z)

z − ζ dz − 1

π

∫

Ω

f(z, z)

z − ζ dx dy.

This is called the generalized Cauchy formula. Note that the first term on the
right, unlike the second, is a function only of ζ, and so is analytic.

Liouville’s Theorem

A dramatic corollary of Cauchy’s integral formula is provided by
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Liouville’s theorem: If f(z) is analytic in all of C, and is bounded there,
meaning that there is a positive real number K such that |f(z)| < K, then
f(z) is a constant.

This result provides a powerful strategy for proving that two formulæ,
f1(z) and f2(z), represent the same analytic function. If we can show that
the difference f1− f2 is analytic and tends to zero at infinity then Liouville’s
theorem tells us that f1 = f2.

Because the result is perhaps unintuitive, and because the methods are
typical, we will spell out in detail how Liouville’s theorem works. We select
any two points, z1 and z2, and use Cauchy’s formula to write

f(z1)− f(z2) =
1

2πi

∮

Γ

(
1

z − z1
− 1

z − z2

)
f(z) dz. (8.101)

We take the contour Γ to be circle of radius ρ centered on z1. We make
ρ > 2|z1 − z2|, so that when z is on Γ we are sure that |z − z2| > ρ/2.

>ρ/2

ρ

z2

z1

z

Figure 8.10: Contour for Liouville’ theorem.

Then, using |
∫
f(z)dz| ≤

∫
|f(z)||dz|, we have

|f(z1)− f(z2)| =
1

2π

∣∣∣∣
∮

Γ

(z1 − z2)
(z − z1)(z − z2)

f(z) dz

∣∣∣∣

≤ 1

2π

∫ 2π

0

|z1 − z2|K
ρ/2

dθ =
2|z1 − z2|K

ρ
. (8.102)

The right hand side can be made arbitrarily small by taking ρ large enough,
so we we must have f(z1) = f(z2). As z1 and z2 were any pair of points, we
deduce that f(z) takes the same value everywhere.
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8.4.2 Taylor and Laurent Series

We have defined a function to be analytic in a domain D if it is (once)
complex differentiable at all points in D. It turned out that this apparently
mild requirement automatically implied that the function is differentiable
arbitrarily many times in D. In this section we shall see that knowledge
of all derivatives of f(z) at any single point in D is enough to completely
determine the function at any other point in D. Compare this with functions
of a real variable, for which it is easy to construct examples that are once
but not twice differentiable, and where complete knowledge of function at a
point, or in even in a neighbourhood of a point, tells us absolutely nothing
of the behaviour of the function away from the point or neighbourhood.

The key ingredient in these almost magical properties of complex ana-
lytic functions is that any analytic function has a Taylor series expansion
that actually converges to the function. Indeed an alternative definition of
analyticity is that f(z) be representable by a convergent power series. For
real variables this is the definition of a real analytic function.

To appreciate the utility of power series representations we do need to
discuss some basic properties of power series. Most of these results are ex-
tensions to the complex plane of what we hope are familiar notions from real
analysis.

Consider the power series

∞∑

n=0

an(z − z0)n ≡ lim
N→∞

SN , (8.103)

where SN are the partial sums

SN =
N∑

n=0

an(z − z0)n. (8.104)

Suppose that this limit exists (i.e the series is convergent) for some z = ζ ;
then it turns out that the series is absolutely convergent5 for any |z − z0| <
|ζ − z0|.

5Recall that absolute convergence of
∑
an means that

∑ |an| converges. Absolute
convergence implies convergence, and also allows us to rearrange the order of terms in the
series without changing the value of the sum. Compare this with conditional convergence,
where

∑
an converges, but

∑ |an| does not. You may remember that Riemann showed
that the terms of a conditionally convergent series can be rearranged so as to get any
answer whatsoever !
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To establish this absolute convergence we may assume, without loss of
generality, that z0 = 0. Then, convergence of the sum

∑
anζ

n requires that
|anζn| → 0, and thus |anζn| is bounded. In other words, there is a B such
that |anζn| < B for any n. We now write

|anzn| = |anζn|
∣∣∣∣
z

ζ

∣∣∣∣
n

< B

∣∣∣∣
z

ζ

∣∣∣∣
n

. (8.105)

The sum
∑ |anzn| therefore converges for |z/ζ| < 1, by comparison with a

geometric progression.
This result, that if a power series in (z − z0) converges at a point then

it converges at all points closer to z0, shows that a power series possesses
some radius of convergence R. The series converges for all |z − z0| < R, and
diverges for all |z − z0| > R. (What happens on the circle |z − z0| = R is
usually delicate, and harder to establish.) We soon show that the radius of
convergence of a power series is the distance from z0 to the nearest singularity
of the function that it represents.

By comparison with a geometric progression, we may establish the fol-
lowing useful formulæ giving R for the series

∑
anz

n:

R = lim
n→∞

|an−1|
|an|

= lim
n→∞

|an|1/n. (8.106)

The proof of these formulæ is identical the real-variable version.
When we differentiate the terms in a power series, and thus take anz

n →
nanz

n−1, this does not alter R. This observation suggests that it is legitimate
to evaluate the derivative of the function represented by the powers series by
differentiating term-by-term. As step on the way to justifying this, observe
that if the series converges at z = ζ and Dr is the domain |z| < r < |ζ | then,
using the same bound as in the proof of absolute convergence, we have

|anzn| < B
|zn|
|ζ |n < B

rn

|ζ |n = Mn (8.107)

where
∑
Mn is convergent. As a consequence

∑
anz

n is uniformly con-

vergent in Dr by the Weierstrass “M” test. You probably know that uni-
form convergence allows the interchange the order of sums and integrals:∫

(
∑
fn(x))dx =

∑∫
fn(x)dx. For real variables, uniform convergence is
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not a strong enough a condition for us to to safely interchange order of sums
and derivatives: (

∑
fn(x))

′ is not necessarily equal to
∑
f ′
n(x). For complex

analytic functions, however, Cauchy’s integral formula reduces the operation
of differentiation to that of integration, and so this interchange is permitted.
In particular we have that if

f(z) =
∞∑

n=0

anz
n, (8.108)

and R is defined by R = |ζ | for any ζ for which the series converges, then
f(z) is analytic in |z| < R and

f ′(z) =

∞∑

n=0

nanz
n−1, (8.109)

is also analytic in |z| < R.

Morera’s Theorem

There is is a partial converse of Cauchy’s theorem:
Theorem (Morera): If f(z) is defined and continuous in a domain D, and
if
∮
Γ
f(z) dz = 0 for all closed contours, then f(z) is analytic in D. To

prove this we set F (z) =
∫ z
P
f(ζ) dζ . The integral is path-independent by the

hypothesis of the theorem, and because f(z) is continuous we can differentiate
with respect to the integration limit to find that F ′(z) = f(z). Thus F (z)
is complex differentiable, and so analytic. Then, by Cauchy’s formula for
higher derivatives, F ′′(z) = f ′(z) exists, and so f(z) itself is analytic.

A corollary of Morera’s theorem is that if fn(z) → f(z) uniformly in D,
with all the fn analytic, then

i) f(z) is analytic in D, and
ii) f ′

n(z)→ f ′(z) uniformly.
We use Morera’s theorem to prove (i) (appealing to the uniform conver-

gence to justify the interchange the order of summation and integration),
and use Cauchy’s theorem to prove (ii).

Taylor’s Theorem for analytic functions

Theorem: Let Γ be a circle of radius ρ centered on the point a. Suppose that
f(z) is analytic within and on Γ, and and that the point z = ζ is within Γ.
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Then f(ζ) can be expanded as a Taylor series

f(ζ) = f(a) +

∞∑

n=1

(ζ − a)n
n!

f (n)(a), (8.110)

meaning that this series converges to f(ζ) for all ζ such that |ζ − a| < ρ.
To prove this theorem we use identity

1

z − ζ =
1

z − a +
(ζ − a)
(z − a)2

+ · · ·+ (ζ − a)N−1

(z − a)N +
(ζ − a)N
(z − a)N

1

z − ζ (8.111)

and Cauchy’s integral, to write

f(ζ) =
1

2πi

∮

Γ

f(z)

(z − ζ) dz

=

N−1∑

n=0

(ζ − a)n
2πi

∮
f(z)

(z − a)n+1
dz +

(ζ − a)N
2πi

∮
f(z)

(z − a)N (z − ζ) dz

=
N−1∑

n=0

(ζ − a)n
n!

f (n)(a) +RN , (8.112)

where

RN
def
=

(ζ − a)N
2πi

∮

Γ

f(z)

(z − a)N(z − ζ) dz. (8.113)

This is Taylor’s theorem with remainder. For real variables this is as far as
we can go. Even if a real function is differentiable infinitely many times,
there is no reason for the remainder to become small. For analytic functions,
however, we can show that RN → 0 as N → ∞. This means that the
complex-variable Taylor series is convergent, and its limit is actually equal
to f(z). To show that RN → 0, recall that Γ is a circle of radius ρ centered
on z = a. Let r = |ζ − a| < ρ, and let M be an upper bound for f(z) on Γ.
(This exists because f is continuous and Γ is a compact subset of C.) Then,
estimating the integral using methods similar to those invoked in our proof
of Liouville’s Theorem, we find that

RN <
rN

2π

(
2πρM

ρN (ρ− r)

)
. (8.114)

As r < ρ, this tends to zero as N →∞.
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We can take ρ as large as we like provided there are no singularities of
f end up within, or on, the circle. This confirms the claim made earlier:
the radius of convergence of the powers series representation of an analytic
functionis the distance to the nearest singularity.

Laurent Series

Theorem (Laurent): Let Γ1 and Γ2 be two anticlockwise circlular paths with
centre a, radii ρ1 and ρ2, and with ρ2 < ρ1. If f(z) is analytic on the circles
and within the annulus between them, then, for ζ in the annulus:

f(ζ) =

∞∑

n=0

an(ζ − a)n +

∞∑

n=1

bn(ζ − a)−n. (8.115)

Γ1
Γ2 ζ a

Figure 8.11: Contours for Laurent’s theorem.

The coefficients an and bn are given by

an =
1

2πi

∮

Γ1

f(z)

(z − a)n+1
dz, bn =

1

2πi

∮

Γ2

f(z)(z − a)n−1 dz. (8.116)

Laurent’s theorem is proved by observing that

f(ζ) =
1

2πi

∮

Γ1

f(z)

(z − ζ) dz −
1

2πi

∮

Γ2

f(z)

(z − ζ) dz, (8.117)

and using the identities

1

z − ζ =
1

z − a +
(ζ − a)
(z − a)2

+ · · ·+ (ζ − a)N−1

(z − a)N +
(ζ − a)N
(z − a)N

1

z − ζ , (8.118)
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and

− 1

z − ζ =
1

ζ − a +
(z − a)
(ζ − a)2

+ · · ·+ (z − a)N−1

(ζ − a)N +
(z − a)N
(ζ − a)N

1

ζ − z . (8.119)

Once again we can show that the remainder terms tend to zero.
Warning: Although the coefficients an are given by the same integrals as in
Taylor’s theorem, they are not interpretable as derivatives of f unless f(z)
is analytic within the inner circle, in which case all the bn are zero.

8.4.3 Zeros and Singularities

This section is something of a nosology — a classification of diseases — but
you should study it carefully as there is some tight reasoning here, and the
conclusions are the essential foundations for the rest of subject.

First a review and some definitions:
a) If f(z) is analytic with a domain D, we have seen that f may be

expanded in a Taylor series about any point z0 ∈ D:

f(z) =
∞∑

n=0

an(z − z0)n. (8.120)

If a0 = a1 = · · · = an−1 = 0, and an 6= 0, so that the first non-zero
term in the series is an(z− z0)n, we say that f(z) has a zero of order n
at z0.

b) A singularity of f(z) is a point at which f(z) ceases to be differentiable.
If f(z) has no singularities at finite z (for example, f(z) = sin z) then
it is said to be an entire function.

c) If f(z) is analytic in D except at z = a, an isolated singularity , then
we may draw two concentric circles of centre a, both within D, and in
the annulus between them we have the Laurent expansion

f(z) =

∞∑

n=0

an(z − a)n +

∞∑

n=1

bn(z − a)−n. (8.121)

The second term, consisting of negative powers, is called the principal

part of f(z) at z = a. It may happen that bm 6= 0 but bn = 0, n > m.
Such a singularity is called a pole of order m at z = a. The coefficient
b1, which may be 0, is called the residue of f at the pole z = a. If the
series of negative powers does not terminate, the singularity is called
an isolated essential singularity
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Now some observations:
i) Suppose f(z) is analytic in a domain D containing the point z = a.

Then we can expand: f(z) =
∑
an(z − a)n. If f(z) is zero at z = 0,

then there are exactly two possibilities: a) all the an vanish, and then
f(z) is identically zero; b) there is a first non-zero coefficient, am say,
and so f(z) = zmϕ(z), where ϕ(a) 6= 0. In the second case f is said to
possess a zero of order m at z = a.

ii) If z = a is a zero of order m, of f(z) then the zero is isolated – i.e.

there is a neighbourhood of a which contains no other zero. To see this
observe that f(z) = (z− a)mϕ(z) where ϕ(z) is analytic and ϕ(a) 6= 0.
Analyticity implies continuity, and by continuity there is a neighbour-
hood of a in which ϕ(z) does not vanish.

iii) Limit points of zeros I: Suppose that we know that f(z) is analytic in D
and we know that it vanishes at a sequence of points a1, a2, a3, . . . ∈ D.
If these points have a limit point6 that is interior to D then f(z) must,
by continuity, be zero there. But this would be a non-isolated zero, in
contradiction to item ii), unless f(z) actually vanishes identically in D.
This, then, is the only option.

iv) From the definition of poles, they too are isolated.
v) If f(z) has a pole at z = a then f(z)→∞ as z → a in any manner.
vi) Limit points of zeros II: Suppose we know that f is analytic in D,

except possibly at z = a which is limit point of zeros as in iii), but we
also know that f is not identically zero. Then z = a must be singularity
of f — but not a pole ( because f would tend to infinity and could
not have arbitrarily close zeros) — so a must be an isolated essential
singularity. For example sin 1/z has an isolated essential singularity at
z = 0, this being a limit point of the zeros at z = 1/nπ.

vii) A limit point of poles or other singularities would be a non-isolated

essential singularity .

8.4.4 Analytic Continuation

Suppose that f1(z) is analytic in the (open, arcwise-connected) domain D1,
and f2(z) is analytic in D2, with D1 ∩D2 6= ∅. Suppose further that f1(z) =
f2(z) in D1 ∩ D2. Then we say that f2 is an analytic continuation of f1 to

6A point z0 is a limit point of a set S if for every ε > 0 there is some a ∈ S, other than
z0 itself, such that |a− z0| ≤ ε. A sequence need not have a limit for it to possess one or
more limit points.
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D2. Such analytic continuations are unique: if f3 is also analytic in D2, and
f3 = f1 in D1 ∩ D2, then f2 − f3 = 0 in D1 ∩ D2. Because the intersection
of two open sets is also open, f1 − f2 vanishes on an open set and, so by
observation iii) of the previous section, it vanishes everywhere in D2.

D1
D2

Figure 8.12: Intersecting domains.

We can use this uniqueness result, coupled with the circular domains of
convergence of the Taylor series, to extend the definition of analytic functions
beyond the domain of their initial definition.

The distribution xα−1
+

An interesting and useful example of analytic continuation is provided by the
distribution xα−1

+ , which, for real positive α, is defined by its evaluation on
a test function ϕ(x) as

(xα−1
+ , ϕ) =

∫ ∞

0

xα−1ϕ(x) dx. (8.122)

The pairing (xα−1
+ , ϕ) extends to an complex analytic function of α provided

the integral converges. Test functions are required to decrease at infinity
faster than any power of x, and so the integral always converges at the upper
limit. It will converge at the lower limit provided Re (α) > 0. Assume that
this is so, and integrate by parts using

d

dx

(
xα

α
ϕ(x)

)
= xα−1ϕ(x) +

xα

α
ϕ′(x). (8.123)

We find that, for ε > 0,
[
xα

α
ϕ(x)

]∞

ε

=

∫ ∞

ε

xα−1ϕ(x) dx+

∫ ∞

ε

xα

α
ϕ′(x) dx. (8.124)
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The integrated-out part on the left-hand-side of (8.124) tends to zero as
we take ε to zero, and both of the integrals converge in this limit as well.
Consequently

I1(α) ≡ − 1

α

∫ ∞

0

xαϕ′(x) dx (8.125)

is equal to (xα−1
+ , ϕ) for 0 < Re (α) < ∞. However, the integral defining

I1(α) converges in the larger region −1 < Re (α) <∞. It therefore provides
an analytic continuation to this larger domain. The factor of 1/α reveals that
the analytically-continued function possesses a pole at α = 0, with residue

−
∫ ∞

0

ϕ′(x) dx = ϕ(0). (8.126)

We can repeat the integration by parts, and find that

I2(α) ≡ 1

α(α + 1)

∫ ∞

0

xα+1ϕ′′(x) dx (8.127)

provides an analytic continuation to the region −2 < Re (α) < ∞. By
proceeding in this manner, we can continue (xα−1

+ , ϕ) to a function analytic
in the entire complex α plane with the exception of zero and the negative
integers, at which it has simple poles. The residue of the pole at α = −n is
ϕ(n)(0)/n!.

There is another, much more revealing, way of expressing these analytic
continuations. To obtain this, suppose that φ ∈ C∞[0,∞] and φ → 0 at
infinity as least as fast as 1/x. (Our test function ϕ decreases much more
rapidly than this, but 1/x is all we need for what follows.) Now the function

I(α) ≡
∫ ∞

0

xα−1φ(x) dx (8.128)

is convergent and analytic in the strip 0 < Re (α) < 1. By the same reasoning
as above, I(α) is there equal to

−
∫ ∞

0

xα

α
φ′(x) dx. (8.129)

Again this new integral provides an analytic continuation to the larger strip
−1 < Re (α) < 1. But in the left-hand half of this strip, where −1 <
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Re (α) < 0, we can write

−
∫ ∞

0

xα

α
φ′(x) dx = lim

ε→0

{∫ ∞

ε

xα−1φ(x) dx−
[
xα

α
φ(x)

]∞

ε

}

= lim
ε→0

{∫ ∞

ε

xα−1φ(x) dx+ φ(ε)
εα

α

}

= lim
ε→0

{∫ ∞

ε

xα−1[φ(x)− φ(ε)] dx

}
,

=

∫ ∞

0

xα−1[φ(x)− φ(0)] dx. (8.130)

Observe how the integrated out part, which tends to zero in 0 < Re (α) < 1,
becomes divergent in the strip −1 < Re (α) < 0. This divergence is there
craftily combined with the integral to cancel its divergence, leaving a finite
remainder. As a consequence, for −1 < Re (α) < 0, the analytic continuation
is given by

I(α) =

∫ ∞

0

xα−1[φ(x)− φ(0)] dx. (8.131)

Next we observe that χ(x) = [φ(x) − φ(0)]/x tends to zero as 1/x for
large x, and at x = 0 can be defined by its limit as χ(0) = φ′(0). This χ(x)
then satisfies the same hypotheses as φ(x). With I(α) denoting the analytic
continuation of the original I, we therefore have

I(α) =

∫ ∞

0

xα−1[φ(x)− φ(0)] dx, −1 < Re (α) < 0

=

∫ ∞

0

xβ−1

[
φ(x)− φ(0)

x

]
dx, where β = α + 1,

→
∫ ∞

0

xβ−1

[
φ(x)− φ(0)

x
− φ′(0)

]
dx, −1 < Re (β) < 0

=

∫ ∞

0

xα−1[φ(x)− φ(0)− xφ′(0)] dx, −2 < Re (α) < −1,

(8.132)

the arrow denoting the same analytic continuation process that we used with
φ.

We can now apply this machinary to our original ϕ(x), and so deduce
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that the analytically-continued distribution is given by

(xα−1
+ , ϕ) =





∫ ∞

0

xα−1ϕ(x) dx, 0 < Re (α) <∞,

∫ ∞

0

xα−1[ϕ(x)− ϕ(0)] dx, −1 < Re (α) < 0,

∫ ∞

0

xα−1[ϕ(x)− ϕ(0)− xϕ′(0)] dx, −2 < Re (α) < −1,

(8.133)
and so on. The analytic continuation automatically subtracts more and more
terms of the Taylor series of ϕ(x) the deeper we penetrate into the left-hand
half-plane. This property, that analytic continuation covertly subtracts the
minimal number of Taylor-series terms required ensure convergence, lies be-
hind a number of physics applications, most notably the method of dimen-

sional regularization in quantum field theory.
The following exercise illustrates some standard techniques of reasoning

via analytic continuation.

Exercise 8.7: Define the dilogarithm function by the series

Li2(z) =
z

12
+
z2

22
+
z3

32
+ · · · .

The radius of convergence of this series is unity, but the domain of Li2(z) can
be extended to |z| > 1 by analytic continuation.

a) Observe that the series converges at z = ±1, and at z = 1 is

Li2(1) = 1 +
1

22
+

1

32
+ · · · = π2

6
.

Rearrange the series to show that

Li2(−1) = −π
2

12
.

b) Identify the derivative of the power series for Li2(z) with that of an
elementary function. Exploit your identification to extend the definition
of [Li2(z)]

′ outside |z| < 1. Use the properties of this derivative function,
together with part a), to prove that

Li2(−z) + Li2

(
−1

z

)
= −1

2
(ln z)2 − π2

6
.

This formula allows us to calculate values of the dilogarithm for |z| > 1
in terms of those with |z| < 1.
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Many weird identities involving dilogarithms exist. Some, such as

Li2

(
−1

2

)
+

1

6
Li2

(
1

9

)
= − 1

18
π2 + ln 2 ln 3− 1

2
(ln 2)2 − 1

3
(ln 3)2,

were found by Ramanujan. Others, originally discovered by sophisticated
numerical methods, have been given proofs based on techniques from quantum
mechanics. Polylogarithms, defined by

Lik(z) =
z

1k
+
z2

2k
+
z3

3k
+ · · · ,

occur frequently when evaluating Feynman diagrams.

8.4.5 Removable Singularities and the Weierstrass-Casorati
Theorem

Sometimes we are given a definition that makes a function analytic in a
region with the exception of a single point. Can we extend the definition to
make the function analytic in the entire region? Provided that the function
is well enough behaved near the point, the answer is yes, and the extension
is unique. Curiously, the proof that this is so gives us insight into the wild
behaviour of functions near essential singularities.

Removable singularities

Suppose that f(z) is analytic in D\a, but that limz→a(z−a)f(z) = 0, then f
may be extended to a function analytic in all ofD — i.e. z = a is a removable

singularity . To see this, let ζ lie between two simple closed contours Γ1 and
Γ2, with a within the smaller, Γ2. We use Cauchy to write

f(ζ) =
1

2πi

∮

Γ1

f(z)

z − ζ dz −
1

2πi

∮

Γ2

f(z)

z − ζ dz. (8.134)

Now we can shrink Γ2 down to be very close to a, and because of the condition
on f(z) near z = a, we see that the second integral vanishes. We can also
arrange for Γ1 to enclose any chosen point in D. Thus, if we set

f̃(ζ) =
1

2πi

∮

Γ1

f(z)

z − ζ dz (8.135)

within Γ1, we see that f̃ = f inD\a, and is analytic in all ofD. The extension
is unique because any two analytic functions that agree everywhere except
for a single point, must also agree at that point.
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Weierstrass-Casorati

We apply the idea of removable singularities to show just how pathological
a beast is an isolated essential singularity:

Theorem (Weierstrass-Casorati): Let z = a be an isolated essential singular-
ity of f(z), then in any neighbourhood of a the function f(z) comes arbitrarily
close to any assigned valued in C.

To prove this, define Nδ(a) = {z ∈ C : |z − a| < δ}, and Nε(ζ) = {z ∈
C : |z − ζ | < ε}. The claim is then that there is an z ∈ Nδ(a) such that
f(z) ∈ Nε(ζ). Suppose that the claim is not true. Then we have |f(z)−ζ | > ε
for all z ∈ Nδ(a). Therefore

∣∣∣∣
1

f(z)− ζ

∣∣∣∣ <
1

ε
(8.136)

in Nδ(a), while 1/(f(z) − ζ) is analytic in Nδ(a) \ a. Therefore z = a is a
removable singularity of 1/(f(z)− ζ), and there is an an analytic g(z) which
coincides with 1/(f(z)− ζ) at all points except a. Therefore

f(z) = ζ +
1

g(z)
(8.137)

except at a. Now g(z), being analytic, may have a zero at z = a giving a
pole in f , but it cannot give rise to an essential singularity. The claim is
true, therefore.

Picard’s Theorems

Weierstrass-Casorati is elementary. There are much stronger results:

Theorem (Picard’s little theorem): Every nonconstant entire function attains
every complex value with at most one exception.

Theorem (Picard’s big theorem): In any neighbourhood of an isolated essen-
tial singularity, f(z) takes every complex value with at most one exception.

