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PREFACE

This book is a write-up of a series of lectures given by the first author at the
Tata Institute, Bombay, during December 1985 — January 1986.

The dominant theme of these lectures is the idea of a highest weight repre-
sentation. This idea goes through four different incarnations.

The first is the canonical commutation relations of the infinite-dimensional
Heisenberg algebra (= oscillator algebra). Although this example is extremely
simple, it not only contains the germs of the main features of the theory, but
also serves as a basis for most of the constructions of representations of infinite-
dimensional Lie algebras.

The second is the highest weight representations of the Lie algebra g®_ of in-
finite matrices, along with their applications to the theory of soliton equations,
discovered by Sato and Date-Jimbo-Kashiwara-Miwa. Here the main point is
the isomorphism between the vertex and the “Dirac sea” realizations of the
fundamental representations of g€, , a kind of a Bose-Fermi correspondence.

The third is the unitary highest weight representations of the affine Kac-
Moody (= current) algebras. Since there is now a book devoted to the theory
of Kac-Moody algebras, it was decided to devote to them a minimum attention.
In the lectures affine algebras play a prominent role only in the Sugawara con-
struction as the main tool in the study of the fourth incarnation of the main
idea, the theory of highest weight representations of the Virasoro algebra.

The main results of the representation theory of the Virasoro algebra which
are proved in these lectures are the Kac determinant formula and the unitarity
of the “discrete series’ representations of Belavin-Polyakov-Zamolodchikov and
Friedan-Qiu-Shenker.

We hope that this elementary introduction to the subject, written by a
mathematician and a physicist, will prove useful to both mathematicians and
physicists. To mathematicians, since it illustrates, on important examples, the
interaction of the key ideas of the representation theory of infinite-dimensional
Lie algebras; and to physicists, since this theory is turning before our very eyes




into an important component of such domains of theoretical physics as soliton
theory, theory of two-dimensional statistical models, and string theory.
Throughout the book, the base field is the field of complex numbers C,
unless otherwise stated, R denotes the set of real numbers, Z the set of integers,
and Z_(resp. N) the set of non-negative (resp. positive) integers.
The authors wish to thank the participants of the lectures, especially S. M.
Roy and S. R. Wadia, for valuable suggestions and comments.
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Bombay Lectures On

- HIGHEST WEIGHT

REPRESENTATIONS OF

INFINITE DIMENSIONAL
LIEALGEBRAS




LECTURE 1

In this series of lectures we shall demonstrate some basic concepts and methods
of the representation theory of infinite dimensional Lie algebras on four main
examples:

1. The oscillator algebra

2. The Virasoro algebra

3. The Lie algebra g,

4. The affine Kac-Moody algebras.

In fact, the interplay between these examples is one of the key methods of the
theory.

1.1. The Lie algebra d of complex vector fields on the circle.

We shall first consider the Virasoro algebra, which is playing an increasingly
important role in theoretical physics. It is also a natural algebra to consider
from a mathematical point of view as it is a central extension of the complexi-
fication of the Lie algebra Vecr S' of (real) vector fields on the circle S!. We
shall start by finding the structure of Vect S' and later consider its central
extensions.

Any element of Vect S' is of the form f(8) d/df, where f(#) is a smooth
real-valued function on S', with # a parameter on S' and f(6 + 27n) = f(9).
The Lie bracket of vector fields is:

02 2021 = (f¢ - £5) O
[ A de’g)de = (fg g()de,

where prime stands for the derivative. A basis (over R) for Vect S* is provided
by the vector fields




2 Bombay Lectures on Highest Weight Representations . . .
7 cos(h) = | sin(md)— (m=1,2,....)
—, cos(nd)— , sin(nf)— (n=1,2,....) .
do de do

To avoid convergence questions we consider this as a vector space basis, so that
f(8), g(8) are arbitrary trigonometric polynomials, and take its linear span over
C as this permits us to introduce exp (in8) instead of cos (1) and sin (nf). We
thus obtain a complex Lie algebra, denoted by df, with a basis

d, = iexp (inG)—(-i— = -z —d— (nez) (1.1)
" do dz

where z = exp (if). These elements satisfy the following commutation relations:
4,, .d,] = (m-nd,,, mnel). (1.2)

The Lie algebra Vectr S' can be considered as the Lie algebra of the group G
of orientation preserving diffeomorphisms of S!. If ¢,, ¢, are two elements of
G then their product is defined by composition:

€1 °6)@) =8 (§22)

for each z = exp (i#) on S'. If f(z) is an element of the vector space of smooth
complex-valued functions on S; , then v € G acts on f(z) by

M f@) = 67 @) . (13)

This clearly defines a representation of G. We take < close to the identity (as
physicists do):

12) =z(0 + e(@) =z + 3 e 2" (1.4a)

=00

where we have made a Laurent (or Fourier) expansion of e(z) and the e, are
to be retained up to first order only. Then

o0

Y@ =z2- 3§ e ™ (1.4b)

Nn=-o0
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and

M@ =fz~ 3 ") =0+ 3 €d,)f(2 (1.5)

n

where the d,, are defined by (1.1). This shows that the d,, form a (topological)
basis of the complexification of the Lie algebra of G.

In the following we shall consider the complex Lie algebra d and view d n
Vect S! as the subalgebra (over R) of real elements. Oné way to do this is to
regard d n Vect S' as the subalgebra of fixed points for the operation of com-
plex conjugation under which d,, maps to —d_,, and a scalar X to its complex
conjugate A. It is more convenient, however, to introduce a slightly different
operation defined by:

wdy) =d_, (1.63)
w(x) = Aw(x) (1.6b)

so that
w(lx, y]) = [w() , w)] (1.6¢)

where x, y € d, A e €. Thus w is an antilinear anti-involution having the
algebraic properties of Hermitian conjugation. Now d n Vectr S' consists of
elements of d fixed under — w.

The purely algebraic operation w on d can become an adjoint operation with
respect to a suitable scalar product if we have a representation of d in some
vector space. Suppose that we have a unitary representation of the group G on
a vector space V with a positive-definite Hermitian form (- | - ) . Identifying
elements of G with corresponding operators, we have:

(g(w) 1g()) = ulv) for ge G, u,veV .
Going over to the Lie algebra, this means that

(x@) |v) = —(ul|x(v)) for x Vect S* ,
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and for any x e d:
(x(@)|v) = ulwx)®)) . (1.7)

This motivates the following definitions:

Definition 1.1. Let g be a Lie algebra and let w be an antilinear anti-involution
on g, i.e. an R-linear involution satisfying (1.6b and c). Let V be a representa-
tion space of g and ¢ - | - ) an Hermitian form on V. We say that (- | - )is
contravariant if (1.7) holds for all x € g, and u, v € V. When (- | - ) is non-
degenerate, this means that

xI = w(x) for allx e g . .7

Here and further x'stands for the Hermitian adjoint of the operator x. We
further say that this representation is unitary if in addition

(v|v)>0 forall ve V, v#0.

1.2. Representations V, g of d.

We shall find representations of d by considering a suitable vector space on
which the group G acts and determining the action of G in this space for
elements close to the identity. Using (1.5) we shall determine the action of d,,
in this vector space.

Let ¥V, g denote that space of ‘densities’ of the form P(z) z* (dz)P, where a
and § are complex numbers and P(z) is an arbitrary polynomial in z and z7'.

A basis for ¥V, 4 is given by the set of vectors
v = 2%Wd2)f (ke 7). (1.8)
From (1.3),
v = (@)Y @ (2)P
and if 7 is of the form (1.4a), we can use (1.4b) for y~!(z). Thus

v = (2~ 3. 621 - T e,(n + 1)z2")dz)P

n
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=(1-(k+0) 3 ,2)(1-8 3 e,(n+ 1)2") F*(gz)P

= (-3 ekt+tatpn+tpz") X @z)P .

n

Comparing with (1.5) we see that
d(v) =-(k+ta+ 8+ 8y, MkeZ). (1.9)

Formula (1.9) defines a two-parameter family of representations of the Lie
algebrad. Note from (1.9)that d, is diagonal:

do(vk) = —(k + a + B)vk - (1.10)

The operator d is called the energy operator.
The following well-known lemma is useful in the proof of irreducibility:

Lemma 1.1. Let V be a representation of a Lie algebra g which decomposes
as a direct sum of eigenspaces of a finite dimensional commutative subalgebra h:

V= @& Vi (1.11a)
AEh*

where ¥, = {v e V| h(v) = Nh)v for all A € h}, and h* is the dual vector
space of . Then any subrepresentation U of V respects this decomposition in
the sense that

U=eU n V) . (1.12a)
A

Applying this to our case with g= d and h = C d, we obtain the following
corollary:

Corollary 1.1. Let V be a representation of d which decomposes as a direct
sum of eigenspaces of dy:

V=2 (1.11b)

Then any subrepresentation U of V respects this decomposition:

U=@eUn V) (1.12b)
k
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Proof. We first prove Corollary 1.1. Any v € V can be written in the form
z w;, where w; € K according to (1.11b), and d_(w;) = A\;w;, where

VA K
)\] # )‘k for] #k(j,k=1,...,m). Then if v € U, we have the following set
of equations:
vo=w, +w2 +...tw,
d,(v) = Aw +Xw, + ..o+ X,w,

— 2 2 2
i) = Nw, + Xw, + ...+ A
art) = Atw, + N Tlw, + Lo+ AR

Since U is a subrepresentation of d, it follows that v,d oM. ..d (')”'1 (v) must
all lie in U. We then have a system of equations with a matrix which is in-
vertible since its determinant is a Vandermonde and hence not zero. Thus
each of the wj (=1, ..., m) can be expressed as a linear combination of
vectors in U, proving (1.12b). The proof of Lemma 1.1 is identical to that of
the corollary, since we can always find # € h such that )\j(h) # N (h) forj#k
and so we merely have to replace d, by this 4 in the above proof. =

Remark 1.1. The representation J 5 is isomorphic to the representation
Ve, 8 for m € Z , by the shift by m of indices of the basis.

Proposition 1.1. The representation ¥, g of d is reducible if (i) @€ Z and
B=0,or (ii) @ € Z and § = 1; otherwise it is irreducible.

Proof Let U be a non-zero subrepresentation of ¥, ;. Then by Corollary 1.1,
U is also a direct sum of some of the 1-dimensional subspaces Cy;. Letyp e U.
If U is not the whole of V. g» there is at least one vector in I{‘,ﬁ \ U. Let us
first suppose that there are at least two distinct vectors v, and v,(m # n) in
V., g\ U. By (1.9),

dy k(i) = -k + a + 8 + p(m — k), , (1.13)
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dy_ k) = - (k + &+ B+ Bn - K, - (1.14)

Since U is a representation of d, the right-hand sides of (1.13) and (1.14) must
lie in U, which is only possible if

k+a+B8+pm-k)=0=k+a+8+8n-%k.

Since m # n we have 8 = 0 and so ¥k + & = 0. This shows that if U has codimen-
sion at least 2, then § = 0 and @ € Z. We may assume, from Remark 1.1, that
a = 0 so that U= Cvy. Thus VJ’O = Vo,o/ Cvy is an irreducible representation
of d.

Let us now suppose that U has codimension 1 and v,, V. g\U. Hence U
has at least two vectors vg, vo(k # & # m). Thusdp, jvi and d,,, _ov, liein U,
which implies by (1.9) that

k+a+fm~-k+1)=0=0+a+pm-82+1).

We thus get § = 1 and from Remark 1.1 we may assume that &« = 0, so that
m =—1and U = { linear span of vglk € Z, k #— 1}. Thus, V5 ; = Uisan
irreducible representation of d. =

We put VOZ,B = Va’B if VO‘Y‘3 is irreducible; otherwise, VO:’B is as in the proof
of Proposition 1.1, so that all ¥, , are irreducible.

Only some of the irreducible representations VOZ, g can have a Hermitian con-
travariant form:

Proposition 1.2. Representation VO", g has a non-degenerate Hermitian contra-
variant form if and only if § + § = 1 and a« + § =a + . All these representa-
tions are unitary.

Proof is straightforward. We leave it to the reader. =

1.3. Central extensions of d: the Virasoro algebra.

We shall now study Lie algebra extensions d of d by a 1-dimensional center
C c. This means that

~

d = deCe

and the commutation relations (1.2) are replaced by commutation relations of
the form
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4, . d,] (m — n)dy,,, +a(m,nc ,

(1.15)

l4,, . cl 0,
wherea(m,n) € Cand m,ne Z.

The function a(m, n) cannot be arbitrary because of the anticommutativity
of the bracket and the Jacobi identity.

We observe from (1.15) that puttingdo =do,dy =d,, — [a(0, n)/n]c (n+# 0)
we have [({o' , d,] =—nd, (n € Z). This transformation is merely a change
of basis in d and so we can drop the primes and say that

[dO ’ dn] = - ndn (n € Z) . (116)
From the Jacobi identity for do,d,,,d, we get
[dO s [dm ’ dn]] = - (m + n) [dm > dn] . (117)

Substituting (1.15) in (1.17) and using (1.16) we get (m + n)a(m, n)c = 0.
This shows that a(m,n) = Sm,-n a(m), so that (1.15) becomes:

ldy, . dy] = (m — n)dy,,, + 6, _,a(m)c (m,neZ) (1.18)

where a(m) = — a(— m) by anticommutativity. We now work out the Jacobi
identity for dy, d,,,, d,, with £ + m + n = 0 using (1.18) and the antisymmetry
of a(m). We get

(m — n)a(m + n) — 2n + m)a(m) + (n +2m)a(n) = 0 . (1.19)
Puttingn = 1 in (1.19) we get
(m — Da(m + 1) = (m + a(m) — Cm+ 1Da(l) . (1.20)

Since a(— m) =— a(m) we have a(0) = 0 and we have to solve (1.20) for positive
values of m only. Equation (1.20) is a linear recursion relation and its space of
solutions is at most 2-dimensional, since the knowledge of a(1) and a(2) gives
all a(m). We observe that a(m) = m and a(m) = m® are solutions. Hence
a(m) = am + Pm?® is the general solution. If § = O then by defining dy =
dy, + %ac,d; =d; (i #0), the d;/ (i€ Z) span an algebra without central
charge, i.e. d, so that d is a direct sum of Lie algebras d and Cc. Hence, for a
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nontrivial central extension, 8§ # O while a can be chosen arbitrarily; we con-
ventionally choose @ = — § so that a(m) = B(m> ~ m). By rescaling ¢, we can
choose a fixed value for 8. Conventionally we put § = 1/12. We thus arrive at
the Virasoro algebra, the Lie algebra Vir with a basis

{d, ,meZ;c}
and the following commutation relations

ldy,,c] =0, (1.21a)

- m)
»n 12

dy, , d,] (m — n)dy., + 8, c . (1.21b)

Thus, we have proved the following

Proposition 1.3. Every non-trivial central extension of the Lie algebra d by a
1-dimensional center is isomorphic to the Virasoro algebra Vir. a
We have obtained along with the proof:

Corollary 1.2. If [dy, , d,] = (m —n)dy,,.p + &, _, a(m)c defines a Lie
algebra, then a(m) = am + fm’ for some @, fc C. =

In these lectures we shall be mostly concerned with the unitary representa-
tions of Vir. Unitarity is defined through a Hermitian contravariant form
(Definition 1.1) and contravariance is defined in terms of an antilinear, anti-
involution w of Vir defined by (cf. (1.6)):

wld,) = d_ nez), (1.22a)

n

w(c)

I
o

(1.22b)

In particular, do and ¢ are self-adjoint elements of Vir.




LECTURE 2

2.1. Definition of positive-energy representations of Vir.
In the previous lecture we introduced the Virasoro algebra

Vir= Cc + . Cd, ,

nelZ
[c,d,] =0, .1
m3 —m
[dm s dn] = (m - n)dmm + 5m,_n —1—2——-0,

as a central extension of d, the Lie algebra of complex polynomial vector fields
on S*. The so-called “two cocycle” a(m,n) = 8, _, (m*> —m)/12 was pro-
bably first discovered by Gelfand and Fuchs [1968] who computed the entire
cohomology ring of d. They showed that the algebra H*(d) is the tensor pro-
duct of the algebra of polynomials generated by a single generator of degree 2
and an exterior algebra defined by a single generator of degree 3, and hence

Hid) = C forj =0,2,3,...,H' () = 0 .

What we proved in the last lecture is actually that H*(d) = C. (The equality
H'(d) =0 simply means that [d,d] = d.)

In the previous lecture we also constructed some representations of Vir
with ¢ = 0. As we can see from (1.10), in these representations the spectrum
of dy is unbounded both from above and from below. We shall continue to use
the terminology “‘energy operator” for d, as an element of Vir. This leads us
naturally to define a ‘positive-energy representation’ of Vir:

Definition 2.1. A representation of Vir is called a positive-energy representa-
tion if d, is diagonal and all its eigenvalues are nonnegative.

11
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We shall see that Vir has nontrivial positive-energy unitary representations
only if ¢ # O and this is one of the reasons why Vir is so much more interesting
an algebra than d. We shall learn in Lecture 4 how to find positive-energy repre-
sentations of Vir using Dirac’s hole theory. Now, however, we consider the
Virasoro [1970] construction of some unitary positive-energy representations
of Vir in terms of bosonic oscillators.

2.2. Oscillator algebra .o7.

Let ./ be the oscillator (Heisenberg) algebra, the complex Lie algebra with a
basis {a, ,ne Z; % } , and the commutation relations

[#,a,] =0nel),
22
la, . a,] = md,, ,h(mnel).
We note that [ao, a,] = 0 (n e Z) so thata, is a central element (zero
mode). :
Introduce the Fock space B = C|[x;, X3, ...]; this is the space of poly-

nomials in infinitely many variables x; ,x,, ... .
Given u,# € R, define the following representation of & on B (n e N):

a, = €,0/0x, , (2.33)
a_, = hetnx, . (2.3b)
ay = ul, (2.3¢)
noo=hl. (2.3d)

It is clear that these operators satisfy (2.2). The €, are arbitrary real scale
factors which will be useful later on. As such they are inessential, but this is not
the case for the parameter u.

Remark 2.1. In (2.3b, d) and further on, by abuse of notation we use the same
symbol to denote an element of .27 on the left and its eigenvalue on the right.

Lemma 2.1. If # + 0, then the representation (2.3) of &7 is irreducible.
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Proof. Any polynomial in B can be reduced to a multiple of 1 by successive
application of the g, with n > 0 (the annihilation operators). Then successive
application of the ¢_,, with n > O (creation operators) can give any other poly-
nomial in B provided that ## 0. =

The constant polynomial v = 1, which is called the vacuum vector of B, has
the properties

a,(v) =0 forn>0 , (2.4a)
ao(v) = v, (2.4b)
al) = hv . (2.4¢)

Proposition 2.1. Let V be a representation of & which admits a nonzero vector
v satisfying (2.4) with ## 0. Then monomials of the form aﬁ e a_kr': )
(k; € Z,) are linearly independent. If these monomials span V, then V is equiva-
lent to the representation of &/ on B given by (2.3). In particular, this is the case

if Vis irreducible.

Proof. We have a mapping ¢ from B to V defined by ¢(P(. ..,x,,...))=
P(..., (e /hn)a_y,, . . yv. It is clear that if P is an element of B, then a,(¢(P))
= ¢(a,(P)), ie. ¢ is an intertwining operator. Since B is irreducible, ker ¢ =0
and so ¢ is an isomorphism if ¢ isonto. =

We define an antilinear anti-involution w on .2/ by

wl,) =a_, , w@) =14 .

(Physicists use the notation af, =gq_, instead).

Proposition 2.2. let V be as in Proposition 2.1. Then V carries a unique
Hermitian form ¢ - | - ) which is contravariant with respect to w, and such that
(v |v)=1 for the vacuum vector v. The distinct monomials aicll c af’,’, )
(k; € z,) form an orthogonal basis with respect to (- | - ). These monomials
have norms given by
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k kn , Kk k, 1 k:
_;...a_;;v|a_;...a_;',v)=I"]k,.!(h,-)f . (2.5)
Jj=1

(a

Proof. If (|- )is a contravariant Hermitian form, then both the orthogonality
and (2.5) are proved by induction on k; + ...+ &, , proving uniqueness. One
checks directly that the Hermitian form, for which monomials are orthogonal
and have norms given by (2.5), is contravariant, proving existence. (A more
conceptual proof of existence is given below.) =

Corollary 2.1. The contravariant Hermitian form on V such that (v |[v)=11is
positive-definite if and only if# > 0. =

Definition 2.2. Let P be an arbitrary polynomial in B. The vacuum expectation
value of P, denoted by (P ), is defined as the constant term of P.
One clearly has the following useful formula:

(w®)) = (P) . (2.6a)
We can now define for P, Q € B:
(P1Q) =(w(P)Q) . (2.6b)

One checks using (2.6a) that this is a Hermitian form; it is obviously contra-
variant and (1|1 )= 1. Hence, by Proposition 2.2, formulas (2.5) and (2.6b)
are equivalent.

Definition 2.3. Define the degree of the monomial xll1 .. .x,]c" asj, +2j, +...
+ kjy. Let B] be the subspace of B spanned by monomials of degree j. B] is
clearly finite dimensional and dim B; =p(j). Here and further p(;) denotes
the number of partitions of j € Z_ into a sum of positive integers with p(0) = 1.
We have

B = B]- N (2.7)

@
jizo0
the principal gradation of B. We define the q-dimension of B to be

dimg B = 2. (dimB,)q’ .
i>o
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Then we clearly have:

dimg B = 3 p(Na’ = p@ (2.83)
ji=o
where
v@ =[]0 -q"). (2.80)
JEN
Remark 2.2. The monomial xlj 1oL x,{;" represents j; oscillators in state 1,7, in

state 2, etc. and hence the degree is essentially the energy of the state.
Putting g = exp(— B) we see that ‘g-dimension’ is related to the partition
function of statistical mechanics.

2.3. Oscillator representations of Vir.

Our aim in introducing the oscillator algebra .+ and its Fock representation is to
introduce the Virasoro operators L;. These are defined in the Fock representa-
tion B with # =1 and a, = u by:

1
Ly = 2 ajan: (kel), 2.9)
jez

where the colons indicate ‘normal ordering’, defined by

a;a; if i <j
rajap = (2.10)
aja; if i>j .
As a result of normal ordering, when the operator L is applied to any vector of
B, only a finite number of terms in the sum contribute. Hence L, makes sense
in B. The fundamental property of the L is that they provide a representation
of the Virasoro algebra Vir in B with central charge ¢ = 1:

Proposition 2.3. The L satisfy the commutation relations

(m* — m)
[Lm ’ Ln] = (m - n)Lm+n + 6m,—n T—— (211)
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Thus the map d, — L, is a representation of the Virasoro algebrain B forc=1.
Moreover this representation is unitary.

Remark 2.3. For general # > 0, the operators L /4 satisfy (2.11) as well.

Proof of Proposition 2.3. From w(a,) = a_, and the definition (2.9) it is easy
to verify that w(Ly)=L_;. Hence the Hermitian contravariant form defined in
(2.6) is contravariant for Vir. Since the representation of &/in B for # > 0 is
unitary, the same holds for the representation of Vir with ¢ = 1. We therefore
only have to verify (2.11).

Lemma 2.2. lag ., L,] = kay,, (k,ne Z) . (2.12)
The following ‘cutoff” procedure replaces calculations with infinite sums by

calculations with finite sums.
Define the function ¢ on R by:

Yy =1if x| <1; yx)=0if [x{>1. (2.132)
Put
1
L&) =— 2. ia_jaj,, V(e . (2.13b)
2 jez :

Note that L, (¢) contains only a finite number of terms if € # 0 and that L ,(e) >
L, as € > 0. More precisely, the latter statement means that, given v € B,
L,(e) (v) = L, (v) for € sufficiently small.)

Proof of Lemma 2.2. L,(€) as defined in (2.13b) differs from the same expres-
sion without normal ordering by a finite sum of scalars. This drops out of the
commutator [az, L,(€)] and so

1
[ak s Ln(e)] = 3’; [ak ) a-jaj+n] lll(ej)

1 |
5‘; [ak » a_j] aj+n lp(e]) + E‘ ;a_j[ak i aj+n ] lp(e])
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1 1
= —2—kak+n Y(ek) + kakm (e(k + n))

using (2.2). The e~ 0 limit gives (2.12). =

End of proof of Proposition 2.3.

