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Preface

Physics, and indeed all of Science and rational Life, is a causal affair. Events
occur in a well-defined way; and even though nonlinear effects may mask a pre-
cise understanding of an underlying mechanism, there can be no rational doubt
that cause preceeds effect. The mathematical expression of this truth is couched
in the language of Green’s functions (GFs), originally invented to provide solu-
tions to electrostatic problems, and subsequently generalized to give compact
expression to the causality which appears in time-dependent situations.

At the same time, it has become at least partially clear that when a very
large number of iterations of an interaction are associated with the nonlinear,
or strong-coupling description of a system, it is not always possible to link
specific causes with observed effects. Thus the transition to chaos observed first
in the multiple repetition of simple maps, and then in the fractal behavior of
physical fluids as they approach fully developed turbulence; thus the realization
that strongly coupled gluons and quarks of QCD need not propagate in the
causal manner expected from perturbative approximations. Causality is clearly
and explicitly true in weakly coupled systems, even though this property can
be masked when essential nonlinear dynamics prevent the identification of a
specific effect as due to a specific cause.

In recent years, utilization of GF techniques has grown to encompass an
immense number of disparate subjects, including application to the large-scale
structure of nonlinear systems. Whether one is treating classical or quantum
mechanics, Navier–Stokes fluids or ordinary nonlinear differential equations,
there is a corps of analogous problems which can advantageously be treated by
these methods.

In the general representation and construction of such GFs, encountered
across a wide variety of fields, one meets and must deal with ordered expo-
nentials (OEs); and it is for this reason that the latter subject forms an indis-
pensable part of this book. OEs are interesting functions in their own right,
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x Preface

but very little is known about their non-perturbative approximations; what is
presented here is intuitive, physically motivated, and with a certain connection
with low-frequency approximations to nonlinear problems. Other applications,
such as the use of OEs to obtain formal solutions to Euler and Navier–Stokes
equations, have been left for another occasion.

It must be stated clearly that some of the results stated in this book, for which
the author is in part responsible, are without rigorous mathematical foundation.
To a physicist, intuition has its own value, which too often becomes its only
justification; but it is from this point of view that much of the material of the
latter chapters should be understood. At the very least, mathematicians will find
in this slim volume a number of intuitively based statements which are in need
of rigorous proof, or disproof.

Some of the fundamental topics presented here – such as basic functional
methods, and the Schwinger/Fradkin formalism for causal GFs – follow quite
closely material appearing in a previous book by the author,1 called “HMF#2”,
while some references have been made to material in an even older book2 by the
author, hereinafter called “HMF#1”. Including the last Section of Chapter 3,
and with the exception of Chapter 7, essentially all of the remaining material
presented is new, dating from the past decade.

The level of the present work is again such that graduate students and pro-
fessionals in mathematical science should find its material and concepts quite
familiar. Dirac delta-functions, for example, are used without hesitation; and
where all readers may not have a working acquaintance with functional methods,
a brief introductory sketch is given, sufficient for the purpose at hand. But the
techniques presented are surely applicable to a wide variety of subjects; and
each reader, it is hoped, will find a significant measure of success when applying
them to his or her own pressing, nonlinear problems.

This book was begun during the academic year 1991–92, when the author
was a Visiting Professor at the Université de Nice; and completed slowly over
the following nine years at Brown University. To friends and colleagues of
both institutions are due the warmest thanks and acknowledgement of many
kindnesses. Comme avant, je leur remercie de tout.

Brown University H. M. Fried

Notes

1 Functional Methods and Eikonal Models, Éditions Frontières, Gif-sur-Yvette,
France (1990), hereinafter referred to as HMF#2

2 Functional Methods and Models in Quantum Field Theory, The MIT Press,
Cambridge, MA (1972), hereinafter referred to as HMF#1
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1

Introduction

1.1 Historical remarks

It is difficult to fix the precise beginning of the vast and disparate subject matter
which now exists under the name of “Green’s Functions”, but the origins of the
method may certainly be associated with the original and ingenious work of
George Green (1793–1841).1 That application, now called Green’s Theorem,
of Gauss’ Theorem applied to electrostatics, in modern language makes use of
the differential statement

∇2|r − r′|−1 = −4πδ(r − r′). (1.1)

Before the advent of the Dirac delta-function, the content of (1.1) had to be ex-
pressed in a somewhat circuitous way,2 which is how Green treated the problem.

Every modern text on potential theory begins with the statement of Gauss’
Theorem,

∫
dS · F = ∫ d3r′∇′ · F(r′), where F(r′) is a continuous and differ-

entiable vector function, whose divergence is to be integrated over a volume
bounded by the surface

∫
dS. Green noted that the choice F = V ∇U − U∇V

generates, for arbitrary U , V ,∫
dS′ · [V ∇′U − U∇′V ] = −

∫
d3r ′[U (r′)∇′2V (r′) − V (r′)∇′2U (r′)],

(1.2)

which, in vector notation, is the statement of Green’s theorem. If the further
choice U (r′) = −(4π |r − r′|)−1 is made, where r denotes the radius vector
(drawn from an origin of arbitrary location) of a point inside the integration
volume, then (1.1) and (1.2) yield

V (r) = − 1

4π

∫
d3r ′ 1

|r − r′|∇
′2V (r′)

+ 1

4π

∫
dS′ ·

[
1

|r − r′|∇
′V (r′) − V (r′)∇′ 1

|r − r′|
]
. (1.3)

1



2 1 Introduction

If V (r) now refers to the electrostatic potential due to a specified charge distri-
bution at points within the surface,

∇2V (r) = −4πρ(r), (1.4)

then (1.3) provides an expression for V (r) given in terms of quadratures over
the “Green’s function” G(r − r′) = U (r − r′) multiplied by the charge density,
to which must be added the contributions of the surface integrals of (1.3) over
values of V and/or ∇V that are specified as boundary conditions. In other
words, the solution to (1.4) may be written as

V (r) = −4π

∫
d3r ′G(r − r′)ρ(r′), (1.5)

to which must be added the RHS surface terms of (1.3). As long as r does not
lie on

∫
dS, these surface terms satisfy the homogeneous equation of Laplace,

while the volume integral of (1.5) generates a solution to the inhomogenous
equation (1.4) of Poisson.