The proofs of these theorems are hard.

As an illustration of Picard’s little theorem, observe that the function
exp z is entire, and takes all values except 0. For the big theorem observe
that function f(z) = exp(1/z). has an essential singularity at z = 0, and
takes all values, with the exception of 0, in any neighbourhood of z = 0.
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8.5 Meromorphic functions and the Winding-

Number

A function whose only singularities in D are poles is said to be meromor-

phic there. These functions have a number of properties that are essentially
topological in character.

8.5.1 Principle of the Argument

If f(z) is meromorphic in D with ∂D = Γ, and f(z) 6= 0 on Γ, then

1

2πi

∮

Γ

f ′(z)

f(z)
dz = N − P (8.138)

where N is the number of zero’s in D and P is the number of poles. To show
this, we note that if f(z) = (z − a)mϕ(z) where ϕ is analytic and non-zero
near a, then

f ′(z)

f(z)
=

m

z − a +
ϕ′(z)

ϕ(z)
(8.139)

so f ′/f has a simple pole at a with residue m. Here m can be either positive
or negative. The term ϕ′(z)/ϕ(z) is analytic at z = a, so collecting all the
residues from each zero or pole gives the result.

Since f ′/f = d
dz

ln f the integral may be written

∮

Γ

f ′(z)

f(z)
dz = ∆Γ ln f(z) = i∆Γ arg f(z), (8.140)

the symbol ∆Γ denoting the total change in the quantity after we traverse Γ.
Thus

N − P =
1

2π
∆Γ arg f(z). (8.141)

This result is known as the principle of the argument.

Local mapping theorem

Suppose the function w = f(z) maps a region Ω holomorphicly onto a region
Ω′, and a simple closed curve γ ⊂ Ω onto another closed curve Γ ⊂ Ω′, which
will in general have self intersections. Given a point a ∈ Ω′, we can ask
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ourselves how many points within the simple closed curve γ map to a. The
answer is given by the winding number of the image curve Γ about a.

fγ Γ

Figure 8.13: An analytic map is one-to-one where the winding number is
unity, but two-to-one at points where the image curve winds twice.

To that this is so, we appeal to the principal of the argument as

# of zeros of (f − a) within γ =
1

2πi

∮

γ

f ′(z)

f(z)− a dz,

=
1

2πi

∮

Γ

dw

w − a,

= n(Γ, a), (8.142)

where n(Γ, a) is called the winding number of the image curve Γ about a. It
is equal to

n(Γ, a) =
1

2π
∆γ arg (w − a), (8.143)

and is the number of times the image point w encircles a as z traverses the
original curve γ.

Since the number of pre-image points cannot be negative, these winding
numbers must be positive. This means that the holomorphic image of curve
winding in the anticlockwise direction is also a curve winding anticlockwise.

For mathematicians, another important consequence of this result is that
a holomorphic map is open– i.e. the holomorphic image of an open set is
itself an open set. The local mapping theorem is therefore sometime called
the open mapping theorem.

8.5.2 Rouché’s theorem

Here we provide an effective tool for locating zeros of functions.
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Theorem (Rouché): Let f(z) and g(z) be analytic within and on a simple
closed contour γ. Suppose further that |g(z)| < |f(z)| everywhere on γ, then
f(z) and f(z) + g(z) have the same number of zeros within γ.

Before giving the proof, we illustrate Rouché’s theorem by giving its most
important corollary: the algebraic completeness of the complex numbers, a
result otherwise known as the fundamental theorem of algebra. This asserts
that, if R is sufficiently large, a polynomial P (z) = anz

n+an−1z
n−1 + · · ·+a0

has exactly n zeros, when counted with their multiplicity, lying within the
circle |z| = R. To prove this note that we can take R sufficiently big that

|anzn| = |an|Rn

> |an−1|Rn−1 + |an−2|Rn−2 · · ·+ |a0|
> |an−azn−1 + an−2z

n−2 · · ·+ a0|, (8.144)

on the circle |z| = R. We can therefore take f(z) = anz
n and g(z) =

an−az
n−1 + an−2z

n−2 · · ·+ a0 in Rouché. Since anz
n has exactly n zeros, all

lying at z = 0, within |z| = R, we conclude that so does P (z).

The proof of Rouché is a corollary of the principle of the argument. We
observe that

# of zeros of f + g = n(Γ, 0)

=
1

2π
∆γ arg (f + g)

=
1

2πi
∆γ ln(f + g)

=
1

2πi
∆γ ln f +

1

2πi
∆γ ln(1 + g/f)

=
1

2π
∆γ arg f +

1

2π
∆γ arg (1 + g/f). (8.145)

Now |g/f | < 1 on γ, so 1 + g/f cannot circle the origin as we traverse γ.
As a consequence ∆γ arg (1 + g/f) = 0. Thus the number of zeros of f + g
inside γ is the same as that of f alone. (Naturally, they are not usually in
the same places.)

The geometric part of this argument is often illustrated by a dog on a
lead. If the lead has length L, and the dog’s owner stays a distance R > L
away from a lamp post, then the dog cannot run round the lamp post unless
the owner does the same.
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g
f+g

o

f

Γ

Figure 8.14: The curve Γ is the image of γ under the map f + g. If |g| < |f |,
then, as z traverses γ, f+g winds about the origin the same number of times
that f does.

Exercise 8.8: Jacobi Theta Function. The function θ(z|τ) is defined for Im τ >
0 by the sum

θ(z|τ) =

∞∑

n=−∞
eiπτn

2

e2πinz.

Show that θ(z+1|τ) = θ(z|τ), and θ(z+τ |τ) = e−iπτ−2πizθ(z|τ). Use this infor-
mation and the principle of the argument to show that θ(z|τ) has exactly one
zero in each unit cell of the Bravais lattice comprising the points z = m+ nτ ;
m,n ∈ Z. Show that these zeros are located at z = (m+ 1/2) + (n+ 1/2)τ .

Exercise 8.9: Use Rouché’s theorem to find the number of roots of the equation
z5 + 15z + 1 = 0 lying within the circles, i) |z| = 2, ii) |z| = 3/2.

8.6 Analytic Functions and Topology

8.6.1 The Point at Infinity

Some functions, f(z) = 1/z for example, tend to a fixed limit (here 0) as z
become large, independently of in which direction we set off towards infinity.
Others, such as f(z) = exp z, behave quite differently depending on what
direction we take as |z| becomes large.

To accommodate the former type of function, and to be able to legiti-
mately write f(∞) = 0 for f(z) = 1/z, it is convenient to add “∞” to the
set of complex numbers. Technically, what we are doing is to constructing
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the one-point compactification of the locally compact space C. We often
portray this extended complex plane as a sphere S2 (the Riemann sphere),
using stereographic projection to locate infinity at the north pole, and 0 at
the south pole.

N

z

P

S

Figure 8.15: Stereographic mapping of the complex plane to the 2-Sphere.

By the phrase a neighbourhood of z, we mean an open set containing z. We
use the stereographic map to define a neighbourhood of infinity as the stere-
ographic image of a neighbourhood of the north pole. With this definition,
the extended complex plane C∪{∞} becomes topologically a sphere, and in
particular, becomes a compact set.

If we wish to study the behaviour of a function “at infinity,” we use the
map z 7→ ζ = 1/z to bring ∞ to the origin, and study the behaviour of the
function there. Thus the polynomial

f(z) = a0 + a1z + · · ·+ aNz
N (8.146)

becomes
f(ζ) = a0 + a1ζ

−1 + · · ·+ aNζ
−N , (8.147)

and so has a pole of orderN at infinity. Similarly, the function f(z) = z−3 has
a zero of order three at infinity, and sin z has an isolated essential singularity
there.

We must be a careful about defining residues at infinity. The residue is
more a property of the 1-form f(z) dz than of the function f(z) alone, and
to find the residue we need to transform the dz as well as f(z). For example,
if we set z = 1/ζ in dz/z we have

dz

z
= ζ d

(
1

ζ

)
= −dζ

ζ
, (8.148)
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so the 1-form (1/z) dz has a pole at z = 0 with residue 1, and has a pole
with residue −1 at infinity—even though the function 1/z has no pole there.
This 1-form viewpoint is required for compatability with the residue theorem:
The integral of 1/z around the positively oriented unit circle is simultane-
ously minus the integral of 1/z about the oppositely oriented unit circle, now
regarded as a a positively oriented circle enclosing the point at infinity. Thus
if f(z) has of pole of order N at infinity, and

f(z) = · · ·+ a−2z
−2 + a−1z

−1 + a0 + a1z + a2z
2 + · · ·+ ANz

N

= · · ·+ a−2ζ
2 + a−1ζ + a0 + a1ζ

−1 + a2ζ
−2 + · · ·+ ANζ

−N

(8.149)

near infinity, then the residue at infinity must be defined to be −a−1, and
not a1 as one might näıvely have thought.

Once we have allowed ∞ as a point in the set we map from, it is only
natural to add it to the set we map to — in other words to allow ∞ as a
possible value for f(z). We will set f(a) =∞, if |f(z)| becomes unboundedly
large as z → a in any manner. Thus, if f(z) = 1/z we have f(0) =∞.

The map

w =

(
z − z0
z − z∞

)(
z1 − z∞
z1 − z0

)
(8.150)

takes

z0 → 0,

z1 → 1,

z∞ → ∞, (8.151)

for example. Using this language, the Möbius maps

w =
az + b

cz + d
(8.152)

become one-to-one maps of S2 → S2. They are the only such globally con-
formal one-to-one maps. When the matrix

(
a b
c d

)
(8.153)

is an element of SU(2), the resulting one–to-one map is a rigid rotation of
the Riemann sphere. Stereographic projection is thus revealed to be the
geometric origin of the spinor representations of the rotation group.
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If an analytic function f(z) has no essential singularities anywhere on
the Riemann sphere then f is rational , meaning that it can be written as
f(z) = P (z)/Q(z) for some polynomials P , Q.

We begin the proof of this fact by observing that f(z) can have only a
finite number of poles. If, to the contrary, f had an infinite number of poles
then the compactness of S2 would ensure that the poles would have a limit
point somewhere. This would be a non-isolated singularity of f , and hence
an essential singularity. Now suppose we have poles at z1, z2, . . ., zN with
principal parts

mn∑

m=1

bn,m
(z − zn)m

.

If one of the zn is ∞, we first use a Möbius map to move it to some finite
point. Then

F (z) = f(z)−
N∑

n=1

mn∑

m=1

bn,m
(z − zn)m

(8.154)

is everywhere analytic, and therefore continuous, on S2. But S2 being com-
pact and F (z) being continuous implies that F is bounded. Therefore, by
Liouville’s theorem, it is a constant. Thus

f(z) =

N∑

n=1

mn∑

m=1

bn,m
(z − zn)m

+ C, (8.155)

and this is a rational function. If we made use of a Möbius map to move
a pole at infinity, we use the inverse map to restore the original variables.
This manoeuvre does not affect the claimed result because Möbius maps take
rational functions to rational functions.

The map z 7→ f(z) given by the rational function

f(z) =
P (z)

Q(z)
=
anz

n + an−1z
n−1 + · · ·a0

bnzn + bn−1zn−1 + · · · b0
(8.156)

wraps the Riemann sphere n times around the target S2. In other words, it
is a n-to-one map.

8.6.2 Logarithms and Branch Cuts

The function y = ln z is defined to be the solution to z = exp y. Unfortu-
nately, since exp 2πi = 1, the solution is not unique: if y is a solution, so is
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y + 2πi. Another way of looking at this is that if z = ρ exp iθ, with ρ real,
then y = ln ρ + iθ, and the angle θ has the same 2πi ambiguity. Now there
is no such thing as a “many valued function.” By definition, a function is a
machine into which we plug something and get a unique output. To make
ln z into a legitimate function we must select a unique θ = arg z for each z.
This can be achieved by cutting the z plane along a curve extending from
the the branch point at z = 0 all the way to infinity. Exactly where we put
this branch cut is not important; what is important is that it serve as an
impenetrable fence preventing us from following the continuous evolution of
the function along a path that winds around the origin.

Similar branch cuts serve to make fractional powers single valued. We
define the power zα for for non-integral α by setting

zα = exp {α ln z} = |z|αeiαθ, (8.157)

where z = |z|eiθ. For the square root z1/2 we get

z1/2 =
√
|z|eiθ/2, (8.158)

where
√
|z| represents the positive square root of |z|. We can therefore make

this single-valued by a cut from 0 to ∞. To make
√

(z − a)(z − b) single
valued we only need to cut from a to b. (Why? — think this through!).

We can get away without cuts if we imagine the functions being maps from

some set other than the complex plane. The new set is called a Riemann

surface. It consists of a number of copies of the complex plane, one for each
possible value of our “multivalued function.” The map from this new surface
is then single-valued, because each possible value of the function is the value
of the function evaluated at a point on a different copy. The copies of the
complex plane are called sheets , and are connected to each other in a manner
dictated by the function. The cut plane may now be thought of as a drawing
of one level of the multilayered Riemann surface. Think of an architect’s floor
plan of a spiral-floored multi-story car park: If the architect starts drawing
at one parking spot and works her way round the central core, at some point
she will find that the floor has become the ceiling of the part already drawn.
The rest of the structure will therefore have to be plotted on the plan of the
next floor up — but exactly where she draws the division between one floor
and the one above is rather arbitrary. The spiral car-park is a good model
for the Riemann surface of the ln z function. See figure 8.16.
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O

Figure 8.16: Part of the Riemann surface for ln z. Each time we circle the
origin, we go up one level.

To see what happens for a square root, follow z1/2 along a curve circling the
branch point singularity at z = 0. We come back to our starting point with
the function having changed sign; A second trip along the same path would
bring us back to the original value. The square root thus has only two sheets,
and they are cross-connected as shown in figure 8.17.

O

Figure 8.17: Part of the Riemann surface for
√
z. Two copies of C are cross-

connected. Circling the origin once takes you to the lower level. A second
circuit brings you back to the upper level.

In figures 8.16 and 8.17, we have shown the cross-connections being made
rather abruptly along the cuts. This is not necessary —there is no singularity
in the function at the cut — but it is often a convenient way to think about
the structure of the surface. For example, the surface for

√
(z − a)(z − b)

also consists of two sheets. If we include the point at infinity, this surface
can be thought of as two spheres, one inside the other, and cross connected
along the cut from a to b.

8.6.3 Topology of Riemann surfaces

Riemann surfaces often have interesting topology. Indeed much of modern
algebraic topology emerged from the need to develop tools to understand
multiply-connected Riemann surfaces. As we have seen, the complex num-
bers, with the point at infinity included, have the topology of a sphere. The
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α

b ca d

β

Figure 8.18: The 1-cycles α and β on the plane with two square-root branch
cuts. The dashed part of α lies hidden on the second sheet of the Riemann
surface.

√
(z − a)(z − b) surface is still topologically a sphere. To see this imagine

continuously deforming the Riemann sphere by pinching it at the equator
down to a narrow waist. Now squeeze the front and back of the waist to-
gether and (imagining that the the surface can pass freely through itself) fold
the upper half of the sphere inside the lower. The result is the precisely the
two-sheeted

√
(z − a)(z − b) surface described above. The Riemann surface

of the function
√

(z − a)(z − b)(z − c)(z − d), which can be thought of a two
spheres, one inside the other and connected along two cuts, one from a to
b and one from c to d, is, however, a torus. Think of the torus as a bicycle
inner tube. Imagine using the fingers of your left hand to pinch the front and
back of the tube together and the fingers of your right hand to do the same
on the diametrically opposite part of the tube. Now fold the tube about the
pinch lines through itself so that one half of the tube is inside the other,
and connected to the outer half through two square-root cross-connects. If
you have difficulty visualizing this process, figures 8.18 and 8.19 show how
the two 1-cycles, α and β, that generate the homology group H1(T

2) appear
when drawn on the plane cut from a to b and c to d, and then when drawn on
the torus. Observe, in figure 8.18, how the curves in the two-sheeted plane
manage to intersect in only one point, just as they do when drawn on the
torus in figure 8.19.

That the topology of the twice-cut plane is that of a torus has important
consequences. This is because the elliptic integral

w = I−1(z) =

∫ z

z0

dt√
(t− a)(t− b)(t− c)(t− d)

(8.159)

maps the twice-cut z-plane 1-to-1 onto the torus, the latter being considered
as the complex w-plane with the points w and w+nω1 +mω2 identified. The
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α

β

Figure 8.19: The 1-cycles α and β on the torus.

two numbers ω1,2 are given by

ω1 =

∮

α

dt√
(t− a)(t− b)(t− c)(t− d)

,

ω2 =

∮

β

dt√
(t− a)(t− b)(t− c)(t− d)

, (8.160)

and are called the periods of the elliptic function z = I(w). The map w 7→
z = I(w) is a genuine function because the original z is uniquely determined
by w. It is doubly periodic because

I(w + nω1 +mω2) = I(w), n,m ∈ Z. (8.161)

The inverse “function” w = I−1(z) is not a genuine function of z, however,
because w increases by ω1 or ω2 each time z goes around a curve deformable
into α or β, respectively. The periods are complicated functions of a, b, c, d.

If you recall our discussion of de Rham’s theorem from chapter 4, you
will see that the ωi are the results of pairing the closed holomorphic 1-form.

“dw” =
dz√

(z − a)(z − b)(z − c)(z − d)
∈ H1(T 2) (8.162)

with the two generators of H1(T
2). The quotation marks about dw are

there to remind us that dw is not an exact form, i.e. it is not the exterior
derivative of a single-valued function w. This cohomological interpretation
of the periods of the elliptic function is the origin of the use of the word
“period” in the context of de Rham’s theorem. (See section 10.5 for more
information on elliptic functions.)

More general Riemann surfaces are oriented 2-manifolds that can be
thought of as the surfaces of doughnuts with g holes. The number g is called
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1α

β β β

α α

1

2

2

3

3

Figure 8.20: A surface M of genus 3. The non-bounding 1-cycles αi and βi
form a basis of H1(M). The entire surface forms the single 2-cycle that spans
H2(M).

the genus of the surface. The sphere has g = 0 and the torus has g = 1.
The Euler character of the Riemann surface of genus g is χ = 2(1− g). For
example, figure 8.20 shows a surface of genus three. The surface is in one
piece, so dimH0(M) = 1. The other Betti numbers are dimH1(M) = 6 and
dimH2(M) = 1, so

χ =

2∑

p=0

(−1)pdimHp(M) = 1− 6 + 1 = −4, (8.163)

in agreement with χ = 2(1− 3) = −4. For complicated functions, the genus
may be infinite.

If we have two complex variables z and w then a polynomial relation
P (z, w) = 0 defines a complex algebraic curve. Except for degenerate cases,
this one (complex) dimensional curve is simultaneously a two (real) dimen-
sional Riemann surface. With

P (z, w) = z3 + 3w2z + w + 3 = 0, (8.164)

for example, we can think of z(w) being a three-sheeted function of w defined
by solving this cubic. Alternatively we can consider w(z) to be the two-
sheeted function of z obtained by solving the quadratic equation

w2 +
1

3z
w +

(3 + z3)

3z
= 0. (8.165)

In each case the branch points will be located where two or more roots
coincide. The roots of (8.165), for example, coincide when

1− 12z(3 + z3) = 0. (8.166)
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This quartic equation has four solutions, so there are four square-root branch
points. Although constructed differently, the Riemann surface for w(z) and
the Riemann surface for z(w) will have the same genus (in this case g = 1)
because they are really are one and the same object — the algebraic curve
defined by the original polynomial equation.

In order to capture all its points at infinity, we often consider a complex
algebraic curve as being a subset of CP 2. To do this we make the defining
equation homogeneous by introducing a third co-ordinate. For example, for
(8.164) we make

P (z, w) = z3 +3w2z+w+3→ P (z, w, v) = z3 +3w2z+wv2 +3v3. (8.167)

The points where P (z, w, v) = 0 define7 a projective curve lying in CP 2.
Places on this curve where the co-ordinate v is zero are the added points at
infinity. Places where v is non-zero (and where we may as well set v = 1)
constitute the original affine curve.

A generic (non-singular) curve

P (z, w) =
∑

r,s

arsz
rws = 0, (8.168)

with its points at infinity included, has genus

g =
1

2
(d− 1)(d− 2). (8.169)

Here d = max (r + s) is the degree of the curve. This degree-genus relation
is due to Plücker. It is not, however, trivial to prove. Also not easy to prove
is Riemann’s theorem of 1852 that any finite genus Riemann surface is the
complex algebraic curve associated with some two-variable polynomial.

The two assertions in the previous paragraph seem to contradict each
other. “Any” finite genus, must surely include g = 2, but how can a genus
two surface be a complex algebraic curve? There is no integer value of d such
that (d− 1)(d− 2)/2 = 2. This is where the “non-singular” caveat becomes
important. An affine curve P (z, w) = 0 is said to be singular at P = (z0, w0)
if all of

P (z, w),
∂P

∂z
,

∂P

∂w
,

7A homogeneous polynomial P (z, w, v) of degree n does not provide a map from
CP 2 → C because P (λz, λw, λv) = λnP (z, w, v) usually depends on λ, while the co-
ordinates (λz, λw, λv) and (z, w, v) correspond to the same point in CP 2. The zero set
where P = 0 is, however, well-defined in CP 2.
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vanish at P. A projective curve is singular at P ∈ CP 2 if all of

P (z, w, v),
∂P

∂z
,

∂P

∂w
,

∂P

∂v

are zero there. If the curve has a singular point then then it degenerates and
ceases to be a manifold. Now Riemann’s construction does not guarantee
an embedding of the surface into CP 2, only an immersion. The distinction
between these two concepts is that an immersed surface is allowed to self-
intersect, while an embedded one is not. Being a double root of the defining
equation P (z, w) = 0, a point of self-intersection is necessarily a singular
point.

As an illustration of a singular curve, consider our earlier example of the
curve

w2 = (z − a)(z − b)(z − c)(z − d) (8.170)

whose Riemann surface we know to be a torus once two some points are
added at infinity, and when a, b, c, d are all distinct. The degree-genus formula
applied to this degree four curve gives, however, g = 3 instead of the expected
g = 1. This is because the corresponding projective curve

w2v2 = (z − av)(z − bv)(z − cv)(z − dv) (8.171)

has a tacnode singularity at the point (z, w, v) = (0, 1, 0). Rather than
investigate this rather complicated singularity at infinity, we will consider
the simpler case of what happens if we allow b to coincide with c. When b
and c merge, the finite point P = (w0, z0) = (0, b) becomes a singular. Near
the singularity, the equation defining our curve looks like

0 = w2 − ad (z − b)2, (8.172)

which is the equation of two lines, w =
√
ad (z − b) and w = −

√
ad (z − b),

that intersect at the point (w, z) = (0, b). To understand what is happening
topologically it is first necessary to realize that a complex line is a copy of C
and hence, after the point at infinity is included, is topologically a sphere. A
pair of intersecting complex lines is therefore topologically a pair of spheres
sharing a common point. Our degenerate curve only looks like a pair of
lines near the point of intersection however. To see the larger picture, look
back at the figure of the twice-cut plane where we see that as b approaches
c we have an α cycle of zero total length. A zero length cycle means that
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the circumference of the torus becomes zero at P, so that it looks like a
bent sausage with its two ends sharing the common point P. Instead of two
separate spheres, our sausage is equivalent to a single two-sphere with two
points identified.

P

P

P

α

β

α

β

Figure 8.21: A degenerate torus is topologically the same as a sphere with
two points identified.

As it stands, such a set is no longer a manifold because any neighbourhood of
P will contain bits of both ends of the sausage, and therefore cannot be given
co-ordinates that make it look like a region in R2. We can, however, simply
agree to delete the common point, and then plug the resulting holes in the
sausage ends with two distinct points. The new set is again a manifold, and
topologically a sphere. From the viewpoint of the pair of intersecting lines,
this construction means that we stay on one line, and ignore the other as it
passes through.

A similar resolution of singularities allows us to regard immersed surfaces
as non-singular manifolds, and it is this sense that Riemann’s theorem is to
be understood. When n such self-intersection double points are deleted and
replaced by pairs of distinct points The degree-genus formula becomes

g =
1

2
(d− 1)(d− 2)− n, (8.173)

and this can take any integer value.
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8.6.4 Conformal geometry of Riemann surfaces

In this section we recall Hodge’s theory of harmonic forms from section 4.7.1,
and see how it looks from a complex variable perspective. This viewpoint
reveals a relationship between Riemann surfaces and Riemann manifolds that
forms an important ingredient in string and conformal field theory.

