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PREFACE

These volumes deal with a subject, introduced half a century ago, that
has become increasingly important and popular in recent years. While
they cover the fundamental aspects of this subject, they make no attempt
to be encyclopaedic. Their primary goal is to teach the subject and lead
the reader to the point where the vast recent research literature, both in
the subject proper and in its many applications, becomes accessible.

Although we have put major emphasis on making the material pre-
sented clear and understandable, the subject is not easy; no account,
however lucid, can make it so. If it is possible to browse in this subject
and acquire a significant amount of information, we hope that these vol-
umes present that opportunity—but they have been written primarily for
the reader, either starting at the beginning or with enough preparation to
enter at some intermediate stage, who works through the text systemati-
cally. The study of this material is best approached with equal measures
of patience and persistence.

Our starting point in Chapter 1 is finite-dimensional linear algebra.
We assume that the reader is familiar with theresults of that subject and
begin by proving the infinite-dimensional algebraic results that we need
from time to time. These volumes deal almost exclusively with infinite-
dimensional phenomena. Much of the intuition that the reader may have
developed from contact with finite-dimensional algebra and geometry
must be abandoned in this study. It will mislead as often as it guides. In its
place, a new intuition about infinite-dimensional constructs must be culti-
vated. Results that are apparent in finite dimensions may be false, or may
be difficult and important principles whose application yields great re-
wards, in the infinite-dimensional case.

Almost as much as the subject matter of these volumes is infinite di-
mensional, it is non-commutative real analysis. Despite this description,
the reader will find a very large number of references to the ‘‘abelian”’ or
“‘commutative’’ case—an important part of this first volume is an analysis
of the abelian case. This case, parallel to function theory and measure
theory, provides us with a major tool and an important guide to our

vii
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intuition. A good part of what we know comes from extending to the non-
commutative case results that are known in the commutative case. The
‘‘extension’’ process is usually difficult. The main techniques include
elaborate interlacing of ‘‘abelian’’ segments. The reference to ‘‘real anal-
ysis’’ involves the fact that while we consider complex-valued functions
and, non-commutatively, non-self-adjoint operators, the structures we
study make simultaneously available to us the complex conjugates of
those functions and, non-commutatively, the adjoints of those operators.
In essence, we are studying the algebraic interrelations of systems of real
functions and, non-commutatively, systems of self-adjoint operators. At
its most primitive level, the non-commutativity makes itself visible in the
fact that the product of a function and its conjugate is the same in either
order while this is not in general true of the product of an operator and its
adjoint.

In the sense that we consider an operator and its adjoint on the same
footing, the subject matter we treat is referred to as the ‘‘self-adjoint
theory.’’ There is an emerging and important development of non-self-
adjoint operator algebras that serves as a non-commutative analogue of
complex function theory—algebras of holomorphic functions. This area is
not treated in these volumes. Many important developments in the self-
adjoint theory—both past and current—are not treated. The type I C*-
algebras and C*-algebra K-theory are examples of important subjects not
dealt with. The aim of teaching the basics and preparing the reader for
individual work in research areas seems best served by a close adherence
to the ‘‘classical’’ fundamentals of the subject. For this same reason, we
have not included material on the important application of the subject to
the mathematical foundation of theoretical quantum physics. With one
exception, applications to the theory of representations of topological
groups are omitted. Accounts of these vast research areas, within the
scope of this treatise, would be necessarily superficial. We have preferred
instead to devote space to clear and leisurely expositions of the funda-
mentals. For several important topics, two approaches are included.

Our emphasis on instruction rather than comprehensive coverage has
led us to settle on a very brief bibliography. We cite just three textbooks
(listed as [H], [K], and [R]) for background information on general topol-
ogy and measure theory, and for this first volume, include only 25 items
from the literature of our subject. Several extensive and excellent bibliog-
raphies are available (see, for example, [2,24,25]), and there would be
little purpose in reproducing a modified version of one of the existing lists.
We have included in our references items specifically referred to in the
text and others that might provide profitable additional reading. As a
consequence, we have made no attempt, either in the text or in the exer-
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cises, to credit sources on which we have drawn or to trace the historical
background of the ideas and results that have gone into the development
of the subject.

Each of the chapters of this first volume has a final section devoted to a
substantial list of exercises, arranged roughly in the order of the appear-
ance of topics in the chapter. They were designed to serve two purposes:
to illustrate and extend the results and examples of the earlier sections of
the chapter, and to help the reader to develop working technique and
facility with the subject matter of the chapter. For the reader interested in
acquiring an ability to work with the subject, a certain amount of exercise
solving is indispensable. We do not recommend a rigid adherence to
order—each exercise being solved in sequence and no new material at-
tempted until all the exercises of the preceding chapter are solved. Some-
where between that approach and total disregard of the exercises a line
must be drawn congenial to the individual reader’s needs and circum-
stances. In general, we do recommend that the greater proportion of the
reader’s time be spent on a thorough understanding of the main text than
on the exercises. In any event, all the exercises have been designed to be
solved. Most exercises are separated into several parts with each of the
parts manageable and some of them provided with hints. Some are rou-
tine, requiring nothing more than a clear understanding of a definition or
result for their solutions. Other exercises (and groups of exercises) consti-
tute small (guided) research projects.

On a first reading, as an introduction to the subject, certain sections
may well be left unread and consulted on a few occasions as needed.
Section 2.6, Tensor products and the Hilbert=Schmidt class (this ‘‘sub-
section’’ is the largest part of Section 2.6) will not be needed seriously
until Chapter 11 (in Volume II). All the material on unbounded operators
(and the material related to Stone’s theorem) will not be needed until
Chapter 9 (in Volume II). Thus Section 2.7, Section 3.2, The Banach
algebra L(R) and Fourier analysis, the last few pages of Chapter 4 (in-
cluding Theorem 4.5.9), and Section 5.6, can be deferred to a later reading.
Some readers, more or less familiar with the elements of functional analy-
sis, may want to enter the text after Chapter 1 with occasional back
references for notation or precise definitions and statements of results.
The reader with a good general knowledge of basic functional analysis
may consider beginning at Section 3.4 or perhaps with Chapter 4.

The various possible styles of reading this volume, related to the levels
of preparation of the reader, suggest several styles and levels of courses
for which it can be used. For all of these, a good working knowledge of
point-set (general) topology, such as may be found in [K], is assumed.
Somewhat less vital, but useful, is a knowledge of general measure the-
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ory, such as may be found in [H] and parts of [R]. Of course, full com-
mand of the fundamentals of real and complex analysis (we refer to [R] for
these) is needed; and, as noted earlier, the elements of finite-dimensional
linear algebra are used. The first three chapters form the basis of a course
in elementary functional analysis with a slant toward operator algebras
and its allied fields of group representations, harmonic analysis, and
mathematical (quantum) physics. These chapters provide material for a
brisk one-semester course at the first- or second-year graduate level or for
a more leisurely one-year course at the advanced undergraduate or begin-
ning graduate level. Chapters 3, 4, and 5 provide an introduction to the
theory of operator algebras and have material that would serve as a one-
semester graduate course at the second- or third-year level (especially if
Section 5.6 is omitted). In any event, the book has been designed for
individual study as well as for courses, so that the problem of a wide
spread of preparation in a class can be dealt with by encouraging the
better prepared students to proceed at their own paces. Seminar and
reading-course possibilities are also available.

When several (good) terms for a mathematical construct are in common
use, we have made no effort to choose one and then to use that one term
consistently. On the contrary, we have used such terms interchangeably
after introducing them simultaneously. This seems the best preparation
for further reading in the research literature. Some examples of such
terms are weaker, coarser (for topologies on a space), unitary transforma-
tion, and Hilbert space isomorphism (for structure-preserving mappings
between Hilbert spaces). In cases where there is conflicting use of a term
in the research literature (for example, ‘‘purely infinite’’ in connection
with von Neumann algebras), we have avoided all use of the term and
employed accepted terminology for each of the constructs involved.
Since the symbol * is used to denote the adjoint operations on operators
and on sets of operators, we have preferred to use a different symbol in
the context of Banach dual spaces. We denote the dual space of a Banach
space X by X*. However, we felt compelled by usage to retain the termi-
nology ‘‘weak *’’ for the topology induced by elements of X (as linear
functionals on X*).

Results in the body of the text are italicized, titled Theorem, Proposi-
tion, Lemma, and Corollary (in decreasing order of ‘‘importance”—
though, as usual, the ‘‘heart of the matter’’ may be dealt with in a lemma
and its most usable aspect may appear in a corollary). In addition, there
are Remarks and Examples that extend and illuminate the material of a
section, and of course there are the (formal) Definitions. None of these
items is italicized, though a crucial phrase or word frequently is. Each of
these segments of the text is preceded by a number, the first digit of which
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indicates the chapter, the second the section, and the last one- or two-
digit number the position of the item in the section. Thus, ‘‘Proposition
5.5.18" refers to the eighteenth numbered item in the fifth section of the
fifth chapter. A back or forward reference to such an item will include the
title (‘' Theorem,”” “Remark,” etc.), though the number alone would serve
to locate it. Occasionally a displayed equation, formula, inequality, etc.,
is assigned a number in parentheses at the left of the display—for exam-
ple, the “‘convolution formula” of Fourier transform theory appears as
the display numbered (4) in the proof of Theorem 3.2.26. In its own
section, it is referred to as (4) and elsewhere as 3.2(4).

The lack of illustrative examples in much of Chapter 1 results from our
wish to bring the reader more rapidly to the subject of operator algebras
rather than to dwell on the basics of general functional analysis. As com-
pensation for their lack, the exercises supply much of the illustrative
material for this chapter. Although the tensor product development in
Section 2.6 may appear somewhat formal and forbidding at first, it turns
out that the trouble and care taken at that point simplify subsequent
application. The same can be said (perhaps more strongly) about Section
5.6. The material on unbounded operators (their spectral theory and func-
tion calculus) is so vital when needed and so susceptible to incorrect and
incomplete application that it seemed well worth a careful and thorough
treatment. We have chosen a powerful approach that permits such a
treatment, much in the spirit of the theory of operator algebras.

Another (general) aspect of the organization of material in a text is the
way the material of the text proper relates to the exercises. As a matter of
specific policy, we have not relegated to the exercises whole arguments or
parts of arguments. Reference is occasionally made to an exercise as an
illustration of some point—for example, the fact that the statement result-
ing from the omission of some hypothesis from a theorem is false.

During the course of the preparation of these volumes, we have en-
joyed, jointly and separately, the hospitality and facilities of several uni-
versities, aside from our home institutions. Notable among these are the
Mathematics Institutes of the Universities of Aarhus and Copenhagen and
the Theoretical Physics Institute of Marseille-Luminy. The subject mat-
ter of these volumes and its style of development is inextricably interwo-
ven with the individual research of the authors. As a consequence, the
support of that research by the National Science Foundation (U.S.A.) and
the Science Research Council (U.K.) has had an oblique but vital influ-
ence on the formation of these volumes. It is the authors’ pleasure to
express their gratitude for this support and for the hospitality of the host
institutions noted.
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CHAPTER 1

LINEAR SPACES

This chapter contains an account of those basic aspects of linear functional
analysis that are needed, later in the book, in the study of operator algebras.
The main topics —continuous linear operators, continuous linear functionals,
weak topologies, convexity —are studied first in the context of linear topologi-
cal spaces, then in the more restricted setting of normed spaces and Banach
spaces. In preparation for this, some related material is treated in the purely
algebraic situation (that is, without topological considerations).

1.1. Algebraic results

In this section we shall consider linear spaces (that is, vector spaces) over a
field K, and it will be assumed throughout that [ is either the real field R or the
complex field C. We sometimes distinguish between these two cases by
referring to real vector spaces or complex vector spaces. Our main concern is
with linear functionals, convex sets, and the separation of convex sets by
hyperplanes.

Suppose that 7" is a linear space with scalar field K. If X and Y are non-
empty subsets of ¥; and ae K, we define further subsets aX, X + Y by

aX = {ax:xe X}, X+Y={x+y:xeX, yet},
and
X-Y=X+(-1Y.

When X consists of a single element x, we write x * Yin place of X + Y. To
avoid ambiguity in the use of the symbol—, the set theoretic difference
{xe A: x¢ B} of two sets A and B will be denoted by A\B. A vector of the form
ayx; + -+ + a,x,, where x;,...,x,eXand a,,...,q,eK, is called a (finite)
linear combination of elements of X. The zero vector is always of this form (ina
trivial way), with {x,,...,x,} an arbitrary finite subset of X, and a; = 0 for
each . If it can be expressed as a non-trivial linear combination of elements of X
(that is, with x,,. .., x, distinct, and at least one @; non-zero), then X is said to
be linearly dependent; otherwise X is linearly independent. The set of all

1



2 1. LINEAR SPACES

finite linear combinations of elements of X is a linear subspace of ¥; the
smallest containing X; we refer to it as the linear subspace generated by X.

If ¥; is a linear subspace of ¥, we denote by ¥°/¥; the set of all cosets
x + ¥4 (xe¥") in the additive group ¥7 Of course, ¥°/¥; is a group, with
addition defined by (x + ¥5) + (¥ + %) =(x +y) + ¥5. If aelk, and
Xy + ¥ =x, + ¥, we have ax, —ax; =a(x, — x,)e¥;, so ax, + ¥
= ax, + ;. From this it follows easily that ¥”/¥{ becomes a linear space over
K, the quotient of ¥~ by ¥;, when multiplication by scalars is defined
(unambiguously) by a(x + ¥5) = ax + ¥5. If ¥7/¥4 has finite dimension n, we
say that ¥; has finite codimension n in ¥.

Suppose that ¥~ and # are linear spaces over K. By a linear operator (or
linear transformation) from ¥~ into ¥, we mean a mapping 7: ¥~ — #  such
that

T(ax + by) = aTx + bTy

whenever x, ye ¥ and a, be K (the notation T:¥" — #  indicates that T is
defined on ¥~ and takes values in #7; it can be read “T, from ¥ into w" ). If
¥, is a linear subspace of ¥, the equation Qx = x + ¥{ defines a linear
operator Q from ¥ onto ¥°/¥,, the quotient mapping. When T: v~ — # is a
linear operator, the null space of T is the linear subspace {xe ¥": Tx = 0} of ¥,
and the image (or range) T(¥") = {Tx:xe ¥} is a linear subspace of #. If
T(¥5) = {0}, the condition x + ¥5 =y + ¥, entails x — ye ¥;, and hence
Tx — Ty = 0; moreover, if ¥ is the null space of T, Tx = 0 entails x e ¥5.
From this, the equation To(x + ¥5) = Tx defines (unambiguously) a linear
operator T, from ¢¥"/¥; onto T(¥") (€ #'), when T(¥;) = {0}; and T, is one-
to-one if ¥4 is the null space of T. Note that T = T,Q, a fact sometimes
described by saying that T factors through ¥ /¥4 when T(¥5) = {0}. Given any
linear operators S, T: ¥~ — % and scalars a, b, the equation (aS + bT)x =
aSx + bTx (xev") defines another such operator aS + bT, and in this
way, the set of all linear operators from ¥~ into # becomes a linear space
over K.

By a linear functional on ¥~ we mean a linear operator p: ¥~ — K (of course,
IK is a one-dimensional linear space over K). The set of all linear functionals on
¥ is itself a linear space over K, the algebraic dual space of ¥ When p is a non-
zero linear functional on ¥~ (that is, p does not vanish identically on ¥") the
image p(¥") is K.

1.1.1. ProposITION. Ifp isa linear functional on a linear space ¥, then every
linear functional on v that vanishes on the null space ¥;, of p is a scalar multiple
of p. If p # 0, ¥ has codimensiofi’l in ¥. Conversely each linear subspace of
codimension | in ¥ is the null space of anon-zero linear functional. If py, ..., p,
are linear functionals on ¥, then every linear functional on ¥ that vanishes on the
intersection of the null spaces of p,, . . ., p, is a linear combination of p1, . .., pn.
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Proof. We may suppose that p # 0. The equation po(x + ¥5) = p(x)
defines a one-to-one linear operator p, from ¥"/¥; onto the one-dimensional
linear space [K; so ¥"/¥; is one dimensional. Of course, p, is a non-zero linear
functional on ¥"/¥4; and in the same way, if a linear functional ¢ on ¥~
vanishes on ¥, there is a linear functional ¢, on ¥7/¥;, defined by
oo(x + ¥5) = a(x). Since ¥"/¥4 is one dimensional, 6, = ap, for some scalar q,
and ¢ = 6oQ = apoQ = ap, where Q is the quotient mapping from ¥~ onto
V.

If ¥} is a linear subspace with codimension 1 in ¥#; there is a non-zero linear
functional 7, on the one-dimensional linear space ¥°/¥7,and t,: ¥"/¥; - Kis
a one-to-one mapping. Accordingly, the equation t(x) = 7,(x + ¥7) defines a
non-zero linear functional t on ¥~ whose null space is ;.

The final assertion of the proposition is proved by induction on n. We make
the inductive assumption that it is valid when # = k (the initial case, in which
n = 1, reduces to the statement in the first sentence of the proposition, and has
already been proved). Now suppose that o, py,...,p, pi+1 are linear
functionals on ¥; and ¢ vanishes on the intersection of the null spaces of
Pi1s--sPrs Pu+1- Let ¥4,y denote the null space of p,,,, and consider the
restrictions ¢ %+ 1, P11 %+ 155 Pkl ¥a+ 15 Pr+11%+1 (=0). Since o| %51y
vanishes on the intersection of the null spaces of the k linear functionals
P11 et pulYi+1, it is a linear combination (ayp; + *** + @) Ye+1
of those linear functionals by our inductive assumption. Thus
6 —ap; — ' — ap; vanishes on the null space ¥;,, of p,,,, and is
therefore a multiple a, , 1p,+; by the first assertion of the proposition; and
c=a1py+ 0 +Gpi+ Gio1pier- B

Suppose that ¥ is a linear space over K (=R or C),and X, Y < ¥’ Bya
(finite) convex combination of elements of X, we mean a vector of the form
ajx; + **+ + a,x,,where x;,...,x,e Xand ay,...,a, are real scalars satisfy-
inga;>0(j=1,...,n)and ¥ a; = 1. It makes no difference in this definition if
the condition a; > 0 is relaxed to a; > 0 (because zero terms can be deleted),
but strict inequality is slightly more convenient for our present purposes. We
say that Y is convex if b,y, + b,y, € Y whenever y,, y,eY and b,, b, are
positive real numbers with sum 1 (that is, Y contains each convex combination
of just two elements of Y; geometrically, this means that each line segment with
endpoints in Y lies wholly in Y). A simple proof, by induction on #, shows that
a convex set Y contains every convex combination a;x; + * - + a,x, of
elements x, ..., x, of Y; the “inductive step up,” from n — 1 to », depends on
the observation that

ayxy + 0 4 apXy = b1 yy + byy2,
whereb, = a;,b, =a, + -+ + a,,y; = x,,and y, is the convex combination
by Yayxy + - + apx,) of x5,..., x,.

It is sometimes useful to note that a subset Y of ¥ is convex if and only if

a,Y + a,Y = (a, + a,)Y whenever a, and a, are non-negative scalars; for this
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isequivalentto(a; + a;) " '(a; Y + a,Y) = Y, whena, and a, are non-negative
scalars, not both 0.

When X < ¥, we denote by co X the set of all finite convex combinations of
elements of X. A straightforward calculation shows that if y,,...,y,eco X,
then every convex combination of y,, ..., y, lies in co X. Thus co X is a convex
set, the smallest one containing X; it is called the convex hull of X. By an internal
point of X we mean a vector x in X with the following property: given any y in
¥, there is a positive real number ¢ such that x + aye X whenever 0 < a < c.

Our next result is concerned with rea/ vector spaces. By a hyperplane, in a
linear space ¥~ over R, we mean a set of the form x, + ¥, where xoe ¥ and ¥
is a linear subspace with codimension 1 in ¥ From Proposition 1.1.1, a subset
H of ¥ is a hyperplane if and only if it can be expressed in the form

H={xev¥ :p(x) =k},

where p is a non-zero linear functional on ¥~ and ke R; of course, p and k are
not uniquely determined by H, but the only possible variation is to replace
them by ap and ak, respectively, where a is a non-zero real number. With the
hyperplane H we can associate the two closed half-spaces, {xe ¥ :p(x) = k}
and {xe ¥ :p(x) <k}, and the two open half-spaces, which are defined
similarly but with strict inequalities. We say that H separates two subsets Y and
Z of v if Y is contained in one of the closed half-spaces determined by H and Z
is contained in the other; strict separation is defined similarly in terms of the
open half-spaces. If the hyperplane is described in terms of ap and ak, the
property of separation remains unchanged (although the two half-spaces are
interchanged if a < 0).

1.1.2. THEOREM. If Y and Z are non-empty disjoint convex subsets of a real
vector space v, at least one of which has an internal point, they are separated by a
hyperplane H in v If either Y or Z consists entirely of internal points, it is
contained in one of the open half-spaces determined by H. If both Y and Z consist
entirely of internal points, they are strictly separated by H.

Proof. Wemay suppose that Y has an internal point, and denote by Y; the
set of all internal points of Y. It is easily verified that Y;is a convex subset of Y,
and that (1 — a)y; + aye Y; whenever y,eY;, yeY,and0<a< 1.

We assert that every point of Y; is an internal point of Y;, and that a
hyperplane which separates Y; and Z also separates Y and Z. For this, suppose
that y, € Y, and xe ¥ Since y, is an internal point of Y, y; + cxe Y for some
positive scalar ¢. From the preceding paragraph,

1 +acx= (1 —ay, +a(y, +cx)et;

when0 < a < 1;s0y, + bxe Y, whenever 0 < b < ¢, and thus y, is an internal
point of Y. If His a hyperplane separating Y, and Z, there is a non-zero linear
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functional p on ¥~ and a scalar k such that H = {xe ¥ : p(x) = k} and

pr1) = k=pz) (€Y, zeZ).

Given yin Y, chooseany y, in Y;. Since (1 — a)y; + aye Y;when0 < a < 1, we
have

(1 —a)p(y1) + ap(y) = p((1 — @)y, + ay) > k;

and when a — 1, we obtain p(y) > k. Thus H separates Y and Z.

Upon replacing Y by Y;, it now suffices to prove the theorem under the
additional assumption that each point of Y is an internal point of Y. In this
case, Y — Zis a convex subset of 7~ consisting entirely of internal points and
not containing 0. Let € be the family of all convex subsets C of ¥~ for which
0¢C, Y — Z = C, and each point of C is an internal point of C. Then ¥ is
partially ordered by the inclusion relation <. If %, is a totally ordered
subfamily of €, let C; be the union of all the sets in €. It is apparent that
0¢C,, Y- Zc< C,,and C, consists entirely of internal points. Given « and v
in Cy, thereis a single set Cy in 4, containing both u and v (because € is totally
ordered by <). Thus C, (and hence, also C,) contains every convex
combination of u and v, and so C; is convex. Accordingly, C, €%, and C, is an
upper bound for €. It now follows from Zorn’s lemma that there is an element
C of ¢ that is maximal with respect to inclusion.

It is immediately verified that the set

{au:ueC, a> 0}

is an element of € and contains C. By maximality, it coincides with C; so aue C
whenever ue C and a > 0. From this, and since C is convex and 0¢ C, it now
follows that C ~ — C = ¥ (the empty set), and

aueC, au + bve C, bwe ¥ \C

whenever u,ve C, we¥"\C,a> 0, and b > 0.

We assert next that au + bve ¥ \C whenever u,ve ¥ \C and a,b > 0. For
this, suppose the contrary, so that au + bve C for some a, b, u, v satisfying the
stated conditions. From the preceding paragraph, au,bve ¥"\C; so, upon
replacing u by au and v by bv, we may suppose that u,ve ¥’ \C and u + veC.
When r > 0, we have

2rvev"\C, 2ro=r(v + u) + r(v — u)

and v+ ueC; so, again from the preceding paragraph, r(v — u)¢C.
Accordingly, if

Ci={x+ru—v):xeCrz=0},

then 0¢ C,, C, 2 C (2 Y — Z), and C, is convex and consists entirely of
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internal points. Thus C, €4, by maximality C,; = C, and hence
2u=Ww+v)y+ u—v)yeC, =C,

a contradiction (since au e ¥"\C for all a > 0). This proves our assertion that
au + bve ¥"\C whenever u, ve ¥"\C and a,b > 0. It follows that the set

Yo={xe?:x,—xe¥\C} =¥\ (Cu — C)

is a linear subspace of ¥~ (and ¥; ~ C = ¢J, whence ¥5 # ).

We prove next that #5 has codimension 1in ¥7 To thisend, we have to show
that any two non-zero elements of ¥°/¥; are linearly dependent; that is, if
u,ve¥\¥;, then au + bve¥, for suitable non-zero scalars a,b. Since
¥ \v, = Cu — C, we may suppose (upon replacing u by — u, or v by — v, if
necessary) that ue C and ve — C. Since C consists entirely of internal points,
the same is true of — C. From this, the disjoint subsets

So={s€e[0,1]:u+ s(v — u)e C},
S, ={se[0,1]:u+ s(v —uye — C}

of the real interval [0,1] are both open; indeed, if u + so(v —u)eC
(or — C), then u + s(v — u)e C (or — C) for all s sufficiently close to s, since
both the points u + so(v — u) £ (v — u) lie in C (or — C) for all sufficiently
small non-negative . Since 0 € S, 1 € Sy, and [0, 1] is connected, S, U S, is not
the whole of [0, 1]; so there is a real number s such that 0 <s < I and

(I1—su+sv=u+sw—-uer\(Cu-C)=7.

This completes the proof that ¥; has codimension 1 in ¥7

Let p be a (non-zero) linear functional on ¥~ whose null space is 5. Since C
isconvex and ¥; n C = ¥, the subset p(C) of Ris convex and does not contain
0; so either p(C) = (0, x¢) or p(C) = (— %0,0). Upon replacing p by —p if
necessary, we may suppose that p(u) > 0 for all uin C. Since Y — Z = C, it
follows that p(y) > p(z) whenever ye€ Y and z € Z. From this, the subset p(Z) of
R is bounded above, and its least upper bound £ satisfies

p(Y) 2 k=p(z) (yeY, zeZ).

Thus the hyperplane {xe ¥ : p(x) = k} (= H) separates Y and Z.

From the assumption that Y consists entirely of internal points, we now
deduce that it is contained in the open half-space {xe ¥ : p(x) > k}. For this,
suppose that ye Y, and choose x,.in 7~ such that p(x,) > 0. Then y — axoe Y
(and therefore p(y) — ap(x,) = k) for all sufficiently small positive scalars a,
and thus p(y) > k. If Z (as well as Y) consists entirely of internal points, a
similar argument shows that p(z) < k for each zin Z;soin this case Y and Zare
strictly separated by /. W
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Theorem 1.1.2 is our first example from a group of related results,
described loosely as Hahn-Banach theorems. These results, which occur both
in the present algebraic setting and also in the context of linear topological
spaces, can be divided broadly into two main types. The first group (separation
theorems) is concerned with separation of convex sets; closely related to this,
there is a second group (extension theorems for linear functionals).

A complex vector space ¥~ can be viewed also as a real vector space simply
by restricting attention to real scalars. Occasionally, for emphasis, we shall
denote the real vector space so obtained by ¥;. A linear functional on ¥; is
described as a real-linear functional on ¥, and linear subspaces of ¥; are called
real-linear subspaces of . A set X (= ¥") is convex if and only if it is convex
when viewed as a subset of 77, and the internal points of X are the same in both
cases, since the concepts of “convex set” and “internal point” depend only on
real scalars. In proving Hahn-Banach theorems for complex vector spaces, we
shall require the following simple result.

1.1.3. LEMMA. If p is a linear functional orn a complex vector space ¥, the
equation p/(x) = Re p(x) defines a real-linear functional p, on ¥, and

p(x) = px) — ip(ix)  (xe¥").
Every real-linear functional on ¥ arises, in this way, from a linear functional.

Proof. 1t is apparent that, given a linear functional p on ¥, the stated
equation defines a real-linear functional p,. Moreover

Im p(x) = — Reip(x) = — Re p(ix) = — p(ix),

whence p(x) = Re p(x) + iIm p(x) = p,(x) — ip,(ix).
Suppose next that ¢ is a real-linear functional on ¥; and define a function
o.: 7 - C by

a.(x) = o(x) — ia(ix) (xe?).

[tisclear that g(x) = Re6.(x), a.(x + y) = ao(x) + 6.(»), and g.(ax) = as.(x),
whenever x,ye ¥ and a is a real scalar. Since, also,

o.(ix) = a(ix) — io(— x) = a(ix) + io(x)
= i[o(x) — io(ix)] = io(x),
it follows that g, is a linear functional on ¥. W
We now obtain the analogue, for complex vector spaces, of Theorem 1.1.2.
1.1.4. THEOREM. If Y and Z are non-empty disjoint convex subsets of a

complex vector space ¥, at least one of which has an internal point, there is a non-
zero linear functional p on ¥, and a real number k, such that

Rep(y) 2 k>Rep(z) (yeY, zeZ).
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Moreover, Rep(y) > k (yeY) if Y consists entirely of internal points, and
k > Re p(z) (ze Z) if Z consists entirely of internal points.

Proof. By considering Y and Z as subsets of the real vector space ¥#;
obtained from ] it follows from Theorem 1.1.2 that there is a non-zero real-
linear functional ¢ on ¥~ and a real number k such that o(y) = k = o(2)
whenever ye Y and ze Z. Moreover, if either Y or Z consists entirely of internal
points, the corresponding one of the inequalities > can be replaced by >. By
Lemma 1.1.3, there is a linear functional p on ¥ such that ¢(x) = Re p(x) for
each xin7. W

Let ¥~ be a linear space with scalar field K (= R or C). By a sublinear
functional on ¥~ we mean a function p: ¥~ — R such that

p(x +y) < plx)+p(y),  plax)=ap(x)
whenever x, ye ¥ and a is a non-negative real number. If, further,
plax) =lalp(x)  (xe¥] acK),
p is described as a semi-norm on ¥. If p is a semi-norm, then

px) 20,  |px) —pI<plx—y) (x,ye¥).
Indeed, 2p(x) = p(x) + p(— x) = p(x — x) = 0; while

p(x) =p((x —y) +p) < plx — p) + p(y),
whence p(x) — p(y) < p(x — y), and similarly

p(y) —p(x) S p(y — x) = p(x — ).
By a norm on ¥, we mean a semi-norm p such that p(x) > 0 whenever xe ¥,
x # 0.
As an example note that if < is R or C and » is a positive integer, the set K"
consists of all ordered n-tuples (ay,...,q,) of elements of K, and is an »n-
dimensional vector space when the algebraic structure is defined by

ala,,...,a,) + b(by,...,b,) = (aa; + bb,,...,aa, + bb,).
The equations
pi((ay,....a)) =lai| + -+ +|al,
po((ay,...,a,)) = max{lal,...,la,}

define norms, p, and p.,, on [K". In particular, the modulus function is a norm
on K. —

A subset Y of ¥ is said to be balanced if ay € Y whenever ye Y, ae K, and
la] < 1.If p is a sublinear functional on ¥ it is immediately verified that the set
V,={xe¥ :p(x) < 1} is convex, contains 0, and consists entirely of internal
points; ¥, is balanced if p is a semi-norm.
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1.1.5. PrROPOSITION. Suppose that V is a convex subset of a linear space ¥~
over IK (= R or C), and 0 is an internal point of V. Then the equation

p(x)=inf{c:ceR, ¢ > 0, xecV} (xe?)

defines a sublinear functional p on ¥ If V consists entirely of internal points, then
V={xe? :p(x) < 1}. If V is balanced, p is a semi-norm.

Proof. Given x in ¥, ¢~ 'xe V (and thus xe cV) for all sufficiently large
positive scalars ¢, since 0 is an internal point of V; so p(x), as defined in the
proposition, is a non-negative real number.

Suppose that x,ye ¥ and a > 0. Since xecV if and only if axeacV, it
follows that p(ax) = ap(x) (and this remains true when a = 0, since it is
apparent that p(0) = 0). Given any positive real number &, we can choose real
numbers b and ¢ so that

0<b<plx)+e, 0<c<p(y)+e, xebV, yecV.
Since V is convex, x + yebV + cV = (b + ¢)V, and
p(x +p)< b+ c<p(x)+py) + 2e.

Since ¢ (> 0) is arbitrary, p(x + y) < p(x) + p(»);so pis a sublinear functional
on ¥

If V'is balanced, the condition ax e ¢V is equivalent to |a|x € ¢V, when x € ¥,
aelK, and ¢ > 0. Thus p(ax) = p(lalx) = |a| p(x), and p is a semi-norm.

Suppose finally that V consists entirely of internal points. Given y in V,
¥ +eyeV (and hence ye(l + &)~ V) for all sufficiently small ¢ (> 0); so
P(¥) (1 4+ &)~ < 1. Conversely, if ze ¥ and p(z) < 1, there is a real number
csuchthat0 < ¢ < land zecV. Since Visconvex, ¢! > 1,and 0,¢c " 'ze V, it
now follows that ze V. Accordingly, V' = {xe ¥ :p(x)<1}. &

The sublinear functional p occurring in Proposition 1.1.5 is called the
support functional of V.
Our next two results are Hahn-Banach theorems of the “extension” type.

1.1.6. THEOREM. [f p is a sublinear functional on a real vector space ¥,
while p, is a linear functional on a linear subspace ¥ of ¥, and

po¥) < p(y)  (¥e?y),
there is a linear functional p on ¥~ such that
p(x) < p(x) (x€77),  p(y)=po(y) (¥€¥o)

Proof. Theproductset R x ¥ becomes a real vector space when addition
and scalar multiplication are defined by

r,x)+(spy)y=0+s5x+Yp), a(r, x) = (ar,ax),
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for x, yin ¥ and a, r, s in R. From the defining properties of sublinear
functionals, it is immediately verified that the set
V=A{(r,x)eR x ¥:r>px)} (SR x %)
is non-empty, convex, and consists entirely of internal points. The set

W= {(po(»),y):y€ 5}

is a linear subspace of R x ¥~ (and is therefore convex), and VW = .
From Theorem 1.1.2, thereis a linear functional o on R x ¥~ and areal number
k such that

o(v) > k = o(w) (veV, weW).
If we W, then awe W, and thus as(w) = o(aw) < k, for every scalar a; so
ow)=0 (we W),

and k > 0. From this, and since (1,0)e V, it follows that ¢((1,0)) > k > 0;
upon replacing ¢ by a suitable positive multiple of ¢, we may assume that
a((1,0)) = 1.

The equation p(x) = — 6((0, x)) defines a linear functional p on ¥; and

o((r,x)) = o(r(1,0) + (0,x)) = r — p(x) (reR, xev).
Given any x in ¥; we have (r,x)e V, and therefore
r—p(x)=o0((r,x))> k=0,
whenever r > p(x); so p(x) < p(x). When ye 74, (po(y), y)€ W, and thus
po(») = p(3) = a((po(»),»)) =0. W

1.1.7. THEOREM. If p is a semi-norm on a linear space ¥~ over K (= R or
C), while py is a linear functional on a linear subspace ¥4 of ¥, and
oo <p(¥)  (ye¥),

there is a linear functional p on ¥~ such that

()l <p(x) (xe?),  p(»)=po(y) (YE0).

Proof. If K = R, pis asublinear functional on ¥; and po(y) < p(y) for all
y in #5. By Theorem 1.1.6, there is a linear functional p on ¥~ such that
p(¥) = po(¥) when ye ¥5 and p(x) < p(x) for each x in ¥~ Since, also,

— p(x) = p(Z x) < p(— x) = p(x),

it follows that |p(x)| < p(x) when xe ¥.
Suppose now that [ = C, and let ¥; be the real vector space obtained from
¥~ by restricting the scalar field. Then p is a sublinear functional on ¥;, the
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equation

ao(y) = Re po(y)

defines a linear functional g, on the linear subspace ¥, of 77, and ao(y) < p(»)
for each y in ¥;. By Theorem 1.1.6, there is a linear functional ¢ on ¥; such that

a(y) =0ao(¥) (¥e¥5),  a(x)<plx) (xe¥).

Thus ¢ is a real-linear functional on ¥, By Lemma 1.1.3, there is a linear
functional p on ¥~ such that a(x) = Re p(x), and

p(y) = a(y) = ia(iy) = ao(y) — ioo(iy) = po(¥)  (ye¥)).
When x e ¥, we can choose a scalar a so that |a| = 1, |p(x)] = ap(x); and
Ip(x)] = p(ax) = Re p(ax)
o(ax) < p(ax) = lajp(x) = p(x). W

If %, ¥, w are vector spaces over the same scalar field I, and S: ¥~ - ¥#;
T:% — v are linear operators, the composition of S'and T'is a linear operator,
which we write as a product ST, from % into #. This applies, in particular,
when % = ¥~ = # ; and with the multiplication so obtained, the linear space
of alllinear operators T: ¥~ — ¥~ becomes an associative linear algebra, It hasa
unit, the identity mapping / on 7. We now identify the idempotents in this
algebra (those elements E such that E2 = E).

If £:9" — ¥ is a linear operator and E? = E, the sets

(1 Y={xe¥ :Ex=x}, Z={xeV :Ex=0}

are linear subspaces of ¥. Given x in ¥, let y = Ex, z = x — Ex; note that
X=y+z yeY (because Ey = E’x = Ex = y) and zeZ (because Ez =
Ex — E*x = 0). If x has another expression as x = y; + z,, with y, in Y and z,
in Z, then Ey, = y, and Ez, = 0 from (1), and thus

y1=E(y, +z1)=Ex=y, zZi=x—y;=x—Ex=1z

Accordingly, the subspaces Y and Z of ¥~ have the following property: each
element x of ¥~ can be expressed uniquely in the form x = y + z, with yin Y
and z in Z. Two linear subspaces of ¥~ with this property are described as
complementary subspaces of ¥.

We assert that two subspaces Y and Z of ¥~ are complementary if and only
if Y+ Z =19 and Y~ Z = {0}. Indeed, the first of these conditions asserts
that each xin ¥~ has at least one expression as x = y + z, withyin Yand zin Z.
If it has another such expression, x = y; + z; (= y + z), then

yZWw—y=z—z1e¥YnZ;
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so the most general expression for x, in the stated form, is x =
(y + u) + (z — u), where ue Y n Z. Accordingly, x is uniquely expressible in
this form if and only if Y nZ = {0}.

Now suppose that Y and Z are complementary subspaces of ¥~ ; we shall
show that they can be obtained as in (1) from an idempotent linear operator
acting on ¥. We may define a mapping E: ¥~ — ¥~ as follows: when x e ¥, take
the unique expression for xin the form y + z(with yin Yand zin Z), and let Ex
be y. It is then apparent that Y and Z are related to E as in (1); moreover,
Exe Y, and therefore E(Ex) = Ex, for each x in . If, for j = 1,2, we have
x;=y; + z; (where y;e Y and z;e Z) and q;€ K, then

ayxy + ayx; = (a1yy + azy;) + (@121 + a,z,)
and a,y, + a,y,€Y, a;zy + a,z;eZ. Thus
E(ayx, + axx;) = a1y, + a2y2 = a1 Exy + ayEx;;

so E: ¥ — ¥ is a linear operator and E% = E.
The following theorem embodies the main results of ‘the preceding
discussion.

1.1.8. THEOREM. Two linear subspaces Y and Z of a linear space ¥ are
complementary if and only if Y+ Z =79 and YnZ = {0}. When these
conditions are satisfied, the equation

Ey+z)=y (yeY, zeZ)
defines a linear operator E: ¥ — ¥’ and E? = E,
Y={xe¥:Ex=x}, Z={xev :Ex=0}.

Conversely, every linear operator E: ¥ — ¥ satisfying E* = E arises in the
above manner from a pair of complementary subspaces of V.

The operator E occurring in Theorem 1.1.8 is described as the projection
from ¥ onto Y, parallel to Z.

1.2. Linear topological spaces

Suppose that a set ¥ is both a linear space with scalar field K (= R or C)
and also a Hausdorff topological space. If the algebraic and topological
structures are so related that the mappings

X, p)ox+y V¥V XV oY,
(@, x)—ax : Kx ¥V >

are continuous (when ¥~ x ¥ and K x ¥~ have their product topologies), then
¥ 1s said to be a linear topological space.
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The simplest examples of linear topological spaces over IK are the sets K"
(n=1,2,...), with their usual vector space structure and with the product
topology.

It is apparent that a complex linear topological space can be viewed also as
a real one, simply by restricting the scalar field. A linear subspace of a linear
topological space is itself a linear topological space, with the relative
topology.

The given topology, in a linear topological space ¥ is sometimes described
as the initial topology in order to distinguish it from other topologies that can
naturally (and usefully) be introduced, such as the weak topologies described
in Section 1.3. It is usual to develop the early parts of the theory without the
assumption that the initial topology is Hausdorff. However, for most
purposes, an easy quotient procedure permits an immediate reduction to the
Hausdorff case; and the initial topology is Hausdorff in all the cases we shall
encounter in later chapters. Accordingly, we have included this condition as
part of our definition of linear topological spaces.

If ] is a linear subspace of a linear topological space ¥; the closure ¥ of ¥;
is also a linear subspace. Indeed, suppose that x,, yo € ¥ and a, b are scalars.
Then (x¢, yo) lies in the closure ¥; x #; of ¥ x ¥1, and is therefore the limit
of a net {(x;,y;)} in ¥; x ¥7. Since ¥] is a subspace of ¥; and the mapping
(x,y) = ax + by: ¥~ x ¥~ — ¥ is continuous, we have

ax; + byje vy,  ax;+ by;—>axe + by,

and ax, + by, lies in the closure ¥5 of ¥]. Similar arguments show that if a
subset of ¥~ is balanced (or convex), then the same is true of its closure. Note
also that an open set G in ¥~ consists entirely of internal points. For this,
suppose that x € G, y € ¥ Since the mapping a — x + ay: R — ¥  is continuous
and takes 0 into the open set G, it carries some real interval (— ¢, ¢) into G; and
in particular, x + aye G whenever 0 < a < c.

Suppose that ¥ is a linear topological space with scalar field I, x, € ¥; and
V < ¥ Since the continuous mapping x — x + xo: %" — ¥~ has a continuous
inverse mapping x —» x — xo, it follows that V is a neighborhood of 0 if and
only if x, + V is a neighborhood of x,. Accordingly, the topology of ¥ is
determined once a base of neighborhoods of 0 has been specified. If V is a
neighborhood of 0, then so is aV for each non-zero scalar a, since the one-to-
one mapping x — ax, from ¥~ onto ¥, is bicontinuous; in particular, — Visa
neighborhood of 0. From continuity at (0, 0) of the mapping (x, y) = x + y,
there is a neighborhood V,, of 0 such that V', + V, < V. From continuity at
(0,0) of the mapping (a, x) — ax, there exist a neighborhood V; of 0, and a
positive real number ¢, such that ax e ¥ whenever x € V; and |4| < ¢. From this,
U{a V,:0 < |al < ¢} is a balanced open subset of V; so every neighborhood
of 0 contains a balanced neighborhood of 0.
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Let 4" denote the set of all neighborhoods of 0 in ¥; and with each Vin A~

associate the subset
V) =A{(x,y):y —xeV}

of v x v. If Vo + V, = V, the conditions (x,z)ed&(V,) and (z,y)e&(Vy)
entail (x, y)e &(V). Since, also, (V) nEWV,) = E(V n V), and (x,y)e (V)
if and only if (y, x) e £(— V), it is apparent that the sets &(V) (Ve A") form a
base of a uniform structure (uniformity) on ¥~ [K: p. 176 et seq.]. It is often
convenient to use a base A, of neighborhoods of 0, rather than the family A4 of
all neighborhoods of 0; it is evident that the sets &(V) (Ve .A4;) form a base of
the same uniform structure. In this way, ¥~ becomes a Hausdorff uniform
space, and the topology derived from the uniform structure coincides with the
initial topology, since in both cases the sets

{ye?v :(x,y)e6V)} = {ye¥ 1y —xeV}=x+V
form a base of neighborhoods of x, when V runs through A5.

When we refer to any “‘uniform’ concept (such as uniform continuity, or
completeness) in relation to a linear topological space ¥ it is understood that
the uniform structure just described is the one in question. From time to time
we shall make use of the fact [K: p. 195] that a uniformly continuous mapping
from a subset X of a uniform space ¥ into a complete Hausdorff uniform space
w extends uniquely to a uniformly continuous mapping from the closure of X
into #. Our use of this result will often be indicated by a reference to “‘extension
by continuity.”

1.2.1. PROPOSITION. Suppose that ¥~ and W~ are linear topological spaces
with the same scalar field K (= R or C), and T: ¥~ — W  is a linear operator.

(1) If xoe v and T is continuous at x,, then T is uniformly continuous
on V.

(i) If C is a balanced convex subset of ¥~ and the restriction T|C is
continuous at 0, then T|C is uniformly continuous on C.

Proof. (1) Since Tiscontinuous at x,, given any neighborhood Wof0in
¥, there is a neighborhood V of 0 in ¥~ such that Txe Tx, + W whenever
xexo + V. Let &(V) (= ¥ x ¥°) be the set occurring in the above discussion
of the uniform structure on ¥; and let &(W) (= # x #’) be defined similarly.
When (x,y)e&(V), we have y — xeV, xo + y — xexy + V, and therefore
Txo+ Ty — TxeTxy+ W;so Ty — Txe W, and (Tx, Ty)e &(W).

The above argument shows that, given any neighborhood W of 0 in #;
there is a neighborhood ¥V of 0 in ¥~ such that (Tx, Ty)e &(W) whenever
(x,y)e&(V); so T is uniformly céntinuous on ¥ .

(ii) Since the restriction T|C is continuous at 0, given any neighborhood
W of 0 in %; there is a balanced neighborhood V of 0 in ¥~ such that Txe W
whenever xe V' C.
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Suppose that x,yeC and y — xe V. Since C is convex, and both C
and V are balanced, we have 3y — ixeVnC; hence 3Ty — iTxeiW,
and Ty — Txe W. Accordingly, (Tx, Ty)e&(W) whenever x,yeC and
(x,y)e&V); so T|C is uniformly continuouson C. W

1.2.2. Remark. Forcomplex linear topological spaces, Proposition 1.2.1
remains true under the weakened assumption that T: ¥~ — %  is a real-linear
operator, since T can then be viewed as a linear operator between the real linear
topological spaces obtained from ¥~ and %~ by restricting the scalar field. In
particular, therefore, Proposition 1.2.1 applies to conjugate-linear operators
(those mappings T:¥" — ¥  satisfying T(ax + by) = aTx + bTy, where a
denotes the complex conjugate of a). B

1.2.3. CoroLLARY. If ¥ and W are linear topological spaces, ¥ is
complete, ¥ is an everywhere-dense subspace of v, and Ty:¥o > W is a
continuous linear operator, then T, extends uniquely to a continuous linear
operator T:¥" — W'.

Proof. By Proposition 1.2.1, T, is uniformly continuous on ¥, and so
extends uniquely to a uniformly continuous mapping T: %" — #. Given any
scalars a, b, the equation

g(x,y) = T(ax + by) — aTx — bTy

defines a continuous mapping g: ¥~ x ¥~ — #7; and g vanishes on ¥~ x ¥~
since it vanishes on the everywhere-dense subset ¥g x 5. Thus Tislinear. W

The lemma that follows, concerning continuity of linear functionals and
semi-norms, is written in a form that applies to both real and complex linear
topological spaces; the notation Re, occurring in part (i), is redundant in the
real case.

1.2.4. LEMMA. Suppose that ¥ is a linear topological space, p is a linear
Sfunctional on ¥; and p is a semi-norm on V.

(i) If there is a non-empty open set G in ¥~ and a real number ¢ such that
Re p(x) < ¢ whenever xeG, then p is (uniformly) continuous on .

(ii) If p is bounded on some neighborhood of 0 in ¥, then p is (uniformiy)
continuous on Y.

Proof. (i) If G and c have the stated properties, we can choose x, in G
and a balanced neighborhood ¥V, of 0 in ¥ such that x, + ¥V, = G. Given xin
Vo, let a be a scalar such that |a| =1 and |p(x)| = p(ax). Then axe V,,
Xo +axexy + Vy = G, and therefore

¢ > Re p(xq + ax) = Re p(xp) + |p(x)|.

Hence |p(x)| < b for all x in V,,, where b = ¢ — Re p(x,) (> 0).
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Given any positive ¢, [p(x)| < ¢ for all x in the neighborhood b~ 1¥ of 0.
Thus p is continuous at 0, and is therefore uniformly continuous on ¥~ by
Proposition 1.2.1.

(ii) Suppose that there is a neighborhood ¥ of 0 in ¥~ and a positive real
number b such that p(x) < b whenever xe V. Given any positive ¢, the set
eb~ 1V is a neighborhood of 0 in ¥, and

lp(¥) —pX)| <p(y —x) <e

whenever x,yey and y — xeeb™'V. Thus p is uniformly continuous on
v, i

1.2.5. CorOLLARY. A linear functional p on a linear topological space ¥ is
continuous if and only if its null space p~1(0) is closed in V.

Proof. Wemay assume that p # 0; itis evident that p~ !(0)is closed if p is
continuous.

Conversely, suppose that p~1(0) is closed. We can choose x, in ¥ so that
p(xo) = 1. Since xo ¢ p~1(0), there is a balanced neighborhood V, of 0 in ¥~
such that x, + V, does not meet p~*(0).

If xeV, and |p(x)| = 1, we can choose a scalar a so that |a| < 1 and
plax) = — 1. Then axe Vy, xo + axexy, + Vo, and p(xy + ax) = 0, contrary
to our assumption that x, + V, does not meet p~!(0). From this, it follows
that |p(x)| < 1 whenever xe Vy, and p is continuous by Lemma 1.2.4(i)). R

If p is a non-zero continuous linear functional on a (real or complex) linear
topological space ¥; the set 4 = {xe ¥ : Re p(x) < 1} is a non-empty convex
open subset of ¥; but is not the whole of ¥ There are examples of linear
topological spaces that have no subset 4 with the properties just listed, and
these spaces therefore have no non-zero continuous linear functionals. We now
introduce a class of linear topological spaces, each of which (as we shall see in
Corollary 1.2.11) has an abundance of continuous linear functionals.

A locally convex space is a linear topological space in which the topology
has a base consisting of convex sets. By a locally convex topology, on a (real or
complex) vector space ¥, we mean a topology with which ¥~ becomes a locally
convex space.

The vector spaces R” and C" provide the simplest examples of locally
convex spaces, since the product topology has a base (for example, the open
balls) consisting of convex sets.

In the theorem that follows we show that locally convex topologies, on a
linear space ¥~ over K (= R or C), are closely associated with certain families
of semi-norms. A semi-norm p on"?" can be regarded as an analogue of the
“modulus” function on K; the “triangle inequality,” p(x + y) < p(x) + p(»),
and its consequences (for example, the inequality | p(x) — p(»)| < p(x — y)) are
used in analysis in locally convex spaces, in much the same way that the
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corresponding properties of the modulus are used in elementary real or
complex analysis.

1.2.6. THEOREM. Suppose that ¥ is a (real or complex) vector space, and I
is a family of semi-norms on ¥ that separates the points of ¥ in the following
sense: if xe¥" and x # 0, there is an element p of I for which p(x) # 0. Then
there is a locally convex topology on ¢~ in which, for each x, in ¥, the family of all
sets

V(xo: P1y-v - Pm3 &) = {xe?¥ i pi(x —x0) <e(j=1,...,m)}

(where ¢ >0 and p,,...,pneT) is a base of neighborhoods of x,. With this
topology, each of the semi-norms in I is continuous. Moreover, every locally
convex topology on ¥ arises, in this way, from a suitable family of semi-norms.

Proof. If
X0 € V(yo: P1s---sPm30) 0 V(Zo: Gy, -5 Gus ),
we can choose ¢ (> 0) so that
Pi(xo—yo) +e<d, qixo—z0)+e<n (Y=i....m k=1,...,n).
It then follows easily, from the triangle inequality, that
(X0 P1s- ooy Pm s 5 4n38) S V(VoiPrse ooy Pm30) 0 V(207 G1s -5 Gus ).

In particular, if V(yo: py,-..,pm;0) contains x,, it also contains a set of the
form V(xo: p1,...,Pm;€). From these facts, and since xo € V(xo: P1,---»Pm; €),
it follows that the family

{W(xo0: P1>--,Pm;€): X0€EY, P1s...,PmETl, £€> 0}
is a base for a topology on ¥~ [K: p. 47], in which
{V(xo:pl;"-9pm;8):pl9~~‘spmer9 € >0}

is a base of neighborhoods of x,.

If xo,y0e? and x, # yo, Wwe can choose p in I' so that p(x, — yo) > 0.
When 0 < & < 1p(xo — yo), the sets V(x,: p;e) and V(yo: p;e) are disjoint
neighborhoods of x, and y,, respectively; so the topology is Hausdorff. Since

P(x +y = xo — yo) < p(x — xo) + p(y — Yo)s
plax — apxo) = p(ao(x — xo) + (@ — ag)xo + (a — ao)(x — xo))
< lao| p(x — xo) + la — aol p(xo) + la — aol p(x — Xo),
for every semi-norm p, it follows that
X+yeW(xo+ Yo:P1s---sPm;E)s

axe V(apxo: P1y--->Pms€)s



18 1. LINEAR SPACES

whenever

XEV(x05P1,---,Pm§5), yEV(,Vo:Ph---’Pm;‘S)

and |a — ao| < 6, provided that the positive real number § is sufficiently small
to ensure that

26 < ¢, laolé + 6pj(xo) + 6% < ¢ G=1,...,m).

This establishes the continuity of the mappings (x, y) - x + y,(a, x) - ax, and
so shows that ¥ is a linear topological space. It is locally convex, since each of
the basic neighborhoods ¥(xo: pi,...,Pm;€) is convex. When pel’, p is
bounded on the neighborhood V(0: p; 1), so that p is (uniformly) continuous
on ¥ from Lemma 1.2.4(ii).

Conversely, suppose that 7 is a locally convex topology on ¥ We shall show
that 7 can be obtained, by the process described in the theorem, from a suitable
family of semi-norms. To this end, let ¥ be a t-neighborhood of
0 in ¥. Then V contains a convex t-neighborhood V, of 0. Moreover, V,
contains a balanced t-neighborhood ¥V, of 0, and thus contains the convex
hull ¥, of V,;s0 V, = V. Since V, consists of all finite convex combinations
ax; + - + a,x,of elements of V, (with each a; > 0), it too is balanced. It is
7-open, and so consists entirely of internal points, since it can be expressed as a
union of sets of theform a; x, + -+ + a,-,x,-, + a,V,. By Proposition 1.1.5
there is a semi-norm p on ¥ such that

V,= {xevf:pkx) < 1},

and since V, is a t-neighborhood of 0, it results from Lemma 1.2.4(ii) that p is
T-continuous.

Let I'y denote the set of all z-continuous semi-norms on ¥. The preceding
paragraph shows that every 7-neighborhood V of 0 contains a set of the form
{xe v : p(x) < 1}, with pin I'y. From this, if xe ¥ and p(x) = 0 for every p in
Iy, then x lies in each t-neighborhood of 0, and hence x = 0; so I', separates
the points of ] in the sense stated in the theorem. Moreover, when x, € ¥, the
t-neighborhood x, + V contains the set

{xo+x:xe¥,p(x) <1} ={xe¥: p(x — xo) < 1}
= V(xo:p;1);

and V(xo: py,-...,Pm;€) is a 7-neighborhood of x,, whenever p,,...,pnel,
and ¢ >0, since p,,...,p. are t-continuous. It follows that the sets
V(xo: pyy.-.,Pm;€) form a base of t-neighborhoods of x,; therefore 1
coincides with the topology obtained from I', by the process described in the
theorem. W -

1.2.7. CoroOLLARY. In a locally convex space there is a base of neigh-
borhoods of 0 consisting of balanced convex sets.



1.2. LINEAR TOPOLOGICAL SPACES 19

Proof. The sets V(0: py,...,pm;€) are balanced and convex. &

Observe that the topology on the locally convex space K” (where K = R or
C) can be obtained, as in Theorem 1.2.6, from a family I” consisting of just one
norm. For example, either of the norms p, and p,, defined in the discussion
preceding Proposition 1.1.5, will suffice for this purpose.

We now give criteria for the continuity of semi-norms and linear operators
on locally convex spaces, in terms of families of semi-norms defining the locally
convex topologies.

1.2.8. ProPOSITION. Suppose that ¥ and ¥ are locally convex spaces with
the same scalar field K (= Ror C); and forj = 1,2, let I'; be a separating family
of semi-norms on ¥; that gives rise to the topology of ¥;.

(i) A semi-norm p on ¥ is continuous if and only if there is a positive real
number C and a finite set p,...,p, of elements of Iy such that

p(x) < Cmax{Pl(x)a--me(x)} (xeyfl‘)'

(i1) A linear operator T: ¥ — 5 is continuous if and only if, given any q in
I, there is a positive real number C and a finite set p,, . . ., p,, of elements of I',
such that

9(Tx) < Cmax{p,(x),....pn(¥)}  (xe¥7).

(iii) A linear functional p on ¥ is continuous if and only if there is a positive
real number C and a finite set p,,...,p, of elements of I'\ such that

lp()| < Cmax{p,(x),....pn(x)}  (x€7).

Proof. (i) If p is continuous, the set {xe¥]:p(x) <1} is a neigh-
borhood of 0 in ¥;; so it contains one of the basic neighborhoods
V:py,...,pm;¢), where ¢>0, and p,,...,p,el;. If xev; and
p(x) > ¢~ max{p,(x),...,pm(x)}, we may assume (upon replacing x by cx, for
some positive ¢) that p(x) = 1 and p;(x) <e¢ (j=1,...,m); that is, p(x) = 1
and xe V(0:p,, ..., pm;¢), contradicting our assumption concerning this basic
neighborhood. Accordingly, the stated condition

p(x) s Cmax{pl(x),"',pm(x)} (xE'Vi),

is satisfied (with C = ¢~ !). Conversely, if this condition is satisfied, then p is
bounded on V(0:p,,...,p,;1); by Lemma 1.2.4(ii), p is continuous on ¥;.

(il) When ¢ is a semi-norm on ¥, the composite mapping g T is a semi-
norm on ;. In view of this, and taking into account part (i) of the proposition,
we have to show that T'is continuous if and only if ¢ - T'is continuous whenever
gerl,. By Theorem 1.2.6, each g in I', is continuous on 3 ; so continuity of T
entails continuity of go T.
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Conversely, suppose that go T is continuous, for each ¢ in I',. Every
neighborhood ¥ of 0 in ¥; contains a basic neighborhood V(0:q,, ..., gn;¢),
where ¢ > 0 and ¢, ...,g,€T,. Since g;o T is continuous (j = 1,...,m), the
set

={xe?:qi(Tx)<e(j=1,...,m)}
is a neighborhood of 0 in ¥7, and it is apparent that
TWYyc V(0:qy,...,qm;€) S V.

Thus T is continuous (at 0, and therefore throughout ¥7).

(i) The scalar field K is a locally convex space, its (usual) topology being
obtained from a single norm, the modulus function; and p: ¥; — K is a linear
operator. Thus (iii) is a special case of (ii). &

Our next two results are Hahn-Banach (separation) theorems. They are
formulated so as to apply to both real and complex linear topological spaces,
the notation Re being redundant in the real case.

1.2.9. THEOREM. If Y and Z are disjoint non-empty convex subsets of a
linear topological space ¥; and Y is open, there is a continuous linear functional p
on ¥ and a real number k such that

Re p(y) > k = Re p(2) (yeY, ze2).
If, further, Z is open, then k > Re p(z) for each z in Z.

Proof. In view of the fact that an open set consists entirely of internal
points, the assumptions of Theorem 1.1.2 are fulfilled in the real case, while
those of Theorem 1.1.4 obtain in the complex case. From those theorems, there
is a linear functional p on ¥~ that satisfies the stated inequalities; and by
applying Lemma 1.2.4(i), with — pand Yin place of p and G, it follows that p is
continuous. M

1.2.10. TueoreM. If Y and Z are disjoint non-empty closed convex subsets
of a locally convex space ¥, at least one of which is compact, there are real
numbers a, b and a continuous linear functional p on ¥ such that

Rep(y) =2a> b > Rep(z) (yeY, zeZz).

Proof. We may suppose that Y is compact. For each y in Y, there is a
balanced convex neighborhood ¥, of 0 such that (y + V,) n Z = ¢, since Z is
closed and y¢ Z. The open covering {y +3V,:yeY} of ¥ has a finite
subcovering {y(j) + iV,;,:j=1,...,m}, and the set ¥ = (Vi 3Vyp is a
balanced convex nenghborhood of 0

The convex sets Y+ V and Z + V are open since, for example,
Y+ V=|J{y+ V:yeY},; we assert also that they are disjoint. For this,
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suppose the contrary, and choose y in Y, z in Z, and vy, v, in V, so that
y+uv,=z+0v,. For some j (1<j<m), yey(j)+3iV,;; moreover
vy,— eV <3V, Thus

z=y+u—v=YJ)+ (@ —y(J) +vi—0vs
ey() + 3V + 3V + i = Y0 + Vs

contradicting our assumption that (y(j) + V) nZ = . This proves our
assertion that Y + V, Z + V are disjoint.

From Theorem 1.2.9, we can choose a continuous linear functional p on ¥~
and a real number k such that

Rep(y) > k£ > Rep(2) (yveY+V, zeZ+ V),

in particular, these inequalities are satisfied when ye Y and ze Z. Since Y is
compact, the continuous functiong: ¥ — R, defined by g(¥) = Re p(»), attains
its lower bound at a point y, of Y. Hence

Rep(y) = Rep(yo) > k> Rep(z)  (yeY, zeZ),
and it suffices to take a = Rep(yo) and b=k W
1.2.11. CoroLLARY. If x is a non-zero vector in a locally convex space ¥,
there is a continuous linear functional p on ¥~ such that p(x) # 0.
Proof. Thisfollows from Theorem 1.2.10, with Y = {x}and Z = {0}. W
1.2.12. CoroLLARY. IfZis aclosed convex subset of alocally convex space

¥,and ye ¥°\Z, there is a continuous linear functional p on ¥” and a real number
b such that Re p(y) > b, Rep(z) < b (ze Z).

Proof. This follows from Theorem 1.2.10, with ¥ = {y}. W
1.2.13. CoroLLARY. If Z is a closed subspace of a locally convex space ¥,

and y e ¥'\Z, there is a continuous linear functional p on ¥ such that p(y) # 0,
p(2) =0 (ze Z).

Proof. From Corollary 1.2.12 there is a continuous linear functional p on
¥” and a real number b such that

Rep(y) > b, Rep(z) <b (zeZ).

The latter inequality implies that the range of values assumed by the linear
functional p| Z on Z is not the whole of the scalar field. Hence p|Z = 0,5 > 0,
Re p(») > b >0, and thus p(y) 0. M

We now prove a Hahn-Banach extension theorem.
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1.2.14. THEOREM. If p, is a continuous linear functional on a subspace ¥,
of a locally convex space ¥; there is a continuous linear functional p on ¥ such
that p|¥5 = po.

Proof. Let I' be a family of semi-norms that gives rise, as in Theorem
1.2.6, to the topology on ¥~ By restricting each member of I' to ¥, we obtain a
family of semi-norms that defines the relative topology on ¥;. Since p, is
continuous, it follows from Proposition 1.2.8(iii) that there is a positive real
number C and a finite set p,,...,p, of elements of I" such that

looWI < Cmax{p,(y),....Pu(»)}  (Y€¥0)

By Theorem 1.1.7, p, extends to a linear functional p on ¥; such that

lo(x)| < Cmax{p(x),...,pu(¥)}  (x€Y),

since the equation

p(x) = Cmax{p(x),...,pn(x)}

defines a semi-norm p on 7. A further application of Proposition 1.2.8(iii)
shows that p is continuous. B

If ¥~ is a locally convex space and X = ¥; we denote by [ X] the closure of
the set of all finite linear combinations of elements of X. It is apparent that [ X]
is the smallest closed subspace of ¥ that contains X ; we describe it as the closed
subspace generated by X. When X is a finite set, {x;,...,x,}, we write
[x{,...,x,] in place of [X]. In fact, [x,,...,x,] is the set of all linear
combinations of x,, ..., x,, since it results from Theorem 1.2.17 that this set is
closed in ¥~

We now consider some properties of finite-dimensional subspaces of
locally convex spaces. In fact, the main results obtained remain valid in all
linear topological spaces, without the restriction of local convexity. However,
we shall not need that degree of generality, and have preferred to derive these
results as simple consequences of the Hahn-Banach theorems in the locally
convex case.

We have already noted that, when [ is R or C and n is a positive integer, the
finite-dimensional vector space K", with its usual (product) topology, is a
locally convex space. Each linear functional p on K" is continuous, since it is
given by a formula

p((al’ s 9an))é acq + -+ anChp,

where ¢, , ..., ¢, are fixed elements of K. From elementary linear algebra, if .#
1s a proper subspace of K", there is a non-zero linear functional on K" that
vanishes on /.
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1.2.15. LEMMA. Suppose that ¥ is a locally convex space with scalar field
K (= RorC)and{x,,...,x,} isabasis of a finite-dimensional subspace ¥, of ¥.
Then there are continuous linear functionals py, ..., p,on ¥ such that p(x;) = 1
and pj(x;) = 0 when j # k. The equation

Tx =(p1(x),.-.,pu(x))  (x€¥)

defines a continuous linear operator T: ¥~ — K", and the restriction T| ¥ is a one-
to-one bicontinuous linear operator from ¥; onto K"

Proof. The set ¥** of all continuous linear functionals on ¥ is a linear
subspace of the algebraic dual space of ¥. The equation

Sp = (p(x1),...,p(x))  (pe¥™)

defines a linear operator S: ¥ - K"

If the subspace S(¥°%) is not the whole of K", there is a non-zero linear
functional on K" that vanishes on S(#°*); in other words, we can choose
Cy,...,¢, in K, not all 0, so that

c1p(x1) + 4+ cup(x,) =0 (pe?™).
Thus every continuous linear functional p on ¥~ vanishes at the non-zero
vector ¢, x; + - * + ¢,X,, contradicting the conclusion of Corollary 1.2.11. It
follows that S(¥"*) = K" Accordingly, we can find p,,..., p, in ¥"* such that
Sp;=(0,...,0,1,0,...,0) (with the 1 in the jth place); that is, p,,..., p, are
continuous linear functionals on ¥; and p;(x,) is 1 or 0 according as j = k or
Jj# k.

It is apparent that T, as defined in the lemma, is a continuous linear
operator from ¥~ into K". Moreover, since

pj(clxl-l_ +cnxn)=cj (jzl,'-"n),

if follows that
T(eyxy + - 4+ cuxy) = (C1,. .05 0)

Thus T carries ¥; onto K", and the restriction T|¥; has a continuous inverse
mapping

(cryo )= exi+ - +ex: Koy, R
1.2.16. ProrositiON. If ¥ is a finite-dimensional linear space, with scalar
field K (= R or C), there is a unique locally convex topology on .

Proof. Let {x,,...,x,} be a basis of ¥, and define a one-to-one linear
mapping T, from ¥~ onto K", by

T(eyxy + - 4 cuXy) = (€150 .5 00)

There is a unique topology 7 on ¥; which makes 7 a homeomorphism; 7 is
locally convex, since K" is a locally convex space.
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If ¥~ has another locally convex topology 7o, we can apply Lemma 1.2.15
(with ¥5 = 7). Since the mapping T just defined is the same as the one
occurring in the lemma, t, makes T a homeomorphism, and thus coincides
withz. B

1.2.17. THEOREM. If ¥} is a finite-dimensional subspace of a locally convex
space ¥, then ¥y is closed in ¥; moreover, there is a closed subspace ¥ of ¥ such
that ¥, and ¥, are complementary subspaces of ¢~ and the projection from ¥
onto ¥y parallel to ¥ is continuous.

Proof. Let {x,...,x,} be a basis of ¥;. By Lemma 1.2.15, there are
continuous linear functionals p,,...,p, on ¥ such that pj(x,) is 1 or 0
according as j = k or j # k. Each element y of ¥4 is a linear combination
c1xy + - 4 ¢y, and py(y) = cj; s0

y= Y p0)x;  (Ye¥p).
j=1

The equation

Ex=) pfx)x; (xe¥)
j=1

defines a continuous linear operator E: ¥ — ¥. From the preceding para-

graph, Fy = y when ye ¥;, and itis apparent that E(¥") < ;. It follows easily

that

Vo ={xe¥ :Ex = x},

that E2x = Ex for each x in #; and hence that E? = E. By Theorem 1.1.8, ¥§
has a complementary subspace,

1 ={xe¥v :Ex=0},

and F is the projection from ¥~ onto ¥, parallel to ¥;. Moreover, since E is
continuous, the above descriptions of ¥; and ¥7, in terms of E, show that both
these subspaces are closed. H

1.2.18. THEOREM. A locally convex space V" is locally compact if and only
if it is finite dimensional.

Proof. If v has finite dimension », it is homeomorphic to K", where [K is
the scalar field, by Lemma 1.2.15 Lwith vo = ¥"); so ¥ is locally compact.

Conversely, suppose that ¥ is locally compact, and let ¥ be a neigh-
borhood of 0 in ¥~ whose closure V' ~ is compact. If xoe ¥ and x, # 0, the one-
dimensional subspace [x, ] is closed in ¥~ (Theorem 1.2.17), but is not compact
since it is homeomorphic to K (Lemma 1.2.15). Accordingly, [x,] & ¥V~ ; and
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since, also, [x,] meets V' (at 0, for example), there is an element ax, of [ x,] in
the boundary V ~\V of V.

For each y in the compact set V' ~\V, since y # 0, there is a continuous
linear functional p, on ¥~ such that p(y) # 0 (Corollary 1.2.11). We may
suppose that |p,(y)|>1, and define a neighborhood G, of y by
G, = {xe ¥ :|p,(x)| > 1}. The open covering {G,:ye V~"\V} of V" \V has a
finite subcovering; and if the linear functionals p,, corresponding to the sets G,
in this subcovering, are enumerated as p,, ..., p,, then for each x in V"\V
there is at least one integer j such that 1 <j < nand |p(x)| > 1.

The equation Tx = (p(x), ..., p(x)) defines a linear mapping T from ¥~
into IK". In order to prove that ¥ is finite dimensional, it suffices to show that T’
is one-to-one, and this follows easily from the two preceding paragraphs.
Indeed, if x, € ¥"\{0}, then ax, € V'~ \V for some scalar q, and |p (ax,)| > 1 for
some integer j with 1 <j < n; so that pj(x,) # 0, and hence Tx, #0. W

We conclude this section with a discussion of nets and (unordered) infinite
sums in a linear topological space ¥_ Suppose that ve ¥; and (v;,/eJ, =) (or,
more briefly, {v;}) is a net in ¥; the index set J being directed by the binary
relation >. Then {v;} converges to v if and only if, given any neighborhood ¥
of 0, there is an index j, such that v;e v + V (equivalently, v; — ve V) whenever
J =Jjo. From the definition of the uniform structure on ¥, as set out in the
discussion preceding Proposition 1.2.1, {v;} is a Cauchy net if and only if the
following condition is satisfied: given any neighborhood V of 0, there is an
index j, such that v; — v, € V whenever j, k > j,. If " is a locally convex space
and I is a separating family of semi-norms that determines its topology, each
neighborhood V of 0 contains a basic neighborhood

VO:pyy...,Pm;€) = {xe? :px) <e}.
j=1

J

In thiscase, {v;} converges to vif and only if, given any p in I' and any positive ¢,
there is an index j, such that p(v; — v) < e wheneverj > j, ; and {v;} isa Cauchy
net if and only if, given any such p and ¢, there is an index j, such that
p(v; — v) < e whenj, k> j,.

Now suppose that {x,:ac A} is a family of vectors in a linear topological
space ¥, and denote by # the family of all finite subsets of the index set A.
Then # is directed by the inclusion relation =, and for each F in # we can
form the finite sum

sF) =Y x,.

ael

In this way we obtain a net (s(F), Fe &, 2) (briefly, {s(F)}) of elements of ¥ If
itconverges to a vector xin ¥, we say that the family {x,: ae A} is summable, or
that the sum ¥, 4 X, exists, and we write ¥,., X, = X.
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The sums considered here are unordered, in that we do not assume any
order structure on the index set A. We shall show that, at least in certain
elementary respects, such sums can be handled in much the same way as
convergent series; moreover, subject to suitable completeness properties in ¥;
they have some of the properties associated, in elementary analysis, with
absolute convergence.

Suppose that ¥~ and ¥ are linear topological spaces and {x,:aecA},
{yq.:ac A} are summable families of elements of ¥, with sums x and p,
respectively. When [ € & define s(F) as above, and let {(F) =¥, ., y,. If cis a
scalar and T:.¥" — #  is a continuous linear operator, we have

Y cx, = cs(F),

ael

Y (xa+ ya) = s(F) + «F),
aefF
Y. Tx, = Ts(F).
ael
From continuity, of T and of the algebraic operations in ¥; it follows that the
nets {cs(F)}, {s(F) + #(F)}, {Ts(F)} converge to cx, x + y, Tx, respectively.
Thus the families {cx,}, {x, + y.}, {Tx,} are summable, and

dexa= C(Zx,,),
(Xa+Ya) =D Xat ) Vas
S Tx, = r(zxa)

If {x,:ae A} is a family of vectors in a linear topological space ¥; the
corresponding net {s(F)} of finite sums is a Cauchy net if and only if the
following condition is satisfied : given any neighborhood V of 0, there is a finite
subset [, of A such that s(F;) — s(F,) € V whenever [, , F, are finite subsets of
A and Fy = F; nF,. Now

S(Fy) — s(F3) = s(Fy\Fo) — s(F2\Fo),

and given any neighborhood V; of 0, there is a neighborhood V', of 0 such that
V, — V, < V. From this, it follows easily that {s(F)} is a Cauchy net if and
only if it satisfies the following ““Cauchy criterion”: given any neighborhood V'
of 0, there is a finite subset F, of A such that s(F) e V for every finite subset F of
A\F,.If ¥ is alocally convex spacéand I' is a separating family of semi-norms
that determines its topology, then {s(F)} is a Cauchy net if and only if, given
any pin I" and any positive ¢, there is a finite subset [, of A such that p(s(F)) < ¢
for every finite subset F of A\F,.
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1.2.19. PROPOSITION. Suppose that ¥ is a linear topological space, X < ¥,
and X is complete (in its relative uniform structure). Let {x;:de D} be a
summable family of elements of ¥; and suppose that, for each finite subset F of D,
the sum s(F) = ¥ ,.¢ X4 lies in X.

(i) IfA c D, the family {x,:de A} is summable to an element of X.
(i) If D is a disjoint union, D = | J{A,:be B}, and

W= Z Xa (beB),

deA,

then the family {y,: be B} is summable and ¥, g ¥y = Y4cp Xa-

Proof. (i) Since {x,:de D} is summable, the corresponding net of finite
sums converges, and is therefore a Cauchy net. Given any neighborhood V of
0, let [, be a finite subset of D such that s(F) € ¥ whenever F is a finite subset of
D\F,. IfFy = Fo n A, we have A\F; = D\F,, and thus s(F) e V for every finite
subset F of A\F,. Accordingly, the net of finite sums s(F), with F € A, is a
Cauchy net in the complete set X, and therefore converges (and {x;:de A} is
summable) to an element of X.

(i) Let x = Y,.pxs. Given any neighborhood V of 0, let V; be a
neighborhood of 0 such that V', + V, = ¥V, and let [, be a finite subset of D
such that

Y xqi—xeV,

deF

whenever F is a finite subset of D, and F, = F. Note that

|Fo= U Abﬁﬂ:o = U Abﬂ“‘_o,
beB beF,
where F, is the finite set {beB: A, N Fy # J}.
It now suffices to prove that

Zyb'—xe V

belF
whenever [ is a finite set satisfying F, = F < B. To this end, suppose that [F has
m members, and choose a neighborhood V, of 0 for which V, 2

Vo4V, 4+ -+ + V, (mterms). For each b in F, there is a finite set [F, such
that

/\br\[FOE[FbE/\b, yb—ZxdGVz.
def,
Since
UU:,,Q U Abﬁﬂ:():":o,

beF beF,
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we have
DV —x= Z(y - Zxa>+<2 D x,,—x)
beF befF deF, beF deF,

6V2+V2+"'+V2+V1§V1+V1EV. |

A family {z,:ae A} of complex numbers is summable if and only if
{|z.]:ae A} is summable. To prove this, we use the Cauchy criterion set out in
the paragraph preceding Proposition 1.2.19. For every finite subset F of A, if
zﬂ = xﬂ + iya,

Yz < Y lzd < Y Ixd + Y 1yal

aefF ael acF aefF
=Zxa+z—xa+ Zya+z_ya
ael, aefl, ael, ael,

Y Z

acf,

k)

< 4max{ Y }g 4max

aeF,

where F,, ..., F, are suitable subsets of F. It follows easily that, if either of the
families {z,}, {|z,|} satisfies the Cauchy criterion (which is necessary and
sufficient for summability, since C is complete), then so does the other.

If {x,:ae A} is a family of non-negative real numbers, the corresponding
net {s(F)} of finite sums is monotonic increasing; so the family is summable if
and only if the net is bounded above. When this is 50, ¥, 4 X, is the least upper
bound of {s(F)}, and the set of non-zero terms x, is at most countably infinite
(otherwise, for some positive integer n, infinitely many of the terms x, exceed

1/n).

1.3. Weak topologies

Suppose that ¥ is a linear space with scalar field K (= R or C), and # is a
family of linear functionals on ¥, which separates the points of ¥ in the
following sense: if x is a non-zero vector in ¥~ then, for some p in % p(x) # 0.
When pe Z the equation p,(x) = |p(x)| defines a semi-norm p, on ¥ The
separating family { p,: pe &} of semi-norms gives rise, as in Theorem 1.2.6, to
a Jocally convex topology on ¥; the weak topology induced on v~ by & In this
topology, which we denote by o(¥; #), each point x, of ¥ has a base of
neighborhoods that consists of all sets of the form

V(Xo:p1s-- s pms€) = {xe¥ t]pi(x) — p(xo)l <e (j=1,...,m)},
where ¢ > 0 and py,...,p.e %
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Since |p(x) — p(xo)] < e when xe V(x,y: p; ¢), €ach of the linear functionals
p in F is continuous relative to the topology o(¥; #). However, if 7 is a
topology on ¥; and each linear functional in % is t-continuous, then all the sets
V(xo:pi,---»Pm;€) are t-open; from this, o(¥; ) is coarser (weaker) than t.
Accordingly, o(¥, %) is the coarsest (weakest) topology on ¥~ relative to which
each element of & is a continuous mapping from ¥~ into K.

It is apparent that o(¥; %) is coarser than o(¥,%), when & = 4.

Suppose that ve ¥~ and {v;} is a net of elements of ¥ From the discussion
following Theorem 1.2.18, {v;} converges to v, in the topology o(¥; &), if and
only if, given any p in % and any positive ¢, there is an index j, such that
Po(v; — v) < e(thatis, |p(v;) — p(v)| < €) whenever j > jo. Thus {v;} is o(¥; F)-
convergent to vif and only if, for each pin Z the net {p(v;)} of scalars converges
to p(v). Similarly, {v;} is a Cauchy net, in the uniform structure associated with
o(7; F), ifand only if {p(v;)} is a Cauchy (and hence, convergent) net of scalars
for each p in #

1.3.1. THEOREM. Suppose that ¥ is a linear space with scalar field K (= R
or C), & is a separating family of linear functionals on ¥; and & is the set of all
finite linear combinations of elements of F. Then o(¥,¥) coincides with
a(¥; F), and L is the set of all o(¥; F)-continuous linear functionals on ¥.

Proof. Since F < &, o(¥,F) is coarser than o(¥,.#). Every linear
functional p in & is a linear combination a,p; + -+ 4 @.p. Of elements
Pis- .., pmof F; moreover, each p; is g(¥; F)-continuous, so the same is true
of p. Since o(¥; #) is the coarsest topology that makes every element of ¥
continuous, it now follows that o(¥; &) is coarser than o(¥; #); so these two
topologies coincide.

It remains to prove that each (¥, #)-continuous linear functional p, lies in
Z. Given such p,, we can apply Proposition 1.2.8(iii), bearing in mind the
form of the semi-norms p, (with p in %), which give rise to the topology
o(¥; F). It follows that there are elements p,, ..., p,, of # and a positive real
number C such that

lpo(x¥)l < Cmax{lp (X)), . .-, lom(X)I}

for each x in ¥ In particular, po(x) = 0 if pj(x) =0 for j=1,...,m. From
Proposition 1.1.1, p, is a linear combination of p,,...,p,, and thus
poe”. N

1.3.2. ProposITION.  Suppose that ¥ is a linear space with scalar field I
(=R or C), F is a separating family of linear functionals on ¥, and ¢ is a
mapping from a topological space & into ¥. Then ¢ is continuous, relative to the
topology o(yv, %) on ¥, if and only if each of the composite mappings
pee:¥ — K (peF) is continuous.
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Proof. Since each p in & is o(¥; #)-continuous, it is evident that
continuity of ¢ entails continuity of the composite mapping po ¢.

Conversely, suppose that po ¢ is continuous for each p in & In order to
establish the continuity of ¢, it suffices to show that ¢ ~!(V) is an open subset
of & whenever V is one of the basic a(¥; & )-open sets V(xqo: py,..., Pm;E). Of
COUrIsE, Py,..., "m€Z 50 pjo@: ¥ — K is continuous for j = 1,...,m. From
this, and since

o (V)= {seSL:9(s)eV}
= {seZ:pie(s)) — pilxo)l <e (=1,...,m)},
@~ }(V) is open, as required. W

Suppose that ¥ is a locally convex space. The set of all continuous linear
functionals on ¥ is a subspace of the algebraic dual space of ¥”; it is denoted by
v"*, and is described as the continuous dual space of ¥. By Corollary 1.2.11, it
separates the points of ¥ The topology a(¥; ¥ ) is called the weak topology on
¥ It is the coarsest topology on ¥~ that riakes all the linear functionals in ¥°*
continuous; in particular, therefore, it is coarser than the initial topology on ¥~
When using topological concepts, such as continuity or compactness, in
relation to the weak topology, we refer to weak continuity, weak compactness,
etc. By Theorem 1.3.1, with # = & = ¥"*, the weakly continuous linear
functionals on ¥~ are precisely the members of ¥°*; in other words, a linear
functional on ¥~ is weakly continuous if and only if it is continuous relative to
the initial topology on ¥~

1.3.3. ProposiTiON. If ¥ and # are locally convex spacesand T: W — v~
is a continuous linear operator, then T is continuous also relative to the weak
topologies on ¥~ and #.

Proof. When pev*, the linear functional po T on # is continuous
relative to the initial topology on #; and is therefore continuous also relative to
the weak topology o(#; #*). If we now apply Proposition 1.3.2, taking for &
the space %~ with its weak topology, it follows that T is continuous relative to
the topologies o(¥;, #*) and o(¥;¥""). W

1.3.4. THEOREM. A convex subset Z of a locally convex space ¥ has the
same closures, relative to the initial and weak topologies on ¥.

Proof. Since the weak topology on ¥ is coarser than the initial topology
7, it suffices to prove the following assertion: if ye ¥~ and y is not in the t-
closure Z ~ of Z, then y is not in theweak closure of Z. Now Z ~ is convex, and
it follows from Corollary 1.2.12 that there is a continuous linear functional p
on ¥~ and a real number b such that

Re p(y) > b, Rep(z) < b (zeZ"™).
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The set S = {xe¥ :Rep(x) < b} is weakly closed since p is weakly con-
tinuous; moreover, y ¢ S, and S contains Z and so contains the weak closure of
Z n
When ¥ is a locally convex space and x e ¥, the equation
£p)=plx) (pev?)
defines a linear functional % on the continuous dual space ¥"*. The set
¥ ={%:xe¥}

is a linear subspace of the algebraic dual space of ¥*. It separates the points of
¥ since, if pe ¥* and %(p) = 0 for all x in ¥; then p(x) = 0 (xe ¥"), and thus
p = 0. We often write o(¥"*, ¥"), rather than a(¥*, ¥"), for the weak topology
induced on ¥* by ¥; and we refer to o(¥* ¥°) as the weak* topology
(sometimes called the w*-topology) on ¥*. Note that each p, in ¥ has a base
of neighborhoods consisting of sets of the form

{pev™:lp(x)) = polx)l <e (G =1,...,m)},

where¢ > 0and x,, ..., x,,€ ¥ From Theorem 1.3.1 (with ¥ replaced by ¥,
and # = ¥ = ¥°), the weak* continuous linear functionals on ¥* are
precisely the elements of ¥"; so we have the following result.

1.3.5. PROPOSITION. A linear functional w, on the continuous dual space ¥*
of alocally convex space ¥, is weak* continuous if and only if there is an element x
of ¥ such that w(p) = p(x) for each p in v*.

1.4. Extreme points

Suppose that ¥ is a locally convex space. By the closed convex hull of a
subset Y of ¥~ we mean the closure o Y of the convex hull co Y; it is clear that
thisis the smallest closed convex set that contains Y. An element x, of a convex
set X'in ¥ is described as an extreme point of X if the only way in which it can be
expressed as a convex combination x, = (1 — a)x, + ax,,with0 < a < 1 and
Xy, X, in X, is by taking x; = x, = x,. We shall prove (Theorem 1.4.3) that
every compact convex subset of ¥~ has extreme points and is the closed convex
hull of the set of all its extreme points.

In the locally convex space R? (that is, in the plane), a closed triangle is a
convex set that has just three extreme points, its vertices. For a closed disk in
R?, the extreme points are precisely the boundary points. In each of these
examples, it is apparent that the set specified is the convex hull of its extreme
points. In the case of a triangle, one might expect that the sides, as well as the
vertices, have some significance in terms of convexity structure; in fact, each
side is a “face,” in a sense now to be defined.
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By a face of a convex set X in ¥~ we mean a non-empty convex subset
F of X, such that the conditions

O<a<l, Xy, X, € X, (1 —a)x, +ax,€F,

imply that x,, x, € F. Note that x, is an extreme point of X if and only if the
one-point set {x,} isa face of X. It is apparent that, if a family of faces of X has
non-empty intersection, then this intersection is itself a face of X. Moreover, if
Y is a face of X and Z is a face of Y, then Z is a face of X. In particular,
therefore, an extreme point of a face of X is also an extreme point of X.

The following lemma provides a slight strengthening of the defining
property of a face; and upon specializing to ‘“‘one-point” faces, it reduces to a
similar assertion about extreme points.

1.4.1. LeMMA. If Fisa face of a convex set X anda,x, + * -+ + a,x,€F,
where x,,...,x,€X and a,,...,a, are non-negative real numbers with sum 1,
then x;e F when 1 <j < n and a; > 0.

Proof. 1t suffices to show that x,eF if a;>0. If a, =1, then
a,=a3;="""=a,=0and x;, =a;x;, + - +a,x,eF. If 0<a, <1, let
a=1— a, and let y be the convex combination a~*(a,x, + ' -+ + a,x,) of
Xy,...,X%,. Then x;, yeX,0<a < 1, and

(1—a)x, +ay=ayx;, +ayx, + - +a,x,eF.
Since Fis a face of X, it follows that x,cF. H
The results that follow are formulated so as to apply to both real and

complex locally convex spaces, the notation Re being redundant in the real
case.

1.4.2. LEMMA. If X is a non-empty compact convex set in a locally convex
space ¥, p is a continuous linear functional on ¥, and
¢ = sup{Re p(x): xe X},
then the set F = {xe X:Re p(x) = ¢} is a compact face of X.

Proof. Since a continuous real-valued function on a compact set attains
its supremum, Fis not empty; and it is evident that Fis compact and convex. If
X1,Xx,€X, 0<a<l1, and (1 —a)x, +ax,eF, we have Rep(x;)<ec,
Rep(x,) < ¢, and

(1 — a)Rep(x;) + aRep(x,) = Rep((1 — a)x, + ax;) =c;
so Rep(x;) = Rep(x,;) = ¢, and x, x, € F. Thus Fis a face of X. W
1.4.3. TueoreM (Krein-Milman). If X is a non-empty compact convex

set in alocally convex space ¥, then X has an extreme point. Moreover, X = CO E,
where E is the set of all extreme points of X.
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Proof. The family # of all compact faces of X is non-empty since X e %
and is partially ordered by the inclusion relation =. Let &, be a subfamily of
& that is totally ordered by inclusion. It is evident that #, has the finite-
intersection property, so by compactness the set F, = ({F: Fe #,} is non-
empty. Thus F, is a compact face of X, and is a lower bound of #, in £

Since every totally ordered subset of # has a lower bound in % it follows
from Zorn’s lemma that # has an element F that is minimal with respect to
inclusion. We shall show that F consists of a single point x, and since F is a
(compact) face of X, it then follows that x is an extreme point of X. To thisend,
suppose the contrary, and let x,, x, be distinct elements of F. By the
Hahn-Banach theorem, there is a continuous linear functional p on ¥~ such
that Re p(x;) # Re p(x;). From Lemma 1.4.2 we can choose a real number ¢ so
that the set

Fy ={xeF:Rep(x) = c}

is a compact face of F. Accordingly, F, is a compact face of X that is, Foe &
Since Re p(x;) # Rep(x,), at least one of x,, x, lies outside Fy; so F, is a
proper subset of F, contrary to our minimality assumption. Hence F consists of
a single point.

So far, we have shown that each non-empty compact convex subset of ¥~
has an extreme point. If E denotes the set of all extreme points of X, it is clear
thatco E = X, and we have to show that equality occurs. Suppose the contrary,
and let x, € X\co E; we shall obtain a contradiction. From the Hahn-Banach
theorem, we can find a continuous linear functional p on ¥~ and a real number
a such that

) Re p(x¢) > a = Rep(y) (y€COE).
If ¢; = sup{Re p(x): xe X}, then ¢, > a, and the set
F, = {xe X:Rep(x) = ¢y}

is a compact face of X by Lemma 1.4.2. In particular, F, is a non-empty
compact convex subset of ¥, and so has an extreme point x,. Since x, is an
extreme point of a face of X, it is an extreme point of X, that is, x, e E.
However, Re p(x,) = ¢, > a, contradicting (1). ®

1.4.4. CoroLLARY. If X is a non-empty compact convex set in a locally
convex space ¥ and p is a continuous linear functional on ¥, there is an extreme
point xq of X such that Re p(x) < Re p(x,) for each x in X.

Proof. Let
¢ = sup{Re p(x): xe X}.
By Lemma 1.4.2, the set {xe X:Rep(x) =c} is a compact face of X. In
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particular, it is a non-empty compact convex set in ¥; and so has an extreme
point x,. Since x, is an extreme point of a face of X it is an extreme point of X;
and

Re p(xo) = ¢ = Re p(x) (xeX). &

1.4.5. THEOREM. If X is anon-empty compact convex set in a locally convex
space ¥~ and Y is a closed subset of X such thatTo Y = X, then Y contains the
extreme points of X.

Proof. Suppose that x, is an extreme point of X. In order to show that
xo€ Y, it suffices to prove that x, + V' meets Y whenever V is a balanced
convex neighborhood of 0 in ¥~; for Y is closed, and sets of the form x, + V
constitute a base of neighborhoods of x,. Given V as above, the family
{y +LV:ye Y} is an open covering of the compact set Y, and so has a finite
subcovering {y; + 1V:j=1,...,n}, with y,,...,y, in Y. Let V'~ denote the
closure of V, and for j = 1, ..., n, let X; be the non-empty compact convex set
(¥; +3V7)n X. Then

n n
Y= YmXE[ U (yj+%V)]mX§ U X;.

j=1 j=1
Let S be the set of all vectors of the form a,;x, + - - - + a,x,, where x;€ X
(j=1,...,n) and the coefficients a,,...,a, are non-negative real numbers
with sum 1. Then S contains each X;, and so contains Y’; from the convexity of
X,,..., X,, it is readily verified that S is convex. We assert also that S is

compact. To prove this, let 4 be the compact subset

{(ay,...,a,):a, 20,...,4,20,a, + - +a,=1}

of R", and write a for the element (a,,...,a,) of A. By Tychonoff’s theorem,
theset 4 x X; x '+ x X, iscompact in the product topology; and hence S is
compact, since it is the image of the product set under the continuous mapping

@, xy,...,x,)—>ayx; + - + a,x,.

From the preceding paragraph, S is a compact convex set containing Y.
Thus S contains the closed convex hull X of Y; in particular, x,eS.
Accordingly, x, can be expressed as a convex combination a;x, + -+ + a,x,,
where x;e X; (< X). Since x, is an extreme point of X, x, = x; for some j in
{1,...,n} (take any j with g; > 0), and

Xo = X; S-'ngy!"'";'V_

Thus x, — y;lies in the closure of 1¥; so the neighborhood x, — y; + 3V meets
1V. Since V is balanced and convex, it now follows that y;e x, + V, whence
Xo+ Vmeets Y. B
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1.5. Normed spaces

In the discussion preceding Proposition 1.1.5, we introduced the concepts
of “semi-norm” and “norm” on a (real or complex) linear space. In Theorem
1.2.6, we showed how a separating family I" of semi-norms on such a space
gives rise to a locally convex topology. The present section is concerned with
the case in which I' consists of a single norm.

By a normed space we mean a pair (X, p) in which X is a linear space whose
scalar field K is either R or C and pisanormon X. When x € X, we usually write
||x|| rather than p(x), and refer to ||x|| as ‘“‘the norm of x.”” With this notation,
the defining properties of a norm can be set out as follows: whenever x, ye X
and aelk,

(@) ||x|| = 0, with equality only when x = 0;
(b)  lax]| = (af l|x1;
©) |lx + yll < lIxIl + [I¥]| (the triangle inequality).

We recall also another property, ||lx|| — |I¥ll| < |lx — yl|, which is an easy
consequence of the triangle inequality.

Suppose that (X, || ||) is a normed space. From the properties (a), (b), and
(c), just noted, it is apparent that the equation

dx,p)=llx =yl  (x,yeX)

defines a metric 4 on X. Also, X has a locally convex topology, the norm
topology, derived as in Theorem 1.2.6 from the family I" consisting of the single
norm || || on ¥, and this topology gives rise to a uniform structure on X,
described in the discussion preceding Proposition 1.2.1. In the norm topology,
each x4 in X has a base of neighborhoods consisting of the sets V(x,:] ||;¢)
(e > 0), where

Vxo:ll ll;8) = {xe X:|lx — xoll < &} = {xe X:d(x,x0) < ¢},

the “open ball” with center x, and radius ¢. The corresponding uniform
structure has a base, consisting of the sets

{(x,)eX x X:x —yeV0:(l;8)} = {(x,y)e X x X:|lx — yl| < ¢}
={(x,y)eX x X:d(x,y) < &}.

Accordingly, the norm topology, and the associated uniform structure, are
precisely the topology and uniform structure derived in the usual way [K: pp.
119, 184] from the metric d on X. Since X, with the norm topology, is a linear
topological space, the mappings (x, y) - x + yand (a, x) —» ax are continuous;
and so is the mapping x — ||x||, by Theorem 1.2.6. Of course, these continuity
assertions can easily be verified directly, using the defining properties (a), (b),
and (c) of the norm.
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A normed space (X, || ||) is described as a Banach space if it is complete
relative to the uniform structure just mentioned; that is, if it becomes a
complete metric space, with the metric d defined above. The scalar field [ is a
one-dimensional Banach space, the modulus function being a norm which
gives rise to the usual topology on K. With either of the norms p,, p,, , defined
in the discussion preceding Proposition 1.1.5, K" becomes a Banach space (in
either case, the norm topology being the usual product topology).

When X is a normed space and r > 0, we denote by (X), the closed ball
{xeX:||x|| < r};werefer to (X), as the unit ball of X. Since (¥), is convex and is
closed in the initial (thatis, the norm) topology, it is weakly closed, by Theorem
1.3.4. A subset € of X is bounded if € <= (X), for some positive real number r.

A linear mapping T from a normed space X into another such space % is
said to be norm preserving if ||Tx|| = ||x|| for each x in X. Such a mapping is
necessarily isometric (that is, distance preserving) and hence one-to-one, since

d(Txy, Tx) = [ITx; — Txy|l = [ T(x; — x2)ll = [1X1 — xall = d(x1, X2);

and conversely, an isometric linear mapping is norm preserving. A norm-
preserving linear mapping from a normed space X onto another such space % is
sometimes described as an isometric isomorphism from X onto %.

A subspace X of a normed space % is itself a normed space since the norm
on & restricts to a norm on X. The following theorem shows that every normed
space can be viewed as an everywhere-dense subspace of an (essentially unique)
Banach space.

1.5.1. THEOREM. If X is a normed space, there is a Banach space % that
contains X as an everywhere-dense subspace (and such that the norm on X is the
restriction of the norm on%). If % , is another Banach space with these properties,
the identity mapping on X extends to an isometric isomorphism from & onto %, .

Proof. Let d be the metric on X derived from the norm; let ¥ be the
completion of the metric space X so obtained, and let d denote the metric on X.
Thus X is a complete metric space, X is an everywhere-dense subset of X, and

du,v) = du,v) = |lu —v| (W, veX).

We shall show that ¥ can be made into a Banach space, with addition, scalar
multiplication, and norm, extending those of X.
When u, ¥, v, V'€ X and ae K (the scalar field),

e +v) = @ + )| = ll(u — ) + (v — ) < lu —w|| + [lv— V),
llau — aw'|| = falllu — T, [lull — lle]}] < [Jee — 0.
Accordingly, the equations

Sw,p)=u+v,  gy)=au,  h(u)=u
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define uniformly continuous mappings
fExX-%(cX, g.X-%¥(cX, hXi-R

Since ¥ and R are complete, and X is everywhere dense in X (so that X x X is
everywhere dense in ¥ x ¥), it follows that f; g,, 4 extend by continuity to
uniformly continuous mappings
f:ixi’—»i, g}:i——»i, ﬁ:i—»R,
respectively.
The addition and scalar multiplication, already defined for elements of X,
can now be extended to ¥ by the equations

u+v:f(usv)s au:éa(u) (u,vei, QGK);

and we assert that, in this way, ¥ becomes a linear space over . To prove this,
it suffices to verify the relations

ut+v=v+u, u+@W+w)=u+0)+w, u+0=u,
u+(—DHu=0, (a + b)u = au + bu, a(u + v) = au + av,
a(bu) = (ab)u, lu=u,

for all u,v, win ¥ and a, b in . Of course, all these relations are satisfied when
u,v, we X, and simple continuity arguments show that they remain valid for
elements of ¥. For example, the relation a(u + v) = au + avcan be rewritten in
the form

éa(f(u’ U)) - f(éa(u)s éa(v)) = 07

and is satisfied when u,veX. The left-hand side of this last equation is a
continuous function of (u,v) on ¥ x X, which vanishes on the everywhere-
dense subset X x X, and so vanishes throughout ¥ x ¥ (as required). Similar
arguments establish the other relations; so ¥ is a linear space over K.

We prove next that / is a norm on ¥. The relations

h(u—v) —du,v) =0,  h(au) = |a|h(y)  (acK)

are satisfied when u, v e ¥, since A extends the norm on X. By continuity, they
remain valid for all , v in X. Accordingly,

h(u + v) = du + v,0) < du + v,v) + d(v,0) = A(u) + h(v),

and A(u) = d(u, 0) > 0 (with equality only when u = 0), when u, ve ¥. It now
follows that A is a norm on X, which extends the norm on X, and gives rise to the
complete metric 4 on X. Hence X is a Banach space and contains X as an
everywhere-dense subspace.

Finally, suppose that & and %, are Banach spaces, each containing X as an
everywhere-dense subspace and each with its norm extending the norm on X.
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The identity mapping on ¥ can be viewed as a continuous linear operator, from
an everywhere-dense subspace of the Banach space % into the Banach space
% . By Corollary 1.2.3, it extends to a continuous linear operator T from %
into % . The equation f(u) = ||Tu|| — ||u|| defines a continuous mapping
f[:% — R, and f vanishes on the everywhere-dense subset X of #. Hence f
vanishes throughout %, and T is norm preserving, and therefore isometric.
Since % is complete and T'is isometric, the range T(#%) of Tis complete, and is
therefore closed in %, . Thus T(%) = %, since T(#) contains the everywhere-
dense subset X of #, ; and T is an isometric isomorphism from % onto %,
which extends the identity mapping on X. W

The Banach space % occurring in the statement of Theorem 1.5.1 is called
the completion of the normed space X.

The following lemma provides a useful criterion for the completeness of a
normed space. It is couched in terms of the convergence of certain infinite series
of vectors in the space; by the convergence of such a series, Y ¥ x,, we mean
convergence of the sequence of partial sums s, = x; + - + x,. The result
could easily be reformulated in terms of unordered sums of the type considered
at the end of section 1.2.

1.5.2. LemMa. If X is a normed space, the following two conditions are
equivalent:

(1) X is a Banach space.
(i) Ifxy,x;,...€Xandy ||x,|| < oo, the series Y x, converges, in the metric
of X, to an element of X.

Proof. Suppose first that X is a Banach space. Let {x,} be a sequence of
elements of X, such that ¥ ||x,|| < oo, and write s, for the partial sum
x; + -+ + x,. Given any positive ¢, there is a positive integer N such that
¥ 1%l < & (and hence [Is, — s,ll = X, %Il < &) Whenever m > n > N.
Hence {s,} is a Cauchy sequence, in the complete space X, and so converges
(that is, Y x, converges).

Conversely, suppose that condition (ii) is satisfied. If {y,} is a Cauchy
sequence in X, there is a strictly increasing sequence {n(1), n(2), ...} of positive
integers such that

IWm = Yull <275 (m > n>n(k)).
In particular, ||[Vnu+1) — Yaall < 27 and therefore

s o}
[1Yacll + Z ﬂj’n(kﬂ) = Ynwll < 00.

k=1

From condition (ii), the series puiy + ¥ (Vak+1) — Vnwy) CONverges to an
element y of X; that is, the sequence {y,,} converges to y (because y,, is the
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kth partial sum of the series). Finally, when n > n(k),

Vn — Y <1Wa = Yaoll + Wagy — VIl < 27% + 1Yy — VI

and since the right-hand side tends to 0 when k& — oo, {y,} converges to y.
Hence X is a Banach space. W

1.5.3. TueoreMm. If % is a closed subspace of a normed space X, the
equation
lIx + #llo = inf{llx + yll:ye¥}  (xeX)

defines a norm || ||, on the quotient space X/%. With this norm on X/%, the
quotient mapping
O:x>x+%: X-X/%

is a continuous linear operator, and ||Qx||o < ||x||; and X/% is a Banach space if X
is a Banach space.

Proof. Suppose that x, x;, x,eX and a is a scalar. Since
inf{||x + y||: ye ¥} = inf{||u|| :uex + ¥},

the definition of ||x + #||, is unambiguous (that is, it depends only on the coset
X + %, not on the choice of x within that coset); moreover, ||x + ||, = 0. For
all y, y,, and y, in ¥,

Iy + x2 + y; + yall < llxy + 21l + [Ix2 + yall, llax + ayl| = |al [|x + yl|.
Thus

lles + x2 + @llo <llxs + Fllo + lx2 + Fllo,  llax + Fllo = lalllx + Hllo-

If ||x + @], = 0, there is a sequence {y,} in % such that ||x + y,|| < 1/n
(n=1,2,...); since % is closed, while — y,e% and lim(— y,) = x, it follows
that xe %, whence x + % is the zero vector in X/%. Hence || ||o is a norm on
X/%.

The quotient mapping Q is a linear operator, and is continuous since

1Qx; — Qxallo = llxy — x2 + ¥|lo
=inf{{lx; —x; +yll:ye¥} < lix; — x|

for all x, and x, in X.

Suppose that X is a Banach space. If {x, + %} is a sequence of elements of
X/%, and Y||x,+ @|o < oo, we can choose y;,y,,... in ¥ so that
[, + pall < |Ixs + #|lo + 27" Thus ¥||x, + y.|| < 0, and by Lemma 1.5.2,
the series Y(x, + y,) converges to an element z of X. Since Q is a continuous
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linear operator, and Q(x, + y,) = X, + V. + ¥ = x, + ¥, it follows that

Y (xa+ %) = Q( y (xn+yn))an
n=1 n=1

asm — oo ; thatis, Y (x, + %) converges to Qz (€ X/%). Again by Lemma 1.5.2,
X/% is a Banach space. HW

1.5.4. CorOLLARY. If% and & are subspaces of a normed space X, with %
closed and % finite-dimensional, then % + % is closed in X.

Proof. The quotient mapping Q: X — X/% is a continuous linear oper-
ator; the subspace Q(Z) of X/% is finite-dimensional and is therefore closed in
X/#% (Theorem 1.2.17); and & + & is the inverse image Q- (Q(Z)). W

We now consider some elementary properties of linear operators acting on
normed spaces.

1.5.5. THEOREM. If X and % are normed spaces and T:X — % is a linear
operator, the following four conditions are equivalent.

(i) T is continuous.
(ii) There is a non-negative real number C such that ||Tx|| < C||x|| for
each x in X.
(iii) sup{||Tx||/lIx||: xe ¥, x # 0} < co.
(iv) sup{||Tx||:xeX, ||x|]| =1} < o0.
When these conditions are satisfied, the suprema occurring in (iii) and (iv) are
both equal to the smallest real number C with the property set out in (ii).

Proof. The equivalence of (i) and (ii) is a special case of Proposition
1.2.8(ii), with both I'; and I', consisting of a single norm.
A real number C has the property set out in (ii) if and only if

ITxl/Ixll< € (xeX, x#0).
Upon taking x; = ||x|| " lx, it follows that this last condition is satisfied if and
only if

ITxill<C  (x1€X, llxill=1).
This proves the equivalence of (ii), (iii), and (iv), and shows that the suprema in
(iil) and (iv) coincide with the smallest possible value for Cin (ii). W

When X, % are normed spaces and T: ¥ — % is a linear operator, we denote
by ||T|| the (equal, and possibly infirrite) suprema occurring in parts (iii) and (iv)
of Theorem 1.5.5; we refer to ||T|| as the (operator) bound of T. Thus T is
continuous if and only if ||T]| < co; then

ITxl < NTY Hixll - (xeX),
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and ||T| is the smallest real number with this property. It is clear that ||T|| =
only when T = 0. Since continuity is equivalent to the existence of a finite
bound, continuous linear operators between normed spaces are often de-
scribed as bounded linear operators.

The set B(X, %) of all bounded linear operators from ¥ into % is a linear
space (with the same scalar field I as X and #). If S, Te #(X, %) and ac K,

(S + T)xil = 1Sx + Tx|| < ||Sx|| + || Tx]| < |IS|I + |IT1),
lleT)x]| = lla(Tx)|| = lal || Tx|]

whenever xe X and ||x|| = 1. By taking suprema, as x varies subject to the
conditions just stated, we obtain

IS+ T < IS+ 171l llaT|| = |al || T}-

Since, also, || T|| = 0, with equality only when T = 0, it follows that Z(¥, %) is a
normed space, with the operator bound as norm. When & = X, we usually
write 4(X) rather than %(X, X).

If X, %, & are normed spaces, and S: % — 2, T: X— % are continuous
linear operators, then ST: X — & is continuous. Since

ISTx} < ISIHNTx| < ISIHNT] - (xeX, |[Ix]l = 1),

it follows that ||ST|| < ||S]|||T||. This applies, in particular, when X = % = Z.
The set (X) is an associative linear algebra with a unit element / (the identity
mapping on X); it is also a normed space, and its norm (the operator bound)
satisfies [|{I|| = 1, [|ST|| < ||S||||T|. These properties of %(X) are characteristic
of Banach algebras, which are studied in Chapter 3.

1.5.6. THEOREM. If X is a normed space and % is a Banach space, both
having the same scalar field K, then the set B(X,%) of all bounded linear
operators from X into % is a Banach space over K, with the operator bound as
norm.

Proof. Wehavealready seen that #(X, %) is anormed space, so it remains
to prove that it is complete. Let { T} be a Cauchy sequence in Z(X, %). Given
any positive ¢, there is a positive integer N(g) such that

Tw— Tl <e  (m>nz= N
When xe X,
() NTwx — Tox|| < | T, — TlllIxll < ellxll  (m > n > N(e)).

Thus {T,x} is a Cauchy sequence in the Banach space #, and so converges to an
element of %. Accordingly, the equation

Tx = lim T,x (xeX)

n—x
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defines a mapping 7: X — %, and it is apparent that T is a linear operator.
Upon taking limits as m — oo in (1), we obtain

ITx — Toxl| < ellxll (22 Ne), xeX).

This shows that T — T, is a bounded linear operator (whence, so is T') and that
IT — T,|| < e whenever n = N(e¢). It follows that {7} converges to the element
T of B(X,%), and hence #4(X, %) is complete. W

1.5.7. TueoreM. If X is a normed space and % is a Banach space, both
having the same scalar field, then every bounded linear operator T: X - %
extends uniquely to a bounded linear operator T:X% %, where X is the
completion of X. The mapping T — T is an isometric isomorphism from B(X,%)
onto B(X,%).

Proof. By Corollary 1.2.3, each continuous linear operator T: X — %
extends uniquely to a continuous linear operator 7: ¥ — @. The inequality
ITN x|l — |ITx]| = 0is satisfied when x € X, and by continuity it remains valid
for all x in ¥. Thus||7|| < ||T]|; the reverse inequality is evident since 7' extends
T, so ||T|| = || ]-

It is apparent that the norm-preserving mapping

T->T: BEXY) - BEY)
is linear. Its range is the whole of #(¥, %) since, when S, € B(X, %), we have

So = T, where T, (€ B(X,%)) is the restriction So|¥. W

1.5.8. THEOREM. Suppose that X and % are normed spaces, T:X - % is a
bounded linear operator, X, is a closed subspace of X such that T(X,) = {0}, and
Q:X - X/X, is the quotient mapping. Then there is a bounded linear operator
To:X/Xy - % such that T = T,Q; moreover, || Tyl = ||T}|, and T, is one-to-one
if X is the null space of T.

Proof. From purely algebraic considerations T has a factorization 7,0,
where Ty: X/X, — % is a linear operator, and is one-to-one if X, is the null
space of 7. When x € X, ||Ox|| < ||x|| by Theorem 1.5.3;s0 ||Q|| < 1. Moreover,

1 ToQx]l = [ITx[| = [ T(x + x| < ITW1Ix + Xoll  (x0€Xo),
SO
IToQx]| < [ T|Hnf{]lx + Xoll: xo € Xo} = I TIIIQx]|.
Since Q(X) = ¥/X,, it now follows that T, is bounded, and
1Toll < T = IToQll < [ Toll 1121l < | Toll;
so || Toll = |IT]. =
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1.5.9. LemMa. If X and % are normed spaces, S: X — % and T:% — X are
linear operators such that ST = I (the identity operator on %), and

a = inf{||Sx||: xe T(¥), |Ix]| = 1},

then ||T)| = a~* (where 0~ ! is to be interpreted as o). In particular, T is bounded
if and only if a > 0.

Proof. Since ST = I, T can be viewed as a one-to-one linear mapping
from % onto T(%), and as such, it has an inverse mapping, the restriction
S|T(#). Also, when 0 # ze T(%), ||z||” 'z is a unit vector x in T(%). Thus

]| = sup {“ﬁ ved, ;éo}

e
= T 0
! {nsu zeT@), 22 }

=sup{||Sx|| " :xeT@), x| =1} =a"!. W

1.5.10. CoROLLARY. Suppose that X and % are normed spaces, S is a one-
to-one linear operator from X onto %, T:% — X is its inverse operator, and

a = inf{||Sx||: xe X, ||x|| = 1}.

(i) |IT)| = a~* (where 0~ is to be interpreted as o0); in particular, T is
bounded if and only if a > 0.

(i) If X is a Banach space, S is bounded, and a > 0, then % is a Banach
space.

Proof. (i) This follows from Lemma 1.5.9, since T(%) = X.

(i) Since a > 0, T (as well as S) is bounded; so both §: X - % and its
inverse T:% — X are uniformly continuous. Hence the completeness of X
entails completeness of . W

1.6. Linear functionals on normed spaces

In this section we shall be concerned with the continuous dual space ¥* of a
normed space X and with the properties of the weak topology o(¥, X*) on X and
the weak* topology o(X* X) on X'. It turns out that, in a natural way, X*
becomes a Banach space and X is isometrically isomorphic to a subspace of the
second dual space ¥* (= (¥%)"). We describe a necessary and sufficient
condition for this subspace to be the whole of X*.

In Section 1.5 we considered linear operators from a normed space X into
another such space % and introduced the normed space #(%, %) of continuous
linear operators. By taking, for @, the scalar field KK, we obtain results
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concerning linear functionals. From Theorem 1.5.5, a linear functional p on ¥
is continuous if and only if it is bounded, in the sense that there is a non-
negative real number C such that

lo()l < Cllxl|  (xeX).

