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Preface

‘Only connect’.
E.M. Forster, Howards End

The deep connections that exist between the classical differential geometry
of surfaces and modern soliton theory are by now well established. Thus,
Bicklund transformations, together with Darboux-type transformations in the
form of the Levy transformation and the so-called Fundamental Transformation
of differential geometry, have proved to be important tools in the generation of
solutions to the nonlinear equations of soliton theory. Eisenhart, in the preface
to his monograph Transformations of Surfaces published in 1922, asserted that

During the past twenty-five years many of the advances in differential geometry of
surfaces in euclidean space have had to do with transformations of surfaces of a given
type into surfaces of the same type.

Thus, distinguished geometers such as Bianchi, Calapso, Darboux, Demoulin,
Guichara, Jonas, Ribaucour, and Weingarten all conducted detailed investiga-
tions into various privileged classes of surfaces that admit such transformations.

It is with the class of surfaces that admit invariance under Biacklund-Darboux
transformations that the present monograph is concerned. Invariance under a
Bicklund transformation turns out to be a generic property of all solitonic equa-
tions. In the geometric context of this monograph, solitonic equations are seen
to arise out of the nonlinear Gauss-Mainardi-Codazzi equations for various
types of surfaces that admit invariance under Bécklund-Darboux transforma-
tions. The linear Gauss-Weingarten equations for such surfaces provide, on
injection of a Bicklund parameter, linear representations for the underlying
nonlinear soliton equations.

XV



xvi Preface

Accordingly, Béacklund-Darboux transformations with their origin in the
nineteenth century provide a natural bridge between classical differential geom-
etry and modern soliton theory. Pseudospherical surfaces, surfaces of constant
mean curvature, Bianchi and isothermic surfaces are amongst those shown in
the classical literature to admit Bécklund transformations and associated non-
linear superposition principles known as permutability theorems. The latter
provide purely algebraic. algorithms for the iterative generation of solutions of
the solitonic equations linked with such classes of surfaces.

Here, our aim has been to provide a monograph describing, through the
medium of Bicklund-Darboux transformations, the many remarkable connec-
tions between results of classical differential geometry of the nineteenth and
early twentieth centuries and soliton theory of modern times. The level of treat-
ment is very much that of the classical works of Darboux and Bianchi to which
this monograph owes an enormous debt. This is to be regarded as an intro-
ductory text for practitioners in soliton theory who wish to become acquainted
with underlying geometric aspects of the subject. It is appropriate for use as a
upper level undergraduate or graduate-level text for applied mathematicians or
mathematical physicists. Indeed, it has grown out of a course on the geometry
of soliton theory given over several years at the University of New South Wales.
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General Introduction and Outline

The foundations of the differential geometry of curves and surfaces were laid in
the early part of the nineteenth century with the monumental works of Monge
(1746-1818) and Gauss (1777-1855). Monge’s major contributions were col-
lected in his Applications de I’Analyse a la Géometrie published in 1807. The
1850 edition of that work is of particular value in that it includes an annotation
by Liouville (1809-1882) detailing additional contributions to the subject by
such luminaries as Frenet (1816-1888), Serret (1819—1885), Bertrand (1822—-
1900) and Saint-Venant (1796-1886), whose work in geometry was motivated
by his interest in elasticity. Gauss’ treatise on the geometry of surfaces, in-
stigated by a geodetic study sponsored by the Elector of Hanover, was the
Disquisitiones Generales Circa Superficies Curvas published in 1828. Therein,
Gauss set down the system of equations that bears his name and which time has
shown to be fundamental to the analysis of surfaces. Indeed, this Gauss system
and the symmetries that it admits for privileged classes of surfaces underpin
the remarkable connection between classical differential geometry and modern
soliton theory to be the subject of this monograph.

The origins of soliton 'theory are likewise to be found in the early part of the
nineteenth century. Thus, it was in 1834 that the Scottish engineer John Scott
Russell recorded the first sighting, along a canal near Edinburgh, of the solitary
hump-shaped wave to be rediscovered in 1965 in the context of the celebrated
Fermi-Pasta-Ulam problem by Kruskal and Zabusky and termed a soliton. Scott
Russell observed that his so-called great wave of translation proceeded with a
speed proportional to its height. In a vivid account of water tank experiments
set up to reproduce this large amplitude surface phenomenon, and described in
areport to the British Association in 1844, there is also depicted the creation of
two such waves. However, the limited duration of Scott Russell’s experiments
apparently did not allow him to observe the dramatic interaction properties

1



2 General Introduction and Outline

of these waves in their entirety. Moreover, at that time, neither the nonlinear
evolution equation descriptive of their propagation nor the analytic means to
predict their interaction properties were to hand.

It was in 1895 that two Dutch mathematicians, Korteweg and de Vries, de-
rived the nonlinear wave equation which now bears their name and adopts the
canonical form

Us + Uyyx + 6Uu, =0. (0.1)

This models long wave propagation in a rectangular channel and provides,
through a simple travelling wave solution, a theoretical confirmation of the
existence of the controversial solitary wave observed some sixty years earlier
by Scott Russell on the Union canal. However, it is less well-known that what is
now called the Korteweg—de Vries (KdV) equation had, in fact, been set down
earlier by Boussinesq in his memoir of 1877 entitled Essai sur la Théorie des
Eaux Courantes. Indeed, a pair of equations equivalent to the KdV equation
(0.1) appeared as early as 1871 in two papers by Boussinesq devoted to wave
propagation in rectangular channels.

The KdV equation was to be rediscovered in the mid-twentieth century by
Gardner and Morikawa in 1960 in an analysis of the transmission of hydromag-
netic waves. It has since been shown to be a canonical model for a rich diversity
of large amplitude wave systems arising in the theory of solids, liquids and
gases.

The advent of modern soliton theory was heralded in 1965 by the rediscovery
of the KdV equation in the context of the celebrated Fermi-Pasta-Ulam prob-
lem. Thus, in a pioneering study by Kruskal and Zabusky, the KdV equation
was obtained as a continuum limit of an anharmonic lattice model with cubic
nonlinearity. The existence of solitary waves in this nonlinear model which pos-
sess the remarkable property that they preserve both their amplitude and speed
subsequent upon interaction was revealed via a computational study. The term
soliton was coined to describe such waves which had originally been observed
in a hydrodynamic context by Scott Russell. However, the problem of obtaining
an analytical expression descriptive of the interaction of solitons still remained.

It turns out that, remarkably, a generic method for the description of soliton
interaction has its roots in a type of transformation originally introduced by
Bicklund in the nineteenth century to generate pseudospherical surfaces, that
is, surfaces of constant negative Gaussian curvature K = —1/p2. The study of
such surfaces goes back at least to Edmond Bour in 1862, who generated the
celebrated sine-Gordon equation

1
02
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General Introduction and Outline 3

from the Gauss-Mainardi-Codazzi system for pseudospherical surfaces parame-
trised in terms of asymptotic coordinates. The sine-Gordon equation was subse-
quently rederived independently by both Bonnet in 1867 and Enneper in 1368
in a similar manner.

A purely geometric construction for pseudospherical surfaces was reformu-
lated in mathematical terms as a transformation by Bianchi in 1879. In 1882,
Bicklund published details of his celebrated transformation B, which allows
the iterative construction of pseudospherical surfaces. In 1883, Lie presented
the decomposition B, = ]l..‘;IJB.,,/zlL.cr which shows that the Biacklund transfor-
mation B,, in fact, represents a conjugation of Lie transformations L, L’
with the parameter-independent Bianchi transformation Br/,. Thus, the Lie
transformations serve to intrude the key parameter o into the original Bianchi
transformation.

In 1892, under the title Sulla Trasformazione di Bdcklund per le Superfi-
cie Pseudosferiche, in a masterly breakthrough, Bianchi demonstrated that the
Bicklund transformation B, admits a commutativity property By, Bg, = Bg, Bo,
aconsequence of which is a nonlinear superposition principle embodied in what
is termed a permutability theorem. The evidence that Bianchi’s permutabil-
ity theorem has important application in nonlinear physics had to await the
work of Seeger et al. in 1953 on crystal dislocations. Therein, in the context
of Frenkel and Kontorova’s dislocation theory of 1938, the superposition of
so-called eigenmotions was obtained via the classical permutability theorem.
Indeed, the interaction of what today is called a breather with a kink-type dislo-
cation was both described analytically by means of the permutability theorem
and displayed graphically. The typical solitonic features to be later discovered
numerically in 1965 for the KdV equation, namely, preservation of velocity
and shape following interaction, as well as the concomitant phase shift, were
all derived by means of the permutability theorem for the sine-Gordon equation
in this remarkable paper.’

In 1958, Skyrme derived a higher-dimensional sine-Gordon equation in a
nonlinear theory of particle interaction, while in 1965 the same equation was
set down by Josephson in his seminal study of the tunnelling phenomenon in
superconductivity for which he was later to gain the Nobel Prize. In 1967, Lamb
derived the classical sine-Gordon equation in an analysis of the propagation of
ultrashort light pulses. Lamb, aware of the earlier work of Seeger et al., ex-
ploited the permutability theorem associated with the Bécklund transformation
to generate an analytic expression for pulse decomposition corresponding to
the two-soliton solution. Later, in 1971, he used the permutability theorem to
analyse the decomposition of 2N r light pulses into N stable 2 pulses. The ex-
perimental evidence for such a decomposition phenomenon had been provided



4 General Introduction and Outline

by Gibbs and Slusher in 1970, who recorded the decomposition of a 61 pulse
into three 2 pulses in a Rb vapour. In the same year, Scott had noted how the
permutability theorem may also be exploited in the study of long Josephson
junctions.

In 1973, Wahlquist and Estabrook demonstrated that the KdV equation,
like the sine-Gordon equation, admits invariance under a Biacklund-type trans-
formation and moreover possessés an associated permutability theorem. The
novel pulse interaction properties observed by Zabusky and Kruskal in their
original numerical study of the KdV equation are captured analytically in the
multi-soliton solutions generated by iterative application of this permutability
theorem.

In 1974, a Bicklund transformation for the nonlinear Schrodinger (NLS)
equation

i + gex +vg*lq| =0 (0.3)

was constructed by Lamb via a classical method developed by Clairin in 1910.
A nonlinear superposition principle may again be constructed by means of the
Bicklund transformation. The NLS equation has important applications in fibre
optics. It seems to have been first set down independently by Kelley and Talanov
in 1965 in studies of the self-focusing of optical beams in nonlinear Kerr media.
Subsequently, in 1968, Zakharov derived the NLS equation in a study of deep
water gravity waves. Hasimoto, in 1971, obtained the same equation in an
approximation to the hydrodynamical motion of a thin isolated vortex filament.
Implicit was a geometric derivation of the NLS equation wherein itis associated
with a motion of an inextensible curve in R3. This association of an integrable
equation with the spatial motion of an inextensible curve will arise naturally in
our study of the geometry of solitons.

Thus, by 1974, the Bicklund transformations for the canonical soliton
equations (0.1)-(0.3) were all in place and in that year a National Science
Foundation meeting was convened at Vanderbilt University in the USA to as-
sess the status and potential role of Bicklund transformations in soliton theory.
In 1973, the celebrated generalised ZS-AKNS spectral system had been in-
troduced by Ablowitz et al. A broad spectrum of 14-1-dimensional nonlinear
evolution equations amenable to the Inverse Scattering Transform (IST) can be
encapsulated as compatibility conditions for this ZS-AKNS system, The latter
was exploited by Chen to derive auto-Bicklund transformations for (0.1)—(0.3)
in an elegant manner.

The linear structure of the ZS-AKNS system permits the application in soliton
theory of another important class of transformations with their origin in the
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nineteenth century, namely, Darboux transformations. The latter arose in a
study by Darboux in 1882 of Sturm-Liouville problems. However, they are
but a special case of transformations due to Moutard and introduced earlier
in 1878 in connection with the sequential reduction of linear hyperbolic equa-
tions to canonical form. Iterated Darboux transformations were constructed by
Crum in 1955 in connection with related Sturm-Liouville problems. In 1975,
the Crum transformation was taken up by Wadati et al. and used to generate
multi-soliton solutions of integrable equations associated with the ZS-AKNS
system. In geometric terms, these iterated versions of Darboux transformations
occur in the classical theory of surfaces as Levy sequences as described in
Eisenhart’s Transformations of Surfaces.

In 1976, Lund and Regge, en route to the celebrated solitonic system which
bears their name, made the crucial observation that the ZS-AKNS system for
the sine-Gordon equation is nothing but a 2 x 2 representation of the classical
Gauss-Weingarten system for pseudospherical surfaces. This connection was
made independently in the same year by Pohlmeyer.

Thus, by 1976, it was clear that Bicklund and Darboux transformations,
with their origins in the classical differential geometry of surfaces, have deep
connections with soliton theory. The aim of the present monograph is to bring
together these strands and to give an account not only of their historical connec-
tions, but also of modern advances. It builds upon the complementary earlier
monograph by Rogers and Shadwick (1982), which presented a non-geometric
account of Bicklund transformations and their applications in soliton theory
and continuum mechanics. The geometric viewpoint in this monograph is in-
spired in many respects by the work of Antoni Sym published in 1981 under
the title Soliton Theory is Surface Theory. It is the exploration of this theme
that, in part, motivated the present work.

Chapter 1 presents an account of the connection between the classical
Bicklund transformation and its variants and modern soliton theory. It opens
with the derivation of a classical nonlinear system due to Bianchi which embod-
ies the Gauss-Mainardi-Codazzi equations for hyperbolic surfaces described in -
asymptotic coordinates. Specialisation to pseudospherical surfaces produces the
celebrated sine-Gordon equation. There follows, in Section 1.2, a description of
the geometric procedure for the construction of pseudospherical surfaces along
with the derivation of the induced auto-Biécklund transformation for the sine-
Gordon equation. In Section 1.3, Bianchi’s permutability theorem is derived via
this Bécklund transformation, and a lattice is introduced whereby multi-soliton
solutions may be generated in a purely algebraic manner. Pseudospherical sur-
faces corresponding to one- and two-soliton solutions of the sine-Gordon equa-
tion are constructed in Section 1.4. Thus, the stationary single soliton solution is
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seen to correspond to the pseudosphere, while the non-stationary soliton leads
‘to the Dini surface, namely the helicoid generated by simultaneous rotation
and translation of Huygen’s tractrix. The two-soliton solution is obtained via
the permutability theorem, and pseudospherical surfaces corresponding to en-
trapped periodic solutions known as breathers are presented. In Section 1.5, it is
shown that the Bicklund transformation for surfaces parallel to pseudospherical
surfaces may be induced in a straightforward manner. This extends the action
of the classical Bécklund transformation to a class of Weingarten surfaces. The
chapter concludes with a treatment of another important class of surfaces which
have a solitonic connection, namely that which bears the name of Bianchi. This
class is determined by the system of equations

1 u
a,,-}-i%'i E%bcosmzo,
b,,+l& 1&acosm=0,
2p 2p (0.4)
1/pub . 1 .
muv_'__ p——Sln(J.) +— &—Sm(l.) —absln(l)-:O,
2\pa u pb v
Puy = 0,

where X =—1/p? is the Gaussian curvature and u, v are asymptotic coordi-
nates. In 1890, Bianchi prcscntcd a purely geometric construction for such hy-
perbolic surfaces. The determining constraint p,,, = 0 was retrieved one hundred
years later by Levi and Sym (1990) in their search for the subclass of hyper-
bolic surfaces which possess an associated integrable Gauss-Mainardi-Codazzi
system. Their procedure was based on the intrusion by Lie group methods of a
spectral parameter into a 2 x 2 linear representation of the Gauss-Weingarten
system for hyperbolic surfaces. In Section 1.6, a spherical representation is
used to show that the Bianchi system (0.4) is, in fact, equivalent to the nonlin-
ear sigma-type model

(PNNu)u'l"(PNNv)u:O, N2=ly Nt:

b = 0 (0.5)

Thus, this important system of modern soliton theory has its origin in classical
differential geometry. Indeed, a vector version of (0.5) is implicit in the work
of Bianchi.

An elliptic variant of the Bianchi system is shown to deliver the well-known
Ermst equation of general relativity, namely

lng lng &.&;

; =0. 0.6
2p 2 0 7= fﬁ(g) Pzz (0.6)

&t
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To conclude, a Bicklund transformation that connects hyperbolic surfaces is
constructed in a geometric manner. This is then specialised to provide an in-
variance which admits the constraint associated with the Bianchi system. The
resulting Bécklund transformation is then applied to a degenerate seed Bianchi
surface to generate a one-soliton Bianchi surface.

Chapter 2 is concerned with how certain motions of privileged curves and
surfaces can lead to solitonic equations. Thus, in Section 2.1, the classical sine-
Gordon equation is arrived at by consideration of motions of an inextensible
curve of constant curvature or torsion. In the latter case, the curve sweeps
out a pseudospherical surface. In Section 2.2, the AKNS spectral problem for
the sine-Gordon equation is derived via the so(3)—-su(2) isomorphism applied
to its 3x3 Gauss-Weingarten representation. In Section 2.3, the discussion
turns to privileged motions of pseudospherical surfaces which are associated
with soliton equations said to be compatible with, or symmetries of, the sine-
Gordon equation. Particular classes of motion of pseudospherical surfaces are
considered. One is linked to a continuum version of an anharmonic lattice
model which incorporates the important modified Korteweg-de Vries (mKdV)
equation

0 + Oyxx + 6020, = 0. 0.7)

This mKdV equation, like the KdV equation (0.1) to which it is connected by
the Miura transformation, is of considerable physical importance and arises,
in particular, in plasma physics in the theory of the propagation of Alfvén
waves.

Another important motion of pseudospherical surfaces, purely normal in
character, is shown to produce a classical system due to Weingarten and Bianchi
which may be found in Eisenhart’s A Treatise on the Differential Geometry of
Curves and Surfaces in connection with triply orthogonal systems of surfaces
wherein one constituent family is pseudospherical. This system adopts the form

91).; - exey, COte + eyex‘ tane = 0,

(_e,, ) _L (l sme) LTy
cos8/), p\p /; sin®
0 1 0.8)
(—y—'-) +—(lc0s9> +2&=0,
sinf/,  p \p , cosf
1
Orr — 0y = Fsine cos 6.

Bicklund transformations for both the continuum lattice model and the above
system are then shown to be induced by gauge transformations acting on an
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AKNS representation. To conclude this chapter, in Section 2.4, the mKdV
equation is generated via the motion of an inextensible curve of zero torsion.
The motion of solitonic Dini surfaces is then investigated and triply orthogonal
Weingarten systems of surfaces are thereby constructed.

In Chapter 3, the discussion turns to the classical surfaces of Tzitzeica which,
like pseudospherical surfaces, emerge as having an underlying soliton connec-
tion. It was in the first decade of the twentieth century that the Romanian
geometer Tzitzeica investigated the class of surfaces which is associated with
the important nonlinear hyperbolic equation

(nh)eg =h —h72, (0.9)

to be rediscovered some seventy years later in a solitonic context. In fact, the
study by Tzitzeica of the surfaces associated with this equation may be said to
have initiated the important subject of affine geometry. Therein, the Tzitzeica
equation (0.9) describes the so-called affinsphéren.

In Section 3.1, the class of surfaces ¥ determined by the so-called Tzitzeica
condition K = —c2d*, ¢ = const is introduced, wherein d is the distance from
the origin to the tangent plane to X at a generic point. The linear representation
of the Tzitzeica equation as originally set down by Tzitzeica is rederived and
its dual is then used as a route to another important avatar of (0.9), namely the

affinsphéren equation
R, RR,
(RZvZ)u B ( v ) o

as obtained by the German geometer Jonas in 1953. This integrable equation
is then shown to arise naturally in a Lagrangian description of an anisentropic
gasdynamics system for a certain three-parameter class of constitutive laws.
In Section 3.2, a Bicklund transformation for the construction of suites of
Tzitzeica surfaces is derived in a geometric manner, and its connection with
the classical Moutard transformation of 1878 is elucidated. The action of the
Bicklund transformation on the trivial seed solution A =1 of the Tzitzeica
equation (0.9) is then used to generate an affinsphire with rotational symmetry.
Tzitzeica surfaces corresponding to one- and two-soliton solutions of (0.9) are
then constructed. In particular, a Tzitzeica surface corresponding to a breather
solution is displayed.

It turns out that the Tzitzeica equation is embedded in another classical system
which surprisingly has an even longer history. This solitonic system has become
known as the two-dimensional Toda lattice model

(nhn)uy = —hns1 + 2hy —hno1, neZ. (0.11)
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This nonlinear differential-difference scheme, to be rediscovered almost a cen-
tury later in modern soliton theory, is actually to be found in a treatise of Darboux
published in 1887. There, it was derived in the iteration of what have become
known as Laplace-Darboux transformations. The latter, like the contemporary
Moutard transformation, arose in connection with the iterative reduction of lin-
ear hyperbolic equations to canonical form. They have interesting application
to the theory of conjugate nets in the classical differential geometry of sur-
faces. This aspect of Laplace-Darboux transformations is described at length
in Eisenhart’s Transformations of Surfaces. Here, in Section 3.3, the notion of
a Laplace-Darboux transformation is introduced along with key associated in-
variants. Itis shown how application of a Laplace-Darboux transformation leads
to the Toda lattice scheme (0.11). The Tzitzeica equation is then generated as a
particular periodic Toda lattice. An invariance of the general two-dimensional
Toda lattice model is presented which, in particular, preserves periodicity. It is
then shown how Laplace-Darboux transformations may be applied iteratively
to produce a suite of surfaces on which the parametric lines constitute conjugate
nets.

In Chapter 4, we focus upon the NLS equation (0.3). The latter seems to have
escaped the attention of the geometers of the nineteenth century even though
it has a simple geometric origin in the evolution of an inextensible curve mov-
ing through space with speed v = kb, where k is its curvature and b its binormal.
In Section 4.1, the NLS equation is derived in a geometric manner, and soliton
surfaces corresponding to single soliton and breather solutions are presented
along with general geometric properties and the connection to the Heisenberg
spin equation

S;=SxSs, S*=1, (0.12)

where ¢ is time and s is arc length. In Section 4.2, a solitonic system linked to
the NLS equation, namely the Pohlmeyer-Lund-Regge model,

B¢ — Oy — €2 cos Bsin 6 + (¢ — $2) cos O cosec’d =0,
) ) 0.13)
(4 cot?8), = (dycot?8),

is also derived in a geometric manner. This system arises in the study of rela-
tivistic vortices. It is shown to be related, in turn, to the sharpline self-induced
transparency (SIT) system

=siny + v, tany,
Xex X vk TanX . 0.14)
Vix = —VyXs COtX — VyXx(COSX Siny)™
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which stems from the unpumped Maxwell-Bloch system - _

E,=P, P,=EN,

1 - _ _ (0.15)
N, = —-E(EP +EP), N*4+PP=1.

Intheabove, Eand P = €' sin x .denote, in turn, the slowly varying amplitudes
of the electric field and polarisation, while N = cosy is the atomic inversion.
The unpumped Maxwell-Bloch system is likewise shown to be linked to the
stimulated Raman scattering (SRS) system

Aix = —SAy, Ayx =38A;, Sr=AlA,, (0.16)

where A;, A; are the electric field amplitudes of the pump and Stokes waves,
respectively. The connection between the SIT and SRS systems and the NLS
equation is then established via the compatibility of the latter with the unpumped
Maxwell-Bloch system. Thus, an appropriate time evolution of the eigenfunc-
tion pair in the AKNS representation for the NLS equation produces the system
(0.15). In geometric terms, this unpumped Maxwell-Bloch system arises out of
certain motions of Hasimoto surfaces in the same way as the mKdV equation
or Weingarten system come from appropriate compatible motions of pseudo-
spherical surfaces. In Section 4.3, the NLS equation is derived in an alternative
manner via a geometric formulation originally developed in a kinematic anal-
ysis of certain hydrodynamical motions by Marris and Passman in 1969. The
auto-Bicklund transformation for the NLS equation is derived in this represen-
tation at the level of the generation of Hasimoto surfaces. Spatially periodic
solutions of ‘smoke-ring’ type are thereby generated.

Chapter 5 is concerned with yet another classical class of surfaces which have
a soliton connection, namely isothermic surfaces. These surfaces seem to have
their origin in work by Lamé in 1837 motivated by problems in heat conduction.
An important subclass of isothermic surfaces were subsequently investigated
in a paper by Bonnet in 1867. These Bonnet surfaces admit non-trivial families
of isometries which leave invariant the principal curvatures k; and k, and,
accordingly, both the Gaussian curvature JC = k;k; and mean curvature M =
(k1 + &2)/2.In Section 5.1, the Gauss-Mainardi-Codazzi system associated with
isothermic surfaces parametrised in curvature coordinates is set down, namely

O,z + By + K1K2e2® =0,
Ixx 'yy 1K2 (017)
K1y + (k1 — k2)8y =0, Kox + (kg — k)0, =0

and a reduction originally obtained by Calapso in 1903 is made to the single
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fourth-order nonlinear equation

(22) +(2) +@y=0. 0.18)
Z /xx Z Jyy

In Section 5.2, the notion of isothermic surfaces in R**2 is introduced, and
an integrable generalisation of the classical isothermic system (0.17) is derived.
In Section 5.3, a vector Calapso system which represents an extension of (0.18)
for isothermic surfaces in R**2 is constructed along with a Lax pair. Connection
is made with the stationary Davey-Stewartson II equation which is shown to de-
scribe isothermic surfaces in R*. Likewise, the Davey-Stewartson III equation
may be associated with isothermic surfaces in Minkowski space M*. Section 5.4
turns to classical results on the transformation of conjugate nets which have im-
portance in soliton theory. It is shown how the conjugate net equation is invariant
under the so-called Fundamental Transformation which, in turn, can be decom-
posed into a Combescure and two radial transformations. In Section 5.5, this
classical result for R* is shown to be actually valid in spaces of arbitrary dimen-
sion. The classical notion of the Ribaucour transformation for curvature nets is
likewise generalised. These results are then used to obtain a Bicklund transfor-
mation for isothermic surfaces in R*+2, In Section 5.6, a permutability theorem
for the Fundamental Transformation for conjugate nets in R*2 is constructed,
and various important geometric implications are recorded. Thus, planarity,
cyclicity and constant cross-ratio properties of the Bianchi quadrilateral are
established. In Section 5.7, a Bicklund transformation and associated compact
permutability theorem are obtained for the vector Calapso system associated
with isothermic surfaces in R"*2. Section 5.8 is devoted to the construction of
explicit solutions of the classical isothermic system and Calapso equation via
Darboux-Ribaucour and Moutard transformations. Thus, one-soliton isother-
mic surfaces are generated along with a ‘lump’ solution of the Calapso equa-
tion and integrable surfaces in the form of Dupin cyclides. Localised solutions
of the zoomeron equation are seen to be related via a Lie point symmetry to
important dromion solutions of the Davey-Stewartson III equation.

Chapter 6 introduces the key Sym-Tafel formula for the construction of soli-
ton surfaces associated with an su(2) linear representation. In Section 6.1, its
use is illustrated in the construction of pseudospherical surfaces via the AKNS
representation for the sine-Gordon equation. The more general result for the
AKNS class r = —4 is then established. This incorporates the NLS hierarchy

-9, — 1q071g Log-t
( ‘i) — ALY (‘{>, L=i< A %% ) )
—4/; q —399.°4 3 +3497'q
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where L is a recursion operator and the Ay are constants. It is shown that the
higher order members of the NLS hierarchy are compatible with the canonical
NLS equation. Thus, in geometric terms, they are associated with privileged
motions of Hasimoto surfaces.

In Section 6.2, it is shown that the generic position vector to the soliton
surface associated with the NLS hierarchy (0.19) itself satisfies an associated
integrable system, namely the potential NLS eigenfunction hierarchy. A gauge

_transformation applied to the AKNS representation for (0.19) is used to gener-
ate the NLS eigenfunction hierarchy. A geometric interpretation follows for a
Miura-type transformation which links the NLS hierarchy and this associated
eigenfunction hierarchy. In Section 6.3, the notion of reciprocal transformation
is introduced and used to generate the loop soliton equation

Xz

‘/:X_%ZZ

which is linked to the mKdV equation by a combination of reciprocal and gauge
transformations. The presence of loop solitons in the complex NLS hierarchy
is then established. Loop solitons are seen to be naturally associated with the
generation of soliton surfaces. In Section 6.4, the invariance under a reciprocal
transformation of the Dym equation

Xp =+ (0.20)

Pr=p"" (P xx 0.21)
and, more generally, of the Dym hierarchy
pr =p Y (=D3rIry'ppy, n=1,2,... (0.22)

isrecorded, where D = &y, 1 := j;°° &(o, t)do, and r = p . This recipro-
cal invariance, when appropriately conjugated with a Galilean transformation,
induces the spatial part of the auto-Backlund transformation generic to the KdV
hierarchy

32 0o

u, =K', n=12..., K= Py —4u+2u,/ dx. (0.23)

The permutability theorem for the potential KdV equation is then derived from
the Bicklund transformation. An interpretation in terms of the nonlinear ex-
trapolation €-algorithm of numerical analysis is given. There follows a purely
geometric derivation of the mKdV hierarchy in terms of the planar motion of
a curve. In Section 6.5, there is a return to the geometric formulation used
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previously to generate the NLS equation. Here, it is exploited to provide a
natural geometric derivation of integrable extended versions of the Dym and
sine-Gordon equations in terms of the binormal motion of inextensible curves of
constant curvature and torsion, respectively. Thus, an extended Dym equation

{1/ 1 32 1
Ty = [; (m)ﬂ —-T + K (1-_1/-2- . (024)

is generated via the motion of an inextensible curve of constant curvature k.
This travels with velocity v =7"1/2p. On the other hand, the motion of an
inextensible curve of constant torsion T leads to an integrable extended sine-
Gordon system, namely

wsp — T(cos w tanh = sinw cosh ¢,
sb — T( )3 ‘ ¢ 025)
&s = T sinw,

where 6, = k and 6, = 7~ !sinh ¢. In this case, the curve has velocity v=
—(8,/271)b. Invariance under a reciprocal transformation is used to establish the
existence of a parallel dual soliton surface associated with each soliton surface
of the extended Dym equation. Auto-Bécklund transformations for the extended
Dym equation and sine-Gordon system are constructed. These are then used to
generate novel soliton surfaces. To conclude, an analogue of Bianchi’s classical
transformation for pseudospherical surfaces is set down.

In Chapter 7, the important connection between Bicklund transformations
and matrix Darboux transformations is established. In Section 7.1, the Sym-
Tafel formula for the generic position vector of soliton surfaces is applied to
show that the original Bicklund transformation for the construction of pseu-
dospherical surfaces provides a prototype for a matrix version of a classical
Darboux transformation. It is established that the Bicklund transformation for
the construction of NLS soliton surfaces can likewise be represented as a ma-
trix Darboux transformation which acts on the underlying su(2) representation.
In Section 7.2, an elementary matrix Darboux transformation is constructed
which leaves invariant the AKNS representation for the NLS hierarchy. The
auto-Bicklund transformation for the NLS equation and its hierarchy is then
induced. A generic geometric property of these Bicklund transformations is
established, namely that they preserve distance between corresponding points.
Indeed, this constant length property, evident in the classical auto-Bécklund
transformation for the generation of pseudospherical surfaces, is seen to ex-
tend to soliton surfaces linked to the AKNS class r = —g. Section 7.3 deals
with the iteration of elementary matrix Darboux transformations and a pivotal
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commutativity property is established. In geometric terms, it is shown that rep-
etition of matrix Darboux transformations generates a suite of surfaces whose
neighbouring members possess the constant length property. To conclude, iter-
ated matrix Darboux transformations are exploited to construct a permutability
theorem generic to the AKNS class r = —g of soliton equations. This rep-
resents a generalisation of Bianchi’s classical permutability theorem for the
sine-Gordon equation. The role of permutability theorems in general in the in-
tegrable discretisation of soliton equations and surfaces is a matter of current
research.

In Chapter 8, the discussion turns to the geometric properties of impor-
tant soliton systems which admit non-isospectral linear representations. Both
the classical Bianchi system (0.4) and the elliptic counterpart encapsulated
in (0.6) fall into this category. In Section 8.1, the generic position vector
to Bianchi surfaces as well as their associated fundamental forms are re-
trieved via a non-isospectral variant of the Sym-Tafel formula. In Section 8.2,
a generalised elementary matrix Darboux transformation valid for a wide class
of non-isospectral Lax pairs is presented. Then, in Section 8.3, a distance
property is recorded for Bécklund transformations at the surface level. In
Section 8.4, it is recalled that the unit normal N to Bianchi surfaces of total
curvature K = —1/p? with p,, = 0 obeys the vectorial equation

(pN x N,), + (pN x N,), =0, (0.26)
which, on appropriate parametrisation, produces the complex equation

Ipy,. , lpu, 2658

wt =—&+ =& =—1. 27
bt 3 bt 5 b = 0.27)
The elliptic analogue of the latter, namely
ps,  lps, _ 2EE
§zz+2p +2p =GR (0.28)

where p,; =0, describes surfaces of Bianchi type in three-dimensional
Minkowski space. Introduction of the Ernst potential £ = (1 — £)/(1 + §) into
(0.28) produces the Ernst equation of general relativity as set down in (0.6).
With this important geometric interpretation of the Ernst equation in mind, we
proceed to give an account of its Bicklund and Darboux transformations. These
can be used to construct important solutions of Einstein’s vacuum equations.
As a preliminary, Neugebauer’s original non-isospectral linear representation
for the Ernst equation is described. This is next set in a broader context leading
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naturally to the dual Ernst equation which, like the original Ernst equation, gov-
erns stationary, axi-symmetric gravitational fields in a vacuum. The solutions
of this dual Ernst equation are then shown to be related to those of the Ernst
equation by a contact transformation. In Section 8.5, the latter is conjugated
with a pair of additional Mobius invariances known in the literature as the Ehlers
and Matzner-Misner transformations, respectively. The importance in general
relativity of the resultant so-called Geroch transformations is then discussed.

It was in 1978 that Harrison first derived a Bicklund transformation for
the Ernst equation. Independently, in 1979, Neugebauer constructed another
Bicklund transformation which subsequently has been shown to be a basic
building block for all other Bicklund transformations admitted by the Ernst
equation. Section 8.6 opens with a description of the seminal Neugebauer trans-
formation couched in terms of pseudopotentials. It is shown that it incorporates
both the Ehlers and Matzner-Misner transformations. The composition laws
for Neugebauer transformations are then set down, and the mechanism for their
iteration is explained. The Harrison transformation is then derived as a conju-
gation of Neugebauer transformations embodied in a commutation theorem. It
is recalled that a single application of the Harrison transformation produces the
Schwarzschild solution on the Papapetrou background, while N applications
with seed solution the Kerr black hole metric leads to a nonlinear superposition
of N Kerr-NUT fields. In Section 8.7, a matrix Darboux transformation for a
generalised Emst system and its specialisations to the Emnst equation and its
dual are presented. In Section 8.8, successive application of two such transfor-
mations is shown to lead to permutability theorems for the Emnst equation and
its dual. To conclude; it is demonstrated that the celebrated Harrison transfor-
mation for the Emnst equation is the direct analogue of the classical Béacklund
transformation for the Bianchi system (0.4).

Chapter 9 describes developments in soliton theory which are linked to the
geometry of projective-minimal and isothermal-asymptotic surfaces. In Section
9.1, the analogues of the Gauss-Weingarten and Gauss-Mainardi-Codazzi equa-
tions are set down for surfaces in projective space P?, and certain projective
invariants are recorded. In Section 9.2, the requirement of invariance of the
projective Gauss-Mainardi-Codazzi equations under a simple Lie point sym-
metry is shown to lead to a specialisation which may be identified as the
Euler-Lagrange equations associated with projective-minimal surfaces. This
suggests that projective-minimal surfaces which arise as extrema of a pro-
jective area functional constitute another class of integrable surfaces. Indeed,
this turns out to be the case. Godeaux-Rozet, Demoulin and Tzitzeica sur-
faces are then extracted as particular projective-minimal surfaces. Godeaux-
Rozet and Demoulin surfaces have been relatively unstudied in soliton theory
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in comparison with those associated with the name of Tzitzeica. Nonetheless,
the Demoulin surfaces, in particular, have a literature going back at least to
1933 and provide through their associated Gauss-Mainardi-Codazzi equations
an important integrable extension of (0.9), namely

(1nh)x,=h—%,

1 (0.29)
Ink),, =k — —.
(n &)y hk

In Section 9.3, a 4 x 4 linear representation for projective-minimal surfaces
based on the Wilczynski moving tetrahedral is introduced. The classical Pliicker
correspondence is then adopted to derive a 6 x 6 linear representation. The ge-
ometric significance of the Pliicker correspondence becomes apparent in this
context in Section 9.4 when Godeaux sequences of surfaces in P° are intro-
duced. Godeaux sequences of period 6 are then seen to lead to the Demoulin
system which, in turn, is connected to the two-dimensional Toda lattice. In
Section 9.5, a Bicklund transformation for projective-minimal surfaces is con-
structed by imposition of suitable constraints on the Fundamental Transfor-
mation. In Section 9.6, a Bécklund transformation for the Demoulin system
(0.29) is recorded and then used to generate a one-soliton Demoulin surface
via action on the seed solution # = k = 1. In Section 9.7, the discussion turns
to isothermal-asymptotic surfaces. The Gauss-Mainardi-Codazzi equations un-
derlying these surfaces turn out to be integrable. Indeed, a Gauss-Weingarten
system for isothermal-asymptotic surfaces is here shown to be connected to
the standard linear representation for the stationary modified Nizhnik-Veselov-
Novikov (mNVN) equation. Links between the stationary mNVN and NVN
equations are established. In Section 9.8, the connection between their linear
representations is exploited, in concert with the Lelieuvre formulae, to construct
a Bicklund transformation for isothermal-asymptotic surfaces.



Pseudospherical Surfaces and the Classical
Bdcklund Transformation. The Bianchi System

The explicit study of surfaces of constant negative total curvature goes back
to the work of Minding [261] in 1838. Thus, in that year, Minding’s theorem
established the important result that these surfaces are isometric, that is, points
on two such surfaces can be placed in one-to-one correspondence in a way
that the metric is preserved. Beltrami [28] subsequently gave the term pseudo-
spherical to these surfaces and made important connections with Lobachevski’s
non-Euclidean geometry.

It was Bour [54], in 1862, who seems to have first set down what is now
termed the sine-Gordon equation arising out of the compatibility conditions
for the Gauss equations for pseudospherical surfaces expressed in asymptotic
coordinates.

In 1879, Bianchi [31] in his habilitation thesis presented, in mathematical
terms, a geometric construction for pseudospherical surfaces. This result was
extended by Bicklund [21] in 1883 to incorporate a key parameter which al-
lows the iterative construction of such pseudospherical surfaces. The Béicklund
transformation was subsequently shown by Bianchi [32], in 1885, to be as-
sociated with an elegant invariance of the sine-Gordon equation. This invari-
ance has become known as the Bicklund transformation for the sine-Gordon
equation. It includes an earlier parameter-independent result of Darboux [94].
The Bicklund transformation has important applications in soliton theory. In-
deed, it appears that the property of invariance under Bécklund and associated
Darboux transformations as originated in [92] is enjoyed by all soliton equa-
tions. The contribution of Bianchi and Darboux t 1he geonetry ot surfaces and,
in particular, the role of Bicklund transformations preserving certain geomet-
ric properties have been discussed by Chern [77] and Sym et al. in [385]. It is
with Bécklund and Darboux transformations, their geometric origins and their
application in modern soliton theory that we shall be concerned in the present
monograph.
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1.1 The Gauss-Weingarten Equations for Hyperbolic Surfaces.
Pseudospherical Surfaces. The Sine-Gordon Equation

Here, the study of pseudospherical surfaces is set in the broader context of
hyperbolic surfaces via a nonlinear system due to Bianchi [37]. The background
is that of basic classical differential geometry of curves and surfaces to be found
in such standard works as do Carmo [108] or Struick [352]. The latter work is
arich source of material on the history of the subject.

Let r = r(u, v) denote the position vector of a generic point P on a surface
Y in R3: Then, the vectors r, and r, are tangential to X at P and, at such points
at which they are linearly independent,

r, xXr,

1.1

Y

determines the unit normal to X. The 1% and 2™ fundamental forms of ¥ are
defined by

I= dr-dr = Edu®+2Fdudv+ Gdv?,

1.2
= —dr-dN = edu® + 2f dudv + g dv?, (1.2

where

E=r,-ry, F=r,-ry, G=ry-r1y,
e=—-r,-N,=r,,-N, g=—-r,-N,=ry,-N. (1.3)
f=-r, -Ny=-r,-N,=ry,-N.
An important classical result due to Bonnet [53] states that the sextuplet

{E, F, G; e, f, g} determines the surface X up to its position in space.
The Gauss equations associated with X are [352]

rus =Thre + THr, +eN,
ruw =Thry +T4r, + fN, (1.4)
ry =Thr, +T2r, +gN,

while the Weingarten equations comprise

F — eG eF — fE

= f 02 r, + H2f Ty,
gF — fG SF —gE

= 2 r, + 2 Ty,

N,
(1.5)
N,
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where
=|r, xr)* = EG - F%. (1.6)

The T ik in (1.4) are the usual Christoffel symbols given by the relations

T = 8" (gjik + 8u,j — &k, L7
2

where, with x! = u, x2 = v,

I= g}kdxjdx", 1.8)
and
ggu =38, (1.9)

In the above, the Einstein convention of summation over repeated indices has
been adopted.

The compatibility conditions (Fyy)y = (Fyv)s and (Fyy)y = (Fyu)u applied to
the linear Gauss system (1.4) produce the nonlinear Mainardi-Codazzi system

e f e f

g f e f g
(E)u - (E) + Ergz - 2Er}2 + El"}l =0

or, equivalently,

(1.10)

ey — fu=el+ (T}, —Th) — 8T,
fo—gu=eTy+ f(T3 —T},) —el%,

augmented by the ‘“Theorema egregium’ of Gauss. The latter provides an ex-
pression for the Gaussian (total) curvature

eg — f2
EG — F?

(1.11)

K= (1.12)

in terms of E, F, G alone according to, in Liouville’s representation,

1 H H
K== [(Erfl)v - (frfz)u]. (113)

In physical terms, the ‘Theorema egregium’ implies that the total curvature of
a surface X is invariant under bending without stretching.
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If the total curvature of X is negative, that is, if X is a hyperbolic surface, then
the asymptotic lines on T may be taken as parametric curves. Thene = g =0
and the Mainardi-Codazzi equations (1.10) reduce to,

f 2 S f 1 f
- 2y, —==0, |= 2= = .
(Hu+ 1"12H 0 Hv+ F“H (1.14)
while
21
K= g = _F (1.15)
and
GE, - FG
1 _ v u
EG,—- FE
2 u v
I',= D 1.17)
The angle w between the parametric lines is such that
F H
CoOsS®w = ——, sinw=—— 1.18
vEG VvEG (1.18)
and since E, G > 0, we may take, without loss of generality,
E =p?%a?, G =p2? 1.19)
whence I and II reduce to
I = p2(a®du? + 2ab cos w dudv + b*dv?), 120)
I = 2pabsin w dudv. .
The Mainardi-Codazzi equations (1.11) now show that
1p, 1 py,
a.,+2pa—-2-pbcosw—0, (1.21)
1 py 1py
by,+=-—b— -—acosw =0, (1.22)
2p 2p

while the representation (1.13) for the total curvature yields

Wyy + l (&2 sinm) + = (p_ug sinco) —absinw =0. (1.23)
2\pa u p v
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The nonlinear system of Gauss-Mainardi-Codazzi equations (1.21)—(1.23)
was originally set down by Bianchi (see [37]). Its importance in soliton theory
has been noted by Cenkl [74] and subsequently by Levi and Sym [234]. It will
be returned to later in that connection subject to an additional constraint, namely
puv = 0. The system then becomes solitonic.

In the particular case when K = —1/p? < Ois aconstant, ¥ is termed a pseu-
dospherical surface. The Mainardi-Codazzi equations (1.21), (1.22) then yield
a = a(u), b = b(v). If X is now parametrised by arc length along asymptotic
lines (corresponding to the transformation du — du’ = /E(u) du,dv — dv' =
+/G(v) dv), then the fundamental forms become, on dropping the primes,

I = du? + 2cos wdudv + dv?,

2 . (1.24)
= —sinwdudv,
p
while (1.23) reduces to the celebrated sine-Gordon equation
1 .
Wyy = p_2 sinw. |- (1.25)
The associated Gauss equations yield
Fuy = W, COt®WFr, — W, COSEC W Iy,
Tuw = l sin wN, (1.26)
P
Ty = —W, COSeCWr, + w, cotwr,,
while those of Weingarten give
1 1
N, = —cotwr, — — cosecwr,,
P P 1.27)

1 1
N, = -; cosecwr, + ; cotwry.

In the twentieth century, the sine-Gordon equation has been shown, remark-
ably, to arise in a diversity of areas of physical interest (see [311]). It was the
work of Seeger et al. [201,345,346] that first demonstrated how the classi-
cal Bicklund transformation for this equation has important application in the
theory of crystal dislocations. Indeed, in [345], within the context of Frenkel’s
and Kontorova’s dislocation theory, the superposition of so-called ‘eigenmo-
tions’ was obtained by means of the classical Béacklund transformation. The
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interaction of what today are called breathers with kink-type dislocations was
both described analytically and displayed graphically. The typical solitonic fea-
tures to be subsequently discovered by Zabusky and Kruskal [389] in 1965 for
the Korteweg-de Vries equation, namely preservation of velocity and shape
following interaction, as well as the concomitant phase shift, were all recorded
for the sine-Gordon equation in this remarkable paper of 1953.! Connections
between the geometry of pseudospherical surfaces and other solitonic equations
have been later investigated in [26, 78, 79, 141, 190, 292, 294, 321, 363].
Lamb [223] and Barnard [23] showed that the nonlinear superposition princi-
ple associated with the Bécklund transformation for the sine-Gordon equation
has application in the theory of ultrashort optical pulse propagation. In particu-
lar, solitonic decomposition phenomena observed experimentally in Rb vapour
by Gibbs and Slusher [150] were thereby reproduced theoretically. In addition,
the classical Bicklund transformation has also found application in the theory
of long Josephson junctions [344]. '
The preceding provides an historical motivation, both with regard to theory

_and application, for beginning our study of Béicklund transformations with the
classical result for the sine-Gordon equation. It will be seen that this Bicklund
transformation, in fact, corresponds to a conjugation of invariant transfor-
mations due to Bianchi and Lie. The Lie symmetry serves to intrude a key
Bdicklund parameter into the Bianchi transformation which enables its itera-
tion and the generation thereby of what are, in physical terms, multi-soliton
solutions. Therein, the Bicklund parameters have an important physical inter-
pretation.

1.2 The Classical Bicklund Transformation
for the Sine-Gordon Equation

Underlying the original Bicklund transformation for the sine-Gordon equation
is a simple geometric construction for pseudospherical surfaces. Thus, if a point
P is taken on an initial pseudospherical surface ¥ and a line segment PP’ of
constant length and tangential to X at P is constructed in a manner dictated by a
Bicklund transformation as described below, then the locus of the points P’ as P
traces out X is another pseudospherical surface ¥’ with the same total curvature
as X. The procedure may be iterated to generate a sequence of pseudospherical
surfaces with the same total curvature as the original seed surface X.

1 “Man sieht ... daB beim Durchdringen von Wellengruppe und Versetzung weder die Energie
noch die Geschwindigkeit beider geindert wird. Es tritt lediglich eine Verschiebung des Verset-
zungsmittelpunktes . . . und des Schwerpunktes der Wellengruppe . .. auf” [345, p 189].
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Let T be a pseudospherical surface with total curvature K = —1/p? and with
generic position vector r = r(u, v), where u, v correspond to the parametrisation
by arc length along asymptotic lines. In this parametrisation, r,, r, and N are all
unit vectors, but r, and r, are not orthogonal. Accordingly, it proves convenient
to introduce an orthonormal triad {A, B, C}, where

(ru xry) C=N

sinw (1.28)
= COSeCWr, — COtWT,.

A=r,, B=-r,xN=—-r, x

The Gauss-Weingarten equations (1.26), (1.27) can now be used to obtain ex-
pressions for the derivatives of A, B and C with respect to u and v, namely

AY 0 -0, O A
Bl=|w, 0 1/p B |,
c/, 0 -1/p O C
(1.29)
A 0 0 (1/p)sinw A
B |= 0 0 —(1/p)cosw B
C s —(1/p)sinw (1/p)cosw 0 C

This linear system is compatible if and only if w satisfies the sine-Gordon
equation (1.25).

A new pseudospherical surface X’ with position vector r’ is now sought in
the form

r=r+ LcosdA + LsindB, (1.30)

where L = |r' —r| is constant. Here, ¢(i, v) is to be constrained by the require-
ment that on ', as on I, the coordinates u, v correspond to parametrisation
along asymptotic lines. A necessary condition for this to be the case is that ¥’
have a 1% fundamental form of the type (1.24),. In particular, this requires that

ror,=1,r,-r,=1, (1.31)
where, on use of (1.30) and the relations (1.29), we have
. L
r, =[1— L(¢y — w,)sind]A + L(d, — w,)cosdB + ; sind C,

r,, = (cosw — L, sin p)A + (sinw + L, cos $p)B + % sin(w — ¢)C.
(1.32)
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The conditions (1.31) now yield, in turn,

[ 2
¢"=w"+% (lzh 1—%) sin ¢ (1.33)
1 L2\ .
by = I 1Fx./1- ? sin(¢ — w). (1.34)

Accordingly, if we set

-1
p L2 L 2\ -
=Ltz 1i-= =21 1-=] , 1.35

then the relations (1.33), (1.34), deliver the necessary requirements

and

d, =0, + g—sind), (1.36)

d, = é sin(¢p — w) (1.37)

on the angle ¢ in order that ¥’ be a pseudospherical surface parametrised by
arc length along asymptotic lines. In fact, the pair of equations, (1.36), (1.37),
is sufficient in this regard. Moreover, these equations are compatible modulo
the sine-Gordon equation (1.25).

On use of (1.36), (1.37), the expressions (1.32) become

r, = (1 - fBSinztb)A + %B sin b cos B + §s1n¢c, (1.38)
L . .
r,= [cosm — — sinsin(¢p — w)]A
PR
. L ) L .
+ [smm + E cos ¢ sin(p — m)] B - ; 31n(¢— w)C, (1.39)

so thatr/, - r\, = cos(2¢ — w) and the 1% fundamental form of %’ becomes

I' =du® +2cos(2d — 0)dudv + dv. (1.40)
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Furthermore, the unit normal N’ to X’ is given by

r,xr, L L L
N =—"—Y =—"sindA + —cos B+(1——)C,. 1.41
[ry, x| p ¢ p ¢ P 44D

whence, on usé of (1.30), it is seen that &' —r) - N’ = 0. Accordingly, the vector
r’ —rjoining corresponding points on X and ¥’ is tangential to X’ It is recalled
that it is tangential to X by construction. Moreover,

N, ——ﬁ—ﬁsmd)cosd)A-i- (ﬁ—Bcos ¢—%)B+p£cos¢c (1.42)

N, = [2:23 sin(m—2¢)+§-(1 - %) sino)]A
1

L L
2 - = A.a K
+[2 3 cos(w — 24) (1 5 B)cosm]B (1.43)
- % cos(w — &) C,
p
whence
1,
o Ny=0, r-N,=r, N, ==2sin@b—0), r, N, =0.

The 2™ fundamental form for &' is

2
I = ; sin(2¢ — w) dudv (1.44)

and this together with I’ as given by (1.40) shows that X’ is a pseudospherical
surface parametrised by arc length along asymptotic lines. The angle between
the asymptotic lines on X’ is given by

o' =2b— 0, (1.45)

where «’ plays the same role in relation to ¥’ as is played by  in relation to
¥. In particular, ’ must satisfy the sine-Gordon equation

o, = L sinw'. (1.46)
P
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Use of the relation (1.45) to eliminate ¢ in (1.36) and (1.37) now yields

o - B i o+ o
= —sin
2 J, p 2
w’+m) 1 sin o —o
N2 /) Bp 2 /)
This is the standard form of the Bicklund transformation which links the sine-

Gordon equations (1.25) and (1.46).
Itis noted that, under Bg,

Bg (1.47)

L]
N . N=1- e = const, (1.48)
p
that is, the tangent planes at corresponding points on £ and %’ meet at a constant
angle { where B = tan({/2). In Bianchi’s original geometric construction, of
which the Bicklund result is an extension,

L=p, =1 (1.49)

so that these tangent planes are orthogonal. Bécklund’s relaxation of the orthog-
onality requirement allows the key parameter 8 to be inserted into the Bianchi
transformation. In fact, the Bécklund transformation Bg may be viewed as a
composition of a Bianchi transformation with a simple Lie group invariance.
Thus, the sine-Gordon equation (1.25) is invariant under the scaling

u* =Bu, v* = -;- B£0 (1.50)
so that, any solution w = w(u, v) generates a one-parameter class of solutions
w*(u*, v*)=w(Bu, v/B).2 Lie observed that conjugation of the invariance
(1.50) with the original Bianchi transformation

o —-o 1. [0+
( 2 ).fES“‘( 2 )
1.

o

(1.51)

produces the Bicklund transformation (1.47).

2 Importantly, this Lie point invariance also inserts the Bicklund parameter B into the ‘linear
representation’ (1.29) and delivers a one-parameter family of pseudospherical surfaces associated
with a given solution w of the sine-Gordon equation.
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In terms of the construction of pseudospherical surfaces, the Bécklund trans-
formation corresponds to the tollowing result: let  be the coordinate vector of
the pseudospherical surface X corresponding to a snlution w of the sine-Gordon
equation (1.25). Let " denote the Bicklund tran.form of w via Bg. Then, the
coordinate vector r’ of the pseudospherical surface X’ corresponding to o’ is

given by
—w /
Fert = sin (= rsin (S L @s2)
sin @ 2 2

where L = p sin{.

1.2.0.1 Key Observations

® The nonlinear sine-Gordon equation (1.25) is derived as the compatibility
condition for the linear Gauss equations (1.26).

¢ The Bicklund transformation Bg given by (1.47) acts on the sine-Gordon
equation (1.25) and leaves it invariant. Indeed, the action of Bg is restricted
to (1.25) in that (1.47) is a valid system for o’ if and only if (1.25) holds:
otherwise the compatibility condition wj,, = wy, is not satisfied.

¢ Bg contains a parameter B = tan({/2) injected into the underlying Bianchi
transformation by a Lie group invariance.

o At the linear level, the Bécklund transformation is represented by (1.52) and
acts on the Gauss system (1.26) associated with pseudospherical surfaces
parametrised by arc length along asymptotic lines. The transformation (1.52)
acting on the underlying linear representation (1.26) induces the Bicklund
transformation Bg operating at the nonlinear level.

In that By represents a correspondence between solutions of the same equa-
tion, it is commonly termed an auto-Bdicklund transformation.

In the next section, a nonlinear superposition principle associated with the
auto-Bicklund transformation Bp will be derived whereby, in particular, multi-
soliton solutions of the nonlinear sine-Gordon equation (1.25) may be generated
by purely algebraic procedures. The algorithmic nature of the latter makes
them well-suited to implementation by symbolic computation packages. Such
nonlinear superposition principles are generically associated with the auto-
Biécklund transformations admitted by solitonic equations.

Exercises

1. Establish the relations (1.33), (1.34) governing the angle ¢.
2. Derive the expression (1.52) descriptive of the action of the Bicklund trans-
formation Bg at the pseudospherical surface level.
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1.3 Bianchi’s Permutability Theorem. Generation
of Multi-Soliton Solutions

Next, we turn to the application of the auto-Bécklund transformation (1.47) to
construct multi-soliton solutions of the sine-Gordon equation.

Let us start with the seed ‘vacuum’ solution o = 0 of (1.25). The Bicklund
transformation (1.47) shows that a second, but nontrivial, solution o’ of (1.46)
may be constructed ‘by integration of the pair of first-order equations

2 /
o = ?B sin(%),

, (1.53)
w, = 2 sin( =
" PBp 2)
leading to the new single soliton solution
, -1 B 1
o =4tan” |exp| —u+ —v+a]|, (1.54)
P Bp

where « is an arbitrary constant of integration. It should be noted that, here, it
is the quantities

2 1
o, = s sech(Eu + —v+ a),
P P Bp
(1.55)
w = 2 sech(Eu + L v+ a)
" Bp P Bp ’
which have the characteristic hump shape associated with a soliton.
Remarkably, analytic expressions for. multi-soliton solutions which encap-
sulate their nonlinear interaction may now be obtained by an entirely algebraic
procedure. This is a consequence of an elegant nonlinear superposition princi-
ple derived from the auto-Béicklund transformation Bg and originally set down
by Bianchi [35] in 1892. It is described in his monumental work [37] and is
now known as: '

1.3.1 Bianchi’s Permutability Theorem

Suppose  is a seed solution of the sine-Gordon equation (1.25) and that w; and
w; are the Bicklund transforms of w via Bg, and Bg,, thatis, w; = Bg, (w), w; =
Bg,(w). Let w1z = Bp,(w;) and wz; = Bg,(wz). The situation may be repre-
sented schematically by a Bianchi diagram as given in Figure 1.1.

It is natural to enquire if there are any circumstances under which the commu-
tative condition w2 = wy; applies. To investigate this matter, we set down the



1.3 Bianchi’s Permutability Theorem
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Figure 1.1. A Bianchi diagram.
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u-parts of the Bicklund transformations associated with the Bianchi diagram.

Thus,
2
wlu—(ﬂu““ﬁ i <ml+w),
p 2
2
mm=m+Jém(M+m)
p
+ow
leu—mlu““_’ < 12 1)
( 1+m2)
w2,y = Wy, +
If we now put

Cwp = wy =R,

then the operations (1.56) — (1.57) + (1.58) — (1.59) yield
2
0-2[ofu(25%) (257}
. Q4 o (ot o
+afsn( 552 -sn(22) ]

Q-ow l32+l31 Wy — g
ta"<4) B—Pr | (4 )

whence

(1.56)

(1.57)

(1.58)

(1.59)

(1.60)

(1.61)

(1.62)
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B2

e
© @
T %
)
Figure 1.2. A commutative Bianchi diagram.

Accordingly, if the commutativity condition (1.60) holds, then it is necessary
that

Q=w+‘4tan‘1|:gi-gitan(mzzwl)]. (1.63)

If this expression for 2 is substituted back into (1.58) and (1.59) in place of
w2 and wyy, then these equations may be seen to be satisfied modulo (1.56)
and (1.57). Moreover, the corresponding relations in the v-part of the Backlund
transformation are also satisfied by the expression (1.63). These considera-
tions allow closure of the Bianchi diagram as indicated in Figure 1.2. The
relation (1.63) represents a nonlinear superposition principle known as a per-
mutability theorem which acts on the solution set {w, w;, w;} to produce a new
solution . .

The commutative property now allows a Bianchi lattice to be constructed
corresponding to iterated application of the permutability theorem. N-soliton
solutions of the sine-Gordon equation may be thereby generated by purely
algebraic procedures. These represent a nonlinear superposition of N single
soliton solutions (1.54) with Bicklund parameters B = By,..., By. Thus, at
each application of the Bicklund transformation, a new Béicklund parameter f3;
is introduced and an ith order soliton generated. The procedure is indicated via
a Bianchi lattice in Figure 1.3.

1.3.2 Physical Applications

Seeger et al. [345] exploited the permutability theorem for the sine-Gordon
equation to investigate interaction properties of kink and breather-type so-
lutions in connection with a crystal dislocation model. Later, this procedure
was adapted by Lamb [223] and subsequently by Barnard [23] in an analysis
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© Wy

A ~

Figure 1.3. A Bianchi lattice.

of the propagation of ultrashort optical pulses in a resonant medium. Therein,
analytic expressions for ‘2N’ light pulses were obtained via the nonlinear
superposition principle. These 2N pulses exhibit the distinctive property that
they ultimately decompose into N stable 27 pulses. Experimental evidence
for this phenomenon is provided, in particular, by the work of Gibbs and
Slusher [150] which describes the decomposition of a 6w pulse into three
27 pulses in Rb vapour. An account of such decomposition in ultrashort
pulse propagation is presented in the companion monograph by Rogers and
Shadwick [311].

1.4 Pseudospherical Soliton Surfaces. Breathers
Here, the Bécklund transformation is used in its linear version (1.52) to con-

struct pseudospherical surfaces corresponding to soliton solutions of the sine-
Gordon equation. In this context, it proves more convenient to parametrise the
pseudospherical surfaces in terms of curvature coordinates

xX=u+v, y=u-—v. (1.64)
If we set o = 20, then the 1t and 2™ fundamental forms (1.24) become

I =cos? 0 dx? + sin? 0 dy?, (1.65)

= % sin @ cos 0 (dx? — dy?). (1.66)
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Thus, an orthonormal triad can be introduced according to

r r
A*=—2_ B*=—Y_ C*=N, 1.67
cos 0 sin 0 ( )

and the Gauss-Weingarten equations (1.26) and (1.27) then yield

1 .
0 6, -—sin@

A* p A*
Bl=| -8 o 0 B* |, (1.68)

c
-—%sine 0 0 «

x

0 0, 0
A* 1 A*
(B*) | % 0 —joosh (B*). (1.69)
c c
Y 0 lcosG 0
p

This linear system in {A*, B*, C*} is compatible if and only if
1 .
0z — 0y, = ? sin 0 cos 6. (1.70)

This version of the sine-Gordon equation in curvature coordinates is the most
common in physical applications. Therein, x usually denotes a spatial variable
and y time. In that context, it is usual to call (1.70) the 1+ 1-dimensional
sine-Gordon equation.?

1.4.1 The Pseudosphere

Here, it is shown that the stationary one-soliton solution of (1.70), nzimely

0 = 2tan~! [cxp(% + a)] (1.71)

as obtained by setting ¥ = v = x/2, 3 = 1 in (1.54), corresponds to a pseudo-
spherical surface of revolution known as the Beltrami pseudosphere [352].

To establish the connection between the stationary single soliton solution
(1.71) and the pseudosphere, it is recalled that the position vector r of the
surface of revolution generated by the rotation of a plane curve z = ¢(r) about

3 In that it contains one spatial and one temporal independent variable.
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the z-axis is given by

rcosm

r=| rsinm |. (1.72)
$()

Here, the circles r = const are the parallels and the curves m = const are known

as the meridians. The 1% and 2™ fundamental forms associated with the surface
(1.72) are given by

I=[1+ &(r)*ldr? + r2dn?,
&' (r)dr? rd/(r)dn? 1.73)
VI+¥e?  JT+60)7?
Thus, F = f =0 so that the coordinate lines » = const, 1 = const, namely the

parallels and meridians, respectively, are lines of curvature on the surface of
revolution. If we write

1=dg? +r2dv’, (1.74)
where
d¢ =14+ @)2dr, r=r() (1.75)
then Gauss’ theorem (1.13) shows that the total curvature is given by
1d%
=—-—, 1.7
; 282 (1.76)

whence the general pseudospherical surface of revolution with K = —1/p?
adopts the form

r=cq cosh§ + ¢, sinh %, .77

where p is constant. In particular, in the case ¢; = ¢; = ¢ corresponding to so-
called parabolic pseudospherical surfaces of revolution, the meridians are given
by

r=cetl?, (1.78)
while

2=¢r) = f V1 —(c?/p?)et/r dt. 1.79)
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The substitution
siny = _C.eé/p
p
in (1.79) yields
— o ¥
z=plcosy +1n tanE , (1.80)
whencq

dz = coty dr

so that {s is the angle that the tangent to the meridian makes with the z-axis.
The distance d = r cosec s from a generic point on the meridian to the z-axis
measured along the tangent is seen to be p and so is a constant. A curve with
this property is called a tractrix. Hence, the parabolic pseudospherical surface
of revolution is generated by the rotation about the z-axis of a tractrix. This
surface is known as the pseudosphere.

To determine the solution of the sine-Gordon equation (1.70) correspond-
ing to the pseudosphere, the latter must be parametrised according to (1.65)
and (1.66). In terms of § and m, the position vector of the pseudosphere is
given by

p siny cosm

= p sinys sinm , (1.81)
p(cosd: +In tan%D

I=p2cot? y ds? + p2sin® s d?,

whence

1.82
II = p cot dY? — p sinys coss drf. (1.82)

If we now introduce x and y according to
dx =p cosecy dfy, y=pn (1.83)

then I and II in (1.82) adopt the forms (1.65) and (1.66), respectively, with
6 = . Integration of (1.83) produces the one-soliton solution (1.71).
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Figure 1.4. The Beltrami pseudosphere ({ = 7/2).

In terms of the lines of curvature pafameters x and y, the position vector of

the pseudosphere is*
p sech (i + a) cos (Z)
P p

rx,y)=| psech (;ﬁ + a) sin (g) ) (1.84)

o[§remomn (G o]

Here, the coordinate lines x = const and y = const are parallels and meridi-
ans, respectively. A pseudosphere plotted using the coordinate vector (1.84) is
displayed in Figure 1.4.

1.4.2 A Pseudospherical Helicoid

The surface generated by a curve which is rotated about an axis and simultane-
ously translated parallel to that axis in such a way that the ratio of the velocity
of translation to the velocity of rotation is constant, is known as an helicoid. In
particular, an helicoid generated by the tractrix is pseudospherical and is known
as a Dini surface. In terms of the parameters x, y as above, its coordinate vector

4 A change in the value of the constant of integration « is merely equivalent to a change in the
origin. Accordingly, in the sequel, it will be set to be zero.
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is given by
. Y
p sin { sechx cos (-—)
p
&, y) = p sin { sechx sin (X) ’ (1.85)
_ p
x —psin{ tanhy
where
_ ¥ ycost (1.86)
p sin{

and { is a constant. The pseudosphere is retrieved in the case { = /2. Here, the
tangent length of the tractrix is p sin { and the helicoidal parameter associated
with the relative rates of translation and rotation of the generating tractrix
is p cos{. The corresponding solution of the 1+1-dimensional sine-Gordon
equation (1.70) is the moving one-soliton solution given by (1.54) rewritten in
terms of curvature coordinates and with B = tan({ /2), namely

® 1 1 1 !
> =2arctan[exp[$ (B+E)x+$ (B—E))’H (1.87)

= 2 arctan exp X.

0

A Dini surface with the coordinate vector (1.85) is plotted in Figure 1.5.

Figure 1.5. A surface of Dini.
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1.4.3 Two-Soliton Surfaces

The Bicklund transformation (1.47) for the 1+1-dimensional sine-Gordon
equation (1.70) in terms of curvature coordinates x, y reads

1
0, —6, = ol (sin 8’ cos 8 — cos { cos 0’ sin 0)
- ] - > Bg, (1.88)
ey -0, = m(cos sin® — cos { sin®’ cos 8)

where B = tan({/2). Moreover, if r is the coordinate vector of the pseudo-
spherical surface corresponding to the solution 6 of (1.70), then the coordi-
nate vector of the new pseudospherical surface corresponding to 6’ =Bg(0) is
given by

' '
r=r+L [CZZ: re — sslll:lz ry:l, (1.89)
where L = p sin{.
The nonlinear superposition principle (1.63) yields
sin (Cz g1) tan (u)
tan(en;e_o) _ 2 2 (1.90)

sm(§2—€1> ’
2

where 0 is a seed solﬁtion, 0; = Bg,(60), 82 = Bp,(6) and 612 = Bp,(6;) =
Bg,(82). In particular, if the vacuum solution 6y = 0 is taken as seed, then

8; = 2arctan(expx), i = 1,2, (1.91)

where

Xi = (x—ycosly), L #L (1.92)

p sin;

and the relation (1.90) produces, on use of the invariance § — —8 of the sine-
Gordon equation (1.70), the two-soliton solution

sin (§2 u Cl) sinh (Xl ;Xz)
®* = +2arctan

in (Cz ; El) cosh (Xl ;‘Xz)

(1.93)
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Figure 1.6. A two-soliton pseudospherical surface.

The coordinate vector r of the pseudpspherical surface corresponding to
the solution (1.93) of (1.70) may now be obtained by substitution of 8 = 6y,
{ = {5,8’ = ©F into (1.89). A pseudospherical surface corresponding to a
two-soliton solution is displayed in Figure 1.6.

1.4.4 Breathers

There exists an important subclass of entrapped periodic two-soliton solutions
known as breathers. Here, an analytic expression for the breather solution is
obtained via the permutability theorem, and associated pseudospherical surfaces
are constructed.

In terms of the Bicklund parameters 3; = tan({; /2), the two-soliton solution

®* given by (1.93) becomes
. X1 — X2
nh L __~Z
B2+ B1 o ( 2 )

©t =2tan™! (1.94)
BZ - Bl cosh (Kl_'*'_XZ)
2
with constituent single soliton solutions (1.91), where
1
AT (1+87)x ~ (1 -B)y]- (1.95)

To get a periodic solution, complex-conjugate Bicklund parameters B, = ¢ +id,
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2 = ¢ — id are introduced, whence (1.93) yields

, d )
c sm(——2p @1 d?)ﬁ

®% = 2arctan
d cosh(

(1.96)
c
2p(c® + 42)“)
with £ = [1 - (c® +dD))x — [1+(*+d?)]yandq=[1+ (P +d)x - [1 -
(c® + d?)]y. Hence, @1 is real and periodic in the variable .

If we require that |3;| = 1 so that ¢ +d2 =1, then a solution which is periodic
in y is obtained, namely

1.97)

et =-2 arcta.n[ csin(dy/p) ]

d cosh(cx/p) |

This is known as the stationary breather since it is not translated as y evolves.

1.4.5 Stationary Breather Surfaces

It is recalled that 8;; may be generated either as Bg,(8;) or as Bg,(6,), whence
the expression (1.89) admits the symmetric representation

1 o i
=z [rl +rz+pcostyp (sin & c’c')ls: 0 Feink C’ZS,EZ)

(1.98)
+psin by | sing, ’.'l’y + Sin§1’..2—'y .
sin 6, sin 6,
For stationary breather solutions,
1
sin{; =sin{; = -
¢’ (1.99)

1 . _ _ -
X2 = '2;(035 —idy)=3%1, rn=Fr;, 6 =0.

Hence, on use of (1.98) with ry, r, given by (1.85) where { ={; and {; re-
spectively, the pseudospherical surface corresponding to the stationary breather
solution (1.97) is seen to be real with position vector given by, on settingp = 1,

()2 (5
Poreather = g ¢ d2cosh’(cx) + c2sin*(@y) \ ’

2 conen (cosycosww )

(1.100)

L& : sin y cos(dy)
¢ d?cosh?(cx) + c2 sin’(dy) —sinh(cx)
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where ¢ = /1 — d2. Itis readily verified that the lines of curvature y = const
are planar and, accordingly, the above pseudospherical surfaces constitute En-
neper surfaces. The latter have been studied in detail by Steuerwald [351].

To every rational number d between zero and unity, there corresponds a pseu-
dospherical stationary breather surface which is periodic in the y-parameter. If
we write d = p/q, where p and g are co-prime integers with p < g, then the
period of the breather solution is 27q/ p. Stationary breather pseudospherical
surfaces corresponding to various values of the parameter d are displayed in
Figure 1.7.
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By repeated application of (1.89), one can obtain the position vector of
the pseudospherical surfaces associated with N-soliton solutions of the sine-
Gordon equation as generated via iteration of the permutability theorem.

Exercises

1. Establish the Bécklund relations (1.88) and (1.89).

2. Plot the time evolution of ©; for the two-soliton solution (1.93) over a range
which depicts both the nonlinear interaction and eventual decomposition into
two separate single soliton solutions.

1.5 Parallel Surfaces. Induced Bicklund Transformation for a Class
' of Weingarten Surfaces

Given a surface T with the generic position vector r, a surface £ with current
point

F=r+cN, cconstant (1.101)

is said to be parallel to T. Here, ¢ represents the constant distance along the
normal between T and £. If lines of curvature x = const, y = const on X are
taken as parametric curves, then (1.101) implies that

Frx=rc+cNy=ry— EEgrx = (1 = ckp)ry,
' c (1.102)
Fy=r,+cN,=r,— Egry = (1 — cr)ry,

where k; and k; are the principal curvatures at the generic pointr on .5 Thus,

E=Q0-cx)?E, F=0, G=(-cK)G,

. (1.103)
H2 = (1 — cky)*(1 — cxp)?,
while
V=120 _eN, (1.104)
Ji7

where € = +1, depending on whether (1 — ck;)(1 — cky) is positive or negative.
Moreover,

é=e(l—ck))e, f=0, g=ce(l—cK)g. (1.105)

5 In terms of the principal curvatures K, ; the Gaussian curvature X and mean curvature M are
given respectively by K = k1, M = 5#1
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The parallel surface £ is seen to be parametrised along lines of curvature which
correspond to those on the original surface T. Tangents at corresponding points
are parallel.

The principal curvatures K;, Kz on ¥ are
€K - €Ky

= m, Ky = G = -(—1—_6-72)‘, (1.106)

J o

K| =

h’ill L}

so that the mean curvature M and total curvature K of the parallel surface &
are given by

~ 1_ . eM=cK)

M=o +R) =15 (1.107)
. K

’C: 1K2——1—2CM+62’C. (1108)

1.5.1 Surfaces of Constant Mean Curvature. A Theorem of Bonnet

If © =¥|.— is pseudospherical with X = —1/p2, then the mean and total
curvature of the parallel surfaces £ are given parametrically in terms of M via

- &«M+c/p? - -1
M= 1 —2cM —c2/p?’ k= p2(1 —2cM —c2/p2)’ (1.109)
whence, we obtain the relation
©* + AK + 2ceM = 1, (1.110)

or, equivalently, in terms of the principal curvatures,

Rt o | [ R + e —¢’ (1.111)
K K; = . .
e[ T ] @+

Thus, the surfaces £ parallel to a given pseudospherical surface X are particular
Weingarten surfaces, that is, their mean and total curvatures M and K, or,
equivalently, their principal curvatures K, and K,, are functionally related.®

If the surface ¥ is of constant positive Gaussian curvature

1

IC=p2

(1.112)

6 Connections between Weingarten surfaces and certain solitonic equations are discussed in [75].
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then the Gauss equation reduces to an integrable elliptic sinh-Gordon equation.
The mean curvature of the parallel surfaces is given by

- €M=c/p?)
M= 1—2c M+ c2/p? (1.113)
which is independent of M if and only if
c=%p. (1.114)

In this case, M is constant and we can formulate the following theorem due to
Bonnet.