’ 1
[Lm(e) H Ln] = EZ [a_j aj+m > Ln] lp((f])
7

1
=2 DG V(D
j

1
+"‘2—Z (] + m)a_jaj+m+n w(e]) .
7

We split the first sum into terms satisfying j = (n —m)/2 which are in normal
order and reverse the order of terms for which j < (#n — m)/2 using the com-
mutation relations. In the same way we split the second sum into terms satisfy-
ingj>—(m+n)/2andj <~ (m +n)/2. Then,

1
[Lm(e) s Ln] =—2—z (_j) :an_jaj+m : lp(e])
7

|
+ “2'“2 G+ m)ia_ja,,., Vi)
i
1
- Sm. _n Z Jjim + j) ¥ (ef) .

j=-1

Making the transformation j = j+n in the first sum and taking the limit
l -m
e >0, we get (2.11) since -3 S im+)=@m-m)12. =
j=-1




LECTURE 3

3.1 Complete reducibility of the oscillator representations of Vir.

In the previous lecture we found unitary representations of the Virasoro algebra
(2.1) with central charge ¢ = 1 in terms of the operators Ly :

g ~>L(keZ), c—>1. (3.1

The L; defined by (2.9) can be written without the normal ordering notation as

€
Ly =?a,§/2 + Z aj g » (3.2)
> -k/2

where ¢ = 0 if k is odd, = 1 if £ is even.

The operators @, form a unitary irreducible representation of the oscillator
algebra &7 in the vector space B defined by (2.3). From (3.2) the ‘energy opera-
tors’ L, is given by

Ly = p*/2 + ‘Z aja . 33)
j>o0

From (2.7) we know that B can be written as a direct sum of finite dimensional
subspaces of elements of degree j. It is easily seen that each such subspace is an
eigenspace of L, with eigenvalue u* /2 + j, where j € Z,. Thus

B = @ B;

» (3.4)
ez,

where B; is the (1/214% +j)-eigenspace of L, as well as the subspace of elements
of degree j.

19
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The decomposition (3.4) of the representation space as a direct sum of
finite -dimensional subspaces is extremely useful as it enables us to use algebraic
methods in an infinite dimensional problem, just as in the previous lectures in
the cases of d and % which have similar decompositions.

The decomposition (3.4) can now be used to discuss whether this representa-
tion of Vir in B is irreducible. For Lemma 1.1 applies to the present situation
and we can conclude that any subrepresentation U of B will have the decomposi-
tion:

U= ® (UnB). (3.5)
iez.,

We recall from Proposition 2.3 that the representation of Vir in B is also unitary
and w(Lo) =L, . It follows that the eigenspaces of L, which appear in (3.4) are
mutually orthogonal with respect to the Hermitian contravariant form (- { - ) on
B. Given a subrepresentation U of B with the decomposition (3.5), then,
denoting by U] the finite-dimensional vector space U n B]-, we can define a
subspace U L by

Ut= e U

jez.

where U]-L is the finite- dimensional orthogonal complement of U; in B;. Clearly
we have:

B=U®®U , 3.7

since

Ut={veB| (Ulvy=0}. (3.8)

It is now clear that U is also an invariant subspace for Vir, since { U | U L =0
and L;U ¢ Uimplies 0 = (LU | U*)=(U|L_; U )and so U* is also invariant
under the L; (j € Z). We have proved:

Proposition 3.1. The unitary representation (3.1) of the Virasoro algebra with
central charge ¢ =1 in the Fock space B is a direct sum of irreducible repre-
sentations. ]
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3.2. Highest weight representations of Vir.

We can construct a subrepresentation B’ of B as follows. From the properties
of the vacuum vector 1 listed in (2.4) and the definition (3.2) of the operators
Ly, we see that

L,(1) =0 * > 0), (3.9)

Ly(1) = h-1, whereh=pu?/2 . (3.10)
Let B’ be the linear span of vectors

Ly - LiL; @), (3.11)

where we take arbitrary finite sequences 0 < i) </, < ...< ;. Itiseasy to see
from (3.9), (3.10) and (3.11) that B’ is invariant under the L; and so we get a
subrepresentation of B, called the highest component of B. Note that vectors
(3.11) are not linearly independent in general.

Proposition 3.2. The representation in B’ is an irreducible representation of Vir.

Proof. If B' is not irreducible, then, as above, it can be written as the direct
sum of two representations: B = U ® U*. Each summand has a decomposition
of the form (3.5). The vacuum vector 1 spans the /-eigenspace of L, and hence
belongs to exactly one summand, which implies that all vectors of (3.11) are in
this summand. Hence the other summand is 0 and B’ is irreducible. =

Definition 3.1. A highest weight representation of Vir is a representation in
a vector space ¥ which admits a nonzero vector v such that for given complex
numbers ¢, i :

c(v) =cv, (3.12a)

do(») = hv , (3.12b)

and V is the linear span of vectors of the form

Ay dy ) O0<ip <...<§). (3.12¢)
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The pair (¢, k) is called the highest weight, and v is called the highest weight
vector.
Note that (3.12b, c) imply (see below):

d;(v) =0 for i > 0. (3.124d)

Remark 3.1. B’ is an example of a highest weight representation of Vir with
highest weight vector 1 and highest weight (1, u?/2). Note that V' is spanned
by elements of the form (3.12¢) since L, (1) = 0 for » > 0 and since V' is
irreducible.

Remark 3.2. It follows from the proof of Proposition 3.2 that a unitary highest
weight representation of Vir is irreducible.

Remark 3.3. While B’ is certainly an irreducible representation of Vir for
¢ = 1, the question remains as to whether or not B’ = B. The answer depends
on the value of u. We shall see that B’ = B for generic values of y, but this
does not hold for special values. For example, if 4 = O then the vectoru =a_ (1
satisfies (3.9) and (3.10) with # = 1. Hence we can use u to form a highest
weight representation of Vir with ¢ = 1 which is orthogonal to B’.

Let V be a highest weight representation of Vir with highest weight (c, %).
We observe that all vectors of the form (3.12¢) with a fixed value of j =7, +
i, + ...+ i; span the eigenspace V, +j of do with eigenvalue  + j, so that we
have:

V= o W, . (3.13)
jez.

It is clear that dim V},; < p(7) and that equality holds if and only if all such
vectors are linearly independent. Note also that (3.12d) follows from (3.13).
The formal power series

hV =tr,q% = T (@dm¥,)q""
jezZ.

is called the character of the representation V of Vir.
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3.3. Verma representations M(c, ) and irreducible highest weight
representations V(c, k) of Vir.

Definition 3.2. 1If all the vectors of the form (3.12¢) in a highest weight repre-
sentation of Vir are linearly independent, then this highest weight representation
is called a Verma representation.

We shall denote the Verma representation by M(c, k), where ¢, 7 are defined
by (3.12a, b).

Remark 3.4. We can conclude from Remark 3.3 that B’ isa Verma representa-
tion for generic values of %, but not, in particular, for # = 0.

Since the Verma representation M(c, /) is the highest weight representation
for given ¢, & in which all vectors of the form (3.12c) are linearly independent,
it follows that there is a homomorphism from M(c, #) to any other highest
weight representation of Vir with the same values of ¢, # which maps highest
weight vector to highest weight vector and commutes with the action of Vir.
This implies that any highest weight representation is isomorphic to a quotient
of the Verma representation. It follows, in particular, that (c, #) determines
the Verma representation M(c, /) uniquely.

The existence of a Verma representation can be established for any ¢, by
standard Lie algebra techniques. We start with the universal enveloping algebra
U of Vir, form the left ideal I(c, &) generated by the elements {dn (n>0),
dy—h-1, c—c-1} where 1 is the identity element of U, and let M(c, h) =
U/I(c, h). The algebra Vir acts on M(c, k) by left multiplication so that M(c, #)
is a representation of Vir. Consider the identity element 1 of U and let v be its
image in M(c, #). Then for n > 0, d,(v) =0 and c(v) =cv, d,(v) = hv. Thus
M(c, 1) is a highest weight representation with highest weight (c, #). The linear
independence of vectors of the form (3.12c) is assured by the Poincaré- Birkhoff-
Witt theorem. Hence M(c, k) is a Verma representation.

Proposition 3.3. (a) The Verma representation M(c, &) has the decomposition

M(C, k) = @ M(C, h)h+k (3.14)
keZ,

where M(c, h),, ; is the (h + k)-eigenspace of d, of dimension p (k) spanned
by vectors of the form

dg ...d; @) with 0 <i <. . <j

—ts




24 Bombay Lectures on Highest Weight Representations . . .

One has:
chM(c, ) = q"/e(q) , (3.15)

where y(q) is defined by (2.8b).
(b) M(c, k) is indecomposable, i.e. we cannot find nontrivial subrepresentations
V, W such that

Mc,h) =V eow. (3.16)
(c) M(c, k) has a unique maximal proper subrepresentation J(c, 4), and
Ve, h) = M(c, h)/J(c, h)

is the unique irreducible highest weight representation with highest weight
(c, ). We have:

ch Vie,n) < q"lv(g) . (3.17)

Proof. (a) follows from the previous discussion.

(b) Lemma 1.1 applies so that, if (3.16) were true, both ¥ and W would be
graded according to (3.14) and therefore the vacuum vector v would belong to
V or W. If v belongs to a subrepresentation, then this subrepresentation must
coincide with M(c, h).

(c) By Lemma 1.1 all proper subrepresentations are graded according to (3.14)
and so is their sum which is also a proper subrepresentation since it does not
contain v. The maximal subrepresentation J(c, k) is therefore the sum of all
proper subrepresentations. The rest follows immediately. =

Note that the irreducible highest weight representation V' (c, 4) of Vir can be
defined as the unique irreducible representation having a vector v such that

dv) =0 fori >0, d,(») =hv, c@)=cv. (3.18)
Similarly, the Verma representation M(c, ) can be defined as the unique repre-

sentation of Vir having a vector v satisfying (3.18) and such that all monomials
(3.12¢) are linearly independent.
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Remark 3.5. Note that the representations V(c, &) with 4 > 0 are precisely all
irreducible positive energy representations of Vir.

The antilinear anti-involution w of Vir extends to an antilinear anti-involu-
tion of its universal enveloping algebra U. From Proposition 3.3(a) it makes
sense to define for each u € M(c, h) its expectation value {u ) as the coefficient
of the highest weight vector v in the expansion of u with respect to (3.14)(since
M(c,h)y, = Cv). Since any element of U is a linear combination of elements of
the form

R=@; ...dy) @k @ ... dp),
wheres, = 0,7, 2> ...2j,>0, i, >...2i,> 0, and since

WR) = @i, d;) W)@ - d;)

~i° 7

we deduce the following important property of the expectation value:
{w(R)(¥)) = (R(v)) provided that c,h € R . (3.19)

Proposition 3.4. (a) Provided that ¢ and h are real, M(c, h) carries a unique
contravariant Hermitian form (- |-) such that (v |v)=1, where v is the
highest weight vector.

(b) The eigenspaces of d,, are pairwise orthogonal.

(c) Ker (- |-)=J(c, h). Hence V(c, k) carriesa unique contravariant Hermitian
form such that {v | v )= 1, and this form is non-degenerate.

Proof. (a),(b) We define (- |- ) on monomials P(v)=d_,-m d_,-l(v) and
o) =d_]-n - d_j1 (»v) by:

(PG)100)) = (W@)QO)) = (d; ... d d; ...d; ().
(3.20)
This is a Hermitian form due to (3.19). This Hermitian form is obviously con-
travariant. Clearly (3.20) vanishes if i, + ...+, #j, +...+/,.
(©) Ker (- |-)={ueM(, h)l(ulw)=0 for all weM(c, h)} clearly is a
proper subrepresentation of M(c, k) since the highest weight vector v is not
contained in it. Moreover any proper subrepresentation ¥V of M(c, h) lies in
Ker (- |-). This is clear from (3.20), since if P(v)e V and Q(¥) € M(c, h),
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then w(Q)P()e V, and if (w(Q)P(v) )+ 0 we get, using Lemma 1.1, that

H

ve Vand hence V=M(c, h). =

Proposition 3.5. There exists at most one unitary highest weight representation
on Vir for a given highest weight (c, i), viz. V(c, ). A necessary condition for
the unitarity of V(c, k) is thate > 0,k > 0.

Proof. The first statement follows immediately from Remark 3.2 and Pro-
position 3.4. A necessary condition for unitarity is that

¢, =(d_yvld_,v)=> 0 foreach n > 0. (3.20)
But contravariance and the commutation rules show that

¢, = 2nh + c(n® — n)/12 . (321

n

Putting n = 1, we get ¢; = 2k so that we must have 2 > 0. Moreover, (3.21)
shows that ¢, is dominated by cn® for large n, so that ¢ > O is also neces-

sary. [}

Remark 3.6, The Hilbert completion of every unitary representation V(c, k)
can be integrated to a projective representation of Diff S* (see Goodman-Wallach
[1985]).

3.4. More (unitary) oscillator representations of Vir.

We have constructed a unitary representations of Vir for ¢ = 1,4 > 0 using the
oscillator representation. Now if g is a Lije algebra with representations in ¥V,
and V,, then it has a representation in V; ® ¥, defined by

a(v, ® v) = (avy) ® v, + v; ® (avy) (3.22)

for every a in g. Moreover, if ¥, and ¥, are unitary, we can define a Hermitian
formon V; ® V, by

(v ® vy lwy ®wy) = (v wi) (v lwy) (3.23)

and it is easy to verify that this is a positive-definite Hermitian contravariant
form. Hence the tensor product of two unitary representations of g is unitary.
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Taking tensor products of the oscillator representation with itself we can
construct oscillator representations of Vir for any positive integral value of ¢
and any A > 0. Taking the highest component, we have a unitary highest weight
representation of Virforanyc=1,2,...and 2 > 0.

The following modification of the Virasoro construction was found by
Fairlie (see Chodos-Thorn [1974]). Defining for arbitrary real A, u

Loy=@W +\)2+ 3 ajaq (3.24a)
ji>o
and, fork#0
~ 1 )
L= 2. a_j gy + iNkgy (3.24b)
€z

we can easily verify, using (2.11) and (2.12), that

~ o~ ~ m® - m
(L - Ln] = (m — n)me + Sm,-ni—_lg—) (I + 12)%) .(3.25)

(As before, we take #=1 and q, = u.) Clearly w(Zk) =E_k and the form
(- |- ) defined on the Fock space B is a Hermitian contravariant form for this
representation of Vir as well. Taking the highest component, we therefore
have a unitary highest weight representation of Vir for c=1+ 12A%, h =
(A% + p?)/2. In the ¢ > 0, A > 0 quadrant we therefore have unitarity of V(c, #)
for points (c, 1) lying in the region between the line ¢ = 1 and h = (c - 1)/24.
Taking into account the possibility of tensoring, the situation is as summarized
in Figure 3.1. The entire region to the right of the line ¢ =1 is a region of
unitarity, with the exception of the shaded triangles. We shall see later that
V(c, h) is unitary here as well, but we do not have a manifestly unitary oscillator
construction. (This is a very interesting open problem.)

The following notion is important in the analysis of irreducibility.

Definition 3.3. A vector u of a representation of Vir in V is called singular if
it is non-zero and

d,(u) =0 for n > 0. (3.26)
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Figure 3.1

Of course a scalar multiple of the highest weight vector of a highest weight
representation is singular. The following assertion is clear by Lemma 1.1 and
Proposition 3.3.

Proposition 3.6. A highest weight representation of Vir is irreducible if and only
if it has no singular vectors other than scalar multiples of the highest weight
vector. =

We have not said anything about the region 0 < ¢ < 1, # > 0. We shall
now show that there is an oscillator representation for the Virasoro algebra
for ¢ = %. The oscillators will, however, be fermionic oscillators ¥, satisfying
the anticommutation relations

Win > Ynls = YnVp + Yn ¥ = 8 n (mun € 8 + Z) , (3:27a).

where either § = 0 (‘Ramond sector’) or § = % (“Neveu-Schwarz sector’). In
the Ramond sector (8§ = 0), m =n = 0 is allowed and we have

(3.27b)

1
2o
¢0'~2-

The algebra (3.27) can be represented in the vector space

V, = Algli=>0,ies + 2], (3.28)
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where the symbol A on the right means the exterior algebra generated by the

§;. (Thus ¥y is the direct sum of C and antisymmetric tensors in the ; of rank n
for every n = 1. The antisymmetry is taken care of by the assumed relations

E,‘Ej = “E]‘Ei ) (3.29)

for all 7,7.) The algebra (3.27) is represented in V; by the identifications

Yo = 3/0%,
n>0). (3.30)
lll—n - En
For n = 0, which occurs in the Ramond sector only,
- L + 3/8 3.31
4, 75 o + 9/3k0) - (331)

We shall identify the ¥, with the corresponding operators in V. The antilinear
anti-involution w, the vacuum expectation value { ) and the Hermitian contra-
variant form { - | + ) can be defined exactly as for the oscillator algebra. In fact,
the monomials E'} - Eis (#, < i, < ...< i) form an orthonormal basis for

(- | - ), and therefore this representation is unitary.
Proposition 3.7. Let Ly (k € Z) be the operators in ¥; defined by

(1 -28)

1
- VIR AN 3.32
16 + 5 %] \D_l‘l’}.pk ( )

Ly = &

where j runs over § + Z and the normal ordering is defined by

Y = Y O k=
(3.33)
= — Yy fk<j.

Then:
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(m* - m)
(11) [Lm > Ln] = (m - n)Lm...n + 6m’_nT . (335)

Proof. A straighforward calculation using the same method as for the oscillator
algebrain Lecture 2. =

From (3.32) we see that

=(1-28)/16+ 2 j¥ ;¥ (jed+1I). (3.36)
j>0

The representation of Vir in V5 has central charge ¢ = %. It is not irreducible:
the subspaces Vz* and ¥; of even and odd elements respectively are subrepre-
sentations of V5. The elements of lowest energy in ¥y, and Vi are 1 and &, with
energy O and % respectively, and in V5 and Vgare 1 and &, both of energy 1/16
(as is easily seen from (3.36)).

Furthermore, all four representations V" are irreducible. Indeed, by Pro-
position 3.6, if it were not the case, ¥;- would contain a singular vector u of
energy ho + no where by = 0, % or 1/16 and no > 1. The vector u would
generate a unitary representation of Vir with highest weight (3, A + no). But,
as we shall see by the end of these lectures, the representations V' (3%, h) are
unitary for 2 =0, 1/16 and % only. Thus, we arrive at the following

Proposition 3.8, The representation of Vir given in Proposition 3.7 is irre-
ducible in the even and odd subspaces ¥*. In the Neveu-Schwarz sector we have
a unitary highest weight representation of Vir with ¢ = %, h=0in ¥y} and with
¢ =%, h="%in V. In the Ramond sector we have a unitary highest weight
representation of Vir with ¢ =%, h = 1/16 in both ¥ and V.. Finally we have:

ch V(—;— ) + ch V(—z— ?) [T (1 £4m%y, @337

nelZ.,

1 1
ch V(——,-——)= gV [T (1 + q™1). (3.38)
2 16 MEZ+

So far we have constructed two types of irreducible representations of Vir:
the representations V, 8 and the highest weight representations ¥V (c, k). Of
course, we also have the lowest weight representations V*(c, #), dual to Ve, h).
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Conjecture (Kac [1982]). An irreducible representation of Vir for which the
energy operator is diagonalizable with finite dimensional eigenspaces is either
Vu:,B or V(c,h) or V¥(c, h).

This conjecture has been checked by Kaplansky and Santharoubane [1985]
in the case when all eigenspaces of d, have dimension < 1. Recently Chari and
Pressley {1987] proved that the conjecture is true for unitary representations.




LECTURE 4

4.1. ﬁe algebras of infinite matrices.

In this lecture we shall study Lie algebras of infinite matrices and realize the
algebras discussed earlier as its subalgebras. We shall then see how Dirac’s
positron theory can be given a representation-theoretic interpretation and
used to obtain highest weight (= positive energy) representations of these Lie
algebras.
Let
V= @ Cy; (4.1)

be an infinite -dimensional complex vector space with a fixed basis { vilieZ}.

We shall identify v; with the column vector with 1 as the j-th energy and O else-

where. Any vector in ¥ has only a finite, but arbitrary, number of nonzero coor-

dinates (g;);c z; this identifies ¥ with C*, the space of such column vectors.
The Lie algebra gf., is defined by:

8% = { (a;);, je 7 | all but a finite number of the a;;are 0 b, (4.2)
with the Lie bracket being the ordinary matrix commutator.

We denote by Eij the matrix with 1 as the (7, ) entry and all other entries 0.
The E,-]-(i,j € Z) form a basis for gf_ . Clearly,

and
Ez"Emn = 6]'"1 Ein . (4.3b)

The commutation relations of gf. can be expressed as the commutation
relations of the Ej;:

33
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[Ei]' ’ Emn] = 6]'m Ein - 6m'E (4-4)

mj -

The Lie algebra gQ_ can be viewed as the Lie algebra of the group GL_
defined as follows:

GLw = { A= (aij),-, jez | A invertible and all but a
(4.5)
finite number of a;; — §;; are 0 }
The group operation is matrix multiplication.
We define a bigger Lie algebrad,,:
A =1{ (@ 0ijeZ,a; =0 for |i—j|>0}. (4.6)

Matrices in d, have a finite number of nonzero diagonals. It is easy to see that
the product of two matrices in &@_, is well defined, and is again in &, , so that &
is a Lie algebra with the matrix commutator, containing g€, as a subalgebra.

We define the shift operators Ay by

Ak V]' = Vf—k . (47)
Clearly, by (4.3a),
Ar = 2. Eiuk - (4.8)
ieZ

Ay is the matrix with 1 at each entry on the k-th diagonal (k = O being the
principal diagonal) and O elsewhere. The A, form a commutative subalgebra
ofd,,:

[Aj, Al =0 (Gkez) . (4.9)

In Lecture 1 we found representations of d in Vg 8iven by equation (1.9).
We shall change our notation by replacing vy in (1.9) by v_; so that (1.9)
becomes:

d,(vgp) =k —a—-Bn+ vy _, > (4.10)
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from which we deduce that

dy= 2 (c-a-B0n+ 1)E_, . (4.11)
kezZ

Clearly the d,, are in &, since d,, has nonzero entries only on the n-th diagonal.
This gives an inclusion of d as a subalgebra of @,.

42. Infinite wedge space F and the Dirac positron theory.

In trying to construct a quantum theory of a single electron with positive energy,
Dirac was led to construct a multiparticle theory of electrons and positrons.
Let us recall the description given in his book ‘The Theory of Quantum
Mechanics’ (Dirac [1958] ):

“...the wave equation for the electron admits of twice as many solutions as
it ought to, half of them referring to states with negative values for the kinetic
energy ... we are led to infer that the negative-energy solutions . .. refer to
the motion of a new kind of particle having the mass of an electron and the
opposite charge. Such particles have been observed experimentally and are
called positrons. ... We assume that nearly all the negative-energy states are
occupied, with one electron in each state in accordance with the exclusion
principle of Pauli. An unoccupied negative-energy state will now appear as
something with a positive energy, since to make it disappear, i.e. to fill it up,
we should have to add to it an electron with negative energy. We assume that
these unoccupied negative -energy states are the positrons.

These assumptions require there to be a distribution of electrons of infinite
density everywhere in the world. A perfect vacuum is a region where all the
states of positive energy are unoccupied and all those of negative energy are
occupied ... the infinite distribution of negative-energy electrons does not
contribute to the electric field. . .. there will be a contribution -e for each
occupied state of positive energy and a contribution +e for each unoccupied
state of negative energy.

The exclusion principle will operate to prevent a positive-energy electron
ordinarily from making transitions to states of negative energy. It will still
be possible, however, for such an electron to drop into an unoccupied state
of negative energy. In this case we should have an electron and positron dis-
appearing simultaneously, their energy being emitted in the form of radiation.
The converse process would consist in the creation of an electron and a positron
from electromagnetic radiation.”
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An electron is described by its vector space of states, which we shall take to
be the vector space V defined in (4.1). We shall call v; the state of an electron of
energy j € Z. The energy is thus not always positive. To fix this, Dirac theory
requires us to consider an infinite number of such electrons satisfying the Pauli
exclusion principle. We must therefore consider the infinite wedge space ATV,
where the symbol A stands for the exterior product, i.e., the antisymmetric
tensor product. We can now define the vacuum state in accordance with Dirac
theory as the state with positive energy states empty, but all negative energy
states occupied. Denoting by ~ the exterior product of vectors, we have the
perfect vacuum:

Yy =¥ ~ V.~ Vo~ e (4.12)

Note that we have included the zero-energy state with the negative energy
states. All states are now produced by finite excitations of the perfect vacuum
which produce simultaneously an electron with positive energy and a hole, i.e.
an unoccupied state, in the negative-energy ‘‘sea”. We define the state space

FO = A7, v (4.13)

as the vector space with basis consisting of elements of the form

Y = Vip 2 Vi~ Vi, o~ (4.14)

where
@) g >0 > ... (4.15a)
(i) i =k for k K 0 . (4.15b)

Conditions (4.15) ensure that Y has an equal number of electrons and holes
(positrons) so that y is a {(charge conserving) excitation of the vacuum state y,.
We can compute the degree of the excitation of ¥ when its labels satisfy (4.15a)
by subtracting from each label of ¢ the corresponding label of ¢,. This leads us
to define the degree of Y (or the energy) as

degy = i G, +9. (4.16)
s=0
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The degree of each ¢ in F () i5 a finite non-negative integer because of (4.15b).
Now let k be an arbitrary positive integer and let { kg k. ...ky_ } bea
partition of k in non-increasing order, i.e.

k=k +k + ... +k_, (4.17a)

where

k, =k >...2k,_, . (4.17b)

Then this partition of k defines a unique y satisfying (4.15), viz.