When p is bounded, the least possible value of C is the bound ||p|| of p, defined
by
(o)l _ )

M el = suP{IITIi xeX, x # 0} =sup{lp(x)l: xe X, |jx|| = 1}.
The continuous dual space X° of X, defined (as in Section 1.3) as the linear space
of all continuous linear functionals on X, coincides with #(%, K); by Theorem
1.5.6, it is a Banach space, its norm being given by (1). We refer to X*, with this
norm, as the Banach dual space of X.

For normed spaces, we have the following Hahn-Banach extension
theorem.

1.6.1. THEOREM. If X, is a subspace of a normed space X and p, is a
bounded linear functional on X, there is a bounded linear functional p on X such
that |lpl| = llpll and p(x) = po(x) when x& Xq.

Proof. This follows at once from Theorem 1.1.7, with

p(x) = llpollllxll  (xeX). ®

1.6.2. COROLLARY. Ifx, is anon-zero vector in a normed space X, there is a
bounded linear functional p on X such that ||p|| = 1 and p(xy) = ||x0l|.

Proof. The equation py(cxo) = c||x,|| defines a bounded linear functional
po on the one-dimensional subspace X, generated by x,; moreover,
po(x0) = |Ixoll, and ||po|| = 1. By Theorem 1.6.1, p, extends (still with norm 1)
to a bounded linear functional p on X. W

1.6.3. CorOLLARY. If % is a closed subspace of a normed space X and
Xo € X\%, there is a bounded linear functional p on X such that ||p|| = 1, p(y) =0
for each y in %, and p(x,) = d (> 0), where

d = inf{||xo + yll: ye ¥},
the distance from xq to %.

Proof. The quotient mappingQ: X - X/% is a bounded linear operator,
and d = ||Qx,|| > 0. By Corollary 1.6.2, there is a bounded linear functional pq
on X/% such that [|po|| = 1 and po(Qx,) = d. The equation p(x) = po(Qx)
defines a bounded linear functional p on X; p(x,) = d, and p(y) = 0 for each y



1.6. LINEAR FUNCTIONALS ON NORMED SPACES 45

in %. Since p has the factorization p,Q through X/%, it follows from Theorem
1.5.8 that {[p|| = ||pol| = 1. W

1.6.4. THEOREM. If X is a normed space and x € X, the equation

2p)=plx)  (pe¥h

defines a bounded linear functional % on the Banach dual space X*. The mapping
x — X is an isometric isomorphism from X onto the subspace ¥ = {%: x< X} of the
second dual space X**.

Proof. 1ltisevident that £, as defined in the theorem, is a linear functional
on ¥*, and that the mapping x — % is a linear operator from X into the algebraic
dual space of X*. When x, ¢ X,

I%o(p)l = lp(xo)l < llpll Ixoll (€ XP).
When p is chosen as in Corollary 1.6.2,

IXo(0)l = lIxoll = Hlll 1ol

Thus £, is a bounded linear functional, and ||X,|| = [|x,ll; so the mapping x — £
is an isometric isomorphism from X onto a subspace ¥ of ¥*. W

When X is a normed space, the mapping x — X occurring in Theorem 1.6.4
is called the natural isometric isomorphism from X into X**, and ¥ is described as
the natural image of ¥ in X**. The weak* topology o(X*, X) (as defined, in the
discussion preceding Proposition 1.3.5, for locally convex spaces) is the weak
topology induced on ¥* by ¥.

If ¥ = X*, the normed space X is said to be reflexive. A reflexive normed
space X is necessarily a Banach space since it is isometrically isomorphic to the
Banach dual space X**. However, many Banach spaces are not reflexive (see,
for example, Exercise 1.9.24).

Part (i) of the following result is known as the Alaoglu-Bourbaki theorem.

1.6.5. THEOREM. Suppose that X is a normed space and ¥ is the natural
image of ¥ in X

(i) The unit ball (X%), is compact in the weak* topology o(X°,X) on X*.

(ii) The weak* closure in X* of the unit ball (%), of ¥ is the unit ball (X™), of
X",

Proof. (i) For each x in X, let D, denote the compact subset
{a:]al < ||x||} of the scalar field K. The product topological space

P=T]D,

xeX

is compact, by Tychonoff’s theorem. It consists of all functions p: ¥ — K such
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that p(x)e D, (xeX); each element p, of P has a base of neighborhoods
consisting of all sets of the form

{peP:p(x)) —po(xp <e(j=1,....,m)},
wheree > 0 and x,, ..., x,, € X. For each x in X, the mapping p — p(x): P - K
is continuous.
The unit ball (X%), consists of all linear mappings p: X — K such that
p(x) e D, (that is, |p(x)| < ||x]|) for each x in X. Thus

(X1 = {pe P:p(ax + by) — ap(x) — bp(y) = 0 (x,ye X; a,be K)}.

From the final sentence of the preceding paragraph, it now follows that (X*), is
a closed subset of P and is therefore compact in the relative topology.

In view of the form of the basic neighborhoods of points in P (as described
above) and the definition and discussion of the weak* topology (preceding
Proposition 1.3.5), it is clear that the relative topology on (X%), as a subset of P
coincides with its relative weak* topology as a subset of X*. Thus (X*), is
compact in the latter topology.

(i) From (i), (X*), is compact in the weak* topology o(¥™, X*), and so
contains the weak* closure € of its convex subset (.’Af)1 ; we have to show that
% = (X*), . Suppose the contrary, and choose g, in (X*),\% ; we shall obtain a
contradiction. By the Hahn-Banach theorem, there is a weak* continuous
linear functional w, on X** and a real number g such that

Re (1)0(0'0) > a, Re 0)0(0') < a (O'G(g).
By Proposition 1.3.5, there is an element p, of X* such that wy(c) = a(p,) for all
o in X%,
When xe X and ||x|| = 1, we can choose a scalar b such that |b| = 1 and
lpo(X)| = bpo(x) = bX(po) = wo(bX) = Re wy(bX);
and since b e(X), < ¥, it follows that |po(x)| < a. Thus [|p,|| < a. However,
since ||oo|| < 1, we have
llpoll = lao(po)l = Reao(po) = Rewo(ao) > a,
contradicting the previous inequality. W

1.6.6. CorOLLARY. If & is a bounded weak* closed subset of the Banach
dual space X* of a normed space X, then & is weak* compact. If, in addition, & is
convex, it is the weak* closed convex hull of its extreme points.

Proof. For some positive r, & is a (weak* closed) subset of the ball (X*),

= r(X%),), and this ball is weak* compact by Theorem 1.6.5(i); so & is weak*

compact. The final assertion in the corollary now follows from the

Krein-Milman theorem (1.4.3), since X*, with the weak* topology, is a locally
convex space. W
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1.6.7. THEOREM. A normed space X is reflexive if and only if its unit ball
(X) is compact in the weak topology.

Proof. 1Tt is clear that X is reflexive (that is, ¥ = ¥*) if and only if
(%), = (¥"),. By Theorem 1.6.5, (X™), is weak* compact, and is the weak*
closure of (¥),. Thus (¥), = (X¥*), if and only if (¥), is weak* compact.

The natural isometric isomorphism x — £: X —» X (< ¥*) carries (¥X), onto
(%),. When xoe X, py, ..., pme X%, and ¢ > 0, it carries the basic neighborhood

{xeX:|pj(x) — pi(x0)l <e(J=1,...,m)}
of x, (in the weak topology on X) onto the basic neighborhood
{tek: 1X(p;)) — Zolp)l <e (= 1,...,m)}

of %, (in the relative weak* topology on ¥, as a subset of X*). It is therefore a
homeomorphism between ¥ and ¥, with the topologies just mentioned. Thus
(¥), is weak* compact if and only if (¥), is weakly compact. W

Suppose that X and % are normed spaces and T: X — & is a bounded linear
operator. If p is a continuous linear functional on %, the composite mapping
pe T is a continuous linear functional on X. Accordingly, we can define a
mapping T*:%* - X* by

T'p=poT (pe¥").

We assert that T* is a bounded linear operator and that ||T¥| = ||T||. The

linearity of T* follows from the fact that
(@101 + azpy)e T=ay(p1oT) + ay(p,° T),

when p,, p,e%* and a,, a, are scalars. For each p in %,

(T*p)x)| = (T < Mol ITxll < NI (xe X),

and thus ||T*p|| < ||T)|llpll; so T* is bounded, and || T*"| < ||T||. To prove the
reverse inequality, it suffices to show that ||Tx|| < ||T%|||x|| for each x in X.
Given such x, it follows from Corollary 1.6.2 that we can choose p in %*so that
lloll = 1 and p(Tx) = ||Tx||; and

ITx]| = |p(Tx)| = (T*p)(X)|
< Tl < NT ol Il = 1T 11,

as required.
When T,, T,: X - % are bounded linear operators and pe %’ it results
from the linearity of p that

(a;Ty + a,Ty)'p=po(a; Ty + a, T,)
=a,(poTh) + aypoTy) =a;Tip + a, Tsp
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for all scalars a,,a,. Thus
(a;Ty + a;T,) = a; Ti + a, T3,

and the mapping T — T* is a norm-preserving linear operator from #(X, %)
into 2(%°, X*).
If X, %, & are normed spaces, and Se (¥, %), Te B#(X,%), then

(ST)'p = po(ST) = po(SeT) = (p> ) T = T'(S*)

for each p in Z*; so (ST)' = T'S".

The operator T*:%* — X* is called the (Banach) adjoint of the bounded
linear operator T: X — %. When X and % are Hilbert spaces, there is another
(and, in that case, more important) adjoint operator, the (Hilbert) adjoint
T*:% — X, which will be described in Section 2.4.

1.6.8. ProposiTION. If T is a bounded linear operator from a normed space
X into another such space ¥, then T* is continuous relative to the weak*
topologies on %" and X*.

Proof. We use the criterion set out in Proposition 1.3.2. The weak*
topology on X* is o(¥* X), where X is the natural image of ¥ in X*.
Accordingly, it suffices to show that the linear functionals %o T* (xe ¥) on %*
are weak* continuous. Suppose xe X, and let y = Tx; for each p in %°,

(X2 T*(p) = X(T*p) = (T*p)(x)
= p(Tx) = p(y) = J(p).

Thus %o T* = e, and therefore %o T* is continuous in the weak* topology
o(@',%). |

1.7. Some examples of Banach spaces

In this section we describe some of the Banach spaces that will be used in
later chapters. In some cases, we shall first indicate a general process by which,
from a given Banach space X, another such space can be constructed ; we then
obtain specific examples by taking X = R or C.

When f, g are mappings from a set A into a Banach space X, and cis a
scalar, f+ g and ¢f will always denote the mappings defined by

(f+9)a) =fl@) + g(a),. (f)Na)=cfla) (acA).

1.7.1. EXAMPLE. [ spaces. If A is a set and X is a Banach space with
scalar field IK, we denote by /. (A, X) the set of all functions f: A — X such that
sup{||f(a)||:ae A} < co. Given two such functions, f and g, and a scalar c,



1.7. SOME EXAMPLES OF BANACH SPACES 49

f+ g and c¢f are functions of the same type. Thus /(A X) s a linear space over
KK, and it has a norm defined by

Al = sup{ll f(@)ll:ac A}.

We shall show that, with this norm, (A, X) is a Banach space.

To this end, suppose that { f,} is a Cauchy sequence in / (A, ¥); we have to
show that it converges to some element fof /,(A, X). Given any positive ¢, there
is a positive integer N(g) such that ||f,, — f.|l < ¢ whenever m > n > N(g).
Hence

M W@ — SN < —fill <& (a€A, m>nz N).

Accordingly, foreach ain A, { f,(a)} is a Cauchy sequence in the Banach space
X, and so converges; we can define a mapping f: A — X by fla) = limf,(a).
When m — oo in (1), we obtain

() Ifla) —fu@ll<e  (acA, n>=Ne)).

Thus ||[fla)]l <e+ |Ifi@l <e+ ||f)l, when aeA and n>= N(E); so
sup{||fla)l|: ac A} < co,and fel (A, X). Since || f — f,|| < ewhen n = N(c), by
(2), {f,} converges to f; and / (A, X) is a Banach space.

If a sequence (or net) {f,} converges in /(A, X), with limit £, then

sup |Ifla) — fu@l = IIf — full = 0;
aehA
that is, f,(a@) — f(a) uniformly on A. Convergence in the Banach space
I(A, X) is uniform convergence on A.
By taking X to be R or C, the construction just described gives rise to
Banach spaces /,(A,R) and /,(A,C); the latter is usually denoted by
I.(A). W

1.7.2. EXAMPLE. Spaces of continuous functions. If S is a topological
space and X is a Banach space with scalar field K, we denote by C(S, X) the set
of all continuous functions f: S — ¥ such that sup{||f(s)||:s€S} < 0. It is
apparent that C(S, X) is a subspace of the Banach space /,(S, X) defined in
Example 1.7.1; we shall show that it is a closed subspace. From this it follows
that C(S, X) becomes a Banach space when the norm is defined by

A1l = sup{|if(s)ll:s€ S}

Suppose, then, that fe (S, X), and fis the limit of a net { f,} of elements of
the subspace C(S, X). Then £,(s) — f(s) uniformly on S, and since fis a uniform
limit of continuous functions, it too is continuous on S. Thus fe C(S, ¥), and
(S, X) is closed in 1,,(S, X).

We shall usually be interested in the case in which S'is a compact Hausdorff
space. In this case, C(S, ¥) consists of all continuous functions f: S — X.
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Indeed, given any such f, the mapping s — || f(s)||: S — R is continuous, and is
therefore bounded on S; so sup{||f(s)||:s€ S} < 0.

By taking ¥ = R and C, we obtain Banach spaces C(S, R) and C(S, C); the
latter is usually denoted by C(S). W

In discussing the next example, we shall make use of Minkowski’s inequality
[R: p. 62, Theorem 3.5]:if 1 < p < o0, and xy,...,%X,,V1,...,V,€C, then

n 1/p n 1/p n 1/p
3 {Sirnef < S+ { S
j=1 j=1 j=1

The inequality extends at once to infinite sums; if fand g are complex-valued
functions defined on a set A and the sums Y| f{a)|”, Y |g(a)|” converge, then so
does Y| fla) + g(a)l?, and

1/p 1/p ljp
4) { 2 1 fa) + g(a)l"} < { > If(a)l"} + { X Ig(a)l"} :
acA achA aeA

For this, it suffices to observe that (by Minkowski’s inequality for finite sums),
the net of finite subsums of ¥ |f{a) + g(a)|” is bounded above by

1/p 1/p7]p
[{ > If(a)l”} + { > Ig(a)l"} ] .

1.7.3. ExampLE. [, spaces. If Ais a set, X is a Banach space with scalar
field I, and 1 < p < oo, we denote by /(A, X) the set of all functions f: A — X
such that ¥, .4 || fl@)||” < co. Given two such functions, fand g, it follows from
Minkowski’s inequality that

1/p 1/p
{ Y IIRa) + g(a)ll"} < { > LAl + Ilg(a)ll]"}

aeA aeh

1/p 1/p
< { Y IIf(a)ll"} + { Y llg(a)||"} < 00;
aeA as A
SO
f+g e ,(AX).
Also, cfely (A, X), and

{ ) IICf(a)II"}ﬁp = ICI{ ) Ilf(a)ll"}”p

acA acA

for each scalar c. Accordingly, /,(A, X) is a linear space over I, and has a norm
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defined by

1/p
A1l = { > ||f(t1)||‘”} :

aeA

We shall show that, with this norm, I,(A, X) is a Banach space.

To this end, suppose that { f,} is a Cauchy sequence in /,(A, X). Given any
positive ¢, there is a positive integer N(g) such that || f,, — f,|/| < ¢ whenever
m > n > N(g); that is,

©) 2 Ifm(@) = fl@IIP <€? (m>n > Ne)).

aehA

It follows that || f,,(a) — fu(a)|| < ewhenm > n > N(¢)and ae A ; so, for each a
in A, {f,(a@)} is a Cauchy sequence in the Banach space X, and therefore
converges. Accordingly, we can define a mapping f: A — X by f(a) = lim f,(a).
For each finite subset F of A, it results from (5) that

Z.F”f"'(a) =@l <& (m>n2= N)).
When m — oo, we obtain
ZIFHﬂa) — @l <& (n>= N);
and since this last inequality is satisfied for every finite subset F of A,
(6) L lfia) = @l <& (n> NG

Thus

f—1fn € L(A,X)
when n > N(¢), and therefore f = (f — f,) + foe (A, X). By (6), [If = fill < ¢
whenever n > N(¢), so { f,} converges to f. This proves that /,(A, X) is a Banach
space.

The construction just described gives rise, in particular, to Banach spaces
(A, R) and /,(A, C); the latter is usually denoted by /,(A). W

By taking for A the set {1,2,...,n} in Examples 1.7.1 and 1.7.3, it follows
that there are norms || ||, (1 < p < o) on the linear space K" (where K is R or
C), defined by the equations

”(Cls e 9Cn)”p = [lcllp + -+ |cn|p]1/P (] < p < W),
ll(cys- -yl = max{|cy], ..., |cal}

(Inthecaseof || ||; and || ||, this has already been noted near the beginning of
Section 1.5, the two norms being denoted there by p,, p.,.) It is easily verified
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that each of these norms gives rise to the usual product topology on K"
(necessarily so, by Proposition 1.2.16).

Our next two examples are drawn from measure theory, and we refer to
[H, R] as standard sources of information on this subject. For the sake of
simplicity we confine attention to o-finite measures, which suffice for our
purposes. Accordingly, we shall assume throughout the remainder of this
section that m is a o-finite measure defined on a g-algebra & of subsets of a set S.

1.7.4. ExampLe. L, spaces. We denote by L, (= L, (S, ¥,m)) the set
of all measurable complex-valued functions f'on S that are essentially bounded
in the following sense: there is a positive real number c¢ such that | f{s)| < ¢ for
almost all sin S. It is evident that L is a complex vector space, containing as a
subspace the set N of all null functions (those that vanish almost everywhere)
on S. We shall observe that, with a suitable norm (defined in (7) below), the
quotient space L, /N is a Banach space.

It is easily verified that, when fe L, there is a smallest constant ¢ such
that |f{s)| < c almost everywhere on S [R: p. 64]. It is denoted by
ess sup{|f(s)|:se S}, the essential supremum of |f|; and it is 0 only when f'is a
null function. There is an equivalence relation ~ on L, in which ' ~ g if and
only if f{s) = g(s) for almost all s in S; and the equivalence class [ /] of fis the
coset '+ N. The equation

(M IL1Il = esssup{|As)]:s€S}  (feLy)

defines a norm on L. /N. It is a straightforward result in measure theory that,
with this norm, L, /N is complete, and is therefore a Banach space [R: p. 66,
Theorem 3.11].

There is a common convention, which we shall usually follow, that the
Banach space just defined is denoted by L, (rather than L/N), and that its
elements are described as functions (although, strictly speaking, they are
equivalence classes of functions, modulo null functions). This convention is
convenient, and should not lead to confusion, provided it is remembered that
two essentially bounded functions must be regarded as the same member of L,
if they are equal almost everywhere.

It is not difficult to verify that a sequence { f,} in L, converges, in the norm
topology, if and only if there is a null set Z such that the functions {f,(s)}
converge uniformly on S\Z [R: p. 67]. If m is a regular Borel measure on a
compact Hausdorff space S and fe L, there is a sequence { f,} of continuous
functions on S, such that f(s) = limf,(s) almost everywhere on S and
[£:() < |If]] for all sin S'and alln =1,2,... [R: p. 54, Corollary]. ®

1.7.5. ExamPLE. L, spaces. Suppose that 1 < p < oo, and denote by L,
(= LS, ¥, m)) the set of all measurable complex-valued functions fon S for
which (5| f(s)|? dm(s) is finite. When f, ge L,, it follows from Minkowski’s
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inequality for integrals [R: p. 62, Theorem 3.5] that f+ ge L, and

1/p 1/p 1/p
” Ifs) + g(S)I”drn(S)} < {J If(S)I”dm(S)} + {LIQ(S)l"dm(S)} .
N N

From this, it is evident that L, is a complex vector space, which contains as a
subspace the set N of all null functions. The quotient space L,/N has a norm
defined by

1/p
®) LA = {J If(S)I”dm(S)} (feLy),
N

where [ /] denotes the coset £ + N. It is a result in measure theory [R: p. 66,
Theorem 3.11] that, with this norm, L /N is complete and is therefore a Banach
space.

Just as in the preceding example, we shall adopt a convenient (though not
strictly accurate) convention, by referring to the Banach space L, (rather than
L,/N) and describing its elements as functions (rather than equivalence classes
of functions).

We note three further results from measure theory [R: pp. 67, 68;
Theorems 3.12, 3.13, 3.14] concerning properties of L, spaces. First, a
sequence { f,} in L, that converges in the norm topology to an element f has a
subsequence that converges almost everywhere to f. Second, the set of all
simple functions in L, is an everywhere-dense subset of L,. Finally, if m is a
regular Borel measure on a compact Hausdorff space S, the continuous
functions form an everywhere-dense subset of L,. W

1.7.6. ReEmARK. Several of the Banach spaces described above will be
used frequently in later chapters. Our primary concern in this book is with a
certain class of Banach spaces (namely, Hilbert spaces), and with certain
algebras (C*-algebras) that can be represented as algebras of bounded linear
operators acting on Hilbert spaces. Now /, spaces and L, spaces are the
simplest examples of Hilbert spaces (see Examples 2.1.12 and 2.1.14).
Moreover, Banach spaces of the types /., L, C(S) can be provided with
additional algebraic structure (multiplication and involution), and then
become abelian C*-algebras.

As one would expect, our use of L, and L, spaces involves occasional
appeal to results from measure theory. In fact, measure theory will sometimes
be needed also in connection with C(S), where S is a compact Hausdorff space.
One of the main tools in the study of C*-algebras is the theory of positive linear
functionals; and the Riesz representation theorem [R: p. 40, Theorem 2.14]
asserts that there is a one-to-one correspondence between positive linear
functionals p on C(S) and regular Borel measures m on S, determined by
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the equation

p(f) = Lf(S) dm(s)y  (feC(S)).

(We shall always assume, as one of the defining properties of a regular Borel
measure m on a topological space S, that m(K) < oo for each compact subset K
of S. In the present case, S itself is compact, and thus m(S) < c0.) W

Our next objective, achieved in Theorem 1.7.8 below, is to show that L
can be identified with the Banach dual space of L,. For this purpose we shall
require the following simple result concerning o-finite measures.

1.7.7. LEMMA. Suppose that ¢ > 0 and g is a measurable complex-valued

function on S. If, for every measurable set X (< S) of finite measure, g is
integrable over X and

< em(X),

{ g(s) dm(s)
X

then |g(s)| < c for almost all s in S.

Proof. We have to show that the set ¥ = {seS:|g(s)] > ¢} is null. Let
{z,,z,,...} be a countable everywhere-dense subset of the unit circle

{zeC:|z| = 1},
and note that
a0
Y = U ij,
k=1

where Y = {se S:Rez;g(s) = ¢ + 1/k}. Thus it suffices to show that each of
the sets Y is null.

If Y, is not null, it has a measurable subset X such that 0 < m(X) < o
(since m is o-finite). Then,

J‘ g(s) dm(s) j z;9(s) dm(s)
X X

> '[ Re z;g(s) dm(s)
X

> L (c +;)dm(s) = (c + %)m(X) > cm(X),

a contradiction; so each Y is a null set. W
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1.7.8. THEOREM. Suppose that m is a o-finite measure defined on a o-
algebra & of subsets of a set S. For each g in L, the equation

po(f) = f fis)g(sydm(s)  (feL,)
s
defines a bounded linear functional p, on the Banach space L, , and the mapping
g — p, is an isometric isomorphism from L., onto the Banach dual space (L,)".

Proof. The usual norms on L, and L, will be denoted by || ||; and || ||
respectively. When fe L, and ge L, the function fg is measurable, and

19)g(s)] < 19l AS)]
for almost all s in S. Thus fge L, and

j S8)g(s) dm(s) | < |Iglle /() dm(s) = 1Igllll.f NI -
N S

From this, it follows easily that p,, as defined in the theorem, is a bounded
linear functionalon L, , with||p,|| < |lgll.. When X' (= S)is ameasurable set of
finite measure, its characteristic function yy is an element of L,, and

f g(s) dm(s) j)(x(s)g(s)dm(s) = |py(xx)|
X S

< lpgllllxxly = [lpgllm(X).

From Lemma 1.7.7, |g(s)| < |lp,l| for almost all s in S; so ||g]l.. < llp,ll, and
therefore ”pg” = ”q”oo .

The mapping g — p, is linear, and from the preceding paragraph it is an
isometric isomorphism from L, onto a subspace of (L,)*. It remains to prove
that its range is the whole of (L,)".

Suppose that p € (L,)*; we shall show in due course that p = p, for some gin
L, . Observe first that, if {Y,} is an increasing sequence of measurable sets
whose union Y has finite measure, then

ey = xralli = m(Y\Y,) > 0;

and, since p is continuous, it follows that

p(xy) = lim p(xy,)-

n— o
We now choose (and, for the moment, fix) a measurable set X of finite
measure, and we define a complex-valued function u on & by

© w(Y) = p(xny)  (YeF).
It is apparent that y is a finitely additive set function, and
10) W) =w¥nX), wW2Z)=0 (Y,Ze¥, m(Z)=D0).
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Moreover, if { Y, } is an increasing sequence of measurable sets with union Y, it
results from the preceding paragraph that

w(Y) = p(xny) = lim p(xxny,) = lim u(Yy).
Thus u is a complex measure on .%. Since it vanishes on the null sets of m, it
follows from the Radon-Nikodym theorem that there is an element 4 of L,
such that

(11 wY) = j A(s) dm(s) (Ye%).
Y
Now
J h(s)dm(s) | = ()] = 1p(ux )l
Y

< llellllxxarlle = llollm(X n Y) < lpllm(Y) ~ (Ye&).

By Lemma 1.7.7, |h(s)| < ||p|| for almost all sin S; moreover, jy h(s)ydm(s) =0
whenever Y is a measurable subset of S\X, and thus A(s) = 0 almost
everywhere on S\X. When the values of 4 are suitably adjusted on a null set,
(11) remains valid, and in addition

(12) heL,, |hs)|<loll GeS), h()=0 (teS\X).

Since m is o-finite, S is the disjoint union of a sequence {X,, X,,...} of
measurable sets of finite measure. For each X,, we can use the process
described in the preceding paragraph to obtain a complex measure y, and the
corresponding Radon-Nikodym derivative 4,; and X,, h,, y, satisfy con-
ditions analogous to (9), (11), and (12). Each sin Slies in exactly one of the sets
X, ; so the sequence {A,(s)} has at most one non-zero term, and

Y 1)l < el
n=1

The equation
g(s) = ). h(s)
n=1

defines a bounded measurable function g on S (so ge L)

We shall prove that p,=p. To this end, it suffices to show that
ps(f) = p(f) whenever fis the characteristic function of a measurable set Y
(< 8) of finite measure; for p and p, are continuous linear functionals, and
linear combinations of such functions fform an everywhere-dense subset of L,
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(the integrable simple functions). Now Y = { J Y,, where

Y,=YnX,uX,u-ulX,) n=12,..).
Thus

p(xy) = lim p(xy,) = lim P( Z X}'nX,)
j=1

n— o n— o

lim Y p(ryax,) = Y. ui(Y)

n—=ow j=1 i=1

wfmmmm=memx
=1JY Y

J

the last step follows from the dominated convergence theorem, since
m(Y) < co. Hence p(xy) = p,(xy), as required. M

A topological space is said to be separable if it has a countable everywhere-
dense subset. It is not difficult to verify that a metric space is separable if and
only if its topology has a countable base [K: p. 120, Theorem 11]; and from
this, it follows that a subset of a separable metric space is itself separable in the
relative topology.

In proving the two following results, we shall use the term rational complex
number to describe a complex number whose real and imaginary parts are both
rational.

1.7.9. ProposiTioN. IfAisasetand1 < p < oo, the Banach space [,(A) is
separable if and only if A is countable.

Proof. If A is countable, we may enumerate it as a (possibly finite)
sequence {a;,d,,...}. For each positive integer r, let Y, be the set of all
functions y on A such that y(a,) is a rational complex number when 1 < n < r
and y(a,) = 0if n > r. Since each Y, is a countable subset of /,(A), so is the set
Y={)v,.

If xel,(A) and ¢ > 0, we can choose first a positive integer r and then
rational complex numbers ¢, ...,c, so that

2 x(@)lP < 3e?, 2 1x(@) = c,f? < e

n>r n=1

If ya,)=c, 1<n<r) and ya,)=0 (n>r), then yeY, (€ Y) and

[lx — y|l < &. Hence Y is an everywhere-dense countable subset of /,(A).
Conversely, if [,(A) is separable, the same is true of its subset

X = {x,:ae A}, where x, denotes the function whose value is 1 at a and 0

elsewhere on A. Thus X has an everywhere-dense countable subset, which must
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be the whole of X, since ||x, — x;|| = 2!/ when a # b. In other words, X (and
therefore, also, A) is countable. W

1.7.10. ProPOSITION. Suppose that 1 < p < oo and m is a o-finite measure
defined on a o-algebra # of subsets of a set S. Then the Banach space L (S, ¥, m)
is separable if and only if there is a sequence { X, X, ...} of measurable sets of
finite measure with the following property: given any measurable set X of finite
measure and any positive ¢, there is an integer j for which

m((X\X) u (X\X)) < e.

Proof. Let % be the family of all measurable sets of finite measure. When
X, Ye %, the characteristic functions yy, yy lie in L,, and

lxx — xxll? = m((X\Y) 0 (Y\X)).

Accordingly, the existence of a sequence {X, X,,...} with the properties set
out in the proposition is equivalent to the existence of a countable everywhere-
dense subset of the set C = {yx: Xe S} (= L,).

If L, is separable, so is C. Conversely, suppose that C has a countable
everywhere-dense subset {g,,g,,...}. Let R be the countable subset of L, that
consists of all finite linear combinations z,g; + * - + z,g,, in which the
coefficients zy, .. ., z, are rational complex numbers. Given any fin L, and any
positive ¢, there is a simple function f; in L, such that || f — f,|| < 3e. Sincef, isa
finite linear combination (with complex coefficients) of elements of C, there is
a finite linear combination f, (with rational complex coefficients) of elements
of the everywhere-dense subset {g,,g,,...} of C such that |[f; — f3|| < e
Then f,e R and ||f — f3]| < ¢; so R is a countable everywhere-dense subset
of L,, W

1.7.11. Remark. It follows from Proposition 1.7.10 that, when
1 <p < oo, the L, space, associated with Lebesgue measure on a measurable
subset E of R", is separable. To prove this, we consider the set of all “rational
cells”

{(x1,. - x)ia; < x;<b; (J=1,...,n)}

in R", where the a;’s and b;’s are specified rational numbers. We can list, as a
sequence {Y,, Y,,...}, the set of all finite unions of rational cells, and take
X; = EnY;. The sequence {X;} then has the properties set out in Proposition
1.7.10.

We shall show, in Exercise 2.8.7, that certain o-finite measures give rise to
inseparable L, spaces.

We shall see later that C(S) is separable when S is a compact metric space
(see Remark 3.4.15), while infinite-dimensional /,, and L, spaces are not
separable (Exercises 1.9.31, 1.9.32). W
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1.8. Linear operators acting on Banach spaces

In this section we prove four basic results concerning linear operators
acting on Banach spaces, namely, the open mapping theorem, the Banach
inversion theorem, the closed graph theorem, and the principle of uniform
boundedness. The first three are so closely related as to be more or less
equivalent, and the fourth is easily deduced from the third.

We recall that a mapping ¢ from a topological space X into another such
space Yis said to be openif p(G)is openin Y whenever G is an open subset of X.

1.8.1. ProPOSITION.  Suppose that X, % are normed spacesand T: X —» ¥ is
a linear operator. Then T is open if and only if the image {Tx: x € (X),} of the unit
ball (X), contains the ball (%),, for some r (> 0). If T is open, T(X) =%.

Proof. If Tis open, it carries the open unit ball {xe X:||x|| < 1} onto an
open subset of % that contains 0 and so contains (%), for some r (> 0). Thus

@), < {Tx:xeX, |Ix|| < 1} = T(X),).

Moreover, the subspace T(X) of % contains (%),, and is therefore the whole
of .

Conversely, suppose that r > 0 and (%), = T((X),). We have to show that
T(G) is open in & when G is an open subset of X. If x, € G, then G contains a
ball x, + ¢(X); (where ¢ > 0), and

T(G) 2 Txo + cT((X)1) 2 Txo + (¥),.

Hence each point Tx, of T(G) is an interior point, and 7(G) is open, as
required. W

1.8.2. ProposiTioN. If T is a bounded linear operator from a Banach space
X into a normed space %, and the closure C~ of the set C = {Tx:xe(X),}
contains the ball (%),, for some r (> 0), then T is open.

Proof. From Proposition 1.8.1, it suffices to show that C contains the ball
(@), To this end, suppose that ye % and ||y|| < 3r. Since 2ye (%), = C~, we
can choose y,; in C so that

12y — pill < 3r.
Since 22y — 2y, (%), < C~, we can choose y, in C so that
122y = 2y, — yall < 3r.
Since 23y — 22y, — 2y, e (%), < C~, we can choose y in C so that

123y — 2%y, — 2y, — ysll < 3.
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By continuing in this way, we obtain a sequence {y;,y,,...} in C such that
127y =27ty =272y — - = pll<gr (n=1,2,..).
Thus

ly= > 27pll<2™"r  (n=1,2,..),
j=1
and y =32 ,27y;.
Now y;e C, so y; = Tx; for some x; in (¥),. Since X is a Banach space and
Y 27xiI< Y 27 =1,
j=1 j=1
the series Y5, 277x; converges to an element x of (¥);. Moreover

Tx=) 279Tx;= ) 270y, =y,
j=1 j=1
and since xe(X),, it follows that ye C, as required. W

When X is reflexive, Proposition 1.8.2 reduces immediately to Proposition
1.8.1, since in this case the set C is closed (see Exercise 1.9.17).

1.8.3. LemMa. If T is a linear operator from a normed space X onto a
Banach space %, there exist positive real numbers r, s, and an element y, of ¥,
such that the closure in % of the set {Tx: xe(X)s} contains the ball y, + (¥),.

Proof. For each positive integer », let
C,={Tx:xe(X),}.

When ye® and r > 0, let B(y, r) denote the closed ball y + (%),. It suffices to
show that, for some #, the closure C of C, contains such a ball. We assume the
contrary, and in due course obtain a contradiction. (There is a short cut
available here for the reader who is familiar with the following result, known as
the Baire category theorem: a complete metric space X cannot be expressed as
the union of a sequence {X,} of subsets, each of which is nowhere dense in X.
Indeed, | |, C, is the complete metric space % since T has range %, and the
category theorem implies the required conclusion that at least one of the sets C,
is not nowhere dense in % (that is, for at least one value of n, the closure C has
non-empty interior [K: p. 201]). The argument that follows is in fact a proof of
the category theorem, within the particular context now under consideration,
but in a form easily adapted so asto apply to the general case.)

From our assumption, C; does not contain the unit ball (%), ; so we can
choose y; (€%) and r, (> 0) so that

ne@)\Ccg, B(y,,ri)nC, = .
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Since C, does not contain the ball B(y,,3r,), we can choose y, (¢%#) and r,
(> 0) so that

J/ZEB(J’“%'H)\CZ_, B(y,,ri))n C, = (&, "2<%"1-

Since C; does not contain the ball B(y,,%r,), we can choose y; (%) and r,
(> 0) so that

y3€B(y2,3r2)\C5, B(ys,r3) nC3 =, ry < jra.

By continuing in this way, we obtain sequences {y,} in% and {r,} in R such
that, forn =2,3,...,

ynEB(yn—la%rn—l)\C,,_’ B(y,,,r,,)mC,,:@, 0<rn<%rn—1'
These conditions imply that
B(yn’rn)gB(yn—larn—l) (’722)5 llm rn=07

n—coo

and from this,

ymEB(ymarm)gB(ymrn)a ||ym—yn||<rn (1 <n<m)
It follows that {y,} is a Cauchy sequence in the Banach space #, and so
converges to an element y of %. The closed ball B(y,, r,) contains the sequence
{VnsVnt1sVnt2+--+}» SO YeB(y,,ry)foralln=12,....
Since T(X) = %, we have y = Tx for some x in X. If # > ||x||, then
,VEB(,ern)m Cn’

contradicting the earlier assertion that B(y,,r,)nC,=¢j. N

1.8.4. THeorREM (Open mapping theorem). A bounded linear operator T
Jfrom a Banach space X onto a Banach space % is open.

Proof. By Lemma 1.8.3 we can choose positive real numbers r, s, and an
element y, of % so that the closure C ~ of the set C = {Tx: x e (X),} contains the
ball y, + (#),. Upon replacing y, by s~ 'y, and r by s~ 'r, we may assume that
s=1.

Suppose that ye (%),. Since C ™ is balanced and convex, and

Yo i_y € Vo _’-(@)rg C_7

it follows that
y=3{o+y)— (o —»leC".
Hence (%), = C~, and T is open by Proposition 1.8.2. M
1.8.5. THeoREM (Banach inversion theorem). If T is a one-to-one

bounded linear operator from a Banach space X onto a Banach space %, the
inverse T~ ':% — X is a bounded linear operator.
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Proof. Itisapparent that T~ !isalinear operator. We have to show that it
is continuous; that is, we must prove that the inverse image, under 77!, of any
open subset G of X, is open in %. Since this inverse image is 7(G), the result
follows at once from Theorem 1.8.4. W

Suppose that X and % are normed spaces with the same scalar field K. The
product set X x @& is a normed space when the algebraic structure and norm
are defined as follows:

(1, 01) + (x2,¥2) = (X1 + X2, 91 + )2),

a(x,y) = (ax,ay), 11l = lxdl + (Il

When X and & are both Banach spaces, so is ¥ x %.
If T: X - % is a linear operator, the graph of T is the subspace 4(T) of
X x % defined by

4(T) = {(x, Tx): xe X}.

As a linear subspace of a normed space, 4(T) is itself a normed space.

Note that 4(T) is closed (in X x %) if and only if the following condition is
satisfied: if a sequence {x,} in X converges to an element x of X, while {Tx,}
converges to an element y of %, then Tx = y. Itis clear that a bounded linear
operator has a closed graph ; for operators acting on Banach spaces, there is a
converse.

1.8.6. THeoreM (Closed graph theorem). If X and % are Banach spaces,
and T'is alinear operator from X into %, then the graph of T is closed if and only if
T is bounded.

Proof. In view of the preceding discussion, it suffices to show that T is
bounded when its graph 4(T) is closed. In this case, 4(T) is complete, and is
therefore a Banach space, since itis a closed subset of the complete metric space
X x %. The equation

H(x,Tx) = x (xeX)

defines a one-to-one linear operator H from 4(7T) onto X; and H is bounded
with || H|| < 1, since

1H(x, T = |IxI] < {1l + 17| = [I(x, Tx)|l.

By the Banach inversion theorem, H ~! is bounded; and the same is true of T
since

Tl < NlGs, Tl = [1H 7l < HE Il (xeX). W

If E is an idempotent bounded linear operator acting on a normed space X,
the corresponding complementary subspaces

Y={xeX:Ex=x}, Z={xeX:Ex=10}
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of X are closed, being the null spaces of the continuous linear operators / — E
and E, respectively. For Banach spaces, there is a converse.

1.8.7. THEOREM. If Y and Z are closed complementary subspaces of a
Banach space X, then the projection E from X onto Y parallel to Z is bounded.

Proof. The graph of E can be expressed in the form
{(e,y)eX x X:yeY, x—yeZ}

and is therefore closed in X x X; so the result follows from the closed graph
theorem. M

1.8.8. CoroLLARY. If Y and Z are closed subspaces of a Banach space X
and Y nZ = {0}, then Y + Z is closed in X if and only if there is a positive real
number C such that

MI<Cly+zll  (yeY, zeZ).

Proof. Suppose that there is such a constant C. If a sequence {x,} in
Y + Z converges to an element x of X, let x, = y, + z,, where y,e Yand z,e Z.
Since

”ym - yn” < C”(ym - yn) + (Zm - zn)“ = C”xm - x,,||,

{y,} is a Cauchy sequence in the closed (and hence complete) subspace Y of X,
and so converges to an element y of Y. Since Z is closed, and

x — y = lim(x, — y,) = limz,,
it follows that
x—yeZ, x=y+((x—y)e Y+ Z

Hence Y + Z is closed in X.

Conversely, if Y + Zisclosed in X, itis a Banach space X, containing Y and
Z as complementary subspaces. From Theorem 1.8.7, the projection E from
X, onto Y parallel to Z is bounded; and the stated condition is satisfied, with
C=|E| =

If y and z are unit vectors in a Banach space X, it is reasonable to consider
the “angle” between y and z to be large, or small, according as ||y — z|| is large
or small. Accordingly, when Y and Z are closed subspaces of X, the lower
bound

inf{lly — z|l:ye Y, ze Z, |yl = ||zl = 1}

can be regarded as indicating the (minimum) angle between Y and Z. It is not
difficult to show that this lower bound is strictly positive if and only if there is a
constant C with the property set out in Corollary 1.8.8 (see Exercise 1.9.5).
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Thus the corollary can be interpreted in the following geometrical form: if
Y Z = {0}, then Y + Zisclosed if and only if the angle between Y and Z is
strictly positive.

We conclude this section with various forms of the principle of uniform
boundedness.

1.8.9. THEOREM. Suppose that {T,:ac A} is a family of bounded linear
operators from a Banach space X into a normed space % and
sup{||T,x||:ae A} <
for each x in X. Then sup{||T,||:ac A} < co.

Proof. Since T, can be viewed as a bounded linear operator from X into
the completion % of %, we may suppose that % is a Banach space. For each xin
X, the equation

(Sx)(a) = T,x (aecA)

defines a mapping Sx: A —» %, and Sx is an element of the Banach space
I.(A, %) (Example 1.7.1). It is evident that the mapping x — Sx is a linear
operator S from X into [ (A, #).

We assert that the graph of S is closed. For this, suppose that a sequence
{x,} in X converges to x (¢ X), while {Sx,} converges to an element f of
1, (A, %); we have to show that Sx = f. For each aq in A,

Ifla) — (Sx)a)ll < 1If = Sx,|l - 0.
From this, and since T, is continuous,
fla) = lim(Sx,)(a) = lim T,x, = T,x = (Sx)(a);

so f= Sx, and the graph of S is closed.
From the closed graph theorem, S is bounded. For each xin X and a in A,

ITax1l = (I(Sx) @)l < IISxl < [IS1]1Ix]l;
so [|Tg] < |ISl| (aeA). W
1.8.10. THEOREM. Suppose that {p,:ae A} is a family of bounded linear

functionals on a Banach space X and sup{|p(x)|:ae A} < oo for each x in X.
Then sup{||p.ll:ae A} < oo.

Proof. This follows from Theorem 1.8.9, with & the scalar field. H
1.8.11. CoRrOLLARY. Suppose that {x,:ae A} is a family of elements of a

normed space X and sup{|p(x,)|: ae A} < oo for each bounded linear functional p
on X. Then sup{||x,||:ae A} < 0.
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Proof. For each p in the Banach dual space ¥*
sup{|%,(p)|:ae A} = sup{|p(x,)|:aeA} < oo

(where x — % is the natural isometric isomorphism from X into X*). From
Theorem 1.8.10 (with X* in place of X and %, in place of p,), and since
[I%al| = llxll, we have sup{||x.|l:ae A} < co. W

1.8.12. THEOREM. Suppose that {T,:ae€ A} is a family of bounded linear
operators from a Banach space X into a normed space % and

sup{|p(Tx)|:ac A} <0
for each x in X and p in #*. Then sup{||T,||:aec A} < .

Proof. By Corollary 1.8.11, sup{||T,x||: ae A} < oo for each xin X; so the
result follows from Theorem 1.8.9. W

1.8.13. REMARK. In the context of complex Banach spaces, the open
mapping, Banach inversion, and closed graph theorems, and the various forms
of the principle of uniform boundedness, apply also to conjugate-linear
operators; for such operators can be viewed as linear mappings between the
corresponding real Banach spaces. W

1.9. Exercises

1.9.1. Show that, if ¢ is a sublinear functional on a (real or complex)
vector space ¥, and V is the convex set {xe ¥":¢(x) < 1}, then the support
functional p of V is given by

p(x) = max{g(x),0}  (xe¥).

1.9.2. Suppose that g; and ¢, are semi-norms on a (real or complex)
vector space ¥, p is a linear functional on ¥ and

lp(X)] < q1(x) + g2(x)  (x€¥).

Show that p can be expressed in the form p; + p,, where p,, p, are linear
functionals on ¥; and

loi®N < g;(x)  (xe¥] j=12)

[Hint. Define a semi-norm p on the vector space ¥ x ¥~ and a linear
functional ¢, on the “diagonal” subspace {(x,x): xe¥"} of ¥~ x ¥ by

p((x, ) = q1(x) + q2(0),  00((x, X)) = p(x).]
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1.9.3. Suppose that ¥ is a (real or complex) vector space on which two
locally convex topologies, 7; and 7,, are specified. Let I'; be the set of all
7;-continuous semi-norms on ¥, for j = 1,2; and let

I'={q:+9q2:9:€l'y, q2€T3}.

Prove that I' is a separating family of semi-norms on ¥; and that the
corresponding locally convex topology 7 is the coarsest locally convex
topology on ¥  that is finer than both 7; and t,. Show also that a linear
functional p on ¥” is t-continuous if and only if it has the form p; + p,, where
p; is a t;-continuous linear functional on ¥~ for j = 1,2.

1.9.4. Show that, if {x,,...,x,} are elements of a normed space X such
that 0 is in the closure of

{alxl 4+ + apx,:a;scalars, [[(a;— 1) = 0},
i=1
then {x,,...,x,} are linearly dependent.

1.9.5. Suppose that Y and Z are closed subspaces of a Banach space X
such that Yn Z = {0}, and let

k=inf{|ly — zll:ye Y, ze Z, |yl = llz|| = 1}.

Show that the subspace Y + Z of Xisclosed ifand onlyif k > 0. [See Corollary
1.8.8 and the discussion following it.]

1.9.6. Show that, if X is a real Banach space, then X x X becomes a
complex Banach space X when its linear structure and norm are defined by

(x, ) + (W, v) = (x + u,y +v),
(a + ib)(x,y) = (ax — by, bx + ay),
[I(x, Y| = sup{li(cos B)x + (sinB)y]|: 0 < 6 < 2m}

for all x, y,u,v in X and q,b in R.

Prove also that the set {(x,0): x e X} is a closed real-linear subspace X of
Xc, that Xo = {h + ik:h,ke Xy}, and that the mapping x — (x,0) is an
isometric isomorphism from X onto (the real Banach space) Xg.

1.9.7. Suppose that X is an infinite-dimensional normed space, and Vis a
neighborhood of 0 in the weak topology on X. Show that ¥ contains a closed
subspace of finite codimension in X. Deduce that the weak topology on X is
strictly coarser than the norm topology.
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1.9.8. Show that, if X isa separable Banach space, each bounded sequence
{p,} in X* has a subsequence that is weak* convergent to an element of X*.

1.9.9. Prove that, if X and & are normed spaces, X # {0}, and (X, %) is
complete, then & is complete.

1.9.10. Suppose that X, is a closed subspace of a Banach space X,
Q: X - X/X, is the quotient mapping, and X} (< X*) is the closed subspace
consisting of all bounded linear functionals on X that vanish on X,.

(i) Show that the (Banach) adjoint operator QF is an isometric linear
mapping from (¥/X,)" onto X;.

(ii) Show that the mapping T:p + X; — p|X, is an isometric isomor-
phism from X*/X; onto X§.

1.9.11. Show that, if X, is a closed subspace of a Banach space X, then X is
reflexive if and only if both X, and X/X, are reflexive.

1.9.12. Show that a Banach space X is reflexive if and only if its dual space
X’ is reflexive.

1.9.13. Suppose that X is a Banach space with the following property:
given any positive real number ¢, there is a positive real number J(¢) such that
lx — yl| < ¢ whenever x and y lie in the unit ball (X), and [[3(x + y)|| > 1 — d(¢)
(such a Banach space is said to be uniformly convex). Prove that X is reflexive.
[Hint. Suppose that Q,e X* and ||Q,|| = 1. Choose p, in X* so that [|p,|| = 1
and |Qy(po) — 1] < 6(e); and let

H = {X:xe(X)1, Ipo(x) — 1] < ()},

where x — % is the natural isometric isomorphism from X into X*. Prove that
€, lies in the weak* closure of £, and that ||® — J|| < ¢ whenever X, je 4.
Deduce that ||Q, — || < ¢ for each % in 4]

1.9.14.  Suppose that X is a normed space, . is a linear subspace of the
dual space X*, and ./ separates the points of X. Let p be a linear functional
on X.

(i) Suppose that the restriction p|(X); of p to the unit ball (X), is
continuous in the weak topology (X, .#). Show that p e ¥*. Prove also that, if
€ > 0, there is a finite subset {wy,...,w,} of .# such that

n

lp(x)) <&  whenever xe(X); and ) |wi(x)|<1.
j=1
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Deduce that

lo()l < ellxll + lloll X logx)l  (xeX).
j=1
From this inequality, together with the result of Exercise 1.9.2, deduce that p
has the form p; + p,, where p; e X', ||p;|| < ¢, and p,e./.
@iy Prove that p|(X), is a(X, .#)-continuous if and only if p lies in the
norm closure .#~ of ./ in X*.

1.9.15. Suppose that X is a Banach space, x — X is the natural isometric
isomorphism from X into X, and w € X¥*. Show that, if the restriction w|(X*),
of w to the unit ball of ¥*is continuous in the weak* topology a(¥*, X), then
o = X for some x in X. [Hint. Use the result of Exercise 1.9.14(ii).]

1.9.16. Suppose that X and @ are Banach spaces, and Se B(%°*, X*).

(i) Prove that, if S'is continuous relative to the weak* topologies on %*
and X', then S = T for some T in B(X,%).

(i) By using the result of Exercise 1.9.15, show that (i) remains valid when
the weak* continuity of S is replaced by weak* continuity of S|(#*),.

1.9.17. Suppose that X, & are Banach spaces and T e #(X, #%). Prove that

(i) the set {T*p:pe(#¥*),} is weak* compact, and hence norm closed
in X*;

(ii) if X is reflexive, the set {Tx:xe(X),} is weakly compact, and hence
norm closed in #.

1.9.18. Suppose that X and % are Banach spaces, T'e #(X,%), and the
image T(X) (= {Tx:x e X})is a closed subspace of #. Prove that T*@?*) is the
closed subspace of X' consisting of all bounded linear functionals on ¥ that
vanish on the null space of 7. [ Hint. If p € ¥*and p vanishes on the null space of
T, the equation we(Tx) = p(x) defines (unambiguously) a linear functional w,
on T(X). By applying the open mapping theorem to T, as an operator from X
onto T(X), prove that w, is bounded. Deduce that p = T*w, for some win #*.]

1.9.19. Let/, denote the Banach space /. (N, C) of Example 1.7.1, where
N is the set of positive integers; an element of /_ is a bounded complex
sequence {x,X3,...}, and ||{x,}|| = sup{|x,|:neN}. Let ¢ and ¢, be the linear
subspaces of /, defined by

c= {{x,,}*slw: lim x, exists},

n—x

co = {{x,,} el,: lim x, = O}.

n—+
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Prove that

(i) ¢ and ¢, are closed subspaces of /_ ;
(ii) thesequence {1, 1,1,...} is an extreme point in the closed unit ball of
/., and also in the closed unit ball of c;
(iii) the closed unit ball of ¢, has no extreme point.

Deduce that ¢, is isometrically isomorphic neither to ¢, nor to any Banach dual
space.

1.9.20. With the notation of Exercise 1.9.19, let U be the element
{1,1,1,...}ofc;and, for k = 1,2,..., let E, (in ¢,) be the sequence that has 1
in the kth position and zeros elsewhere.

(i) Provethat,if X = {x,} eco,then X = ¥ | x,E,, the series converging
in the norm topology of ¢, (that is, ||X — Y7 | x Eyl| > 0 as m — o).

(i) Prove that, if X = {x,} ec and x = lim,_, , x,, then X — xUec, and
X =xU+ Y2, (xx — x)E,, the series converging in the norm topology of c.

1.9.21. Adopt the notation of Exercises 1.9.19 and 1.9.20; in addition, let
/; denote the Banach space /, (N, C) of Example 1.7.3, so that an element of /, is
a complex sequence Y = {y;,y,,...} such that (||Y|| =) Y=, [va < c0.

n=1

(i) Show that,if Y = {y,»,,...} €/, the equation

p(X) = Z YnXn (X: {xn} eCO)
n=1

defines a bounded linear functional p on ¢, and ||p|| = || Y||. Prove also that
Yn= p(En)

(i) Show that each bounded linear functional on ¢, arises, as in (i), from
an element Y = {y,,y,,...} of /.

(iliy Deduce that the Banach dual space cg is isometrically isomorphic
to /.

1.9.22.  Let ¢ and /; be the Banach spaces defined in Exercises 1.9.19 and
1.9.21.

(i) Show that, if {yy,»;,y2,...} is a complex sequence such that
Y& olval < o0, the equation

pX) =yo lim x, + > yux, (X ={x,}ec)
n—>w n=1
defines a bounded linear functional p on ¢, and |jp|]| = £, [vl-
(i) Prove that every bounded linear functional on c arises, as in (i), from
such a sequence {yq,¥1,¥s,...}. [Hint. Use the results of Exercises 1.9.20(ii)
and 1.9.21(ii).]
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(iii) Deduce that the Banach dual space ¢’ is isometrically isomorphic
to /.

(iv) Deduce that cf and c* are isometrically isomorphic, while ¢, and ¢
are not.

1.9.23. Let/, and !/, be the Banach spaces defined in Exercises 1.9.19 and
1.9.21, and, for each positive integer k, let ¢, (in /,) be the sequence that has 1 in
the kth position and zeros elsewhere. Without using Theorem 1.7.8:

(i) Prove that, if Y = {y,,y,,...}€/,, then Y =YX, ye, the series
converging in the norm topology on /.
(i) Show that, if X = {x{,x,,...} €l,, the equation

p(Y)= Z XnVn (Y={yn}611)
n=1
defines a bounded linear functional p on /{, and ||p|| = || X].
(iii) Prove that each bounded linear functional on /, arises, asin (i), from
an element X of /.
(iv) Deduce that the Banach dual space /] is isometrically isomorphic
to /.

1.9.24. By using the results of Exercises 1.9.21, 1.9.22, and 1.9.23, show
that neither of the Banach spaces ¢, c is reflexive. Deduce that neither of the
Banach spaces /;, / is reflexive.

1.9.25. Give a second proof that none of the Banach spaces c,, ¢, /,, is
reflexive, by using the results of Exercises 1.9.19 and 1.9.11.

1.9.26. (i) Suppose that ¢ >0 and {x,,,: m,n=1,2,...} is a double
sequence of complex numbers that satisfies the conditions

46 < Y |xXpal < 0 m=12..),
n=1
lim x,,=0 (n=12,..)).
Show that there exist integers 0 = n(0) < n(1) <n(2) < --- and 1 =m(1)
<m(2) <m(3) < --- such that, for j=1,2,...,
n(j—1j
Z |xm(j).n| <e,
n=1
n(j)
Z - Ixm(j),nl > 38,
n=1+n(j—1)

Z |x,,,(j)_,.| < €.
n=1+n(j}
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Prove also that there is a sequence {y,} of complex numbers of modulus 1 such
that

Z YnXmjyn| > € (=12,..).

n=1

(ii) Prove that, if a sequence {X,,} of elements of the Banach space /; is
weakly convergent to 0, then it converges to 0 in the norm topology.

1.9.27. Suppose that 1 <p < o, g=p/(p — 1), and /, is the Banach
space /,(N, C) of Example 1.7.3, so that an element of /, is a complex sequence
X ={x;,x,,...} such that ¥ |x,[° (= || X]]) < 0.

(i) Show that, for each Y = {y,,y,,...} in /,, the equation

pY(X) = Z YnXn (X= {X"}Elp)
n=1

defines a bounded linear functional py on /,, and ||py|| < ||Y]],(the norm of Yin
1,). By considering the sequence X, = {t,]y,|?}, where t,,1,,... are suitable
complex numbers of modulus 1, show that ||py|| = || Y]|,.

(i) Prove that the mapping Y — py is an isometric isomorphism from /,
onto the Banach dual space /}, and deduce that /, is reflexive (that is, that the
natural isomorphism of /, into /; is onto).

1.9.28. Suppose that p>1, g=p/p—1), and Y= {y,,y,,...} is a
complex sequence with the following property: whenever X = {x,,x,,...}
€l,, the sequence {y,x,} is an element of /;. Prove that Ye/,.

1.9.29. Suppose that 1 < p < o0, ¢ = p/(p — 1), and L, is the Banach
space associated, as in Example 1.7.5, with a ¢-finite measure space (S, &, m).

(i) Prove that, for each fin L,, the equation

ps(9) = J Sf(5)g(s)dm(s)  (geLy)
S

defines a bounded linear functional p, on L,, and||p/|| < || fl|, (the norm of fin
L,). By considering a suitable function g,, of the form gq(s) = | f(s)|7*1(s),

where #(s) f(s) = | f(s)|, show that ||p[| = ||f1l,.

(if) Suppose that m(S) < oo, and let p be a bounded linear functional on
L,. Show that, if X (< S) is measurable, the characteristic function yy lies in
L,. Prove that there is an element f of L, such that

p(x) = L J()xx(s) dmy(s)

for every measurable subset X of S. Show that fe L,, and p = p,.
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(iii) In the general case (with m o-finite, but not necessarily finite) prove
that the mapping f — p is an isometric isomorphism from L, onto the Banach
dual space L;, and deduce that L, is reflexive.

1.9.30. Suppose that 1 <p< o0, g=p/(p—1), and L,, L, are the
corresponding Banach spaces associated with a o-finite measure space
(S, &%, m). Show that, if fis a complex-valued function on S, and fg e L for each
gin L,, then fe L,. [Hint. Show that fis the limit, almost everywhere, of a
sequence {f,} of functions in L, such that |f,(s)| < [f(s)|, and consider the
corresponding sequence {p,} of bounded linear functionals on L,.]

1.9.31. Show that the Banach space/,(A)is separable if and only if the set
A is finite. Deduce that a separable Banach space may have a non-separable
dual.

1.9.32. Show that the Banach space L., associated with a o¢-finite
measure space (S, &, m), is separable if and only if S can be expressed as the
disjoint union of a finite family of “atoms.” (An atomis a measurable subset S,
of S such that m(S,) > 0 and each measurable subset of S, has measure 0 or

m(So).)

1.9.33. Consider the Banach spaces L; and L, associated with a o-finite
measure space (S, &, m), and the isometric isomorphism (or Theorem 1.7.8)
from L onto Lj.

(i) Suppose that g,9;,95,...€L,, and let p,p;,p,,... be the cor-
responding bounded linear functionals on L;. Show that, if

sup{[|gnll 1 neN} < 0

and g(s) = lim,_, ., g,(s) for almost all s, then the sequence {p,} is weak*
convergent to p.

(i) Show that, if m is Lebesgue measure on the interval [0, 1], and
d1,92,93,... (in L) are defined by

gus) =(— 1) Q7" r<s<27™(r+1), r=0,1,...,2" = 1),

then the corresponding sequence {p,} of bounded linear functionals on L, is
weak* convergent to 0.

1.9.34.  Suppose that ¥, 5(7 is a series of elements of a complex Banach
space X such that, for every strictly increasing sequence {n(1),n(2),...} of
positive integers, the subseries ¥ 72 | x,; converges in the weak topology to an
element of X.
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(i) Prove that ¥, |p(x,)| < o for each p in X*.
(i) Show that the equation Sp = {p(x,), p(x3), ...} defines a bounded
linear operator S from X into the Banach space /,.
(iii) Prove that, if 4 = {a,,a,,...} €l,, the equation

Q4p) = Y plax,)  (peX¥)
n=1

defines a bounded linear functional Q, on X*, and ||Q,]| < ||S|| |4l

(iv) Showthat Q, liesin X (the natural image of X in X**) whenever 4 (in
l,) is a sequence that takes only finitely many distinct values. Deduce that
QueXforall 4in /.

(v) Provethat, for every 4 = {a,,a,,...} in/,, the series ¥ *_, a,x, is
weakly convergent to an element of X.

(vi) Show that, if asequence {p,} in X"is weak* convergent to an element
p of X¥, then {Sp,} is norm convergent to Sp. [ Hint. Use (v) and the result of
Exercise 1.9.26.]

(vii) Prove that, if ¢ > 0, there is a positive integer n(e), such that
Y we (X)) < éllpl| for each p in X*. [ Hint. Upon replacing X by the closed
linear span of {x,}, reduce to the case in which X is separable. If the result were
false, we could choose p,;,p,,... in the unit ball of X' satisfying
Y= . lpu(x,)| = e Obtain a contradiction by using Exercise 1.9.8 and (vi).]

(viii) Prove that, for each bounded complex sequence {a;,a,,...}, the
series ¥ *_ | a,x, converges in the norm topology on X. [The assertion, that
weak convergence of every subseries entails norm convergence, is known as the
Banach—Orlicz theorem.]

1.9.35. (i) Prove that, if the dual space X* of a Banach space X is
separable, then X is separable. [ Hint. Let {p,} be a countable dense subset of
the surface {peX®:||p|| = 1} of the unit ball (X*),; for each n=1,2,...,
choose x, in (X); such that |p,(x,)| > 1. Show that X is the closed linear span of
{x).1

(ii) Show that a reflexive Banach space is separable if and only if its dual
space is separable.

(iii) Give an example of a Banach space that is not reflexive but has a
separable dual space (and is, therefore, separable).

1.9.36. Show that a bounded sequence {x,} of elements of a reflexive
Banach space X has a subsequence that is weakly convergent to an element of
X. [Hint. Show that it is sufficient to consider the case in which X is separable,
by replacing X by the closed linear span of {x,}. In the separable case show, by
use of Exercise 1.9.35(ii), that the required result can be deduced from Exercise
1.9.8.]
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1.9.37. Suppose X is a separable normed space and {x,:neN} is a
(norm-)dense subset of (X),. Define

dp,p)= 3, 27"I(p — pP)x) (b, p'€X).
n=1
(i) Show that d is a metric on ¥*.
(i) Show that the metric topology induced by d on (X*), is the weak*
topology on (X%);.
(iii) Use the fact that each sequence in a compact metric space has a
convergent subsequence to solve Exercise 1.9.8 (and 1.9.36) again.

1.9.38. Use the Baire category theorem (see the proof of Lemma 1.8.3) to
give another proof (direct) of the uniform boundedness principle (Theorem
1.8.9).

1.9.39. If {T,} is a sequence of bounded linear transformations of one
Banach space X into another Banach space % and { T,,x} converges for each x in
X, show that T, defined by Tx = lim, T,x, is a bounded linear transformation
of X into #.

1.9.40. Suppose X and & are Banach spaces and T is a linear transfor-
mation of X into &. With # in the algebraic dual of #, let (T"5)(x) be n(Tx) for
each x in X; and suppose that T"p € X* for each p in #*. Show that T'is bounded
and that T"|%* = T*. [Hint. Consider the graph of T.]



CHAPTER 2

BASICS OF HILBERT SPACE
AND LINEAR OPERATORS

This chapter deals with the elementary geometry of Hilbert spaces and with
the simplest properties of Hilbert space operators. Section 2.1 is concerned
with inner products, and the corresponding norms, on linear spaces with
complex (or, occasionally, real) scalars. It introduces the concept of Hilbert
space and provides a number of examples. Section 2.2 is devoted to the notion
of orthogonality in a Hilbert space. In it we deal with orthogonal complements
of closed subspaces, orthogonal sets, orthonormal bases, dimension, and the
classification of Hilbert spaces up to isomorphism. This is followed, in Section
2.3, by Riesz’s representation theorem concerning the form of bounded linear
functionals on a Hilbert space, and some corollaries concerning the weak
topology of such a space. Section 2.4 is devoted to bounded linear operators
acting on Hilbert spaces, with primary emphasis on elementary properties of
the “Hilbert adjoint” of such an operator. Special classes of operators (normal,
self-adjoint, positive, unitary) are considered briefly, and illustrative examples
are given. Section 2.5 is concerned with orthogonal projections, corresponding
to the decomposition of a Hilbert space as the direct sum of a closed subspace
and its orthogonal complement. It includes an account of the order structure of
projections, and its relation to the strong-operator topology. In Section 2.6 we
deal with elementary constructions with Hilbert spaces, such as direct sums
and tensor products, together with related aspects of operator theory. Section
2.7 is concerned with unbounded linear operators on Hilbert spaces.

2.1. Inner products on linear spaces

By an inner product on a complex vector space ##, we mean a mapping
(x, ) > {x,p>, from # x A into the scalar field C, such that

(i) Lax+by,z) =alxz) + by,z),
(i) (y,x) =<xp,
(i) (% x) >0,
whenever x, y,ze # and a,beC. If, in addition,
@iv) {(x,x)> =0 only when x =0,

75



76 2. BASICS OF HILBERT SPACE AND LINEAR OPERATORS

the inner product is said to be definite (sometimes, positive definite is used). In
(ii) we adopt the convention that ¢ denotes the complex conjugate of an
element ¢ of C. From (i) and (ii), an inner product satisfies the further condition
(conjugate linearity in its second variable)

(V) <z,ax +by) = az,x) + b{z,y).

When (, > is an inner product on a complex vector space J#, the pair (#, {, »)
is called a (complex) inner product space, and we refer to the complex number
{x,y> as the inner product of the vectors x and y in #.

For real vector spaces, the definition of inner products is the same as the
one given above, except that scalars and the values (x, y)> are required to be
real, so that the ““bars” denoting complex conjugation no longer appear in (ii)
and (v). Asregards elementary geometrical properties of inner product spaces,
there is very little difference between the real and complex cases. In the main,
we shall restrict attention to the complex case, making only occasional
comments on the modifications needed to deal with real spaces. For the theory
of linear operators on inner product spaces and algebras of such operators, the
complex case has significant advantage over the real one.

The finite-dimensional linear spaces C" and R" provide the simplest
examples of inner product spaces, with the inner product defined by

<(a1a---’an),(bl,---abn)> =‘1151 + - +an5n

(complex conjugation being redundant in the case of R"). Just as the real space
R" can be viewed as a real-linear subspace of the complex space C", it can be
shown that every real vector (or normed, or inner product) space can naturally
be imbedded in a complex space of the same type (see Exercises 1.9.6 and
2.8.3).

2.1.1. PROPOSITION. Suppose that { , > is an inner product on a complex
vector space H.

@) 1<K, Y212 < <x,x)p, >, for all x and y in H#.
(il) The set & = {zeH :{z,z) =0} is a linear subspace of #, and the
equation

x+ZLy+ L1 =<xy) (x,yeX)
defines a definite inner product { , >, on the quotient space # |<%.
Proof. (1) When x,ye# and a,beC,
{ax + by,ax + by) = a{x,ax + by) + b{y,ax + by)
= a&(x,x;+ ab{x,y> + baly,x) + bb{(y,y>,
o)

(1) <ax +by,ax + by) = |a|*(x, x> + 2 Re ab{x, y> + b°Cy, ).
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By taking a = t{y, x>, where ¢ is real, and b = 1, we obtain
0 < {ax + by,ax + by)
= e I1Xx Xy + 201 + (ny> (teR).

If (x,x) =0, it follows, by considering large negative ¢, that |[{x, y>| =0, so
[<x, ¥>1? = (x,x){(p,y> =0 in this case. If (x,x)> >0, we can take
t = —1/{(x,x), to obtain

0 < [Kx, D12/, x) — 2K, pOIR K%, %) + {p, p)
= <y,J’> - |<X,}’>|2/<x’x>,

whence [(x, p)I|* < (x, Xy, p)-
(i) Let
P ={zeH:{z,y) =0 for each y in #}.

Itisevident that %, is a linear subspace of #, contained in the set & defined in
the proposition, and that

P ={zeAH:{y,z) =0 for each y in #}.

With z in %, it follows from (i) that
Kz, 0P <<z, 25y, y> =0, <(z,y>=0  (yex),
so ze %,. Hence ¥ = %, and Z is a linear subspace of #.
If x,ye # and z,,z,€ ¥ (= &), we have
<x +Zp,)y+ 22> = <x’y> + <x)22> + <Zlvy> + <Zlaz2> = <x7y>'
It follows that the equation
X+ ZLy+Lo1=Lx%y) (x,yeHl)

defines (unambiguously) a mapping (¥, v) - {u,v), from (#/ L) x (#|F)
into C. Itisclear that ( , >, inherits from ¢ , ) the three defining properties of an
inner product. If 0 = (x + L x + ¥, (= {(x,x)), then xe ¥, and x + L is
the zero element of »#/.%. Thus (, >, is a definite inner producton #/%. M

The inequality stated in Proposition 2.1.1(i) is known as the Cauchy-
Schwarz inequality.

2.1.2. ProrosiTiON. If {, ) is an inner product on a complex vector space
H, the equation
03 lIxll = (x, xp12 - (xe o)
defines a semi-norm || || on #. If the inner product is definite, || 1| is a norm on #.

Proof. With || || defined by (2), it is apparent that |[x|| > 0 and ||ax|| =
la| [|x]] whenever xe # and ae C. Moreover, if the inner product is definite,
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[|x]| = 0 only when x = 0. The Cauchy-Schwarz inequality can be written in the
form

1< QX 2p,pd 2 = Ixl IVl (i ye ).
From (1), witha=56 =1,
lIx + yII2 = lIxlI> + 2ReCx, y> + [I¥II°
< I + 21<x, p1 + lIyll?
< X1+ 2llxl] Iyl + 1A = (il + 11pID2.
Hence ||x + || < ||x|| + |[y|| for each x and y in . W

When referring to the norm on a (definite) inner product space, it is
understood, in the absence of an explicit statement to the contrary, that the
norm intended is the one constructed as in Proposition 2.1.2 from the inner
product. For such spaces, we have proved the triangle inequality

IIx + Il < [lxll + Iyl
and the Cauchy-Schwarz inequality
1<x, 21 < [l

For each of these results, we now determine the conditions under which
equality occurs.

2.1.3. ProposiTION.  If {, ) is a definite inner product on a complex vector
space # and x,ye #, the following three conditions are equivalent:.

@ Abx + Yl = llxll + 1Ill;
(i) Cxpd =Xl Iyl

(iil) one of x and y is a non-negative scalar multiple of the other.
Proof. For any scalars a and b, it follows from (1) that

3) llax + by|* = |al*(Ix|I* + 2 Reab{x,y> + |b*|I ¥l

Thus

(el + 11vID? = llx + Y117 = 2]l 11yl = Redx, y)).
If (i) is satisfied, the last equation and the Cauchy-Schwarz inequality give

Re¢x, y> = JxIl Iyll > [<x, y),

and therefore (x,y> = Re{x, y> = ||x|| ||¥|l. Thus (i) implies (ii).
If (i) is satisfied and q, b are real, (3) gives

llax + byl = (allx|l + llylD>.
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With a = ||y}] and b = — ||x||, it follows that ||y|Ix — ||x|{y = 0. Hence either
x=0(=0"yp)ory=|x| Yylx, and so, (i) implies (iii).
If (iii) is satisfied, we may suppose that x = ay, where a > 0. Then

lIx + yll = lita + Dyl = la + 1] |Iyll

= (a + DIyl = llayll + lIyll = [1xll + 1Ivil;

so (iii) implies (). W

2.1.4. CoroLLARY. If (> is a definite inner product on a complex vector
space H# and x, y € H#, then |{x, y>| = ||x|| | V|| if and only if x and y are linearly
dependent.

Proof. 1f |{x,y>| = |Ix||||yll, we can choose a scalar a so that |[a] = 1 and
alx,yy = [|x]|{|yl|; that is, (ax, y> = {lax|||{y||. By Proposition 2.1.3, one of ax
and y is a non-negative scalar multiple of the other; so x and y are linearly
dependent.

Conversely, suppose that x and y are linearly dependent. We may assume
that x = ay for some scalar a, and then

1< y)1 = lady, p>I = lallIylI* = {Ix|lllyl. =

A complex normed space J# is said to be a pre-Hilbert space if its norm || ||
can be obtained, as in Proposition 2.1.2, from a (necessarily) definite inner
product on . If, in addition, . is complete relative to |||, then J# is described
as a Hilbert space (of course, one can consider real Hilbert spaces — complete
real inner product spaces). Accordingly, Hilbert spaces form a particular class
of Banach spaces, and the theory developed in Chapter 1 for linear topological
spaces, normed spaces, and Banach spaces is available in the case of Hilbert
spaces. The geometry of Hilbert spaces is in many respects analogous to
elementary euclidean geometry, and is simpler and more extensive than any
corresponding theory for general Banach spaces. In consequence, the analysis
of Hilbert space operators is more fully developed than its Banach space
counterpart. The main objects studied in this book are certain algebras of
linear operators acting on Hilbert spaces.

2.1.5. ProrosITION. The inner product on a pre-Hilbert space # is a
continuous mapping from # x # into C.

Proof. When x, y, xq,yo €,
(6, y> =<Cxo + (x = X0), Yo + (¥ — Yo))
= (X0,Y0) + {X0,¥ — Yoy + {x — X0,¥0) + {X — X0, ¥ — Yo-
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From this and the Cauchy-Schwarz inequality,

@ IKx,¥> — {0, o)l
< |lxoltly — poll + lIx — xoll l[yoll + llx — xolllly — poll,
and the right-hand side is small when x is close to x, and y is close to y,. W

In Theorem 1.5.1, we showed that a normed space X can be embedded,
essentially uniquely, as an everywhere-dense subspace of a Banach space ¥, the
completion of X. We now consider the case in which X is a pre-Hilbert space.

2.1.6. ProrosITION. If # is a pre-Hilbert space, its completion # is a
Hilbert space.

Proof. Forn=1,2,... 1let
Sa={0,p):x,ye, |Ixl|l <n, Iyl <n},
S, ={(x,y):x,ye #, |Ix|| <n, |Iyll <n},
and note that S, is everywhere dense in S, in the topology on # x #. From
“,
I<x, > — {Xo,¥0)| < hllx — Xoll + nlly — yoll + [Ix = xoll[ly — yoll,
when (x, y), (xo,0) €S,. From this, the mapping f,: S, —» C, defined by

©) Ju(x,y) = <%, 0,

is uniformly continuous on S,, and so extends uniquely to a continuous
mapping f,: S, —» C. When m > n, the restriction £,,| S, is another continuous
extension of f,, so f,,| S, = f,. It follows that there is a mapping f: # x # — C
such that f|S, =f, (n=1,2,...).

We assert that fisan inner product on , and gives rise to itsnorm, whence
A is a Hilbert space. For this, we have to show that

flax + by, z2) = af(x,2) + bf(y,2),
S, x) = f(x,),
Sx, x) = [1xII%,

whenever x, y,ze # and a, be C. We can choose an integer n that exceeds the
norm of each of the vectors x, y, z, ax + by, and by continuity of f|S, (= £,), it
then suffices to prove the three required equations under the additional
assumption that x, y, z € #. However, in this case, these three equations follow
at once from (5), since f|S, = f,. M

Next, we prove two identities, both of which are frequently useful,
concerning vectors in a pre-Hilbert space. The first of these is known as the
parallelogram law.
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2.1.7. ProposITION. If u,v,x,and y are vectors in a pre-Hilbert space,
llx + plI2 + lIx — ylI> = 2{Ix11> + 2[iy11%,
and
Ku,p)=Cu+v,x+p)—u—v,x—y)
+iu+ iv,x + iyy — iu — iv,x — iy).
Proof. The first identity is an immediate consequence of the equations
llx £ plI? = lIx]I* £ 2Redx, y> + ||¥lI%,
which are particular cases of (3). For the second identity, note first that
utoxLy)=Cqux)+ 0,y uyd+{(v,x))
(with the same choice of the ambiguous sign throughout). Thus
du+v,x+y)—u—v,x—y)=2{uy>+ 2{v,x).
Upon replacing v by iv and y by iy, we obtain
u+iv,x +1iyy — (u—iv,x —iy) = — 2idu,y)y + 2i{v, x).
From the last two equations,
u+v,x+yy—u—v,x—yy)+iku+iv,x +iyy —idu —iv,x —iy)
=4(u,y>. 1

We illustrate the use of the two identities just established, in obtaining the
following characterization of pre-Hilbert spaces within the class of normed
spaces.

2.1.8. PROPOSITION. A complex normed space A is a pre-Hilbert space if
and only if
(6) I+ y112 + 1Ix — plI? = 20xI1* + 2IplI> (x,yeH).
When this condition is satisfied, there is a unique inner product on # that defines
its norm, and this is given by
(M 4x, ¥> = llx 4yl = lIx — plI* + illx + iyll® - illx — iyll1>.

Proof. When 4 is a pre-Hilbert space, it follows from Proposition 2.1.7,
with 4 = x and v = y, that the norm satisfies (6) and the inner product is
determined by (7).

Conversely, suppose that J# is a normed space whose norm satisfies (6);
and when x, y e ##, define a scalar {x, y> by (7). Then

(x,xp = 3(I12x11* + ilI(1 + Dx)I* — i1 — D)x]I?)
= ZIXIP@4 + i1 + 12 — i1 = i?) = [Ix]|%,
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and
(x> =4y + xI? = lly — xII> + illy + ix]|> — illy — ix]|*)
=30 + YI1* = llx = yII> + illix — )12 = illix + iy))|?)

={x,).

In order to complete the proof that ¢ , > is an inner product on 4, which
defines the norm on J#, it remains only to show that, for each fixed y in J#, the
equation

® Jx) = llx + 112 = llx = Y1 + dllx + iyll> — dllx — iyll?
defines a linear functional f on #. We begin by proving that
® Jx) =i(x),  flx1 + x2) = f(x)) + f(x2),
for all x, x;, x, in . For this, note that
SGx) = |lix + plI* = llix = yII* + illi(x + I = illi(x — p)|I?

= i(— illi(x — )lI* + illi(x + I + [Ix + Y12 = [Ix = yI1?)

= if(x).
Since the norm satisfies the parallelogram law (6),

s + I+ l1x2 + Y17 = 3lxs + x2 + 2017 + Hlixy — xoff?
= 2|3(x1 + x2) 4+ YII* + 3Ix1 — xal%.

From this and the three similar equations obtained when y is replaced by
— y,iy, — iy, it follows that

(10) J0x1) + f(x2) = 2fG(x1 + x,)).
With x; = x and x, = 0, (10) gives
) =2Gx) (xexN),

since it is apparent from (8) that f(0) = 0. Hence (10) can be rewritten in the
form

S(x1) + f(x2) = f(x1 + x3),

and (9) is proved.
It now remains to show that f(ax) = af(x) whenever xe # and aeC.
Equivalently, we must prove that F = C where
F = {aeC:f(ax) = af(x) for each x in #}.

From (8), f'is continuous, so F is closed. It is evident that 1eF, and that ab,
¢ 'eF whenever a,b,c (# 0)eF. From (9), ieF, and a + beF whenever
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a,beF. The properties just listed imply that s + ite F whenever s and ¢ are
rational, and so F = C, since F is closed. W

2.1.9. REMARK. Most of the theory developed above for complex inner
product spaces is valid also in the real case. For real inner product spaces, the
second relation in Proposition 2.1.7 is omitted. In Proposition 2.1.8, the
relation (7) between the inner product and norm is modified by the deletion of
the last two terms on the right-hand side and is easily proved by direct
computation. The remaining proofs require only minor alterations. W

2.1.10. Remark. Equation (7) gives an immediate alternative proof of
the continuity of the inner product on a pre-Hilbert space. Moreover, if # isa
normed space that satisfies the parallelogram law (6), it follows by continuity
that the completion J# has the same property. This, together with Proposition
2.1.8, provides an alternative proof that the completion of a pre-Hilbert space
is a Hilbert space. W

2.1.11. ExamprLE. With n a positive integer, the complex vector space C",
consisting of all n-tuples x = (xy,...,x,), Yy = (J1,.-.,y,) of complex num-
bers, has a definite inner product defined by

<X,y> = Xl)_)l + 0+ xn.}jn'
The associated norm is given by
fIxll = (x1[* + - + [V

Since C" is complete, relative to the metric d(x,y) = |[x — y||, it is a Hilbert
space. In this example, the Cauchy-Schwarz and triangle inequalities reduce to

IZ X7l < (Z |x,|2)m< % |y,|2>m,

(00enn) ()" <5 0)"

for all complex numbers x;,...,X,, Vis---, Va-
In the same way, the equation

<X,Y>=x1)’1 + +xnyn (X,yGR")

defines a definite inner product on the real vector space R".
The equation

X, ¥)1 = X1y (x,yeC"

defines an inner product on C*; when n > 1, {, ), is not definite, for & (see
Proposition 2.1.1) consists of all vectors whose first component is zero. In this
case, C"/.% is a one-dimensional Hilbert space (isomorphic to C). W
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2.1.12. ExampLE. Given a set A, the Banach space /,(A) described in
Example 1.7.3 consists of all complex-valued functions x on A for which the
(unordered) sum ¥, 4 |x(a))? is finite, and its norm is given by

1/2
(11) [l = ( ) IX(a)|2>

aeA

When x, yel,(A), the sum Y, 5 x(a)y(a) converges, since
M@y @] <3@F + y@F). T ()l + @) < o.
From this, it follows easily that /,(A) has a definite inner product, defined by
(x> = T xay@,

which gives rise to the norm in (11). Hence /,(A) is a Hilbert space. In this
example, the Cauchy-Schwarz and triangle inequalities assert that

- 1/2 1/2
| 3. x(a)p(a)| < ( > Ix(a)|2> (Z Iy(a)l2> ,

aeA aeA aeA
1/2 1/2 1/2
( 2 Ix(a) + y(a)lz) < ( > IX(a)IZ) + < ) Iy(a)|2>
aeA aeA aeA

for all x and y in /,(A).

When A = {1,2,...,n}, [,(A) is the Hilbert space C" considered in the
preceding example. When A is the set {1,2,3,...} of all positive integers, we
write /, in place of /,(A), and sometimes denote an element of this space as a
sequence {x,}. W

2.1.13. ExampLE. Let /{?’ be the class of all complex-valued functions
defined on the set A = {1,2, 3, ...} that take non-zero values at only finitely
many points of A. Thus /' is a linear subspace of /,, and so inherits from /,, by
restriction, a definite inner product and the associated norm. Hence /{? is a pre-
Hilbert space; we assert that it is not a Hilbert space, that is, it is incomplete.
For this, we show that /) is everywhere dense in /,, from which it follows (since
[, # 1) that /'? is not closed in /,, and therefore not complete.

With x in /,, define x{, x,, x3,... in /2 by

Cfxtk) if k<
*i(k) _{u it k>
Then
o 1/2 oc 1/2
lIx — x;ll = ( Y. Ix(k) — xj(k)|2> = ( Y IX(k)|2> -0
k

=1 k=j+1
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asj — oo. This shows that each element of /, is the limit of a sequence in /), and
so proves our assertion that /Y is everywhere dense in /,. W

2.1.14. ExampLE. Suppose that m is a o-finite measure defined on a
g-algebra & of subsets of a set S. The Banach space L, (= L,(S, ¥, m)),
described in Example 1.7.5, consists of all (equivalence classes modulo null
functions of') complex-valued measurable functions x on S for which

J [x(s)I> dm(s) < oo,
S

with the norm defined by
1/2
(12) lIxll = <j IX(S)Izdm(S)) .
N

When x, y € L,, the function x(s);(s_) is integrable, since it is measurable and its
absolute value is dominated by the integrable function 1(|x(s)|> + |y(s)|?).
From this, it follows easily that L, has a definite inner product, defined by

(xy) = f x(8)y(s) dm(s),
S

which gives rise to the norm in (12). Hence L, is a Hilbert space.
The Cauchy-Schwarz and triangle inequalities reduce, in this example, to

- 1/2 1/2
Ij x(s)y(s) dm(s)| < (I x(s)I> d'n(S)) (J |y(S)|2an(S)) ,
N N N

1/2 1/2 1/2
(J Ix(s) + y(s)I? dm(s)) < (J |x(s)|? dm(s)) + (j ly()I? dm(s)) ,
s s s

forall xand yin L,. W

2.2. Orthogonality

The theory of Hilbert spaces and Hilbert space operators is more tractable
than its Banach space counterpart, largely because the presence of an inner
product permits the introduction of a satisfactory concept of orthogonality. In
the present section we study this concept, after obtaining some preliminary
results.

We show first that, in a Hilbert space, the minimal distance from a point to
a closed convex set is attained.
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2.2.1. ProposiTION. If Y isa closed convex subset of a Hilbert space 3, and
Xo € #, there is a unique element y, of Y such that

(1) lxo = yoll < llxo =¥l (yeY).

Moreover,

@) Re(yo,xo — Yoy = Re{y,x0 —y0)  (¥e€¥Y).
Proof. With

d =inf{||lxo — yll:ye Y},

there is a sequence {y,} of elements of Y such that ||x, — y,|| = d. By the
parallelogram law,

2“X0 - ym||2 + 2||x0 - yn”2 = ”2X0 —Vm — yn”2 + ”yn - ym”2
for all positive integers m and n. Since 3(¥,, + y,) € Y, we have
12X0 = Ym = Yall = 2llxo — 3(¥m + Yl = 24,
and therefore
170 — Ymll® = 2lIx0 = Ymll* + 2llx0 = Yull> = [12X0 — Ym — Yall?
< 2/lxo = Ymll® + 2llx0 — yull> — 4d* -0

as min(m, n) — co. Hence {y,} is a Cauchy sequence, and so converges to an
element y, of J#. Moreover, y, € Y, since Y is closed; and y, satisfies (1), since

lxo — yoll = im [Ixg — y,|| = d = inf{|lxo — y|l: ye Y}.

n— oo

If y, is another element of Y that satisfies (1), then |x, — yll =
lxo — yoll = d. We can apply the preceding reasoning, with y, and y; in place
of y,, and y,, to obtain

176 = Yoll* = 2lIxo — yoll* + 2llxo — ¥oll* — 4llxo — 5(¥o + ¥o)II*
<2d? +2d* - 4d* = 0.

Hence y,, = y,, and y, is uniquely determined by (1).
For each yin Y and tin (0, 1), yo + «(y — yo)€ Y, and (1) gives

lIxo — yoll* < lIxo = Yo — t(y — yo)lI*
= |lxo — yoll* — 2t Rey — yo, X0 — Yoy + £2lly — yoll*.

—

Hence
—2 Redy = yo,xo — yo) + tlly — yol* =0 O<t<l),
and this gives (2) when t ->0. W
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2.2.2. REMARK. We have proved, in Theorem 1.3.4, that a closed convex
subset Y of a locally convex space is closed also in the weak topology. For a
Hilbert space #, Proposition 2.2.1 permits an alternative proof of this result.
For this, suppose that x, e #\ Y, and let y, be the element of Y that satisfies (1)
and (2). Then ||xq — yo|| > 0, and

Redy, xo — yo» < Re{yo, X0 — yo)
= Redxg, X0 — yo) — (X0 — Yo, Xo — Vo)
= Re{xo, X0 — o) — lIXo — yoll?
for each y in Y. Thus
H\Y 2V,
where
V= {xes# Re{x,xo — yoy > Re{xg,Xo = yo) — Ilxo — yoll*}.

The equation p(x) = (x,xo — yoy defines a linear functional p on s#; and
from continuity of the inner product, p is bounded, and is therefore weakly
continuous. Since

V ={xe#:Rep(x) > Rep(xo) — lIxo — yoll*},

it follows that V' (= #\Y) is a neighborhood of x, in the weak topology on .
Hence s#\Y is weakly open, and Y is weakly closed. H

Suppose that # is a Hilbert space, u, v € #, and X, Y are subsets of 5. We
say that u is orthogonal to v if {u,v) = 0, that u is orthogonal to Y if {u,y) =0
for each y in Y, and that X is orthogonal to Y if {x,y) = 0 whenever x € X and
ye Y. The set of all vectors, in # and orthogonal to Y, isdenoted by Y *. When
Y is a closed subspace of #, we sometimes write J# © Y in place of Y.

If u is orthogonal to v, then also v is orthogonal to u, and by expanding the
inner product {u + v,u + v) we obtain

llu + vll> = llull® + |lof|.
From continuity and linearity of the inner product in its first variable, Y * is a
closed subspace of #. It is apparent that X < Y * if and only if Y < X+, and
that X* < Y*if X2 Y. Ifue Y+, then Y < {u}*. Moreover, since {u}" is a
closed subspace containing Y, it contains the closed subspace [ Y ] generated by
Y, and so ue[Y]*. This shows that Y+ = [Y ]+, and the reverse inclusion is
apparent since Y = [Y]; so

Yt=1[r]4
If yeYn Y?, then (y,y> =0, whence y = 0; so
YnYt=/{0}.

In particular, #* = # n#*+ = {0}.
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The following theorem includes the assertion that, if Y'is a closed subspace
of a Hilbert space 4, then Y and Y are complementary subspaces in the sense
discussed in Section 1.1 (preceding Theorem 1.1.8). For this reason, Y+ is
called the orthogonal complement of Y.

2.2.3. THEOREM. If Y is a closed subspace of a Hilbert space #, each
element xq of # can be expressed uniquely in the form y, + zq, with yo in Y and
zo in Y. Moreover, y, is the unique point in Y that is closest to x.

Proof. Since Y is a closed convex subset of J#, we can choose y, as in
Proposition 2.2.1, and define z, = xo — yo. From (1) and (2), y, is the (unique)
point in Ythatisclosest to x,, and Re{y,z,> < Re(y,, zo) for each yin Y. By
writing ay in place of y, we obtain

Ready,zo) < Re(yo,z20) (yeY, aeC).

Hence (y,z,> = 0 for each y in Y, and z, e Y *. This proves the existence of a
decomposition x, = yo + 2o, With yo in Y and z, in Y *. If, also, xo = y; + zy,
with y, in Y and z, in Y, then

Yo+ 2o =y1 + 21, Yo— V1 =21 — 20 YN Y+ ={0};

and so0 yo =y, z0=2,. W

2.2.4. CorOLLARY. If' Y is a closed subspace of a Hilbert space # and
X © #, then

(YH*=v, @XH* =I[x].
Moreover Y = 3 if and only if Y* = {0}.

Proof. Since [X] is a closed subspace of #, and (X*)* = ([X]4)4, it
suffices to prove only the results concerning Y.

If ye Y, then y is orthogonal to each element of Y+, and so y e (Y *)*. This
shows that Y < (Y *)%, and we have to prove the reverse inclusion. With x, in
(Y*)*, we can choose y, in Y and z, in Y+ so that xq = yo + z,, by Theorem
2.2.3. Then xqe (Y1), yoe Y = (Y1), and therefore zo = xo — yoe (Y1) .
Hence

zo€ YE N (YHE = {0},

and x, = yo€ Y. This gives the required inclusion (Y*)* = ¥,so (YY)t = Y.
Ify= ]/’ then Y+ = #* = {0} conversely, if Y+ = {0}, then Y = (Y })*
—(0) =¥ m

A subset Y of a Hilbert space J# is described as an orthogonal set if any two
distinct elements of Y are mutually orthogonal. By an orthonormal set we mean
an orthogonal set of unit vectors. An orthonormal set Y is linearly independent
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(by which we mean that every finite subset of Y is linearly independent); for if
V1,-..,), are distinct elements of Y, ay,...,a,e€C, and Y 7_, a;y; = 0, then

a =Y ay;,ny=0 k=1,...,n).
i=1

In developing the theory of orthogonal expansions in a Hilbert space, we make
use of the concept of unordered summation introduced in Section 1.2
(following Theorem 1.2.18).

2.2.5. ProposiTiON. If Y is an orthogonal set in a Hilbert space #, the sum
Yyer ¥ converges if and only if ¥,y [[¥II* < co. When this condition is satisfied,

(€) Il ¥l = 2yl

yeY yeY

Proof. With F a finite subset of Y, expansion of the inner product
expression for ||Y,.r y||* gives

“4 N3 2= Yyl

yeF yeF

From this, and the Cauchy criterion for unordered sums, it follows that
convergence of either of the sums in (3) implies convergence of the other. When
these sums converge, they are limits of the finite subsums occurringin (4); since
the norm is continuous, (3) is an immediate consequence of (4). W

2.2.6. CoroLLARY. If'Yisan orthonormal setin a Hilbert space 5, andfis
a complex-valued function defined on Y, the sum Y. .y f(y)y converges if and only
Y ,ex |fO)? < 0. When this condition is satisfied,

Iy SOl = X 1f)I%.
yeY yeY

Proof. It suffices to apply Proposition 2.2.5 to the orthogonal set
{fOy:yer} m

2.2.7. ProposiTiON. If Y is an orthonormal set in a Hilbert space # and
ue A, then

(1) Zer|<u’y>|2 < ”ullza

(i) the sum Y .y (u,y)y converges, and

u— Y <u,ydye¥+;

yeY

(i) lu — Lyey <, 217 = lldll® — Lyer [<u, 12
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Proof. With F a finite subset of Y and p(y) = {u,y) for each y in Y,

llu = 3 Cu, poyll> =<u = Y p(y,u— 3 p(2)z)

yeF yeF zeF
= uy = ¥ Xy uy = ¥ p@) <2y + T p()p(2)<y, 2>
yeF zeF y,zeF
= [lull> = Y leI> = X o1 + 3. 1p2)I?
yeF zeF zeF
= [jull> = 3 Ku, p)I*.
yeF
Hence
®) Ky = ull* — e — 3 <, oyl < Mull?
yeF yeF

for each finite subset F of Y. This proves (i), and the convergence of
Y er {u, y»y now follows from Corollary 2.2.6. For each y, in Y, continuity and
linearity of the inner product in its first variable entail

u— Y <u, >y, y0) = <, ¥0) — 3. <, <Y, Yo

yeY yeY
= U, Yoy — U, 0y =0,

sou — Y,y {u,y>y e Y. This proves (ii), and (iii) is an immediate consequence
of (5) since the norm is continuous. W

The inequality in Proposition 2.2.7(i) is usually known as Bessel’s
inequality.

2.2.8. CoroLLARY. If Y is an orthonormal set in a Hilbert space # and
ueH, then'y .y (u, y>y is the unique vector closest to u in the closed subspace
[Y] generated by Y. Moreover, the following three conditions are equivalent:

(1) wuelY];
(11) u= Zye}' <ua y>y’
(111) ”u||2 = Z)’EY|<u’y>|2'

Proof. With v'= Y,y <u,y)y, it is evident that ve [ Y], and Proposition
2.2.7(ii) asserts that u — ve Y+ = [X]*. Since, also, u = v + (u — v), Theorem
2.2.3 now implies that v is the unique point closest to u in [Y]. From the last
statement, it follows that v =u if ue[Y], so (i) implies (ii). The reverse
implication is apparent, and the equivalence of (ii) and (iii) follows from
Proposition 2.2.7¢iii). W
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2.2.9. THEOREM. If Y is an orthonormal set in a Hilbert space #, the
Jfollowing six conditions are equivalent:

(i) foreachuin 3, u=7Y,y<u,y)y;
(i) for each u and v in #, {u,v) = Yoy (U, YIP, VD5
(iil) for each u in H#, |[u||* = ¥,ey [<u, ¥)|?;
(iv) Y is not contained in any strictly larger orthonormal set X;
(v) Y'={0};
i) [Y]=4+#

Proof. By the linearity and continuity of the inner product in its first
variable, (i) implies (ii). It is apparent, by taking v = u, that (ii) implies (iii).

If Yis contained in a strictly larger orthonormal set X; (iii) fails since, when
xeX\Y,

YKy =0#1=x|

yeY

It follows that (iii) implies (iv).

If Y+ has a non-zero element x, Y is contained in a strictly larger
orthonormal set Y u {||x||”'x}; so (iv) implies (v).

By Corollary 2.2.4, and since Y* = [Y]?, (v) implies (vi). It follows, from
the equivalence of the first two conditions stated in Corollary 2.2.8, that (vi)
implies (i). W

An orthonormal set Y in a Hilbert space s# that satisfies (any one, and
hence all six, of ) the equivalent conditions set out in Theorem 2.2.9 is called an
orthonormal basis of #. When Y is an orthonormal basis, the equation in
condition (ii) is known as Parseval’s equation.

2.2.10. TueorEM. FEach Hilbert space # has an orthonormal basis, and
every orthonormal set in 3 is contained in an orthonormal basis. Moreover, all
orthonormal bases of # have the same cardinality.

Proof. The class of all orthonormal sets in s is partially ordered by
inclusion. If a family {¥,} of orthonormal sets is totally ordered by inclusion,
then U Y, is an orthonormal set that contains each Y,; for any two distinct
elements y,z of U Y, are contained in the union Y, U Y, of two sets in the
family, Y, U Y. coincides with Y, or Y, and is therefore orthonormal, and so
{y,2) = 0.In view of this, it follows from Zorn’s lemma that there is a maximal
orthonormal set Y, ; since Y, is not contained in a strictly larger orthonormal
set, it is an orthonormal basis.

If Y is a given orthonormal set, we can repeat the above argument,
restricting attention throughout to orthonormal sets containing Y. In this way,
we prove that there is an orthonormal basis containing Y.
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Suppose that X and Y are two orthonormal bases of ##, and that the
cardinal numbers corresponding to these sets are m and n, respectively. In
proving that m = n, we consider separately two cases.

If # is finite dimensional, the (linearly independent) sets X and Y are
necessarily finite. Since both satisfy condition (i) in Theorem 2.2.9, each has
linear span #, and is therefore a basis of # in the elementary algebraic sense.
The basis theorem for finite-dimensional vector spaces now implies that m = n.
We note also an alternative proof, that m = n when m and n are known to be
finite, which is more akin to the argument needed in the infinite-dimensional
case. By condition (iii) in Theorem 2.2.9

m=Y xlIt=Y ¥ [Kxp)?

xeX xeX yeY
=2 LKyl = Yy =n
yeY xeX yeY

If s is infinite dimensional, both X and Y are infinite sets, since
[X]=1[Y] = If m+#n, we may assume that m < n; we show, in due
course, that this assumption leads to a contradiction. For each x in X,

2P =Xl =1,

yeY
sotheset Y, = {ye Y:{x,y) # 0} is countable. Moreover, Y = | J,.x Y; for,
if yev,

Y Ke P =1yIP =1,
xeX
whence {x, y> # 0 and ye Y,, for at least one element x of X.

The remainder of the argument consists of elementary cardinal arithmetic,
amounting, essentially, to the observation that n < m¥, = m (where, as usual,
N, denotes the cardinal of the set of natural numbers). In order to prove that
n < m, and so obtain the desired contradiction, we need only show that there is
a mapping from X onto Y. For this, it suffices to prove that X can be expressed
as a disjoint union | J,.x X, of a family (indexed by X) of countably infinite
subsets; for then each X, can be mapped onto the corresponding Y,, and X
(= U X,) can be mapped onto Y (= U Y,). To prove the existence of such a
family (X,),ex, it is enough to show that X x Z has the same cardinality as X,
when Z is a countably infinite set. Since Z x Z is countably infinite, it now
suffices to prove that X has the same cardinality as A x Z, for some set A.
This, in turn, amounts to showing that X can be expressed as the disjoint union
(Jaea Za of a family (with arbitrary index set A) of countably infinite subsets of
X. For this, observe that a simple argument using Zorn’s lemma proves the
existence of a maximal disjoint family {Z,} of countably infinite subsets of X.
The maximality of this family implies that X\U Z, has only a finite number of



2.2. ORTHOGONALITY 93

elements; by adding these to any one Z,, we obtain the required partition
X=UZ,. N

By the dimension of a Hilbert space s# we mean the cardinal number
dim # corresponding to an orthonormal basis Y of s From the preceding
theorem, this does not depend on the choice of Y; moreover, it coincides with
the elementary algebraic concept of dimension when J# is finite dimensional.

Suppose that 3#;, and s, are Hilbert spaces, and U isa linear mapping from
H#, onto i#,. By expressing inner products in terms of norms, as in Proposition
2.1.8, it follows that U preserves inner products if and only if it preserves
norms. Accordingly, the concept of isomorphism, from #,; onto #,, is the
same whether J#; and ¢, are regarded as Banach spaces or as Hilbert spaces. It
is evident that isomorphic Hilbert spaces have the same dimension.

2.2.11. ExaMpLE. With A any set, the Hilbert space /,(A) has an
orthonormal set Y = {y,:ae A}, in which y, is the function taking the value 1
at a and 0 elsewhere on A. Since (x, y,> = x(a)foreach xin/,(A)and ain A, it
follows that Y* = {0}. Hence Y is an orthonormal basis of /,(A), and the
dimension of /,(A) is the cardinal number corresponding to the set A.

A necessary and sufficient condition for two spaces /,(A) and /,(B) to be
isomorphic is that the sets A and B have the same cardinality. The condition is
necessary because isomorphism preserves dimension; it is sufficient since, if f
is a one-to-one mapping from A onto B, the equation (Ux)(a) = x(f(a))
defines an isomorphism U from /,(B) onto /,(A). W

2.2.12. TueoreM. Two Hilbert spaces are isomorphic if and only if they
have the same dimension.

Proof. In view of Example 2.2.11, it suffices to prove that a Hilbert space
H# with an orthonormal basis Y isisomorphic to /,(Y). For each x in 5, we can
define a complex-valued function Ux on Y by (Ux)(y) = {x,y). From
condition (iii) in Theorem 2.2.9,

x> = 3 (<> = 3 (UxO)IP,
yeY yeY

so Uis a norm-preserving linear mapping from 4 into /,(Y). With fin /,(Y), it
follows from Corollary 2.2.6 that the sum Y ,.y f{y)y converges to an element x
of #. Moreover, for each y, in Y,

(Ux)(yo) = {x, 0> = 3. S(W)<p, yo) = f(¥o),

yeY
so Ux = f. Hence U is an isomorphism from J# onto /,(Y). W

2.2.13. CorOLLARY. FEvery Hilbert space is isomorphic to one of the form
[,(A). A Hilbert space with finite dimension n is isomorphic to C".
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2.2.14. ReMARK. We assert that a Hilbert space s# is separable if and
onlyifdim s# < N,. In consequence, all separable infinite-dimensional Hilbert
spaces have dimension X,, and are therefore isomorphic. In particular, /,
spaces for countably infinite sets, and L, spaces for Lebesgue measure on
measurable subsets of R”, are all isomorphic.

To prove the above assertion, let Y be an orthonormal basis in 5. If Y is
countable, »# has a countable everywhere-dense subset, which consists of
those finite linear combinations of elements of Y in which each coefficient has
rational real and imaginary parts. If Y is uncountable, the open balls with

radius %\/5 and centers in Y form an uncountable disjoint family, since

171 = yall? = I3l + llyli* = 2

when y, and y, are distinct elements of Y. An everywhere-dense subset of 3#
meets each of these balls, and is therefore uncountable. H

In proving the following result, we describe the Gram—Schmidt orthogonal-
ization process, by which a linearly independent sequence of Hilbert space
vectors gives rise to an orthonormal sequence. The linearly independent
sequence may be finite or (countably) infinite, and the orthonormal sequence
has the same number of terms. We recall that the (necessarily closed) subspace
generated by a finite set x, ..., x, of vectors is denoted by [x,,..., x,].

2.2.15. ProposiTiON. If (xy,X;,X3,...) is a linearly independent sequence
of vectors in a Hilbert space #, there is an orthonormal sequence (1,52, ¥3,---)
such that [x{,...,x,] = [¥y1,.-.,y.] foreachn=1,2,3,....

Proof. We construct y,y,,ys, ... inductively, and start the process by
defining y, to be |x;||” 'x;. Now suppose that we have produced an
orthonormal set {y,,...,¥,-}, with the property that

[yl""yyn]=[x17"'7'xn] (1<n<r)

Since

xr¢[x15--',xr—1] = [yly""yr—l]a
the vector
r—1

Z=X,— Z <xrayj>yj

j=1
is non-zero, and

[yla"'ayr—l’z] = [xl’“'axr—laxr]-
—

Moreover, fork=1,...,r — 1,

2,0y =X i) — Y, L% Yid i Yy = (X Yi) — (X, iy = 0.

i=1
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With y, = [|z]| !z, {yy,...,¥,} is an orthonormal set and [y;,...,y,] =
[x;,...,X,]. Hence the inductive process continues (indefinitely, if there are
infinitely many x;, but terminating with the construction of y, if there are just n
vectors x;). W

2.2.16. REMAaRK. When an orthonormal sequence {y,} is constructed
from a linearly independent sequence {x,}, as in the proof of the last
proposition, we have

r—1

<ynxr> = <yr72> + Z <yr’yj><yj’xr> = <yr72> = ”Z” > 0.

i=1

It is not difficult to verify that the conditions

[yl7---7yn]=[xls""xn]y <ymxn>>0 (n=17253,"')
determine the orthonormal sequence {y,} uniquely. H

We conclude this section with a brief discussion of certain orthogonal
families of functions in L, spaces, which are encountered in classical analysis
and its applications.

The best known examples arise in connection with the theory of Fourier
series, for functions in L,(— n, ). With Z the set {0, =1, +2,...} of all
integers, we can define functions x, (ne Z) in L,(— =, n) by

x,(s) = exp(ins) (—n<s<n).

By evaluating the appropriate integrals, we obtain

xall = /2m, (X, Xa» =0 (m #n),

so the functions (27)~!/?x, form an orthonormal set in L,(— =, ). We shall
note later, as a consequence of Theorem 3.4.14 (see Remark 3.4.15), that linear
combinations of these functions are everywhere dense in L,(— =, n).
Accordingly, the set {(27) ~Y/? x,: ne Z} is an orthonormal basis of L,(— =, 7).
Each function x in L,(— =, n) has an expansion

x =3 <x2n) " 2x,)21) " Vix, = 3 cuxi,
neZ

neZ
convergent in the norm topology on L,(— =, n), in which

1 1 (" )
Cp=—4LX,X> =— x(s)e™ " ds.
n 2n< > 27rj_,: (5)
The numbers c, are called the Fourier coefficients of x, and the series ¥ ¢,x,, is
called the Fourier series of x. Given two functions x and y in L,(— =, ), with
Fourier series ¥ ¢,x, and ¥ d,x,, respectively, Parseval’s equation assumes the
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form
" — 1
(6) J X(s)y(s) ds = - Y Cnldys
-n neZ
in particular,
" 1
7 x(8)?ds = — |c,|
(7 J_nl (s)|“ds 2nélcl

The preceding paragraph is concerned with the “complex form” of Fourier
series; we now consider briefly the (essentially equivalent) ““real form.”” The
functions

1, coss, sins, cos2s, sin2s, cos3s, sin3s,

form an orthogonal sequence (yq, yy, V2, ...) In L,(— w, ), since evaluation of
the appropriate integrals shows that

lyoll = /27, Iyall=/n #>0),  (Imyw> =0 (m#n).

Since

1 1
Yo = Xo, Yon-1 =_(xn+x-n)7 y2n=—.(xn_x—n)a
2 2i

the linear span of the y, is the same as that of the x,, and is therefore everywhere
dense in L,(— m,m). It follows that the sequence {(27) Y/2y,,n~ 2y,
n~12y,,...} is an orthonormal basis of L,(— m,n). The corresponding
orthogonal expansion of a function x in L,(— =, n) is a series of trigonometri-
cal functions, the “real form” of the Fourier series of x. Parseval’s equation
yields results, analogous (and equivalent) to (6) and (7), in which the integrals
representing (x,y» and |x||> are expressed in terms of ‘“real” Fourier
coefficients.

Certain classical sequences of polynomials form orthogonal sets in
appropriate L, spaces. For example, in L,(— 1,1), the functions x,,x,,
X,,...,defined by

x(8)=s" (—=1<s<),

form a linearly independent sequence. By the Gram-Schmidt process, we can
construct an orthonormal sequence (yq,y1,¥3,...) in Ly(— 1, 1), such that

[yO"”’yn]:[xO"-‘axn] (n=07172a)

The linear span of the y, is the set of all polynomials, and this is everywhere
dense in L,(— 1, 1), by the Weierstrass approximation theorem (noted later, in
Remark 3.4.15). Accordingly (y¢,y1,2,...) is an orthonormal basis of
L,(— 1,1). It is not difficult to verify that

yl8) =/n+3P(s) (n=0,1,2,.),
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where P, is the Legendre polynomial, defined by Rodrigues’s formula

dn
A6 =1

®) P =30 o

The orthogonality relations

f PR ds = ——
TP =

1
f P,(s)P,(s)ds =0 (m # n)
-1
(which are equivalent to the assertion that the sequence {y,} is orthonormal)
are easily deduced from (8), upon repeated integration by parts.

Other classical sequences of polynomials arise in a similar manner. Let E be
a Borel subset of R, with positive Lebesgue measure, w a strictly positive Borel
measurable function on E, such that

J‘ $2"w(s)ds < oo n=0,1,2,..)).
E

The set of (equivalence classes modulo null functions of ) Borel measurable
functions x on E, such that

J |x(8)|>w(s) ds < oo,

is a Hilbert space s, with inner product defined by

{x,pp = j x(s)y(s)w(s) ds.
E

The functions 1, s, 52,53, . . . form a linearly independent sequence in 2, and by
applying the Gram-Schmidt process we obtain an orthonormal sequence
(Yo,¥1,V2,...), in which y, is a polynomial of degree exactly n.

When E is [— 1,1] and w(s) = (1 — s)*(1 + s)*, where v,u> — 1, we
obtain the Jacobi polynomials P\"*)(s). The Laguerre polynomials L)(s)
(v > — 1) arise when E = [0, o) and w(s) = s* exp(—s). The Hermite poly-
nomials correspond to the choice E = R, w(s) = exp(— s2). These are the main
three classical sequences of polynomials, from which the others can be derived;
for example, the Legendre polynomials are a particular case (v = u = 0) of the
Jacobi polynomials.

2.3. The weak topology

In this section we prove Riesz’s representation theorem (Theorem 2.3.1),
which describes the general continuous linear functional on a Hilbert space .
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By means of this result, we establish certain properties of the weak topology on
M (see Section 1.3).

2.3.1. TueoreM. If # is a Hilbert space and ye#, the equation
@,(x) = {x,y> (xeH) defines a continuous linear functional ¢, on #, and
llo,ll = llyll. Each continuous linear functional on # arises, in this way, from a
unique element y of #.

Proof. For each y in #,
lo,()l = [Kx, oI < lIxllivll - (xes#),

with equality when x = y. Thus ¢, is a continuous linear functional on J#, and

llyll = 1Ix1l.
If ¢ is a non-zero continuous linear functional on J#, the closed subspace

Y = ¢~ 1(0) is not the whole of #, so Y+ # {0}. Let u be a unit vector in Y*,
and note that

P(pwx — p(xX)u) = P(W)e(x) — P(x)p(u) = 0
for each x in 5. It follows that ¢(u)x — @(x)ue Y, and since ue Y+, we have

0 = {p)x — p(x)u, up = P(U){x,uy — P(x).
Hence

@(x) = pu){x,up =<{x,y)  (xeH),

where y = @(u)u. This shows that ¢ has the form ¢, for some y in # (and the
same conclusion is apparent when ¢ = 0). If, also, ¢ = ¢, with z in J#, then

ly =zl = floy-:Il = lloy — @Il = llo — ¢l[ =0,

whence y = z; so there is only one y in # for which ¢, =¢. H

2.3.2. CorOLLARY. If # is a Hilbert space, the equation
UNx) =<x,3>  (x,yel)

defines a conjugate-linear norm-preserving mapping J from # onto the Banach
dual space #*.

Proof. Since Jy is the continuous linear functional ¢, occurring in
Theorem 2.3.1, J is a norm-preserving mapping from # onto #°*, and it is
evident from the conjugate linearity of the inner product in its second variable
that J also is conjugate linear. u

2.3.3. CoroLLARY. Every Hilbert space is reflexive.

Proof. Suppose that # is a Hilbert space and @ is a continuous linear
functional on its Banach dual space #*. With J defined as in Corollary 2.3.2,
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the equation

o(y) = 0(Jy)  (yeX)
defines a bounded linear functional ¢ on 5. By Theorem 2.3.1, we can choose z
in J# so that p(y) = {,z) foreach y in #. Every element i of #¥ has the form
Jy, with y in 2, and
DY) = P(Jy) = @(y) =<»,2> =<2,y> = (y)2) = Y(2).
Since each bounded linear functional ¢ on #* arises in this way from an
element z of #, it follows that # is reflexive. W

2.3.4. CorOLLARY. Suppose that # is a Hilbert space and x,e #. The
Sfamily of all sets of the form

{xedt:[(x = Xyl <e (= 1,....m)},

Withyy,...,y,(€ #)ande (> 0) preassigned, is a base of neighborhoods of x, in
the weak topology on #. A net {x,} of elements of # converges weakly to x, if
andonly if {x,, y> — {xq,y> for each y in #. The closed unit ball of # is weakly
compact.