Theorem 1. A surface of constant positive Gaussian curvature K = 1/p? ad-
mits two parallel surfaces of constant mean curvature +1/(2p). The distance
to the surface of positive Gaussian curvature is p.

In conclusion, it is remarked that the parameter ¢ may be regarded as being
associated with a constant speed normal motion of a base pseudospherical
surface £|.—o which evolves into a member of the associated Weingarten class
(1.110). In this evolution, the lines of curvature, which are invariant under the
normal displacement (1.101), generate mutually orthogonal surfaces which are,
in turn, orthogonal to the parallel surfaces ¥.

1.5.2 An Induced Bicklund Transformation

If aBicklund transformation is known for a class of surfaces X, then a Bécklund
transformation is naturally induced for the class of parallel surfaces. In partic-
ular, a Bécklund transformation is readily obtained for Weingarten surfaces
governed by a relation of the type (1.111). The result is a consequence of the
Bécklund transformation (1.89), that is

r=r+p®N xN), (1.115)

where N’ is given by (1.41) whence, in terms of curvature coordinates,

L
N = om0 [—cos(8’ — 8) + cos(8’ + 0)]r,

‘ ' Lg
20 [—cos(8” — 6) — cos(8’ + 0)]r, + (l - —p—) N (1.116)

H ! ’
=£,_ smerx_cc.)sery + 1..£’E N,
p \cos@ sin @ p
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Parallel surfaces £ and £’ to T and ¥/, respectively, are.given by
F=r+cN, ¥ =r'+¢N, (1.117)

whence

F=F+ p(NxN')+c'N'—¢N

cos 6’ sin 6’
—Ty— —T
cos 9 sin 0

L [sin®’ cos 6’ , LB

i -2 1-22) ¢~
5 [cose"‘ sinery]+ [c ( o ) c] (1.118)
cosﬁ’+(c’/p)sin6’; sin®’ + (¢’/p)cos 6’ _
cos® — (c'/p)sin® *  sinB+ (c'/p)cos0

+e[c’(l—%)——c]ﬁ.

This provides a Bicklund transformation acting on the class of Weingarten
surfaces & with mean and total curvatures M, K related by (1.110). Since

=ri

=i+L[

1 1
K = _F’ M = —; cot260’, (1.119)

it is seen that, under this Bicklund transformation,

_ -1

T p2(p? —c? +2¢'p cot20)’
€(c’ — p cot20)

p2 —c?+2cpcot20’

2l

(1.120)

M =

Itis recalled that in (1.118), 6 and 6’ are related by the Bicklund transformation
Bg as given by (1.88). Moreover, (1.118) yields

|F —F> = L? + ¢ —2cc’ cos { +¢* (1.121)

so that # — F is of constant length.
The Weingarten surfaces characterised by the relation

(c? £ pHK + 2ceM = -1 (1.122)

have here been shown to be solitonic in that they are parallel to surfaces of
constant Gaussian curvature. It proves that if one assumes that the quantities ¢
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and p in (1.122) are ‘harmonic’ with respect to a certain coordinate system, then
the associated ‘generalised Weingarten surfaces’ [329,332,333] are likewise
integrable. In the following section, we shall discuss the particular case ¢ = 0,
puv = 0, that is

1
—) =o, 1.123
(we) (1.123)

in terms of asymptotic coordinates. The corresponding surfaces are classical
and known as Bianchi surfaces. Moreover, Bobenko [40] has established the
integrability of ‘inverse harmonic mean curvature surfaces’ given by

1
24 52 —
(82 +32) (ﬂ) =0 (1.124)
associated with ¢ = £p, (37 +87)p = 0and the minus sign in (1.122), where x
and y denote ‘conformal’ coordinates (cf. Chapter 5). These surfaces generalise
the constant mean curvature surfaces mentioned in the previous subsection.

1.6 The Bianchi System. Its Auto-Biicklund Transformation

In Section 1.1, it was shown that hyperbolic surfaces parametrised in terms of
asymptotic coordinates are governed by the system

lpv 1 pu
——a— ==—b =0,
a, + 2 a 25 COos ®
1 1
b, + -Z-%b - z%"a cosw =0, (1.125)
1 b 1
Oy + = (g"——sinw) + - (&2 sinw) —absinw =0.
2 P a u 2 p b v

The corresponding fundamental forms read
I = p?(a®du?® + 2ab cos  dudv + b*dv?),

. (1.126)
I = 2pab sinw dudv
so that the Gaussian curvature takes the form
K =-— <0. (1.127)
P

In 1890, Bianchi [33] presented a purely geometric construction of hyperbolic
surfaces subject to the constraint

Puy = 0. (1.128)
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These surfaces have been termed Bianchi surfaces. Here, we derive a Bicklund
transformation for hyperbolic surfaces without restriction as to the Gaussian
curvature. This Béicklund transformation may be specialised to deliver classical
Bicklund transformations associated, in turn, with pseudospherical, Tzitzeica
and Bianchi surfaces. As a preliminary, we derive the Mainardi-Codazzi equa-
tions associated with the spherical representation of hyperbolic surfaces. In-
terestingly, it will be shown that the normal of these surfaces, regarded as a
function of u and v, obeys a vector equation which is well-known in soliton
theory.

1.6.1 Hyperbolic Surfaces. Spherical Representation

For a given surface X : r = r(u, v), the normal N = N(u, v) generates, as u and
v vary, a coordinate system on the unit sphere N2 = 1. This coordinate system is
called the spherical or Gauss representation of the surface. The corresponding
1% fundamental form of the sphere reads

dN? = Edu? + 2Fdudv + Gdv?, (1.129)
where
E=N!, F=N,-N,, G=N_. (1.130)

The metric of the spherical representation may be expressed in terms of the
fundamental forms of . In fact, in terms of asymptotic coordinates, we find
that

E=p%, F=-p’F, G=p%G (1.131)

for a hyperbolic surface with Gaussian curvature

K=-5. (1.132)
P (

Accordingly, the Weingarten equations for the hyperbolic surface may be
brought into the form

re=Z(FN.= €N, 1, = Z(FN, = GN.) (1.133)
with H? = £G — F?2, and the Mainardi-Codazzi equations reduce to

Pu _ or2, B _ofl, (1.134)
P P
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where f{; are the Christoffel symbols associated with the metric of the spherical
representation. Moreover, compatibility of (1.134) requires that
a"’u [, = aivf*fz. (1.135)
Conversely, a coordinate system on the unit sphere represented by some
vector-valued function N = N(u, v), N2 =1 may be identified as the spherical
representation of the asymptotic lines on a hyperbolic surface if and only if the
corresponding coefficients £, F and G obey the relation (1.135). The proof of
this theorem is by construction. Thus, the relation (1.135) guarantees the exis-
tence of a function p satisfying (1.134) which implies, in turn, the compatibility
of the system (1.133). It is then readily verified that N is indeed the normal of
the surface defined by r. It is noted that the surface vector r is defined only up
to homothetic transformations, that is, scalings and translations, since, in turn,
p is given only up to a multiplicative factor and r up to an additive constant of
integration.
The above result may be re-formulated. Thus, the fundamental forms may
be written, in terms of the normal N of a hyperbolic surface, as

I = p?(N2du? — 2N, - N,dudv + N:dv?),

(1.136)
O =2p(Nu X Ny) - Ndudv = £2p|N, x N,|dudv,

by virtue of

k= L___f* __ r (1.137)
T p2 EG-F2 pNENZ— (N, N7 '

Now, the Gauss-Weingarten equations imply that N satisfies the hyperbolic
equation

1
Nuw+ = 22N, + l&N,, +FN=0. (1.138)
2p 2p

Hence, on taking the cross-product with IV, we obtain the vector equation
(PN X Nu)y +(pNxN,), =0 (1.139)
which is the integrability condition for (1.133) written in the form
r, =pN,xN, r,=—-pN, xN. (1.140)

The latter relations are commonly referred to as the Lelieuvre formulae (see
[118]).
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Conversely, any solution of the vector equation (1.139) with N? = 1 guaran-
tees the existence of a vector-valued function r satisfying (1.140). This, in turn,
implies that

r. . N=0, r,b-N=0, r,-N,=0, r,-N, =0, (1.141)

whence r may be regarded as the position vector of a surface parametrised in
terms of asymptotic coordinates and with corresponding 1% and 2" fundamental
forms (1.136). In fact, one may directly verify that the Gauss-Mainardi-Codazzi
equations (1.125) are satisfied modulo (1.139). We conclude that the vector
equation (1.139) or, equivalently,

1py 1 py €,8,)€
€ =& =&, = ,
SR TR P
e+E€ (1.142)
N= —ie—28) |,
2
lej*+1 lef? — 1

is but another manifestation of the Gauss-Mainardi-Codazzi equations (1.125).
In particular, the classical Bianchi systemis equivalent to (1.142); supplemented
by puy =0.

Interestingly, the vector equation (1.139) has an important meaning in soliton
theory. Thus, if we introduce the matrix-valued function

N=N.o, (1.143)

where o = (01, 02, 03)" and the o; are the usual Pauli ni/atrices defined by

0'1=((1) (1)) 02=(? B‘), o3=((1) _01), (1.144)

then an equivalent form of (1.139) is given by
(PNNDy + (pNN,), =0, N>=1, Nt =N. (1.145)

This constitutes an extension of the nonlinear sigma model [394]. Here, the
underlying Lie group is O(3). It is remarked that a nonlinear sigma-type model
based on the Lie group O(2, 1) is given by

@SSy + (PSS =0, puwy=0, 2=-1, §=S5. (1.146)

If the matrix § is parametrised according to

1 i(e—¢) —2¢e€
S_—£+€( ’ -—z‘(a—é)) (1.147)
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and u, v are taken as the complex-conjugate variables z, Z, then we retrieve
Ernst’s equation of general relativity [121]
Lp:

Gzz+§p£z+

lpz 58

2;81 = .ﬂT(S_)’ Pzz = 0. (1.148)

Accordingly, this Ernst equation may be regarded as an elliptic counterpart of
the Bianchi system.

Itis noted that 2-+1-dimensional versions of the Bianchi system, as well as of
the cognate Ernst equation of general relativity, may be constructed by setting
these nonlinear sigma-type models in the yet more general context of so-called
LKR systems [324].

1.6.2 A Bdcklund Transformation for Hyperbolic Surfaces

Here, we restrict our attention to the construction of a Bicklund transformation
that obeys the tangency condition

r'=r+ pr, +qr,, (1.149)

that is, we require that the line segment which connects corresponding points
on the surfaces ¥ and ¥’ be tangential to X. If we also assume that ¥’ like ©
is parametrised in terms of asymptotic coordinates u, v then the conditions

e'=f:4u'N'=0, g’=r;v'N’=0 (1.150)

constitute two nonlinear differential equations of second order for the functions
p and g. Any solution of these equations gives rise to a transformation of the
form (1.149) between hyperbolic surfaces ¥ and X".

The situation changes dramatically if one demands that the difference vector
r’ — r be also tangential to the second surface X'. It is then convenient to intro-
duce an orthonormal triad consisting of the normal N and unit vectors which are
tangential to the lines of curvature on X. It is readily verified that the directions
of the lines of curvature are given by

—+ — (1.151)
or, equivalently,

—+ —. (1.152)
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Thus, following Bianchi [33], we choose the orthonormal basis of tangent
vectors

1 N, Nv> 1 (Nu Nu)
Ve — (Y M) wo ALY | 1.153
2sin% (a b Zcos% a b ( )

where
Q=w+m. (1.154)

It is noted that Bianchi’s considerations were based on the spherical represen-
tation of the surface ¥ and its 1% fundamental form

dN? = a*du?® + 2ab cos Qdudv + b dv? (1.155)

so that © denotes the angle between the coordinate lines on the sphere swept
out by N = N(u, v).

In terms of the orthonormal triad {V, W, N}, the Gauss-Weingarten equations
become

Q
0 - —asini
v 1%
Wl = Q 0 —acos — W,
N ; N
) Q
asin — acosz 0
o (1.156)
0 97 bsinE
1% Q 1'%
Wl= — 0 —bcosi W,
N . Q Q N
\—bsin—z— bcos—z— 0
where 2 and 2, are defined by
1 lap, . 1 1bp, .
=-Q,————sin, Qh=-Q, - -———sinQ. .
(o1 29,, 25 p sin 2= 3 220 sin (1.157)

These are compatible if and only if a, b, p and @ = Q — m satisfy the Gauss-
Mainardi-Codazzi equations (1.125). The system (1.156) is readily derived by
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use of the Weingarten equations in the form

r, = —pa cos% V + pasin % W,
(1.158)

r, = pbcos % V + pbsin % w.
Accordingly, the position vector r to X is obtained by integration of (1.158)
once V and W are known.

A Bicklund transformation for hyperbolic surfaces is readily derived. Thus,
since both surfaces are assumed to be parametrised in terms of the asymptotic
coordinates u, v, the generic position vectors r and r’ satisfy the Lelieuvre
formulae (1.140), namely

Fu=V, XV, Fy=-V, XV,
r,=v,xv', r,=-v, xv, (1.159)

where
v=,pN, v =p'N. (1.160)

In these variables, the governing equations for v and v’ (1.138) take the form
v =Av, v, =A"V (1.161)

and the Gaussian curvatures read

1 , 1
K=—pm X=—pp

(1.162)
The requirement that 7' — r be tangential to both X and £’ implies that
r—r=mv' xv. (1.163)
Insertion of r’ as given by (1.163) into (1.159)3; now yields
X —mv)+v, x(mv' —v)—-muy xv=0 (1.164)
so that the component in the direction v’ — mv delivers
(m* =)@ xv,) v =0. (1.165)

Similarly, the remaining relation (1.159),4 gives rise to

(m? =1 xvy)-v' =0. (1.166)
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Accordingly, if we assume that the vectors v,, v, and v are linearly indepen-
dentand &’ # X, then m? = 1. Without loss of generality, we may therefore set

m=1 (1.167)
which, in turn, reduces ( 1.164)‘ and its counterpart to
W, +v)x@ —-v)=0, (w,-v,)x @ +v)=0. (1.168)
The preceding necessary conditions may be brought into the form
v, +v, =k —v), v,-v, =1 +v), (1.169)

where k, [ are as yet unspecified functions. Differentiation of (1.169); with re-
spectto v and (1.169), with respect to u and evaluation modulo (1.161) produces
the constraints

(A =kl — kv + (A —kl+k,)v =0,

(1.170)
(A —kl=-1L)YW —(A=kli+1,)v =0.
Thus, if it is assumed that v and v’ are non-parallel, then
A=—ky+kl, N=k,+kl, I, =k, (1.171)

The latter relation may be satisfied identically by introducing a potential
according to

k=—(ny), I=-(0ny), (1.172)
so that the two remaining relations yield
Yuw =AY, A'=A-2(0n¢)u, (1.173)
and the system (1.169) adopts the form
Wy =—Yv, +4,v, @V, =4y, — Y. (1.174)

The relations (1.173), (1.174) determine the classical Moutard transforma-
tion to be discussed in connection with Tzitzeica surfaces in Chapter 3. In the
present context, if » is the position vector of a hyperbolic surface X given in
terms of asymptotic coordinates and v is the corresponding scaled normal sat-
isfying the Moutard equation (1.161);, then the system (1.174) is compatible
if s is a solution of the Moutard equation (1.173);. The position vector r’ as
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given by (1.163) with m = 1 then represents a second hyperbolic surface T’
which is again parametrised in terms of asymptotic coordinates », v. Moreover,
r’' —ris tangential to both X and X’.

1.6.5 The Bianchi System

The Gauss-Mainardi-Codazzi equations (1.125) constitute an underdetermined
system for the functions w, a, b and p. Thus, it is natural to supplement this
system by constraints which are invariant under the Bécklund transformation
derived in the previous subsection. Here, we require the Gaussian curvature )C
to be invariant under the Bicklund transformation, that is

1

IC’=IC=—p2.

(1.175)

Upon insertion of the relations (1.160) with p’ = p and the parametrisation
N’ =cosoN +sina(cos 0V + sin 0 W), (1.176)

where o denotes the angle between the normals N and N/, into the system
(1.168), we obtain

1 Q 1
6, ==, +atangcos (9+—) - —E&SinQ,

2 2 2 2bp
) Q b (1.177)
ag u .
6, = —'EQU —bCOtE cos (9 — ‘E) + EZ% sin
and the relations
oo=— I o =Pl (1.178)
P 2 p 2
which are compatible if and only if
Puy = 0. (1.179)

In this way, we retrieve Bianchi’s classical Bicklund transformation for hyper-
bolic surfaces with Gaussian curvature

- _pi p = UGu) + V). (1.180)

These are known as Bianchi surfaces.
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To make the Bicklund transformation for Bianchi surfaces somewhat more
explicit, it is noted that the system (1.178) may be integrated to give

o vy -«
=t = O (1.181)

where k is a constant of integfation. On the other hand, it is well-known that
Frobenius systems of the form (1.177), that is

04 = f; +sinBg; + cosOh; (1.182)
with (!, u?) = (, v), are equivalent to Riccati equations and hence may be
linearised. Indeed, on setting

d)l
] =2a.rctang, (1.183)

the general solution of (1.177) may be expressed in terms of solutions of the
linear system

. Q Q 1 apy .
by = [—p.a sin —X; + pacos —X; + = (Qu - —— st) X jld),
2 2 2 bp 3
Q Q 1 b
by = |—p lbsinX; — plbcos =X + =~ + 2P sin0 ) X3 | &,
2 2 2 ap
(1.184)
where
/41
b= (iz) (1.185)
and

1/1 0 1/0 1 1/0 1
X“E(o —1)’ X2_§(1 0)’ X3_§(—1 o)' (1.186)

In the terminology of soliton theory, the linear system (1.184) represents a
‘non-isospectral’ Lax pair for the Bianchi system (1.125), (1.128) since we may
regard p as a non-constant ‘spectral parameter’. In fact, as in the case of pseu-
dospherical surfaces, it constitutes precisely the su(2) version (cf. Section 2.2)
of the Gauss-Weingarten equations (1.156) if k — 00. A gauge-equivalent form
of this Lax pair has been used by Levi and Sym [234] to obtain a matrix Darboux
transformation for the Bianchi system.
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The Biécklund transformation (1.163) or, equivalently,

2 1 Q\ r, Q\ r,
r=r— (1 n }Lz) pr [cos (9 - —2-) = + cos (9 + E) ;] (1.187)

is now applied to the simplest (degenerate) Bianchi surfaces. The first applica-
tion is due to Bianchi who considered the hyperbolic paraboloid

z= %(x2 ) (1.188)

as seed surface. In terms of asymptotic coordinates, the corresponding position
vector reads

1 1
x=—(u+v), =—(u-—v), z=uv, (1.189)
ﬁ( y Ji(
and the Gaussian curvature is indeed of the required form, namely
1
(1.190)

T @

It is then readily shown that a particular solution of (1.177) leads to the second
surface X’ given by

x'=L 3u_vl__3“2 y'=i 3u+v1__zﬁ
V2 14+u? ) V2 14+u? )

,_uwv (3—u?
¢ = JS2\1+u?)
A particular clipping of this surface is depicted in Figure 1.8.
The second application of Bianchi’s transformation is associated with a de-

generate seed surface for which the coordinate lines are parallel, thatis w = 0.
‘We make the natural choice

(1.191)

Q=m, a=oap)ps, b=PpPpy (1.192)

Figure 1.8. A Bianchi surface generated from a hyperbolic paraboloid.
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which reduces the Gauss-Mainardi-Codazzi equations-to

la 1B 1B la
= —=—=0, ———=—=0, 1.193
35 " 3% Be+z5 55 =0 (1.193)
the general solution of which is
a=c+2, B=c - 2. (1.194)
p p
Comparison of the Frobenius systems (1.177), namely
0, + 2 tan o
=—|c —_ u —_
sin@ EREPY L)
(1.195)
% (=) pycotZ
sin® 7o PvCoty
with (1.178) then shows that
0 .
tan5=cxp'y, Y =0 —cyp sino + c3, (1.196)
whence
1
0= , €088 = —tanhvy. (1.197)

coshy

On the other hand, the Gauss-Weingarten equations (1.156) are readily inte-
grated to give

cos d 0 sind .
V={sind|, W=]|0], N=| —cosd (1.198)
0 1 0

with 8 = ¢;p cosa + ¢, In p so that the position vector r of the degenerate seed
surface X is given by

r=(3c1p? + c2p cos o) W. (1.199)
If we write

r=r+psinc(sin@V —cosd W) (1.200)
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Figure 1.9. A Bianchi surface for ¢c; = ¢3 = 0.

for the generic position vector of the second surface ¥’, then

sino

P coshy

r = sino
P

coshy

2c1p? + cop cos @ + p sino tanhy

cos d

sin &

57

(1.201)

Itis seen that, for ¢, = 0, the position vector r’ is periodic in o. A typical surface
of this type is shown in Figure 1.9. Here, the coordinate lines are p = const

and o = const.

One-soliton Bianchi surfaces have been constructed and displayed graphi-

cally in [290].

Exercises

1. (a) Derive the 1% fundamental form

dN? = Edu? + 2F dudv + Gdv?

of the spherical representation of a surface, where

£ = H%(e?G — 2¢f F + f2E),
F = HefG — (eg + fH)F + fgE),
G = HX(f?G — 2fgF + g°E).
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(b) Show that the normal N satisfies the hyperbolic equation

1 1
Nuy + 522N, + 52

BN, +FN=0
75 2, Nt

in asymptotic coordinates.
(c) Show that the line segment connecting the north pole of the unit sphere

Y +E-12=1

and a generic point on the (x, y)-plane labelled by € = xp + iy, intersects
the sphere at

X €+ €
AP _,-<e_.e_))
=— .
i—1) L 2y

Thus, the parametrisation (1.142), of the normal N represents the stere-
ographic projection of the unit sphere onto the complex plane.

2. (a) Show that in asymptotic coordinates the vectors

Ty ry Nu NU

N L L

a b a b
are tangential to the lines of curvature.

(b) Derive the linear system (1.156) for the orthonormal triad
{V, W,N}.

3. (a) Show that the nonlinear equation
0 = f(t)+ g(t)sin 6 + A(t) cos 0
transforms into the Riccati equation
y = 3£@OA +y) + g0y + 3h(0)A = ¥?)
on use of the transformation
0 = 2arctan y.
(b) Verify that the general solution of the above Riccati equation is given by

d)l
)'-—&',
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where ¢ = (¢! ¢?) is the general solution of the linear system
b =[g)X1 +h()X2 + f()X3]d

and the matrices X; are defined in (1.186).

4. (a) Show that for the hyperbolic paraboloid (1.189), the solution of (1.177)
is given by

(9 w) uz +v2+1
tan| = + — ) = ——orm—,
2 4 u(cvvt+1-v)
with the choice

v +1
—

p,,:

(b) Derive the components (1.191) of the surface vector r’ for ¢ = 0.
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The Motion of Curves and Surfaces.
Soliton Connections

The geometric link between soliton theory and the motion of inextensible curves
may be said to have its origin in an analysis by Da Rios [97] in 1906 on
the spatial evolution of an isolated vortex filament in an unbounded, inviscid
liquid. Therein, Da Rios, who studied under Levi-Civita at the University of
Padua, invoked what is now known as the localized induction approximation
to derive a pair of coupled nonlinear equations governing the time evolution
of the curvature and torsion of the vortex filament. The importance of the
Da Rios results was realised by Levi-Civita and were subsequently collected
and extended by him in a survey published in 1932 [235]. However, it was not
until 1965 that the Da Rios equations were rediscovered by Betchov [30]. In
1972, Hasimoto [162], motivated by the earlier geometric study of Betchov
and preceded by experimental work on a distorted vortex ring by Kambe and
Takao [189], showed that the Da Rios equations may be combined to produce
the celebrated nonlinear Schrodinger equation of soliton theory.

Lamb [224], later in 1977, linked the spatial motion of certain curves with
the sine-Gordon, modified Korteweg-de Vries and nonlinear Schrodinger equa-
tions. Lakshmanan et al. [222], in turn, derived the Heisenberg spin chain equa-
tion via the spatial motion of a curve. In recent times, Doliwa and Santini [112]
established a connection between the motion of inextensible:curves and soli-
tonic systems via an embedding in a space of constant curvature. Literature on
the integrable motion of curves is catalogued in that work.

The study of triply orthogcenal systems of surfaces has a long history going
back to Lamé [226]. The ncnlinear equations descriptive of triply orthogonal
systems containing a family 1 pseudospherical surfaces were discussed by
Weingarten, Bianchi, and Darboux (see Eisenhart [118]). This Weingarten sys-
tem may be generated by consideration of a normal motion of a pseudospherical
surface parametrised in terms of curvature coordinates. Its auto-Bicklund trans-
formation is readily induced from the classical Bicklund transformation for the

60
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sine-Gordon equation. In fact, it has recently been shown that the classical
Lamé system descriptive of triply orthdgonal systems of surfaces in general
is amenable to the inverse scattering transform [391]. Thus, the Lamé system,
originally set down in 1840, seems to be the oldest solitonic system to be found
in classical differential geometry. Indeed, the existence of Bécklund transfor-
mations for the lamé system indicative of its integrable nature were certainly
known to Darboux.

The connection between the motion of curves and surfaces and modern soli-
ton theory is the concern of the present chapter.

2.1 Motions of Curves of Constant Torsion or Curvature.
The Sine-Gordon Connection

In Hasimoto’s pioneering paper and in the later study by Lamb [224], the motion
of soliton curves was developed in terms of a complex quantity incorporating
both curvature and torsion. Here, it proves convenient to work in terms of the
usual orthonormal triad {¢, n, b}. In this section, the sine-Gordon equation is
derived via the motion of an inextensible curve of constant torsion which, in
turn, sweeps out a pseudospherical surface.

If r = r(s, t) is the position vector of a curve C moving in space, then the
unit tangent, principal normal and binormal vectors vary along C according to
the well-known Serret-Frenet relations

ts =Kn,
n, =7h — ¢, 2.1)
b;=—1n,

where s measures arc length along C, « is its curvature and 7 its torsion. In
the present moving curve context, the time ¢ enters into the system (2.1) as a
parameter.

The general temporal evolution in which the {t, n, b} triad remains orthonor-
mal adopts the form

t, =oan+ Bb,
n, = —at + b, 2.2)
b; = “Bt - 'Yn.

Here, it is required that the arc length and time derivatives commute. This
implies inextensibility of C. Accordingly, the compatibility conditions ¢;, = ¢,
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etc., applied to the systems (2.1), (2.2) yield

ax =K + BT9
B = ky —1a, 2.3)
Ys =T — KB.

2.1.1 A Motion of an Inextensible Curve of Constant Torsion
A consequence of the system (2.3) is that

@+ B* +v?), =2(ars +y0). 2.4)
In particular, if « = 0 and 7, = 0, then B% + y? = 8%(¢) and we may set
B =8(@)sing, vy =38(t)cosa,
so that the compatibility conditions (2.3) reduce to
o5 = —d(t)r(s)sino, 2.5)
where
K = 0. 2.6)

If weputt = 1/p = 79 and 8 = —1/p, then (2.5) becomes the sine-Gordon
equation (1.25) under the correspondence {a, s, t} < {0, u, v}. Moreover, the
relations (2.1), (2.2) now adopt the form

t 0 O 0\ /¢
(n) = (—o, 0 l/p) (n), @7
5/ 0 —1/p 0 ) \b

t 0 0 (—1/p)sinc t
nl| = 0 0 (—=1/p)cosc n|. (2.8)
b), (1/p)sina (1/p)cosc 0 b

The compatibility condition for this system produces the sine-Gordon equation.

In geometric terms, the motion of a curve of constant torsion and with cur-
vature K = w, has now been linked with the sine-Gordon equation (1.25). It is
natural to ask if there is a connection between this moving curve derivation of
the sine-Gordon equation and the classical derivation associated with pseudo-
spherical surfaces. In fact, a comparison of the two linear representations (1.29)
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and (2.7), (2.8) makes it apparent that the two systems are indeed equivalent
under the correspondences!

{w,u,v} & (—0,s,t}, {A,B,C} <« {t,n, b} 2.9)

Thus, the constant-torsion curve associated with the sine-Gordon equation will
trace out a pseudospherical surface as it moves and, at each instant, will be an
asymptotic line on the surface. This is consistent with the classical Beltrami-
Enneper theorem which states that asymptotic lines on a hyperbolic surface of
Gaussian curvature —1/p? have torsion of magnitude 1/p [352].

The correspondence (2.9) allows us to obtain an expression for the velocity
r, of the moving curve of constant torsion in Lamb’s formulation. Thus, (1.28),
shows that

r, =coswA + sinwB,

whence

v=r,=cosct—sinon. (2.10)

The moving constant torsion curve corresponding to a particular solution
of the sine-Gordon equation may be obtained via the pseudospherical surface
associated with that solution. Thus, we take the position vector of the pseudo-
spherical surface in asymptotic coordinates and animate one of the parametric
lines with respect to the other parameter. If this is done for the two-soliton
solution, then we obtain a curve with two localised loops which, as time elapses,
move along the curve, interact and ultimately pass through each other unchanged
but undergoing a phase shift in position due to the nonlinear interaction.

2.1.2 A Motion of an Inextensible Curve of Constant Curvature

An alternative specialisation in (2.4) is suggested, namely that with y = 0 and
k; = 0. The system (2.3) then admits the solution

cos o sino

a=-— , = —

p

’

(2.11)

p

1
K=—
p

) T = 0Oy,

1 It should be noted that the sine-Gordon equation (1.25) is invariant under © < —w.
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where o is a solution of the sine-Gordon equation
|
Oy = F sing. (2.12)

The underlying linear representation with compatibility condition (2.12) is, in
this instance

t 0 1/p O t
n|l=|-1/p 0 g n |, (2.13)
b). 0 -0, O b

t 0 (=1/p)cosa (1/p)sinc [t
n) (1/p)cosa 0 0 ) (n) (2.14)
b/, (—1/p)sinc 0 0 b

I

This system may be set in correspondence with the linear representation
(1.29) via

{o, u, v} & {0,s5,t}, {A,B,C} < {b,n,—t}. (2.15)

However, here, t-N = t-C =—1 # 0 so that the moving curve of constant
curvature does not lie on and hence does not sweep out the associated pseudo-
spherical surface.

2.2 A2 x 2 Linear Representation for the Sine-Gordon Equation

It has been seen that the sine-Gordon equation may be derived as the com-
patibility condition for the 3 x 3 linear system (1.29) generated by the Gauss-
Weingarten equations associated with pseudospherical surfaces or, alternatively,
for the 3 x 3 linear system (2.7), (2.8) descriptive of the evolution of a {¢, n, b}
triad for a curve of constant torsion. These two representations have been shown
to be equivalent.

The sine-Gordon equatibn may also be generated as the compatibility con-
dition for a linear 2 x 2 system. It is interesting to record that such a linear
representation is implicit in the work of Loewner [238] published in 1952
on the application of infinitesimal Bécklund transformations to the hodograph
equations of gasdynamics. Indeed, a modern reinterpretation of Loewner’s work
has revealed deep connections with soliton theory [210,211].

In 1973, Ablowitz et al. [1] introduced the canonical AKNS 2 x 2 linear
system which, in particular, includes a representation for the classical sine-
Gordon equation. This 2 x 2 linear representation is connected here to the 3 x 3
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linear representation (1.29) in terms of the orthonormal. triad {A, B, C} and
associated with the Gauss-Weingarten equations descriptive of pseudospherical
surfaces parametrised in terms of asymptotic coordinates.

We start with the observation that the system (1.29) is equivalent to the system

v, =SV,
(2.16)
v, =TV,
where
0 -, 0
S = mu 0 l/p ’
0 -1/p O
2.17)
0 0 (1/p)sinw
T= 0 0 (—-1/p)cosw
(—1/p)sinw (1/p)cosw® 0
and W is the matrix given by
Ay Ay A
V=|B, B, B; (2.18)
Ci C G

with A;, B; and C; the components, in turn, of the unit vectors A, B, C. The
fact that the triad (4, B, C) is orthonormal and right-handed implies that the
matrix W is both special (i.e., det ¥ = 1) and orthogonal (i.e., ¥V = 1.)
The set of such matrices forms a (Lie) group under multiplication known as
SO(3) (special orthogonal matrices). It constitutes a representation of the group
of rotations of three-dimensional Euclidean space [343].

The compatibility condition for the linear system (2.16) is

Sy =T, +[S,T1=0 (2.19)

where [S, T] = ST —TS denotes the commutator of S and T. With S and T
given by (2.17), the condition (2.19) is equivalent to the sine-Gordon equation
(1.25).
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To a Lie group corresponds a Lie algebra consisting of a vector space
V equipped with a Lie bracket [-,-] : V x V— V that is bilinear, anti-
commutative and which satisfies the Jacobi Identity, namely

[a, [b, c]] + [b, [c, al]l + [c, [a, b]]=0, Va,b,ceV. (2.20)

The Lie algebra of SO(3) may be identified with the real vector space with
basis {L1, L, L3} where the matrices L;, i = 1, 2, 3 are given by

00 0 0 0 1 0 -1 0

Li=lo o -1, L=}l 0 o0 o], Ls=[1 0 o

01 0 -1 00 0 0 0
(2.21)

and the Lie bracket is the commutator operator. The matrices L; satisfy the
commutation relations

[L1, L] = L3, [L2,L3]l =1Ly, [L3, L1]1= Ly, (2.22)
which characterise the Lie algebra of SO(3). This Lie algebra is denoted by
50(3). Here, S, T € so(3) with

1
S=w,L;——L,, (2.23)
p

1 1.
T=—coswL, +—sinwL,. (2.24)
p p

The connection between the 3 x 3 matrix {4, B, C} linear representation and
the 2 x 2 AKNS linear representation may now be made if we exploit the fact
that so(3) admits a 2 x 2 representation in terms of the Pauli matrices

0 1\ 0 —i 1 0
0’1=<1 0), 0‘2=(i 0), 0’3=(0 _1). (225)

The matrices a;, i = 1, 2, 3 satisfy the commutation relations
[o1,02] = 2i03, [02, 03] = 2oy, [o03,01] =2io; (2.26)

and comparison of the latter with the commutation relations (2.22) shows that
the Lie algebra generated under commutation by the triad {e;, ez, e3}, where

Ok

Tk 2.27)

ey =
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is isomorphic to that generated by {L;, Ly, L3} under the correspondence
ey <> L. This allows us to construct a 2 x 2 linear representation for the
sine-Gordon equation (1.25) from the 3 x 3 linear representation. Thus, if
S =s1L; +s53Ly +s3L3and T = t;Ly + t,L, + 3L are elements of so(3)
such that the compatibility condition (2.19) holds, then the matrices

P =511 + 562+ 5383, @ =tie] + hey + hies
satisfy
P,— Q.+[P,Q]1=0. (2.28)

Hence, the sine-Gordon equation (1.25) may indeed be generated as the com-
patibility condition for a 2 x 2 linear representation, namely

o, =P,
(2.29)
(Dv = Q¢1
where
1 i (—w, l/p)
P=we3——€ == ,
e 2(1/p o, 230

1 1 . i 0 e
Q--p—coscoe1+-p—smwe2— Ep-(e‘“’ 0 )

Introduction of the gauge transformation ® = G®, where

now takes the linear representation determined by (2.29), (2.30) to the gauge
equivalent system

s pemig (i/20 —0u/2) 5
$,=GPG <I>_(mu/2 i ) ®

_— _1-__L cosw  sinw 5
$u=GOGTd = 2p(sinw —cosco)(p’

Use of the invariance
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of (1.25) now injects the real ‘spectral’ parameter \ into the above to produce
the standard AKNS 2 x 2 linear representation for the sine-Gordon equation

(1.25), viz
- 1 0 @ A1 O -
s=3l( )36 5o
. (2.32)
o i —cos® sin® \ &
‘-Dv—-m( sin @ cos@) ®.

2.3 The Motion of Pseudospherical Surfaces. A Weingarten System
and Its Bicklund Transformation

The connection between the sine-Gordon equation and the geometry of station-
ary pseudospherical surfaces or, alternatively, the motion of curves of constant
torsion on such surfaces has now been established. In this section, certain
motions of pseudospherical surfaces are investigated. One type of motion is
seen to produce a continuum version of an anharmonic lattice model which,
in a reduction, yields the well-known modified Korteweg-de Vries equation
(cf. [257]). Another type of motion leads to a classical system corresponding to
a subclass of the Lamé equations descriptive of triply orthogonal surfaces [118].
This consideration of the motion of surfaces leads naturally to the important
idea of compatible integrable systems.

The motion of a pseudospherical surface X :r = r(u, v, t) parametrised in
asymptotic coordinates u, v is investigated. At each instant ¢, the total curvature
K = K(t) < 0is constant and negative on X. The orthonormal basis {4, B, C}
asintroduced in (1.28) is used and so the Gauss-Weingarten equations are given
by (1.29) wherein now, however, p = p(¢) and ® = w(u, v, t). The general time
evolution which maintains the orthonormality of the triad {4, B, C} is adjoined,

namely
A 0 a b A
B|l=|—-a 0 ¢ B |, (2.33)

cJ, -b - 0 C
where a, b and c are real functions of u, v and ¢. The linear system (1.29), in
which time ¢ enters only parametrically, encapsulates the information that the
surface ¥ is pseudospherical and parametrised by arc length along asymptotic
lines. To construct a time evolution in which these properties are preserved,
it is required that (2.33) be compatible with the system (1.29). This imposes
the conditions A,; = Ay, Ayr = Ayy, etc. which, in turn, produce the following
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linear non-homogeneous system for a, b and c:

bl =1|-1/p 0 =—o,||b]|+] O |, (2.34)
c/, 0 Wy 0 c 1/p/,
a) 0 —(1/p)cosw —(1/p)sinw a
(b ((l/p)cosw 0 0 ) (b)
¢ (1/p)sinw 0 0 c

0
+ ( (l/p)sinw) . (2.35)

—(1/p)cosw

This system is compatible modulo the sine-Gordon equation (1.25).

Thus far, the motion of the surface ¥ has been specified via the evolution of
the frame field {4, B, C}. In what follows, it also proves convenient to work in
terms of the velocity r, of . If r, has the representation

ro=IA+mB+nC (2.36)

then
A =ry=ry =IA+mB+nC),
= (lu + mw,)A + (1w, +m, —n/p)B + (m/p +n,)C,
B, = [w; —n/p — (I, + mw,) cot w + I, cosec w]A
+ [(~w; + lwy, — my +2n/p)cotw + m, cosec w]B
+U/p — (ny, +2m/p)cot®w + n, cosec w]C,

while C, = A, x B + A x B,. The requirement that {4, B, C} remains an
orthonormal triad provides the necessary conditions

I, +mo, =0, 2.37)
o, —lo, +my, —2n/p —mysecw =0, (2.38)
l,cosw+m,sinw =0, (2.39)

in which case,
a=-lo,+m, —n/p, (2.40)
b=n,+m/p, 2.41)

c=—(n,+2m/p)cotw +1/p + n, cosec . (2.42)
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Rearrangement of the constraints (2.37)—(2.39) shows that, in order to obtain a
valid motion, it is required to determine / such that

sin w

Iy = lywy cotw + 1, oy’ (2.43)
while the quantitie§ m and n are then given by
m=—l,/w, (2.44)
and
n= %(m, — lw, + m, — m, secw), (2.45)
respectively.

Residual constraints on the motion are obtained by insertion of {a, b, ¢} as
given by (2.40)—(2.42) into (2.34), (2.35). These are determined to be

2
ny, = (n, cotw — n, cosec w)w, + % + B—(mm,, cotw —m,), (2.46)
n 2secw

nyy = (n, cotw — n, cosec m)w, + F + (my —mw, cotw), (2.47)

Nyy = lz cos w + (l) sinw. (2.48)
P P/

Thus, a viable evolution (2.36) requires solution of the system (2.43)—(2.48).

If aset {a, b, c} and thereby the motion of the triad {4, B, C} is known, then
(2.40)~2.42) provide a linear inhomogeneous system for {/, m, n} to determine
v = r;. For instance, one class of solutions has p = 0 and

{a, b, c} = {{(®)p @y, B(t)sinw, —L(¢) — d(¢) cos w} (249
together with the auxiliary linear evolutionary condition
o = p[8(t)ay — {(H)wy,], (2.50)

where 8(¢), {(¢) are arbitrary functions of ¢. A motion consistent with the so-
lution set (2.49) is given by

{{,m,n} = {p(Bcosw —{), pdsinw, 0}. (2.51)

This corresponds to a sliding motion of X in which there is no normal
propagation.
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2.3.1 A Continuum Limit of an Anharmonic Lattice Model
Another possible motion {l, m, n} is given by

2 Oy
{l,m,n} = [p[T“ +8cosw — C], p[Ssinw - T]’ w,,], (2.52)

where

and & = (t), { = {(¢) are arbitrary while p = 0 so that the total curvature X
remains constant on X throughout the motion. The set {a, b, c} is obtained by
substitution of (2.52) into (2.40)—~(2.42). The corresponding linear triad system
consisting of (1.29) augmented by the time evolution (2.33) has compatibility
condition the coupled nonlinear system (2.53). Elimination of w, therein yields

Wy = %wuuuu + %owwuu + (% - P§) Wyy + g sinw.  (2.54)
This solitonic equation with 8 # 0 and { = 3/(2p?) was originally derived by
Konno et al. [203] as the continuum limit of a model of wave propagation in an
anharmonic lattice.

The specialisation 8 = 0, { = 3/(2p2) in (2.54) produces the modified
Korteweg-de Vries (mKdV) equation in ' = w,, namely

o} + @l + 60720, =0, (2.55)

where ' =u/2,t'=—t and p =16. The mKdV equation has important ap-
plications, in particular, in the analysis of nonlinear Alfvén waves in a collision-
less plasma [188]. Its connection with acoustic wave propagation in anharmonic
lattices has been described by Zabusky [388].

2.3.2 A Weingarten System

In a purely normal motion in which the Gaussian curvature K = —1/p2 of ©
is now allowed to evolve in time, the relations (2.37)—(2.39) yield

{l, m, n} = {0, 0, pey/2}. (2.56)
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In this case, substitution into the normal component system (2.46)~(2.48)
produces

1
Wyyr = W, W, COtw — W, w,; COSeC w + an

1
Wyur = Wy @y COL W — Wy Wy, COSEC ® + — oy, (2.57)
P
Wyy = — SInw.
02
The normal motion (2.56) has
r=p8N, (0=0w/2 (2.58)

and, in terms of curvature coordinates x = u + v, y = u — v, the system (2.57)
is equivalent to

9,)., — 9,9)., cotd + 9,9,, tan@ = 0,
1 1
(E sin G)t - meyey, = 0,

(2.59)
(k) + - (l cos e) + Lexexl = 01
y P\p ; cosH

1
Bzx — Oy = o2 sin 6 cos 6.

This system appears in Eisenhart [119] in connection with a special class of
triply orthogonal surfaces. It was studied extensively by Weingarten in the case
p-constant, by Bianchi and Darboux. In particular, it was shown by Darboux
that the general solution of the system depends upon five arbitrary functions
of a single variable (see also [182]). It should be noted that, in the system
(2.59), each of (2.59), and (2.59); is a consequence of (2.59)4 and the other.
Consequently, one of (2.59), or (2.59); is redundant and may be discarded.

In the above motion, since ¥ undergoes a purely normal propagation, it fol-
lows that the surfaces swept out by the parametric lines on ¥ as ¢ evolves will
be orthogonal to X at all times. However, lines of curvature on a surface are mu-
tually orthogonal, so that the family of surfaces swept out by the x-parametric
lines will be orthogonal to that swept out by the y-parametric lines. Thus,
the system consisting of these two families, augmented by the family whose
members are the pseudospherical surfaces formed at each time ¢, constitute
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a triply orthogonal system of surfaces. This explains the. appearance of what
we here term the Weingarten system, namely (2.59), which describes a triply
orthogonal system of surfaces in which the members of one family are pseu-
dospherical. Triply orthogonal systems associated with multi-soliton solutions
of the Weingarten system may be readily constructed. These are generated by
a nonlinear superposition principle of the type (1.63) associated with an auto-
Bicklund transformation of the Weingarten system as derived in the following
subsection.

2.3.3 Backlund Transformations

Given the position vector of a generic point on a moving pseudospherical surface
¥, a Bicklund transformation may be applied at each instant ¢ to generate a new
pseudospherical surface. Here, we seek to do this in such a way that constraints
on the motion are preserved. In particular, auto-Bécklund transformations are
constructed which, in turn, maintain the restrictions on the motion associated
with the Weingarten and anharmonic lattice systems. These auto-Bécklund
transformations generically admit (1.63) as a nonlinear superposition principle
for the generation of solutions. They are induced by invariance of 2 x 2 linear
representations under a suitable gauge transformation.

Thus, to the 2 x 2 linear system (2.29), with P and Q given by (2.30), we
adjoin a 2 x 2 time evolution corresponding to the representation (2.33). We
consider the linear representation

P, = P(w)?d,
¢, = Q(w)?, (2.60)
®,; = R(w)P,
where, since
0 a b
—a 0 c¢|=-ali3+bLy—cLy,
—b — 0

under the correspondence e; <> L; we obtain

1( ia —b+ic
R(m)—i(b tie  —in ) (2.61)

with a = a(w), b = b(w) and ¢ = c(w).
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Introduction of the gauge transformation ¢’ = H &, into (2.60) yields

P, = P'Y,
o = Q' (2.62)
®, = R'?,

where

P'=(H,+HP)H™', Q'=(H,+HQH™,

2.63
R =(H + HR)H™. (2.63)

An orthonormal triad {4, B, C'}, where A’ =r,, B = —A’xN and C' =N’
are given, in turn, by (1.38), (1.39) and (1.41), is now introduced on the Bicklund
transform ¥’ of the surface T. If ¥ is the matrix with A, B and C as rows and
W’ is the corresponding primed matrix then, on use of (1.52), it is readily shown
that

U = AV, (2.64)

where the transformation matrix A is given by

L L L
1- ;Bsinzcb TBsin¢cosd> ; sing

L L
A= | =Bsindcosd 1—?cos2¢ —;cos¢> , (2.65)
p
L L
——sind —cos¢d 1—LE
p P p
with ¢ = (0 + w')/2.
Since ¥, ¥’ € SO(3), it follows that A € SO(3), that is,
ATA =1, detA=1. (2.66)

In geometric terms, these relations are just a consequence of the observation
that any two right-handed orthonormal triads are related by a rotation.

Use of the su(2)-so(3) isomorphism as given in Appendix A delivers an SU(2)
transformation matrix corresponding to A, namely

—iBe-ib
H=(1+Bz)—1/2<—iéei¢ ’Bl"’ ) 2.67)

The particular gauge transformation

@' = H(d, p)od (2.68)
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with H given by (2.67) acts on the 2 x 2 linear representation

= P(w)®,
®, = Q(w)P,

to produce?
! = P(w)P,

@, = Q).

This B-dependent gauge transformation constitutes a prototypical matrix
Darboux transformation. At the nonlinear level, it induces the auto-Béacklund
transformation (1.47) for the sine-Gordon equation (1.25).

In the present context, with adjoined temporal evolution (2.60)3, the Backlund
parameter 3 is allowed to depend on ¢ in (2.67). Use of the latter expression
together with (2.61) shows that

R =HH '+ HRH'=H,H' + HRH!
_ 1/ id  —b+id (2.69)
T2\b +icd —id :
where HY = H™ and

a =a-— 1+B[32 [B(a + &) + (bcos b + ¢ sin d)],

Y =b+ 1_'_BZ[B(a+<1>,)cos<1:»+ B sin d — B2 cos ¢ (bcos b + csin P)],

[B(a + &) sind — Bcosd — B2sind (bcos d + csind)].

BZ
(2.70)

Particular {a, b, c} associated with nonlinear equations compatible with the
sine-Gordon equation may now be inserted in (2.70) to generate auto-Bécklund
transformations.

The Weingarten System

For the Weingarten system (2.57), with {I, m, n} given by (2.56), the relations
(2.40)-(2.42) show that

p

{a,b,c} = [—921 Lo, %(m,,, cosecm—m,,,cotw)]. @71

2 This may be verified directly by calculating the matrices P’ =(H, + HP)H™! and Q'=
(H,+ HQ)H™.
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In order that the invariance condition
R = R(w) 2.72)
be satisfied, it is required that, on substitution of (2.71) in (2.70);,

,_ 1+p?
(1),=1__BZO.);

2 o 4o o —w
+1f‘;2cosecw[wv,sm( 2 )—wu,sm( 2 )]

The létter relation and the classical Backlund relations (1.47), together with the
constituent equations of the Weingarten system (2.57), show that the residual
conditions (2.70),,3 are satisfied modulo

-t e

(2.73)

whence

B(t) = kp ()1 £ v1—1/(K2p2(1))), (2.75)

where k is an arbitrary constant of integration, here taken to be non-zero. It is
noted that the relation (2.75), which determines the Bicklund parameter B(¢)
for arbitrary time evolution of the Gaussian curvature X = —1/p2(t) <0, is
consistent with the relation (1.35), where k = 1/L.

It is now routine to show that the classical Bidcklund relations (1.47) and the
relation (2.73) are compatible modulo the Weingarten system (2.57). Thus, the
following auto-Biécklund transformation for the Weingarten system has been
established:

Theorem 2. The Weingarten system (2.57) is invariant under the Bdicklund
transformation

2 /
wL:mu+—Bsin<w +m),
p 2

/ W, + 2sin(w,_w)
W, = —W, = )
Bp 2

1+p2
=1 g

] 2 S t 2 ut 2 \

Here, K = —1/p*(t) and B = B(t) is related to p(t) by (2.75).

(2.76)

/
,
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An Anharmonic Lattice System

For the system (2.53), on setting {# 3/(2p?), the relations (2.40)—(2.42)
yield

{a,b,c} = 2 ) 2 +3sino, —wﬁ——-l‘—S ®
=] — — [
@ 2p ! v 2 4 2p2 o8
.77

while both p = 0 and B = 0. The condition (2.72) requires, on substitution of
the relations (2.77) in (2.70),, that

2 / 3 /
w§=mx+B—wu+Bwuucos @t + B §+B @t
p 2 2 2 :

,—
+ 3 [—2pm., + 2 sin ((n 5 w)] (2.78)
p

together with the Bicklund relations (1.47) wherein o =w(u, v,t), 0 =
o’ (u, v, t). Indeed, the following result may be verified.

Theorem 3. The system

W = %wuuu'*' 4 w, +ap°~)va
1 2.79)
W,y = — sinw,
uv p2
is invariant under the Bdcklund tran.sfo\rmation
/
(n —-wu+—2—Bsm(w +(o)’
p 2
, + 2 . o —w
o/, = —w, + — sin ,
v * 7 Bp 2
2 0.)’+0.) 3 0.)/+(1)
m{:m,+%w,‘+ﬁwuucos( > )+(2m§+8) ( > )
2 )
5| -2 —si .
* [ p“’"+ps‘“( 2 )] (2.80)

Here, p = =0.

It is observed that the ‘spatial’ parts of the Bicklund transformation (2.80)
coincide with the Bicklund transformation By given by (1.47) for the classical
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sine-Gordon equation. This suggests that the permutability theorem (1.63)
associated with Bg may also apply to both systems (2.57) and (2.79). Indeed, it
turns out that this nonlinear superposition principle is generic to all integrable
systems compatible with the classical sine-Gordon equation in the sense that
they derive from compatible motions of pseudospherical surfaces. In particular,
in the application of the permutability theorem for the Weingarten system, the
Bécklund parameters 3; are tiine-dependent and given by

Bit) = kip(O[1 £ /1~ 1/(Kp2(1))]

for specified total curvature K = —1/p2(¢).

The permutability theorem (1.63) has been exploited by Konno and
Sanuki [204] to generate kink and soliton solutions of the hybrid system (2.54).
In Figure 2.1, the impact of a moving soliton on a stationary soliton is shown.
In that case, the stationary soliton remains stationary apart from the phase
shift it undergoes due to the impingement of the second pulse. In Figure 2.2,
the collision process for two solitons (both moving) with amplitudes of

oS
e
Darhue
A
TR R
3

LA
e
“““‘“

o

Figure 2.1. The collision of two solitons with positive amplitudes.
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Figure 2.2. The collision of two solitons with amplitudes of opposite signs.

opposite sign is shown. Additional details on kink-antikink interaction are given
in [167].

The Potential mKdV Equation

It is noted that the specialisation 8 = 0 in (2.80) produces the usual auto-
Bicklund transformation given by (2.80),3 for the potential mKdV equation

o = %m + 8l @.81)
and thereby for the mKdV equation (2.55). Multi-soliton solutions of the mKdV
equation have been constructed via the permutability theorem by Hirota and
Satsuma [167]. A Bicklund transformation and associated permutability theo-
rem have also been constructed by Wadati [374] for a nonlinear lattice described,
in the long wavelength continuum approximation, by a combined mKdV-KdV
equation.

The relations (2.52) with 8 = 0 and { = 3/(2p?) establish that the potential
mKdV equation may be associated with the motion of a pseudospherical surface
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T with total curvature K = —1/p? and velocity

w? 3 Oyy
v= (P ["4— - F] » TP wu)~ (2.82)

It is interesting to note that the binormal component w, of the velocity of
propagation of X is governed by the mKdV equation.

In the next section, it is shown that the mKdV equation, like the sine-Gordon
equation, may be generated by an appropriate motion of a curve of constant
torsion. Soliton surfaces associated with both the mKdV equation and the
Weingarten system are constructed.

Exercises

1. (a) Obtain the expressions (2.65) and (2.67) for the matrices A and H,
respectively.
(b) Establish the relations (2.70).

2. Derive the relation (2.75) for the Biacklund parameter B(z).
3. Verify the invariance of the system (2.79) under the Bicklund transformation
(2.80).

2.4 The mKdV Equation. Moving Curve and Soliton Surface
Representations. A Solitonic Weingarten System

In this section, the mKdV equation is generated in a simple manner via a motion
of an inextensible curve of zero torsion. The motion of a Dini surface associated
with a single soliton solution of the potential mKdV equation (2.81) is then
determined. To conclude, a solitonic triply orthogonal Weingarten system is
constructed.

2.4.1 The mKdV Equation

Here, we return to the system (2.1), (2.2) consisting of the Serret-Frenet relations
with adjoined time evolution of the orthonormal triad {¢, n, b}. It is recalled that
this system has compatibility conditions given by (2.3).

If the velocity vector v = r, of a moving curve C has the decomposition

v =\t + pn + vb, (2.83)
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then imposition of the condition ry; = ry, yields

At + N(kn) + pn + p(th — «t) + vib + v(—Tn) = an + Bb,

whence
As —pk =0,
AK + s — VT = Q, (2.84)
BT + v = B.

The temporal evolution of the curvature k and the torsion 7 of the curve C may
now be expressed in terms of the components of velocity A, p, v by substitution
of (2.84),,3 into (2.3)y,3 to obtain

K = Ak + ps —v7)s — (LT + V)T, (2.85)
T =¥ + (BT + VoK, (2.86)
where
1
Y= E[(M + vs)s + TAK + ps — 7). (2.87)
For an inextensible curve of zero torsion moving in such a way that . = —kq,
(2.84), shows that
2
=-7 + () (2.88)

where ¢, (¢) is arbitrary. Since T = 0, the curve is planar at any instant ¢. If we
set ¢1(t) = O, then (2.84),,3 and (2.87) yield

3
{a’ B’ 'Y} = [_Kss - K?v Vs, 1)ii}
K
(2.89)

2
{)" 2 V} = [_K?’ —Ks, 'U}

while (2.85) shows that the curvature k evolves according to the mKdV equation

3
Ke + Kess + -2—K2K¢ =0. (2.90)
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The remaining relation (2.86) imposes the condition
(Vss/K)s = —KVg (2.91)

on the binormal component of the velocity.

2.4.2 Motion of a Dini Surface

To construct a pseudospherical surface moving in accordance with the potential
mKdV equation (2.81), a solution of the nonlinear system

Wy = %wuuu + %0.)3
. 2.92)
W,y =— Sinw
v p2

is taken and the corresponding position vector r = r(u, v, t) determined by
integration of a linear representation for the mKdV equation

r L P 3 ,
w, + 1_6(”',"""‘/ + §pw'2wu, =0, (2.93)
namely
A 0 - 0 A
B| =2|o O 1/p B |,
c/, 0 -1/p O C
W),
0 r ~T" (2.94)
A 1 o A
B| =] ~-T 0 Py alers B
c 2% 41 \e
¢ ol 1 o? 0
4 202 4
augmented by

A 0 0 (1/p)sinw \ /A
B| = 0 0 —(1/p)cos w B . (2.95)
c/, —(1/p)sine (1/p)cosw 0 C

In (2.94),

P ) '
F = g(&):‘/ul + Z(J.)IB _—

% (2.96)

together with o’ = w,, ¥’ = u/2 and ¥’ = —t.
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Here, as an illustration, we consider the one-soliton solution of (2.92),,
namely

® = 4arctan(exp X ), “(2.97)
with
X == (Bu + 3) +E (2.98)
P B

In the present case, p = B = 0. However, if £ is allowed to depend on ¢,
then substitution of (2.97) into the potential mKdV equation (2.92); gives £ =
B3/(2p?), so that (2.98) yields

1 ( v B3
X =- Bu+-—)+—t+e, (2.99)
P B/ 202
where € is an arbitrary constant of integration.
Relation (1.85) shows that the position vector of the pseudospherical surface
corresponding to the one-soliton solution of the sine-Gordon equation (1.25) is

given by

(12_:_)":;2 sech x cos (u—v)\
= 12}:’;2 sechx sin (”_”) (2.100)
2pB
\ u+v—1+B2tanhx )

This represents a moving single-soliton Dini surface. Here, x now depends on
t in the manner indicated in (2.99). It is required to determine r = r(u, v, t)
that satisfies the appropriate velocity condition, namely, on use of (2.52) with
8=0and{ =3/(2p?),

—(P2_32\4_"
r= <4wu Zp)A 2m,mB + w,C. (2.101)
This position vector r may be sought in the form [181]

r= R@)I" +s(t), (2.102)
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where R(z) is an appropriate rotation matrix and s(¢) is a translation vector.
Substitution of this relation into (2.101) yields

3 4k & p p *
Rr +s=R[(4 3 E)A‘—EmuuB‘+qu*—r,]

B

—————sech sin(u—v)
p(+pD X p
) u—v
=R p(T_|_—BT)sech)(cos( 5 )
3
2p
0 1/2p% 0 0
=R | —1/(2p? 0 0|r+ 0 .
0 0 0 —-3/(2p)

Accordingly, it is required to determine R(¢) and s(¢) such that

] 0 10 1
R=-—R| -1 0 0|=-=—RLs,

2 2

2 0 00 20

(2.103)
j B (
-3/Q@2p)

A suitable rotation matrix R and a translation vector s are seen to be given by

cos(t/2p2) sin(t/2p?) O 0
R = | —sin(t/2p2) cos(t/2p?) 0), s = 0 )
0 0 1 =3t/(2p)

Hence, the position vector r of the moving Dini surface corresponding to the
single-soliton solution of the system (2.92) is

2pPB u—v t
h -
T3 g sec xcos( ; 2p2)
) —
r(u,v,t) = 1_:[;2 sechx sin(u———v-—z%z) , (2.104)
3 2
T .

2p  14p2
where X is given by (2.99).
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Figure 2.3. A single soliton potential mKdV surface.

Itis noted that, if we set v = constant in (2.104), then it provides the position
vector r for the surface corresponding to the single soliton solution of the
potential mKdV equation (2.81). In Figure 2.3, such a soliton surface is shown
forp=1,B=1E=0andv=0.

2.4.3 A Triply Orthogonal Weingarten System
A solution of the Weingarten system of equations (2.57) corresponding to the
single soliton solution of (1.25) given by (2.97), (2.98) may be constructed in an
analogous manner. Here, since p = p(t), the Bécklund parameter 3, as well as
&, are now allowed to depend on ¢. Substitution of (2.97) into either of (2.57);,2
produces the relation (2.75), whence

X = k[u+v £ - v)y/1— /&) +£, (2.105)

and the position vector (1.85) corresponding to the single soliton solution of
the sine-Gordon equation (1.25) gives, in this context,

-Ilzsechx cos (u _ v)\

p()

1 u—v
r' =] Zsechy sin , (2.106)
PR (pm)

u+v—%tanhx }

where p (¢) is regarded as specified.
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It is now required to determine r = r(u, v, ) that satisfies the velocity con-

dition (2.56), namely

r= %N. (2.107)

A position vector is again sought in the form (2.102). It turns out that, if £ = 0,
then we may take r = r*. Accordingly, on reversion to curvature coordinates
x =u+v, y =u—uv,itis seen that the position vector

(1 sech x cos (Z) \
k P

r(x,y,1) = %sechx sin (E) (2.108)

-

1
\ X — e tanh x )
where

X =k [x +y/1— 1/(k2p2)] +& & constant (2.109)

and p = p () # Ois arbitrary, determines a triply orthogonal system of surfaces
corresponding to a single soliton solution of the Weingarten system (2.59). The
coordinate surfaces ¢ = const therein are pseudospherical surfaces of Dini type.
The single soliton solution may now be used as the basic component in the ap-
plication of the nonlinear superposition principle (1.63). Thus, triply orthogonal
coordinate systems may, in principle, now be generated corresponding to multi-
soliton solutions of the Weingarten system (2.59). These N-soliton solutions
represent a nonlinear superposition of single soliton solutions (2.97), with x
givenby (2.109) and k =k;, i =1, ..., N.

A triply orthogonal system which consists of two families of Dini sur-
faces and one family of spheres with position vector as set down in [326],
namely '

cos(y — t)
cosh(x +y +1)
r= sin(y — 1) (2.110)
cosh(x +y +1)
x — tanh(x +y +1¢)
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Figure 2.4. A triply orthogonal Weingarten system.

is illustrated in Figure 2.4. It is noted that this particular Weingarten system
arises naturally in the context of the ‘localised induction hierarchy’ [283,284]
which is but another avatar of the nonlinear Schrédinger hierarchy
(cf. Chapter 4).

Exercise

1. Verify that (2.94) provides a linear representation for the mKdV equation
(2.93).



Tzitzeica Surfaces. Conjugate Nets and the Toda
Lattice Scheme

In a series of papers between 1907 and 1910, the Romanian geometer Tzitzeica
[369,370] investigated a particular class of surfaces associated with the non-
linear wave equation

(Inh)eg =h —h72. 3.1

Tzitzeica not only established invariance of (3.1) under a Bicklund-type trans-
formation, but also constructed what is essentially a linear representation in-
corporating a spectral parameter [370]. The rediscovery of the Tzitzeica
equation (3.1) in a solitonic context had to wait until some seventy years later
[111,259].

The importance of this geometric work by Tzitzeica is not, however, con-
fined to soliton theory. Thus, it has been shown that the Tzitzeica condition
which leads to (3.1) is invariant under (equi-)affine transformations. The
Tzitzeica surfaces ‘are the analogues of spheres in affine differential geome-
try and, indeed, are known as affine spheres or affinsphiren [39]. According to
Nomizu and Sasaki [277], the origins of affine differential geometry reside in
this work of Tzitzeica at the turn of the nineteenth century. Tzitzeica’s early
contributions in this area, along with those of Pick and contemporaries, are
cited by Blaschke [39]. In 1921, Jonas [184] introduced a geometric procedure
for the construction of integrals of the Tzitzeica equation. Much later in 1953,
he investigated properties of another avatar of (3.1), namely the affinsphiren
equation [185]. The latter not only has intrinsic geometric importance, but af-
fords a direct connection with an integrable anisentropic gasdynamics system
[144-148, 336]. Further links between soliton theory and affine differential
geometry are treated in [14, 17, 80,209, 330].

Remarkably, the Tzitzeica equation is embedded in a solitonic system which
had a much earlier geometric origin in the nineteenth century in the study of

88
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conjugate net systems and their iterative generation via Laplace-Darboux trans-
formations. Thus, the integrable two-dimensional Toda lattice equation arises
in the latter context and, indeed, was set down explicitly by Darboux in the nine-
teenth century. The Tzitzeica equation (3.1) will be seen to arise as a special
reduction of the Toda lattice model. In fact, the classical study of transforma-
tions of conjugate nets has many points of contact with modern soliton theory.
The monograph of Eisenhart [119] provides an invaluable compendium of the
various transformations of conjugate nets. In solitonic terms, the most important
is the so-called Fundamental Transformation described in 1915 by Jonas [183].

3.1 Tzitzeica Surfaces. Link to an Integrable Gasdynamics System

Here, the Tzitzeica equation and its linear representation are derived in their
original geometric context. The links with the affinsphéren equation and an
integrable gasdynamics system are then made explicit.

3.1.1 The Tzitzeica and Affinsphiiren Equations

Hyperbolic surfaces ¥ can always be parametrised in terms of real asymptotic
coordinates, here denoted by « and B. In this case, the Gauss equations take the
form

Taa =T} jra + T,
Fog = l":zl'Ol + Ffzrp + fN, 3.2
rog = Tjra + Tore,

while the Mainardi-Codazzi equations read

f 2 f f 1 f
=0 (< L =0, 3.3
(H a+2F12H % \& B+2F12H 0 G3)
and the Gaussian curvature reduces to
f2

Accordingly, the Mainardi-Codazzi equations may be written as

1 i
Ty = —7n(~K)lg, T = —In(~Kk. (3.5)
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If we denote the distance from the origin to the tangent plane to T at a generic

point P by d, then we deduce that

d=N-r, dy=Ny-r, dg=Ng-r.

(3.6)

These relations may be regarded as scaled projections of r onto the linearly

independent triad N, N, Ng and use of the Weingarten equations yields

d
r=—bp,— =

f f
On the other hand, by virtue of (3.5), equation (3.2), takes the form

r3+dN.

1 1
reg = =7 In(~K)]gre = 7 I(~IOlarg + fN

which implies that

f

K 2
Tap = 5T < T = const =¢” > 0.
The surfaces governed by the condition
K= -cd*
are precisely those considered by Tzitzeica. Compatibility of
rog =hr, (h= f/d)

and the residual Gauss equations (3.2);,3 yields

ho a(o) b(B) hg
1-‘llll - —h_’ F%l = h ’ 1—‘%2 = h ’ F%z = 7’
‘where
ab
(Inh)eg =h — 7

3.7

(3.8)

39

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

Since asymptotic coordinates are only defined modulo the reparametrisation
a — &), B — B(B), we may choose the functions a and b to be constants
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satisfyingab = 1 provided thata # 0, b # 0. Thus, in this ‘gauge’, the position
vector of Tzitzeica surfaces is determined by the linear system

a
Fao = —To + 778,

h h

rog = hr, (3.15)
hp AL

reg = -h—rp + Tra,

where A\=a =>b""! is a constant parameter. This system is compatible if and
only if h obeys the Tzitzeica equation (3.1). The latter equation, following
its rediscovery in modern soliton theory, has been the subject of extensive
investigation (see e.g., [52, 140,259, 325,327, 336]). However, remarkably, not
only the linear representation (3.15) but also an auto-Bécklund transformation
crucial to the solitonic analysis are both to be found in the original works of
Tzitzeica.

Tzitzeica surfaces arise naturally in affine geometry in the form of affin-
sphéren.! The latter are defined by the requirement that the affine normals N*
meet at a point which may be taken without loss of generality as the origin of
the coordinate system. This is the counterpart of the definition of spheres as
a surface the normals N to which all pass through a fixed point. In terms of
asymptotic coordinates, it may be shown that the affine normal is parallel to
the vector rog so that affinsphiren are defined by the relation (3.12) and hence
coincide with Tzitzeica surfaces.

In the terminology of soliton theory, the A-dependent linear system (3.15) is
commonly called a Lax triad. Interestingly, the vector

/

r= —%(r., X rg), (3.16)

which is parallel to the normal N, obeys the dual or adjoint triad

h A

rl,= -h—“r; - -}:ré,

';B = hr', 3.17)
hﬂ At

= %P e

1 An account of affine geometry is beyond the scope of the present text. The interested reader is
referred to the extensive monograph on the subject by Blaschke [39].
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The above statement may be verified by differentiation and substitution for
second-order derivatives as given by (3.15). Interestingly, as noted by Jonas
[185], one thereby recovers the Lelieuvre formulae

I =rXr,, r% =-rxrg (3.18)

associated with &’ : 7’ = r'(a, B). Moreover, r = v’ is normal to ¥’ and it is
readily seen that
'r’ra.’rﬂl _ r'(ra. xrB)

h = 5 = const, (3.19)

whence
r’.r = const. (3.20)

The Tzitzeica surfaces represented by r’ are termed polar reciprocal affin-
sphiren.

The Lelieuvre formulae give rise to an important observation, namely that
there exist two canonical families of conjugate lines on Tzitzeica surfaces. Thus,
if we set

, v=2, 3.21)

where r=(x,y,2z)" and r' =(x’, y', z')", then (3.16) and the Lelieuvre for-
mulae (3.18) deliver
hRv = Ryug + RpVy, U=

1
i—zva, up = —Fvﬂ’ (3.22)

whence, on use of the latter pair of relations,

R “dv R dv
- = - =—|(-R — . .
da o (R du+ R ), dp 20 ( du + R ) (3.23)

Insertion of these expressions into the 2™ fundamental form now produces

dv?

O~ dodB ~ R*du?® - TR

(3.24)
Thus, the functions u and v define conjugate lines on the Tzitzeica surfaces, that
is the 2" fundamental form is purely diagonal with respect to the coordinates
u and v.
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Now, the relation R.g = kR together with (3.22); imply that

d [%(Rada - RBdB)] =0, (3.25)
which, under the change of variables to «, v wherein
1 1
0y = u.,(ﬁa., + 3.,), s =g (-ﬁa,, + 3.,), (3.26)
gives
d (sz”du + R’;:z dv) =0. (327

This relation delivers the affinsphdren equation

R, \ _ R?R,
().~ (57),
as originally derived by the German geometer Jonas [185]. He pointed out that
the affinsphéren equation (3.28) has the distinct advantage over the Tzitzeica
equation that once R is known, calculation of the surface vector r involves only
two quadratures. This is seen as follows.

On taking the cross-products of r' and ry, ry as given by the definition

(3.16) and the Lelieuvre formulae (3.18), respectively, we obtain the Lelieuvre
formulae associated with the original affinsphéren

(3.28)

-

ro=r'xr,, rg=-r xré, (3.29)
where, without loss of generality, we have chosen
[r,ro,rgl =r-(ra xrg) =h. (3.30)
Under the change of variables (3.26), the Lelieuvre formulae (3.29) become
r.=R¥r' xrl), r,= %(r’ xrh), (3.31)

the first two components of which may be brought into the form

(y’) _ R, (y’) .
z/ 3 z/l ’ z ; RZZ/Z

(3.32)
X\ _ Ry AN
Z u_ 2’ 7 v_ R2z72°
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If we now introduce the two quadratures

R?R, R, uR?R, uR, + R
w=/ " du+mdv, s=f 2 du + R2y2 dv (3.33)

and take into account that

r-r=-1, (3.34)

then the position vectors of the affinsphire and its dual are obtained in the
form

R SV
r= Ru , =\ -wv | (3.35)
—v 1+ R(wu —s) v

It is interesting to note that Jonas in [185] derived the complete class of
Tzitzeica surfaces of revolution. This class is associated with cnoidal solu-
tions of the Tzitzeica equation. A typical surface of revolution is depicted in
Figure 3.1.

Figure 3.1. A Tzitzeica surface of revolution.
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3.1.2 The Affinsphiren Equation in a Gasdynamics Context

Following upon the rediscovery of the Tzitzeica equation in soliton theory,
Gaffet [144—148] showed, via a Riemann invariants approach, that remarkably,
for a particular class of gas laws, a 1+1-dimensional anisentropic gasdynamics
system may be reduced to the Tzitzeica equation. This gasdynamics system is,
accordingly, integrable and admits soliton-type solutions. In this context, the
affinsphiiren equation has a distinct advantage over the Tzitzeica equation in
that it is formulated directly in terms of the gasdynamics variables [336]. The
derivation of the affinsphéren equation in this anisentropic gasdynamics context
is detailed herein.
The 1+ 1-dimensional Lagrangian equation of motion for a Prim gas [289]

p = II(p)S(s), %:1 >0 (3.36)
takes the form
3%p 32 1
56533 = 52 (1) 0

In the above, p, p and s(§ ) designate the gas pressure, density and specific
entropy, respectively. In addition, ¢ denotes time and { the Lagrangian variable
given by

d{y = p(dx — qdt) (3.38)

while x denotes the Eulerian space coordinate and g is the gas speed.
If we set

R=p+¢ u=t, v=y!3 (3.39)

and specify I1(p) and S(s) according to

M(p) = S(s) =y (3.40)

R
1-bR’

then the Lagrangian equation of motion (3.37) reduces directly to the affin-

sphéren equation
Ry R?R,
(7).~ (%) -
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The relations (3.39), (3.40) reveal by exploiting a scaling symmetry of (3.37)
that this reduction applies, more generally, to constitutive laws of the form

_ a(p+ 9Py

=TT 5 (3.42)

where d is a further arbitrary constant. To retrieve the gasdynamics variables
.corresponding to a solution R = R(u, v) of the affinsphiren equation (3.41), it
is noted that x = x(u, v) is obtained by integration of the pair of relations

(3.43)

The corresponding integrability condition (xy),, = (X4y)y 1S satisfied by virtue
of the affinsphéren equation (3.41). The gasdynamics variables are then given
parametrically in terms of u and v by

x=xu,v), t=u (3.44)
and
3Rv* 0x
=R} - &, = —, S(s) = 4 = —. 3.45
P S P=1_3R =", ¢q n (3.45)

Martin [242,243] derived Monge-Ampére-type formulations of both plane
steady and non-steady anisentropic gasdynamics. In the latter case, integrable
Monge-Ampere equations equivalent to the Tzitzeica equation are readily ob-
tained. To this end, it is observed that, in terms of differential forms, the affin-
sphiéren equation assumes the simple form

v?’dw Adv = R*du AdR, dR Adv= R*?du A dw. (3.46)

Indeed, if R and w are regarded as functions of u and v, then (3.46) is equiva-

lent to
0 R2 2

where w is identified as the potential of the affinsphiren equation introduced
in (3.33).

