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CHAOTICLOGIC

Logic ... an imperative, not to know the true, but to posit and arrange aworld that shall be
cdled true by us.

-- Friedrich Nietzsche

PREFACE

This book summarizes a network of interrelated ideas which | have developed, off and on,
over the past eight or ten years. The underlying theme isthe psychological interplay of order
and chaos. Or, to put it another way, the interplay of deduction and induction. | will try to
explain the relaionship between logicd, orderly, conscious, rule-following r eason and fluid,
self-organizing, habit-governed, unconscious, chaos-infused intuition.

My previous two books, The Structure of Intelligence and The Evolving Mind, briefly touched
on this relaionship. But these books were primarily concerned with other matters: S with
condructing aforma language for discussing mentality and its mechanization, and EM with
exploring the role of evolution in thought. They danced around the edges of the order/chaos
problem, without ever fully entering into it.

My god in writing this book was to go directly to the core of mental process, "where angels
fear totread" -- to tackle al the sticky issueswhich it is consdered prudent to avoid: the nature
of consciousness, the relation between mind and redlity, the justification of belief systems, the
connection between creativity and mentd illness..... All of these issues are dedlt with herein a
graightforward and unified way, usng a combination of concepts from my previous work with
ideas from chaos theory and complex systems science.

My agpproach to the mind does not fdl into any of the standard "schools of thought." But
neither doesit sland completely gpart from the contemporary scientific and intellectua scene.
Rather, | draw on ideas from avariety of disciplines, and ahog of conflicting thinkers. These
ideas are then synthesized with origina conceptions, to obtain amodd that, while,
fundamentally novel, has many points of contact with familiar idess. Perhgps the most obvious
connections are with Kampis's (1991) component-system theory, Ededman's (1987) theory of
neuronal group saection, Nietzsche's (1968) late philosophy of mind, Chaitin's (1988)
agorithmic information theory, Whorf's (1948) well-known andlysis of linguistic thought, and
the dynamica psychology of Ralph and Fred Abraham (1992). But there are many other
important connections as well.

The idess of this book range wide over the conceptual map; indeed, the selection of topics
maly appear to the reader to obey avery chaotic logic. And the intended audience is dmost
equaly wide. The ideas contained here should be thought- provoking not only to theoretical
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psychologists and generd systems theorists, but dso to anyone with an interest in artificid
intelligence, gpplied mathematics, socid science, biology, philosophy or human persondlity.
Unfortunately, the nature of the materid is such that certain sections of the book will not be essy
going for the genera reader. However, | have done my best to minimize the amount of technicd
terminology, and | have flagged with (*)'s those few sections containing a Significant amount of
formalism. These sections can be skipped without tremendous loss of understanding.

Insum, | am well aware that this book will draw criticiam for its ambitious choice of topic. |
a0 redlize that my approach defies the norms of every academic discipline (sometimes quigtly,
sometimes ogtentatioudy). However, | believe that one must follow one's scientific intuition
whereit leads. All that | ask of you, as areader, is that you consider the ideas given here based
on their own intringc merits, rather than how "orthodox™ or "unorthodox" they may appear.

The symbiogis between logic and intuition isa very tricky thing; perhaps the subtlest
phenomenon we humans have ever tried to comprehend. In order to make progress toward an
undergtanding of this strange, fundamental symbios's, we must summon al our powers of
andyssand imagination -- and check our preconceptions at the door.
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Chapter One
INTRODUCTION

"Chaos theory” has, in the space of two decades, emerged from the scientific literature into the
popular spotlight. Most recently, it received a co-garring role in the hit movie Jurassic Park.
Chaostheory is billed as arevolutionary new way of thinking about complex systems -- brains,
immune systems, atmaospheres, ecosystems, you nameit.
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It is dways nice to see science work its way into the mass media. But | must admit that, asa
mathemétician trained in chaotic dynamics, | find this sudden interest in chaos theory alittle odd.
The excitement about chaos theory stems from a perception that it somehow captures the
complex "disorganized order" of the redl world. But in fact, chaos theory in the technica sense
has fewer well-devel oped real world gpplications than obscure areas of gpplied math like Lotka
Volterra equations, Markov chains, Hilbert spaces, and so forth. Where chaosis concerned, there
isarather large gap between the philosophica, prospective hype and the actua, present-day
science.

To undergtand this gap in more detail, consder what one sudiesin afirgt course on chaos
theory: discrete iterations like the tent map, the Baker map and the logidtic iteration (Devaney,
1988); or dse dementary nonlinear differentia equations such as those leading to the Lorentz
attractor. These sysems are dl "low-dimensond,” in the sense that the State of the system a
each timeis pecified by a sngle number, or ashort list of numbers. And they are smple, in the
sense that the rule which determines the state of the system at time t+1 from the state of the
system at timet has a brief expression in terms of eementary arithmetic.

All these systems have one novel property in common: whatever Sate one gartsthe systemin
a "time zero," the odds are that before long the system will converge on a certain region of state
gpace cdled the "attractor.” The gates of the system will then fluctuate around the "attractor”
region forever, goparently at random. Thisis"chaos," aremarkable, intriguing phenomenon --
and a phenomenon which, on the surface at least, gppears to have little to do with complex, sdlf-
organizing systems. It is obvious that complex systems are not pseudo-random in the same sense
that these "toy modd" dynamicd systems are. Something more is going on.

One way to Sdestep this problem isto posit that complex systems like brains present "high-
dimengona dynamics with underlying low-dimensiond chaos” Thereis, admittedly, some
evidence for this view: mood cycles, nogtril cycles and EEG patterns demonstrate low-
dimensiond chaatic attractors, as do aspects of animal behavior, and of course numerous
parameters of complex weather systems.

But at bottom, the recourse to dimensiondity is an evasive maneuver, not a ussful explanation.
The ideas of this book proceed from an dternative point of view: that complex, saf-organizing
systems, while unpredictable on the levd of detail, are interestingly predictable on the level of
gructure. Thiswhet differentiates them from smple dynamica sysemsthat are dmost entirely
unpredictable on the level of structure aswell asthe levd of detall.

In other words, | suggest that the popular hype over chaos theory is actudly an enthusasm
over the sudy of complex, self-organizing systems -- a study which is much less developed than
technica chaos theory, but dso far more pregnant with real-life applications. What most chaos
theorigts are currently doing is playing with ample low-dimensond "toy iterations'; but what
most popular expositors of chaos are thinking about isthe dynamics of partially predictable
gructure. Therefore, | sugges, it istime to shift the focus from smple numericd iterationsto
sructure dynamics.
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To undergtand what this means, it sufficesto think alittle about chaos psychology. Even
though the dynamics of the mind/brain may be governed by a strange atractor, the structure of
this strange attractor need not be as coarse as that of the Lorentz attractor, or the attractor of the
logigtic map. The structure of the strange attractor of a complex system contains a vast amount
of information regarding the trangitions from onepatterned system state to another. And this, not
the chaos itsdf, isthe interesting part.

Unfortunately, there is no gpparent way to get at the structure of the strange attractor of a
dynamical system like the brain, which presents hundreds of billions of interlinked variables
even in the crudest forma models. Therefore, | propose, it is necessary to shift up from the level
of physica parameters, and take a " process perspective' in which the mind and brain are viewed
as networks of interacting, inter-creating pr ocesses.

The process perspective on complex systems has considerable conceptua advantages over a
grictly physcdly-oriented viewpoint. It has along and rich philosophica history, tracing back
to Whitehead and Nietszche and, if one interpretsit liberaly enough, dl the way back to the
early Buddhigt philosophers. But what has driven recent complex-systems researchersto a
process view is not this history, but rather the inability of dternative methods to ded with the
computationa complexity of sdf-organizing sysems.

George Kampis's (1991) SHf-Modifying Systems presents a process perspective on complex
systemsin some detall, relating it with various ideas from chemidry, biology, philosophy and
mathematics. Marvin Minsky's (1986) Society of Mind describes a process theory of mind; and
athough histheory is severdly flawed by an over-reliance on ideas drawn from rule-based Al
programs, it does represent a significant advance over sandard "top-down" Al ideas. And,
finaly, Gerdd Eddman's (1988) Neural Darwinism places the process view of the brain on a
sound neurological basis.

Here, however, | will move far beyond neurad Darwinism, societal computer architecture and
component-system theory, and propose a precise cognitive equation, hypothesized to govern the
cregtive evolution of the network of menta processes. When one views the mind and brainin
terms of creetive process dynamics rather than physica dynamics, one finds that fixed points and
dtrange attractors take on agreat ded of psychologica meaning. Process dynamics giverise to
highly structured strange attractors. Chaos is seen to be the substrate of anew and hitherto
unsuspected kind of order.

1.1. COMPLEX SYSTEM S SCIENCE

Chaos theory proper isonly asmall part of the emerging paradigm of complex systems
science. In thepopular literature the word "chaos' is often interpreted very loosdly, perhaps even
as asynonym for "complex sysems science.” But the digtinction is an important one. Chaos
theory has to do with determinism underlying gpparent randomness. Complex systems scienceis
more broadly concerned with the emergent, synergetic behaviors of systems composed of alarge
number of interacting parts.



CHAOTICLOGIC

To explain what complex systems scienceis dl about, let me begin with some concrete
examples. What follows is aahighly ideosyncratic "top twelve' list of some of the work in
complex systems science that strikes me as most impressive. The order of theitemsin theligt is
random (or at least chaotic).

1. Alan Perelson, Rob deBoer (1990) and others have developed computer models of the
immune system as a complex sdf-organizing system. Using these models, they have arrived at
dozens of new predictions regarding immune optimization, immune memory, the connectivity
gructure of the immune network, and other important issues.

2. Stuart Kauffmann (1993) has, over the last three decades, systematically pursued computer
smulations demondrating the existence of "antichaos." He has found that random Boolean
networks behave in asurprisingly structured way; and he has used these networks to mode!
various biologica and economic systems.

3. Gregory Bateson (1980) has modeled a variety of socid and psychologica situations using
ideas from cybernetics. For instance, he has analyzed Bdinese society as a"steady-date" system,
and he has given system+-theoretic andyses of psychologica problems such as schizophreniaand
acoholism.

4. Gerdd Edeman (1988) has devised atheory of brain function called Neurd Darwinism,
based on the idea that the brain, like the immune system, is a self-organizing evolving system.
Similar ideas have been proposed by other neuroscientists, like Jean Pierre Changeux (1985).

5. Starting from the classic work of Jason Brown (1988), a number of researchers have used
the concept of "microgenesis’ to explore the mind/brain as a self- organizing sysem. This point
of view has been particularly fruitful for the study of linguistic disorders such as gphasia.

6. Thereis avery well-established research programme of using nonlinear differentia
equations and thermodynamics to sudy far-from-equilibrium sdf-organizing sysems. The name
most commonly associated with this programm is thet of [lya Prigogine (Prigogine and Stengers,
1984).

7. A diverse community of researchers (Anderson et a, 1987) have used ideas from stochastic
fracta geometry and nonlinear differentid equationsto model the sdlf-organization inherent in
economic processes (such as the stock market).

8. G. Spencer Brown's classic book Laws of Form (1972) gives a smple mathematica
formdiam for deding with sdf-referentia processes. Louis Kauffmann (1986), Francisco Varda
(1978) and others have developed these ideas and applied them to anadyze complex systems such
asimmune systems, bodies and minds.

9. For the past few years the Santa Fe Ingtitute has sponsored an annual workshop on
"Artificid Life" (Langton, 1992) -- computer programs that Smulate whole living environments.
These programs provide vauable information as to the necessary and sufficient conditions for
generating and maintaining complex, stable structures.
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10. John Holland (1975) and his colleagues such as David Goldberg (1988) have congtructed a
research programme of "genetic optimization,” in which computer smulations of evolving
populations are used to solve mathematica problems.

11. Over the past decade, aloose-knit group of researchers from different fields have been
exploring the gpplications of "cdlular automata' to modd various sdf-organizing phenomena,
from fluid dynamics to immunodynamics. Cdlular automata (Wolfram, 1986) are smple sdlf-
organizing sysems that display many eegant emergent properties of an gpparently "generic”
character.

12. Vilmos Csanyi (1990), George Kampis (1991) and Robert Rosen (1992), among others,
have kept dive the grand European tradition of General Systems Theory, using sophisticated
ideas from mathemeatics and physica science to demondirate that complex sdf-organizing
systems must be understood to be creating themselves.

Complex systems science is not as yet an official academic discipling there are no university
departments of complex systems science. However, there are a few research ingtitutes and
professona organizations. For instance, the Santa Fe Ingtitute has supported awide variety of
research in complex systems science, including the work on immunology, antichaos, artificia
life and genetic optimization mentioned above. In recognition of these efforts, the Indtitute
recently recelved a MacArthur Foundation "genius grant.”

The Center for Complex Systems in lllinois has dso, as one would expect from the name,
been the location of agreet ded of complex systems research, mainly dedling with applications
of cdlular automata. And, findly, the Society for Chaos Theory in Psychology, now inits third
year, has served to bring together an impressive number of socid, behaviord and physica
scientigs interested in studying the mind as a complex sdlf-organizing system.

1.1.1. Chaos and " Chaos"

Parentheticaly, it isworth noting that the battle for the word "chaos' is not yet over. A few
weeks after | wrote the preceding paragraphs, | ran across an interesting discussion on the
Internet computer network, which redlly drove this point home. Someone posted a news item on
severd computer bulletin boards, declaring the imminent creetion of anew bulletin board
focusing on chaos theory. The only problem remaining, the news item said, was the selection of
aname. Many variaions were suggested, from "sci.math.nonlinear” to "sci.emergence.chaos’ to
"sai.nonlinear” to "sci.chaos' to "soi.math.chaos' to "sci.complexity.”

Most discussants rejected the names "sci.chaos and sci.math.chaos' as encouraging a
mistakenly wide interpretation of the word "chaos" But the fact is that there are dready severd
unofficial newsgroups dealing with the subject of complex systems science. And these are all
named -- "sci.chaos'! No amount of rationd argumentation can counteract a habit. Thisis
nothing ese but chactic logic a work, in awonderfully self-referentia way. It is chaos
regarding "chaos" but only if one accepts the result of this chaos, and calls complex systems
science''chaos.”
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Perhaps one should not shed too many tears over the fact that the name "chaos theory" is a
variance with standard mathematica usage. After dl, mathematicians did not invent the word
"chaos'! Initsorigind theologica meaning, "Chaos' smply referred to the void existing
between Heaven and Earth. In other words, it had virtudly nothing to do with any of its current
meanings.

But anyhow, | am amused to report that the newsgroup finaly took on the name
"soi.nonlinear.” Thisis dso amisnomer, Snce many nonlinear systems of equations are neither
chaotic nor sdf-organizing. Also, many complex systems have nothing to do with linear spaces
and arehence not nonlinear but alinear. But, be that as it may, one may chak up one for the anti-
"chaos' forced!

1.1.2. General Systems Theory

All kidding aside, however, | do think that using the name "chaos theory™ for complex systems
science has one sgificant disadvantage. It perpetuates an historica falsehood, by obscuring the
very deep connections between the modern theory of sdlf-organizing sysems and the "Generd
Systems Theory" of the forties and fifties.

Today, it seems, the average scientist's opinion of Genera Systems Theory is not very good.
One often hears comments to the effect that "There is no genera systems theory. What
theoretica statements could possibly betrue of every sysem?" In actud fact, however, the
Generd Systems Theory research programme was far from being afailure. I1ts many successes
include Bateson's psychologica theories, Ashby's work in cybernetics, McCulloch's
groundbreaking work on neural networks, and avariety of ideasin thefield of operations
research.

The truth is smply that after a decade or two, Generd Systems Theory collgpsed under the
weight of its own ambitions. It was not proved "wrong" -- it said what it had to say, and then
dowly disappeared. True, it did not turn out to be nearly as productive as its creators had
envisoned; but this doesn't contradict the fact thet it was very productive anyway.

What does modern complex systems science have that Generd Systems Theory did not? The
answer, | suspect, is remarkably smple: computing power. Of the twelve contributions to
complex systems science listed above, seven -- immune system modeling, "antichaos' moddling,
far-from-equilibrium thermodynamics, artificid life, genetic optimization, cdlular automata and
fractal economics -- rely dmogt entirely on computer smulations of one sort or another. An
eighth, Edelman’s theory of Neurd Darwinism, rdlies largely on computer smulations, and a
ninth, Spencer-Brown's saf-referential mathematics, was developed in the context of circuit
design.

Computing power has not been the only important factor in the development of complex
systems science. For example, the revolutionary neurobiologica ideas of Edelman, Changeux,
Brown and others would not have been possible without recent advances in experimenta brain
science. And my own work depends significantly not onlyon ideas derived from computer
smulations, but aso on the theory of dgorithmic information (Chaitin, 1987), a branch of
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computer science that did not exist until the late 1960's. But ill, it isfair to say that greeter
computing power was the main agent respongble for turning relaively serile Genera Systems
Theory into remarkably fertile complex systems science.

The systems theorigts of the forties, fifties and Sxties recognized, on an intuitive leve, the
riches to be found in the study of complex sdlf-organizing systems. But, as they gradudly
redlized, they lacked the tools with which to systematicaly compare their intuitions to red-world
data. We now know quite specificaly what it was they lacked: the ability to smulate complex
processes numericaly, and to represent the results of complex smulations pictoridly. In avery
concrete sense, today's " chaos theory™ picks up where yesterday's Generd Systems Theory |eft
off.

In the following pages, as | discuss various aspects of language, mind and redlity, | will not
often be directly concerned with computer smulations or technica mathematics. However, the
underlying spirit of the book is inextricable from recent advances in mathematical chaos theory,
and more generdly in complex systems science. And these advances would not have been
possible without 1) the philosophy of Generd Systems Theory, and 2) the frame of mind induced
by modern computing power. Science, philosophy and technology are not easily separable.

1.1.3. Feedback Structures

Rather than letting historical reflection get the upper hand, | will end this section with a
concrete example. The basic article of faith underlying complex systems science isthat there are
certain large-scae patterns common to the behavior of different self-organizing sysems. And
perhaps the smplest such pattern is the feedback structure -- the physical structure or
dynamica process that not only maintainsitsalf but is the agent for its own increase. Some
specific examples of feedback structures are asfollows:.

1. Autocatalytic reactions in chemisiry, such as the Belousov- Zhabotinsky reaction. Once
these chemicd reactions get started, they grow by feeding off themselves. Often the rate of
growth fluctuates chacticdly.

2. Increasing returns in economics. This refers to a Situation in which the more something is
sold, theeasier it becomes to sdll. Such Stuations are gpt to be unpredictable -- an higtorica
exampleisthe competition between VHS and Beta format videotapes.

3. Double bindsin psychology. Gregory Bateson's groundbresking theory of schizophrenia
postul ates feedback reactions between family members, according to which miscommunication
leads to more miscommunication.

4. Chaosin immune systems. Mathematica models trace the dynamics of antibody types, as
they stimulate one another to reproduce and then attack each other. In some cases this may result
in concentrations of two antibody types escalaing each other by positive feedback. In other
cases it may result in low-level chaotic fluctuations.
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Of course, feedback structures of asmple sort are present in smple systems aswell as
complex systems (every guitar player knows this). But the important observation is that feedback
structures appear to be acrucia part of sdf-organization, regardiess of the type of system
involved. Pardles like this are what the complex- systems-science researcher is aways looking
for: they hint at generd laws of behavior.

And indeed, the cognitive equation of Chapter Seven came about as an attempt to refine the
notion of "complex feedback structure” into a precise, scientificaly meaningful concept -- to
rigoroudy distinguish between the intricate feedback structures present in economies and mind
and the rlaively smple feedback involved in a guitar solo.

1.2 LANGUAGE, THOUGHT AND REALITY

In thisbook | will be concerned with four types of psychologicd systems: linguidtic systems,
belief systems, minds and redities. All of these systems, | suggest, are strange attractors of the
dynamica syslem which | cal the "cognitive equation.” And they are, furthermore, rdated by the
following system of "intuitive equetions:

Linguistic system = syntactic system + semantic system
Belief system = linguistic system + self-generating system
Mind = dual network + belief systems

Reality = minds + shared belief system

The meanings of the terms in these four "equations’ will be explained alittle later. But the
basic idea should be, if not "clear," at least not completdyblurry. The only important cavest is as
follows the use of the "+" sign should not be taken as a statement that the two entities on the
right sde of each equation have sgnificant independent functiondity. For indance, syntactic
systems and semantic systems may be andyzed separately in many respects, but neither can truly
function without the other.

A dightly more detailed explandtion of the termsin these "equations' isasfollows:
1) A linguistic system consists of a deductive,

transformationa system called a syntactic system, and an interdefined collection of patterns
cdled asemantic system, related according to a principle caled continuous compositionality.
Thisview explains the role of logic in reasoning, and the plaugibility of the Sapir-Whorf
hypothesis.

2) A self-generating system congsts of acollection of stochastically computable processes
which act on one another to create new processes of the same basic nature. The dynamics of
mind may be understood in terms of the two processes of self-generation and pattern
recognition; thisideayiddsthe "cognitive equation.”
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3) A belief systemisalinguidic sysemwhich is dso a sdf-generating system. Bdlief sysems
may be thought of as the "immune sysem’ of the mind; and, just like immune systems, they may
function usefully or pathologicaly. They are a necessary complement to the fundamenta dual
network sructure of mind (as outlined in The Evolving Mind).

4) Reality and the self may be viewed astwo particularly powerful belief sysems -- these are
the "master belief systems™ by andogy to which dl other belief systems are formed.

Each of the "equetions,” as these explanations should make clear, represents anovel twist on a
reasonably well-known idea. For ingtance, the idea of linguistics as semantics plus syntax is
commonplace. But what is new hereis 1) apragmatic definition of "semantics,” and 2) the
concept of "continuous compositiondity,” by which syntactic and semantic systems are proposed
to be connected.

Smilarly, theideathat beliefs are linguitic is not anew one, nor isthe ideathat beliefs
collectively act to create other beliefs. But the specific formulation of these ideas given hereis
quite novel, and leads to unprecedentedly clear conclusions regarding the validity of belief
systems.

The ideathat mind conssts of a data structure populated by bdief sysemsisfarly commonin
theAl/cognitive science community. But the r elation between the belief system and the data
gructure has never been thoroughly examined from a system-theoretic point of view. Nether the
role of feedback in belief maintenance, nor the analogy between immune systems and belief
systems, has previoudy been adequately explored.

And findly, the view of redity as a collective congtruction has become more and more
common over the past few decades, not only in the increasingly popular "New Age' literature
but aso in the intellectua community. However, up to this point it has been nothing more than a
vague intuition. Never before hasit been expressed in alogically rigorous way.

The cognitive equation underlies and guides dl of these complex systemic dynamics.
Elements of mind, language, belief and redlity exist in acondition of congtant chaotic
fluctuation. The cognitive equation gives the overarching structure within which this cregtive
chaos occurs; it gives the basic shape of the "strange attractor” that is the world.

More specificaly, the assertion that each of these systemsiis an attractor for the cognitive
equation has many interesting consequences. It implies that, as Whorf and Saussure claimed,
languages are semantically closed, or very nearly so. It impliesthat belief systems are self-
supporting -- dthough the nature of this salf-support may vary depending on the rationality of
the belief systems. It implies that perception, thought, action and emotion form an unbroken
unity, each one contributing to the cregtion of the others. And it tells us that the relation between
mind and redlity isone of inter subjectivity: minds create aredity by sharing an gppropriate
type of belief sysem, and then they live in the redity which they create.

All thisis obvioudy only abeginning: despite numerous examples, it isfairly absract and
generd, and many details remain to be filled in. However, my god in this book is not to provide

13
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acanon of unassailable facts, but rather to suggest a new framework for studying the remarkable
phenomena of language, reason and belief. Three hundred years ago, L eibniz speculated about
the possihility of giving an equation of mind. It seemsto me that, with complex systems

science, we have findly reached the point where we can take Leibniz serioudy -- and transform
his dream into a productive research programme.

1.3 SYNOPSIS

In this section | will give an extremey compressed summary of the main ideasto be givenin
the following chapters. These ideas may be somewhat opaque without the explanations and
examples given in the text; however, the reader deserves at least a vague idea of the structure of
the arguments to come. For a more concrete idea of where dl thisisleading, the reader isinvited
to skip ahead to Chapter Eleven, where dl the ideas of the previous chapters are integrated and
gpplied to issues of practica human and machine psychology.

Chapters Two and Three: areview of the concepts of pattern, gorithmic information,
associative memory and multilevel control. These idess, discussed more thoroughly in S and
EM, provide arigorous basis for the andysis of psychologica phenomena on an abstract
gructurd leve. A specid emphasisis placed here on the issue of paralle versus sevid
processing. The mind/brain, it isargued, is essentidly aparald processor ... but some processes,
such as deductive logic, linguigtic thought, and smulation of chaotic systems, involve virtual
serial processing -- networks of processes that Smulate seria computation by pardld
operations.

Chapter Four: thefirg part of amulti-chapter andysis of the relationship between language
and thought. Using the concept of astructured transformation system, | consider avery
gpecid kind of linguigtic system, Boolean logic, with afocus on the well-known " paradoxes’
which arise when Boolean logic is gpplied to everyday reasoning. | argue that these "paradoxes’
disappear when Boolean reasoning is considered in the context of associative memory and
multilevel contral. Thisimplies that there is nothing problematic about the mind using Boolean
logic in appropriate circumstances -- a point which might seem to be obvious, if not for the fact
that it has never been demonstrated before. The standard gpproach in forma logic issmply to
ignore the paradoxes!

Chapter Five: thisandyss of Boolean logic is extended to more generd linguistic systems.
It isargued that, as a matter of principle, alinguistic system cannot be understood except in the
context of aparticular mind. In this spirit, | give anew andyss of meaning, very different from
the standard Tarski/Montague possible worlds approach. According to the newapproach, the
meaning of aphraseisthe set of dl patterns associated with it. Thisimplies that meaning is
fundamentaly systematic, because many of the patterns associated with a given phrase have to
dowith other phrases. Inthisview, it is not very ingghtful to think about the meaning of a
linguigtic entity in isolation The concept of meaning is only truly meaningful in the context of a
whole linguistic system -- which isin turn only meaningful in the context of some particular
mind.
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Chapter Six: the connections between language, logic, redity, thought and consciousness are
explored in detall. Firg, the pattern-theoretic analyss of language is gpplied to one of the more
controversa idess in twentieth- century thought: the Sapir-Whorf hypothesis, which states that
patterns of thought are controlled by patterns of language. Then | discusstherole of
consciousnessin integrating language with other thought processes. A new theory of
consciousness is proposed, which clarifies both the biological bases of awareness and the
fundamenta relation between mind and the externa world.

Chapter Seven: abrief excurson into the most impressive modern incarnation of Generdl
Systems Theory, George Kampis's theory of component-systems, which states that complex sdlf-
organizing sysems construct themselvesin avery basc sense. After reviewing and critiquing
Kampissidess, | introduce the novel concept of a self-generating system.

Chapter Eight: formulates a"dynamicd law for the mind," the cognitive equation. Thisisa
dynamicd iteration on theleve of processes and structur es rather than numericd variables. It is
argued that complex systems such as minds and languages are attractor s for this equation: they
supply the structure overlying the chaos of menta dynamics. Learning, and in particular
language acquisition, are explained in terms of the iter ation of the cognitive equation.

Chapter Nine: having discussed linguidtic systems and self-generating systems, | introduce a
concept which synthesizes them both. Thisisthe belief system. | arguethat belief is, initsvery
essence, systematic -- that, just asit makes little sense to talk about the meaning of an isolated
word or phrase, it makes little sense to talk about asingle belief, in and of itsdf. Using examples
from psychology and the hitory of science, | develop the ideathat a bdief sysemisa
structured transformation system, fairly smilar in congtruction to alanguage.

And in this context, | consider aso the question of the quality of abelief system. If one takes
the system+-theoretic point of view, then it makes little sense to talk about the "correctness' or
"incorrectness’ of agngle belief. However, it is possble to talk about a productive or
unproductive beief system. Complex systems thinking does not prohibit normative judgements
of bdiefs, it just digplaces these judgements from the individud-bdlief levd to thelevd of belief
systems.

Chapter Ten: continuing the andyss of blief, | put forth the argument that belief systems
are functiondly and sructuraly analogous to immune systems. Just as immune Systems protect
bodies from infections, belief systems protect expensive, high-level psychologica procedures
frominput. A bdief permits the mind to ded with something "automatically,” thus protecting
sophisticated, deliberative menta processes from having to ded with it. In this context, | discuss
the Whorfiar/Nietzschean hypothesis that self and external reality itself must be consdered as
belief systems.

Next, | propose that beliefs within belief systems can survive for two different reasons:

a) because they are useful for linguigtic systems such aslogic, or
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b) because they are involved in agroup of beliefs that mutually support each other regardiess
of externd utility: i.e, because they are in themselves attractor s of the cognitive equation

Good reasoning, | argue, is done by logica systems coupled with belief systems that support
themsalves mainly by process (). On the other hand, faulty reasoning is done by logica systems
coupled with belief systems that support themsalves mainly by process (b).

Chapter Eleven: the raion between mind and redity is discussed from severd different
perspectives. Fird it is argued that self and redlity are belief systems. Then hyperset theory and
Stuation semantics are used to give amathematica mode of the universe in which mind and
redlity reciprocaly contain one another. Finaly, | present a series of philosophicaly suggestive
gpeculations regarding the relation between psychology and quantum physics.

Chapter Tweve: the phenomenon of dissociation is used to integrate the ideas of the
previous chapters into a cohesive model of mentd dynamics. It is argued that minds naturdly
tend to separate into partidly disconnected subnetworks, with sgnificantly independent
functiondity. This sort of dissociation has traditionally been associated with menta disorders
such as multiple persondity disorder and post-traumeatic stress syndrome. However, | argue that
itisin fact necessary for normal, effective logical thought. For the competition of dissociated
persondity networks provides a natura incentive for the creation of sdf-sugtaining belief
systems -- which are the only type of bdlief systems capable of supporting creative deduction.

Aswell as supplying a new understanding of human persondity, thisideadso givesriseto a
design for anew type of computer program: the A-1S, or "atificid intersubjectivity,” condsting
of acommunity of artificia intelligences collectively living in and creating their own "virtud"
world. It is suggested that A-1S represents the next level of computationd self-organization, after
atifidd intdligence and atificid life.

Chapter Two
PATTERN AND PREDICTION

Language, thought and redlity form an inseparable triad. Each oneis defined by the others,
you can't understand any one of them until you have understood the other two. But in order to
gpeak about thistriad, | must noneless begin somewhere. | will begin with thought, mainly
because thisis the topic with which most of my previous writings have been concerned. In this
chapter | will review the modd of mind presented in my earlier works, embdlishing where
necessary and placing an emphasis on those aspects that are most relevant to the task ahead.

The key phrases for understanding this model of mind are pattern, process, and global
gructure. Themind is andyzed as a network of regularities, habits, patterns. Each pattern takes
the form of aprocess for acting on other mental processes. And the avenues of accessjoining
these processes adhere roughly to a specific globa structure called adual network.  Thisisan
abdract, computationa way of looking at the mind. But it fitsin well with the quditative nature
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of current neurologica data. And, as we shdl seg, it gives agreat ded of insght into many
concr ete issues regarding the human mind.

21. THE LOGIC OF PATTERN

Pattern-symbolic expressions are exact, as mathematicsis, but are not quantitative. They do
not refer ultimately to number and dimension, as mathematics does, but to pattern and Structure.
Nor are they to be confused with the theory of groups orsymbalic logic, though they may bein
some ways akin.

-- Benjamin Lee Whorf

Before | can talk about the structure of the mind, | must first develop an appropriate
vocabulary. In this section and the next, following The Structure of Intelligence, | will present a
generd mathematica vocabulary for discussing structure. These ideas, while abstract and
perhaps rather unexciting in themsdves, are essentid to the psychologica idess of the following
sections.

Before getting formd, let usfirgt take a quick intuitive tour through the main concepts to be
discussed. The naturd place to begin iswith the concept of pattern. | define a pattern, very
amply, asarepresentation as something smpler.

A good example is computer image generation. Suppose one wants to tell one's PC to put a
certain picture up on the screen. There are many ways to do this. Oneisto write a program
telling the computer exactly what color to make each little pixel (each dot) on the screen. But this
makes for avery long program -- there are around twenty thousand pixels on the average screen.

A better way to do it isto come up with some agorithm that exploits the interna structure of
the picture. For ingtance, if oneis dealing with afigure compaosed of four horizonta stripes,
dternatingly black and white, it is essy to tell the computer "fill in the top quarter white, the next
quarter down black, the next quarter down white, and the bottom quarter white." This program
will be much much shorter than the program giving a pixel-by-pixel description of the picture. It
isapattern inthe picture.

The same gpproach works with more complicated pictures, even photographs of human faces.
Micheel Barndey (1989), using fracta image compression techniques, has given very a short
program which generates redlistic portraits and landscapes. In general, computer graphics experts
know how to write short programs to generate very close gpproximations to all ordinary pictures
-- houses, people, dogs, clouds, molecules.,.... All of these things have a certain internd Structure,
which the clever and knowledgeable programmer can exploit.

A screen filled with gtatic, on the other hand, has no internd structure, and there is no short-
cut to generating it. One can rapidly generate "pseudo-random” datic that will 1ook to the human
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eye like random gatic, but one will not be getting a close gpproximation to the particular screen
of datic in question.

In generd, apattern isa short-cut -- away of getting some entity that isin some sense smpler
than the entity itsdlf. A little more formelly, suppose the process y leads to the entity x. Theny
isapatternin x if the complexity of x exceeds the complexity of y.

2.1.1. Structure

From pattern, it is but one smal step to structure. The structure of an entity may be defined as
the set of dl patternsin that entity. For instance, in afigure conssting of acircle next to a
square, there are at least two patterns -- the program for generating the circle and the program for
generating the square.

Next, consider a picture of 100 concentric circles. Cut the picture in haf to form two parts, A
and B. Nether of the two parts A or B contains a pattern involving concentric circles. But the
combination of the two does! A pattern has emerged from the combination of two entities. In
generd, the emer gence between two entities A and B may be defined asthe set of al processes
that are patterns in the combination of A and B but not in ether A or B individudly.

In dl thistak about pattern, one technica point repeatedly arises. Two processes, that are both
patterns in the same entity, may provide different degrees of amplification. Theintensity of a
process rddive to agiven entity, defined formally in the following section, is a measure of how
much the process amplifies the entity -- how strongly the processis a pattern in the entity. It has
to do with theratio of the complexity of the process to the complexity of the entity.

If one considers each pattern to have an intengity, then the structure of an entity becomes what
isknown asa"fuzzy s&t." It contains dl the patterns in the entity, but it contains some more
"intensaly"” than others. And, smilarly, the emergence between two entities becomes a fuzzy <.

The structural distance between two entities A and B may then be defined quite naturaly as
the totd intendty of dl the patternsthat are either in A or notB, but in B or not A. This measures
how much gtructure differentiates A from B. Thus, for instance, the structura distance between
two random entities would be zero, since there would be no structure in either entity -- the
amount of structure differentiating two Structureless entities is zero.

These concepts may be used to measure the total amount of structure inan entity -- a
quantity which | cal the structural complexity. The definition of this quantity is somewhat
technicdl, but it is not hard to describe the basic idea. If dl the patternsin an entity were totally
unrelated to one another (as, perhaps, with this picture of the square next to the circle discussed
above), then one could define the structurd complexity of an entity as the sum of the
complexities of dl its patterns. But the problem is, often dl the patterns will not betotaly
unrelated to each other -- there can be "overlgp.” Basicdly, in order to compute the structura
complexity of an entity, one begins by lining up dl the patternsin the entity: pattern one, pattern
two, pattern three, and so on. Then one starts with the complexity of one of the paiternsin the
entity, adds on the complexity of whatever part of the second pattern was not aready part of the
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firgt pattern, then adds on the complexity of whatever part of the third pattern was not dready
part of the first or second patterns, and so on.

These concepts, as described here, are extremely generd. Very shortly | will outline avery
specific way of developing these conceptsin the context of binary sequences computing
machines. A few chapters later, this andyss of the complexity of sequences and machines will
be extended to dedl with mathematica entities caled hyper sets. However, these technica
gpecifications should not cause one to lose Sight of the extreme generdity of the concepts of
"pattern,” "structure” and "emergence." These concepts, in and of themselves, have nothing to do
with sequences, machines, or hypersets -- they are completely generd and philosophica in
nature. It is essentid to have concrete models to work with, but one must aways keep in mind
that these models are only secondary tools.

Findly, one comment regarding is in order regarding complexity. | have been spesking of the
complexity of an entity as though it were an "objectively” defined quantity, which an entity
possessed in itself independently of any observer. But the story does not end here. One may
define aprocess to be a patternin A relative to a given obser ver if the result of the processis A,
and if the process appears Smpler to A relative to that obser ver.

2.2. PATTERN AND INFORMATION (*)

Now it istime to make the concept of pattern more precise -- to give aspecific, "objective’
measure of complexity. The best way to do thisis with the obscure but powerful branch of
mathematics known as algorithmic information theory.

The concept of dgorithmic information was conceived in the 1960's, by Kolmogorov (1965),
Chaitin (1974) and Solomonoff (1964). Where U is a universa Turing machine understood to
input and output potentidly infinite binary sequences, and x is afinite binary sequence, it may be
defined asfollows:

Definition: The algorithmic infor mation 1(x) contained in x is the length of the shortest sdlf-
delimiting program for computing x on U given the (infinite) input string ...000...

A self-delimiting program is, roughly speaking, a program which explicitly specifiesits own
length; this regtriction to self-ddlimiting programs is desirable for technica reasons which we
need not go into here (Chaitin, 1974). It is not hard to show, using Smulation arguments, that as
the length of x gpproaches infinity, the quantity I(X) becomes machine independent.

Bennett (1982) has criticized this definition, on the grounds that wheét it redlly measuresis
"degree of randomness’ and not "degree of structure.” It assigns arandom segquence maximum
complexity, and a completely repetitive sequence like ...000... minimum complexity. He defines
the logical depth of abinary sequence x, rdative to a universal Turing machine U, to be the
running time on U of the shortest self-ddimiting program which computes x on U from the
(infinite) input ...000... .
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The sequence conggting of the firg billion digits of pi has low dgorithmic information, but,
aoparently, high logica depth. It can be proved that, as n goesto infinity, the vast mgority of
binary sequences of length n have near-maxima agorithmic information and logical depth.

Moshe Koppd (1987) has formulated a third measure of complexity, which he calls
"sophidtication” or "meaningful complexity.” He has shown thet for large n its behavior issmilar
to that of logica depth. Anapproximate opposite of the sophigtication of a sequenceis given by
the crudity defined as follows. Instead of Smply congdering aprogram y for computing the
sequence X, let us consider aprogram y that computes the sequence x from the input sequence z.
Then the crudity of apair (y,z) may be defined as |z|/ly|, where |z| denotes the length of the
sequence z and |y| denotes the length of the sequencey.

S discussesin detail the qualitative properties of sophidtication, dgorithmic information,
logica depth, crudity and a number of hybrid complexity measures. It o introduces a
completely new measure of complexity, called the structural complexity. Structural complexity
differs sgnificantly from dl of the agorithmic information based complexity measures
discussed above. It does not refer to one distinguished way of computing a sequence -- the
shortest, the most "sophidticated,” etc. Rather, it consders al possible economical strategies for
computing a sequence, where an economica strategy for computing X -- or more succinctly a
patternin x -- may be defined as follows, given afixed universa Turing machine U.

Definition: A pattern in x isasdf-ddimiting program y which computes x on U from the
input ...000z000... (it is understood that z extends to the right of the tape head of U), so that the
length of y plus the length of z is less than the length of x. Where | | denotes length, this may be
written

Iyl + [zl < x|
Theintensity of (y,2) inx isthe quantity

1-(yl+ Iz Ix]
(note that intendity is dways pogtiveif (y,z) isactualy a pattern in x, and it never exceeds one).

Note that no generdity would belost if z were set equd to O, or some other constant value.
However, in many gpplicaions the (y,z) notation is useful.

We have introduced adgorithmic information as an "objective’ complexity messure, which
makes the theory of pattern concrete. But this " objective’ measure may be used to generate other,
"subjective’ complexity measures. To see how this can be done, assume some standard
"programming language" L, which assgns to each program y a certain binary sequence L(y).

The specifics of L areirrdevant, so long as it is computable on a Turing machine, and it does not
assign the same sequence to anytwo different programs. Where U isauniversad Turing machine
and v and w are binary sequences, one may then propose:

20
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Definition: Theréative information I(vjw), rdaiveto U and L, isthe length of the shortest
sf-ddimiting program which computes v, on U, from input L(y), wherey isaminima-length
sdf-ddimiting program for computing v on U.

Obvioudy, if v and w have nothing in common, 1(v,w)=I(v). And, on the other hand, if v and
w have alarge common component, then both I(v,w) and I(w,v) are very small. If one setsly| =
I(y[X), one has a measure of complexity relaiveto x.

2.2.1. Fuzzy Setsand Infons

Intuitively, a"fuzzy set" isa st in which membership is not "ether/or” but gradud. A good
exampleisthe set of tal people. Being nearly six foot, | belong to the set of tal peopleto a
somewhat higher degree than my friend Mike who isfive nine, and to amuch higher degree than
Danny DeVito, but to a much lower degree than Magic Johnson.

Formally, afuzzy subset of agiven st E is defined as afunction de from E into some interva
[0,8]. Where x isin E, | will write de(x) for the degree of membership of x in E. de(x)=0 means

that x isnot an dement of E. Unlessit is specified otherwise, the reader should assume that a=1,

in which case de(x)=1 meansthat x is completely an dement of E. The usua dgebra placed on
fuzzy stsis

de(x uniony) = max{ de(x), de(y) },

de(x inter sect y) = min{ de(x), de(y) }
but | shal not require these operations (Kandel, 1986). The only operation | will require isthe
fuzzy set distance |E - F, defined for finite sets as the sum over dl x of the difference |de(x)-
dr(X)).

In Chapter Three | will introduce a few ideas from Situation semantics (Barwise and Perry,
1981; Barwise, 1989), which speaks about infons and stuations. | will defineaninfon asa
fuzzy set of patterns, and will make sporadic use of the following quas- Stuation-theoretic
notetions:

S |-- i meansthat i isafuzzy st of patternsins
S|-- i /Ix meansthat i isafuzzy st of patternsin s, where

complexity ismeasured relative to x, i.e. by 1(,x)

S|--i//Ixtodegreea,

(si,x,a), and

d(s,i,x) = a dl mean that theintengty of i in's, according to
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the complexity measure 1(,X), isd. Here the intengity of i in s may be defined as the average
over dl wini of the product [intengty of win g * [degree of membership of w inii].

In later chapters, | will call aquadruple such as (s, x,a) abelief. x isthe belief-holder, i isthe
entity believed, siswhat i is bdieved about, and aisthe degree to which it is believed.

2.2.2. Structure and Related 1deas

Asin Section 2.1, having formulated the concept of pattern, the next logical step isto define
the structure of an entity to be the set of dl patternsin that entity. This may be consdered asa
fuzzy st -- the degree of membership of w in the sructure of x issmply the intendty of w asa
pettern in X. But for now | shdl ignore this fuzziness, and consider structure as a plain old set.

The gtructura complexity of an entity, then, measures the Size of the structure of an entity.
Thisisavery smple concept, but certain difficulties arise when one attempts to formulate it
precisaly. An entity may manifest a number of closdy related patterns, and one does not wish to
count them al separately. In words. when adding up the sizes of dl the patternsin x, one must
adhere the following process. 0) put dl the patterns in a certain order, 1) compute the size of the
first pattern, 2) compute the size of that part of the second pattern which is not also part of the
fird pattern, 3) compute the Sze of that part of the third pattern which is not dso part of the first
or second patterns, etc. One may then define the Sze | of a set S asthe average over dl
orderings of the eements of S, of the number obtained by the procedure of the previous

paragraph.

Where S(x) isthe set of dl patternsin x, one may now define the structural complexity of x
to be the quantity |S{(x)|. Thisisthe Sze of the set of dl patternsin x -- or, more intuitively, the
tota amount of regularity observable in x. It isminima for arandom sequence, and very smdl
for arepetitive sequence like 000...0. It deems 0101010...10 dightly more complex than 000...0,
because there are more different economica ways of computing the former (for instance, one
may repeat 10's, or one may repeat 01's and then append a 0 at the end). It considers al the
different ways of "looking a" a sequence.

For future reference, let us define the structure Si(D;r,s) of adiscrete dynamica sysem D on
theinterva (r,9) asthe st of dl approximate patterns in the ordered tuple [D(r),...,D(s)], where
D(t) denotesthe state of S at timet.

And, findly, let us define the emer gence Em(X,y) of two sequences x and y as the set St(xy) -
S(x) - S(y), where xy refers to the sequence obtained by juxtaposing x and y. This measures
what might be cdled the gestalt of x andy -- it congsts of those patterns that appear when x and
y are considered together, but not in either x or y separately. Thisisan old ideain psychology
and it is now popping up in anthropology as well. For instance, Lakoff (1987,p.486-87) has
found it useful to describe culturesin terms of "experientia gedtdts’ -- sets of experiences that
occurs so regularly that the whole collection becomes somehow smpler than the sum of its parts.

2.3. STRUCTURE AND CHAQOS
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Before diving into computationa psychology, let us briefly return to atopic raised in the
Introduction: the meaning of "chaos." In Chapter Three it will be shown that the concept of chaos
isrelaed quite closaly with certain psychologica matters, such as the nature of intelligence and
induction.

In mathematics, "chaos' istypicaly defined in terms of certain technica properties of
dynamical systems. For instance, Devaney (1988) defines atime-discrete dynamica system to be
chaotic if it possesses three properties: 1) sengtivity to initia conditions, 2) topologica
trangtivity, and 3) dengty of periodic points. On the other hand, the intuitive concept of chaos --
gpparent randomness emergent from underlying determinism -- seemsto have a meaning that
goes beyond forma conditions of this sort. The mathematica definitions approximate the idea of
chaos, but do not capture it.

In physicd and mathematica gpplications of chaos theory, thisis only aminor problem. One
identifies chaos intuitively, then uses the formd definitions for detailed analysis. But when one
seeks to gpply chaos theory to psychologica or socid systems, the Situation becomes more acute.
Chaos gppears intuitively to be present, but it is difficult to see the relevance of conditions such
astopologicd trangtivity and dengty of periodic points. Perhaps these conditions are met by
certain low-dimensiona subsystems of the system in question, but if so, this fact would seem to
have nothing to do with the method by which we make the educated guess that chaos is present.
"Chaos' has a pragmatic meaning that has transcends the details of point-set topology.

2.3.1. Structural Predictability

In this section | will outline an dternative point of view. For Sarters, | define atempora
sequence to be structurally predictable if knowing patternsin the sequence's past dlows one to
roughly predict patterns in the sequence's future. And | define a satic entity to be structurally
predictableif knowing patternsin one part of the entity alows one to predict patternsin other
parts of the entity. Thisdlows usto, findly, define an environment to be structuraly
predictableif it is somewhat structurdly predictable at each time as well as somewhat
gructuraly predictable over time.

One may give this definition a mathematical form, modeled on the standard epsilon-delta
definition of continuity, but | will omit that here. The only key point isthat, if an environment is
gructurdly predictable, then patterns of higher degree have in a certain sense a higher "chance”
of being found repesatedly. This shows that the assumption of a structurdly predictable
environment implies Charles S. Peirce's declaration that the world possesses a "tendency to take
habits"" The more prominent and rigid habits are the more likely to be continued.

It isinteresting to think about the relationship between structura predictability and chaos. For
example, one key ement of chaotic behavior is sensitive dependence on initial conditions (or,
in physicigts language, postive Ligounov exponent). Sengitive dependence means, informaly,
that dightly vague knowledge of the past leads to extremely vague knowledge of the future. In
precticd terms, if a system digplays sendtive dependence, this means that it is hopeessto try to
predict the exact value of itsfuture state.  Structurd predictability is competible with sengtive
dependence. It is quite possible for a system to possess sengtive dependence on initia
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conditions, so that one can never accurately predict its future ate, but il display enough
regularity of overal structure that one can roughly predict future patterns. Intuitively, this

appears to be the case with complex systemsin the red world: brains, ecosystems, atmospheres.
Exact prediction of these systems behavior isimpossible, but rough prediction of the regularities
intheir behavior iswhat we do every day.

But sensitive dependence does nat, in itsdf, make chaos -- it is only one dement of chaotic
behavior. There are many different definitions of chaos, but they al center around the ideathat a
chaotic dynamical system is one whose behavior is deterministic but appears random.

A pattern-theoretic definition of chaosisasfollows: an entity x isstructurally chaotic if there
are patternsin x, but if the component parts of x have few patterns besides those which are dso
patterns in the whole. For instance, consider the numerica sequence consisting of the first
million digits of the pi: 3.1415926535... There are patterns in this sequence -- every
mathematica scheme for generating the expansion of pi is such a pattern. But if one takes a
subsequence -- say digits 100000 through 110000 -- oneisunlikely to find any additional
patterns there. There may be some extra patterns here and there -- say, perhaps, some strings of
repeated digits -- but these won't amount to much.

Structurd chaosis awesk kind of chaos. All the commonly studied examples of chaotic
dynamica systems have the property that, if one records their behavior over time, one obtainsa
gructurdly chaotic series (the eesiest way to see thisis to use symbolic dynamics). But on the
other hand, the interesting structurally predictable series are not structuraly chagtic.

2.3.2. Attractors, Strange and Otherwise

To probe more deegply into the relation between chaos and prediction, one must consider the
notion of an "attractor.” Let us begin with the landmark work of Walter Freeman (1991) on the
sense of amdl. Freeman has written down a differentia equations mode of the olfactory cortex
of areptile (very smilar to that of a human), and studied these equations via
computersmulaions. The result isthat the olfactory cortex isadynamica system which hasan
“atractor withwings”  Recdll that an attractor for adynamica system isaregion of the space
of possible system states with the property that:

1) sates"sufficiently closg’ to thosein the attractor lead eventudly to states within the
attractor

2) sates within the attractor lead immediately to other states within the attractor.

An attractor which conssts of only one sate is caled a"fixed point.” It isa"seady sate’ for
the system -- once the system is close to that State, it enters that state; and once the systemiisin
that sate, it doesn't leave. On the other hand, an aitractor which is, say, acircleor an dlipseis
cdled a"limit cycde™ A limit cycle represents oscillatory behavior: the system leaves from one
date, passes through a series of other states, then returnsto the first state again, and so goes
around the cycle again and again.
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And a"drange atractor,” findly, isakind of atractor which is neither afixed point nor alimit
cycle but rather amore complex region. Behavior of the system within the set of states
delineated by the "strange attractor” is neither Seady nor oscillatory, but continualy fluctuating
in a chaotic manner. More specific definitions of "strange attractor” can be found in the technica
literature -- for instance, "atopologicaly trangtive attractor” or "atopologicdly transtive
atractor with atransversd homoclinic orbit." But, like the forma definitions of "chaos” these
characterizations seem to skirt around the essence of the matter.

Freeman found that the olfactory cortex has a strange attractor -- afixed set of states, or region
of state gpace, within which it varies. But this strange attractor is not aformless blob -- it hasa
large number of "wings," protuberances jutting out from it. Each "wing" correspondsto acertain
recognized smell. When the system is presented with something new to smell, it wanders
"randomly"” around the strange aitractor, until it settles down and restricts its fluctuations to one
wing of the attractor, representing the smell which it has decided it is perceiving.

Thisisan excdlent intuitive modd for the behavior of complex sdlf-organizing sysems. Each
wing of Freeman's attractor represents a certain pattern recognized -- smdl ischemicd, it is
just amatter of recognizing certain molecular patterns. In generd, the states of a complex sdlf-
organizing systems fluctuatewithin a strange atractor that has many wings, sub-wings, sub-sub-
wings, and so on, each one corresponding to the presence of a certain pattern or collection of
patterns within the system. There is chaotic, pseudo-random movement within the attractor, but
the structure of the attractor itself imposes arough globa predictability. From each part of the
attractor the system can only rapidly get to certain other parts of the attractor, thusimposing a
complex structura predictability that precludes structurd chaos.

In other words, the structure of the dynamics of a complex system consists of the patternsin
its strange attractor. The strange attractors which one usudly sees in chaos texts, such as the
Lorentz attractor, have very little structure to them; they are not structuraly complex. But that is
because these systems are fundamentally quite Smple despite their chaos. A truly complex
system has a highly petterned strange attractor, reflecting the fact that, in many cases, states
giving rise to pattern X are more likdly to lead to states giving rise to pattern Y than they areto
dates giving rise to pattern Z. The states within the attractor represent patterned states; the
patterns of the attractor represent patterns of transition. And these two sets of patterns are not
unrelated.

Chapter Three
THE STRUCTURE OF THOUGHT
Hundreds of thousands of pages have been written on the question: what is mind? Here | will

dispense with the question immediately. In good mathematica form, | will define it away. A
mind isthe structure of an intelligent system.
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This definition has its plusses and minuses. One may endlesdy debate whether it captures
every nuance of the intuitive concept of mind. But it does Stuate mind in the right place: neither
within the physical world, nor totaly disconnected from the physica world. If amind isthe
gructure of a certain physica system, then mind is made of relations between physicd entities.

The quedtion, then, iswhether this system of relations that is mind has any characteristic
gructure. Are dl minds somehow aike? Locomotion can be achieved by mechanisms as
different aslegs and the whed -- isthiskind of variety possble for the mechanisms of
intelligence?| suggest that it is not. There is much room for variety, but the logic of intelligence
dictates acertain uniformity of overall sructure. The god of this chapter isto outline what this
uniform globa gructureis.

Of course, one cannot reasonably define mind in terms of intelligence unless one has a
definition of inteligence a hand. So, let us say thet intelligence is the ability to optimize
complex functions of complex environments. By a"complex environment,” | mean an
environment which is unpredictable on the level of details, but somewhat sructurdly
predictable. And by a"complex function,” | mean a function whase graph is unpredictable on
the leve of detalls, but somewhat structurdly predictable.

The"complex function” involved in the definition of intelligence may be anything from
finding a mate to getting something to et to building atranastor or browsing through alibrary.
When executing any of these tasks, a person has a certain goal, and wants to know what set of
actionsto take in order to achieve it. There are many different possible sets of actions -- each
oneg, cdl it X, hasacertain effectiveness at achieving the god.

This effectiveness depends on the environment E, thus yidding an "effectiveness function”
f(X,E). Given an environment E, the person wantsto find X that maximizesf -- that ismaximaly
effective at achieving the god. But in redlity, oneis never given complete information about the
environment E, either at present or in the future (or in the past, for that matter). So there are two
interrelated problems: one must estimate E, and then find the optimal X based on this estimate.

If you have to optimize a function that depends on a changing environment, you'd better be
ableto predict at least roughly what that environment is going to do in the future. But on the
other hand, if the environment istoo predictable, it doesn't take much to optimize functions that
depend on it. Theinteresting kind of environment is the kind that couples unpredictability on the
level of state with rough predictability on the level of structure. That is. one cannot predict the
future state well even from a good approximation to the present and recent past Sates, but one
can predict the future structure well from a good gpproximation to the present and recent past
structure.

Thisisthe type of partid unpredictability meant in the formulation "Intelligence is the &bility
to optimize complex functions of partidly unpredictable environments.” In environments
displaying thiskind of unpredictability, prediction must proceed according to pattern
recognition. An intdligent syslem must recognize patterns in the past, gore them in memory,
and congtruct amodd of the future based on the assumption that some of these patterns will
goproximately continue into the future,
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Is there only one type of structure capable of doing this? | claim the answer isyes.
3.1. THE PERCEPTUAL-MOTOR HIERARCHY

My hypothessisasmple one: every mind is a superposition of two sructures: a
structurallyassociative memory (also caled "heterarchical network™) and amultilevel control
hierarchy ("perceptua-motor hierarchy” or "hierarchica network™). Both of these structures are
defined in terms of their action on certain patter ns. By superposing these two distinct structures,
the mind combines memory, perception and control in a cregtive an effective way.

Let us begin with multileve control. To solve a problem by the multilevd methodology, one
divides oné's resources into a number of levels-- say, leves...,.3,2,1,0. Leve 0 isthe "bottom
level", which contains a number of problem-solving adgorithms. Each processon level N
contains a number of subsidiary processeson levelsk = 1, 2, ..., N-1 -- it tells them what to do,
and in return they give it feedback as to the efficacy of itsingtructions.

Thisisasmple idea of very broad applicability. One clear-cut example isthe hierarchica
power structure of the large corporation. Level 0 conssts of those employees who actudly
produce goods or provide services for individuals outside the company. Leve 1 conssts of
foremen and other low-leve supervisors. And so on. The highest level comprises the corporate
president and the board of directors.

3.1.1. Perception

A vivid example is the problem of perception. One has avisud image P, and one has alarge
memory consgting of various images z, z,..., zv. One wants to represent the perceived image in
terms of the stored images. Thisis a pattern recognition problem: one wantsto find a pair of the
form (y,z), where y*z=P and z isa subset of {z1,...,zv} . In this case, the multilevel methodology
takes the form of a hierarchy of subroutines. Subroutines on the bottom levd -- level 0 -- output
smple patterns recognized in the input image P. And, for i>0, subroutines on leve i output
patterns recognized in the output of leve i-1 subroutines. In some instances a subroutine may
aso indruct the subroutines on the level below it as to what sort of patterns to look for.

It appearsthat thisis one of the key srategies of the human visud system. Two decades ago,
Hubel and Wiesdl (Hubel, 1988) demonstrated that the brain possesses specific neurd clusters
which behave as subroutines for judging the orientation of line segments. Since that time, many
other neurd clugters executing equally specific visud "subroutines' have been found. Aswell as
perhaps being organized in other ways, these clusters appear to be organized in levels.

At the lowest levd, in the retina, gradients are enhanced and spots are extracted -- Smple
mechanica processes. Next come Ssmple moving edge detectors. The next leve up, the second
level up from the reting, extracts more sophisticated information from thefirst level up from the
retina-- and so on. Admittedly, little is known about the processes two or more levels above the
retina. It is clear, however, that thereis avery prominent hierarchica structure, athough it may
be supplemented by more complex forms of parale information processing (Ruse and Dubose,
1985).

27
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To be extremely rough about it, one might suppose that level 1 correspondsto lines. Then
level 2 might correspond to smple geometrica shapes, level 3 might correspond to complex
geometrica shapes, level 4 might correspond to Smple recognizable objects or parts of
recognizable objects, level 5 might correspond to complex recognizable objects, and level 6
might correspond to whole scenes. To say that level 4 processes recogni ze patterns in the output
of level 3 processesisto say that Smple recognizable objects are constructed out of complex
geometrical shapes, rather than directly out of lines or smple geometrica shapes. Each levd 4
process is the par ent, the controller, of those level 3 nodes that correspond to those complex
geometrical shapes which make up the smple object which it represents. And it is the child, the
controlee, of at least one of the level 5 nodes that corresponds to a complex object of whichiit is
apart (or perhaps even of one of the level 6 nodes describing a scene of which it isa part -- levd
crossing like this can hgppen, so long asit is not the rule).

My favorite way of illugtrating this multilevel control structure is to mention the three-leve
"pyramidd" vison processing pardld computer developed by Levitan and his colleages a the
University of Massachuseits. The bottom level dedls with sensory data and with low-leve
processing such as segmentation into components. The intermediate level takes care of grouping,
shape detection, and so forth; and the top level processes this information "symbolically”,
congtructing an overdl interpretation of the scene. The base level isa512X512 square array of
processors each doing exactly the same thing to different parts of theimage; and the middle level
is composed of a 64X64 square array of relatively powerful processors, each doing exactly the
same thing to different parts of the base-level array. Findly, the top level contains 64 very
powerful processors, each one operating independently according to LISP programs. The
intermediate level may aso be augmented by additiona connections. Thisthree-level perceptud
hierarchy appears be be an extremely effective gpproach to computer vison.

That orders are passed down the perceptua hierarchy was one of the biggest ingghts of the
Gegtdt psychologists. Their experiments (Kohler, 1975) showed that we look for certain
configurations in our visud input. We look for those objects that we expect to see, and we look
for those shapes that we are used to seeing. If alevel 5 process corresponds to an expected
object, then it will tell its children to look for the parts corresponding to that object, and its
children will tel their children to look for the complex geometrical forms making up the partsto
which they refer, et cetera

3.1.2. Motor Movements

Initsmotor control aspect, this multilevel control network serves to send actions from the
abstract level to the concrete level. Again extremdy roughly, say level 1 represents muscle
movements, level 2 represents Smple combinations of muscle movements, level 3 represents
medium-complexity combinations of muscle movements, and level 4 represents complex
combinations of movements such asraising an arm or kicking abdl. Thenwhen aleved 4
process gives an indruction to raise an am, it givesingructions to its subservient level 3
processes, which then give ingtructions to their subservient level 2 processes, which given
ingructionsto level 1 processes, which findly ingtruct the muscles on what to do in order to kick
the ball. This sort of control moves down the network, but of course al complex motions involve
feedback, so that level k processes are monitoring how well their level k-1 processes are doing
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their jobs and adjusting their ingtructions accordingly. Feedback corresponds to control moving
up the network.

In aless abgtract, more practically-oriented language, Berngtein (see Whiting, 1984) has given
aclosdy rlated andyss of motor control. And avery smilar hierarchicd mode of perception
and motor control has been given by Jason Brown (1988), under the name of "microgenesis.” His
ideaisthat lower levels of the hierarchy correspond to older, evolutionarily prior forms of
perception and control.

Let ussum up. The multilevel control methodology, in itsdlf, has nothing to do with petterns.
It isaveryasmple and generd way of structuring perception and action: subprocesses within
subprocesses within subprocesses, each subprocess giving orders to and receiving feedback from
its subgdiaries. In this general sense, the idea that the mind contains amultilevel control
hierarchy is extremely noncontroversa.  But psychological multileve control networks have
one important additiond property. They are postulated to ded with questions of pattern. Asin
the visua system, the processes on level N are hypothesized to recognize patterns in the output
of the processes on level N-1, and to ingtruct these processesin certain patter ns of behavior. It
is pattern which is passed between the different leves of the hierarchy.

3.1.3. Genetic Programming

Findly, there is the question of how an effective multilevel control network could ever come
about. Asthere is no "master programmer™ determining which control networks will work better
for which tasks, the only way for a control network to emergeisviadirected trial and error.
And in this context, the only natural method of trial and error is the one known as genetic
optimization or genetic programming. These fancy words mean Smply thet

1) subnetworks of the control network which seem to be working ineffectively are randomly
varied

2) subnetworks of the control network which seem to be working ineffectively are a) swapped
with one another, or b) replaced with other subnetworks.

This subgtitution may perhaps be subject to akind of "speciation,” in which the probability of
substituting subnetwork A for subnetwork B is roughly proportiond to the distance between A
and B in the network.

Preiminary computer smulations indicate that, under gppropriate conditions, this sort of
process can indeed conver ge on efficient programs for executing various perceptua and motor
tasks. However, a complete empirical study of this sort of process remains to be undertaken.

3.2. STRUCTURALLY ASSOCIATIVE MEMORY

So much for the multilevel control network. Let us now turn to long-term memory. What |
cdl "dructurdly associative memory" is nothing but along-term memory mode which the



CHAOTICLOGIC 30

connections between processes aredetermined not by control structures, nor by any arbitrary
classfication system, but by patterned relations.

Theideaof associative memory has along psychologica higtory. Hundreds, perhaps
thousands of experiments on priming indicate that verbd, visud and other types of memory
disgplay associativity of access. For instance, if one has just heard the word "cat,” and oneis
shown the picture of adog, one will identify it asa"dog" very quickly. If, on the other hand, one
has just heard the word "car and one is shown the picture of adog, identification of the dog asa
"dog" will take alittle bit longer.

Associative memory has dso proved very useful in Al. What could be more naturd than to
suppose that the brain stores related entities near to each other? There are dozens of different
associaive memory designs in the engineering and computer science literature. Kohonen's
(1984) associative memory model was one of the landmark achievements of early neura
network theory; and Kanervas (1988) sparse distributed memory, based on the peculiar statistics
of the Hamming distance, has yielded many driking indgghts into the nature of recal.

Psychologicd studies of associative memory tend to ded with words or images, where the
notion of "associaion” isintuitively obvious. Engineering associative memories use specidized
mathematical definitions of association, based on inner products, bit string comparisons, etc.
Neither of these paradigms seems to have areasonably gener al method of defining association,
or "relatedness.”

The idea at the core of the structurally associative memory isthat relatedness should be
defined in terms of patter n. In the structuraly associative memroy, an entity y is connected to
another entity x if X isapatterniny. Thus, if w and x have common patterns, there will be many
nodes connected to both w and x. In generd, if there are many short paths from w to x in the
gructurdly associative memory, that means that w and x are closdly related; that their Structures
probably intersect.

On the other hand, if y is a pattern emer gent between w and X, y will not necessarily connect
tow or x, but it will connect to the node z = w U x, if thereis such anode. One might expect
that, as arough rule, z would be higher on the multilevel control network than w or z, thus
interconnecting the two networks in avery fundamenta way.

The memory of ared person (or computer) can never be truly associdive -- sometimes two
dissmilar things will be stored right next to each other, just by mistake. But it can be
goproximatdy dructuraly associative, and it can continually reorganize itself so asto maintain a
high degree of structurd associativity despite a continud influx of new information.

In The Evolving Mind this reorganization is shown to imply that sructurdly associative
memories evolve by natural selection -- an entity stored in structurdly associative memory is
likely to "survive' (not be moved) if it fitsin well with (has patternsin common with, generates
emergent pattern cooperatively with, etc.) its environment, with those entities that immediately
surround it.
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3.2.1. The Dynamics of Memory

More specificdly, this reorganization must be understood to take place on many different
levels. There is no "memory supervisor” ruling over the entire long term memory store,
mathematically determining the optima "location” for each entity. So, logicdly, the only form
which reorganization can take isthat of directed, locally governed trial and error.

How might thistrid and error work? The most plausible hypothes's, as pointed out in The
Structure of Intelligence, is as follows: one subnetwork is swapped with another; or else
subnetwork A ismerely copied into the place of subnetwork B. All dse equa, subdtitution will
tend to take place in those regions where associativity iswor se; but there may aso be certain
subnetworks that are pr otected againg having their sub-subnetworks removed or replaced.

If the subgtitution(s) obtained by swapping or copying are successful, in the sense of
improving associativity, then the new networks formed will tend not to be broken up. If the
substitutions are unsuccessful, then more swapping or copying will be done.

Findly, these subgtitutions may take place in amultilevel manner: large networks may be
moved around, and & the same time the smal networks which make them up may be internally
rearranged. The multilevel process will work best if, after alarge network is moved, a reasonable
time period is left for its subnetworks to rearrange among themsalves and arrive a alocaly
optima" configuration. This same "waiting" procedure may be applied recursvely: after a
subnetwork is moved,it should not be moved again until its sub-subnetworks have had a chance
to adequately rearrange themsaves.  Note that this reorganization scheme relies on the
existence of certain "barriers.” For instance, suppose network A contains network B, which
contains network C. C should have more chance of being moved to a given postion insde B
than to a given position out of B. It should have more chance of moving to a given position
ingde A-B, than to agiven position outsde A (here A-B meansthe portion of A that isnot in B).
And soon -- if A iscontained in Z, C should have more chance of being moved to aposition in
Z-A than outsde Z.

In some cases these redtrictions may be so strong as to prohibit any rearrangement at dl: in
later chapters, this sort of comprehensive rearrangement protection will be identified with the
more familiar concept of reality. In other cases the restrictions may be very wesk, alowing the
memory to spontaneoudy direct itsdf through a free-floating, never-ending search for perfect
associativity.

In this context, | will discuss the psychological classfication of people into thin-boundaried
and thick-boundaried persondity types. These types would seem to tie in naturaly with the
notion of rearrangement barriers in the structuraly associative memory. A thick-boundaried
person tends to have generdly stronger rearrangement barriers, and hence tends to reify things
more, to be more resistant to mental change. A thin-boundaried person, on the other hand, has
generdly wesker rearrangement barriers, and thus tends to permit even fixed ideas to shift, to
display aweaker grasp on "redity."



