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Introduction 1

Chapter One
Introduction

1.1 Introduction

Although a good deal of research over the past two centuries has been devoted to
differential equations our present understanding of them is far from complete. This book
is concerned with obtaining solutions of differential equations by means of one-parameter
transformation groups which leave the equation invariant. This subject was initiated by
Sophus Lie over one hundred years ago. Such an approach is not always successful
in deriving solutions. However it does provide a framework in which existing special
methods of solution can be properly understood and also it is applicable to linear and non-
linear equations alike. In formulating differential equations the Applied Mathematician
inevitably makes certain assumptions. Using group theory these assumptions can be seen
to hold the key to obtaining solutions of their equations.

The purpose of this chapter is to present a simple introduction to the subject for
both ordinary and partial differential equations by means of simple familiar examples.
For ordinary differential equations comprehensive accounts of the subject are given in
the books by Cohen (1911), Page (1897) and more recently Bluman and Cole (1974)
and in the review articles by Chester (1977) and Dickson (1924). For partial differential
equations the reader may consult Bluman and Cole (1974) and Ovsjannikov (1967), both
of which contain additional references. It is a curious fact that the process of utilizing
one-parameter groups to solve differential equations tends to result in Abel equations of
the second kind (namely (1.21)) for which there exists no general solution procedure.
Interestingly enough the majority of Abel equations with integrals listed (see for example
Murphy (1960)) frequently fall into one of three fairly trivial categories. Either they can
be reduced to a standard linear first order equation with the substitution z = y* or they
are of the standard first order homogeneous type or they can be readily reduced to a
separable type. Accordingly we close this introductory chapter with one or two general
details on Abel equations of the second kind.

1.2 Ordinary differential equations

In order to illustrate some of the ideas developed in this book we consider a simple
example. It is well known that the ‘homogeneous’ first order differential equation

dy  z?+y°
dz = zy ’

1.1)
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can be made separable by the substitution u(z,y) = y/=, thus

udu = d_:c,
F
which can be readily integrated to give

logz — -;— (%)2 =C, (1.2)

where C denotes an arbitrary constant. We might well ask the following questions:
Question 1 Why does the substitution u(z,y) = y/z lead to a separable equation for u?

Question 2 How do we interpret the degree of freedom embodied in the arbitrary constant
C in the solution?

Answers to these questions can be provided within the framework of transformations
which leave the differential equation unaltered. Consider the following transformation,

z) = ez, Yy =€y, (1.3)

where ¢ is an arbitrary constant. We notice that (1.1) remains invariant under (1.3) in
the sense that the differential equation in the new variables z; and v, is identical to the
original equation, namely

dy _ it}

= —. 1.4
dzr; T (14)

Moreover we see that (1.3) satisfies the following:
(i) ¢ =0 gives the identity transformation z; =z, gy =y,
(i) —e characterizes the inverse transformation z = e~ ‘z,, y=e ‘y,

(iii) if z9 = e®z;, y. = e’y then the product transformation is also a member of the set
of transformations (1.3) and moreover is characterized by the parameter ¢ + 6, that is

za=etoz y, = ety

A transformation satisfying these three properties is said to be a one-parameter group
of transformations. We observe that the associativity law for groups follows from the
property (iii). With this terminology established we might answer the above questions as
follows:

Answer 1 The substitution u(z,y) = y/z leads to a separable equation for u because
u(z,y) is an invariant of (1.3) in the sense that u(z1,y1) = u(z,y) since,

u(@n,m) = 2= 7 = u(z,y), (15)
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and it is this property which results in a simplification of (1.1). In general we shall see
that if a differential equation is invariant under a one-parameter group of transformations
then use of an invariant of the group results in a simplification of the differential equation.
If the differential equation is of first order then it becomes separable while if the equation
is of higher order then use of an invariant of the group permits a reduction in the order
of the equation by one.

Answer 2 From (1.2) and (1.3) we see that we have

1 2
log z, ~ 2 (Z—i) =C+eg, (1.6)

so that the degree of freedom in the solution (1.2) resulting from the arbitrary con-
stant C is related to the invariance of the differential equation (1.1) under the group of
transformations (1.3) which is characterized by the arbitrary parameter . That is, the
transformation (1.3) permutes the solution curves (1.2). In general we shall see that for

every one-parameter group in two variables there are functions u(z,y) and v(z,y) such
that the group becomes

u(zlxyl) = u(z,y), U(-’leyl) = 'U(I, y) +e. (17)

Moreover if a first order differential equation is invariant under this group then in terms
of these new variables u and v it takes the form,

) (1.8)

and consequently has a solution of the form

v+9Y(u) = C, (1.9)

for appropriate functions ¢(u) and ¢(u).

Example 1.1 Integrate the differential equation

dy 2 3
Y&z =8 2%

This is an Abel equation of the second kind (Murphy (1960), page 25) which is
not readily amendable to any of the standard devices. However the equation is clearly
invariant under the group

p— —_ —€
=€z, y=e€ ‘Y,

and therefore we choose u(z,y) = zy as the new dependent variable and the differential

equation becomes, J
u

zuﬂzu2—3u+2,
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which is separable and can therefore be readily integrated as follows,

d:c_ udu _ 2 _ 1
?‘(u—l)(u—2)‘{(u—2) (u—l)}d“

(zy—2)? = Cz(zy— 1),

so that

gives the required integral.

It is worthwhile emphasizing that not all equations can be solved in such a simple
manner. Consider for example,

dy _ (2 3
yﬂ— (F+6> (2—2 +6.’L‘> Y,

which arises in finite elasticity. This equation is again an Abel equation of the second kind
but in this case there is apparently no simple group which leaves the equation invariant.
In this general introduction it may be appropriate to mention two related areas for which
group theory has not yet been applied. The reader might well like to bear these problems
in mind with a view to developing results in these areas.

(a) Differential-difference equations

It is well known that formal solutions of linear differential-difference equations, for
example

dz(‘:) —y(z — zq), (1.10)

where z, is a constant, can be expressed as
y(z) =) Cje™5,
j

where C; are arbitrary constants and w; denote the roots of w = ev#e. If the equation
is non-linear then there are no such general methods of solution. Consider for example
Hutchinson’s equation which can be written as

BE) _ @)1 - y(z - 20)], (1.11)

and arises in theory of populations. What are the implications of group theory, if any,
for equations of this type? (See Problems 19 and 20 of Chapter 4).
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(b) Differential equations invariant under transformations which cannot be
characterized as one-parameter groups

A differential equation occurring in fluid dynamics is

d’z  _dz  (5+3z) (dz>2 3z(1 — z)

ar " T 4z(1+z) \dt (Q+=z) (112)

It can be verified that if =(t) is a solution then so is z(t)~! since with X(t) = z(¢)~! and
using

ax
dt

1de d2X 1d% 2 (dz\?
T oz2dt’ ’

at? ~ T z2dz B \dt

we have

#X _,dX _ (5+3X) (dX ? 3X(1-X)
dt? dt  AX(A+X)\dt ;]  ~(Q+X)

__1]d=z_ ,dz _ (5+32) (dr>2 3z(1 - 2)
Tz di?” “dt a(i+eo) \dt)  (1+z)
= 0.

If we now let y = dz/dt then (1.12) becomes

dy 3z(1-2=)
Y& T Uvo T

(B+3z) ,

my ’ (113)

which is again an Abel equation of the second kind. From the solution property of (1.12)
we can deduce that (1.13) remains invariant under the transformation

1 ¥
1 = ;) y1=—z_2, (114)

which cannot be characterized as a one-parameter group. Can we use such invariance
properties to determine solutions of differential equations?

1.3 Partial differential equations

Unlike ordinary differential equations the success of the group approach for partial
differential equations depends to a considerable extent on the accompanying boundary
conditions. That is, the group approach is only effective in the solution of boundary
value problems if both the equation and boundary conditions are left unchanged by the
one-parameter group. For the most part we confine our attention to specific differen-
tial equations rather than boundary value problems. For any particular boundary value
problem we should always first look for any simple invariance properties. These may be
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more apparent from the physical hypothesis of the problem rather than its mathematical
formulation. If no such invariance can be found and if the problem merits a numerical
solution then the group approach might still be relevant as a means of checking the nu-
merical technique with artificially imposed boundary conditions which permit an exact
analytic solution.

As an illustration we consider a boundary value problem for which both the partial dif-
ferential equation and the boundary conditions are invariant under a simple one-parameter

group.

Example 1.2 Determine the source solution for the one-dimensional diffusion or heat
conduction equation for ¢(z,t), namely

Q_ 8¢

5= 522 (t>0,—00 <z < o0). (1.15)

The source solution for (1.15) is the solution which vanishes at infinity for all times
and initially satisfies
c(z,0) = cob(x), (1.16)

where ¢, is a constant specifying the strength of the source and é(z) is the usual Dirac
delta function. We observe that both of (1.15) and (1.16) are left unchanged by the
transformation

Ty =€z, t, =€, ¢ =e ‘¢ (1.17)

where ¢ denotes an arbitrary constant and we have made use of the elementary property
of delta functions,
5(Az) = A716(z),

for any non-zero constant A. Thus if ¢ = ¢(z,?) is the solution of (1.15) and (1.16) then
we have also ¢; = ¢(z,t;). Clearly this is the case if ¢(z,t) has the functional form

d(z,1) = t= Bzt ), (1.18)

for some function ¢ of the argument indicated. Upon substituting (1.18) into (1.15) we
obtain the ordinary differential equation

2¢"(€) +£¥'(§) + ¥(¢) = 0, (1.19)

where ¢ denotes zt— 2 and primes indicate differentiation with respect to ¢&. Equation
(1.19) can be integrated immediately to give

24/(€) +£¥(8) = 24,
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where 4 is a constant and a further integration of this first order equation yields
2 E 2 2
(&) = Ae~¢ /4/ e" 14dr + Be~¢'/4,

where B denotes a further constant. Thus the appropriate solution of (1.19) vanishing at
infinity is simply
¥(€) = Be=€/4, (1.20)

where the constant is determined from (1.16), namely
/ c(z,t)dz = c,.

From this equation, (1.18) and (1.20) we find that the required solution of the boundary
value problem (1.15) and (1.16) becomes

—z3/4t

C(.’B, t) = CUW

(t>0, —oo<z<o00),

which is of course well known.

For our purposes this example serves firstly as a specific non-trivial boundary value
problem for which both the differential equation and boundary conditions are invari-
ant under a one-parameter group. Secondly it serves to illustrate that knowledge of a
one-parameter group leaving the equation invariant enables, at least in the case of two
independent variables, the partial differential equation to be reduced to an ordinary dif-
ferential equation. For more independent variables knowledge of a group leaving the
equation unchanged reduces the number of independent variables by one. In this book
we give the general procedure for determining the group such as (1.17) which leaves
a specific equation invariant. We also give the general technique for establishing the
functional form of the solution such as that given by (1.18).

1.4 Abel equations of the second kind

We shall see repeatedly that a consequence of attempting to solve differential equa-
tions by means of one-parameter groups is the appearance of Abel equations of the second
kind, namely first order ordinary differential equations of the form,

y% + a(z) + b(z)y = 0, (1.21)

where a(z) and b(z) are given functions of z. In general this equation is not amenable to
standard devices and a general integral for arbitrary functions a(z) and b(z) is not known.
Such a result would have many implications in Applied Mathematics and accordingly the
interested reader is alerted that here is a problem worthy of their attention. Because this
is an equation which will occur again and again we present in this section a synopsis of
the simple results relating to its origins and known solutions.
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Equation (1.21) can be seen to arise immediately from non-linear oscillation theory

where the function z = z(¢) satisfies a second order ordinary differential equation of the
form & d

F T
On making use of the standard substitution,

_dz dy &’z

@ YT ar

we may readily deduce the Abel equation (1.21). Actually Abel originally introduced
(1.21) by means of the equation

d
v+ s(@)] 3L + p(z) + (@) + r(@)"] = 0, (1.22)
where p(z),¢(z),r(z) and s(z) are known functions of z. Abel showed that the change of
variable, .
z = [y + s(2)]e!®, t(z) = / r(r)dr,
reduces (1.22) to an equation of the form (1.21), namely
z%+ {(p—qs+rsz)em + (q—2rs— :—z> ze'} =0, (1.23)
for which there are clearly two special cases to consider:
(a) p—gs+rs? =0, in this case (y+s5) is a factor of (1.22) and therefore (1.22) simplifies to

the standard linear first order ordinary differential equation (namely equation (3.3)),

(b) ¢ = 2rs + ds/dz, in this case (1.22) can actually be written as the standard linear first
order ordinary differential equation with dependent variable (y + 5)?, that is

d d
E(y+s)2+2r(y+s)2=2{s (£+rs> —p}.

Another first order differential equation giving rise to (1.21) is known as the Abel equation

of the first kind, J
W — P(e)+ @)y + RE@W’ + 5@, (120
where P(z),Q(z), R(z) and S(z) are all known functions of z. If y(z) is a known special

solution of (1.24) then the substitution

eT(z)

[y(z) — w1 ()]’

w(z) = T(z) = / [Q(T) + 2R(T)y1(T) + 3S(T)in (T)Z]d'r,
reduces (1.24) to an equation of the form (1.21), that is,

w‘:—‘;’ + S(2)e?T®) 4 [35(z)y (z) + R(z)]weT® = 0.
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This is most easily seen by substituting
y(z) - yl(r) + ( )

into (1.24) and using the fact that y,(z) is a known special solution.

Example 1.3 With the notation

Az) = /z a(r)dr, B(z)= /r b(r)dr,
and writing (1.21) in the form
ydy + [a(z) + b(z)y]dz = 0, (1.25)

verify the following integrating factors y(z,y) for the various special cases listed:

. B(z))?
@) p(z,y) = ZALEELT a(2) = ~ 75y,

(i) wey) = [y+ B() ", a(z) = ~(24i(z) B(a),

@) u(zy) = exp { e ) a(z) = 2B ol

where o denotes an arbitrary constant.

If p(z,y) is an integrating factor for (1.25) then we require that

520m) = 5 lula(@) + ),
so that 5 o
v5, ~ a(@) + b5 = .

Thus we need to verify that this equation is satisfied for each of the special cases listed.

e+ B@F) o —He)
B(x) ' 2B(z)

@ u(z,y) =
In this case we have
 la(a) + YaWl 3o ~ o
=t {y a4 B - 35| - o) B+ ) - 3}
= v tBY (i”;—B) {be — 2a +by) — %}

(y+ B
— e +B) (i;;z—)(w 2aB),

which is zero if a(z) and b(x) are such that 6 +2aB = 0.



10 Differential Equations and Group Methods for Scientists and Engineers

(i) wan = v+ EE )|, a@ = - 0o

In this case we have
v3E ~ lale) + baWl s — e
a—1
= [y+(i:—1—)B] {(a+1)by—(a+by)a—b[y+ (L;LI—)B]}

S ACEUT e RS

which is again zero with the stated condition.

252y’ _ @B + P
(iii) #(2,y) = exp { [B(=) + 2yB(z) + a]} (=) =""1BGy

In this case we have

V3 — la(a) + KN — o)

ex 2B? { 4bBy B 4bB%(B + y)y (a + by)4 B3 B b}
TP B+ 2B +0) ) \(B?+2yB+a) (B°+2yB+a)? | (B®+ 2B + o)

2B? } {4B3a — b(B? + )? }
= eX )
P\BTr B+ S | B2+ 2yB +a)?
and again this is zero with the stated constraint on the functions a(z) and b(x).

These integrating factors are due to Abel and further results, also due to him, are described
in Problem 15.
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Example 1.4 Show that equation (1.22) can be made separable by means of the trans-
formation

y = s(z)y,
provided that the functions p(2) and ¢(z) are such that
p(z) = als'(z) + r(z)s(z)ls(z), q(z) = Bs'(z) + (B + Dr(z)s(=),
where « and 8 denote arbitrary constants and primes denote differentiation with respect

to z. Further with p(z) and ¢(z) so defined derive the corresponding Abel equation of the
second kind (namely, (1.21)) and show that

(B=9)y v p
~F=T @),

a(z) =
which is essentially case (ii) of Example 1.3.

From y = s(z)u and p(z) and ¢(z) as given above we see that (1.22) becomes

(1+u)s (sj—: + s'u) +a(s' +rs)s + [Bs’ + (B+ V)rs]su + rs*u® = 0,
which simplifies to give
(1+u)3—:+ (r+ %) W+ B+ u+a]=0,
which is clearly separable. For the second part we have from equation (1.23)
a(z) = (p—gs + rs?)e®, b(z) = (¢~ 2rs — §')e!,

and the appropriate restrictions on p(z) and ¢(z) give

a(z) = (e = B)[s'(z) + r(r)S(z)]s(z)eZ'(f),
b(z) = (B - 1)[s'(z) + r(z)s(z)]e'®,

and therefore by division we have

a(z) — (:3 )s(r)et(:)
bz)  (B-1)

But using the above expression for b(z) we have

B(z) = / . b(r)dr = (8 — 1)s(z)e'®),

from which the given constraint may be deduced.
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Example 1.5 For equation (1.22), with p(2) and ¢(z) as defined in the previous example,
show that the differential equation (1.22) remains invariant under the transformation of
the form,

=f(17), n :g(r)y,
which is given by
t(z1) _ t(z)+e L S—
s(z1)e = s(z)e ' Sen) — a@) (1.26)

where t(x) is as previously defined.
This invariance property of (1.22) is most easily seen by noting that

o n

s(z)  s(z)’

is an invariant of the transformation and that from the previous example we have that
(1.22) simplifies to give

(1+u)du _ §'(z)
[u2+(ﬂ+1)u+a]__[( )+ (z)] = (127)

It follows that (1.22) is unchanged by the transformation (1.26), that is

[v1 + 5(21)] + [p(z1) + a(21)y1 + r(z1)97] = 0,

provided that we are able to show that the right-hand side of (1.27) is invariant, namely

e+ 5 e = o+ o
which can be readily verified by taking logarithms of (1.26); and differentiating. Hence
for p(z) and ¢(z) as given in the previous example we have established (1.22) remains
unchanged by the transformation (1.26).
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PROBLEMS

1. Determine in each case the constants o and g such that the one-parameter group
ac

p— —_ €
z = ez, y =y,

leaves the following differential equations invariant. Use an invariant of the group
to integrate the equation.

(i) % = 4 + By® (4 and B are constants),
(i) z(="-2°) £+ 22* + )y =0,
(ifi) z(A+zy") % + By =0 (4, B and n are constants).

2. Verify that,

— — o~2¢
Ty=z+¢ Yy1=¢€ %y,

is a one-parameter group of transformations and hence integrate the differential equa-
tion

dy _
(1-2z- logy)ﬂ +2y=0.
3. Integrate the differential equation
2 dy 2 :
(z-v) o= A? (A is a constant),
by observing that the equation admits the group

Zy=zxz+¢ Hr=y+te

4. Given that p(z) is a solution of the linear differential-difference equation (1.10) show
that

_ p(z—=0)
y(z) = FORE
is a solution of the non-linear differential-difference equation
dy(z)

5 = y(®)y(z) — y(z — z0)].

5. Show that the transformation .
€
y(z) = Te’T‘J)’

reduces equation (1.11) io the differential equation
i@ _ S

i f(n)

where t = e*~%0 and A = e~®e.
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6. Show that with w = y/z the differential equation (1.13) becomes

do  3(1-2z)

(1-z)w?
W = T2

2 —_—
+ w+(1+z) 4

Show further that the substitution s = (1 — z)/(1 + z) yields

(s2—1) dw sw?
2 wds—3s+2w+ T

and observe that the transformation (1.14) becomes w; = —w and s; = —s.

7. Observe that the partial differential equation (1.15) remains invariant under the trans-
formation

Ty =€z, t1=et, ¢ =c¢

so that the equation admits solutions of the form c(z,t) = ¢(zt‘1/2). Deduce the ordi-
nary differential equation for ¢ and hence show that

1
ot= 2 2
c(z,t) =A/ e~V /44y + B,
0

where A and B denote arbitrary constants.

8. Continuation. For the non-linear diffusion equation

Oc¢ 0 ¢

5= (P05).
where the diffusivity D is a function of ¢ only, use the one-parameter group and func-
tional form of the solution in the previous problem to deduce the ordinary differential
equation

d4D(¢)

D(¢)¢" (&) + TW({)Z + i?(f_) =0.

9. Continuation. For the case D(c) = ¢ show that the ordinary differential equation of
the previous problem remains invariant under the group

fl = 6‘6, ¢1 = 62£¢)
and that with ¢ = ¢/¢2 the equation reduces to the Abel equation of the second kind
1
v+t (w+ 5) p+(BY+1) =0,

where p = dy/dy and y = log€. Show that the singular solution p = —2¢ corresponds
to the solution ¢(¢) constant.
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10. Continuation. Show that the transformation p = ¢/¥ reduces the Abel equation in
the previous problem to

dq 1 2 _
izt + (1w g) 1+ vov+D =0,

which is in standard form for an Abel equation of the second kind.

11. By making the substitution z = ¢P¢, show that the non-linear diffusion equation

dec 0 Be Oc
3" 5 (A‘f 5‘) ’
where 4 and B denote constants, yields

0z 8%z
E = AZEI—Z-.

Show that this equation remains invariant under the group

me €

zy=¢€"2, tlze"‘t, z) = ez,

provided that the constants m and n are such that
m+4n=2
12. Continuation. Show that the equation for z given in the previous problem admits a

solution of the form
2(z,t) = t/74(¢),

where ¢ = z/t!/» and where ¢(¢) satisfies the ordinary differential equation

nA$(£)d" (§) +£4'(§) — me(€) = 0.

Show further that this equation also remains unaltered by the one-parameter group
given in Problem 9 and that the Abel equation of the second kind may be deduced,

dp 1 1 _
Pw"l‘ (21/)'*'7{) + (3+m>?—0,
where p and ¢ are exactly as defined in Problem 9.

13. By looking for solutions of the non-linear diffusion equation

dc 0 Be Oc
E_S_I(Ae 32:)’
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14.

15.
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where A and B are constants, of the form

e(z,t) = f(2) +9(1),

deduce the solution
1 (z—z0)2+C
C(I, f) = E lOg m y

where z,, to and C denote arbitrary constants.

By calculating the quantity,
% _ 8%¢cy

(911 (917? '

show directly, using the chain rule for partial derivatives, that the classical diffusion
equation (1.15) remains invariant under the following transformations,

2
@) Ty=z+e, t; =1, cy=cexp (—£—2>,
2 4
. z t 1 ex?
i = = = - 2 _ !
(if) T = e’ t, A=y 1 =c¢(l —et) exp( i —et))

In the notation of Example 1.3 verify the following integrating factors for the Abel
equation of the second kind (1.25), subject to the stated restriction on a(x) and b(2),
thus

@ ua) = exp { [y + B@P + 34Ny + 8@+ [ a(r)(r)ar |,
a(z) = 2B
3[A(z) + B(z)?]’
i _ (24 B@) 4 aBE) 4 6BE) |
(ii) mz,y) = {2y+ B(z) + aB(z)"! - ﬂB(l’)} ‘
a(z) = zg—% {IB(2) + aB(=)7'F - £*B(2)*} ,

where « and 3 denote arbitrary constants.
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Chapter Two
One-parameter groups and Lie series

2.1 Introduction

In this chapter we introduce the concepts of one-parameter groups and Lie series. For
one-parameter groups there are two important results. Firstly the method of obtaining
the global form of the group from the infinitesimal form. Secondly the existence of
canonical coordinates for the group. For Lie series the important and remarkable result
is the so-called Commutation theorem. These concepts are discussed below.

2.2 One-parameter transformation groups
In the (z,y) plane we say that the transformation

z1 = f(z,9,€), 1 =g(x,9,¢), 2.1)
is a one-parameter group of transformations if the following properties hold:
(i) (identity) the value ¢ = 0 characterizes the identity transformation,

z=f(2,9,0), y=g(z190).

(i) (inverse) the parameter —e characterizes the inverse transformation,

z = f(z1,y1,—€), y=g(z1,y1,—€).

(iii) (closure) if z; = f(21,¥1,6), y2 = 9(=1,1,6) then the product of the two transforma-
tions is also a member of the set of transformations (2.1) and moreover is character-
" ized by the parameter ¢ + §, that is

zng(z,y,e+6), y2=g(z)y’€+6)‘

Again we remark that the usual associativity law for groups follows from the closure
property. Some simple examples of one-parameter groups are:

(a) z; =z, 1y =y+e (translational group),
) z1 = ez, w1 =e‘y (stretching group),

(©) z; = zcose — ysine, y1 = zsine + ycose (rotation group).
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Example 2.1 Show that the rotation group (c) ddes indeed form a one-parameter group
of transformations as defined above.

In order to show (c¢) forms a group we have immediately z; = = and y = y when
e =0 so (i) is satisfied. On inverting we obtain

T =1zico5¢ 4y Sine, Yy =1y;cos€—xysine,
so that —e characterizes the inverse and (ii) is satisfied. For (iii) we see that if

zy =1, co86 —y; siné and y; = z;sin6 + y, cos 6 then we have
z9 = (z cose — ysine)cos§ — (zsine + ycose)sin §
= zcos(e + &) — ysin(e + §),
and

Y2 = (zcose — ysine)sing + (zsine + ycose) cos§

= zsin(e + §) + ycos(e + §),

and therefore (iii) is satisfied.

The functions f(z,y,¢) and g(z,y,¢) are referred to as the global form of the group.
If for small values of the parameter ¢ we expand (2.1) then since ¢ = 0 gives the identity

we have
5% dy,

4 .
1=z +¢ <?>e=0+0(€2), Y1 =y+€<d—€>(=0+0(€2), (2-2)

where O(¢?) indicates terms involving only ¢? and higher powers of «. If we introduce
functions ¢(z,y) and 5(z,y) by

then we obtain
1 =z 4 ef(z,9) + O(?), 1 =y+en(z,y)+ O(?), (24)

and (2.4) is referred to as the infinitesimal form of the group. The crucial property of
one-parameter transformation groups is that given the infinitesimal form of the group we
can deduce the global form by integrating the following autonomous system of differential
equations,

d d
di: =&(z1, ), i: =n(z1,%1), (25)

subject to the initial conditions,

=, WNn= y‘WhCn e=0. (26)
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A proof of this result can be found in Dickson (1924)(page 293). Here we merely indicate
its validity by means of a simple example.

Example 2.2 Derive the infinitesimal form of the rotation group (c) and by integration
of the autonomous system (2.5) deduce the global form of the group.

For the rotation group (c) we have

=
de

. dy .
= —I8lne¢ — Yycose, d—=zcose—ysme,
3

and therefore on setting ¢ = 0 we have from (2.3)

,y)=~y, n(z,y)==.
Thus in this case we need to integrate

dz, dy

e TV e

=,

subject to the initial conditions (2.6). Introducing the complex variables z = z + iy and
2, = =1 + iy; We obtain
le

—=i21,

de

and thus,
log z; = ie +log 2,

where we have used the initial conditions (2.6). On equating real and imaginary parts of
71 = e*z we can readily deduce the global form of the rotation group (c). If we introduce
polar coordinates (r,8) defined by

r=(z2 4 yz)lb, 0 = tan~(y/z),

then we have » = re”® and from z, = ¢’z we see that the global form of the rotation
group (C) can be written alternatively as r; = r and 6, = 8 + . That is, in terms of (r,)
coordinates the rotation group has the appearance of the translation group. This is a
general property of one-parameter transformation groups.

For any given one-parameter transformation group (2.1) there exists functions u(z,y)
and v(z,y) such that the global form of the group becomes
u(zy,y1) = u(z,y), v(z,4) =v(z,y)+e (2.1

The function u(z, y) is said to be an invariant of the group while together (u, v) are referred
to as the canonical coordinates of the group.
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(i) Methods for finding u(z,y). From (2.5) we obtain

dz; — £(z1,)

dy, 7](-"31, y1)’

(2.8)

which we suppose integrates to yield u(z,, 1) = constant so that from the initial conditions
(2.6) we deduce the first equation of (2.7) and u(=,y) is known, Alternatively u(z,y) may
be deduced directly from (2.1) simply by eliminating ¢ from (2.1); and (2.1),. We note
that if u(z,y) is an invariant then so also is any function of u(z,y), namely ¢(u).

(ii) Method for finding v(z,y). In the integration of (2.8) let « = u(z,y) and suppose that
from u(z,,y,) = « we can deduce the explicit relation y; = ¢(z;,a). Now for the
purposes of integration in (2.5), « is a constant and from (2.5), we have

dz

d—: = £[z1, ¢(21, @) (2.9)

If for some constant z, we define ¥(z,a) by

z dt
20 E[t, O(t, Q)]

then from (2.6) and (2.9) we can deduce (2.7); where v(z,y) = ¥z, u(z,y)] and hence
v(z,y) is known,

¥(z,0) = (2.10)

Example 2.3 Show that the transformation

z y1 = (1+ex)?y, (2.11)

_ F
T (1+ez)’
is a one-parameter group and find the canonical coordinates (u, v).

The reader can verify that (i), (i) and (iii) of the definition of a one-parameter are
indeed satisfied. Now for small values of ¢ we have

1=z —-e’+0(?h), w=y+2zy+ 0D,

so that from (2.4) ¢(z,y) = —2? and 7(z,y) = 2zy. Alternatively on differentiating (2.11)
with respect to ¢ we have

d.’Bl 172 2 dyl _ —_
?——-(-1—_*_—-62—)2- =, d_e —2(1+ez)zy._221y1, (212)

and (2.5) confirms these expressions for ¢(z,y) and n(z,y). From (2.12) we have

dzry 1

dyi 2
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which on integrating gives u(z,y) = «%y as an invariant while from (2.12); we see that
v(z,y) = z~! satisfies (2.7). Alternatively the invariant z2y could be deduced directly from
(2.11) by eliminating e.

Example 2.4 Show that ¢ and n are related to the canonical coordinates « and » by the
relations,

du ,0(u,v) Ou ,0(u,v)
y) = —as , " 2.13
D=5/ "= 5 5 (213)
where the Jacobian is given by

owy) _oudy _oudw

d(z,y) Oz dy Oyodz’

On differentiating (2.7) with respect to ¢ we obtain
Bul d.’Bl Bul dy1 =0 (9'!11 drl (9'!11 dyl _ (214)

9z) de ' Oy, de ~ Oz; de | Oy de

where u; and v, denote u(z,,3) and v(z1,y,) respectively. From (2.5) and (2.14) we have
on replacing (z1,y1) by (z,y),

ov ov
32t 57=0 5;f+a—yfl—1,
and (2.13) can be deduced immediately from these relations.

Example 2.5 A transformation in the (z,y) plane is area preserving if

0(z1,41) _

ey (2.15)

Show that (2.1) is area preserving if and only if

8(u, v)

(9(1?, y) = (I>(u),

where & is a function of v only.

From (2.4) and (2.15) we can deduce on equating terms of order «,

o
5 + 2 (9y =0. (2.16)
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From (2.13) and (2.16) we can deduce

010(w,)/0(z,9), 4] _
3(z,y) ’

and the required condition follows.
{Aside It may be of interest to note that since the set of area preserving transformations
forms a group, the infinitesimal condition (2.16) is precisely the same as the global

condition. That is, if we differentiate (2.15) with respect to ¢ we have

0 (dzy/de,y) | O(x1,dy;/de)

=0,
a(z,y) o(z,y)
sl . . (=, y) .
and on multiplying this equation by we obtain
8(z1, )
0 (dzy /de, yy) + 8 (1, dy, /de) -0
oz, y1) d(z1, 1) ’
so that we have
0 dz, 0 dy _
oo (2 ) o (2) =0 @D

On using (2.5) we see that (2.17) is the same condition as (2.16).]

2.3 Lie series and the Commutation theorem

Suppose we have the group (2.1) with infinitesimal version (2.4). We define the
differential operator L by
9 9
Now for any function ¢(z,,3) which does not depend explicitly on ¢ we have

déy  d¢1dxy  O¢y dy
LA & Taink AN M £ -ThalL 2.19
de Oz, de + 8y, de’ (2.19)

where ¢, denotes ¢(z;,y;). From (2.5) and (2.19) we obtain

‘%1 = Li(41), (2.20)
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where L, denotes the differenfial operator L with (z,y) replaced by (z;,y:). Similarly we
have

: i
dd% = LI (91)), Tﬁl = Li(L1(L1(41)))- (2.21)

If we let &(e) = ¢(=1,y) then by Maclaurin’s expansion we have

do e (d’® e (d£e
sw=e0+e(g) +7 (@) +5(@).,*

and thus from (2.20) and (2.21) with ¢ = 0 we obtain

2 3
61 11) = 8(z.9) + L(9) + LG + FLAO) + ..
That is, we have

CENEDY %L"(qs), (2:22)

n=0

and we refer to such a series as a Lie series. We notice that we can write (2.22) as

é(z1,y1) = eL(z, y), (2:23)
provided we interpret the differential operator < as the series operator,

€ o
S0,

n=0

In particular if we take 4(z,y) to be = and y then form (2.23) we obtain,

1 =elz, gy =ely. (2.24)

On combining (2.23) and (2.24) we have the remarkable result,

d(eLz, ely) = eL §(z,y), (2.25)

which is called the Commutation theorem of Lie series (see Grobner and Knapp (1967),
page 17).
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Example 2.6 For the rotation group (c) deduce the global form of the group by means
of (2.24) and the appropriate differential operator L.

In this case the differential operator L is given by

0 0
L= —y5;+z%,

so that L(z) = —y and L(y) = z and the global form of the group can be deduced from
(2.24) using the expansions,

l)k 2k+1

( l)k 2k (
cose_z (2k)' , sin G—Z (2L+1)' .

k=0

It is worthwhile noting that using Lie series we can give a formal solution of any
autonomous system of differential equations given initial values. That is, consider

dx dy
o =Py, —

7 = G(X,Y),

and X =«, Y =g att=0. The formal solution of this initial value problem is
X=eMy, Y =eMg, (2.26)
where the operator M is defined by
9 9
M= F(a,ﬂ)% + G(a,ﬂ)%
We consider two simple examples.