In the previous subsection, the position vector r of the affinsphire was the
starting point in the derivation of the affinsphiren equation. Alternatively, the
dual vector 7’ may be chosen as the basis of the derivation with R'=x’, u’ =
y'/x', v' = z. By construction, this leads to a dual affinsphiren equation which
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is of the same form as the affinsphiren equation. This is reflected by the fact
that the system of differential forms (3.46) is symmetric in R, # and v, w.
Consequently, if we regard u and v as functions of w and R, we then obtain

u\ _( 0 vYR*\(u
O-(e TN, o

Uy vzv R
) = (=) 3.49
( ‘Usz )w ( R2 )R ( )
Thus, we have established that the matrix equation (3.47) is invariant under the
hodograph transformation?

whence

w=u R=v, w=u, R=17 (3.50)
This is associated with the invariance
(R,u,v) (v, w, R) (3.51)

of the affinsphéren equation (3.41).
On reversion to the gasdynamics variables j = R3 and ¥ = v3, the system
of differential forms (3.46) becomes

dwAady =dundp, dprdy =9(pY)**du Adw. (3.52)
Thus, in terms of j and {s, one obtains
ws = —uy, (PP )4/3(u,3w.,,- —uywp) =1, (3.53)
leading to
Espuy — E2y + (BU) ™ =0, (3.54)

withu = %Eﬁ, w= —%5.1, . This Monge-Ampere equation represents the Martin
formulation of the integrable gasdynamics system under consideration. The
invariance (3.51) of the affinsphéren equation corresponds to the invariance

2 It is observed that invariance under a hodograph transformation has interesting application else-
where in continuum mechanics. In the nonlinear elasticity of neo-Hookean materials, invariance
of the plane strain equilibrium equations under a hodograph transformation leads to the Adkins
Reciprocal Principle [4].
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Alternatively, 1 and w may be selected as independent variables and a
Legendre transformation established between (3.54) and a second Monge-
Ampere equation, namely

OuOuu — ®3w + (®u®w)4/3 =Y, (3.55)

with p = £®,, § = —30,,. Hence, the Tzitzeica, affinsphiren and Monge-
Ampere~type equations (3.54), (3.55) are each solitonic equations which may
be associated with the geometry of Tzitzeica surfaces.

Here, a point of contact has been established between soliton theory and
a gasdynamics system. In [336], a Bécklund transformation to be established
in the next section was used to construct a class of gasdynamics solutions
corresponding to the constitutive law (3.42). It is interesting to note that similar
three-parameter gas laws of the type

a(p + '
= 2+ 3.56
PTG+ o -39
or, equivalently,
po)’ 1.5
p= (_) €+ —¢ fi=—+2, (3.57)
P po d

where e=pg/p — 1 is the stretch, were derived in homentropic gasdynam-
ics by Loewner [237] and later independently by Cekirge and Varley [73]. In
[237], Loewner systematically sought Bicklund transformations which reduce
the hodograph equations of plane, steady gasdynamics to appropriate canoni-
cal forms in subsonic, transonic and supersonic régimes. The law (3.57) was
obtained as but one member of a class for which reduction is available to the
classical wave equation in supersonic flow. Cekirge and Varley noted that the
constitutive law (3.57) may be used to model ideally soft materials, that is,
media in which the Lagrangian sound speed decreases monotonically to zero
as the stretch increases without bound. It is recalled that, during expansion, a
gas exhibits ideally soft behaviour. It is remarked that the class of model con-
stitutive laws obtained originally by Loewner in [237] and subsequently by
Cekirge and Varley [73], including (3.57), may be derived alternatively by a
termination of Bergman series approach [72]. The latter, in turn, has connections
with integrable Toda lattice systems [275]. Indeed, it has recently been shown in
[338] that the model constitutive laws obtained by the Loewner or termination
‘of Bergman series approach have a direct solitonic interpretation. It also turns
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out, remarkably, that an infinitesimal version of Loewner’s Bicklund trans-
formations as originally introduced in a gasdynamics context, when suitably
interpreted, leads to a novel master 2+ 1-dimensional soliton system [210, 211].
These recent developments have brought together the two strands of major ap-
plications of Bécklund transformations in soliton theory and continuum me-
chanics which had a separate historical development and which were treated
independently in the companion monograph on Bicklund transformations by
Rogers and Shadwick [311].

Exercises

1. Show that, for the Tzitzeica surfaces considered in this section,

’

3
¥ (w.m (I A)are + %%),
- —:"—L;(m — h}),
¢3 A—l
G= e (‘l’ea —(Inh)syp + Tllla),

where § = 1/d.
2. (a) Show that the direction of the usual normal N coincides with the direction
of the Laplace-Beltrami operator acting on the position vector r, viz

1 Gro — Frp Erg — Fry
N~ Ar=— )
'S H [( H )+< H ),,]

with H2 = EG — F.
(b) Show that the direction of the affine normal is given by

N° ~ A%,

where A is the Laplace-Beltrami operator associated with the second

fundamental form, that is
0 (g d d ) + ] ] )
da \ } da ap ap da /|

S|~
SO

S

2
e
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with #? = eg — f2. This underlines the analogy between the normal N
and the affine normal N? (see [39]).

(c) Use the above expression for the affine normal to verify that

N"||rup

in terms of asymptotic coordinates.

3. Use the linear representation for the Tzitzeica equation to show that

[185]
RR, v?
SRR b
where
Ru. R, R.R,
P =2 =225+ R'Ry, Q=2(R,,.,—T).

4. (a) Establish that Tzitzeica surfaces of revolution are associated with solu-
tions of the ‘stationary’ Tzitzeica equation

(nh)' =h—h"2%, h=h(+p).

This may be solved in terms of elliptic functions, since it admits the first
integral

W% =21 + coh® + 1.
(b) Show that, in cylindrical coordinates
x=pcosp, y=psing, z

the Gaussian curvature K and the distance d from the origin to the tangent
plane of a surface of revolution r = r(p, z) read

- 2 pz'
o i 4T s

<

and hence conclude that Tzitzeica surfaces of revolution are governed by
Z,Z” + CZP(Z _ pZ/)4 = 0’

where z = z(p).
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5. Prove that the integrable gasdynamics system associated with the affin-
sphiren equation may be described by the Monge-Ampere equation

Aqqug - A:‘;i = A_4,

where ¢ is the gas speed, ¥ =x — gt and A= als®, with § = —1/3,
ad = ++/3. ‘

3.2 Construction of Tzitzeica Surfaces. An Induced
Bicklund Transformation

Tzitzeica not only set down a linear representation but also presented a Backlund
transformation for the nonlinear equation (3.1) that now bears his name. How-
ever, Tzitzeica suppressed the details of how that Biacklund transformation was
obtained. Here, the Bicklund transformation is generated in the context of a
simple, purely geometric construction of chains of Tzitzeica surfaces. Thus, we
investigate as to whether two Tzitzeica surfaces ¥ and ¥’ represented by the
pairs (r, h) and (r’, h") may be related in such a way that the line segment which
connects corresponding generic points P and P’ on the surfaces is tangential
to the surface X, that is

r—-rLN. (3.58)

In analytic terms, this requirement translates into the condition

, a b
r=r+ h—ra + er, (3.59)

where a(a, B) and b(a, B) are to be so chosen that ¥’ is an affinsphiire and
parametrised in the same manner as . In other words, the surface vector r’ has
to satisfy Gauss equations of the form

' _ h:: ’ ’
rhe = Wr“ + yra,
ros =h'r, (3.60)
gy AT
Fpg = g = of,

7l
so that h’ is a solution of the companion Tzitzeica cquation

(Inh)ep =H —h'2. (3.61)
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This implies, in turn, that if either of the surfaces may be chosen arbitrarily, the
relation (3.59) between X and X’ will then induce an auto-B#cklund transfor-
mation for the Tzitzeica equation.

Insertion of the position vector r’ into each of the Gauss equations (3.60) and
evaluation modulo the original Gauss equations (3.15) produces a relation of
the form

Eor+ Eirg + Ezrp =0. (3.62)
Since {r4, ra, N} constitutes a linearly independent set, by virtue of the general

relation (3.7), so does {ry, rg, r} whence E; = 0in (3.62). Indeed, the hyperbolic
equation (3.60), delivers

h a b
Gop = 30+ Ha— 7 =\ (z) *
ho b 3.63

h' =h +as + b,

while the r,-component of (3.60); and the rg-component of (3.60); yield

as | h b a
=2 ey wn— 2 (2 |,
@ bp|:h BRSO~ (h)ﬁ]

(3.64)
bgg = Z—z |:%a¢,l +ha— % -\t (%)a]
Comparison of (3.63);,, and (3.64) now shows that
bpaa = Gabag, dubpp = bpaag (3.65)
whence
bg = ca,, ¢ = const. (3.66)

On introduction of the potential p via

a=pg, b=cpa, 3.67)
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the relations (3.63); » may be integrated once to give

l+¢ ha Ac!
Paa = ) P2 h — Do — _h—PB + A((!)
: N . (3.68)
_ + C ) A e
Ppp = —, B+ y P8~ Pt B®).
These equations can, in turn, be linearised by the change of variables
1 ! A
¢ =exp (— +cp), c=-=, (3.69)
2 "
leading to
ha B A— Ld
‘bﬂa = _}Td)u + hd)ﬂ + _Z}T—A(a)’
(3.70)

_hs p! A—p
dps = ’h—‘i’ﬁ + T¢u + TB(B)--

Moreover, the compatibility condition ($u«)ps = (Ppp)aa reveals that A(a) and
B(B) have to vanish identically for a generic solution & of the Tzitzeica equation.
It is then readily verified that the above system admits the first integral

dup = (R + co)d, co = const (3.71)

and r’ as given by (3.59), (3.67), (3.69) satisfies the Gauss equations (3.60)
provided that ¢; = 0. Thus, we have established the following result:

Theorem 4 (The Tzitzeica Transformation). The Gauss equations (3.15) and
the Tzitzeica equation (3.1) are invariant under

p 2 b dg )
=r——2 (Z & u ¥ ),
ror=Er (A—u)h( o PR 3.72)
h— B = h — 200 d)ep,

where & is a particular solution of (3.15) with parameter .

The Tzitzeica transformation is a particular variant of the classical Moutard
transformation [264] which was originally introduced in connection with a
search for the sequential reduction of linear hyperbolic equations to a canonical
equation whose solution was known. The basic form of the Moutard result,
which together with its variants will be subsequently seen to have extensive
application in soliton theory, is as follows:
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Theorem 5 (The Moutard Transformation). The hyperbolic equation
rep = hr (3.73)

is form-invariant under the transformation

m
ro>r=r—2—

¢ 3.74)
h — k' =h - 2(nd)eg,
where the bilinear potential m is defined by

my = ¢or, mpg = drg (3.75)

and & is a particular solution of the scalar version of (3.73).

The connection with Tzitzeica’s transformation is as follows. If the Moutard
equation (3.73) is supplemented by the Gauss equations

Foa = ——h“r +—r
ao — h a ; B -
. (3.76)
r — .}.lEr + )\;r
BB = h B n

and ¢ is a solution thereof with parameter w, then the potential m may be
calculated explicitly. It becomes

AN+ pm=por+ )\%’B - p,%r(,l + const. (.77

Thus, with the constant of integration set to zero, we obtain

1_)\_“ _ 2 & _ E
e e e ()|

which is nothing but the Tzitzeica transform up to an irrelevant constant factor.
It is emphasized that the ‘standard’ form (1.174) of the classical Moutard
transformation is readily obtained by introducing the skew-symmetric potential

S=¢ér—2m 3.79)
so that

(3.80)
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with defining relations
S = brq — dor, Sg = dpr — ¢rg. (3.81)

However, the alternative form (3.74); shows that there exists a close connection
between the Moutard transformation and the so-called Fundamental Transfor-
mation to be discussed in detail in Section 5.4.

It is evident that the Tzitzeica transformation can be iterated in an algo-
rithmic manner. Likewise, the Moutard transformation may be so iterated. In
fact, the link between the Tzitzeica and Moutard transformations may be ex-
ploited to construct closed formulae for the iterated Tzitzeica transformation.
In this way, one may construct multi-parameter Tzitzeica surfaces and corre-
sponding solutions of the Tzitzeica equation. In particular, the multi-soliton
solutions of the Tzitzeica equation derived by Michailov [259] give rise to
solitonic surfaces of affinsphiren type. Furthermore, permutability theorems
associated with the double Tzitzeica and triple Moutard transformations play
an important role in connection with the construction of discrete integrable
systems [273,274,325,327,330].

Here, we focus on the simplest application of the Tzitzeica transformation,
namely its action on the trivial solution

h=1. (3.82)

Without loss of generality, we may set A = 1 so that the corresponding Gauss
equations have particular solution

x = cos [1+/3(c — B)] exp [ 1(a + B)],
y =sin [%ﬁ(a - B)]exp[—i(a + B)], (3.83)
z = exp(a + B).

This represents a surface of revolution and is displayed in Figure 3.2. In view
of its shape, we have coined the term Jonas’ hexenhut.® The general solution is
obtained by applying the linear transformation

r— Dr, (3.84)

where D is a non-singular constant matrix.

3 The hexenhut arises naturally in hydrodynamics as a free surface bounding axi-symmetric jets
impinging normally on a plate and of ‘whirlpools’ [134,239].
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Figure 3.2. Jonas’ hexenhut.

The one-soliton solution of the Tzitzeica equation is obtained by choosing
the particular solution

¢ = (exp i) coshy (3.85)
with
N = %ﬁ(vl/Ba + v—1/3B)’ &= %(vl/fia _ v—l/BB)’ w=iv. (3.86)
Even though ¢ is complex, the Tzitzeica transform (3.72),, that is

3

h=1-——5—,
2cosh”y

(3.87)

proves to be real. Apart from an additive constant, this constitutes the typical
gibbous one-soliton solution. Since 4 is real, a new family of surfaces ¥’ is
generated by inserting the position vector with components (3.83) into the
transformation formula (3.72); and taking the real part. We then obtain, up to
irrelevant constant factors,

x’ = [c1 cosK — ¢3 sink + (€3 COSK — ¢4 8in K)tanh'y]exp[—%(a + B)],
y' = [c1sink + ¢3 cos k + (c3 sink + ¢4 cos K)ta.nh'y]exp[—%(a + B)],
7 = (s —cstanhy)exp(a +B), k= 1v/3(a - B),

(3.88)
with constants
=242 — VB B, oy = AW =),
c3 = /3R +1553), cs = 3(v13 —1v3B), (3.89)

cs =14+v24023 443 o= «/§(v1/3 +v373).
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Figure 3.3. One-soliton Tzitzeica surfaces.

The surface corresponding to v = 1 is a surface of revolution and represents
the stationary one-soliton solution of the Tzitzeica equation. This surface we
have termed Jonas’ Kelch. For v # 1, the surfaces encapsulate moving one-
soliton solutions. The stationary one-soliton Tzitzeica surface and a typical
moving one-soliton Tzitzeica surface are depicted in Figure 3.3. Here, as well as
in the previous case, the parametric lines are a + 8 = constand a — 8 = const.
It is noted that the edges and vertices of the one-soliton surfaces are described
by the zeros of

' = —1[1 — ¥/3tanhy][1 + +/3tanhy]. (3.90)

Moreover, the linear transformation (3.84) may be regarded as a deformation
of Tzitzeica surfaces. A typical stationary one-soliton Tzitzeica surface with
‘shear’ is shown in Figure 3.4.

Two-soliton solutions of the Tzitzeica equation may be obtained by means of
asecond application of the Tzitzeica transformation. In particular, if one chooses
the Bécklund parameters appropriately, one obtains the stationary breather

Figure 3.4. A one-soliton Tzitzeica surface with ‘shear’.
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Figure 3.5. A stationary breather solution for v = %.

solution
W o=1— 3 sin 2v(sin 2v + pq coshy cos d) 3.91)
(psinvcoshy + g cosvcosd)? ’ ’
where
=/3(a + B)cosv, p?=4sin®v—1,
K B P (3.92)

8 =+/3(a—B)sinv, ¢?=4cos?v—1.

This solution is localised in a4+ and periodic in o« — as shown in
Figure 3.5.

The Tzitzeica transformation permits the construction of explicit formulae for
the position vector of affinsphéren corresponding to solutions of the underlying
Tzitzeica equation. A typical stationary breather Tzitzeica surface is displayed
in Figure 3.6. '

Figure 3.6.- A stationary breather Tzitzeica surface for v = %.
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.

Exercise
1. (a) Verify that
¢I = d)_l
is a particular solution of the Gauss equations (3.60) with parameter

po=—p.

(b) It has been shown that the Tzitzeica transformation (3.72) is uni-
quely determined by the condition that 87 = r’ — r be tangential to
the surface . Derive the inverse Tzitzeica transformation

’ /
r=r 2 (Xg‘lr’ - %r;)

T TP

to establish that dr is also tangential to the second surface X’'.

3.3 Laplace-Darboux Transformations. The Two-Dimensional
Toda Lattice. Conjugate Nets

Laplace-Darboux transformations owe their origin to work by Laplace on re-
duction and invariance properties associated with the canonical hyperbolic
equation

Ar =0, (3.93)
where A is the operator
A =03,8,+ad, +bd+c (3.94)

and a, b, ¢ are real, scalar functions of ¥ and v. In geometric terms, it was
subsequently established by Darboux [93] that these transformations have an
interesting interpretation in the theory of conjugate nets. A Bécklund trans-
formation for the generation of conjugate nets is to be found in the classical
literature. Extensive accounts of the transformation theory of conjugate nets are
contained in the treatises of both Eisenhart [119] and Lane [227].

Here, our interest resides in remarkable connections between the transfor-
mation theory of conjugate nets and certain solitonic systems. Thus, the inte-
grable two-dimensional Toda lattice model arises naturally in connection with
sequences of Laplace-Darboux transformations applied to (3.93) or, equiva-
lently, to associated conjugate nets. This lattice system contains as particular
reductions both the hyperbolic sinh-Gordon equation and the Tzitzeica equa-
tion descriptive of the soliton surfaces as discussed in the preceding section.
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In addition, it is known that the classical Darboux system which determines
conjugate coordinate systems in R? is solitonic. In fact, it incorporates as im-
portant reductions not only the SIT system but also a 2 + 1-dimensional in-
tegrable version of the sine-Gordon equation [214,340]. An integrable matrix
analogue of the Darboux system has been set down by Zakharov and
Manakov [392]. '

In what follows, Laplace-Darboux transformations are introduced along with
the key associated notion of Laplace-Darboux invariants. Iterated application
of such transformations is shown to lead naturally to the two-dimensional
Toda lattice model. The concept of periodicity in Laplace-Darboux sequences
is introduced. Salient aspects of the underlying Lie-algebraic structure of
Toda lattice systems pertinent to particular symmetry reductions are then out-
lined. To conclude, the geometric interpretation of Laplace-Darboux trans-
formations with regard to the construction of sequences of conjugate nets is
described.

3.3.1 Laplace-Darboux Transformations

The operator A as given by (3.94) admits two key decompositions which are
important in subsequent developments, namely

A=0,+b)3+a)—h (3.95)
and
A=(3,+ a)(a,f +b) —k, (3.96)
where
h=a,+ba—c, k=b,+ab—c. 397

Thus, the presence of non-zero h, k prevents the reduction of A to a factorisable
form which would allow immediate integration of (3.93).

The quantities 4, k are invariant under the action of gauge transformations
of (3.93), namely mappings

r—>r =gr, (3.98)

where g is an arbitrary, invertible function of u and v. This corresponds,
at the operator level, to the result that h, k are invariant under the class of
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gauge transformations
G:A—> A =gAg™L (3.99)

The gauge transformations G arise from changes (3.98) in the dependent variable
r which preserve the form of A. Thus, the invariants &, k label an equivalence
class [k, k] of operators linked by gauge transformations [19].

The introduction of Laplace-Darboux transformations is motivated by a
search for sequential reduction of (3.93) to an associated equation for which
one of the Laplace invariants h, k is zero. The two kinds of classical Laplace-
Darboux transformations, here denoted by oy and o_,, originate in the repre-
sentation of Ar = 0 as a first-order system in two distinct ways corresponding
to the two decompositions (3.95), (3.96), viz. [164]

3 + b —h(B)r =
(3 + b)ri —h(A)r =0 ] o (3.100)
rn—@+ay=0
and
(3 + a)r_, — k(A)r = o] .. (3.101)
ro1— @ +b)r=0

It is then readily shown that, under the Laplace-Darboux transformations o
and o_; given by (3.100) and (3.101), A — A; and A — A_;, respectively,
where

Al = auau + (a - [h‘l h(A)]u)au + bau + (C —ay + bu - b[]-n h(A)]v)
A_y = 0,9y + ady + (b — [Ink(A)],)dy + (¢ — by + a, — a[lnk(A)],)

(3.102)
while the Laplace-Darboux invariants of the operators A} and A_; are given
by

h(Ay) = 2h(A) — k(D) — [Inh(D)],y, k(A1) = h(D), (3.103)
h(A-) = k(8), k(Ao = 2K(8) — h(A) — [Ink(A)],y.

3.3.2 Iteration of Laplace-Darboux Transformations.
The Two-Dimensional Toda Lattice

Let [h,, k,] denote the equivalence classes obtained by n applications of the
map o. The relations (3.103) show that

hn+l = 2hn - kn - (lnhn)uv’ kn+1 = hm (3104)
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whence we obtain the recurrence relations

(nhy)yy = —hn41 +2hp — hyey, neZ. (3.105)

These determine the integrable two-dimensional Toda lattice system.

The Toda lattice system admits various types of reductions due to its underly-
ing Lie-algebraic structure. Thus, if we denote the operators which result from
the repeated action of oy and o_; by

Ap =g (A), A_,=0(A) (3.106)
then the operator A is said to have period' pif
Ap=A. (3.107)
In terms of the Laplace-Dafboux invariants, periodicity is represented by
Rnyp = han. (3.108)
Accordingly, the periodic Toda lattice reads

2 -1 -1
Inh h
. 1 -1 2 1
= o | (3.109)
o -1
hP
-1 -1 2

Inh

P/ uy

where the dots in the above matrix indicate entries ~1 and 2 with all other
entries zero. This implies, in turn, that

p
> (nhg)y =0 (3.110)
k=1
and hence
p
[ [ 5 = rang). @.111)
k=1

The right-hand side of (3.111) may be normalised to +1 if p is even and 1 if p
is odd on introduction of an appropriate change of variables

(u, v, he) = W'(w), v'(v), Fu)G(v)hy). (3.112)
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It is evident that the Toda lattice of period p constitutes a system of p—1
equations for p — 1 unknowns. :
The constant matrix in the periodic Toda lattice (3.109) is a particular example
- of a Cartan matrix of rank p — 1 associated with the infinite-dimensional affine
Kac-Moody algebra A(l) ”, [186]. In the case of A( ) when the period is 2, the
Toda lattice reduces to the sinh-Gordon equation

Puy = 4sinh g, (3.113)
if one chooses the normalisation
hy =hil =" (3.114)

Period 3 delivers the Fordy-Gibbons system [140]

1
(lnhl)uv = —h2 + 2h1 — T
hih,
) (3.115)
(Inhz)yy = —h_h +2hy — hy
with the normalisation
hihohs = 1. (3.116)

Moreover, the associated Kac-Moody.algebra A(zl) contains the twisted Kac-
Moody subalgebra A(22) which is reflected by the admissible constraint h; =
hy =h on the Fordy-Gibbons system (3.115). Thus, in this case, the latter re-
duces to the Tzitzeica equation

(Inh)yy =h—h~2. (3.117)

In conclusion, it is noted that the Toda lattice (3.105) admits reductions as-
sociated with a variety of finite-dimensional simple Lie algebras as classified
by Killing and Cartan [179] or with infinite-dimensional affine Kac-Moody
algebras. The results have been described by Athorne in [19].

3.3.3 The Two-Dimensional Toda Lattice: Its Linear Representation
and Bicklund Transformation

The transformation formula (3.102) shows that the condition b = 0 is invariant
under the Laplace-Darboux Fransformation o1. Thus, in what follows, we focus
on the Toda lattice generated by the Laplace-Darboux transformation

Pnt1 = (By + an)bn = Ly, (3.118)
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acting on the hyperbolic equation
bnuv + Gndnu + cndn = 0. (3.119)
The Laplace-Darboux relations may then be brought into the form
Gnu = hne1$n-1,  Gnv = bnt1 — andy (3.120)

and are compatible if and only if

Ay =hp—hp1, Gp—ap_1 = _(lnhn—l)m (3121)
leading to the condition
(nh,_)uy = —hp + 2k, — hps. (3.122)

Consequently, the linear system (3.120) may be regarded as a Lax pair for the
Toda lattice (3.122).

To derive a Bicklund transformation for the Toda lattice, it is observed that
since the Toda lattice encapsulates the Laplace-Darboux invariants , obtained
from the iterative action of the Laplace-Darboux transformation £ on the seed
equation

buy +ady +cd =0, (3.123)

it follows that any form-invariance of the latter generates another hierarchy
of hyperbolic equations of the form (3.119) with associated Laplace-Darboux
invariants 4. Here, we seek invariances of the form ¢ — ¢, where

¢ =@, + A (3.124)

and A= A(u, v) is as yet unspecified. If the expression (3.124) is inserted into
the primed version of (3.123), then evaluation modulo (3.123) produces the
system
d—c+A,=0,
(A-a)a —a)+(A—a), =0, (3.125)
(A, =) +ad (A, —c)+A—c(A—a)=0.
There are now two cases to distinguish corresponding to A = a or A # a. If
A = a, then we retrieve the Laplace-Darboux transformation
¢ = Ld= (@3, +a)d,

(3.126)
a =a—[In(a, —)l,, ¢/ =c—ay.
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In the case A # a, the first two relations in (3.125) may be regarded as the defi-
nitions of ¢’ and a’, while the remaining relation is equivalent to the conservation

law
Ay—c
= Ay 3.12
( A—a )u ‘ ( 7)
Introduction of a potential s according to
A, —
A=—(ny), ® = —(ny) (3.128)
A—a
produces the linear equation
Yuy +af, + e =0. (3.129)

Thus, we obtain the Darboux-type transformation
& = Bo = (av—%'i)d;,

ad=a- l:ln (wv—:;a—qi)] , ¢ =c+Any)yy,

(3.130)

where ¢ is another solution of the seed equation (3.123). Consequently, another
Laplace-Darboux hierarchy of eigenfunctions is generated in the form

¢, = LB, (3.131)

with associated coefficients a/, ¢}, and Laplace-Darboux invariants /.
Remarkably, the Laplace-Darboux transformation £ and the Darboux trans-
formation B commute, that is

LB =BL, (3.132)
which implies that
¢, = Bon. (3.133)

‘We therefore conclude that the Darboux transformation B applied to the Laplace-
Darboux hierarchy (3.119) generates a new hierarchy of hyperbolic equations
whose members are again Laplace-Darboux transforms of each other. In terms
of the Lax pair (3.120) for the Toda lattice, this result reads as follows:
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Theorem 6. The Lax pair (3.120) and the two-dimensional Toda lattice (3.122)
are invariant under

o = &y = nat — L2y,
Un
an = @, = Gpy1 — Utz | nst (3.134)
ll"ni‘l Yn
hn - h:' = ¢n+22 “b" hn’
n+1
where s, is another solution of (3.120).
In the periodic case, it is consistent to assume that
bntp = Abn, (3.135)

where \ is an arbitrary constant. The Lax pair (3.120) then adopts the form

-1
$1 (,?l 0 M (o
s/, k 0 ) \%
(3.136)
—a 1 ' \
(o) ([~ (W)}
] = —& :
: . :
¢p v k N _ap) ¢p

and compatibility produces the periodic Toda lattice (3.109). In addition, the
transformation formulae (3.134) show that

p P
Gy =M B, =h, [[H=]]m (3.137)
k=1 k=1

if {s,, is a solution of (3.136) with arbitrary parameter ., that is

Unip = Wiy (3.138)

We are led to the important conclusion that the Darboux transformation B
preserves periodicity and leaves invariant any specified normalisation of the
form (3.111).
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3.3.4 Conjugate Nets

The requirement that the parametric lines on a surface ¥ form a conjugate
system leads to f =0 whence the Gauss equation (1.4); becomes

ruw = Thsry +Thr,. (3.139)

It is established in Eisenhart [119] that if 7;(u, v), i =1, 2, 3 be three linearly
independent real solutions of an equation of the type (3.93) with ¢ = 0, then

r = (ri(u, v), ra(u, v), r3(u, v)) (3.140)

determines a surface ¥ upon which the parametric curves form a conjugate
system. The Gauss equation (3.139) shows that

a=-Tl,, b=-T%. (3.141)

It is observed in passing that in a projective space P3, conjugate systems of
coordinate lines are associated with any hyperbolic equation of the type (3.93),
(3.94) [136].

Here, we adopt a variant of the Laplace-Darboux transformation as given
in Eisenhart [119]. Thus, if > :r=r(u, v) is a surface on which the para-
metric lines constitute a conjugate netN,thenX:ry =ri(u, v)andZ_:r_, =
r—;(u, v) likewise sustain u, v as a conjugate coordinate system where the
position vectors r; and r_; are given by the Laplace-Darboux transformations

1 1
ri=r+-r,, r.i=r+ -r,. (3.142)
a b

It is noted that these Laplace-Darboux transformations may be decomposed
according to

1 1
r=-or, r_y=-—0_ir. (3.143)
a b

To interpret geometrically the Laplace-Darboux transformations considered
here, it is observed that

1
DRSO R

Hence, the tangents to the curves u = const of the conjugate net A" are tangents
to the curves v = const of a conjugate net \V; on I;. Likewise, the tangents to
the curves v = const of the conjugate net A on T are tangents to the curves
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u = const of a conjugate net N_; on X_;. The Laplace-Darboux transforma-
tions (3.142) may be applied iteratively to produce a suite of surfaces on which
the parametric lines constitute conjugate nets.

This concludes our introduction to the subject of Laplace-Darboux trans-
formations. It is noted, however, that matrix versions of Laplace-Darboux
transformations may also be introduced [207]. These were applied sequen-
tially in [337] to reduce a novel class of parameter-dependent Ernst-type equa-
tions to the canonical member, namely the Ernst equation of general relativ-
ity. The geometry of these matrix Laplace-Darboux transformations has been
discussed in [332] in connection with generalized Weingarten surfaces and
Bicklund transformations for Painlevé equations. The local and global geom-
etry of Painlevé equations has recently been the subject of extensive research
[41-44, 333].

Exercises
1. Show that

h(g71Ag) = h(A), k(g~'Ag) = k(A).

2. (a) Verify that, under the Laplace-Darboux’ transformations a; and o_,;
defined by (3.100) and (3.101), A — A; and A — A_,, respectively,
where Ay and A_,; are given by (3.102).

(b) Show that the Laplace-Darboux invariants of the operators A; and A_;
are given by (3.103).
(c) Prove that

(Ao =k(A)TTAK(A), (Br)o =AY AR R(A)

Deduce that 0y and 0 are inverse maps on the set of equivalence classes
[k, k].

3. (a) Verify that conjugation of the Laplace-Darboux transformation £ and
the Darboux transformation B is independent of the order in which the
transformations are applied.

(b) Establish the relations (3.134).
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Hasimoto Surfaces and the Nonlinear Schrodinger
Equation. Geometry and Associated
Soliton Equations

The nonlinear Schrédinger (NLS) equation

igi + gux +vigl?g =0 4.1)

models a wide range of physical phenomena. It seems to have been first set
down explicitly by Kelley [194], Baspalov and Talanov [24], and Talanov [360]
in independent studies of self-focussing of optical beams in nonlinear media.
However, as remarked in Chapter 2 in connection with the integrable motion of
curves, Da Rios [97] — in 1906 in an investigation of the motion of an isolated
vortex filament in an unbounded liquid — derived a pair of coupled nonlinear
evolution equations which may be combined to produce the NLS equation.

The derivation of the NLS equation in nonlinear optics was soon followed
by its occurrence in the study of the modulation of monochromatic waves
[18,161,191,361] and the propagation of Langmuir waves in plasma [142, 178,
348]. The NLS equation also arises in relation to the Ginzburg-Landau equation
in superconductivity [99] while its occurrence in low temperature physics has
been documented by Tsuzuki [368]. It likewise appears in the study of the prop-
agation of nonlinear wave packets in weakly inhomogeneous plasma [76,263].
The NLS equation has been derived in the analysis of deep-water gravity waves
by Zakharov [390] and subsequently in that context by both Hasimoto and Ono
[163] and Davey [96] using multiple scale techniques. Later, Yuen and Lake
[387] rederived the same equation using Whitham’s averaged variational prin-
ciple. The role of the NLS equation as a canonical form has been described in
work on slowly varying solitary waves by Grimshaw [154]. It has been recently
derived in connection with a capillarity model [13].

The above catalogue of physical applications of the NLS equation emphasises
its importance in physics. Here, it is shown that, remarkably, it may be derived in
a purely geometric manner. The manner of derivation is, however, related to that

119
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by Hasimoto [162] in the physical context of the three-dimensional motion of
a vortex in an inviscid fluid. It may be established that particular such vortex
motions involving no change of form correspond to travelling wave solutions
of the NLS equation.

The soliton surfaces associated with the NLS equation are here termed
Hasimoto surfaces. Appropriate compatible motions of Hasimoto surfaces
produce the unpumped Maxwell-Bloch system which, in turn, is associated
with the integrable stimulated Raman scattering (SRS) and self-induced trans-
parency (SIT) equations [349, 350]. The integrable Pohlmeyer-Lund-Regge sys-
tem [240, 285] derived in 1976 in a study of the dynamics of relativistic vortices
may also, in its turn, be shown to be linked to the SIT system.

Here, the Da Rios equations and their composition, the NLS equation, are
derived in a purely geometric manner via a binormal motion of an inextensible
curve. Hasimoto surfaces are constructed, and salient geometric properties are
obtained. Connections between the NLS equation and other soliton systems, in-
cluding the Heisenberg spin equation, are catalogued. A geometric formulation
with its origin in a kinematic study of hydrodynamics by Marris and Passman
[247] in 1969 is then used to derive an auto-Bicklund transformation for the
NLS equation. Breather and ‘smoke ring’ solutions of the NLS equation are gen-
erated thereby. This formalism has recently been used by Rogers [300] to show
that, remarkably, a canonical geometrically constrained hydrodynamics system
which was investigated in detail by Gilbarg [151], Prim [288], Howard [175],
Wasserman [379] and Marris [246] encapsulates the NLS equation. Equiva-
lence with the NLS equation subject to a geometric constraint has subsequently
been demonstrated in [313]. Building upon this work, Schief [335] has derived
new exact solutions of the hydrodynamics or an equivalent magnetohydrostatics
system wherein the constant pressure and magnetic surfaces constitute nested
toroids or, more generally, helicoids.

4.1 Binormal Motion and the Nonlinear Schriodinger Equation.
The Heisenberg Spin Equation
The work of Hasimoto in 1972 was concerned with an approximation to the self-
induced motion of a thin isolated vortex filament travelling without stretching
in an incompressible fluid.! Therein, if the position vector of the vortex filament
is r = r(s, t), then the curve velocity relation

v=r, =xb 4.2)

1" A lucid survey of geometric aspects of knotted vortex filament theory with mention of the NLS
equation connection is contained in Keener and Tyson [193].
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bolds. Thus, in the notation of Section 2.4, the {t, n, b} components of r, are
given by

{\ v} =1{0,0,k}, @43)
whence the relations (2.84) yield

o = —KT, “4.4)
B =k, @“.5)

while the compatibility conditions (2.3) give

Y= (4.6)

together with the time evolution for the curvature k and the torsion T, namely

Ky = —2KT — KT “.n
and
, Ky K
=-1T"+—+—=, (4.8)
K 2/

respectively. The coupled nonlinear equations (4.7), (4.8) constitute the original
Da Rios system as derived in [97] in 1906. Here, it is recalled that {a, B, v}
denote the components in the time evolution (2.2) of the unit triad {z, n, b}, so
chosen as to be compatible with the Serret-Frenet relations (2.1).

If we now introduce the Hasimoto transformation

q =ke'°, 4.9)

where

5
o =f T(s*, t)ds™, (4.10)
RY

0

then, on use of (4.7), (4:8), it is seen that

2
q: = [Kr +ik (—72 +o g % - T(t))]ei",
K

algl? = e, “-11)

Qss = (Kgs + 2iKsT + ikTs — KT2)e0,
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where
K2
T(@)= (—7 +— 7) 4.12)
The relations (4.11) yield
. 1
q =ilqs +7qlql" ~T)q |, (4.13)
whence, on setting
t
q* = qexp(if T(t*)dt*), 4.14)
0
the NLS equation
L * 1 * *
ig; + 45+ 51g71g" =0 4.15)

results. If T(t) = 0, then the unstarred version of the NLS equation (4.15)
admits the linear representation

t [0 k O\ [t
()-( 2 D)
b/ \0 -t 0/ \»p

(0 —KT Ks (4.16)
t t
(n) = | kT 0 % -1 (n)
b b
! \ % . + 72 0
K

The surfaces swept out by the binormal motions (4.2) are termed Hasimoto
surfaces or more commonly NLS surfaces.

4.1.1 A Single Soliton NLS Surface

Here, we discuss the original Hasimoto solution of the NLS equation, corre-
sponding to a solitary wave propagating with a constant velocity ¢ along a
vortex filament which is straight as s — oo, that is,

k—>0 as s— 00. 4.17)



4.1 Binormal Motion and the Nonlinear Schrodinger Equation 123

A solution of the evolution equations (4.7), (4.8) with k = k(§) and T = 7(§),
where £ = s — ¢t is sought. On substitution, we obtain

ok’ = 2k'T + k1’ (4.18)
and
" 29/
—et' = [—72 + 54 "—] . (4.19)
K 2

Integration of (4.18) and use of the boundm:y condition (4.17) tbgether with the
assumption that 7 is bounded as s — oo yields

(c —27)k* =0,
whence, discarding the trivial case k = 0, it is seen that

T=x="T, (4.20)

[\SHRY

where T¢ is constant. _

Accordingly, the torsion is constant along the vortex filament and the velocity
of propagation of the solitary wave along the filament is twice the torsion. If
k" /k > 0,2 then the relation (4.19) yields

K’ KZ )

- =e 421
K+2 € 4.21)

where e is an arbitrary constant. This nonlinear ordinary differential equation,’
augmented by the boundary condition (4.17), admits the solution

K = 2e sech(e§). 4.22)
Hence,
q = 2e sech[e(s — 27ot)] exp[iTo(s — So)] 4.23)

is a solution of (4.13) with T'(£) = —1¢ + €. The corresponding single soliton
solution of the NLS equation (4.15) is given by

q* = 2e sech[e(s — 27ot)] exp i['ro (s — s0) + (e2 — T(f)t]. 4.24)

2 This is subsequently shown to be the case if the NLS soliton surface is hyperbolic, i.e., K < 0.
3 The general solution of (4.21) may be expressed in terms of elliptic functions.
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Figure 4.1. A stationary single soliton NLS surface (t = 0).

To construct the soliton surface associated with the single soliton solution
(4.23) of the NLS equation (4.13), it is required to determine its generic position
vector r = r(s, t) viaits linear representation (4.16) with T and k given by (4.20)
and (4.22), respectively. In Chapter 6, a general procedure will be given for
the construction of the position vector r of soliton surfaces. Here, it is merely
recorded that the position vector of the soliton surface associated with the single
soliton solution of the NLS equation is given by

s €
-t
2" @t anh(e§)
€
rs,t)=2 —;?_*_—702 sech(e§) COS[T()S + (e2 — 'roz)t] . (4.25)

€ : 2_ .2
_m sech(e) sin[os + (2 — 73)¢]
InFigures 4.1 and 4.2, surfaces associated with particular stationary and moving
single solitons of the NLS equation are displayed. A scaling has been made
therein to obtain the solution corresponding to the version of the NLS equation

iy + gss + 213G = 0,

as adopted in the original work on soliton surfaces by Sym [356].

Surfaces associated with breather-type solutions of the NLS equation periodic
in time have been recently generated via a Bicklund transformation in [314].
A gallery of NLS breather surfaces is presented in Figure 4.3.

4.1.2 Geometric Properties

In what follows, we establish certain geometric properties of Hasimoto surfaces
X : r = r(s, t) swept out by the vortex filament as time ¢ evolves. Properties of
the coordinate curves s = const and ¢ = const on X are also recorded.
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Figure 4.2. A moving single soliton NLS surface (1 = 19 # 0).

Here, in view of the geometric relation (4.2),

I=dr-dr = (ryds + rdt) - (rsds + rdt)
= (tds + «kbdt) - (tds + «bdt)

= ds? + k2ds?,
so that
E=1 F=0, G=x%.
Moreover,
_IsXxn _tXKb__
|rs x e K ’
whence
I = —dr - dN = (tds + «bdt) - (n,ds + n,dt)
= —kds? + 2xrdsdt + (ks — kT2)d12,
so that

e=—k, f =k, g=|g”—|<1'2.
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(4.26)

4.27)

(4.28)
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Figure 4.3. NLS stationary and moving breather surfaces.

The Total and Mean Curvature
The total curvature X of the Hasimoto surface is given by

K = (eg — fH/NEG — F?) = —kg/x. (4.29)

Thus, the NLS soliton surface is elliptic or hyperbolic according to whether
Kss/k <0 or Kg/k >0, respectively. The mean curvature J =2M of the
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surface ¥ : r=r(u, v) is given by*
= —divgN =V -n, (4.30)

where V is the surface gradient

1 ] a ] a
V—E[fu (Ga—u—Fa—v) +r, (Ea—v—Fa—u)]. (4.31)

Hence, the mean curvature 7 of the Hasimoto surface is given by

1
J = ’_2[": : (Kzns) +r - n,
K .

that is
g=1 (& —K?— 72). 432)
K\ K
A Geodesic Property

The geodesic curvature of the parametric curves v-= const on the NLS surface
is given by, on use of [380],

. r, E,
= —divg{ —= | = — , 4.33
Kﬂ'u:const z ( \/6) 2F J@ ( )

so that, here, from the relations (4.27),

—divyd = 0. (4.34)

Kgl It=const =

Thus, each coordinate line v = ¢ = const is a geodesic on the NLS surface.
The geodesic curvature of the parametric curves u = const is given by

. ry Gu
=di — | = s 4.35
slucons = 0V (JE) YN 433

so that, for the present NLS surfaces,
. Ks
Kels—const = iVt = e (4.36)

4 It should be noted that in Eisenhart [118] and Weatherburn [380,381] 7 is termed the mean
curvature while in Blaschke [39] it is M.
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A Farallel Property
A set of curves with unit tangent T on a surface X is a family of parallels if and
only if [381]
divgT = 0.

Accordingly, by virtue of (4.34), the coordinate lines # = s = const are parallel
curves on the NLS surfaces.

4.1.3 The Heisenberg Spin Equation
It is readily shown that the NLS equation may be set in correspondence with a
1+ 1-dimensional version of the Landau-Lifschitz equation

%; =85 x VS, 4.37)

namely, the Heisenberg spin equation [222,359]

as a%s -
E =8 x 5;2‘, (438)

where the spin field § = (S, S3, S3) is a unit vector so that
§?=1. (4.39)

If the classical spin vector § is identified with the unit tangent ¢, then the equation
of motion (4.38) yields,

t, =t X (kn); = —KTn + Kb. (4.40)
The time evolution of » and b may now be calculated to obtain
€, =W X e, 4.41)
where @ = w;€; + wae2 + ws3e3 with
W] = % —12 @y = —K;, ©3=—KT. 4.42)
In the above, the notation
e =t ey =n, es=b (4.43)

has been adopted.
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The system (4.41) together with the Serret-Frenet equations, namely’
eis=D xe;, D=1e +ke; (4.49)

coincides with the NLS linear representation (4.16).
It is remarked that the Heisenberg spin equation (4.38) possesses the conser-
vation law

)

=+ =0, (4.45)

where €(s, t) is the energy density and j(s, t) is the current density given,
respectively, by

2

1|as
n=x|=|, 44
€(s, 1) 7 |38 (4.46)
. as  as
Jjis,t)=S- <§ X m). 4.47)

The physical quantities € and j are given in terms of the curvature k and torsion
T by

K2, j =« (4.48)

Exercise

1. Verify that the orthonormal triad {¢, n, b} associated with the position vector
r given by (4.25) satisfies the linear system (4.16).

4.2 The Pohlmeyer-Lund-Regge Model. SIT and SRS Connections.
Compatibility with the NLS Equation

In 1976, in a study of the dynamics of relativistic vortices, Lund and Regge
[240] were led to a nonlinear coupled solitonic system which, in a particular
reduction, produces the classical sine-Gordon equation. This system was ob-
tained independently in the same year by Pohlmeyer [285] in an investigation
of the nonlinear sigma model of field theory. It is now commonly known as the
Pohlmeyer-Lund-Regge model. However, the study of the mathematically re-
lated sharpline self-induced transparency (SIT) system has earlier origins in the

5 D is known as the Darboux vector.
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work of McCall and Hahn [255] in 1967. Multi-soliton-solutions of this system
were subsequently discussed by Caudrey et al. [69,70]. It has been shown by
Steudel [349] that the stimulated Raman scattering (SRS) equations, with ne-
glect of the population at the Raman level, are connected to the sharpline SIT
equations. In [350], Steudel had earlier applied the Wahlquist-Estabrook proce-
dure to construct a linear representation for the SIT system. Solitons associated
with stimulated Raman scattering in caesium were thereby constructed. Related
work on the solution of initial value problems in stimulated Raman scattering
and two-photon propagation has been conducted by Kaup [192].

Here, the interrelations between the Pohlmeyer-Lund-Regge, SIT and SRS
systems are made explicit. Importantly, it is also shown that the unpumped
Maxwell-Bloch system which generates the SIT equations is compatible with
the NLS equation in the ‘same way that the sine-Gordon and mKdV equations
have been shown to be compatible via appropriate motion of pseudospherical
surfaces. Thus, the unpumped Maxwell-Bloch system may be associated with
suitable motions of Hasimoto surfaces.

4.2.1 The Pohlmeyer-Lund-Regge Model

A parametrisation of generic surfaces T :7 = r(§, ) with 1% and 2% funda-
mental forms

I = cos? 0 d§? + sin® 6 dn?

(4.49)
Il = edt? +2f dédn+ gdr?

is considered. The associated Gauss equations (1.4) are

reg = —0; tan 0 r¢ + 6, cot 8,y + eN,
Teq = —0,tan@r¢ + 6 cotOr, + fN, (4.50)
r'rm = —egtanerg +9.,]cot9rn+gN,

while the Weingarten equations (1.5) become

e
Ne=—— = =1,
¢ cos20 °  sinZg "
f
=—r + ——ro.
T cos29 g-'-sinz(-) K

4.51)
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The Mainardi-Codazzi equations (1.10) reduce to

—(ft 0) = %(ngme) + sin 0—(-—l)

ag 2 dmn\ 2cos 0 sin 0
+ 3 (4.52)
erg 2 e—g
— t 0 tan® ) —cos* 60— ————
(f°° )= g( 2 ) MRPY: <2cosesin9)
while the total curvature K is given by
= eg — f? _ Ban— B
cos20sin?® cosOsin6’
whence
eg — f2 = cos 0 5in O (Byy — Oge). (4.53)
Moreover, the relations
reg —ron = (e — gN
#TIm=leT8 . (4.54)
re X rq = |rg X rq|N = Xsin 0 cos 6N
obtain.
If we now impose the restriction
e — g = €sin20, e constant, (4.55)

then the Mainardi-Codazzi equations (4.52) reduce to the pair of conservation

laws

§ 2
5 - (4.56)
—(fcote) = _a( “;g cot(-)).
Equation (4.56); allows the introduction of a potential ¢(§, 1) such that
b = ———; £ tand, ¢n = ftans, (4.57)
whence, on substitution into (4.53) and (4.56), we obtain
B¢z — O (¢e ) =0,
(4.58)
2 9 2
T (¢g cot?9) = n(d)n cot? 9).
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This is the Pohimeyer-Lund-Regge system as originally set down in 1976.
By virtue of (4.54), it is seen that the constraint (4.55) implies the concise
equation

reg — rog = E2erg X ry (4.59)

for the position vector 7 to the surfaces .

4.2.2 The SIT Connection

The sharpline SIT equations arise out of the unpumped Maxwell-Bloch system
[349]

E, =P,

Pt=EN,

1. _ (4.60)
N: = —(EP + EP),

N2 4+ PP =1,

where E, P designate the slowly varying amplitudes of the electric field and
polarisation, respectively, N is the atomic inversion and x, ¢ are appropriately
scaled space and retarded time variables. Here, E, P denote the complex con-
jugates of E and P, respectively.

The relation (4.60)4 allows us to set

N =cosy (4.61)
together with
P =¢"siny, (4.62)
whence the residual equations in (4.60) yield

= siny + v v, tan,
Xix X t¥x X . 1 (463)
Vix = —VeXrCOtX — Vexx(COsx sinyx)™ .

This is the standard sharpline SIT system.
The SIT equation (4.63), possesses the conservation law

(vy cosx); = (n/cos X )y, (4.64)
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so that a potential w(x, t) may be introduced according to
Px = Vx COSYX, s = V/COSX. (4.65)
In terms of ¥ and p, the SIT system (4.63) becomes

Xex = SinX + pepy tany,

' (4.66)
Peex = —MeXx COtX — MxXe(cos X sinx) L.

This represents an SIT system (4.63) with v — . and the roles of x and ¢
interchanged. Thus, the quantities

N =cosy, P =¢*siny,

- (4.67)
E = (cosx)~!(ef* sinx),
satisfy the associated unpumped Maxwell-Bloch system
E~'; = ﬁ,
B, =EN,
- 1= .= (4.68)
N, = —E(EP + EP),
N? + P P=1.

The conservation law (4.64) also allows the introduction of a potential { such
that

2L, = vx(cosx + 1),

1 4.69)
2 = cos X +1),

whence, on use of (4.65), it is seen that { = (i + v)/2. Relations (4.69) yield

2L, _ 2 cosx

== = 4,
T sy +17 T cosx +1 (“470)

and substitution into (4.63); together with appeal to the compatibility condition
Vyt = Vg giVes

4L, sin

=siny + —22 X
Xex X+ (cosx +1)?

f = ———Coxe + ). (47D)
sinx
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Thus, on setting X = x /2, the system

inX
i — {,L,% =sin X cos I,
cos’ X
4.72)
[ BEHLE
x sinX cos ¥
results. If we now ihtroducc
™
E=9+E, {=¢, (4.73)
and
€? 1
x = —E(E +m), t= 5(& -, 4.74)

then (4.72) coincides with the Pohlmeyer-Lund-Regge system (4.58). To sum-
marise, the latter system is connected to the sharpline SIT system (4.63) via the
transformation

2dd=v, 1d 1)ds,
db=v,(cosx +1) x+v,(cosx+ ) 475)
0=x—-m
together with the change of independent variables (4.74).
4.2.3 The SRS Connection

The SRS system adopts the form [349]

94, 9A, as -

i —SA;, = SAj, 3T = A4, 4.76)

where Aj, A, are the electric field amplitudes of the pump and Stokes waves,
respectively, while S is the Raman amplitude. The total intensity

T =141 + 14, 4.77)
depends on T alone. If we set

~ A1A2

. Z_A 2
E=25, B=2 7 M

1

, N= (4.78)
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together with

T
x=X, t= f  I(T)dT 4.79)
0

then the unpumped Maxwell-Bloch system (4.68) is recovered.

4.2.4 Compatibility of the Maxwell-Bloch System with the NLS Equation

To establish a connection between the unpumped Maxwell-Bloch system and
the NLS equation, it proves convenient to return to the 3 x 3 linear representa-
tion (4.16). It is observed that its compatibility conditions deliver time evolution
equations for k and T, respectively, given by (4.7), (4.8), which are invariant
under the transformation

K —> K¥*=K, T>T'=7T+N\
(4.80)
So>S*=54+2\, t>t*=t.

Under these changes of variable, the geometric constraint (4.2) becomes
re = K*b — 2\, (4.81)
so that introduction of the parameter \ produces a sliding motion contribution.

At the linear level, the invariance under (4.80) injects a ‘spectral’ parameter
\ into the representation (4.16), leading to

t 0 K* 0 t
n =| —k* 0 T —\ n
b/, 0 —1+N 0 b)

-

4.82
t 0 _K*(T* + K) K:o t ( )
n| =\|«k*@*+\) 0 ) n
5/, —K, -8 o) \b
where
B= (4.83)

Under the correspondence L <> ¢, this 3 x 3 linear representation for the
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NLS equation goes over to the 2 x 2 linear representation

D, o L0 P
=|—(r*=N= —-k*=

(<b2):_ [~ )2 X 21](%)
1 -k =@ =N\ (]
T2\ —(T*=\) K* o, )’

d>1 a1 ) - a3 ¢1
= —E’_ * )"—

(cpz),, [ 2 Tiegy TR )2i](<b2)
_ 1 /e'G@*+N) —E-ik D
T2\ —E4ikh —k*T*+N)/\P2)

A rotation corresponding to Ly — e3, L, — €1, L3 — e; applied to (4.82)
produces a system gauge equivalent to (4.84), namely

&)1 __1_ i(’T*—)\) K* d)l
&), 2\ -« —i*-N/\&)

(4.84)

. - . . (4.85)
((1)1) _ 1 —& Kn — iK*(T* +\) (q;l)
@2 ). 2i \ k4 +ik* (T +N) B %)
On setting
&,1 — vze%if‘f‘d.\“,
- L r e (4.86)
&, = vle-—itff ds

in (4.85), the standard AKN'S linear representation for the NLS equation results,

namely
V1 _1 0 —-q , 1 0 V1
(02):._2[(6 0 )-H)\(O -1/ \v /)’
, (4.87)
U1 _ 1 A B (1
v/, 2\-B —-A)\wn)
where
g=x* /" (4.88)
and

1
A= 5i|q|2 — i\, B =—ige+g\. (4.89)
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If we now adjoin an evolution

U1 _ 1 N —P 1131
(UZ),_ZTK(—'I_’ —N)(vz) *90)

to the AKNS representation (4.87) for the NLS equation then compatibility of
(4.87)1, and (4.90) produces the unpumped Maxwell-Bloch system

E, =P,
P =EN, (4.91)

Ny = ——%(E‘P + EP),

where
E=—q=—x*/"¥, (4.92)
The residual relation (cf. 4.60)
N*+ PP =1

is a consequence of (4.91) and appropriate scaling. Thus, we obtain the im-
portant result that the unpumped Maxwell Bloch system may be derived via
compatibility with the NLS equation. It is recalled that both the mKdV equation
and the Weingarten system have been earlier obtained via compatibility with
the classical sine-Gordon equation.

4.3 Geometry of the NLS Equation. The Auto-Bicklund
Transformation

In Section 4.1, a geometric derivation of the NLS equation was presented based
on a particular evolution of a curve in space. Here, this canonical equation is
derived in a geometric setting adopted in a kinematic analysis of certain hy-
drodynamic motions by Marris and Passman [247] and subsequently applied
in magnetohydrodynamics by Rogers and Kingston [305]. A derivation of the
auto-Bécklund transformation for the NLS equation is obtained at the level of
the Hasimoto surface. Smoke ring-type solutions are thereby generated as in
[312].
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The starting point is the system governing the directional derivatives of the
orthonormal triad {¢, n, b}, namely (Marris and Passman [247])

(0)-(5 236

—|n]l=]—-—xx 0 7~ ni,

5 t 0 s (Qp+171) t

5 (n) = ( —Bps 0 —divd ) (n), (4.93)
b —(Qp+7) divd 0 b

N t 0 —(Qn +1T) Ops t
7 n|=\|Q+7 0 kK +divn nl.
b —0,s —(k +divn) 0 b

The notation of [247] is adopted throughout, so that, in particular, 8/8s, 8/8n
and 8/8b denote directional derivatives in the tangential, principal normal and
binormal directions, respectively. Thus, (4.93); represents the usual Serret-
Frenet relations while (4.93), and (4.93)3 provide the directional derivatives of
the orthonormal triad {¢,n,b} in the n- and b-directions, respectively.
Accordingly,

d d d
grad = tS_ + n— + bg 4.94)
while 6y, and 6,, are the quantities originally introduced by Bjgrgum [38] via
ot ot
Ops =12 - '8;% Ops = b g, (4.95)
and
3 d d
vt = |t— —
div ( » + n + b— 5 b)
ot ot
=t-(kn)+n:- — +b-— = 06,;+ 0y, (4.96)
dn b

. 3 3 b
divn = (tg +n— +b8b>

on on on
=t. = — = Rhaid g
(—kt+Tb)+n - ™ +b- b k+b b 4.97)

) S S
divd = (tg +na +b8b)
on

b
=t-(— —=—b—. '
(—tn)+n o b 5 (4.98)
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Moreover,
d d 5
curlt=(tx5—+nx8—+bx§5)t
—t><8—+ x—+bx
ds 8b
—tx(xn)+nx[,,,n (b E):I
on
#ox(ngp)n+ (b5 )0
= Qt + Kb, (4.99)
where
ot ot
Q,:t-curlt:b-s—n—nna; (4.100)

is called the abnormality of the ¢-field. The relation (4.99) is of considerable
importance in the sequel. It was originally obtained in 1927 by Masotti [249]
and rediscovered independently by Emde [120] and Bjgrgum [38].

Similarly,

curln = txi+nxi+bx d n
- s on 3b

=t X (—kt+7b)+n x [(t ﬁ)t+ (b- ﬁ)b]
on dn
on
+b X (t'a—n)t

= —(divb)¢t + Q,n + 6,,b, (4.101)

where

dn
=n-curln=¢ - — — 4.102
Q,=n-curln =t¢ 55 (4.102)

is termed the abnormality of the n-field. Finally,

d ) 3
curlb—(tx~8—s+nx-8;+bxg)b

n

o (55) (5 )

= (k +divn)t — Oy;n + Qpb, (4.104)

=tx (—Tn)+n x ( . ?)t (4.103)
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where

Qp = t- ob 4.105)
f— —'r — — .
b - (

is the abnormality of the b-field.
Now, the identity curl grad $ = 0 yields

5 5 5¢ 5
S curls + grad(—s—s—) xt+ 5 curln 4 grad Fo xn
s

]
+ i)cur1b+grad(8 ) b=0,

b
whence
82 82 8 32 82 82
(8 g_ab:)““(sz;:‘_a;;)“’(a: ~% ;b)b
n 8n 8s S ’ sdn nds (4.106)
+ g(bcurlt-}- %cuﬂn + %cuﬂb =0.
82¢> d (3

In the above, th ti b d
e above, the convention Sob — o \ 3 b) has been adopted. On use of the

relations (4.99), (4.101) and (4.103) in (4.106), it follows that

2 8¢ o T} 3
N S 2 divh — ;
ndb _ dbon 5s o T 5, Vb — gy (kFdivn),
¥p ¥ _ % 3
2 2% _Rq + 2%, .
555 5506 on T op® (4.107)

o ¥ 3 8¢e 3d

—_—K = 0, — —£2.
dsdn 8n8s ds K dn ob °

Thus, the second-order mixed intrinsic derivatives, in general, do not com-
mute and so the quantities s, » and b represent anholonomic coordinates [373].
The compatibility of the linear system (4.93) now imposes, on use of the
relations (4.107), a set of nine conditions on the eight geometric quantities
K, T, s, Qn, divn, divb, 0,; and 6,5, namely [248]:

]

— 0,5 + i('r + Q,) = (x +diva)(Q; —2Q, — 271)
b on

+ (Bps — Bp5) divd + Qsk, (4.108)
) ) .
= (T4 Qy — Q)+ —6ps = (x + diva)(B,s — 0ps)
ob on

+ (2 — 29, — 27)divd, (4.109)
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S
—(diVb) + E(K + divn) = (‘T + Qn)(“l' + Qp — Qs) - ensebs
b dn

—1Q, — (divh)? — (k + divn)?,
(4.110)

d Sk
g('r + Q)+ A = —Q:0,5 — 27 + Q)0 4.111)

%e,,s = —02 + k(k + divn)
— QT+ Qp — Q) + T(T + Rn),
4.112)

3 or
S—S(K +divn) — —Qndivh — O(2x 4 divn), (4.113)

g:
d )
8—:—$ ,,,=K2+9,3_,+(’T+9n)(3’7+9n)

— Q.27 + Qn), (4.114)
5
gs‘('r + Qn - Qs) == ns(Qn - QJ)

+ kdivd + 0p5(—27 — Q, + Q5),
(4.115)

o 3 .
o+ g(dwb) = —k(Qp — Q) — O, divd
+ (k + divr)(—21 — Q, + Q).

(4.116)

An equivalent system to the above was obtained independently in a viscometric
study by Yin and Pipkin [386].
In conclusion, it is observed that the important relation

1
Q—T1= E(Q, + Qn + Qp) (4.117)

is obtained by combination of the relations (4.100), (4.102) and (4.105). This re-
sultis recorded in the treatise of Weatherburn [381] published in 1930. Therein,
Qs, 2, and Q) are termed the total moments of the £, n and b congruences,
respectively. It is noted there that the relation (4.117) incorporates various im-
portant theorems as corollaries, including Dupin’s theorem which states that
the curves of intersection of the surfaces of a triply orthogonal system are lines
of curvature on these surfaces.
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4.3.1 The Nonlinear Schridinger Equation
In what follows, the vanishing abnormality condition

Q,=0 (4.118)

is imposed. Hydrodynamic and magnetohydrodynamic motions with such a
geometric constraint have been investigated, in turn, by Marris and Passman
[247] and Rogers and Kingston [305]. Here, however, our purpose is to de-
rive the celebrated nonlinear Schrédinger equation via such a restriction as
in [312].

The condition (4.118) represents the necessary and sufficient condition for
the existence of a one-parameter family of surfaces containing the s-lines and
b-lines. It is equivalent to the requirement

n =1 grad U, (4.119)

where the ‘foliation’ has constituent members U (r) = const and s is the distance
function.

Now, the geodesic curvature of a family of curves with unit tangent T on a
surface X is given by [380]

kg =N -curlgT. (4.120)

In the case of the above foliation, since the s-lines and b-lines lie on the con-
stituent surfaces I, it follows that n is perpendicular to . Accordingly, n is
parallel to N and the Masotti relation (4.99) shows that

N-curgt =N-curlt =0, (4.121)

‘whence the geodesic curvature of the s-lines is Zero. Thus, the s-lines are
geodesics on the members of the foliation. Furthermore, the orthogonal trajec-
tories of a family of geodesics constitute a family of parallels [381]. Hence, the
b-lines are necessarily parallel curves on members of the foliation.

The geodesic curvature of the b-lines is given by

kpg =N -curldb = —n - curlb = O (4.122)

so that the b-lines are also geodesics iff 6,; =0. When 6,; =0, the members
¥ of the foliation sustain orthogonal geodesics, namely the s-lines and b-lines,
and are, as will be seen, necessarily developables.
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The total curvature K of the surfaces X containing the s-lines and b-lines is
given by [380]

K = |N, curlgt, curlgb|, 4.123)
where
) )
curlgt = [t— +b— | xt=(Q, +T)t+xb 4.124)
ds db
and
curlgd = t8+b8 X b = (k +divn)t — Opsn — b 4.125)
o= 86' 8b =K bs ) .
so that

K = —k(k + divn) — 2. (4.126)

The mean curvature J = 2M of the surfaces T of the foliation is given by
[380]

J = —divgN = —divN = divn. 4.127)
We now turn to the compatibility conditions (4.111)—(4.113) for the linear

equations (4.93); and (4.93);. In the present case with 2, = 0, these reduce to
the nonlinear system

& ¥k
L2 o orey,, 4.12
s 5y = 270 (4.128)
® (¢ +divi) — O = — 6y, (2 + divn) (4.129)
SS Sb - bs £ .
%e,,, = —02 + k(k + divn) + 7% (4.130)

These incorporate the Gauss-Mainardi-Codazzi equations for the constituent
members X of the foliation. In particular, (4.130) embodies the Theorema
Egregium and here delivers an expression for the Gaussian curvature entirely
in terms of the geodesic curvature 6, of the b-lines, viz

(4.131)



144 4 Hasimoto Surfaces and the Nonlinear Schrodinger Equation

If 6,; = Othen K = Oso that, as noted previously, the surfaces T of the foliation
become developables. The relation (4.127) together with (4.130) show that the
mean curvature .7 of members of the foliation is given by

)
=g+ -7 -] [« (4132)

If the s-lines and b-lines are now taken as parametric curves on the member
surfaces X of the foliation, then the surface metric adopts the geodesic form
[247]

Iy = ds® + g(s, b)db?, (4.133)

while the two-parameter surface gradient for X is given by

b 0
grady =ti+bi =ti+

—_ 4.134
ds % 9s g'/29b (4.134)

The Gauss equations (4.93),; 3 yield

3 A 0 x O t
75 nljl=|-«x 0 n|, 4.135)
S\b») 0 — 0/ \»

3 t 0 -T 0Ops t
g—mﬁ nl|= T 0 K +divn n (4.136)
b —0ps —(x +divn) 0 b

and the expression (4.134) encapsulates the relations

or ar

— =t —=g"% .

s 35 =8 (4.137)
for the position vector r to the surface X. Accordingly, the linear system
(4.135), (4.136) implies that

1 8%
A =™ + Bp5b (4.138)
and
9%r . 3g1/2
—_— = —pl/2 —b .
3535 g /“tn + %5 4.139)
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so that we retrieve the important relation
a
Bps = g(1ng‘/2). (4.140)

The Gauss-Mainardi-Codazzi equations (4.128)-(4.130) now become

d 120K
— 22 = 4.14
as(g'r)+g A 0 (4.141)
v a , 9g12
= = 5 [8"x + divm)] + k2 (4.142)
82 172
[k(k + divm) +12]g"? = %. 4.143)

On elimination of k + div n between (4.142) and (4.143), it is seen that

ar a1 (3%, ., agl?
£=g[;(?——7g/)]+lc e (4.144)
If we now set
g2 =\, (4.145)

where \ varies only in the direction normal to the member surfaces of the
foliation, then the pair of equations (4.141) and (4.144), on scaling Ab — b,
produce the classical Da Rios system

ok aK ot

ds

_ 132K+K2
ds  ds \kads2 2

).

On introduction of the Hasimoto transformation (cf. (4.9))

q=|<e“’, 0=/1‘ds,

the pair of equations (4.146) yields the standard NLS equation

.dq 32

i +8q+
b 0s?

1 2
t =0,
2Iql q

(4.146)

(4.147)

(4.148)

where the boundary flux term of the type (4.12) has been absorbed into g.
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4.3.2 The Auto-Bicklund Transformation

In the present framework, a surface T : r =r(s, b) is associated with the NLS
equation if and only if the relations

r’=1, r,-r,=0, rl =r} (4.149)

S

hold. This may be seen as follows. If {¢, n, b} is the orthonormal triad corre-
sponding to the s-parametric lines, then the Serret-Frenet equation

Fss =t = Kn (4.150)
and (4.149); yield
r2 =«2 (4.151)
Thus, the 1% fundamental form of T reads
I =ds? + «*db*. (4.152)
On the other hand, condition (4.149), and its differential consequence
Fss 7, =0 (4.153)
show that ry, - ¢ = r, - n = 0 which implies, without loss of generality, that
r, = kb. 4.154)
The metric (4.152) and the ‘velocity’ condition (4.154) define the class of
Hasimoto surfaces. It is therefore concluded that any invariance of the con-
straints (4.149) induces an invariance of the NLS equation.
Here, an auto-Bicklund transformation for the surface X is sought in the
form [312]
r=r+at+Bn+vyb, | —rl=const (4.155)

On use of the parametrisation

Y =r+4 L(cos0t+sin@cospn + sinBsineh), (4.156)
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invariance of the defining relations (4.149) results in the compatible system

1
6 = -Kcoscp+$sine,
¢ = KcotOsing — T + %,
1 .
0p = —K,sincp+x7coscp—2(—-—‘_—ci—;<ﬁrl&sin9
Kcoscpsinx — (1 +cosx)singpcos@
L ’

1
Py = —& +12— (ks cos ¢ + KT sin @) cot +2(—£9%—§H)s—x
cosesmcpsmx + +cosx)cos<p

Lsin@

(4.157)

where x is an arbitrary constant. It is noted that the calculations leading to
the relations (4.157) are considerably reduced if one takes into account the
invariance of the redundant condition (4.153).

It emerges that the system (4.157) may be linearised via the decomposition

1
&€= %2- = cot g , (4.158)

where ® = (¢! ¢?)" is a solution of

. —i(T =\
®, = l i(r ) K ®
2 —K ift—N\)
(4.159)
o 1 [ —i(kes/x — T2+ N2 ik — (kT +KN) ®
DTN ik TN ik K — 72 +02)
and
)\___smx +z(l+c08x). (4.160)
L
In terms of @, the Bicklund transformation (4.156) takes the form
3
r=r+ 0 )(nlt + nan + n3b), (4.161)

|7\I2
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where
€ —1 2R(E) 23(8)
= s ==, = —_—— 4.162
MEREFD T REAT P T R+ @162
Moreover, the relations
-
=r, v =T (4.163)
s
deliver the new solution {x’, 7'} via
2 _ -43)\L)( —4s>\—§—),
“ (" (IS Y Ao w160
: .
K — 43\
'r’—'r+l— In )|§|2+1
= ; ,
K — 43(\) ——
€2 +1/ 1
whence
q/ = Kleif'r'ds =q- 43()\)@5_}__1’ g = geif‘rd:. (4165)

The latter relation suggests the introduction of the gauge-transformation

lifrds _ 1
\p=<e I 0 )qo, g=¢'— (4.166)

0 e—éif'rd:

whereupon the linear representation (4.159) delivers the standard Lax pair

1/iN ¢
wez (G 5w

v L(BleP=N] ig-Ng )
*T2\ iz +ng —i[ligP -]

for the NLS equation. The relation (4.165) constitutes its Bécklund transfor-
mation as set down in [225].

Darboux transformations have the attractive property that they may be it-
erated in a purely algebraic manner. Indeed, if one reinterprets the Biicklund
transformation for the Hasimoto surfaces as a Darboux transformation act-
ing on the triad {t, n, b}, one can construct an infinite suite of surfaces once
a seed surface is known. For instance, a straight line corresponding to the

(4.167)
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solution k = T = 0 may be regarded as the simplest degenerate Hasimoto sur-
face. Iterative action of the Bicklund transformation then produces a multi-
parameter class of Hasimoto surfaces, and in particular those associated with
the multi-soliton solutions of the NLS equation [48].

Here, we focus on the case

k=const, T=0, q=rxe™" (4.168)

which corresponds to a cylinder as seed surface. The solution of the Serret-
Frenet equations (4.135), (4.136) is then given by

t to cos(ks) + ng sin(ks)
n | = | ngcos(ks) — to sin(ks) (4.169)
b bo
so that the relations
ri=t, r,=«b (4.170)
yield
L . ny
r= - sin(ks) — " cos(ks) + kbbyg, “4.171)

where o, ng and b are vector-valued orthonormal constants of integration.
The general solution of the Lax pair (4.159) associated with the seed solu-
tion (4.168) is of the form

O =d(z), z=5—A\b. 4.172)

This implies that § is governed by the Riccati equation

£ =i+ k(L + ) @173)
with solution
A
£ =—i - + B tan(p.z + zo), 4.174)
where
A2

1
B=yl+5 n=3xB (4.175)
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Figure 4.4. NLS ‘smoke ring’ surfaces for 2 = £, 3.

—

with zg an arbitrary constant. Thus, the position vector of the new surfaces ¥’
is given by

r' =r+ L{[n; cos(ks) — ny sin(ks)}¢

+ [ng sin(ks) + nj cos(ks)ng + n3bgl}.

(4.176)

The above class of Hasimoto surfaces has been discussed by Cie§liriski et al.
[85] in connection with the motion of a vortex filament in the localised-induction
approximation. Of particular interest is the subclass defined by

N =ikl — % O<m<n, mneN 4.177)
n

Figure 4.5. An NLS spatial breather solution for 2 = 2



4.3 Geometry of the NLS Equation 151

which guarantees periodicity of the position vector 7 in the spatial variable s so
that the surfaces admit a discrete rotational symmetry. In Figure 4.4, two such
surfaces are displayed for k = 2. It is noted, in conclusion, that k2 = |g’|? is not
only periodic in s but also approaches k? exponentially as b — <o00. Thus, the
subclass (4.177) corresponds to ‘spatial’ breather solutions of the NLS equation
(see Figure 4.5).

Exercises
1. Consider the hydrodynamic system [260]

divg=0

plg-Vig+Vp =0,
where ¢ is the steady fluid velocity and p, p denote pressure and constant
density, respectively. If g = qg¢, where ¢ is the unit tangent to the streamlines,

then derive the following intrinsic compatibility conditions for the pressure
distribution:

5 . Sk S .
2(5 lnq)dlvt =% =+ KOs — gdlvt-l-ZKlet

3 . S .
Z(S—b-lnq)dlvt =Kk, — gdlvt

) . . 88
ZK(g lnq) = —div(kd) — Q; dive = S

2. Use the compatibility conditions of Exercise 1 to show that if div¢ = 0, then
on individual constant pressure surfaces, the unit tangent vector ¢ obeys the
Heisenberg spin equation

a 8 9%t
ab ~ T as?’

where s denotes arc length. of the geodesic streamlines and b appropriately
parametrises their orthogonal trajectories [300,313].
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Isothermic Surfaces. The Calapso and Zoomeron
Equations

This chapter deals with another class of surfaces that has a solitonic connection,
namely isothermic surfaces. Their original study seems to be due to Lamé
carried out in the period 1837-1852. Subsequent important contributions were
made by Bour [54] in 1862, by Darboux [95] in 1899, Calapso [62] in 1903
and Bianchi [36] in 1905. There is an early account of the classical theory of
isothermic surfaces in an encyclopaedia contribution by Voss [372], while later
more extensive discussions are provided in the ‘Legons sur la théorie générale
des surfaces’ of Darboux [93] and in the ‘Lezioni di geometria differenziale’ of
Bianchi [37]. An historical review of the subject has been given by Klimczewski
et al. [200].