Y = Vi o~ Vi~ e A Vi~ Vemo~ Vopen s e (4.18a)

where
ji=ki—i (i=0,....,n~1). (4.18b)

This leads immediately to the following proposition:

Proposition 4.1. Let Fk(o) denote the linear span of all vectors of degree k.
Then

(a) F(O) = =) EC(O) , F(‘)(o) = Cwo (419)
ke,

(b) dim F{®) = p(k) (4.20)

() dim, F(®) = % (dim £)g* = 1/0(q) , (4.21)

where (q) is defined by (2.8b).
Remark 4.1. An alternative way of computing deg  is by the Dirac recipe:

degy = 2 (i, > 0 which occur) — » (i;, < 0 which do not occur) .
y y (4.22)

The space F () js constructed starting from a particular reference vector, the
perfect vacuum ,. We can consider a larger vector space = A™ V with the
basis consisting of all elements of the form (4.14) with labels satisfying (4.15a),
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with the sole restriction of Dirac theory that there should be only a finite
number of unoccupied negative energy states (holes). Such elements will be
called semi-infinite monomials. F can be decomposed as the vector sum of
subspaces F (™):

F= o Fm (4.23)
meZ

as follows. Each F ("™ is based on a reference vector (vacuum)

Ym = Vm ~ Vg ~ Vg ~ --- (4.24)
The space F (™M) is the linear span of semi-infinite monomials of the form
Y = Vin ~ Vi g~ -0 s (4.25)
where
D iy >0y > ... (4.26a)
@i =k+m for k K<O0. (4.26b)
We can define
deg = 2 (iy_s + s~m) (4.27)
=0

= 3 (i; > m whichoccur) — ) (i; < m whichdo not occur) .
p s (4.28)

Physicists call m the charge number.

Corollary 4.1. Each F (me 7) has a decomposition into subspaces Fk(’”)
of fixed degree k& Z_as in (4.19). The dimensions of these subspaces satisfy
(4.20) and (4.21).

4.3. Representations of GL_, and g8 in F. Unitarity of highest weight
representations of g2 .

We can define representations R of GL ., and r of g€, in F by:

R(A)(v,-1 ~ V- L) = Av; ~ Av; ~ ..., 4.29)
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r(a)(v,-1 ~ VoA L) = o~ v~
Ty~ @y . (4.30)
Equations (4.29) and (4.30) are related by:
exp(r(a)) = R(expa), a € g2, . (4.31)

By (4.30) the basis elements of gQ._,, viz . the F

;j» are represented by r(Ej),
where

"(E‘I-J-)VI-1 ~ Vizf\ =Olf].£{l.1,i2,},
(4.32)

and = y;

~ e o~ V2 ~ V;
h k-1

i~ Vigey © Cif j=0

Of course the right-hand side of (4.32) vanishes if the label 7 is repeated. The
r(E;) obey (4.4) and map each F (™) into itself so that the representation r

of g, in F is a direct sum of representations r,, in each F (m). Recall that F (m)
is the linear span of semi-infinite monomials of the form

m_k_yg ~ -+ »  (4333)

which, using (4.32), is
Vo=rE ) TE m) Y - (4.33b)

Define a positive definite Hermitian form (- | - ) on F by declaring semi-in-
finite monomials to be an orthonormal basis. Let w be the standard antilinear
anti-involution of g€, :

w@) = af 4.34)

where a' denotes the transpose complex conjugate of the matrix 2. One checks
immediately (on the E,-J-) that

r@yiy’y = ir@Hy') (4.35)

so that the form (- | - ) is contravariant and the representation r of g¢_ on F is
unitary. The decomposition (4.23) is clearly orthogonal. Moreover, it follows
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now from (4.33b) (by the argument proving Proposition 3.2) that all representa-
tions r,,, are irreducible. Thus, we have proved

Proposition 4.2, The representation r of g€ in Fis a direct sum of irreducible
unitary representations ,,, in (™). =

The representation r was constructed by Kac and Peterson [1981] in a more
general framework and was called the infinite wedge representation.

Each F ™ has a vector space decomposition into subspaces of fixed degree as
noted in Corollary 4.1:

Fm = o pm (4.36)
k=0

We can determine the action of gf_ on this decomposition by examining the
action of its basis element Ej; given in (4.32), where we see that Ey either
replaces v; by v; or gives zero. The replacement of v; by v; changes the degree of
the vector by i —j. Thus

r(Ey) F™ c B (4.37)

If we define
degEU =7 "'] ,

we can decompose g{€. as the vector sum of homogeneous components 9y of
degree j:
8. = @ g; . (4.38)
‘ €z

A matrix in g; has non-zero entries only on the |j |-th diagonal above (j < 0)
or below (7 > 0) the principal diagonal. By (4.37):

r(g) K™ < Ko (4.39)

Moreover,

H(9)) Yy = 0 for j < O, (4.40)

since
r(Ei]-)tlzm =0 for i <j.
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Using (4.33b), we have:

™ = 5 (G- - Tm(G ) Y - (4.41)
Jo+ .. +ip=k
v s ain€Z,

The vector space decomposition (4.38) is called the principal gradation of
g%... The alternative definition (4.41) of the gradation of ¥ (m) gives us a repre-
sentation-theoretic interpretation of Dirac’s definition of energy.

Let n, be the subalgebra of g2, consisting of strictly upper triangular ma-
trices. Clearly,

n= 9 g . (4.42)
j<o
Then from (4.40) and (4.42):
| rm)v,, =0 , (4.43a3)
T EiD) Yy = N Vpy » (4.43b)
where

N=1 i i<m
(4.44)
=0 if i > m .

Definition 4.1. Given a collection of numbers A = {\; [ i€ Z }, called a
highest weight, we define the irreducible highest weight representation
of the Lie algebra g€, as an irreducible representation on a vector space L(\)
which admits a non-zero vector v, , called a highest weight vector, such that

mvy, =0, (4.45)
WA(EU')V)\ = AI'VK . (4.46)
Note the analogy of this definition with the definition (3.18) of an irredu-

cible highest weight representation of Vir. In particular, the same argument as
in Lecture 3 shows that L () is determined by A.
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Thus for each m € Z we have constructed an irreducible highest weight

representation r,, of g&_, with highest weight

wy, ={N=1for i<m,N =0 for i>m} . (4.47)
The r,, are called the fundamental representations of g2, and the w,, the funda-
mental weights. Thus F is a direct sum of all fundamental representations of
g2,

We showed in Lecture 3 (see equations (3.22), (3.23)) that the tensor product
of two unitary representations V; and V, is also unitary. Furthermore, if V;
and ¥V, are irreducible unitary highest weight representations with highest
weight vectors v; and v,, then the vector v; ®v, is a highest weight vector of
an irreducible subrepresentation of V; ® V,, its highest component. It has
highest weight equal to the sum of the two highest weights. Thus, we have
proved the following proposition.

Proposition 4.3. The irreducible highest weight representations of gR. with
highest weight of the form z k; w;, where the k; are nonnegative integers,
are unitary. = i

It is easy to see that the unitarity of a highest weight representation of g2,
with highest weight ) k; w; forces the k; to be nonnegative integers (cf.
Lecture 9).

Before concluding this subsection, let us note the following formula for the
representation R,, of 4 € GL ., on F{™:

Ry (), ~ v )= ) (detijm,z;m_l,:::)

-1 ~ . s Jmsim-1»
" Jm>im-1>- - - m>im
ij'm -~ ij_l -~ vjm~2 - .y
(4.48)
where A;r:"‘ ; ;::_‘11 ’ "7 denotes the matrix located on the intersection of the
TOWS Jp »Jm_1 » - - - and columns i, , 4, , ,...of the matrix 4.

Proof. An immediate consequence of (4.29) and standard calculus of exterior
algebra. =




4.4. Representation of a_ in F.

Matrices in @, have a finite number of nonzero diagonals and so are finite linear
combinations of matrices of the form

4 = 2 NE; ik (4.49)
i€z

where the NA; are arbitrary complex numbers. If we try to apply (4.30) to
represent g in F, we find that for k # 0, r(a;) ,,, is a finite linear combination
of semi-infinite monomials in £ ™, since the terms appearing in (4.49) vanish
if i + k> m or i < m. However, for k¥ = 0 we get

"(ao) wm = (Am + >\m_1 + . )lllm (4.50)

and the sum on the right-hand side can diverge. Since all vectors in £ ) are
finite linear combinations of finite excitations of the vacuum vector y,,, we
conclude that r(a;) can be defined by (4.30) for & # 0, but that this definition
does not make sense for k = 0. We remove the “anomaly” of (4.50) by defining
, bY:

Fm(Ey) = "m(Eij) if i# jori=j>0, (4.51a)

FuEy) = ryEy) — 1 if i <0 . (4.51b)

Replacing r,, by 7, in (4.50) we see that the right hand side is now a finite sum:

;m (aO ) d/m

m
(z >\,.) Upp i m > 1,
i=1

m+1
=—(Z A,-)tl/mifm<—land=0 ifm=0.

i=0

If 4 € a_ then 7,,(A) maps F (m) into itself. However, while the rm(E;j) obey
the commutation rules (4.4), this is no longer the case for 7,(E;). We can
rewrite (4.4) as a set of four relations:

@) [Ej, Exgl =0 for j#k, 8 +i

(iii) [Ej;, Ey;] = — Eyj for j # k
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These relations are satisfied by rm(E,-j). Since the presence of / in the com-
mutators on the left-hand side of (4.52) will leave the left-hand side unchanged,
it follows from (4.51) that the Fm(EiJ-) will satisfy the first three equations of
(4.52). In the last equation we get

where
(4.53)
a(Ey ,Epy,) = 0 inall other cases.
Thus
Pm((Ej Exg 1) = [P inEr) ] — @By Exg) - (459)

Extending 7, to d,, by linearity, we get a projective representation of @, due
to the presence of the scalar summand in (4.54). This can be made into a linear
representation of the central extension of a_, viz. the Lie algebra a_, defined by

A, = Ao ® Cc (4.55)
with Cc in the center and bracket
[a,b] = ab — ba + a(a,b)c , (4.56)

where the two -cocycle a(a, b_)-is linear in each variable and defined on the Ey by
(4.53). Extending 7,, from a,, to a, by 7, (c) = 1, we obtain a linear repre-
sentation 7,, of the Lie algebra a, in F 1t is clear that by extending w to
a, by using (4.34) on a., and by defining w(c) = ¢, the representations P Of
a., are unitary as well. Moreover, one can show in a similar fashion that every
unitary irreducible highest weight representation of g%, extends to a unitary
irreducible representation of @, .

The algebra a, was introduced by Kac and Peterson [1981] and indepen-
dently by Date, Jimbo, Kashiwara and Miwa [1981].

Let us consider first the shift operators A; which (see (4.9)) form a com-
mutative subalgebra of d_ .
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Under 7, this algebra will become
UPn(AR) s 1A ] = a(A, , AT .

It is a straightforward computation to show that

alA, , Ay) =n b, (4.57a)
so that
[7,(A), Pp(A)] = n 8y k - (4.57b)
Note also that
() = mi . (4.58)

Comparing with (2.2) we see that (4.57b) is simply the commutation relations of
the oscillator algebra /. Note that the antilinear anti-involution w of a_ is
consistent with that defined on &/ (see Proposition 2.2). Thus we have con-
structed “fermionic” unitary representations 7,, of the oscillator algebra.

4.5. Representations of Vir in F.

We have seen that the algebra d can be represented as a two-parameter family
of subalgebras of d (recall (4.10), (4.11)). Consequently the projective re-
presentation of d in F™ under 7, must be a linear representation of the
1-dimensional central extension of d, which we have already determined to be
the Virasoro algebra:

[?(dz) > ?(d])] : (l - ]) ?(dzq-]) + a(dit d]) -

The computation of the 2-cocycle is straightforward:

ald; dj) = . (k=a-BG+ D) (Q@~a=B(+ 1) alBy_; . Eq_j o)

k,Q

=8_; 3 (k—a-BG+1)(k—i—a+pG-1)

k=
(4.59)

i,-f

(—(IS;I) e+ 21'110) >
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where
1
g =~ 1282 + 128 -2, h,, =—(a —m)(a + 28 -1 - m) .
2 (4.60)
Defining L; in F py:
L, =7d) if i#0,
(4.61)
Lo = ;(do) + Ao
we see that
. @ - i)
[Li ,L]'] = (1 - ])LII+]. + 61-,_]-_’7 Cﬂ . (4.62)
From (4.61) it follows that
Livy, =0 for i > 05 LoV, = hy ¥y - (4.63)

We have thus obtained (cf. Feigin and Fuchs [1982]), a representation of the
Virasoro algebra on F (m) with central charge cg and with minimal eigenvalue A,,
of the energy operator given by (4.60). Note that these representations of Vir
are in general non-unitary since the antilinear anti-involution of &, is not con-
sistent with that of Vir.

Remark 4.2. The following four cases are of special interest:

1) B =%,
2B =0,
3B =1
Hp=~-1,a=1.

These are the wedge representation of Vir over the representation of d on half-
densities, functions, differential forms and vector fields (= the adjoint repre-
sentation) respectively. In the first case, ¢ = 1 and the wedge representation is
manifestly unitary (since the underlying representation is unitary); in the
second and the third case, ¢ = — 2; in the fourth case, ¢ = — 26. The last case
is intimately related to the fact that 26 is the critical dimension of the bosonic
string theory (see e.g. Feigin [1984], Frenkel-Garland- Zuckerman [1986]).
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Remark 4.3. Note that cg = (68> =68+ 1)c,. On the other hand, the Chern
class of the determinant line bundle A4 of the vector bundle on the moduli space
of algebraic curves, whose fiber over a curve C is the space of differentials of
degree B on C, is expressed by the same formula via the Chern class of the Hodge
line bundle A, (Mumford’s theorem). This coincidence has been explained
recently by Arbarello-De Concini-Kac-Procesi [1987] by establishing a canoni-
cal isomorphism between the second cohomology of the Lie algebra of differen-
tial operators of degree < 1 and the second singular cohomology of the moduli
space of quadruples (C,p, v, L), where C is a smooth genus g Riemann surface,
p a point on C, v a non-zero tangent vector to C at p and L a degree g — 1 line
bundle on C.




LECTURE 5§

5.1. Boson-fermion correspondence.

In Lecture 4 we realized the oscillator algebra .2/ as a subalgebra of a_ by shift
operators Ay :

[Aj. Al =8 gec - (5.1)
For the representation 7,, on F (m) we have:
Fn(Ap) Yy = O for k>0 . (52)
Let us consider all elements of ™ of the form:
(A (A ) U O <l < ... <K) . (5.3)

Due to Proposition 2.1, these vectors are linearly independent. All of them with
Z k; = k lie in Fk(’”) due to (4.37), and they form a basis of Fk(’”) since the di-

mension of Fk(’”) is exactly p(¥) (Corollary 4.1).

We have thus obtained an irreducible representation of the algebra of bosonic
oscillators & in the fermionic space F (™ which is isomorphic to the representa-
tion of &/ in the space B of polynomials in infinitely many variables described
in Lecture 2 (see Proposition 2.1). Let 0, denote this isomorphism:

Oy : F 5B = Clx; ,x,,...] . (5.4)

Note that o,, (Cy,,) = C (as these are the elements kifled by all A, , k> 0).
We normalize o,, by the condition

U > 1. (5.5a)

49
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For the transported representation 72 = o, 7,0, of &/on BU™ we have
(k> 0):

)

Xk (5.5b)

i

‘n? (A-k) Kk x , i’,ﬁ No) =m

We have put the label ‘m’ on B in (5.4) to indicate that it is the copy of B corre-
sponding to F (m) for me Z . Note that (5.5a and b) completely determine o,,.

To the principal gradation of F (m) by subspaces Fk( ) of energy k, there
corresponds the principal gradation of

pm - o pgim
keZ,
defined by
deg (i) = J - 5-6)

This follows from (4.39).
We have also the contravariant Hermitian form on B(™ transported from
F ™ via g, , which satisfies

(111)=1 and 7B AT =FB(A,) . (5.7)

Note that (2.6) can be rewritten as follows:

(5.8)

Here P means taking complex conjugates of all coefficients of the polynomial P.
Due to Proposition 2.2, this is the transported Hermitian form.
There are two natural questions concerning the isomorphism o,,, which can
be regarded as an algebraic version of the boson - fermion correspondence:
1. The semi-infinite monomials Vin ~ Vim 1~ - of F U™ are mapped by g,,
to some polynomials in B(™, What are these polynomials?
2. How can the representation of the subalgebra 2 of «_, in B be extended
to the whole Lie algebra a,?
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We defer the answer to the first question to Lecture 6 and take up the second
question.

It turns out simpler to deal with F itself rather than with each F (M) Hence
we define the direct sum of maps

o= © g,, (5.9a)
meZ
so that -
0:F= o FMmM spg= o gm (5.9b)
meZ meZ

To keep track of the index m on the right-hand side of (5.9b), we introduce a
new variable z and put

B = MCxy,%,...] . (5.10)
Thus
o(¥,,) = 2" (5.11)

and we can view B as the polynomial algebra in x;,x,,...and z, z"1:

B = Clx1,%,...;2,27] . (5.12)

Welet r8 = o ro™! (resp. 72 = o7 67 !) be the transported representation of (Lo,
from F to B.

5.2. Wedging and contracting operators.

We proceed to define wedging and contracting operators in . Recall from (4.1)
that

V=9CV]'.
el

Defining the linear functional v]‘-" on V by

v =8; (Gjez), (5.13)
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we can define the restricted dual of V-

VE= @ C¥. (5.14)
ez

Vectors in ¥ and V* define operators on F as follows. Each v € V defines a
wedging operator ¥ on F by:
S o 2 7 7P (5.15)

ﬁ(v,-l ~ Viz

Each fin V* defines a contracting operator f on F by:

A (R

is

-~

- f(Vi2 )Vil ~ Vi o~ i o~ (5.16)

+f(v,-3)v,-l~ Vip o~ ViAo

s

Note that the operators ¥; and v/* are adjoint with respect to the contravariant
Hermitian form ( - | - ). The operator # maps F ™ into #(™*1)  while f maps
F into FM-1 | 1t is easy to see from (4.32) that

FEy) =¥ v (5.17)
Thus
F(Ag) = 2. 9; V¥ for kK #0, (5.18a)
ez
Flho) = 2. D% — 3 V9. (5.18b)
i>0 i<0

The operators {V;, 7*| i,/ € Z } generate a Clifford algebra:
[;i,aj]+207 [5‘-*,17/*],,:0, [‘71’;’1*]»,:511 (519)

(Here [ , ], stands for the anticommutator: [a,b ], =ab + ba.) From (5.18a)
and (5.19) it is straightforward to verify the following commutation relations,
which hold for j #0:

[F(AD, %] = v (5.20a)
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[FA), W] = -8 - (5.20b)

Our aim is to determine r? (E,-]-). From (5.17) it is clear that this can be achieved
by transforming ¥; and ¥* by o.

Remark 5.1. Putting |0 > =4, and noting that 17]- 10> =0 for j< 0 and
p#10 > = 0 for j > 0, we obtain an isomorphism between the wedge representa-
tion of the Clifford algebra and its spin representation, which is more familiar
to physicists.

5.3. Vertex operators. The first part of the boson-fermion correspondence.

Let us introduce the generating series

X@ = 3 up, X*w)= 2 uly, (5.21)
j€Z jez

where u is a nonzero complex number. As we shall see, the introduction of the
generating series for ¥; , i)}* simplifies the determination of their transforms under
g. Since X (u) is defined by an infinite series, it maps each F' (m) into the formal
completion F (™1 of F(™*1) in which infinite sums of semi-infinite monomials
are permitted. Similarly, X*(«) maps F ™ into £ (™-1). We define

F= o BOW .
mel

The transported operators ¢ X(u)o™! and ¢ X*(u) o~! map B into B, where B
is the space of formal power series in Xx;,X,, ... and z, z™!, which are poly-
nomial in z and z71.

From (5.20a, b) we find that forj # 0:

uw Xw) (5.22a)

Il

[F(A) > X() ]
[F(A) . X*@)] = ~ o/ X*@) . (5.22b)

These equations hold in F'; under the isomorphism o : F = B they will hold in
B as well. We already know the transform of Aj, namely, for j > 0 we have:

FA(A) = aF(A) o7t = 3/ax;
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FBA) = oF(A)o™t = ixj . (5.23)
Defining the vertex operators T'(u), T'*(u) by

Nw =o0XWwot
T*w) = 6 X*u)o !

we see from (5.22a) that I" (u) satisfies the commutation relations:

[8/x;, T(w)] = w/T'(u) (5.24a)

i
[ x,T@W] = —]— '), (5.24b)

with corresponding equations for I'*(«) coming from (5.22b). The two com-
mutation relations (5.24a, b) suffice to determine I'(w) (up to a constant);
similarly, I'*(«) is also determined by its corresponding commutation relations

Proposition 5.1. T'(u) and T'*(u) have the following form on Bm.

m+l u_j 9
l"(u)lg(m)= zexp( Y ulx exp( Z————-—>

=1

ol -t (5 o oo (5

=1 =1 ] ox
(5.25b)

Proof. The factor z has to be present on the right-hand side of (5.25a) since
I'(u) maps B(™ into BU™*). Now let T, be the operator on B defined by

u? u”’
(nf)(xl,xz,...):f(xl+u—l,X2+"'—“',. .,xj+7—,..-).
By Taylor’s formula

ul
T, = exp< 2 —.———) (5.26)
=1 J ox
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It is now easy to verify that
[x;, T@)T,] =0, (5.27)
by using (5.24b) and the simple relation
u’

[x]"Tu] :'“—]_._7;4 .

From (5.27) we conclude that I'(«) 7;, contains no differential part, i.e. that

-j 3
Tw) =z f(xl,xz,...)exp( 2 —“.———) ,

iz 7 ax]-

where f(x;, x» ,...) has to be determined. Using (5.24a) and the relation

0 . . ,
[-—- , exp (— 2 ulx; }: - d exp(- 2 ulx; |,
ox; =1 i>1

we find that

X; j=1

) .
[-a—, exp (— 2 u’x]->l"(u)] =0. (5.28)
We conclude from (5.28) that

. ul 3
T'u) = ¢,u)z exp( Z u’xj ) <exp - — -———) .
i=1

i> J o 0ox;

We can determine c,,(u) by noting that the coefficient of the vacuum vector
Uy Of £ ™1 in the expansion of X (1), is «™*!. This completes the proof
of (5.25a). By a similar argument we get (5.25b). =

Define the operator R(u): B =B by

RWf(x, z) = uzf(x, uz) . (5.29)
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Thus if £ (x,z) =z"g(x1, X, - - . ) then
Rw)f(x,2) = ™2™ g(x1,%,...) .
We can now write down the general form of I'(w) and I'*(x) (cf. Date-Jimbo-

Kashiwara-Miwa [1983] and Kac-Peterson [1986] ):
Theorem 5.1.

-
L) = R(u) exp( 2 ufx]- ) exp < -2 -li— —a—) (5.30a)

j=1 j=1 ] 0x;
. ul 3

T*u) = R exp (- 3 wx;)exp( > — — ) . (5:30b)
i>1 TSN

=

Remark 5.2. Theorem 5.1 is a discrete counterpart of the Skyrme model (see
Skyrme [1971]). The idea of its proof is taken from Kac-Kazhdan- Lepowsky-
Wilson [1981].

5.4. Vertex representations of g€.. and a_,.

We can now determine the representation of g and a in B™) via the iso-
morphism g,,,. The basic element is E; which is represented in Fm by ¥ 17]-* .
The preceding section has shown us that the transforms of ¥; and f:]‘-"are very
complicated, but that it is easier to deal with their generating functions. We
shall therefore consider the generating function

> v E; . (5.31a)

iLjeZ
The rgpresentation in F of this generating function under r is simply
X(u) X*(v) . (5.31b)
It is a straightforward computation to show, using Theorem 5.1 and
(exp a 9/9x) (exp bx) = (exp ab) (exp bx) (exp a 9/dx) ,

that we have
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Proposition 5.2.
S W B E = opE@X 6D a5t =~ pyy  (5.32)
LjeZ 1- (V/ll)

where I'(u, v) is the following vertex operator:

. . ul 7 3
T(u,v) = exp( 2 @ - v’)x]« exp( - 2 — —
j=1 j>1 J 0x;
(5.33)
and we have assumed that | v/u | < 1. =

In the case of 72 we observe from (4.51) that we must simply subtract

- (1-2)"

i<o0

from the right-hand side of (5.32), where we have once more assumed that
v/ul < 1. Thus we arrive at the following:
Proposition 5.3.