Example 2.7 Deduce the solution of the single differential equation

dx _ 2
PR
utilizing the above Lie series.
In this case we have
0
M=—-a?—
« o’

and M(a) = —a®, M?*(a)= 2" and in general

M™(a) = (—1)"nla™*1,
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Hence

X =eMa= i ﬂM(")(oz) = ai(—at)"
n! n=0 ,

n=0

and thus for |at| < 1 we obtain the solution,

o

X =—,
14+ ot

Example 2.8 Using Lie series deduce the solution of

dX dY
d—t—AX-{-BY,d—t—-—‘AY + BX, (227)
where A and B are constants.

In this case we have

M= (Aa+B,3)% + (Ba —Aﬂ)(—,)%,

so that
M(a) = (Aa+ Bf), M(B) = (Ba— Ap),
M%(a) = K?a, M%(3) = KB,
M3(a) = K*(Aa + Bp), M3(3) = K*(Ba — AB),
M*(a) = K'a, MY(B) = KB,
M3%(a) = K'(Aa + BB), M3(8) = K*(Ba — AB),

and so on, where K = (A% + B?)%. From these results and (2.26) we can deduce the
solutions,

2KX = [Ka+ (Aa + BB)leXt + [Ka - (Aa + BB)le™ K¢,
2KY = [KB + (B — AB)]eX! + [KB — (Ba — AB)Je™ K,

which of course could be established by more elementary methods (for example, differ-
ential (2.27), with respect to ¢ and make use of (2.27),).

[The following problems which arise in continuum mechanics are useful exercises in
manipulating Lie series.]
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PROBLEMS
. In cylindrical polar coordinates (r,4) a transformation in the plane area preserving if

(9(1‘1,01) _ L
a6 T or’

Following the note at the end of Example 2.5, differentiate this equation with respect

to ¢ and show that,
8 (dn), Ldn 0 (do) _
Ory \ de ry de 80, \ de ]
Hence deduce there exists a function ¢(r;,8,,¢) such that

dri 106 db_ 109
d€ - 1‘1(901’ d€ - ™ (91‘1‘

If ¢ does not depend explicitly on ¢ the solution of this system for which r, = r,6, =6
when ¢ = 0 is a one-parameter group with ¢ as an invariant, that is

¢(1‘1, 01) = (ZS(T, 0)

. Continuation. In the above problem show that the one-parameter groups correspond-
ing to

® #(r,8) = Ar?0 + B8,
(ii) #(r,8) = Ar?6 + Brllogr,
(iii) &(r,0) = %(0+sin0cost9),

where A and B denote arbitrary constants, are respectively

(i) r = [e—ZAer?. + BA_I(e'?’Ae — 1)] 1/2, 0, = eZAeg,
(ii) r = G_Aef‘, 6, = e2Acg + B/’l-l(e?’Ae — 1) log r + Be,
(iii) ry = [r? — Aecos® 6] g, =9

. Consider,

1
z =< log(1+ex), y1=(1+ex)y.

Calculate %, 94 and express in terms of (z;,y;). Hence or otherwise deduce that
this is not a one-parameter transformation group.
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4. Consider the one-parameter group,

21 = f(2,y,€) = = + e£(z,y) + O(),
v =g(z,y,¢) = y+ en(z,y) + O(e?),

and introduce the operators,

L=fa—a;+na%, P=L+w, Q=L-uw,

where w is defined by,

_% o
w = 9z + By‘

Let 4(=,y) and ¢(z,y) denote arbitrary functions and agree to use the notation (¢,)
for the Jacobian, that is

(¢, ¥)
Nz, y)

(6.9) =

We consider the following Lie series,

L@ =Y S LG = Y Ponleu),
n=0

n=0
Loz )= 3 S L) = 3 (e ).
n=0 n=0
Show that
. 1 1
Q)] 0 = ;L(¢n-1), Yn = ;L(ll)n-l),
(i) P(4,9) = (L(¢),¥) + (¢, L(¥)).

[Hint, for (ii) start by coasidering L(4, ¥).]

5. Continuation. If we suppose that

(eLg,eLpy =" "xn(2,9),
n=0

show that,

(i) Xn = Z(¢k,¢n—k)a
k=0

(i) Xn = IP(Xn-l)v

n —
n
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Hence deduce,

(eF6,eP9) = Y0 S P (9. 4) = €T (6,9,

n=0
[Hint, for (ii) start by considering P(x,_1) and use (i) and (ii) of previous problem.]

6. Continuation. Observe that in particular,

(1‘1,1/1) - (e‘Lz,e‘Ly) - eePl

and therefore

(z1,91) = 1+ ew + = P(W) + PZ(W)+

Verify
()] log(z1,y1) = ew +< L(w) + < Lz(w) +.
(ii) (L) =1 —ew— 2—!Q(w)— EQZ(W)+,,,,

7. In cylindrical polar coordinates (r,8) consider the one-parameter group,

ri=f(r,0,¢)=r+e&(r,0)+ 0(62),
81 = g(r,0,¢) = 8 + en(r,8) + O(?),

and introduce operators,

L=f%+’l%, Pi=L+uw, Po=L+ws,

where w; and w, are defined by

Suppose that

o0 e" o0
=elr= Z FL"(r) = Ze"f,.(r,B),
n=0 n=0
A== Zem(r, 9),

o(r ,9)
= 3(; 0; Ze pia(r,0).
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Verify

) fo = 2 Ufac),
(ii) An = %PZ(An-l),
(iii) 2= efP2,

8. Continuation. Observe from Problem 6,
Pip,

r=e

Suppose that,

Zrd(r,01) ie"a’n(r,g),
n=0

r 0(r,8)
Verify,
(i) On = ZAkI‘n—k,
k=0
- 1
(“) On = ;PS(U'n-l),

where P; is given by
Ps=L+ (wl +wz),
Hence conclude,

2(9(1‘1,01) —
r 0(r,6) -

echleePll - eePal‘

[Hint, for (ii) start by considering L(on_1).]

29



Invariance of Standard Linear Ordinary Differential Equations 31

Chapter Three

Invariance of standard linear ordinary
differential equations

3.1 Introduction

It is well known that linear differential equations for y(z) remain linear under trans-
formations of the form,

z1 = f(z,¢), 1 =g(z,€)y. 3.1)

Throughout this chapter we consider only transformations (3.1) which we suppose form
a one-parameter group such that infinitesimally we have

o1 =z 4+ e€(2) + O(?), 3 =y +en(z)y + O(). (3.2)

We look for groups (3.1) which leave standard linear equations invariani and deduce
the form of the differential equation in terms of canonical coordinates (u,v) (see (2.7)).
Initially the reader may well consider this approach irrelevant for such equations and of
course the astute reader will see that for first order equations we still end up solving an
equation by classical methods which is comparable in difficulty to the original one. The
object of the exercise being to demonstrate the group approach in familiar situations with
a view to the student obtaining some insight into the relation between solutions and groups
leaving the equation invariant. Moreover even linear equations are not always readily
solved and the results obtained in Sections 3.4 and 3.5 by this method are non-trivial and
appear not to have been given elsewhere.

3.2 First order equation y' + p(z)y = ¢(z)

For the first order differential equations our primary objective is to introduce new
variables such that the equation becomes separable, For equations invariant under a
one-parameter group of transformations the appropriate new variables are the canonical
coordinates (u,v) of the group. We illustrate this procedure with the standard first order
equation,

W 4 b = a(a). (3.3)
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For convenience we introduce the function s(z) by

(t)dt

s(x) = ef (34)

where z, is some constant. With this definition the solution of (3.3) is known to be given
by
s(z)y — / s(t)g(t)dt = C, (35)

where C is a constant.

We now deduce (3.5) by finding a group (3.1) which leaves (3.3) invariant, that is

dy;
2 TeEn = a(@).

From this equation and (3.1) we deduce

dy [g'(x) . _f(®)
Fr { o) + fl(= )p(f)} y= q(f),

which becomes (3.3) provided f(z) and g(z) are such that

z g9(2) T z Q
p(z) = (s )+f( w(f), =)= e )‘I(f)
From these equations and
f@)=z+e€(@)+0(?), g(z)=1+en(z) + O(e?), (36)

p(f) = p(z) + €(2)p'(x) + O(e?),  q(f) = q(z) + (2)d' () + O(?),

we obtain on equating terms of order e,

7+&p+&p' =0, Eq+&'—ng=0.

Hence we have

n+ép=C, £’+£(p+q;>=01, (3.7

where C, is a constant, Thus

) = = (G [ sououe+ .

n(z) = C1 — p(z)é(),

(3.8)
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where C; is a further constant. [Of course in obtaining these results we have had to solve
an equation of the type (3.3), namely (3.7);.] Now the global form of the group (3.1) is
obtained by integrating (see (2.5) and (2.6))

d d
T =€), FE=nm, (3.9)

subject to the intital conditions z; = =, y» =y when ¢ = 0. From (3.8); and (3.9) we have

1dy, _ dz,
nde = TP

and therefore, by integrating this equation we obtain,
ns(x) = ec“ys(z), (3.10)
where s(z) is defined by (3.4). From (3.8); and (3.9); we have

q(x1)s(z1)dzy
{1 2 sthayae + & }

= de, (3.11)

and there are two cases to be considered.
Firstly if C, # 0 then (3.11) gives
—Cl,— log {Cl/ ' s(t)g(t)dt + Cz} = —Cl,—log {Cl/ s(t)q(t)dt + Cz} +¢,
1 N 1 Zzo

and from this equation and (3.10) we can deduce that our canonical coordinates (u,v)
(see (2.7)) are given by

s(z)y
{C1 f:o s(t)q(t)dt + Cz}

u(z,y) =

v(z,y) = 'c{_l log {Cl L ) s(t)q(t)dt + Cz} ,

0

In these coordinates it can be readily verified that the differential equation (3.3) becomes

du
d_'v _l—Clu,

which is separable and integrates to give

1 1
o log(1-Ciu)=v— —C—llogcs,
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that is,
1- Clu)ec”’ = Cs,

where C; is a constant. This equation can be reconciled with (3.5) where the arbitrary
constant C in (3.5) is (C; — C3)/C:.

Secondly if C; = 0 then from (3.10) and (3.11) we have canonical coordinates

r

1
u(z,y) = s(2)y, v(z,y)= E’;/ s(t)q(t)dt,
and in these coordinates (3.3) becomes

du

d_v=

Ce.

Again our equation in canonical coordinates is separable and can be integrated to give

u— Cov=0C,

which can also be reconciled with (3.5) where the constant C is the same in both equations.
We remark that (3.3) is invariant under other groups, in addition to those considered here.

3.3 Second order homogeneous equation y" + p(z)y =0

For second order linear homogeneous equations we can without loss of generality
(see Problem 8) consider the normal form of the equation, namely

d?y
pcl +p(z)y = 0. (3.12)

We shall assume ¢,(z) and ¢,(z) are two linearly independent solutions of (3.12) and for
convenience we suppose their Wronskian is unity, that is
$165— ¢261 = 1. (3.13)

Our objective here is to relate ¢, and ¢, to a one-parameter group (3.1) which leaves (3.12)
invariant. For higher order linear differential equations the use of canonical coordinates
(u,v) simplifies the equation to one with constant coefficients.
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From (3.1) we have

i

dy _gdy g
dz, fidz " ¥

and

d?,y g d?’y 2gl f” g// g/f//
- (7 ) 2+ (-5 ) @19
Clearly if (3.12) is to remain invariant there can be no term involving y’. On equating
the coefficient of y’ to zero in (3.14) we obtain f'(z)/g(x)? constant, which must be unity
if (3.1) is a one-parameter group and therefore we have
fi(z) = g(z). (3.15)
From (3.14) and (3.15) we find that the differential equation

d2y1
e +p(z1)y =0,

becomes

d2 1" I2

dr’; + (g - 2— +p(f)g ) =0,
and thus (3.12) remains invariant provided

g// 2
i 2— +p(f)g* = p(z). (3.16)

Equation (3.15) and (3.16) constitute two equations for the determination of the group
(3.1). From (3.6), (3.15) and (3.16) we find on equating terms of order e,

¢ =2y, f—;l—l +2pf’ +p'¢ = 0. (3.17)

The equation (3.17), for £(z) is a formally self-adjoint third order differential equation
(sometimes called anti self-adjoint, see Murphy (1960), page 199) with first integral

%(2&” — &%)+ pt? = constant, (3.18)

which can be verified by differentiation. It is well known (see either Problem 20 or
Murphy (1960), page 200) that the general solution of (3.17), is given by

§ = A} +2B¢1¢2 + Cé3, (3.19)
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where A, B and C denote arbitrary constants. [In order to see that (3.19) is the general
solution consider for example £ = ¢:4; then we have

€ =¢18y+ 626, €' = d1dh + 20,05 + 6247

Observe that from the original differential equation we have

€' = 24144 — ph142),

and substitution of this expression and those for ¢’ and £ into (3.17); gives zero.] Further
from (3.12) and (3.19) we can deduce

& = 2[A¢141 + B(d1dy + ¢241) + Cd245],
&' = 2(A¢E + 2B¢1 045 + CoiE) — 2p€,

and on substitution into (3.18) we find on using (3.13) that (3.18) becomes

186" — £7) + 9E° = (AC - BY). (3.20)

Now the global form of the one-parameter group (3.1) is obtained by solving the
differential equations
dzy _ dy; _ £'(z1)
de &(z1), de - Tyla
subject to the initial conditions z, = z, y; = y and ¢ = 0. We find that suitable canonical
coordinates (u,v) are given by

z dt

'U(I,y): . @1

¥
u(za y) =1
i)k
where z, is some constant. In terms of (u,v) we find that the differential equation (3.12)
becomes

d?u

1 " 12 2 —
7z {Z(%f —£°)+p¢ }U—O-
But from (3.20) we see that the differential equation finally becomes

d?u 2
07 + (AC— B*)u=0. (3.21)

Thus for example, if (AC — B?) is positive the general solution of (3.12) is given by

y(z) = £(z) 2 {Cl cos (K /: %) + Cpsin (K/: %)} , (3.22)
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where C,, C, are arbitrary constants and K = (AC— B?)'%2, We have therefore established
the relationship between the general solution of (3.12) and the infinitesimal version of
the one-parameter group of transformations leaving (3.12) invariant. In a sense, (3.22)
is the ‘inverse’ of (3.19). From (3.19) we see that if we know a group leaving (3.12)
unaltered then essentially we know a quadratic relation between the linearly independent
solutions of (3.12). We remark that solutions of (3.12) in the form of (3.22) have been
given previously although the function ¢(z) appearing in (3.22) has not been identified
with the one-parameter group leaving the differential equation invariant (see for example
Coppel (1971), page 19).

Example 3.1 Illustrate the above theory with reference to the simple Euler equation,

In this case the equation is clearly invariant under the group z; = ez and 3 =y so that
&(z) = z. Since we have linearly independent solutions ¢;(z) = z'2 and ¢,(z) = z 2logz
we see from (3.19) A =1, B =C = 0 and therefore from (3.21) we have v = Civ + Cs.
This expression confirms our linearly independent solutions since in this case u = y/z %
and v = logz.

3.4 Third order homogeneous equation y"' + p(z)y’ + ¢(z)y =0

We see from Problem 12 that for third order linear homogeneous differential equations
we can without loss of generality consider the equation

d3
7z 3+P(r)d +4(x)y=0. (3.23)

In this section we suppose that ¢,(z) and ¢,(z) are linearly independent solutions of the
second order equation
(r)

d.az:2 4 0. (3.24)

such that their Wronskian is unity, We are concerned with finding one-parameter groups
of the form (3.1) which leave (3.23) invariant.

From a further differentiation of (3.14) we obtain

d3y1 Ldsy +3 gl _ iﬂ ﬂ+ 3L”_ ﬁg'f” 3gfll2 gf’” g
dzr? dz

E;? = Iz F F Iz f/3 —flT f/5 - _f-r

" 1 g2 "en 1t
g"  3'f " 4f
+ (F + - 2

f5 Iz - Iz (3.25)



38 Differential Equations and Group Methods for Scientists and Engineers

If (3.23) is to remain invariant we require the coefficient of y” in (3.25) to be zero. From
this condition we deduce

f'(z) = g(=), (3.26)

and (3.25) becomes

d3y1 1 d3y (2911 3gIZ> dy (glll 3g 4gl II)
=—=—-3 + —_ Y.

dz] ~ g2dz® P T

Using this equation and

d3
PRt Bt ~+a(@)u =0,

we obtain on multiplying by g¢? the equation,

dsy 29” 3912 ) dy gIII 3913 4!],!]”
F+(———+p(f)g>d—z+(—+ P 72 —— +p(f)eg +4(f)g> =0.

For invariance this equation must be identical with (3.23) and therefore f(z) and g(z) as
well as satisfying (3.26) must also satisfy

W 39 +0(f)g* = p(2),
(3.27)
g" | 3¢° _Age”
T 72 —— +0(f)9g’' +9(f)g® = q(=).
From (3.6) and (3.26) we obtain n = ¢’ while from (3.27) we have
2£”I + 2pfl +plf = 0,
(3.28)

€ +pE" +3¢¢" +4'¢ =0,

and these equations are only consistent if

& (q - %) =D, (3.29)
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where D is a constant, Clearly if (3.23) is self-adjoint (see Problem 14) then p’ = 2¢ and
(3.29) is trivially satisfied with the constant D zero. However if (3.23) is not self-adjoint
then £(z) must be both a solution of (3.28), as well as satisfying (3.29). In terms of
solutions of (3.24) the general solution of (3.28), is given by

£ = A¢} +2B¢142 + Cé3, (3.30)

and we have
266" — €7 + p£? = 4(AC — BY), (3.31)

where A, B and C denote arbitrary constants and we have used the fact that the Wronskian
of 4, and ¢, is unity. If (3.23) is not self-adjoint then for a given p(xr) we need to assume
g(z) is given by

_ldp D
q(z) = 57z T Ok (3.32)
where £(z) is given by (3.30).
From the equations
dz, dy

rr £(z1), d—: =& (=),

we find that suitable canonical coordinates (u,v) are given by

we) = g, v(e) = f‘f—j)

for some constant z,. In these coordinates the differential equation (3.23) can be shown
to become 2 d
T+ (26 — €+ P T+ 2+ + g®)u =0,

which on using (3.28),, (3.29) and (3.31) finally becomes

3
37'3‘ +4(AC - BZ)Z—: + Du=0. (3.33)
Thus for third order differential equations (3.23) which are not self-adjoint, we can
for a given function p(z) obtain a one-parameter group (3.1) which leaves the equation
invariant provided the function g(z) has the form (3.32) for suitable constants A, B, C and
D. If this is the case then the solution of (3.23) reduces to solving the third order linear
equation (3.33) with constant coefficients. If (3.23) happens to be self-adjoint then the
general solution can be obtained in the usual way for such equations from the solutions
of (3.24) (Murphy (1960), page 200).
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Example 3.2 Illustrate the above theory for the case when 4:(z) and ¢,(x) are linearly
independent solutions of the Euler equation given in Example 3.1.

In this case p(z) = z72, 41(z) = 'k, () = z'®logz and from (3.32) g(z) must be
given by
g(z) = z7*{[A + 2Blog z + C(log z)*]"*D — 1},

for some constants 4, B, C and D. If this is the case (3.33) can be solved by an expression
of the form

u = Cre¥'? + Cze¥2Y 4 Cae®?,

where C;, C; and Cs denote three arbitrary constants and k,, k. and ks are the three roots
of the cubic equation

k3 4+ 4(AC - Bk + D =0.
Assuming that the roots of this cubic are readily identified we may proceed to deduce

three linearly independent solutions of the original equation of the form (3.23).

3.5 Fourth order self adjoint equation y" + [p(z)y']’ + ¢(z)y =0

From Problems 16 and 17 we deduce that the general fourth order self-adjoint equa-

tion can be taken as
: + —(p(z)==) +q(z)y=0 3.34
dz*  dz ( dz 1=y : (3:34)

In this section we suppose ¢1(z) and ¢.(x) are linearly independent solutions of

—+Ey =0, (3.35)

such that their Wronskian is unity.

On a further differentiation of (3.25) we find that the coefficient of ™ is zero provided,
() = g(2)*3, (3.36)
in which case we obtain,

—_— —_— —_—

d4y1 1 d“y 10 gu 4912 d?’y 1_0 gu/ 11 g/g// §-‘_]_Ii> dy
g8 dz? " 3 \g 3 g2 '3¢%)dz

8 gIIZ gIIII 14 glglll 38 glzgll 56 gl4
+ -3 - yr-

_ = = —Z_ 3.37
g g 3 g2 3 ¢ 9 ¢4 (3:37)
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From the equation

dt yl d dy _
Pl + = Fr ( (2’1)E> +g(z1)y1 =0,

and (3.37) we deduce that if the resulting equation is to be identical with (3.34) then we
require f(z) and g(z) to satisfy
10 /¢" 4g
— 4/3 L (2 _Z2_
po) =nne+ 3 (L -37).
9 12
9(z) = 9(£)g*? + p(f) (g”“’g” §%> + g (3.38)

gu// 14 g/gm 8 g//?, 38 glzgu 56 gl4>
g 3 ¢2 3¢ 3 ¢ 9¢

From (3.6), (3.36) and (3.38) we have,

56"+ 29’ + P/ = 0,
(3.39)

3™ +pE" +8¢€" +20'€ =0,

and n = 3¢’/2. The two equations (3.39) are consistent only if

I (q (fg’) —31’;) D, (3.40)

where D is a constant. Thus in general for a given p(z) we need to assume ¢(z) is given
by
_9p(x)? 3 d%p D

(=)= 50" * 02 O (3.41)

where ¢(z) is a solution of (3.39): and has the general form (3.30) where ¢:(z) and ¢.(z)
are linearly independent solutions of (3.35). Moreover if the constants 4, B and C are
as in (3.30) then we have

F066" €M)+ Ze? = (40— B) (342)

The global form of the one-parameter group (3.1) can be deduced from

d.’l:l dy1

—c =@, == & (z1)m,

|
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subject to the initial conditions z, = z, y =y when ¢ = 0. Suitable canonical coordinates
(u,v) are given by

z dt
Uew) = gy ey = o

where z, is some constant. Making use of the result given in Problem 18 (replacing
a(z) and g'(z) with &(z)¥? and &(z)~! respectively) we find that in terms of (u,v) the
differential equation (3.34) eventually becomes

diu

d2
=7 +10(4C - Bz)m}—'; +[D+9(AC—- B u=0, (3.43)

where we have made use of (3.39):, (3.40) and (3.42). Thus provided ¢(z) is given by
(3.41) then (3.34) can be reduced to a linear equation with constant coefficients. Evidently
the approach presupposes that the linearly independent solutions ¢:(z) and ¢,(z) of the
associated equation (3.35) can be readily obtained.

Example 3.3 Illustrate the above procedure for the case of p(z) identically zero.

In this case the linearly independent solutions of (3.35) are ¢:1(z) =1 and ¢2(z) = =.
Hence ¢(z) is of the form,

&(z) = A+ 2Bz + Cx?,
and the above approach is effective provided that ¢(z) is given by

D

1@) = T3 2Bz 1 Ca®’

from some constants 4, B, C and D. For purposes of illustration suppose that A = 0,
B=-} and C=D = 1. In this case we have

Lr)==z(x~1), q(z)=[z(1-2)]",

and (3.43) has the general solution

U= (Cl + sz)ev\/g/z + (Cs + C.w)e'”‘/g/z,

where Ci, C;, Cs and C; denote four arbitrary constants. The solution of the original
equation of the form (3.34) can now be readily deduced.

{In the following problems s(z) is assumed defined by (3.4). Also for Problems 4, 5, 6
and 7 a further arbitrary constant could be introduced into the condition restricting the
coefficients. In these problems we have assumed that this constant has been absorbed
into the constant z, in (3.4) which defines s(z).]
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PROBLEMS
1. For Bernoulli’s equation,

Wy =a@W (D),

show that
— 1 _ ‘ 1-n
€0 = sty {1~ MG [ s e+ Caf
n(z) = C1 — p(x)é().
2. Continuation. If the constant C,; is non-zero deduce that suitable canonical coordi-

nates (u,v) are

s(z)y
{a=-mycu [z syr-ratyat + 6 177

u(z,y) =

v(z,y) = (l_—ln)—Cl log {(1 —n)C /:: s(t)' " "q(t)dt + Cz} ,

and therefore the differential equation becomes

d
Es =u(v"" ' - ).

Integrate this as a separable equation to obtain

(1= Crut~™)e1-™Cv = ¢y,
and hence deduce the solution of the original equation.
3. Continuation. If the constant C; is zero show that
we) = s mn) =g [ a0,

and that the differential equation becomes
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Integrate to obtain

ul™™ — Cy(1 = n)v = C4,
and show that the same solution is obtained as in the previous problem with
Cy = (C2— C3)/Ch. !

. Show that the generalised Riccati equation

Y+ by = a(a) +r(zw,

remains invariant under (3.1) provided r(z) = ¢(z)s(z)?. If this is the case, show that

X)) = ——_—1 x)= ——_—_p(z)
@ =@ "= @)

and that suitable canonical coordinates are,

u(z,y) = s(z)y, v(z,y) =/ s(t)q(t)dt.
Hence show that the differential equation becomes

du 2
E;—1+u,

and therefore the solution of the original equation is

y(z) = %—) tan (/:,-: s(t)g(t)dt + C) .

. Show that the Abel equation of the first kind,

d
d—‘Z + p(z)y = () +r()y?,
is invariant under the group of the previous problem provided r(z) = ¢(z)s(z)3. Show

that the differential equation becomes

du _ 3
ol 14 u’.
. Show that P
= +p(=) = 9(2) + r(2)logy,

is invariant under (3.1) provided ¢(z) = r(z)log s(z). Show that
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R _ P
&= T "I e

wa) = 5@y vew)= [ s,
and that the differential equation becomes

du
— =logu.

dv

7. Verify that the differential equation

Wt by = g@" + (",

admits the group (3.1) provided r(x) = ¢(z)s(z)*~™. If this is the case deduce that,

—p()

1
O e "0 e

we) = s e = [ T st

and that the differential equation becomes

8. Show that the linear homogeneous second order equation

d’y dy
T2z + a(x) Iz + b(z)y =0,

can be reduced to normal form either by,

(i) changing the dependent variable to y* where

D VA d
yoe Rlyema.

in which case we have

a2y a(x)? 1da) ,
zrﬁ{”(”)‘ TR =S E
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(ii) changing the independent variable to z*

zt =

in which case we have
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where

z s
/ - sz a(t)dtds,
Zo

d’y  b(z)
. ——I_—Z-y = 0.
=7 (&)
9. Continuation. For the equation,
dz_y _ 3% dy n(n+2) _ 0
dz?  (1—zf)dz @ (—z2))
show that the reductions to normal form given in the previous problem give rise to
the following equations,
. &y n(n+2) 32—z,
M dz2+{(1-z2)+2(1—z2)2}y =0
- d’y  n(n+2)
(ll) e my =0.
10. With the notation of Section 3.3 consider the non-homogeneous equation
d?,
T7 + P = @),
If this equation is to remain invariant under the same group which leaves the homo-
geneous equation unaltered then show that ¢(z) must be given by
g(z) = go(2) /%,
where ¢, is a constant. Hence show that the equation corresponding to (3.21) becomes
d?u
ol + (AC - Bz)u = qo.
11. If ¢(z) satisfies

‘11_(266” _ 612) +p£2 — 1{2,

where K is a constant, show that w(z) = £(z) 'k satisfies the non-line:~ second order

equation

d’w

dz?

+p(z)w =

2

ws'
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12.

13.

14.

15.

The following three operations leave a linear differential equation linear,
(i) changing the dependent variable to y* where y = a(z)y",

(ii) changing the independent variable to z* where =* = §(z),

(iii) multiplication of the equation by a non-zero function ~(z).

Show that by choosing «, # and v such that

a(@)B(2) = ¢ dro T L (2) = [a(2)B (20 A@)] T,

the general linear third order equation

A(z)d3+B() +C()y+D(z)y_0 *)
can be reduced to an equation of the form,

d3y

o3 + a(z)— +b(z)y =0. (*+)

Continuation. A second order linear equation is self-adjoint if it is of the form

£ (PeRt) +a@w=o.

Show that any second-order linear differential equation can be made self-adjoint by
any one of the operations (i), (ii) and (iii) of the previous problem.

Continuation. A third order equation is formally self-adjoint (or anti self-adjoint)
if it has the form (Murphy (1960), page 199)

dfz (P( )7 ) + % (P(z)%) + diz(Q(z)y) + Q(,)j_z -

Show that the general equation () is self-adjoint if and only if

3dA 1dB
B =32, pe)= 35 {c@- 352}
Make use of this result and the reduced equation (++) to show that no combination
of the operations (i), (ii) and (iii) of Problem 12 can make a third order equation
self-adjoint unless it is originally self-adjoint.

Continuation. Show that if a third order equation is self-adjoint then it remains
self-adjoint under (i), (ii) and (iii) of Problem 12 provided «(z) is a constant multiple

of v(z)8'(z).
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16.

17.

18.
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Continuation. Show using the operations of Problem 12, that the general fourth
order equation

ALY+ B@)SY 1 @) 5L + D) 4 B =0, )
can be reduced to one of the form,

ff{ +a(z ) LA b(z)j—z +e(z)y =0, (++)

by choosing «, 8 and v to be such that
2 3 'f: B(': dt Y] 4 -1
a(@)f(2) = ¢ T TV o(2) = [a(2)B' (2)*A(2)] .
Continuation. A fourth order equation is self-adjoint if it has the form

j‘i—; (P(z)%) + diz (Q(”)Z_D + R(z)y = 0.

Show that (+) is self-adjoint if and only if

D) = 4 {342}

Continuation. Show that no combination of (i), (ii) and (iii) of Problem 12 can make
(++) self-adjoint unless it is self-adjoint originally. If (++) is self-adjoint show that
these operations give rise to another self-adjoint equation provided «(z) is a constant
multiple of v(z)5' ().

dA
B(I) = 2d_27,

[Hint, for the second part, if (++) is self-adjoint we have b(z) = o/(z) and the equation
becomes

@ (L. d (" .t
E.-*—?(P dr*2>+d7(Q d7>+Ry =0, (+++)

Pt — 02’313,

where,

Qt - azﬂm + 200’,3” + (4aa// _ 20’2 + aaZ)ﬂ/,

R = ﬂl(am/ + ac” +ado + ca),

where «, 8, a and ¢ are all functions of z, primes denote differentiation with respect
to = and we have taken v = o/f'.]
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19. Continuation. If in the pre;lious problem the functions a(z) and ¢(z) are such that

show that (4+ + +) admits the factorization

L*[AsL%y*] =0,

where L? is the second order operator defined by

d [, dy* .
v = g () + 20

where )1, ), and )3 are given by

M=o, o= (a4 2a), =2

o’

20. Verify by differentiation that the third order self-adjoint equation of Problem 14
admits the first integral

P(2yy” — y'®) + P'yy’ + Qy® = constant.
If ¢:1(=) and ¢»(z) are linearly independent solutions of the second order equation

d’y /dy
Pd_2+2p d_Z+Qy—O’

and if y(x) is given by
y = A¢l + 2Bd1¢2 + Cé3,

where A, B and C denote arbitrary constants then deduce that

PQyy" — y') + P'yy' + Qy* = 4(AC — B*)Pu?,

where w(z) is the Wronskian of ¢, and ¢;, namely

w = ¢1d5 — $247.

Hence conclude that this expression for y gives the general solution to the self-adjoint
equation of Problem 14.
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21.

22,
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In the notation of Seciion 3.4:
(i) Deduce from (3.26) and (3.27) the equation,

(- 3257 e = (=115

and hence deduce the condition (3.29).

(ii) Consider the non-homogeneous equation

&y dy
pre i P(-’”)d—z +q(z)y = r(),
and show that this equation remains invariant under the same group which leaves the
homogeneous equation unaltered provided
r(z) = roé(z)7?,
where r, is a constant. Hence show that the equation corresponding to (3.33) becomes

d3u

=5 T4(AC - BZ)— + Du=rq.

With the notation of Section 3.5:
(i) Deduce from (3.36) and (3.38) the equation,

L 30 o (-2 3

and hence deduce the condition (3.40).

(if) Consider the non-homogeneous equation

T+ i (o) +aaw =),

and show that this equation remains invariant under the same group which leaves the
homogeneous equation unaltered provided

r(z) = ro(z)"%/2,
where r, is a constant. Hence show that the equation corresponding to (3.43) becomes

d*u

=t 10(AC ~ B?) +[D+9(AC B)?u = ro.
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Chapter Four

First order ordinary differential equations

4.1 Introduction Li e's -:ﬁ nd QM“M ég,g&m

In this chapter we discuss¥; of finding a one-parameter
group which leaves a given first order ordina al equation unaltered. That is,
for a given F(z,y) we wish to determine a one-parameter group,

1=z +e(z,y)+O0(?), y=y+en(z,y)+O(d), 4.1)

such that the differential equation,

Y Faw), (4.2)
remains invariant. This problem is by no means solved. Much of the literature is
concerned with the alternative problem of finding differential equations which are left
invariant by a given one-parameter group. For this aspect the reader should consult the
standard tables of differential equations and their associated groups (see for example
either Dickson (1924), page 324 or Bluman and Cole (1974), page 99). We shall also
consider the alternative problem but with a view to situations not previously discussed.
For the fundamental problem we highlight the role of singular and special solutions of
(4.2) and we refer the reader to the related discussion given by Page (1897)(page 113).