Isothermal co-ordinates and complex structure

Suppose we have a two-dimensional orientable Riemann manifold M with
metric

ds2 = gij dx
idxj . (8.174)

In two dimensions gij has three independent components. When we make a
co-ordinate transformation we have two arbitrary functions at our disposal,
and so we can use this freedom to select local co-ordinates in which only one
independent component remains. The most useful choice is isothermal (also
called conformal) co-ordinates x, y in which the metric tensor is diagonal,
gij = eσδij, and so

ds2 = eσ(dx2 + dy2). (8.175)

The eσ is called the scale factor or conformal factor . If we set z = x + iy
and z = x− iy the metric becomes

ds2 = eσ(z,z)dz dz. (8.176)

We can construct isothermal co-ordinates for some open neighbourhood of
any point in M . If in an overlapping isothermal co-ordinate patch the metric
is

ds2 = eτ(ζ,ζ)dζ dζ, (8.177)

and if the co-ordinates have the same orientation, then in the overlap region
ζ must be a function only of z and ζ a function only of z. This is so that

eτ(ζ,ζ)dζ dζ = eσ(z,z)

∣∣∣∣
dz

dζ

∣∣∣∣
2

dζ dζ (8.178)

without any dζ2 or dζ
2
terms appearing. A manifold with an atlas of complex

charts whose change-of-co-ordinate formulae are holomorphic in this way is
said to be a complex manifold , and the co-ordinates endow it with a complex
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structure. The existence of a global complex structure allows to us to de-
fine the notion of meromorphic and rational functions on M . Our Riemann
manifold is therefore also a Riemann surface.

While any compact, orientable, two-dimensional Riemann manifold has
a complex structure that is determined by the metric, the mapping: metric
→ complex structure is not one-to-one. Two metrics gij , g̃ij that are related
by a conformal scale factor

gij = λ(x1, x2)g̃ij (8.179)

give rise to the same complex structure. Conversely, a pair of two-dimensional
Riemann manifolds having the same complex structure have metrics that are
related by a scale factor.

The use of isothermal co-ordinates simplifies many computations. Firstly,
observe that gij/

√
g = δij , the conformal factor having cancelled. If you look

back at its definition, you will see that this means that when the Hodge “?”
map acts on one-forms, the result is independent of the metric. If ω is a
one-form

ω = p dx+ q dy, (8.180)

then
?ω = −q dx+ p dy. (8.181)

Note that, on one-forms,
?? = −1. (8.182)

With z = x+ iy, z = x− iy, we have

ω =
1

2
(p− iq) dz +

1

2
(p + iq) dz. (8.183)

Let us focus on the dz part:

A =
1

2
(p− iq) dz =

1

2
(p− iq)(dx+ idy). (8.184)

Then

?A =
1

2
(p− iq)(dy − idx) = −iA. (8.185)

Similarly, with

B =
1

2
(p+ iq) dz (8.186)
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we have
?B = iB. (8.187)

Thus the dz and dz parts of the original form are separately eigenvectors of ?
with different eigenvalues. We use this observation to construct a resolution
of the identity Id into the sum of two projection operators

Id =
1

2
(1 + i?) +

1

2
(1− i?),

= P + P, (8.188)

where P projects on the dz part and P onto the dz part of the form.
The original form is harmonic if it is both closed dω = 0, and co-closed

d ?ω = 0. Thus, in two dimensions, the notion of being harmonic (i.e. a
solution of Laplace’s equation) is independent of what metric we are given.
If ω is a harmonic form, then (p− iq)dz and (p+ iq)dz are separately closed.
Observe that (p− iq)dz being closed means that ∂z(p− iq) = 0, and so p− iq
is a holomorphic (and hence harmonic) function. Since both (p− iq) and dz
depend only on z, we will call (p− iq)dz a holomorphic 1-form. The complex
conjugate form

(p− iq)dz = (p + iq)dz (8.189)

then depends only on z and is anti-holomorphic.

Riemann bilinear relations

As an illustration of the interplay of harmonic forms and two-dimensional
topology, we derive some famous formuæ due to Riemann. These formulæ
have applications in string theory and in conformal field theory.

Suppose that M is a Riemann surface of genus g, with αi, βi ,i = 1, . . . , g,
the representative generators of H1(M) that intersect as shown in figure 8.20.
By applying Hodge-de Rham to this surface, we know that we can select
a set of 2g independent, real, harmonic, 1-forms as a basis of H1(M,R).
With the aid of the projector P we can assemble these into g holomorphic
closed 1-forms ωi, together with g anti-holomorphic closed 1-forms ωi, the
original 2g real forms being recovered from these as ωi + ωi and ?(ωi +
ωi) = i(ωi − ωi). A physical interpretation of these forms is as the z and
z components of irrotational and incompressible fluid flows on the surface
M . It is not surprising that such flows form a 2g real dimensional, or g
complex dimensional, vector space because we can independently specify the
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circulation
∮

v·dr around each of the 2g generators ofH1(M). If the flow field
has (covariant) components vx, vy, then ω = vzdz where vz = (vx − ivy)/2,
and ω = vzdz where vz = (vx + ivy)/2.

Suppose now that a and b are closed 1-forms on M . Then, either by
exploiting the powerful and general intersection-form formula (4.77) or by
cutting open the surface along the curves αi, βi and using the more direct
strategy that gave us (4.79), we find that

∫

M

a ∧ b =

g∑

i=1

{∫

αi

a

∫

βi

b−
∫

βi

a

∫

αi

b

}
. (8.190)

We use this formula to derive two bilinear relations associated with a closed
holomorphic 1-form ω. Firstly we compute its Hodge inner-product norm

‖ω‖2 ≡
∫

M

ω ∧ ?ω =

g∑

i=1

{∫

αi

ω

∫

βi

?ω −
∫

βi

ω

∫

αi

?ω

}

= i

g∑

i=1

{∫

αi

ω

∫

βi

ω −
∫

βi

ω

∫

αi

ω

}

= i

g∑

i=1

{
AiBi −BiAi

}
, (8.191)

where Ai =
∫
αi
ω and Bi =

∫
βi
ω. We have used the fact that ω is an anti-

holomorphic 1 form and thus an eigenvector of ? with eigenvalue i. It follows,
therefore, that if all the Ai are zero then ‖ω‖ = 0 and so ω = 0.

Let Aij =
∫
αi
ωj. The determinant of the matrix Aij is non-zero: If it

were zero, then there would be numbers λi, not all zero, such that

0 = Aijλj =

∫

αi

(ωjλj), (8.192)

but, by (8.191), this implies that ‖ωjλj‖ = 0 and hence ωjλj = 0, contrary
to the linear independence of the ωi. We can therefore solve the equations

Aijλjk = δik (8.193)

for the numbers λjk and use these to replace each of the ωi by the linear
combination ωjλji. The new ωi then obey

∫
αi
ωj = δij. From now on we

suppose that this has be done.



8.7. FURTHER EXERCISES AND PROBLEMS 353

Define τij =
∫
βi
ωj . Observe that dz ∧ dz = 0 forces ωi ∧ ωj = 0, and

therefore we have a second relation

0 =

∫

M

ωm ∧ ωn =

g∑

i=1

{∫

αi

ωm

∫

βi

ωn −
∫

βi

ωm

∫

αi

ωn

}

=

g∑

i=1

{δimτin − τimδin}

= τmn − τnm. (8.194)

The matrix τij is therefore symmetric. A similar compuation shows that

‖λiωi‖2 = 2λi(Im τij)λj (8.195)

so the matrix (Im τij) is positive definite. The set of such symmetric matrices
whose imaginary part is positive definite is called the Siegel upper half-plane.
Not every such matrix correponds to a Riemann surface, but when it does it
encodes all information about the shape of the Riemann manifold M that is
left invariant under conformal rescaling.

8.7 Further Exercises and Problems

Exercise 8.10: Harmonic partners. Show that the function

u = sinx cosh y + 2cos x sinh y

is harmonic. Determine the corresponding analytic function u+ iv.

Exercise 8.11: Möbius Maps. The Map

z 7→ w =
az + b

cz + d

is called a Möbius transformation. These maps are important because they are
the only one-to-one conformal maps of the Riemann sphere onto itself.

a) Show that two successive Möbius transformations

z′ =
az + b

cz + d
, z′′ =

Az′ +B

Cz′ +D

give rise to another Möbius transformation, and show that the rule for
combining them is equivalent to matrix multiplication.
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b) Let z1, z2, z3, z4 be complex numbers. Show that a necessary and suf-
ficient condition for the four points to be concyclic is that their their
cross-ratio

{z1, z2, z3, z4} def
=

(z1 − z4)(z3 − z2)
(z1 − z2)(z3 − z4)

be real (Hint: use a well-known property of opposite angles of a cyclic
quadrilateral). Show that Möbius transformations leave the cross-ratio
invariant, and thus take circles into circles.

Exercise 8.12: Hyperbolic geometry . The Riemann metric for the Poincaré-
disc model of Lobachevski’s hyperbolic plane (See exercises ??.?? and 3.13)
can be taken to be

ds2 =
4|dz|2

(1− |z|2)2 , |z|2 < 1.

a) Show that the Möbius transformation

z 7→ w = eiλ
z − a
āz − 1

, |a| < 1, λ ∈ R

provides a 1-1 map of the interior of the unit disc onto itself. Show that
these maps form a group.

b) Show that the hyperbolic-plane metric is left invariant under the group
of maps in part (a). Deduce that such maps are orientation-preserving
isometries of the hyperbolic plane.

c) Use the circle-preserving property of the Möbius maps to deduce that
circles in hyperbolic geometry are represented in the Poincaré disc by
Euclidean circles that lie entirely within the disc.

The conformal maps of part (a) are in fact the only orientation preserving
isometries of the hyperbolic plane. With the exception of circles centered at
z = 0, the center of the hyperbolic circle does not coincide with the center
of its representative Euclidean circle. Euclidean circles that are internally
tangent to the boundary of the unit disc have infinite hyperbolic radius and
their hyperbolic centers lie on the boundary of the unit disc and hence at
hyperbolic infinity. They are known as horocycles.

Exercise 8.13: Rectangle to Ellipse. Consider the map w 7→ z = sinw. Draw
a picture of the image, in the z plane, of the interior of the rectangle with
corners u = ±π/2, v = ±λ. (w = u + iv). Show which points correspond to
the corners of the rectangle, and verify that the vertex angles remain π/2. At
what points does the isogonal property fail?
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Exercise 8.14: The part of the negative real axis where x < −1 is occupied
by a conductor held at potential −V0. The positive real axis for x > +1
is similarly occupied by a conductor held at potential +V0. The conductors
extend to infinity in both directions perpendicular to the x− y plane, and so
the potential V satisfies the two-dimensional Laplace equation.

a) Find the image in the ζ plane of the cut z plane where the cuts run from
−1 to −∞ and from +1 to +∞ under the map z 7→ ζ = sin−1 z

b) Use your answer from part a) to solve the electrostatic problem and
show that the field lines and equipotentials are conic sections of the form
ax2+by2 = 1. Find expressions for a and b for the both the field lines and
the equipotentials and draw a labelled sketch to illustrate your results.

Exercise 8.15: Draw the image under the map z 7→ w = eπz/a of the infinite
strip S, consisting of those points z = x + iy ∈ C for which 0 < y < a.
Label enough points to show which point in the w plane corresponds to which
in the z plane. Hence or otherwise show that the Dirichlet Green function
G(x, y;x0, y0) that obeys

∇2G = δ(x− x0)δ(y − y0)

in S, and G(x, y;x0, y0) = 0 for (x, y) on the boundary of S, can be written as

G(x, y;x0, y0) =
1

2π
ln | sinh(π(z − z0)/2a)| + . . .

The dots indicate the presence of a second function, similar to the first, that
you should find. Assume that (x0, y0) ∈ S.

Exercise 8.16: State Laurent’s theorem for functions analytic in an annulus.
Include formulae for the coefficients of the expansion. Show that, suitably
interpreted, this theorem reduces to a form of Fourier’s theorem for functions
analytic in a neighbourhood of the unit circle.

Exercise 8.17: Laurent Paradox. Show that in the annulus 1 < |z| < 2 the
function

f(z) =
1

(z − 1)(2− z)
has a Laurent expansion in powers of z. Find the coefficients. The part of the
series with negative powers of z does not terminate. Does this mean that f(z)
has an essential singularity at z = 0?
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Exercise 8.18: Assuming the following series

1

sinh z
=

1

z
− 1

6
z +

7

16
z3 + . . . ,

evaluate the integral

I =

∮

|z|=1

1

z2 sinh z
dz.

Now evaluate the integral

I =

∮

|z|=4

1

z2 sinh z
dz.

(Hint: The zeros of sinh z lie at z = nπi.)

Exercise 8.19: State the theorem relating the difference between the number
of poles and zeros of f(z) in a region to the winding number of argument of
f(z). Hence, or otherwise, evaluate the integral

I =

∮

C

5z4 + 1

z5 + z + 1
dz

where C is the circle |z| = 2. Prove, including a statement of any relevent
theorem, any assertions you make about the locations of the zeros of z5+z+1.

Exercise 8.20: Arcsine branch cuts. Let w = sin−1z. Show that

w = nπ ± i ln{iz +
√

1− z2}

with the ± being selected depending on whether n is odd or even. Where
would you put cuts to ensure that w is a single-valued function?

Problem 8.21: Cutting open a genus-2 surface. The Riemann surface for the
function

y =
√

(z − a1)(z − a2)(z − a3)(z − a4)(z − a5)(z − a6)

has genus g = 2. Such a surface M is sketched in figure 8.22, where the four
independent 1-cycles α1,2 and β1,2 that generate H1(M) have been drawn so
that they share a common vertex.

a) Realize the genus-2 surface as two copies of C∪ {∞} cross-connected by
three square-root branch cuts. Sketch how the 1-cycles αi and βi, i = 1, 2
of figure 8.22 appear when drawn on your thrice-cut plane.
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Figure 8.22: Concurrent 1-cycles on a genus-2 surface.
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Figure 8.23: The cut-open genus-2 surface. The superscripts L and R denote
respectively the left and right sides of each 1-cycle, viewed from the direction
of the arrow orienting the cycle.
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b) Cut the surface open along the four 1-cycles, and show that resulting
surface is homeomorphic to the octagonal region appearing in figure 8.23.

c) Apply the direct method that gave us (4.79) to the octagonal region of
part b). Hence show that for closed 1-forms a, b, on the surface we have

∫

M
a ∧ b =

2∑

i=1

{∫

αi

a

∫

βi

b−
∫

βi

a

∫

αi

b

}
.



Chapter 9

Complex Analysis II

In this chapter we will apply what we have learned of complex variables. The
applications will range from the elementary to the sophisticated.

9.1 Contour Integration Technology

The goal of contour integration technology is to evaluate ordinary, real-
variable, definite integrals. We have already met the basic tool, the residue

theorem:

Theorem: Let f(z) be analytic within and on the boundary Γ = ∂D of a
simply connected domain D, with the exception of finite number of points
at which the function has poles. Then

∮

Γ

f(z) dz =
∑

poles ∈ D
2πi (residue at pole).

9.1.1 Tricks of the Trade

The effective application of the residue theorem is something of an art, but
there are useful classes of integrals which we can learn to recognize.

Rational Trigonometric Expressions

Integrals of the form ∫ 2π

0

F (cos θ, sin θ) dθ (9.1)

359
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are dealt with by writing cos θ = 1
2
(z + z), sin θ = 1

2i
(z − z) and integrating

around the unit circle. For example, let a, b be real and b < a, then

I =

∫ 2π

0

dθ

a+ b cos θ
=

2

i

∮

|z|=1

dz

bz2 + 2az + b
=

2

ib

∮
dz

(z − α)(z − β)
. (9.2)

Since αβ = 1, only one pole is within the contour. This is at

α = (−a +
√
a2 − b2)/b. (9.3)

The residue is
2

ib

1

α− β =
1

i

1√
a2 − b2

. (9.4)

Therefore, the integral is given by

I =
2π√
a2 − b2

. (9.5)

These integrals are, of course, also do-able by the “t” substitution t =
tan(θ/2), whence

sin θ =
2t

1 + t2
, cos θ =

1− t2
1 + t2

, dθ =
2dt

1 + t2
, (9.6)

followed by a partial fraction decomposition. The labour is perhaps slightly
less using the contour method.

Rational Functions

Integrals of the form ∫ ∞

−∞
R(x) dx, (9.7)

where R(x) is a rational function of x with the degree of the denominator
exceeding the degree of the numerator by two or more, may be evaluated
by integrating around a rectangle from −A to +A, A to A + iB, A + iB to
−A + iB, and back down to −A. Because the integrand decreases at least
as fast as 1/|z|2 as z becomes large, we see that if we let A,B → ∞, the
contributions from the unwanted parts of the contour become negligeable.
Thus

I = 2πi
(∑

Residues of poles in upper half-plane
)
. (9.8)
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We could also use a rectangle in the lower half-plane with the result

I = −2πi
(∑

Residues of poles in lower half-plane
)
, (9.9)

This must give the same answer.
For example, let n be a positive integer and consider

I =

∫ ∞

−∞

dx

(1 + x2)n
. (9.10)

The integrand has an n-th order pole at z = ±i. Suppose we close the contour
in the upper half-plane. The new contour encloses the pole at z = +i and
we therefore need to compute its residue. We set z − i = ζ and expand

1

(1 + z2)n
=

1

[(i+ ζ)2 + 1]n
=

1

(2iζ)n

(
1− iζ

2

)−n

=
1

(2iζ)n

(
1 + n

(
iζ

2

)
+
n(n+ 1)

2!

(
iζ

2

)2

+ · · ·
)
. (9.11)

The coefficient of ζ−1 is

1

(2i)n
n(n + 1) · · · (2n− 2)

(n− 1)!

(
i

2

)n−1

=
1

22n−1i

(2n− 2)!

((n− 1)!)2
. (9.12)

The integral is therefore

I =
π

22n−2

(2n− 2)!

((n− 1)!)2
. (9.13)

These integrals can also be done by partial fractions.

9.1.2 Branch-cut integrals

Integrals of the form

I =

∫ ∞

0

xα−1R(x)dx, (9.14)

where R(x) is rational, can be evaluated by integration round a slotted circle
(or “key-hole”) contour.
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y

x−1

Figure 9.1: A slotted circle contour Γ of outer radius Λ and inner radius ε.

A little more work is required to extract the answer, though.
For example, consider

I =

∫ ∞

0

xα−1

1 + x
dx, 0 < Reα < 1. (9.15)

The restrictions on the range of α are necessary for the integral to converge
at its upper and lower limits.

We take Γ to be a circle of radius Λ centred at z = 0, with a slot indenta-
tion designed to exclude the positive real axis, which we take as the branch
cut of zα−1, and a small circle of radius ε about the origin. The branch of
the fractional power is defined by setting

zα−1 = exp[(α− 1)(ln |z|+ iθ)], (9.16)

where we will take θ to be zero immediately above the real axis, and 2π
immediately below it. With this definition the residue at the pole at z = −1
is eiπ(α−1). The residue theorem therefore tells us that∮

Γ

zα−1

1 + z
dz = 2πieπi(α−1). (9.17)

The integral decomposes as
∮

Γ

zα−1

1 + z
dz =

∮

|z|=Λ

zα−1

1 + z
dz + (1− e2πi(α−1))

∫ Λ

ε

xα−1

1 + x
dx−

∮

|z|=ε

zα−1

1 + z
dz.

(9.18)
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As we send Λ off to infinity we can ignore the “1” in the denominator com-
pared to the z, and so estimate

∣∣∣∣
∮

|z|=Λ

zα−1

1 + z
dz

∣∣∣∣→
∣∣∣∣
∮

|z|=Λ

zα−2dz

∣∣∣∣ ≤ 2πΛ× ΛRe (α)−2. (9.19)

This tends to zero provided that Reα < 1. Similarly, provided 0 < Reα, the
integral around the small circle about the origin tends to zero with ε. Thus

−eπiα2πi =
(
1− e2πi(α−1)

)
I. (9.20)

We conclude that

I =
2πi

(eπiα − e−πiα) =
π

sin πα
. (9.21)

Exercise 9.1: Using the slotted circle contour, show that

I =

∫ ∞

0

xp−1

1 + x2
dx =

π

2 sin(πp/2)
=
π

2
cosec (πp/2), 0 < p < 2.

Exercise 9.2: Integrate za−1/(z − 1) around a contour Γ1 consisting of a semi-
circle in the upper half plane together with the real axis indented at z = 0
and z = 1

x

y

1

Figure 9.2: The contour Γ1.

to get

0 =

∮

Γ

za−1

z − 1
dz = P

∫ ∞

0

xa−1

x− 1
dx− iπ + (cos πa+ i sinπa)

∫ ∞

0

xa−1

x+ 1
dx.
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As usual, the symbol P in front of the integral sign denotes a principal part
integral, meaning that we must omit an infinitesimal segment of the contour
symmetrically disposed about the pole at z = 1. The term −iπ comes from
integrating around the small semicircle about this point. We get −1/2 of the
residue because we have only a half circle, and that traversed in the “wrong”
direction. Warning: this fractional residue result is only true when we indent
to avoid a simple pole—i.e. one that is of order one.

Now take real and imaginary parts and deduce that

∫ ∞

0

xa−1

1 + x
dx =

π

sinπα
, 0 < Re a < 1,

and

P

∫ ∞

0

xa−1

1− xdx = π cot πa, 0 < Re a < 1.

9.1.3 Jordan’s Lemma

We often need to evaluate Fourier integrals

I(k) =

∫ ∞

−∞
eikxR(x) dx (9.22)

with R(x) a rational function. For example, the Green function for the
operator −∂2

x +m2 is given by

G(x) =

∫ ∞

−∞

dk

2π

eikx

k2 +m2
. (9.23)

Suppose x ∈ R and x > 0. Then, in contrast to the analogous integral
without the exponential function, we have no flexibility in closing the contour
in the upper or lower half-plane. The function eikx grows without limit as
we head south in the lower half-plane, but decays rapidly in the upper half-
plane. This means that we may close the contour without changing the value
of the integral by adding a large upper-half-plane semicircle.
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R

k

im

−im

Figure 9.3: Closing the contour in the upper half-plane.

The modified contour encloses a pole at k = im, and this has residue
i/(2m)e−mx. Thus

G(x) =
1

2m
e−mx, x > 0. (9.24)

For x < 0, the situation is reversed, and we must close in the lower half-plane.
The residue of the pole at k = −im is −i/(2m)emx, but the minus sign is
cancelled because the contour goes the “wrong way” (clockwise). Thus

G(x) =
1

2m
e+mx, x < 0. (9.25)

We can combine the two results as

G(x) =
1

2m
e−m|x|. (9.26)

The formal proof that the added semicircles make no contribution to the
integral when their radius becomes large is known as Jordan’s Lemma:

Lemma: Let Γ be a semicircle, centred at the origin, and of radius R. Sup-
pose

i) that f(z) is meromorphic in the upper half-plane;
ii) that f(z) tends uniformly to zero as |z| → ∞ for 0 < arg z < π;
iii) the number λ is real and positive.

Then ∫

Γ

eiλzf(z) dz → 0, as R→∞. (9.27)
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To establish this, we assume that R is large enough that |f | < ε on the
contour, and make a simple estimate

∣∣∣∣
∫

Γ

eiλzf(z) dz

∣∣∣∣ < 2Rε

∫ π/2

0

e−λR sin θ dθ

< 2Rε

∫ π/2

0

e−2λRθ/π dθ

=
πε

λ
(1− e−λR) <

πε

λ
. (9.28)

In the second inequality we have used the fact that (sin θ)/θ ≥ 2/π for angles
in the range 0 < θ < π/2. Since ε can be made as small as we like, the lemma
follows.
Example: Evaluate

I(α) =

∫ ∞

−∞

sin(αx)

x
dx. (9.29)

We have

I(α) = Im

{∫ ∞

−∞

exp iαz

z
dz

}
. (9.30)

If we take α > 0, we can close in the upper half-plane, but our contour must
exclude the pole at z = 0. Therefore

0 =

∫

|z|=R

exp iαz

z
dz −

∫

|z|=ε

exp iαz

z
dz +

∫ −ε

−R

exp iαx

x
dx+

∫ R

ε

exp iαx

x
dx.

(9.31)
As R → ∞, we can ignore the big semicircle, the rest, after letting ε → 0,
gives

0 = −iπ + P

∫ ∞

−∞

eiαx

x
dx. (9.32)

Again, the symbol P denotes a principal part integral. The −iπ comes from
the small semicircle. We get −1/2 the residue because we have only a half
circle, and that traversed in the “wrong” direction. (Remember that this
fractional residue result is only true when we indent to avoid a simple pole—
i.e one that is of order one.)

Reading off the real and imaginary parts, we conclude that

∫ ∞

−∞

sinαx

x
dx = π, P

∫ ∞

−∞

cosαx

x
dx = 0, α > 0. (9.33)
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No “P” is needed in the sine integral, as the integrand is finite at x = 0.
If we relax the condition that α > 0 and take into account that sine is an

odd function of its argument, we have
∫ ∞

−∞

sinαx

x
dx = π sgnα. (9.34)

This identity is called Dirichlet’s discontinuous integral .
We can interpret Dirichlet’s integral as giving the Fourier transform of

the principal part distribution P (1/x) as

P

∫ ∞

−∞

eiωx

x
dx = iπ sgnω. (9.35)

This will be of use later in the chapter.
Example:

x

y

Figure 9.4: Quadrant contour.