14

i i ~B _ 1 <_li_ m B )
guvfrm(Eij) T o ( ) Du,v) - 1) . (534)

To calculate r,ﬁ (& ,-]-) or ?,ﬁ & ,7) we have to determine the coefficient of u'v ™/
on the right-hand sides of (5.32) and (5.34).

This vertex representation of a. was discovered in the case m = 0 by Date-
Jimbo-Kashiwara-Miwa [1981] .




LECTURE 6

6.1. Schur polynomials.

In Lecture 5 we asked for the explicit form of the polynomials in the bosonic
Fock space B = C[x,, x,,...] which correspond under 0, to the semi-infinite
monomials of F (™ (recall that they form an orthonormal basis in F ™). To
find their image in B we need to first introduce the Schur polynomials.

Definition 6.1. The elementary Schur polynomials S; (x) are polynomials
belonging to C[x,, x,, . ..] and are defined by the generating function

> Si(x)z* = exp 2 xkzk . 6.1)
keZ k=1
Thus
Sg(x) =0for k<0, Sx)=1, (6.2a)
xk, xk’
Sp(x) = > L2 . for k>0 . (6.2b)

kyrokyr .=k Kyl k!
In particular
§10) = x1, S, (x) = xi2 + x, ,
S3(x) = x1/6 + x1x, + x5, (6.3)

Sa(x) = x1/24 + x3/2 + x} x,/2 + x1%3 + X4 .

59
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The elementary Schur polynomials are related to the complete symmetric
functions Ay, where k; is the sum of all monomials of total degree & in the
variables €, , . . ., €y. The generating function for the A is

N
> Ry z* = [TQ -¢e27" . (6.4)
k>0 i=1

To see the connection with the elementary Schur polynomials, substitute

i
e; + ...+ €
Xp = : N (6.5)
J

in the right-hand side of (6.1). We find that this expression reduces to the right-
hand side of (6.4), which means that

Sp(x) = hg(er ,....e5) . (6.6)

We shall denote the set of all partitions by Par. Thus A € Par is a non-
increasing finite sequence of positive integers {A; > A3 > ... > A >0}.

Definition 6.2. To each A = {A; = N\, > ...> A¢ |} € Par we associate the
Schur polynomial S, (x) defined by the & x k determinant

SA-1+1 Skz"_z -----

SAI,}\‘;,- . (x) = Skz 1 S}\z SK2+1 ..... (67)

]

det (Sy,.j_; (x)) .

Remark 6.1. 1t is well-known that
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. €1
S,\(x) = tl"",A

. €N

where 7, is the representation of GL,, corresponding to the partition A and the
¢; are related to the x; by (6.5) (see e.g. Macdonald [1979]). Formula (6.6)
shows this in the case when =, is the k-th symmetric power of the natural
representation of GL .

We find from (6.3) and (6.7):

Siq = x1/2 - x, ,
Sa1 = x3/3 - x5, (6.8)
S2 2 = x?/lz - X1X3 + x% .

It is clear from (6.2) and (6.7) that, with respect to the principal gradation
on B introduced in Lecture 2 (in which deg X = j), the Schur polynomial
S,\“ A _(x) is a homogeneous polynomial of degree | A | =X, +2, +... .

6.2. The second part of the boson-fermion correspondence.

We can now state the second part of the boson-fermion correspondence. For
simplicity we state the theorem for m = 0 (see Corollary 6.1 for the generaliza-
tion to all m):

Theorem 6.1.

000, ~ Vi, ~ ) T Siieniger,.. . () (6.9)
where ip >i-1 > ...andi_j =—k for k sufficiently large.
Proof. Our strategy will be to compute

oo {Ro (exp (¥1A1 + y2Ay + ---))Vio ~ Vi, o~ ce )

. (6.10)
= Ro (exp (¥1A1 + y2A; + .. )P (x)
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where

P(x) = oo(v;, - Vi, o~ R I (6.11)

We shall obtain the result by comparing the coefficient of the vacuum on the
two sides of (6.10), recalling from (5.5a) that oo (Y0) = 1.

Before we can proceed any further we must first settle a technical problem,
since exp (¥1 A1 + y2 Ay + ...) is clearly not in GL,, (the argument of the
exponential is equally not in g€, ). We must consider instead the larger group
GL .. defined by:

GL. = {4 = (g;li,j € Z, Ainvertibleand all but a finite
number of theg; — &, with i > j are 0} . (6.12)

Thus matrices in GL, have only a finite number of nonzero elements below the
principal diagonal and it is evident that matrix multiplication is well defined.
The Lie algebra of GL., is:

g%, = | (@) 1i,j € Z, all but a finite number of the
a; with i > j are 0} .

GL., and g act not on V,but on a completion ¥ of ¥ defined as

V={2Xgylg=0 forj>0}.
j

On the other hand, it is easy to see that the representations R and r extend to
representations of (;Z,,, and g_ﬁm on the same space F constructed from V. In
particular the formula (4.48) holds for R,,,(4) when A GL.. The exponential
map is defined on the whole of g%, and we have

expr(@) = R(expa) fora e gk, .

It is clear that if a = y; Ay + y, Ay + ... ,thenaeﬂm andexpae GL_.
Hence from the above discussion it follows that (4.48) can be used for R (exp a).
We can now proceed with the proof.

In the bosonic picture, 79 (Ag) is represented by 0/dx;, for k > 0, so that

B d
Ro(exp(y1As + 02A + ..)) =exp 3 ¥ —
i>1 ax]-
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Now let F(y) denote the coefficient of 1 when this operator is applied to P(x).
Then

F(y) = exv( 2. Y 3 )P(x)
j=1 x=0
= P(x + ) =P(y) ,
x=0
ie.
F(y) = P(y) . (6.13)
Now, exp < 2 Akyk> = exp ( 2 A% yk> =3 Ay Sp(»), using
k>1 k> x>0

(6.1). This latter expression_can be regarded as a matrix A with matrix elements

Amn = Sn-m(¥)  (mnel). (6.142)

Recalling from (6.2) that Sp(x) = O for k < O, we see that A € GL.,. Hence
(6.10) reduces to:

oo(v,-o ~ Vi A e .) = coefficient of Y, in the expansion of

OO{R(A)(VI'D -~ vi-l -~ ...)} .

We can read off the required coefficient from (4.48), which gives

det (Al T-nboare )

y=1y =254 .0

This expression is the determinant of the matrix of elements of 4 at the inter-

sections of rows 0, — 1,-2,...and columns iy, i-1,i-2,...0f A. From (6.7)
and (6.14a) this is easily seen to be S o+ _(»). Thus, we have
FO) = Sii .. (). (6.14b)

Comparing (6.13) and (6.14b) completes the proof. =
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Corollary 6.1.

Um(Vim -~ vim—l ~ ) = Sim‘m’im_l

“m+1,. .. ) - (6.15)

Corollary 6.2. In the course of the proof we have determined the action R (4)
of A €GL,, in B{™:

ern;(A)Sh = Z det(A}‘l"'m”\z""m—l,,.,)S

M;"’m,ﬂz"'m-l,--- [
nMEPar

(6.16)

Corollary 6.3. The Schur polynomials form an orthonormal basis in B with
respect to the contravariant Hermitian form ( - | - ) (defined by (5.8)), i.e.,

(S 18,) =8y, - (6.17)

6.3. An application: structure of the Virasoro representations for c = 1.

In Lecture 2 we saw that the Virasoro operators

€ 2
Lk =-2_ak/2 + Z a_j g > (6.18)
I>-k/2

where € = 0 for k odd, € = 1 for k even, satisfy the Virasoro algebra for ¢ = 1.
The a; have a representation in C[ x,, x,, ... ] given by (2.3) with # = 1.
By the isomorphism established between C[ x,, X,, ... ] and F ©) we can
choose the following representation of the a5 fork > 0, u R:

& = VIR, ag = T=Ro(hg), @ = VI . (619)

We have made use of the freedom in choosing the ¢, in (2.3).
From (6.18) we find that:

L®) = p2ja + 5 F(A_NFA) (6.20a)
i=1
Lﬁ“’ =uf,(A) + 3 P (A DF(AL) (6.20b)
j=1
L® = ui (A) + 7oA + 2 F(A_PP(Ay,) - (6:200)
i=1
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This gives us a representation of the Virasoro algebra for ¢ = 1 in F(0),

Recall the Definition 3.3 of a singular vector in a representation of Vir. Note
that it is an immediate consequence of the Virasoro algebra that v is a singular
vector if (3.26) holds forj =1 and j = 2.

We saw in Lecture 3 that the oscillator representation of the Virasoro algebra
for ¢ = 1 is a direct sum of unitary, irreducible highest weight representations.
Each such representation is generated from a singular vector, viz. a highest
weight vector. As we shall see in a moment, for generic values of u in (6.20)
there is only one singular vector, viz. the vacuum vector Y, of F (©), and this
representation is a Verma representation. However, there are special values of
u for which this is not the case:

Lemma 6.1. Let uy=-meZ and ke Z, be such that kK +m > 0. Consider

fm,k = Veam ~ YVesm-1 ~ -+ ~ V1 ~ Vg ~ Vgyqg ~ -+ € F(o) .
(6.21)
Then
L™ fy =0 forj>0, (6.22)
(-m) 1 2
L™ f i =5 n + 207 £ i - (6.23)

Proof. A direct and lengthy computation which we omit. =

In Lemma 6.1 we have identified for each u =—m e Z an infinite sequence
of singular vectors. There are two obvious questions. (i) Are there nontrivial
singular vectors for other values of u? (ii) Are there any singular vectors for
M =— m other than those listed in Lemma 6.1?

Proposition 6.1. (a) If ¢ Z then all singular vectors of Vir in F(®) are multi-
ples of the vacuum vector ¥, .

(b) ¥ u=—m e Z, then any singular vector of Vir in F (°) is a linear combina-
tion of the f,,, ; withk, k +me Z,_.

Proof. (a) This is an immediate consequence of the Kac determinant formula,
which we shall discuss in Lecture 8. (Thus, M(1, %) is irreducible for h = m? /4
(mez),ieifug Z)
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(b) We shall not give the proof. A quick way to see the correctness of the
result is as follows. Any singular vector is a linear combination of singular
eigenvectors of Lg‘m). We see from (6.20a) that a singular eigenvector has a
Lf,"")-eigenvalue of the form h =m?/4 +n, where ne Z, and generates a
subrepresentation V(1,%). From the Kac determinant formula it follows
that h is of the form h = (m +j)*/4,j € Z . Comparing we see that j is
even, ie. j=2k and n=k(k+m). Since n, ke Z, we have k+m e Z_.
These are the sole subrepresentations allowed and from Lemma 6.1 we see
that we have a singular vector for each of them. Hence the space F ©) is
a direct sum of irreducible representations V(1, m + 2k)*/4) for k, k +
me Z, if each representation occurs only once. For the multiplicity ques-
tion we may appeal to the results of Feigin and Fuchs [1983b] who have
shown that the multjplicity is indeed 1. =

From Proposition 6.1(b) it follows that:

1
FO - @ V(l,— (m + 2k)2) . (6.24)
k>0,k+m>0 4

Recall that (see 4.21))
dim, F® = o(g)™" .

The subspace V(1,%(m + 2k)*) is generated from Jm,x Which has degree
k* + mk. Hence from (6.24) we obtain

1 1 2
——= 2 ch V(l, —(m + 2k)2)qk wmk (6.25)
(@) ez, 4

Now fy, , =V, so that V(1, m?/4) is generated from ¥, - Its character will be
lowered from the Verma representation value of 1/p(q) by the presence of the
subrepresentation V(1,(m + 2)?/4) generated by the singular vector fm,, of
degree m + 1. Hence,

ch V(1, m*/4) < (1 = ¢™Ye(g) . (6.26)

Comparing (6.25) and (6.26) we see that consistency requires that equality holds
in (6.26).

Using the isomorphism between F () and € [x1,%2,...] we can summarize
the obtained results as follows:
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Theorem 6.2. Consider the representation
d > I, c~>1

of the Virasoro algebra on the space C[x,,x,,...]. Then:

(a) f ug Z, this representation is irreducible and hence is a Verma repre-
sentation.
(b) Letu=—me Z. Put

Pm’k(x) = Sk+m,..,,k+m(x) k=20,k+m=0).

k times

Then the B, ; are singular vectors with eigenvalues (m + 2k)*/4 and all sin-
gular vectors are linear combinations of the £, ;. Furthermore, we have:

Cl[xy, X3,...] = ® V(1l,(m + 2k)%/4) .
€z,
kz2-m

©) chV(1,m*/4)=(1-q¢"™")p(). =

This theorem is due to several authors: Kac [1979], Segal [1981], Wakimoto-
Yamada [1986]. The results of this subsection are not used in the sequel.




LECTURE 7

7.1. Orbit of the vacuum vector under GL .

In Lecture 4 we constructed a representation of the group GL_, in F(©® and
hence in B = C[x,,X,,...] by the boson-fermion correspondence. We shall
use this correspondence to study the orbit 2 of the vacuum vector 1 in B under
the action of the group GL _:

Q=GL,"1. (7.1)

The set £2 is an infinite -dimensional manifold, each point of which is, as we shall
show, a solution of an infinite set of partial differential equations.
We are already familiar with a class of functions contained in Q:

Proposition 7.1. The Schur polynomials S, (x) (A € Par) are contained in .
Proof. By the correspondence between B and F © 1is represented in F (0) by
Yo =Vg ~ V., ~ -.-and S\(x) by some Y =v; ~ v; ~ ...,wherei_, =
—n for n > some k. For A< GL,_, defined by Av_, =i, for0<sn<k-1,
and Av; =; for all other basis elements v;, we have: ¥, =R(4) y,. Hence
foreachAe Par, y, isinGL, * Y,,ie.5, €. =

We shall use the symbol £ to denote the orbit of the vacuum vector under
GL, interchangeably in B or in F(®),

7.2. Defining equations for 2 in F(®),’

Proposition 7.2. If T € §, then 7 is a solution of the equation

ZZ (r) ®I* (1) =0 . (7.2)
e

Conversely, if e F(®, 7+ 0 and 7 satisfies (7.2), then 7 € .

69
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Proof. () =0 forj < 0and v*(Y,) forj > 0 so that

Z i’\](‘po) ® ;f*(lpo) =0, (7.3)

jeEZ
i.e. Y, is a solution of (7.2). Any 7 & £ is of the form
T=Ry(AYy , (7.4)
where A € GL .. From their definitions (5.15) and (5.16) we easily see that the
wedging and contracting operators have the following transformation properties
under R(A):
R,(A) R,(A)' =w, wherew = Av , (7.5a)

Ro(A)f R, (A)' =g, whereg = 47'f, (7.5b)

and ‘4~! is the transpose of A~!. We denote the matrix elements of 4 and 47}
in the basis {"i lieZ } by a;; and Eij respectively, so that:

AV]- = ; aﬁ-vt- N 54_1 lf,'* = % Ek]'V]: ; ; Ek]'a]'i = Bk,- . (7.6)
If we apply R(A) to (7.3) it will act on each component of the tensor product.
Using (7.4) we get:

jZRo(A)ﬁ,-Ro(A)‘l (1) ® Ry ()R, () (1) = 0 .

Using (7.5) and (7.6) this becomes:

‘Zk aﬁﬁi(r) ® Ek/ ;]: (T) =0
L7,

which can be rewritten as:

2. (Z —kfafi) (1) ®vE(n) =0
j

ik

ie., as(7.2).
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N

Conversely, let 7€ F(9 70 and 7 satisfy (7.2). We can write 7= Z Cx Tk
k=1

a linear combination with non-zero coefficients ¢ of some semi-infinite mo-

nomials 7, such that 7, is a semi-infinite monomial of greatest (principal)
degree; we may assume that ¢, = 1. If among the 7; with 7 > 1 there exists a
semi-infinite monomial, say 7, , of the form ‘

ro(E, ])1'1 with i <7, (7.7)

we can kill off the term ¢, 7, by replacing 7 by R,(exp — f)T which again
satisfies (7.2) (as shown above). Repeating this procedure several (but a finite)
number of times we arrive at an element of the form 7, + ¢, where none of the
semi-infinite monomials appearing in ¢ is equal to 7; or is of the form (7.7).
Since 7, + ¢ satisfies (7.2), it follows that ¢ = 0. Since, being a semi-infinite
monomial, 7; € {2, we obtainthat € 2. =

7.3. Differential equations for 2 in C[x,, x,,...].

Consider the expression
Xt ® X*(w)r (7.8a)

where X(u), X*(u) are the generating functions defined in (5.21a, b). Then
(7.8a) can be rewritten as:

g W) @ 5F() (7.8b)

and it follows from Proposition 7.2 that 7 & £ if and only if the “constant
term” (the term independent of «) in (7.8b) vanishes.

The isomorphism between F (© and C[x,,x,, ...}, which we discussed in
Lecture 5, extends to an isomorphism between F(® ® F(®) and Clx] X e
x,x7,...], which is the polynomial ring in x’,x, ..., x],x},... . Wecan
transform (7.8a) to the bosonic representation using the identification established
in Proposition 5.1:

Xw) > D) = uz exp( zufxl_)exp( }zu]_" d )

j=1

QJ
\‘

izl

X*u) - T'*(u) = z7* exp(— > ufx]'f) exp ( g / %)
j




72 Bombay Lectures on Highest Weight Representations . . .

Thus (7.8a) becomes:

u exp (j;l /(e ~ x]'.')) exp ( - jgl uT—](s%— sj—},—))f(x')f(x") .

Defining new variables x, y by:

X =x-y, X'=x+y (7.9a)
so that
! " 2 ) ) 0 (7.9b)
X =X ==, T T T .
Y ox ox ay

we deduce from Proposition 7.2

Proposition 7.3. A nonzero element 7 of Clx,,x,,...] is contained in £ if
and only if the coefficient of «4° vanishes in the expression:

. g
u exp (~ > 2u]y]-) exp ( > —u—— ——)T(x - »1lx +y) .
=1 iz 7 ay,- (7.10)

7.4. Hirota’s bilinear equations.

Definition 7.1. Given a polynomial P(x,,x,, . . .) depending on a finite number
of the X; (G=1,2,...), and two functions f and g, we denote by Pf . g the
expression

P(a

—_— WOy — Uy Xy —Uy, )y, Uy L x, Y,
o, ) f(x, 1> %2 2 )g(x, 1-X2 T Uy ))I

u=0

(7.11)

The equation Pf -g = 0 is called a Hirota bilinear equation.
To illustrate this notation take P = x. Then

) 9 ]
Pf.g = sz(f(x - u)g(x+u))lu=o = - g(x) 5)’:‘:4— f(x)—ag .
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Let P = x". Then from Leibniz’s formula we obtain:

(n) okf an-kg

- =n_k —
Bre= 2 CON ) ok ook

k=0
Remark 7.1. Note that
Pf-f =0 ifand only if P(x) = — P(-x) .

We now expand the exponentials in (7.10) with the help of the generating
functions (6.1) for elementary Schur polynomials:

u(Z W5Cw)( T wl§@ )ty 012)

j=o0 j=o

where
5 - 0 1 9 1 o (7.13)
Y ay, 2, 3 ay, ] '

Putting equal to zero the term in (7.12) which is independent of u, we get the
system of equations:

2 S5, G-y Tx+y) = 0 . (7.14)

IEY)
Now

S @ITE =T +) = 5, Q)T -y WGy +u)|

- 0
= 81,3, exp( S v stz)f(x —uw)r(x +u) I ueo

s=1

using Taylor’s formula. This last expression can be written as

8541 () exp( > % xs) () 7(®)

s§21

where 1 1
x ={x,,—x,,—X,, ...}
(53 )

We thus arrive at
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Theorem 7.1. A nonzero polynomial 7 is contained in § if and only if 7 is
a solution of the following system of Hirota bilinear equations:

i 5;(- 20) 8., %) exp( > xs) Tx)-7(x) =0, (7.15)
j=o 1

s>
where y,,y,, . . . are free parameters.

Proof follows now immediately from Proposition 7.3. =
Equation (7.15) is due to Kashiwara and Miwa [1981].

7.5. TheKP hierarchy.

If we expand (7.15) in a multiple Taylor series in the variables y,, y,, . . . , then
each coefficient of this series must vanish, giving us thereby a nonlinear partial
differential equation. Let us take the simple case of determining the coefficient
of y, in this expansion. Expanding the exponential in (7.15) we see that y,
appears exactly once with coefficient x,. In the expansion of the S]-(— ), »
appears only in S,(— 2y) with coefficient — 2. Thus collecting the coefficient of
¥y, we get the Hirota bilinear equation

(o x, — 28, GN7-7=0. (7.16)
With the help of (6.3), we find that

X, % — 28, () =-x, for r=1,

~x3/3—2x3/3 for r = 2,

xlx3/3—x4/2—x§/4—x‘l‘/12—xf x,/2 for r =3 .

From Remark 7.1 we can drop all odd polynomials. Hence r =1, 2 give trivial
equations, while for r = 3 the even terms give the Hirota equation

Pr-7 =20, where P = x‘l‘ + 3x§ - 4x x, . (7.17)
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From (7.11) we can rewrite (7.17) as:

a* 92 a2
+ 3 - 4 Tx +uw)rlx—u =0.
<8u‘l‘ du’ aulaua) ( )7 )|u=0

Putting x, = x,x, =¥, Xx; = t and introducing a new function

2

0
uGx,y,0) = 2 —5 (logn ,
ox

we find after a calculation that (7.17) becomes the Kadomtzev-Petviashvili

(KP) equation:
3 9%u ) (au 3 du 1 a3u)
— u

(7.18)

4 9y? ox

Note that the term in brackets on the right-hand side of (7.18) is the KdV
equation. Hence, if u is independent of y, the KP equation reduces essentially

to the KdV equation.
As an immediate consequence of Proposition 7.1 and Theorem 7.1 we have:

Corollary 7.1. The following functions are rational solutions of the KP

equation: )

0
o’ (log S5 (x, y. t,cq,65,...)

where ¢, , ¢5, . . . are arbitrary constants. =

Remark 7.2. The family of nonlinear equations (7.15), of which the first is
the KP equation, is known as the KP hierarchy. The idea that the solutions of
the KP hierarchy are parametrised by an infinite dimensional homogeneous
space is due to Sato {1981}, and it was developed by Date-Jimbo-Kashiwara-
Miwa [1981]—[1983]. The KP hierarchy appears as the compatibility condi-
tion for the system of differential equations

olx,u) = A%(x, )¢ (x, u)
ox

n
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where Af denotes the differential part (i.e. terms containing non-negative
powers of 3 =9/ox,) of the n-th power of the formal pseudodifferential
operator

A=03+ag(x)" +a,x)0% + ...

Here x =(x,,X,,...), 3~ ' is the formal inverse of 3/dx,, and p(x,u) =1+
o (u! +9,(x)u”? + ... . The compatibility conditions are
m n
L
0x,  0xy oo

Equating the coefficients of powers of 3 in the above equation gives the KP
hierarchy of PDE’s on the functions . We can also rewrite the compatibility
conditions in the Lax form

94
— =4, 4] .
0%y,

The function ¢(x,u) and the operator A are related to 7€ 8 by ¢(x,u) =

. u’l 3
! (e T wly)(ep - T~ o)), and L= PO where
j>1 j=1 1 0x;

P=1+¢,(x)3"" +¢,(x)3"% + ... (see Kashiwara-Miwa [1981] for details).

Remark 7.3. Denote by UGM (universal Grassmann manifold) the set of all

subspaces U of V= ) Cy; such that U contains =  Cv; for k>> 0 as a
jezZ J<-k

subspace of codimension k. Note that Q ={u, . u_

j>> 0}, so that we can define a bijective map

1~ .Iu_]-=v_,-f0r

f: PQ > UGM

by flu, ~ u_, ~ )= z Cy (here PS) stands for projectivisation of §2).
i
Thus (due to Theorem 7.1) the set of non-zero polynomial solutions (considered

up to a constant factor) of the KP hierarchy is parametrized by the UGM. This
is the fundamental observation of Sato [1981].
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7.6. N-soliton solutions.