Here, our treatment will be directed to those properties of classical isothermic
surfaces and their recent generalisations which bear upon the subject of modern
soliton theory.

5.1 The Gauss-Mainardi-Codazzi Equations for Isothermic Surfaces.
The Calapso Equation. Dual Isothermic Surfaces

In what follows, we adopt a conformal parametrisation of a surface ¥ : r =
r(x, y) so that the 1% fundamental form reads

I = E(dx? + dy?). (;.1)
If, in addition, the 2™ fundamental form is purely diagonal, that is
I = edx? + gdy?, (5.2)

then the coordinate lines are said to give an isothermic parametrisation of X.
The class of surfaces upon which such a coordinate system can be established
is said to be isothermic and x, y then constitute curvature coordinates. The

152
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principal curvatures k; and k; are given by

K1 = Ky = (5.3)

e g
E’ E
Equivalently, isothermic surfaces may be defined by the requirement that the
lines of curvature be conformal.

Constant mean curvature (CMC) surfaces and, more generally, Bonnet sur-
faces are isothermic, as are quadrics and surfaces of revolution. In the latter

connection, any surface of revolution

7 CcosT
r=| rsinm 64
$(r)

parametrised in terms of lines of curvature » = const (parallels) and 1 = const
(meridians) is seen to be isothermic since its metric

I=[1+&'@)Ndr? + r2dv? (5.5)

can be reduced to the conformally flat form

I =r%dx? +dy? (5.6)
by setting
dx = 2 TT G Rdr, dy=dn 57
r

It is noted that the latter transformation merely reparametrises the meridians.
In general, if one sets E = G = ¢%%, then the fundamental forms for isother-
mic surfaces become

I=e®dx?+dy?), O=eP(dx?+ sz){z) (5.8)

with associated Gauss-Weingarten equations

r, 6. -6, K e r,
r y = Gy 9, 0 r y |
N —Kj 0 0 N

(5.9)

ry 0 6 0
ryl=]-6 6 we®|]|r
N 0 —Kz 0 N



154 5 Isothermic Surfaces. The Calapso and Zoomeron Equations

The compatibility conditions for the latter produce the Gauss-Mainardi-Codazzi
equations

Bx + Byy + K1kee?® =0,
Kiy + (k1 — K2)8y = 0, (5.10)

Kox + (K2 — K1)8, =0

associated with isothermic surfaces. The nonlinear system (5.10) has been ex-
tensively studied in the classical literature [37,95]. Remarkably, it will be seen
to be yet another solitonic system with concomitant Bicklund transformation,
associated permutability theorem and admittance of a linear representation with
a spectral parameter. That it is indeed an integrable system was recognised in
1995 by Ciefliriski et al. [86]

Calapso [62] in 1903 showed that the isothermic system (5.10) allows a
reduction to a single fourth-order nonlinear equation. Thus, if we set

hy = —kied, hy = —ipe® (5.11)
then the isothermic system (5.10) reads-

Ocx + By, + 1z =0,

(5.12)
hly = eyhz, hz, = O,hl.
The latter relations show that
hlxy = exeyhl + OFyhz, 'h?.xy = exeth + exyhly (513)
whence if we set
1
z= _ﬁ(hl + ha), (5.14)
then
Zy @ gL og (5.15)
z ) xy xVy. .
Hence, on use of the Gauss equation (5.10);,
Zxy
A (22) = (40),y + 0.(20), + 6,(46), + 26,40
F4 (5.16)

= —(h1h2)xy — 0c(h1h2)y — 6y (h1h2)x — 20xy(h1h2)
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while
(Zz)xy = (hth)xy + 0.1:(111}'2))1 + ey(hth)x + 2'e):y(hlh'2)» (517)

where A = 33 + 33. On addition of the relations (5.16) and (5.17), the Calapso
equation

A(Z2) + @Dy =0 .18

results.! It is noted that the transition y — iy takes this classical equation to the
zoomeron equation

Zxy 2 a2 _ a2
0(2)+@y =0 0=8-4 (5.19)

to be later set down in a solitonic context in 1976 as a specialisation of the
matrix boomeron equation by Calogero and Degasperis [63,64].
To conclude this section, we record the simple involutory symmetry

(0, hy, hy) = (=6, —hy, hy) (5.20)

of the system (5.12) which constitutes a classical invariance of the isothermic
system (5.10) under the transformation [119]

0*=-0, k= —e®ky, Ky = e®k,. (5.21)

Thus, there exists a dual isothermic surface T* : r* = r*(x, y) corresponding
to an isothermic surface X : r = r(x, y). It has

rr=e¢®r, r=—-¢%*r, N'=-N, (522)

and associated fundamental forms

I* = ¢~ ¥(dx? + dy?),

5.23)
II* = —kydx? + kody?. (

It is noted that the integrability condition Iy = ;x for relations (5.22);,3 is
indeed satisfied by virtue of the Gauss-Weingarten equations (5.9). The dual
surface T* is sometimes called the Christoffel transform of the surface X. The

1 Calapso recorded that an equation equivalent to (5.18) was set down is a thesis of Rothe in 1897.
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involution (5.20) implies that the solution of the Calapso equation associated
with X* is given by

= Jii(hz — ) (5.24)

and hence may be regarded as dual to z.

Exercises
1. The Minimal Surface of Enneper (1864). Show that the Enneper surface

r=(3x +3xy? — x3, 3y + 3x2y — y,3x2 = 3y?)

is isothermic and that its lines of curvature x = const and y = const are
planar. ’

2. Show that the lines of curvature on a surface of constant mean curvature
+1/a form an isothermic system and that the parameters x, y can be chosen
such that its metric is given by

I = a%e**dx? + dy?),
where o is a solution of the sinh-Gordon equation
Wyx + 0y, + sinhw = 0.

3. Show that an isothermic surface is transformed under inversion
r

.ﬁ —
Ir|?

into another isothermic surface.

5.2 The Geometry of Isothermic Surfaces in R”+2

The notion of isothermic surfaces may be readily extended to higher dimensions.
In fact, the analysis of isothermic surfaces in Euclidean spaces of arbitrary
dimension is formally identical with that of classical isothermic surfaces. In
the following, we shall be concerned with the properties of two-dimensional
surfaces X : r = r(x, y) embedded in Euclidean spaces R"*2, that is mappings

r: R? > R**2, (5.25)
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If we choose a frame (X, Y, N) consisting of the normalised tangent vectors

r r
= ﬁ = ﬁ (5.26)
and n linearly independent unit vectors
N=©N'...,N" (5.27)
comprising the normal bundle, thatis N' - X = N - Y = 0 or
N-X=N-Y=0, (5.28)

then one may associate with a surface & C R"+? a 1** fundamental form I and
2" fundamental forms I = (IT}, . . ., II"*) defined by

I=dr-dr, ll=—dN-dr. (5.29)

A generic surface ¥ C R"+? is completely encoded in its fundamental forms I
and II [116].

5.2.1 Conjugate and Orthogonal Coordinates

We now assume that the surface ¥ may be parametrised in terms of conjugate
coordinates [119]. This is always possible for any surface in R? or R*. In the
latter case, the conjugate coordinate system is determined uniquely. However,
for surfaces in R™*2, n > 2, this assumption imposes a constraint.

Conjugate coordinates are defined by the requirement that the 2™ fundamea-
tal forms II be purely diagonal, that is

N, .ry= Qy -r, =0. (5.30)
Consequently,
N-ry=0, (5.31)

whence the position vector r satisfies the usual point equation (cf. Section 3.3)
for surfaces parametrised in terms of conjugate coordinates, namely

re = Ar. + Br,. (5.32)

Conversely, if there exist functions A and B such that the position vector r of a
surface X obeys (5.32), then the coordinates on X are conjugate.
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If, in addition, the coordinate lines on X are orthogonal, that is
ry-r,=0, (5.33)

then the fundamental forms I, II are all purely diagonal and therefore admit the
parametrisation

I = Hdx* + HZdy?

.34
I = H2k,dx? + HZk,dy>.

Here, the quantities k; and Kk, constitute vector analogues of the principal
curvatures in R3. It is now readily shown [116] that one may choose an or-
thonormal frame (X, Y, N) such that the position vector r is governed by the
Gauss-Weingarten equations

X 0 —p -h)\ (X
Y|=lp O 0 Y
N, \n, 0 o/)\N
(5.35)
X 0 g O X
Y|=|- 0 —hj Y|
N Y 0 h, O N
Here, p, g and h,, h, are given by the relations
Hyy = pHy, Hy =qH (5.36)
and
hl = _Hl..K_l’ hz = —H252, (5.37)
respectively, and for any two vectors f = (f',..., "), g = (g', ..., g"), it
is understood that
n
fle=) fig. (5.38)

i=1

The compatibility condition for (5.35) produces the Gauss-Mainardi-Codazzi
equations

Py +4qx+hih, =0, hyy = phy, hy, =qh;. (5.39

Itisnoted thatboth k,, k, and H,, H; obey the same linear system. Conversely,
any solution of the system (5.36) and (5.39) determines uniquely (up to a
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rotation) the orthonormal frame (X, Y, N) via the Gauss-Weingarter_l equations
(5.35). Accordingly, the corresponding surface X is defined up to its position
in space by the relations (5.26), viz

re=HX, r,=HY. (5.40)

5.2.2 Isothermic Surfaces

In analogy with the classical case, a surface & C R™*? is called isothermic if it
admits a coordinate system which is both conjugate and conformal. Thus, the
1t fundamental form is proportional to the flat metric:

I=e®dx?+dy?), Hy=H,=¢". (5.41)
This implies that
p=8, ¢=6 (5.42)
so that the Gauss-Mainardi-Codazzi equations become
A +hih, =0, hy, =6k, by =06k (5.43)

with the Laplacian A = 32 + 83. The system (5.43) is here termed the vec-
tor isothermic system. It represents a generalisation to R"*2 of the classical
isothermic system (5.12).

As in the classical case, any isothermic surface ¥ admits a dual isothermic
surface. Thus, consider the family of surfaces £* on which there exist conjugate
lines which are ‘parallel’ to those on a given isothermic surface . By definition.
(cf. Subsection 5.4.1), for any such X* there exist functions m; and 1, for which
the corresponding position vector r* is obtained via

r; =mX, r;, =mY. (5.44)

Cross-differentiation of the latter and use of the Gauss-Weingarten equations
(5.35) yield

My = ey’ﬂ'z, My = 6,11'1, (545)

which, once again, is of the form (5.36). If we now require Z* to be isothermic,

gk k¥
thenr} - r; =rj - r} and hence

m = £m. (546)



160 5 Isothermic Surfaces. The Calapso and Zoomeron Equations

The plus sign in the above corresponds to m =m, =e® without loss of
generality and in this case the original surface X is retrieved since

r. =X, r,=¢%. (5.47)
However, if the minus sign is chosen, then
m=-m=e" (5.48)
and
ry=e7r, r,=—e"r,. (5.49)

It is natural, following the terminology in R?, to refer to the isothermic surface
¥* as the Christoffel transform of X. The corresponding fundamental forms
read

I* = e 2®(dx? + dy?)
) ) (5.50)
I* = —kdx” + Kydy”.
Comparison with the fundamental forms (5.34), (5.41) delivers relations
0*=-0, hi=-h,, h;=h,, (5.51)

which provide the vectorial analogue of the involution (5.20).

5.2.3 Specialisations and Generalisations

The preceding analysis leading to the Christoffel transform of an isothermic
surface gives rise to canonical reductions of the vector isothermic system. We
first consider the classical case n = 1. Since m; and h; satisfy the same linear
equations, we deduce that any linear combination of the solutions of (5.46),
that is

hy=cie® +ce™®, hy =cie® — e, (5.52)

identically satisfies the last two equations of the isothermic system (5.43). The
remaining equation reduces to the elliptic sinh-Gordon equation

AD+c2e® —c2e™® =0 (5.53)
and the mean curvature H of the surface becomes

H =k + Ky = —e " (h1 + ha) = =2cy. (5.54)
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Accordingly, the specialisation (5.52) gives rise to constant mean curvature
surfaces (cf. Section 1.5). Moreover, if ¢; = 0, then the mean curvature vanishes
and X is minimal. It is known that the surfaces £* dual to minimal surfaces are
spheres. Conversely, if c; = 0, X is a sphere and X* is minimal. In both cases,
(5.53) constitutes the elliptic Liouviile equation.

In the vector case, it is admissible to assume that (5.52) holds for one com-
ponent of h; and h,. Thus, in the simplest case, we may set

hy=(hl, ..., 0} %) = (&;, €%, (5.55)
leading to
AB + jl::}lz +e¥ =0, ﬁly =8, h,, _’Alzx = e"ﬁl’ (5.56)
The Gauss-Weingarten equations (5.35) then deliver
N: =X, Ny =%, (5.57)
which, by virtue of (5.47), implies that

r=N" (5.58)

without loss of generality. Hence, the isothermic surface X is embedded in an
n+1-dimensional sphere, that is

r:R? > S™! c R*2, (5.59)

In other words, the vector isothermic system also incorporates isothermic sur-
faces in Riemannian spaces of constant positive curvature [116].

In conclusion, we note that the transition y — iy takes the vector isothermic
system (5.43) to

00 +hlhy =0, hy, =0k, hy =0k, (5.60)

where O designates the d’ Alembert operator O = 37 — 32. In geometric terms,
this system is descriptive of isothermic surfaces in Minkowski space M"+2 with
a space-like normal bundle. The isothermic systems in M> and M* are related
to the solitonic zoomeron and boomeron equations set down by Calogero and
Degasperis [63, 64].
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Exercise .
1. If N denotes an orthonormal basis of the normal bundle, then the Gauss-
Weingarten equations associated with surfaces which admit conjugate and
orthogonal coordinates adopt the form

X 0 -p -hy\ (X
(y)=(,, ¥ o)(Y), S
N/, \k 0 D/ \N

X 0 g O X

Y|=|-¢ o -rl||¥]| bDI=-D,.
N 0 kb D,J\N

e 4

Derive the corresponding Gauss-Mainardi-Codazzi equations and show that
there exists an orthogonal matrix O = (Oj) such that

Dl b d 0, D2 -0
under the transformation

N' - O/N/.

5.3 The Vector Calapso System. Its Scalar Lax Pair

In Section 5.1, Calapso’s fourth-order equation associated with isothermic sur-
faces in R? was derived. Here, we introduce a vector version of the Calapso
equation and construct an associated compact scalar (non-local) Lax pair.

5.3.1 The Vector Calapso System

To derive an analogue of Calapso’s equation for isothermic surfaces in R"+2,
the vector-valued function

1
z= ﬁ(hl +hy), (5.61)
is introduced. The procedure which led to the classical Calapso equation may
now be modified as follows. Differentiation of (5.43), and (5.43); with respect

to x and y, respectively, yields

2oy =pP2 P =e ), (5.62)
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and evaluation of Ap by means of (5.43); produces
Ap 4+ (2D =0 (5.63)

with the natural abbreviation z? = z7z. We refer to the system

Zy =PZ Ap+ (e =0 (5.64)

as the vector Calapso system [59,60,331] since in the classical case n = 1, the
function p may be eliminated to obtain the Calapso equation (5.18). It is noted
that?

£ =2y k). o=y (565
constitute another solution of the vector Calapso system by virtue of the invari-
ance (5.51) of the vector isothermic system and the discrete symmetry z - —z.

From a soliton-theoretical point of view, isothermic surfaces in R* are of
particular interest. Indeed, if we introduce the complex-valued function » ac-
cording to

=R, W), (5.66)

then the vector Calapso system may be regarded as the stationary reduction
(u; =0) of the integrable (Benney-Roskes-)Davey-Stewartson II equation
[29,98]

iUy =gy — pu, Ap + (uP)yy =0. (5.67)

Thus, the stationary Davey-Stewartson Il equation describes isothermic surfaces
in R*, This interesting connection was made by Ferapontov [128] in the case
of the classical Calapso equation which corresponds to the real reduction of
the Davey-Stewartson II equation. Moreover, the transition (y, p) = i(y, —p)
associated with isothermic surfaces in Minkowski space M* yields

Uy, =pu, Op + (|4} =0. (5.68)

This constitutes the stationary reduction of the integrable Davey-Stewartson III
equation [50,320, 342]

iUy = gy —pu, Op + ([u*)y =0. (5.69)

2 Strictly speaking, z* should denote the quantity (k] + h3)/ /2 which is (5.65); except for a minus
sign.
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Remarkably, as observed in [100], the vector Calapso system (5.68) is equivalent
to a particular case of the matrix boomeron equation introduced independently
in a solitonic context by Calogero and Degasperis [63, 64].

5.3.2 A Scalar Lax Pair

The vector Calapso system may be regarded as a Moutard equation (5.64); for z
coupled via the potential p with the Poisson equation (5.64),. This interpretation
is exploited here to construct a Lax pair for the vector Calapso equation. Thus,
we introduce the ‘scaled’ position vector s of the Christoffel transform x*
according to

¥ =, (5.70)
whence, use of (5.47) and (5.49) yields

X=U, -6, Y=—i, +6,. (5.71)

These relations may be used to eliminate the tangent vectors X and Y from the
Gauss-Weingarten equations (5.35). It is noted that the expressions for both X,
and Y, deliver a vector equation of the form (5.64);, namely

q’zy =pf, p= e—e(ee)xy (5.72)

Thus, both z and s satisfy a Moutard equation with the same potential p.
The Moutard equation admits a bilinear potential (cf. Chapter 1) which, in the
present context, involves the set of normals N. Specifically, if we set

S=z¥% -V (.73)
then the Gauss-Weingarten equations imply that
=z b—2¥,, S, =z2b,—2,0. (5.74)
The remaining Gauss-Weingarten equations are readily shown to produce
o + fi = 278G, )
AP —2V0 - Vi + g = 2"'S(z, ¥),

wherein the functional dependence of S on z and ¥s is indicated and the functions
/, g are given by

(5.75)
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By construction, the system (5.75) is nothing but a reformulation of the Gauss-
Weingarten equations (5.35).

In general terms, it is observed that the bilinear potential S is well-defined if
and only if z is a solution of the Moutard equation (5.64);, while the compati-
bility condition O({s ;) = (Os),y produces

fx = 2py + (lz)xa fy = -2Px - (lz)y (5~77)~

together with (5.64),. The latter embodies the integrability condition for the
pair of equations (5.77). Thus, the vector Calapso system (5.64) is retrieved
and the function f constitutes an associated potential which, in fact, appears in
Calapso’s original work [62].

Since the general solution of (5.77) depends on an arbitrary additive constant,
the invariance ‘

f>r+k (5.78)
may now be exploited to inject an-arbitrary ‘spectral’ parameter into the linear

system under consideration to obtain the following result:

Theorem 7 (A Lax pair for the vector Calapso system). The scalar (non-local)
Lax pair

by =p, O +(f +k =278z V), (5.79)
where k is an arbitrary constant and
S,=z,¥ —z¥x, S, =2¢y,—2,¥, (5.80)

is compatible if and only if (z, p) is a solution of the vector Calapso system
(5.64) and f is the corresponding potential obeying (5.77). The linear system
(5.79) admits the first integral

20 AY —2(V)? + 22?2 — §2 = I = const. (5.81)

If Yo is an eigenfunction, that ls a solution of (5.79) with parameter k,
subject to I = 0, then
z-u = .‘S(;v ""‘0)
‘ Yo

constitutes another solution of the vector Calapso system and

p* =0 (¥ "), (5.82)

1
0 = In,, l_zJ = E(g-ﬁ;"),

satisfies the vector isothermic system (5.43).

1
=—@-7 5.83
by ﬁ(z z’) (5-83)
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Proof. Wehave already shown that the Lax pair (5.79) is compatible if and only
if the vector Calapso system is satisfied. Alternatively, one may introduce the
(n-+4)-dimensional vector ¢ = (s, Y, U, A, §) and rewrite (5.79), (5.80)
as a matrix Frobenius system of the form

The compatibility condition
Fy— Gy, +[F,G]=0 (5.85)

then delivers the vector Calapso system together with the Frobenius system
for f.

The first integral (5.81) may be verified directly and plays an important role
in the construction of a Bicklund transformation for the vector Calapso system.
It also provides the link between the vector isothermic and Calapso systems.
Thus, let Yo = €® be an eigenfunction and Sy = S(z, Yo) the corresponding
bilinear potential. Then, (5.81) may be brought into the form

200 + 72 —S2e7® = [ (5.86)

which reduces to (5.43); in the case 7 = 0 if z* and k,, h, are defined as in
(5.82) and (5.83), respectively. It is readily shown that &, and k, indeed satisfy
the remaining equations (5.43),3 which, in turn, implies that (5.82) constitutes
another solution of the vector Calapso system (cf. (5.65)). Moreover, if I is
positive, then (5.86) may be linked to isothermic surfaces in R**3 for which
the dual surfaces are embedded in the sphere $**2 (cf. Subsection 5.2.3). O

5.3.3 Reductions

We conclude this section with the important observation that since z =
—e~9H/+/2, the class of solutions

2=0, Ap=0 (5.87)

of the Calapso equation corresponds to minimal surfaces (cf. Exercise 1). The
class of solutions of the Calapso equation associated with constant mean curva-
ture surfaces is obtained as follows. Since z obeys the first equation of the Lax
pair (5.79), it is consistent to demand that z indeed be an eigenfunction of the
Calapso equation. This constraint on the Calapso equation allows us to express
the potential f explicitly in terms of z by means of (5.79)2 according to

f=s-k—%, (5.88)
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where § = S(z, z) is now a constant. Insertion of (5.88) into the relations (5.77)
produces two third-order equations which may be integrated to obtain the first
integral (5.81), viz

241
272

This is nothing but the elliptic sinh-Gordon equation (5.53) with ® = Inz.

1
A(nz) + Ez2 - =0. (5.89)

Exercise

1. Show that if z satisfies the Calapso equation and (5.79),, then the solu-
tion of (5.77) is given by (5.88) where § = Inz obeys the sinh-Gordon
equation

1
AO + §e2° —ce® =0

and c is a constant of integration.

5.4 The Fundamental Transformation

The main body of classical results on transformations of conjugate nets is to be
found in the monograph of Eisenhart [119]. Therein, Laplace-Darboux, radial,
Levy and Fundamental Transformations are all treated extensively. The rele-
vance of certain of these classical geometric transformations to modern soliton
theory was signalled in [212]. Their discrete analogues have been subsequently
developed in that context by Konopelchenko and Schief [213] and Doliwa
et al. [113], In the following, we shall be concerned with the Fundamental
Transformation as recorded in 1915 by Jonas [183]. '

5.4.1 Parallel Nets. The Combescure Transformation

Here, we return to the conjugate net (point) equation written in the form
ryy = (In Hy)yry + (In Hy),ry. (5.90)

Ithas been seen in Section 3.3 that the vector-valued function 7 may be identified
with the position vector of a surface ¥ on which the coordinate lines x = const
and y = const form a conjugate net \/. A net N’ on a surface ¥’ is said
to be parallel to A if the tangent vectors to the coordinate lines on ¥ and
Y’ are parallel at corresponding points, that is there exist functions k and !
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such that
C: ry=hr,, r,=lr,. (5.91)
Since 7’ satisfies the point equation
r,=(n H),r. +(In Hé)xr'y (5.92)
with the coefficients
H{=hH,, H;=I1H, (5.93)

it is concluded that the net N is also conjugate. The transition from A to N is
commonly referred to as Combescure transformation. The existence of parallel
nets is guaranteed if the compatibility condition for (5.91) is satisfied, that is

hy = ({ = h)(In Hy)y, I = (h —1)(In Hy),. (5.94)

The latter linear system is adjoint to the point equation (5.90).

5.4.2 The Radial Transformation

Further conjugate nets may be constructed on use of a scalar solution ¢ of the
point equation (5.90). Indeed, the radial transform

r
R: rr=-— (5.95)
¢
satisfies the conjugate net equation
rh, = (In H),r} + (n Hy),r} (5.96)
with coefficients
Hl H,
H!'=—, Hy =—. 5.97)
e TP b

In the terminology of soliton theory, the radial transformation constitutes a
special gauge transformation.

A particular solution of the adjoint system (5.94) associated with the radial
transform r* is readily shown to be
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where the quantity ¢’ represents a scalar analogue of r’ defined by

&, = hdy, &, =1dy. (5.99)
It is also noted that
1
= — 5.100

is a scalar solution of the point equation (5.96), since any constant constitutes
a trivial scalar solution of the seed equation (5.90).

5.4.3 The Fundamental Transformation

If we now map the conjugate net V'* to a conjugate net N*’ via the Combescure
transformation associated with the pair (h*, [*), then the position vector of the
surface X*' satisfies the relations

= wr =@ - (3

$
(5.101)
. r
=t =@ -10)(3).
y
These equations may be integrated explicitly to yield, without loss of generality,
¢I
™=-r-r. (5.102)
o}
Accordingly, a scalar solution of the associated point equation
ryy = (n HY')yry + (In Hy'),rl/ (5.103)
with
HY =@ - by, Hy = & — 102 (5.104)
$ $
is given by
d’/
oY = —. (5.105)
o}

Thus, asecond application of the radial transformation gives rise to the conjugate
net A/ = A"*'* with corresponding position vector

r‘l
= F .
The latter is known as the Fundamental Transform of r.

7, — r*l*

(5.106)
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Theorem 8 (The Fundamental Transformation). The canjugate net equation
(5.90) is invariant under the Fundamental Transformation

r—&f:r—-d—)r’
. oo $
F H .— H = l—h-& H; (5.107)
o (¢
Hg—-)Hz— l—lg Hz.

F may be decomposed into a Combescure and two radial transformations
according to

F=RoCoR. (5.108)

A permutability theorem associated with the Fundamental Transformation
and its application to isothermic surfaces is discussed in the following sections.

Exercises
1. Show that the Levy transforms with respect to ¢, viz

¢
r=r-—— fy
by

and

l"2=t‘—2 Iy
x

take the conjugate net /' with point equation (5.90) to the associated conju-
gate nets with point equations

Tixy = [In{a(ln B)x}]yrlx ‘L‘ (In B)xrly

and

oy = (Ina)yry, + [In{B(ln ), }1,r2y,

respectively, where

a=H1

Fle
&
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2. Show that the tangents to the curves x = const and y = const at correspond-
ing points on the conjugate net AV and its radial transform N* with respect
to ¢ meet in points whose position vectors are, respectively,

R
(d)"l)y Y
and
_@-D
T TNG

corresponding to the Levy transforms of A with respect to & — 1.

5.5 A Bicklund Transformation for Isothermic Surfaces

This section is concerned with a generalisation of the classical Backlund trans-
formation for isothermic surfaces in R* as set down originally by Darboux [95]
and subsequently discussed in detail by Bianchi [36]. Treatments of Darboux’s
Bicklund transformation are also to be found in [59-61, 165]. Its formulation
in terms of a matrix Darboux transformation (cf. Chapter 7) is due to Cieslifiski
[83]. The Bécklund transformation for isothermic surfaces in spaces of arbitrary
dimension is directly analogous to Darboux’s classical transformation if one
replaces appropriate scalar functions by vector-valued functions [331]. Here, a
soliton-theoretical derivation of the Bicklund transformation is presented based
on the classical Fundamental Transformation.

5.5.1 The Fundamental Transformation for Conjugate Coordinates

In the previous section, it has been shown that the point equation (5.90) is
form-invariant under the Fundamental Transformation. Although the latter was
derived in the classical context of R3, it is evident that Theorem 8 remains valid
in spaces of arbitrary dimension. In this connection, we consider two equivalent
forms of the point equation, namely the original second-order formulation

ryy = (In Hy)yry + (In Hy),ry (5.109)
and the first-order form
X, =qY, Y,=pX, (5.110)
which is obtained by introduction of the quantities
r r H H
x=2 y=D ,_2 _ M 5.111
H, H, H ! 1 ( )
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Itis noted that (5.110) represents part of the Gauss-Weingarten equations (5.35)
while the relations (5.111) incorporate (5.36) and (5.40). However, an interpre-
tation of X, Y and H; as unit vectors and metric coefficients respectively is not
to hand at this stage.

It is recalled that a conjugate coordinate system on a surface ¥’ is termed a
parallel conjugate net if, at corresponding points, the coordinate tangent vectors
of T and ¥’ are parallel, that is there exist functions X’ and ¥’ such that

r.=XX, r,=Y'Y. (5.112)

Any solution of the linear system constituting the compatibility conditions for
(5.112), namely

X;, =pY', Y =qX, (5.113)

accordingly gives rise to parallel conjugate nets. Here, the quantities X’ and Y’
are related to those used in the previous section by

X' = Hh, Y =H,l. (5.114)

It has been seen that the linear system (5.113) may be regarded as adjoint
to (5.110). In soliton-theoretic terminology, we refer to solutions of the sys-
tems (5.109) and (5.110) as eigenfunctions while the solutions of (5.113) are
termed adjoint eigenfunctions. The parallel net r’ is therefore defined via
squared eigenfunctions. We observe that H; and H; are adjoint eigenfunctions
by virtue of (5.111)3 4.

In the above notation, we obtain [331]:

Theorem 9 (The Fundamental Transformation). Letr be a conjugate net with
tangent vectors X and Y andr, X, Y be scalar solutions of (5.109), (5.110) with

re=HX, r,=HY. (5.115)

Let r' be a parallel net with associated solutions X', Y' of (5.113). Then, a
second conjugate net F is given by the Fundamental Transform

F=r—r—, X=x-x_, ¥=yv-vC
r’ r’
-~ ~ r
H1=H1—X’;r7, Hy=H-Y'~ (5.116)
XY Y'X
pP=p——, §=q9-——,
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where r' is a scalar bilinear potential obeying the scalar analogue of (5.112),
viz
! ! ! !
r,=X'X, r,=Y'Y. (5.117)
In the next subsection, it will be necessary to know how the Fundamental

Transformation acts on parallel nets and their corresponding adjoint eigenfunc-

tions. Considerations of symmetry lead us to expect that parallel nets and adjoint’
eigenfunctions transform in-the same marner as the original net r and the ad-

joint eigenfunctions H; respectively. Indeed, this is the case, and the analogues
of the transformation laws (5.116)y,4,5 are given below.

Corollary 1. With the assumptions of Theorem 5.9, let r" be a parallel net
obeying

r,=X"X, r;=Y"Y (5.118)

for some adjoint eigenfunctions X",Y". If r" is a corresponding scalar
solution of

re =X"X, r;' = Y”_Y, (5.119)

then the Fundamental Transforms of ' and X", Y" are given by

/

i-/r = I'” _ r//i_, X” — X” _ X'r—”, Y-u — Y” - erl. (5120)
r! r r
Proof. 1Itis readily shown that #” and X", ¥”, as given by (5.120), satisfy the
relations
F = XX, r” 7'y (5.121)

and hence 7" is parallel to F. (]

5.5.2 The Ribaucour Transformation

If the coordinate system is orthogonal, then the Gauss-Weingarten equations
(5.35) hold. In particular, the normals NV satisfy the system

N.=hX, N,=hY, (5.122)
where h; and h, are solutions of (5.39),,3, that is

k), = phy, hy, =qh,. (5.123)
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Comparison with (5.112), (5.113) shows that the normals N',i = 1,...,n
define parallel nets with corresponding adjoint eigenfunctions 4} and k. Thus,
Corollary 1 implies that the Fundamental Transforms of N and h, h, read

. ~ N N
N=N-N—, Zl_1=h1— =, .’.l_2=.}l2—Y’___/ (5.124)
with
N,=hX, N, =hY. (5.125)

It remains to examine under what circumstances the vectors X, ¥ and N as given
by (5.116),,3, (5.124); are orthonormal.
Evaluation of the orthonormality conditions

¥=1 X.7=0, =1 (5.126)

leads to the constraints

!

N !
X=2_X.r, Y=2_Y./ (5.127)
r r

which, in turn, may be formulated as

”2 12
(’_) =0, (’_) =0. (5.128)
r x r y

Without loss of generality, we may take

r= %r” (5.129)
so that
X=X-r, Y=Y.r. (5.130)
Similarly, the relations
N.NM=%i, N.X=0, N-7=0 (5.131)
produce
N=N-r. (5.132)

Finally, (5.130) yields

X,=X'—-pY~hIN, ¥, =Y —qX - hN (5.133)
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by virtue of the Gauss-Weingarten equations (5.35). Hence, we have the fol-
lowing generalisation of the classical Ribaucour transformation for curvature
nets [119].

Theorem 10 (The Ribaucour transformation). The Fundamental Transfor-
mation leaves form-invariant the Gauss-Weingarten equations (5.35) together
with the Gauss-Mainardi-Codazzi équations (5.39) if the parallel net r' and its
scalar companion r' are chosen to be

F=XX+YY+N'N, r'= %r’z = %(X2 +Y*+NY) (5134
with corresponding adjoint eigenfunctions
X' =X, +pY+h[N, Y =Yy+qX+hN. (5.135)
The Ribaucour transforms of N and h are given by

ro N . N
. hy=h —X'Z, hy=h,— Y/'r—j, (5.136)

Rl
r/

where N is defined by (5.125).

Proof. A short calculation reveals that X’ and Y’ are indeed solutions of the
adjoint system (5.113). The form of the parallel net r’ is dictated by the re-
lations (5.130) and (5.132), since (X, Y, N) form an orthonormal frame. In
fact, it is readily verified that r’ and r’ obey the systems (5.112) and (5.117),
respectively. a

It is interesting to note that, in the classical case n=1, the relation
N@F — r) = r(N — N) holds. Consequently, the normals to the surfaces T
and ¥ at corresponding points not only intersect but also intersect at the same
distance to the surfaces. X and ¥ are therefore the sheets of the envelope of a
two-parameter family of spheres, namely the so-called Ribaucour sphere con-
gruence [95]. In fact, it was just this property that originally led Ribaucour to
the construction of the Fundamental Transformation for lines of curvature.

5.5.3 A Bicklund Transformation for Isothermic Surfaces

The Ribaucour transformation maps within the class of isothermic surfaces if
the condition H; = H, is preserved. In the present form of the Ribaucour trans-
formation, this implies that X’ = Y’. However, the Gauss-Weingarten equations
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(5.35) and Gauss-Mainardi-Codazzi equations (5.39) ate invariant under the
involution

(X’ Hl’ 2X’B -’il)—) —(X, Hl, D9, hl) (5137)

with the remaining quantities being unchanged. Thus, composition with the
Ribaucour transformation gives rise to the constraint H =-H 2, Viz.

r=

(X' +Yre®. (5.138)

N =

Accordingly,

X -y’ Yy —-X'

X, -0, = X, Y, -8,X = Ye®, (5.139)

which may be written as

(X' — ! 'e°)x =0, (}-(%e")y =0, (5.140)
whence
X' —Y' =2mre™®, m = const. (5.141)
If we now introduce a function r* defined by
X' +Y =2mr*e®, (5.142)
then the constraint (5.138) becomes
r'=mrr* (5.143)
while the relations (5.139) read
rr=eX, = —e7%y. (5.144)

‘We therefore conclude that the function r* is nothing but a scalar version of the
Christoffel transform r* as defined by (5.49).

We can now state the analogue of Darboux’s classical Bécklund transforma-
tion for 1sothermic surfaces [331].

Theorem 11 (A Bécklund transformation for isothermic surfaces). Let r be
the position vector of an isothermic surface . Then, a second isothermic
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surface £ is given by

1
pop (XX+YY+ N'N), (5.145)

F=r—

where X, Y, N andr, r* are solutions of the compatible linear system

X 0 -8, —h] me® me®\ (X
Y 6, 0 0 0 0 Y
N|=|& 0o o o of|N
r eb 0 0 0 0 r
rt A \e‘e 0 0 0 0 r*
(5.146)
(x\ [0 & 0 0 0 X
Y —6, 0 —h} -me® me Y
N|l=] 0 h, 0 0 0 N
r 0 e® 0 0 0 r
rt )y L 0 —® 0 0 0 r*
satisfying the admissible constraint
X2+ Y24 N2 =2mrr". (5.147)
The second solution of the vector isothermic system (5.43) reads
b=l 0
r#
(5.148)

- e® e ® ~ e® P
h, =—h — N, hy=h,—{———|N.
-1 “1+(r+ r")_ =27 =2 (r r")_

Proof. The linear system (5.146) is obtained by comparison of the expres-
sions (5.135) and (5.141), (5.142) for the adjoint eigenfunctions X’ and Y’. The
system is indeed compatible modulo the vector isothermic system. Remark-
ably, for m = 0, (5.146) constitutes a scalar version of the Gauss-Weingarten
equations together with the first-order relations for the position vector and its
Christoffel transform. The constraint (5.147) is the result of equating the two
expressions (5.134); and (5.143) for r'. It represents a particular case of the first
integral

X2+ Y%+ N? - 2mrr* = const. (5.149)

The transformation laws (5.148) are derived from (5.116) and (5.136) modulo
the involution (5.137). O
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Exercises

1. Show that the quantities 7 and X”, ¥” as given in Corollary 1 satisfy the
relations (5.121).

2. Verify that r’ and r’ as defined in Theorem 10 satisfy the systems (5.112)
and (5.117), respectively.

3. Show that

X2+ Y2+ N2 —2mrr*

is constant modulo the linear system (5.146).

5.6 Permutability Theorems and Their Geometric Implications

In the previous section, we have seen that the Fundamental Transformation
may be specialised to accommodate additional constraints imposed on conju-
gate nets. Thus, the requirements of orthogonality and conformality have been
shown to induce natural and admissible conditions on the Fundamental Trans-
formation. It will now be shown that these algebraic conditions impose hidden
geometric constraints which are unveiled in the context of permutability theo-
rems associated with iterated Bécklund transformations. For notational conve-
nience, the prime on parallel nets and adjoint eigenfunctions is replaced by an
overbar. Superscripts label the quantities which generate the Backlund transfor-
mations and subscripts are attached to the corresponding Bécklund transforms.

5.6.1 A Permutability Theorem for Conjugate Nets. Planarity
Letrbe a conjugate netand X, Y be the corresponding tangent vectors satisfying

r.=HX, ry=HY, X,=gqY, Y,=pX, (5.150)

where p and q are related to H; and H, in the usual manner. If !, X!, Y! are
eigenfunctions obeying
rn=HX', ry=HY', X,=q7', ¥Y;=pX', (5151)
and 7! is a parallel net associated with some adjoint eigenfunctions X!, ¥'!,
that is
F=X'X, F=T1'Y, (5.152)
then the Fundamental Transform X; = B;(X) of T is given by

=1
B, : r1=r—rl:T, (5.153)
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where the scalar function 7!! is defined by
=Rt Fll=7lyl (5.154)

Similarly, a second set of quantities {r2, X2, Y2, X2, 2, , 7%} defines a third
surface ¥, = B,(X) represented by
By: mp=r-— rz_in (5.155)
Application of another Fundamental Transformation to the surface X1 now
requires the knowledge of (adjoint) eigenfunctions and a parallel net associ-
ated with X;. These may be readily constructed if one takes into account the
transformation properties of the Fundamental Transformation. Firstly, since the
eigenfunctions 2 and X2, Y? are scalar analogues of the position vector r and
the tangent vectors X, Y, respectively, their Fundamental Transforms are given
by the scalar counterparts of (5.116); 2,3, that is

PRI LA SR 2_ it
rl =r°"—-—r m, Xl —X X rll, Yl _Y _Y '11, (5‘156)
where the bilinear potential 7!2 satisfies the usual first-order relations
f}Z = Xlx2’ ;;2 = f’le. (5.157)

Secondly, application of Corollary 1 to the parallel net 7 provides us with a net
parallel to X; and corresponding eigenfunctions. These read

21

‘l

(5.158)‘

f%:iz—f”;_;l—l, Xi= =X R=r-7
with
=X, Bl=7! (5.159)
and the scalar counterpart 722 transforms as
712
A= - (5.160)

By construction, the set of quantities {r?, X7, Y7, X2, ¥2,72, 2} is related
to the surface X; in the same way as {rf, X*, Y¥, X!, V!, P, F¥},i = 1,2 are
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related to the surface X. Thus, another application of the Fundamental Trans-
formation generates a fourth surface 1, = B}(Z) given by

Bl: rp=r;— rlzf—zlz, (5.161)
1

where the indices on B} indicate that the Bicklund transformation is generated
by the B, -transforms of quantities bearing an index 2. Similarly, application of
another Fundamental Transformation generated by the B,-transforms of quan-
tities carrying an index 1 produces a fifth surface Xp; = B2(E,) represented
by
2. 1 7

Bi: ra=r— rzizT. (5.162)
Remarkably, the surfaces X, and X; are identical. This key geometric property
underpins the classical permutability theorem for the Fundamental Transfor-
mation [119, 183].

Theorem 12 (A permutability theorem for the Fundamental Transformation).
The Fundamental Transformations B, B, and ]Bé, B"l’ are such that the corre-
sponding Bianchi diagram closes, that is

BloB; =BoB,. (5.163)

The position vector of the surface T2 = Xy is given by

rrt 2
FloFll g12

’-.2 ;21 F22
;11 f12

;21 ;22

rip=r = (5164)

Proof. Insertionof ry, r? and 7, 722 as given by (5.153), (5.156) and (5.158);,
(5.160), respectively, into (5.161) produces the expression (5.164) for the posi-
tion vector ry2. The symmetry in the indices 1 and 2 implies that ry» = r,; and
hence the Bianchi diagram closes. O

The above theorem implies that
ro —r=of +BP, (5.165)

where the functions o and 8 are obtained from (5.164). On solving (5.153) and
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Figure 5.1. Planarity, cyclicity and constant cross-ratio of the Bianchi quadrilateral.

(5.155) for ! and 72, respectively, we obtain
ro—r=a( —r)+b(r,—r) (5.166)

with @ = —aF!!/r! and b = —B7*/r? and hence the vectors rj; — r and
ry —r, rp —r are co-planar. Thus, we have the following ‘physical realisation’
of the Bianchi diagram associated with the Fundamental Transformation.

Corollary 2 (Planarity of the Bianchi quadrilateral). The position vector r
and its Fundamental Transforms ry, ry, ry; satisfy a linear equation of the form
(5.166). For any fixed choice of the conjugate parameters (x, y), the vertices
of the Bianchi quadrilateral r(x, y), ri(x, y), r2(x, y), ria(x, y) lie on a plane
(¢f. Figure 5.1).

5.6.2 A Permutability Theorem for Orthogonal Conjugate Nets. Cyclicity

We have shown that the requirement of orthogonality leads to the admissible
constraints (5.134), (5.135) on the Fundamental Transformation. In order for
the permutability theorem to be valid in this restricted case, these constraints
must also be preserved by the Fundamental Transformation. Thus, in the present
notation, the expressions

72 = X2X+Y2Y+ N?'N

AR

1

F2 = _ ()2
2 (5.167)

X2=XI+pY?+hIN!,  P2=Y]+qX*+HN?
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must be invariant under the Ribaucour transformation B;, that is

1
B =X+ YN+ NN, 2= ()

(5.168)
X2=X% +pY2+h] N2,  Pi=Yl +qiX?+h] N2
where
1 F! 1 F! 1 F!
Xi=X-X =i Y,=Y-Y BT N,=N-N'— o
Xy! yixt
pl = p —_— _—11, 41 = q — f” (5.169)
"Nt S N!
by =h -X'=, b, =h,-7'=
211 FIT7 221 Fll

It is readily verified that evaluation of the consistency conditions (5.168) leads
to one additional constraint which proves only relevant in the course of iteration
of the Fundamental Transformation. For completeness, it is noted that

2 2 1’12
Ni=N"-N =7 (5.170)
r

Theorem 13 (A permutability theorem for the Ribaucour transformation).
The Bianchi diagram associated with the Ribaucour transformation is closed
modulo the particular first integral
P24 =P P =X'X2+ 7'+ NN (5.171)
Proof. Differentiation reveals that
PP - 712 — 72! = const (5.172)

and hence the constraint (5.171) is indeed admissible. a

The above theorem gives rise to a geometric observation originally made in
the classical case by Bianchi [37]. Thus, the constraint (5.171) implies that

AP P =2 P2 -2 -7 =0, (5.173)

where i'f and i'; are given by (5.158); and (5.158)|,.,2, respectively, while the
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generic Fundamental Transformation admits the relation
F-CP+F.CH
721 F12 (5.174)
=F.CP+P - CH' - F -CF' = 7P - CF =0
F F

for any constant skew-symmetric matrix C. The above algebraic relations now
give rise to the result [331]:

Theorem 14 (Cyclicity of the Bianchi quadrilateral). The vertices of the
Bianchi quadrilateral associated with the Ribaucour transformation lie on a
circle (cf. Figure 5.1).

Proof. Here, it proves convenient to introduce the notion of the cross-ratio of
four points on a plane which we identify with the complex plane, that is

P =a+ibeC & r= <Z) e R? (5.175)
The cross-ratio of four points r, 7, r,, ry2 is defined by the complex quantity

P(ry —n)P(rip —ra)
P(r,—PP(rp —ry)’

(5.176)

The cross-ratio is known to be real if and only if the four points lie on a circle
(or on a straight line which may be regarded as a circle of infinite radius). Thus,
in the present context, the vectorsr; —r,r, —r, rjp —ryandry; —rp lieon a
plane which we identify with the complex plane. Since the quantities 7', 72, 7}
and i% are parallel to the edges of the Bianchi quadrilateral, we deduce that the
Bianchi quadrilateral is inscribed in a circle if the cross-ratio

P@F')P(F})

is real. Without loss of generality, we may therefore assume that the vectors
F!, P, 7} and 7? are two-dimensional and

0 -1
C= (1 0). (5.178)

An elementary calculation solely based on the identities (5.173) and (5.174)
now shows that (5.177) is indeed real. O
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5.6.3 A Permutability Theorem for Isothermic Surfaces.
Constant Cross-Ratio

In the case of isothermic surfaces, it is necessary to show that the constraints
(5.141)~(5.143) are preserved by the composition of the Ribaucour transfor-
mation and the involution (5.137). To this end, we note that the Christoffel
transform r* is but a particular parallel net and hence transforms in the same
manner as any other parallel net. Accordingly, the Ribaucour transform B; of
the scalar quantity r*? is given by

=2, (5.179)

Now, invariance of (5.143) requires that

F2 = mor?r?, (5.180)
which reduces to
=12 21
L S RN (5.181)
m mj

Comparison with the constraint (5.171) therefore delivers

pl2ao M PP — ma(r'r? 4+ r*1r?)
mp—mp
(5.182)

m
Ple —2 [P P —m '+ r*'r)]
ma —my

and these are, in fact, solutions of the defining relations (5.157) and (5.159),
respectively. It remains to point out that preservation of the relations (5.141)
and (5.142) does not impose any further constraints on the Ribaucour transfor-
mation. Thus, we are now in a position to formulate the analogue of Bianchi’s
permutability theorem [36] for classical isothermic surfaces [331].2

Theorem 15 (A permutability theorem for isothermic surfaces). For a given
seed isothermic surface X corresponding to a vector-valued solution (X, Y, N,
r, r*) of the linear system (5.146) withparameterm =0, let (X', Y', N', r!, r*!)
be a solution of (5.146) with parameter m = m | subject to the constraint (5.147).

2 For convenience, we have dropped the index 2 on the relevant quantities.
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Then, the linear system (5.146) is invariant under

(X,Y,N,r,r*,0,h, h,)
Bi: { ' (5.183)
(Xl’ Yl’ ﬂl’ r, rr’ els hl,l’ _}_1_2’1)1

where
X! 1 ! 1 N 1
X‘=_X+r1r*1M’ Yl:Y—rlruM’ ﬂl:ﬂ_rlrﬂM
1 1 rt o
r1=r—rTlM1, rl“=r‘—r—1M1, e°‘='Tle o
0 -8 ) )
_ e e 1 _ e e€ 1
hm —_h + (r_1+ rﬂ)ﬂ ’ ﬁz.l —ﬁz“ (‘r‘f r*l)ﬂ
(5.184)
and

_X'X+ Y'Y+ NN —m('r* +r*r)
- m;—m ’

Ml

(5.185)

The isothermic surface Xy, its Christoffel transform %} and the orthonormal
frame (X1, Y1, N,) are obtained from (5.184) and (5.185) by means of the
substitution (X, Y, N,r,r*,m) - (X, Y, N, r, r*, 0). The Bianchi diagram as-
sociated with two Bdcklund transformations B, and B, with parameters m;
and m, is closed, that is

B; 0By =B 0 B,. (5.186)

We remark that, at each step of the iteration procedure, the Bicklund trans-_
formations B; carry only one index since we now regard the transformations as
being distinguished by the Béicklund parameters m; rather than the correspond-
ing eigenfunctions.

In the previous subsection, we have shown that the cross-ratio of the Bianchi
quadrilateral is real. In this case, the cross-ratio admits the geometric interpre-
tation

P(ri =n)P(rip —r))| _ did;
P(r,—nr)P(ra—ry)| dd’

(5.187)

where

di=|ri—r|, d =|rp—r
1=l —r| i [ri2 — e (5.188)
dy=Irn—r|, d =|rp—rl
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The sign of the cross-ratio determines whether or not the edges of the quadrilat-
erals intersect. A non-intersecting (embedded) Bianchi quadrilateral is depicted
in Figure 5.1 corresponding to a negative cross-ratio. The lengths of the edges
of the Bianchi quadrilateral are readily expressed in terms of 0 and its Backlund
transforms. For instance, the transformation law (5.145) for the position vector
associated with the Bécklund transformation B; delivers

2 r!

2
(d1)2 = (l'1 __r)2 = ;n—l;*_l = '"—ll-eel+e (5*189)

by virtue of (5.184). Similarly, we find that
2_ 2 o0 o2 2 euth g2 2 eats
(d2)" = m—ze , @) = ;;;e , (@) = m—28 . (5.190)

Moreover, closure of the Bianchi diagram implies that 6;, = 6,; and hence
dd;
dpdy

The sign of the cross-ratio may be calculated directly using Theorem 15. In this

way, we obtain a theorem which generalises a classical result due to Demoulin
[101], viz:

ma

. (5.191)

my

Corollary 3 (Constant cross-ratio of the Bianchi quadrilateral). The cross-
ratio of the Bianchi quadrilateral is independent of the coordinates x and y
and is given by

P(ri —r)P(riz —ry) _m
Pry=nP(@r—r) m

(5.192)

(cf. Figure 5.1).

Exercises
1. Derive the position vector (5.164) for the second generation isothermic sur-
face Tj,.
2. Verify that the relations (5.168) are satisfied modulo the constraint
(5.171). Establish the validity of the relation (5.172).
3. Prove that if a, b, ¢, d are four two-dimensional vectors satisfying

a-d+b-c=0, a-Cd+b-Cc=0, C=((1) _(1))
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then the cross-ratio

P(a)P(b)
P(c)P@)

is real.

4. Show that the relations (5.141) and (5.142) are preserved by the Bicklund
transformation for isothermic surfaces iff the constraint (5.181) holds. Ver-
ify that (5.182) are indeed solutions of the defining relations (5.157) and
(5.159).

5. Use Theorem 15 to establish the cross-ratio relation (5.192).

5.7 An Explicit Permutability Theorem for the Vector
Calapso System

It has been established that the Ribaucour transformation for isothermic surfaces
gives rise to a permutability theorem with concomitant geometric properties.
This permutability theorem was formulated at the linear (surface) level. How-
ever, an explicit permutability theorem at the nonlinear level, that is for the
isothermic system itself, does not seem to appear in the classical literature.
Here, it is shown that such a superposition principle is readily obtained for
the vector Calapso system if one formulates the Ribaucour transformation in
terms of the classical Moutard transformation. The permutability theorem for
the vector Calapso system so derived is of remarkable simplicity.

5.7.1 The Ribaucour-Moutard Connection

Here, we return to the classical Moutard transformation as discussed in
Chapter 1:

Theorem 16 (The Moutard transformation). The Moutard equation

Yxy =pY (5.193)
is invariant under

S, ) ;
b > b= ¢¢1‘“ L popi=p -2y, (5194)
where ! is another solution of (5.193) and the bilinear potential S(is, ') is
defined by

Se=Uelt =YL, S, = bl — U (5.195)
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If we now define the quantities (cf. Section 5.3)
Y =er", S=z'¢ -v2N (5.196)

then the linear system (5.146) implies that the relations (5.71) hold for the scalar
quantities X and Y. Evaluation of Xy, Y, and X, + Y, produces the Lax pair
(5.79) for the vector Calapso system with k = —2m and X, — Y, may be used to
express r interms of  and S. The Lax pair (5.79) may be shown to be equivalent

" to the linear representation (5.146) and the first integrals (5.81) and (5.149)
coincide. Furthermore, the transformation laws (5.184)s ¢ for r* and 9 give rise
to a transformation law for §s which is, up to an irrelevant constant factor, exactly
of the form (5.194), with a particular bilinear potential S({, ¥s'). The action of
the Bicklund transformation on the vector Calapso equation is suggested by the
observation that, since z is a (vector-valued) solution of the Moutard equation
(5.193), it should transform in the same manner as the eigenfunction {s . Indeed,
this proves to be the case and the Bicklund transformation adopts the following
form [331]:

Theorem 17 (A Bicklund transformation for the vector Calapso system). The
vector Calapso system (5.64) is invariant under the Moutard-type transforma-
tion

S(z, ¥!
A L

where ! is a solution of the Lax pair (5.79) subject to the first integral I = 0.

, p = p1r=p —2(n{)yy, (5.197)

Proof. Since (5.197),,2 is a vector version of the classical Moutard transfor-
mation (5.194), it is evident that (5.64), is preserved. Moreover, the first integral
I = 0 implies that

§2
ﬁ:ww=g+mm¢) (5.198)
and hence
2 Apy = [22 4+ 2A0n YY1,y + Ap — 2A(I0 YY),
(§1)xy+ p1 = [2° + 2A0n )],y + Ap (In§")zy (5.199)
=(§2)xy+Ap-
0

It is remarked that the above Bécklund transformation has been foreshadowed
in Theorem 7 since at the level of the vector Calapso system, the dual solution
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(z*, p*) of the vector Calapso system as given by (5.82) and the Bicklund
transform (z,, p1) are generated in the same manner. However, if we make
the identification Yo =e®, where 0 is the solution of the vector isothermic
system, then the particular choice {! =i implies that the dual solution and
the Backlund transform are identical. This is in agreement with the fact that
the Christoffel transform X* of an isothermic surface ¥ may be regarded as a
degenerate Ribaucour transform of X [61]. This observation is elaborated on
in Section 5.8 in connection with Dupin cyclides.

5.7.2 A Permutability Theorem

The derivation of a permutability theorem for the vector Calapso system is now
based on a direct consequence of Theorem 17, viz.:

Corollary 4. The Bdcklund transforms of the solution of the vector Calapso
system written in the form

Iy =4y, Gy = €by, a;+eb,+ ;2 =0, (5.200)
where €2 = 1 and p = a, = €b,, f = —a, + €by, read

S ¢ a =a-20nY'),
W7 by = —b 4 2e(Inyt),

By: z= (5.201)

with €] = —e.

The constant € = 1 has been introduced to cast the permutability theorem
into a compact vectorial form. The first step in this procedure is to eliminate the
eigenfunction {s! and the corresponding bilinear potential S(z, ¥') from the Lax
pair and the defining relations for S by means of the transformation formulae
(5.201). Thus, if we solve the latter for {}, {/} and S, then the relation (5.80);
and the Lax pair (5.79) become

1
(1 =2 = 500 ~aXg + D (b1~ bh = 3 — )by +)
(5.202)

1 1 1
(ay +a), = Z(al —~a)* - Z(bl +b)? - E('Z'l + 2%+ k.

A Bicklund transformation B» associated with a parameter k, gives rise to
similar relations and the action of B;, B, on the Bécklund transforms generated
by B,, B, respectively, results in another six relations. For instance, the three
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additional copies of (5.202); are given by

1
By: (z—2x= 5(02 —a)z;+2)
1
Bi: (23— 2k = 5(021 — a2)(2y1 + 22) (5.203)

1
By: (2 —21)x= E(alz — a1z +29)-

The relations (5.202); and (5.203) are the analogues of those employed in
Section 1.3 in connection with the classical permutability theorem for pseu-
dospherical surfaces. Thus, if we take into account that the Bianchi diagram
commutes, then the operation (5.202); — (5.203); — (5.203); + (5.203); pro-

duces the algebraic relation
ay—a)z;+z2)—(ap—a +z
(a1 —a)(zy +2) — (a12 — a2)(zy5 + 25) (5.204)
—(a2 —a)(z, + 2) + (@12 — a1)(zp +2;) = 0.

The remaining relations (5.202) 3 and their counterparts may be manipulated
analogously to derive another two purely algebraic relations. This algebraic
system of three equations may now be solved for a;2, b12 and z,, to obtain

ap—a=p(a—ay), bu—b=pb1—b2), 23—2=pPp@ —2)
p ky — Ky
(a1 — a2)? + (b1 — b2)* +2(zy — 2,)*

b=
(5.205)

Remarkably, this superposition principle is symmetric in @, b and +/2z and
therefore admits the following formulation [331]:

Theorem 18 (A permutability theorem for the vector Calapso system). If the
solutions u, and u, of the vector Calapso system (5.200) are related to the seed
solution u = (a, b, /27) by the Biicklund transformations By and By, then u 12
as given by

_ 4(ky — k1)

b =h= Ty (4 — 4,) (5.206)

is also a solution of the vector Calapso system and constitutes the Bdcklund
transform of both u, and u,, that is, u;, = By(u,) = By(uy).

The above superposition principle represents the analogue of the classical
permutability theorem (1.63) for the sine-Gordon equation. It is interesting to
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note that, in the case n = 2and b — ib (cf. Subsection 5.3.1), the permutability
theorem in the form (5.205) constitutes a simplified version of that set down
for the boomeron equation in [64]. The permutability theorem therein contains
scalar and vector components and was derived in connection with a matrix
version of the classical Darboux transformation applied to a matrix Schrédinger
equation.

Exercises

1. Use Theorem 17 to prove Corollary 4.

2. Derive the Bicklund equations (5.202) and manipulate the relations (5.202),
and (5.203) and their counterparts for a and b in the manner indicated above
to obtain the permutability theorem (5.205).

5.8 Particular Isothermic Surfaces. One-Soliton
Surfaces and Cyclides

Here, we construct explicit solutions of the classical isothermic system and
Calapso equation by means of the Darboux-Ribaucour and Moutard transfor-
mations, respectively. Application of these transformations to trivial seed solu-
tions is shown to lead to ‘one-soliton’ isothermic surfaces and Dupin cyclides.
The corresponding localised solutions of the zoomeron equation are related to
the important dromion solutions of the Davey-Stewartson III equation via a
simple Lie point symmetry.

5.8.1 One-Soliton Isothermic Surfaces

It is evident that planes constitute isothermic surfaces in R3. In fact, the para-
metrisation

x 1 0 0
r=(y), X=(0), Y=(l , N=(0) (5.207)
0 0 0 1

is readily shown to satisfy the Gauss-Weingarten equations (5.35), (5.42) with
corresponding solution

0=0, hj =0, hy=0 (5.208)
of the isothermic system. In this case, the linear system (5.146) reduces to
=X, =X, X;=m@*+r), X=Xx)

ry=1%, r;‘=—Y, Yy=m@*—r), Y=Y()

(5.209)
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together with N = Nj so that
X =0°X, Y, =—0Y (0 =2m) (5.210)

and hence, if o # 0,

. X Y,
X =Xpsinhwx, r= —ocoshwx——gcoswy
o) ®

(5.211)
. Xo Yo
Y = Ypsinwy, r*= — coshwx + — coswy
© o)
without loss of generality. Accordingly, the constraint (5.147) yields
X2=Y2+ N? (5:212)

and the position vector of the new isothermic surface ¥ reads [86]
X, sinh wx
2
F= ( - fo ( Yo sinwy ) (5.213)

Xo cosh wx + Yg cos wy
No
The above surfaces are here termed one-soliton isothermic surfaces. The corre-
sponding solution of the classical Calapso equation is readily derived by means
of the transformation (5.148) and is

O =

\/i(ﬁNo

Xo coshwx + Yy coswy

7= (5.214)

Prototypical members of this class of isothermic surfaces are depicted in
Figure 5.2 for Yo/No=0, 1/4, 1/2,3/4. In the case Yy =0, Xo = Ny, a cylin-
drical isothermic surface is obtained as in [86]. It is interesting to note that, in
this special case, the base curve

2
| x — — tanh wx
®

F= 5.215
F y 1 ( )

o cosh wx

adopts the form of a loop soliton (cf. Chapter 6).

5.8.2 A Class of Solutions Generated by the Moutard Transformation
The simplest seed solution of the classical Calapso equation (5.18) is given by

z=const = p =0, f=-const (5.216)
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Figure 5.2. One-soliton isothermic surfaces for various values of Yo/No.

with corresponding solution of the Lax pair (5.79), (5.80) of the form
U =Xx)+ Iy, S=z200)—Xx)+s, (5.217)

where s is an arbitrary constant of integration. Insertion of these expressions
into (5.79), produces

1
Xx + P+ DX =a+ 352

1 (5.218)
Vyy+ @@=y =a- 552
where | = f + k and « is a constant of separation. The first integrals
X2+ z£+l X? = Qo+ s2)X +
x T ) ( )X +B (5.219)

V24 (22— DY = Qo — sV +
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show that the quadratic constraint (5.81) with I = 0 is satisfied iff
2B+2y +s*=0. (5.220)

The Moutard transform of the seed solution (z, p) therefore reads (cf.
Theorem 17)

2V —X)+s XYy

ST xwy Pl

If we focus on solutions of the Calapso equation which are non-singular then,
without loss of generality, X and ) may be taken to be

(5.221)

X =y coshAx +y;, Y =ryjcospuy (5.222)
with
N=-22—d, pW=22-1, —-I1>7. (5.223)

Insertion of the expressions (5.222) into (5.219) produces

1
a=3sz, B=N(w-¥), v=p¥ (5.224)

and
Ny, = —sz. (5.225)

The relations (5.223), (5.224) may be regarded as definitions of z,  and a, B, v,
respectively. The remaining relation (5.225) determines s if z 5 0. Thus, there
exist two subcases.

The Case z=0

Here, v, = 0 and the relations (5.223) reveal that A = p. while the constraint
(5.220) reads

52 =22 (v2 —v3). (5.226)

The latter implies that+y; % 0 and hence the new solution of the Calapso equation
is given by
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Figure 5.3. A ‘one-soliton’ solution of the Calapso equation.

without loss of generality. From a geometric point of view, \ is irrelevant since
scalings of the form (x, y, Z) = (cx, cy, Z/c) merely correspond to scalings
of the ambient space R>. Thus, 7 essentially embodies a one-parameter class
of solutions of the Calapso equation. If -y3 = O then Z is independent of y
and exponentially decaying as x — £00. For non-vanishing 73, the solution is
periodic in y and exponentially decaying in the x-direction. This is illustrated
in Figure 5.3.
An algebraically localised solution (lump) is obtained in the limit

A=¢ y=¢€*-1 €—0, (5.228)

namely (vide Figure 5.4)

4
2+x2+y?

Z=

(5.229)

It is subsequently shown that this solution of the Calapso equation may be
associated via the Christoffel transformation with the classical Enneper minimal
surface. In this connection, it is noted that the Enneper surface is not dual to

Figure 5.4. A ‘lump’ solution of the Calapso equation.
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‘Figure 5.5. A dromion-type solution of the zoomeron equation.

any of the one-soliton isothermic surfaces introduced hitherto.> However, at the
level of the Calapso equation, the two classes are identical, as can be seen by
comparison of (5.214) and (5.227). This is a consequence of the fact that the
mapping between solutions of the Calapso equation and the isothermic system
is not one-to-one.

The substitution y — iy takes the solution (5.227) of the Calapso equation

to the solution
A, /2(1 -v%)

z= 230
z coshAx + y3coshAy (5:230)
of the zoomeron equation
o (%’) + (e = 0. (5.231)

The quantity Z is now exponentially localised and non-singular for non-negative
+y3 as depicted in Figure 5.5. Indeed, a connection with coherent structures as
described in [49] is readily established. Thus, if z(x, y) is a solution of the
zoomeron equation (5.231), then

u=eCI e Lt y+ut), p= lTl’;y (5.232)
u
constitutes a two-parameter family of solutions of the Davey-Stewartson III
equation (5.69). In particular, the solution (5.230) boosted by the Lie-point
symmetry (5.232) gives rise to a dromion solution of the Davey-Stewartson ITI
equation [282] (cf. Exercise 1).

3 Tt is noted parenthetically that the Christoffel transform of a minimal surface is a sphere.
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The Case 7#0
The relations (5.224), (5.225) here imply that

s=-N2 2 1(,& —\?), (5:233)
Z 2
whence the constraint (5.220) yields
P2y + (p? — A2 (p2yf — N2yP) = 0. (5.234)
The new solution of the Calapso equation therefore reads

2zy3cospy + s
Y1 coshAx +y3cos by + vz

F=—74+ (5.235)
where s, z are given by (5.233) and the constants v; are constrained by the
relation (5.234). If we set aside scalings of the ambient space R?, then it is
seen that (5.235) depends on two ratios of A, w, vy; and hence constitutes a two-
parameter family of solutions of the Calapso equation. Once again, the solutions
are periodic in y and approach —z exponentially as x — =+00. A prototypical
solution is depicted in Figure 5.6.

In conclusion, we remark that the integrability conditions for the system
2A(nT) =72 +3, 20(In7) = f, 2(nT),y = —p, (5.236)

where d is an arbitrary constant, are satisfied modulo the classical
Calapso system and the relations (5.77) for n =1. Accordingly, the existence
of a ‘t function’ satisfying the above relations is guaranteed. If we now define

Figure 5.6. A solution of the Calapso equation corresponding to z # 0.
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a function o by
o =27 (5.237)
then the Calapso system (5.64),-; may be brought into the bilinear form?
DDyo-7 =0, (D}+ D)7 -1 =0"+07? (5.238)

where D, and D, are bilinear operators introduced by Hirota [166] and de-
fined by

D:DTa-b = (8, —8,)"(8y — 8y)"a(x, Mb(x', Yz, yy. (5.239)
The ansatz

T=Xx) +Y0), =2 +Iy) (5.240)

is then readily shown to lead precisely to the class (5.221).
It will be shown in the sequel that the class of solutions (5.235) (and (5.227)
as a degenerate case) may be associated with classical Dupin cyclides.

5.8.3 Dupin Cyclides

The class of surfaces known as the Dupin cyclides were introduced by the math-
ematician and naval architect Dupin [114]. Dupin cyclides are characterised by
the requirement that all lines of curvature thereon be circles. They were ex-
tensively investigated in the nineteenth century by such luminaries as Maxwell
[253] in 1868 and Cayley [71] in 1873. There are many types of cyclides. One
important type, namely the ring cyclide, may be thought of simply as a deformed
torus. There are also self-intersecting forms known as the horned cyclide and
spindle cyclide. The Dupin cyclides include as special cases all the surfaces
conventionally used in computer-aided design, namely planes, circular cylin-
ders, cones, spheres, natural quadrics and tori. Indeed, in recent years, there has
been very considerable interest in the use of Dupin cyclides in computer-aided
engineering design [9-12,46, 103, 244,245,256,278,287,347].

Here, we shall be interested in the occurrence of Dupin cyclides as generated
via Bécklund transformations in a solitonic context [100]. It is remarked paren-
thetically that Dupin hypersurfaces have been shown to arise in connection with
integrable Hamiltonian systems of hydrodynamic type by Ferapontov [127].

4 An account of the Hirota bilinear operator formalism is outside the scope of the present work.
The interested reader may repair to the monograph on the subject by Matsuno [250]. The basic
properties of bilinear operators are set down in an appendix in the companion volume on Bicklund
transformations by Rogers and Shadwick [311].
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The mapping between solutions of the Calapso equation and the isothermic
system is not one-to-one. However, given a solution of the Calapso system,
a privileged solution of the isothermic system is obtained by identifying the
Biécklund transform 7 with the Christoffel transform z* (vide Theorem 7). A
solution of the isothermic system corresponding to z = const is accordingly
given by

1 .
(] -
e =1, = —(z +3), ha=—(z—32) (5.241)
V2 Nz
and that associated with Z by*
=y, hy=hy, hy=—hy. (5.242)

Insertion of the expressions (5.217); and (5.221), therefore produces the new
solution -
g 1 - s +2zY
TxX+Y T Ay
of the isothermic system (5.12).

The curvatures and torsions of the lines of curvature on isothermic surfaces
are given by, on use of [380],

—2zX

hy = ——=——  (5.243
2= f<x+y) 0243

2
2 rexr N
k™ = ——————l x X P =e 20(93 +h%)
x
2 Imyxry2
KO =X, 20(93 + h%)
y

(5.244)
o = [7x Prx Txxs) =0 Oyhyx — exyhl
Irs xrxxl ey2+h%
0= [ry Ty Fyyyl e—e(exhly - exyh2)
ry X ryy|? 02 + h2

by virtue of the Gauss-Weingarten equations (5.9). In the present case, it is
readily verified that

R0 =0, & =0, ¥W=0 =0 (5.245)

so that the lines of curvature are circles. In fact, all surfaces on which the lines of
curvature form circles are incorporated in the class (5.243). These surfaces have

5 Note that we use the convention z* = — T(h" + h3).
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come to be known as Dupin cyclides. They admit the compact parametrisation

[114]
] p(c —acosacosB) + b2cosa
F= bsino(a — pcosB) )
(5.246)

a — ccosacosB bsinB(ccosa — p)

a=b+c
with curvature coordinates o and (3. The latter are not conformal since

f—i = (w) £1 (5.247)
7

ccosa —

in general. However, the transformation

- )

(5.248)
3 a—n az — p2
B-Zarctanli/a_"pltan( 2 y)]
yields
F2=F (5.249)

and hence a parametrisation in terms of the usual conformal curvature coordi-
nates x and y is obtained. By construction, the position vector 7 as given by
(5.246) and (5.248) obeys the Gauss-Weingarten equations (5.9) corresponding
to the solution (8, &1, k) on appropriate identification of certain constants.
The class of solutions of the Calapso equation associated with Dupin cyclides
is therefore given by (5.227), (5.235), corresponding to the seeds z =0 and
Z = const # 0, respectively.

The significance of the parameters a, ¢ and . is readily established. Thus,
the curves B = 7 and B = 0 constitute two circles on the plane Z = 0. These
are given by

X+ +Y = (axpn) (5.250)

The two circles intersect if ¢ > p2. A corresponding cyclide is displayed in
Figure 5.7. In the case ¢? = p2, touching circles are obtained. A typical cyclide
is depicted in Figure 5.8. If ¢? < w2, then the smaller circle is enclosed by the
larger one and the associated cyclide may be regarded as a deformed torus
(Figure 5.9). Indeed, the Dupin cyclide degenerates to a torus as ¢ — 0. In this
case, the two circles are concentric (Figure 5.10).



5.8 Particular Isothermic Surfaces 201

Figure 5.7. A Dupin cyclide for ¢ > p2.

A particular parametrisation of a sphere is obtained in the limit

a=¢ex, B=€y, a=2+¢€% c=2 pn=0 €—>0, (5251)

namely
1
4
F=———|*x| (5.252)
1+x2+y y

Accordingly, the Christoffel transform £*, which is obtained by integration of
the expressions

e Tr o, r
=z K= —F—i, (5.253)
x y

constitutes a minimal surface. Indeed, these relations yield

3y% — 3x?
P =—| 3x+3xy*-x3 (5.254)
—3y —3yx2 +y?

Figure 5.8. A Dupin cyclide for ¢? = 2.
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Figure 5.9. A Dupin cyclide for ¢ < p2.

so that 7 parametrises the classical Enneper surface (cf. Section 5.1,
Exercise 1). The latter is displayed in Figure 5.11. Moreover, since we have
identified the Bicklund transform ¥ with the Christoffel transform T*, the
Enneper surface constitutes a particular seed surface X corresponding to the
zero-solution of the Calapso equation. In fact, the solution of the isothermic
system associated with the sphere (5.252) is

. A
T l4x24)?

- - 2

so that the solution of the Calapso equation reads

(5.256)

Up to the invariance (x, y, 7) = (x/+/2, y/+/2, +/2 %) of the Calapso equation,
this is nothing but the particular Bicklund transform (5.229) generated from

Figure 5.10. A Dupin cyclide for ¢ = 0 (torus).
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Figure 5.11. The Enneper surface.

the seed solution z = 0.

Exercises

1. Show that if u=u(x, y,?), p=p(x,y,t) is a solution of the Davey-
Stewartson III equation (5.69), then

i = ST pt,y+vt,t), p=px+p,y+vti)

constitutes a two-parameter family of solutions of the Davey-Stewartson III
equation.

2. Derive the bilinear form (5.238) of the Calapso system and find all solutions
of the form (5.240).

3. Verify that the lines of curvature associated with the class (5.243) are indeed
circles.

4. Derive the representation (5.250) and verify that the two circles intersect iff
c? > w2, Show that the points of intersection are given by

b
x=2u v= £/ — 2,
c
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General Aspects of Soliton Surfaces. Role of Gauge
and Reciprocal Transformations

It was in 1973 that the fundamental AKNS spectral system was set down [1].
This linear representation for a wide class of soliton equations yields up via
compatibility conditions, in particular, the canonical sine-Gordon, mKdV, KdV
and NLS equations. Hard upon this work, in 1976, came that of Lund and
Regge [240] and Pohlmeyer [285], which established a connection between the
geometry of privileged classes of surfaces and soliton theory. Thus, what is
now known as the Pohlmeyer-Lund-Regge solitonic system was generated via
a Gauss-Mainardi-Codazzi system, with the corresponding Gauss-Weingarten
equations viewed as a 3 x 3 linear representation. Moreover, Lund and Regge
adopted a spinor formulation to make direct connection with 2 x 2 representa-
tions as embodied in the AKNS system.