This structure, of (1.5) plus appropriate solutions of the homogeneous equa-
tion, has over the intervening two centuries been generalized from the relatively
straightforward elliptic (1.4) to hyperbolic and partial differential equations
(DEs), and to nonlinear problems such as those of Navier–Stokes fluids and
quantum field theory (QFT). In each case, the solution of an inhomogeneous
DE in n spatial dimensions,

Dφ(r, t) = j(r, t), D = D
[

∂

∂t
, ∇; A(r, t)

]
, (1.6)

specified by some collection of differential operators and (in the nonlinear case)
associated fields A(r, t), is given by

φ(r, t) =
∫

dnr′
∫ +∞

−∞
dt ′G(r, r′; t, t ′|A) j(r′, t ′) + S(r, t), (1.7)

where the S(r, t) specify needed boundary and/or initial conditions of the prob-
lem, and are solutions of the homogeneous relation DS = 0. The Green’s func-
tion (GF) of the problem, G(r, r′; t, t ′|A) = 〈r, t |D−1|r′, t ′〉, is a solution of the
relevant generalization of the inhomogeneous (1.1),

DG = δ(r − r′)δ(t − t ′). (1.8)

In this way, Green’s original formulation of general solutions to electrostatic
problems has found a natural generalization to virtually all fields whose essential
Physics is described by an inhomogeneous DE.

In subsequent sections, specific forms for D−1 will be given for problems of
interest in fluid motion and diffusion, whose underlying symmetry is Galilean;



1.2 Linear Physics 3

and for the propagators of QFT, of Lorentzian symmetry. Attention will be
focused mainly on hyperbolic DEs, requiring time-dependent initial conditions;
and simple constructions illustrating the method of enforcing different initial
conditions will be described. These relatively simple computations are associ-
ated with solutions of a linear problem, and such techniques can provide only
formal descriptions of nonlinear, or interacting systems, where D is a function
of fields A that are to be coupled (by means of other equations) to the desired
solution φ.

A more explicit construction of D−1 in the presence of external interactions
will also be given in terms of the exact, and most useful representation of
Fradkin.3 Special variants of the Fradkin representation generate a new, non-
perturbative method for exact and approximate representations of these GFs;
and in these approximations, one has at least a qualitative idea of their error. For
vectorial interactions, one learns in Chapter 6 of possible chaos appearing in
the realization of such non-perturbative approximations; and one sees just how
such chaos is naturally removed in QFT, which process suggests application to
methods of chaos suppression for classical systems. One learns, in the context
of any Fradkin representation, the intimate connection between such GFs and
ordered exponentials (OEs), which leads, in Chapter 9, into a discussion of
unitary OEs. A brief discussion of known methods of extracting the infrared, or
low-frequency structure of relevant GFs is given in Chapter 7, while a solution
for the “scalar laser” problem of Chapter 4 is used in Chapter 8 to construct
a model GF which can be used to estimate the total cross section for particle
production in a “modified multiperipheral model” at extreme, relativistic en-
ergies. A new solution for pair production in the presence of a non-constant
electric field is described in Chapter 3, while estimates are given in Chapter 4 for
the same process in the overlapping fields of two high-intensity lasers. Some
of these results are old, and some are new; but all can be given a succinct
description in terms of GFs and OEs.

1.2 Linear Physics

In this section will be described the simplest linear prototypes of propagator
found in four distinct fields: non-relativistic fluid motion, the non-relativistic
Schrödinger equation, ordinary DEs, and QFT. Motion associated with a simple
harmonic oscillator driven by an arbitrary source g(t) is the simplest ODE
imaginable,

d2x

dt2
+ ω2x = g(t), (1.9)

to be solved, for definiteness, under the initial conditions x(0) = D,
dx(0)/dt = 0. More complicated problems of current interest are obtained by
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inserting damping and, for example, replacing ω2 by ω2(x2 − 1) to produce
the Duffing equation, with its manifest nonlinear behavior. What shall be done
in this section is to generate solutions to the linear problems using standard
GF methods, and then to compare the results with an alternative and equivalent
phase-space method of solution. No OEs appear in the linear analysis, but the
standard questions of retarded or advanced, causal or anticausal solutions must
be answered.

Adding spatial derivatives to (1.9) in a Lorentz-symmetric way generates the
forms of non-interacting field theory,

(µ2 − ∂2)A(x) = j(x), (1.10)

where causality will be demanded in the sense that A(r, t) cannot be different
from zero until a signal from the source j(r, t) (traveling at the speed of light
when µ = 0) can reach the point x = (r, t); here, ∂2 denotes the d’Alembertian
operator, ∇2 − 1

c2
∂2

∂t2 , and units will be chosen in what follows such that c, the
velocity of light, is unity.

In contrast, the diffusion equation of (relatively) low-velocity fluid motion is
non-relativistic, (

∂

∂t
− ν∇2

)
v = f(r, t), (1.11)

where ν denotes viscosity and v(r, t) is the fluid velocity; appropriate initial con-
ditions here will again demand causality. Because it has but one time derivative,
there exist but two GF solutions for this problem, one “retarded” (subscript R)
and the other “advanced” (subscript A); and it is simplest to begin the detailed
construction of these GF s with this example.