Integral curves of (4.2) z(z,y) = constant, evidently satisfy the first order partial
differential equation

0z

0z
5t F(z, y)a—y =0. (4.3)

In Section 4.6 we consider the invariance of (4.3) under a one-parameter group in the
three variables (z, y, z) which we relate to integrating factors of (4.2). In a sense this result
provides a generalization of Lie’s famous result for integrating factors (see Problem 1).
This section deals briefly with the group approach to partial differential equations and
therefore the reader is perhaps best advised to avoid it until familiar with the material
on partial differential equations described in subsequent chapters. In the final section
of this chapter we attempt the solution of Lie’s fundamental problem. Since the two
functions ¢(z,y) and n(z,y) are not completely determined by the single constraint (4.6)
Lie’s problem is rather to propose a second independent constraint on the group (4.1)
which is in some sense compatible with (4.6) so as to simplify the subsequent analysis.
Here we propose that the assumption that (4.1) is area preserving may be such a constraint.
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Although the results obtained are by no means conclusive, different forms of Lie’s
problem are generated which at least convey some insight into the fundamental difficulties
associated with the problem.

4.2 Infinitesimal versions of i and y = F(z,y) and the fundamental problem

We calculate the infinitesimal version of ¥ as follows. From (4.1) we have,

dy dy+e(g3dz+ 24y)
421 dr4e (g—i—dz + g—i—dy)

and on dividing through by dz we obtain,

+ O(e?),

w _gre(g+58)

o _ + O(ed).
dzy 1+6(§5+8y§§) ( )

Hence on using the binomial theorem for the denominator we have

dy _ dy , 2
E - d_r + fﬂ'(l'aya Yy ) + ()(6 )1 (4‘4)
where =(z,y,y') is given by
_On (o0 &\ dy 9 (dy\’
=T ((9y (92:) dz oy (d_z) ’ (45)

and this is the infinitesimal version of y'.

If (4.1) leaves (4.2) invariant then from (4.4),

dy
E - F(zlayl)a
and
B OF  OF .
Flewm) = Fe,) +< (€55 +150 ) +0(@)
we obtain

dy N o_ (9_F (9_F) 2
E+6W(r,y,y)—F(r,y)+6<£az +7lay + O(é),



First Order Ordinary Differential Equations 53
and therefore from the terms of order ¢ we have

f(9F+ OF 0n ((917 3{) (%Fz

oz "9y or \oy 0z) 9y

oy oz (46)

where we have used (4.1) and (4.5). Lie’s fundamental problem for first order differential
equations is that for a given F(z,y) how can we systematically determine two functions
&(z,y) and n(z,y) such that (4.6) is satisfied. The functions ¢(z,y) and n(z,y) can be
completely arbitrary provided (4.6) is satisfied and n # F¢. Equation (4.6) always admits
the solution n = F¢. However, this solution does not serve our purposes since in this case
when we come to deduce the global form of (4.1) we need to solve

d d
=tEnm), 3= Faunen),

and thus we are led back to our original problem (4.2). Further from (4.8) in the following
section, it is also evident that n = F¢ is not an acceptable solution of (4.6).

If ¢(=,y) and n(z,y) are known functions then we show in the following section that
the condition (4.6) reduces to the existence of an integrating factor for the differential
equation (4.2). Moreover for given £(z,y) and n(z,y) we may view (4.6) as a first order
partial differential equation for the determination of F(z,y). Thus we may determine
classes of differential equations invariant under a known one-parameter group and this is
the alternative problem which is discussed in the section thereafter.

4.3 Integrating factors and canonical coordinates for y’ = F(z,y)

If we introduce A(z,y) by A = n— F¢ then (4.6) simplifies considerably and we obtain

oA 20 (AN _
(9_17 + F (9_1/ (F) =0. (4.7)

Although this equation is a good deal simpler than (4.6), the interesting aspect of (4.6)
has been removed since (4.7) does not involve either ¢ or 5 directly. If we introduce
u(z,y) by p = 27! then we have

1

u(z,y) = n(z,y) — F(z,y)¢(z,y)’

(4.8)
and (4.7) can be shown to become,

S+ (Fu) = (4.9)
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Hence if we write the origfnal differential equation (4.2) as

dy — F(z,y)dz =0, (4.10)

then from (4.9) we see that u(z,y) is an integrating factor for (4.10). This result is
due originally to Lie (see Problem 1) and is generally given some prominence in the
literature. However, from the point of view of actually solving differential equations the
use of canonical coordinates is preferable. Moreover as we have seen in the previous
chapter canonical coordinates can be used with higher order equations and therefore we
will emphasise their use here.

From (4.8) and (4.9) we see that there exists a function z(z,y) such that

0z -F 0z 1

5= -FO By -0 “1D

But we have

0z 0z dy— Fdz
dz = —dr + —dy = ———— =0,
3z " oy T Tq- Fo)

where we have used (4.10) and (4.11). Thus z(z,y) = C where C is a constant represents
the integral of (4.2) and we have using (4.11)

Thus if we introduce the operator L by

9

9
L=£3_2+n(9_y’

then (4.12) gives L(z) = 1 and from the Commutation theorem (see (2.25)) we have
o) = o) = 3 0,
and therefore

z(z1, 1) = 2(z,y) + e (4.13)

From this equation and (2.7) we see that if a first order differential equation is invariant
under a one-parameter group then the required integral has the form

z(z,y) = v(z,y) + Yluz, )], (4.14)

where (u,v) are the canonical coordinates of the group and + is some function of u only.
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In order to obtain (4.14) more directly we suppose that in terms of canonical coor-
dinates the differential equation (4.2) becomes

dv
rie o(u,v).

But clearly if this equation is invariant under u, = v and v, = v 4 ¢ then ¢ must be
independent of v and the result (4.14) follows immediately from the equation

dv
du = ¢(“)-
Example 4.1 Solve the differential equation,

h___ v
dr  (z+z?+y?)’

by finding a one-parameter group leaving it invariant.

In this case we have

OF _ —(1+2z)y OF _ (z + 22 —y?)
9z~ (z+ 224922 Oy (z+z2+y)?’

and from (4.6) we need to find ¢(z,y) and n(z, y) such that

on  0¢

(242 -y — (14 22)y€ = (2 +2° +y2>zg—z + (5 (9_2:) y(z+z2+y%) - &

8y’

Unfortunately ¢(x,y) and 5(z,y) must now be determined by trial and error. Try 5 =1
(that is, 5 constant) then ¢ must satisfy

i3 ¢ (z + 2% — y?)
2 2496 g% _ _ETr "V
(z+= +y)3z+y3y (1+2z)¢ ”
Unfortunately even at this stage we cannot systematically solve this equation since the
solution by Lagrange’s method involves solving the original differential equation (see
Problem 3). However, with some persistence we can arrive at the solution ¢ = z/y. Thus

the global form of the one-parameter group is obtained by solving

dz, _ dy,

de "y’ d6=1’

subject to the initial conditions z; =z, y =y when e=0. We obtain

F
21=2+6;, y1=y+67
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and the reader should verify that the given differential equation is indeed invariant under
this group. Canonical coordinates (u,v) are given by

_y
u=2=
T

b v = y’
and the differential equation becomes

dv 1 1

Tu” (%_f,gj?(uuzr

Thus the solution is

v+tanlu=C,

or

y+tan~! = = C.

8=

Alternatively if we write the differential equation as (4.10), namely

ydz

W ETar Y

then (4.8) gives the integrating factor u(z,y) as

(z+2*+4%)

p(z,y) = @+

’

and we obtain

(zdy — ydz) _

dy +
VTR )

This integrates to give the previously obtained result.

Example 4.2 Obtain a function a(z) or class of functions such that the differential
equation

dy _ 2
E_a(z)'*'yv

remains invariant under a one-parameter group.
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From (4.6) we have

& +2yp=—+

on on 9
Oz

dy Oz

This condition simplifies if ¢ = ¢(z) and 7 = n(z)y and we obtain

£(z)d'(z) + 20(2)y” = '(2)y + [n(z) - € (2)]la(=) + ¥].

From this equation we deduce on equating coefficients of powers of y,

{(z) = Az+ B, n(z)=-A,
provided a(z) takes the form,

C
a(z) = —(Az T B)Z’

where A, B and C are all constants. From

drl _ dy1 _
rrke (Az; + B), 2 - Ay,

we deduce that suitable canonical coordinates (u,v) are given by
u=(Az+ B)y, v= %log(Az + B),
and from the original differential equation we obtain

dv _ 1
du = (u+ Au+C)’

— - —) (a+y?) - g—f](a2 + 2ay? + y*).

57

This equation is separable and can be readily integrated for given values of the constants

A and C.

4.4 The alternative problem

For a given ¢(z,y) and n(z,y) can we obtain the most general F(z,y) such that (4.6)
is satisfied? We solve (4.6) as a first order partial differential equation in F (see Problem

3). The characteristic equations are

dz _ dy
E = f(zvy)v dr = 7](27,1/)’

(4.15)
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and

dF _ 08p (37) BE) 8¢

o _on on 08N o 06
dr Oz 8y Oz F ByF’ (4.16)

and in order to obtain the most general F(z,y) we need to deduce two independent
integrals of (4.15) and (4.16). In general (4.16) is a Riccati equation which we solve
using the known solution of (4.6), namely n = F¢. Making the substitution (see Problem
4)

1
+= (4.17)

we obtain

dw (0n 27135)1”_%
dr 8y Or “€dy ~ 6y’

which is linear and can be solved in the usual way.

Example 4.3 Obtain the most general first order differential equation invariant under a
one-parameter group of the form,

z1=f(2), w1 =9(2)y.

Infinitesimally we have

21 =z +e€(2)+0(e2), y=y+ en(z)y+O0(e?),

and therefore the characteristic equations (4.15) and (4.16) become

Lot Loy, (419)
and
& =+ (r(z) ~ € @NE. (4:20)
From (4.19) we have
W _ 1)
" @

and therefore

ys(z) = A, (4.21)
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where A is a constant and s(:c)-iS defined by

s(z) = ¢ dm EDI (4.22)

for some constant z,. From (4.19),, (4.20) and (4.21) we obtain

ar (e'(z) n(z)) o AT)

() Ez)) " Ez)s(z)’

which integrates to give

&(z)s(z)F = An(z) + B, (4.23)
where B is a constant. Hence our most general first order differential equation is obtained

from B = &(A), that is

dy _n(z) _ ®[s(z)y]

dz " &2)Y T E2)s(z)

In this case we can verify that suitable canonical coordinates (u,v) are given by

® dt
u(z, y) = s(z)y, v(z,y)= ok

and that the differential equation becomes
du
[Notice this example generalizes Problems 4, 5, 6 and 7 of Chapter 3.]

Example 4.4 Obtain the most general first order differential equation invariant under the
one-parameter group,

E(z,y) = ()™,  n(z,y) = n(z)e*,
where k is a constant.

In this case we have from (4.15)
dy _ n(z)
dz ~ £(z)’
and therefore

()

y— -Emdt = A, (4.24)
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where 4 is a constant. Making use of the result given in Problem 6 we have on performing
the integration

k s(t)k

W= kA f(t)

2 _dt+ B, (4.25)

where B is a constant and s(z) is defined by (4.22). Since w = £(z,y)W we have from

4.17)
= & (w2 n)

and hence the required differential equation is
dy __k_[fs@f ( * n(t) )
(@ —n0) " = e [ Barvo (v [ 1
where ¢ denotes an arbitrary function. Suitable canonical coordinates are

Tty 1o s

u(z,y) =y - 0] v(z,y) = @y ), @)

and on using

du _ du/dz 1

dv ~ dvfdz ~ (—kv+ ;r.%(ﬁd”/d")’

we see that the differential equation becomes

The remaining sections of this chapter are devoted to various aspects associated with
Lie’s fundamental problem and the condition (4.6).

4.5 The fundamental problem and singular solutions of y = F(z,y)

Suppose the integral z(z,y) = C of (4.2) is solvable for y so that we have

y=S(z,0). (4.26)

But from (4.13) we see that if (4.2) is invariant under the one-parameter group (4.1) then

y1=S(z1,C +¢),
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and therefore on equating terms of order ¢ we have

-<(5:)+ ()
7= \3z) " \ac)’
where the partial derivatives in brackets refer to y as a function of the two arguments =z
and C. From this equation and (4.2) we deduce

oy _ _
(5%) =z - PG (427)
Now X = n — F¢ satisfies (4.7) and using (4.27) we see that (4.7) could be deduced
alternatively in the following two ways.

Firstly, (4.7) follows from differentiating (4.2) partially with respect to C. In the
bracket notation for the partial derivatives (4.2) becomes

(?) F(z,y), (4.28)

and on partially differentiating with respect to C we obtain,

(= (32)) - 5 (52)

But we have,

(5 (56)) - 5 (36) + 5 (58) (5

8z \ 8C 8z \8C dy \oC / \ 8z )’

from which (4.7) can be deduced. Secondly, (4.7) follows from the compatibility of the
two equations (4.27) and (4.28) which the reader can readily verify.

We see from (4.27) that if y = yo(z) is a singular solution of (4.2) then &(z,y) and
n(z,y) must be such that

7(z, o) = F(z, yo)¢(z, yo)- (4.29)

Hence, if as is often the case a singular solution of (4.2) is known, then (4.29) might
well suggest the general nature of £(z,y) and n(z,y). These considerations indicate that
singular solutions of first order differential equations perhaps play a more vital role than
has been previously considered.
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4.6 Invariance of the associated first order partial differential equation

In this section we consider the invariance of the associated first order partial differ-
ential equation (4.3). We use the group approach for partial differential equations which
is described in detail in subsequent chapters. We look for a one-parameter group of
transformations in three variables (z,y,z) which leaves (4.3) invariant. We use the con-
vention that subscripts denote partial differentiation with z, y and z as three independent

variables.

Suppose that the one-parameter group
ry=z+ ef(:c,y, Z) + 0(62)’
y1 = y+en(z,y,2)+ O(?),

71 = 2+ €((z,y,2) + O(e?),
leaves (4.3) unaltered. We calculate $2 and 2 as follows,

95 _9n 0z | 9n Oy
8z~ Oz O8zy Oy Oz

Oz 8z Oz
(e (erem)Hi-c(ereq))
H{gre(rag) o (meng)} 0

and therefore

0 _ 02 0:_ 0x_ (0:\'_ 0:0:), (0
E;;_az'*'c{cf-*'(cl—ft)az nz'ay EZ (az) n‘alay}+0(€ )
Similarly,
0n _ 0 0s | 0n 0y
Oy T oz oy Oy 0y
0z 8z 8z
-{frelered)} elore)
0z Oz Oz 2
+{£+€<Cy+<‘za_y)}{1—€<ny+nzay)}+o(€ ),
and hence

821 Oz

9z . 0z 9z\*> _ 9:0: )
@T—@+€{Cy+(cz—ny)5—fya—z—nz (%) —eza—_@}w(e )

(4.30)

(4.31)

(4.32)
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If - = 4(z,y) is a solution of (4.3) then by invariance we have z; = ¢(z;, %) and
therefore z = ¢(z, y) also satisfies

0 0
f(-"’:yyz)a—;‘*")(”yy,z)a—; =C(:c,y,z). (433)
Now from,

0z 0z
oz, + F(-"’lyyl)a—yl =0,

and (4.30), (4.31) and (4.32) we can deduce

G+ FCy =0[(n— F&)z + F(n~ F§)y — (n — FOF], (4.34)

where 0 = g% and we have used & = -F6. From (4.3) and (4.33) we have

¢=(n-EF)0,
and therefore (4.34) gives
a0 8
5t 55(1?9) =0. (4.35)

Hence 0, that is {/(y — ¢€F) is an integrating factor for (4.10). Clearly if » satisfies an
equation of the type (4.33) as well as (4.3) then (4.35) can be deduced immediately since
from (4.3) and (4.33) we have

8z —-F¢ 0z ¢

8z~ (n—F¢)' By  (n- FE)’
and (4.35) follows from the compatibility of these equations.

In the above we have used the so-called non-classical approach for partial differential
equations described in a subsequent chapter. We have shown that the first order condition
for invariance of (4.3) under (4.30) is equivalent to the existence of an integrating factor
for (4.10). Moreover this condition conveys no more information than the condition
for the compatibility of (4.3) and (4.33). If we apply the classical approach for partial
differential equations then on equating coefficients of 6° and 6 to zero in (4.34) we deduce
that ¢ = ®(z) and that X = n — F¢ satisfies (4.7), with partial derivatives as given in (4.7).
Thus the classical approach gives rise to the well known result that if 4 is an integrating
factor then so also is ®(z)u where z is the integral of the differential equation.
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4.7 Lie’s problem and area preserving groups

In this section for a given differential equation (4.2) we attempt to solve (4.6) as-
suming that the one-parameter group (4.1) is area preserving. That is, we assume there
exists a sufficiently continuous and differentiable function G(z,y) such that

oG

€(z,y) = g—jy (@) = -5 (4.36)

From (4.6) and (4.36) we obtain the second order partial differential equation for G(z, y)

892G 0G| ,8°G _ 8(G,F)

57 oy T o T o) “an
which we require to solve for a prescribed function F(z,y). In principle we can solve
this equation by introducing two functions A(G, F) and B(G, F) such that

oG 8G

5 = AG.F), i B(G, F). (4.38)
The compatibility condition for G(z,y) together with (4.37) yields two equations for the
determination of the first order partial derivatives of F(z, y) and the compatibility condition
for this function gives the final equation for A(G, F) and B(G, F). Although the equation
obtained is no more tractable than (4.37) the analysis does merit some simplifying features
which would seem worthwhile reporting. The following analysis should be contrasted
with other possible restrictions concerning the nature of the one-parameter group. For
example if ¢(z,y) and 5(z,y) are assumed to be given as the gradient of some function
then this assumption appears to compound the subsequent analysis rather than simplify
it. The simplifying features associated with (4.36) may not be due to the fact that the
group happens to be area preserving but rather to the fact that (4.36) is embodied in
the general expressions for £(z,y) and 5(z,y) (see (2.13)). More precisely G(z,y) is an
invariant of the group and (4.36) results from (2.13) in the case when the Jacobian in
(2.13) is a function of = only.

In order to solve (4.37) by means of (4.38) we need to assume that the Jacobian

_0G,F)

=27 4.39
3G.0) (439
is non-zero and finite. We also need the following elementary relations
3_23 _ 1 8F Oz B
G~ Joy' oF T
o voooor (4.40)

dy _ 18F Oy A

G~ Joez’ oF U
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Writing the compatibility equation for G(z,y) in the form

aA,z)  8(B,y) _
aG.H T aGE -

we obtain

8BOF OAOF _0A 0B

With C = A + FB we see from (4.7) that (4.37) can be written as
a(cv y) _ Fga(C/F,I) =0
3G, F) G, Fy
which on simplification yields,
8C OF ac OF ac
bosr (Fﬁ - c) = —C (4.42)

We note that it is in the derivation of (4.42) that the assumption (4.36) appears to signif-
icantly simplify the analysis.

On solving (4.41) and (4.42) for 6F/0z and 8F/8y we obtain

OF __,0C (Fac C)H’

9z~ 8G \' F

(4.43)
OF 50 0C,
8y ~ 8G  OF '

where H(G, F) is given by

_fecoc 9B [oBC) [(9C\?)\

We note from (4.38) and (4.43) that the given differential equation (4.2) becomes

dF_{BF BF}{BG 8G

-1
e bRt 6—1+F6y} = H(G, F). (4.45)

From the above equations we find after a long calculation that the compatibility condition
for F(z,y) becomes

2 — —_ —_——
c 2HC g+ H'Cor + ( 36 o G sGor =0 (446)

»C 8’C 8’c (60)2+ (30 B) 8(HC) 0COH _
G? dGOF oF?
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which can be written as

] ac ac , 0 ac cac\ _

2 {e(2-n)nrclShiwlo(L-5)+SL) =0 )
On comparing this equation with (4.7) we see that (4.47) is the statement that (4.45)

remains invariant under the one-parameter group with infinitesimals ¢*(G, F) and 5*(G, F)
given by

. _.(8C ) . ac
€ (G,F)=C (6_F - B) , (G F)=-Coz. (4.48)
Thus an integrating factor for )
dF — H(G, F)dG = 0, (4.49)
is therefore (H¢* — n*)~1. Now we can verify that
-1
. _+_94,B) [8BC) (60)2
HE=n"=C5Gm\or ~\3F) [ (450

so that the compatibility condition for F(z,y) reduces to the statement that the differential
form

{C38 - §6 45} 46+ {252 — (§§)"}ar
) =0, (4.51)

is an exact differential. Problems 13 and 14 illustrate the above analysis with two simple
solutions of (4.47). For specific examples we need an expression for the Jacobian J
defined by (4.39). From (4.38), (4.39), (4.43) and (4.50) we find that

1= c2%AB) {a(Bc) _ (E)”}_ , (4.52)

3G, F)) oF oF

Using C = A+ FB we can simplify (4.51) to give

§rdA+ (FF - C)dB _
Cza A B}

Thus with ¢ = C~! the condition (4.47) is equivalent to the statement that

0.

d(¢,G) 0(F¢,G)
aA Bt 3@ s ¢B

=0, (4.53)
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is an exact differential. That is the compatibility condition for F(z,y) becomes

0(3.6) o429 (3% 6) o is

(A, B) 3(A,B) ~ 8(A,B) 3(4,B) (4.54)
where the functions ¢ and v are defined by
1 F
$=tazrB YT {@+FB); (4.55)

A particular method of solution of (4.54) is outlined in Problems 15, 16, 17 and 18.

It is worthwhile noting that the differential forms (4.51) and (4.53) are consistent
with that obtained from the requirement that (A+ FB)~! must be an integrating factor for
(4.9), provided we make use of the expressions (4.43) for §F/8z and 8F/8y. Since from
(4.40) and using C = A+ FB we have

dy - Fdz _ CdF - (& +réE)dc
(A+FB) JC '

and (4.43), (4.44) and (4.52) yields precisely (4.51).

The analysis of the final three sections of this chapter indicate that while it is possible
to provide alternative points of view on Lie’s problem, it is difficult to make real progress
for the general first order differential equation. Lie’s problem is a fundamental unsolved
problem of mathematics, the solution of which, will no doubt involve an entirely new
perspective. Because u = (5 — F¢)~! is an integrating factor for (4.10), it means that for a
given u(z,y) there are infinitely many suitable £(z,y) and 7(z,y) and therefore first order
differential equations are invariant under infinitely many groups. This is in contrast to
higher order differential equations which are invariant under at most a finite number of
groups, which is the subject of the next chapter.
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PROBLEMS

1. If the differential equation

M(z,y)dz + N(z,y)dy = 0,

is invariant under (4.1) show that the infinitesimal condition is equivalent to the
existence of an integrating factor u(z,y) where

1
u(z,y) = (EMTnN—)

2. If u(z,y) is an integrating factor for both of the differential equations,

M(z,y)dz + N(z,y)dy = 0 and N(z,y)dz — M(z,y)dy = 0,
show that © = tan—!(M/N) satisfies

_ 8% 0% _

2 —_— _—
Ve = 3z2+3y2

0.

3. For the quasi-linear first order partial differential equation

0 0
a(e,1,2)5; +8(e,02) 5 = 2,0, 2), )

show that the general solution is given by

p=2(0),

where & is an arbitrary function and p(z,y,z) and o(z,y,z) are any two independent
integrals of the system of differential equations

dz dy dz
d—T—“(-’C,yyz), d_T_b('ryyrz)v E—C(-’C,y,Z).

[Hint, from p = constant and ¢ = constant we have

d
d_i=apz+bpy +ep, =0,

do
== ao; +boy +co. =0,
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where subscripts denote partial differentiation with z, y and z as three independent
variables. These two equations together with (x) constitute three homogeneous equa-
tions for ¢, b and ¢. For non-trivial solutions the determinant vanishes and this
condition can be shown to become

0(p.0) _
oz,y)

from which the required condition follows. In the Jacobian partial derivatives are
with = and y as the independent variables, that is

Op _ Oz do 9z
3z Pe +pza—z, 3y oy +a,a—y, etc.]

4. If yo(z) is a known solution of the Riccati equation
W by = a(e) + @)
7z TPEy=4 v,
show that the substitution y = yo + w™! gives rise to the linear equation
dw
% T [2r(@)yo(z) - p(@)lw = —r(2).
5. Show that the most general first order differential equation which admits the group
E(:c,y):f(:c), ﬂ(lyy)=7)(1)y+C(-’f),
is

gy Mmz) S\ __ L () — z C(_t)s
dz f(z)y £(z)  &(z)s(=) Q( (=)y I0) (t)dt) ,

where s(z) is given by
s(z)y=¢ f:o %g%dt,
and @ is an arbitrary function of the argument indicated.

6. Using (4.15), and (4.18), make the substitution w = ¢W and deduce the equation,

AL 2) - L%
(e) dy+6y<e Y=y
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7. Show that the most general first order differential equation invariant under the group

is

o

E(z,y) = &(=)y™ Y, n(z,y) = n(z)y™,

213 -k {e-n [},

where & is an arbitrary function and s(z) is as defined in Problem 5. Using canonical

coordinates

B _ 1 s(t)"?
u(:c,y) = s(:c)y, u(:c,y) - y"_ls(l)n_l ./z'u E(t) dt’

show that the differential equation becomes

du u”

&~ )

8. For the Riccati equation given in Problem 4, show that the substitution

1 dz

Y= m &

gives rise to the linear equation,

22 r Z
Tt (40~ 75 ) 2 + etz =0

Deduce the normal form of this differential equation.

9. Continuation. Show that Riccati equation of Problem 4, admits the group

provided,

and

&(z,y) = €(2), n(z,y) = n(z)y +((2),
%(7‘5) = —rn, %(Pf + 7)) = 27‘(,

d
d—z(qE—C)=p<+qn~
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From these equations deduce that £(z) satisfies the equation,

d d dr?
(256"—5'”)+4{q’—%z (P‘%i) -3 (P‘ la) }52 =C

where C is a constant. Can you reconcile this result with that of Section 3.3.

[The following three problems summarize the three criteria given by Dickson (1924)
(page 313) for the invariance of a differential equation under a one-parameter group.]

10. Show that a first order ordinary differential equation is invariant under the group

z1=z+ef(z,y) + O(), 1 =y+en(z,y)+0(?), (**)

if and only if

Lz = (z),
where z(z,y) is the integral of the equation, L is the operator

i} i}

and ¢ denotes an arbitrary function.

11. Continuation. The differential operator associated with

M(z,y)dz + N(z,y)dy =0, (+)
is given by
8 8
P= Na_z - M%

The commutator (LP) is defined by

(LP)=LP - PL.

Show that,

) (LP)= (LN — P{)a% —(LM+ Pn)aiy.

(ii) the differential equation (+) is invariant under () if and only if the commutator
(LP) is a constant multiple of the operator P.
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12. Continuation. The first extension of the operator L is L’ where

0 0 0
+n—+7

L =fa—z ay a_y"

and where ~ is given by

_3n+<3n Bf) ,_%ym

Tor \8y oz dy”

Show that the first order differential equation

Fz,y,4) =0,

remains invariant under (»+) if and only if

L'F=o.
[The following six problems relate to Section 4.7.]

13. Assuming that

A=f(G), B=g(GF,

where f and ¢ are functions of G only, show that equation (4.47) simplifies to yield

"+ fla)+ £(f/9) =0,

where primes denote differentiation with respect to G. Integrate this equation and

show that J = g where « is the integration constant. Hence from the relations (4.40)
deduce that

ATy R
Y TO YT e T

o5
r=—-—log| —
a g

where 8 and G, are further integration constants. From these results show that the
original differential equation (4.2) in this case has the form

Z—: = (ay + B)hjaz +log(ay + B)],

for some arbitrary function h of the argument indicated. Observe that this equation
can be solved by the substitution

p = oz +log(ay + ).
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14. Assuming that H(G, F) is identically zero show from (4.44) and (4.47) that

15.

16.

{£(F)EF)G +m(F)] - [((F)m'(F) ~ m(F)E(F)]}

b= 2(F)[(F)G + m(F)] '~

+ n(F),

= [((F)G + m(F)] %,

where ¢, m and n denote arbitrary functions of F and here primes denote differ-
entiation with respect to F. Show that J = ¢(F)/2 and from the relations (4.40)
deduce

2= == [¢(F)G + m(F)] "% + p(F),

75 e lUF)G 4+ m(F)]* + g(F),

y= f(F)

for some functions p(F) and ¢(F). With s(F) = ¢(F) — Fp(F) show that in this case
the original differential equation (4.2) is the well known Clairaut’s equation (Murphy
(1960), page 65)

which has general solution y = yz + s(y) for some constant .

Assuming there exists some function w(4, B) such that ¢ and ¥ as defined by (4.55)
are given by

dw Ow
¢ = a_B) ¢ = _a_Ay (*)

show that equation (4.54) becomes

d(V*w,G)  0(8%, 5%

o5 88 _,

3AB) T 0(AB) T ADB ()
where the Laplacian V? is given by
o? o?
2 T e———— m—
V= aaz T 3p7
Show that (x+) can be written alternatively as
(w,G) 8(w,V:G) &(V’w,G)
2 = —
V'3AB) - OAB) 64D (res)

Continuation. From (4.55) and () conclude that w(4, B) satisfies the first order
partial differential equation

dw ow
8B~ T 0A
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and hence

w = tan~'(B/A) + f[(A2 + B?) ],

where f denotes an arbitrary function of the argument indicated. Introducing polar
coordinates

R=(A+B%)™, O =tan~}(B/A),

show that

F =[B - Ag(R)]/[A + Bg(R)],
where g(R) = Rf'(R) and the prime denotes differentiation with respect to R.

Continuation. In (R, ©) coordinates observe that (+ x+) of Problem 15 becomes

v2

19(w,G) 1 {B(w,VzG) V2w, G)
R3(R,©) R\ 9(R,©) “O9(R,0) }

(% * %x)
where V2 is given by

82 1 0 1 9

veo 9 1o 1 O
oz T Ror T R oO?

On using w = © + f(R) show that (x » x+) simplifies to give

¥G_186G 198G 0 {<,_Eg 9G
R) 36

3R T ROR R200? ' BR '
where g(R) is as defined in Problem 16.
Continuation. With G = R? and h(G) = ¢(G ') show that
___G™)1 - FrG)] 5o _ GHF+HG)
{1 + P21 + h(G)2]} P’ {t+ P+ h(G)}

Hence show that J = (1+ F2)/2 and that the relations (4.40) yield, apart from arbitrary
additive constants

L__ % 'R(1 — Fh(G)] _ 2G™R[F + h(G)]
TP aeAR YT [t P+ hGY R




First Order Ordinary Differential Equations 75

19.

Hence conclude that the original differential equation (4.2) in this case is

b _ {y— zg[(2* + y?)‘”ﬂ]}
dr |z +ygl(a? +y2) 2/2 )

which is solved using polar coordinates (see Murphy (1960), page 67).

Given the one-parameter group

2y =z +e(z,9) + O(?), w =y+en(z,y) + O(e?),

show that

yi(z1 — o) = y(z — z0)

+¢€ {[E(:c, y) — &(z — 20, y(z — z0))] %(z —z) + nlz — z0, y(z— zo))} + 0(e%.

[This result can be verified by two distinct methods.
(i) Suppose that y = S(z,C) and y, = S(z1,C +¢) then y(z — 20) = S(z — zo,C) and
yi(z1 — 20) = S(z1 — 20,C +¢),

= S(z ~ 20+ ¢€(2,y),C + ¢) + O(e?),
= 5 —20,0) + e {ee) (32 ) + (35) } + 0

= sle - )+ { e e - 20+ (5 )} + O

where the partial derivative of S with respect to C has arguments z — z, and C and
is found from (4.27) to be given by

9 d.
(a—g) = 7](23 — Zo, y(-’C - -TO)) - E(z — Zo, y(:c - Io))d—:(z — 10),
from which the required result follows.

(if) Alternatively we have

—zo dfdz

y(z —zo) =€ y(z),

and we require to find

-z, dfdz,

vz —zo)=e y1(x1).
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From

z=z1—€e(z1, )+ 0(62)1

we have

e} A d
dz:dzl{l—e<a—i+a—§d—:)}+0(ez),

and therefore

[y (%, A\ L o
E_{l €<6z+6yd:c)}d:c+o(e)'

Hence if we define the differential operators D; and D, by

_d _ o€  O€ dy i
Di=2z D= (ﬁ-*'é)_yd_:c)d:c’

then we require to evaluate

yi(z1 = 20) = e~ 7DDy 4 en(z, y)] + O(?).

Grobner and Knapp (1967)(page 40) give formulae for operators of this type. Observe
that,

e~%oDip — 5 _ zg, e %oDiy= y(z — zo),

and that
_ dt dy
Dyy(z+7) = —dz(:c, y)d—z(:c + 7).
In order to calculate the order of ¢ term arising from
e—zo(D1+th)y’

we use the integral given in Grobner and Knapp (1967)(page 40). We have

—zo
e~2oAD1+eDa)y — gz — 2o) + e/ [Day(z + 7)]* dr + O(e?),
0

where the ‘star’ in the integrand denotes that (z,y) in the square bracket becomes

(z — 2o — 7, y(z — 2o — 7)). If in the integral we make the substitution

p=z—20—T,
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From

z=1z; —e(z1,0n)+ 0(‘2)’

we have

o 9d
d::dml{l—e<a—i+ %d—:)}+0(e2),

and therefore

[y (%, %A\ 4
E_{1_€<Bz+£dz)}d:c+o(cz)'

Hence if we define the differential operators D, and D, by

-4 __ (9%  9dy\ d
Di=gg De= (6:c+6yd:c dz’

then we require to evaluate

yi(z1 — z0) = e P1+<D[y 4 en(z, y)] + O(e?).