We will evaluate the integral
∮

C

eizza−1 dz (9.36)

about the first-quadrant contour shown above. Observe that when 0 < a < 1
neither the large nor the small arc makes a contribution, and that there are
no poles. Hence, we deduce that

0 =

∫ ∞

0

eixxa−1 dx− i
∫ ∞

0

e−yya−1e(a−1)π
2
i dy, 0 < a < 1. (9.37)
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Taking real and imaginary parts, we find

∫ ∞

0

xa−1 cosx dx = Γ(a) cos
(π

2
a
)
, 0 < a < 1,

∫ ∞

0

xa−1 sin x dx = Γ(a) sin
(π

2
a
)
, 0 < a < 1, (9.38)

where

Γ(a) =

∫ ∞

0

ya−1e−y dy (9.39)

is the Euler Gamma function.

Example: Fresnel integrals. Integrals of the form

C(t) =

∫ t

0

cos(πx2/2) dx, (9.40)

S(t) =

∫ t

0

sin(πx2/2) dx, (9.41)

occur in the theory of diffraction and are called Fresnel integrals after Au-
gustin Fresnel. They are naturally combined as

C(t) + iS(t) =

∫ t

0

eiπx
2/2 dx. (9.42)

The limit as t→∞ exists and is finite. Even though the integrand does not
tend to zero at infinity, its rapid oscillation for large x is just sufficient to
ensure convergence.1

As t varies, the complex function C(t)+iS(t) traces out the Cornu Spiral ,
named after Marie Alfred Cornu, a 19th century French optical physicist.

1We can exhibit this convergence by setting x2 = s and then integrating by parts to
get

∫ t

0

eiπx2/2 dx =
1

2

∫ 1

0

eiπs/2 ds

s1/2
+

[
eiπs/2

πis1/2

]t2

1

+
1

2πi

∫ t2

1

eiπs/2 ds

s3/2
.

The right hand side is now manifestly convergent as t→∞.
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Figure 9.5: The Cornu spiral C(t)+ iS(t) for t in the range −8 < t < 8. The
spiral in the first quadrant corresponds to positive values of t.

We can evaluate the limiting value

C(∞) + iS(∞) =

∫ ∞

0

eiπx
2/2 dx (9.43)

by deforming the contour off the real axis and onto a line of length L running
into the first quadrant at 45◦, this being the direction of most rapid decrease
of the integrand.

L

y

x

Figure 9.6: Fresnel contour.

A circular arc returns the contour to the axis whence it continues to ∞, but
an estimate similar to that in Jordan’s lemma shows that the arc and the
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subsequent segment on the real axis make a negligeable contribution when L
is large. To evaluate the integral on the radial line we set z = eiπ/4s, and so

∫ eiπ/4∞

0

eiπz
2/2 dz = eiπ/4

∫ ∞

0

e−πs
2/2 ds =

1√
2
eiπ/4 =

1

2
(1 + i). (9.44)

Figure 9.5 shows how C(t) + iS(t) orbits the limiting point 0.5 + 0.5i and
slowly spirals in towards it. Taking real and imaginary parts we have

∫ ∞

0

cos

(
πx2

2

)
dx =

∫ ∞

0

sin

(
πx2

2

)
dx =

1

2
. (9.45)

9.2 The Schwarz Reflection Principle

Theorem (Schwarz): Let f(z) be analytic in a domain D where ∂D includes
a segment of the real axis. Assume that f(z) is real when z is real. Then
there is a unique analytic continuation of f into the region D (the mirror
image of D in the real axis) given by

g(z) =






f(z), z ∈ D,
f(z), z ∈ D,
either, z ∈ R.

(9.46)

x

y

D

D

Figure 9.7: The domain D and its mirror image D.

The proof invokes Morera’s theorem to show analyticity, and then appeals
to the uniqueness of analytic continuations. Begin by looking at a closed
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contour lying only in D: ∮

C

f(z) dz, (9.47)

where C = {η(t)} is the image of C = {η(t)} ⊂ D under reflection in the
real axis. We can rewrite this as

∮

C

f(z) dz =

∮
f(η)

dη̄

dt
dt =

∮
f(η)

dη

dt
dt =

∮

C

f(η) dz = 0. (9.48)

At the last step we have used Cauchy and the analyticity of f in D. Morera’s
theorem therefore confirms that g(z) is analytic in D. By breaking a general
contour up into parts in D and parts in D, we can similarly show that g(z)
is analytic in D ∪D.

The important corollary is that if f(z) is analytic, and real on some
segment of the real axis, but has a cut along some other part of the real axis,
then f(x+ iε) = f(x− iε) as we go over the cut. The discontinuity disc f is
therefore 2Im f(x+ iε).

Suppose f(z) is real on the negative real axis, and goes to zero as |z| → ∞,
then applying Cauchy to the contour Γ depicted in figure 9.8.

y

x

ζ

Figure 9.8: The contour Γ for the dispersion relation. .

we find

f(ζ) =
1

π

∫ ∞

0

Im f(x+ iε)

x− ζ dx, (9.49)
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for ζ within the contour. This is an example of a dispersion relation. The
name comes from the prototypical application of this technology to optical
dispersion, i.e. the variation of the refractive index with frequency.

If f(z) does not tend to zero at infinity then we cannot ignore the con-
tribution to Cauchy’s formula from the large circle. We can, however, still
write

f(ζ) =
1

2πi

∮

Γ

f(z)

z − ζ dz, (9.50)

and

f(b) =
1

2πi

∮

Γ

f(z)

z − b dz, (9.51)

for some convenient point b within the contour. We then subtract to get

f(ζ) = f(b) +
(ζ − b)

2πi

∫

Γ

f(z)

(z − b)(z − ζ) dz. (9.52)

Because of the extra power of z downstairs in the integrand, we only need f
to be bounded at infinity for the contribution of the large circle to tend to
zero. If this is the case, we have

f(ζ) = f(b) +
(ζ − b)
π

∫ ∞

0

Im f(x+ iε)

(x− b)(x− ζ) dx. (9.53)

This is called a once-subtracted dispersion relation.
The dispersion relations derived above apply when ζ lies within the con-

tour. In physics applications we often need f(ζ) for ζ real and positive. What
happens as ζ approaches the axis, and we attempt to divide by zero in such
an integral, is summarized by the Plemelj formulæ: If f(ζ) is defined by

f(ζ) =
1

π

∫

Γ

ρ(z)

z − ζ dz, (9.54)

where Γ has a segment lying on the real axis, then, if x lies in this segment,

1

2
(f(x+ iε)− f(x− iε)) = iρ(x)

1

2
(f(x+ iε) + f(x− iε)) =

P

π

∫

Γ

ρ(x′)

x′ − x dx
′. (9.55)

As always, the “P” means that we are to delete an infinitesimal segment of
the contour lying symmetrically about the pole.
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+ = 2

− = 

Figure 9.9: Origin of the Plemelj formulae.

The Plemelj formulæ hold under relatively mild conditions on the function
ρ(x). We won’t try to give a general proof, but in the case that ρ is analytic
the result is easy to understand: we can push the contour out of the way
and let ζ → x on the real axis from either above or below. In that case
the drawing above shows how the the sum of these two limits gives the the
principal-part integral and how their difference gives an integral round a
small circle, and hence the residue ρ(x).

The Plemelj equations usually appear in physics papers as the “iε” cabala

1

x′ − x± iε = P

(
1

x′ − x

)
∓ iπδ(x′ − x). (9.56)

A limit ε→ 0 is always to be understood in this formula.

Im f
Re f

x’−x

x’−x

Figure 9.10: Sketch of the real and imaginary parts of f(x′) = 1/(x′−x− iε).

We can also appreciate the origin of the iε rule by examining the following
identity:

1

x′ − (x± iε) =
x− x′

(x′ − x)2 + ε2
± iε

(x′ − x)2 + ε2
. (9.57)
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The first term is a symmetrically cut-off version of 1/(x′ − x) and provides
the principal-part integral. The second term sharpens and tends to the delta
function ±iπδ(x′ − x) as ε→ 0.

Exercise 9.3: The Legendre function of the second kind Qn(z) may be defined
for positive integer n by the integral

Qn(z) =
1

2

∫ 1

−1

(1− t2)n
2n(z − t)n+1

dt, z /∈ [−1, 1].

Show that for x ∈ [−1, 1] we have

Qn(x+ iε)−Qn(x− iε) = −iπPn(x),

where Pn(x) is the Legendre Polynomial. Deduce Neumann ’s formula

Qn(z) =
1

2

∫ 1

−1

Pn(t)

z − t dt, z /∈ [−1, 1].

9.2.1 Kramers-Kronig Relations

Causality is the usual source of analyticity in physical applications. If G(t)
is a response function

φresponse(t) =

∫ ∞

−∞
G(t− t′)fcause(t

′) dt′ (9.58)

then for no effect to anticipate its cause we must have G(t) = 0 for t < 0.
The Fourier transform

G(ω) =

∫ ∞

−∞
eiωtG(t) dt, (9.59)

is then automatically analytic everywhere in the upper half plane. Suppose,
for example, we look at a forced, damped, harmonic oscillator whose dis-
placement x(t) obeys

ẍ+ 2γẋ+ (Ω2 + γ2)x = F (t), (9.60)

where the friction coefficient γ is positive. As we saw earlier, the solution is
of the form

x(t) =

∫ ∞

−∞
G(t, t′)F (t′)dt′,
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where the Green function G(t, t′) = 0 if t < t′. In this case

G(t, t′) =

{
Ω−1e−γ(t−t

′) sin Ω(t− t′) t > t′

0, t < t′
(9.61)

and so

x(t) =
1

Ω

∫ t

−∞
e−γ(t−t

′) sin Ω(t− t′)F (t′) dt′. (9.62)

Because the integral extends only from 0 to +∞, the Fourier transform of
G(t, 0),

G̃(ω) ≡ 1

Ω

∫ ∞

0

eiωte−γt sin Ωt dt, (9.63)

is nicely convergent when Imω > 0, as evidenced by

G̃(ω) = − 1

(ω + iγ)2 − Ω2
(9.64)

having no singularities in the upper half-plane.2

Another example of such a causal function is provided by the complex,
frequency-dependent, refractive index of a material n(ω). This is defined so
that a travelling wave takes the form

ϕ(x, t) = ein(ω)k·x−iωt. (9.65)

We can decompose n into its real and imaginary parts

n(ω) = nR(ω) + inI(ω)

= nR(ω) +
i

2|k|γ(ω) (9.66)

where γ is the extinction coefficient, defined so that the intensity falls off
as I ∝ exp(−γn · x), where n = k/|k| is the direction of propapagation. A
non-zero γ can arise from either energy absorption or scattering out of the
forward direction

2If a pole in a response function manages to sneak into the upper half plane, then
the system will be unstable to exponentially growing oscillations. This may happen, for
example, when we design an electronic circuit containing a feedback loop. Such poles, and
the resultant instabilities, can be detected by applying the principle of the argument from
the last chapter. This method leads to the Nyquist stability criterion.
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Being a causal response, the refractive index extends to a function ana-
lytic in the upper half plane and n(ω) for real ω is the boundary value

n(ω)physical = lim
ε→0

n(ω + iε) (9.67)

of this analytic function. Because a real (E = E∗) incident wave must give
rise to a real wave in the material, and because the wave must decay in the
direction in which it is propagating, we have the reality conditions

γ(−ω + iε) = −γ(ω + iε),

nR(−ω + iε) = +nR(ω + iε) (9.68)

with γ positive for positive frequency.
Many materials have a frequency range |ω| < |ωmin| where γ = 0, so

the material is transparent. For any such material n(ω) obeys the Schwarz
reflection principle and so there is an analytic continuation into the lower
half-plane. At frequencies ω where the material is not perfectly transparent,
the refractive index has an imaginary part even when ω is real. By Schwarz, n
must be discontinuous across the real axis at these frequencies: n(ω + iε) =
nR + inI 6= n(ω − iε) = nR − inI . These discontinuities of 2inI usually
correspond to branch cuts.

No substance is able to respond to infinitely high frequency disturbances,
so n → 1 as |ω| → ∞, and we can apply our dispersion relation technology
to the function n−1. We will need the contour shown below, which has cuts
for both positive and negative frequencies.

Im

Re

ω

ωωmin−ωmin

Figure 9.11: Contour for the n− 1 dispersion relation.
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By applying the dispersion-relation strategy, we find

n(ω) = 1 +
1

π

∫ ωmin

−∞

nI(ω
′)

ω′ − ω dω
′ +

1

π

∫ ∞

ωmin

nI(ω
′)

ω′ − ω dω
′ (9.69)

for ω within the contour. Using Plemelj we can now take ω onto the real axis
to get

nR(ω) = 1 +
P

π

∫ ωmin

−∞

nI(ω
′)

ω′ − ω dω
′ +

P

π

∫ ∞

ωmin

nI(ω
′)

ω′ − ω dω
′

= 1 +
P

π

∫ ∞

ω2
min

nI(ω
′)

ω′2 − ω2
dω′2,

= 1 +
c

π
P

∫ ∞

ωmin

γ(ω′)

ω′2 − ω2
dω′. (9.70)

In the second line we have used the anti-symmetry of nI(ω) to combine the
positive and negative frequency range integrals. In the last line we have used
the relation ω/k = c to make connection with the way this equation is written
in R. G. Newton’s authoritative Scattering Theory of Waves and Particles.
This relation, between the real and absorptive parts of the refractive index,
is called a Kramers-Kronig dispersion relation, after the original authors.3

If n→ 1 fast enough that ω2(n− 1)→ 0 as |ω| → ∞, we can take the f
in the dispersion relation to be ω2(n− 1) and deduce that

nR = 1 +
c

π
P

∫ ∞

ω2
min

(
ω′2

ω2

)
γ(ω′)

ω′2 − ω2
dω′, (9.71)

another popular form of Kramers-Kronig. This second relation implies the
first, but not vice-versa, because the second demands more restrictive be-
havior for n(ω).

Similar equations can be derived for other causal functions. A quantity
closely related to the refractive index is the frequency-dependent dielectric
“constant”

ε(ω) = ε1 + iε2. (9.72)

Again ε→ 1 as |ω| → ∞, and, proceeding as before, we deduce that

ε1(ω) = 1 +
P

π

∫ ∞

ω2
min

ε2(ω
′)

ω′2 − ω2
dω′2. (9.73)

3H. A. Kramers, Nature, 117 (1926) 775; R. de L. Kronig, J. Opt. Soc. Am. 12 (1926)
547
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9.2.2 Hilbert transforms

Suppose that f(x) is the boundary value on the real axis of a function every-
where analytic in the upper half-plane, and suppose further that f(z) → 0
as |z| → ∞ there. Then we have

f(z) =
1

2πi

∫ ∞

−∞

f(x)

x− z dx (9.74)

for z in the upper half-plane. This is because may close the contour with an
upper semicircle without changing the value of the integral. For the same
reason the integral must give zero when z is taken in the lower half-plane.
Using the Plemelj formulæ we deduce that on the real axis,

f(x) =
P

πi

∫ ∞

−∞

f(x′)

x′ − x dx
′. (9.75)

We can use this strategy to derive the Kramers-Kronig relations even if nI
never vanishes, and so we cannot use the Schwarz reflection principle.

The relation (9.75) suggests the definition of the Hilbert transform, Hψ,
of a function ψ(x), as

(Hψ)(x) =
P

π

∫ ∞

−∞

ψ(x′)

x− x′ dx
′. (9.76)

Note the interchange of x, x′ in the denominator of (9.76) when compared
with (9.75). This switch is to make the Hilbert transform into a convolution
integral. Equation (9.75) shows that a function that is the boundary value of
a function analytic and tending to zero at infinity in the upper half-plane is
automatically an eigenvector of H with eigenvalue −i. Similarly a function
that is the boundary value of a function analytic and tending to zero at
infinity in the lower half-plane will be an eigenvector with eigenvalue +i. (A
function analytic in the entire complex plane and tending to zero at infinity
must vanish identically by Liouville’s theorem.)

Returning now to our original f , which had eigenvalue −i, and decom-
posing it as f(x) = fR(x) + ifI(x) we find that (9.75) becomes

fI(x) = (HfR)(x),

fR(x) = −(HfI)(x). (9.77)
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Conversely, if we are given a real function u(x) and set v(x) = (Hu)(x),
then, under some mild restrictions on u (that it lie in some Lp(R), p > 1, for
example, in which case v(x) is also in Lp(R).) the function

f(z) =
1

2πi

∫ ∞

−∞

u(x) + iv(x)

x− z dx (9.78)

will be analytic in the upper half plane, tend to zero at infinity there, and
have u(x) + iv(x) as its boundary value as z approaches the real axis from
above. The last line of (9.77) therefore shows that we may recover u(x) from
v(x) as u(x) = −(Hv)(x). The Hilbert transform H : Lp(R) → Lp(R) is
therefore invertible, and its inverse is given by H−1 = −H. (Note that the
Hilbert transform of a constant is zero, but the Lp(R) condition excludes
constants from the domain of H, and so this fact does not conflict with
invertibility.)

Hilbert transforms are useful in signal processing. Given a real signal
XR(t) we can take its Hilbert transform so as to find the corresponding
imaginary part, XI(t), which serves to make the sum

Z(t) = XR(t) + iXI(t) = A(t)eiφ(t) (9.79)

analytic in the upper half-plane. This complex function is the analytic sig-

nal .4 The real quantity A(t) is then known as the instantaneous amplitude,
or envelope, while φ(t) is the instantaneous phase and

ωIF(t) = φ̇(t) (9.80)

is called the instantaneous frequency (IF). These quantities are used, for
example, in narrow band FM radio, in NMR, in geophysics, and in image
processing.

Exercise 9.4: Let f̃(ω) =
∫∞
−∞ eiωtf(t) dt denote the Fourier transform of f(t).

Use the formula (9.35) for the Fourier transform of P (1/t), combined with the
convolution theorem for Fourier transforms, to show that the Fourier transform
of the Hilbert transform of f(t) is

(̃Hf)(ω) = i sgn(ω)f̃(ω).

Deduce that the analytic signal is derived from the original real signal by
suppressing all positive frequency components (those proportional to e−iωt

with ω > 0) and multiplying the remaining negative-frequency amplitudes by
two.

4D. Gabor, J. Inst. Elec. Eng. (Part 3), 93 (1946) 429-457.
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Exercise 9.5: Suppose that ϕ1(x) and ϕ2(x) are real functions with finite
L2(R) norms.

a) Use the Fourier transform result from the previous exercise to show that

〈ϕ1, ϕ2〉 = 〈Hϕ1,Hϕ2〉.

Thus, H is a unitary transformation from L2(R)→ L2(R).
b) Use the fact that H2 = −I to deduce that

〈Hϕ1, ϕ2〉 = −〈ϕ1,Hϕ2〉

and so H† = −H.
c) Conclude from part b) that

∫ ∞

−∞
ϕ1(x)

(
P

∫ ∞

−∞

ϕ2(y)

x− y dy
)
dx =

∫ ∞

−∞
ϕ2(y)

(
P

∫ ∞

−∞

ϕ1(x)

x− y dx
)
dy,

i.e., for L2(R), functions, it is legitimate to interchange the order of “P”
integration with ordinary integration.

d) By replacing ϕ1(x) by a constant, and ϕ2(x) by the Hilbert transform
of a function f with

∫
f dx 6= 0, show that it is not always safe to

interchange the order of “P” integration with ordinary integration

Exercise 9.6: Suppose that are given real functions u1(x) and u2(x) and sub-
stitute their Hilbert transforms v1 = Hu1, v2 = Hu2 into (9.78) to construct
analytic functions f1(z) and f2(z). Then the product f1(z)f2(z) = F (z) has
boundary value

FR(x) + iFI(x) = (u1u2 − v1v2) + i(u1v2 + u2v1).

By assuming that F (z) satisfies the conditions for (9.77) to be applicable to
this boundary value, deduce that

H ((Hu1)u2) +H((Hu2)u1)− (Hu1)(Hu2) = −u1u2. ?

This result5 sometimes appears in the physics literature6 in the guise of the
distributional identity

P

x− y
P

y − z +
P

y − z
P

z − x +
P

z − x
P

x− y = −π2δ(x − y)δ(x− z), ??

5F. G. Tricomi, Quart. J. Math. (Oxford), (2) 2, (1951) 199.
6For example, in R. Jackiw, A. Strominger, Phys. Lett. 99B (1981) 133.
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where P/(x − y) denotes the principal-part distribution P
(
1/(x− y)

)
. This

attractively symmetric form conceals the fact that a specific order of inte-
gration is to be understood. As the next exercise shows, were we to freely
re-arrange the integration order we could use the identity

1

x− y
1

y − z +
1

y − z
1

z − x +
1

z − x
1

x− y = 0

to wrongly conclude that the right-hand side is zero.

Exercise 9.7: Show that the identity ? from exercise 9.6 can be written as
∫ ∞

−∞

(∫ ∞

−∞

ϕ1(y)ϕ2(z)

(z − y)(y − x)dz
)
dy =

∫ ∞

−∞

(∫ ∞

−∞

ϕ1(y)ϕ2(z)

(z − y)(y − x)dy
)
dz−π2ϕ1(x)ϕ2(x),

principal-part integrals being understood where necessary. This is a special
case of a more general change-of-integration-order formula
∫ ∞

−∞

(∫ ∞

−∞

f(x, y, z)

(z − y)(y − x)dz
)
dy =

∫ ∞

−∞

(∫ ∞

−∞

f(x, y, z)

(z − y)(y − x)dy
)
dz−π2f(x, x, x),

which is due to G. H. Hardy (1908). Show that Hardy’s formula is equivalent
to the distributional identity ??.

Exercise 9.8: Use the licit interchange of “P” integration with ordinary inte-
gration to show that

∫ ∞

−∞
ϕ(x)

(
P

∫ ∞

−∞

ϕ(y)

x− y dy
)2

dx =
π2

3

∫ ∞

−∞
ϕ3(x) dx.

Exercise 9.9: Let f(z) be analytic within the unit circle, and let u(θ) and
v(θ) be the boundary values of its real and imaginary parts, respectively, at
z = eiθ. Use Plemelj to show that

u(θ) = − 1

2π
P

∫ 2π

0
v(θ′) cot

(
θ − θ′

2

)
dθ′ +

1

2π

∫ 2π

0
u(θ′) dθ′,

v(θ) =
1

2π
P

∫ 2π

0
u(θ′) cot

(
θ − θ′

2

)
dθ′ +

1

2π

∫ 2π

0
v(θ′) dθ′.

9.3 Partial-Fraction and Product Expansions

In this section we will study other useful representations of functions which
devolve from their analyticity properties.
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9.3.1 Mittag-Leffler Partial-Fraction Expansion

Let f(z) be a meromorphic function with poles (perhaps infinitely many)
at z = zj , (j = 1, 2, 3, . . .), where |z1| < |z2| < . . .. Let Γn be a contour
enclosing the first n poles. Suppose further (for ease of description) that the
poles are simple and have residue rn. Then, for z inside Γn, we have

1

2πi

∮

Γn

f(z′)

z′ − z dz
′ = f(z) +

n∑

j=1

rj
zj − z

. (9.81)

We often want to to apply this formula to trigonometric functions whose
periodicity means that they do not tend to zero at infinity. We therefore
employ the same subtraction strategy that we used for dispersion relations.
We subtract

f(z)− f(0) =
z

2πi

∮

Γn

f(z′)

z′(z′ − z) dz
′ +

n∑

j=1

rj

(
1

z − zj
+

1

zj

)
. (9.82)

If we now assume that f(z) is uniformly bounded on the Γn — this meaning
that |f(z)| < A on Γn, with the same constant A working for all n — then
the integral tends to zero as n becomes large, yielding the partial fraction,
or Mittag-Leffler , decomposition

f(z) = f(0) +

∞∑

j=1

rj

(
1

z − zj
+

1

zj

)
(9.83)

Example 1): Look at cosec z. The residues of 1/(sin z) at its poles at z = nπ
are rn = (−1)n. We can take the Γn to be squares with corners (n+1/2)(±1±
i)π. A bit of effort shows that cosec is uniformly bounded on them. To use
the formula as given, we first need subtract the pole at z = 0, then

cosec z − 1

z
=

∞∑

n=−∞

′

(−1)n
(

1

z − nπ +
1

nπ

)
. (9.84)

The prime on the summation symbol indicates that we are omit the n = 0
term. The positive and negative n series converge separately, so we can add
them, and write the more compact expression

cosec z =
1

z
+ 2z

∞∑

1

(−1)n
1

z2 − n2π2
. (9.85)
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Example 2): A similar method gives

cot z =
1

z
+

∞∑

n=−∞

′(
1

z − nπ +
1

nπ

)
. (9.86)

We can pair terms together to writen this as

cot z =
1

z
+

∞∑

n=1

(
1

z − nπ +
1

z + nπ

)
,

=
1

z
+

∞∑

n=1

2z

z2 − n2π2
(9.87)

or

cot z = lim
N→∞

N∑

n=−N

1

z − nπ . (9.88)

In the last formula it is important that the upper and lower limits of summa-
tion be the same. Neither the sum over positive n nor the sum over negative
n converges separately. By taking asymmetric upper and lower limits we
could therefore obtain any desired number as the limit of the sum.