CHAOTICLOGIC 32

The strength and placement of these "rearrangement barriers’ might seem to be a sticky issue.
But the conceptud difficulty is greatly reduced if one assumes that the memory network is
"fractally" structured-- dructured in clusterswithin clugters ... within clusters, or equivaently
networks within networks ... within networks. If thisis the case, then one may smply assume
that a certain "degree of regtriction” comes along with each clugter, each network of networks of
... networks. Larger clusters, larger networks, have larger degrees of restriction.

The only red question remaining iswho assgns this degree. Are there perhaps mental
processes which exist mainly to adjust the degrees of restriction imposed by other processes?
Thisisalarge question, and a complete resolution will have to wait till later. Partof the answer,
however, will be found in the following section, in the concept of the dual network .

3.3. THE DUAL NETWORK

Neither a structuraly associative memory nor amultileve control network can, in itsdf, leed
to intelligence. What is necessary isto put the two together: to take asingle set of
entities/processes, and by drawing asingle set of collections between them, structure them both
according to structural associdivity and according to multilevel control. This does not mean just
drawing two different graphs on the same set of edges: it means that the same connections must
serve as part of astructurally associative memory and part of amultilevel control network.
Entities which are connected via multilevel control must, on the whole, al so be connected via
Structural associativity, and vice versa

A moment's reflection shows thet it is not possible to superpose an arbitrary associative
memory structure with amultilevel control hierarchy in thisway. In fact, such superpostionis
only possibleif the entities stored in the associative memory are distributed in an approximeately
"fractd" way (Barndey, 1988; Edgar, 1990).

Inafractdly distributed structurally associative memory, on the "smalest” scae, each process
is contained in a densaly connected subgraph of “neighbors,” each of which isvery closdy
related to it. On the next highest scale, each such neighborhood is connected to a collection of
"neighboring neighborhoods," so that the elements of a neighboring neighborhood are fairly
closdly rdated to its eements. Such aneighborhood of neighborhoods may be cdled a 2'nd-leve
neighborhood, and in an analogous manner one may define K'th-level neighborhoods. Of course,
this structure need not be gtrict: may be breaksin it on every level, and each process may appear
a severd different vertices.

A good way to understand the fractal structure of the heterarchica network is to think about
the distribution of subjectsin alarge library. One has disciplines, sub-disciplines, sub-sub-
disciplines, and so forth -- clusters within clugters within clusters, rather than a uniformly
digtributed field of subjects. And agood way to visudize the superposition of a hierarchica
network on this structure is to postulate a head librarian dedling with each discipline, an assistant
librarian dedling with each sub-sub-discipline, anassstant assstant librarian dealing with eech
ub-sub-sub-discipling, and so on. If one imagines that each librarian, assstant librarian, etc.,
gives her subsdiaries generd goals and lets them work out their own dtrategies, then one hasa
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control hierarchy that works gpproximately according to the multilevel methodology. The
hierarchy of control islined up perfectly with the fracta heterarchy of conceptud commonadlity.

A dual network, then, isa collection of processes which are arranged smultaneoudy in an
hierarchical network and an heterarchica network. Those processes with close parents in the
hierarchical network are, on the whole, correspondingly closely related in the heterarchicd
network.

Thisbrings us back to the problem of rearrangement barriers. The rearrangement barriers of
the associative memory network may be set up by the heterarchica network, the multilevel
control network. And, srikingly, in the dua network architecture, substituting of subnetworks
of the memory network is equivalent to genetic optimization of the control network. The same
operation serves two different functions; the quest for associativity and the quest for efficient
control are carried out in exactly the same way. This synergy between structure and dynamicsis
immensdy satisfying.

But, important and elegant as thisis, thisis not the only significant interaction between the
two networks. A structurally associative memory is specificaly configured so asto support
andogica reasoning. Roughly spesking, analogy works by relaing one entity to another entity
with which it shares common patterns, and the structuraly associative memory stores an entity
near those entities with which it shares common patterns. And the hierarchica network, the
perceptual-motor hierarchy, requires analogica reasoning in order to do its job. The purpose of
each cluster in the duad network isto ingruct its subservient clustersin the way that it estimates
will best fulfill the task given to it by its magter dugter -- and this estimation is based on
reasoning analogically with respect to the information stored in its memory bank.

Let's get alittle more concrete. The brain is modeled as a duad network of neura networks. It
isconsdered to congst of "level k clusters' of autonomous neura networks, each one of which
conssts of 1) anumber of level k-1 clusters, dl related to each other, 2) some networks that
monitor and control these leve k- 1clusters. The degree of control involved here may be highly
variable. However, the neurologicd evidence shows that entire knowledge bases may be outright
moved from one part of the brain to another (Blakedee, 1991), so that in some cases the degree
of control isvery high.

For example, aleve 2 cluster might consist of processes that recognize shapes of various sorts
in visud inputs, together with a network regulating these processes. This cluster of shape
recognition processes would be organized according to the principle of structuraly associative
memory, S0 that e.g. the circle process and the dllipse process would be closer to each other than
to the square process. This organization would permit the regulating process to execute
systematic andogica search for agiven shape: if in a given Stuation the circle process were seen
to be fairly successful, but the square process not at al successful, then the next step would be to
try out those processes near to the circle process.

3.3.1. Precursors of the Dual Network M odel
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After hinting a the dud network modd in The Structure of Intelligence, and presenting it fully
in The Evolving Mind, | came across two other modes of mind which mirror many of its aspects.
Firg of dl, | learned that many cognitive scientigts are interested in andyzing thought asa
network of interconnected " schema” (Arbib and Hesse, 1986). Thisterm is not dways well
defined -- often a"schemd' is nothing more than a process, an agorithm. But Arbib equates
"schemd' with Charles S. Peirce's "habit," bringing it very close to the concept of pattern. The
globa architecture of this network of schemais not discussed, but the connection isthere
nonetheless.

Also, | encountered the paper "Outline for a Theory of Inteligence” by James S. Albus (1991),
Chief of the Robot Systems Division of the Nationa Indtitute of Standards and Technology. |
was pleasad to find therein amode of mind srikingly similar to the dua network, complete with
diagrams such as Figure 6. Albus's focus is rather different than mine -- he is concerned with the
differentid equations of control theory rather than the agorithmic structure of reasoning and
memory processes. But the connection between the fractal structure of memory and the
hierarchica dructure of control, which is perhaps the most essentia component in the dua
network, is virtudly implicit in his theory.

Putting the schema theory developed by cognitive scientists together with the globa structure
identified by Albus through his robotics work, one comes rather close to a crude version of the
dua network modd. Thisis not how the dua network mode was conceived, but it is arather
satisfying connection. For the dud network structure is, after dl, arather straightforward idea.
What isless obvious, and what has not emerged from cognitive science or engineering, isthe
dynamics of the dud network. The way the dua network unifies memory reorganization with
genetic optimization has not previoudy been discussed; nor has the dynamics of barrier
formation and its relationship with consciousness, language and perception (to be explored in
Chapter Six).

3.4 PREDICTION

The duad network modd, as just presented, dismisses the problem of predicting the future
rather cursorily. But thisis not entirely judtified. Prediction of the behavior of acomplex systlem
isan incredibly very difficult task, and one which lies a the very foundation of intelligence. The
dua network modd has no problem incorporating this sort of prediction, but something should
be said about how its prediction processes work, rather than just about how they are
interconnected.

One way to predict the future of a system, given certain assumptions about its present and
about the laws governing its behavior, isto smply simulate the sysem. But thisis inefficient,
for avery smple physicaigtic reason. Unlike most contemporary digital computers, the brain
worksin pardld -- there are a hundred billion neurons working at once, plus an unknown
multitude of chemical reactionsinteracting with and underlying this neural behavior. And each
neuron isafarly complicated biochemicd system, afar cry from the on-off switch in adigita
computer. But when one smulates a system, one goes one step at atime. To acertain extent,
this wagtes the massive pardlelism of the brain.
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So, the question is, is Smulation the best amind can do, or are there short-cuts? This question
tiesin with some pressing problems of modern mathematics and theoretical computer science.
One of the biggest trendsin modern practical computer scienceis the development of paralle-
processing computers, and it is of great interest to know when these computers can outperform
conventiona serid computers, and by what margin.

3.4.1. Discrete Logarithms (*)

For asmple mathematical example, let uslook to the theory of finite fields. A finitefiddisa
way of doing arithmetic on a bounded set of integers. For instance, suppose one takes the field of
gze 13 (the 9ze must be a prime or a prime raised to some power). Then, in thisfield the largest
number is 12. One has, for example, 12+1=0,10+5=2,3x5=2, and 8 x 3= 12. One can do
divison in afinite fiedd aswell, dthough the results are often counterintuitive -- for instance,
12/8 = 3, and 2/3 = 5 (to see why, just multiply both sides by the denominator).

In finite field theory there is something cdled the "discrete logarithm” of a number, written
dlogs(n). The discrete logarithm is defined just like the ordinary logarithm, as the inverse of
exponentiation. But in afinite field, exponentiation must be defined in terms of the "wrap-
around” arithmetic illugtrated in the previous paragraph. For ingtance, inthefied of Sze 7, 34 =
4. Thus one has dlogs(4) = 4. But how could one compute the log base 3 of 4, without knowing
what it was? The powers of 3 can wrap around the value 7 again and again -- they could wrap
around many times before hitting on the correct vaue, 4.

The problem of finding the discrete logarithm of a number istheoreticaly easy, in the sense
that there are only finitely many possihilities. In our smple example, dl one hasto do istake 3
to higher and higher powers, until al possibilities are covered. But in practice, if the Sze of the
fiedd isnot 7 but some much larger number, this finite number of possibilities can become
prohibitively large.

So, what if one defines the dynamica system n« = dlogs(nk-1)? Suppose one is given ., then
how can one predict mooo? So far as we know today, there is better way than to proceed in order:
first get e, then s, then r, and so on up to nees and mooo. Working on s before one knows e is
essentialy usdless, because adight change in the answer for ne can totaly chagne the answer for
re. The only way to do al 1000 stepsin pardld, it seems, would be to first compute a table of all
possible power s that one might possibly need to know in the course of caculation. But this
would require an immense number of processors; at least the square of the Sze of the field.

Thisexample s, incidentdly, of more than academic interest. Many cryptosysemsin current
use are rdiant on discrete logarithms. If one could devise a quickmethod for computing them,
one could crack al manner of codes; and the coding theorists would have to come up with
something better.

3.4.2. Chaos and Prediction

More physicdistic dynamical systems appear to have the same behavior. The classic example
isthe"logidic" iteration X« = cxk-1(1-Xk-1), where c=4 or ¢ assumes certain vaues between 3.8
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and 4, and the x« are discrete gpproximations of real numbers. This equation modds the
dynamics of certain biologica populations, and it dso gpproximates the equations of fluid
dynamics under certain conditions.

It s;ems very, very likely that there is no way to compute x» from xa on an ordinary seria
computer, except to proceed one step at atime. Even if one adds a dozen or athousand or a
million processors, the same concluson seemsto hold. Only if one adds a number of processors
roughly proportiond to 2n can one obtain a sgnificant advantage from pardldism.

In generd, al systems of equations caled chaotic possess smilar properties. These include
equations modding the wesether, the flow of blood through the body, the motions of planetsin
solar sysems, and the flow of dectricity in the brain. The mathematics of these sysemsis dill in
aphase of rgpid development. But the intuitive picture is clear. To figure out what the westher
will be ninety days from now, one must run an incredibly accurate day-by-day smulation -- even
with highly pardld processing, thereis no vigble dternate strategy .

3.4.3. Chaos, Prediction and Intelligence

A mind isthe gtructure of an intdligent system, and intelligence relies on prediction, memory
and optimization. Given the assumption that some past patterns will persst, amind must aways
explore severd different hypotheses as to which ones will persast. It must explore severd
different possible futures, by a process of predictive extrgpolation. Therefore, intelligence
requires the prediction of the future behavior of partialy unpredictable systems.

If these systems were as chaotic as X = 4xk(1-X«), al hope would be logt. But the weather
system is a better example. It is chaotic in its particular details -- thereis no practical way, today
in 1992, to determine the temperature on July 4 1999 in Las Vegas. But there are certain
persstent patterns that alow oneto predict its behavior in a qualitative way. After dl, the
temperature on July 4 1999 in Las Vegaswill probably be around 95-110 Fahrenheit. One can
make probabilistic, gpproximate predictions -- one can recognize patterns in the past and
hope/assume that they will continue.

Our definition of intelligence conced s the presupposition that most of the prediction which
the mind has to do is andogous to this trivial weether prediction example. No step-by-step
gmulation is required, only inductive/analogical reasoning, supported by memory search.
However, the fact remains that sometimes the mind will run across obstinate Stuations --
prediction problemssthat are not effectively tackled using intuitive memory or using pardlée-
processing shortcuts. In these cases, the mind has no choice but to resort to direct smulation (on
some level of abstraction).

The brain isamassvely pardld processor. But when it runs adirect smulation of some
process, it isacting like aserial processor. In computerese, it isrunning avirtual serial
machine. The ideathat the parale brain runs virtud serid machinesisnot anew one-- in
Consciousness Explained Danid Dennett proposes that consciousnessisavirtud serid machine
run on the paralldl processor of the brain. Aswill be seen in Chapter Six, athough | cannot
accept Dennett's reductionist analysis of consciousness, | find agreat ded of merit in thisidea.
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3.5. STRUCTURED TRANSFORMATION SYSTEMS
To proceed further with my forma theory of intelligence, | must now introduce some dightly
technica definitions. The concept of astructured transformation systemwill be absolutely
essentid to the theory of language and belief to be given in later chapters. But before | can say
what a structured transformation system is, | must define aplain old transfor mation system.
In words, atransformation system conssts of aset | of initials, combined withaset of T
transformation rules. Theinitids are the "given information”; the transformation rules are
methods for combining anddtering the initids into new statements. The deductive system itsdf,
| will cl D(1,T).
For ingtance, in eementary agebra one has transformation rules such as
X=YimpliesX+Z=Y+Z,and XZ=YZ
X+Y)+Z=X+(Y+2)
X-X=0
X+0=X
X+Y=Y+X
If oneisgiventheinitid
2q9-r=1
one can use these transformation rules to obtain
g=(1+r)/2.
The latter formula has the same content as the initid, but its form is different.
If one had atable of numbers, say
r-q
11
2 32
3 2

4 5/2
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99 50

then the "g=(1+r)/2" would be a dightly more intense pattern in one's table than "2q+r=1." For
the work involved in computing the table from "2g+r=1" is alittle grester -- one must solvefor q
esch timer isplugged in, or setransform the equation into "g=(1+r)/2."

Thus, dthough in a sense transformation systems add no content to their initids, they are
capable of producing new patterns. For alist of length 100, as given above, both are clearly
patterns. But what if the list were of length 4? Then perhgps "2q + r=1" would not be a pattern:
the trouble involved in using it might be judged to exceed the difficulty of usng the list itsdlf.

But perhaps q = (1+r)/2 would ill be apattern. It dl depends on who's doing the judging of
complexities-- but for any judge thereislikely to be somelist length for which one formulaisa
pattern and the other is not.

Thisis, of course, atrivid example. A better example is Kepler's observation that planets
move in dlipses. Thisis a nice compact satement, which can be logicdly derived from Newton's
Three Laws of Motion. But the derivation isfarly lengthy and time-consuming. So if onehasa
brief lig of data regarding planetary position, it is quite possible that Kepler's observation will be
asggnificant pattern, but Newton's Three Laws will not. What isinvolved hereisthe complexity
of producing x from the processy. If this complexity istoo great, then no matter how smple
the processy, y will not be a pattern in x.

3.5.1. Transformation Systems (*)

Inthissection | will give abrief formd trestment of "trandformation systems.” Let W be any
s, let A be asubset of W, called the set of "expressons’; and let | ={Wz1, Wy, ..., Wn} bea
subset of W, cdled the set of initials. Let W* denote the set { W,WxW ,WxWxW,...). And let T =
{F1,F2,...,Fn} beaset of transformations; that is, a set of functions each of which maps some
elements of W* into ements of A. For ingtance, if W were aset of propositions, one might have
Fi(x,y)=x andy, and F2(x) = not x.

Let usnow definethe set D(1,T) of dl dements of Swhich are derivable from the
assumptions | viathe transformations T. Firgt of dl, it isclear that | should be a subset of D(1,T).
Let uscdl the dements of | the depth-zero dements of D(I,T). Next, what about € ements of the
form x = K(Azs,...,Am), for somei, where each Ax=l; for some j? Obvioudy, these eements are
ample transformations of the assumptions; they should be e ements of D(I,T) aswdll. Let uscdl
these the depth-one dements of D(I,T). Smilarly, one may define an dement x of Stobea
depth-n dement of D(I,T) if x=K(Ax,...,Am), for some i, where each of the Ax isa depth-p
element of D(I,T), for some p<n. Findly, D(I,T) may then be defined asthe set of dl x which are
depth-n dements of D(I,T) for somen.
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For example, if the T are rules of logic and the | are some propositions about the world, then
D(1,T) isthe set of al propogtions which are logicaly equivaent to some subset of 1. In this case
deduction is amatter of finding the logica consequences of 1, which are presumably a small
subset of thetotdl set S of dl propostions. Thisisthe genera form of deduction. Boolean logic
congsts of agpecific choice of T; andpredicate caculus condsts of an addition onto the set T
provided by Boolean logic.

It isworth noting that, in this gpproach to deduction, truthisinessentid. In formd logicit is
conventiond to assume that one's assumptions are "true" and one's transformations are "truth-
preserving.” However, thisisjust an interpretation foisted on the deductive system after the fact.

3.5.2. Analogical Structure

The st (1,T) constructed above might be cadled atransfor mation system. It may be likened
to aworkshop. Theinitias | are the materias at hand, and the transformations T are the tools.
D(1,T) isthe st of dl things that can be built, usng the tools, from the materias.

What islacking? Firgt of dl, blueprints. In order to apply atrandformation system to redl
problem, one must have some idea of which transformations should be gpplied in which
gtuations.

But if an intelligence is going to gpply atransformation system, it will need to gpply itina
variety of different contexts. It will not know exactly which contexts are going to arise in future.
It cannot retain astack of blueprints for every possible contingency. What it needsis not merdly
astack of blueprints, but a mechanism for generating blueprints to fit Stuations.

But, of coursg, it dready has such amechanism -- itsinnate intdligence, its ability to induce,
to reason by andogy, to search through its associative memory. What intelligence needsisa
transformation system structured in such away that ordinary mental processes can serve asits
blueprint- generating machine.

In S this sort of transformation system is caled a"useful deductive system.” Here, however, |
am thinking more generdly, and | will use the phrase structured transfor mation system
ingtead. A dructured transformation system is a transformation system with the property that, if a
mind wants to make a"blueprint” telling it how to construct something from theinitids usng
the transformations, it can often gpproximately do so by reasoning anaogicaly with respect to
the blueprints from other construction projects.

Anocther way to put it is astructured transformation system, or STS, istransformation
systemn with the property that the proximity between x and y in anided structurally associative
memory is correatedwith the smilarity between the blueprint sets correspondingtox andy. A
trandformation system is structured if the andogically reasoning mind can useiit, in practice, to
congtruct things to order. This congtruction need not beinfdlible -- it is required only thet it
work approximately, much of thetime.

3.5.2.1. (*) A Formal Definition
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One formd definition goes as follows. Let x and y be two dements of D(1,T), and let G 1(X)
and G 7(y) denote the set of dl proofsin the system (1,T) of x and y respectively. Let U equd the
minimum over dl functionsv of the sum av| + B, where B isthe aver age, over al pars (x,y) so
that x and y are both in D(1,T), of the correation coefficient between

A SH(X union v)-S(v), St(y union v) - Stv)]
and

d[Gir(X).G.r(y)]-
Then (1,T) isstructur ed to degree U.

Here d«(A,B) isthe structurd complexity of the symmetric difference of A and B. And d- isa
metric on the space of "set of blueprints”" so that the d-[Gi,1(x),G . 7(y)] denotes of the distance
between the set of proofs of x and the set of proofs of .

If the function v were omitted, then the degree of structuredness of U would be a measure of
how trueit isthat Sructuraly smilar congructions have smilar blueprint sets. But the incluson
of the function v broadens the definition. It need not be the case that smilar x and y have smilar
blueprint sets. If x and y digplay smilar emer gent patterns on conjunction with some entity v,
and x and y have smilar blueprint sets, then this counts as structuredness too.

3.5.3. Transformation, Prediction and Deduction

What do STS's have to do with prediction? To make this connection, it sufficesto interpret the
depth index of an eement of D(I,T) asatime index. In other words, one may assume that to
apply each transformation in T takes some integer number of "time steps,” and consider the
congtruction of an element in D(I,T) as a process of actud tempora congruction. Thisisa
naturad extension of the "materids, tools and blueprints' metgphor introduced above.

A smulation of some process, then, beginswith an initial condition (an eement of I) and
proceeds to apply dynamical rules (eements of T), one after the other. In the case of asmple
iteration like X« = cx«-1(1-xk-1), the initid condition is an gpproximation of area number, and
thereis only one transformation involved, namely the function f(x) = cx(1-x) or some
approximation thereof. But in more complex smulations there may be avariety of different
transformations.

For ingance, a numericd iteration of the form x« = f(k,x«-1) rather than x« = f(x«-1) requires a
different iteration a each time step. Thisis precisdy the kind of iteration used to generate
fractds by the iterated function system method (Barndey, 1988). In this context, oddly enough, a
random or chaotic choice of k leads to amore intricately structured trgectory than an orderly
choiceof k.

S0, the process of amulating a dynamica system and the process of making alogica
deduction are, on the broadest leve, the same. They both involve transformation systems. But
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what about the structur ed part? What would it mean for afamily of smulations to be executed
according to a structur ed transformation system?

It would mean, quite Smply, that the class of dynamica rule sequencesthat lead up to a
gtuation is corrdated with the sructure of the Stuation. With logical deduction, ore often
knows what one wants to prove, and has to find out how to proveit -- soit isuseful to know
what worked to prove smilar results. But with smulation, it is exactly the reverse. One often
wants to know what the steps in one's transformation sequence will lead to, because one would
like to avoid running the whole transformation sequence through, one step at atime. Soitis
useful to know what has r esulted from running through similar transformation sequences. The
same corrdation is useful for smulation as for deduction -- but for a different reason.

Actudly, thisis an overstatement. Smulation makes some use of reasoning from smilarity of
results to Smilarity transformation sequences -- becalise one may be able to guess what the
results of acertain transformation sequence will be, and then one will want to know what similar
transformation sequences have led to, in order to assess the plausibility of one's guess. And
deduction makes some use of reasoning from similarity of transformation sequencesto Smilarity
of results-- one may have an ideafor a"proof strategy,” and use andogica reasoning to make a
guess a whether this strategy will lead to anything interesting. There is adistinction between the
two processes, but it is not precisely drawn.

In conclusion, | propose that most psychological smulation and deduction is done by
structured transformation systems. Some short smulations and deductions may be done without
the aid of structure -- but thisis the exception that provesthe rule. Long chains of deductive
transformations cannot randomly produce useful results. And long chains of dynamica
iterations, if unmonitored by "common sensg’, are likely to produce errors -- thisistrue even of
digitd computer smulations, which are much more meticulous than any program the human
brain has ever been known to run.

Psychologicdly, structured transformation systems are only effective if runin pardld.
Running one transformation after another is very dow. Some smulaions, and some logicd
deductions, will require this. But the mind will do its utmost to avoid it. One demondtration of
thisis the extreme difficulty of doing long mathematica proofsin one's head. Even the greatest
mathematicians used pencil and paper, to record the details of the lat five steps while they filled
up their minds with the details of the next five.

Chapter Four
PSYCHOLOGY AND LOGIC

| have dready taked alittle about deduction and its role in the mind. In this chapter, however,
| will develop this theme much more fully. The rdation between psychology and logicis
important, not only because of the central role of deductive logic in human thought, but also
because it isamicrocosm of the relation between language and thought in generd. Logicisan
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example of alinguigtic system, and it reved's certain phenomenathat are obscured by the sheer
complexity of other linguistic systems.

4.1. PSYCHOLOGISM AND LOGISM

Today, as John MacNamara has put it, "logicians and psychologists generaly behave like the
men and women in an orthodox synagogue. Each group knows about the other, but it is proper
form that each should ignore the other” (1986, p.1). But such was not aways the case. Until
somewhere toward the end of nineteenth century, the two fields of logic and psychology were
closdly tied together. What changed things was, on the one hand, the emergence of experimenta
psychology; and, on the other hand, the rediscovery and development of elementary symbolic
logic by Boole, deMorgan and others.

The early experimenta psychologists purposdy avoided explaining intdligence in terms of
logic. Mentd phenomena were andyzed in terms of images, associations, sensations, and o
forth. And on the other hand -- notwithstanding the psychologica pretensons of Leibniz's early
logicd investigations and Boole's Laws of Thought -- the early logicians moved further and
further each decade toward considering logica operationsas distinct from psychologica
operations. It wasincreasingly redlized on both sdes that the formulas of propostiond logic
have little connection with emotiond, intuitive, ordinary everyday thought.

Of course, no one denies that there is some relation between psychology and logic. After dl,
logica reasoning takes place within the mind. The question is whether matheméticd logicisa
very specid kind of mental process, or whether, on the other hand, it is closely connected with
everyday thought processes. And, beginning around a century ago, both logicians and
psychologists have overwhelmingly voted for the former answer.

The dmost complete dissociation of logic and psychology which one finds today may be
partly understood as a reaction against the nineteenth-century doctrines of psychologism and
logism. Both of these doctrines represent extreme views. logism States that psychology isa
subset of logic; and psychologism sates that logic is a subset of psychology.

Bool€s attitude was explicitly logist -- he optimigtically suggested that the algebraic equations
of hislogic corresponded to the structure of human thought. Leibniz, who anticipated many of
Bool€e's discoveries by approximately two centuries, was ambitious beyond the point of logism as
| have defined it here: he fdlt that dementary symbalic logic would ultimately explain not only
the mind but the physical world. And logism was dso not unknown among psychologidts -- it
was common, for example, anong members of the early Wurzburg school of Denkpsychologie.
These theorigts fet that human judgements generdly followed the forms of rudimentary
mathematica logic.

But dthough logism played a sgnificant part in history, the role of psychologism was by far
the greeter. Perhgps the most extreme psychologism was that of John Stuart Mill (1843), whoin
his System of Logic argued that
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Logic is not a Science digtinct from, and coordinate with, Psychology. So far asit isa Science at
al, itisapart or branch of Psychology.... Its theoretic grounds are wholly borrowed from

Psychology....

Mill understood the axioms of logic as "generdizations from experience.” For indance, he gave
the following psychologica "demongration” of the Law of ExcludedMiddle (which states thet
for any p, ether p or not-p isawaystrue):

Thelaw on Excluded Middle, then, is Smply agenerdization of the universa experience that
some mental states are destructive of other sates. It formulates a certain absolutely constant law,
that the gppearance of any positive mode of consciousness cannot occur without excluding a
correlative negative mode; and that the negative mode cannot occur without excluding the
correlative postive mode.... Hence it follows that if consciousnessis not in one of the two modes
it much bein the other (bk. 2, chap.,7, sec.5)

Even if one accepted psychologism as agenerd principle, it is hard to see how one could take
"demondrations' of this nature serioudy. Of course each "mode of consciousness' or state of
mind excludes certain others, but there is no intuitively experienced exact opposite to each state
of mind. The concept of logical negation is not a"generdization” of but rather a specialization
and falsification of the common psychic experience which Mill describes. The legp from
exclusion to exact oppogition isfar from obvious and was a mgjor step in the development of
mathemétical logic.

Aswewill see alittle later, Nietzsche (1888/1968) aso attempted to trace the rules of logic to
their psychologicd roots. But Nietzsche took atotally different gpproach: he viewed logic asa
gpecid system devised by man for certain purposes, rather than as something whally deducible
from inherent properties of mind. Mill was convinced that logic must follow automatically from
"ampler” agpects of mentaity, and this belief led him into psychologica absurdities.

The early mathematicd logicians, particularly Gottlob Frege, attacked Mill with a vengeance.
For Frege (1884/1952) the key point was the question: what makes a sentence true? Mill, asan
empiricist, believed that al knowledge must be derived from sensory experience. But Frege
countered that "this account makes everything subjective, and if we follow it through to the end,
does away with truth" (1959, p. vii). He proposed that truth must be given a non-psychologica
definition, one independent of the dynamics of any particular mind. This Fregean conception of
truth received its fullestexpression in Tarski's (1935) and Montague's (1974) work on formal
semantics, to be discussed in Chapter Five.

To someone acquainted with forma logic only in its recent manifestations, the very concept of
psychologism islikely to seem absurd. But the truth is that, before the work of Boole, Frege,
Peano, Russll and so forth transformed logic into an intensely mathematica discipline, the
operations of logic did have direct psychologica relevance. Aristotle's syllogisms made good
psychologica sense (athough we now know that much useful human reasoning relies on
inferences which Aristotle deemed incorrect). The smple propositiond logic of Leibniz and
Boole could beillustrated by means of psychologica examples. But the whole development of
modern mathematica logic was based on the introduction of patently non-psychologica axioms
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and operations. Today few logicians give psychology a second thought, but for Fregeit wasa
mgor conceptud battle to free mathematica logic from psychologism.

In sum, psychologists ignored those few voices which ingsted on associating everyday mentd
processes with mathematical logic. And, on the other hand, logicians actively rebelled againgt the
idea that the rules of mathematica logic must relate to rules of menta process. Psychology
benefited from avoiding logism, and logic gained greatly from repudiaing psychologism.

4.1.1. The Rebirth of Logism

But, of course, that wasn't the end of the story. Although contemporary psychology and logic
have few direct relations with one another, in the century since Frege there has arisen abrand
new discipline, one that attempts to bring psychology and logic closer together than they ever
have been before. | am speaking, of course, about artificial intelligence.

Early Al theorigts -- in the Sixties and early seventies-- brought back logism with a
vengeance. The techniques of early Al were little more than gpplied Boolean logic and tree
search, with apinch or two of predicate caculus, probability theory and other mathematical
tricks thrown in for good measure. But every few years someone optimigticaly predicted that an
intelligent computer was just around the corner. At this stage Al theorists basically ignored
psychology -- they fdt that deductive logic, and deductive logic done, was sufficient for
understanding mental process.

But by the eighties, Al was humbled by experience. Despite some incredible successes,
nothing anywhere neara "thinking machine" has been produced. No longer are Al theorists too
proud to look to psychology or even philosophy for assistance. Computer science till relies
heavily on formd logic -- not only Boolean logic but more recent innovations such as model
theory and non-wdl-founded sets (Aczdl, 1988) -- and Al is no exception. But more and more Al
theorigts are wondering now if modern logic is adequate for their needs. Many, disstisfied with
logism, are seeking to modify and augment mathematica logic in ways thet bring it closer to
human reasoning processes. In essence, they are augmenting their vehement logism with smal
quantities of the psychologism which Frege so abhorred.

4.1.2. The Rebirth of Psychologism

Thisreturn to alimited psychologismis at the root of a host of recent developmentsin severd
different areas of theoretica Al. Perhaps the best example is nonmonotonic logic, which has
received a surprisng amount of attention in recert years. But let us dwell, instead, on an area of
research with more direct relevance to the present book: automated theorem proving.

Automatic theorem proving -- the science of programming computers to prove mathemetica
theorems -- was once thought of as a stronghold of pure deductive logic. It seemed so smple:
just apply the rules of mathematica logic to the axioms, and you generate theorems. But now
many researchers in automated theorem proving have redized that thisis only avery smdl part
of what mathematicians do when they prove theorems. Even in this etheredl ream of reasoning,
tallor-made for logica deduction, nondeductive, dogica processes are of equa importance.
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For example, after many years of productive research on automated theorem proving, Alan
Bundy (1991) has come to the conclusion that

Logic is not enough to understand reasoning. It provides only alow-level, step by step
understanding, whereas a high-leve, strategic understanding is adso required. (p. 178)

Bundy proposes that one can program a computer to demondtrate high-level understanding of
mathematical proofs, by supplying it with the ability to manipulate entities caled proof plans.

A proof plan is defined as a common structure that underlies and helps to generate many
differentmathematical proofs. Proof plans are not formulated based on mathematical logic aone,
they are rather

refined to improve their expectancy, generdity, prescriptiveness, smplicity, efficiency and
parsmony while retaining their correctness. Scientific judgement is used to find a balance
between these sometimes opposing criteria (p.197)

In other words, proof plans, which control and are directed by deductive theorem-proving, are
condructed and refined by illogica or dogica means.

Bundy's research programme -- to create aforma, computationa theory of proof plans-- is
about as blatant as pychologism gets. In fact, Bundy admits that he has ceased to think of himsdlf
as aresearcher in automated theorem proving, and come to conceive of himsdlf asa sort of
abgtract psychologist:

For many years | have regarded myself as aresearcher in automatic theorem proving. However,
by analyzing the methodology | have pursued in practice, | now redize that my rea maotivetion is
the building of a science of reasoning.... Our science of reasoning is normative, empirical and
reflective. In these respects it resembles other human sciences like linguigtics and Logic. Indeed
it includes parts of Logic as asub-science. (p. 197)

How smilar thisis, on the surface at least, to Mill's"Logic is ... apart or branch of Psychology"!
But the difference, on adeeper leve, is quite large. Bundy takeswhat | would cal a Nietzschean
rather than a Millean gpproach. He is not deriving the laws of logic from deeper psychologica
laws, but rether studying how the powerful, specidized reasoning tool that we call "deductive
logic" fitsinto the generd pattern of human reasoning.

4.2.LIMITED BOOLEAN LOGISM

Bundy defendswhat | would cal a"limited Boolean logism." He maintains that Boolean logic
and related deductive methods are an important part of menta process, but that they are
supplemented by and continually affected by other menta processes. At first Sght, this
perspective seems completely unproblematic. We think logicaly when we need to, dogicaly
when we need to; and sometimes the two modes of cognition will interact. Very sensble.
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But, as everyone who has taken a semester of university logic iswell aware, things are not so
ample. Even limited Boolean logism has its troubles. | am spesking about the smple conceptud
conundrums of Boolean logic, such as Hempel's paradox of confirmation and the paradoxes of
implication. These dementary "paradoxes,” though so smple that one could explainthemto a
child, are obstacles that stand in the way of even the most unambitious Boolean logism. They
cast doubt as to whether Boolean logic can ever be of any psychological relevance whatsoever.

4.2.1. Boolean Logic and Modern Logic

One might well wonder, why dl this emphasis on Boolean logic. After dl, from the logician's
point of view, Boolean logic -- thelogic of "and", "or" and "nat”" -- ismore than a bit out- of-date.
It does not even include quantification, which was invented by Peirce before the turn of the
century. Computer circuits are based entirely on Boolean logic; however, modern mathematica
logic has progressed as far beyond Leibniz, Boole and deMorgan as modern biology has
progressed beyond Cuvier, von Bagr and Darwin.

But ill, it is not as though modern logicd systems have shed Boolean logic. In one way or
ancther, they are invariably based on Boolean ideas. Mahematicaly, nearly dl logicd systems
are"Boolean dgebras’ -- in addition to possessing other, subtler structures. And, until very
recently, one would have been hard put to name alogistic model of human reasoning that did not
depend on Boolean logic in avery direct way. | have dready mentioned two exceptions,
nonmonotonic logic and proof plans, but these are recent innovations and il in very early
stages of development.

So the paradoxes of Boolean logic are paradoxes of modern mathematica logic in generd.
They are the most powerful weapon in the arsend of the contemporary anti-logist. Therefore, the
most sensible way to begin our quest to synthesize psychology and logic is to dispense with these
paradoxes.

Paradoxes of this nature cannot be "solved.” They are too simple for thet, too devastatingly
fundamentd. So my am hereisnot to "solve" them, but rather to demondtrate that they are
largdly irrelevant to theproject of limited Boolean logism -- if this project is carried out in the
proper way. This demondration islesslogicd than psychologicd. | will assume that the mind
works by pattern recognition and multilevel optimization, and show that in this context Boolean
logic can control mental processes without succumbing to the troubles predicted by the
paradoxes.

4.2.2. The Paradoxes of Boolean Logic

Before going any further, let us be more precise about exactly what these "obstacles' are. |
will ded with four classc "paradoxes’ of Boolean logic:

1. Thefirgt paradox of implication. According to the standard definition of implication one
has"a--> (b -->3@)" for dl aand b. Every true satement isimplied by anything whatsoever. For
ingance, the statement that the moon is made of green cheese implies the statement that one plus
one equals two. The statement that Lasse is a dog implies the statement that 1one Skyeisan
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actress. This"paradox” follows naturaly from the degant classcd definition of "a-->b" as
"ether b, or elsenot &'. But it renders the concept of implication inadequate for many purposes.

2. The second paradox of implication. For dl aand ¢, one has"not-c --> (c-->@)". That is,
if cisfdse, then cimplies anything whatsoever. From the statement that George Bush has red
hair, it follows that psychokinesisisredl.

3. Contradiction sengtivity. In the second paradox of implication, set ¢ equal to the
conjunction of some proposition and its opposite. Then one has the theorem that, if "A and not-
A" istruefor any A, everything elseisalso true. Thismeanstha Boolean logic is incapable of
desling with sets of data that contain even one contradiction. For instance, assumethat "1 love
my mother", and "I do not love my mother” are both true. Then one may prove that 2+2=5. For
aurdy "l love my mother” implies "'l love my mother or 2+2=5" (in generd, "a--> (aor b) ).

But, just as surdly, "'l do not love my mother” and "'l love my mother or 2+2=5", taken together,
imply "2+2=5" (in generd, [aand (not-a or b)] -->b). Boolean logic isamodd of reasoning in
which ambivaence about one's fedings for one's mother leads naturaly to the conclusion that
2+2=5.

4. Hempd's confirmation paradox. According to Boolean logic, "dl ravens are black™ is
equivaent to "dl nonblack entities are nonravens'. That isschemdticdly, " (raven --> black) -->
(not-black --> not-raven)". Thisis a sraightforward consegquence of the standard definition of
implication. But isit not the case that, if A and B are equivaent hypotheses, evidence in favor of
B isevidencein favor of A. It follows that every observation of something which is not black
and aso not araven is evidence that ravens are black. Thisis patently absurd.

4.2.3. The Need for New Fundamental Notions

The standard method for degling with these paradoxes has to acknowledge them, then dismiss
them asirrelevant. In recent years, however, this evasive tactic has grown less common. There
have been severd attempts to modify standard Boolean+based formd logic in such away asto
avoid these difficulties: relevant logics (Read, 1988), paraconsistent logics (daCosta, 1984), and
so forth.

Some of thiswork is of very high quaity. But in a degper conceptud sense, none of it isredly
satidactory. It is, unfortunately, not concrete enough to satisfy even the most logidticaly inclined
psychologist. There is atremendous difference between a convoluted, abstract system jury-
rigged specificaly to avoid certain formd problems, and a systlem with asmple intuitive logic
behind it.

An interesting commentary on thisissueis provided by the following diaogue, reported by
Gian-Carlo Rota (1985). The great mathematician Stanidaw Ulam was preaching to Rota about
the importance of subjectivity and context in understanding meaning. Rota begged to differ (at
least partly injest):



CHAOTICLOGIC 48

"But if what you say isright, what becomes of objectivity, an ideathat is so definitively
formulated by mathematica logic and the theory of sets, on which you yourself have worked for
many years of your youth?'

Ulam answered with "vigble emotion™:

"Redlly? What makes you think that mathematical logic corresponds to the way we think? Y ou
are suffering from what the French cdl adefor mation professondle. ..."

"Do you then propose that we give up mathematica logic?' said I, in fake amazement.

"Quite the opposite. Logic formaizes only very few of the processes by which we
actudlythink. The time has come to enrich forma logic by adding to it some other fundamental
nations. ... Do not lose your faith," concluded Stan. "A mighty fortress is mathematics. It will
rise to the challenge. It dways hes."

Ulam spesks of enriching forma logic "by adding to it some other fundamenta notions.™
More specificdly, | suggest that we must enrich formd logic by adding to it the fundamentd
notions of pattern and multilevel control, as discussed above. The remainder of this chapter is
devoted to explaining how, if one views logic in the context of pattern and multilevel control, al
four of the "paradoxes’ listed above are ether resolved or avoided.

This explanation clears the path for a certain form of limited Boolean logism -- a Boolean
logism that assgns at least a co-garring role to pattern and multileve control. And indeed, in the
chaptersto follow | will develop such aform of Boolean limited logism, by extending the
andyss of logic givenin this chapter to more complex psychologica systems: language and
belief systems.

4.3. THE PARADOXES OF IMPLICATION

Let us begin with the first paradox of implication. How isit that a true satement isimplied by
everything?

Thisis not our intuitive notion of consequence. Suppose one mental process has a dozen
subsdiary menta processes, supplies them dl withstatement A, and asks each of them to tell it
what followsfrom A. What if one of these subsidiary processes responds by outputting true
gatements a random? Justified, according to Boolean logic -- but useless! The process should
not survive. What the controlling process needs to know iswhat one can use statement A for --
to know what follows from statement A in the sense that statement A isan integrd part of its
demongtration.

Thisisanew interpretation of "implies.” In thisview, "A implies B" does not mean smply ™
B+ A", it meansthat A isan integrd part of anatura reasoning process leading towards B. It
meansthat A ishdpful in arriving a B. Intuitively, it means that, when one sees that someone
has arrived at the conclusion B, it is plausble to assume that they arrived at A fir st andproceeded
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to B from there. If one looks at implication thisway -- gructurdly, dgorithmicaly,
informationdly -- then the paradoxes are gone.

In other words, according to the informationd definition, A sgnificantly impliesB if itis
sensble to use A to get B. The mathematica properties of this definition have yet to be
thoroughly explored. However, it is clear that atrue Statement is no longer sgnificantly implied
by everything: thefirg paradox of implication is gone.

And the second paradox of implication has also disappeared. A fdse statement no longer
implies everything, because the generic proof of B from "A and not-A" makes no essentia use of
A; A could be replaced by anything whatsoever.

4.3.1. Informational Implication (*)

In common argument, when one says that one thing implies another, one meansthet, by a
series of logica reasonings, one can obtain the second thing from the first. But one does not
mean to include series of logica reasonings which make only inessentia use of thefirgt thing.
One means that, using the firgt thing in some substantial way, one may obtain the second through
logical reasoning. The question is, then, what does use mean?

If one condders only formulasinvolving --> (implication) and - (negation), it is possbleto
sy something interesting about thisin a purely formal way. Let Bs,...,Bn be aproof of B in the
deductive sysem T union { A}, where T is some theory. Then, one might define A to be usedin
deriving B if ether

1) Bi isidenticd with A, or

2) Bi is obtained, through an gpplication of one of the rules of inference, from B's with j<i,
and A isused for deriving & least one of these B's.

But this smplistic gpproach becomes hopelessly confused when digunction or conjunction
entersinto the picture. And even in this uselesdy smple casg, it has certain conceptua
shortcomings. What if thereisavirtudly identica proof of A which makesno useof A? Thenis
it not reasonable to say that the supposed "use" of A islargdy, though not entirely, spurious?

It is not inconceivable that a reasonable gpproximation of the concept of use might be captured
by some complex manipulation of connectives. However, | contend that what usereally hasto
do withisstructure. Taking about structure is not so cut-and-dried astalking about logical form
-- one dways has alot of loose parameters. But it makes much more intuitive sense.

Let G,7.v(B) denote the st of dl vaid proofs of B, relative to some fixed "deductive system”
(1,T), of complexity lessthan v. An dement of G 7,v is a sequence of steps Bo,B4,...,Bn1, where
Bn=B, and for k>0 Bk follows from B«-1 by one of the transformation rules T. Where Z isan
element of G, 7.v(B), let L(Z) = [BJ/|Z]. Thisis ameasure of how much it smplifies B to proveit
viaZ.

49
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Where G 7.u(B) = {Z1,....Zx}, and pis apositive integer, let
A = LZ)*[1(ZaY)]Up + L(Z)*[1(Z2IY )] Up + ... + LEZN)*[I(ZNY)] Up
B = I(Z4Y)]Up + I(Z2Y)]Up + ... + [I(Zn]Y)] Up
Qov=A/B

Note that, since I (Zi[Y) is dways a podtive integer, as p tends to infinity, Qp,v tends toward the
vaue L(Z2)*1(Z]Y), where Z isthe dement of G 1,v that minimizes1(Z|N). Thesmdler pis, the
more fairly the value L(Z) corresponding to every dement of G,tv iscounted. Thelarger piis,
the more attention is focused on those proofs thet are informationally closeto Y. Theideaisthat
those proofs which are closer to Y should count much more than those which are not.

Definition: Let || be acomplexity measure (i.e.,, a nonnegetive-real-vaued function). Let
(1,T) be adeductive system, let p be apostive integer, and let O<c<1. Then, relaiveto ||, (I,T), p
and ¢, wewill say A significantly implies B to degree K, and write

A -->kB

if K=cL+(1-c)M isthelargest of al numbers such that for some v there exiss an dement Y of
Gi,tv S0 that

1) A=Bo (in the sequence of deductions described by Y)
2)L=L(Y)=BJIYI,
3) M = 1/Qp,v|

According to this definition, A sgnificantly implies B to ahigh degreeif and only if B isan
integral part of a"naturd” proof of A. The "naturalness’ of the proof Y is guaranteed by clause
(3), which saysthat by modifying Y alittle bit, it is not so easy to get asimpler proof. Roughly,
cdause (3) saysthat Y isan "gpproximate locd minimum™ of smplicity, in proof space.

This isthekind of implication that is useful in building up abdief sysem. For, under
ordinaryimplication there can never be any sensein assuming that, snce A --> Bi, i=1,2,...,N,
and the B aretrue, A might be worth assuming. After dl, by contradiction sengtivity afdse
gatement implies everything. But things are not so smple under relevant implication. If a
datement A sgnificantly implies anumber of true statements, that means that by gppending the
statement A to one's assumption set |, one can obtain quality proofs of a number of true
Satements. If these true statements a so happen to be useful, then from a practical point of view
it may be advisable to gppend A to I. Deductively such amoveis not judtified, but inductively it
isjudtified. Thisfitsin with the generd andlysis of deduction givenin S, according to which
deduction is useful only insofar asinduction judtifiesit.

4.4. CONTRADICTION SENSITIVITY
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Having dedt with implication, let us now turn to the paradox of contradiction sengtivity.
According to reasoning given above, if one uses propositiond or predicate caculus to define the
transformation systlem T, one eadly arrives at the following conclusion: if any two of the
propositionsin | contradict each other, then D(1,T) isthe entire set of al propositions. From one
contradiction, everything is derivable.

This property appears not to reflect actua human reasoning. A person may contradict herself
regarding abortion rights or the honesty of her husband or the ultimate meaning of life. And ye,
when she thinks about theoretica physics or parking her car, she may reason deductively to one
particular conclusion, finding any contradictory conclusion ridiculous.

In his Ph.D. dissertation, daCosta (1984) conceived the idea of a paraconsistent logic, onein
which asingle contradiction in | does not imply everything. Others have extended thisideain
various ways. More recently, Avram (1990) has congtructed a paraconsistent logic which
incorporates the idea of "relevance logic." Propostions are divided into classes and the inference
from A to A+B isalowed only when A and B arein the same class. The ideaisvery smple:
according to Avram, athough we do use the "contradiction-sengtive' deductive system of
gandard mathematical logic, we carefully digtinguish deductions in one sphere from deductions
in another, so that we never, in practice, reason "A implies A orB", unless A and B arein the
same "sphere” or "category.”

For instance, one might have one class for statements about physics, one for statements about
women, et cetera. The formation of A or B isalowed only if A and B belong to the same class.
A contradiction regarding one of these classes can therefore destroy only reasoning within that
class. Soif one contradicted oneself when thinking about oné's relations with one's wife, then
this might give one the ability to deduce any statement whatsoever about domestic relations --
but not about physics or car parking or philosophy.

The problem with this gpproach is its arbitrariness: why not one class for particle physics, one
for gravitation, one for solid-gtate physics, one for brunettes, one for blondes, one for
redheads,.... Why not, following Lakoff's (1987) famous andyss of aborigind classfication
systems, one category for women, fire and dangerous things?

Of coursg, it istrue that we rarely make statements like "either the Eingtein equation has a
unique solution under these initia- boundary conditions or that pretty redhead doesn't want
anything more to do with me." But 4ill, partitioning istoo rigid -- it'snot quiteright. It yieldsan
elegant formd system, but of course in any categorization there will be borderline cases, and it is
unacceptable to smply ignore these away.

The "partitioning” gpproach is not the only way of defining relevance formaly. But it seemsto
be the only definition with any psychologica meaning. Read (1988), for instance, disavows
partitioning. But he has nothing of any practical useto put in its place. He mentions the classical
nation of variable sharing -- A and B are mutudly rdevant if they have variablesin common.
But he admits that this concept is inadequate: for instance, "A" and "™-A + B" will in generd
share variables, but one wishesto forbid their combination in a single expresson. He concludes
by defining entailment in such away that
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[T]he test of whether two propositions are logicaly relevant iswhether ether entails the other.
Hence, relevance cannot be picked out prior ... to establishing validity or entailment....

But the obvious problem is, thisis not redly a definition of relevance:

It may of course be objected that this suggested explication of relevanceis entirely circular
andunilluminating, Since it amounts to saying no more than that two propositions are logicaly
relevant if either entails the other....

Read's account of rdlevance is blatantly circular. Although it is not unillumineting from the
forma-logicd point of view; it is of no psychological vaue.

4.4.1 Contradiction and the Structure of Mind

Thereis an an dternate gpproach: to define relevance not by a partition into classes but rather
in termsthe theory of structure. It is hypothesized that a mind does not tend to form the
digunction A or B unlessthesze

%[ (St((A union v)-S(V)]-[St(B union w)-St(w)]%

issmdl for some (v,w), i.e. unless A and B arein some way closely related. In terms of the
gructuraly associaive memory modd, an entity A will generally be stored near those entitiesto
whichitisclosdy rdaed, and it will tend to interact mainly with these entities.

Asto the possibility that, by chance, two completdly unrelated entities will be combined in
some formula, say A or B, it isadmitted that this could concelvably pose adanger to thought
processes. But the overall structure of mind dictates that a part of the mind which succumbed to
sdf-contradiction and the resulting inefficiency, would soon be ignored and dismantled.

According to the modd of mind outlined above, each menta process supervises a number --
say adozen -- of others. Suppose these dozen are reasoning deductively, and one of them fals
prey to an interna sdlf-contradiction, and begins giving out random statements. Then how
effident will that sdif-contradicting process be? It will be the least efficient of dl, and it will
shortly be eiminated and replaced. Mind does not work by absolute guarantees, but rather by
probabilities, safeguards, redundancy and natural selection.

4.4.2. Contradiction and Implication

We have given one way of explaining why contradiction sengtivity need not be a problem
foractud minds. But, as an afterthought, it is worth briefly noting that one may aso approach the
problem from the point of view of relevant implication. The sep from" A and not-A" to B
involves the step "not-A --> A or B". What does our definition of significant implication say
about this? A moment's reflection reveas that, as noted above, clause (3) kicksinhere A is
totally indispensible to this proof of B; A could just aswell be replaced by C, D, E or any other
proposition. The type of implication involved in contradiction sengtivity is not Sgnificant to a
very high degree.
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4.5. CONFIRMATION

Findly, what of Hempd's confirmation paradox? Why, dthough "dl ravens are black” is
equivaent to "al non-black entities are non-ravens” is an observation of ablue chair alousy
piece of evidence for "dl ravens are black"?

My resolution is smple, and not conceptudly origind. Recall the "infon" notation introduced
in Section 2. Just because s |-- i //x to degreed, it is not necessarily the casethat s|-- j //x to
degree d for every j equivaent to i under the rules of Boolean logic. Thisis, bascdly, dl that
needs to be said. Case closed, end of story. Boolean logic isatool. Only in certain cases does the
mind find it useful.

That the Boolean equivaence of i and j does not imply the equdity of d(s;i,x) and d(sj,X) is
gpparent from the definition of degr ee given above. The degree to which (sk,x) holds was
defined in terms of the intengty with which the dements of k are patternsin s, where complexity
is defined by s. Just because i and | are Booleanly equivaent, this does not imply that they will
have equa algorithmic information content, equal structure, equa complexity with respect to
some obsarver s. Setting things up in terms of pattern, one obtains aframework for studying
reasoning in which Hempdl's paradox does not exigt.

3.5.1 A More Psychological View

In case this seemstoo glib, let us explore the matter from amore psychologica perspective.
Assumethat "All ravens are black happens to hold with degree d, in my experience, from my
perspective. Then to whatdegree does "All non-black entities are non-ravens’ hold in my

experience, from my perspective?

"All ravens are black™ isan aid in understanding the nature of theworld. Itisanadin
identifying ravens. It isasignificant pattern in my world that those thingswhich aretypicaly
referred to with the labd "raven,” are typically possessors of the color black. When storing in my
memory a set of experiences with ravens, | do not have to store with each experience the fact that
the raven in question was black -- | just have to store, once, the statement that al ravens are
black, and then connect thisin my memory to the various experiences with ravens.

Now, what about "All non-black entities are non-ravens'? What good does it do me to
recognize this? How doesit smplify my store of memories? It does not, not hardly at dl. When |
cal up anon-black entity from my memory, | will not need to be reminded that it is not araven.
Why would | have thought thet it was araven in the first place? "Raven-ness?' is not one of the
questionswhich it is generdly useful or interesting to ask about entities, whereas on the other
hand "color?' is one of the questions which it is often interesting to ask about physical objects
such as hirds.

So, the red question with Hempel's paradox is, what determines the degree assigned to agiven
proposition s|-- i //x. It isnot purely thelogical form of the proposition, but rather the degree to
which the proposition is useful to X, i.e. the emergence between the proposition and the other
entities which neighbor it in the memory of X. Degreeis determined by psychologica dynamics,
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rather than Boolean logic. Formally, one may say: the logic of memory organization is what
determines the subjective complexity measure associated with x.

It is not always necessary to worry about where the degrees associated with propositions come
from. But when oneis confronted with a paradox regarding degrees, then it is necessary to worry
about it. The real mora of Hempel's paradox, as | seeit, isthat one should study confirmation in
terms of the structure and dynamics of the mind doing the confirming. Studying confirmation
otherwise, "in the abgtract,” borders on meaningless.

In Hempe's paradox one is once again confronted with "what followswhat." Boolean logic
saystha onesbdief in "dl ravens are black™ should be increased following observation of a
blue chair. But in fact, observing ablue chair does and should not lead to an increase in oné's
belief in "dl ravens are black." Hempel's paradox is a sort of quantitative version of the paradox
of implication -- instead of logic saying that B follows from A when it doesn't, one haslogic
saying that an increase in belief of B follows from an increase in belief in A when it doesn't.

4.6. ANIETZSCHEAN VIEW OF LOGIC

At about the same time that Frege, Peano and the rest were laying the foundations of modern
mathematicd logic, Friedrich Nietszche was creating his own brilliantly ideosyncratic view of
the world. Thisworld-view was obscure during Nietzsche's lifetime but, as he predicted, it turned
out to be enormoudy influentia throughout the twentieth century.

While the developments of the preceding sections lie squarely within the tradition begun by
Frege and Peano, they dso fit nicely into the context of Nietszche's thought. In this section | will
take a brief detour from our formal congderations, to explore this observation. In Chapter Ten --
after dediing with bdlief and language -- | will return to Nietzsche's thought, to help us
undergtand the relation between logic, language, consciousness, redity and belief.

4.6.1. The Will to Power

Nietzsche declared consciousness irrdlevant and free will illusory. He proposed that hidden
structures and processes contral virtudly everything we fed and do. Although thisisa
commonplace observation now, a thetime it was aradica hypothess. Nietszche made the first
sudtained effort to determine the nature of what we now call "the unconscious mind.” The
unconscious, he suggested, is made up of nothing more or less than "morphology and the will to
power." The study of human fedlings and behavior is, in Nietszche's view, the study of the
various forms of the will to power.

From the gtart, Nietszche was systematicaly antisystematic; he would have ridiculed anyone
who suggested making achart of dl the possible forms of the will to power. Insteed, he
concentrated on gpplying hisideato avariety of phenomena In Human, All Too Human he
andyzed hundreds of different human activitiesin terms of greed, lugt, envy and other smple
manifestations of the will to power. Subgtantia parts of The Geneal ogy of Morals, Beyond Good
and Evil, and The Twilight of the Idols were devoted to studying ascetics,philosophers, and other
persondity typesin asmilar way. Two entire books -- The Case of Wagner and Nietszche contra
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Wagner -- were devoted to the persondity, music and philosophy of Richard Wagner. The
Antichrist attempted a psychoanayss of Jesus. And in Ecce Homo, he took on perhaps his most
difficult subject: himsdf.

Nietszche was anything but objective. In fact his writings often appear ddusond. His most
famous book, Thus Spake Zarathustra, iswritten in abizarrdly grandiose mock-Biblicd syle.
And Ecce Homo contains chapter titles such as"Why | Am So Wise", "Why | Am So Clever”,
and "Why | am aDedtiny", aswell asalengthy description of his diet. But Nietszche did not
mind appearing crazy. He did not believe in an obj ective logic, and he repeatedly stressed that
what he wrote down were only his persona truths. He encouraged his readers to discover their
own truths.

He did not, however, believe that everyone's persona truth was equally vauable. According to
Nietszche, only a person with the strength to contradict himsdf continualy and ruthlesdy can
ever arive & sgnificant ingghts. A person lacking this strength can only repeet the illusons that
make him fed powerful, the illusions that enhance the power of the society which formed him. A
person possessing this strength possesses power over himsdlf, and can therefore grope beyond
illuson and make a persond truth which is genuinegly his own.

4.6.2. Nietzsche on Logic

Logic, according to Nietszche, is smply one particularly fancy manfestation of the will to
power. At the core of mathematics and logic isthe "will to make thingsequa” -- the collection of
various phenomenainto classes, and the assumption that dl the phenomenain each class are
essentidly the same. Nietszche saw thisas alie. It isanecessary lie, because without it
generdization and therefore intelligence isimpossble. As Nietszche put it in his notebooks
[1968a, p. 277],

[T]hewill to equality isthe will to power... the consequence of awill that as much as
possible shall be equd.

Logic is bound to the condition: assume there are identical cases. In fact, to make possible
logicd thinking and inferences, this conditionmust first be treated fictitioudy asfulfilled....

The inventive force that invented categories labored in the service of our needs, namely of our
need for security, for quick understanding on the basis of signs and sounds, for means of
abbrevidion....

Sologicisalie, but anecessary one. It isaso alie which tends to make itsalf subjectivey
true: when an intelligence repeatedly assumes that a group of phenomena are the same for
purposes of caculation, it eventualy comes to believe the phenomenareally areidentical. To
quote Nietszche's notebooks again (1968a, p. 275):

It cannot be doubted that al sense-perceptions are permeated with vaue judgements.... First
images..... Then words, gpplied to images. Findly concepts, possible only when there are words
-- the callecting together of many images in something nonvisible but audible (word). Thetiny
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amount of emotion to which the "word" givesrise, as we contemplate smilar images for which

one word exigts -- this weak emotion is the common element, the basis of the concept. That weak
sensations are regarded as dike, sensed as being the same, isthe fundamentd fact. Thus
confusion of two sensations that are close neighbors, as we take note of these sensations....
Bdieving isthe prima beginning even in every senseimpresson....

Thevaluation "I believe thet thisand that is 0" is the essence of truth. In vauations are
expressed conditions of preservation and growth. All our organs of knowledge and our senses are
developed only with regard to conditions of preservations and growth. Trust in reason and its
categories, and didectic, therefore the vauation of logic, proves only their usefulness for life,
proved by experience -- not that something istrue.

That agreat dedl of belief must be present; that judgements may be ventured; that doubt
concerning dl essentid vauesislacking -- that isthe precondition of every living thing and its
life. Therefore, what is needed is that somethingmust be held to be true -- not that something is
true.

"Thereal and the apparent world" -- | have traced this antithes's back to value relaions. We
have projected the conditions of our preservation as predicates of being in genera. Because we
have to be stable in our beliefs if we are to prosper, we have made the "red” world aworld not of
change and becoming, but one of being.

Thisiswhat Nietzsche meant when he wrote "there are no facts, only interpretations.” A fact
is an interpretation which someone has used so often that they have come to depend upon it
emotionaly and cannot bear to conceive that it might not reflect a"true” redity. Asan example
of this, he cited the Aristotelian law of contradiction, which statesthat "A and not-A" is dways
fase, no matter what A is

We are unable to affirm and to deny one and the same thing: thisis a subjective empirica law,
not the expression of any 'necessity’ but only of an inability.

If, according to Arigtotle, the law of contradiction isthe most certain of dl principles, if itis
the ultimate and most basic, upon which every demondrative proof rests, if the principle of every
axiom liesin it; then one should congder dl the more rigoroudy what presuppositions aready
lie a the bottom of it. Either it asserts something about actudity, about being, asif one dready
knew this from another source; that is, asif opposite attributes could not be ascribed to it. Or the
proposition means: opposite attributes should not be ascribed to it. In that case, logic would be
an imperative, not to know the true, but to posit and arrange aworld that shal be caled true by
us.

Note how different thisis from Mill's shalow psychologism. In the Introduction | quoted
Mill's"derivation” of the Law of Excluded Middle (which is equivdent to the law of
contradiction, by an application of deMorgan'sidentities). Mill sought to justify this and other
rules of logic by gpped to psychologicd principles. In Mill's view, the truth of "A or not-A"
follows from the fact that each ideahas a''negative idea,” and whenever an ideais not present,
itsnegativeis. Thisis avery wesk argument. One could make a stronger psychologica argument
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for the fasity of "A and not-A" -- namely, one could argue that the mind cannotsmultaneoudy
entertain two contradictory ideas. But Nietzsche's point is that even this more plausible argument
isfalse. Aswe dl know from persond experience, the human mind can entertain two
contradictory ideas a once. We may try to avoid this state of mind, but it has a habit of coming
up over and over again: "l love her/ | don't love her", "l want to study for thistest/ | want to
listen to the radio instead". The rule of nortcontradiction is not, as Mill would have it, correct
because it reflects the laws of mental process -- it is, rather, something cleverly conceived by
human minds, in order to provide for more effective functioning in certain circumstances.

Onerather ampligtic and gtilted way of phrasing Nietszche's view of the world is asfollows:
intelligence isimpossible without a priori assumptionsand rough approximation
algorithms, so each intelligent system (each culture, each species) settles on those
assumptions and approximations that appear serveits goals best, and acceptsthem as
"true" for the sake of getting on with life. Logic is smply one of these approximations, based
on the fase assumption of equdlity of different entities, and many auxiliary assumptions as well.

Thisisnot dl that different from Saint Augustines maxim "I believe, so that | may
undergtand." Augustine -- like Leibniz, Nietzsche and the exigentidids after him and like the
Buddhists and Sophists before him -- redlized that thought cannot proceed without assuming
some dogmatic presupposition as afoundation. But the differencein attitude between Augustine
and Nietzscheis griking. Augugtine wants you to believe in exactly what he does, so that you
will understand things the same way he does. Nietzsche, on the other hand, wants you to believe
and not believe a the same time; he wants you to assume certain approximations, to commit
yoursdf to them, while at the same time continuadly redizing their tentative nature.

So, what does dl this have to do with the mathematical ideas of the preceding sections?
Nietzsche saw a universal form underlying the various possible forms of logic -- the will to
power. | do not disagree with this diagnosis, but | fed that it is too absiract. The structurd logic
described above is Nletzschean in spirit, but it is more detailed than anything Nietszche ever said
about logic: it makes explicit the dependence of logica reasoning processes on the biases,
experiences and abilities of the mind that is doing the reasoning. It triesto capture this
dependence in a precise, mathematical way. The "a priori assumptions and rough approximation
dgorithms' comeinto play in the process of pattern recognition, of complexity evaluation.

Logicisnot acorollary of other psychologica functions, it isa special psychologica function
of rdaively recent invention, one with its own strengths, weaknesses and peculiarities. But it has
neither meaning or utility outside of the context of the mind which maintainsit and which it
helps to maintain. This was Nietzsche's view of logic, and it fitsin rather well with the more
forma explorations given above.

Chapter Five
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LINGUISTIC SYSTEMS

Alfred Tarski, who pioneered the mathematica semantics of formal languages (Tarski, 1935),
adamantly maintained the impossibility of amathematica semantics of natural language. But
nevertheless, hiswork spawned aminor intdlectud indudry in the andyss of naturd languages
using forma semantics. In this chapter | will add anew twist to this research programme -- | will
give amathematicd andyss of language and meaning from a patter n-theor etic rather than
forma-logicd angle, with an emphasis on the fundamentdly systemic nature of language.

The idea that language has to do with pattern is not a new one. It was present in the
gructurdism of Ferdinand de Saussure. And, more pertinently, it played a centrd rolein the
controversa thought of Benjamin Lee Whorf. Although a great ded of attention has been paid
to Whorf's linguistic rdativity hypothesis (Whorf, 1956), very little has been written about the
generd philosophy of language underlying hiswork in comparative grammar and semantics. Al
of Whorf's thought was grounded in a conviction that language is, in some sense, made of
pattern and Structure:

Because of the systemtic, configurative nature of higher mind, the "patternment” aspect of
language always overrides and controls the "lexation” or name-giving aspect.... We are dl
migtaken in our common belief that any word has an "exact meaning.... [ T]he higher mind dedls
in symbols that have no fixed reference to anything, but are like blank checks, to befilled in as
required, that stand for "any vaue' of agiven varidble, like ... the x, y, z of dgebra....

We should not however make the mistake of thinking that words, even as used by the lower
persona mind, represent the opposite pole fromthese variable symbols.... Even the lower mind
has caught something of the gebraic nature of language; so that words are in between the
variable symbols of pure patternment ... and true fixed quantities. The sentence "1 went dl the
way down there just in order to see Jack” contains only one fixed concrete reference; namely,
"Jack." The rest is pattern attached to nothing specificaly....

According to Whorf, alanguage conssts of patterns which interact according to certain rules,
which can somehow take one another as arguments, and which only occasionally make direct
"reference’ to "red," externd objects.

In this chapter | will eaborate on this powerful insght, using the concepts developed in
Chapters Two and Three. One result of this exploration will be agenera mode of language asa
gpecid kind of structured transformation system. Syntactic rulesform atransformation
systemn, and semantics determines the andogica ructure of this sysem. This view of language
will dlow usto explore the relation between language and thought in amuch clearer light than
has previoudy been available. It will aid us in understanding how language relates with
deduction, consciousness and belief, and how language aids in the devel opment and maintenance
of those congtructions which we cal self and external reality.

5.1. SYNTACTIC SYSTEMS
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Richard Montague was the first person to make a full-scale effort to prove Tarski wrong, by
applying the absgtract semantic ideas of mathematical logic to naturd languages. Dueto his
pioneering papers, and the subsequent work of Partee (1975) and others, we can now anayze the
semantics of particular sentencesin terms of forma logic. Thisis no smdl accomplishment. In
fact, at the present time, no other theory of semantics, mathematical or no, can boast as effective
atrack record.

S0, inthis section, | will begin the discussion of language by reviewing the main points of
Montague grammar -- the syntactica theory that underlies Montague semantics. Then | will
move to the more genera notion of syntactic system, which will lead toward a deeper
understanding of linguigtic dynamics.

5.1.1. Montague Syntax

Naturad languages are frequently ambiguous: one word or phrase can have more than one
meaning. This creates problems for mathematicd logic; therefore Montague chose to ded only
with disambiguated languages. Within the context of the forma approach, thisis not a
restriction but rather a methodologicd choice: any formd language can be mapped into a
corresponding disambiguated formal language, by one of anumber of Smple procedures.

For ingance, in the "language” of vector dgebra, ixjxk is ambiguous, and to disambiguate it
one must introduce parentheses, obtaining (ixj)xk, and ix(jxk). One way to disambiguate an
English sentenceisto draw an "andysistree” for each interpretation of the sentence, and take
these trees to be the e ements of the disambiguated language. Thisis awkward, yes, but it isnot a
forma obstacle.

So, according to Montague, a disambiguated language consgts of:

1) aset of syntactic operations, each of which maps sequences of syntactic expressonsinto
single syntactic expressions,

2) ast of syntactic categories, which contain dl possible words,
3) syntactic rules, tdling which operations may be gpplied to words in which categories.

The disambiguity of the language is ensured by further axioms gating, in effect, that each
syntactic expression can be obtained in accordance with the syntactic rulesin exactly one way.