(i) Non-relativistic diffusion: The requirement of causality will select the GF
GR as the physically relevant solution of the inhomogeneous(

∂

∂t
− ν∇2

)
GR(r − r′; t − t ′) = δ(r − r′)δ(t − t ′), (1.12)

which, as written in (1.12), turns out to be a function of coordinate differences.
If one knows the general solutions to the corresponding homogeneous DE,

the solution to (1.12) may be expressed as a summation over all eigenstates of
positive eigenvalues En , in the form

GR(r − r′; t − t ′) = θ(t − t ′)
∑

n

un(r)u∗
n(r′) exp[−En(t − t ′)], (1.13)

where the un (r) form a complete orthonormal set, satisfying [En + ν∇2]un = 0
and

∑
n un(r)u∗

n(r′) = δ(r − r′). The θ -function of (1.13) expresses the



1.2 Linear Physics 5

retardedness of the GF; because θ (x) = 1, x > 0, and θ(x) = 0, x < 0, the
solution to (1.11),

v(r, t) =
∫

d3r ′
∫

dt ′GR(r − r′; t − t ′)f(r′, t ′) + v0(r)

will have no contribution to its first RHS term for t ′ > t , so that an effect at t
cannot appear before its generation at t ′. Here, v0(r) represents the initial con-
dition of this problem, the velocity field specified at all points r, and satisfying
the equation ∇2v0(r) = 0. Mathematically speaking, θ (x) is really the limit of
a sequence of functions chosen such that θ(0) = 1/2; everywhere in this book
it may be represented by the integral

θ (x) = 1

2π i

∫ +∞

−∞
dω(ω − iε)−1eiωx , (1.14)

and its properties checked by straightforward contour integration, as well as by
the more conventional relation: δ(x) = dθ/dx .

It should be noted that the En are positive, and hence the summation of
(1.13) is sensible; here, the un(r) are just plane-wave exponentials of wave-
vector kn = 2πn/L , where n is a vector each of whose components are integers,
L3 is an appropriate normalization volume, and En = νk2

n . Were the viscosity
continued to an imaginary value, with a change of normalization, one would
be dealing with the non-relativistic Schrödinger wave equation (SWE), as in
(ii) below.

The simplest method of construction for any such GF of a linear problem is
to employ a Fourier representation,

GR(r − r′; t − t ′) = (2π )−4
∫

d3k
∫

dωG̃R(k, ω)eik·(r−r′)−iω(t−t ′), (1.15)

where G̃R is determined by substituting (1.15) into (1.12), and is clearly given by
G̃R = i(ω + iνk2)−1. In the complexω-plane, the integrand of (1.15) has but one
singularity, a pole at ω = −iνk2, which multiplies the factor exp[−iω(t − t ′)].
Evaluating the ω-integral by contour integration, one is forced for t − t ′ < 0 to
close the contour in the upper half ω-plane, which yields zero, while the choice
t − t ′ > 0 requires closing the contour in the lower half plane, which yields

GR(r − r′; t − t ′) = θ(t − t ′)(2π )−3
∫

d3k exp[ik · (r − r′) − νk2(t − t ′)].

(1.16)

Because one finds a non-zero value only for t − t ′ > 0, as expressed by the
θ -function of (1.16), this is the retarded GF; GA would have been obtained by
reversing the sign of the −iω(t − t ′) phase of (1.15). Note that in the limit of
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zero viscosity, (1.16) reduces to θ (t − t ′)δ(r − r′), so that the solution to (1.13)
is simply

v(r, t) =
∫ t

0
dt ′f(r, t ′) + v0(r).

As a Gaussian integral, (1.16) may be evaluated immediately,

GR(r − r′; t − t ′) = θ(t − t ′)[4πν(t − t ′)]−3/2 exp[−(r − r′)2/4ν(t − t ′)].

(1.17)

For small differences t − t ′, most of the contribution to the r′ integral over
(1.17) comes from the points r′ close to r; but as the time difference increases,
more and more of the source dependence at other values of r′ is available to
influence the behavior of the solution at r.

If the source dependence is chosen to be that of a delta-function in space and
time, f(r, t) = f0δ(r)δ(t − ε)|ε→0, and if the initial field v0 = 0, the integrations
over (1.17) yield the simple result

v(r, t) = θ(t)f0(4πνt)−3/2 exp[−r2/4νt]. (1.18)

This has the form of an initial (at t = 0) and localized (at r = 0) disturbance
diffusing away to all spatial points at later times, while maintaining a constant
infinite-spatial integral,

∫
d3rv(r, t) = θ(t)f0.

It is worth emphasizing the physically intuitive role of such a localized source
in “generating” a solution to the homogeneous equation ( ∂

∂t − ν∇2)v = 0. One
imagines for t < 0 a perfectly quiescent situation with v(r, t) = 0, suddenly
disturbed by a source f0 · δ(r)δ(t) rapidly “turning on and off” at t = 0, and
generating for subsequent, positive t , a solution to the homogeneous equation.
This use of a highly-localized source has long appeared in QFT, as a way
of representing the appropriate wave functions of particles “produced” at a
particular space–time point. It is an artifice, but a convenient one, and has been
used in certain fluid/vortex problems.4

(ii) Non-relativistic Schrödinger wave equation: The GFs of interest here are
typically “ingoing” or “outgoing”, with the latter chosen to represent the
“scattered wave” of probability amplitude needed to describe the physical scat-
tering of two particles which interact with each other by means of a poten-
tial V (r1 − r2). Equivalently, by a simple transformation to the CM coordi-
nates of these particles, one may treat the scattering of a particle of reduced
mass µ = m1m2/(m1 + m2) in the field of a fictitious potential field V (r),
where r = r1 − r2. In such scattering problems, the energy E of the system is
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conserved and specified in advance, so that the original SWE

i h̄
∂

∂t
ψ =

{
− h̄2

2µ
∇2 + V (r)

}
ψ (1.19)

is replaced by

Eu(r) =
{

− h̄2

2µ
∇2 + V (r)

}
u(r), (1.20)

upon using the substitution ψ(r, t) = u(r) exp[−iEt/h̄]; the corresponding GFs
of this problem are to satisfy{

E + h̄2

2µ
∇2 − V (r)

}
G(r, r′|V ) = δ(r − r′), (1.21)

and scattering amplitudes u(r) are given by

u(r) = u0(r) +
∫

d3r ′G(r, r′|V )V (r′)u0(r′), (1.22)

where u0(r) represents the “asymptotic input” function exp[ik · r], correspond-
ing to an incident particle of energy E = h̄2k2/2µ moving in the k direction.