Exercise 9.10: Use Mittag-Leffler to show that

cosec2z =
∞∑

n=−∞

1

(z + nπ)2
.

Now use this infinite series to give a one-line proof of the trigonometric identity

N−1∑

m=0

cosec2
(
z +

mπ

N

)
= N2cosec2(Nz).

(Is there a comparably easy elementary derivation of this finite sum?) Take a
limit to conclude that

N−1∑

m=1

cosec2
(mπ
N

)
=

1

3
(N2 − 1).

Exercise 9.11: From the partial fraction expansion for cot z, deduce that

d

dz
ln[(sin z)/z] =

d

dz

∞∑

n=1

ln(z2 − n2π2).
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Integrate this along a suitable path from z = 0, and so conclude that that

sin z = z

∞∏

n=1

(
1− z2

n2π2

)
.

Exercise 9.12: By differentiating the partial fraction expansion for cot z, show
that, for k an integer ≥ 1, and Im z > 0, we have

∞∑

n=−∞

1

(z + n)k+1
=

(−2πi)k+1

k!

∞∑

n=1

nke2πinz.

This is called Lipshitz’ formula.

Exercise 9.13: The Bernoulli numbers are defined by

x

ex − 1
= 1 +B1x+

∞∑

k=1

B2k
x2k

(2k)!
.

The first few are B1 = −1/2, B2 = 1/6, B4 = −1/30. Except for B1, the Bn
are zero for n odd. Show that

x cot x = ix+
2ix

e2ix − 1
= 1−

∞∑

k=1

(−1)k+1B2k
22kx2k

(2k)!
.

By expanding 1/(x2−n2π2) as a power series in x and comparing coefficients,
deduce that, for positive integer k,

∞∑

n=1

1

n2k
= (−1)k+1π2k 22k−1

(2k)!
B2k.

Exercise 9.14: Euler-Maclaurin sum formula. Use the formal expansion

D

eD − 1
=
∑

k

Bk
Dk

k!
= 1− 1

2
D +

1

6

D2

2!
− 1

30

D4

4!
+ · · · ,

with D interpreted as d/dx, to obtain

(−f ′(x)−f ′(x+1)−f ′(x+2)+ · · ·) = f(x)− 1

2
f ′(x)+

1

6

f ′′(x)
2!
− 1

30

f (4)

4!
+ · · · .

By integrating this from a to b ≡ a+m, motivate the Euler-Maclaurin formula

m−1∑

k=0

f(a+ k) =

∫ b

a
f(x) dx+

1

2
(f(a)− f(b)) +

∞∑

k=1

B2k

(2k)!
(f (2k−1)(a)− f (2k−1)(b)).

This “derivation,” while suggestive, is only heuristic. It gives no insight into
whether the series converges (it usually does not) or what the error might be
if we truncate after a finite number of terms.
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9.3.2 Infinite Product Expansions

We can play a variant of the Mittag-Leffler game with suitable entire func-
tions g(z) and derive for them a representation as an infinite product. Sup-
pose that g(z) has simple zeros at zi. Then (ln g)′ = g′(z)/g(z) is meromor-
phic with poles at zi, all with unit residues. Assuming that it satisfies the
uniform boundedness condition, we now use Mittag Leffler to write

d

dz
ln g(z) =

g′(z)

g(z)

∣∣∣∣
z=0

+
∞∑

j=1

(
1

z − zj
+

1

zj

)
. (9.89)

Integrating up we have

ln g(z) = ln g(0) + cz +
∞∑

j=1

(
ln(1− z/zj) +

z

zj

)
, (9.90)

where c = g′(0)/g(0). We now re-exponentiate to get

g(z) = g(0)ecz
∞∏

j=1

(
1− z

zj

)
ez/zj . (9.91)

Example: Let g(z) = sin z/z, then g(0) = 1, while the constant c, which is
the logarithmic derivative of g at z = 0, is zero, and

sin z

z
=

∞∏

n=1

(
1− z

nπ

)
ez/nπ

(
1 +

z

nπ

)
e−z/nπ. (9.92)

Thus

sin z = z
∞∏

n=1

(
1− z2

n2π2

)
. (9.93)

Convergence of Infinite Products

We have derived several infinite problem formulæ without discussing the issue
of their convergence. For products of terms of the form (1+an) with positive
an we can reduce the question of convergence to that of

∑∞
n=1 an.

To see why this is so, let

pN =

N∏

n=1

(1 + an), an > 0. (9.94)
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Then we have the inequalities

1 +

N∑

n=1

an < pN < exp

{
N∑

n=1

an

}
. (9.95)

The infinite sum and product therefore converge or diverge together. If

P =
∞∏

n=1

(1 + |an|), (9.96)

converges, we say that

p =
∞∏

n=1

(1 + an), (9.97)

converges absolutely. As with infinite sums, absolute convergence implies
convergence, but not vice-versa. Unlike infinite sums, however, an infinite
product containing negative an can diverge to zero. If (1 + an) > 0 then∏

(1 + an) converges if
∑

ln(1 + an) does, and we will say that
∏

(1 + an)
diverges to zero if

∑
ln(1 + an) diverges to −∞.

Exercise 9.15: Show that

N∏

n=1

(
1 +

1

n

)
= N + 1,

N∏

n=2

(
1− 1

n

)
=

1

N
.

From these deduce that ∞∏

n=2

(
1− 1

n2

)
=

1

2
.

Exercise 9.16: For |z| < 1, show that

∞∏

n=0

(
1 + z2n)

=
1

1− z .

(Hint: think binary)

Exercise 9.17: For |z| < 1, show that

∞∏

n=1

(1 + zn) =
∞∏

n=1

1

1− z2n−1
.

(Hint: 1− x2n = (1− xn)(1 + xn).)
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9.4 Wiener-Hopf Equations II

The theory of Hilbert transforms has shown us some the consequences of
functions being analytic in the upper or lower half-plane. Another applica-
tion of these ideas is to Wiener-Hopf equations. Although we have discussed
Wiener-Hopf integral equations in chapter ??, it is only now that we pos-
sess the tools to appreciate the general theory. We begin, however, with
the slightly simpler Wiener-Hopf sum equations, which are their discrete
analogue. Here, analyticity in the upper or lower half-plane is replaced by
analyticity within or without the unit circle.

9.4.1 Wiener-Hopf Sum Equations

Consider the infinite system of equations

yn =

∞∑

m=−∞
an−mxm, −∞ < n <∞ (9.98)

where we are given the yn and are seeking the xn.
If the an, yn are the Fourier coefficients of smooth complex-valued func-

tions

A(θ) =

∞∑

n=−∞
ane

inθ,

Y (θ) =

∞∑

n=−∞
yne

inθ, (9.99)

then the systems of equations is, in principle at least, easy to solve. We
introduce the function

X(θ) =
∞∑

n=−∞
xne

inθ, (9.100)

and (9.98) becomes

Y (θ) = A(θ)X(θ). (9.101)

From this, the desired xn may be read off as the Fourier expansion coefficients
of Y (θ)/A(θ). We see that A(θ) must be nowhere zero or else the operator A
represented by the infinite matrix an−m will not be invertible. This technique
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is a discrete version of the Fourier transform method for solving the integral
equation

y(s) =

∫ ∞

−∞
A(s− t)x(t) dt, −∞ < s <∞. (9.102)

The connection with complex analysis is made by regardingA(θ), X(θ), Y (θ)
as being functions on the unit circle in the z plane. If they are smooth enough
we can extend their definition to an annulus about the unit circle, so that

A(z) =
∞∑

n=−∞
anz

n,

X(z) =

∞∑

n=−∞
xnz

n,

Y (z) =

∞∑

n=−∞
ynz

n. (9.103)

The xn may now be read off as the Laurent expansion coefficients of Y (z)/A(z).
The discrete analogue of the Wiener-Hopf integral equation

y(s) =

∫ ∞

0

A(s− t)x(t) dt, 0 ≤ s <∞ (9.104)

is the Wiener-Hopf sum equation

yn =

∞∑

m=0

an−mxm, 0 ≤ n <∞. (9.105)

This requires a more sophisticated approach. If you look back at our earlier
discussion of Wiener-Hopf integral equations in chapter ??, you will see that
the trick for solving them is to extend the definition y(s) to negative s (anal-
ogously, the yn to negative n) and find these values at the same time as we
find x(s) for positive s (analogously, the xn for positive n.)

We proceed by introducing the same functions A(z), X(z), Y (z) as before,
but now keep careful track of whether their power-series expansions contain
positive or negative powers of z. In doing so, we will discover that the
Fredholm alternative governing the existence and uniqueness of the solutions
will depend on the winding number N = n(Γ, 0) where Γ is the image of the
unit circle under the map z 7→ A(z) — in other words, on how many times
A(z) wraps around the origin as z goes once round the unit circle.
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Suppose that A(z) is smooth enough that it is analytic in an annulus
including the unit circle, and that we can factorize A(z) so that

A(z) = λq+(z)zN [q−(z)]−1, (9.106)

where

q+(z) = 1 +

∞∑

n=1

q+
n z

n,

q−(z) = 1 +

∞∑

n=1

q−−nz
−n. (9.107)

Here we demand that q+(z) be analytic and non-zero for |z| < 1 + ε, and
that q−(z) be analytic and non-zero for |1/z| < 1 + ε. These no pole, no
zero, conditions ensure, via the principle of the argument, that the winding
numbers of q±(z) about the origin are zero, and so all the winding of A(z) is
accounted for by the N -fold winding of the zN factor. The non-zero condition
also ensures that the reciprocals [q±(z)]−1 have same class of expansions (i.e.
in positive or negative powers of z only) as the direct functions.

We now introduce the notation [F (z)]+ and [F (z)]−, meaning that we
expand F (z) as a Laurent series and retain only the positive powers of z
(including z0), or only the negative powers (starting from z−1), respectively.
Thus F (z) = [F (z)]++[F (z)]−. We will write Y±(z) = [Y (z)]±, and similarly
for X(z). We can therefore rewrite (9.105) in the form

λzNq+(z)X+ = [Y+(z) + Y−(z)]q−(z). (9.108)

If N ≥ 0, and we break this equation into its positive and negative powers,
we find

[Y+q−]+ = λzNq+(z)X+,

[Y+q−]− = −Y−q−(z). (9.109)

From the first of these equations we can read off the desired xn as the positive-
power Laurent coefficients of

X+(z) = [Y+q−]+(λzNq+(z))−1. (9.110)

As a byproduct, the second alows us to find the coefficient y−n of Y−(z).
Observe that there is a condition on Y+ for this to work: the power series
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expansion of λzNq+(z)X+ starts with zN , and so for a solution to exist the
first N terms of (Y+q−)+ as a power series in z must be zero. The given
vector yn must therefore satisfy N consistency conditions. A formal way of
expressing this constraint begins by observing that it means that the range of
the operator A represented by the matrix an−m falls short, by N dimensions,
of the being the entire space of possible yn. This is exactly the situation that
the notion of a “cokernel” is intended to capture. Recall that if A : V → V ,
then CokerA = V/ImA. We therefore have

dim [CokerA] = N.

When N < 0, on the other hand, we have

[Y+(z)q−(z)]+ = [λz−|N |q+(z)X+(z)]+

[Y+(z)q−(z)]− = −Y−(z)q−(z) + [λz−|N |q+(z)X+(z)]−. (9.111)

Here the last term in the second equation contains no more thanN terms. Be-
cause of the z−|N |, we can add any to X+ any multiple of Z+(x) = zn[q+(z)]−1

for n = 0, . . . , N−1, and still have a solution. Thus the solution is not unique.
Instead, we have dim [Ker (A)] = |N |.

We have therefore shown that

Index (A)
def
= dim (KerA)− dim (CokerA) = −N

This connection between a topological quantity – in the present case the
winding number — and the difference in dimension of the kernel and cokernel
is an example of an index theorem.

We now need to show that we can indeed factorize A(z) in the desired
manner. When A(z) is a rational function, the factorization is straightfor-
ward: if

A(z) = C

∏
n(z − an)∏
m(z − bm)

, (9.112)

we simply take

q+(z) =

∏
|an|>0(1− z/an)∏
|bm|>0(1− z/bm)

, (9.113)

where the products are over the linear factors corresponding to poles and
zeros outside the unit circle, and

q−(z) =

∏
|bm|<0(1− bm/z)∏
|an|<0(1− an/z)

, (9.114)



9.4. WIENER-HOPF EQUATIONS II 391

containing the linear factors corresponding to poles and zeros inside the unit
circle. The constant λ and the power zN in equation (9.106) are the factors
that we have extracted from the right-hand sides of (9.113) and (9.114),
respectively, in order to leave 1’s as the first term in each linear factor.

More generally, we take the logarithm of

z−NA(z) = λq+(z)(q−(z))−1 (9.115)

to get

ln[z−NA(z)] = ln[λq+(z)]− ln[q−(z)], (9.116)

where we desire ln[λq+(z)] to be the boundary value of a function analytic
within the unit circle, and ln[q−(z)] the boundary value of function analytic
outside the unit circle and with q−(z) tending to unity as |z| → ∞. The
factor of z−N in the logarithm serves to undo the winding of the argument
of A(z), and results in a single-valued logarithm on the unit circle. Plemelj
now shows that

Q(z) =
1

2πi

∮

|z|=1

ln[ζ−NA(ζ)]

ζ − z dζ (9.117)

provides us with the desired factorization. This function Q(z) is everywhere
analytic except for a branch cut along the unit circle, and its branches, Q+

within and Q− without the circle, differ by ln[z−NA(z)]. We therefore have

λq+(z) = eQ+(z),

q−(z) = eQ−(z). (9.118)

The expression for Q as an integral shows that Q(z) ∼ const./z as |z|
goes to infinity and so guarantees that q−(z) has the desired limit of unity
there.

The task of finding this factorization is known as the scalar Riemann-

Hilbert problem. In effect, we are decomposing the infinite matrix

A =




. . .
...

...
...

· · · a0 a1 a2 · · ·
· · · a−1 a0 a1 · · ·
· · · a−2 a−1 a0 · · ·

...
...

...
. . .




(9.119)
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into the product of an upper triangular matrix

U = λ




. . .
...

...
...

· · · 1 q+
1 q+

2 · · ·
· · · 0 1 q+

1 · · ·
· · · 0 0 1 · · ·

...
...

...
. . .



, (9.120)

a lower triangular matrix L, where

L−1 =




. . .
...

...
...

· · · 1 0 0 · · ·
· · · q−−1 1 0 · · ·
· · · q−−2 q−−1 1 · · ·

...
...

...
. . .



, (9.121)

has 1’s on the diagonal, and a matrix ΛN which which is zero everywhere
except for a line of 1’s located N steps above the main diagonal. The set
of triangular matrices with unit diagonal form a group, so the inversion
required to obtain L results in a matrix of the same form. The resulting
Birkhoff factorization

A = LΛNU, (9.122)

is an infinite-dimensional extension of the Gauss-Bruhat (or generalized LU)
decomposition of a matrix. The finite-dimensional Gauss-Bruhat decompo-
sition provides a factorization of a matrix A ∈ GL(n) as

A = LΠU, (9.123)

where L is a lower triangular matrix with 1’s on the diagonal, U is an upper
triangular matrix with no zero’s on the diagonal, and Π is a permutation
matrix, i.e. a matrix that permutes the basis vectors by having one entry of
1 in each row and in each column, and all other entries zero. Our present ΛN

is playing the role of such a matrix. The matrix Π is uniquely determined
by A. The L and U matrices become unique if L is chosen so that ΠTLΠ
is also lower triangular.
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9.4.2 Wiener-Hopf Integral Equations

We now carry over our insights from the simpler sum equations to Weiner-
Hopf integral equations

∫ ∞

0

K(x− y)φ(y) dy = f(x), x > 0, (9.124)

by imagining replacing the unit circle by a circle of radius R, and then taking
R→∞ in such a way that the sums go over to integrals. In this way many
features are retained: the problem is still solved by factorizing the Fourier
transform

K̃(k) =

∫ ∞

−∞
K(x)eikx dx (9.125)

of the kernel, and there remains an index theorem

dim (KerK)− dim (CokerK) = −N, (9.126)

but N now counts the winding of the phase of K̃(k) as k ranges over the real
axis:

N =
1

2π
arg K̃

∣∣∣
k=+∞

k=−∞
. (9.127)

One restriction arises though: we will require K to be of the form

K(x− y) = δ(x− y) + g(x− y) (9.128)

for some continuous function g(x). Our discussion is therefore being re-
stricted to Wiener-Hopf Integral equations of the second kind.

The restriction comes about about because we will seek to obtain a fac-
torization of K̃ as

τ(κ)K̃(k) = exp{Q+(k)−Q−(k)} = q+(k)(q−(k))−1 (9.129)

where q+(k) ≡ exp{Q+(k)} is analytic and non-zero in the upper half k-plane
and q−(k) ≡ exp{Q−(k)} analytic and non-zero in the lower half-plane. The
factor τ(κ) is a phase such as

τ(k) =

(
k + i

k − i

)N
, (9.130)
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which winds −N times and serves serves to undo the +N phase winding in
K̃. The Q±(k) will be the boundary values from above and below the real
axis, respectively, of

Q(k) =
1

2πi

∫ ∞

−∞

ln[τ(κ)K̃(κ)]

κ− k dκ (9.131)

The convergence of this infinite integral requires that ln[τ(κ)K̃(k)] go to zero
at infinity, or, in other words,

lim
k→∞

K̃(k) = 1. (9.132)

This, in turn, requires that the original K(x) contain a delta function.
Example: We will solve the problem

φ(x)− λ
∫ ∞

0

e−|x−y|−α(x−y)φ(y) dy = f(x), x > 0. (9.133)

We require that 0 < α < 1. The upper bound on α is necessary for the
integral kernel to be bounded. We will also assume for simplicity that λ <
1/2. Following the same strategy as in the sum case, we extend the integral
equation to the entire range of x by writing

φ(x)− λ
∫ ∞

0

e−|x−y|−α(x−y)φ(y) dy = f(x) + g(x), (9.134)

where f(x) is nonzero only for x > 0 and g(x) is non-zero only for x < 0.
The Fourier transform of this equation is

(
(k + iα)2 + a2

(k + iα)2 + 1

)
φ̃+(k) = f̃+(k) + g̃−(k), (9.135)

where a2 = 1− 2λ and the ± subscripts are to remind us that φ̃(k) and f̃(k)
are analytic in the upper half-plane, and g̃(k) in the lower. We will use the
notation H+ for the space of functions analytic in the upper half plane, and
H− for functions analytic in the lower half plane, and so

φ̃+(k), f̃(+k) ∈ H+, g̃−(k) ∈ H− (9.136)

We can factorize

K̃(k) =
(k + iα)2 + a2

(k + iα)2 + 1
=

[k + i(α− a)]
[k + i(α− 1)]

[k + i(α + a)]

[k + i(α + 1)]
(9.137)
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Now suppose that a is small enough that α ± a > 0 and so the numerator
has two zeros in the lower half plane, and the numerator a one zero in each
of the upper and lower half-planes. The change of phase in K̃(k) as we go
from minus to plus infinity is therefore −2π, and so the index is N = −1.
We should therefore multiply K̃ by

τ(k) =

(
k + i

k − i

)−1

(9.138)

before seeking to break it into its q± factors. We can however equally well
take

τ(k) =

(
k + i(α− 1)

k + i(α− a)

)
(9.139)

as this also undoes the winding and allows us to factorize with

q−(k) = 1, q+(k) =

(
k + i(α + a)

k + i(α + 1)

)
. (9.140)

The resultant equation analagous to (9.108) is therefore
(
k + i(α + a)

k + i(α + 1)

)
φ̃+ =

(
k + i(α− 1)

k + i(α− a)

)
f̃+ +

(
k + i(α− 1)

k + i(α− a)

)
g̃−

q+φ̃+ = (τq−)f̃+ + τq−g̃− (9.141)

The second line of this equation shows the interpretation of the first line in
terms of the objects in the general theory. The left hand side is in H+ —
i.e. analytic in the upper half-plane. The first term on the right is also in
H+. (We are lucky. More generally it would have to be decomposed into its
H± parts.) If it were not for the τ(κ), the last term would be in H−, but
it has a potential pole at k = −i(α − a). We therefore remove this pole by
substracting a term

− β

k + i(α− a)
(an element of H+) from each side of the equation before projecting onto the
H± parts. After projecting, we find that

H+ :

(
k + i(α + a)

k + i(α + 1)

)
φ̃+ −

(
k + i(α− 1)

k + i(α− a)

)
f̃+ −

β

k + i(α− a) = 0,

H− :

(
k + i(α− 1)

k + i(α− a)

)
g̃− −

β

k + i(α− a) = 0. (9.142)
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We solve for φ̃+(k) and g̃−(k)

φ̃+(k) =

(
(k + iα)2 + 1

(k + iα)2 + a2

)
f̃− − β

(
k + i(α + 1)

(k + iα)2 + a2

)

g̃−(k) =
β

k + i(α− 1)
. (9.143)

Observe g−(k) is always in H− because its only singularity is in the upper
half-plane for any β. The constant β is therefore arbitrary. Finally, we invert
the Fourier transform, using

F
(
θ(x)e−αx sinh ax

)
= − a

(k + iα)2 + a2
, (α± a) > 0, (9.144)

to find that

φ(x) = f(x)− 2λ

a

∫ x

0

e−α(x−y) sinh a(x− y)f(y) dy

+β ′ {(a− 1)e−(α+a)x + (a+ 1)e−(α−a)x} , (9.145)

where β ′ (proportional to β) is an arbitrary constant.
By taking α in the range −1 < α < 0 with (α ± a) < 0, we make index

to be N = +1. We will then find there is condition on f(x) for the solution
to exist. This condition is, of course, that f(x) be orthogonal to the solution

φ0(x) =
{
(a− 1)e−(α+a)x + (a + 1)e−(α−a)x} (9.146)

of the homogenous adjoint problem, this being the f(x) = 0 case of the α > 0
problem that we have just solved.

9.5 Further Exercises and Problems

Exercise 9.18: Contour Integration: Use the calculus of residues to evaluate
the following integrals:

I1 =

∫ 2π

0

dθ

(a+ b cos θ)2
, 0 < b < a.

I2 =

∫ 2π

0

cos2 3θ

1− 2a cos 2θ + a2
dθ, 0 < a < 1.

I3 =

∫ ∞

0

xα

(1 + x2)2
dx, −1 < α < 2.
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These are not meant to be easy! You will have to dig for the residues.

Answers:

I1 =
2πa

(a2 − b2)3/2 ,

I2 =
π(a3 + 1)

a2 − 1
=
π(1− a+ a2)

a− 1
,

I3 =
π(1− α)

4 cos(πα/2)
.

Exercise 9.19: By considering the integral of

f(z) = ln(1− e2iz) = ln(−2ieiz sin z)

around the indented rectangle

iY +iYπ

0 π

Figure 9.12: Indented rectangle.

with vertices 0, π, π+iY , iY , and letting Y become large, evaluate the integral

I =

∫ π

0
ln(sinx) dx.

Explain how the fact that ε ln ε→ 0 as ε→ 0 allows us to ignore contributions
from the small indentations. You should also provide justification for any other
discarded contributions. Take care to make consistent choices of the branch of
the logarithm, especially if expanding ln(−2ieix sinx) = ix+ ln 2 + ln(sinx) +
ln(−i). The value of I is a real number.
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Exercise 9.20: By integrating a suitable function around the quadrant con-
taining the point z0 = eiπ/4, evaluate the integral

I(α) =

∫ ∞

0

xα−1

1 + x4
dx 0 < α < 4.

(It should only be necessary to consider the residue at z0.)

Exercise 9.21: In section ?? we considered the causal Green function for the
damped harmonic oscillator

G(t) =

{
1
Ωe

−γt sin(Ωt), t > 0,
0, t < 0,

and showed that its Fourier transform
∫ ∞

−∞
eiωtG(t) dt =

1

Ω2 − (ω + iγ)2
, (9.147)

had no singularities in the upper half-plane. Use Jordan’s lemma to compute
the inverse Fourier transform

1

2π

∫ ∞

−∞

e−iωt

Ω2 − (ω + iγ)2
dω,

and verify that it reproduces G(t).

Problem 9.22: Jordan’s Lemma and one-dimensional scattering theory . In
problem ??.?? we considered the one-dimensional scattering problem solutions

ψk(x) =

{
eikx + rL(k)e−ikx, x ∈ L,
tL(k)eikx, x ∈ R,

k > 0.