For ingtance, consder the operation F with three arguments, defined so that F(X,y,z) isthe
gatement "x y z." Congder the categories "noun” and "trangtive verb." There isa syntactic rule,
in English, saying thet this operation can generdly be applied if x and zarenounsand y isa
trangtive verb. Thusyidding, for instance K, kill, you) = "1 kill you".

5.1.1.1. Montague's Axioms (*)
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Formdly, in Montague's terminology, a disambiguated language is an ordered quintuple
(A{F} {Xd},S,do), defined by the following axioms:

1 {FlinL} isaset of syntactic operations, where L is an index set. Each operation maps
finite ordered sets of syntactic expressons into syntactic expressons.

2) D isacollection of syntactic category names

3) {Xq, din D} isaset of setsof basic expressions, each associated with a category name. It is
possible for the same basic expression to have two different category names and hence belong to
two different X

4) Sisaset of syntactic rules, each rule having the interpretation "If xa belongsto category ¢,
and ... and x» belongs to category dn, then F(xa,...,xn) must belong to category dn+1" for somel in
L.

5) do isagpeciad category name, to be used for the set of basic expressions denoting truth
values.

6) A isthe st of al expressons generated by fredy gpplying compositions of eements of the
st {F,linL} tothesat {x: xisin Xd for somed in D}.

7) No basic expression can be an output of any syntactic operation
8) No expression in A can be the output of two different syntactic operations

9) No syntactic operation can produce the same output from two different input expressons
(i.e. the K are one-to-one)

Theformdismis obscure and complex, but the ideas are not particularly subtle. Thefirst six
axioms define the basic s#t-up, and the last three axioms ensure disambiguity.

5.1.2. Syntactic Systems

A Montague grammar is atransformation system, in the sense defined above -- the
transformation rules are the "syntactic operations,” and theinitias are the "basic expressons.”
But it isavery specid kind of transformation system. | will need to ded with a somewhat less
redtrictive transformation-system modd of grammatica structure, which | cal asyntactic
system. The "syntactic system™ contains the "disambiguated language” as a specid case, but it
adso includes avariety of sructures which the Montagovian andysisignores.

The fird step toward syntactic systemsis the Sausseurean structuralist observation that,
gyntacticdly, "John" and "Mike" are the same, asare "cat" and "rat.” It is not the meaning of a
word that matters, but only the way it relatesto other words. Therefore, it is naturd to define a
word, for the purposes of syntax, as arelation between other words.
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More specificaly, one may characterize aword as afuzzy set of functions, each of which
which takesin a sequence of syntactic expressons and puts out a Singlesyntactic expresson. And
one may characterize a punctuation mark in the same way. The class of syntactic expressons
need only be defined, at this point, as a subset of the set of ordered sets of wordsand
punctuation marks. From here on | will omit reference to punctuation marks, and speak only of
words; but this does not reflect any theoreticd difficulty, only adesire to avoid tedious figures of
speech.

What makes a collection of functions a syntax isacollection of condraints. Congrantstell us
which sorts of expressons may be put into which inputs of which words. Thus they embody
explicit grammaticd rules, as wdl as"grammatico-semantic” rules such as the rule which tdls us
that the subject of theword "to walk”" must be an animate object.

For ingance, the word kiss isidentified, among other functions, with a function fviss that has
three arguments -- a subject, an object and amodifier. fkiss(I,my wifedefinitively) = | kissmy
wife dfinitively.

And the word wife isidentified with, among other functions, a function fwire that has at least
five arguments. How one linesthem up isarbitrary -- one may write, for instance,
fwite(X1,X2,X3,X4,X5,X6), Where:

x1 is congtrained to be the subject of averb of which wife is the object,

x2 is condrained to be a verb phrase of which wife isthe object,

X3 is congtrained to be an adjectivid phrase modifying wife,

Xa is congtrained to be a verb phrase of which wife is the subject,

xs IS congtrained to be the object of a verb phrase of which wife isthe subject.

Arguments that are not filled may smply be left blank. For instance, fuite( , ,my lovely, edts, too
much pie) is"my lovely wife ests too much pie" And fuite(l,kKissmy, , ) is”l kissmy wife."

fi isgmilar to fwite in its syntactic sructure. And, more smply, fmy isidentified with afunction
of two arguments, one of which is consgtrained to be a noun phrase, one of which is congtrained
to be an adverbid phrase.

In these smple examples | have mentioned only drictly grammatical condraints. An example
of alessgrammatica congraint would be the restriction of the object of "kiss' to entitieswhich
are concrete ratherthan abstract. Thisis an example of aconstraint which need not necessarily be
fulfilled. People may use the word "kiss' metgphoricdly, asin "When Elwood threw his boss out
the window, he kissed his job goodbye." But if something is concrete, it fulfills the congraint
better than something that isn't animate. Thus a condraint isafuzzy st -- it tels not only what
is alowed, but what isbetter, more easily permissble, than whét.
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5.1.3. A Formalization (*)

Let's get more precise. Given a set of "concrete”’ entities X (which may well be the empty st),
asyntactic systemover X may then be defined as

1) A collection H of subsets of X.

2) A callection of constraints -- at least one for each set in H. Each congtraint may be written
in the form f(i,x1,x2,...), ahd defines a series of fuzzy sets Cj(i). Let d(j,i,x) denote the degree to
which x bdongs to Cj(i). Then the interpretation isthet, in a Stuation in which infon i obtains,
X can be "plugged into" the x pogtion in f with acceptability leve d(j,i,x). C(f), the collection of
Ci(i) corresponding to f, is the collection of condrantsimplicit inf.

3) A collection W+ = { W ,WH#HW , WHWHW,...,W#n,...}, where A#B is defined as the set of dl
possible entities obtainable by applying the functionsin A to the functionsin B, and W#n
denotes WHAW#.. #W iterated n times. These sets are called "possible syntactic expressons,” and
are the dements of the fuzzy sets Gi(i f).

Each dement x of W* has a certain "admissbility” A(i,x) defined inductively asfollows. The
raw admissbility RA(X) of the abgtract form "f(i,a1,,...)," wherethe g arein W, isthe sum
over j of the quantities d(j,i,f,g). And the raw admissbility of an abstract form "f(i,q, o, ...)"
wherethe g arein W#(n-1), isthe sum over j of the product d(j,i,f,g) * RA(Q).

Findly, each dement of W* is potentidly redized by a number of different abstract forms of
this nature. The admissibility of an dement E of W*, relative to agiven Stuation s, isthe
maximum over al abstractforms x that yield E of the product RA(X) * di(s). This measuresthe
extent to which the formation of the expresson E is grammatical.

5.1.4. A Compar ative Analysis

Despite the different mathematical form, my definition of "syntactic sysem” is not
tremendoudy different from the Montagovian definition of "disambiguated language.” The
gyntactic system represents a generalization of, rather than aradica break from, Montague
grammar. There are, however, severd important distinctions that may be drawn between the two
approaches.

For one thing, loosely following Barwise and Perry (1985), Barwise (1989), and Devlin
(1991), the definition of syntactic system incorporates an infoni at every juncture. Each redl
Stuation supports certain infons to certain degrees. Montague assumes thet there is one big
gtuation, in which everything applies; but his axioms could be "stuated” without too much
difficulty (by modifying 1, 4 and 6). And, correspondingly, my axioms could be de-Situated by
removing al referencesto infons

Next, the Montagovian gpproach describes only disambiguated languages, whereas the
concept of syntactic system makes no such redtriction. It could easily be redtricted to
disambiguated languages (by adding on a clause resembling condition 8 of the Montagovian
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definition -- conditions 7 and 9 are common sense and are automaticdly fulfilled). But there is
no need. Red languages are of course ambiguous in many ways. Montague's possible worlds
andysis of meaning requires disambiguity, but the ssmantica theory to be given below does not.

Findly, the mogt subgstantid difference isthat the definition of syntactic system defines aword
asa st of syntactic operations, and assigns a set of grammatica rulesto each word. The
Montague approach, more managesbly, assigns each word to a certain class and then sets up
syntactic operations and grammatica rules to work via classes.

Oneway to look at this differenceis viaadgorithmic complexity. A random syntactic system
would be usdless -- no one could memorize the lig of rules. Only a syntactic system that istruly
systematic -- thatis smple in sructure, that has patterns which amplify it agreat ded -- can
possibly be of any use. One way for a syntactic syssem to be smple in sructure isfor its
condrantsto fal into categories.

In other words, suppose the class of al words can be divided into categories so that the
congraints regarding aword can be predicted from knowledge of what category theword isin.
Then the syntactic- system gpproach reduces to something very smilar to the Montague approach
(to astuated, ambiguous Montague grammear). But when dedling with syntactic sysemsin
generd, not only written and spoken language, it is unnecessarily redtrictive to require thet all
rules operate by categories. It is better and more in line with the pattern-theoretic approach to
Spesk about generd syntactic systems, with the understanding that only syntactic systems of low
agorithmic complexity are interesting.

5.1.5. What is L anguage?

Basicdly, the definition of syntactic system saysthat eech word (each fundamentd unit) isa
certain collection of functions, each of which takes in certain kinds of externa entities and
certain types of functions associated with other words. The kinds of entities and functionsthat a
certain function takes in can depend upon the situation in which the associated word is used.
There are certain rules by which words can be built up into more complex structures, and by
which more complex structures can be built up into yet more complex sructures -- each rule
agopliesonly to certain types of words or other structures, and the types of structures that it
gppliesto may depend on the Situation in which it is being used.

| will give atheory of meaning to go dong with the generd modd of syntax outlined in the
previous section. The badc idea of this theory isthat the meaning of an entity isthe fuzzy set of
patternsrelated to its occurence.

Using this characterization of meaning, | will define asemantic system as a set of entities
which obtain much of their meanings from each other. In this context, it will become clear that
the semantical structure of written and spoken language isnot at al unique. Written and spoken
language may be the most cohesive semantic system known to us. But subtle interdefinition, and
the intricate interplay of form and content, can be found to various degrees in various domains.
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L anguage will then be defined as requiring a syntactic systemn, coupled with a semantic
system in such away that a property caled continuous compositionality holds. Thus, | do not
believe that one can give athoroughly context-independent definition of language. The definition
of syntactic system refers frequently to infons, which hold or do not hold in specific situaions.
At the very foundation of alanguage is the sat of Stuationsin which it evolved, and in whichiitis
used.

5.2. POSSIBLE WORLDS SEMANTICS

The next step after Montague grammar is Montague semantics. Also known as possible-
worlds semantics, Montague semanticsis just as forbiddingly formd as Montague grammer,
perhaps more s0. However, as | will show, it packs much more of a philosophica punch.

Firgt of dl, Montague assumes that there is some set B of meanings. Then he assumes that, to
each syntactic operation F, there corresponds a semantic operation G taking the same number of
arguments and mapping rn-tuples of meanings into meanings (rather than n-tuples of expressions
into expressions). Findly, he assumes some function f mapping basic expressons into meanings.
This setup determines, in an obvious way, the meaning of every dement of A -- even those
which arecongtructed in violation of the syntactic rules. The existence of a correspondence
between the F and the G iswhat Frege called the principle of compositionality.

In order to specify B, Montague invokes the notion of possible worlds. Thisnotion is used to
build up ahierarchy of progressvely more complex semantica definitions. Firg of al, assume
that each basic expression contains a certain number of "variables’, to befilled in according to
context. Suppose that knowing what possible world oneisin, a what time, does not necessarily
tell one what values these variables mugt have, dthough it may perhaps give further information
about the meaning of the expression. This does not contradict the very general axioms given
above. Then, one may define adenotation of an expresson as something to which the
expresson refersin a given possble world, at a specific time, assuming a certain assgnment of
vauesto its varigbles.

And one may define the sense of an expression as that to which the expression refers
regar dless of the time and possible world. Thisis not a precise definition; however, one way to
gpecify it isto define the sense of an expression as the function which assigns to each pair (time,
possible world), the denotation which that expression assumes in that possible world at that time.

Findly, one may define the Fregean meaning of an expression as the function which maps
each triple (possble world, time, assgnment of variable values) into the sense which that
expression assumes under that assgnment. Montague cdls this smply the "meaning”, but I wish
to reserve this word for something different, so "Fregean meaning” it is.

In this scheme, everything reduces to denotations, which may be divided into different "types’
and then analyzed in some detail. For instance, one of the most important types of denotation is
truth value. The truth vaue of an expresson with respect to agiven triple (possble world, time,
assignment of variable vaues) is whatever truth-vaue it denotesin that model. Montague
semantics does nat, in itsalf, specify what sorts of expressons may denote truth vaues. Itis
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possible to give aformd definition of the syntactic category "sentence,” but not al sentences
may take truth values. In English, it seems clear that statements, rather than imperatives or
questions, may denote truth vaues; but thisis an empirica observation, not aforma statement,
and a great ded of work is required to formulate it mathematicaly.

In generad, a Fregean meaning of type T isafunction mapping entities of the form (possible
world, time, variable assgnment) into a denotation of type T. Montague hypothesizes that each
type corresponds to an eement of D, so that Fregean meaning types and syntactic categories are
meatched in a one-to-one manner. Compostiondity then requires that any rule holding for
syntactic categories transfers over into arule for Fregean meaning types. For instance, take a
gyntactic rule like F(x,y,2) = X y z. This magps vectors (noun, noun, trangtive verb) into
declarative sentences. Then F corresponds to a semantic function G which maps meanings of the
type corresponding to nouns and verbs, into meaningsinvolving truth-values as denotations.

5.2.1. Critique of Montague Semantics

This thumbnail sketch is hardly an adequate portrayad of Montague semantics. The interested
reader is urged to look up the origind papers. However, | will not require any further
development of possible-worlds semantics here. The reason isthat | am highly skeptica of the
whole project of possible-worlds semantics.

| find it hard to accept that what "1+1=2" meansis the same as what
"2.718281828...i* 3.1415926535... = -1" means. However, in the sandard implementations of the
possible worlds approach, these two assertions both denote truth in every possible world at every
time, S0 they are semantically identicd. It istrue that each of these assertions can be derived
from the other, given the sandard mathematical axioms. But they still meen different things.

Possible worlds semanticsisformal in avery srange sense: it makes no reference to the
actud empirica or psychologica content of linguidtic entities. Montague believed that the most
important agpects of semantics could be developed in a purely forma way, and that
condderations of content, being somehow more superficia, could be tacked on afterwards.
Roughly spesking, he believed that content merely sets the values of the "parameters’ provided
by the underlying forma structure. But thisis at best a debatable working hypothes's, at worst a
dogma. The possible-worlds approach has not yet been shown to apply to any but the smplest
sentences.

It is remarkable that formd logic which ignores content can ded with semantically
troublesome sentences like " John believes that Miss Americais bald'. But sentenceslike "Every
man who loves awoman loses her"are il troublesome. And it isalong way from these forma
puzzles to ordinary discourse, let aloneto, say, afragment of Octavio Paz's poetry (1984):
Sdamander
back flame

sunflower
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you yoursdf the sun

the moon

turning for ever around you
pomegranate that bursts itsdf open each night
fixed star on the brow of the sky
and besat of the seaand the tilled light
open mind above the

to and fro of the sea

The contemporary logicist gpproach can comprehend this fragment about as well as modern
quantum physics can ded with the large-scale dynamics of the brain. Thereis atremendous rift
between theoretical applicability and practica gpplication.

| am not the only one to sense the fundamenta impotence of possible worlds semantics. Many
logicians and linguists share my frudtration. In the absence of a condructive dternative,
however, this frudration is not terribly productive.

One possible dterndive is Situation semantics, atheory of meaning designed to transcend
Montague semantics by making reference to infor mation. However, the Stuation semanticists
gpproach information in a very abstract way, sarting from set theory. They define an abstract
unit of information called an "infon," and attempt to delineate various axioms which infons must
obey. While | admire situation semantics very much, | cannot agree with the abstract, set-
theoretic approach to information. It seems clear that, just as physics models objects as elements
of Euclidean space rather than generd sets, a successful semantic theory must come equipped
with aconcr ete, particular idea as to what information is. One way to do thisisto take the
algorithmic theory of information. Thisis the course that will be taken in the following section.

5.3. MEANING ASA FUZZY SET OF PATTERNS

Using thetheory of pattern and algorithmic infor mation, meaning can be defined without
even mentioning syntax. Even entities that are not involvedin syntactic sysems can have
meanings. The meaning of an entity, | sugges, issmply the set of all patternsrelated toits
occur ence. For instance, the meaning of the concept cat isthe set of dl patterns, the occurence
of which is somehow related to the occurence of a cat. Examples would be: the appearance of a
dead bird, alitter box, akitten, a barking dog, a strip dancer in a pussycat outfit, a cartoon cat on
TV, atiger, atall,....
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There are certain technicd difficultiesin defining "rdated to" -- these will be dedt with
shortly. But it is clear that some things are related to cat more strongly than others. Thus the
meaning of cat isnot an ordinary set but afuzzy set. A meaning isafuzzy st of paiterns.

In this view, the meaning of even asmple entity isavery complex condruct. In fact, asis
shown in the following section, meaning isin generd uncomputable in the sense of Godd's
Theorem. But this does not mean that we cannot gpproximate meanings, and work with these
gpproximations just as we do other collections of patterns.

This approach to meaning is very easly Stuated. The meaning of an entity in agiven Stuation
isthe st of dl patternsin that Stuation which are rdlaed to that entity. The meaning of W in
gtuation swill be cdled the s-meaning of W. The degree to which a certain pattern belongs to
the s-meaning of W depends on two things: how intensdly the pattern is present in s, and how
related the pattern isto W.

These ideas are not difficult to formaize. Let Mw,s(q) denote the degree to which qisan
element of the s-meaning of W, rddive to the Stuation s. Then one might, for ingtance, set

Mw.s(q) = IN[q;s] * corr[W,q]

where corr[W,g] denotes the gatistical correlation between W and g, gauged by the standard
"correlaion coefficient,” and IN[q;9 isthe intengty of g asa patternin s. The correlation must

be taken over some past history of Stuations that are Smilar in type to s, and it may possibly be
weighted to give preference to Stuation which are more strongly smilar to s. The determination

of amilarity between Stuations, of course, isafunction of the mind in which the meanings exis.

Like al pattern-theoretic definitions, this characterization of meaning is unpleasantly messy.
Thereare dl sorts of loose ends and free parameters; things are not nearly so cut-and-dried asin,
for example, the Montagovian possible-worlds gpproach. But unfortunately, thisisthe price
which one must pay for being psychologically reasonable. Meaning exists only relativeto a
given mind, agiven brain; and minds and brains are notorious for not adhering to conventiond
dandards of mathematical nicety.

5.3.1. Meaning and Undecidability (*)

It is clear that, according to the above definitions, determining the s-meaning of any entity W
isan extremdy difficult computationa problem. Infact, if one congders sufficiently complex
Stuations, the problem becomes so hard as to be undecidable, in the sense of Godd's Theorem.

Gode showed that truth is not contained in any one forma system; and his results apply
directly to the stlandard model-theoretic approach to semantics. But it is interesting that even a
subjective, pragmatic gpproach to meaning cannot escape undecidability.
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Chaitin (1975, 1978, 1987) has given an incisve informationtheoretic proof of Godd's
Incompleteness Theorem. He has proved that, for any forma system G, thereis some integer N
S0 that

1) for dl >N, there exists some binary sequence x so that the statement "H(x) > n" is
undecidable in G (it can neither be proved true, nor proved fase, in G).

2) "H(xX) > N" isnot provably true (in G) for any x
Where Sis some subset of Si(9), let us consder the statement "|§ > N" in thislight.

Firgt, arange the dements of Sin a specified order (yi,...,yn), and set xs = L(yz)L(y2)...L(yn),
where L maps patterns into binary sequences. Then, as |S| becomes arbitrarily large, so does
H(xs). That is, for any N, thereis some M so that when |S| >M, one has H(xs) > N. But for large
enough N, the stlatement "H(xs) > N" is undecidable. Consequently, sois”|[§>M".  Fndly,
let Mw sk denote the set of all Boolean g so that Mw,s(g) > K. Then | have shown

Theorem: For any formd sysem G, and any Stuation s of infinite structurd complexity,
thereis some M so that the statement "|Mw,sk| > M" isundecidablein G.

Godd showed that truth cannot be encapsulated in any forma system. According to this
theorem, if semanticsis defined in terms of information, complexity and pattern, Godd's proof
aoplies equdly well to meaning. Thisis philosophicaly interesting, becausethe informationa
approach to meaning makes no reference whatsoever to truth. But it isnot surprisng, not Snce
Chaitin has dready shown us that Godd's Theorem has as much to do with information as with
truth.

5.3.2. M eaning and Possible Worlds

Let us briefly return to Montague semantics. What does the present definition of s-meaning
have to do with the Montagovian approach? Montague semantics speaks of denotations, senses
and Fregean meanings. Where does meaning, as| have defined it, fit in?

The present gpproach determines for each expression, given each Stuation s, adefinite s
meaning. But each particular Stuation is, surely, a subset of the set of pairs (possible worlds,
times). It may sometimes be useful to consider an entire possible world, from the beginning of
time to the end, as one big Situation; or perhgpsto consder a"'stuation” as a class of events
intersecting every possible world.

The possible-worlds approach begins with denotations: the denotation of an expression iswhat
it expresses regardless of the possible world and time. According to the informational approach,
however, there is no reason to believe that denotations such asthis exist. In each possible world
over each interva of time, and more generaly in each Stuation, each entity has a certain
meaning. But Snce the meaning of an entity is defined relative to the structure of the Stuetion it
isused in, there is no reason to bdieve the meaning of any entity will be congtant over dl
possible Stuations. Indeed, given most any entity, and most any pattern, one could cook up a
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Stuation in which that pattern was not relevant to that entity, and hence not a part of the meaning
of that entity.

Thisisrelaed to a point made in Barwise (1989). Barwise argues, in effect, that the concept of
what an expression expressesr egar dless of possble world and time is not meaningful, because
the collection of dl pairs (possible world, time) is not a set but a proper class. In order to make
the possible-worlds approach set-theoreticaly meaningful, one must restrict consideration to
some particular set of worlds.

In redity, no entity experiences or envisons every mathematicaly possible world, nor even a
reasonably large subset thereof. And it does mean something to talk about the meaning of W
relative to some particular fuzzy set S of stuations. Formally, where ds(x) denotes thedegree of
membership of X in S, Mw,s(q) may be defined as the sum over dl x in S of Mw,x(Q)ds(x). If Sis
taken to be the collection of al Stuationsin a given mind's memory, then one may omit the
subscript S and smply write Mw.

This, findly, iswhat | mean by the "meaning" of aword or other entity W. In most practica
cases, Mw isactudly not dl that far off from the possble-worlds definition of meaning. Let's
take the word "dog,” for example. To an ordinary, inteligent, English-speaking person, the
concept of "dog" is not that fuzzy: certain things are dogs (they belong to Mdeg With degree 1)
and most things aren't (they belong to Mdog with degree 0). Some things, like wolves or wolf-
dog haf-breeds, might belong to Mdog With intermediate degrees (say .25 or .75), but these are
definitdy the exception. In avast mgority of the Situationsin which the word "dog" is used,
those thingswhich are dogs, or various memories involving them, take part in patterns
associated with the word "dog.” In Montagovian terms, the elements of Mw are very good
candidates for the sense of theword "dog." They are, gpproximately, what "dog" refersto
regardless of possible world and time. And for asmple expression like "dog,” with no explicit
variables, the senseis essentidly (though not set-theoreticaly) the same as the Fregean meaning.

In generd, for more complex expressions which may have variables in them (say, "John ests
'S pet "), Mw may be computed ether for the expresson as an abstract formula, or for
the expression given some particular assgnment of variable vaues. The latter quantity will often
be smilar to the sense of the expression, given the same particular assgnment of variable vaues.
And the former quantity will often be smilar to the Fregean meaning of the expresson, since the
Fregean meaning contains all sensesfor al possible worlds and times, and Muohn eats s pet
contains, with some nonzero degree, al dements of Muonn eats x's pety fOr every x and y.

S0, in many cases, the present Situation-oriented, pattern-basad definition of meaning
coincides with the possible worlds definition (as well as with the Situation-theoretic approach of
Barwise or Devlin). Thisis because, to alarge extent, the different gpproaches are getting at the
same underlying intuition. However, it seemsto me that the informationd definition is
psychologically alot more sensible than the possible-worlds approach, and aso alot more
sensble than the more abstract Stuation-theoretic analyses.

5.3.LINGUISTIC SYSTEMS
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Now, at long last, we are entering the final stretch of our quest to tie syntax and semantics
together. Let me begin with Frege's "principle of compostiondity.” Thisaxiom, if you recall,
dtates that the meaning of a complex syntactic construct can be determined from a knowledge of:
1) the syntactic operations involved, and 2) the meanings of the smpler syntactic congtructs of
which the complex syntactic congruct is formed.

Mathematicdly, in the present formalism, compositiondity says that for each syntactic
operation F thereis a"semantic operation” G s0 that

MFxy(9) = G(Mx(Q),My(a)).

Clearly, this principle is not implied by the informationa gpproach to meaning. But it is not
forbidden ether.

For garters, let us consder arule F(x,y,z) which takesin anoun x, atrangtiveverby, ad a
noun z, and puts out the sentence xyz: F(Sandy, kisses, Andy) = Sandy kisses Andy. The
guestion is, is there some G 0 that Msandy kisses Andy =

G(Msandy,Miisses,M angy), and, furthermore, Me(xy.2 = G(Mx,My,Mz) for any x,y,z? In other words,
is the meaning of the whole determined by the meaning of the "component parts'? Knowing the

st of patternsrelated to "Sandy”, "kisses' and "Andy", and the sandard grammatica rules, can
one predict the set of patterns related to " Sandy kisses Andy"?

Or, to take an absurd example, what if English contained arule F(x,y,2), taking arguments X
and z human beings, and y atrangtive verb, defined so that

Fxy.2) =

F(the father of x, the last trangtive verb in the Standard High School Dictionary beforey, the
mother of 2).

Montague's regtrictions on semantic rules forbid this sort of construction, but the generd
definition of semantic system places no such restrictions. Then F(Sandy, kisses, Andy) might
equd, say, "Jack kings JllI". There would be no way to predict the meaning of "Jack kings Jll"
from the meaning of "Sandy", "kisses' and "Andy". The point is that red written and spoken
languages do not have crazy rules like this -- and the main reason they do not is
compogtiondity.

Findly, consder an example discussed in Barwise (1989), the opening sentence of Hoban's
novel Riddley Walker:

On my naming day when | come 12 | gone front spear and kilt awyld boar he parbly ben the las
wyld pig on the Bundel downs any how there hadnt ben none for along time befor him nor | aint
looking to see none agen.
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Barwise asks how a compostiona account of meaning could possibly explain the meaning of the
phrase "gone front spear” -- et done the whole sentence. The same question could of course be
asked in regard to much modern poetry and literature. The point is that we automatically assgn
meaning even to expressons that are formed in violation of the rules of grammar. If an
expresson isformed in violation of the rules of grammar, thereis no way to compute its
meaning by going from afunction F to afunction G as compositiondity suggests.

Barwise's "gone front spear” argument isfatd for strict Montague semantics. But it certainly
does not imply that compositiondity is totally absent from natural languages. | suggest that
compogtiondity isatool for estimating meanings, and a very powerful one. Without thistoal, it
would be hard to estimate the meaning of a sentence that one had never heard before. However,
like dl red tools, compostiondity is not a complete solution for every problem.

A language would be basicdly useless if it did not possess gpproximate compositionaity for
most words, most syntactic operations, F. Riddley Walker and Naked Lunch are more difficult to
read than Huckleberry Finn and Catch-22, and thisis precisdly because when assigning meaning
to the sentences of the former books, one must depend less on compositiondity, and more on
subtle sructurd cluesinternd to the semantics.

Onefind noteisin order. | have been talking about language in a very generd way, but the
examples | have given have been ether Boolean logic or common English. These are good
sources for examples, but they may aso be mideading. In these cases, compositiondity takes a
particularly ample form: the deductive predecessor s of an expresson are dso its components.
For ingtance, where F(Sandy, kisses, Andy) = "Sandy kisses Andy"”, the arguments " Sandy,"
"kisses" and "Andy" are parts of the sentence "Sandy kisses Andy." Here,compositiondity
requires that the meaning of awhole predictable from the meaning of its parts.

Fodor (1987), among others, thinksthisis essentid to the concept of compostiondiy. But on
the other hand, nothing in the present theory of language requir es that the relation between the
output of afunction and its arguments be awhole/part rdationship. This point is particularly
relevant in the context of the recent work of Tim van Gelder (1990), which suggeststhat certain
neural network models of thought possess compositiondity without displaying any sort of
whole/part relationship between expressions and their deductive predecessors.

5.4.1. Formal Meaning and Dictionary Meaning

Wheat do dl these abstract mathematica definitions of "meaning” have to do with meaning in
the dictionary sense? When one looks up aword in adictionary, one certainly does not find a
huge fuzzy st of regularities spanning different Stuations: one finds a phrase, or a sentence, or a
number of sentences!

The answer to thismost natural question is as follows. When one looks up aword like "high-
fadutin” or "cosmologicd," one finds a sentence consisting hopefully of smpler words. Using
compogtiondity (aswdl as of course dl our knowledge of grammar and semantics), one
construes the meaning of that sentence from the meanings of the smple words, and thus infers
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the meaning of the word in question. One never learns any word as well from the dictionary as
from hearing it in practice, but for some words the dictionary can yield agood approximation.

For other words, however, such as"the" or "a," the dictionary istotdly usdless for imparting
meaning -- it can impart technical niceties to someone who dready basicdly knows the
meaning, but that's about it. And for words like "in" or "out" the dictionary dmost as usdess --
"Iin" refersyou to "indde," which refers you back to "in,” et cetera. The words thet are possible to
learn from the dictionary are those words which could reasonably be r eplaced in conversation by
complex phrases, which could then be understood by apped to compositiondity.

5.4.2. Semantic Systems

We have defined the syntactic system, identified the relation between syntax and semantics,
and given a newtheory of meaning. What remainsisto crygdlize this theory of meaning into a
definition of the semantic system.

Intuitively, asemantic systemV isacollection of entities whose meanings consgst primarily
of patternsinvolving other ements of the system. The systematicity of a collection of patterns
is the extent to which that collection is a semantic system.

More formdly, let D(x/V) dencte the percentage of the meaning of x which involves dements
of V. Thisisan intuitively smple ideg, but its rigorous definition is alittle involved, and will be
postponed to the end of the section.

A systematic collection of entities is characterized by ahigh average D(x/V) for x in V.

Written and spoken languages are examples of collections with very high sysematicity. The
meaning of theword "dog" has alot to do with physical entities. It also has to do with other
linguistic entities: certain aspects of its occurence can be predicted from the fact thet it isanoun,
that it is animate, etc. But it is among the less dependent words, D(dog/English) isnot al that
large. On the other hand, the meaning of the word "the" has virtudly nothing to do with
nonlinguidtic entities, and therefore "the" contributes a great ded to the sysemdticity of English.
D(the/English) is certainly very large.

The Sapir-Whorf hypothes's rests upon the assumption that languages are highly systematic.
That isits starting-point. If the meanings of words and sentences had to do primarily with extra:
linguigtic phenomena, then how could language have the power Whorf ascribestoit? It isonly
after one redizes the extent to which linguistic entities depend on each other for their
ggnificance, that one can concelve of language as a coherent, acting entity.

But written and spoken languages are dmogt certainly not the only systematic meaning
systems. It seems that each sensory modality probably has its own semantic system. For instance,
the set of patternsinvolving the visud entity "box" has alot to do with other visud forms and
not that much to do with anything e'se. And the same goes for most visua forms. Hence,
intuitively, one might guess that the collection of visud formsis highly sysemaiic.
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5.4.2.1. Formal Definition of D(x/V) (*)

Findly, before moving on, let us ded with the problem of defining D(x/V). Although | will
not be using this definition for any specific computations or theoretica developments, it is
important to have a precise definition in mind when one speaks about a concept. Otherwise, one
does not know what one is talking about.

One gpproach to defining D(x/V) isasfollows. Firg, for each g and each s, define the degree
D(x/V;s,g) to which Mw,s(q) involvesV asthe maximum, over al dementsv of V, of the
expresson

Mw.s(v) * corr[v,a] * [S{v] S{q]l/ [St(a)].

This product can never exceed 1; itiscloseto 1 only if v:
1) isan dement of the meaning of qin the Stuaion s,
2) isdaidicdly corrdated with g
3) contains much of the same gtructure that g does

Next, define D(X\V ;) to be the average of D(x/V;s,q) over dl g. And, where Sisa st of
gtuations, define D(X/S) to be the average of D(x/V;s) over dl sin S. Where Sistaken to be all
gtuaionsin the memory of agiven mind, one may omit referenceto it, and smply speak of
D(X/V).

5.4.3 The D€finition of a Linguistic System

Now dl the hard work is mercifully past. | am prepared to give a pattern-theoretic,
"informationd" definition of alinguistic system. Firg of dl, let us Sate some minimd
requirements. Whatever ese it may be, every linguistic sysem must congst of

1) asyntactic system, together with

2) acollection of stuations, so that this syntactic system, in this collection of Stuations, gives
riseto

3) asemantic system, in which the meanings of most expressons may be gpproximately
determined by compostiondity.

Thisis quite amouthful. But it is not quite enough to conditute an adequiate definition of
"linguigtic system.” To see what eseis needed, let us recal the concept of structured
transformation system, defined in Chapter Four. Now, a syntactic system is atransformation
system -- thisfollows immediately from acomparison of the two definitions. But what about the
"sructured” part?
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Does semantics, combined with compositiondlity, have the capacity to induce a structure on
the transformation system that is syntax? Wheat is needed is that grammatically smilar
linguistic congtructions (sentences) aso tend to be structurally smilar (where the complexity
measure implicit in the phrase "sructurdly smilar™ is defined relative to the environment in
which the sentences are used). But, if one knew that syntactically similar sentences tended to
have smilar meanings, this would follow as a consequence. One could form a sentence with
meaning X by andogy to how one has formed sentences with meanings close to X.

The principle of compogtiondity, under my loose interpretetion, implies that for most
syntactic operations F thereisa"semantic operation” G so that Mr(xy) is close to G(Mx,My). But
this does not imply that sentences formed by smilar rules will tend to have smilar meanings. |
need an additiona hypothesis. namely, that small changesin F correspond to small changesin

G. Itisnot enough that each syntactic rule corresponds to a semantic rule -- this correspondence
must be "stable with respect to smdll perturbations.”

This property may be caled continuous compositionality. A little more formaly, suppose
that F(x,y) and F(x,y) are close. Compostionality guarantees that there are G and G' so that:

1) Mrxy) iscloseto G(Mx,My), and
2) MFex.y) iscloseto G'(Mx,My).

Continuity of compaositionality requiresthat G and G' be close. But relations (1) and (2) render
this "continuity requirement” equivadent to M r(xy) and M F(xy) being close.

So, dl formdities asde, one may define alinguidic sysem as
1) a syntactic system, together with
2) acollection of stuations,

3) so that relative to these Situations the expressions of the syntactic system form a semantic
system

4) which isrelated to the syntactic system according to continuous compositionality.

From this definition, one has the immediate result that alinguistic system is a structured
transformation system.

Boolean logic, as andyzed in Chapter Four, is a specific example of alinguistic system; in fact
it isasubset of natura languages. | have pointed out somerdlations between andogica structure
and deduction in the context of Boolean logic: these may now be understood as examples of the
behavior of linguistic systems, and specia cases of the complex dynamics of naturd language.

5.3.4. Communication
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What is the pur pose of language? The straightforward answer to this quedion is
"communication." But what exactly does this usve term denote? The so-cdled "mathematica
theory of communication,” founded by Claude Shannon, dedls with the surprise value of a
message relative to a given ensemble of messages. But dthough this is marvel ous mathematics
and enginearing, it hasllittle to do with meaning. The communication of patterns is different
from the communication of datistica information.

Let us consder the five "illocutionary categories' into which Searle (1983) clamsadl speech
acts may be categorized:

Asser tives, which commit the speaker to the truth of an expression

Dir ectives, which atempt to get the speaker to do something. This category isinclusve of
both commands and questions.

Commissives, which commit the spesker to do something -- say to join the Navy, or to tell
the truth in a court proceeding.

Expr essives, which express a psychological state on the part of the spesker

Declar atives, which, by virtue of being uttered, bring about the content of the utterance. For
ingance, "l pronounce you man and wife."

One could modify thisligt in various ways. For ingance, what Searle cdls "assartive' is
sometimes called "declarative.” And | am not sure about the boundary between assertives and
expressives it is not acrigp diginction. Many utterances combine both of these typesin a
complicated way -- for example, "My head hurts worse than yours." But these quibbles are
irrelevant to what | want to do here.

All of these categories have one obvious thing in common. They say that the spesker, by using
aspeech act, istrying to cause someinfon to obtain. In the case of expressives and assertives,
oneis mainly trying to cause an infon (the content of one's satement) to obtain in the mind of the
ligener. In particular, among other things, one istdling the lisener the situationin question/
speaker |-- this content. In the case of assartives, one may aso be trying to cause the situation
in question/ listener |- this content to appear -- that is, one may be trying to convince the
listener to agree with you. But at any rate, the most basic thing you are doing istrying to cause a
record of what you think or fed to occur in her mind.

In the case of directives, oneistrying to cause the listener to respond either with an assertive
gtatement of her own (in the case of a question) or with some other sort of action. Oneistrying
to make a certain infon gppear in one's present physica Stuation, or in some future Stuation.

Finaly, in the case of commissives and declaratives, things are even more direct. Oneis
swearing onesdf into the Navy, or declaring two people married. Within the network of beliefs
that makes up one's subjective world, oneis actudly causing certain infonsto obtain.
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So what communication redly comes down to, is molding the world in a certain way. How
doesit differ from other means of molding the world, such as building something? Only, |
sugges, in that it partakes of the deductive and andlogical system associated with agiven
language. Rather than defining language as that which communicates, | propose to define
communication asthe process of doing something with language.

In the context of the mode of mind outlined in Chapter Three, the definition of language
given above might be reformulated asfollows: a linguistic system isa syntactic system
coupled with a semantic system in such away that the coupled system is useful for molding
theworld. After dl, asyntactic system is useless for molding the world unlessit is gppropriately
coupled with an andogica, associative-memory-based system. And a semantic system can serve
inthisrole only if the property of continuous compostiondlity is present.

In Chapter Four | considered avery redrictive linguistic system -- Boolean logic. | showed in
detail how the syntactic system of Boolean logic isusdessinitsdf -- but extremey useful when
appropriately coupled with a semantic, anaogica network. With more generd languages, many
more issues are involved -- but the basic picture isthe same. A linguistic system isa syntactic
system coupled with a semantic system so as to make communication possible.

5.5. LANGUAGE IN PERCEPTION AND BEHAVIOR

| have theorized about gener al linguistic sysems; but the only linguistic sysems | have
explicitly discussed are Boolean logic and writter/spoken language. | will now briefly consider
three other linguigtic systems, which at least as essentid to the functioning of mind. The
treatment of these systems will be extremely sketchy, more of an indication of directions for
development than a presentation of results. But it would be unthinkable to completely ignore
three linguigtic systems as essentid as perception, motor control and socia behavior.

5.5.1. Perception, Action and L anguage

Let us begin with Nietzsche's anadlyss of the "inner experience’ of an outer world asa
congtruct of language and consciousness:

Thewhole of "inner experience’ rests upon the fact that a cause for an excitement of the nerve
centersis sought and imagined -- and that only a cause thus discovered enters consciousness, this
cause in no way corresponds to the real cause -- it isagroping on the badis of previous "inner
experiences,” i.e. of memory.... Our "outer world" aswe project it every moment is indissolubly
tied to ... old error.... "Inner experience" enters our consciousness only after it has found a
language the individua understands. (p. 266)

In this view, experience enters consciousness only after it has found an appropriate language.

Nietzsche aso observed that language and perception are smilar, both being based on making
equal that which is not.
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Firg images.... Then words, gpplied to images. Findly concepts, possble only when there are
words.... Thetiny amount of emotion to which the "word" givesrise, as we contemplate Smilar
images for which one word exigts -- this weak emation is the common eement, the basis of the
concept. That weak sensations are regarded as alike, sensed as being the same, isthe
fundamentd fact.... Believing isthe prima beginning even in every senseimpression.... (p.275)

This penetrating observation implies that, in a sense, language is to the middle levels what
systematic perception is to the below-conscious levels. Language is based on the identification of
word-concepts, which is the recognition of common patterns among the outputs of lower-leve,
perceptual-motor processes. Perception, on the other hand, is based on the identification of
common patterns among the outputs of "sensory organs' or else lower-level perceptua-motor
processes. Both are systematic, with a grammar and a semantics; both are meaning-
generating structured transformation systems.

In humans, visud perception, at least, has a very complicated grammar. The visua cortex
builds a scene out of the smple parts which it perceives, and it is this scene rather than the
individua stimuli which it feeds up to consciousness. And the aurd cortex does the same thing,
inalessinvolved way: we listen to someone talking and hear wor ds, but these words are pieced
together according to a complex system of rules from particular blurry, superimposed sounds.
These sensory-modality-dependent rules for building wholes out of parts are full-fledged,
dtuation-dependent grammars.

And thereis no doubt that, in the sense defined above, visud and aurd forms conditute very
intricate semantic systems. Compositiondity is dightly confusing: are the meanings of the raw
sounds or visud stimuli experienced by low-level processes sufficient to determine the meanings
of the complex combinations which the conscious mind experiences? Interndly, from the point
of view of the conscious percelving mind, raw sounds and visud stimui have meanings, in the
sense of being dgorithmically reated to other things, only through these complex combinations.
Therefore, from the phenomenologica point of view, compostiondity is only interesting above
acertain level. Bow that leve, it is ether obvious or meaningless: the meaning of the partsis
the meaning of those wholes that the part contributes to; the parts have no independent
sgnificance.

However, from the point of view of ared or hypothetical external observer, with accesseven
to patterns below the level of consciousness, compositiondity isinteresting dl the way down. It
is perfectly sensble to ask whether the patterns associated with certain raw stimuli are sufficient
to determine the patterns associated with something constructed out of them. And the answer to
this question should be"yes' -- if, as proposed in Chapter Three, the perceptua hierarchy does
indeed operate on the basis of pattern recognition.

Similar arguments apply to motor control. Motions such as the wave of an arm, the kick of a
leg, the fast walk, the jog, the shoulder shrug, the Sgh -- none of these are indivisble units; dl of
them are formed by the systematic assemblage of more basic muscle movements. An excdllent
description of this process of systematic assemblage was given by Charles S. Peirce (1966):
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[M]ogt persons have a difficulty in moving the two hands smultaneoudy and in opposite
directions through two paradle circles nearly in the media plane of the body. To learn to do this,
it is necessary to attend, fird,, to the different actions in different parts of the motion, when
suddenly a genera conception of the action springs up and it becomes perfectly easy. We think
the motion we are trying to do involvesthis action, and this and this. Then the generd idea
comes which unites al these actions, and thereupon the desire to perform the motion calls up the
generd idea. The same mentd process is many times employed whenever we are learning to
gpesk alanguage or are acquiring any kind of ills.

As Peirce points out, learning a motion is a process much like learning aword or a
grammatica form, or learning how to add, or learning to recognize a chair as a chair regardiess
of lighting and orientation. One combines differert thingsinto one -- learns to percelve them as
one -- because they dl serve acommon purpose.

But what Peirce does not point out isthe sysematicity of all these processes. There are certain
tricks to learning complex mations, which may not be easy to formulate in words, but which
everyone knows intuitively. Some people know more of these tricks than others, but dmost all
adults have the body of tricks down better than little children. When learning to throw something
new -- say afootball, or afrishee, or ajavein -- one operates by putting together various
accustomed moations. One combines familiar e ementary motions in various ways, based on past
experience of combining motionsin smilar stuations, and then experiments with the results.
What makes the process linguidtic is the gpplication of different combinatory rulesin different
gtuations, and the autometic,systematic assgnment of meanings to the different combinations.

So, in summary, | suggest that perceptud and motor systems are STS's and, more specificdly,
languages in the sense described above. Nietszche's perception of asimilarity between
sensorimotor processes and written/spoken language was right on target. Thisideamay be
fleshed out by reference to the modern empiricd literature on perception and control, but that isa
major task which would take us too far afield.

5.5.2. The Language of Social Behavior

What does it mean to say that abehavioral sysem isalanguage? Instead of "words," the
fundamenta units here are specific behaviors, specific acts. One communicates with acts. one
actsin certain ways in order to cause certain infons to obtain in the minds of others or in physica
redity.

The system of behaviors used by a human being isinclusive of the system of speech acts used
by that person, as wdll as of gestures, tones of voice and "body language.” But it also includes
less overtly communicative acts, such aswalking out of aroom, taking ajob, getting married,
cooking dinner, changing the TV channd, etc. Thissystemisin fact so large that one might
doubt whether it isredlly a cohesive system, in ether the syntactic or semantic senses.

But it is clear that we build up complex acts out of Smpler ones; thisis o obviousthat it
hardly requires comment. And there are of courserules for doing so. Thus thereisasyntactic
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system of some sort to be found. The only question, then, isif this syntactic system coordinates
with a semantic system in the proper way.

| clam that it does. Firgt of al, the dructurd definition of meaning is perfectly suitable for
characterizing the meaning of an act. The meaning of an act isthose regulaities that are
associated with it. In this context, it is not too hard to see that compositiondity holds. For
ingtance, the meaning of awoman kissng her husband, quitting her job, and writing a surredist
poem about her cat is gpproximately predictable from the meaning of awoman kissng her
husband, the meaning of awoman quitting her job, and the meaning of awoman writing a
surredist poem about her cat. Or, less colorfully, the meaning of tapping one's feet while
wrinkling one's brow during a lecture isgpproximately predictable from the meaning of foot-
tapping during a lecture, and the meaning of brow-wrinkling during alecture.

Compoasitiondity isfairly smple to understand here, since the "syntactic' combination of acts
tends to directly involve the component acts, or at least recognizable portions thereof. For
indance, the meaning of carrying agun on aNew York City busis easly predictable from, 1) the
meaning of carrying agun and, 2) the meaning of being on aNew Y ork City bus.

Compostiondity is not always the most ussful way to compute meanings. For instance, the
meaning of carrying agun on an airplane is not o eadily predictable from, 1) the meaning of
carrying agun and, 2) the meaning of being on an arplane. Carrying agun on an arplaneis
highly correlated with hijacking; thisis an added meaning thet is not generally associated with
the function F(x,y) = carrying x ony.

Even in this example, some degree of compositionality may be present. The airport security
check ispart of the meaning of being on an arplane, so for afrequent airline passenger it may
be part of the meaning-function G associated with F(X,y). But the degree Mueing on airplane(SeCUrity
check) isfarly smdl, thus making the compostionality wesk at best.

The syntactic rules governing the formation of appropriate acts for different Stuations are
extremey complex. It is not clear whether they are as complex as the syntactic rules of written
and spoken language -- we know that the latter rules have been charted more thoroughly, and
indeed are easier to chart, but that does not tell us much. Just as the rules of spoken language tell
us how we should form verba expressionsin order to get across desired meanings, so do the
rules of behavior tell us how we should form complex behaviors out of Smpler componentsin
order to get across desired meanings.

The work of Erving Goffmann (1959, 1961), perhaps more than that of any other single
investigator, went along way toward ducideting the manner in which smple acts are built up
into complex socio-culturd systems. In The Presentation of Self in Everyday Life, Goffman
understood socid interaction according to the dramaturgical metaphor. Each person, in each
stuation, has a certain impression which she wants to put across. She puts together a
"performance’ -- acomplex combination of Smple acts -- that she judges will best tranamit this
impresson. One might say that the performance is the andogue in behavior of
the''conversation™ or "discourse’ in speech -- it isthe large-scale construction toward which basic
units, and smaler combinations thereof, are combined. Goffman'sideas are particularly
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gppropriate here because of their focus on Situations. Thisis not the place to review themin

detail, however -- the only point | want to make here is merely that performances are very
complex. Wetend not to notice this complexity precisaly because performances are so routine
to us. But try to explain to a person of working-class background how to make agood impression
a aninterview for awhite-collar job. Or try to explain to a person of upper-class background
how to hang out in a ghetto bar for Six hours without attracting attention. Experiments of this
nature show us how much we take for granted, how complex and interconnected are the
arangements of ample acts that we usein our daily lives.

Since the time of Goffmann's early work, a greaet number of socid psychologists have
investigated such phenomena, with often fascinating results. Calero (1991), thinking of the
incredible complexity of socia roles which thiswork has revedled, Satesthet "alitera
trandation of arole into specific behaviord requirements for specific actors in specific Stuations
issmply not possible But | think this statement must be tempered. What is possible, what must
be possible, isthe expression of arole asanetwork of processes which implicitly computes a
fairly continuous function mapping certain Stuaions into certain fuzzy sets of behaviors The
network tells what a person playing that role is dlowed to do in agiven Stuation. But the
mathematica functionimplicit in this network isfar too complex to be displayed asa"lig" of
any manageable sze. In thisinterpretation, Cdlero's statement is correct and ingghtful.

Chapter Six
CRUCIAL CONNECTIONS

Everything is related to everything ese; in fact, if properly perceived, any one thing can be
seen to contain everything ese. This interpenetration, however, need not act as a hindrance to
thinking about the overdl nature of the world. One must merely pick some concept as astarting
point, arbitrarily, and take it where it leads. The degper one digsinto one'sinitia concept, the
more of the interconnected web of ideas one will uncover.

Our main concerns so far have been logic, language, and their rolesin the menta network. In
this chapter, the scope of the discussion will broaden, dmogt to the point of disorganization (but
not quite). | will consder language in its connection to deductive thought, consciousness,
evolution, and physical redlity. But this does not represent adigression or a change of subject: it
ismerdy amatter of delving deeper into the nature of language, so deep that one encounters
these other issues aswell.

The connections drawn in this chapter will be essentia to the rest of the book. | will posethe
crucid question of how language, logic and consciousness conspire with memory to create sdf,
intuition and redity. The "find" resolution of these question will wait until the find chapter,
when idess regarding belief systems and cognitive dynamics can be drawn into the picture. But
with the mere posing of the question, haf the work is done.

6.1. THE WHORF CONTROVERSY
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| have defined communication as the use of language to mold the world. But | have not yet
probed the difficult question of just how useful language is. The "Sgpir-Whorf hypothess" dso
known as the hypothesis of linguigtic determinism, suggests that the influence of communication
isvery great indeed. It damsthat language is the main congructive force underlying the world
that we see around us.

Inthis section | will give anew perspective on linguigtic determinism. | will argue that, when
viewed in a sufficiently abdtract way, linguigtic determinism is anatural consegquence of the
gructure of mind. This does not imply that spoken language is responsible for every aspect of the
world you seein front of you -- but it does mean that the maintenance of the belief systems
which we cal "sdf" and "externd redlity" would be impossible without the aid of sophiticated
linguistic systems.

As has often been observed, the Sapir-Whorf hypothesis may be divided into two separate
parts. Fir<t, the ideathat the structure of language is closdy related to the structure of mind and
"subjective’ redity. Second, the idea that the structurdl differences between the languages of
different cultures are sufficiently large to imply thet these different cultures have sgnificantly
different "subjective’ redities.

Thefirg clam isthe centra one. The second claim implies thefirdt. If one demonstrates that
cultures think differently because they use language differently, then one has demondrated a
fortiori that language determines thought. But, suppose it turned that out cross-culturd
differences in language and thought were smal or uncorrdated -- this would spesk againgt the
second claim, but not the fird.

Most of the criticism of Whorf'swork, however, has centered on his particular arguments for
the second claim, which are less theoretica and more empirica. The Satigtica work of Lucy
(1987), Bloom (1981) and others shows that grammatica patterns do influence patterns of
attention, memory and classification to a certain extent. However, Whorf seemsto have
exaggerated this extent somewhat. He may well have underestimated the degree of commonality
between the language, logic and world-view of an aborigine and the language, logic and world-
view of aNew Yorker.  For aconcrete example of Whorfian thought, consder that, in English,
we cdl words like "lightening, spark, wave, eddy, pulsation, flame, storm, phase, cycle, spasm,
noise, emotion” nouns. Even though they refer to temporary phenomena, we tend to think of
them as definite entities, and thisis probably related to the way our language treats them.

In the Hopi language, 'lightning, wave, flame, meteor, puff of smoke, pulsation' are verbs --
events of necessarily brief duration cannot be anything but verbs. 'Cloud’ and 'storm' are at about
the lower limit of duration for nouns. Hopi, you see, actudly has a classfication of events (or
linguidtic isolates) by duration type, something strange to our modes of thought.

Based on thisandysis, | would bet that Whorf is correct to hypothesize that a Hopi monolingua
will tend to classify events by duration, whereas an English monolingud will only do soto a
lesser degree. Thisisin line with the rdatively conservative quas-Whorfism of Lakoff (1987),
Searle (1983), etc.
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ThusaHopi monalingua will be | ess likdy than an English monolingud to think about waves
by analogy to particles, or to think about meteors as falling objects. And some of the andogies
and correspondences that come naturaly to aHopi monolingua, will take longer to come to an
English monolingud. All this does not mean that there are ideas which are for biddento a person
by the "decreg’ of her language. But, as argued extengively in The Structure of Intelligence,
andogy guidesthe mind in its every move. It isthe reason for the structure of memory. To
influence andlogy is to influence cognition, memory and behavior.

6.1.1. The Trouble with Trandation

Emily Schultz (1990, p. 25) has suggested that Whorf intentionally overestimated the degree
of variance between languages, and the degree of control which language exerts over thought
processes. Had he not done this, she claims, he would not have been so easily able to convince
his audience of the essentia dependence of thought on language. Parts of the following analysis
of Whorf'sideas are inpired by the excellent discussion given in Schultz (1990).

To fully understand the debate over Whorf's ideas, one should redly read his essays, most of
which are not at dl difficult. But, to get some sense of the problem, let uslisten to Au (1983,
182-183), an ardent anti-Whorfian:

Many French teachers have told their English gpesking sudents that " Comment dlez-vous?'
whichisliterdly "How go you?' actudly means"How are you?' ... | wonder if some day an
Apache spesker will tdl usthat Whorf's English trandetion, "as water, or sorings, whiteness
moves downward" actualy means "It isadripping spring”; and if a Shawnee speaker will one
day tell usthat "direct a hollow moving dry spot by movement of tool” actualy means "cleaning
agunwith aramrod.”

Au isobvioudy mideading us here: there is no way that his French example is andogous to his
Apache and Shawnee examples. "How go you?' isnot that far off from "How'sit going?', which
American English speakers recognize as being very smilar in meaning to "How are you?" So the
difference between French and English in the ingtance which Au gives usis very little indeed. It
isunlikely thet the difference between Hopi and English in describing a dripping spring is as
little as the difference between French and English in this given example -- after dl, French and
English are closdly rdated, and English and Apache are rather unrelated as languages go.

The"dripping oring” passage in Whorf [p.241] goes asfollows:

We might isolate something in nature by saying "it isa dripping spring.” Apache erects the
statement on a verb ga: "be white (including clear, uncolored, and so on).” With a prefix no- the
meaning of downward mation enters. "whiteness moves downward.” Then to, meaning both
"water" and "oring"” is prefixed. The result corresponds to our "dripping spring,” but
gyntheticaly it is"as water, or Sorings, whiteness moves downward.” How utterly unlike our
way of thinking!

Hoijer (1953, p.559) has given adightly different and very penetrating analysis of this phrase
"tonogd" or "tonoogah’:
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Dripping Springs, a noun phrase, names a spot in New Mexico where the water from a pring
flows over arocky bluff and dripsinto asmall pool below; the English name, it is evident, is
descriptive of one part of this scene, themovement of the water. The Apacheterm is, in contrast,
averba phrase and accentuates quite a different agpect of the scene. The element to, which
means "water," precedes the verb "noogah,” which means, roughly, "whiteness extends
downward." Tonoogah as awhole, then, may be trandated "water-whiteness extends
downward,” areference to the fact that a broad streak of white limestone deposit, laid down by
the running water, extends downward on the rock.

Note that Whorf has moves where Hoijer has the less active extends. Also, note that athough
Hoijer emphasizes that tonoogah refers to limestone, he does not say that it refers only to
limestone and not at dl to water -- if it did not refer to the moving water at dl, its classfication
as averbal phrase would need some explanation.

Hoijer's andydsis actualy more interesting than Whorf's: it points out that the Apache and
the English are looking a different aspects of the same physica Stuation. To use the notation
introduced in Chapter Two, Dripping Springs/ aver age-Englishtspeaker and Dripping
Springs/ aver age-Apache-speaker are not the same entity.

Depending on which language she uses, a person will tend to look at and to remember
different agpects of Dripping Springs. Dripping Springs will more likely to be connected to
white things in the mind of an Apache spesker than in the mind of an English spesker.

In some cases Whorf may indeed have been guilty of exaggerating the differences between
Amerindian and Indo- European languages. But the matter is not so Smple as Au and the other
critics believe. Trandation is dways problemétic, even between smilar languages but especialy
between dissmilar ones. Of the Tao te Ching, G. Spencer-Brown (1972) writes

| possess some hdf-dozen or so of the forty-odd trandations into English done. They differ
widdy because the Chinese language is so powerful that any ‘trandation’ into awestern language
provides only one of the many possible interpretations of the origina. Chineseisapictorid
language, very posticd and mathematical, with no grammar and no parts of speech.

Whether or not you accept Spencer-Brown's assessment of the "power” of Chinesg, itis
indisputable that alarge number of Chinese scholars, mostly competent and with no particular ax
to grind, have produced rather different trandations of the same very smple work. Chinese
seems to permit an ambiguity that cannot be directly trandated into English; when trandating,
one hasto pick one of the severd possible meanings. Of course, the ambiguity could be more
accurately transmitted by providing alist of possible interpretations instead of just one, but there
isabig psychologicd difference between alist of satements with varying meanings and a brief
datement with avariety of intringc meanings. The later conveys the inter connectedness of the
various meaningsin adirect way thet the former cannot match.

Thisisnot to say that the monolingua American reeder of the Tao te Ching can never get a
sense for the inter-relatedness of the various meanings contained in the originad Chinese. Itisjust
to say that she will have to work allittle harder to get such a sense, that such a sense will tend to
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come more haturally to someone who reads the origina Chinese. And the monolingud American
reader will have an easier time getting this sense if she reads severd different trandations.

So, trandation between disparate languages is a genuine problem. If Whorf made Hopi and
Apache sound very different from English, but someone else can provide trandations that makes
Hopi and Apache sound more similar to English, what does that tell us? That one of them was
right, and the other wrong? Who's to say that every Amerindian expression has one true
meaning that can be formulated in one smple English expresson? In Chapter Five | presented a
semantical theory which indicates that meaning isindeed not thissmple: that the meaning of
even asmple word can be complex and hard to specify precisdly.

Soitishard to say whether Whort trandated "accurately” or not. His trandations were never
blatantly inaccurate; they were aways within the bounds of plaugihility in that they maintained
the commonsense meanings of the expressons involved. But wheat if it were true that Whorf
overemphasized certain aspects of the meanings of Amerindian expressons -- namely those
aspectsthat he felt would seem mogt dien to average American readers? From his interpretations
he judged that Apache-, Hopi- or Shawnee-gpeaking Amerindians tend to think about things
differently than English- gpeaking Americans. From other interpretations one might not conclude
this. If both interpretations have some degreeof vaidity, then the proper conclusion isthat these
Amerindians do tend to think about things differently than Americans, but probably rather less
s0 than Whorf believed. For the semantic differences which Whorf pointed out are there, they
are just not as important as Whorf thought, because they do not exhaust the meanings of the
Amerindian expressons in question.

Thought isinfluenced by all aspects of the meanings of the words and sentences it uses; it is
not controlled by any of them. The view of meaning as afuzzy set of patterns makes this point
particularly clear. Whorf focused on certain subsets of the meaning-sets of Amerindian words,
chosen for interest and shock value. Others claim that these subsets are not as important as
Whorf thought; they argue, in effect, that the subsets which Whorf identified have small degrees
of membership in the meaning fuzzy sets of the words and sentences he trandated. But unlessthe
degressinvolved are truly negligible, which seems highly unlikely, this sort of quibble does not
have much force againgt Whorf's generd theory of language and mind.

6.1.2. Chinese and Western Modes of Thought

Some of the most intriguing evidence in favor of the Sapir-Whorf hypothesis may befound in
alittle book by Alfred Bloom, entitled The Linguistic Shaping of Thought (1981). This book
dispdstwo illusons a once: firgt, the idea that the Sapir-Whorf hypothesisis empiricaly false
second, the idea (which one might get, for example, from Lucy (1987)) that the Sapir-Whorf
hypothesisis true, but only in ways that are philosophicaly and psychologicaly uninteresting.
For example, Bloom reports that

In 1972-73, while | was in Hong Kong working on the development of a questionnaire designed
to measure levels of abstraction in palitica thinking, | happened to ask Chinese-spesking
subjects questions of the form, "If the Hong-Kong government was to pass alaw requiring that
al citizens born outside of Hong Kong make weekly reports of their activities to the police, how
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would you reach”.... Rather unexpectedly and consistently, subjects reacted "But the government
hasn't," "It can't,” or "It won't." | tried to press them alittle by explaining, for ingtance, that "
know the government hasn't and won't, but let usimagine that it does or did...." Yet such
attempts to lead the subjects to reason aboutthings that they knew could not be the case only
served to frustrate them and to lead to such exclamations as "We don't speak/think that way!,"
"It's unnatura,” "It's unChinese!" Some subjects with substantia exposure to Western languages
and culture even branded these questions and the logic they imply as prime examples of
"Western thinking." By contrast, American and French subjects, responding to smilar questions
in their native languages, never seemed to find anything unnatura about them and in fact reedily
induged in the counterfactua hypothesizing they were designed to dlicit.

The unexpected reactions of the Chinese subjects were intriguing, not only because of the
cross-cultura cognitive differences they suggested, but aso because the Chinese language does
not have structures equivaent to those by which English and other Indo- European languages
mark the counterfactua realm.

In giving aroutine politica questionnaire, Bloom stumbled upon an apparent pardld between
patter ns of language and patterns of thought.

Subsequent empirica tests verified Bloom's origind intuition. Given the same stories to read,
Chinese students were far less likely than American students to place a counterfactua
interpretation upon them. For example, given information of the form "The philosopher Bier, if
he had come into contact with X, would have done Y," Chinese students were far more likely to
assume that Bier had donethingsrelated to Y.

Of course, Bloom is not proposing that Chinese speakers cannot reason counterfactudly. He
gives examples of counterfactua statementsin Chinese. Compared to their Indo- European
counterparts, however, these are protracted and avkward. The point isthat thinking
counterfactualy is much easier for us than for the Chinese, because our language provides us
with ready-made schema for doing so.

These results are surprising and tremendoudy important. When | first read of them, my
reaction was utter disbelief. After al, every Chinese mathematician uses reductio ad absurdum,
atheorem-proving strategy which is explicitly counterfactua in nature. Obvioudy Chinese
matheméticians develop amenta "schemd’ for applying counterfactua reasoning to
mathematical statements.

But, after putting variants of Bloom's origind survey question to severd Chinese
meathematicians of my acquaintance, | became a believer. My informal survey indicated thet
Chinese people, even those who speak reasonable English, are smply not comfortable thinking
counterfactualy about commonplace Stuations. Counterfactud reasoning in mathematica proofs
would seem to be, psychologicaly, adifferent "routing’ from counterfactua reasoning regarding
politics and everyday life. Thisis an intriguing example of mental "modularization.” Just asa
person who reasons logically about chess need not reason logically about her boyfriend's
activities, a person who reasons counterfactualy in mathematics need not reason
counterfactualy about commonplace rea-world events.
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Bloom dso studied other, related differences between Chinese and Indo- European languages. for
ingance, the use of articles, or the tendency to "entify" characteristics or actsinto things
themsdlves by adding suffixeslike ™ance,” ™ity," "-ness," "-tion," "-age". In each case the result
isthe same: the linguidtic difference corresponds to a difference in interpreting events, as
measured by responses to Smple surveys. Obvioudy dl humansthink dike to alarge extent. But
there are scientifically demongtrable differences, which are not academic but rather closdly

bound up with the interpretation of everyday events.

6.1.3. Contradictions and L oopholes

This brings us to another invaid argument often made againgt Whorf's ideas: that the very
concept of linguidtic relativity is sef-contradictory. After al, it isasked, if our thoughts and
perceptions are not based on objective redlity but only on linguistic structures, then how can we
trust those thoughts and perceptions that led us to the concept of linguigtic rdaivity in the firgt
place? Whorf is accused of asserting the objective truth of the impossibility of objective truth.

This argument iswrong for many reasons, the main one being that Whorf never actudly made
such astrong satement for linguigtic determinism. He dways | eft loopholesin his atements --
using "largdy" ingtead of "entirdly,” and so on.

Statements which at first glance seem very strong become, on closer congderation, somewhat
open-ended. For instance, consider Whorf's contention that

the world is presented in akaedoscopic flux of impressions which has to be organized by our
minds-- and this means largely by the linguistic syssems of our minds. [p. 215]

Here there are two loopholes. Firg, "largely” -- what exactly does thisimply? And then,
"linguidtic systems" -- given the concept of an abstract "language of thought,” and the fact that
Whorf has dsawhere cdled mathematics and music "quasilanguages,” it is not clear exactly what
this phrase is supposed to mean.

Whort just plain never cdlaimed that language contr ols thought, unilaterdly and absolutely.
And there is nothing paradoxicd in the idea that linguistic structures are abig influence on our
thoughts and perceptions. Even big influences can potentialy be overcome -- with hard work and
continud saf-consciousness, or occasondly just by chance.

6.1.3.1. Language and Category

The misperception of Whorf as an extremist has caused many current researchers to distance
themselves from Whorf, while a the same time gpplying many of hisideas. Listen, for example,
to Searle (1983):

| am not saying that language creates redity. Far fromit. Rather | am saying that what counts as
redity -- what counts as a glass of water or abook or atable, what counts asthe same glassor a
different book or two tables -- isamaiter of the linguistic categories that we impose on the
world.... And furthermore, when we experience the world, we experience it through categories
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that help shape the experiences themsalves. The world doesn't come to us dready diced up into
objects and experiences, what counts as an object is dready afunction of our system or
representation, and how we perceive the world in our experiencesis influenced by that system of
representation. The mistake is to suppose that the application of language to the world conssts of
attaching labels to objects that are, so to speak, saf identifying. On my view, the world divides
the way we divideit.... Our concept of redity isamatter of our linguistic categories.

Searleé's emphasis on "categories' isreminiscent of Lakoff's (1987) Women, Fire and Dangerous
Things, thetitle of which refersto an aborigina language thatgroups women, fire and dangerous
things together under one categorica name. It dso reminds of Hilary Putnam's formal- semantic
theorem, to the effect that

'Objects do not exist independently of conceptual schemes. We cut up the world into objects
when we introduce one or another scheme of description....

It has become acceptable in philosophica and anthropologicd circles to admit that language
guides our categorization of the world. If Whorf were gill around, how would he react to this? |
suspect he would observe that categorization is just the simplest kind of patternment: that
language does guide the way we group things together, but it aso guides our perceptions and
cognitionsin subtler ways.

And Whorf might also be a bit amused to find the claim that "our concept of redlity is a maiter
of our linguigtic categories' in the same essay as the statement thet I am not saying language
createsredity. Far fromit." It would seem that contemporary thinkers like Searle find Whorfian
ideas useful, but they want to avoid controversy by marking a sharp distinction between "our
concept of redity” and "redity.” What difference does this phenomena/noumend digtinction
make, in practice?

6.1.3.2. Whorf on Culture

So far | have defended Whorf againgt his critics. However, | must admit that on some issues
Whorf went too far even for me. For instance, Whorf probably would not have agreed with the
ideas about language and culture sketched in Section 2.7 above. He supposed that written and
gpoken languages, dong with "quasilanguages' like music and mathematics, had a speciad power
and coherence lacked by bdlief sysems such as those inherent in culture. Regarding the
interconnection between linguigtic, socid and psychologicad reams, he wrote:

How does such a network of language, culture and behavior come about historicaly? Which
was fird: the language patterns or the cultural norms? In main they have grown up together,
condantly influencing each other. But in this partnership the nature of the language is the factor
that limits free plagticity and rigidifies channdls of development in the more autocratic way. This
IS S0 because alanguage is a system, not just an assemblage of norms. Large systematic outlines
can change to something redlly new onlyvery dowly, while many other culturd innovations are
made with comparative quickness. Language thus represents the mass mind; it is affected by



CHAOTICLOGIC 88

inventions and innovations, but affected little and dowly, whereas TO inventors and innovators
it legidates with the decree immediate. (p. 156)

Even the most unsophisticated reader would be unlikely to miss the ambivadence of this
passage. In the beginning of the paragraph, "in the main they [language, culture and behavior]
have grown up together.” But by the end of the paragraph, language is "affected little and
dowly," whereas language "legidates [to culture and behavior] with the decree immediate.”
Which isit?Isit coevolution between two systems of roughly equa complexity, or isit the
adaptation of ardatively smple system to amuch more complex one, with rdaively little
influence in the oppogte direction?