Proof. Since # is reflexive, its unit ball is weakly compact by Theorem
1.6.7. The remaining assertions in the corollary are simply reinterpretations of
the appropriate Banach space definitions, taking into account the information
in Theorem 2.3.1 concerning the form of continuous linear functionals on
X N

2.3.5. ProposITION. Ifanet {x,} of vectors in a Hilbert space # converges
weakly to an element x of #, and

lbxall = 1l

then {x,} converges to x in the norm topology.
Proof. Since

Cxgy Xp = €2, %) = |Ix]1%,
we have

llxa = x1? = [Ix,]|1> — 2Re{x,, x) + ||x[I> > 0. W

2.4. Linear operators

We recall from Theorem 1.5.5 that a linear operator T, from a normed
space X into another such space %, is continuous if and only if it is bounded, in
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the sense that there is a real number ¢ such that ||Tx|| < ¢||x|| for each x in X.
The set B(X, %) of all such bounded operators is itself a normed space, when
the norm of an element T is defined to be the least such constant ¢;
equivalently,

1| = sup{|iTx||: x€ X, |Ix|| < 1}.

By Theorem 1.5.6, (X, %) is a Banach space when & is a Banach space. In this
section we obtain more detailed information concerning bounded linear
operators acting on Hilbert spaces.

General theory. Suppose that # and ¢ are Hilbert spaces. By a
conjugate-bilinear functionalon # x X, we mean a complex-valued function b
on # x X thatislinearinthefirst variable and conjugate-linear in the second.
We say that such a functional b is bounded if there is a real number ¢ such that
|b(x, p)| < cllx|| |Iy|l for all xin 5# and yin 2. When this is so, we denote by ||b||
the least possible value of ¢, which is given by

6]l = sup{|b(x, y)|: xe #, ye X, |Ixll < 1, Iyl < 1}
When " = #, we refer to a conjugate-bilinear functional “on #,” rather than
“on # x A’
2.4.1. THEOREM. If #, A are Hilbert spaces and TeB(H,X), the
equation
(M br(x,y) =<Tx,y>  (xeH, yeX)

defines a bounded conjugate-bilinear functional by on # x A, and ||br|| = ||T||.
Each bounded conjugate-bilinear functional on # x A" arises in this way froma
unique element of B(H, H).

Proof. Given T in B(#,X), it is apparent that br, as defined in (1), is a
conjugate-bilinear functional on # x J. The inequalities
b, )| = [<Tx, oI < Tl VIl < NITHIXI I
ITXI1* = <Tx, Tx) = be(x, Tx) < ||bl} 1] | T[],

show that by is bounded and ||b¢|| = ||T]-
If b is a bounded conjugate-bilinear functional on # x X and x e #, the
equation

Ux)(y) = b(x,y)  (yeX)
defines a linear functional Ux on . Since
ICUxY) < 11611 €Iy,

Uxis bounded, and ||Ux|| < ||b]|||x||. From this, together with the linearity of b
in its first variable, it is evident that U is a bounded conjugate-linear mapping
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from # into the Banach dual space o#'* of &#. With J the norm-preserving
conjugate-linear mapping from »# onto ¢ *, as defined in Corollary 2.3.2,
J~!1U is a bounded linear operator T from # into ) ; moreover,

br(x,y) = <Tx,y)> = {J7'Ux, )
= {3, J71Ux) = (Ux)(y) = b(x, ),
so b = by. If, also, b = bg for some S in B(H#, X "), we have
IS = Tl = llbs-7ll = llbs — bzl = [Ib — bl = 0,
and S=T7. &

2.4.2. THEOREM. Suppose that #, A, and & are Hilbert spaces. If
Te B(H, X)), there is a unique element T* of B(A, #) such that

2 (T*x,y) =<{x,Ty) (xeX, yeX).
Moreover,

() @S+ bT)* =aS* + bT*,
(i) (RS)* = S*R*,
(i) (T)* =T,
(v) IT*T|| =TI,
V) N7 =171,
whenever S, Te B(H, A" ), ReB(A, L), and a,beC.

Proof. The equation b(x, y) = {x, Ty) defines a conjugate-bilinear func-
tional b on 4 x #. With the notation introduced in Theorem 2.4.1,

|b(x’y)| = |<Ty’ x>| = |bT(y’x)|’

so b is bounded and ||b|| = ||b7]| = ||T||- By the theorem just cited, there is a
unique element T* of B(A, #) for which

(T*x,y) =b(x,y) =<{x,Ty)  (xeX, yeH);
and ||T*|| = ||b|| = ||T||- For each x in #,
ITx|[*> = (Tx, Tx) = <T*Tx, xp < || T*T|||xI|,
sO
T < WT*TN < W T*IIT) = I T

and (iv) follows.
[t remains to prove (i), (i), and (iii). These follow from the identities

{(@S* + bT*)x,y> = a{S*x,y> + b{T*x, y)
=a{x,Sy) + b{x, Ty) = {(x,(aS + bT)y},
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{S*R*z,y> = (R*z,Sy) = {z, RSy),

<Ty9x> = <X, Ty) = <T*X,y> = <y’ T*X>

(xe X, ye #, ze &), together with the fact (proved above) that, for each
bounded linear operator T, there is only one operator T* satisfying (2). M

When T e B(H#, A'), the operator T* occurring in the preceding theorem is
called the (Hilbert) adjoint of T. When dealing with Hilbert space operators, it
is understood that the term “adjoint” refers to the Hilbert adjoint 7T*, rather
than the Banach adjoint T* discussed at the end of Section 1.6, unless there is
an explicit indication to the contrary. While T* maps ¢ into J#, T* maps the
Banach dual space % into #*. If J,: # —» #* and J,: A - A '* are the
norm-preserving conjugate-linear mappings defined as in Corollary 2.3.2, we
have T* = J[ 'T*J,, since

(7T ) = (TPay)(x) = (Joy)(Tx) = (Tx, )

for all x in # and y in X

We now specialize to the case in which 4 = #. With T in #(¢), the
adjoint T* is again in #(# ). Accordingly, () is a complex Banach algebra
with an “adjoint operation” * satisfying

(i) (aS+bT)*=aS* + bT*,

(i) (ST)* = T*S*,

(i) (TH*=T,

(iv) IT*T|I = TP,
for all S, T in #(#) and a,b in C. These four basic properties (from which a
fifth, ||T*|| = ||T|, is easily deduced) form part of the basic background
material for much of our subsequent work.

When Te #(#) and x,y e #, we have

3) KTx,y) =<LT(x +y),x +y) —{T(x — y),x —p)
+ KT(x + iy), x + iy) — i{T(x — iy),x — iy).

This relation is called the polarization identity. 1t is a particular case of the
second relation stated in Proposition 2.1.7 (and is essentially equivalent to it).
When T = I, it reduces to the expression of inner products in terms of norms,
already noted in Proposition 2.1.8.

2.4.3. ProrosITION. If S and T are bounded linear operators acting on a
Hilbert space # and {Sx, x) = {Ix,x) for each x in #, then S = T.

Proof. Since {Sx,x) = (Tx,x) for each vector x, it follows by polari-
zation (that is, by means of the polarization identity (3)) that {Sx,y) =
{Tx,y) for all x and y in #. Hence S and T give rise to the same conjugate-
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bilinear functional on 2, and from the uniqueness clause in Theorem 2.4.1,
S=T7. N

2.4.4. Remark. For linear operators acting on real inner product spaces,
the analogue of Proposition 2.4.3 is false. For example, the equation
T(x1,x,) = (x5, — x;) defines a non-zero operator T acting on R?, and
(Tx,x)> =0 for each x in R*. W

2.4.5. ProposiTiON. If # and A" are Hilbert spaces and Te B(H, A ),
then T is an isomorphism from # onto K if and only if it is invertible, with
T '=T*

Proof. The operator Tis an isomorphism from # onto ¢ if and only if it
is both invertible and norm preserving. Accordingly, we may suppose that T

has an inverse, and it suffices to show that T preserves norms if and only if
T*T = I (which is equivalent to T~! = T* when T is invertible). Since
(T*Tx,xy — {x,x) = (Tx, Tx) — {x,x) = || Tx||* — ||xI|?,

for each x in #, the required result follows from Proposition 2.4.3. W

Classes of operators. A bounded linear operator T, acting on a Hilbert
space #, is said to be self-adjoint if T* = T, and unitary if TT* = T*T = 1.
Both these conditions imply that T is normal, by which we mean that
TT* = T*T. We say that T is positive if (Tx,x)> > 0 for each x in J#.

For every T in B(#),

{T*Tx, x> ={(Tx,Tx)> =20 (xeH),

so T*T is positive; we shall see later (Theorem 4.2.6(iii)) that each positive
operator arises in this way.

A conjugate-bilinear functional b on s is said to be symmetric if
b(y,x) = b(x, y) for all x and y in #, and positive if b(x, x) > 0for each x. With
T in %(s#), and by the conjugate-bilinear functional defined by b (x,y) =
{Tx,y>, it is evident that T is positive if and only if by is positive; moreover,

bro(x,y) = <T*x,y> = {x, Ty =Ty, xp = br(y, ),
$0 br = br. (equivalently, T is self-adjoint) if and only if b is symmetric.

2.4.6. ProrosITION.  Suppose that T is a bounded linear operator acting on a
Hilbert space #.

(1) T is self-adjoint if and only if (Tx,x) is real for each x in H#. In
particular, positive operators are self-adjoint.
(i) T is unitary if and only if T is a norm-preserving (equivalently, inner
product-preserving) mapping from # onto .
(iii) T is normal if and only if ||Tx|| = | T*x|| for each x in H#.
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Proof. (i) Since
{Tx, x> —{T*x, x> ={Tx,x) — <{x,Tx) =2iIm{Tx, x),

it follows from Proposition 2.4.3 that T = T* if and only if { Tx, x) is real for
each vector x.
(ii) An element T of #(s#) is unitary if and only if it is invertible, with
inverse T*; so the assertion (ii) is a special case of Proposition 2.4.5.
(iii) Since
(T*Tx,xy — {TT*x,xy = {Tx, Tx) — {T*x, T*x) = ||Tx||*> — || T*x|?,

if follows from Proposition 2.4.3 that T*T = TT* if and only if || Tx|| = || T*x||
for each vector x. W

From part (ii) of the above proposition, a ““unitary operator” acting on a
Hilbert space s is simply an isomorphism from 3 onto itself. We shall
sometimes describe isomorphisms between different Hilbert spaces as unitary
operators (or unitary transformations).

2.4.7. REMARK. When J# is an infinite-dimensional Hilbert space, a
norm-preserving linear operator Tacting on J# is not necessarily unitary, since
its range may fail to be the whole of 5. For an example in which this occurs,
consider the operator that acts on the sequence space /, (see Example 2.1.12),
and maps the vector (xy, x5, X3,...) onto (0, xy, x,,...). W

2.4.8. LEMMA. If T is a bounded normal operator on the Hilbert space #
and

0 < inf(|ITxli:xe #, Il = 1} (= a),

1

Y=a

then T has a bounded, two-sided inverse, and || T~
Proof. By Corollary 1.5.10, T is a bicontinuous linear mapping from #
onto the range %(T) of T, and the inverse mapping T~ !: #(T) — A satisfies
1T~ = a~*; moreover, Z(T) is complete, and is therefore closed in . It
remains to prove that Z(T) = #.
If #(T) # #, there is a unit vector x in #Z(T)*; by Proposition 2.4.6(iii),

0=<(x,TT*x) = {T*x,T*x)
= ||T*x||*> = |ITx||* > a?,
a contradiction. Thus Z(T) = #. R

The simple properties of the adjoint operation * on Z(#), as set out in
(@i),...,(v) in the discussion preceding Proposition 2.4.3, in some respects
resemble those of the process of complex conjugation for elements of the scalar
field C. The analogy can usefully be pressed a good deal further. The self-
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adjoint elements of #(s#) (those for which T = T*) correspond to real
numbers (the scalars for which a = @). Parallel to the expression of a complex
number in terms of its real and imaginary parts, each Tin #(5#) can be written
(uniquely) in the form H + iK, with H and K self-adjoint operators acting on
S ; moreover

H=YT+T*, K=%(T*-T).

The operators H and K are sometimes called the “real” and “imaginary” parts
of T, and denoted by Re T and Im T, respectively. It is easily verified that T is
normal if and only if H and K commute.

The classes &%, & and #(#)* of all self-adjoint, unitary, normal, and
positive operators (respectively) on # are norm-closed subsets of Z(#).
Moreover, % is a multiplicative group, while & is a real-linear subspace (that
is, aH + bKe & whenever H, Ke & and a,beR). From Proposition 2.4.6(i),
B(H)* is a subset of &; it is apparent that aH + bKe #(#)* whenever
H,Ke B(#)* and a, b are non-negative real numbers. If both He #(#)* and
— He#(#)", then (Hx, x> = 0for each vector x, and H = 0 by Proposition
24.3;50 B(H)" N — B(H#)* = {0}. In view of the properties of B(H#)* just
stated, there is a partial order relation < on & in which H < K if and only if
K — He#(A#)". As in the case of real numbers, one can add such inequalities
between self-adjoint operators and multiply throughout by non-negative
scalars. Multiplication by negative real numbers reverses the inequalities.
Moreover, if H Ke% Te#B(#), and H< K, then T*HT < T*KT; for
K— HeZ(#)*, and therefore

{THK - H)Tx,x) ={(K— H)Tx,Tx) 20 (xe#),

whence T*(K — H)Tc #(#)". For each H in & the operators ||H||] = H are
positive, since

|H||<{x, x> = {Hx,x) = ||H|||IxII? — |Hx]lix]| =0  (xe#).
It follows that
—HII<H<|H|I (H=H*e#B(X)),

and that each self-adjoint operator H can be expressed as the difference of
positive operators |H||/ and ||H||/ — H. Each T'in (5 ) has the form H + iK,
with H and K self-adjoint, and is therefore a linear combination of at most four
elements of #(#)*.

We shall see later, in Theorem 4.1.7, Theorem 6.1.2, and Proposition 4.2.3,
that each element of #(s#) is a linear combination of at most four unitary
operators, and has a “polar decomposition” analogous to the expression of a
complex number in terms of its modulus and argument; moreover, there is an
“optimal™ way of expressing a self-adjoint operator as a difference of positive
operators.
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2.49. ReMark. For the study of bounded linear operators, a Hilbert
space is much more convenient than a real inner product space. This is due, in
part, to the fact that, in contrast with the complex case, a non-self-adjoint
operator acting on a real inner product space cannot be expressed as a linear
combination (necessarily with real coefficients) of self-adjoint operators. W

2.4.10. ExaMPLE. Suppose that Y is an orthonormal basis in a Hilbert
space J#, g is a bounded complex-valued function on Y, and
= sup{lg(y)|:ye Y}.
For each x in J#,
Y19 pO1F < k2 Y Kx yoI? = K2Ix)|%;
yeY yeY

so the equation

@ Tx =3 gyXx,y)y  (xeX)

yeY

defines a vector Tx in #, and

1/2
) ITx| = ( > lg(y)<x, y>I2> < kllx]l.

yeY

It is apparent that Tx depends linearly on x, so T'is a bounded linear operator
on #, with ||T|| < k. From (4),

(6) Ty =g(»)y (yeY).

From this,

IT]| = sup{||Tyll:ye Y} = sup{lg(y)l: ye Y} =

and so

(N ITIl = sup{lg(»)|: ye Y}.
By the same process, the complex-valued function g, defined by

g(») = g(»), gives rise to a bounded linear operator S on . For all u and v in
H,

(S, 0y = (Y g(n)<u, pyy, v)

yeY

= Y gORu, yy<{p, v

yeY

=<u, Y, g(»)<v, y>y> = {u, Tv).

yeY
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Hence S = T* and, in parallel with (4), (5), and (6), we have

®) T*x = Y g())<x,y),
yeY
1/2
® IT*x|| = ( > Ig(y)<x,y>|2) ,
yeY
(10) T*y=g()y  (yeY).
From (5) and (9), ||Tx|| = ||T*x|| for each vector x, so T is normal;

alternatively, this can be proved by a simple direct calculation, which shows
that

(11 TT*x = T*Tx =} |g(»)|*Cx, y)y.
yeY

Similar calculations show that sums and products of bounded complex-valued
functions correspond to sums and products of the associated operators; in
particular, all such operators commute.

If T'is self-adjoint, it results from (6) and (10) that g(y) = g(y) for each yin
Y, the reverse implication follows from (4) and (8). Thus T'is self-adjoint if and
only if g is a real-valued function.

From (4)

(Tx,xy =Y g<x, >, x) = Y. g(VKx, 1?3
yeY yeY

in particular, {(Ty, y> = ¢g(») (y€ Y). Hence T'is positive if and only if g takes
non-negative real values throughout Y.

If T'is unitary, it follows from (6) that |g(y)| = ||Ty|| = ||yll = | foreach yin
Y. Conversely, if |g(y)| = | (y€Y), we deduce from (11) that

TT*x=T*Tx= )Y {x,y)y=x  (xe¥).
yeY

Hence T is unitary if and only if [g(y)] =1 foreach yin Y. B

2.4.11. ExaMpPLE. Suppose that m is a o-finite measure defined on a
o-algebra & of subsets of a set S, ge L, (= L (S, ¥ m)), and k is the essential
supremum of |g|. For each xin the Hilbert space s# = L,(S, & m), the equation

(12 (Myx)(s) = g(s)x(s)  (s€S)
defines a measurable function M,x on §, and |(M,x)(s)| < k|x(s)| almost
everywhere. Accordingly, M,xe s# (= L,) and ||Mx|| < kl||x|| since

J (M x)(s)|* dm(s) < kZJ x(s)I? dmp(s).
N S
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It is apparent that M, x depends linearly on x; so M, is a bounded linear
operator on #, and ||[M,||<k. If 0<a<k, the measurable set
{s€S:|g(s)| > a} has positive measure, and so has a measurable subset ¥ such
that 0 < m(Y) < o0, since m is o-finite. The characteristic function y of Yis a
non-zero vector in J#, |[(M,y)(s)| = a|y(s)| for each sin S; hence ||M )| = a]|y|,
and so [|M,|| > a. From this, ||M,|| = k; that is,

13) l1M,]] = esssup|g(s)| = lIglles

seS
where || ||, is the usual norm on L.
With g defined by g(s) = g(s) (s€S), we have ge L, and

(Mpx,yy = | (Mx)(s)y(s) dm(s)
S

~

= | g(s)x(s)p(s) dm(s)
A

= | X(HMy)s)dm(s) = {x,Myy)  (x,yeH);
s

therefore

(14) My =M,

It is apparent that

(15) M,pipy=aM; + DM, Me=MM, (f,gel,, a,beC).

From this, M, and M, commute for all fand g in L,; in particular, M,
commutes with its adjoint M, and is therefore normal.
Since

1M, — M*|| = |M,_,]| = ess suplg(s) — g(s)],

seS

M, is self-adjoint if and only if g(s) is real for almost all s in S. Moreover,
(Myx, x) = J gS)x(s)|>dm(s)  (xeH#),
S

from which it follows that A, is positive if and only if g(s) > 0 for almost all s.
With u in L, defined by u(s) =1 (seS), M, = I and

= MM = |l — M}Mgli = ||M,_ll = esssup |1 — [g(s)|’|.
seS
Thus M, is unitary if and only if |g(s)] = 1 for almost all s in S.

It is well known that a linear operator 7, acting on a finite-dimensional
complex vector space, has at least one eigenvector x, with corresponding
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eigenvalue A (that is, x # 0 and Tx = Ax). As indicated in (6), the operator
considered in the preceding example has eigenvectors forming an orthonormal
basis Y. In contrast, the present example permits the construction of self-
adjoint and unitary operators that have no eigenvalue. For this purpose, note
that the equation M,x = cx (with g in L,,, x a non-zero vector in # (= L,),
and ¢ in C) implies that g(s) = ¢ almost everywhere on the measurable set
{se S:x(s) # 0}, which has positive measure. Accordingly, M, has no eigen-
value if g assumes each of its values only on a null set. When m is Lebesgue
measure on the g-ring & of Borel subsets of the interval S = [0,1] and

Ss)y=s,  gls)=exp(is) (s€8),

M, is positive, M, is unitary, and neither has an eigenvalue. W

2.5. The lattice of projections

If Yis a closed subspace of a Hilbert space #, Theorem 2.2.3 asserts that
each vector in J# can be expressed uniquely in the form y + z, with yin Yand z
in Y+. From Theorem 1.1.8, the equation

t)) Ey+z)=y (ye?Y, zeYh

defines a linear operator E acting on #, the projection onto Y, parallel to Y.
Moreover, E? = E,

) Y={Ex:xe#}={yeH :Ey=y},

and Y* = {ze#: Ez = 0}. We call E the (orthogonal) projection from s# onto
Y. Note that / — E is the orthogonal projection from s onto Y+, because
(YHt =7, and

I—-EYz+y) =z (zeY?t, yeY).
Since {y,z) =0, when ye Y and ze Y*, we have
NE + DI = 1P < 11212 + 1l21* = Iy + 211,
CEp+2),y+2)=<py+ 2= >0

It follows that E is bounded, with ||E|| < 1, and is positive (hence, also, self-
adjoint). Since Ey = y(ye Y),||E|| = 1 except in the case in which ¥ = {0} and
E = (. Moreover

€) Y ={xe:||Ex|| = |Ix]l}.

Conversely, suppose that Ec #(#) and E? = E = E*. From Theorem
1.1.8, E is the projection from # onto the closed subspace Y defined by (2),



110 2. BASICS OF HILBERT SPACE AND LINEAR OPERATORS

parallel to the closed subspace Z = {ze # : Ez = 0}. Since
Z={ze#:{Ez,x) =0 for each x in s}
= {zeH#:{z, Ex) = 0 for each x in #},

it follows from (2) that Z = Y . Hence E is the projection onto Y, parallel to
Y+, that is, the orthogonal projection from 3 onto Y.

In the context of Hilbert space theory, it is understood that the term
“projection” refers to an orthogonal projection unless there is an explicit
statement to the contrary. The following proposition summarizes the results of
the preceding discussion.

2.5.1. ProrosiTION. Relations (1) and (2) establish a one-to-one cor-
respondence between closed subspaces Y of a Hilbert space # and projections E
acting on #. A projection E is a positive operator, and ||E|| = 1 unless E = 0. The
projections are precisely the self-adjoint idempotents in B(H).

The projections acting on a Hilbert space 5# inherit from the set of all self-
adjoint operators the partial order relation < described in the discussion
preceding Remark 2.4.9.

2.5.2. ProrosiTioN. If E and F are the projections from a Hilbert space #
onto closed subspaces Y and Z, respectively, the following conditions are
equivalent:

(i) YcZ;
(i) FE=E;
(ii) EF = E,
av) |IEx|| < [IFx]| (xesf);
(vy EF

Proof. If Y< Z, then, for each x in 3#, ExeY < Z, and therefore
FEx = Ex; so (i) implies (ii). If FE = E, then EF = (FE)* = E* = E, whence
(ii) implies (iii). If EF = E, then ||Ex|| = ||EFx]|| < ||Fx|| for each x in #, since
|E|| < 1; so (iii) implies (iv). Since

(Ex, x> = {(E®x,x) = (Ex, Ex) = ||Ex|?,

and similarly (Fx, x) = ||Fx||?, it is apparent that (iv) implies (v). If E < F,
then, for each yin ¥,

II* = <Ey, y> < SFy,y) = IIFYI* < IylI%s
whence ||[Fy|| = ||¥ll, and ye Z by (3). Hence, (v) implies (i). B

When the five equivalent conditions in Proposition 2.5.2 are satisfied, we
describe E as a subprojection of F.
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From the equivalence of conditions (i) and (v) in Proposition 2.5.2, it
follows that the partial ordering of projections (as self-adjoint operators)
corresponds to the partial ordering of closed subspaces by the inclusion
relation =. Given any family {Y,} of closed subspaces of a Hilbert space ¢,
there is a greatest closed subspace A Y, that is contained in each Y, and a
smallest closed subspace V Y, that contains each Y,. Specifically, A Y,isNY,,
while V Y, is the closed subspace [UY,] generated by UY,. From this it follows
that each family {E,} of projections acting on »# has a greatest lower bound
A E,and aleast upper bound V E, within the set of projections (ordered as self-
adjoint operators). Of course, the projections A E,and V E, correspond to the
closed subspaces A E, () and V E,(#), respectively. We write E A F and
E v Ffor the lower and upper bounds (often called the intersection and union)
of two projections E and F.

Since the mapping E — I — E reverses the ordering of projections, we have

4 V(I-E)=1- NE, NI—E)=I-VE,
for each family {E,} of projections. This gives corresponding relations
VY:=(AY), ANYL=(VY)

(which can easily be verified independently) for each family {Y,} of closed
subspaces of .
Our next few results are concerned with commuting sets of projections.

2.5.3. ProposiTION. If E and F are commuting projections acting on a
Hilbert space #, corresponding to closed subspaces Y and Z, respectively, then

Ev F=E+ F— FEF, E A F=EF, YvZ=Y+Z
In particular, the linear subspace Y + Z of # is closed.

Proof. When ueY A Z, Eu= Fu=u, so EFu = u. For each x in Y*,
Ex =0, so EFx = FEx = 0; similarly, EFx =0 for each x in Z*. Since
(Y A 2)t=Y' v Z4 it follows from the linearity and continuity of EF that
EFv = 0 whenever ve(Y A Z)*. We have now shown that

EFu+v)=u (weYAZ, ve(YAZ)Y,

whence EF is the projection from s# onto Y A Z. By applying the same result
to the commuting projections I — E and I — F, we have

(I-EyrnU-F)=(-EXI-F),
and (4) gives

EvF=I-(I-EYA(I-F)=I-(U—-EYI-F)=E+ F— EF.
Foreach xin Y v Z,

x=(EvF)x=(E+F—-EF)x=y+z,
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where y=(E — EF)xeY and z= FxeZ. Thus Yv Z < Y+ Z, and the
reverse inclusion is apparent. W

2.5.4. CorOLLARY. Suppose that E and F are the projections froma Hilbert
space # onto closed subspaces Y and Z, respectively. Then EF = 0 if and only if
Y is orthogonal to Z, and when this is so,

Ev F=FE+F, YvZ=Y+Z
Proof. Since Y = E(#), Z = F(#), and {(EFu,v) = {(Fu, Ev) for all u

and v in 4, it is evident that Y is orthogonal to Z if and only if EF = 0. When
this is so, FE = (EF)* = 0 (= EF), and it follows from Proposition 2.5.3 that

EvF=FE+F, YvZ=Y+Z 1
2.5.5. CoroLLARY. If Eand F are the projections from a Hilbert space #

onto closed subspaces Y and Z, respectively, and E < F, then F — E is the
projection from # onto Z A Y.

Proof. By Proposition 2.5.2, EF = FE = E, so the projections F and
I — Ecommute. From Proposition 2.5.3, F(I — E) (= F — E)is the projection
FA(I—E)from# ontoZA Y. B

Projections E and F, from s onto closed subspaces Y and Z, commute if
and only if Y A (Y A Z)* and Z A (Y A Z)* are orthogonal (loosely, if and
only if the spaces Y and Z are “perpendicular”); for these spaces are
orthogonal if and only if

0=(E—EANF(F—EAF)=EF—EAF,
and EF = E A Fif and only if (see Proposition 2.5.3)
EF=EAF=(EA F)*=FE.
2.5.6. ProposITION. If{E,} is an increasing net of projections acting on a
Hilbert space #, and if E = V E,, then Ex = lim, E x for each x in #.

Proof. Since {E ()} is an increasing net of closed subspaces of #,
(Ja EL(5#) is a linear subspace of # and has norm closure E(s#). Suppose
xe# and ¢ > 0. Since Ex e E(5#), we can choose an element y in one of the
subspaces E, () so that |[Ex — y|| < &. When b > a, we have

E, < E,<E, YEE(H) S E(H) S E(K),
and thus -
lEx — Epx|| = ||E(Ex — y) — Ey(Ex — y)|
S|E - EllllEx —yll<e. W
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2.5.7. CoroLLARY. If {E,} is a decreasing net of projections acting on a
Hilbert space #, and if E = A E,, then Ex = lim, E,x for each x in #.

Proof. In view of (4), it suffices to apply Proposition 2.5.6 to the
increasing net {/ — E,}. B

By an orthogonal family of projections we mean a family (E,),., of
projections such that E,E, = 0 (equivalently, E,(3#) is orthogonal to E,(3#))
whenever a and b are distinct elements of A.

2.5.8. PROPOSITION.  If (E,),n is an orthogonal family of projections acting
ona Hilbert space 3¢, E = V E,, and x € #, then Ex = Y E x; the sum converges
in the norm topology on .

Proof. When A is a finite set, it follows from Corollary 2.5.4, together
with a straightforward argument by induction on the number of elementsin A,
that E=Y A E,

When A isan infinite set, let # denote the class of all finite subsets of A ; for
each [ in &, define Gy = ZaE‘F E,. By the preceding paragraph, G¢ = \/ s E,, s0
(G4, Fe % 2) is an increasing net of projections, and

¥G‘=V{¥E"‘F€f}=gEa=E.

By Proposition 2.5.6, Ex is the limit, in norm, of the net (G;x, Fe & <); that is
(since Gyx = Y o5 EX), Y 4en E.x converges in norm to Ex. W

When ## is a Hilbert space and x € 5, the equation p,(T) = ||Tx|| defines a
semi-norm p, on #(# ). The family of all such semi-norms separates the points
of #(s#), in the sense of Theorem 1.2.6, and so gives rise to a locally convex
topology on #(#), the strong-operator topology. In this topology, an element
T, of B(#) has a base of neighborhoods consisting of all sets of the type

V(To:x1,.. ., Xpm38) = {TeBH): T —-To)x;ll<e(i=1,...,m},

where xy,...,x,€5 and ¢> 0. In fact, it suffices (and is sometimes
convenient) to take ¢ = 1, since

V(To: X1y s Xms€) = V(T xq,...,6 'x,31).

In a similar way, one can introduce the strong-operator topology on #(#, X');
the semi-norms and basic neighborhoods are defined as above, but the vectors
Tx, (T - To)x; lie in A"

The strong-operator topology can be described as the restriction to Z(#)
of the point-open topology on mappings from # into #, with 5 in its norm
topology. It is apparent that V(Ty: x4, ..., Xn;€) contains the open ball with
center T, and radius b, provided that b||x;|| <& for each j=1,...,m.
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Accordingly, the strong-operator topology is coarser than the norm topology
on #A(); in fact, it is strictly coarser when # is infinite-dimensional (see
Exercise 2.8.32).

In working with the strong-operator topology, it is often possible (and
useful) to confine attention to those basic neighborhoods V(Ty: xy, ..., X, ;¢€)
in which x,, ..., x,, are drawn from a suitable preassigned subset & of #. We
mention two cases in which this occurs. First, when & has (algebraic) linear
span #, the sets V(To:yy,...,Vn:0), Where 6 > 0 and y,,...,y,e, already
form a base of neighborhoods of T,. Second, if % has closed linear span J#,
while 4 is a bounded subset of #(#) and T,€ 4, the sets

WTo:pt,eo s Yn;0)n B (0>0, yi,...,y,€%)

form a base of neighborhoods of T, in the (relative) strong-operator topology
on Z. We shall prove the second of these assertions (the first follows from a
similar, but simpler, argument). We may assume that || T|| < M for each Tin 4.
Given any positive ¢, and x,, .. ., x,, in S, each x; can be approximated within
¢/4M by a finite linear combination of elements of & Hence we can choose
Vi,--., Y. in & and scalars aj (some of which may be 0) such that

n 8 .
lIx; — Zaij’k||<— (G=1,...,m).
k=1

aM
Let 6 be a positive real number such that 26(Y;_,|aul) <€ for each
Jj=1,...,m. It now suffices to show that

V(To:y1ye s Vs O)NBE V(To:X1,. s Xm;E);

and this results from the fact that, for j=1,...,m,

I(T = To)x;ll < (T — To)x; — X apydll + 11 X au(T — To)yill

k=1 k=1

< |IT = Tollllx; — Z apyill + Z @i I(T — To)yill

k=1 k=1

€

2M|— )+ 6 ; :
< <4M) k; lau| < €

when T (as well as T) lies in # and |[(T — To)yll <6 (k= 1,...,n).

We can summarize the results of the preceding paragraph as follows: a set
of vectors with algebraic linear span # suffices to determine the strong-
operator topology on #(s#); a set of vectors with closed linear span #
suffices to determine the strong-operator topology on bounded subsets of
B(H).
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2.5.9. REeMark. From the discussion following Theorem 1.2.18, a net
{T;} of elements of #(# ) is strong-operator convergent to T, (€ B(+#) if and
only if, given any x in # and any positive ¢, there is an index j, such that

ITjx — Toxll (= p«T; — To)) <

whenever j > jo. In other words, {7} is strong-operator convergent to T if
and only if {T;x} converges to Tx (in the norm topology on s#') for each x in
. Similarly, {T;} is a Cauchy net, in the uniform structure associated with the
strong-operator topology, if and only if {T;x} is a Cauchy (and hence
convergent) net of elements of s for each x in . Of course, these
characterizations of convergent and Cauchy nets can be verified by direct
reference to the basic neighborhoods that determine the strong-operator
topology. By considering the appropriate nets of finite subsums, it follows that
asum Y T, of elements of B(#) is strong-operator convergent to T, if and only
if ¥ T,x converges in norm to T,x for each x in #. Similar comments apply to
B(H, ).

The results of Proposition 2.5.6, Corollary 2.5.7, and Proposition 2.5.8 can
now be interpreted in terms of strong-operator convergence. An increasing net
{E,} of projectionsis strong-operator convergentto V E,; a decreasing net { E,}
of projections is strong-operator convergent to A E,; for an orthogonal family
{E,} of projections, ¥ E, is strong-operator convergent to VE,. W

2.5.10. REMARK. In observing that the strong-operator topology on
B(H) is locally convex, we have (by implication) noted that the linear space
operations

(S, T)>S+T: BH)X B(H)—> B(H),
(a,T)—»aT: C x B(H)— B(K)

are strong-operator continuous. From the form of the basic neighborhoods of
Ty, and since

(ST — STo)xll < IISIl (T — To)xIl,
(TS = ToS)x|| = (T — To)SxI|,
it follows that the mappings
T ST, T->TS: B(H)—>RB(H)

(of left and right multiplication by a fixed operator S) are strong-operator
continuous. Since

ST — SoTo)x|l = IS(T — To)x + (S — So) Tox||
< ISI T = To)xll + (S — So) ToxI
ST — To)x|| + [I(S — So) Tox|l
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when S,, T, Toe B(H') and Se(B(H ) = {AcB(H):||A4| <k}, it follows
that the mapping

(S, T) > ST: (B(H)), x B(H)—> B(H)

is strong-operator continuous. We can express these results by saying that
multiplication is separately continuous in the strong-operator topology, and
jointly continuous provided that the first variable is restricted to a bounded set.
Similar comments apply to sums and products of operators acting between
different Hilbert spaces.

When # is an infinite-dimensional Hilbert space, neither of the mappings

(S, T)>ST: B(H)x B(HK)—> B(K),
To>T*: B(H)> B(K)

is strong-operator continuous (see Exercises 2.8.32 and 2.8.33). However, the
latter mapping is strong-operator continuous on the set 4" of normal elements.
For this, it suffices (in view of the nature of the basic neighborhoods) to note
that, by Proposition 2.4.6(iii),

|IT*x — T*x|)?
= ||T*x||*> + ||T¥x||> — 2 Re<T*x, T¥x)
= ||TX||* + || Tox|I> — 2Re{T¥x, T¥x) — 2Re{T*x — T¥x, T¥x)
= ITx|1> — | Tox|I> — 2 Re{x, (T — To)T§x)
< 1T = I ToxIDUITx| + 1 Toxll) + 2|IxIl (T — To)TExI|
< I(T = T[T — To)x|l + 2| ToxI) + 2lixI| I(T — To) T5xll,
when xe# and T, Toe /. N

In connection with the result that follows, we recall the convention of the
discussion preceding Proposition 1.2.1, concerning uniform structures and
completeness. The completeness of the closed balls, alluded to in its statement,
is understood relative to the (linear topological) uniform structure associated
with the strong-operator topology.

2.5.11. ProposiTioN. With # a Hilbert space, closed balls in B(H#) are
complete in the strong-operator topology. If {T,} is a Cauchy sequence in B(H ),
relative to this topology, it is strong-operator convergent to an element of B(H).

Proof. 1f {T,} is a Cauchy net, in the strong-operator topology on #(# ),
and xe #, then {T,x} converges in norm to some element of # (Remark
2.5.9), and thus {||T,x||} converges. In the case of a Cauchy sequence {T,}, the
convergent sequence {||T,x||} is bounded (note, however, that convergent nets
of real numbers need not be bounded). The principle of uniform boundedness
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(Theorem 1.8.9) now shows that a sequence in () is bounded if it is a
Cauchy sequence relative to the strong-operator topology. Hence the second
assertion in the proposition is a consequence of the first.

To prove the first statement, it suffices to consider only the closed unit ball
(B(H#)), since every closed ball can be mapped onto (%(#)), by a (uniformly
bicontinuous) affine transformation T'— b(T — T,). If {T,} is a Cauchy net in
(#B(H#)),, we can define a mapping T: # — H# by Tx = lim, T,x. Since T, is
linear and ||7,x|| < ||x|| for each x in s, the same is true of T; so T lies in
(%B(#)):, and is the strong-operator limit of {7,}. H

2.5.12. ExaMpLe. We illustrate some of the results obtained in this
section by continuing the discussion of Example 2.4.11. With »# the Hilbert
space L, (= L,(S, ¥ m)) associated with a o-finite measure, each g in L, gives
rise to the bounded linear operator M, of multiplication by g. If M, is a
projection, the equations Mj = M, = M} imply that [9(s)]? = g(s5) = g(s) for
almost all s in S. Thus g(s) is 0 or 1 almost everywhere on S. By changing the
values of g on a null set, which does not alter M, we may suppose that g is the
characteristic function of a measurable set Y. Conversely, when ¢ is the
characteristic function of a measurable set Y, M, is a projection P(Y), since the
above argument reverses.

We assert that

®) (U Y) le(Y) (ﬂ Y) /\P(Y)
= i=
whenever Y,Y,,Y;,... €4 For this, let Y =|)2,7;, and denote by
¥, ¥1,72,. .. the characteristic functions of the sets Y, Y, , Y5, ..., respectively.
Since yy; = y; for each j, we have P(Y)P(Y;) = P(Y;); so P(Y;) < P(Y), and
therefore \ /2| P(Y;) < P(Y). From Corollary 2.5.5, P(Y) — \/2, P(Y))is a
projection G, and each vector x (e L,) in the range of G satisfies P(Y)x = x,
P(Y))x =0(j=1,2,...). This implies that y(s)x(s) = x(s) almost everywhere,
and y;(s)x(s) = 0 almost everywhere, for each j. Accordingly, each of the sets

Zy = {seS\Y:x(s) # 0}, Z;={seY;:x(s) # 0} G=12,..)

is null, and therefore so is {seS: x(s) # 0} (= 720Z;j). Thus each x in the
range of G is a null function (that is, the zero vector in L,); so G = 0, and
P(Y)= 721 P(Y;). This proves the first of the two equations in (5). Upon
replacing Y; by S\Y;in thatequation and noting that P(S\Y;) = I — P(Y;), we
obtain

\io/] P(Y)=P (U(S\Y,-))

= P(S\ja Y,.> =I- P(ﬁ1 Y,.) :
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Hence
s &3

P( N Y,») =I-\/I-PY))= )\ P(Y)),
ji=1 j=1 j=1
and the proof of (5) is complete.

When {Y,} is a pairwise disjoint sequence of measurable sets, { P(Y,)} is an
orthogonal family of projections, and in view of Remark 2.5.9, the first relation

in (5) becomes

P( U Yj>= Y. P(Y)).
i=1 j=1

When {Y}} is an increasing sequence of measurable sets, the sequence
{P(Y;)} of projections is increasing. In this case, from Remark 2.5.9 the first
equation in (5) becomes

6) P( U Y,-) = lim P(Y;),
ji=1 J=

with the convergence in the strong-operator topology. This is a special case of
the following result: if a sequence {f;} of functions in L, satisfies
sup||f;|l < oo, and converges almost everywhere to a function f'(necessarily in
L, ), then {M } is strong-operator convergent to M . Indeed, for each xin L,,
we have

im [f(s) = fiOPIxE)IZ =0, |A(s) = [OPIXE)I* < 4KIx(s)]?

J7?©

almost everywhere on S, where K = sup||f;||; so

lim |[(M, — M, )x||> = lim J | £(5) — f;(8)*1x(s)|* dm(s) = 0,
j2 jo o Jd S

by the dominated convergence theorem. When f, f; are the characteristic

functions of | )=, Y, and Y;, respectively, we obtain (6). W

With each bounded linear operator T acting on a Hilbert space J#, we
associate two closed subspaces of J#, the null space {xe s#: Tx = 0} and the
range space, which is the closure [T(#)] of the range T(#’) = {Tx: xe # } of
T. The corresponding projections are called the null projection, denoted by
N(T), and the range projection, R(T). When E is a projection, R(E) = E and
NE)=1-E.

2.5.13. ProposiTION. If T is a bounded linear operator acting on a Hilbert
space #, then -
Q) R(T)=1—- N(T"), MT) =1 - R(T*),
@®) R(T*T) = R(T™), N(T*T) = N(T).
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Proof. Since
{xeH:Tx =0} ={xeH:{Tx,y) =0 for each y in #}
= {xeH :{x, T*y) = 0 for each y in #}
= T*H)" = [T*(#)],

it follows that N(T)=TI— R(T¥*). Upon replacing T by T* we obtain
N(T*) = I — R(T), which completes the proof of (7).

For each x in J%, ||Tx||> = (Tx, Tx) = (T*Tx, x>, so Tx =0 if (and,
obviously, only if) T*Tx = 0; that is, N(T) = N(T*T). From this, together
with the first equation in (7) (applied to both T*T and T¥),

R(T*T)=1— NT*T)=1—-— NT)=R(T*). 1
Note that, for a self-adjoint element K of B(#), (7) gives R(K) = I— N(K).
2.5.14. ProposiTioN. If E and F are projections acting on a Hilbert
space ¥,
RE+F)=EVEF, R(EF)=E—-EA(I-F).
Proof. Since
IExI® + FxI* = CEx,x) + <{Fx,x) = (E + F)x, x),
for each vector x, it follows that (E + F)x = Oifand only if Ex = Fx = 0. Thus
NE+ F)=NEYANF)=(U-Eyn(d-F),
and (7) and (4) yield
RE+F)=I-(I—-E)yAn(I—-F)=Ev F.

The projections I — E and E A (I — F) are mutually orthogonal. If xe #
and FEx = 0, we have

Ex=({—- F)Exe(E A (I = F))}(#),
whence
x=(I—-—Ex+Exe (I—-E+EnI—-F)H¥).

Conversely, each x in the range of I — E + E A (I — F) can be expressed as
Y +z,where y=(I— E)yand z = Ez = (I — F)z; and

FEx = FEy + FEz = FE(I — E)y + F(I — F)z = 0.

The preceding argument shows that N(FE)=1— E + E A (I — F); this,
together with (7), gives

R(EF)=I— N(FEy=E—EA(I—F). W
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2.5.15. REMark. If E is a projection acting on a Hilbert space J#, the
operator U = I — 2F satisfies U = U*, U?> = I, and is therefore both self-
adjoint and unitary. Each self-adjoint unitary operator U arises in this way,
since itis easily verified that the conditions U = U* = U~ ' imply that 3(1 — U)
(= E) is a projection. W

We now give a simple description of the projection from a Hilbert space s#
onto a closed subspace Y, in terms of an orthonormal basis of Y (of course, Y
itself is a Hilbert space).

2.5.16. ProposiTioN. If E is a projection from a Hilbert space # onto a
closed subspace Y, and (y,),.a is an orthonormal basis of Y, then

Ex= ) {XYa)¥a  (x€X).

acA

Proof. Since Exe Y, we have

Ex = Z <Ex’ya>ya

acA
= Z X% EYa)ys = Z <xsya>ya' u
aeA acA

2.5.17. Remark. If {E,} is an orthogonal family of projections on the
Hilbert space #, theny , E, = Eisaprojectionon s# and Ex = ¥ , E,x for each
x in s (as noted in Remark 2.5.9). Thus

YMNEXIP =Y CEax, x> = () Egx, x) = (Ex, x> < [Ix]|%.
(This is really an alternative version of Bessel’s inequality — Proposition
2.2.7(1).) If x is in the range of E (in particular, if E = I), then
YIEX|? = (CEx, x> = |Ix]|*.

(This is an alternative version of Parseval’s equation — Theorem 2.2.9(ii).) H

2.6. Constructions with Hilbert spaces

In this section we consider subspaces, direct sums, and tensor products of
Hilbert spaces, together with related operator-theoretic constructions.

Subspaces. Suppose that E is the projection from a Hilbert space s# onto
a closed subspace Y. By restriction, the inner product on J# gives rise to an
inner product on Y, relative to which Y itself is a Hilbert space. With T in
B(H), therestriction ET|Y (= ETE|Y) is a bounded linear operator Ty acting
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on Y, the compression of Tto Y. For all y and z in Y,
{Tyy,z) = (ETEy,z) = {y, ET*Ez),

so the adjoint of Ty is ET*E|Y, the compression of T* to Y.
We say that Y is invariant under T, or that T leaves Y invariant (invariant is
sometimes replaced by stable), if Tye Y whenever ye Y. Since

Y={Ex:xeH}={zeH Ez =1z},

itis apparent that 7(Y) < Y if and only if TEx = ETEx for each x in # ; that
is, T leaves Y invariant if and only if TE = ETE. Since

T*(I — E) — (I — EYT*(I — E) = ET*(I — E) = (TE — ETE)*,

it follows that the orthogonal complement Y * is invariant under T* if and only
if Y is invariant under T.

When Yand Y*! are both invariant under T, we say that Y reduces T; from
the preceding paragraph, this occurs if and only if Y is invariant under both T
and T*. In this case ET = (T*E)* = (ET*E)* = ETE = TE. Conversely, if
TE = ET, then ET* = T*E, so that ETE = ET = TE and ET*E = ET* =
T*E. Thus Y reduces T if and only if T and E commute.

Direct sums. When #,, ..., 5, are Hilbert spaces and ¢ is the set of all
n-tuples {x,,...,x,} with x; in J#; (j=1,...,n), there is a Hilbert space
structure on )¢ in which the algebraic operations, inner product, and norm are
defined by

af{xy,...,Xay +0{y1,...,ya} = {ax; + by;,...,ax, + by},

<{x1,'~~’xn}, {ylv'--vyn}> = <x1,.V1> + 0+ <xmyn>,
[{x15 - xabll = Dl + -+ lxal12172.

The resulting Hilbert space )¢ is called the (Hilbert) direct sum of #,, ..., H,,
and is denoted by #, @ - @ H#, or Y1 D A

Foreach j=1,...,n, the set #/, consisting of those n-tuples in which all
but the jth entry are zero, is a closed subspace of #;, @ - @ #,. The
mapping U;: #; > #, defined by Ujx = {0,...,0,x,0,...,0} (with x in the
Jjth position) is an isomorphism from #’; onto #°’,. The subspaces #°|, ..., #,
are pairwise orthogonal, and \/_, # = X.

Suppose next that 4, ..., #, are mutually orthogonal subspaces of a
Hilbert space #, and \/;.'=l M, = . By Proposition 2.5.8, the corresponding
pairwise orthogonal projections E,,..., E, have sum I. The linear mapping
U:# - A, defined by Ux={Ex,...,Ex}, carries #; onto H
(J=1,...,n) and # onto X (= H#, @ '+ @ H,), and is unitary since

NUxI? = 3 NExI? = || ¥ ExI? =lIx|I*  (xe).
=1 j=1

J
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Its inverse U ~! carries an element {x,,...,x,} of # onto x;, + --- + x,. In
view of this isomorphism, we consider s as an “internal” direct sum of
Hy,...,H#,, and A as the “‘external” direct sum; occasionally, we identify »#
with & and #; with 5.

If 5#,;, A ; are Hilbert spaces and T;e #(#;, #;)(j = 1,...,n), theequation

T{Xl,...,xn} = {Tlxl,...,T,,x"} (xlee}fl,...,anf,,)

defines a linear operator T from #, @ - @ H, into A, D - - - @ KA, the
direct sum Y7 @ T; of Ty, ..., T,. With

e=sup{|Tyll:j=1....,n},
we have
IT{xy, . Xl = Tl + - + ITxl1P1Y2
< TPl + - + (I TlPIxl1P] 12
<clllxg® + -+ N1
= cl{x1, ..., %}
so T is bounded, with ||T|| < c. However, for each j=1,...,n and x in &,
1T = 1I{0,...,0,T;x,0,...,0}
=||T{0,...,0,x,0,...,0}|
<IN 0. .., 0,%,0,..., 0} = I T]| lIx.

Thus || Tl < ||IT|| (j=1,...,n), whence ¢ < ||T]|, and so ||T|| = c.
Since

<T*{y1""*yn}’ {xlﬂ'-~axn}>
= <{y1a"'ayn}’T{x19""xn}>
<{y1""’yn}a{T1x15~'-aTn'xn}> = Z <yja zjj>
j=1

J

Z <T7yj’xj> = <{TTJ’1,, T:yn}7 {xl,...,x,,}>,

j=1
when x;e #; and y;e X (j=1,...,n), it follows that

T*yis-o s pnd =A{T1V1s -, Trya}-
We have now proved that

1Y @ Till=sep{||T;ll: j=1,....n},

5

* n
@T;) = Z@T}k;
i=1

“~

M=

1
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and it is apparent that

=1 Jj=1 J

i=1

j=

( )3 @R,-)( ) @Sj)= Y. ®R;S;,
j=1 j=1 j=1
when S;, T;€ B(H;, X;), Rije B(A;, &;), and a,beC.

So far, we have considered direct sums of finite families of Hilbert spaces.
With slight modifications, the same ideas apply also to infinite families. Given
Hilbert spaces J#, (a€ A), the direct sum Y@ #, consists of all families {x,}
such that x,e #, (ae A) and ¥ ||x,||> < o. Given two such families {x,} and
{ya.}, we can apply the inequalities discussed in Example 2.1.12 to the elements
{IIx,ll} and {llyall} of L(A). We obtain

X Yl < YlIxallllyall < oI 2Nyl ? < oo,
Qo llxa + el < (U dlxall + 11yall)*)'?
< QX + Gyl < co.

Accordingly, the family {x, + y,}isin Y@ #,; it follows easily that Y @ #,isa
pre-Hilbert space when the algebraic structure, inner product, and norm are
defined by

{xa} + {ya} = {xa + Ya}> cf{xa} = {exa},
<{X,,}, {ya}> = Z<xaaya>a ”{xa}“ = [Z”xallz] 12,

The element {x,} of Y@ s, is sometimes denoted by Y& x,.

We assert that Y@ J#, is complete, relative to the norm just defined, and is
therefore a Hilbert space. For this, suppose that (x™) is a Cauchy sequence in
Y@ H#,, so that each x is a family {x} of the type considered above. Given
any positive real number ¢, there is a positive integer n(e) such that
[|x™ — x| < ¢ whenever m, n > n(e); that is,

M Yl — X2 < e (mn 2 n(e)).
aeA

From this, ||x™ — x| <& (m,n > n(c), aeA); so, for each fixed a,
{x":n =1,2,...} is a Cauchy sequence in »#,, and therefore converges to an
element x, of »#,. With F a finite subset of A, it follows from (1) that

Yl — x> <& (mn > n)).
ael
When m — o0, we obtain
Ylxa = x> < (n=ne)),

ael



124 2. BASICS OF HILBERT SPACE AND LINEAR OPERATORS
and since the last inequality is satisfied for every finite subset [ of A, we have

@ Yl =X <€ (n > n(e)).

This shows that the family {x, — x"}, as well as {x!"}, is in Y@ 5#, when
n = n(e). Accordingly, {x,} (= {x, — x!"} + {x!"})is an element x of Y@ H#,,
and (2) asserts that ||x — x™|| < ¢ whenever n > n(e). Thus (x') converges to
x; so Y@ H#, is complete, and is therefore a Hilbert space.

With b in A, 5, is isomorphic to the closed subspace J#, of Y@ #,
consisting of those families {x,} such that x, = 0 whenever a # b. We obtain a
unitary transformation U, from J#, onto # ;, by taking for U,x the family {x,}
in which x, is x and x, = 0 (a # b). The subspaces # (ae A) are pairwise
orthogonal, and V #, = Y® #,.

If {#,} is a family of mutually orthogonal subspaces of a Hilbert space J#,
and V 5, = s, the corresponding projections form an orthogonal family { E,}
with (strong-operator convergent) sum /. Just as in the case of finite direct
sums, the equation Ux = {E,x} defines an isomorphism U from s onto
Y@ #,, and we consider # as an “internal” direct sum of the family {#,}.
Moreover, U™ '{x,} = ¥ x, when {x,} € Y@ 5#,; the sum converges since {x,}
is an orthogonal set in #, and ¥ ||x,||* < oo.

Suppose next that J#,, &, are Hilbert spaces, and T, e #(#,, A,) for each a
in A, If

sup{||T,l|:ae A} < o0,

the equation T{x,} = {T,x,} defines a bounded linear operator T from ¥ ® #,
into Y@ J,. We call T the direct sum Y@ T, of the family {7,}. Just as in the
case of finite direct sums, we have

Il X ® T.ll = sup{lIToll:ae A},

aeA

(z@n)*= Serr,

aeA acA

o ran=e( £o5) i o).
aeA aeA aeA

(z@R,,)(z@sn)iz@Rnsa,
aeA aeA aeA
when S,, T,e B(H,, X,) and R,e B(A,, L,).

When i, is the one-dimensional Hilbert space C, for each ain A, Y@ #,
reduces to the Hilbert space /,(A) of Example 2.1.12.
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Tensor products and the Hilbert-Schmidt class. The material in this
subsection will be used in an essential way in later parts of the book (from
Chapter 11 onward), but has arelatively minor role until that point. The reader
who wishes may bypass it until that stage, and will have only very occasional
need to refer back in the meantime.

There are several ways of defining the (Hilbert) tensor product # of two
Hilbert spaces #, and #,, each method having advantages in particular
circumstances. Qur approach, set out below, emphasizes the ‘“‘universal”
property of the tensor product. The Hilbert space s# is characterized (up to
isomorphism) by the existence of a bilinear mapping p, from the Cartesian
product #, x #, into #, with the following property: each “suitable”
bilinear mapping L from #; x #, into a Hilbert space »#" has a unique
factorization L = Tp, with T a bounded linear operator from J# into J¢.

Before starting the formal development of the theory, we indicate some of
the intuitive ideas that underly it. When x, € #; and x, € #,, we shall want to
view the element p(x, , x,) of # asa *“product,” x; ® x,, of x; and x,. It turns
out that linear combinations of such products form an everywhere-dense
subspace of .. The bilinearity of p implies that these products satisfy certain
linear relations; for example, as the product notation suggests,

X+ )@ +12) X1 ®X, =X, ®V, =1 QX —y; ®), =0,

whenever x,, y, € #, and x,, y, € #,. In fact, all the linear relations satisfied
by product vectors can be deduced by (possibly repeated) use of the bilinearity
of p. It turns out that the inner product on # satisfies (and is determined by)
the condition

(X @ X2, 01 @ ya) = X1, Y1){X2,Y2);

in particular, ||x; ® x;|| = |Ix1]}|lx2||. There are various constructions leading
to a Hilbert space s with the required properties. In the method we shall use,
the elements of # are certain complex-valued functions defined on the product
H#\ x A, and conjugate-linear in both variables (and by introducing a concept
of “conjugate Hilbert space,” these functions are viewed as bilinear func-
tionals). When v, e #, and v, € #,, v, ® v, is the function that assigns the
value (vy, x;>{v,, x;) to the element (x,,x,) of #; x #,.

In the formal development of the theory, we first introduce the class of
bilinear mappings used in formulating the universal property mentioned
above. The tensor product is then defined, and identified (up to isomorphism)
with certain specific Hilbert spaces, such as the completion of the algebraic
tensor product and the class of ‘“Hilbert-Schmidt operators” from the
conjugate Hilbert space #, into #,. We conclude this subsection with a
discussion of tensor products of bounded linear operators. It is convenient in
the initial stages to consider the tensor product of a finite family of » Hilbert
spaces, specializing later to the case in which n = 2.
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Suppose that #,, ..., #, are Hilbert spaces and ¢ is a mapping from the
cartesian product 5#, x - x #, into the scalar field C. We describe ¢ as a
bounded multilinear functional on #, x --- x #, if ¢ is linear in each of its
variables (while the other variables remain fixed), and there is a real number ¢
such that

loCxrs .o x)l < clxall - lxll - (1€, x,€ ).

When this is so, the least such constant ¢ is denoted by ||¢||. Then, ¢ is a
continuous mapping from #, x - -+ x #, into C, relative to the product of
the norm topologies on the Hilbert spaces; the estimates required to prove this
are much the same as those needed in showing that the mapping

(ay,...,a,)—cay - a,Cx -+ xC->C

is continuous, so we omit the details.

In the following proposition, we consider certain sums of positive terms,
which may converge or diverge, and a divergent sum is to be interpreted as
+ oo. In part (ii) of the proposition, inequalities involving oo are to be
understood in the obvious sense, and we adopt the convention that 0 - oo = 0.
Whether or not the sums considered converge, the manipulations required in
the proof are easily justified, in view of the final paragraph of Section 1.2.

2.6.1. ProposSITION. Suppose that #,,. .., #,are Hilbert spacesand ¢ isa

bounded multilinear functional on #, x -+ x H,.
(1) The sum
(3) Z Z |‘P(J’1,---,yn)|2
y1€Yy yn€¥n

has the same ( finite or infinite) value for all orthonormal bases Y, of #,,...,7Y,
of H,.

(i) IfAy,..., H,are Hilbert spaces, A, € B(H, X)) (m=1,...,0),is
a bounded multilinear functional on A x -+ x A, and

(P(xl,"',xn) = lp(Alxla--',Anxn) (xle'%l""axne‘%n)s

then
Z Z |€D(y1,,yn)|2<”A1”2‘“An”2 Z Z |¢(21,‘--,zn)|2,
yi€¥y yn€¥n z1€Z; zn€Zn

when Y, and Z, are orthonormal bases of #, and X, respectively
m=1,...,n).

—

Proof. 1In order to prove (i), it is sufficient to show that
p

Z Z |(P(J’1,-~~,J’n)|2< Z Z |§0(21,~--,2n)|2

y1€Yy yne¥n z1€Z, zn€Zn
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whenever Y,,, Z,, are orthonormal bases of 5#,,(m = 1,. .., n), since equality of
the two sums then follows by exchanging the roles of Y,, and Z,,. The required
inequality is a special case of part (ii) of the proposition, with ¥ = ¢,
A= Hy,and A, =1 (m=1,...,n).

It now suffices to prove (ii). For this, suppose that 1 < m < n, and choose
and fix vectors y, in Yy, ..., Ypu—1 0 Yoy, Zpsy 0 Zpiy,..., z,in Z,. The

mapping
ZoY(A1Y15 s Am—1Vm=152>Zmt1s- -3 Zn): Hm = C
is a bounded linear functional on .¢,,, so there is a vector w in ¢, such that
VA1V, s Am— 1Vm—152sZmt 15+ -5 Zn) = £Z, WD (ze A,)-
From Parseval’s equation

Z Ill’(Alyly" "Am—lym—l9Amym’Zm+1, .. "Zn)lz

Yyme¥m
= ) KAwymsW)IP = 3, Kym, A2w)I?
Yme¥m YmeY¥m
= [|AwI? < IA4nlPIWI? = 14> Y Kzm, wI?
Zm€Zm
= ”14m”2 Z ||//(A1J’1, cee 9Am— 1Vm-15ZmsZm+1s--- szn)lz'
Zm€Zm

A further summation now yields

Z e Z Z Z w’(Alyla""Amym9zm+1y~--»Zn)lz
y1€Yy Ym€¥m Zm+16Zm +1 zn€Zn
<”Am”2 Z to Z Z e Z |'/’(A1y19"'7Am—lym—lazma'--azn)lz-
yi€Yy Ym-1€Ym-1 Zm€Zm z2n€Zn
Thus
Z Z |§0(J’1’-~-9yn)|2= Z Z Ill’(Alylyn"Anyn)lz
y1€Yy yn€¥n 1202 61 yn€ln
<”An”2 Z e Z Z ||//(141y1,"',*An—lyn—lazn)l2
y1€Yy yn-1€¥n-1 zn€Zn
< (|- P11412
X Z o Z Z Z h//(Alyla-"aAn—Zyn—Zazn—l9zn)|2
y1€Yy Yn-26Yn-2 zn-1€Zn-1 zneZn
S AP AP Y 0 Y Wiz, z)P
z1eZ Zn€Zp

With #,,...,#, Hilbert spaces, a mapping ¢:#; x - x #,—-C is
described as a Hilbert-Schmidt functional on #,; x - -+ x #,if itis a bounded
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multilinear functional, and the sum (3) is finite for one (and hence each) choice
of the orthonormal bases Y, in 5#,,..., Y, in J,.

2.6.2. ProPosITION. If #,,...,#, are Hilbert spaces, the set # S F of all
Hilbert-Schmidt functionals on #, x - -+ x #,isitself a Hilbert space when the
linear structure, inner product, and norm are defined by

(a(p + bl/’)(xl"",xn) =a(p('xl""’xn) + bl//(xl,"',xn),

@) o> ="% Y @isee s YW (D155 Va)s
y1€Y, yneYn
1/2
%) |I<p||z=[ )EERED) Iw(yn,.--,yn)lz] ,
yieYy yn€¥n

where Y,, is an orthonormal basis in #, (im=1,...,n). The sum in (4) is
absolutely convergent, and the inner product and norm do not depend on the
choice of the orthonormal bases Y,,...,Y,.

For each v(1) in #,,...,v(n) in H#,, the equation

Potrmn1s %) = X101 Gyt (¥ €K, Xg € H)

..... o) Of KL F, and

<(Pv(l) ..... v(n)s Pw(ly,..., w(n)> = <W(1), b(1)> I <w(n), [;(n)>,
l@uy....omllz = oDl - - - llo(m)]-

The set {@y....ym: VD EY ..., y(n)€Y,} is an orthonormal basis of # S F.
There is a unitary transformation U from # S F onto ,(Y, x - -+ x Y,), such
that U is the restriction @|Y,; x -+ x Y, when oe XS F.

defines an element @)

Proof. Having chosen an orthonormal basis Y,, in &, (m = 1,...,n), we
can associate with each bounded multilinear functional ¢ on #; x - -+ x ¥,
the complex-valued function Ug obtained by restricting o to Y, x - -+ x Y,.
Note that ¢ is a Hilbert-Schmidt functional if and only if

Upel)(Yy x -+ x Y,).
If Up =0, then

P15 V) =0 (1€Y1, ..., p€Y,)
Since Y, has closed linear span i, (m=1,...,n), it follows from the
multilinearity and (joint) continuity of ¢ that ¢ vanishes throughout
Hy X X K,

If ¢ and  are Hilbert-Schmidt functionalson s#; x - -+ x #,, the same s
true of ap + by (as defined in the preposition) for all scalars a, b; for ap + by
is a bounded multilinear functional, U, Uy € l,(Y, x -+ x Y,), and there-
fore

U(ap + b)) =aUp + bUpel) (Y, x -+ x Y,).
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The summation occurring in (4) can be written in the form

Y, (Ue)»(Uy)(»),

yeYyx - xVY,
and is absolutely convergent with sum (U, Uy), the inner product in
L(Y, x -+ x Y,) of Up and Uy.

From the preceding argument, the set # % of all Hilbert-Schmidt
functionals on J#, x - - x i, is a complex vector space, (4) defines an inner
product on # ¥ Z, the restriction U|# S F is a one-to-one linear mapping
from #FSF into L(Y, x .- xY,), and (Up,Uy> = {p,y> when
@,y e # S F. Since the inner product on ,(Y; x - -+ x Y,) is definite, so is
that on # L F ; for if pe XS F and (@, ) =0, we have (Up, Up) =0,
whence Ugp = 0and so ¢ = 0. From this, # & % is a pre-Hilbert space, and it is
apparent from (4) that the norm || ||, in #FF is given by (5). From
Proposition 2.6.1, this norm is independent of the choice of the orthonormal
bases Y,,..., Y,; by polarization, the same is true of the inner product on
HSF.

We prove next that U carries # % % onto the whole of the /, space. With f
in [,(Y, x -+ xY,) and x, in #, (m=1,...,n), the Cauchy-Schwarz
inequality and Parseval equation give

Z Z |f(J’1,~~,}’n)<x1,J’1>"'<xm}’n>|

yi€Yy yn€¥n
1/2
<[ )IREEEDY If(yl,-..,y.,)lz}
yi€Yy yn€¥n

1/2
X|: Z Z |<x1ayl>|2'“|<xn,yn>|2:|

y1eYy yn€l¥n

1/2 1/2
=||f||< Y |<x1,y1>|2) ( ) I<xn,yn>|2) = AN xall - llxall-

y1€Yy yn€¥n

From this, the equation

(p(xl,""xn): Z e Z f(}’l,---,}’n)<x1,J’1> e <xn’yn>
y1€¥y yn€¥n
defines a bounded multilinear functional ¢ on #; x --- x J#,, with
ll@l] < ||f]. From orthonormality of the sets Y,,..., Y,,

(U(p)(yly-"yyn)z(p(yla"',yn)zf(yl"'-ayn) (yleylﬁ'“,yneyn),

so Ugp = f. Moreover, pe #¥ F since Upel,(Y, x -+ x Y,), whence U
carries # & onto the /, space.

Since U is a norm-preserving linear mapping from #¥F onto
L,(Yy x -++ x Y,), completeness of the /, space entails completeness of
HSLF;,so #SF is a Hilbert space, and U is a unitary operator.
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When v(l)e #,, . .., v(n) € #,, @u).....n (as defined in Proposition 2.6.2)
is a multilinear functional on #, x -+ x J,, and is bounded since

[@otyeccwm(X 15 - -5 X S NI~ ol Xl - - - llxall

by the Cauchy-Schwarz inequality. Moreover, Parseval’s equation gives

Z Z |(pv(l) ..... u(n)(y1’~"ayn)|2

2 61 yn€Y¥n
= Y 0 Y Ky WP K m, v(m)))?
20 1 yne¥n
= (% 10nsne) (3 Komsenr)
y1€Yy yne¥n

= [l - - - lv@)I*.

Hence ¢,)....m€ XS F and |@u),..omll2 = (DI - - [v(n)ll. Again, by
Parseval’s equation and absolute convergence,

CPuit),....otms Pw(ty,....wim))

= Z Z (pv(l) ..... v(n)(yl,""yn)(pw(lj ..... w(n)(yla"'7yn)
yie¥y Yn€Yn

= 3 Y LoD LY, 0(m)>wW(L), p1) - (w(n), Va
yi€¥y yn€¥n

=< Y <W(1),y1><y1,v(1)>)'“< > <W(n),yn><y..,v(n)>>
yie¥y yn€Yn

= w(1), (1)) - - {w(n), v(n)).
When y(1)eY,,...,y(m)eY,, the orthonormality of Y,,..., ¥, implies

that Ug, ..., is the function that takes the value 1 at (y(1),...,¥(n)) and O
elsewhere on Y, x - - x Y,. Thus

{U(py(lj ..... ym:J’(l)eY1,~-~a)’(”)€Yn}

is an orthonormal basis of /,(Y; x --- x Y,), and therefore
{(pr) ..... y(n):y(l)eYla""y(n)EYn}

is such a basis of ¥%. 1

In order to simplify the treatment of conjugate-linear mappings, which will
be used extensively in this subsection and in Chapter 9, we introduce the notion
of the ““‘conjugate” of a Hilbert space #. The algebraic structure and inner
product on s are defined by the mappings

(x,y)—>x+’31: H x H — K,
(a,x) »ax: Cx H - K,
(x,y) ><x,y>: H x # - C.
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The conjugate Hilbert space # is the same set #, with the algebraic structure
and inner product defined by the mappings

)= x+y: K xXH K,

(a,x) »a-x: Cx H - H,

(%, )) =<,y H xH >C,
where

a-x=ax and (x,y)” ={y,x).

Of course, the conjugate Hilbert space of # is #.

A subset of a Hilbert space is linearly independent, or orthogonal, or
orthonormal, or an orthonormal basis of that space, if and only if it has the
same property relative to the conjugate Hilbert space. If 2#, and #, are Hilbert
spaces and T is a mapping from the set J#, into the set J#,, linearity of
T: #, — #, is equivalent to linearity of T:#, — J#,, and corresponds to
conjugate-linearity of T: #, — #, and of T: #, — #,. Of course, continuity
of Tis the same in all four situations (and when T is linear the operators have
the same bound), since the norm on J#; is the same as that on J#;.

2.6.3. DerINITION. Suppose that #,,...,#, and X" are Hilbert spaces
and L is a mapping from #, x --- x i, into KA. We describe L as a bounded
multilinear mapping if it is linear in each of its variables (while the other
variables remain fixed), and there is a real number ¢ such that

“L(xla-' "xn)” < Cllxlll T “an (xl 6%1 "“’XHE%II)'

In these circumstances, the least such constant c is denoted by ||L]|.
By a weak Hilbert-Schmidt mapping from #, x - -+ x #,into ), we mean
a bounded multilinear mapping L with the following properties:

(1) for each u in X, the mapping L, defined by
Lu(xla' . 9xn) = <L(xla' . '1xn)au>

is a Hilbert-Schmidt functional on #, x -+ x #,;
(i) there is a real number d such that ||L,||, < d||u|| for each u in X

When these conditions are satisfied, the least possible value of the constant din
(ii) is denoted by ||L||,. W

As in the case of multilinear functionals, a bounded multilinear mapping
L:# x -+ x #,— A is (jointly) continuous relative to the norm topolo-
gies on the Hilbert spaces. Condition (ii) is in fact redundant, since it follows
from (i), by an application of the closed graph theorem to the mapping
u-L, A ->AHSF (Exercise 2.8.36). We shall not make use of this
implication, and have incorporated (ii) in the definition for convenience.
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2.6.4. THEOREM. Suppose that #,,...,#, are Hilbert spaces.

(i) There is a Hilbert space # and a weak Hilbert-Schmidt mapping
p:#y x - x H,— H with the following property: given any weak Hilbert—
Schmidt mapping L from 3#, x -+ x #, into a Hilbert space X, there is a
unique bounded linear mapping T from 3 into X, such that L = Tp; moreover,
171l = IILIl.

(it) If #' and p’ have the properties attributed in (i) to # and p, there is a
unitary transformation U from # onto #' such that p' = Up.

(i)  If vy, Wy € H#,, and Y,, is an orthonormal basis of #,, (im=1,...,n),
then

<p(vl’---,l)n)’p(wl’~- .,W,,)> = <l)1,W1> e <l),,, W,,>,

the set {p(y1,...,Vn): V1€ Yy,...,y,€Y,} is an orthonormal basis of #, and
llpllz = 1.

Proof. With #,, the conjugate Hilbert space of #,,, let # be the set of all
Hilbert-Schmidt functionals on #, x --- x #, with the Hilbert space
structure described in Proposition 2.6.2. When v(l)e #,,...,v(n)e #,, let

.....

Hy x - x K,
by
Poty,om(X15 -5 Xn) = (Xp, 0(1)) 7 - Cx, v(n)) ™
= (o(1),x1) -+ Cu(n), X,

Since Y; is an orthonormal basis of #; (j=1,...,n), it follows from
Proposition 2.6.2 that the set {p(y,,...,¥,):y1€Y,,...,y.€ Y,} is an ortho-
normal basis of #, and that

<p(vla‘ "’vn)’p(wla' "’Wn)> = <Wl9vl>_ e <W",U,,>_
= <vlawl> e <U,,,W,,>,
lp(ors ..oy va)lla = lloall == - flvall.

From the preceding paragraph, p: #, x -+ x #,—> # is a bounded
multilinear mapping: we prove next that it is a weak Hilbert-Schmidt
mapping. For this, suppose that ¢ € #, and consider the bounded multilinear
functional p,: ) x - x H#, agdefined by

plp(xl9"'7xn) = <p(xla"'9xn)7(p>'

With y(1) in Y,,...,p(n) in Y,, orthonormality of the bases implies that
©y1)....ym takes the value 1 at (y(1),...,y(n)) and O elsewhere on
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Y, x -+ x Y,. Thus
Po(¥(1), ..., p(m) = (p(y(1), ..., y(M), 9> = {@y1).....ytm> @
= Z Z (py(lj ..... y(n)(yl’"‘syn)q)(yl""’yn)

y1€Yy yn€¥n

o(¥(1),...,y(n),
Y Y (), ..., ym)* = llell3.

y(1)e¥, y(neY,

From this, p, is a Hilbert-Schmidt functional on 4, x --- x #, and
12,2 = ll@ll2; sop: #y x -+ x H#, — # isaweak Hilbert-Schmidt mapping
with |ll; = 1.

Suppose next that L is a weak Hilbert-Schmidt mapping from
Hy x -+ x H,into another Hilbert space .. If ue ¢ and L, is the Hilbert-
Schmidt functional occurring in Definition 2.6.3, while ¢ € # and F is a finite
subset of Y, x -+ x Y,, we have

K Z (p(ylv"’yn)L(yl”"syn)’u>|

1s---o ymlef
S Z l(p(y17~'~,yn)HLu(y19~"7yn)|
[GZTEReN yn)el
1/2 1/2
<|: Z |¢(Y1,-«-,Yn)|2:| |: Z |Lu(y1a"-’yn)|2:|
Qoo yaef 15 ym)ef

1/2
< ||Lu”2|: Z |<P(y1,--~,)’n)|2:|

(155 yn)eF

12
<||u||||L||2[ ) l(P(y19~--9yn)|2:|

(V1,2 ya)eF
Hence
(6) Y @i, ¥ Ly,
(Y1s-- > ya)elF
1/2
<||Lllz[ Y |<P(y1,..-,y..)lz}
[SZTFPN yaJeF
Since
Yoo Y e yl2 = lloll3 < oo,
y1e¥y yn€¥n

it follows from (6) and the Cauchy criterion that the (unordered) sum

Z Z (p(yl"--’yn)L(yls"'ayn)

yiel, yn€¥n
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converges to an element T of &, and ||To|| < ||L||2|l¢l|2- Thus T'is a bounded
linear operator from # into %, and |T|| <||L|;- When y(1)eVY,,
...,y(n)eY,, we have

Tp((1), - .., ¥(m) = Toy)....m
=Y Y Oty Vio - PLD1s V)

y1€¥y yn€¥n
= L(y(1),...,y(n)).
Since Land Tp are both bounded and multilinear and Y,, has closed linear span
H,, (m=1,...,n), it follows that L = Tp.
The condition Tp = L uniquely determines the bounded linear operator T,

because the range of p contains the orthonormal basis p(Y, x -+ x Y,)of #.
For each u in ¢, Parseval’s equation gives

ILAZ= % - X KL, pwl

vieYy yn€Y¥n

= z Z |<TP(J/1,---,J/n),u>|2
y1€Yy yn€Yn

=2 Y Kprse ), THupl?
yieYy Yn€Yn

I

1T *ull> < || T2l
so ||L|l; < [IT]}, and thus |[L||, = ||T}.

It remains to prove part (ii) of the theorem. For this, suppose that #' and
Py x o x H,— A (as well as # and p) have the properties set out in (i).
When ¢ is #' and L is p’, the equation L = Tp' is satisfied when T is
the identity operator on # ', and also when T is the projection from #’
onto the closed subspace [p'(#), x -+ x #,)] generated by the range
p'(#y x -+ x #,) of p'. From the uniqueness of T,

[Py % o x H)] = A
moreover,
P11 = LIl = 70 = (1] = 1.

With the same choice, J#" = s’ and L = p’, it follows, from the properties
of # and p set out in (i), that there is a bounded linear operator U from s# into
#' such that p’ = Up and

NUI = IILllz = lP'll2 = 1.

The roles of #, p and #’, p’ can-be reversed in this argument, so there is a
bounded linear operator U’ from # ' into # such thatp = U’p’ and ||U’|| = 1.
Since

UUp(xy,....,x)=UP(xXy,...,%) =p(Xy,...,%),
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for all x; in J#4,...,x, in 5, while
[p(#1 x - x H)] = A,
it follows that U'U is the identity operator on s ; and similarly, UU’ is the
identity operator on . Finally,
Jill = 10Ul < U < Thell-— (re )

so ||Ux|| = ||x||, and U is an isomorphism from s# onto s#’'. W

By part (ii)) of Theorem 2.6.4, the Hilbert space # appearing in that
theorem, together with the multilinear mapping p: #; x -+ x #, - JH, is
uniquely determined (up to isomorphism) by the “universal” property set out
in (1). We describe s as the (Hilbert) tensor product of #,, ..., #,, denoted by
H® - ®H, and refer to p as the canonical (product) mapping
from #, x -+ x #, into #, ® ‘- ® H,. The vector p(x;,...,x,) in
H) ® - @ H, is usually denoted by x, ® ‘- ® x,. Finite linear com-
binations of these “simple tensors” form an everywhere-dense subspace of

Hy ® - ® H,;indeed, if Y,, is an orthonormal basis of #,, (m = 1,...,n),
then

{yl® ®yn:y1€Y1""’yneYn}
is an orthonormal basis of #; ® - -+ ® #,. Thus

As the notation suggests, the vector x; ® - -+ ® x, behaves in some respects
like a formal product of x,,...,x,; for example, it results from the
multilinearity of p, and from Theorem 2.6.4(iii), that

@) X1 ® @ X1 ®(ax, +bx) D Xps 1 @ @ X,
=a(X;® X1 QX DXy 1 @ ® X,)
+b6x1® X1 DXy D X1 ® - ® X,),
©®) @ @Xp, )1 @ @Yu) =LX1, P10 KXy Vs
® [IX1 ® = @ xall = |bxyll - - - [lxall-

In studying tensor products of Hilbert spaces, the properties just listed are
usually more important than the detailed constructions employed in the proof
of Theorem 2.6.4. Many of the arguments involve two stages; the first stage
deals with the linear span J#, of the simple tensors, and is based on the
identities (7)-(9), while the second employs “extension by continuity” from 4,
to its closure #; ® - -+ ® #,. Since

ax; @x; @ - @ x,) =(ax1)) @ x, ® " @ xp,
Ho consists of all finite sums of simple tensors. In dealing with 5, it is
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important to bear in mind that the simple tensors are not linearly independent.
Relation (7) can be viewed as the assertion that a certain linear combination of
three simple tensors is zero, and repeated application of (7) yields more
complicated identities of this type. We shall look at this question in more detail
in Proposition 2.6.6. In the meantime, we establish the *“‘associativity” of the
tensor product.

2.6.5. ProposITION. If #,...,H#, ., are Hilbert spaces, there is a unique
unitary transformation U from #, ® - -+ ® Hp.,, OHLO

(f1® te ®fm)®(r#m+l® ®fm+n)

such that
(10) U(xl ® ®xm+n) = (xl ® Y ®xm)®(xm+1 ® - ®xm+n)
whenever x;e #; (j=1,...,m + n).

Proof. Since the set of all simple tensorsin #; ® - -+ ® #5y., (= A )has
linear span everywhere dense in ¢, there is at most one unitary operator U with
the stated property; so it suffices to prove the existence of such an
isomorphism. For this, let

H'=(H1Q @A) ®(Hnr1® @ Hopsn),

and when x;e; (j=1,...,m + n), define

PXtse s Xman) =X @ @ Xppan (€X)

P(X1y s X)) = (X1 @ @ X)) @ (X4 1 @ " @ Xpnyy) (€X).
The ranges of p and p’ contain orthonormal bases of ¢ and "', respectively,
and so generate everywhere-dense subspaces X (€ ') and X' (c X7'). If
x;,y;€#; (j=1,...,m+ n), we have
CPX1s oy X sn)s PV1s - o3 Pman)
=X, 000 Ly Yl m+ 15 Vm+1) 7 L Xmtns Yman)
=X1® X, )1 ® @Y X1 ® " O X Yma1 @ T @ Ymn)
=P (X15e s Xman) PP e o5 Yman) -
From this,

q
Y ap(x,. .. xS I =
k=1

e

—-

"M-Q

- l
a @ {p(xP, ..., x% ), pxP, . X0
1

b

a@l{p'(xP,. ... x8 N p ..., x0, )

=~
il
-

[
M=
AD=

q
=11y ap' P, .., X IP,
k=1

whenever g,eC and xW e, (j=1,....m+n;k=1,...,9).
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The remainder of the argument is of frequently recurring type. The
equation

q q
U0< > akp(x‘,’",...,xf,',‘L")) =Y ap@P,. .., xb )
k k

=1 =1

defines a norm-preserving linear mapping U, from X onto X’. The definition is
unambiguous since, given two expressions Y a, p(x¥,...,x%* ) and

Yhp(y?P,...,y0, ) for a vector x in X, it follows (upon replacing

YapxP,. . x® by Ya p(xP, ..., x¥ )y — S hp(yY,...,yY, ) in the last
chain of equations) that the two corresponding expressions

SapP,...,x® )y and Y bp (0,00 )

for Uyx are equal. By continuity, U, extends to an isomorphism U from %
onto ¢, and

U(xl ® - ®xm+n) = U(p(xla“-’xm+n))
=pl(xl,- . "xm+n)
=(xl®”'®xm)®(xm+l®'”®xm+n)' |

By use of the ‘“‘associativity” established in the preceding proposition,
questions concerning the n-fold tensor product of Hilbert spaces can usually be
reduced to the particular case n = 2. Our next few results are directed toward
this case. We consider first the question of linear dependence of simple tensors.

2.6.6. ProPOSITION. Suppose that #, and #, are Hilbert spaces,
H = H), ® #H>, and H  is the everywhere-dense subspace of # generated by
the simple tensors.

@) Ifxl,“.,x,,e]fl,yl,...,yneﬂz,then22=1xj®yj=0ifandon1yif
there is an n x n complex matrix [c;] such that

Cijj=0 (k=1,...,n),
Jj=1

Z CikVk = Yj (G=1,...,n).

k=1

(ii) If L is a bilinear mapping from #, ® #, into a complex vector space
A, there is a (unique) linear mapping T from #, into A such that
L(x,y) = T(x ® y) for each x in #, and y in #,.
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Proof. (i) If thereis a matrix [c] with the stated properties, bilinearity
of the mapping (x, y) - x ® y implies that

2 X®y;= ij®< > Cjk)’k)= 2 2 X ® Y
j=1 k=1 i

j=1 =1 k=1

Conversely, suppose that z;=1xj® »;=0.If vy,...,v, is an orthonormal
basis of the linear subspace of #, generated by y,,...,y,, we can choose an
n x r matrix A = [a;] and an r x n matrix B = [b;] such that

yl: Zaﬂl), (j=],...,n),

With [c;] the n x n matrix 4B, we have

Yi= Z ajl( Z blkyk>= Z Cik Yk U=1,...,n),
k k=1

1=1 =1

and

O=ij®yj= xi®<zajlvl>=zul®vh
1 1=1

j=1 j=

where

U = Zaﬂxj- (1=l,...,r).
j=1

Foreachm=1,...,r,

0= Z <ul ® Vg, Uy, ® Um> = Z <ul, um><vb vm> = ||um“2'
=1

=1

Thus u; =u, = -+ =u, =0, and
Z Ckx = Z Z a,b,kx) Z b,ku, 0 (k= 1,...,").
ji=11=1

(i1) Suppose that L is a bilinear mapping from s, x #, into X. If
xl,,,.,x,,e]fl,yl,...,y,,e]fz,andz;'zl x; ® y; = 0, we can choose a matrix
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[ci] as in (i). The bilinearity of L then entails

> Lixpy) = 2. L(x,-, > Cjkﬂ)
= j=1 k=1

j=1

Z Z cjkL(xj’yk) = Z L( Z Cjkxj,)"k> =0.

k=1 j=1 k=1 j=1
Suppose next that xq,..., X, U1, oo, Un €1, V15 sVn> V1yers, U €K,y

and Z;‘=1x}®yj = ZT=1 uJ®UJ Then

2 X®yi+ Y (—u)®v;=0;

j=1 j=1

the preceding paragraph shows that

2": Lixj,y;) + i L(— uj,v;) =0,

j=1 j=1

and therefore

Y L(x;,y) = ). L(u;,v).
j=1

j=1

From this, it follows that the equation

T( > x,~®y,-) = X L(x;,py)
j=1 j=1

defines (unambiguously) a linear operator T from J#, into 4 ; and
Tx®y)=L(x,py) (xe #,, yest,). 1

2.6.7. REMARK. The first part of Proposition 2.6.6 asserts, in effect, that
the only finite families of simple tensors that have sum zero are those that are
“forced” to have zero sum by the bilinearity of the mapping p: (x,y) - x ® y.
From this, s, can be identified with the algebraic tensor product of #, and
#,, which was defined, traditionally, as the quotient of the linear space of all
formal finite sums of simple tensors by the subspace consisting of those finite
sums that must vanish if p is to be bilinear. The second part of the proposition
shows that #, has the ““universal” property that characterizes the algebraic
tensor product.

We can identify # with the completion of its everywhere-dense subspace
#,. Accordingly, the Hilbert tensor product J#; ® #, can be viewed as the
completion of the algebraic tensor product #;, relative to the unique inner
product on s#, that satisfies

Xy ®@y1,X2 @ Y2y = X1, X20{¥1,V2) (x1,x26#1, y1,ye,). B
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2.6.8. REMARK. We show that the tensor product of Hilbert spaces #
and ¢ can be viewed as the n-fold direct sum of s# with itself (that is, the direct
sum of n copies of #), where n is the (finite or infinite) dimension of #. For
this purpose, let { y,: be B} be an orthonormal basis of ¢, and for each bin B
let ##, be #. The mapping

Wyxo>xQ@y,.,>H QA

is a norm-preserving linear operator from 4, onto a (necessarily closed)
subspace #, of # ® . Since

(X1 @ Yay X2 @ Ypy = X1, X2){Va, Y5> =0

for all x, and x, in J#, whena and b are distinct elements of B, it follows that the
subspaces {#,:be B} are pairwise orthogonal. With {z,} an orthonormal
basis of J#, the closed subspace V #°, of # ® 4 contains the orthonormal
basis {z,® y,}, so VH#, = # ® A. Accordingly, # ® A" is the internal
direct sum of its subspaces #, (beB), and we have isomorphisms W
(= Y® W,, from Y@ #; onto Y& ;) and V (from Y@ 4, onto # ® A"),
defined by

W(Z(‘B Xp) = Z@ Xp @ Vb, V(Z@ uy) = Zub-
Thus VW is an isomorphism U, from Y@ ##, onto s ® &, and

(1n U(Z@Xb)=sz®)hr

From this, each element of # ® ¢ can be expressed (uniquely, once the
orthonormal basis { y,} is specified) in the form ¥ x, ® y,, where x, e #(be B)
and ¥ ||x,)|> < co. When ¢ is finite dimensional, the elements of # ® X~ are
finite sums of simple tensors; the same is true when # is finite dimensional,
since the roles of # and %" are interchangeable. W

We show next that the tensor product of Hilbert spaces s# and " can be

represented as a certain linear space of operators from the conjugate Hilbert
space S into .. For this, note first that the equation

br(x,y) =<Tx,y) (xeH, yeX)

defines a one-to-one linear mapping T — by from Z(s#, ") onto the set of all
bounded bilinear functionals on 3 x A (since these are, precisely, the
bounded conjugate-bilinear functionals on # x ). With T in Z(#, '), it
follows by applying Proposition 2.6.1 to by that the (finite or infinite) sum

12) S Y KT P (= 3 |<T*y,x>|2)

xeX yeY yeY xeX
has the same value, for all orthofiormal bases X of # and Y of 2. From
Parseval’s equation, this sum can be written also in the alternative forms

(13) LT, Y NT*

xeX yeY



2.6. CONSTRUCTIONS WITH HILBERT SPACES 141

We describe T as a Hilbert-Schmidt operator if the value of the sums is finite;
equivalently, T is a Hilbert-Schmidt operator if and only if by is a
Hilbert-Schmidt functional on 3# x .

With # ¥ % the linear space of all Hilbert-Schmidt functionals on
# x A, the Hilbert-Schmidt operators from # into ¢ form a linear
subspace

HSLO={TeB(H A ). bre S F}
of #(#, A"). By means of the mapping T — by, the Hilbert space structure on
HSF, as described in Proposition 2.6.2, can be transferred to # 0.

Accordingly, # 0 is a Hilbert space, when the inner product and norm are
defined by

(S, Ty=3 3 {(Sx,y){(py, Tx),

xeX yeY

1/2
T, = [ > |<Tx,y>|2] ,
xeX yeY

these being independent of the choice of the orthonormal bases X of # and Y
of . Of course, the mapping T — b7 is an isomorphism from # %@ onto
H S F. The equality of the four sums appearing in (12) and (13) implies that
there are three other, equivalent, expressions for || T||,; and similarly, the inner
product (S, T') can be expressed in the alternative forms

Yo Y (T*y,xX{x, S*y), Y (Sx, Tx), Y (T*p, S*y).
yeY xeX xeX yeY

If #,, A, are Hilbert spaces, Ae B(A, A,), Be B(H,, #), and T is a
Hilbert-Schmidt operator from # into 4, then ATB is a Hilbert-Schmidt
operator from s into ., with ||4TB||, < ||4}|||T|, ||B]|. For this, let X, be an
orthonormal basis of #,, and observe that

> IITBx||> = ) [IB*T*yl)?,

xeXo yeY
since these sums are the analogues, for TB, of the onesin (13). The stated result
now follows from the inequalities

> NATBx|> < ||4)1* ), I TBx]|?

xeXo xeXo
= (141> Y I1B*T*y|?
yeY

< IAIPIB*I2 X IT*p)?

yeY
= 141121 T30 811>

This result can be proved also by means of Proposition 2.6.1.
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The identification of s# ® o with the Hilbert space of all Hilbert-Schmidt
operators from J into ¢ is described in the proposition that follows.

2.6.9. ProposiTioN. If # and A are Hilbert spaces, then, for each x in #
and y in A, the equation

T, u=<{u,xy"y=<_{xupy (ue #)

defines a Hilbert-Schmidt operator T, ,, from # into X With # S O the Hilbert
space of all Hilbert-Schmidt operators from H# into A, there is a unitary
transformation U from # ® A onto # 0, such that

Ux®y)=T,, (xeH, yeXA).

Proof. As constructed during the proof of Theorem 2.6.4, # ® 4 is the
Hilbert space #¥% of all Hilbert-Schmidt functionals on # x X.
Moreover, when xe # and ye A, x ® y (= p(x, y)) is the bilinear functional
@, defined, throughout # x A, by

@y, 0) = {x, Uy, ).

The discussion preceding Proposition 2.6.9 shows that there is an isomorphism
U from #¥F onto #FO that associates with each Hilbert-Schmidt
functional on # x A the corresponding Hilbert-Schmidt operator from
into . It is apparent that T, ,, as defined in the proposition, is the bounded
linear operator from # into ¢ that corresponds to the bilinear functional ¢, .
Since ¢, e #FZ, it follows that T, ,e # 50, and

Ux®y)=Up,,=T,, N1

2.6.10. ExamprLE. With A and B arbitrary sets, we can associate with each
x in ,(A) and y in /,(B) a complex-valued function p, , defined throughout
A x B by

Px,(a, b) = x(a)y(b).

We shall show that there is a (unique) unitary transformation U from
1,(A) ® I,(B) onto /,(A x B) such that

Ux®y)=rpxy (xely(A), yel(B)).

For this, note first that p, ,e/,(A x B) since

Z Ipx,y(aa b)lz = ‘E Z |x(a)y(b)|2

(a,b)eAxB acA beB

= < 2 |x(a)|2)< > |y(b)|2) < .

aeA beB
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Moreover,

<px,y»pu,v> = Z px.y(a’ b)pu.v(a’ b)

(a,b)eA xB

=Y ¥ x@yb)ua) v(b)

acA beB

_ ( » x(a)@)( > y(b)@)

aeA beB
=Ly, 0) ={x@y,u®v)

(the series manipulations being justified by absolute convergence), when
x,uel,(A) and y,vel,(B). By expressing norms in terms of inner products, it
now follows that, for any finite linear combination of elements p, ,,

(14) I 2 €ipa, I =11 3 cix; @ ¥l

j=1 j=1

We sketch the remainder of the argument, which follows the same pattern
as the second paragraph of the proof of Proposition 2.6.5. The linear span ¢
of {p,,: xel,(A), ye l,(B)} is everywhere dense in /,(A x B) since it contains
the usual orthonormal basis (consisting of functions with value 1 at a single
point of A x B and 0 elsewhere); and the linear span J#, of the simple tensors
is everywhere dense in /,(A) ® /,(B). From (14), there is a norm-preserving
linear mapping U, from X, onto #, such that Uyp,, = x® y; and this
mapping extends by continuity to an isomorphism U from /,(A x B) onto
LA)®L(B). W

2.6.11. ExaMprLE. We now consider the tensor product of the L, spaces
associated with o-finite measure spaces (S, .%,m) and (S’, &', m’). We show
that this can be identified with the L, space of the product measure space
SxS,%x %, mxm), in such a way that x ® y corresponds to the
function p, , defined throughout S x S’ by

Px,y($,5) = x(s)A(s).

For this, note first that p, , is a complex-valued measurable function when
xeL,(S,¥%,m) (= H#)and ye L,(S',¥',m') (= #'); moreover,

Pry€LA(S X S, F x L' mxm) (=X),



144 2. BASICS OF HILBERT SPACE AND LINEAR OPERATORS

since
f f [Pyl 512 dm(s) dimi (')
Sxs
- ﬂs RN dn(s) dr(5)
- ( f ) |x(s)|2dm(s)>( f i |y(s')|2dm'(s')) < .
Also,

<px.ys pu,u> = J‘J\ px.y(s’ S/)pu.v(s9 S,) a'm(s) dm’(sl)
Sx§

= j f x(s) (s u(s) v(s') dm(s) dm(s')
Sx§

= (J x(s)u(s) dm(s)) (J y(s')@dm’(s’))
N S’

=X, up{y,0) ={x Q@ y,u @ vy,

whenever x,ue # and y,ve#’. From this, we have

1Y syl = 11 Y €ix; @ p;ll,
j=1 j=1
for every finite linear combination of elements p, ,. Accordingly (by the
argument already used in the preceding example and in the proof of
Proposition 2.6.5), there is a norm-preserving linear mapping U,, from the
linear span %, of {p, ,: xe #, ye #"'} onto the linear span #; of the simple
tensorsin # @ ', such that Uyp, , = x ® y. Now 3£, is everywhere dense in
H ® H', and A, is everywhere dense in A since it contains the characteristic
function of every measurable rectangle of finite measure. Thus U, extends by
continuity to an isomorphism U from ) onto # ® #'. WM

We now introduce tensor products of bounded linear operators.
2.6.12. ProposiTiON. If H#y,..., K0, A 1,..., A, are Hilbert spaces and

A, B(H, Hyy) (m=1,...,n), there is a unique bounded linear operator A
from H, @ - ® H, into A\ @ - - @ A, such that

A(x1® ®X,,)=A1x1® e @ Aux, (XIEXI,...,X,,GK,).

Proof. The canonical mapping p:#; X XA, > H1Q @A,
(= A")is aweak Hilbert-Schmidt mapping, with ||p||, = 1. Withuin /¢, and p,
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defined by
pu(zla e ,Z") = <p(zl7- .. ,Z"), u>’

p. is a Hilbert-Schmidt functional on | x - -+ x %, and ||p,ll; < ||u||. The
equation

O(X1, . X)) = P(A1 X4, ..., AuX,)
defines a bounded multilinear mapping ¢: #; x - x #, - X, and
GulX1s s Xn) = QX150 Xp), U
= (p(A1xy, ..., AuX,), u)
=p(Aix1,..., AnXn)-

It now follows from Proposition 2.6.1(ii) that ¢, is a Hilbert-Schmidt
functional on #, x -+ x H#,, with

llgullz < WALl Aall 1pullz < AL - (1Al el

Accordingly, ¢:#, x -+ x #,—> A is a weak Hilbert-Schmidt mapping,
with |||, < ||44]l - - - ||4.]]- By the universal property of the tensor product
(see Theorem 2.6.4(i)), there is a unique bounded linear operator 4, from
H ® -+ ® H,into A, such that ¢ = Ap’, where p’ is the canonical mapping
from #, x --- x K, into #, ® - - ® H#,. Moreover,

141l = llellz < 1Al -~ - 1 Aull-
Also,
AX @ " ®X,) = Ap'(xy, ..., Xn) = QX1 .., X,)
=p(A1xy,. . ApgX) = A1x; @ 00 ® ApXy,
when x, e #,,...,x,€4,. B

The operator 4 described in Proposition 2.6.12 is called the tensor
product of A4,,...,4, and denoted by 4, ® - ® 4,. It is apparent that
A, ® -+ ® A, depends linearly on each 4,, and that

A4:®  ®A)BI® - ®B)=4,8,Q - ®A,B,.

Since
(41® @A) X1 ® " ®X) V1 ® * ®ya)
={A1x Q@ ®AX Y1 ® @y
= {Aix1,y1)  {AnXns V)
=X, ATy X, AY Y
=N ® ®x, A1 ® - @ ATy
= ®  ®x (AT ® ANV ® - Oy,
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it follows by linearity and continuity that

(41 @ ®@A)u,v) = U, (AT ® - @ A)v)
for all vectors u and v in the appropriate tensor product spaces. Thus

15) (4,® @A) =A4T® @4y

We assert also that

(16) 41 ® - @ Al = |44l - -~ [ 4all-

Indeed, given by any unit vectors x; in J#,...,x, in J#,, we have

41 @ @Al =141 @ ® All{lx1 ® -~ ® x,|
Z(4:® - ®@A)x ® - ® x|
=41x1 ® -+ @ Apxull = |41 x4} - - | Anx,]|.

Upon taking the supremum of the right-hand side, as the unit vectors
Xy,...,X, vary, we obtain

14 ® - @Al = [l 4] -~ 4.l

the reverse inequality was noted during the proof of Proposition 2.6.12.
Suppose next that #,,..., #nsn, X1,..., Xmsn are Hilbert spaces and
that 4;,e B(H#;, A;) (j=1,...,m + n). We can construct isomorphisms

UAN®  @Hpsn—>(H1Q @A) (Hps1 @ @ Hyin)s

Vi 1@ @Hyin=> (A1 @A) ®(H s 1 @ @ Hiyin)s
as in Proposition 2.6.5, and it is at once verified that

A1 ®  @Ani U = (41 ® @ Ap) ®(An+1® * ® Ams).

This proves the ‘“‘associativity” of the tensor product of bounded linear
operators on Hilbert spaces.
With # and o Hilbert spaces, the linear mapping

A->ARQL:B(H) > B(H RA)

preserves operator products, adjoints, and norms; from this last, it is norm
continuous. We consider next its continuity properties relative to the strong-
operator topology. With v a simple tensor x ® y in # ® X,

(4 ® v — (Ao ® Nel| = [[(4 — Ao)x @ yIl = (4 — Ao)x] |1y,

for each 4 and A4, in Z(#°). Fromthis, it follows that, if vy, ..., v, are simple
tensors in # ® 4 and ¢ > 0, then the set

{AeBH): (AR DNv; — (Ao ® Nyvjll <e (j=1,...,m)}

is a strong-operator neighborhood of 4, in #(#°). Since the simple tensors
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have closed linear span # ® ¢, they suffice to determine the strong-operator
topology on bounded subsets of # ® ; so the preceding sentence implies
that the mapping 4 - 4 ® I is strong-operator continuous on bounded
subsets of Z(#'). When one or other of # and £ is finite dimensional, the
simple tensors have algebraic linear span J# ® A4 (Remark 2.6.8), and
therefore suffice to determine the strong-operator topology on (the whole of)
B(AH ® A); so, in this case, the mapping 4 - A ® I is strong-operator
continuous on ().

Suppose, finally, that { y,: b € B} is an orthonormal basis of £ As noted in
Remark 2.6.8, the equation

U(Z@ Xp) = Z Xp @ Yy
defines an isomorphism U from ¥,z @ #, onto # ® X when each # is #.
With 4 in Z(H#),
(A® DUQ® xp) = (A ® (X X ® 3)
=Y (A I)(x, ® )
=Y Ax, @ yp = UQ @ Axy),
S0
(17) v''aenu=Yo4 (A€ B(K)).
beB
Matrix representations. We conclude this section with an account of the
matrix representations of operators acting on a direct sum Y,z ® 5, Where
each #, is the same Hilbert space J#. Before embarking on this program, we
consider the numerical matrices of operators relative to orthonormal bases.
Supposethat { y,: b B} is an orthonormal basis of a Hilbert space J¢. With
S in Z(A"), each vector Sy, has an expansion
(18) Syb = Zsabya (bEB),
aeB

in which the coefficients are given by

(19) Sab = <Syb7ya>'
In this way, we associate with each S in #(X") a complex matrix [$s],pess
relative to the orthonormal basis {y,}. When the index set B is finite, every
complex matrix [s,,], g corresponds, as in (18), to some element S of Z(X").
When B is infinite, however, boundedness of S imposes certain restrictions on
its matrix. For example, Parseval’s equation gives

Y 1sal? = Y 1<SP yad 2 = I1Swsll* < ISP,

aeB aeB

Y Isabl? = Y IKSYby yadl?
beB beB

=Y Kyo S*ya)l> = IS*yll” < IIS11%;

beB
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so the “columns” and “rows” of the matrix [s,] form (bounded sets of)
vectors in /,(B).

The algebraic relations between operators and matrices follow the pattern
familiar in the finite-dimensional case. From (19) and (18), the matrix elements
Sa, depend linearly on S, and [s,,] is the zero matrix only when S = 0. Since

(S*Vy, Ya) = {Vps SVa) = {SVa, Vb = Spas

the matrix of S* has 5, in the (a, b) position. If two elements S and T of Z(¢")
have matrices [s,,] and {1,,], respectively, and R = ST, then

(Ryy, Yoy = {STyy,ya) = Tyy, S*y,),

and Parseval’s equation gives

<Ryb’ya> = Z <Tyb’yc><yc’S*ya>

ceB

= Z <Syc’ya><Tyb,yc>

ceB

= Z sactc}r

ceB

Accordingly, the matrix [r,,] of R (= ST) is given by

Fap = Z sactcb'
ceB

The results of the preceding paragraph can be summarized in the assertion
that the matrices, corresponding (through a fixed orthonormal basis) to
bounded operators on , form an algebra relative to the usual concepts of
sum, product, and scalar multiple of matrices. Moreover, the mapping from
bounded operators to the corresponding matrices is an isomorphism.

We now consider operators acting on a direct sum ¥, ® 5, with each ¢,
the same Hilbert space J#. For this purpose, we introduce a closed subspace
# of Y@ H#,, and bounded linear operators

Ua:#_)z®fh’ Vajz®xb_)%

for each a in B, as follows. When xe s and u = {x,} €Y@ 5, V,u = x, and
U,x s the family {z,} in which z, = x and all other z, are 0; # is the range of
U,, and so consists of all elements {z,} of Y@ 4, in which z, = 0 when b # a.
Observe that V,U, is the identity operator on # and U,V, is the projection E,
from Y@ 5, onto 5#,. Since the subspaces #°/ (a € B) are pairwise orthogonal,
and V. =YY@ i, it follows that the sum Y, gFE, is strong-operator
convergent to I. Note also that U, = V', since

<Uax’ {xb}> = <x’ xa> = <xa Va{xb}>
whenever xe # and {x,} €Y@ H#,,.
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With each bounded linear operator T acting on Y @ .#,, we associate a
matrix [T,,], .5, With entries Ty, in B(#°) defined by

(20) Tab = VaTUb.
If u = {x,} €Y@ 5#,, then Tu is an element {y,} of Y@ #;, and

Vo= VaTu = VaT<Z Ebu) = Z VaTUb Vbu = Z Tabxb.
b b b

Thus
(21) T(Z@ Xp) = Z@.Vb where y, = z Typx, (achB).

beB
The usual rules of matrix algebra have natural analogues in this situation.
From (20), the matrix elements T,, depend linearly on 7. Since

V.T*U, = UST*VE = (V,TUY* = (T,)%,

the matrix of T* has (T,)* in the (a, b) position. If Sand T are bounded linear
operators acting on Y@ #;,, and R = ST, then

R, = V,RU, = V,STU, = Y V,SE,TU,
ceB
= z VaSUc VCTUb = Z SacT'cb’
ceB ceB

the sum converging in the strong-operator topology if the index set Bis infinite.

In this way, we establish a one-to-one correspondence between elements of
B(Y pe5 © #3) and certain matrices [Ty, g With entries Ty, in B(5#°). When
the index set B is finite, each such matrix corresponds to some bounded
operator Tactingon Y@ J#, ; indeed, T'is defined by (21), and its boundedness
follows at once from the relations

{312 = X lyall® = LY Tapxsll < Z(Z 1 al ||xb||>
< Z(Z”Tab”2> <}:,be||2> = (ZZIITab||2>II{xb}II2~

a

When the index set B is infinite, it is apparent that some matrices with entries in
B(A') do not arise in the above manner from bounded operators. In formal
matrix calculations, it is necessary to ensure that no such ‘“unbounded”
matrices appear at any stage. While there is no simple general procedure for
determining whether or not a given matrix corresponds to a bounded operator,
acriterion that is sometimes useful is set out in Proposition 2.6.13 below. In the
meantime, we describe certain special types of “bounded” matrices that arise
frequently in applications.
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In the first place, a matrix [7T,,] gives rise to a bounded operator if it has
only a finite number of non-zero entries T,,. Indeed, the proof used above, for
the case in which B is finite, applies also in the circumstances just described.
More generally, the same argument shows that the matrix corresponds to a
bounded operator whenever the sum ¥,Y, || T,||* is finite, since it is easily
verified in this case that the series for y,, in (21), is absolutely convergent.
However, there are bounded operators on Y@ #, (for example, /) whose
matrices do not satisfy these conditions.

Second, suppose that = is a permutation of B, and {T,: b€ B} is a bounded
family of elements of %(#). Since

YN Toxell® < N TollP Xyl < suplIToll> X l1%11%,

beB beB beB beB
the equation T(Y.® x,) = Y@ TpX,) defines a bounded linear operator T on
Y@ H#,. The matrix [T,,] of T is given by Ty, = SpapTa> Where ,, is the
Kronecker symbol (d,,is | when a = b, 0 when a # b). If each T, is unitary, the
same is true of 7. When = is the identity mapping on B, T is the direct sum
Y@ Ty, and corresponds to the diagonal matrix [6,,7,].

Finally, we consider the matrix representation of certain tensor products of
operators. Suppose that {y,: be B} is an orthonormal basis in a Hilbert space
A, and Uis the isomorphism from Y@ #, onto # ® A (where each #, is ),
defined by U(Y@® x,) = ¥ X, ® 3. When A€ B(H#), U™ (4 ® I)Uis the direct
sum ¥, ® A, and has matrix [d,,4]. This characterizes the operators T, of
the form 4 ® I acting on # ® 4" as those for which U ™! T,U has a diagonal
matrix with the same element of #(s#) in each diagonal position. We assert
also that an element Ty, of #(# ® A") can be expressed as I ® S, with S in
B(A),if and only if the matrix of U ~! T, U has the form [s,,/], with each s,, a
scalar. For this, suppose first that Se Z(4"), so that S has a complex matrix
[s.,] satisfying (18). With x in # and b in B, UU,x = x ® y,, SO

VU™ @ SYU)Upx = VU™ @ S)x @ )

I

VaU_l(x® Syb) = VaU_l < z scbx®yc>

ceB

V,,( Y@ scbx> = SgpX.

ceB
Hence V(U ' ® S)U)U, = 5,1, and U~ Y(I® S)U has matrix [s,7].
Conversely, suppose that Ty e Z#(# ® X°) and the matrix of U~ !T U (= T)
has the form [s,,/]. With x a unit vector in # and f an element of /,(B),
u=7y® f(b)x is a vector in Y@ #, and Tu = Y@ x,, where

Xq = Z sabf(b)x'
beB
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Hence the sum ¥, 55, /(b) converges, and

212 s fB)? =} lIxall® = 1| Twl|?

acB beB aeB

< ITIHu® = 1T X 1/B)N*;

beB

SO

(D) ( )} sabf(b)>ya” < ITHIY SB)ysll-

acB \ beB beB

Accordingly, the equation

S < 2. (b)yb) =), ( > sabf(b)>ya (fel,(B))
beB acB \ beB
defines a bounded linear operator S on J. Since S has matrix [s,],
U~ '(I ® S)U has the same matrix [s,[] as does U 'ToU, s0 Ty =I® S.
We now establish a criterion for determining whether or not a matrix
[T,],4e8, With entries T, in B(#), corresponds to a bounded linear operator
acting on Y,z @ 5, where each J#, is #. As noted above, each such matrix
gives rise to a bounded operator when the index set B is finite.

2.6.13. PrOPOSITION. Suppose that # is a Hilbert space and [Ty)] , e is @
matrix, with entries T,, in B(H). For each finite subset F of B, let T(F) be the
bounded linear operator, corresponding to the matrix [T,y per, that acts on the
Hilbert space Y ,.; ® #, (where each 3, is ).

@ NTED < NTE i Fy < Fa

(i) The matrix [T,), 4ep corresponds to a bounded linear operator T acting
ony,a ® H, if and only if the set {||T(F)||: F a finite subset of B} of real numbers
is bounded above. When this is so,

||| = sup{||T(F)||: F a finite subset of B}.

Proof. Let & denote the class of all finite subsets of B, and when F e & let
H(F) be the Hilbert space Y ,.; @ . Note that if Fe # and u is an element
Yper ® x,, Of H#(F), then

el = Y lxell®s ITEull? = 311 Y. Tasxsll*.

bel acF  beF

(i) SupposethatF,F,e4 and F, < F,. With van element },.; @ x;, of
H'(Fy), let w be the element ¥, @ x, of 5#(F,) obtained by taking x, to be 0
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when beF,\F,. Then

”T([Fl)U”2 = 2 [ Z Tabxb||2
acF, bel,

=Y 1Y Tapxsll?
aelF, bef,

< Y'Y Tapxsll?
acF, bef,

= IT(E)wll® < ITE)NPMW? = ITE o)1,

and therefore || T(F))|| < ||T(F)I-
(it) Suppose first that the set {||7(F)||: F € &} has finite supremum k. In
view of the discussion preceding the proof of (i), it follows that

(22) Z“ZTabbuZ <k22”xb”2
beF

acF  beF

whenever Fe & and x,€ #, (beF). Letube anelement Y, s ® x, of ¥, s @ 5.
Our proof that [T,,] is the matrix of a bounded linear operator is now divided
into two stages.

First, we show by the Cauchy criterion that, for each ¢ in B, the sum
Z,,Eﬁ ,,x,, converges to an element y, of #. For this, suppose ¢ > 0, and choose
F, in & so that

Ylixll® < €2/k? whenever Fe# and FnF, = .

belF

By enlarging [, if necessary, we may suppose that ceF,. When Fe # and
FnF, =, let Fo = Fu {c}, and define x, = x, (be[F), x, = 0. From (22),

||Z Ta,xbllz = || z bxp,“2

belq
5; :E: || :E: jj,b)fé||2
aeFo  bel,
Sk Y )P = &2 Z [1xpll* < €2
belo

Thus |3, TeoXsll < € Wwhenever Fe & and F n F, = ¥, the Cauchy criterion is
satisfied, and ¥, T,,x, converges—to an element y, of #.
Second, we prove that

2 ydl* < k2 Z (AR

acB
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For this, suppose that F{,F,€ % let F = [F; U F,, and define x, = x, (beF,),
x, =0 (beF\[F,). From (22),

Z [ Z Taxoll* = Z Il Z Tabe”Z

acF, bef, aelF, belF

S LY TapxyII?

acF  beF

SKY |lxll> < k2 [lx ).
belF

beB

When F, increases to B, ||, TupXsll = |lyall; and since F, is finite, it results
from the preceding inequalities that

2 yall? < k2 3 Ml
beB

ael,

Since the preceding relation has been proved for each F, in &
Y yall? < k2 Y lix ).
acB beB
From the two assertions just proved, there is a bounded linear operator T,
acting on Y,.g @ J#,, with
(23) 17 < k = sup{||T(F)I|: Fe #},
defined by

T ®x)=Y® where y, =) Tux, (aeB).

beB

Since this is a restatement of (21), T has matrix [T,,].

Conversely, suppose that [T,,] is the matrix of a bounded linear operator
T.With Fin # and uan element ¥ ,.; ® x, of #(F), let v be the vector ¥, D x;
in ¥,.5 ® 5, obtained by defining x, = 0 when b€ B\F. Then

IT(Ful® = 3N Y Taxs lI?

aefF  beF

=211 Y Tl

acF  beB

< Z | Z Tabxb”2

acB beB

= |Tol> < ITWPl? = TN fluell.
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Thus ||T(F)|| < ||T||, and the set {||T(F)||:Fe £} is bounded above, with
supremum at most ||T’]|. This, with (23), gives

Tl = sup{lIT(F)||: FeF}. W

In the circumstances described in Proposition 2.6.13, we regard the
operator T(F) as the “finite diagonal block” of the matrix [T,,] corresponding
to the finite subset F of B. The main result of the proposition is the assertion
that [T,,] is the matrix of a bounded linear operator if and only if the set of
norms of all the finite diagonal blocks is bounded above.