The next major development in the geometry of soliton theory came in 1982
with the pioneering work of Sym [353] when he introduced the notion of soliton
surfaces. Thus, the soliton surfaces associated with the sine-Gordon and NLS
equations are, in turn, the pseudospherical and Hasimoto surfaces. In general,
the one-parameter class of soliton surfaces X : r = r(u, v) associated with a par-
ticular solution of a solitonic equation is obtained by insertion of that solution
into the relevant Gauss-Weingarten equations and integration thereof to deter-
mine the position vector r. However, this direct integration approach may be
circumvented by an ingenious method described in [356]. This Sym-Tafel pro-
cedure depends crucially on the presence of a ‘spectral parameter’ in the linear
representation for the soliton equation in question. It will be described here for
a broad subclass of soliton equations generated by the AKNS spectral system.

The position vectors of soliton surfaces may be interpreted as solutions of
‘eigenfunction equations’, which are themselves integrable [206]. This result is
established for the NLS hierarchy here generated via the action of a recursion
operator. An associated solitonic hierarchy is constructed thereby which has
base member the celebrated Heisenberg spin equation.

204
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The soliton surfaces associated with the NLS hierarchy have the geometric
property that they are swept out by the motion of what are termed loop solitons
[376]. This is revealed by suitable parametrisation of the soliton surfaces in
terms of coordinates introduced via reciprocal transformations. It is recalled
that reciprocal transformations originated in the study of important invariance
properties in gasdynamics (vide [311]). Here, by contrast, we describe the role
of such transformations in soliton theory and, in particular, in the link between
the Dym, mKdV and KdV hierarchies. A permutability theorem is set down
for the potential KdV equation and connection made with the e-algorithm that
arises in numerical analysis. The geometry underlying the generation of the
mKdV hierarchy by the planar motion of curves is then described.

To conclude, the purely binormal motion of inextensible curves of constant
curvature or torsion is shown to lead to extended versions of the Dym and sine-
Gordon equations, respectively. The soliton surfaces generated via the motion
of these curves admit dual soliton surfaces and Backlund transformations with
the constant length property.

6.1 The AKNS 2 X 2 Spectral System
6.1.1 The Position Vector of Pseudospherical Surfaces

Here, we return to the fundamental forms (1.24) associated with pseudospheri-
cal surfaces given in terms of asymptotic coordinates. A spectral parameter A
is injected therein via the invariance (2.31). For simplicity, it is assumed that
p = 1 so that the Gaussian curvature is £ = —1. The associated AKNS repre-
sentation as generated by the Gauss-Weingarten equations takes the form (2.32),
namely

d,=8.P pn=12 6.1)
with

)
81 = 5(‘”,1 03 + \o3),
. 6.2)
g2 = 2—;\-(sinm 01 — COS W T3).
Here, the notation , = 3/3x*, p = 1,2 has been adopted where x! =u, x2=v
and the tilde has been dropped for notational convenience. The o; designate
the Pauli matrices as given in (2.25). The correspondence ¢; = 3 < Ly, as
l
introduced in Section 2.2, may now be used to obtain an alternative 3 x 3 linear
representation in terms of the matrices L;. Thus, the matrices g, admits the
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[5]
gP- =gp.'e’ e = e |, (6.3)
()

8ul
8p3

are determined via (6.2) by the decomposition (6.3) involving the matrix-valued
scalar product

Pauli decomposition

where the vectors

gu-€=guer + guaer + guses. 6.5)
The identification e¢; <> L now produces the so(3) analogue of (6.1), namely

d, =, L), (6.6)

Ly
L=(h . 6.7)
L;

The connection between the so(3) linear representation and the unit triad for-
malism associated with the Gauss-Weingarten equations has been described in
Section 2.2. The key observation here is that only knowledge of the matrices
8y is necessary for the calculation of the fundamental forms I, II. Thus, from
(6.2),

where

gy = %0’3, L\ = #(Sinwm — COS @ 03) (6.8)

with , = 3/d\, whence it follows that
—2Tr(gu,\ 8v\)dx"dx"|\=1 = du® + 2cos o dudv + dv?. 6.9)

In the above, Einstein’s summation convention has again been adopted and ‘Tr’
designates the trace of a matrix.

Comparison of (1.24) and (6.9) now shows that the 1 fundamental form
associated with pseudospherical surfaces in asymptotic coordinates may be
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written as
= —2Tr(gux gv\)dx*dx" =1 (6.10)
or, equivalently, as
I[= (g, &)\ )dx"dx"\=1 6.11)
in terms of the vectors g,,. i
On the other hand, if r = (X(u, v), Y(u, v), Z(u, v))" is the generic position
vector of a surface X then, in terms of the matrix
r=Xe1+}(’e2+Ze3=r-e, 6.12)
the 1% fundamental form (1.2); may be written as
= =2Tx(r,,.r,,)dx"dx" |\=1 6.13)
where, again, , denotes 3/3x*, w =1, 2.Itis noted.that
—2Tr(eier) = dix. 6.14)

Since the trace of matrices is invariant under a similarity transformation,
comparison of (6.10) and (6.13) suggests the ansatz

rw=G1g.\G, (6.15)

where the gauge matrix G remains to be determined. On use of the integrability
condition for the AKNS system (6.1), namely the ‘Gauss-Mainardi-Codazzi’
equations

g12 — 821 + (81, £21=0, (6.16)

the compatibility condition r ; ; = r 1 applied to (6.15) produces the commu-
tator relation

[G1G™" — g1, g2A] = [G.2G™! — g2, g1al. (6.17)
The latter is identically satisfied by the choice
G=9, (6.18)

where @ is the 2 x 2 eigenfunction matrix in the AKNS representation (6.1).
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On insertion of (6.18) into (6.15), it remains to integrate the equations
r,=0""g.\®, n=12, (6.19)

which are now guaranteed to be compatible. But, modulo (6.16) so that ® »,, =
 , , it is seen that

@'y, =71, b7, + D7D,

(6.20)
=—07lg, ® )\ + P71 (gD + 8, P2) = D750,
and the relation (6.19) yields
T = (@710 ) (6.21)
Integration of (6.21) produces the key Sym-Tafel relation [356]
r=o7 o, (6.22)

up to a translation in space. The generic position vector r of the soliton surface
is now retrieved via the decomposition (6.12), that is

r=-2Tr(re) = iTr(d~ ' ® \0). (6.23)

It has been established that the position vector r given by (6.23) leads to the
1% fundamental form corresponding to pseudospherical surfaces in asymptotic
coordinates. It remains to show that the 2" fundamental form associated with
this r is also that for such pseudospherical surfaces. To this end, it is convenient
to express the 2™ fundamental form

II = hy,dx*dx® = (rp - N)dxVdx® (6.24)

in terms of the ‘position matrix’ . In this connection, it can be shown that

1
h“w = —m Tr([r,l, r‘2]r,,,,,,,). (6.25)

and use of r,,, as given by (6.19) together with the relation

(@ g ®)y = M gpwr + [gun, &P (6.26)

1 Soliton immersions and generalisations of the Sym-Tafel formula to surfaces on Lie groups and
Lie algebras have been the subject of recent research [84,110,138, 139,208].
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produces

Il = hy,dx*dx",

A T 6.27)
w = —m t([g1n, 82018 v + [8us 86]))-
On insertion of the expressions (6.2) for g, into (6.27), we obtain
hyvdx*dx®|\=1 = 2 sin w dudv, (6.28)

whence the 2™ fundamental form (1.24), for pseudospherical surfaces with
K= —1/p*= —1 is retrieved. Accordingly, it has been established that the
position vector r as given by (6.23) does indeed deliver pseudospherical sur-
faces expressed in asymptotic coordinates. It is important to note that the po-
sition vector r may now be calculated via a derivative of the eigenfunction ®
with respect to the parameter A rather than by direct integration of the Gauss-
Weingarten equations with respect to the asymptotic coordinates 4 and v. This
result and its extensions prove to be of great utility in the construction of soliton
surfaces.

6.1.2 The su(2) Linear Representation and Its Associated Soliton
Surfaces. The AKNS Caser = —g

In the preceding, the derivation of the expressions (6.10) and (6.27) for the
fundamental forms I and II, as well as (6.23) for the position vector r for the
associated pseudospherical surface, was motivated by the AKNS representation
(6.1), (6.2) for the classical sine-Gordon equation. However, it is evident that
the derivation of the formulae (6.10) and (6.27) for I and II is valid for any
matrices g, € su(2) subject only to the compatibility condition (6.16) which
enshrines the underlying nonlinear equations. It is noted that no knowledge of
the eigenfunction matrix & is required in the calculation of I and II. The non-
linear condition (6.16) guarantees the existence of  satisfying the AKNS linear
matrix system (6.1). This eigenfunction matrix ¢ may then be used to calculate,
via the expression (6.23), the position vector r of the surface associated with I
and II. This more general result is encapsulated in the following:

Theorem 19. Let the matrices g, € su(2), u = 1, 2 depend parametrically on
a real parameter \ and obey the nonlinear equations

81,2 — &1+ [g1, 821 =0. (6.29)
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Then there exists a matrix-valued function © € SU(2) satisfying the linear
equations

b, =g.P (6.30)
Moreover, the vector-valued function r given implicitly by
r=re=o"10, (6.31)

defines a surface in R® whose fundamental forms read

I'=—2Tr(gyx gva) dx" dx”,
1

= _m Tr([g1n, 8221(8u.vx + [gr, 8 1)) dxH dx™.
1A 822

(6.32)

By construction, the Mainardi-Codazzi and Gauss equations are satisfied
modulo the nonlinear compatibility condition (6.29). It has been pointed out by
Sym [356] that the Euclidean space R? may be identified with the vector space
spanned by the Lie algebra su(2) = so(3) and the 1% fundamental form (6.32),
is induced by the corresponding Killing-Cartan metric. This observation may
be exploited to generalise Theorem 19 to m x m linear problems associated
with semi-simple Lie algebras. In particular, if the underlying structure is the
Lie algebra 51(2) = so(2, 1) then the corresponding surfaces are embedded in a
2+1-dimensional Minkowski space. Indeed, soliton surfaces associated with
the KdV equation and Ernst equation of general relativity arise in a Minkowski
space context [353, 358]. Here, in the main, we confine ourselves to the classical
geometry of a three-dimensional Euclidean space R3.

It is natural to enquire as to what class of equations is represented by the
nonlinear matrix condition (6.29). In this connection, it is observed that the
linear su(2) representations of the sine-Gordon equation and the compatible
mKdV equation, namely (2.32), together with the linear su(2) representation
(4.87) for the NLS equation, share the property that their ‘spatial’ parts are of

the form
_1[/0 ¢ ~ (1 O
<Dx——2-[(r 0)+l)\(0 _1)] b, (6.33)

where r = —q. This so-called scattering problem has been used by Ablowitz
etal. [2] to derive a broad class of solitonic equations, which are amenable to the
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Inverse Scattering Transform. The latter constitutes an extension of the classi-
cal Fourier transform method which allows the solution of certain initial value
problems for 1+1-dimensional soliton equations [3]. The canonical members
of the integrable system are the sine-Gordon (r = —¢q), KdV (r = —1), mKdV
(r ==+ ¢g) and NLS (r = £4) equations. The method of derivation of this cele-
brated AKNS system involves supplementing the scattering problem (6.33) by
an appropriate time evolution in ¢ to obtain nonlinear equations for r and ¢
via compatibility. Here, we restrict our attention to the case r = —g associated
with the su(2) Lie algebra.
Let the time evolution

_17iA0)  BOY
b= 2(—B(x) —iA()\)) ® €39

be adjoined to (6.33) where A, B are real and complex-valued polynomials,
respectively, of degree N in the real spectral parameter N. Compatibility of
(6.33) and (6.34) produces the nonlinear equations

gt — B, —igA+i\B =0,

- (6.35)
24, +iGB —qB) =0.
Expansion of A and B according to
N N
A=) AN, B=) B (6.36)
k=0 k=0
immediately yields
By_1=qAy, Byn=0, Ay =AnN(), (6.37)
together with the recursion relations
q: — Box - iqu = 0,
2Akx + i(GBx — qBy) =0, k=0,...,.N—-1 (6.38)
Biy1x —iBy +igAge =0, k=0,...,N-2.
Now, on integration of (6.38),, we obtain
24y = —id;'(gBx —qBy), k=0,...,N-—1 (6.39)

and insertion into (6.38); produces the vector recurrence relations

By Bk+l>
=L\ 5 , k=0,...,N—=2, 6.40
<Bk) (Bk+1 €40
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where
—-3, — Lga-15 Llag-1
L=i( LA ) 6.41)
—349;°4 9 +339;°q

The matrix-valued operator L is termed a recursion operator for reasons to
become apparent later. The recurrence relations (6.40) subject to the condition
(6.37); determine the coefficients By uniquely according to

(’f"):ANLN-k-l (‘Z), k=0,...,N=2. (6.42)
By q

The remaining equation (6.38);, together with its complex conjugate, produces
a vector evolution equation for g and g only, viz.

( ‘Z) =iANL”(‘Z). (6.43)
-3), g

The system (6.43) generates an NLS hierarchy. Repeated action of the re-
cursion operator L on the time-independent part of the NLS equation produces
the nonlinear integrable equations of order N determined by (6.43). It is re-
markable that at each step of this procedure (6.43) produces only differen-
tial equations even though L constitutes an integro-differential operator. For
N =2, Ay = —1, the system (6.43) generates the NLS equation

. 1
i9; + gxx + 7la’g =0. (6.44)
The members of the NLS hierarchy (6.43) are mutually compatible. Thus,
if we regard the eigenfunction @ as a function of an infinite number of ‘times’
ti=x,hb,t,...,thatis

D =9(,10,t4,...), (645)

then the ‘temporal’ evolutions

1/ iA™®» B®
o, = 5(_3(,,) _iA(n))cp, n=273,... (6.46)
with
n n
AP =AM, B® =3 BN (6.47)

k=0 k=0
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may be adjoined to the ‘spatial part’ of the linear representation for the canonical
NLS equation, namely

1/in ¢
P, = -(_q —i)\) . (6.48)

Accordingly, the compatibility conditions
Dy, = Py, (6.49)
produce
B® =gA®, B™W =0, A™ =AY (6.50)
together with the recurrence relations

- B —igAy’ =0,
2A"" + z(qB,ﬁ"’ gB") =0, &

0,...,n~—1 6.51)

B®, —iBM +igA?, =0, k=0,...,n—2.

By construction, the relations (6.50), (6.51) coincide with (6.37), (6.38) for
N =n =2,3,... and hence generate the higher order members of the NLS
hierarchy. It is noted that (6.48) together with the time evolution (6.46) with
n =2, A® = —1 and the identification t, = ¢ produces the usual AKNS linear
representation for the NLS equation (6.44).

If we now set

K.lg, 3l = (-1)y"+hiL" (z) AP = (1! (6.52)

then it may be demonstrated that, modulo the NLS hierarchy

(_‘f ) =Kalg, 71, (6.53)
1/,
the compatibility conditions
0, Kn = 9, K (6.54)
are satisfied. This reflects the fact that the remaining compatibility conditions

D, =, (6.55)
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are also satisfied modulo the NLS hierarchy (6.53). In the terminology of soliton
theory [271], the flows K, are said to commute and the K,, are said to represent
symmetries of the canonical NLS equation (6.44). The simplest case n = 1
produces as base member the translation symmetry

dn = 4x- (6.56)

The mKdV Hierarchy

The NLS hierarchy (6.43) may be specialised to real g forodd N. This generates
the mKdV hierarchy to be considered in more detail in Section 6.3. In particular,
itis readily shown that the specialisation N = 3 with Ay = 1in (6.43) produces
the mKdV equation

3
4t + Quxx + -2-q2q, =0. (6.57)

The NLS Fundamental Forms
The AKNS linear representation with spatial part (6.48) and time evolution
(6.46) is in the su(2) form as required by Theorem 19. Thus, the NLS and
mKdV hierarchies are naturally associated with surfaces in R*. In particular,
the time evolution (6.46) for the case n = 2 with A; = —1 corresponding to
the NLS equation (6.44) reads

1 (—i)\2 + Lilg? -\ +ig: )d)

D, = = (6.58)
§ A +ige N - Lilgl

2

with #, = ¢. Insertion of the su(2) matrices g, as given by (6.48) and (6.58)
into the expressions (6.32) for the fundamental forms produces

I =dx? — d4\dxdt + (k? + 4\?) dt?,

(6.59)
II = —kdx? + 2k(T + N) dxdt + [Kez—k(T + N)?]d12,
where the usual decomposition
q = xexp(id;'1) (6.60)

has been used. The total curvature of the NLS surface accordingly adopts the
form

K= (6.61)
K

which is in agreement with (4.29).
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The fundamental forms I and II as given by (6.59) coincide with those ob-
tained in a geometric manner in Section 4.1, namely (4.26) and (4.28) boosted
by the invariance (4.80) of the N1.S equation. Consequently, the surfaces swept
out by the curve moving with 1ciocity r, = kb may be identified with the NLS
surfaces as generated by Theorem 19,

In this section, it has been established that nonlinear equations with su(2)
linear representations as underlying structure may be naturally associated with
surfaces in three-dimensional Euclidean space. Moreover, Theorem 19 may
be used to reproduce pseudospherical and Hasimoto surfaces associated, in
turn, with the sine-Gordon and NLS equations. In these cases, the coordinate
lines on the surfaces have been previously shown to be asymptotic lines or
geodesic and parallel curves. The following section is concerned with a detailed
investigation of systems of coordinates on soliton surfaces connected with gauge
and reciprocal transformations. In particular, it will be shown that certain soliton
surfaces may be regarded as being swept out by moving loop soliton curves.

Exercises

1. (a) Establish the commutator relation (6.17).
(b) Show that the components X/ of the position vector r associated with
(6.22) are given by

X =iTr(@ 'd,\0;), Jj=1,23.

(c) Use the isomorphism so(3) = su(2) to obtain the relation

a a

r-L=3&1%, (6.62)

where the SO(3) matrix & corresponding to @ under the isomorphism
is as set down in Appendix A.

(d) Use the Sym-Tafel relation (6.22) to obtain the position vector r as given
by (4.25) for the surface associated with the single soliton solution (4.23)
of the NLS equation.

2. (a) If A and B are elements of su(2), then show, using the decomposition
notation (6.12), that the associated vectors A, B satisfy the relations

(i) A-B=—2Tr(AB)
(i) |A? =4detA (6.63)
(iii) (A xB)-e=[A,B].
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(b) Prove that the unit normal to a surface NV in matrix notation takes the
form

[r,h r,2]

N=Ne=—2""""
2det'?[ry, 7]

(6.64)

Derive the expression (6.27); for &,,,. Apply the latter to obtain the 2"
fundamental form (6.28) for pseudospherical surfaces.

3. (a) Establish the relations (6.42) and (6.43).
(b) Show that, for N = 2, Ay = —1 the system (6.43) generates the NLS
equation

. 1
1q: + qxx + Elqlzq =0.

4. Use the compatibility condition (6.49) to obtain the relations (6.50), (6.51).
5. Verify that, in the case m = 1, n = 2 with the identification t; = x, 1, = ¢,
the condition (6.54) holds modulo the canonical NLS equation

(5)-()

6. (a) Rederive the expressions (6.59) for the fundamental forms I and II as-
sociated with NLS surfaces by using Theorem 19.
(b) Use the expressions (4.26) and (4.28) for I and II together with the
invariance (4.80) to obtain the fundamental forms (6.59) with
s=X.

6.2 NLS Eigenfunction Hierarchies. Geometric Properties.
The Miura Transformation

In this section, it is established that the position vector of a soliton surface
associated with the NLS hierarchy itself satisfies an integrable hierarchy, namely
the so-called potential NLS eigenfunction hierarchy. The NLS eigenfunction
hierarchy is then, in turn, shown to be generated by the action of a gauge
transformation on the AKNS linear representation for the NLS hierarchy. To
conclude, a classical representation for the curvature and torsion of a curve in
terms of its intrinsic derivatives is interpreted as a Miura transformation linking
the NLS hierarchy with its eigenfunction hierarchy.



6.2 NLS Eigenfunction Hierarchies 217

6.2.1 Soliton Surface Position Vectors as Solutions
of Eigenfunction Equations
The discovery of a link between the KAV and mKdV equations in 1968 is due
to Miura [262]. The existence of this Miura transformation reflects the fact that
the mKdV equation may be regarded as an eigenfunction equation of the KdV
equation. Thus, a standard derivation of the Miura transformation is based on
the observation that the KdV equation

Uy = Uyzy — OULy (6.65)
may be obtained as the compatibility condition for the Lax pair [228]
AN =y — s,

(6.66)
Uy = 4P, — 6ul, — 3u, .
If we express u in terms of the eigenfunction {s for A = 0, viz.
U= v, + % (6.67)

where v = ¢, /{5, then, on insertion of u into (6.66),, the mKdV equation
Ut = Ugxx — 6V, (6.68)

results. Since (6.68) encapsulates an equation for the eigenfunction V, it is
commonly termed the eigenfunction equation of the KdV equation. If v is a
solution of this mKdV equation, then u as given by the Miura transformation
(6.67) satisfies the KAV equation (6.65).

The Miura transformation may be exploited to generate a hierarchy of con-
servation laws for the KdV equation. Extensions of Miura-type transformations
together with their interpretation as the inverse of gauge transformations have
been widely studied [15, 16,280]. On the other hand, general aspects of the
integrability properties of eigenfunction equations associated with solitonic
equations have been investigated by Konopelchenko [206].

Here, we are concerned with a geometric interpretation of Miura-type trans-
formations in the context of the NLS hierarchy (6.43). The starting point is the
elimination of the function g from the linear representation (6.33), (6.34) to ob-
tain a nonlinear equation for a quantity which depends on the eigenfunction ®
alone. As in the derivation of the classical Miura transformation, we set A = 0
and use the abbreviation &g = P|\—_¢. It proves convenient to introduce the
matrices

- ~1f Ax —iB
S =@, 10’3(130, Vi = d)ol(iBI; —A:) {02 (6.69)
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fork =0, ..., N, where it is noted that

s2=1, st=s, (6.70)
since &} @) = 1, i.e., o € SU(2) and
Vv = An(D)S. (6.71)

Here, ST designates complex transposition of S, that is if §=(S; ;) then
St=(S;).

Recursion relations for the matrices V; may now be obtained in the following
manner. Relation (6.69), yields

a1 Ary —iByx l Ay —iBy 0 g¢g
Ve =g [(in, A ) T2 \iBe —a )=z 0)]]®

0 B
-1 k—1
=; (_H . )cbo, k=1,...,N-1

(6.72)

by virtue of the scattering problem (6.33) and the recursion relations (6.38).
The right-hand side of (6.72) expressed in terms of Vi_; now produces

1
V-1 =—iSka+§Tr(SVk._1)S, k=1,...,N—-1 (6.73)

and the traces of (6.73) and (6.73) multiplied by S, yield, in turn,

Tr(SVie) =0
Tr(Sx Vim1) = —iTr(Sx S Vix) = i Tr(SSx Vix). 674
Accordingly,
[Te(SVi-1)1, = i Tr(SSx Vi), k=2,...,N—-1 (6.75)
from which we conclude that
Vi1 = RV, (6.76)
where the linear operator R is defined by
R=—iS [zxr - %a;’ Tr(SS:0x - )}. (6.77)

On the other hand, the definition (6.69); of S delivers the conservation law

(0 B
S, = q>0‘( B, 00) ®p = Vi, (6.78)
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where, by virtue of (6.76),

Vi = RN"'vy = RN TAN()S. (6.79)
Thus, we obtain a nonlinear matrix equation for S, namely
S = An(RYT'S), . (6.80)

By construction, the constituent equations of the latter system are the eigen-
function equations of members of the NLS hierarchy (6.43). Hence, (6.80) is
termed the NLS eigenfunction hierarchy. The first two members with (A, = —1,
A3 = 1) adopt the form

iS; + (SSx)x =0,
3 (6.81)
Sl + Sxxx + E(ssz)x =0.

An alternative representation of (6.81) may be given in terms of the vector
notation

§=S-0, $*=1, (6.82)
which produces the vector equations

S:+S xS, =0,
3 (6.83)
St +Sxxx + ‘i(sis)x =0.

In the previous section, it was established that the ‘soliton surfaces’ associated
with the NLS equation via Theorem 19 may be identified with the Hasimoto
surfaces generated by the evolution of a curve with r, = kb. The tangent vector
t to such a curve obeys the Heisenberg spin equation (4.38). Since the latter
coincides, up to a sign, with the base NLS eigenfunction equation (6.83),, it
is natural to enquire as to the relation between S and the position vector r. To
determine this connection, we introduce the notation ry = r|\~o and derive from
the definition of the position matrix (6.31) the relations

1 1,
Tox = EIS, ot = Ele. (684)
Hence, the position matrix is nothing but a potential associated with the conser-
vation law (6.78). According to the decomposition (6.31) the relations (6.84)
become, in vector notation
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where
Vi=V; 0. (6.86)
The relation (6.85); establishes the following important result:

Theorem 20. The position vector ry of the soliton surface associated with the
NLS hierarchy (6.43) satisfies the potential NLS eigenfunction hierarchy.

The first two members of the potential NLS eigenfunction hierarchy are

ror = rox X roxx,

(6.87)

2
—For = Foxxx + ErOerOX

subject to the constraint rq, - ro, = 1.

6.2.2 The Serret-Frenet Equations and the NLS Hierarchy

In geometric terms, the relation (6.85); shows that —S is the tangent vector to
the coordinate lines ¢ = const on the surface with the position vector rg. This
result may be tied in with the {¢, n, b} formalism introduced to derive the NLS
equation via a binormal motion in Section 4.1. Thus, on use of Appendix A,
if dg is a solution of the scattering problem (6.33) at A = 0, then the SO(3)
matrix

A
$o= | B | = (-2Tr(05 ei®oe;)); ;55 (6.88)
C
obeys the linear equation
A 0 0 —KCOS O A
B| = 0 0 ksino B, (6.89)
cJ, Kcosg —ksina 0 C

where we have introduced the orthonormal triad {4, B, C} consisting of the
row vectors of &g and

= k exp(io). (6.90)
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On application of the rotation

A 0 0 -1 A
B | =| —coso sinoc 0 B |, (6.91)
c/ sinoc coso O C

where o, = T, we recover the usual Serret-Frenet relations if we identify the
orthonormal triads {¢, n, b} = {A’, B’, C'} and take x as arc length. Compari-
son of the definition (6.69); of S and the transformation (6.88) confirms that
C=S8=-t

Itis remarked that the NLS eigenfunction hierarchy (6.80)y=1,»,... may also be
obtained via a gauge transformation applied to the AKNS linear representation
(6.33), (6.34) for the NLS hierarchy. In this connection, a new eigenfunction
matrix ¢’ is introduced via the gauge transformation

¢ = 9y (6.92)

which takes (6.33), (6.34) to
(D/ _ 1- (D/ ’ 1- ul k / 6
= Ez)\S , O, = El él NV, (6.93)

Consequently, the NLS eigenfunction hierarchy (6.80) may be generated as
the compatibility condition for the linear representation (6.93). It is noted that,
since the gauge matrix @y does not depend on the spectral parameter \, the
position vector is unchanged by the gauge transformation (6.92), that is

r=0"10, =070, =1, (6.94)

Hence, Theorem 19 applied to the linear representation (6.93) leads to the same
fundamental forms I and II, but now parametrised in terms of S rather than q.
In fact, on use of the Serret-Frenet relations, it is easily verified that

Sx ) (S X sxx)

& (6.95)

K=|S, 7=

These relations are nothing but the definition of the curvature and torsion of
curves in R3. Here, in view of the decomposition (6.60), they represent a Miura-
type transformation between the NLS hierarchy and the NLS eigenfunction
hierarchy.
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6.3 Reciprocal Transformations. Loop Solitons

Here, reciprocal transformations are introduced and their geometric importance
illustrated in connection with loop solitons and the generators of soliton sur-
faces. In the previous section, it has been seen that gauge transformations may be
exploited to give an interpretation of the position vector to a soliton surface as a
solution of an eigenfunction equation. Reciprocal transformations, by contrast,
represent a natural change of coordinate system on the soliton surface. In these
reciprocal coordinates, it will be seen that loop solitons constitute both solutions
of eigenfunction equations and generators of associated soliton surfaces. It is
recalled that looped-curve phenomena have already been encountered in the
generation of pseudospherical soliton surfaces associated with the sine-Gordon
equation. A more general discussion of loop solitons in the context of soliton
surfaces has been given by Sym [355]. Here, it will be seen that, reciprocal
transformations provide a natural parametrisation of soliton surfaces associ-
ated with the NLS hierarchy. In contrast to the gauge transformations (6.92),
a reciprocal change of coordinates transforms the coefficients {E, F, G} and
{e, f, g} of the fundamental forms I and II, but leaves invariant the surfaces
themselves. Subsequently, in Section 6.4, it will be shown that loop soliton
and Dym hierarchies are generically invariant under certain reciprocal trans-
formations. This reciprocal invariance may be used to induce auto-Bicklund
transformations in associated integrable hierarchies.

6.3.1 Reciprocal Transformations and the Loop Soliton Equation

It has been established that the position vector ry of the soliton surfaces X
associated with the NLS hierarchy is governed by the potential NLS eigenfunc-
tion hierarchy. The surfaces X were in that context parametrised in terms of
independent variables x and ¢, that is

Xl
ro=| X% | (&x,0), (6.96)
X3

where r satisfies a member of the potential NLS eigenfunction hierarchy. How-

ever, to understand the way the soliton surfaces X are generated by the motion

of loop solitons, it proves convenient to replace x as an independent variable

by one of the components X* of ry. This leads to the notion of reciprocal trans-

formations and the subsequent derivation thereby of the loop soliton equation.
Thus, use of the Pauli decomposition (6.82) together with

Vi=Vi-o (6.97)
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leads, via the conservation laws implicit in (6.85), to the relations
dX' = —Sidx — Vydt, i=1,23. (6.98)
A change of independent variables (x, t) — (X*, T) of the type
dX' = —Sidx — Vyidt, dT =dt (6.99)
or equivalently,
9, = —8;0x1, & =or — Vy0xi (6.100)

for one of i = 1,2, 3 is commonly called a reciprocal transformation [295].
In the present context of the NLS hierarchy, we select Z=X?> and T =¢ as
new independent variables. It is emphasised that such a change of variable does
not alter the corresponding soliton surface ¥. Even though the coefficients
{E, F, G} and {e, f, g} of the fundamental forms I and II are transformed, I
and II themselves are invariant.

Now, under the reciprocal transformation

dZ = —S3dx — Vi3dt, dT =dt, (6.101)

the relations (6.85) that encapsulate as integrability conditions the NLS eigen-
function hierarchy in S, become

arg S org arg
o _S o _ oy 00y Vog 6.102
3Z = 5 oT 1+ Vi 1+ 55 ( . )

By construction, the Z-components of the relations (6.102) are identically sat-
isfied. The residual X, Y-components or, equivalently, the reciprocal relations

dX =dX' = ~81dx — Viydt, dY =dX* = —S,dx — Vipdt  (6.103)

show that
X § 94X S
— ==, = ==Vi3-Vi,
3Z S oT 5 2T M 6.104)
Yy S, Yy S )
2 =22 Vis — Via,

9Z S T S

where it is recalled that

S?=52+82+8i=1. (6.105)
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Thus,

X Y
S1i=—38;, S=—3253, .
1=5-5 =205 (6.106)

axX\* [ar\?
S3 = :tl/\/; + (a—z) + ('a—Z) . (6.107)

Moreover, V; can be expressed in terms of S and derivatives of S with respect
to Z on use of (6.79) and the relation 3, = —S39z. Accordingly, the relations
(6.104) generate evolution equations for X and Y in the form

where

2—;( =f(X,Y,Xz,Yz,...), Z—; =G(X,Y,Xz,Yz,...). (6.108)
This class of nonlinear equations reciprocally associated with the NLS eigen-
function hierarchy (6.80) represents a subclass of the ‘new integrable systems’
introduced by Wadati et al. [376]. The role of composite reciprocal and gauge
transformations in linking the general AKNS and WKI systems has been de-
scribed in [316].

A geometric interpretation of the WKI subclass (6.108) is readily given.
Thus, for fixed ‘time’ T, any solution of (6.108) is associated with a curve
(X, Y, Z) in R? parametrised in terms of its Z-component. As time T evolves,
the curve sweeps out the surface % associated with the corresponding member
of the NLS hierarchy (6.43) as given by Theorem 19. Further, since (6.108)
provides evolution equations for the components of the surface vector ry of X,
any solitonic property of these nonlinear equations may be ‘seen’ on the surface.
This is best illustrated by the nonlinear equation which is reciprocally related
via the above procedure to the potential mKdV equation. In this connection, it
is recalled that the mKdV hierarchy is given by the odd members of the NLS
hierarchy for real q. Accordingly, it is consistent to assume that S is a real
matrix with the parametrisation

sin®
S= 0 . (6.109)
cos 9

Insertion into the NLS eigenfunction equation (6.83), produces the potential
mKdV equation

1
&+mm+5£=a (6.110)
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while the reciprocal relations (6.98) yield

92
dX' =dX = —sin0dx + (cose 0, + —5— sin 9) dt,
o2 (6.111)
dX?® =dZ = —cos0dx + (—sin 00,, + 7" cos 0) dt.

Under the reciprocal transformation (6.101), namely
1
dZ = —cos 0dx — (eu sin® — 593 cos 9) dt, dT =dt, (6.112)
the relations (6.104); 5 read

Xz =tan0, X7 =(sin0)zz, (6.113)

whence we obtain the loop soliton equation [376]

Xz
/ 2
1+ X7 77

The relations (6.104)3 4 yield Y = Y,, where Y; is a constant of integration.
Accordingly, the soliton surfaces associated with the mKdV equation are given
by

Xr =+ (6.114)

X(Z,T) :
r=| v |, (6.115)
z

where X =X(Z, T) is a solution of the loop soliton equation. Hence, it is
deduced that the soliton surfaces X :ro=ro(Z, T) for the parametrisation
(6.109) associated with the mKdV equation for vanishing spectral parame-
ter \ are planes. Indeed, it will be seen in Section 6.4 that the entire mKdV
hierarchy may be generated by a particular motion of a curve in the plane
(cf. Section 2.4).

6.3.2 Loop Solitons

The loop soliton equation (6.114) is so called because of the solitonic behaviour
of its loop-like solutions. The single-loop soliton solution of (6.114) is readily
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derived from the single soliton solution of the potential mKdV equation (6.110),
namely

0 = 4arctan e®*—P"/, (6.116)
Insertion of (6.116) into (6.111) and integration produces

—(2/B) sech(Bx — B31)
ro = ( 0 ),

—x +(2/B) tanh(Bx — B37)

6.117)

where constants of integration have been neglected. The corresponding solution
of the loop soliton equation (6.114) is therefore given parametrically by

X = —(2/B)secha,

(6.118)
Z = —B2T — /B + (2/B) tanh o,
where o = Bx — Bt

At T = const, the relations (6.118) determine a planar curve containing a
loop. The curve T = 0 in the X Z-plane is depicted in Figure 6.1. As T evolves,
the soliton surface (6.117) is swept out by the loop soliton curve travelling in
the negative Z-direction with speed B2. Since the ‘amplitude’ of the loop is
2/B, we note the interesting feature that the smaller loop soliton travels faster
than the larger.

Interaction properties of N-loop solitons have been investigated by Konno
and Jeffrey [180,202] via the inverse scattering transform. Reciprocal transfor-
mations have been used to obtain parametric representations of N-loop solitons
by Dmitrieva [106]. Iterated application of the Bécklund transformation at the

-3 -2 -1 0 1 2 3

Figure 6.1. A single loop soliton.
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-3 -2 -1 0 1 2 3

Figure 6.2. Loop soliton interaction.

soliton surface level has been used to construct N-loop solitons by Sym [355].
Loop soliton interaction is displayed in Figure 6.2.

It is natural to enquire as to whether loop solitons are also present in the
case of the complex NLS hierarchy. To investigate this matter, we consider the
member of the WKI system reciprocally related to the base member of the NLS
eigenfunction hierarchy, namely the Heisenberg spin equation (6.83);, given
via the conservation law

S+ xS, =0 (6.119)
and obtained as the integrability condition for the relations
Iox = —S, ros = —Vl =S sz. (6120)

On introduction of the decomposition U = X + iY, the relations (6.104), (6.105)
deliver as the member of the WKI system reciprocally associated with the
Heisenberg spin equation (6.119) the single complex equation

. Uz
Ur = IFl(—) . (6.121)
V1+1Uz1/,

The solutions U =U(Z, T) of (6.121) parametrise the soliton surface of the

NLS equation according to
RWU)
ro=| 3W) |. (6.122)

z

A solution of the WKI equation (6.121) is readily obtained corresponding to
the single soliton solution (4.23) of the NLS equation derived in Section 4.1.
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Thus, insertion into the reciprocal relations (6.98) and integration yields

2 T
_2_1)2_ secho cos[—oo + (v +13) T]
Ve + T, v

4 . [To 2 2
_msechcsm[jo—i- (v +70)T] , (6.123)

tanh o

o
— 4+ 279T —
v R Y
where § =5 — ct, 0 = €§, c = 27.

It is observed that the radial distance of the soliton surface from the Z-axis
is given by

2
Ul=vX*+Y?=— id 5secho.
Ve 4T,

0

Comparison with the loop soliton equation (6.118) shows that, at constant T,
in the (JU|, Z)-plane, the relation (6.123) delivers a parametric representation
of a loop soliton solution of the nonlinear equation (6.121). This loop soliton
curve may be tracked on the one-soliton Hasimoto surface by measuring the
radial distance of the coordinate lines 7 = const from the Z-axis.

In our preceding discussion of parametrisation of soliton surfaces, the
notions of eigenfunction equations, gauge and reciprocal transformations have
been introduced in a geometric context. It has been shown via the notion of a
reciprocal transformation how loop solitons are naturally associated with the
generation of corresponding soliton surfaces. In the next section, it is seen
that the integrable hierarchy of Dym type is invariant under a reciprocal-type
transformation.

Exercises

1. (a) Show that the first two members of the NLS eigenfunction hierarchy
(6.80) are given by (6.81).
(b) Use the vector notation (6.82) to derive the vector equations (6.83).

2. Establish the relations (6.84).
A

3. (a) Establish the linear equation (6.89) for | B
c

(b) Show that C=S.
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4. (a) Use the definition (6.69); of the matrix S and the scattering problem
(6.33) to obtain the Miura-type transformation (6.95) linking the NLS
hierarchy (6.43) and the NLS eigenfunction hierarchy (6.80).

(b) Derive the fundamental forms I and II for the Heisenberg spin equation
(6.83); via Theorem 19. Show that the Miura-type transformation (6.95)
delivers the fundamental forms (6.59) for the NLS equation.

5. Verify the expression (6.117) for the position vector ry.
6. (a) Verify that the base WKI equation (6.121) is reciprocally related to the
Heisenberg spin equation (6.119).
(b) Under what circumstances does the planar curve

o — (secho, ao + Btanh o)

contain a loop? Deduce the constraints on the parameters v and 7 in
(6.123) for the underlying solution of the nonlinear equation (6.121) to
represent a loop soliton.

6.4 The Dym, mKdV, and KdV Hierarchies. Connections

Reciprocal transformations have a long history and a wide range of applications.
Thus, in 1928, Haar [156], in a paper devoted to adjoint variational problems,
established a reciprocal-type invariance of a plane potential gasdynamic sys-
tem. A decade later, Bateman [25] introduced an associated but less restricted
class of invariant transformations that subsequently were termed reciprocal re-
lations. Application of invariance properties to approximation theory in sub-
sonic gasdynamics had been noted as early as 1939 by Tsien [367].

That the reciprocal relations of Bateman constitute a Bicklund transformation
was established in [22] via the Martin formulation of the gasdynamic equations
as a Monge-Ampere system [242]. Indeed, both the adjoint and reciprocal
relations may be shown to be induced via specialisations of an important class
of matrix Bécklund transformations, introduced in a gasdynamic context by
Loewner [237].

Invariance of nonlinear gasdynamic and magnetogasdynamic systems under
reciprocal-type transformations has been extensively studied in [286, 295-297,
304, 306, 307]. The application of reciprocal transformations to provide an-
alytic solutions to both stationary and moving boundary value problems of
practical interest, in particular, in soil mechanics and nonlinear heat conduction
has likewise been the subject of much research [56, 57, 266, 298, 299, 301, 302,
310, 315, 317]. An extensive account of reciprocal-type transformations and
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their applications in continuum mechanics is presented in a monograph by
Meirmanov et al. [258].

The importance of reciprocal transformations in the classification of so-called
hydrodynamic systems has been established in a series of papers by Ferapontov
[124-126,132]. In terms of geometry, the classification of weakly nonlinear
Hamiltonian systems of hydrodynamic type up to reciprocal transformations
has been shown to be completely equivalent to the classification of Dupin hy-
persurfaces up to Lie sphere transformations [127, 130]. Interesting connections
between the classical theory of congruences and systems of conservation laws
of the Temple class [362] invariant under reciprocal transformations have also
been discovered recently [5].

Here, it is the role of reciprocal transformations in soliton theory that will
engage our attention. In this connection, it has already been seen in the pre-
vious section how reciprocal transformations arise naturally in links between
important integrable equations such as the potential mKdV and loop soliton
equations or the Heisenberg spin equation and the base member of the WKI
system. Moreover, it has recently been shown that an integrable Camassa-Holm
equation is connected via a reciprocal transformation to the first negative flow
of the KdV hierarchy [174]. In this section, invariance of loop soliton and Dym
hierarchies under reciprocal-type transformations is established.

6.4.1 Invariance under Reciprocal Transformations. A Class of Planar
Curve Motions

In the sequel, we shall routinely call upon the following basic result [195]:
Theorem 21. The conservation law

a ]

gt-{T(a/Bx; ajat;u)} + a{F(a/ax; afat,u)} =0 (6.124)

is transformed to the associated conservation law

aT’ + aF’
at’ ax’

=0 (6.125)

via the reciprocal transformation

dx' =Tdx — Fdt, dt' =dt,

=

T'==, FF=—¢, R. (6.126)

~
~
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The reciprocal nature of the transformation (6.126) resides in the fact that
R? =id.

A general result on invariance of 1+1-dimensional evolution equations un-
der reciprocal transformations was presented in [196]. Here, we restrict our
attention to invariance of certain important soliton equations under reciprocal
transformations.

Let us consider a plane curve C which propagates in the (x, y)-plane in such
a way that

n=0,1,..., (6.127)

where v - n is the (principal) normal component of the velocity of propagation
and « is an arbitrary constant. Here, k = 8, denotes the curvature of a generic
point P on C and s denotes arc length. It is recalled that a particular such planar
motion with n = 1 has been seen to generate the mKdV equation in Section 2.4.2
In terms of the ‘Eulerian’ coordinates x and y, the curve may be parametrised
according to

C:y=Q(x,t) (6.128)

so that €2, = tan 0 and the normal n to C is given by

n= -\/—i%_§<?’;) (6.129)

However, to calculate the velocity v, it is necessary to adopt a ‘Lagrangian’ de-
scription. Thus, if the position vector r = (x, y)" to the curve C is parametrised
in terms of a Lagrangian variable o, that is r = r(a, t) or, explicitly,

x =x(a,t), y=y(o,t), (6.130)
then
ax ax
v= :; o | = ait A (6.131)
—- Q — Q
at|, *at|, +

2 Interestingly, motions with v - n = axk; arise physically in the dynamics of long front waves in a
quasi-geostrophic flow [279].
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Accordingly, the normal speed reads

Q
VR =—— (6.132)

V1+Q2

The relation (6.127) now yields

P 3n+l 0

—(tan 0)+a—|[secO—— ) =0 (6.133)
ax 9sn+l1

in terms of 8. The specialisations n =0 and n» =2 in the latter equation lead to

1+1-dimensional models of the propagation of surface grooves due to evapo-

ration-condensation and surface diffusion in heated polycrystals [58, 265,366].

In the case n = 1, (6.133) reduces to

—(tan 0)+ a (sm 0) = (6.134)

namely the loop soliton equation implicit in (6.113) on making the replacements
Z—> —x, T — t and setting a = 1.

The nonlinear evolution equation (6.133) is readily seen, on application of
Theorem 21, to be invariant under the reciprocal transformation

n+1

/ a e
dx’ =tan@dx — asec Y dr, di'=di (6.135)

0 =—-0+mw/2.
This corresponds to invariance of (6.127) under the isotherm transformation
X=Q, Q=x, t'=t. (6.136)

Isotherm transformations have been exploited in the numerical treatment of
nonlinear moving boundary problems in Crank [90].

It is recalled that the loop-soliton equation (6.134) is reciprocally linked
to the potential mKdV equation. This connection is encoded in the reciprocal
transformation

1 9
dx* =secOdx + a[— cos® 6 Of — sinf—(cos @ 9,)] dt
2 dax 6.137)

dt* =dt
with integrability condition the conservation law

3
i(sec 9) — ai[;ef cos? @ — sin §—-(cosf ex)] =0 (6.138)
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admitted by the loop soliton equation (6.134). Under the reciprocal transfor-

mation (6.137), the loop soliton equation becomes, on use of Theorem 21,

a [l
%(cos 6) + s [-2— cos 0 62 —sin @ 6,.,.:' =0.

The relation dx* = ds shows that the reciprocal variable x* is, in fact, nothing
but arc length, and we obtain

03
et‘ + a(e_\'ss + 7:) = 0, (6139)

namely the potential mKdV equation. The curvature k = 6, evolves according
to the mKdV equation

3
K + a(Km + §K2K5> =0. (6.140)

6.4.2 The Dym, mKdV, and KdV Hierarchies

Invariance of the Dym equation
P =p" (P s (6.141)
under the reciprocal transformation

dx' = p2dx + 2(p~V),,dt, dt' =dt,
(6.142)

! -1

pi=p

was originally noted in [316] in the context of the connection between the AKNS
and WKI integrable systems. Indeed, it was subsequently shown in [308] that,
more generally, the Dym hierarchy as set down in Calogero and Degasperis [65],
namely

pr=p N(=D’rIr)'pp;, n=1,2,..., (6.143)

where the operators D and I are defined by

D=, Id:= f m¢(a, )do (6.144)

and r = 1/p, is invariant under the reciprocal transformation

dx' = p2dx — 2p~'€,_1)ezdt, dt' =dt
R, (6.145)

i -1

p'=p
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where
o
, =_/’ 07 o Eut)yyydy, Eo=1, n=12,.... (6.146)
x

The reciprocal invariance of the Dym equation and its hierarchy has been ex-
ploited by Dmitrieva [105,106] to construct both N-gap and N-loop solu-
tions. Ibragimov [177] demonstrated via Lie-Bécklund arguments that the Dym
equation (6.141) is but another avatar of the celebrated KdV equation. This re-
sult may be readily established in the more general context of the Dym and KdV
hierarchies by a combination of reciprocal and gauge transformations. Thus,
under the reciprocal transformation

di = pdx — E,dt, dif =dt,
1 R, (6.147)
p=-
p
the Dym hierarchy (6.143) is taken to the so-called Krichever-Novikov hierarchy
in $(%, ) where p = ;. The above invariance of the Dym hierarchy induces
invariance under ¢z — 1/¢; of the Krichever-Novikov hierarchy. The latter
arises naturally out of the application of the WTC expansion procedure.>
The substitution

v=(p""2),/6""2, (6.148)
into the Krichever-Novikov hierarchy generates the mKdV hierarchy
vr = M"vg, n=12,..., (6.149)

where

9 2 00
M= — — 4 +4u; f u(y, 7). dy (6.150)
ax 2 3
as obtained via the specialisation of the NLS hierarchy for odd N in the previous
section.
The alternative substitution

u=(p~12) /5! (6.151)

3 The Weiss-Tabor-Camavale (WTC) procedure represents an important version of the Painlevé
integrability test based on a series expansion about the singularity manifold S: ¢ = &(%, 7). A
survey of this method is given by Tabor in [357].
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into the Krichever-Novikov hierarchy produces the KdV hierarchy

u; = K"usz, n=12,..., (6.152)
where
32 00
K:=— —4u +2ug/ -dy. (6.153)
6x2 3

It is seen that the relations (6.148) and (6.151) combine to produce the Miura
transformation

U= vz + 0, (6.154)

which links the mKdV and KdV hierarchies. The relation (6.151) shows that
p /2 plays the role of the eigenfunction at A = 0 in the linear problem (6.66);
for the KdV hierarchy.

The invariance of the Dym hierarchy (6.143) under the reciprocal transfor-
mation (6.145) when taken together with the relations (6.147), (6.148) induces
the simple symmetry v — —v in the mKdV hierarchy. This, in turn, together
with the Miura transformation (6.154) and the invariance of the KdV hierarchy

under the Galilean transformation
u'=u+%, xX'=x-3Bt, t'=t (6.155)
induces the spatial part of the auto-Bécklund transformation generic to the KAV
hierarchy. This is given by
Bg: (AT4+A ), =8- %[A* - AP, (6.i56)

where u* = —A¥ are the solutions of the KdV hierarchy corresponding to

solutions v of the linked mKdV hierarchy. Thus, as in the case of the classical
sine-Gordon equation, a Lie symmetry is used to inject a parameter 3 into the
Bicklund transformation.

6.4.3 A Permutability Theorem

Here, a permutability theorem is established via (6.156) for the potential KdV
equation. This is embodied in the following:

Theorem 22. Let Ag be a seed solution of the potential KdV equation

At = Agrx —3A2 (6.157)
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and Ay, A3 be the Bicklund transforms of Ag via Bg, and Bg, so that Ay =
Bg,(Ao) and Ay =Bg,(Ag), where By designates the spatial part of the
Bicklund transformation as given by (6.156). Then, a new solution of the po-
tential KdV equation is given by

A = Ao+ 2(B1 — B2)/(A1 — Ay), (6.158)

where A = A3 = A, in the notation Ay = BBZ(AI)’ Ay = Bﬂl(A2)-

The above result is readily established. Thus, the Bécklund transformation
Bg yields

1
Aox+Ayx=P1— '2-(1\0 — A1),

1
Aox+ Agx = B2 — E(Ao — A)%,

; (6.159)
Arx+ Agx = B2 — E(A’ - A,

1
Aoz + A1y =B — 5(1\2 - Ax)%.
If we now postulate the existence of A with
Ap=Azn=A

then the operations (6.159),—(6.159), and (6.159);—(6.159),4 produce, in turn,
the relations

1

(A1 = A2 =B1— B2+ ‘2‘(A1 — A2)R2Ag — Ay — Ay),
1

(A1 —A2)y =B2—B1+ E(Az — AD(A1 + Az = 2A).

Subtraction now produces the nonlinear superposition principle as set down
in Theorem 22. It is readily verified that the Béicklund relations (6.159); 4 are
indeed satisfied with A1, = A; = A as given by (6.158), modulo the Bécklund
relations (6.159);,2.

The permutability theorem (6.158) has been used to construct multi-soliton
solutions of the KdV equation by Wahlquist and Estabrook [377]. Grammaticos
et al. [153] have recently observed that a version of the KdV permutability
theorem also makes a remarkable appearance in numerical analysis. Thus, the
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.
TN
k/

Figure 6.3. A Bianchi diagram associated with the €-algorithm.

so-called e-algorithm as described by Brezinski [55] adopts the form

1
ot =xt g (6.160)

k
xn+1 — Xp-1

where x, denotes a member of a sequence and x* denotes its kth iteration in
an expansion. Herein, the initial data are the x! with the x? set to be zero. It is
seen that (6.160) is, ‘mutatis mutandis’, nothing but a version of the nonlinear
superposition principle (6.158) for the potential KdV equation. Therein, the
Bicklund parameters 31, 32 are chosen so that 3; — B, = 1/2. Thus, the algo-
rithm (6.160) is equivalent to the permutability theorem encoded in the Bianchi
diagram as set down in Figure 6.3. Here, the action of B is to augment the
lower index by 1, while the action of B~ is to decrease the lower index by 1.
The upper index corresponds to the level of the iteration.

The above novel aspect of the permutability theorem foreshadows a key role
played by Bicklund transformations and their associated nonlinear superposi-
tion principles in integrable discretisation (see [45, 205, 229, 230, 272-274,
291, 325, 327, 331]).

6.4.4 A Geometric Derivation of the mKdV Hierarchy

It has been seen that the mKdV equation may be derived in a purely geometric
manner via a particular motion of a curve in the plane. This result is here
extended to the mKdV hierarchy as follows:

Theorem 23. If a curve C .y = A(x, t) moves in the xy-plane in such a way
that

v-n= Mk, (6.161)
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where M is the mKdV integro-differential operator

32 00
M:=E+K2—Ks‘/‘ K -ds, (6.162)

then the curvature k of the curve C evolves according to the nth member of the
mKdV hierarchy, namely

K+ M"k; = 0. (6.163)

Thus, the condition (6.161) yields

—A/\J1+ A2 =Mk, (6.164)
whence, since A, = tan#,
32 [es)
[ﬁ +k? - K,f K~ds](A, cos ) = —M"k,. (6.165)
s s

To show that (6.165) is equivalent to the mKdV hierarchy (6.163), it proves
convenient to introduce a generalisation of the reciprocal transformation (6.137)
which links the loop soliton equation and the mKdV equation. Thus, (6.164)
yields

] 3
—(tan 0) + —(sec  M™ ;) = 0, (6.166)
at dox
whence
a a [* . 9 -1
—(secB) — — sin®—(secOM" 'k;)dx = 0. (6.167)
at ax J, ax
Under the reciprocal transformation

©° 3

. . g n—1
dx _secedx+(/; sin 8 ——(sec O M K:)dx> 9 (6.168)
dr* =dt,

it is seen that, since dx* = ds,

] * d ]
=—-(/ Ax,sinedx)—+——
x < ds ot

at
Use of (6.169) in the relation (6.165) leads to the mKdV hierarchy (6.163). The
integrable hierarchy (6.166) contains the loop soliton equation (6.114) as its
base member. Its invariance properties were discussed in [309].

(6.169)

5
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Reciprocal transformations have other applications in 14-1-dimensional soli-
ton theory. Thus, novel integrable systems analogous to the Dym hierarchy may
be constructed which are related by acombination of reciprocal and gauge trans-
formations to the Caudrey-Dodd-Gibbon and Kaup-Kuperschmidt integrable
hierarchies [303, 382].

In terms of physical applications, it has been shown by Kadanoff [187] that a
version of the Dym equation arises in an analysis of the Saffman-Taylor problem
with surface tension. On the other hand, Camassa and Holm [67], in a study of
a dispersive shallow water system, have derived the equation

1
Nk
akin to the Dym equation (6.141). This itself represents the base member of an
integrable hierarchy with interesting geometric properties [7,8]. The geometry
of yet another extension of the Dym-type equation (6.170) is the subject of the
following section.

In [280], it has been shown that reciprocal transformations may also be con-
structed for certain 2+ 1-dimensional integrable systems. These were used to
link the modified Kadomtsev-Petviashvili (mKP) and Kadomtsev-Petviashvili
(KP) hierarchies with a 2+1-dimensional Dym hierarchy. Invariance of the
latter under reciprocal-type transformations was established. Multi-soliton so-
lutions of the 2+ 1-dimensional Dym equation have been derived via reciprocal
transformations by Dmitrieva and Khlabystova [107].

e =—(8; — 32) (6.170)

Exercises

1. (a) Establish the connection between the conservation laws (6.124) and
(6.125) via the reciprocal transformation R.
(b) Show that R? = id.

2. Show that the system of nonlinear evolution equations (6.133) is invariant
under the reciprocal transformation (6.135).

3. Use the permutability theorem to construct the two-soliton solution of the
KdV equation.

4. Show that the hierarchy (6.166) is invariant under the reciprocal
transformation

dx' =tan0dx — sec® M" lk, dt, dt =dt,

(6.171)
9’ = —0 +m/2.

5. (a) Use a reciprocal transformation to link equation (6.170) to the



240 6 General Aspects of Soliton Surfaces

integrable equation [137]

3
83 — Ee”’e,-r =0 (6.172)

X

N —

07 + Bzzx —

in reciprocal variables ¥, 7.
(b) Show that the class of equations

1
& + Pexx + —2-d>3 + 6D%(b)db, = O, (6.173)

with
"+ =0, (6.174)

is connected to the potential mKdV equation (6.110) via the transforma-
tion

0 = dbe — 2. (6.175)

6. Use the reciprocal relation (6.168) to show that the evolution (6.164) pro-
duces the mKdV hierarchy (6.163).

6.5 The Binormal Motion of Curves of Constant Curvature.
Extended Dym Surfaces

Here, we return to the geometric formulation introduced in Chapter 4 in con-
nection with the NLS equation as generated by the binormal motion of a curve
travelling with velocity v = kb. This representation will be exploited here to
derive a novel solitonic equation associated with the purely binormal motion
of a curve of constant curvature [339].

Let us examine the implications of purely binormal motion. If a curve C
moving in space has generic position vector r = r(ag, t), where time ¢ and the
parameter ¢ are independent, then the arc length of C in its configuration at
constant time is given by

o
s(o, t) = / Vh(o*, t)do* + 5(0, 1), (6.176)
0
where
h= or or 6.177)

T %0 90
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For non-vanishing curvature k and torsion T,

a ab
T xt=0, —xn=0 (6.178)
ac ao

so that the assumption of a purely binormal motion

rrie Zb (6.179)

yields

dh ar 9 or ab
— = =2—. | —b4+E— ]| =0 6.180
at do doadt o (30' + Bcr) ( )

by virtue of (6.178). This implies, in turn, that d(s — s(0, t))/9¢ = 0 and hence
purely binormal motions are only possible for inextensible curves.

Here, as in our previous discussion of the NLS equation, we restrict our
attention to geometries with the vanishing abnormality constraint €2, =0 so
that there exists a one-parameter family of surfaces £ which contain the s-lines
and b-lines. It is recalled that if the s-lines and b-lines are taken as coordinate
curves on X, then the surface metric may be reduced to the form

Iz = ds? + g(s, b)db? (6.181)
so that
o _ g'/b. (6.182)
ab

The s-lines are geodesics and the b-lines are parallels on individual surfaces X.
If the variable b is interpreted as a measure of time, then the relation (6.182)
gives the velocity in the purely binormal motion. The Gauss-Mainardi-Codazzi
equations for an individual surface ¥ become

9 9
—(gn) +g" =0,
as

ab
ar @ ag\?
o5 = 5ol8 Ak + dive)] + k= —, (6.183)
32g1/2
[k(k + divn) +72]g"/2 = —=—
ds?

and elimination of k + div# in the latter pair of relations yields (cf. (4.144))

dr _ 9 [1 (9% 2! ag'’?
—_— = — /2
% as[ ( e )]+K " (6.184)
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6.5.1 Curves of Constant Curvature

If we restrict our attention to the purely binormal motion of curves of constant
curvature Kk, then (6.183); shows that

g =ab)r! (6.185)

whence on elimination of g in (6.184) and reparametrisation a~'/29/3b —
d/9b, we obtain

1/ 1 3 1
Tp = |:;' (;‘175)” - T + ijl‘y . (6186)

This will subsequently be termed the extended Dym (ED) equation [339]. On an
appropriate scaling and limiting process in (6.186), it leads to the Dym equation

1
Ty = (m) (6.187)
sss

as a specialisation. It is important to remark that it is the ED equation rather than
the Dym equation (6.187) that admits a simple geometric derivation. Thus, it is
generated by the purely binormal motion of an inextensible curve of constant
curvature k moving with velocity

r, =12, (6.188)

The Dym equation has been seen to be solitonic and to be invariant under a
reciprocal transformation. It is natural to enquire as to whether the nonlinear
evolution equation (6.186) shares these properties.

That the ED equation (6.186) is solitonic is readily established by a recip-
rocal link to the m*KdV equation. Thus, it is noted that (6.186) admits the
conservation law

171 1 3 v?
V= | = (VV =2V =SV 24— . 6.189
( )b ) [K ( ss T 5 _‘-) 5 +K 2 |, ( )
where V=1"1/2 denotes the speed of the binormal motion. On application of
the reciprocal transformation

11 1 3 y?
dx =+2V~l4d +—[—(vv ——vz)——v-2+ —]db
ST AL\ 725 )73 2 (6.190)

dt = —/2db,
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the ED equation delivers an evolution equation for the speed V, namely

. \% Vx 1 Vx 2 3 -1 K 3
V"[I[(V)*“E(V)]‘Z" +5v ] (6.191)

The insertion of V = ? into the latter now produces the so-called m*KdV equa-
tion [66, 137].

1, 3
@ = Pxxx — Ecp,? + 2 ¢ cosh 2¢. (6.192)

An auto-Bicklund transformation for the latter was constructed by Calogero
and Degasperis [66]. Here, we shall present auto-Bécklund transformations
both for the ED equation and the reciprocally related m®2KdV equation. Soli-
ton surfaces swept out by the binormal motion of curves of constant curva-
ture will then be constructed by means of the Sym-Tafel formula. It is noted
that the ED equation sits in a wide class of nonlinear evolution equations
which are invariant under reciprocal transformations and which were delimited
in [196].
Under the reciprocal transformation

1 1 1
dS’ =1ds + I:- (—1/3) ol ‘1'3/2 +k (1—/2)] db, dbl=db
KT s T (6.193)

(6.186) becomes

1 1 1
2= _ 3/2 -
Ty = [K (7’1/2)”, kT™/% 1_,1/2]:, (6.194)

leading to invariance when, without loss of generality, we set k = 1. In this case,
the ED equation (6.186) adopts the form

1 32 1
Tp = X_‘-, X= (m) -7 + m, (6.195)
5§

while the corresponding Serret-Frenet equations and the ‘time’ evolution of the
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triad {¢, n, b} read

t 0 1 0 t
n|=|-1 0 =~ n |,
b, 0 -7 0/ \b
17
172 s
t (o S 75 t (6.196)
n = 71/2 0 X——l— n .
b ™2\ b
b 1 7 1 0
2 Tt oE

In this formulation, it is readily verified that the scalar conservation law (6.195)
possesses the companion vector-valued conservation law

(b= (Xb+ 1'%, (6.197)
whence a vector-valued function ' may be introduced such that
ri=1b, ry=Xb+r1'"2. (6.198)
Under the reciprocal transformation (6.193) with k = 1, that is
ds'=1ds + Xdb, db' =db, (6.199)
these relations become
r.=>b, r,=1"12, (6.200)
It is therefore natural to introduce the right-handed orthonormal triad
{t,n',b'}y={b,—n, 1 (6.201)

which satisfies the primed version of the Serret-Frenet equations (6.196); with
the new curvature and torsion given by

1
K=1 1= it (6.202)

Thus, the unit vectors ¢, n’ and b’ indeed constitute the unit tangent, principal
normal and binormal associated with the curves r'(s’, ' = const). Moreover,
as the latter propagate in a purely binormal direction, the surface swept out
as b’ evolves has the same character as the original ED surface with generic
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position vector r. This is reflected at the nonlinear level by the fact that the
ED equation is form-invariant under the reciprocal transformation (7, s, b) —
(7', s, b).

Remarkably, the relations (6.198) may be integrated explicitly. Indeed, it is
readily shown that

r'=r+n (6.203)

without loss of generality. This implies that the ED surfaces ¥ and ¥’ are
parallel since N = —n. Accordingly, we have the following result:

Theorem 24 (The dual ED surface). Every ED surface T obtained by integra-
tion of the system (6.196) has an associated parallel dual ED surface T’ with
position vector r' = r — N generated by the reciprocal transformation (6.198),
(6.199). The latter leaves invariant the ED equation determined by (6.195). At
corresponding points under this reciprocal transformation, the tangent vectors
to the coordinate lines on the ED surface and its dual are interchanged, that is
r=>bb =t

It is interesting to note that the geodesics b = const on an ED surface and
their associated geodesics on the dual ED surface constitute a family of pairs
of Bertrand curves [380]. In fact, for b = const, the reciprocal relation (6.199)
is classical. In general, Bertrand curves are characterised by

ak+ BT =1, (6.204)

where a, B are constants. Their conjugate curves (dual Bertrand curves) rep-
resent examples of offset curves [278] which are used in computer-aided de-
sign (CAD) and computer-aided manufacture (CAM). It has been shown by
Razzaboni [293] that surfaces on which there exist a one-parameter family of
geodesic Bertrand curves admit a Bécklund transformation and hence are soli-
tonic [334]. ED surfaces and the extended sine-Gordon surfaces as discussed
in the next section are particular cases of such surfaces.

The reciprocal invariance of the ED equation (6.195) implies that, if 7 (s, b) is
a seed solution then a solution of its primed counterpart is given by

, 1

T T (6.205)
s'=s'(s,b), b =b,
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where s’ is obtained by insertion of the seed solution into the reciprocal relation
(6.199) and subsequent integration.

If we now introduce the reciprocal counterparts x’, ¢’ of the independent
variables x, ¢ in the m?KdV equation via

1 1 3 V2
d-x, = ‘\/5-4 V,_ldsl + —— [VIV/I s __V/2’ - "V/—z + _] bl
V2 202 2 (6.206)
dt’ = —/2db
with V/ = 1/~1/2_ then it is seen that
dx' =dx, dt' =dt. (6.207)

Accordingly, the ED surface and its dual may be parametrised in terms of the
same coordinates. The transition from the ED surface to its dual is induced by
the simple discrete symmetry ¢ — ¢’ = —¢ in the m?>KdV equation.

6.5.2 Extended Dym Surfaces. The su(2) Linear Representation

The 1% and 2™ fundamental forms associated with the ED surfaces are readily
obtained from the linear system (6.196) and the relations

I's XIp
r, = b =l —n. (6.208)

They read

1
= dr-dr=ds*+-db?
T
(6.209)
g2 1/2 X 2
I = —dr-dN = —ds“ +27"/“dsdb + oo db”.
T T
According to Bonnet’s theorem, a surface is uniquely determined up to its
position in space by its fundamental forms. Thus, any position vectorr = r(s, b)
which gives rise to the fundamental forms (6.209) defines an ED surface. In what
follows, it is shown how such position vectors may be constructed explicitly
in terms of eigenfunctions of the ED equation. It is noted that the relation
N = —n implies that the linear system (6.196) represents the {¢, b, N} version
of the Gauss-Weingarten equations for ED surfaces.
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Now, consider the linear system

1 0 —T—A
¢s=§ +1 0 ‘b,
HRIVN

d>b=—
2 1 1\ 1, 1 1Y\ 1 (6.210)
ez (a-5)m-30- )
1 1\ i, 1 5 1

o,
1 A 1\ 7
Ta\" A
where A is an arbitrary constant (complex) parameter. One may directly verify

that the above Lax pair is compatible modulo the ED equation (6.195). At
A =, it takes the form

D = [e) +Te2]P
1 1 (6.211)
P, = [—71/2e1 + (X - 1_) ey — —le{l P
T1/2 T

with the skew-symmetric matrices ¢; defined by (cf. Section 2.2)

1(0 1 10 —i 1(1 0
e‘“i(l 0)’ "Z_E(i 0)’ 83_5(0 —1)' (6:212)

It is recalled that the ¢; obey the so(3) commutator relations
[er,e2]l = €3, [ez,e3]1 =€y, [e3,e1] = en. (6.213)

On the other hand, the Gauss-Weingarten equations (6.196) may be formulated
as

Vs = [D1 +7D,]¥

T

t
V= (n) (6.215)
b

6.214
Yy, = [—TI/ZDI + (X 1 ) % ]‘I’, ( )

where
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and the anti-symmetric matrices D; are given by

0 1 0 0 0 O 0 0 1
Di=|-1 0 0], D=0 0 1|, D3=| 0 0 0].
0 00 0 -1 0 -1 00
(6.216)

Since the matrices D; are nothing but the generators of so(3) which satisfy the
commutator relations

[D1, D] = D3, [D,, D3] = Dy, [Ds, Di] = Ds, (6.217)

the correspondence between the linear representations (6.211) and (6.214) re-
flects the isomorphism between the Lie algebras so(3) and su(2). Accordingly,
the linear representation (6.211) may be regarded as an su(2) version of the
Gauss-Weingarten equations (6.196) for ED surfaces.

If we now require that the parameter A be confined to the unit circle in the
complex plane, it is natural to introduce the parametrisation

A=ieT™ XNeR (6.218)
so that the linear representation (6.210) takes the form
®,.=8.M pn=12 (6.219)

with the notation ; =3/3s and ,=23/3b. Since \ is real, the matrices g,
are skew-symmetric and hence the eigenfunction ¢ may be assumed to be an
element of SU(2), that is

otd =1. (6.220)
Consequently, the matrix
F=d"l0, (6.221)

provided by the Sym-Tafel formula (6.31) is trace-free and may be decomposed
into the generators e; according to

€
F=re e=1]e|. (6.222)

Thus, the vector-valued function 7 = F(\) parametrises a one-parameter family
of surfaces in R3.
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To establish the connection between ED surfaces and the surfaces represented
by #, it is necessary to investigate the geometry of the latter. In this connection,
the tangent vectors 7, may be obtained from the decomposition

Fpe=F,=0gnd (6.223)
which implies that
P -Fy=—-2Tr(F,7,) = —2Tr(gu\8m) (6.224)
by virtue of the relation
—2Tr(eiej) = 3;;. (6.225)

Hence, the one-parameter family of 1** fundamental forms associated with the
position vectors F(\) reads

I) = —2Tr(guagwn) dxdx®, (6.226)

where (x!, x2) = (s, b) and Einstein’s summation convention has been adopted.
It is straightforward to derive the family of 2™ fundamental forms. They are
(cf. Section 6.1)

oo = - Tr([gin, 801 (8pon + [gurs 1) dx#dx”.  (6.227)

det'2[g1), gl
At A = 0, the fundamental forms (6.209) are retrieved, that is

foy=1 1) =1 (6.228)
Thus, the position vector
r=F0) = =2 Tr(d 1 d, |\—0e) (6.229)

generates ED surfaces.

6.5.3 A CC-Ideal Formulation

The cc-ideal formulation [122,158] is valuable, in particular, for isolating
Miura and reciprocal-type links between 14-1-dimensional solitonic equations
[169-171, 173, 323, 336, 339]. Importantly, it also simultaneously reduces the
construction of a matrix Darboux transformation for the spatial and temporal
parts of a Lax pair to consideration of invariance of a single one-form equation
[173,323,336,339]. The cc-ideal procedure is summarised in Appendix B.
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Here, the cc-ideal for the ED and m?KdV equations is found by rewriting the
linear representation (6.210) as a single matrix one-form equation, namely

5
do=X(A)® =) X', (6.230)
i=1

where the matrices X; are given by

0 -1 0 -A 0 —A-!
u=(1 ) =l T s )

A—- AT 0 0 -—A?
X“_( 0 —A+A“‘)’ XS_(A‘Z 0 )

and the one-forms &' =a’ds + B'db are obtained by expanding (6.210) in
terms of the matrices X;. The latter may be regarded as linearly independent
generators of a subalgebra of the loop algebra sI(2) ® R(A, A™!) [186]. Since
not all commutators [X;, X ;] may be expressed in terms of the generators X,
we have the following incomplete commutator table:

(6.231)

[X1, X2] = X4, [X2, X4] = 2X, — 2X5
[X1, X3] = — X4, [X2, X5] = X4
[X1, X4] = —2X5 + 2X;, [Xs, X4] =7 (6.232)
[X1, X5] = —[X2, X3], [X3, X5] =7
[X4, X5]=17.

Therefore, evaluation of the integrability condition

0=d’d=dX -XAX)D (6.233)
produces the cc-ideal
d§1 — 2&2&4’ EIES — §2§3
dg? = —2£1¢4, £t =0
dg? =2¢£¢4, £385=0 (6.234)
det =182 —£183 4 £28%, £ =0
dES — _2§2§4'

In the above, the wedge between differential forms has been suppressed.
One may investigate different parametrisations of the integral manifolds of
the above cc-ideal. Thus, the algebraic part of (6.234) is satisfied identically by
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setting
g2=vg! + p&d £ =ugd £ =08 (6.235)

with functions u, v and p as yet unspecified. Consequently, the number of
independent one-forms, namely the genus of the cc-ideal, is g = 2. However, if
one inserts the parametrisation (6.235) into the differential part of the cc-ideal,
then the following four exact one-forms result:
d(v'/?8%) = 0= dB = v'/2%3
d(E*+8)=0= ds=£2+¢
dE'+8)=0=4ds =" +¢°

3 1
d(v‘/’§’+ 1/2’52 1/2‘5) 0= dy =l + e - 1/2§4

(6.236)

Any pair of functions S, B, §’ and y may be used as independent variables
while the remaining pair constitute potentials. For instance, if we single out the
functions § and B as independent variables, then the one-forms read

ds dB
§l = —+QdB, §2=dS—1—/2
d; v (6.237)
€= £ =wdB, £ =v""dB
while the potentials S and y are defined by
d
s’ = —S + (g +v"*)dB
s ! '(6.238)
dy =2— 12 — — —w?)dB,
y= o172 + ( -7 w
where, for convenience, we have set w = u/v'/? and ¢ = —(p + 1)/v*2.
Now, the differential part of the cc-ideal delivers the relations
1
3 +gs=2w
5 (6.239)
1 w 2 12
m s=2;, ws=—q—-v—3/—2+v .
The latter two relations serve to define w and ¢ in terms of v, whence
112 115 1/2
w=—§(v/)s, q=§(v/)ss+v/ —m, (6240)
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so that (6.239), reduces to the third-order equation

1 1 1
(;)B = E(”m)sss +2(0"2) -2 (;}3—/2) S. (6.241)

The substitutions
s
2 R
now show that (6.241) is nothing but the ED equation (6.195).

Alternatively, one could choose S’ and B say, as the independent variables
and derive the corresponding nonlinear equation in a similar manner. However,

inspection of (6.238); shows that S’ is related to the reciprocal variable s’
introduced in (6.199) by

b
v= l, S= B=- (6.242)
T 4

S’ =52 (6.243)

and hence the ED equation reciprocally related to (6.241) is obtained. Moreover,
the potential y may be identified with

y=x/2 (6.244)

so that the pair of independent variables (y, B) gives rise to the m*KdV equa-
tion (6.192). Accordingly, the cc-ideal (6.234) is seen to provide a convenient
encapsulation of both the ED equation and the reciprocally related m?KdV
equation. In what follows, the cc-ideal formulation will be shown to be also
well-adapted to the construction of both matrix Darboux transformations and
associated Bécklund transformations.