Grobner and Knapp (1967)(page 40) give formulae for operators of this type. Observe
that,

e~%Dip = ¢ — g, e_"’D‘y = y(z — zo),
and that
Dyy(z+7)= —Zg—z(z, y):—:(z + 7).
In order to calculate the order of ¢ term arising from
e—l‘o(D1+€D2)y’

we use the integral given in Grobner and Knapp (1967)(page 40). We have

DYy = s = zo) +e [ Davte + 1 dr 4O,
0

where the ‘star’ in the integrand denotes that (z,y) in the square bracket becomes
gr

(z — zo — 7, y(z — zo — 7)). If in the integral we make the substitution

p=z—20—T,
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then we have

z

e==oD1+eDa)y = y(z — 2o) + c/

z—z0

(0,37 Ptz - 20)dp + O(€),

and thus

d
e DDy = y(z — 20) + €22 (z — 20) (2, 1) — €= — 20, Y(z = 20))] + O(e).
The result now follows since

e~ =Pt Dienz ) = en(z — 2o, yY(z — 20)) + O(€).

Note that we can check the validity of this second method by using the integral given
in Grobner and Knapp (1967) to evaluate

1 —Zo = 6_:°(D'+ED’)[-"’ + e(z,y)] + 0(52)~

Proceeding as above we obtain

z1—z9g=2—zo+€(z,y) + 0(62),
which of course is the desired result.]

20. Continuation. Show that the one-parameter groups

zy=z+e(2)+0(?), wm=y+ en(z)y + 0(62),

which leave the following differential-difference equations invariant,

@ B (2) = ~s(a - 20),
(i) B (2) = y(o)t - oz — 20)],

(i) D (2) = wo)lu(=) - ulz = 20
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are respectively as follows,

o ri=z+ae, y =€y,
(ii) zi=z+e, Y=y,
(iii) 1 =e %z 4+ Ba (1 —e"%), y = e*y,

where o and g are arbitrary constants. Can we use these groups to simplify or
integrate the equation?

[Notice, that since

vo = 20) = 7% Hiry(a) = ) L0,

differential-difference equations are really ‘infinite’ order differential equations.]
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Chapter Five
Second and higher order ordinary differential equations

5.1 Introduction

First order differential equations can be invariant under an infinite number of one-
parameter groups. Second and higher order equations differ in that they are invariant
under at most a finite number of groups. Second order equations are invariant under at
most eight while for n > 2, nth order differential equations are invariant under at most
n+4 groups (see Dickson (1924), page 353). Higher order equations also differ from first
order ones in that if there exists a one-parameter group leaving the equation invariant
then this group can be systematically determined. Much of the literature is concerned
with obtaining the most general second order differential equation invariant under a
given group and again we advise the reader to consult standard tables of such differential
equations (see for example Dickson (1924), page 349). In the following section we
deduce the condition (5.8) for a second order differential equation to be invariant under
a one-parameter group and in the next section we give four examples making use of
this condition. In the section thereafter we give examples of the determination of the
most general second and higher order differential equations invariant under a given one-
parameter group and in the final section we give three applications from the nuclear
industry.

5.2 Infinitesimal versions of y’ and ¥’ = F(z,y, )
We consider the general second order differential equation

d?y dy

m =F (z: Y, d_l) ’ (51)
and look for a one-parameter group,

z1 =z+e(z,y) + O(), wn =y+en(z,y) +0(), (5.2)
which leaves (5.1) invariant. Throughout this chapter we shall use the notation
dy

d_l’
so that from results given in the previous chapter we have

z =

(5.3)

721 =z 4 en(z, y,2) + O(2), (54)
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where #(z,y,2) is given by

ENCIANE.Y
= 32 + <6y o 6yz . (5.5)

In order to calculate the infinitesimal version of y” we proceed as follows,

Py _d (di) gz

dz? = dz \dz, ) dz,
_[d%y Or Ordy Ondz E  OEdy 2
{Bre(Grmamn) -G am) oo

and thus we have

&y dly { or O ar d%y o 9§ 2
dz? T2 T 6:c+—6—y +—6—zm) 6:c+6y dz? }+0( )- (5.6)

If (5.1) is left invariant by (5.2) then on using

oF oF JF
F(zlaylazl) = F(:E, yaz) +e (6% + na_y + WE) + 0(62)1

and from (5.1) and (5.6) we deduce the condition that (5.2) leaves (5.1) invariant, namely

o or o % 06\, (2F, OF  OF
( +57F ZF) ( ay)F-<az+nay+7raz). (5.7)

If F involves powers of z then generally we can determine ¢ and 5 from (5.7) by equating
coefficients of the powers of z. On using (5.5) we find that (5.7) becomes

Fy (B, ) g8 _ o8 _onar
Oz 6y oz 9z

ox? Ay oz
9% 0% .06 (0n %
+ {2aza ~az 3y <?9_y 61) 0z }z (5.8)
o _, 0%, B¢OF } 2 9%
o ozoy TayD: % "o

=0.
In the following section we illustrate with examples how solutions ¢(z, y) and #(z,y) of

(5.8) can be deduced.



Second and Higher Order Ordinary Differential Equations 81

5.3 Examples of the determ-ination of &(z,y) and (=, y)

Example 5.1 Show that if F(z,y,y) is independent of y’ then £(z,y) and 5(=z,y) take the
following forms,

&z, y) = p(2)y +£(2),  n(z,y) = P'(2)y + n(z)y +{(z). (5.9)

If F(z,y,z) is independent of > then (5.8) becomes

&n (om0 dF  OF

{2+ (3 -2m) - gy )
n 9% 9%

+{2_azay‘ﬁ‘3Fa_y z

3271 azf 2 azf 3
%W”W “ ot

=0,

(5.10)

and from the coefficients of 22 and z3 we have
d*y _9 % % _
dyz “O0zdy ~ T Oy

and (5.9) follows immediately. We notice that from the coefficients of z and z° we also
have

0:

3p(2)F = 3p"(2)y + [20/(z) - £"(2)],
@+ @50 + @ + 1@y + N5 (511

= [9(z) = 26'(2)IF + [p"(2)y* + n"(2)y + (" ().

Hence either p(z) is identically zero and 27/(z) = ¢"(z) and F(z,y) is a solution of the
partial differential equation

E(2) 5y + Iy + <@ 3 = [(e) — 2 F + [ @y + (@),

or p(z) is non-zero in which case F(z,y) must be a linear function of y (see Problems 1
and 2).

Example 5.2 Show that y =0 is invariant under precisely 8 one-parameter groups.

From (5.8) with F identically zero we have

8% dn 0% Fn N 5 0% 5 _
5+ (o 5) (5 ~25m9) " 3 = (5-12)
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and as in the previous example we deduce that ¢(z,y) and n(z,y) must be of the form
(5.9). From the coefficients of z and »° in (5.12) and (5.9) we deduce

§'(2)=2'(), P'(&)=7"(z)=("(z)=0,

and hence
p(l) =Clz+021 6(1) =03$2+C4:C+C5,
n(z) = Caz+Cs, ((z)=Crz+Ca,
where C;, C,, ..., Cs denote arbitrary constants. Each of these constants gives rise to a

one-parameter group leaving y” = 0 invariant. Consider for example the group generated
by Ca, that is take C3 = 1 and assume all the other constants are zero. From

dz; 2 dy:
?—11, de =14,

and z; =z, » = y when ¢ = 0 we find that the global form of the group is

__z __ Y
zl_(l—e:c)’ yl_(l—e:c)'
We have
dy d? y1 _ 3d
pre =(1 e:c)—+ey, d (l—e) 2,

so that clearly y” = 0 remains invariant under this group.
y group

Example 5.3 Show that the differential equation

d2y = xy+ex dy
dlz - y P dl )
is not invariant under any one-parameter group.

With F = zy+ ¢* we see that (5.8) becomes

#n an 0 Py P ae}
{W”y(a_y‘ 3z ‘yf‘“’}”L 25z0y " 022 Vay

¥y P\ . 9% 5
+{W‘2az—ay}"w

(b oy (2 %), )
‘e{<$ By +az)+<36y+6y 3z) "8 |
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From the term involving e* we deduce

% _

% _on__on
dy

0, 5= dy 0z’

so that £(z,y) = Cz+ C» and n(z,y) = C1(y — z) + C3 where C;, C, and C; denote arbitrary
constants. From the coefficient of 2° in the term not involving e* we have

—Cizy = y(Ciz + C2) + z[C1(y — ) + C3],

which is clearly only satisfied if C; = C, = C3 = 0. Hence there is no one-parameter
group leaving the given differential equation invariant.

Example 5.4 Obtain the most general invariant one-parameter group for the second order
differential equation

it

Tz + p(z)y = 0. (5.13)

As in Example 5.1 &(z,y) and n(z,y) are given by (5.9) and from (5.11) with
F(z,y) = —p(z)y we deduce

P (z) + p(z)p(z) = 0,
2'(z) = &"(2), 9"(z)+ P (2)(z) + 2p(2)€'(z) = 0, (5.14)
¢"(z) + p(z){(2) = 0,

and hence the given differential equation is invariant under 8 distinct one-parameter
groups. We notice that the group arising from &(z) and 5(z) is that considered in Section
3.3. The group arising from ¢(z) merely reflects the invariance of (5.13) under the addition
to y of any solution of (5.13). We consider p(z) in more detail. For this group we find
that suitable canonical coordinates are

_ Y _p(x) [* dt
u(zl y) = p(I), ’U(.’C, y) = T - p(t)Z:
and we have
du dy

Ty~ P@ g~ P (@)y.

Hence on using (5.13) and (5.14), we obtain

d du d%y "
4 (d(—v)) = A0S Y- @ =0,



84 Differential Equations and Group Methods for Scientists and Engineers

and therefore we have

u = Cruv + Ca,

where C; and C, are constants. From this equation we readily deduce

v=Cun(a) [ o5+ Cunlo),

which is a well known result for the general solution of (5.13).

It is also worthwhile noting that embodied in (5.14), (¢(z) = 0, 5(z) = 1) is the group

pu— — p€
1=z, n=¢€y,

which reflects the invariance of all linear homogeneous equations under stretchings of y.
In this case suitable canonical coordinates are

u(z,y) =z, v(z,y)=logy,

and with w(u) defined by

dv
w(u) = H,

the differential equation (5.13) becomes the first order Riccati equation (Murphy (1960),
page 15),

dw

—a +w2+p(u) =0.

5.4 Determination of the most general differential equation invariant under a given
group

In the notation of Section 5.2 suppose for given £(z,y) and n(z,y) we have deduced
two independent invariants A(z,y) and B(z,y,z) (say) of the characteristic equations

dr _ dy _ dz _
d_T - f(-"?,y), E - 7)(-’5,!/), d_T - 7"(11 Yy z): (515)

where #(z,y,z) is defined by (5.5). The basic result for the determination of the most
general second order equation invariant under this group is that this equation is given by

dB
-7 = %(4.B), (5.16)



Second and Higher Order Ordinary Differential Equations 85

where @ is an arbitrary function of the arguments indicated. Clearly (5.16) is of second
order and is invariant under the given group. In order to see that there can be no more
general equation than (5.16) we refer the reader to the comment following Problem 5.

We remark also that the most general third order differential equation invariant under
the given group is given by

d’B dB
m =¥ (A, B: H) > (5'17)

where ¥ denotes an arbitrary function.

Example 5.5 Obtain the most general second order differential equation invariant under
the group

z1 = f(z), w =g(z)y,
and hence deduce the most general linear invariant second order equation.

From Example 4.3 we have already obtained

A=s(z)y, B=s(@)E)z -2, (5.18)
where s(z), £(z) and 5(z) are as previously defined. Now
B (@8 + @@ -2+ (B -7@) v}
dA % _ %y} ’

and on incorporating the denominator of (5.19) into the arbitrary function of (5.16) we
deduce the required second order equation

(5.19)

d%y + (&z) 27)(-’5)) dy 4 (7)(-"’)2 77'(-"’)) _ %i(4,B) (5.20)

&2 T \E@) @) & T \EerE T @) T s
where &, denotes an arbitrary function and A and B are given by (5.18).

The most general linear homogeneous second order differential equation invariant
under the given group is obtained by taking &:(4, B) to be given by

$,(A,B)=aA+ B, (5.21)

where o« and 3 are constants. We find from (5.18), (5.20) and (5.21) that this equation
becomes
d?y

dy _
o7 + a(:c)d—z +b(z)y =0,
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where

a(z) = ){5(1) 29(z) - B},

E(

b(z) = 2{'1(1) —&(a)'(z) — a+ (=)},

£(2)

and on eliminating n(z) between these two latter equations we obtain

1 " 12 2 1da a(z)?. — ’@2
726" = €5) +¢ (b(f)—gd—z— ) )_a—T.

Hence this result is consistent with that obtained in Section 3.3 (see also Problem 8 part
(i) of Chapter 3).

Example 5.6 Find the most general second order differential equation invariant under
the group

&(z,y) = &(z)e*Y,  m(z,y) = n(z)e*?
where k is a constant.

From Example 4.4 we can deduce

A=y+logs(z),

T o4}k (5.22)

with the usual definition for s(z). On differentiating we can show

dB _ _ —t@retty  [dy o (dy)' L (€@) @)Y dy _d@ ] _,
dA "~ (£(z)dy/dz — n(z))? {dz? +E (dr) + (5(1) kg(z)) dz  &(z) } kB,

and thus the required differential equation is

2o () () - T (o e o

where @, denotes an arbitrary function and A and B are given by (5.22). Hence a
differential equation of the form (5.23) can be reduced to the first order equation

dB

S HEB+@(4,8)=0.
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Example 5.7 Obtain the most general linear third order equation of the form

Z Y+ p(2) %L - Y 4 q(z)y = (5.24)

which is invariant under the group given in Example 5.5.

In the notation of Example 5.5 we have from (5.18) and (5.19)

B3 = o) {€F T+ €@ - AN L + (07 - W@}

On differentiating this equation with respect to 4 and multiplying the result by B we
obtain

2
B{Bj;—%+ (3) }—s( 2 (£ Tk + ¥ EE) - ) T
FEENE ) + () + 3n(2)? — S (2) - () (2)) L
+ B2~V 1"(2) - e (@) = =P ).

Hence the most general third order equation invariant under the given group is obtained
by equating the expression on the right-hand side of this equation ¥,(A4, B,dB/dA). The
most general linear equation arises from

dB dB
v, (A, B, H) —aA+ﬁB+7BdA

where o, § and 4 are constants. In order to obtain (5.24) we require 5(z) = &'(z) — /3
and we find

12 _ " 1 2
p(z):&?;&_)_f_:!(ﬁ.*.l),

) I&Il 2£’" 613 1 ’@ 2 3
g(z) = (268 &3 ) 53<'B+ ) 5_3<a+-3—7+%)’

and thus

1dp _ 1 By E)
Ez—q(z)_w<a+-—+ 27 >

which agrees with the result obtained in Section 3.4.
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5.5 Applications

In this section we consider three specific second order differential equations which
arise from various problems in the nuclear industry. For additional applications the
reader should consult Bluman and Cole (1974)(page 116). For our purposes the problems
considered illustrate the scope and limitations of the group approach for problems arising
from a practical context.

Example 5.8 Reactor core optimization For the problem of determining the appro-
priate fuel distribution which minimizes the ratio of the critical mass of the core to the
reactor power when the power output is prescribed, the following differential equation is
obtained

7
y (y” + %) -+ =0, (5-25)

where y(z) denotes the non-dimensional thermal flux, primes denote differentiation with
respect to ¢ and o and g are known constants. The two cases considered are o = 0
which corresponds to assuming a slab geometry while o = 1 corresponds to a cylindrical
geometry. :

For o = 0 equation (5.25) becomes

v -y + B2 =0, (5.26)

and it is instructive to solve this equation first by standard devices and then by the group
approach. Since (5.26) does not depend explicitly on z we let z = ¢ and we obtain in
the usual way the first order differential equation

dz 2z BY?

We recognise this as an equation of the Bernoulli type and therefore set w = 22 and deduce
w = Ciy® - 284°,
where C; denotes an integration constant. On integrating

dy _
y(C1 ~ 28y) '8

we obtain in a straightforward manner

T,

C1
Bl + cosh(v/Crz + C2)]’

y(z) = (5.28)
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where C, denotes a further integration constant and we are assuming the constant C
is positive. Alternatively we may deduce the general solution (5.28) from the group
approach in the following way. We observe that (5.26) remains invariant under the two
one-parameter groups,

z1=xz+4+€ Y=y, (5.29)

and

) =€z, 1y =e 2y (5.30)
The group (5.29) is merely the formal statement that (5.26) does nct depend explicitly
on z and therefore since y' is an invariant of this group we again set - = 3’ and obtain
(5.27). However the group (5.30) means that (5.27) is invariant under

yy=e %y, oz =e 3z,
and therefore we select u* = zy~%? as the new dependent variable and (5.27) becomes
the separable first order differential equation

dur (v +26)

dy yu*

This equation readily integrates to yield

w?=Cify* - 28,

from which the solution obtained previously can be deduced.

For a non-zero equation (5.25) is still invariant under (5.30) and we therefore select
u = yz? as the new dependent variable. With this substitution, ¢t = logz and p = du/dt
equation (5.25) becomes the Abel equation of the second kind (Murphy (1960), page 25)

dp
» 2

2
- _ AU — (v — r
du = 2(a — D)u— pu’ — (a— L)p+ —

This equation can be reduced to standard from (see equation (1.21)) by the substitution
P = qu. We find

d_q: 2(a-1)

du u

q .
—B=(a=1=, (5-31)
which for « = 1 can be integrated to finally obtain the following solution for y(z), namely

o) = o
Bz2[2 4+ 2VC1eCa 4 g~V Cig—Ca]’

(5.32)
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where again C; and C, denote integration constants. We note however for other values
of o the solution of (5.31) is by no means apparent.

The next two examples arise from the steady state heat conduction equation with
non-linear thermal conductivity k(T) and non-linear source S(T), that is

div{k(T) grad T] + S(T) = 0, (5.33)

where T denotes the temperature. These problems occur in the context of thermal in-
stability phenomena in rods and plates in the sense that if the rate of energy produced
by the heat source exceeds the rate at which energy can be transferred out across the
boundary then a steady state temperature distribution cannot exist. The particular thermal
conductivity and source terms considered are,

K(T) = ko(T/To)", (5.34)
S(T) = So(T/To)’,  S(T) = So exp(T/To), (5.35)

where 4, 6, ko, So and T, denote constants.

Example 5.9 Power law conductivity and source term From (5.33), (5.34) and
(5.35), the following differential equation in non-dimensional variables may be deduced,

Y (y” + %) +9y%y" 1 + 8y =0, (5.36)

where o and g8 are constants and again o = 0 corresponds to the plate or slab geometry
while o = 1 corresponds to a rod or cylindrical geometry. The three constants ¢, v and §
encompass a wide variety of physical behaviour and the full analysis of (5.36) involves
consideration of a number of special cases. Here we restrict our attention to results which
can be deduced rapidly and simply from the group approach. For any practical problem
we first examine simple groups leaving the equation invariant before using the theory
given in the first section of this chapter and equation (5.8). For the examples of this
section, this aspect is summarized in Problems 9, 10 and 11.

If we look for a simple stretching group

€

zy=e‘z, y=e"y (5.37)

leaving (5.36) invariant then we find

2

a= T3 = (5.38)

provided 6 # 1 + . Assuming for the time being that this is the case we take u = yz~2 as
the new dependent variable so that equation (5.36) becomes
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w {22 + (a + 2a)uz’ + a(a + a — Du} + yu""Yzu' + au)? + fu’ = 0,

and with the substitutions ¢ = logz and p = du/dt this equation becomes

d
upﬁ +(a+2a+2ay— Dpu+ ala+a+ya— Du?+9p° + gu=?2 = 0. (5.39)

In general this is again an Abel equation of the second kind. However special cases give
rise to standard equations. For example if § = v + 3 the equation is homogeneous while
if @ # 1 and 6§ = (1 + v)(a + 3)/(a — 1) the equation is of the Bernoulli type.

If 6 = 1 + v then (5.36) becomes

(y + ) +ry? + 8y’ =0, (5.40)

which is invariant under the one-parameter group

T, =z, y =ey. (541)

Thus we take w = y//y as the new dependent variable (see Example 5.4) and (5.40)
becomes

dw

i w+(1+7)w +8=0, (5.42)

which is a Ricatti equation (Murphy (1960), page 15). Clearly o« = 0 or y = —1 are
special cases which can be readily solved. The general solutiont of (5.42) or (5.40) may
be deduced as follows. Introduce the variable Y = y'+” or y = Y+, then equation
(5.40) becomes

Y+ Y+ AL+ )Y =0
Further by means of the transformation

Y(z) = z(1-9/27(z),

this equation becomes

7+ Z {ﬁ(1+ )—(——93}2-0,

t The author wishes to express his gratitude to D.K. Kalra (Indian Institute of Tech-
nology, New Delhi) for pointing out that (5.42) admits this general solution.
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which can be recognised as a Bessel equation with solution

Z(z) = C1d» [:c\/-ﬂ(-_l i 7)] +CaYa [zfﬂ("i n 7)] ,
where X = (e — 1)/2 and assuming B(1 + ) is positive. Thus if § = 1 + v a closed form
solution is possible for all values of ¢, 8 and +.

For the final example we consider the equation arising from (5.33) for the case of
constant thermal conductivity and exponential source term.

Example 5.10 Constant conductivity and exponential source term From (5.33),
(5.34) (v = 0) and (5.35), and with non-dimensional variables we may deduce the equation

v+ = per. (5.43)

For « zero this equation can be readily integrated by means of the standard substitution
z = dy/dz. For « non-zero we look for a one-parameter group leaving (5.43) invariant of
the form

z1 =€z, y1=y+ae (5.44)

We find a = —2 and therefore on eliminating ¢ from (5.44) we obtain u = z2%¥ as an
invariant of the group. With « as the dependent variable (5.43) becomes

2w’ — u'?) + ezud’ + 21 — o)u? = fu?,
and the usual substitutions ¢ = logz and p = du/dt yield,

upj—z =p* 4+ (1 - a)up— A1 — @)u® + g, (5.45)
For a = 1 equation (5.45) is the same as equation (5.27) and therefore the solution can

be deduced from (5.28). However for o # 1 (5.45) must be solved as an Abel equation
of the second kind.

The examples of this section illustrate how simple groups leaving the equation in-
variant may be utilized to reduce the order of the differential equation. The resulting
differential equations may or may not be of a standard type with a simple solution.
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PROBLEMS
1. In the notation of Example 5.1 show that if p(z) is non-zero then
F(z,y) = G(z)y + H(z),
where

I N (O 6
@)=L HE =P

and deduce that p(z), ¢(z) and 5(z) must be such that

1) +€(0) - 356 = Cu [ oz +Ca

for constants C; and C,.

2. Continuation. If p(z) is identically zero and 2n(z) = ¢'(z) show that F(z,y) is given
by

_e@ny 1 (@), 1
e = S i () e (i [t

where ® denotes an arbitrary function of the argument indicated.
3. If p(z) is non-zero but arbitrary show that the differential equation

d2
>z 2 +p(x)’ =0,

is invariant under at most six one-parameter groups. Show that

d2
dg+a:c ¥y =0,

can be reduced to a first order Abel equation of the second kind (Murphy (1960),
page 25).

4. Find the most general second order differential equations which are invariant under
the one-parameter groups given in Problems 5 and 7 of Chapter 4.

5. Show that the second order differential equation

F(z,3.9,y") =0,
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is invariant under the one-parameter group

z1=z+ef(z,y) + O(?), y=y+en(z,y)+ O(e?), (*)

if and only if

L'F=0,
where L” is the second extension of the operator L, namely

nogd gy 0 .0 0
L= Ea:c +n3y +7r6y’ +63y’”
where = and o are the infinitesimal versions of y and y” respectively and are de-
fined by (5.5) and (5.6). (Note that if A(z,y), B(z,y,¢) and C(z,y,¥,y") are three
independent integrals of the equations

/"

dr _ dy _ dy’ _ N dy" ‘o

d—T—f(-’B,y), d_T_n(z’y)’ F—W(z,y,y), 'E_-—O'(-’E,y,y Y ):
then the most general second order equation invariant under () takes the form
Q(A,B,C)=0o0r C = &(4,B).)

[For a detailed discussion of the following three problems the reader should consult
Dickson (1924), page 358.]

Given two one-parameter groups with operators

8 8 8 8
L, —El(z,y)a—z'*"h(l,y)%, L, —Ez(z,y)a—z-*")z(l,y)@,
show that the first extension of the commutator (L, L,)’ is identical to the commutator

of their respective first extensions, that is (L{L}). (See Problems 11 and 12 of Chapter
4)

Continuation. Show that if the second order differential equation, y” = F(z,y,¥) is
invariant under two one-parameter groups with operators L, and L, then it is also
invariant under the one-parameter group with operator (L, L,).

. Continuation. If L, and L, leave y” = F(z,y,y’) invariant show that there exists an

operator L, which also leaves the equation invariant and is such that

(L1L3) = aL; + bLs,

for some constants a and &.
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9. For the second order differential equation

2
R 1) )

where o and 4 are constants such that ¥ £ —1, show that for all functions f(y) the
only one-parameter groups leaving (+) invariant take the form

£(z,y) = 9(2),

e = {5 [1@) - 20| + 4} s+ B2 )

where A denotes an arbitrary constant and g(z) and h(z) are functions of z such that

82 ] o , /
Po a2 {% — 2 (:c)}f(y)— nf (v).

10. Continuation. If f(y) = gy°~” show that if § # v + 1 the only one-parameter group
leaving (+) invariant is given by

2y

Lzy)==z, n(zy)= e

If 6 = v +1 show that the differential equation (+) is invariant under the group (++)
where g(z) and h(z) satisfy the following differential equations

/
i+ a0 e -a) (G- &) =0
W+ %h’ +8(1+7)h=0.

11. Continuation. If f(y) = ge¥ and v = 0 show that for « # 1 the only one-parameter
group leaving (4) invariant is given by (++) with g(z) and k(z) given by

24 4A

9(z) = m-"’: h(z) = -y

where A is the arbitrary constant in Problem 9. For o = 1 show that ¢(z) and h(z) are
given by

g(z) = —2Azlogz + Bz, h(z)=4Alogz + 2(24 — B),

where B is a further arbitrary constant.
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12.

13.

14.
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For the differential equation (5.25) of Example 5.8, show that
(i) y=2(a - 1)/p2? is a special solution,

(ii) the transformation y = ¢Z yields the following differential equation
2"+ 22 +Be” = 0.

For the differential equation (5.36) of Example 5.9 show that,

(1) y = AzB provides a special solution where A4 and B are determined from
p pe

9 ,@ 1/(14+v-$6)
o iz 4 )
(1+v-96) B[t —a — (1 +7)B]
(i) the transformation y = Z2Y/(1+7) yields the following differential equation
Z'+ ‘—;Z’ + B(1+ )28+ = g,
[Notice that if « = 2, then this equation is known as the Lane-Emden equation of

index 6/(1++). Special values of this index give rise to integrable cases, see Murphy
(1960), page 387.]

Show that the classical diffusion equation

o _ 0
ot~ 7 Oz2’

admits travelling wave solutions of the form

c(z,t) = A(z)sinfwt — B(z)],

where w is a constant and A(z) and B(z) satisfy

A" = AB?, AB"+2A'B'+k*A=0,

where k = (w/D) 2. Observe that

[(AaAu)lh]/ + k2A2 - 0,

remains invariant under the one-parameter group

ry =2z, A;=¢e‘A,
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15.

and deduce the second order differential equation

w" + 6ww' +4uw® + 2k (w' + w?) = 0,
where w = A'/A.

Continuation, Introduce ©(z) and the complex variable Z(z) by

A(z) = expO(z), Z(z)=0O(z)+:iB(z),

and show that the coupled equations for A(z) and B(z) give
Z"+27% = —ik?
Next introduce p = Z’ and ¢ = p? and deduce the standard linear equation,

dq _ .o
$+2q——-2zk ,

so that

q=Ce %% —ik?,

where C denotes a complex arbitrary constant. From this equation with

C = ik? AZe*Po,

where 4o and B, denote arbitrary real constants, deduce that z = eZ is given by

z = Aoe'Bosin[k(1 + i)(z — z0)/2 %),

97

where zo is a further real integration constant. Hence conclude that the general

solutions for A(z) and B(z) are given by

A(z) = Ao(sin?y + sinh? ) lh,

t
B(z) = By + tan™" (ﬂ) ,
tany

where y denotes k(z — zo)/2 2. Show that ¢(z,¢) simplifies to give

c(z,t) = %{e” cos(wt — By — y) — e ¥ cos(wt — By + y)}.
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Chapter Six
Linear partial differential equations

6.1 Introduction

For partial differential equations the calculations involved in the determination of
a one-parameter group leaving the equation invariant are generally fairly lengthy. In
order to keep these calculations to a minimum we first consider a restricted class of
one-parameter transformation groups applicable to linear partial differential equations.
Non-linear equations are considered in the following chapter. Specifically for a single
dependent variable ¢ and two independent variables = and ¢ we consider transformations
of the form

71 = f(z.t,€) = z + €&(z, 1) + O(?),
t1 =g(z.t,€) = t+ en(z, t) + O(e?), (6.1)
c1 = h(z,t,€)c = ¢+ €(z,t)c + O(e?),

where the functions f, ¢ and h do not depend explicitly on ¢. If the transformation
(6.1) leaves a given partial differential equation invariant and if ¢ = ¢(z,#) then from
¢1 = ¢(z1,¢1) on equating terms of order ¢ we have

E(x,t)g—;+n(z,t)% =¢(z,t)e. (6.2)

For known functions £(z,t), n(z,t) and ¢(z,t), equation (6.2) when solved as a first order
partial differential equation, yields the functional form of the similarity solution in terms
of an arbitrary function. This arbitrary function is determined by substitution of the
functional form of the solution into the given partial differential equation. In the case of
two independent variables the resulting equation is an ordinary differential equation. For
more than two independent variables the procedure reduces the number of indpendent
variables by one.

In the following section we give the formulae for the infinitesimal versions of the
partial derivatives 8c/8z, dc/dt, 3%c/dz?, 8%c/8z8t and §%c/ot?. Although we make no use
of the last two partial derivatives, they are included for completeness. For the remainder
of the chapter we principally consider groups of the form (6.1) and the corresponding
solutions of diffusion equations. In particular we consider the classical diffusion equation

dc 8¢

8t~ Bz2’ (6.3)
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and the Fokker-Planck equation which we assume given in the form,

b= 2 (%) + e, (6.4

where p(z) and ¢(z) are functions of » only. In the determination of groups leaving an
equation invariant there are two methods, termed classical and non-classical. The classi-
cal approach equates the infinitesimal version of the given partial differential equation to
zero without making use of equation (6.2). The non-classical procedure which is consid-
erably more complicated makes use of (6.2) and includes the classical groups as special
cases. For the most part we obtain results from the classical procedure. However in the
final section we discuss the non-classical approach with reference to equation (6.3). The
results given in this chapter for (6.3) can also be found in Bluman and Cole (1974)(page
206). In Section 6.5 we present some results for equation (6.4). We show for arbitrary
p(z) how the most general function ¢(z) can be found such that (6.4) admits a classical
group of transformations leaving the equation invariant.

6.2 Formulae for partial derivatives

For the one-parameter group of transformations (6.1) we assume that the Jacobian,

_O(z1,t1) Oz 0t 0z, 0t
T T8(z,t) 9z &t Bt bz’ (6.5)

is non-zero and finite. From (6.1) and (6.5) we have

o @
J=1+c¢ (a—i + 6—:’) +0(e2). (6.6)

Now for the partial derivative de;/0z; we have

dcy _ B(cl,tl) _ l@(cl,tl)
bz; (z1,t1) ~ J 8(z,t)’ (6.7)

and on substituting (6.1)2, (6.1)s and (6.6) into (6.7) we obtain

o0 (UG, Hem)_ (%, 0n) e}, o,

bz, Oz 9z | 8(z,t) \dz ' ot

which simplifies to give

Jer _ Oc 8¢ 8\ Oc 8nbe
a_ﬁ’a_z+‘{ca_z+<c—a_z)a_z—azat}+o(€2)' (6.8)
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Similarly from

6_c1_ _ _6(61,11) _ _l 6(61,11)
6t1 - B(zl,tl) - J B(z,t) ’

we obtain
dey _ Bc e 67)) dc 65@} 2
5, o€ { aﬁ(c R i

If we introduce =; and =, by
_[.é& 8¢\ 8¢ 8ndc
’”‘{caz+< B:c) Oz B:cat}
_ & 8n\ 8c  B€ Oc
“—{ca+( at)a‘aa—z}’
then (6.8) and (6.10) become respectively

dc; _ Oc 2 dcy _ Oc
aT——+€7r1+0(€) aT at+€7r?+0(€ )

For the second order partial derivative §%c;/0z we have

&a 6(8:1 tl) 16(8=1 1)

9z~ d(zy,t1) J 8z t)
From (6.6) and (6.12); we deduce

1 _ B te {@ + 8(8¢/0z, n) (35

922~ 92 oz 3(z,t)

which on using (6.11); becomes

ey _ D% 6"’( ( 8 8%\ O6c 8%y dc
m"—“{ a2t %5~ a—)a—’a—a
35 e On B¢

+ (C ) dz2 26:: B:cat} +0(e).