The Lie algebra g, has a representation in C[x,,x,,...] defined by the
vertex operator I'(u, v). Exponentiating an element of gf_ gives us an element
of GL,,. The following proposition shows that exp (aI'(u, v)) may be thought of
as 1 +al'(u, v):

Proposition 7.4. T'(u, v)?7 = 0 for ‘good’ formal power series .

Proof. VBy Taylor’s formula,

G}
exp ( 2 )\,-a——->'r(xl,x2 ) =70 FALx, RN, L)
i>1 Xy
Hence
ul -y
P, v)r(...,x;,...) = (exp Z (uf—vf)x]-)'r(...,xj———j——-,...) .
j>1

Using the well-known commutation relation’

et eB = ¢BeA f
which holds if
[A,B] =cI,
and the expansion ;
z
log(l—z)=—z—_—— (1z1<1)
j=1 7

we find, under the assumption |u |, |v | < min (|4 |, 1V |):

W - -v)

re’ , Yru,r(...,x;,...) = ——F"—"+— =

@', v) T (u, v)7( i ) P Yo

. . . ud v Ty -i T

xexp( 2 (uf—vf+u"—v'f)xj)r(...,x]- - ; A I
i>1 '

(7.19)
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The expression (7.19) is valid for all u # V', v #u’ by analytic continuation.
Taking the limit &' > u,v' >vin (7.19), we get ['(u,v)* 7=0. =

Corollary 7.2. 'The function

‘rN;a;u’v(x) =0+ aT,,v,))...(0 + ayluy,vy)) - 1 (7.20)

is a solution of the KP hierarchy. (It is known as the 7-function of an N-soiiton
solution.)
Proof. The KP hierarchy can be written symbolically as follows:

S(rert)=0,
where S = 3 9; ®* is an operator on F ®F commuting with the diagonal
ez
action of GL_ (see the proof of Proposition 7.2). Since I'(u, ) lies in the
completion of g€ (Proposition 5.2), we have:

Fw,v)Sx ®7) =STw,v)r®7+ 178 'u,vr) . (7.21)
Since
2, v)7 ®T'(u, V)T =T (U, v)* (t ®7) -T'(U,v)> 7®7—-7 O (u,v)* 7=0
by Proposition7.4, we deduce from (7.21) that
S((1+TC,v)r) ® 1 +Tu,v)r) = S(r®1) + LW, v)SFT®7) ,
This shows that if 7 is a solution of the KP hierarchy, then 1+ al’(y, v)7 is

one as well. Since 7= 1 is a solution, the proof is completed. =
The 1-soliton solution of the KP equation (7.18) is given by

01087, 474, )

uC,y,0) =2 o

2

where

(1 +al(u,v)) -1

Tl sasu,v

It

I + exp(u—-v)x + @ -v)y + @ -v3)r+c) ,
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and c is a constant. Thus, we obtain that

u—-v)* 1

2 [ cosh B((u —v)x + (u? —v?)y + @® -v*)t+0)]?
is a 1-soliton solution of the KP equation.

One easily expands (7.21) using (7.19) to write an explicit formula for the
N-soliton solutions (see Date-Jimbo-Kashiwara-Miwa [1981]). We have from
(7-19):

ulx,y,1) =

(lli had ui) (V]‘ - Vi)

1<i<j<N (“,' - V,') (Vf - u,)

Pu,,vy)...T(uy,vy) -1 =

© N . .
X exp(z 2 @ - v,i)xj) )
j=1 k=1
Hence we obtain:

@y —4 )05 =)
- ufu)

Tvia;u, v(X) = 2 rrI a4 n

osr<N §=1 1<ALpsr (“j)\ _vj”)(vj)\
. k
x exp 3 2 @ v dxg .
k>1 m=1

so that 2(3%/ax?) (108 7y. 4.y, y(*, ¥, 1, ¢4, Cs, - . .)) is the N-soliton solution
of the KP equation.




LECTURE 8

8.1. Degenerate representations and the determinant det, (c, k)
of the contravariant form.

We saw in Lecture 3 that to every pair of real numbers (c, h) there corres-
ponds the Verma representation M(c, k), which carries a contravariant Hermitian
form (- |- ) and is such that any other highest weight representation is a quo-
tient of M(c, k). Quotienting M(c, ) by its unique maximal proper subrepre-
sentation J(c, h) (= Ker (- |+ )) we get the unique irreducible representation
V(c, h) with highest weight (c, /).

It is a mathematically interesting question to determine when M(c, h) =
V(c, h), i.e. when M(c, h) is irreducible. This problem was solved by Kac
[1978]. It is clear that the answer can only depend on the highest weight
(c, k). We shall see that generically M(c, k) = V(c, h). If V(c, k) #M(c, h) we
shall say that V(c, h) is a degenerate representation of Vir. In a remarkable
recent. development, the degenerate representations of Vir have acquired a
special significance in the study of the critical behaviour of two dimensional
statistical mechanical systems (Belavin-Polyakov-Zamolodchikov [1984a, b}).
The classification of the degenerate representations of Vir is, therefore, of
interest both in mathematics and physics.

From Proposition 3.4(c) we observe that, for V(c, h) to be degenerate, the
contravariant Hermitian form (- | «+ ) on M(c, #) must have a nontrivial kernel.
Vectors of the form (3.12c) form a linearly independent set of vectors which
span M(c, h) and in this basis the matrix of the contravariant form (- |+ )is

((d-it S ) () Id_]-s ... d'jx o), (8.1a)

where

1<i <...<i, 1<j <..<j, (8.1b)

81
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and v is the highest weight vector. However, from Proposition 3.4(b) we know
that M(c, k) is a direct sum of finite dimensional eigenspaces of d,, which are
mutually orthogonal with respect to (- | - ). Hence the matrix of (- |-)isa
direct sum of finite-dimensional matrices in each eigenspace M(c, h)y,, of d,
with eigenvalue 2+ n, n€ Z_. The restriction of (. |-) to M(c, h)y,,, the
n-th level, is the p(n) x p(n) matrix defined by (8.1a,b) with the additional
condition that

Si=Shon. 619
Note that the entries of this matrix are polynomials in ¢ and A.

The condition for the representation V(c, h) to be unitary is that the matrix
(8.1a, b, c) should be positive semi-definite for each n € Z_. It tumns out that
this gives us an effective means of determining for which highest weights V{(c, &)
is unitary. We have an even simpler criterion for degeneracy: a necessary and
sufficient condition for the degeneracy of V(c, k) is that for some n € Z_ the
determinant of the matrix defined by (8.1a, b, ¢) should vanish. We shall denote
the determinant of the matrix defined by (8.1a, b, c) by det, (c, k).

The first few values of det,(c, h) are easily found:

dety(c,h) = (vlv) =1,

det,(c,n) = (d_vld  v) = 2h,
det,(c,h) = | (d_,vid v) (d_,v|d*v)
(d*vid ,v) (@2 vid?v)
= | 4k + ¢/2 6h
6h 8h? + 4h
= 2hr(16h*> + 2hc — 10k + ©) . (8.2)

A necessary condition for the representation V(c, k) to be unitary is that
det,(c,h)>0 forn=0,1,2,... . Thus from n =1 we find that h> O is a
necessary condition, as we already noted in Proposition 3.5, where we saw that
¢ > 0 is also a necessary condition. The n = 2 case gives us more precise infor-
mation: rewriting 16h% + 2hc —10h+c as (4h—-1)2+(Qr+ 1) (c-1) we
observe that the region of the c-A plane defined by
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0<c<1-Gh-1%2h +1), h=0
is a region of non-unitarity (see Fig. 8.1). Thus by studying the sign of

det,(c, h) we can determine regions of the c-h plane where M(c, k) is not
unitary. To proceed further we need a general formula for det,, (c, 1).

v
1
0625 2 A
16h +2nc-10h+c=0 r
Ir;
05 é
A
f 7 e
0375 % 1A Ref;non_of
= 7, ¥ unitarity
v
Region of nonunitarity 4
o25pF-—— - ——— = — = = - — — =
s
7
‘
0125
v
I
%
0 1 1 1 A
o 025 o5 075 10
C-—
Figure 8.1

8.2. The determinant det, (c, &) as a polynomial in 4.

As the first step in finding a general expression for det,(c, h), we shall fix the
value of ¢ and consider det,(c, &) as a polynomial in #; we shall determine the
degree of this polynomial.

Now, & comes from the action of d, on the highest weight vector v, and in
the Virasoro algebra the commutator [d;,d;] gives rise to d, only fori+j=0.
Examining the matrix (8.1a,b, ¢) we observe that in each column or row the
term giving rise to the maximum number of such commutators is the term lying
on the principal diagonal. Thus the leading term in % of det, (c, &) is contained
in the expression

[ (dy...d; O)ld;...d; 6)). (8.3)

ISi< ... <g
Ei=n
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Lemma 8.1.
n® -1 n? -1
e)(2h +Tc +n)...

(@* ) 1d5,0)) = kin*2n +

x (2h +”1—;1c + nk ~ 1) (8.4)

where n, £ € N and v is the highest weight vector.
Proof is by induction on k, using the commutation relation

2

[d,,d*, | = nkd%! (i - 1) + 2d, +11;—1c) (8.5)

Let 4 and B be two polynomials in 4. In the following we shall write 4 ~ B
if the term with the highest power of % in A is identical to the term having the
highest power of 4 in B. This is clearly an equivalence relation and if 4 ~ C,
B~D then AB~ CD. We shall need the following corollary of Lemma 8.1:

Corollary 8.1. ko) 1d%@))y ~ k1@nn)k | (8.6)

Lemma 8.2. . . . .
@k ... dods .. dh o))

~alw1ah o).« 1ak o),

_ls

where iy , ... 0, jy ,..., ;€ Nand iy #i, #...%i.
Proof is by inductionon ) j,. =
k

If we now apply Lemma 8.2 to (8.3) we get:

Lemma8.3.  detu(c,h) ~ [ (d50)1d5 @) ym@
r,s €N
IS7s<n

where m(r,s) is the number of partitions of »n in which r appears exactly s
times. =
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Proposition 8.1. det,, (c, h) is, for fixed ¢, a polynomial in & of degree

[T p(n-rs), 8.7
r,seN
I<rs<n

and the coefficient K of the highest power of 4 is given by

kK= [] @syr® | (8.82)
r,sEN
I<rs<n
where m(r,s) = p(n —rs) — p(n ~ r(s + 1)) . (8.8b)

Proof. From Lemma 8.3 and Corollary 8.1 we get the degree of det, (¢, n) in &
to be
Z s m(r,s)

r,seN
1<7s<n

with the leading coefficient (8.8a). We thus only have to compute m(r,s),
which is the number of partitions of n in which r appears exactly s times. The
number of partitions of n in which r appears at least s times in clearly p(n — rs).
We subtract from this the number of partitions of # in which r appears at least
s + 1 times, viz. p(n —r(s + 1)) to get (8.8b). Then,

(n/r]
2 sm@rs) = 3 Y s(pn-rs) — p(n—r(s+1)))
r,seN 1ISr<n  s=1
ISrs<n
(n/r]
= 3 > pln-rs) = 2 p(n-r)
ISr<n §=1 r,seN

IS7rs<n
(The symbol [n/r] means the largest integer not exceeding n/r). =

8.3. The Kac determinant formula.
We shall require the following simple lemma in linear algebra:

Lemma 8.4. Let A(r) be a family of linear operators acting in an n-dimen-
sional vector space V and suppose that 4(f) is a polynomial function of z.
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If A(0) has a null space of dimension k, then det A (¢) is divisible by ¢¥.

Proof. We choose the basise, , . .. 5€k>€hei »- - - €y InV, such thate,, . .. , €
span the null space of 4(0), so that 4(0)¢; =0 for 1 < i< k. Then, the first
k rows of the matrix of 4 (?) are divisible by ¢, proving the lemma. =

Lemma 8.5. Consider detn(c,h) as a polynomial in & for fixed ¢. Suppose
det,(c, h) has a zero at h =h,. Then det,(c, /) is divisible by

(: — hyPP

where k is the smallest positive integer (1 < k < n) for which det(c, &) vanishes
ath=nh,.

Proof. 1If det,(c, h)vanishesat 7 = h,, then by Proposition 3.4 the matrix of the
contravariant form (- | - ) on M(c, h,) has a nonzero kernel when restricted to
the n-th level. Thus M(c, h,) has a nonzero maximal proper subrepresentation
J(c, hy) with a nonzero component J,(c, hy) in the n-th level. Let ke Z_be
the smallest number such that Ji(c, ,) # 0. Picking a non-zero u in Ji(c, ),
we have:

do(u) = (hy + Ku and d,(u) = 0 forn>0 .

Hence u is a singular vector. The application of the universal enveloping algebra
U(Vir) to u generates a subrepresentation of M(c, h,) which is contained in
J(c, hy). The component of this subrepresentation in the n-th level is the
linear span of vectors of the form

dj---d; @ O<i <...<i.2g=n-k. (8.9)
s

=1

S

All such vectors are linearly independent. This follows from the standard fact
that a singular vector of a Verma representation generates again a Verma repre-
sentation. (The latter fact follows from the absence of zero divisors in U(Vir).)
The vectors (8.9) thus span a subspace of J,,(c, k) of dimension p(n — k).
Hence the matrix of the contravariant form restricted to level n has a kernel of
dimension at least p(n — k). By Lemma 8.4 it follows that det,(c, k) is divisible
by (h—hy)P (n-k) " Since u lies in level k, J (c, hy) has a nontrivial component
in level k and dety(c, ) must vanish at # = h,. By the definition of u, k is the
minimum value for which this happens. =
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We also require the following lemma, the proof of which we defer to Lecture
12.
Lemma 8.6. Considered asa polynomial in &, det, (c, h)hasa zero at h = h, ((c),
where

hy o(c) = ;lg [(13-c)@F* +5%) + \/(T-T)(c_:z_S)(r2 -5
—24rs - 2+ 2], (8.10)
for each pair (r, s) of positive integers such that 1 < rs < n.
Corollary 8.2. det,(c, h) is divisible by

= - p(n-rs)
L] ",QN (h hr,s(C)) (811)
IS7rs<n

Proof. 1t follows from Lemma 8.6 that detg(c, #) has a zero at A =h, ((c)for
rs < k < n. The corollary now follows from Lemma 8.5. =

Theorem 8.1 (Kac [1978] ).

dety(c,h) =K [] (- h, (c))P@™ (8.12)
r,seN ’
ISrs<n

where &, s(¢) is given by (8.10) and K is the positive constant given by (8.8a, b)
(which depends only on 7).

Alternatively, let
Oy =h—h,=h+ ¢ - 1) - D24, (8.13a)
and for r # s let
@5 = (= b J(h — hg,) . (8.13b)
Then
det,(c,h) =K [] P& | (8.14)
r,seN ’
s<r

1S7s<n
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Proof. From Corollary 8.2 we know that det,(c, k) is divisible by ® given by
(8.11). Moreover the degree of @ in % agrees with the degree of det,(c, k) in
h given by (8.7). Hence det,(c, ) and & can only differ by an overall constant
which could depend on c¢. This constant is the coefficient of the highest power
of h which has, however, already been computed in (8.8a, b) and is independent
ofc. =

Corollary 8.3. 1f ¢, ((c,h) =0 and ¢, (c,h)#0 for r's’ < rs, then M(c, h)
has a singular vector of level rs.

Proof. An immediate consequence of the proof of Lemma 8.5 and Theorem
81. =

. Equation (8.14) is very convenient for computations. For n = 2, det,(c,h) =
32 Y, 1911 which agrees with (8.2).

8.4. Some consequences of the determinant formula for unitarity
and degeneracy.

Proposition 8.2. (a) The irreducible highest weight representation V(c, k) of
the Virasoro algebra is unitary forc> 1 and & > O.
() V(c,h)=M(c,h)forc>1,h> 0.

Proof. To prove (b), it suffices to show that foreachne Z_, det, (c,h) > O for
¢>1,h>0. Now for 1 <r<n, wehavey, , =h+ *>-1)(c-1)/24 > 0 for
¢>1,h>0. Forr 9‘:s,ap,‘s can be rewritten as

(r—s5)°\? h
G5 = (h— y ) +;(r2+s2—2)(c—1)

(8.15)

+—5—;€ -1 -1)(c-1)? +—(c—l)(r—s)2(rs+l)

Thus, ¢, ¢ > 0 for 1 <rs<n,c> 1, h> 0. Hence from (8.14), det, (c,h) > O
fore > 1,h > 0, proving (b).

The positivity of the determinants det,(c, k) (n e Z) in the region ¢> 1,
h > 0 implies that if we can show that the contravariant form is positive definite
at a single point in the region, then it is positive definite throughout the region
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¢>1, h>0 and hence positive semidefinite on M(c, h) (so that V(c, k) is
unitary) throughout the region ¢ > 1, 2 > 0. We have seen, however, in Lecture
3 that we have a manifestly unitary representation of Vir in terms of bosonic
oscillators for ¢ =1,2,3,...and A > 0, proving (a). =

Proposition 8.3. (a) V(1,h)=M(1, h)if and only if h # m?/4 (m e Z).
(b) V(0,h)=M(0, h) if and only if & # (m® ~ 1)/24 (m e Z).

Proof. For ¢ = 1 formula (8.12) turns into:

- 2 n-rs
det,(1,n) = K [] h——('——s)—)p( ) (8.16a)

r,seN 4
1<rs<n

so that det,,(1,h) #Ofor allne Z, if and only if h #m*/4,me Z.
For ¢ = 0 formula (8.12) turns into:

(Br—25)®> = 1\ pn-rs)
det,(0,h) = K I_EIN h - "—-——2—‘%-—-> (8.16b)
s
ISrs<n

so that det, (0, ) #0 for all ne Z, if and only if & # (m* —1)/24 (nc Z). =

We have shown in Proposition 8.2 (following Kac [1982]) that V(c, k) is
unitary in the sector ¢ = 1, 2 > O of the c—A plane. We know from Proposition
3.5 that a necessary condition for V(c, h) to be unitary is that ¢ > 0, A > 0.
This, therefore, leave the region 0 < ¢ < 1, h > 0 to be discussed.

A simple argument due to Gomes (see Goddard-Olive [1986]) shows that
for ¢ =0 the only unitary highest weight representation of Vir is the trivial
representation in which each d,, is represented by 0. For if the matrix of the
contravariant form at level 2V is to be positive definite, we require in particular
that the matrix

(d_ oy d 5 () (dZy () d ()

(d_zN(V)‘diN(v)) (dEN(V)idEN(V))
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be positive definite. Evaluating the determinant for ¢ = 0 we obtain
4N3h? (8h — 5N) ,

which is negative for large N unless #=0. If =0, then V(0, 0) is the 1-
dimensional trivial representation.

In the region 0 < ¢ < 1 it is convenient to use the following parametrization
of ¢:

6

am) =l - D

(8.17)

The region 0 < ¢ < 1 corresponds to m > 0. This parametrization has the effect
of rationalizing the expression (8.10) for hy s:

by (m) = (m+3)r — (m+2)ys) -1 . (8.18)
’ Am+2)(m+3)

Now from Fig. 8.1 we know that not all points in theregionO<c< 1,2>0
can correspond to unitary highest weight representations of Vir. Considering
that the n =2 case alone eliminates a large region, we might well suspect that
the infinite number of nonlinear constraints coming from higher levels rule out
the entire region. We know, however, from Lecture 3 that ¢ =% and & =0,
1/16 or % give rise to nontrivial unitary representations. By a detailed analysis
of the Kac determinant formula, Friedan-Qiu-Shenker [1985], [1986] have
shown that the only possible places of unitarity of V(c, k) in theregionO<c< 1,
h = 0, are the discrete set of points:

"~ (e(m), hr’s(m)), where m,r,se Z, and 1<s<r<m+1. (8.19)

For m = 0 we get ¢ = # = 0, which is the trivial representation. For m =1 we
get c =% and h =0, %, 1/16 in agreement with our construction in Lecture 3.

We shall show in Lecture 12 that the representations V{(c, &) of Vir are indeed
unitary for every pair (c, 4) belonging to the “discrete series” (8.19).

Remark 8.1. Belavin-Polyakov-Zamolodchikov [1984b] pointed out that the
series (8.19) correspond to the most important 2-dimensional statistical mechani
cal models. Then, Friedan-Qiu-Shenker [1985] interpreted this set from the
point of view of unitarity property.
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Remark 8.2. Another interesting region of irreducibility of the M(c, #) is:
c<1,24h < ¢ —1. It is easy to see that in this region one has:

> s =] a+qvt,

nez, nzi
where s, denotes the signature of (- | - }on the n-thlevel. This is shown by re-
placing in (3.24), A and u by i\ and iu and taking w(a, ) =—a_,. The calcula-
tion of .the seriesan q" for arbitrary M(c, h) is a very interesting open problem.




LECTURE 9

9.1. Representations of loop algebrasin a_..

In Lecture 4 we realized the Lie algebra d as a subalgebra of @.., and, using this,
we then constructed highest weight representations in ™) of its central exten-
sion. We shall follow this procedure now for loop algebras.

Definition 9.1. Let gf, denote the Lie algebra of all n x n matrices with
complex entries acting in C" and let C[z,¢™'] denote the ring of Laurent
polynomials (i.e. polynomials in ¢ and ). We define the loop algebra é?z,, as
g%, (C[t,t7']) i.e. as the complex Lie algebra of n x n matrices with Laurent
polynomials as entries.

Remark 9.1. We can view EQ.,, as the Lie algebra of maps from the unit circle S!
to the Lie algebra gf,, with finite Fourier series, and the Lie bracket defined
pointwise. This accounts for the name ‘loop algebra’.

An element of an has the form

a@®) = 3 tFap (g € g8%,) , ©.1)
k

where k runs over a finite subset of Z. Since the matrices e,—j(l < i,j<n),
which have 1 as the (7,7) entry and O elsewhere, form a basis of g&,,, it is clear
that the matrices

ej(k) =t ey (1 <ijj<nand ke ) (9.2)

form a basis of Efl,r The elements of ;92,, form an associative algebra with
multiplication defined on the basis elements by

ei]-(k)emn(Q) = ke eijemn = Ojm ek + 2) . (93)

93
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The Lie bracket on gAQn is the commutator of the associative multiplication
defined by (9.3):

[ey(®). emn®] = 81 €k + 0) — 8,7 €k +2) . (94)

The vector space in which g&, actsis C",which has a standard basis, , . . . , u,
of nx 1 column vectors in which ug(1 < k <n) has 1 in the k-th row and 0
elsewhere. The loop algebra g, acts in C[z, t~1]™, which consists of nx 1
column vectors with Laurent polynomials in ¢ as entries. The vectors

v’lk+f = l'_k u]- (9.5)

form a basis of C[¢,#7!]" (over C)indexed by Z. Thus we obtain an identifi-
cation of C[¢, ¢ !']" with C*. From (9.2) and (9.5),

€;j(K) Vnsej = Vn(s-iysi - (9.6)

For a(?) € g’;Z'n we shall denote the corresponding matrix in &_ by 7(@(?9).
Then from (9.6) we can deduce that e,-]-(k) has, in the notation of Lecture 4
(see (4.3)), the following matrix representation in d,:

7(617(k)) = z En(s—k)+1',ns+j - (9-7)
SEZ

More generally, given a(f) € g’En as in (9.1), the corresponding matrix in @,
has the following block form:

...a_,
@@®) = | ....... a_a, a......
...................... 9.8)
We regard (9.8) as a matrix of &_ in which the elements on each diagonal

parallel to the principal diagonal form a periodic sequence with period n.
We note some properties of the mapping 7 in the following proposition:

Proposition 9.1. (a) 7 is an injective homorphism of associative algebras, and
hence Lie algebras, since the Lie bracket is the commutator.
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(b) The image of a(t) = Za ¢/ under 7 is a strictly upper triangular matrix
if and only if

a(t) =a, + a, t + a, t* + ... with a, strictly upper triangular.
(99)

(c) The shift operator A; is the image under 7 of (z + tb)!, where

(d) Let X(k)= t*x be an element of éEn, where X is in g€,. Define an anti-
linear anti-involution w on g&, by

wXk)) = t7*xt | (9.10)
where XT denotes the Hermitian adjoint of the n x n matrix X. Then
r(w@E)) = (&K@ ©.11)

where the symbol 1 on the right-hand side indicates the matrix Hermitian
adjoint in a,

Proof is straightforward. Let us check, for example, (c). Note that by (a):

n-1

(@ + bt)j) =( z (€01 ) T T(tenl))j

i=1

(;

(2

|
—

Z Ens+i,ns+i+1 + Z Ens+n,n(s+1)+1 )]
5

s

]
—

n . .
Z Epset, nsvint )1 =AM =A; . =

i=1

Remark 9.2. Viewing g“é,, as a loop algebra, w(a(z)) is simply a pointwise
Hermitian adjoint of the loop a(z). Thus the corresponding “compact form”
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{a(®) € g%, |w@(@®) = - a(®)}
is simply the Lie algebra of maps (with finite Fourier series) of S* into su,,.