In the end Whorf adopts what | would cal agrict Darwinist point of view (see The Evolving
Mind for agreat ded more on gtrict Darwinism). Many evolutionary biologists believe that one
cannot andyze evolution without taking into account the fact that the environment of an
organism -- condsting as it does of other evolving organiams -- evolves adong with the organism,
adapting to the organism at the same time as the organism adapts to it. Some, such as James
Lovelock (1988), even believe that the physical environment evolves to match the organisms
which amultaneoudy evolve to match it. In contrast to these points of view, the strict Darwinists
believe that each or ganism evolves independently, stringently influenced by the systematic
structure and dynamics of its environment but having very little influence upon its environment.
Whorf looks at culturd and behaviora patterns in the same way that strict Darwinism looks at
organisms. heplessin the face of the awvesome power of their environment, their only option is
effective accomodation.

Unlike Whorf, | do not agree that cultural and behaviord systems are "just a collection of
norms" Far from it. The whole field of socid psychology spesks againgt this supposition. These
systemns are indeed a collection of norms, but a collection full of subtle interconnections and
interdefinitions.

Asto their effect on human existence, compared to the effect of language on human existence,
here again | mug differ with Whorf. Language's effect may be subtler and in some ways
deeper, but the influence of cultura and behaviord sysemsis much more dir ect.

Spoken language encodes basic background assumptions that subtly guide our andogies. It
thus plays a role throughout the mind -- in the language of Chapter Three, a virtudly every leve
of the dua network, in virtudly every cluster of processes (only the very lowest levels are
exempt). But systems of other kinds guide our anaogies as well, perhaps not quite so subtly or
pervasively, but in many cases more powerfully. Bdief systems about the nature of socid and
physical redity, or particular aspects thereof, guide our andogies very strongly.

And, findly, it isworth noting that even behavior systlems can sometimes guide our cognitive
processes. For when we adopt a certain role, put on a certain "performance,” we associate things
that we would not associate otherwise; and the mind is very good at recognizing and storing
asociations. Thisis ardationship which deserves much more attention than it has received.

6.2. LANGUAGE, CONSCIOUSNESS, SERIALITY
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The dua network model, as outlined in Chapter Three, isahigh-levd "wiring diagram” for
intelligent systems. But it Sdesteps the question: where does consciousnessfit in?1n The
Structure of Intelligence, consciousness is modeled as a process that moves from level to leve of
the multilevel control hierarchy, but only within a certain restricted range. If the zero leve is
arbitrarily sdlected to represent the "average” leve of consciousness, then we may say
consciousness resides primarily on levelsfrom -L to U. The levelsbelow -L represent
perceptions that are generaly bel ow conscious perception. Consciousnessis at adistance from
the lowest leves of the hierarchy, which represent "sensedata’ -- it ded's only with congtructions
of at least moderate complexity. And, on the other hand, the levels above U represent perceptions
that are in some sense beyond conscious perception: too abstract or general for consciousness to
encompass.

This theory of consciousnessis Smilar in some respects to Jackendoff's (1986) "intermediate
level" theory of consciousness, which states that consciousness corresponds to mental
representations that lie midway between the most peripherd, sensory level and the most
"centrd," thoughtlike level. Jackendoff points out that hisidea

goes againg the grain of the prevailing gpproaches to consciousness, which gart with the
premise that consciousnessis unified and then try to locate a unique source for it. [My theory]
clamsthat consciousnessis fundamentally not unified and that one should seek multiple sources.

[p.52]

Consciousnessis not in one place; it is rather associated with a collection of processes that occur
in intermediate levels of the psychologica hierarchy.

6.2.1. Dennett's Computationalist " Explanation”

We have | ocated consciousnessin the dua network. But we have not said what it is. What
tasks does it accomplish, and what does it depend on? One intriguing hypothesisin thisdirection
issupplied by Daniel Dennett, in his book Consciousness Explained.

A "meme" is defined as a socioculturd pattern, passed aong from generation to generation.
Dennett believes that consciousness is a meme rather than something intringic to the structure of
the brain. He proposes that

Human consciousnessisitself a huge complex of memes (or, more exactly, meme-effectsin
brains) that can best be understood as the operation of a" von Neumannesque" [serid] virtud
meachine implementedin the paralld architecture of abrain that was not designed for any such
activities. The powers of thisvirtual machine vastly enhance the underlying powers of the
organic hardware on which it runs, but a the same time many of its most curious features, and
especidly its limitations, can be explained as the byproducts of the kludges that make possible
this curious but effective reuse of an existing organ for novel purposes.

What isthe intuition underlying thisradicd hypothesis? Thinking of the str eams of
consciousness that permegte James Joycesfiction, Dennett gives this "von Neumannesque'
serid machine the dternate labd " Joycean machine” And, subjectively, in mogt states of mind a
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any rate, consciousness does seem to flow like a stream rather than an ocean: al in one direction,
one thought after another.

"l am sure you want to object,” Dennett writes, that "[d]ll this haslittle to do with
consciousnessl Afterdl, avon Neumann machine is entirdly unconscious: why shoud
implementing it ... be any more conscious?’ But this objection does not faze him:

| do have an answer: The von Neumann machine, by being wired up from the outset that way,
with maximally efficient informationd links, didn't have to become the object of itsown
elaborate perceptua systems. The workings of the Joycean machine, on the other hand, are just
as"vigble' and "audible" to it as any of the thingsin the externa world thet it is designed to
percelve -- for the Smple reason that they have much of the same perceptua machinery focused
on them.

Now this gppears to be atrick with mirrors, | know. And it certainly is counterintuitive, hard-
to-swalow, initidly outrageous -- just what one would expect of an ideathat could break
through centuries of mystery, controversy and confusion.

In response to the question of what good this complex meme called consciousness does us,
Dennett quotes Margolis (1987) to the effect that

ahuman being ... cannot easily or ordinarily maintain uninterrupted attention on a single problem
for more than afew tens of seconds. Y et we work on problems that require vastly more time. The
way we do that ... requires periods of mulling to be followed by periods of recapitulation,
describing to ourselves what seems to have gone on during the mulling, leading to whatever
intermediate results we have reached.... [B]y rehearsing these interim results ... we commit them
to memory, for the immediate contents of the stream of consciousness are very quickly lost
unlessrehearsed.... Given language, we can describe to ourselves what seemed to occur during
the mulling that led to ajudgement, produce a rehearsable version of the reaching-a-judgement
process, and commit that to long-term memory by in fact rehearsing it.

Thisiis nothing more than good common sense. It iswell known that consciousness cannot
contain more than around seven entities a one time. Therefore, most of the regularities present
in the mind cannot enter directly into consciousness. But by use of language,
complexphenomena can be encapsulated in Smple statements, and thus presented to
consciousness. If the unconscious "wishes' to present something to consciousness, it must
trand ate some approximation of this thing into Smple terms, let consciousness work with the
amplified expresson, and then afterwards trandate back. Language is the number onetool for
thiskind of trandation.

6.2.2. Consciousness, Virtual Seriality, and Language

The dud network isintrindgcaly pardld, but it is possible for a process or group of processes
within the dud network to repeatedly feed itsdf its own output asinput, thus creating aminiature
virtud serid machine, temporarily ignorant of the massvely parald processing going on dll
around it. The dua network may in many cases connect A and B, and have A and B repeetedly
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exchange the results of computations without consulting any other processes -- this isvirtud
seridity, where one's "serid maching' congsts of A and B together.

| don't completely buy Dennett's computationdist trestment of consciousness. However, | do

agree with him that there is a very close connection between consciousness and virtud serid
processing.

In Chapter Three we reviewed two important uses for virtud serid processing: making logicd
deductions, and predicting complex systems by smulation. A few pages above we discussed
another, related use: genera linguistic deduction. Subjectively, these actionsare dl closdy
connected with consciousness.

Margolus, in the quote given above, has € oquently presented the phenomenologica case for
the relevance of consciousness to linguigtic deduction. In order to compute high-depth eements
of D(I,T) for sandard linguistic and logical systems, we need to use a complex combination of
serid conscious thought and anal ogical/associative- memory thought. Introspectively, neither one
process aone appears to suffice.

And the phenomenological connection between consciousness and prediction isno less direct.
Suppose one wants to determine the likely consequences of a given action. One may intuit, ina
semi-conscious flash, some guess as to the answer. But in order to be sure, one will reason it out
dowly and carefully: what will be the immediate consequences, then the consequences of these
consequences, and so forth. Almost dl prediction is purely unconscious: but when Stuations get
too uncertain, when they deviate too far from past experience, then consciousness hasto
intervene to dedwith things serially, by goproximate smulation. In other words, walking down
the street, one chooses a path unconscioudy. But legping through a stream from one rock to the
next, one chooses one's path conscioudy, weighing each choice in terms of the array of future
choices that it will lead to.

In sum, according to Dennett's "computationdist” vision, consciousness is a phenomenon

1) closely related with,

2) onthe samelevelsas, and

3) dedling largdy with the output of
serid, linguistic processing. This conception of consciousnessis dl thet is necessary to fit the
Sapir-Whorf hypothesis together with the pattern-theoretic analys's of language and mind. For it
leads to the conclusion that language helps to deter mine the world we conscioudly perceive.
6.3NIETZSCHE ON CONSCIOUSNESS AND LANGUAGE

Dennett's consciousness-as-meme ideais not a new one, nor is his picture of consciousness as

linguistic deduction. His entire theoretical framework is, in fact, very smilar to the view of
consciousness articulated by Friedrich Nietzschein 1882:
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... Man, like every living being, thinks continudly without knowing it; the thinking thet rises
to consciousness isonly the smdlest part of dl this-- the most superficid and worst part -- for
only this conscious thinking takes the form of words, which isto say signs of communication,
and this fact uncovers the origin of consciousness.

In brief, the development of language and the development of consciousness ( not of reason
but merely of the way reason enters consciousness) go hand in hand.... The emergence of our
Sense impressions into our own consciousness, the ability to fix them and, asit were, exhibit
them externdly, increased proportionately with the need to communicate them to others by
means of Sgns...

... [Clonsequently, given the best will in the world to understand ourselves asindividually as
possible, "to know oursalves,” each of uswill dways succeed in becoming conscious only of
what is not individua but "average'...

Thisis the essence of phenomenalism and perspectivism as | understand them: Owing to the
nature of animal consciousness, the world of which we can become consciousis only a surface-
and 9gn-world, aworld that is made common.... (The Gay Science; 1968b)

Nietzsche interpreted the high degree of consciousness which we humans display as a socio-
culturd phenomenon, an exaggeration of anima consciousness which evolved together with
language -- which evolved, in short, asameme. But his view of the utility of consciousness was
not quite so rosy as Dennett's. According to Nietzsche, only conscious thinking is forced into the
graightjacket of language, and for this precise reason conscious thinking is much less fertile than
unconscious thinking. Language isfor socid interaction, therefore that which can be put in the
form of language is precisaly that which is common rather than that which isindividud,

unusud, unigue.

Y et one cannot conclude that Nietzsche felt linguistic, conscious thought to be unimportant
or useless. His attitude was much more complex than that. In adraft of a preface for his never-
written treatise The Will To Power, he wrote "Thisisabook for thinking, nothing dse” But in
the notes for that very book, he wrote of thinking:

L anguage depends on the most naive pregjudices....

We ceaseto think when we refuse to do so under the constraint of language; we barely
reach the doubt that sees this limitation as alimitation.

Rational thought isinterpretation according to a scheme that we cannot throw off.
(p-283)

Thisis about as Whorfian a statement as one could ever hope to find. Nietzsche valued linguidtic,
conscious, rationd thought immensely -- for much of hislife it was his only solace from physica
auffering. But he did not trust it, he did not seeit as objective; he refused to treet it asardigion.

6.3.1. Imaginary Subjects
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Whorf's work focused on the differencesin world-view implied by differencesin linguigtic
gructure. Nietzsche, on the other hand, saw certain very Smple, very essentid eementsin
common to al languages, andperceived that they played an essentid role in the congtruction of
the concept of an internd and an externa world.

For instance, Whorf wrote of the way English, but not Hopi, refersto lightening as an object.
Nietszche saw this objectification of non-objects -- crucid in the congruction of the external
world -- not as a peculiar feature of some languages, but rather as a consequence of the one
central objectification involved in isolating the "sdif," the inner actor, as digtinct from everything
ese

Our bad habit of taking a mnemonic, an abbreviative formula, to be an entity, findly asa
cause, eg., to say of lightening it flashes.” Or thelittle word "1."

[H]itherto one believed, as ordinary people do, that in "I think" there was something of
immediate certainty, and that this"1" was the given cause of thought, from which by andogy we
understood al other causa relationships. However habitua and indisoensible thisfiction may
have become by now -- that in itsdf proves nothing againg itsimaginary origin: abdief canbea
condition of life and nonetheless be false. (p.268)

The «f, the"Il", isunderstood as the basis of the linguistic concept of subject, of actor. Thus
the congtruction of a sdlf, and the congtruction of an externd world, are perceived as closdy
related, as emanating from the same fundamenta principles. The concept of subject, in
Nietszche's view, is a prime example of the subtle inter- connection of language and thought. Our
language assgns imaginary subjects to actions, and we correspondingly assign imaginary
subjects to actionsin our conscious and near-conscious thinking; we condruct an externd world
based largely on subjects. And we postulate an imaginary entity cdled |, and attribute to this
subject ahost of actionsthat are actudly due to the independent and interactive behavior of a
number of different subsystems.

These "imaginary" subjects may be understood as the result of an overextended andogy. First,
events are correlated with other tempordly prior events -- e.g. smoke is correlated with fire.
Then, it is observed that in many casesit is useful, and hence satisfying, to explain alarge
number of different eventsin terms of one temporally prior entity. Generd concepts
like'westher," "hatred," "patriotism," and so forth arise, each one out of the desireto explain a
certain collection of effects with one entity. These concepts refer to definite collections of
gpecific phenomena; they are smply tools for thinking and remembering.

But then what happensis that, when something cannot be explained in detail, a genera
concept is adduced as an "explanation.” Thisis not dways a mistake: given limited resources, a
mind cannat explain everything in detall. It must learn to recognize which things can be
explained in terms of well known ideas, and can beignored until the pressing need to andyze
them arises, and which things are anomalous, requiring specid attention so that trouble will not
occur when the need to analyze them arises. But it is amistake sometimes: agenerd concept is
adduced as an explanation for a phenomenon to which it smply does not apply. Thus "it flashes'
for lightening.
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"It bit me" ismeaningful, it is a generd explanation which could easily be backed up by a
detailed explandtion. But "it flashes' is not: thisis a genera explanation which isredly unrdaed
to any detailed explanation. The only possible related detailed explanation would be of the form
"this and that combination of atomspheric phenomenaflashes' -- but thet is severdly dtretching
the concept of it, and in any caseit is not the sort of explanation that would come naturdly to the
mind of anon-meteorologist. "I did it" is problematic for the same reason "it flashes' is no good.
It isnot just a shorthand for some detailed explanation ready at hand, it is an empty abstraction.

P.T. Geach, in Mental Acts, has made this point in a particularly € oquent way:

Theword 'l', spoken by P.T.G., servesto draw peopl€e's attention to P.T.G.; and if it isnot a once
clear who is spesking, thereis a genuine question 'Who said that? or 'Who is"1"? Now, consider
Descartes brooding ... saying 'I'm getting into an awful muddle -- but then who isthis™1" who is
getting into amuddie? When 'I'm getting into amuddl€ isasoliloquy, 'I' certainly does not serve
to direct Descartes attention to Descartes, or to show that it is Descartes, none other, who is
getting into amuddle. We are not to argue, though, that since'l' does not refer to the man Rene
Descartes it has some other, more intangible thing to refer to. Rather, in this context the word I
isidlesuperfluous, it is used only because Descartes is habituated to the use of 'I' in expressing

his thoughts and fedlings to other people.

According to Whorf, this reification of the subject does not happen in Hopi and other non-
Indo- European languages. But on this point | must Sde with Nietzsche. The grammétical
meanifestation of reification may vary from language to language, but | very strongly suspect that
every language postulates some form of imaginary acting entity. This, unlike use of
counterfactuas, emphagis on flux versus stagis, and other linguisticaly varying phenomena, is
absolutely essentid to the concept of language. It is an ingdinctive application of anaogica
reasoning to the act of naming on which al communication is based, and no culture can escape
from it. Humans cannot help but attach a certain amount of concrete redlity to the symbols that
they use. We can, as Nietzsche suggested, fight this tendency, but thisis a battle which no one
can ever completely win.

An interesting pin-off of this andysis of imaginary subjects s the theory that free will is an
emotion ingpired by language. Nietzsche's anayzed free will as

the expression for the complex state of ddight of the person exercising volition, who commands
and a the same time identifies himsdf with the executor of the order -- who, as such, enjoys aso
the triumph over obgtacles, but thinks within himsdlf thet it was redlly hiswill itsdf that

overcame them. In thisway the person exercisng volition adds the fedings of ddight of his
successful executive insruments, the useful ‘underwills or undersouls -- indeed, our body is but
asocid dructure composed of many souls -- to hisfedings of delight as commander. L 'effet
c'est moi: wha happens here iswhat happens in every well-constructed and happy
commonwedlth; namely, the governing class identifies itsalf with the successes of the
commonwealth. (1968, p.216)

Thefeding of free will, according to Nietszche, involves 1) the feding that thereisindeed an
entity cdled a"sdf", and 2) the assignation to this"sdf" of "responghility” for one's acts.
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In The Sructure of Intelligence, "ddight" and related emotions are given a pattern-theoretic
trestment. Following Paulhan, happiness is andyzed as the fedingof increasing order, increasing
interemergence and interconnectedness. Here, let us focus instead on the nature of the ddlight
involved. Free will isthe specid kind of happiness derived from a process attributing the
successes of its"servant” processesto itself -- in other words, it is an example of the joy of
making the postuate of an imaginary subject. And this podulate islinguistic in nature, so that
the connection between free will and consciousness is precisaly as close as the relation between
language and consciousness.

6.4. A NEW THEORY OF CONSCIOUSNESS

So far, | have discussed some of the cor relates of consciousness; but | have not explained
consciousnessitsdf. To get at the true nature of consciousness, one must confront the feding of
"raw exigence' or "sdf-presence” that isthe essence of what we call living.

Thisisavery difficult task, and | will gpproach is obliquely, by first looking at consciousness
is through the medium of biology. The biologica approach cannot give usthe find answer to
what is fundamentaly a psychological problem. But it will be remarkably useful in setting uson
the right path.

6.4.1. Consciousness as Per ception

Consciousnessiis sel f-per ception. And salf-perception could, theoreticaly, be achieved in two
ways. Firgt, by specid "perception” routines used only for percaving high-level mentd
activities. Or second, by generd "perception” routines that are also used for something else.
Evolutionary thinking makes the second possibility seem far more attractive.

For, suppose the first dternative holds. These specid sdf- perception routines would have to
be quite sophigticated. How would they ever get started, in the naturd history of the brain?
Clearly, in their initid stages, they could have no adaptive advantage. They would have to arise
as the Sde-effect of something ese. But what?

The second dternative, on the other hand, requires no mysterious "evolution out of the blue."
Lower animds demondtrate progressively more sophigticated neural routines for per ceiving the
outer world. If consciousness uses these routines for salf-perception, then its evolution is not so
much of an enigma. All that the evolution of consciousness required was the additionof some
new connections onto a complex, fine-tuned, aready existing mechanism.

The most reasonable hypothesis, therefore, is that consciousness is the result of taking neura
maps normaly used for perceiving the outside world, and gpplying them, not to the externd
gimuli for which they were intended, but to the inner workings of the mind. Of course, the
lowest levels of perceptua processes cannot possibly be applied outside of the context for which
they evolved. But for dightly higher levels, thisis not true. What about the processes that
assemble various pictures together into a scene? What about the processes that distinguish
meaningful sounds or images from background information thet is less rdlevant or interesting.
These are highly developed aspects of the human perceptua mechanism.
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What | am suggesting is that consciousness works by mapping higher-level thought
processes into middle-level sensory data. Consciousness congsts of "fooling" the perceptua
mechanism into thinking it is working with congtructs built up directly from externa sense data,
when it is actudly working with transformed versions of patterns from levels above it. This
explans wha we mean when we say we are "thinking visudly" about something, or "thinking in
words." We mean that our self-perception uses the standar d per ception routines of the brain,
which evolved for perception of data coming in from particular sense organs. eyes, ears, NOSes,
taste buds, skin. Our ideas are mapped into pictures, sounds, perhaps even smdlls, and in this
disguise they are grouped into wholes and "perceived.” Then the perceptions obtained in this
way giveriseto higher-leve patterns, which may be fed back down to the perceptud
mechanisms, repeating the process and giving rise to the familiar cir cularity of consciousness.

Thisview isfairly closdly rdaed to Eddman's (1989) theory of consciousness. According to
Edelman, consciousness represents the interaction between

1) the recognition of patternsin “interoceptive input,” input from neurd maps gauging the
gtate of the body. This categorization is mediated by the hypothaamic and endocrine systems,
the"reptile brain”

2) the recognition of patterns emergent between "interoceptive input” and "exteroceptive”
input. Exteroceptive input, input from outside the body, is mediated by hippocampus, septum
and cingulate gyri; the recognition of emergent patterns takes place in the thalamus and cortex.

The interaction between these two processesis akind of "re-entry" between higher-leve
cognitive emergent- pattern recognition and lower-leve "autometic" interoceptive and
exteroceptive pattern recognition.

However, while Eddman explores many interesting neurologicad details, he omits any detailed
discusson of the intuitive, psychological role of perceptua mechanismsin consciousness. The
issue of "fooling,” and its relationship to the subjective experience of consciousness, is never
drawn into the picture. Thus, on apsychological level, Eddman's theory of consciousnessis
somewhat disgppointing, particularly in comparison to his Neural Darwinist theory of learning,
which is o suggestive both biologicaly and psychologicaly.

Findly, it isworth pointing out that none of this contradicts Dennett's " consciousness-as-
meme" idea. | have said that there are neurd connections leading from higher-level processes,
through transformation processes into middle-level perceptua processes. These connections have
evolved; they are there in every human brain. But they may be strengthened through repeated
use, or weakened through disuse. Coming into frequent contact with other conscious persons
would seem to be a prerequisite for the strengthening of these connections. In this sense,
therefore, consciousness may be said to be a"meme." The presence of the connectionsis
genetic, but their Srength is memetic.

6.4.2. Consciousness and the M aking of Reality

96
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Now, findly, | am ready to put al the pieces together: consciousness, language, seridity,
thought, and perception. The firgt sep in this unification is to do what neither Dennett,
Jackendoff or any other modern cognitive scientist has done: to say what good consciousnessis.
| propose, following Nietzsche, that the function of consciousnessisto manufacturereality.

Consciousnessis afeedback dynamic involving higher-leve "cognitive' processes and
middle-level perceptua processes. What | am suggesting is that a pattern only acquires the
presence, the solidity that we cdl "redlity,” if it has repeatedly passed through this feedback loop.

Philip K. Dick defined redlity as " That which doesn't go away when you stop believing init.”
Redlity isakind of near imper viousness to mental dynamics, arefusa to be dtered by the
natura re-organization processes of the dua network. The dual network congtantly readjusts
itself, swapping one subnetwork foranother in quest of greater associativity and fortuitous
genetic creetion. But those subnetworks which arereal cannot be broken up; their pieces cannot
be swapped for other pieces.

To put it metaphoricaly, dements of redity are like idands in the sea of mind. Aswith red
idands, a sufficiently large storm can maul or bury them: there are degrees of restriction. But
normal weather patterns rearrange the sea and leave the idands intact.

Why would passing through the feedback loop from higher-leve to midde-leve tend to cause
relative imper viousness? The answer to thisliesin the specific middle-leve perceptud
processes involved. These are, | suggest, primarily

1) those processes which act to combine agroup of different sensations from the same sense
organ together into asingle cohesive entity -- a"scene” "image," "sound,” "physicd location,”
etc.

2) those processes which act to combine entities recognized by different senses (hearing,
visgon, touch, etc.) into asingle, united form.

Each time something is passed through these processes, it attains a degree of cohesion, a
degree of resistance to being broken up. When something is passed through again and again and
again, it achieves a superlative degree of cohesion and resstance -- it becomesreal.

The process of grouping disparate € ements together into awhole is a complex one. However,
| suggest that one key part of thisprocessisan increase in the degree of restriction agang
rearrangements. A subnetwork which cannot easly be disrupted by rearrangement dynamicsis
inherently much wholer than one which can. And onceit is protected againgt rearrangement, its
parts have the leisure to dowly adjust themsdlves to one ancother, thus attaining yet more refined
wholeness. Findly, passng some X through the restrictiondegree-increase routines over and
over again would obvioudy result in the congtruction of extremely solid barriers around that X.

In this view, consciousnessisaserial process. And it isvery smilar to the seria processes of
prediction, logica deduction, and syntactic sentence, percept-, or act-formation. All of these
processes involve are-entry from higher to lower. Something is built up -- a phrase, say, out of
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words, or afuture, out of the present. And then it is passed down to the level where its parts
came from: the phraseis plugged into a syntactic operation asif it were aword; the
futurescenario is trested conjecturdly as a present and the mental routines for "present-world"
meanipulation are gpplied to it.

But mere smilarity is not the only relation between consciousness and deductive, serid
processing. Perhaps more crucid isthe fact that in the context of the dual network, structured
transformation systems requiretheinterim asusmption of reality every step of the way.
How could deduction work if one step were dtered before the next were complete? How could
prediction work if the one-week prediction were rearranged before the two-week prediction was
done? How could a complex sentence be formed if, while the sentence was being structured on a
globa leve, the subservient phrases of the sentence were being replaced with phrases of
completdy different types? The re-entrant processes involved in applying structured
transformation systems require r eality to be introduced at each step. And redlity, | have argued,
requires Consciousness.

This, | sugges, isthe true nature of the relationship between consciousness, language and
thought. Language structures the memory which guides the structured transformation systems of
deductive and predictive thought. But neither sentence formation nor deduction nor prediction
could function without consciousness.

6.4.2.1. Consciousness as Catch-22

Nietzsche lamented the "coarseness' of the ideas contained in consciousness. But thisis
inevitable: it isin the very nature of consciousness to congtruct ideas that are rigid. Unconscious
ideas are bound to be more fluid, more adept a intuitive shifting. But most of these unconscious
ideas were constructed by structured transformation systems, which require locd rigidity for
their effective operation.

Specificaly, imaginary subjects, which annoyed Nietzsche o, are precisely the price one
pays for having linguitic systems that talk about subjects. Without reifying things, without
assuming and imposing ther redlity, thereis no way to keep them solid in the midst of the
shifting dynamics of the mind; there is no way to keep them in one place long enough to work
with them. Sometimes the reification turns out to be alittle too much -- “I" or "lightning" are
reified for one purpose, and then used for another. But the mind is notorioudy error-prone; itisa
grict adherent to Murphy's Law. The cost of avoiding thistype of error would be great asto make
thought impossible. Consciousness, and reification dong with it, are necessary components of
the unconscious crestivity which Nietzsche so extolled.

On the other hand, it would be just as futile to lament the unconsciousness of most of the
mind. If everything were made conscious, the mind would freeze up, it would grind to a hdlt.
Structured transformation systems, which are the main reason consciousnessisnecessary, aso
require associaive memory, which is maintained only by the fluidity of subnetworks that have
not been made red through consciousness.
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Thus consciousness represents a sort of psychologica Catch-22. In order to produce fluidity,
the mind must produce rigidity. And in order to produce rigidity, the mind must produce fluidity.
The two exigt in a careful balance; one cannot abolish one without abolishing the other as well.
6.4.3. Consciousness and Self-Reference

Beginning from consderations loosdy biologica in nature, | have arrived a anovel
psychological modd of consciousness, expressible soldly in terms of the dynamics of the dud
network. The feding of "raw existence," | sugges, is Smply the feding of subnetworks
resisting the natural urgeto shift. It isthefeding of solidity resisting fluidity.

And the feding of "sdf-presence”’ isone level up from this; it isthe feding of solidity which
produces solidity. "l an" means "I, this menta process, make mysdf solid; | maintain my
boundaries againg the surrounding flux." Thisis not merely an egotigticd delusion -- one may
formdly show that a mental process can make itsdf solid, by containing a subroutine directing
itself down through the feedback loop of redlity-construction. A process can sdlf-referentidly
direct itsdf to the grouping, solidifying centers of the mind.

Oneway to write such aprocessis.

X =s anddirect X to the nearest solidifying process, please

Here sis any object of observation; one may omit it, and obtain a process which does nothing but
direct itsdlf.

Or, lessformaly, one may write

X =sand look at X,
reducing to

X =look a X
inthe smplest casg, or eg.

X =1 am hungry and look at X
inamore generd Stuation.

In later chapters | will have much more to say about sdlf-referentia formulae of this type, and
their validity in psychologica modding. It will be formally demondrated that such sdif-
referentia congtructions can be dements of mind. For now, however, it is enough to suggest that
there is afundamenta importance attached to the sdlf- propelled movement of such processes

through the feedback loop of consciousness. Thismotion, | daim, is sdf-awareness.

6.4.4. Conclusion
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This, finaly, completes our roundabout excursion into the murky waters of consciousness
theory. The theory presented in this section may be understood on two levels: biological and
psychological. Some of the neurological details have been fairly speculdive; dl of the biologica
gatements | have made, however, are testable scientific hypotheses. Once we finish charting the
connections of the brain, we will see exactly what sort of re-entry consciousnessinvolves. If it
involves re-entry into some sort of scene-making or cross-modally connecting perceptual
process, then the biologica theory of this section will be proved correct. If not the theory will
have to be modified, or perhaps discarded.

On the other hand, the dua network model very strongly suggests that, whatever the biological
details, the psychology of consciousnessisoneof iteratively strengthening barriers against
reorganization. Thisisthe only logica role for consciousness in the context of a continualy
fluctuating network of menta processes. So, from the point of view of the dua network modd,
the barrier-strengthening would have to be accepted even if it did not have interesting
implications. But in fact it does have a least one very interesting gpplication: it explains, from
first principles, the dependence of language and reason on consciousNess.

Whorf, Dennett and Nietszche, despite their vastly different theoretical perspectives, have one
important thing in common: they essentidly equate consciousness with language and deductive
reason. But thisis notsatisfactory; there is a sense in which consciousness is more basic, less
complex. These other processes make use of the inherent nature of consciousness, but do not
define it. The view of consciousness asiiterative barrier-srengthening lets one deduce the close
connection between consciousness, language and reason, rather than assuming it.

Recall that, at the start of the chapter, | decomposed the Sapir-Whorf hypothessinto two
separate hypotheses: 1) that the structure of language strongly influences the structure of
thought; 2) that the differences between exigting languages are sufficiently grest to cause
sgnificant differences in thought patterns. | have said nothing new about the second clam. What
| have done, however, isto derive the first clam from basic properties of the dua network
modd. Whorf liked to use the word "pattern”; it was essentid to histhought. So it is not terribly
surprising that, in developing a pattern-theoretic modd of mind, | have "rediscovered” an
abstract verson of Whorfian linguidtics.
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SELF-GENERATING SYSTEMS
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In his recent book Salf-Modifying Systems in Biology and Cognitive Science (1991), George
Kampis has outlined a new approach to the dynamics of complex systems. The key ideaisthat
the Church-Turing thess gpplies only to smple systems. Complex biologica and psychologica
systems, Kampis proposes, must be modeled as nonprogrammable, self-referentia systems
cdled "component-sysems.”

In this chapter | will gpproach Kampiss component-systems with an appreciative but critica
eye. And this critique will be followed by the congtruction of an alter native modd of sdif-
referentid dynamicswhich | cal "sdf-generating systems' theory. Sdlf-generating systems were
devised independently of component-systems, and the two classes of systems have their
differences. But on a philosophical level, both forma notions are getting at the same essentid
idea. Both concepts are aimed at describing systems that, in some sense, construct themselves.
As| will show inlater chapters, thisis an idea of the utmost importance to the sudy of complex
psychologica dynamics.

7.1 COMPONENT-SYSTEMS

A component-system, as defined by Kampis, conssts of a collection of components, each of
which can act on other components to produce new components. More precisely,

An abstract component-system can be defined by the following properties.
a) - thereisafinite set of non-dividable and permanent building blocks, drawn from a given pool

b) - thereis an open-ended variety of the different types of admissible components, built up from
the building blocks according to some compodtion rule (which may be explicit or implicit)

C) - the components of the system are assembled and disassembled by the processes of the
system such thet every admissible component is aso redizable. (p.199)

For illugrative purposes, Kampis suggests that the reader visuaize the "non-dividable
building blocks'" as LEGO blocks, and the "admissible congructions' as different possible
structures buildable out of LEGO blocks. One must merely imagine that each LEGO dructure
contains some appropriate means for acting on other LEGO structures to produce new LEGO
structures.

The main biologicd example of a component system isa"molecular soup” full of organic
molecules acting on one another to form new molecules. Psychologicaly, on the other hand, one
is supposed to think of ideas acting on each other to produce new ideas. The centrd thesis of
SHf-Modifying Systemsisthat biological and psychological systems, being component -
systems, ar e fundamentally uncomputable. Thisthess combines two digtinct clams

Claim 1: Forma component-systems display uncomputable behavior.

Claim 2: Forma component-systems are good models for biologica and psychologica
sysems.
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Thefirg damisamathematical result, which Kampis cdls his"Main Theorem." The second
clam, on the other hand, is obvioudy a scientific hypothess.

In this section | will explore these two damsin some detall. This exploration will leed usto a
new class of systems called self-generating systems -- adass of sygemswhich is different
from, but overlapping with, Kampiss class of component-systems. The contrast between sdlf-
generding systems and component-systems will shed a greet ded of light on the fundamentd
issues of system theory.

7.1.1. Quantum and Stochagtic Computation

Before pursuing Kampiss main thessin any more detal, | will first explore the meaning of
the term "computable.” My dttitude toward computation has been influenced immensdly by
David Deutsch's (1985) work on quantum computation. Deutsch has
demondgratedmathematicaly that any system modelable by the equations of quantum physics
can be smulated to within arbitrary accuracy by a" quantum computer” . A quantum
computer is different from an ordinary Turing machine. However, it cannot compute any
functions besdes those which an ordinary Turing machine can compute.  Deutsch's "Quantum
Church-Turing Thess' dates that every physicdly redizable agorithm can be represented asa
program for a quantum computer. In fact, thisis not redlly athesis but atheorem. In this repect
it isfar more impressive than the ordinary Church-Turing Thesis.

There is dso another Church-Turing Thesis, intermediate between the standard one and the
guantum verson. One may define a stochastic computer as a Turing machine which is cgpable
of doing "random coin tosses.” Then the Stochastic Church-Turing Thes's dates that every
agorithm can be represented as a program for a stochastic computer. Deutsch has shown that
stochastic computation is aless genera mode than quantum computation; and | will make use of
this result now and again in the following.

Kampiss proof of the uncomputability of component-systems-- Claim 1 above -- says nothing
about quantum or stochastic computers. It speaks only of Turing machine computation. In the
following | will argue thet this omisson isimportant -- that Kampiss component-systems,
athough they are not Turing computable, may sometimes be computable by stochastic
computers. Because stochastic computation is aless genera mode than quantum computation,
thisimplies that at least some component-systems are explicable in terms of quantum physics

One necessary requirement of any theory of complex systemsis agreement with microscopic
physics. Those component-systems which are not quantum computable, are in contradiction to
the principles of physics What this meansis that, in a physica sense, the class of component-
systemsistoo broad.

Actudly, thereisaholein this argument -- atiny hole, but one which must be duly noted.
"Agreement with microscopic physics' isnot grictly synonymous with "agreement with
quantum physics.” In his best-sdler The Emperor's New Mind, Roger Penrose briefly discusses
Deutsch's theorem, but he dismissesit on the grounds that quantum mechanics will soon be
replaced by a unified theory of quantum gravity. The unified theory of quantum gravity,
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Penrose conjectures, will imply that computable systems are fundamentally uncomputable in the
strongsense of being able to compute non-Turing-computable functions.

The weak point of Penrose's argument, however, isthat none of the existing gpproachesto
quantum gravity show any promise of implying uncomputability. For instance, string theory
(Green et d, 1987) issmilar to quantum theory in its generd mathematical form -- it depends on
the "quantization” of a classcad domain using the Feynman path summation formula. So, if some
form of string theory is correct, then it would seem that there is no hope for Penrose'sidea

7.1.2. Kampis's" Main Theorem"

We have broken down Kampiss centra thesisinto two clams. Thefirst of these, the "Main
Theorem” of Saf-Modifying Systems isasfollows.

Main Theorem. In acomponent-system it is not possible to know the names and the
encoding (the meaning) of the names before the system produces the respective components....
The behaviour of component-systemsis fully uncomputable and unpredictable because the
produced new observables are different from the earlier ones.

The basic idea hereisthat the tempora sequence of states of a component-systemisin generd
an uncomputable sequence. Since no Turing machine program can generate an uncomputable
sequence, component-systems must be uncomputable.

It seems to me that the key point is clause (¢) of the definition, which saysthat "every
admissible component is redizable." Suppose one assumes that the set of dl admissible
components is uncomputable, and that the dynamics of a component-system are capable of
leading to any admissible component. Then it follows logicaly that the dynamics of a
component-system cannot be specified by any program. For, if one assumed the opposite, one
would obtain a contradiction -- one would have an uncomputable set of entities obtainable from a
computer program.

Let us go back to the LEGO metaphor. It would be easy to build a computable LEGO
universe following Kampissingructions. For the set of dl LEGO gructuresis countable, and
may therefore be mapped into the set of binary sequences, in a one-to-one manner. And each
binary sequence may be represented as a Turingmachine program, i.e. as amap from binary
sequences to binary sequences. Therefore, using Turing machines, each LEGO structure could be
interpreted as a function acting on other LEGO gtructures. The only problem with this
arrangement is that it does not satisfy clause (c) of the definition of component-system. Not
every LEGO dgructure isredizable by our dynamics. Only some computable subset of LEGO
dructuresisredizable.

But now -- and here is where my thinking differs from Kampiss -- suppose one adds a
random element to one's Turing machine. Suppose each component of the Turing mechineis
susceptible to errord Then, infact, every possible LEGO structur e becomesrealizablel
Structures may have negligibly small probability, but never zero probability! Thisisan example
of a component-system which is computable by a stochastic Turing machine.
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Deutsch has shown that quantum Turing machines are more generd than stochastic Turing
machines. So what | have shown is that component-systems are perfectly redizable in terms of
the equations of quantum mechanics. Thisimpliesthat there is absolutely no problem with the
gtatement that "molecular soups' or brains are component-systems. But there is a problem with
the satement that these systems are "fundamentaly uncomputable.” The Turing mode of
computation is not in generd physicaly adequate. But quantum computation, something quite
samilar to Turing computation, is dways physicaly adequate, at least o far as our present
knowledge of physics goes. And something that is quantum computable is not, in a philosophicd
sense, fundamentally uncomputable.

7.1.3. Self-Constructing Robots

To put these ideas in sharper focus, let us now turn to a metgphor which Kampis introduces
around the middle of the book: the self-constructing robot. Thisideais anaturd extrapolation
of modern industrid technology.

Right now, in Japan, there are robotized factories -- factories in which routine assembly-line
tasks are carried out by robots rather than people. These are not humanoid robots like C3PO in
Star Wars. They look like what they are: sophisticated factory tools. But their capabilities are
agtounding -- they combine the spatia common sense of a human worker with the speed and
precision of acdculator. In fact, it is not unlikeythat, somewhere in Jgpan, there are detailed
plans for afactory in which robots are used to build more robots.

And, of course, the indugtrid use of robots is not restricted to manufacturing. 1t iswell within
contemporary technology to use robots for repair. It isnot yet profitable to use robots to repair
robots, but thisis because of smple technica problems, not fundamenta engineering obstacles.

The point of al thisis: if arobot can repair other robots, why not itself? And if arobot can
repair itsalf, why not recongtruct itsalf, even when it is not broken? It is not too far beyond
current technology to build arobot that reconstructsitself. Thereis no reason not to build a
robot whose software (brain) tellsit how to reconstruct its hardware (body, including brain).
Such a sdlf-congtructing robot would embody an enchanting sort of loop: self constructing new
sdf, which congdructs new sdf, which.....

But finally, suppose that someone builds a saif-constructing robotw which is, however,
imper fect. It sometimes makes dight random errors; its arms don't dways move quite exactly
the way they are supposed to. Then in classic chaotic form, as time goes by, these dight random
errors can be expected to build up into large errors. One has a fundamentaly unpredictable
sequence of machines. Thereis no telling exactly what the robot will make of itsdf, given say
fifty yearstime.

To me, as=f-congructing robot with errors seems like awonderfully cregtive thing! But
Kampiss argument is precisely the opposite. In one particularly striking passage, Kampis
characterizes a component-system as "a strange computer in which aso the software isidentified
with the hardware." Elaborating, he declares that
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acomponent system is a computer which, when executing its operations (software) builds a new
hardware.... [W]e have a computer that re-wires itsdlf in a hardware-software interplay: the
hardware defines the software and the software defines new hardware. Then the circle sarts
again. (p. 223)

To me, this sounds exactly like the salf-recongtructing robot which | have just finished talking
about. But Kampis has something else up his deeve. He does not believe in the Church- Turing
thes's. He believes that a"component-system” is nonprogrammable, inthe sense that no
algorithm, no set of rules, can completely describe its behavior. He follows up the previous
quotation with awarning to the computationdly-indined:

[A] sceptica reader could say: that's not a big dedl. With current-day industrial robot technology
this should be possible. Robots are automata; they are computers. They can assemble other
robots, maybe even themsdves. They have a complete behavior dgorithm. So, by andogy,
component-systems, too, can have one.

But thisis not as easy a matter asit sounds. In arobot the whole software is ready-made and
completely defined from the beginning on, and is stored in an accessible form; in a component-
system, according to the above story, the "algorithm” is nowhere stored completely; software and
hardware define each other without any of them being complete or independent.

The paradigm case of a component-system, according to Kampis, isa"soup” of organic cells.
Each cdll acts on each other cdll, thus creeting other cells, and there is no distinction between
software and hardware.

But let us consider, once again, our imper fect self-constructing robot. Thisrobot is
programmed to modify its own hardware, but it is susceptible to random error. Then it is quite
possibly true that no computer program can predict the behavior of the robot. For the
collection of al possible times and places for random error is very large, and the collection of
sets of times and places for random error is even larger. To predict the behavior of the robot, a
computer program would have to predict what would happen to the robot given each possible
set of random errors. But, for any program of finite length, there is some set of random errors
which cannot be compressed into any program of that length.

Themord of the Story isthat, in the case of the salf-reconstructing robot, stochastic
computation does what Turing computation does not. It gives the potentia for true flexibility; for
sdf-referentid creetion of the fundamentaly, indisoutably new. While component-systems
cannot be Turing computable, they can be stochastically computable. This observation casts a
reveding light on the ditinction between component-systems and Turing machines.

7.1.4. Creativity

To put the same point another way, | respectfully accuse Kampis of having an overly mysticd
notion of creativity. He complains that computer programs can never cregte anything beyond
what has been put into them -- avery old argument. Thisistrue in the same sense that
mathematica theorems are never origind creetions -- they are al contained in the basic axioms
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of mathematics. But, even if one accepts this strict notion of credtivity, it still does not follow
that stochastic computers are noncregtive.

In generd, a stochastic computer has arange of output that isincredibly wide, often
uncomputable. In fact, one may very easily congtruct a stochastic computer that hasthe
capability to construct anything whatsoever, just by chance. So stochastic self-recongtructing
computers suffer from no lack of potentid creetivity. How much of this credivity is actudized
depends on the intricate interaction of the deterministic and stochastic components.

Thisbrings usto abasic principle of sysemstheory: the essence of creativity isthe
inter play between rules and randomness. This ancient concept, which received its modern
form in the work of Ross Ashby (1954), is one of the most humanly meaningful implications of
the computer revolution. It is humbling to redize that even the most marvel ous works of the
greatest geniuses -- Eingein's Genera Theory of Rdativity, Goethe's Faust, Begthoven's Fifth
Symphony -- were produced by a complex combination of random chance with gtrict,
deterministic rules. Kampis does not wish us to accept this. But if one isto accept that modern
physica science appliesto neural processes, then one must, | suggest, accept the equation of
credivity with quantum computation.

As an afterthought, it is worth briefly questioning the role that random chance plays here.
From the point of view of any one computer -- beit Turing, quantum or stochadtic -- there are
certain deter ministic sequences of events that are fundamentally indistinguishable from random
sequences of events. These are sequences whose agorithmic complexity exceeds the dgorithmic
complexity of the computer who is doing the distinguishing. Gregory Chaitin (1974, 1987) has
shown that this statement is essentidly aform of Godd's Incompleteness Theorem.

So, from any one subjective point of view, there is no way of teling if some percaived entity
isstochastically computed, or just plain Turing computed. Now, athough component-systems
are not Turing computable, we have seen that they can be stochasticalycomputable. It follows
that, from any one subjective point of view, a component-system might aswell be Turing
computable! To any particular entity, "random” just means "too complex for me to understand.”

7.2 SELF-GENERATING SYSTEMS

Nowherein S&f-Modifying Systems does Kampis give an adequate formal definition of
"component-system.” To my mind, thisisthe only sizegble flaw in an otherwise outstanding
book. Thisomisson is particularly crucid in that it makesit difficult to mount conceptud atacks
agang Kampiss nonprogrammability thess.

Kampis gives afairly good reason for this significant omission:

[Cloncepts of forma dynamics do not fit well to component-systems.... [W]hen we consider
component-systems as systems which produce components from components from components,
we may, by the same token, think of transformations producing directly other transformations: f:
ft --> fe.
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Thereisaformd problem with thisidea. From amathematica-logica point of view no
mathematical function can belong to its own domain or range. However, the functions that
describe component-systems try to do exactly this, if we take them literdly. (p.212)

But in fact, two hundred pages later, Kampis admits that this complaint is not strictly accurate.
Herefersto Lofgren's (1968) demongtration that the existence of functions belonging to their
own domain or rangeisindependent of the ordinary axioms of set theory.

Asit happens, Lofgren is not the only researcher to point out the existence of set theoriesin
which functions can belong to their own domain or range. From my point of view, Paul Aczd's
AFA axiom provides amuch more eegant gpproach to constructing such unusud functions. So,
let us digress for afew paragraphs to describe the AFA axiom.

7.2.1. Hyper sets

In mathematics, one defines complex concepts in terms of smpler concepts. But this process
must bottom out somewhere -- there must be something thet is sosmple that there is nothing
ampler in terms of which to defineit. In modern mathematics, this e ementary concept is usually
taken to bethe"sat." Theterm "set” may be defined intuitively, as a collection of entities-- but
of course, thisiscircular, snce what isa"collection” if not a"st"?

Mathematicians take this intuitive definition of aset, and then posiulate certain Smple rules
for dealing with sets. All the complex congtructions of modern mathemeatics can be expressed in
terms of sets, and a great many of the theorems of modern mathematics can be proved by using
the rules of st theory. However, in the 1930's Kurt Godd showed that, given any particular list
of rules for manipulating sets, there are some mathematica theorems that can be expressed in the
language of sets, but cannot obtained by using the rules on the ligt. Essentidly thisis because
each lig of rules has a certain finite amount of "agorithmic complexity™, and cannot be used to
prove theorems that possess an agorithmic complexity in excess of this amount.

At firgt, mathematicians were very loose about what quaified as a set. They dedt with finite
sslike{1,2,3}, infinite setslike (1,2,3,...}, the set of dl fractions, or the set of al numberson
the number line; and also with abstract sets far more esoteric than these. But since the concept of
St never caused them any trouble, they had no motivation to fiddie with it.

But then, around the turn of the century, Bertrand Russell noted a problem. He said, consider
the set containing al setsthat do not contain themsalves. And he asked: doesthis set in fact
contain itsdf? The trouble is, what if it does contain itself? Then it is not a set that does not
contain itself -- so it cannot be an eement of itsdf, it cannot contain itself. But, on the other
hand, if it does not contain itsdf then it must be an dement of itsdf, Snceit isthe set of dl sets
that do not contain themsalves. A serious problem!

Incidentaly, for yearsthis "Russell Paradox" has been formulated asfollows. "Thereisatown
in which the barber shaves dl men who do not shave themsdves. Who shavesthe barber?
However, someone has wittily pointed out that this verson isless potent than the origindl. The
solution is the barber is awoman!
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In order to avoid Russdll's Paradox, arule was added onto the original axioms of set theory: no
set can contain itsdlf as an dement. More generdly, there can be no "descending chain of
membership” -- no set can Acan contain as an eement a set which contains A as an dement, and
so on.

Many mathematicians were uncomfortable with this rule, Snce it was not "naturd”, it was
smply appended onto the list of rulesin order to avoid contradiction. And this discomfort
became especidly acute after Godd came out with his Incompleteness Theorem. For Russdll's
Paradox is essentialy a variation on the old Paradox of Epiminides the Cretan: "This sentenceis
fdse" But Godd's Theorem is an even cleverer variation on this same ancient paradox. Godel
showed that, by implementing a clever scheme of coding, one can use any mathematicd system
to form the proposition X ="This proposition cannot be proved true or false within this
mathematical syslem.” If X can be proved true, then it must be fase, in which caseitistrue, o it
cannot be proved true. But if X can be proved fase, then it must be false, so it has been proved
true, and has therefore not been proved fase.

Godd, with his ingenious Incompleteness proof, showed that self-reference cannot be banned
from mathematics anyway, no matter how hard you try. This made Russdll's e aborate theory of
Types seem even more excessive than it had before. But Hill, Snce mathematicians never
seemed to have any use for sets that contained themsalves as e ements, they smply accepted the
axiom and went on doing mathemétics.

However, while working with various models of complex systems such as ecosystemns and
brains, | found that | did have a need for setsthat contained themsdlves as dements. | spent a
long time trying to concoct ways of avoiding this problem. But then, while Sghtseeing in
Cambridge and browsing through the MIT Bookstore, | came across alittle book by Paul Aczd,
entitled Non-Well-Founded Sets. This book describes a research programme in mathematica
logic, active snce the late 1960's, aimed a condructing a consstent set theory involving sets that
can contain themselves as e ements.

The most eadily gpplicable result of thisintriguing research programmeis the concept of a
hyperset. A labeled graph is defined as any collection of dotswith asymbol drawn next to each
dot, and arrows drawn between the dots. Aczd's"AFA Axiom" impliesthat every finite graph
corresponds to some set. For instance the graph

Subjectiviam
A Objectiviam

Mydticiam

corresponds to the set A = { objectivism, subjectivism, mysiciam}. And the grgph

Subjectivism
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A Objectiviam
Mydticism

Botuligm

Aneuriam
corresponds to the set A = {{ objectivism, subjectivism, mysicism}, botulism, aneurism}.
But what of the graph

A ?

This graph corresponds to the set A whose only dement isA -- thesat A ={A}. Thisisa"norn+
wdl-founded" set.

And, smilarly, the grgph
A botulism
objectiviam
subjectivism
correspondsto the set A ={ A, botulism, { objectivism, subjectivism, A} }.

To the mathematicaly indoctrinated mind, dl thisisincredibly liberating! Just asthe
paradoxes of quantum physics free the mind from objectivism, o hyperset theory frees the mind
from the stifling preconception thet, if A contains B, B cannat in turncontain A. Common sense
tellsustha, if mind isapart of physicd redlity, then physica redity cannot possibly be a part of
mind. And common sensetdlsusthat, if you are a part of my subjective redlity, then | cannot
possibly be apart of your subjective redity. But hyperset theory tells usthat in this case
COmmon sense iswrong.

According to Godel's Theorem, once can never mathematically prove that a complicated
matheméticd theory is consistent, devoid of salf-contradictions. But Aczel has shown that, if
there are contradictions in hyperset theory, then there are dso contradictionsin plain ordinary
mathematics, the kind that every scientist uses to make caculations. Thisisasgood a
consstency result as one could hope for. One may confidently say: there are mathematical
objects that contain one another as eements.
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In the following pages, | will not need to use any of the technical mathematics of hyperset
theory. However, | will find it convenient to talk about sets that contain one another ina
"circular™ way. Hyperset theory ensuresthat thisis okay, that | am not contradicting myself any
more than a physcist iswhen he deals with dgebraic or differentia equations.

This section began, if you recall, with Kampiss observetion that "from a mathematical-logical
point of view no mathematical function can belong to its own domain or range. However, the
functions that describe component-systemstry to do exactly this, if one takesthem literdly." It is
easy to see that with hypersets, mathematica logic has transcended the limitation to which
Kampisisreferring. One particular type of hyperset is the hyper function -- the function which is
contained in its domain or range.

A hyperfunction maps hyperfunctions and/or other entities into hyperfunctions and/or other
entities. Because it isa "function,” it is not alowed to map any one thing into two different
things. To dedl with the more generd case, | will introduce the term hyperrelation. A
hyperrelaion maps hyperrelations and/or other entities into hyperreations and/or other entities;
and it may map one thing into as many other things asit likes.

These odd congtructions, hyperreations, are the first step on the path toward a cognitive

equation. For they give us astraightforward way to talk about components that truly transform
one another.

7.2.1.1. A More Formal Treatmernt (*)

Recall that, in order to avoid Russall's Paradox, arule called the Axiom of Foundation was
added onto the origina axioms of set theory: no set can contain itsaf as an eement. More
generdly, oneis not dlowed to have an infinite descending sequence

aian..ab
A st b which contains no such sequenceiswell-founded. All the traditiond sets of mathematics
-- the setsinvolved in geometry, calculus, topology, etc. -- are wdl-founded. But, for example, S
={S} isnot well-founded, because it leads to the infinite descending sequence

..SS..SS
And{ 1,{ 1,{ 1, ... isnot well-founded, even though it has the naturd "solution"

x={1x}

Many mathematicians were uncomfortable with this rule, Snceit was not "naturd”, it was
amply appended onto the ligt of rulesin order to avoid contradiction. But since they never had

any use for setsthat contained themsdves as e ements, they smply accepted the axiom and went
on doing mathemeatics.
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Paul Aczd (1988) was one of the few who decided to do something about his discomfort. He
congtructed the "non-wdl-founded sets' which, following Jon Barwise and Larry Moss (1991), |
have caled hypersets. According to Aczdl's approach, the path to hypersets begins with graphs.
A digraph (G,E) conssts of aset G of entities called "nodes,” and a set E of ordered pairs of
nodes, these pairs being called edges. The most common examples of graphs are finite graphs, as
in Figure 1; however, the concept of an infinite graph presents no difficulties. If (nm) isan
eement of E, | will write n-->m, and cal m the child of n, and n the parent of m. Fix aset A of
tags. Then atagged digraph (G,Et) isadigraph together with afunction t that assgnsatag
drawn from A to each childless node of G.

Next, define an accessible pointed graph (apg) (G,E t,p) to consst of atagged digraph
together with a distinguished node p which has the property that every node can be reached by
some finite path from p. And define a decor ation of an apg as a set-vaued function d with
domain G, satifying

d(n) =t(n)
if nischildlessand
d(n) = {d(m):n-->m}

otherwise. That is, a decoration assigns to each childless node its tag, and to each parent node n
those nodes m which areits children.

Findly, let us say that an apg picturesaset b if thereisadecoration d of the graph so that
d(p)=b; that is, so that b isthe set which decorates the distinguished node. This permits usto
gate Aczel's Anti- Foundation Axiom (AFA), which characterizes hypersets.

Every apg picturesa unique set.

According to this definition, al the sets of stlandard set theory are il sets. But there are other
setstoo. Anything which isa set according to this definition, but not the classcd definitionisa
hyper set. For example, consder again the following graph:

A

Thereis only one node, 0 it must be the distinguished node. What is the unique set pictured by
thisapg? It must bethe set A ={A}! However, according to the ordinary axioms of set theory,
no set can contain itslf.

Hypersets can contain themsdves. One might at firgt think that this would lead to
contradictions, but Aczel has shown that if ordinary set theory is consstent, so is set theory
augmented by AFA. In addition, he has proved a very useful result caled the Solution Lemma.
Roughly spesking, the Solution Lemma states thet every system of equations in indeterminates

XY.Z,..., Say
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x=a(x,y,...)

y=b(x.y,...)

has a unique hyperset solution.

For adeep mathematical trestment of hypersets, the reader isreferred to Aczel's (1988)
origina monograph on the subject. However, the clearest discussion of the fundamentals of
hyperset theory which | have found is ina ddightful little book by Jon Barwise and John
Etchemendy entitled The Liar (1988). This book contains a more rigorous statement of the
Solution Lemma

As an example, let us condruct a function which mapsitsdf into itsdf -- afunction sothat f =
f(f). If f takes no other argumernts besides itself, then by the sandard definitionf ={ (f,f) } ={ {
f,{f} } }. f isthen the solution of the system of equations

w = {f}
x = {fw}
f={x
Grgphicaly, one has
w f
X

More generdly, if f=f(y) and if isonly defined on'y, f isthe solution of
w={f}
x={y,w}
f={x}
And it isclear tha, in asmilar manner, one may cast any system of expressions of the form
fa(fy,....fn,x1,Xe,...) = fiq
*)

fn(fl,...,fn,Xl,XZ,...) = fi(n)
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in the form required by the Solution Lemma and thus obtain a hyperset solution.

Getting back to SAf-Modifying Systems | suggest that component- systems should be
conceptudized in terms of systems of hyperfunctiona equations of the form (*) given above;
and, more generdly, hyperrelational equations defined in asmilar way.

7.2.1.2. Fuzzy Hypersets (*)

Although fuzzy sets are now commonplace in artificid inteligence, so far as| know fuzzy
hyper sets have never before been discussed. Fortunately, therewould appear to be no particular
problemsinvolved with this useful idea: the basc mathematics of fuzzy hypersets, at leest asfar
as| have worked it out, is completely straightforward.

The smplest example of afuzzy hyper set isthe sat x defined by:
dx(X) =C,
dx(y)=0for y not equal to x.

Here, if c=0, one has an ordinary well-founded set, namely the empty set. If c=1, one has the st
x={x}. Otherwise, one has something inbetween the empty set and x={x}.

Each fuzzy hyperset is characterized by afuzzy gpg, which is exactly like an gpg except that
each link of the graph has a certain number in [0,1] associated with it. The Fuzzy AFA then
dtates that each fuzzy apg corresponds to a unique fuzzy set. It is easy to see that the natura
andogue of the Solution Lemma holds for fuzzy hypersets. And, of course, the consistency of
fuzzy hypersats with the axioms of set theory (besides the axiom of reducibility) followstrividly
from the fact that each fuzzy hyperset is, in fact, ahyperset under AFA.

7.2.2. Self-Generating Systems

Kampiss examples of component-systems are both relevant and elegant: mobile interattracting
LEGO blocks, enzyme systems, self-modifying robots,.... However, for reasons given above, |
do not find hisforma definition of component-system entirdly satisfactory. Thus| think it is
worthwhile to define a closdly rdated type of system called a" sdlf-generating sysem.”

A sdf-generating system, at each time, conssts of a collection of components which are
modeable as "finitdy given hypeardations' -- meaning that they are defined by their actionson
afinite number of different possible components. Each component may be thought of as having a
certain degree of membership in the system, with the congraint thet the total degrees of dl the
components should be finite.

Sdf-generating dynamicsis defined as a two- stage process. Firdt, universal action: each
component acts on each other component with a certain probability, yielding different new
components with different probakilities. Then, transfor mation: these resultant components are
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transformed in some way, yieding a new collection ofcomponents. The results of transformation
are then fed back into the first step, and used as fodder for universd action.

The transformation rule may be stochadtic -- for ingtance, it may make errors. It may change f
into w by mistake 4% of the time. Or, on the other hand, it may smply make arandom addition
or deletion to the definition of each component a certain percentage of the time. Given f which
doesnot act on g at dl, it may randomly define the action of f on g, or it may define the action
of f on g by some complex formula combining deterministic and stochestic dements. By use of
randomness, the transformation rule could generate dynamics that are fundamentally
unpredictable, in the sense of being non-Turing-computable.

The connection between sdlf-generating systems and component-sysemsis quite Smple. Not
every component-system is a sdf-generating system; but | propose that every physically useful
component-system is actudly a sdf-generating system. Note that, Since the definition of self-
generating systemsis phrased in terms of hyper systems, it is perfectly naturd for the number of
components to shift in the course of evolution.

Now, the converse is not true: not every physicaly useful sdf-generating sysemisa
component-system. The reason is that the salf-generating dynamical equationis capable of
describing totally deterministic processes. Component- systems can only be obtained if the
function R is dlowed to contain random e ements, athough rather good smulations of
component-systems can be obtained using chaotic or "pseudorandom” deterministic functions.
Thus the class of component-systems and the class of self-generating systems possessa
nontrivia intersection. | propose that rea complex sysemsliein thisintersection.

7.2.2.1. AMoreFormal Treatment (*)

Define an hyperrelation to be finitely givenif its associated gpg is finite, and the labels of its
associated apg are dl encodable asfinite binary sequences. Line up the set of dl finitely given
hyperrdaionsin some arbitrary order: fi, f2, f3,.... Given thisordering, an hyper system may be
defined as an infinite vector C = (pa,...,pn,...), Where the pi are nonnegative and the sum pz + p2 +
... + pn + ... isfinite. (In functiond-andytic lingo, the set of hypersysems s therefore isomorphic
to the space l1+).

The entry pi isto be interpreted as the degr ee with which fi belongs to the hypersystem
represented by C. For ingtance, in the context of enzyme systems, pi would denote the
concentration of the enzymefi in the solution in question. In the deter ministic case, an
important but specid Stuation, dl the pi are assumed to be 1 or O.

Also, | will use the notation xit to denote "inanimate objects': entities which can be acted on,
but cannot act. | will not refer to these very often in the following, but they may be useful in
certain gpplications.

To each hypersystem Systent, associate a set of "action products'
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A[Systemt] = {fit(fit), fit(ftxt)}

Heretheindicesi and j run over dl hyperrdations that have a nonzero probability of
membership in System:.

Next, define a"filtering operation” Yt which determines, based on the degrees of the dements
in System, the degr ees of the dementsin A[System]. The only redtriction isthat, if either f and
g have degree zero in System, then Yt cannot assign f(g) or f(g,x) anonzero probakility. In the
determinigtic case, Yt isonly aformdity, for it may be assumed that dl probabilities are either 1
or 0. But in the most extreme fuzzy case, it may come about that A isthe formality, leaving Y: to
do most of the work.

Finaly, one may collapse these two operations into one composite operation R[System] =
Yi(A[System]) -- the "Raw Potentidity” operation. Then, where T is some stochadticaly
computable function mapping hypersystems to hypersystems, one may define a self-generating
system asan iteration

Sysemt+1 =T(R[Systent] ),  (**)
Here the hypersystem Systeml is considered to be given a priori, yielding adynamic iter ation.
7.2.3. Hypersets and Physical Reality

One would like to think of component-systems and sdlf-generating systems as models of redl
physical complex systems. At first sight, however, there ssems to be a serious obstacle in the
way of thisinterpretation. Hyperrdations are peculiar set-theoretic objects. Formaly, in Aczd's
congtruction they are defined asequivaence classes of sets of ordinary sets (this congtruction is
somewhat anaogous to the construction of real numbers as equivalence classes of Cauchy
sequences of rationas). This places them in a cardindity classfar, far above the countable
computable sets, and dso far, far above the Hilbert- space-defined sets which quantum
mechanics associates with physicd redlity.

However, interpreted properly, afinite system of finitely given hyperrelations does not
violate the stochastic Church-Turing thesis, snce any such system of equations can be simulated
on astochastic computer. A stochastic computer can never actudly contain hyperreations, but if
they arefinitdy given, it can amulate their behavior eadly enough. After dl, manipulaionswith
finitely given hyperrdations are merdy manipulaions with finite graphd

Physcdly, what does this mean? While quantum physics does not permit the existence of
physical hypersets, it does permit physica eventsthat are effectively modded asfinite labeled
graphs. Now, suppose that the interactions of some of these physical events can be modeled as
interactions between finite labeled graphs, and that these graph interactions are ussfully
describable usng sdlf-generating systems or component-systems. Then these mathematical
systems are emer gent patterns in physicd redity. No contradiction. No problem. Physica
redlity can Smulate component-systems; or, to put it another way, the redlity of component-
systems can be understood as avirtud redlity” running on the hardware of quantum redlity.
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In sum, | suggest that Kampiss picture of complex system behavior is fundamentaly right.
Complex systems cons st of components that act on one another to create new components. Thus
they effectively violate the hierarchy of logica types, they contain emergent patterns which are
usefully moddable in terms of stochadtic systems of hyperreations.

But, on the other hand, as dready mentioned, Kampiss theory of credtivity is flawed. The
cregtivity of acomplex system is due both to the unfolding of the rulesimplicit in its
components, and to the mutation of these rules by random error. The opposition which Kampis
has set up, between computation and component-systems, isin my opinion afdse one. The
difference between smple systems and complex systemsis not that the former are computable,
but that the latter contain emer gent structur es which are modeable in terms of stochadtic
hyperfunctiond iterations (self- generating systems). The concept of sdlf-generating systems
makes this point in avery clear way.

7.2.3.1. A Binary Model of Hyper sets (*)

To make this concluson more concrete, let me construct a specific computationa scenario
which gives rise to hypersets as a natura model. Suppose one has afinite collection of
computable reationsf, g, h,..., each of which maps binary sequences into binary sequences.
Then one may represent each relation by afinite code sequence, e.g.

s=010100101111010010...01

S =010111101001001010...10

And one may define the action f(g) as the result of the following two- step process:
1) letting the program f act upon the sequence s, producing a new sequence Sg.

2) Decoding sy into a program, by sdecting the fir st (in aphabetic order) from among al
programs h for which the Hamming distance d(s,Sg) is &t its absolute minimum. This "first
closest” program is taken as f(g).

Therdaionsf, g and h are computable relations -- but there is abodutely nothing wrong with
thinking of them as hyperrdations, acting directly on each other. The whole sysem may be
elegantly modeled as a system of hyperrdations, without ever referring to the underlying bit-
gring manipulaions. This requires no new information, only a shift in point of view. | will
refer to this system for deriving hyperrelations from computable relations asthe basic
computational model.

7.3 MAGICIANSAND ANTIMAGICIANS

Coauthored with Harold Bowman
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Our treatment of sdlf-generating systems has up to this point been purely formal. However,
one may aso describe self-generaing sysemsin much aless mathematicad way, in the guise of
self-referential sentences (Hofstadter, 1985). For example, suppose that the complete formd
definitions of the hyperrdationsf, g and h are given by:

ff)=g,f(@=hf(h) =f.f(@h) =g
9@ =g,9() =h,gff.h) =f
h(f.g) = h, h(gh) =g, h(h) = f

Thislooksterrible. To makeit alittle prettier, let usrename™f," "g," and "h" as"Fanny,"
"Geronimo” and "Hattie." Then one may represent this same collection of definitions asfollows:

This sentence, which is named Fanny, turnsitsdf into Geronimo, it turns  Geronimo into
Hattie, it turns Hattie into itsdlf, and it turns the pair 'Geronimo and Hatti€' into Geronimo.

This sentence, which is named Geronimo, turnsitsdf into itsdf, it turnsFanny  into Hattie, and
it turns the pair 'Fanny and Hatti€' into Fanny.

This sentence, which is named Hattie, tunsitsdf into Fanny, it turnsthe pair ~ 'Geronimo and
Hattie into Geronimo, and it turns the pair 'Fanny and Geronimao' into Hattie.

This says the same thing as the preceding group of mathematicd definitions, but it isalittle more
colorful. The best way to visudize the Stuation is to think of Fanny, Geronimo and Hattie as a
group of three over-active magicians. Each one has a spdl to turn each one into someone. For
instance, Fanny has a spdl to turn hersdlf into Geronimo; she has a el to keep Hattie the same
as shewas, and the has a spdll to turn the combined group Geronimo/Hattie into Geronimo
only.