A formal solution for the GF of this problem may be written as

G(r, r′|V ) =
∑

n

un(r)u∗
n(r′)(E − En)−1, (1.23)

where the summation is over all states of the complete, orthonormal set un(r)
which satisfy the time-independent SWE,

Enun =
{

− h̄2

2µ
∇2 + V (r)

}
un(r).

The RHS of (1.21) is reproduced, upon substitution of (1.23) into (1.21), because
the un are again assumed complete, satisfying∑

n

un(r)u∗
n(r′) = δ(r − r′).

Typically, the states |n〉 form a continuum of positive-energy scattering states,
plus discreet bound states of negative energy. Note from (1.23) that if the scat-
tering energy E is continued to negative values, one may expect to find a pole
of the scattering amplitude when E approaches one of the isolated, negative,
bound-state energies. Note also that, because of the spatial dependence of V (r),
this GF is no longer a function of the difference of its coordinates. It will become
clear below that the distinction between the solutions Gout and G in can be made
explicit by appending an infinitesimal ±iε to the denominator E of (1.23).
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The exact GFs of this problem cannot be obtained in closed form for an
arbitrary V (r ), but they can be given an explicit Fradkin representation, from
which physically interesting approximations may be drawn. In this “linear”
section, however, what is of interest are the GFs defined in the absence of any
potential interaction, G(r, r′|0) → G(r − r′), and again the simplest route is
via a Fourier representation,

G(r − r′) = (2π )−3
∫

d3kG̃(k)eik·(r−r′), (1.24)

and substitution into the V = 0 version of (1.21) determines G̃(k) to be given
by (2µ/h̄2)(k2

0 − k2)−1, where the incident wave-number k0 = (2µE/h̄2)1/2.
However, because G is singular when k = (k2)1/2 equals ±k0, one must pro-

vide a prescription of how these poles which lie on the path of the k integration
are to be avoided. Equivalently, and much more simply, one can displace these
singularities by an infinitesimal amount into the complex k-plane, perform the
integration along the real k axis, and then set equal to zero the small parameter
ε used to displace the poles. The two possibilities here correspond to adding
±iε to the k2

0 of G̃−1, and then taking the limit ε → 0+ after the integration;
and they will define the two distinct GFs, G in and Gout.

There are now two equivalent methods of evaluation, of which one is to
be greatly preferred for relativistic problems; in order to make this point we
begin with the less preferable but far more common approach. One writes
G̃−1 as −( h̄2

2µ
)[k2 − (k0 ± iε)2], since 2iεk0 is equivalent to iε. For definiteness,

let us choose the upper sign, so that the poles appear when k2 = (k0 + iε)2,
or k = ±(k0 + iε). Integration over solid angle of the factor exp[ik · R], with
R = r − r′, yields 4π sin(k R)/k R, which provides an integrand symmetric in
k and −k. The integral

∫
dk from 0 to +∞ can then be rewritten as one-half

of the same integrand from −∞ to +∞, and the factor of sin(k R) written as
[exp(ik R) − exp(−ik R)]/2i, with contour integration over the first and second
of these terms necessarily closed in the upper and lower k-planes, respectively.
Both contributions are the same, and yield the result

Gout(r − r′) = −(µ/2h̄2)
eik0|r−r′|

|r − r′| , (1.25)

which for large r displays a phase growing as +ik0r, corresponding to an
outwardly-moving wave front. The other possibility, G in with a phase of the
form −ik0|r − r′|, is obtained by adding to the k2

0 of G−1 the infinitesimal −iε.
The alternative method works directly with the Fourier representation

of (1.24),

Gout(r − r′) = (2π )−3

(−2µ

h̄2

)∫
d3k
(
k2 − k2

0 − iε
)−1

eik·(r−r′). (1.26)
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One writes an exponential representation for the denominator factor of (1.26),
of the form

(A − iε)−1 = i
∫ ∞

0
ds e−is(A−iε) → i

∫ ∞

0
ds e−is A, (1.27)

where the quantity A is real. Note that, in order to have a sensible integrand
for large values of s, the sign in the exponential is determined by the sign of
iε in the denominator of (1.27); for G in, one must use the representation which
is the complex conjugate of (1.27). But now the k-integral is Gaussian and
immediately performed,∫

d3k exp[−isk2 + ik · R] =
(

π

is

)3/2

exp[i R2/4s].

The s-integration of (1.27) yields the appropriate Bessel/Hankel function
representation,

iπ (2k0/R)1/2 H (1)
1/2(Rk0) exp[iπ/4],

which when combined with the remaining factors reproduces (1.25). The utility
of this method becomes apparent in relativistic problems, when exponentiation
is performed using a “proper time” variable s, for the manifest Lorentz invari-
ance of the GF is maintained at every step.

(iii) Ordinary differential equations: We now return to (1.9) and the initial
conditions stated there, and solve that problem by a GF method, writing

x(t) =
∫ +∞

−∞
dt ′G(t − t ′)g(t ′) + S(t), (1.28)

where S(t) is a solution of the homogeneous (g = 0) form of (1.9). Again, the
GF is to satisfy an inhomogeneous “source” equation, analogous to (1.21),[

d2

dt2
+ ω2

]
G(t − t ′) = δ(t − t ′), (1.29)

and is given a Fourier representation

G(t − t ′) = (2π )−1
∫

dk0G̃(k0)e−ik0(t−t ′), (1.30)

which, when substituted into (1.29) yields the form of G̃,

G̃(k0) = −[k2
0 − ω2

]−1
. (1.31)

Again, (1.31) is incomplete until one specifies just how its singularities at
k0 = ±ω are to be treated, and each of the possible choices defines a dis-
tinct solution of (1.29). In this “quadratic” problem there are four independent
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functions which can be constructed by moving the poles infinitesimally into the
complex k0-plane: both “up”, both “down”, one “up” and the other “down”, and
the converse. We shall use the relativistic notation familiar from QFT to label
these possibilities as GA, GR, Gc, and Gac, respectively; and will make use
of the ±iε prescriptions to introduce these contour shifts in the simplest way.