9.2. Representations of g?Z‘, in FOM).

In the previous section we have given a realization of g€, as a subalgebra of @, .
As such it will have a projective representation in the wedge space F (m) (see
§4.4) and its central extension

2, =g, ® Cc (9.12)

will have a linear representation as a subalgebra of a_,, the central extension of
- We can compute the two-cocycle & on a pair of basis elements of g¢, of
the form (9.2), using the representation (9.7) and (4.53), and we find

a('r(e,j(k)) , T(epq(Q))) = Siq Sip Sgrk,o k . (9.13)
It now follows by linearity that if e (k) = t*X, Y(®) = t°Y then
a(r(X(k)) , 7(Y(®))) = &y, ok tr(XY) , (9.14a)

where tr denotes the trace in g&,. For general elements a(z), b(¢) in Esz,, the
formula (9.14a) can be written as follows:

a(r(a(®)) , 7(6(®)) = Res, tra' (Db (?) (9.14b)

where a'(7) is the derivative of @ with respect to ¢ and Res,, is the residue at
t=0,1i.e., the coefficient of 1/z. ‘

_ We have thus been led by our search for highest weight representations of
&2, to consider its central extension g},.

Definition 9.2. The Lie algebra 5;2;,, defined by (9.12) and the commutation
relations
[a(t).c] =0,
9.15)
[a(®),b()] = a(®)b(r) — b(t)a(t) + (Res, trd' (®)b())c ,
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is called an affine Kac-Moody algebra, or simply an affine algebra, associated
to gf,.

We shall frequently use the commutation relations (9.15) for the elements
X(k) = tkx, Y(m) = ™Y

[X(k), Y(m)] = [X, Y] (k+m) + kb _p,(tr XY)c.  (9.16)

9.3. The invariant bilinear form on g‘sz,,. The action of (’}VL,l on g‘Qn.

Definition 9.3. A bilinear form ( - | - ) on a Lie algebra g with Lie bracket
[-, -] isinvariant if

(Ix, yl12) = (x| [y, 2]) foralx,y,ze g . 9.17)

The bilinear form on g%, defined by
X|Y) = u(XY) (9.18)
is symmetric, non-degenerate and invariant, because of the properties of the
trace. Now g&,, is the Lie algebra of the group GL, and ( + | - ) has the property

of being invariant under the adjoint action Ad of this group:

(Ad(4)(X) | Ad(A)(Y)) = (AXA™' |AYA™ ) = (X|Y) foralld €GL, .

9.19)
(Of course (9.17) is the infinitesimal equivalent for g€, of (9.19).)
We can define a bilinear form on g&,, in analogy with (9.18):
X&) Y(m)) = g, o tr(XY) . (9.20a)

This definition extends by linearity to general elements a(z), b(¥) of gﬂﬂln as
follows:

@(® 1 b(t)) = Res, t7! tr(a(?)b () (9.20b)
It is easily checked that (- | - ) is a symmetric, invariant, nondegenerate, bilinear

form on g,. It also has the property, which is ailalogous to (9.19), of being
invariant under the adjoint action Ad of the group GL,, where

GL, = GL(C[1, ' ]) (9.21)
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is the group of all invertible n x n matrices over C[z,¢7'], viz. for all A(¢)e
GL, we have

AU@a(A () 1 ADBNA () = (@)1 b()) . (9-22)
The form ( - | - ) can be extended to éQ;, simply by defining
(clg?,) =0, (cle)=0. (9.23)

This definition preserves all the previous properties, except that now it is, of
course, degenerate.

Definition 9.4. It is convenient from several points of view to enlarge g‘fl;, by
adding one more generatord:

g%, = g%, @ Cd , (9.24)
where the commutation relations with the new generator d are:

@, el =0, [, X)) = KX(, L., a@) = 1d@) . o

As before, a'(t) = da/dt. The Lie algebra g?Zn is also called an affine (Kac-Moody)
algebra.

Proposition 9.2. The affine algebra 5;52,1 = 5;72,, ® Cc @ Cd carries a nondegener-
ate, symmetric, invariant bilinear form ( - | - ) defined by

(a(®) | (1)) = Resy ™ tr@®b(®)  fora(®),b() e g4,
la@) =0, (lo)=0, 1 ©.26)
@la@®) =0, @lo)y=1, (@ld)=0.
Proof. 1t is clear that the condition (d | ¢) = 1 ensures that ( - | - ) is nondegen-
erate. Since [c, d] =0, to prove invariance it suffices to show that for all

X(k)> Y(m) € ggn >

(X&), dliY({m)) = (X(K)Ild, Y(m)]) .
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This, however, follow;c, immediately from (9.25) and (9.20a). =
Since, by (9.25), d4 —Ad = tA', we obtain
AdA™ =d - t4'4™! (9:27)
for4 e (71;,, acting on gNQ,, ® Cd. N - R
Now we want to lift the action of GL, from g&, ® Cd to g?,. It is clear

from the commutation relations of gAQn, viz. (9.15) and (9.25), that we must
have:

AdA@D) (@) = ¢,
AdA@) (x(r)) = Ax(DA™" + M4, x)c ,
AdA()) (@) =d — tA'A™" + yd)c ,
where A (1) € GLy,, x () € gl and N4, x), u(4) € €, and we used (9.27) in the

last line. We demand further the GL,, -invariance of the form (- |- ) on g?Zn.
This gives us

0 = (x1d) = (Ad)(x) | Ad(4)(@))

= (AxA™! + Ae|d—tA'A"! + ue)
from which A = Res,, tr 4’xA~". Similarly, from
0 = (d|d) = (Ad(4A)(@) | Ad(4)(@))

we get u =—% Res, tr((4'A™1)?).
Summarizing:

AdAD)) (c) = ¢, (9.28a)
AdUA@®) (x(D)) = Ax(DA™' + Resytr(A (DA )e ,  (9.28b)

Ad(A@) @) =d — tA'A™ — % Res, tr(t(4'A"")*)c . (9.28¢)
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One checks immediately that these formulas indeed define automorphism, of
the Lie algebra g2,,.

9.4. Reduction from a_, to 552,, and the unitarity of highest weight
representations of 4%2,.

We showed in §9.1 (see Proposition 9.1) that é\én is a subalgebra of d_ and
that the antilinear anti-involution w on g, coincides with the one induced
from da_. The central extension g?Z;, of éﬁn is a subalgebra of a_ and if we
put in addition w(c)=c, the antilinear anti-involutions on gAQ;, and @ are
consistent. Moreover, 592;, contains the principal subalgebra & of a_ (recall
Proposition 9.1 (c)). We know from Lecture 4 that «, has a sequence of
fundamental irreducible representations 7,, in F(m), which remain irreducible
when restricted to the subalgebra &/ (see Section 5.1). Thus éiZ;, has a sequence
of irreducible representations #,, in F™) and for a(¢) as in (9.9) we have:

T (1@, = 0 . (9.29)

Moreover, 7,,(c) acts by 1 ineach F/ (m) while the action of the diagonal elements

ﬁm (T(eii(o))) ‘I’m = z h m (Ens+i,ns+i) ‘I’m (9'3 0)

s€Z
can be determined from:
;m(Ens+i,ns+i)‘l’m = Nns + i, m)y, (9.31)
where
1 if m=j>0
AGj,m)y=1-1 if 0 =2j>m

0  otherwise

It is easy to see (e.g. by Corollary 10.1 (a) in Lecture 10) that the representa-
tions #,, of g¥, extend uniquely to g?, (so that (9.25) holds) subject to the
condition

M@y, =0 . (9.32)
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The Lie algebra 4%, of n x n complex traceless matrices is a Lie subalgebra
of gk,,. Hence 4%, , AQ and MZ can be defined and are Lie subalgebras of 8%,
gQ and gQ respectlvely Consequently AQ is also a subalgebra of a_. The
Cartan subalgebra 1 of 4%, has as basis the _diagonal traceless matrices e;; —
€ir1,is1 (1 <i<n—1). The Cartan subalgebra h of AQ is spanned by

{h; = €;(0) — ey,5,(0) (1 <i<n-1); d} .
We shall, however, choose as basis
{hOEc-i-en’n(O)—el’l(O) hy 1<i<n-1),;4d}.
Define linear functionals «w; (7 =0,1,...,n—1)on h by
wihy) =8; O<ij<n- 1); wj(d) =
Using (9.30) and (9.31) we can verify that
(M) Yy = ()W, (9.332)
or, more generally, using (9.32):
Fon Wy = @ (W), forheh | (9.33b)

where m' denotes the number from {0, 1,...,n—1} congruent to m mod n.

Furthermore, denoting by »n_(resp. 1) the subalgebras of the strictly upper
(resp. strictly lower) triangular matnces of 4%, , we have the triangular decompo-
sition: 48, = n_® he n,. The corresponding trzangular decomposition of bQ
is constructed as follows. Put n =n+ 3 t* 8%, A= n+ >t AQn
Then we have: k>0 k>o

~
-~

5, =n ®he n_.

Definition 9.5. For a given A € ﬂ"‘, called the highest weight, we define the
highest weight representation m, of the Lie algebra AAQ,, as an irreducible repre-
sentation on a vector space L(X) which admits a non-zero vector v,, called a
highest weight vector, such that
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m(n)r, =0,
- (9:34)
m(h)v, = Mh)y, forh eh

Remark 9.3. A general argument (as used in Lecture 3 for the Virasoro algebra)
proves the existence and uniqueness of L(N) for all A e h*.

We see that we have a representation of A?Zn in FU™ which, with vy = Vp,,
satisfies the requirements (9.34) for a highest weight representation (here we
use Proposition 9.1(b)). This representation is unitary due to Proposition
9.1(d) and the unitarity of the representation of a., in each ¥ (m),

Recall that the representation #¢®) is irreducible under g%, since the latter
contains the A;(je Z), ie., the generators of the oscillator algebra . To
determine whether A; belongs to the traceless subalgebra AQ of gQ we recall
from Proposition 9. l(c) that A; is the image in g, of the j-th power of the
1 X 1 matrix

010 .c...... 0
001 ........ 0
U EEETTERN IR
000 ........ 1
100 ........ 0 |

It is easily checked that @/ is traceless when j is not an integral multiple of n,
while 2™ =#°I. Hence A; 4R, when j is not an integral multiple of n, while
bQ commutes with all A for whxch j is an integral multiple of n. Since the
subspace

FE(()r)n) {v e F(m |r(A Ww=20,s5 = 1,2,...} (9.39)

is spanned by the vectors obtained by the repeated applications on y,, of the
A for j#sn (s € N), it is an irreducible invariant subspace for AQ It follows
lmmedlately that F((")’)ls invariant and irreducible also under AQ

We can determine F ((o)) in more explicit form with the help of the boson-
fermion equivalence under which F (™) js isomorphic to B{™ = Clx,,x,,...].
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The image ((')" of F((o")’) is easily determined since A; is represented by 0/ox;
forj > 0. Clearly

B = C[x;1j >1, jisnotamultipleofn] ,

where on the right-hand side we have the subspace of polynomials in those
variables x; for which j is not a multiple of n.

Thus, F/ (m) —B((";) is a umtary highest weight representatlon space of AQ
with hxghest welght w,’, where me{0,l,...,n—1}and m' is congruent to
m modulo n, ie. F(((',';) = [(w,,")- The represen}ation L(wy,)O0<m<n-1)
is called the m-th fundamental representation of 4%, .

We can clearly take tensor products of the fundamental representations and
the highest component will have a highest weight equal to the sum of the indi-
vidual highest weights. Summarizing, we have proved:

Proposition 9.4. The representations

Lkgwy, + kyw, + ...+ k,_w,_ )

on;Q”,where kie Z,,0<i<n-—1,are unitary. s

Remark 9.4. Proposition 9.4 is a special case of a theorem of Garland [1978]
and Kac-Peterson [1984b] for non-twisted affine algebras and general Kac-
Moody algebras respectively.

Theorem 9.1. The representation L(A\) of AA!Z,, is unitary if and only if MA;)
Z fori=0,...,n-1 and Md) e R.

Proof. The ‘if’ part follows from Proposition 9.4 since we can make Md) =0
by adding to d an arbitrary real constant. To see the ‘only if” part, put

e,,,l(l), fo = el,n(_ 1,
€ = ei,,-“(O), f;- = ei“’,-(O) fori = l,...,n - 1.

Then { e;, h;, f; } form a standard basis of 4%, for each i, and w(e;) = f; (see
(9.10)). But the only unitary irreducible representations of A%, with this
involution are the finite-dimensional ones. Thus, unitarity of L(A) implies
that A(h;) € Z_ for all i, and, in particular, that A(c)e Z,. =

Sincec=hy+ ...+ h we deduce

n-1’
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Corollary 9.1. If the representation L(A) of 4%, is unitary, then AM(c)e Z . =

The integer A(c) is called the level of L(M).




LECTURE 10

10.1. Nonabelian generalization of Virasoro operators: the Sugawara
construction.

In Lecture 9 we constructed the affine algebra g?Z;, starting from the finite
dimensional Lie algebra g?,. The restriction of the bilinear form (9.18) on
gL, to its subalgebra 4%, remains nondegenerate and we have the associated
affine algebra AAQ;,. In fact for any finite-dimensional Lie algebra g which
has an invariant symmetric nondegenerate bilinear form ( - | - ) there is a corres-
ponding affine algebra g' = § ® Cc, with commutation relations

[xk), c] =
(10.1)
[xk),y(m)] = [x,y 1k + m) + k& _,,(x1y)c,

in analogy with (9.16). In the special case where g is the one-dimensional
abelian Lie algebra, (10.1) evidently reduces to the commutation relations
(2.2) of the oscillator algebra .. Thus we can view G’ as a nonabelian generali-
zation of &,

We define § = G’ ® Cd in the same way as in Definition 9.4 for g =4,
and, as in §9.4, introduce the Cartan subalgebra il = h ® Cc @ Cd, where h is
a Cartan subalgebra of g. Then Q carries a nondegenerate symmetric invariant
bilinear form ( - | - ) defined by (9.26), with tr ab replaced by (z | b).

An important example of g which has an invariant symmetric nondegenerate
bilinear form is a reductive Lie algebra (= a direct sum of simple Lie algebras
and an abelian Lie algebra) Then one has a triangular decomposition of g, and
in the same way as for AQ,, in Section 9.4 one defines the associated triangular
decomposition of § and irreducible highest weight representatmns L(N). It is
easy to show that Z(X) remains irreducible when restricted to g’ (see e. g. Kac
[1983], §9.10). In what follows, g is assumed to be a (finite-dimensional)
reductive Lie algebra.

105
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We shall show in this lecture that we can use the generators of g’ to construct
representations of Vir in a nonabelian generalization of Virasoro’s construction
described in Lecture 2. Before doing this we shall need to collect some simple
properties of gand G'. '

Let{u;|i=1,...,dim g} be abasisin g and let {«'|i=1,...,dim g}
be the dual basis, so that

(u; lul) = 8y -
Then for any x € g we have
x = (lupd = @ lu)y; . (10.2)

Note that in (10.2) and subsequently we have adopted the convention that a
repeated upper and lower index is summed over the dimension of g.

Let 2, = uiui be the Casimir operator of g. It is easily seen to be independ-
ent of the choice of dual bases {«;} and {u!}. In particular, we have

[u, &1 =0 . (10.3)
Lemma 10.1. [ g, Q4] =0.
Proof. letx e g. Then,
[x, uiui] =[x, u,-]ui + u]-[x, uj]

[x, u,-]ui + u([x, uj] Iu,-)ui (by (10.2))
=[x, u,-]ui - u]-(uf [ x, u,-])ui (by invariance)
=[x, ui]ui =[x, y 4 (by (10.2))
=0. .
The Casimir operator §2, acts as a multiplication by a scalar on any highest

weight representation ¥ of g with highest weight A (due to Lemma 10.1).
Recall that one has:

Q, = (AIN + 25)7, (10.4)
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where p is the sum of the fundamental weights of g. (Recall that (10.4) is
proved by choosing a basis {#; } of g consistent with the root space decomposi-
tion, replacing in €2, expressions e,e_, by e_ e, + h, for @ > 0 and using the
fact that 2p is a sum of positive roots; then it is immediate that Q,(v,) =
(A I X+ 2p)v, if v, is a highest weight vector.)
Since
w;(m)| W/ (n)) = 8 8m,on » (10.5)

from (10.1) and (10.3) we have:
[u;(m), W'(n)] = mcé,, ,dimg. (10.6)

Lemma 10.2. [x,u;] (m) ui(n) + u;(m) [x, ui] (n)=0,forxe g and m,ne Z.
Proof is similar to that of Lemma 10.1. =

Lemma 10.3. Let the Lie algebra g be simple or abelian. Then,
[ [, 211 = 20 = [, [u;, x]] ,

where g is a scalar (the factor 2 is inserted for convenience) and g =0 if g is
abelian.

Proof. The lemma clearly holds if g is abelian. Since 2, commutes with g,
it acts as a scalar in every irreducible representation of g, in particular in the
adjoint representation if g is simple. Denoting this scalar by 2g and noting
that in the adjoint representation

Qo = (ad u)(ad o) = (ad u’)(ad u,)

completes the proof. =

Definition 10.1. A representation of the affine algebra §' on a vector space
V is called admissible if for every v € V we have x (k)(v) = 0 for allx € g and all
k >> 0. It is clear that L () is an admissible representation of g'.

Proposition 10.1. Let g be asimple or abelian Lie algebra with a nondegenerate
symmetric bilinear invariant form (- |-), and let §' be the corresponding
affine algebra with commutation relations (10.1). Consider an admissible repre-
sentation of § " on a vector space V. Then the operators 7}, defined by
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2w (=) WG+ k) (10.7)

T_l
k 2 jez

for k € Z, satisfy the commutation relations

[x(n), T ] = (c + gnx(n + k) . (10.8)

Remark 10.1. The normal ordering : : in (10.7) means as usual that the order
within the colons is to be preserved when —j <j+ k and reversed otherwise.
Then the series in (10.7) will always be finite when applied to any v € V (for ad-
missible V). Also, since ui(m)ui(n) is independent of the choice of dual bases,
this holds for the Ty as well. Finally, it follows from (10.6) that we may drop
the sign of normal ordering in (10.7) if k # 0.

Proof of Proposition 10.1. We shall use the cutoff procedure described in
Lecture 2. Let

Ti(e) = s UG+ k) v(er)

1
2 jez
where ¥ (x) is the cutoff function defined in (2.13a). Then

1 ,
[x(), T(e)] = £y Z [x, ; l(n=7)u'(G + K)Y (D)
7
1 . 1
;Z u (=D [x, u’](i+k+")¢/(€i)+;ﬂcx(”+k)¢/(€n)
]

+‘-;- nex(n + k)Y + k) . (10.9)

We split the first sum in (10.9) into terms for which j > (n —k)/2 (hence in
normal order) and those for which j < (n —k)/2. The latter are replaced by
normal-ordered terms with the help of the commutation relation

[[x, u;1(m), i(m)] = [[x, u;], &' Yom + n), (10.102)

which follows immediately from (10.1), since the coefficient of ¢ vanishes
by the invariance of the bilinear form and (10.3). We now apply Lemma 10.3
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to the right-hand side of (10.10a). The second sum in (10.9) is similarly split
into normal-ordered terms satisfying j > —(n + k)/2 and the remainder for
which j < — (n + k)/2. For the latter we use the dual of (10.10a):

[[x, & 1(m), w;(m)] = [[x, &', u;)(m + n) (10.10b)

and Lemma 10.3 once more. In this way we get
1 N dg ,
[x(n), Tr(e)] = ;Z clx u Y= ul G+ k) Y(ef)
j

+ —;—z:ui(-j)[x, 4 1G+k+n):¥(eg) + %ncx(n + k)Y (en)

7

+ %ncx(n +EkW(Eem+k) + gx(n+k)Y' v ,
J

where =’ is taken over — (n + k)/2 < j < (n~— k)/2. Making the transformation
j=j+nin thg first sum, we obtain in the limit € > O:

1 .
[x(n), T] = ;Z dlx w I DU G+ E+n)
7
+ uy () [x, NG+ k+n): + n(g+c)x(n+k).
By Lemma 10.2 each term in the sum vanishes, which proves the proposition. =

Theorem 10.1. Under the same hypotheses as in Proposition 10.1 we have

3 _
[Ty Tl = €+ D0 -B g + by (@im ghele+8)

(10.11)

Proof.

1 .
[Ty B1 = _)Ejz [u; (D' +n), Tl (e
]
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1 ) N )
=5 +e 2. (=N =) (G +n)Y ()
7
1 , N ,
+5 et 2 G+ mu (=)D (j + k +n)y(ef)
i

by Proposition 10.1. We now reorder terms with the help of (10.6) to get
normal-ordered expressions:

1

[Ta(), B ) =5 (c+8) 2 (=D iue—Du'G+m): ¥(eh)
)

1 .
t 5+ Q.G m (= (G +kn) e
7

1 | on
+—2-C(c+g)(dim 88, k- 2 in+DYEN} -

=1

Making the transformation j—j+ k& in the first sum, we obtain (10.11) on
taking the limite > 0. =

Remark 10.2. Let g be simple. We normalize the bilinear form ( - | - )
by choosing long roots to have square length 2. (Note that for § = 3%,
(¢ |y) = tr xy.) With this normalization, it can be shown in the same way as
for AASZ,‘, that if L(A) is a unitary highest weight representation of § then the
central element c is represented by ml, where m is a non-negative integer. In
this normalization of (- |- ), the number g, which is half the eigenvalue of
€, in the adjoint representation, is a positive integer. It is known as the dual
Coxeter number. Using (10.4) for X = 8, the highest root, we find:

g=1+(@lp).

The concrete values of g are given below.
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Table 10.1
Simple Lie algebra g dim g Dual Coxeter number g

Ag 2+ 22 2+ 1
B, 20 + ¢ 20 -1
CQ 207 + ¢ e+ 1
Dy 207 - ¢ 2¢ - 2
E, 78 12
E, 133 18
E, 248 30
F, 52 9
G 14

Proposition 10.1 and Theorem 10.]1 now give us:

Corollary 10.1. Let V be an admissible representation of g’ (g is simple or
abelian) such that ¢ = mI with m #—g. Then:
(a) We can define

1

L, =—— T (10.12)

K m+g F

so that we have:
k* — k mdim
[Lk, Ln] = (k - n)Lk+n + 6Ic+n,o 12 + f ’

mT&  (10.13a)
[Lg, x(n)] = — nx(n + k) . (10.13b)

In particular, putting d =~L,, V can be extended to a representation of g.
(b) If V is unitary, we thus obtain a unitary representation of Vir in ¥ with
central charge

m dim g

c=—, 10.14
o (10.14)

Proof. The omnly thing that remains to check is unitarity. For that choose a
basis {v;} of the compact form of g (= the fixed point set of — w, where w
is the compact antilinear anti-involution of g) such.that (v; | vg) =~ 8, and
put u; = w =i v;. Then:
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o) = (T T whuli+m) = T 3 ul-i-nu) = L,

i jez
if n #0 (see Remark 10.1). A similar calculation appliesin the case n=0. =
Remark 10.3. Note from Table 10.1 that ¢ > 1in (10.14).

Let

4
g= 29 g (10.15)

i=0

be a reductive Lie algebra with center g,. We can choose bases {u;}, { ul }ing
which respect the decomposition (10.15) and are dual with respect to an
invariant, symmetric bilinear form ( - | - ). We assume that this form is properly
normalized when restricted to each component of g (Remark 10.2). Note that
g’ is the direct sum of the gj. Corresponding to the unitary highest weight
representation of §; in L(A;) we have a family of operators L,(Ci)(k e Z) which
satisfy the Virasoro algebra, where m; is the level of L(A;) and g; the dual
Coxeter number of g;. Furthermore, g’ acts on the tensor product of the L(A)
in the usual way, so that the L,(c') commute for different i. Hence, defining for
eachkeZ

Q . 10.16
=3 LY, (10:16)
i=0

we get:

Corollary 10.2. The Li(k € Z) form a unitary representation of the Virasoro
algebra with central charge given by

(d1m gi)mi

=3

2
(10.17)

i=o m; t+ g
Remark 10.4. The construction of Theorem 10.1 is a discrete counterpart of
the Sugawara [1968] construction. The earliest reference that we know in which
the central charge is given correctly (in the case of su(n)) is the paper Dashen-
Frishman [1975]. In the following we shall follow standard practice and refer

to this as the Sugawara construction.
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Note that

1 . ,
T, = ?uiu' + 2w (-PHui() . (10.18)
j>o

The operator T, is closely related to the Casimir operator Q of g introduced by
Kac [1974] in the framework of general Kac-Moody algebras:

Proposition 10.2.  Let g be a simple finite-dimensional Lie algebra.