Recdl that a sef-generating sysem isa stochastically computable rule for evolving
populations of finitely given hyperrddions Thisisavery generd definition; it leavesalot of
freedom. For starters, therefore, let us consider the smplest possible stuation. Given a collection
of hyperrdaions{f,g,h,...}, one can form avas variety of "compounds' of the form f(g), f(g,h),
h(g), and so forth. One of the very smplest salf-generating systems says "given a collection of
hyperrdations, replace it with the collection of al compounds which one can form from it.”

For instance, one may think about salf-generating systems in the context of our earlier
Fanny/Hattie/Geronimo example. Each magician had spellsfor changing magicians (or group of
magicians) into othermagicians. So the simplest sdf-generdting sysem involving these
meagicians cong s of

1) each magician applying dl the spells she knows, thus creeting a new collection of
magidans

2) the new collection of magicians then goplying al the spdls they know
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3) etc.

It is easy to seethat, in the case of our smple example, if one startswith all the magicians
present, then dl the magicians are o proficient that the group of three magicians will persst
forever. If one garts with just Fanny and Geronimo, they will immediately produce Hattie, and
the same will be true. Smilarly, if one gartswith just Fanny and Hatie, they will immediately
creste Geronimo. But on the other hand, if one starts with Geronimo and Hattie, the two of them
will never be able to produce Fanny. Or if one sarts with just Fanny, she will immediatdly turn
hersdlf into Geronimo, who will then perpetuate hersdlf forever....

A group of somewhat less proficient magiciansis provided by the following set of rules:
f)=9
f@ =f
99) =9
of) =h
h(f)=9
If one takes
{f.o} time=1
this rule produces the collection { f(f),f(g),a(f).a(9)} ={gf.ght ={f.gh}, or
{f,o,h} time=2
And iterated once again, the rule produces { f(f),f(g),f(h), o(f),9(g),g(h),h(f)}, or
{f,o,h} time=3

In this particular case, after two steps, our dynamicd rule has reached a fixed point. No matter
how many times one keeps iterating, one will keep on obtaining {f,g,h}.

In "magicianlanguage’, what one has hereis

This sentence, whose name is Fanny, turnsitsdlf into Geronimo and turns  Geronimo into
Fanny.

This sentence, whose name is Geronimo, turnsitsdf into itsdf and turns  Fanny into Hattie

This sentence, whose name is Hattie, turns Fanny into Geronimo
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Sarting from Fanny and Geronimo, as above, one will immediately get dl three magicians.

More generdly, a sdf-generating sysem is smply arule which determines a'"range"
collection of hyperreations from the compounds formed by another "domain™ collection of
hyperrdations. In these smple examples, | have taken collection of compounds itsdlf asthe
range collection. But thisis not the only way to do things. As an example, one could consder the
rule: "given acollection of hyperrdations, replace it with two hyperrdations randomly drawn
from the collection of al compounds which one can form from it." The reader may determine for
hersdf the possible evolutionary courses which our collection {f,g} may take under thisrule.

7.3.1. Antimagicians

Both of the "magician” examples discussed above were of the smplest kind. All possble
compounds were generated and kept. However, thistype of sdf-generating system does not
appear to be capable of generating particularly complex behaviors. To get the full range of
dynamica behaviors, one must provide some way for compounds to eliminate one another. For
ingtance, in addition to our three faithful magicians Fanny, Geronimo and Hattie, one may
introduce three antimagicians, caled anti- Fanny, anti-Geronimo and anti-Hattie. And one may

modify the rules of our game accordingly. At each time step, the following three processes are
executed:

first, dl magicians cast dl their spells
second, dl magicians whose anti- magicians have been created are diminated
third, al anti-magicians are diminated

For instance, suppose one has

This sentence, named Fanny, turnsitsaf into Geronimo, turns Geronimo into  Hattie, and turns
Hattie into anti- Fanny

This sentence, named Geronimo, turnsitself into Fanny, turnsthe pair 'Fanny  and Geronimo'
into Hattie, and turns Hattie into anti- Hattie

This sentence, named Haitie, turnsitsdf into Hattie, turns Fanny into Hattie,  and turns
Geronimo into Fanny

Without anti-magicians, Hattie would be self- perpetuating. But the anti-magicians change dl
that. Suppose one starts with

Geronimo and Hattie  time 1

Then this evolves into the interim population
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Fanny, Hattie, anti-Hattie
The magician and its anti- magician sdf-destruct, leaving
Fanny time 2

Then Fanny creates Geronimo, who creates Fanny, who creates Geronimo, and so on ad
infinitum...

Geronimo time3
Fanny time4
Geronimo time5
Fanny time 6
Geronimo time7
Fanny time8

On the other hand, suppose one starts with
Fanny, Geronimo timel
Then one has
Geronimo, Fanny, Hattie  time 2
and from this one gets the interim population
Fanny, anti- Fanny, Geronimo,
Hattie, anti-Hattie
resulting in
Geronimo time 3
and yidding the same attracting cycle as before:
Fanny time4

Geronimo time5
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Fanny time 6
Geronimo time5
Fanny time 6

This sort of behavior, with Hattie and Fanny gppearing and then disgppearing, is much much
easer to set up with anti-magicians than without then. | will show alittle later exactly how much
more computationa power isyidded by the introduction of anti-magicians.

To get even more interesting behavior, one must stochasticize the dynamics. For example, one
could replace the three processes of our "antimagician” iteration with the following three
processes, to be executed at each time step:

first, each spell of each magician is cast with a certain fixed
probability (cal it p)
second, al magicians whose anti- magicians have been created are diminated

third, dl anti-magicians are diminated

This creates an unpredictable iteration: if one runsit severd times, one may obtain many
different results, because thereis no telling which spellswill be chosen. The reader is
encouraged to explore the consequences of "stochasticizing” our Fanny/Geronimo/ Hattie
example.

7.3.2. Self-Generation and Computation

So sHf-generating systems can be considered as models of red systems. But what kind of
behavior can they modd ? In fact it is not too hard to prove that they can mode any kind of
behavior at all. Harold Bowman and | have congtructed a very smple argument which shows
that salf-generating systems are capable of universal computation. This means that any possble
behavior can be mimicked by some sdlf-generating system.

Specificdly, as hinted above, it turns out that Smple systems of the Fanny/Geronimo/Hattie
variety are not enough. One needs to introduce anti-magicians as well. But if one doesthis, then
one very easily obtains arecipe for congructing a self-generating sysem tosmulate any given
computer. The basic ideais that systemns with anti-magicians give one the ability to expressthe
two fundamenta operations of conjunction (AND) and negation (NOT). Since al computers
can be built of AND and NOT gates, it follows (with alittle work) that thistype of sysemisa
universal computer.
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The AND gate is easy; it can be done without anti-magicians. Let's say one wants Fanny to
create Josie only if both Geronimo and Hattie are present. Then one needs merely say

This sentence, named Fanny, turns the pair ‘Geronimo and Hatti€' into Josie

By smply not specifying Fanny to turn Geronimo individudly or Hattie individudly into Josie,
one makes Fanny into an AND function.

Of course, in the context of the whole system, it is possible that Geronimo or someone el se
will turn Geronimo or Hattie into Jose -- but if one wants Fanny to be agood AND, one must
design one's system to prevent this from happening at the same time that Fanny is operating as an
AND.

Incidentdly, it is worth noting thet

This sentence, named Fanny, turns Fanny into Fanny, turnsthe pair 'Geronimo and ~ Hatti€ into
Josie, and turns Hattie into Geronimo

serves the purpose of executing the AND operation aswell. Extraspells are dlowed, so long as
they do not interfere.

To get NOT, on the other hand, one must proceed as follows. Let's say one wants Fanny to
create Hattie only if Geronimo is not present. Then one needs to specify

This sentence, named Fanny, turns itsdlf into Hattie, and turns Geronimo into anti-  Hattie

If Geronimo is not present, then Fanny produces Hattie, S0 Hattie is introduced into the next
population (assuming no one elseis out there producing anti- Hatties). But if Geronimo is
present, then Fanny il acts on itself to produce Hattie, but it also acts on Geronimo to produce
anti-Hattie. The two cancd out, and one is left with no Hattie (assuming no one eseis out there
producing Hatties).

7.3.3. Imperfectly Mixed Computation

The biggest lesson of the computer revolution isthat by piecing ANDs and NOTSs together one
can do just about anything. The reasoning of the past few paragraphs, eaborated appropriately,
leads to the consequent conclusion that self-generating systems (in particular "antimagician”
systems") can do just about anything.

But thisisjust the tip of the iceberg. The next question is, what about stochastic
"antimagician" systems? What if, a each stage, only a certain percentage of possible
compounds are formed? Thisisthe case, for example, in red chemicd solutions: not every
conceivable compounds forms at every moment. In chemica parlance, determinigtic sdif-
generaing systems correspond to infinitely "well-mixed" solutions, whereas stochastic sdif-
generating systems correspond to the more redlistic case.
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It turns out that, even in the stochastic casg, it is possble to congruct "antimagician” systems
which carry out univer sal computation -- to within any specified leve of accuracy short of
perfection. Thetrick is an gppropriate use of redundancy. For ingtance, if instead of just doing
NOT with one hyperfunction, one does it smultaneoudy with a sufficiently huge number of
hyperrelations, one is bound to get it right an arbitrarily high percentage of the time.

What this result showsis that one can build a viable computer in which each connection
between components has only a certain probability of existing. One may build a computer out of
"components' that circulate around each other, sometimes combining with one ancther to
produce new components, sometimes not. Computation can self-or ganize from an imperfectly-
mixed-up substrate.

Applied to biological and psychologica systems, this concluson would seem to have
profound consequences. The dud network moded views the mind as a collection of processes,
interacting with one another and congtantly cresting new processes. The idess of this sections
suggest that these generd "processes’ may perhaps be fruitfully modded as interlocking sdif-
referentid statements -- as smple statements about how other processes, and they themselves,
areto be transformed. Thisis an intriguing ingght, and an important step on the path to the
"cognitive equation” of Chapter Eight.

7.4. ARRAY COMPONENT-SYSTEMS (*)

In Section 7.3 | gave asimple "reductionist” model of hyperset dynamics -- the "basic
computationa modd." In thissection | will briefly digress to describe amore interesting
elaboration of the same fundamenta concept. Instead of mapping functions into sequencesin an
arbitrary way, | will demongtrate how one might elegantly systemaiize the coding and decoding
of functions and sequences.

7.4.1. Array Operations

Let us begin with the concept of arational array. An n-dimensiond rationd array may be
defined inductively as afinite sequence of (n+1)-dimensiond rationa arrays, where a 1-
dimengord rationa array isjust afinite sequence of rationd numbers. Our eight basic
operations will be operations on rationd arrays.

The most relevant examples are one, two and three-dimensiond arrays, however, it is quite
possible to envison psychologica usesfor arrays of higher dimension. For indance, spacetimeis
four-dimensond, and afive-dimensiond array could therefore represent a scalar fidd over
spacetime, an eght-dimensiona array a vector field over spacetime, etc.

Eachrationd array A comes equipped with anaturd coor dinate system, so that each rational
gored in A has a unique coordinate vector (a,...,an), a anonnegative rationd. This coordinate
system imposes anatura alphabetic or der on the dements of A, which one may extend to
subsets of A by defining subset B to come before subset Cif B - C contains a point which comes
before any point in C - B in the dphabetic ordering.
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Human sensory inputs can be expressed very naturdly in terms of rationd arrays. For
ingance, light on the retina forms a two-dimensiond array; and sound waves on the eardrum
form aone-dimensond array. Muscle movements can aso be easily expressed in terms of
rationd arrays. when one has different amounts of stimulus sent to different points, the different
points can be envisoned as e ements of athree-dimensona rationd array. And, to take a
biologica example, the interactions between proteins can o be effectively expressed in this
way: the surface of aproteinisjust arationd aray.

In generd, any continuous field can be gpproximated to within arbitrary accuracy by an
rationd array. For example, if one wants to approximate afield on the positive hyperoctant of Rn
with 5 digits of accuracy, one may divide the positive hyperoctant of R up into datticework of
cubes of sde 10, and construct an n-dimensiond rationd array containing one e ement for each
cube.

Of course, given sufficiently complex codings, one can dispense with the whole formaism of
rationa arrays and consider only binary sequences. But here | am not thinking in terms of
abdract dgorithmic information, | am rather thinking in terms of concrete information
processing systems, for which "sufficiently complex codings' can present formidable practica
obstacles.

7.4.1.1. Pointwise Oper ations

Thefirgt four of our nine operations are addition, multiplication, negation, and
maximization, which are defined pointwise. More explicitly, let A and B be two rationd arrays.
Then the sum of A and B is A+B, the product of A and B iswritten AB, the maximum of A and
B iswritten A”B, and the negation of A iswritten -A. If a has coordinates (a,...,an) in A, and &
has coordinates (au,...,an) in B, then,

at+d has coordinates (a,...,an) INA + B,

ad has coordinates (a,...,an) AB,

max(a,a) has coordinates (a,...,an) in A”B, and
-a has coordinates (az,...,an) in -A.

if A and B are of different szes, then (a,...,an) isassumed to exig in A + B, AB and A”B only if
it exigsin both A and B.

It is worth noting that this collection of operations is redundant in two ways. One the one
hand, by combining negation and maximization one can generate any Boolean function, and thus
any computable function, including addition and multiplication. Secondly, by combining
multiplication and addition, one can generate any polynomid, and hence approximate any
continuous function, including the maximum function, to within arbitrary accuracy. However,
our god hereisnot to giveaminimal set of operations; it isto give an exhaustive st of basic
operations.
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7.4.1.2. Combinatory Operations

Addition, multiplication, negation and maximization are al pointwise operations. Now | will
introduce two operations that act on whole arrays rather than on an entry-by-entry basis.

Fird, the cut-and-paste operator is aternary operation which may be written C(A,B,S), where
A and B are generd rationd arrays and Sis a sequence of nonnegetive integers. The expresson
C(A,B,S) isto beread: paste B into A, placing thefird entry in B into postion Sin A.

More explicitly, what this meansis as follows. Suppose S = (si,...,). Then if ahas coordinate
(s - r,...,.5 - 1) in A, where ther are dl nonnegative integers, then a has the same coordinate in
C(A,B,S). But if b hascoordinate (s + r1 - 1,...,% + rk -1) in B, where the rj are al nonnegetive
integers, then b has the same coordinatein C(A,B,S).

For instance, C( (1,2,3,4,5,6,7), (9,9,9,9,9,9,9,9), 5) =

(1,2,3,4,9,9,9,9). The number 5 indicates that the dements 5-8 of the sequence B =
(9,9,9,9,9,9,9,9) are pasted onto the elements 1-4 of the sequence A = (1,2,3,4,5,6,7).

Cut-and-pagte aso permits us to build higher-dimensona arrays out of lower-dimensiond
ones. For example, one has

C((1,2),(34),(21))=12

34

The coordinate (2,1) gives the point at which the array (3,4) is "pasted” onto the array (1,2).

In generd, as the name suggests, cut-and- paste permits us to form new arrays by combining
parts of different old arrays.

Next, the reduce operation dlows one to take part of an array and consider it asan array in
itsdf. Thisis of obvious utility as an adjunct to the cut-and-paste operation: it alows one to paste
in parts of arrays rather than just whole arrays. The smplest way to define the reduce operation
isasR(A,ST), where A isan arbitrary rationa array and S and R are lists of nonnegative
integers, with the property that thei'th entry in S never exceedsthei'th entry in S. Write S=
(si,...,), R = (ta,...,tn). Then R(A,S,T) isthe array composed of al eements of A whose
coordinates lie "between" the arays Sand T. Explicitly, if ahas coordinate (au,...,an) in
R(A,ST), thismeansthat a has coordinate (autsi-1,...,ants-1) INA, anda + s <ti.

Findly, substitution is aternary operation which may be denoted by S(A,B,C), to be read:
substitute A for B, everywhere B gppearsin C. The meaning of thisisobviousin smple cases,
for instance §(6,(3,4),(1,2,3,4,3,4,5,3,4)) =
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(1,2,6,6,5,6).

In generd, there is an ambiguity here: what if two gppearances of B overlap in C? However,
this can be resolved by the following rule: if there are two gppearances of B in C, and it is not
possible to substitute A for both of them, substitute A for that appearance of B which occursfir st
inC.

Note that substitution is a gpecid ingtance of cut-and-paste. However, it isavery important
ingtance. A large percentage of the patterns that we recognize are r epetitions. For instance, the
whole Behaviorist school of psychology is based on the recognition of repeated stimulus-
response associations! Aswe shal see, repetitions can be easly expressed in terms of
subdtitution.

A specid case of subdtitution is"change of notation.” For instance, S(2,3,A) isthe operation
of replacing every 3in A with a2. The incluson of subgtitution as a basic operation guarantees
that no specific notation or "encoding” is essentia to human thought.

7.4.1.3. Random Generation

Our eighth operation, random gener ation, isthe smplest of dl. It may be defined as R(A),
where A isaone-dimensond integer array. Itsfunction isto creete arandom array of
dimensons given by A, whose entries each have an equa probability of being ether zero or one.
This operation could be smulated fairly well in terms of the other operations, by usng standard
pseudo-randomness techniques, but for theoretica purposes| prefer to introduce true
Sochadticity.

The choice of a50% chance of a0 or 1 in each entry is purely a matter of convention. Using
the operation R(A) together with the previous seven operations, one may construct arrays so that
each entry a has a different probability ps, and one may choose the pa's to be arbitrarily closeto
any nrumber in[0,1].
7.4.1.4. Decoding

Findly, let us consder the operation of decoding. Thisisin away the most fundamentd
operation of al. Let us assgn each one of our fundamental operations a code number, according
to the following arbitrary scheme:
addition=1
multiplication = 2
negation = 3
maximization = 4

subdtitution=5
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cut-and- paste = 6
decoding = 7
random generation = 8

Next, let us arbitrarily assgn the number 9 to stand for "open parenthese,” and the number 10 to
dand for "close parenthese.” Findly, the integers greater than 10 will be understood to denote
variables. Since the subgtitution operator is fundamenta, the specifics of the encoding do not
matter; they can dways be renamed.

Given this encoding, many integers sequences may be understood as sequences of oper ations.
This prepares us to define the decoding operator. Where A is a sequence (a one-dimensond
integer array), and Ba,...,Bk are arbitrary rationa arrays, D[A,Bu,...,B«] isthe array obtained by
applying the sequence of operations encoded in A to the arrays Ba, ..., Bk, where the varigble ' in
A istaken to refer to the array Bj+1o.

For sake of generdity, two notational conventionswill be required. Not every sequence A
yields awell-defined sequence of operations; but if the operation D is given a sequence A which
does not yied awell-defined sequence of operations, it will be understood to give output
conggting of the O-dimengond array "0". Also, if A contains m>k variable names, D[A Bx,...,Bk]
may be defined by D[A Bx,...,Bk,0,...,0], where each O represents an array of appropriate size and
dimension containing dl zero entries.

Two smple examples are:

D[(1,9,9),(1,2,3)] = (1,2,3) + (1,2,3) = (2,4,6)

and

D[(1,9,2,10,9),(1,2,3),(4,2,1)] = (1,2,3) + (4,2,1)(1,2,3) = (5,6,6)
7.4.2. Array Component Systems

Now, using these nine operations, | will give an example of anew kind of sdf-generating
system -- atype of system cdled an array component system, or ACS. Let usbegin withaligt
of arrays Vi of theform

Vi = (Ai, Bit,...,Bim( ),

t=01.2,..;i=12,..,N(t)

where the Ai are code sequences, and the Bij are rationa arrays. Each such array Vi may be
associated with a hyperfunction

H(Vi) =fi,
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defined by the equation
fi(fis) = H( D[Ai,Bid,...,Bimj.1,AjS, Bi1s,...,Biming )
Thefi are the components.

In other words, each component is associated with a code sequence, and a bunch of arrays.
Applying one component to another means gpplying the code sequence of the first component to
the list of arrays conssting of the first component's arrays, the second component's code
sequence, and the second component's arrays. According to the conventions delineated above, it
is possible for each component to act on other components which contain different numbers of
arays. "Missng" arrays are Smply treated as zero arrays, and the control sequences Ai may
potentialy contain conditiona expressions indicating how to ded with zero arrays.

ACSsillugrate in avery concrete way how hyperrelations may emerge as natural models of
sysems which are, in themselves, quite well-founded and computable. There is nathing in any
way mysterious about the Vi, nor about the idea that the various Vi can act on one another. But in
order to express thisidea mathematically, one cannot use ordinary functions; one needsto use
hyperrdations. To put it another way: in order to express patterns rdating to the interaction of
Vi, the only efficient course is to use hyperreations.

7.4.3. Immune Systemsas ACS's

Let us briefly congder asmple example, which will be taken up more thoroughly in Chapter
Ten: immunodynamics

Theimmune system is complicated as well as complex, and it contains many different kinds of
cells But the smplest mathematicad models ded only with B-cdlls, and that iswhat | will do
here. Let us begin with the approach of de Boer et a (1990), in which each antibody type inthe
immune system is associated with an integer sequence of length N. To be redligtic, of
course,antibodies should be modeled as three-dimensiond rationd arrays, snce they are three-
dimensond objects; but for the points | am making here, it isimmateria whether antibodies are
associated with 1-D or 3-D arrays.

In the 1-D modd, one may think of aB-cdl asapair Vi = (A,Bi), where Bi isan integer
sequence, and A isan integer code sequence. The code sequence specifies what happens when
one formsfi(f)), or in other words when one forms

A(Bi,A B)).

Specificaly, what happens most of the time when fi(fj) is formed is nothing. But if the
conditions are right, the effects can be drastic. Define the raw match between two B-cdlls Vi and
Vj as the maximum number of consecutive bits in which the corresponding sequences Bi and B;
are different. And define the match between two sequences as max{ 0, raw match(Bi,B;) - T},
where T is some given threshold. In terms of component-systems, then, one may think of the
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dynamics of the immune system as specifying how a B-cdl Vi acts on those B-cdls V; for which
match(Bi,B)) islarge, thus causing the crestion of new antibodies.

Thereisagreat ded of biologica subtlety involved here. In the crudest forma modd,
however, what happensis asfollows: if fi(fj) is formed and match(Bi,B)) islarge, then with a
certain probability, the cdl V; iskilled by the cdl Vi (in fact, this killing takes place indirectly,
viaantibodies; but | do not need to consider these details here). But when the proportion of B-
cdlswith shape B; that are killed fdls within a certain critica range, then cells of this shgpe are
gimulated to reproduce. New B-cells are created.

Some of these new cells are identical to Vj, and some are new types Vi, which have have
shape sequences smilar, but not identica to Bj. Thisis somatic mutation. It is the crestion of
new B-cdlls by certain old B-cells acting on other old B-cdlls. There is randomness in the process
because there is no determinigtic way of telling exactly which new types of B-cdlswill be
created.

This B-cdls-only modd is an extreme overamplication. But the more accurate models are
amilar in spirit. Celsin the immune system act on one ancther, thus simulating one another to
produce new cells. Sometimes these new cdlls are copies of old cells, but sometimesthey are
gructurdly nove. Thiss asmple example of acomponent-system; and | have indicated in a
rough way how it can be modeled using systems of stochasticaly computable hypersets.

Chapter Eight
THE COGNITIVE EQUATION

To anyonetrained in physica science, the overdl impresson made by psychology and
neuroscience is one of incredible messiness. So many different chemica compounds, so many
different neura subsystems, so many different psychic dysfunctions, so many different
components of intelligence, perception, contral.... And no overarching conceptud framework in
which al aspects come together to form a unified whole. No underlying equation except those of
physics and chemistry, which refer to alevel incomprehensibly lower than that of thoughts,
emotions and beliefs. No cognitive law of motion.

Of course, thereisno apriori reason to expect such athing as a"cognitive law of mation” to
be possble at dl. It is amazing that one can find far-reaching yet precise generdizations such as
Newton'slawsin any fidd of study. To expect to find such conceptud jewelsin every sngle
discipline may be asking more than the world has to offer.

But on the other hand, consider: Newton's laws would have been impossible without calculus,
generd relativity would have been impossible without differential geometry, and quantum
physics would have been impaossible without functiona andysis. It is quite conceivable thet,
once we have developed the gppropriate mathematical concepts, the god of a"cognitive law of
motion” will cease to appear so unredigtic.
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In fact, my contention isthat this time has already come. As of 1993, | suggest, we have
collectively developed precisdy the mathematical and conceptud tools required to piece together
the rudiments of a"fundamental equation of mind." The most important of these tools, | sugges.,
arefour in number:

1) component systems

2) péttern theory

3) dgorithmic informetion
4) strange attractors

In this chapter | show how these ideas may be used to formulate a new type of equation, which |
cdl a"Hf-generaing pattern dynamic.” Thisisthe type of equation, | suggest, which makes one
thought, one emotion, drift into the next. It isthe generd form which a cognitive law of motion
must take.

In The Evolving Mind the term "sdlf-structuring system” is used to describe a system which,
more than just organizing itsdf, structures and patter nsitself; a syssem which studies the
patternsin its padt, thus determining the patternsin its future. Here | will delineste a class of
systemswhich isasubset of the sdlf-dructuring syssems -- namely, the class of sysems that
evolve by sdf-generaing pattern dynamics. My hypothesisis that minds, aswell as being sdlf-
dructuring, dso fal within this narrower category.

Thisis a the same time a brand new gpproach to mind, and are-interpretation of the dua
network mode given in Chapter Three. The cognitive equation presents a dynamical view of
mind, whereas the dual network presents a static view; but the two are ultimately getting & the
samething. In the dua network perspective, one begins with a structure, asks what the dynamics
must be to retain that structure, and obtains the answer: something like the cognitive equetion. In
the cognitive equation perspective, on the other hand, one begins with a dynamicd iteration, asks
what sorts of structures will tend to persst under this iteration, and obtains the answer:
something like the dua network. Dynamics lead to statics, statics leads to dynamics, and the
amultaneous anayss of the two provides the beginning of an understanding of that mysterious
process called mind.

8.1. MIND AS A SELF-GENERATING SYSTEM

The systems theory of Chapter Seven gives us anew way of looking at the dud network. The
mind, filtered through the component-systems/self- generdting- systems view, emerges asa
structured network of components.

Note that this conclusion refers primarily to the mind -- the patternsin the brain -- and not to
the brain itsdf. One could mode the brain as a component-system, insofar as each neuron is not
afixed "component” but aspace of potentia components -- one component for each condition of
its syngptic potentials. When neuron A feeds its output to neuron B, thus dtering its synaptic
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potentid, it isin effect "creating” a new element of the space corresponding to neuron B. This
may be afruitful way to think about the brain. However, it is much more direct and elegant to
view the collection patter ns in the brain as a salf-generating component-system -- recaling that
apaternisfirg of dl aprocess. In the context of generd systems theory, the pattern-theoretic
modd of mind isnot merdy useful but conceptudly essentid.

Themind is vadly different from a soup of molecules -- unlike the immune system, it is not
even in arough goproximation wel-mixed. (Putting brain tissue in ablender to make
"gynaptosome soup” is a nifty method for determining the levels of different neurotransmittersin
the brain, but it has a definite negative effect on brain function.) But the relaively rigid structure
of the brain does not prevent it from being a genuine sdf-generating system, and a genuine
component- system.

Thereisan overdl globd sructure of mind; and this structure sdlf-organizes itsdlf by a
dynamic of typelessinteraction, in which some menta processes act on others to produce yet
others, without respect for any kind of "function/argument™ distinction. One can mode! this sort
of activity in terms of stochastic computation aone, without mentioning hypersets or
component-systems -- thisis the contemporary trend, which | have followed in my previous
research. However, in many stuetions this point of view becomes awkward, and the only way to
express the redlity clearly isto adopt atypeless formalism such as the one developed in Sections
8.2and 8.4.

Let ustake asmple heurigtic example -- purely for expository purposes, without any pretense
of detailed biologicd realism. Let us think, in an abstract way, about the relation between a
mental process that recognizes Smple patterns (say lines), and a menta process that recognizes
patterns among these smple patterns (say shapes). These shape recognizers may be understood
as ubservient to yet higher-level processes, say object recognizers.  If the shape recognizer has
some ideawhat sort of shape to expect, then it must partialy reprogram the line recognizer, to
tell it what sort of linesto look for. But if the line recognizer perpetudly recelves ingructions to
look for lineswhich are not there, then it must partidly reprogram the shape recognizer, to
cause it to give more gppropriatelngtructions. Assuming there is a certain amount of error innate
in this process, one has an obvious circularity. The collection of two processors may be naturaly
modeled as a self-generating system.

It seems likely that the specific programsinvolved in these perceptua processes involve linear
array operations. But till, one does not yet have an array component system. To see where
component-systems come in, one heeds to take a dightly more redligtic view of the perceptua
process. One must consider that the mapping between line-recognizing processes and shape-
recognizing processes is many-to-many. Each shape process makes use of many line-recognizing
process, and the typica line-recognizing processis connected to afew different shape-
recognizing processes. A shape-recognizing processisinvolved in creating new line-
recognizing processes, and a group of line-recognizing processes, by continudly registering
complaints, can cause the object-recognizing parents of the shape-recognizing processes to creste
new shape-recognizing processes.
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What this meansis that the reprogramming of processes by one another can be the causative
agent behind the cr eation of new processes. So the collection of processes, asawhole, is not
only asdf-generating system but a component-system as well. By acting on one another, the
mental processes cause new mental processes to be created. And, due to the stochastic influence
of errors aswell asto the inherent chaos of complex dynamics, this process of creation is
unpredictable. Certain processes are more likely to arise than others, but amost anything is
possible, within the parameters imposed by the remainder of the network of processesthat isthe
mind.

This example, as dready emphasized, is merely atheoretica toy. The actua processes
underlying shape and line recognition are gill a matter of debate. But the basic concept should be
clear. Whenever one has sophisticated multilevel control, combined with heterarchica
relationship, one has a Stuation in which sdf-referentiad modds are appropriate. The whole
network of processes can be modeled otherwise, using only stochastic computer programs. But
the vocabulary of sdf-generating and component-systems leads to a novel understanding of the
basic phenomenainvolved.

8.2. SELF-GENERATING PATTERN DYNAMICS (*)

Now let usreturn to the forma "processiterations’ of Chapter Seven. Equation (**), in itsdf,
is much too generd to be of any use asa"cognitive law of maotion." If System and T are chosen
appropriately, then (**) can describe anything whatsoever. That is, after dl, the meaning of
universal computation! However, this smple iteration is neverthdess the first sop dong the path
to the desired equation. What is needed is merely to specialize the operator T.

Instead of taking the compounds formed from System, | suggest, one must take the patter ns
in these compounds. This completes the picture of the mind as a system which recognizes
patternsin itsdf, which formsits own patterns from its own patterns. There might seemto be
some kind of contradiction lurking here: after dl, how can patternsin hyperrdations themselves
be hyperrdations? But of course, thisis precisely the digtinctive qudity of hyperrdations. they
subvert the hierarchy of logical types by potentidly belonging to their own domain and range.
And this unusud property does not violate the laws of physica redity, because the
hyperrelations required for practical modeling can themsdves be perfectly well modeled in terms
of ordinary Boolean functions.

To make this more precise, definethereative structure S of aset A ={a b, ¢, ...} asthe sat
of al x which are patternsin some subset of A relative to some other subset of A.

For ingance, in the dgorithmic information modd, "x is an exact paternin b relativeto &'
means

1) b produces x from a
2) 1(x]o.8) < I(x|a)

More generdly, statement (2) must be replaced with aless specific forma notion such as

132
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2) {b.a}| < [x\a|

The generdization of this notion to encompass patterns that are approximate rather than exact is
quite straightforward.

In this notation, the smplest sdf-generating pattern dynamic says that, where System isthe
gystem a timet,

System1 = St"( R[System] )  (***)

| cdl thisiteration the basic deter ministic dynamic. It will serve asa"demondration equation”
for talking about the properties of more complicated cognitive dynamics.

The idea underlying this equation is encapsulated in the following Smple maxim: in a
cognitive system, time isthe process of structure becoming substance. In other words, the
entities which make up the syslem now dl act on one another, and thus produce anew collection
of entitieswhich includes al the products of the interactions of entities currently existent. For
lack of abetter term, | cdl this exhaustive collection of products the "Raw Potentidity” of the
system. Then, the syssem one moment later conssts of the patterns in this collection, this Raw
Potentidity.

8.2.1. A General Self-Generating Pattern Dynamic (*)

For every type of sdf-generating system, there is a corresponding type of sdf-generating
pattern dynamic. The basc determinitic dynamic is founded on the type of sdf-generating
system that is S0 totaly "well-mixed" that ever ything interactswith everything else at each
time step. But in generd, thisis only the smplest kind of sdlf-generating sysem: a sdif-
generating sysem may use any stochastically computable rule to transform what the Raw
Potentidity of timet into the redity of time t+1.

Furthermore, the basic deterministic dynamic assumes infinite pattern recognition kill; it is
anti-Goddian. In generd, a self-generating syssem may useits Raw Potentidity in an incomplete
fashion. It need not sdect all possible patternsin the Raw Potentidity; it may pick and choose
which onesto retain, in a sate-dependent way.

Formdly, this means that one must consder iterations of the following form:

System1 =F [ Z [S"(G[ R[System] )] ]~ (***¥)

where F and G are any stochadticaly computable functions, and Z: = Z[ System] isa"filtering
operator" which selects certain elements of

SN G[ R[System] ]]), based on the elements of System.

Note that the function F cannot make any reference to System; it must act on the leve of
gructure done. Thisiswhy the function Z: is necessary. The particular system state System: can
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affect the selection of which patternsto retain, but not the way these patterns are transformed. If
this distinction were destroyed, if F and Z: were alowed to blur together into amore generd F =
F[ System], then the fundamenta structure-dependence of the iteration would be significantly
weakened. One could even define F as a congant function on al values of S G[ R[System] ]),
mapping into a future state depending only on System:. Thus, in essence, one would have (**)
back again.

Equetion (****), like the basc determinigtic dynamic (***), ismerdy (**) with agpecid form
of the trangtion operator T. T is now assumed to be a some sequence of operations, one of which
isapossbly filtered gpplication of the relative structure operator ™. Thisisindeed abizarre
type of dynamic -- instead of acting on real numbers or vectors, it acts on collections of
hyperrdations. However, it may till be studied using the basic concepts of dynamica sysems
theory -- fixed points, limit cycles, attractors and so forth.

To seethe profound utility of the filtering operator Z:, note that it may be defined specificaly
to ensure that only those elements of SN(G[R[System]]) which are actually computed by sub-
systems of System: are passed through to F and System+1. In other words, one may set

Zi(X) = Z[System](X) = X inter sect R[System]

Under thisdefinition, (****) saysloosdly that System+1 condsts of the patterns which System
has recognized in itself (and in the "compounds' formed by the interaction of its subsystems). It
may be rewritten as

System+1 = F [ R[System] intersect St*( G[ R[System] ])]  (*****)

This specidization brings abdtract sdlf-generating pattern dynamics down into the realm of
physicd redity. For reasonsthat will be clear alittle later, it isthis equation that | will refer to as
the "cognitive equation” or "cognitive law of mation.”

8.2.2. Summary

Sdf-generating pattern dynamics are dynamicd iterations on collections of processes, and are
thus rather different from the numericd iterations of classica dynamicd systemstheory and
modern "chaos theory." However, it would be sy to think that one could understand mental
systems by the exact same methods used to andyze physicad systems.

The basic modeling ideas of graphttheoretic structure and iterative dynamics are applicable to
both the menta and the physical worlds. But whereas in the physica domain one is concerned
mainly with numerical vectors, in the menta realm one is concerned more centraly with
processes. Thetwo views are not logicaly contradictory: vectors may be modeed as processes,
and processes may be modeled as vectors. However, there is a huge conceptua difference
between the two approaches.

In non-technica language, what a " sdf-generating pattern dynamic” boils down to isthe
following sequence of seps.

134
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1) Take acollection of processes, and let each process act on all the other processes, in
whatever combinaionsit likes. Some of these "interactions' may result in nothing; others may
result in the creation of new processes. The totality of processes created in thisway is cdled the
Raw Potentidity generated by the original collection of processes.

2) Transform these processes in some standard way. For instance, perhaps one wants to model
agtuation in which each dement of the Raw Potentidity has only acertain per centage chance
of being formed. Then the "transformation” of the Raw Potentidity takes the form of a seection
process. asmall part of the Raw Potentidity is selected to be retained, and the rest is discarded.

3) Next, determine dl the patterns in the collection of processes generated by Step 2. Recall
that patterns are themselves processes, so that what one has after this step is smply another
collection of processes.

4) "Hlter out" some of the processes in the collection produced by Step 3. Thisfiltering may
be system-dependent -- i.e, the origina processes present in Step 1 may have asay in which
Step 3-generated patter n-processes are retained here. For instance, as will be suggested below, it
may often be dedirable to retain only those patterns that are actudly recognized by processesin
Step 1.

5) Transform the collection of processes produced by Step 4 in some standard way,
analogoudy to Step 2.

6) Take the set of processes produced by Step 5, and feed it back into Step 1, thus beginning
the whole process dl over again.

Thisisavery genera sequence of steps, and its actua behavior will depend quite sengtively
on the nature of the processes introduced in Step 1 on the firstgo-around, as well as on the nature
of the trandformation and filtering operations. Modern science and mathematics have rather little
to say about this type of complex process dynamics. The generd ideas of dynamical systems
theory are gpplicable, but the more specific and powerful tools are not. If one wishesto
understand the mind, however, this is the type of iteration which one must madter.

More specificaly, in order to mode cognitive systems, a specific ingance of thefiltering
operaion is particularly useful: one filters out al but those patterns that are actudly recognized
by the components of the system. In other words, one takes the inter section of the products of
the systemn and the patternsin the system. The sdf-generating pattern dynamic induced by this
particular filtering operation iswhet | cal the "cognitive equation.”

Informally and in brief, one may describe the cognitive equation as follows:
1) Let al processesthat are "connected" to one another act on one another.

2) Take dl patterns that were recognized in other processes during Step (1), let these patterns
be the new set of processes, and return to Step (1)
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An attractor for this dynamic is then a set of processes with the property that each eement of
the set is @) produced by the set of processes, b) a pattern in the set of entities produced by the set
of processes. In the following sections | will argue that complex mental systems are attractors for
the cognitive equation.

8.3. STRUCTURAL CONSPIRACY

According to chaos theory, the way to sudy adynamicd iteration isto look for its attractors.
What type of collection of processes would be an attractor for a salf-generating pattern dynamic?

To begin with, let us redtrict atention to the basic deterministic dynamic (***). According to
thisiteration, come time t+1, the entities existent & timet are replaced by the patternsin the Raw
Potentiality generated by these entities. But this does not imply thet al the entities from timet
completely vanish. That would be absurd -- the system would be atotally unpredictable chaos. It
is quite possible for some of the current entities to survive into the next moment.

If acertain entity survives, this means that, as well as being an eement of the current system
System, it isaso aregularity in the Raw Potentidity of System, i.e. an eement of R[System].
While a firgt glance this might seem like a difficult sort of thing to contrive, dightly more
careful consderation revealsthat thisis not the case at all.

Asasmple example, consider two entities f and g, defined informaly by
f(X) = the result of executing the command "Repeet X two times'
0(x) = the result of executing the command "Repest x three times'
Then, when f acts on g, one obtains the "compound"

f(g) = the result of executing the command "Repeet x threetimes' theresult  of executing the
command "Repest x threetimes’

And when g acts on f, one obtains the "compound"

g(f) = the result of executing the command "Repest x two times' theresult  of executing the
command "Repeet x two times' the result of executing the command "Repegt x two times'

Now, obvioudy the pair (f,g) isapattern in f(g), Snceit iseasier to sore f and g, and then apply
f to g, than it isto Sore f(g). And, in the same way, the pair (g,f) isapatternin g(f). Sof and g,
in asense, perpetuate one another. According to the basic deterministic dynamic, if f and g are
both present in System, then they will both be present in System+.

One may rephrase this example alittle more formaly by defining f(x) = x X, g(X) =x x X. In
set-theoretic terms, if one makes the default assumption thet al varigbles are universaly
quantified, this meansthet f has the form {x,{x,x x}} while g hasthe form {x{xxx x}}. So,
when f acts on g, we have the ugly-looking congtruction { {X,{x,X X X} }, {{X{xx X x}}, {X,{X,x
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xx}} {x{xxxx}} }; and when g acts on f, we have the equaly unsghtly {{x{xx x}},
{{x XX X3}, {X XX X3} {X{x X X3} {x{xx x}}}. It iseasy to see that, given this
formdization, the conclusons given in the text hold.

Note thet this indefinite surviva is fundamentaly a synergetic effect between f and g. Suppose
that, at timet, one had a system congigting of only two entities, f and h, where

h = " cosmogonicalousockhamsteakomodopefiendoplamicreticulu mpenproleta  riati”
Then the effect of h acting on f would, by default, be

h(f) = empty set

And the effect of f acting on h would be

f(h) = "cosmogonicallousockhamsteakomodopefiendoplasmicreticulum

penprol etariatticosmogoni call ousockhamsteakomodope
fiendoplasmicreticulumpenprol etariatti”

Now, (f,h) is certainly a pattern in f(h), so that, according to the basic deterministic dynamic, f
will be amember of System+1. But h will not be amember of System+1 -- it isnot a pattern in
anything in R[System]. So there is no guarantee that f will be continued to System-+2.

What is specid about f and g isthat they assst one another in producing entities in which they
are patterns. But, clearly, the set {f,g} isnot unique in possessing this property. In generd, one
may define astructural conspiracy as any collection of entities G so that every dement of G is
apatern in the Raw Potentidity of G. It is obvious from the basic deterministic dynamic that
one successful strategy for survival over timeisto be part of a structural conspiracy.

Extending thisideato generd deter ministic equations of theform (****), astructural
conspiracy may be redefined as any collection P which is preserved by the dynamic involved,
i.e. by the mathematical operations R, G, " and F applied in sequence.

And findly, extending the concept to stochastic equations of form (****), astructura
conspiracy may be defined as a collection P which has anonzer o probability of being preserved
by the dynamic. The value of this probability might be cdled the "solidity" of the conspirecy.
Stochagtic dynamics are interesting in that they have the potentid to break down even solid
Structurd conspiracies.

One phrase which | usein my own thinking about self-generating pattern dynamicsis "passng
through." For an entity, a pattern, to survive the iteration of the fundamenta equation, it must
remain intact as a patter n after the process of universd interdefinition, universd interaction has
taken place. The formation of the Raw Potentidity isa sort of holistic melding of dl entitieswith
al other entities But dl that survives from this cosmic muddle, & each indant, istherelative
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gructure. If an entity survives this process of melding and separation, then it has passed through
the whole and come out intect. Itsintegra relationship with the rest of the system is confirmed.

8.3.1. Congpiracy and Dynamics

What | have called a structurd conspiracy is, in essence, afixed point. It is therefore the
samplest kind of attractor which a sdf-generating pattern dynamic can have. One may dso
conceive of sef-generding-pattern-dynamic limit cycles -- collections P so that the presence of
Pin System impliesthe presence of P in System-k, for some specific integer k>1.

Nietzsche's fanciful theory of the "eternd recurrence” may be interpreted as the postulation of
auniverse-wide limit-cycle. His idea was that the system, with al its variation over time, is
inevitably reptitive, so that every moment which one experiences is guaranteed to occur again at
some point in the future.

And, pursuing the same line of thought alittle farther, one may aso consider the concept of a
self-gener ating-patter n-dynamical strange attractor. In this context, one may define a
"drange atractor" asagroup P of entities which are "collectively fixed" under a certain dynamic
iteration, even though the iteration does not cycle through the dements of P in any periodic way.
Strange attractors may be approximated by limit cycdes with very long and complicated

periodic paths.

In ordinary dynamical systems theory, strange attractors often possess the property of
unpredictability. That is, neither in theory nor in practice isthere any way to tel which attractor
elementswill pop up a which future times. Unpredictable strange attractors are called chaotic
attractors. But on the other hand, some strange attractors are satisticaly predictable, asin
Freeman's "strange atractor with wings' mode of the sense of smell. Here chaos coexists with a
modicum of overlying order.

It isto be expected that self-generating pattern dynamica systems possess chaotic attractors,
aswel as more orderly strange attractors. Furthermore, in ordinary dynamics, strange attractors
often contain fixed points; and o, in saf-generating pattern dynamics, it seems likely that
strange structura conspiracies will contain ordinary structura congpiracies (athough these
ordinary structura conspiracies may well be so unstable asto beirrdevant in practice).
However, thereis at the present time no mathematical theory of direct usein exploring the
properties of self-generating pattern dynamical systems or any other kind of nontrivid sdf-
generaing system. The tools for exploring these modds smply do not exist; we must make them
up aswe go adong.

Fixed points are sSmple enough that one can locate them by smple caculation, or trained
intuition. But in dasscal dynamical systems theory, most strange attractors have been found
numerically, by computer smulation or data andlysis. Only rardly hasit been possble to verify
the presence of a strange attractor by forma mathematica means, and even in these cases, the
existence of the attractor was determined by computational meansfirst. So it is to be expected
that the procedure for salf-generating dynamics will be the same. By running Smulations of
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various sdf-generating systems, such as self-generding pattern dynamics, we will happen upon
ggnificant strange atractors ... and follow them where they may lead.

8.3.2. Immunological Pattern Dynamics

The immune system, as argued at the end of Chapter Seven, is a sdf-generating component-
system. The cognitive equation leads us to the very intuitive notion thet, even so, it isnot quite a
cognitive system.

Insofar as the immune system is a salf-maintaining networ k , the surviva of an antibody type
is keyed to the ahility of the type to recognize some other antibody type. If A recognizes B, then
thisisto beviewed as B creating ingances of A (indirectly, via the whole molecular system of
communication and reproduction). So the antibody types that survive are those which are
produced by other antibody types: the immune network is a salf-generating component-system.

Thenext crucid obsarvation is that the recognition involved hereis a pattern-based operation.
From the fact that one specific antibody type recognizes another, then it follows only thet thereis
aggnificant amountof pattern emer gent between the two antibody types; it does not follow that
the one antibody type is a paitern in the other. But the ensuing reproduction alows us to draw a
somewhat stronger conclusion.  Condder: if type A attacks type B, thus simulating the
production of moretype A -- then what has happened? The original amounts of A and B, taken
together, have served as aprocess for generating a greater amount of A. Isthis process a pattern
in the new A population? Only if one accepts that the type B destroyed was of "'less complexity”
than the type A generated. For ingtance, if two A's were generated for each one B destroyed, then
thiswould seem clear. Thus, the conclusion: in at least some instances, antibody types can be
patterns in other antibody types. But this cannot be considered the rule. Therefore, the immune
sysemis not quite afully cognitive system; it is a borderline case.

Or, to put it another way: the cognitive equation is an idedization, which may not be
completely accurate for any biologicaly-based system. But it models some systems better than
others. It models the immune system far better than the human heart or a piece of tree bark --
because the immune system has many "thought-like" properties. But, or so | will argue, it modds
the brain even more adeptly.

8.4. MIND ASA STRUCTURAL CONSPIRACY

| have said that mind is a sdf-generating system, and | have introduced a particular form of
sdf-generating system called a"sdf-generating pattern dynamic.” Obvioudy these two idess are
not unrelated. In this section | will make their connection explicit, by arguing that mind isa
sructural conspiracy -- an attractor for a self-generating pattern dynamic.

More specificdly, | will argue that adual network isakind of structura congpiracy. The key
to rdating sdf-generating pattern dynamics with the dua network is the filtering operator Z:.

8.4.1. The Dual Network asa Structural Conspiracy
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It is not hard to see that, with thisfiltering operation, an associative memory isalmost a
sructura conspiracy. For nearly everything in an associative memory is a pattern emergent
among other things in that associative memory. Asin the case of multilevel control, there may be
afew odd men out -- "basic facts'being stored which are not patternsin anything. What is
required in order to make the whole memory network a structural conspiracy is that these "basic
facts' be generatable asaresult of some element in memory acting on some other element.
These dements mugt exist by virtue of being patternsin other things-- but, as a sde-effect, they
must be able to generate "basic facts' aswell.

Next, is the perceptua-motor hierarchy astructurd conspiracy? Again, not necessarily. A
process on level L may be generaly expected to be a pattern in the products obtained by letting
processes on level L-1 act on processes from level L-2. After dl, thisistheir purpose: to
recognize patterns in these products, and to cr eate a pattern of success among these products.
But what about the bottom levels, which ded with immediate sense-data? If these are present in
System;, what is to guarantee they will continue into System+1. And if these do not continue,
then under the force of self-generating pattern dynamics, the whole network will come crashing
down....

The only solution isthat the lower level processes must not only be patternsin sense data, they
must al so be patterns in products formed by higher-level processes. In other words, we can only
see what we can make. Thisisnot anove ideg; it is merdy areformulation of the centrd ingght
of the Gestdt psychologists.

Technicaly, one way to achieve thiswould be for there to exist processes (say on level 3)
whichinvert the actions taken by their subordinates (say on level 2), thus giving back the
contents of level 1. Thisinverson, though, has to be part of a processwhich isitself a pattern in
level 2 (relative to some other menta process). None of thisisinconceivable, but none of it is
obvious @ther. It is, ultimately, atestable prediction regarding the nature of the mind, produced

by equation (*****).

The bottom lineis, it is quite possble to concelve of dud networks which are not structural
conspiracies. But on the other hand, it is not much more difficult, on a purely aodract leve, to
envison dud networks which are. Equation (*****) goes beyond the dua network theory of
mind, but in an harmonious way. The prediction to which it leads is sufficiently dramétic to
deserve aname: the"producibility hypothesis”" To within a high degree of approximation,
every mental process X which isnot a pattern in some other mental process, can be
produced by applying some mental processY to some mentalprocessZ, whereY and Z are
patternsin some other mental process.

Thisisaremarkable kind of "closure" avery strong sense in which the mind isaworld dl its
own. Itisactudly very smilar to what Varda (1978) cdled "autopoess' -- the only subgtantive
differenceisthat Vardla believes autopoetic systems to be inherently non-computationd in
nature. So far, psychology has had very little to say about this sort of self-organization and sdif-
production. However, the advent of modern complex systems science promises to change this
gtuation.
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8.4.2. Physical Attractorsand Process Attractors

All thisis quite unorthodox and ambitious. Let me therefore pause to put it into amore
physicaigtic perspective. The brain, like other extremely complex systems, is unpredictable on
the level of detall but roughly predictable on the levd of structure. This meansthat the dynamics
of its physica variables display a srange attractor with a complex structure of "wings' or
"compartments.” Each compartment represents a certain collection of stateswhich giveriseto
the same, or amilar, patterns. Structurd predictability means that each compartment has wider
doorways to some compartments than to others.

The complex compartment-structure of the strange attractor of the physicd dynamics of the
brain determines the macrascopic dynamics of the brain. There would seem to be no way of
determining this compartment- structure based on numerica dynamica systems theory. Therefore
one must "legp up aleve" and look at the dynamics of mental processes, perhaps represented by
interacting, inter-cregting neural maps. The dynamics of these processes, it is suggested, possess
their own strange attractors called "structural conspiracies,” representing collections of processes
which are closed under the operations of patter-recognition and interaction. Process-leve
dynamics results in a compartmentaized attractor of states of the network of menta processes.

Each state of the network of mental processes represents a large number of possible
underlying physicd sates. Therefore process-levd attractors take the form of coar ser
structur es, superimposed on physical-levd atractors. If physica-leve atractors are drawn in
bal-point pen, process-leve attractors are drawn in magic marker. On the physicd leve, a
structura conspiracy represents awhole complex of compartments. But only the most densely
connected regions of the compartment-network of the physica-level attractor can correspond to
Sructural conspiracies.

Admittedly, this perspective on the mind is somewhat speculdtive, in the sensethat it is not
closaly tied to the current body of empirica data. However, it isin al branches of science
essentia to look ahead of the data, in order to understand what sort of dataiis redly worth
collecting. The ideas given here suggest that, if we wish to understand mind and brain, the most
important task ahead isto collect information regarding the compartment-structure of the strange
attractor of the brain, both on the physical level and the process leve; and

above dl to understand the complex relation between the strange attractors on these two different
levels

8.5. LANGUAGE ACQUISITION

| have proposed that the mind is an attractor for the cognitive equation. But this does not rule
out the possibility that some particular subsets of the mind may al so be attractors for the
cognitive equation, in themselves. In particular, | suggest that linguistic systems tend to be
structura conspiracies.

Thisidea sheds new light on the very difficult psychologica problem of language
acquisition. For in the context of the cognitive equation, language acquisition may be
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understood as a process of iterative conver gence toward an attractor. This perspective does
not solve dl the micro-leve puzzles of language acquidtion theory -- no generd, abstract theory
can do that. But it does give anew overarching framework for gpproaching the question of "how
language could possibly belearned.”

8.5.1. The Bootstrapping Problem

The crucid puzzle of language acquigtion theory is the "bootstrapping problem.” What this
catch phrase meansis. if dl parts of language are defined in terms of other parts of language,
then where is the mind to start the learning process?

Consider the tremendous gap between the input and the output of the language learning
process. What a child is presented with are sentences heard in context. Gradudly, the child's
mind learns to detect components and properties of these sentences such things asindividua
words, word order, individua word meanings, intonation, stress, syllabic structure of words,
generad meanings of sentences, pragmatic cuesto interpretation, etc. All thisisjust a matter of
correlating things that occur together, and dividing thingsinto natural groupings: difficult but
sraightforward pattern recognition.

But what the child's mind eventudly arrives at is so much more than this. It arrives at an
implicit understanding of grammetica categor ies and the ruesfor their syntactic interrelation.
So the problem is, how can a child determine the relative order of noun and verb without first
knowing whet "nouns' and "verbs' are? But on the other hand, how can she learn to distinguish
nouns and verbs except by using cues from word order? Nouns do not have a unique position, a
unique intonation contour, a unique modifier or &ffix -- thereis no way to diginguish them from
verbs based on non-syntactic pattern recognition.

Theformd modd of language given in Chapter Five makes the bootstrapping problem appear
even more severe. Frg of dl, in the definition of "syntactic system,” each word is defined asa
fuzzy st of functions acting on other words. How then are words to be learned, if each word
involves functions acting on other words? With what word could learning possibly start? Yes,
some very smple words can be partidly represented as functions with null argument; but most
words need other words as arguments if they are to make any sense at dl.

And, on ahigher level of complexity, | have argued that syntax makes no sense without
semantics to guide it. No mind can use syntax to communicate unless it has a good
understanding of semantics; otherwise, among other problems, the paradoxes of Boolean logic
will emerge to louse things up. But on the other hand, semantics, in the pattern-theoretic view,
involves determining the set of al patterns associated with a given word or sentence. And the
bulk of these patterns involve words and more complex syntactic structures like phrases and
clauses thisisthe sysematicity of language.

No syntax without semantics, no semantics without syntax. One cannot recognize correlaions
among syntactic patterns until one knows syntax to afair degree. But until one has recognized
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these correlations, one does not know semantics, and one consequently cannot use syntax for any
purpose. But how can one learn syntax & dl, if one cannot useit for any purpose?

Chomsky-ingpired par ameter-setting theories circumvent this chicken-and-egg problemin a
way which isaither clever, obvious or absurd, depending on your point of view. They assume that
the brain has a geneticaly-programmed "language center,” which contains an abstract version of
grammar cdled Universal Grammar or UG.

UG isunderstood to contain certain "switches' -- as a switch which determines whether nouns
come before or after verbs, a switch which determines whether plurds are formed by affixes or
by suffixes, and so on. The dass of possible human syntaxesis the class of possible switch
settings for UG; and language learning is a process of determining how to set the switches for the
particular linguigtic environment into which one has been born.

The parameter- setting approach smplifies the bootstrapping problem by maintaining that
gyntaxes are not actualy learned; they are merely sdlected from a pre-arranged array of
possihilities. It leaves only the much more managesble problem of semantic bootstrapping -- of
explaining how semantic knowledge is acquired by induction, and then combined with UG to
derive an appropriate syntax.  Some theorists, however, consider the whole parameter-setting
approach to be amonumental cop-out. They stubbornly maintain that dl linguistic knowledge
must be induced from experience. In other words, to use my earlier example, first the child gets
avagueideaof the concept of "noun” and "verb"; then, based on this vague ideg, she arrives at a
vague idea of the relative positioning of nouns and verb. Thisinkling about positioning leadsto a
dightly srengthened idea of "noun” and "verb" -- and so forth.

In generd, according to this view, the child begins with very smple grammatical rules,
specific "subgtitution frames' with dotsthat are labeled with abstract object types, say "NOUN
VERB" or "NOUN go to NOUN" or "NOUN isvery ADJECTIVE". Then, once these smple
frames are magtered, the child induces patterns among these substitution frames. "NOUN egats
NOUN," "NOUN killsNOUN," "NOUN tickles NOUN," etc., are generaized into NOUN
VERB NOUN. Next, more complex sentence structures are built up from smple substitution
frames, by induced transformationa rules.

In the inductivigt perspective, bootstrapping is understood as a difficult but not insurmountable
problem. It is assumed that the 1010 - 1012 neurons of the human brain are up to the task.
Parameter- setting theorists have amore pessmistic opinion of human intelligence. But the
trouble with the whole debate is that neitherside has a good overall concept of what kind of
learning is taken place.

In other words: if it's inductive learning, what kind of structure does the induction process
have? Or if it's parameter setting, what is the logic of the process by which these "parameters’
arelearned -- how can this mechanistic mode be squared with the messiness of human biology
and psychology? In short, what isthe structure of linguistic intelligence? My god in this
section is to suggest that the cognitive equation may provide some hints toward the resolution of
this conceptud difficulty.
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8.5.2. Process-Network Theories of Language L earning

The dua network moded suggests that language learning must be explicable on the level of
self-organizing, self-generating process dynamics. Thisis something of aradica idea, but on
the other hand, it can dso be rdated with some of the "maingtream” research in language
acquisition theory. And, | will argue, it provides an egant way of getting around the
bootstrapping problem.

8.5.2.1. Constraint Satisfaction Models

Perhaps the most impressive among dl parameter-setting theories is Pinker's (1987) congtraint
satisfaction modd. Initialy Pinker wanted to modd language learning using a connectionist
architecture ala Rumehart and McCleland (1986). But this proved impossible; and indeed, all
subsequent attempts to apply smple "neura networks' to symbalic learning problems have been
equdly fruitless

So ingtead, Pinker borrowed from artificid intelligence the idea of a sdf-adjusting constraint
satisfaction network. The ideais that language acquisition results from the joint action of a
group of condraint satisfaction networks: one for assigning words to categories, one for
determining grammatica structures, one for understanding and forming intonations, etc.

Congder, for instance, the network concerned with grammeatica structures. Each node of this
network consists of arule prototype, apotentid grammeatica rule, which hasits own opinion
regarding the role of each word in the sertence. The dynamics of the network is competitive. If
the sentence is "The dog bit the man," then one rule might categorize "The dog" as subjectand
"hit the man" as verb phrase; another might categorize "The dog hit" as subject and "the man” as
verb phrase. But if a certain rule prototype disagr ees with the mgority of its competitors
regarding the categorization of aword, then its "weight" is decreased, and its opinion is counted
lessin the future,

The behavior of the network gets interesting when rules agree regarding some categorizations
and disagree regarding others. The weights of rules may fluctuate up and down wildly before
ettling on an "equilibrium” leve. But eventudly, if the rule network is sufficiently coherent, an
"dtractor” state will be reached.

If there were no initial knowledge, then this competitive process would be worthless. No
stable equilibrium would ever arise. But Pinker'sideais that the abstract rules supplied by UG,
combined with rudimentary rules learned by induction, are enough to ensure the convergence of
the network. Thisisafancy and exciting verson of the "parameter-setting” idear parameters are
not being directly set, but rather UG abgtractions are being used to guide the convergence of a
sdf-organizing process.

8.5.2.2. Competition M odels

An interesting counterpoint to Pinker's network modd is provided by the evolutionary
approach of Bates and MacWhinney (1987). They present cross-linguistic data suggesting thet



CHAOTICLOGIC 145

language learning is not a smple process of parameter-setting. Children learning different
languages will often differ in their early assumptions about grammar, aswell asther ultimate
gyntactic rule structures. Furthermore, the passage from early grammar to mature grammar may
be an oscillatory one, involving the gpparent competition of conflicting tendencies. And
different children may, depending on their particular abilities, learn different aspects of the same
language a differ ent times: one child may produce long sentences full of grammeatica errors at
an early stage, while another child may first produce flawless short sentences, only then moving
on to long ones.

These observations disprove only the crudest of parameter- setting theories; they do not
contradict complex parameter-setting theories such as Pinker's congtraint satisfaction network,
which integrates UG with inductive rule learning in a salf-organizationa setting. But they do
suggest that even this kind of sophisticatedparameter-setting is not quite sophigticated enough.
Thesngle-levd iteration of a congraint satisfaction network isafar cry from the flexible
multileve iterations of the brain.

What Bates and MacWhinney propose is a sort of "two-leve network™ -- onelevd for forms
and another for functions. Form nodes may be connected to function nodes, for example, the
form of preverbd pogtioning in English is correlated with the function of expressing the actor
role. But there may aso be intra-level connections. form nodes may be connected to other form
nodes, and function nodes to other function nodes.

In their view, mappings of a sngle form onto a sngle function are quite rare; much more
common iswidely branching interconnection. For instance, they argue that

"subject” is naither asingle symbol nor aunitary category. Rather, it isa codition of many-to-
many mappings between the leve of form (e.g. nominative case marking, preverba postion,
agreement with the verb in person and number) and the leve of function (eg. agent of a
trangitive action, topic of an ongoing discourse, perspective of the speake)....

Notice thet the entries a the level of form include both "obligatory™ or "defining” devices such
as subject-verb agreement, and "optiona” corrdates like the tendency for subjects to be marked
with definite articles. Thisis precisaly what we mean when we argue that there isno sharp line
between obligatory rules and probabilistic tendencies.

L earning isthen a process of modifying the weights of connections. Connections that lead to
unsatisfactory results have their weights decreased, and when thereis a conflict between two
different nodes, the one whose connection is weighted highest will tend to prevail.

8.5.2.3. Summary

Bates and MacWhinney, like Pinker, view language learning aslargely a process of adjusting
the connections between various " processes’ or " nodes." Whilethisisnot currently known
to be the correct gpproach to language acquidition, | submit that it is by far the most plausible
framework yet proposed. For Neural Darwinism teaches us that the brain is a networkof
interconnected processes, and that learning conssts largely of the adjustment of the connections
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between these processes. The process-network view of language acquisition fits quite neetly into
what we know about the brain and mind.

And the question "UG or not UG," when seen in this light, becomes rather less essentid. What
is most important is the process dynamics of language learning. Only once this dynamicsis
understood can we understand just how much initid information is required to yield the
condruction of effective linguigic neurd magps.  Perhaps the inductivigts are right, and abstract
cognitive abilities are sufficient; or perhaps Chomsky was correct about the necessity of pre-
arranged grammeatical forms. But one's opinion on this issue cannot serve asthe basis for a
theory of language acquisition. The process-network view relegates the innate-vs.-acquired
debate to the Satus of a sSide issue.

8.5.3. The Cognitive Equation and L anguage L ear ning

S0, language learning is largely a process of adjusting the weights between different
processes. But how are these processes arrived at in the first place? Some of them, perhaps, are
supplied gendticaly. But many, probably mogt, are learned inductively, by pattern recognition.
This givesrise to the question of whether alanguage is perhaps a structural conspiracy.

The above discussion of "bootstrapping” suggests that this may indeed be the case. Parts of
gpeech like "nouns' and "verbs' are patterns among sentences, but they are only producible by
processesinvolving word order. On the other hand, rules of word ordering are patter ns among
sentences, but they are only producible by processesinvolving parts of speech.

Bootstrapping states precisdly that, once one knows most of the rules of syntax, it's not hard to
induce the rest. Suppose one assumes that the processes bearing the rules of language dl

1) possess modest pattern-recognition capacities, and
2) are programmed to recognize patterns in sentences

Given this, it follows from the bootsirapping problem that any portion of amind's linguistic
system is capable of producing the rest, according to the dynamics of the cognitive equation. In
other words, it follows that language is an attractor, a structura conspiracy.

And if one accepts this conclusion, then the next natural step isto view language learning asa
process of convergenceto thisattractor. Thisis merely anew way of conceptudizing the point
of view implicit in the work of Pinker, Bates, MacWhinney, and other process- network- oriented
acquisition theorigts. These theorists have focused on the dynamics of alr eady-existing networks
of linguidtic rules; but as Pinker explicitly gates, this focus is for sake of smplicity only (after
al, rule-bearing processes must come from somewher e). The cognitive equation shifts the focus
from connection adjustment to process creation, but it does not ater the underlying process-
network philosophy.

The learning process sarts with an initid collection of syntactic rules -- ather smple
substitution rules picked up from experience, or randomly chosen specific cases of abstract UG
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rules, or a combination of the two. Then each rule-bearing process r ecognizes patter ns -- among
incoming and outgoing sentences and its compani on processes.

This recognition process results in the production and comprehension of sentences, viaits
interaction with outside perceptua and motor processes, and the associative memory network
(recdl the intimate connection between syntax and semantics, discussed in Chapter Five). But
interndly, it al so leads to the creation of new processes ... which aid in the production and
comprehension of sentences, and in the creation of processes.

And this processis repeated until eventualy nothing new is generated any more -- then an
attractor has been reached. Language, a salf-sustaining menta system, has been learned.

Chapter Nine
BELIEF SYSTEMS
| believe, so that | may understand
-- Saint Augudtine
Bdieving isthe prima beginning
even in every senseimpresson....
-- Friedrich Nietzsche

Are bdief systems dtractors? There is something quite intuitive about the idea . Before one
settles on afixed system of beliefs, one's opinions regarding a certain issue may wander al over
the spectrum, following no gpparent pattern. But once one arrives a abdief system regarding
that topic, one's opinions thereon are unlikely to vary from a narrow range.

But of coursg, if oneisto declare that belief systems are attractors, one must specify: attractors
of what dynamica sysem? To say "attractors of brain dynamics' is obvious but inadequate: the
brain presents us with a system of billions or trillions of coupled nonlinear equations, which
current methods are incagpable of andyzing even on aquditative leve. If belief sysemsareto be
usefully viewed as attractors, the rdevant dynamica iteration must exist on ahigher level than
thet of individua neurons
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In the preceding chapters | have argued that, in order to make headway toward ared
understanding of themind, one must shift up from the neurd level and consider the Structure and
dynamics of interacting mental processes or neural maps (Edeman, 1988). Specificdly, | have
proposed an equation for the evolution of mental processes, and | have suggested that
psychologicd systems may be viewed as subsets of the duad network which are strange
attractors of this equation. Now, in this chapter, | will begin the difficult task of relating these
formal ideas to rea-world psychology -- to discuss the sense in which particular human belief
systems may be seen as subsystems of the dud network, and attractors of the cognitive equation.

After giving asmple formalization of the concept of "beief,” | will consder the dynamics of
belief systems as displayed in the history of science, with an emphasis on Lakatos's sructura
analyss of research programmes. Then | will turn to acompletely different type of belief system:
the conspiracy theory of a paranoid persondity. By condrasting these different sorts of belief
systems in the context of the dual network and the cognitive equation, a new understanding of
the nature of rationality will be proposed. It will be concluded that irrationdity isakind of
abstract dissociation -- awecome concluson in the light of recent work relating dissociation
with various types of menta illness (van der Kolk et d, 1991).

Persondities and their associated belief systems are notorioudly vague and complicated. It
might seem futile to attempt to describe such phenomena with precise equations. But the Church
Turing Thessimplies that one can modd anything in terms of computationa formulas -- if one
only chooses the right sort of formulas. My cdlaim isthat the "cognitive law of motion,” gpplied
in the context of the dua network model, is adequate for describing the dynamics of mentdlity.
The theory of belief sysems given in this chapter and the next is a partid substantiation of this
hypothess.

9.1SYSTEMATIC BELIEF

In this section | will give abgract, forma definitions for the concepts of "bdief” and "bdief
system.” Though perhaps somewhat tedious, these definitions serveto tie in the idea of "belief”
with the formal vocabulary introduced in Chapters Two and Three;and they provide asolid
conceptua foundation for the more practical congderations of the following sections.