These prescriptions can most easily be defined by adding to G̃−1 either the
infinitesimals ±iε, or the terms ±iεs(k0), where s(k0) denotes the sign of k0,
s(k0) = k0/|k0|. For example, if −G̃−1 is replaced by [k2

0 − ω2 + iεs(k0)], or
(since ±2ε|k0| is equivalent as ε → 0 to ±ε) by [(k0 + iε)2 − ω2], the complex
poles of this denominator occur when k0 = ±ω − iε. Since contour integration
of
∫

dk0 must be closed in the UHP when t ′ > t , and since these poles lie in
the LHP, one can have a non-zero result only for t > t ′, when the contour must
be closed in the LHP. One immediately finds

GR(t − t ′) = θ(t − t ′) · ω−1 · sin(ω[t − t ′]), (1.32)

where the subscript R, denoting the retarded GF, has been appended to this
distinct solution of (1.29). If the choice [k2

0 − ω2 − iεs(k0)] is used for −G̃−1,
both poles are displaced into the UHP, leading to a non-zero result only when
t ′ > t , which is easily computed to be the advanced GF,

G A(t − t ′) = θ(t ′ − t) · ω−1 · sin(ω[t ′ − t]). (1.33)

The Fourier representations for these two independent possibilities differ from
each other by the change of sign of k0, which difference can be removed by the
interchange of t and t ′, leading to (1.33).

Consider now the replacement of −G̃−1 by [k2
0 − ω2 + iε], which is equiv-

alent to [k2
0 − (ω − iε)2] and displays poles when k0 = ±(ω − iε). Contour

integration then extracts contributions from both regions t > t ′ and t ′ > t , and
one finds that

Gc(t − t ′) =
(

i

2ω

)
exp[−iω|t − t ′|] (1.34)

represents the “causal” GF of this problem, which displays for any non-zero
values of t − t ′ a “positive-frequency time dependence” of a particle “moving
forward in time”, or (in relativistic field theory) that of an “antiparticle moving
backwards in time”. Finally, replacement of −G̃−1 by [k2

0 − ω2 − iε] leads to
the “anticausal” GF,

Gac(t − t ′) = −
(

i

2ω

)
exp[iω|t − t ′|], (1.35)

which is just the complex conjugate of (1.34).



1.2 Linear Physics 11

Which of these GFs should be used for the solution of (1.28)? The answer
is that it makes no difference, because the difference of any two of these four
GF-solutions to the inhomogeneous (1.29) is a solution of the corresponding
homogeneous equation, and as such will appear as part of the term denoted in
(1.28) by S(t). In QFT one uses either the retarded, or (more usually) the causal
GF, because the requirement of unitarity in a typical scattering problem is then
made simpler; in the present case, simplicity suggests using the retarded GF of
(1.32), so that

x(t) = ω−1
∫ t

−∞
dt ′ sin[ω(t − t ′)] · g(t ′) + S(t), (1.36)

where the solution of the homogeneous problem must have the form:
S(t) = A cos(ωt) + B sin(ωt), and the constants A, B are determined by fitting
the initial conditions x(0) = D, dx(0)/dt = 0. One then, finally, obtains the
desired solution

x(t) = D cos(ωt) + ω−1 ·
∫ t

0
dt ′g(t ′) sin[ω(t − t ′)]. (1.37)

It is worth commenting on the two independent solutions which exist in this
problem to the homogeneous equation, for obvious generalizations can be useful
in cases where the complexity of the original equation is considerably greater
than that of (1.9). Whatever may be the complete differential operator D on the
LHS of (1.8), the integrand of the Fourier representation of the homogeneous GF
must be proportional to δ(D̃(k)), since operation on this GF by D will generate
a factor of D̃(k) under the integrand; and q · δ(q) = 0, for any quantity q . The
constant of proportionality multiplying δ(D̃(k)) can be a constant (independent
of k0), or proportional to s(k0), or some linear combination of these two cases.
Explicitly, using the relations: (a ± iε)−1 = P(a)−1 ∓ iπδ(a), where P denotes
the principal value of the integrand, it is easy to see that the difference of
G̃c and G̃ac is proportional to the first of these choices, while the difference of
GR and G̃A is proportional to the second.

(iv) Quantum field theory: The difference between the differential operators of
(1.9) and (1.10) is simply the inclusion of an additional Laplacian operator in
the latter, together with a trivial relabeling of variables. The corresponding GF
solutions of the DE

(µ2 − ∂2)G(x − x ′) = δ(x − x ′) = δ(r − r′)δ(t − t ′) (1.38)

may be constructed exactly as in (iii), if one appends a three-dimensional Fourier
spatial integration to the latter’s integral over k0. Exactly the same ±iε and
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±iεs(k0) factors may be inserted in the inverse of the transform of G, and
the same form of results is obtained: four independent solutions to the inho-
mogeneous DE of (1.38), and two independent solutions to the homogeneous
problem. In this case it is most useful to exponentiate the complete denomina-
tor of the inhomogeneous GFs, and to use an exponential representation of the
δ(D̃(k)) of the homogeneous solutions, which steps lead to integrable Gaussian
integrals over 4-momenta, and automatically retain the manifest Lorentz invari-
ance of these functions.