(a) The operator §2 defined by

=2(c+gd + 2T, (10.19)

commutes with every element of §.
(b) On L(A) the eigenvalue of Q is (A +2p | A) where p = 'Zwi is the sum of

1 -~
the fundamental weights (which are defined in the same way as for 42, in

§9.4).

Proof. (a) We see that [ d, 2 ] =0 by using the representation (10.18) for T,
and (9.25). The equality [x(n),2] =0 follows from the application of
(9.25) and (10.8).

(b) Applying Q to the highest weight vector we see from (9.29), (9.32) and
(10.18) that the only nonzero contribution is from 2(c + g)d + Q,. Using
(10.4), we get the formula immediately since p = p +gw,. =

10.2. The Goddard-Kent-Olive construction.

In the previous section (see Remark 10.3 and Corollary 10.2) we saw that the
unitary representation of Vir obtained from §', where g is a reductive Lie
algebra, has a central charge which is always greater than or equal to 1. Goddard-
Kent-Olive [1985] have found a way to construct unitary representations of Vir
for which the central charge is less than 1.

We take a reductive Lie algebra g and a reductive subalgebra p of g. Given a
unitary highest weight representation of g we can use the Sugawara construc-
tion to form a unitary representanon of Vir, viz. {L | ke 7} with central
charge ¢g from the generators of g We can construct a second unitary repre-
sentatlons of Vir {L |k € Z } with central charge cp from the generators of

(We have to be careful to follow the normalization of Remark 10.2 separate-
ly for g' and p).
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Theorem 10.2. The operators
Ly =L - L} (ke2) (10.20)
form a unitary representation of the Virasoro algebra with central charge
c=cy —cp - (10.21)

Proof. We first show that L; commutes with LY. This follows from the fact
that L; commutes with x(») when x(n) € p":

[Lg. x(0)] = [L}, x(1)] — [L}, x(n)]
=nx(n+k) - nx(n+k) =0 .
Thus R
[Lg, '] =0 (&ke 2Z), (10.22)
and hence

[Lg, LP] =0 (k,ne Z).
It follows now that

[Li L3 ]

[Lk! Ln ]

I

(28 L21 - (Lf L8]

(L L21 - (Lf L, +LP]

I

(L3 L31 - [Lf LP]

* - k)
12

(k=n)Lgyp + Sgin, o (cg — cp) -

The unitarity of this representation of Vir follows from Corollary 10.1. =

We now consider the special case where 0 is a simple Lie algebra and g =
|0 ® p. We consider two representations of fo on L(A) and L(A") with levels
mand m' respectively. Then the action of g'= P’ ® o' on L(A) ®L(A') is
given by:
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x@) Sy(m)E ew) = x@)) @w +v (y(m)(w))

for v®w e L(A)®L(A"). From this it is clear that the Sugawara construction
on g’ gives

1i=1fe1+101},

with central charge cg = =(dim p)m/(m+g)+m'/(m' +g)). Also P’ has
the ““diagonal’’ action on L (A) ®L(A’) given by

x(ny(v ®w) = x(M) @ w + v ®(x(n)(W)) .

(This is equivalent to embedding P’ diagonally in p'ep, ie x(n) > x(n) @
x(n).)) The level of thls representatlon of p'is clearly m + m'. This g1ves rise
to Virasoro operators L? x With central charge = (dim p)(m + m Y +m' + 2).
Hence, L, ‘L,%-Lk gives, by Theorem 10.2, a representation of Vir with
central charge

m m' m+ m'
=(dim}0)( + — - - )
m+ g m + g m+m + g

From (10.19) we observe that
1 1
L, =<——-—— Qf —d>®l+l®(—,——9p
2m + g) L(N) 2(m' +g)

1
—————,_sz”’ ~-d®1-1@®d
2m+m' +g) L) ®L(AD

So by Proposition 10.2(b) we have

_d>
L(AD

Ly =

1<(A|A+2p) ANIA+20) QF )
m+g m+g m+m'+g

We summarize these results in the following proposition.

Proposition 10.3. Let p be a simple Lie algebra with dual Coxeter number g.
Let {u;} and {u'} be dual bases of |0, and consider two highest weight unitary
representations L(A), L(A") of P with levels m and m'. Then
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(a) The following operators (k € Z)

1 1 o '
be = (2(m+g)—2(m+m'+g) >I€ZZ cu (UG + k) @l
1 1 L '
+ <2(m’ + g) - 20m + m + 2 )igz 1 & ui(_])u(] + k) :
: > u(=) ®d( + k), (10.23)

m+m + g jez

on the space L(A)® L(A") form a unitary representation of the Virasoro algebra
with central charge

(di m_ m' m+ m (10.24
= m — R
¢ p)<m+g m'+g m+m'+g) )

1 [(AIA +20)  (AIA + 2p) Q
® Z, =5 e - —).

2 m+ g m + g m+m + g

(10.25)

where Q is the Casimir of p.
(©) [Lg, P'1 =0, (10.26)

i.e. the Ly are intertwining operators for the representation of p' on L(A)®
LA). =




LECTURE 11

11.1. AAQ and its Weyl group.

In this lecture we shall discuss the character formula for a highest weight repre-
sentation of the simplest affine algebra AQ The rather technical results de-
scribed in this lecture are a necessary preliminary to Lecture 12, where we shall,
among other things, give the proof of Lemma 8.6 and thereby complete the
proof of the Kac determinant formula.

In the notation of Lecture 9 the Cartan subalgebra h of /5122 is spanned by
hg,h, and d where

hy ¢ - e,;(0) + e,,(0) ,

1 0
hy = €,,(0) — €;,(0) = <0 _1) .

In the following we shall denote the matrix 4, by a and choose as basis of h the
elements &, ¢ = hy + h, and d:

h=Ca®Ce ®Cd.

The bilinear form (- |- ) on 5122 is nondegenerate when restricted to Ijl;we see
from (9.26) that

(ala) =2; (cld) =1; all other pairs vanish. (11.1)
We shall identify h with h* via this form.
In the highest weight representation L(A) of 4%, (defined in Lecture 9) the
action of / on the highest weight vector v, is given by

h(r) = N(R)v, = (\|h),, heh

117
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The fundamental weights, defined by
wi(h]') = 61']' (i3j = 0, l) >

are 1
wy, =d, w, =d+—a. (11.2)

As before, we shall denote by p the sum of the fundamental weights:
1
p5w0+w1=2d+;a, (11.3)

From (11.2) and Theorem 9.1 we see that L(A) is unitary if and only if A is of
the form

1
A=md +—na +rc, wherer e R; m,ne Z+; mz=n .
2 (11.4)

Then
c(m) = (Al = my (11.5)

and so L(A) is a level m representation.

One of the ingredients which we shall require for the character formula is the
Weyl group of 6?22. The Weyl group W of a Lie algebra g is the group of those
automorphisms of a Cartan subalgebra of g which are restrictions of conjuga-
tions by elements of G, the Lie group corresponding to g . In our case this
means that the Weyl group is the quotient of the subgroup of SL,(C[t, t™'])
which leaves f1 invariant under the adjoint action (defined in Lecture 9) by the
subgroup which leaves /1 pointwise fixed. (For an equivalent definition, one
in terms of reflections of the root system, see Kac [1983].)

The adjoint action of SL,(C[t,t™']) ona, ¢ and d can be determined from
(9.28). It is then easily checked that the Weyl group of 422, which we shall
denote by W, is generated by two elements: one is conjugation by

A
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which we denote by r,, and the second is conjugation by

)

We shall denote conjugation by the k-th power of the latter matrix by % (k € Z).
Then R
W={tk,tkra|k EZ} > (11.6)

since 72 =1 and # r, =7,t_;. The action of the elements of Won his easily
computed from (9.28):

r@=-a 71r)=c rd=4d,;
(11.7)
@) = a + 2ke, flc)=c, u@ =d-ka—Kkc] .

The relations (11.7) give a matrix representation of 7, and % in h. We shall
denote by e(w) the determinant of w e W in this representation. We find that:

er,)=-1, et) =1, e@ry)=-1. (11.8)
11.2. The Weyl-Kac character formula and Jacobi- Riemann theta functions.

Definition 11.1. We define the character of the representation L(A) to be the
function ~
chy(h) = ty yexp(h)fork € h .

The study of the representations L(A) was started by Kac [1974] with the
computation of chy(#) in the framework of arbitrary Kac-Moody algebras.
Namely, according to the so-called Weyl-Kac character formula,

ZG(w)exp(wO\ +p) | h)
2 e(W)exp(w(p) | h)

trL(}\) exp(h) = ’ (l 19)

where the summations run over w in the Weyl group (whenever this series con-
verges). For a proof of (11.9) the reader is referred to Chapter 10 of the book
Kac [1983]. We shall now rewrite formula (11.9) in a more explicit form for
the case of ATQZ (arbitrary affine algebras can be treated similarly: see Chapter
12 of Kac [1983]).
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The calculation of the denominator and numerator in (11.9) being similar,
take

n
u = md +—2—a +rc. (11.10)

Recalling (11.6) and (11.8), we have:

2. ewexpw() k) = 2. exp(ie(u)1h) — 2 exp(Gr(w)lh) .

weW kel keZ

From (11.7) and (11.10), for each k € Z we have:

1
h(u) = md + (—5 n-mk)a + (r+kn—k’m)c , (11.11a)

1
ety (1) = md — (—2— n+mkya + (r—kn—-k*m)c . (11.11b)
We choose % to have the general form
1
h = 2m‘(-2— za—71d +uc), wherer,z,ueC . (11.12)
Then from (11.11a, b) and (11.1), for each k € Z we have:

(CAMIVIS 21ri[(-!-n~mk)z - (r+kn-k’m)yr+mu] ,
2 (11.13a)

(ra) | B) = 2mil = (= n+ mk)z — r— kn— kim)r +mu ]
2 (11.13b)

Replace k in (11.13a) by n/2m —k (so that now k € n/2m + Z ) and in (11.13b)
by —n/2m—k (so that k € —n/2m+ Z); the right-hand sides of (11.13a, b)
become respectively:
n? n
2mi(mkz + (mk? — (r + — D1+ mu) (e —+2),
4m 2m (11.14a)
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n2 n
2mi(mkz + mk* = (r + — N7+ mu) (ke-—+ 7).
4m 2m
(11.14b)
Definition 11.2. We define ©, ,,(7,z, u) by

8y, m(7,2,4) = exp(2mimu) 2 expQmm(kir + kz)) .
keﬁ +Z (11.15)

Remark 11.1. These aré the celebrated Jacobia-Riemann theta functions.
Clearly €, m (7> 2, u) converges absolutely for 7 in the upper half complex plane
and arbitrary complex z and .

We thus obtain

_(,+"_2)
ZA e(w)exP(w(l-‘) I h) =4q am (en,m(79 Z, ll) - Q_n,m(79 Z, u)) .
=374
v (11.16)
Here and further, g stands for exp 2wi7.
In the numerator of (11.9)we haveu =N+ p=(m+2)d + h(n+ a+rc,

while in the denominator we have u = p =2d + %a. Substituting in (11.6) we
arrive at:

Proposition 11.1. For A\=md + % na+rc as in (114) and z,7,u s C,
Im 1> 0, one has:

1
chy(h) =t exp| 2m'(; za — 7d + uc) ]

'SK @n+1,m+2(7’ z, u) - e—n-l,m+2(7’ z, u)
@1’2(1', zZ,u) — 9_1,2(1, z,u)

(11.17a)
where

(n + 17 1 + (11.17b)
§, = ——————+ 71 . .
N 4m+2) 8
|
Remark 11.2. Dividing the numerator and the denominator of (11.17a) by 1 —
e~ ™2 one derives from (11.7a), asu = 0 and z — 0, a formula for the g-dimen-

sion (= partition function):




122 Bombay Lectures on Highest Weight Representations . . .

U masthn) 40 = @72 3 Qjm+2)+n+ 1)gmd I+ G0f
i€z

The theta functions ©, ,,(7,z,u) have an important multiplication rule
which we shall require (Kac-Peterson [1984a]):

Proposition 11.2. 0, m(r,2z,u) O, m' (7,2, 1)

=zd]'(m’m,n’n)(q) ®n+n’+Mj,m+m’(T,z,u) (j € Z mod(m+m')2),
i

where
m'n—mn' + 2jmm’
2mm'(m + m")

dl(m,m,n,n)(q) :__z qmm (m+m')k? (k e 7 +
k

Proof. Without loss of generality we can put ¥ = 0. Then

2 n
O m = 2 qu exp(Rmimkz) (ke —+ Z),
’ k 2m

reta ., r n
en',m’ = Z qu expQmimk'z) (k' e W +2),
k

and
Crm O = 2. g * e exp[ 2mifmk + m'k)z | .
ky k'

Let k = (n/2m) + i, k' = (n'[2m") + ', where i, i’ € Z. Define s, s’ by

, , nm' - n'm ,
(m+m)s=k—-k=————-—2m, +i-i
m

m+ m)s' =mk + mk' = @m + m)E + ms) .
Leti~i'=(m+m")R +jwhere 8 Z andj € Z mod(m + m')Z. Then

nm' — n'm + 2mm'j , n+n + 2mj

2mm'(m + m") 2m + m)

§ &
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This gives us a bijection between pairs (k, k") and triples (s, ', /). Noting that
mk* + m'k’* = mm'(m + m)s* + (m + m")s"?
we get:

en,m en',m' = z ( z qgmm (m+m')s? )( z q(m+m')s"2 exp 2mi(m + m')s'z)
j s s’

which proves the proposition. =

We shall now consider the character formula (11.17a, b) for the simplest
nontrivial case of A=d (m =1,n =0, r=0). We call this the basic representa-
tion. Since sz = —1/24, we get
61,3 -0, .

91,2 - @-1,2

Chd(h) - 41/24

We shall now use Proposition 11.2 to prove a much simpler formula for ch;(h):

(C]
Proposition 11.3. chy(h) = —2—’—;—- , (11.18)
(4}

where ¢(g) is the function defined in (2.8b).
Proof. We have to prove that
-~ ,1/24
@0,1(81,2 - 9-1,2) =4 ‘p(q)(el,a - 6—1,3) :

Applying Proposition 11.2 to the left-hand side we obtain

(@1,3—@_1,3)( T €T 46"")
ke

1 S
—ﬁ-n-Z kEI2—+Z

=©,,-96_,,) gl S (1) gCDn

1,3
’ kEzZ

A famous identity due to Euler tells us that

v(q) = ZZ (— 1)k qGF*02 (11.19)
ke
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which completes the proof. =

Remark 11.3. The Weyl-Kac character formula (11.9) is often written in a
different form:

2 ew)exp[ WA+ p) k) — (p1h)]

tr exp(h) =X

2oy xp®) [T a-expl-(v i)™
yEA
(pir)>0

(11.20)

Here A is the set of roots and mult -y is the multiplicity of ¥ & A. (Recall that
vye b is called a root if the equation [A,x] = (v | A)x has a non-zero solution
for all 2 e h; the dimension of the space of solutions is called the multiplicity
of 7). Putting A =0 in (11.20) we obtain the so called Weyl-Macdonald-Kac
formula:

[T -expl=(r W)™ = 3 e(w)explw(p) 1h)~ (o 1h)] -
yeA w
(plr)>0 (11.21)

Plugging (11.21) into (11.20) gives (11.9). In the case of /5322, we have A =
{ta +kd, kd |k Z } and the multiplicities of all roots are 1. Putting u =
exp[-(h, | B)], v =exp[- (A, | )], it is easy to see that (11.21) turns into the
classical Jacobi triple product identity:

I G-
[T a-v*v8a -ukknya -ubky = 3 (—1yu 2y 2

k=21 €z

Putting u =g, v =q* in this identity gives the Euler identity (11.19). See
Chapter 12 of Kac [1983] for more details.

11.3 A character identity.

The following character identity will play a crucial role in Lecture 12.

Proposition 11.4. For X =md + % na (m > n > 0), one has

chych, = kgl Yok Ngorka > (11.22a)

where 1 1
Izlkel‘—z(m+1—n)<k<?n , (11.22b)
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and
Uk = ™ = (08 0(q) | (11.22¢)
where
fk(m,n) - z q(m+2)(m+3)j’+((n+1)+2k(m+2))f+k’ ] (11.224)
jez

Proof. From(11.17)and (11.18),

_ (n+1)®> 1
@oL1®n+1,m+2 eo,le—n—l,m+2 q 3(m+2) '8
€] - ®

1,2 -1;2

v(q) chgch, =

By Proposition 11.2:

90’16’”1,"&2 = % a, ®m1,m+z (R € Zmod(m + 3)Z) ,
with
a, = z q(m+2)(m+3)i°
i

where i =j + [—(n + 1) +20(m + 2)] /[2(m + 2)(mm + 3)] andj € Z. Note that

+2) (m + 3)# r 1y _ +2) (m + 3);
(m+2)(m+ 3)i -m—(m ) (m + 3)j
(n+1+29)7?

+(-(n+1)+20m+2) + &2 -_W

Hence,

()

n+1)® _ (n+1+29)?
T 3(m+2) 4(m+3)
0,1@n+1,m+2 q % by ®n+1+22,m+3 q ?

where

b, = n q(m+2)(m+3)]°+(—(n+1)+2Q(m+2))j+sz’ '
jieZ
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Putting ¢ = ~ k and making the transformation j > —j, we see that b_ =fk('"’”),
so that

(n+1)2 _ (n+1-2k)2

e q A(m+2) _ Zf]‘c(m,n) 9n+1 2k e q 4(m+3)
k

3

0, 1@n+1,n+2

where k € Z mod(m + 3)Z. Similarly,

-ﬁm“)’ _(nt1-2k)
eo,le—n—l,mn q HmsD) = % fk(m’n) @—n-1+2k,m+3 q #om3)
where k€ Z mod(m + 3) Z.
Hence
f]‘c(m,n)
chychy = 3 “—— chyaxa (*k € Z mod(m + 3)7) .
x »(@) (11.23)

Now d + A —ka = (m + 1)d + % (n — 2k)a; this corresponds to a non-negative
integral linear combination of the fundamental weights w, and w, , if and only
if keI, where I was defined in (11.22b). We use the freedom in choosing the
domain of definition of k in (11.23),i.e. of Z mod(m + 3)Z, by taking k to be
in the union of the sets 7, J and K, where:

1 1
I =1ke Z ——E(m+1—n)<k<?n] y

1 1
J =1keZ ?n+1<k<—£(m+3+n)’,

K=1ke Z |k = , k=
2

n+1 m+n
)
Note that K is nonempty only if # is odd, or if m + n is even. The following
symmetry property of the function chy,, _g, is easily checked:
ifk >n+ 1 -k,  thenchy, gy 2~ chyn ko - (11.24)

An immediate corollary is that,
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chgoaka =0 if2k =n+ 1(modm + 3) .

Hence, chy,)_xo, =0 for k€ K. Then, since J maps onto I under the trans
formation k >n+ 1 —k, (11.23) becomes (11.22) on using (11.24). =




LECTURE 12

12.1. Preliminaries on 3¢,

In this lecture we shall use the Goddard-Kent-Olive (GKO) construction,
described in Lecture 10, to construct unitary highest weight representations
V(c, h) of the Virasoro algebra for all pairs (c, %) given by the discrete series:

6
- m+2)(m+3)

m+3yr—-m+2s]? -1
h=h(,";)s[ ) ] (r,seN, 1<s<r<m+1).
’ 4m+2)(m+ 3)
(12.1b)

In the course of the construction we shall also be able to prove Lemma 8.6 and
thereby complete the proof of the Kac determinant formula. The unitarity of
the discrete series was proved independently by Goddard-Kent-Olive [1986],
Kac-Wakimoto [1986] and Tsuchiya-Kanie [1986]. This lecture follows
closely the paper Kac-Wakimoto [1986].

We now summarize some properties of 4%, and A%, that we shall use. We
choose the standard basis of 4%,: u; =e,u, = a,u; =f, where

R A

n=Ce+ 3y s, .
k>0

c=c¢y, =1

(m=0,1,2..), (12.1a)

Then

Defining the dual basis {« [i =1, 2,3} by (10.2) with respect to the trace form
(a|b) =tr ab, we have

u' =f u* =af2, u> =e .

129
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Then, by Lemma 10.1, the Casimir operator 2, is given by
Q, = u,-ui =ef +fe+ a?2=a’2+a+ 2. (12.2)

(Note that in (12.2) we have used the commutation relations to move the
element e to the right.) We can compute the eigenvalue of the Casimir in its
adjoint representation directly and we find that

g=2, (12.3)
which is in agreement with Table 10.1.
Let
1
P% = [ md + — na
* 2

+

mne I, m=>ni; P =P+° + Rc .(12.4)

Recall from Lecture 9 that given A =md + %na + rc e P, there exists a unique
(up to equivalence) irreducible unitary highest weight representation of 42, on
a complex vector space L(A)- This representation of 'AAQZ remains irreducible and
is independent of » when viewed as a representation of A%, .

12.2. A tensor product decompagsition of some representation of /5522 .

We shall now consider the tensor product of two unitarizable highest weight
representation of 48, , viz. L(d) and L(X) where

1
A =md +Enaeli° . (12.5)

The GKO construction gives us a unitary representation of Vir which commutes
with /;52'2 . Hence the space L(d) ® L()) can be reduced with respect to the direct
sum of Vir and 42, .

An essential tool in the following will be the character of the representations
of /;922, which is computed from the Weyl-Kac character formula as we saw in
Lecture 11. The usefulness of the character is due to its simple algebraic pro-
perties: the character of a tensor product of representations is the product of
their characters while the character of a direct sum is the sum of their charac-
ters. Moreover two representations are equivalent if and only if their characters
are equal.

The characters of L(d) and L(X) were denoted ch; and ch, in Lecture 11.
The character of L(d) ®L(}) is therefore chy ch,. We derived an important
identity for this quantity in Proposition 11.4. We shall, however, have to do
some more work to bring it to the form in which we need it:
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Lemma 12.1. let
r=n+1, s=n+1- 2% ifk =2 0
(12.6)
r=m-n+1, s=m-n+2+2 ifk<O0
(Notethat l < s<r<m+1lsincem=nandm,ne Z+.) Then
N 2 2
o@D Yo = a7 (S - (TR = A + B+ C ,(1272)
where

rs _ q(m+2—r)(m-3-S) ,

b
Il

1-gq

B = z q(m+2)(m+3)1'1+((m+3)r—(m+2)s)i (1 _q2(m+2)si+rs) ,
jeN (12.7b)

C = Z q(m+2)(m+3)i’ - ((m+3)r-(m+2)5)j (1 _q2(m+2)(m+3 ~8)j+(m+2 —r)(m+3—s))'
jEN

Proof. A straightforward calculation using the definition (11.22c,d). =

Remark 12.1. Note from (12.7) that

kl
Ym ok = q( ) (1-¢q" — qim*2-"(m3-5) 4 pigher powers of ) (12.8)
o vlq

Proposition 12.1. LetA=md + % na (m,ne Z_; m> n). Then,

chy chy = Z Z A]m,n;k Chd+>\-ko:-jc (12.92)
kEI jEZ.
where
1 1
I=[kel‘——2—(m+l—n)<k<~é-n {12.9v)

The Afn, n;k are non-negative integers defined by the expansion

‘pm,n;k = z A{n,n;kqj' (12.10)
J€Z.
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The minimum value of j appearing with a nonzero coefficient in (12.10) is
2
j=k*and A% =1

Proof. The fact that A{,,, n;k € Z, is clear from their representation - theoretical
meaning explained below.

To prove the last statement of the proposition, if suffices to show that 4, B
and Cin (12.7b) have each an expansion in powers of ¢ with nonnegative integer
coefficients when multiplied by (g)™!. Note that in B and C the term in
brackets is always of the form 1 — ¢’(i > 0). Hence on multiplying by ¢(g)~! =

n (1- q )~! one such factor cancels. The remainder will have an expansion of
j=1
the required kind. It is straightforward to use the expansion (2.8a) to show by
direct multiplication that 4 /¢ (q) has the required expansion.

Noting that the lowest power of ¢ in (12.8) is qk , this proves the last state-
ment of the proposition. From (11.17) we see that

chy _jo = i ch, .

Recalling Proposition 11.4, this completes the proof of Proposition 12.2. =

Proposition 12.1 has a very simple representation-theoretical meaning. Equa-
tion (12.9) expresses the decomposition of L(d) ® L(A) into a direct sum of
unitary /.;Qz representations L(d + A\ — ka — jc):

L@ ®LN) = 3 2 Appild+N-ke-jo), (12.11)
KEI jEZ. ’

and A{n, n; % is simply the multiplicity of the occurence of L(d + A\ —ka - jc)
in this decomposition.