The basc ideaisthat abelief isamenta process which, in some regard, gives some other
mental process the "benefit of the doubt." Recdl that, in Chapter Two, | defined an infonasa
fuzzy st of patterns. Suppose that a certain process X will place the process sin the associative
memory just asif sdigolayed infoni -- without even checking to see whether sredly does
disolay i. Then | will say that X embodies the belief that sdisdlaysinfoni. X gives s the benefit
of the doubt regarding i.

The mentd utility of this sort of benefit-giving is obvious: the less processing spent on s, the
more available for other tasks. Mental resources are limited and must be efficiently budgeted.
But it isequdly clear that minds must be very careful where to suspend their doulbts.

Next, atest of abeief may be defined as a process with the potentia to create an infon which,
if it were verified to be present, would decr ease the intengty of the belief. In other words, atest
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of abdief X regarding s has the potentid to create an infon j which caused X to give sless
benefit of the doubt. Some bdiefs are more testable than others, and some very vauable bdliefs
are surprigngly difficult to test.

FHndly, abelief systemisagroup of bdiefs which mutualy support one another, in the sense
that an increased degree of belief in one of the member beliefs will generdly lead to increased
degrees of bdief in most of the other member beliefs. The systematicity of belief makestesting
particularly difficult, because in judging the effect of infon j on belief X, one must condder the
indirect effects of j on X, viathe effects of j on the other e ements of the belief system. But,
unfortunately for hard-line rationaists, systematicity appearsto be necessary for intdligence. It's
amessy world out there!

9.1.1. Formal Definition of Belief (*)
A belief, as| understand it, is a proposition of the form
" s|-- i with degreed"

or, in more felicitous notation,
(si;d).

Inwords, it isapropogtion of the form “the collection of patterns labeled i is present in the
entity swith intensity d." To say that the individud x holds the belief (sii;d), | will write

"S|-- i //x with degree d”,
or, more compactly,

(si.x;d).

Mentdly, such a proposition will be represented as a collection of processes which, when
presented with the entity s, will place sin the associative memory exactly asthey would place
an entity which they had verified to contain patternsi with intengty d. A belief about sisa
process which iswilling to give s the benefit of the doubt in certain regards. This definition is
smple and naturd. It does not hint at the full psychologica significance of belief; but for the
moment, it will serve uswell.

Next, what does it mean to test abdief? | will say that aninfon j isatest of abdief (si,X)
relative to the observer y, with certainty levd e, to degree NM, where

N = the degree to which the observer y believes that the determination of the degree in d(sj,x)
will cause adecrease in d(s;i,X).

M = the amount of effort which the observer y believes will be required to determine the
degreethat s|-- j holdsto within certainty e
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| believe that this formd definition, avkward asit is, cgptures what one means when one
makes a statement like "That would be atest of Jane's belief in so and s0." It is not an objective
definition, and it is not particularly profound, but neither is it vacuous:. it servesiits purpose well.

Factor N done saysthat j isatest of 1 if y believes that determining whether j holds will affect
X's degree of belief that i holds. Thisisthe essence of test. But it is not adequate in itself, because
j isnot aussful tet of | unlessit isactualy possible to determine the degree to which j holds.
Thisisthe purpose of the factor M: it measures the practicdity of executing the test |.

To see the need for M, consider the theory, well known among philosophers, that thereis
some spot on the Earth's surface which has the property that anyone who stands there will see the
devil. The only test of thisisto stand on every single spot on the earth's surface, which is either
impossible or impracticaly difficult, depending on the nature of space and time.

Or consder Galileo's belief that what one sees by pointing a telescope toward space is actudly
"out there". Since a that time there was no other source of detailed information as to what was
"out there," there was no way to test this belief. Now we have sent men and probes into space,
and we have measured the properties of heavenly bodies with radio telescopy and other methods;
al these tests have supported Gdileo's belief. But it is not hard to see why most of Gdileo's
contemporaries thought his belief unreasonable.

Therole of the "observer” y is smple enough. If one posits an outside, "impartid™ observer
with accessto dl possible futures, then one can have an objective definition of test, which
measures the degree to which the presence of a certain infon really will dter the strength of a
belief. On the other hand, one may aso consder the most "partid” observer of dl: the belief-
holder. It isinteresting to observe that, when a certain human belief system appearsto be
strongly resistant to te<t, the belief-holders will generaly acknowledge thisfact just as reedily as
outsde observers.

9.1.2. Systematic Belief (*)

Theformd definition of "belief sygem” isalittle bit technicd, but the basic ideaiis very
ample abdief sysem isa collection of bdiefs which are mutually supporting in that atest for
any one of them isatest for many of the others. It is permitted that evidence in favor of some of
the beliefs may be evidence against some of the others -- that what increases the intensity of
belief in A may decrease the intengity of belief in B, where both A and B are in the system. But
this must not be the rule -- the positive reinforcement must, on balance, outweigh the negetive
reinforcement.

To be precise, consder aset of beiefs{A1,...,An}. Let ¢j = cij(K;y) denote the amount of
increase in the degree to which Aj holds that, in the belief of y, will result from an increase by an
amount ofK in the degree to which Ai holds. Decrease isto be interpreted as negative increase,
o tha if y believes that a decr ease in the degree to which Aj holds will result from an increase
in the degree to which Ai holds by amount, then c;j(K;y) will be negative. As with tests, unless
otherwise specified it should be assumed that y=x.
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Then the coherence C({ Ax,...,An}) of the st { As,...,An} may be defined asthe sum over dl i, j

and K of the ¢j. And the compatibility of abdief B with aset of beliefs{As,...,An} may be
defined as C{Az,...,An,B}) -

C{A,....A}).

The coherence of a set of beliefs is the degree to which the various member beliefs support
each other, on the average, in the course of the menta process of the entity containing the
beliefs. It is not the degree to which the various member beliefs "logically support” each other --
it depends on no system of evaluation besides that of the holder of the beliefs. If | think two
beliefs contradict each other, but in your mind they strongly reinforce eachother, thenaccording
to the above definition the two beliefs may Hill be astrongly coherent belief system relative to
your mind. It follows thet the "same" et of beliefs may form a different dynamica sysemin two
different minds

Additiondly, it is not necessary that two beliefs in the same mind aways stand in the same
relation to each other there. If A1 contradicts Az haf the time, but supports Az hdf the time with
about equd intengty, then the result will be a ci2 near zero.

If none of the ¢;j are negative, then the belief system is " conggtent”: none of the beliefs work
againg eachother. Obvioudy, consstency implies coherence, though not a high degree of

coherence; but coherence does not imply consistency. If some of its component beliefs contradict

eachother, but others support eachother, then the coherence of a set of beliefs can Hill be high --
as long as the total amount of support exceeds the total amount of contradiction.

If aset of beliefs has negative coherence it might be said to be "incoherent.” Clearly, an
incoherent set of bdliefs does not deserve theftitle "belief system.” Let us define abelief system
asaset of bdiefs which has positive coherence.

The compatibility of abdief B with abdief system measures the expected amount by which
the addition of Bto the belief system would change the coherence of the belief system. If this
change would be postive, then B has pogtive compatibility; and if this change would be
negative, then B has negative compatibility -- it might be said to be incompatible.

Findly, it must be noted that a given human mind may contain two mutudly incompatible
belief sysems. This posshbility reflects the fundamentally "dissociated” (McKdlar, 1979) nature
of human mentdity, whereby the mind can "split" into partidly autonomous menta sub-
networks. The computation of the coefficients ¢; may be done with respect to any system one
desires -- beit aperson's mind, a society, or one component of a person's mind.

9.1.3. Belief and L ogic
How does amind determine how much one belief supports another? In forma terms, how

doesit determine the "corrdation” function ¢; between belief | and belief j? Should an andlysis
of belief merely acoept these "intercorrdations' a priori, as given products of the believing mind

151
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in question? Or isthere some preferred "rationd™ method of computing the effect of achangein
the intengity of one bdlief on the intengity of another?

To see how very difficult these question are, assume for the sake of argument thet dl beiefs
are propodtionsin Boolean logic. Congder asignificantly cross-referentid belief sysem S--
onein which most beliefs refer to anumber of other beliefs. Then, as William Poundstone (1989)
has pointed out, the problem of determining whether anew belief islogicadly conggtent with the
belief system Sisa least as hard as the well-known problem of "Boolean Satidfiability,” or SAT.

Not only isthere no known agorithm for solving SAT effectively within a reasonable amount
of time; it has been proved that SAT is NP-complete, which means (very roughly spesking) that
if there is such an dgorithm, then there is dso areasonably rapid and effective agorithm for
solving any other problem in the class NP. And the class NP indudes virtudly every difficult
computationa problem ever confronted in a practica dtuation.

So the problem of determining the consistency of abelief with asgnificantly cross-referentia
belief system is about as difficult as any computationa problemyet confronted in any redl
gtuation. To get avague ideaof how hard thisis, congder the fact that, using the best dgorithms
known, and a computer the size of the known universe with processing e ements ths size of
protons, each working for the entire estimated lifetime of the universe, asfast asthe laws of
physics dlow, it would not be possible to determine the logica consstency of abelief with a
ggnificantly cross-referentia belief system containing Six hundred beliefs.

It must be emphasized that the problem of making a good guess as to whether or not a belief
islogicaly congstent with agiven belief sysem isan entirdy different matter. What is so
agtoundingly difficult is getting the exact right answver every time. If one dlows onesdlf acertain
proportion of errors, one may well be able to arrive at an answer with reasonable rapidity.
Obvioudy, the rapidity decreases with the proportion of error permitted; the rate of this
decrease, however, isadifficult mathematica question.

So when amind determines the functions Gj relating its beliefs, it may take logica consstency
into account, but it seems extremdy unlikdly that it can do so with perfect accuracy, for three
reasons. 1) based on experience, the human mind does not appear to be terribly logicaly
conggtent; 2) the brain is not an exact mechanism like a computer, and it dmogt certainly works
according to rough probabilistic gpproximeation methods; 3) the problem of determining logical
consistency is NP-complete and it is hence very unlikely that it has arapid, accurate solution for
any but the smdlest belief systems.

Hence it is unreasonable to require that a system of beliefs be "rationd” in structure, at least if
rationdity is defined in terms of propositiona logic. And the structural modifications to
propositiond logic suggested in Chapter Four only serve to make the problem of determining the
cij even more difficult. In order to compute anything using the structura definition of
implication, one has to compute the agorithmic information contained in various sequences,
which isimpossble in generd and difficult in most particular cases.
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From these consderations one may conclude that the determination of the functions ¢ -- of
the structure of abelief system -- is g0 difficult that the mind must confront it with arough,
gpproximate method. In particular, | propose that the mind confronts it with acombination of
deduction, induction and analogy: that itdoes indeed seek to enforce logica consstency, but
lacking an effective genera means of doing 0, it looks for inconsistency wherever experience
telsit inconsgtency ismogt likely to lurk.

9.2BELIEF SYSTEMSIN THE HISTORY OF SCIENCE

No mind congsts of fragmentary beliefs, supported or refuted by testing on an individua
bass. Inredity, bdief isdmos dways systemdtic. To illudrate this, let us congder some
philosophically interesting examples from the history of science.

In his famous book, The Sructure of Scientific Revolutions, Thomas Kuhn (1962) proposed
that science evolves according to a highly discontinuous process consisting of 1) long periods of
"normd science” in which the prevailing scientific belief syslem remains unchanged, and new
beliefs are accepted or rgjected largely on the basis of their compatibility with this belief system,
and 2) rare, sudden "paradigm changes," in which the old belief system is replaced with anew
one.

According to thisandysis, the historica tendency of scientists has been to conform to the
prevailing belief system until there suddenly emerges a common belief that the process of testing
has yielded results which cannot possibly be made compatible with the old system. This point of
revolution iscdled a"crisgs” Classc examples of scientific revolution are the switch from
Newtonian mechanics to relativity and quantum theory, and the switch from Ptolemaic to
Copernican cosmology. This phenomenon is clearest in physics, but it is visble everywhere.

Kuhn never said much about how bdlief sysems work; he placed the burden of explanation on
sociology. Imre Lakatos (1978) was much more specific. He hypothesized that scienceis
organized into belief systems caled "research programmes,” each of which conssts of a"hard
core' of essentid beiefs and a " periphery” of beliefs which serves as a medium between the hard
core and the context. According to this point of view, if A isabdlief on the periphery of a
research programme, and atest is done which decreases its intengty sgnificantly, then A is
replaced with an dternate bdief A' which is, though incompatible with A and perhaps other
peripherabdiefs, till compatible with the hard core of the programme.

Admittedly, the digtinction between "hard core’ and "periphery" is much clearer in retrospect
that at the time atheory is being developed. In redlity, the presence of a troublesome piece of
data often leads to much debate as to what is peripheral and what is essential. Nonetheless,
Lakatosian andysis can be quite penetrating.

For instance, consider the Ptolemaic research programme, the analysis of the motions of
heavenly bodies in terms of circular paths. One could argue that the "hard core" here contains the
belief that the circle isthe basc unit of heavenly motion, and the beief that the earth is the center
of the universe; wheressiinitialy the periphery contained, among other things, the belief that the
heavenly bodies revolve around the earth in circular paths.
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When testing refuted the latter belief, it was rejected and replaced with another belief that was
aso compatible with the hard core: the belief that the heavenly bodies move in "epicycdes,”
circles around circles around the earth. And when testing refuted this, it was rejected and
replaced with the belief that the heavenly bodies move in circles around circles around circles
around the earth -- and so on, severad more times. Data was accomodated, but the hard core was
not touched.

Congder next the Copernican theory, that the planets revolve in circles around the sun. This
retains part but not al of the hard core of the Ptolemaic belief system, and it generates anew
periphery. In Copernicusstime, it was not clear why, if the earth moved, everything on its
surface didn't fly off. There were certain vague theories in this regard, but not until around the
time of Newton was there a convincing explanation. These vague, dilemma-ridden theories
epitomize Lakatos's concept of periphery.

Philosophers of science have a number of different explanations of the trangtion from
Ptolemaic to Copernican cosmology. It was not that the Copernican belief system explained the
data much better than its predecessor; in fact, it has been argued that, when the two are restricted
to the same number of parameters, their explanatory power is approximately equa (Feyerabend,
1970). It was not that there was a sociologicd "criss' in the scientific community; therewas
merely aconceptud crigs, which isvigble only in retrogpect. Extant documents reved no
awareness of crisis.

Wasit that the Copernican theory was"smpler"? True, asingle circle for each planet seems
far ampler than a hierarchy of cirdes within circles within cirdles within cirdes.... But the
complexity of the Ptolemaic epicyclesisrivaled by the complexity of contemporaneous
explanations as to how the earth can move yet the objects on its surface not be blown away. As
Feyerabend has rightly concluded, there is no single explanation for this change of belief system;
however, detailed higtorica analysis can yied insight into the complex processes involved.

9.2.1. Bdlief Generation

Lakatossideas can easly beintegrated into the above-given modd of beief sysems Thefirg
gepisasmple one: bief in an dement of the hard core strongly encourages belief in the other
theories of the system, and belief in atheory of the system almost never discourages belief in an
element of the hard core. There are many ways to formalize this intuition; for example, given an
integer p and a number a, one might define the hard core of abdief sysem {Ax,...,An} asthe set
of Ai for which the p'th-power average over dl j of Gj exceeds a. This says that the hard coreis
composed of those beliefs which many other beliefs depend on.

But unfortunately, this sort of characterization of the hard core is not entirely adequate. What
it falsto capture is the way the hard core of aresearch programme not only supports but actualy
gener ates peripherd theories. For instance, the hard core of Newtonian mechanics -- the three
laws of motion, and the machinery of differentid and integral calculus -- is astoundingly adept at
producing analyses of particular physical phenomena. One need merely make afew incorrect
amplifying assumptions -- say, neglect air resstance, assume the bottom of ariver isflat,
assume the mass within the sun is evenly distributed, etc. -- and then one has a useful periphera
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theory. And when theperiphera theory isrefuted, this merely indicates that another "plausible’
incorrect assumption is needed.

Thereisan old story about afarmer who hires an applied mathematician to help him optimize
his productivity. The mathemétician begins "Firg., let us assume a sphericd cow...," and the
farmer fires him. The farmer thinks the mathematician is off his rocker, but dl the mathematician
isdoing is gpplying a common peripherd eement of hisbdief sysem. This peripherd dement,
though absurd in the context of the farmer's belief system, is often quite effective when
interpreted in terms of the belief system of modern science. The periphera theory seems
ridiculous "in itself", but it was invented by the hard core for a certain purpose and it servesthis

purpose well.

For adifferent kind of example, recall what Newtonian mechanics tells us about the solar
system: asingle planet orbiting the sun, assuming that both are spherica with uniform densty,
should movein an dlipse. But in fact, the orbit of Mercury deviates from dlipticity by
gpproximately 43 seconds of arc every century.

Thisfact can be accomodated within the framework of Newtonian mechanics, for instance by
changing the plausible smplifying assumption of uniform spherical mass didtribution -- a step
which leadsto dl sorts of interesting, periphera mathematica theories. In fact, when al known
datais taken into account, Newtonian mechanics does predict a precession, just asmaller
precession than is observed. So it is easy to suppose that, with more accurate data, the exact
amount of precession could be predicted.

But eventudly, Generad Relativity came along and predicted the exact amount of the
precesson of Mercury's orbit “from first principles,” assuming a uniform, spherica sun. Now the
precession of Mercury's orbit is seen as aresult of the way mass curves space -- anotion entirey
foreign to Newtonian physics. But that's another story. The point, for now, is that the hard core
of atheory can suggest or create periphera theories aswell as supporting them.

And indeed, it is hard to see how a belief system could survive sustained experimenta attack
unless some of its component beliefs came equipped with sgnificant generative power. If a
belief sysem isto defend itsef when one of its beliefs is attacked, it must be able to generate
compatible new bdiefs to take the place of theold. These generative dements will be helpful to
the system over the long term only if they are unlikely to be refuted -- and an dement isleast
likely to be refuted if it is strongly supported by other eements of the system. Therefore, systems
with generaive hard cores are the "hardiest” systems; the most likely to preserve themsdvesin
the face of experimenta ondaught.

Theideaof a"generdive hard core’ may be formadized in many different ways, however, the
most naturd courseisto avall ourselves of the theory of self-generating component systems
developed in Chapters Seven and Eight. In other words, | am suggesting that a scientific belief
system, like a linguistic system, is a self-generating structured transfor mation system.
Bdief systems combine these two important system-theoretic structures to form something new,
something with dazzling synergetic properties not contain in ether structures on its own.
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Structured transformation systems unite deduction and analogy in a griking way, viathe
connection between grammar and semantics which continuous compodtiondity enforces. Sdf-
generating systems provide an incredible power for unpredictable, salf-organizing credtivity.
Putting the two together, one obtains, at least in the best case, an adaptable, sturdy tool for
exploring the world: adaptable because of the STS part, and sturdy because of the sdlf-
generation. Thisis exactly what the difficult task of science requires.

9.2.2. Conclusion

In the history of science one has arecord of the dynamics of belief syssems -- arecord which,
to some extent, brings otherwise obscure mental processes out into the open. It isclear that, in
the higtory of science, bdlief has been tremendoudy systematic. Consigtently, beliefs have been
discarded, maintained or created with an eye toward compatibility with the generative "hard
cores' of dominant belief systems. | suggest -- and thisis hardly aradica contention -- that this
processis not specific to scientific belief, but is rather agenerd property of thought.

| have suggested that scientific belief systems are self-generating structured transformation
systems. In the following sections | will make this suggestion yet more specific: | will propose
that all belief systems are not only sdlf-generating structured transformationsystems but also
attractorsfor the cognitive equation.

But in fact, thisisamost implicit in what | have said so far. For congder: beliefsin asystem
support one another, by definition, but how does this support take place on the level of
psychologica dynamics? By far the easiest way for beliefs to support one another is for them to
produce one another. But what do the processes in the dual network produce but patterns. Thus
abdief system emerges as a collection of menta processes which is closed under generation
and pattern recognition -- an attractor for the cognitive equation.

What Lakatoss modd impliesisthat belief sysems are attractors with a specid kind of
dructure: atwo-level structure, with hard core separate from periphery. But if one replaces the
rigid hard core vs. periphery dichotomy with agradation of importance, from most centrd to
most peripherd, then one obtains nothing besides adual network structure for belief sysems.
The hard coreisthe highest-level processes, the outermost periphery are the lowest-leve.
Processes are grouped hierarchicdly for effective production and application; and heterarchicaly
for effective associative reference.

Inthisway, abdief sysem emerges asasort of "mini mind," complete in itsdf both
gructuraly and dynamicaly. And one arrives a an enchanting conceptua paradox: only by
ataining the ability to survive separately from the rest of the mind, can abelief syslem make
itsdf of Sgnificant use to the rest of the mind. This conclusion will return in Chapter Twelve,
equipped with further bells and whistles.

9.3. A CONSPIRATORIAL BELIEF SYSTEM

| have discussed some of the most outstanding belief systems ever created by the human mind:
Newtonian mechanics, Galilean astronomy, generd rdativity. Let us now consider aless
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admirable system of beliefs: the congpiracy theory of awoman, known to the author, suffering
from paranoid deuson. As| am amathematician and not a clinical psychologigt, | am not
pretending to offer a"diagnods' of the woman possessing this belief syssem. My god is merdly
to broaden our conceptua horizons regarding the nature of psychodynamics, by giving a pecific
example to back upthe theoretica abstractions of the cognitive equation and the dua network.

9.3.1. Jan€e's Congpiratorial Belief System

"Jane" dmogt never ests because she believesthat "al her food" has been poisoned. She hasa
history of bulimia, and she has lost twenty-five pounds in the last month and a hdf; sheis now
51" and eighty five pounds. She believesthat any food she buysin a store or arestaurant, or
recelves at the home of afriend, has been poisoned; and when asked who is doing the poisoning,
she generdly ether doesn't answer or says, accusingly, " Y ou know!" She has recurrent leg
pains, which she ascribes to food poisoning.

Furthermore, she believes that the same people who are poisoning her food are following her
everywhere she goes, even across distances of thousands of miles. When asked how she can tell
that people are following her, she either says "I'm not stupid!" or explains thet they give her
subtle hints such as wearing the same color clothing as her. When she sees someone wearing the
same color clothing as sheis, she often assumes the person is a"follower,” and sometimes
confronts the person angrily. She has recently had a number of serious problems with the
adminigration of the college which she attends, and she believes that this was due to the
influence of the same people who are poisoning her food and following her.

To giveapartid ligt, she bdieves that this conspiracy involves: 1) asdlf-hep group that she
joined severa years ago, when attending a college in a different part of the country, for help with
her eating problems; 2) professors at this school, from which she was suspended, and which she
subsequently left; 3) one of her good friends from high schoal.

Her belief system isimpressively resistant to test. If you suggest that perhaps food makes her
fed ill because her long-term and short-term eating problems have dtered her digestive system
for the worse, she concludes that you must be elther stupid or part of the conspiracy. If you
remind her that five years ago doctors warned her that her leg problem would get worse unless
she stopped running and otherwise putting extreme pressure on it, and suggest that perhaps her
leg would be better if she stopped working as a dancer, she concludes that you must be either
stupid or part of the conspiracy. If yousuggest that her problems at school may have partly been
due to the fact that she was convinced that people were conspiring againgt her, and consequently
acted toward them in a hogtile manner -- she concludes that you must be either stupid or part of

the conspiracy.
9.3.2. Jane and the Cognitive Equation
| have analyzed the Structure of Jane's conspiracy theory; now how does this relate to the

"cognitive equation of motion” given in Chapter Eight. Recdl that this equation, in it Smplest
incarnation, says roughly the following:



CHAOTICLOGIC 158

1) Let dl processes that are "connected” to one another act on one another.

2) Take dl patterns that were recognized in other processes during Step (1), let these patterns
be the new set of processes, and return to Step (1).

An attractor for this dynamic isthen aset of processes X with the property that each eement
of the set is ) produced by the interaction of some dements of X, b) a pattern in the set of
entities produced by the interactions of the eements of X.

In order to show that Jane's belief system is an attractor for this dynamic, it sufficesto show
that eech dement of the belief system is a pattern among other eements of the system, and is
potentidly producible by other eements of the system. Consider, for instance, the seven beliefs

Co: Thereisagroup congpiring againg me

C1: My food is poisoned by the conspiracy

C2: My friends and co-workers are part of the conspiracy
Cs: My leg pain is caused by the conspiracy

Ca: My food tastes bad

Cs: My friends and co-workers are being unpleasant to me
Cs: My leg isin extreme pain

In the following discussion, it will be implicitly assumed that each of these beliefsis stored
redundantly in the brain; that each one is contained in a number of different "neura maps' or
"mental processes.” Thus, when it issaid that Co, C1, C2 and Cs "combine to produce’ Cs, this
should be interpreted to mean that a certain per centage of the time, when these four belief-
processes come together, the belief- process Cs is the result.

Furthermore, it must be remembered that each of the brief stlatements listed above next to the
labels Ci is only a shorthand way of referring to what isin redity a diverse collection of ideas
and events. For ingtance, the statement "my co-workers are being unpleasant to me” is
shorthand for a conglomoration of memories of unpleasantness. Different processes
encapsulating Cs may focus on different specific memories.

Without further ado, then, let us begin at the beginning. Obvioudy, the belief Co isapattern
among the three beliefs which follow it. So, suppose that each of the menta processes
corresponding to Ci1, C2 and Cs is equipped with a generdization routine of the form "When
encountering enough other beliefs that contain a certain sufficiently large component in common
with me, creste a process stating that this component often occurs.” If thisisthe case, then Co
may aso be created by the cooperative action of Ci1, C2 and Cs, or some binary subset thereof.
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One might wonder why the process corresponding to, say, Ci should contain a generdization
routine of thistype. The only answer is that such routines are of generd utility in intelligent
systems, and that they add only negligible complexity to a process such as Ci which dedswith
such formidable concepts as "food" and "conspiracy.” In a self-organizing mode of the mind,
one may not assume that recognitive capacity is contained in asngle "generdization center”; it
must be achieved in a highly distributed way.

9.3.2.1. Production of Particular Conspiracies

Next, what about C1? Taking Co, Cz, C3 and Cs as given, Ci isafarly naturd inference.
Suppose the process corresponding to Co contains a probabilistic generdization routine of the
form "The greater the number of events that have been determined to be caused by conspiracy,
the more likely it isthat event X is caused by conspiracy.” Then when Co combines with Cz and
Cs, it will have located two events determined to be caused by conspiracy. And when this
compound encounters Cs, the generdization capacity of Co will belikely to lead to the creation
of abdief such as Cu.

So C1isproduced by the cooperative action of these four beliefs. In what senseisit apattern
in the other beliefs? It is a pattern because it smplifies thelong list of eventsthat are
summarized in the smplestatement "My food is being poisoned.” This statement encapsulates a
large number of different instances of gpparent food poisoning, each with its own list of plausble
explanations. Given that the concept of aconspiracy isdready there, the attribution of the
poisoning to the conspiracy provides a tremendous smplification; ingtead of alist of hypotheses
regarding who did what, there is only the single explanation " They did it." Note that for
someone without a bent toward conspiracy theories (without a strong Co), the cost of supplying
the concept " conspiracy™ would sufficiently great that Ci would not be a pattern in a handful of
cases of apparent food poisoning. But for Jane, 1(C4|C1,Co) < [(C4|Co). Relative to the background
information Co, C1 amplifies Ca.

Clearly, C2 and Cs may be trested in a manner smilar to Ca.
9.3.2.2. Production of Actual Events

Now let usturn to the last three bdlief-processes. What about Cs, the belief that her co-workers
are acting unplessantly toward her? First of dl, it is plain that the belief C2 works to produce the
belief Cs. If one believes that one's co-workers are conspiring againgt one, one is far more likely
to interpret their behavior as being unpleasant.

And furthermore, given Cz, the more unpleasant her co-workers are, the smpler the form Cz
cantake. If the co-workers are acting pleasant, then Cz has the task of explaining how this
pleasantry is actudly fdse, and isaform of congpiracy. But if the co-workers are acting
unpleasant, then Cz can be vastly smpler. So, in this sense, it may be said that Cs isapatternin
Ca.

By smilar reasoning, it may be seen that C4 and Cs are both produced by other beliefsin the
ligt, and patternsin or among other beliefsin the lid.
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9.3.2.3. Jane's Conspiracy asa" Structural Conspiracy”

The arguments of the past few paragraphs are somewhat reminiscent of R.D. Laing's Knots
(1972), which describes various self-perpetuating interpersona and intrgpersona dynamics.
Some of Laing's "knots' have been cast in mathematica form by Francisco Varela (1978).
However, Laing's "knots' rather glibly treat sdf-referentid dynamicsin terms of
propositiondlogic, which as we have seen is of dubious psychologica vaue. The present
trestment draws on afar more carefully refined mode of the mind.

It follows from the above arguments that Jane's conspiratorid belief sysemisinfact a
sructural conspiracy. It is goproximatey afixed point for the "cognitive law of motion.” A
more precise statement, however, must take into account the fact that the specific contents of the
belief-processes Ci are congtantly shifting. So the belief system isnot exactly fixed: it is subject
to change, but only within certain narrow bounds. It isa strange attractor for the law of motion.

Whether it isachaotic attractor is not obvious from firgt principles. However, this question
could easily be resolved by computer smulations. One would need to assume particular
probabilities for the crestion of a given belief from the combination of a certain group of
beliefs, taking into account the variety of possible belief-processes fdling under each generd
label Ci. Then one could smulate the equation of motion and see what occurred. My strong
suspicion is that there isindeed chaos here. The specific beliefs and their srengths mogt likely
fluctuate pseudorandomly, while the overdl conspiratorid structure remains the same.

9.3.3. Implication and Conspiracy (*)

Asan adde, it isinteresting to relate the self- production of Jane's belief system with the notion
of informational implication introduced in Chapter Four. Recall that A significantly implies B,
with respect to a given deductive system, if there is some chain of deductions leading from A to
B, which uses A in afundamenta way, and which is a least as Smple as other, related chains of
deductions. What interests us hereis how it is possible for two entities to significantly imply
each other.

Formdly, "A implies B to degree K" was written as A -->k B, where K was defined asthe
minimum of cL + (1-c)M, for any sequence Y of deductions leading from A to B (any sequence
of expressons

A=Bo,Bs,...,Br=B, where Bi+1 follows from Bi according to one of the transformation rules of the
deductive system in question). L was the ratio |BJ/|Y|, and M was a conceptually smple but
formally messy measure of how much additionad smplicity Y provides over those otherproofs
that are very smilar to it. Findly, ¢ was some number between 0 and 1, inserted to put the
quantitiesL and M on acomparable "scale

For sake of amplicity, let usrechristen the beliefs Ci, C2 and Cz as"F," "W," and "L"
respectively. In other words, L denotes the hypothesis that the leg pain is due to a conspiracy, W
denotes the hypothesis that the work and socia problems are due to a conspiracy, and F denotes
the hypothesis that the food problems are due to a conspiracy.
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Phrased in terms of implication, the self-generating dynamics of Jane's bdief system would
seem to suggest

(L and W) -->k F
(Fand W) -->k) L
(Fand L) -->kw W
where the degrees K(F), K(L) and K(W) are dl non-negligible. But how isthis possble?

Let Y (F) denote the "optimal sequence’ used in the computation of K(F); define Y (L) and
Y (W) smilarly. One need not worry about exactly what form these optima sequencestake; it is
enough to state that the "deductive system” involved has to do with Jane's persona belief system.
Her bdlief system clearly includes an andogica transformation rule based on the ideathat if one
thing is caused by a conspiracy, then it islikely that another thing is too, which transforms
gatements of the form "A islikely caused by a congpiracy™ into other statements of the form "A
and___ arelikely caused by aconspiracy.”

Then, itisclear that L(Y) cannot be large for al of these Y, perhaps not for any of them. For
one has

LIY(B)] = IFUY (B)] < IFVTIL W
LLY (W) = WY (W)| < IWITIL +F]
LY (L)] = LY (L)] < ILVTIF+HW

For example, if each of the conspiracy theoriesis of equd intuitive smplicity to Jane, then dl
these L(Y)'sare lessthan 1/3. Or if, say, the work theory is twice as smple than the others, then
L[Y(W)] may becloseto 1, but L[Y(F)] and L[Y(L)] arelessthan 1/4. In any case, perhaps
sometimesthemost "a priori” plausible of the bdiefs may atain afarly large K by having a
farly large L, but for the others alarge K must be explained in terms of alarge M.

o, recdl how the congtant M involved in determining the degree K in A -->«k B was defined --
as the weighted sum, over al proofs Z of B, of L(Z). The weight attached to Z was determined
by 1(Z]Y), i.e. by how smilar Z isto Y. A power p was introduced into the weight functions, in
order to control how little the those Z that are extremdy Smilar to Y are counted.

If M[Y (W)] islarge, this means that the theory that a conspiracy is responsible for Janes work
problemsis much ssimpler than other theories Smilar to it. This can be taken in two ways. If pis
very large, then M basically dedl's only with proofs that are virtualy identica to Y. On the other
hand, if p is moderate in size, then M will incorporate a comparison of the smplicity granted by
Y (W) with the smplicity of true dternatives, such as the theory that Jane hersdlf isresponsble
for her work problems. Now, to amost any other person, it would be very simpleindeedto
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deduce Jane's work problems from Jan€e's persondlity. But to Jane hersdf, this deduction is not at
al intuitive

So, formdly speaking, Jane's circular implication can be seen to come from two sources. First
of dl, avery large p, which corresponds to a very lenient definition of what congtitutes a"'naturd
proof" of something. Or, dternately, a blanket negative judgement of the smplicity of dl
dterndtive theories. Both of these dternatives amount to the same thing: excessve sdf-trug,
non-condderation of aternative hypotheses ... what | will cal conser vatism.

So, in sum, the informationa-implication approach has not given us terribly much by way of
new ingght into Jane's Stuation. What | have shown, on the other hand, is that Jan€e's redl-life
delusond thinking fitsin very nicdy with the formal theory of reasoning given in Chapter Four.
This sort of correspondence between theory and everyday redlity is precisdy what the standard
Booleantlogic approach to reasoning lacks.

9.4 BELIEF AND RATIONALITY

Jané's belief systemis clearly, according to the sandards of modern "sane' society, irrationd.
It isworth asking how thisirraiondity istied in with the dynamical properties of the belief
system, as discussed in the previous section. Thisinvestigation will leadtoward a strikingly
generd dynamicd formulation of the concept of rationdity.

9.4.1. Conservatism and Irrelevance

Theirrationdity of Jane's belief system manifestsitsdf in two properties. Firgt of dl, Janeis
smply too glib in her generation of theories. Given any unpleasant Situation, her belief system
has no problem whatsoever reding off an explanation: the theory is dways "the conspirators did
it." New events never require new explanations. No matter how different one event isfrom
another, the explanation never changes. Let us call this property conser vatism.

To put it abstractly, let Es denote the collection of beliefs which abdief system generatesin
order to explain an event s. That is, when Stuation s arises, Es isthe st of explanatory processes
which the belief system generates. Then one undesirable property of Jane's belief system is that
the rate of change of Es with respect to sisamply too small.

The second undesirable property of Jan€'s belief system is, | suggest, that the theories created
to explain an event never have much to do with the specific structure of the event. Formally, the
collection of patterns which emerge between Es and sisinvariaoly very smdl. Her belief sysem
explains an event in away which has nothing to do with the details of the actud nature of the
event. Let uscal this property irrelevance.

Of course, Jane would reject these criticiams. She might say "I don't need to change my
explanation; I've dways got the right one!”™ A dogmatist of this sort is the exact opposte of the
prototypica skeptic, who trusts nothing. The skeptic is continualy looking for holesin every
argument; whereas Jane doesn't bother to look for holes in any argument. She places absolute
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trust in one postulate, and doesn't even bother to look for holes in arguments purporting to
contradict it, for she amply "knows' the holes are there.

This attitude may be most easilly understood in the context of the mathematical theory of
pattern. The pattern-theoretic approach to intelligence assumes that the environment is chaotic on
the level of detailed numerical paramters, but roughly structurally predictable. In Charles S.
Peirce's phrase, it assumes that the world possesses a "tendency to take habits."

Under this assumption, it is clear that conservatism and irrelevance and reluctance to test are, in
any given case, fairly likely to be flaws. Firgt of dl becauseif changeislikely, if old ideas are
not necessaxrily true for the future, then abelief system which does not changeis undesirable.
And secondly because if induction isimperfect, and the mind works by induction, then one must
aways face the fact that one's own conclusions may be incorrect.

9.4.2. The Genesis of Delusion

Why, exactly, is Jane's belief system conservative and irrdlevant? To answer this, itis
convenient to first ask how Jane's mind ever got into the irrationd attractor which | have
described.

The beginning, it seems, was an ingtance of Cs and Cz: a professor at school was asking her
questions relating to her Overeaters Anonymous group, and she came to the conclusion that
people were talking about her behind her back. Whether or not thisinitial conspiracy wasred is
not essentid; the point isthat it was nowhere nearly as unlikely as the conspiracies imagined by
her later.

Even if no red conspiracy was involved, | would not say that thisfirst step was "unjudtified”.
It was only a guess, and there is nothing unjustified about making awrong guess. After dl, the
mind works largdly by trid and error. What isimportant isthat Janesinitia belief ina
conspiracy was not strongly incompatible with the remainder of her sane, commonsensica mind.

After this, dl that were needed were afew instances of Cs or Cs, and afew more instances of
Cs. This caused the creation of some Co belief- processes; then the feedback dynamicsimplicit in
the analyss of the previous section kicked in. The point isthat only asmal number of Ci are
necessary to start a cybernetic process leading to avast proliferation. Eventualy Co became so
strong that plausible stories about conspiracies were no longer necessary; an dl-purpose'them”
was sufficient.

Most of usweather unpleasant experiences without devel oping extravagant conspiracy
theories. Inthe initid stages of its growth, Jane's conspiratoria belief system depended crucidly
on certain other aspects of Jane's persondity; specifically, on her absolute refusa to accept any
responsibility for her misfortunes. But once this early phase was past, the spread of her belief
system may have had little to do with the remainder of her mind. It may have been a process of
isolated expangon, like the growth of a cancer.

9.4.3. Rationality and Dynamics
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The lesson isthat irrationd belief systems are sdf-supporting, salf-contained, integra units.
Congdered as attractors, they are just as genuine and stable as the bdlief systems which we
congder "normd.” The differenceisthat they gain too much of their support from interna sdlf-
generating dynamics -- they do not draw enough on the remainder of the menta process network.

Thisis perhaps the most obj ective test of rationdity one can possibly pose: how much support
isinterna, and how much is externa? Excessive interna support is clearly inclined to cause
conservatism and irrelevance. In thisway the irrationality of aperson's mind may be traced
back to the existence of overly autonomous subattractors of the cognitive equation. The mind
itself is an atractor of the cognitive equation; but smal portions of the mind may aso be
attractors for this same equation. When a portion of the mind survives because it isitsdf an
attractor, rather than because of its reaions with the rest of the mind, thereis asgnificant
danger of irrationdity.

Looking ahead to Chapter Twelve, another way to put thisisasfollows: irrationality isa
consequence of dissociation. Thisformulation is particularly attractive since dissociation has
been used as an explanation for avariety of mentd illnesses and strange psychologica
phenomena -- schizophrenia, MPD, post-traumeatic stress syndrome, cryptomnesia, hypnos's,
hysterica seizure, etc. (Van der Kolk et a, 1991). The genera concept of dissociation isthat of a
"gplit" in the network of processes that makes up the mind. Here | have shown that this sort of
gplit may arise due to the dynamica autonomy of certain collections of processes.

9.5. MONOLOGUE AND DIALOGUE

Congder once again Gdileo's beief that what one sees when one points a telescope out into
gpace is actually there. As noted above, this seems quitereasonable from today's perspective.
After dl, it is easy to check that when one points a telescope toward an earthbound object, what
one seesisindeed there. But we are accustomed to the Newtonian insight that the same naturd
laws apply to the heavens and the earth; and the common intuition of Gdileo's time was quite the
opposite. Hence Gdileo was going againgt commonsense logic.

Also, it was said a the time that he was making hypotheses which could not possibly be
proven, merely dealing in speculation. Now we see that this objection is largely unfounded; we
have measured the heavens with radio waves, we have sent men and robotic probes to nearby
heavenly bodies, and the results agree with what our telescopes report. But to the common sense
of Gdlileo'stime, theidea of sending men into space was no less preposterous than the notion of
building atime machine; no less ridiculous than the ddusions of a paranoiac.

Furthermore, it is now known that Galileo's maps of the moon were dragtically incorrect; so it
is not exactly true that what he saw through his primitive telescopes was actudly there!

Gadlileo argued that the telescope gave a correct view of space because it gave a correct view of
earth; however, others argued that this andogy was incorrect, saying "when the telescope is
pointed toward earth, everyone who looks through it saw the same thing; but when it's pointed
toward space, we often see different things."
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Now we know enough about lenses and the psychology of perception to make educated
guesses as to the possible causes of this phenomenon, reported by many of those who looked
through Galileo's telescopes. Bt at the time, the only arguments Galileo could offer were of the
form "There mugt be something funny going on either in your eye or in this particular lense,
because what is seen through the telescope in the absence of extraneous interference isindeed
truly, objectively there" In away, he reasoned dogmetically and ideologicaly rather than
empiricaly.

How is Gdileo's bdief sysem intringcaly different from the paranoid belief system discussed
above? Both ignore common sense and the results of tests, and both are founded on "wild"
andogies. Was Gdileo's train of thought just as crazy a Speculation as Jane's, the only difference
being that Gdileo was lucky enough to be "right"? Or is it more accurate to saythat, whereas
both of them blatantly ignored common logic in order to pursue ther intuitions, Gdileo's
intuition was better than Janegs? | find the latter explanation gppeding, but it begs the question:
was the superiority of Galileo's intuition somehow related to the structure of his belief system?

Whereas Jane's beief system is consarvative and irrdevant, Gdileo's belief system was
productive. Once you assume that what you see through the telescope is redlly out there, you
can look at dl the different stars and planets and draw detailed maps, you can compare what you
see through different telescopes; you can construct detailed theories as to why you see what you
see. True, if it'snot redly out there then you're just congtructing an eaborate network of theory
and experiment about the workings of a particular gadget. But &t least the assumption leadsto a
pursuit of some complexity: it produces new pattern. A conspiracy theory, taken to the extreme
described above, does no such thing. It gives you access to no new worlds; it merely derides as
worthless dl attempts to investigate the properties of the everyday world. Why bother, if you
dready know what the answer will be?

Cdl abdlief sysem productive to the extent that it is correlated with the emergence of new
patterns in the mind of the system containing it. | suggest that productivity in this senseis
strongly correlated with the "reasonableness’ of belief systems. The underlying god of the next
few sectionsisto pursue this correlation, in the context of the dua network and the cognitive
equation.

9.5.1 Stages of Development

One often hears arguments Smilar to the following: "In the early stages of the development of
atheory, anything goes. At this stage, it may be advisable to ignore discouraging test results -- to
proceed counterinductively. This can lend ingght into flaws in the test results or their sandard
interpretations, and it can open the way to creetive development of more generd theorieswhich
may incorporate the test results. And it may be advisable to think in bizarre, irrational ways-- so
asto generate origind hypotheses. But once this stage of discovery is completed and the stage of
judtification is embarked upon, these procedures are nolonger alowed: then one must merdly test
one's hypotheses againgt the data.”
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Of course, thisanaysis of the evolution of theoriesis extremey naive: science does not work
by afragmented logic of hypothes's formation and testing, but rather by a systematic logic of
research programmes. But there is obvioudy some truth to it.

| have suggested that two properties characterize adogmatic belief system:

1) the variation in the structure of the explanations offered with respect to the events being
explained is generdly smdl (formdly, A S(Es),SX(E:)]/ d4st] is generdly small, where d and d«
denote appropriate metrics)

2) the nature of explanations offered has nothing to do with the events being explained
(formally, Em(Es,s) is generdly smdl)

Intuitively, these conditions -- conservatism and irrdlevance -- amply mean that the sysem is
not sgnificantly responsive to test. In light of these criteria, | propose the following fundamental
normativerule

During the developmental stage, a belief system may be permitted to be unresponsive to
test results (formally, to have consistently small d[St(Es)-St(Er)]/d#[st] and/or Em(Es,s) ).
However, after thisinitial stage has passed, this should not be considered justified.

Thisisasystemic rendering of the classical distinction between "context of discovery” and
"context of judtification.”

| will call any bdief sysem fulfilling the conditions of non-conservatism and (Sic) non-
irrdlevance adialogical sysem. A didogicd sysem is one which engagesin adidogue with its
context. The opposite of adidogica system isamonological sysem, abdief sysem which
gpesks only to itsdf, ignoring its context in dl but the shallowest respects.

A sysem which isin the sage of development, but will eventualy be didogica, may be
cdled predialogical. Inits early stage of development, apredidogica syssem may be
indigtinguishable from amonologica one. Pre-didogicality, dmost by definition, can be
edtablished only in retrospect. Human minds and societies ded with the problem of
distinguishing monologicality from predidogicdity the same way they ded with everything ese
-- by inductionand anaogy, by making educated guesses based on what they've seen in the past.
And, of course, these andogies draw on certain belief systems, thus completing the circle and
destroying any hope of gleaning atruly objective theory of "judtification.”

Theterms"didogicd” and "monologicd™ are not origind; they were used by Mikhail Bakhtin
in hisandyss of Dostoevsky. The redlity of Dostoevsky's novelsis cdled "didogicd," meaning
that it isthe result of Sgnificant interaction between different world-views.

His path leads not from idea to idea, but from orientation to orientation. To think, for him, means
to question and to listen, to try out orientations.... Even agreement retainsits dialogic character
... It never leads to amerging of voices and truthsin asingle imper sonal truth, asin the
monologic world.
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Each of Dostoevsky's mgjor novels contains a number of conflicting belief systems -- and the
action starts when the belief systems become dialogical in the sense defined here. They test each
other, and produce crestive explanations in response to the phenomena which they provide for
each other.

9.5.2. Progressive and Regressive

L akatos has proposed that good scientific research programmes are "progressive’ in that they
consstently produce new results which are surprising or dramatic. Bad research programmes are
"regressive’ in that they do not. Thisisavauable andysis, but | dont think it getsto the core of
the matter. "Surprisng” and "dramatic” are subjective terms; so this criterion doesn't redly say
much more than "a programmeis good if it excites people.”

However, | do think that the "monologicity/diaogicity” gpproach to judtification is closaly
related to Lakatos's notion of progressive and regressive research programmes. It is quite clear
that if a system adways says the same thing in response to every tedt, thenit isunlikely to give
conggtently interesting output, and is hence unlikely to be progressve. And | suggest that the
converseisaso true that if asystem is capable of incorporatingsensitive responses to data into
its framework, then it is reasonably likely to say something interesting or useful about the
context which generates the data.

Another way to phrase thisideais asfollows: in generd, dialogicality and productivity are
roughly proportional. That is. inthered world, asarule of thumb, any system which produces
alot of new patternishighly didogicd, and any sysem which is highly didogica produces alot
of new pattern.

The second of these assartions follows from the definition of didogicdity. The former,
however, does not follow immediately from the nature of belief systems, but only from the
generd dynamics of mind; I will returnto it in Section 9.7.

9.5.3 Circular Implication Structure

For adightly different point of view on these issues, let usthink about belief systemsin terms
of implication. Recdl the passage above in which | andyzed the origins of Jane's paranoid
belief system. | consdered, among others, the following triad of implications

My leg pain and my trouble at work are due to

conspiracies, so my problem with food probably istoo

My trouble at work and my problem with food are

due to congpiracies, so my leg pain probably istoo

My leg pain and my problem with food are due to
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conspiracies, so my trouble at work probably istoo

Informulas, | let L denote the hypothesis that the leg pain is due to a conspiracy, W denote the
hypothesis that the work problems are due to a conspiracy, and F denote the hypothesis that the
food problems are due to a conspiracy, and | arrived &

(Land W) -->F
(WandF)-->L
(LandF) -->W

(where each implication, in accordance with the theory of informationa implication, had a
certain degree determined by the properties of Jane's belief system).

The same basic implication structure can be associated with any belief system, not just a
conspiratorid belief system. Suppose one has a group of phenomena, and then a group of
hypotheses of the form " this phenomenon can be explained by my bdlief sysem.” These
hypotheses will support one ancther if alarge number of implications of the form

this and this and ... this
can be explained by my belief system -->
that can be explained by my beief sysem

hold with nontrivially high degree. Earlier | reviewed conditions under which a collection of
implications of this form can hold with nontrividly high degree. Our concluson wasthat ahigh
degree of conservatism is required: one must, when determining what follows what, not pay too
much attention to hypotheses dissmilar to those which one has dready conceived. If ahigh
degree of consarvatism is present, then it is perfectly possible for a group of beliefs to mutudly
support each other in this manner.

For avery crude and abstract example, consider the belief that the outside world isredl, and
the belief that one's body isredl. One believes the outside world is real because onefeels it -- this
is G.E. Moore€'s classc argument, poor philosophy but good common sense ... to prove the
externd world isredly there, kick something! And, on the other hand, why does one believe
one's body is red and not an hallucination? Not solely because of onesinternd kinesthetic
fedings, but rather largely because of the sensations one gets when moving one's hand through
the air, walking on the ground, and in generd interacting with the outsde world.

It doesn't take much acumen to see how these two phenomenologicd "proofs’ fit together. If
the outside world were an hdlucination, then moving onée's body through it would be no
evidence for the redlity of one's body. One has two propositions supporting one another.
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According to the dynamics of the dua network, various belief sysemswill compete for
survival -- they will compete not to have the processes containing their component beliefs
reprogrammed. | suggest that circular support structures are an excellent survival drategy, in that
they prevent the conception of hypotheses other than those aready contained in the belief
system.

But opposed to this, of coursg, is the fact that the conservatism needed to maintain acircular
support structure is fundamentally incompatible with dialogicality. Circular support structures
and didogicality are both qudity surviva drategies, and | suggest that both strategiesarein
competition in most large belief systems. Didogicdity permits the belief system to adapt to new
Stuations, and circular support structures permit the belief system to ignore new dtuations. In
order to have long-term success, abelief syslem must carefully balance these two contradictory
drategies -- enough didogicality to consstently produce interesting new pattern, and enough
circular sypport to avoid being wiped out when trouble arises.

The history of science, as developed by Kuhn, Feyerabend, Lakatos and others, showsthat in
times of crigs scientific belief systems tend to depend on circular support. In the heyday of
Newtonian science, there was alittle circular support: scientists believed the Newtonian
explanation of W partly because the Newtonian explanations of X, Y and Z were so good, and
believed the Newtonian explanation X partly because the Newtonian explanations of W, Y and Z
were 0 good, et cetera. But toward the end of the Newtonian era, many of the actud
explanations declined in quality, so that this circular support became alarger and larger part of
the total evidencein support of each hypothesis of Newtonian explanation.

Circular implication structure is an inevitable consequence of belief systems being attractors
for the cognitive equation. But the question is, how much isthis attr action rlied on as the sole
source of sustenance for the belief system? If circular support, self-production, isthe belief
system's main means of support, then the belief system is serving little purpose relative to the
remainder of the mind: it ismonological. This point will be pursued in more detail in Chapter
Tweve.

9.7. DISSOCIATION AND DIALOGUE
So, in conclusion, abelief sygem is 1) aminiature dua network structure,
2) adructured transformation system, 3) an attractor for the cognitive equation.

What does thisfindly say about the proposed correlation between dialogicality and
productivity?

It is, of course, concelvable that a monologica system might creete an abundance of new
paitern. To say that thisis highly unlikely isto say thet, in actudity, new pattern amost dways
emerges from sgnificant interaction, from systematic testing. But why should this be true?

The correct argument, as| have hinted above, proceeds on grounds of computational
efficiency. Thismay at first seem philosophically unsatisfying, but on the other hand it is very
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much in the spirit of patter n philosophy -- after al, the very definition of pettern involves an
abgiract kind of "computationd efficiency.”

A monologica system, psychologicdly, represents ahighly dissociated network of belief
processes. This network does of course interact with the remainder of the mind -- otherwise it
would have no effects. But it redtricts its interactions to those in which it can play an actor role;
it ressts being modified, or entering into symbiotic loops of inter-adjustment. This means that
when amonologicd bdief sysem solvesaproblem, it must rely only, or primarily, upon its
OWN I esour Ces.

But the nature of thought is fundamentdly inter active and paralle: intdligenceis achieved
by the complex interactions of different agents. A diadogica belief sysem containing N
modestly-sized processes can solve problems which are of such an intringc computational
complexity that no excessvely dissociated network of N modestly-sized processes can ever
solve them. For adidogicd sysem can solve problems by cooper ative computation: by usng
its own processes to request contributions from outside processes. A monologica system, on the
other hand, cannot make a habit of interacting intensively with outside processes -- if it did, it
would not be monologicd.

This, | sugges, isdl thereisto it. Despite the abstract terminology, the ideais very smple.
Lousy, unproductive bdief systems are lousy precisely because they keep to themsalves; they do
not make use of the vast potentia for cooperative computation that isimplicit in the dud
network. Thisisthe root of their conservatism and irrdlevance. They are conservative and
irrdlevant because, confronted with the difficult problems of the real world, any belief system of
their smadl sze would necessarily be consarvative and irrdlevant, if it did not extengvely avall
itsdf of the remainder of the mind.

All thisleaves only one question unanswered: why do monologicd systems arisg, if they are
unproductive and useless? The answer to thisliesin the cognitive equation. Attractors can be
notorioudy stubborn. And this leads us onward....

170

Chapter Ten
BIOLOGICAL METAPHORS OF BELIEF

The train of thought reported in this chapter began in the fal of 1991. My father was writing

Turncoats and True Believers (Ted Goertzel, 1993), abook about politica ideologies, those who

abandon them, and those who maintain them; he was collecting anecdotes from a variety of
biographies and autobiographies, and he was struck by the recurrent patterns. In someintuitively
clear but hard-to-specify sense, ideologues of dl different stripes seemed to think dike.

My father has studied ideology for nearly a quarter century, and his gpproach is thoroughly
rationdist: he believes that ideologica belief systems coincide with irrationd thought, whereas
nonideologica belief systems coincide with rationa thought. This rationdism implies that
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adherents to nonideological bdief sysems should dl think dike -- they are dl fallowing the
same "correct” form of logica reasoning. But it says nothing about the nature of irrationality --
it does not explain why deviations from "correct” logica reasoning al seem to follow afew
smple psychologica forms.

He hoped to resolve the puzzle by coming up with a"litmustet” for belief sysems-- a
property, or alist of properties, distinguishing irrationd, ideologica reasoning from rationd
thought. For example, two properties under tentative consderation for such alist were:

1) adherentsto ideologica belief sysemstend to rely on reasoning by andogy rather than
logica deduction

2) adherentsto ideologica belief sysemstend to answer criticism by reference to "hallowed"
texts, such as the Bible or das Kapitd.

But both of these properties were eventudly rejected: the first because andogy is an essentia
part of logical deduction (as shown in Chapter Four); and thesecond because reference to
halowed textsisredly a surface symptom, not a fundamertd flaw in reasoning.

Every property that he came up with was eventualy discarded, for smilar reasons. Eventudly
he decided that, given these serious conceptua troubles, Turncoats and True Believers would
have to do without aformal theory of justification -- adecison that probably resulted in amuch
more entertaining book! The present chapter, however, came about as aresult of my continued
pursuit of an explanation of the difference between "rationd™ and "ideologicd™ thought.

| will not discuss political belief sysems here -- that would take us too far afield from the
cognitive questions that are the center of this book. However, the same questions that arisein the
context of politica belief sysems, dso emerge from more generd psychologica consderations.
For | have argued that gtrict adherence to formal logic does not characterize sensible, rationa
thought -- first because forma logic can lead to rationa absurdities; and second because useful
goplications of formd logic require the assstance of "wishy-washy" analogical methods. But if
formd logic does not define rationdity -- then what does?

In this chapter | approach rationdity usng ideas drawn from evolutionary biology and
immunology. Specificaly, | suggest that old-fashioned retiondism isin some respects Smilar to
Neo-Darwinism, the evolutionary theory which holds the "fitness’ of an organismto bea
property of the organism in itself. Today, more and more biologists are waking up to the
sendtive environment-dependence of fitness, to the fact that the properties which make an
organism fit may not even be present in the organism, but may be emer gent between the
organism and its environment. And smilarly, | propose, the only way to understand reason isto
turn the ana ogy- dependence of logic into atool rather than an obstacle, and view rationdity asa
as aproperty of the relationship between abdief sysem and its" psychic environment.”

In order to work this idea out beyond the philosophical stage, one must turn to the dua
network mode. Productivity aone does not guarantee the surviva of abdief systemin the dud
network. And unproductivity does not necessarily mitigate against the surviva of abelief
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system. What then, | asked, doesdetermine surviva in the complex environment that is the dud-
network psyche?

There are, | suggest, precisely two properties common to successful belief systems:
1) being an attractor for the cognitive equation

2) being productive, in the sense of creatively constructing new patterns in response to
environmenta demands

A bdief sysem cannot survive unlessit meets both of these criteria. But some beief systems
will rely more on (1) for their survival, and some will rly more on (2). Those which rdy manly
on (1) tend to be monologica and irrationd; those which rely mainly on (2) are didogicd,
rationd and useful. Thisisapurdy structural and systemic vison of rationdity: it makesno
reference to the specific contents of the belief systems involved, nor to their connection with the
externd, "red" world, but only to their relationship with the rest of the mind.

In this chapter | will develop this gpproach to belief in more detail, usng complex biological
processes asaguide. First | will explore the systematic creativity inherent in belief sysems, by
andogy to the phenomenon of evolutionary innovation in ecosysems. Then, turning to the
question of abdief sysem interacts with the rest of the mind, 1 will present the following crucid
andogy: belief systems are to the mind as the immune system is to the body. In other words,
belief systems protect the upper levels of the mind from dedling with trivid idess. And, just like
immune systems, they maintain themsdves by aprocess of circular reinforcement.

In addition to their intringc vaue, these close anaogies between belief systems and biologica
systems are a powerful argument for the existence of nontrivid complex systems science.
Circular reinforcement, self-organizing protection and evolutionary innovation are deep ideas
with relevance transcending disciplinary bounds. The ideas of this chapter should provide new
ammunition againg those who would snidely assert that "there is no generd systemstheory.”

10.1. SYSTEMATIC CREATIVITY

As suggested in the previous chapter, acomplex belief system such as a scientific theory may
be modeledas a self-generating structured transformation system The hard core beliefs are
theinitids|, and the peripherd beliefs are the dements of D(1,T). The trandformations T are the
processes by which periphera beliefs are generated from hard core beliefs. And all the eements
of D(I,T) are "components,” acting on one another according to the logic of sef-generating
component-systems.

For example, in the bdief systems of modern physics, many important beliefs may be
expressed as equationa models. There are certain Situation-dependent rules by which basic
equational modds (Maxwdl's Laws, Newton's Laws, the Schrodinger Equation) can be used to
generate more complex and specific equationd modes. These rules are what aphyscist needsto
know but an engineer (who uses the models) or amathematician (who devel ops the math used
by the models) need not. The structur edness of this transformation system iswhat dlows
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physicigts to do their work: they can build a complex equational mode out of smpler ones, and
predict some things about the behavior of the complex one from their knowledge about the
behavior of the smpler ones.

On the other hand, isthe conspiratorid belief system presented above not aso a Sructured
transformation system? Technically spesking, it fulfills adl the requirements. Its hard core
consgts of one smple conspiracy theory, and its D(I,T) congists of beliefs about psychologica
and socid structures and processes. Its T contains a variety of different methodologies for
generaing Stuated conspiracy beliefs -- in fact, as a salf-generating component-system, its
power of spontaneous invention can be rather impressve. And the system is structured, in the
sense required by continuous compostiondity: smilar phenomena correspond to Smilar
conspiracy theories. Yes, thisbdief sygemisan STS, though ardatively uninteresting one.

In order to rule out cases such asthis, one might add to the definition of STS a requirement
dating that the set D(I,T) must meet some minimal standard of structurd complexity. But there
isno pressng need to do this; it isjust aswdl to admit smpligic STSs, and cal them smplidic.
The important observation isthat certain beief sysems generate a high structural complexity
from gpplying their transformation rules to one another and their initids -- just as written and
spoken language systems generate a high structuralcomplexity from combining their words
according to their grammetica words.

And the meanings of the combinations formed by these productive belief sysems may be
determined, to a high degree of gpproximation, by the principle of continuous
compositionality. As expressons are becoming complex, so are their meanings, but in an
approximately predictable way. These productive belief systems respond to their environments
by continudly creeting lar ge quantities of new meaning.

Above it was proposed that, in order to be productive, in order to survive, abdief sysem
needs a gener ative hard core. A generative hard coreis, | suggest, synonymous with ahard core
that contains an effective st of "grammaticd™ transformation rules -- rulesthat take in the
characterigtics of a particular Stuation and put out expressions (involving hard core entities)
which are tailored to those particular Stuations. In other words, the way the component-system
which isabdief sysem worksisthat beliefs, using grammatical rules, act on other beliefsto
produce new beliefs. Grammaticd rules are the "middieman”; they are the part of the definition
of f(g) whenever f and g are beliefsin the same belief systlem.

And what does it mean for an expression E to be "tailored to" a Situation s? Merdly that E and
sfit together, in the sense that they help give rise to Sgnificant emergent patternsin the set of
pars{(E,9}. That abdief syslem has a generative hard core meansthat, interpreted as a
language, it iscomplex in the sense introduced in the previous paragraph -- that it habitudly
cregtes Sgnificant quantities of meaning.

The situatedness of language is largely responsible for its power. One sentence can mean a
dozen different things in a dozen different contexts. Smilarly, the Stuatedness of hard core
"units' is responsible for the power of productive belief systems. One hard core expression can
mean a dozen different things in a dozen different stuations. And depending upon the particular
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Stuation, a given word, sentence or hard core expression, will giveriseto different new
expressons of possbly greaet complexity. To adegree, therefore, bdiefs may be thought of as
triggers. When flicked by externd stuations, these triggers rel ease appropriate emer gent
patterns. The emergent patterns are not in the belief, nor are they in the Situation; they are
fundamentaly a synergetic production.

10.1.1. Evolutionary Innovation

To get abetter view of theinherent cregtivity of belief systems, let us briefly turn to one of the
centra problems of modern theoretica biology: evolutionary innovation. How isit that the
smple processes of mutation, reproduction and saection have been able to create such incredibly
complex and eegant forms as the human eye?

In The Evolving Mind two partid solutionsto this problem are given. These are of interest
here because, as | will show, the problem of evolutionary innovation has a close relation with the
productivity of belief systems. Thisis yet another example of Sgnificant pardlels among
different complex systems.

Thefirg partid solution given in EM is the observation that sexual reproduction isa
surprisingly efficient optimization tool. Sexud reproduction, unlike asexud reproduction, is
more than just random stabbing out in the dark. It is systematic stabbing out in the dark.

And the second partid solution is the phenomenon of structural ingtability. Structural
ingtability means, for ingtance, that when one changes the genetic code of an organiam dightly,
this can cause disproportionately large changes in the gppearance and behavior of the organism.

Pardld to the biologica question of evolutionary innovation isthe psychological question of
evolutionary innovation. How isit that the smple processes of pattern recognition, motor control
and asociative memory give rise to such incredibly complex and eegant forms asthe
Fundamenta Theorem of Caculus, or the English language?

One may congtruct a careful argument that the two resolutions of the biologica problem of
evolutionary innovation aso apply to the psychologica case. For example, it is shown that the
multileve (perceptud-motor) control hierarchy naturdly givesrise to an abstract form of sexud
reproduction. For, suppose process A has subsidiary processes W and X, and process B has
subsidiaries X and Y. Suppose A judges W to work better than X, and reprograms W to work
like X. Then, schematically spesking, one has
A =AW, X
Bt)=B', X,Y
A(t+l) = A, W, W

B(t+1) =B, W, Y
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(where A" and B’ represent those parts of A and B respectively that are not contained in W, X or
Y). The new B, B(t+1), contains part of the old A and part of the old B -- it isrelated to theold A
and B asachildisreated to its parents. This sort of reasoning can be made forma by reference
to the theory of genetic agorithms.

Sexud reproduction is an important corollary of the behavior of multilevel control networks.
Here, however, our main concern will be with structural ingability. Let us begin with an
example from A. Limade Farids magterful polemic, Evolution Without Selection (1988). As
quoted in EM, Lima de Faria notes that

the ‘conquest of the land' by the vertebrates is achieved by atenfold increase in thyroid hormone
levelsin the blood of atadpole. This smal moleculeis responsible for the irreversble changes
that oblige the animd to change from an aguatic to aterrestrid mode of life. The transformation
involves the reabsorption of the tail, the change to a pulmonary respiration and other dragtic
modifications of the body interior.... If the thyroid gland is removed from a developing frog
embryo, metamorphosis does not occur and the animal continues to grow, preserving the aquatic
gructures and functions of the tadpole. If the thyroid hormone isinjected into such a giant
tadpoleit gets transformed into afrog with terrestrid characteridtics....

There are species of amphibians which represent afixation of the trangtion stage between the
aguatic and the terrestria form. In them, the adult stage, characterized by reproduction, occurs
when they gtill have afla tail, respire by gillsand live in water. One example is... the mud-
puppy.... Another is... the Mexican axolotl.

The demondiration that these species represent trandtiona physiologica stages was obtained
by administering the thyroid hormone to axolotls. Following this chemicd signd ther
metamorphosis proceeded and they acquired terrestria characterigtics (round tail and aerial
respiration). (p. 241)

Thisisasort of paradigm case for the creation of new form by structurd ingtability. The
sructures inherent in water-breathing animdls, if changed only alittle, become adequate for the
bresthing of air. And then, once awater-bresthing animal comesto breathe air, it is of course
prone to obtain a huge variety of other new characteristics. A smdl changein asmal part of a
complex network of processes, can lead to alarge ultimate modification of the product of the
processes.

In genera, consider any process that takes a certain "input” and transformsit into a certain
"output." The processis structurally unstable if changing the process alittle bit, or changing its
input alittle bit, can change the structure of (the set of patternsin) the output by alarge amount.
This property may aso be captured formaly: in the following section, thefirst innovation ratio
is defined as the amount which changing the nature of the process changes the structure of the
output, and the second innovation ratio is defined as the amount which changing the nature of
the input changes the structure of the output.
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When dedling with structures generated by structuraly unstable processes, it is easy to
generate completely new forms-- one need merely "twiddl€' the machinery a bit. Predicting
what these new formswill beis, of course, another matter.

10.1.1.1. The Innovation Ratios (*)

Lety andy' be any two processes, let z and Z' be any two entities, and let e.g. y*z denote the
outcome of executing the processy on the entity z. For instance, in EM y and y' denote genetic
codes, z and Z are sets of environmental stimuli, and y*z and y™* Z' represent the organisms
resultant from the genetic codesy and y' in the environments z and Z'. Then the essentid
questions regarding the creation of new form are:

1) what isthe probability digtribution of the "first innovation ratio"

d(Sly*2),.S(y*2))/d«(y.y')?

That is. in generd, when a process is changed by a certain amount, how much isthe structure of
the entities produced by the process changed? (d and d« denote appropriate metrics.)

2) what is the probability digtribution of the "second innovation ratio”

d(Sly*2).S(y*2))/d«(z.2)?

That is when an entity is changed by a certain amount, how much is the structure of the entity
which the processy transformsthat entity into changed? For example, how much does the
environment affect the sructure of an organism?

If these ratios were never large, then it would be essentidly impossible for natura sdection to
giveriseto new form.

In EM it is conjectured that, where z and Z' represent environments, y and y' genetic codes, and
y*z and y*Z organisms, naturd selection can give riseto new form. Thisis not purely a
mathematica conjecture. Suppose that for an arbitrary genetic code the innovation ratios had a
amadl but non-negligible chance of being large. Then there may wdll be specific "clugters' of
codes -- specific regions in process space -- for which the innovation rétio is acceptably likely to
be large. If such clusters do exit, then, instead of a purdy mathematica question, one hasthe
biologicd question of whether red organisms reside in these clusters, and how they get there and
stay there.

The gtructural instability of aprocessy may be defined as the average, over dl y', of
d(S(y*2),S(y™* 2))/d«y.y") + d(S(y* 2),S(y* 2))/d«(z,Z) [i.e. of the sum of thefirst and second
innovation raiog]. In asysem which evolves at least partly by naturad selection, the tendency to
the creation of new form may be rephrased asthe tendency to foster structurally unstable
processes.
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Severa mathematical examples of structuraly unstable processes are discussed in EM. It has
been convincingly demonstrated that one-dimensiond cdlular automata can display ahigh
degree of dructura ingability. And it is well-known that nonlinear iterated function systems can
be gructurdly ungable; thisis the principle underlying the oft-displayed Mandelbrot set.