Similarly for 8%c;/6z,0t; and 8%¢,/8t we can deduce from the equations

8%¢; _ 6(%—;}, tl) _ l@(%{-, tl)
O0x10t; ~  O(z1,ty) ~ J O(z,t)

e 0(8n)  q0(% =)

BEZ T Ozt J 8zt

ot at) g_} +0(e),
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(6.9)

(6.10)

(6.11)

(6.12)

(6.13)
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the following results,

8 D% { 8¢ (3_( 8¢ ) dc (6( 8%y ) dc

92,06, 020t T\ 0zt T\Bt Bzt ) 8z T \3r oz ) Bt
o€ 8¢ o¢ 67)) 8% Oy dc 2
_Ea_z"’+<<_3:c 5t ) 520t azaﬁ}*O(‘ ),

P oo, [PC_Fek (K Fr)oc
a2 —oe T ‘o " e T\"ar T o2 W

ot ¢ 31)) 8¢
“Gmat (C‘2E aﬂ}+0(‘ )

6.3 Classical groups for the diffusion equation

In this section we deduce the classical group of the diffusion equation (6.3). From
(6.10) and (6.13) we have

%—&—%—ﬂ+e c(@_(_a"’_( on 62_" @
oty  0z7 ot 0z’ ot~ a2) T\ " atar) B

o 8¢ 8%\ Oc o€ 8c . 0n O
+<—2$—E+w)a—z+<2a—z—C)W+2a 6at}+0(e) (6.14)

If we now make use of (6.3) we find that the diffusion equation remains invariant under
the transformation (6.1) provided the functions ¢(z,t), n(z,t) and ((=z,t) are such that the
equation

& BZC\ 9 0 9\ dc
C(&—W)+ (2a—z atez)
o 9 €\ 0c  ,8n ¢
+< 25_5-*—612)%4-2%_61& =0, (615)
is satisfied identically. For the non-classical approach we simplify (6.15) further by means
of (6.2). This is done in the final section of this chapter. For the classical group we
simply equate the coefficients of ¢ and its derivatives to zero.

From the coefficient of 8%c/8z8t we deduce that n = n(¢) while from the coefficient
of dc/ot we have

U (t)z

€= +p(t), (6.16)
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where the prime here denotes differentiation with respect to ¢ and p(¢) denotes an arbitrary
function of ¢. On equating the coefficient of dc/dz to zero and making use of (6.16) we
deduce that
/ 2
¢ = _% <—" (Z)’ +p’(t)z) +o(t), (6.17)

where ¢(t) denotes a further arbitrary function of ¢. From the coefficient of ¢ in equation
(6.15) and using (6.17) we obtain

from which it is apparent that we require

n///(t) =0, P”(t) =0, (t) _ I/(t)

From these equations it is now a simple matter to deduce the classical group of the
diffusion equation, namely

&(z,t) = K+ 8t + Bz + =t
n(z,t) = a + 26t + 112,

¢(z,t) = —7 (%2+3) —6—z+)\,

(6.18)

2 2

where o, 8, v, 6, X and « denote six arbitrary constants and for comparison purposes we
have adopted the same notation used in Bluman and Cole (1974). Some of these constants
give rise to standard or even trivial solutions of (6.3). However it is instructive for the
reader to deduce the global form of the one-parameter group and the resulting similarity
solutions of the diffusion equation. The constants «, o and X represent respectively the
invariance of (6.3) under translations of = and ¢ and stretching of ¢ (see Problem 1). The
constants 3, v and § are considered in the examples of the following section.

6.4 Simple examples for the diffusion equation

The general classical similarity solution of (6.3) is obtained from (6.2) and (6.18) with
all the constants in (6.18) non-zero. For purposes of illustration it is useful to consider
the solutions arising from one non-zero constant with the others taken to be zero.

Example 6.1 g =1, a =y =6 =X =« = 0. In this case the global form of the
one-parameter group is obtained by solving

d.’El dtl dCl
—_= — =2t —_=
de Z1, de t1, de 0)
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subject to the initial conditions

=z, tl :t, ¢ =¢, (619)

when ¢ = 0. In this case we find

I = 6(.’5, tl = Czct, 1 = ¢

so that clearly the constant g reflects the invariance of (6.3) under simultaneous stretchings
of z and t. From (6.2) we obtain the partial differential equation

il Oc
:Ca—z +2ta = 0,

which on solving gives rise to the functional form previously considered in Problem 7
of Chapter 1.

Example 6.2 6§=1, a = =9 =)=« =0. In order to deduce the global form of this
group we require to solve

d.’El _ dtl _ dcl _ ES
% T Y T
with initial conditions (6.19). We find

ex €t
zy=z+e, t;=1t c =cexp -5-71)

Further from (6.2) the functional form of the solution is obtained by solving

b =z
az 2%
which yields
oz, t) = e~ /4 g(t), (6.20)

where 4(t) denotes an arbitrary function of ¢. On substituting (6.20) into (6.3) we readily
deduce the ordinary differential equation

$(t)

o 0

¢'(t) +
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and therefore

o(t) = %

where ¢o denotes an arbitrary constant. From this equation and (6.20) we see that the
constant ¢ also gives rise to the well known source solution determined in Example 1.2.

Example 6.3 v =1, a=8=46§=X=x=0. In this case we have

dx, dty 2 dey :cf ty
- ==z - = — =24+ = 2
de Tty de i, de 4 2 L (6 1)

together with the initial conditions (6.19). From (6.21), we have

t

t, = m, (6.22)
and therefore (6.21), becomes
d_lf_l_ _ Iflt
de ~ (1—et)’
which on integration yields
z
‘ ] = (—1—_7). (623)
Using (6.22) and (6.23) in (6.21); and integrating the resulting equation we find
1 =c(1— et)1/2 exp (__—w?_ (6.24)
! 41—et)/)’ '

In order to determine the functional form of the corresponding similarity solution we
have from (6.2)

Oc  ,0c 2?2 ¢
On solving this equation we find that
e—:2/4t z
e(z,t) = T ¢ (7) (6.26)

where ¢ denotes an arbitrary function of the argument indicated. On substitution of (6.26)
in (6.3) we find that we have simply
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so the constant y gives rise to the solution

e-z’/u z
e(z,t) = _tr:;z— (4’0 +¢1?) )

which again includes the source solution (1.29) as well as the solution of (6.3) which is
the derivative of the source solution with respect to z. Thus although no new solutions
are obtained by considering separately the constants in (6.18), these simple examples
illustrate the basic procedure in simple terms. In order to obtain non-trivial results we
need to consider the full group (6.18). This is done in the following section with reference
to moving boundary problems (see also Problems 6, 7, 8 and 9).

6.5 Moving boundary problems

Problems involving the classical diffusion equation (6.3) and an unknown moving
boundary = = X(t) occur in many important areas of science, engineering and industry
(see for example Hill (1987)). The literature on these problems is scattered throughout
many diverse disciplines and it is not possible here to consider the subject in detail.
The purpose of this section is to identify the moving boundaries = = X (¢) which remain
invariant under the classical group (6.18). These boundaries relate to most of the exact
analytic results which are available for such problems and therefore might provide a
useful guide to the solution of other problems with unknown boundaries.

Typically a moving boundary problem takes the form

dc 0%
5% = 5.2 0<z< X(),
(6.27)

AXOH =0, 2(X(0),)=~X(),

together with either ¢ or dc/8z (or linear combination of these) prescribed on z = 0 and
prescribed initial data for ¢ and X. We note that the dot denotes diferentiation with respect
to time and that for this problem the initial condition is that ¢ is zero. Such problems
are non-linear and it is instructive to observe the precise nature of the non-linearity for
those problems which can be transformed to fixed boundary value problems. Assuming
that both X (¢) and X (¢) are never zero and that the prescribed data for ¢ or 8¢/dz on z = 0
does not explicitly involve ¢ then we can make the transformation.

p= ﬁ r=X(t), (6.28)
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and with ¢(z,t) = C(p, 7) the moving boundary problem (6.27) becomes
oCc  éc oc oc
G = 500G ) 0<e<t
(6.29)
C(1,7) =0, %(1, r)=—77.
Thus in principle we have transformed (6.27) to a fixed boundary value problem except
that now the equation to be solved is non-linear, although not of the usual type of non-
linearity with which we are familiar. For example, for prescribed data ¢(0,t) = ¢, and

X(0) = a where ¢, and a are constants and zero initial condition we supplement (6.29)
with

C@0,7)=cy, 7(0)=a. (6.30)

In this case a solution exists in the form C = ¢(p). We can readily deduce

#(p) = co {/ple-’"”/”da} {/ole-’"”/zda}_l, (6.31)

where b = —¢'(1) is a root of

1 -1
b= coe™t? { / e-”f"/?da} , (6.32)
0

and X(t) (or =(t)) is given by

X(t) = (a® + 20t) 2. (6.33)

We observe that (6.33) actually includes the well known moving boundary
X(t) = (2bt) "% as a special case (see Hill (1987), page 12). There exists in the literature
general solutions of the diffusion equation with a moving boundary of the form (6.33)
and appropriate references may be found in Hill (1987). Here we simply consider the
general moving boundaries X(¢) (see also Bluman and Cole (1974), page 235) which
remain invariant under (6.18). Applications of the resulting similarity solutions involve
complicated eigenfunction expansions which are beyond our scope.

When deducing the functional form of the solution ¢(z,t) from (6.2) we require two
independent integrals of the system of differential equations,

d dt d
d_"s” =£(z0), =), ‘-if = ((z, t)c (6.34)
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If we suppose that

dz _ £(z,t)

T " ) (6:39)
admits the integral w(z,t) = constant then w is the similarity variable and from

de _((z,1)

L (6.36)

with z replaced by z = z(w, t) we can deduce (on treating « as a constant) that the solution
takes the functional form,

e(z,t) = Y(w)p(w,1), (637)
with w in both ¢ and + being regarded as a function of = and ¢.

If we now consider the boundaries z = X (¢) left invariant by (6.1) then from z; = X(t1)
we have

dX _ &(X,1)
7= kD)’ (6.38)

o

so that the similarity variable « defines the invariant boundaries from the equation

w(X(t),t) = wo, (6.39)

where wo denotes an arbitrary constant. In particular for the classical group we can deduce
from (6.18):, (6.18), and (6.38)

d X _ K+ 6t (6.40)
dt | (a+28t+yt2) 2 [~ (a+ 28t +4t2)32 '

In the integration of (6.40) there are four cases which must be considered separately.

Case (i) 8% # oy. In this case we find that the invariant boundary takes the form

X() = At + B + wola + 26t +¢%) P, (6.41)

where the constants 4 and B are defined by

_ K'y-—&,@) _ (m,@—&a)
A= (a»,—ﬁ?  B=o—F) (6.42)
We observe that (6.41) contains (6.33) as a special case and that since it contains six

arbitrary constants o, 3, v, 6§, « and wo it may perhaps be utilized as an approximate
expression for an unknown moving boundary.
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Case (i) 8% = ay, v #0. For this case we have

_(8-+x)

XO =575

+ wo(t + B) - 6. (6.43)

Case (iii) 8=+ =0, o #0. In this case we find

512
X)) =xt+ — +wo. (6.44)

Case (iv) o =8 =+ =0, § #0. For this case the similarity variable is simply w = ¢ and
the invariant boundaries are therefore ¢ = constant.

In Bluman and Cole (1974)(page 235) the above moving boundaries are exploited
for an inverse moving boundary problem in the sense that the heat input on the moving
boundary is not prescribed but rather determined so as to be consistent with the assumed
special form of moving boundary. The resulting solutions of (6.3) corresponding to the
above four cases are outlined in Problems 6, 7, 8 and 9.

6.6 Fokker-Planck equation

In this section we consider classical groups of the form (6.1) which leave the Fokker-
Planck equation (6.4) invariant. Bluman and Cole (1974) (page 258) present a detailed
analysis of a boundary value problem for the special case of (6.4) with p(z) equal to a
constant. Here we first obtain the general form of the group for arbitrary p(z) and g¢(z).
We then illustrate these results for particular functions p(z) and ¢(z). It is convenient here
to introduce the functions I(z) and J(z) which we define by

 dy d 1 q(z)
11):/ Y J@) = 2 (pe)) + 22 6.45)

( DK dz (ree)*) p(z) (
These are well defined provided p(z) is non-zero in the interval under consideration.
Further thoughout this section primes denote differentiation with respect to the argument
indicated.
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From the formulae for the transformed partial derivatives (6.8), (6.10) and (6.13) and
making use of (6.4) to eliminate d%2¢/8z% we find that the condition for invariance of (6.4)
becomes

¢ 8n\ 8¢  O€ dc
CE+<< at)at Bt oz

= (c-2f+ E {5 - @) + 1D E - ¢ (are)

¢ 8¢ 8%\ dc d*npdc Oy B
+p(2) {“— + (231 a—) %z 92231 23z 0zot

b e oo ek (- &) 2o ine)

(@) + C@NE e + e(Eq"(2) + (' (2))- (6.46)

From the coefficient of §%¢/8z8t we have immediately that 5 = 5(¢), that is a function of
t only. From the coefficient of d¢/8t it is a simple matter to deduce that ¢ is given by

£(z,t) = %t)p(:c) RI(z) + p(t)p(z) *, (6.47)

where p(t) denotes an arbitrary function of ¢ and I(z) is the indefinite integral defined by
(6.45),. From the coefficient of 6c/dz in (6.46) we obtain

(o) = - LW p 0,105 A

> J +a(t), (6.48)

where o(¢) denotes a further arbitrary function of ¢ and J(z) is defined by (6.45),. On
substituting the above expressions for ¢, » and ¢ into the equation obtained by equating
the coefficient of ¢ in (6.46) to zero we obtain the equation,

0 ey + £0 1) - ZE o)
=50 {p(z) B2 yayi) + oo )} pia) (2, (6.49)
where the function ¢(z) is defined by

#(z) = 2p(z) T (z) + I (z)? — 4¢'(2). (6.50)

In the analysis of (6.49) there are two distinct cases to consider.
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Case (i) p(t) non-zero. In this case

#(z) = C11(z)* + 2C2 I(z) + Cs, (6.51)

where €y, C, and C; denote arbitrary constants and the functions n(t), p(t) and ¢(t) are
obtained by solving the following equations,

nlll(t) _ 4Clnl(t) — 0
P (t) = Cip(t) = 302 7'(t), (6.52)

o(t) = ——"’:(t) - ca”fl—t) - 02%1.

Case (ii) p(t) zero. In this case we have

”(’) PE) 2 y(2)1(z) + d(z) = 20, 1(2)” + Ca,

which upon integration gives

#(2) = C11(2)* + Cs + 75 1( )2, (6.53)

where C, denotes a further arbitrary constant. For this case the functions »n(¢) and o(2)
are determined by solving the following equations,

(8 = ACs 7 (8) = O,
11 / (6-54)
o(t) = —”T(t) RV

In both cases for given p(z), we obtain the most general ¢(x) such that (6.4) admits
a classical one-parameter group of transformations leaving the equation invariant, by
solving

2p(2) BJ'(2) + J(z)* - 4¢'(z) = £(I), (6.55)

where for case (i) f(7) is given by

F(I) = C1I? 4+ 2C21 + Cs, (6.56)

while for case (ii) we have

c
f(D=CiI*+C3+ I—; (6.57)
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We solve (6.55) by taking I as the indpendent variable where I(z) is defined by (6.45),.
From (6.55) we have

dJ 2 4 dg
R (6.58)

and on using

1
J= -—(logp Y+ L .t

equation (6.58) simplifies to yield the Ricatti equation

d
2d—'I‘ +u? = f(I), (6.59)

where u is defined by

u= ‘%(log 'Ry (6.60)

h.
If for the time being we assume that « = %(I) is the solution of the Ricatti equation (6.59)
then from (6.60) we see that for a given function p(z) the function ¢(z) such that (6.4)
admits a classical group is given by

dy

( ) p ) = ”____
i) = B2 - o) ), 1) = [ weet (6.561)

and we observe that in general v(I) contains four arbitrary constants.

Clearly with f(I) given by either (6.56) or (6.57) equation (6.59) has a number of
simple solutions for special values of the constants C;, C., C3 and C,. For solutions of
the Ricatti equation we refer the reader to Murphy (1960)(page 15). Here we give the
general solution of (6.59) in terms of confluent hypergeometric functions, that is solutions
of the second order differential equation

z2w”(z) + (¢ — 2)w'(z) — aw(z) = 0, (6.62)

where a and ¢ are constants (see Murphy (1960), page 331). If ¢ is non-integer then
(6.62) has linearly indpendent solutions,

wy(2) = 1Fi(a,¢; 2),
(6.63)
wa(2) = zl'chl(l +a—c¢2-c;z),
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where | Fi(a, c;z) is defined by-

1Fi(a,¢;2) Z((——;— (6.64)
where the symbol (a); is defined by

(a)o =1,
(6.65)
@ =aa+1)a+2)...(a+k—-1) (k>1).

We observe that if a is a negative integer then the series (6.64) reduces to a polynomial
expression.

In order to reduce (6.59) to a second order linear differential equation we make the
transformation

2 dv

and (6.59) becomes
d*v
i LEII—) . (6.67)

We consider the two cases separately.

Case (i) p(t) non-zero and f(I) given by (6.56). In this case we let

Yo 2
z= % (1 + %j) o o(I) = e Pu(z), (6.68)
and (6.67) becomes
2w (z) + (% - z) w'(z) — aw(z) = 0, (6.69)

where the constant a is given by

_ 2
Lol @G-y

i ~ 7 (6.70)
1
Case (ii) p(t) zero and f(I) given by (6.57). In this case we let

ck
ez AP, o) =" (), (6.71)
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and (6.67) gives

2w"(z) + (% +2m — z) w'(2) — aw(z) = 0, (6.72)
where the constants a and m are given by

1 Ca _ 1 lh
a=g+—-+m m—z(l—(1+C4) ) (6.73)
8C,
We note that when C, is zero the solution for this case coincides with that for case (i)
when the constant C, is zero.

As a simple illustration of the above consider case (i) when the constants C;, C, and
Cs are such that a as given by (6.70) assumes the value —1/2. For case (i) we have from
(6.66), (6.67) and (6.68)

2 dw

u(l) = 1/22 yf 2 dw
(1) =(2C,"%z) (w(z) 5 1), (6.74)

and when a = —1/2 the linearly independent solutions of (6.69) obtained from (6.63) are
essentially (that is, apart from an arbitrary multiplicative constant)

(6.75)

wi(z) = 2k,
From (6.74) and (6.75) we deduce that for case (i) with a = —1/2 the solution of the
Ricatti equation (6.59) becomes
(1-2) (C.r, - -—e;—dy) — ke
v (7]

11
u(l) = (2C, %) * , -
z:‘z(Q—f ;—’f’zdy)+el

, (6.76)

where Cs denotes a further arbitrary constant and = as a function of 7 is defined by (6.68);.
In the following section we consider a number of special cases of (6.4).

6.7. Examples for the Fokker-Planck equation

Example 6.4 p(z) =1, ¢(z) arbitrary. In ths case we have from (6.45)

I(z) =2z, J(z)=4q(z),
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while from (6.50) we obtain

#(2) = g(2)* — 2¢'(2).
Further (6.49) becomes

0,0, £O, 7O

8 2
= TP {fo@ o)+ B,

As before there are two cases to consider.

Case (i) p(t) non-zero. In this case ¢(z) must satisfy the Ricatti equation

9(z)? — 2¢'(z) = C12% 4 2C,2 + Cs,

and 5(t), p(t) and o(t) are obtained from (6.52).

Case (ii) p(t) zero. In this case

%(ﬁ’(z) +¢(z) = 2C12% + Cs,

so that

C
g{z)? - 2¢'(z) = Ciz? + Ca + z_;’

and »(¢) and o(¢) are obtained from (6.54).

[A fuller discussion and applicaiton of this example can be found in Bluman and Cole
(1974), page 258.]

Example 6.5 p(z) =1, ¢(z) = bz where b is a constant. In this case from case (i) of the
previous example we have

Cl = bz, Cz = 0, Ca = —2b,
and therefore 7(t), p(¢t) and o(¢) are determined from the equations
7"'(t) — 46°7/(t) = 0,

#'(8) - bp(t) = O,

o'(t) = —ﬂﬂi—t) + biétl.
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From these equations we-readily deduce

n() = o+ e 4y,
p(t) = Seb 4 He'b’,
o(t) = ybe 2 4 ),
where «, 8, v, §, »~ and X denote six arbitrary constants. Altogether using (6.47) and
(6.48) we obtain
£(z,t) = bz (B — ye~ ) 4 (6e¥ + we™¥),
Nz, t) = a+ B + ye ",
C(z,t) = A+ bye 2! — boze — 222 ge .
As a simple illustration consider the case 8 = 1 and the remaining constants zero.

The global form of the one-parameter group is obtained by solving

dl!l P dtl dCl
2L p g2 o, dey
de 1 A

subject to the usual initial conditions (6.19). We find

= —b2g2eMhey,

z
Ty = ————————,
' (1 — 2ebe2br) 2

eh2p2e2bt
¢1 = cexp {—MTZM)} .

Further the partial differential equation (6.2) becomes

_ 1 o 1, 2bt
ty=t— % log(1 — 2ebe™""),

dc  Oc
br— _:__22
181+8t b z“c,

which has similarity variable w = ze~* and the functional form of the solution is given
by

oz, t) = e'brz/zqﬁ(ze"”).
On substituting this functional form into (6.4) with p(z) = 1 and ¢(z) = b= we obtain

simply

¢Il(w) — O,

so that

c(z,t) = e- a2 (¢0 + qjlze_bt) ,
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where ¢o and ¢, denote arbitrary constants. The more general solution types for this
example are summarized in Problem 12.

Example 6.6 Consider the equation

dc ik 0
i aw(zc) + ba(zc),

where a and b denote arbitrary constants. In this case we have the following results:

p(z) = az, gq(z)=a+ bz,

0=2(2)", s=1(5)" 3

(2"

From these results we find from (6.49) that p(t) is zero and »(¢) and o(¢) are determined

from " 2
7"(¢) - b"n'(t) =0,

o(t) = _n”(t)
Altogether we find,
£(z,t) = bx (Be® — 76'“) ,
n(z,t) = o+ Be¥ + e,
2
C(z,t) = A —b(Beb — 76'“) - b;:cﬂe“,

where a, 8, v and X denote four arbitrary constants. The various solution types for this
example are summarized in Problem 13.

Example 6.7 Consider the equation

o _ & 8
E" = 5;3(2°0) +b5-(20),

where b is again an arbitrary constant. In this case we have

pz) =22, q(z)=(b+2)z,
I(z)=logz, J(z)=(b+3), &é(z)=(b+1)%
and (6.49) becomes,

T8 oga)? + £ 1og s~ 1O _ g1y = 70 4 4y
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Thus we obtain,
n(t) = o + 28t + 4%,
p(t) =k + 6t
o(t) = _% (v+B0G+1)%)t- %(b +1)%2 4 ),
where a, 3, v, 6, x and A denote six arbitrary constants. From (6.47) and (6.48) we find
&(z,t) = (B+t)zlogz + (k + 6t)z,
n(z,t) = a+20t + ~t2,

((2,t) = =1 (log 2)* = {8+ 6+ 3)(8+71)} log 2

(b+ 1)2
4

(a+ 26t +91%) = (8 +72) = 56+ B)(x + 81) + X,

and the various solution types are summarized in Problem 14.

6.8 Non-classical groups for the diffusion equation

In this section for the diffusion equation (6.3) we make use of equation (6.2) so that
the left-hand side of (6.15) depends on ¢ only through ¢ and dc/8z. We then equate the
coefficients of ¢ and dc/dz to zero and obtain two equations for the determination of the
non-classical groups of (6.3). For the one-parameter group (6.1) we introduce A(z,t) and
B(z,t) defined by

Az, t) = , )= 2o 6.77
(=) n(z,t) n(z,t) (670
so that (6.2) becomes
¢ Oc
5 =Ac— By (6.78)

On differentiating (6.78) partially with respect to z and making use of (6.3) it is a simple
matter to deduce

% 0A 0B 2\ 8¢
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On substituting (6.78) and (6.795 into (6.15) and then equating to zero the coefficients of
¢ and dc/dz then remarkably the resulting equations simplify to give,

04 _o'A 08
At~ Oz Oz’
8B 8%B oB 8A

R i TIr Th

(6.80)

These equations determine the non-classical group of (6.3). Although equations (6.80)
are non-linear and clearly a good deal more complicated than the original problem, we
observe that any special solution of (6.80) can be employed to reduce the diffusion
equation to an ordinary differential equation.

If we assume that B = 28®/8z for some function &®(=,t) then on integrating (6.80),
with respect to z and neglecting an arbitrary function of ¢, we have
2 2
A o'e (6@) _ 0%

= 322 Bz T (6.81)

On substituting these expressions for A and B into (6.80); we obtain a single equation
for the determination of ®, namely

Fo 0w, 0% 005 (50)  085%
ot? + Oz? AtOxz? Oz Oz3 Oz2 8t Oz
82 /0%\? 8% 8@

8527 (5‘) Tz 0200 = (6:62)

This equation is clearly complicated. We simply note that the classical group (6.18) arises
from the case ®... = 0 and that if ¢(z,t) is zero then

A(z,t)=0, B(z,t)= _%z—z, (6.83)

where h(z,t) denotes any solution of (6.3). The resulting solution of ¢(z,t) satisfies

gle
I
b

Example 6.8 If ®(z,t) = alogz then from (6.82) we have either a = —1/2 or o = -3/2.
(i) If « = —1/2 then

A(z,8) =0, B(s,t) = _%,
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so that (6.78) becomes

@ 1 Oc
at zdz
which has general solution
32
c(z,t) = ¢w), w=—+t.

2
On substituting this functional form into (6.3) we find that
¢"(w) =0,

and therefore

122
e(z,t) = ¢o (7+t) + ¢1,
where ¢, and ¢, denote arbitrary constants.

(i) If « = —3/2 then

A(.’c,t)=—i B(z,t):—%,

z?’

and (6.78) becomes

dc 3 8c

3
———-—=——c.
z2

ot zdz

This equation has general solution

122
c(zat)‘:z‘ﬁ(“))’ w= ?+3t’

and from (6.3) we deduce

2
c(z,t) = dox (% + 3t) + ¢z,

where ¢, and ¢, denote arbitrary constants.
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so that (6.78) becomes

which has general solution

I\

z

c(z,t) = ¢(w), w= - +t.

On substituting this functional form into (6.3) we find that

¢"(w) =0,

and therefore

22
e(z,t) = ¢o (7+t) + ¢1,

where ¢, and ¢, denote arbitrary constants.
(ii) If « = —3/2 then
Alz,t) = -, B(ot)= -3,

z?’

and (6.78) becomes

o _30c_ 3

o z0z 20

This equation has general solution

2

o(e,t) = 2p(w), w=T+31,

and from (6.3) we deduce

2
C(I,t) = ¢012 (% +3t) +¢lzv

where ¢, and ¢, denote arbitrary constants.
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PROBLEMS

1. Show for the diffusion equation that the one-parameter group arising from the con-
stants «, « and X in (6.18) (that is, with 8 =+ = § = 0) becomes

1 =z+ ke, t1=t4 e, clze"‘c,

and that the functional form of the solution of (6.3) is

e(z,t) = /" ¢(az — Kt).

Hence deduce the ordinary differential equation for ¢ and relate this result to Problem
14 of Chapter 5.

2. For the diffusion equation with the constants « =4 = x = A =0 and 8 and § non-zero
in (6.18), show that the global form of the one-parameter group becomes,

)
z; = zeP* +tﬁep‘(ep‘ -1), t =e?,

6 6
€1 =cexp {_2_ﬁ2 [(ﬁz —6t)(eP = 1) + Et(ez’je - 1)} } .
Show also that the functional form of the solution is
2t br 1 Bz
- - = kh_ £
o(z.t) = exp (4ﬁ2 2ﬁ) ¢ (‘” t‘/z) !
and obtain the resulting ordinary differential equation for ¢.
3. With c¢(z,t) = ¢(y)v(t) where y = (z/X(t))? deduce from the diffusion equation (6.3)

X@Po@) _ 1
4 P(t) " 4(y)

Hence conclude that if X(¢) takes the form

{vr+ Ea+ixwxw)}.

X(t) = (a+26t) ',

where o and g are arbitrary constants then (6.3) admits separable solutions of the
form

o(z,t) = X ()P g(y),
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and ¢(y) satisfies
1 1 !
w8+ (3+5) 0 - abtw) =0,
where e denotes a further arbitrary constant. Show by a simple change of independent
variable that this equation reduces to the confluent hypergeometric equation.
4. With ¢(z,t) = é(z,t)¥(p, ) where

_ oz dr 1
PEX@y @ X@2

1 2 X(t)
¢(1:,t) - X(t)ll2 exp{ 4X(t) }a

verify that the diffusion equation (6.3) simplifies to give

X(t) = (a + 26t + 712) ', *)

and

w_ov_gp
dr  dp* 4 i

where 6 = (6% — a7) ",

5. Continuation With ¢(z,t) = é(z,1)¥(p,7) Where p, 7 and X are as defined by equation
(+) of the previous problem and ¢(=,¢) is given by

1 22X (t)
40 = xapn e""{_ X } ’
show that the multi-dimensional diffusion equation,

8c _ 9%  (w+1)0c

52T 2 8z

becomes
oy _ O ey 8
or = 8p? p Op 4 7

where 6 is as previously defined.

6. If 32 # ay and B% > oy show from (6.18) that the equation corresponding to (6.37)
becomes

c(:c,t) =

(w) B+yt— (B2 —ar)'e]”
(a + 28t +70)/% [ B4 gt + (B2 — ay)

. t A
times exp{—Z(Az +yw?) + T“'(a+2ﬁt+7t2)1’2}, (++)
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where A is given by (6.42); and w and u are defined by

- z — (At + B)
T a+28t+ )k’
1 'B 1 2 2 2 }
= A+ =4+ — —
b= T P g A=)

where B is given by (6.42),. By substituting (++) into the diffusion equation (6.3)
deduce the following ordinary differential equation for ¢(w),

¢"(w) + wd! (W) + (Dw? + E)p(w) =0,
where the constants D and E are given by
_ i 2(02 _ 821 _
E=IANF ~ar) = 8- ).
If 82 < ay show that in place of the square bracket in (++) we have
1
_ a1k B, 1,2 2 2 ) f(ay=p "
exp{(a'y B8%) (/\+ 2 + 47[‘5 + A*(ay — 8%)] ) tan ETD) :

[The solutions for ¢(w) can be expressed in terms of confluent hypergeometric func-
tions (see Bluman and Cole (1974), page 215).]

7. If % = ay and 4 # 0 deduce from (6.18) and (6.36) the following functional form

o(e,t) = ) { L M___Lw wa+m}

(t+ﬁ)1/2exp 12(t+ﬁ)3+(t+ﬁ)_2(t+ﬁ)_ ) (* * %)

where w, L and M are given by

o{rr i (F) mmlme

L=1(x—88), M=—7(6+20+4).

Further show from (6.3) and (+ + +) that ¢(w) satisfies,

¢"(w) — (Lw — M)é(w) = 0.

[The solutions of this equation can be expressed in terms of Airy functions (see
Bluman and Cole (1974), page 217).]
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8. If 3=~ =0 and o # 0 show from (6.18) that (6.37) becomes

243 t2
c(z,t)=¢(w)exp{—é1;—— fS’;—+/\t—gmt}, (% * +%)
where w is given by
2
W=z — % — kt.

Deduce from (+ + ++) and (6.3) that ¢(w) satisfies

¢"(w) + k' (@) + (67‘” - A) $(w) =0.

[This equation also has solutions expressible in terms of Airy functions (see Bluman
and Cole (1974), page 218).]

9. If a = 8=7=10 and é§ # 0 show from (6.18) that the source solution results, namely

_ ¢0 _(12—2/\)2
c(z,t) = (t+K)1/2exp{ i+ r) },

where 4o denotes an arbitrary constant.

10. Show that the equation
oe_ o (o
5~ 9 "5z
can be transformed to the classical diffusion equation

6c _oxc
8t~ 8y’

by means of the transformation,

c(z,t) = o(z)C(y,t), y=P(a),

if and only if p(x) takes the form,

p(z) = (Ciz + C2)Y3,

where C; and C, denote arbitrary constants.
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11. Observe from Example 6.5 that the similarity variable w for the classical group of

dc 8% i)
3= 52 + ba—z(zc),
is obtained by integrating,
a4 z _ (6" + ke") )
dt | (a+ et +ye=2t) 'k [ (a+ Pett +ye= )32’ +

where the constants a, 8, v, 6 and « are the same as those used in Example 6.5. By
making the transformation

show that the integration of (+) can be effected by considering separately four distinct
cases in a completely analogous manner to the corresponding integration for the
classical diffusion equation. Deduce in each case the similarity variable.

12. With reference to Example 6.5 establish the following solution types for which 5 — 0
as t — 0 and ¢(z,t) is given by

c(z,t) = p(w)P(w,t).

_ zT 4+ 6 4+ k*
T (r2-1)

(w,t) = (2 = 1) Zexp {—b&" (w(r2 —1)te g %)} ,

¢"(w) + bwg!(w) — bA"4(w) = 0.

— 8 (2= 1)k,

(ii) p=—-a=1, v=0.

_EHE AR (P 1k

(r2-1)" L
s0.0= (Z52) oo { b 02+ @ 420007 - 26 4 26parer -1 8]}

" (w) — bwe (W) — (22* + 1)é(w) = 0.
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(iii) p=—y=1, a=0.

_ T4+ 6 4 kT2

(-1
P(w,t) = — T _.,.2 -1 ex _b [(c.;2 +x*%) 72 = 2*w(rt 1) k)
o)A | P it ] ’

¢"(w) — b(4X* + k?)d(w) = 0.
(iv) B=vy=—a/2=1.

_ T 428" (8" 4k
NGRSV GRSV

=z - (B )

¢"(w) — 264" (w) — b{(1 4+ 22*) + 4(6* 4 £*)bw — bw?}é(w) = 0.