2.7. Unbounded linear operators

In Section 1.5, we discussed linear transformations from one normed space
into another. We noted in Theorem 1.5.5 that the continuity of such a
transformation is equivalent to its boundedness (on the unit ball), so that we
speak, interchangeably, of “continuous” and ‘“bounded” linear transfor-
mations. In Section 2.4, we specialized the discussion of bounded linear
transformations to Hilbert space. In this section, we take up the study of
discontinuous (and, necessarily, unbounded) linear transformations between
Hilbert spaces.

We have only to think of the process of differentiation to be convinced that
unbounded linear operators arise in the most natural way and that they are
important. Without proceeding carefully, let & be the linear manifold of all fin
L,(R) (relative to Lebesgue measure) almost everywhere differentiable with
derivative /" in L,(R); and let D(f) be f'. Then Dis a linear transformation and
D is not bounded. (If f,(r) = exp(— k|t]), with k a positive integer, then
1D = k.) Although D is defined on a dense submanifold of L,(R) (as
follows from classical approximation results), it is certainly not defined on all
of L,(R). We must expect, then, in dealing with unbounded linear operators, to
specify a domain of definition 9(T) for our operator T (and, thereafter, to
exercise care not to apply T, in a formal way, to each element that suits our
convenience).

Not only is the subject of unbounded linear operators natural and
important, but the literature devoted to it is vast (almost as a consequence).
Not to divert ourselves from the purpose at hand, we restrict the examples and
results described in this section to a bare minimum. Unbounded operators will
appear again in Section 5.6, whep we extend to unbounded self-adjoint
operators the spectral theory developed there for bounded self-adjoint
operators. A “polar decomposition” for (closed) unbounded operators
appears in Section 6.1, and a formulation of Theorem 7.2.1 in terms of
unbounded operators appears in Section 7.2; but the essential use of
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unbounded operator theory occurs, for us, in the presentation in Section 9.2 of
modular theory.

For the most part, the naturally arising unbounded operators retain some
vestiges of orderly “limit properties”” —notably, the possibility of extending
them to operators with closed graphs. While this assumption may seem like a
negligible replacement for continuity, it can be turned to remarkable
advantage, as we shall see. In Section 1.8 we associated a graph ¢(T) with a
linear transformation T, where 4(T) = {(x, Tx): xe 2(T)}. The closed graph
theorem (1.8.6) tells us that if T'is defined on all of # (mapping into the Hilbert
space ") and 4(T) is closed, then T'is bounded. (Conversely, if T is bounded
and everywhere defined, 4(T) is closed.) This provides us with the possibility of
an assumption intermediate between continuity and the totally unrestricted
linear operator.

Let T be a linear mapping, with domain 2(T) a linear submanifold (not
necessarily closed), of the Hilbert space s into the Hilbert space .#. We say
that T is closed when %(T) is closed. The unbounded operators T we consider
will usually be densely defined, that is, 2(T) is dense in #. Whatever T we
consider, it has a graph 4(T), and the closure 4(T)~ of 4(T) will be a linear
subspace of # @ . It may be the case that 4(T)~ is the graph of a linear
transformation 7, but it need not be. If it is, T “extends” T and is closed. We
say that T, extends (or is an extension of) T, and write T < T,, when
P(T) = 9(T,) and Tox = Tx for each x in Z(T). If ¥(T)~ is the graph of a
linear transformation T, clearly T is the ‘“‘smallest” (‘“minimal”) closed
extension of T. In this case, we say that Tis preclosed (the term closable is also
used) and refer to T as the closure of T. If 4(T)~ contains elements (x, y) and
(x,y) such that y # )’ (equivalently, since ¥(T)” is a linear space, if
(0,2)e9(T)~ with z not 0), then %(T)~ is not the graph of a (single-valued)
mapping and T'is not preclosed. This is, of course, the only way in which T'can
fail to have a closure (for, otherwise, the mapping that sends the first to the
second coordinate of ¥(T)~ defines T). Interpreting ¥(T)~ as the closure of
%(T) in limit terms, we see that T is preclosed if and only if convergence of the
sequence {x,} in 2(T) to 0 and {Tx,} to z implies that z = 0.

From the point of view of calculations with an unbounded operator T, it is
often much easier to study its restriction 7|2, to a dense linear manifold 2, in
its domain Z(7T) than to study Titself. If T'isclosed and 4(T|2,)~ = %(T), the
information obtained in this way is much more applicable to T. In this case, we
say that @, isa core for T. Each dense linear manifold in (T’ corresponds to a
core for T.

2.7.1. ExaMpLE. With the notation of Example 2.4.10, remove the
restriction that g be bounded and let T be defined as in that example for those x
in # such that ¥,y |g(»){x, y>|? is finite (so that Z(T) consists of such vectors
x). Of course 2(T) contains the submanifold @, of all finite linear
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combinations of the basis elements in Y, from which 2(T)is dense in 5. At the
same time, with u and v in 2(T), from the Cauchy-Schwarz inequality,

Y lg(y)<au + v, pdI* < lal* Y g <, y)I7 + Y 1g(y)<o, DI

yeY yeY yeY

+ 2lal ¥ 19(»)<u, p>l1g(y)<v, »)|

yeY
< laP||Tull® + | Toll> + 2la] || Tull (| Toll;

so that 2(T) is a linear manifold. Since Ty = g(y)y for yin Y, T'is bounded if
and only if g is a bounded function. In any event, Tis a closed operator. To see
this, suppose {u,} is a sequence in 2(T) tending to u in s and {Tu,} converges
to v. Then

{Tup, y> = g(Y)th, y> = g(¥)<U, ¥).
But (Tu,,y) — (v, y), so that {v,y) = g(y)<u,y>; and
Y g, 1P = Y Ko, ydI? = Ivl]* < oo.

yeY yeY

Thus ue 2(T) and
Tu= Y g(yXu,yyy =) (v, yyy =v,

yeY yeY

so that (T is closed. The submanifold @, is easily seen to be acorefor 7. H

2.7.2. ExampLE. With the notation of Example 2.4.11, once again remove
the restriction that g be bounded (requiring only that g be measurable and
finite almost everywhere) and let M, be defined as in that example for those x in
# such that [|(M,x)(s)|* dm(s) is finite (so that Z(T) consists of such x). The
present example extends the preceding example to the case of non-discrete
(o-finite) measure spaces (so that the important case in which Y is denumerable
is included). Again 2(T) is dense since it contains the submanifold 2, of
measurable functions on .S with support in a set of finite measure on which g is
essentially bounded. The Cauchy-Schwarz inequality assures us once again
that 2(T)is a linear manifold. A more general measure-theoretic argument of
the character of that appearing in the preceding example establishes that M, is
closed and 9 is a core for it. (See the comments following Theorem 5.2.4.) W

2.7.3. ExampLe. If# isaseparable Hilbert space with orthonormal basis
{V¥n}n=1,2,.. and Ty, =ny,, then T extends linearly to the (dense) linear
manifold 2, of finite linear combinations of basis vectors Y- If we denote this
extension by T again (so that 2(T) = 2,), then T is densely defined,
unbounded, and not preclosed. To see this, it suffices to note that n= 'y, — 0
while T(n " 'y) =y, -»y;. N
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We define the operations of addition and multiplication for unbounded
operators so that the domains of the resulting operators consist precisely of
those vectors on which the indicated operations can be performed. Thus
P(A+ B)=2(A)~2(B) and (4 + B)x = Ax + Bx for x in 2(4 + B).
Assuming that 2(B) ¢ # and 2(A4) < A, where B has its range in 4, AB is
defined as the linear transformation, with {x: xe 2(B) and Bxe 2(A)} as its
domain, assigning A(Bx) to x. Of course 2(ad) = 2(A) and (ad)x = a(Ax).
More care is needed in defining the adjoint of an unbounded operator.

2.7.4. DeFiniTioN.  If T'is a linear transformation with 2(T) dense in the
Hilbert space # and range contained in the Hilbert space .#, we define a
mapping T*, the adjoint of T, as follows. Its domain consists of those vectors y
in " such that, for some vector z in 4, (x,z) = (Tx, p) for all xin 2(T). For
such y, T*y is z. If T = T*, we say that T is self-adjoint. W

In connection with this definition, we must note that there is at most one z
(for a given y) since x can assume values in the dense set 2(T); so T* is well
defined. Note, too, that the existence of z is equivalent to the boundedness of
the linear functional x — (T, y)> on @(T) (for, given that it is bounded, it hasa
unique bounded extension from 2(T) to #, and Riesz’s representation
theorem (2.3.1) provides us with z). The formal relation (Tx, y> = {(x, T*p>,
familiar from the case of bounded operators, remains valid in the present
context only when xe 2(T) and ye 2(T*).

2.7.5. REMARK. If T is densely defined and T is an extension of T, then
T is an extension of T*. To see this, suppose that ye 2(T*) and ue 2(T,).
Then

(Tott, y> =T, y) = (u, T*y),
so that ye Z(T¢) and T3y =T*y. R
2.7.6. RemaArk. If Tisdensely defined, T* is aclosed linear operator ; for,
with ¥ and v in 2(T*) and x in 2(7T),
{x,aT*u + T*v) = {ax, T*u> + {(x, T*v)
= {Tx,au) + {Tx,v) = {(Tx,au + v),

so that au + ve 2(T*) and T*(au + v) = aT*u + T*v. Thus @(T*) is a linear
manifold and T* is a linear operator. If {v,} is a sequence in 2(T*) converging
to v such that {T*v,} converges to v/, then, with u in 2(T), <u, T*v,> =
{Tu,v,>; and {{u, T*v,>} converges to {Tu,v). Thus (Tu,v> = (u,v") for
each u in 2(T); so ve Z(T*), and T*v = v'. It follows that T* is closed. MW
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2.7.7. REMARK. There are several ways in which we can use the hy-
pothesis that T (that is, ¢(T)) is closed. The mapping P taking (u,v) to uisa
bounded linear transformation of the Hilbert space 4(T) into 5. Thus P has a
bounded adjoint P* mapping s into 4(T). Since (0,z)e%(T) only when
z = 0, Phasnull space (0). From Proposition 2.5.13, the range of P* isdensein
%(T). Thus, with v in 4, if P*(v) = (w, w') (in 4(T)), then Tw = w' and, for
each u in 2(7),

{v,uy = {P¥), (u, Tu)) = {w,u)y + (w', Tu).
Hence (Tu,w"y = {u,v — w) and w'e 2(T*). Moreover,
T*w (= T*Tw)=v —w,

so that (T*T + I)w = v. While it is not clear, a priori, that 2(T*T) consists of
more than the vector 0, our brief computation, relying on the information that
%(T)isclosed, allows us to conclude that 2(T*T) contains (and, therefore, is)
a core for T (namely, the first coordinates of the range of P*). We learn, at the
same time, that 7*T + I has range # (for v was an arbitrary element of
#). i

Making use of the preceding remarks, there is no difficulty in proving the
main theorem of this section.

2.7.8. THEOREM. If T is a densely defined transformation from the Hilbert
space # to the Hilbert space A, then

(i) if Tis preclosed, (T)* = T*,
(i) T is preclosed if and only if 2(T*) is dense in A",
(iii) if T is preclosed, T** = T,
(iv) if Tisclosed, T*T + I is one-to-one with range # and positive inverse
of bound not exceeding 1;
(v) T*T is self-adjoint when T is closed.

Proof. (i) Since T< T; from Remark 2.7.5, (T)* < T*. Suppose
ye2(T*). For each x in @(T), there is a sequence {x,} of vectors in 2(T)
converging to x such that {Tx,} converges to Tx. Thus

(Tx,y) = im(Tx,, y) = im{x,, T*y) = {x, T*y),

so that ye 2((T)*) and (T)*y = T*y. Hence (T)* = T*.

(i) If T is preclosed, from Remark 2.7.7, 4(T) contains a dense linear
manifold (the range of P*) consisting of pairs (x, Tx) with Tx in @(T*)
(= 2(T*)).If yis orthogonal to therange of T, then 0 = (Tx,y> = (Tx, y) for
each xin 2(7T); and yisin 2(T*) (yisannihilated by T*). Thus 2(T*) contains
a dense subset of the range of T as well as the orthogonal complement of this
range. Since 2(T¥) is a linear manifold, it is dense in %"
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Suppose, now, that Z(T*) is dense in " and {u,} is a sequence in Z(T)
converging to 0 such that {7u,} converges to v. With y in @(T*),
{Tu,,y> = {u,, T*y>; so {u,, T*y> converges both to 0 and to (v, y). Since
P(T*) is dense in A, v = 0 and T is preclosed.

(ii)) If Tis preclosed, 2(T*)is dense, from (i1), and T* has an adjoint T**,
If ye 2(T*) and xe Z(T), then {T*y, x> = {y, Tx), so that xe Z(T**) and
T**x = Tx. Thus T** is a closed (from Remark 2.7.6) extension of T, and
T = T**. From Remark 2.7.5, T*** ¢ T* = T*. Since T* is closed, we have,
as well, T* = (T*)**, Thus T* = T***,

Asnoted T < T** (equivalently, 4(T) < 9(T**)). If (x, T**x), in G(T**),
is orthogonal to 4(T), then {x,u) + {T**x, Tu) = 0 for each u in Z(T). This
holds, in particular, when Tue 2(T*) (= 2(T***)); and, for such u,

0= (x,(T*T + Nw).

But, from Remark 2.7.7, (T*T + Iu takes on all values in 3. Thus x = 0,
YT**) = 4(T), and T** = T.

(iv) We noted in Remark 2.7.7 that the domain of T*T (and, hence, of
T*T + I)is a core for T when T'is closed and densely defined. We noted, too,
that T*T + I has # as its range. If xe 2(T*T + I), then

IXI1* < <X, x> + (Tx, Tx) = {(T*T + Dx, x) < |(T*T + Dx]|||x]|.

Thus T*T + I has (0) as null space, is one-to-one, and has a bounded inverse H
of bound not exceeding 1. From this same computation, and since each z in J#
has the form (T*T + I)x, it follows that {z, Hz) is {(T*T + I)x, x), which is
real and non-negative. Thus H is positive.

(v) Asnoted in (iv), 2(T*T) is a core for T; hence it is dense in J#. Since

UT*T + Dx,y) = (T*Tx, p) +{x,»)

when xe 2(T*T), we see that (T*T)* and (T*T + I)* have the same domain
and that (T*T)* + I = (T*T + I)*. With y in 2(T*T),

(T*Tx,y) = <{x, T*Ty),

sothat T*T < (T*T)*and T*T + I = (T*T + I)*. It follows that (T*T + I)*
has # as its range. If (T*T + I)*y = 0, then, for each x in (T*T7),

0={(T*T + D*y, x> = (y,(T*T + I)x).

Since T*T + I has range #, y = 0. Thus (T*T + I)* is one-to-one, extends
T*T + I, and has the same range as T*T + 1. It follows that

T*T + I = (T*T + I)* = (T*T)* + I,
so that T*T = (T*T)*. W
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The statement that T is self-adjoint (T = T*) contains information about
the domain of T as well as the formal information that (Tx,y)> = (x, Ty) for
all xand y in 2(T). When 2(T) is dense in # and (Tx, y> = {x, Ty) for all x
and y in 9(T), we say that T is symmetric. EqQuivalently, T is symmetric when
T < T*.Since T*isclosed and ¥(T) < ¢(T*), inthiscase, Tis preclosed if it is
symmetric. If T'is self-adjoint, T'is both symmetric and closed. The operation
of differentiation on an appropriate domain provides an example of a closed
symmetric operator that is not self-adjoint. In Proposition 2.7.10 we describe
conditions that guarantee that a given closed symmetric operator is self-
adjoint. If 4 = T with A4 self-adjoint and T symmetric, then 4 = T < T*, so
that

(T** ) T*c A*=AcT<T*
and 4 = T. Itfollows that 4 has no proper symmetric extension. That is, a self-
adjoint operator is maximal symmetric.
2.7.9. LemMma. If Tisclosed and symmetric, T T il have closed ranges. If T
is closed and 0 <{Tz,z) for z in 2(T), then T + I has a closed range.

Proof. Suppose {x,} is a sequence in Z(T) such that {(T £ il)x,} tends to
y. Note that, with z in 2(T), (Tz,z) is real, so that
lzll? < ((Tz,2)* + {2,2)H)"? = [((T £ il)z,z)| < (T £ iD)z|| |12]|-
Thus ||x, — x|l < (T % iI)(x, — x,)|| and {x,} is convergent. Suppose x, — x.
Since {Tx,} converges to Fix + y and T is closed, xe 2(T) and Tx =

Fix +y. Thus y = (T * il)x, and T £ il have closed ranges.
Suppose, now, that T is closed and 0 <{Tz,z) for each z in Z(T). Then

lzll* < <z,2) + (Tz,z) < (T + Dzl| |l2ll,
for z in 2(T). and, as above, T + I has closed range. H
2.7.10. ProrosiTioN. If T is a closed symmetric operator on the Hilbert
space ¥, the following assertions are equivalent:

() T is self-adjoint;

(i) T* % il have (0) as null space;
(i) T % il have # as range;
(iv) T L il have ranges dense in .

Proof. (1) - (i1). If T = T*, foreach xin 2(T), (Tx, x> = {(x,Tx);and
{Tx, x) is real. Thus -

UT* 2 ihx, x> = (T X iDx,x) = {Tx,x> X i||x]|>=0

only if x = 0. Hence T* * il have (0) as null space.
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(i) - (iii). From Lemma 2.7.9, T % il have closed ranges. Thus, it
suffices to show that these ranges are dense in . If {(T £ il)x, y> = O for all x
in @(T), then (Tx,y> = F i{x,y), so that ye 2(T*) and T*y = £ iy. Since
T* % iI have (0) as null space, y = 0. Hence T t i have dense ranges.

(iii) > (iv). This follows from the preceding discussion.

(iii) > (i). Since T'is closed and symmetric, T < T* and 4(T) is a closed
subspace of the closed space 4(T*). If (y, T*y) in 4(T*)is orthogonal to %(T),
then

(x> + (T*y, Txy = 0

for each x in @(T). Since T * iI have range ., there is an x in (T such that
(Txe2(T), and) y = (T + iI)(T — il)x (=(T? + I)x). For this x,

3y = (T? + Dxy = p,x) +(T*y, Tx) = 0.
Thus (y, T*y) = (0,0),9(T) = 4(T*),T = T*, and T is self-adjoint. W
2.7.11. Remark. If T is self-adjoint, it follows from (iii) of Proposition
2.7.10 and the inequality at the beginning of the proof of Lemma 2.7.9 that

T t il have everywhere-defined, bounded inverses with bound not exceeding
1. |

2.8. Exercises

2.8.1. Show that a finite set {x,, ..., x,} of n vectors in a Hilbert space .#
is linearly independent if and only if the # x n matrix that has {x;, x;) in the
(J, k) position is non-singular.

2.8.2. Show that a Hilbert space is uniformly convex (in the sense defined
in Exercise 1.9.13).

2.8.3. Show that, if # is a real Hilbert space, then . x # becomes a
(complex) Hilbert space #¢ when its linear structure, inner product, and norm,
are defined by

(6, ) + (u,0) = (x + u,y +v),

(a + ib)(x,y) = (ax — by, bx + ay),

(X, p), W, 0)) = x,uy + (y,0) + iy, uy — ix,0),
e, I = 11x112 + Nyll?,

for all x, y,u,vin 3 and a, b in R.
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Prove also that the set {(x,0): x e ./#} is aclosed real-linear subspace .#5 of
He, that #c = {(h + ik:h ke #g}, and that the mapping x — (x,0) is an
isometric isomorphism from # onto (the real Hilbert space) #%.

2.8.4. Suppose that {x;, x,, x3,...} is an orthonormal basis in a Hilbert
space .# and that

«© 2
Y={ye-#: ) (1 +%) [ xd1 < 1}.
n=1

Prove that Y is a bounded closed convex set that has no element with greatest
norm.

2.8.5. Suppose that Yis aclosed convex setin a Hilbert space #, %y is the
set of all unitary operators U acting on # for which U(Y) = Y, and

Yo={yeY:Uy =y foreach Uin %y}.

(i) Prove that Y, is not empty. [Hint. Use Proposition 2.2.1.]
(ii) Show that, if Y, consists of a single non-zero vector y,, then Yis a
subset of the hyperplane

{xe# :Red{x — yg,y0) = 0}.

2.8.6. Prove that a bounded sequence of vectors in a Hilbert space has a
weakly convergent subsequence.

2.8.7. Suppose that A is an uncountable set and, for each a in A, m, is
Lebesgue measure on the ¢-algebra %, of Borel subsets of the interval [0, 1]
(= S,). Show that, if (S, ¥ m) is the corresponding infinite-product measure
space (see [H: p. 158]), then L,(S, % m) is non-separable.

2.8.8. Suppose that # is a Hilbert space in which the inner product is
denoted by < , > and that Ke #(#)*. Show that the equation

<x’y>l = <Kxay> (X,yG,#)

defines an inner product { , >, on #. By means of the Cauchy-Schwarz
inequality for ¢, >, prove that

IK|| = min{a:aeR, K < al}.

2.8.9. Let.# be a Hilbert spaEE in which the inner product and norm are
denoted by (, ) and || ||, respectively. Suppose that { , >, is another definite
inner product on . and the corresponding norm || ||, satisfies ||x||; < ||x|| for
each xin . Prove that there is a positive self-adjoint operator K, acting on J#,
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such that ||K]|| < 1, K has null space {0}, and {x,y), = (Kx,y) for all x, y
in .

2.8.10. Suppose that # is a Hilbert space in which the inner product and
norm are denoted by (, > and || ||, respectively. Let K be a positive element of
B(#), and define an inner product { , >; on # by

Oy =LKKx,y>  (x,ye).
Let |Ix[l; = [<x,x>,]"2.

(i) Prove that || ||, is a norm on 4 if and only if K has null space {0}.
(ii) Show that, if Khas null space {0}, then the norms || || and || ||, give rise
to the same topology on 4 if and only if K has an inverse in Z(#).
(iil) Suppose that K has an inverse in Z(#). If 4* denotes the adjoint of
an element 4 of 2(s#) relative to the inner product { , >, find a formula for the
adjoint of A relative to the inner product { , ;.

2.8.11. Suppose that T is a bounded self-adjoint operator acting on a
Hilbert space # and k is a positive real number such that —&kI < T < kI. By
using the identity

4Re(Tx,y) = (T(x + ), x + y> = {T(x = y), x — y),
show that
IReCTx, y>| < 3k{lIxlI> + 117117}
for all x and y in 4% Deduce that ||T|| < k and that
|T|| = min{a:aeR, —al < T <al}
= sup{|{Tx,x>| : xe H, ||x|| = 1}.

2.8.12. A bounded linear operator 4, acting on a Hilbert space 47, is said

to attain its bound if || Ax|| = ||A|| for some unit vector x in #. Give examples of

(a) a bounded self-adjoint operator with an orthonormal basis of
eigenvectors,
(b) a bounded self-adjoint operator with no eigenvector,

neither of which attains its bound.

2.8.13. Let s be a Hilbert space.

(i) Prove that each unit vector x in # is an extreme point of the unit
ball (#), .

(i) Prove that each isometric linear operator V from # into J# is an
extreme point of the unit ball (B(#)),.



164 2. BASICS OF HILBERT SPACE AND LINEAR OPERATORS

2.8.14. Show that the projection E from a Hilbert space J# onto a closed
subspace " is an extreme point of the set (#(#)*), of all positive operatorsin
the unit ball of A(:#).

2.8.15. Determine a necessary and sufficient condition for the operator
M,, defined in Example 2.4.11, to have a bounded inverse.

2.8.16. Suppose that T = ¥ ,.a @ T,, where T, B(#,) for each a in A,
and sup{||T,|l:a€ A} < co. Show that T has a bounded inverse if and only if
the following two conditions are satisfied:

(i) each T, has a bounded inverse,
(i) sup{||T;!:ae A} < .

2.8.17. Let 2 denote the set of all projections from a Hilbert space #
onto its closed subspaces, and suppose that Fe 2, 0 # F # I. Prove that the
mappings

E->EAF, E-EvF

are not continuous, from 2 with the norm topology into 2 with the strong-
operator topology.

2.8.18. Let & denote the set of all bounded self-adjoint operators acting
on a Hilbert space . If 4, B, Ce ¥ we say that C is a lower bound of {A, B} if
C < A, C < B. Wesay that Cis the greatest lower bound of { A, B} if it is a lower
bound of {4, B}, and D < C whenever D is a lower bound of {4, B}.

(i) Show that, if 4, Be ¥ then {4, B} has a lower bound in &

(i) Suppose that 4, Bare non-zero elements of Z(#°)*. Show that there
is a vector x, such that {(Ax,, x> > 0 and {(Bxg, x> > 0. Prove that, if P, is
the projection onto the one-dimensional subspace containing x,, a and b are
suitable positive real numbers, and T = aP, — b(I — Py),then T < 4, T < B,
T £ 0. Deduce that 0 is not the greatest lower bound of {4, B}.

(iii) Suppose that 4, Be % and {4, B} has a greatest lower bound Cin &%
By applying the result of (ii) to {4 — C, B — C}, show that either 4 < B or
B<A.

2.8.19. Suppose that 4 and B are mappings from a Hilbert space # into
itself, and {Ax,y) = {(x, By) for all x and y in 5. Prove that 4 and B are
bounded linear operators, and 4 = B*.

2.8.20. Suppose that s is a Hilbert space and A € (). Prove that the
following five conditions are equivalent.
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(i) A iscontinuous asa mapping from the unit ball (), (with the weak
topology) into s (with the norm topology).

(i) Ifx,x;,x,,...€ # and {x,} is weakly convergent to x, then {4x,} is
norm convergent to Ax.

(iii) Every bounded sequence {x,} in # has a subsequence {x,y,} such
that {A4x,y} is norm convergent.

(iv) The set {Ax:xe(#),} is relatively compact in the norm topology
of #.

(v) The set {Ax:xe(H#),} is compact in the norm topology of #.

[An element of () that has any (and, hence, all) of the above properties is
described as a compact linear operator.]

2.8.21. Provethat the identity operator, acting on an infinite-dimensional
Hilbert space, is not compact (in the sense of Exercise 2.8.20).

2.8.22. Suppose that ## is a Hilbert space and
S = {AeB(H): A has finite-dimensional range}.

(i) Prove that, if Ae.# and {y,,...,y,} is an orthonormal basis of the
range of A, there exist vectors xi,..., X, in # such that

Ax =) (X, X0 Y (xe K).
j=1

(i) Prove that .# is a two-sided ideal in £(s) and that every non-zero
two-sided ideal in () contains 4

(iii) Prove that an element 4 of #() lies in # if and only if A4 is
continuous as a mapping from # (with the weak topology) into »# (with the
norm topology).

(iv) Prove that the elements of 4 are compact linear operators (in the
sense of Exercise 2.8.20).

2.8.23. Suppose that {4,} is a sequence of compact linear operators
acting on a Hilbert space #, Ae Z(H), and ||4, — A|| = 0. Prove that A is
compact. [ Hint. Use condition (i) of Exercise 2.8.20 as the defining property of
a compact linear operator.]

2.8.24. Suppose that 4 is a compact linear operator acting on a Hilbert
space # (see Exercise 2.8.20).

(i) Prove that the (closed) range space [A(3#)] is separable.
(ii) Suppose that [A(s#)] is infinite-dimensional, and let {y,, y,, ys, ...}
be an orthonormal basis of [A(s#)]. For each positive integer n, let P, be the
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projection from 4 onto the subspace spanned by y,,...,y,. Prove that
|4 — P,A|| -0 as n— 0.

(iii) Deduce that A lies in the norm closure of the ideal .# (see Exercise
2.8.22), and A* is compact.

2.8.25. Let A denote the set of all compact linear operators acting on a
Hilbert space #. By using the results of the three preceding exercises, show
that:

(i) A is the norm closure of the ideal .4 in Z(#);
(i) A is a norm closed two-sided ideal in B(¢);
(iii) each non-zero norm closed two-sided ideal in #(#’) contains X"

2.8.26. Suppose that {y,,y,,ys,...} is an orthonormal system in a
Hilbert space 4, and {4, 45, 43, ...} is a sequence of real numbers such that
|A1] = |42] = |43] = - -. Suppose also that the sequences {y,} and {4,} are
either both finite and of the same length or both infinite, with {4,} converging
to 0. Show that the equation

Ax:ZAKX,)’n)}’n (XG.%)

defines a compact self-adjoint operator 4 on #, with ||4|| = |4,|. [The result of
Exercise 2.8.29 below shows that every compact self-adjoint operator has the
form just described.]

2.8.27. Suppose that 4 isthe compact self-adjoint operator constructed in
Exercise 2.8.26 from an orthonormal system {y, y,, s, ...} in a Hilbert space
A and areal sequence {4, 4,, 43, ...} that satisfy the conditions set out in that
exercise. Extend the orthonormal system to an orthonormal basis
{ylvyZ,yB, o } Y {Za}'

(i) Prove that, if 1 is a non-zero scalar that does not appear in the
sequence {4,}, the operator 4 — Al has an inverse in %4(#), and

1

-
n— A

(4= 'x=7~

<xsyn>yn - /1_1 z<x’ Za>za

A
=Zm<x’yn>yn_i—1x (XE%).

n

[Hint. Consider the matrix of 4.}
(i) Show that, if 4 is a non-zero scalar that appears in the sequence {/,}
and xe #, the equation '

A-iD)z=x
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has a solution z in # if and only if {x, y,> = 0 for each integer k satisfying
/« = 4. What is the most general solution z, when this condition is satisfied?

2.8.28. Let A be a bounded self-adjoint operator acting on a Hilbert
space .

(1) Show that each eigenvalue of A is real.
(i) Show that eigenvectors corresponding to distinct eigenvalues of 4 are
orthogonal.

2.8.29. Let A be a compact self-adjoint operator acting on a Hilbert
space .

(1) By using the result of Exercise 2.8.11, show that there exist unit
vectors x;, X5, X3, ... in # such that the real sequence {{A4x,, x,>} converges,
with limit p equal to ||4|| or —||4||. Show that ||4x, — px,|| = 0 as n - cc.

(i) Prove that Ax = px for some unit vector x in s (so that a non-zero
compact self-adjoint operator has a non-zero eigenvalue).

(iii) Show that, if 4 is a non-zero eigenvalue of A4, then the null space of
A — il has finite dimension. (We call this finite dimension the multiplicity of A
as an eigenvalue of A.)

(iv) Prove that, if ¢ is a positive real number, there are only a finite
number of different eigenvalues u of 4 such that |u| > &. Deduce that the
distinct non-zero eigenvalues of A either form a finite set or form a sequence
converging to 0.

(v) Let {uq,us, us, ...} be the (finite or infinite) sequence of all distinct
non-zero eigenvalues of A, arranged so that |u| > |u,| = |us| = -+, and
suppose that u, has multiplicity m(n). Let {4,, 4,, 43, ...} be the real sequence
consisting of u, (m(1) times), followed by u, (m(2) times), followed by u; (m(3)
times), and so on. Let {y,,y,,73,...} be a sequence of unit vectors consisting
of an orthonormal basis of the null space of A4 — u;/, followed by an
orthonormal basis of the null space of 4 — u,1, followed by an orthonormal
basis of the null space of 4 — u3/, and so on. Show that {y,} is an orthonormal
system, and Ay, = 4,y, for each n. Prove that, if 4, is the compact self-adjoint
operator defined by

AOx = z;'-n<x7yn>yn (xe‘%))

(see Exercise 2.8.26), then 4 — A, has no non-zero eigenvalue. Deduce that
A = Ao.

(vi) Show that 4 > 0 if and only if 4, > 0 for all n. Deduce that, in this
case, A has a (compact) “‘positive square root” A4, (thatis, 42 = 4and 4, > 0)
such that ||4,]|? = ||4]|.
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2.8.30. Let A be a self-adjoint operator acting on a Hilbert space J#, and
let x be a unit vector in # such that ||4x|| = ||A4]].

(i) Show that x is an eigenvector for 4% corresponding to the eigenvalue
1411
(ii) Show that either Ax = ||A4||x or Az = —||A||z for some unit vector z.
[Hint. Consider the vector ||A||x — Ax.]
(iii) Under the added assumption that 4 >0, show that x is an
eigenvector for A corresponding to the eigenvalue ||4]|.

2.8.31. Let E and F be projections acting on a Hilbert space .
(i) Show that, if E and F commute,
(*) EvF<E+F.

(ii) By means of a two-dimensional example, show that (*) need not hold
when E and F do not commute.

2.8.32. Suppose that # is an infinite-dimensional Hilbert space. Let
{¥1,¥2,)s, ...} bean orthonormal sequence in #. By considering the sequence
{V,} in B(H), where

an = <x’yn>yl (XE”),

prove that the adjoint operation is not strong-operator continuous on (the unit
ball of) #(s#). Deduce that the strong-operator topology on #() is strictly
coarser than the norm topology.

2.8.33. Let o be an infinite-dimensional Hilbert space. Given any finite-
dimensional subspace F (# {0}) of #, let Ar = n(I — Pr), where n is the
dimension of F and P is the projection from # onto F. Choose any
orthonormal system of 2n vectors, {x{,...,X,, V1, ---,Va}, the first n of which
form an orthonormal basis of F, and define Vi, in %(s#), by

n

1
Vix ==Y {x,x;)p;.
n;=
In this way, we obtain nets {Ar}, {VF}, {ArVF}, where the finite-dimensional
subspaces F are directed by the inclusion relation. Show that:

(i) {AF} is strong-operator convergent to 0;
(ii) - {VF} is bounded, norm convergent to 0, and hence strong-operator
convergent to 0; -
(i) {ApV} is not strong-operator convergent to 0.

Conclude that multiplication is not (jointly) strong-operator continuous from
B(H) x (B(H)), into B(H).
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2.8.34. Show that, if & is a separable Hilbert space, there is a countable
strong-operator dense subset of Z().

2.8.35. Show that, if # is a separable Hilbert space and {y, ¥, ¥3,...}is
an orthonormal basis of #, the equation

d(S,T)= 3. 27"ISy, — Tyl

n=1
defines a translation-invariant metric 4 on Z(#) (that is,
dS+ R T+ R)=d(S,T)

for each Rin #(#)), and the associated metric topology coincides on bounded
subsets of #(#°) with the strong-operator topology.

2.8.36. Suppose that #,,...,5#,, A4 are Hilbert spaces and
L:#, x -+ x H#,— A is a bounded multilinear mapping. Suppose also that
for each u in X, the bounded multilinear functional L,, defined by

Lu(-xl) . "9xn) = <L(X1, ce. ,xn)’u>’

is a Hilbert-Schmidt functional on 4, x --- x J,. Prove that the mapping
u — L, from the conjugate Hilbert space # into the Hilbert space # ¥ of
Proposition 2.6.2 is linear and has closed graph. Deduce that there is a positive
real number 4 such that

1Ll < dllull  (ueX),
where || ||, denotes the usual norm on #¥F
2.8.37. Suppose that # is a Hilbert space, and let #.%® denote the

Hilbert space of all Hilbert-Schmidt operators from .# into s (see the
discussion preceding Proposition 2.6.9).

(i) Provethat ||T|| < ||T||, for all T'in # ¥ 0, where || || and || ||, denote
the usual norms on #(#’) and #.¥0, respectively.
(i) By identifying #.#0 with # ® i, prove that the ideal

{A e (H): A has finite-dimensional range}

in B(H)is a || ||2-den'se subset of #.¥0.
(iii) Prove that the elements of # . are compact linear operators.

2.8.38. Suppose that & is the L, space associated with a o-finite measure
space (S,%mwhen », ze H#, define q,. in L,(S x S, ¥x & m x m) by

qy.:(s, £) = z(s))(¢).
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(i) Show that, if Y and Z are orthonormal bases of J#, then the set
{q,::y€Y, ze Z} is an orthonormal basis of L,(S x S,.¥x £m x m).
(it) Show that, if ke L,(S x S,.¥x & m x m), the equation

(Tx)(s) =J k(s, O)x(t)dm(1)  (xe #)
S

(where the integral exists for almost all s in S) defines an element T, of Z(#).
Prove also that T, is a Hilbert-Schmidt operator acting on #, and that
1Tl = [kl

(iii) Prove that every Hilbert-Schmidt operator on # arises, as in (ii),
from an element of L,(S x S, ¥x & m x m).

2.8.39. Suppose that (S,¥m) is a o-finite measure space,
keL,(S x S,#x %m x m), and T, is the Hilbert-Schmidt operator defined

in Exercise 2.8.38(ii). Show that T} = T, where h(s, t) = k(t, s).

2.8.40. Suppose that # and X% are Hilbert spaces, 4e%(#), and
Be B(x'). Prove that A ® IThasaninversein Z(# ® X)if and onlyif 4 hasan
inverse in #(#), and that 4 ® Bhasan inverse in Z(# ® X) if and only if 4
has an inverse in () and B has an inverse in %(X").

2.841. Let {yy,y,,Vs,...} be an orthonormal basis of a Hilbert space
A ;and let [a;,], [b;,] be the matrices, with respect to this basis, of bounded
linear operators 4, B acting on . Prove that [a;,b;,] is the matrix of a
bounded linear operator. [ Hint. Let P be the projection from s# ® # onto the
subspace /" spanned by the orthonormal system {y; ® y;,y, ® y,,...}, and
consider the operator T obtained by restricting P(4 ® B)P to A]

2.8.42. Suppose that A4 is a closed linear operator with domain dense in a
Hilbert space # and with range in # ; and let B be in #(#). Prove that AB is
closed. Show also that, if 4B is densely defined and bounded, then 4B e B(#).

2.8.43. Let {y{,y2,5s,...} be an orthonormal basis for a Hilbert space
H#, and let

_@={xe)¢: Zn“|<x,y,,>|2<oo}, z=3Y n'y,
n=1 =2

Define Bin #(#) by Bx = {x, z)z; and define mappings S and T with domain

2 by -

Sx =Y n*{X, Yn)¥n, Tx = Sx + {(Sx,z)y, (xeP).

n=2
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Show that S and T are closed densely defined operators, but that neither 7 — .§
nor BS is preclosed.

2.8.44. Suppose that 4 and B are linear operators with their domains
dense in a Hilbert space # and their ranges in #. Prove that A* + B* =
(A + B)* if A + Bis densely defined, and that B*4* < (AB)* if ABis densely
defined.

2.8.45. Suppose that T'is a closed linear operator with domain dense in a
Hilbert space # and with range in #. Show that the null space
{xe@(T): Tx =0} of T is a closed subspace of .

Let M(T) and R(T) denote the projections whose ranges are, respectively,
the null space of T and the closure of the range of T. Prove that

R(T) =1 — N(T*), N(T) = I — R(T*),
R(T*T) = R(T*), N(T*T) = N(T).

[For the case in which T'e (), these relations have been established in
Proposition 2.5.13.]

2.8.46. Let T be a closed operator with domain dense in a separable
Hilbert space # and with range in 5. Show that the ranges of R(T) and R(T*)
have the same dimension.

2.8.47. Let s# be a Hilbert space and E be a projection with finite-
dimensional range. Let F be a projection such that the dimension of E(#) is
less than the dimension of F(#°). Show that (I — E) A F # 0.

2.8.48. Show that, if T'is a linear operator with domain dense in a Hilbert
space # and with range in &, and if { Tz, z) is real for each z in Z(T), then T'is
symmetric.

2.8.49. Let # be the Hilbert space L,, corresponding to Lebesgue
measure on the unit interval [0, 1], and let 2, be the subspace consisting of all
complex-valued functions f that have a continuous derivative /" on [0, 1] and
satisfy f(0) = f(1) = 0. Let D, be the operator with domain &, and with range
in # defined by D,f = f'. Show that /D, is a densely defined symmetric
operator and that

(iDo)M — M(iDy) = il|Dy -
where M is the bounded linear operator defined by

(Mf)s)=sf(s)  (feLy; O0<s<])
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2.8.50. Let #, 2,, and D, be defined as in Exercise 2.8.49, and let
Hy, = {fieH  {f;,u> =0}, where u is the unit vector in # defined by
u(s) =1 (0 < s < 1). When fe s#, define Kf in # by

(Kf)(s) = r f(t)ydt O<s< ).
0

(i) Prove that KeZ(s#), that K has null space {0}, and that
K(#) 2 2,.
(ii) Show that the equation

D Kf = fi (f1€#1)

defines a closed linear operator D; with domain 2, = K(#,). Prove also that
D; is the closure of Dy.
(ili) Show that the equation

DyKf+auwy=f (feH#, acC)

defines a closed linear operator D,, with domain &, = {Kf + au:fe #,aecC},
that extends D; .

(iv) Prove that (Kfi, f) + {(fi,Kf + au) = 0 for all f; in 5#,, f in ¥,
and a in C.

(v) Show that D} = D¥ = — D,.

(vi) Let 25 ={Kf, + au:f;e #,;, aeC}, and let D, be the restriction
D,|2;. Show that D; is a closed densely defined linear operator, that
D, = Dy = — D* c D,, and that iD, is self-adjoint.



CHAPTER 3

BANACH ALGEBRAS

In this chapter, we study algebras that have a Banach-space structure
relative to which the multiplication is continuous. The operator algebras,
which form the principal object of study for us, are a special subclass. Our
purpose is to locate those constructs (for example, spectrum and spectral
radius), develop the techniques, and prove the results that are natural to this
general setting.

3.1. Basics

Let 9 be a Banach space (complex or real) and, at the same time, an algebra
with identity 7, in which multiplication is separately continuous (that is,
(A, B) > AB is continuous in A4 for each fixed B and in B for each fixed A).
Denote by L, and Ry the operators on 2 such that L,(B) = AB = Ry(A).
From the continuity assumption, L, and R are in (). Thus
[ILA(B)|| < ||Rgll - |4ll, and {||L(B)||:||4]| < 1} is a bounded set of numbers for
each B in 2. From the uniform-boundedness principle (see Theorem 1.8.9),
{IIL4ll: |4]l < 1} is bounded. Similarly {||Rp||: [|B]| < 1} is bounded. It follows
that the mappings ¥: 4 - L, and #: B — Ry, which are linear isomorphisms
(note that L,(/)=A and Rg(l) = B) of A into A(A), are continuous
(bounded). The mapping . is an algebraic isomorphism, while # is an
algebraic anti-isomorphism. Now,

1Al = [ILADI < LAl - 1],
where, for the moment, we denote the norm on Z() by ||| |||. Thus
I HIAlL < LAl = LN < 1211 - 1Al

Hence £ () is anorm-closed subalgebra of () (see Corollary 1.5.10(i1)) and
& is an algebraic isomorphism and homeomorphism of 2 onto #(). As far
as the (combined) algebraical and topological properties of 2 and £ () are
concerned, they are indistinguishable when identified by the isomorphism .%.

The norm on () enjoys some special properties: |||i||| = 1, where : (= L;)
is the identity mapping on U; and [||ley||| < lllelll - Il¥|ll- (Note that these

173
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properties of the norm on Z() are valid for each normed space 2, from the
discussion preceding Theorem 1.5.6.) Thus the norm induced on £ () by that
on Z(A) has these special properties.

If we assume that the norm on  satisfies

(1 lABI| = [IL(B)Il < |4l - |IBIl,
then, since
|AB — A'B'| < |4l - |1B— Bl + 14 — Al - IB'll
<Al -11B = Bl + |14 — A'll(I1BI] + 1),

when ||B — B’|| < 1, multiplication is jointly continuous on . Thus multipli-
cation is jointly continuous on £ (?1), in any event, and since .# is an algebraic
isomorphism and homeomorphism, multiplication is jointly continuous on
A —independent of the norm assumption. (The uniform-boundedness prin-
ciple did the work in getting us joint from separate continuity of multipli-
cation.) From the joint continuity, it follows at once that the closure of a
subalgebra (ideal) is, again, a subalgebra (ideal).

If we assume, now, that the norm on U satisfies ||I|| =1 as well as
IABI| < [|4] - (|Bll, then from (1),

ILA(DIF = 1141l < LA < 114,

so that & is an isometry as well as an algebraic isomorphism. While the natural
structural assumption on 2 is that of continuity of multiplication (either joint
or separate), the preceding discussion assures us that nothing is lost if we make
the convenient normalization assumptions on the norm.

3.1.1. DeriniTioN.  An algebra U (over R or C) with unit / is said to be a
normed algebra when  is a normed space such that ||4B|| < ||| - ||B]| for all 4
and Bin ¥, and ||/|| = 1. If A is a Banach space relative to this norm,  is said
to be a Banach algebra. M

3.1.2. RemarRk. From the discussion preceding Definition 3.1.1, we see
that a normed algebra U is isometrically, algebraically isomorphic to a
subalgebra of Z(), and that () is a normed algebra. From Theorem 1.5.6,
if A is a Banach space, then () is a Banach space, hence a Banach algebra. If
A is a normed algebra, completing it to a Banach space 9 (see Theorem 1.5.1)
allows us to view each L, as a bounded linear transformation from 2 to ¥ and
extend it (uniquely) in a norm-preserving fashion (see Theorem 1.5.7) to an
operator L, on 9. The resulting mapping, #: 4 — L,, is then an isometric
algebraic isomorphism of 2 into the Banach algebra #(%). Moreover, &
extends to an isometric linear isomorphism of 9 onto the norm closure of
() in B(A). Thus U becomes a Banach algebra. We may say, briefly, that
the completion of a normed algebra is a Banach algebra. W
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3.1.3. ReMARK. The assumption that 2 has an identity is not an essential
restriction. If A does not have an identity, we can employ the standard process
for adjoining an identity to an algebra. We embed 2 in the algebra U, of pairs
(al, A), where a is a scalar and 4 €. The multiplication (al, A) - (b1, B) =
(abl,aB + bA + AB), addition (al, A) + (b1, B) = ((a + b)I, A + B), and mul-
tiplication by scalars c(al, A) = (cal, cA) impose the structure of an (asso-
ciative) algebra on 2, and (/, 0) is a unit for it. The algebra A appears as (that
is, ““is isomorphic to’") the subalgebra {(0, 4): 4 in A}. Defining ||(al, 4)|| to be
|a] + ||4]||, we map U isometrically onto a subalgebra of 2, by means of this
identification. It is easily checked that 9, is a normed algebra; and if A is a
Banach space, then 2, is a Banach algebra (with identity).

Despite the possibility of adjoining an identity to a Banach algebra, it is
sometimes artificial and inconvenient to do so (as in Subsection 3.2, The
Banach algebra L,(R) and Fourier analysis, concerned with certain Banach-
algebra generalizations to topological groups of the concept of group algebra).
In these cases, one develops the appropriate techniques for dealing with the
algebras without identity. For our purposes, this assumption will cause us no
difficulty and is a considerable convenience. B

3.1.4. ExaMpLE. An important class of Banach algebras (Section 3.4 is
devoted to a study of their properties) is made up of the algebras of (complex-
or real-valued) continuous functions on compact Hausdorftf spaces. The
algebraic operations are the usual pointwise addition and multiplication of
functions. If X is a compact Hausdorff space, we shall denote this algebra of
continuous functions (for the most part over C) by C(X). In Example 1.7.2, we
studied C(X) as a Banach space with its so-called “‘supremum norm”

I711 = sup{|f(x)]: xe X}.

Of course the identity of C(X) is the constant function 1, and ||1|| = 1. We note,
too, that

I/ gll = sup{|f(x)] - lg(x)|: x€ X}
< sup{|f(x)|: xe X} - sup{lg(x)l: xe X} = ||f1| - llgll-
From this and the fact that C(X), in the given norm, is a Banach space, we see
that C(X) is a Banach algebra. While we could have used the fact that each fin
C(X) attains its norm at some point of X (that is, | f(x)| = ||f|| for some x, in
X) in our norm considerations, by avoiding its use, the discussion applies

without change with the assumption that X is compact omitted and C(X)
denoting the bounded continuous functions on X. B

3.1.5. LemmA. If A is an element of the Banach algebra W and ||A|| < 1,
then Yi_, A* (where A° =1) has a limit B, as n tends to oo, in W and
BI—A)y=(—-A)B=1
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Proof. Noting that, if n < m,

n m m m
1Y A=Y Al=1 Y 4N< X 4l
k=0 k=0 k=n+1 k=n+1
we conclude, from the convergence of the geometric series, Y2, [|4||* (with
|4l < 1), and the fact that 2 iscomplete, that ¥} _ j 4* tends to a limit Bin A as
n — co. Since

< Y A">(I— A=~ A)( y A") = — (4",
k=0 k=0

and |41 < ||4]|"* ! = 0, we see that B(J — A) = (I — A)B = I, by continuity
of multiplication in 2. M

With the notation of Lemma 3.1.5, we write B =Y < | 4" and say that Bis
an inverse (two-sided) to I/ — A (denoted by (/ — 4)~1).
Numerous consequences result from the small observation of Lemma 3.1.5.

3.1.6. ProrosiTiON. If W is a Banach algebra, the set A" of invertible
elements is an open subset of W, and the operation inv of inversion on N is
continuous.

Proof. If Ae.#; then L, left multiplication by 4 on ¥, is a continuous
mapping of A onto A with the continuous inverse L,-:. Since B~'47! is an
inverse to AB, if A and B are in A4} L, maps A4 onto .4 and I onto 4. From
Lemma 3.1.5, the open ball of radius 1 with center /is a subset of A7 Thus, the
homeomorphism L, maps this ball onto an open set in 2 containing 4 and
contained in .47 Hence 4" is open.

If |I — B|| < 1, writing A for = B,Y> ;A*=(I - A)~'=B""; and

@ IB=' ="M= 1B~ = Il < X NAIF = 11411 — 4]~
k=1

In particular, if ||I — B|| (= ||4])) < & <3, then ||B™! — I|| < 2||4|| < 2¢. Thus
inv is continuous at 7 on 4. For each 4 in A}

inv= R, -10invo L -,

and L,-, maps 4 onto I, inv maps I onto I, R,-, maps I onto 4~!, each
mapping continuous at the specified element. Thus inv is continuous at 4 and
henceon A M

3.1.7. REMARk. The elements that are not invertible in 9 are said to be
singular. From Proposition 3.1.6, the singular elements form a closed subset of
A. We refer to the invertible elements as regular and non-singular elements as
well.
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After showing that inv is continuous at I with the series estimate (2), the
proof that inv is continuous on .4 is given in a ‘‘structural’’ manner. This
structural argument points the way to an estimate for ||4~!' — 4| (in terms
of ||4 — Aol]), which establishes, again, the continuity of inv. For this, note that

L4 (A = Ao)ll = lldg 14 = Il < 145 Ml - 114 ~ Aoll,
so that, from (2), when |4, || - |4 — 4oll < 1,
147 Ao = Il < 1A Ml - 14 — Aoli(1 — ll4g Ml - 14 — Aol ™15
and
A3) A7 = Ag Ml = lIR; (A7 Ao — DI < |47 Ao — 1| - || 4 1]
< 1 4g 1PN — Aoll(h — (145 M| - |4 — Aol 1.

In particular, if ||4 — 4ol < (2|45 ']l)~ !, then
(4) A7 = Ag < 2040 P4 — Aoll. W

Making use of the fact that elements near the identity in a Banach algebra

are invertible, the possibility of norm-dense, proper ideals and its associated
difficulties can be eliminated.

3.1.8. ProrosiTiON. If £ isa proper (left or right) ideal in a Banach algebra
U, then the norm closure ¥ of # is a proper (left or right) ideal in . If ¥ is a
maximal (left, right, or two-sided) ideal in U, then ¥ is norm closed. If ¥ is a
proper closed two-sided ideal in N, then the quotient algebra N/.#, provided with
the quotient Banach space structure, is a Banach algebra.

Proof. 1If Ie g, then there is an 4 in .# such that ||I — A4|| < 1. From
Lemma 3.1.5, A (= I — (I — A)) is invertible. Hence A" '4 (= A4 ) isin %
Butthen B - I(or I - B)isin . for all Bin 2, contradicting the assumption that
# is proper. Thus I'¢ %, and .# is a proper ideal. If .# is maximal, then # = .#;
so that .# is closed.

It follows from Theorem 1.5.3 that /.# is a Banach space in its quotient
norm when .# is a closed ideal in 2. If .# is a (proper) closed two-sided ideal in
A, then A/.# is a Banach space and (with its natural structure as a quotient
algebra) an algebra with identity I + .. We have noted that

inf{||l — A4||: AeF} =1
(and, thus, || + #|| = 1), since .# is proper. Since
4+ Z| - ||B+ #|| =inf{||[4 — C,||: CyeF} - inf{||B — C,||: C,€F}
= inf{|l4 — Cy|| - [IB — C,]|: Cy, C1e 5}
inf{||JAB — (C;B + AC, — C,C)y)||: C,,C,eF}
inf{||AB — C||: Ce S} = (4 + £}B + H)|,
A/# is a Banach algebra in its quotient norm. H

2
2
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3.2. The spectrum

Our Banach algebras are intended to provide the general framework for the
study of algebras of (linear) operators on a Hilbert space. In the case of a finite-
dimensional space (and when they are present in the infinite-dimensional case),
the eigenvectors and their associated eigenvalues play an important role in the
analysis of the individual operator. The concept of spectrum, which we study in
this section, is devised as the replacement, in the general setting of Banach
algebras, for the set of eigenvalues in the finite-dimensional case. Henceforth
our Banach algebras are assumed to be complex.

3.2.1. DeriniTioN.  If 4 isanelement of the Banach algebra 2, we say that
a complex number A is a spectral value for A (relative to A) when 4 — 1l does
not have a two-sided inverse in 2. The set of spectral values of 4 is called the
spectrum of A and is denoted by spu(4). B

When there is no danger of confusion, we write sp(4) in place of spy(A4).

Before beginning the general study of the spectrum, let us note that it serves
the purpose for which it is designed. If s# is a finite-dimensional (Banach)
space and A is a linear transformation of # into itself, then 4 — AI will fail to
have an inverse (in (), the family of all linear transformations of 3# into
itself) if and only if it annihilates some (unit) vector x, in J# — that is, if and
only if 4 hassome unit eigenvector x, corresponding to the eigenvalue 4. At the
same time, let us note that while an eigenvalue is always in the spectrum, the
reverse need not, in general, be the case.

3.2.2. ExamprLE. Let # be the Hilbert space of complex-valued square-
integrable functions on [0, 1] relative to Lebesgue measure, and let 4 be
multiplication by the identity transform on [0, 1] (so that (4f)(x) = xf(x)).
Then A4 has no eigenvalues; for if 4f' = Af, f must be 0 at all points of [0, 1]
other than A. Hence fis 0 almost everywhere, and f'is the element 0 in J#.

Nonetheless, spg)(4) = [0, 1]. To see this, let y, be the characteristic
function of [ — 1/2n, A + 1/2n], and let x, be n'/%y,. The obvious modifi-
cationis made when Ais 0 or 1; and, for 4in (0, 1), the sequence {x,} has as first
element Xx,,, where n, is so large that [A — 1/2n,4 + 1/2n] = [0, 1], when
ny < n. Each x, is a unit vector, and [|(4 — AD)x,|| = ﬁ/6n (so that {x,} is a
sequence of “approximate” eigenvectors for 4 corresponding to the eigenvalue
A). If Bis a left inverse to 4 — A, then

—

B|/3
1= lx,|| = B4 — ADx,|| < [|B| - (A4 — AD)x,|| = %;

so that 2n\/§ < ||B| for all positive integral n. Thus B is not bounded, and
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A — AIdoes not have a two-sided inverse in Z(#). (In essence thisis part of the
argument of Corollary 1.5.10, which could be applied here.) It follows that
[0, 1] < spaeXA4)-

If 4¢[0, 17, then f, defined as (x — )~ ! for x in [0, 1], is continuous in
[0, 1]. Multiplication by fon J# is a bounded operator, which is the two-sided
inverse (in #(#)) to A — Al. Thus A¢ spgyx(A4), and spg»(4) =[0,1]. B

We shall see presently (see Lemma 3.2.13) that for normal operators (see
Section 2.4) the situation of Example 3.2.2 holds generally: spectral values
correspond to (sequences of ) approximate unit eigenvectors.

3.2.3. THEOREM. If A is an element of the Banach algebra U then spy(A) is
a non-empty closed subset of the closed disk in C with center 0 and radius ||A||.

Proof. 1If /. ¢spy(A), then, by Proposition 3.1.6, 4 — A'I'is invertible for all
/’in a small open disk with center 4. Let p be a continuous linear functional on
. Since

p((A = D)1~ p((A~ D)"Y p((X — A — XD~ (A4~ A7)
A - - A -

=p((4 = XD)" (A —iD™h)
—p((4 = AD™?)

as ' — 4, by continuity of inversion (see Proposition 3.1.6) on the set of
invertible elements of 9, and the continuity of p, the function
A= p((A — A~ 1) is holomorphic on C\spy(4). Note, too, that

p(A—AD")=4"1p(A7'A-D"1) -0
as [A| - co; for A"1A4 — I is invertible when |(4]| < |4, and
(A A-D"'s ]

as [A| —» 0. We see, at the same time, that A(A ™14 — I) (= 4 — Al)isinvertible
when ||4|| < |4|; so that spy(A) is a subset of the closed disk in C with center 0
and radius ||4||. If spu(A4) were empty, the function 1 — p((4 — AI)~!) would
be an entire function that vanishes at cc. By Liouville’s theorem, this function
would vanish everywhere on C. In particular, we would have p(4~ ') = 0, for
each continuous linear functional p on 2. From the Hahn-Banach theorem
(see Corollary 1.2.11), it would follow that 4! = 0, a contradiction. Thus
spa(A) is not empty.

We observed, during this argument, that C \ spy(4) is open, so that spy(A4) is
a non-empty closed subset of the disk C with center 0 and radius [[4]]. B

Despite the fact that the spectrum of 4 is not empty, it may consist of just 0.
If {e,, e,} is a basis for two-dimensional Hilbert space and 4 is the operator on



180 3. BANACH ALGEBRAS

this space that maps e, to e, and e, to 0, then spg4(A) consists of just 0. Note,
too, from this example, that 4 may be non-zero and have just 0 in its spectrum.

If each element of A other than 0 has an inverse in U (so that A is a division
algebra), then, if Lespy(A), A — Al must be 0 (being a singular element of ).
Thus, in this case, U consists of just scalar multiples of I. Since  is, then,
isomorphic to C, we say, loosely, that 2 is C.

3.2.4. CoroLLARY. A (complex) Banach division algebra (or field) is C.

Wenoted, in Proposition 3.1.8, that a maximal ideal .# in a Banach algebra
A is closed. Since .# is maximal, if A is commutative, A/« is a field—and a
Banach algebra. From the preceding corollary, 2/.# is C, and the quotient
mapping is a continuous multiplicative linear functional on 2 (that is, a
homomorphism of 2 onto C). Conversely, if p is a homomorphism of A onto
C, its kernel ./ is a maximal two-sided ideal in U (since /.4 is the field C).
Hence .# isclosed and, from Corollary 1.2.5, p is continuous. In general, if 2 is
not commutative and .# is a maximal two-sided ideal in 2, we cannot conclude
that A/# is a field; so that no multiplicative linear functional need be
associated with ..

3.2.5. CoroLLARY. If U is a commutative (complex) Banach algebra and
M is a maximal two-sided ideal in N, then W/ M is C and the quotient mapping
from Wio W/ M is a (continuous) multiplicative linear functional on . If Wis an
arbitrary (complex) Banach algebra and p is a multiplicative linear functional on
U, then p is continuous with kernel # a maximal two-sided ideal in U such that
W/ A is C.

We saw that spy(A4) is contained in the disk in C with center 0 and radius
[|4]]. The radius of the ““smallest” disk containing the spectrum will appear in
our considerations.

3.2.6. DerFINITION. The spectral radius ry(A) of an element 4 of a Banach
algebra U is

sup{|A|: Lespa(4)}. B

3.2.7. REMARK. When no confusion can arise, we write r(4) in place of
ra(A). As noted in Theorem 3.2.3, r(4) < ||4]]. It is apparent from the
definition that r(4) is the radius_of the smallest disk in C with center 0
containing sp(4). B

3.2.8. ProposiTiON. If A and B are elements of a Banach algebra U, then
sp(4AB) U {0} = sp(BA) U {0}, and r(AB) = r(BA).
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Proof. 1If 1 # 0and Lesp(4B),then AB — /land, hence, (1~ 4)B — I are
not invertible. On the other hand, if i¢sp(BA), then BA — Al and, hence,
B(/~'A) — Iareinvertible. Our task, then, is to show that I — 4B s invertible
in A if and only if / — BA is invertible in U, for arbitrary elements 4 and B of
A

Arguing formally, for the moment,

(I-AB)™' = Z(AB)"=1+AB+ABAB+
n=0
and
B(I— AB)"'A=BA + BABA + BABABA + - = (I — BA)" ' — I

Thus if I — 4B has an inverse, we may hope that B(/ — AB)"'A4 + I is an
inverse to I — BA. Multiplying, we have

(I - BA)B(I— AB)Y 4 + 1]

=B(I—-AB)y"'A+1— BAB(I — AB)"'4 — BA

=B[(I—-—AB)" ' —AB(I — AB)"']A+I1—BA =1,
and similarly for right multiplication by / — BA. B

3.2.9. Remark. It is apparent that sp(4 + I) = {1 + a:aesp(4)}. We

shall prove the more general result concerning the relation between sp(p(4))
and sp(A), for an arbitrary polynomial p, in the proposition that follows. (We
prove the full spectral mapping theorem (Theorem 3.3.6) in Section 3.3.)
Combining the simple initial observation with the preceding proposition yields
the fact that the unit element / of a Banach algebra U is not the commutator

AB — BA of two elements A and B of . (If I = AB — BA, then sp(4B) =
1 + sp(BA), which is not consistent with

sp(4B) U {0} = sp(BA) U {0}.)
This fact is familiar in quantum theory where it takes the form

the commutation relations are not representable in terms
of bounded operators.

However, there are unbounded operators whose commutator is [ restricted
to a dense linear manifold. (See Exercise 2.8.49.) M

3.2.10. ProvrosITION. If A is an element of the Banach algebra M and p is a
polynomial in a single variable, then

sp(p(4)) = {p(2): Aesp(4)} (= p(sp(4)))-
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If A is invertible, then
sp(A™") = {A™ "1 Aesp(4)} (= (sp(4))™").
If A and B are elements of the commutative Banach algebra U, then
sp(4B) < sp(A)sp(B),  sp(4 + B) < sp(4) + sp(B),
r(AB) < r(A)r(B), r(A + B) < r(A) + r(B).

Proof. If Aesp(A), then 4 — Al does not have a two-sided inverse in 2.
Thus one of (4 — ANA or (4 — Al) is a proper ideal # in A. If
p(x) =a,x"+ - + ay, then

p(A) — p(W)I = a,(A" — A"I) + -+ + a,(4 — Al).
Noting that
A= = (A = AD(A 424577 4+ 20D
= (A AT 4 A4 - D),

we conclude that p(A4) — p(A)Ie .4, so that p(4) — p(A)I does not have a two-
sided inverse in U, and p(A) € sp( p(A)).
If yesp(p(4)) and 4, ..., 4, are the n roots of p(4) — 7, then

pA) =y I =(A4—=A1) (4 - D),

so that at least one of 4 — A4,1,..., 4 — A,Iis not invertible. If 4 — ;] is not
invertible, then 2;e sp(4) and y = p(4;) € p(sp(4)). Thus sp(p(A4)) = p(sp(4)).

Suppose A is invertible in A (equivalently, 0¢spy(A4)). If 1 # 0, then
A" — A7 = (Al — A)(A4)™ !, so that A~ 'esp(4~ ') if and only if e sp(A4).
Thus sp(4~1) = sp(4)~*.

Suppose, now, that 4 and B are elements of the commutative Banach
algebra . If Aesp(4B), then AB — Al lies in a proper ideal (necessarily, two-
sided) # of A. Since A has an identity, Zorn’s lemma, applied to the set of
proper ideals in 2 containing .#, shows that .# is contained in a maximal ideal
M of A. From Corollary 3.2.5, # is the kernel of a multiplicative linear
functional p on A. Thus A = p(4B) = p(A)p(B). Since A — p(4)] and
B — p(B)I are in the kernel # of p, p(A)esp(4) and p(B)esp(B). Thus
Aesp(4)sp(B) and sp(AB) < sp(A4)sp(B).

Again, if Aesp(4 + B), there is a multiplicative linear functional p on our
commutative 2 such that p(4 + B) = 1. As p(A4) esp(4), p(B)esp(B), and
A= p(A) + p(B); Lesp(A) + sp(B), and sp(4 + B) < sp(4) + sp(B). The in-
equalities for the spectral radius are immediate consequences of the cor-
responding relations for the spectfa. MW

3.2.11. REMARK. We make special note of the fact established at the end
of the proof of Proposition 3.2.10. If 4 is an element of a commutative Banach
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algebra 2 and 4 € spy(A4), then there is a multiplicative linear functional p on A
such that p(4) = A. Conversely, if p is a (non-zero) multiplicative linear
functional on A (not necessarily commutative), then p(A4) e spy(A4) for each 4
in 2. For this last assertion, note that 4 — p(A4)/is in the kernel of p, a proper
two-sided ideal in A. W

The examples that follow illustrate the concepts of spectrum and spectral
radius in the Banach algebra #(#') of bounded operators on the Hilbert
space .

3.2.12. ExampLe. Let {e,} be an orthonormal basis for a separable
Hilbert space s#. Recalling Example 2.4.10, we have a bounded operator 4 on
A such that Ade, = ,e,, where {4,} is an arbitrary bounded (denumerable)
subset of C. We saw that ||4|| = sup{|/,|}, that 4 is normal, in general, and self-
adjoint exactly when all 2, are real, unitary when all J, have modulus 1, and
positive when all /, are real and non-negative. Since each 4, is an eigenvalue
(with eigenvector e,), {4,} S SPa)(A4). From Theorem 3.2.3, sp(A4) is closed,
sothat {4,} 7, theclosure of { 4,}, is contained in sp(4). If 1 is not in this closure,
theninf{|A — A,|} > 0,and {(4, — A)~ !} is a bounded subset of C. Thus there is
a bounded operator B on . such that Be, = (A, — A) ™ le,. Since (4 — Al)e, =
(A, — A)e,, wehave B(A — Al)e, = e,and (4 — AI)Be, = e, for alln. Thus Bisa
two-sided inverse in Z(#') to A and A¢ spg4(A4). Hence {1,} = = spgx(4).

If {4,} is an enumeration of the rationals in [0, 1], then sp(4) = [0, 1]. In
Example 3.2.2 we considered an operator with spectrum [0,1] but no
eigenvectors. Although the present example and Example 3.2.2 exhibit self-
adjoint operators with the same spectrum, and, in a sense still to be made
precise, both of these operators have spectra without “multiplicity”; these
operators are quite different structurally. One has an orthonormal basis of
eigenvectors, while the other has not a single eigenvector. In the finite-
dimensional case, self-adjoint operators having the same spectrum, each
without multiplicity, have identical structure (are “unitarily equivalent”). MW

With the aid of an extension of the “approximate eigenvector” technique
encountered in Example 3.2.2, we shall be able to extend to the spectra of self-
adjoint, positive, and unitary operators, the information we have about the
eigenvalues for the corresponding operators with an orthonormal basis of
eigenvectors.

3.2.13. LeMMmA. If 5 is a Hilbert space and A is a normal operator in
B(H), then L. sp(A) if and only if there is a sequence {x,} of unit vectors in #
such that ||(A — ADx,|| - 0 as n — co.

Proof. Since A4 is normal, A — Al is a normal operator in £( ). From
Lemma 2.4.8, 4 — Al fails to have a bounded two-sided inverse (that is,
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A esp(4)) if and only if
inf{||(4 — ADx||:|Ix]| = 1, xes#'} =0.

Thus /esp(A) if and only if there is a sequence {x,} of unit vectors in # such
that (4 — ADx,|| >0asn—o0. A

3.2.14. TueorREM. If X is a Hilbert space and Te B(K), then

(1) sp(T) consists of real numbers if T is self-adjoint,
(i) sp(T) consists of non-negative real numbers if T is a positive operator;
(i) sp(T) < {0,1} if T is a projection;
(iv) sp(T) consists of complex numbers of modulus 1 if T is a unitary
operator;
(V) sp(T*) consists of the complex conjugates of numbers in sp(T).

Proof. Suppose Tis self-adjoint and A e sp(T). From Lemma 3.2.13, there
is a sequence of unit vectors x, such that ||(T — Al)x,|| = 0 as n — co. Then
(T — ADx,,x,> = 0asn— co. Since (Ax,, x,» = 4, {Tx,, x,» tends to L. But
{Tx,, x,» is real. Thus 1 is real, and (i) follows.

In the same way, if T> 0, then (Tx,,x,> =0 and 1> 0. Thus (ii) is
established. If T is a projection, then T? = T, so that

T(T — AD)x, = (1 — 2)Tx, — 0.

Thus (1 — 2)Ax, — 0. But ||x,|| = 1. Hence (1 — 2)A =0, and A is either O or 1,
so that (iii) is established.

If T is unitary, then 1 = (x,, x,> = {Tx,, Tx,>. Since {ix,, Ax,> = |12,
and (Tx,, Tx,> — {(Ax,,2x,> =0 as n — oo, 1 = |A]? and (iv) follows.

From the properties of the adjoint operation on () (see Theorem 2.4.2),
B* is a bounded inverse to T* — 77 if and only if B is a bounded inverse to
T — 21, and (v) follows. W

With the added assumption that T is normal, the converses to (i)-(iv) of
Theorem 3.2.14 are valid. It is more convenient to establish these after the
spectral theory of normal operators has been developed (see Theorem 4.4.5).

3.2.15. ProposiTION. If # is a Hilbert space and A is a self-adjoint
operator in B(H'), then at least one of ||A]|| or — ||A|| is in sp(A).

Proof. By working with ||4]|"'4 in place of 4, we may assume that
|[4]] = 1. In this case, there is a sequence {x,} of unit vectors such that
l|Ax,)| = 1 as n - co. Thus

I = AM)xalI* = lIxall* + 147x,]* — 2ReAx,, X,) < 2 = 2f|dx,[)* -0

as n— co. From Lemma 3.2.13, l1esp(4?); and by Proposition 3.2.10,
1e(sp(A4))®. Thus 1 or — 1 is in sp(4). W



32. THE SPECTRUM 185

It follows from the preceding proposition that r(4) = |(4|| when 4 is self-
adjoint. More generally, r(T) = ||T|| when T'is normal. These facts will follow
directly from a general formula for the spectral radius that will be developed in
Section 3.3 (see Theorem 3.3.3 and Proposition 4.1.1(1)).

3.2.16. ExampLE. There is no difficulty extending the construction used
in Example 3.2.2 to identify the spectrum of more general “multiplication
operators” (see Example 2.4.11). If (X, p) is a o-finite measure space and fis an
essentially bounded measurable function on X, then M (g) = fg defines a
bounded operator M, on L,(X, ). The essential range sp(f) of f'is the set of
complex numbers A such that u(f~'(0)) > 0 for each open subset ¢ of C
containing A.

Suppose Aesp(f). For each positive integer », let y, be the characteristic
function of a measurable subset of f~!(¢,) of finite positive u-measure a,,
where @, is the open disk in C with center 1 and radius n~!. Then {x,} is a
sequence of unit vectors, where x, = a; /2y, and

(M — 2D)x,||* = J 1f(p) — A%a, ' y.(p) du(p) < Lz
So1on h
Thus ||(M, — Al)x,|| - 0 as n - oo, and Aesp(M/).

Conversely, if 4 ¢sp(f) there is a disk @, of radius n~! with center A such
that u(f~'(0,)) = 0. Then 1/(f— 1) is a measurable function g with an
essential bound n, and M, is a two-sided bounded inverse to M, — AI. Thus
A¢sp(M ). It follows that sp(M ) = sp(f) (and that r(M,) = || fll. = IM]).
u

3.2.17. ExampLE. Let s# be a separable Hilbert space and {e,:n =0,
+ 1, + 2,...} an orthonormal basis for #. The transformation U on # such
that Ue, = e, is a unitary operator. From Theorem 3.2.14, sp(U) is a subset
of C,, the complex numbers of modulus 1. If e C,, then, in a formal sense,
Y _ A "e,is an “eigenvector” for U corresponding to the “‘eigenvalue” /.
Although this sumis not a “genuine” element of 57, its partial sums, multiplied
by suitable normalizing factors, provide us with a sequence of approximating
eigenvectors. Specifically, let x, be 2n + 1)"'2%"__ i ¥e,. Then ||x,|| =1
and

(U = iDxll = Q2n+ D7V Y A e — 3 7% Vel

k=-—-n k=-~n
=@n+ D)7 ey — A" el
=2"2Q2n+1)"V2 50
as n — o0. Thus Aesp(U), and sp(U) = C;.
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Let s#' be L,(C,) relative to Lebesgue measure on C, normalized so that
the total measure on C, is 1. Then {z":n =0, + 1,...} (where z denotes the
identity transform on C,) is an orthonormal basis for s’ [the Weierstrass
approximation theorem (see Remark 3.4.15) is used to show that this system
generates #'].

There is a unitary transformation V of #' onto s# such that V(z") = ¢,.
The multiplication operator M, on # ' has spectrum C,, from Example 3.2.16.
Note that VM,V ™! = U. From this “unitary equivalence” of the “two-sided
shift” operator with “multiplication by z,”” we can deduce the spectral
properties of one from those of the other. MW

3.2.18. ExampLE. With # a separable Hilbert space and {e,:n = 0,1,
2,...} an orthonormal basis for 5, let W be the bounded operator on # such
that We, = e, . In this case, W, the “‘one-sided shift” operator, is not a
unitary operator on J, since e, is not in its range (although W is a unitary
transformation of # onto the range of W). Note that if || =1, then
a,Yr_,+ *e, (= x,) is a unit vector in J#, where a, = (n + 1)~ "2, and

n
(W — ADx,ll = a,ll 3 A7 ¥ ey — 3 A% Vel

k=0 k=0

= @l ", 1 — egll = ap/2 -0

as n — oo, since a, » 0. Thus Aesp(W). If |A] < 1, then W*x = Ax, where
x=Y* ,Me, for (W*x,e) = (x,We) =7 *"'. Thus Llesp(W*) and
Zesp(W) (see Theorem 3.2.14(v)). Since ||W|| = 1, sp(W) is contained in the
closed disk of radius 1 with center 0 in C (see Theorem 3.2.3). Thus sp(W) is this
closed disk. W

3.2.19. ExampLE. Returningto # and U of Example 3.2.17, we let 2 be
the Banach subalgebra of Z(#) consisting of the norm closure of the algebra
of polynomials of a single variable in U (and I). If U has an inverse in 21, then
that inverse must be U*. Each polynomial in U, and hence each element of 2,
however, maps the closed subspace generated by {e,:n = 1,2,...} into itself,
whereas U* does not map this space into itself (U*e, = ¢;). Thus U*¢ A and U
has no inverse in 2. Stated in terms of spectrum, we have 0espy(U) but
0¢ Span (V).

Of course, as we pass from a Banach algebra to a Banach subalgebra, an
element of the subalgebra may “‘lose its inverse.” Thus, in theory, the spectrum
may ‘“‘grow” on passage to a subalgebra. The present example indicates that
this increase of spectrum can octur in practice. We shall note (Proposition
4.1.5) that no change dccurs in the spectrum when passing from a C*-algebra
to a C*-subalgebra. This fact plays a crucial role in the application of spectral
theory to C*-algebras. M
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3.2.20. PropPOSITION. The non-zero multiplicative linear functionals on a
Banach algebra U form a weak* compact subset of the unit ball of W*.

Proof. From Remark 3.2.11, if p is a non-zero multiplicative linear
functional on U, then p(A4)e spu(A4), for each 4 in A. Thus, from Theorem
3.2.3, |p(A4)] < ||4]], and p lies in the unit ball of A*.

The set of elements p in A* such that p(4B) — p(4)p(B) = 0 is weak*
closed. Theintersection of these sets (as A and Brange through ) is the weak*
closed set of multiplicative linear functionals in 2*. The further condition,
p(I) = 1, singles out the weak* closed subset consisting of non-zero multipli-
cative linear functionals on U —a subset of the unit ball of A*. From Theorem
1.6.5(i), the unit ball of A* is weak* compact, as is this closed subset. W

The Banach algebra L(R) and Fourier analysis. In this subsection, we
study the maximal ideals of the special Banach algebra L,(R) provided with
convolution multiplication. By letting L;(R) act on L,(R) as a convolution—-
multiplication algebra, we define an algebra «7,(R) of operators acting on the
Hilbert space L,(R). We adjoin I to /,(R) and take the (operator) norm
closure to obtain another algebra Uy(R) of operators on L,(R). The algebra
Ay(R) is an example of a class of operator algebras, abelian C*-algebras,
whose general properties will be studied intensively in Chapter 4. For the
present, we identify the maximal ideals of ,(R) and use this information to
develop some of the basic theory of Fourier transforms. The Banach algebra
L,(R) and its ideal structure is the general framework for this theory. We shall
have occasion to use Fourier transforms in Sections 9.2, 13.2, and 13.3. The
results we obtain here on the ideal theory of L,(R) will play an important role
in the analysis of the (continuous) homomorphisms of the additive group R
into the group of unitary operators on a Hilbert space (see Stone’s theorem
(5.6.36)).

The various algebras we define may be viewed as generalizations of the
complex group algebra of a finite group to the case of the group R. The
methods we describe apply to more general (locally compact) topological
groups and can be extended without great difficulty to such abelian groups.

3.2.21. DeFiNiTioN.  With f and g measurable functions on R, the
convolution of fand g is the function f* g whose domain consists of those real
numbers s for which the integral { f(£)g(s — 1) dt converges and whose value at
s is this integral. W

Since Lebesgue measure on R is invariant under the transformations
t— —tand t—t + s, for each real s, we have, for each # in L,(R),

J h(s—t)dtzf h(s+t)dz=J h(t)dt.
R R R
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3.2.22. ProrosiTiON. (1) If fand g are measurable functions on R, then
fxg=gxf.
(i) If fe Ly(R) and ge L,(R) (where 1 < p), then fx ge L,(R) and

) 1f*gllp < 11l - 1lgll,p-

@iy If feLy(R), g,he L,(R), and aeC, then both fx(a-g + h) and
a-fxg+ fxharein L,(R) and

fx@a-g+hy=a fxg+fxh

@iv) Iff,ge Li(R) and he L,(R), then both (f*g)*h and f+(g*h) are in
L,(R) and

(fxg)xh = fx(g*h)

(v) Provided with the mappings (f,g) —fxg and f— || f|l;, L\(R) is a
commutative Banach algebra.

Proof. (i)

(f*g)s) = _[ fDg(s — tydt = J S + 0g(— nydt
R R

= J g(t) f(s — tydt = (g *f)(s).

(i) Ifhy(f) = g(s — ryand u(S) = [s|f(1)| dt for each measurable subset S
of R, then h;e L,(R) and p is a finite measure on R. Applying the Holder
inequality [R: p. 62, Theorem 3.5] to ki, and the constant function 1 relative to
u, we have

1/p
Jlg(s — 0l 1du() < (ths(t)l"lf(t)l dz) It~ re

and

(jlg(s =0l 1) dt) <At jlg(s — niPIA)at.

Now (s, 1) = [g(s — D)IPf(¢) is in L (R x R) since

J( Ilg(s — DIPLA) dS)git = Jlf(f)l ( jlg(s -l dS) dt

= liqlli} jlf(t)l de=|flls - llgll3-
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Thus, using Fubini’s theorem,

Jl(f* g ds = j jf(f)g(s — Ddt

<[fi J(JIQ(S = OIPL /0 dt>ds

= /15! J(jlg(s — DIPLAD) dS> dt = |l £117 - llgll,

p
ds

from which (1) follows.
(i) From (ii), f+(a-g + h)anda - f*g + f+ harein L,(R). In particular

jﬂt)[a ~g(s — ) + h(s — £)] dt
and
a Jf(t)g(s — Ndt + jf(t)h(s — Ndt

converge for almost all s, and (iii) follows.
(iv) From (ii), (f*g)*h and fx(g=h) are in L,(R). Now

(f*(g=m)s) = Jf () ( Jg(r)h(s —1=7) dr> dt
and
((fxg)xh)(s) = J(jf(t)g(r —1) dt) h(s — r)dr.
Since | /| and |g| are in L,(R), and |4 € L,(R); when £, g, and h are replaced by

their respective absolute values, the last two integrals converge for almost all s.
Fubini’s theorem applies, and, for almost every s,

((f*g)*h)s) = Jf(t)(Jg(r —Dh(s —r) dr) dr.
Since
Jg(r — Dh(s — rydr = {g(r)h(s —t—r)dr,
(fxg)xh = fx(g*h).

(v) From (i)—(iv), the L,-norm and convolution multiplication provide
L, (R) with the structure of a commutative Banach algebra (without unit). W
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If we define L/(g) to be f+ g, where fe L;(R) and g e L,(R), (ii) and (iii) of
Proposition 3.2.22 tell us that L, is a bounded linear operator on L,(R) and
IL Al <|Iflli. From (iv) of that proposition (and right-distributivity of
convolution multiplication — proved as in (iii)), we have that the mapping
f— L,isahomomorphism of the algebra L,(R) into (L,(R)). In particular, if
p = 2, the image ./ (R) of L,(R) under this homomorphism is an algebra of
operators on the Hilbert space L,(R). We denote by 2, (R) the norm closure of
o (R).

3.2.23. ProposITION. For each fin Li(R), s < ||L; — I||, so that I¢ A, (R).
The linear space y(R) generated by I and A, (R) is a norm-closed commutative
algebra of operators on Ly(R) and U, (R) is a (proper) maximal ideal in Wo(R).

Proof. Letuv,(f) be (n/2)"/?for tin[ —n~ ', n~']and 0 for other values of .
If fin Ly(R) is such that ||L, — I|| <}, then

2
ds

1
Z > ”f* Up — U,,”% = J J‘f(s - t)vn(t)dt - l),,(S)

J‘l/n J‘l/n n 1/2 n 1/2
> ) fs—nydi— (—)
—1/n —1/n(2> 2
nJ‘l/n
B E —1/n

for all positive integers n. Since fe L;(R), we can choose n so large that
2 1 f(0ldt <3 Withsin[—n"', n™1],

T 1/n
‘J f(s — tdt

—1/n

2

ds

1/n 2
fls —tydt — 1| ds,

—1/n

2/n 1
< j [f(nldr < X

—2/n

so that } <[ f(s — f)dr - 1|* and

1 nJ‘l/n J‘l/n
P fis — tydt — 1
4 2 —1/n —1/n

It follows, from this contradiction, that 3 < ||L, — I|| for each fin L,(R),
so that I'¢ A, (R).

From Corollary 1.5.4, %,(R) is norm closed. It is a commutative algebra
and A (R) is a (proper) maximal ideal in it. W

2 1
ds < —.
4

We denote by p,, the multiplicative linear functional on y(R) that assigns
1 to I'and 0 to each element of A (R). There are other non-zero multiplicative
linear functionals on (equivalently, by Corollary 3.2.5, proper maximal ideals
in) Ay(R). Our present goal is to describe each of these and establish a
homeomorphism between the set of these functionals with the weak* topology
(see the discussion preceding Proposition 1.3.5) and R.
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Although L,(R) has no unit, the sequence {u,}, appearing in the lemma that
follows, functions as a unit for L;(R) in many circumstances. The sequence
{u,} is referred to as an approximate identity for L,(R). We shall encounter
“approximate identities” again when we study the ideal theory of C*-algebras
(notably Lemma 4.2.11 and Proposition 4.2.12).

3.2.24. LemmA.  If {u,} is a sequence of positive functions u, in L{(R) such
that \|lu,ly = 1 and u,(f) = 0 when t¢[— n™ ', n™ '], then || f+u, — f||, - 0 for
each fin L,(R).

Proof. Assume, first, that fis continuous on R and vanishes outside the
finite interval [a, b]. Choose ¢ positive. There is a positive integer m such that
|f(s) — f(H)l <ewhen |t —s| <m™ L. If m < n,

(/% un)(s) = f(s)] = l Jf (Dua(s — ) dt — Jf ($)u,(1) dt

< Jlf(t) — f9)luls — ndt <.

In addition f+u, — f vanishes outside of {[a — n™!, b + n~!]. Hence
/5 un —fll, < eb—a+ 17,
and || f*u, — f|l, > 0 as n - oo. For an arbitrary fin L,(R), we can choose
{fn} so that || f— f,ll, = O, || full, < | fll,, where each f,, is continuous and
vanishes outside a finite interval. Then
Hf* Up “f“p < Hf* Uy _fm*un“p + ||fm*un _mep + ”fm _f“p
”unnl : ”f—fm”p + Hfm*un _fm”p + ”fm _f”p

2”f_fm“p + Hfm*un _mep‘

Choosing m large enough, for all n, we have

Hf* U, _pr < 28/3 + ”fm*un ‘fm“p'

From what we have proved, with » large enough, || f,, *u, — f.ll, < &/3; and
”f*un _f“p<8 |

If fe L(R) and {u,} is as described in Lemma 3.2.24, then ||L ;u, — f]|, — 0.
Thus L,u, = 0 for all nif and only if f = 0. Since u, can be chosen in L (R) for
all n and p, the homomorphism f— L,: L;(R) - %#(L,(R)) is an isomorphism.
From (1), this isomorphism does not increase norm.

We denote by f* the function whose value at s is f(— s). If g and 4 are in
L,(R), then

<
<
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since

Lpg, by = f**g, by = g =f*h) = j(Jg(I)f*(S - t)dt>}TS)dS

= Jg(t)( Jf(t — $h(s) dS) dt = {g,h=f) =<9, Lsh}.

Thus o7 (R), A, (R), and Ay(R) contain 4* when they contain 4. The algebra
Ao(R) is an abelian C*-algebra (with unit). Such algebras will be studied in
Section 4.4.

We shall prove in Theorem 3.2.26 that the non-zero multiplicative linear
functionals on L;(R) are in (natural) one-to-one correspondence with
R —more precisely, with R, the dual group of R. The elements of R are the
continuous homomorphisms (characters) of the (additive) group R into the
(circle) group T, of complex numbers of modulus 1 (and the product in R is
pointwise multiplication of characters). We describe the characters of R in the
lemma that follows.

3.2.25. LEMMA. For each real number r, the equation
ér(t) — eirr

defines a character of R. The mapping r — &, is an isomorphism of (the group) R
onto R.

Proof. As defined, ¢, is clearly a character of R. It remains to show that
each character & of R has the form &, for some real number r. Note, for this, that
the continuity of & at 0 implies that ¢ maps some interval [ — a,a], with a
positive, into the neighborhood

V={e —in<s<in}

of 1 in T,. The equation arg(exp is) = s defines a homeomorphism arg from ¥
onto the interval (— in, in). The continuous mapping

'7=arg°§ : [—a,a]—»(—%n,in)

is additive, in the sense that n(s + ¢) = n(s) + n(¢t) when s, ¢, and s + ¢ all lie in
[ — a,a]. From this it follows easily that

n(majn) = (m/m)n(a) = (majn)ro

(where ro = a™ 'n(a)), when m and are integers and |m| < n. By continuity of
1, we have that n(f) = tr, (and therefore &(f) = expitrg) when —a <t <a.
Accordingly, the two homomorphisms ¢ and ¢ — expitr, coincide on the
interval [ — a, a] (which generates R as an additive group), and so coincide
throughout R. W



3.2. THE SPECTRUM 193

The function 6, that takes the value | at r and 0 at other points of R
corresponds, of course, to the element 0 in L;(R). If we treat R as a discrete
space (for the purpose of heuristics) and replace integration by discrete
summation, then §,  f becomes f,, where f,(¢) = f(t — r). (That is, convolution
by 6, is translation by — r.) Of course f, € L,(R) if fe L(R) and || ||, = || f||, so
that f— f, is an isometry of L,(R) onto itself. If p is a multiplicative linear
functional on L,(R), then p(f)/p(f) = p(d,) (= &(r)), provided p(f) # 0.
Again, in a purely formal sense, 8, * §; = d, ., s0 that £ is a homomorphism on
R. While §, isnot available to us in a rigorous presentation, f, is. To reconstruct
p(f) from &, we replace f by ¥, f(r) d, or, more appropriately, by {f(r)d, dr.
Then p(f) is

Jf (r)p(o,) dr = Jf (r)&(r) dr = Jf (ryexp irqdr,

where &(r) = expirg (as in Lemma 3.2.25). The accurate version of the
preceding discussion appears in the theorem that follows.

3.2.26. TueorReM. The non-zero linear functional p on L,(R) is multipli-
cative if and only if there is a unique real number r such that

) p(f) = Jf(t)e""dt = 1.

Proof. Weshow, first, that p, as defined in (3), is multiplicative. (Itis non-
zero, for if p(f) = 0for each fin L,(R), then the function ¢ — exp itr is 0 almost
everywhere, which is absurd.) If f,ge L;(R),

~

@ o= [oranoera= [( {foac—gds)era

o

= | f(5) < Jg(t — 5)e''r dt) ds = j f(s)( Jg(t)e“'“” dt> ds

r

= | f(s)e" ds - Jg(z)e‘" dt = fr) - 4(r).

v

Assume, now, that p is multiplicative. If we adjoin a unit to L,(R), as
described in Remark 3.1.3, and extend p linearly to the Banach algebra so
obtained, after assigning 1 to the unit element, the extended functional is
multiplicative. Proposition 3.2.20 applies, and the extended functional lies in
the unit ball. In particular, we conclude that p is a bounded linear functional
(with norm not exceeding 1) on L, (R).
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Since p # 0, there is a function fin L,(R) such that p(f) # 0. Define &(r) to
be p(f,)/p(f), and note that, with h and g in L,(R),

®) (h,xg)(s) = Jh(t —ng(s — dt = Jh(l)g(s —t—r)dt

= jh(l)gr(s — ndt = (h*g,)s).

It follows that

(6) p(h)p(g) = p(h)p(g,),

so that £ does not depend on the choice of f (provided p(f) # 0). If p(f,) =0
for some r, then

0 = p(fIp(9) = p(N)P(9:);
and p(g,) = 0 for each g in L;(R). In particular,

0 = p[(f-)).1 = p(f),
contradicting the choice of f. Thus p(f,) # 0 for all r, and

E&r + ) = p(fr+)p(N " = pLUIp() ™ (PN~ = &(s) - &)

Since ||£,]l; = ||f]l; and p is bounded, {|é(r)|: r € R} is a bounded set of positive
numbers (&(r) # 0 as p(f,) # 0). But &(nr) = &(r)" for each integer n, so that
|£(r)] = 1. Hence & is a homomorphism of R into T,.

The continuity of ¢ on R will follow once we establish the continuity of & at
0; for |&(r) — &(s)| = |E(r — s) — 1]. The set of continuous functions vanishing
outside some finite interval in Ris dense in L, (R), so that there is such an fwith
p(f) not zero. Suppose f vanishes outside of [—n + 1, n — 1]. If |r| < 1,

n

I =Sl = '[_ If(t = r) — S0l dr;

and this integral is small for small r by (uniform) continuity of f on [ — n,n].
Now,

&) = 1 =1p(f =N~ lp(HI™ < I =Sl - loOHI™

which proves the continuity of ¢ at 0, hence on R. By Lemma 3.2.25, thereis an
r in R such that &(¢) = expitr for each ¢ in R. To prove (3), note that, from
Theorem 1.7.8, there is a function g jn L. (R) such that p(f) = [ f(t)g(¢) dt for
each fin L,(R). Hence

jf(t)g(l)e“r dt = &(s)p(f) = p(f) = jf(t —s)g(ndr = Jf(t)g(l +s)dt
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for all f in L,(R), and g_, = (expisr) - g almost everywhere. If A(z) =
[exp(— itr)]g(?), it follows that A is a bounded measurable function that is
(essentially) invariant under all translations. Thus there is a constant ¢ to which
h is equal almost everywhere. Hence g(t) = cexp itr for almost all 7, and

©) clp(f)=c! jf(t)cexpitrdt =f(r).
Using (4), (7), and the assumption that p is a multiplicative, we have

cTp(f)? = (e o) f) = fHf() = ) = ¢ 2p(f)%.
Since p(f) # 0, ¢ = 1 and (3) follows from (7).
If p(f) = f(r) = f(r') for each fin L,(R), then exp itr = expitr’ for almost
all 7. Choosing ¢ small enough, we conclude that r =r'. R

In the theorem that follows, we use the relation between L, (R) and ,(R)
to identify the space .#(R) of non-zero multiplicative linear functionals on
Ay(R) different from p,,. We show that .#,(R) with its weak* topology is
homeomorphic to R.

3.2.27. THEOREM. There is a homeomorphism A of M o(R) onto R such
that, if poe M o(R) and r = A(po),

@) po(Ly) = fir)
Sor each f in Li(R).

Proof. The restriction of p, to o7 (R) gives rise to a non-zero multipli-
cative linear functional p on L;(R) though the isomorphism f— L, of L;(R)
with o/;(R) described in the comments following Lemma 3.2.24. From
Theorem 3.2.26, there is a unique real number r such that

® po(Ly) = p(f) = f(r)
foreachfin L,(R). We define A(p,) to be r. Since distinct functionals in . o(R)
give rise to distinct functionals on L,(R) by the process just described, (3) of
Theorem 3.2.26 implies that A is a one-to-one mapping into R.

Given r in R, (9) defines a non-zero multiplicative linear functional p, on
& ((R). Although |p,(L)| <||fll;, it is not evident that

(10) lpi(Lp)l < |ILg]l

We prove (10), from which it will follow that p, has a (unique) bounded
extension to A, (R) and, thence, to a functional p, in .#y(R) (by taking the
extension to be 1 at I). This will show that 4 maps .#(R) onto R.

To prove (10), we note, first, that .#((R) is not empty. With f a non-zero
element of L;(R), from (2) and the comments following Proposition 3.2.22,
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and LfL,isanon-zero positive operator 4 in &/, (R). From Proposition 3.2.15,
||A]] is in the spectrum of A relative to #(L,(R)), and, hence, relative to the
smaller algebra y(R). From Remark 3.2.11, there is a multiplicative linear
functional 7 on A,(R) assigning || 4| to A. Since 0 # t # p.., 1€ M o(R). From
the foregoing, t corresponds to some real number ¢, and

w(L;) = jf(s) exp isty ds

for each fin L (R). If &(¢) = exp itr' and M(f) = ¢ - f, then M, is an isometry
with inverse M, when viewed as a mapping on either L;(R) or L,(R). Since

(ML Mi(9))(s) = €' (f+ Mg)(s) = e jf (t + ) (Meg)(— t)dt
= e f f(t + 5)e" ' g(— t)dt

_ jei(ﬂsv'f(t + 8)g(— t)dt = (LM;;f(g))(s);

we have,
(ll) LM§f=M§LfME
for each fin L(R). Thus ||Ly, /|| = |IL,|l. If |IL]] < 1, then [[Ly |l < 1 and

(12) IJf(S)e"‘“"*")dSI = IJ(M;f )(s)e'sods| = |t(Lag,)l < 1.

If we replace r' by r — t,in (12), we have |p;(L,)| < 1, and (10) follows. Thus A
is a one-to-one mapping of .#,(R) onto R.

We prove next that A is continuous, where .#o(R) is provided with the
weak* topology. Suppose p and 7 correspond to r and ¢, respectively. Let f(s) be
exp(— isr) for s in [0, 1] and O for other s. Then

1 .
p(Ly) —1(Ly) = J (1 —é“"Nds=1+ i(e"" -1y
0 u
where u =t — r. If 7 < |u|, then

1 leiu _‘”
3 <1 "I < lp(Ly) — o(Ly)l-

Since Re[p(L,) — 1(L;)] =1 — u~'sinu, which has an alternating series
expansion, u2/3! — u*/5! 4+ - - -, whose terms are monotone decreasing to 0
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when |u| < 7,
2 2 4

Yy 7 SIRelp(Ly) — oL <lp(Ly) = (L))

123!
for such u. Thus |t — r| is small when |p(L;) — t(L)| is small.

The space .# (R) of non-zero multiplicative linear functionals on W (R) is
weak* compact, from Proposition 3.2.20, so that it is .# o(R) “compactified”
by adjoining the point p,. Let A" be the one-to-one mapping of .#(R) onto the
one-point compactification {R, oo} of R that restricts to 4 on .#y(R) (and
assigns oo to p,). If we prove that A’ is continuous at p, then, since A is
continuous on .# o(R), A’ is a continuous one-to-one mapping between the
compact spaces .#(R) and {R, co} and, hence, A’ is a homeomorphism. It will
follow that A is a homeomorphism of .# o(R) onto R. To prove the continuity
of A" at p,, choose an integer n greater than | and let f be the characteristic
function of [0,n™!]. If te # o(R), t = A(1), and [t(L;) — po(L;)| < n™ 3, then

1/n
(L) = j eS'ds =t sinn™ 't — it [cosn™ 1t — 1].
0

From the earlier alternating series computation (with n~ 'z for ),
|1 —nt~Ysinn™ Y| < t2/6n2,
when |t| < nr, so that
(1/m)(1 — £3/6n*) <t~ 'sinn~ 't < |o(Ly) < n” 3.

Thus 4n% < 6(n? — 1) < 12, and 2n < |¢|. We have shown that |A(7)| is large if
|t(L,)| is small, for 7 in .#o(R). Hence A’ is continuous at p,, on #(R). W

The function f corresponding to fin L,(R) (defined by (3)) is called the
Fourier transform of f. It will be convenient to use this transform with other
normalizations — that is, multiplied by constants (such as (2x) ~ !/2), appropri-
ate to the circumstances in which it is used. For the present, we call attention to
some of the special information we have obtained about Fourier transforms.

3.2.28. COROLLARY. The Fourier transform f — f defined on L,(R) has the
following properties:

(i) It is linear.
(ii) (Uniqueness.) It is one-to-one.
(iif) (Riemann-Lebesgue lemma.) It maps L(R) into the space of con-
tinuous functions on R vanishing at «.
(iv) (Convolution formula.) f+g(r) = J(r)§(r).

Proof. (i) This assertion amounts to the linearity of p in (3).
(i) From (i), it suffices to prove that fis the element 0 in L,(R) if f(r) = 0
for all real r. Suppose f # 0. In the third paragraph of the proof of Theorem
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3.2.27, we show that thereis a t in .#(R) such that t(L,) # 0. But t(L,) = f(z)
for some real ¢.
(ii1) Again, from Theorem 3.2.27, A is a homeomorphism, so that

’E’l po— po(Ly) =f(r)

is continuous, where continuity of the second mapping is a consequence of the
definition of the weak* topology on .#y(R). Since A'~! is continuous on
{R, 0}, A'"1(0) = p,, and p,(L,) = 0; f vanishes at co.

(iv) This assertion is a restatement of (4). H

One important aspect of the Fourier transform that has not appeared in
our discussion up to this point concerns ‘““inversion,” the process by which a
function f may be “reconstructed” from f. Some of the known results in this
area are delicate. We shall need only an easily available sampling (for
application in Section 13.2), which we prove in Theorem 3.2.30. In preparation
for the proof of that theorem, we recall that the operation f— f, of
“translating” functions is an isometry of L,(R) onto itself. Another fact about
this operation is proved in the lemma that follows.

3.2.29. Lemma. If fe L(R), then

(13) Ife = foll, =0 (1> o).
Proof. Since

I/t = fiolls = It = fio)-tollp = 1fe=20 = fllps
(13) will follow from

(14) Ifi=fll,~0  (=0)

If we have proved (14) for each function g in a dense subset & of L,(R), then,
given a positive ¢ and choosing g in % such that ||g — f||, < &/3, we have

W = fllp <Ufe ~ gl + llg: — gll, + llg = fll, < 3e + llg. — gl

By assumption (on %), there is a positive § such that ||g, — g||, < ¢/3 when
|t| < &, and, in this case, ||f; — fl|, < ¢.

For &%, we choose the set of continuous functions on R, each of which
vanishes outside some finite interval. With fin %, (14) follows from uniform
continuity of fand the fact that f; — fvanishes outside a fixed finite interval for
all small ;. W

It will be useful for the proof that follows to recall that (from an integration
by parts)
®1 —cost ®sint
j ——dt=| —at,
0 ! o !
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and that

oo H t ac a0 o0 a0
j ﬂdz:f (J e‘“sintds)dt:f (J e‘ﬂsinzdz>ds:5.
o ! 0 0 0 0 2

We are now in a position to prove our inversion theorem.

3.2.30. TueoreMm. If fe L (R) and

J(p)=Q@m)~ 12 J S(s)e™? ds,
R
then

a5 =i | (1-2)enpp 4

a— o

for each s at which f is continuous if fe L(R). If fe L,(R), then, for almost
all s,

(16) f(s) = (277:)_“2j e”“*f(p)dp.

R

Proof. Let h,(p)be 2n)” V2(1 — |pl/a) when | p| < a and 0 when a < |p|.
Then, since h,(p) = h(— p),

1 —cosat

Ea(z)=(2n)-“2f ha(p)e‘“’dp=2(2n)-”2f hi(p)costpdp = ———
R

0 nat

when ¢ # 0; and /,(0) = a(2r)!. We have

Qm)~12 -f (1 - %)e'“”f(l))dp =J ha(P)e"'s”(27r)_”2(J f(l)e""dt>dp
—a R R

= (27t)"”2j ha(p)<J f(t)f—’“"s”’dt> dp
R R

= (Qm)~'7? J f(O(J ho(p)e’“ =" dP) dt
i R

=J SOha(t — s)dt
R

- J [t + () dt (= gu(s)).
R
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Now

R

ZZ

and, if fe Lw(R) and is continuous at s, then

fG+Q

for almost all ¢. Moreover, for all ¢,

t 1 —cost —cost
fl-+s " —»fs (a > o).
a

Thus, from the dominated convergence theorem and (17),

1 —cost

— CO
”f”oc L (eL,®)

ga(S)—'f(S)'ﬂ_lj #d’=f(3) (a— ).
R

Noting that

J h(t)dt = J h () dt = rc % dt=1,

(18)  1g4(s) — f(9)l SJ 1t + 5) = f(s)lho(r) dt = I I(f=c = NS () dt.
R R

we have

Integrating both sides of (18) with respect to s and using Fubini’s theorem, we
have

(19) llga — flly < J /= = fllihu(r) at.
R

Given a positive ¢, there is a positive  such that || f_, — f]|; < ¢/2when |t < r,
from Lemma 3.2.29. Thus, from (19),

llga — fll1 < j_ /= = Mlivhd(rydr + j If=c = flliho(2) dr

R\[~r,r]

ro. 1 —cosat
h(t)dt + 2|1, ——di

-r R\[—r,r] nat

mmj dr

na

<

=X

N[ »

<5J ha(t) dt +
2)e

=
®\[~-rr) !

Ifaislarge, |lg, — fll; <e¢,sothat, asa — o0, {g,} converges in L,(R) to f. For
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some sequence of integers {n(;)}, monotone increasing to oo, {g,;,} converges
to f almost everywhere. If we assume, now, that fe L;(R), then p —
h,;(p)e” P p) is a sequence of functions with absolute values dominated by
| fland tending to (27r) /2~ ?f( p) for each p and each 5. Hence {g,;,(s)} tends
to (21) Y2 {ge~?f( p) dp for each s, and (16) is valid for almost every s. W

We turn now to the L, theory of Fourier transforms. The theorem that
follows, Plancherel’s theorem, will be used in Section 13.2.

3.2.31. THEOREM. There is a unitary operator T on L,(R) such that

(Tf)(p) = Qm)~ 12 j e f(s)yds  (peR)

14

when f is continuous with support in a finite interval. If Rg = T(g) for all g in
L,(R), then R = T*.

Proof. If fis a continuous complex-valued function on R with support in
a finite interval, then so is the function g defined by

g(s) = J S(OSf(s + .
13
Thus ge L(R), and, by Fubini’s theorem,

4(p) =(2n>'”2J e‘”” fosts+ t)dt}ds
R R
=J {(zn)—l/zj e HOPf(s 4 t)ds}e—ilpf‘(_t)dt
R R’

=f(p)J e”"rf(r) dt = (2m)'"*| f( p)I*.

Since g is continuous at 0, it follows from the inversion theorem (3.2.30(15))
that

a— oo

im [ (127

lim j ka(p)dp,
R

n—oc

J |f(1)|* dt = g(0) = lim (Zn)_”zj [1 —%]Q(p)dp
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where

k) = {[1 — 1A (el <n)
“P7= 0 (19| > n).

Since {k,} is an increasing sequence of L; functions with pointwise limit
| £(p)I?, it follows from the monotone convergence theorem that fe L,(R), and

J If(t)lzdt=J |7(p)* dp.
R R

The set 2 (R) of continuous functions with support in a finite interval forms a
dense linear subspace of L,(R). It follows from what we have proved thus far
that there is an isometric linear operator T acting on L,(R), such that Tf = f
when fe X (R).

The mapping f — fis a conjugate-linear isometry of L,(R) onto L,(R), so
that R, as defined in the statement of this theorem, is an isometric linear
mapping on L,(R). To verify that R = T*, it will suffice to prove that
{Tf,g> = {f, Rg) for f, g in A (R) (since T and R are bounded and J#'(R) is
dense in L,(R)). For such fand g, we have, with the aid of Fubini’s theorem,

ao

Tf.9> = J (TN(ng(Hdt = j ((270_ Y zj fls)e™ dS> gy de

— o

= J ) ((2n)- ”Zf G dt) ds = <£.T@)>

—

= (/. Rg>.

Now the null space of R is the orthogonal complement of the range of T, from
Proposition 2.5.13. Thus, since R is an isometry, 7 maps L,(R) onto L,(R).
Hence T and R are unitary operators. W

3.3. The holomorphic function calculus

We develop, in very brief form, the theory of holomorphic functions of a
complex variable with values in a Banach space, together with the associated
holomorphic function calculus of a Banach algebra element. One of our main
aims is to derive the spectral radius formula (Theorem 3.3.3). Although no
other serious use of the Banach-algebra-valued holomorphic function calculus
will be made, it is a powerful technique in the subject; and its results follow
easily from classical complex fupction theory and the basic principles of
functional analysis.

Holomorphic functions. We need some concept of line integral of a
Banach-space-valued function for this program. It will suffice for our
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purposes to use a ‘“‘Riemann sum” limit, jc f(2)dz, of a continuous Banach-
space-valued function fon a “smooth” curve C (=t - z(t),a < t < b, where z
is a continuously differentiable complex-valued function on [a,b]). The
integral (¢ f(z) dz (= [® f(2(1))Z'(t) dt) is the norm limit of Riemann sums of the
form

M Y fE)a(t) — 2(4- 1)1,
j=1

where, as customary,
a=t0<t1<"'<t,,=b, t141<t;<11,

the limit taken as max{|t; — ¢;_4]:j = 1,...,n} tends to 0. This theory is a
straightforward extension of the classical theory (as presented, for example, in
[R, Chapter 10]). By considering the Riemann sums (1), it follows that

@) A (f /@ dZ) = J A(f(2)) dz,
c c

where A is a bounded linear transformation from the range space of f'to some
other Banach space. Our applications of (2) occur most often in the case where
A is a continuous linear functional. From (1) we also have

b
3 IIJ f2)dz|| < f /GO - 12'(D1 de = Jcllf(z)ll " |dz].
C a

With U a Banach space and ¢ an open subset of C, a mapping f from
into A is said to be holomorphic (on ¢) when it is differentiable at each point z,
of 0, in the sense that the limit of the usual difference quotient exists in the
norm topology on . In this case, we denote the limit by f'(zy). If f is
holomorphic on @ with values in  and p is a bounded linear functional on U,
then p o fis a (classical) complex-valued holomorphic function on @. This fact,
coupled with the Hahn-Banach theorem and the other basic principles of linear
functional analysis, provides one of the main methods for proving results in the
Banach-space-valued holomorphic function theory. (An illustration of this
technique occurs in the proof of Theorem 3.2.3, where we proved in the course
of the argument that z — (zI — 7)™ ! is holomorphic on the set on which it is
defined.) Applying this method to a function f holomorphic in a region ¢
containing a curve C for which the classical Cauchy theorem and formula are
valid, we have, as a consequence of the classical results,

0= I p(f(z))dz = p(J f(Z)dZ)
c c

and (for each z, “interior” to C)

0=P(f(20))—i.'[ piﬁi))dz:p(f(zo)—ij‘ f2) dz),
2ni J ez — 2o i

cZ— 2o
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for every bounded linear functional p on . Thus

“4) j f(2)dz=0
C
and
1
) feo) = — | LOa;

2ni Jez — 2o

for each z, “interior” to C. For the purposes of application in this subject, the
curves and regions needed present none of the possible topological intricacies
appearing in the more general versions of the classical results: piecewise
“smooth” curves and regions with ‘‘uncomplicated” boundaries suffice.
Without the detailed discussion of such matters (appropriate to classical
complex function theory), we speak of smooth closed curves.
The method of applying bounded functionals combined with an appli-
cation of the Hahn-Banach theorem yields the fact that if a power series
2 o T(z — 2o)", with coefficients T, in 2, converges to 0 in norm throughout
some open disk containing z,, then each T, is 0. Repetition of the classical
argument establishes the following theorems.

3.3.1. THEOREM. Each function f holomorphic on an open set O in C and

taking values in a Banach space U can be represented as a power series

2o Tz — zo)", with coefficients in U, throughout the largest open disk with
center z, contained in O, for each z, in 0.

3.3.2. THEOREM. If |z — zo| < (im||T3|IY") ", then T2 o ITll - |z — zol"
converges. If (lim|| T,)|*™) ™! < |z — zo|, then Y. 7., T,(z — z,)" does not converge
in norm.

By analogy with the classical situation, we refer to (lim(|7,(|*")"! as the
radius of convergence of the power series Y, T,(z — zo)". We use these
considerations to establish the spectral radius formula in the theorem that
follows.

3.3.3. THEOREM (Spectral radius formula). An element A of a Banach
algebra N has spectral radius r(A) given by the formula
(6) r(A) = lim [47||''".

n— oo

In particular, {||A"||*'"} has a limie-

Proof. The existence of the limit in (6) is established by proving that
(7) lim||A4"[*"" < r(A) < lim || 47|
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(so that lim ||4"]"* = lim [|4"|!/"), which proves (6) as well. If aesp(4), then
a"esp(A™) (see Proposition 3.2.10), so that (from Theorem 3.2.3) |a" < ||47]|.
Hence |a| < lim ||4%|'"" and r(4) < lim [|47||'/".

The argument used in the proof of Theorem 3.2.3 shows that
z—-(I—-z2A4A)"' (=f(z)) is holomorphic where defined (with derivative
A(1 — zA)~?) and that the set of such z is open and contains all (small) z such
that [|z4|| < 1. Thus, for small z, fis defined and is represented by the power
series 3, A"z". From Theorem 3.3.1 (and the comment preceding it on the
uniqueness of series representation), this series represents fon the largest open
disk with center 0 on which fis defined. On the other hand, Theorem 3.3.2
informs us that this series fails to converge for z of modulus exceeding
(lim [|4")Y/"~ 1. Thus, if 0 < @’ < lim ||4"||'/", there is an a such that a’ < |a| for
which 1 — a 'A4 and, hence, 4 — al fail to have inverses in U. Therefore
aesp(4) and @' < r(A). Since &’ is an arbitrary non-negative number less than

lim || A"))'/", the inequality (7) follows. W

In case lim||A"|'" = 0, the inverse of lim||4"|'/" is interpreted, as is
customary, as co. When this occurs, r(4) = 0 and sp(A4) consists of 0 alone. We
discussed an instance of this in the comment following Theorem 3.2.3. An
element A4 in A for which r(4) = 0 is said to be a generalized nilpotent in U. If
A" = 0for some positive integer n, we say that A is nilpotent (so that a nilpotent
element in A is, in particular, a generalized nilpotent).

One notes from Theorem 3.3.3 that rg(A4) = ry(A4) when A lies in the
Banach subalgebra # of U. If 4 and B are commuting elements of A, applying
Proposition 3.2.10 to the commutative Banach subalgebra # of U that 4 and B
generate, together with this observation, we have the following result.

3.3.4. CoroLLARY. If A and B are commuting elements in the Banach
algebra U, then r(AB) < r(A)r(B) and r(A + B) < r(A) + r(B).