=

{
tR(k)eikx, x ∈ L,
eikx + rR(k)e−ikx, x ∈ R. k < 0.

and claimed that the bound-state contributions to the completeness relation
were given in terms of the reflection and transmission coefficients as

∑

bound

ψ∗
n(x)ψn(x

′) = −
∫ ∞

−∞

dk

2π
rL(k)e−ik(x+x

′), x, x′ ∈ L,

= −
∫ ∞

−∞

dk

2π
tL(k)e−ik(x−x

′), x ∈ L, x′ ∈ R,

= −
∫ ∞

−∞

dk

2π
tR(k)e−ik(x−x

′), x ∈ R, x′ ∈ L,

= −
∫ ∞

−∞

dk

2π
rR(k)e−ik(x+x

′), x, x′ ∈ R.
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The eigenfunctions

ψ
(+)
k (x) =

{
eikx + rL(k)e−ikx, x ∈ L,
tL(k)eikx, x ∈ R,

and

ψ
(−)
k (x) =

{
tR(k)eikx, x ∈ L,
eikx + rR(k)e−ikx, x ∈ R.

are initially refined for k real and positive (ψ
(+)
k ) or for k real and negative

(ψ
(−)
k ), but they separately have analytic continuations to all of k ∈ C. The

reflection and transmission coefficients rL,R(k) and tL,R(k) are also analytic
functions of k, and obey rL,R(k) = r∗L,R(−k∗), tL,R(k) = t∗L,R(−k∗).

a) By inspecting the formulæ for ψ
(+)
k (x), show that the bound states ψn(x),

with En = −κ2
n, are proportional to ψ

(+)
k (x) evaluated at points k = iκn

on the positive imaginary axis at which rL(k) and tL(k) simultaneously
have poles. Similarly show that these same bound states are proportional

to ψ
(−)
k (x) evaluated at points −iκn on the negative imaginary axis at

which rR(k) and tR(k) have poles. (All these functions ψ
(±)
k (x), rR,L(k),

tR,L(k), may have branch points and other singularities in the half-plane
on the opposite side of the real axis from the bound-state poles.)

b) Use Jordan’s lemma to evaluate the Fourier transforms given above in
terms of the position and residues of the bound-state poles. Confirm
that your answers are of the form

∑

n

A∗
n[sgn(x)]e−κn|x|An[sgn(x′)]e−κn|x′|,

as you would expect for the bound-state contribution to the completeness
relation.

Exercise 9.23: Lattice Matsubara sums: Show that sums over the N -th roots
of −1 can be written as an integral

1

N

∑

ωN+1=0

f(ω) =
1

2πi

∫

C

dz

z

zN

zN + 1
f(z),

where C consists of a pair of oppositely oriented concentric circles. The annu-
lus formed by the circles should include all the roots of unity, but exclude all
singularites of f . Use this trick to show that, for N even,

1

N

N−1∑

n=0

sinhE

sinh2E + sin2 (2n+1)π
N

=
1

coshE
tanh

NE

2
.
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Take the N →∞ limit in some suitable manner, and hence show that

∞∑

n=−∞

a

a2 + [(2n+ 1)π]2
=

1

2
tanh

a

2
.

(Hint: If you are careless, you will end up differing by a factor of two from this
last formula. There are two regions in the finite sum that tend to the infinite
sum in the large N limit.)

Problem 9.24: If we define χ(h) = eαxφ(x), and F (x) = eαxf(x), then the
Wiener-Hopf equation

φ(x)− λ
∫ ∞

0
e−|x−y|−α(x−y)φ(y) dy = f(x), x > 0.

becomes

χ(x)− λ
∫ ∞

0
e−|x−y|χ(y) dy = F (x), x > 0,

all mention of α having disappeared! Why then does our answer, worked out
in such detail, in section 9.4.2 depend on the parameter α? Show that if α
small enough that α + a is positive and α − a is negative, then φ(x) really is
independent of α. (Hint: What tacit assumptions about function spaces does
our use of Fourier transforms entail? How does the inverse Fourier transform
of [(k + iα)2 + a2]−1 vary with α?)



Chapter 10

Special Functions II

In this chapter we will apply complex analytic methods so as to obtain a
wider view of some of the special functions of mathematical physics than can
be obtained on the real axis. The standard text in this field remains the
venerable Course of Modern Analysis of E. T. Whittaker and G. N. Watson.

10.1 The Gamma Function

We begin with Euler’s “Gamma Function” Γ(z). You probably have some
acquaintance with this creature. The usual definition is

Γ(z) =

∫ ∞

0

tz−1e−t dt, Re z > 0, (definition A). (10.1)

An integration by parts, based on

d

dt

(
tze−t

)
= ztz−1e−t − tze−t, (10.2)

shows that
[
tze−t

]∞
0

= z

∫ ∞

0

tz−1e−t dt−
∫ ∞

0

tze−t dt. (10.3)

The integrated out part vanishes at both limits, provided the real part of z
is greater than zero. Thus

Γ(z + 1) = zΓ(z). (10.4)

401
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Since Γ(1) = 1, we deduce that

Γ(n) = (n− 1)!, n = 1, 2, 3, · · · . (10.5)

We can use the recurrence relation to extend the definition of Γ(z) to the left
half plane, where the real part of z is negative. Choosing an integer n such
that the real part of z + n is positive, we write

Γ(z) =
Γ(z + n)

z(z + 1) · · · (z + n− 1)
. (10.6)

We see that Γ(z) has poles at zero, and at the negative integers. The residue
of the pole at z = −n is (−1)n/n!.

We can also view the analytic continuation as an example of Taylor series
subtraction. Let us recall how this works. Suppose that −1 < Re x < 0.
Then, from

d

dt
(txe−t) = xtx−1e−t − txe−t (10.7)

we have [
txe−t

]∞
ε

= x

∫ ∞

ε

dt tx−1e−t −
∫ ∞

ε

dt txe−t. (10.8)

Here we have cut off the integral at the lower limit so as to avoid the di-
vergence near t = 0. Evaluating the left-hand side and dividing by x we
find

−1

x
εx =

∫ ∞

ε

dt tx−1e−t − 1

x

∫ ∞

ε

dt txe−t. (10.9)

Since, for this range of x,

−1

x
εx =

∫ ∞

ε

dt tx−1, (10.10)

we can rewrite (10.9) as

1

x

∫ ∞

ε

dt txe−t =

∫ ∞

ε

dt tx−1
(
e−t − 1

)
. (10.11)

The integral on the right-hand side of this last expression is convergent as
ε→ 0, so we may safely take the limit and find

1

x
Γ(x+ 1) =

∫ ∞

0

dt tx−1
(
e−t − 1

)
. (10.12)
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Since the left-hand side is equal to Γ(x), we have shown that

Γ(x) =

∫ ∞

0

dt tx−1
(
e−t − 1

)
, −1 < Rex < 0. (10.13)

Similarly, if −2 < Rex < −1, we can show that

Γ(x) =

∫ ∞

0

dt tx−1
(
e−t − 1 + t

)
. (10.14)

Thus the analytic continuation of the original integral is given by a new
integral in which we have subtracted exactly as many terms from the Taylor
expansion of e−t as are needed to just make the integral convergent.

Other useful identities, usually proved by elementary real-variable meth-
ods, include Euler’s “Beta function” identity,

B(a, b)
def
=

Γ(a)Γ(b)

Γ(a + b)
=

∫ 1

0

(1− t)a−1tb−1 dt (10.15)

(which, as the Veneziano formula, was the original inspiration for string
theory) and

Γ(z)Γ(1− z) = πcosec πz. (10.16)

The proofs of both formulæ begin in the same way: set t = y2, x2, so that

Γ(a)Γ(b) = 4

∫ ∞

0

y2a−1e−y
2

dy

∫ ∞

0

x2b−1e−x
2

dx

= 4

∫ ∞

0

∫ ∞

0

e−(x2+y2)x2b−1y2a−1 dxdy

= 2

∫ ∞

0

e−r
2

(r2)a+b−1 d(r2)

∫ π/2

0

sin2a−1 θ cos2b−1 θ dθ.

We have appealed to Fubini’s theorem twice: once to turn a product of
integrals into a double integral, and once (after setting x = r cos θ, y =
r sin θ) to turn the double integral back into a product of decoupled integrals.
In the second factor of the third line we can now change variables to t = sin2 θ
and obtain the Beta function identity. If, on the other hand, we put a = 1−z,
b = z we have

Γ(z)Γ(1− z) = 2

∫ ∞

0

e−r
2

d(r2)

∫ π/2

0

cot2z−1 θ dθ = 2

∫ π/2

0

cot2z−1 θ dθ.

(10.17)
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Now set cot θ = ζ . The last integral then becomes (see exercise 9.1):

2

∫ ∞

0

ζ2z−1

ζ2 + 1
dζ = πcosec πz, 0 < z < 1. (10.18)

Although this integral has a restriction on the range of z, the result (10.16)
can be analytically continued to so as to hold for all z . If we put z = 1/2
we find that (Γ(1/2))2 = π. The positive square root is the correct one, and

Γ(1/2) =
√
π. (10.19)

The integral in definition A is only convergent for Re z > 0. A more
powerful definition, involving an integral which converges for all z, is

1

Γ(z)
=

1

2πi

∫

C

et

tz
dt. (definition B) (10.20)

C

Re(t)

Im(t)

Figure 10.1: Definition “B” contour for Γ(z).

Here C is a contour originating at z = −∞− iε, below the negative real axis
(on which a cut serves to make t−z single valued) rounding the origin, and
then heading back to z = −∞ + iε — this time staying above the cut. We
take arg t to be +π immediately above the cut, and −π immediately below
it. This new definition is due to Hankel.

For z an integer, the cut is ineffective and we can close the contour to
find

1

Γ(0)
= 0;

1

Γ(n)
=

1

(n− 1)!
, n > 0. (10.21)
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Thus definitions A and B agree on the integers. It is less obvious that they
agree for all z. A hint that this is true stems integrating by parts

1

Γ(z)
=

1

2πi

[
et

(z − 1)tz−1

]−∞+iε

−∞−iε
+

1

(z − 1)2πi

∫

C

et

tz−1
dt =

1

(z − 1)Γ(z − 1)
.

(10.22)
The integrated out part vanishes because et is zero at −∞. Thus the “new”
gamma function obeys the same functional relation as the “old” one.

To show the equivalence in general we will examine the definition B ex-
pression for Γ(1− z)

1

Γ(1− z) =
1

2πi

∫

C

ettz−1 dt. (10.23)

We will asume initially that Re z > 0, so that there is no contribution from
the small circle about the origin. We can therefore focus on contribution
from the discontinuity across the cut

1

Γ(1− z) =
1

2πi

∫

C

ettz−1 dt = − 1

2πi
(2i sin π(z − 1))

∫ ∞

0

tz−1e−t dt

=
1

π
sin πz

∫ ∞

0

tz−1e−t dt. (10.24)

The proof is then completed by using Γ(z)Γ(1 − z) = πcosec πz, which we
proved using definition A, to show that, under definition A, the right hand
side is indeed equal to 1/Γ(1 − z). We now use the uniqueness of analytic
continuation, noting that if two analytic functions agree on the region Re z >
0, then they agree everywhere.

Infinite Product for Γ(z)

The function Γ(z) has poles at z = 0,−1,−2, . . . therefore (zΓ(z))−1 =
(Γ(z + 1))−1 has zeros as z = −1,−2, . . .. Furthermore the integral in “defi-
nition B” converges for all z, and so 1/Γ(z) has no singularities in the finite
z plane i.e. it is an entire function. Thus means that we can use the infinite
product formula

g(z) = g(0)ecz
∞∏

1

{(
1− z

zj

)
ez/zj

}
(10.25)
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for entire functions.
We need to recall the definition of Euler-Mascheroni constant γ = −Γ′(1) =

.5772157 . . ., and that Γ(1) = 1. Then

1

Γ(z)
= zeγz

∞∏

1

{(
1 +

z

n

)
e−z/n

}
. (10.26)

We can use this formula to compute

1

Γ(z)Γ(1− z) =
1

(−z)Γ(z)Γ(−z) = z

∞∏

1

{(
1 +

z

n

)
e−z/n

(
1− z

n

)
ez/n

}

= z
∞∏

1

(
1− z2

n2

)

=
1

π
sin πz

and so obtain another demonstration that Γ(z)Γ(1− z) = πcosec πz.

Exercise 10.1: Starting from the infinite product formula for Γ(z), show that

d2

dz2
ln Γ(z) =

∞∑

n=0

1

(z + n)2
.

(Compare this “half series”, with the expansion

π2cosec2πz =
∞∑

n=−∞

1

(z + n)2
.)

10.2 Linear Differential Equations

When a linear differential equation has meromorphic coeffecients, its solu-
tions can be extended off the real line and into the complex plane. The
broader horizon then allows us to see much more of their structure.

10.2.1 Monodromy

Consider the linear differential equation

Ly ≡ y′′ + p(z)y′ + q(z)y = 0, (10.27)
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where p and q are meromorphic. Recall that the point z = a is a regular

singular point of the equation if p or q is singular there, but

(z − a)p(z), (z − a)2q(z) (10.28)

are both analytic at z = a. We know, from the explicit construction of power
series solutions, that near a regular singular point y is a sum of functions of
the form y = (z− a)αϕ(z) or y = (z− a)α(ln(z− a)ϕ(z) +χ(z)), where both
ϕ(z) and χ(z) are analytic near z = a. We now examine this fact in a more
topological way.

Suppose that y1 and y2 are linearly independent solutions of Ly = 0. Start
from some ordinary (non-singular) point of the equation and analytically
continue the solutions round the singularity at z = a and back to the starting
point. The continued functions ỹ1 and ỹ2 will not in general coincide with
the original solutions, but being still solutions of the equation, must be linear
combinations of them. Therefore

(
ỹ1

ỹ2

)
=

(
a11 a12

a21 a22

)(
y1

y2

)
, (10.29)

for some constants aij . By a suitable redefinition of the yi we may either
diagonalise this monodromy matrix to find

(
ỹ1

ỹ2

)
=

(
λ1 0
0 λ2

)(
y1

y2

)
(10.30)

or, if the eigenvalues coincide and the matrix is not diagonalizable, reduce it
to a Jordan form (

ỹ1

ỹ2

)
=

(
λ 1
0 λ

)(
y1

y2

)
. (10.31)

These equations are satisfied, in the diagonalizable case, by functions of the
form

y1 = (z − a)α1ϕ1(z), y2 = (z − a)α2ϕ2(z), (10.32)

where λk = e2πiαk , and ϕk(z) is single valued near z = a. In the Jordan-form
case we must have

y1 = (z− a)α
[
ϕ1(z) +

1

2πiλ
ln(z − a)ϕ2(z)

]
, y2 = (z− a)αϕ2(z), (10.33)

where again the ϕk(z) are single valued. Notice that coincidence of the
monodromy eigenvalues λ1 and λ2 does not require the exponents α1 and α2
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to be the same, only that they differ by an integer. This is the same condition
that signals the presence of a logarithm in the traditional series solution.

The occurrence of fractional powers and logarithms in solutions near a
regular singular point is therefore quite natural.

10.2.2 Hypergeometric Functions

Most of the special functions of Mathematical Physics are special cases of
the hypergeometric function F (a, b; c; z), which may be defined by the series

F (a, b; c; z) = 1 +
a.b

1.c
z +

a(a+ 1)b(b+ 1)

2!c(c+ 1)
z2 +

+
a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

3!c(c+ 1)(c+ 2)
z3 + · · · .

=
Γ(c)

Γ(a)Γ(b)

∞∑

0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)Γ(1 + n)
zn. (10.34)

For general values of a, b, c, this series converges for |z| < 1, the singularity
restricting the convergence being a branch point at z = 1.
Examples:

(1 + z)n = F (−n, b; b;−z), (10.35)

ln(1 + z) = zF (1, 1; 2;−z), (10.36)

z−1 sin−1 z = F

(
1

2
,
1

2
;
3

2
; z2

)
, (10.37)

ez = lim
b→∞

F (1, b; 1/b; z/b), (10.38)

Pn(z) = F

(
−n, n+ 1; 1;

1− z
2

)
, (10.39)

where in the last line Pn is the Legendre polynomial.
For future reference, note that expanding the right hand side as a powers

series in z and integrating term by term shows that

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

(1− tz)−atb−1(1− t)c−b−1dt. (10.40)

If Re c > Re (a+ b), we may set z = 1 in this integral to get

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) . (10.41)
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The hypergeometric function is a solution of the second-order differential
equation

z(1− z)y′′ + [c− (a+ b+ 1)z]y′ − aby = 0. (10.42)

this equation has regular singular points at z = 0, 1,∞. Provided that 1− c
is not an integer, the general solution is

y = AF (a, b; c; z) +Bz1−cF (b− c+ 1, a− c+ 1; 2− c; z). (10.43)

The hypergeometric equation is a particular case of the general Fuchsian

equation having three1 regular singularities at z = z1, z2, z3. This equation is

y′′ + P (z)y′ +Q(z)y = 0, (10.44)

where

P (z) =

(
1− α− α′

z − z1
+

1− β − β ′

z − z2
+

1− γ − γ′
z − z3

)

Q(z) =
1

(z − z1)(z − z2)(z − z3)
×

(
(z1 − z2)(z1 − z3)αα′

z − z1
+

(z2 − z3)(z2 − z1)ββ ′

z − z2
+

(z3 − z1)(z3 − z2)γγ′
z − z3

)
.

(10.45)

The parameters are subject to the constraint α + β + γ + α′ + β ′ + γ′ = 1,
which ensures that z = ∞ is not a singular point of the equation. This

1The Fuchsian equation with two regular singularities is

y′′ + p(z)y′ + q(z)y = 0

with

p(z) =

(
1− α− α′

z − z1
+

1 + α+ α′

z − z2

)

q(z) =
αα′(z1 − z2)2

(z − z1)2(z − z2)2
.

Its general solution is

y = A

(
z − z1
z − z2

)α

+B

(
z − z1
z − z2

)α′

.
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equation is sometimes called Riemann’s P -equation. The P probably stands
for Papperitz, who discovered it.

The indicial equation relative to the regular singular point at z1 is

r(r − 1) + (1− α− α′)r + αα′ = 0, (10.46)

and has roots r = α, α′. From this we deduce that Riemann’s equation
has solutions which behave like (z − z1)α and (z − z1)α′

near z1. Similarly,
there are solutions that behave like (z− z2)β and (z − z2)β′

near z2, and like
(z− z3)γ and (z− z3)γ′ near z3. The solution space of Riemann’s equation is
traditionally denoted by the Riemann “P” symbol

y = P





z1 z2 z3
α β γ z
α′ β ′ γ′



 (10.47)

where the six quantities α, β, γ, α′, β ′, γ′, are called the exponents of the so-
lution. A particular solution is

y =

(
z − z1
z − z2

)α(
z − z3
z − z2

)γ
F

(
α+ β + γ, α + β ′ + γ; 1 + α− α′;

(z − z1)(z3 − z2)
(z − z2)(z3 − z1)

)
.

(10.48)
By permuting the triples (z1, α, α

′), (z2, β, β
′), (z3, γ, γ

′), and within them
interchanging the pairs α ↔ α′, γ ↔ γ′, we may find a total2 of 6× 4 = 24
solutions of this form. They are called the Kummer solutions. Only two of
these can be linearly independent, and a large part of the theory of special
functions is devoted to obtaining the linear relations between them.

It is straightforward, but a trifle tedious, to show that

(z−z1)r(z−z2)s(z−z3)tP





z1 z2 z3
α β γ z
α′ β ′ γ′



 = P





z1 z2 z3
α + r β + s γ + t z
α′ + r β ′ + s γ′ + t





(10.49)
provided r + s + t = 0. Riemann’s equation retains its form under Möbius
maps, only the location of the singular points changing. We therefore deduce
that

P





z1 z2 z3
α β γ z
α′ β ′ γ′



 = P





z′1 z′2 z′3
α β γ z′

α′ β ′ γ′



 (10.50)

2The interchange β ↔ β′ leaves the hypergeometric function invariant, and so does not
give a new solution.
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where

z′ =
az + b

cz + d
, z′1 =

az1 + b

cz1 + d
, z′2 =

az2 + b

cz2 + d
, z′3 =

az3 + b

cz3 + d
. (10.51)

By using the Möbius map which takes (z1, z2, z3) → (0, 1,∞), and by
extracting powers to shift the exponents, we can reduce the general eight-
parameter Riemann equation to the three-parameter hypergeometric equa-
tion.

The P symbol for the hypergeometric equation is

F (a, b; c; z) = P






0 ∞ 1
0 a 0 z

1− c b c− a− b




 . (10.52)

Using this observation and a suitable Möbius map we see that

F (a, b; a + b− c; 1− z)

and
(1− z)c−a−bF (c− b, c− a; c− a− b+ 1; 1− z)

are also solutions of the Hypergeometric equation, each having a pure (as
opposed to a linear combination of) power-law behaviors near z = 1. (The
previous solutions had pure power-law behaviours near z=0.) These new
solutions must be linear combinations of the old, and we may use

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) , Re (c− a− b) > 0, (10.53)

together with the trick of substituting z = 0 and z = 1, to determine the
coefficients and show that

F (a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)F (a, b; a+ b− c; 1− z)

+
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− z)c−a−bF (c− b, c− a; c− a− b+ 1; 1− z).

(10.54)

This last equation holds for all values of a, b, c such that the gamma functions
make sense.
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A complete set of pure-power solutions can be taken to be

φ
(0)
0 (z) = F (a, b; c; z)

φ
(1)
0 (z) = z1−cF (a+ 1− c, b+ 1− c; 2− c; z)
φ

(0)
1 (z) = F (a, b; 1− c+ a+ b; 1− z)
φ

(1)
1 (z) = (1− z)c−a−bF (c− a, c− b; 1 + c− a− b; 1− z)
φ(0)
∞ (z) = z−aF (a, a+ 1− c; 1 + a− b; z−1)

φ(1)
∞ (z) = z−bF (a, b+ 1− c; 1− a+ b; z−1), (10.55)

The connection coefficients are then

φ
(0)
0 =

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)φ

(0)
1 +

Γ(c)Γ(a+ b− c)
Γ(a)Γ(b)

φ
(1)
1 ,

φ
(1)
0 =

Γ(2− c)Γ(c− a− b)
Γ(1− a)Γ(1− b) φ

(0)
1

Γ(2− c)Γ(a+ b− c)
Γ(a+ 1− c)Γ(b+ 1− c)φ

(1)
1 ,

(10.56)

and

φ
(0)
0 = e−iπa

Γ(c)Γ(b− a)
Γ(c− a)Γ(b)

φ(0)
∞ + e−iπb

Γ(2− c)Γ(a− b)
Γ(a+ 1− c)Γ(1− b)φ

(1)
∞ ,

φ
(1)
0 = e−iπ(a+1−c) Γ(2− c)Γ(b− a)

Γ(b+ 1− c)Γ(1− a)φ
(0)
∞ + e−iπ(b+1−c) Γ(2− c)Γ(a− b)

Γ(a + 1− c)Γ(1− b)φ
(1)
∞ .

(10.57)

These relations assume that Imz > 0. The signs in the exponential factors
must be reversed when Im z < 0.
Example: The Pöschel-Teller problem for general positive l. A substitution
z = (1 + e2x)−1 shows that the Pöschel-Teller Schrodinger equation

(
− d2

dx2
− l(l + 1)sech2x

)
ψ = Eψ (10.58)

has solution

ψ(x) = (1 + e2x)−κ/2(1 + e−2x)−κ/2F

(
κ+ l + 1, κ− l; κ+ 1;

1

1 + e2x

)
,

(10.59)
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where E = −κ2. This solution behaves near x =∞ as

ψ ∼ e−κxF (κ+ l + 1, κ− l; κ+; 0) = e−κx. (10.60)

We use the connection formula (10.54) to see that it behaves in the vicinity
of x = −∞ as

ψ ∼ eκxF (κ+ l + 1, κ− l; κ + 1; 1− e2x)

→ eκx
Γ(κ+ 1)Γ(−κ)
Γ(−l)Γ(1 + l)

+ e−κx
Γ(κ+ 1)Γ(κ)

Γ(κ+ l + 1)Γ(κ− l) . (10.61)

To find the bound-state spectrum, assume that κ is positive. Then
E = −κ2 will be an eigenvalue provided that coefficient of e−κx near x = −∞
vanishes. In other words, when

Γ(κ+ 1)Γ(κ)

Γ(κ+ l + 1)Γ(κ− l) = 0. (10.62)

This condition is satisfied for a finite set κn, n = 1, . . . , [l] (where [l] denotes
the integer part of l) at which κ is positive but κ − l is zero or a negative
integer.