10.1.2. Structural Instability of Belief Systems

Now, let us see how sructurd ingtability tiesin with the concepts of monologicity and
dialogicality. Onemay consider the hard core of abelief system as a collection of processesyi,
y2,.... Given ardevant phenomenon z, one of the yi creates an explanation that may be denoted
yi*z. If dmilar phenomena can have dissmilar explanations i.e. if yi*z can vary alot asz varies
alittle, then this means that the second innovation ratio islarge; and it do fulfillshalf of the
definition of didogicdlity -- it saysthat the explanation varies with the phenomenon being
explained.

The other haf of the definition of didogicdity isthe principle of relevance -- it saystha
Em(yi*z,2) should be nontrivid; that the explanation should have something to do with the
phenomenon being explained. Part of the difficulty with maintaining a productive belief system
is the tenson between crestivity-promoting structura ingtability and the principle of relevance.

And what does the fir st innovation ratio have to do with belief systems? To see this, one must
delve alittle deeper into the structure of belief systems. It is acceptable but coarseto refer to a
belief system as a collection of processes, individudly generating explanations. In redity a
complex belief system away's has a complex network structure.

Many explanation-generating procedures come with a collection of subsidiary procedures, dl
related to each other. These subsidiaries "'come with" the procedure in the sense that, when the
procedure is given a phenomenon to ded with, it either selects or creates (or some combination
of the two) a subsidiary procedure to dedl with it. And in many cases the subsidiary procedures
come with their own subsidiary procedures -- this hierarchy may go severd levels down, thus
providing a multilevel control network.

So, inadightly less coarse gpproximation to this dua network structure, let us say that each
hard core processy: generates a collection of subprocesses yii, Viz,.... For eachi, let us consder
the explanations of afixed phenomenon z generated by one these subprocesses -- the collection

{yii*z,j=1,2,3,...} . Thefirg innovation ratio [d(S(yij* ), S(y"™* 2))/d(#yij,y")] measures how much
changing the subprocess yij changes the explanation which the subprocess generates. Thisisa
measure of the ability of yi to come up with fundamentally new explanations by exploiting
gructura ingability. It isthus a measure of the creativity or flexibility of the hard core of the
belief sysem.

Of course, if abelief system has many leves, the firgt innovation ratio has the same meaning
on each leve: it measures the flexibility of the processes on that leve of the bdief sysem. But
conddering crestivity on many different levels has an interesting consequence. It leads oneto
ask of agiven process, not only whether it is cregtive in generating subprocesses, but whether it
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generates subprocesses that are themsalves creative. | suggest that successful belief systems have
this property. Their component processes tend to be creative in generating creative
subpr ocesses.

This, | suggest, isone of the fundamentd roles of bdief sysemsin the dua network. Belief
systems are structured transformation systems that serve to systematically create new pattern
via multilevel structural instability.

Earlier | explained how the linguidtic nature of belief systems helps make it possible for them
to generate complex explanations for nove stuations. Linguigtic Sructure alows one to
determine the form of acombination of basic building blocks, based on the meaning which one
wants that combination to have. Now | have aso explained why linguigtic structure is not
enough: in order to be truly successful in the unpredictable world, a bdief syssem must be
sysematicdly cregtivein its use of itslinguigtic structure.

10.2BELIEF ASIMMUNITY

A bdlief system isacomplex sdf-organizing system of processes. In this section | will
introduce a crucia andogy between belief sysems and a complex sdf-organizing physical
system: the immune system. If thisanalogy has any mest to it whatsoever, it is a strong new
piece of evidencein favor of the existence of anontrivia complex systems science.

Recdll that the multilevel control network is roughly "pyramida,” in the sense that each

processor is connected to more processes below it in the hierarchy than above it in the hierarchy.

S0, in order to achieve reasonably rapid mental action, not every input that comes into the lower
levels can be passed dong to the higher levels. Only the most important things should be passed
further up.

For example, when acomplex action -- say, reading -- isbeing lear ned, it engages fairly high-
level processes: consciousness, systemeatic deductive reasoning, andogical memory search, and
S0 on. But eventually, once one has had a certain amount of practice, reading becomes
"automatic” -- lower-level processes are programmed to do the job. Artful conjecture and
sophisticated deduction are no longer required in order to decode the meaning of a sentence.

An active belief aout an entity s may be defined as a processin the multilevel control
hierarchy that:

1) includes a bdlief about s, and
2) when it gets s asinput, deds with s without either

a) doing recursve virtudly-seria computation regarding s, or b) passing s up to ahigher leve.
In other words, an active belief about sis aprocess containing a belief about sthat tells the

mind what to do about s in areasonably expeditious way: it doesn't pass the buck to one of its
"bosses’ on ahigher level, nor doesit resort to dow, ineffective serid compuitation.
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This definition presupposes that individud "processes’ in the dud network don't take a
terribly long timeto run -- anoncontroversd assumption if, asin Eddman's framework, mental
processes are associated with clusters of cooperating neurons. Iterating single processes or
sequences of processes may be arbitrarily time-consuming, but that's a different matter.

All this mativates the following suggestive andogy: belief systems are to the mind as
immune systems ar e to the body. This metgphor, | suggest, holds up fairly wel not only on the
levd of purpose, but on the levd of internd dynamics aswdll.

The centra purpose of the immune system isto protect the body againgt foreign invaders
(antigens), by firg identifying them and then destr oying them. The purpose of abdlief system,
on the other hand, isto protect the upper levels and virtual serial capacity of the mind agangt
problems, questions, inputs -- to keep as many Stuations as possible out of reach of the upper
levels and away from virtua serid processing, by deding with them according to lower-level
active beliefs.

10.2.1. Immunodynamics

Let us briefly review the principles of immunodynamics. The easy part of the immune
system'stask is the destruction of the antigen: thisis done by big, dangerous cells well suited for
their purpose. Thetrickier dutiesfal to smaler antibody cells: determining what should be
destroyed, and grabbing onto the offending entities until the big guns can come in and destroy
them. One way the immune system deals with this problem is to keep alarge reserve of different
antibody classesin store. Each antibody class matches (identifies) only a narrow class of
antigens, but by maintaining a huge number of different classes the system can recognize awide
vaiey of antigens.

But this drategy is not dways sufficient. When new antigens enter the bloodstream, the
immune system not only tries out its repertoire of antibody types, it creates new types and tests
them againg the antigen as well. The more antigen an antibody kills, the more the antibody
reproduces -- and reproduction leads to mutation, so that newly created antibody types are likely
to cluster around those old antibody types that have been the most successful.

Burnet's (1976) theory of clond sdection likens the immune system to a population of
asexudly reproducing organisms evolving by natural selection. The fittest antibodies reproduce
more, where "fitness' is defined in terms of match which antigen. But Jerne (1973) and others
showed that this process of natura sdection is actually part of aweb of intricate self-
organization. Each antibody is another antibody's antigen (or at least another "potentia
antibody"'s antigen), so that antibodies are not only attacking foreign bodies, they are attacking
one another.

This processis kept in check by the "threshold logic" of immune response: even if antibody
type Aba matches antibody type Abz, it will not atack Abz unless the population of Abz passes a
certain critica leve. When the population does passthislevd, though, Aba conducts an dl-out
battle on Ab2. So, suppose an antigen which Ab2 recognizes comes onto the scene. Then Abz will
multiply, due to its success at killing antigen. 1ts numberswill crossthe critica level, and Ab1
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will be activated. Abz will multiply, due to its success a killing Abz -- and then anything which
matches Abz will be activated.

The process may go in acircle -- for ingtance, if Abo matches Ab1, whereas Ab2 matches Abo.
Then one mightpotentially have a " positive feedback™ stuation, where the three classes mutudly
dimulate one ancther. In this Stuation a number of different things can hgppen: any one of the
classes can be wiped out, or the three can settle down to a sub-threshold state.

Thisthreshold logic suggests that, in the absence of exterrd gimuli, the immune sysem might
rest in total equilibrium, nothing attacking anything e se. However, the computer smulations of
Alan Perelson and his colleagues at Los Alamos (Perelson 1989, 1990; deBoer and Perelson,
1990) suggest that in fact this equilibriumisonly partid -- thet in normal conditionsthereisa
large "frozen component” of temporarily inactive antibody classes, surrounded by a fluctuating
sea of interattacking antibody classes.

Findly, it isworth briefly remarking on the relation between networ k dynamics and immune
memory. Theimmune sysem has avery long memory -- that iswhy, ten years after getting a
mead es vaccine, one sill won't get meades. Thisimpressve memory is carried out partly by
long-lived "memory B-cdls' and partly by inter nal images. The latter process iswhat interests
us here. Suppose one introduces Ag = 1,2,3,4,5 into the bloodstream, thus provoking
proliferation of

Ab1 =-1,-2,-3,-4,-5. Then, after Ag iswiped out, alot of Abz1 will dill remain. The inherent
learning power of the immune system may then result in the creation and proliferation of Abz =
1,2,3,4,5. For instance, suppose that in the past there was afairly large population of Abs =
1,1,1,4,5. Then many of these

Abs may mutate into Abz. Abz isan internal image of the antigen. It lacks the destructive power
of the antigen, but it has a smilar enough shape to take the antigen's place in the ideotypic
network.

Putting interna images together with immune networks leads easily to the conclusion thet
immune systems are structurally associative memories. For, suppose the antibody class Abi is
somehow simulated to proliferate. Then if Abz is approximately complementary to Abz, Abz will
aso be simulated. And then, if Abs isapproximately complementary to Abz, Abs will be
dimulated -- but Abs, being complementary to Abz, will then be smilar to Abi. To seethe vaue
of this, suppose

Ag=5,0,005
Abi = -5,0,0,0,-5
Abz =5,0,0,-6,0

Abz =0,-4,0,6,0
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Then the sequence of events described above is quite plausible -- even though Abs itsdf will not
be directly simulated by Ag. The smilarity between Abs and Aba refersto adifferent
subsequence than the smilarity between Ab: and Ag. But proliferation of Ag nonetheless leads
to proliferation of Abs. Thisis the essence of anaogica reasoning, of structurdly associetive
memory. The immune system is following a chain of association not unlike the chains of free
association that occur upon the andyst's couch. Here | have given achain of length 3, but in
theory these chains may be arbitrarily long. The computer smulations of Perelson and de Boer,
and those of John Stewart and Francisco Varda (persona communication), suggest that the
immune systems contains chains that are quite long indeed.

One worthwhile question is: what good does this structuraly associative capacity do for the
immune system? A possible answer is given by the speculations of John Stewart and his
colleagues at the Ingtitute Pasteur (Stewart, 1992), to the effect that the immune system may
serve as a generd communicetion line between different body systems. | have mentioned the
discovery of chains which, structurally, are anadogous to chains of free association. Stewart's
conjecture is that these chains serve the as communication links: one end of the chain connects
to, say, a neurotrangmitter, and the other end to a certain messenger from the endocrine system.

10.2.2. Belief Dynamics

So, what does dl this have to do with belief sysems? The answer to this question comesin
severd parts.

Firg of al, severd researchers have argued that mental processes, just like antibodies,
reproduce differentialy based on fitness. As discussed above, Gerald Edelman's version of this
ideais particularly atractive: he hypothesizes that types of neuronal clusters survive
differentialy based on fitness.

Suppose one defines the fitness of a process P as the size of

Em(P,Ny,...,Nk) - Em(N4,...,Nk), where the Ni are the "neighbors’ of P in the dud network. And
recd| that the structuraly associative memory is dynamic -- it iscontinually moving processes
around, trying to find the "optima"” place for each one. From these two pointsit follows that the
probability of a process not being moved by the structurally associaive memory is roughly
proportiond to its fitness. For when something isin its proper place in the structuraly

associative memory, its emergence with its neighborsis generdly high.

This shows that, for mental processes, survival isin asense proportiond to fitness. In The
Evolving Mind it is further hypothesized that fitness in the multilevel control network
corresponds with surviva: that a " supervisory"” process has some power to reprogram its
"subsidiary" processes, and that asubsdiary process may even have some smal power to
encourage change in its supervisor. Furthermore, it is suggested that successful mental processes
can bereplicated. The brain gppears to have the ability to move complex procedures from one
location to another (Blakedee, 1991), so that even if one crudely associates ideas with regions of
the brain thisisabiologicaly plausble hypothess.
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So, in some form, menta processes do obey "surviva of thefittest.” Thisis one Smilarity
between immune systems and belief systems.

Another pardld isthe existence of an intricately structured network . Just as each antibody is
some other antibody's antigen, each active belief is some other active belief's problem. Each
active belief is continualy putting questions to other mental processes -- looking &) to those on
the level above it for guidance, b) to those on its own leve as part of sructurdly associaive
memory search, and c) to those on lower levels for assstance with details. Any one of these
questions has the potentid of requiring high-leve intervention. Each active belief is continualy
responding to "questions’ posed by other active beliefs, thus creating a network of cybernetic
activity.

Recdll that, in our metgphor, the andogy to the "levd™ of antigen or antibody population is,
roughly, "leved™ in the multilevel control network (or use of virtud serid computation). So the
andogue of threshold logic is that each active belief responds to a question only once that
guestion has reached its level, or aleve not too far below.

Asinthe Abi, Abz, Abs cycle discussed above, beliefs can stimulate one another circularly.
One can have, say, two active beliefs B: and Bz, which mutualy support one ancther. An
example of thiswas given dittle earlier, in the context of Jane's paranoid belief system:
"congpiracy caused leg pain” and "conspiracy caused somach pain.”

When two beliefs support one another, both are continualy active -- each oneis being used to
support something. Thus, according to the "surviva of the fittest” idea, each one will be
replicated or at least reinforced, and perhaps passed up to a higher level. This phenomenon,
which might be called internal conspiracy, isis aconsequence of what in Chapter Eight was
cdled structural conspiracy. Every atractor of the cognitive equation displays internd
congpiracy. But the converse is not true; interna congpiracy does not imply structurd

conspiracy.

Prominence in the dua network increases with intendty as a pattern (determined by the
gructuraly associative memory), and with importance for achieving current gods (determined
by the multilevel control network). Interna conspiracy is when prominence is achieved through
illusion -- through the conspiratorialy-generated mirage of intengity and importance.

10.2.3. Chaosin Belief Systemsand | mmune Systems

Rob deBoer and Alan Perdson (1992) have shown mathematicdly that, even in animmune
system consisting of two antibody types, chaos is possible. And experiments at the Ingtitute
Pagteur in Paris (Stewart, 1992) indicate the presence of chaotic fluctuationsin the levels of
certain antibody types in mice. These chaotic fluctuations are proof of an active immune network
-- proof that the theoretical possibility of aninterconnected immune system is physicaly
redized.

Suppose that some fixed fraction of antibody types participates in the richly interconnected
network. Then these chaotic fluctuations ensure that, at any given time, a*pseudorandom’
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sample of this fraction of antibody typesis active. Chaotic dynamics accentuates the Darwinian
process of mutation, reproduction and salection, in the sense that it causes certain antibody types
to "pseudorandomly” reproduce far more than would be necessary to ded with externa antigenic
dimulation. Then these excessively proliferating antibody types may mutate, and possibly

connect with other antibody types, forming new chains.

Of course, chaos in the narrow mathematical sense is not necessary for producing
"pseudorandom” fluctuations -- complex periodic behavior would do as well, or gperiodic
behavior which depends polynomidly but not exponentially on initial conditions. But Snce we
know mathematicaly that immune chaos is possible, and we have observed experimentaly what
looks like chaos, calling these fluctuations "chaos' is not exactly alegp of faith. Indeed, the very
possibility of arole for immunological chaosis pregnant with psychological suggestions. What
about chaosin the human memory network ?

Chaos in the immune network may, for example, be caused by two antibody types that
partidly match each other. The two continudly bettle it out, neither one truly prevailing; the
concentration of each onerising and faling in an gpparently random way. Does this process not
occur in the psyche as well? Competing idess, struggling againgt each other, neither one ever
gaining ascendancy?

To make the most of thisidea, one must recdl the basics of the dua network modd.
Specificdly, congder the interactions between a set (say, apair) of processes which reside on
one of the lower levels of the perceptua-motor hierarchy. These processes themselves will not
generdly receive much attention from processes on higher levels -- thisisimplicit in the logc of
multilevel control. But, by interacting with one ancther in a chaotic way, the prominences of
these processes may on some occasions pseudor andomly become very large. Thusone hasa
mechanism by which pseudorandom samples of lower-level processes may put themsdvesforth
for the attention of higher-level processes. And this mechanism is enforced, not by some
overarching globa program, but by natural self-organizing dynamics.

Thisidea obvioudy needs to be refined. But even in this rough form, it hasimportant
implications for the psychology of attention. If one views consciousness as a process resding on
the intermediate levels of the perceptua-motor hierarchy, then in chaos one has a potentia
mechanism for pseudorandom changes in the focus of atention. Thistiesin dosdy with the
gpeculation of Terry Marks (1992) that psychologica chaosisthe root of much impulsive
behavior.

10.3. PSYCHIC ANTIMAGICIANS

| have been taking about beliefs "atacking” one another. By this| have meant something
rather indirect: one belief attacks another by giving the impression of being mor e efficient
than it, and thus depriving it of the opportunity to be sdected by higher-level processes. One
way to think about this processisin terms of the "antimagician” systems of Chapter Seven.

Also, | have said that belief systems may be viewed as component-systems, in which beliefs
act on other beiefsto produce new bdiefs. But | have not yet remarked that the process of
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beliefs destroying other beliefs may be concelved in the same way. When beliefs B and C are
competing for the atention of the same higher-level process, then each time one "unit” of B is
produced it may be said that one "unit” of anti-C is produced. In formd terms, this might be
guaranteed by requiring that whenever f(g) = B, f(g,B) = C". According to thisrule, unlessf and
g vanish immediately after producing B, they will always produce one unit of anti-C for each

unit of B.

The reationship between C and C* strengthens the immunologica metaphor, for as| have
shown each antibody class has an exactly complement. In the immune system, an antibody class
and its complement may coexig, so long as neither one is timulated to proliferate above the
threshold leve. If one of the two complements exceeds the threshold level, however, then the
other one automatically does also. And the result of this is unpredictable -- perhaps periodic
variation, perhaps disaster for one of the classes, or perhaps total chaos.

Smilarly, B and C may heppily coexigt in different parts of the hierarchica network of mind.
The parts of the mind which know about B may not know about C, and vice versa. But then, if C
comes to the attention of a higher-level process, news about C is spread around. The processes
supervisng B may consder giving C a chance ingead. The result may be dl-out war. The
andogue hereisnot precise, snce there is no clear "threshold" in psychodynamics. However,
there are different levels of abgiraction -- perhaps in some cases the jump from one of these
levels to the next may serve as an isomorph of the immunologica threshold.

Anyhow, the immunologica metgphor aside, it is clear that the concept of an "antimagician”
has some psychologica merit. Inherently, the dynamics of belief systems are productive and not
destructive. It isthe multilevel dynamics of the dual network which providesfor destruction.
Space and time condraints dictate that some beliefs will push others out. And this fact may be
conveniently modeled by supposing that beliefs which compete for the atention of a supervisory
process are involved with cregting "anti-magicians' for one another.

Indeed, recdling the idea of "mixed-up computation” mentioned in Chapter Seven, this
concept is seen to lead to an interesting view of the productive power of bdief sysems. Belief
systems without antimagicians cannot compute universally unless their component beliefs are
specificadly configured to do so0. But belief sysems with antimagicians can compute universdly
even if the bdiefsinvolved are very smple and have nothing to do with computation. It gppears
that, in this case, the disciplineimposed by efficiency has apositive effect. It grants belief
systems the automatic power of negation, and hence it opens up to them an easy path toward the
production of arbitrary forms.

For instance, consder the following smple collection of beiefs:
A: | believeit isnot aduck
B: | beieveit isaduck

C: | bdieveit wdks like aduck
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D: | beieveit quacks like a duck

E: | believeitisagoose

The mind may well contain the following "belief generation equations':
F(F)=F

F(CD)=B

B(B) =B

G(G) =G

G(E) =B"

The sdf-perpetuating process F encodes the rule "I it walks like a duck, and quacks like a duck,
it should probably be classfied as aduck.” The saf-perpetuating process B encodes the
information that "it" isaduck, and that if it was classfied as a duck yesterday, then barring
further information it should till be a duck today. And, finally, the saIf- perpetuating process G
saysthat, if in fact it should be found out that "it" is a goose, one should not classify it asaduck,
irrespective of the fact that it walks like a duck andquacks like a duck (maybe it was a goose
raised among ducks!).

The entity F performs conjunction; the entity G performs negation. Despite the whimsica
wording of our example, the generd message should be clear. The same type of arrangement can
modd any system in which certain standard observations lead one to some " default”
classfication, but more specidized observations have the potentia to overrule the default
classfication. The universa computation ability of antimagician syslems may be rephrased in
the following form: belief systems containing conjunctive default categorization, and having the
potentid to override default categorizations, are cgpable of computing anything whatsoever.
Belief systemsthemselves may in their natural cour se of operation perform much of the
computation required for mental process.

10.4. GOD, THE BIBLE AND CIRCULARITY

Now, inthisfind section, | will turn once again to the andlyss of concrete belief sysems. In
Chapter Eight | consdered one example of intense interna conspiracy -- Jane's paranoid belief
system. But this may have been dightly mideading, snce Jane's belief sysemwasin fact an
explicit conspiracy theory. In this section | will consder a case of internd and structura
conspiracy which has nothing to do with conspiraciesin the externd world: the belief system of
Chrigtianity.

Chridianity isahighly complex belief sysem, and | will not attempt to dissect it in detal.
Ingteed | will focus on some very smple belief dynamics, centering around the following
commonplace example of circular thought:
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God exigts because the Bible says so, and what the Bible saysis true because it is the Reveded
Word of God.

This"proof" of the existence of God is unlikdly to convince the nonbdiever. But | was
astonished, upon reading through a back issue of Informal Logic, to find an article attempting its
defense.

The author of the article, Gary Colwell (1989), reorgani zes the argument as follows:
(2) The Bibleis the Revedled Word of God
(2) The Bible saysthat God exists
(3) God exists

His mogt interesting thesisis that, in certain cases, (1) is more plausible than (3). If one accepts
this, it follows that demongrating (3) from (1) isnot a al absurd. Therefore, Colwell reasons, in
practice the argument is not circular at dl.

| do not agree with Colwdll's argument; in fact | find it mildly ridiculous. But by pursuing his
tran of thought to itslogicad conclusion, one may arrive a some interesting ingghts into the
cregtivity, utility and sdif- perpetuating nature of the Chrigtian belief system.

10.4.1. The Bible and Bedlief

Let usreview Colwdl's case for the greater plausihility of (1), and pursueit alittle further. |
contend that, rather than removing the circularity of the argument, what Colwell has actudly
doneisto identify part of the mechanism by which the circularity of the argument worksin
practice.

Colwel's argument for the greeter plausibility of (1) isasfollows

It is not uncommon to hear of believers who relate their experience of having encountered
God through the reading of the Bible. Prior to their divine encounter they often do not hold the
proposition "God exigts' as being true with anything approaching a probability of one half.
Indeed, for some the prior probability of its being true would be equivaent to, or marginaly
greater than, zero. Then ... they begin to read the Bible. Therein the reading, they say, they
experience God spesking to them. It is not as though they read the words and then infer that God
exigs, though such an inference may be drawn subsequently. Rather, they clam that the
significance of the words, the persond relevance of the words, and the divine source of the
words are al experienced concomitantly. In reading the words they have the complex experience
of being spoken to by God. The experienced presence of God is not divorced from their reading
of the words....

Given that this experience of encountering God in the reading of the Bibleisa grounding
experience for the believer, from which he may only later intelectualy abstract that one eement
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that he refersto by saying that God exigts, proposition (1) for such a bdiever may actudly be
more plaugble than proposition (3).

Putting aside the question of how common this type of religious experience is, what is one to
make of this argument?

| think that Colwell is asolutely right. It probably is possible for aperson to find (1) more
plausible than (3). For a person who has had the appropriate religious experience, the argument
may be quite sensble and noncircular.

After dl, when told that a young man haslong hair, and asked to rate which of the following
two sentences ismore likely, what will most people say?

A: Theyoung manisabank teller
B: The young man isabank teller and smokes marijuana

The mgority of people will choose B. Numerous psychologica experimentsin different contexts
show as much (for areview, see Holland et d (1975)). But of course, whenever B istrue, A is
aso true, 0 thereisno way B ismore likely than A. The point is, intuitive judgements of
probability or plausibility do not dways obey the basic rules of Boolean logic. Even though (1)
implies (3) (and in fact significantly implies (3) in the sense of Chapter Four), a person may
believe that (1) is more likely than (3). Why not -- it is known that, even though B implies A, a
person may believe B to be more likdy than A.

What thismeans, | believe, is that the human mind is two-faced about its use of the word
"and." If asked, people will generdly make a common language statement equivaent to "'and'
means Boolean conjunction.” But when it comes down to making redl-life judgements, the
human mind often interprets "and” in a non-Boolean way: it thinks asif "A and B" could be true
eventhough A werefase. Thus, God exists and the Bible is the Revealed Word of God" is
trested asif it could be true even though "God exigts' were fase. In judging the plausibility or
likelihood of "A and B," the mind sometimes uses aroughly additive procedure, combiningthe
likelihood of A with the likelihood of B, when on careful conscious reflection amultiplicative
procedure would make more sense.

But it seemsto me that Colwdl's argument contains the seeds of its own destruction. | grant
him that in certain cases the inference from (1) to (3) may be reasonable -- i.e,, given the apriori
judgement of greeter plausibility for (1). But nonethdess, the argument is still fundamentally
circular. And | suspect that its circularity plays arole in the maintenance of religious belief
systems.

| have known more than one religious individua who, when experiencing temporary and
partia doubt of the existence of God, consulted the Bible for reassurance -- in search of the kind
of experience described by Colwdl, or some less vivid relaive of this experience. But on the
other hand, the same people, when they came across passages in the Bible that made little or no
intuitive sense to them, reasoned that this passage must be true because the Bibleisthe
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Revealed Word of God. Certain passages in the Bible are used to bolster belief in God's
exigence. But bdief in the vaidity of the Bible -- when shaken by other passages from the Bible
-- isbolstered by belief in God's existence. The two beliefs (1) and (3) support each other
circularly. Considered in appropriate context, they may be seen to produce one another.

This psychological pattern may lead to severd different results. In some cases the intuitive
unacceptability of certain aspects of the Bible may serve to weaken belief in God. That is, one
might well reason:

(2) The Bibleisthe Reveded Word of God
(2) TheBibleis, in parts, unreasonable or incorrect
(3) Thus God is capable of being unreasonable or incorrect

And (3, of course, violates the traditional Christian conception of God. Thisis one possible path
to theloss of rdigiousfaith.

On the other hand, one might also reason
(1" God exigsand isinfalible
(2") TheBibleis, in parts, unreasonable or incorrect
(3") The Bibleisnot the Revedled Word of God
Thisisaso not an uncommon line of argument: many rdigious individuas accept that the Bible
isan imperfect historical record, combining the Word of God with other features of human
origin. For instance, not al Chrigtians accept the Bible's estimate of the earth's age at 6000 years,
and mogt Christians now accept the heliocentric theory of the solar system.

Findly, more interestingly, there is o the possibility that -- given appropriate real-world
circumgtances -- these two circularly supported beliefs might lead to incr eased bdief in God.

We have agreed that it is possible to believe (1) more strongly than (3). So, for sake of argument,

suppose that after a particularly powerful experience with the Bible, one assignslikelihood .5 to
(1), and likelihood .1 to (3). Then, what will onethink after one's experience is done, when one
has time to mull it over? Following Colwdl'slogic, at this point one will likely reason that, if (1)
has likelihood .5, then the likelihood of (3) cannot be as low as .1. Perhaps one will up one's
edimate of the likelihood of (3) to .5 (the lowest value which it can assume and till be
consgtent with Boolean logic). But then, now that one believes fairly strongly in the existence of
God, one will be much more likely to attend church, to spesk with other religious people -- in
short, to do things that will encourage one to have yet mor e intense experiences with the Bible.
So then, given this encouragement, one may have a sronger experience with the Bible that
causes oneto raise one's beief in (1) to .8. And after pondering this experience over, one may
rase onesbeief in (3) to .8 -- and so forth. The circularity of support may, in conjuction with
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certain properties of theread world in which the believer lives, cause an actud increase in belief
in both (1) and (3).

So, whereas Colwell expresses "curiosity about the prominence that the putatively circular
Biblica argument hasrecelved,” | see no reason for curiogty inthisregard. The Biblica
argument in question redly is circular, and it redly does play arole in the maintenance of
religious belief systems. The religious experience which he describesisindeed red, a least ina
psychologica sense -- but it does not detract from the circularity of the argument. Rather, it is
connected with this circularity in a complex and interesting way.

10.4.2. Christianity as a Belief System

Let usrephrase this discusson in terms of pattern. "God exigts' is a certain way of explaining
eventsin the world. It explains some events -- say, achild being hit by acar -- very poorly. But it
explains other events fairly well. To give an extreme example, severd college sudents have
reported to me that they do better on their mathematics testsiif they pray beforehand. This
phenomenon is explained rather nicely by the belief that God exists and intervenes to help them.
My own preferred explanation -- the placebo effect -- is much less smple and direct.

Two related examples are the rdligious ecstasy some people experience in church, and the
experience of "taking to God" -- ether directly or, as discussed above, through the Bible. These
subjective psychological phenomena are well explained by the hypothess that God exigts.
Alternate explanations exigt, but they are more complex; and the religious belief system israther
vigilant in sending out "antimagicians' againg these dternatives.

Bdieving thet "the Bible is the Reveded Truth of God" explains afew other things, in
addition to those phenomena explained by "God exigs." And, more importantly, it gives the
believer a et of rules by which to organize her life: the Ten Commandments, and much much
more. These rules promote happiness, in the sense defined above: they provide or der where
otherwise there might be only uncertainty and chaos. They actudly create pattern and structure.
They are avery effective "psychologicad immune sysem" -- protecting vauable high-leve
processes from dealing with al sorts of difficult questions about the nature of life, moraity and
redity.

S0, one has an excdlent example of internd conspiracy: belief in the Bible supports belief in
God, and vice versa. And in very many casesthisinterna conspirecy is al so a structura
conspiracy: the two beliefs create one another. Belief in the Bible givesriseto belief in God, in
an obvious way; and belief in the Christian God, coupled with a certain faith in the trappings of
contemporary religion, givesriseto beief inthe Bible. It is certainly possbleto beievein the
Chrigtian God while doubting the veracity of the Bible; but in nearly dl cases bdlief in the
Chrigtian God leads &t least to belief in large portions of the Bible.

Thisisauseful beief sysem, inthat it really does ded with alot of issues a low levels,
savinghigher levelsthe trouble. It is psychologicdly very handy. For example, it mitigates
againg the mind becoming troubled with metaphysical questions such as the "meaning of life”
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And it does wonders to prevent preoccupation with the fear of death. It serves itsimmunological
function well.

Next, as anyone who has perused rdigious literature must be well aware, the Chrigtian belief
sysem is sysemdticdly cregtive in explaining avay phenomena that would appear to contradict
Biblicd dogma. It is precisaly becuase of thisthat arguing evolution or ethics with an intelligent
Chrigtian fundamentaist can be unsattling. Every argument receives a response which, athough
clever and appropriate in its own context, is nonetheless strange and unexpected.

S0, to a certain extent, the Chrigtian belief system meets both the criteriafor surviva laid out
at the beginning of the chapter. It is an attractor for the cognitive equation, a structurd
conspiracy, and it is creatively productive in the service of the dud network.

However, the Chrigtian bdlief system clearly does have its shortcomings. It entailsa certain
amount of awkward dissociation. For instance, the Bible implies that the Earth isonly afew
thousand years old, thus contradicting the well- established theory of evolution by natura
sdlection. In order to maintain the Chrigtian belief system, the mind must erect a"wall” between
itsreligious bdlief in the Bible and its everyday belief in scientific ideas. Thisis precisaly the sort
of dissociation that leads to ineffective thinking: dissociation that servesto protect a belief from
interaction with that which would necessarily destroy it.

The prominence of this sort of dissociation, however, depends on the particular mind involved.
Some people manage to baance a Chrigtian belief system with a scientific world-view inan
amazingly deft way. Thisis sysematic creativity a work! For others, however, Chrigtianity
becomes stale and unproductive, separate from the flow of daily life and thought. The vaue of a
belief system cannot be understood outside of the context of a specific believing mind. Just asa
cactusisfit in the desert but unfit in the jungle, Chridianity may berationa or irrationd,
depending on the psychic environment which surroundsit.

Chapter Eleven
MIND AND REALITY

Now, findly, with the cognitive equation and the theory of belief systems under our belt, we
are ready to return to the "crucid connections’ of Chapter Six -- to the intimate relaionship
between language, thought, redlity, self and consciousness. In this chapter | will present severd
different views of the relationship between psychology and the external world.

In Section 1, using the ideas of the past two chapters, | will present the radica but necessary
ideathat self and reality are belief systems. Then, in Section 2, | will place this concept in the
context of the theory of hypersets and Stuation semantics, giving for the first time aformd
modd of the universein which mind and reality reciprocally contain one another. This
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"universal network™ model extends the concept of the dua network, and explains how the
cognitive equation might actualy be congdered as a univer sal equation.

Findly, in Sections 3-5, | will put forth afew speculative suggestions regarding how one
might reconcile this idea with our contemporary understanding of the physical world. | will
confront the well-known paradoxes of quantum mechanics, and argue that the resolution of these
paradoxes may liein the ideathat the world ismade of pattern. If thisideais correct, it will
provide abassfor integrating the idea thet redlity is abelief system with modern physicd
science.

11.1. LANGUAGE, BELIEF AND REALITY

Nietzsche and Whorf, despite their fundamenta theoretica differences, shared the following
radicd view: external and internal reality are belief systems. Further, they both maintained
that one of the main roles of consciousness and language isto maintain these belief systems.
Beings without consciousness and language, according to this perspective, do not perceive a plit
between externd and inner redlity.

Let us explore this propogtion in detall. | have said thet alanguage conssts of a syntactic
system appropriately coordinated with a semantic system. But this characterization says nothing
about the possibility that the semantic system of a given writtern/spoken language may also serve
other purposes. Perhaps this semantic system is dso connected with various belief sysems.

A bdief sygem isitsdf agpecid kind of linguistic system. Each beief has a certain meaning,
and the meanings, in order to be psychologicaly useful, must change roughly continuoudy with
the syntactic congtruction of the beliefs.

Onthisrarefied levd, the Nietszchean/Whorfian ingght is smply thet different abstract
"languages' may inter sect one another semantically, while being quite different
syntactically. One of the languagesis ordinary spoken language, and the others are belief
systems, including the one which we cdl by the name "externd redlity.”

In terms of efficiency, the sharing of a common semantic system by two different syntactic
systems makes alot of sense. Semantic systems are space-intengve -- they require the storage of
avast number of patterns/processes and the connections between them. Syntactic systems, on the
other hand, are more time-intensve: they, like the dightly more generd transformation systems
discussed in Chapter Two, require the repetitive application of smple rules. Having two
gyntactic systems share the same semantic system conserves space, dlowing the mind to pack a
greater number of linguistic systems into the same space.

11.1.1. Reality as a Belief System

The belief sysem which we call externd redlity isa collection of processes for congtructing
three-dimensional space, linear time and coherent objects out of noise- and chaos-infused sense-
data. Neurobiologists are just beginning to probe the most primitive levels of this belief system;
the more sophidticated levels are completely out of reach. If the mind had to applyconscious
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and/or deductive reasoning to every batch of sense-dataiit received, it would be parayzed. How
long would it teke to thoughtfully, logicaly determine the best interpretation of a given series of
photons on the retina? For efficiency reasons, the mind instead gpplies certain common sense
beliefs about the way the world is structured, and automatically or semi-autometically processes
sense-data in terms of these beliefs.

The classic opticd illuson experiments show that these common sense beliefs can be
mideading. For instance, in the Ames experiment one looks through a peephole into aroom with
oddly angled walls, and one migudges the relative positions of objects. But thisis because oneis
aoplying irrdevant beliefs. Given enough exposure, the "externd redity” bdief sysem can use
continuous compostiondity (andogica structure) to adjust itsdf to minor changes of this sort. It
can create new high-leve beliefs to match the Situation, by piecing together the same low-leve
beliefs that are pieced together to judge the relative positions of objectsin an ordinary room.

11.1.2. Self asa Belief System

At firg glance, "sdf" might seem to be afar smpler belief system than "redity.” After dl,
what beliefs are involved in sefhood, beyond the amplefath that "l exigt, and | act"?But a
more careful investigation reveds thet the sense of sdf is every bit asintricate as the sense of
externd redity. Onesinner world is subtly guided by one's body-concept .

This point was emphasi zed repeatedly by Hubert Dreyfusin his What Computers Can't Do
(1978). This book, which purportsto be a digoroof of the possibility of artificid intelligence,
falsat itsintended god. But it is devadtatingly effective as a diatribe against computer programs
which attempt to Smulate sdf in adisembodied way. Human intdligence, Dreyfus points out, is
indivisble from the sense which we humans have of presence in abody. When we reason, we
relate different ideasin away that draws anaogicdly on 1) the fet interrelations of parts of our
body, and 2) the relation of our body with various external objects.

For example, the "detached" fedling of logica reasoning is not unreated to the feding of a
separation between self and world. By learning to distinguish oneself from the externd world,
one learns moregeneraly how to divide a continuum of patternsinto actor and acted-upon.
Thus | would predict that those who fed themsdves more "a onée" with the world will aso be
lesslikely to enjoy reasoning in a detached, "objective’ way. This prediction is vaidated by the
work on "boundaries’ to be discussed allittle later.

To see more vividly the redlity of body-sdf interdependence, consider the phenomenon of the
"phantom limb," discussed for example in Isradl Rosenfield's recent book Strange, Familiar and
Forgotten (1992). When aperson loses her am, she may indinctively feel the arm to be there for
months or even years afterwards. This means that her sense of the existence of her am is not tied
to the physcd sensations being sent from the arm, but rather perssts "in itsdlf.”

From the point of view of classca psychologica theories or modern cognitive science, thisis
rather difficult to explain; it requires complex theoretica contrivances. But from the cognitive
equation perspective, it isvirtualy obvious. Since the sdlf is a successful belief system, it must
be an atractor for the cognitive equation. But if it is an attractor for the cognitive equation, then
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each one of its component beliefs must be producible by the others. The bdief in the existence
of onegsright arm can be produced by the other bdiefs in the sdf belief-system.

To put it less abstractly, we not only have processes for receiving data from our arms, we have
processes for analyzing and transforming this data, and requesting more data. The theory of
belief systems suggests that this network of processesis cgpable of producing the belief that the
am exigs. And thisis exactly whet is observed in the phenomenon of the "phantom limb."

11.1.3. Intersections

Perhaps the most impressive example of intersection between the semantic system of spoken
language and the semantic system of sdf/redlity isthe imaginary subject, discussed earlier in
the context of Nietzsche's thought. Who can dispute the fact that, when we understand the world
or self, we assume objects where there may not be any? The interpolation of imaginary subjects
isauniversd method for finding meaning. It tieslinguistic congructions such as”I" and "flash”
together with biological congructions like the phantom limb, and thefilled-in blind spot directly
in front of every human being's nose.

But other examples are not lacking. For instance, in one of his most interesting papers, Whorf
compares the Indo- European and Hopi concepts of time. The Hopi language, he claims, groups
future and imaginary into one category, and past and present into another category.
Correspondingly, he clams, their subjective "external worlds' are structured differently.
Whereas we perceive arift between the present and the past, they fed none. And whereas we
tend to see the future as something definite, largely pre-determined, they tend to perceive it as
nebulous and conjecturd.

Whorf tends to imply that linguistic structure causes the structure of redlity. But | don't see the
point of introducing a Newtonian concept of causdity. If one has two syntactic systems using the
same semantic system, then both of them will influence the semantic sysem every time they
accessit. Each reference to a structurally associative memory has the potentid to affect that
memory's notion of association -- and thus its fundamenta structure. Therefore, two linguistic
gysems that share the same memory network will influence one another quite directly -- each
one will affect the structure of the common memory, which in turn will affect the direction of
deduction in both systems.

It is possible that one of the two systemswill have a greater effect on the common semantic
system. But Whorf gives us no reason to believe that thisisthe fact of the matter in the case of
gpoken language and externd redlity. Evolutionarily and socidly, these two systems must have
originated together. Developmentdly, in the mind of a child, the two arise together. And, findly,
in day-to-day thought, the two operate symbicticaly. Each time a person speaks, her semantic
system is reinforced in ways that follow the demands of language; but each time a person
perceaives or reasons about redity, her semantic system isreinforced in ways that follow the
gructure of the belief system thet is externd redlity.

11.1.4. Language, Conspiracy and Reality
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If one accepts the idea that spoken language and externd redity are interconnected linguigtic
systems, then one has the question of why these systems survive. Recall the ideathat belief
gystems use three differentstrategies to maintain themsalves: 1) effectiveness at protecting high-
level processes from problems, 2) interna conspiracy. It seems quite plain that externd redity
excesin not only in the firgt category, but dso in the second -- that the belief system which we
call external reality isa structural conspiracy which relies strongly on internal conspiracy
for itssurvival.

In other words, | suspect that isis common for belief in one aspect of externd redlity to
reinforce or create belief in another aspect of externd redity, and vice versa, even when those
agpects of externd redity have little or no support outside the belief system of externd redlity.
The Sapir-Whorf hypothes's suggests that language is akey accomplice in this conspiracy.

Thisisavery degp and very radica hypothesis. And its complementary hypothesisis equaly
griking: that the belief system which we call self also hasthe formal structure of internal
conspiracy. Whorf focused on outer redlity more than on inner redlity, but Nietzsche understood
both to be congtructs of language and consciousness. As dready noted, he saw the "little word 1"
and the experience of "free will" as the most egregious possble instances of imaginary-subject
postultion.

And, taking the whole process one leve higher, these two interndly conspiratoria belief
systems combine to form alarger conspiracy. Belief in the self and free will encourages belief in
an externd redity. Bdief in an externd redlity encourages bdlief in sdf and free will. The
concepts "inner world" and "outer world” are eech meaningless in isolaion; they gain their
meaning from one another. And the two sysemsinvolve many smilar beliefs -- the postulation
of imaginary subjectsis one example, and the assumption of alinear time axis is another.

To makethisalittle clearer, consder the case of a person in doubt about the redity of the
world around her. Two beliefs may pop into her mind: the belief that the wal in front of her is
redl, and the bdlief that the floor below her isred. Internd conspiracy suggests that these two
bdiefswill reinfor ce one another, increasing one another's strength just like two
complementary antibody classesin the immune system.

Next, suppose that our heroineis al so confused about her own redlity -- about the
effectiveness and substantidity of the mental process caled her "sdlf.” Suppose, in order to test
this hypothes's, she picks up arock and throws it at the wall. Then two beliefs may occur to her:
the belief that "she" isredly in control of something, and the belief that the rock isredly there.
Interna congpiracy suggests that these two beliefs increase one another's strength: the more she
believes sheisin contral, the more sheislikely to believe the rock isred; and the more she
believes the rock isred, the more sheislikely to believe sheisin control of something.

Next, structural conspiracy suggests that, as well as reinforcing one another, these basic
beliefs are able to create one another. For ingtance, belief in the redity of the wall could be
created by the bdief in the redity of the floor, the ceiling, the lamp hanging on the wall, etc.
And it could aso be created in a different way, by reference to beliefs from the self system: for
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ingance, beief in the contralling nature of the hand that punches the wall, the fingernall that
scrapes the wall, or the voice that echoes off the wall.

11.1.5. Godfrey Vesey on Inner and Outer

Itisinteresting to contrast the Nietszchean/Whorfian view of self and redity with that of the
contemporary philosopher Godfrey Vesey. In the Introduction to hisingghtful book Inner and
Outer (1991), Vesey writes

The essaysin this collection are on a philosophica myth. | cal it ‘the myth of inner and outer.’ It
is behind what Gilbert Ryle cdls 'the myth of the ghogt in the machine.' But it is dso behind
what might be called ‘the myth of amachine with aghogt init', or, more generdly, ‘the myth of
the world as externd’. In brief, the myth divides whét, to the philosophically unindoctrinated
(and even to the indoctrinated in their nonphilosophica moments) is undivided, into two digtinct
things-- oneinner (‘mentd’) and one outer (‘physica’).

The myth manifestsitsdf in philosophica theories of voluntary action, perception and
communication. In regard to voluntary action, the myth finds expression in the theory that my
rasing my am isredly two distinct things, one of them inner (my performing amentd act
ofwilling, a'valition’) and one of them outer (my arm rising).... In the case of communication,
there iswhat Jonathan Bennett cdled ‘the trandation view of language: my saying something
involves my trandating inner things (idess or thoughts) into outer things (audible sounds), and
my undergtanding what someone has to say involves my trandating outer things (audible sounds)
into inner things (idess or thoughts).

| cannot accept Vesay's classification of therift between inner and outer as "a philosophical
myth," unknown to the "unindoctrinated.” Surely the concepts of internd and externd redlity are
more than erroneous theoretical congtructs of some philosophers!

Look at Vesey'stwo examples: the ideathat railsing one's arm involves both aninner and an
outer act, and the idea that language involve trandating sound waves into ideas. Both of these
examples represent the standard scientific perspective. We actudly know which parts of the
cerebellum must be activated in order to cause an arm to be lifted up. And we know which parts
of the brain are simulated by audible sounds, and which parts of the brain process those audible
sounds that carry recognizable language. These examples are not philosophical myths, they are
elementary neuroscience!

And, in addition to being good biology, they are dso good common sense. We can have the
thought of going to the freezer to get some ice cream, followed by the action of going to the
freezer to get some ice cream -- these are two different things, and the first in some sense seems
to cause the other. It is by andogy to this sort of Stuation that we analyze arm-raisng in terms of
athought followed by an action. Thisis Smilar to (and related to) the podtulation of an
imaginary subject ... it is the podtulaion of an at least partidly imaginary "cause and effect.”

Similarly, when we speak, we often have the experience of fir st conscioudy formulaing a
sentence, then saying it. Although the processis not dways so deliberate, even when it is nat,
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we gtill tend to make the assumption that all speech consigts of thought followed by action. This
isacommonplace andogy, absolutey naturd and inevitable in the functioning of the menta
network.

In sum, what Vesey disparages as "a philosophica myth" isin fact absolutely essentia both to
everydaylife and to biologica science. The concepts of inner and outer redity cannot just be
dismissed out of hand. | agree with Vesey that they are not "correct” in any absolute sense. But |
contend that they arejustified belief systems in the sense of Chapter Ten, aswell asbeing
internally conspiratorial beief sysems. They areimpressvely, incredibly didogicd -- the
amount of new pattern which they createis far beyond our conscious comprehension.

It would be of greet interest to study the structure of these belief systemsin detail, with an eye
toward understanding their didogicdity, their internd conspiratoridity, and their relationship
with the deep structure of language. To a certain extent this quest is sdlf-referentid, sSince our
tools for studying things are largely based on the concepts of internd and externd redlity. But, as
| have repeatedly emphasized, sdlf-reference is not necessarily a problem; it can be part of a
solution. It is hard to imagine aresearch programme of greater importance or interest than this
one.

11.1.6. Boundaries

All thistalk of sdf and redlity may seem overly abdtract; disconnected from the actud
business of thought. In Chapter Twelve, invoking the notion of dissociation, | will present a
forceful argument that thisis not the case. But dissociation is not the only connection between
the sdlf/redlity system and ordinary, everyday behavior. In fact, the particular structure of a
personss sdf/redity system affects everything she thinks and does.

For example, we have seen that dl thought, even the mogt "rationd™ and "logicd," depends
essentialy on belief systems. But how, then, does a child's mind learn to develop belief systems?
Nietszche was the firgt to arrive at the correct answer: by analogy to, or direct use of, the
self/reality belief system.

For example, Nietzsche observed that the "little word 1" is a paradigm case for reificationin
all its aspects. Language developed for speaking about the self involves postulation of an
imaginary subject. This language is then used for thinking about dl sorts of issues, and thus the
tool of imaginary subjects spreads throughout dl the belief sysems of the mind.

Smilarly, | propose, every major aspect of more speciaized belief sysems may be found to
have itscounterpart in the one big belief system -- the sdif/redity sysem. One example of this
involves the nation of boundaries, as developed by Ernest Hartmann in his intriguing book
Boundaries in the Mind. Hartmann has developed a questionnaire designed to distinguish "thick-
boundaried" people from "thin-boundaried”" people. And through a comprehensive satistical
andyss, augmented with numerous persond interviews, he has concluded that these two
categories represent genuine persondity types. Thick-boundaried people tend to place alarge
"distance" between themsdlves and the world -- they tend not to remember their dreams, they
tend to berigid in their beliefs and habits, not to be free in expressing their emotions. Thin-
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boundaried people, on the other hand, seem to live partidly in a dream-world, to be permissive
and "liberd" in thar beliefs, to expressthar fedings fredy, and to be very sengtive to the
emotions of others.

These results indicate that the thickness of the "boundary™ which a person places between
their sdf and therr redlity isaquantitative parameter which carries over into al aspects of life.
Once someone's sHf/redity system erects a thin boundary, then that person's subsequent belief
sysems will tend to be of the "thin-boundary” type, making few rigid digtinctions and permitting
entitiesto blur into their opposites. On the other hand, once someone's self/redlity system erectsa
thick boundary, then that person's subsequent belief sysems will tend to place thingsinto gtrict
categories, to diginguish X and not- X mogt strenuoudy -- to be, in short, "thick-boundaried.”
Thisisavery strong piece of evidence that the self/redlity belief system is used as amodél for
al subsequent instances of belief- system formation.

This example, as you may have guessed, was not selected arbitrarily. It is of paramount
importance in the theory of the dua network. Recdll that consciousness, in the dual network
model, has to do with the iterative strengthening of barriers or boundaries. But the dua
network modd certainly does not imply that everyone's barrier-strengthening procedures are
equally powerful. These procedures, like dl others, evolve over the course of alifetime. For one
reason or another, in the course of developing an interna concept of redlity, some infants evolve
stronger boundary-strengthening processes than others. This psychologicd trait then carries
through to their adult lives, influencing theirpersondities and their methods of perceiving and
categorizing the world.

11.2. COLLECTIVE REALITY

Hyperset theory shows that thereisno logica problem with the philosophicaly attractive idea
of redlity asabdief sysem. Mind can belong to redity, while redity belongsto mind. M ental
patterns in the brain can give rise to processes which themsalves make up the brain. The
contradiction is only apparent.

But what's the meset of the concept? If redity isabdief system, then what sort of belief system

isit? One interesting answer to this question is provided by the Stuation semanticigts, and their
intriguing hypersat-based approach to the puzzle of common knowledge.

11.2.1. Reality asa Regress

| will begin obliquely, with an example that is not at al philosophicaly loaded. Consider two
people aring into one another's eyes. Intuitively, one might say that each one of the two Sarers
recognizes the following sequence:
| look at her look a me

| look at her look at melook at her

| look at her look at melook at her look at me
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| look at her look at melook at her look at me look at...
Or, dternady, one might represent the situation by the circular formula
X =11look at her look at X,

(where | use the expression a= b to denote that aand b are equivaent set-theoretic entities,
rather than merely that aisto be assgned the value b.)

What does this have to do with redity? L et us for the moment exclude phenomena such as
mysticism, catatonia, extreme retardation, and schizophrenia -- let us consder a society in which
everyone recognizes and thinks about essentialy the same common externdredity. Then it is
only reasonable to conclude that each member of society recognizes the following sequence:
Everyone recognizes the same phenomena
Everyone recognizes that everyone recognizes the same phenomena
Everyone recognizes that everyone recognizes that everyone

recognizes the same phenomena
Everyone recognizesthat ...
Given thisregress, it istempting to sum the situation up by the hyperset formula
X = Everyone recognizesthat X.

And if "everyone" istoo strong, if one wishes to redtrict consderation to some group such asthe
st of saneindividuas, one may construct asmilar regress leading up to the hyperset formula

X = Every sane person recognizesthat X

There is one obvious complaint againg thiskind of anayss. The infinite regresses | have
congructed are logicaly sensible but psychologicaly absurd, in the sense that the human mind
has only limited recognition abilities. Biologicdly, a some point the sentences "Everyone
recognizes that everyone recognizesthat ... everyone recognizes the same redity” will become so
long as to exceed the memory capacity of the human brain. So, if the regressisinevitably cut off
after some finite point, then what good are the hyperset formulas, which are equivdent only to
the actually infinite regresses?

However, this objection isfar from fatal. To resolve the matter, one need only return to the
definition of mind as patternsin brain. Suppose someone's brain contains the first twenty
iterations of the regress

Everyone recognizes the same phenomena
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Everyone recognizes that everyone recognizes the same phenomena...

This callection of twenty patternsis not at dl unordered; there are Sgnificant patternsin it,
relating to its obvioudy repetitive structure. And if hyperset patterns are permitted, then one of
these patternsis clearly of the form "Take the first 20 iterations of the formula X = everyone
recognizesthat X, from theinitid condition ‘everyone recognizes the same phenomend.” Thisis
anice compact formulawhich alows one to quickly compute the collection in question.

Thelimiting hypersat form is part of a pattern in the first few iterations of the regress. So,
even if the regress of recognitions isnever explicitly completed, the hyperset formula that
encgpsulates the infinite regress may dill be part of the mind. It al depends on whether, in the
definition of mind, one interprets the word "pattern” to include "hyperset pattern” instead of just
"computabl e pattern.”

11.2.2. Common Knowledge
To make thisline of thought alittle more concrete, let us next turn to the Conway paradox. In

ther charming little book The Liar, Jon Barwise and John Etchemendy have expressed this
conundrum in a particularly smple way:

Suppose you have two poker players, Claire and Max, and each is dealt some cards. Suppose, in

particular, that each of them gets an ace. Thus, each of them knows that the following isafact:

s=dther Claireor Max has an ace

Now suppose Dana were to come along and ask them both whether they knew whether the other

one had an ace. They would answer "no," of course. And if Dana asked again (and again...), they
would till answer "no."

But now suppose Dana said to them, "L ook, at least one of you has an ace. Now do you know

whether the other has an ace?' They would again both answer "no." But now something happens.
Upon hearing Max answer "no" Claire would reason asfollows: "If Max does not know | have
an ace, having heard that one of us does, then it can only be because he has an ace." Max would
reason in the same way. So they both figure out that the other has an ace.

Thereisabig difference between the first Stuation Barwise describes, and the second.
Intuitively, Dands satement gave each of them some essentid information. But yet, in a sense,
Danatold them something that each of them aready knew. Thisisthe "paradox.”

The intuitive solution of the paradox is that, prior to Dands statement "at least one of you has
an ace," the fact swas known to both of them, but it was not common knowledge. The puzzle
which this"solution” raisesis what is common knowledge?

One approach isto declare that, by saying that s is common knowledge, one means

Max knows Claire knows s
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Claire knows Max knows s
Max knows Claire knows Max knows s

Claire knows Max knows Claire knows Max knows s

Clearly, if one givesthe name"G" to the group consgting of Claire and Max, then thisis
ubgtantialy the same as

Everyonein group G recognizes s

Everyonein group G recognizesthat everyonein group G
recognizes s

Everyone in group G recognizes that everyone in group G

recognizes that everyone in group G recognizes s

This regress encapsulates, in asense, the fact that sis common knowledge in the group G.
But it isan unwieldy way of representing this fact. Much nicer to say, following Barwise,

X = Everyonein group G knows both X and s

This approach dlows usto give apurely "sociologicd™ definition of redity. One may say that a
catain thing sisin thereality of agroup of peopleif the hyperset

X = Everyonein the group recognizes both X and s
isapattern in this group over some period of time.

Asin the discussion at the end of the previous section, this does not imply that the minds
involved must be capable of infinitely complex perception and memory. It just means that they
carry out along enough segment of the regress to make the limiting hyperset formula a pattern
in this ssgment.

Thisisasubjective, rather than objective, definition of redlity. What it meansis that, when we
look a achair, ingead of smply seeing achair, what we seeisfirg of al aregress of the form

Every sane person seesthisasachair

200



CHAOTICLOGIC 201

Every sane person knows that every sane person seesthisasachair, and aso sees  thisasa
char

Every sane person knows that every sane person knows that every sane person sees  thisasa
chair, and also seesthisasachair

and secondly a hyperset pattern in thisregress:
X = every sane person knows that X, and also seesthisas a chair

So far as| know, thisisthe first ever precise characterization of externd redlity as a subjective
phenomenon. We have not yet arrived a a comprehensive mode of mind and redlity, but the
ideaof collective redity isasgnificant ep dong the way. It shows how agroup of intelligent
entities can generate aredity that is fundamentaly, emergently their own.

11.2.3. The Universal Network

Now, findly, it istime to address the question of the fundamentd relationship between mind
and redlity, from within this hyperset perspective. Let me introduce the word univer se, to refer
to the st containing both mind and physicd redlity. | suggest that the universe may be
understood as a collection of dual networks, linked at the bottom via certain " connector
processes".

Thisisavery naurd idea -- after dl, the lowest levels of the dud network ded with
immediate physical stimuli. So if acollection of dua networks are connected at the bottom, this
means that there are processes interrelating the physical stimuli received by one network withthe
physical stimuli received by the other. These "connector processes' are the only physicd redlity
thereis.

And what form do these "connector processes' take? The arguments of the previous section
imply that they must take theform

X = Everyonein the group G recognizes both X and s
In other words, these lowest-level connector processes which underly the collection of dua
networks, themselvesr efer to the collection of dud networks. They contain the collection of
dud networks. In this sense, one may say that reality contains mind, while mind contains
reality.

What is the difference between smply "seeing achair" and seeing a hyperset pattern of the
form

X = every sane person knows that X, and dso seesthisasachar  ?

Themain practicd differenceis, | suggest, one of solidity. Petterns of the form
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X = every sane person knows X and s

should logicaly receive agreat ded of protection from reorganization. This gets back to the
mind's al-important grouping/scene- making/solidifying processes, which | have said to be
intimetely involved in consciousness

11.2.3.1. Reorganization and Reality

But how exactly do these "scene-making” processes work? How do they determine what sort
of coherent wholesto form out of the chaotic fragments of perception with which they are
presented? They cannot go on internd clues aone -- they mudt rely largely on memory, on
higtorical information regarding what isreally there, or in other words what iscommon
knowledge. Patterns which are of the "common knowledge' form are much more likely to
emerge from their solidifying mechanisms,

Each mind learns to solidify those subnetworks which other minds have solidified. Thusthere
emerges acommon core of "redlity," by akind of feedback relation: the more common
knowledge thereis, the greater incentive minds will have to reinforce common knowledge, and
the more new common knowledge will be crested.

o, redlity isa Hf-referentid, salf-supporting system: each person believesin it because the
other ones do. It isabelief system which transcends the boundaries of any one mind, and is
supported only by the synergetic actions of many minds. One cannot refute the solipsistic
proposition that there is only one mind, and dl others are illusions. What is necessary for the
maintenance of redlity, however, is that these illusory minds must act as though they wereliving
in a cooperatively created world. In other words, where redlity is concerned, patterns of behavior
are more fundamentd than so-cdled “fundamenta existence.”

11.3. PHYSICAL REALITY ASA MENTAL CONSTRUCTION

Up till now, this book has been concerned with solving puzzles regarding the nature of mind.
In this section and the two which follow it, however, | will take a break from proposing new
solutions and present instead a new problem. This represents abit of a digresson from themain
thread of the book, and the impatient reader may wish to skip ahead to Chapter Twelve, dipping
back into this materid later when time permits.

| do have some ideas regarding the solution of this new problem, but they are frankly
gpeculative and not well developed. My main god here isto draw attention to the problem itsdlf,
for it isa problem that, given its tremendous importance, has not recelved nearly the atention it
deserves.

The problemisasfollows. how are physical structuresbuilt from mental structures? Or,
more pointedly: if redity is nothing more than abdief system, then why does this bdlief sysem
obey beautiful, abgract principles like the Schrodinger equation and Eingtein's gravitationd field
equation?
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Thisquegtionisan inver sion of the point of view taken by sysemstheorigslike llya
Prigogine, Erich Jantsch and Hermann Haken (1984). For ingtance, in his classic tregtise The
SHf-Organizing Universe, Eric Jantsch (1980) applies ideas from systems theory to analyze
everything from microscopic particles to molecular soups to brains, societies, evolving
ecosystems and gdaxies. His philosophy is universdig: sdf-organization, he argues, isa
phenomenon underlying all levels of structure and dynamics, perhaps the vitd force of the
cosmos. But his actud methodology isto takeideas developed for studying physical systems and
"extrgpolate them upward" toward the menta and socia reams.

To acertain extent, it may well be possible to study mind and brain using physical idess.
What | am suggesting here, however, isthat it may al so be possible to do exactly the opposite: to
"build down" from the complex to the smple, and somehow derive the laws of physics from the
laws of psychology.

How, then, are physica structures built from menta structures? As dready warned, | do not
have a solution. It seems to me, however, that the most likely sour ce for a solution is quantum
physics, and more specificaly the quantum theory of measurement. In the remainder of this
chpater, therefore, after afew generd philosophical comments; | will briefly review some of the
discoveries of this odd branch of physics, and then explore their relationship with the pattern-
theoretic psychology that was developed in the body of the book. This discussion will serveto
make the basic question more concrete. And it will dso lead us to some surprising discoveries --
such asthe very close relationship between quantum measurement, pattern philosophy, and
the cognitive equation.

Thisisadmittedly aradicd programme. But if oneis serious about the idea that redity isa
belief system, then one cannot avoid the question: where do these €l egant mathematica
properties of redity come from? Today the phrase "Foundations of Physics' refersto atechnica
subfield of theoretica physics. | venture the prediction thet, in a hundred yearstime, it will refer
to abranch of mathematical psychology.

S0, let's get arted. One way to conceptualize the huge gap between physics and psychology
isto think about the two most basic aspects of physicd redlity: the three dimensions of space
and the one dimension of time.

11.3.1. Euclidean Space

The ideas of Chapter Ten imply that three-dimensiond Euclidean space is an dement of a
vay very ussful belief system. Inthe mental hierarchy of an individud conscious system, it lies
well below consciousness, but well above the lowest "raw perception” levels. The postulate of
three-dimensiond space dlows the organization of avast amount of pattern in aremarkably
convenient and productive way.

From this point of view, if the quegtion "why three dimensons' has any aswer a dl, it
should have an system-theor etic answer. There should be some reason why three dimensiond
space leads to a more productive belief system than two or four dimensona space. Maybe, as
has been suggested, this has to do with the fact that three dimensona spaceisthe only Eudlidean
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gpace in which one can tie knots. Or perhaps it has to do with the fact that in three dimensions,
but not in two, any finite graph can be drawn without the crossing of edges.

It may be, of course, that the question has no answer; that the three-dimensiondity of our
exigence is afluke, with no specid meaning. The three-dimensond belief sysemisingrained in
our minds, brains and culture, but perhaps there are other organisms with mind/brains that
naturaly organize thingsin seven dimensions. My suspicion isthat there is something specid
about three dimensons-- but this could be a case of bias, of ""dimension-centriam™!

So Euclidean space is not fundamenta. Thereisasensein which space isfundamentd, but
gpace in this sense means nothing more than separ ation. It means that the mind can consgtently
perceive two different things without perceiving the patterns emergent between them, even
though these emergent patterns are present in its memory, and not hard to find. The existence of
gpace, in this sense, says Smply that two things will often enter different "parts' of the lower
levels of itsdua network. It means that the lowest "perceptud” levels of the dua network can
receive avaiety of different input. This sort of space is essentid to the universal dud network.
But it comes with no inherent dimensiond Structure.

11.3.2. Linear Time

Next, what about time? Without pretending to have arrived at a definitive judgement on the
matter, let us recdl that, according to the cognitive equation, time may be equated with the
passage from substance to structure. In other words, time is the process by which a collection
of processesis replaced by those processes which are 1) produced by the actions of dements of
A upon dements of A, and 2) paiternsin the collection of entities formed by actions of eements
of A on dementsof A.

The cognitive law of mation therefore contains within it the assumption of one-dimensional
time. A cognitive law of motion for two-dimensiond time would involve replacing eech
collection of processeswith two mutually noninteracting collections of processes, rather than
just one. At the next time step, each of these two would then give rise to two new collections.
Thisis not acompletdy fanciful ides; one could Smulate a two-time-dimensona mind on a
computer.

Thiswould of course be subjective time, only indirectly connected with clock time. Clock
time is acomplex congtruct; it comes about as a consequence of the particular structure of space
and it entersinto the mind only as an outgrowth of other high-level concepts. We dl know from
personal experience how uncorrelated subjective time and clock time can be.

11.3.3. Conclusion

Both with space and with time, the gap between physics and psychology is apparent. The dud
network mode suggests an abstract notion of space, and the cognitive equation suggests an
abstract notion of time. But one cannot equate psychological space and time with physical
gpace and time. The movement from one to the other is vastly complex and gpparently beyond
the reach of contemporary science.
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11.4. THE QUANTUM MIND

The psychological sense of building physical structures from mental Structuresis easy to see.
To understand the physical sense of this point of view, we must begin with the commonplace
observation that in quantum physics measuring a phenomenon is equivaent to altering that
phenomenon. One cannot determine the position and momentum of an eectron Smultaneoudy,
not with perfect accuracy -- because the position-determining measurement changes the particle's
momentum, and the momentum- determining measurement changes the particle's position. Thisis
the paradox of quantum measurement.

When no one islooking, quantum systems cannot be assumed to possess definite states, they
exig in superpositions of physical states. An electron can pin ether right or left, but when no
oneislooking, it isnot spinning ether direction -- it iswaiting. And the moment someone 100ks,
it somehow decides which way to go.

Thistechnical paradox givesrise to numerous conceptud troubles. For ingtance, there isthe
paradox of Schrodinger's Cat. Put a cat in abox together with agun rigged to fireonly if a
certain electron turns out to be spinning left. Now until you look, the eectron is spinning neither
right nor left; it isin a State of sugpension or superposition. But as soon as as you look, the
electron assumes a definite state. So when isthe cat shot? At the moment you look? What if your
friend walks into the room aminute later -- from her view, the definite state should be assumed
at the moment she looks.

Oneway of resolving this problem isto smply define consciousness as the reduction of
quantum superposed states to definite states. Thisis the course proposed by John von Neumann,
andtakenupin 9. It isan dtractive ides, athough it does have certain puzzling implications.

For instance, suppose, for the sake of argument, that a mouse is a conscious system. Then
according to the quantum theory, the mouse's thoughts and perceptions play arole in shaping the
universe, Eingein could not digest this; he said something like "1 cannot believe that, when a
mouse looks at the world, it isdtered.” He rgjected Nietzsche'sidea that

A thing would be defined once dl creatures had asked "what isthat?' and had answered their
questions. Supposing one single creature, with its own relationships and perspectives for dl
things, were missng, then the thing would not be defined.

The theory of the universal network sides with Nietzsche and quantum physics, and againgt
Eingtein'sidea of an objectively, rationaly ordered world.

Thered problem with the quantum theory of consciousness, however, is the trouble of
connecting it with the biology and psychology of consciousness. It is clear that, if the quantum
theory/consciousness connection is to be taken serioudy, something further must be done beyond
merdly equating consciousness with reduction. How does reduction from superposition to
certainty correspond with the solidification that, in the dual network modd, is the key function
of consciousness? Unfortunately | will not resolve this question here. However, a bit more
background regarding quantum theory should make the issue clearer.
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11.4.1. Synchronicity

The paradox of quantum measurement ties in with the phenomenon of nonlocal correation,
which is surprisingly dosdy rdaed to Carl Jung's notion of "synchronicity.” In his book
Synchronicity: An Acausal Connecting Principle, Jung suggested that coincidenceis not dways
the result of chance; that there is an additiond force in the universe which causes "gppropriate’,
"meaningful” things to happen a certain junctures. Thisis nat, grictly spesking, apsychologica
hypothesis. To many it ssems more metgphysica than scientific. But, taking into account Bell's
Inequdity and the quantum theory of measurement, one may seeit in arather different light.