6.5.4 A Matrix Darboux Transformation. A Bicklund Transformation
for the Extended Dym and m*KdV Equations

To construct a transformation which leaves form-invariant the cc-ideal (6.234),
it is necessary to give an algebraic characterisation of the linear representation
(6.230). Infact, therein, itis readily verified that the generators X;, i =1, ...,5
lie in the subalgebra

g = span{X", Y";n € Z},
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of the loop algebra s1(2) ® R(A, A~!). Itis noted that g is equivalently charac-
terised by

X(A)eg & XA H=MxXAM, M=((1) _01) (6.246)

if we assume that X'(A) is trace-free. Hence, the following preliminary result
obtains:

Lemma I (Characterisation of the ED-m?KdV cc-ideal). Let X(A) be a one-
parameter family of trace-free 2 x 2 matrix-valued one-forms. Then, the linear
equation

dd = X(A)® (6.247)

coincides with the linear representation (6.230) of the ED-m*KdV cc-ideal if
and only if (6.247) is compatible and

(i) X(A) is a quadratic polynomial in A and A~
(ii) X(A)eg
(iii) X(A) does not contain the generators X2 and Y2.

The description given in this lemma is typical for linear representations of
cc-ideals. In fact, it allows the construction of a matrix Darboux transformation
in a purely algebraic manner. The result given below [339] constitutes an exten-
sion to cc-ideals of the matrix Darboux formalism to be discussed extensively
in geometric terms in the next chapter.

Theorem 25 (A matrix Darboux transformation for the ED-m?KdV cc-ideal).
Ifb = (d! )7 is a vector-valued solution of the linear representation (6.230)
of the ED-m*KdV cc-ideal (6.234) with parameter Ao = —p, then (6.230) is
form-invariant under the matrix Darboux transformation

&> d =P

~ (6.248)
X(A) > F(A) = P(A)X(A)P~1(A) +dP(A)P-I(A),

where the Darboux matrix P(A) is given by

P(A) = ( 2 g) +A (_12 _AC) (6.249)
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with

D_wtr ¢
A wl+Ld ° 7 $? (6.250)
AD=1, B=0, C=(D-unlA).

Proof. Here, it is shown that the particular form (6.250) of the functions
A, B, C, D is a consequence of algebraic constraints which, in turn, guaran-
tee that (6.248) preserves the form of the linear representation (6.230). Thus,
the symmetry embodied in (6.246) implies that if ¢; =  is a vector-valued
eigenfunction with parameter A} = Ay, then &y = Mo is another eigenfunc-
tion corresponding to the parameter Ay = Ay !, Furthermore, the identity

AP(A™Y) = MP(A)M™! (6.251)

shows that if P(A1)d; = 0then P(A2)d, = 0. Hence, imposition of the linear
constraints

P(AD$:; =0 (6.252)

reduces the number of unknown functions in P(A) by two. The conditions
(6.252) are standard for matrix Darboux transformations and guarantee that
the polynomial structure and degree of X(A) are preserved provided that
det P(A) = const [173,269,270,323,336]. The latter condition is the third re-
striction on the Darboux matrix P(A). Consequently, the new one-form X(A)
obeys condition (i) in Lemma 1 while condition (ii) is satisfied by virtue of the
symmetry (6.251). Now, evaluation of cubic terms in the transformation law

F(A)P(A) = P(A)X(A) +dP(A) (6.253)

reveals that the fourth condition B = 0 ensures that the generators X2 and Y2 do
not appear in X (A), thatis, condition (iii) is satisfied. The determinant condition
then reduces to AD = const. This completes the proof. O

Corollary 5 (A Bicklund transformation for the ED and m?>KdV equations).
The ED equation (6.195), its dual and the m*KdV equation (6.192) are
form-invariant under (t, s, b, s', x) = (%, 5, b, §, %), where
A2 §=s"+2arctan(, b
D?’ § =s—2arctan({/p), %=

b
(6.254)

The independent variables of the m? KdV equation are preserved.
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Proof. Evaluation of the transformation law (6.253) leads to expressions for
the new one-forms &’ which are linear combinations of £* with { -dependent
coefficients. For instance, terms cubic in A and A~! yield

. A 5 D
3_ 23 g5 _Pos
£=58 ¢ 76 (6.255)
so that insertion of the parametrisation (6.237) yields
12 _ D ip 7

The expression for £€* may then be used to determine i. It turns out that

- 1 . 7.
-~ _ =1)281 2 4
dy_v/§ +W§ _Wg
(6.257)
=o'+ 1/2“32 ﬁg—d}’
and
£2 48 = ¢! + &5 + d[arct
E+8=¢ +§ [arctan{ ] 6.258)

E' + &5 = £2 + &3 — d[arctan({ /)]

To establish the latter two relations, use has been made of the expression
for the differential d{ =d(¢'/$?) provided by the linear representation
(6.230). a

6.5.5 Soliton Surfaces

It has been shown in Section 6.5 that if & € SU(2) is a vector-valued eigen-
function of the ED equation, then

r=-2Tr(re), r = 'dy|pzi (6.259)

parametrises an ED surface since A,l|,—_o =1. However, for computational
purposes, it is sufficient to assume that ®T® = f(A)1 since the function f(A)
merely generates trace terms in r which do not contribute to the position vec-
tor r. Accordingly, the new position vector 7 induced by the matrix Darboux
transformation (6.248) is given by

F=—2Tr(Fe), F=r+d 1P 1P,®. (6.260)
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Here and in the following, it is to be understood that functions depending on A
are evaluated at A = i. The Darboux matrix P as given by (6.249), (6.250) now
yields
2 Lee2 —
- T | ;&° =1 e
PPy =i 6.261)
AT TN+ ( ¢ -te-n)
which implies the constant length property |Ar|=|F — r|=const (cf.
Section 7.2).
The simplest ED surface is generated by the binormal evolution of a circular
helix. Indeed, if we choose the seed solution T = 1, then the linear representation

(6.210) reduces to
1 0 —-A -1
¢, =— ¢’
W (A-' +1 0 )
(6.262)
1 0 A"l 4 A?
¢t _ -2 q)
42 \—-A—A 0
in the m*KdV coordinates
x=+25s—b/v2, t=—2b. (6.263)
Its fundamental solution is given by
o (A+1De* (A+1e™™ (6.264)
B —2/2ke®  24/2ke™ )’ .
where
i
k=——(AY2 4+ A7
) 5 )
o = kx + kt, . (6.265)
= __’__(Aa/z + A7),

42

so that the generic position vector (6.259) for the cylindrical seed surface &
becomes

o
Q
@
[e}]

1. (6.266)

=X}

~
I
= 19—
Q.
=
=X}
=3
I
=
+

=
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For real parameter A¢ = —, the general vector-valued solution ¢ = (¢! ¢?) of
(6.262) leads to

! -1
_ & B, (6.267)

: —‘F 24/2¢

where

| .

(ul/z _ l"“--1/2)
(6.268)

N
»—-S
[\®)

o
I

5

(us/z _ }L—a/z).

Insertion into (6.260), (6.261) produces the new ED surface ¥ represented by
—[(. — 1)cosh2B — p — 1]cos & — +/2, /i sinh 2B sin&
(4 1)cosh2p —p + 1
~[(r — D cosh2B — . — 1]sin@ + +/2,/f% sinh 2B cos &

F=r+¢
(r+1Dcosh2B —p+1
V2./i% sinh 2B
(n+1Dcosh2B —w+1 )
. mi-1
€= p2+1

(6.269)

The curve of constant curvature which generates the surface ¥ is given by
b = const or, equivalently, ¢ = const.

For . > 0, the evolution of the generator may be interpreted as the motion at
constant speed of a soliton on a circular helix. This is reflected by the soliton
solutions

-2 b — i + tanh® B
ptanh? B + 1 (6.270)
§=s+2arctanl, b=>b

fT=e

of the ED and m?KdV equations. It is noted that the former solution is given
parametrically in terms of s and b by virtue of (6.263). A typical generator
is displayed in Figure 6.4 along with the surfaces T and £. Interestingly, the
expression
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Figure 6.4. An ED surface and its generator of constant curvature (. = 2).

where 7 = (%!, %2, ¥3)T, shows that for . > 1 the surface ¥ is confined to the
exterior of the seed cylinder ¥ while for p < 1 it lies inside X.

On the other hand, for p. < 0, the solutions (6.270) become periodic in both
independent variables. In fact, inspection of the position vector (6.269) reveals
that if

t—sa

B

then ¥ constitutes a surface of revolution. It turns out that the above condition
may indeed be satisfied. One obtains two solutions, namely

NI

= const, (6.272)

p=-2++/3. (6.273)

An ED surface of revolution and its generator is depicted in Figure 6.5. In
contrast to the case p > 0, it may be shown that the generator does intersect the
seed cylinder X.

Exercise

1. Use Theorem 21 to establish invariance of the extended Dym equation
(6.186) under the reciprocal transformation (6.193).

6.6 The Binormal Motion of Curves of Constant Torsion.
The Extended Sine-Gordon System

It is recalled that the classical Bécklund transformation for the construction
of pseudospherical surfaces is characterised by remarkably simple geometric
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Figure 6.5. An ED surface of revolution and its generator (. = —2 — +/3).

properties. Thus, if both a pseudospherical surface ¥ : r =r(u, v) and its
Bicklund transform ¥’ :r' = r'(u, v) are parametrised in terms of asymptotic
coordinates u, v, then the vector r’ — r joining corresponding points P and
P’ is tangential to both ¥ and ¥’. Moreover, the distance |r’ — r| is constant
as is the angle between the corresponding unit normals N and N'. Here, it is
shown that the Bécklund transformation for surfaces swept out by curves of
constant torsion when they are subject to a purely binormal motion is of equal
simplicity.*

6.6.1 The Extended Sine-Gordon System

The Gauss-Mainardi-Codazzi equations (6.183) for the surfaces swept out by
the purely binormal motion of curves of constant torsion T yield

(28'21), + 1 =0
((81/2)” _ 7281/2) N K(gm) o (6.274)

K

If we now set

qss — 72‘1

K

g=-28", p= (6.275)

4 Pseudospherical surfaces have already been seen to be generated by inextensible curves of con-
stant torsion in motion without a binormal component (cf. Chapter 2).
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then the system

gs =Ky, ps+Kgs =0,
) (6.276)
gss =T°q + pK
results. This system admits the integral
@ +p2—1lg? =% E=¢EDb) (6.277)

which, if ¢ = 1 is taken, gives rise to the parametrisation
gs = sinocosh§, p =cosocosh§, Tg =sinh§ (6.278)
so that the system (6.276) becomes

& =1sino
) (6.279)
055 — T(cos o tanh §), = sino cosh .

The system (6.279) or equivalently (6.276) we term the extended sine-Gordon
system [339]. Indeed, it reduces to the classical sine-Gordon equation in the for-
mal limit T =& = 0. The system is associated with the purely binormal motion
of a curve travelling with velocity

r,=——b (6.280)
and curvature

K = 0; — T cos o tanh . (6.281)

6.6.2 Fundamental Forms. An su(2) Linear Representation

The surfaces swept out by the bilinear motion (6.280) and associated with the
extended sine-Gordon system with T = 1 have fundamental forms

, 1
I=ds*+ Zqzdbz,

) (6.282)
Il = —kds? — qdsdb + qudbz
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while the Gauss-Weingarten equations yield

()22 6)

(6.283)

A linear representation for the extended sine-Gordon system which contains
an arbitrary parameter may be obtained via the prolongation procedure due to
Estabrook and Wahlquist [123,378]. The latter is based on Cartan’s calculus
of differential forms [68]. It provides a semi-algorithmic way of finding Lax
pairs for 1+1-dimensional integrable systems. Here, we merely state that, in
the present context, it leads to the linear representation [339]

1 0 « ~f(1 O
o d{(C )G e

_ 1 o (P 4s 0 ¢
v Mo )+ (5 9]

compatible modulo the extended sine-Gordon system. In fact,at A = 1, the su(2)
Lax pair (6.284) is seen to be equivalent to the Gauss-Weingarten equations
(6.283) if we identify

(6.284)

Dy~ —e;, Dy~ —e3, D3 e. (6.285)

The ‘spatial’ part of the Lax pair (6.284) constitutes the scattering problem
for an important subclass of the AKNS integrable system studied earlier, namely
the mKdV hierarchy with prototypical member

@=¢”+%ﬁ. (6.286)

This connection is not coincidental. Thus, the angle 0 is a potential associated
with the conservation law (6.276);, that is

k=0, q=0 (6.287)

and it turns out that the mKdV equation (6.286) is a symmetry of the extended
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sine-Gordon system written as

Bpes — 6,
CLTJ)+%%=Q (6.288)

s

6.6.3 A Bdcklund Transformation

The fundamental forms (6.282) are retrievable from the linear representation
(6.284) using the Sym-Tafel formula. It emerges that the action of an associated
matrix Darboux transformation at the surface level is of remarkable simplicity.
Indeed, the following theorem may be verified directly.

Theorem 26 (An analogue of Bdcklund’s classical transformation). The
Gauss-Weingarten equations (6.283) and the extended sine-Gordon equation
(6.288) are form-invariant under

r>Frf=r+ (cos @t — singpn)

14 p? (6.289)
0 —> 06 =20-—89,

where the function ¢ is a solution of the compatible system

¢ =K+ psing
(6.290)

¢ = (rgs cos @ — pp sing +q)

1—p2
and . is an arbitrary constant (Bicklund) parameter. The vector F — r joining
corresponding points on the surfaces T and X lies in both the (t, n)-plane and
the (, ii)-plane and the distance |F — r| is constant. The angle between the
binormals b and b is constant, that is

- 1- pz
b-b=—. 6.291
1+ p? (6.291)
The compatible system (6.290) may be linearised by setting
¢1
=2 arctan(—) , (6.292)
b2

where = (¢! $?)" is a vector-valued solution of (6.284) with parameter
\ = —ip. Symmetry dictates that 7 — r is orthogonal to both b and b, and a
short calculation produces the relation (6.291). It is also noted that the transfor-
mation law (6.289), may be used to eliminate the pseudopotential ¢ from the
nonlinear Lax pair (6.290). In this way, one obtains the analogue of the classical
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Bicklund relations. In particular, the spatial part of the Bicklund transformation

becomes
6-9 6+0
~ ) = usi 2
( 5 )s p,sm( > > (6.293)

and this is generic to the entire mKdV hierarchy.

In conclusion, it is observed that application of the above Biacklund transfor-
mation to a straight line (degenerate surface) produces the simplest Hasimoto
surface (cf. Chapter 4). If one chooses a cylinder generated by a circular helix as
the seed surface T, then the new surface ¥ is, as in the case of the ED equation,
swept out by a soliton which propagates on a circular helix.

6.6.4 An Analogue of the Bianchi Transformation. Dual Surfaces

In Chapter 1, it has been pointed out that Bicklund'’s classical transformation for
pseudospherical surfaces may be regarded as a generalisation of a transforma-
tion due to Bianchi who assumed that the normals N and N’ to the pseudospher-
ical surface ¥ and its transform X’ at corresponding points are perpendicular.
In the case of the surfaces governed by the extended sine-Gordon system, the
natural analogue of Bianchi’s assumption is orthogonality of the binormals b
and b’ associated with two surfaces ¥ and X', that is

b-b=0. (6.294)

The relation (6.291) shows that the transformation given in Theorem 26 would
have to be specialised to p. =21 to meet this assumption. Even though the
transformation formulae (6.289) and (6.290); formally allow the specialisation
p = %1, the b-evolution (6.290); of ¢ is not defined. However, the latter may
be replaced in such a way that Theorem 26 retains its validity for p = %1. This
observation proves to be important in the investigation of integrable discrete
models of the extended sine-Gordon surfaces [328]. It leads to a system

0'—0 0'+0
(T)s=esin< ;_ ), € =*1
Ops = csin ' +9 €0, cos b +8
bs — 3 b 2

which is shown below to be equivalent to the extended sine-Gordon equation
(6.288). It is noted that (6.295); coincides with the Bécklund relation (6.293)
forp=e.

(6.295)
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Let 6 and 6’ be solutions of the system (6.295). Then, differentiation of
{6.295), with respect to s and substitution for 8, from (6.295), yields

(ebss - eb

2
0 ) + 65— 8 =7, (6.296)

namely the first integral (6.277) written in terms of 8. Moreover, differentiation
of (6.295), reveals that

940 0'+0
8, = csin ( : ) + €6, cos (——:—) (6.297)

This implies that the system (6.295) is invariant under the discrete transforma-
tion (0, 8, €) — (0', 8, —e). Consequently, both 6 and 6’ are solutions of the
extended sine-Gordon equation (6.288). It should be noted that the equations
(6.295), and (6.297) are equivalent to the system (6.295) modulo an appropriate
transformation of the form 8 — 0 + f(s), 8’ — 8’ + f(s).

Conversely, for a solution 8 of the extended sine-Gordon equation with as-
sociated first integral (6.296), we define a function ¢ according to
cp—€qqs . cqs T €pg

sing = ———. (6.298)

cosp = ,
=ary 2+ g2

It is then readily seen that

@5 = K + € sin ¢,

. (6.299)
gs = csing — egcos ¢
which is exactly the system (6.295) if the function 0’ is defined by
68 =2¢—0. (6.300)

This implies, in turn, that 8’ is another solution of the extended sine-Gordon
equation. The following theorem may now be directly verified:

Theorem 27 (An analogue of Bianchi’s classical transformation). Let 6 be a
solution of the extended sine-Gordon equation (6.288) with associated first in-
tegral (6.296) and T :r = r(s, b) the corresponding surface. Then, the position
vector r' of a dual surface ¥’ is given by

r' =r+e(cosgt —singn), (6.301)
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where @ is defined by (6.298). The corresponding solution §' of the extended
sine-Gordon equation reads

8 =200 (6.302)
and the binormal b’ has the form
eb’ =sinpt+ coson (6.303)
so that

¥.-b=0. (6.304)

We therefore conclude that Theorem 27 coincides with Theorem 26 for
w = *1 if the b-evolution (6.290); is replaced by the explicit formulae (6.298).
The remaining relation (6.290); is satisfied identically.

Exercise

1. Show that the avatar (6.288) of the extended sine-Gordon system is invariant
under the Bicklund transformation

0>606 =20-0,

where ¢ is given by the relations (6.298).
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Bdcklund Transformation and Darboux
Matrix Connections

In 1882, Darboux introduced his celebrated invariance of what has come to be
called the one-dimensional Schrodinger equation [92]. This result, which is but
a special case of the Moutard transformation obtained in 1878 [264], allows
new solutions of the linear Schrodinger equation to be generated via solutions
corresponding to a seed potential.

The spectral properties of the classical Darboux transformation were investi-
gated much later in 1955 by the Oxford mathematician Crum [91]. Twenty years
on, Wadati et al. [375], in pioneering work, showed that not only Backlund
transformations but also conservation laws could be generated for canonical
1+1-dimensional soliton equations by what they termed the Crum transfor-
mation. The role of the classical Darboux transformation in soliton theory is
detailed in an appendix to the monograph on the spectral transform by Calogero
and Degasperis [65].

The Darboux matrix formalism was introduced in connection with the dress-
ing method as originated by Zakharov and Shabat in [395] and described in
the text [393]. Important work on the Darboux matrix method was conducted,
on the one hand, by Matveev and Salle (detailed in the monograph [251])
and, on the other hand, by Neugebauer and Meinel [270]. Links between
Bécklund transformations and the dressing method, as well as between the
latter and the classical Darboux transformation, have been elucidated by Levi
et al. [232,233]. Therein, the Darboux matrix method plays a key role. An ex-
cellent recent account of the Darboux matrix method with particular attention
to non-isospectral problems has been given by Cieslifiski [82]. Darboux trans-
formations and their geometric applications have been the subject of a recent
monograph by Gu et al. [155].

This chapter deals, in a geometric setting, with the important connections
between matrix Darboux and Bicklund transformations.

266
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7.1 The Connection for Pseudospherical and Nonlinear
Schriodinger Surfaces

It has been shown how Bécklund transformations for soliton equations are
induced by an invariance of their linear representation. In geometric terms,
a Bicklund transformation for a soliton equation encapsulated in a Gauss-
Mainardi-Codazzi system is induced by a transformation of the associated lin-
ear Gauss-Weingarten equations. This property of generating an invariance of a
soliton equation via invariance of its linear representations is one that is shared
with matrix Darboux transformations. Here, it is established that the auto-
Bécklund transformations for pseudospherical and NLS surfaces are nothing
but disguised matrix Darboux transformations. In the next section, this equiva-
lence between Biécklund transformations acting at the surface level and matrix
Darboux transformations will be extended to a geometrically important subclass
of the AKNS system.

7.1.1 Pseudospherical Surfaces

To establish the important connection between the classical Bicklund transfor-
mation (1.52) for pseudospherical surfaces and a matrix Darboux transforma-
tion, we shall exploit the Sym-Tafel relation (6.22). It is recalled that the latter
provides a compact expression for the generic position vector to a soliton sur-
face in terms of the A-dependent eigenfunction matrix of the associated AKNS
representation.

The standard AKNS representation for pseudospherical surfaces adopts the
form (2.32), that is, if p =1 and the tilde is dropped therein,

174
¢u=—( iN “’“)<b=g1<1>

2\—w, —iA
. . 7.1
%= (e sore) =520
with compatibility condition the sine-Gordon equation
W,y = Sinw. 7.2)

The associated fundamental forms may be obtained from the relations (6.32)
whence

I =du?+2\"2cos wdudv + N\"4dv?

7.3
II = 2\ Lsin ® dudv. (7.3)
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These determine pseudospherical surfaces with Gaussian curvature
K=-\. (7.4)

The fundamental forms given by (1.24) with p =1 for pseudospherical sur-
faces of Gaussian curvature K = —1 may be retrieved on introduction of the
scalings

Ulgeay =N, Vlgeo; =NT'0, Flea; =Ar. (7.5)
Use of the these relations in combination with (1.52) implies that the classical

Bécklund transformation acting on pseudospherical surfaces with the funda-
mental forms (7.3) reads

(7.6)

I/ = r+2)\2 :’: plz [81n(m - “P)r + )\ZS‘ln_“pru]’

: u
Sin w Sin w

where the ‘swivel angle’ ¢ is, by virtue of (1.36), (1.37), a solution of the
compatible system

@, = Wy +psing, ¢, = pf‘l sin(¢ — w) 7.7
with p = BA.
We proceed in terms of the matrix triad {e;, ez, e3}, where
o;
i == 7.8
€ 2 (7.8)

as introduced in Section 2.2. This triad has the property that it is orthonormal
with respect to the usual su(2) metric

g(a, b) = —2Tr(ab), (7.9)
that is
glei, e;) = 5. (7.10)

By virtue of the isomorphism between su(2) and so(3) (cf. Appendix A), it is
evident that this triad {e;} of 2 x 2 matrices corresponds to an orthonormal triad
of vectors {e;} in the ambient space R3.

The relation (6.19) yields

ri=o7lg\®, i=1,2, (7.11)
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where r = r - e = x'(u, v)e; + 1°(u, v)ez + x3(u, v)es is the generic position
matrix. Insertion of the g; as given by (7.1) into (7.11) yields

ry=—t, Iy= )\'z(sinwtl — Ccos W 13), (7.12)
wherein the ‘moving’ orthonormal triad {¢;} of matrices
=07 lgd (7.13)

has been introduced. If we adopt the usual decomposition
€1
ti=t-e, e=|e (7.14)

then the su(2)-so(3) isomorphism implies that {¢,#,#]} constitutes an
orthonormal triad in R3. The relations (1.28) of Section 1.2 for the orthonormal
set {A, B, C}, in view of (7.12), indicate that

=—t3, B=t, C=AxB=—t; xt, =—t,. (7.15)

The preceding gives rise to a simple geometric interpretation of the eigen-
function . Thus, the relation (7.13) implies that the orthonormal triad {¢;} is
related to the rigid triad {e;} by the rotation

P SO (7.16)

where ®® is the usual SO(3) eigenfunction of the so(3) linear representation.
The matrix version of the Bécklund transformation (7.6) reads

r=r+ 2;\2—1’?(sincp t, — cos @ t3). 7.17)

On use of (7.13) and the Sym-Tafel formula, the Biacklund transformation may
be rewritten as

ip

o -1
r—r——)\z_’_pzd) Qo
- 1 A (7.18)
=¢7 1o, + 10— ———1
)\+ Q )\2+p'2
=(PQP) (pQP).
where
. [—cos¢ sing . 1
= = =—-. (.1
Qo ( sing COS(P>, Q=N+inQo, p T (7.19)
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Substitution of the Sym-Tafel relation r’ = &'~!®) into (7.18) and integration
now yields

' =p0,09?, (7.20)

where Q1(u, v) € SU(2) is an arbitrary matrix independent of \. By construc-
tion, (7.20) constitutes a form-invariance of the linear representation for the
sine-Gordon equation if Q, is chosen appropriately. Thus, insertion of ¢’ as
given by (7.20) into the primed version of the linear representation (7.1) leads
to

gP=Pg+P;, i=12 (71.21)

where P = Q;Q. Since the solutions w and w’ of the sine-Gordon equation
are independent of A, it is admissible to sort the relations (7.21) with respect to
various powers of \. In particular, for i = 1, the terms proportional to A? provide
the vanishing commutator relation

[o3, Q11 =0, (7.22)
while, for i = 2, the terms proportional to A~! yield
0;=1 (7.23)

since o’ = 2¢ — w.
Thus, the A\-dependent gauge transformation (7.20) reduces to

® > & = pA1+ipnQo)d, (7.24)

where the presence of the factor p(\) guarantees that det &’ = 1, as required for
the validity of the primed Sym-Tafel formula. Hence, p = p(\) serves merely
as a normalisation factor and does not appear in the relation (7.21).

The invariance ¢ — &’ embodied in the gauge transformation (7.24) rep-
resents the prototype of a matrix Darboux transformation [82, 231-233, 251,
269, 270, 319, 393, 395]. The gauge matrix P is called a Darboux matrix. The
rationale for this terminology is that the invariance (7.24) may be regarded as
a matrix version of the classical Darboux transformation.

For the general theory to be developed subsequently in Section 7.2, it proves
convenient to present here an alternative expression for the matrix Qo dependent
on the swivel angle ¢. To this end, it is observed that the system (7.7) may
be transformed into a pair of compatible Riccati equations via the change of
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variable
¢ = 2arctan . (7.25)

This implies that the swivel angle equations (7.7) are linearisable. Indeed, &
may be identified with the ratio

_&
¢2’

where ¢ = (d; $3)T is a solution of the Lax pair (7.1) with parameter A = —ij..
In terms of &, the matrix Qg is parametrised according to

& (1.26)

1 £2 -1 2¢
o=gri( @) 720
where, on use of (7.26), we obtain the relation!
Vo u!l, w=(® ’"4’2). 7.28
Qo a3 ( & b (7.28)

Thus, we have established the important fact that the classical Bécklund trans-
formation for pseudospherical surfaces may be formulated entirely in terms of
eigenfunctions of the associated su(2) linear representation according to, on use
of (7.18),

/ I

— -1 -1
r=r— N f 2 O VYRV T D, (7.29)

7.1.2 NLS Surfaces

In Chapter 4, the NLS equation was generated in connection with the motion
of a curve r = r(s, t) with time evolution of the s-lines given by

v =r, =«b. (7.30)

The 1% and 2™ second fundamental forms of the NLS soliton surfaces swept
out by such a motion were shown to be given by (4.26) and (4.28) where, as
indicated in Section 4.3, ¢ < b so that

I = ds? + «%db® (7.31)
Il = —k ds? + 2kt dsdb + (Kss — KT2)db>. (7.32)

1 It is emphasised that W is not itself a matrix-valued eigenfunction. The significance of ¥ will be
elaborated upon in Section 7.2.
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It is recalled that the associated Gauss-Mainardi-Codazzi equations lead, on
use of the Hasimoto transformation

q= ke /745, (7.33)

to the NLS equation

1
iqy + qss + Elqlzq =0. (7.34)

In Section 4.3, the Backlund transformation for NLS surfaces was constructed
via the requirement of form-invariance of the fundamental forms (7.31) and
(7.32) under a transformation of the position vector of the type ¥ = r + a2 +
Bn + b subject to the constraint that the length [~ — 7| be constant. Thus, it
was established that, if X : r = r(s, b) is a seed NLS surface, then the position
vector r’ of a second NLS surface is given by?

, 0o (-1, 2@ . 23])
= = - — b .
W (|§|2+1' EE+1 |§|2+1)’ (7.3
where
E=tei/mds, §=5’1 (7.36)
b2

and the eigenfunction ®|,..\, = (b1 $2)" satisfies the standard linear represen-
tation for the NLS equation, namely (cf. (4.167)),

1/iN q
b, = - b =g
*T3 (—q —i)\) 81
. '(ll 2 )\2) ) N (7.37)
3191" — 1qs — A

Pp=z| 2 gy |0 = ga®
2\ ig;+N  —i(3lgP = )N)

with A= .

To derive the su(2) representation r' of the position vector 7/, it is recalled
that the fundamental forms (7.31) and (7.32) may be obtained from the linear
representation (7.37) by evaluation of the eigenfunction ¢ at A = 0.

The relation (6.19) shows that the su(2) analogues of the tangent vectors 7;

and r; to the NLS surface corresponding to the fundamental forms (7.31) and

2 For notational convenience, we have, interchanged & and .
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(7.32), wherein A = 0 are given by

re=® g \®=-n1

0 (7.38)
ry = @7 g0 ® = R(g), + (g,
where the matrices #; are again introduced according to
=90"'¢ed (7.39)

and in (7.38) are understood to be evaluated at \ = 0.
The relations® r; = t and r, = kb imply that the su(2) versions of the unit
tangent and the unit binormal are

t=—f, b=cos(f7ds)r,+sin(f1ds)n, (7.40)
while that of the principal normal n reads
n = sin(J vds)t, — cos(f Tds) 1. (7.41)

It is readily verified that (¢, n, b) as given by (7.40), (7.41) constitutes a right-
handed orthonormal triad with respect to (7.9) and the usual matrix commutator.
Insertion of these t, n, b into the su(2) version of the Bicklund transformation
(7.35) yields

' 30\0)( 2R(E) 23(€) €2 -1
r—2 t

t3) . (7.42)

= - n+
Mol \JEP+1" JEP+1°27 [EP+1

It remains to obtain the sw(2) version of the Bicklund transformation for
NLS surfaces associated with the linear representation (7.37) with A 5 0. To
this end, it is observed that this linear representation may be generated by a
Lie point symmetry applied to (7.37)\-o. Indeed, the NLS equation is invariant
under the change of variables (cf. Section 4.2).

s>s*=5+2b, b>b*=b, q—q*=qet™),  (743)

where \ is a real constant. This invariance is now supplemented by the gauge
transformation

(7.44)

. e 3IMs+\D) 0
D* = GOy, G = 0 e~ 3IMs+ND)

3 Here, we use gothic symbols for the su(2) analogues of the unit vectors ¢, # and b.
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which generates precisely the starred version of (7.37), namely

1/ i .
¢* =__( lx q )¢*=gr¢*

=%

—g* —ik

(7.45)

* 1 l(%lq*|2 - )\2) iq:‘ - )\q* o* * J K

¢ o=k =% (1) %2 2 =g2(I> .
igh +\g —i(31g*1> = \?)

It is readily shown that $* = G®|,_,, is a solution of (7.45) with A > \j =
A+ Ao

The transition from unstarred to starred variables merely corresponds to a
change of the coordinate system on the same surfaces, thatisr*(s*, b*) = r(s, b).
The new velocity condition (4.81), namely

v =rp = kb — 2\, (7.46)

has, due to the introduction of the parameter A, a constant component tangential
to the s*-parametric lines. It is emphasised that the s- and s*-parametric lines
coincide. Hence, the orthonormal triad {¢, n, b} is unaffected by the transfor-
mation (7.43).

Now, the starred version of (7.39), namely

1“."l = d>*‘1e,~(b* = <D'1|)‘=OG'1e,'G D= (7.47)
shows that the orthonormal triads {#;} and (¢} are related by

tf =sinzt, +coszt
17 =coszt; —sinzt (7.48)

t; =13,

where z = \(s + A\b). Accordingly, the Bicklund transformation (7.42)
becomes

s (29%(&*) . E) L IRl
A T v o W R T L R o

t;), (7.49)

where £* = ¢'2£ and we have taken into account that \ is real.
On introduction of the matrix

o 3
V= -, (7.50
(d»z ¢:) )
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it is seen that the Bécklund transformation (7.49) for NLS surfaces may be
rewritten compactly as

r=r+ ﬁ%v—‘w@w-‘@ (7.51)
in close analogy with the form of the Bécklund transformation (7.29) for pseu-
dospherical surfaces. In fact, if W is real and Aj is purely imaginary, then (7.29)
and (7.51) are identical in form. Indeed, in the next section, it is established
that the Bicklund transformation for surfaces associated with the entire AKNS
class r = —q is generically of the form (7.51) and (7.29) is a canonical reduction
thereof corresponding to § = gq.

The preceding suggests that the Bicklund transformation of the eigenfunction
®* of (7.45) should be a ‘complexified’ version of (7.24). This is indeed the
case. Thus, if we set, as in (7.28),

Qo = Va3 ¥™! (1.52)

but where W is now given by (7.50), then (7.51) together with the Sym-Tafel
formula yields

/ 13()\8) *—1 *
= ——¢ [
r=r+ T Qo

A =R,
= &* 1} + O* I[N — RO — iSO Qo] 1 ®* — |T——)f—;r7)
=(pQ®") (pQP"),, (1.53)
where
1
Q=N—-ROANI—iINH)Qo, p= T)\—_)\Eﬂ (7.54)

Insertion of the Sym-Tafel relation ' = ®*~1®} into (7.53) and integration
gives, in analogy with (7.20),

" = pQ,;Qd*. (7.55)

Substitution of ®* as given by (7.55) into the primed version of the linear
representation (7.45) produces, in analogy with (7.21),

g'P=Pg +P; i=12, (1.56)

where P =.0;Q. The relations (7.56) show that, as in the pseudospherical
case, Q1 =k Accordingly, the action of the Bicklund transformation at the
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eigenfunction level for NLS surfaces can be represented by a matrix Darboux
transformation, viz.

P* = p[(A — ROGNT — iSA\H) Qo] D™ (1.57)

To summarise, we have established that the Béacklund transformations for
both pseudospherical and NLS surfaces may be interpreted as matrix Darboux
transformations acting on the eigenfunctions of the underlying su(2) repre-
sentations. In the following section, we present a set of algebraic conditions
which define uniquely the elementary matrix Darboux transformation for the
important AKNS class r = —g. It is shown that these conditions admit solutions
which give rise to the particular forms (7.24) and (7.57).

Exercises

1. Let the two su(2) matrices S and T be related by the similarity transforma-
tion

T =07150, ®eSUQ).
Show that the vectors S and T obtained from the decompositions
S§S=S-e, T=T-e
are connected by the rotation
T=0®'s
with rotation matrix (cf. Appendix A)
o8 = —2Tr(® 'e;ey) € SO3).

2. (a) Show that the NLS equation (7.34) is invariant under
—ic(s—cb)

§s—>§—2cb, b—>b, q— qe

where c is a real constant.
(b) Verify that the NLS linear representation (7.37) is invariant under the
preceding change of variables augmented by the gauge transformation

1.
e—ixc(s—cb) 0
¢ — ( 0 e%ic(:—cb) ¢

and the change of parameter A\ — \ 4 c.
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7.2 Darboux Matrix and Induced Bicklund Transformations
for the AKNS System. The Constant Length Property

It has been shown that the Bicklund transformations for pseudospherical and
NLS surfaces induce a gauge-invariance of their linear representations of the
form

¢ > &' =pPN)D
= p(AN1 + Py)® (7.58)
= p[(A — R(\o))1 — iS(No) Qo] P,

where

(1.59)

QO — \110'3\11—1, W= (d’l —¢2>’ p= 1

b B TN =)ol

and ¢, ®|,_,, = (d; ¢$2)" are solutions of the AKNS scattering problem

Ly
O, =~ ( g )cb (7.60)
—g =ik

with parameters A, Ao, respectively. In the pseudospherical case, g = w; and ¢
are real while )\ is purely imaginary. The form of the transformation matrix P
may, in fact, be generated by algebraic constraints. These constraints are stated
in Theorem 28. They are subsequently shown to be consonant with the con-
struction of a matrix Darboux transformation valid for the entire AKNS class
r = — g. The Sym-Tafel formula may be adduced to translate the matrix
Darboux transformation into a Bicklund transformation which acts-on the
associated AKNS surfaces.

7.2.1 An Elementary Matrix Darboux Transformation

The structure of the transformation matrix P is described in the following result
[269,270]:

Theorem 28 (An Elementary Matrix Darboux Transformation). Consider the
linear 2 x 2 matrix equation

o, = g(\)?, det & = const # 0, (7.61)

where the matrix g(\) € s1(2) has entries polynomials of degree n in a(complex)
parameter \. Let &pyy and dpyp be two known vector-valued ‘eigenfunctions’
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of the equation (7.61) corresponding to the parameters Ny # \, and P(\) =
A1+ Py, Py independent of \, be the 2 x 2 matrix uniquely defined by the linear
algebraic system

PO\ = M1+ Po)dpy =0

(7.62
P(\2)dpy = 21+ Po)dyz = 0. )
Then, the transformation
d— ' =PND
/ _1 - (7.63)
g\) = g'W) = PMNgMNPT N+ P(MNPT'(N)
is such that
i &N esi®)
(ii) the polynomial structure of (7.61) is preserved.
Proaf. (i) It is noted that
Tr(g) = Tr(P;d™") = [In(det d)]; = O, (7.64)

since g € 51(2) ¢ Tr(g) = 0. Thus, det ® = const. In the following, we assume
that det ® = 1 without loss of generality.
Now,

Tr(g") = Tr(P', &1y = [In(det &’ )]s = [In(det P)];, (7.65)
where
det P(\) = (A — A)(A — \2) = const. (7.66)

Accordingly, Tr(g’) = 0 whence g’(\) € si(2).

(ii) If ®()) is a fundamental solution of the linear equation (7.61), then there
exist constant vectors v; and v, such that

by = M\)v, i=12, (7.67)

where ¢y; are the eigenfunctions of (7.61) corresponding to the parameters \;
which determine the matrix P via (7.62). Now,

PNy = P)PN)vi = PNy =0 (7.68)
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which implies that
S \)vi = [P N)vil, =0, (7.69)
whence (cf. Exercise 4)
.\ (\) =0, (1.70)
where & is the adjoint of @’ obeying ®'®’ = det ®’1. On the other hand,
. &' = PgP+ PP (1.71)

constitutes a polynomial in A of degree n 4 2 with d>;()\)&>’ M=\, =0 and
hence may be decomposed according to

YLd =N =N\ —N)g’\) =detP g’ (1.72)
so that
oL
7 a/—1 = S — o 7
(oo vy g (1.73)
is, as required, a matrix-valued polynomial of degree » in \. O

It is important to note that the matrix Darboux transformation of Theorem 28
may be conjugated with a A-independent gauge transformation

' —» o' = P, % =0, detP, = const. (7.74)
Such a gauge-matrix P; may be shown to play a crucial role in connection with
matrix Darboux transformations for the NLS eigenfunction hierarchy.
Theorem 28 is readily extended to the case when g(\) is a Laurent polyno-
mial, that is a polynomial in A\ and A\~!, and may be generalised for a transfor-
mation matrix P which is a polynomial of arbitrary degree N in A. In the latter
case, P is determined by 2N eigenfunctions which define the kernel of P at
A=\, i=1,...,2N. Matrix Darboux transformations of this type give rise
to the multi-soliton solutions of the AKNS hierarchy [270]. Particular choices
of the parameters \; also lead to breather solutions and their associated surfaces
(cf. Section 1.4).
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7.2.2 Invariance of a su(2) Constraint

It is evident from Theorem 19, that from the point of view of Euclidean geom-
etry, we are primarily interested in linear equations of the form

¢, = g(N)D, (1.75)

where A is real and g(\) € su(2). However, on occasion, it is necessary to relax
this condition and subsume it in the requirement that

gM)\=x € su(2). (7.76)

Thus, if g(\) is a Laurent polynomial in A, then (7.76) requires that it is of the
form

g =) Ng, g esuQ). (1.77)

i=—m

In general, the matrix Darboux transformation (7.63) does not preserve the
requirement (7.76). However, it is readily shown that there exists a constant
matrix C such that

dQN) = ADNC, iA =0y (7.78)

Conversely, the constraint (7.78) on the linear matrix equation (7.75) ensures
the condition (7.77).

If ¢ is a vector-valued solution of (7.75) with complex parameter Ao, then a
natural choice for the parameters and eigenfunctions in Theorem 28 is

b=, A =N\

- - (1.79)
b = Ad, A2 =N\
The solution of the algebraiq equations P(\;)¢y; = O then reads
- AddTA
POY = A= Do)+ (o —do) 20 7.80)
whence, on introduction of the matrices
- & —b
Qo =Yao ¥, W= (b dp) = M B (7.81)
b b

we arrive at the representation

P(\) = (A — R(\o)) 1 — iS(No) Qo (7.82)
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This is precisely the form of the transformation matrix P for pseudospherical
and NLS surfaces. It is noted that even though W is not a matrix-valued eigen-
function, its columns are vector-valued eigenfunctions for A = A\; and A = \,,
respectively.

It remains to be proven that the matrix Darboux transformation generated by
(7.82) does indeed preserve the constraint (7.78). Here, we use the identity

P(\) = — AP(V)A (7.83)

which follows directly from (7.80). This relation together with (7.78) yields

®'(\) = PVDN) = [-APNVAI[AGNC] = ADNC  (7.84)

sothat &' satisfies the primed version of (7.78) and hence g’(\) is of the required
form.

In the simplest case, if we consider the action of the matrix Darboux transform
P(\) =N+ Pyon

P, = gM)P = (g1h + 80)?, (7.85)
then the terms proportional to A? and \ in
gMPN) = PN + Ps(N) (7.86)
deliver the transformation formulae
g8 =g+ [P, &1], g =g (1.87)

Hence, it is consistent to assume that g is constant and gg lies in the image of g,
under the commutation operation so that g is of the form [ -, g;]. In particular,
the AKNS scattering problem

b, = (')‘_ 1 )<b (7.88)
—-q —ik

satisfies these basic criteria and accordingly, with regard to its invariance under
an elementary matrix Darboux transformation, may be considered canonical.



282 7 Bdcklund Transformation and Darboux Matrix Connections

7.2.3 The AKNS Class r = —q and Its Elementary
Bdcklund Transformation

We now return to the AKNS class » = —g associated with the NLS hierarchy
as introduced in Section 6.1, namely (cf. (6.43))

( ‘f) = (=D)N*LN (‘Z), (1.89)
-3),, 7

where L is the NLS recursion operator defined by
(7.90)

There, the NLS hierarchy was derived via the compatibility condition between
the scattering problem (7.88) and the adjoined time evolution

D, = l(iA_O‘) é (\) ) ®, (7.91)
2\-B) —iA()

where A and B are polynomials of degree N in A\ and Ay =(—1)¥*! It is
crucial to note that the polynomials A and B are determined by this compati-
bility condition. Thus, any transformation which leaves invariant both the NLS
scattering problem (7.88) and the time evolution (7.91) induces an invariance
of the NLS hierarchy.

Now, it has already been established that the elementary matrix Darboux
transformation (7.63) with P(\) given by (7.82) preserves (7.88). Moreover,
the time evolution (7.91) constitutes the most general form of a linear matrix
equation of the type (7.75) subject to the constraint (7.83), except for the par-
ticular choice of Ay. It may be verified that the latter is preserved under the
matrix Darboux transformation, that is, A}, = Ay. This result together with the
induced invariance for the NLS hierarchy is incorporated in the following:

Theorem 29 (An Elementary Matrix Darboux Transformation for the NLS
Hierarchy). The matrix Darboux transformation (7.63), (7.82) leaves form-
invariant the linear representation (7.88), (7.91) of the NLS hierarchy. The
induced invariance of the NLS hierarchy itself is given by

)

_—, 7.92
o + oo (7:92)

q—q =q—430N)
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where & = (¢ &) is a vector-valued solution of the linear representation with
parameter \g.

Proof. It only remains to establish the validity of (7.92). This is a consequence
of the relation (7.87); which yields

q' =g —2i(Po), (7.93)
and hence (7.92). a
To obtain the auto-Bécklund transformation for the NLS hierarchy explicitly

in terms of just g and ¢’, it is observed that g’ as given by (7.92) depends only
on q and the ratio

$1
£ =— 7.94
= 759
via
9 =q- 43(7\0)———§ : (1.95)
g€+ 1
The quantity £ satisfies the Riccati equation
&=2 e+ 2g2, (7.96)
2 2
while inversion of (7.95) yields
£ = 4 —4 (1.97)

" 2300) F/A3N0R — g — g

Insertion of the latter expression into (7.96) produces

g, — q: = R0)g' — q) £ "—';—"\/4300)2 “ld —qP. (198

This is the spatial part of the auto-Bicklund transformation associated with
the elementary matrix Darboux transformation for the NLS hierarchy. It is
the same for all members of the hierarchy. However, the temporal part of the
Bicklund transformation depends on the particular member of the hierarchy
under investigation. For instance, the time evolution (6.58) with x — s for the
NLS equation

1
igy + gss + Elqlzq =0, b=t (7.99)
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gives rise to the Riccati equation
& = 33igs — Mog) +i(31gI” — M) = 3(iGs + Nog)E%,  (7.100)
which, on substitution of £ from (7.97), may be written as

ql

—q
Uq"? +1q1»

gp— g = —RNo)g, —gs) +i 7

(7.101)

4.+ qs
+ n%\/@s(w -1lg’ —ql?.

It may be verified directly that the relations (7.98) and (7.101) are compatible if
and only if g satisfies the NLS equation (7.99). This is a consequence of the fact
that the Riccati equations (7.96) and (7.100) may be regarded as a nonlinear
Lax pair for the NLS equation. Compatibility guarantees, in turn, that ¢’ is
likewise a solution of the NLS equation so that the pair of equations (7.98),
(7.101) constitute a strong auto-Bécklund transformation.

In conclusion, we recall that the NLS hierarchy (7.89) reduces to the mKdV
hierarchy if N is odd and g is real. In that case, it is consistent to assume
that ¢ is real if Ag = —ip is taken to be purely imaginary. The transformation
(7.92) reveals that these reality constraints are preserved by the matrix Darboux
transformation. Now, the mKdV hierarchy may be represented in a compact
conservative form, namely

9y = [R()]; (7.102)
where R(q) is a polynomial in g and its s-derivatives. Hence, if we set
q = s (7.103)

the evolution equations (7.102) may be integrated to obtain the potential mKdV
hierarchy

gy = R(wy). (7.104)
The spatial part of the auto-Bicklund transformation, that is
/ (@ + o) 2 / 2
(0 — W) = :t—z— 4p? — (0’ — w)?, (7.105)

may also be integrated once to produce

o - A )
( > )s_:i:p,sm( > ) (7.106)

In the above, time-dependent ‘constants’ of integration have been neglected.
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The relation (7.106) provides the spatial part of the auto-Bicklund transfor-
mation for the potential mKdV hierarchy. By construction, it coincides with
one of the classical Bicklund relations for the sine-Gordon equation. This is
because the latter is nothing but the first ‘hyperbolic’ member of the potential
mKdV hierarchy. It is recalled that the potential mKdV equation arises in con-
nection with a compatible motion of pseudospherical surfaces described by the
sine-Gordon equation (cf. Section 2.4).

7.2.4 The Constant Length Property

It remains to analyse the geometric implications of the elementary matrix
Darboux transformation. Thus, let us consider compatible linear equations of
the form

b, =M, v=1,2, (7.107)

where the matrices g, € su(2) are Laurent polynomials in the real parameter A.

If we choose det & = 1, then the above Lax pair is associated with a surface
in R3 through the Sym-Tafel formula

r=07"1d, (7.108)

as set down in Theorem 19. The normalised matrix Darboux transformation

1
P = PAN)® = pM\)PN)D, 7.109
T PV® = VP (7.109)

where P(\) is given by (7.82) and
det P = p=2 = (A — No)(\ — o), (7.110)

leaves invariant the Lax pair (7.107) and, accordingly, preserves the structure of
the fundamental forms I, II associated with the surface X. The position matrix
of the new surface X' is given by

=010, = o7'oy + pTip 1+ 07 PTI PO, (7.111)

whence, on insertion of p and P, we obtain the compact representation

(o)

2 _ o lyevlo 112
TSWE o3 (7.112)

r'=r+i
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for the Backlund transformation linking the surfaces ¥ and ¥’. The components
of the generic position vector r’ = x"e; + x¥e; + x¥e3 to X’ are given by

x = i Te(®} o0 1) (7.113)
so that, in terms of the orthonormal triad ¢; determined by
=t e=d"'e®, (7.114)

the Bicklund transformation becomes

(o) (25R(§) oo @) + [
I\ = Nol? €12+ 1

EP+1" P +1"
Remarkably, it is seen that the magnitude of the distance vector ¥ — r, namely

RIGD]
A~ Nof?

r=r-2

z3). (7.115)

F—rl=2 (7.116)

is constant. This result is embodied in the following theorem [354]:

Theorem 30 (The Constant Length Property). The Bicklund transformation
(7.112) associated with the elementary matrix Darboux transformation (7.109)
Jor the Lax pair (7.107) is such that the distance between corresponding points
on the surfaces X and ¥’ is constant.

It should be emphasised that the constant length property holds for any class
of surfaces associated with a Lax pair of the form (7.107) and is not restricted to
surfaces linked tothe AKNS class r = —g. The Bécklund transformation (7.115)
generalises that obtained for the canonical NLS equation via an alternative
geometric approach in Chapter 4.

Exercises
1. Prove that

det PON) = (A — NN — Ap),

where the matrix P(A) = A1+ P is determined by the linear algebraic
system (7.62).

2. Prove that, if ®()\) is a fundamental solution of the linear equation (7.61),
then there exist constant vectors v;, i = 1, 2 such that

¢)[,'] = (D()\,')v,', i=1,2,
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where the ¢y are eigenfunctions of equation (7.61) corresponding to the
parameters A;.
3. The adjoint of a matrix B € R™"™ is defined by

[ Bu By By Bim
R " Bi_yy -+ Bi_tici Bi—tis1 -+ Biim
B = (=1 det | 2711 J J Jj
y =D Bjt11 c++ Bjyri-1 Bjttigr *c Bjtim
B Bpni-1  Bmit1 Boum
Show that
BB =detB1.

4, If A, B € R™™ and v € R™ then show that

Av=20

Bv=0}

5. Show that an equivalent characterisation of the condition (7.77) is that
g =—AgMA, iA=ay
and that this condition is, in turn, equivalent to (7.78). Verify the identity

P(\) = —AP(MA.

7.3 Iteration of Matrix Darboux Transformations.
Generic Permutability Theorems

In this section, we show that matrix Darboux transformations can be iterated in a
purely algebraic manner and that N iterations of the elementary matrix Darboux
transformation may be interpreted as a nonlinear superposition of N elementary
matrix Darboux transformations applied to the same seed solution. This obser-
vation is exploited to give new solutions g in terms of a seed solution ¢
together with N Bécklund transforms qfl), cees q)(\;) and the corresponding
Bécklund parameters Ay, ..., Ay, that is

@™ = q(N)[q, qiﬂ), M]- (7.117)
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The simplest such superposition principle is obtained for N =2 and gives rise
to a permutability theorem generic to the AKNS hierarchy r = —4. If ¢ is real
then this reduces to the classical permutability theorem for the sine-Gordon
equation. In geometric terms, at the surface level, the iterated matrix Darboux
transformation will be seen to generate a suite of surfaces such that each pair
of neighbouring surfaces possesses the constant length property.

7.3.1 Iteration of Matrix Darboux Transformations

Here, we confine ourselves to the geometrically relevant case (cf. Subsection
7.2.2)

O, = gD, g(\) € su2) (7.118)
which admits the elementary matrix Darboux transformation
® — ¢! = P'MV)0, (7.119)
where P! = A1 + P| is defined by
P!\ =0, P'(ADA =0. (7.120)

The superscript ! indicates that the Darboux transformation (7.119) is generated
by the eigenfunction ¢; with parameter \;. A second application of the matrix
Darboux transformation requires the knowledge of a vector-valued solution ¢,
of

o! =g'e! (7.121)

with parameter \,, where g! is the Darboux transform of g under (7.119). The
second Darboux matrix is then given by

P2(\)dia =0, PR2(A)Ad =0 (7.122)
which defines the corresponding transformation according to
® — o2 = P2\)d! = P2(V)PI(V)D. (7.123)

Now, the key observation is that for Ay # A, A1, the Darboux matrix P 1 \2)
is regular, that is

det P1(A2) = (A2 — N\i)(A2 = \) #0, (7.124)
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and hence P1(\,)d()\;) is a fundamental solution of (7.121) if ®(X\5) is a funda-
mental solution of the seed equation (7.118). Consequently, ¢;, may be regarded
as the image

d12 = P'(\2)d, (7.125)
of an eigenfunction ¢, while the Darboux matrix
PO\ = PR2OOPION) (7.126)
satisfies the relations
PO\)$; =0, P(\)AH =0, i=1,2 (7.127)

by virtue of the definitions (7.120) and (7.122). On the other hand, since P(\)
is of the form

P(\) =\ 4+ \P; + Py, (7.128)

the property (7.127) determines P(\) uniquely. If we take into account that ¢,
also generates a matrix Darboux transformation of the form (7.119), (7.120),
viz.

d - 0% = P2\, (7.129)

then we conclude that conjugation of two elementary Darboux transformations
leads to a nonlinear superposition of two elementary matrix Darboux transfor-
mations applied to the same seed solution.

The above result may be readily generalised to yield:

Theorem 31 (The Iterated Matrix Darboux Transformation). N applications
of the matrix Darboux transformation (7.63) with parameters \1, . . ., Ay take
the form of the matrix Darboux transformation

&> oM =P\

7.130
g\ = g™\ = POVgMPI(N) + P,A)PI(N), (7:130)

where the Darboux matrix

N-1
POY=\"+ ) NP (7.131)
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is defined by the solution of the linear algebraic system
P\ =0, PA\)AH =0. (7.132)

The elementary matrix Darboux transformations commute in the sense that
the iterated matrix Darboux transformation is independent of the order of
application.

Proof. The Darboux matrix associated with N successive applications of the
elementary matrix Darboux transformation reads

PO =P PRPOOPIN (7.133)
with the definitions
P\ =0, PIi(A)Ad.; =0. (7.134)

Since the eigenfunctions ¢;...;+; may be regarded as the images of eigenfunc-
tions ¢ under i elementary matrix Darboux transformations, that is

brigr = PUE41) - P 1) it (7.135)

the Darboux matrix P(\), which is of the form (7.131), indeed satisfies the
conditions (7.132). The latter are symmetricin 1, ..., N and hence the order in
which the elementary matrix Darboux transformations are applied is immaterial.
Moreover, it is noted that both P(\) and —A P())A satisfy the defining relations
(7.131), (7.132). Consequently, P(\) = —A P(A)A so that the condition g(\) €
s1(2) is preserved.? O

The iterated matrix Darboux transformation acting on Lax pairs of the form
(7.107) induces iterated Bicklund transformations for the associated soliton
surfaces. Thus, in principle, it is first necessary to normalise the matrix Darboux
transformation in such a way that &) € SU(2) and then apply the Sym-Tafel
formula. However, since we are only interested in a decomposition of the new
position matrix

A ) (7.136)

4 This is evident since the building blocks of the iterated matrix Darboux transformation leave
invariant the geometric constraint g(A) € sI(2).
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into Pauli matrices which are trace-free, it is convenient to introduce the trace-
free part of a matrix Q according to

oM=0-= Tr(Q)l (7.137)

The new position matrix r™) then reads
rM=r 4+ o-lplp |, (7.138)

By construction, the difference matrix 7Y — r may be written as a sum of
matrices which obey the constant length condition, viz.

Q)P
_r—-Zs,, —2Tr(s?) = |[>\( )3]|4, (7.139)

since at each step of the iteration procedure
R e P (7.140)

the new surface £ and the old surface £¢~D possess the constant length
property. Hence, one can think of the surfaces £, . .., ™ as being generated
by the vertices r; of a polygon

RG]

P\——)\'P (7.141)

[ro,r1, ..., 1], Iri —ri_1| =2

as the intial point ro moves along the seed surface £©@.and the vertices r; —r;_,
swivel appropriately. The matrices s; are best written in terms of the matrix
Darboux transforms

D = pliny... PI)D, @ = (7.142)
associated with the surfaces . Thus, the transformation formula (7.138)

reads

rtM) =r

nt

N
-1 |:Z(P1--~N_._Pl)"lplu-N___Pl-~-i+lP)\l---iPl-~-i—l___Pl] &

(7.143)
from which we conclude that

s = [@0D] 7 [P |, (7.144)
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The above decomposition has been discussed by Sym [354] in the context of a
class of generalised AKNS scattering problems. It is emphasised, however, that
the decomposition formulae (7.139), (7.144) are generic in the sense outlined
below.

The general form of a Darboux matrix associated with a Lax pair which is
polynomial in a constant parameter \ and its inverse A~! is given by

N
B\ = Z N B, (7.145)
i=0

If Py is regular,’ then this may be factorised into a product of a gauge matrix
and a Darboux matrix of standard form, that is

N-1
BO\) = PyP(\) = Py <)\N + Z N P,-). (7.146)
i=0

Even though the solutions of the underlying nonlinear equations are affected
by gauge matrices, the surface geometry is independent of Py since

M =r 4 7P 1B  =r + 7' PIRD" =M. (7.147)

This underlines the generic nature of the preceding analysis.

7.3.2 Generic Permutability Theorems

The fact that the iterated matrix Darboux transformation is symmetric in all
eigenfunctions ¢y, ..., ¢y has the important consequence that the Bianchi di-
agram associated with the corresponding Bicklund transformation commutes.
Here, we return to the AKNS class r = —4 and establish a generic permutabil-
ity theorem. The classical permutability theorem as originally obtained by
Bianchi for the sine-Gordon equation is recovered as a specialisation.

It is readily seen that the analogue of the transformation formula (7.93) is
given by

g™ =g — 2i(Py_1)1p. (7.148)

5 Note that singular matrices Py are relevant in connection with the Korteweg-de Vries hierarchy
which governs surfaces in 2+4-1-dimensional Minkowski space.
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The solution of the linear algebraic system (7.132)

g1 - AVTlg Y ( (Po)11 -M'&
-1 § D SALED Wy (P12 A
- 5 : : = (7.149)
Ev 1 - AVTTgy NN (Pn-111 —\vén
N VAL Va3 AL VY-V Ay
/ & 1 - AN7lg A (Po)x N
-1 & .- —Xllv_l Xf’—lél (Po)2s _;‘llvg1
v 1 o AEy AN (Pn-1)y1 —\y
-1 & --- _Xx"l Xx—IEN (Pv-1)n —XxéN

where §& = ¢! /d? is readily obtained by means of Cramer’s rule. Thus,

& 1 - AVl Ny

-1 § DV W

v 1 o MT'Ev Mgy

-1 & - =ANTONN
Py_1)py = (7.151)
Prde =g g A

-1 E e T N

v 1 - AE AT

-1 & - —XZ*I Xﬁ‘lé,v

For N =1, the new solution of the AKNS hierarchy is therefore given by

) &
=g —430\)—2L 7.152)
ql q ( 1)1 |§1|2 (

which is in agreement with (7.92). At this stage the subscript on ¢! is redundant,
but will be useful in the sequel. In the case of two eigenfunctions, the new
solution reads

g?® =q - 21%, (7.153)
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where
0 =M —A)A2 = A+ A — M = A)(E - E)EE
+ A1 = MDA = M)A — M)A + [E1DE
= A2 = )2 — M)A — M)A + €&, (7.154)
R =\ — M) — M)IE1 — &
=\ = M+ &1 + 1&12).

It is noted that g@ = ¢{V if \, = 0. In general, ¢) may be formulated as
g™ =q™[q, &, ..., & My AD (7.155)

To eliminate the eigenfunctions from this expression, it is observed that each
eigenfunction ¢; generates a new solution

&

O = g —430) ——. 7.156
qi q ( l) 1 + |§,’|2 ( )
Hence, if we solve for the eigenfunctions to obtain
a _
£ =— L — 4 -, (7.157)
230) F 14302 - [ — g
a nonlinear superposition principle is retrieved in the form
g™ = q™[q, 4", N]. (7.158)

Accordingly, we have the following result:

Theorem 32 (Superposition Principles for the AKNS Hierarchy). The iterated
matrix Darboux transformation (7.130)—(7.132) for the AKNS hierarchyr = —§
is associated with explicit nonlinear superposition principles which express a
new solution ¢™) in terms of a seed solution q and N Bécklund transforms
qgl), cees qI(J) generated by the Bdcklund transformation (7.98) and its temporal

extensions (7.101), . . . with parameters \1, ..., Ax.

It is remarked that for N = 2, the above superposition principle represents a
generalisation of the classical permutability theorem for the sine-Gordon equa-
tion. To justify this assertion, it is convenient to turn to the potential mKdV
hierarchy (7.104) for = [ g ds. Instead of integrating the superposition for-
mula (7.158) to obtain an explicit superposition principle for w, we exploit the
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fact that the sine-Gordon equation is the first ‘negative’ member of this hierar-
chy. We therefore focus on the transformation properties of the corresponding
‘v-evolution’

(7.159)

i : —cosw sinw
o, = EXS(w)d), S(w) = ( )

sinw  cosw
The action of the iterated matrix Darboux transformation on S(w) is given by
S(0™) = PS(w)Py . (7.160)
By definition, the matrix Py may be decomposed into
Po=PlN...p}. (7.161)

According to (7.19), each matrix P! has the structure

P~ S(@1.), ¢1.i = 2arctan§..; (7.162)
so that
S(0®) = S@)S@S @), i=1,2 (7.163)
and
§(0®) = 5008 @)8~(x), (7.164)
where
So0= (3% XY, x=en-e 169
Evaluation of the above yields
oV =2¢ —w, ©®=w+2 (7.166)
or, equivalently,
£ = tan (“’51): “’), £ = tan (“’(2)4_ ‘”) (7.167)

if we set

X = 2arctan£. (7.168)
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Under this change of variable, Py becomes

i 1 g2

which, on comparison with the solution of the linear system (7.149), (7.150),
reveals that

£ = <M2+M1) &—§ (7.170)

p2—pt/) 1+&6&

with \; = —ip;. Combination of (7.167) and (7.170) now produces the classical
permutability theorem for the sine-Gordon equation, viz.

2) _ 1y _ (D
tan (“’ ‘”) Rl oy o Ml (7.171)
4 B2 = 4

Exercise

1. Show that for real eigenfunctions &;, & and purely imaginary parameters
\i = —ip;, the Darboux matrix

PO\ =N +\P, + Py

is such that

P~ 1 (1—§2 2€) g=<P«2+Pa1) &L—&
T Tye\ 22 1-g2) po—pi) T+E&
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Bianchi and Ernst Systems. Bécklund
Transformations and Permutability Theorems

This chapter is concerned with the construction of Backlund-Darboux transfor-
mations for the generation of exact solutions to Einstein’s equations for axially
symmetric gravitational fields. That important connections exist between soli-
ton theory and certain areas of general relativity was first established around
1978. Thus, in that year, Maison [241] constructed a Lax pair for the station-
ary, axially symmetric Einstein equations while Belinsky and Zakharov [27]
applied the inverse scattering method to isolate simple soliton-type solutions
of these reduced gravitation equations. In the same year, Harrison [157] de-
rived a Bicklund transformation for the Ernst equation of general relativity
[121,217] by using the Wahlquist-Estabrook procedure. In 1979, Neugebauer
[267] independently established a Bécklund transformation for Ernst’s equa-
tion. This allowed the iterative generation of multi-parameter solutions from a
starting ‘seed’ solution. There has since been extensive research on the applica-
tion of Bécklund transformations in general relativity [172,221]. In particular,
Cosgrove [88] established important connections between group-theoretic and
soliton-theoretic methods for generating not only well-known, but also new
stationary axially symmetric solutions of Einstein’s equations.

Here, a remarkable analogy is described between the Bianchi system of clas-
sical differential geometry as discussed in Chapter 1 and the Ernst equation
of general relativity. Moreover, the Harrison transformation [157] is shown to
be an ‘elliptic’ equivalent of the classical Bicklund transformation for Bianchi
surfaces as derived as long ago as 1890 [33]. The Neugebauer transformations
[267] emerge as the basic building blocks for the known auto-Bédcklund transfor-
mations for the Ernst equation. For instance, the Harrison transformation may
be decomposed into two Neugebauer transformations. This motivates the adop-
tion of Neugebauer’s elementary Bicklund transformations in the construction
of matrix Darboux transformations for the Emst equation. A fundamental per-
mutability theorem for the Ernst equation and its dual are thereby established

297
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from which solutions may be generated in an iterative manner. Its vectorial form
[81] is then related to a permutability theorem for the unit normal to Bianchi
surfaces.

8.1 Bianchi Surfaces. Application of the Sym-Tafel Formula

In the previous chapter, it has been shown that if a class of surfaces is associated
with a polynomial su(2) Lax pair through the Sym-Tafel formula and admits
a corresponding elementary matrix Darboux transformation, then the distance
between the position vector r and its Bicklund transform # is constant. To prove
the constant length property, the matrices g, (\) in the Lax pair (7.107) were as-
sumed to be Laurent polynomials in a constant parameter A. However, one may
regard the magnitude of the distance vector r’ —r as a function of the ‘spectral pa-
rameters’ \ and \y. This interpretation is important when one considers matrix
Darboux transformations for ‘non-isospectral’ Lax pairs, namely those which
contain a non-constant parameter. Thus, we shall demonstrate that, whereas
the Bécklund transformation (1.187) for Bianchi surfaces does not possess the
constant length property, nevertheless the distance | — r| may be expressed
entirely in terms of non-constant Biacklund parameters. Indeed, this property
is proved to be generic to elementary matrix Darboux transformations for a
broad class of non-isospectral linear representations. The proof is based on the
Sym-Tafel formula as described subsequently.

In Section 1.6, the derivation of the Bicklund transformation for Bianchi
surfaces governed by

1 1
Oy + = (p_"é sinw) + - (&E sinm) —absino =0
2\pa . 2\pbd v
1
a,,-l——&a———&bcosm:O
20" 20 @.1)
1
bu+—9—ub——p—"acosm=0
2p p
Puy =0

led to a non-isospectral version of the Gauss-Weingarten equations, namely
Aa( sin 2oy + cos =0 +1 0w+ =2 sinw ) oy | @
-G - Z ol ad]
A 22) T2\ T 2

i1 1 bp, .
q)u = % [Xb(sin ;GI ~— COs 303) - E ((l.)v + ZE:;- Sln(!.)) 0-2] d)’

d, =

R~

(8.2)
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where the ‘spectral parameter’ \ is given by

L [K-VW) _
A=+ XU p=U)+ V() (8.3)

and K is an arbitrary real constant. It is noted that in the limit KX — oo or,
equivalently, A = %1, the linear system (8.2) is nothing but an su(2) version of
the Gauss-Weingarten equations in the form (1.156). The system (8.1) was set
down by Bianchi in connection with the isometric deformation of conjugate nets
[34,89]. In that context, the constant K may be identified as the deformation
parameter. Purely geometric considerations led Bianchi to the invariance

132
M (8.4)

a — \a, b—>)\'1b, p—
of the system (8.1). This invariance constitutes a generalisation of Lie’s trans-
formation for pseudospherical surfaces (cf. Section 1.2). It is remarked that the
admittance of a Lie point symmetry by the su(2) form of the Gauss-Weingarten
equations for the general Bianchi system has been used by Levi and Sym [234]
to determine the integrability constraint p,, = 0. In the context of the Ernst
equation of general relativity, the transformation (8.4) constitutes a Neugebauer
transformation (cf. (8.78)) to be discussed in Section 8.6.

It is natural to enquire as to whether it is possible to retrieve the fundamental
forms for Bianchi surfaces from the linear representation (8.2). Thus, if we
regard K = K (k) as a function of a constant k with respect to which the Sym-
Tafel formula is to be evaluated, the position matrix associated with (8.2) reads

r=o"1d, = N0 10, 8.5

and the corresponding 1% fundamental form may be written as

I = —2\2 Tr(g, v )dx dx". (8.6)
Evaluation of the latter results in
I = M(a’du® + 2\"2ab cos o dudv + N\*b?dv?). 8.7
Now,
p K
M= —— 8.8
TN + Uy ®.8
so that the choice
1
K=—— (8.9)
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produces

[ 1
N (1 —2kU)?

Accordingly, at k = 0, so that A = +£1, the 1** fundamental form (8.7) reduces
to that for Bianchi surfaces, namely (cf. (1.126))

A = (8.10)

I = p*(a®du?® + 2ab cos w dudv + b*dv?). (8.11)

Similarly,
A

—m Tr((g1.n, 8220](8uvn + [guas gu]))dx dx®  (8.12)
1h 82

evaluated at A = 1 coincides with the 2" fundamental form (1.126), for Bianchi
surfaces.

8.2 Matrix Darboux Transformations for Non-Isospectral
Linear Representations

Here, a generalisation of the notion of matrix Darboux transformations valid
for a wide class of non-isospectral Lax pairs is presented. In this connection, let
us recall the form of the Bicklund transformation for Bianchi surfaces. Thus,
if r is the position vector of a Bianchi surface and ¢ = (¢! ¢?)" is a solution
of the linear representation (8.2) with parameter Ag = i (ko), then a second
Bianchi surface ' is represented by

_ w 1 . o\ r,
rl—r+21+p2sinm|:sm(e Z)a s1n(9+ )b]’ (8.13)

where

1

0 = 2arctan % (8.14)

and . is assumed to be real in a certain (u, v)-domain. The distance between
the surfaces ¥ and X is therefore given by

|l
r—rl=2 1
¥ =l =2l (8.15)
as a function of the coordinates « and v. On use of the relation (8.10), this may
be cast into the form

RG]

Y —r| = 2| ——
e rewi N

(8.16)
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which shows that, although | — r| is non-constant, it nevertheless may be
expressed in terms of the one-parameter family A = A(k).

To determine a class of non-isospectral Lax pairs for which a generalised ele-
mentary matrix Darboux transformation generically admits a distance property
of the kind (8.16), it is observed that the compatible system

1

WL CJD Y R N P I N 8.17)
P 2 p

2

equally defines the parameter A, where the K of (8.9) constitutes the constant
of integration. Hence, \ itself satisfies (Laurent) polynomial equations. This
observation suggests that a matrix Darboux transformation may exist for non-
isospectral linear representations if the parameter \ is defined via a compatible
system of differential equations which constitute Laurent polynomials of ap-
propriate degrees. This indeed proves to be the case. The result is as follows:

Theorem 33 (A Generalised Elementary Matrix Darboux Transformation).
Consider the linear 2 x 2 matrix equation

P, =g(\)?, det ® = const # 0, (8.18)

where the matrix g(\) has entries which are polynomials of degree n in a
(complex) ‘parameter’ \ and degree m in \™'. The function f(\) in the scalar
companion equation

A= fN) (8.19)

is assumed to be a polynomial of degree n + 2 in \ and degree m in \™!. Let &y
and $3; be two known vector-valued ‘eigenfunctions’ of the equation (8.18)
corresponding to the parameters \| # \; and

P(\)=AP, + Py, detP =1, (8.20)

Py, Py independent of N, be a 2 x 2 matrix which obeys the linear algebraic
system

PO =0, P\)biz =0. 821)
Then, the transformation

®—> @ =pNPND
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where p~2 =det P = (A — \{)(\ — N\p), is such that
(i) gMesi)

(ii) the polynomial structure of (8.18) is preserved.

Proof. (i) As in the proof of Theorem 28, we deduce from
P
Tr(g') = Tr ( (5 )P“l p-l) —[ln det(pP)] = (8.23)

that g’ € s1(2).

(ii) In analogy with the proof of Theorem 28, it is readily shown that the first
two terms in g’(\) form a Laurent polynomial in A. The remaining term

dp(\) Pl = lfO\) fO) 1) - f)
“du - A=\ 2 A=)\

(8.24)

is regular at the zeros \; and A3, since f(\) constitutes a Laurent polynomial in
\. It therefore remains to be proven that g’(\) is of the same polynomial degree
as g(\). Now, on the one hand, it is evident that g’(\) is of degree m in A\~!. On
the other hand, on writing the transformation law (8.22); in the form

dP(\)  dp(\
gNPN) = P()\)g()\)+d—()+ Zi) TP, (8.25)

it is readily verified that terms proportional to A"*2 in (8.25) cancel out so that
g’'(\) is indeed a polynomial in \ of degree n. o

8.3 Invariance of the su(2) Constraint. A Distance Property

Here, we return to the geometrically relevant case

g5 € su@), FO_; real (8.26)

As in Section 7.2, the constraint (8.26); is preserved by the generalised matrix
Darboux transformation if, for a given solution ¢ of (8.18) with parameter \g,
the choice

b=, AM=N

_ _ (8.27)
b =Ad, M= N

is made with i A = 0. For the Bianchi system (8.1), it may be verified that the
matrices and functions in (8.2) and (8.17), respectively, satisfy the conditions
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of Theorem 33 and the geometric constraints (8.26). Furthermore, by choos-
ing the matrix-valued function P; appropriately, it is possible to ensure that
the particular structure of the linear representation (8.2) is preserved. In fact,
such P; may be chosen in a purely algebraic manner. Here, we suppress the
details of this procedure and refer to the next subsection in which a similar
statement is established for the Ernst equation of general relativity. We note
parenthetically that, by construction, the function f(\) does not change under
the generalised matrix Darboux transformation. This confirms the known result
that p and therefore the Gaussian curvature XC are preserved by the Bicklund
transformation for Bianchi surfaces.

‘We conclude this subsection with the remark that since the Sym-Tafel formula
(8.5) involves only differentiation with respect to the parameter &, the Bécklund
transformation at the surface level is identical with that for isospectral Lax pairs
(7.115), except for a factor of A, namely

r'=r—2)\k

(o) <2m(§) , _ 2B® € — 1

— t . 2
IN— o2 \[ER+ 1" |§|2+12+|§|2+1'3) 8.28)

As usual, the orthonormal triad {¢,, ¢,, £3} is defined by the decomposition
ti-e=dled (8.29)

and ¢ = ¢!/d?. Accordingly, the magnitude of the distance vector P’ — r reads

|3(Mo)l

r—r| = 2|\ ————,
I == 2Nl

(8.30)

which is consistent with the expression (8.16) for Bianchi surfaces.