The holomorphic function calculus. Turning now to the case where U is a
Banach algebra, we note that

8) A" = LJ 2"zl — A) " 'dz,
2ni J ¢

where n is a positive integer, 49, and C is a smooth closed curve whose
interior contains sp(4). To see this, observe that z — (zI — 4)~! is holomor-
phic on C\sp(A) (as proved in Theorem 3.2.3). Employing the Cauchy theorem
(see (4)) in the case of the A-valued function z — z"(z] — A)~ !, we may replace
C by the (circular) perimeter of a disk with center 0 and large radius. Assuming
C is this circle and z is on C,

(9) Zn—l(I_AZ—l)—l =zn—-l Z Akz—k: Z AkZ"—k_l,
k=0

k=0
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where convergence is in the norm topology (and uniform on C). It follows from
(3) and this convergence that term-by-term integration of (9) is justified. Now

J‘ Akzn k- ldy = (J z""“‘dz)A" =0-4=0
c c

unless & = n, in which case the integral is 2zi4". This proves (8). It follows that

1
(10) f(A)=2—m.JCf(2)(21— A)~'dz

for each polynomial f, when C is as in (8).

With the foregoing in mind, we take (10) as the definition of f(A4) for
holomorphic functions f. More precisely, when fis holomorphic in an open set
containing sp(4), we can choose a smaller open set () containing sp(4) whose
boundary consists of a finite number of closed piecewise linear curves
C,...,C,. If C denotes the collection of these curves oriented in the
customary way in complex function theory, then (10) defines f(A4). To find the
smaller open set with boundary as described, an argument involving a square
grid in the plane (with squares of diameter less than the distance from sp(4) to
the boundary of the initial open set) will suffice. Since the integral in (10)
converges in norm, from our discussion of line integrals, it represents an
element f(4) in A. From (4) (Cauchy’s theorem) f(A4) is independent of the
curve C (consisting of a finite number of smooth closed curves constituting the
boundary of an open set in which fis holomorphic).

Let #(A) be the set of functions holomorphic in some open set containing
sp(A) (the open set may vary with the function). The following two results
constitute a “‘calculus” of such functions — the holomorphic function calculus.

3.3.5. THEOREM. The mapping f— f(A) is a homomorphism from #(A)
into W for each A in the Banach algebra W. If fis represented by the power series
S *_ o anZ" throughout an open set containing sp(A), then

©

(11) f4) = Z a,A".

n=0
Proof. Since

1
714]

(af + g)(A) = z—f (af + g)(@)zl — A)” ' dz = af(4) + g(A),
C

the mapping f— f(A) is linear. The-proof that f(4) - g(4) = (f - g)(A) requires
more effort. Let @ be an open set, containing sp(4), on which both fand g are
holomorphic. We can choose open sets ¢, and ¢, such that

sp(4) € 0y, 0,0C, c0,, 0,0C,c0,
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where C, and C,, the boundaries of (; and (,, consist of a finite number of
smooth closed curves. Then

1 1
S(4) - g(4) = (ZE L f@)al — 47! dZ> (2_1:1 L gwywl — 4)~! dW>

1

2
= (¥> J f(z)g(w)(zl— AW wl — A)"'dzdw
2mi

( )J J A2gom Y A=A =7
w—2z
_ e LJ g(w) )
—2niJle(z)(z[ A) <2m' CZW_ZdW dz
2
—(i) f g(w)(wl—A)“( /G dz)dw
27'Cl C» ClW—Z

= LJ f(@)g(z)(zl - 4)™ ' dz— (—l-> J g(w)(wl—A4)~1(0) dw
2ni J ¢, 27 ¢
=(f" g)(4).

To prove the last assertion of the theorem, we may assume that fis defined
on the disk of convergence of the series. Let C be a circle with center at 0
containing sp(4) in its interior and contained in an open set on which fis
holomorphic and represented by Y > ,a,z". Then this series converges
uniformly on C, so that, from (8),

1
f4)= 3 f _f(z)(zl — A 'dz

2 ( J”(zl—A)"dz)

= Z a,A". N
n=0
In our next result, we identify the spectrum of f(A). The special case where f
is a polynomial has been treated in Proposition 3.2.10.

3.3.6. TueorReM (Spectral mapping theorem). If A is an element of a
Banach algebra W and f'is holomorphic on an open neighborhood of sp(A), then

(12) sp(f(A4)) = {fl@):aesp(A)} (= f(sp(A)))-

Proof. Suppose aesp(A4), so that either (4 — al) or (A —al)W is a
proper (left or right) ideal in . Say, W(A — al) is a proper (left) ideal in 2.
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Then

2mil f(A4) — fla)]] = J fOlE =A™ = (z—a) ' 1]d:
C

= (J [zl — A)(z — a)]"f(z)dz)(A —al)e (A — al)
c

and f(a) esp(f(A4)). Thus

(13) f(sp(4)) < sp(f(A)).

If b¢f(sp(A4)), then (f — b)~! (= g) is holomorphic on an open neigh-
borhood of sp(4). From Theorem 3.3.5, g(4) is a two-sided inverse to
f(A) — bl in A (since g - (f — b) is 1 on an open neighborhood of sp(A4)).
Hence b ¢ sp(f(4)), and

(14) sp(f(4)) < f(sp(A)).
Combining (13) and (14), we have (12). W

An interesting and simple corollary of the holomorphic function calculus
and the spectral mapping theorem asserts that if the Banach algebra U has an
element 4 whose spectrum is not connected, then U has an idempotent E
different from 0 and /. To see this, suppose that sp(4) = S, U S,, where S; and
S, are disjoint closed sets. Since sp(A4) is compact (see Theorem 3.2.3), both .S,
and S, are compact. It follows that there are disjoint open sets ¢, and @, such
that S; € 0, and S, = ¢,. The function ftaking the values 1 on ¢, and Oon O,
is holomorphic on ¢ U O,, an open neighborhood of sp(A4). Then f(A4) is an
idempotent E since E = f(4) = (f2)(A) = f(A) - f(A) = E?, and sp(E) =
{0,1}. Thus E is neither 0 nor /.

3.3.7. CoroLLARY. If A is in the Banach algebra U and sp(A) is not
connected, then W contains an idempotent different from 0 and I.

The composite-function result that follows is an important addition to the
function calculus.

3.3.8. THEOREM. If A is an element of the Banach algebraW,ge #(A), and
feH(g(A)), then foge H(A) and (f>g)(A) = f(g(A)).

Proof. By assumption, f is holomorphic on an open set (; containing
sp(g(4)) and ¢ is holomorphic on an open set (0, containing sp(4). From
Theorem 3.3.6,

—

g(sp(4)) = sp(g(4)) < Oy,

so that sp(4) = g~ 1(¢,). By continuity of g, g~!(®,) n 0, is an open set ©
(containing sp(A4)) on which fo g is holomorphic. Thus fo ge #(A4).
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Choose open sets % and %, with boundaries C and C| consisting of a finite
number of smooth closed curves such that

spAycucUwCcO
and
spg ) cg@vwCycU csU, wC S0,

By continuity of g on @, there is an open set ' such that % o C € %' = (¢ and
g(U") = U,. Then, for each w on C,, A, is holomorphic on %’, where
h,(z) = [w — g(z)] " '. From Theorem 3.3.5, h,(A4) = [wl — g(4)] ! for each
won C,. It follows now that
l r
f@(A) == | fwWIwl—g(4)] 'dw
27'” JCy
l d
=-— | SWh(A)adw
2ni c,
1 { 1 B
=— | fm|=— | h2)zl— A) "dz }dw
JCy 2mi c

L (z1 — A)”(LJ‘ Sw)lw — g(Z)]"ldW>dZ
2mi Cc,

- 2ni JC
1
= | (fe@l— A dz=(fog)4). W

C

2ni

We conclude this section with a result that allows us to treat convergence in
the holomorphic function calculus.

3.3.9. ProrosiTiON. [If O is an open set containing sp(A), where A is an
element of the Banach algebra W, and { f,,} is a sequence of functions holomorphic
on O and converging uniformly to f on compact subsets of O, then fe #(A) and
[fu(A) — f(A)| =0 as n > 0.

Proof. Choose an open set % with boundary C consisting of a finite
number of smooth closed curves such that

spAYcuU<cUvCcO.

Since { f,} converges uniformly to f on compact subsets of ¢, fis holomorphic
on @. Thus fe #(A) and {f,} converges to funiformly on C. It follows that

2nlfu(A) — [N = IIJ [fu(2) = f@))(z] — 4~ dz]|
C

< KICL- I fa = flle =0,
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as n — oo, where k = sup{|[(zf — 4)"||: ze C}, |C| denotes the length of C,
and || f, = fllc = {supl/u(z) — f(2)|:zeC}. W

3.4. The Banach algebra C(X)

In Example 3.1.4 we introduced the algebra C(X) of continuous complex-
valued functions on the compact Hausdorff space X together with its
(supremum) norm and established that it is a Banach algebra. From the point
of view of C*-algebras, C(X) is, by far, the most important example of a
commutative Banach algebra. We shall see in Section 4.4 that C(X) is the
example of a commutative C*-algebra. In its function algebra form it provides
the basis for the spectral theory and “function calculus” of a self-adjoint (or
normal) operator.

Our purpose in this section is to study C(X) both with respect to its Banach-
algebra structure and with respect to its order structure. We begin by
identifying the closed ideals (and, hence, the maximal ideals in C(X)).

3.4.1. THEOREM. [IfF isaclosed ideal in C(X), there is a closed subset S of
X such that # is the set of all functions vanishing on S. If S is a closed subset of X,
the set of all functions vanishing on S is a closed ideal in C(X'). The maximal ideals
in C(X) are those closed ideals for which the corresponding closed subset of X (on
which all the functions of the ideal vanish) consists of a single point.

Proof. Since the set of points at which a continuous function vanishes is
closed and the set of points S at which all the functions of .# vanish is an
intersection of such sets, Sis a closed subset of X. We use the assumption that .#
is closed to show that a function fthat vanishes on Sisin £ Note that this has
the implication that # = C(X) if S is null.

Suppose, then, that fe C(X) and f vanishes on S. Given any positive ¢, let F,
be the set of all points p at which | f(p)| = &, so that F, is compact, and does not
meet S. We shall construct an element g, of .# such that 0 < g,(p) < 1 for all p
in X, while g, is 1 throughout F,. Once this is done, we have fy,e.# (since
g.€.#); moreover, ||/ — fg.|| < ¢, because |1 — g,(p)| never exceeds 1, and is
zero at all points where | f( p)| = &. Since .# isclosed, we can conclude that fe 4.

We now construct g, with the properties set out above. By definition of S,
and since F, does not meet S, for each point p of F,, thereisan f, in .# such that
Jo(p) # 0. Thus £, - £, is (strictly) positive on some open neighborhood of p. A
finite number of such neighborhoods cover the compact set F,. If p,, ..., p, are
the corresponding points, then |/, |> + - - - + |f,,|*isa function A,, in .%, which
is non-negative on X and positive thiroughout F,. From the compactness of F;,
h, has infimum ¢ (> 0) on F,. The equation k,(p) = max(h,p), ¢) defines an
element &, of C(X), and

k(p)>0,  k(p)=h(p)=0
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for all p in X, while k, coincides with 4, on F,. Since k[ ' e C(X) and h.e 4, it
now suffices to take 4k ! for g,.

The set of functions vanishing on an arbitrary subset of X will be a closed
ideal . in C(X), but the set of points at which all the functions of .# vanish will
be a closed subset containing that set, its closure. To establish this Galois-like
correspondence between closed subsets of X and closed ideals in C(X), note
that if S is a closed subset of X and .# is the closed ideal of functions in C(X)
vanishing on S, the Tietze extension theorem tells us that, given a point p not in
S, there is a continuous function fon X thatisOon Sand 1 atp. Thus fe .# and p
is not in the closed set corresponding to .£. Hence the closed set corresponding
to £is S.

Of course, now, the maximal ideals in C(X) are those whose corresponding
closed set consists of a point. W

3.4.2. CoroLLARY. Each non-zero multiplicative linear functional p on
C(X) corresponds to a point p, in X; and p(f) = f(po) for each f in C(X).

Proof. Thekernel ./ of pis a proper ideal (since p # 0) and is a maximal
ideal of C(X). From Theorem 3.4.1, ./ is the set of functions in C(X) vanishing
at some point p, of X. Since p(1%) = p(1)> =p(1)#0, p(1)=1; and
f— p(N1le for each fin C(X). Thus f(po) = p(f) for each fin C(X). W

We say that the functional p in Corollary 3.4.2 is evaluation at p,. The
closed subset corresponding to an ideal (or just the common zeros of any set of
functions)is referred to as the kernel of that ideal (or that set of functions). The
(closed) ideal of functions vanishing on a set of points in X is referred to as the
hull of that set.

Corollary 3.4.2 (or Theorem 3.4.1) provides us with a means of recapturing
the topological space X from the algebraic structure of C(X).

3.4.3. THEOREM. A mapping ¢ of C(X) onto C(Y), with X and Y compact
Hausdorff spaces, is an algebraic isomorphism if and only if there is a
homeomorphism n of Y onto X such that ¢(f) = fen for each f in C(X).

Proof. If nis a homeomorphism of Y onto X and ¢(f) = fon, then for
each fin C(X), fone C(Y), and ¢ is an algebraic isomorphism of C(X) onto
c(Y).

Suppose, now, that ¢ is an algebraic isomorphism of C(X) onto C(Y). If .#
is a maximal ideal in C(Y), then ¢~ !(.#) is a maximal ideal in C(X). If p is the
point in Y correspondingto .#, denote by #( p) the point in X corresponding to
¢~ (). Since each maximal ideal .#, in C(X) has the form ¢~ !(¢(4#)), with
o(A# ) a maximal ideal in C(Y), 5 is a one-to-one mapping of Y onto X. If
feC(X), f— f(n(p)] vanishes at n( p) in X for each p in Y. Thus, by definition

of n, o(f — f(n(p))1) vanishes at p. Hence o(f)(p) = fon(p)forall pin Y, and
@(f) = fon. Since X is a compact Hausdorff space, it is completely regular.
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"Hence sets of the form £~ (@), with @ an open subset of C and fin C(X), form a
subbase for the open setsin X. Now = '(f~1(0)) = o(f)~ (0);and o(f)~ 1(0)
is an open set in Y, since ¢(f) is a continuous function on Y. As the inverse
images of subbasic open sets in X, under y, are open in Y, 5 is continuous.
Symmetrically, # ~ ! is continuous; and  is a homeomorphism of ¥ onto X such
that o(f) = fon for each fin C(X). A

3.4.4. Remark. Itfollowsfrom Theorem 3.4.3 that ¢ mapsreal functions
in C(X) onto real functions and positive functions onto positive functions. It
follows, too, that ¢ is an isometry. Thus the assumption that ¢ is an algebraic
isomorphism entails very strict response from ¢ in terms of other structure that
C(X) possesses (in particular, the norm and order structure on C(X)). These
consequences of the assumption that ¢ is an algebraic isomorphism become
more apparent when we note that ¢ ‘‘preserves” spectrum, that is
sPeay(f) = sPen(@(f)), and that the spectrum of frelative to C(X) is the range
of the function f(see Example 3.2.16, in this connection, where the spectrum of
M  is the essential range of f). That ¢ preserves spectrum is a consequence of
the fact that spectrum is defined in terms of inverses and ¢ preserves inverses.
Of course, f — Al fails to have an inverse in C(X) if and only if it vanishes at
some point of X, that is, if and only if Ais in the range of . The property of being
real or positive for fand the norm of fare all determined by the range of f. We
see, at the same time, that ¢ preserves the operation of complex conjugation on
C(X) (that is, o(f) = @(f))—for ¢ maps real functions onto real functions.
Note the formal similarity between the operation of complex conjugation of
functions on C(X) and the adjoint operation on #(#) (see Theorem 2.4.2).
Both are conjugate-linear, involutory, (anti-)automorphisms on their re-
spective algebras. With Theorem 4.4.3, this similarity becomes more than
“formal.” W

When Theorem 4.4.3 has been established, the view of a C*-algebra as a
non-commutative generalization of C(X) (that is, as a ‘“‘non-commutative
function algebra”) will be quite plausible. Up to this point, we have been
studying the Banach-algebra structure of C(X). In application to non-
commutative C*-algebras, extending the order properties of C(X), rather than
its Banach-algebra structure, proves to be the more fruitful procedure.

The order structure of C(X) is a natural partial ordering of its real-linear
subspace C(X, R), the continuous real-valued functions on X. It is introduced
by means of the “‘cone” 2 of positive functions, which has the properties (of a
cone): —

(1) if fand — fare in &, then f=0;
(ii) if a is a positive scalar and fe 2, then afe 2,
(i) f+ge2?if fand g are in 2.



3.4. THE BANACH ALGEBRA C(X) 213

A real vector space ¥~ with such a cone is said to be a partially ordered vector
space. Defining (as is usual in C(X, R)), f < g when g — fe &, induces a partial
ordering on ¥ Anelement /in ¥~ (the constant function 1 in C(X, R)) is said to
be an order unit when, given any fin ¥; we have —al < f < al for a suitable
positive scalar a (depending on f— in the case of C(X, R), we may choose ato be

/1)

3.4.5. DerINiTioN.  If #7 is a partially ordered vector space with order
unit /, a linear functional p on ¥” is said to be positive when p(f) = 0if f = 0. If,
in addition, p(I) = 1, p is said to be a state of . If p is an extreme point of the
(convex) family #(77) of states of ¥; we say that p is a pure state of v R

Note that the set of positive linear functionals on ¥~ is a cone relative to
which the dual space of ¥~ becomes a partially ordered vector space (generally
without an order unit). A simple modification of the condition for a state to be
pure proves useful to us.

3.4.6. LeMMA. If Y isapartially ordered vector space with order unit I, a
state p of ¥ is pure if and only if each positive functional t on 4" such thatt < pis
a scalar multiple of p.

Proof. If the stated condition holds for p and p = ap; + (1 — a)p,, with
0 <a < 1and p, and p, states of ¥; then 0 < ap; < p, so thatap, = bp. Since
p1(l)=p(l)=1, a= b and p, = p. Similarly p, = p, and p is pure.

On the other hand, if pispureand 0 € 1 < p,then 0 < (/) < p(I) = 1. If
7(1) = 0, then, for each fin ¥; 0 = 1(— al) < 1(f) < t(al) = 0 for some scalar
a,and () =0;s01=0(=0"p). If 1(J) = 1 (= p({)), a similar argument
shows that the positive functional p — 7 is 0 (and 7 = 1- p). Finally, if
0 <t(l) < 1, we have p = (1 — b)p, + bp,, where b = 7(I) and p,, p, are the
states defined by p, = (1 — b)"'(p — 1), p» = b~ '1. Since p is pure, p, = p,
and 7 = bp. In each case, t is a multiple of p. W

By expressing elements of C(X) in terms of their real and imaginary parts, it
is apparent that each (real-)linear functional on C(X, R) extends uniquely to a
linear functional on C(X). A linear functional on C(X) is said to be positive (or
a state, or a pure state) if its restriction to C(X, R) is positive (or a state, or a
pure state). Since the states of C(X, R) form a convex set with the pure states as
extreme points, the same is true of C(X).

The significance of states and pure states for C*-algebras will appear in
Sections 4.3 and 4.5. For the present, we establish that the pure states of C(X)
are precisely the (non-zero) multiplicative linear functionals on C(X).

3.4.7. THEOREM. A non-zero functional p on C(X) is a pure state of C(X) if
and only if it is multiplicative.
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Proof. If p is multiplicative, from Corollary 3.4.2, there is a point py in X
such that p(f) = f(po) for all f in C(X). Since each continuous function
vanishing at p, is a linear combination of positive continuous functions
vanishing at p,; if 0 <1 < p for some linear functional T on C(X), then
7(f) = 0 when f( po) = 0. Thus 7 and p are linear functionals on C(X) with the
same (maximal linear) null space and 1 is a scalar multiple of p. From Lemma
3.4.6, p is a pure state of C(X).

Suppose p is a pure state of C(X). If 0 < £ < 1 and 7(g9) = p(fg), then tis a
linear functional on C(X) such that 0 < 7 < p. Thus 7 = ap. If p(h) = 0, then
p(fh) = t(h) = ap(h) = 0. Since each function g in C(X) is a linear com-
bination of functions between 0 and 1, p(gh) = 0 for all g in C(X). Thus the null
space of p is an ideal —clearly maximal since the null space of p is a maximal
linear subspace. As p(I) = 1, p is multiplicative. W

The linear order structure in C(X) is strong enough to characterize it. We
say that a mapping ¢ between two partially ordered vector spaces (or two C(X)
spaces) that is a linear isomorphism of one onto the other is a linear order
isomorphism when ¢(f) > 0 if and only if /> 0.

3.4.8. CoROLLARY. A linear order isomorphism ¢ of C(X) onto C(Y) such
that (1) = 1 is an algebraic isomorphism.

Proof. 1If pgis a pure state of C(Y) corresponding to the point p, of Y, by
Theorem 3.4.7, then pg o ¢ is a pure state of C(X) corresponding to a point
n(po) of X. Now, 5 is a one-to-one mapping of Y onto X, and f(n(po)) =
po(o(f) = o()(po) for all fin C(X) and p, in Y. Thus @(f) = fon. As in
Theorem 3.4.3, 5 is a homeomorphism of Y onto X; and ¢ is an algebraic
isomorphism. W

3.49. REmMARk. The partial ordering on C(X) induces a lattice structure
on the set of real-valued functions. If fand g are two such functions, we define

(f v g)(p)to be max{f(p),g(p)} and (f A g)(p) to be min{ f( p),g(p)} for each
p in X. Then

fvg=3f+9+if—9, frg=3f+9 -4f-4l;

so that fv g and f A g are in C(X). Clearly, f v g is the smallest function
greater than both fand g,and f A g is the largest function less than both fand g.
Moreover, f=f* — f~,where f* = fv 0andf~ = — (f A 0); so that fis the
difference of two positive functiong in C(X) (with disjoint supports).

The lattice structure assures us that C(X) has the Riesz decomposition
property:if f < g, + ¢,,wheref, g,,and g, are positive functionsin C(X), then
f=fi+f,, where 0<f, <g, and 0<f, <g,. To see this, let f; be
fAgyand f, be f—f;. Then 0 < f, < g, f=/1 + /2, and f, is positive. It
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remains to note that f, < g,. If

g2(p) < f2(p) = f(p) — fi(p) = f(p) — min{ f(p), 9:(p)}

for some p in X, then, since 0 < g,(p), min{f(p),g:(p)} = g.(p); and
g1(p) + g2(p) < f(p)—contradicting the hypothesis, f < g; + g,.

We shall note that the Riesz decomposition property causes the dual of
C(X) to have a lattice structure. To establish this, we must single out those
functionals on C(X) that preserve conjugation (that is, functionals p such that
p(f) = p(f), for each fin C(X)). We say that such a functional is hermitian
(compare the introductory remarks in Section 4.3). Note that if p is a linear
functional on C(X), then p*(f) = p(f) defines a linear functional p* on C(X).
If p, =3(p + p*) and p, = —(i/2)(p — p*), then p, and p, are hermitian and
p = p; + ip,, so that each functional on C(X) is a linear combination of two
hermitian functionals. If p is continuous, then so are p*, p,, and p,. In general,
little is lost by restricting attention to hermitian functionals. In this same line,
let us note that each state p of C(X) is continuous (and has norm 1). To see this,
we observe that — ||f]|1 <f < ||f]|l1 for each real function fin C(X); so that
— A1l < p(f) < ISl For arbitrary g in C(X), we see that (h, k) — p(k - h)
defines an inner product on C(X); so that, by the Cauchy-Schwarz inequality
(see Proposition 2.1.1(i)), when |jg|| < 1,

lo(1 - g)1> < p(lg?) -p(17) < 1. W

3.4.10. ProPOSITION. The hermitian linear functionals in the (norm-)dual of
C(X) form a lattice.

Proof. With p, and p, hermitian linear functionals on C(X) and fpositive
in C(X), define
M (pr v p2)(f) = sup{pi(f1) + p2(f2) /1, f2€ C(X),

0<f1,0<fa, f=hi + 1o}

Note that, with f1, f, as in (1),

lp1(f1) + o2 < llpall - AL+ He2ll - 20 < Al ddl + Nlp2DIA,

so that (p; v p,)(f) is finite. The decomposition f'= f+ 0 = 0 + festablishes
that p; < p; v poand p, < py v p,. If py < 7and p, < 1 for some hermitian
linear functional T on C(X), then '

p1(f1) + p2(f2) < t(f1) + 1(f2) = ©(f),

sothat p, v p, < 7. Once we show that p, v p, is linear on the cone of positive
elements, and, by routine technique, that its extension to C(X) is linear, we
shall have that that extension is a (bounded) hermitian linear functional on
C(X) that is a least upper bound for p, and p,.
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We assume, until further notice, that all functions appearing in the
argument are positive functions in C(X). Choose g,, g, and A, h, with g equal
to g, + g, and h equal to h; + h, such that p,(g,) + p,(g,) approximates
(p1 v p2)(g) and py(hy) + p,(h,) approximates (p; v p,)(h). Then

gi+hi+g2+h,=g+h,

and
p1(gy + hy) + p2(92 + h2) = pi(91) + p2(92) + pi(hy) + pa(ha)
< (p1 Vv p2)(g + h).
Thus ‘
2 (p1 Vv p2)@) + (p1 Vv p2)(h) < (py v p2)(g + h).

Suppose g+h=f, +/2 and p((f1)+ p2(/2) approximates (p, v p;)(g +h).
The Riesz decomposition property permits us to express f; as fi; + fi, and f; .
as fy1 + f, With fi; + f5, equaltog and f;, + f;, equal to A. The see this, note
that f; < g + h so that f, = f;, + fi,, where fi; <g and fi, <h. Thus

fo=g9+h—fi=9g—/fi1+h—f, Lettingf;, beg — fi and fo, be h — fi,,
we have the desired decomposition. Hence

p1(f1) + p2(f2) = p1(f11) + p1(f12) + p2(f21) + p2(f22)

<(p1 v p2)@) + (p1 Vv p2)(h).
Thus

3) (pr Vv p2)g+ 1) <(p1 Vv p2)@) + (p1 Vv p2)(h).

Combining (2) and (3), we have the additivity of p; v p, onthe cone of positive
elements.

If0 <a,f, + /2 =f and pi(f1) + p2(f2) approximates (p, v p,)(f), then
af| + af, = af, so that

a(p:(f1) + p2(f2)) < (py Vv p2)(@f).
Thus
a(p, v p2)(f) < (p1 v p2)(@).
But then
a”(py v p2)(@) < (p1 v p2)@ 'af) = (py v p2)(f).

Thus a(p; v p2)(f) = (p1 Vv p2)af).
Suppose, now, that f'is an arbitrary real-valued function in C(X). We can

express f as f; — f,, with f; and f, positive functions in C(X) (see Remark
3.4.9). Define (p; v po)(f)to be(py v p2)(f1) — (p1 Vv p2)(f2). I/ = g1 — g2
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with g, and g, positive functions in C(X), then f; + g, = g, + /5, so that

(p1 v p2)(f1 +92) = (p1 v p2)(f1) + (p1 Vv p2)G2) = (p1 Vv p2)g:1 + 12)
=(p1 v p2)(g1) + (p1 v p2)(S2),
and

(p1 v p2)(f1) — (p1 Vv p2)(f2) = (p1 Vv P2)(G1) — (p1 V P2)(g2).

Thus p; v p, asextended to the space of real-valued functions in C(X) is well
defined (single valued). The additivity and positive homogeneity of p; v p, on
the positive cone establish the additivity and homogeneity of p, v p, on the
space of real-valued functions in C(X). For arbitrary g in C(X), let (p; v p2)(9)

be (p1 v p2)(g1) + i(p1 Vv p2)(g2), Where g =g, + ig, with g, and g, real-
valued functions in C(X).
There is no difficulty in seeing that — ((— p,) v (— p,)) is a greatest lower
bound for p; and p, in the space of hermitian linear functionals on C(X).
The decomposition of an arbitrary function in C(X) as a linear com-
bination of positive functions combined with the observation (noted above)

[(p1 v p2)(O < il + lle2IDIA
for positive functions shows us that p; v p,, as extended to C(X), is
bounded. W
3.4.11. ProrosiTioN. If p is a (bounded) hermitian linear functional on
CX),p*t=pvO0,and p~ = — (p A 0), then
p=pt—p-, pTAp =0,
and
llpll = llp™l + llp~ll = p* (1) + p~(1).
Proof. With f a positive function in C(X),
pr(f) =sup{p(f1):0 < fi </, fie C(X)},
—p ()= Ar0)(f)=—((—=p) vO)S)
—sup{— p(9):0 < g < f, ge C(X)}
inf{p(9):0 < g <f,ge C(X)}
inf{p(f - f1):0 < f; </, f1e C(X)}
p(f) —sup{p(f£1):0 < f1 <f, fie C(X)}
=p(f) —p*(f)

“4)

Thus p=p* —p~.
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Again with f a positive function in C(X),
(0" A pO)f) = Inflp* () + p~(f = /):0 < fy </, f1 € C(X)}
=inf{p(f1) + p~(/):0 < fi </, /e C(X)}
=p (/) +inf{p(f1):0 < f1 </, /1€C(X)} =0

(see (4) above).

If tisa positive linear functional on C(X)and t(1) = 0, then t = 0 (since 1 is
an order unit), so that (1| = (1) = 0. If 7(1) # 0, then (1)~ !7 is a state of
C(X), and, as noted in Remark 3.4.9, ||t(1) '] = 1, so that ||z|| = ©(1). Thus

lell < llp™ll +1lp~ll = p™ () + p~(1)
=sup{p(f):0 < f< 1, fe C(X)}
— inf{p(9):0 < g <1, ge C(X)}.

For suitable fand g in C(X), satisfying 0 <f<1and 0<g <1, p(f) — p(9)
(= p(f — 9)) approximates p*(1) + p~(1), and

p(N) — p@ <llpll - IS — gll < lpll.
Hence p*(1) + p~(1) < |lp||, and this, with the previous inequalities, gives

ol =llp™ll +llp"Il=p* (M) +p~(1). W

3.4.12. REMARK. The decomposition of a bounded hermitian linear
functional pon C(X)asp* — p~ proved in Proposition 3.4.11 is a special case
(the commutative case) of the decomposition of positive linear functionals on a
C*-algebra established in Theorem 4.3.6. It is proved there that the decom-
position with the norm property ||p|| = |lp*|| + llp "l is unique. Of course, the
special case of C(X) is covered by this result. Nonetheless, it is useful to see an
argument for the uniqueness in this simpler case. With the assurance that a
precise proof is given for the general case, we can enjoy the luxury of arguing
loosely (and possibly, therefore, more lucidly).

Suppose, then, that p = p* — p~ and ||p|| = ||o*|| + |lp"|l. Choose f, in
C(X) so that || fol| = 1 and [|p]l = p(fo) = p* (fo) — p~ (o). (This can be done
only approximately, strictly speaking.) From this, p*(fy) =|lp*|| and
p~(fo) = — llp7II. Also p* (f3) = llp™ Il and p~(f§) = 0, where /3 = fo v 0.
If £ is a positive function in C(X) and 0 < g <f, with g in C(X), then
p@)=p (@ —p (9 <p (9 < p*(f). Since p*(N)=|lp*|l, p*(1—f5)=0.
As 1 —f§ =0, it follows from the Cauchy-Schwarz inequality applied to p*
(see the end of Remark 3.4.9) that

P (L =S (= p" (A =)A= [ =0.
Thus p*(f)=p*(ffs). Similarly p~(f5f) =0, since p~(f7)=0. Thus
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p(fe ) =p*(ff5) =p*(f). Now 0 < f5 f<f, so that
p(f) = sup{p(g):0 < g < f, fe C(X)},

which identifies p* with the construction in Proposition 3.4.11. Thus the
decomposition p=p* — p~, where |p||=|lp*ll+|lp"|l, and p*, p~ are
positive, is unique. If we replace the unwarranted assumption that ||p|| is
attained at some f;, by an approximation and argue along precisely the same
line, using estimates, a valid proof of the uniqueness results. W

3.4.13. Remark. If tisa positive linear functional on C(X), the set # of
functions fin C(X) such that 7(|f]?) = 0 forms a closed ideal in C(X) (use
Cauchy-Schwarz for 1 to prove this). From Theorem 3.4.1, .# is the set of
functions in C(X) vanishing on a closed subset of X. We refer to this closed
subset as the support of © and denote it by s(z).

The measure-theoretic approach views t as “integration” relative to an
associated positive measure 4 on C(X) (through the Riesz representation
theorem). In that context, s(t) is the support of the measure . If p is a bounded
hermitian linear functional on C(X), then p corresponds to a ““signed’’ measure
u, pTtou*,and p~ to u~, where u = u* — u~. The decomposition of u as
ut — u” is the Hahn-Jordan decomposition of . M

With the aid of the information we have accumulated concerning
functionals (in particular, states) on C(X), we can prove a crucial approxi-
mation theorem.

3.4.14. TueoreM. If o is a norm closed subalgebra of C(X), 1 € o4, fe of
if fe o, and, for each pair of distinct points p and p' in X, there is a function
fin & such that f(p) # f(p'), then o = C(X).

Proof. Suppose & # C(X). From the Hahn-Banach theorem (see
Corollary 1.6.3), there is a non-zero bounded linear functional p on C(X) that
annihilates /. We may assume that p is hermitian, since p* (see Remark 3.4.9)
also annihilates .«Z. The set of all hermitian functionals with norm at most 2 and
annihilating ./ is a weak* closed bounded convex subset of the (norm) dual of
C(X). Hence this set is weak* compact and is the closed convex hull of its
extreme points (from Corollary 1.6.6). Let  be such an extreme point. Then
n=n* —n", where n* and "~ are positive linear functionals on C(X) such
that 2 = ||n|| = |In*|| + |l || (from Proposition 3.4.11). Since 7 is 0 on &/, and
le s,

O=nl)y=n*W) =y~ ) =n"|l = lIn"Il
Thus
L=|n*l=n*1)=ln"ll=n"(1),

sothatn* and 5~ are states of .. We shall prove that #* and 5~ are pure states
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of C(X) (based on the extremal property of #). If this has been established,
then, from Theorem 3.4.7 and Corollary 3.4.2, there are points p, andp_ in X
such that n*(f) = f(p,) and n~(f) = f(p-) for all fin C(X). Since 5 # 0;
n* #n” andp, # p_. But

0=n(g) =n"(g) —n (9 =9(p:) —9(p-)
for each g in «/, contradicting the assumption that for some g in .«
g(p+) #9(p-)

It remains to show that n* and n~ are pure states of C(X). Using the
Cauchy-Schwarz inequality as in Remark 3.4.9, we see that the set £ of
functions f'in C(X) such that n*(|f]?) = 0 is a norm closed ideal in C(X) on
which " vanishes (see Remark 3.4.13, where .# is used to define the support of
n*). Suppose we have proved that 4* and #~ are multiplicative on . Then
F N & is a maximal ideal in /. From Zorn’s lemma, .# has an extension to a
maximal ideal ./ in C(X),and # n &/ = # n & Thus there is a multiplicative
linear functional extending the restriction of n* to .« If there were two distinct
such extensions, we would, again, have two distinct points of X at which all the
functions of .o/ take the same values; so there is one and only one multiplicative
extension of n* to C(X) from its restriction to & The set of all states of C(X)
that agree with »* on &/ is convex, weak* compact, and, hence, the closed
convex hull of its extreme points. Let t be one of these extreme points. If
1 =3(p, + p2), with p, and p, states of C(X), then {p, and 1p, are majorized
by n* on & (since their sumis t, hence, #* on 7). Thus p, and p, annihilate the
same positive functions in &/ as n* does; from which (again by using the
Cauchy-Schwarz inequality), p, and p, annihilate £/ As p(l)=
p2(1)=n*(1) and £~ o/ is the null space of n* (under the assumption
currently in force, that n* is multiplicative on &), it follows that p,, p,,and n*
coincide on & Thus T = p, = p, (from the extremal property of 7). Hence ris a
pure state of C(X) that agrees with n* on & From Theorem 3.4.7, 7 is
multiplicative on C(X), so that it is the unique multiplicative linear functional
on C(X) that agrees with n* on & It follows that the set of states of C(XX) that
agree with n* on o/ has a single extreme point and hence, consists of this
extreme point n*. Thus n* is multiplicative on C(X).

The foregoingis predicated on our showing that #* is multiplicative on ./,
which we proceed to do. With 0<f<1 and f in & if n*(f)
(= 1*((f"*)?)) = 0, then f /2 .#; so that fe.# and for each g in C(X), fge #
and n*(fg) = 0=n*"(Nn*(g). Similarly, if n*(f) =1, then 1 — fe.# and
(@) =n"@) =n"(f)n"(g9). Weassume 0 < f< 1, fe, and 0 # " (f) =
a# 1. For g in C(X), let n{(g) be a™'n*(f9), ny (9) be a~'n"(fg), n, be
i =i, i@ be (L—a) ' (1 =), 13 @) be (1 —a)"'n~ (1 —g),
and , ben; —n, . Thenn{,n{,n;,and n, are states, #, and n, are 0 on &/,
and an, + (1 — a)y, = n. Since n, and 5, have bound not exceeding 2 and 7 is
extreme in the set of hermitian linear functionals of norm not exceeding 2 that
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are 0 on &, we have that w=n, =n,. Thus yp=n —n; and
2 =|lnll = lln; Il + lln||. From the uniqueness of the decomposition of 4 as
n* —n~ (see Remark 3.4.12), n =", and a™'n*(fg) = n*(g) for all g in
C(X). Thus n*(fg)=an*(g) =n*(fIn*(9), when feo, 0<f<1, and
ge C(X). It follows at once that #* and ~ are multiplicative on /. W

3.4.15. REMARK. The preceding theorem is known as the Stone-
Weierstrass theorem. It was stated by M. H. Stone [22: Theorem (0] in the
form given and proved (as it usually is) by making use of the special case
discovered by K. Weierstrass where X is a closed bounded interval in R and .o/
is the norm closure of the set of polynomials on X. This special case (the
Weierstrass approximation theorem) can be reformulated as the assertion that
each continuous function on a closed bounded interval is the uniform (norm)
limit of polynomials on that interval. The Stone generalization allows us to
conclude, for example, that the same is true for continuous functions and
polynomials in # variables on a closed bounded cube in R". Another immediate
application includes the fact that (complex) linear combinations of the
functionsz —» z"(n =0, + 1, + 2,...) on the circle C, with center 0 and radius
1 in C are norm dense in C(C,) (since they form an algebra separating points,,
containing the constants and closed under complex conjugation). As uniform
approximation implies L, approximation for finite measure spaces, and the
continuous functions are dense in L, (in the L, norm), it follows that </ is
(L,-)dense in L,(C,). With fin L,(C)), let (Uf)(s) be f(expis) for sin (- =, 7).
Then U is a unitary transformation of L,(C,) onto L,(— =, n) carrying the
function z — z" onto s — exp ins. Thus (complex) linear combinations of the
functions {expins:n=0, + 1, + 2,...} (and, consequently, of 1, coss, sins,
cos 2s, sin2s,...) are (L,-)dense in L,(— =, 7).

An application of the Stone-Weierstrass theorem allows us to conclude
that C(X) is norm separable (that is, has a countable (norm) dense subset —
equivalently, is countably generated as a Banach algebra) when X is a compact
metric space. Note for this last that X contains acountable dense subset { p,} of
points (obtained by choosing one point in each set of a finite covering of X by
balls of radius 1/n for each positive integer n). If d is the metric on X and
f{(p) = d(p,,p), then the set {f,} separates points of X (for if { p,.} tends to p
and f,(p) = f,(q) for all n, then { p,-} tends to g, and p = ¢). Thus {f,} generates
a norm-dense (complex) subalgebra of C(X), and the finite complex-rational
linear combinations of finite products of functions in {f,} is a (countable)
norm-dense subset of this algebra, hence of C(X).

Concerning the hypotheses of the Stone-Weierstrass theorem, the example
of the subalgebra of functions in C(X) vanishing at some point p in X
underlines the necessity of assuming that the constants are in the subalgebra.
This assumption appears, first, at the stage where we decompose x and
conclude that #* and 5~ are distinct and ron-zero.
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The necessity of assuming something that restricts the class of closed
subalgebras containing the constants even further (in our case, the assumption
is that o is stable under complex conjugation) is illustrated by taking X to be
the closed disk D, of radius 1 with center 0 in C and ./ to be the norm closed
subalgebra of C(D,) generated by z, the identity transform on D, and 1. Then
&/ is the algebra of functions continuous on D, and holomorphic on the open
disk. In particular &/ does not contain Z; although 1€/ and z alone
“separates” points of D,. The assumption that &/ is stable under complex
conjugation appears, at the outset, when we locate a hermitian linear functional

annihilating /. W

The result that follows is crucial for our study of the spectral theory of self-
adjoint (and normal) operators on a Hilbert space (see Theorem 5.2.1). It
describes the topological property of X associated with a special (and
extraordinary) order property of C(X). When C(X) is a boundedly complete
lattice (see the statement of the theorem following), X will be “extremely
disconnected’ — the closure of each open set is open (as well as closed). Such an
X (with more than one point) is certainly disconnected —even “totally
disconnected’ (each pair of points can be separated by sets that are both open
and closed: clopen sets). What is not apparent, though, is that an extremely
disconnected space is “‘more than” totally disconnected.

The canonical example of a totally disconnected (infinite) compact
Hausdorff space X'is the countable product of two-point spaces {0, 1} (with the
product topology). Points of X can be represented as sequences of zeros and
ones. Convergence is coordinatewise. If (a,,a,,...) is a point of X and

rl(al,az,-..)zalz—l +a22_2+ e

then # is a continuous mapping of X onto [0, 1]. With r an irrational number in
[0, 1], let @ be n~'((r, 1]). If

r=a2"' +a27 %+ -+,
then (by,b,,...)€0 if and only if
ay=by,...,a = by, iy < by

for some positive k. Since ris irrational, a, is 0 and 1 for an infinite number of k.
Thus, with k large and g, , equal to 0, (a,,a,,...,a,1,0,0,...) is near
(ay,a,,...)and lies in 0. Hence (a,,a,,...)e O, the closure of (. If j is large
anda;,, =1, then (a,,a,,...,4;,0,0,...)isnear (a,,a;,...)and isnotin O~
(because no point of () agrees with it on the first j + 1 coordinates). Thus
(a;,a,,...) is not interior to O, and ¢~ is not open.

If no examples of (infinite) extremely disconnected compact Hausdorff
spaces are apparent, it is because these spaces, and their associated algebras of
continuous functions are primarily a (useful) mathematical artifice rather
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than a naturally occurring geometrical construct. With the aid of Theorem
5.2.1 and Example 5.1.6, we shall have examples of such spaces. For the
moment, we content ourselves with showing that X is extremely disconnected if
C(X) is a boundedly complete lattice.

3.4.16. THEOREM. [f each set of functions in C(X) that has an upper bound
in C(X) has a least upper bound in C(X) (so that C(X) is a boundedly complete
lattice), then each open set in X has an open closure (so that X is extremely
disconnected).

Proof. Let O be an open subset of X, ¢~ its closure, &# the family of
functions fin C(X) such that 0 < f< 1 and f(p") = 0if p’¢ O, and f, the least
upper bound of & in C(X). Since 1 is an upper bound for & f, < 1. If
pe0 there is an fin & such that f(p) = 1, so that fy(p) = 1 for each p in ©
(hence, for each pin 07). If p'¢ ©~, thereisa gin C(X) such that 0 < g < 1,
g(p) = 0,andg(p) = 1for pin @~ . Thus gis an upper bound for % and f, < g.
It followsthat fyis1on @0~ and 0 on X\ ~. As f, iscontinuous, ¢ " isopen. MW

3.5. Exercises

3.5.1. InRemark 3.1.3 the algebra 2, obtained from a normed algebra A
is defined. Complete the indicated check that 2, is a normed algebra, and that
A, is a Banach algebra when U is.

3.5.2. Let A be a Banach algebra over R, and let 2 be the Banach space
“complexification” of A described in Exercise 1.9.6. Define the product
(4, B)(C, D) to be (AC — BD, AD + BC). Show that:

(i) 1I(4, B)(C, D)l < 2|i(4, B)III(C, D)II;

(ii) A¢ has another norm ||| ||| relative to which it is a Banach algebra, the
identity mapping from (¢, || ||) onto (Ug, ||| |l|) isa homeomorphism, and the
mapping 4 — (4,0) is an isometric (real) algebraic isomorphism.

3.5.3. Let {U,:ac A} bea family of Banach algebras, and let 2 be the set
of functions f on A such that f(a) e, and

sup{|lf(@ll:ae A}(= |lfl) < co.

(i) Show that A, provided with the operations of pointwise addition,
multiplication, multiplication by scalars, and with the norm described, is a
Banach algebra. (It is usually denoted by “Y .4 @ U,.”” Compareit with the /,
spaces of Example 1.7.1.)

(i) With N in place of A, show that 2, the set of functions fin A such
that lim,_, .|| f(n)|| = 0 is a (norm-)closed proper two-sided ideal in 2.

(iii) Determine whether or not 2, is a maximal (two-sided) ideal in 2.
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3.5.4. With the notation of Exercise 1.9.19:

(1) Show that /, and ¢, provided with pointwise multiplication, are
(commutative) Banach algebras.
(i) Show that ¢, is a (norm-)closed proper ideal in /.
(ili) Describe a multiplicative linear functional on ¢ with ¢, as its null
space; and conclude that ¢, is a maximal ideal in c.
(iv) Is ¢y a maximal ideal in /,? Explain. Reconsider Exercise 3.5.3(iii).
[Hint. Consider “dimension” in combination with Corollary 3.2.5.]

3.5.5.  Let p(N) be the space of non-zero multiplicative linear functionals
on I,(N, C) (= 1) topologized with the weak* topology. Define f{p) to be p( f)
for p in B(N) and fin /.

(i) Note that S(N) is a compact Hausdorff space; and show that the
mapping, f - f, is an algebraic isometric isomorphism of /,, into C(B(N)).
(ii) Show that f = f. [ Hint. Consider the spectrum of a real-valued fin /,,
relative to /,.]
(iii) Show that 1 =1, where 1 denotes the constant function “one” in
both /,, and C(B(N)), and that 7, is (norm) closed in C(B(N)). Conclude that
I, = C(B(N)). (The space B(N) is called “the f-compactification of N.”)

3.5.6. With the notation of Exercise 3.5.5:

(i) Show that (N) is extremely disconnected.
(i) Letn*(f) be f(n)for nin N and fin /,, ; denote by N, again, the subset
{n*:ne N} of B(N). Show that N is dense in S(N).
(iii) Show that the one-point subset {n*} of B(N) is open in S(N). [ Hint.
Consider j,, where y,(m) is 0 unless n = m, and y,(n) = 1.]
(iv) Show that p(f) = 0 when pe f(N)\N and fec,.

3.5.7. Let G be a countable (discrete) group and {G,} an ascending
sequence of finite subgroups with union G. (Such a group is said to be locally
finite.) Let p be an element of (/,(G, C)?), such that p({1,1,...}) =1; and
define p, to be |G,| ™! ¥ seq, Ti(p), Where |G,| is the number of elements in G,,
and the bounded linear operator T,, acting on /,(G,C), is given by

[T,(H1(go) = flg™'g0)-

(i) Show that p,e(/.(G,C)"), and that p,({l,1,...})=1.

(i) Show that the weak* closure of {p,:ne N} contains an element p,
such that T;po = p, for every g in G, and such that po({1,1,...}) = 1. (The
functional p, is called an invariant mean on G.) [ Hint. With f in [ (G, C),
define a function ¢ on N by ¢(n) = p,(f). Fix x, in S(N)\N; and let po(f) be

@(x0).]
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3.5.8. Let 4 be an element of the Banach algebra 2 ; and let © be an open
subset of C containing spy 4. Show that there is a positive § such that
spaB < O if BeU and |4 — B|| <.

3.5.9. Let{A4,} beasequence of invertible elements in a Banach algebra 2
and suppose {4,} has a limit 4 that commutes with each 4,.

(i) Show, by example, that 4 need not be invertible.
(ii) Show that A isinvertibleif {r(4, ')} is bounded. [ Hint. Use Corollary
3.3.4.]

3.5.10. Givenanelement A of a Banach algebra U and a positive number
¢, show that:

(i) if Aissingular (thatis 0 esp 4), thereis a positive number §, such that
if B in A commutes with 4 and ||4 — B|| < d,, then there is a 1 in sp B with
[A] < &;

(ii) if Aesp A there is a positive number §, such that if B in 2 commutes
with 4 and ||4 — B|| < §,, then, for some A’ in spB, |1 — | <¢;

(iii) thereis a positive § such thatif |4 — B|| < § and AB = BA, with Bin
A, then sp A = S(B), where S,(B) = {1:|4 — A'| < ¢ for some A’ in sp B}.

3.5.11. Nilpotent and generalized nilpotent elements are defined follow-
ing the proof of Theorem 3.3.3 (the spectral radius formula). Use Proposition
3.2.10 to show, without the aid of the spectral radius formula, that:

(1) each nilpotent element in a Banach algebra has spectrum consisting of
0 alone;

(i) each generalized nilpotent element in a Banach algebra has spectrum
consisting of 0 alone.

3.5.12. Let {y;,y2,...} be an orthonormal basis for the (complex,
separable) Hilbert space J#. Let 4 be the linear transformation of # into #
that maps y, onto a,y.q., where {a,} is a bounded sequence of complex
numbers and 7 is a one-to-one mapping of {1,2,...} into itself.

(i) Determine ||A4]|.

(i) Describe A*, where k is a positive integer.

(iiy Determine ||4%)].

(iv) Determine ||4|| and ||4%| under the additional assumptions that
|a,| < la.| and n(m) < 7(n) when m < n.

(v) Show that 4 is nilpotent when a, = 0 for all nlarger than some k and
j<mn(j)forjin {1,...,k}.

(vi) Use Exercises 2.8.22(iv) and 2.8.23 to show that A4 is compact when
{a,} tends to 0.
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(vii)) Show that A is a compact generalized nilpotent operator on J# with
infinite-dimensional range when a, = 1/n and n(m) = m + 1.

3.5.13. As in Exercise 3.5.12, let {y,} be an orthonormal basis for the
Hilbert space J# and let Ay, be a,y,+,, where a, = 27* and k is the largest
positive integer such that 2* divides n.

(1) Show that

n—1
aay - ap-y = [[27777 (= b,);
j=1
and deducethat b, < ||4%"!||. [Hint. Observe that 2/ has 2"/~ ! odd multiples
among the numbers 1,2,...,2" — 1.]
(ii)) Show that A is not a generalized nilpotent operator.
(i) Let A4, y, be a,y,., except when n is an odd multiple of 2%, in which
case let 4,p, be 0. Show that each A, is nilpotent and that |4 — 4,|| — 0.
(iv) Deduce that the norm limit of nilpotent operators need not be
generalized nilpotent. What relation does this conclusion have to the “spectral
(semi-)continuity” considerations of Exercises 3.5.8 and 3.5.10?

3.5.14. With the notation of Exercise 3.5.12, show that:

(1) {a,} tends to 0 if 4 is compact (compare (vi) of Exercise 3.5.12);
(ii) Aisacompact generalized nilpotent operator on # when; < n(;) for
all j and {a,} tends to 0 (compare (vii) of Exercise 3.5.12).

3.5.15. Does each compact operator have a (non-zero) eigenvector?
(Example? Proof? See Exercise 2.8.29(ii).)

3.5.16. Can a non-zero self-adjoint operator be a generalized nilpotent
operator? (Example? Proof?)

3.5.17. Let 4 be a compact operator acting on a Hilbert space J#, 1 be a
non-zero complex number, and {x,} be a sequence of vectors in # such that
{(4 — Al)x,} converges in norm to a vector y in J#.

(1) Show thatif {||x,||} is unbounded, (4 — AI)x = 0 for some unit vector
x in .

(i) Show thatif {||x,||} is bounded, yisintherange of 4 — AL [ Hint. Use
Exercise 1.9.17(ii).] _

(iii) Show that the range of 4 — Al is closed if the null space of 4 — Al
is (0).

(iv) Showthatif Aesp A either Ais an eigenvalue of 4 or 1is an eigenvalue
of A*.
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3.5.18. Let s# be a Hilbert space and 4 be an operator on J# such that
Ax = x for some unit vector x in J#.

(1) Showthat A*y = yfor some unit vector yin # when the range of 4 is
finite dimensional.

(ii) Show that if 4 is compact, there is a sequence {4,} of operators on #
converging to 4 in norm, each A4, having finite-dimensional range, and such
that 4,x = x for all n. [Hint. Use Exercise 2.8.24(ii).]

(i) Show that if A4 is compact, 4*y = p for some unit vector y in J#.

(iv) Show that if 4 is compact and 0 # 1 esp 4, then 1 is an eigenvalue
of A.

(v) Suppose that Ax, = 4,x, (n = 1,2,...), where {4,} is a sequence of
distinct non-zero eigenvalues of 4 and each x, is a unit vector. Show that {x,} is
linearly independent and that (4y,, y,> = 4,, where {y,} is the orthonormal
sequence obtained from {x,} by the Gram-Schmidt orthogonalization process.

(vi) Deduce from (iv) that sp A is either a finite set or can be arranged as a
sequence of complex numbers tending to 0 and that each non-zero element in
sp A is an eigenvalue of A of finite multiplicity when A is compact.

3.5.19. Let A be the operator defined in Exercise 3.5.12. Assume that
Jj < n(j) for all j and a, — 0.

(i) Show that A4 has no non-zero eigenvalues.
(i) Show that A4 has no eigenvalues if a, # 0 for all n.
(iii) Deduce again (see Exercise 3.5.14(i1)), with the aid of Exercise 3.5.18,
that A4 is a (compact) generalized nilpotent operator.

3.5.20. Let # be L,(0, 1) relative to Lebesgue measure, and let (Kf)(s) be
|& f(t)dt for each fin #.

(1) Show that K is a Hilbert-Schmidt operator and a compact operator
on .
(i) Show that K has no eigenvalues.
(i) Deduce that K is a compact generalized nilpotent operator.

3.5.21. With the notation of Example 3.2.17, ¥ _ 1" "e, is an “cigen-
vector” for U in a formal sense even when |4| # 1. Pursue the argument of that
example to see how it fails to establish that each A in C is in sp(U).

3.5.22. Let X be a compact Hausdorff space and ./ be a subalgebra of
C(X). Suppose || || and || ||"” are norms on & such that &/ is complete relative
to || |I' and o has a completion o/, in C(X) relative to || ||”. Let || f]] be
sup{|f(x)|: xe X} for fin C(X).

(1) Show that || f|| < ||f|I" and ||g|| < ||g||” for fin & and g in /.
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(i) Show that & is complete relative to the norm that assigns
AN + 111" to fin /.

(i) Showthat||||"and ||| are equivalent norms on &/ (that is, the identity
mapping is a homeomorphism from & relative to || ||’ to & relative to || ||")
when &/ is complete relative to || ||”.

(iv) Without the assumption that o is complete relative to || ||, show that
the identity mapping from (<, || ||') to (&, || ||") is continuous.

3.5.23. Let # be a commutative Banach algebra, and let # be the
intersection of the maximal ideals of 4. (The ideal 2 is called the radical of %,
and 4 is said to be semi-simple when # = (0).) Let 2 be an arbitrary Banach
algebra and ¢ be a homomorphism of U into # mapping the identity of A onto
that of 4. Let " be the kernel of ¢.

(i) Show that ¢ maps " ~, the norm closure of ¢, into #. Deduce that

X is closed when # = (0).

(i) Show that if 4 is semi-simple, then 4 is isomorphic with a subalgebra
&, of C(X), where X is the compact Hausdorff space of non-zero multiplicative
linear functionals on 2 with the weak* topology. [ Hint. Let A(p) be p(A4), when
A€ and pe X.]

(iii) Show that if £ is semi-simple, then ¢ is continuous. [ Hint. Use the
mapping of (ii) and this mapping composed with the quotient mapping
A - A/ A" together with Exercise 3.5.22(iv).]

3.5.24. Establish the following inclusions for a pair of commuting
elements 4 and B of an arbitrary Banach algebra UA:

spa(AB) = spu(A) spu(B), spu(4 + B) < spy(A) + spu(B).

[Hint. Apply Proposition 3.2.10 to a maximal abelian subalgebra of .]

3.5.25. Let A be a normal operator acting on a Hilbert space J#.

(i) Show that 4 + alis a normal operator for each scalar a and that 4!
is normal when A4 is invertible.
(ii) Is the sum of two normal operators necessarily normal?
(i) Use Theorem 2.4.2(iv) to show that rg 4\(A4) = ||4]l.

3.5.26. Let A4, be a bounded operator on a Hilbert space J#, for n in
{1,2,...}, and suppose that {||4,]} is bounded. Let 4 be ¥ @ 4, and # be
Y @ #,. Show that:

1) LU | sPwr(An)]™ S SPaun(A);
(ii) the inclusion () becomes equality when each A, is normal.
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3.5.27. Let #, be an n-dimensional Hilbert space, {e,...,e,} be an
orthonormal basis for #,, N, be the linear operator on J#, determined by
N, =0and Nej=¢;_if l <j<n and 4,be /- N,.

(1) Show that |[4,|| <2 and that spg 4, (4,) = {1} for each n in
{1,2,...}.
(i) Show that A, is invertible in (s, with inverse I+ N, +
N2 4 -+ 4 N'~!' (= B,) and that ||B,|| = /n.

(i) Show that 0 espyx(A4), where 4 =Y ® 4, and # =Y @ H#,, and
deduce that the inclusion (x) of Exercise 3.5.26 is strict in the present case.

3.5.28. Suppose the singular element A in the Banach algebra Wis a norm
limit of the sequence {A4,} of regular elements in A and A, is a Banach
subalgebra of . Show that:

@) {14, "} tends to oo;

(i) ifB,=(4 ' —I)/I|A;* — I|[(when A~ ! # I), then {AB,} and {B,4}
tend to 0; (When a sequence such as {B,}, not tending to 0, with {4B,} and
{B,A} tending to 0, exists, we say that A is a (two-sided) topological divisor of
zero.) [Hint. Note that A(A, ' — ) =(4d — A)A;' = 1)— 4, + 1]

(iii) if B is a topological divisor of 0 in U, then B has no inverse in U;

(iv) if BeU, and 1 is a boundary point of spy,(B), then Aespy(B);

(v) if BeU, and either one of spy,(B) or spy(B) is real, then
SPai,(B) = spu(B).

3.5.29. Let 4 be an element of a Banach algebra A, and let fbe in H#(A).
Suppose f(z) = 0 for each z in sp(A4).

(1) Show that f(A4) = 0 if sp(A) is infinite and connected.
(i) Find an example where sp(4) is connected but not infinite and
f(A4) #0.
(i) Find an example where sp(A) is infinite but not connected and
f4) # 0.

3.5.30. Let s be a Hilbert space and A be an isolated point of sp 4 with
sp A\{1} non-empty and 4 in B(#). Let D be an open disk with center A and ¢
be an open set disjoint from D containing sp A\{4}. Does the idempotent g(A4),
obtained from the function g that takes the value 1 on D and 0 on ¢, necessarily
project onto a subspace of eigenvectors for 4 corresponding to A?

3.531. Let A, and A, be Banach algebras with units /; and 7,,
respectively. Let ¢ be a homomorphism or anti-homomorphism (that is,
@(AB) = @(B)p(A)) of A, into A, such that () =1,.
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(i) Show that spe,(¢(A4)) < spe,(4) for each 4 in A, .
(i) Show, by example, that the inclusion of spectra described in (i) can be
proper.

3.5.32. Let . beaclosed leftideal in a Banach algebra U, and let .4 be a
closed right ideal in . Let & and % be the quotient Banach spaces U/.# and
UA/N, respectively.

(i) Show that ¢(A4) and y/(A) are bounded linear operators on Z and %,
respectively, for each 4 in A, where

O(A)NB+ M)=AB+ M, Y(AYB+ A)=BA+ N

(i) Show that ¢ is a bounded homomorphism and ¢ is a bounded anti-
homomorphism of U into #(Z) and A into B(%¥), respectively, and that ¢(/)
and (/) are the respective identity operators on Z" and #.

3.5.33. With Z the additive group of integers and f, g complex-valued
functions on Z, let f'* g be the function whose domain consists of those integers
sfor which ¥,z f(t)g(s — t) converges and whose value at sis the sum. (We call
f*g the convolution of fand g.) Show that:

(D) fxg=g=f;

(i) if fel,(Z) and gel,(Z) (where 1 < p), then fxgel,(Z) and
1/ *gll, < LAy llgllps

(iii) if fel(Z), g and h are in [,(Z), and aeC, then fx(a-g + h) and

a-fxg+ fxharein [,(Z) and
fx@ g+hy=a fxg+[f«h;

(iv) iff,geli(Z)and hel,(Z),then (f+g)*hand fx(g=*h)arein/,(Z)and

(f*g)xh=[fx(g=h)

(v) Conclude that /,(Z), provided with the mappings (f,g) = f*g and
f=11fll;, is a commutative Banach algebra with unit e, where ¢(0) = 1 and
e(t)=0if t £ 0.

3.5.34. (1) Show that for each z in T, the equation
L) =2 (te2)
defines a homomorphism &, of the additive group Z into T,. (We call such a
homomorphism a character of Z.) _

(ii) Show that the set Z of characters of Z provided with the multipli-
cation (& - &)(t) = &(t) - &(¢) for tin Z is a group. (We call Z the dual group
of Z.)

(iii) Show that the mapping z — &, is an isomorphism of T, onto Z.
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3.5.35. Using the notation of Exercises 3.5.33 and 3.5.34, let £ (= £,) be a
character of Z. Show that:

(1) the formula

(*) p:(N) = LAOEW (=]@)  (feli(@)
teZ

defines a non-zero multiplicative linear functional on /,(Z);

(i) each such functional on /,(Z) corresponds to a (unique) point z in T,
by means of (x);

(iii) the function f defined in () is continuous on T,, and the mapping
z — p, of T, onto the set .#(Z) of non-zero multiplicative linear functionals on
11(Z) is a homeomorphism of T, onto .#(Z) with its weak* topology.

3.5.36. Let (s) be expis for s in [ — 7, n), and let m(S) be the Lebesgue
measure of 7~ !(§) divided by 2n when S is a subset of T, such that y~*(S) is
Lebesgue measurable.

(i) With the notation of Exercise 3.5.35, show that the mapping f — f of
1,(Z) into C(T,) is linear and satisfies

Y@= J |f2)I? dm(z).
T,

teZ

(ii) Show that the mapping f— fof (i) extends to a unitary transforma-
tion of /,(Z) onto L,(Ty,m).

[Compare the results of (i) and (ii) with the Plancherel theorem (3.2.31).]

3.5.37. Withthe measure m on T, introduced in Exercise 3.5.36, define the
convolution of m-measurable functions fand g on T, as the function '« g whose
domain consists of those w in T, for which the integral [ f(z)g(z™'w) dm(z)
converges and whose value at w is this integral. Show that (i)-(v) of Proposition
3.2.22 hold for this convolution (where T, replaces R in those assertions).

3.5.38. With rin Z and z in T, let &(z) be z".

(1) Show that &, is a continuous homomorphism of T, into T, (a character
of T,) and that each such homomorphism has the form ¢, for some ¢t in Z. [ Hint.
Recall the form of the characters of R.]

(i) Show that the set T, of characters of T, provided with pointwise
multiglication is a group and that the mapping ¢ — £, is an isomorphism of Z
onto T,.
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3.5.39. Usingthe notation of Exercises 3.5.37 and 3.5.38, let p, be given by
the formula

(*) pdf) = J f@E)dmz) (=f(1))  (feLy(Ty,m)).
T

(1) Show that p, is a non-zero multiplicative linear functional on
L,(T,,m) for each ¢ in Z.

(ii)) Show that each non-zero multiplicative linear functional on
L(Ty, m)is p, for some ¢ in Z. [ Hint. Make use of the fact that {£, : r € Z} spans
a dense linear suspace of L(Ty,m) and &, x £ = 0 when r # s to give a shorter
argument than the one patterned on the proof of Theorem 3.2.26.]

(iif) Show that the set .#(T,) of non-zero multiplicative linear functionals
on L,(T;,m) is not weak* compact. Deduce that L,(T;,m) does not have an
identity element. [ Hint. Compute p,(¢_,) for r and ¢ in Z.]

(iv) Let «/4(T;) be the Banach algebra obtained from L (T,,m) by
adjoining an identity / (as in Remark 3.1.3). Let p, be the (non-zero)
multiplicative linear functional on &/,(T,) that assigns 1 to / and 0 to each fin
L,(Ty, m). Denote by p; the (unique) non-zero multiplicative linear functional
on «/,(T,) extending p,. Show that {p, p;:t€Z} (= M (T,)) is the set of all
non-zero multiplicative linear functionals on «/y(T;) and that the mapping A’
of . o(T,) onto the one-point compactification {Z, oo} of Z that assigns oo to
P« and ¢ to p; is a homeomorphism of #,(T,) with its weak* topology onto
{Z, ©0}.

(v) Show that

lim |f@)l =0  (feLy(Ty,m)).

Il =

3.5.40. Let Sf be f (as defined in Exercise 3.5.39) for fin L,(T;,m)
(< Ly(Ty,m)), and let T be the unitary transformation of /,(Z) onto L(T,,m)
described in Exercise 3.5.36(ii).

(i) Show that S'is a unitary transformation of L,(T,,m) onto /,(Z).

(ii) Let U be the (self-adjoint) unitary operator on L,(T;, m) that maps &,
onto ¢_, for each ¢ in Z. Show that

TSU() =f  (feLy(Ty,m))
and
SUT(9) =g  (gel(Z)).
(iiiy Deduce that
T*=T"'=SU
and
S*=8"1=UT.
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3.5.41. Let L,(R) denote the Banach algebra formed by providing L,(R)
with convolution multiplication. With fin L;(R), denote by f, the “translate”
of f by the real number r (f,(t) = f(t — r)). Let # be a norm-closed linear
subspace of L;(R).

(i) Show that if # is an ideal in L,(R), then .# is invariant under
translations (that is, f, € # when fe .#). [ Hint. Use the approximate identity of
Lemma 3.2.24 and (5) of Section 3.2.]

(i) Show that if .# is invariant under translations, it is a (norm-closed)
idealin L,(R). [ Hint. Use the Hahn-Banach theorem to support the “view” of
g*fas | g(t)f,dr and recall the identification of the dual of L,.]

(iii) Show that if the span of the translates of a function fin L,(R) is norm
dense in L,(R), fvanishes nowhere on R. (With its converse, this is one of the
main theorems in a body of work known as ‘“Wiener’s Tauberian theorems.™)

3.5.42. Let L(T,,m)be the Banach algebra described in Exercise 3.5.37.
With fin L,(T,, m), denote by f,, the “‘translate” of fby w (£,,(z) = f(zw)). Let
# be a norm-closed linear subspace of L(T,,m).

(i) Show that the sequence {v,} satisfies

/% va = fll, =0

asn — oo, where v, = 2n(u,>n '), {u,} is the “approximate identity” described
in Lemma 3.2.24 and 7 is defined by #n(s) = exp is.

(i) Show that if .# is an ideal in L,(T;,m), then .# is invariant under
translation.

(iii) Show that if .# is invariant under translation, it is a (norm-closed)
ideal in L,(T;,m).

(iv) Show that if the span of the translates of a function fin L,(T,,m) is
norm dense in L,(T,,m), then f(r) # 0 for each ¢ in Z.

3.5.43. Let U be a Banach algebra and A4 be an element of A such that
spa(A) = C\R™, where R™ = {z:z€C, z = — |z{}.

(i) Show that there is an element A, in U such that (4,)*> = 4. (The
element A, is said to be a square root of A in U.)
(i) Deduce that if Be % and ||/ — B|| < I, then B has a square root in 2.

3.5.44. Let 4 be an element of the Banach algebra U.

(1) Showthatifspy(4) = {4:1€eR,0 < 4}, then 4 hasa squarerootin A
with positive spectrum.
(ii) If the hypothesis of (i) is weakened to

spa(A) = {A:1eR, 0 < 4} (= RY),



234 3. BANACH ALGEBRAS

does A still have a positive square root in U? [ Hint. Consider

o o]

00

in the Banach algebra of complex 2 x 2 matrices.]
(iii) Show that if

spa(4) = R*

and ||B|| = rq(B) for each B in the Banach subalgebra U, of A generated by 4
and 7/, then A has a square root in U, with spectrum (relative to ) in R*.

[Hint. Study the square roots of 4 + n~ !/ as n — co and use Remark 3.2.11
applied to Ay.]

3.5.45. Let p be a hermitian functional on C(X), where X is a compact
Hausdorff space. Suppose ||p|| = p(1).

(1) Use Proposition 3.4.11 to show that p is a positive linear functional
on C(X).

(i) Show that p is a positive linear functional on C(X) without using
Proposition 3.4.11.

3.5.46. Let X beacompact Hausdorff space and .« be a closed subalgebra
of C(X) containing the constant functions and containing f when fe .o/

(1) Show that if f'is a real-valued function in ./, A €sp,(f), and 4 is not

real, then there is a real-valued function g in &/ such that iespy(g).

(ii) Withgasin (i), showthaty *  (— ig)"/n!(= exp(— ig))isanelement
of .o/ of norm 1.

(iii)) Use a multiplicative linear functional on &/ to show that
eespy[exp(— ig)].

(iv) Conclude that sp,(f) < R for each real-valued function fin .«

(v) Conclude that spy(f) = R, again, with the aid of Exercise 3.5.28(v).

3.547. Let C(X) and .o/ be as in Exercise 3.5.46 and let the partial
ordering of the (real) algebra .o, of real-valued functions in . be that induced
by the partial ordering of C(X, R).

(i) Show that each (non-zero) multiplicative linear functional p on &/
has an extension p’ to C(X) such that p’ is a state of C(X).
(i) Show that p is a pure sfate of .o/,
(iii) Show that the set & of state extensions of p to C(X) is convex and
weak* compact.
(iv) Show that each extreme point of & is a pure state of C(X).
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(v) Conclude that p has an extension to C(X) that is a (non-zero)
multiplicative linear functional on C(X).

3.5.48. Let C(X) and .o/ be as in Exercise 3.5.46.

(i) Show that sp,(f) = spcx,(f) for each fin o/
(i) Use Exercise 3.5.44 to show that if fis a positive function in &/, then
the (unique) positive square root of fin C(X) lies in of.
(iii) Conclude that |f|e .o when fe.«/

3.5.49. Let X be a compact Hausdorff space, and let ¥ be a subset of
C(X, R) such that, with fand g in .%, & contains f v g and f A g (in this case,
£ is said to be a sublattice of C(X, R)). Suppose that for each pair r, s of real
numbers and each pair p, ¢ of distinct elements of X there is an fin % such that
f(p) =r and f(g) = 5. Show that ¥ is norm dense in C(X, R).

3.5.50. Combine the results of Exercises 3.5.48 and 3.5.49 to give another
proof of the Stone-Weierstrass theorem (3.4.14).



CHAPTER 4

ELEMENTARY C*-ALGEBRA THEORY

In this chapter we study a special class of Banach algebras, termed C*-
algebras, the ones that have an involution with properties parallel to those of
the adjoint operation on Hilbert space operators. With X a compact Hausdorff
space and s a Hilbert space, C(X) and #(:#) are examples of C*-algebras,
and so is each norm-closed subalgebra of %(#) that contains the adjoint of
each of its members. Two basic representation theorems (4.4.3 and 4.5.6) assert
that, up to isomorphism, these are the only examples; every C*-algebra can be
viewed as a normed-closed self-adjoint subalgebra of %(#°), for an appropri-
ate choice of #, and every abelian C*-algebra is isomorphic to one of the form
C(X).

Earlier sections of the chapter are devoted to studying the spectral theoretic
properties of certain special elements in C*-algebras and the order structure in
such algebras and in their Banach dual spaces. These are basic tools, both for
the proofs of the representation theorems just cited, and also for all the
subsequent theory.

4.1. Basics
By an involution on a complex Banach algebra A, we mean a mapping
A - A*, from U into A, such that

(i) (aS + bT)* = aS* + bT*,
(i) (ST)* = T*S*,
(i) (T** =T,
whenever S, Te A and a, be C and a, b denote the conjugate complex numbers.
A C*-algebra is a complex Banach algebra (with a unit element /) with an
involution that satisfies the additional condition

(v) [IT*TI=TII> (Te¥.

This last condition ensures that the involution in a C*-algebra preserves norm
(and is therefore continuous); for

T2 = NT*TI < IT*II T,

236
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whence ||T|| < ||T*||, and we obtain the reverse inequality upon replacing T’
by T*.

We have already encountered several examples of C*-algebras. If # is a
Hilbert space, #A(#) is a C*-algebra, with the adjoint operation as its
involution; indeed, the defining conditions (i)-(iv) above are abstracted from
the properties of adjoints of Hilbert space operators, as set out in Theorem
2.4.2 and the discussion that follows it. Several Banach algebras of complex-
valued functions are C*-algebras, with an involution that assigns to an element

f the conjugate complex function 7, defined by f{x) = f(x). In this way, the
Banach algebra C(X), of all continuous functions on a compact Hausdorff
space X, becomes a C*-algebra. The same applies to the Banach algebra /,(X)
of all bounded functions on an arbitrary set X (with pointwise algebraic
operations and supremum norm), and to the Banach algebra L_ (S, & m) of all
essentially bounded measurable functions (with pointwise algebraic operations
and essential supremum norm), associated with a measure space (S, & m).

We now introduce some terminology, concerning elements of a Banach
algebra A with involution, and note certain immediate consequences of
conditions (i)-(iv) above. Motivated by the example of the algebra (), we
refer to A* as the adjoint of A (e W), and describe A as self-adjoint if A = A*,
normal if A commutes with A*, unitary if A*4 = AA* = I. With S = I'* and
T = I, it follows from (ii) and (iii) that /* = I; so the unit element /is both self-
adjoint and unitary. The set of all self-adjoint elements of U is a real vector
space, while the unitary elements form a multiplicative group, the unitary
group of A. Each 4 in A can be expressed (uniquely) in the form H + (K, where
H (=34 + A*)) and K (= 3i(4* — A)) are self-adjoint elements of 2, the
“real”” and “imaginary” parts of 4 ; moreover, 4 is normal if and only if H and
K commute. From (ii), 4 is invertible if and only if 4* is invertible, and then
(A~ H* = (4*)~ . By applying this result, with al — 4 and its adjoint al — 4*
in place of 4 and A*, it follows that the spectra of 4 and A4* satisfy

sp(A*) = {a@: aesp(A)}.

Accordingly, these elements have the same spectral radius, r(4*) = r(A4).

If A and £ are Banach algebras with involutions, a mapping ¢ from 2 into
A isdescribed as a * homomorphism if it is a homomorphism (that is, it is linear,
multiplicative, and carries the unit of 9 onto that of ) with the additional
property that @(4*) = @(A)* for each A in . If, further, ¢ is one-to-one, it is
described as a * isomorphism. Although we impose no continuity condition in
these definitions, we shall see later (Theorem 4.1.8) that * homomorphisms do
not increase norm and * isomorphisms are norm preserving, when 2 and 4 are
C*-algebras.

If 9 is a Banach algebra with involution, a subset # of U is said to be self-
adjoint if it contains the adjoint of each of its members. A self-adjoint
subalgebra of U is termed a * subalgebra. If the involution is continuous (in
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particular, if A is a C*-algebra), the closure of a * subalgebra is again a *
subalgebra. It is clear that a closed * subalgebra 2 of U that contains the unit of
W is itself a Banach algebra with involution; if, further, A is a C*-algebra, then
so is 4. In this last case, we describe # as a C*-subalgebra of U.

The proposition that follows extends, to appropriate elements of a C*-
algebra, the information concerning Hilbert space operators contained in
Theorem 3.2.14, together with Proposition 3.2.15 and the comments following
it.

4.1.1. ProposiTION. Suppose that A is an element of a C*-algebra U.
() If A is normal, r(A) = ||4]|-

(i) If A is self-adjoint, sp(A4) is a compact subset of the real line R, and
contains at least one of the two real numbers t ||A|.

(iii) If A isunitary, ||A|| = 1 and sp(A) is a compact subset of the unit circle
{aeC:la| = 1}.

Proof. (i) With H self-adjoint in A and n a positive integer,
lH?"| = |((H™*H"|| = ||H"||*. By induction on m, ||H|| = ||H||? when g has the
form 2™ (m = 1,2,...); so, by Theorem 3.3.3,

r(H) = lim ||H9||'" = ||H]||.
q—
With 4 normal and H the self-adjoint element A*4, it follows from the

preceding argument, together with Corollary 3.3.4 and the C* property of the
norm, that

411> = [|4*A|| = r(4*4)
< r(d*)r(4) = r(4)* < ||4I1%;

50 r(4) = ||All.

(i) With 4 self-adjoint in U, sp(4) is compact (Theorem 3.2.3) and so
contains a scalar with absolute value r(4); and r(4) = ||4||, from part (i) of the
present proposition. Consequently, if suffices to prove that sp(4) = R. For
this, suppose that cesp(4), where ¢ =a + ib. For each integer n, let
B, = A — al + inbl, and observe that

i(n+ 1)b=a+ ib— a + inbesp(B,).
Accordingly
(n* +2n 4+ 1)b? = |i(n + D> < [7(B)] < ||B,|I?
= IB*B,| = (4 — al — inbIXA — al + inbI)|
= (4 = al)? + n?b?1|| < ||4 — al||* + nb>.
Thus 2n + D2 < ||[A —al|*(n=1,2,...); 50 b=0, and c = aeR.
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(iii) With A4 unitary in 2, it results from the C* property of the norm that
41> = l4*4]l = 11| = 1,
so ||4|| = 1. With a in sp(4), we have
a~'esp(4™") = sp(4¥);
hence
lal <lAll=1, la™' <ll4*| =1,
and thus || =1. W

4.1.2. CorOLLARY. If A isanormal element of a C*-algebra W, and A* = 0
for some positive integer k, then A = 0.

Proof. Since A" = 0 when n > k, it results from Proposition 4.1.1(i) that
lI4]| = r(4) = lim||4"|*"=0. W

Suppose that 4 is a self-adjoint element of a C*-algebra A, and denote by
C(sp(A4)) the C*-algebra of all continuous complex-valued functions on the
spectrum sp(4). We now introduce the (continuous) function calculus for A, a
mapping that associates with each fin C(sp(4)) an element f(4) of A. The
existence and properties of this mapping are the subject of Theorems 4.1.3,
4.1.6, and 4.1.8(i1) and Propositions 4.1.4 and 4.2.3(i) below. At a later stage
(Theorem 4.4.5) we shall construct a similar function calculus for a normal
element of a C *-algebra. For self-adjoint elements, the two methods lead to the
same function calculus; Remark 4.4.6, Theorem 4.4.8, and Example 4.4.9
provide information that, even in the self-adjoint case, is not contained in the
other results just cited.

4.1.3. THEOREM. If A is a self-adjoint element of a C *-algebra U, there is a
unique continuous mapping f — f(A): C(sp(4)) — U such that

(1) f(A) has its elementary meaning when f is a polynomial.

Moreover, when f, g e C(sp(A)) and a,beC,

@) I/ = I/l
(i) (af + bg)(A) = af (4) + by(4);
(iv)  (f9)(A4) = f(A)g(A4);
) F(A) = [f(A)]*, where f denotes the conjugate complex function; in
particular, f(A) is self-adjoint if and only if f takes real values throughout sp(A);
(vi) f(A) is normal,
(vii) f(A)B = Bf(A) whenever Be W and AB = BA.

Proof. By Proposition 4.1.1(ii), sp(A4) is a compact subset of the real line.
The Weierstrass approximation theorem shows that the set P of all
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polynomials with complex coefficients, considered as a subset of C(sp(4)), is
everywhere dense. If p is such a polynomial, say

pt)y=ao +art + art> + - + a,l",
then
p(A) =aol + a1 A + a,A> + -+ + a, A",
[p(A)J* = ol + @A + @, 4> + -+ + a,4"

Hence p(A) and [ p(4)]* commute; that is, p(4) is normal. From the spectral
mapping theorem for polynomials (see Proposition 3.2.10), together with
Proposition 4.1.1(1),

| p(AI = r(p(4)) = max{|s|: sesp(p(4))}
= max{|p(n)|: resp(4)} = | pll

(the norm of p as an element of C(sp(A4))). If two distinct polynomials p and ¢
are identically equal on sp(A4), we can replace p by p — ¢gin the above argument,
and deduce that p(4) = ¢q(A4); of course, this question arises only when sp(4) is
finite.

The preceding argument shows that the linear mapping p — p(4): P —» Wis
well defined and continuous (in fact, isometric). Since U is complete and P is
everywhere dense in C(sp(A4)), there is a unique extension to a continuous
mapping f - f(4): C(sp(A)) - 2.

We have now proved the existence of a unique continuous mapping
f— f(A)satisfying condition (i) in the theorem. In view of the above argument,
each of the remaining properties (ii)-(vii) is easily verified when f and g are
polynomials, and by continuity remains valid for all fand g in C(sp(4)). A

Clauses (1)-(v) of Theorem 4.1.3 amount to the assertion that the function
calculus f — f(A4): C(sp(A4)) —» Wis an isometric * isomorphism that carries the
identity mapping on sp(4) to the self-adjoint element A4 of A. Since C(sp(A4)) is
a complete metric space, the same is true of its image { f(A4): fe C(sp(A4))} in A,
so this set is an abelian C*-subalgebra W(A4) of A, containing I and 4. Since
polynomials form an everywhere-dense subset of C(sp(4)), each element of
A(A) s the limit of a sequence of polynomials in 4. A closed subalgebra 4 of A
that contains 7 and A4 necessarily contains all polynomials in 4 and therefore
contains A(A4). We have now proved the following result.

4.1.4. ProposITION. IfAisa _@f—adjoint element of a C*-algebra U, the set
{f(A):fe C(sp(A))} is an abelian C*-subalgebra W(A) of W, and is the smallest
closed subalgebra of W that contains I and A. Each element of W(A) is the limit of
a sequence of polynomials in A.
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Suppose that A is a complex Banach algebra, 4 is a closed subalgebra that
contains the unit 7 of A, and Be A. If ae spy(B), then al — B has no inverse in
A ; accordingly, it has no inverse in %, so aespg(B). Hence spy(B) = spg(B),
and Example 3.2.19 shows that strict inclusion can occur. By use of the
function calculus described in Theorem 4.1.3, we now show that the two
spectra coincide when 2 and 4 are C*-algebras.

4.1.5. ProposiTioN. If W is a C*-algebra, # is a C*-subalgebra of W, and
Be B, then spy(B) = spa(B).

Proof. Asnoted above, spy(B) = spg(B). In order to establish the reverse
inclusion, it suffices to prove the followingresult: if 4 € 4, and 4 has an inverse
A 'in U, then 4" 1€ 4.

We consider first the case in which 4 is self-adjoint. Since 0¢ spy(A4), the
equation f(7) = ¢! defines a continuous function on spy(A4). By means of the
function calculus for 4 relative to A, we obtain an element f(4) of A, and
deduce from Proposition 4.1.4 that f(4)e #. Since tf(¢) =1 for each ¢ in
spu(A4), it follows from Theorem 4.1.3(1)) and (iv) that Af(4)=1; so
A7V =f(A)eA.

Consider next a (not necessarily self-adjoint) element 4 of 2 that has an
inverse Cin . Then 4* lies in # and has inverse C* in . Since 4* 4 is a self-
adjoint element of 4, with inverse CC* in U, it follows from the preceding
paragraph that CC* e 4. Accordingly, 4™ ! = C = (CC*)4*c%. 1A

In the circumstances considered in Proposition 4.1.5, we can now omit the
suffices A and 4, and denote by sp(B) the spectrum of B relative to either
algebra.

From the preceding proposition, if 4 is an invertible self-adjoint element of
a C*-algebra 9, then 4~ ! is the norm limit of p,(A4), with each p, a polynomial
(for this, in the proposition take for & the C*-subalgebra generated by 4 and
I). This can be strengthened as follows. If 4 is self-adjoint and has inverse 4!
in 9, then there is a sequence { p,} of polynomials without constant terms such
that ||p,(4) — A7 1| - 0. To see this, extend ¢~ ! on sp(4) to a continuous
function fon an interval containing sp(4) and 0, so that f(0) = 0. From the
Weierstrass approximation theorem, f is the norm (uniform) limit of poly-
nomials g, on this interval. Of course, ¢,(0) — f(0) = 0. Thus the polynomials
p, obtained from g, by omitting the constant terms (g,(0)) tend to fin norm on
this interval ‘(hence on sp(4)). From (i) and (ii) of Theorem 4.1.3,
[|pa(4) — f(A)|| = 0, and from (i) and (iv) of that theorem, f(4) = 4~ L.

Our next result is another spectral mapping theorem (compare Theorem
3.3.6).

4.1.6. THEOREM. If A is a self-adjoint element of a C*-algebra N, and
f€ C(sp(A)), then

sp(f(4)) = {f(1): tesp(4)}.
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Proof. In view of Propositions 4.1.4 and 4.1.5, we can interpret sp( f(A4))
as the spectrum of f(A) relative to the C*-subalgebra

A(A) = {g(A):ge C(sp(4))}

of 2. Since the function calculus g —» g(A4): C(sp(4)) - U is a * isomorphism
from C(sp(4)) onto A(A), it follows that sp( f(4)) coincides with the spectrum
of f as an element of C(sp(d4)); that is, by Remark 3.4.4,

sp(f(4)) = {f(1):tesp(4)}. W

We conclude this section with some further applications of function
calculus.

4.1.7. THEOREM. Each element A of a C*-algebra W is a finite linear
combination of unitary elements of U.

Proof. 1t is sufficient to consider the case in which 4 is self-adjoint and
[l4]] < 1. In these circumstances, sp(A4) is a subset of the interval [ — 1, 1], and

we can define fin C(sp(4)) by () =t + i\/1 — >. Since

t=3f0+f0),  fOF@O=FOf)=1,
for each ¢ in sp(4), it follows that the element f(A4) (= U) of U satisfies

A=3U+ U*), vux=U0xU=1 1

Suppose that A is a C*-algebra, 4 = A*e, and f is a continuous
complex-valued function whose domain includes sp(4). We denote by f(A4) the
element of U that, in the function calculus for 4, corresponds to the restriction
fIsp(A). This convention is used in Theorem 4.1.8(ii), where we refer to f(¢(A4))
although the domain of f may be strictly larger than sp(¢p(A4)).

4.1.8. THEOREM. Suppose that W and B are C*-algebras and ¢ is a *
homomorphism from U into A.

(i) Foreach Ain W, sp(p(A)) = sp(A4) and ||p(A)|| < ||4||; in particular, ¢
is continuous.
(it) If A is a self-adjoint element of W and fe C(sp(A4)), then p(f(A)) =
f(@(A).
(i) If @ is a* isomorphism, then ||p(A)|| = ||4|| and sp(p(A4)) = sp(4) for
each A in W, and p(N) is a C*-subalgebra of A.

Proof. (i) Theunitelements of A and # will both be denoted by 7, since
the context in each case indicates which one is intended. With 4 in 2, we prove
first that sp(p(A4)) < sp(A4). For this, if a¢ sp(A4),al — A has an inverse Sin 2
since @(I) =1, al — p(A) has inverse ¢(S) in B, so a¢sp(p(4)); hence
SP(p(A)) < sp(A).
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With A4 in 2, it results from Proposition 4.1.1(i) that
(M NAII* = (| 4* All = r(4*4),
llo(ADII? = llp(A)* (Dl = llp(4* Dl = r(p(A*A4)).

Since sp(gp(A*A)) = sp(A4*A4), we have r(p(4*A)) < r(4*A4), and therefore
T
GCA < 14l

@) If {p,} is a sequence of polynomials tending to funiformly on sp(A4)
(hence, from (i), on sp(p(4))), then @(p,(4))— @(f(4)) and p,(p(4))—
f(@(A4)). Since ¢(p(A4)) = p.(p(A4)) for each n (because ¢ is a homomorphism),
(ii) follows.

(i) Suppose now that ¢ is a * isomorphism. With B self-adjoint in ¥, it
follows from (i) that sp(e(B)) < sp(B). If strict inclusion occurs, there is a non-
zero element f of C(sp(B)), whose restriction to sp(p(B)) is identically zero.
From part (ii) of the theorem, we have

f(B)#0,  o(f(B)) =f(e(B) =0,

contrary to the assumption that ¢ is one-to-one. Hence sp(p(B)) = sp(B), and
so r(@(B)) = r(B), for each self-adjoint B in A.

With 4in Wand B = 4*4, it follows from the preceding paragraph and (1)
that

1411 = r(4*4) = r(p(4*4) = llp(ADI*,  llo(AIl = lI4].

Since A is a complete metric space and ¢:A - # is an isometry, the *
subalgebra () of Z is closed, contains /, and is therefore a C*-subalgebra of
2. By Proposition 4.1.5, the spectrum of ¢(A4) in 4 is the same as its spectrum
in @(A); and sp(A4) = sp,e(p(4)), since ¢ is an isomorphism from A onto
o). N

The following result strengthens the final conclusion of Theorem 4.1.8(iii).

4.1.9. THEOREM. If U and B are C*-algebras and ¢ is a * homomorphism
Srom W into B, then (W) is a C*-subalgebra of 4.

Proof. Since () is a * subalgebra of # (containing 7, it suffices to show
that () is closed in #. Accordingly we must prove that, if Be# and
1B — @(4,)]| - 0 for some sequence {A4,} of elements of U, then Be p(A). By
expressing B, A, A,, ... in terms of their real and imaginary parts, we reduce
to the case in which B and the A4,’s are self-adjoint. Upon passing to a
subsequence of {4,}, we may suppose also that

lo(dns 1) — @4l <277 (n=12,..)).

Let f, be a continuous function on R, with values in the real interval
[—27",27"], such that f,(f) = ¢ when |t| < 27" From Theorem 4.1.8(ii), and
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since f, restricts to the identity mapping on sp(¢(4,+;) — ¢(A4,)), we have

(p(A,,+ 1) - (p(An) =f;l((p(An+1 - An)) = q)(f;l(ArH-l - An))

Since || f(Ap+1 — Al < 27", theseries 4, + ¥, f(A,+1 — A4,) converges to
an element A4 of A; and by continuity of ¢ (Theorem 4.1.8(i)),

m—1
p(4) = lim {(P(Al) + Z O(fulAnit — An))}
n=1

m— o

lim {(P(Al) + 2 [o(4ns1) = CP(A,.)]}

m—=x n=1
= lim ¢(4,) = B.

Thus Be o(2). W

At later stages (Corollary 4.2.10 and Theorem 10.1.7) we shall show that a
closed two-sided ideal #" in a C*-algebra U is automatically self-adjoint, and
that the quotient algebra /¢ is a C*-algebra. With the aid of the latter result,
Theorem 4.1.9 becomes a simple consequence of Theorem 4.1.8(iii) (see the
proof of Corollary 10.1.8).

4.2. Order structure

In Section 2.4 we introduced a concept of positivity for operators acting on
a Hilbert space, and a partial order relation on the set of self-adjoint operators.
In this section we study the corresponding notions for elements of a C*-
algebra.

We recall that a bounded linear operator A4, acting on a Hilbert space #, is
said to be positive if (A4x, x> = 0 for each x in .#. By Proposition 2.4.6(i) and
Theorem 3.2.14(ii), a positive operator A4 is self-adjoint, and its spectrum is a
subset of the non-negative half-line R* = {teR:¢ > 0}. Conversely, if 4 is a
self-adjoint element of (), and sp(4) = R*, theequation f(¢) = ¢'/? defines
a real-valued continuous function f on sp(4). By means of the function
calculus, for 4 as a member of the C*-algebra #(#), we obtain a self-adjoint
operator H (= f(A)) such that H? = A. Since

(Ax,xy = (Hx,Hx) 2 0 (xest),

A is a positive operator. Accordingly, the positive operators are precisely those
that are self-adjoint and have spectrum contained in R*.

Motivated by these considerations, we describe an element 4 of a C*-
algebra W as positive if A is self-adjoint and sp(4) = R™ ; we denote by A" the
set of all positive elements of . From the preceding discussion, this definition
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is consistent with our earlier conventions when U = Z(#). If # is a C*-
subalgebra of U, a self-adjoint element B of 4 is positive relative to # if and
only if it is positive relative to U (that is, #* = # ~ A*), since it has the same
spectrum in 4 as in . If ¢ is a * homomorphism from 2 into a C*-algebra €
and 4eU*, then p(4)e €™ ; for @(4) is self-adjoint, and sp(¢(A4)) = sp(4)
< R*, by Theorem 4.1.8(i). From Proposition 4.1.1(ii), ||4||esp(4) when
AeUr.

With X a compact Hausdorff space, and fin the C*-algebra C(X), fis self-
adjoint if and only if fis real valued throughout X; moreover,

sp(f) = {f(x):xe X}.
Accordingly, f'is positive (in the C*-algebra sense just defined) if and only if
f(x) = 0 for each x in X.
4.2.1. LemMa. If A is a self-adjoint element of a C*-algebra U, aeR, and
a > ||A|l, then AcU* if and only if ||A — al|| < a.
Proof. Since sp(A4) = [ — a,a], and
|4 —all|=r(A—al)= sup |t —a| = sup (a—1),

tesp(A4) tesp(A4)

it is apparent that |4 — al|| < a if and only if sp(4) = R*. B

Clauses (ii), (iii), and (v) of the following theorem tell us that A* is a
(positive) cone (in the sense explained in the discussion preceding Definition
3.4.5), in the real vector space of all self-adjoint elements of .

4.2.2. THEOREM. Suppose that W is a C*-algebra.

(1) WY is closed in W.
(i) adeU* if AeU* and aeR*.
(i) A+ BeU* if A,BeA™.
(iv) ABeU* if A,BeU" and AB = BA.
v) IfAeU* and — AecU*, then A =0.
Proof. (1) From Lemma 4.2.1,
AT ={4eWU:4 = A4* and ||4 — ||A||1|| < |I4]]},

whence U* is closed (since the norm is continuous on A).
(ii) If 4eU* and aeR™, then a4 is self-adjoint, and

sp(ad) = {at: tesp(4)} = R*.
(i) If 4, Be U™, it results from Lemma 4.2.1 that
14 =411 < 4], 1B =Bl < |IBIl.
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Thus
14 + B — (4]l + IBIDII| < 4]l + |Bll;
and from the same lemma (with a = ||4|| + ||B|| = ||4 + B|]), it follows that
A+ BeU™*.
(iv) With 4, Bcommuting self-adjoint elements of 2", 4B is self-adjoint
since (AB)* = BA = AB. Since each of A, B, AB has the same spectrumin U as

in the commutative C*-subalgebra generated by {/, 4, B}, it follows from
Proposition 3.2.10 that

sp(AB) < {st:sesp(A), tesp(B)} = R".

(v) If A,—AeU*, then A is self-adjoint and sp(4d) = R* n — R*
= {0}; so [l Al =r(4)=0. W

4.2.3. PROPOSITION. Suppose that A is a self-adjoint element of a C*-
algebra U, and fe C(sp(A)).
i) f(A)eWU* if and only if f(t) = O for each t in sp(A).
(i) |lA|J+ Aeu*.
(iil) A can be expressed in the form A* — A~, where A*, A~ e U* and
A*A™ = A" A* = 0. These conditions determine A* and A~ uniquely, and
141l = max(|[4™|], |47 ).

Proof. (i) By Theorem 4.1.6, f(A) has spectrum {f(t):tesp(A)}; so f
takes non-negative values throughout sp(A4) if f(4)eWU*. Conversely, if
S(t) = 0 for each ¢ in sp(A), then f(A) is self-adjoint (since f'is real valued) and
has spectrum a subset of R*.

(i) With fin C(sp(A)) defined by f(¢) = ||4|| % ¢, f takes non-negative
values throughout sp(A4). By (i), f(4)e A" ; that is, ||| £ AeU*.

(i) With w,u*,u~ the continuous real-valued functions defined, for all
real ¢, by 5

u(ty=1t, u*()=max{t,0}, u (f)=max{— 0},
we have
u=u" —u", utu =uut =0.
Since u(A) = A, we have
A=A"—A", A4 =A4"4"=0,

where A* =u*(A) and A~ = u~(A4); moreover, A*, A~ eU*, by (i). The
supremum norms of u,u*, and u~, as elements of C(sp(A4)), satisfy

llull = max {Jlae* I, [l 11},

s0 ||| = max{||4 ™|, l47 |1}
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To prove the uniqueness clause of (iii), suppose that 4 = B — C, where
B,CeU* and BC = CB = 0. Then

A"=B"+ (- O) n=123,..),
and therefore p(4) = p(B) + p(— C) whenever p is a polynomial with zero
constant term. There is a sequence { p,} of such polynomials that converges to
u* uniformly on sp(4) u sp(B) u sp(— C); and
u*(A4) = limp,(4) = im[ p,(B) + p(— C)] = u™(B) + u* (- C).
Since
ut(s)=s (sesp(B), u*()=0 (resp(— C)),
we have u*(B) = B,u*(— C) = 0. Thus
B=ut(A)=4", C=B—-A=A4A"-A=4". B

4.2.4. CorOLLARY. FEach element A of a C*-algebra U is a linear
combination of at most four members of UW*.

Proof. From Proposition 4.2.3(ii) or (iii), the real and imaginary parts of
A can each be expressed as a difference of elements of A*. W

Our next objective, achieved in Theorem 4.2.6, is to give a number of
conditions equivalent to positivity for elements of a C*-algebra. For this
purpose, we require the following preliminary result.

4.2.5. LeMMA. IfWisa C*-algebra, AecW,and — A*AeU™*, then A = 0.

Proof. Let A = H + iK, with H and K self-adjoint in . Since sp(H) = R
and sp(H?) = {t*:tesp(H)} < R*, it follows that H? (and similarly K?) is
positive. Since 44* is self-adjoint, and sp(— 44*) = sp(— 4*4) U {0} = R*
by Proposition 3.2.8, — 44* is positive. Now

A*A + AA* = (H — iK)(H + iK) + (H + iK)(H — iK) = 2H? + 2K?,
A*A = 2H? + 2K? 4 (— AA*®).
Since all three terms on the right-hand side of the last equation are positive,

A*A (as well as — A*A) is positive and so 4*4 = 0, by Theorem 4.2.2(iii) and
(v). Thus ||4]|> = ||4*4||=0,and 4 =0. B

4.2.6. THEOREM. If W is a C*-algebra and A €U, the following conditions
are equivalent:
(i) AeU*.
(i) 4= H?, for some H in A*.
(i) A = B*B, for some B in U.
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When these conditions are satisfied, the element H occurring in (i) is unique.
If # is a Hilbert space and U is a C*-subalgebra of B(H), the preceding
three conditions are equivalent to

@iv) (Ax,x) =0, for each x in H#.

Proof. 1f AeU*, the equation f(f) = t'/? defines a non-negative real-
valued continuous function fon sp(4) (= R*). With H defined as f(4), He U+
and H? = A. This shows that (i) implies (ii), and it is apparent that (ii) implies
(iii).

Suppose next that 4 = B*B, for some Bin 2. Since 4 is self-adjoint, it has
the decomposition 4* — 4~ described in Proposition 4.2.3(iii). With C
defined as B4~

C*C=A"B*BA- = A~ (A* —A)A~ = —(4")*.
Since 4~ eUA* and (A7) has spectrum {t3:tesp(47)}, it follows that
— C*C=(A4")*eW*. FromLemma4.2.5,C = 0;s0(A4")® = 0and, since 4~
is self-adjoint, 4~ = 0 by Corollary 4.1.2. Thus 4 = A* e A*, and (iii) implies
@).

Having proved the equivalence of (i)—(iii), we show next that, when 4 e UA*,
the element H in (ii) is unique. For this, suppose that K is any element of UA*
satisfying K2 = A, while (as above) H = f(A), where f(f) = t'/2 (tesp(A)). Let
{p,} be a sequence of polynomials converging to funiformly on sp(A4), and let
g.(t) = p,(t?). Since sp(K) = R* and

sp(4) = sp(K?) = {r*: tesp(K)},
it follows that
lim g,(1) = lim p,(+*) = f(1*) = 1,
uniformly for ¢ in sp(K). Hence
K = lim ¢(K) = lim p,(K?)

n— o n— o

i
= lim p(4) = f(4) = H,
and the uniqueness assertion is proved.

With  a C*-subalgebra of (), U = U B(H)*. Accordingly, in
proving the equivalence of (i) and (iv) in this situation, it suffices to consider the
case in which U = (). The required result then amounts to the following
assertion, already proved in the introductory discussion of the present section:
if AeB(H), then (Ax,x) > 0 foreach x in # if and only if 4 = A* and
spA)=R*. B

When 4 € A*, the element H occurring in condition (ii) of Theorem 4.2.6 is
called the positive square root of A, and is denoted by A'/2. A similar procedure



42. ORDER STRUCTURE 249

can be used to introduce an element 4% of A*, for other real values of . With £,
defined by f(¢) = %, f, is a continuous non-negative real-valued function on
sp(4) when o > 0 (for all real «, if 4 is invertible). Note that f,(¢) f5(¢) = f, 4 5(?),
f1(f) = t,and fo(t) = 1 when 4 isinvertible, for all tin sp(4). With 4% defined as
f(A), we have A*e A", A°4# = 4**P A' = A4, and A° = Iif A isinvertible. It
follows easily that this definition of A agrees with the elementary one when a is
aninteger;in particular, if 4 is invertible, its inverse is the positive element 4~ !

(=/f-1(4)) of 2u.

4.2.7. CoroLLARY. If U is a C*-algebra, AeU*, and BeU, then
B*ABeU™t.

Proof. This follows from Theorem 4.2.6, since B*AB = (A'>B)*4'/?B.
]

Suppose that 9, is the real linear space consisting of all self-adjoint
elements of a C*-algebra U. Since the adjoint operation is norm continuous,
A, is closed in A, and is therefore a real Banach space. From Theorem 4.2.2, it
is a partially ordered vector space with a closed positive cone U *. In the partial
ordering on A,, 4 < Bif and only if B— 4eU™*; and, of course,

A" = {AeU,: A4 >0}

From Proposition 4.2.3(ii), — ||4||I < 4 < ||4||Ifor each Ain A, ;in particular,
therefore, I is an order unit for ,. Moreover

[|4|| = inf{la:a >0, —al < A< al},

since in its function calculus A4 corresponds to the identity mapping : on sp(4)
(< R), while J corresponds to the constant function 1, whence

14l = |{]| = sup{|e(5)]: tesp(4)}
=inf{a: —a-1<1<a-1}.

Just asin the case of real-number inequalities, one can add inequalities between
self-adjoint elements of A (because sums of positive elements are positive),
multiply through by positive scalars (because positive multiples of positive
elements are positive), and take limits (because U* is closed in A), while
multiplication by a negative scalar reverses inequalities. Since a product of
commuting positive elements is positive, it follows that 4C < BC whenever
A< B, CeU*, and C commutes with both A and B. This last condition is
essential, since without it, 4C and BC are not self-adjoint. The corresponding
non-commutative result, that C*4C < C*BC whenever 4 < Band Ce,isa
consequence of Corollary 4.2.7.

Anelement 4 of A * isinvertible if and only if 4 > al for some positive real
number a. Indeed, 4 > al if and only if A — ale A", and since sp(4 — al) =
{t — a:tesp(4)}, this occurs if and only if sp(4) = [a, o). Since sp(4) is a
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compact subset of R*, sp(4) < [a, o) for some positive a if and only if
0¢sp(A) (equivalently A is invertible).

4.2.8. PROPOSITION. Suppose that A and B are self-adjoint elements of a

C*-algebra U.
(@) If — B< A< B, then |||l < ||B].

(i) If0< A< B, then A'? < B'2.

(i) 1f0 < A < Band A is invertible, then B is invertible and B~' < A™!.

Proof. (i) Since

—|1BlI< —B<A<B<|B|I,

(i) follows.

(i) and (iii) Suppose that 0 < 4 < Band A4 isinvertible. Then 4 > al, for
some positive real number a; hence B > al, and so B is invertible. Moreover

0< B Y24B~ Y2 B~12BB Y2 = |
and ||B~Y24B7 /2| < 1 by (i). Thus
(l) ”AI/ZB— 1/2” — ”(AI/ZB— 1/2)*Al/2B— 1/2“1/2 — ”B— 1/2AB—1/2”1/2 < l
From this,
“Al/ZB—lAl/Z“ — ”Al/ZB—l/Z(Al/ZB— 1/2)*” < 1,

whence 4V2B~14Y2 < I, and therefore B~ < A7 V2[4~ 12 = 471,

Furthermore, from Proposition 3.2.8 and (1),

”B— 1/4A 1/2B— 1/4” — r(B— 1/4Al/ZB— 1/4)
— r(Al/ZB—l/‘4B—l/4) < “Al/ZB— 1/2" < l

Thus B~ Y44YV2B~ 14 < [, and AY? < BY4]BY*4 = B'/2,

This proves (iii), and (ii) in the case in which A is invertible. Given only that

A,BeWand0 < 4 < B,wehave0) < A + ¢l < B+ eland 4 + elisinvertible,
for every positive real number ¢. From the preceding argument,

@) (A + eD)'? < (B + el)"2.

With T in A*, and f, in C(sp(T)) defined by f(t) = (t + ¢)'/?, we have
f(T)eW* and [f(T)]?> = T + &l. Thus (T + el)'/? = £,(T); since f(t) —» /2
as ¢— 0, uniformly on sp(T), it follows that ||(T + &l)¥/? — T'/?|| - 0.
Accordingly, from Theorem 4.2.2(i), when ¢ — 0, (2) gives A2 < B'/2. B

Suppose that fiis a continuous real-valued function defined on a subset S of
the real line. We say that f'is operator-monotonic increasing on S if f(4) < f(B)
whenever 4 and B are self-adjoint elements of a C*-algebra, 4 < B and
sp(A) usp(B) = S. Withg(¢) = tY2(t = 0)and A(t) = — 1/t(t > 0),gand hare
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operator-monotonic increasing on their respective domains of definition, by
Proposition 4.2.8(ii) and (iii). It is clear that an operator-monotonic-increasing
function on S'is monotonic increasing (in the elementary sense) on S. However,
the converse is false; for example, if £(¢) = #?, then fis not operator-monotonic
increasing on R* (consider

o o) 1]

as operators on C?). For further information on this subject, see [6].

We conclude this section with some results concerning ideals in C*-
algebras, proving first that closed one-sided ideals are “positively generated”
in a strong sense. Since the involution induces a one-to-one correspondence
between left and right ideals, it suffices to formulate this result for left ideals
only.

4.2.9. ProposITION. If A" is a closed left ideal in a C*-algebra U, each
element S of A can be expressed in the form S = AK, with A in W and K in
A AU,

Proof. Note first that, if Te # N U, then TV2e X A A*. Indeed, ¥
contains all positive powers of T, and so contains p(T) whenever p is a
polynomial with zero constant term. There is a sequence {p,} of such
polynomials, with { p,(#)} converging to ¢!/ uniformly for ¢ in sp(7T). Indeed,
the Weierstrass approximation theorem asserts that ¢'/2 is the uniform limit of
a sequence {q,(#)} of polynomials, and it suffices to take p,(f) = g,(t) — ¢,(0).
Since & is closed and p,(T)e &, it follows that

TY? =limp,(T)e X.

With Sin 1, let H = (S*S)"/2 and K = H'?. Then $*Se X nA*, and
thus H, Ke ' nU*. Forn=1,2,..., define

Ay= S~ + H)" 12
so that
3) S=An "I+ H)"2.
Then
NAm — Al = 1ISLom™ T + H)™ Y2 — (0™ 1T+ H)~'2]|
= [(m™ "I+ H)™ Y2 — (0™ ' + H)"'?1S*S[(m™ T + H)~ '/
— (U + H)" VA
= |[(m ™1 + H)™ Y2 — ("' + H)"'*1H*[(m "I + H)™ 2
— (1M + H)T VR
= WL/ DT = (| DI,
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where f£,,, is the continuous function defined on the positive half line by
Junt) = LM~ + 712 — (07! 4 )72

Thus

©) ldm — Adl = sup{|fun(DI: t€Sp(H)}-

Now

N TN
N(EET D)
SWnt4i—Ym +1,

and /n '+t > \/; as n — oo, uniformly for ¢ in sp(H). Thus f,,,(f) - 0 as
min(m, n) — oo, uniformly for ¢ in sp(H); from (4), {A4,} is a Cauchy sequence
in A. With 4 defined as lim 4,,, it now follows from (3) that

S=AH'"?=4K. B

|fn(O] =

4.2.10. CorOLLARY. Each closed two-sided ideal A" in a C*-algebra U is
self-adjoint. A closed two-sided ideal T in A" is a two-sided ideal in U.

Proof. Since & is a closed left ideal in U, each S in X has the form
S = AK,with AinUand K (= (S*S)/*)in A ~ U*, by Proposition 4.2.9 and
its proof. Since & is a right ideal in U, S* = K4*e A, so A is self-adjoint.

Suppose next that Se 7. Then Se &, the preceding paragraph shows that
S*e A ;since T is a left ideal in ¢, it now follows that S*Se 7 nA*. Upon
approximating the square-root function by polynomials with zero constant
term, as in the proof of Proposition 4.2.9, we deduce that 7 ~ A ™* contains the
positive square root of each of its members. Successive application of this
shows that K2 (= (§*S)!/8)e .

With Bin U, BAK'? and K'/?B are in ¢, since K"?e # and £ is a two-
sided ideal in 92 Since 7 is a left ideal in &, and KY%2e 9,

BS = BAK = BAK'*K'V?*e T ;
s0 7 isaleftideal in A. From this, 4K'/? € 7 ; and since  is a right ideal in ¢,
SB = AKB = AKY?K'?Be 7.

This proves that  is a right (and hence two-sided) ideal in 2. W

4.2.11. LEMMA. Suppose that B is a closed * subalgebra (not necessarily
containing the unit element) of a C*-algebra W, and let

A={BeBnU":|B|| <1}.



42. ORDER STRUCTURE 253

(i) IfB,,B,eA, thereis an element B of A such that B, < B and B, < B.
(ii) If Se# and ¢ > 0, there is an element B, of A with the following
property: if Be A and B > B, then ||S — SB|| < ¢.

Proof. (i) Given B; and B, in A, we can choose 6 (> 0) so that
(1 + 6)B,l| < 1(j = 1,2). For each positive integer n, t < t*"when 0 <t < 1,
and thus (1 + 6)B; < [(1 + 6)B;]"". When n has the form 24 for some positive
integer ¢, repeated application of Proposition 4.2.8(ii) shows that

[(1 +0)(By + B;)1"" > [(1 + 6)B;1'" = (1 + 6)B,;.
From the foregoing argument, B; < B and B, < B, where
B=(1+6)"'[(1 +6)B, + By)]'"
for a positive integer n of the form 29 Now
(1 + 8)(B; + By)e 4, 0<(1+8)B; + By <2,

the function ¢!/* is the uniform limit, on the interval [0, 2], of polynomials
without constant term. Since 4 is closed, it now follows that B e 4 ; moreover,

0<B<(l+8) 12M

When # is sufficiently large, (1 + §) 2" < 1; and then, Be A.

(i) Given SinZ and ¢(> 0), let S = aT wherea > ||S|| (so that Te # and
[IT]| < 1). Let B, be the element (T*T)!/" of A, where n is a positive integer
sufficiently large to ensure that

t(l —t'"y < a2 O<er<).
If Be A and B > B,, we have
IS — SB|| = allT(I — B)|| = al|T(I — B)*T*||"/.

Now
0<I—-B<I—-By<lI,
and thus
0<S(I-B?*<I—-B<I—-By=1—-(T*T)',
SO
0< TU - B)?*T* < T[I— (T*T)''"]T*.
Hence

ITU — BAT*| < |ITUI — (T*)""T*||
= (Tl — (T*T)""]T*)
= HT*T[I — (T*T)'")
< sup{t(l —t'm):0 <t < 1}

< ¢a?,
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from Propositions 4.2.8(i), 4.1.1(i), and 3.2.8, together with Theorem 4.1.6
(noting that sp(T*T) < [0, 1]). Hence

IS — SB|| = al|Td — B*T*|"* <c. B

If 28 contains the identity 7 of U, both Bin (i) and B, in (ii) of the preceding
lemma can be taken to be appropriate positive multiples of 1. Of course, the
interest of the lemma is precisely in the case where /¢ 4.

In Lemma 3.2.24, it was found helpful to introduce an ‘“‘approximate
identity” in the Banach algebra L,(R). Similar devices are useful in studying
ideals and * subalgebras (not containing the unit element) of C*-algebras. Let
& be a subset of a C*-algebra . We say that anet (V;, Aie A, =) (= {V,})of
self-adjoint elements of . is an increasing right approximate identity for & if
(IS — SV,l| =0, foreach Sin % while 0 < V, < V, < Iwhenever 4, ue A and
A < p. With obvious modifications, we formulate similar definitions for
increasing, left, or two-sided approximate identities.

Suppose that 4 is a closed * subalgebra of a C*-algebra . The set A
occurring in Lemma 4.2.11 is directed by the usual partial order relation on
self-adjoint elements of 2, by part (i) of that lemma. By defining ¥ to be B,
when Be A, we obtain an increasing net {Vz} of positive elements in the unit
ball of #. From Lemma 4.2.11(ii), ||S — SVg|| =50, for each Sin 4; and, since
4 is self-adjoint, we also have

IS — VeS|l = [|S* — S*Vgl| > 0.
B

Thus { ¥V} is an increasing two-sided approximate identity for &.