That GF bearing the subscript c is called the “causal propagator”, and gives the
probability amplitude of finding a particle of mass µ at the space–time point x ,
if it was known to be at the space–time point y; this Gc plays a central role in
all QFT calculations. We calculate this Lorentz-invariant function by writing

Gc(z) = (2π)−4
∫

d4k[k2 + µ2 − iε]−1 exp[ik · z], (1.39)

where z = x − y, d4k = d3k dk0, k2 = k2 − k2
0 , and k · z = k · z − k0z0. An

exponential representation for the denominator converts this into

Gc = i(2π )−4
∫ ∞

0
ds e−isµ2 ·

∫
d4k exp[−isk2 + ik · z], (1.40)

and the Gaussian k-integrals may be done immediately, remembering the change
of sign of the spatial and temporal components of k2,

Gc(z) = (16π2)−1
∫ ∞

0
ds · s−2 exp[−isµ2 + iz2/4s]. (1.41)

Equation (1.41) is one of the possible representations for Hankel/Bessel func-
tions of order unity, but the specific function depends on whether one is inside,
or on, or outside the light cone defined by z2 = 0. The results are

Gc(z) = iµ
θ (z2)

4π2
√

z2
K1(µ

√
z2) − µ

θ (−z2)

8π
√−z2

H (2)
1 (µ

√
−z2) + δ(z2)/4π,

(1.42)

where the last RHS term of (1.42) is that part of the GF appropriate for the light
cone. This singular contribution may be obtained by noting that in the limit
z2 → 0, both non-light cone contributions of (1.42) reduce to (i/4π2)[z2]−1,
and are independent of µ. One can therefore set µ = 0 in (1.41), and perform
the resulting, simple integration to obtain

Gc(z) = i

4π2

i

z2 + iε
, (1.43)

the light cone part of which has been written separately in (1.42). With Lorentz
indices appended, (1.43) is the (“Feynman gauge”) free-photon propagator of
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QED, a GF whose configuration-space form, proportional to [z2 + iε]−1, has
the essential simplicity of its momentum-space representation, proportional to
[k2 − iε]−1.

It is interesting to note the way in which causality appears in Gc. Outside the
light cone, the K1 function falls off exponentially, so that relevant signals only
propagate on or inside the light cone; and for the latter case, H1 displays a slow,
polynomial fall-off upon which is superimposed oscillatory behavior. Inspection
of the intermediate (1.41) shows that if the sign of µ2 is reversed, then these
regions of propagation and non-propagation are effectively interchanged, and
one will find a violation of physical causality; this is the so-called “tachyon”
situation, which contains propagation outside the light cone, and is clearly
unphysical.

1.3 Ordered exponentials

In subsequent representations, ordered exponentials (OEs) appear in a natural
and essential way, and it will be useful to set out their general properties at the
very beginning. Consider the first-order DE-plus-initial condition

dF/dξ = G(ξ )F(ξ ), F(0) = 1,

whose solution is an ordinary exponential only if [G(ξ1), G(ξ2)] = 0, for any
0 < ξ1,2 < ξ ; here, ξ denotes any relevant variable, such as time or proper time,
which appears in the course of analysis. If this commutator does not vanish,
then the solution is an OE,

F(ξ ) =
(

exp
∫ ξ

0
dξ ′G(ξ ′)

)
+
, (1.44)

with the ordering symbol referring to the dummy ξ ′ variables, where in any ex-
pansion of the exponential inside the ordered brackets, the terms are rearranged
so that those G(ξ ′) with the largest values of ξ ′ stand to the left. For example,
the n = 2 term is

1

2!

∫ ξ

0
dξ1

∫ ξ

0
dξ2[G(ξ1)G(ξ2)θ (ξ1 − ξ2) + G(ξ2)G(ξ1)θ (ξ2 − ξ1)],

and both of its contributions are obviously the same, generating

∫ ξ

0
dξ1

∫ ξ1

0
dξ2G(ξ1)G(ξ2).
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In the same way, the (n!)−1 factor of the nth perturbative term will be removed
by its n! equivalent permutations, generating∫ ξ

0
dξ1 · · ·

∫ ξn−1

0
dξnG(ξ1) · · · G(ξn−1)G(ξn).

That this is indeed the proper solution may be verified by differentiation. One
calculates a derivative in the ordinary way, “bringing down” the result of
differentiation, and placing it anywhere inside the ordered bracket; it is the
ordering symbol which states precisely how the terms are to be arranged upon
subsequent expansion. One may therefore write

d

dξ

(
exp

∫ ξ

0
dξ ′G(ξ ′)

)
+

as

(
G(ξ )

[
exp

∫ ξ

0
dξ ′G(ξ ′)

])
+
,

or as

G(ξ ) ·
(

exp
∫ ξ

0
dξ ′G(ξ ′)

)
+
.

Upon expansion of the exponent, every ξ ′ < ξ , and hence the G(ξ ) factor must
always be placed on the extreme LHS, and this OE is therefore the solution of
the original DE.

An alternative way to obtain the perturbative expansion of the OE is to rewrite
the DE-plus-initial condition of (1.44) as the integral equation

F(ξ ) = 1 +
∫ ξ

0
dξ ′G(ξ ′)F(ξ ′), (1.45)

and then to expand in powers of G. Simple differentiation of each term, followed
by their resummation, shows that one has in this way constructed a solution of
the original (1.44).

Just as the solution to that DE is not simply an ordinary exponential, so the
derivative of an exponential is not simply given by the product of derivative
times exponential,

d

dξ
exp H (ξ ) �= dH

dξ
· exp H (ξ ).

The proper definition may be obtained by introducing the quantity

Q(λ) = exp[−λH ] · exp[λ(H + δH )], Q(0) = 1,

and calculating its derivative with respect to λ,

dQ

dλ
= exp[−λH ] · δH · exp[+λH ] · Q(λ).