On setting κ = −ik, we find the scattering solution

ψ(x) =

{
eikx + r(k)e−ikx x� 0,
t(k)eikx x� 0,

(10.63)

where

r(k) =
Γ(l + 1− ik)Γ(−ik − l)Γ(ik)

Γ(−l)Γ(1 + l)Γ(ik)
,

= −sin πl

π

Γ(l + 1− ik)Γ(−ik − l)Γ(ik)

Γ(−ik) , (10.64)

and

t(k) =
Γ(l + 1− ik)Γ(−ik − l)

Γ(1− ik)Γ(−ik) . (10.65)

Whenever l is a (positive) integer, the divergent factor of Γ(−l) in the de-
nominator of r(k) causes the the reflected wave to vanish. This is something
we had discovered in earlier chapters. In this particular case the transmission
coefficient t(k) reduces to a phase

t(k) =
(−ik + 1)(−ik + 2) · · · (−ik + l)

(−ik − 1)(−ik − 2) · · · (−ik − l) . (10.66)
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10.3 Solving ODE’s via Contour integrals

Our task in this section is to understand the origin of contour integral solu-
tions such as the expression

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

(1− tz)−atb−1(1− t)c−b−1dt, (10.67)

we have previously seen for the hypergeometric equation.
We are given a differential operator

Lz = ∂2
zz + p(z)∂z + q(z) (10.68)

and seek a solution of Lzu = 0 as an integral

u(z) =

∫

Γ

F (z, t) dt. (10.69)

If we can find an F such that

LzF =
∂Q

∂t
, (10.70)

for some function Q(z, t) then

Lzu =

∫

Γ

LzF (z, t) dt =

∫

Γ

(
∂Q

∂t

)
dt = [Q]Γ . (10.71)

Thus, if Q vanishes at both ends of the contour, if it takes the same value at
the two ends, or if the contour is closed and has no ends, we have succeeded
in our quest.
Example: Consider Legendre’s equation

Lzu ≡ (1− z2)
d2u

dz2
− 2z

du

dz
+ ν(ν + 1)u = 0. (10.72)

The identity

Lz

{
(t2 − 1)ν

(t− z)ν+1

}
= (ν + 1)

d

dt

{
(t2 − 1)ν+1

(t− z)ν+2

}
(10.73)

shows that

Pν(z) =
1

2πi

∫

Γ

{
(t2 − 1)ν

2ν(t− z)ν+1

}
dt (10.74)
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will be a solution of Legendre’s equation provided that

[Q]Γ ≡
[
(t2 − 1)ν+1

(t− z)ν+2

]

Γ

= 0. (10.75)

We could, for example, take a contour that circles the points t = z and t = 1,
but excludes the point t = −1. On going round this contour, the numerator
aquires a phase of e2πi(ν+1), while the denominator of [Q]Γ aquires a phase of
e2πi(ν+2). The net phase change is therefore e−2πi = 1. The function in the
integrated-out part is therefore single-valued, and so the integrated-out part
vanishes. When ν is an integer, Cauchy’s formula shows that

Pn(z) =
1

2nn!

dn

dzn
(z2 − 1)n, (10.76)

which is Rodriguez’ formula for the Legendre polynomials.

1−1

 z

 Im

Re

(t)

(t)

Figure 10.2: Figure-of-eight contour for Qν(Z).

The figure-of-eight contour shown in figure 10.2 gives us another solution

Qν(z) =
1

4i sin πν

∫

Γ

{
(t2 − 1)ν

2ν(z − t)ν+1

}
dt, ν /∈ Z. (10.77)

Here we define arg(t− 1) and arg(t− 1) to be zero for t > 1. The integrated
out part vanishes because the phase gained by the (t2−1)ν+1 in the numerator
of [Q]Γ during the clockwise winding about t = 1 is undone during the anti-
clockwise winding about t = −1, and, provided that z is outside the contour,
there is no phase change in the (z − t)−(ν+2) in the denominator.

When ν is real and positive the contributions from the circular arcs sur-
rounding t = ±1 become negligeable as we shrink this new contour down
onto the real axis. After this manouvre the integral (10.77) becomes

Qν(z) =
1

2

∫ 1

−1

{
(1− t2)ν

2ν(z − t)ν+1

}
dt, ν > 0. (10.78)
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In contrast to (10.77), this last formula continues to make sense when ν
is a positive integer, and so provides a convenient definition of Qn(z), the
Legendre function of the second kind (See exercise 9.3).

It is hard to find a suitable F (z, t) in one fell swoop. (The identity (10.73)
exploited in the example is not exactly obvious!) An easier strategy is to seek
solution in the form of an integral operator with kernel K acting on function
v(t). Thus we set

u(z) =

∫ b

a

K(z, t)v(t) dt. (10.79)

Suppose that LzK(z, t) = MtK(z, t), where Mt is differential operator in t
that does not involve z. The operator Mt will have have a formal adjoint M †

t

such that ∫ b

a

v(MtK) dt−
∫ b

a

K(M †
t v) dt = [Q(K, v)]ba . (10.80)

(This is Lagrange’s identity.) Now

Lzu =

∫ b

a

LzK(z, t)v dt

=

∫ b

a

(MtK(z, t))v dt

=

∫ b

a

K(z, t)(M †
t v) dt+ [Q(K, v)]ba .

We can therefore solve the original equation, Lzu = 0, by finding a v such
that (M †

t v) = 0, and a contour with endpoints such that [Q(K, v)]ba = 0.
This may sound complicated, but an artful choice of K can make it much
simpler than solving the original problem.
Example: We will solve

Lzu =
d2u

dz2
− zdu

dz
+ νu = 0, (10.81)

by using the kernel K(z, t) = e−zt. We have LzK(z, t) = MtK(z, t) where

Mt = t2 − t ∂
∂t

+ ν, (10.82)

so

M †
t = t2 +

∂

∂t
t+ ν = t2 + (ν + 1) + t

∂

∂t
. (10.83)
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The equation M †
t v = 0 has solution

v(t) = t−(ν+1)e−
1
2
t2 , (10.84)

and so

u =

∫

Γ

t−(1+ν)e−(zt+ 1
2
t2) dt, (10.85)

for some suitable Γ.

10.3.1 Bessel Functions

As an illustration of the general method we will explore the theory of Bessel
functions. Bessel functions are member of the family of confluent hypergeo-

metric functions, obtained by letting the two regular singular points z2, z3 of
the Riemann-Papperitz equation coalesce at infinity. The resulting singular
point is no longer regular, and confluent hypergeometric functions have an
essential singularity at infinity. The confluent hypergeometric equation is

zy′′ + (c− z)y′ − ay = 0, (10.86)

with solution

Φ(a, c; z) =
Γ(c)

Γ(a)

∞∑

n=0

Γ(a + n)

Γ(c+ n)Γ(n+ 1)
zn. (10.87)

The second solution, when c is not an integer, is

z1−cΦ(a− c+ 1, 2− c; z). (10.88)

We see that
Φ(a, c; z) = lim

b→∞
F (a, b; c; z/b). (10.89)

Other functions of this family are the parabolic cylinder functions, which
in special cases reduce to e−z

2/4 times the Hermite polynomials, the error

function

erf (z) =

∫ z

0

e−t
2

dt = zΦ

(
1

2
,
3

2
;−z2

)
(10.90)

and the Laguerre polynomials

Lmn =
Γ(n+m+ 1)

Γ(n + 1)Γ(m+ 1)
Φ(−n,m + 1; z). (10.91)
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Bessel’s equation involves

Lz = ∂2
zz +

1

z
∂z +

(
1− ν2

z2

)
. (10.92)

Experience shows that a useful kernel is

K(z, t) =
(z

2

)ν
exp

(
t− z2

4t

)
. (10.93)

Then

LzK(z, t) =

(
∂t −

ν + 1

t

)
K(z, t) (10.94)

so M is a first order operator, which is simpler to deal with than the original
second order Lz. In this case

M † =

(
−∂t −

ν + 1

t

)
(10.95)

and we need a v such that

M †v = −
(
∂t +

ν + 1

t

)
v = 0. (10.96)

Clearly v = t−ν−1 will work. The integrated out part is

[Q(K, v)]ba =

[
t−ν−1 exp

(
t− z2

4t

)]b

a

. (10.97)

We see that

Jν(z) =
1

2πi

(z
2

)ν ∫

C

t−ν−1e

“

t− z2

4t

”

dt. (10.98)

solves Bessel’s equation provided we use a suitable contour.

We can take for C a contour starting at −∞− iε and ending at −∞+ iε,
and surrounding the branch cut of t−ν−1, which we take as the negative t
axis.
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C

Re(t)

Im(t)

Figure 10.3: Contour for solving Bessel equation.

This contour works because Q is zero at both ends of the contour.

A cosmetic rewrite t = uz/2 gives

Jν(z) =
1

2πi

∫

C

u−ν−1e
z
2(u−

1
u) du. (10.99)

For ν an integer, there is no discontinuity across the cut, so we can ignore it
and take C to be the unit circle. Then, recognizing the resulting

Jn(z) =
1

2πi

∫

|z|=1

u−n−1e
z
2(u−

1
u) du. (10.100)

to be a Laurent coefficient, we obtain the familiar generating function

e
z
2(u−

1
u) =

∞∑

−∞
Jn(z)u

n. (10.101)

When ν is not an integer, we see why we need a branch cut integral.

If we set u = ew we get

Jν(z) =
1

2πi

∫

C′

dw ez sinhw−νw, (10.102)

where C ′ starts goes from ∞− iπ to −iπ, to +iπ to ∞+ iπ.
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π

π

+i

−i

Re(w)

Im(w)

Figure 10.4: Bessel contour after change of variables.

If we set w = t ± iπ on the horizontals and w = iθ on the vertical part,
we can rewrite this as

Jν(z) =
1

π

∫ π

0

cos(νθ − z sin θ) dθ − sin νπ

π

∫ ∞

0

e−νt−z sinh t dt. (10.103)

All these are standard formulae for the Bessel function whose origin would
be hard to understand without the contour solutions trick.

When ν becomes an integer, the functions Jν(z) and J−ν(z) are no longer
independent. In order to have a Bessel equation solution that retains its
independence from Jν(z), even as ν becomes a whole number, we define the
Neumann function

Nν(z)
def
=

Jν(z) cos νπ − J−ν(z)
sin νπ

=
cot νπ

π

∫ π

0

cos(νθ − z sin θ) dθ − cosec νππ

∫ π

0

cos(νθ + z sin θ) dθ

−cos νπ

π

∫ ∞

0

e−νt−z sinh t dt− 1

π

∫ ∞

0

eνt−z sinh t dt. (10.104)



10.4. ASYMPTOTIC EXPANSIONS 421

+iπ

π−i

Hν

Hν

(2)

(1)

Figure 10.5: Contours defining H
(1)
ν (z) and H

(2)
ν (z).

Both Bessel and Neumann functions are real for positive real x. As x becomes
large they oscillate as slowly decaying sines and cosines. It is sometimes
convenient to decompose these real functions into solutions that behave as
e±ix. We therefore define the Hankel functions by

H(1)
ν (z) =

1

iπ

∫ ∞+iπ

−∞
ez sinhw−νw dw, |arg z| < π/2

H(2)
ν (z) = − 1

iπ

∫ ∞−iπ

−∞
ez sinhw−νw dw, |arg z| < π/2. (10.105)

Then

1

2
(H(1)

ν (z) +H(2)
ν (z)) = Jν(z),

1

2
(H(1)

ν (z)−H(2)
ν (z)) = Nν(z). (10.106)

10.4 Asymptotic Expansions

We often need the understand the behaviour of solutions of differential equa-
tions and functions, such as Jν(x), when x takes values that are very large,
or very small. This is the subject of asymptotics .
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As an introduction to this art, consider the function

Z(λ) =

∫ ∞

−∞
e−x

2−λx4

dx. (10.107)

Those of you who have taken a course quantum field theory based on path
integrals will recognize that this is a “toy,” 0-dimensional, version of the path
integral for the λϕ4 model of a self-interacting scalar field. Suppose we wish
to obtain the perturbation expansion for Z(λ) as a power series in λ. We
naturally proceed as follows

Z(λ) =

∫ ∞

−∞
e−x

2−λx4

dx

=

∫ ∞

−∞
e−x

2

∞∑

n=0

(−1)n
λnx4n

n!
dx

?
=

∞∑

n=0

(−1)n
λn

n!

∫ ∞

−∞
e−x

2

x4n dx

=

∞∑

n=0

(−1)n
λn

n!
Γ(2n+ 1/2). (10.108)

Something has clearly gone wrong here! The gamma function Γ(2n+1/2) ∼
(2n)! ∼ 4n(n!)2 overwhelms the n! in the denominator and the radius of
convergence of the final power series is zero.

The invalid, but popular, manoeuvre is the interchange of the order of
performing the integral and the sum. This interchange cannot be justified
because the sum inside the integral does not converge uniformly on the do-
main of integration. Does this mean that the series is useless? It had better
not! All quantum field theory (and most quantum mechanics) perturbation
theory relies on versions of this manoeuvre.

We are saved to some (often adequate) degree because, while the inter-
change of integral and sum does not lead to a convergent series, it does lead
to a valid asymptotic expansion. We write

Z(λ) ∼
∞∑

n=0

(−1)n
λn

n!
Γ(2n+ 1/2) (10.109)

where

Z(λ) ∼
∞∑

n=0

anλ
n (10.110)
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is shorthand for the more explicit

Z(λ) =
N∑

n=0

anλ
n +O

(
λN+1

)
, N = 1, 2, 3, . . . . (10.111)

The “big O” notation

Z(λ)−
N∑

n=0

anλ
n = O(λN+1) (10.112)

as λ→ 0, means that

lim
λ→0

{
|Z(λ)−∑N

0 anλ
n|

|λN+1|

}
= K <∞. (10.113)

The basic idea is that, given a convergent power series
∑

n anλ
n for the

function f(λ), we fix the value of λ and take more and more terms. The sum
then gets closer to f(λ). Given an asymptotic expansion, on the other hand,
we select a fixed number of terms in the series and then make λ smaller and
smaller. The graph of f(λ) and the graph of our polynomial approximation
then approach each other. The more terms we take the sooner they get close,
but for any non-zero λ we can never get exacty f(λ)—no matter how many
terms we take.

We often consider asymptotic expansions where the independent variable
becomes large. Here we have expansions in inverse powers of x:

F (x) =

N∑

n=0

bnx
−n +O

(
x−N−1

)
, N = 1, 2, 3 . . . . (10.114)

In this case

F (x)−
N∑

n=0

bnx
−n = O

(
x−N−1

)
(10.115)

means that

lim
x→∞

{
|F (x)−∑N

0 bnx
−n|

|x−N−1|

}
= K <∞. (10.116)

Again we take a fixed number of terms, and as x becomes large the function
and its approximation get closer.

Observations:
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i) Knowledge of the asymptotic expansion gives us useful knowledge about
the function, but does not give us everything. In particular, two distinct
functions may have the same asymptotic expansion. For example, for
small positive λ, the functions F (λ) and F (λ)+ae−b/λ have exactly the
same asymptotic expansions as series in positive powers of λ. This is
because e−b/λ goes to zero faster than any power of λ, and so its asymp-
totic expansion

∑
n anλ

n has every coefficient an being zero. Physicists
commonly say that e−b/λ is a non-perturbative function, meaning that
it will not be visible to a perturbation expansion in powers of λ.

ii) An asymptotic expansion is usually valid only in a sector a < arg z < b.
Different sectors have different expansions. This is called the Stokes’

phenomenon.
The most useful methods for obtaining asymptotic expansions require

that the function to be expanded be given in terms of an integral. This
is the reason why we have stressed the contour integral method of solving
differential equations. If the integral can be approximated by a Gaussian, we
are lead to the method of steepest descents . This technique is best explained
by means of examples.

10.4.1 Stirling’s Approximation for n!

We start from the integral representation of the Gamma function

Γ(z + 1) =

∫ ∞

0

e−ttz dt (10.117)

Set t = zζ , so

Γ(z + 1) = zz+1

∫ ∞

0

ezf(ζ) dζ, (10.118)

where
f(ζ) = ln ζ − ζ. (10.119)

We are going to be interested in evaluating this integral in the limit that
|z| → ∞ and finding the first term in the asymptotic expansion of Γ(z + 1)
in powers of 1/z. In this limit, the exponential will be dominated by the part
of the integration region near the absolute maximum of f(ζ) Now f(ζ) is a
maximum at ζ = 1 and

f(ζ) = −1− 1

2
(ζ − 1)2 + · · · . (10.120)
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So

Γ(z + 1) = zz+1e−z
∫ ∞

0

e−
z
2
(ζ−1)2+··· dζ

≈ zz+1e−z
∫ ∞

−∞
e−

z
2
(ζ−1)2 dζ

= zz+1e−z
√

2π

z

=
√

2πzz+1/2e−z. (10.121)

By keeping more of the terms represented by the dots, and expanding
them as

e−
z
2
(ζ−1)2+··· = e−

z
2
(ζ−1)2

[
1 + a1(ζ − 1) + a2(ζ − 1)2 + · · ·

]
, (10.122)

we would find, on doing the integral, that

Γ(z+1) ≈
√

2πzz+1/2e−z
[
1 +

1

12z
+

1

288z2
− 139

51840z3
− 571

24888320z4
+O

(
1

z5

)]
.

(10.123)
Since Γ(n+ 1) = n! we also have

n! ≈
√

2πnn+1/2e−n
[
1 +

1

12n
+ · · ·

]
. (10.124)

We make contact with our discusion of asymptotic series by rewriting the
expansion as

Γ(z + 1)√
2πzz+1/2e−z

∼ 1 +
1

12z
+

1

288z2
− 139

51840z3
− 571

24888320z4
+ . . . (10.125)

This typical. We usually have to pull out a leading factor from the function
whose asymptotic behaviour we are studying, before we are left with a plain
asymptotic power series.

10.4.2 Airy Functions

The Airy functions Ai(x) and Bi(x) are closely related to Bessel functions,
and are named after the mathematician and astronomer George Biddell Airy.
They occur widely in physics. We will investigate the behaviour of Ai(x) for
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large values of |x|. A more sophisticated treatment is needed for this problem,
and we will meet with Stokes’ phenomenon. Airy’s differential equation is

d2y

dz2
− zy = 0. (10.126)

On the real axis Airy’s equation becomes

−d
2y

dx2
+ xy = 0, (10.127)

and we we can think of this as the Schrodinger equation for a particle running
up a linear potential. A classical particle incident from the left with total
energy E = 0 will come to rest at x = 0, and then retrace its path. The point
x = 0 is therefore called a classical turning point .The corresponding quantum
wavefunction, Ai (x), contains a travelling wave incident from the left and
becoming evanescent as it tunnels into the classically forbidden region, x > 0,
together with a reflected wave returning to −∞. The sum of the incident
and reflected waves is a real-valued standing wave.

-10 -5 5 10

-0.4

-0.2

0.2

0.4

Figure 10.6: The Airy function, Ai (x).

We will look for contour integral solutions to Airy’s equation of the form

y(x) =

∫

C

extf(t) dt. (10.128)

Denoting the Airy differential operator by Lx ≡ ∂2
x − x, we have

Lx y =

∫

C

(t2 − x)extf(t) dt =

∫ b

a

f(t)

{
t2 − d

dt

}
ext dt.

=
[
−extf(t)

]
C

+

∫

C

({
t2 +

d

dt

}
f(t)

)
ext dt. (10.129)
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Thus f(t) = e−
1
3
t3 and

y(x) =

∫ b

a

ext−
1
3
t3 dt. (10.130)

The contour must end at points where the integrated-out term,
[
ext−

1
3
t3
]
C
,

vanishes. There are therefore three possible contours, which end at any two
of

+∞, ∞ e2πi/3, ∞ e−2πi/3.

C1

C

C

2

3

Figure 10.7: Contours providing solutions of Airy’s equation.

Since the integrand is an entire function, the sum yC1
+ yC2

+ yC3
is zero, so

only two of the three solutions are linearly independent. The Airy function
itself is defined by

Ai (z) =
1

2πi

∫

C1

ext−
1
3
t3 dt =

1

π

∫ ∞

0

cos

(
xs+

1

3
s3

)
ds (10.131)

In obtaining last equality, we have deformed the contour of integration, C1,
that ran from ∞ e−2πi/3 to ∞ e2πi/3 so that it lies on the imaginary axis,
and there we have written t = is. You may check (à la Jordan) that this
deformation does not alter the value of the integral.

To study the asymptotics of this function we need to examine separately
two cases x� 0 and x� 0. For both ranges of x, the principal contribution
to the integral will come from the neighbourhood of the stationary points
of f(t) = xt − t3/3. These stationary points are never pure maxima or
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minima of the real part of f (the real part alone determines the magnitude
of the integrand) but are always saddle points . We must deform the contour
so that on the integration path the stationary point is the highest point
in a mountain pass. We must also ensure that everywhere on the contour
the difference between f and its maximum value stays real . Because of the
orthogonality of the real and imaginary part contours, this means that we
must take a path of steepest descent from the pass — hence the name of
the method. If we stray from the steepest descent path, the phase of the
exponent will be changing. This means that the integrand will oscillate and
we can no longer be sure that the result is dominated by the contributions
near the saddle point.

b)a)

u

v v

u

Figure 10.8: Steepest descent contours and location and orientation of the
saddle passes for a) x� 0, b) x� 0.

i) x� 0 : The stationary points are at t = ±√x. Writing t = ξ −√x have

f(ξ) = −2

3
x3/2 + ξ2

√
x− 1

3
ξ3 (10.132)

while near t = +
√
x we write t = ζ +

√
x and find

f(ζ) = −2

3
x3/2 − ζ2

√
x− 1

3
ζ3 (10.133)

We see that the saddle point near −√x is a local maximum when we
route the contour vertically, while the saddle point near +

√
x is a local

maximum as we go down the real axis. Since the contour in Ai (x) is
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aimed vertically we can distort it to pass through the saddle point near
−√x, but cannot find a route through the point at +

√
x without the

integrand oscillating wildly. At the saddle point the exponent, xt−t3/3,
is real. If we write t = u+ iv we have

Im (xt− t3/3) = v(x− u2 + v3/3), (10.134)

so the exact steepest descent path, on which the imaginary part remains
zero is given by the union of real axis (v = 0) and the curve

u2 − 1

3
v2 = x. (10.135)

This is a hyperbola, and the branch passing through the saddle point
at −√x is plotted in a).
Now setting ξ = is, we find

Ai (x) =
1

2π
e−

2
3
x3/2

∫ ∞

−∞
e−

√
xs2+··· ds ∼ 1

2
√
π
x−1/4e−

2
3
x3/2

. (10.136)

ii) x� 0 : The stationary points are now at ±i
√
|x|. Setting t = ξ ± i

√
|x|

find that

f(x) = ∓i2
3
|x|3/2 ∓ iξ2

√
|x|. (10.137)

The exponent is no longer real, but the imaginary part will be constant
and the integrand non-oscillatory provided we deform the contour so
that it becomes the disconnected pair of curves shown in b). The
new contour passes through both saddle points and we must sum their
contributions. Near t = i

√
|x| we set ξ = e3πi/4s and get

1

2πi
e3πi/4e−i

2
3
|x|3/2

∫ ∞

−∞
e−
√

|x|s2 ds =
1

2i
√
π
e3πi/4|x|−1/4e−i

2
3
|x|3/2

= − 1

2i
√
π
e−iπ/4|x|−1/4e−i

2
3
|x|3/2

(10.138)

Near t = −i
√
|x|we set ξ = e2πi/3s and get

1

2iπ
eπi/4ei

2
3
|x|3/2

∫ ∞

−∞
e−
√

|x|s2 ds =
1

2i
√
π
eπi/4|x|−1/4ei

2
3
|x|3/2

(10.139)
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The sum of these two contributions is

Ai (x) ∼ 1√
π|x|1/4 sin

(
2

3
|x|3/2 +

π

4

)
. (10.140)

The fruit of our labours is therefore

Ai (x) ∼ 1

2
√
π
x−1/4e−

2
3
x3/2

[
1 +O

(
1

x

)]
, x > 0,

∼ 1√
π|x|1/4 sin

(
2

3
|x|3/2 +

π

4

)[
1 + O

(
1

x

)]
, x < 0.

(10.141)

Suppose that we allow x to become complex x → z = |z|eiθ, with −π <
θ < π. Then figure 10.9 shows how the steepest contour evolves and leads
the two quite different expansion for positive and negative x. We see that
for 0 < θ < 2π/3 the steepest descent path continues to be routed through
the single stationary point at −

√
|z|eiθ/2. Once θ reaches 2π/3, though,

it passes through both stationary points. The contribution to the integral
from the newly aquired stationary point is, however, exponentially smaller
as |z| → ∞ than that of t = −

√
|z|eiθ/2. The new term is therefore said to

be subdominant , and makes an insignificant contribution to the asymptotic
behaviour of Ai (z). The two saddle points only make contributions of the
same magnitude when θ reaches π. If we analytically continue beyond θ = π,
the new saddlepoint will now dominate over the old, and only its contribtion
is significant at large |z|. The Stokes line, at which we must change the form
of the asymptotic expansion is therefore at θ = π.