Bdl's Theorem from quantum physicsimplies that systems which have interacted previoudy
will be correlated in the future. The smplest example is two eectrons, once coupled but now
very disant -- if oneisobserved by some consciousness to spin one way then the other one
automatically spins the other way. But this example is only the eesest to visudize; the same sort
of thing happens with complex systems that interact then separate. When the entropy of the
probability distribution of the possible states of one system is decreased through observation, the
entropy corresponding to the other system is autometically decreased aswell.

Staed alittle differently, Bell's Theorem is about emer gent pattern. It does not state that
patternsin one part of the universe will cause amilar patterns to emerge in other parts of the
universe. But it does Sate that emergent patterns will spontaneoudy form, spanning distant
systems which have been "physcdly unreated” for along time. That iswhat coincidenceis: itis
apattern emerging between apparently unrelated events.

Therefore, according to accepted principles of quantum physics, looking a the world will in
generad cause certain emergent patterns -- certain coincidences -- to form. This scientificaly
vdidates Jung's basic intuition, in the abstract. | have trouble believing some of the examples
which he givesin Synchronicity. | suspect that virtudly al of the coincidences that occur in
everyday life are genuine chance phenomena. But, interms of quantum physcs, the scientific
possibility isthere for some coincidences to be more than that.

11.4.2. Wheder'sVision

Over the last two decades, John Archibad Wheder -- aleading gravitationd physicist and the
originator of the term "black hole" -- has become a sort of radica activist within the theoretical
physics community. His god is a physics which acknowledges the fact that, while physica
redlity creates observers (such as humans), observers dso create physical redlity. And he has
argued that contemporary scientific ideas are largely inappropriate for this godl.

[N]o dternative is evident but aloop, such as. Physics gives rise to observer-participancy;
observer-participancy gives rise to information; and information gives rise to physics.

Is existence thus based on "insubstantial nothingness'? Rutherford and Bohr made atable no
less solid when they told usit was 99.99... percent emptiness. Thomas Mann may exaggerate
when he suggests that "we are actualy bringing about what seems to be happening to us,” but
Leibniz reassures us that "athough the whole of this life were said to be nothing but a dream and
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the physica world nothing but a phantasm, | should cdl this dream or phantasm red enough if,
using reason well, we were never deceived by it...."

Directly opposed to the concept of universe as machine built on law is the vision of aworld
sdf-synthesized. In this view, the notes struck out on a piano by the observer- participants of dl
times and places, bits though they are, in and by themselves condtitute the greet wide world of
gpace and time and things....

Firdt, dementary quantum phenomena brought to a close by an irreversible act of
amplification. Second, the resulting information expressed in the form of bits. Third, this
information used by observer-participants -- viacommunication -- to establish meaning. Fourth,
from the past through the billennium to come, so many observer-participants, so many bits, so
muchexchange of information, as to build what we call existence.

In the language of hypersets and functions, what Whedler is proposing is that
@) mind = f(physicd redity)
b) physical redlity = g(mind),
for some functionsf and g. In totally non-mathematica terms, thisjust means
a) mind is defined in some way by physicd redity
b) physicd redity is defined in some way by mind

This proposd, made by aleading physici, is obvioudy very much in the spirit of this chapter. |
am not the only one to congder the possihility of reconciling of the psychological view of
external redity as abdief sysem, and the physical view of externd redlity as amedium of
specific dimengondity obeying specific dynamic equations.

11.4.3. Physicsand Pattern

In recent years, anew gpproach to quantum measurement has emerged -- the statistical
approach, pioneered by the physicist Asher Peres (1990). In compressed form, the essence of the
approach isthat measurement isrelated to thestatistical coupling of the measuring system
and the object being measured. Thisides, | suggest, may be precisely what is needed in order
to connect the physica world with the psychology of belief systems.

As Peres puts it, "a measuring gpparatus must have macroscopicdly distinguishable states,”
where macr oscopic is defined to mean "incapable of being isolated from the enviroment.”
Peress thermodynamic arguments show that what is physicaly meant by "macroscopic” is
nothing other than "satigticaly coupled with the environment.” But a measurement deviceis
defined as something with macroscopic sates. Therefore, measurement is conceptualy bound up
with gatistica correlation.
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The sameideawas hinted at years earlier by no less aphysicigt than Richard Feynman:

Proposal: only those properties of a single atom can be measured, which can be correlated (with
finite probability) with an unlimited number of etoms.

Let usthink about this carefully. A corrdation is, essentidly, away of predicting the behavior of
awhole group of entities from the behavior of asmall subset of the group. In other words, a
correlation in acollection of particlesisapattern in tha collection. It is an "gpproximeate
pattern,” according to the technical definition; but it is a pattern nonetheless.

What are we to make of Feynman's reference to an infinite number of atoms? Obvioudy there
isnat an infinite number of aomsin the universe, o if taken literdly thisimplies that
measurements never exis. But if one thinksin terms of pattern, the role of the infinite number of
atoms hereis easy to understand. A corrdation among an infinite collection of atomsis bound to
be a pattern in the collection of aoms, no matter who is determining what is a pattern and what is
not. But a correlation among only finitely many atomsis, to a much grester extent, a matter of
opinion: some observers may recognize it as a pattern, while others may not.

Thus, the Satistical approach to quantum measurement implies that every property of asingle
atom which can be measured is actualy apattern emer gent between the atom and other
atoms. And how can onetédll if agroup of atoms are satigticaly corrdaed? Well, only by
measuring them. But if measuring means detecting a statistical correlation -- then it follows
that the atoms themselves are never directly measured, only collections of "properties’ that arein
fact gatitical correlaions among large groups of atoms.

Onething that this suggestsisthe radica possibility that the physical universeisan
attractor for the " cognitive equation.” It is known that each particle may be produced by
certain configurations of other particles -- thisis shown by the well-known catal ogue of
scattering diagrams. Capra, in his Tao of Physics, hasillugrated this point for a nontechnical
audience in amagterful way. The gatigtica gpproach to measurement implies that, furthermore,
each particleisin fact definable as a collection of patterns among other particles (the specific
patternsin question are statistica correlations).

This may seem to be a somewhat extravagant concluson. If one wants to be less ambitious,
however, one may at least condude the following: if mind is pattern, and if dl that we can
physicaly measure are emergent patterns, then it follows that physica redity isin no way
separate from mentd redlity. Insofar as we can measure it, physical redlity isjust a certain subset
of the collection of patterns that makes up the mind. The only question is how the mind came up
with the temporal patterns governing the behavior of those patterns that we call particles. For
these "tempord patterns' are nothing other than the laws of physics.

11.4.4. Consciousness Revisited

Findly, what does dl this have to say about quantum theory and consciousness? The verdict
isunclear.
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If the physica world congsts of patterns, then the difference between the quantum world and
the classical world has to do with the trangtion probabilities between patterns. In other words, it
has to do with whether, given the problem of computing the joint probability of two independent
events A and B, one

1) multiplies the probability of A by the probaility of B (the classcal view), or
2) uses the path summation formula (the quantum view)

The latter method involves the inter penetration of the two digtinct events, A and B. The
quantum theory of consciousness states that conscious intervention renders this kind of
interpenetration impossible. In the context of the theory of consciousness given earlier, this
impliesthat the barriers erected by consciousness around the patterns it processes somehow
prevent quantum-physical interpenetration, as well as memory reorganization. Isthisa sensble
idea, or merely a surface correspondence between two fundamentaly different things?

11.5. FEYNMAN INTEGRALSAND PATTERN PSYCHOLOGY

The previous section was one long sequence of suggestive speculations. Now | will cap the
chapter off with an appropriate grand finale -- the biggest and most suggestive speculation of
al. 1 will put forth theradicd possihbility that the laws of mind may be used to partidly deduce
the laws of physics, and perhaps even to resolve some of the pressing problems of modern
physics.

Thismay seem to be acrazy idea. But one must recdl that the hottest physical theory of the
decade, gring field theory, impliesthat the universe is a 26-dimensiona space rolled up into a
very thin 4-dimensond cylinder. In thislight, it is hard to pronounce any approach to
fundamenta physics overly bizarre.

11.5.1. Perception and Paths

The early Gegtdt psychologists showed that, given anumber of possible ways of percelving a
figure, the mind will tend to choose the simplest. Smilarly, the philosophica axiom caled
"Occam'srazor" satesthat, dl ese equd, the smplest of a collection of competing explanations
should be preferred. Phrased in terms of pattern theory, these two insights boil down to the same
thing: that the mind tends to make the choice of least algorithmic complexity (where
agorithmic complexity is measured relative to the perceiving mind). In The Structure of
Intelligence, this view of induction and perception is discussed in great detall.

What if, then, one gpplies thisrule of perception to particle paths? In quantum physics, a
particle does not take one definite path from point A to point B; it takes "l paths a once" An
action is assgned to each path; then these actions are summed up in apecia way, yielding the
probability that the particle goes from A to B. But there are numerous technica problemswith
the standard methods of assigning probabilities to the different paths. If one consdersthat the
various paths do not exist except as perceived by some mind, then one immediately arrives at
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the conclusion that the probability of a path should be chosen proportionaly to its dgorithmic
information, relative to the mind which is observing the path.

Thiswould provide a"psychologicd™ derivation of the dynamics of the physica world: the
Schrodinger equation, Newton's Laws, specid relativity and perhaps even generd rddivity. It
would not immediately resolve the question of where the spacetime containing the paths
comes from. However, Whedler (1979) has proposed that spacetime itself may be obtained by
amethod formadly amilar to path summation; thisis the concept of "quantum foam." Perhaps,
given aspacetime A a timet, al possible spacetimes for time t+1 exist & once, each one with a
certain "generdized action.” Then, summing up these actions according to the Feynman formula,
one obtains the probability of going from spacetime A to spacetime B.

Whether thisideayields acceptable physical conclusonsis not yet clear. At very leadt,
however, it illustrates the viability of combining physica and psychologicd ideas. The two
views of externd redity are complementary and perhaps synergetic; they do not contradict one
another.

11.5.2. The Feynman Path-Summation Formula (*)

Let gti denote the proposition that a quantum system isin Sate g a timeti. In his classic 1948
paper, Richard Feynman showed that the quantum-mechanicd probaility of atrangtion from
gut1 to gtz is given by |(outi|get2)[2, where | denotes the integration functional and

(Cutr]oetz) =1 [@ @)/~ (*)

Theintegrd istaken over dl dasscd paths from quta to getz; §(q) isthe Lagrangian of the path g,
and

h=" ()
isthe normaized Planck's constant.

Thisverson of quantum dynamicsis not only eegant but remarkably generdizable. All
contemporary theories of particle physics -- from quantum dectrodynamics to el ectroweak
theory, chromodynamics, grand unified field theory and even gtring theory -- can be cast in the
form of equation (*), with different interpretations for q and different forms for S (Feynman,

1950; Bailin and Love, 1986; Rivers, 1987; Ramond, 1981; Green, Schwartz and Witten, 1987).
Theintegration variable q becomes not a classca path but aclassical field, or afield defined

over a Grassmann agebra, etc. -- but the basic concept remains the same. In agenera context,
equation (*) saystha a quantum system assumes all possible spacetime configurations
congstent with its observed behavior -- it isa"sum over dl possible spacetime configurations.”
But, for amplicity's sake, | will continue to refer to (*) asa"sum over dl possble paths.”

Given the tremendous importance of oscillatory integras of the form (*), it isa curious fact
that the entity "dq" has received no proper definition. As a standard particle physicstext putsit,
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this differentid is"just afancy way of hiding our lack of knowledge about the measure”
(Ramond, 1981).

Because (*) is purdly ostillatory, one cannot defineit directly usng Wiener measure.
Attempts to get around this problem have been few and far between. Feynman himsaf smply
used approximationsto the integrd, without formaly taking the limit. And thet is ill acommon
gpproach. But among more theoreticaly inclined physcists, the most popular srategy for
undergtanding (*) is andytic continuation: one removesthei to obtain ared integrd, definesthe
red integra in terms of Wiener measure, then obtains the integrd in (*) as the continuation of
thisred integra onto theimaginary axis. This dlows one to sudy Feynman integrals using
standard methods from statistica mechanics (Smon, 1979). But it is intuitively most
unsatisfactory. It does not represent (*) asasum over dl possble paths.

In 1967, Ito came up with a clever functiona-anaytic definition for "dg," but his method only
works for alimited class of action functionds S; it does not generdize to relativistic quantum
theory. A little later, Morette-deWitt (1974) suggested an interesting variation on Ito's approach.
And, mogt impressively, in 1976 Albeverio and Hoegh-Krohn used the Parseva relaion to gvea
farly generd Fourier-transform:-theoretic definition of (*). But none of thesetricksisredly
satisfactory from aphysicd, intuitive point of view. They Hill do not represent (*) directly asa
sum over dl possible paths.

11.5.3. The Psychological Connection (*)

So, what is the solution? How can the gap between equation and intuition be bridged? One
option which has not been explored isto introduce the physicadl Church-Turing Hypothes's --
the idea that the physica world must be computable. This principle, pursued by Joseph Ford
(1985), Edward Fredkin (Fredkin and Toffoli, 1982; see also Wright, 1989) and othersin
different areas of physics, sates quite smply that uncomputable entitiesdo not physically
exist. If one accepts the computability principle, then it follows thet, when computing path
integrals, one should not integrate over uncomputable paths. But the number of computable paths
isonly countable, and thus the computability principle may wel render (*) much less
formidable.

Thereis, of course, acatch. The problem of defining (*) hastypicdly been cast in the form:
find ameasur e on the space of dl possible paths from qut1 to get2, under which oscillatory
integrals of the form (*) can exist under generd conditions. But if one isto make sense of the
concept of integrating over computable paths only, one must weaken the concept of measure to
thet of finitely additive measure. A finitely additive measure (f.am.) is a nonnegative-vaued
et function m which obeystherule

m( A union B) = m(A) + m(B)

whenever A and B are measurable and digoint. As the name suggests, to go from ameasure to
an f.am., countable additivity is replaced by finite additivity. One can easly define the Lebesgue
integra with respect to an arbitrary f.am. Many of the nice results of measure theory do not
carry over; but if one could obtain convergence, thiswould be asmal price to pay.
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What sort of f.am. might be appropriate here? This iswhere the psychologica connection
comesinto play. If one accepts that physica redity is psychicaly congtructed, then it follows
that those paths that are smpler to the congtructing mind should have a higher probability of
being followed. In other words, the probability of a path should be proportiond to its
algorithmic information content relative to the mind doing the measuring. This ideaimposes
the pattern-theoretic andyss of mind on the physical world, in an eegant, if technica, way.

The Feynman path summation formulaitsdf may be seen as an incredibly intense patternin
the lower levels of the menta network. The Feynman formulaimpliesthat P[ A and B ] need not
equa F{A]*PB]; but nothing in the dud network model implies that the classicd rules of
probability must hold. In our everyday world, ordinary probability theory approximates the
quantum probability formulae tolerably well. But the dua network mode would apply just as
accurately were this not the case.

A specific particle path is a somewhat |ess intense pattern in the lower levels of the dud
network. But thesmpler apath is, the more intense it can be as a pattern. Gestalt laws of
perception specify that, out of many possible ways of seeing something, the simplest will tend to
be chosen. Thisisaso implied by the pattern-theoretic andyss of induction: given a number of
posshilities, the mind will autometically assign ahigher probatiility to the dgorithmically
smpler choices. What is being suggested in the section is that this rule of perception should be
included as a part of the laws of physics. For, after dl, the physicd world does not exist until it
IS perceived.

11.5.4. Perturbation Theory (*)

To seethe possible usefulness of thiskind of f.am., let usrecdl how (*) isactudly used to
study concrete examples of particle behavior. At present there are two fundamenta Strategies,
perturbation expansons, and |attice gpproximations; but the former is by far the more popular. In
the perturbation approach, onefirst letsti and t2 tend to infinity in (*), thus arriving at an entry of
the "scattering matrix” S. Then, one expands the integrand in a Taylor seriesin terms of some
coupling parameter, and integrates the series term by term, obtaining a " perturbation expansion”
of (*). Findly, Feynman diagrams are read off from the first two terms of this perturbation
series, giving an excdlent intuitive and quantitative mode of particle interactions.

The trouble is, when one proceeds in thisway, one tends to obtain infinite integrals. Thus one
must use the technica procedure of renormdization, which alows oneto "subtract off" these
infinities, leaving only finite integras. In the case of quantum dectrodynamics, renormdization
gives results that agree with experiment to aremarkable degree. The results for
chromodynamics, el ectroweak theory and grand unified theory are not so clear, partly because
for the Lagrangians involved in these theories, tractable perturbation expansions are very
difficult to come by.

But it seems quite plausble that, if one uses an gppropriate f.am. defined in terms of
dgorithmic information, one might be adle to get (*) to converge for the action functionds
involved in physics. Thiswould imply thet the infinite integrals which necessitate
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renormalization are not inherent in (*), but are rather an artifact of the method of perturbation
expansion.

The reason to suspect that agorithmic-information f.am.'s might alow one to bypass these
divergencesis quite Smple: these f.am.'s have a certain natura decay property. They are not
smoothly peaked like Gaussian measures, but they are pesked on avery coarse scae. In short,
dgorithmic-information f.am.'simpose an effective cutoff on (*) in anaurd way, an effective
cutoff which is quditatively quite different from the artificid cutoffsimposed in renormaization
theory. Lacking a detailed analys's, one can &t least say that these f.am.'s suggest that, once one
commits oneself to a computable univer se, an effective cutoff point isinevitable.

11.5.5. Conclusion

So, what's the bottom line? The jury is emphatically out on the speculative physica theory of
this section, on the use of dgoarithmic information f.am.'sto smplify Feynman integras. But my
purposein outlining this theory hereisto illudratein detall the possibility of integrating
psychology with physics. The view of the physica world as a belief system does not contradict
the existence of detailed theories of physics. Far fromit: the two views are complementary, and
beyond this they have an immense potentia to enhance one ancther.

Chapter Twelve
DISSOCIATIVE DYNAMICS

| have analyzed the mind as a collection of interconnected, intercreating processes, and | have
proposed that the overal connectivity structure of this collection isthat of adual network. The
dua network structure, however, is extremdy flexible; it encompasses many possible patterns of
connectivity. One parameter which varies widdly among these possible connectivity patternsis
the degr ee of modularity.

Fodor (1987) has argued that human perceptua processes are strongly modularized, in the
sense that most vision processes need connect only with other vision processes, most hearing
processes need connect only with other hearing processes, and so forth. The origin of this
modularity is as yet unknown -- some of it probably results from straightforward genetic
programming, but the greater part of it may well self-organize as apart of the infant brain's
growth process. Neura Darwinism suggests thet, if there did arise sgnificant connections
between low-level vison processes and low-level hearing processes, these connections would
quickly disappear dueto lack of utility.

Inagmilar way, it is quite possble for higher levels of the dudl network to become
modularized. In this chapter | will use the word dissociation to refer to modularization which
occurs as aresult of childhood or adult menta dynamics, as opposed to modularization which is
present in the brain at birth. For instance, | will talk about per sonality dissociation --
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dissociation involving subnetworks involving significant portions of the sdif/redity belief
system.

Thisis an abgraction and generdization of the revolutionary concept of "dissociation”
introduced by psychologist Pierre Janet around the turn of the century. For nearly three quarters
of a century Janet's work was ignored, assumed to have been superseded by psychoanalytic
idess. In 1970, however, Ellenberger's Discovery of the Unconscious rescued Janet's work from
obscurity and brought it to the attention of the psychological community. Since that time,
dissocidtive phenomena have been studied with increasing vigor, mainly in the context of
multiple persondity and podt-traumatic stress disorder; and they have been related with modern
brain science in a satisfying way (Modell, 1980; Mitchell, Osborne and O'Boyle, 1985).

Here | will integrate the classical concept of dissociation with the dua network modd and the
cognitive equation, thus arriving a a riking new framework for understanding mentdity, one
which synthesizes and (hopefully) clarifies dl the ideas of the previous chapters. The centrd
clam of thisframework isthat partia persondity dissociation is centrd to the formation of
sructurdly congpiratorid belief sysems; which arein turn essentid to productive, creative
logical thought. Or, in aformula: no powerful intelligence without strong internd conflict. What
might at first seem an obstruction to logic, isin fact necessary to the evolution of useful logic-
guiding sysems within the mental network.

This synthetic framework serves to bring the abstract psychology of the previous chapters
closer to everyday human life. For thisreason, it should be of interest not only to psychologists,
but to anyone concerned with better understanding their owvn mentality. It gives, for perhapsthe
firg time, asengble idea of how the credtive diversty and perversty of human persondity
might emerge from the evolutionary dynamics of neura pathways.

And in thefind section, | will argue thet this framework is pregnant with implications, not
only for human psychology, but for engineering. | will propose anew kind of computer science
cdled A-IS, or artificial intersubjectivity. A-1S centers around the idea of programs which
socidly interact with one another and hence develop interrelated, dissociated persondity
gructures. Only in thisway, | contend, could computers ever smulate or supersede the
wonderfully chagtic reasoning of the human brain.

12.1. MULTI-MENTALITY

‘The World is Onel" -- the formulamay have become a sort of number-worship. Three' and
'seven’ have, it istrue, been reckoned as sacred numbers; but abstractly taken, why is'one any
more excdlent than forty-three," or than ‘two million and ten'?

-- William James

This quote is humorous, but at the same time it makes avery serious point. "Uni-" means one, SO
that the very word univer se conced's a philosophica presuppostion. Why should unity be a
fundamenta character of the world? Who says the world doesn't have diversity, rather than
unity, at its core? Why not amultiver se, rather than a universe?



CHAOTICLOGIC 215

What form might a multiversa world take? William James was interested in subjective
realities -- inthe"semi-red" redlities perceived by individua minds. He wanted to understand
the world as an indeterminately large group of interacting, intersecting subjective redlities. And
he wanted to tie thisin with the pragmatist ideathat only obser vable properties arered. But he
was disgppointingly vague on the detalls.

By replacing the word "World" with the word "Mind" in Jamess quote, one obtains an equally
vaid bon mot:

"The Mind isOne!" -- the formulamay have become a sort of number-worship ... why is'one any
more excdlent than forty-three or ‘two million and ten'?

William James broke new ground with his theory of the "stream of consciousness'; hewas dso
one of the firgt to serioudy question the unity of menta experience. In the "stream of
consciousness' metaphor, he did not rule out the possibility of rocks or idands in the stream,
breaking up the flow into severd distinct pieces.

Perhaps the deepest-ever ingght into the fundamentd diver sity of the psyche was achieved by
the novelist Fyodor Dostoevsky. In The Idiot, for example, the angdlic but tragicaly unstable
Prince Myshkin represents an aspect of Dostoyevsky's own consciousness. Myshkin thinks only
good of other people; hisonly desireisto help. Now this certainly does not describe the man
Fyodor Dostoevsky. But Dostoevsky felt and acted thisway at certain times;, Myshkin was one of
his subpersondlities.

Andin The Brothers Karamazov, the four brothers Ivan, Dmitri, Alyosha and Smerdyakov
may be understood to represent separate "voices' in Dostoyevsky's mind, independent
"sreamlets' of Dostoevsky's consciousness. Alyoshaiis aless pathologica Myshkin, the
Myshkin sub- personality tempered by the redism of the rest of Dostoevsky's mind. Dmitri isa
senaudig, a confused womanizer and gambler; Dostoevsky, under the influence of his Dmitri
agpect, gambled his savings avay many times. Ivan isawriter and philosopher, tirdesdy
agonizing over the problem of God in the modern world. Findly, the haf-brother Smerdyakov
represents the "worst of Dostoevsky," the evil, petty, vindictive, cunning sub-persondity thet all
of us possess to some degree. As his diaries suggest, Dostoevsky viewed hisown lifeasa
constant struggle between these various sub-persondlities, these competing modes of
CONSCi OUSNESS.

In recent years, psychologists have rediscovered this Dostoevskyan notion of multi-
consciousness. Mulltiple persondity patients like Sybil and Billy Milligan are virtudly household
names. And severa psychologica theorists have proposed that the kind of "dissociation”
goparent in multiple persondity is different in extent rather than kind from the mentd
dissociation observable in the ordinary person.

Thisiswhat Somerset Maugham meant when he wrote

There are timeswhen | recognize that | am made up of severa persons and that the person that at
that moment has the upper hand will inevitably give place to another.
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Maugham did not have multiple persondity disorder -- each of the "severa persons' making up
his psyche was aware that its name was Somerset Maugham, and was aware of most if not dl of
the experiences had by the other "persons.” But Maugham, like Dostoevsky, was a good enough
sdf-observer to recognize that his mind was to some degree dissociated; that it consisted of
severd largdy disconnected "functiond persondity units”

Ronald Fischer (see McKélar, 1979) reports experiments in which people are asked to
memorize materiad under the influence of dcohal. When sober they exhibit poor recall -- but
when given acohol again thermemory improves. Thisillustrates the phenomenon of "Sate-
dependent memory.” John does not have one unified memory -- drunkenJohn has his own
memory, as does sober-John. The experience reported by Somerset Maugham is one step beyond
this-- saverd persondity units, each possessing its own "unit-dependent memory" aswell as
access to a shared memory store. And multiple persondity disorder is but one step further: an
amazingly large part of the shared memory storeis divvied up among the various independent
persondity units.

The fundamental multiplicity of mind and world was expressed beautifully by the Russan
philosopher Mikhail Bakhtin in his masterwork Problems of Dostoevsky's Poetics:

It should be pointed out that the single and unified consciousness is by no means an inevitable
consequence of the concept of aunified truth. It is quite possible to imagine and postulate a
unified truth that requires a pluraity of consciousnesses, one that cannot in principle be fitted
into the bounds of a single consciousness, one that is, so to speak, by its nature full of event
potential and isborn at apoint of contact among various CONSCi OUSNESSES. ...

Not asingle objective world ... aplurality of consciousnesses, with equal rights and each with
its own world, combine but are not merged in the unity of the event.

12.2. DISSOCIATION AND THE DUAL NETWORK

Aswe have seen, the concepts of multi-redity and multi- consciousness are far from nove;
they date back at least a century, to Janet, Dostoevsky and James. Up to this point, however,
these ideas have not received a systemetic theoretica analysis. | suggest that the dual networ k
model provides the key to understanding dissociative psychologica phenomena.

Recdl that the dua network modd andyzes mind in terms of two semi-autonomoudy
functioning networks an associative memory networ k , which sdf-organizes itsdf according to
the principle that related entities should be stored "near” each other; and a per ceptual-motor
hierar chy, which operates according to the multi-levellogic of aflexible command Sructure.
And it makes the centra hypothesis that these two networ ks ar e super posed.

This superposition implies aroughly "fracta™ structure for the associative memory network.
And, more to the point, it implies that, if asection of memory is somehow split off or
"dissociaed” from the rest of memory, then a section of the mind's control network isdso lit
off, as an automatic consequence. This explains, in one immensely smple step, how the attempt
to suppress unpleasant memories can lead to the creation of an autonomoudly acting and
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remembering psychologica unit. In other words, as will be shown in detail below, it explainsthe
basic phenomenon of traumatic memory and post-traumatic stress syndrome.

Multiple persondity is alittle more complex: it hasto do with the self, an intricate self-
referentia congtruction and a complex belief system. However, we may make afew smple
observations. Post-traumatic stress syndrome is often a consequence of asingle painful event --
e.g. watching a close friend die a bloody desth. Multiple persondity, on the other hand, is
generdly a consequence of repeated painful events, usudly beginning in early childhood.
Very often these events are incestua rape, or severe child abuse.

In post-traumatic stress syndrome, the painful event usudly occurs after the person's self is
formed. The person aready has a unified saf-image, 0 if his mind wantsto shut off offending
memories, it has to shut them away from the well-formed sdif. In multiple persondity, though,
the painful events occur while the person's sf is il forming. Therefore, the "split of f*
memories are subjected to the sdf-formation process, just as much as the rest of the dua
network. While not a complete explanation, this gives some idea of why multiple persondity
disorder should exit, and why different types of traumas should give rise to different
psychologica problems.

12.2.1. Dissociation and the World

On amore philosophical leve, the dua network perspective makes clear that there is not so
much difference between

1) the various persondities of a person suffering from multiple persondity disorder (MPD)
2) the various persondities which exigt in the world
3) the various sub-personalities of anorma person

Just as MPD results from the splitting-up of asingle person's "dud network," so do individud
persondities result from the splitting-up of the univer sal dual network . Thisideaunifies
Dostoevsky's psychologicd idea of multi-consciousness with James philosophical idea of a
multiversal world. It isadramatic concluson -- but a the sametimeit isanew beginning. For it
opens up awhole new way of looking at the mind and world: as multiple phenomena.

Far from being isolated pathologies, dissociative menta disorders are natura and necessary
features of mentd life. In other words, al menta action isakind of interplay between different
"persondities’ -- different semi-autonomous agents, which help to mold one another's redlity,
which possessindividua "senses of identity,” which partidly share the same memory, and which
compete with one another for attention.

Aside from traumatic experiences, what might cause a section of the dua network to split off
and become semi-autonomous? The answer to thisis surprisngly smple. Two things only are
required. In order to split off and survive on its own, asubnetwork must first be completein
itself, in the sense of being a strong attractor of the cognitive equation. And second, it must have
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relatively few connections with the other parts of the mental networks -- otherwise its autonomy
would not last.

From this description it should be obvious that a dissociated subnetwork has something in
common with astructurally conspiratoria belief sysem. The differenceis not absolute, it isone
of degree. A "subnetwork™ is expected to have a more marked dua network structure than a
belief system, which may contain few levels and display the dua network structure only to a
smd| degree.

Oneway to digtinguish the two iswith depth-to-breadth ratio. A bdief sysem tendsto
involve a szeable collection of beiefs on roughly the same levd of abdraction -- the sameleve
of the hierarchical mental network. It is"shalow" but "broad.” On the other hand, a dissociated
subnetwork like a subpersondity tends to span afairly large number of different levels of the
hierarchica network; its depth exceeds its breadth. In other words, a dissociatedsubnetwork
contains al the levels needed to do, whereas a bdlief system only guides other systlemsin doing.

12.2.2. The Subtlety of Personality

A dissociated personality subnetwork or subper sonality is centraly concerned with two
things

1) congtructing the redlity percelved by the mind, and
2) congructing the sdlf-image "percalved” by the mind

Separate persondity subnetworks are interconnected in the sense that they access, to agreat
extent, the same memory store. And they dso have in common certain parts of the sdf/redity
system, particularly the lower and more basic levels.

What makes human beings so interesting is that, by dtering the common aspects of the
sf/redity system, and by dtering the associative memory structure, each subpersondity affects
the environment in which the other subpersondities live. Thus, relaions between
subpersondlities of amind are somewhat more intense than relations between people in the
physical world. Perhaps the best physical-world andogy for the subpersondities of asingle mind
isacommunity of psychokinetics, each one living anormd life, but dso continualy atering
the physica world in response to the dterations made by the others. In such a community, one
could never be sure what was "objectively there," and what was merdly placed there by
somebody dse for some particular purpose. Thisis precisay the Stuation with which
subpersondities are presented.

12.3. TRAUMATIC MEMORIES

Evolutionary psychology reveds that partid persondity dissociaion is not only normd but
necessary for efficient mental functioning. In the history of psychology, however, the main
role of the concept of dissociation has been in the characterization of various pathological
mental conditions. To help bridge the gap between these two perspectives, in this section | will
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discuss perhaps the smplest form of pathologica dissociation: traumatic memory, and the
related " post-traumatic stress syndrome.”

Rape and violent wartime combat might seem to be rather memorable occurences. But
sometimes traumatic experiences such as these are not stored in a person's memory in the
ordinary way. Instead, they seem to enter the mind and disappesar; they are shut off from
conscious memory and reflection, until in certain Stuations, they pop up intensdy and
unexpectedly, rendering the "rememberer” mentdly dysfunctiond.

In the words of van der Kolk and van der Hart (1991),

Lack of proper integration of intensaly emotiona arousing experiences into the memory system
results in dissociation and the formation of traumatic memories. Janet called these new cores of
consciousness "subconscious fixed idess." [ T]raumatic memories of the arousing events may
return as physica sensations, horrific images or nightmares, behaviord re-enactments or a
combination of these. Since fixed ideas have their origin in afallure to make sense of a past
experience, they fulfill no further useful function and lack continued adaptive vaue.

Janet'sterm "fixed idess’ is reminiscent of the dynamica term "fixed point.” It is suggestive of
the idea that traumatic memory systems, like structurally conspiratorid belief systems, are
attractors to the cognitive equation.

All in dl, the phenomenon of traumatic memory fitsin well with the dud network view. Why
do the traumatic memories "split off" and become autonomous? Because, it seems, cartan
experiences are smply difficult to connect with the remainder of the menta network. The mind
tirdesdy seeks to improve its organization, to cut-and- paste parts of the traumatic-memory
subnetwork with eements from the rest of the mind. But these attempts fail; they lead only to
nightmares, re-enactments of the traumatic experience, and so forth.

And why does the mind fail in its attempts to re-organize and integrate the traumatic
experiences? Not, as one might think, primarily because there may be few connectionsto be
drawn, but rather because those connections that could be drawn would be painful ones. When
reorganization hitson areal connection, this connection itself causes severe unfulfillment of
expectations, which isthe definition of strong emotion. Moreover, the specific nature of this
unfulfillment isafeding of decreasing order -- afeding of disruption of previoudy coherent
thought systems. Thisis precisaly, according to Paulhan (1880) and S, the definition of
unhappiness.

But when "correct” reorganizations are continually rejected because of induced unhappiness,
the very reor ganization processes become confused. They futilely seek to adjust and improve
their dgorithms and Strategies. The behaviord result is that traumatized individuas react to
dressful Stuations with irrelevant movements, emotions and thoughts that represent fragments of
thelr traumatic memories. As Janet (1904) put it, it is"asif their persondity development has
stopped at a certain point and cannot expand any more by the addition or assmilation of new
eements.” In the most extreme case, there is the phenomenon of re-enactment. A person may
repeatedly go through the exact words and physica motions of atraumatic experience, yet il
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be unable to answer smple questions regarding these words and motions. Thisimplies thet the
traumatic memories are not integrated with the higher-level verba and cognitive sections of the
dud network.

Normally we retain high-level patternsin our experiences, and very little of the experiences
themsdlves. But the Situation with traumatic memoriesisjust the opposite. They have not been
subjected to the usua rearrangement-based patter n recognition processes, because these
processes proved too painful. Instead, they have been retained as a full-fledged subnetwork of
perceptions and actions, untouched by rearrangement. In Janet's words,

The person must not only know how to do it, but must also know how to associate the happening
with the other events of hislife, how to put it inits place in that life-higtory which each of usis
perpetudly building up and which for each of usis an essentid dement of his persondity.

What sort of therapy helps people suffering from traumatic memories? What is needed isto
get the relevant rearrangement processes back to thelr prior Sate of productivity. One useful
drategy isto introduce ideas which arer elated to the traumatic memories, but easier to integrate
into the remainder ofthe memory. For ingance, many women stigmeatized by rape have been
helped by imagining that they have al the power in the world, and are applying it to the
perpetrator. This alows the specific memories of the rape to be cut-and-pasted with other
elements of memory, in aless panful way.

S0, in sum, what differentiates traumatic dissociation from hedthy dissociation? Traumétic
memories are a case of forced dissociation. They represent combat between the hierarchica and
heterarchica gructures of the dua network. Integrative rearrangements of the traumeatic
memories are "successful” by the standards of the associative memory network; they lead to
common pattern. But they are regjected by the control network due to the unhappiness they
generate, the abundance of unfulfilled commands.  Successful, hedlthy dissociation, on the
other hand, is harmonious with the entire dynamic of the dua network: it involves adivison into
successfully functioning pardld subnetworks, which ded with different, relatively unrdated
problems. For this very reason, hedthy dissociated subnetworks are able to ded with the
common segment of memory without fear of wresking havoc.

A traumatic memory subnetwork must isolate itsdlf from the rest of the memory, or eserisk
causng distracting, troublesome pain. Thus traumatic subnetworks can never truly be functiond.
No subnetwork of such smdl size can betruly completeinitsdf -- the task of intelligenceistoo
difficult for that.

12.4. DISSOCIATION AND THE STRUCTURE OF BELIEF

| have said that the sdf/redlity belief sysemisatool for guiding the congtruction of other
belief systems. Boundary-setting, discussed in Section 12.2.6, is one example of this"guiding”
dynamic at work. Another example, | sugges, is the topic of this chapter: dissociation. A small
child learns dissociaion in the context of her self/redlity belief sysem. This dissociated
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sructure, then, servesto create other autonomous menta structures -- in particular, structuraly
conspiratorid belief sysems, which are crucid for the production of cregtive logical reasoning.

Toexplain why this should be true, let us begin chronologicaly. Once achild learns that she
mugt act different ways in different Stuations, then she will inevitably develop rdaively
autonomous persondity subnetworks corresponding to the different situations. These
subnetworks will not achieve the degree of separation observed in multiple persondity patients,
but they may wel have different likes and didikes, and different ways of responding to the same
gimulation.

This process may aso belooked at linguigticdly, in terms of the theory of language given
above. Asachild learns that the same words have Sgnificantly different meanings in different
gtuations, she will develop a semantic system with distinct subsystemns, and these subsystems
will take the form of semi-autonomous subnetworks of her dua network. And the same thing
that happens with spoken language, will aso happen with the language of behaviors (as
discussed earlier) -- thus resulting in semiautonomous per sonality subnetworks.

Now: these different sub-persondities, though they may have arisen in pecific socid
gtuations, may well emerge on cue in Stuations different from those which dicited them. The
way a person dedswith any given issue may be determined by different sub-per sonalities at
different times. Thusthereisakind of evolutionary competition among subpersondities.

The result of this competition, | sugges, is that a sub-persondity will flourish to the extent
that it can creete belief systemswhich

a) support itsinterests, and

b) stand little chance of being destroyed by other sub-persondities

Quite clearly, the best way to achieve (b) isto create structurally conspiratorial belief sysems.

If abdief system depends on outside factorsfor its survivd, these factors may well shift when
the controlling subpersondity shifts. But if a belief sysslem can survive on its own, then it hasa
much better chance of "waiting out” an hogtile environmert.

To see the importance of this, recall the conclusion reached in Chapter Ten, that productive
belief systemstend to be those that receive sgnificant support both externdly and
conspiratorialy. Externa needs are too strongly fluctuating to be relied upon as a sole source of

support.

But how do these structurally conspiratorid belief sysems develop in the first place? Yes,
they areattractors of the cognitive equation, so they may be arrived at by "accidenta iteration.”
But, to use evolutionary terminology, how much better to have aforce explicitly selecting for
gructura conspiracy! Thisis exactly what dissociated persondlity networks do. Each of the
competing subnetworks specifically reinfor ces related subnetworks that operate by structural
congpiracy, and are hence not easily disrupted by competitors.
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My contention is that this specific sdective pressure is mentaly necessary. It is not necessary
for the maintainance of structural conspiracies, which by definition maintain themsdves. Rather,
it isuseful for the maintainance of belief sysems that, while close to being structuraly
conspiratorid, are not yet truly sef-supporting. Theiteration of the cognitive equation is mind-
wide; it is not restricted to the individua subnetworks that happen to be converging to attractors
on their own. It will tend to mix up subnetworks even if they are somewhat closeto being
autonomous. The extra push toward autonomy may often be needed; and persondity dissociation
may thus be acrucid part of the development of effective thinking and acting.

12.4.1. Dissociation and Logic

The socid uses of dissociation are obvious. In today's society, it rarely paysto have the same
persondity a work and a home. But what | am claming here is something much stronger and
moreradical. | an daming that partid persondity dissociation is not only socialy but
cognitively necessary. By biasing the selection of belief systlems toward the structuraly
conspiratorid, it aso biases the selection of belief systems toward the productive. Or in other
words. no dissociated persondity, little chance of systematicaly crestive belief production.

And this brings us back toward logic and reasoning. Logic, if you recal, requires a semantic,
andogicd sysem to guideit. And the quality of achain of logicd reasoning depends &t least as
much on the productivity of this system as on the cleverness of the deductive rules. The
conclusion? Without dissociation, ideological, paranoid and otherwise pathologicaly
conspiratorid belief sysemswould be rare. But so would be productive bdlief systems; and
hence, so would be crestive logicd thought.

This findly, is the true meaning of the phrase chaotic logic. Dissociated persondity
networks, and the structurally conspiratorid belief systems which they encourage, are atractors
of the cognitive equation, supporting gpparently chaotic dynamics. But without these strange
attractors, the rich reserve of anaogies required for deductive logic would never be created.
Logic thrives on chaos. And, conversdly, logic itsdf isacrucid tool of these belief systems and
ub-persondities; it aids them in maintaining their attractor satus ... chaos thrives on logic.

12.4.2. The Meta-Dynamics of Paranoid Belief

A complete treatment of the practica psychologica implications of aogtract "dissociaive
dynamics' would be out of place here. However, it ssems worthwhile to give at least afew hints.
Toward thisend | will now briefly return to Jane's paranoid belief system, discussed extensively
in earlier chapters.

Now | will be able to say alittle more about the possible origin of this paranoid system. But
as before, | must emphasize that this andysisis not intended as a definite diagnosis of Jane's
gpecific problems, but only as an illustration of certain generd principles.
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Jane demongtrates many, many different dissociated subpersondities. Chief among these,
however, are: 1) an obsessive subpersondity, in which theworld is perceived as hostileand in
need of constant mocking scrutiny; and 2) a happy-go-lucky subpersondity, in which she makes
an excdlent impression on others, and is good- natured almost to the point of being giddy. These
are not full persondities; they share most of the same memories. But on the other hand, they are
not merdy moods either; they are dternate systems of perceiving and classfying data.

The dternation between these two subpersondities might perhaps be characterized as "manic
depression.” But obvioudy thereismoreto it than that. It would seem that, at very leadt, thereis
an unusudly complex form of manic depresson a work here.

In the obsessve subpersondity, Jane is overly attentive to facial expressons, the colors of
clothing, the letters on license plates, and so forth; she is congtantly categorizing thingsin
unusua ways. She demondtrates perceptua patterns that might be called "compulsive,” and her
behavior tends toward the unusud and offensive. She will often act out specifically toshock
people; cursing, flashing, meking faces, and so forth.

In the happy-go-lucky subpersondity, on the other hand, Jane is opent minded and accepting
toward other peoplée's ideas. She tends not to notice details of her surroundings, and her behavior
is generdly quite unexceptiond, except for perhaps a dight overexuberance. Sheis a pleasant
companion and a good conversationdist.

The worst of Jane's depressed moods seem to occur when sheisin her obsessive
subpersondity, and sheis unable to find an exter nal sour ce to blame for her problems (most of
which are caused, of course, by the paranoid behavior of the obsessive subpersondity). The
happy-go-lucky subpersondity is not so concerned about these problems, and thusis not worried
about where to place the blame. But every time the obsessive subpersondity comes back again, it
needs to once again begin its quest for an externa source to blame.

Therefore, obvioudy, it isin the interest of the obsessive subpersondity to creete a blame-
placing belief sysem which will per sist even when the happy-go-lucky subpersondity isin
charge. How can this be done? One way, of course, isto create a structurally conspiratorial
blame-placing bdlief system; a system that will maintain itsdlf indefinitely, thet will keep itsdf
going even when the reigning subpersondity has no use for it. Perhagps the obsessve
subpersondity will experiment with many different strategies for apportioning blame; but those
which are less conspiratoria will be lesslikely to survive the fluctuations of control. Persondity
dissociation provides a selective for ce in favor of structura conspiracies -- such as Jane's
paranoid belief system.

12.4.1.1. A More Detailed M odel

In dightly more detail, one may say that the obsessve subpersondity contains the following
bdiefs

Do =1 am unloved
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D1 =1 am good and lovable
D2 = They are bad

Thissysem isnot in itsaf an attractor for the cognitive equation; it is partidly saf-supporting,
but it dso relies on the remainder of the mind.

The dynamics here are smple enough. Do chips away at D1; but Ds, acting on Do, helpsto
produce D2. And D, acting on D1 and Do collectively, helps to produce Dx, thus counteracting
the effect of Do (if oneis not loved by bad people, that increases rather than decreases one's
goodness).

But the problem isthat Do isa self-reproducing beief: it is a pattern in the behavior which it
produces. It would seem that perhaps Do, and the behavior systems to which it is connected, are
in themselves an attractor for the cognitive equation. For the behavior system is produced by Do
and itsown internd dynamics; and Do is produced by the behavior system.

The effect of Do on D1 is s0 strong that Dr is powerless to counteract it, even via Dz. So what
could be more natural than to counteract Do by making D2 sdif- perpetuating -- by making it a
sructura conspiracy. This iswhat is accomplished by the conspiratoria belief system described
elier. Thisentire belief system, with dl its complex dynamics, is merdy away of making Dz as
strong as possible.

This, on a deeper leve, isthe meaning of Jane's refusd to take blame. Taking blame for
anything subtracts from Dz, which isaready in serious trouble. But the conspiratorid belief
system within D2 works along with D1 to counteract the powerful effect of the self-reproducing
belief Do -- which is, mogt likely, the root of the whole problem.

Thisis dill avery partid, sketchy anadlyss of Jane's Stuation. But it does serveto illugrate the
perverse complexity of the mind. One sees belief- system attractors grow within subpersondity
attractors, and spawn new belief-system attractors in the common memory, generating a
hierarchy of chaotic pattern dynamics -- and dl to counteract the runaway self- perpetuating
growth of asingle beief of the utmost smplicity: "I am unloved.”

12.4.3. Dissocation and Creativity

In Jane's case, dissociative dynamics led to an undesirable, overly rigid belief system. But
precisely the opposite result is also possible. To give alittle bit more of the flavor of the
implications of dissociative dynamics, | will now discuss very briefly two famous thinkers, and
comment on the role dissociativedynamics played in the development of their thought. These two
thinkers, Jung and Nietzsche, are extreme cases; they were more dissociated than most. But they
provide an excdlent illugtration of how belief systems, once they have been made conspiratoria
by dissociative dynamics, may aso benefit from dissociation in more complex ways.
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12.4.3.1. Carl Jung

In his autobiography, Carl Jung analyzed his life work as aresult of cooperation and
competition between two subpersondities, whom he called "Number One' and "Number Two."
Number One was scientific and practical; Number Two was spiritud and cared little for the
material world. Each of the persondlities erected its own belief sysems: Number One arationd,
objectivist view of the world, and Number Two amystical perspective.

And each of these belief systems turned out to be strong enough to withstand those times when
the non-supporting subpersondity wasin control. The result was a menta network capable of
incredibly powerful, uniquely credtive logica reasoning. The competition between the two
subpersondities necessitated the development of much more robust belief systems than would
otherwise have been necessary. And the robustness, the structural conspiracy of these belief
systems, was crucid in providing andogies to guide Jung's masterful trains of thought.

For asmple example, consder Jung's concept of an "archetype’ -- an abstract concept-
structure or meta-idea which appears in myths, thoughts and dreams. A smple example isthe
"resurrection” theme of "the hero and rescuer who, athough he has been devoured by a mongter,
gppears again in amiraculous way having overcome whatever monster it was that swallowed
him." This archetype may be found in arather high percentage of movies, novels and televison
shows!

These archetypd images are not specific pictures-- the hero need not be big and strong, and
the monster need not be a huge ugly green beast. The archetypeisadructure -- inthiscasg, it is
agructure which conssts of roles and types of events. Each role (hero, rescuer, monster) and
each type of event (rescue, devouring, miraculous regppearance) is Smply a certain collection of
patterns, and each one may befulfilled in a number of different ways. As Jung put it,

Again and again | encounter the mistaken notion that an archetype is determined in regard to its
content, in other words that it isakind of unconscious idea (if such an expression be admissible).
It is necessary to point out once more that archetypes are not determined as regards their content,
but only as regards their form and then only to avery limited degree. A primordid imegeis
determined as to its content only when it has become conscious and is therefore filled out with
the materid of conscious experience.... The archetype in itsdf is empty and purely formd,
nothing but a... possbility of representation which isgiven a priori. The representations
themsalves are not inherited, only the forms, and in that respect they correspond in every way to
the ingtincts, which are dso determined in form only. The existence of the ingtincts can no more
be proved than the existence of the archetypes, so long as they do not manifest themsdves
concretely. (Jung, 1934)

The collection of al archetypes, Jung cdled the collective unconscious. It is-- or so he
hypothesized -- an inherited, a priori part of every human mind. Archetypes subtly guide dl our
fedings and acts.

Jung did not discover the notion of "archetype' by scientific, logicd analyss, he discovered it
by pureintuition, by seeing the mind as an abstract structure and thus understanding its
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dynamics. Thiswas clearly a Number Two process. But apure, spiritud intuition into the mind
would not survive the scrutiny of Number One. In order to keep its insight, Number Two had to
form the concept of "archetype" into a powerful, self-maintaining idegtiona system. Once this
was done, then Number One not only refrained from destroying the concept; it latched onto it,
refined and improved it, yidding the scientific notion of archetype that we have today.

12.4.3.2. Friedrich Nietzsche

For amore complex example, consider the philosopher Friedrich Nietszche, on whose work |
have drawn so liberdly in these pages. Nietzsche demonstrated at least two prominent
subpersondities. One was a mild-mannered, friendly and quiet philologist, who hated seeing
pain and avoided causing anyone offense. Theother was the brilliant, arrogant madman whom
one seesin works such as Thus Spake Zar athustra and Ecce Homo. Following the example of
Jung, let us cal these Number One and Number Two.

Number One forced Nietszche to hide the radica nature of his philosophy from casua
acquaintances. On one occasion, when he saw a horse about to be whipped by its master, it
caused him to stop and vigoroudy hug the horse. Number Two, on the other hand, impelled
Nietszche to forsake classica philology and spend hislife in a passonate quest to destroy al the
ideas he had been raised to believe in: religion, mordlty, redity, truth. As has often been
observed, Nietszche's philosophy encapsulates the contradiction between these two emotiond
views of the world.

Number Two supported an incredibly productive belief system of mistrust and skepticism, a
disputative belief sysem capable of seeing the holesin any argument, and of combining and
manipulating abgtract ideas with grest dexterity. This belief sysem was not merdy nihilidtic; it
conssted of arepogtory of clever tools for demongtrating the falsehood and vanity of any point
of view. One seesthis system &t its best in gphoristic works such as Human, All Too Human,
Dawn and The Gay Science.

Number One, on the other hand, silently upheld the vaues againgt which Nietzsche's work
railed. It supported amore traditiona philosophical belief system: it perceived an underlying
order in the universg, it repected the difference between right and wrong, and it had a powerful
sense of soiritudity. Thiswas the belief system which governed Nietzsche's persond life.
Number Two wrote tirades against asceticism; but Number One was responsible for Nietzsche's
own acetic lifestyle.

Nietszche's most dramatic idess, the eternd recurrence and the will to power, may be seen as
theresult of synthesizing aspects of these two conflicting belief systems. The eterna
recurrenceisacynic's verson of afterlife. The will to power isawill superseding dl notions of
"freewill" -- with its militaristic "order of rank," it isamordity "beyond good and evil."
Zarathustras beautiful sermons display an atheistic spirituaity beyond dl traditional concepts of
Godliness. Much of the strength of Nietzsche's thought results from its dua source: two
productive structurdly conspiratorid bdief systems, usudly competing but occasondly
collaborating.
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12.4.3.2. Conclusion

Thisvery cursory study of two grest thinkers indicates an important aspect of disocigive
dynamics. namdy, the possibility of syner gy between competing belief systems. Two
dissociated subpersondities need not become unified in order for their respective belief systems
to combine with one ancther. Jung and Nietszche are two examples of cregtivity emerging from
the synergy between the structuraly congpiratoria belief sysems of different subpersonalities.
In neither case was a complete synthesis attained; but in both cases, the interaction and partia
reconciliation of conflicting systems proved tremendoudy productive. Therole of this sort of
synergy in everyday life and thought would seem to be a very fertile area for future investigation.

12.5. DISSOCIATION IN THE UNIVERSAL NETWORK

What is the difference between the dissociated subpersondities of a given mind, and the
separate minds in the world? After dl, as noted above, the different mindsin the world are just
semi- autonomous subnetworks of the univer sal network. Are we al perhaps just
subpersondities of one particularly advanced multiple persondity patient?

In fact there are two main differences between a collection of subpersondities and a collection
of minds. Thefird isthat subpersondities are mainly consciousin sequence, not in parald.
Thereis cartanly some pardldism going on: one sub-persondity may passonately declare”|
love you" while another amultaneoudy and slently ridicules the remark. One subpersondity
may raise agun to shoot someone, while a competing subpersondity causes the legs to buckle,
preventing the murder from occurring. But these are extreme cases, thereis much more
pardlelism among the different personditiesin the red world.

And the second outstanding difference regards memory access. Dissociated subpersonalities,
athough largdly disconnected from one another, ill have access to acommon memory store. In
norma mental functioning, every persondity has access to almost every memory in thebrain; the
main thing is that different memories are more easily accessible to certain subpersondities than
to others. State-dependent memory isimportant but not al-pervading.

Different persondities in the world, on the other hand, do not appear to have accessto a
common memory store. They are connected at the bottom, viaphysica redlity, but thiswould
seem to be the extent of their interconnection. This feature is shared by the various persondities
of multiple persondity patients -- for instance, one persondity may speek Itdian while the other
does not. But even in these exceptiona cases, thereis still some degree of common memory,
much more than between two different people.

Rupert Sheldrake's (1981) theory of the mor phogenetic field attempts to destroy this
digtinction, daiming that each person's memory isaphysically connected to everyone else's. So
that, for instance, once a thousand people learn the formula for solving cubic equations, asmal
"trace" of that knowledge becomes available to everyone, thus making the process of learning
that particular formula universally easier. But this dramatic prediction remains unproven.
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So, in sum, | have argued that the difference between the people in the world and the
ubpersonditiesin one mind isameatter of degr ee rather than asolute digtinction. There are
serious differences in the amount of paralel consciousness and the existence or amount of
common memory. However, thereisasgnificant amlarity in that, just as different
subpersondities collectively create their "environment,” different people collectively cregte their
reality.

12.5.1. Why Not OneMind Only?

These observations lead to some rather interesting philosophical ideas regarding the nature of
our collectively constructed externd redlity. Subpersondities are behooved to encourage
structural conspiracies, so that the processes they create will not be destroyed by other
subpersondlities. And by the very same reasoning, minds will do well to creete redity sructures
which are structuraly conspiratorid, so that the redlity structures they create will not be
disrupted by other minds. This suggests that the immensely conspiratorid nature of the redity
belief system ispartly due to its congtruction at the hands of competing individual
CONSCiOUSNEesses.

In other words: aredlity created by one consciousness aone would probably not be very
interesting; it would have little generativity, because of the lack of structurdly conspiratoria
subcomponents. The competition of different minds encourages structura conspiracy and hence
cregtivity. Thisisanove, thought-provoking answer to the old philosophica puzzle of the
multiplicity of consciousness. Why not, as the Buddhists would have it, one mind only? Because
that path leads to a boring world. If intricate structure isa criterion of vaue, then multiple
consciousnesses are valuable indeed.

This does not exactly give areason for the multiplicity of consciousness. But it does give
something to go on: the fact that the universal network is a multiple-consciousness attractor for
the cognitive equation. If one accepts this equation, the only other thing to be taken on faith is
that, starting from wherever it did, the universe eventualy converged on the universal network
gructure. And chaosimpliesthat there need be no red "reason” for this. Convergence to one
attractor rather than another can be the result of pure chance.

12.5.2. The Future of Reality

These ideas may appear to be "out there" -- philosophica meanderings unrelated to any issues
of practical substance. However, this perception is far from accurate. The ideas of this section are
not merely theories about the relation between mind and redlity, they are computational theories
about the relation between mind and redlity. And this means that they fall into the category of
theoretical science, rather than philosophy. For, athough current technology does not permit the
relevant tests to be carried out in areasonable time frame, these theories are in principle
empiricaly testable.

To seethis, congder the possibility of virtual reality technology, which would dlow usto put
our consciousnesses into Smulated bodies living in Smulated physicd redities. Given this
technology, it would be easy to experiment with different methods of collective redity
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congtruction. For ingtance, one could easily verify whether or not one consciousness is enough
tocreate an intricate world -- whether or not, as | have clamed, defensive structurd conspiracy is
required.

Short of full virtud redlity, it isdso possible to conceive of smulated realities: collections of
atificidly inteligent programs that collectively congruct their own smulated world. Though
less dramétic, thiswould aso permit direct empirical test of theories about the mind/redlity
relation.

12.7. ARTIFICIAL INTERSUBJECTIVITY

The dua network mode and the cognitive equation are computational modds. In thisfind
section, | will briefly explore the possihility of usng them to do practical computation: to design
acomputer program which displays the sengtive interplay of chaos and logic thet today is only
associated with human minds. | will describe anew type of dgorithm, which | cal an artificial
inter subjectivity, or an A-1S.

12.5.1. Al and Alife

Let us gpproach this "new type" of program obliquely, by way of the two most exciting
branches of modern computer programming, artificial intelligence and artificial life....

In atificd intdligence, firg of dl, one seeks to write programs that will display the full range
of behaviorsthat humans term "intelligent.” There are dready programs that display many of the
behaviorsthat we cdl intdligent -- doing arithmetic, agebraand cdculus, flying jet planes,
playing championship chess, recognizing voices, etc. But these programs are invariably narrow
in focus: each one doesits schtick, and is unable to generdize its intelligence to other contexts.
A true atificid intelligence would be able to learn, and learn how to learn, just like a person. It
would not necessarily need to know how to do long division like apocket calculator -- but it
would need to be able to learn to do long division, to recognize faces, to play new games.....

In the 1960's and early 1970's, it was widely bdlieved that one could achieve artificid
intelligence by programming a sufficiently clever "thought adgorithm.” Now, however, thisisno
longer believed to be the case. Today it seemsto be aterribly long way from voicerecognition
and championship chessto true intelligence. The modern Al community istorn between the
"old-fashioned" programming approach and the even older, recently rediscovered
"connectionist” approach, which seeks to write programs loosaly modeling brain function.
Connectionism has succeeded in many instances where old-fashioned programming repeatedly
faled. But on the other hand, connectionism seems to be even |ess competent at dedling with
logica reasoning and other agpects of linguistic thought.

When one writes a program to imitate the brain, on a coarse or afineleve, oneiswriting a
program that isin a sense chaotic and unpr edictable. One knows what the program does, but
not how it does it. Thus, the "connectionist™ gpproach to Al has given up on the programme of
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first logicaly understanding an action, then writing a program to smulate it, based on this
understanding. This unpredictable aspect of connectionist programs leads us to our second type
of programming: artificid life, or Alife. Alife seeks to take the self-organizing unpredictability

of connectionism and gpply it to the smulation of biochemical or ecological rather than neurd
systems.

For ingtance, severd different groups of researchers have run computer smulations of self-
organizing systems of enzymes, with an eye toward understanding the dynamics underlying the
evolution of life. Bagley and Farmer (1992) have trested the origins of metabolism in thisway;
whereas Boerlijst and Hogeweg (1992) have modeled the well-known hypercycle theory of the
origins of reproduction.

And, on ahigher level of organization, various researchers have smulated "artificia
ecosystemns' from ant farms (Collins and Jefferson, 1992) to systems of coevolving parasites
(Hillis, 1992). Richard Dawkins (1986) hes investigated "biomorphs,” atificid life-like shapes
generated by a process of progressive evolution.

125.2. A-IS

In Al, one seeks programs that will respond "intelligently™ to our world. In Alife, one seeks
programs that will evolve interetingly within the context of their smulated worlds. It is, of
course, not difficult to synthesize these two research programmes to obtain the idea of
"atifiadly intdligent artificdlife’ -- syntheticaly evolved life forms which display intdligence
with respect to their smulated worlds.

But A-1S, artificid intersubjectivity, congtitutes alarge step beyond this hybrid concept "Al
Alife" What | am suggeting isto smulate asystem of intelligences collectively creating their
own "virtual" reality. The universa network modd gives us a blueprint for the joint
condruction of redities; it remains only to put this blueprint into action by making appropriate
computationd smplifications.

12.5.2.1. The Nature of Human Intelligence

What would be the point of this formidable programming exercise? There are a least two
good reasons for pursuing A-1S. Frgt of dl, congder: what if we humans are only intelligent
with respect to the reality which we have collectively created for ourselves? Setting aside the
unanswerable question of the "ultimate”’ existence of an objective redity, whet if we are only
intelligent with regard to the subj ective redity which we collectively, culturdly congtruct and
live within?

This propogition may be taken in two ways. First of dl, if one consdersintelligence asan
optimization problem, as was done in Chapter Three, then the conclusion becomes amost
inevitable on an evolutionary leve. After dl, the general problems of globa optimization and
pattern recognition are unsolvable. The human brain conssts of some generd- purpose
optimization routines, plus awhole host of specia case tricks tailored to the environment for
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which it evolved. The gructure of this network of tricky processes may be universd -- but two
entities with the same globa structure don't necessarily have the same abilities.

But whether or not one accepts this "evolutionary” point, the same conclusion follows even
more surdly on apsychological level. For as we have dready shown in Section Two, the adult
human mind is specificaly tailored to its culturally constructed collective redity. We have to
learn to think -- an infant doesn't know how; and the evidence shows that a child left to mature
in isolation will never adequately learn how. We learn to think by practicing on examples that
have to do with the sdif/redlity belief system; and this belief system develops properly only ina
social context, i.e. only in the context of explicitly creating subjective reality jointly with
other minds.

So, in sum, it ssems quiite certain that the process of thinking isinseparable from the
process of participating in the collective construction of areality. And this fact indicates the
necessity for anew type of programming, ore that might be roughly characterized as"Al + Alife
+ feedback between thetwo" -- acommunity of artificia intdligences, acting in an atificid
collective subjective world, and smultaneoudy acting on that world.

One might argue that collective congtruction of redlity is not enough -- that the"adult/child"
relationship is necessary for the development of intelligence; that one cannot become a menta
adult”" except under the tutelage of another "mental adult.” But of course, thisis a chicken/egg
problem ... who was the first "mental adult"? On the other hand, the ideathat collective redity
congtruction is necessary for intelligence presents no chicken/egg problem, since there can quite
well have been afirg tribe, afirst group of organisms biologicaly capable of some degree of

intelligence.

Perhaps, indeed, a high degree of intelligence requires afew dozen or afew thousand
generations of co-creating minds working gradudly toward "menta adulthood." But even if this
istrue (which | rather doubt), it is not afundamental obstacle to the concept of A-1S, of
computer-smulated intersubjective redity congruction. After dl, in Alife one routindy
smulates thousands of generations of evolution. In Theodore Sturgeon's classic story
"Microcosmic God," a scientist breeds organisms caled "Neoterics' which evolve so fast that
they zoom beyond mankind in amatter of months. Robert L. Forward's novel Dragon's Egg
pursues asmilar theme, except that the rapidly evolving organisms are not human creations but
the naturd fauna of a neutron star. With sufficiently fast computers, this science-fictiona
"souped-up evolution” process could be smulated, dlowing artificid intersubjectivity to evolve
Over NUMerous generations.

The universa network mode gives us a handy, eegant way of achieving this type of
artificially inter subjective program. Namely, smulae a collection of dual networks
connected at the bottom. The bottom levels are the collective subjective redity; the upper
levels are the individua thought processes of the "intelligences" Under appropriate conditions,
the presence of a common subjective redity will cause thevarious networksto "converge’ to a
common beief system regarding their "externd world." This belief system will inevitably
include arolefor themselves -- an "imaginary subject.”
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12.5.2.2. Dissociation and A-1S

And this leads us to the second good reason for pursuing A-1S: only by developing a natura
sdf/redlity dynamics can amind develop dissociated persondities which encourage structurd
congpiracies. Productive structural conspiracies are necessary for systematic, clever logical
thought. Therefore, by creating a community of collective-redity-congtructing Al agents, we
will impliatly be cregting Al agents which are adept and creative at directing their logical
reasoning. This credtivity will not necessarily be a clone of human creetivity, because the
specific belief systems and dissociated subpersondities may be different. But there is no reason
that computer creetivity achieved in thisway could not equa or exceed human credtivity in

utility and power.

Thisis afundamentally new approach to computer reasoning. Neither connectionism nor old-
fashioned rule-based Al comes anywhere near to acknowledging the complex process dynamics
of inteligence. Alife and connectionist Al may support various types of sdlf-organization and
chaotic dynamics, but only A-I1S can fully manifest the systlematic self-generation thet is chaotic
logic.

12.5.2.3. The Question of Implementation

From the point of view of current implementation, there are two serious problems with the A-
IS ideac memory and speed! It would be possible to run a stripped-down version of A-1Son
contemporary massively paralel supercomputers, such asthe larger "Connection Machines'
manufactured by Thinking Machines, Inc. But athough one could surdly obtain interesting
resultsin this way, one would not be doing justice to the concept of A-1S. Agents of reatively
little inteligence will be able to develop collective redity dynamics of relatively little subtlety.

Each human brain contains maybe 1011 smple numeric processors. Even with more efficient
techniques at our disposdl, it seems unlikely that we can get by with onlya few hundred thousand
anad ogous processing units, which is what today's most powerful pardle computers offer. The
most promising path toward developing true A-1S, | suspect, is nanotechnology (Drexler, 1986),
or molecular computing. Usng molecular computing techniques, it may be possble, in the not-
too-distant future, to gr ow computers, to creste computers which add onto themselves like
crystdsdo. If this possbility should be actudized, then it will not be too long before A-1S
becomes a practical science.

AFTERWORD

We are surrounded by complex systems; they touch every aspect of our lives. Our bodies,
minds, and environments are dl incredibly, perhaps incomprehensibly, complex. And yet, until
very recently, there has never been anything close to a science of complex systems.

Maingream "smple-systems' science can give us dazzling details about the structure and
function of our cdls, molecules and atoms; and it can explain for us the flickerings and motions
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of objects so digtant that it would take millions of years to reach them. It can help us cure
diseases, and ingtruct us how to build computers, bridges, cars, airplanes, houses, nuclear
weapons, precision surgica tools, et cetera et cetera.

But virtudly dl of these achievements were arrived at by the same "meta-method": study a
complex phenomenon by

1) bresking it down into its component parts
2) studying the component parts
3) usng information about the component parts to obtain information about the whole.

This method, often caled "reductionism”, does not seem to work very wdl for sudying
complex, sdf-organizing phenomena. It would seem that something beyond reductionism is
needed, some new methodology better suited to complex systems.

This observation was the raison detre of the mid- century cyberneticy genera systems theory
movement. And it isthe focal point of an increasing amount of contemporary research: in
physics, in biology, in computer science, in psychology, in chemidry,.... We have no completely
generd theory of complex systlem dynamics, but we have awedth of interesting details and
moderately generd ingghts. The theory of chaotic dynamica systems hasgiven us afairly good
understanding of phenomena like wesether, heartbeats, and smell. By putting together neurd
network theory, dynamica systems theory and informeation theory, we can begin to understand
ggnificant agpects of the mind and brain. By synthesizing ingghts from mathematics, biology
and physics, we can begin to understand biologica evolution.

My god in writing this book was see whether, by combining current ideas regarding complex
system dynamics with the patter n-theor etic psychology developed in my earlier books, it might
not be possible to work out adynamics of mind. Thisis, everyone will agree, atask a which
reductionist science has utterly failed.

We began, if you recdl, with four "intuitive equations':

Linguistic system = syntactic system + semantic system

Belief system = linguistic system + self-generating system

Mind = dual network + belief systems

Reality = minds + shared belief system

Now we are in a position to understand how much, and how little, these system-defining
equations revedl. The cognitive equation gives the flow of mind, and these equations describe

attractors which direct thisflow. To take the "flow" metgphor one step further, the system-
defining equations are something like complexly-contoured continents, guiding the flow of the
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vast chaotic ocean that is pattern space. But yet they are not quite like continents, because they
are themselves formed from the flow of the ocean itsdf.

As emphasized throughout, dl thisis only a beginning. We have considered a decent number
of concrete examples -- but not enough. The abstract ideas given here must be fleshed out by
further contact with the nitty-gritty details of redl languages, red trains of thought, redl cultures,
red belief systems, red persondities, rea subjective redlities.

However, | do fed that some genuine insght has been gained. Previoudy uncharted regions
have been tentatively explored. Thefirst few steps have been taken toward understanding that
most mysterious and most essentia process by which logic interfaces with self-or ganizing habit
... by which order synergizes with chaos to form the complex patterns of becoming that we cal --
mind.
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