1.3 Ordered exponentials 15

Hence, to first order in δH ,

Q(λ) → 1 +
∫ λ

0
dλ′ exp[−λ′ H ] · δH · exp[λ′ H ],

and a comparison with the definition of Q(1) yields

d

dξ
exp H (ξ ) =

∫ 1

0
dλ exp[(1 − λ)H (ξ )] · dH

dξ
· exp[λH (ξ )]

=
∫ 1

0
dλ exp[λH (ξ )] · dH

dξ
· exp[(1 − λ)H (ξ )],

a most useful and general relation, which reduces to the familiar form only if
[H, dH/dξ ] = 0. If H = ∫ ξ

0 dξ ′G(ξ ′), then

d

dξ
exp

[ ∫ ξ

0
dξ ′G(ξ ′)

]

=
∫ 1

0
dλ exp

[
(1 − λ)

∫ ξ

0
dξ ′G

]
· G(ξ ) · exp

[
λ

∫ ξ

0
dξ ′G

]

and therefore, upon ordering the exponential,

d

dξ

(
exp

∫ ξ

0
dξ ′G(ξ ′)

)
+

= G(ξ )

(
exp

∫ ξ

0
dξ ′G(ξ ′)

)
+
,

as stated above.
It will also be useful to discuss the functional derivative of an OE, for which

it will be convenient to represent G(ξ ) as the product g(ξ ) C (ξ ), where g(ξ ) is
a commuting function, while [C(ξ1), C(ξ2)] �= 0. (For example, if G = iσ · B,
corresponding to a spin interacting with a prescribed magnetic field, the com-
ponents Bi are commuting, while the Pauli matrices σi do not commute with
each other.) Then, if

F(ξ, 0) ≡
(

exp

[ ∫ ξ

0
dξ ′g(ξ ′)C(ξ ′)

])
+
,

one may write

δF

δg(ξ )
=
(

C(ξ1) exp

[ ∫ ξ

0
dξ ′g(ξ ′)C(ξ ′)

])
+

or

δF

δg(ξ1)
=
(

exp

[ ∫ ξ

ξ1

dξ ′gC

])
+

C(ξ1)

(
exp

[ ∫ ξ1

0
dξ ′gC

])
+
.
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In other words,

δF

δg(ξ1)
= F(ξ, ξ1)C(ξ1)F(ξ1, 0), (1.46)

in which the correct ordering of all non-commuting factors is maintained.
How does one write non-perturbative expressions for OEs? In general, this

is an open and quite important question, and very little is known. In Chapter 9
we describe relatively simple “adiabatic” and “stochastic” non-perturbative
approximations for a unitary OE; but between these limits there is a wide range
of interesting behavior which still awaits proper classification and description.
Quite generally, OEs are at the heart of Fradkin-GF representations in QED and
QCD; and it is the lack of adequate, non-perturbative methods for estimating
relevant OEs which has, in part, forced so much of the interesting Physics of
these fields to be described in perturbative terms.

Notes

1 A miller’s son, born in the England of two centuries ago, Green was trained as a
baker and was essentially self-taught in Mathematical Physics. After publishing in
1828 the Theorem which bears his name (and coining the word “potential” in
electrostatics), his mathematical talent and physical insight were eventually
recognized, and at the age of 40 he entered Caius College, Cambridge, as a student.
He graduated with honors in 1837, and was appointed a Fellow of Caius College;
four years later he died. His collected works, brought in part to the attention of the
scientific community by Kelvin, were edited by N. M. Ferrers and first published
under the title Mathematical Papers of George Green, by MacMillan & Co.,
London, 1871; they were republished by the Chelsea Publishing Co., Bronx, NY, in
1970. Reading these Papers, one is struck by the fresh and modern exposition.
Vector analysis had not yet been invented, and so his was the language of individual
components; but Green’s physical arguments were virtually identical to those in use
today.

2 One excludes in the integration over r′ a small region of radius ε centered about the
point r, applies Gauss’ theorem to the entire but restricted volume of integration,
and then takes the limit ε → 0. One of the most rewarding treatments of this genre
in electromagnetism, fluids, and even special relativity, which makes use of modern
vector notation and vector calculus – and when written was accompanied by a plea
for the more widespread use of vectorial methods – may be found in the small
but unforgettable book Advanced Vector Analysis by the Australian physicist
C. E. Weatherburn, published by G. Bell & Sons, London, 1924, 1928, 1937, 1943.

3 E. S. Fradkin, Nucl. Phys. 76 (1966) 588. The detailed exposition of Fradkin’s
representation found in Chapter 3 follows the presentation previously given in
HMF#2.

4 See, for example, HMF#2, Chapter 15.
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Elementary functional methods

It is the existence and extraordinary usefulness of the functional representations
for GFs, introduced by Schwinger, Symanzik and Fradkin, by Feynman in
terms of path integrals, and discussed at length in the next chapter, that forces a
brief discussion of functional methods here.1 In certain subjects, such as QFT,
the conceptual simplicity permitted by a functional description is remarkable,
allowing one to view the manner in which different correlation functions are
related to each other within a basic, functional formalism, either by a specific
choice of interaction, or by restrictions following from unitarity.2 To learn
functional methods for the first time is rather like being given the opportunity
to “see the forest, instead of individual trees”, for one is then made aware of
the existence of a vast overview of the nonlinear problem at hand.

The intention of this chapter is to provide, mainly for those readers who have
never been familiar with the subject, a simple and straightforward explanation
of functional methods, along with relevant short cuts and tricks of the func-
tional trade. One or another aspects of these manipulations will then be freely
employed in subsequent chapters.

2.1 Functional differentiation

This simplest generalization of ordinary differentiation may be defined as
follows. Suppose one has a functional of j(x), that is, dependence on j which
can be represented as the sum of many powers of j , each multiplied by an
appropriate weighting function and integrated over all coordinates,

F[ j] = F0 +
∫

F1(u) j(u) + 1

2!

∫
F2(u1, u2) j(u1) j(u2)

+ 1

3!

∫
F3(u1, u2, u3) j(u1) j(u2) j(u3) + · · · . (2.1)

17
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Here, F0 is a constant, and the Fn(u1, . . . , un) are specified, symmetric functions
of their variables, with integration over the entire (finite or infinite) range of
all variables. This supposes that F[ j] has a Taylor expansion in powers of j ,
a simplification not necessary for the general definition, but one that is more
readily grasped and discussed. It is in this sense that F[ j] is understood to be
a “functional of j”. Unless otherwise noted,

∫
f j will be used to represent an

integration over all, relevant (for example, n-dimensional space time) variables,∫
dnu f (u) j(u).
Functional differentiation may now be defined in a manner paralleling that of

ordinary differentiation. Suppose we write explicitly the coordinate u of j(u)
in F[ j]; that is, u is to denote any one of the variables on the RHS of (2.1).
Then, one defines

δF

δ j(x)
= lim

ε→0
· 1

ε
{F[ j(u) + εδ(x − u)] − F[ j(u)]}. (2.2)

From (2.2), there follow the simple examples

δ

δ j(x)
exp

[ ∫
f j

]
= f (x) exp

[ ∫
f j

]
,

and

δ

δ j(x)
exp

[
i

2

∫
j(u) f (u, v) j(v)

]
= i
∫

f (x, z) j(z) · exp

[
i

2

∫
j f j

]
,

etc.