8.4 The Ernst Equation of General Relativity

In what follows, a remarkable analogy is noted between the Bianchi system
of classical differential geometry and an important equation due to Emnst re-
sulting from Einstein’s theory of relativity. Thus, it has been demonstrated in
Section 1.6 that the normal N to Bianchi surfaces of total curvature X = —1/p?
with p,, = 0 satisfies the vectorial equation

(PN xN,),+ (pNxN,), =0 (8.31)
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and that, in fact, the surfaces may be reconstructed from the solutions of this
equation. It has also been remarked that the parametrisations

, ( £ +€_
=—0="|-i€-8], N=N-o (8.32)
produce the alternative form
1py 1 pu _ EE,E _
guu+2p£u+2p v = |g|2+1: Puy =0 (8.33)
and the characterisation
(pNN,), + @NN,), =0, N’=1, Nt=N. (8.34)

In the latter, it is understood that the degenerate case N = +1 is excluded so
that N may be assumed to be trace-free.

It is recalled that Sym’s approach allows one to associate in a canonical
manner two-dimensional submanifolds (surfaces) with any simple Lie algebra
[356]. In this monograph, we have restricted our attention, in the main, to the
su(2) Lie algebra which gives rise to R? as the ambient space of surfaces.
However, it should be noted that the Lie algebra sl(2) = so(2,1) which corre-
sponds to the embedding of surfaces in a three-dimensional Minkowski space
M also arises in soliton theory. Here, we merely state that there exist ‘elliptic’
surfaces (KC > 0) of Bianchi type in M [358] which are represented by an
elliptic analogue of the complex equation (8.33), namely

12 12 YA-Y4
ot 520+ 500 =2 lgﬁfg baz

As in the Euclidean case, § and p are complex and real, respectively, while z
an Z are complex conjugate variables.

The above equation is well-known in general relativity. It provides partic-
ular solutions of Einstein’s vacuum equations with § being the ‘gravitational’
potential. Indeed, on introduction of the Ernst potential

=0. (8.35)

1-§
= —, 8.36
1+¢ (836
the celebrated Ernst equation [121]
1 p; 1p, &6,
s+ ~—&+ =—& = —, ;=0 37
Euz + 2 T 5 0 z RE) Pzz (8.37)

results.
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8.4.1 Linear Representations

The Ernst equation may also be formulated in terms of a non-isospectral exten-
sion of the principal chiral field model equation associated with the O(2, 1) Lie
group. Thus, if one parametrises a real 2 x 2 matrix S subject to the constraints

$2=-1, TrS=0 (8.38)
according to
1 i€-8 —26€&
=—— = | 8.39
g+£( 2 —i(S—E)) 839

then the Ernst equation adopts the matrix form
(P SS); + (pSSy), =0. (8.40)

The corresponding linear representation reads (see [220,393])

1
(1 —=NSS, ¥, ¥ = =(1—\"HSS; 0, (8.41)

¥, =
¢ 2

1
2

where the non-constant parameter \ is given by

L Jk=iZ@) < B -
M= :t\/;TZ(z)— ML p=20+20). (8.42)

It is readily verified that cross-differentation of (8.41) results in the matrix
equation (8.40).

The Lax pair (8.41) is but one of many linear representations for the Ernst
equation that have appeared in the literature. Important amongst these are
representations due to Belinsky and Zakharov [27], Harrison [157], Hauser
and Ernst [159], Kinnersley and Chitre [199] and Maison [241]. A survey of
these linear representations and their gauge-equivalence has been given both by
Cosgrove [88] and Kramer [216]. Here, we focus on a formulation proposed by
Neugebauer in [267] which gives rise to a polynomial form of the Ernst equa-
tion. Therein, the constraints (8.38) are satisfied identically by setting

S=¢! ( _é 9) b. (8.43)

1

The parametrisation (8.39) is obtained by choosing

o=(_t %) (8.44)
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and the gauge transformation

P =V (8.45)
then implies that ¢ may be identified with &®|,_, if we make the choice
¥, —; = 1.Indeed, itis evidentthat ¢ is a particular solution of the transformed
Lax pair

R &
0 ) 0 2
&, = E+E P +) P E+E o
0 Z _ Z _
a e+e/  \gx¢
_ g + c (8.46)
I3 ; g 0 ) i 0 £ ; £
J— _ _ - )
b - T RN - T
L E+€E E+E

evaluated at A = 1. Hence, it has been established that the eigenfunction ¢
encodes explicitly the Emst potential £. Since Darboux transformations act on
eigenfunctions, this result is crucial to the direct construction of the associated
transformed Emnst potentials.

8.4.2 The Dual ‘Ernst Equation’

We now investigate the algebraic structure of the linear representation (8.46).
It is observed that, as in the case of Bianchi surfaces, the parameter \ obeys the
pair of equations

1 1
=200 =NC, A== (8.47)

where the functions C and C* are given by

C=—=, C'=—". (8.48)
p p
Hence, (8.46) is of the algebraic form
A O 0 A
o.=[(5 5) (5 )]
(8.49)

s[5 2+ (2 D)o
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where \ is governed by the system (8.47). It is therefore natural to consider
Lax pairs of the type (8.47), (8.49). with as yet unspecified (complex) func-
tions A, B, C, A*, B* and C*. Thus, the compatibility conditions ¢,; = ¢3,
and A;; = \;, yield

1 1
A; + AA* — AB* + EC*A + -Z-CB* =0

1 1
B+ BB' — A"B+-C"B+-CA" =0

* * * 1 1 *

AZ+AA —A B+§CA*+EC B =0 (8.50)

* * * 1 o, 1 *

BZ+BB — AB +§CB +§CA=0
C;+CC*=0
Cr+CC* =0

and the relations
A; + AA* = B} + BB*
A} + AA* = B; + BB* (8.51)
Cz = C;,
which are readily seen to be a consequence of (8.50). The subsystem (8.51)
guarantees the existence of functions F, F* and p obeying the linear equations
Fo=AF+F*, F=B"F+FY
F}=BF+F", F=AF+F) (8.52)
p. = Cp, p: =C*p

which may be used to parametrise the functions A, B, C, A*, B*, C* in terms
of F, F*, p. The system (8.50) then reduces to

1 p; lp, Fo T
Fui+ = =2——
ZZ+2p.7:. }-Z F+ F*
. (8.53)
. lp 1p FrF
Fi+ zJ-"“+ 2.772*_2}__’_}_‘

together with the harmonic condition

paz =0. (8.54)
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The particular case
A*=A, B*=B, ¢*=C (8.55)

implies, without loss of generality, that

F*=F p=p (8.56)

and the Ernst equation (8.37) is retrieved if we identify F with the Ernst potential
€. Thus, the Ernst equation is encapsulated in the linear representation (8.49)
with (8.47) and subject to the constraint (8.55).

A different specialisation of the Ernst-type system (8.53), (8.54) is given by

F=F, F=F, 5=p (8.57)

and is directly linked to the space-time metric under consideration. This is seen
as follows. It is readily verified that the linear substitution

N 1

A 1
= ——B =C, * [ * ol
A + 2C A AT + 2C
B—-A+ic B —_pylc (8.58)
2 2
é = C; é* = C*
preserves the form of (8.50). If A, ..., C* are now associated with the Ernst

equation, i.e., they satisfy the constraint (8.55), then this corresponds to the
specialisation

B*=A, A*=B, ¢*=¢C. (8.59)

This implies, in turn, that A, A*, B, B* may be parametrised in terms of two
real functions F, F* according to (8.52). Thus, the Emst equation (8.37) may
be mapped to the real-valued ‘dual Ernst equation’ (8.53) and vice versa. It is
noted that the dual Ernst equation is formally obtained from the Ernst equation
by replacing complex conjugation with the star operation. Evaluation of the
linear transformation (8.58) in terms of the Ernst potential £ and F, F* leads
to the following [217]:

Theorem 34. The solutions of the Ernst equation (8.37) and the (real-valued)
dual Ernst equation (8.53) are related by the contact transformation

(®) f=%+w, J-‘*=%—w, (8.60)
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where f = R(E) and the real potential w is defined by the compatible system

. [8)];

REZ ' 1T TP RER

L RE),

w, =ip

(8.61)

The system (8.50) possesses another important property. It admits the ‘con-
servation law’

(ABC™Y), = (A*B*C*™y,. (8.62)
For the Ernst equation, this implies that there exists a real potential y which
satisfies

_le &&

1
_ R : 6
Y=o mEr T 40, REP (8.63)

It is emphasized that these defining relations may also be expressed in terms of
F and F* by virtue of (8.58). If we now define the four-dimensional pseudo-
Riemannian metric [236]

1
ds* = ?(ez"dzdz +p2d¢?) — f(dt — wde)? (8.64)

then it may be shown that Einstein’s vacuum equations
Rij =0, (8.65)

where R;; is the usual Ricci tensor [117], are satisfied modulo the dual Ernst
equation and the Frobenius system (8.63). The main features of the metric (8.64)
are that it is of block-diagonal form and does not depend on the ignorable
coordinates ¢ and ¢. In the terminology of general relativity, the space-time
metric (8.64) is said to admit two commuting time- and space-like Killing
vectors d; and 9, respectively, which are hypersurface-orthogonal [221]. In
physical terms, ¢ and ¢ may be regarded as temporal and angular coordinates,
respectively. Accordingly, the dual Ernst equation, like the Ernst equation itself,
governs stationary and axi-symmetric gravitational fields in a vacuum [121].

8.5 The Ehlers and Matzner-Misner Transformations

The Kramer-Neugebauer transformation (8.60), (8.61) plays a pivotal role in
the construction of solutions of the Ernst equation and its dual. This is due to
the existence of two Mobius transformations associated with the Ernst equation
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and its dual with which it may be conjugated. Thus, it is evident that the matrix
equation (8.40) is preserved by the similarity transformation

s —clsc, (8.66)
where C is an arbitrary constant real matrix. This invariance is reflected by the
Mobius transformation

_)a£+¢[3

@ ivE+S’

o B, v, €R, (8.67)

which is known as Ehlers transformation [115]. The dual Ernst equation may
also be cast in the form

(PFF);+ (pFFy), =0 (8.68)

in terms of the matrix

1 F-~F* 2FF*
F = Fr 7 ( ) P _]__). (8.69)
In this case, the associated Mobius invariance reads
aF +b aF*—b
AL _—, _ .
e CFrd T 7 ZF T ®.70)

with constants a, b, ¢, d € R. By construction, the Matzner-Misner transfor-
mation [252] (8.70) acts directly on the metric coefficients f, w, p and may
be compensated for by a linear transformation of the ignorable coordinates ¢
and ¢. Hence, the Mobius transformation acting on the dual Ernst equation is
generated by trivial linear superpositions of the Killing vectors 3, and 9.

The transformations &, &, 9% can be exploited in the following way. Given a
solution (F, F*) of the dual Ernst equation (or, equivalently, a space-time metric
of the Lewis-Papapetrou form (8.64)), one first applies the Matzner-Misner
transformation 9% and thén maps the new solution of the dual Ernst equation
to a solution of the Emst equation by means of the inverse of the Kramer-
Neugebauer transformation &~. The Ehlers transformation € is then applied,
and the result is mapped to another solution of the dual Ernst equation via the
Kramer-Neugebauer transformation &. The composite Geroch transformation
® obtained thereby is given by

(B)  (F,FH—> (&o€o& L oM)(F, F*). (8.71)

In two remarkable papers, Geroch [149] showed that, in principle, one can
generate solutions of the (dual) Ernst equation containing an arbitrary number
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of parameters by successive application of the Geroch transformation (8.71),
that is via a conjugation of the form

0B 0B oBoB., (8.72)

This is possible because the transformation & contains arbitrary parameters
to be chosen differently at each step of the iteration process. Geroch conjec-
tured that thereby it would be possible to generate any stationary axi-symmetric
space-time by acting on flat space. Hauser and Ernst [160] subsequently con-
firmed a restricted version of this conjecture. However, in practice, the explicit
representation of the compound Geroch transformations (8.72) has proven to
be highly non-trivial and requires the introduction of an infinite hierarchy of
so-called Kinnersley-Chitre potentials [197, 198]. These potentials have been
used to show that the collection of Geroch transformations forms an infinite-
dimensional Banach Lie group [341]. The finite Hoenselaers-Kinnersiey-
Xanthopoulos (HKX) transformations [168] constitute an important subset of
this group. An application of these HKX transformations has confirmed, by
means of an exact solution, the conjecture of the existence of gravitational
spin-spin repulsion [104].

8.6 The Neugebauer and Harrison Biicklund Transformations

In 1978, Harrison [157], using the Wahlquist-Estabrook procedure [123,378]
and building upon earlier work of Maison [241], constructed an auto-Backlund
transformation for the Ernst equation. This Bécklund transformation is here
shown to constitute the ‘elliptic’ equivalent of the classical Bicklund transfor-
mation for Bianchi surfaces.

Independently, in 1979, Neugebauer [267] derived Bicklund transformations
which prove to be the elementary building blocks for all known Backlund
transformations for the Ernst equation. For instance, the Harrison transfor-
mation may be decomposed into two Neugebauer transformations while the
Darboux transformations used by Belinsky and Zakharov [27] to generate multi-
soliton solutions of the Ernst equation may also be formulated in terms of
Neugebauer transformations. It is therefore natural to adopt Neugebauer’s ele-
mentary Bicklund transformations in the construction of matrix Darboux-type
transformations for the Emst equation of general relativity.

Consider a vector-valued solution ¢ of the linear system (8.47), (8.49) for
the coupled Ernst-type system (8.53), (8.54). It is readily verified that the ratio

2 1
q= _%, b= (iz) 8.73)
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satisfies the Riccati equations

4:=0Ng*—q)A+(g—MB

(8.74)
g: = (\7'g? —q)B* + (g — N"HA*,
where \ is a solution of (8.47), viz.
1 3 1 -1 *
A=200=NC, A =s0-aThen (8.75)

It is consistent to impose the following natural constraints in the Ernst and
dual Emnst case corresponding, in turn, to F = £, F* = £ (Ernst picture) and
F = F, F* = F* (metric picture), respectively:

ERNST PICTURE: A=

q=1/q, 1/A
a=gq, 1/\.

8.76)

>
I

METRIC PICTURE:

Now, the Neugebauer Bicklund transformation for the sextuplet Q = (A, A*, B,
B*, C, C*) may be expressed entirely in terms of the pair of pseudopoten-
tials [123,378] B = (g, \). In what follows, a superscript (i) on transformed
objects refers to the pair B; = (gi, \;) which ‘drive’ the corresponding
transformation:

Theorem 35 (The Neugebauer Bdicklund Transformation 3). Let Q =
(A, A*, B, B*, C, C*) be a solution of the Ernst-type system in polynomial
form (8.50) and B = (q, N\), B1 = (q1, \1) corresponding solutions of the com-
patible system (8.74), (8.75). Then, a second solution QV, B of the Ernst-type
system and its associated Riccati system is given by

A

AD =Ngid,  B® =B, =)
' q1
1 q1 1
Ny AW=—a, BO==p, V=5 @77
® g1\ M A2 ®.77)
A
w_4 O
9 9 M

Both Ernst and metric pictures are preserved by J.

The above theorem may be verified directly. In particular, if the constraints
(8.76) are imposed, then the new solution Q) again satisfies the ‘reality
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conditions’ (8.55) and (8.59), respectively. Consequently, the Neugebauer trans-
formation maps within solutions of the Ernst equation or the dual Emnst equation.
It is noted that the Neugebauer transformation changes the harmonic function
p which is defined by (8.52)s 6. In fact, one obtains
_1\2
RO 5()‘;)\_11)_., (8.78)
P
where ¢ is an arbitrary constant. This constitutes the equivalent of Bianchi’s
invariance (8.4). However, the products ABC~! and A*B*C*~! in the con-
servation law (8.62) are invariant so that the metric function vy is unaffected
by J.
Interestingly, at A\; = 1, the solution of the Riccati system (8.74) is given by

F*—k
F+xk’

q = (8.79)

where k € C is an arbitary constant of integration. In this case, the transforma-
tion laws (8.77), namely

FO =g, FO 4 F® po_ 1 FO 4 F®
4 f_*_f* 2y Z ql J:'_*_]:‘m Z (8 80)
FO 4 Fr) w1 FO 4 PO '
}'z(l)=41—fz, 2(1)=_—__J_‘;,
F+ F+ qaq F+F

may be integrated explicitly for the new potentials (1 and F*(). Indeed, it is
readily verified that

d = ck, (8.81)

which constitutes nothing but a Mobius invariance of the general Emst-type
system (8.53). In the case of the Ernst equation and its dual, the Neugebauer
transformation J therefore represents, in turn, a generalisation of the Ehlers
(8.67) and Matzner-Misner (8.70) transformations.

A second application of the Neugebauer transformation acts trivially on the
solution space. This is seen as follows. If B; = (g2, A2) is another solution
associated with €2 then, according to Theorem 35,

I LRI (8.82)

a’ A
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constitutes a solution corresponding to Q). This solution may be used in a
second application of the Neugebauer transformation which produces

a_ 4% -9 _.,0
q ) °q
q, q2
o (8.83)
av MM e
)\(2’) A2

Thus, 202 may be generated directly by means of one Neugebauer transforma-
tion if one chooses 3, instead of B; in Theorem 35. Consequently, Neugebauer
transformations do not commute so that the order of application is crucial. The
composition laws

3(B5Y) 0 I(B) = I(By)

(8.84)
3(B?) 0 3(B2) = 3(By)

are illustrated in Figure 8.1.

Neugebauer transformations may be iterated if one links any two succes-
sive transformations J by a Kramer-Neugebauer transformation &. To do this,
one needs to know how B = (g, A) transforms under &. This information is
encapsulated in the following:

Theorem 36 (The Kramer-Neugebauer Transformation ). Let Q = (A, A*,
B, B*, C, C*) be a solution of the Ernst-type system in polynomial form (8.50)
and let 3 = (q, \) be a corresponding solution of the compatible system (8.74),
(8.75). Then, a second solution R, 3 of the Ernst-type system and its associated

2)
Bl
Q@h — QM QU — O

o
B1 B2

Q
Figure 8.1. A group property of the Neugebauer transformation J.
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Riccati system is given by

(. 1. . 1 . 4
A=-B+-C, A*=-A*+-C*, C=cC
2 2
R 1, 1 . .
©) 1 B=-a+5C, B =-B 450 C=C (@889
~_ 49—\ 3
= . A=\
|15 %=1

The transformation & is involutive, that is &* = id. In particular, the Ernst
picture is mapped to the metric picture and vice versa.

It is noted that the Kramer-Neugebauer transformation interchanges the re-
ality constraints (8.76). The harmonic function p remains unchanged while

. na 1 1
ABC-'= ABC™! - E(A +B)+ ZC

L F 4 (8.86)

1
T3F+A T

=Y &
p

A similar expression holds for the product A*B*C*~! which implies that the
solution of the ‘hat’ analogue of (8.63) reads

vl P
v —V+4ln[(f+f*)2] (8.87)

up to an irrelevant additive constant. Hence, the new metric coefficient 4 in
(8.64) may be given without quadrature.
Let us now consider a transformation of the form

F=6Go0Jo0&. (8.88)

If B and B, are two pairs of pseudopotentials associated with the solution
then, according to Theorem 36,

—A R
‘7=f o A=A
9 (8.89)
q2=u N =Ny
Ng -1

are pseudopotentials corresponding to the solution 2. Subsequent application
of the Neugebauer transformation J to 3 then produces a solution Q@ with
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associated pseudopotentials

(@ =NA2gq2—1) 1@ 2‘_=i, (8.90)

‘?(2)
(g2 —N2)\g — 1)’ 2 M2

_4_
42
Finally, a second application of the Kramer-Neugebauer transformation & gives
rise to a solution @ with corresponding @ given in the following:

Theorem 37 (The Neugebauer Bicklund Transformation 3). Let Q =
(A, A%, B, B*, C, C*) be a solution of the Ernst-type system in polynomial
form (8.50) and B = (g, ), B2 = (g2, \2) corresponding solutions of the com-
patible system (8.74), (8.75). Then, a second solution 2@, B@ of the Ernst-type
system and its associated Riccati system obtained by means of the composite
transformation 3 = & 0 J o & is given by

)\2q2 1 1 K%—)\z
A—-= C
-\ 29—\

2
A = i—M‘h —_A*— q_"’2_.._)‘2 —1
)\2 q2 — )\2 2}\2 q2 —

BO =)\, 2_)13+q_2)‘__)‘_

3 | N2 — 1 2 g2 -1 891)
po.l®2=M . 1 M-l ’
N Ag—1 2)\% g2 —1

[ o =

*

~ ~ 1
— 2 *(2) — *
C@ =\, C()"FC
2 .
@ - 2@ =N —D=Mp =)A= <o _
Mg = Na2gz — 1) — Ma(g2 = M)(Ag — 1)’

A
N

Both Ernst and metric pictures are preserved by 3.

The Neugebauer Bicklund transformations J and 3 may be iterated in the
following manner. Let B3, B2, Bs, . . . be pairs of pseudopotentials associated
with the seed solution . Then, B; gives rise to a second solution QU via
the Neugebauer transformation J(B;). The corresponding pseudopotentials are
generated in accordance with Theorem 35 as follows:

3(‘31)

B2, Bs, - BV, B, ... (8.92)

The pair le) in turn, may be used to produce a third solution @ by means
of the Neugebauer transformation J( le) ), and Theorem 37 provides associated



8.6 The Neugebauer and Harrison Bicklund Transformations 317

pseudopotentials via the mapping

D)
YU G (O 8.93)
Another application of the Neugebauer transformation J induced by B;m results
in a fourth solution (12, This process may be repeated ad infinitum to generate
new solutions of the system (8.50) of arbitrary complexity. The underlying
composite transformation may be written as

o F(B) 0 3(BS?) 0 3(BS") 0 I(BY). (8.94)

Alternatively, one may choose J as the first transformation in the suite of
Neugebauer transformations

= (123)

...03(34

In general, the classes of solutions generated by the transformations (8.94) and
(8.95) are not identical. In particular, explicit application of the transformation
formulae (8.77) and (8.91) shows that, in the generic case,

) 0 3(BS?) 0 3(BSY) 0 3(BY). (8.95)

5(p5") 0 3(B1) # 3(B5") 0 F(By). (8.96)
Howeyver, in the case
=1 gq=1, (8.97)

the Neugebauer transformations J and J produce the pseudopotentials
1 1 - 1 .
1) _ (1) ~(1) )
=, A== =q, =, 8.98
9, = @ 2 N 9, q, N N (8.98)
respectively, and

3(85") 0 3(B1) = 3(B) 0 3(B). (8.99)

This ‘commutation theorem’ was set down by Neugebauer in [267] and is
illustrated in Figure 8.2.

For the Emnst equation (F = &, F* = £), the conjugated transformations
in the commutation theorem (8.99) are equivalent to a single transformation
derived by Harrison using a different but albeit algebraically related set of
pseudopotentials [157]. It is therefore natural to refer to (8.99) as the Harrison
transformation. Its explicit action on the seed solution €2 is the content of the
following result:
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&U12) oM

3B") 3(By)

Qm Q

Figure 8.2. The Neugebauer commutation theorem. The pseudopotentials B;” and ﬁ;l)
are given by (8.98).

Theorem 38 (The Harrison Béiicklund Transformation). Let Q = (A, A*, B,
B*, C, C*) be a solution of the Ernst-type system in polynomial form (8.50)
and B; = (g1, \1) a corresponding solution of the compatible system (8.74),
(8.75). Then, the action of the Harrison transformation

~f1 1 1 -
3 (—, —) o Ig,\) =7 (ql, ——) o J(q1, M) (8.100)
a1 M A

is given by
- Agr—1 A —1
A(1~)=q1_1ql_A_ﬂ 1 C
q1— N\ 2q1—\
A*(l.)=l)‘lq1_l *_l)\l—)‘l_l *
q1 g1 — M\ 2 q1—)N
(%) 5 1g-N B 1-1 (8.101)
Q1 Mg —1 2Mq1—1
B — g =M ooy 1M — AL c*
g1 —1 2 Mg -1
CW=c, C*=c*

Both Ernst and metric pictures are preserved by $.

In the above theorem, the superscript (1-) indicates that Harrison transforms
do not depend on 3, by virtue of the particular choice A, = 1. The transforma-
tion laws (8.101)s,¢ show that, in contrast to the Neugebauer transformations
J and 3, the Harrison transformation $ preserves C and C* and therefore the
harmonic function p. It turns out that the new potentials () and F*(, which
are obtained from the analogue of the linear system (8.52), cannot be expressed
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explicitly in terms of the seed potentials 7 and F* and the pseudopotentials
B;. However, expressions for the potentials associated with the transformation

D=8609, (8.102)
which implies the decomposition
H=CoD, (8.103)

do exist. These can be obtained algebraically by means of the matrix Darboux
transformation to be discussed in the next section. Indeed, the transformation
D may be identified with the simplest matrix Darboux transformation for the
Emst-type system (8.53). In terms of solutions of Einstein’s equations, this
means that the metric (8.64) associated with a Harrison transformation may
be given explicitly in terms of the seed Emst potential £ and corresponding
pseudopotentials (3; . For instance, the Ernst potential of flat space-time leads to
the Kerr black hole metric. In fact, N applications of the Harrison transformation
with this seed solution gives rise to a nonlinear superposition of N Kerr-NUT
fields [218]. Another natural class of seed Ernst potentials constitutes the Weyl
class [383]

1pz 1p,

22y, + 222y =0, (8.104)

E=&= 2”, U,
€ zz+2p 20

In this case, the application of N Harrison transformations leads to a nonlin-
ear superposition of N Kerr-NUT fields on the Weyl background [268]. The
Papapetrou class

€ =(coshU)™' +itanh U (8.105)

is obtained from the Weyl class by means of the Ehlers transformation €."A
single application of the Harrison transformation produces the Schwarzschild
solution on the Papapetrou background [215].

The above list of solutions is merely an indication of the wide variety of im-
portant solutions of Einstein’s equations which may be generated via Backlund
transformations for the Ernst equation and its dual. For details, reference may
be made to the review articles [109,219].

8.7 A Matrix Darboux Transformation for the Ernst Equation

To derive a matrix Darboux transformation for the Ernst-type system (8.5 3) and,
in particular, the Ernst equation and its dual, it is necessary to give a unique
algebraic characterisation of the linear representation (8.49):
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Theorem 39. The linear representation (8.49) is uniquely characterised by its
polynomial structure

&, = FO)® = (Fo + AF)®, A = % N —-ne
1‘ (8.106)
$; =GP =(Go +N1GP, N = SO A he*
and the linear constraints
‘() F(=N) =03F\)a3, G(—\) = a3G(N)o3
1 1 (8.107)
(ii) F(1)<_1) =0, G(1)(_1) =0

with the usual Pauli matrix os.

The constraint (i) guarantees that F(\) and G(\) are of the form

* 0 +1 (0 *
(0 *)+}\ (* 0), (8.108)

respectively, where the asterisks represent some, in general, non-zero functions.
Hence, the condition (ii) gives rise to the particular form (8.49). Now, if ¢y
and ¢z are two vector-valued eigenfunctions of (8.106) with parameters \;
and A, then Theorem 33 states that there exists an elementary matrix Darboux
transformation

P =PMN)O=pNPND (8.109)
with
1
VA=)

It is noted that the normalisation det P; = 1 does not apply since no trace con-
ditions are imposed on F(A) and G(M).

In analogy with the geometric su(2) constraints (8.26), (8.27), we now make
the choice

PN =AP + PR, pN)=

(8.110)

dmy=do, A=

(8.111)
b2 = 03do, A2 = —Mo,
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which guarantees that P; may be chosen in such a way that

P(k)=<; 2)+x<2 3) 8.112)

or, equivalently,
P(—N) = o3 P(N)os. (8.113)

The latter implies that F'(\) and G’(A) as given by (8.22), obey the primed
version of the constraint (i). Thus, it only remains to show that the condition
(ii) is preserved by the above transformation. To this end, it is observed that if

P(l)(_i) =5<_i), & = const, (8.114)

then the particular eigenfunction (1 —1)7 of (8.106) at A = 1 is mapped to itself
modulo the irrelevant constant factor &. Consequently,

F'(1) (_i) =0, G'(1) (_11) =0. (8..1 15)

Conditions (8.112) and (8.114) determine the Darboux matrix P(\) uniquely.
Hence, we have the following result:

Theorem 40 (An Elementary Matrix Darboux Transformation for the Ernst-
Type System). Let Q = (A, A*, B, B*, C, C*) be a solution of the Ernst-type
system in polynomial form (8.50). Consider two matrix- and vector-valued so-
lutions ®, g of the linear representation (8.49) with parameters N and \,
respectively. Then, in terms of the pseudopotential qy = —¢(2,/¢(1), the corre-
sponding elementary matrix Darboux transformation takes the form

Noqo A

1—=23 | Ngo—1 Nogo—1
O =PNO=i | —2 ®.  (8.116
W= | Mo No ®.116)

N—g0 MN—qo
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The new solution Q' is given by

1 - —
A/=_)\0 qOB__)\_O)\-O qOC
g0 Nogo — 1 2 Nogo—1
iMQO—lA, 1 Xogo—1

A*l=
g0 o — qo 2N N —qo
@)1 5= @ )\040—1 _Modogo—1 c (8.117)
)\0—40 2 N—qo
*/___qo)"o qoB*_L)\O_qOC*

Aogo — 1 2o hogo — 1
C’' = C, CcY = C*,

while the new potentials ' and F* read
F + F* *
fl=l-)\0q0 + Pl=iq0f+)\0f
Aogo — 1 Ao — 4o

without loss of generality. The matrix Darboux transformation ® and the
Harrison Bdcklund transformation 5y are related by

(8.118)

)

H=GoD=Do6. (8.119)

Thus, the transformations &S and ® commute.

Proof. Itmay be directly verified that the Darboux matrix P(\) givenin (8.116)
satisfies the linear algebraic system (8.21), (8.111) together with the constraints
(8.113), (8.114). The transformation formulae (8.117) are obtained by compar-
ison of like terms in A in

F'NPN) = PMNFMN) + [P,

(8.120)
G'WPN) = PG + [P(V)];.

Moreover, the general solution of the linear representation (8.49) at A = 1 is
given by

Blyey = (_i i) C, (8.121)

where C is an arbitrary (complex) matrix. The latter merely corresponds to a
subcase of the M&bius transformation (8.81) so that the identifications

buha =F, onha=F" (8.122)



8.7 A Matrix Darboux Transformation for the Ernst Equation 323

S D

D S

Figure 8.3. Decomposition of the Harrison transformation 3.

are admissible. Evaluation of the primed counterpart of these relations then pro-
duces (8.118). Finally, if we set go = gq; and Ag = Ay, then application of the
Kramer-Neugebauer transformation to ' results in the Harrison transformation
laws (8.101). Conversely, it is readily shown that the Kramer-Neugebauer trans-
formation followed by the matrix Darboux transformation generate the same
result. Thus, the Harrison transformation $) may indeed be decomposed into
the Kramer-Neugebauer transformation & and the elementary matrix Darboux
transformation @ as illustrated in Figure 8.3. O

In the case of the Ernst equation and its dual, it is consistent to assume that

>t

ERNST PICTURE: & =00,

o =1/\
METRIC PICTURE: =0,

8.123
I\ (8.123)

>1
]

which implies the pseudopotential conditions (8.76). Thus, if ®, ¢g and X, Ao
in Theorem 40 are constrained by (8.123), then the Darboux matrix P satisfies

ERNST PICTURE: P = Pay
_ (8.124)
METRIC PICTURE: P=cxP
and the new eigenfunction @' obeys the relations
ERNST PICTURE: =9
(8.125)

METRIC PICTURE: &' = o',

Consequently, the following important result has been established:

Theorem 41 (The Elementary Matrix Darboux Transformation for the Ernst
Equation and Its Dual). The élementary matrix Darboux transformation
(8.116) subject to the ‘reality constraints’ (8.123) maps solutions of the Ernst
equation to solutions of its dual and vice versa. In the Ernst picture, the new
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solution of the dual Ernst equation is given by

A £ 3 £ g
— ;Moo +5’ P/=im, (8.126)
Koqo— 1 )‘-O_qo

In the metric picture, the new Ernst potential reads

.rl

,  .NogoF + F*
' =i——. 8.127
Aogo — 1 ( )

8.8 ‘A Permutability Theorem for the Ernst Equation and Its Dual.
A Classical Bianchi Connection

In this section, the successive application of two matrix Darboux transforma-
tions is shown to lead to a permutability theorem associated with the Harrison
transformation. This stems from the decomposition (8.119) of the Harrison
transformation which implies that

HoHN=CG0DoBoD=DoBoBSoD=DoD (8.128)

since &? = id. Thus, the action of two Harrison transformations 5 is equivalent
to that of two elementary matrix Darboux transformations D.

Consider two pairs of pseudopotentials B; = (g1, A1) and B2 = (g2, \2) asso-
ciated with a seed solution (F, F*) of the Ernst-type system (8.53). Application
of the matrix Darboux transformation D with respect to the pseudopotentials
3, produces the new solution

A . A
pohaFAF L, aF A MF (8.129)
Nig1 — 1 M—q

According to Theorem 40, an associated pair of pseudopotentials is given by

Mg —Mg2)g1 — 1),
M2g2 — Mg —q) 2

g, = =\, (8.130)
Hence, a second application of the matrix Darboux transformation © generates
the solution

Ny F + FY n G F FNFY
10 ’ ‘7:* = ’ / *
Mg -1 N—a

F'=i (8.131)

Theorem 42 (A Permutability Theorem for the (Dual) Ernst Equation). In
terms of two pairs of pseudopotentials B, and B, corresponding to a seed
solution (F, F*) of the Ernst-type system (8.53), the action of two elementary
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matrix Darboux transformations is given by
A =M)F+F)
M =M+ gin (1= N) — g2l (1 —A%)
216\ - N)(F + F)
012(0 = ND) + @2M (1= 0\) — g (1 —A})

The two matrix Darboux transformations D(B;) and D(,) commute, that is,
the permutability theorem

D(By) o D(B1) = D(B}) 0 D(B2) (8.133)

holds. If either of the reality conditions (8.123) are imposed, then the corre-
sponding Ernst or metric picture is preserved. For instance, if F = &, F* = é
then (8.132), that is

F'=—F +

(8.132)
FH = —F* +

A =N)E+E)

8” = _g + ,
M =N 4gin(1=7N) — g (1-7)

(8.134)

enshrines a permutability theorem for the Ernst equation.

Since the pairs B; and B, appear on equal footing in the transformation
laws (8.132), it is evident that the permutability theorem (8.133) holds. In
the case of the Ernst equation, Neugebauer [268] has shown that the super-
position principle (8.134) is but a special case of a determinantal expression
for Ernst potentials generated by means of 2N Harrison (or matrix Darboux)
transformations. In principle, the relations (8.129) and their analogues associ-
ated with B, may be solved for the pseudopotentials so that (8.134) may be
written entirely in terms of the Ermnst potentials £, £” and the intermediate sola-
tions (F', F*)(B1), (F', F*)(B,) of the dual Ernst equation. The corresponding
Bianchi diagram is depicted in Figure 8.4.

(F', F*)B2)
B2 B
& ® ¢
B1 B3

(F', F*)(B1)
Figure 8.4. A permutability theorem for the Ernst equation.
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A Classical Bianchi Connection

It has been noted that Bianchi surfaces of Gaussian curvature K =—1/p? are
governed by the vector equation (8.31) for the unit normal N. This vector equa-
tion possesses natural counterparts associated with the Ernst equation and its
dual. In both cases, the vector-valued functions involved may be interpreted
as ‘unit normals’ in Minkowski space M?> which are parametrised in terms
of the Ernst potential £ and F, F*, respectively. On use of these vector equa-
tions, Chinea [81] has derived a vectorial Backlund transformation for the Ernst
equation without appeal to pseudopotentials. This vectorial transformation is,
in fact, equivalent to the elementary matrix Darboux transformation ©. Two ap-
plications of the vectorial Bécklund transformation deliver a compact vectorial
formulation of the nonlinear superposition principle (8.134). An analogue of the
latter may be readily obtained for the classical Bianchi transformation (8.13).
Thus, if » denotes the position vector of a Bianchi surface I, then the position
vector r, of the transformed Bianchi surface X, satisfies the relation (1.163),
that is

r—r=v;xv, (8.135)

where v = ,/pN and v| = ,/pN1. By virtue of (1.176), the angle o between
the normals N, and N is given in terms of the ‘parameter’ w, by
1+ p?

—

Ni-N=coso; = (8.136)

A third Bianchi surface 5 may be generated from X by choosing a different
parameter .. Hence, we have the relations

r—r=vy;XxXv (8.137)
and
. 1 2
Ny N =cosop= P2 (8.138)
1—p3

where a3 is the angle between the normals N, and V. Since the Bianchi diagram
associated with the Bianchi transformation is closed, the surfaces ¥; and ¥,
may be mapped to the same fourth Bianchi surface Z, if one uses the parameters
o and g, respectively. Accordingly, the position vector ri; obeys the two
relations

r2—r=vis Xvs

(8.139)
rao—ri=via Xvi.
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An appropriate linear combination of the vector equations (8.135), (8.137) and
(8.139) delivers

vp-v)x@@;—vy)=0, (8.140)

which implies that the vectors v — v and v; — v, are parallel. Moreover,
since the Bianchi transformation preserves the Gaussian curvature, that is p =
p1 = p2 = P12, the magnitude of v is invariant so that there exists a function
H such that

Nip—N=HN; —N,), (8.141)
whence
Ny-N—N;-N

H=—_ 8.142
1-Ni-N; ( )

Accordingly,

COS g3 — COS 07

Np =N+ ———— (N; — N»y). 8.143
12 + A (N, 2) ( )

This nonlinear superposition principle for the unit normals to Bianchi surfaces is
the analogue of Chinea’s vectorial superposition principle for the Ernst equation.
In turn, the Harrison transformation $j for the Ernst equation is the counterpart
of the Bicklund transformation for the classical Bianchi system.

Exercises

1. Show that the expression (8.12)\—; associated with the linear representa-
tion (8.2), (8.3), (8.9) coincides with the 27 fundamental form (1.126), for
Bianchi surfaces.

2. Verify that the action of the Kramer-Neugebauer transformation (8.58) on
the Emst potential £ is given by (8.60), (8.61).

3. (a) Verify directly that the pseudopotential equations (8.74), (8.75) are form-

invariant under the Neugebauer transformation J.

(b) Show that the corresponding transformation law for the harmonic func-
tion p is given by (8.78).

(c) Prove that at \; =1, the Neugebauer transformation J(,) reduces to the
Mobius invariance (8.81).

4. Prove Theorems 36 and 37.
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5. (a) Derive explicit expressions for the pseudopotentials associated with the
transformations f((Bél)) 0 J(B1) and J(Sél)) o 3(B1). Deduce that

3(BS2) 0 3(Br) # F(EP) 0 5B

in the generic case.
(b) Justify the choice of the pseudopotentials (8.98) and show that, for such,
the transformations F(B") o F(8,) and 3(B") o 3(8,) coincide.
(c) Derive the Harrison transformation laws (8.101).
6. Prove that the Harrison transformation $ decomposes into the Kramer-
Neugebauer transformation & and the elementary matrix Darboux trans-
formation D accordingto H =S oD =D o 6.
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Projective-Minimal and Isothermal-Asymptotic
Surfaces

The study of the projective differential geometry of surfaces has roots in the
work of Wilczynski [384] at the beginning of the last century. There have been
a number of monographs on the subject, notably by Fubini and Cech [143],
Bol [51], Finikov [135], Lane [227], Akivis and Goldberg [6]. It has been
established recently that privileged classes of surfaces in classical projective
differential geometry are, in fact, described by integrable systems that pertain
to modern soliton theory. A lucid summary of these connections and their
historical origins have been given by Ferapontov [131]. It will be with these
integrable classes of surfaces of projective differential geometry that the present
chapter will be concerned. The emphasis will be on projective-minimal and
isothermal-asymptotic surfaces.

Projective-minimal surfaces arise out of the Euler-Lagrange equations as-
sociated with extremals of a projective area functional. These Euler-Lagrange
equations were set down by Thomsen [365] in 1928 and later taken up by Sasaki
[322]. Included in the class of projective-minimal surfaces are the surfaces of
Godeaux-Rozet [51] and those of Demoulin [102]. The latter are governed by
a coupled Tzitzeica system [135], which may be derived as a reduction of the
two-dimensional Toda lattice system [259]. Bicklund transformations and asso-
ciated permutability theorems for Godeaux-Rozet and Demoulin surfaces were
derived in a purely geometric manner by Demoulin [102]. It is remarked that
projective-minimal and, in particular, Godeaux-Rozet and Demoulin surfaces
arise in the theory of Lie quadrics [51, 135,227].

The geometry of projective-minimal surfaces, in general, has been stud-
ied in the early papers of Thomsen [364] and Mayer [254]. Following upon
Demoulin’s early work in 1933, Godeaux-Rozet and Demoulin surfaces were
studied extensively by Godeaux [152], Rozet [318] and most recently by
Ferapontov and Schief [133].

329
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The introduction of isothermal-asymptotic surfaces is attributed to Fubini
(see [143]). They are discussed in the classical treatises of Lane [227], Bol [51]
and Finikov [135, 136]. The class of isothermal-asymptotic surfaces includes
arbitrary quadric and cubic surfaces, the quartics of Kummer [176], as well
as projective transforms of surfaces of revolution [131]. It has been shown
recently by Ferapontov [129] that isothermal-asymptotic surfaces are governed
by the stationary modified Nizhnik-Veselov-Novikov equation [47]. The latter
constitutes a symmetric 2+1-dimensional integrable version of the modified
Korteweg-de Vries equation.

9.1 Analogues of the Gauss-Mainardi—Codazzi Equations in Projective
Differential Geometry

Here, we identify the components of a four-dimensional vector
r=0%rL % ) eR? 9.1)
with the homogeneous coordinates of a point
r=0¢%:r:rHep? 9.2)

in a three-dimensional projective space. Thus, any straight line which passes
through the origin of R* is mapped to a pointr € P, If 70 # 0, then a particular
representation of that point is given by

r=(,#, #=01/r 0 0. (9.3)
The latter gives rise to a natural mapping between P> and R3, that is
PR, re? 9.4)
Consequently, the group of linear transformations
r—> Ar, AeR*, detA#0 9.5)

is represented by linear fractional transformations which act on # and are known
as projective transformations. In what follows, we consider surfaces & C P?
which are defined up to arbitrary linear transformations of the form (9.5) and
may therefore be thought of as surfaces 3. c R3 whose properties are invariant
under projective transformations.

As in the case of Euclidean differential geometry, asymptotic coordinates
are particularly useful in the discussion of surfaces in projective differential
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geometry. Asurface X : r = r(x, y) € P is parametrised in terms of asymptotic
coordinates if the position vector r obeys two second-order equations of the form

Fxx = SFx + pry +or, ry, =qr. +tr, +xr. (9.6)

The associated position vector # of the surface ¥ therefore satisfies the linear
system

Pox = aby + phy, Py, = bF, + g, 9.7)

with a = s — 2(In7%),, b = t — 2(In°), which implies that the coordinates
x and y are indeed asymptotic on 3. The compatibility condition ryxyy = Fyyzx
of the linear system (9.6) is readily shown to produce the condition s, =t,
provided that the vectors r, ry, ry and ryy are linearly independent. We may
set s =t = 0 without loss of generality since the position vector of a surface
in projective space is only defined up to a multiplicative arbitrary function.
Thus, application of a suitable gauge transformation of the form r — gr re-
moves the coefficients s and ¢ and brings the linear system (9.6) into canon-
ical form. The latter was set down and extensively discussed by Wilczynski
[384]. Its compatibility condition is readily shown to lead to the following
theorem.

Theorem 43 (‘Gauss-Weingarten’ and ‘Gauss-Mainardi-Codazzi’ equations
in projective differential geometry). The position vector of a surface T ¢ P3
parametrised in terms of asymptotic coordinates may be normalised in such a
way that it obeys a linear system of the form

1 1
’xx=pry+'2‘(v_py)ra ryy=qrx+§(W"'qx)’~ 9.8)

The latter is compatible if and only if p, q and V, W constitute a solution of
the underdetermined nonlinear system

Pyyy — 2DyW — pWy = Grsx — 29,V — qV;
W, =2gp, + pq, 9.9)
Vy =2pgx + qpsx.

Particular integrable reductions of the above ‘Gauss-Mainardi-Codazzi equa-
tions’ of projective differential geometry and their associated classes of sur-
faces will be the subject of this chapter. We remark that in order to preserve
the structure of the ‘Gauss-Weingarten equations’ (9.8) under an arbitrary
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reparametrisation
= fx), y'=380» 9.10)

of the asymptotic coordinates, the position vector r must be renormalised
according to

r' = f(x)gOr. (9-11)

The associated coefficients p*, ¢* and V*, W* are related to the original ones
by

Y N A ()
p = Pﬁy = T
Py W+ S(g) (9.12)
q’|l =47, W* = —Tgv
g 4
where S(-) denotes the usual Schwarzian derivative, that is
f/// 3 f// 2
Sl =——-=—=] . .
N="%-5(F 9.13)

It may be verified directly that (9.10), (9.12) constitute an invariance of the
nonlinear system (9.9). Furthermore, the quadratic form

pqdxdy 9.14)

and the class of cubic forms which are proportional (‘conformally equivalent’)
to

pdx® +qdy? (9.15)

are absolute projective invariants since they are preserved by the above class of
transformations. The quantities (9.14) and (9.15) are known as the projective
metric and Darboux cubic form, respectively, and play the role of the 1% and
2% fundamental forms in projective differential geometry. In particular, they
define a ‘generic’ surface uniquely up to projective equivalence [51].

Exercise

1. Verify that, the projective Gauss-Weingarten equations (9.9) are form-
invariant under the gauge transformation (9.10)~(9.12). Show that the
quadratic form (9.14) is preserved as is the cubic form (9.15) up to a multi-
plicative factor.
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9.2 Projective-Minimal, Godeaux-Rozet, and Demoulin Surfaces

One route to the isolation of integrable reductions of the projective Gauss-
Mainardi-Codazzi equations involves seeking a Lie point symmetry of the latter
which acts non-trivially on the projective Gauss-Weingarten equations. For
instance, the scaling

p—>Ap, q—>4q/\ 9.16)

takes the projective Gauss-Weingarten equations to

1
Fxx = A\pry + E(V — Apy)r,

9.17)
. I 1 - 1 W 1 ¥
yy = )\q x T3 )\Qx .
The first of the brojective Gauss-Mainardi-Codazzi equations becomes
N(Dyyy = 20yW — pWy) = Guee =20V —qVe - (9.18)

while the remaining two are invariant. If we now require that the projective
Gauss-Mainardi-Codazzi equations be independent of A, then (9.18) has to be
- separated into two equations and the system (9.9) yields

Pyyy —2pyW — pW, =0, W, =2gp, + pgy

(9.19)
Qxxx — quV - qu =0, Vy = 2P<Ix + gpx-

In the terminology of soliton theory, the ‘Lax pair’ (9.17) with ‘spectral pa-
rameter’ \ is compatible if and only if p, g and V, W constitute a solution of
the nonlinear system (9.19). In Section 9.5, it will be shown that an so(3, 3)
analogue of this Jinear representation may be exploited to construct a Backlund
transformation for (9.19).

In geometric terms, it may be shown that (9.19) embody the Euler-Lagrange
equations associated with the projective area functional

/f pqdxdy. (9.20)

Accordingly, the corresponding projective Gauss-Weingarten equations (9.8)
are descriptive of projective-minimal surfaces. The latter arise naturally in the
context of soliton theory and may be classified both geometrically and alge-
braically. In this connection, we first observe that multiplication of (9.19), ; by
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p and g, respectively, and subsequent integration results in

_Ea_l(&>2+&x>

- 2

p 2\p P
2
gxx 1(q,v) B(y)
V=" =) 4+ —,
9 2\¢q q?

9.21)

where a and B are functions of integration. The latter may be made constant
by means of a transformation of the form (9.10), (9.12). Insertion of V and
W as given by (9.21) into the remaining projective Gauss-Mainardi-Codazzi

equations yields

[p(n p)sy — P?q), = —p (%)

x

P
[¢(ng)sy — ¢°p), = —¢ (—[35)
y

Q

or, equivalently,

| 2

A
(lnp)xy =pqg+ ;, Ay = —P(

)
)

= %

B
(Ing)xy = pg + 7 B, =—q (

>
N

(9.22)

(9.23)

Case 1 (General). Both « and 3 are non-zero and hence may be normalised
to £1. For instance, if a = B = 1, then the projective Gauss-Mainardi-

Codazzi equations reduce to

A Dx
(In p)yy = pq + s Ay = 2—p—2

B
(lnq)xy =pq+—, By= 22%
q q

(9.24)

Case 2 (Surfaces of Godeaux-Rozet [152,318]). Here, a = 0, while B is
non-zero (or vice versa). The normalisations B =+ 1 and A =1 may be
adopted provided that A is non-zero. In particular, if 3 = 1, then we obtain
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the nonlinear system

1
(In p)xy = pq + >
(9.25)
(IHQ)xy =pq + E’ By = 2q_)2,.
q q

Case 3 (Surfaces of Demoulin [102]). Both a and B vanish. In this case, we
may assume that A= B =1 if A and B are non-zero and hence

1 1
(In p)xy = pq + >’ (Inq)yy =Ppg+ 7 (9.26)

Case 3a (Surfaces of Tzitzeica). If we assume that p =g, then it is readily
shown that o = 8 = 0 and the Tzitzeica equation

1
(Inh)yy =h — o 9.27)

with h = —1/p results. Thus, affine spheres constitute particular De-
moulin surfaces and are characterised by the condition that they be projec-
tive-minimal and isothermal-asymptotic, that is p = q. We shall return to
the class of isothermal-asymptotic surfaces in Section 9.7. The discovery
that affine spheres constitute extrema of the area-minimising variational
problem in projective differential geometry is due to Behnke (see [39]).

Exercise

1. Find a change of variables which normalises the functions a and B in (9.23)
to 0, 1. In the case a = 0, show that one may set A = 0, 1 without loss of
generality.

9.3 Linear Representations

The Gauss-Mainardi-Codazzi equations associated with projective-minimal
surfaces admit several linear representations which may be constructed geo-
metrically and which are also meaningful in the context of soliton theory. We
begin with the construction of an s1(4) 4 x 4 linear representation whichis based
on the so-called Wilczynski moving tetrahedral. On use of the classical Pliicker
correspondence which encapsulates the isomorphism of the s/(4) and so(3, 3)
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Lie algebras, we derive a 6 x 6 linear representation. Its geometric significance
becomes apparent in Section 9.4 in connection with the identification of the
Demoulin system (9.26) as a periodic reduction of the two-dimensional Toda
lattice.

9.3.1 The Wilczynski Tetrahedral and a 4 X 4 Linear Representation

In Chapter 1, it has been seen how the Gauss-Weingarten equations for surfaces
in R? may be rewritten as two compatible first-order linear matrix differential
equations for an orthonormal triad (moving trihedral) consisting of two tangent
vectors and the unit normal. In projective differential geometry, however, no
canonically defined ‘projective normal’ exists. We here make use of Wilczyn-
ski’s definition of a moving tetrahedral [51] whose vertices are defined in an
invariant way by

1 1
r, r rx——qxr, r2=ry—§&r
Lp,  1e Lo pl (9.28)
n=ry = e+ (35 - ara)

Under a transformation of the form (9.10), (9.12), the quantities r, ry, r, and m
acquire non-zero multiplicative factors which do not change them as points in
IP3. The geometric interpretation of the edges [r, r1], [r, r2], [r1, r2] and [r, 1]
of the moving tetrahedral is as follows. In projective space, the line (r, r{) is
represented by an arbitrary linear combination of r and r; or, equivalently, the
linear combination

fr+grs. (9.29)

Its image under the mapping (9.4) is therefore given by

gr’

Pkt h=—81
r4 Iy fr°+gr2

(9.30)
and this constitutes the tangent to the x-asymptotic line at 7. Thus, the lines (r, ;)
and (r, r,) are tangent to the x- and y-asymptotic lines on X, respectively, so that
the points 7, ry, r» span the tangent plane of X at r. The line (r, ;) is known
as the second directrix of Wilczynski and is tangent to X. The line (r, ) is
transversal to X if the vectors r, ry, ry and ry, are linearly independent. It plays
the role of a projective normal and is termed the first directrix of Wilczynski.
Sincer, ry, r, and m when regarded as vectors form a basis of R*4, the Gauss-
Weingarten equations for projective-minimal surfaces may be brought into a



9.3 Linear Representations 337

first-order matrix form. Differentiation of these vectors as defined by (9.28) and
use of (9.8) yields

4x
= 2 0 0
(2 \
r _BE _& 2p 0 r
ri _l q q ry
r 2 _é 0 q_x ) ra
m/, D q n
o A B gx
\ 4 p. ¢ q ©31)
(22 o 2 o
P
B
r A < ) r
r =l q V4 r
r 2 iz 2 _& 0 r
m/, P )4 n
B« B p
g P q p/

By construction, this linear system is compatible modulo (9.23) and a parameter
may be injected via the scalings

p—>A\p, A—>M\, a—>Na

9.32
qg—q/\, B— B/\, B— B/\ (9:32)

It is noted that the matrices in the above linear representation are trace-free and

hence (9.31) subject to (9.32) may be regarded as a Lax pair based on the Lie
algebra si(4).

9.3.2 The Pliicker Correspondence and a 6 X 6 Linear Representation

The exterior product of two vectors a, b € R* is defined as the six-dimensional
vector

a A b = (po1, po2s o3> P23s P31 P12), (9.33)
where

al

a’
pij =det ( b b ) (9.34)
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denote the twelve sub-determinants of the 2 x 4 matrix

a a® a! a? &
()-(52 % 9) o35

It is noted that p;; = —p;;. The exterior product enjoys the usual properties

anb=-bnra, ana=0 (SKEW-SYMMETRY)
k(@A b)=(ka) Ab =a A (kb) (ASSOCIATIVITY)

(9.36)
@+b)Ac=aAnc+bnc (DISTRIBUTIVITY)

@nby =a Ab+and (LEIBNIZ RULE),

where a,b,c € R*, k is a scalar and the prime denotes differentiation. The
associativity law implies that

(ka) A (ob) = ko(a A D). 9.37)
Consequently, if we regard a and b as points in P3, that is
a=@":a':a’:a*eP? b=@":b':0%:b)eP?, (9.38)

then the exterior product a Ab may be identified with a point in a five-
dimensional projective space with homogeneous coordinates

aAb=(por:poa:Pos: P pa: pr2) € P (939)

Moreover, since any two points @, b € P? define a line I(a, b) in P? and the
exterior products of @ and b on the one hand and arbitrary linear combinations
of a and b on the other are identical as points in P3, the map

la,b)>and (9.40)

between lines in P> and points in P? is well-defined. In this way, the Pliicker
correspondence (9.40) provides homogeneous coordinates for lines in P3, It is
emphasised that the image of P under the Pliicker map is a quadric embedded
in IP3, that is the coordinates p; ; satisfy the quadratic Pliicker relations

Po1P23 + po2p31 + poapiz = 0. 9.41)

We now introduce vector-valued functions ¢ € R® and §y € R® which are
defined by

1 1
Q= E(rl Arp+rAm), = E(rz Ari+raAn). (9.42)
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The linear system (9.31) then implies that

B
<Px=f1/\’fl+£2f/\fz, Py = =2 AT
2q 2q
o 4 (9.43)
d;y:rz/\'q+2—p2r/\r1, ¢x=—1—’71/\r
so that @, ¢x, @y, ¥, ¥, ¥ are seen to form a basis of RS. Further differentia-
tion delivers the closed system

o B
Pxx = Pq"y - ;‘PX + ZX‘*I"X + 2?‘1’
B, B
Pxy = 7Py ——¢
xy B y q
B B
Pyy = (ln;) ¢y + P s
4 (9.44)
Yrx = lnA Yy + 4
XX — p . X qB(Py
A
‘l’xy:—y x"‘—'
B a
d’yy =gex — ?yq’y +2E‘Py +2;E‘1’~

Its compatibility conditions are satisfied modulo the Gauss-Mainardi-Codazzi
equations for projective-minimal surfaces. Once again, the scaling (9.32) pro-
duces a linear representation of (9.23) in the sense of soliton theory. It is ob-
served, en passant, that in the case of Demoulin surfaces corresponding to
a =B =0and A = B =1 the linear representation simplifies radically (cf.
Section 9.4).

The Lie algebraic structure underlying the linear system (9.44) is revealed
by introducing the vector

D = (', $% ¢*, ¢4, ¢°, 8T (9.45)
with

1_ o 2 _ 3_ P
¢ —‘l’y'*‘Ap\l'x, =40, ¢ —A\l'x

(9.46)

B q
¢6 = ¢+ B_q(Pyy ¢5 =6o, ¢4 = E(Pya
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in terms of which we obtain the first-order system

(0 -2 0 2 o o)
p p
A
o 0 — 0 0 0
p
0 0 O )/ 0 0
o, =F0, F=
d o 0o o & 1 o
q
o 0 O —Ez 0 1
q
b 0 % o B &
\ p ?* q
( 8 9.47)
by ¢«
-——= = 0 = 0
p p q ?
1 0 —> 0 0 0
p
0o -1 2 o 0o o
¢’y - Gd), G = p
0 0 q 0 0 o0
0 0 0 B 0 0
q
0 0 B 0 _3 0 )
\ q q
The trace-free matrices F and G are readily shown to satisfy the relations
o 0 1 0 0 O
0 1 0 00 O
1 0 0 0 0 O
™D =— D = — =
F'D=-DF, G'D DG, D 00 0 0 0 —1
0 0 0 0 -1 o0
0o 0 0 -1 0 O
(9.48)

These, in turn, define the so(3, 3) Lie algebra since D may be transformed
into diag(l, 1, 1, —1, —1, —1) by means of a similarity transformation. Thus,
we have retrieved the well-known result that the Pliicker embedding (9.40)
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encapsulates the si(4)-so(3, 3) isomorphism. The so(3, 3) linear representa-
tion constitutes the starting point for the construction of a Bécklund trans-
formation for projective-minimal surfaces to be discussed in the following
section.

Exercises

1. Show that the Wilczynski tetrahedral (9.28) is projective-invariant under the
gauge transformation (9.10)-(9.12).

2. Verify the discrete symmetry (9.48) of the so(3, 3) linear representation of
projective-minimal surfaces and deduce that

®"DP = const.

9.4 The Demoulin System as a Periodic Toda Lattice
The relations (9.43), 4 and (9.46)3 ¢ imply that the points ¢* € P* and ¢* € P3
represent via the Pliicker correspondence the tangents to the x- and y-asymptotic
lines on ¥ C IP3, respectively. However, ¢> and ¢* may also be interpreted as
the position vectors of two surfaces XT3 and X4 in P, respectively. Since these
two position vectors are related by

& = po*, of =qd’, (9.49)

the surfaces X3 and X4 are Laplace-Darboux transforms of each other (cf.
Section 3.3). Indeed, elimination of either ¢3 or ¢* leads to the conjugate net
equations in projective space

_ P
b= 24+ pads oy = T4+ pad. 9.50)
Accordingly, the coordinates x and y are conjugate on X3 and X4. Continua-
tion of the Laplace-Darboux sequence in both directions leads to the Godeaux
sequence [51] of surfaces in P?
R el D 2 I e AR 3 R R 9.51)
Periodic Godeaux sequences are of particular interest. The only surfaces X

for which the associated Godeaux sequences are of period 6 (in fact the smallest
possible period) are those of Demoulin. This may be interpreted as an equivalent
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geometric description of Demoulin surfaces. In this case, the relations

= B¢
; 1, s S (9.52)
o=t o=

obtain so that both ¢!, ¢? and ¢°, ¢° are related by Laplace-Darboux transfor-
mations with corresponding conjugate net equations

P 1 1
;y = —?yd); - ;d)l’ fy = —;¢2

a ] ] (9.53)
6 __ _dx46 46 5 __ __ 4S5
xy — q ¢y qd) ’ xy — qd) .

In fact, the points ¢!, ..., $° € P35 constitute the position vectors of the sur-
faces X, ..., Xg of the periodic Godeaux sequence. This follows from the
fact that the Laplace-Darboux invariants 4 and k label the equivalence classes
of conjugate net equations related by gauge transformations (cf. Section 3.3)
and hence are identical in P°. The Laplace-Darboux invariants associated with
(9.50), (9.53) are given by

hi=hs=ky=kg=1
hy=hs=k =k, =k (9.54)
hs=h¢=ks=ks=h

with the definitions

1 1

p » i Pq (9.55)

so that the points ¢ are indeed related by the Laplace-Darboux transformations
which generate the periodic Godeaux sequence.

In modern terminology, the classical Laplace-Darboux sequence of conjugate
nets is governed by the two-dimensional Toda lattice (3.105). If we impose
periodicity 6, then it reduces to the finite system

(Inhl)xy = —h¢+2h; —hy, (In h2)xy =—hy +2hy - h3
(Inh3)yy = —hy + 2h3 — hg, (Inhy)yy = —h3 +2h4 — hs  (9.56)
(nhs)yy = —hg +2hs — hg, (Inhg)xy = —hs +2he — b,
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which is associated with the affine Lie algebra Agl). The latter contains the affine
Lie algebra Dgz) as a subalgebra which corresponds to the reduction (9.54). The
periodic Toda lattice now specialises to

(Inh)yy =h -1, (nk)yy =k—1I, (InD,y=-h+21—-k (9.57)

which implies that (In hkl),, = 0. Without loss of generality, we may set hkl = 1
and retrieve the Demoulin system

1 1
(Inh)yy =h— T (Ink)y =k — E (9.58)

written in terms of the variables (9.55);,,. A linear representation is obtained
by setting A = —\, B = —1/\ and applying the scaling

h—> —\b, k— —k/\ (9.59)

in (9.44). Indeed, it is readily shown that the linear system

h, 1 ky 1
Prx = —¢x + )\Eq"y’ Yy = ?‘bx + )"}'_l"Py

h

Pry = ho, Uyy =k (5.60)
hy 11 ky 11

Pyy = I‘Py‘i‘xzd’xr ‘l‘yy—?‘l’y'*‘ )\h(Px

is compatible modulo the Demoulin system (9.58). In the case A=k cor-
responding to Tzitzeica surfaces, the identification ¢ =1 is admissible and
the standard linear representation (3.15) for the Tzitzeica equation is
recovered.

Exercise

1. In the case of Demoulin surfaces, show that, up to gauge transformations,
the quantities ¢!, .. ., ¢ are related by Laplace-Darboux transformations in
the sense of Section 3.3.

9.5 A Backlund Transformation for Projective-Minimal Surfaces

A Bicklund transformation for projective-minimal surfaces may be derived in
a systematic manner by imposition of suitable constraints on the Fundamental
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Transformation. Here, we assume that a and (3 are constant and make the
canonical change of variables

h=—=, k=——. 9.61)

Furthermore, application of the scaling

h—> -\, A—> =\, o \Na

(9.62)
k — —k/\, B — —B/\, B — B/\?
takes the linear representation (9.44) to
h 1 a
Pxx = —hi‘Px + )\E‘!’y - 2)\X¢x + ZBhZ‘P
B
Pxy = Bho + ?X‘Py
1B
¢yy = (In Bh), @y + -):E%
) (9.63)
Yrx = (In AK) Y, + )\"B—h‘Py
A
ll’xy = Ak‘l’ + Tyll-’x
k 11 18
Uyy = Tyllly + N 2;\3% + 20k
with compatibility conditions
1
(Inh)y, = Bh — W B, =2Bh,
9.64)

1
(nk)y = Ak = —, Ay =2ak;.

We now seek an invariance of the above linear system which may then be
formulated via the Pliicker correspondence as a Bécklund transformation for
projective-minimal surfaces.
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9.5.1 Invariance of the so(3, 3) Linear Representation
It is readily seen that the compatibility conditions for the linear system

B, 1B
Pry = Bhe + ?‘P}" Pyy = (In Bh)ycpy + X'ﬂ"’x

A 9.65)
lI-’xy = Aky + Ty‘px: Urx = (In Ak) Yy + )\E‘Pyy
which forms a subsystem of the Lax pair (9.63), yield
1 1
(Inh),, = Bh — T (Ink),, = Ak — W (9.66)

The latter is symmetric in the independent variables and may be regarded as
a system for & and k with arbitrary functions A and B. It also guarantees the
compatibility of the ‘adjoint’ system

$xy = BhO + %q’x’ &rx = (In Bh), &y + )\'I%J’y

i oA ) { 9.67)
Gy = Ak + =20, by, = (0 ARGy + - 20

which is obtained from (9.65) by interchange of x and y and the transposition
N — 1/\. We first focus on the equations (9.65);,3 which may be viewed as
normalised conjugate net equations in projective space and are therefore pre-
served by the Fundamental Transformation. The analogues of the parallel nets
introduced in Section 5.4 are given by the bilinear potentials M and N which
are defined by the compatible equations

e %0

My="p, My="3>
Y - (9.68)
Uy

Ny = A x’ Ny = j‘ »

where (§°, ) is a solution of the adjoint system (9.67) with parameter X. In
addition, if ¢> and {° are ‘eigenfunctions’ satisfying the linear system (9.65)
with parameter A, then the corresponding bilinear potentials M° and N° obey
the relations

o_ & P9
Me="p M ="3
wo Yoo (9.69)
NO=¢¢X N°=¢y¢.
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Differentiation of the ansétze

M N
/) __ — 0 I= Y R
¢ =¢—¢30 V=9 -y Ne (9.70)

for the Fundamental Transforms of ¢ and {s leads to

oM o N
“P;: = P(‘Py - cpyﬁ;)’ d"; = A(“"X - d”x‘ﬁ)) (9'71)
where I' and A are defined by
¢ Py
r'=l—-——, A=1—--—. .
BM-° AN° ©72)
Accordingly, the mixed derivative of ¢’ may be cast in the form
B¢ I, B
@, = l"(Bh - 2 Mﬁ)cp’ + (F + f")cp;, 9.73)

which shows that the hyperbolic equation (9.65); is indeed invariant under the
Fundamental Transformation (9.70); with

o

! __ r -
B'=gTB, gh'=h- o7,

9.74)
where g = g(y) is a function of integration. For symmetry reasons, the second
hyperbolic equation (9.65); is preserved by the Fundamental Transformation
(9.70), with

Tyus
AZN°

A'= fAA, fK =k- 9.75)
and f = f(x).

Preservation of the equations (9.65), 4 may now be guaranteed by appropriate
specification of f and g and certain constants of integration. To this end, we
observe that

+e ‘Ij:;"k‘ =c (9.76)

PPy

AM — AN —
A B2h

constitutes a first integral, a particular first integral of which yields

B WY

° _ N° — = . 9.7
M°—N Bzh+A2k c .77
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In terms of primed quantities, these relations may be written as

hl !
Ag—M —)\J%N-— 0=c

h
where
B4 Py
= x X0 T A?
Q= 4 B'Bh f A'Ak
and
hl
Accordingly, the relation
M 1
Mo =N —,[(c + QIN° — c°N]

obtains.
Now, differentiation of ¢/, as given by (9.71); produces

r g
‘qa;y = (Fy + (In Bh), — BMi )<p;

ITBTY {2 N
+)\Ak[ ()‘W—)‘I_V;)]

which is of the form
1
by = Q19 + XQ:‘!J;
provided that, by virtue of (9.79) and (9.81),

c=c’=0.

9.78)

9.79)

9.80)

(9.81)

(9.82)

(9.83)

9.84)

It is emphasized that the above constraints are admissible since the bilinear
potentials M, N and M°, N° are only defined up to arbitrary additive constants.

Thus, if the choice (9.84) is made, then the coefficients Q; and Q5 read

e _ I

01 = +(1 nBh), — —% — ———X_ = (In B'),

BM° N\, AkB'W'M°

TB bl B
Q2 -|- =
AK\A T AAKN° | T gAX

9.85)
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so that preservation of (9.65); requires that

g=1. (9.86)
Analogously, the specialisation

f=1 9.87)

ensures that (9.65), is invariant under the Fundamental Transformation. Con-
sequently, (9.74), (9.75) with f =g =1and ¢° = 0 constitute another solution
of the nonlinear system (9.66).

To obtain necessary conditions for the invariance of the remaining linear
equations (9.63)1,6, we now deal directly with the residual nonlinear equa-
tions (9.64), 4. Invariance of the latter implies certain eigenfunction-adjoint
eigenfunction constraints which may indeed be satisfied. Thus, if ¢ and ¢
are eigenfunctions which are solutions of the complete set of linear equations
(9.63), then the quantities

18

=Be- 284 ~y A ATAL
Ak
» (9.88)
2
Ay —2
U =AYy - °L \l»'x B A o7 Py
are particular adjoint eigenfunctions. On use of the relations
&x = Bo, — 2Bhgy, J’y = Ay, — 2akiy, (9.89)

it is readily verified that & and ) indeed satisfy the adjoint system (9.67).
With this choice of adjoint eigenfunctions, the general solution of the defining
relations (9.69) is given by

02 1

(] (P (] (o]
Z—BByz o, No=zy?—a

1 ¥
2 2

A2

M° = + c3. (9.90)
Insertion into the first integral (9.77).. =¢ produces the quadratic constraint

02 (P(;'
-2
® T“Bn

h ° k
(«p‘;’, - BE‘P;) -2 42 Y (q:y —a— ¢x) =cy—cr (991)
or, equivalently,

O°"DP° =1 —c3, (9.92)



9.5 A Bdcklund Transformation for Projective-Minimal Surfaces 349

where ®° and D are defined by (9.45), (9.46) and (9.48);, respectively. The
latter expresses the fact that the norm of the vector ® with respect to the Killing-
Cartan metric D associated with the so(3, 3) Lie algebra is constant. This is a
direct consequence of the identities (9.48).

Evaluation of the condition

B, = 28K, 9.93)

yields

°¢° hy  ©°¢ 1 M
2Bhy — ( e ) =28 [(7’ - BMi)h )\—AkBMO] (9.94)

and further simplification results in

(M° — lq,°2 + B?ﬁ)qﬁqﬁ =0. (9.95)
2 B? *
A similar result is obtained from the relation
A’y = 20k, (9.96)
Thus, the choice
ci=c=0 9.97)

guarantees that the Gauss-Mainardi-Codazzi equations underlying projective-
minimal surfaces are preserved by the Fundamental Transformation.

The bilinear potentials M and N may also be expressed explicitly in terms
of eigenfunctions. Thus, one may directly verify that the expressions

= o+ 52 4 g (py%—Z B(qu’y
Bh
¢°¢ o ]
+ VY — K ;kx 1¢Aq;y + 2 1a¢A‘gx +c3
(9.98)
(Px‘Py (Py(Px ‘P,‘Py
N=-
K P + K ——= 2h + K =0 2B
Yl ¢°¢ ¢°ll!
o _ yrx y x
+ k¥’ — Ko v 2k + 2k O‘Az + ca,
where the constants k; are given by
A2 Mo \?
Ko = © K| = K2 9.99)

N2 -2’ Moz TN
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satisfy the defining relations (9.68). Evaluation (by means of a computer algebra
program) of the primed versions of the remaining linear equations (9.63); ¢ now
shows that

3 =cs =0. (9.100)

The above result is summarised in the following:

Theorem 44 (An invariance of the so(3, 3) linear representation for projec-
tive-minimal surfaces). Let (¢, Y, h, k, A, B) be a solution of the linear rep-
resentation (9.63) and the nonlinear system (9.64). If (¢°, °) is another pair of
eigenfunctions with parameter \, subject to the admissible quadratic constraint

02 “Py(Px 02 ¢°¢° ¢02

@ —2—=— Bh +2|3 -y +2—= v s =0 (9.101)

and the bilinear potentials M, N and M°, N° are defined by (9.98)¢,=c,~0 and
o 1 o o 1 02 ¢02

M° = — B N° = Ew - /;2 , (9.102)

respectively, then a second solution of (9.63), (9.64) is given by

M W N
¢=¢-¢ e V=9 -y No
B Pyus
B:{w=h-—="L, kK=k--22 9.103
B2M° k A2N° ( )
¢ Pye
=B - , A=A-—
Me Ne°
with the definitions
1B

h
5 = B¢ — 2B2L g2 — 2—
PR TR T A

I° = Al° — 2 —¢°—2x =

¢0
(9.104)

h

9.5.2 Invariance of the sl(4) Linear Representation

Theorem 44 implies that the new eigenfunctions ¢’ and {s’ and their first deriva-
tives constitute linear combinations of their unprimed counterparts with coef-
ficients depending on ¢°, {°, h, k, A, B and \,. Thus, the action of the Funda-
mental Transformation on the so(3, 3) linear representation may be encoded in
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a transformation matrix P defined by
d'=Po (9.105)
and satisfying
P'DP = D. (9.106)

Accordingly, the transition from & to ¢’ may be regarded as an (improper)
rotation in R® endowed with the metric D. However, it is readily shown that
det P = —1sothat P € O(3,3)but P & SO(3, 3). Toexploittheso(3, 3)-si(4)
isomorphism at the group level, that is the Pliicker correspondence, we there-
fore need to conjugate the Fundamental Transformation B with the discrete
invariance

D: (¢, ¥, h,k, A, B) > (¢, =¥, —h, =k, —A,—B)  (9.107)
represented by the transformation matrix P= diag(—1, -1, -1, 1,1, 1) with
' &=Pd, P'DP=D, detP=-1. (9.108)
Indeed, the transformation matrix P associated with
B=DoB: &=Pd=~FPd (9.109)
enjoys the properties
P'DP=D, detP=1 (9.110)

and hence P € SO(3, 3).
If we now reformulate the relations (9.42), (9.43) and (9.46) as

1 1
dl=rAm, ¢2=§(r2/\r1+r/\'r|), ¢3=-2-r1/\r
(9.111)
1
$=r Am, ¢5=§(r1/\r2+r/\'q), ¢4=-2-r2/\r

then the action of the transformation B on the Wilczynski tetrahedral
(ro, r1, r2, r3) = (r, r1, r2, M) is obtained by solving the algebraic equations

P =RAd, F=-FAF+FAR), & =FAF

2 2

1 1 (9.112)
$=FAf, F=sEAR+FAND, &= RAF
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Since proper rotations of the form (9.109), (9.110) are mapped via the Pliicker
correspondence to linear transformations

4
Fi=) Kirj, KeSL®), (9.113)

i=

these algebraic equations are quadratic in K. At A = —1, their solution is en-
capsulated in the following theorem:

Theorem 45 (A Bdcklund transformation for projective-minimal surfaces).
Letrbethe position vector of a projective-minimal surface X and the eigenfunc-
tions ¢° and \° be defined as in Theorem 44. Then, a second projective-minimal
surface £ is given by

F=fr+ flri+ f°r; 9.114)
with coefficients
1)\°CP°+¢° <P° o
0 __2o¥ 7Y  pl_\_TY 2 _¥x
fr=—m—"g— f=%gma '=2a (9.115)
and

&R @2 Yol ye?
= 2_9Y % D = 2_o X"y L
Q—‘/:p" 25 T 255 \/;:o 2= +2a-s. (9116)

The transformation B has the tangency property, that is the line segment F—¢
which connects corresponding points on % and 3. is tangential to both surfaces.