(v) ﬁ:l, 7=F2, C!:—‘(1+[12)

_ Tz 8+ (1 — 1)
[(72 = 1)(r2 — p2)] &

21 M ‘1'2(1"‘2)(‘1'2 - 1)“2 i
t) = - 1
Yw,t) = | T times

72 — 2
exp{—3 [(? 490077 —oml(” — 1 = )]

¢"(w) = (1 +p*)bws' (W) — b{(1 + 2X°)(1 + p*) — 2bp*0}$(w) = 0,

_ 226" + (14 4%)8") _a+s) 1
n= (1 —#2)2 ’ T2 = 2 ’ = 2(1 _uz)-

In each of the cases = is defined by

T:ébt,

and the constants é*, x* and \* are appropriately redefined constants based on 6, «
and X respectively and do not necessarily refer to the same constant in each case.

13. With reference to Example 6.6 establish the following solution types where ¢(z,t) is
given by

c(z,t) = d(w)y(w,1).
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(i) w= (_‘r———l_)’ Y(w,t) = "'("'_1))“,

awd” (w) + (2a + )¢’ (w) — bA* $(w) = 0.

(r—1)’
awd” (w) + (2 — bw)¢’(w) — b(A\* + 1)¢(w) = 0.

) w= iy vt =T {0

wer o xT _ -yt __br’z
(ifi) w = o P(w,t) = "'( T XP{ a(r? _1)}’

2
wd"(w) + 2’ (w) — (m* + b;w) é(w) = 0.

. zT bric AtT
(lV) w=

-tp Y@V EopEe {‘a(r— DT o0
awd” (w) + 2(a - )¢’ (w) — ( -24 > é(w) =0.

(V) w= (T:my
= T -1 A‘ex e
w(w’t)_(‘r—l)(ﬂ‘l'—l) pr—1 p{ a }’

wwd"(w) + [2a — b(1 + p)lé' () + {(1 CA) 4 (14N — "—"w} o(w) = 0.

In each of the above cases = is defined by

and XA* denotes an arbitrary constant.
14. With reference to Example 6.7 establish the following solution types where ¢(z,t) is
given by
c(z,t) = ¢(w)(w,t).

(i) a=p=0, v=1.

_b4logzx K
- t 212’

(wt)— ”_2_ﬁ_(b_+£_“ﬁ__ +2(b+3)t]}

¢ (w) - {A + MH "—“’} é(w) = 0.
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(i) a=v=0, B=1/2.

2k 41
w= ;c+log1:

— 26t
th

W(w,t) = t*exp {_ [5z+ (b+3)6+ ('H;l)z} ¢ #(26+b+3)},

#"(w) = 54'(w) = A(w) =0.

(iii) y=8=0, a=1

2
w=logz—nt—%,
2
P(w,t) = exp{— I:/\+ “—;3ln+ (b—-tli] t

] . 63wt

5@+ 0+ 3408+ {14 CEey L3I Bod g g,

(iv) a=p4? B=0 y=1

oo trttloez b exp{lm—l (1)}
(2 +u2)' 4 B

Y(w,t) = (tz_P_*_(%)TﬁexP {—%[(b +1)2 462200+ 3k 4wt

—Y43—m 4 )Y,
2,,2
8@+ (£ -3) s =0
15. For the boundary value problem,

= 2 {po5 ]+ la@)e) (>0, o<z <on),

c(z,0) = cob(z — z0),
c(z,t), %(z,t) — 0 as z — xo0,

where ¢, and z, denote arbitrary constants, show that the initial condition remains
invariant under (6.1) provided the functions &(z,t), n(=,t) and ((z,¢) satisfy

i/
€(20,0) = 0, 7(20,0) = 0, ((z0,0) = ~5=(20,0).
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16.

17.

Hence with I, = I(zo) show that the functions 5(t), o(t) and #(¢) in (6.47) and (6.48)
satisfy
70) =0, p(0)=-"0p,

o(0) = n"éo) B4 p'go) Io— "120)-

Continuation. For case (i) of Section 6.6 show that one group leaving the boundary
value problem of the previous question invariant is,

£(z,t) = 2p(z) P sinh(Bt), n(z,t) =0,
¢(2,1) = BIo + (C2/B)(1 — cosh(Bt)) — BI cosh(Bt) — J sinh(Bt),

where 32 = C,. Hence show that the solution takes the form

#(t)v(I) BI* [82Iy + C(1 — cosh(Bt))]I
=" p{ coth(Bt) + 3B smh(BY) }

where ¢(t) denotes an arbitrary function of t. From the partial differential equation
deduce that

e(x,t) = gj% xp{— [(ﬁ1+ Cﬁ ) (ﬁIo C;) ] COtiléﬁt)
# (01+5) (#0+ %) srmicen

where a = (C1C; — C2) /4C, and ¢, denotes an arbitrary constant. Show that as ¢t — 0,

L gov(De [ (- L)
w0~ G e

and observe that for given I(z) the constant ¢, is determined from the condition

tli_l:% /;m c(z,t)dz = ¢o.

Continuation. For case (ii) of Section 6.6 show that the functions »(¢) and o(t) are
given by

n(t) = sinh?(B1),

o(t) = _[2 — ésmh(2ﬁt) - Slﬂhz(ﬁt)
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where again 82 = C,. Deduce from (6.2) that the functional form of the solution of
the boundary value problem of Problem 15 becomes

(1) = 2D
[p(z) sinh(Bt)] 2

where w = I(z)/sinh(8t) is the similarity variable, ¥ = C3/4 and ¢(w) satisfies the
differential equation

exp {-%(I2 + Ig)coth(ﬁt)} ,

272
¢H(w) — ("64i + %) ¢(w) =0.

With @ and ¢ defined by

Q= Blw/2  dw) =w RBQ),

show that
020"(Q) + Q' (Q) — (22 + n2)@(N) =0,

where n = (1+ Cy)*#/2. Show further that the solution ¢(w) giving the correct
behaviour as ¢ — 0 and agreeing with the result of the previous question when
C, = Cy =0 is given by

<I>0w 1/2
2

$(w) = (1 () + 1 ()],

where @, is a constant and I,, denotes the usual modified Bessel function of the first
kind. Verify that as ¢t — 0,

- <I>0v(I)e"" e _(1—10)2
)~ ey xp{ T }

Continuation. Show that the solutions of the boundary value problem of Problem
15 for the following three equations:

. 8c 0% i)

Q] rrial oy COR

. Oc 82 i)

(“) E = am(zc) <+ ba—z(zc),

o 8, i
(iii) yri m(z c) + ba—z(zc),
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where a and & denote arbitrary constants are respectively as follows,

. b K b(x — zge~bt)?
)] ez, t) = co {m} exp {_(2(—1_—3:&%} ’
@B =l () * 1 (v (em(@) ®) exp{=1(0(e + m(O)},

where m(t) and 4(t) are defined by

m(t) = zoe™™, () = E(l_——bT—T‘—)’
a oo [ Doslz/zol + (b 11
(iii) (21 = 4(7rt)1/2|:c| { 4 } '

19. Deduce the one-parameter groups of the form (6.1) which leave the following Fokker-
Planck equations invariant,

. dc 82
M 5= 5

ve dc 8 [z™+! §¢ 4 [mz™
(i) 5—37{—4 a}ﬂe—z{T }

where m denotes an arbitrary constant.

1- zz)zc} ,

20. Obtain the classical groups and resulting solutions of the following partial differential

equations,
(i) the wave equation,
o _ o
otz ~ Hz2’
(ii) the telegrapher’s equation,
8% 6c 8%

aw + 5 = 922’
where o is a constant.
(iii) the diffusion equation with convection,
8c _Bc B
5 0%z T a

where § is a constant.
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21.

22.

(iv) the Klein-Gordon equation,

w = 922 + Ae,
where X is a constant.
(v) the Tricomi equation,
0% _ 0%
8t2 ~ " ox?

(vi) the Barenblatt equation,
@ — 6_22 + a_aac
ot ~ Oz? Oz26t’

where o is a constant.

Obtain the classical groups and resulting solutions of the following partial differential
equations,

(i) Laplace’s equation,
ge | o
8z? " dy? ~

(ii) Helmholtz’s equation,

where X is a constant.

The normal component of stress o(z,z) for soil is assumed to satisfy the following
diffusion equation

do 8%

% = g

with positive z vertically downwards and « is a constant. For the lower two-
dimensional half-space with a concentrated load P at the origin, we require that

where §(x) is the usual Dirac delta function. Show that the appropriate solution is
given by

@1 = —L e (-3
o\r,z —z(—2;r:)1—/2exp 2(!22 .
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~ Chapter Seven
Non-linear partial differential equations

7.1 Introduction

For non-linear partial differential equations we need to consider more general trans-
formations which leave the given equation invariant. In this chapter for a single dependent
variable ¢ and for two independent variables = and ¢ we consider one-parameter groups
of the form

z; = f(z,t,c,€) = z + e&(x,t,¢) + O(?),
ty = g(z,t,¢c,€) = t + en(z, t,c) + O(e?), (7.1)
e1 = h(z,t,c,€) = c + €(x, t,¢) + O(?).

For known functions &(z,t,¢), n(z,t,¢) and ((z,¢,c) the similarity variable and functional
form of the solution are obtained by solving the first order partial differential equation,

8c dc
E(z,t,C)% + 'I(z,t,C)E =((z,t,c). (7.2)
In the following section we give formulae for the infinitesimal versions of the first
and second order partial derivatives of c(z,t). Again for completeness we also give
formulae for 6%¢/8zdt and §%c/dt* although we make no use of these results. In the
section thereafter we deduce the classical groups of the non-linear diffusion equation,
namely

o~ 2 (biotk), o3

where D(c) denotes an arbitrary function of ¢. Equation (7.3) is a well known equation
and in particular the power law diffusivities D(¢) = ¢™ have received a good deal of
attention. The results of Section 7.3 are also given by Ovsjannikov (1967) and Bluman
and Cole (1974) (page 295). In Section 7.4 we briefly consider the non-classical approach
for the non-linear diffusion equation (7.3). Although we present no new results in this
section the governing equations are summarized for the reader interested in pursuing the
matter further. In Section 7.5 we give two results for equation (7.3) which although
not directly related to group methods involve important transformations of non-linear
diffusion equations. The first result shows that every equation of the form (7.3) can, by
a sequence of transformations, be reduced to an equation of the form

dc 8 (1 dc
D(x)z; = 5= (c_2(9_z) : (7.4)
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so that the power law diffusivity D(c) = ¢~2 plays an important role. The second result is
that the most general inhomogeneous and non-linear diffusion equation with diffusivity
D(z,c) which can be reduced by transformations to the classical linear diffusion equation
(6.3), is given by equation (7.53). The final two sections of the chapter deal with similarity
solutions of (7.59), (7.64) and (7.68).

7.2 Formulae for partial derivatives

In this section we deduce the infinitesimal versions of the partial derivatives d¢/dz,
dc/Ot, d%c/8z?, O%c/8z0t and H2¢/8t2. We again use the convention that subscripts denote
partial differentiation with =, ¢ and ¢ as three independent variables. Thus for example
we have,

8{ c O¢

¢/ i)
_§x+§c 3z’ E=Et+606_:
Now either directly from (7.1) or from the definition of a one-parameter group we have
z =z - e(z1,t1,61) + O(é?),

t=1 — en(zl,tl, Cl) + 0(62),

and therefore up to order ¢ we obtain

0 0 0

6_:1 =1—c¢ (§,+§ca—z) + O(e?), 6t —e (5, +§c6—:) + O(e?), .
ot e R e . (5)
i (r;,+nc )+0( ), e(n,+nc5)+0(e ).

First for 8¢c/6z we have

661 661 Oz + %ﬁ
9z, _ Oz Oz, @ Ot 0z,

and using (7.1) and (7.5) we obtain

g—2={gc (<,+<c )}{1—e(5,+fc3—z)}
+{zt (<t+<c )}{—e(nx+ncg—z)}+0(€2),

which simplifies to give

dc, _ Oc dc @ dc de
5_1:1 5 {<x+(<c x) nxat & (512) 5t5 }+0( ) (76)
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Similarly for 8c/8t we have

561 = 561 Oz %ﬁ
6t1 612 6t1 6t 6t1’

so that from (7.1) and (7.5) we obtain

Oc1 _ [ Oc dc dc
i EAR CRRE I SR CRLE )
0
+{g—t+e(Ct+Cc6—;)}{ (m+nczt)}+0(ez),

which becomes

8c1 8c

8c dc 8¢
6t = 6 {Ct + (Cc nt)at Et 612 (E) Eca 6t} + 0(52).

Again for convenience we introduce =, and =, such that
Oc Oc e\ 2 ¢ de
=G+ (G _E’)E T -& (a) ~ 5 5z’

dc dc dc\? 8¢ Bc
meGromg g (5) -egg
so that we have simply

561 Oc
0z, = %z

+ em + O(e?), % = % +em + O(e?).
1

We observe that (7.8) can be written alternatively as

8 8 8c Ondc

1= —=—— —

8z Oz0z Ozot
X _0c0e_ onoe
=5t 9oz otot
For the infinitesimal version of 8%c/6z2 we have
Por _ 0 (Do _i(ﬁ KL %)ﬁ
dz3 = 8z \ Oz, T 8z \ 8z, ) 8z, 8t \ Az ) Oz’

which using (7.5) and (7.9) gives

2
66:1 {g 2+€(7r1x+7rlcg_::>}{l_f(fx +£cg_z>}
1
2
+{56t5 +€(7r1t+7rlczc>}{ (nx+7lcg >}+0(€2)

135

(7.7)

(7.8)

(7.9)

(7.10)
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On simplifying this result we obtain

(3;:11 322 +e {ﬂ'lx Mg Oc (E: Ec ) g:;
- (e +n3e) pom gt} 0(e). (7.11)
From the first equation of (7.8) we have
dc Jdc dc dc

8¢
Tz = Crr + (Crc _Exx)a_z - 7]::5 - Erc (6_12) - nxcaa_z

8% 8% dc 8%¢ dc H%¢ 8¢ d%c

O%¢ _ _gg 9¢0%  9cdc  Oc 9°c 7.12
Vot " gper oy 052 "Bt 052 155 520t (7.12)

+ (Cc - E
dc 8c dc\? 8¢ ¢
Tle = Czc+(<cc_§xc)5; _nxca“fcc (5;) - ﬂccaa-

Thus altogether from (7.11) and (7.12) we obtain

8%, 8% dc 8¢
612 m+f{<xx+(2<xc_§xx)a—7kxa

de\? dc B¢ ac\? dc [ 6c\?
=20 (55) - - e (52) = ner (52)
Oc dcl 8%¢ 8c\ O%c 2
+ I:(Cc - 261) - 3€CE - 7]05] 6_127 -2 (7]: + 7]06 ) 6 6t} O(C ) (713)

Similarly for 8%¢/8z8t we have

o _ 0 %)_i 501) oz O éc_l)ﬁ
52,0, 9z, \0t,) ~ 9z \ 3t ) oz, T ot \ 5ty ) by

and from (7.5) and (7.9), we obtain

9%, _ 9% Oy e\ ¢ 8c\ 8% ,
8210t 0zt T ¢ {5:0 (5’ oz )a Bt (” e gy )5t2}+0(<) (7.14)

Alternatively using (7.9), we can deduce

d%c; _ d% o, dc\ 8%c 8c\ 6% 2
82,0, . 0201 +‘{a_t - (5 +5°at) a7 (”‘“’”m) 3z 8t} +0(), (7.15)
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and (7.14) and (7.15) can be shown to be the same using the expressions (7.10). From
(7.8) and either of (7.14) or (7.15) we can obtain the following result,

5201 8%c
61’16t1 51:5t te {C’t +(Gee - E")a +(€ex — ntz')

ac\? dc dc ac\?
_fct (6_12) +(<cc—£cx nct)a 6t 77:(5)

¢ de\? 8¢ : 8c (’) Gt 6c b%c
e \oz) B " \8t) Bz ¢ 8z
8c\ 8% dc\ 8%¢ 2
+ (Cc_fx_nt_2§c 2nc6t) 9201 (77:+77 oz ) 6t2}+0(€ ) (7.16)

In a similar manner we can deduce from

8%, O%¢ Oy 6c 8%¢ dc\ 6%
=t {T - (ered) mm - (o) ) o

the following result

8%, 8% Oc
W =332 + € {Ctt + (26 — Utt) 5t — &g Oz

6 2
+ (Ccc 277tc) ( C) 27— gc ztc Nee (66) fcc (%)

+[e-m-mG-e | T -2 (e 46 ) mmh 0@ @

We observe that (7.17) can also be deduced from (7.13) by interchanging = and ¢ and ¢
and 7.
7.3 Classical groups for non-linear diffusion

Rewriting (7.3) we obtain

%:D(c) +D'()("C) : (7.18)

where primes throughout denote differentiation with respect to the argument indicated.
Now using

D(c1) = D{c) + e« D'(c) + O(e?),

D'(c1) = D'(e) + &« D" (c) + O(e?),
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we find from (7.6), (7.7) and (7.13) that (7.18) remains invariant under (7.1) provided

2
(e ﬂt)at fta (6—6) —¢ 6_6@

ot “dz ot
8¢ i/
= D(C) {C:x + (2<xc - Erx)a_z - nxxa_i

dc\? dc d
+ (Ccc - 26:«:) (i) 7]:«: 9z 5:

dc\* oc 2( + "C
Tee\3z) B "\ "oz 6:06t

+ 2D’(C) {Cr + (Cc x) 77: 5t

8c
13

8c) 8c dc | B¢
9z) ™oz 0t oz
" ac\® [ ., . [0\ D'(c) d e
+D (0)4(57) +{E—D(c)(6—z) }{c 2% +C 50 - 35°a_z"’°§}’ (7.19)

where the last term, involving the two curly brackets, arises from eliminating §%c/8z? by
means of equation (7.18). On equating the coefficients of the various partial derivatives
in (7.19) to zero we obtain the following equations:

8%c 8_6 =0
dzot oz’ T
8¢
Frvrt Ny =0,

(f,’—) D(e)éec — D'(c)c =0,
(Z_Z)z ((??_z’ D(c)nee + D'(e)ne = 0,
(), [e-mr2d] -

9 2
(Ec) ’ ﬂc"lc=0,

dc dc ’ —
oo ot DO+ Do) =0,
g_;, & — D(c)ézz + 2D(e)ze + 2D'(e)Ce = 0, (7.20)

D'(c
gt_c’ e — D(C)nxx 26: +< D((C))

@, = D(c)(es =0. (7.22)

0, (7.21)



Non-linear Partial Differential Equations 139

From the first seven of these equations we can readily deduce

§=¢&(z,t), n=n(1), (7.23)
Co+ CD((C)) = é(z, 1), (7.24)

where ¢ denotes an arbitrary function of =z and ¢. But from (7.21) and (7.24) we can
deduce

. (%3
Cc =n (t) - 2% + ¢(1:,t),

and therefore ¢.. = 0. From (7.21) we obtain

= (88) (% -v0).

so that either

2— =17'(t), (7.26)

or the diffusivity D(c) is such that

that is

D(c) = a(c+ B)™, (7.27)
where «, # and m denote arbitrary constants. If (7.26) holds then from (7.20) and (7.25)
we can readily deduce
&(z,t,¢) = —:c + &,
ﬂ(z;t;c) = 6+7t1 (7‘28)
C(Z, t) C) = 01
where , 6, x and A denote arbitrary constants. We note that the group (7.28) is applicable
to all functions D(c).
Alternatively if D(c) has the form (7.27) then from (7.25) we have

= tc+8) (25 - 1)), (7.29)
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and on substituting this expression into (7.20) we find

8¢ 4\ 8%
X = (3+2) 25, (7.30)

while substitution of (7.29) into (7.22) and making use of (7.30) gives

7'(t) = —8D(¢) (1 + %) 3—22. (7.31)

We see that (7.30) and (7.31) give rise to two cases, namely for all constants m,

a 62 "
while for m = —4/3 we have
oc ¢,

Thus for all m we have

&(z,t,¢) =k + Az,
n(z,,6) = 6 + 11, (7.32)
(24,9 = (e + BN =),
while for m = —4/3 we have
&(z,t,c) = Kk + Az + px?,
n(z,t,¢) = 6+t (7.33)
((a,t,¢) = —3(c+ B)(4pz + 23— 7),

where v, 6, x, A and p denote arbitrary constants. The resulting ordinary differential
equations corresponding to (7.28), (7.32) and (7.33) are given in Problems 1, 2 and 3.

Example 7.1 Deduce the source solution of the non-linear diffusion equation (7.3) with
a power law diffusivity.

We need to solve

fc 0 bc
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such that ¢(z,t) vanishes at infinity while initially satisfies

o(z,0) = cob(z), (7.35)
where ¢, and m denote arbitrary constants and é(z) is the usual Dirac delta function.
Noting the elementary property of delta functions,

§(Az) = A718(x)
for any non-zero constant A, we see directly that (7.34) and (7.35) remain invariant under
the one-parameter group

z; =€z, t; =™y o =%,

that is,

&z, t,e)==2z, nz,t,c)=(m+2), {(z,tc)=—c. (7.36)

This equation corresponds to (7.32) with 8=6=x=0, A =1 and v = (m + 2). We note
that the more general case with D(c) given by (7.27) with 8 non-zero appears not to admit
a simple group leaving (7.35) invariant.

From (7.2) and (7.36) we see that the similarity variable and functional form of the
solution are obtained by solving

dc dc
S +(m+ 2)t5 = —c.
We find that

¢(w)
tn

c(:c,t) = w =

xr
s (7.37)

where n = (m + 2)~!. On substituting (7.37) into (7.34) we obtain

L {7 ()6 () + wdw)} = 0,

and since ¢(w) vanishes at infinity, the constant of integration is zero and we obtain

™ w)¢'(w) + nw = 0.

A further integration gives

mw? }l/m

$(w) = {C— Am+D) (7.38)
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where C denotes an arbitrary constant. With C given by

2
mwy

C= Am+2)’

(7.39)

we take ¢(w) to be zero for |w| > |wi| so that the condition

/ c(z,0)dz = ¢,

-0

becomes

wy 1/m
m 2, \l/m _
L. (2(m+2>) (wi-uf) ™ do =

Thus with w = w; sin 6 and using the formula
/m (cos0)E+1d = YT 7).
-x/2 I‘(% + #)

where I'(z) denotes the usual gamma function, we can readily deduce that the constant C
in (7.38) is given by

C= m c_or(%'*',,%))z whe 7.40
- 2(2+m)(ﬁr(1+$) ’ (7.40)
Thus altogether from (7.37) and (7.38) we have the the source solution of (7.34) is given
by

1 mz? m
)= — —_——
C(Z, ) " {C 2(m + 2)t2n} ’ |w| < |w1|a

(7.41)
C(z,t):O, |w|> |w1|1

where n = (m+2)~!, w=z/t", C is given by (7.40) and w, is defined by equation (7.39).

7.4 Non-classical groups for non-linear diffusion

Although there are no known non-classical groups of (7.3) we derive here the gov-
erning equations in order to illustrate the non-classical approach in a non-linear context.
With A(z,t,¢) and B(z,t,¢) defined by

{(z,t,c)
n(z,t,¢)’

— f(z1t1 c)

A(z,t,c): - n(z t C)’

B(z,t,¢) (7.42)
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we have from (7.2)

8¢ 8¢

On differentiating (7.43) partially with respect to = and using (7.18) and (7.43) to eliminate
8%¢/8x* and Hc/6t respectively it is a simple matter to deduce

Ze (4= 22) 1 (nemmr £2) 2 (522 5) ()

We remind the reader that the subscripts refer to partial derivatives of functions of three
independent variables z, ¢ and c. Writing

dc

=6_z’

9 (7.45)

and substituting (7.43) and (7.44) into (7.19) we obtain the following cubic expression
in 6, namely

Ce+ (G — me)(A — BO) — &0 — 1.(A® — 2AB0 + B*6%) — £.6(A - BO)
= D(c){Cex + (2(ec — €2)0 — Noz(A — BO) + ((ee — 22.)0°

— 20..0(A — BO) — £..0° — n..0°(A — B}

+2D'()6{¢s + (o — €2)0 — na(A — B6) — £.6% — n.6(A — BY)}

D'(c)
D(c)

+ D"(c)¢62. (7.46)

+ {cc 9, — 36,0 — ny(A— BO) + } (A— BO — D'(0)6?)

On equating to zero the coefficients of 62, 62, ¢ and 6° we obtain the following equations
for the determination of A(z,t,¢) and B(z,t,c):

62, D(¢)Bee — D'(¢)B. =0,

02 [2B,—AC—ADI(C)] _ 2BBC —
¢

D). D
D'(c) (7.47)

6, Be+2[D(c)Asle — 24B. = D(c)Bz; — 2BB: + ABZ Gk

D’(C)
0 — + E i 04
0 3 At = D(C)A,, 2AB, A D( ) .
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We observe that with D(c) = 1, A = a(z,t)c and B = b(z,t) equations (7.47) reduce
precisely to (6.80) for the two functions a(z,t) and b(z,t). Equations (7.47) are recorded
for purposes of illustration and we make no attempt here to obtain special solutions.

7.5 Transformations of the non-linear diffusion equation

The most widely known transformation of a non-linear partial differential equation
is for Burgers’ equation

Ou Ou H%u
5 + ua—z = Dm, (748)

for which the transformation

2D
¢ Oz’

(7.49)
reduces (7.48) to the classical diffusion equation, assuming that D is a constant. In this
section we give two important results for the non-linear diffusion equation (7.3).

(i) The first result is that every non-linear diffusion equation of the form (7.3) can be
transformed to the following equation with a simpler non-linearity, namely

v 8%
D(e)yg; = v 5 (7.50)

where v(c,t) is essentially the flux associated with equation (7.3). To see this we define
u(z,t) by

u(z,t) = D(c)g—z. (7.51)

On multiplying (7.3) by D(c) and differentiating the resulting equation partially with
respect to z we find

‘;_lt‘ = (;’_z (D(C)Z_Z) . (7.52)

We now introduce v(c,t) = u(z,t) so that (7.52) becomes

= D(C) aa

dvdc Ov o dc Ov
TR T ’

which on using (7.3) and (7.51) simplifies to give (7.50). We note that the equivalence
of (7.4) and (7.50) is readily seen.
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(i) The second result is that the ‘most general inhomogeneous and non-linear diffusion
equation with diffusivity D(z,¢) which can be transformed to the classical diffusion
equation (6.3) takes the form

dc _ 08 ar+ 3 2 8¢

a—a—z{(.,cw) a—} (7:53)
where a, 8, v and 6 denote arbitrary constants. In order to see that (7.53) can be reduced
to the classical diffusion equation we can without loss of generality consider the equation,

8c 0 z\2 dc

== 52 {(Z) 8_:0} . (7.54)
Instead of working with (7.54) with independent variables (z,t) we consider the same
equation

=5 (8) 5 (59

for w(c,t). Making the transformation

w(c,t) = Wet) (7.56)

it is a simple matter to show that (7.55) becomes

v L8N

This is clearly the same equation as (7.50) with D(c) unity and therefore by introducing
z such that

v(c, t) = u(z,t) = g—z, (7.58)

equation (7.57) is equivalent to the classical diffusion equation (6.3) for c(z,¢).

7.6 Similarity solutions of the non-linear diffusion equation

In this section we give two examples of integrating the non-linear diffusion equation
with the power law diffusivities ¢=2 and ¢!

Example 7.2 Show that the non-linear diffusion equation

dc 4 (1 08¢
2 (C_ZE) , (7.59)
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admits a solution of the form ¢ = ¢(z/t 2) with the exact parametric respresentation

w=Cz {e—u2/4+_§ (/ e—f’/4dr+Cl)},
0

; CZ(/U o )
-== e T 4dr+ ¢y,
¢ 2 \Uo !

where w = z/t % and C, and C, denote arbitrary constants.
From ¢ = ¢(z/t 2) and (7.59) we may deduce

(5) 500

where primes denote differentiation with respect to w. The substitution 3 = ¢~! gives

o+ 2%” =0, (7.60)

and since this equation is invariant under the one-parameter group

w1 = eew) 'pl = e"p)

we introduce the new variable ¢ = ¥/w sO that ¢ = wq and we obtain,

1
2 —
wq" + 2wy’ + Ez—(wq’ +4¢)=0.
This equation is of the Euler type and therefore we make the transformations

d
y:logw, p:wquj_z’
to obtain,

dp 1 1
Pt g+ (14 ) p=0

which yet again is an Abel equation of the second kind with singular solution p = —q.
We solve this equation in the following manner. First set Y =p+g0rp=7Y — ¢ to give

dY 1 1

dg = 2¢*  2(Y —q)

and then introduce X = ¢~! so that

dy 1 1

ax ety
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and therefore

dX 2

292

dy Xy’
Further the substitution X = 2Y 4 u gives

du _ 2

Y T Y (2Y +u)’
or

dY uY

ol - = _)/2

du + 2 ’

which at last we recognise as a standard Bernoulli which is integrated by the transfor-
mation v = Y~!, namely

dv w _
du 2 7

and therefore

u
v=e* M1 (/ e_T2/4d‘r+Cl) .
V]

Now on introducing

u -1
flu) = e /4 (/ e~ Mdr 4 cl) ,
V]

we have from v = Y- = (p+¢)7,

w3 4 q= j(),
that is, since ¢ = wg we have
= ), (1.61)

Further from « = X — 2V = ¢=' - 2(p + ¢q) we obtain

w di
-2 9% .62
u v Zdw. (7.62)

But differentiating this equation and using (7.60) gives

du 1
du _ 1 7.63
iy (7.63)
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Now from (7.61) and (7.62) we have

w
—=u+4+2f(u
7 + 2f(u),

which on using (7.63) produces the separable equation

ij—u = u+2f(u),

for which a further integration can be effected, thus

12 (fy e /4dr + C1) du do
{u/2 (fou e~ 4dr 4+ Cl) + e‘“’/“} W

from which we may deduce

w=0C, {e'“2/4+ % (/ e_'2/4dr+01) }
0

From this equation, ¥ = ¢~! and (7.63) we finally have
1_do G f" o
=m=7 ([ rasa),

which agrees with the given parametric representation.

Example 7.3 Deduce an integral of the non-linear diffusion equation

dc 4 (108¢c
-2 (_8_) , (7.64)

for a solution of the form ¢ = ¢(z/t 1/2).

From the assumed form of the solution and equation (7.64) we have

¢’ "Lw ’_
(§) +3¢=0

where again w = 2/t "2 and primes denote differentiation with respect t0 w. On making
the substitution ¥ = log¢ we obtain

¥+ ety =0, (7.65)

and this equation is invariant under the one-parameter group

w1 =ew, P1=1-— 2,
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so we introduce the new variable ¢ = ¢ + 2logw and we have

el
Wi’ + 24 (we' - 2)? =0.
On making the transformations

y = logw pzwd—qz dg

dw  dy’
we may deduce
dp el
pE+(p—2) (7— 1) =0.

This equation is evidently separable and therefore can be readily integrated to yield

(p— 2%~ = Cet=e"/2,

where C is a constant. Notice however, that because of the non-explicit nature of the
integral it appears difficult to proceed further.

We give below an alternative approach to deducing integrals of the non-linear dif-
fusion equation with power law diffusivity. With the assumption ¢ = ¢(z/t %) we may
deduce from (7.34)

(e™¢') + %cﬁ’ =0, (7.66)

sO that with u = ¢’ this equation becomes

d, m w
E(‘ﬁ u) + 5 = 01
and on differentiating this equation with respect to ¢ we obtain

dz . 1
W(tﬁ U)+z—0.

Since this equation remains invariant under the one-parameter group of transformations

6= ee¢’ U = e(l-—m/2)eu’
we select v = u¢™/2~! as a new variable which gives

d; fomtD), L

=0. 767
4 2v 0 (7.67)

d?v
¢2W + (m + 2)¢d—

Special cases of (7.67) corresponding to the above examples can be readily integrated.
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(i) m = —2: In this case (7.67) becomes

d%v 1
2 —_—
¢ dg? + 2u 9’
which on making the substitutions
v= gV, p= <
- b - Q’
gives
eV o1
o2 " 2V T

On multiplying by dV/d® and integrating we obtain

dvy?
5 +logV = Cy,

so that

Y .
= —_— 4 ,
VO — Iogi 2

where C; and C, denote arbitrary constants. Thus retracing the above transformations we
may obtain

1 ¢/8° dv

¢ VCi—logV
which in principle can be integrated a further time by making the substitution ¥ = ¢-2
since then we have

+ Co,

-¥'/2 dv
VCi —TlogV

Hence for some function f; we may write

= \I’1/2—02.

V= fi(¥R-Cy),

giving finally

/4’" dv
w+Cs = IS P
fl(\Il ‘/2 - Cz)

where Cj is the third integration constant. We remind the reader that only two of C;, C;
and C; are completely arbitrary since equation (7.66) must also be satisfied (and not just
its derivative).
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(ii) m = ~1: In this case (7.6’-7) becomes

d?v dv v 1

2-— _—— _—
Yty it
and therefore @ = log ¢ gives
d?v v 1 ~0
@z 1t =

which can be immediately integrated

dv\? o2
(_d_(f> -—T+1ogv—cl,
so that

1 8150 do
og¢—/ VCi +v2/4 —logv

As in case (i) a further integration can be effected by the substitution ¥ = ¢~1/2 then we
have for some function f,

+ Ca.

V' = f(Ca + 2]og ¥),
giving finally

o=/ dv

w+03:/ f2(Ca+2]og )’

In both cases (i) and (ii) we have taken the positive square root in the first integral. Equally
well we could have taken the negative case and for a particular problem this aspect would
need to be examined more carefully. Thus although for m = -2 and m = —1 we have
fully integrated the non-linear ordinary differential equations, the resulting solutions are
by no means straightforward and need to be utilized with care.