Suppose next that " is a closed left ideal in 2. With 2" * the closed right
ideal {S*:Se '}, A n A *isaclosed * subalgebra of 2, and contains the self-
adjoint elements of ;¢ By the preceding paragraph, #” n # * has an increasing
two-sided approximate identity {¥;}. From Proposition 4.2.9, each Sin ¢ has
the form AK, with 4 in A and Kin 4 nU* (S A A *). Since

IS — SVill = [[A(K — KV)ll < 141l 1K — KV;]| -0,
A

it follows that {¥,} is an increasing right approximate identity for "
We have now proved the following result.

4.2.12. PrOPOSITION. A closed left ideal in a C*-algebra has an increasing
right approximate identity, and a closed * subalgebra has an increasing two-sided

approximate identity. —

Of course, the roles of ““left” and “right” can be reversed in Proposition
4.2.12. Note, however, that a closed left ideal in a C*-algebra does not always
have a left approximate identity (see Exercise 4.6.37).
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4.3. Positive linear functionals

In this section, we study linear functionals on a subspace of a C*-algebra.
In most applications of the results described below, it suffices to consider the
case in which the subspace is the whole C*-algebra ; but occasionally, the more
general setting is required.

We assume throughout that ./ is a self-adjoint subspace of a C*-algebra U,
and contains the unit 7 of 9. The set .# ~ A* of all positive elements of .# is
denoted by 4 *. If # < % = U, where & is a C*-subalgebra of , then
MY =MAUN = MBAUN = HMBT; so A" is unchanged if # is
viewed as a subspace of # instead of . Since .# contains the real and
imaginary parts of each of its members, while each self-adjoint 4 in .# is the
difference of two elements, (|| 4[| = A4), of .# *, it follows that .# is the linear
span of .# *.

With p a linear functional on .#, the equation p*(4) = p(A*) (A € .#)
defines another such functional p*. We describe p as hermitian if p = p*; that
is, if p(A4*) = p(A4) for each A in .#. (Compare the discussion of Remark 3.4.9,
where this construction is applied to the C*-algebra C(X).) By expressing
elements of ./ in terms of their real and imaginary parts, it follows that p is
hermitian if and only if p(H) = p*(H) (= p(H))whenever H = H*e ./ ;s0 pis
hermitian if and only if p(H) is real, for each self-adjoint H in .#. Each linear
functional p on . can be expressed, uniquely, in the form p, + ip,, where p,
(= 3(p + p*) and p, (= 3i(p* — p)) are hermitian.

If p is a bounded hermitian functional on .#,

llpll = sup{p(H): H= H*e ./, || H|| < 1};

that is, the norm of p is the same as the norm of its restriction to the (real linear
space of) self-adjoint elements of .#. Indeed, if ¢ > 0, we can choose A4 in the
unit ball of .# so that |p(A4)| > ||p|| — ¢. For a suitable scalar a with |a| = 1,

llpll — & < ()| = p(ad) = plad) = p((a4)*).

With H, the real part of a4, ||Hol| <1 and p(H,) > |lp|l — ¢. Thus ||p]| <
sup{p(H): H= H*e ./, ||H|| < 1}, and the reverse inequality is evident.

A linear functional p on . is said to be positive if p(4) > 0, for each 4 in
M *; if, further, p(/) = 1, p is described as a szate of .#. A positive linear
functional p is hermitian; for if 4 = A*e.#, then p(||4||] £ 4) > 0 since
|4l £ Ae.#*, and p(A) is real because

p(A) = 3Lp(I 4Nl + 4) — p(l4Il] — 4)].

The real vector space .#,, consisting of all self-adjoint elements of ., is a
partially ordered vector space, with positive cone .# * and order unit . A
linear functional p on .# is hermitian if and only if its restriction p|.#4 is a
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linear functional (of course, real-valued) on ./, ; and each linear functional on
M, extends, uniquely, to a hermitian linear functional on .#. Moreover, p is
positive (or a state of .#) if and only if p|.# s positive (or a state of .#,,) in the
sense of Definition 3.4.5. The positive linear functionals on .# form a cone 2,
in the real vector space consisting of all hermitian linear functionals on .#
(P N — 2 = {0}, because ./ is the linear span of .# *). Hence thereis a partial
order relation on the hermitian linear functionals; p, < p, if and only if
P2 — py IS positive.
With s a Hilbert space and x in J#, the equation

w,(A4) = {(Ax,x) (A e B(H))

defines a linear functional w, on (). In view of the equivalence of two
concepts of positivity for Hilbert space operators (conditions (i) and (iv) in
Theorem 4.2.6, with A = B(H)), w(A) > 0whenever 4 € B(H#)*. Since, also,
wx(I) = ||x||?, it follows that w, is a positive linear functional on (), and isa
state if ||x|| = 1. If A is a C*-subalgebra of #(#), and (as usual) ./ is a self-
adjoint subspace of U that contains /, the restriction w,|.# is a positive linear
functional on .#. The states of ./ that arise in this way, from unit vectors in J#,
are termed vector states of M.

4.3.1. ProposiTiON. If p is a positive linear functional on a C*-algebra A,
then
|p(B*A4)1> < p(4*A)p(B*B) (A4, Be).

Proof. With 4in U, we have A*4 e A*, and therefore p(4*4) > 0. From
this, and since p is hermitian, the equation

(A4, By = p(B*A) (4,BeN)
defines an inner product { , > on A, and we have the Cauchy-Schwarz
inequality
<4, BY|* < {4, 4){B, B);
that is, |p(B*A4)|*> < p(4*A)p(B*B). N

We refer to the inequality occurring in Proposition 4.3.1 as the
Cauchy-Schwarz inequality for p. This inequality appeared, in the case of the
C*-algebra C(X), at the end of Remark 3.4.9 and, again, in Remark 3.4.12.

4.3.2. THEOREM. If M is a self-adjoint subspace of a C*-algebra N and
contains the unit I of W, a linear fafictional p on M is positive if and only if p is
bounded and || p|| = p(I).

Proof. Suppose first that p is positive (and therefore hermitian). With 4 in
M, let a be a scalar of modulus 1 such thatap(4) > 0, and let H be the real part
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of ad. Then ||H|| < [|4]|,
H<[HI <41, | 4llp) — p(H) = p(l|4Il] — H) > 0,

and therefore

lp(A)| = p(ad) = p(ad) = p(ad*)
= p(3(ad + ad*)) = p(H) < p(D)||4l|.
This shows that p is bounded, with ||p|| < p(I); and the reverse inequality is
evident.
Conversely, suppose that p is bounded and |p|| = p(I); it suffices to
consider the case in which ||p|| = p(J) = 1. With A in A *, let p(4) = a + ib,

where a and b are real. In order to prove that p is positive, we have to show that
a > 0 and b = 0. For small positive s,

sp(I — sA) = {1 — st:tesp(4)} = [0, 1],
since sp(4) = R*; so ||[I — sA|| = r(I — s4) < 1. Hence
1 —sa<|l —s(a+ib)=|p(—sA) <1,
and therefore a > 0. With B, in ./ defined as A — al + inbl, for each positive
integer n,
B> = 11BXB,ll = (4 — al)* + n*b*1|| < |4 — al||* + n*b>.
Hence
(n? + 2n + 1)b? = |p(B,)|* < ||4 — al||* + n*b? n=12...),
and thus b=0. W

From Theorem 4.3.2, each state p of .# is a bounded linear functional on
M, with ||p]| = 1. Accordingly, the set #(#) of all states of .# is contained in
the surface of the unit ball in the Banach dual space .#*. It is convex and weak*
closed, since

S(M)={ped*:p(I)=1, p(4) 20 (deu™)},

and is therefore weak* compact, by Corollary 1.6.6. It follows that (), with
the weak* topology, is a compact Hausdorff space, the state space of 4.

4.3.3. ProposiTioN. If W is a C*-algebra with unit I, M is a self-adjoint
subspace of W containing I, A € M, and a e sp(A), then there is a state p of M such
that p(A) = a.

Proof. For all complex numbers b and ¢, ab + cesp(bA4 + cI), and
therefore |ab + c| < ||bA4 + clI||. Accordingly, the equation po(bA4 + cl) =
ab + ¢ defines (unambiguously) a linear functional p, on the subspace
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{bA +cl: b, ceC} of #, and py(4d) =a, po(I)=1, ||poll=1. By the
Hahn-Banach theorem, p, extends to a bounded linear functional p on .#,
with ||p|| = 1 (= p(I)). From Theorem 4.3.2, p is positive (and is therefore a
state); and p(4d)=a. W

4.3.4. THEOREM. Suppose that W is a C*-algebra with unit I, # is a self-
adjoint subspace of W containing I, and Ae M.

(i) If p(4) =0, for each state p of M, then A = 0.

(ii) If p(A) is real, for each state p of M, then A is self-adjoint.
(i) If p(A) = 0, for each state p of M, then Ae M ™.
(iv) If A is normal, there is a state p of M such that |p(A)| = ||A]l.

Proof. (i) Suppose first that A is self-adjoint and p(4) = 0 for each state
p of . From Proposition 4.3.3, sp(4) = {0}, so ||A]| = r{A) =0, 4 = 0.

Next, let 4 = H + iK, with H and K self-adjoint in .. If p(4) = 0, for each
state p of ./, then p(H) = p(K) = 0, since p(4) = p(H) + ip(K) and p(H) and
p(K) are real. From the preceding paragraph, H = K = 0, whence 4 = 0.

(ii) If p(A) is real, for each state p of .#, then

p(A — A4%) = p(A4) — p(4) =0,

and 4 — A* = 0 by (i).

@) If p(4) = 0, for each state p of .#, then A is self-adjoint by (ii),
sp(4) = R* by Proposition 4.3.3, and so Ae.# *.

(iv) If A is normal, r(4) = ||4||, so sp(A4) contains a scalar a such that

la| = ||A||. By Proposition 4.3.3, a = p(A), for some state p of .#, and then
[p(4)| = [|4]l. W

Our next objective is to prove a non-commutative analogue of the
Hahn-Jordan decomposition for linear functionals on C(X) (Proposition
3.4.11 and Remark 3.4.12). We show in Theorem 4.3.6 that every hermitian
functional on .# can be expressed (in a unique optimal manner, when ./ is the
whole of ) as a difference of positive linear functionals. For this purpose, we
require the following lemma, which will be needed again later when we
characterize those subsets of the state space &(.#) that retain some of the
properties of & () set out in Theorem 4.3.4.

With " a subset of the Banach dual space .#*, we write co(¢") for the
weak* closed convex hull of J¢"

4.3.5. LEMMA. Suppose that W is a C*-algebra with unit I, M/ is a self-
adjoint subspace of U containing I, and &, is a set of states of M. If
|H|| = sup{|p(H)|: p€ S},

for each self-adjoint H in M, then Co(%w — ) is the set of all hermitian
Sfunctionals in the unit ball of M *.
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Proof. The set of all hermitian functionals in the unit ball (.#*), is convex
and weak* closed, and contains % u — & ; so it contains co(H v — ). We
have to show that the two sets coincide. Suppose the contrary, and let p, be a
hermitian functional on .#, such that || p|| < 1, po¢co(FH U — H). By the
Hahn-Banach theorem (Corollary 1.2.12), and since the weak* continuous
linear functionals on .# © arise from elements of .# (Proposition 1.3.5), there is
an A4 in ./, and a real number a, such that

Re po(4) >a, Rep(d)<a (pe®(HyU — %))
With H the real part of 4,
p(H) =3[ p(4) + p(4*)] = Re p(A),
for every hermitian functional p on .#; so
po(H)y>a, p(H)y<a (peco(Hu — %))
Thus |p(H)| < a (pe %), and
a < po(H) < IH|| = sup{lp(H)|: pe %} < a,

a contradiction. W

4.3.6. THEOREM. If W is a C*-algebra with unit I and M is a self-adjoint
subspace of N containing I, each bounded hermitian functional p on M can be
expressed in the form p*™ — p~, where p* and p~ are positive linear functionals

on M and |pll=lp™l + lp~ |- If M is the whole of U, these conditions
determine p* and p~ uniquely.

Proof. We may assume that ||p|| = 1. With & the state space of .#,
41l = sup{[(4)|: 1S}

for each self-adjoint 4 in .#, from Theorem 4.3.4(iv) and since ||7|| = | when
1€ By Lemma 4.3.5, peco(¥ v — &).
A straightforward calculation shows that the subset

{ac — bt: 0,teF, a,beR ", a+ b=1}

of co(&¥ u — F)is convex. It contains & U — & and is weak* compact since it
is the range of the continuous mapping

(o,1,) a6~ (1 —a)yt: & x&F x[0,1]1-> 4"

Accordingly, it is the whole of co(# L — &). From this, and the preceding
paragraph, p has the form ac — b, with p and 7 in &% a and b in R* and
a+b=1 With p* and p~ the positive linear functionals as and bz,
respectively, p = p* — p~ and

™l +1lp7ll=a+b=1=]pl.
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Suppose now that .# = . To prove the uniqueness of the decomposition
of p, we assume that p = u — v =y’ — v/, where g, i, v, v’ are positive linear
functionals on A and

el + AVl = 111+ V1= lell = 1.

Given ¢ (> 0), choose a self-adjoint H in the unit ball of A for which
p(H) > ||pll — 1¢?, and let K = (I — H). Then 0 < K< [,

p() + v() = [lell + vl = lloll
< p(H) + 4% = p(H) — W(H) + 42,
uld — H) +v(d + H)y <12, p(K) + v — K) < 1¢2.
Since K, I — KeU™", while u and v are positive linear functionals,
0 < u(K) < 12, 0<v(/ — K) <L
With 4 in U, the Cauchy-Schwarz inequality gives
|W(KA)? = |u(KV? - K2 4)1? < p(K)u(A*KA) < z*lIA]1%,
(I — K)A)* < v — K)W(A*(I — K)4) < 32|l 4]1°.
From this, and a similar argument for x’ and v/, we have
l(KA)| < el 4], |w'(KA)| < ell4l],
W = K)A) < Felldll, V(U — K)A)| < zell4ll.
Since y —u'=v—v,
W(A) — p(A4) = pKA) — $(KA) + W — K)4) — v(d — K)A),
and so |u(A4) — w'(A4)| < 2¢||4||. Since the last inequality has been proved for

each positive ¢, it follows that y = u’, whence v=v. B

4.3.7. CorOLLARY. If WUisa C*-algebra with unit I and M is a self-adjoint
subspace of U containing I, each bounded linear functional on M is a linear
combination of at most four states of M.

Proof. Each bounded linear functional 7 on .# has the form p + ig, with
p and ¢ bounded hermitian functionals. Hence

t=pT —p +ict —ic”,
and each term on the right-hand side is a scalar multiple of a state of .#. W

We shall later give an alternative proof of the existence of the decom-
position p = p* — p~, by reduction to the case in which U is abelian, and
appeal to Proposition 3.4.11 (see Remark 4.3.12). The uniqueness clause of
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Theorem 4.3.6 fails, in general, if one deletes the assumption that .# = U (see
Exercise 4.6.22).

Since the state space () of ./ is convex and weak* compact, it has
extreme points; indeed, by the Krein-Milman theorem, #(.#) is the weak*
closed convex hull co(2(.#)) of the set 2(#) of its extreme points. Elements of
P (M) are termed pure states of .M, and the weak* closure #(.#)~ is called the
pure state space of /. In general, () is not a closed subset of .#*, and the
pure state space then has elements that are not pure states.

When X is a compact Hausdorff space, the pure states of the C*-algebra
C(X) are precisely the non-zero multiplicative linear functionals (Theorem
3.4.7); and the set £ of pure states is therefore weak* compact (Proposition
3.2.20). Thus 2 coincides with the pure state space, in this case.

A linear functional p on ./ is a pure state if and only if its restriction p|.#,,
to the partially ordered vector space .#, consisting of all self-adjoint elements
of ./, is a pure state of ./, in the sense of Definition 3.4.5. Indeed, this follows
from similar assertions, concerning hermitian linear functionals and states,
occurring in the discussion preceding Proposition 4.3.1.

4.3.8. THEOREM. Suppose that W is a C*-algebra with unit I, M is a self-
adjoint subspace of W that contains I, and Ae M.

() If p(A) = 0, for each pure state p of M, then A= 0.

(i) If p(A) is real, for each pure state p of M, then A is self-adjoint.
(iii) If p(4) = 0, for each pure state p of M, then Ae M ™.
(iv) If A is normal, there is a pure state p, of M such that |po(A4)| = ||A||.

Proof. 1f p(4) = 0 (or p(A)isreal, or p(4) > 0)forall p in P(A), then the
same is true for all p in &(#), since every state is a weak* limit of convex
combinations of pure states. In view of this, the first three parts of the theorem
follow, at once, from the corresponding assertions in Theorem 4.3.4,

Suppose now that A is normal. By Theorem 4.3.4(iv), there is a scalar ¢ and
a state t of ./ such that 7(4) = c, |c| = ||4||. Let T be the (weak* continuous)
linear functional on ./ * that takes the value p(T) at p, and let a be a complex
number of modulus 1 such that t(a4) = |c| = ||4||. From Corollary 1.4.4, there
is a po in P(M) such that

41l = 1po(4)| > Re ad(po)
> sup{Re aA(p): pe S (M)}
> Re 2d(1) = Re 1(ad) = ||4]]. W
4.3.9. THEOREM. If U is a C*-algebra with unit I, M/ is a self-adjoint

subspace of W that contains I, and %, is a subset of the state space S (M), the
following four conditions are equivalent:
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(i) If Ae M and p(A) = O for each p in %, then Ae M ™.
(i) ||H|| = sup{|p(H)|: pe %}, for each self-adjoint H in M.
(i) Co(Hp) = L(M).

(iv) P(M) < (H)~ the weak* closure of % in M*.

Proof. With H self-adjoint in ./, define a (< ||H]|) by
a = sup{|p(H)|: pe %},
and note that
plal Tt Hy=atp(H) 20 (pe%).

If (i) is satisfied, then al +* He #*, — al < H < al, hence ||H|| < a, and so
[|H|| = a. Thus (i) implies (ii).

Suppose next that (ii) is satisfied. With & defined as ©0(%), and (#¥), the
unit ball in .#*, we have % < % = L (M) = (M*),, so (ii) remains true when
% is replaced by &. From Lemma 4.3.5, co(¥# U — %) is the set of all
hermitian functionals in (. ¥), ; in particular, #(#) = ¢o(¥, U — %). The set

{ac — bt:0,7€ S, a,beR*,a+b=1}

contains & U — 4, inherits convexity and weak* compactness from %, and
so coincides with To(% U — %) (compare this with the proof of Theorem
4.3.6). Accordingly, each state p of .# has the form ag — bt, with g and 7 in 4,
aand bin R*, and a + b = 1. Since

l=p()=ac(l)—bt()=a—b=1-2b,

we have b = 0,a =1 and p = g€ %. Hence #(A) = 4, and since the reverse
inclusion has already been noted, #(#) = & = c0(%). Thus (ii) implies (iii).

If co(H) = F(A), it follows from Theorem 1.4.5 that P(A) = (%)™ ; so
(iii) implies (iv).

Finally, suppose that 2(#) = (¥)~. If Ae . # and p(4) = 0 for each p in
%, the same is true for each p in (%)~ (in particular, for each p in #(A)), by
weak* continuity of the mapping p — p(4). By Theorem 4.3.8(iii), 4 .# *, so
(iv) implies (). W

4.3.10. CoroLLARY. If H is a self-adjoint operator acting on a Hilbert
space #, then
|H|| = sup{|{Hx, x>|: xe #, |Ix|| = 1}.

If M is a self-adjoint subspace of B(7¥) containing I and %, is the set of all vector
states of M, then P(M) = (%)~ and F (M) = CO(K).

Proof. 1f Ae.# and p(A) > 0for each p in %, then (Ax, x> > 0 for each
xin #,and thus de A * (= M ~ B(H#)") by Theorem 4.2.6. From Theorem
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4.3.9, it now follows that 86(%) = L (M), P(M) < (%)~, and
|H|| = sup{|p(H)|: pe %} = sup{|(Hx,x}|: xe A, ||x]| = 1},

for each self-adjoint H in .#. Since the last conclusion applies, in particular,
when ./ = %B(#), the corollary is proved. W

The formula for ||H||, in Corollary 4.3.10, can also be proved without
reference to C*-algebra theory, by combining Lemma 3.2.13 with Proposition
3.2.15.

By a function representation of .4 on a compact Hausdorff space X, we
mean a linear mapping ¢: 4 — ¢, from .# into the C*-algebra C(X), such that
@, is the constant function with value 1 throughout X, and ¢, e C(X) ™ if and
onlyif 4e.# *.1If, in addition, given any two distinct points x and y in X, there
is an element 4 of .# such that ¢ 4(x) # @4(»), we describe ¢ as a separating
function representation. Two function representations, ¢: 4 — C(X) and
V: M — C(Y), are said to be equivalent if there is a homeomorphism ffrom X
onto Y, such that ¢,(x) = Y ,(f(x)), for each 4 in .# and x in X.

If ¢: #— C(X) is a function representation of .#, and xeX, the
evaluation mapping p,: 4 — @4(x) is a state of .#, since it is a positive linear
functional and p,(I) = ¢;(x) = 1. Hence

lpa)| = lp(AD < 4]l (de M, xeX)

and

llpall = sup lp ()| < |l4ll  (de.A).

xeX

For each self-adjoint H in .#, ¢y is a real-valued function, since @y(x) = p,(H)
and p, is hermitian. With ¢ defined as |||

Pazp(¥)=c T py(x) 20  (xeX);
SO @ +yeC(X)*; hence c/ = He M *, — cI < H < cl, and therefore
1H|| < ¢ = lloull < IH||.

Thus ¢ maps self-adjoint elements of .#, isometrically, onto real-valued
functions. By expressing an element 4 of ./ in the form H + iK, with Hand K
self-adjoint in ./, it follows that ¢ preserves adjoints; moreover, since

04 = @y + ipk,
41l < 17| + 1Kl = lleall + lloxll < 2l@all.
Accordingly,
Al < lleall <l4ll,  lleall =IHI  (ded, H=H*e.d).

The set A" = {@4:Ae #} is a self-adjoint subspace of the C*-algebra
C(X), and contains its unit. Since ¢ is a one-to-one bicontinuous linear
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mapping from the normed space .# onto the normed space .4, its Banach
adjoint @*: t > ¢ is a bicontinuous linear mapping from .#"* onto .#*. Since
@4 is self-adjoint, or positive, if and only if 4 has the same property, while
0H(A) = 1(@4) (A€M, Te /F), it follows that ¢f is hermitian, or positive, if
and only if the same is true of . Since ¢ is isometric on self-adjoint elements of
M, while the norm of a hermitian functional is unchanged by restriction to self-
adjoint elements, ¢F is isometric on the hermitian functionals in A%

We now exhibit some canonical function representations associated with a
C*-algebra. For each A in ., the equation

A(p) = p(d)  (peL(M))

defines a continuous complex-valued function 4 on the state space #(.#). If %
is a closed subset of #(.#) and contains the pure state space 2(.#)", it is
apparent that the restriction 4|% takes non-negative values throughout %, if
Ae . #*, and the converse assertion follows from Theorem 4.3.9. Since

p(ad + bB) = ap(A4) + bp(B),

we have
P R .
(aA+bB)=aA + bB (A,Be M, a,beC).
If p, and p, are distinct elf:ments of %, then we have p,(4) # p,(A4) for some 4
in . ; that is, A(p,) # A(p,). Moreover, I(p) = p(I) = 1, for each p in %.
Accordingly, the mapping

A—> A% M- C(R)

is a separating function representation of .# on %. The following theorem
shows that every separating function representation of ./ is equivalent to one
that arises in this way, by appropriate choice of %. The most important
function representations of .# are the two ‘“‘extreme” ones, obtained from the
above construction when % is either the state space &(.#) or the pure state
space P(M)".

4.3.11. THEOREM. If W is a C*-algebra with unit I, M is a self-adjoint
subspace of W containing I, X is a compact Hausdorff space,and ¢ : M — C(X)is
a separating function representation of M, then there is a unique closed subset %,
of L (M), such that P(M)” = % and ¢ is equivalent 1o the function
representation

A—AlS%: M > C(K).

Proof. For each x in X, the eqation p(A) = @ 4(x) defines a state p, of
. Given two distinct points x and y of X, there is an element A of ./ for which
@ 4(x) # @4(y), whence p,(A4) # p,(A) and so p, # p,. If {x,} is a convergent
net of elements of X, with limit x, it follows from the continuity of the function



4.3. POSITIVE LINEAR FUNCTIONALS 265

@4 that
Px(A) = @ a(xa) - Pa(x) = plA) (ded);

so p,, — p, in the weak* topology.
From the preceding paragraph, the mapping

fixope XL (M)
is one-to-one and continuous. Since X is compact, the same is true of its range,

S = {p,: xe X}, and fis a homeomorphism from X onto %. If 4e.# and
p(A) = 0 for each p in &, then

PAx) = p(A) =0  (xeX);

so ¢, € C(X)™", and therefore A e .# *. Since &, is closed, it now follows from
Theorem 4.3.9 that 2(#)~ <= % . Finally,

A(f(0) = A(py) = plA) = pu(x)  (x€X, AeM),
and therefore ¢ is equivalent to the function representation
A- A% M- ().

To prove the uniqueness clause of the theorem, suppose that ¢ is equivalent
also to the function representation

A= A|S%: > C(K),

Wwhere ] is a closed subset of &(.#) containing P(#)~. Let g: x - g, be a
homeomorphism from X onto %, such that

Pa(¥) = A(g)  (xeX, Aed).
Then ¢, is a state of .#, and
9x(A) = A(g,) = @a(x) = p4)  (Ade.M).

Hence g, = p, for each x in X, and

S =9 xeX}={p.:xeX}=%. N

4.3.12. REMArRK. We illustrate the use of function representations by
giving an alternative proof of the existence of a decomposition of a bounded
hermitian functional as a difference of positive linear functionals (Theorem
4.3.6), by reduction to the abelian case (Proposition 3.4.11).

With ¢: 4 - ¢, a function representation of .# on a compact Hausdorff
space X, and A" the subspace {¢,: Ae.#} of C(X), we recall that ¢ has a
Banach adjoint operator ¢*: 7 — ¢ from 4% onto .# *; that ¢ is hermitian, or
positive, if and only if ¢ has the same property; and that ¢* is isometric on
hermitian elements of A% In order to show that a bounded hermitian
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functional p on .# can be expressed as p* — p~, where p* and p~ are positive
linear functionals and ||p*] + |lp”|| = ||pll, it now suffices to prove the
corresponding statement for 47 With p a bounded hermitian functional on 4]
p extends without increase of norm to a bounded linear functional 7 on C(X).
We can suppose that t = 7, + it,, where 1, 7, are hermitian, and (|z{| < |||
(j =1,2). Since p and the restrictions 7,|.4" and 1,|.#" are hermitian, while
p = (14 + ity)| A, it follows that p = ;| A7 Upon replacing t by 1,, we may
assume that 7 is hermitian. By Proposition 3.4.11, t can be expressed as
t* — 17, where t* and 1~ are positive linear functionals on C(X), and
ll<*) + llk~|l = |[z]l. With p* and p~ defined as T |4 and t ™ | 4, respectively,
p* and p~ are positive linear functionals on A;and p = p* — p~. Moreover,

o™l + M~ < el + llz ™1 = lI<ll
=lipll=1lp* —p <™l +1IpIl,
sollp*ll +llp~ll=llpll. M
We conclude this section with some further results concerning states and

pure states.

4.3.13. THEOREM. Suppose that W is a C*-algebra with unit I, 4 is a self-
adjoint subspace of W that contains I, and p is a state of M . For each self-adjoint
H in U, define

Iy =sup{p(B): B=B*c /4, B< H},
uy =inf{p(B): B= B*e #, B> H}.

) —lHI<ly<ug <|H| (H=H*e).

(ii) p extends to a state T of . If c is a real number and H is a self-adjoint
element of W, the extended state t can be chosen so that 1(H) = c if and only if
Iy <c<uy.

(i) p extends uniquely to a state t of W if and only if Iy = uy for each self-
adjoint H in .

(iv) If pis apurestate of M, then p extends to a pure state of W. If, further,

p has only one extension as a pure state of U, then p has only one extension as a
state of AN.

Proof. (1) With H self-adjoint in A,
T |H||le, —[|H|I < H<||H|L

If B=B*c.# and B< H, then B < ||H|[l and therefore p(B) < ||HI|p(])
= ||H||. Hence the set

{p(B): B=B*c ./, B< H}
is bounded above by |H|| and (with B= —||H||I) contains — ||H]||.
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Accordingly, its supremum [/, satisfies — ||H|| < ly < ||H||; and a similar
argument shows that — ||H|| < uy < ||H|. If B, and B, are self-adjoint
elements of .# and B, < H < B,, then p(B;) < p(B,). By allowing B, and B,
to vary, subject only to the conditions just stated, it follows that /; < uy.

(i) With H self-adjoint in U, Iy < uy by (i), so we can choose a real
number ¢ such that /y < ¢ < uy. We shall prove that p has an extension to a
state t of U such that (H) = c.

As a first step, we show that the equation

) to(aH + A) = ac + p(A) (aeC, Ae)
defines a positive linear functional 7, on the self-adjoint subspace
N ={aH + A:aeC, Ae M}

generated by H and .#. This is evident when H e ./, since in thiscase /" = ./,
ly = uy = p(H), hence ¢ = p(H); and 1,, as defined by (1), is p. We assume
henceforth that H¢ .#, whence each element T of A is uniquely expressible as
aH + A,withain C and 4 in .#. Accordingly, (1) defines a linear functional 1,
on A, 1o(H) = ¢ and 1, extends p; in particular, to(/) = p(I) = 1.

In order to show that 7, is positive, suppose that Te A4 *, and let
T = aH + A, as above. Since

0=T*-T=(a—a)H+ A* — 4,

(@a—aH=A4— A*e.#, and it follows that a is real. If a=0, then
T=Ae#" and 1o(T) = p(4) = 0. If a > 0, then

H+a '4A=a'T>0,
O —a ‘ded, —a 'A < H, from the definition of Iy, —a 'p(A4) < Iy
(< ¢), and therefore
to(T) = alc + a” ' p(4)] > 0.
Ifa<O,then —H—a 'd=(—-a)"'T>0, so
—a 'de, —a ‘4> H;
from the definition of uy, — a™'p(A4) = uy (= ¢), and therefore
1o(T)= —a[— c—a " 'p(4)] = 0.

The preceding enumeration of cases shows that to(7) = 0 whenever Te A" ¥,
SO 14 1S a positive linear functional on A

From Theorem 4.3.2, 1, is bounded, and ||7o|| = 1o({/) = 1. By the

Hahn-Banach theorem, 7, extends without change of norm to a bounded
linear functional r on 2; moreover, t is positive, again by Theorem 4.3.2, since

(1) = tol) = 1 = ||zoll = [lll.
Accordingly, 7 is a state of A, ©1(H) = 1o(H) = ¢, and 7 extends p.
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Conversely, suppose that 7, is any state of 2 that extends p. If B, and B, are
self-adjoint elements of .#, for which B, < H < B,, then 1,(B;) < t,(H)
< 1,(B,); that is, p(B;) < 1,(H) < p(B,). By allowing B, and B, to vary,
subject only to the restrictions just stated, it follows that /; < t,(H) < uy

(iii) This is an immediate consequence of (ii).

(iv) Suppose now that p is a pure state of .#, and define % to be the set

{1e () : (B) = p(B) (Be M)}

of all states of 2 that extend p. Then & is a closed convex subset of (), is
therefore weak* compact, and is non-empty by (ii). From the Krein-Milman
theorem, & = co(2,), the closed convex hull of the set 2, of all extreme points
of % . Hence 2, is not empty, and consists of a single element if and only if %
has just one element.

It now suffices to show that each t in 2, is a pure state of 2. For this,
suppose that ¢ = at, + (1 — a)t,, where 7,,7,e#(A) and 0 < a < 1. Since
the restrictions 7, |.#, 1, | .# are states of .#, while p is a pure state of .# and

p =1l M =a(ty| M)+ (1 - a)(zs| M),

it follows that ©,|# = 1,|# = p. Thus 7,,71,€5%; and since t (= ar; +
(1 — a)t,)isan extreme point of %, 7, = 1, = 1. Hence 7 is an extreme point of
F(N); that is, 7 is a pure state of A. W

The results on extensions of states and pure states, set out in Theorem
4.3.13, remain valid in the context of a partially ordered vector space ¥~ with
order unit /, and a subspace .# of ¥~ that contains I (see Exercise 4.6.49).

4.3.14. ProposiTION. If U is a C*-algebra with center € and p is a pure
state of W, then p(AC) = p(A)p(C) for all A in N and C in €. Moreover, the
restriction p|% is a pure state of €.

Proof. In order to show that p(4C) = p(4)p(C) when 4 e U and Ce ¥, it
suffices (by linearity) to consider the case in which 0 < C < I. In this case, for
each H in A*, we have 0 < HC < H, and thus 0 < p(HC) < p(H), since H
commutes with C (see the discussion following Corollary 4.2.7). Hence the
equation py(4) = p(AC) defines a positive linear functional p, on 2, and
po < p. Since p is a pure state, so is its restriction p|?, to the partially ordered
vector space 2, of all self-adjoint elements of 2 (see the paragraph preceding
Theorem 4.3.8). Since po|U;, < pI‘IIh, it follows from Lemma 3.4.6 that
00|, = a(p|2,), for some scalar a. Hence p, = ap; and

p(AC) = po(A4) = ap(A4) = ap(I)p(A4) = po(I)p(4) = p(C)p(A),
for each 4 in 2.
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From the preceding paragraph it follows, in particular, that the non-zero
linear functional p|#¥ is multiplicative on &; so the final assertion of the
proposition follows from Proposition 4.4.1 (just below). MW

4.4. Abelian algebras

With X a compact Hausdorff space, C(X) is an abelian C*-algebra. Our
main purpose in this section is to show that every abelian C*-algebra U is *
isomorphic to one of the form C(X). As a first step, we prove that the pure
states of A are precisely the multiplicative linear functionals on 2, a fact
already noted in Theorem 3.4.7 for the algebra C(X).

4.4.1. PROPOSITION. A non-zero linear functional p on an abelian C*-
algebra W is a pure state if and only if p(AB) = p(A)p(B) for all A and B in .

Proof. The first assertion of Proposition 4.3.14 includes, as a special case,
the fact that pure states of an abelian C*-algebra are multiplicative.

Conversely, suppose that p is a multiplicative linear functional on 2. By
Proposition 3.2.20, p is bounded and ||pl| = p(I) = 1, so p is a state of 2. In
order to prove that p is pure, suppose that p = ap, + bp,, where p,, p, € (),
a>0,b>0,and a + b = 1. With C self-adjoint in 2,

[pAO)]? = [pUC)]* < piDpAC?) = p(C?)  (j=1,2),
by the Cauchy-Schwarz inequality. Accordingly,
0= p(C* —[p(O)]
= ap,(C?) + bpy(C?) — [ap1(C) + bp,(C)]?
> a(a + b)[p1(C)]* + bla + b)[ p2(C)]* — [aps(C) + bp2(C)]?
= ab[p4(C) — p2(O)]*.

From this, p,(C) = p,(C) for each self-adjoint Cin A; so p; = p,, whence p is
a pure state. H

The argument just given shows that a multiplicative linear functional on a
(not necessarily abelian) C*-algebra is a pure state. This can also be proved by
reduction to the case of algebras of the form C(X) and an application of
Theorem 3.4.7. Indeed, if p = (1 — a)p, + ap,, we can show that p(4) =
p1(A) = p,(A), for a given self-adjoint A in A, by restricting p, p,, and p, to the
C*-subalgebra generated by I and A, and identifying this algebra with
C(sp(4)).

4.4.2. CoroLLARY. The set P(N)of pure states of an abelian C*-algebra N
is a closed subset of the state space ().
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Proof. By Proposition 4.4.1,
P(W) = {peS(NW): p(4AB) = p(4)p(B) (4,BeA)}. W

4.4.3. THEOREM. Suppose that W is an abelian C*-algebra, P(N) is the set
of all pure states of W, and for each A in W, a complex-valued function A is defined
throughout P(N) by A(p) = p(A). Then P(N) is a compact Hausdorff space,
relative to the weak* topology, and the mapping A — A is a * isomorphism from
U onto the C*-algebra C(P(N)).

Proof. A substantial part of the argument required to prove this theorem
is already contained in the discussion of function representations of (not
necessarily abelian) C*-algebras, preceding Theorem 4.3.11. Two new features
that are special to the abelian case, those set out in Proposition 4.4.1 and
Corollary 4.4.2, suffice to complete the proof. For the sake of clarity, the
argument is presented below in unified form, even though this involves some
repetition of the earlier discussion.

From Corollary 4.4.2, () is weak* compact. With A4 in 2, it is apparent
from the definition of the weak* topology that A4 is a continuous complex-
valued function on 2(A). For all 4 and Bin A, aand b in C, and p in 2(A)

S - “
(a4 +bB)(p) = p(ad + bB) = ap(4) + bp(B) = aA(p) + bB(p),

l4(p)l = lp(A)| < l4ll,  A*(p) = p(A*) = p(4) = A(p);
and
(4B)(p) = p(AB) = p(A)p(B) = A(p)B(p),

since p is multiplicative, by Proposition 4.4.1. Since 2 is abelian, 4 is normal,
so by Theorem 4.3.8(iv) there is a pure state p, of U such that |p,(A4)| = || 4]
From this,

4]l = |A(po)l < sup |A(p)| < |1 4ll,

pe?(¥)

4]l = sup |4(p)| = ||4]|.

peP()
The function T is the unit of C(2(N)), since
Ip)y=p)=1 (peP(A)).

The preceding discussion shows that the mapping ¢: 4 — A is an (isomet-
ric) * isomorphism from A into C(2(A)). Its range

A={A4:4eU}

is therefore a * subalgebra of C(2()), contains the constant functions, and is
closed since A is complete and ¢ is an isometry. Given distinct pure states p,
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aAnd D2 of A, we can choose A in A so that p,(A4) # p,(A4), equivalently
A(py) # A(p,); so U separates the points of 2(A). By the Stone-Weierstrass
theorem, A = C(2(A)). A

With 2 an abelian C*-algebra, the * isomorphism described in Theorem
4.4.3is just the function representation of 2 on its pure state space, constructed
in the discussion preceding Theorem 4.3.11, and is by far the most important
example of a function representation of . For this reason, we shall frequently
refer to it as the function representation of .

4.4.4. ProposITION. If A is a normal element of a C*-algebra U, and
aesp(A), there is a pure state p of W such that p(A) = a.

Proof. Theset of all polynomialsin I, 4, and A* is an abelian * subalgebra
of U, and its closure is an abelian C*-subalgebra .o/. Now 4 has the same
spectrum relative to U or .«/. From Remark 3.2.11 and Proposition 4.4.1, there
is a pure state of .o whose value at 4 is a. From Theorem 4.3.13(iv), this pure
state of &/ extends to a pure state p of U; and p(4) =a. A

In the remainder of this section, we make use of the function representation
for abelian C*-algebras in establishing the existence and properties of the
function calculus associated with a normal element of a (not necessarily
abelian) C*-algebra.

4.4.5. TueoreM. If A is a normal element of a C*-algebra U, C(sp(A)) is
the abelian C*-algebra of all continuous complex-valued functions on sp(A4), and
1 in C(sp(A4)) is defined by i(t) =1t (tesp(A4)), then there is a unique *
isomorphism @: C(sp(A4)) — Wsuch that p(1) = A. For each fin C(sp(A4)), p(f)is
normal, and is the limit of a sequence of polynomials in I, A, and A*. The set

{o(f): fe C(sp(A))}

is an abelian C*-algebra, and is the smallest C*-subalgebra of W that contains A.
Moreover, A is self-adjoint if and only if sp(4) € R, positive if and only if
sp(4) = R*, unitary if and only if sp(4) = C, (= {teC: |t|=1}), and a
projection if and only if sp(4) < {0, 1}.

Proof. Let o be any abelian C*-subalgebra of U that contains A4; for
example, o/ could be the closure of the set of all polynomials in /, 4, and 4*.
From Theorem 4.4.3, there is a compact Hausdorff space X and a *
isomorphism y from & onto C(X). With u the element y(4) of C(X),

sp(A) = spu(A4) = spcx)(Y(4)) = spcx)(u) = {u(x): xe X}.
For each fin C(sp(4)), the composite function fou is continuous throughout
X ; the mapping f— fou is a * isomorphism from C(sp(4)) into C(X). From
this, and since y~': C(X) > o (= A) is a * isomorphism, the mapping
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©: f— ¢y (fou) is a * isomorphism from C(sp(d4)) into A; and ¢(i) =
U euw) = ¢ W) = A

Suppose also that ¢': C(sp(4)) — A is a * isomorphism, and ¢'(z) = 4.
Then ¢ and ¢’ are linear, multiplicative, and adjoint preserving, ¢(i) =
¢'(1) = 4, and ¢(1) = ¢'(1) = I, where 1 denotes the unit of C(sp(4)). From
this, (f) = ¢'(f) whenever fis a polynomialin 1, z, and the conjugate complex
function 1. Since polynomials of this type form an everywhere-dense subset of
C(sp(4)), by the Stone-Weierstrass theorem, while ¢ and ¢’ are isometric (see
Theorem 4.1.8(iii)), it follows that ¢(f) = ¢'(f) for each fin C(sp(4)).

Since C(sp(4)) is an abelian C*-algebra, it results from Theorem 4.1.8(iii)
that its image {¢(f): fe C(sp(A4))} under ¢ is an abelian C*-subalgebra of 2,
and contains 4 (= ¢(2)). From this, ¢(f) is normal for each fin C(sp(A4)).
Moreover, ¢(f)is the limit of a sequence of polynomialsin I, 4, and A*, since f
is the uniform limit on sp(4) of polynomials in 1, ¢, and 7. If # is a C*-
subalgebra of U, and A€ %, then £ contains I, 4, A*, and hence contains all
limits of polynomials in I, 4, and A*; so ¢(f)e 4, for each fin C(sp(A4)).

Since ¢ is a * isomorphism and ¢(i) = 4, it follows that A is self-adjoint (or
positive, or unitary, or a projection) if and only if the same is true of the element
1of C(sp(4)). Now 1 is self-adjoint if and only if it is real valued on sp(4); that
is, if and only if sp(4) = R. Similarly ; is positive if and only if it takes non-
negative values throughout sp(4) (equivalently, sp(4) = R*). Also 1 is unitary
(or a projection) if and only if 1(¢)«(t) = 1 (or [((£)]? = 1(t) = 1(¢)) for all ¢ in
sp(A4), and this occurs if and only if sp(4) < C, (or sp(4) < {0,1}). A

The * isomorphism ¢: C(sp(4)) —» U described in Theorem 4.4.5 is called
the function calculus for the normal element A of the C*-algebra . With fin
C(sp(4)), we usually denote by f(A4) the element ¢(f) of A. Note that, if f has
the form

=% Y ap!/(t)  (tesp(4))
j=0 k=0
(that is, f=Y ¥ aj F(1)*), then

fO=TF S audla®

j=0 k=0

4.4.6. REMARK. Suppose that & is a C*-subalgebra of a C*-algebra A
and A4 is a normal element of 4. We can consider two function calculi for 4,

- fa(A): C(spa(4)) » U

relative to A, and

S-fa(4): C(spa(4)) - 2,
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relative to 4. Since spy(4) = spa(4) and # < A, both function calculi can be
considered as mappings from C(sp(4)) into A, and it is clear from the
uniqueness clause in Theorem 4.4.5 that they coincide. In this sense, the
function calculus for a normal element is independent of the containing C*-
algebra. If 4 is self-adjoint, the function calculus described in Theorem 4.4.5
coincides with the one considered in Theorem 4.1.3, by the uniqueness clause in
either of those theorems. H

Suppose that 4 is a normal element of a C*-algebra 2 and fis a continuous
complex-valued function whose domain of definition includes sp(4). Just as in
the case of self-adjoint elements, we denote by f{4) the element of A that, in the
function calculus for 4, corresponds to the restriction f|sp(4).

4.4.7. ProposITION. If W and 2 are C*-algebras, ¢ is a * homomorphism
from A into B, A is a normal element of W, and fe C(sp(A)), then p(A) is a
normal element of &, sp(p(A4)) < sp(4), and f(p(A4)) = p(f(A)).

Proof. Since
P(A)p(A)* — p(A)*p(A) = p(A4* — 4*4) =0,
o(A) is norma}. By Theorem 4.1.8(i), sp(p(A4)) < sp(4), and the mappings
f-oRe(4),  f—-o(fi4): C(sp(4)) - %,
being * homomorphisms, are both continuous. For m, n =0,1,2,...,
o(A™(A*)") = p(A)"[p(A)*T",
s0 o(p(A4)) = p(p(4)) whenever p (in C(sp(4))) has the form

p() =Y Y ayti(n)-
j=0 k=0

Accordingly, the mapping
f=1flo(4)) — o(fA)II: Clsp(4)) - R

is continuous throughout C(sp(A4)), takes the value zero on the everywhere-
dense subset consisting of polynomials p of the type just described, and so
vanishes throughout C(sp(4)). H

4.4.8. THEOREM. If A is a normal element of a C*-algebra U and
feC(sp(A)), then
sp(fld)) = {f(t): tesp(4)}.

If g€ C(sp(f(A))), the composite function g o f lies in C(sp(A)), and (g-f)(A4) =
g(f(A)), where g(f(A)) denotes the element of U that corresponds to g in the
function calculus for the normal element f(A).
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Proof. Since the mapping f — f(A)isa * isomorphism from C(sp(A4)) onto
a C*-subalgebra # of AU, we have
sp(f(4)) = spa(f(4)) = sPcispan(f) = {At) : tesp(A)}.
If ge C(sp(f(4))), g is continuous on the range of f, so gof is continuous
throughout sp(4). The mappings
g—gof: Cp(fid)) - C(sp(4)),
h—h(A): C(sp(4)) - A

are * isomorphisms, and hence so is

Yig-(@gof)4): Clsp(fid) - A.

With : the identity mapping on sp(f(A4)), tof = f, so Y(1) = f{A). From the
uniqueness clause in Theorem 4.4.5,  coincides with the function calculus

g — g(f(A)) for f(A); that is,
g(f(4)) = Y(9) = (g=S)A),
for each g in C(sp(f(4))). A

4.49. ExampLE. If X is a compact Hausdorff space and U is the abelian
C*-algebra C(X), each g in A is normal. We assert that the function calculus
for g is given by

flg)=fo9  (feC(sp(g)))-

For this, note first that, since sp(g) = {g(x): x € X'}, the composite function fo g
is continuous throughout X, when fe C(sp(g)). Accordingly, the mapping

Y:f—foy
isa * isomorphism from C(sp(g)) into C(X) (= A). With ; the identity mapping

on sp(g), 1~g is g, and thus () = g. From the uniqueness clause in Theorem
4.4.5,  is the function calculus for g; that is, f{g) = fog for each f in

C(sp(g)). W

With A a C*-algebra and H self-adjoint in A, the equation f{t) = exp it
defines a continuous function f on sp(H), and we denote the corresponding
element f{H) of A by exp iH. Since

SOf) =fOfiy =1 (tesp(H)),
we have f(H)f(H)* = f(H)*f(H) = I, so exp iH is unitary. Since the series
Y (it)"/n! converges to f(t), uniformly on sp(H), it follows by considering its
partial sums that

(iH)"

n!

expiH= )
n=0
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In some C*-algebras !, every unitary element has the form exp i H, with H self-
adjoint in A (see, for example, Theorem 5.2.5). In a general C *-algebra, there
may be unitaries not of this form (see Exercise 4.6.5), but we have the following
result.

4.4.10. ProposiTioN. If U is a unitary element in a C*-algebra U, and
sp(U) is not the whole unit circle, U = exp iH for some self-adjoint H in U.

Proof. Since sp(U) is a proper subset of the unit circle, there is a real
number a such that
sp(U) S {exp is:a < s < a+ 2n}.
In order to use the function calculus for U, we define a continuous function fon
sp(U) by
flexp is) =s (a<s<a+2n).

Since f is real valued on sp(U), and
exp iftty=1t  (tesp(U)),
f(U) is a self-adjoint element H of A; and
exp iH =exp if(U) = U,
by Theorem 4.4.8. W

4.4.11. REmaRk. If 4 and B are normal operators whose spectra are
contained in the domain of a continuous function g, and if g has a continuous
inverse function f, then g(4) = ¢g(B) if and only if 4 = B; for if g(4) = g(B),
then, from Theorem 4.4.8,

A= (f-9)(4) = fiy(4)) = flg(B)) = (f-9)(B) = B.

As an application of this comment, we note that if 4" = B" with 4 and B
positive operators and n a positive integer, then 4 = B, so that a positive
operator has a unique positive nth root. H

Bibliography: [4]

4.5. States and representations

By a representation of a C*-algebra 2 on a Hilbert space ., we mean a *
homomorphism ¢ from U into B(#). If, in addition, ¢ is one-to-one (hence, a
* isomorphism), it is described as a faithful representation. Our main purpose
in this section, achieved in Theorem 4.5.6 (the Gelfand-Neumark theorem) is
to show that every C*-algebra has a faithful representation on some Hilbert
space.
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Suppose that ¢ is a representation of a C*-algebra 2 on a Hilbert space #.
In view of our convention that * homomorphisms preserve units, and from
Theorem 4.1.8, o(I) =1, ||lo(A)|| < ||4]| for each 4 in A (whence ¢ is
continuous), and |[@(4)|| = ||4|| if @ is faithful. The set {4eA: p(4) =0} isa
closed two-sided ideal in U, the kernel of . If there is a vector x in 3# for which
the linear subspace

e(Wx = {p(A)x: AeWU}

is everywhere dense in #, ¢ is described as a cyclic representation, and x is
termed a cyclic vector (or generating vector) for . It turns out that there is an
intimate connection between states of 2 and cyclic representations; and the
proof of the existence of a faithful representation depends on the construction,
from states, of an abundance of cyclic representations.

We give a number of examples to illustrate the concepts just introduced.
With # a Hilbert space and A a C*-subalgebra of #(#), the inclusion
mapping from A into B(H#) is a faithful representation of A on H#. Suppose
that J is a closed subspace of #, and is invariant under each operator in 1.
When A4 e, the restriction 4|#" can be viewed as a bounded linear operator
on X, and coincides with the compression of 4 to ./, as described in Section
2.6. Since compression is an adjoint preserving process, it is easily verified that
the mapping 4 — A| A" : A - B(A") is a ¥ homomorphism, and is therefore a
representation of A on X~ With 4in U, J¢ is invariant under both 4 and 4*,
and so reduces A; equivalently, 4 commutes with the projection E from #
onto . Accordingly, the orthogonal complement ¢ L is invariant under each
operator in U, and gives rise to a representation 4 — A+ of U on H *.

When X c #, & < B(#), and xe #, as in Section 1.2 we denote by [X]
the closed subspace of # generated by X; we write & X for the set {Ax: A€ %
x € X}, and define & x to be & {x}. Since AX isinvariant under each operator in
A, the same is true of the closed subspace [UX], so the mapping 4 — A|[AUX] is
arepresentation of 2 on [AX]. The representation 4 — A4|[Ax] of Won [Ax]
is cyclic, having x as a cyclic vector.

When 2 is a C*-subalgebra of #(5#), it is evident (as noted above) that A
has a faithful representation on #, the inclusion mapping from 2 into Z(#).
We shall see in Chapter 10 that it is nevertheless important, even in this case, to
study other representations of A, on different Hilbert spaces. For the present,
however, our main concern is to construct representations of a C*-algebra U
that is not at the outset presented as a self-adjoint algebra of Hilbert space
operators. As an example of this type, consider the C*-algebra L, of all
essentially bounded complex-valued measurable functions on a ¢-finite
measure space (S, m), with pointwise algebraic structure, complex con-
Jjugation as involution, and the essential supremum norm. Each fin L gives
rise to a multiplication operator M acting on the Hilbert space L,, and it is
apparent from the discussion in Example 2.4.11 that the mapping f - M isa
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faithful representation of L., on L,. When the measure is Lebesgue measure on
a compact interval X (€ R), C(X) is a C*-algebra, and the mapping

fo Mg C(X)—> B(L,)

is a faithful representation of C(X) on L,.

Suppose that ¢ is a representation of a C*-algebra 2 on a Hilbert space #
and x is a unit vector in . With w, the corresponding vector state of B(H#),
the composite function w,-¢ is a state p of A. Indeed, since (1) = I,
oAU = B(H#)*, and

p(A) = ox(p(A)) = (p(A)x,x)  (AeW),
it is evident that p is a positive linear functional on 2, and p(I) = w.(I) = 1.
We prove, in Theorem 4.5.2, that each state of a C*-algebra arises in this way,
from a vector state in an appropriate representation. We first need an auxiliary
result.
4.5.1. ProposITION. If p is a state of a C*-algebra N, the set
&, ={AeWN: p(A*A4) = 0}

is a closed left ideal in W, and p(B*A) = 0 whenever Ae ¥, and BeU. The
equation

A+ %, B+ %,>=p(B*A) (4,BeN)
defines a definite inner product { , ) on the quotient linear space W/%¥,.

Proof. Since p is positive (and hence, also, hermitian), we can define an
inner product { , >, on A by

(A4,B)o = p(B*4)  (4,Be);

and
&, ={AeW: (4, A), = 0}.
From Proposition 2.1.1(ii), %, is a linear subspace of U, and the equation
(A+%,,B+ %,)=(A,B)o = p(B*4)

defines a definite inner product on A/%Z,. If 4 ¥, and Be ¥,

|p(B*A)* < p(B*B)p(A*4) = 0,
so p(B*A4) = 0. Upon replacing B by B*BA, it follows that

p((BAY*BA) = p((B*BA)*A4) = 0, BAe %,,

whenever 4 € ¥, and Be . Hence %, is a left ideal of 2, and is closed since p is
continuous. W
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We refer to &, as the left kernel of the state p.

4.5.2. THEOREM. If p is a state of .a C*-algebra U, there is a cyclic
representation n, of W on a Hilbert space #,, and a unit cyclic vector x, for n,,
such that p = w,, om,; that is,

p(A) = (m(A)x,, X, (AeN).

Proof. With &, the left kernel of p, the quotient linear space /%, is a
pre-Hilbert space relative to the definite inner product defined, as in
Proposition 4.5.1, by

(A+ %,,B+ %, =p(B*4)  (A,Be¥).

Its completion is a Hilbert space J#,.

If 4, B;, BeW,and B, + ¥, = B, + ¥,,then B, — B, ¥,, AB, — AB,
€%, since %, is a left ideal in A, and therefore 4B, + ¥, = 4B, + %,.
Accordingly, theequation n(4)(B + %,) = AB + ¥, defines, unambiguously,
a linear operator n(4) acting on the pre-Hilbert space %/¥,. Now

A2 — A*4 = [ A*A|] — A*A A" ;
hence B*(||4||>] — A*4A)BeA™*, and therefore
I411%11B + Z,1I* — IM(AXB + £,)|I?
= [l41*IB + Z,|I* — l14B + Z,|I*
= ||4]]*?¢{(B + £ B+ ¥,y —{AB+ ¥,,AB+ ¥,>
= ||411*p(B*B) — p(B*A4*AB)
= p(B*(||4|*T — 4*4)B) > 0,

for all 4 and B in A. Thus n(4) is bounded, with ||n(4)|| < ||4|l; and =(A)
extends by continuity to a bounded linear operator n,(4) acting on J#,.

Since n(/) is the identity operator on /%, m,(/) is the identity operator on
#,. When 4, B, Ce¥ and a, beC,

n,(ad + bB)(C + &,) = (a4 + bB)C + &,
=a(4C + L) + b(BC + £,
= (an,(A) + br,(B))(C + Z,),
1, (AB)(C + £,) = ABC + &, = n,(A)(BC + £,)
= n,(D)n,(B)(C + %,),
(n(A)B + £),C+ L5 =<AB+ ¥,,C+ £, = p(C*4B)

= p((A*C)*B) = (B + ¥, A*C + £,
= (B+ %, n,(4*)C + £)>.
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From these relations, and since U/.%, is everywhere dense in ., it follows that
n(ad + bB) = an,(A4) + bn,(B),
m,(AB) = m,(A)m,(B),
T (A)* = m,(4%).

Accordingly, m, is a representation of U on .
With x, the vector I + %, in U/%,,

n(A)x, = i (A)I + L) = A+ £, (4de).

Hence 7,(A)x, is the everywhere-dense subset A/.Z, of i#,, and x, is a cyclic
vector for m,. Moreover,

(rp(A)x,,x,) =<A+ L, 1+ &) =p(4)  (AeW);
in particular, ||x,||* = p() =1. W

The method used to produce a representation from a state, in the proof of
Theorem 4.5.2, is called the Gelfand-Neumark-Segal construction, or GNS
construction, and provides one of the basic tools of C*-algebra theory. The
associated notation will be used frequently, sometimes without comment;
when pis astate of a C*-algebra U, the symbols #,, m,, and x, always bear the
meaning attached to them in the theorem. In applications, the properties of
#,,m,,and x,, set out in the theorem, are more important than the details of
the construction used to produce them. In a sense made precise in the following
proposition, the Hilbert space s,, the cyclic representation r,, and the unit
cyclic vector x, are (essentially) uniquely determined by the condition
P =y, °T,.

4.5.3. ProposSITION. Suppose that p is a state of a C*-algebra W and n is a
cyclic representation of W on a Hilbert space # such that p = w, o n for some
unit cyclic vector x for n. If #,, n,, and x, are the Hilbert space, cyclic
representation, and unit cyclic vector produced from p by the GNS construction,
there is an isomorphism U from #, onto # such that

x = Ux,, (A) = Un,(A)U* (AeN).
Proof. For each 4 in U,
Im(A)x)|> = {n(d)x, n(A)x) = {n(A*A)x, x)
= p(A*A4) = (m,(A*A)x,,%,) = ||, (A)x, .

If 4, Be W and n,(4)x, = m,(B)x,, it follows from the above equations (with
A — B in place of A) that n(4)x = n(B)x. Accordingly, the equation
Uon,(A)x, = n(A)x (4 eA) defines a norm-preserving linear operator from
7,(W)x, onto w(A)x. Since [n,(W)x,] = #, and [(W)x] = #, U, extends by
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continuity to an isomorphism U from J#, onto #, and
Ux, = Uyn,(Ix, = n(I)x = x.
With 4 and B in ¥,
Un,(A)n,(B)x, = Un,(AB)x,
= n(AB)x
= n(A)n(B)x = n(A)Un,(B)x,.

Since vectors of the form n,(B)x, (Be ) form an everywhere-dense subset of
#,, it follows that Un,(4) = n(A)U, and thus n(4) = Un,(A)U*. A

Suppose that A is a C*-algebra and that ¢ and s are representations of 2
on Hilbert spaces s and ¢, respectively. We say that ¢ and s are (unitarily)
equivalent if there is an isomorphism U from # onto ¢ such that
Y(A) = Up(A)U* for each 4 in A. If p is a state of A, n is a cyclic
representation of A, and p = w,on for some unit cyclic vector x for =, it
follows from Proposition 4.5.3 that n is equivalent to the representation 7,
obtained from p by the GNS construction. In addition, the isomorphism U can
be chosen so that Ux, = x.

4.5.4. CoroLLARY. If x is a unit vector in a Hilbert space #, W is a C*-
subalgebra of B(H), and p is the vector state w,|U, the representation m,
obtained from p by the GNS construction is equivalent to the representation
A — A|[Ux] of Won the Hilbert space [Ux]. The isomorphism U: #, — [Ux]
that implements this equivalence can be chosen so that Ux, = x.

Proof. This follows from Proposition 4.5.3, since x is a unit cyclic vector
for the representation n: 4 — A|[Ax], and p = w,on. W

We prove next that the set of all representations of a C*-algebra A,
obtained from (pure) states of A by the GNS construction, is large enough to
“separate” the elements of .

4.5.5. PROPOSITION. If A is a non-zero element of a C*-algebra W, there isa
pure state p of W such that n,(A) # 0, where n, is the representation obtained
Sfrom p by the GNS construction.

Proof. By Theorem 4.3.8(i) there is a pure state p of 2 such that p(4) # 0,
equivalently {(n,(4)x,,x,> # 0, whence n,(4) #0. N

In order to complete the prgof that every C*-algebra has a faithful
representation, we need the concept of a “direct sum” of representations.
Suppose that Aisa C*-algebra, (#}),p is a family of Hilbert spaces, and ¢, is
a representation of A on #, for each b in B. When A e, ||o,(A)|| < |4l



4.5. STATES AND REPRESENTATIONS 281

(be B), so the direct sum Y, .5 @ @,(A4) is a bounded linear operator acting on
the Hilbert space Y,.p @ 5. From the results set out at the end of the
subsection on direct sums, in Section 2.6, it is apparent that the mapping

@AY D pyA)

is a representation of A on Y @ #,. We call ¢ the direct sum of the family
(@s)vem Of representations of A, and write ¢ =Y @ .

4.5.6. THEoREM (The Gelfand-Neumark theorem). FEach C*-algebra
has a faithful representation.

Proof. With U a C*-algebra, let &% be any family of states of U that
contains all the pure states. Let ¢ be the direct sum of the family {r,: pe %},
where 7, is the representation obtained from p by the GNS construction. If
AeW and @(4) =0, then 7,(4) =0 (peH) since p(A4) is ¥ @ n,(4); in
particular, n,(4) = 0 for each pure state p of U, and 4 = 0 by Proposition
4.5.5. Hence ¢ is a faithful representation of A. M

4.5.7. RemaArk. If ¢ is a faithful representation of a C*-algebra U on a
Hilbert space ., then ¢ is isometric and ¢(%) is a C*-subalgebra of Z(#), by
Theorem 4.1.8(iii). Accordingly, the Gelfand-Neumark theorem can be
restated as follows: if Ais a C*-algebra, there is a Hilbert space # such that A
is * isomorphic to a C*-subalgebra of Z(#). W

4.5.8. REMARK. Suppose that 2 is a C*-algebra with state space & and
that 2 is the set of pure states of 2. In proving the Gelfand-Neumark theorem,
we showed that the representation

Y On,
pefo
of A is faithful whenever 2 < % < & When & =.% we obtain a faithful
representation

® = Z ® 7,
peS

the universal representation of W, which will be studied in more detail in Section
10.1. With 7 a state of &, 7 = w, o 7, for a suitable unit vector x (= x,) in #,;
thus 7 = w,o P, where y is the vector ¥, @ y,, in the Hilbert space
Ho =3 pes ® H,,defined by y. = x, y, = 0 (p # 7). Accordingly, each state
of U has the form w,>®, with y a unit vector in #g. Since the mapping
T—to® ! carries the state space of U onto the state space of the C*-
subalgebra @(A) of B(H#y), it now follows that each state of ®(N) is a vector
state. This last is the most basic fact about the universal representation, from
which its other properties will be deduced in Section 10.1.
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When &, = 2, we obtain another faithful representation,

y=3 on,
peEP
of A. While this representation has useful properties, it is more convenient to
work with a “reduced” form of , known as the reduced atomic representation,
which will be studied further in Section 10.3. H

In Section 3.2, we studied characters of R and their relation to the operator
algebras o7 (R) and U,(R). A character ¢ of R may be viewed as a (continuous)
homomorphism of R into the unitary group of the one-dimensional Hilbert
space C, where ¢ corresponds to multiplication by &(¢) on C. There are more
general homomorphisms of R into the group #(s#) of unitary operators on a
Hilbert space J#. If %(s¢) is provided with the strong-operator topology and
the homomorphism of R into #(#) is continuous, we refer to the homomor-
phism as a one-parameter unitary group (also, as a unitary representation of R).
The complete analysis of one-parameter unitary groups (Theorem 5.6.36,
Stone’s theorem) must await our development of the spectral theory of
unbounded self-adjoint operators in Section 5.6. In the present discussion, we
shall relate one-parameter unitary groups to certain representations of Wy (R).
For this purpose, it is convenient to extend our concept of “representation on
H” to self-adjoint algebras of operators that may not be norm closed and may
not contain / (as, for example, o/,(R)). Again we require that our repre-
sentation be a * homomorphism into (). Those representations for which
the union of the range projections of operators in the image is J are said to be
essential. When the algebra does not contain /, the assumption that a
representation is essential replaces the requirement that the image of 7 is the
identity operator.

4.5.9. TueOREM. Ift — U, isaone-parameter unitary group on # there isa
representation ¢ of Uy(R) on H such that

(M Co(Ls)x,y) = Jf(t)<Uxx,y> dt

foreachfin L (R)and x,y in # ; and @ restricts to an essential representation of

& (R). If @ is an essential representation of </ (R) on #, there is a one-
parameter unitary group t — U, on 3 such that (1) is satisfied — in particular, @
extends to a representation of Wy(R).

Proof. Theintegralin(1) deﬁgs a conjugate-bilinear functional on .# for
each fin L;(R). As

< Al

Hf(t)<U:x,y> dt
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from Theorem 2.4.1 there is an operator @(L,) on # such that
llo(L)II < I f1l; and (1) holds. The mapping ¢ of o/ (R) into #(#’) is linear.
Since

@(Lygx,y) = J(f* G Uix, ) dt

= J( ~[f(s)g(t —3) ds) (Ux,yydt
= Jf (s) ( Jg(t — sUx, y) dt) ds

= Jf(s)< ~[g(t)( Ux,U_») dt) ds
= ff(s)«ﬂ(Lq)X, U_,y)ds

= J‘f(s)< Us(p(Lg)x’ y> ds

= {@o(Ly)o(Lyx,y;
we have that o(L,L,) = ¢(L,.,) = ¢(L;)p(L,). Now

Co(LY)x,p) = J-f *(XUix, p) dt

~ Jf(— ) (U-y.x) di

= (oL )y.xy = <x, o(L)y);

so that o(L¥) = ¢(L,)*. Thus ¢ is a representation of «/,(R) on #.

To prove that ¢ is an essential representation of o7 (R), we note that if
{o(L;)x,yy = 0forall fin L;(R) and all x in #, then y = 0. For such a vector
»,{Ux,y» = 0 for almost every ¢, from (1). Since ¢t — U, is strong-operator
continuous, ¢ — (U,x,y) is continuous and vanishes identically. Thus,
{x,yy =0for all xin s,y =0, and ¢ is essential on </ (R).

We prove next that ||o(L,)|| < ||L,||, from which it will follow that ¢ has a
(unique) bounded extension to A (R) and from A (R) to Ay(R) (by assigning
the identity operator to / and extending the resulting mapping linearly). Let 2,
be the norm closure of the algebra generated by 7 and ¢(# {(R)). Then A, is an
abelian C*-algebra on #. From Theorem 4.3.8(iv), there is a pure state p of A,
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such that |p(e(L;))| = llo(L,)||. Proposition 4.4.1 implies that p is multipli-
cative on U,. Thus the equation p,(f) = p(¢(L,)) defines a non-zero
multiplicative linear functional p, on L,(R). From Theorem 3.2.26, thereis a
real number r such that p,(f) = f(r). From Theorem 3.2.27, there is a po in
M o(R) such that po(L;) = f(r). Thus

(L)l = lp(@(L )| = 1p1(N] = IF (] = lpo(L)I < IILg],

since .#o(R) is contained in the unit ball of Ay(R)*.

Suppose now that ¢ is an essential representation of o7 ,(R) on #. The
argument set out in the preceding paragraph shows that |lo(L;)|| < ||L,||for all
fin Li(R). The heuristic discussion preceding Theorem 3.2.26 suggests that
@(L,,) should be U,p(L;), for each fin L;(R), and that we should define
U,o(L;)x to be o(L;,)x for each fin L;(R) and x in . We must show that if

o(Ly)xy + - + o(Ly)x, =0,
then
o(Ligy)xi + -+ (Lg% = 0.

This last will follow if we establish that the norms of the sums on the left-hand
sides of these equalities are equal. More generally, we show that the inner
products of two such sums and of their “translates” by r (that is, their images
under U,) are equal. For this it suffices to note that

Co(Ly)x, (L )y> = @(Lygr.p)x,¥)
and that

(g #f)(s) = jgf(t)f,(s — tydt = Jé(it — 1 f(s—t—ryde

= jg*(t)f(s — f)ydt = (g* = /)s),

so that g* « f, = g* «f. It follows that U, is unambiguously defined and extends
to a unitary operator on . (which we denote, again, by U,). Since

Ur+s(p(Lf)x = (p(Lst)x = (p(L(fs)r)x = Ur(p(Lfs)x
= UrUs(p(Lf)x’

r — U, is a homomorphism of R into the unitary group of .. To establish the
strong-operator continuity of this mapping, it will suffice to prove that, given x
in some set of vectors generating a dense linear manifold in # and a positive ¢,
thereis a positive § such that ||U,x — x{| < e when |¢|] < §. For our set of vectors,
we may choose {¢(L,)u} where ue # and fis a continuous function on R with
(compact) support in a finite interval (since such functions are dense in L, (R)).
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As fis uniformly continuous and its support is a finite interval, there is a
positive ¢ such that ||f — fi|l; < ¢/||lul} provided [¢| < §. Writing x for (L, )u,
when |f| < 6, we have that ||U,x — x|| = |lo(Ly, — L, )u|| < ¢, for |||l < 1, from
the preceding paragraph; and ¢ — U, is strong-operator continuous.

To complete the proof, we must show that ¢, as constructed, satisfies (1). It
will suffice to prove (1) with vectors u of the form ¢(L,)x in place of x, where
ge Ly(R). Now, the mapping f'— {¢@(L,)x,y) is a bounded linear functional
on L,;(R). From Theorem 1.7.8, there is an A in L,(R) such that
Cp(Lg)x,yy = [ f(h(r)dr for all fin L,(R). If u = ¢(L,)x, then

Co(Lpu,yy = <p(L. )X, y)

= | (S*g)r)h(r)dr

[y

= ( j f(gr—1 dt)h(r) dr

=/ < fg,(r)h(r) dr) dr

~

= | f@)<o(Ly)x, y) dt

r

= | f() U, y> dt,

v

where the Fubini theorem applies since (|g| * |f)|h|e L,(R). W
Bibliography: [4, 19]

4.6. Exercises

4.6.1. Supposethat S, S,, Ty, T,, and 4 are elements of a C*-algebra 2,
and

0<S,<T,, 0<S,<T,
Prove that
IS} A1l < IT12A4ll,
and deduce that
IS12ASY2) < ITY2ATY)

4.6.2. Supposethat A and & are C*-algebras and ¢ is a ¥ homomorphism
from A onto . Suppose that B, K € 8, with B self-adjoint and K positive, and
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let ¥ be the exponential unitary expiB. Show that there exist 4, H, U
(= expid) in A, with A4 self-adjoint and H positive, such that

p(4)=B, oH)=K  oU)=V.
{See also Exercises 4.6.3 and 4.6.59.]

4.6.3. Suppose that D is the unit disk {zeC :|z|] < 1}, T is its boundary
{zeC:|z| =1}, and S is the union {expif:0eR, n/4 <|6] < 3n/4} of two
closed arcs in T. Consider the C*-algebras C(D), C(T), C(S) and the *
homomorphisms ¢ (from C(D) onto C(T)) and ¥ (from C(T) onto C(S))
defined by restriction; that is,

eN=fIT, Y@ =9IS (feCD), geC(T)).
Find

(i) a unitary element u of C(T) that is not of the form ¢(f) for any
invertible element f of C(D); [Hint. Use the fact (from elementary algebraic
topology) that there is no continuous mapping of D onto T that leaves each
point of T fixed—that is, T is not a retract of D.]

(ii) a projection ¢ in C(S) that is not of the form y( p) for any projection p
in C(T).

{See also Exercise 4.6.59.]

4.6.4. Determine whether the following assertion is true or false: if 2 and
2 are abelian C*-algebras, ¢ is a * homomorphism from 2 onto 4, and Bis an
invertible self-adjoint element of 4, there is an invertible self-adjoint element A4
of A such that ¢(4) = B.

4.6.5. Usetheresults of Exercises 4.6.2 and 4.6.3(i) to provide an example
of an abelian C*-algebra # and a unitary element ¥ of 2 that is not of the form
exp iB for any self-adjoint B in 4.

4.6.6. Let % be the (multiplicative) group of all unitary elements in a C*-
algebra .

(i) Showthat,if Ue% and || — U|| < 2, then U = exp iH for some self-
adjoint H in A.
(ii) Show that, if V, We% and ||V — W|| < 2, then V = WexpiH for
some self-adjoint H in 2.
(iii) Let %, (= %) be the séT of all products of the form

(expiH,)(expiH,) - - - (exp iHy),

where {H,, H,,..., H,} is a finite set of self-adjoint elements of 2. Show that
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%, is open, closed, and arcwise connected, in the (relative) norm topology
on .

4.6.7. Suppose that U is an abelian C*-algebra, % is its unitary group
(considered as a topological group with the norm topology), %, is the
connected component of % that contains the identity /, and Ue %. Use the
results of Exercise 4.6.6(iii) to show that the following three conditions are
equivalent.

(1) U = expiA for some self-adjoint 4 in A.
(ii) U is connected to I by a continuous arc in %.
(i) Ue%,.

4.6.8. Show that, in both of the following cases, each unitary element in
the C*-algebra 9 has the form expiA4 for some self-adjoint 4 in .

(i) U isthe C*-algebra L, associated with a g-finite measure space.

(i) A is the C*-algebra C(X), where the compact Hausdorff space X is
contractible (that is, there is a point x, in X and a continuous mapping
f:X x [0,1] - X such that f(x,0) = x, f(x,1) = x, for each x in X). [Hint.
Use the result of Exercise 4.6.7.]

4.6.9. (i) Show that, if a, b are complex numbers and P, Q are
projections with sum 7 in a C*-algebra, then the function calculus for the
normal element aP + bQ (= N) is given by

S(N) = f(a)P + f(b)Q.

(ii) Suppose that T is the unit circle {ze C : |z| = 1} and ./ is the algebra
ofall 2 x 2complex matrices, so that .# becomes a C *-algebra when identified
in the usual way with the set of all linear operators acting on the two-
dimensional Hilbert space C2. The Banach space C(T, .#) (see Example 1.7.2)
becomes a C*-algebra A when products and adjoints (as well as the linear
structure) are defined pointwise. Let E and F be the projections in A given by

e = [O O:I, ) = llil - c.os() —sin @ ]
0 1 2] —sin@ 1+ cos6
(0 < 6 < 2m), and let U be the unitary element (exp inE)(exp inF) of UA. Show
that
UEe?y=e’P+e "Q  (0<6<2n),
where P and Q are the projections in .# given by

P_][l _IJ _1[ I i:l
T2l P 273 2 )
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Deduce that U, a product of two exponential unitary elements of U, is not itself
an exponential unitary.

4.6.10. Let A be a C*-algebra and # be a norm-closed (though not
necessarily self-adjoint) subalgebra of U. Let 4 be a self-adjoint element of A in
2. Show that spg(A) = spa(A4). [Hint. See Exercise 3.5.28.]

4.6.11. Suppose that 4 is a positive element of a C*-algebra U, E and F
are orthogonal projections in A, and E4AE = 0. Show that EAF = 0.

4.6.12. Suppose that a C*-algebra 9 has a maximal abelian * subalgebra
o/ that is finite dimensional.

(i) Show that .o/ is the linear span of a finite orthogonal family
{Ey,...,E,} of projections in 2 with sum I (the identity of ).

(ii) By considering the family {E,,..., E,, E;AE;}, where 4 = A*e U,
show that E;UE; = {aE;:acC} for j=1,...,n

(iii) Suppose that j,ke{l,...,n} and j# k. Given 4 and B in U, let
a,b,c,d be the scalars determined by E;A*E,AE; = aE;, E;A*E BE; = bE;,
E;B*E\BE; = cE;, E(BE;A*E, = dE,. Prove thata > 0, ¢ > 0. By considering
suitable expressions for bdE;, bdE,, and acE;, show that b = d and ac = |b|*.
Deduce that

for suitable scalars s and ¢ (not both 0). Deduce that E,E; is at most one
dimensional.
(iv) Prove that 9 is finite dimensional.

4.6.13. Suppose that U is an infinite-dimensional C*-algebra. By using
the result of Exercise 4.6.12, show that there is an infinite sequence
{A;,A,,...} of non-zero elements of A* such that 4,4, = 0 when j # k.

4.6.14. By using the result of Exercise 4.6.12, show that, in an infinite-
dimensional C*-algebra, there is a positive element with infinite spectrum.

4.6.15. Letpbeastate ofa C*-algebra U. Wesay that pis faithfulif A = 0
when 4eA* and p(4) = 0.

(i) Show that Z,, the left kernel of p, is {0} when p is a faithful state of .
Deduce that #, is the completion of U relative to the inner product
(4, B) > p(B*4) (={4, B)), and that =, is faithful.

(i) Let p be a state of A such that =, is faithful. Must p be faithful?
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4.6.16. Let A be a self-adjoint element in a C*-algebra . Let p be a state
of Wsuch that p(42) = p(A)?. (We say that p is definite on A in this case.) Show
that p(AB) = p(BA) = p(A)p(B) for each B in A.

4.6.17. Suppose that U, o, and {E,,..., E,} are as in Exercise 4.6.12. Let
p; be a state of U that extends the state of .o/ assigning 1 to E; and 0 to E, when
k#j Letpben™' ¥7_, p;.

(i) Show that p is a faithful state of .

(i) Choose 4, in A such that (E;4 x E)*(E;Aj E,) = nE, for those k and j
for which E;AE, is one dimensional. Show that the set of E;4;E, forms an
orthonormal basis for ,.

4.6.18. Let # be a Hilbert space of finite dimension n, {e,,...,¢,} be an
orthonormal basis for #, Ej, be the element of () that maps e, to e; and e,
to 0 when k' # k, and p be an element of the Banach dual space (# )*. Define
A to be the element of %(’) with matrix representation [a;] relative to
{e1,...,e,}, where ay = p(E,;), and 1 to be the normalized trace (1(B) =
n=!'y’_ by =n""tr(B), where B has matrix [b;] relative to {ej,...,e,}).
Show that:

(i) 7 is a faithful state of Z(#);

(i) p(B) = tr(AB)foreach Bin (), and pisastateifand onlyif 0 < A4
and tr(4) = 1;

(ii)) A is independent of the basis {e;,...,e,};

(iv) pis a pure state of Z(#) if and only if 4 is a projection with one-
dimensional range (in which case p = w,, where x is a unit vector in the range
of A);

(v) pis a faithful state of Z(#) if and only if tr(4) = 1 and 4 > al for
some positive scalar a.

4.6.19. With the notation of Exercise 4.6.18, suppose p is a state and E'is
the projection in () with range the range of 4. Show that the left kernel &
of pis B(H#) I — E).

4.6.20. Suppose that A and & are C*-algebras, and ¢ is a * homomor-
phism from A onto A.

(i) Let B, and B, be elements of #* such that B, B, = 0. By considering
B, — B,, show that there exist elements 4, and 4, of A* such that 4,4, =0,
@(4,) = By, and ¢(4,) = B,.

(ii) Suppose that {B,, B,, B, ....} is a sequence of elements of * such
that B;B, = 0 when j # k. Prove that there is a sequence {4,,4,,43,...} of
elements of A* such that 4;4, =0 when j # k, and ¢(4;) = B; for each
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j=1,2,3,... . [Hint. Upon replacing B; by b;B; for a suitable positive scalar
b;, we may assume that the series y B; and Y B}'? converge to elements of 2.
Prove, by induction on n, the following statement: there exist elements
A, Ay, ..., A, X, of U such that 4,4, = 4, X, = 0forallj,k =1,..,nwith
Jj # k, and

(p(Al) = Bl’---,(P(An) = Bn’(P(Xn) = Bn+1 + Bn+2 + - ]
4.6.21. Suppose that A and # are C*-algebras, ¢ is a * homomorphism
from U onto £, and
AeU*, Be %, 0 < B< o(A).

(i) Show that there is a self-adjoint element R of  such that R < 4 and
¢o(R) = B. Deduce that there exist positive elements S and T of U such that

@(S)=B, o(T)=0, S<KT+A4.
(i) Forn=1,2,...,let
Upy=S"n 1+ T+ A)~NT + A)"/24"2.
Show that
UrU, <4,  oU) =B"[n"1+ o(4)] ' p(A).
(iii) By using the result of Exercise 4.6.1, show that
WUn = Ul S lln™  —m D™ U+ T+ A" Yo"+ T+ A)” YT+ 4P°7
Lt —m Y2,
1BY2 — (Ul < lln” to()V2[n™ T + ()] 7| < 37 12,

(iv) Deduce that the sequence {U*U,} converges to an element 4, of A
such that

0<do<d4, @(do)=

4.6.22. Let U be the C*-algebra /(A), where A is the set {1, 2, 3,4}, and
define a self-adjoint subspace .# of U (that contains the identity of ) by

= {feW:f()) +£(2) = f3) +f(9)}.

Find a hermitian linear functional p on .# that has more than one expression in
the form p = p, — p,, where p, and p, are positive linear functionals on .#
and ||p|| = ||p1ll + ||p2ll- [See the discussion following Corollary 4.3.7.]

4.6.23. Let ¢ be a * homomorphism of one C*-algebra U onto another
C*-algebra 4, and let p be a linear functional on 4.
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(i) Show that po¢ is a state of U if p is a state of 4.

(ii) Show that p is a state of Z if po ¢ is a state of U.
(iii) Show that po ¢ is a pure state of A if p is a pure state of £.
(iv) Show that p is a pure state of # if po ¢ is a pure state of .

4.6.24. Let & be the set of states of a C*-algebra UA. With 4 in U, let b be
sup{lp(4)|: pe &}

(i) Show that there is a pure state p of U such that |p(4)| = b.

(ii) When 4 is anormal element of U, b = ||4||, from Theorem 4.3.4. Find
an example of a C*-algebra U and an element 4 of U for which b < ||4|.

4.6.25. Suppose that U is a unitary element of a C*-algebra U and pisa
state of A. Show that the equation

pu(d) = p(UAU*)  (4e¥)

defines a state py of A and that py is pure if and only if p is pure.

4.6.26. Let A be a C*-algebra. Show that:

(i) if A is abelian, then ||p; — p,|| = 2 whenever p, and p, are distinct
pure states of U;

(i) if there is a positive real number 6 such that ||p; — p,|| = 6 whenever
py and p, aredistinct pure states of 2, then  is abelian. [ Hint. Let H be a self-
adjoint element of A, and define U(r) = exp itH for all real . With the notation
of Exercise 4.6.25, show that p = py,, (and, hence, that p(4U(f)) = p(U(£)A)
for all 4 in A) whenever p is a pure state of A and |¢ is sufficiently small.
Deduce that p(4H — HA) =0.]

4.6.27. Suppose that () is the set of all pure states of a C*-algebra U,
and

p:A>A: U CPY))
is the function representation of A on its pure state space 2(A)~ (see the
discussion preceding Theorem 4.3.11).

(i) Show that ¢(A) = C(P(A)7) if and only if W is abelian. [ Hint. Use
the result of Exercise 4.6.26(ii).]

(ii)) Show that 2 is abelian if and only if () is a subalgebra of
C(PW)7).

4.6.28. Let A be a C*-algebra.

(i) Show thatif 4e¥U and Aesp(4*4), then 4*4 — Al has neither a left
nor right inverse.
(i) Show that the intersection of the maximal left ideals in 2 is {0}.
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4.6.29. Suppose that Ais a C*-algebra, and each closed left ideal in A is a
two-sided ideal. Prove that:

(i) each maximal left ideal in U is also a maximal right ideal;
(i) if £ is a maximal left ideal in U (and, hence, a two-sided ideal), then
each non-zero element of the quotient Banach algebra /¢ is invertible;
(iii) each maximal left ideal in U is the kernel of a multiplicative linear
functional on U;
(iv) if 4e W and aesp(A4), then a = p(A4) for some multiplicative linear
functional p on .

Deduce that 2 is abelian.

4.6.30. Suppose that A is a C*-algebra with the following property: if
AeU and 42 =0, then 4 = 0.

(i) Foreach positive integer n, let f, : R — [0, 1] be a continuous function
such that f,(f) = 0 when |#] < 1/2n and f,(f) = 1 when [¢| > 1/n.-Prove that

flA*A) = [,,(A*A)f(A*4), |4 — Af(A*A)|| <n™ V2,
Sl A*A)B = fo(A* 4)Bf,,(A* 4),

for all 4 and B in Y.
(i) By using the result of Exercise 4.6.29, show that U is abelian.

4.6.31. Suppose that 4 is a self-adjoint element of a C*-algebra A and
Aesp(A4). Show that there is a pure state p of U such that p(4) = A and p is
definite on A (see Exercise 4.6.16). [ Hint. Show that 1 = po(4) for some pure
state p, of the C*-subalgebra of W generated by 4 and I, and use Theorem
4.3.13(iv).]

4.6.32. Let A be a self-adjoint element of the C*-algebra A. Suppose that
for each non-zero self-adjoint B in 2 there is a state p of ¥, definite on A4, such
that p(B) # 0. Show that A4 lies in the center of .

4.6.33. Suppose that 4 is a self-adjoint element of the center of a C*-
algebra . Show that for each non-zero self-adjoint element B of U there is a
state p of U, definite on A, such that p(B) # 0.

4.6.34. Let A4, B, and C, be elements of a C*-algebra . Suppose that 4 is
self-adjoint, C is in the center of U, and 4B — B4 = C. Show that C = 0.

4.6.35. Suppose that %, is a (flot necessarily closed) left ideal in a C*-
algebra U. Given a finite subset F = {4,,..., 4,} of &, define H; and V; in
gg by

HF=ATA1+"’ +A:‘An, VF=HF(HF+n_11)_1.
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Show that, with the family & of all finite subsets of %, directed by the inclusion
relation 2, the net (Vr, Fe % 2) is an increasing right approximate identity
for %,.

4.6.36. With the notation of Exercise 4.6.35, let £ be the closure of %, so
that % is a closed left ideal in . Show that {V:} is an increasing right
approximate identity for % Prove also that, if # is a two-sided ideal in U, then
{VF} is a two-sided approximate identity for %

4.6.37. Suppose that # is a Hilbert space with dimension at least 2, yis a
unit vector in »#, and % is the closed left ideal in the C*-algebra () defined
by

L ={AcHBH):Ay =0}.
Show that % has no left approximate identity.

4.6.38. Provide examples, as indicated below, to show that the statements
in Corollary 4.2.10 concerning closed two-sided ideals in a C*-algebra U are
not in general valid for two-sided ideals that are not closed, even when U is
abelian.

(1) Find an ideal that is not self-adjoint in the abelian C*-algebra C(D),
where D is the unit disk {zeC:|z| < 1}.

(i1) Suppose that X is the unit interval [0, 1], A is the abelian C*-algebra
C(X), and ¢ is the ideal 4 in A, where u(t) = t (0 < t < 1). Find an ideal in
A that is not an ideal in 2.

4.6.39. Let .# be a closed left ideal in a C*-algebra U. Suppose that 4.4
Best, ||Bl| <1, and 44* < B*. By considering the sequence {C,}, where
C,=(B+n"'I)"'4, show that 4 = BC for some C in £ with ||C|| < 1.

4.6.40. Let .# be aclosed two-sided ideal in a C*-algebra U. Suppose that
A1, A;,...€e% and Y2 ||4,]> <1. Show that there exist elements
B,C,,C,,...of #suchthat B> 0,||C,|| <1, and 4, = BC,. [Hint. Use the
result of Exercise 4.6.39.]

4.6.41. Suppose that % is a closed left ideal in a C*-algebra U, and
& = £*. Prove that

(1) & is aclosed subset of A™,
(i) A+ Be¥ whenever 4,Bc ¥,
(i) aded whenever 4% and a >0,
(iv) Ae¥ whenever 4eWand0 < 4 < Bforsome Bin & [Hint. Use the
result of Exercise 4.6.39.]
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Show also that the closed left ideal & is a two-sided ideal if and only if
(v) UAU*e S whenever Ae¥ and U is a unitary element of L.

4.6.42. Suppose that a subset & of a C*-algebra U satisfies conditions
(i)-(iv) of Exercise 4.6.41. Show that there is a unique closed left ideal . in A
such that ¥* = % and that ¥ = {4eU: 4*4e ¥}.

4.6.43. Suppose A4 is an element in a C*-algebra A, |4| = (4*4)'/2, and
V,= A(A*4 + n~'I)~ Y2 for each positive integer n.

(i) Establish the following two inequalities:
IA* AU — (A*A)2(A*4 + 7 D712 <n7
HAILE — (A*4) (A% 4 + 0™ D)2 < n” 12,
Use these inequalities to show that:
(i) 114 — VAl >0asn—;
(i) |||4| — V*A||>0asn— co.

4.6.44. Suppose .Z is a closed left ideal in the C*-algebra . Show that
Ae % if and only if (4*4)V*(= |A)e &

4.6.45. Suppose A4 is an invertible element of a C*-algebra .

(i) Show that 4 = UH for some unitary element U in ¥ and some
positive element H in 2.

(i) Show that the elements U and H of U occurring in the (“polar™)
decomposition of 4 described in (i) are unique.

4.6.46. For each positive real number q, let f,: R* - R* be the con-
tinuous function defined by f,(¢) = 1. Prove that f, is operator-monotonic
increasing if 0 < a < 1 but not if a > 1. [Hint. Let X be the set of all positive
real numbers for which f, is operator-monotonic increasing. Then 1 € X, and
(from the discussion following Proposition 4.2.8),1 e X and 2 ¢ X. Show that X
is closed in R*\{0}. Given a, b in X, prove that abe X and (by an argument
similar to the proof of Proposition 4.2.8) that 4(a + b)e X.]

4.6.47. Let{u;,u,} bean orthonormal basisin a two-dimensional Hilbert
space #, and let {v;,v,} be the orthonormal basis given by
v, =272 u, + u;-)i v, =27 V2, — u,).
Define 4 and B in #(#)* by
Ax = {x,u duy, Bx = I{x,v>v; + u{x, 0,0, (xeH#),
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where 4 and p are positive real numbers. Show that, for each continuous
function /:R* — R with f(0) = 0,

SAl)x = f()x,upuy,  f(B)x = fAx, 00000 + f(){x, v2)0,.

By considering the matrix of f(B) — f(A4), relative to the basis {u;,u,}, show
that f(A4) < f(B) if and only if

SG) + fw) =2 max{2/(1),0},  S(HLAD) +/(w)] < 2/(Df ().

By considering the case in which A=1+¢ and u=1— ¢+ 2¢ for a
sufficiently small positive real number ¢, show that the function

fait—>1t": R* >R

is not operator-monotonic increasing when a > 1 (thusre-proving a part of the
result of Exercise 4.6.46).

4.6.48. Suppose that ¥ is a partially ordered vector space with positive
cone ¥~ * and with an order unit 7, and let ¥ be the set of all states of ¥ (The
relevant definitions are given in the discussion following Remark 3.4.4.) Prove
that:

(i) each element of ¥~ can be expressed as the difference of two positive
elements;

(i) each positive linear functional on 7" is a non-negative multiple of a
state of v

(iii) the set of all positive linear functionals on ¥ is a cone in the algebraic
dual space ¥’ of ¥,

(iv) for each H in ¥; the subset {p(H): pe. ¥} of R is bounded;

(V) & is a convex subset of ¥’ and is compact in the weak topology
o(?"',¥") obtained by considering ¥~ as a separating family of linear
functionals on 7.

4.6.49. With the notation of Exercise 4.6.48, suppose that ./ is a subspace
of ¥” that contains I, so that ./ is a partially ordered vector space with positive
cone #/ v " and I is an order unit for .#. Let p, be a positive linear
functional on .#, and for each H in ¥~ define

lH = Sup{pO(B) :BE'/%,B < H}’
uyy = inf{po(B) : Be M, B > H).

(i) Prove that /; and uy are real numbers satisfying /; < uy.
(i) Show that, if He¥;ceR, and /4y < ¢ < uy, the equation

pi(aH + B) =ac + po(B)  (aeR, Bel)
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defines a positive linear functional p, on the subspace
My ={aH + B:aeR,Be 4}

of ¥.

(iii) Let & be the set of all pairs (#; t) in which .4 is a subspace of ¥ that
contains . and 7 is a positive linear functional on 4" that extends p,. By use
of Zorn’s lemma, applied to & with the partial ordering in which
“(MHT1) S (HM,12)” means “N = AH; and 1, =1, | A;”, prove that p,
extends to a positive linear functional p on ¥~ Prove also that, if He ¥ and
ceR, the extension p can be chosen so that p(H) = cifandonlyif /y < ¢ < uy.

(iv) Show that each state of .# extends to a state of ¥; and each pure state
of . extends to a pure state of ¥” Prove also that, if a pure state of .# has only
one extension as a pure state of ¥, then it has only one extension as a state of ¥
[ Hint. Note the analogy with Theorem 4.3.13.]

4.6.50. With the notation of Exercise 4.6.48, define
|H||; = inf{aeR*: —al < H < al}
for each H in ¥

(i) Prove that ||H||; = sup{|p(H)|:peS}. [Hint. Use the result of
Exercise 4.6.49(iii), with .# the subspace {al :ae R} of ¥7]
(i) Prove that || ||; is a semi-norm on ¥.
(ili) Show that, if p is a positive linear functional on ¥; then

lp(H)l < p(DOIH|l;  (He¥).
(iv) Show that the subset
B ={ap, —bpy:pi,preFabeR*,a+b=1}

of the algebraic dual space ¥’ is convex, and is compact in the topology
a(v"',¥"). By means of a Hahn-Banach separation theorem, show that

B ={rey (H) < |[H|l}(HeV)}.

(v) Show that a linear functional T on ¥~ can be expressed as the
difference of two positive linear functionals on ¥” if and only if there is a real
number k such that

[c(H) <kllH|l:  (He¥").

4.6.51. Inthe partially ordered vector space C([0, 1], R), let u be the order
unit defined by u(f) = 1 (0 < ¢t < 1), and let .# be the subspace (containing )
that consists of all polynomials with real coefficients. When fe ., let f be the
unique extension of fas a real polynomial defined throughout R. Show that the



4.6. EXERCISES 297

equation

p(N=72) (fed)

defines a linear functional p on . that cannot be expressed as the difference of
two positive linear functionals on ..

4.6.52. Suppose that 7" is a partially ordered vector space with positive
cone ¥ * and with an order unit /, and let || ||, be the semi-norm defined in
Exercise 4.6.50. We say that ¥ is archimedian if the following condition is
satisfied: if He v and H < ¢l for every positive real number ¢, then H < 0.

(i) Provethat,if ¥ is archimedian, then || ||;isanormon ¥, ¥ * is closed
in the associated norm topology on ¥; and

v * ={Hev :p(H) > 0 for each state p of ¥"}.

(if) Show that thereal vector space R? (= ¥") becomes a partially ordered
vector space, and has an order unit (1,0) (= I), when the positive cone ¥" * is
defined by

¥+ ={(x,y)eR*:x >0o0r x=0and y > 0}.

Show also that ¥ is not archimedian, || ||; is not a norm on ¥; and ¥ \v" *
contains elements H such that p(H) > 0 for each state p of 7.

4.6.53. By a Banach lattice, we mean a partially ordered vector space ¥~
(with positive cone ¥ * and an order unit [) that is archimedian, is a lattice
with the partial ordering induced by ¥~ *, and is a Banach space with the norm
|| ||; defined in Exercise 4.6.50. When X is a compact Hausdorff space, C(X, R)
is a Banach lattice; the present exercise shows that every Banach lattice is
isomorphic to one of the form C(X, R).

Suppose that & is the state space of a Banach lattice ¥~ and 2~ is the
closurein & of the set 2 of all pure states of ¥~ When 4 € ¥, define a real-valued
function 4 on 2~ by A(p) = p(4).

(i) Prove that 4e C(#~,R) for each 4 in ¥.

(ii) Show that the mapping 4 - 4: ¥ — C(# ~,R) is a linear isometry,
with range a closed subspace # of C(£~,Z) that contains the constant
functions and separates the points of 2 ~. Show also that 4 > 0 (in ¥") if and
only if 4 >0 (in C(2 ~,R)).

(iii) Show that each pure state p, of .# extends uniquely to a pure state of
C(#~,R). By using the results of Exercise 4.6.49, deduce that for all f in
2 ,R)

Ap) = inf{A(p): de¥; A > f}
=sup{d(p):AeV;A<f} (pe?).
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(iv) Let 4,Be?,anddefineC = A v B,D= A A B(where v, A denote
the lattice operations in 7). Show that

C(p) = max{A(p), B(p)},  D(p) = min{4(p), B(p)}

for all p in 2 ~. [Hint. Since C > A and C > B,we have C > 4 and C > B;so
C > f, where f (in C(2 ~, R)) is defined by f(p) = max{4(p), B(p)}. Use (iii) to
show that we cannot have C(p) > f(p) when pe2.]

(v) Use the result of Exercise 3.5.49 to show that # = C(# ~, R) (and
deduce that 2 = 2 7).

4.6.54. Suppose that U is a C*-algebra and, with the usual partial
ordering, the set 2, of all self-adjoint elements of 2 is a lattice. Prove that A is
abelian. [Hint. Use the results of Exercises 4.6.53 and 4.6.27.]

4.6.55. Show that, if x and y are unit vectors in a Hilbert space # and
the corresponding vector states of () satisfy |w, — w,)|| <e¢, then
[|x — cy|| < &'/? for some complex number ¢ for which |¢| = 1.

Deduce that if a state w of %(#) is the norm limit of a sequence of vector
states of B(A#), then wis a vector state. [ This is a special case of a result proved
in Theorem 7.3.11.]

4.6.56. With the notation of Exercises 1.9.19 and 3.5.4, observe that [,
becomes an abelian C*-algebra in which ¢ is a C*-subalgebra and ¢, (S ¢) is a
closed ideal when the involution in /, is pointwise complex conjugation (that
is, {x,}* is {x,} for each bounded complex sequence {x,}). Note also that the
equation

pO({xn}) = llm Xn ({X,,} GC)

n— o0
defines a pure state p, of c.

(i) Let p be any pure state of /, that extends p, (Theorem 4.3.13(iv)).
Show that p is a multiplicative linear functional on /_, and that

liminfx, < p({x,}) < limsupx,

for every bounded real sequence {x,}.

(i) Show that the multiplicative linear functionals p satisfying the
conditions set out in (i) are precisely the elements of S(N)\N (see Exercises 3.5.5
and 3.5.6).

4.6.57. Let # be a Hilbert space and let %, be the set of all sequences
{uy,u,,...} of elements of # that are weakly convergent to 0. Let p be a pure
state of the C*-algebra [/, with the properties set out in Exercise 4.6.56(i).
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(i) Show that %, becomes a complex vector space when a{u,} + b{v,} is
defined to be {au, + bv,} for all {u,} and {v,} in %.

(i) Show that, if {u,}, {v,} € %, then the complex sequences {{u,,v,»},
{llu]l} are in /... Show also that the equation

<{un}> {vn}>0 = p({<un9 Un>})

defines an inner product ¢, >, on %, and the corresponding semi-norm || ||o
on %, is given by

I{ua}llo = p({lJuall})-

(iii) Let .45 be the subspace {{u,} € % : |[{u.}|lo = 0} of F,. With #, the
quotient space %,/ A5, let {, >, be the definite inner product on %, and || ||,
the corresponding norm, derived (as in Proposition 2.1.1) from {, >,. Let % be
the completion of the pre-Hilbert space .,/ A4, so obtained, and use the same
symbols, {, >, and || ||, for its inner product and norm. Show that, for each T
in #(H#), the equation

no(T){un} = {Tun} ({un}ego)

defines a linear operator ny(T) acting on .%,, and

Imo(T){ua}llo < TN} llo-
Deduce that the mapping

{u} + M- {Tu,} + N & - £

is well defined and extends uniquely to a bounded linear operator n(T) acting
on & with (7|l < |IT-
(iv) Show that the mapping

n:Ton(T): BH)— B(L)

is a representation of ().

(v) Show that the kernel of = is the ideal " consisting of all compact
linear operators acting on . [ Hint. Use condition (ii) in Exercise 2.8.20 as the
defining property of a compact linear operator.]

4.6.58. Suppose that J# is a separable Hilbert space, " (< %(#)) is the
ideal consisting of all compact linear operators acting on J, and {e,: g Q} is
an orthonormal basis of # indexed by the (countable) set Q of all rational
numbers. Let ¢ be a representation of %(s#°) that has kernel #" (see Exercise
4.6.57). For each real number ¢, choose a sequence {g(1), g(2), ...} of rational
numbers (with no repetitions) that converges to ¢, and let E, be the projection
from # onto the subspace generated by {e,),€,2),-..}- Show that:

() {E :teR} is a commuting family of projections such that E, ¢ .1,
E.E €., whenever s,feR and s # ¢;
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(ii) the Hilbert space on which ¢(%(#)) acts is not separable;

(iii) the result of Exercise 4.6.20(ii) cannot be extended to the case in
which {B,;, B,,...} is replaced by an uncountable family, even when U is
abelian.

4.6.59. Suppose that {e,,e,,e,,...} is an orthonormal basis in a separa-
ble Hilbert space s, and W is the isometric linear operator on # defined (asin
Example 3.2.18) by We; =¢;,, (j=0,1,2,...). Let & be the ideal in B(#)
that consists of all compact linear operators acting on J#, and let © be a
representation of Z(#°) that has kernel 4" (see Exercise 4.6.57). .

(i) Showthat W*W = Iand WW* = I — E,, where E, is the projection
from # onto the one-dimensional subspace containing e, .

(i) Show that n(W) is a unitary operator U.

(i) Show that there is no invertible operator T in %(s#) such that
n(T) = U.[Hint. If Ke " and T = W + K, use therelation T*W = [ + K*W
and the result of Exercise 3.5.18(iv) to show that T is not invertible.]

(iv) Show that there is no normal operator N in %(#) such that
n(N) = U.[Hint. Suppose that Ke ¢ and W + Kis a normal operator N. Let
M be the null space of N, so that ./ is also the null space of N* (Proposition
2.4.6(iii)). Use the relation W*N = I + W*K and the properties of compact
linear operators to show that .# is finite dimensional. Prove also that N + E
(= W + K + E) is normal and one-to-one, where E is the projection from #
onto .. Hence reduce to the case in which .# = {0}. In this case, use the
relation N*W = I + K*W and the properties of compact linear operators to
show that N is invertible in (), contradicting the conclusion of (iii).]

4.6.60. Suppose that .# is a proper closed two-sided ideal in a C*-algebra
A, {V,} is an increasing two-sided approximate identity for £, and
@: A — /7 is the quotient mapping from A onto the Banach algebra A/¥#
(Proposition 3.1.8). Prove that:

(i) A/F has an involution defined by @(A)* = p(4*) (A€ ),
(ii) the usual quotient norm on /¥ satisfies

llp(A)ll = lim |4 — AV,[| = lim|l4 — V4| (4e);
i A
(iif) with the quotient norm and the involution defined in (i), A/.# isa C*-

algebra. [This important résult will be proved by another method in Theorem
10.1.7.] -

4.6.61. Show that, if # is a proper closed two-sided ideal in a C*-algebra
2, then there is a representation of 2 that has kernel .#.
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4.6.62. Suppose that A and £ are C*-algebras, ¢ is a * homomorphism
from A into 4, and £ is a closed two-sided ideal in .

(i) By adapting the proof of Theorem 4.1.9, show that ¢(.#) is closed
in 4.

(ii) Let & be the C*-subalgebra {cI + S:ceC,Se#} of A, and let " be
the kernel of the * homomorphism ¢ |4: % — 4. By considering the induced *
isomorphism ¢ from the C*-algebra ¢/2¢ into 4, give a second proof that
o(F) is closed in 4.

4.6.63. Suppose that.# and ¢ are closed two-sided ideals in a C*-algebra
A. By using the results of Exercises 4.6.60(iii) and 4.6.62, show that the ideal
S + ¢ isclosed in .

4.6.64. Suppose that .# and ¢ are closed two-sided ideals in a C*-algebra
A and 4 = B+ CeW*, where Be # and Ce £

(i) Showthat 4 = S + Tfor suitably chosen self-adjoint elements S of .#
and T of ¢#.
(ii) Suppose that ¢ > 0, and define

H=I|S|+|T| +&l, D=AVH 12
S, = D|S|D*, T, = D|T|D*,

where |S| and |T| denote the positive square roots of S2 and T?, respectively.
Prove that D*D < I, and deduce that

A—el< S, +T, <A
Prove also that
Sief”,  Tieg*,  SdI<l4l, Tl <14l
and 0 < A4, < &l, where
A=A4A-S, - T, =S-S)+(T-THe(F+ 5" .

(iii) By repeated application of the result of (ii), show that 4 can be
expressed in the form X + Y, with Xin.# * and Yin ¢ *. [This exercise shows
that (# + #)* =F* + ¢* when # and ¢ are closed two-sided ideals in a
C*-algebra.]

4.6.65. Suppose that Uisa C*-algebraand 6: A — Ais a linear mapping
such that
&(AB) = A6(B) + 6(4)B (4, Be N).

(Such a mapping é is called a derivation of A.) Let # be the set of all elements 4
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in A for which the linear mapping
T—6(AT) : A->A
is continuous.
(1) Show that if 4eU, then 4 €. if and only if the linear mapping
T—>AT) : A->A
is continuous.

(i) Show that # is a closed two-sided ideal in 2.

(iii) Show that the restriction 6 |.# is continuous. [Hint. If 6|7 is
discontinuous, there is a sequence {4, 4,,...} in .# such that ¥ ||4;||* < | and
16(A4,)l| = 0. Use the result of Exercise 4.6.40 to obtain a contradiction.]

(iv) Show that the quotient C*-algebra /¢ is finite dimensional. [ Hin:.
Suppose the contrary, and deduce from Exercises 4.6.13 and 4.6.20(ii) that the
unit ball of A contains a sequence {S,, S,, ...} of positive elements not in &

such that S;S, = O when j # k. Prove that thereis a sequence {T, T,,...} in A
such that

ITH <270, (ST =)+ 116(SHIl (=1,2,...).

Obtain a contradiction by considering S;6(C), where C =Y S;T;.]
(v) Deduce that §: U — A is continuous.

4.6.66. Suppose that A is a C*-algebra and % is a Banach space. We
describe & as a Banach W-module if there are bounded bilinear mappings

(A,x) > Ax, (A,x) > xA : UXX X

such that Ix = xI = x for each x in %', and the associative law holds for each
type of triple product 4,4,x, A;xA,, xA;A,. By a derivation from U into a
Banach 2-module %, we mean a linear mapping 6: A — Z such that

6(AB) = A6(B) + 6(A)B (4, Be ).

Adapt the program set out in Exercise 4.6.65 to prove that every derivation
from a C*-algebra U into a Banach A-module is continuous.

4.6.67. Show that the set 2 of pure states of () is weak* closed when
A is finite dimensional.

4.6.68. Let # bea Hilbert space. Show that each vector state w, of B(#)
is pure. —

4.6.69. Suppose # isan infinite-dimensional Hilbert space, " is the ideal
of compact operators in #(#), 2 isthe set of pure states of Z(#), and % is the
set of vector states of Z(#).
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(i) Use Exercises 4.6.57 and 4.6.23 to show that there is a pure state p of

A(A) that is 0 on A

(i) Withain [0, 1], x a unit vector in 5, and pin 2~ and 0 on ¥, let w be
the state aw, + (1 — a)p of B(H#). Show that wisin 2, the pure state space of
AB(H), and that wisin & . [Hint. Use Corollary 4.3.10 to approximate p by a
vector state w,. of #(#). With 4,,..., 4, self-adjoint operators in (B(#)),
and E the projection with range [x, 4,x,..., A,x], estimate [(w — w.)(4))|
where z = a'?2x + (1 — a)?y and y = ||I — E)||" ' — E)y'.]

(i) Conclude that 2 is not weak* closed (that is, 2 # 2~) when # is
infinite dimensional.

4.6.70. Let A be a C*-algebra and # be a self-adjoint subalgebra of A
containing /. Suppose that for each pair p,, p, of distinct states of A thereisa B
in 4 such that p,(B) # p,(B) (thatis, & separates the states of ). Show that #
is norm dense in 2.



CHAPTER 5

ELEMENTARY VON NEUMANN
ALGEBRA THEORY

Those C*-algebras (von Neumann algebras) that are strong-operator
closed in their action on some Hilbert space play a fundamental role in the
subject. Historically they were the first class of such operator algebras
introduced. Their study will occupy us in this and the following four chapters.
In the present chapter we develop the elements of the subject.

The strengthened closure assumption on the algebra entails significant
structural changes. On the technical level, the strong-operator closed algebras
abound in projections; while the general C*-algebra may contain no pro-
jections other than 0 and /. In a less technical (and deeper) sense, the passage
from the general to the strong-operator closed C*-algebra corresponds to the
passage from the algebra of continuous functions to the algebra of (bounded)
measurable functions. This correspondence can be made precise in the
commutative case and lends force to the interpretation of the theory of von
Neumann algebras as ‘““non-commutative measure theory.”

5.1. The weak- and strong-operator topologies

Recall that the strong-operator topology on Z(#) has a base of
neighborhoods of an operator T, consisting of sets of the type

W(To: X1, Xm;€) = {TEBH): (T — To)xj|l <e(G=1,...,m)},

where x,, ..., x,, arein # and ¢ is positive. Thus the net { T} is strong-operator
convergent to T if and only if {||(T; — T)x]||} converges to 0 for each x in #,
thatis, if and only if the net { T;x} of vectors in # converges to Tox for each xin
. (See the discussion following Proposition 2.5.8 and the comments in
Remark 2.5.9.) -

Another topology on 4(#) will be important for us.

5.1.1. DeFINITION. The weak-operator topology on %(#) is the weak
topology on #(#) (in the sense described in Section 1.3) induced by the family
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%, of linear functionals w, ,: #(#) — C defined by the equation
W (A) ={Ax,y)  (x,yeH, AcB(¥). A

If w, (4) = 0for all x and y in /#, then 4 = 0, whence %, is a separating
family of linear functionals for %(s#). It follows that the weak-operator
topology on #() is a locally convex topology determined by semi-norms
lw,.(A)|. The family of sets of the form

V(To: xypys- s Dy 3 €)
= {TeBWH): (T~ Toxypl<e(i=1,...,m)},

where ¢ is positive and x;,..., X, V1,-.-,Vm are in %, constitutes a base of
convex (open) neighborhoods of T, in the weak-operator topology. Since
[K(T — To)x, p>| < ewhen ||(T — To)x|| < &(1 + ||y|)~*, each open set relative
to the weak-operator topology is open relative to the strong-operator
topology. Hence the weak-operator topology is weaker (coarser) than the
strong-operator topology. (See Exercise 5.7.2 where it is noted that this
relation is “‘strict.”’) As a consequence, the requirement that a subset of Z(#)
be strong-operator closed is less stringent than the requirement that it be weak-
operator closed. An important exception to this occurs in the class of convex
sets of operators.

5.1.2. THEOREM. The weak- and strong-operator closures of a convex
subset A~ of B(H) coincide.

Proof. An operator in the strong-operator closure of ¢ is in the weak-
operator closure of #. Suppose 4, in the weak-operator closure of ¢, and
vectors x,, ..., X, in # are given. Let # be the direct sum # @ - -+ @ # of #
with itself n times. For T in B(#), let T(y,,...,y,) be (Ty,, ..., Ty,) (that is,
T=T@® - - @T). Then {T: Tin A} isaconvex subset £ of B(#); and H%is
a convex subset of J#, where X = (x,,...,x,). As 4 is in the weak-operator
closure of /%, A% is in the weak closure of . % (in ). From Theorem 1.3.4, 4%
is in the norm closure of )% (in #). Thus for some K in ., ||Kx; — Axj|| is
small for eachjin {1, ..., n}. It follows that 4 is in the strong-operator closure
of & and that the weak- and strong-operator closures of »# coincide. W

By polarization (see 2.4(3)) the span of the functionals w, , (= w,)
coincides with the span of %,, so that the semi-norms defined by |(Ax, x)|
determine the weak-operator topology on (). In fact, restricted to
(AB(H)),, the unit ball in () (or, equally, any bounded subset of (#)), the
weak-operator topology is determined by the semi-norms [(A4x;, x;»| where
(x;) spans a dense linear manifold in J#. For this, note that |(A4x, x)| is small
(with 4 in (%(5¢)),) provided [{A4y, y)| is small with y (in the span of (x;))
sufficiently near x.
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Since {BAx,y) = {(Ax, B*y), the mappings 4 - B4 and A4 - AB
(Be B(H#)) of B(H) into B(H) are weak-operator continuous. That is, left
and right multiplication by B are weak-operator continuous. We note, too,
from Theorem 1.3.1, that each weak-operator continuous linear functional on
() lies in the linear span of £,.

Another useful aspect of the weak-operator topology resides in a special
compactness property it possesses.