Proof. The position vector of & may be cast into the form
F=g'r +g'r, + g'r,. (9.117)

Thus, if we make the usual identification of the surface ¥ ¢ P? with a surface
3 C R3, then the position vector of the latter reads

glrof'x + gzroi‘y

;=f ’
+ gor% + glrd + g2rf

9.118)

which implies that 7 — 7 is tangent to £. Moreover, the Fundamental Transfor-
mation is invertible and its inverse has the same form as B, that is, # constitutes
alinear combination of 7, 71 and 7,. Consequently, the line segment 7 — 7 is also
tangential to . O
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Exercises

1. Verify the first integral (9.76).

2. Show that the quantities ¢ and {s as given by (9.88) constitute particular
adjoint eigenfunctions and the corresponding bilinear potentials A° and N°
assume the form (9.90).

9.6 One-Soliton Demoulin Surfaces

In the case of Demoulin surfaces, the Backlund transformation of the previous
section may be readily related to the classical Moutard transformation. Thus,
if @ = B = 0, then the bilinear potentials M° and N° become

1

1
o=_02 o=_02 1
M ¢ N 2¢ 9.119)

so that the transformation formulae (9.103)s,¢ reduce to
A'=-A, B =-B. (9.120)

This, in turn, implies that A and B are preserved by the transformation B and
may therefore be normalised to A = B = 1. Atthe linear level, it has been shown
that the so(3, 3) representation (9.63) for the Demoulin system (9.58) takes the
form (9.60) and contains two Moutard equations. It is therefore natural to for-
mulate the Fundamental Transformation (9.70) conjugated with the involution
(9.107) as

S - T
¢ W
where S and T are defined by
S=¢"¢—2M, T =YY +2N. 9.122)

The latter satisfy the skew-symmetric bilinear relations

=00 — 60, 5§ =60 - (9.123)
L= =450, Ty =450 — 4%y,

Here, we have made use of the fact that the adjoint eigenfunctions ¢° and {°
coincide with the eigenfunctions ¢° and {°, respectively, by virtue of the rela-
tions (9.104). Accordingly, the transformations (9.121) constitute two copies
of the classical Moutard transformation and Theorem 44 reads:
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Corollary 6 (A Biicklund transformation for the Demoulin system). The De-
moulin system (9.58) and its so(3, 3) linear representation (9.60) are invariant
under the Moutard-type transformation

¢ — , h—>h=h—-2n¢),

6t

(9.124) -

[N &

b= k= k =k = 2(ny°)y,

o’

<

where (¢°, {°) constitutes a solution of (9.60) with parameter \, subject to the
admissible constraint

h k
and the bilinear potentials S and T are given by
S = "3‘P°<P _ vl‘bo‘b - vz(Px"Py - vo(Py(Px + v '-l»‘x'-]»‘y + " l'-'y'«"x
o Yo o o (9.126)
T =vd’Y — ¢ — Vzd’x;;py - % yk =+ vy ‘th% +v cpyh%
with the constants
2\ 2\\,
'Uo=_)\2_)\2, 1——)\2_)\2
) ; 9.127
222 A2+ \2 (9.127)
VZ=._._)\2_)\§, v3=_)\2_)\§.

If we start with the seed solution h = k = 1 of the Demoulin system, then
the simplest non-trivial eigenfunctions which do not just generate solutions of
the Tzitzeica equation are given by [133]

¢ =eMcoshy,, §° = —e"sinhy; (9.128)
with
1 _ V3 -
Y= 0x +k7y), =T —kT), A= (9.129)

It is then readily shown that the constraint (9.125) is identically satisfied with

Q ~eMmA, A =./cosh2y, (9.130)



9.6 One-Soliton Demoulin Surfaces 355

and the new solution of the Demoulin system reads

1 = . 1
k=1+

h=1- 7 P I
2 cosh” y; 2 sinh” y;

(9.131)

The latter consists of a typical sech?-shaped soliton () and a ‘singular soliton’
(k). However, the geometrically relevant quantities in the Gauss-Weingarten
equations for the associated Demoulin surfaces prove to be non-singular. For
instance, p = —1/k and § = —1/k take the simple form

1 1 1
- cosh2vy;

(9.132)

LT

5= _1 ,
P + cosh 2y,

These quantities are depicted as functions of v, in Figure 9.1.

The Gauss-Weingarten equations (9.8) associated with the seed solution p =
g =—1, V=W = Oreduce to

Fex =—Ty, Fyy=—Tx (9.133)

Figure 9.1. The Demoulin one-soliton solution.
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and hence the position vector of the seed surface X is given by

1
e'(x+)') ;\/§
r T2 cos vy |7 Y= '2—(-7‘ ) (9.134)
e(x"')')/z sin Y3

up to alinear transformation generated by a non-singular but otherwise arbitrary
constant matrix. Even though the eigenfunctions ¢° and {° are complex, the
reality of p and § guarantees that the Biacklund transformation for projective-
minimal surfaces delivers a class of real Demoulin surfaces via separation of
the complex position vector 7 as given by (9.114) into its real and imaginary
parts. Thus, the real position vector of the one-parameter class of Demoulin
surfaces £(k), k # 1 is readily shown to be

3 coshy; — sinh+y;
e~ G+g

1
A | &2 [ssiny; + /3t cosys] (9.135)
eE 25 cosy; — /31 sinys]

F=

s = kcoshvy, +sinh7y;, = kcoshy, —sinhy,

modulo an arbitrary linear transformation. For k = 1, the components 7° and
71 are identical so that 7! must be replaced by

=1

7 =0

. —F
Iim
k>l kK—1

(9.136)
to obtain a fourth linearly independent. component. Indeed, application of
I’Hopital’s rule produces the position vector

e_‘Yl

2
e (E'yg + (e™" —3eM)cosh yl)

€V sinvys + +/3 cosys
e cosyy — +/3 sinys

.1
F= X , (9.137)

which implies that the surface $CcRis represented by
—z-'ya + (e™™" — 3eM) coshy,
V3

€3 sinvy; + /3 e cosys
e cosy; — +/3eM sinvs

»
It

(9.138)
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Figure 9.2. A one-soliton Demoulin surface.

The above parametrisation shows that the surface ¥ is helicoidal since it is
generated by the curve 7 = F(yy, y3 = 0) which is uniformly rotated and trans-
lated in space. The ‘stationary one-soliton’ Demoulin surface ¥ parametrised
in terms of <y; and +y; is displayed in Figure 9.2,

9.7 Isothermal-Asymptotic Surfaces. The Stationary mNVN Equation

It has been shown in Section 9.2 that Tzitzeica surfaces constitute projective-
minimal surfaces subject to the constraint

p=4q. (9.139)

The latter condition defines isothermal-asymptotic surfaces in projective ge-
ometry. This terminology is due to Fubini [143] and reflects the fact that the
Darboux cubic form (9.15) associated with such surfaces simplifies to

p(dx® +dy?). (9.140)

Remarkably, the Gauss-Mainardi-Codazzi equations underlying isothermal-
asymptotic surfaces are integrable [129]. We here present the connection



358 9 Projective-Minimal and Isothermal-Asymptotic Surfaces

between the Gauss-Weingarten equations for isothermal-asymptotic surfaces
and the standard linear representation for the stationary modified Nizhnik-
Veselov-Novikov (nNVN) equation and elaborate on the geometric interpre-
tation of the Miura-type transformation to the Nizhnik-Veselov-Novikov (NVN)
equation as discussed by Ferapontov [129]. Moreover, the well-known Darboux-
type transformations.for the NVN and mN VN equations are interpreted in terms
of the Bicklund transformation for surfaces parametrised in terms of asymptotic
coordinates (cf. Chapter 1).

9.7.1 The Stationary mNVN Equation

It is readily shown that the s/(2) linear system (9.31) represents the Gauss-
Weingarten equations (9.31) for a generic surface in projective differential ge-
ometry written in terms of the Wilczynski tetrahedral (r, ry, 2, 1y). Indeed, if
we regard the relations (9.21) as definitions of certain functions o and 8 which
now depend on both x and y and introduce the functions A and B according
to (9.23);,3, then (9.31) is compatible modulo the projective Gauss-Mainardi-
Codazzi equations (9.9). In particular, in the case of isothermal-asymptotic
surfaces, the compatibility condition produces the system

Pyyy — 2PyW — pWy = pryx —2pV — pV;
W: =3ppy (9.141)
V)‘ = 3ppx

which, remarkably, is the stationary version of the mN'VN equation [47]

Dt = Dxxx — 2pr - pVx — Dyyy +2p)'W + pW)’

(9.142)
W: =3ppy, V, =3ppx.

The mNVN equation constitutes an integrable 2+ 1-dimensional generalisation
of the mKdV equation

Pr = 2Paxx + 12p%ps (9.143)

which is obtained by setting p = p(x — y, t).

In the general case, the sI(4)-so(3, 3) isomorphism encapsulated in the rela-
tions (9.42), (9.43) implies that the so(3, 3) linear representation (9.47) is also
compatible modulo the projective Gauss-Mainardi-Codazzi equations (9.9). In
the particular case p = g, the components ¢!, ¢?, ¢* and ¢° may conveniently
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be expressed in terms of

=7, ¢*=4¢ (9.144)
that is
- Dy - 1(p 2| -  Dy-
X 1 X 2 - X =
¢6=_¢xx+'p—¢x+[v‘"§('p—) :|q3, ¢5=_‘Px+‘p—(P»
p p p
(9.145)

so that the so(3, 3) linear representation for the stationary mNVN equation
reduces to
¢y = PJ” Pxxx = Pyyy + 2Ve, + Vi@ — 3py¢1y - 2leTJ

J i _ i} g _ (9.146)
lllx = P9, lI’y_yy = l‘l’xxx + 2W""y + W)'l‘l’ - 3px‘Px - 2PV‘P’

The above linear system constitutes nothing but the stationary reduction of the
linear representation

¢y =pb
¥ = pé ‘
Pt = Pxxx — Pyyy — 2V — V2B + 3p)"1’y + 2PW¢‘
=0 = yyy = Vuax = 2Wh, — Wyb +3p:f: + 2PV
of the mNVN equation. A linear representation of the stationary mNVN equa-
tion which contains an arbitrary parameter may therefore be obtained by setting

(9.147)

P, y,0)=eNg(x,y), (x,yn=eMb(x,y),  (9.148)
leading to
¢y =pl
b =2 9.149)

AP = Puxx — ‘TJyyy - 2V¢x -Vie+ 3qu’y + 2PWJ’
A =0y — Uy —2W0, — Wyl +3p:3x +2pV$.
The geometrically relevant case (9.146) is retrieved if A = 0.
To summarise, the standard linear representation of the stationary mNVN

equation admits a canonical geometric interpretation in terms of isothermal-
asymptotic surfaces represented in projective space P5. However, a natural link
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may also be established by considering the realisation of isothermal-asymptotic
surfaces T as surfaces 3 in Euclidean space R3. This is shown below.

9.7.2 The Stationary NVN Equation
The Gauss-Weingarten equations for isothermal-asymptotic surfaces T read

1 1 '
Tex = pry+ 5V —py)r, ryy = pre+ (W —pJr.  (9.150)

Accordingly, if r° constitutes a corresponding scalar solution, then the posi-
tion vector # of the ‘isothermal-asymptotic’ surface 3 C R? satisfies the linear
system

ixx=aix+pi'y, ’A'yy=bi'y+pix, (9.151)

where a = —2(Inr%),, b = —2(Inr%),. Conversely, any vector-valued solu-
tion 7 of (9.151) for appropriate functions a, b and p defines an isothermal-
asymptotic surface T c P,

The compatibility condition for (9.151) is readily shown to yield the nonlinear
system

1

bz—b) = 3ppy,
2 y . y

(px +ap +
ay = b,. (9.152)

1
(py +bp + 5«12 - ax) = 3ppx,
Yy

For a given solution (a, b, p) of this system, it is natural to set

W=p,+ap+ %bz —by, V=p,+bp+ %az —a, (9.153)
so that (9.152); 3 produce the relations
Wy =3ppy, V, =3pps. (9.154)
The relation (9.152), confirms that there exists a function r° such that

a=-2(nr%,, b=-2(nr%,. (9.155)

Insertion into (9.153) now leads to the linear system

1 1
o =prd+ 5V = pr% ) =prd+ (W = pr®  (9.156)
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which is of the same form as the Gauss-Weingarten equations for isother-
mal-asymptotic surfaces. Accordingly, its compatibility condition produces the
remaining relation

Pyyy — 2PyW — pWy, = pyxx —2psV — pVi. 9.157)

Hence, the Gauss-Mainardi-Codazzi equations for isothermal-asymptotic sur-
faces are retrieved, and it is justified to refer to 7 as the position vector of an
isothermal-asymptotic surface & C R3.

Since the surfaces & are parametrised in terms of asymptotic coordinates,
we may employ the Lelieuvre formulae

Fr=v XV, F=v,xV (9.158)

which relate the position vector £ of % to its scaled normal (co-normal) v.
The co-normal satisfies a Moutard equation (cf. Chapter 1) and insertion of 7,
and 7, as given by (9.158) into the Gauss-Weingarten equations (9.151) reveals
that the second derivatives v,, and v, are likewise determined up to their
components in v-direction. Accordingly, there exist functions f, g and u such
that the co-normal obeys the triad

Vix = avy, — pv, + fv
Vyy = uv (9.159)

Vyy = bvy — pv, + gv.
The compatibility conditions for the latter reduce to

u=p2+a),, u=p2+bx
f=py+bp, g=px+ap (9.160)
u, = fy— pg+au, u,=g,—pf+bu.

Either of the first two relations define u where a, = b,. The relations (9.160)3 4
determine the functions f and g, and the remaining equations adopt the form
of (9.152)1,3. Thus, the linear triad (9.159) is compatible if and only if its coef-
ficients are parametrised in terms of a solution of the Gauss-Mainardi-Codazzi
equations of isothermal-asymptotic surfaces. Consequently, any vector-valued
solutiort v of (9.159) defines uniquely an isothermal-asymptotic surface ¥ via
the Lelieuvre formulae (9.158).
It is readily verified that the pair
Vixx — 30V, = vy, — 3wV,

9.161)

Viy = UV,
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where the functions v and w are defined by

2 2
U=§V+ax, w=§W+b)., (9162)

is a differential consequence of the linear triad (9.159). Its compatibility con-
dition produces the stationary NVN equation [276,371]

Ugyx — 3(VU)x = uyyy — 3(wu),
Wy = U, (9.163)

Uy = Uy

with

Uy = Uxxx — 3(Uu)x - u)')‘)‘ + 3(wu)y (9 164)

Wy = Uy, Uy = Uy

being the 2+1-dimensional counterpart. The NVN equation reduces for solu-
tions of the form u = u(x — y, t) to the KdV equation

Up = 2Uyxy + 12uu;,. (9.165)

The NVN equation admits coherent structure solutions (dromions) which, for
fixed ‘time’ ¢, decay exponentially in any direction [20]. It is recalled that the
existence of dromions was first established by Boiti et al. [49] for the Davey-
Stewartson I equation via a binary Darboux transformation. The latter, with
regard to both structure and form, is nothing but the classical Fundamental
Transformation.

The standard Lax pair

&1 = duxx — 3uds — dyyy + 3w,
¢xy =ud

for the NVN equation reduces to that for the stationary NVN equation by setting

(9.166)

&(x, y, t) = eMd(x, y) (9.167)

so that (9.161) may be regarded as a vector-valued version of

Ad = duxx — 3v¢x - 4’)’))‘ + 3w¢y

(9.168)
ey = ud
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evaluated at A = 0. Thus, the co-normal v to the isothermal-asymptotic surface
£ is naturally associated with the stationary NVN equation while the position
vector 7 is closely related to the stationary mNVN equation. This geometric
observation is encapsulated in the following theorem [129] and may be re-
garded as a geometric interpretation of the analogue of the important Miura
transformation

u=p’+p; (9.169)
between the mKdV and KdV equations
Pt = Pxxx — 6p2va Uy = Uyyy — Ouu,. (9.170)

Theorem 46 (A link between the stationary mNVN and NVN equations).
If (p, V, W) is a solution of the stationary NVN equation (9.141) and r° a
corresponding solution of the linear system (9.156) then

u = p?—2(nro,,
2 0
v=3V =20nr)x (9.171)
2 0
satisfies the stationary NVN equation (9.163).

Proof. Insertion of the parametrisation (9.155) into the relations (9.160); and
(9.162) produces the transformation formulae (9.171). O

At the linear level, the above connection is made as follows. Let ¢ be an
eigenfunction associated with the stationary NVN equation, that is a solution
of the Lax pair (9.168). Even though ¢ is a solution of the Moutard equation
(9.159),, the remaining two equations of the linear triad (9.159) are not satisfied
by &. It is therefore natural to introduce functions ¢ and § according to

bex=ady — pdy + fO+ &
ey = ud 9.172)
dyy = by — pb, + gd+ .

Since the above system is compatible if we formally set § = {s = 0, itisevident
that the compatibility conditions for (9.172) give rise to linear homogeneous
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equations for § and s . Indeed, collection of the terms involving @ and ; yields
¢y =p¥, U, =pd (9.173)

which coincides with the ‘scattering problem’ (9.149); , for the stationary
mNVN equation. The third-order equation (9.168); may then be written as

A= +ad— 1§, —by. (9.174)

On solving the latter for ¢, the Moutard equation (9.172), is readily shown to
be satisfied identically while (9.172); 3 may be cast into the form

AP = Brxx = Byyy — 2V & — V2d + 3p, b, + 2pW
_A\TJ = leyy - J’xxx - 2W‘Ly - Wy\T" + 3pxq-9x + ZPV(b

Thus, the linear representation (9.149) of the mNVN equation is retrieved.
This connection between the linear representations of the NVN and mNVN
equations is exploited in the following section to simplify considerably the
analytic formulation of a Bicklund transformation for isothermal-asymptotic
surfaces.

(9.175)

Exercises

1. Show that, on appropriate interpretation of the functions e, B and A, B,
the 51(2) and so(3, 3) linear representations (9.31) and (9.47) are compati-
ble modulo the Gauss-Mainardi-Codazzi equations of projective differential
geometry.

2. Verify that the quantities @ and { as defined by the linear triad (9.172) con-
stitute eigenfunctions of the stationary mNVN equation, that is they satisfy
the linear representation (9.149).

3. Prove that the projective Gauss-Weingarten equations (9.151) and the rela-
tions (9.155) imply that

A A A C
Ir:nry,rxyl = '(’35:{

and hence # may be normalised in such a way that ¢ = 1. In this case, show
that

v =(0%F, x Py

obeys the Lelieuvre formulae (9.158).
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9.8 A Bicklund Transformation for Isothermal-Asymptotic Surfaces

As a starting point for the construction of a Bécklund transformation for
isothermal-asymptotic surfaces, we first construct an invariance of the station-
ary mNVN equation based on the so(3, 3) linear representation (9.149). The
Pliicker correspondence may then, in principle, be exploited to obtain, by purely
algebraic means, a mapping between a seed isothermal-asymptotic surface X
and a second isothermal-asymptotic surface X’'. However, we choose here to re-
late the invariance of the so(3, 3) linear representation directly to an invariance
of the linear triad for the co-normal v via the procedure outlined in the previ-
ous section. Finally, the Lelieuvre formulae are used to formulate a Bicklund
transformation at the surface level.

9.8.1 An Invariance of the nNVN Egquation

A Bicklund transformation for a two-dimensional integrable system may some-
times be conveniently constructed via dimensional reduction of a Backlund
transformation for a three-dimensional system in which it is embedded. This
approach sheds light on the origin of bilinear potentials of the form (9.98).
Here, it is illustrated by constructing a Bécklund transformation for the sta-
tionary mNVN equation by means of a transformation for its non-stationary
counterpart which is reminiscent of the classical Fundamental Transformation.

Let (¢, ¥ ) and (¢°, Y°) be two pairs of eigenfunctions of the mN'VN equation
satisfying the linear representation (9.147). Bilinear potentials M and M° may
then be defined by the compatible equations

M, =¢¢, M,= VP (9.176)
and

M =62, M=y, 9.177)

A short calculation now reveals that the quantities ¢’ and ' given by
M, M

F=0—¢"—, V=0 —°—, 9.178
¢=0-¢75 V=9 -Ur (9.178)
satisfy the primed version of the scattering problem (9.147),,2 with
, eY°
=p- . 9.179
P=P~ 75 ( )

To show that the entire linear representation (9.147) may be preserved by the
above transformation, it is required to prescribe compatible time-evolutions of
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the bilinear potentials M and M°. These may be found in a purely algebraic
manner for large classes of 2+ 1-dimensional integrable systems by employing
a pseudo-differential operator formalism [281]. In the present case, one obtains

M = (P;x‘b + (P°<I>xx - "P(;‘bx - 2V‘P°¢

i - - _ (9.180)
=5 — Uy, + 5P, + 2WeCY

and, in particular,
M; =26, ¢ — @2 =2V — 205 U + Y2 +2Wy2. (9.181)

Indeed, the compatibility conditions for M and M° are readily shown to be sat-
isfied modulo the linear representation for the mN'VN equation and insertion of
the transformation laws (9.178) into the primed analogue of (9.147); 4 delivers

W=Ww- %(lnM°),y, Vi=V- %(lnM°)x,,. (9.182)
In this connection, it is noted that (9.179) implies that
2 _ 2 o
P =p" —(InM®);,. (9.183)

By construction, the quantities W’, V' and p’ constitute another solution of the
mNVN equation.

A Bicklund transformation for the stationary mNVN equation and its linear
representation may now be obtained by specialising the eigenfunctions and
bilinear potentials to

B(x, y, 1) = eMP(x, ), Cx, 3, 1) = 'P(x, y)
Ux, y, 1) =My (x, y), P, y, 1) =e™P(x,y)  (9.184)
Mx,y, 1) = eI M(x, y) M°(x, y, 1) = e M°(x, y).

As a consequence, the time-evolutions (9.180) and (9.181) provide explicit
expressions for M and M°, respectively.

Theorem 47 (An invariance of the linear representation for the mNVN equa-
tion). If (p, W, V) is a solution of the stationary mNVN equation and (3, ),
(¢°, U°) are corresponding eigenfunctions which obey the linear representation
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(9.1 49) with \ and ), respectively, then

. _ ‘PoLIJo
P'=p-=7
W =W- %(m M), (9.185)

Vi=V-— %(lnM°)xx

constitutes a second solution of the stationary mNVN equation and an associ-
ated pair of eigenfunctions is given by

"=¢—<p°:44°. &'=¢~¢°AA;, (9.186)
with bilinear potentials
A+ AIM = @3, 0+ FPux — ¢;0x — 2V P
= 45,0 = 40, + U5, +2WHRY (9.187)
AoM® = 5,8 = 267 = VT — U500 + U5+ Wi,

An invariance of the so(3, 3) linear representation for isothermal-asymptotic
surfaces is obtained by setting A = 0.

9.8.2 An Invariance of the NVN Equation and a Bécklund
Transformation for Isothermal-Asymptotic Surfaces

One may now solve the system of quadratic equations provided by the Pliicker
correspondence to obtain the action of the transformation given in Theorem 47
on isothermal-asymptotic surfaces. We here exploit the connection between the
stationary mNVN equation and the stationary NVN equation to gain important
insight into the geometric nature of the Bicklund transformation for isothermal-
asymptotic surfaces. To this end, it is recalled (cf. Chapter 1) that a mapping
between two surfaces £ and £ parametrised in terms of asymptotic coordinates
is given by

S
F=F+v' xv, v =—,
¢o

where the co-normal v is related to the position vector 7 by the Lelieuvre
formulae (9.158) and the bilinear potential S is defined by

(9.188)

Sy =%y — v, S, =y —¢°v, (9.189)
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with underlying Moutard equations
Vyy = Uv, :y = ud’. (9.190)

A notable property of the above transformation is that #/ — 7 is tangential to
both surfaces ¥ and 5.

Since the Moutard equation (9.190) is part of the linear triad satisfied by
the co-normal v associated with isothermal-asymptotic surfaces £ C R3, it is
natural to investigate under what circumstances the triad (9.159) is mapped to
itself. As a first step, we observe that if ¢° depends parametrically on ¢ and
satisfies the ‘time-evolution’ (9.166), then the time-evolution

St = ¢ Vixx — PV + SVyyy — 5V
+ 2L, vx — ;vaa) + 2Ady vy — HJuyy) (9.191)
+30(¢Y — ¢°V5) + 3wy — ¢°v))
is compatible with the defining relations (9.189) provided that (9.161) (or its

time-dependent analogue) holds. Moreover, application of the transformation
(9.188); produces

Vi =V, =3, — v+ 3w ©.192)
vy, =u'v,
where the primed coefficients are given by
‘= u =210 ¢°),
vV =v—2(Ind°),, (9.193)

w = w —2(In4°),,.

The relations (9.192), (9.193) embody the standard Bécklund transformation
for the NVN equation {20] and its Lax pair. To ensure that ' does not depend
on ¢, that is, that it satisfies the primed version of the geometrically relevant
linear equation (9.161);, we set

$°(x, y, 1) = 'P°(x,y), Sx,y, 1) =e™'S(x,y)  (9.194)
so that ¢° is a solution of the Lax pair (9.168) for the stationary NVN equation
and S is explicitly given by
A-O‘S = ¢°vxxx - ¢;xxv + ¢°vyyy - ;yyv
+ 2(¢;xvx - ¢;vxx) +2( ;yvy - ¢;vyy) (2.195)
+3u(gEy — ¢°¥,) + Bw(dy — ¢°v,).
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It is emphasized that S does indeed satisfy the defining relations (9.189) and
@', v, w') now constitutes a second solution of the stationary NVN equation.

It may be verified directly that, if S is specialised to (9.195), not only the pair
(9.161) but also the linear triad (9.159) is invariant under the transformation
(9.188),. To simplify the expressions for the new coefficients p’, a’, b’ (and
f', g"), we compare the form of p’ with that given in Theorem 47. One is led
to introduce the quantity

o o 10 0 10 1 (o] o o o o
M® = ¢ +U74) — 5 (& +a¢” + 4 + b47)°, (9.196)

where ¢° and s° are eigenfunctions of the mNVN equation related to the eigen-
function ¢° of the NVN equation via the triad (9.172). Moreover, differentiation
and use of (9.174) produces the usual relations

M =¢?, M= . 9.197)
Thus, at the level of the mNVN equation, the transformations (9.186) and

(9.188), are identical up to the discrete invariance p’ — —p’ and we obtain the
following:

Theorem 48 (A Bicklundtransformation for isothermal-asymptotic surfaces).
Let 7 be the position vector of an isothermal-asymptotic surface ¥ and v its
associated co-normal. Then, the position vector ¥ and co-normal v’ of its
Biicklund transform %' are given by (9.188), where the bilinear potential S is
defined by (9.195) and &° is a solution of (9.168) with parameter \.. If the
bilinear potential M° is given by (9.196) with the eigenfunctions ¢° and \°
being related to &° by the triad (9.172) then the second solution of the (m)NVN
equation and the nonlinear system (9.152) reads

W=u-— 2(1n¢°)xy: Pl =-p+ q;;:
V=2 V=V 2 M

3 (9.198)
W =w-2nd)y, W =W,

Me M°
a’=a+(]n o)’ b’=b+(ln—°).
¢2x ¢2y

The Bicklund transformation B : ¥ — 3’ possesses the tangency property,
that is, ¥ — F is tangential to both'% and 3.
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Large classes of isothermal-asymptotic surfaces may now be generated by
means of iterative application of the Bicklund transformation B to known
(classical) isothermal-asymptotic surfaces such as quadrics, cubics, quartics of
Kummer and projective transforms of surfaces of revolution [51, 135, 136,
143, 227]. The solutions of the stationary (modified) NVN equation underlying
these seed surfaces have been discussed by Ferapontov [129]. Soliton surfaces
may be obtained by choosing seed surfaces corresponding to the trivial solu-
tion (a, b, p) = const. Their associated Bécklund transforms are akin to the
one-soliton affine spheres discussed in Chapter 3 (cf. Exercise 3).

Exercises
1. Verify that v’ as given by (9.188),, (9.189) and (9.191) satisfies the Lax pair
(9.192) and therefore (9.193) constitutes an invariance of the NVN equation.
2. Show that (9.196) coincides with the expression for M° given in Theorem
47. .
3. (a) Determine the isothermal-asymptotic surfaces associated with

1
u=p=l, f=g=b=a, v=w=§a(a+2).
(b) Specify the real constants o, 3 and . in such a way that
$° = UM cosh[B(vx + y/v)]

is a particular solution of (9.168) with A, =i and show that the corre-
sponding solution u’ of the stationary NVN equation represents a real
soliton.

(c) Apply Theorem 48 to construct real one-soliton isothermal-asymptotic
surfaces. Show that these constitute surfaces of revolution if v = 1.
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The su(2)—so(3) Isomorphism

The transition between the 3 x 3 Gauss-Weingarten equations for integrable
surfaces and 2 x 2 representations for the associated soliton equations encoded
in the Gauss-Mainardi-Codazzi equations has been seen to be based on the
su(2)-so(3) isomorphism (cf. Chapter 2). The isomorphism between the Lie
algebras su(2) and so(3) is reflected at the group level by the existence of a
two-to-one homomorphic mapping of the Lie group SU(2) onto the Lie group
SO(3) [87]. This may be exploited to map the Gauss-Weingarten equations with
underlying SO(3) structure to its SU(2)-valued counterpart. In particular, the
triad {r;, ry, N} associated with a surface may be encoded in an SU(2) matrix.
. The SO(3)-SU(2) connection is obtained as follows.

Let ¢, be the canonical trace-free and skew-symmetric generators of the su(2)
Lie algebra defined by

1/0 1 10 —i 1/1 0
e‘"ﬁ(l o)’ "2‘52(:' o)’ ‘33‘5?(0 -1)‘ A1)

These obey the commutator relations
lex e1] = €™ em, (A2)

where €™ denotes the standard alternating Levi-Civita symbol and Einstein’s
summation convention has been adopted. Accordingly, any linear differential
equation of the form

é=g"end (A3)

with some given functions g™ admits SU(2)-valued solutions, that is, (bf(b =1,
det b = 1. Thus, if

$ e SUQ) (A4)

271
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then we may define a 3 x 3-matrix ¢ by

Oy = —2Tr (¢ erdey). (AS5)
Differentiation and evaluation by means of (A.3) results in

by = —2Tr (b ex, dbd~'1der)
= —2g™ Tt (¢~ [ex, emlder)

= —28"&xn" Tr ($™ endber) o
= g™ €m" Pl
so that
®=g"L,®, (A7)
where the matrices L,, are giyen by
Lmk" = €m”, (A.8)

that is

00 O 001 0 -1 0
Li=|100 -1], L= 000}, Ls=|1 0 0]. (A9
01 O -1 00 0 0 O

The latter constitute the adjoint representation of the so(3) Lie algebra and
satisfy the same commutator relations as the su(2) matrices e,,. In fact, since

—2Tr(exer) = Su, (A.10)

where &, designates the standard Kronecker symbol, the definition (A.5) of the
matrix & is equivalent to

¢lexd =) Drmem (A11)
and hence
—2Tr (¢ exerd) = —2 Y Dm®in Tr (€men)- (A.12)
m,n

Evaluation of the latter produces

% =Y  PemPim (A.13)
m
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which implies that

TP =1. (A.14)
In a similar manner, one may verify that

detd =1, (A.15)
whence

P € S0(3). (A.16)

Accordingly, the SU(2) matrix ¢ is mapped to an SO(3) matrix ¢ by the trans-
formation (A.S). It is noted that & is invariant under ¢ — —¢ which shows that
the mapping SU(2) — SO(3) is, at least, two-to-one.

To prove that the SU(2) Lie group indeed provides a ‘double covering’ of the
SO(3) Lie group, we now introduce the parametrisation

(1 - 2 2_
¢—(¢2 <T>1)' (1l + Id2|* =1 (A.17)

of any matrix ¢ € SU(2). It is then easy to show that the associated matrix
® € SO(3) reads

R4 - ) S(¢f-¢)) 2R
o= -3¢ +43) R(6}+¢3) —2%hd) |- (A18)
—2R(d1d2)  —2idd) il — Idal?

In particular, the relations

P +i®a _ d1—d Pr+i®Pn b1 +id,
1— &3 d1+d’ 1-0pn $2 — idy

obtain by virtue of the condition (A.17),. Conversely, for a given SO(3) matrix
, the linear equations (A.19) define two complex functions ¢; and ¢, up to
a real multiplicative factor, the absolute value of which is calculated using the
normalisation condition (A.17),. In this way, a matrix ¢ € SU(2) of the form
(A.17) is uniquely constructed up to the transformation ¢ — —.

(A.19)
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CC-Ideals

Constant coefficient ideals (cc-ideals) have been utilised by Harrison [158] in
connection with the construction of Bécklund transformations for the Ernst
equation of general relativity. The notion of cc-ideals has subsequently been
used extensively in the context of 1-+1-dimensional integrable systems
[122,169-171,173,323, 336, 339]. There exist strong connections with the pro-
longation technique developed by Wahlquist and Estabrook [123,378].

We here consider an infinite-dimensional Lie algebra which admits a faithful
matrix representation obeying the commutator relations

[Xi, Xj1 = c*ijXs, c*ij = const (B.1)
and the Jacobi identity ’
(X, X;1, Xl + [[X;, X, X:] + [[Xk, Xi], X;1=0. (B.2)

In terms of the structure constants c¥;;, the latter is given by
ijcPak + ¢ jkcbai + c®hic’aj = 0, (B.3)

where Einstein’s summation convention has been adopted. The matrices (gen-
erators) X; may be associated with dual one-forms & which, in turn, give rise
to the two-forms

of = dgk %ckgjgiﬁj. B.4)

Here, we have suppressed the wedge between differential forms. The two-forms
¥ generate a closed differential ideal since

do* = 0 mod o'. (B.5)

274
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Indeed, modulo w', we obtain
1 Lo A
do* = d** — Eckij(dglgj —£'dt))

1 ki .

— 2ok .o igagb
20 ijC ab§'E%€ (B.6)
1 ; ; ; .

= (e an + gl + fuyclia)EEE

=0

by virtue of the Jacobi identity (B.3) and c* ji= —ck; ;. This guarantees that the
equations w* = 0 are integrable. The matrix-valued one-form

Q=—do+ X;£, ®.7)

where & denotes a matrix-valued function, is also closed modulo  and o,
that is

dQ = —d*® + X;dt'd — X;£'X;8/ 0

= (x,,dg" 1% Xj]E'E’) o (B.3)
1 . .
= 5 (Xec"y - X, X;))E'E @

modulo (2, w') and hence
dS2 = 0 mod (2, ©h). (B.9)

Thus, the equation Q == 0 is likewise integrable and, accordingly, the one-form
equation

do = X;t'o (B.10)
may be regarded as a linear representation of the ‘cc-ideal’!
1 -
dt* = Ec",-,-g'gl. (B.11)

To obtain differential equations from the system of two-forms w*, it is now
required to assume that only a finite number of one-forms &', i € J C Z are

1 Strictly speaking, the cc-ideal is generated by the one-forms w*.
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non-vanishing, that is

£ =0, idl. (B.12)

The set of two-forms w* then splits into a differential system and an algebraic
system, namely

pk = dgk - %Ck;jgigj, kel
] B.13)
O'k = —Ec";jgiﬁj, k ¢J

It is emphasized that the system (p*, o*) remains closed under exterior differ-
entiation, that is d(p*, 0*) = 0 mod (p’, o). The maximum dimension of an
integral manifold on which the two-forms p* and o** vanish is Cartan’s genus g.
The one-forms &' may thus be represented as linear combinations of g linearly
independent one-forms 1{, i=1,...,g, thatis

tE=dn, iel (B.14)

with functions a' ; depending on the coordinates which parametrise the integral
manifold. These have to be chosen in such a way that the algebraic one-forms o*
vanish identically. The remaining conditions p* = 0 then reduce to a system of
first-order differential equations which may be combined to one (or several)
higher order equation(s). By construction, the g linear matrix differential equa-
tions (B.10) are compatible modulo this system of nonlinear differential
equations.

The linearly independent one-fdms v’ may be found by investigating the
two-forms p* with respect to exact one-forms to be used as coordinate differen-
tials on the integral manifold. Thus, if there exist more than g exact one-forms,
then we may choose any g linearly independent exact one-forms as coordi-
nate differentials. The remaining exact one-forms constitute differentials of
potentials. Interchange of coordinates and potentials may be exploited to derive
various differential equations which admit the same cc-ideal.

As an illustration, we consider the loop algebra so(3)®@R(\, A1) [186] of
the so(3) Lie algebra with associated commutator relations

(X7, XT] = e X, (B.15)

where ¢;;* denotes the standard alternating Levi-Civita symbol. A matrix rep-
resentation is given by
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where the matrices ¥; satisfy the so(3) commutator relations
[¥i, ¥j] = &;* Vi (B.17)
Canonical representations of the so(3) Lie algebra are the adjoint representation
Y; = L; or the su(2) representation Y; = e; as discussed in Appendix A.
To set up a particular cc-ideal, we now assume that the only non-vanishing
one-forms £, £2, €3, £* are those dual to the generators
X, =X9, Xo=X), Xa=X7', X¢=X;', (B.18)

respectively. The corresponding cc-ideal then becomes

dgl — §2§3’ §1§2 =0

d§2 — 0’ §3§4 =0
dE° = gl (B.19)
dg* = ¢l

Cartan’s genus is g = 2 since the algebraic part of the above cc-ideal shows that
g =ag? £ =bn g=cn (B.20)

for as yet unspecified functions a, b, ¢ and a one-form . Its differential part
implies that

1
dg? =0, d( b2 +cz'q) =0, d(-2-a2§2+c'n) =0, (B21)
which, in turn, guarantees the existence of the differentials
dx =t% dy=+b +c*n, dz= %azgz +cm. (B:22)

Thus, in terms of the coordinates x and y, the one-forms & may be parametrised
according to

gl =adx, £2=dx, £ =sinwdy, &*=—coswdy (B.23)
and the cc-ideal reduces to the system of differential equations

ay = —sinw, w; = —a. (B.24)
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We therefore conclude that the cc-ideal (B.19) represents-the classical sine-
Gordon equation

wyy = Sin® (B.25)
and the potential z defined by
dz = %;)idx —coswdy (B.26)
corresponds to the ‘conservation law’
(wﬁ)y + (2cosw), =0. B.27)

Alternatively, if we choose y and z as coordinates, then x becomes a potential
and the one-forms &' admit the parametrisation

¢! = A(coswdy + dz), g3 =sinwdy

g2 = %Az(cos wdy +dz), £*=—coswdy 3-28)
with A = 2/a. Insertion into the cc-ideal produces the system
Ay — A cosm + %A.mz sinw=0, w,=—A (B.29)
or, equivalently,
Wy, = W,; COSW — %wi sin ®. (B.30)

The latter equation therefore encapsulates the sine-Gordon equation (B.25) via
the reciprocal transformation (y, z) — (x, y) with the variable x being defined
by

1
dx = 5mﬁ(cos wdy + dz). (B.31)

By construction, it is encoded in the same cc-ideal as the sine-Gordon equation.
This avatar of the sine-Gordon equation was set down in [195].

The linear representation corresponding to any parametrisation of the two-
forms £’ may be obtained from (B.10) by means of the matrix representation
(B.16), where X plays the role of the ‘spectral’ parameter. For instance, if we
choose the su(2) representation

170 1 10 —i 1/1 0
Y‘—E?(l o)’ Yz_z_i(i 0)’ Y3“§§(0 —1) (B.32)
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then the linear representation of the sine-Gordon equation becomes
1 0 o ~ (1 0
e=3l(e ©)-2(0 )]
i (—cosw sinw
q)’—_ﬁ( sinw cosw) ®,

which is nothing but the standard AKNS representation up to the transformation
N — —\ (cf. Chapter 2).

(B.33)
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Biographies

Albert Victor Biacklund

Born: Visby, Sweden 1845
Died: Lund, Sweden 1922

Bicklund received his tertiary education at the University of Lund. In 1864,
he was appointed as an assistant at the Astronomical Observatory where he
became a student of Professor Axel Moller. In 1868, Bicklund received his
Doktor Philosophiae for a thesis concerning the measurement of latitude from
astronomical observations. Bécklund thereafter turned to geometry and, in par-
ticular, to the work inspired by the Norwegian mathematician Sophus Lie.

In 1874, Bicklund was awarded a government travel scholarship to pursue
his studies on the Continent for six months. He spent most of his time in Leipzig
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and Erlangen where he met both Klein and Lindemann. Ideas which Bécklund
gained in this period led his later work on the geometry of what have come to
be known as Bicklund transformations.

In 1878, Bicklund was appointed to the Extraordinary Chair in Mechanics
and Mathematical Physics at Lund. He was elected Fellow of the Royal Swedish
Academy of Sciences (KVA) in 1888. In 1897, Bécklund was awarded the Chair
in Physics at the University of Lund where he was later Rector. Bicklund retired
in 1910, but continued his scholarly research until his death.

Bécklund is usually associated with the type of transformation of surfaces
that bears his name, the extension of which have had major impact in soliton
theory. Béicklund’s geometric work in this area was originally motivated by an
attempt to extend Lie’s theory of contact transformations. Bicklund also made
a significant incursion into the theory of characteristics which originated in the
work of Monge and Ampére. Indeed, Bécklund was regarded by both Goursat
and Hadamard as the founder of the modern theory of characteristics.
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Gaston Darboux

Born: Nimes, France 1842
Died: Paris, France 1917

Darboux entered the Ecole Normale Supérieure in 1861 and completed his
doctoral thesis entitled Sur Les Surfaces Orthogonales in 1866. Between 1873
and 1878, he was suppléant to Liouville in the Chair of Rational Mechanics at
the Sorbonne and in 1880 succeeded to the Chair of Higher Geometry previously
held by Chasles and retained it until his death. In 1884, he became a member
of the Académie des Sciences. In 1902, he was elected a Fellow of the Royal
Society of London and awarded its Sylvester Medal in 1916.

Darboux’s primary contributions were to geometry, although he also made
important incursions into analysis. He produced extensive works on orthogonal
systems of surfaces, notably his Legons sur la théorie générale des surfaces,
t. 1-4 (1887-1896) and the Legons sur les systémes orthogonaux et les coor-
données curvilignes (1898).
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and the Levy transform, 170, 171
and the radial transformation, 168, 171
and the Ribaucour transformation, 11, 175
isometric deformation, 299
parallel, 172, 175
permutability theorem, qv
conservation laws, 129, 131, 132, 217, 218,
219, 244, 261, 309, 378
and the Crum transformation, 266
reciprocal transformations, 223, 230, 232,
239
constant length property, 14
and BT for extended Dym surfaces, 205,
256
and BT for extended sine-Gordon surfaces,
262
and BT for NLS surfaces, 146, 272
and BT for Weingarten surfaces, 44
and the classical BT, 13, 23
for matrix Darboux transformations,
285-286, 288, 291
constant curvature curves, 61
motion of, 63, 64, 205, 240-258
constant mean curvature (CMC) surfaces,
4243, 45, 156, 160
constant torsion curves, 61
motion of, 62, 63, 68, 80, 81, 205, 258-265
constitutive laws
in gasdynamics, 8, 96, 98
contact transformation
and the Ernst equation, 15, 308
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continuum mechanics
BTs in, 99
reciprocal transformations in, 229, 230
cross-ratio, 184
constant property, 11, 181, 185, 186
reality, 183, 187
Crum transformation, 5, 266
crystal dislocations, 3, 21, 22, 30
cubic surfaces, 330 h
curvature coordinates, 31, 36, 152
and Dupin cyclides, 200
and pseudospherical surfaces, 31, 32, 60
the classical BT in, 37
the Weingarten system in, 72
curvature nets, 11, 175

Darboux cubic form, 332, 357
Darboux matrix, 253, 254, 256, 266, 270, 288,
292, 296
and the Emst equation, 321, 322
as gauge matrix, 270
Darboux system, 110
Darboux-Ribaucour transformation, 11, 191,
192
Darboux transformation, 115, 116
and the Toda lattice equation, 116
classical, 5, 13, 17, 171, 191, 266, 270
conjugation with a Laplace-Darboux
transformation, 115, 118
matrix, qv
Da Rios equations, 60, 119, 120, 121, 145
Davey-Stewartson equation
1362,1111, 163, 11, 163, 191, 196, 203
Demoulin surfaces, 15, 16, 335, 339
and periodic Godeaux sequences, 341, 342
one-~soliton, 353, 355-357
Demoulin system, 16, 335, 336
as a periodic Toda lattice, 341-343
BT, qv
developables, 142, 144
Dini surface, 35-36
as a one-soliton surface, 6, 36
motion of, 8, 80, 82-87
distance property, 14, 302-303
dressing method, 266
dromions
and the Davey-Stewartson I equation, 362
and the Davey-Stewartson III equation, 191,
196
dual affinsphiren equation, 96
dual Bertrand curves, 245
dual extended Dym surface, 245, 246
dual extended sine-Gordon surface
Bianchi-type transformation, 264, 265
dual Ernst equation, 297, 306-310, 312, 313,
319, 323-325
dual isothermic surfaces, 155, 159, 166

Subject Index

dual one-form, 374
dual (adjoint) triad, 91
Dupin cyclides, 11, 189, 191, 198-203
Dupin hypersurfaces
and systems of hydrodynamic type 198, 230
Dupin’s theorem, 141
Dym equation, 12, 239, 242
invariance under reciprocal transformation,
12,233,234
Dym hierarchy, 12
invariance under reciprocal transformation,
222,228,233,234
link with mKdV and KdV hierarchies, 205,
234,235
2+-1-dimensional, 239

Ehlers transformation, 310
and the Neugebauer transformation, 15, 313
and the Weyl class, 319
eigenfunction equations, 204, 217-220, 222,
228
eigenfunction matrix, 207-209
eigenfunctions, 172, 269
adjoint, qv
and BT for the Demoulin system, 354
and elementary matrix Darboux
transformations, 277-279, 287, 288-292,
301
and extended Dym surfaces, 246
and generic permutability theorems,
292-294
and isothermal-asymptotic surfaces, 369
and NLS surfaces, 272, 275, 276
and parallel conjugate nets, 178, 179
and pseudospherical surfaces, 271
and the classical Moutard transformation,
353
and the Emst equation, 306
and the KdV hierarchy, 235
and the mNVN equation, 365-367
and the vector Calapso system, 165, 166,
188
Einstein’s equations, 14, 297, 309, 319
Enneper surface, 40, 156, 195, 202, 203
Ernst equation, 6, 14, 15, 49, 297, 303-329
adjoint, qv
and cc-ideals, 374
and Laplace-Darboux transformations, 118
Ehlers transformation, qv
Geroch transformation, qv
Harrison transformation, qv
Hoenselaers-Kinnersley-Xanthopoulos
(HKX) transformation, qv
Kinnersley-Chitre potentials, qv
Kramer-Neugebauer transformations, qv
Matzner-Misner transformation, qv
Mobius invariance, 15, 313, 327



Subject Index

Madbius transformations, 309, 310, 322
Neugebauer transformation, qv
potential, 304, 306, 308, 319, 324, 325,
326
soliton surfaces, 210
Ernst-type systems, 318, 319, 324
Euler-Lagrange equations, 15, 329, 333
extended Dym (ED) equation, 13, 205,
242-259
and binormal motion, 242
and m2KdV equation, 242, 243
BT, qv
cc-ideal formulation, 249-252
reciprocal invariance, 243, 245, 246

extended Dym surfaces, 13, 243, 244, 255-258

dual, qv
linear representation, qv
extended sine-Gordon equation, 264
extended sine-Gordon surfaces, 245, 259-265
dual, qv
linear representation, qv
extended sine-Gordon system, 13, 205, 260
BT, qv

Fermi-Pasta-Ulam problem, 1, 2
Fordy-Gibbons system, 113
Fundamental Transformation (FT), 11, 16, 89,
105, 167, 169, 170, 362, 365
and BT for projective-minimal surfaces,
343, 345-353
and conjugate nets, 171-173, 178
and the Ribaucour transformation, 173-175,
182
as conjugation of Combescure and radial
transformations, 170
permutability theorem, qv

Galilean transformation, 12, 235
gasdynamics
affinsphiren equation in, 8, 88, 89, 95-99
Loewner transformations in, 98, 99
Monge-Ampere equations in, 101, 229
reciprocal transformations in, 205, 229
gauge matrix, 270, 279, 292
gauge transformations, 7, 215, 222, 228, 270,
331,343
acting on linear representations, 7, 12, 67,
73-15, 136, 148, 216, 221, 273, 276
and Ernst potential, 306
and generation of NLS eigenfunction
hierarchy, 12, 216, 221
composition with reciprocal
transformations, 224, 234, 239
conjugation with matrix Darboux
transformation, 279
induction of BTs, 7, 75
Miura transformations as, 217
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of Laplace-Darboux invariants, 110, 111
of projective Gauss-Weingarten equations,
332
Gaussian (total) curvature, 2, 6, 8, 10, 14, 19,
20, 89, 131, 143 .
in motion of pseudospherical surfaces, 68,
71,80
in terms of principal curvatures, 10, 41
in the Beltrami-Enneper theorem, 63
of Bianchi surfaces, 45, 53, 303, 327
of Hasimoto (NLS) surfaces, 126, 214
of hyperbolic surfaces, 46, 51
of pseudospherical surfaces, 21, 33, 205,
268
of Tzitzeica surfaces, 90, 100
of Weingarten surfaces, 42, 43, 44
Gauss equations, 18, 144
and conjugate nets, 117
and Pohlmeyer-Lund-Regge model, 130
and the Tzitzeica transformation, 103, 105
compatibility, 19
connection with soliton theory, 1
for hyperbolic surfaces, 89
for pseudospherical surfaces, 17, 21, 27
for Tzitzeica surfaces, 90, 91, 101-104, 109
Gauss-Mainardi-Codazzi equations, 3, 5, 19,
20, 143, 145, 158, 162, 241, 267, 371
and involution, 176
and the AKNS system, 207, 210
and the classical Bianchi system, 6, 20, 21,
48,53
and the Da Rios system, 145
and the Fundamental Transformation, 175
and the Pohlmeyer-Lund-Regge model, 131,
204
and the Ribaucour transformation, 175
for extended sine-Gordon surfaces, 259
for hyperbolic surfaces, 3, 5, 46, 50, 53, 56,
89
for isothermal-asymptotic surfaces, 16, 357,
361
for isothermic surfaces, 10, 154
for NLS surfaces, 372
for projective-minimal surfaces, 335, 339,
349
for pseudospherical surfaces, 3, 21
projective, 15, 331, 333, 334, 358, 364
Gauss-Weingarten equations, 5, 18, 158, 159,
162, 172, 267,371
and the AKNS system, 205
and the Fundamental Transformation, 175
and the Pohlmeyer-Lund-Regge model, 204
and the Ribaucour transformation, 173, 175
and the vector Calapso system, 164, 165
for Bianchj surfaces, 298, 299
for Demoulin surfaces, 355
for Dupin cy¢lides, 200



408

Gauss-Weingarten equations (contd.)
for extended Dym surfaces, 246248
for extended sine-Gordon surfaces, 261, 262
for hyperbolic surfaces, 6, 47, 50, 54, 56
for isothermal-asymptotic surfaces, 358, 361
for isothermic surfaces, 153, 155, 161, 177,
191, 199
for projective-minimal surfaces, 336
for pseudospherical surfaces, 5, 7, 23, 32,
64, 65, 206, 209
projective, 331, 332, 333, 364
general relativity, 297, 309
geodesic curvature, 127, 142, 143
geodesic form, 144
geodesics, 142, 151, 241
on extended Dym surfaces, 245
on NLS surfaces, 127, 215
Geroch transformation, 15, 310, 311
Ginzburg-Landau equation, 119
Godeaux-Rozet surfaces, 15, 329, 334, 335
Godeaux sequences, 16
periodic, 341, 342
gravity waves
and the NLS equation, 119
great wave of translation, 1

Hamiltonian systems
of hydrodynamic type, 198, 230
Harrison transformation, 15, 297, 311,
317-319, 324, 325
and BT for the classical Bianchi system,
327
and cc-ideals, 374
decomposition, 322, 323, 328
Hasimoto surfaces (see NLS surfaces)
Hasimoto transformation, 121, 145, 272
Heat conduction, 10
reciprocal transformations in, 229
Heisenberg spin equation, 9, 60, 128, 129,
204, 229
as base member of the NLS eigenfunction
hierarchy, 204, 219, 227
in hydrodynamics, 120, 151
reciprocal transformation, 227, 230
helicoid
Dini surface, 6, 35
one-soliton Demoulin surface, 357
helix
binormal evolution, 256
motion of a soliton on, 257, 258, 263
hexenhut, 105, 106
hodograph transformation, 97
Hoenselaers-Kinnersley-Xanthopoulos
(HKX) transformation, 311
Huygens’ tractrix, 6, 34, 35, 36
hydrodynamics, 120, 137, 142, 151
hyperbolic paraboloid, 55, 59

Subject Index

hyperbolic surfaces, 5, 7, 18, 20, 89
Bianchi system, 6, 20, 45
Beltrami-Enneper theorem, 63
BT, qv
NLS, 123, 126
spherical representation, 46

integrable discretisation, 14, 105, 237, 273
inverse harmonic mean curvature surfaces, 45
inverse scattering transform, 4, 61, 211
inversion
of isothermic surfaces, 156
involution .
and the isothermic system, 155, 156
composition with the Ribaucour
transformation, 176, 177, 184
isometric surfaces, 17
isometry
and Bonnet surfaces, 10
isomorphism, 7, 215, 268, 269, 358, 371, 373
between 3 x 3 and 2 x 2 linear
representations, 7, 67, 371
and Pliicker correspondence, 335, 340, 341
isothermal-asymptotic surfaces, 15, 16, 329,
330, 335, 357-370
and the stationary mNVN equation,
358-369
BT, qv
isothermic surfaces, 10, 11, 152-203
and the Calapso equation, qv
and the stationary Davey-Stewartson IT
equation, 11, 163
and the stationary Davey-Stewartson III
equation, 11, 196, 203
BT, qv
constant mean curvature surfaces as, 156
Dupin cyclides as, 198-203
Gauss-Mainardi-Codazzi system, qv
Gauss-Weingarten system, qv
in R"*2, 156-162
minimal surface of Enneper as, 156
one-soliton, 191-193
vector Calapso system, qv
isothermic system, 10, 11, 154, 187, 191, 196,
199, 202
involutory invariance, 155
isotherm transformation, 232

Jacobi identity, 66
Josephson junctions, 22

Kac-Moody algebra, 113
Kadomtsev-Petviashivili (KP) hierarchy, 239
Kaup-Kuperschmidt hierarchy, 239

kelch, 107

Kerr black hole, 15, 319

Kerr-NUT fields, 15, 319



Subject Index

Killing-Cartan metric, 210
kink, 3, 22, 30
Kinnersley-Chitre potentials, 311 .
Korteweg-de Vries (KdV) equation, 2, 4, 22,
204, 210, 211
and the Dym equation, 234
as NVN reduction, 362
Miura transformation, 7, 217, 363
Korteweg-deVries (KdV) hierarchy, 12, 205,
235
BT, qv
connection with mKdV and Dym
hierarchies, 234, 235
Kramer-Neugebauer transformation, 308, 309,
314-316, 327
in decomposition of Harrison
transformations, 323, 328
inverse, 310

Lagrangian description
in 14+ 1-dimensional gasdynamics, 8, 95
Lamé system, 61, 68
Laplace — Beltrami operator, 99
Laplace ~ Darboux invariants, 110, 111, 118
and periodicity, 112
and the Toda lattice, 112, 114, 342
under a Darboux transformation, 115
Laplace-Darboux transformations, 9, 89,
109-118
and conjugate nets, 89, 109, 110, 117-118
and the Toda lattice, 110, 111-116, 341-343
Lax pairs
and the cc-ideal formulation, 249
and the Sym-Tafel formula, 285, 298, 303
elementary matrix Darboux transformations
for, 285, 286
for the projective Gauss-Mainardi-Codazzi
equations, 333
for the Bianchi system, 54
for the Ernst equation, 297, 305-308
for the extended Dym equation, 247
for the extended sine-Gordon system, 261
for the KdV equation, 217
for the NLS equation, 147, 148, 149, 271,
284
for the NVN equation, 362, 363, 368
for the vector Calapso system, 11, 164—166,
188, 189, 193
non-isospectral, 14, 54, 298, 300-303
Lax triad, 91
Legendre transformation, 98
Lelieuvre formulae, 47, 51
and isothermal-asymptotic surfaces, 16,
361, 364, 365, 367
and Tzitzeica surfaces, 92, 93
Levy sequences, 5
Levy transformation, 167, 170, 171
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Lewis — Papapetrou metric, 309, 310
Lie algebras, 66, 208, 248, 336, 340, 371, 372,
374,376,377
and soliton surfaces, 210, 211, 304
and the Toda lattice, 112
Lie-Bicklund transformation, 234
Lie groups, 48, 65, 66, 208, 371-373
Lie point symmetry
and the Bianchi system, 6, 299
and the Davey-Stewartson Il equation, 11,
191, 196
and the KdV hierarchy, 235
and the NLS equation, 273, 276
and the projective Gauss-Mainardi-Codazzi
equations, 333
and the sine-Gordon equation, 3, 22, 26, 27
Lie quadrics, 329
Lie sphere transformations, 230
linear representations (see also AKNS systems
and Lax pairs), 11, 26, 154, 206, 209,
215,217, 267,277
and cc-ideals, 252-254
and the Sym-Tafel procedure, 11, 204, 262
for extended Dym surfaces, 246-249, 256
for extended sine-Gordon surfaces, 260, 261
for projective-minimal surfaces, 335-341,
345, 350
for the Bianchi system, 298, 299
for the Demoulin system, 243, 354
for the Ernst equation, 305, 306, 319-324
for the mKdV equation, 82, 87
for the NLS eigenfunction hierarchy, 12,
221
for the NLS equation, 122, 124, 129, 148,
214,272, 273,276
for the NLS hierarchy, 212, 213
for the projective Gauss-Mainardi-Codazzi
equations, 333, 337
for the sine-Gordon equation, 26, 27, 6468,
73-75, 210, 270, 378, 379
for the SIT system, 130
for the stationary mNVN equation, 358,
359, 364, 365-367
for the Toda lattice, 113, 114
for the Tzitzeica equation, 88, 89-91, 100,
101, 343
for the vector isothermic system, 177, 188
Gauss-Weingarten connection, 5
non-isospectral, 14, 298, 300-302
the Pliicker correspondence, 16, 337-341,
344
lines of curvature
and Dupin’s theorem, 141
and parallel surfaces, 41, 42
and the Fundamental Transformation, 175
circular, 198, 199, 203
on a surface of revolution, 33, 153
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lines of curvature (contd.)

on hyperbolic surfaces, 49

on the pseudosphere, 35

on Weingarten surfaces, 43

planar, 40, 156
LKR system, 49
Lobachevski geometry, 17
localised induction hierarchy, 87
Loewner transformations, 64, 98, 99, 229
loop soliton equation, 12, 225-226, 228

link with the mKdV equation, 233, 238
loop soliton hierarchy

invariance under reciprocal transformation,

230,232 .

loop solitons, 12, 63, 192, 205, 215, 222-229
lump solution

of the Calapso equation, 11, 195, 202

magnetohydrodynamics, 137, 142
magnetohydrostatics, 120
Martin formulation, 96, 97, 229
Masotti relation, 139, 142
matrix Darboux transformations, 13, 14, 171,
255, 262, 267, 270
and cc-ideals, 249-254
and non-isospectral linear representations,
300-303
and superposition principles for the AKNS
" hierarchy, 292-294
and the constant length property, 285, 286,
298
and the Harrison transformation, 324, 325,
328
for pseudospherical surfaces, 75, 267-271,
276, 281
for the Bianchi system, 54, 326
for the Ernst equation, 15, 297, 311,
319-325
for the mKdV hierarchy, 284
for the NLS hierarchy, 282, 283
iteration, 287-292, 295
matrix Laplace-Darboux transformations, 118
matrix Schrédinger equation, 191
Matzner-Misner transformation, 15, 310, 313
Maxwell-Bloch system, 10, 120, 130
compatibility with the NLS equation,
135-137
the SIT equations, 132, 133
mean curvature, 143, 144
CMC surfaces, 42-43, 153, 156, 161, 166
in terms of principal curvatures, 10, 41
of Hasimoto (NLS) surfaces, 126, 127
of Weingarten surfaces, 42, 43, 44
Minding’s theorem, 17
minimal surfaces, 156, 161, 166, 195, 196, 201
Miura transformation, 7, 12, 216, 217, 221,
229, 235, 358, 363

Subject Index

Minkowski space, 210, 292, 304, 326
isothermic surfaces in, 11, 161, 163
mKdV equation, 7, 8, 10, 12, 204, 210, 211,
261,330
and motion of a curve, 60, 80-81, 237
and motion of a pseudospherical surface,
68, 71, 130, 137
as base member of the mKdV hierarchy, 214
BT, qv
connection to the loop soliton equation, 224,
225,233,238
linear representation, qv
Miura transformation, 217, 363
2 + 1-dimensional version (NNVN
equation), 330, 358
mKdV hierarchy
and motion of a curve, 12, 205, 225,
237-238, 240
as a specialisation of the NLS hierarchy,
214,234
link with Dym and KdV hierarchies, 205,
234,235
Miura transformation, 235
mKP hierarchy, 239
m?KdV equation, 243
BT, qv
cc-ideal formalism, 250-254
reciprocal link to the extended Dym
equation, 242, 243, 246
soliton on helix, 257
mNVN equation, 362
and isothermal-asymptotic surfaces, 16,
330, 357-367
Miura transformation, 363
Monge-Ampere equations
in gasdynamics, 96, 97, 101, 229
related to the Tzitzeica equation, 96, 97, 98,
101
Moutard equation, 52, 104, 363, 364
and bilinear potential, 165
and the Demoulin system, 353
and the Lelieuvre formulae, 361, 363, 368
in the vector Calapso system, 163, 164, 188
Moutard transformation, 5, 8, 9, 11, 52,
187-188, 266
and the construction of isothermic surfaces,
191-198
and the construction of Tzitzeica surfaces,
101-109
and the Demoulin system, 353-354

Neugebauer transformation, 15, 297, 299,
311-318, 327
commutation theorem, 317, 318
iteration, 314, 316, 317
nonlinear optics
and the NLS equation, 4, 119
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nonlinear Schrédinger (NLS) equation, 4, 9,
10, 12, 13, 119, 120, 121, 142-146, 204,
210, 211, 216, 229, 241, 272, 283

AKNS system, qv

and binormal motion, 120-129, 215, 219,
220, 240

and the Da Rios equations, 60, 119, 145

and the Heisenberg spin equation, 128, 219

and the unpumped Maxwell-Bloch system,
130, 135-137

as base member of the NLS hierarchy, 212

BT, qv

Lie invariance, 273, 276

single soliton solution, 122-123, 227

NLS eigenfunction hierarchy, 12, 216, 219,

221, 228, 229, 279

and soliton surfaces of the NLS hierarchy,
222

and the WKI system, 224

potential, 12, 216, 220

reciprocal transformation, 222-224, 227

NLS hierarchy, 11, 12, 13, 204, 212-214,

222-224
AKNS system, qv
and the localised induction hierarchy, 87
and the mKdV hierarchy, 214, 234
BT, qv
Miura transformation, 216, 217, 221
soliton surfaces, 205, 217-222

NLS (Hasimoto) surfaces, 10, 12, 13, 120,

149, 204, 215, 216, 263, 281
and binormal motion of a curve, 122
and loop solitons, 228
and unpumped Maxwell-Bloch system, 130,
137
compatible motion of, 130, 137
corresponding to breathers, 126, 150, 151
BT, qv
geometric properties, 124-129, 137-146
mean curvature, 127
total (Gaussian) curvature, 126
single soliton, 122-125, 228
smoke rings, qv
NVN equation, 16, 358; 362
and isothermal-asymptotic surfaces,
367-370
Miura transformation, 363
nonlinear sigma model, 6, 48, 49, 129
numerical analysis
e-algorithm, 12, 205, 236-237

offset curves
and dual Bertrand curves, 245

parallel conjugate nets, 172-175, 178, 179,
184

parallel curves, 128, 142, 215, 241
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parallel surfaces, 6, 13, 4145, 245
Pauli matrices, 48, 66, 205
permutability theorems
and integrable discretisation, 14, 105
for an anharmonic lattice model, 78, 79
for an AKNS hierarchy, 14, 288, 292-296
for Bianchi surfaces, 298, 326-327
for conjugate nets, 178-183
for Demoulin surfaces, 329
for Godeau-Rozet surfaces, 329
for isothermic surfaces, 154, 170, 184-186
for the Emst equation, 15, 297, 324-325
for the Fundamental Transformation, 11,
178-183
for the potential KdV equation, 4, 12, 205,
235-237, 239
for the Ribaucour transformation, 182
for the sine-Gordon equation, 3, 5, 28-31,
190, 288, 292
for the vector Calapso system, 187-191
generation of solitons and breathers via, 6,
3741
Pliicker correspondence, 16, 335, 336-341,
344, 351, 352, 365, 367
Pohlmeyer-Lund-Regge model, 9, 120,
129-132, 134, 204
polar reciprocal affinsphiren, 92
potential KdV equation
permutability theorem, qv
potential mKdV equation, 79, 224, 226, 230,
233,240
and motion of a Dini surface, 82-85
potential mKdV hierarchy, 284, 285
Prim gas, 95
principal curvatures, 10, 41, 42, 153
vector analogues, 158
projective area functional, 15, 329, 333
projective metric, 332
projective minimal surfaces, 15, 16, 329,
333-341
BT, qv
linear representations, qv
projective transformations, 330
pseudo-differential operator formalism, 366
pseudopotentials, 15, 262, 326
and Neugebauer’s BT, 15, 312, 315-319,
327
and a matrix Darboux transformation,
321-324
and a permutability theorem, 324-325, 328
pseudosphere of Beltrami, 6, 32, 34-35
pseudospherical surfaces, 2, 3, 5, 6, 7, 10, 11,
13, 1741, 46, 190, 204, 215, 216, 222,
258, 259, 263, 299
and motion of constant torsion curves,
61-63
BT, qv
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pseudospherical surfaces (conrd.)
Dini, qv
Gauss-Mainardi-Codazzi equations, qv
Gauss-Weingarten equations, qv
matrix Darboux transformations, qv
motion of, 60, 68-80, 82-87
position vector, 205-209

quadric, 153, 198, 330, 370
quartics of Kummer, 330, 370
quasi-geostrophic flow, 231

radial transformation, 167, 168, 171
and decomposition of the Fundamental
Transformation, 11, 169, 170
reciprocal transformations, 12, 205, 215,
222-235, 238, 239
and dual extended Dym surfaces, 13, 245,
246
and generation of N-gap solutions, 234
and loop solitons, 222-228
and the extended Dym equation, 242-246
and the NLS eigenfunction hierarchy, 223,
224
in link between the AKNS and WKI
systems, 224, 233
in link between Dym, mKdV and KdV
hierarchies, 205, 229, 234, 235
in physical applications, 205, 229, 230
invariance of the Dym hierarchy under, 12,
228,233,239
recursion operator
and the NLS hierarchy, 11, 12,204, 212, 282
relativistic vortices
and the Pohlmeyer-Lund-Regge model, 129
Ribaucour sphere congruence, 175
Ribaucour transformation, 11, 173-175, 187,
189
Bianchi quadrilateral for, 183
composition with an involution, 176
permutability theorem, qv
Riccati equation, 58, 283, 312, 313
and Lax pairs, 54, 149, 270-271, 284
and the Kramer-Neugebauer transformation,
315
and the Neugebauer BT, 316
Riemann invariants, 95

Schwarzschild solution, 15, 319
Schwarzian derivative, 332
Serret-Frenet relations, 61, 80, 121, 129, 138,
146, 149, 220, 221, 243, 244
sine-Gordon equation, 2, 3, 4, 5, 7, 11, 13, 14,
17, 21-41, 60-68, 75, 78, 130, 204, 215,
222,235, 295
and motion of curves, 60~64, 80
as reduction of the Pohlmeyer-Lund-Regge
model, 129

BT, qv

linear representation, qv

permutability theorem, qv

solitons, qv

2 + 1-dimensional, 110
sinh-Gordon equation, 43, 167

as Toda lattice reduction, 109

and CMC surfaces, 156, 160

- SIT system, 9, 110, 120

and the NLS system, 129, 130, 132-134
smoke rings, 10, 120, 137, 150
solitons
and an anharmonic lattice system, 78-79
and the AKNS hierarchy, 279
and the Ernst equation, 311
and the extended Dym equation, 257
and the KdV equation, 4, 236, 239
and the mKdV equation, 79
and the m®KdV equation, 79
and the NLS equation, 9, 122-124, 215
and the sine-Gordon equation, 5, 6, 32, 34,
36-39, 41, 83, 84, 85
and the Tzitzeica equation, 8, 105-108
and the Weingarten equations, 85-86
generation via BTs, 28-31
history, 1-5
in crystal dislocation theory, 3, 21, 22
in gasdynamics, 95
in stimulated Raman scattering, 130
in ultrashort optical pulse propagation, 3, 4,
22,30, 31
soliton surfaces, 209, 210, 217-220, 290
Bianchi, qv
Demoulin, qv
Emst, qv
dual, 13, 94, 205
extended Dym, qv
extended sine-Gordon, qv
isothermal-asymptotic, qv
isothermic, qv
loop soliton generation, 222228
NLS (Hasimoto), qv
potential mKdV, 82-85
pseudospherical, qv
Sym-Tafel formula, qv
Tzitzeica, qv
‘Weingarten, qv
spectral parameter, 6, 54, 68, 88, 135, 154,
165, 204, 205, 221, 225, 299, 378
spectral transform, 266
spherical (Gauss) representation, 6, 46—49
and Bianchi orthonormal basis, 50
SRS system, 10, 120, 134, 135
stereographic projection, S8
surfaces of revolution
as isothermic surfaces, 153
extended Dym, 258, 259
isothermal-asymptotic, 153
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projective transforms, 330

pseudospherical, 32-35

Tzitzeica, 94, 100, 105, 106

Sym-Tafel formula, 13, 14, 204, 208, 243,

262, 277, 285, 290, 303

and Bianchi surfaces, 298-300

and extended Dym surfaces, 267, 269, 270

and NLS surfaces, 215, 275

and pseudospherical surfaces, 267, 269, 270

tau function, 197, 198
Theorema egregium, 19, 33, 143
Toda lattice model, 8, 9, 16, 329
and Demoulin system, 16, 336, 341-343
and Laplace-Darboux transformations, 89,
109-116
and termination of Bergman series, 98
toroids
in magnetohydrostatics, 120
torus
as a Dupin cyclide, 198, 200, 202
total curvature (see Gaussian curvature)
total moments, 141
triply orthogonal systems of surfaces
Dupin’s theorem, 141
Lamé system, 61
Weingarten system, 7, 8, 60, 68, 71-73, 80,
85-87
Tzitzeica condition, 8, 9, 88-91
Tzitzeica equation, 8, 9, 88-91, 93, 103, 105,
343
and the Demoulin system, 343, 354
as Toda lattice reduction, 113
BT, qv
linear representation, qv
in gasdynamics, 95, 96
Tzitzeica surfaces, 8, 46, 52, 88, 343
as isothermal-asymptotic surfaces, 335, 357
as projective-minimal surfaces, 15, 335
BT, qv
construction, 101-108
in gasdynamics, 89-99
of revolution, 100
Tzitzeica transformation, 103, 104—-109
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ultrashort optical pulses, 3, 22
and the classical permutability theorem,
30, 31
propagation of 2N pulses, 3, 31

vector Calapso system, 162166, 187-190
and the matrix boomeron equation, 164
and the stationary Davey-Stewartson II

equation, 163
BT, qv
Lax pair, qv
vector isothermic system, 159, 165, 166,
189
and BT for isothermic surfaces, 177
vortex filament
and generation of Hasimoto surfaces, 122
and the Da Rios equations, 60, 199
and the NLS equation, 119, 120

Wahlquist-Estabrook procedure, 130, 261
and BT for the Emst equation, 297, 311,
374
Weingarten equations, 18, 90, 130
for hyperbolic surfaces, 46, 51
Weingarten surfaces, 4145
BT, qv
generalised, 118
Weingarten system, 7, 60, 71-76, 78, 80
and motion of pseudospherical surfaces, 10,
60,71, 72
BT, qv
single soliton solution, 85-87
Weyl class, 319
‘Whitham’s averaged variational principle,
119
Wilczynski moving tetrahedral, 16, 335, 336,
341, 351, 358
WKI equation, 227
loop soliton solution, 228, 229
‘WXKI system, 224, 227, 230, 233
WTC procedure, 234
zoomeron equation, 11, 155, 191
and the isothermic system, 161
dromion-type solutions, 191, 196
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