7.7 High order non-linear diffusion
A number of important problems, such as the flow of a surface tension dominated
thin liquid film and the diffusion of dopant in semi-conductors, give rise to a fourth order

non-linear diffusion equation

dc 8 [ 0%\ _
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Example 7.4 Show that (7.68) admits separable solutions of the form

o) = (ﬁm)um'

where t, and A are constants such that
4 /4
m m m m

If we look for a solution of (7.68) of the form

for m#£24.

c(z,t) = A(x)B(t),
then we may readily deduce the equation

B(t)

E_(t—);.—-f-_] + %z)(A(Z)mA”I(I))I =0,

where primes denote differentiation with respect to the indicated argument.

have

B _ 1 ™A
E'(t—);.'ﬁ—‘m(A(z) A"(z)) = Ao,

where Ao is a constant. The first equation gives
B(t)™™

BO™ _ \t+10),

—-m
where ¢, is a constant, which can be rearranged to yield
~1 1/m
B(t)=| ——————
® ('\om(t +to))

For A(z) we assume a solution of the form

A(z) = az?,

and the second half of (7.69) simplifies to give

a™B(B—~ 1) (B~ 2)[(m+ 1)B - 3]z™ % = — ).

Thus we

(7.69)
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Thus 8= 4/m and o™ = -Xo/A where ) is as defined above. Accordingly A(z) becomes

Az)= (‘*;”4)1/"' ,

from which we may deduce the given expression for ¢(z,¢).

Example 7.5 Show that the source solution of (7.68) takes the form

1 z
o&,t) = e ® (t1/<m+4)) ) (7.70)

where ¢(w) is even, zero outside some interval (-w;,w;) and satisfies
(m+4)g™ 1" =w,
(7.71)
$(w1) = ¢'(w1) = 0,
where w; is determined from
¢(w)dw = Co,

and ¢, is the constant initial source strength. Further verify that the case m = 1 admits
the solution

2 __,,2\2
= P

where w; = (225¢,/2)V/5.
Equation (7.68) and the initial condition
e(z,0) = cob(z),

remain invariant under the one-parameter group of transformations

1= ez, t;=emteg o = e,

from which we may deduce the functional form (7.70). On substituting (7.68) into (7.70)
we obtain

(m+4)(¢7¢") = (we)',
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where w = z/t'/(m+49, This equation can be integrated immediately to give

(m+4)¢™¢" ~wg = C1,

where C, is a constant. But since ¢(w) is even we have ¢/(0) = ¢"(0) = 0 and therefore
C, is zero and we may deduce the given equation for ¢(w).

In the case m = 1, this equation becomes simply

¢///(w) — %’
which of course may be integrated to give

w?

¢(“’) = m + C2U2 + Caw + Cy.

Since 4(w) is even the constant Cs; is zero and the appropriate solution satisfying
#(w1) = ¢'(wy) = 0 is as given. From the condition

o0 w1

/_ c(z,t)dz = i d(w)dw = ¢

and the given expression for ¢(w) we may readily deduce that w, = (225¢0/2)'/5.

Example 7.6 Show that (7.71) remains invariant under the one-parameter group

w1 = ew, b1 = e4c/m¢,

and accordingly may be reduced t0 a second order differential equation.

If we look for a group of the form

w1 = etwv ¢l = ea(¢,

leaving (7.71) invariant then we require

(m-Da+a-3=1,

or o = 4/m. Thus we take u(w) = ¢(w)/w?™ as the new dependent variable so that

$(w) = wTu(w),

where v denotes 4/m. Now from the expression

¢ = WU 3y 3y(y — Dw? i 4 y(y = 1)y — 2)wT 3y,
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we find that (7.71) becomes

(m+ )™ wPu" + 3wy + 3y(y — Dwa' +9(y - 1)(y - 2)u] = 1,

which is of the Euler type and therefore may be simplified by the transformation

y = logw.
On using the relations
d d , d d
i Rk v v

we may deduce

(m+4)u""1{3 3+3(7*1) = + (377 —67+2)—+7(7—1)(7—2)u}=1,

the order of which can be reduced by one by means of the substitution p = du/dy and
using

Pu_ b Py d (b
a? Pau’ I@  Pau \Pdu /)

We may finally obtain the following,

d2p dp\? dp 2 O S
re- 2+(d—u) 3D+ 67 6y + D +a(r= V(= 9% = ey,

which although of second order appears to be a more complicated equation than the
original third order equation (7.71) and further, even special values of v = 4/m appear
not to generate solvable cases.
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PROBLEMS

1. For the non-linear diffusion equation (7.3) show that the similarity variable and
functional form of the solution corresponding to the group

E(z,t,c) =z+ K,y ﬂ(z»t»c) = 2(t + 6)v C(zvtvc) = Ov
are respectively

T+ K

w= m, ¢ = ¢(w).

Hence show that the resulting ordinary differential equation is

D(¢)$" (w) + D' (8)¢' (w)? + ;¢’(w) =0.

2. For the non-linear diffusion equation with

D(c) = a(c+ 2™,

show that the similarity variable and functional form of the solution corresponding
to the group

€t = (L4 N4, n(z,te) =21 +6),
(ete) = e+ p),

are given respectively by

_(I+H£X5) _ A/m _
w__—_(t+6)"§4’ c=(t+6)Mmp(w) - B.

Show that the resulting ordinary differential equation is

B(w)"¢" (W) + mp(w)™ ¢ (w)? + (1—;;L)w¢’(w) - %qﬂ(u) =0.

Show that this equation can be reduced to a first order ordinary differential equation
by observing that the above equation remains invariant under the one-parameter group
of transformations

wy=e'w, ¢ =e*/mg.
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3. For the non-linear diffusion equation with
D(e) = afc + §)~*3,
consider the special case of the group
&z tye) = pz + (1 + Nz 4+, nlz,t,c) = 2(t +6),
((ot,0) =~ 3(e + B)(2uz + ),

for which the constants x, A and x satisfy

(A +1)? = 4ux.

In this case show that the similarity variable and functional form of solution are

_1 -2
w:(t+6) bexp{(—ml—)},

c=—~f+ ¢(w) (:c+ (Ail))_aexp{(—wz—;%—_?l—)}.

Show that the resulting ordinary differential equation is

AW 3gw) | 2

¢@) = 3oy T Hwr 3@ @) =0,

which can be reduced to a first order ordinary differential equation by observing that
the above equation remains invariant under the group

w = e‘w, ¢1 = 6_3(/2454
4. Show that the non-classical approach applied to
8¢ 0 [1 8¢

P15 =5 {—a—}

gives rise to the following four equations for the one-parameter group (7.1),
B

B, +2—= =0,
(4
[23, —Ac+ % +c*[F(z) — 3]BB, = 0,
A B AB
F(z)[Bi+ (AB)] + F'(z)B* + {2 (c—2’> —34B, - BAC} = c’z’ —2BB, — 27,
’ Acz A?
F(z)[A;+ AA ]+ F'(2)AB — AA. = i 2AB; — 27,
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where A(z,t,¢) and B(z,t,c¢) are defined by (7.42) and subscripts denote partial deriva-
tives with respect to the three independent variables «, ¢ and c.

. The non-linear axially symmetric diffusion or heat conduction equation in cylindrical

and spherical regions can be transformed into an equation of the form

8% ke dc
m'*';&—f(c)av (*)

where & = 1 and % = 2 corresponds to cylindrical and spherical regions respectively.
By considering the classical invariance of (+) under the one-parameter group

z1 =z +€(z) + O(e?),
t = t+en(t) + O(e?),
e1 = e+ €(z,¢) + O(e?),

show that for both values of k¥ a group exists if either f(c) is constant or if

f(e) =alc+p8)",

where o, 8 and m denote arbitrary constants. In the latter situation show that for
both values of &,

&)=z, nt)=(mv+2)t+6, ((z,c)=7c+], (*%)

where v, 6 and A denote further arbitrary constants.

For the special case of & = 1 show that a more general group than (++) exists provided

fle) =alc+B)7,

and deduce for example that () admits groups of the form,

£z) = Zllogz+ (1 +7)],  n(t) =2+,
((z,¢) = (logz + 7)(c + B),
where again v and 6 denote further arbitrary constants.

Continuation. Deduce the similarity variables, functional forms of the solutions
and the resulting ordinary differential equations for the groups given in the previous
problem.
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7. Observe that

2
d%c kﬁc_cmﬁc (x 54)

P2 28z ¢

remains invariant under the group,

zy = ez, 1 =e@Fmrdey o enee

Use this group to deduce the source solutions of (+«+) for ¥ = 1 and & = 2 given
that for these values of & the group with n = -2 and n = -3 respectively leaves the
appropriate initial condition invariant as well.

[This is because with rectangular cartesian coordinates (X,Y, Z) the appropriate initial
condition for &£ =1 is

e(X,Y,0) = cob(X)8(Y),

while for k = 2 we have

e(X,Y, Z,0) = cob(X)6(Y)8(Z),

where as usual ¢, denotes a constant specifying the strength of the source.]

8. Show that

&c % pe0C
322 + ke oS (+)

remains invariant under

z) =z + eb1 (2, y) + O(?),
v = y+ ela(z,y) + O(e%),

ty =t+e(yt +6)+ O(e?),

i) i)
61:C+%(7—£*6i;)+0(62),

provided ¢,(z,y) and &(z,y) satisfy the Cauchy-Riemann equations, namely

and o, 8, v and é denote arbitrary constants.
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9. Continuation. For § =0 and & (z,y) and &(z,y) given by

El(zvy) = 1:2 - yzv EZ(zvy) = 2133/,

deduce the following similarity variables and functional form of the solution,

BT
2
c(z,y,t):q&(u,r)—ﬁlogy—ﬁ(T]j—_y—z).

Hence from (+) deduce the following partial differential equation for ¢(w,r),

4 (w26¢) +ﬁi ( 6¢) :a6_¢ep¢— %

Sw Bw w? or \| ar or

10. Continuation. For 6§ = 0 and &(z,y) and ¢2(z,y) given by

§1(z,y) = € cosny, &(z,y) = " sinny,

deduce the following similarity variable and functional form of the solution,

w=e"sinny, 71 =texp (%e'"’ cos ny) ,
o(z,,t) = $(w, 7) — —e™"* cosny — 2 log(sin ny).
ng3 i

Hence from (4) deduce the following partial differential equation for ¢(w,r),

e —_—

8¢ 2ri(ra¢ __a 08¢ 5 2
T (nw)? 87 Bw?’

11. Show that the source solution for Burgers’ equation, namely
ou, Ou_ 0
ot T "oz T T ox®
u(z,0) = uob(z),

u(z,t) = 0 as r — *oo,

where u, is a constant, remains invariant under the one-parameter group

zy = ez, t;=eXt, u=e ‘u



Non-linear Partial Differential Equations 161

Hence deduce that

u(z,t) =t~ Bzt k),

and subsequently that

—2De~/4D

¢(U) = (C+f‘:’°o e—A3/4DdA)v

where w = z¢t- % and C is a constant. Deduce from the initial condition that the
constant C is given by

(xD) lhguo/aD
sinh(ug/4D) *

12. Show that the classical groups of the non-linear wave equation,

¢ H%c
e =1 (++)

where f(c) is non-constant are summarized by the following three cases:

(i) f(c) arbitrary

&(z,t,c) = yr+6,
n(z,t,c) = vt + &,
{(z,t,c) = 0.

(i) f(c)=alc+B)™

&z, t,e) =vz 4+ 8 + dmaz,
n(z,t,c) = vt + &,

{(z,t,c) = Mc+ ).
(iii) f(¢) = a(c+ p)?

&(z,t,¢) = vz + 6 + 2z + px?,
n(z,t,¢) = 1t + &,
{(z,t,e) = (A + pz)(c+ B).

In each case deduce the similarity variables, functional forms of the solution and the
resulting ordinary differential equations.
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13. Continuation. The fundamental solution of the non-linear wave equation (++) of
the previous problem satisfies the initial data

e(z,0) =0, %(3,0) = 6(z). (+++4)

Show that for all wave speeds f(c) the fundamental solution remains invariant under
the one-parameter group

zy =€z, t; =€t ¢ =c¢,

and hence takes the form

o(z,t) = p(xt™1).

Deduce from (++) that ¢ satisfies the ordinary differential equation

wl¢" (W) + we' (W) = f(¢)*¢" (W),
where w = zt—1.

14. Continuation. For the linear case f(c) = fo where f, is a constant deduce that ¢'(w)
is given by

G
(f§—w?)’

where C; denotes an arbitrary constant. Hence show that

¢'(w) =

z + fot

(o)) )
z — fot

ez, t) = of; 8

+ C,,

where C» denotes a further arbitrary constant. This solution becomes infinite at z = fyt
unless C; = 0, in which case ¢(z,t) = C, and the appropriate solution is c(z,t) = (2f0)"!
for |z| < fot and zero otherwise.

15. Continuation. For the case f(c) = ¢ show that the ordinary differential equation of
Problem 13 remains invariant under the one-parameter group
w); = e‘w, ¢1 = e‘¢.

Hence with,

é
¢=;

dyp
’ Tzlong p= Fv



Non-linear Partial Differential Equations 163

deduce the Abel equation of the second kind,

dp | (3—9¢?) 2

Pa P T Ao

16. Obtain the classical groups and resulting solutions of the following non-linear partial
differential equations,

(i) the non-linear Burger’s equation,

Ou fu  O%u
u

5 %oz = aar
(ii) the Korteweg-de Vries equation,

Ou Ou_ &u
5t Tz T a3

17. Show that the non-linear diffusion equation with power law diffusivity,
g _ 0 (m0e
ot Oz oz )’
remains invariant under the one-parameter group

z1 = ez, t; =e*t, ¢ = e,

provided that « + mg@ = 2. Hence deduce that this equation admits solutions of the
form

e(z,t) =tPlo¢ (t—la;—a) .

18. Continuation. The similarity source solution of this non-linear diffusion equation as
given in Example 7.1 arises from the case a = m+ 2 and 8 = —1 and takes the form

1 mz? Ym
c(z,t) = 117(m+2) (C - 2(m + 2)t2/("‘+2)) ’

where C is a constant. Show that in the limit as C tends to zero, this solution becomes

= (-mim)
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which is another similarity solution, arising from the case « = 2 and 3 = 0. On
translating ¢, observe that this latter solution corresponds to the so-called ‘waiting
time solution’

o) = (i)

where ¢, denotes an arbitrary constant. Verify that this waiting time solution can also
be deduced by the technique of separation of variables.

19. Show that

204" ~ 4" + é(wf —uw) =0,
is the appropriate integral of (7.71) for the special case of m = 2.

20. Show that

de N0 [ 0
- Vg (c azzﬂﬂ)’
admits separable solutions of the form

2An41) 1m
o(z,t) = (——_—_Am[to - (—1)"+1t]) ,

where t, and X are constants such that

Lo Ant1) (2(n+1)_1) (2(n+1) _2)‘__(w_1)_2n) (M+l),

m m m
for those values of m and n for which X is non-zero.
21. Continuation. Show that the similarity source solution for the equation of the
previous problem takes the form
1 z
(2.0 = 76 (7).
where k = (m + 2n +2)~!. With w = z/t* deduce that

mei d2"+1¢

¢ gy = (C) ko,

where ¢(w) is even, zero outside (—wi,w;) and such that

dw1) = ¢'(wy) = ¢"(w1) = ... = ¢ (w;) = 0,
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where w, is determined from the condition

" plw)d = co,

-

and as usual ¢, is the constant initial source strength.

22. Continuation. For the special case of m = 1, verify that the appropriate similarity
source solution is given by

1 z
o(2,t) = famray ¢ (tll(2n+3)) ’

where ¢(w) is given by

_ @ - W)

o) = =G

and w; is determined from

w = ((2" +3)!T(n + 5/2)c0)1/(2"+3)
o VAn+ 1) 4

23. For the Korteweg-de Vries equation given in Problem 16 show that,

(i) the equation remains invariant under the one-parameter group

2¢

3¢t up = e” %,

=€z, t1=¢€

and the resulting similarity solution,

u(z,t) = t~2Pg(x/t!/?),

satisfies the differential equation

¢" = ¢¢' — (o' +2¢)/3,

where w = z/t1/3,

(ii) the equation remains invariant under the one-parameter group

z1=z+et, 1 =1, u=u+e,

and the resulting solution is simply

u(zvt) = (1: - 30)/ty

where zo is a constant.
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ANSWERS AND HINTS

The following provides answers and hints to some of the problems at the end of
each chapter. Roughly speaking there are more details for those problems dealing with
basic issues and which the student must grasp before moving on. Those problems for
which less information is provided are either already sufficiently structured in the text
by a sequence of easier stages or the problem relates to issues which have already been
adequately expounded either in the text as an example or as a prior problem. In addition
solutions are not given for those problems which are purposely included as summaries of
results given elsewhere. Such problems are generally harder and the majority of students
will need to undertake further reading.

CHAPTER ONE

1. (i) B=—-a/2,take e = -2 and B=1; z; = e %z, y = ey,

d d A
s0 that u(z1, 1) = y?z1 = y*z = u(z,y) and == 21:y—y +y¥ =22y 5+ By ) +47,
dz dz z5

1
p 2
which gives du AAu B+ Bu)+u

I - which is separable.

(ii) 40 =38, take o =3 and g = 4; z; = €3z, y = ey, \ .
_ du  3y*dy 4y uf2—u
.3 4 _ 3 -4 _ an _ _
SO that ’U(zlyyl) =N =y - u(zly) d de — z4 dz - 5 "5; )’

which is separable.

(iii) « = —ng, take a = —n and B =1; z; = e~ "¢z, y; = ey,
du _1dy u
so that u(zi, 1) = z1y} = zy® = u(z,y) and == zny" lﬂ +y" = " (
and again separable.

2. ¢ =0 and —e characterize the identity and inverse respectively. Further if
3 = 2, + 6, yo = ey, then z, = ¢ + (e + 6), yo = e~ X9y so that product is
characterized by ¢ + 6. Further invariant u(z;,y1) = logy1 + 2z; = logy + 2z = u(z,y) SO

du 1ldy 2u . qo

— == h Tea ated.
that vl 2 oD which can be readily integrated

. d; 2 .

3. Invariant u(z1,1) =91 — 21 = y — = = u(z,y) so that j—z = ﬁ ~1= /3—2 —1 which can
be integrated as follows, with u = Asind
2 2 2
dr= 208 %070 480 A(cost + sec 6)ds.

(A’—u’): cosf " sech
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— 2zq)
76) by (1.10),

dy_ flan0) pla=20) , _ (pe=2)\} ol
Tdr T p(x) p(x)? Pz )‘( p(x) )

= y(z)? — y(z)y(z — 20).

e e*
5 5 f(t)2f( )t = f(t) 0 f(,\t) by substitution into (1.11).
B ) dw _ 3z(1-z) (54 3z)zw?
6. y = 2w and (1.13) give aw (”d,,- +“’) = TUra) TR T
ds 2 dw  dwds 1-s del 2
iz~ U+ Wz dsdz (1+s) 23T

’ 2 "
T =2/t cle,t) = o(0), 3= -100) e 40,

L L0 g+ & = gy

" E ’ _ ALY
SO +500=0 Sl 43

¢(§) = Ae=E/1,
8. Similar to previous problem.

9. D(c) = c gives ¢(£)¢" (&) + ¢/(€)* + £4'(6)/2=0;
¢ = £2¢ where v is an invariant of group.
EY(E2Y" + 4y’ + 29) + (9" + 269)? + (6% + 2y)/2=0.
Divide by ¢2 to give equation of Euler type, use

2 ¢y _dy Py _ dp

ey =t Sy

&= dy? dy’ dy

p = —2¢ becomes &y’ + 2 = 0 or £2¢ = constant.

d d d
10.q=p¢andqﬁ=p¢<¢5 ) t/)(tbpﬁﬂ)z)-

Now use differential equation for p.
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BeOc o (18z\ 8%
11. 6t Be a5 zABa (Bﬁ) Aza—zi.
6 / 62 m- n
12. 5 =t me () — £¢/(©)}/m, 575 = L™ (6).
Desired result follows noting that $(m-n)/» = ¢2m-1/n g0 long as m+ n = 2.
¢ = &%y gives nAE?Y(E2Y" + 46y" + 2¢) + £(E%Y' + 269) — mE?p =0,
2
or n/w( Y +3d—¢+2¢) (di+2¢) —mp =0,
d; dy
13. e(z,t) = f(2) +9(2), 5t =g (t), = f'().
e~BI0)g'(t) = A(eP! P f'(z)) = constant = X (say).

e~ B0 = BA(to —t); P/ f(z) = %(z ~ 20); B/ = %[(z —z0)* + (.

Hence ¢ = { 2216 ~ 0"+ O} gy = { Gy -

14. (i) Use fact that —¢ characterizes inverse so that in particular =
Further

601 601 Oz 661 ot _ 661 661

o, Oz ot oo, ot ‘oz’

b _debe  de ot 0o
51:1 Bz 81:1 ot 8z, Oz’

Doy 0 (b1 ﬁ+i(ﬁ o9 ﬁ) _ Pa
dz? ~ 8z \ Oz, ) 0z, 8t \ Oz, ) Bz, Oz \Oz1)  O8x?’
Now use ¢; = ec where e denotes exp(—ex/2 — €2t /4) and evaluate

% 5201 561 561 5201

o,  0z3 Ot ‘oz  ox?

_ ¢ f @_e . 8%_6@_*_62
=\a1¢) "€\ 3¢ 922 ‘oz T 2°

(ii) Follow the same steps as in part (i).

=z;— €y, t =¢,.

171
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15. Proceed precisely as detailed in Example 1.3,

CHAPTER TWO

1. On differentiating with respect to ¢ we have

O(dry fde, ;) | O(ry, dfy/de) _rdn
o(r,0) (r,6) ~ r?de’

o(r 0)
B(r1,61)

o ( dr\, 8 [ do\ _
a_n(” )*ael( )’0’

from which there exists ¢(r1,6:,¢) with the required properties. If ¢ is independent

8¢ d
of ¢ then —¢(7‘1,01)‘_ 6:‘# drel 6—d—

and now multiply by

— to deduce desired result. This equation can be
written

=0 so that ¢ is an invariant.

dry _ (Ar}+B) do;

2. (i) T ST e = 246, which on separately integrating and using r, = r
1
and 6, = 8 when ¢ = 0 gives
log(Ar?+ B) log(Ar? + B) _
— = €+ — log 8, = 2A¢ + log 4,
from which the given result follows.
oy dry dé, . . . .
(ii) == —Ary, = = 246, + 2Blogr; + B, which on integrating the first equation
gives r; = e~4¢r so that the second becomes % = 246, + 2Blogr + B(1 — 2A¢)

which we can re-write as i{(e'“‘ol) = 2Blogre~24c 4 i(Bee'“‘) which readily

integrates to yield 6;e-24¢ = B(e—(log r)/A)e~24¢+ constant, from which the given
result may be obtained.

Alternatively Use r; = e~4¢r and ¢(r,,6,) = ¢(r,0) to deduce expression for 4,.

(iii) drl = ——(1 + cos?0; —sin 6;), d01 = 0, from which we have immediately 6, = 6

2
and therefore 7 = —%e cos?0 4+ — prov1d1ng the required result.
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3. Notice z = (e<* — 1)/¢, y = e~'y;. Further

dey z _log(l+ex)  (1-exy—e™1)
e~ e(l+ex) €? - €2 ’

dy _ _ (1 —e"’l)

de =y = ¢ Y1,

and since ¢ occurs explicitly on the right-hand sides of these equations, the sys-
tem is non-autonomous and therefore does not generate a one-parameter group of
transformations. In addition —e does not characterize the inverse.

= &z, ¥) +£(8,¥z) + n(dy, %) + 14, ¥y)

= (E¢z + 1y, ) +(8,8%= + mhy)

—62(€,%) — by (0, %) — ¥=(6,€) — ¥y(4,m)

= (L(8), ¥) + (6, L(¥)) — ¢ (§aby — &y =)

~y(12y — My¥z) — Yo(Baby — bybs) — Yy(dony — dy7s)
= (L(¢), ¥) + (8, L(¥)) — (&= + ny)(d=¥y — 6y¥z)

= (L(¢), %) + (8, L(¥)) —w(8,¥),

from which the desired result follows.

n-1

5- (li) P(Xn—l) = EP(¢k"/’n—l—k)

S () Gmrs) + (B0, HGmrs))} by 4D,
k=0

= Y Ak + Dérs1,9n-1-8) + (8, (n ~ K)pn—s)} by 401,

k=0

3

E{(J¢J s ¥nj) + (65, (n = 3)n-j)} + n(do, ¥n),

i=1
from j = k+1 in the first sum and simply changing & to j in the second summation.
Hence

n

P(Xn-1) = 3_ (b, ¥n-j) = nXn,

i=0

which yields the desired result.
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3. Notice z = (e<*1 — 1)/¢, y = e~“'y,. Further

d:cl _ z  log(l+ex) (1-ex;—e )
T el tex) €2 - €2 ’

dy 11—~

Wy 2y,

and since ¢ occurs explicitly on the right-hand sides of these equations, the sys-
tem is non-autonomous and therefore does not generate a one-parameter group of
transformations. In addition —e does not characterize the inverse.

4» (ii) L(¢’¢) = E(¢v¢)r + 7)(¢, '/’)v
= §(¢r’ l/)) + E(¢’¢r) + ’7(¢y,'/’) + ’7(¢,'/’y)

= (£6= + 0y, ¥) + (6, €z + miby)

—62(€,%) — by (0, ¥) — ¥=(6,€) — ¥y(,n)

= (L(¢), ¥) + (6, L(¥)) — ¢ (§xby — Ey =)

~by(nety — Myz) — Yz(d2€y — dyéz) — Yy(dsny — ynz)
= (L(¢), %) + (8, L(¥)) — (&= + ny)(d=¥y — 6y¥s)

= (L(¢),¥) + (¢, L(¥)) —w(4,¥),

from which the desired result follows.

5. (i) P(xn-1) = i)P(m,W_l_k)

= {(L(¢k) Yn-1-k) + (¢r, L(¥n-1-+))} by 4(ii),

L
=]

3
1

{((k+1)¢k+1,wn 1-k) + (¢, (n = k)a—s)} Dy 4(D),

i

k

E{(J¢J"/’n—.1) + (85, (n— 3)¥n-j)} + n(do, ¥n),

J =1
from j = k+1 in the first sum and simply changing k to j in the second summation.
Hence

]

n

P(Xﬂ—l) = En(tﬁj"pn—j) = NXn,

ji=0

which yields the desired result.
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6. (l) Sctp_ew+ P(w)+ Pz(w)+ Pa(w)+

then using the first few terms of log(1 + p) = E (—%——p’ we have
j=1
log(z1,v1) = log(1+p)

2 3 4
S A N
=p 2+3 4+...

and this gives first few terms of desired result assuming p? < 1.
(i) Similarly use the first few terms of (1+p)7' =Y (~1)ip’

so that we have (z,,y1)"! = (14 p)"!
=l—p+p?—pP+pt=...

which also gives first few terms of given result assuming |p| < 1.
7. Details similar to Problems 4.

8. Details similar to Problem 5.
CHAPTER THREE

d
1. From % +p(z1)y = q(z1)y7, =1 = f(2), w1 = g(2)y,

we have {lejgdﬂ} +pNa@y = a(Dele)v™,

which becomcs +{ (( ))+p(f)f (z)}y_ q(fg(z)* "' f'(z)y", from which we may

deduce

plz) = -’;—((—)’ + 6N (@), a(=) = (Ha(@) £(2),

so that exactly as in Section 3.2 5+ &p = C;, while in place of (3.7), we find

¢ +s{——(n—1)p} = (1-n)Cy,

for which the integrating factor is g(z)/s(z)*~! and the given result readily follows.
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2. To find u(z,y) (see (2.8)) we solve

By _ (=) _ (Cr — (@1 )(=1))yn

= - hich
dey  &(z1) (1) which becomes

@ - Ciq(z1)s(z1)! "dzy
Y1 {(1 - n)Cy f:ol s(t)1~nq(t)dt + Cz}

- p(zl)dzl’

and on integration we have
1 T T
log " = (I—_n)log {(1 - n)Cl / s(t)l'"q(t)dt + Cz} - / p(t)dt = COIlStant,

and the given expression for u(z, y) follows immcdiatcly from this equation.

To find v(z,y) (see (2.9)) we solvc — =¢(z;) or —— = de which becomes

( )
q(z1)s(z1) "dzy _
{00 [ sy maie 1 G}

and on integration gives on using z; = =z when ¢ is zero

e es{a-ma [ s a0+

= et gmztos {1 -mc / (0"t + Ca

assuming that C; is non-zero. To deduce the differential equation in canonical coor-
dinates (u,v) we proceed as follows,

s(z)(dy/dz+p(x 3(x)yCrs(z)t™"
du  dufds _ seligylirrion) _L%é:);m_ﬁ_l

dv  dv/dz ﬂi?ﬂﬂ

where for convenience A denotes {(1 —n)Cy / s(t) " q(t)dt + Cz}.

On using the given differential equation we have

du  g(2)y* " lu—C —L)—(—)—" T
v - A=2)""g(z) !

A

and this becomes 3—: = u(s(z)y)"!A — Cyu so that

‘;_Zzu{@i)l—_n_cl} =u (;%--Cl) =u(u™ ! - C)).
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du 1 u~2 1 . .
dv= e s b E{(uﬂ—l oy~ ;} du so that on integration

log(u"~! — Cy)
(n-1)

(n—1)Civ = log(1 — Cy1u!~")+ constant and the given results follows.

Civ= — log u+ constant, from which we obtain

3. Proceed as in Problem 2 but details are a good deal simpler.

4. From :% +p(zy)yr = g(z1) + r(z1)y? we may deduce
1

o) = L8 1507 @), 00) =aHLE, 1) = D@ o).

9( 9(z)
As in Section 3.2 we deduce (3.7) and the additional equation
&'+ rg' + =0,
so that on eliminating 5 through (3.7); we have
1 r ' q
§+¢ (7*1’) =~C and ¢ +¢ (? +P) =C1

'
By addition we may obtain 2¢' + ¢ (q? + TT) =0 or ¢2¢r = constant and by subtraction

! !
we have ¢ (q? -y 2p) = 2C; and these expressions are only consistent if C; is zero
r

/
and Z__ Z 4+ 92p =0 which yields the given condition.
T

5. Similar to Problem 4.
6. Similar to Problem 4.

7. Similar to Problem 4.

dz 2

d%y d*y* dy* lda a(z)?] .
m—e{m‘“(”)dz' s 1 |V

a(t)dt). Substitution of these expressions into the

8. () j_yz{di_(_)y}

1
where ¢ denotes exp -3 /

E2

given equation yields the desired result.
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dy d’y 2
(") I dz?

d"’

where here e denotes exp (— / a(t)dt) and equals %. Desired result follows

immediately from these formulae.

9. Straightforward illustration of Problem 8.

d2

10. From Hzi%l + p(z1)y1 = ¢(z1), equation is invariant if in addition to (3.16) we have
g(z) = q(f)g® which gives ¢(z) = [g(z)+¢£q'(z)](14 3¢n) so that £g'+3ng = 0 or q?l = —%%

using (3.17),. Hence desired result follows by integration. For the second part

du dufdz £ bdy/dz— -3/2¢ /2 _pdy €
dv T dv/dz [ dz 2% 1p Y

d (du d (du dv
SOthatdz—E(E)—E(d—v)/d—z

_elendy (& &2
~f {E dz? (251/2 agr | ¥

d’y
_ ¢3/2 _ 1" '2
=g - (e - ¢y,

and the diffcrentlal equation becomes

d? '
7= €Maot ™~ plehw) - = (2&"—5%,

2
namely % + {i(z&g” —&+ pfz} u = go and the given equation follows immediately
as in Section 3.3.

21. Directly from (3.27); and (3.27), we have
q—p'/2
= g—+3—gga——4 +p(f)gg’ +9(f)g°

~ { - 89 g +6-9—+2p(f)yg+ (f)y“},using (3.26)

1

2
_ l_P
‘{ D=3 }9
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For the second part, let A denote g—p'/2 then from A(f)g(z)® = A(z) we may deduce
3nA + €A’ = 0 so that n = ¢’ gives ¢3A = constant, as required.

CHAPTER FOUR

1. p=(¢M +qN)~! is an integrating factor if

(@rrm), = (@rvem)

EM +9N)),~ \(EM +nN)/,’

that is if (€M + nN)(M, — N;) = M(EM 4+ 9N)y, — N(EM + nN),.

Now if we put F = —M/N in equation (4.6) this equation becomes
E&(MN; — NM;) +n(MN, — NM,) = n; N? — (9, — & )MN — £, M2,

which can be shown to be identical with the integrating factor condition.

2. p is an integrating factor for both differential equations if

M)y = (uN): and (uN)y = —(uM):

so that Ny, — Mp, = u(M, — N;) and Mp; + Np, = —p(M: + Ny).

Introduce R = vM? + NZ, © = tan~!(M/N) and use above equations to deduce
expressions for p, and p,, namely

Hz = /“[@y — (log R):], Hy = —p[O; + (log R)y]r

and required equation follows by equating expressions for ., .