12.3. Construction and unitarity of the discrete series representations of Vir.

Let U,,(,{z, x denote the space of highest weight vectors of EQZ in L(d) ®L(N)
with highest weight d + A —ka - jc € E. Then

A{n,n;k = dim Ursxj,-)n;k . (12.12)
Clearly Urr(:{zz;k is an eigenspace of d with eigenvalue (d | d + A~ ka - jc) = —~].
Now define

Un,mxk = ® Urfz],.)n;k . (12.13)
€7,
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It is clear that U, ,.; is the space of highest weight vectors of AAQ; inL@e
L(\) with highest weight d + A~ ka. Now the GKO construction produces a
representation of Vir which commutes with 4R, and hence Vir maps Uy, p.
into itself. The central charge of this representation of Vir in Un, n; & is given
by (10.24) with m'=1,g=2 and dim p =3, which gives ¢ =¢,, (me Z,),
where c,, is given by (12.1a). The operator L, in this representation is given by
(10.25) with

1
A =d, A'=md+?na, 20 = 4d + o .
Thus

_ n(n+2) Q
° —4(m+2) - 2(m + 3)

From (10.18) and (10.19),

Q=2+2d+ Qy +2 3 u(-DQ) ,
>0

where 2, =a*/2 + a + 2fe from (12.2). Each ve U, ,.; is a highest weight
vector and hence is annihilated by the u(j) withj > 0 and by e. Thus

Q) = (2d(c+2) + &2 + ) (v) forv € Uy pop -
Since

n-2k

d+X—ka = (m+1)d+

a=A (ay),

(c+21A) =m +3, (alA) =n-2k,

we obtain:

)2
Q) = (2d(m +3) + S"—ff‘—)—— + (n-2W)y forve U

m)n;k *
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Thus in U, ,, we have

n(n+2) _ (n-2k)(n-2k+2)

Ly =-d+
4m +2) 4(m + 3)

(12.14)

To determine the minimal eigenvalue of L, on U, ,.x we need to know the
minimal eigenvalue of (=d) on U, ,.x. According to (12.13), U, ,.x is the

direct sum of eigenspaces of (—d): U,s,j, )n;  is an eigenspace of (— d) with eigen-

value j. Hence we need to know the minimal value of j for which A{n n: k i non-
zero (see (12.12)). This was determined in Proposition 12.1 to be j = k2. Thus
the minimal eigenvalue of L, in the representation of Vir on U, .y is

2 . n(n + 2) (n-2k)(n-2k+2)
m+2)  Am+3)

(12.15)

Changing from the variables m, n, k to m,r,s by (12.6), we find that 7 = h(r:’;)
as given by (12.1b).
Denoting Uy, ,.; in the following by U,f's"), we have thus constructed a

unitary representation of Vir on the space U,f's") such that the central charge is
¢ and the minimal eigenvalue of L, is / for every pair (c, /) in the discrete series
(12.1a,b). All the eigenvalues of L, are from 4 + Z_. The highest component
of the representation of Vir on U ,(,";), i.e. the subrepresentation generated by the
eigenvector of L, with the minimal eigenvalue s = h;";), is an irreducible uni-
tary highest weight representation. This completes the proof that all representa-
tions ¥ (¢, h) with (¢, h) from the list (12.1a, b) are unitary.

From the above discussion we also obtain:
ch ¥(c,, ™) < ch U™, (12.16)

From (12.14) and (12.15) we sce that U,s{;)n;k is an eigenspace of L, with
eigenvalue (j — k%) + hﬁ,”s') . From (12.10) and (12.12) we have

Ym,nsk = 2. dim Urgzj,)n;k q .
JeZ,

Thus V, . is essentially the character of this representation of Vir. More
precisely,
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h(m)
_k?
ch Um mk = 4 q 7'I/m,n;k s
where VY, ,.x is given by (12.7a,b). From (12.16) and Remark 12.1 we have:

e

o(q)

(m+2-D(m+3 -5)

ch V(cy,, h('")) <

aQ-4°-q

+ higher degree termsin q) . (12.17)

Remark 12.2. We can now interpret Proposition 11.4 as saying that for A =
md + % na e P°we have with respect to AQ ® Vir:

L@d) @ Limd + +na) = ®  L((m+1)d +5 jo) ® UM,
0<j<n
j=n(mod2)
®  L(m+1)d +5 ja) ® US, mus o - (12.18)
n+1<j<m+1
j=n(mod2)

Keeping m fixed in (12.18) and varying 7 in the range 0 < n < m, we see that on
the right-hand side we get all U,(,'I.‘) satisfying 1 < s <r<m + 1, each occuring
exactly once. It follows that with respect to Vir:

(L@ e Y Lmd+Ln)]"" = e Um
ez, ,sEN ’
0n<n<m 1<;<sr<m+1 (12'19)

where the notation on the left-hand side means the subspace in the tensor
product annihilated by Vl+, If we extend the sums in (12.19) over all possible
values of me Z_, we see that every representation of the discrete series appears
at least once in this space.

We summarize below the results obtained:

Theorem 12.1. (a) The irreducible representation V{(c, #) of Vir is unitary for
=cp, h= h('") (given by (12.1a,b)), where m,r,se Z ,1<s<r<m+1,
andforc> 1,h> 0.
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(b) With respect to Vir we have:

1 M.
[L@® )  Lmd+—na)] = ® vim
m,neZ, 2 m,r,s€Z, n
mz=2n 1<s<r<m+1

where the highest component of U,f’;’) is Ve, h('") ).

© ch¥(cy, KK™) < ch UTD

hr(m)
1281
-2 (1 — q" = gm+2-Nms3-9) 4 g 4 () | (12.20a)
v(q)
where B and C are given by (12.7b).
Equivalently:
-, /24 -C,, /24
q " ch Vi, h™W) < q ™ ch U
1
= o) (8, (m+3)-s(m+2), (me2)(m+3) (7,0,0)
= B (maz)ss(ms2), (ma2)(ms3) (1,0, 0)) (12.20b)
where n(r) = q1/24 w(q) . (12.20¢)

(Here l<s<r<m+1,m,r,seZ)

Remark 12.3. In fact, in (12.16), (12.17) and (12.20a, b) one has equality; in
other words the representation of Vir on U, '") is irreducible and coincides with
Ve, (,s ) The most straightforward way of proving this is to calculate
ch V(gy,, h ) and to notice that it coincides with the right-hand side of
(12.20). The computation of ch V(c, k) consists of two steps, both of which are
based on the Kac determinant formula. First, one finds all possible inclusions of
Verma representations and the irreducible subfactors contained in M(c, 4); this
was established by Kac [1978a] using the Jantzen filtration (see e.g. Kac-
Kazhdan [1979]). Secondly, one shows that the irreducible subfactors of
M(c, h) occur with multiplicity one. This is the more difficult part, conjectured
by Kac [1982] and proved by Feigin and Fuchs [1983a,b], [1984]. The
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explicit formulae for all ch ¥V(c, &) are easily derived from these facts: see
Feigin-Fuchs [1983b], [1984]. Thus Theorem 12.1(b) provides a “model” for
the discrete series of Vir, i.e. the space in which all the representations of the
discrete series appear and exactly once.

Remark 12.4. Formula (12.20b) shows that the functions q_cm/24 ch ¥(c,
(”’)) are modular functions in 7(/m 7 > 0), where as before q ~exp 27m'

Also, Remark 11.2 shows that the same is true for the functions ¢~° trL(}\)q
This observation has been playing an important role in recent developments in
representation theory, as well as in the theory of 2-dimensional statistical
models and string theory (see Kac-Wakimoto [1987], Capelli-Itzykson-Zuber
[1987], Gepner-Witten [1986] and references there).

12.4. Completion of the proof of the Kac determinant formula.

We shall now show how the inequality for ch V{c,,, h(,f';)) given by (12.17) can
be used to prove Lemma 8.6, thereby completing the proof of the Kac deter-
minant formula discussed in Lecture 8. We recall from (3.15) that the character

of the Verma representatlon M(cm,hg”;)) is qh'('”;;(p(q) Let r'=m+2—r,

=m+ 3 —sso that s’ >r'. Note from (12.1b) that h("') —h('") From the
occurence in (12.17) of the lowest powers of g, viz. q” andq , w1th negative
coefficients, we can deduce that J(c,,, hg”;)) (the maximal proper subrepresenta-
tion of M(cm,h('"))) has a nonzero component at each level # > min (rs, r s)
Thus det, (c, ) has azeroath = hg’? (1 <s <r<m+1)forn >min (s, r's).
Thus det,(c,,,h) has a zero at A =h£f’;) for all pairs (r, s) satisfying 1 <r,
s<m+ 1andn >rs. In Theorem 8.1 we defined ¢, s, h)=(h ~h, ) —h, »)
for r #s and ¢, ,(c,h) =h—h, ,. Viewed as a polynomial in the two variables
¢, h, itis clear that ¢, ¢(c, k) is irreducible (over the complex field), i.e. it cannot
be written as the product of linear factors (for » #s). Now, det, (c, h) vanishes
at an infinite number of points (¢, h('")) of the irreducible curve @, & h)=0
for n = rs. Hence det, (c, &) vanishes at all points of @, s(c, h)= 0 for n > rs
and therefore is divisible by ¢, ((c, #) when rs < n. The proof of Lemma 8.6,
and hence of the Kac determinant formula, is complete.

Remark 12.5. There have been several published proofs of the Kac determinant
formula: see Feigin-Fuchs [1982], Thorn [1984] etc. The proof given here is
simpler, more elegant and works in the super case as well (see Kac-Wakimoto
[1986]).
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Remark 12.6. Let h= h('") be one of the members of the list (12.1a, b) and
suppose that there is no h from this list (for the same m) with 2’ — h a positive
integer. Then in (12.16), (12.17) and (12.20) we have equality. This follows
from the fact that the lowest eigenspace of d appearing in (12.13) has dimension
1 (&, ok =1 for j =k?) so that if ¥(c, h") were contained in U(”n h'—h
must be a positive integer (see the remarks after (12.15)). In that case, by our
hypothesis, (c,,, h") does not belong to the discrete series (12.1a, b) and hence
cannot be unitary by the theorem of Friedan-Qiu-Shenker (FQS) [1984; 1986] ;
however, by the argument of Proposition 3.1, Uy is a direct sum of unitary
representations of Vir. We conclude that equality holds in (12.16), (12.17) and
(12.20). The above condition holds in most, but not all, cases. In particular,
it holds form =1, 2.

12.5. On non-unitarity in the region0 <c <1,A> 0.

Recall that, according to the FQS theorem, all points in the critical region
0<c< 1,h> 0 not belonging to the discrete series (12.1) correspond to non-
unitary representations of Vir. This together with Propositions 3.5 and 8.2(a)
and Theorem 12.1(a), gives a complete classification of unitary highest weight
representations of Vir: either ¢ > 1 and & > 0 or (c, h) € discrete series (12.1).

In the remainder of this last lecture we shall discuss non-unitarity in the
critical region. We shall obtain here only some partial results, which are, how-
ever, most important for applications (as in Proposition 3.8 or Remark 12.6,
for éxample). The proof of the general result is more involved. See Friedan-
Qiu-Shenker [1986] or Langlands [1986].

We call the n-th ghost number, and denote it by g,(c, /), the number of
negative eigenvalues of the matrix of the Hermitian contravariant form (- | - )
restricted to the n-th level of a highest weight representation with highest weight
(c, h). Note that g, (c, k) depends only on 7, ¢ and 4 (in particular, it is the same
for V(c, h) and M(c, h)) and that ¥(c, k) is unitary if g,(c, h) =Oforallne Z .

Lemmal2.2. Ifh>0andne z, then

&nlc,h) < gy, (c,h) .
Proof. lete=d,,a=-2d,,f= —d_l. These elements form a standard basis
of an 4%, subalgebra of Vir, which we denote by a. Consider V(c, k) as a repre-

sentation of a. Given v € ¥(c,h),, (.e. a(v)=—2(+n)y,e(v)=0), we
have (see e.g. the proof of Lemma 8.1):
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(FEDIFFE)) = BENEA+FD) (A +E-1),  (12.21)
of¥() = —klk~1 + 2 +n) 510 . (12.22)

It follows that unless v e ¥V(c, h), and & =0 (then Cvis a-invariant), the sub-

space T, = Z crk (v) is a space of an irreducible representation of g whose
k>0
intersection with each V(c, h),, 5 is 1-dimensional for N > n (by (12.22)).

Also, by (12.21), the Hermitian form (- | - )restricted to T, is positive definite,
negative definite or zero according as (v | v ) > 0, < 0 or = O respectively.

Using the Casimir operator of a, it is easy to see that V(c, h) = z T,. This
completes the proof of the lemma. =

Proposition 12.2. Let
2 ={mNI0<c<1,h>0ady,(h) <0},

where ¢, ¢ are defined in (8.13). Then for every (¢, h)e u Qj,the representa-
tion ¥(c, A) is not unitary. jz2

Proof. We prove by induction on n > 2 that for (c, #) from the region M =

n

U 9- one has: g,(c,h) > 1. The case n =2 has been discussed in Lecture 8.
j=2
Suppose that the statement is true for 7 — 1. Then g,(c, ) > 1 in 2*~1 by

Lemma 12.2. Let (¢, h)e 9,\9"~ =1 it is easy to see (using formulas (8.13)
or (8.15)) that then ¢, 5(C, k)> 0 for all r,s such that rs < n, (r,s)# (n, 1).
Hence, by the Kac determinant formula, det,(c, #) < 0, proving that g,(c, &) > 1
in 2™ except for the curve y = Gy 0 {le,h) o, , (e, h)=01} (see Figure
12.1). The curve v is tackled as follows Recall that in the region 9, n 9, _,,
&y (c, h) = 1. But det,(c, h) = 9,(c, h)p, _,(c, k) x (the rest) > 0 in this region
since the first two factors are negative and the rest are easily seen to be positive.
Hence we conclude that

gy(c,h)>2for(c,h) e 9, n D,_, . (12.23)

But the multiplicity of a zero of det, (c, /) (as a polynomial in & with fixed c)
is 1 for (¢, h) € y. This shows that g,(c,#)> lony. =

Corollary 12.1. If V (%, h) is unitary, then h =0, 1/2, or 1/16.




140 Bombay Lectures on Highest Weight Representations . . .

Figure 12.1

Proof. For ¢ =%, Proposition 12.2 eliminates all points except for A =%

and 0< k< 1/16. But ¢, 2(%, h) < 0, and hence det,(%, k) <0, for
O0<h<1/16. =

Remark 12.7. A similar argument shows that the unitarity of V(e h), where
¢, is given by (12.1a) implies that & = hg’;)given by (12.1b).




REFERENCES

Arbarello, E., De Concini, C., Kac, V.G., Procesi, C. [1987] “Moduli spaces of
curves and representation theory™, Comm. Math. Phys. to appear.

Belavin, A.A., Polyakov, AM., Zamolodchikov, A.B. [1984a] “Infinite con-
formal symmetry in two-dimensional quantum field theory”, Nuclear Phys.
B241 (1984), 333-380.

Belavin, A.A., Polyakov, AM., Zamolodchikov, A.B. [1984b] “Infinite con-
formal symmetry of critical fluctuations in two dimensions”, J. Statist. Phys.
34 (1984), 763-774.

Benkart, G. {1986] A Kac-Moody bibliography and some related references,
in: Lie algebras and related topics, CMS conference proceedings 5, 1986,
111-138.

Capelli, A., Itzykson, C., Zuber, J. B. [1987] “The A-D-E classification of mini-
mal and A(ll) conformal invariant theories™, Comm. Math. Phys. 112 (1987).

Chari, V., Pressley, A. [1987] “Unitary representations of the Virasoro algebra
and a conjecture of Kac”, TAS preprint.

Chodos, A., Thorn, C.B. [1974] “Making the massless string massive”’, Nuclear
Phys. B72 (1974), 509-522.

Dashen, R., Frishman, Y. [1975] “Four-fermion interactions and scale invari-
ance”, Phys. Rev. D11 (1975), 2781-2802.

Date, E., Jimbo, M., Kashiwara, M., Miwa, T. [1981] “Operator approach to the

Kadomtsev-Petviashvili equation. Transformation groups for soliton equations
11, J. Phys. Soc. Japan 50 (1981), 3806--3812.

141




142 Bombay Lectures on Highest Weight Representations . . .

Date, E., Jimbo, M., Kashiwara, M., Miwa, T. [1983] “Transformation groups
for soliton equations”, in: Proceedings of RIMS Symposium, M. Jimbo and
T. Miwa, eds., World Scientific, 1983, 39-120.

Dirac, PAM. [1958] The Principles of Quantum Mechanics, 4th edition,
Oxford University Press, 1958.

Feigin, B.L. [1984] “Semi-infinite homology of the Kac-Moody and Virasoro
algebras”, Uspekhi Mat. Nauk 39 (1984), 195—196. English translation: Russian
Math. Surveys 39 (1984), No. 2, 155—156.

Feigin, B.L., Fuchs, D.B. [1982] “Invariant skew -symmetric differential opera-
tors on the line and Verma modules over the Virasoro algebra, Funkt. Anal.
i ego Prilozh. 16 (1982), No. 2, 47—63, English translation: Funct. Anal. Appl.
16 (1982), 114—126.

Feigin, B.L., Fuchs, D.B. [1983a] “Verma modules over the Virasoro algebra”,
Funkt. Anal. i ego Prilozh. 17 (1983), No. 3,91-92. English translation: Funct.
Anal. Appl. 17 (1983), 241-242.

Feigin, B.L., Fuchs, D.B. [1983b] ‘“‘Representations of the Virasoro algebra”,
Moscow University preprint.

Feigin, B.L., Fuchs, D.B. [1984] “Verma modules over the Virasoro algebra”, in
Lecture Notes in Math. 1060 (1984), 230—245.

Feingold, A. J., Lepowsky, J. [1978] “The Weyl-Kac character formula and
power series identities”, Ady. in Math. 29 (1978), 271-309.

Frenkel, LB. [1981] “Two constructions of affine Lie algebra representations
and boson-fermion correspondence in quantum field theory”, J. Funct. Anal.
44 (1981), 259-327.

Frenkel, I.B., Garland, H., Zuckerman G. [1986], “Semi-infinite cohomology
and string theory”, Proc. Nat. Acad. Sci. USA, 83 (1986), 8442-8446.

Friedan, D., Qiu, Z., Shenker, S. [1985] “Conformal invariance, unitarity and
two dimensional critical exponents”, in Publ. MSRI No. 3 (1985), 419—449.




References 143

Friedan, D., Qiu Z., Shenker, S. [1986] “Details of the non-unitarity proof for
highest weight representations of the Virasoro algebra”, Comm. Math. Phys. 107
(1986), 535-542.

Fuchs, D.B. [1984] Cohomology of infinite dimensional Lie algebras, Nauka,
Moscow, 1984; English Translation: Plenum Press, New York, 1986.

Garland, H. [1978] “The arithmetic theory of loop algebras”, J. Algebra 53
(1978), 480-551.

Gelfand, IM., Fuchs, D.B. [1968] “The cohomology of the Lie algebra of
vector fields in a circle”, Funkt. Anal. i ego Prilozh. 2 (1968), No. 4, 92-93
English translation: Functional Anal. Appl., 2 (1968), 342-343.

Gepner, D., Witten, E. [1986] ‘‘String theory on group manifold”, Nucl Phys.
B278 (1986), 493—

Goddard, P., Kent, A., Olive, D. [1985] “Virasoro algebra and coset space
models”, Phys. Lett. B152 (1985), 88-92.

Goddard, P., Kent. A., Olive, D. [1986] “Unitary representations of the Virasoro
and super - Virasoro algebras’’, Comm, Math. Physics 103 (1986), 105—119.

Goddard, P., Olive, D. [1986] “Kac-Moody and Virasoro algebras in relation to
quantum physics”, Internat. J. Mod. Phys. Al (1986), 303—414.

Goodman, R., Wallach, N. [1985] “Projective unitary positive-energy represen-
tations of Diff(S')”, J. Funct. Anal. 63 (1985), 299-321.

Jimbo, M., Miwa, T. [1983] “Solitons and infinite dimensional Lie algebras”,
Publ. Res. Inst. Math. Sci. 19 (1983), 943—1001.

Kac, V.G. [1974] “Infinite dimensional Lie algebras and Dedekind’s n-func-
tion”, Funkt. Anal. i ego Prilozh. 8 (1974), No. 1, 77—78. English translation:
Functional Anal. Appl. 8 (1974), 68—70.

Kac, V.G. [1978] “Highest weight representations of infinite dimensional Lie
algebras”, in: Proceedings of ICM, 299304, Helsinki, 1978.




144 Bombay Lectures on Highest Weight Representations . . .

Kac, V.G. [1979] “Contravariant form for the infinite-dimensional Lie algebras
and superalgebras”, in: Lecture Notes in Physics 94 (1979) 441—445.

Kac, V.G. [1982] “‘Some problems on infinite-dimensional Lie algebras and
their representations”, in: Lecture Notes in Math. 933 (1982), 117—-126.

Kac, V.G. [1983] “Infinite dimensional Lie algebras™, Progress in Mathematics
44, Birkhduser, Boston, 1983. Second edition, Cambridge University Press,
1985.

Kac, V.G., Kazhdan, D.A. [1979] “Structure of representations with highest
weight of infinite-dimensional Lie algebras”, Adv. in Math. 34 (1979), 97—108.

Kac, V.G., Kazhdan, D.A., Lepowsky J., Wilson, R.L. [1981] “Realization of
the basic representations of the Fuclidean Lie algebras”, Adv. in Math. 42
(1981), 83—112.

Kac, V.G., Peterson, D.H. [1981] “Spin and wedge representations of infinite-
dimensional Lie algebras and groups™, Proc. Nat. Acad. Sci. USA 78 (1981),
3308—-3312.

Kac, V.G., Peterson, D.H. [1984a] “Infinite dimensional Lie algebras, theta
functions and modular forms”, 4dv. in Math. 53 (1984), 125264

Kac, V.G., Peterson, D.H. [1984b] “Unitary structure in representations of
infinite dimensional groups and a convexity theorem”, Invent. Math. 76 (1984),
1-14

Kac, V.G., Peterson, D.H. [1986] ‘““Lectures on the infinite wedge representa-
tion and the MKP hierarchy”, in: Séminagire de Math. Sup. 102, Montreal
University, 1986, 141-184.

Kac, V.G., Wakimoto, M. [1986] ‘Unitarizable highest weight representations
of the Virasoro, Neveu-Schwarz and Ramond algebras”, in: Lecture Notes in
Physics, 261 (1986), 345—-371.

Kac, V.G., Wakimoto, M. [1987] “Modular and conformal invariance constraints
in representation theory of affine algebras’, Adv. in Math., to appear.




References 145

Kaplansky, I., Santharoubane, L.J. [1985] “Harish-Chandra modules over the
Virasoro algebra”, in: MSRI Publ. 4 (1985),217-231.

Kashiwara, M., Miwa, T. [1981] “The 7-function of the Kadomtsev-Petviashivili
equation”, Proc. Japan Acad. 57A (1981), 342-347.

Langlands, R. [1986] “On unitary representations of the Virasoro algebra”,
IAS preprint.

Macdonald, I.G. [1979] Symmetric functions and Hall polynomials, Oxford
University Press, 1979.

Sato, M. [1981] “Soliton equations as dynamical systems on infinite dimensional
Grassmann manifolds”, RIMS Kokyoroku 439 (1981), 30—46.

Segal, G. [1981] “Unitary representations of some infinite-dimensional groups”,
Comm. Math. Phys. 80 (1981), 301 -342.

Skyrme, TH.R. [1971] “Kinks and the Dirac equation,” J. Math. Phys. 12
(1971), 1735—1743.

Sugawara, H. [1968] “A field theory of currents”, Phys. Rev. 170 (1968),
1659—-1662.

Thorn, C.B. [1984] “Computing the Kac determinant using dual model techni-
ques and more about the no-ghost theorem”, Nuclear Phys. B248 (1984),
551-569.

Tsuchiya, A., Kanie, Y. [1986] “Unitary representations of the Virasoro alge-
bra”, Duke Math. J. 53 (1986), 1013-1046.

Virasoro, M.A. [1970] “Subsidiary conditions and ghosts in dual-resonance
models”, Phys. Rev. D1 (1970), 2933—-2936.

Wakimoto, M., Yamada, H. [1986] “The Fock representations of the Virasoro
algebra and the Hirota equations of the modified KP hierarchy”, Hiroshima
Math. J. 16 (1986), 427—441.

For other references see Kac [1983], Goddard-Olive [1986], and Benkart
[1986].