If we try to systematically keep higher order terms we will find, for the
oscillating Ai (−z), a double series

Ai (−z) ∼ π−1/2z−1/4

[
sin(ρ+ π/4)

∞∑

n=0

(−1)nc2nρ
−2n

− cos(ρ+ π/4)
∞∑

n=0

(−1)nc2n+1ρ
−2n−1

]
(10.142)

where ρ = 2z3/2/3. In this case, therefore we need to extract two leading
coefficients before we have asymptotic power series.

The subject of asymptotics contains many subtleties, and the reader in
search of a more detailed discussion is recommened to read Bender and
Orszags Advanced Mathematical methods for Scientists and Engineers .
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Figure 10.9: Evolution of the steepest-descent contour from passing through
only one saddle point to passing through both. The dashed and solid lines are
contours of the real and imaginary parts, repectively, of (zt−t3/3). θ = Arg z
takes the values a) 7π/12, b) 15π/24, c) 2π/3, d) 9π/12.
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Exercise 10.2: Consider the behaviour of Bessel functions when x is large. By
applying the method of steepest descent to the Hankel function contours show
that

H(1)
ν (x) ∼

√
2

πx
ei(x−νπ/2−π/4)

[
1− 4ν2 − 1

8πx
+ · · ·

]

H(2)
ν (x) ∼

√
2

πx
e−i(x−νπ/2−π/4)

[
1 +

4ν2 − 1

8πx
+ · · ·

]
,

and hence

Jν(x) ∼
√

2

πx

[
cos
(
x− νπ

2
− π

4

)
− 4ν2 − 1

8x
sin
(
x− νπ

2
− π

4

)
+ · · ·

]
,

Nν(x) ∼
√

2

πx

[
sin
(
x− νπ

2
− π

4

)
+

4ν2 − 1

8x
cos
(
x− νπ

2
− π

4

)
+ · · ·

]
.

10.5 Elliptic Functions

The subject of elliptic functions goes back to remarkable identities of Guilio
Fagnano (1750) and Leonhard Euler (1761). Euler’s formula is

∫ u

0

dx√
1− x4

+

∫ v

0

dy√
1− y4

=

∫ r

0

dz√
1− z4

, (10.143)

where 0 ≤ u, v ≤ 1, and

r =
u
√

1− v4 + v
√

1− u4

1 + u2v2
. (10.144)

This looks mysterious, but perhaps so does

∫ u

0

dx√
1− x2

+

∫ v

0

dy√
1− y2

=

∫ r

0

dz√
1− z2

, (10.145)

where

r = u
√

1− v2 + v
√

1− u2, (10.146)

until you realize that the latter formula is merely

sin(a+ b) = sin a cos b+ cos a sin b (10.147)
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in disguise. To see this set

u = sin a, v = sin b (10.148)

and remember the integral formula for the inverse trig function

a = sin−1 u =

∫ u

0

dx√
1− x2

. (10.149)

The Fagnano-Euler formula is a similarly disguised addition formula for an
elliptic function. Just as we use the substitution x = sin y in the 1/

√
1− x2

integral, we can use an elliptic function substitution to evaluate elliptic in-

tegrals such as

I4 =

∫ x

0

dt√
(t− a1)(t− a2)(t− a3)(t− a4)

(10.150)

I3 =

∫ x

0

dt√
(t− a1)(t− a2)(t− a3)

. (10.151)

The integral I3 is a special case of I4, where a4 has been sent to infinity by
use of a Möbius map

t→ t′ =
at+ b

ct+ d
, dt′ = (ad− bc) dt

(ct+ d)2
. (10.152)

Indeed, we can use a suitable Möbius map to send any three of the four
points an to 0, 1,∞.

The idea of elliptic functions (as opposed to the integrals, which are their
functional inverse) was known to Gauss, but Abel and Jacobi were the first
to publish (1827). For the general theory, the simplest elliptic function is
the Weierstrass ℘. This is defined by first selecting two linearly independent
periods ω1, ω2, and setting

℘(z) =
1

z2
+

∑

(m,n)6=0

{
1

(z −mω1 − nω2)2
− 1

(mω1 + nω2)2

}
. (10.153)

The sum is over integers m,n, positive and negative, but not both 0. Helped
by the counterterm, the sum is absolutely convergent, so we can rearrange
the terms to prove double periodicity

℘(z +mω1 + nω2) = ℘(z). (10.154)



434 CHAPTER 10. SPECIAL FUNCTIONS II

The function is thus determined everywhere by its values in the period paral-
lelogram P = {λω1 + µω2 : 0 ≤ λ, µ < 1}. Double periodicity is the defining
characteristic of elliptic functions.

.

.

.

.

.

.

.

.

ω

ω2

x

y

1

.

.

Figure 10.10: Unit cell and double-periodicity.

Any non-constant meromorphic function, f(z), which is doubly periodic has
four basic properties:

a) The function must have at least one pole in its unit cell. Otherwise
it would be holomorphic and bounded, and therefore a constant by
Liouville.

b) The sum of the residues at the poles must add to zero. This follows
from integrating f(z) around the boundary of the period parallelogram
and observing that the contributions from opposite edges cancel.

c) The number of poles in each unit cell must equal the number of zeros.
This follows from integrating f ′/f round the boundary of the period
parallelogram.

d) If f has zeros at the N points zi and poles at the N points pi then

N∑

i=1

zi −
N∑

i=1

pi = nω1 +mω2

where m,n are integers. This follows from integrating zf ′/f round the
boundary of the period parallelogram.

The Weierstass ℘ has a second-order pole at the origin. It also obeys

lim
|z|→0

(
℘(z)− 1

z2

)
= 0,
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℘(z) = ℘(−z),
℘′(z) = −℘′(−z). (10.155)

The property that makes ℘(z) useful for evaluating integrals is

(℘′(z))
2

= 4℘3(z)− g2℘(z)− g3, (10.156)

where

g2 = 60
∑

(m,n)6=0

1

(mω1 + nω2)4
, g3 = 140

∑

(m,n)6=0

1

(mω1 + nω2)6
. (10.157)

Equation (10.156) is proved by examining the first few terms in the Laurent
expansion in z of the difference of the left hand and right hand sides. All
negative powers cancel, as does the constant term. The difference is zero at
z = 0, has no poles or other singularities, and being continuous and periodic is
automatically bounded. It is therefore identically zero by Liouville’s theorem.

From the symmetry and periodicity of ℘ we see that ℘′(z) = 0 at ω1/2,
ω2/2 and (ω1 + ω2)/2 where ℘(z) takes values e1 = ℘(ω1/2), e2 = ℘(ω2/2),
and e3 = P((ω1 +ω2)/2). Now ℘′ must have exactly three zeros since it has a
pole of order three at the origin and, by property c), the number of zeros in
the unit cell is equal to the number of poles. We therefore know the location
of all three zeros and can factorize

4℘3(z)− g2℘(z)− g3 = 4(℘− e1)(℘− e2)(℘− e3). (10.158)

We note that the coefficient of ℘2 in the polynomial on the left side is zero,
implying that e1 + e2 + e3 = 0. This is consistent with property d).

The roots ei can never coincide. For example, (℘(z) − e1) has a double
zero at ω1/2, but two zeros is all it is allowed because the number of poles
per unit cell equals the number of zeros, and (℘(z)−e1) has a double pole at
0 as its only singularity. Thus (℘− e1) cannot be zero at another point, but
it would be if e1 coincided with e2 or e3. As a consequence, the discriminant

∆ = 16(e1 − e2)2(e2 − e3)2(e1 − e3)2 = g3
2 − 27g2

3, (10.159)

is never zero.
We use ℘ to write

z = ℘−1(u) =

∫ u

∞

dt

2
√

(t− e1)(t− e2)(t− e3)
=

∫ u

∞

dt√
4t3 − g2t− g3

.

(10.160)
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This maps the u plane cut from e1 to e2 and e3 to ∞ one-to-one onto the
2-torus, regarded the unit cell of the ωn,m = nω1 +mω2 lattice.

As z sweeps over the torus, the points x = ℘(z), y = ℘′(z) move on the
elliptic curve

y2 = 4x3 − g2x− g3 (10.161)

which should be thought of as a set in CP 2. These curves, and the finite fields
of rational points that lie on them, are exploited in modern cryptography.

The magic which leads to addition formula, such as the Euler-Fagnano
relation with which we began this section, lies in the (not immediatley obvi-
ous) fact that any elliptic function having the same periods as ℘(z) can be
expressed as a rational function of ℘(z) and ℘′(z). From this it follows (after
some thought) that any two such elliptic functions, f1(z) and f2(z), obey a
relation F (f1, f2) = 0, where

F (x, y) =
∑

an,mx
nym (10.162)

is a polynomial in x and y. We can eliminate ℘′(z) in these relations at the
expense of introducing square roots.

modular invariance

If ω1 and ω2 are periods and define a unit cell, so are

ω′
1 = aω1 + bω2

ω′
2 = cω1 + dω2

where a, b, c, d are integers with ad − bc = ±1. This condition on the deter-
minant ensures that the matrix inverse also has integer entries, and so the ωi
can be expressed in terms of the ω′

i with integer coefficients. Consequently
the set of integer linear combinations of the ω′

i generate the same lattice as
the integer linear combinations of the original ωi. This notion of redefining
the unit cell should be familiar to your from solid state physics. If we wish
to preserve the orientation of the basis vectors, we must restrict ourselves
to maps whose determinant ad − bc is unity. The set of such transforms
constitute the the modular group SL(2,Z). Clearly ℘ is invariant under this
group, as are g2 and g3 and ∆. Now define ω2/ω1 = τ , and write

g2(ω1, ω2) =
1

ω4
1

, g̃2(τ), g3(ω1, ω2) =
1

ω6
1

, g̃3(τ). ∆(ω1, ω2) =
1

ω12
1

∆̃(τ),

(10.163)
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and also

J(τ) =
g̃3
2

g̃3
2 − 27g̃2

3

=
g̃3
2

∆̃
. (10.164)

Because the denominator is never zero when Im τ > 0, the function J(τ) is
holomorphic in the upper half-plane — but not on the real axis. The function
J(τ) is called the elliptic modular function.

Except for the prefactors ωn1 , the functions g̃i(τ), ∆̃(τ) and J(τ) are
invariant under the Möbius transformation

τ → aτ + b

cτ + d
. (10.165)

with (
a b
c d

)
∈ SL(2,Z). (10.166)

This Möbius transformation does not change if the entries in the matrix are
multiplied by a common factor of±1, and so the transformation is an element
of the modular group PSL(2,Z) ≡ SL(2,Z)/{I,−I}.

Taking into account the change in the ωα1 prefactors we have

g̃2

(
aτ + b

cτ + d

)
= (cτ + d)4g̃3(τ),

g̃3

(
aτ + b

cτ + d

)
= (cτ + d)6g̃3(τ),

∆̃

(
aτ + b

cτ + d

)
= (cτ + d)12∆̃(τ). (10.167)

Because c = 0 and d = 1 for the special case τ → τ +1, these three functions
obey f(τ+1)−f(τ) and so depend on τ only via the combination q2 = e2πiτ .
For example, it is not hard to prove that

∆̃(τ) = (2π)12q2
∞∏

n=1

(
1− q2n

)24
. (10.168)

We can also expand them as power series in q2 — and here things get interest-
ing because the coefficients have number-theoretic properties. For example

g̃2(τ) = (2π)4

[
1

12
+ 20

∞∑

n=1

σ3(n)q2n

]
,

g̃3(τ) = (2π)6

[
1

216
− 7

3

∞∑

n=1

σ5(n)q2n

]
. (10.169)
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The symbol σk(n) is defined by σk(n) =
∑
d k where d runs over all positive

divisors of the number n.
In the case of the function J(τ), the prefactors cancel and

J

(
aτ + b

cτ + d

)
= J(τ), (10.170)

so J(τ) is a modular invariant . One can show that if J(τ1) = J(τ2), then

τ2 =
aτ1 + b

cτ1 + d
(10.171)

for some modular transformation with integer a, b, c, d, where ad − bc = 1,
and further, that any modular invariant function is a rational function of
J(τ). It seems clear that J(τ) is rather a special object.

This J(τ) is the function referred to on page 174 in connection with the
Monster group. As with the g̃i, J(τ) depends on τ only through q2. The first
few terms in the power series expansion of J(τ) in terms of q2 turn out to be

1728J(τ) = q−2+744+196884q2+21493760q4+864299970q6+· · · . (10.172)

Since AJ(τ)+B has all the same modular invariance properties as J(τ), the
numbers 1728 = 123 and 744 are just conventional normalizations. Once we
set the coefficient of q−2 to unity, however, the remaining integer coefficients
are completely determined by the modular properties. A number-theory
interpretation of these integers seemed lacking until John McKay and others
observed that that

1 = 1

196884 = 1 + 196883

21493760 = 1 + 196883 + 21296786

864299970 = 2× 1 + 2× 196883 + 21296786 + 842609326,

(10.173)

where “1” and the large integers on the right-hand side are the dimensions of
the smallest irreducible representations of the Monster. This “Monstrous
Moonshine” was originally mysterious and almost unbelievable, (“moon-
shine” = “fantastic nonsense”) but it was explained by Richard Borcherds
by the use of techniques borrowed from string theory.3 Borcherds received
the 1998 Fields Medal for this work.

3“I was in Kashmir. I had been traveling around northern India, and there was one
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10.6 Further Exercises and Problems

Exercise 10.3: Show that the binomial series expansion of (1 + x)−ν can be
written as

(1 + x)−ν =

∞∑

m=0

(−x)mΓ(m+ ν)

Γ(ν)m!
, |x| < 1.

Exercise 10.4: A Mellin transform and its inverse. Combine the Beta-function
identity (10.15) with a suitable change of variables to evaluate the Mellin
transform ∫ ∞

0
xs−1(1 + x)−ν dx, ν > 0,

of (1 + x)−ν as a product of Gamma functions. Now consider the integral

1

2πiΓ(ν)

∫ c+i∞

c−i∞
x−sΓ(ν − s)Γ(s) ds.

Here Re c ∈ (0, ν). The contour therefore runs parallel to the imaginary axis
with the poles of Γ(s) to its left and the poles of Γ(ν− s) to its right. Use the
identity

Γ(s)Γ(1− s) = π cosec πs

to show that when |x| < 1 the contour can be closed by a large semicircle lying
to the left of the imaginary axis. By using the preceding exercise to sum the
contributions from the enclosed poles at s = −n, evaluate the integral.

Exercise 10.5: Mellin-Barnes integral. Use the technique developed in the
preceding exercise to show that

F (a, b, c;−x) =
Γ(c)

2πiΓ(a)Γ(b)

∫ c+i∞

c−i∞
x−s

Γ(a− s)Γ(b− s)Γ(s)

Γ(c− s) ds,

for a suitable range of x. This integral representation of the hypergeometric
function is due to the English mathematician Ernest Barnes (1908), later a
controversial Bishop of Birmingham.

really long tiresome bus journey, which lasted about 24 hours. Then the bus had to stop
because there was a landslide and we couldn’t go any further. It was all pretty darn
unpleasant. Anyway, I was just toying with some calculations on this bus journey and
finally I found an idea which made everything work”- Richard Borcherds (Interview in
The Guardian, August 1998).
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Exercise 10.6: Let

Y =

(
y1

y2

)

Show that the matrix differential equation

d

dx
Y =

A

z
Y +

B

1− zY,

where

A =

(
0 a
0 1− c

)
, B =

(
0 0
b a+ b− c+ 1

)
,

has a solution

Y (z) = F (a, b, ; c, z)

(
1
0

)
+
z

a
F ′(a, b; c; z)

(
0
1

)
.

Exercise 10.7: Kniznik-Zamolodchikov equation. The monodromy properties
of solutions of differential equations play an important role in conformal field
theory. The Fuchsian equations studied in this exercise are obeyed by the
correlation functions in the level-k Wess-Zumino-Witten model.

Let V (a), a = 1, . . . n, be spin-ja representation spaces for the group SU(2). Let
W (z1, . . . , zn) be a function taking values in V (1)⊗V (2)⊗· · ·⊗V (n). (In other
words W is a function Wi1,...,in(z1, . . . , zn) where the index ia labels states in
the spin-ja factor.) Suppose that W obeys the Kniznik-Zamolodchikov (K-Z)
equations

(k + 2)
∂

∂za
W =

∑

b,b6=a

J(a) · J(b)

za − zb
W, a = 1, . . . , n,

where
J(a) · J(b) ≡ J (a)

1 J
(b)
1 + J

(a)
2 J

(b)
2 + J

(a)
3 J

(b)
3 ,

and J
(a)
i indicates the su(2) generator Ji acting on the V (a) factor in the tensor

product. If we set z1 = z, for example and fix the position of z2, . . . zn, then
the differential equation in z has regular singular points at the n−1 remaining
zb.

a) By diagonalizing the operator J(a) · J(b) show that there are solutions
W (z) that behave for za close to zb as

W (z) ∼ (za − zb)∆j−∆ja−∆jb ,

where

∆j =
j(j + 1)

k + 2
, ∆ja =

ja(ja + 1)

k + 2
,
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and j is one of the spins |ja− jb| ≤ j ≤ j1 + ja occuring in the decompo-
sition of ja ⊗ jb.

b) Define covariant derivatives

∇a =
∂

∂za
−
∑

b,b6=a

J(a) · J(b)

za − zb

and show that [∇a,∇b] = 0. Conclude that the effect of parallel transport
of the solutions of the K-Z equations provides a representation of the
braid group of the world lines of the za.
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Index

p-chain, 125, 305
p-cycle, 305
p-form, 48

addition theorem
for elliptic functions, 433

Airy’s equation, 426
algebraic

geometry, 12
analytic signal, 379
anti-derivation, 50
atlas, 34

Bargmann, Valentine, 310
Bergman space, 310
Bergman, Stefan, 310
Bernoulli numbers, 384
Berry’s phase, 263
Beta function, 403
Betti number, 116, 128, 345
Bianchi identity, 69
Bochner Laplacian, 169
Bogomolnyi equation, 110
Borcherds, Richard, 438
Borel-Weil-Bott theorem, 265
boundary conditions

Dirichlet, Neumann and Cauchy,
298

branch cut, 341
branch point, 341
branching rules, 200, 251

Brouwer degree, 89, 160
bulk modulus, 22
bundle

co-tangent, 58
tangent, 34
trivial, 258
vector, 34

Calugareanu relation, 103
Cartan algebra, 246
Cartan, Élie, 37, 224
Casimir operator, 239
Cayley’s

theorem for groups, 176
chain complex, 127
chart, 34
Christoffel symbols, 64
Cicero, Marcus Tullius, 85
closed

form, 51, 59
co-ordinates

Cartesian, 18
conformal, see co-ordinates, isother-

mal
isothermal, 349

co-root vector, 247
cohomology, 121
commutator, 40
complex algebraic curve, 345
complex differentiable, 293
complex projective space, 12, 91
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constraint
holonomic versus anholonomic,

43
contour, 303
Cornu spiral, 368
covector, 2
cup product, 142
curl

as a differential form, 51

d’Angelo, John, 296
D-bar problem, 308
Darboux

co-ordinates, 60, 61, 267
theorem, 59

de Rham’s theorem, 140
de Rham, Georges, 121
degree-genus relation, 346
derivation, 45, 53
derivative

complex, 293
convective, 112
covariant, 63
exterior, 49, 50
Lie, 45

descent equations, 288
diffeomorphism, 116
dimensional regularization, 331
Dirac gamma matrices, 227
dispersion

relation, 372
distribution

involutive, 42
of tangent fields, 41

distributions
principal part, 367

domain, 294

elliptic function, 344, 433

elliptic modular function, 437
embedding, 347
entire function, 326, 333
equivalence relation, 174
essential singularity, 326, 333
Euler

angles, 43, 70, 220
character, 131, 158, 345
class, 153

Euler-Maclaurin sum formula, 384
Euler-Mascheroni constant, 406
exact form, 51
exact sequence, 131

long, 136
short, 133, 136

exponential map, 216

Fermat’s liittle theorem, 176
Feynman path integral, 100
fibre, 257
fibre bundle, 39
field

covector, 37
tangent vector, 35

flow
incompressible, 294
irrotational, 294
of tangent vector field, 40

foliation, 41
form

closed, 59
Fredholm

operator, 157
Fresnel integrals, 368
Frobenius’

integrability theorem, 42
reciprocity theorem, 206

Frobenius-Schur indicator, 204
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Gauss
linking number, 100

Gauss-Bonnet theorem, 153, 284
Gauss-Bruhat decomposition, 392
Gell-Mann “λ” matrices, 242
generating function

for Chern character, 151
genus, 345
geometric phase, see Berry’s phase
geometric quantization, 265
gradient

as a covector, 37
Grassmann, Herman, 14
Green, George, 25

Haar measure, 230
harmonic conjugate, 294
Hilbert transform, 378
Hodge

“?” map, 55, 350
decomposition, 157
theory, 154

Hodge, William, 154
homeomorphism, 116
homology group, 127
homotopy, 96, 227

class, 96
Hopf

bundle, see monopole bundle
index, 98, 223
map, 94, 220, 222

horocycles, 354

ideal, 235
immersion, 347
index theorem, 158, 390, 393
induced metric, 83
induced representation, 205

infinitesimal homotopy relation, 53
interior multiplication, 53
intersection form, 144

Jacobi identity, 60, 234
Jordan form, 407

Killing
field, 46
form, 236

Killing, William, 46
Kramer’s degeneracy, 211

Lagrange’s theorem, 174
Lamé constants, 22
Laplace-Beltrami operator, 156
Laplacian

acting on vector field, 154
Legendre function, 374
Legendre function Qn(x), 415
Levi-Civita symbol, 17
Lie

algebra, 207
bracket, 40, 234
derivative, 45

Lie, Sophus, 207
line bundle, 258
Lipshitz’ formula, 384
Lobachevski geometry, 110, 354

Möbius
strip, 258

manifold, 34
orientable, 79
Riemann, 66

map
anti-conformal, 298
isogonal, 298

modular group, 436
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monodromy, 406
monople bundle, 279
monopole bundle, 265
moonshine, monstrous, 174, 438
Morse function, 159
Morse index theorem, 160
multilinear form, 11
Möbius map, 339, 433

Neumann’s formula, 374
Nyquist criterion, 375

orbit,of group action, 178
order

of group, 172
orientable manifold, 78

Pöschel-Teller equation, 412
pairing, 2, 138
Pauli σ matrices, 93, 211
period

and de Rham’s theorem, 140
of elliptic function, 344

Peter-Weyl theorem, 231
Pfaffian system, 44
Plücker relations, 16, 31
Plücker, Julius, 16
Plemelj formulæ, 372
Poincaré

disc, 110, 354
duality, 159
lemma, 50, 117

Poincaré-Hopf theorem, 160
Poisson

bracket, 60
Poisson’s ratio, 23
pole, 308
Pontryagin class, 153
principal bundle, 257

principal part integral, 364
product

cup, 142
direct, 181
group axioms, 171
tensor, 10
wedge, 13, 49

projective plane, 129

quaternions, 211
quotient

group, 174
space, 179

rank
of Lie algebra, 246
of tensor, 5

residue, 308
resolution of the identity, 190
retraction, 117
Riemann

P symbol, 410
sum, 304
surface, 341

Rodriguez’ formula, 415
rolling conditions, 43, 107
root vector, 244
Russian formula, 288

section, 259
of bundle, 39

Serret-Frenet relations, 107
sextant, 224
shear modulus, 22
sheet, 341
simplex, 122
simplicial complex, 123
Skyrmion, 91
space
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homogeneous, 179
retractable, 117

spinor, 93, 224
stereographic map, 92
Stokes’

line, 430
phenomenon, 424
theorem, 84

strain tensor, 48
stream-function, 295
streamline, 295
structure constants, 214
symplectic form, 59

tangent
bundle, 34
space, 33

tantrix, 103
tensor

Cartesian, 18
curvature, 66
isotropic, 19
strain, 20, 48
stress, 20
torsion, 66

theorem
Blasius, 317
Darboux, 59
de Rham, 140
Frobenius integrability, 42
Frobenius’ reciprocity, 206
Gauss-Bonnet, 153, 284
Lagrange, 174
Morse index, 160
Peter-Weyl, 231
Picard, 333
Poincaré-Hopf, 160
residue, 308

Riemann mapping, 300
Stokes, 84

Theta function, 337
topological current, 98
torsion

in homology, 130
of curve, 107
tensor, 66

transfom
Hilbert, 378

variety, 12
Segre, 12

vector
bundle, 63
Laplacian, 154

velocity potential, 294
vielbein, 64

orthonormal, 69, 148
volume form, 84

Weierstrass
℘ function, 433

weight, 243
Weitzenböck formula, 168
Weyl’s

identity, 210
Wiener-Hopf

sum equations, 387
winding number, 89

Young’s modulus, 23