5.1.3. THEOREM. The unit ball (B(H#)), of B(H) is weak-operator
compact.

Proof. Let D, be the closed disk of radius ||x]|| - ||y|| in the plane C of
complex numbers. The mapping which assigns to each T'in (#(5#)), the point
{{Tx, p): x, yin #} of [],, D,,, is a homeomorphism of (B(#)),, with the
weak-operator topology, onto itsimage X in the topology induced on X by the
product topology on[], , D, ,(from the very definition of these topologies). As
[1x., Dx,, is a compact Hausdorff space in the product topology (Tychonoff’s
theorem), X is compact if it is closed. If b is a point in the closure of X and x,,
Y1, X2, ¥, are elements of J#, then, for each positive number ¢, there isa T in
(#(#)), such that each of

la - b(xj’yk) — alTxj, yil, |b(xj,yk) —Txj, ol
|b(ax; + x5,¥;) — {T(axy + x3),y;)l, (b(xj,ayy + y2) — {Txj,apy + y2)l

is less than ¢, where j, k = 1, 2. It follows that

lb(axy + x5,p1) —a - b(xy,p1) — b(x2,y1)| < 3e
and
[b(xy,ayy + y2) —a - b(xy,p1) — b(xy, ;)| < 3e.

Thus  blax; + x,,y1) =a - b(xy,p1) + b(x2,y1) and  b(xy,ap; + ;) =
a- b(xy,y1) + b(xy,yz). In addition |b(x, y)| < |Ix|| - ||¥ll, since b(x, y) € Dy, .
Hence b is a conjugate-bilinear functional on s# bounded by 1. From the Riesz
representation (Theorem 2.4.1) of such bilinear functionals, there is an
operator Ty in (B()), such that b(x, y) = (Tyx, y) forall x and y in #. Thus
be X, Xisclosed, X is compact, and (%(#)), is weak-operator compact. W

The weak-operator topology and the Riesz representation of bounded
conjugate-bilinear functionals on a Hilbert space appear once again in
establishing a key order-topological property of %(s). It concerns nets
{H,, A, <} of self-adjoint operatgfs H, for which the operator-ordering and
the partial ordering of the directed index set A agree (that is, H, < H, if
a < d). We say that such nets are monotone increasing (decreasing if the
operator-ordering reverses the ordering of A). Although it will prove useful to
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have the result that follows for nets, for present purposes the simpler
circumstances of sequences would suffice.

5.1.4. Lemma. If {H,} is a monotone increasing net of self-adjoint
operators on the Hilbert space # and H, < kI for all a, then {H,)} is strong-
operator convergent to a self-adjoint operator H, and H is the least upper bound

of {H.}.

Proof. Since the convergence of {H,} and that of {H,,a > a,} are
equivalent, we may assume that {H,} is bounded below (by H,,) as well as
above. Thus —||H, ||l < H, < kI, and {H,} is a bounded set of operators.
From the weak-operator compactness of a closed ball in () (Theorem
5.1.3), some subnet {H,} of {H,} is weak-operator convergent to an operator
H in B(#).

As {H,} is monotone increasing, {H,x,x) > (H, x,x) when a' > a,.
Thus H > H,, for all a;, since (H,x,x) <lim,<{H,x,x) = {Hx,x). If
a>d,then 0K H—- H,<H- H,; and

0 < (H — H)x,xy = |I(H — H.)'"x|I” < {(H — Hy)x,x) - 0.

Hence {(H — H,)"'?} is strong-operator convergent to 0. The strong-operator
continuity of multiplication on bounded sets of operators (see Remark 2.5.10)
allows us to conclude that { H — H,} is strong-operator convergent to 0.

We have noted that H is an upper bound for {H,}. If K > H, for all a, then
(Kx, x> = (Hx, x) »,{Hx, x). Hence {<Kx, x) = (Hx, x) for all x in 5#;
and K > H. It follows that H is the least upper bound of {H,}. H

If {K,} is a family of positive operators acting on J#, the net of finite
subsums of ¥ K, is monotone increasing. From the preceding lemma, this net is
strong-operator convergent (equivalently, the family {K,} is summable, in the
sense of the discussion preceding Proposition 1.2.19, in the strong-operator
topology) if the finite subsums are bounded above.

5.1.5. LeMMA. If A is a bounded operator on the Hilbert space # and
0 < A < I, then {AY"} is a monotone increasing sequence of operators whose
strong-operator limit is the projection on the closure of the range of A.

Proof. Passing to the function algebra representing U(A), the C*-
subalgebra of U generated by 4 and I (see Theorem 4.1.3), {4/} isseen to be a
monotone increasing sequence bounded above by /. From Lemma 5.1.4, {4/}
has a strong-operator limit E, which is the least upper bound of {4'""}. Hence
{A*"} has E? as strong-operator limit. But {4/} (= {A4?/?"})is a subsequence
of {4}, so that E = E?, and E is a projection.

Applying the Stone-Weierstrass theorem in the function algebra represent-
ing A(A), we see that A" is the norm limit of polynomials, without constant
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term, in 4. Thus AY"x = 0if Ax = 0; and Ex = 0 when Ax = 0. On the other
hand, if Ex =0, then 0= (Ex,x) > {(A"x,x)> = ||[4"?"x||> > 0, so that
AY2"x = 0 and Ax = 0. It follows that the (self-adjoint) operators E and A
have the same null space. Hence E = R(A) (see Proposition 2.5.13). W

A C*-algebra 2, acting on a Hilbert space #, that is closed in the weak-
operator topology and contains I is said to be a von Neumann algebra. If the
center of # consists of scalar multiples of I, we say that & is a factor.

5.1.6. ExamPLE. In Section 4.1 we noted that the algebra .o of multipli-
cations by essentially bounded (measurable) functions on L,(S, & m) (= L,)is
a C*-algebra. Since MM, = M;, = M,M,, o is abelian. Let ¢, be the
characteristic function of the subset S, of finite measure in S, where the sets S,
are so chosen that they are mutually disjoint with union S. Then M, _is a
projection and Y M, =V M, =1 (see Proposition 2.5.8 and. Example
2.5.12).

If T'is a bounded operator on L, commuting with ./ and Te, = f,, then (by
a measure-theoretic argument similar to that used in proving 2.4(13)) f, is
essentially bounded; for

TM. (9) = T(ge,) = M,T(e,) = fug (= M, (9)),

for each essentially bounded g in L, . Since TM,, and M, are bounded and the
essentially bounded functions are dense in L,, TM,, = M, . From Example
24.11, ||M, ]| is the essential bound of f,. As ||Mf [| < |IT]|, the function f
defmed by fIS.=/,S, is essentially bounded. Note for this that
fo=T(e,)=Te, e)= e, T(e,)=e, f,. Thus, MM, =M, =M, =
TM,, for each n. Since Y M, =1, M, =T

It follows that .o/ is not a proper subset of a commuting family of bounded
operators on L,. We say that o is maximal abelian in this case. Since
{T:{(TA — AT)x,y> =0} is a weak-operator closed set and ./ is the
intersection, over all 4 in o/ and all x and y in L,, of these sets (from the facts
we established above); o7 is weak-operator closed. In the terminology just
introduced, &/ is a von Neumann algebra.

We now specialize to the case where S is the interval [0,1] and m is
Lebesgue measure, so that the set {M: fe C(S)} is a C*-subalgebra U of 7.
We assert that 9 has weak-operator closure  (illustrating the fact that the
passage from a C*-algebra .of operators to the von Neumann algebra it
generates is analogous to the transmon from continuous functions to bounded
measurable functions). For this, note that each f in L, is the limit almost
everywhere of a sequence { f,} of continuous functions such that || f,]|. < ||f]lew
for each n; and M is the strong- (and hence weak-)operator limit of {M }, by
the final paragraph of Remark 2.5.12. H
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5.1.7. ExampLE. The algebra (s#) of all bounded operators on a Hilbert
space is an example of a factor. The projections E, with one-dimensional range
are minimal projections in () (contain no other non-zero projections in
B(A)). We shall note, at a later point (Theorem 6.6.1), that the property of
having a (single) minimal projection characterizes 2(’) among the factors (up
to * isomorphism). On the other hand, if { £, } is a family of minimal projections
in 2(#’) whose ranges correspond to an orthonormal basis {x, } for # (that s,
the range of E, is spanned by x,), then {E,} is an orthogonal family with sum
I N

Although we imposed the requirement that a von Neumann algebra
contain / (for convenience and for simplicity of statements of theorems), this
requirement entails no essential restriction. The result that follows permits us
to consider the action of a weak-operator closed algebra on s#, stable under the
adjoint operation, on the range of its maximal projection — where it becomes a
von Neumann algebra in our sense.

5.1.8. ProrosiTioN. If W is a weak-operator closed self-adjoint algebra of
operators acting on the Hilbert space H#, the union and intersection of each family
of projections in W lie in W. There is a projection P in A, larger than all other
projections in W, such that PA = AP = A for all A in U.

Proof. Since R(T*) = R(T*T), from Proposition 2.5.13, once we note
that the range projection of each positive self-adjoint operator in U lies in U,
the same is true for each operator in 2. Now Lemma 5.1.5 assures us that R(A4)
is the strong- (hence, weak-)operator limit of {4/}, when 0 < 4 < I. With 4
inA, AW, since A is norm closed. Thus R(A4) e U. It follows that R(T)e A
for each Tin .

If E and F are projections, R(E + F) = E v F (see Proposition 2.5.14).
Thus E v Fe, if Eand Farein . It follows that finite unions of projections
in U lie in A. If {E,} is a family of projections in U, the unions of finite
subfamilies lie in 2 and form a monotone increasing net bounded above by /.
From Lemma 5.1.4, this net has a least upper bound E which is its strong-
operator limit. Thus E€ % ; and, from Remark 2.5.9, E = V, E,. Again, from
2.5(4) (applied in the Hilbert space P(s#)), A, E, = P — V(P — E,), where P
is the union of all projections in 2. From the foregoing, Pe A and A, E,eU.

As P contains the range projection of each 4in A, PA = A and PA* = A*.
Thus PA = AP = A4, and P is a multiplicative unit for . H

5.2. Spectral theory for bounded operators

We use the special lattice-theoretic properties of abelian von Neumann
algebras to identify important features of their representing function systems.
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These features are used, in turn, to develop the classical form of the spectral
theorem for bounded self-adjoint operators. We treat the case of unbounded
operators in Section 5.6. In the case of finite-dimensional Hilbert spaces, the
results of this section reduce to the familiar diagonalization of self-adjoint (and
normal) matrices relative to orthonormal bases.

5.2.1. THEOREM. If </ is an abelian von Neumannalgebra, then of ~ C(X),
where X is an extremely disconnected compact Hausdorff space.

Proof. From Theorem 4.4.3, o ~ C(X) for some compact Hausdorff
space X. Since the isomorphism transports the operator order on the set of self-
adjoint operators in o/ to the pointwise order on the set of real-valued
functions in C(X), each increasing net {f,} in C(X), bounded above by k,
corresponds to an increasing net {4,} of self-adjoint operators in ./, bounded
above by kI. From Lemma 5.1.4, {4,} has a least upper bound 4 in .«/. There is
an fin C(X), corresponding to 4, which is the least upper bound of { f,}. If { £;}
is an arbitrary family of real-valued functions in C(X) bounded above by k, the
least upper bounds of finite subsets of {f,} form an increasing net, bounded
above by k, whose least upper bound (in C(X)) is a least upper bound (in C(X))
for {f,}. From Theorem 3.4.16, X is extremely disconnected. M

Our next result describes the spectral resolution of a (bounded) self-adjoint
operator.

5.2.2. THEOREM. If A isa self-adjoint operator acting on a Hilbert space #
and sf is an abelian von Neumann algebra containing A, there is a family {E,} of
projections, indexed by R, in o/ such that

() E,=0if A< —|All,and E, =1f |l Al < 4;
(i) E,<Eyifi<i;
(i) E; = N5, E;;
(iv) AE, < AE, and X(I — E,) < A(I — E)) for each 1,
(v) A4 =["l A dE; in the sense of norm convergence of approximating
Riemann sums; and A is the norm limit of finite linear combinations with
coefficients in sp(A) of orthogonal projections E,  — E,.

With of isomorphic to C(X) and X an extremely disconnected compact
Hausdorff space, if f and e, in C(X) correspond to A and E, in s/, then e, is the
characteristic function of the largest clopen subset X ; on which f takes values not
exceeding A.

Proof. From Theorem 5.2.1,7ve have that & is isomorphic to C(X) for
some extremely disconnected compact Hausdorff space X. If f corresponds to
Aand X; = X\f~! ((4, ©0))~, then X is a clopen subset of X on which ftakes
values not exceeding 4. If Y is another clopen subset of X on which f takes
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values not exceeding A, then Y < X\ f~!((4, o)) so that f ~!((4, ©)) = X\Y.
As Yisopen, X\Yisclosed;and f~((4, 0))” < X\Y.Thus Y < X, ;and X, is
the largest clopen set in X on which f takes values not exceeding A. If ¢ is the
characteristic function of X, e; e C(X) since X, is clopen; and E, in &/
corresponding to e, is a projection. Conditions (i), (ii), and (iv), in the
statement of this theorem, are apparent from the definition of X, and the
properties of the isomorphism of o/ with C(X). (For the second inequality in
(iv), we make special use of the continuity of f to conclude that f takes values
greater than or equal to A on f~1((4, 00))™.)

To prove (iii), note, first, that e, is the greatest lower bound in C(X) of
{er: A" > A};forif his a (positive) lower bound in C(X) and A(p) # 0, then his
not 0 at each point of the clopen set A~ }((3( p), 2h(p)))~ (= Y).Since h < e, if
A < A; Y < X, .Thus Yisaclopen set on which ftakes values not exceeding /',
for each A’ greater than A —that is, f takes values not exceeding A on Y. From
our characterization of X as the largest such clopen set, Y < X, and 4 < e,.
From (ii), e; is a lower bound for {e; : ' > 4}, so that e, is the greatest lower
bound of this set in C(X). It follows that E, is the greatest lower bound of
{E;: X > 4} in &/. From Proposition 5.1.8, A, ., E; € /. From Corollary
2.5.7, A5, E; is the greatest lower bound in Z(#) of {E, : 2 > A}. Thus
Ey= NysiEp.

To prove (v), choose A, less than — ||4|| and let {4y, 4;,...,4,} be a
partition of [4o, [|4][] (so that 4, = [|4]). If [4;-1, ;] "sp(4) # &, let A be a
point of this intersection —otherwise, let 4; be 4;_;. If this intersection is
empty, /~'([4;-1, 4]]) = &, since sp(4) is the range of f. Thus

S (=1, 0)) = f~H((4;, 0))

and e, _, = e, . It follows that Yio1 4 (e, —ex,_,) (= h) is a linear com-
bination of mutually “orthogonal” characteristic functions e; — e; with
coefficients in sp(4). Now each p in X lies in exactly one set X; \ X, _, (= Y)),
j=1,...,n, since X;, = and X; =X. If peY;, then h(p)=4; and
Aj-1 < f(p) < A;. Hence ||f — h|| < max;{|1; — 4;_4|}, and (v) follows. W

A family {E,} of projections indexed by R, satisfying
(1,) /\AERE1=Oand VAEREA.:I

and (ii), (ii1) of Theorem 5.2.2 is said to be a resolution of the identity. Since (i) of
Theorem 5.2.2 guarantees (i’) above, the family {E,} determined in the
argument of Theorem 5.2.2 is a resolution of the identity. If thereis a constanta
suchthat £, = Owhen A < — aand E;, = Iwhena < A(asthereis in the case of
Theorem 5.2.2), we say that {E,} is a bounded resolution of the identity —
otherwise we say that {E,} is an unbounded resolution of the identity. At this
point, we have a resolution of the identity for 4 in each abelian von Neumann
algebra containing 4. In Theorem 5.2.3, we show that a resolution of the
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identity satisfying either (iv) or (v) of Theorem 5.2.2 is the resolution of the
identity for A4 in the abelian von Neumann algebra generated by 4 and I; so
that we may speak of the resolution of the identity for A (or the spectral
resolution of A).

5.2.3. THEOREM. If{F,} is aresolution of the identity and A is a (bounded)
self-adjoint operator such that AF, < JF, and J(I — F;) < A(I — F,) for each 4,
orif A = [*,AdF; for eachaexceeding some ay, then {F,} is the resolution of the
identity for A in o/, the abelian von Neumann algebra generated by A and I.

Proof. The fact that AF), is self-adjoint is implicit in the assumption that
AF; < /F,.Thus A commutes with each F;,. Since F, < F; when A < A/, {F,}is
an abelian family. Let .o/ be an abelian von Neumann algebra that contains 4
and {F,} and X be the extremely disconnected compact Hausdorff space such
that o7 =~ C(X). If {E;} is the resolution of the identity for 4 in o7, fin C(X)
corresponds to A4, and e, in C(X) corresponds to E;, then e, is the characteristic
function of X, the largest clopen set in X on which ftakes values not exceeding
A If £ in C(X) corresponds to F;, then f; is the characteristic function of a
clopen set Y, on which ftakes values not exceeding A, since 1 f; < Af;. Thus
Y, X,. As F, = A ,.,F,, Y, is the largest clopen set in X contained in
Nys, Y. Now ' < fip) if pe X\Y,, since A'(I — F;)) < A(I — F,.), so that
X\Y, < f (4 o))" when ' > A. Thus X; < Y, when /' > ; and X, is a
clopen set contained in N,..,; Y,. Since Y, is the largest such clopen set,
X, c Y,.Hence X; = Y, and E, = F,. The resolution of the identity for 4 in
o satisfies (iv) of Theorem 5.2.2 and &/, = /. From what we have just
proved, that resolution coincides with {E,} (and {F,}).

Suppose, now, that 4 = %, AdF, for each aexceeding some a,. If, for such
ana, e[ —a,d] and {/,,..., 4,} is a partition of [ — a, a], with 1 as some 4,
suchthat (B =) Y7_, A{(F;; — Fs,_,)isclose (innorm) to A4; then ||AF, — BF|
is small and

k

k

BF, = Y XM(Fy, = F,_ ) < Y A(Fs, — Fi,_) = MFy — F_,) < AF,.
j=1 j=1

Thus AF, < AF,. At the same time, ||4A(I — F,) — B(I — F})|| is small and

B(I—FA)= Z )'_'](Fl_,'—FlJ'—l)? Z )-k(F).J-_F).j,l)=)'(Fa_F}.)'
j=k+1 j=k+1
Thus A(I — F;) > A(F, — F,)for each a greater than q,. Lettinga tend to + oo,
F, tends to I in the strong-operator topology, so that A(I — F;) = A(I — F)).
From the first part of this proof;F, = E, foreach .. H

In Theorem 5.2.4 we start with a bounded resolution of the identity and
construct a bounded self-adjoint operator whose spectral resolution is the
given resolution of the identity.
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5.2.4. TueoreM. If{E,} isaboundedresolution of the identity on a Hilbert
space K, then [* , AdE, converges to a self-adjoint operator 4 on # such that
|4l < a and for which {E;} is the spectral resolution, where E, =0if } < — a
and E; = Tifa< A

Proof. If {Ag,..., 4} (=) and {u,,...,un} (= 2) are partitions of
[—a,al, |#| and |2| are the lengths of their largest subintervals, and
{y0,.--,7:} is their common refinement, then

l Z )“.’i(Eli - Eli—l) - Z vl’t(Eyk - E, )< |2
j=1 k=1
and
1Y M(Ey = Eu.) = 3 7By — By DI <12,
i=1 k=1
so that
” Z Aﬂ',II(E"J - E;'J’l) - Z H;(E“k - E}‘k—x)” S |<@| + |Q|
j=1 k=1

Thus the family of approximating Riemann sumsto [ 1 dE,, indexed by their
corresponding partition of [ — a,a] and the set of these partitions partially
ordered (and directed) by refinement, forms a Cauchy net in the norm topology
on B(#). Since B(HA’) is complete in its norm topology, this net converges in
norm to a bounded self-adjoint operator on #. From Theorem 5.2.3, {E,} is
the spectral resolution of 4. Passing to C(X), where o/ =~ C(X) and «f is an
abelian von Neumann algebra containing 4, we see that the conditions, E;, = 0
if A< —aand E;, = Iif a < A, imply that the function in C(X) representing 4
has range in [— a,a]. Thus ||4]| <a. A

We studied unitary operators in C*-algebras in Section 4.4, and noted,
there, that exp iH is a unitary element in each C*-algebra containing the self-
adjoint element H. We remarked, in the discussion preceding Proposition
4.4.10, that not each unitary element of a C*-algebra has this form. In essence,
the possibility of finding “log U” in the C*-algebra generated by U (an algebra
of continuous functions) may be blocked by topological (homotopy) con-
siderations. This is not the case in the von Neumann algebra generated by
U —where the topological obstructions vanish before the (essentially measure-
theoretic) constructions available in von Neumann algebras. We prove this
von Neumann algebra analogue to Proposition 4.4.10 in the theorem that
follows.

5.2.5. TueoreM. If U is a unitary operator acting on the Hilbert space #
and s is the (abelian) von Neumann algebra generated by U and U*, there is a
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positive operator H in of such that ||H|| < 2n and U = exp iH. In addition, U is
the norm limit of finite linear combinations of mutually orthogonal projections in
& with coefficients in sp(U).

Proof. From Theorem 5.2.1, o =~ C(X) with X an extremely discon-
nected compact Hausdorff space. If u in C(X) corresponds to U, then u
corresponds to U*; and |u|* = 1. Let X be the complement of the closure of
the set of points at which the values of u do not lie in {expiA': 4’ in [0, A]}
(= C)), for A1n [0, 2n). Arguing as in the proof of Theorem 5.2.2, X, is the
largest clopen set on which u takes valuesin C,. Lete, be 0if A < 0, 1if2n < A;
and let e, be the characteristic function of X; for 4 in [0, 2r). Then e, is the
greatest lower bound of {e;:A < A} if 1 <0 or A>2n As e, <e; when
A< X, e;isalower boundof {e; : A < A’} for all 4. To see that ¢, is the greatest
lower bound when Ae[0,2xr), note that each clopen subset @ of N,...; X, is
contained in X, (for u takes values on @ in each C,., with A’ exceeding 4, so that
u takes values on ¢ in C,;). As in Theorem 5.2.2, the projections E, in &/
corresponding to e, give rise to a (bounded) resolution of the identity {E,}.

From Theorem 5.2.4, jl dE, converges (in norm) to a self-adjoint operator
H in /. Let h be the function in C(X) corresponding to H. Letting X, be J
when A < 0 and X when A > 2x, X is the largest clopen set on which h takes
values not exceeding A. The range of & is contained in [0,2x] so that H is
positive and || H|| < 2z. Note, too, that 4 cannot take the value 2z at each point
of a non-null clopen set (, ; for otherwise @, is disjoint from U,. .,, X;.. But
then u(p,) # 1 for some p, in (O, (otherwise O, = X,). By continuity of u, there
is a clopen subset ¢, of ), containing p, and there is a 4, in (0, 27) such that
u(q)e C,, for each ¢in ¢, . Thus ¢, < X,, contrary to the choice of ¢, disjoint
from X,,. With this information, we can now see that X, is the largest clopen
set on which exp ik takes values in C; (1€[0,2r))—whence exp i = u, and
expiH = U. Indeed, if ¢ is a clopen set such that exp ii(p) e C, foreach pin @,
then either 4( p)e [0, 2] or A( p) = 2n foreach pin @. If h(p) = 2r for some p in
0, then, by continuity of A, there is a clopen subset of ¢/ containing p on which A
takes values near 27 —in particular, not in [0, 1], since 4 < 2x. By choice of 0,
then, 4 takes the value 2z on this entire clopen subset —contrary to what we
have just proved. Thus A(p)e[0, 4] for all pin @, and O < X;.

If X7, A(E,, — E;,_,) is close to H in norm, then

Y. (exp IX)E), — Esy )

j=1
is close to expiH (= U) in normFrom Theorem 5.2.2, we can choose 4} in
sp(H) if E;, # E,,_,. With this choice, exp iz;esp(U) ifE, #E,_ . 1

In Example 5.1.6 we noted that the multiplication algebra o/ of a o-finite
measure space (S, &, m) is an abelian von Neumann algebra. If fis a real-valued
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essentially bounded measurable function on S, M/ is a (bounded) self-adjoint
operator on L,. With E, the projection corresponding to multiplication by the
characteristic function of the set S, on which f takes values not exceeding A,
{E,} is the spectral resolution of M ;. The key observation needed for this is the
fact that N,.., S, = S, (and, thus, A, ., E, = E)).

In Theorem 5.2.6 we describe a simultaneous spectral resolution for a
commuting family of operators forming an abelian C*-algebra. In this case,
the (joint) spectrum of the family is the pure state space. Somewhat more
precisely, we describe the spectral resolution of a representation of an abelian
C*-algebra.

5.2.6. THEOREM. If X is a compact Hausdorff space, # is a Hilbert space,
and ¢ is a representation of C(X) on #, then, to each Borel subset S of X there
corresponds a projection E(S) such that

(1) E(S)cA, the strong-operator closure of ¢(C(X));

(i) ES) = AEO):.S < 0, O open};

(i) EUZ,S,) =Y, E(S,) for each countable family {S,} of mutually
disjoint Borel subsets of X, in particular, E(S,)E(S,) =0 if n# m, and
E(Z) = 0;

(iv) E(X,) = I, for Xy a Borel subset of X, if the span of the ranges of those
@(f) such that fe C(X) and f vanishes on X\ X, is dense in 3 ;

(V) foreachxin#,S — {E(S)x, x) is aregular Borel measure, p., and, for
fin C(X),

Co(f)x, x> = f Sp) dux(p).

Proof. 1If @ is an open subset of X and fin C(X) has range in [0, 1] and
vanishes on X\@, then 0 < ¢(f) < I. Thus (% (0)) has a least upper bound
E(0)in the abelian von Neumann algebra o7, where % (0) is the set (directed by
its natural order) of such functions f. As {f?.fe F(0)} = F(0), E(©) is a
projection. With Sa Borel subset of X, let E(S) be A{E(0): S < O, 0 open}.If x
is a unit vector in J%, f— {(@(f)x,x) is a state of C(X). From the Riesz
representation of such functionals (see the discussion preceding Lemma 1.7.7),
thereis a regular Borel measure p, on X such that {o(f)x, x) = | x f(p) du.(p).
By (inner) regularity of u,, given an open set (9, there is a compact subset " of
O such that pu(A') is close to u(@). Since X is a normal space, there is a
continuous function fon X with range in [0, 1], vanishing outside @, and 1 on
A" Then

u(A) < f Ap)dp(p) = <o(f)x, x) < CE(O)x, x).
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It follows that u(0) < {E(O)x, x>. From the definition of E(0), (E(O)x,x)
< u(0), so that (E(O)x, x> = u(0). From (outer) regularity of u,, we have
that

1(8) = inf{u,(0): S = O, O open}
= inf{{(E(O)x, x>: S = O, O open} = {E(S)x, x)

for each Borel set S. If, now, {S,} is a family of disjoint Borel subsets of X, then

o0

(U s)xnm = Us)= T miso= T cEsyu.

n=1 n=1 n=1 n=1

In particular, if x is a unit vector in the range of one of the E(S,), say, E(S)),
then

1> (E( U S,,)x, xy =Y (ES)x,xy = (ES))x,x) = 1.
n=1 n=1
Since 0 < (E(S,)x, x) for all n, (E(S,)x, x> = 0 unless n = 1. It follows that
E(S,)E(S,) = 0 if n # m and that E(U2 | S,) = Y2, E(S,).

With X, as in (iv), if @ is an open set containing X, and f (real-valued) in
C(X) vanishes on X\(@, then the range projection of ¢(f,) is a subprojection of
E(0), where f, = || ||~ |f|. But ¢(fo) and ¢(f) have the same range projection
(for o(I/D) = o(f+) + o(f-), o(f) = o(f+) — o(f-), and f,f = 0-—see
Remark 3.4.9). Thus F(@) contains the range projection of the image of each
function in C(X) vanishing on X\ X ; and, by assumption, E(®) = I. Hence
EXy)=1 1

We apply this theorem to the important special case of R-essential
representations of C({R, co}) (that is, representations essential on the ideal of
functions in C({R, co}) vanishing at co, where, as usual, {R, co} denotes the
one-point compactification of R).

5.2.7. CoroLLARY. Each R-essential representation ¢, of C({R,c0})
corresponds to a (possibly unbounded) resolution of the identity {E,} such that,
for each f in C({R, c0}) with f{oo) =0,

C@o(N)x, x) = j S d{E;x, x).

Proof. From Theorem 5.2.6, there is a projection-valued measure
S—E(S) on {R,o0} such that {@o(f)x,x) =[5 fAA)du(A), where
feC({R, 0}), o) = 0, and p (ST = (E(S)x,x). If E; = I — F((4, o)), then
{E,} is a (possibly unbounded) spectral resolution of the identity. To see this,
note that E((4, 00)) < E((4, «0)), when A’ < A, so that E,. < E,, in this case.
Since ¢ is R-essential, from (iv) of Theorem 5.2.6, we have that E(R) = I. As
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(m, ) = Uy m(n,n + 1], E((m, 0)) = 3.7, E((n,n + 1]), and A, E((m, o))
= 0. It follows that

I=1- N\E( @) = \/U - E(%, ) = VE;.
A 2 .

At the same time,

I=ER)= )Y E(nn+1])= <o/ E((m, o0)),

n=—o00 m= — oo
so that

0 ey

0=7/— \/ E(mw)= /\ - E(m, )= 7\ E,

m= — o m= — oo m= — oo

and

Let A(n) be A + n~ 1. Then

E((4,00)) = E((A + 1,00)) + Y, E((A(n + 1), A(m)]),

n=1

so that
N Exm < Ejiy A [ AU — E(An + 1),/1(n)]))] =1 - E((4, w0)) = E;.
n=1 n=1
Since
E,< N\ Ey < )\ Exw<E,
A<A n=1

it follows that E; = A, ., E, and {E,} is a resolution of the identity.
We have

E((4,1]) = E((4, )) — E((X, ©)) = E; — E;,
so that
He((4,4]) = CEpx, x) — {Eux, X).
Combining this with (v) of Theorem 5.2.6, we have

@ $@o(N)x, x) = jw SR dux(2) = JM SR dCE;x, x)

when fe C({R, o0}) and f vanishes outside a finite interval. Since such f are
norm dense in the set of those functions in C({R, cc}) vanishing at oo, (1) is
valid for all fin this set. W
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Using Theorem 5.2.6, we can produce the spectral resolution by measure-
theoretic means. If 4 is a (bounded) self-adjoint or normal operator on J# and
A is the (abelian) C*-algebra generated by 4 (and 4*) and /, then the mapping
S — f{4) provides us with a representation of C(X) on #, where X = {R, oc} if
A is self-adjoint and X = {C, oo}, the one-point compactification of C, if A4 is
normal. From Theorem 5.2.6, there is a projection-valued measure assigning a
projection E(S)on 5 to a Borel subset S of X and such that, for each fin C(X),

CAA)x, x) = L f(p) dpp),

where p,(S) = (E(S)x, x)>. If O is an open set disjoint from sp(4) and f'in C(X)
is in #(0) (see the notation of Theorem 5.2.6), then f{4) = 0, so that E(0) = 0
and p(0) = 0 for each x in #. We write

fA)x, x) = J S(p)dp(p),
sp(A)
and speak of S — E(S) as the spectral measure for 4. In case 4 is self-adjoint,
Corollary 5.2.7 shows us how to pass from this spectral measure for 4 to a
spectral resolution {E;}. From the proof of that corollary, we have that
E, =1— E((4, ©)). As just noted, E((4, o)) =0 if (4, ) is disjoint from
sp(4). Thus E, =1 if A1>|A4]. At the same time, I — E((4, w)) =
E(X\(A, ©)) =0if A < — ||4||,so that E; = Owhen A < — ||4]||. Thus {E,} isa
bounded resolution of the identity in this case, and
11411

(2 fA)x, x5 = j A d{E;x, x)

=114l
(at first, for each fin C(X) vanishing at oo, but then for each fcontinuous on
sp(A) since each such agrees on sp(4) with some function vanishing at o). In
particular

11411

(Ax,x) =j Ld{E;x,x)

=114]l
foreach xin #, sothat AE; < AE,and A(I — E;) < A(I — E;). It follows (from
Theorem 5.2.3) that {E,} is the spectral resolution of A.
Since u(S) = (E(S)x, x) for each Borel subset S of X and x in s# and

AA)x, xy = J Aip)dp(p),
X

polarization of (E(S)x, y) allows us to define a complex (Radon) measure g, ,
on X as a linear combination of positive measures u, and

3) fA)x, ) = J S(p) dps,(P)
X
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for each fin C(X) and all x, y in . If A is self-adjoint, (3) amounts to the
formula,
1411

<f(A)X,y> = J‘ f(’l) d<E).x’ y>’
=4Il
which “polarizes” to (2). If 4 is normal, (3) provides us with the possibility of
defining g(4) when g is a bounded Borel function on C. Note that

1§ 9(p) dps,,(p)| < IIXllIyll suplg(p)| (this is apparent from (3) when ge C(X),
and extends by a measure-theoretic argument to the case where g is a bounded

Borel function). Thus

(x, ) - J g(p)dp,.,(p)
X

is a bounded conjugate-bilinear functional on # with bound not exceeding
sup|g(p)| and, so, corresponds to an operator g(A4) satisfying

4) {g(A)x,y) = '[ 9(p)duc(p),  llg(ADIl < suplg(p)l,

peX

where pu, ,(S) = (E(S)x, y) for each Borel subset S of X and all x, y in #.
Again, if Tin () commutes with 9 (that is, with 4 and A4*), then, from (3),
Hrey = e reys 5O that <G(A)TX, p) = (Tg(A)x, y). Thus g(4)T = Tg(A). We
have

(GgA)x,y> = f 9(p) duy(p) = J . g(p)du,,(p)

= (g(A)y, x> = {g(A)*x, )
for all x and y in #. Thus
) g(4) = g(4)*

for each bounded Borel function g on C and each normal A4. Since 4 and 4*
commute with U, g(4) and §(4) commute with 9 and, hence, with each other.
Thus g(A4) is normal.

We proceed, now, to establish the other properties of a (bounded) Borel
function calculus for (bounded) normal operators. If g and 4 are bounded
Borel functions on C (or R if 4 is self-adjoint), then, for each x in #,

(ag + W)(A)x,x) = j (ag(p) + h(p)) dux(p) = {(ag(4) + h(A)x, x),
X

so that
(6) (ag + h)(A) = ag(A4) + h(A).
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If g is the characteristic function of a Borel subset S of X, then, for each
x in M,

<g(A)x, x) = j g(p)dp(p) = px(S) = <E(S)x, x).
X

Thus g(4) = E(S); and, in particular g?(4) = g(4) = g(A)*>. If h is the
characteristic function of a Borel set disjoint from S, then, from Theorem
5.2.6(iii), 0 = g(A)h(A) = (g - h)(A4). It follows, now, that g*(4) = g(4)?, so
that (g + h)%(4) = [g(A) + h(4)]* and

(N (9 - h)(A4) = g(4) - K(4),

when g and # are finite linear combinations of characteristic functions of
disjoint Borel subsets of X (‘“‘step functions”). Since each bounded Borel
function is a uniform (norm) limit of such step functions (and ||g(4)|| < ||g|| for
each bounded Borel function g), we have (7) for arbitrary bounded Borel
functions g and h.

The identities (5), (6), and (7) that we have established thus for assure us
that the rule

®) (9 °h)(4) = g(h(4))

holds when g is a polynomial (in z and Z) and 4 is an arbitrary bounded Borel
function. Using the Stone-Weierstrass theorem (3.4.14) to approximate a
continuous function uniformly on a closed disk in C containing the range of h
by a polynomial (in z and 2), it follows that (8) is valid for each continuous
function g and each bounded Borel function A. Since g(h(A4)) = g(h(A4)) =
g(h(A))* if g is real-valued and g(h(A4)) = 0 if g > 0, we have that {g,(h(4))} is
an increasing sequence of self-adjoint operators when {g,} is an increasing
sequence of bounded Borel functions. If each g, is continuous and tends
pointwise to a bounded Borel function g, then g,(h(A4)) = (g,°h)(4) and
{g. h} is an increasing sequence tending pointwise to g o 4. It will be useful for
us to note that if {f,} is an increasing sequence of bounded Borel functions
tending pointwise to the bounded Borel function f, then { f,(4)} is an increasing
sequence of self-adjoint operators with least upper bound f{4) (and a similar
conclusion holds for decreasing sequences). We say that the mapping f— f(4)
with this monotone sequential convergence property is o-normal. To prove
this, choose x in 3 and note that

ald)x, Xy = J Ju(p)du(p) - j S(p)dux(p) = {RA)x, X,
X X
from the monotone convergence theorem. Thus, in the case of the continuous
d., we have (8) for their limit g. In particular, we have (8) for g the characteristic
function of an open set ¢ in C (and, so, for a closed set as well). To construct the



5.2. SPECTRAL THEORY FOR BOUNDED OPERATORS 321

sequence {g,} for g, express ¢ as a countable union of open disks @; (with
radius r;). Let f}, be a continuous function on C with range in [0, 1], vanishing
outside ©;, and 1 on the closed disk with the same center as ¢/; and radius
(n— l)yry/n. Then fi, v fo, v+ V f,, Will serve as g,.

Let # be the family of Borel sets S whose characteristic function g satisfies
(8) for all bounded Borel functions h. We have just seen that # contains all
open and all closed sets. From the properties we have established for the
mapping f — f(A) (in particular, g-normality) we see that & is a g-algebra.
Hence % is the family of all Borel sets; and (8) holds for all bounded Borel
functions h, when g is the characteristic function of a Borel set. As a
consequence, (8)is valid for each step function g and then, by passing to (norm)
limits, (8) follows for each pair of bounded Borel functions g and A.

We summarize this discussion in the theorem that follows.

5.2.8. THEOREM. If A is a (bounded) normal operator on the complex
Hilbert space # the * homomorphism f — f(A) of C(X) into the C*-algebra A
generated by A, A*, and I, where X is the one-point compactification of C,
extends to a a-normal * homomorphism g — g(A) of the algebra A of bounded
Borel functions g on C into the abelian von Neumann algebra </ consisting of
operators commuting with each operator commuting with . If g in 8 vanishes on
sp(A), then g(A) = 0. Withg and h in B, G(A) = g(A)* and (g - h)(A4) = g(h(A)).
Letting S be a Borel subset of X, g be its characteristic function, and E(S) be g(A),
the mapping S — E(S) is a projection-valued measure on X. Moreover

IAAII < sup{|fla)|:aesp(4)}

and

SAyx, xy = J Ap)du(p) = Ap)dp.(p)
X sp(A)
for each [ in B, where u(S) = {E(S)x,x). If A is self-adjoint its spectral
resolution is {E;}, where E; = I — E((2, )).

If .# is the ideal of functions in 4 vanishing on sp(A4), then .# is the kernel of
the homomorphism of 2 onto Z(sp(A4)) obtained by restricting a function in
to sp(A). Thus 4/ ~ B(sp(4)). As noted in Theorem 5.2.8, the kernel of the
(o-normal) homomorphism, g — g(4), of # into «/, contains .£ Thus the
mapping, g + . — g(A), gives rise to a homomorphism of #(sp(4)) into <. If
g€ #B(sp(A)) and we define § to be g on sp(4) and 0 on the complement of sp(4),
then §e 4 and g(A) is the image of g under the homomorphism described. We
write g(A4) for this image. From this same observation, we see that g — g(A4)isa
og-normal homomorphism of #(sp(4)) into <.

In the theorem that follows, we prove that our bounded Borel function
calculus is unique. (Compare Theorem 4.4.5 and Remark 4.4.6.) The
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uniqueness is stated in terms of %(sp(A4)), although the preceding paragraph
applies to any Borel subset of C containing sp(4) and the following result (and
argument) apply to each bounded Borel subset of C containing sp(4).

5.2.9. THEOREM. If A is a (bounded) normal operator on a complex Hilbert
space #, B(sp(A)) is the algebra of (complex-valued) bounded Borel functions on
sp(A), ¢ is a a-normal homomorphism of B(sp(A4)) into an abelian von Neumann
algebra o, o(1) = I, and ¢(1) = A, where 1(a) = a for each a in sp(4), then ¢
maps B(sp(A)) into <, the abelian von Neumann algebra generated by A, A*,
and I, and ¢(g) = g(A) for each g in B(sp(A4)).

Proof. With complex conjugation as involution (* operation) and
sup{lg(a)|: ac sp(A)} as [lgll, B(sp(A)) is a C*-algebra; for [|g - gl = llgl|. If g is
real-valued and aeC\R, then g — al has an inverse k in Z(sp(A4)). Since
I=T[o(g) — al] - ¢(h), a¢sp(p(g)). The elements of &/ are normal, so that
¢(g) is self-adjoint. Thus ¢ is a * homomorphism of the C*-algebra Z(sp(4))
into 7. From Theorem 4.1.8(i), ¢ is order preserving and does not increase
norm,

Applying Theorem 4.4.5 to ¢ restricted to C(sp(A4)), we have that
¢(f) = f(A) for each fin C(sp(A4)) and f(4)e /. Since ¢ and the mapping
g — g(A) are o-normal, we have, as in the argument proving (8), that
¢(g) = g(A) (e o) when g is the characteristic function of an open set. If # is
the family of Borel sets whose characteristic function g satisfy ¢(g) = g(4),
then, again, by s-normality, # contains the union of each countable
subfamily. Moreover, since ¢(1) = I, # contains the complement of each set in
& Thus # coincides with the family of all Borel subsets of sp(A4); and ¢(g) =
g(A) (e o) for the characteristic function g of such a set. Since ¢ is linear and
norm continuous, [|g(A)|| < |lg|l, and the step functions are norm dense in
B(sp(A4)), it follows, now, that ¢(g) = g(A4) (e ) for each g in B(sp(4)). B

Lemma 5.2.10 provides the foundation for developing the Borel function
calculus in purely topological-function-theoretic terms. The approach of
Theorem 5.2.8, stemming from Theorem 5.2.6, is essentially measure-
theoretic, while the construction of the spectral resolution {E;} in Theorem
5.2.2 is topological and function-theoretic. We shall take the latter path, and
refer to the following results, when we treat the function calculus for
unbounded normal operators (Section 5.6).

Recall that a subset of a topological space X is nowhere dense (in X) if its
closure has empty interior and that a subset is meager (or of the first category)
in X if it is a countable union of sets nowhere dense in X. (See [K: p. 201].) A
subset of a nowhere-dense set is nowhere dense, so that a subset of a meager set
is meager. A countable union of meager sets is meager.

5.2.10. LemMA. If X is an extremely disconnected compact Hausdorff
space, each Borel subset of X differs from a (unique) clopen set by a meager set.
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Each bounded Borel function g on X differs from a (unique) continuous function f
on a meager set. The mapping that assigns f to g is a (conjugation-preserving, o-
normal) homomorphism of B(X), the algebra of bounded Borel functions, onto
C(X) with kernel consisting of those functions vanishing outside a meager set.

Proof. Let % be the family of subsets of X that differ from a clopen set by
a meager set. If Se % and X, is a clopen set such that (S\Xg) U (X,\S) is
meager, then X\.S and X\X, differ by this same set. As X\X, is clopen,
X\S e Z Each open set (0 lies in % since (0~ is clopen and ¢~\@ is nowhere
dense. If S;e # forj = 1,2,...and X;isaclopen set such that (S;\X;) U (X;\S))
(= M) is meager, then

(G ([0 (05)]= D

AsU% | M;ismeagerand Ui, Xjisopen, U, S;e % Hence # contains the o-
algebra generated by the open subsets of X; that is, # contains the Borel
subsets of X.

The Baire category theorem [K: p. 200, Theorem 34] assures us that the
complement of a meager set is dense in X, so that two continuous functions
agree on the complement of a meager set only if they are equal. Thus there is at
most one continuous function agreeing with a given bounded Borel function
on the complement of a meager set. If S is a Borel subset of X, g is its
characteristic function, X, is a clopen subset of X such that (X,\S) U (S\X,)
(= M)is meager and fis the characteristic function of X, then fis continuous
and g — fis 0 on X\ M. We see, from this and the preceding ‘‘uniqueness”
remark, that there is at most one clopen set differing from S by a meager set. At
the same time, we see that a finite linear combination of characteristic
functions of (disjoint) Borel subsets of X (step functions) agrees with a (unique)
continuous function on the complement of a meager set. Since the step
functions are (supremum-)norm dense in #(X); if g is in #(X), there is a
sequence {g,} of step functions such that ||g — g,|| — 0. Let {f,} be a sequence
of continuous functions such that f, and g, agree on the complement of a
meager set M,.. Then || f,, — full < ll9. — gull, since f, — f,,and g, — g,, agree on
the complement of M, u M,,, adense set (so that|(f, — f.)(P) < l|gn — gmll for
each p in this dense set). Thus { f,} is a Cauchy sequence and converges in norm
to some fin C(X). As {g,} tends to g and { f,} tends to f pointwise, fand g agree
on the complement of U, M;, a meager set.

If g, and g, in #(X) differ from f; and f; in C(X) on the meager sets M, and
M,,theng,, ag, + g, and g,g, differ from f,, af; + f, and f, f; on a subset of
M, U M,. Thus the assignment to g in (X of the unique fin C(X) differing
from g on a meager set is a (conjugate-preserving) homomorphism of #(X)
onto C(X). Of course g corresponds to 0 if and only if g vanishes outside a
meager set. If {g,} is a monotone increasing sequence of bounded Borel
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functions on X tending pointwise to the bounded Borel function g and f, in
C(X) differs from g, on the meager set M,, then f,(p) < f,+1(p) for p in
X\(M,u M,,,), a dense set, so that f, < f,.,. Moreover f, < f, where fin
C(X) differs from g on the meager set M. Now { f,(p)} is {g.(p)} and tends to
fp) (= g(p)) for pin X\(U7L, M)). Thus fis the least upper bound in C(X) of
{/+}; and our homomorphism of #(X) onto C(X) is g-normal. W

5.2.11. CoroLLARY. If O is an open dense subset of the extremely
disconnected compact Hausdorff space X and f is a continuous bounded function
defined on O, then there is a (unique) continuous function h extending f from 0O to
X.

Proof. Letg(p)bef(p)if pe®and0if pe X\(©. Then g is a bounded Borel
function on X and differs from a (unique) function 4 in C(X) on a meager
subset of X. If h(p) # f{ p) for some p in @, then, by continuity of 4 — fon O, f
and hence g differ from 4 on a non-empty clopen subset of (), contradicting the
choice of h. Thus 4 is a continuous extension of ffrom ¢ to X. W

5.2.12. REMARK. Lemma 5.2.10 provides us with another means of
proving Theorem 5.2.5. In the notation of the proof of Theorem 5.2.5, define
ho(p) to be that A in [0, 27) such that exp il = u(p). Then hq is continuous on
X\u"Y(1) and hq is 0 on u~*(1). Hence ho € #(X) and there is a function 4 in
C(X) agreeing with h, on the complement of a meager subset M of X. Thus
exp ih and exp ihy (= u) agree on the dense subset X'\ M. Since exp ih and u are
continuous, exp ih = u and exp iH = U, where H in o corresponds to /. W

5.2.13. RemaRrk. If 7 is an abelian von Neumann algebra, o/ ~ C(X),
and A in o/ is represented by fin C(X); the mapping g —» gofis a g-normal
homomorphism of #(sp(4)) into Z(X). Composing this mapping with the o-
normal homomorphism of #(X) onto C(X) (described in Lemma 5.2.10) and
then with the (s-normal) isomorphism of C(X) onto .o yields a g-normal
homomorphism ¢ of Z(sp(4)) into & carrying | onto I and the identity
transform ; on sp(4) onto 4. Theorem 5.2.9 applies and ¢(g) = g(A4) for each g
in %(sp(4)). The process of forming ¢ recaptures the bounded Borel function
calculus by topological-function-theoretic means. At the same time, we see
that g(4), obtained from g o fwith f representing 4 in C(X), is independent of
the abelian von Neumann algebra &/ containing 4 (and its isomorphic C(X))
weuse. B

We reinforce the preceding “independence” comment in the proposition
that follows. We say that a * homomorphism / of one von Neumann algebra
into another is g-normal when iy maps the least upper bound of each increasing
sequence of self-adjoint operators bounded above in the first algebra onto the
least upper bound of the image sequence. (Compare Proposition 4.4.7.)
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5.2.14. ProposiTiON. If @ is a g-normal homomorphism of one von
Neumann algebra R, into another R, mapping I onto I, then p(f(A)) = flp(A))
Jor each normal A in #, and each bounded Borel function f on sp(A).

Proof. From Proposition 4.4.7, sp(p(A4)) < sp(A4). If o, is the abelian
von Neumann algebra generated by 4, A*, and 7, then &/, = &, and ¢(<7,) is
contained in an abelian von Neumann subalgebra o/ of &, containing ¢(A).
The mapping that assigns ¢(h(A)) to s in #(sp(A)) is a g-normal homomor-
phism. Composing this mapping with the ¢-normal homomorphism of
B(sp(p(A4))) into B(sp(A4)) that assigns to each A the function equal to it on
sp(¢(A4)) and 0 on sp(A4)\sp(¢(A)) (= Y) yields a g-normal homomorphism
of B(sp(¢p(A))) into 7. Let g be the characteristic function of Y (an open subset
of sp(A)). Let ¢ be an open subset of C such that Y = @ nsp(A4). As noted in
the proof of Theorem 5.2.8, the characteristic function of @ is the pointwise
limit of an increasing sequence of positive continuous functions on (5. The
sequence { f,} of restrictions of these functions to sp(4) is increasing and tends
pointwise to g. Moreover, each f, vanishes on sp(¢(A)) so that f,(p(A4)) = 0.
From Proposition 4.4.7, 0 = f,(¢(A4)) = ¢(f(A)). Thus, by g-normality of ¢
and the mapping 4 — h(A) of #(sp(A4)) into ,, ¢(g(4)) = 0. For any 4 in
A(sp(A)) vanishing on sp(p(A4)), we have g - h = h, so that g(4)h(A) = h(A)
and ¢(h(A4)) = 0. It follows that, with 1 and 1, the identity transforms on sp(4)
and sp(¢(4)),

o(A) = o(1(A4)) = o([1 - (1 — 9)1(A)) = Y (10)
and yy maps the constant function 1 on sp(¢(4)) to @((1 — g)(4)), which s ¢([).
From Theorem 5.2.9, y/(h) = h(¢p(A4)) for each A in B(sp(p(A4))). With f in

2A(sp(A)) and f, its restriction to sp(p(4)), Ap(A4)) = fo(¢@(A)) (in essence, by
definition), so that

o(fld)) = o(Lf - (1 = PIA] = Y(fo) = fole(4) = flp(4)). B

5.2.15. REMARK. Again, we recapture the composite function rule,
(fog)(A) = f(g(A)), for fand g bounded Borel functions on C. The mapping
f=(fog)XA) of #(D) is a ¢-normal homomorphism mapping the identity
transform onto g(4) and 1 onto I, where D is a disk containing
sp(g(A4)) v range(g). It follows from Theorem 5.2.9 that (f-g)(A4) = f(g(A)).
[ |

Bibliography: [7, 17, 18, 23]

5.3. Two fundamental approximation theorems

If # is a family of bounded operators on the Hilbert space #, & will
denote those bounded operators on # commuting with all operators in % The
set #' is called the commutant of & Note that #' is weak-operator closed.
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5.3.1. THeoreM (Double commutant). If U is a self-adjoint algebra of
operators containing the identity operator and acting on the Hilbert space #,
then the weak- and strong-operator closures of W coincide with (W) .

Proof. Since A is convex, Theorem 5.1.2 assures us that the weak- and
strong-operator closures of U coincide. We shall conclude this, once again, in
the present case, by showing that " is the strong-operator closure of . Since
A < A" and (A’) is weak- (and strong-)operator closed, both the weak- and
strong-operator closures of QU are contained in A”".

Suppose Te " and x,,. .., x, are given in . We want to find T, in A such
that ||(T — To)x;l| < 1 for each j. Let # be the n-fold direct sum of # with
itself. With 4 in B(#), let A be A® - @ A (so that A(yy,...,y,) =
(Apy, ..., Ay). If % =(x,,...,x,) and U = {A: AU}, then A is a self-
adjoint algebra of operators on #, and [%] is invariant under 9. From the
final paragraph of Section 2.6, Subspaces, the orthogonal projection E with
range [x] commutes with 9 (that is, Ee 9'). If we show that Te ", then T
commutes with E, and the range of E is stable under T. In this case,
T% = (Tx,,...,Tx,)isin thisrange, since ¥ = (Ix,, ..., Ix,) e E(#). As A%k is
dense in [¥%], there is a T, in A such that ||(T — To)x;l| < 1 for all j.

[t remains to prove that T'e 9". In Section 2.6, Matrix representations, we
observed that operators in %(#) can be represented as n x n matrices with
entries from #(#). In this representation, 7 has each diagonal entry T and all
others 0. At the same time, simple matrix calculations show that 91’ consists of
those matrices with all entries in 9, and 9" consists of those matrices with a
single operator from A" at all diagonal entries and 0 at all other entries. Since T
is assumed to be in A", TeA”. WA

There are several easy consequences of the double commutant theorem. If
F S B(H) and F* = {A*: Ae F}, then {F U F*}" is the von Neumann
algebra generated by & If ./ is a factor, {4 U M'} = M ~ M', which is the
set of scalars. Thus {/# U .4}’ = B(H). More generally, {ZUR'}" is €,
where % is the center of the von Neumann algebra %; for
{RUR} = RNA = ¥. At the same time, we see that & is the center of Z'. It
follows that #' is a factor if Z is a factor.

As another simple consequence of the double commutant theorem, we may
conclude that a von Neumann algebra & on # is () if each projection in #’
is either 0 or I. For this, we note that, from Theorem 5.2.2(v), each von
Neumann algebra is the norm closure of the linear span of its projections. Thus
AR’ is {1}, and, under the present assumption, & (= &) = B(H).

Our second approximation result (the Kaplansky density theorem) re-
quires for its proof certain facts about strong-operator continuity of some
classes of functions. These continuity results are interesting and useful in their
own right. The most basic of them, strong-operator continuity of multipli-
cation on bounded subsets of %(#), was established in Remark 2.5.10.
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5.3.2. ProposITION.  Each continuous real- or complex-valued function f(on
R or C) is strong-operator continuous on bounded sets of (self-adjoint or normal)
operators on the Hilbert space #.

Proof. We may suppose that the bounded set of normal operators under
consideration is contained in the ball of radius r. If 4, is a normal operator in
this ball, ¢ > 0, and x,, ..., x, is a set of vectors in #, we want to find vectors
Y1,..--,Vm and a positive & such that |(f{4) —RA))xill <e if
(4 — Ao)yjll < 8, 4 is normal, and ||4]| < r. If we can accomplish this with
Xy,...,Xx, replaced by a single vector x,, then we can do it for
Xi,...,X,—increasing the set of y’s successively. Replace ¢ by ¢||x,||~!. If

e
||xo||’

then ||({4) — fldg))xo|l < &. Thus we may assume that ||x,|| = 1.

From the Weierstrass approximation theorem (see Remark 3.4.15), there is
a polynomial p (in z and 2) such that || f — p||¢, < ¢/3, where C, is the closed disk
in C with center 0 and radius r. Using the strong-operator continuity of
multiplication on bounded sets of operators and of the adjoint operation on
the set of normal operators (see Remark 2.5.10), we can find vectors y,,. .., Y,
and a positive d such that |[(p(A4) — p(4o))xoll < ¢/3if [|(4 — Aoyl <9, A is
normal, and ||4|| < r (where Z is replaced by 4* in determining p(A4)). In this
case,

Xo
[1xoll

<

H(ﬂA) — f(4))

I(AA) — fAdo)Xoll < I(AA) — p(A)xoll + I(p(A) — p(Ao))Xoll
+ [I(p(4o) — f(Ao))Xoll
< IA4) — p(A)Il + [ p(4o) — fldo)ll + &/3
<2f = plle, + €3 <e

To conclude that ||[f{d) — p(A)|| and ||f(4o) — p(Ay)|| are majorized by
l.f = pllc,, in the preceding inequality, we pass to the function representation of
the (abelian) C*-algebra generated by 4 and 4*. This representation can be
viewed as taking place on sp(4) (< C,) with 4 represented by z, 4* by Z, f{A4)
by fIsp(4), and p(4) by p|sp(4). Since the representation is an isometry,

14) = p(ADIl = IS — pllspca) (and, similarly, || f{do) — p(A)ll = IIf = Pllspcaa)-
|

Presently we shall prove a stong-operator continuity result applicable to all
(rather than bounded sets of) self-adjoint operators. An important transform
from self-adjoint operators to unitary operators is needed for this — the Cayley
transform. It assigns to a self-adjoint operator H the (unitary) operator
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(H — ilY(H + il)~! (= U(H)). Since
UHYU(H)* = UH)*UH) = (H — il)"'(H + ilY(H — il)\(H + i)™
=H*+DH* + D' =1,

U(H) is unitary. Now —i(z + 1)(z — 1)~ ! is a real number ¢, provided |z| = 1
and z # 1. In this case, z = (¢ — {)(z + {)~'. Similarly, —iU + I)(U - )~
(= H)is defined if 1 ¢ sp(U); and H is self-adjoint if U is unitary. Note for this
that

U*+hU-n=U-U*=—-U*-DHU+ 1),
so that
H*=iU*+ HU*-DN"'= iU+ HU-DH"'=H.

Analogous computations yield U(H) = U and —i(U(H) + N(UH) — I)~!
= H.(These identities result, as well, from the corresponding facts for real and
complex numbers through the use of the function representation for A(H).)

5.3.3. LEMMA. The Cayley transform is strong-operator continuous.
Proof. We have
(H + iD(UH) — UHy)(H, + il) = 2i(H — H,y),
I(UH) — U(Ho))xoll = 2II(H + il)™'(H — Ho)(Ho + il)™ ' x|
< 2/(H — Ho)(Ho + il)™ x|

(noting that ||(H + il)™?|| < 1, from the function representation of A(H)). The
strong-operator continuity of H — U(H) follows from this inequality. W

5.3.4. THEOREM. If hisa continuous real-valued function vanishing at o on
R, then h is strong-operator continuous on the set of self-adjoint operators.

Proof. Let f{z) be h(— i(z + 1)(z — 1)"') when z # 1 and |z| = 1. If we
define f{(1) to be 0, fis a continuous function on the unit circle in C with values
in R, since /4 vanishes at co on R. From the discussion preceding Lemma 5.3.3,
SIU(H)) = h(H) for each self-adjoint H. Since fis continuous on the unit circle
in C, fgives rise to a strong-operator continuous function on the (bounded) set
of unitary operators, from Proposition 5.3.2. As 4 is the composition of the
Cayley transform and f, applying Lemma 5.3.3, we see that 4 is strong-operator
continuous. MW

We write A~ for the strong- (equivalently, weak-)operator closure of an
algebra A and (much less frequently used) A~ for its norm closure.
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5.3.5. TueoreM (Kaplansky density theorem). If U is a self-adjoint
algebra of operators, then each A in (U™ ), the unit ball of U™, lies in (A); , the
strong-operator closure of the unit ball (W), of . If H is a self-adjoint operator in
(U™),, then H is in the strong-operator closure of the set of self-adjoint operators
in (A), .

Proof. 1If His a self-adjoint operator in A~ and {7,} is a net of operators
in 2 weak-operator convergent to H, then {3(T, + T*)} is a net of self-adjoint
operators in A weak-operator convergent to H. Thus Hisin the weak-operator
closure of the set of self-adjoint operators in . Since this set is convex ; from
Theorem 5.1.2, H is in its strong-operator closure.

Suppose, now, that His a self-adjoint operator in (2 ~), and { H,} is a net of
self-adjoint operators in U strong-operator convergent to H. If f{t)is ¢, for tin
[—1,1],and ¢! for t not in [ — I, 1], then fis real-valued, continuous, and
vanishes at oo, on R. From Theorem 5.3.4, f gives rise to a strong-operator
continuous function ; and { f{H,)} is strong-operator convergent to f{ H). Since
fistheidentity mapping on sp(H), f(H) = H. Since fhas bound 1, || f(H,)|| < 1.
Thus H is in the strong-operator closure of the set of self-adjoint elements in
(A7), , the unit ball of the norm closure A~ of A. But each self-adjoint element
in (A7), is a norm limit (hence, strong-operator limit) of self-adjoint elements
in (A),. Thus H is the strong-operator limit of such elements.

If Te(A™),, then T', the 2 x 2 matrix with entries 0 on the diagonal and T
and T* at the other positions, acting on # @ 4, is self-adjoint and in the unit
ball of A, , where 9, is the algebra of 2 x 2 matrices with entries from 2.
From what we have proved to this point, T" lies in the strong-operator closure
of the unit ball of ,.Thus each entry in 7", in particular T, is in the strong-
operator closure of the set of corresponding entries of elements in the unit ball
of A, —and these entries are all in the unit ball of 2. W

Note that we do not assume that /e in Theorem 5.3.5.

5.3.6. CoroLLARY. If W is a self-adjoint algebra of operators acting on the
Hilbert space # and H is a positive operator in (U™),, then H is in the strong-
operator closure of (U*),.

Proof. Since H > 0, H = K?, with K a positive operator in (% ~),. From
Theorem 5.3.5, K is the strong-operator limit of a net {K,} of self-adjoint
operators in (), . By strong-operator continuity of multiplication on the unit
ball, { K?} is strong-operator convergent to K? (= H). Since K, is self-adjoint,
Ke@),. 1

5.3.7. CororLARY. If Wisa C*-algebra acting on the Hilbert space # and
U is aunitary operator in 0~ , then U is in the strong-operator closure of the set of
unitary operators in .
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Proof. From Theorem 5.2.5, U = exp iH, with H a self-adjoint operator
in A~ . Using Theorem 5.3.5 (with the easy extension of its assertion to a ball of
arbitrary radius), we have that H is the strong-operator limit of { H,}, with H,a
self-adjoint operator in the ball of radius ||H|| in A. Since ¢ — expit is
continuous, {exp iH,} is strong-operator convergent to expiH (= U). N

In each of the statements of the results related to the Kaplansky density
theorem, except Corollary 5.3.7, we did not have to assume that 2 is norm
closed. This assumption is needed in Corollary 5.3.7 (see Exercise 5.7.34). The
Kaplansky density theorem, as well as the double commutant theorem, are
used so often in what follows that we shall generally make use of them without
mention or citation.

Bibliography: [9, 11]

5.4. Irreducible algebras — an application

A family & of bounded operators on a Hilbert space # is said to act
topologically irreducibly when (0) and S# are the only (closed) stable subspaces
under Z If (0) and ## are the only linear manifolds (not necessarily closed) in
H stable under & we say that & acts algebraically irreducibly.

5.4.1. THEOREM. [If F is a self-adjoint family of bounded operators acting
on the Hilbert space #, then F acts topologically irreducibly on 5# if and only if
F' consists of scalars or, equivalently, F'' = B(H).

Proof. Note, first, that if &' consists of scalars, F' = #(H#). If
F' = B(H), then F' consists of scalars. However, # = #”, so that
F'" = F'; and F' commutes with (#'), so that ' = #"'. Thus #' = ",
and &' consists of scalars.

With # a self-adjoint family of bounded operators, #' is a von Neumann
algebra. From Theorem 5.2.2(v), then, #' consists of scalars if and only if each
projection in &' is either 0 or /. Since & is self-adjoint, a projection lies in #' if
and only if itsrange is stable under & (see Section 2.6, Subspaces). Thus & acts
topologically irreducibly if and only if #' consists of scalars. W

Making essential use of the Kaplansky density theorem, we shall prove
(Corollary 5.4.4) that topological and algebraic irreducibility are the same for a
C*-algebra. Toward this end, we need the following result.

5.4.2. LemMmA. If{x,,..., x,} isanorthonormal set in the Hilbert space #
andz,,...,z,are vectors in the ball of radius r and center 0 in #, there isa B in
B(H) such that | B|| < 2n)''%r and’ij = z; for allj. If Ax; = z; for some self-
adjoint operator A, then B may be chosen self-adjoint.

Proof. Let E be the orthogonal projection of # onto the (finite-
dimensional) subspace spanned by {x,,...,x,}. If Txis }.j_,{Ex, x;>z;, then
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TE = T and
n n 1/2 n 1/2
ITxll < r Y I<Ex, x| < r( Y, I<Ex,xj>|2> < Y 1) < n'r||Ex||
j=1 j=1 i=t
< n'2r||x||.
Thus ||T|| < n!

If Ax;=z; for some self-adjomt A, then ET = EAE, so that ET is self-
adjoint. Thus B is self-adjoint, where B=T + T*(I — E)= ET + (I — E)T
+ T*(I — E), and Bx; = Tx; = z;. Since T/ — E) = 0= (I — E)T*,

IBB*|| = ||BII> = |[TT* + T*(I = E)T| < 2|TT*| = 2||T||* < 2nr*. W

5.4.3. THEOREM. [f the C*-algebra U acts topologically irreducibly on the
Hilbert space 3, {y,,...,yn} is a set of vectors and {x,,...,Xx,} is a linearly
independent set of vectors in #, there is an A in W such that Ax; = y;. If Bx; = y;
for some self-adjoint operator B, then A can be chosen self-adjoint.

Proof. Replacing {x,,..., x,} by an orthonormal basis for the space they
span and {y,,...,y,} by the transform of this basis under the mapping taking
x; to y;, we may assume that {x,,...,x,} is an orthonormal set. With B, in
A(A) such that Byx; =y;, choose A4, in A such that ||4ox; — Boxjl| =
l4ox; — yill <[2(2n)"'?]17'. For the choice of A4,, we use the fact that
AU~ =W’ = B(#) (Theorem 5.4.1). Choose B, such that B, x; =y; — Aox;,
with ||By|| < % (using Lemma 5.4.2). Note that 4, can be chosen self-adjoint if
B, can, since the self-adjoint operators in 9 are strong-operator dense in those
of its strong-operator closure, %(). In this case, B, can be chosen self-
adjoint, from Lemma 5.4.2. Theorem 5.3.5 (Kaplansky density) provides us
with an operator 4, in U (self-adjoint if B, is self-adjoint) such that ||4,]| < 3
and [|4,x; — Byx)|| < [4@2m)'?]7".

Suppose, now, that B, has been constructed so that ||B| <27*
Buxj=y;— Ayx; — A1x; — -+ — Ax-1x;, and By is self-adjoint if By is.
Choose A, in A (self-adjoint if B, is) such that |4, <27 % and
|4x; — Bixjl|l < [2¥1(2n)V?]~ ! (employing Kaplansky density for this
choice). From Lemma 5.4.2, there is a By, , with ||By, || <2 **Y and
Bioixj=y;— Aox; — -+ — Ayx; (self-adjoint if 4, is). The sum Y= 4,
converges in norm to an operator 4 in U (self-adjoint if B, is); and

Vi— Ax;=y;— Z Awxj = hm(y, Aoxj— - = Aix))
k=0

=limBk+1Xj=0. .
k

In the preceding proof, we could have chosen A4, such that ||4ox; — yjl| <
[22n)V*]7 e and ||do|| < ||Boll, B, such that ||B,|| <¢&/2, A, such that



332 5. ELEMENTARY VON NEUMANN ALGEBRA THEORY

4] < &/2, and, finally, 4, such that ||4;]| <2 *¢. With these choices,
14l < Y70 1 4kll < ||1Bo|l + € for each preassigned positive ¢, though, in this
process, A depends on the given ¢. A function calculus argument (see Exercise
5.7.41) proves that 4 may be chosen so that ||4]|| < || Byl

The property of U described in the first sentence of Theorem 5.4.3 is
referred to as transitivity. It is an immediate consequence of the transitivity of
2 that it acts algebraically irreducibly. -

5.4.4. CoroLLARY. [f the C*-algebra W acts topologically irreducibly on
the Hilbert space #, then it acts algebraically irreducibly.

Theorem 5.4.3 asserts a form of “‘self-adjoint transitivity” for U as well as
“general transitivity.”” In Theorem 5.4.5 we establish “unitary transitivity” for
A —a result we shall need in the deeper study of states (see Section 10.2). We
need no longer distinguish topological and algebraic irreducibility for C*-
algebras. We shall speak of C*-algebras ‘“‘acting irreducibly.”

5.4.5. THeorREM. If W is a C*-algebra acting irreducibly on # and V is a
unitary operator such that Vx, = y,,...,Vx, = y,, then there is a self-adjoint
operator H in W such that Ux, = y,,...,Ux, = y,, where U = expiH.

Proof. Since two operators that agree on a basis for the space generated
by x;,...,x, agree on the space, we can assume that {x;,...,x,} is an
orthonormal set. The same is then the case for {y;,...,y,}. Let {xy,...,x,}
and {y;,...,y.} beextensionsof {x,,...,x,} and {y,,...,y,} toorthonormal
bases of the space generated by x,, ..., x,, y{,...,V,. Define V, on this space
by Vox; = y; for all j. We may replace ¥ by ¥V, for the purposes of finding U of
the statement of this theorem. We may replace {x,, ..., x,,} by an orthonormal
basis that diagonalizes V,,. Hence, we may assume that Vox; = c;x; for all j,
with |c;] = 1. Let a,,...,a, be real numbers such that ¢; = expia;. From
Theorem 5.4.3, there is a self-adjoint H in A such that Hx; = a;x;. If
U = expiH, then U is a unitary operator in 2, U is a norm limit of polynomials
in H,and Ux; =¢x;. B

Bibliography: [5, 8]

5.5. Projection techniques and constructs

In this section we study some topics involving projections and constructs
with von Neumann algebras related to them.

Central carriers. If A is in the von Neumann algebra # and {P,} is a
family of central projections in # (that is, each P, is in the center € of #) such
that P,4 = Oforall a, then PA = 0, where P = V, P,. Note, for this, that Axis
orthogonal to the range of P, for all a, and, hence, to the union of these spaces.
Thus PAx = 0 for all x and P4 = 0.
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5.5.1. DeriNiTioN.  The central carrier C, of an operator 4 in a von
Neumann algebra £ is the projection / — P, where P is the union of all central
projections P, in # such that P,A=0. N

Since the center € of Z is # A, ¥ is a von Neumann algebra. From
Proposition 5.1.8, P and hence C, are in 4. As we noted, P4 = 0, so that
C,4A = A. We could equally well have defined C, as the intersection of all
central projections Q such that Q4 = 4. The context will usually make clear
the von Neumann algebra relative to which a central carrier is formed. It may,
however, require clarification, in which case some phrase such as “‘relative to
A" will appear. That the von Neumann algebra plays a role in determining
central carriers can be illustrated by identifying the central carrier of a
projection E (different from 0 and J) relative to the algebra of all bounded
operators and relative to the von Neumann algebra generated by Eand /. In the
first case the central carrier is / and in the second it is E.

5.5.2. ProposITiON. The central carrier of an operator A in a von Neumann
algebra R acting on a Hilbert space # has range [RA(H)].

Proof. Since C,A = 4, A(3#) is contained in the range of C,. Since C,
commutes with £, and Z is a self-adjoint family of bounded operators on .,
the range of C,, is stable under #. Thus [#ZA(#)] is contained in the range of
Cy.

The projection Q with range [#A(#°)] commutes with Z and #’, since
[ZA(#)] is stable under # and #'. Thus Q is in the center of % (see the
discussion following Theorem 5.3.1). As [#A(5#)] contains the range of 4,
QA = A.HenceC, < Q(for (/] — Q)4 = 0,sothat] — Q < I — C,). From the
earlier discussion, Q < C,,sothat 0 =C,. W

5.5.3. ProrosiTioN. If {E,} is a family of projections in a von Neumann
algebra & and E = \, E,, then Cg = \,Cg_. If Q is a central projection in &,
then QC,4 = Cg, for each A in A.

Proof. Since E, < E<Cg, Cg, <Cg; and V,Cg, <Cp. If P=
Cg — V, Cg,, then PE, = Ofor each a,sothat PE = 0,and 0 = PC = P. Since
RQA(H) = QRA(#), it follows from Proposition 5.5.2that 9C, = Cp,. N

The analogous identity for intersections of projectionsis not valid. If {x,} is
an orthonormal basis for a (separable) Hilbert space # and E,, is the projection
with range spanned by {x;:j > n}, then A, E, =0. If central carriers are
formed relative to %(#), then Cy, =T and C, =0. Thus A, Cg, =1# C,.

5.5.4. THEOREM. If R is avon Neumann algebra with center € acting on the
Hilbert space #, then Yio1 AjA; =0, with A;in R and A} in ', if and only if
there are operators Cy, J, k in {1,...,n}, in € such that y;_, A;Cy = 0 for k in
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{1,...,n} and y;_, CyA, = Aj for j in {1,...,n}. In particular, A4’ =0,
with A inRand A in R, ifand only IfCACA =0.

Proof. Given operators Cj, with the stated properties, we have

Z A;d; = Z Y ACudi= Y ( ) A,Cjk>A; =0.
j=1k=1 k=1 \j=1

Suppose, now, that 3'7_, 4;4; = 0. Let Z, be the algebra of n x nmatrices
with entries from #’ acting on the n-fold direct sum of »# with itself. Then %/,
has commutant consisting of those n x n matrices with some element of #
repeated at each diagonal position and 0 at each off-diagonal position. Let 4 be
the n x n matrix whose first row has the entries 4,,..., 4, and all of whose
other entries are 0. Let [C;] be the union of all projections £’ in 4, such that
AE' = 0. Then AP = 0, where P = [C].

Let F be the projection with entry the projection F’ in &' at each diagonal
position and 0 at all other positions of an n x n matrix. Since 4;F' = F'A4; for
allj, AF'P = F'AP = 0. It follows from this and the construction of P that the
range of P contains that of F'P. Hence

F'P=PFP=(PFP)*=PF;
and C; commutes with each projection F’ in #'. From Theorem 5.2.2, Cy € ¥.

Since AP = 0, matrix multiplication yields the equations Yi=14;Cu=0
forkin {1,...,n}. If 4" is the n x n matrix with entries 4/, .. A' in the first
column and O at all other entries, 44’ = 0. Thus A4 anmhilates the range
projection of A4 and P4’ = i Again, matrix multiplication yields
Yi=1 CpA, = A;forjin {1,...,n}.

If A4’ = Owith 4 in Z and 4’ in &', applying the result just proved, there is
a central operator Q such that 0 = 4Q = Q4 and QA4' = A'. Moreover, the
1 x 1 matrix with Q as entry is the projection P. Thus Q may be chosen as a
projection in €. Since Q4 =0, 0 <I—C,. As Q4'= A4, C4 < Q. Thus
Cc,C, =0.Converselyif C,C, = 0,then 44' = C,AC,A' = AC,C, A =0.
]

Theorem 5.5.4 says, in effect, that the algebra generated by # and %’ is
isomorphic to the (algebraic) tensor product of # and #’ as modules over . In
particular, when Z is a factor, € is the scalars; and the algebra generated by #
and Z' is the more standard tensor product of algebras over the field of scalars.

Some constructions. If & is a von Neumann algebra acting on a Hilbert
space  and E’ is a projection in &', the range of E' is stable under #. We
noted in Section 4.5 that the restriction of Z to this range is a representation of
. The image of this representafion, a self-adjoint algebra of operators on
E'(#), is * isomorphic to ZE’ (and will often be denoted by ZE’). In the
discussion that follows, we shall prove that ZE’, acting on E’(#), is a von
Neumann algebra; and we shall identify its center and commutant.
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5.5.5. ProposiTiON. If R is a von Neumann algebra acting on the Hilbert
space # and E' is a projection in R', then the mapping AE' - ACg is a *
isomorphism of RE' onto RCg .

Proof. Since (ad + B)E' = aAE' + BE', ABE' = AE'BE’, (ad + B)Cy.
=aACy + BCg, and ABCg = ACg BCg ; the mapping AE' - ACg is a *
homomorphism of ZE’ onto #Cy. once we note that it is single-valued (“‘well
defined”). The same operator in ZE' may appear as AE' and BE' for some A
and Bin 4. In this case, we wish to conclude that ACg. = BCy.. Equivalently, if
TE' = Ofor Tin #, we wish to conclude that 7Cy. = 0. But Theorem 5.5.4 tells
us that CrCp. = 0 when TE' = 0, so that 0 = C;Cp T = CrTCp = TCg.. At
the same time, we see that TE' is 0 if T7Cg. = 0 (for, then, 0 = TCg. E' = TE').
Thus the mapping AE' - ACg is a * isomorphism (clearly onto #Cg).
|

5.5.6. PrRoPOSITION. If & is avon Neumann algebra with center €, acting on
the Hilbert space #, and E' is a projection in &', then RE’', acting on E'(H), is a
von Neumann algebra with center € E' and commutant E'R'E’.

Proof. The mapping A —» AE' of # onto RE’ is weak-operator con-
tinuous. From Theorem 5.1.3, (#(#)), is weak-operator compact so that its
intersection (&), with the weak-operator closed £ is weak-operator compact.
Thus (), E’ is weak-operator compact (hence closed). From the Kaplansky
density theorem, (ZE’), is dense in the unit ball of the weak-operator closure of
RE'. We show that (ZE"), = (%), E’, from which (ZE"), is the unit ball of the
weak-operator closure of ZE’; and ZE’ is weak-operator closed. Choose AE’
in (ZE"),, and observe that AE' = ACz E'. With T,,in &, if ||T,Cg. — T|| - O,
then ||T,C: —TCgl| = ||T,Ce — TCg|| - 0. Thus Te Zand T = TCp. € RCy-.
Thus Z2Cg. is a C*-algebra (norm-closed with unit Cg). From Proposition
5.5.5, TCg. — TE'isa * isomorphism of ZCg onto ZE'. Since a * isomorphism
of a C*-algebra is an isometry (see Theorem 4.1.8(ii1)), ||ACg||= ||[AE'|| < 1.
Thus AE' = ACpE' e (R),E', from which (ZE'), = (#),E’. The reverse
inclusion is immediate; and (), E’' = (AE"),.

If T is in the center of #Cg., then, in particular, T = TCg.. Thus
0=TA(I — Cg) = A — Cg)T, for A in R. As A = ACg. + A(I — Cg) and
ACp e RCg.,TA = AT. It follows that Te %, so that Te ¥Cg. . Of course €Cg.
commutes with #Cg. Combining these conclusions, ¥Cg is the center of
RCg.. Hence ¥E’ is the center of ZE'.

If T"in A(E'(#)) commutes with ZE’, then, denoting by T’ again the
operator on # that is 0 on (/ — E')(#) and T on E'(#), with T in X,
T"=ETE and T'T=TET=TET =TT. Thus T'e#', so that
T e E'R'E’. Of course E'R'E' commutes with ZE'. It follows that E'#’E" is the
commutant of ZE' on E'(s#). R
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5.5.7. CoroLLARY. If & is a von Neumann algebra acting on the Hilbert
space # and E is a projection in R, then ERE acting on E(5) is a von Neumann
algebra with commutant R'E.

Proof. From Proposition 5.5.6, EZ E acting on E(3#) is the commutant of
R'E,and #'Eis a von Neumann algebra. Thus EZFE'is a von Neumann algebra
and its commutant in Z(E(#))is Z#E. A

If {#,} is a family of Hilbert spaces and {#,} is a family of von Neumann
algebras such that &, acts on #,, we can form } @ #, (= #’) and the family £,
of all bounded operators on # of theform Yy @ A4,, where 4, #,and {||4,||} is
bounded (see Section 2.6, Direct sums, for a discussion of direct sums of Hilbert
spaces and operators). It is clear that & is a self-adjoint algebra of operators on
H#. Suppose that A is in the strong-operator closure of #. We denote by #,
again the subspace of .# consisting of those vectors all of whose components,
except possibly thecomponent in J#,, are 0. Each operator in # commutes with
P,, the orthogonal projection of # onto #,, so that the same is true of 4. Now
AP, is in the strong-operator closure of P, since right multiplication by P, is
strong-operator continuous. Hence A,, the restriction of AP, to #,, isin %, ;
and 4 =Y @ A,eZ. It follows that & is a von Neumann algebra. We call #
the direct sum of {#,} and denote it by ¥ ® 4,.

Since P,e %, each 4’ in #' commutes with P,. Thus 4" = ¥ @ A, where 4/,
is the restriction of 4'P,to #,. Hence #' = ¥ @ #,. As the reverse inclusion is
apparent, we see that Z' =Y ® Z%,.

Cyclicity, separation, and countable decomposability. We have noted and
used the fact that the range of a projection in a von Neumann algebra is stable
under the action of the commutant. For certain of these projections, the image
of a single vector acted on by the commutant is dense in the range. Such
projections play an important role in the theory. In the discussion that follows,
we study their properties. We begin by noting that the projection E with range
[Z'Y]isin & (= #"), where # is a von Neumann algebra and Y is a set of
vectors, since [#'Y] is stable under the self-adjoint family %'

5.5.8. DEFINITION. A projection £ in a von Neumann algebra £ acting on
the Hilbert space # is said to be cyclic in & (or under &) when its range is [ #'x]
for some vector x. In this case, x is said to be a generating vector for E (under
R). If[%'x] = #, wesay that x is a generating vector under #'. More generally,
we say that a family Y of vectors is generating for & when [#'Y] = #, and that
Yis generating for E when [#'Y]is therangeof E. If A,in #,is0 when Ay = 0
for all y in Y, we say that Y is separating for 4. In particular, we speak of a
vector y, suchthat 4 = 0if Ay = 0 and 4 € &, as a separating vector for 4. M

5.5.9. ProposiTioN. If E is a cyclic projection in the von Neumann algebra
R with generating vector x and F is a projection in R such that F < E, then F is



5.5. PROJECTION TECHNIQUES AND CONSTRUCTS 337

cyclic in R with generating vector Fx. Each projection in R is the union of an
orthogonal family of cyclic projections in X.

Proof. Notethat[A'Fx:A'eR'] = [FA'x: A’ e R']. Since Fis continuous
and {A'x:A'eR'} is dense in E(H), {FA'x:A'eR'} is dense in FE(H)
(= F(#)). Thus F is cyclic in # and Fx is a generating vector for F.

Suppose Eis an arbitrary projection in £. If Eis 0, then Eiscyclic in £ with
generating vector 0. If E # 0 and x is some non-zero vector in its range, then
[ x] is the range of a cyclic projection E,. Since the ranges of E, and E are
stable under the self-adjoint family #'; E, < Eand Ege £’ = #. Thus Ehasa
non-zero cyclic subprojection if E # 0. The set of orthogonal families of non-
zero cyclic subprojections of E is non-empty, and the union of each totally
ordered subset is an upper bound for that subset under inclusion ordering.
Zorn’s lemma guarantees the existence of a maximal orthogonal family {E,} of
non-zero cyclic subprojections of E. If E — V, E,isnot0, it contains a non-zero
cyclic subprojection E,. Adjoining E, to {E,} contradicts the maximality of
{E,}. Thus E is the union of the orthogonal family {E,} of non-zero cyclic
projections. W

The simple Zorn’s-lemma argument employed at the end of the preceding
proof will be needed (with minor modifications) frequently. For the most part,
all that will appear will be the imperative, “Let {E,} be a maximal orthogonal
family of cyclic subprojections.”

5.5.10. ProrosiTioN. If {Q,} is a countable, orthogonal family of central
projections in a von Neumann algebra R and { E,} is a family of cyclic projections
in R such that E, < Q,, then Y E, is cyclic in R.

Proof. If x, is a generating unit vector for E, under &', then {x,} is an
orthonormal set, so that Yn 'x, converges to a vector x. As
[#'x,] = [#0Q.x] < [#x], therange of ¥ E, is contained in [#'x]. Since the
range of ¥ E, is stable under #’ and x is in that range, it coincides with [#'x].
That is, x is a generating vector for ¥ E,, and Y E, iscyclicin 2. W

5.5.11. ProposiTioN. If # is a von Neumann algebra acting on the Hilbert
space #, a subset Y of H is generating jor R if and only if it is separating for R'.

Proof. Suppose Y is generating for #, A’'e #,and A’y = 0for all yin Y.
Then 0 = A4’y = A’AyforallAinZandyin Y. As {Ay:ye Y, Ac R} spans
#, A’ = 0. Thus Y is separating for #'.

If Yis not generating for &, then [2Y ] is the range of a projection E' in &',
different from /. Thus I — E’ # 0, and (/ — E')y = Ofor all y in Y (since y isin
the range of E’). Hence Y is not separating for &£’ in this case. H

The special case of the preceding result in which Y consists of a single vector
is the one used most frequently.
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5.5.12. CoROLLARY. A vector is generating for a von Neumann algebra if
and only if it is separating for the commutant.

5.5.13. PrROPOSITION. If R is a von Neumann algebra and E and E' are
projections in R and R’ with ranges [ R'x] and [ A x], respectively, then Cy = Cg..

Proof. From Proposition 5.5.2, C¢y and Cg. have ranges [£4%'x] and
[ #x], respectively. Since # and #’' commute, these subspaces coincide ; and
CE = CE’ . .

5.5.14. DEFINITION. A projection E in a von Neumann algebra £ is said
to be countably decomposable relative to £ when each orthogonal family of
non-zero subprojections of E in £ is countable. When I is countably
decomposable relative to £, we say that £ is countably decomposable. H

The term “o-finite” is often used in place of “countably decomposable.”
The von Neumann algebra £ relative to which countable decomposability is
asserted for a projection Eisimportant, as can be seen by taking E to be Iand £#
to be, first, Z(#) with # non-separable, then to be {al}. The (minimal)
projections corresponding to an orthonormal basis for # form an uncount-
able orthogonal family of subprojections of I, so that I is not countably
decomposable relative to (#); but I is countably decomposable relative to
{al'}. Despite the necessity for caution when a projection is claimed to be
countably decomposable, reference to # will be omitted when no confusion
can arise.

If s is a separable Hilbert space, each orthogonal family of projections is
countable, so that Z(#) and each von Neumann algebra on # are countably
decomposable.

5.5.15. ProrosiTiON. If E is a cyclic projection in a von Neumann algebra
R, then E is countably decomposable.

Proof. If x is a unit generating vector for E under #' and {E,} is an
orthogonal family of non-zero subprojections of E in £, then, from
Proposition 5.5.9, E,x is a generating vector for E,. Since E, # 0, E,x # 0.
From Bessel’s inequality (Remark 2.5.17), ¥,[|E.x||* < [|x]|*> = 1. If the set of
indices a is uncountable, there is a positive integer n such that 1/n < || E,x|| for
an infinite set of indices a. In this case, ¥,||E,x||* is not finite. Thus {E,} is
countable. It follows that E is countably decomposable. W

5.5.16. PROPOSITION. A central projection P in a von Neumann algebra R is
the central carrier of a cyclic projection in R if and only if P is countably
decomposable relative to the center € of A.
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Proof. Suppose P = Cg with E a cyclic projection in £, and x is a unit
generating vector for E. If {P,} is an orthogonal family of central subpro-
jections of P, then ¥, ||P.x||* < ||x||* = 1. Thus (as in the proof of Proposition
5.5.15) P,x =0 for all but a countable set of indices. If P,x =0, then
0=AP,x = P,A'x for each A" in #'. As [#'x] is the range of E, P,E = 0.
From Theorem 5.5.4,0 = P,Cy = P,P = P,. Thus P is countably decompos-
able relative to %.

Suppose now that P is countably decomposable relative to 4. Let {E,} be a
family of non-zero projections cyclic in £ maximal with respect to the property
that their central carriers form an orthogonal family of subprojections of P. By
hypothesis {Cg } and consequently {E,} are countable. From Proposition
5.5.10, Y E, is cyclic in #; and, from Proposition 5.5.3, its central carrier is
V, Cg,. If P— V,Cg, # 0, it contains a non-zero projection E, cyclic in £.
Since Cg, is orthogonal to each Cg,, adjoining E, to {E,} contradicts the
maximality of {E,}. Thus P = V, Cg,; and ¥ E, is a cyclic projection in & with
central carrier P. H

An important consequence of the preceding result deals with the case where
R is abelian.

5.5.17. CoroLLARY. If o is a countably decomposable abelian von
Neumann algebra acting on the Hilbert space #, s has a separating vector. If o/
is maximal abelian, in addition, the separating vector is generating for <.

Proof. Since o/ is its own center and /is countably decomposable relative
to o/, I is (the central carrier of) a cyclic projection in .o/. With x a generating
vector for o', x is separating for o/ (= &7"), from Corollary 5.5.12. If o/ is
maximal abelian, x is generating for &/ (= /') as well. W

A partial converse to the preceding result states that if an abelian von
Neumann algebra has a generating vector then it is maximal abelian. While an
ad-hoc argument could be given to establish that converse, at this point it is
best to defer further discussion to Section 7.2 (see Corollary 7.2.16), where
suitable techniques are developed. An illustration of the situation discussed in
Corollary 5.5.17 is provided by the example (see Example 5.1.6) of the
multiplication algebra of the unit interval under Lebesgue measure. In this case
the algebra is maximal abelian ; and the constant function 1 is a separating (and
generating) vector for it.

5.5.18. ProprosiTION. If # is a countably decomposable von Neumann
algebra acting on the Hilbert space #, there is a central projection cyclic in R
whose orthogonal complement is cyclic in &'

Proof. Let {x,} be a set of unit vectors in # maximal with respect to the
property that {E,} and {E’} are orthogonal families of projections, where E,
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hasrange [#'x,] and E| has range [#x,]. Since { E,} is an orthogonal family of
projections in 4, it is countable. We may assume that the index n is a positive
integer. As {x,} is an orthonormal set, ¥’ n~ ! x, converges to a vector x in #, If
EisY F, and E'is Y E;, then E and E’ are cyclic projections in # and &',
respectively; and x is a generating vector for each. Of course, x isin the range of
both Eand E'. In addition [#'x,] = [#'E.x] = [#'x]. Thus [#'x] is the range
of E. Symmetrically, [#x] is the range of E'.

If (I — E)(I — E") # 0, aunit vector x, in the range of (I — E)(I — E’) will
generate cyclic projections E, in # and E| in &’ orthogonal to {E,} and {E’},
respectively. Adjoining x, to {x,} contradicts the maximality of {x,}. Thus
(I—- EYI—E)=0; and, from Theorem 5.54, C;_gC,_p =0. Since
I—Ci_g<E I—-C;_giscyclic in £ (from Proposition 5.5.9). Similarly
I—-C,_giscyclicin #. As C;_g <I— C;_g, C;_g is cyclic in #'. Thus
I — C;_g is a central projection cyclic in # whose orthogonal complement,
Ci_g,iscyclicin . N

5.5.19. ProrosiTiON. If E is the union of a countable family {E,} of cyclic
projections in a von Neumann algebra R, then E is countably decomposable in A.

Proof. Let x, be a unit generating vector for E, under #'. Let {F,:ae A}
be an orthogonal family of non-zero subprojections of E in #; and let &, be
{a: F,x, #0}.Ifaisnotin ¥, F,x, = 0;and (0) = [#'F,x,] = [F,% x,]. Since
F, <V, E,, F,does not annihilate the range [#’'x,] of each E,. Thus U %, = A.
On the other hand, ¥ ,cal|lFox.l|* < |IX4]|> = 1, so that F,x, # 0 for at most a
countable number of elements a of A —that is, & is countable. If N is the
cardinal number of A, R < R, - Ny = N, (see the final paragraph of the proof
of Theorem 2.2.10), since A=U%. W

5.6. Unbounded operators and abelian von Neumann algebras

In this section we study the spectral theory of unbounded self-adjoint and
normal operators. We associate an (unbounded) spectral resolution with each
(unbounded) self-adjoint operator (compare Theorem 5.2.2 and the discussion
following it). We extend the function calculus (both continuous and bounded
Borel) to (unbounded) normal operators (compare Theorem 5.2.8).

We begin with a discussion (really, a continuation of Example 5.1.6) that
details the relation between unbounded self-adjoint (and normal) operators
and the multiplication algébra of a measure space. If we are prepared to
confine attention to, say, the case of separable Hilbert space, this discussion
combined with some of the general theory of abelian von Neumann algebras to
be developed in Chapter 6 contains all that we need in dealing with unbounded
self-adjoint (and normal) operators.
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If g is a (complex) measurable function (finite almost everywhere) on S —
now, without the restriction that it be essentially bounded —multiplication by g
will not yield an everywhere-defined operator on L,(S), for many of the
products will not liein L,(S). Enough functions f will have product fg in L,(S),
however, to form a dense linear submanifold 2 of L,(S) and constitute a
(dense) domain for an (unbounded) multiplication operator M. To see this, let
E, be the (bounded) multiplication operator corresponding to the characteris-
tic function of the (measurable) set on which |g| < n. Since g is finite almost
everywhere, {E,} is an increasing sequence of projections with union 1. The
union %, of the ranges of the E, is a dense linear submanifold of L,(S)
contained in &. A measure-theoretic argument shows that M| is closed with 9,
as a core. In fact, if {}} is a sequence in & converging in L,(S) to fand {gf,}
converges in L,(S) to A, then, passing to subsequences, we may assume that
{f,} and {gf,} converge almost everywhere to fand h, respectively. But, then,
{gf,} converges almost everywhere to gf, so that gf and A are equal almost
everywhere. Thus gfe L,(S), f€ 2, h = M, (f), and M, is closed. With £, in 2,
{E,fo} converges to f, and {ME, f,} = {E,M,f,} converges to M, f,. Now
E.fo€ Dy, so that @, is a core for M,. Note that M E, is bounded and that its
bound does not exceed n. Using the lemma that follows, we see that M is an
(unbounded) self-adjoint operator when g is real-valued, since M E, is a
bounded self-adjoint operator in that case.

5.6.1. LemMA. If {E,} is an increasing sequence of projections on the
Hilbert space # and A, is a linear operator with dense domain U*_ | E(#)
(= 9D,) such that A.E, is a bounded self-adjoint operator on #, then A, is
preclosed and its closure is self-adjoint. If A is closed with core 9, and AE, is a
bounded self-adjoint operator, A is self-adjoint.

Proof. With x and y in 9,, there is an m such that

{Aox,y) = (AoEnX, > = (X, AgEny) = (X, Aoy>-

Thus ye 2(A4%) and A} is densely defined. From Theorem 2.7.8(ii), 4, is
preclosed. With A the closure of 4, it remains to prove the last assertion of this
lemma.

With x and y in 9(4), we can choose sequences {x,} and {y,} in 9,
converging to x and y, respectively, such that {4x,} and {4y,} converge to Ax
and Ay. Then

<AX,,,y,,> = <Amen’yn> = <X,,,AE,,,)’,,> = <xn’Ayn>'

Now {(A4x,,y,> tends to {Ax, y> and {x,, Ay,> tends to {x, Ay> as n tends to
infinity. Thus (4x, y> = {(x, Ay>; and A is symmetric. Note that (4 * i[)E,
has range E,(#) since AE, is bounded and self-adjoint (so that AE, + iE, hasa
bounded inverse on E,(#)). Thus 4 + il has a dense range. From Lemma
2.7.9, this range is #; and, from Proposition 2.7.10, 4 is self-adjoint. W
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If M, is unbounded, we cannot expect it to belong to the multiplication
algebra .o/ of the measure space (S, & m). Nonetheless, there are various ways
in which M, behaves as if it were in .o/ — for example, M, is unchanged when it
is “transformed” by a unitary operator U commuting with .. In this case (see
Example 5.1.6), Ue .o/, so that U= M, where u is a bounded measurable
function on S with modulus 1 almost everywhere (see Example 2.4.11). With f
in 9(M,), gufe L(S); while, if guhe L,(S), then ghe L,(S) and he 2(M,).
Thus U transforms 2(M,) onto itself. Moreover

(U*M,U)f) = aguf = lu*gf = gf.

Thus U*M,U = M,.

The fact that M, “commutes” with all unitary operators commuting with
&/ 1n conjunction with Theorem 4.1.7 and the double commutant theorem
(5.3.1) (from which it follows that a bounded operator having this property lies
in o/) provides us with an indication of the extent to which M, “belongs” to .
We formalize this property in the definition that follows.

5.6.2. DeriNITION. We say that a closed densely defined operator T is
affiliated with a von Neumann algebra £ (and write Ty %) when U*TU = T
for each unitary operator U commuting with £. W

Note that the equality, U*TU = T, of the preceding definition is to be
understood in the strict sense that U*TU and T have the same domain and
(formal) equality holds for the transforms of vectors in that domain. As far as
the domains are concerned, the effect is that U transforms 2(T) onto itself.

5.6.3. REmark. If T'isaclosed densely defined operator with core 2, and
U*TUx = Txfor each x in 9, and each unitary operator U commuting with a
von Neumann algebra &, then Tn . To see this, note that, with y in 9(T),
there is a sequence { y,} in 9, such that y, — yand Ty, - Ty (since 9, is a core
for T). Now Uy, — Uy and TUy, = UTy, —» UTy. Since Tis closed, Uy € 2(T)
and TUy = UTy. Thus 9(T) < U¥2(T)). Applied to U*, we have
2(T) = U(2(T)), so that U(D(T)) = 2(T). Hence 2(U*TU) = 9(T) and
U*TUy = Ty for each y in (7). W

Our discussion to this point establishes that M, is a closed operator (self-
adjoint, when g is real-valued) affiliated with the multiplication algebra .
Conversely, if 4 is a closed (unbounded) operator affiliated with .o/, then 4 has
the form M, (and g is real-valued when 4 is self-adjoint). We prove this in the
discussion that follows.

Since each B, in &/ is a linear combination of four unitary operators in .o/
(see Theorem 4.1.7) and UA = AU for each such unitary operator (as & < &'
and An.sf), we have ByAd < AB,. In particular, if E is the projection
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corresponding to multiplication by the characteristic function of a measurable
subset S, of S, EA = AE, so that Efe Z(A) if fe 2(A).

Let 9, be the set of essentially bounded functions in Z(A). If fe 2(A) and
E, is multiplication by the characteristic function of {x:|f(x)| < n}, {E,} is an
ascending sequence of projections in ./ tending to I in the strong-operator
topology (since f is finite almost everywhere). From the foregoing E, fe 2, ,
{E,f} tends to fand AE,f= E,Af - Af as n - 0. Thus 2, is a core for 4.

If fand g are in &, then

M fAg = MsAg = AM g = A(f9) = AM,f = M Af = gAf.

Let {S,} be a family of mutually disjoint sets of finite positive measure with
union S. If x, is the characteristic function of S,, there is a sequence {f, } of
elements of 2, tending to x,. If

Sy ={s:5€8,, fo,(s) = 0 for all j}

and x is the characteristic function of S9, then 0 = M, Jn, = M X, = x,s0 that
S? has measure 0. Let g(s) be LA )OI )1 !, where se S,\S? and j is the
least integer such that f, (s) # 0. Then g is a measurable function on S defined
almost everywhere. For each fin 92, f, (s)(Af )(s) = fs)(Af,,)(s) for all n and j
except on a set of measure 0, from (1). Thus (Af)(s) = g(s)f(s) almost
everywhere. We have noted that M, is closed and affiliated with &/, Since M, is
an extension of the restriction of the closed operator 4 to the core 2, for 4, we
have that 4 = M,. As we have noted earlier, the set of functions 4 in L,
vanishing on the complement of sets {s:se.S, |g(s)| < m} forms a core for M,.
With A such a function, let { f,} be a sequence of functions in 2, tending to 4. If
x is the characteristic function of the set of points at which 4 does not vanish,
we may replace f, by xf,. Changing notation, we may assume that each f,
vanishes when # does. In this case, since M,M, is bounded,

Af, = MM, f, > M,M h = Mh.

As A is closed, he 2(A) and Ah = M h. It follows that 4 = M.

If 4 is self-adjoint, M, is a bounded self-adjoint operator, so that gx is real-
valued almost everywhere. Hence g is real-valued almost everywhere. Again, as
with bounded multiplication operators, the projections E;, corresponding to
multiplication by the characteristic function of the set where g does not exceed
A, form a spectral resolution {E;} of A4 (see the discussion following Theorem
5.2.5). Inthis case, if A4 is, in fact, unbounded, there will be no non-negative real
number a (replacing ||4|| when A is bounded) such that £, = 0if A < — a and
E, = Iifa < A;and wespeak of { E,} as an unbounded resolution of the identity
(see the discussion preceding Theorem 5.2.3).

We summarize the foregoing conclusions in the theorem that follows.

5.6.4. THEOREM. If (S, m) is a o-finite measure space and of is its
multiplication algebra acting on Ly(S), then A is a closed densely defined
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operator affiliated with of if and only if A = M, for some measurable function g
finite almost everywhere on S. In this case, A is self-adjoint if and only if g is real-
valued almost everywhere.

Anunbounded self-adjoint operator 4 can be associated (““affiliated’”) with
an abelian von Neumann algebra. As in the case of a bounded self-adjoint
operator (see Theorem 5.2.2), we can use Theorem 5.2.1 to locate a function on
an extremely disconnected compact Hausdorff space that “‘represents” A. As
might be expected, this function is neither everywhere defined nor bounded.
We will be able to use this representing function (as in Theorem 5.2.2) to find a
resolution of the identity (unbounded) for A. (See the discussion of resolutions
following Theorem 5.2.2.) In preparation for this analysis, in the definition
that follows we describe the functions that appear.

5.6.5. DerinITION.  If X is an extremely disconnected compact Hausdorff
space a normal function on X is a continuous complex-valued function fdefined
on an open dense subset X\ Z of X such that lim,., ,| f{g)| = co for each pin Z
(where ge X\ Z). A self-adjoint function on X is a real-valued normal function
on X. If fis self-adjoint and defined on X'\ Z, we denote by Z , those points p of
Z such that lim,,,f(q9) = +o00 and by Z_ those p in Z such that
lim ., f(qg) = — 0. We denote by 4°(X) and #(X) the sets of normal and self-
adjoint functions on X. H

It is one of the many surprising properties of extremely disconnected
compact Hausdorff spaces (and their associated constructs) that
Z=Z,uZ_ (that is, there are no points near which an f in &(X) takes
arbitrarily large positive and negative values). This follows from the fundam-
ental property of such spaces that disjoint open sets ¢/, and ¢, have disjoint
closures (X\(, is closed and, thus, contains (/] , a clopen set, so that X\0, is
closed and contains @[ ). To see this, note that the sets

{g:9eX\Z,flg) > 1}, {q:qeX\Z, fig) < — 1}

are disjoint open sets (since fis continuous on X\ Zand X\ Zis open in X), and
that a point near which f takes arbitrarily large positive and negative values
would have to lie in both of their closures.

Clearly | f| is normal on X if fis normal. The following simple lemma will
prove useful to us.

5.6.6. LEMMA. If f and g are normal functions on X defined on X\Z and
X\Z', respectively, and f(q) = gtg) for each q in some dense subset S of
XNZuZ'),thenZ=2 and f=g.

Proof. Since X\(Zu Z')isdensein X, Sisdensein X. If pe Z’ and gin Sis
near p, then |g(q) (=f(9)) is large so that peZ. Thus Z' = Z and,
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symmetrically, Z = Z'. Hence f — g is defined and continuous on X\ Z and 0
on the dense subset S. It follows that f=¢g. W

5.6.7. LEeMMA. If A is aself-adjoint operator acting on a Hilbert space #, A
is affiliated with some abelian von Neumann algebra. If Ansf and o is
isomorphic to C(X), with X an extremely disconnected compact Hausdorff space,
there is a unique self-adjoint function h on X such that h- e is in C(X) and
represents AE when E is a projection in <f such that AE is a bounded everywhere-
defined operator, where e in C(X) corresponds to E, and (h- e)(p) is h(p) if
e(p) = 1 and 0 otherwise. There is a resolution of the identity {E,} in o/ such that
Uz | F(#) is a core for A, where F,=E, — E_,, and Ax = [" 1dE,x for
each x in F,(#) and all n, in the sense of norm convergence of approximating
Riemann sums.

Proof. From Proposition 2.7.10 and Remark 2.7.11, 4 + il and 4 — il
have range #, null space (0), and inverses T, and T_ that are everywhere
defined with bound not exceeding 1. Note that

(T (A +iDx,(A — i)y = (x,(Ad — iDy) = (4 + il)x, )
= (4 + iDx, T-(A — il)y),

when x and y are in 9(4), since 4 is self-adjoint. Thus 7_ = T* . (Recall that
A T il have range #, so that (4 + il)x and (4 — il)y represent arbitrary
vectorsin J#.) Again, since 4 * il have range J#, we can represent an arbitrary
vector as (4 — iI)(A + il)x, where xe 2(4) and Axe 2(A). In this case,

(A — i)(A + iDx = (42 + Dx = (A + il)(A — il)x,

and T,T_=T_T,.Since T_ = T*, T, isnormal. Let o/ be an abelian von
Neumann algebra containing /, T, , and T_. If U is a unitary operator in .o/’,
for each x in 9(4), Ux=UT.(A+iDx=T,U(A+ il)x so that
(A+iHUx=U(A +iDx; and U (4 +iDU=A+il. Thus U 'AU= A
and A5« In particular 45 </,, where o/, is the (abelian) von Neumann
algebra generated by I, T, , and T_.

From Theorem 5.2.1, & =~ C(X), where X is an extremely disconnected
compact Hausdorff space. Let g, and g_ be the functions in C(X) correspond-
ingto 7, and T_. Let 4, and h_ be the functions defined as the reciprocals of
g+ and g_, respectively, at those points where g, and g_ do not vanish. Then
h, and h_ are continuous where they are defined on X, asis (k. + h_) (= h).
In a formal sense, # is the function that corresponds to 4. We shall see that A is
real-valued and find the spectral resolution of 4 by subjecting 4 to the same
spectral analysis as was performed on the functions of C(X) in proving
Theorem 5.2.2.

Since T, and T_ are adjoints of one another, g, and g_ are complex
conjugates of one another (in particular, they vanish at the same points of X).
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Thus &, and h_ are complex conjugates of one another; and 4 is real-valued.
The set Z on which g, (and g_) vanishes is closed (since g , is continuous) and
nowhere dense; for if it contains a non-null open set it contains its closure, a
non-null clopen set. The projection corresponding to this non-null clopen set
would have product with T, (and T_) equal to 0 — contradicting the fact that
T, (and T_) have null space (0). Thus each point p in Z is a limit of points ¢ in
X\Z (at which 4 is defined).
For each y in J#,

AT, T_y=(A+il—iDT, T-y=T-y—iT, Ty,
sothat AT, T_- =T_ —iT.T-. Similarly AT_T, =T, +iT,T-. Hence

2) 2iT, T_=T_-T,
and
3) AT, T_- =XT, + T-).

It follows from (2) that (h(q) + i)~ ! = g.(q) (and that (h(q) — i)' = g_(q))
for gin X\ Z. Hence, for each gin X\ Z near p (in Z), g, (q) isnear 0 and |a(q)| is
large. Thus 4 is a self-adjoint function on X.

Let 0, be U, u Z, ,where U, is the set of points of X\ Z at which A exceeds 4
and Z, has the meaning explained in Definition 5.6.5. We show that ¢, is
open. Since 4 is continuous on X\ Z and X\ Z is open in X, U, is open in X. If
peZ, , there is an open set () containing p such that if ge O N (X\Z), then
h(g) > 0—and since |h(q)| is large for ¢ (in X'\ Z) near p, we may choose ) such
that 4(q) > Afor gin O N (X\Z). In this case, O N (X\Z) € U, = 0,. If there
wereap’in(® n Zwithp'in Z_ , then, from the definition of Z_ , there would be
a g in @ with h(q) strictly negative —contradicting the choice of ¢. Thus
ONZcZ,;,0c0,;and O, is open, as asserted. Let X, be X\O; . Again, as
in the proof of Theorem 5.2.2, X, contains each clopen set Y such that A(p) < 4
forall pin Y. (For points p of Z_, where “h(p) = — 00,” we write “h(p) < A"
as well, so that Y may contain points of Z_.) Indeed, if ge ¢, thenge X\Y, a
closed set, so that O; < X\Y and Y < X\O; = X,. At the same time, X is
such a clopen set, for if peX;n(X\Z), then, since p¢ U,, h(p) < A If
peX,nZ thenpeZ\Z, (= Z-) and h(p) < A (in the extended sense). Thus
X, is the largest clopen set on which h(p) < A;and X;nZ=Z_.

We proceed now as in the proof of Theorem 5.2.2. Let e, be the
characteristic function of X; and E; be the projection in & corresponding toe;.
In this case, {E,} satisfies E; < E if A< X and E; = A, < E;.. Since Z is
nowhere dense, V,e;, =1 and Nye,=0,so that V, E; =1 and A, E, =0.
That is, we have constructed a resolution of the identity {E;} (and this
resolution is unbounded if h¢ C(X)). Let F be E, — E,, where a < b. Then
e, — e, (= f), the characteristic function of X,\X,, corresponds to F. Since
XonZ=X,nZ (= Z_), we have that X,\X, € X\Z; and g, (p)g-(p) # 0
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when f{p) = 1. For p in X\Z,

@ ()—<2q o )()

by choice of A. Moreover, there is a positive function k£ in C(X) such that
kg,g- = fand kf = k (since g . g _ is continuous and vanishes nowhere on the
clopen set X,\X,). If K in of corresponds to k, then

(5) KT,.T_-=F.

From our information about X, if pe X,\X,, then p¢ Z and a < h(p) < b.
Thus from (4),

ag.g-f < %(g+ +g9.)f<bg.g-f,
and
akg.g f=af <Hg+ +g)kf=3g+ +9-)e <bkg.g_f=10f.
Thus

(6) aF < (T, + T_)K < bF.
Combining (3), (5), and (6), we have
(7 aF < AF < bF.

It follows that AF is bounded; and from (3), (4), and (5), the corresponding
element of C(X)is & - f. With E a projection in &/ such that AEe€ #(#)and U a
unitary operator in o', U 'AEU = U 'AUE = AE,so that AEc o/. Let f, in
C(X) correspond to F, and Y, be the (clopen) subset of X on which f, takes the
value 1. Since V¥_, F, = I,{Y,} hasuniondensein X. If e in C(X) corresponds
to E, then (replacing F, above, by F,) (h - f,)e corresponds to AF,E (= AEF,).
Suppose e(p) = 1. There is some n and a g in Y, near p. In this case,
((h” f,)e)() = h(g) and i(g)| < |AEF,|| < ||4E]. Hence p¢ Z, and |i(p)| <
|AE|. Thus h-eecC(X). Now (h-fle=nh"(ef,) =(h" e)f If #in C(X)
represents AE, then fif, represents AEF,. Thus Af, = (h" e)f, for all n and
F=h"e.

Since (2F, — NAQ2F, — I) = A, we have F,A < AF,. Thus, with x in 2(4),
F,x - x and AF,x = F,Ax —» Ax. Hence U”_, F,(#) is a core for 4. Since
(ht e)ee; < Jdee; and A(e — ee;) < (h- e)(e — ee;), we have, from Theorem
5.2.3, that {EE,| E(#)}, a resolution of the identity on E(#), is the resolution
of the identity for A E| E(#). With F, in place of E, Theorem 5.2.2(v) (applied
to AF,|F,(#) and the resolution {F,E,|F,(s)}) yields the equality,
Ax = (" AdE, x, for x in F,(#) and alln. W

If xe2(A),
j }.dE;}X=<[ /{dE;‘F,,XZAF"X—)AX.

-n
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Interpreted as an improper integral, we write

+ o
(8) Ax = -[ AdE; x
when x e 2(4).
In the circumstances set out in Lemma 5.6.7, we say that & (in #(X))
represents A (n ).

5.6.8. LEMMA. If of is an abelian von Neumann algebra acting on the
Hilbert space # and of is isomorphic to C(X) with X an extremely disconnected
compact Hausdorff space, then each h in ¥ (X) represents some self-adjoint
operator A affiliated with of.

Proof. From the proof of Lemma 5.6.7, h determines a resolution of the
identity {E,} in o and k- f,e C(X), where f, =e, — e_, with e, in C(X)
representing E,. Let 4, in o correspond to & - f,. Noting that (h - f,,)f, = & - f,
whenn < m, we have 4,,F, = A,,inthiscase, where F,, in o/ correspondsto f,,.
Thus, defining 4yx to be 4,x when x e F,(#), A, is a linear transformation
with domain U2, F.(#) (= 9,). From Lemma 5.6.1, 4, is preclosed and its
closure A is self-adjoint with core 9,. If U is a unitary operator in ./’ and
x,€ F(#), then Ux,e F () so that U~ '4Ux, = U~ 'A4,Ux, = A, x, = Ax,.
From Remark 5.6.3, An.o/.

If & in #(x) represents A4, then, from Lemma 5.6.7, i - f, represents AF,
(= A,). Thush - f, = h " f, for each n. From Lemma 5.6.6, h = I, since hand h
agree on dense subsets of X. Thus / represents 4. W

5.6.9. LeMMA. If {E,} is a resolution of the identity on a Hilbert space #
and of is an abelian von Neumann algebra containing { E;}, there is a self-adjoint
A affiliated with of such that

®) Ax='[ LdE, x,
foreach x in F(#)and alln, where F, = E, — E_, ;and {E,} is the resolution of
the identity for A (as constructed in Lemma 5.6.7).