5. Following Example 4.3 we need to solve (4.6) as a first order partial differential
equation and therefore have to solve

d d dF s '
T =€), =@y +(E) o= (@Y +@)+ () - C@)F,
so that we require to integrate

dy n_¢ dF (E-=m,_@y+{)
T aEt e T
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These equations have integrélting factors s(z) and ¢s(z) respectively where s(x) is
defined by (4.22). Thus we have

ys(z)—/ s(t)ggt;dtz constant = A (say)

Fleery=r (a+ ["s0fa) -+,

and by integration by parts we obtain

¢sF=n <A+/ s(t)cgg ) _/ s(t)CEt;q(t)dt+Cs - /zc(t)j—:+ constant.
From the defintion (4.22) of s(z) we see that the integrals cancel to give
nz) (=) @ (yS(z) -1 S(t)ﬁ—%dt)
Fer=em i ' HOFE R

as the most general F(z,y).

7. From (4.15)-(4.18) and the previous problem we have one integral s(z)y = A. In
addition we have to integrate

dw (n—1)y=™ .. .
— + W = *——+2— which on using y = A/s becomes
Yy ) gy=A/

aw  nz), _ (n—1)s@)"

so that we have

() A (o)
(n - 1) s(t)"~ 1 (I>(A)
. S S
__w (P , g :
Butw = Or=. Ore , from which we may deduce the desired result.

In canonical coordinates we have

du _ dufde s(z) (73% - %g%y)
R (o G0 (B 1) ]

(SR [ e (-2

{2 [ o (oo [ o))

= {q)zf:‘)}_l = %:‘), as required.
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8. Normal form by Problem 8(i) of Chapter 3.

9. In (4.6) take F(z,y) = ¢(z) — p(z)y + r(z)y* so that

§d —py+ry?)+(y+OCry—p) = My + )+ (n—€)a—py+rv?),

and the three given equations result on equating coefficients of y2,y and y°. For the
second part we use

s T'I _ _€II gl T'I 5 , 7,II T,I2
‘(“75) =% 2r( )+§<”_T+r_2>’

to eliminate 5 and ¢ from the third equation and show that the resulting equation for
£(z) admits the first integral which is given.

CHAPTER FIVE

1. If p(z) is non-zero then from (5.11) we have

(Py+EG'y+H )+ Gy +ny+0)
=(n-26")(Gy+ H)+ (p"y* + "y +¢").

Remarkably coefficients of y? identically balance. From the coefficient of y we find

§G'+ pH' + G = (n - 26" )G + 1,

and using the given expressions for G and H this can be rearranged to give

{2 + 1) = 3pp's" = 3(pp" — p*)EY = 0.
On integration, dividing by p? and a further integration, we obtain the desired result.

2. If p(z) is zero and 5 = €' /2 then we need to solve (5.11), as a first order partial
differential equation, thus

OF ey OF _351 e "
€%—+<7+C) = F+(2y+c)

From— €, y_(_f’_y+c) dF _3€IF+<gy+C),wehave

2 " dr T2 2

%'t

dy gl C dF 35/ €III C”
de 2 € d FrRTS 2 D3l ( )
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8. Normal form by Problem 8(i) of Chapter 3.

9. In (4.6) take F(z,y) = ¢(z) — p(z)y + r(z)y® so that

§d —ry+ry?)+(u+OCry—p) = My + )+ (n— &) a - py +rv?),

and the three given equations result on equating coefficients of y2,y and y°. For the
second part we use

, r _ _€II gl r 5 , 7,II T,I2
_<f+7f) ¢= o 21'( )+2—T<P"T+r—2)7

to eliminate n and ¢ from the third equation and show that the resulting equation for
£(z) admits the first integral which is given.

CHAPTER FIVE

1. If p(z) is non-zero then from (5.11) we have

(Py+EGy+H )+ Gy +ny+C)
=(n-26)Gy+ H)+ (p"y* +n"y+¢").

Remarkably coefficients of y? identically balance. From the coefficient of y we find

§G' + pH' + Gy = (n—26)G +1/",

and using the given expressions for ¢ and H this can be rearranged to give

{P2(€" + 1) = 3pp'e’ — 3(pp" — p?)EY = 0.
On integration, dividing by p? and a further integration, we obtain the desired result.

2. If p(z) is zero and 5 = ¢'/2 then we need to solve (5.11), as a first order partial
differential equation, thus

AF  [¢&'y oF -3¢ g "
f%—+<'2—+C) ay 9 F+<2U+C)

From— g, y_(_f’_y+c) aF _ 3€IF+(€1y+C),wehave

2 Cdr T2 2

%'t

dy gl C dF 35/ €III C”
dz 2 " ¢ d PraTS 2% 2l = ( )
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Integrating factor for the first equation is ¢~ 2 and we readily deduce

y T M)

ﬁ_ 5(t)3/2 constant = A (say),

while for the second the integrating factor is ¢3/2 and we have

d " z
E(g.’i/zl;‘) 55 <A+ g(ct()ts)/zdt) +€I/2C”!

and on using integration by parts we may deduce

=)o o) 4 - e

1y & ()
/ ¢ (t)2§(t) 1/Zdt+ constant.

Remarkably two integrals combine to become

- / {C ) it()tl)/?} = _Cz(;()f;(l;) + constant,

and altogether we obtain

(e w1 (e
T2 (gl/z) 51/2+§1/2 (gl/z) + B,

where B is a constant. The desired result follows immediately from B = &(A).

3. In this case F = —p(=)y* and in the terminology of Example 5.1 we have that p(z) is
zero, 20’ = ¢” and (5.11), becomes

'y’ + (v + O2py = (n = 2¢")py* — (n"y + ),

from which we may deduce

=0, q'==-2p¢, &P +(n+2p=0,
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arising from the coefficients of y°, y and y* respectively. Integrating the first two
equations clearly involves four arbitrary constants to determine ¢(z) and n(z). On
integrating ¢” = 25 we have a further two arbitrary constants giving at most six
altogether. Notice however ¢(z) and n(z) must be compatible in the sense that
£p’ + (n+ 2¢')p = 0 which might reduce the number of one-parameter groups. For the
second part, the given equation is invariant under

T = etzy n = e_(m+2)eyy

so that u = yz(m+2) is an invariant of the group. Accordingly set y = z~(m+2)y 50 that

d
&Y _ p-(m+) Z“ (m + 2)z= My,

ey _

d*u
—(m+2) -2 ) —(m+3) ) —(m+4)
Tz e (m+2)z o +(m+ Y(m+ 3)z u,

and the given differential equation becomes

d*u du
2 —= 2 _
T 2(m 4+ 2)zdz +(m+2)(m+3)u+auv’ =0,

which is of the Euler type so with t =logz and

du _du 2dzu _ d®u  du
de _dt' T2 T @ T @

x

we have
2
T (om 4 5% 4 (m+ Dm + Hu+ n? =0,
. du dp  d*u . . .
Finally p = r and Po- = yields the Abel equation of the second kind,

—(2m+5)p+ (m+2)(m+3)u+au® =0.

4. For the one-parameter group in Problem 5 of Chapter 4 we have

A= ys(z) - ] st B = s(2)(E(e)z — n(z)y — (()),

£(t)
where s(z) is defined by equation (4.22). Now the most general second order equation
arises from
dB _ dB/dz _ (4, B),

dA ~ dAjdz
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which can be shown to become

{e258 + 6 — 28 + (2 — &)+ (¢ - )}
{ede-m—c}

¢ dy (7 o ¢ ¢\ _ 9:1(4,B)
°d2+<?‘?) +<£2 e)”+<£2“?)“ I

which is the desired result.

= 9(A, B),

For the one-parameter group in Problem 7 of Chapter 4 we have
1 (=1 [* st
s(@)(z)z — n(@)yly™t  se)'y” Jo, €()

where formally s(z) is precisely as defined in the first part of the problem. In the
usual way the most general second order equation is obtained from

A=s(z)y, B=

dt,

dB _ dB/dz
dA ~ dA/dz

= ®(A, B),

which we simplify as follows. Introduce the canonical coordinates v(x,y) employed
in Problem 7 of Chapter 4, namely

1 < s(tyn?
Jy) = dt,
M@y) = ey / A)
then we have
1 di z !t%" -1
dv {Ey"" + ( T !gLy) fzo : €(t dt}
dA d
s( v -ty

(I—n) 1 }

sy" Yz —my)

(5
-G

Thus using B = e 'rlly)y"‘l - (n; Dy we have,
dB _ —¢léy" + (€ — )y’ —n'y] "
dA s2(Ey’ —ny)3yn~! s2(Ey' — ny)?yn-!
__ (-l (n-1g L( A _BA)
s2(&y — ny)y” A 0T @\ =

= ®(4, B),
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which becomes

Ey" + (&' =)y —n'y] (n—2)¢y
s2 &y — ny)Pyr! s2(6y' — ny)%y”

= d)I(AyB)y

and this equation simplifies to give

dz?

2 -2 d B d 3
Ed—y+(E’—77)Ell—ii—ﬂ’y+M (Edy —ny) dy _ 2(4,5) (E—y—ny) vl

Y dz dz 3 dz

Notice that if n=1 on using

1/ dy dy -1{( dy 2 n [ dy
-3 (Ed—z—ny) d—z—f—y(fd—z—ny) “Z(EE_W)’

so that the most general differential equation now becomes

dy

‘ d > 1 [®:1(A,B 1
£m+(£—2n)d—z+<%—n)y— {M+ }

s B3 AB?

which agrees with equation (5.20) of Example 5.5 (noting that B in that example is
B~! used here).

CHAPTER SIX

1. In this case we have from (6.18)

§(z,t) = &, n(z,1) = o, ((2,8) = A,

sOo we have to solve

subject to

9z _ o d_ o da e
de

de

=z 1=t c1=¢

when ¢ = 0 and the given result follows immediately. The functional form of the
solution is obtained by solving the partial differential equation,
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and from the characteristic equations

d:::_'c dt_a dc_,\c
dr = 7V dr~ T dr” 77
we may deduce
de _x de_ A
dt o dz KD

and therefore

az — kt = constant, loge = %z + constant,
from which the given functional form follows. On substituting this into the diffu-

sion equation (6.3), the following differential equation with constant coefficients is
obtained,

(ar)d” + (2ar + £2)xd’ + A2¢ = 0.

In the notation of Problem 14 of Chapter 5, this means that the coupled equations
for A(z) and B(z) given there, have the special solution

A(z) = Age™™*, B(z) = nz,

where Ao and n are constants and n = k/2 h,

. In this case we have from (6.18)

&(z,t) = Bz + 8t, n(z,t) = 26t, ((z,t) = —b6z/2,
from which we may immediately deduce ¢, = e?%¢, so that

ddﬂ = ,621 =+ 6t1 = ,621 + 662B5t,
€

and therefore

%(e‘p‘zl) = bePet,

which on integration gives

6 6
e-ple = Eepct +z— =t,

B
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which gives the desired result. Further we have

dey _ bx _ bey Be té 28¢ Be
il 2{26 +§(e ) s,

which integrates to give

1 LN ECAN N Sfz (1 1
ogey = 5 3 +,62 B [4 +2 ,3+ﬁ 5 + loge,

and this can be rearranged to yield the stated result. In order to find the functional
form we need to deduce two integrals of

de x4 6t de  —bz

dt — 28t ' dt 4Bt

First set v = z/t so that z = vt and

oL
dt ~ dt 225
which becomes
d, 1 6
—(t Ry) = ,
@i )2m%

so that on integration we obtain
1 6.1
thy="th4Ad,
I
where A denotes a constant. Thus the second equation gives

de _ 6(6+A)c
dt— 4B\B " tR)

which on integrating as a separable equation becomes

-6 /6 1
loge = — —t+2At/2)+B,
8= (ﬁ

where B denotes a second constant and the given functional form follows on taking
B as an arbitrary function of A. With w defined by

w=6t"— Bt~ 1/2,

the differential equation for ¢(w) can be shown to become

24%¢" (w) + wé'(w) = 0.
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10.

From 2 = j06(s) - 2y vew) and e = 2 (a9 4200,

we may deduce the given equation which is sensible provided X (t)X(t) = # where g8
is a constant. Further if « denotes the separation constant then we have

M _ 4a
v(t)  (a+206t)

which on integration gives
4a
log y(t) = % log(a +24t) + constant,
so that ¥(t) = yo X (¢)**/? as required where y, denotes an arbitrary constant. The given

equation for ¢(y) follows immediately and is changed to a confluent hypergeometric
equation by setting y = —22/4.

We have
) ac @ , ,
5 =@ %7 : ()ﬂ(z)—+a(z)C
(92

= ol )ﬂ’(rV 7+ (20/(2)0(2) + a@)"(2)) 5o + " (C,
and from the equation

Ie] 82 N
a—: = P(I)a—z(;- +p (z)a—:,

we may deduce the three equations,

p(z)a"(z) + p'(2)a/(z) = 0,

p(z)(2¢/ (2)F' (z) + o(2)8" (7)) + P (2)e(2) ' (z) = 0,

and p(z)@'(z)? = 1. The first two integrate immediately to yield

p(z)a'(z) = A, p(z)f'(z)a(z)’ = B,

where A and B denote arbitrary constants. Thus

o(z) = AF'(z)*, a(z)’ = BF'(z),
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so that o/(z) = Ae(z)*/B? which integrates to give

1 _4 ¢
Ja(z)? B2 3’

where C is a further arbitrary constant. Hence we have

a(z) = (C — 34z/B%)~/3.

Finally, from

A B? 342\ 3
H0)= o = = (O )

we may deduce the desired result with constants and C; and C; as follows,

Cy = ~3AB- 2, Cc;, = B¥2C.

15. Firsdy it follows that &(z0,0) = n(z0,0) = 0 so that the point z = zo at time t = 0
remains unchanged by the one-parameter group (6.1). Secondly the condition

17
C(zﬂa 0) = _a_f:(z()y O)y
arises from the initial condition,
/ é(z)e(z,0)dz = coé(z0),
which holds for every test function ¢(z). Thus from

/—°° é(z1)c1(z1,0)dzy = cod(zo),

we may deduce using (6.1)

/_: ¢(z + cf(z,O)) (1 + c((z,O)) (1 + cg—i(z, 0)) o(z,0)dz = cod(z0),
which becomes

[ (#0)+ 2,08 ) (14 (602,00 + 522,00 ), 00 = cop(oo)

—00
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16.

Thus noting that ¢(x,0) = coé(z — z,) we observe that this equation yields

(#Co0) + 20,06/ (z0) ) 1+ (20,0 + Je20,0) ) o = cus(an),

and the desired condition follows on noting that £(zo,0) = 0. The given initial values
of n(t), p(t) and «(t) now readily follow from these conditions and (6.47) and (6.48).

For case(i) p(t) is non-zero and f(I) is given by (6.56). On solving (6.52) we find that
solutions n(t), p(t) and o(t) satisfying the conditions of the previous problem involve
three arbitrary constants. Each constant corresponds to a one-parameter group leaving
the boundary value problem unchanged and we may employ any one of these groups
to determine e(z,t). We therefore select the simplest which is given by

1(t) = 0, p(t) = Zsinh(Bt), o(t) = Blo + (C2/B)(1 — cosh(Bt)),

and this choice yields the given expressions for ¢(z,t),n(z,t) and {(z,t). On solving
(6.2) we find

_suD [ pr (8210 + Ca(1 — cosh(B)]T
e(z,t) = I,(_z)llz—exP{_T coth(6t) + 0 2,l;sinh(,6t) },

where ¢(t) denotes an arbitrary function of ¢ and in deriving this result we have made

use of
__od v(l)
7= W{bg (pu)%)}’

which follows from (6.45),, (6.60) and (6.66). On writing (6.4) in the form

1 9 1, 8 p(z)l/?c 1, V(D)
= s ey o (257) | w3}

we may readily deduce a first order ordinary differential equation for ¢(t) which can
be solved to give the desired result. For the final part we need to assume I(z) — o0
as ¢ — +oo so that we have

1
lim e(z,t)dz = __'ﬁ(’v_(llo)”_ =
=0/ _oo B )

’

which completely determines ¢, and therefore ¢(z,1).
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17. For case(ii) p(t) is zero, f(I) is given by (6.57) and we have

7"(0)

n(0) =0, 7'(0) =0, ¢(0) = —¢

and from (6.54) we obtain

2
IOy

n(t) = sinh?(Bt), o(t) = (%_0)2 - gsi
Thus from (6.47), (6.48) and the partial differential equation (6.2) the given functional
form follows on making use of the expression for J noted in the previous solution.
Also using the form of the Fokker-Planck equation noted above and the functional
form we can make use of (6.67) and (6.57) to deduce the desired result. The final
part follows on using the asymptotic value for I,(Q2), namely

nh(2/t) — %i sinh?(5t).

I.()

€
~ ——— a8 Q — oo,
(27Q2) 72
. 1
and assuming I(z) — +oo as z — 400 sO that &, has the value ,Bcoloh/Zv(Io). To show
that agreement is obtained with the result of the previous problem when C; = 0 and
Cs =0 we need to use

p

Lya(z) = (%) " sinh(z), I_1/2(z) = (i) cosh(z).

2

18. (i) In this case we have p(z) = 1,¢(z) = bz and from (6.45) we obtain

I(z) = z,J(z) = bz, while (6.60) gives v = —bz = —bI. Therefore from (6.66) we
have apart from a multiplicative constant, v(I) = exp(—bI?/4) and from (6.59) we
obtain C; = 4%,C, =0 and C; = —2b. The given expression now follows from the
results given in Problem 16.

(ii) In this case we have p(z) = az,q(z) = a+ bz and from (6.45) we obtain

r=2()" 50 =1 (9 0",

so that the function ¢(z) defined by (6.50) becomes

V=TT ST Ot
and therefore in the notation of case(ii) we have C; = 52/4,C; = 0 and C, = 3.
From (6.59), (6.60) and (6.66) we deduce that apart from a multiplicative constant
v(I) is given by
o(I) = I~ P exp(=bI?/8).
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Now from the limit ¢ tending to zero in Problem 17 we have

1 1

> —2000(lo) [ b _|zol')2) d
/ o(ertyds = 22000 [ L (2l B el YL dr
—oo b(mIpta) 2 J_oo at Izl /2

and the integral on the right hand side becomes
2/00 exp C t- |z°|1/2)2 dz _ 4(at)1/2 /oo e ¥ dy
o at z'h ~(zolfany e ’

from which in the limit of ¢t zero we may deduce

o —
im [ oz t)de = —o20o) _ o
o bI, "

t—0 J_
The desired result now follows from the solution to Problem 17 noting that n = 1.
(iif) In this case we have p(z) = z2,9(z) = (b + 2)z, I(z) = log|z|,J(z) = (b +3) and

#(z) = (b+1)? so that in the notation of case(i) C; = C, = 0 and C3 = (b + 1),
From u = —(b+ 1) we have apart from a multiplicative constant

v(I) = exp{—(b+ 1)I/2},

and the desired result follows from Problem 16,

20. () &(z,t)= f(z+t)—g(z—1),
Nz, t)= f(z +t)+g(z 1),
{(z,t,c)=Ac+ F(z+1t)+ G(z — 1),

where f,g,F and G denote arbitrary functions and ) is a constant.

(ii) Observe that the transformation

e(z,t) = e C(x, 1),
reduces the telegrapher’s equation to

JyPc _ec ©
&z = Bz? " 4o

which becomes the Klein-Gordon equation on setting t* = o'ht.
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(iii) Observe that the transformations

t =z -6t t" =1, c(z,t) = C(z",t*)
reduce the diffusion equation with convection to the classical diffusion equation

ac  8*c
8tr ~ 8z*?’

(iv) ¢(z,t)=az+ 4,
n(z,t) = at 4+,
{(z,t,c) = bc+ f(z,1),

where a, 3,7 and § are all constants and f(z,t) is any solution of the Klein-Gordon
equation.

(v) &(z,t) = 9az? +4at® + 66z + v,
n(z,t) = 120zt + 46t,
{(z,t,¢) = —(3az + )c+ f(x,t),

where a,3,7 and ¢ are all constants and f(z,t) is any solution of the Tricomi
equation,

21. (i) &(z,y) = u(z,v), n(z,v) = v(z,y), {(z,v) = w(z,y),

where u,v and w all satisfy the Laplace equation and » and v are harmonic
conjugates, namely

Ou Ov Ou dv

E;—a_ya 53—;_—6—2.

(ii) ¢(z,y) =ay+ 3,
n(z,y) = —az +7,
((z,y,¢) = bec+ f(z,v),

where «, 3, and é are all constants and f(z,y) is any solution of the Helmholtz
equation.



Answers and Hints 193

CHAPTER SEVEN

1. We need to solve the characteristic equations
dz dt de
E—I'l'lc, E-Z(t+6), 5—0,
so that
dz _ T+« de _
dt  2t+6) dt
and therefore
4+ K

——— = constant, ¢ = constant,
(t+68)~

and the given functional form follows on taking one constant to be an arbitrary
function of the other. From

Oc _ wd'(w) 8c_  ¢'(w)
ot 2t+6) az_(t+5)I/2’

and (7.3) the given ordinary differential equation can be readily obtained.

2. The functional form and resulting ordinary differential equation can be obtained in
a similar manner as outlined for the previous problem. Further it is not difficult
to check that the ordinary differential equation is indeed invariant under the given
group, which has canonical coordinate u = ¢w=2/™ so we let ¢ = w?/™u to obtain

¢/ — wz/mu/ + %wz/m—lu’ "o wz/muu + %wz/m—lu/ + % (% _ 1) wzlm_zu.

Thus we have
wiu™ w2/mull+iw2/m—lul+z 2_1 wz/m—2u
m m m
+ mum=1)/m m=1 w4/mu/2+iw4/m—1uu/+iw4/m-zuz}
m m2

+ 1+ /\)w {w2/mul + zwzlm—lu} _ Lwﬂmu =0,
2a m am
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and on cancelling w*™ we may deduce

u {wzu”+4 u'+z(z—1)u}
m m\m

+ mu™! {(.uzu’2 + 4 —wuu’ + izuz}
m

A
+M{wu'+3u}_"_“=o,
2a m

This is an equation of the Euler type so we set v = logw and use

2
, du 4, d“u

wu = w 'y +wu = dvz’

dv’
2
m d_u_ u + 44™ Z z+1 um+
dv? m\m

—1 (du (14+X)du u
m-—1 —
+mu (dv) e w T m_O'

to yield

Hence with p = du/dv we can finally deduce the first order ordinary differential
equation

d 4 1+ 2
u"'p—p+mu"'_1p2+{<—+3)u (—+—)}p+—<—+1)um+l+L=0,
du m m

2a am

from which it is again evident that the exponents m = —2 and m = —4/3 play preferred
roles.

3. We have to deduce two integrals for

dz _ pri+(A+Dz+c _ [2pz+ (A + D
dat = 2(t + 6) T Bu(t+é)

de _ —3(c+B)(2ux+2)  —6u(c+ B)(2uz + ))
de ~ 2pz?+(A+Dz+«]  [Ruz+(A+ D2

assuming (A + 1)> = 4ux. On integrating these as separable differential equations we
obtain

1

——— e l t+46 constant,
TGt O gD 4ost O+

log(c+ 3)=-3 + log[2uz + (A + 1)]} + constant,

1
{[2/12 +(A+1)]
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from which the given functional form may be readily deduced. In the following we
use the abbreviations,

1
e:exp{m}, b_2uz+(/\+1)
We have,
de_ wh'(w)(2p)® _ 4u
T TR (i e )
afe+8) L = —3a3(c+ B
oz

_ 3a 0 1/3
= 2.0z =—{¢7"/7be}

3 4 - - 2
= 22{ TV T e~ g 1/3beb—’;}
_ ¢ a2 _ayn W
—3a6{ 5 - ¢ +§¢ ¢7; )

and from this we may deduce

8e 6ape (4 , _ - 4 _
{a(6+ﬂ) i3 z} = {gw(nﬁ Vogw) - ¢ - Zwe 4/3¢'},
so that we have
¢ 4/3 2¢n ¢ 7/3 2¢12 ¢—1/3+ Ewazﬁl =0
3 3o ’
and the desired equation now follows. Let ¢ = w=3/2u then we have
¢ = w3 - E;-4.‘)""’/211, ¢ = w3 — 382y ?w‘”zu,

and therefore

2
— 3wu' + Eu - i wu? — Jwuu’ + ?-uz) — Eu + Ly Eu w3 =0,
4 3u 4 o 2

In the usual way with v = logw and p = du/dv we obtain

2
dp_ip + (P—%u)u“/:’zo.
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11. Invariance under the given group and the functional form can be deduced in a routine
manner. From the functional form and Burger’s equation we obtain
D¢" = ¢4’ — (we)'/2,

which can be readily integrated to give

2
D¢’ = % - %’E + constant,

but the integration constant is zero because ¢ and ¢’ vanish at infinity. Thus we may

deduce
&) -5 G) -2
6) 2D\¢/) 2D’
and therefore

e 4D (CH+ Y, e=2"/4D g3)
¢ 2D :

where C is the constant of integration. Thus the given expression for ¢(w) now
follows. Now we require

/_0:0 u(z, t)de = /_°:° $(w)dw = up,

so from the given expression for ¢(w) we obtain

w (o]
[log(C + / e')‘alwd,\)] =L
—00

oo 2D’
and using
hed 2 1 hed 2 1
/ e 21404y = 2D /2/ e *'dz = 2(xD) ",
—00 -0
we obtain
2(xD) '
1+ (7|' ) =e—uo/2D
C b
or
oo ArD)% _ —2(xD)'hetel D

e—%a/2D _ | - (euo/4D _ e—uo/4D)’

from which the desired result can be readily deduced.
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13. From c(z,t) = ¢(z/t) we have

ac___, z a_c._¢'(w)
& ¢(w)t_5’ dz ~ t

‘(zf _ ¢n(w)w2+2¢/(w)w a_zc. _ ¢//(w)
otz — t2 "oz T 2

and the given ordinary differential equation readily follows.

14. If f(c) = f, then we have

so that
log ¢'(w) = — log(fE — w?) +log C1,

and the required result can be deduced. From

1 1
¢l )—2fo {(fo+w)+(fo—w)}’

we obtain on integration

15. If f(c) = ¢ we have
(* = ¢")¢" + 2wg' = 0,

which is readily seen to be invariant under the given group. Thus from ¢ = wy and

¢ =wp 49, 6" =wp +2¢,

we obtain

(1- l/iz)(wzl/i" + 2wl/1') + 2wy’ + ¥)=0,

so that

1 w)(—+%'£)+2(d¢ ¢)_0

and the given equations follow on using p = dy/dr.
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16. (i) &(z,t,u) = azt+ Bz + 9t + 6,
n(z,t,u) = at? + 26t + &,
{(z,t,u) = —(at + Bu+ (az +7),
where a,8,v,6 and « denote arbitrary constants.

(i) &(z,t,u)=az+ft+7,
n(z,t,u) = 3at + 6,
{(z,t,u) = —2au + 0,

where «, 3,7 and 6 denote arbitrary constants.

23, (ii) From the relations ¢ = z; — et;, t = ¢; and

Gur _ 0u1£ Ouy Ot Ouy Ouy 8r Ouy Ot

Pz 0z 0m T Ot 8z, O oz ot T ot oty

we may deduce

Su; Ou Oui OHu  Ou 8wy B

8z, ~ Oz’ E_E_CE’ 6:31 =8

so that

33111 6u1 a’ul

dz3 - Wl. ula_:n.

83u du 6u) (u+ du
o5 ) "t 95

=305
By o
2w ‘e

and therefore the equation remains invariant under the given group. The func-
tional form is obtained by solving

Ou

ta:

1

which gives u(z,t) = =/t + y(t) where v denotes an arbitrary function of t. On
substitution into the given equation, we obtain

V(1) +¥(t)/t =0,

and therefore ty(t) = constant and the given solution follows immediately.
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16. (i) ¢(z,t,u)=azt+ Pz +vt+4,
n(z,t,u) = at? + 26t + &,
{(z,t,u) = —(at + Bu+ (az +7),
where a,83,7,6 and « denote arbitrary constants.

(i) &(z,t,u)=az + ft+7,
n(z,t,u) = 3at + 6,
{(z,t,u) = —2au + 0,

where a, 3,7 and é denote arbitrary constants.

23. (ii) From the relations z = z; —et;, t =t; and

duy _ 0wy ﬂ_ Ouy Ot Ouy Ouy 8z Ou, Ot

5z, 0z 0z, T ot 6z, O, oz 61, T ot oty

we may deduce

Su; Ou Bu; OHu  Ou 8uy %

oz, Oz O, Ot ‘oz’ 923 _ 923’
so that
Pu _dw_, ou
z3 ot 1521

Pu a—u—ca—u)—(u+ca—u
a Oz )02

=305
B oo
%2 & ‘bz

and therefore the equation remains invariant under the given group. The func-
tional form is obtained by solving

Ou

ta:

1

which gives u(z,t) = z/t + ¥(t) where ¢ denotes an arbitrary function of ¢t. On
substitution into the given equation, we obtain

V() + )/t =0,

and therefore ty(t) = constant and the given solution follows immediately.
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SUMMARY OF RESEARCH AREAS

Although the research areas listed below, have been discussed to a varying extent
throughout the book, this summary is intended to focus possible research avenues, where
additional work would be useful, for the student interested in pursuing the subject further.

Ordinary differential equations

(i) Abel equations of the second kind (pages 7-12 and discussion below).
(ii) Lie’s fundamental problem (pages 51, 52, 63-66).
(iii) Differential-difference equations (pages 4, 74-77).

Partial differential equations

(iv) Non-linear diffusion with D(c) = ¢=%/3 (pages 122, 138, 155).

(v) Classical groups for important equations (discussion below).

(vi) Application of group approach to moving boundary problems (pages 104-107).
(vii) Non-classical groups for the diffusion equation and others (pages 116-118).

(i) In the analysis of both ordinary and partial differential equations we have seen that

the group approach tends to lock into Abel equations of the second kind, for which
the standard form is

: +a(z) + b(z)y = 0,

and for which further solution techniques, for particular classes of functions a(z)
and b(z), would be highly desirable. We must bear in mind that the transformations
recommended by group invariance, although reducing the order of the equation, may
well induce other complexities. The examples at the end of Chapter 5 provide good
illustrations of this. Take the equation of Example 5.10 with o zero, namely

Y = Pev.

If we effect one integration by means of the substitution z = y and a second from
the substitution w = exp(—y/2) then we can show that the general solution is

y(z) = —2log (\/C_ sinh (‘/C—z + Cz))



200

(ii)

(iii)

(iv)

v)
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where C; and C, denote arbitrary constants and we are assuming C; is positive.
However if for a = 0 we follow the strategy of Example 5.10 then from (5.45) we
obtain the following Abel equation of the second kind

d_P .2 0,2 3
upo - =p +up 2u° + fu”,
which at face value is not of a standard soluble type and yet from the above general

solution we must be able to solve this equation. Thus Abel equations may not be as
fearsome as we presently think.

We know that the first order ordinary differential equation y’ = F(z,y) can be invariant
under an infinite number of one-parameter groups. If we differentiate this equation
with respect to z, we obtain either of the second order equations,

_OF | _OF

8F
II____ il padnlll
- _02+F0y’

oz

oF ,

+ayy’

yl
which are invariant under at most eight one-parameter groups and which moreover
can be determined systematically. The question arises as to whether groups for one
or both of these second order equations can be utilized to integrate the original first
order equation y' = F(z,y).

In a recent research article (volume 38 of the IMA Journal of Applied Mathematics
(1987), pages 129-134) Shigeru Maeda applies the similarity method to ordinary
difference equations. As noted in Chapter 1, it would be desirable to extend the
group method to differential-difference equations.

In Chapter 7 we showed that the non-linear diffusion equation (7.3) with diffusivity
D(c) = (c+ B)~*? admits a wider class of group invariance. Moreover Problem 10
of Chapter 6 shows that the index 4/3 is also critical for the diffusion equation with
an inhomogeneous diffusivity. Combining these results we might expect that the
equation

b _ 9 (az +ﬁ)‘*"°’ L
ot oz yc+6 8z [’
plays a priviledged role in non-linear diffusion theory. While a good deal of research

has been undertaken on the corresponding equation but with index 2 (namely equation
(7.53)), very little work has been done on the above equation.

For partial differential equations in general there is still a good deal to be done and
it is not difficult to find interesting examples which are worthy of analysis. In many
cases the classical groups leaving the equation invariant are known, but the resulting
functional forms and ordinary differential equations have yet to be studied in detail
(see for example Problems 20 and 21 of Chapter 6 and Problem 16 of Chapter 7).
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(vi)

(vii)

Throughout this book we have only discussed equations with a single dependent
variable but there are many equations in Applied Mathematics with more dependent
variables. For example, coupled reaction-diffusion equations such as,

2 2
9 _ 94 b tkee,, 22-p, 2
Oz?

522 B + k1c1 — koca,

where D1, D,, k1 and k. all denote positive constants. It would certainly seem
worthwhile examining implications of classical invariance for such systems.

While we have briefly mentioned the relevance of the group approach to moving
boundary problems, we have by no means exhausted the subject and the area emerges
as one of the most potentially rich and promising areas for study by group methods
and moreover it may well be the only approach likely to lead to analytical solutions to
such problems. In particular, moving boundary problems are frequently characterized
by conditions at the moving boundary « = X(t), such as

e(X(t),t) =0, g—:(X(t),t) =-X(t),

where ¢(z,t) denotes the concentration or temperature and we would like to find
general classes of groups leaving such equations invariant. For futher details and
references we refer the reader to Hill (1987).

Very little work has been done on non-classical invariance of partial differential
equations. For example non-classical groups for the diffusion equation are governed
by the system (6.80), namely

8A 84 8B 08B OB 8B oA

—_—= — = —_— — = —-2B— —2—

ot Oz? A dz' 8t 9z B 8z oz’
which would certainly seem to warrant closer attention. Moreover there are many
other important equations such as the non-linear Burger’s equation and the Korteweg-

de Vries equation

ou Bu_Ou . ou_ B

Yz T B e o
for which particular non-classical groups and their resulting solutions might corre-
spond to important and new physical phenomena.