Proof. Suppose &/ is isomorphic to C(X) with X an extremely discon-
nected compact Hausdorff space. Let e, in C(X) correspond to E, and let X, be
the clopen subset of X on which e, takesthe value 1. Let Z_be N, X, and Z, be
X\(U, X;). Then Z_ and Z, are closed subsets of X. Both are nowhere dense in
X since A, E,=0and V,E, =1 Their union Z is a closed nowhere-dense
subset of X. If pe X\ Z, let h(p) = inf{/: pe X,}. Given a positive ¢ and a point
qo of X\ Z at which htakesthe value A,if ge X; . .\ X, -, then |i(q) — h(qo)| < &.
Thus hiscontinuous on X\ Z. By definition, 4 tends to + oo at points of Z, and
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to — oo at pointsof Z_ . Thus he &(X); and, from Lemma 5.6.8, #corresponds
to a self-adjoint operator A4 affiliated with /. We note that {E,} is the
resolution of the identity for 4, so that (9) holds, by identifying X, as the largest
clopen set on which # takes values not exceeding A. If Y is another such clopen
set, e is its characteristic function, and F in .o¢ corresponds to e, then Y < X,
for each ' exceeding 1. Thus E< A, E; =E;and Yc X;. B

5.6.10. LeMMA. If A is a closed operator on the Hilbert space #, {E,} is a
resolution of the identity on #, UX_ | F(#) (= %) is a core for A, where
F,=E,—E_,, and

—hn

(10) szj AdE; x

for each x in F () and all n, then A is self-adjoint and {E)} is the resolution of
the identity for A.

Proof. From (10), AF, is bounded, everywhere defined, and is the strong-
operator limit of finite real-linear combinations of {E;}. Thus E,AF, = AF,E,
and AF, is self-adjoint. From Lemma 5.6.1, A4 is self-adjoint. If x € 2(4), there
are sequences {n;} (tending to oc) and {x;} such that x; = F, x; > x and
Ax;— Ax, since @, is a core for A. For each n,

F,Ax = lim F,AF, x; = lim AF, F,x; = lim AF,x; = AF,x
J J J

so that F,4 < AF, for all n. At the same time AF,E;x = E;AF,x —» E;Ax and
F,E;x - E;x. Since A is closed, E;xe 9(A) and AE;x = E;Ax. Thus
E;A c AE,and QE, — NAQRE, — I) = A. 1t follows that { E;} commutes with
T, and T_. Let of be the (abelian) von Neumann algebra generated by {E,},
T,,and T_. Asnoted in Lemma 5.6.7, An /. From Lemma 5.6.9, there is a
self-adjoint operator A4 affiliated with .o such that Ax = [, AdE, x for each x
in F,() and all n. Since @, is a core for both 4 and 4 on which they agree,
A = A and {E,} is the resolution for 4. W

5.6.11. REMARK. The (abelian) von Neumann algebra .o/, generated by
T, and T_ is the smallest von Neumann algebra with which (the self-adjoint
operator) A is affiliated. (See the proof of Lemma 5.6.7 for the main part of
this.) We refer to .o/, as the von Neumann algebra generated by A. B

We assemble the foregoing results in the theorem that follows.

5.6.12. THEOREM. If of is an abelian von Neumann algebra acting on a
Hilbert space #, ¥ (<f) is the family of self-adjoint operators affiliated with of,
o Is isomorphic to C(X) with X an extremely disconnected compact Hausdorff
space, and ¥ (X) is the family of self-adjoint functions on X, then:
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(i) there is a one-to-one mapping ¢ of F(f) onto F(X) extending the
isomorphism of s with C(X) for which ¢(A) - e corresponds to AE for each
projection E in of with AE in <f, where e in C(X) corresponds to E and
(9(A) “ e)(p) is (p(A))(p) or 0 according as e(p) is 1 or 0;

(i) there is a resolution of the identity {E,} in the abelian von Neumann
subalgebra of , of o generated by an A in S () such that

(11) szf JdE; x

=-n

Jor each x in F,(#) and all n, where F, = E, — E_,, and U*_ | F,(3) is a core
for A;

(iil) if{E’} is a resolution of the identity on # such that Ax = |" 1dE’ x
Sor each x in F(#) and all n, and U, F\(H#) is a core for A, where
F =E, —E_,, then E; = E', for all 1;

(iv) if{E,} is a resolution of the identity in <of there is an A in () for
which (11) holds;

(v) ife,in C(X)corresponds to E, and X, is the clopen set on which e, takes
the value 1, then X, is the largest clopen subset of X on which @(A) takes values
not exceeding A (in the extended sense).

It will prove convenient to have the scope of our study broadened to include
unbounded “normal’’ operators as well as self-adjoint operators. We say that a
closed densely defined operator A is normal when the two self-adjoint
operators A*4 and AA* (= A**A4*) are equal. A spectral theory and function
calculus for such operators will make it possible for us to apply complex
function theory techniques (see, for example, Stone’s theorem (5.6.36) and
Section 9.2).

We begin with some preparatory material concerning extensions of
unbounded operators. The following simple facts are easily verified.

(12) IfAcBand C< D, then 4+ C< B+ D.
(13) If A < B, then C4 < CB and AC < BC.
(14) (A+ B)C=AC+ BC, CA+CBcC(4+B).

In connection with the last assertion of (14), note that we do not have equality
in general. This is illustrated by a densely (but not, everywhere-)defined C and
A=1I B= —1I Inthiscase, C(4 + B)is 0 but CA + CBis 0|2(C). It follows
from these rules that if C4 = AC for each C in some family &% then T4 < AT
for each sum T of products of operafors in  We cannot speak of the “algebra”
generated by % for, as we have just noted, a distributive law fails. However, if
F consists of everywhere-defined operators (in particular, of operators in
B(H)), we can speak of this algebra.
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We may add to (12), (13), (14) another easily proved rule.

(15) If{T,}isanet of operators in Z(s) tending to Tin the strong-operator
topology and 7,4 < BT, for each a, where B is closed, then T4 < BT.

To see this, suppose xe 2(4). Then T,xe P(B), and BT,x = T,Ax - TAx.
Now, T,x — Tx. As Bis closed Txe 9(B) and BTx = TAx, from which (15)
follows.

Combining the results of this discussion, we have the following lemma.

5.6.13. LeMmMA. If A isaclosed operator acting on the Hilbert space # and
CA <= AC for each C in a self-adjoint subset F of B(H), then TA < AT for each
T in the von Neumann algebra generated by F

If A isaclosed operator and Eis a projection on # such that EA < 4F and
AE is a bounded everywhere-defined operator on .#, we say that E is a
bounding projection for A. If {E,} is an increasing sequence of projections each
of which is bounding for 4 and V%_, E, = I, we say that {E,} is a bounding
sequence for A.

5.6.14. LemMmA. If E is a bounding projection for a closed densely defined
operator A on the Hilbert space 3#, then E is bounding for A*, A*A4, and AA*,
and (AEY* = A*E. If {E,} is a bounding sequence for A, then U*_, E(#) is a
core for each of A, A*, A*A, and AA*.

Proof. Note that EA is preclosed, densely defined, and bounded, since
EA < AE and AE is bounded. Thus EA has closure AF and (EA)* = (AE)*
from Theorem 2.7.8(i). If x € E(+#) and y € 2(A), then {4y, x> = (y, (EA)*x),
so that xe 2(4*) and A*x = (EA)*x. It follows that 4*F = (EA)*E. But
(I — E)EA = 0so that (E4A)* = (EA)* = (EA)*E = A*E. Now EA* < (AE)*
= (EA)* = A*E; and E is bounding for A*. Since EA*A = A*AE
(= A*EAE), E is bounding for 4*A4 and, similarly, for 44*.

It follows that { E,} is a bounding sequence for A*, 4* 4, and 4 4* if it is for
A. If xe9(A), then E,x - x, E,xc9(A), and AE,x = E,Ax - Ax. Thus
Uz | E(2(A))isacorefor A. Since E (#) < 2(A),UT, E(#)isacore for 4
(and A*, A*A4, AA* as well). B

Recall that the statement “ A4 5 o/” includes the assumption that A4 is closed
and densely defined.

5.6.15. THEOREM. If o/ is an abelian von Neumann algebra acting on the
Hilbert space # and A, By .o/, then:

(1) each finite set of operators affiliated with o/ has a common bounding
sequence in f ;
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(i) A + B is densely defined and preclosed and its closure A + By o ;
(iii) A - B is densely defined and preclosed and its closure A~ By oA ;
(iv) A°B=B"Aand A*A = AA* (= A*" A);
(v) (a4 + B)* = ad* + B*;
(vi) (A4° B)* = B*" 4%,
(vii) if A < B, then A = B; if A is symmetric, A = A*,
(viil)  the family N (/) of operators affiliated with o forms a commutative
* algebra (with unit I) under the operations of addition ¥ and multiplication ~
described in (ii) and (iii).

Proof. 'Throughout this argument, U denotes a unitary operator in .o/’.
Since U*AU = A, we have U*4*U = A*; and A*y o/ At the same time
U*A*AU = A*A and A*An . If Eis a projection in &, (2E — I) is a unitary
operator in .o/ (< .&/");sothat 2E — INAQ2E — I) = A. Thus E4 < AE. From
Theorem 2.7.8(v), A* 4 is self-adjoint. Let { E;} be its spectral resolution and let
F,be E, — E_,. From Theorem 5.6.12(ii), E, € «f. As A*AF, is bounded and
everywhere defined, 4 F,, iseverywhere defined and closed, since 4 isclosed and
F, is bounded. The closed graph theorem (1.8.6) tells us that AF, is bounded.
(This follows directly, as well, since |AF,x|* = (F,x, A*AF,x)> <
||A*AF,|| |Ix]I>.) As {F,} is an increasing sequence of projections in .o/ with least
upper bound I and F,4 c AF,, if xe 2(A), F,x -» x and AF,x = F,Ax — Ax.
Thus UZ_, F,(5#)is a core for 4 and {F,} is a bounding sequence in .o/ for 4.

Suppose {E,} is a bounding sequence in o7 for {4;},j=1,...,m — 1 and
{F,} is a bounding sequence in </ for 4,,, where 4;c /. Then {E,F,} isa
bounding sequence in o/ for A4,,..., A4, In particular, U". | E,F,(X) is a
common core for 4,,..., A,. It follows that both 4 + B and 4* + B* are
densely defined. But A* + B* = (4 + B)*, so that (4 + B)* is densely defined
and 4 + B is preclosed (see Theorem 2.7.8(ii)).

If {E,} is a bounding sequence in ./ for A, B, A* and B*, then
E,AB c AE,B < ABE, and AE,BE, = ABE,. As AE, and BE, are bounded
and defined everywhere, AE,BE, = ABE,. Thus {E,} is a bounding sequence
for ABand, similarly, for B4 and B*4*. In particular B*4* is densely defined.
As B*A* < (AB)*, (AB)* is densely defined and AB is preclosed. At the same
time, ABE, = AE,BE, = BE,AE, = BAE,. Thus A~ B and B" 4 agree on
their common core U®_, E(#);and 4~ B= B* A. As A*4 and 4A4* are self-
adjoint, A4*4 = A** A= A" 4* = AA*. If xe D(A) n D(B) (= 2(A4 + B)),
Uxe2(A + B) and U*xe2(A + B). Thus U(D(A + B)) = 2(4 + B) and
U*(A + B)U = A + B. It follows that U*(4 + B)U=A4 + Band 4 + By .
If ye 2(AB), then y e 2(B) and By € 9(A). Thus Uy € 2(B) and BUy = UBy
€ 2(A). It follows that Uy e 2(4 B). Since U*y € 2(AB), UD(AB)) = D(AB).
As U*ABUy = ABy, U*A~BU=A"Band A~ By «.

With {E,} bounding for 4 and 4*, E,A* < A*E, and E,4* < (AE,)* Thus
A*E, and (AE,)* are bounded, everywhere-defined extensions of the same
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densely defined operator E,A*. It follows that (4E,)* = A*E, (or we may cite
Lemma 5.6.14). Suppose that {E,} is bounding for B, B*,ad + B, (ad + B)*,
A" B,(A" B)*,and A* - B* (= B*" A*) as well as for 4 and 4*. Then, from
the foregoing,

(@A* + B*)E, = GA*E, + B*E, = a(AE,)* + (BE,)* = ((aA + B)E,)*

= (ad + B)*E,
and
(4" B)*E, = (A" B)E,)* = (AE,BE,)* = (BE,)*(AE,)* = B*E,A*E,
= (B*" A%)E,.

Since (a4 + B)* and ad* F Bt agree on their common core U2 | E, (), they
are equal. Similarly (4 - B)* = B* - A* (= A* - B¥).

If A = B and {E,} is a bounding sequence in .o/ for both 4 and B, then
AE, = BE, so that AF, = BE,. Thus 4 and B agree on their common core
U, E,(#). Hence 4 = B. If 4 is symmetric, 4 = A* and, from the preceding
conclusion, 4 = A*.

It is routine to verify identities such as

(A*B)"C=A"(B-C),

by choosing a common bounding sequence for all operators involved. Thus
(viii) follows. W

Asnoted in (iv) of the preceding theorem, 4*4 = 4 A* for each A affiliated
with an abelian von Neumann algebra .o/. By analogy with the case of bounded
operators, we expect normal operators to be affiliated with abelian von
Neumann algebras. With the aid of the lemmas that follow, we shall prove this.
We conclude from this that the multiplication operators corresponding to
unbounded (complex-valued) measurable functions (finite almost everywhere)
are normal (compare Theorem 5.6.4). Our first lemma is an analogue to
Lemma 5.6.1.

5.6.16. LEmMA. If{F,} is a bounding sequence for the closed operator A on
the Hilbert space # and AF, is normal for each n, then A is normal.

Proof. From Lemma 5.6.14, (AF,)* = A*F,, so that

A*AF, = A*F,AF, = (AF,)*AF, = AF,(AF,)* = AF,A*F, = AA*F,.
Thus the self-adjoint operators 4* 4 and 44* agree on U, F,(5#), a core for
each of them. Thus 4*4 = 44*. A

5.6.17. LEMMA. If BA = AB and 2(A) = 2(B), where A is a self-adjoint
operator and B is a closed operator on the Hilbert space #, then E; B < BE, for
each E, in the spectral resolution {E;} of A.
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Proof. We note that B(A4 + il) = BA + iB under the present assump-
tions. For this, observe that, from (14), BA + iB < B(A + il). Suppose
x€D(B(A + il)). Then xe2P(4) and Ax + ixeD(B). By assumption
xeD(A) < XB) so that Axe P(B), as well. Thus xe P(BA + iB) and
B(A + il)x = BAx + iBx. Hence B(4 + il) < BA + iBand the stated equality
follows. Similarly B(4 — il) = BA — iB.

Let T, and T_ be the (bounded, everywhere-defined) inverses to 4 + il
and A — il, respectively. Then, from (12)~(14) and the preceding paragraph,

T.B=T,BA +ilT, = T,(BA + iB)T, < T,(AB + iB)T,
= T.(A + il)BT, < BT,.

Similarly T_-B = BT_. From the proof of Lemma 5.6.7, T, = T* so that
Lemma 5.6.13 applies; and TB < BT for each T in the von Neumann algebra
of generated by T, and T_. In particular E,B < BE, foreach .. B

5.6.18. THEOREM. An operator A is normal if and only if it is affiliated with
an abelian von Neumann algebra. If A is normal, there is a smallest von Neumann
algebra of , such that An /. The algebra o , is abelian.

Proof. From Theorem 5.6.15(iv), each operator affiliated with an abelian
von Neumann algebra is normal. Assume, now, that 4 is normal. Since
AA*A = A*AAand 9(4*A) = 29(A), Lemma 5.6.17 applies. Thus E; 4 < AE,
for each /1, where {E,} is the spectral resolution of A*4; and F,4 = AF, for
each n, where F,=F,— E_,. In the same way, A*4*4 = A*4A* and
D(A*A) = D(AA*) = D(A*), so that F,A* = A*F, for each n. As in the proof
of Theorem 5.6.15, AF, and A*F, are bounded since A*AF, (= AA*F,) is.
Moreover, F,A* = (AF,)*, so that both (AF,)* and A*F, are bounded
extensions of the densely defined F,4*. Thus (A4F,)* = A*F, (and
(A*F,)* = AF,). Note, too, that AF,AF,, < AAF,and AF,,AF, < AAF,,when
n < m. Since AF,AF,, and AF, AF, are everywhere defined, AF,AF,, = AAF,
= AF,AF,. At the same time, A*F,AF, = A*AF, = AA*F, = AF,A*F,,.
Thus {F,, AF,,A*F,:n = 1,2, ...} generates an abelian von Neumann algebra
&o.Since VO_ | F,=Tand F,4 € AF,, U, F,(#) (= 9,)is acore for 4. If
U is a unitary operator in &, and xe€92,, AUx=AUFx=
AF,Ux = UAF,x = UAx (for some n). From Remark 5.6.3, 4n </, (and
A*noty). If AnR, then A* R and A*AnA. From Remark 5.6.11, 4*4
generates an abelian von Neumann algebra .o/, contained in #. Thus F, e Z so
that AF,, A*F,arein Z;and /o= % N

We refer to o/, as the von Newnann algebra generated by (the normal
operator) A.

5.6.19. THEOREM. If o/ is an abelian von Neumann algebra, ¢ is an
isomorphism of of onto C(X) where X is a compact Hausdorff space, and A n <,
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there is a unique normal function p(A) on X such that p(AE) = ¢(A) * ¢(E) when
E is a bounding projection in s for A where (¢(A) - ¢(E))(p) is o(A) p)o(E)(p)
if o(A)(p) is defined and 0 otherwise. If /' (X) is the family of normal functions
on X and f, g are in ¥ (X), there are unique normal functions f, af, f + g, and
[~ g such that f(p) = f(p), (@)p)=afp), (f+9)p)=1(p)+9g(p), and
(f 9)(p) = fip)g(p), when f and g are defined at p. Endowed with the operations
f-F @f)—af, (f,9)>f+g and (f,9)—f g, V/(X) is an associative,
commutative algebra with unit 1 and involution f—f. The mapping ¢, as
extended, is a * isomorphism of N () onto N (X).

Proof. We show first that ¢(A4), as described, is unique. From Theorem
5.6.15, A has a bounding sequence {E,} in /. If fand g are normal functions
with the properties ascribed to ¢(A4) and both fand g are defined at p, then

Ap)o(EN(P) = 9(AE,)(P) = 9(P)¢(E,)P)

for each n. Thus if o(E,)(p) = 1 for some n, f( p) = g(p). As {E,} is monotone
increasing to /, f and g agree on a dense subset of X; and, from Lemma 5.6.6,
f=g

If Ae #(of), the notation of Theorem 5.6.12(i) agrees with the present
notation and the function associated with 4 there has the properties required
of ¢(A). Thus ¢ is defined on & ().

If 4 and B arein ¥(&/), from Theorem 5.6.15(i), we can choose a bounding
sequence {E,} for both 4 and B. Then AE,, BE,, (A + B)E,, and ABE, are in
/. Moreover (4 + B)E, = (A + B)E, = AE, + BE, and (4 - B)E, = ABE,
= AE,BE,, so that

@(4 + BY(p)¢(E,)(p) = ¢((4 + B)E,)(p)
= @(A)(p)e(E,)(p) + o(B)(P)o(E,)(p)

and

@(4 - BYP)Q(E,)(p) = ¢((4 " B)E,)(P) = o(A)P)9(B)(P)9(E,)(P)

when @(4), ¢(B), ¢(A + B), and (4~ B) are defined at p. Since {E,} is
monotone increasing to 7, p(4 + B) and ¢(A) + ¢(B) agree on a dense subset
of Xasdo ¢(A4 - B)and ¢(A)¢(B). Thus o(4 + B)and ¢(4 - B) are finite, when
both ¢(A4) and ¢(B) are defined, and, by continuity, are normal extensions of
©(A4) + @(B) and ¢(A)p(B), respectively. Define ¢(4) + ¢(B) and ¢(A4) * ¢(B)
to be these normal extensions. Since each & in ¥ (X) corresponds to some A4 in
(o), from Theorem 5.6.12, the operations + and - apply to all functions in
FL(X). Itiseasy to verify (by repeated use of Lemma 5.6.6) that ¥ (X) endowed
with these operations (and the indicated multiplication by real scalars) is an
associative, commutative algebra (over R) with unit 1. From the preceding
discussion, ¢ is an isomorphism of & (/) onto S (X).
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If Ae /' (), then A= A, + i4,, where 4, (=34 + A4*) and 4,
(= —4i(A4 § —4%))arein (). If (A4,) and ¢(A4,) are defined on X\ Z, and
X\Z,, respectively, then ¢(A4,) + ip(A,) isdefined on X\(Z, U Z,). If pe Z,,
then |p(A;)(¢g)| and hence |p(A4,)(q) + ip(A4,)(g)| are large at points g of
X\(Z,u Z,) near p. A similar comment applies to p in Z,, so that
o(A;)+ip(A,) defined on X\(Z,uZ,) is an element, ¢(A4,)+ ip(A4,)
(= o(4)), of #(X).

If hin A°(X) is defined on X\ Z, then A~ *(0) is a closed set in X. To see this,
note that 4~ !(0) is closed in X'\ Z by continuity of 4 on X\ Z, and |h| is large at
points of X\ Z near a point p of Z so that p¢ h~!(0)~. Thus the interior X, of
h~1(0)is a clopen subset of X and the function g, defined as 1 on X, and as A/|A|
on X\(h~'(0)u Z), is continuous. As X\((A~*(0)\X,) U Z) is a dense open
subset of X, Corollary 5.2.11 applies, and g has an extension « in C(X). For pin
X\Z, u(p)lh(p)| = h(p). As |h|e #(X), Reh and Im A defined on X\Z have
(Reu) * |4 and (Im u) - |h| as normal extensions. Thus & = h, + ih, with h, and
h, in #(X). Choosing A, and A4, in &(«) such that ¢(4,) =h, and
@(A,) = hy, we have o(A4, + iA,) = h, F ih, = h. Hence ¢ maps 4 (/) onto
N (X).

If fin A°(X) is defined on X\Z, we have just seen that the real and
imaginary parts of fhave normal extensions. Denote these extensions by Re f
and Imf. With g in A'(X) defined on X\Z', f+ g and fg are defined and
continuous on X\(Zu Z’) and have the normal extensions

(Ref+ Reg) + i(lmf ¥ Img) (= f + g)
and
(Ref*Reg + —Imf~ Img) ¥ i(Ref" Img + Imf~ Reg) (=1~ g).

With the indicated operations, .#°(X) becomes an associative, commutative
algebra with unit 1 and adjoint operation f — f. The mapping ¢, as extended
from #(&/), is a * isomorphism of A'(/) onto A/ (X). If Ano/ and Eis a
bounding projection in o/ for A, we have, now, @(4E)= o(4 “E)=
o(4)" o(E). W

In the preceding proof, we note that, with 4 in A" (X), h~*(0), a subset of
X\Z, is closed in X. The same argument establishes that 4~ (%), a subset of
X\Z, is closed, hence compact, in X, for each compact subset ¢ of C. It
follows that the range of 4 intersects ¢ in a compact subset (since this
intersection is 4(h ~!(2¢')), the continuous image of a compact set). Thus if z, is
not in the range of A it is at positive distance from that range, and 1/(h — z,1)is
a bounded continuous function on X'\ Z tending to 0 at each point of Z. Hence
z, isnot in the range of A if and only if 4 — z,1 has an inverse in .#°(X) and that
inverse is in C(X). This observation suggests the concept of spectrum to us and
will play the key role in identifying the ‘“‘spectrum” of an unbounded operator
with the range of its representing function. (See Proposition 5.6.20.)
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The spectrum sp(T) of a closed densely defined linear operator T on a Hilbert
space # is the set of those complex numbers z such that T — z/is not a one-to-
one mapping of Z(T) onto #. If z, ¢ sp(T), then T — z,/ is a one-to-one linear
mapping of 2(T) onto s and has a linear inverse B (mapping .# onto 2(T)).
Since the graph of T — zy/isclosed, the graph of Bisclosed. As Bis defined on
all of #, the closed graph theorem applies and Bis bounded. Thusif z, ¢ sp(T),
T — zol has a bounded (everywhere-defined) inverse; and, of course, con-
versely, zo ¢ sp(T) if T — z,/ has such an inverse. If Ty o/, for some abelian von
Neumann algebra o/, and z, ¢ sp(T), then B just constructed is in /. As Bis
bounded and T — zy/ is closed, (T — z,[)B is closed. Hence

I=(T—z,)B=(T —2,0)" B=B" (T — z,]).

It follows that z, ¢ sp T if and only if T — z,/ has an inverse B in the algebra
A (2f) and B lies in /.

5.6.20. ProrosiTioN. If A is a normal operator affiliated with the abelian
von Neumann algebra of, then sp(A) coincides with the range of ¢p(A), where @ is
the isomorphism of A () onto N (X) extending the isomorphism of of with
Cc(X).

Proof. By definition, z, ¢ sp(4) if and only if there is a bounded B inverse
to A — zol. If U is a unitary operator in /', then U¥(4 — zo[)U = 4 — z,l,
since A — zo/n o Hence U*BU = Bfor each such U; and Be <. Since there is
a Bin o suchthat (4 — z,/) - B = I, equivalently, (¢(4) — zo1) * o(B) = 1, if
and only if z, ¢ sp(4); and there is such a ¢(B) in C(X) if and only if z, isnot in
the range of ¢(A4), sp(4) is the range of ¢(4). B

Is there an interpretation of “‘spectrum relative to A#"(2/)”? Equivalently,
when does f — z,1 fail to have an inverse in A#"(X)? This occurs if and only if
f— 2,1 vanishes on some non-null clopen subset of X. Viewed in A"(o#) this
amounts to the existence of a non-zero projection E; in ./ such that
(4 — zoI)* Ey = 0 or, equivalently, to the existence of a unit vector x, such
that (4 — zol)x, = 0. In this case, we say that z, is in the point spectrum of A.
Thus the spectrum of A relative to A"(&/) is its point spectrum.

If we define a self-adjoint operator 4 to be positive (and write 4 > 0) when
{Ax,x) = 0 for each x in 9(A4), the question (answered for bounded 4 in
Theorem 4.2.6) of the relation of this condition to the nature of sp(A) arises. It
is easily settled with the help of Proposition 5.6.21.

5.6.21. ProposiTION. A self-adjoint operator A is positive if and only if
a = 0 when aesp(A).

Proof. We may suppose, from Lemma 5.6.7, that A is affiliated with an
abelian von Neumann algebra ./ From Theorem 5.6.19, there is an
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isomorphism ¢ of A" (&) onto A'(X) mapping o/ onto C(X), where X is an
extremely disconnected compact Hausdorff space. If ¢(A) is defined on X\ Z
and ¢(A)(p) < 0 for some p in X\ Z, then there is a non-null clopen set X,
containing p and contained in X\ Z such that ¢(4)(¢q) < a < Ofor each gin Xj.
If E, is the projection in . corresponding to the characteristic function of X,
then E is a non-zero bounding projection for 4 and AE, < aE,. With x a unit
vector in the range of E,, {(Ax,x> <a <0 and A is not positive. Thus
sp(A)=0if 4 = 0.

On the other hand, if ¢(A4) has range consisting of non-negative real
numbers, its (positive) square root g is a normal (self-adjoint) function on X. If
@(B) (in #(X))isg,then B> = B~ B = A (recall Theorem 5.6.15(iv)); and, with
x a unit vector in Z(A4), xe 2(B) and {(Ax,x) = (Bx,Bx) =2 0. Thus 4 > 0 if
sp(4)=0. B

It follows now that the set of positive elementsin A"(o/) (in #()) forms a
positive cone and that &(«¢) is a partially ordered vector space relative to the
partial ordering induced by this cone. (See the discussion preceding Definition
3.4.5.) The same is true for F(X). Of course / is not an order unit for (&) in
the present case. The following lemma, an analogue for A#(X) of Lemma
5.2.10, will form the basis for a proof that #(X) is a bounded o-lattice in the
given ordering as well as providing the basis for our Borel function calculus.

5.6.22. LeMMA. Each Borel function g on an extremely disconnected
compact Hausdorff space X agrees with a unique normal function f on the
complement of a meager set. The mapping that assigns f to g is a conjugation-
preserving homomorphism of the algebra 8,X) of Borel functions on X onto
A(X) with kernel consisting of those functions in B,(X) vanishing on the
complement of a meager set.

Proof. We note first that if fand g are normal functions defined on X\ Z
and X'\ Z', respectively, and f{ p) = g(p)forpin X\(Zu Z' U M), where M isa
meager subset of X, then Z = Z’ and f = ¢; for Zu Z' U M is meager in X, so
that X\(Zu Z’ u M) isdensein X and Lemma 5.6.6 applies. Thus there can be
at most one normal function agreeing with any function on the complement of
a meager set.

If g is a Borel function on X and D, is the closed disk in C with center 0 and
radius n, then g~ !(D,) is a Borel subset S, of X. According to Lemma 5.2.10,
there is a clopen set X, such that (S,\ X,) U (X,\S,) is meager in X. If g, is the
(Borel) function equal to g on S, and 0 on X\ S,, then ||g,|| < n. Again from
Lemma 5.2.10 there is a (unique) continuous function £, on X that agrees with
g, on the complement of a meager subset M, of X. Since g, vanishes on X\ S,,, f,
vanishes on X'\(S, u M,) which contains (X\ X )\(M, U (S,\ X,) U (X,\S,)). As
M, U (S.\X,) v (X,\S,) is meager and f, is continuous, f, vanishes on X\ X,.
Note that §, = S, .+, so that e,(p) < e, (p) for each p outside a meager set,
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where e; is the characteristic function of X;. By continuity, e, < e¢,,, and
X, < X, - Again, since g,,, agrees with g, on S, and f, and f,,, are
continuous, f, , ; agrees with f, on X,,. In the same way, n < |f,.(p)|if pe X,,\ X,
where n < m, since n < |g,,(¢9)| if g€ S,,\ S,. As U2, S, = X, we have

(Z=)X\ O X, < D(S,,\X,,)U(X,,\S,,).

n=1 n=1

Thus Z is closed and meager, hence, nowhere dense in X. If f{ p) is defined as
f+(p) when p e X,,, then fis continuous on X\ Z. For pin Z, X\ X, is an open set
containing p such that, for ¢ in X\(ZuU X,), n <|f(¢)|. Thus f is normal.
Moreover, fand g agree on the complement of Z U (U, M), a meager subset
of X. The mapping assigning f to g is a homomorphism of 4,(X) onto A(X)
with kernel consisting of those Borel functions on X vanishing on the
complement of a meager set. W

5.6.23. ProposiTION. If o/ is an abelian von Neumann algebra and {A,} is
an increasing sequence of operators in (o) with upper bound A, in ¥ (f), then
{A,} has a least upper bound in & ().

Proof. With o =~ C(X), letf,in & (X)represent A,.If {4, + —A,} hasa
least upper bound Bin # (), then B + A, is the least upper bound of {4, }. We
may assume, without loss of generality, that each 4, > 0. If £, is defined on
X\Z,, then Z, =(Z,),, in thiscase, and Z,< Z,,,. If pisnot in UX_ Z,
(= Z), then f,( p) is defined for all n and { f,(p)} has f,(p) as an upper bound.
Thus {f,(p)} converges to some g(p). If we define gto be 0 on Z, then g is a
Borel function on X. From Lemma 5.6.22, there is an fin A4"(X) agreeing with g
on X\ M, where M is a meager subset of X. Hence { f,(p)} converges to f{ p) on
the dense set X \(M U Z). It follows that f'is an upper bound for { f,} and the
least upper bound. If 4 in #(of) is represented by fin & (X), then A is the least
upper bound of {4,}. W

5.6.24. REMARK. In view of Proposition 5.6.23, we may extend the notion
of g-normal homomorphism, in the obvious way, to apply to A (#), A (X),
and to 4, (the algebra of complex-valued Borel functions on C), 4,(X). With
this extension, we observe that the homomorphism of Lemma 5.6.22 mapping
#.X) onto A(X) is g-normal. If {g,} is an increasing sequence of Borel
functions on X tending pointwise to the (Borel) function g, and £, is the normal
function corresponding to g,, then {f,} has f, asits least upper bound in A"(X).
To see this, suppose f, and g, agree on the complement of the meager set M,,.
Then {f,(p)} tends to fo( p) for each pin X\U>_ , M, , a dense subset of X. If & in
A(X) is an upper bound for {f,}, then f,(p) < h(p) for all n and all p in the
complement of some meager set. Thus f,(p) < A(p) for all p in the complement
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of some meager set, and h + —f, takes non-negative values on a dense set.
Hence f;, < h, and f; is the least upper bound in A (X)of {f,}. W

5.6.25. REmark. Withtheaid of Lemma 5.6.22, we can define g(A4) for an
arbitrary Borel function g on sp(A4) and an arbitrary normal operator 4. From
Theorem 5.6.18, 4, A*, and I generate an abelian von Neumann algebra o7,
(and An ;). From Theorem 5.2.1, o/, is isomorphic to C(X), where X is an
extremely disconnected compact Hausdorff space. From Theorem 5.6.19,
there is an isomorphism ¢ of A" (/) onto A(X). If ¢(A) is defined on X\ Z,
then g defined as0 on Z and g o p(4) on X\ Zisin %,(X). From Lemma 5.6.22,
there is a function 4 in A"(X) agreeing with § on the complement of a meager set
in X. We define g(A) to be ¢~ '(h). If sp(A) is a subset of the Borel set Sand gisa
Borel function defined on S, then g(4) will denote g,(4), where g, is the
restriction of g to sp(4). B

5.6.26. THEOREM. If o/, is the abelian von Neumann algebra generated by
a normal operator A acting on a Hilbert space #, the mapping g — g(A) of the
algebra 8.,(sp(A)) of Borel functions on sp(A4) into ¥ (o) is a 6-normal
homomorphism mapping the constant function 1 onto I and the identity
transformation 1 on sp(A) onto A. The mapping S — E(S) of Borel subsets S of C
into oy is a projection-valued measure on C, where E(S) = g(A) and g is the
characteristic function of S. If his in B, the algebra of bounded Borel functions on
C, then

(16) th(A)|| < sup{|h(a)l : ae C} (= ||Al)).
If x is a vector in # and u (S) = (E(S)x,x), then, for each h in A,
(17) h(A)x, xy = j h(a) du.(a).

c
With fin B,, xe 2(RKA)) if and only if

(18) L [fla)* dp(a) (= | AA)x]I?) < oo;

and (17) is valid with fin place of h, in this case. If ¢ is the extension to /' () of
the isomorphism of o , with C(X) and v, is the regular Borel measure on X such
that {Bx,x) = [x (p(B))(p) dv.(p) for each B in o/, then xe 9(T), with T in
N (), if and only if

(18) LI((P(T))(P)IZQEX(P) (=ITx|*) < 0.

If A is a self-adjoint operator, its spectral resolution is {E,;}, where E; =
I — E((4, ©)); and xe D(f(A)) if and only if {*_|AM d{E;x,x) < co. If
xeD(flA)), (RAx, x> = {2, fA)d{Esx, x).
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Proof. The mapping g — § of %.(sp(4)) into %,(X) defined in Remark
5.6.25 is a g-normal homomorphism. From Remark 5.6.24, the mapping
assigning 4 (of Remark 5.6.25) in #°(X) to § is a 6-normal homomorphism, as
is ¢. It follows that the mapping g — g(A) is a s-normal homomorphism of %,
into A°(&/). If gis 1, his the constant function 1 on Xand g(A)is . If gis 1, his
@(A); so that 1(4) = A.

With g the characteristic function of 5, a Borel subset of C,
g(A)* = §g(A) = g(A) and g(A) = g*(4) = g(4)*. Thus g(A) is a projection
E(S) in o,. If gis 0, g(A) =0, so that E(Z)=0.If g is 1, g(4) = I, and
E(C) = 1.1f {S}} is a countable disjoint family of Borel subsets of Cand g; is the
characteristic function of §;, then g, + -+ + g, (=h,) is an increasing
sequence tending pointwise to the characteristic function 4 of U7, S; (= §).
Since the mapping g — g(4) is a g-normal homomorphism {37_, E(S))} has
least upper bound E(S)—that is y'° | E(S;) = E(S). With this notation

Kh(A)x, xy = CE(S)x, x) = px(S) = f h(a) du.(a);
C

so that (17) is valid for (Borel) step functions 4. With 4 a bounded Borel
function on C, |&]] < ||#|| and the function fin (X)) corresponding to / lies in
C(X). (See Lemma 5.2.10.) Moreover, ||f]| < ||/%| < ||&|. Thus

AN = lle ™' COIl = LA < A

As each h in 4 is a norm limit of (Borel) step functions, (17) now follows for
each such 4.

Suppose A is self-adjoint and g is the characteristic function of (4, o). Then
g is the characteristic function of ¢(A4)™*((, o)), an open subset of X\Z
(hence, of X) and the function in C(X) corresponding to § is the characteristic
function, 1 — e;, of @(A4)™ (4, 0))~. Thus E((1, ©)) (= ¢g(4)) in &/, cor-
responds to 1 —e;; and, from Theorem 5.6.12(v), E, = I — E((A, o0)). It
follows that ((E; — E})x, x> = u,((4,2"]) when A < X, and

j LAMI? d{Ex, xy = flﬂfl)l2 dpx(2)

- a0

for each fin 4,. Hence the last assertions of our theorem reduce to (17) and
(18).

With fin 4, let k, be the characteristic function of [ f]~ ([0, n]) (= S,) and
F, be k,(A). Then f,(A) = f{A)F,, where f, = f - k,,, from the first part of this
proof. Thus, with x in J#,

(19) IRDEXI1? = ISl (A)x, x> = f \A@)|* du.(a)
Sn
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and, if m < n,

(20 IAAFx — RAYEx|1? = L ) |fla)|? dus(a).
\Sm

As {k,} is increasing and tends pointwise to 1, {F,} is increasing with least
upper bound /. Since F, f{A) = fA)F,, F,f(A)x = fA)F,x if xe D(f(A)). Thus
fAYF,x - fid)x and (18) follows from (19). Conversely, if (¢ |fla)|* dp.(a)
converges, { fl4)F,x} is a Cauchy sequence from (20), and converges to some
vector in #. Since { F,x} tends to x and f{4) is closed, x € 2( f{4)). A completely
analogous argument establishes (18). With x in 2(f(4)), feL,(C,u,)
< L(C, u,) since p, is a finite measure. Thus

{fAA)x, x) = lim {AA)F,x, x) = limf Su@) dp(a) = j flaydp(a). W
[ C

The projection E(S) appearing in the statement of Theorem 5.6.26 is often
referred to as the spectral projection for A corresponding to the Borel subset S
of C.

5.6.27. THEOREM. If A is a normal operator affiliated with an abelian von
Neumann algebra of acting on a Hilbert space # and \ is a o-normal
homomorphism of B, the algebra of Borel functions on C, into N (&f) such that
V(1) = Land y(1) = A, where 1 is the identity transform on C, then y(f) = f,(A)
for each f in B,, where f, is the restriction of f to sp(A).

Proof. Since y is o-normal,  is adjoint preserving. Positive elements of
4, have positive square roots, so that i is order preserving. As (1) = 1, it
follows that iy maps the algebra 4 of bounded Borel functionsin 4, into ./ and
does not increase norm.

Suppose 4 is bounded and g, is the characteristic function of C\D,, where
D, is the closed disk in C with center 0 and radius 2||4|. Then
0 < (2l|4|)"go < |1* for each positive integer n. Now (|1|") = |A4|", so that
0 < (2||141)"¥(go) < |4|". Thus ||y(go)l] < 27" for each positive integer #, and
V(go) = 0. If g, is the characteristic function of D, then y(g,) = /, so that
V(g h) = Y(h) for each hin B,. Let h, denote the restriction of 2 to D, and let
Vo(ho) be Yi(h). Then , is a g-normal homomorphism of %,(D,) into A (%)
mapping the constant function 1 on D, onto /, i, onto A4, and #(D,) into <.
Since C(D,) is a C*-algebra whose unit is the constant function 1 on Dy,
Proposition 4.4.7 applies and () = Yo(f(10)) = f(A), foreach fin C(D,). As
noted in the proof of Theorem 5.2.8, the characteristic function 4, of the open
subset Dy \sp(A4) of D, is the pointWise limit of an increasing sequence { f,} of
positive continuous functions on D,. Thus Y4 (4, ) is the least upper bound in &/
of Yo(f,), by g-normality of ,. But o (f,) = f,(A4) and f,(4) = 0, since f, is
continuous and vanishes on sp(4). Thus yo(h;) = 0. If f] is the characteristic



5.6. UNBOUNDED OPERATORS AND ABELIAN VON NEUMANN ALGEBRAS 363

function of sp(A4) (as a subset of D), wo(f1) = I and Y, (f1he) = Wolh,) for
each kg in 4,(Dy). If (k) = Yo(k), where k, is the restriction of & in 2,(D,)
to sp(4), then y, is a o-normal homomorphism of #,(sp(4)) into .A4"(=F)
mapping the constant function 1 on sp(A) onto /, the identity transform z;, on
sp(A) onto A4, and Z(sp(A4)) into .. Theorem 5.2.9 applies to the restriction of
V1 to B(sp(A4)), and ¥, (f) = f(A) for each fin A(sp(4)). Each positive g in
2.(sp(A)) is the pointwise limit of an increasing sequence of positive functions
in Z(sp(A4)). Since ; and the homomorphism f— f(A4) of 4,(sp(4)) into
A'() are g-normal, y,(g) = g(A) for each positive g in 2,(sp(4)). Each % in
#.(sp(A4)) is a linear combination of four (or fewer) positive functions in
B.(sp(A)), so that ¥, (h) = h(A) for each hin B,(sp(A4)). If ke #, and k, and k,
are its restrictions to D, and sp(A4), respectively, then (k) = Yo(ko) = ¥, (k,)
= k,(A).

With 4 now an arbitrary (normal) operator in #'(«/) and E a bounding
projection for A in ./, the mapping ¢ that assigns (B E)|E(J) (in & (L E)
acting on E(5#)) to Bin .4'(o/) is a g-normal homomorphism of (/) into
N'( E). Composing ¢ with i yields a g-normal homomorphism i/, of 4, into
N (« E) mapping | onto E|E(s#) and 1 onto 4| E(#). At the same time, the
composition of ¢ with the mapping f — f,(4) of %, into A"(=¢) is another such
homomorphism of %, into A (/' E). Since A| E(#) is bounded, the first part of
this proof applies and

W) " E)EH) = Ya(f) = MAIE(H)) = (f(A) * E)| EH).

From Theorem 5.6.15(i), there is a common bounding sequence {E,} for 4,
v(f), and f,(A4), in 4 (of), where fis a given element of 8,. As

W) " EJIELH) = WNENEH) = (f(A) " E) E(H)
= (J(AE) | E(H),
Y(NE, = f,(A)E, for each n. Since U>_ | E,(5#) is a core for both y(f) and
S, () =1(4). &

5.6.28. REmark. The process described in Remark 5.6.25 for forming
g(A4)in o/, could be applied, equally well, to #"(Y), where .o/ is another abelian
von Neumann algebra with which A is affiliated and &/ ~ C(Y). Theorem
5.6.27 assures us that the operator in A"(/) formed in this way is g(4) (and lies
in A (). N

5.6.29. CoroLLARY. If A is a normal operator and f and g are in B,, then

e2y) (f9)(4) = flg(4)).

Proof. 1f o/, is the abelian von Neumann algebra generated by 4, 4*, and
I, then g(A)e /' (4,) and f— fog is a g-normal homomorphism ¢ of 4, into
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#,. Composing ¢ with the g-normal homomorphism h — h(A4) of £, into
N (o) yields a g-normal homomorphism, f— ( fo g)(A4), of %, into A (L,)
that maps 1 onto / and 1 onto g(A4). From Theorem 5.6.27, (21) follows. W

5.6.30. ProposITION. If  is a a-normal homomorphism of A (f,) into
N (oAy) such that y(I) = I, where o4, and of, are abelian von Neumann algebras,
then Y(f(A)) = f(Y(A)) for each A in N (s4,) and each fin AB,.

Proof. The mapping f— y(f(4)) of #, into A (o) is a o-normal
homomorphism mapping 1 onto / and : onto y(A). From Theorem 5.6.27,

Y(fA)) = f(Y(A)) for each fin #,. M

5.6.31. CoroLLARY. If o/ isan abelian von Neumann algebra acting on the
Hilbert space #, E is a projection in of, An 4, and fe B,, then

(A" E)E#) = () E)| E(#).

Proof. The mapping B — (B~ E)|E(#) is a g-normal homomorphism
of ¥/ (/) onto A (o E|E(#)) such that y(I) = E|E() (and E|E(5) is the
identity operator on E(°)). Thus, from Proposition 5.6.30,

(A7 B)EX) = Y(4)) = Y(fi4) = (AA) - E)| E(¥). W

5.6.32. REmark. If 4 and B are (unbounded) normal operators whose
spectra are contained in the domain of a Borel function g and g has a Borel
inverse function f, then g(A4) = g(B) if and only if 4 = B; for if g(A4) = g(B),
then, from Corollary 5.6.29,

A = (fog)(A) = fig(A)) = fig(B)) = (f>g)(B) = B.

As an application of this comment, we note that if 4> = B? with 4 and B
positive operators, then 4 = B, so that a positive operator has a unique
positive square root.

We illustrate the use of Corollary 5.6.31 with the observation that
fA)x, = fll)x, when Ax, = ix,, where A4 is a normal operator, fis a Borel
function whose domain contains sp(A4), and x, is a non-zero vector. To see this,
let E be the projection with range {x: Ax = Ax} (which is closed since 4 is a
closed operator); and note that, since EA < AF = AE,

fd)xo = [(fA) " E) E(#)]xo = (4" E) E(#))Xo
= fRE|EH)xo = fi)xo. W
As we noted in Theorem 5.6.15, 4"(.o/) becomes a * algebra when the usual
operations of operator addition and multiplication are “refined” by passing to
closures. In certain instances, the combination of operators in question is

closed —for example, A*A4 is self-adjoint and, hence, closed for each closed
densely defined A. In Theorem 5.6.19 we see that #"(X) is an algebra when the
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usual operations of function addition and multiplication are “‘refined” by
passing to a (unique) normal extension. In certain instances, the combination
of functions in question is normal — for example, f" is normal if fis. Theorem
5.6.19 tells us, as well, that .4"(&/) and A4°(X) are isomorphic when endowed
with these operations by an isomorphism that extends the isomorphism of .o/
with C(X). With all this in view, the temptation is great to assume that taking
the closure of an algebraic combination of operators affiliated with o/ is
unnecessary exactly when the same combination of the corresponding normal
functions is normal (without requiring a proper extension). Thisis not so, as we
shall see in the following example. At the same time, this example provides a
nice illustration of the isomorphism of A"(.«/) onto A"(X) and the way we work
with it.

5.6.33. ExampLe. Let s# be a separable Hilbert space, {e,},-;.... an
orthonormal basis for J#, and .o/ the algebra of operators in () having each
e, as an eigenvector (that is, o is the algebra of bounded diagonal matrices
relative to {e,}). In this case, o/ = C(X) and Xis f(N), the f-compactification
of the numbers {1,2,...}. The points p, corresponding to the pure states
T— {Te,,e,yof o, n=1,2,... form adense subset of X, forif 0 = (Te,,e,>,
with T'in &, then T = 0. Thus each function in C(X) vanishing on {p,},cn 15 0,
from which the density of {p,} follows. A function 1 at p, and 0 at p,,
n=2,3,...,istherefore 0 at all points of X other than p, ifit lies in C(X). The
projection whose range is generated by e, lies in &/ and corresponds to such a
function in C(X). It follows that {p,} is an open subset of X asis each one-point
set formed from a p,. Thus {p,},-.,... is an open dense subset of X and its
complement Z is a closed nowhere-dense subset of X.

The function 4 defined as b, at p,, where |b,| — oo, is normal (and defined
on X\Z). Letting b, be n, we have a normal function f corresponding to an
operator A affiliated with &/ (and Ae, = ne,). Letting b, be n'/* — n, we have a
normal function g corresponding to an operator B affiliated with o/ (and
Be, = (n** — n)e,). If xis Y., n"'e,, then xe # and v.({ p,}) = n~ % Thus
[xI P2 dve(p) = oo and  [xI(f+ g)(p)Pdvi(p) = £ n > < co. From
Theorem 5.6.26, x¢ 2(A) and x € 2(A + B). Note for this that f + g is normal
as defined on X\Z since |(f + g)(p.)| = n*"* > o, so that f+g (=f+ g)
corresponds to A + B. It follows that 4 + B # 4 + B.

This same structure provides us with an example of self-adjoint operators 4
and C affiliated with . such that Afis normal but CA4 is not closed. With 4, f,
and x as before, choose A so that a(p,) = n~**. Then C, corresponding to 4, is
bounded and Af is normal as defined on X\ Z. Thus Af corresponds to C "~ 4.
Now

J B (PP dve(p) = 3. n™ %% < o0,
X n=1
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so that xe 2(C ~ A). But x¢ D(CA) since x¢ D(A). Thus CA # C- A. At the
same time, this provides an example of a bounded operator C and a closed
operator A such that CA is not closed. (We noted in the first paragraph of the
proof of Theorem 5.6.15 that this product, in the reverse order, is automati-
cally closed.) H

5.6.34. Remark. If 4 and B are positive operators affiliated with the
abelian von Neumann algebra .o acting on # and o =~ C(X), then 4 and B
correspond to positive normal functions f and g defined on X\Z and X\Z’,
respectively. Hence f + g, defined on X\(Z U Z’), isnormal and corresponds to
A ¥ B. In this case, with x in 2(4 + B),

0< J AP dve(p) < J If(p) + g(p)I* dvi(p) < 0.
X X

Thus xe 2(A) and, similarly, x e 2(B). It follows that xe 2(4 + B) and that
A+B=A4+B.

Again, with this same notation, but no longer assuming that 4 and B are
positive, if Zn Z' = ¢, then there are disjoint open sets ¢/; and ¢, containing
Z and Z', respectively. Thus O] < X\, and there is a clopen set Y (= ¢;)
containing Z such that X'\ Y contains Z'. It follows that g is bounded on Y and f
is bounded on X\Y. If E is the projection in &/ corresponding to the
characteristic function of Y, then BEand A(/ — E)arein #(#). As A is closed
and E is bounded, AE is closed and A4E = A * E. Thus

(A % B)YE = AE ¥ BE = AE + BE = (A + B)E,

and, similarly, (4 + B)(I — E) = (A + B)(I — E). If xe 2(4 + B), then Ex
and (I — E)x are in 2(4 + B). Thus Ex and (/ — E)x are in 9(4 + B), and
xeP(A+ B).Hence A+ B=A+B. 1

Polynomials in a single variable provide an important case in which we
need not pass to a closure. Thus “p(A4)” refers to the same operator whether
viewed in the customary sense or as a Borel function of 4, for a polynomial p.
For the purpose of the statement of the following proposition, “p(4)” refers to
the operator obtained by forming the Borel function p of A4.

5.6.35. ProposITION. If A n o/, where o/ is an abelian von Neumann algebra
acting on the Hilbert space #, and p(z) = a,2" + - -+ + a,z + ao, with a, not 0,
then a,A" + -+ + ai A + aol is closed and equal to p(A).

Proof. Suppose o = C(X) and 4 corresponds to the normal function f
defined on X\Z. Then a,f" + * -+ + a, f + ao is defined on X\ Z and normal.
Hence it corresponds to p(4). Now xe2(p(4)) if and only if

Ixla.f"(p) + -+ +aif(p) + aol® dv(p) < 0. Let X, be {p:|fip)l <k}
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For k large enough and p in X\(Z U X}),

%lanf"(p)l < |anf"(p) + o+ alﬂp) + a0|,
so that

j If(p)I*"dve(p) < .
X\(ZUXy)

Since f'is bounded on X, and v, is a finite measure on X, fe L,,(X,v,). Hence
fe L(X,v,)forl < k < 2n. Asf"isdefined on X\ Z and is normal, it represents

A". From the foregoing and Theorem 5.6.26 (especially (18")), xe.@(A") for
k=1,...,n In particular xe 2(4) = 9(4). We show, by induction, that

A* = A" for all k. Assume this fork=1,...,n — 1. Ifye@(zz), then, from
what we have established to this point, ye 2(4). Let {E,} be a bounding

sequence in &/ for A"~ ! and 4. Then A"E,, = (A"~ A1 A)E, = A" 'E,AE,,.
Hence E,A"y = A"E,y = A" 'E, AE, y = A" 'E,Ay. Now E, A"y — A"y
and E,Ay — Ay. Since A"~ ! is closed, Aye @(4"~ ') and A"~ Ay = A"y.
Hence A" < A"~ 'A. But A"~ ! = A"~! by inductive assumption. Thus
A" < A" and A" = A", completing the induction.

It follows now that xe @(4*) for k = 1,...,n, and

xePa,A" + -+ + a1A + aol),
so that
pA)y=a,A"+ - +aA+a,]. N

We apply (unbounded-)spectral-resolution considerations to an analysis
of the unitary representations of R —the one-parameter unitary groups. We
use the notation and definitions in Theorem 4.5.9 and the discussion preceding
it.

5.6.36. THEOREM (Stone’s theorem). [If H is a (possibly unbounded) self-
adjoint operator on the Hilbert space #, then t — expitH is a one-parameter
unitary group on #. Conversely, if t — U, is a one-parameter unitary group on ¥,
there is a (possibly unbounded) self-adjoint operator H on # such that
U, = expitH for eachreal t. The domain of H consists of precisely those vectors x
in # for which t~Y(U,x — x) tends to a limit as t tends to 0, in which case this
limit is iHx.

If fe Li(R) and x, y are in #, then

(RH)x,y) = f f(t)(eBx, y>dt.
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Proof. From Theorem 5.6.26 and the properties of the function
A —expitionR,expitH (= U,)isaunitary operatorand U, ,,, = U,U,.. To see
that 1 - U, is strong-operator continuous, it will suffice to show that
|Ux — x|| - 0 as t — 0 for each vector x in F,(#°), where F, = E, — E_, and
{E;} isthespectral resolution of H. Now HF, (= H,)isbounded; and, with x in
F(#), (exp itH)x = (expitH,)x, from Corollary 5.6.31. Examining the func-
tion representation of exp itH,, we have

(22) lle“® — 1l < le] - || Hll,

so that ||U,x — x|| - 0 as ¢t —» 0 for each x in F,(#). We see, from (22) as well
that ||U, — I|| - 0 if H is bounded.

Suppose now that ¢ — U, is a one-parameter unitary group. The argument
we shall give to show that U, = exp it H for some self-adjoint operator H and all
real ¢ constructs the (unbounded) spectral resolution of H. We begin by
“extending” the representation 1 — U, of R to a representation ¢ of Uy(R) (as
described in Theorem 4.5.9). In the proof of Theorem 3.2.27 (especially, the last
paragraph of that proof), we construct a homeomorphism A’ of the pure state
space of Uy(R) (denoted, there, by .#(R)), in its weak* topology, onto the one-
point compactification, {R, oc }, of R. Let ¢ be the representation of C({R, 0})
on # obtained by composing, successively, the isomorphism of C({R, c})
with C(#(R)), the isomorphism of C(#(R)) with AU(R), and ¢. From
Theorem 4.5.9, ¢ restricts to an essential representation of o/, (R), so that ¢ is
R-essential and gives rise, as in Corollary 5.2.7, to a (possibly unbounded)
resolution of the identity {E;}. With fin L,(R), the Fourier transform f of fis
theimage of L, in C({R, oo }) under the isomorphism of y(R) onto C({R, o0}).
Employing, in succession, the fact that ¢ extends ¢ — U,, the definition of ¢
and the identification of £ just noted, the choice of {E,} and Corollary 5.2.7,
3.2(3) of Theorem 3.2.26, an interchange in the order of integration, and
Theorems 5.6.12, 5.6.26, we have, for some self-adjoint operator H on #,

23) <o(Lp)x,x) AU, x)y dt = {p(f)x, x)
R

= | AX)d{Ex,x) =J U f(t)e'“dt)d(E,pc,x}
[ R’ R

= f(t)(j e"‘d(E,pc,x))dt =J SO x, x> dt
R R

v R

for each x in (E, — E_,)(##). The interchange in the order of integration is
justified by noting that fe L;(R), the Borel measure on R corresponding to
d{E;x,x) has support in [ — n, n] for the given x, and A — exp it is bounded
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and continuous on R. It follows from (23) that
J SfOHUx, x) — (e"™x,xy)dt = 0,
R

for each fin L;(R), whence the (continuous) functions ¢ — (U,x,x) and
t — {(exp itH)x, x) coincide when xe(F, — E_,)(#). Since

U (En - E—n)(%)
n=1
is a dense submanifold of J#, U, = expitH for all real t. As
J SR d{Exx, xy = {fLH)x, x),
R

we may read from (23) that, for fin L (R),

AH)x,yy = f f(1)e"x, y) dt.
R

IfF,=E,— E_,, H = H|F,(#), and xe F, (), then
(24) 7 Ux — x] =t [ — FJx > iHx (t—0);

for, employing the function representation of the (commutative) C*-algebra
on F () generated by H, and F,, we have that t ~![expitH, — F,] converges
in norm to iH, in Z(F,()). In fact, for small ¢,

e . A AR .
I e — F,) — i < | 5 4 | < e

With x arbitrary, if ¢+ ![Ux — x] tends to y in # as ¢ tends to 0, then
F,y=lImF,(t ' [Ux — x]) =limt~![UF,x — F,x] = iHF,x.

=0 =0

As F.x > x, F,y(= iHF,x) —» y, and H is closed; it follows that xe 2(H) and
y = iHx.

If xe 9(H), then, from Theorem 5.6.26,

f*o0
IHxIP = | 2d{(Ex,x)

and

llt7'[Ux — x] — iHx]|]* = |t~ ™ — 1] — iA|P d{E;x, x)

= [(tA) "Y1 + ith — )22 d{E;x, x).
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When ¢ and A are different from 0,

e , s (1 —costA\?  [th —sintd\?
[(¢) 71 + ith — ") = —0 ) —) <2

Thus, given a positive ¢, for sufficiently large n and all non-zero ¢,

f |t [e"* — 1] — iA]? d{Ex,x) < 2.[ Md(Ex, x> <
R\[ — n,n)

R\[ = n,n]

N o™

On the other hand, from (24),

(¢~ U, — 11 — iH)F,x||* = 'f [t7 e — 1] — iAl? d{E;x, x> <

N ™

for all small, non-zero ¢. Hence
It {[Ux — x] — iHx|| -0 (> 0),
for each x in 2(H). N

5.6.37. REMARK. Formal differentiation of U,x at 0 would lead us to
expect that 1 “![U,x — x] tends to iHx for x in 2(H), when we keep in mind the
eventual expression of U, as exp itH. This process of differentiation can be used
as an alternative starting point for the construction of H from U,.

The proof we give of Stone’s theorem actually starts in Subsection 3.2, The
Banach algebra L((R) and Fourier analysis. 1t is formulated in such a way that
little needs to be added in order to arrive at a “‘spectral decomposition” of a
unitary representation of a general locally compact abelian group. The
representation is extended, again, to a representation of an abelian C*-algebra
associated with the group. Theorem 5.2.6 applies and yields a projection-
valued measure on the pure state space of that algebra (the one-point
compactification of the dual group). The entire process illustrates the way in
which a representation of a given system can be studied through the
corresponding representation of an associated C*-algebra. At the same time, it
underscores the strong interrelations among Fourier analysis, representations
of abelian groups, and representations of abelian C*-algebras. Broadened to
the general (non-abelian) case, this area of study is often referred to as “non-
commutative harmonic analysis.” B

Bibliography: [1, 3,10, 12, 13, 14, 15, 18, 20, 21]

5.7. Exercises

5.7.1. Show that the mapping 4 — A* of B(H) into B(H) is weak-
operator continuous.
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5.7.2. Show that the weak-operator topology on #(#’) is strictly weaker
(coarser) than the strong-operator topology on ().

5.7.3.  Let 2 denote the set of all projections from a Hilbert space s# onto
its closed subspaces, and suppose that FeZ2 and 0 # F # I. Prove that the
mappings

E-EAF, E-EvF (P > P)

are not continuous from 2 with the norm topology to 2 with the weak-
operator topology. (Compare Exercise 2.8.17.)

5.7.4. Let # be a Hilbert space and 7, 7, be the restrictions of the
strong- and weak-operator topologies to the set 2 of projections in %B(#).
Show that J; = 7,,. Conclude that if a sequence of projections tends to a
projection in the weak-operator topology, it tends to that projection in the
strong-operator topology (but compare Exercise 5.7.8(ii)).

5.7.5. Let s be a Hilbert space and J_, 7, be the restrictions of the
strong- and weak-operator topologies to the set % of unitary operators in
#(H). Show that 7, = 7, . Conclude that if a sequence of unitary operators
tends to a unitary operator in the weak-operator topology, it tends to that
unitary operator in the strong-operator topology.

5.7.6. Let # be a Hilbert space, {y,}..a be an orthonormal basis for J#,
and & be a bounded subset of (). With [ a finite subset of A, ¢ a positive
number, and S, in ¥

{S:K(S = So)a, yadl <s,a,d €, SeF} (= 5,)

is a weak-operator open neighborhood of S;,. Show that {¥; .} is a base for the
weak-operator open neighborhoods of S, in &

5.7.7. Let # be a separable Hilbert space and {y,,y,,...} be an
orthonormal basis for 3. Show that the equation

S, Ty=3 27""™K(S = T)Yn, Ym)l
nm=1
defines a translation-invariant metric d on %(#) (that is, d(S + R, T + R)
= d(S, T) for each R in #(#)), and the associated metric topology coincides
on bounded subsets of Z(#’) with the weak-operator topology.

5.7.8. With the notation of Exercise 5.7.4, assume that # is infinite
dimensional.
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(i) Show that 2 is weak-operator dense in (#(5))] , the set of positive
operators in the unit ball of #(#°). [Hint. Note that

[ Y (4 —AZ)'”]
(A-4)'" 14

is a projection in B(H @ A") when Ae(B(A)); .]

(i) Show that £ is strong-operator closed in 4(#), and conclude that
there is a sequence of projections tending to an operator in (#(s#)); in the
weak-operator topology, when # is separable, that does not tend to it in the
strong-operator topology. (Compare Exercises 5.7.2 and 5.7.4 and Theorem
5.1.2)

5.7.9. Let # be a Hilbert space.

(i) Show that the mapping 4 —» AB of %(H) into B(H) is weak-
operator continuous for each B in %(#).
(ii)) Show that the mapping 4 — BA of RB(H) into B(H) is weak-
operator continuous for each B in #(#).
(iii) When 5 is infinite dimensional, show that the mapping (4, B) - AB
of (B(H))] x (B(H)){ into B(H) is not weak-operator continuous.

5.7.10. Let s# be a Hilbert space and (#()), be {Te B(H):||T|| < r}.
(i) Show that the mapping
(A,B) > AB: (B(HK)), x B(H) —> B(K)

is continuous when (#(#)), x #()is provided with the product of the weak-
operator topology on (%(s)), and the strong-operator topology on %(),
and the range Z() is provided with the weak-operator topology. (Compare
Exercise 2.8.33.)

(ii) Let o be infinite dimensional and separable. Show that the mapping

(A,B) > AB : (AB())1 X (B(H)), — B(H)

is not continuous when the first factor of (#(#)), x (#B(H)), is provided with
the strong-operator topology and the second is provided with the weak-
operator topology.

5.7.11.  Let s be a Hilbert space and £ be a von Neumann algebra on J#.

(1) Show that (#), is weak-operator compact.
(ii) Show that (#); is weak-operator compact.
(iii) With s# infinite dimensienal, show that (#(#)), and (#(#)); are
not strong-operator compact.

5.7.12.  With the notation of Exercise 5.7.5, assume that s is infinite
dimensional.
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(i) Show that % is weak-operator dense in (#(#)),. [ Hint. Follow the
pattern of the solution to Exercise 5.7.8(i) and use the facts that each operator
on a finite-dimensional Hilbert space has the form VH, where V is unitary and
H is positive, and that such an operator R, is unitary if either of R R, or RoR}
is 1.]

(i) Show that the set of isometries in Z(#) is strong-operator closed.

(iij) Conclude that, with J# separable, there is a sequence of unitary
operators in () that tends to an operator in (%(s)); in the weak-operator
topology but not in the strong-operator topology.

(iv) Find a sequence of unitary operators that converges in the strong-
operator topology to an operator (isometry) that is not a unitary.

5.7.13.  Let s be an infinite-dimensional Hilbert space.

(i) Show that (), is a weakly compact convex subset of # whose
extreme points form a dense subset of it.
(i) Show that (#(#)),” is a weak-operator compact convex subset of
#B(#) whose extreme points form a dense subset of it.
(i) Show that (#(#)), is a weak-operator compact convex subset of
B(#) whose extreme points form a dense subset of it.

5.7.14. Let X be an extremely disconnected compact Hausdorff space,
andlet { f,:ae A} be a family of real-valued functions in C(X) bounded above
by some constant.

(i) Suppose that each f, is the characteristic function of some clopen
subset X, of X. Show that [U,.5 X,] ™ is a clopen set whose characteristic
function V.4 f;istheleast upper bound of { f;} and that the interior of N, 5 X,
is a clopen set whose characteristic function A .4 f,is the greatest lower bound
of {£,} in C(X).

(i) Show that

X\[ U {xeX:fux) > ,1}]_ (= X))

aeA
is a clopen subset of X and that if Y is a clopen subset of X with the property
that f,(p) < Aforallain A and all pin Y, then Y c X;.
(iii) Let e, be the characteristic function of X;. Let k be a constant that
bounds {f,} above and such that — k < f;- for some a’ in A. Show that

(1) e,=0fori< —kande;,=1for A>k;

(2) e, <epif gy

(3) en= NAyssex.

(iv) Show that {* , A de, converges in norm (in the sense of approximating
Riemann sums) to a function fin C(X) and that X is the largest clopen set on
which f takes values not exceeding A.
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(v) Show that f'is the least upper bound of { f,}, and conclude that C(X)
is a boundedly complete lattice.

(vi) Deduce that C(X)is a boundedly complete lattice if and only if X is
extremely disconnected.

5.7.15. Let X be a compact Hausdorff space.

(i) Show that X is extremely disconnected if and only if disjoint open
subsets have disjoint closures.

(i) Show that X is extremely disconnected if and only if it satisfies the
following two conditions:

(a) X is totally disconnected;
(b) the family € of clopen subsets of X partially ordered by inclusion is a
complete lattice.

5.7.16. With the notation of Exercises 3.5.4, 3.5.5, and 3.5.6:

(i) show that /, is isometrically isomorphic to the maximal abelian
algebra o/ of multiplication operators M, (f€ /) on [,(N, C) via the mapping
fo Mg,

(i1) show that the pure state space of the quotient C*-algebra «//%, (see
Exercise 4.6.60) is (naturally homeomorphic to) S(N)\N, where €, is the image
of ¢, under the mapping f— M, .

5.7.17. Withthe notation of Exercise 5.7.16, let E, be a projection in the
quotient C*-algebra o//%,.

(1) Showthat thereisa projection E'in .o such that Emapsonto E, under
the quotient mapping.

(i) Let Y, be a subset of S(N)\N clopen in the relative topology on
B(N)'N. Show that there is a clopen subset Y of B(N) such that
Y n (BN)\N) =

5.7.18. With the notation of Exercise 3.5.5:

(i) show that @~ = (0 n N)~ for each open subset ¢ of B(N);

(if) show that a subset ¥, of S(N)\N is clopen in S(N)\N if and only if it
has the form Ng n (B(N)\N) for some subset N, of N, and that Y, is non-
empty if and only if N, is infinite.

5.7.19. Let ¢ be a one-to-oné mapping of the set of rational numbers onto
N. For each real number ¢, choose a sequence {r,,r,,...} of distinct rational
numbers tending to r. With the notation of Exercise 5.7.16, let N, be
{o(r1), o(r2),...} and let ¥, be N7 n (B(N)\N).
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(i) Show that Y, and Y, are disjoint, non-empty, clopen subsets of
B(N)\N when s # 1.

(i) Let Sbeasubset of Rand let Y be the closure of U, s Y. Show that if
t¢ S, then Y,n Ys = .

(iif) Show that Ysisnot a clopen subset of B(N)\N for some subset S of R.
[Hint. “Count” subsets of R and of N and use Exercise 5.7.18(ii).]

(iv) Deduce that B(N)\N is totally disconnected but not extremely
disconnected and that .o/ /%, is not a boundedly complete lattice.

5.7.20. Let X be a complete metric space. We say that an open subset of X
is regular when it coincides with the interior of its closure.

(1) Show that the interiors of closed (hence of the closures and
complements of open) sets in X are regular.

(i) Show that each open subset of X differs from a regular open subset
on a meager set.

(iii) Show that each Borel subset of X differs from a regular open subset
on a meager (Borel) set. [ Hint. Follow the pattern of the argument of the first
paragraph of the proof of Lemma 5.2.10.]

(iv) Show that there is a unique regular open subset of X that differs from
a given Borel set on a meager (Borel) set.

(v) Let %, be the family of regular open subsets of X partially ordered
by inclusion. Show that %, is a complete lattice.

(vi) Let % be the family of Borel subsets of X and .# the o-ideal of
meager Borel subsets of X (a countable union of sets in ./ is in .# and the
intersection of a set of .# with any set of & isin .#). Let % /. be the family of
equivalence classes of sets in % under the relation S ~ S’ when S and S’ differ
by a meager set. With & and &' in # /.4, define ¥ < &' when § < S’ for some
Sin ¥ and §"in &’. Show that < is a partial ordering of % /. (the “quotient”
of “inclusion” on & by the ideal .#), that each & in & /. contains precisely
one regular open set, and that the mapping that assigns to each & in & /. the
regular open set it contains is an order isomorphism of % /.# onto %,.
Conclude that #/.# is a complete lattice.

(vii) Show that the algebra £(X) of bounded Borel functions on X is a
commutative C*-algebra and that the family .#, of functions in %(X) that
vanish on the complement of a meager Borel set is a closed ideal in Z(X).
Conclude that #(X)/.#, is a commutative C*-algebra.

(viii) Let Y be the compact Hausdorff space such that Z(X)/.# , =~ C(Y).
Show that Yis totally disconnected and that the family of clopen subsets of Y,
partially ordered by inclusion, form a complete lattice. Conclude that Y is
extremely disconnected and that C(Y) (and %(X)/#,) are boundedly
complete lattices.
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5.7.21.  With the notation of Exercise 5.7.20, assume that X is [0, 1] and
let p be a state of C(Y).

(1) Suppose p(V¥_,e,) =YX, p(e,) whenever {e,} is a countable family
of idempotents in C(Y) such that e, - ¢,, = O unlessn = n’. (We say that pisa
normal state in this case.) Show that p(V¥_, f,) <Y, p(f,) for each
countable set { f,} of idempotents f, in C(Y) (where “a < + o0” isenvisaged in
the inequality of this assertion).

(i) Enumerate the open intervalsin [0, 1] (= X) with rational endpoints
and let f1, f5,... be the idempotents in C(Y) that are the images of their
characteristic functions (in %(X)) under the composition of the quotient
mapping of #(X) onto B(X)/ M, and the isomorphism of ZB(X)/.#, with
C(Y). For each j in {1,2,...}, let e; be an idempotent in C(Y) such that
0 < e; < f;. Show that V7_ e;=1.

(i) With the notation of (ii) and given a positive ¢, show that ¢; can be
chosen such that p(e;) < 27%. Conclude that C(Y) has no normal states.

(iv) Deduce that C(Y) isisomorphic to no abelian von Neumann algebra
although Y is extremely disconnected.

5.7.22. Let &/ be an abelian von Neumann algebra acting on a Hilbert
space J#, and let 4 be an operator in 7. Suppose .o/ =~ C(X), where X is an
extremely disconnected compact Hausdorff space, and fin C(X) represents 4.
Show that Ax = Ax for some unit vector x in # and some complex number A if
and only if £~ !(4) contains a non-empty clopen subset of X.

5.723. Let # be a von Neumann algebra and 2 be its family of
projections. Show that, with p, in #*, the family of all sets,

{peR:|(p — poE)| <s, je{l,...,n}} (= V(Ei,...,E,,¢),

where ¢ > 0 and {E,,...,E,} = £ is a base for the open neighborhoods of
po in the weak* topology on a bounded subset of %*.

5.7.24. Let # be a von Neumann algebra acting on a Hilbert space .

(i) Let ¢ be a representation of a C*-algebra U with image £, and let V
be a unitary operator in #. Show that there is a unitary operator U in U such
that o(U) = V.

(1) Show that the unitary group £, of # is (pathwise) connected (in its
norm topology).

5.7.25. Let S be a locally compact topological space, & the o-algebra of
Borel sets, and m a g-finite regular Borel measure on S. Let 2 be the algebra of
multiplications by bounded continuous functions on L,(S,m) and o be its
weak-operator closure. Show that .o/ is the algebra of multiplications by
essentially bounded measurable functions on S.
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5.7.26. Let (S,%m) be a o-finite measure space, f be a measurable
function on S, and 4 be a bounded operator on L,(S,m) such that f- g = Ag
almost everywhere for each essentially bounded measurable function g in
L,(S, m). Show that fis essentially bounded and that M, = A4.

5.7.27. Let (S, ¥ m) be a g-finite measure space and g be an essentially
bounded measurable function on S.

(i) Show that m(g~ (D)) = 0 for each closed disk D contained in
C\sp(g), where sp(g) is the essential range of g (defined and studied in Example
3.2.16).

(ii) Note that each open subset of C is the union of a countable family of
closed disks and conclude that m(g~'(C\sp(g))) = 0.

(iii) Let A be some point in sp(g) and define go(s) to be g(s) for s in
g~ (sp(g)) and 4 for s in g~'(C\sp(g)). Show that sp(go) = sp(g).

(iv) Let f be a bounded Borel function on sp(g). Show that f(M,) =
f(My) =M, ,, . [Hint. Use uniqueness of the Borel function calculus.]

5.7.28. Let % be a von Neumann algebra acting on a Hilbert space s, and
let A be a self-adjoint operator in £(#) such that U4 + AU < 24 for each
self-adjoint unitary operator U in #. Show that 4 #'.

5.7.29. Let ¥ and J be two families of bounded operators on a Hilbert
space #, and suppose that & = J.

(i) Show that ' c &',
(i) Show that &' = (¥')" (= &¥"). (Compare Theorem 5.3.1.)

5.7.30. Let s be a Hilbert space of dimension greater than 1. Find a
weak-operator closed subalgebra # of #() such that Z # 2"

5.7.31. Let s be a Hilbert space and U, be a self-adjoint subalgebra of
B(A). Assume that () is dense in # but not that Ie W,. Show that A is
the strong-operator closure of 2, (and that /e Uy).

5.7.32. Use the double commutant theorem to re-prove (compare
Proposition 5.1.8), in the special case of a von Neumann algebra £ (so Z is
assumed to contain J), that the union and intersection of each family of
projections in Z lie in .

5.7.33. Let U be a simple C*-algebra (that is, 2 has no proper two-sided
ideals) acting on a Hilbert space #.

(i) Show that the center of U is {al:aeC}.
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(i) Suppose A contains a maximal abelian subalgebra of #(H#). Show
that A acts irreducibly on .

5.7.34. Find a von Neumann algebra £ and a strong-operator dense, self-
adjoint subalgebra A, (containing /) such that no unitary operator in % other
than a scalar is the strong-operator limit of unitary operators in U, . [ Hint.
Consider polynomials on [0,1].)

5.7.35. Let s be a Hilbert space, S a closed subset of R, & the set of self-
adjoint operators on . with spectrum in S, and 4 a real-valued, bounded,
continuous function defined on S. With 4, in & let k be a continuous function
on R that takes the value 1 at each point of sp(4,) and vanishes outside of
[— (4ol + D), |40l + 1]- Let p be hk and g be 1 — k + p.

(i) Show that p(A,) = q(Ag) = h(Ay), h = (1 — h)p + hq, and

h(A4) — h(Ao) = (I — i(A))(p(4) = p(4o)) + h(A)(g(4) — g(Ao)).
(i) Show that the mapping 4 — h(4) of & into (the set of normal
operators in) #(s) is strong-operator continuous.

5.7.36. Let s be a Hilbert space, S a closed subset of R, and & the set of
self-adjoint operators in Z(.#) with spectrum in S.

(1) Show that the mapping 4 — |4| is strong-operator continuous on &
(if) Let & be a real-valued, continuous function on S (so 4 is bounded on
bounded subsets of S). Suppose S, is a bounded subset of S such that g is
bounded on S\S,, where g(z) = h(¢)/|¢] for ¢ in S\S,. Show that the mapping
A — h(A) is strong-operator continuous on &
(iti) Deduce that 4 - A" is a strong-operator continuous mapping on
B(H)" for each positive integer n.

5.7.37. Let S be a subset of R. Suppose f'is a function defined on S such
that the mapping 4 — f(A4) is strong-operator continuous on & for each
Hilbert space /#, where & is the set of self-adjoint operators in #(5#) with
spectrum in S. Show that fis continuous on S, bounded on bounded subsets of
S, and that there is a bounded subset S, of S such that {f(r)/|t|: 1€ S\S,} is
bounded.

5.7.38. Let # beavon Neumann algebra acting on a Hilbert space #, and
let E be a projection in #. Find the central carrier of a projection Fin EZE
relative to EZE in terms of its central carrier C, relative to 4.

-

5.7.39. Let # be a von Neumann algebra of infinite linear dimension.
Show that there is an orthogonal infinite family of non-zero projections with
sum /.
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5.7.40. Let U bea C*-algebra acting on a Hilbert space b, and let {E/} be
an orthogonal family of non-zero projections in the commutant A’ of A with
sum /. Suppose x, is a generating vector for A and E,x, = a,x,, where
lasl = I1E,xoll and [lx,|| = 1.

(i) Show that a, # 0 and that x, = ¥, a,x,.

(i) Suppose {E'} is a (countably) infinite family (indexed by positive
integers). Choose n(j) (> n(j — 1)) such that |a,;| <j~* for jin N. Let x’ be
Y52 17 ' Xui- Show that for each 4 in the strong-operator closure %A~ of U,
Axg # X',

(iii) Conclude that ' is finite dimensional if there is a vector x, in # such
that {Ax,:AeUA™} = H#.

5.7.41. Let A be a C*-algebra that acts topologically irreducibly on a
Hilbert space s, and let {x,,...,x,} and {y,,...,y,} be sets of vectors in 5.

(i) Let H be a self-adjoint operator in () such that Hx; = y; for j in
{1,...,n}. Show that there is a self-adjoint operator K in U such that Kx; = y;
for jin {1,...,n} and ||K|| < ||H||- [Hint. Use a diagonalizing orthonormal
basis for EHErestricted to [x,,...,X,, V1,--.,Va], Where Eis the projection in
B(H#) with this subspace as range, and apply Remark 5.6.32.]

(if) Let B be an operator in #(#) such that Bx; = y; for jin {1,...,n}.
Show that there is an operator 4 in ¥ such that Ax; = y;forjin {1,...,n} and
|l4]| < ||B]|. [Hint. With E asin the hint to (i), use the fact that EBE| E(#) has
the form VH with ¥ a unitary operator and H a positive operator on E(5).]

5.7.42. Let #, be a Hilbert space and s# be the direct sum ¥, @ #, of
countably many copies %, of #5.

(i) With the notation of Subsection 2.6, Matrix representations, let  be
the subalgebra of %(#) consisting of operators whose matrix has the same
element of %(#,) at each diagonal entry and 0 at each off-diagonal entry.
(With s viewed as a tensor product 5#, ® &~ of #, with a separable, infinite-
dimensional Hilbert space ., Zis {T ® I: Te B(#,)}.) Show that %’ consists
of those operators whose matrix representations have scalar multiples of I at
each entry. (In tensor product form, #' = {I® S:Se%(x")}.) Show that
A" = R and conclude that £ is a von Neumann algebra (as well as #).

(i) Let x;,x,,... be a sequence of vectors in ;. Call this sequence /,-
independent when ¥ % ||Ix;||* < oo and ¥, a;x; = 0 for a sequence {a;} in
L,(N, C)only if a; = Ofor all j. Note that an /,-independent sequence is linearly
independent and find a linearly independent sequence that is not /,-
independent when J#, is infinite dimensional.

(ili) Show that {x;, x,,...} is a generating vector for £ if and only if
X{,X,,... 18 [;-independent.
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(iv) Show that {x;,x,,...} is separating for £ if and only if
[x1,x2,...] = #,.

5.7.43. Let # be L,([0,1]) relative to Lebesgue measure. With o/ the
multiplication algebra of # and U the C*-algebra of multiplications by
continuous functions, find a unit vector u that is separating for U (if 4 € A and
Au = 0, then 4 = 0) but not for .o/, [ Hint. Use the “Cantor process” to find an
open dense subset of [0, 1] that has measure 1.]

5.7.44. Let # be L,([0, 1]) relative to Lebesgue measure and .o/ be the
multiplication algebra of #.

(i) Describe the vectors in # that are generating for .o/
(i) Show that the set of generating vectors for &/ is dense in #.
(iii) Deduce that a norm limit of generating vectors need not be a
generating vector.

5.7.45. Let % beavon Neumannalgebra and {E,, E,, ...} beacountable
family of countably decomposable projections in #. Show that V*_ E, is a
countably decomposable projection in £.

5.7.46. Let Z be a countably decomposable von Neumann algebra acting
on a Hilbert space #. Define a metric on £ with the property that its associated
metric topology coincides with the strong-operator topology on bounded
subsets of Z.

5.7.47. Let(S,.¥ m) be a g-finite measure space, # be L,(S,m), o be the
multiplication algebra, and fand g be measurable functions on S finite almost
everywhere. Show that:

) M,=M,if and only if f= g almost everywhere;
(i) M, ,,=aM, + M, for each scalar a;
(i) Mp,=M;"M,;
(ivy M, >0if and only if /> 0 almost everywhere.

5.7.48. Let (S, % m) be a g-finite measure space, # be L,(S, m), & be the
multiplication algebra, g be a measurable function on S finite almost
everywhere, and f be a Borel function on sp(M,).

(i) Define a concept of ‘“‘essential range” sp(g) analogous to that of
Example 3.2.16 and show that sp{g) = sp(M,).
(i) Show that there is a measurable g, on S equal to g almost everywhere
such that the range of g, is contained in sp(g).
(iii) With the notation of (ii), show that f(M,) = M, ,,.
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5.749. Let # be L,(R) relative to Lebesgue measure and 4 be the
(unbounded) multiplication operator corresponding to the identity transform :
(the function ¢t — ¢) on R with domain 2 consisting of those fin L,(R) such that

1 fe L(R).

(i) Note that A4 is self-adjoint and that the spectral resolution for 4 is
{E,}, where E is the multiplication operator corresponding to the characteris-
tic function of (— oo, A].

(i1) Let 92, be the set of continuously differentiable functions on R that
vanish outside a finite interval. Note that &, is a dense linear submanifold of
M. Let D be the operator with domain 9, that assigns if” (= i df/dt) to f. With
T the unitary operator defined in Theorem 3.2.31, show that T~ 'ATf = D, f
for each fin 9,.

(iii) Conclude that T~ 'AT (= D) with domain T~ 1(2) is a self-adjoint
extension of Dy.

(iv) Show that exp(itD) is the unitary operator U,, where (U, f)(p) =
f(p — t). How does this relate to Stone’s theorem?

5.7.50. Let f be a jointly continuous function of two complex variables
defined on S, x S,, where S, and S, are subsets of C. Let 4 be a normal
operator such that sp 4 = §, acting on a Hilbert space . For each z, in S|,
the mapping z — f(z,,2) is a continuous (hence, Borel) function defined on
sp A4 so that f(z,, A) is a normal operator on . Define an operator-valued
function g on S, by g(z) = f(z, A).

(i) Suppose A4 is bounded and S, is a compact subset of S, . Show that
the restriction of g to S, is norm continuous (that is, the mapping z — g(z) is
continuous from S, to #() with its norm topology).

(i) Suppose S, is closed and f is bounded (but no longer that A4 is
bounded). Show that g is strong-operator continuous.

(ili) Let H be a positive operator on 3. Show that exp(— izH) (= U,) is
defined for each z in the closed lower half plane C_ (= {z:Imz < 0}), that
[|U;|| £ 1, and that the mapping z — U, is strong-operator continuous.

5.7.51. (1) Withthenotation and hypotheses of Exercise 5.7.50(ii), make
the following additional assumptions about f:

(1) for each z, in S,, z = f(z, z,) is differentiable at each point z, of the
interior S¢ of S; with derivative f](z,, z,),

(2) givenz,in SY, a bounded subset S’ of S, and a positive ¢, there are a
positive d, a closed disk D with center z,in S ? ,and a positive C, such that for all
Zy in S,Z

ILf(z,22) — fl20,22)1(z — 20) ™' — fi(20,22)| <&,
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provided 0 < |z — z,| < d and ze SY (thatis, z — f(z, z,) is differentiable on S¢
uniformly on bounded subsets of S,) and such that for all z in D\{z,} and
z' in SZ

Lz, 2") = f(20,2)](z = 20) ! < C.
(3) z - fi(z0,2) is continuous on S, for each z, in S9.

Show that for each pair of vectors x, y in #, z - {g(z)x, y) is analytic on S¢
with derivative { fi(zo, 4)x,y) at each z, in S9. [Hint. With z, in S9, let
h(z1,2) be [f(z1,22) — f(Z0,22)1(z1 — 20) "' when (z1,2;)€S) x S, and
z, # 24, and let A(zq,z,) be fi(zg,22). Use Exercise 5.7.50(ii) to establish
strong-operator continuity of z — A(z, A).]

(i) With the notation and assumptions of Exercise 5.7.50(iii), show that
the function z — {U,x,y) is analytic in the open lower half-plane C°
(={z:Imz < 0}) for each pair of vectors x, y in #.

(iii) Show that z — {U.x, y) is entire for each pair of vectors x and y in #
when H is bounded. Re-prove the results of (ii) by using a bounding sequence
{E,} of projections for H and considering first the case where x, y e E, ().

5.7.52. Let # be a von Neumann algebra acting on a Hilbert space # and
t - exp(— itH) (= U,) be a one-parameter unitary group on J#, where H is a
self-adjoint operator on # with domain 9. Let x,, be a unit vector in 2. Make
the following assumptions about H, U,, &, and x;:

(1) UAU_,e for each 4 in Z and each ¢ in R;
(2) H>0;

(3) Hx,=0;

(4) x, is generating for Z.

(i) Define U, as in Exercise 5.7.50(iii)) when zeC_, and show that
U.x, = x, for each zin C_.
With 4 and A4’ self-adjoint operatorsin # and %', respectively, define f(z) to
be (U,Axy, A'xy) for zin C_.
(i) Show that f(¢) is a real number for real ¢, and that fis continuous on
C_, analytic on C°, and bounded on C_.
(iii) Show that U, e for each real ¢.

5.7.53. Let H be a self-adjoint operator acting on a Hilbert space #, o/ be
the von Neumann algebra generated by H, and .o/, be the von Neumann
algebra generated by {U,:1e R}, where U, = exp(— itH).

(i) Assume H is bounded gnd show that the C*-algebras U and U,
generated by H (and I) and by {U, : te R}, respectively, coincide.
(ii)) Show that & = o,
(iif) With the notation and assumptions of Exercise 5.7.52, show that
HnR.
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5.7.54. Let A be a normal operator acting on a Hilbert space .

(i) Show that expid =1 if spA < {2rnn:neZ} and only if A4 is self-
adjoint and sp 4 < {2nn:nelZ}.

(i) Show that expit4 = I for all z in R if and only if 4 = 0.

(iti) Let 4 and B be self-adjoint operators on # such that expitB =
expitA for each real ¢. Show that 4 = B.

(iv) Lett— U, be aone-parameter unitary group acting on . Show that
there is a unique self-adjoint operator H on # such that U, = expitH for all
real .

5.7.55. With the notation of Exercise 5.7.52, assume conditions (1), (2)
and (3), and in place of (4) assume that x, is separating for the center € of Z.
Show that there is a positive self-adjoint operator K on # such that K# # and
W AW _, = U,AU_, for each 4 in # and all real 7, where W, = exp(— itK)
(e #), and such that Kx, = 0. [Hint. Consider the projection E’ with range
[#x,] and the von Neumann algebra ZE’ acting on E'().]
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INDEX OF NOTATION

Algebras and related matters

A+ B closed sum of operators, 352

A*B closed product of operators, 352

& (R) algebra of convolution operators, 190
Ar positive cone in A, 244

Ay set of self-adjoint elements of A, 249
A~ weak-operator closure of U, 328

A= norm closure of A, 328

A (R) norm closure of «/(R), 190

An(R) A, (R) with unit adjoined, 190

B, algebra of Borel functions on C, 359
B.(X) algebra of Borel functions on X, 358
Cy central carrier, 333

ERE reduced von Neumann algebra, 336
E'RE reduced von Neumann algebra, 335
Fx {Ax:AeF}, 276

FX {Ax:Ae F,xe X}, 276

F' commutant, 325

F" double commutant, 326

F* {A*:Ae F}, 326

H(A) set of holomorphic functions, 206

1 unit element, identity operator, 41

~ isomorphism between algebras, 310
£, left kernel of the state p, 278

L, operator, on L,, of convolution by f, 190
M positive cone in #, 255

My set of self-adjoint elements of .#, 255
M (R) set of multiplicative linear functionals on Uy(R), 197
M o(R) M(R)\(po,}, 195

N () algebra of operators affiliated with o/, 352
N(X) algebra of normal functions on X, 344
P(M) set of pure states of .#, 261

P(M)” pure states space of .#, 261

(1 Hpy X,) GNS constructs, 278

R dual group of R, 192

r(A) spectral radius, 180

ra(A4) spectral radius, 180

RE' restricted von Neumann algebra, 334
R'E, restricted von Neumann algebra, 336
sp(A) spectrum of 4, 178, 357

387
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spa(A) spectrum of A4 in A, 178

sp(Sf) essential range of f, 185, 380

F(A) set of self-adjoint affiliated operators, 349
SL (M) state space of .#, 257

S state space of ¥/, 213

F(X) set of self-adjoint functions on X, 344

T, dual group of T,, 231

¥ T is affiliated with £, 342

Wy vector state, 256

Wy vector functional, 305

dual group of Z, 230

Direct sums

H\@® - @ #, direct sum of Hilbert spaces, 121

ECE S direct sum of Hilbert spaces, 121

Y@ #, direct sum of Hilbert spaces, 123

PRCESR direct sum of vectors, 123

ier; direct sum of operators, 122

Yer, direct sum of operators, 124

Y® o, direct sum of representations, 281

RCEA direct sum of von Neumann algebras, 336

Inner products and norms

<L inner product, 75
1Nl norm (on a linear space), 35
bound
of a linear operator, 40
of a linear functional. 44
of a conjugate-bilinear functional, 100
of a multilinear functional, 126
I, norm
inL,(1<p<x),55
inl,(1<p<x),71

1P} norm

in #¥%, 128

in 0, 141

for a weak Hilbert-Schmidt mapping, 131
I 1l norm associated with an order unit /, 296

Linear operators

B(H)" positive cone in #(.#), 105

B(X) set of bounded linear opc’r":ltors on X, 41

B(X, ¥) set of bounded linear operators from X to %, 41
Y(T) domain of T, 154

94(T) graph of T, 155

ImT imaginary part of 7, 105



=
EAF
EvF
A E,
V E,
M,
N(T)
R(T)
ReT
T

Tt

T*
T|C
UH)

Linear spaces

aX
coX
Ch

K"

Rh
VY
v
Xty

INDEX OF NOTATION

inclusion of operators, 155

infimum of projections, 111
supremum of projections, 111
infimum of projections, 111
supremum of projections, 111
multiplication operator, 108, 185, 341
null projection of 7, 118

range projection of T, 118

real part of T, 105

closure of T, 155

Banach adjoint operator, 48

Hilbert adjoint operator, 102, 157

T restricted to C, 14

group of all unitary operators on #, 282

a multiples of vectors in X, 1
convex hull of X, 4

space of comples n-tuples, 8
space of [ n-tuples, 8

space of real n-tuples, 8
quotient linear space, 2

real linear space associated with complex space ¥, 7

vector sum and difference of X and Y, 1

Linear topological spaces, Banach spaces, Hilbert spaces

coX

dim .#
H
HOY
HSF
HSLO
YANZ
YvZ
ANY,
VY,
a(¥", F)
a(V*, ¥)
a(¥, ¥
y*
[x1,...5x,]
[*]

(X),

.{‘

,{“

Y,L

closed (sometimes, weak* closed) convex hull, 31

dimension of J#, 93

conjugate Hilbert space, 131
orthogonal complement, 87

set of Hilbert-Schmidt functionals, 128
set of Hilbert-Schmidt operators, 141

infimum (intersection) of closed subspaces, 111

supremum of closed subspaces, 111

infimum (intersection) of closed subspaces, 111

supremum of closed subspaces, 111
weak topology, 28

weak* topology, 31

weak topology on ¥; 30
continuous dual space, 30
subspace generated by x,,...,x,, 22
closed subspace generated by X, 22
{xeX:||x|]| €r}, 36

Banach dual space, 43

Banach second dual space, 43
orthogonal complement, 87

389
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Sets and mappings

A\B set-theoretic difference, 1
B(N) B-compactification of N, 224
C complex field, 1
[%] empty set, 5
< inclusion of sets
< strict inclusion of sets
K scalar field, Ror C, 1
frg minimum of functions, 214
fvyg maximum of functions, 214
Acen fa infimum of functions, 373
Viaen fa supremum of functions, 373
set of positive integers, 68
R real field, 1
R* set of non-negative real numbers, 233
AR 2" o restricted to ¥, ,
T circle group 192
z additive groups of integers, 230

Special Banach spaces

c, 68 l,, 69

Co, 68 ., 68

C(S), 50 1, (A), 49

(S, %), 49 L, (A, ¥), 48

L,(A), 51 L, (= LS, % m)), 52
I,(A, ¥), 50 L, (= L (S, ¥%m)), 52
l;, 84 Ly, 54

L(A), 84 L,, 53

Tensor products

A;® - ®A, tensor product of operators, 145
H1® - ®#, tensor product of Hilbert spaces, 135
X;® ®x, tensor product of vectors, 135



INDEX

Adjoint

in an algebra with involution, 237

Banach, 48

Hilbert, 102

of an unbounded operator, 157

Affiliated operator, 342, 344

Algebra

abelian (commutative) Banach, 180

abelian C*, 210, 269

abelian von Neumann, 310

Banach, 41, 174

of bounded operators, 102, 186, 236,
298, 299, 303, 309

C*, 236

of continuous functions, 175, 210

countably decomposable (von
Neumann), 338, 339, 380

division, 180

finite-dimensional C*, 288

L,, 187,233

L., 237

maximal abelian, 308

multiplication, 308, 314, 340, 343, 376,
380

von Neumann, 308

normed, 174

operator, 173, 304

quotient, 177, 300

self-adjoint, 237, 282, 309

simple C*, 377

*, 237

of unbounded continuous functions, 355

of unbounded operators, 352, 355

Approximate eigenvector, 178, 179, 183

Approximate identity

in C*-algebras, 254, 293

increasing, right, 254

in L; (R), 191

391

Approximation theorems
double commutant, 326
Kaplansky density, 329
Stone-Weierstrass, 219, 221, 235
Archimedian, 297

B

Baire category theorem, 60, 323
Balanced neighborhood of 0, 13
Balanced set, 8
Banach algebra, 41, 174
Banach dual space, 44
Banach inversion theorem, 61
Banach lattice, 297
Banach module, 302
Banach-Orlicz theorem, 73
Banach space, 36
Bessel’s inequality, 90, 120
B-compactification, 224
Borel measure, regular, 53, 54
Bound

of a linear functional, 44

of a linear operator, 40
Bounded linear functional, 44
Bounded linear operator, 41
Boundedly complete lattice, see Lattice
Bounded multilinear functional, 126
Bounded multilinear mapping, 131
Bounded set (in a normed space), 36
Bounding projection, 351
Bounding sequence, 351

C

C*-algebra, 236
simple, 377
Cauchy criterion, 26
Cauchy-Schwarz inequality, 77, 215, 256
Cayley transform, 327, 328



392

Central carrier, 332, 333
Character
of R, 192, 282
of T, 231
of Z, 230
Clopen set, 222
Closed graph theorem, 62
Closure (of an operator), 155
Codimension, 2
Commutant, 325
Commutation relations, 181
Commutator, 181
Compact linear operator, 165, 166, 227
Compact self-adjoint operator, 166, 167
Compact support, 201
Complementary subspaces, 11, 63, 88
Complete (linear topological space), 14
Completion
of a normed algebra, 174
of a normed space, 38
of a pre-Hilbert space, 80
Complexification
of a real Hilbert space, 76, 161
of a real linear space, 66
of a real normed space, 66
Compression, 121, 276
Cone, 212, 245
Conjugate-bilinear functional, 100
bounded, 100
positive, 103
symmetric, 103
Conjugate Hilbert space, 131
Conjugate-linear operator, 15, 65
Convergence
of nets in a locally convex space, 25
of series in a normed space, 38
of sums in a locally convex space, 25
Convex combination (finite), 3
Convex hull (of a set), 4
closed, 31
Convex set, 3
Convolution, 187, 230, 231
Core (for an unbounded operator), 155,
349

Countably decomposable von Neumann al-

gebra, 338, 339, 380

Countably decomposable projection, 338;

340, 380
Cyclic projection, 336

INDEX

Cyclic representation, 276, 278, 279
Cyclic vector, 276

D

Definite inner product, 76
Definite state, 289
Derivation, 301, 302
Dimension (of a Hilbert space), 93
Direct sum

of Hilbert spaces, 121, 123

of operators, 122, 124

of representations, 281

of von Neumann algebras, 336
Division algebra, 180
Double commutant theorem, 326
Dual group

of R, 192

of T,, 231

of Z, 230
Dual space

algebraic, 2

Banach, 44

continuous, 30, 43

second, 43, 45

Eigenvalue, 109
Eigenvector, 108

approximate, 178, 179, 183
Equivalence

of function representations, 263

of representations, 280
Essential range

of an L. function, 185

of a measurable function, 380
Essential supremum, 52
Essential representation, 282
Essentially bounded, 52
Evaluation functional, 211
Extension

by continuity, 14, 15

of pure states, 266, 296

of states, 266, 296

theorems, see Hahn—-Banach theorems
Extreme point, 31, 32, 33, 34, 163, 164,

373
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Extremely disconnected space, 222, 223,
224, 310, 322, 324, 344, 349, 373, 374,
375, 376

Face, 32
Factor, 308
Factorization, 2, 42
Factors through, 2, 42
Faithful representation, 275, 281
Faithful state, 288
Finite diagonal block (of a matrix), 154
Finite-dimensional space, 22, 23, 24
Finite-dimensional subspace, 22, 23, 24
First category (set of), 322
Fourier coefficients, 95
Fourier series, 95
Fourier transform, 187, 197, 368
inversion of, 198, 199
for L, functions, 201
Function calculus
Borel (for bounded normal operators),
319, 321, 322, 324, 377
Borel (for unbounded normal operators),
340, 360, 362, 363, 364, 366, 380
continuous, 239, 240, 271, 272, 273, 274,
340
holomorphic, 206
uniqueness, 273, 322, 362
Function representation, 263, 264
of an abelian C*-algebra, 270
of a Banach lattice, 297
equivalence of, 263
separating, 263
Functional
conjugate-bilinear, 100
linear, 2
multiplicative linear, see Multiplicative
linear functional
real-linear, 7
sublinear, 8, 9
support, 9, 65

G
Gelfand-Neumark theorem, 275, 281

Generalized nilpotent, 205, 225, 226, 227
Generating set of vectors, 336, 337

Generating vector
for a cyclic projection, 336
for a representation, 276
for a von Neumann algebra, 336, 338,
379, 380
GNS construction, 279
(essential) uniqueness of, 279
Gram-Schmidt orthogonalization process,
94
Graph (of an operator), 62, 155

H

Hahn-Banach theorems
extension type, 7, 9, 10, 21, 22, 44
separation type, 4, 7, 20, 21
Hahn-Jordan decomposition, 219, 258,
259, 265, 290
Half-space (closed or open), 4
Hermite polynomials, 97
Hermitian linear functional
on a C*-algebra, 255
on C(X), 215
Hilbert—Schmidt
functional, 127
mapping (weak), 131
operator, 141
Hilbert space, 79
conjugate, 131
pre-Hilbert space, 79, 80, 81
Hilbert space isomorphism, 93, 103, 104
Hélder’s inequality, 71, 188
Holomorphic function (Banach-space val-
ued), 203
Holomorphic function calculus, 206
*Homomorphism, 237
Hull
closed convex, 31
convex, 4
of a set, 211
Hyperplane, 4

Ideal
in a Banach algebra, 177
in a C*-algebra, 251, 252, 254, 277, 300,
301
in C(X), 210
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Ideal (continued)
in L, (R) and related algebras, 187, 190
maximal, 177, 180, 210
Idempotent, 11, 208
Initial topology, 13
Inner product, 75, 76, 79
definite, 76, 79, 277
positive definite, 76
Inner product space, 76
Internal point, 4
Intersection (of projections), 111
Invariant mean, 224
Invariant subspace, 121
in Hilbert space, 121
in L; under translations, 233
Inverse (in a Banach algebra), 176
Inversion theorem
Banach, 61
for Fourier transforms, 199
Invertible element (in a Banach algebra),
176
Involution, 236
Irreducibility
algebraic, 330, 332
topological, 330, 331, 332
Isometric isomorphism, 36
of C*-algebras, 242
of function calculus, 240
natural, from X into X**, 45
*Isomorphism, 237

J

Jacobi polynomials, 97

K

Kaplansky density theorem, 329
Kernel

of an ideal in C(X), 211

left, of a state, 278

of a representation, 276
Krein-Milman theorem, 32

L

Laguerre polynomials, 97
Lattice, 214, 215, 298
Banach, 297
boundedly complete, 222, 223, 374, 375,
376

sublattice, 235
Legendre polynomials, 97
l,-independent, 379
Linear combination (finite), 1
Linear dependence, 1
Linear functional, 2
bounded, 44
hermitian, see Hermitian linear func-
tional
multiplicative, see Multiplicative linear
functional
positive, see Positive linear functional
weak* continuous, 31
weakly continuous, 29, 30
Linear independence, 1
Linear operator, see Operator; Unbounded
operator
Linear order isomorphism, 214
Linear topological space, 12
Linear transformation, see Operator; Un-
bounded operator
Locally compact (locally convex space), 24
Locally convex space, 16
finite-dimensional, 23, 24
locally compact, 24
Locally convex topology, 16
Locally finite group, 224

M

Matrix
with operator entries, 148
with scalar entries, 147
Maximal abelian algebra, 308
Maximal ideal, 177, 180, 187, 190, 210
Meager set, 322, 375
Minimal projection, 309
Minkowski’s inequality
for sums, 50
for integrals, 53
Multilinear functional, 126
Multilinear mapping, 131
Multiplication algebra, 308, 314, 340, 343,
376, 380
Multiplication operator, 106, 107, 108, 109,
117, 185, 315, 341, 342, 343, 344
Multiplicative linear functional, 180, 183,
187, 269
on C(X), 211, 213
on L, (R), 193



on L, (T,, m), 232
on [y (Z), 231
on L. (2), 224
Multiplicity (of an eigenvalue), 167, 227

N

Natural image of X in X**, 45
Neighborhoods
balanced, 13, 18
in a linear topological space, 13
in a locally convex space, 17, 18
in a normed space, 35
in the strong-operator topology, 113
in the weak-operator topology, 305
in the weak* topology, 31
in a weak topology, 28
Nilpotent, 205
generalized, see Generalized nilpotent
Non-singular (element of a Banach alge-
bra), 176
Norm, 8, 35
on a Banach algebra, 174
of a bounded operator, 41, 100
on a C*-algebra, 236, 237
on C(S), 49
of a conjugate-bilinear functional, 100
on a direct sum of Hilbert spaces, 121
of a direct sum of operators, 122
of a Hilbert-Schmidt functional, 128
on a Hilbert space, 77
on I, 50, 51
on l,, 49
onlL, 53
on L., 52
of a linear functional, 44
of a matrix with operator entries, 151
of a multilinear functional, 126
of a multilinear mapping, 131
on a normed algebra, 174
on a tensor product of Hilbert spaces,
132, 135
of a tensor product of operators, 146

INDEX 395

Normal state, 376

Normed algebra, 174

Normed space, 35

Nowhere-dense set, 60, 322

Null function, 52

Null projection (of a linear operator), 118

Null set, 52

Null space (of a linear operator), 2, 118,
171

(V]

One-parameter unitary group, 282, 367
Open mapping, 59
theorem, 61
Operator, see also Unbounded operator
affiliated, 342
bounded, 41, 100
compact, 165, 166, 226, 227
compact self-adjoint, 166, 167
conjugate-linear, 15
Hilbert—Schmidt, 141
linear, 2
multiplication, see Multiplication op-
erator
normal, 103, 319, 321, 322, 350, 354, 357
positive, 103
real-linear, 15
self-adjoint, see Self-adjoint operator
unitary, see Unitary operator
Operator-monotonic increasing, 250, 294,
295
Order unit, 213, 249, 255, 297
Orthogonal, 87
Orthogonal complement, 88
Orthogonal family of projections, 113
Orthogonal set, 88
Orthonormal basis, 91
Orthonormal set, 88

P

Parallelogram law, 80

of a weak Hilbert-Schmidt mapping, 131 Parseval’s equation, 91, 120

Norm-preserving (linear mapping), 36

Norm topology, 35, 66

Normal element of a C*-algebra, 237

Normal function, 344, 35S

Normal operator, see Operator; Un-
bounded operator

Partially ordered vector space, 213, 249,
255, 295, 296, 297
archimedian, 297
Plancherel’s theorem, 201, 231, 232
Point spectrum, 357, 376
Polar decomposition, 105, 294
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Polarization identity, 102
Polynomial
Hermite, 97
Jacobi, 97
Laguerre, 97
Legendre, 97
Positive element of a C*-algebra, 244
Positive linear functional
on a C*-algebra, 255
on C(X), 213
on a partially ordered vector space, 213
295, 296
Positive nth root, 275
Positive operator, see Operator; Un-
bounded operator
Positive square root, 167, 248, 364
Pre-Hilbert space, 79, 81
Principle of uniform boundedness, 64, 65,
74
Projections, 12, 24, 109, 110
countably decomposable, 338, 340, 380
cyclic, 336
intersection of, 111
join of, 111
meet of, 111
orthogonal, 109
orthogonal family of, 113
o-finite, 338
spectral, 362
union of, 111
Projection-valued measure, 318, 321, 360
Pure state
of B(%), 302, 303
of a C*-algebra, 261, 269
of C(X), 213
extension of, 234, 266, 296
of a partially ordered vector space with
order unit, 213
space, 261

’

Q

Quotient
Banach algebra, 177
Banach space, 39
C*-algebra, 300
linear space, 2 -
mapping, 2, 39, 42
norm, 39
normed space, 39

Radical, 228
Radius of convergence, 204
Radon-Nikodym derivative, 56
Radon-Nikodym theorem, 56
Range (of a linear mapping), 2

projection, 118, 171

space, 118
Real-linear functional, 7
Real-linear operator, 15
Real-linear subspace, 7
Reduced atomic representation, 282
Reflexive (Banach space), 45, 47, 67, 70,

73,98

Regular Borel measure, 53, 54
Regular (element of a Banach algebra), 176
Representation

of a C*-algebra, 275

cyclic, 276, 278, 279

direct sum, 281

equivalent, 280

essential, 282

faithful, 275, 281

function, 263, 264

reduced atomic, 282

R-essential, 316

of a * algebra, 282

universal, 281
Resolution of the identity, 311

bounded, 311, 313

unbounded, 311, 316, 343, 344, 345, 348,

350

R-essential representation, 316
Riemann-Lebesgue lemma, 197
Riesz decomposition property, 214
Riesz representation theorem, 53
Riesz’s representation theorem, 97
Rodrigues’s formula, 97

S

Self-adjoint algebra of operators, 237, 282,
309

Self-adjoint element of a C*-algebra, 237

Self-adjoint function, 344

Self-adjoint function representing an opera-
tor, 348

Self-adjoint operator, 103, 157, 160, 310,
313, 341, 345, 348
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Self-adjoint set, 237
Semi-norm, 8, 10, 17, 28
Semi-simple, 228
Separable Banach space, 57, 58, 73, 74
Separable Hilbert space, 94
Separable metric space, 57
Separable topological space, 57
Separating family of linear functionals, 28
Separating family of semi-norms, 17
Separating set of vectors, 336, 337
Separating vector, 336, 338, 339, 380
Separation
of convex sets, 4
strict, of convex sets, 4
theorems, 4, 7, 20, 21
Shift
one-sided, 186
two-sided, 186, 227
o-finite
projection, 338
von Neumann algebra, 338
o-ideal, 375
o-normal homomorphism, 321, 322, 323,
324, 325, 359, 360, 362, 364
o-normal mapping, 320
Simple C*-algebra, 377
Simple tensor, 135
Singular (element of a Banach algebra),
176, 229
Spectral mapping theorems, 181, 207, 241,
273
Spectral projection, 362
Spectral radius, 180, 185, 205
formula, 202, 204
Spectral resolution, 310, 312, 313, 360
of a representation, 315, 316, 367
Spectral theorem
algebraic, 239, 270, 310, 349
for a bounded self-adjoint operator, 310,
313
for an unbounded self-adjoint operator,
345, 348
Spectral value, 178
Spectrum, 178
point spectrum, 357, 376
of an unbounded operator, 357
Square root
in a Banach algebra, 233, 234
in a C*-algebra, 248
of a positive operator, 364

Stable subspace, 121

State
of a C*-algebra, 255
of C(X), 213

definite, 289, 292
extension of, 234, 266, 296
faithful, 288
of a partially ordered vector space with
order unit, 213
pure, see Pure state
space, 257
vector, 256, 281, 289, 298, 302
Stone’s theorem, 187, 282, 367, 381
Stone-Weierstrass theorem, 219, 221,
235
Strong-operator continuity (of functions),
327, 328, 378
Strong-operator topology, 113, 304, 305,
380
*Subalgebra, 237
Sublattice, 235
Sublinear functional, 8, 9, 65
Subprojection, 110
Subspace
closed, generated by a set, 22
complementary, 11, 63, 88
finite-dimensional, 22, 23, 24
generated by a set, 2
invariant, 121
linear, 1
real-linear, 7
reducing, 121
stable, 121
Summable, 25
Support
of a measure, 219
of a positive linear functional on C(X),
219
Support functional, 9, 65

T

Tensor product
algebraic, 139
associativity of, 136, 146
of Hilbert spaces, 125, 135
of operators, 145
universal property of, 125, 135, 139
of vectors, 135
Topological divisor of zero, 229
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Topology
coarser (weaker), 29
induced by semi-norms, 17

initial, 13

locally convex, 16, 23

norm, 35, 66

strong-operator, see Strong-operator to-
pology

weak, see Weak topology
weak*, 31, 43, 45, 46, 48, 68
weaker (coarser), 29
weak-operator, 304, 305, 306, 371
Totally disconnected, 222, 374
Trace, normalized, 289
Transformation
linear, see Operator; Unbounded op-
erator
unitary, 104
Transitivity, 332
Triangle inequalilty, 35

U

Unbounded operator
adjoint of, 157
affiliated, 342
closable (preclosed), 155
closed, 155, 357
closure of, 155
core of, 155
densely defined, 155
domain of, 154, 155
extension of, 155
graph of, 155
maximal symmetric, 160
multiplication, see Multiplication op-
erator
normal, 340, 350, 353, 354, 360
positive, 357
preclosed (closable), 155
products of, 157, 352
self-adjoint, see Self-adjoint operator
spectrum of, 357

sums of, 157, 352
symmetric, 160
von Neumann algebra generated by, 349,
354
Uniform boundedness (principle of), 64,
65, 74
Uniform structure
in a linear topological space, 14
in a normed space, 35
Uniformly convex, 67, 161
Union (of projections), 111
Unit ball, 36
Unit element, 174, 236
Unitary element of a C*-algebra, 237, 242
Unitary exponential 275, 286, 287, 288,
313, 314
Unitary group, 237, 286, 287
Unitary operator, 103, 313
Unitary representation, 282, 367
Unitary transformation, 104
Universal representation, 281
Unordered sums, 25, 26, 27, 28

v

Vector state, 256, 281, 289, 298, 302
von Neumann algebra, 308
generated by an unbounded operator,
349, 354

w

Weak-operator topology, 304, 305, 306,
371
Weak topology
induced by a family of linear functionals,
28,29
the weak topology, 30, 43, 47, 66
Weak* topology, see Topology
Weierstrass approximation theorem, 221
Wiener’s Tauberian theorems, 233
W*-topology (weak* topology), see To-
pology
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