2.2 Linear translation

There is one type of functional operation, involving an infinite number of func-
tional derivatives, which appears frequently and which can be understood in
complete analogy to the similar translation operation of the ordinary calculus.
That is, if

exp

[
a

d

dx

]
· f (x) = f (x + a)

represents the ordinary translation (given by the Taylor expansion in powers
of a), the functional translation of F[ j] is accomplished by

exp

[ ∫
f

δ

δ j

]
· F[ j] = F[ j + f ], (2.3)

where
∫

f δ
δ j = ∫ dnu f (u) δ

δ j(u) .
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Equation (2.3) is surely intuitive, and may be easily proven by replacing f
on the LHS of (2.3) by λ f , and constructing the DE corresponding to variations
of the parameter λ. If

Fλ[ j] ≡ exp

[
λ

∫
f

δ

δ j

]
· F[ j],

then

∂ Fλ

∂λ
[ j] =

∫
f (u)

δ

δ j(u)
Fλ[ j]. (2.4)

The general solution to (2.4) can be found in a variety of ways, but we do this
here by a method which will have application to other, more difficult problems.
One first finds a convenient representation for an arbitrary F[ j], which can be
given in terms of functional differentiation with respect to a different source
function, g(z); that is, for the functional F of (2.1), one may write

F[ j] =
{

F0 +
∫

F1(u) + 1

i

δ

δg(u)

+ 1

2!

∫
F2(u1, u2)

1

i

δ

δg(u1)
· 1

i

δ

δg(u2)
+ · · ·

}
· exp

[
i
∫

g j

]∣∣∣∣
g→0

,

or

F[ j] = F

[
1

i

δ

δg

]
· exp

[
i
∫

g j

]∣∣∣∣
g→0

, (2.5)

where one is instructed, in (2.5), to set the source g equal to zero after all
necessary derivatives with repect to g have been taken. This is convenient for
our purposes, for all the functions Fn(u1, . . . , un) are combined with functional
derivatives with repect to g to form the operator F(δ/iδg); all the j-dependence
sits in the exponential factor of (2.5) and commutes with the δ/δg operations.
If, therefore, one can solve (2.4) for the special choice F0[ j] = exp[i

∫
g j] for

arbitrary g, then the application of F(δ/iδg) to that F will produce a solution
of (2.4) for a general F[ j].

Accordingly, we rewrite (2.4) for the special functional F0[ j] = exp[i
∫

g j],
F0

λ [ j] = exp[λ
∫

f δ
δ j ] · F0[ j], which now, clearly, satisfies the DE

∂

∂λ
F0

λ [ j] =
(

i
∫

f g

)
F0

λ [ j]. (2.6)

With the proper boundary condition at λ = 0, the solution to (2.6) is immediate,

F0
λ [ j] = exp

[
iλ
∫

f g

]
· F0[ j] = F0[ j + λ f ]. (2.7)
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Operation upon both sides of (2.7) with F(δ/iδg), for λ = 1, then yields the re-
sult (2.3) for a general functional. An equivalent but somewhat simpler deriva-
tion may be obtained by using the idea of a functional Fourier transform, as in
the discussion following (2.18), below.

2.3 Quadratic (Gaussian) translation

There is another form of “translation” which has relevance in another functional
context, corresponding to the use of a “quadratic translation” operator,

expD = exp

[
− i

2

∫
δ

δ j(u)
A(u, v)

δ

δ j(v)

]
,

where A(u, v) is a symmetric function of its variables; and we next consider its
application upon some simple forms. It turns out that [expD]F[ j] corresponds
to a functional integral (FI) of Gaussian-weight upon F , and may – with a few
exceptions – be obtained in closed form only when F[ j] itself is not more
complicated than a Gaussian.

The simplest quantity of this form is expD · exp[i
∫

g j], and may be evalu-
ated by replacing A, in D, by λA, and then obtaining and solving the simple
DE corresponding to variation of λ. One immediately finds

exp

[
− i

2

∫
δ

δ j
A

δ

δ j

]
· exp

[
i
∫

jg

]
= exp

[
i

2

∫
g Ag + i

∫
jg

]
. (2.8)

There is a simple but useful generalization of (2.8) which involves the action
of expD upon a product of functionals, say F1[ j] and F2[ j]. Again, as in (2.5),
it is simplest to write each of these as Fi (δ/ iδgi ) · exp[i

∫
gi j], with the gi

vanishing after all derivatives are taken. Then, since expD commutes with the
F(δ/iδgi ), one can write

exp

[
− i

2

∫
δ

δ j
A

δ

δ j

]
· F1[ j] · F2[ j]

= F1

[
1

i

δ

δg1

]
· F2

[
1

i

δ

δg2

]
· exp

[
− i

2

∫
δ

δ j
A

δ

δ j

]
· exp

[
i
∫

j(g1 + g2)

]∣∣∣∣
gi →0

,

which, using (2.8), can be rewritten as

F1 · F2 · exp

[
i

2

∫
g1 Ag1 + i

2

∫
g2 Ag2 + i

∫
g1 Ag2

]

· exp

[
i
∫

j(g1 + g2)

]∣∣∣∣
gi →0

,
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or, with (2.3) and Di = − i
2

∫
δ

δ Ji
A δ

δ ji
,D12 = −i

∫
δ

δ j1
· A · δ

δ j2
, can be written

in the form

eD · F1[ j]F2[ j] = eD12 [(eD1 F1[ j1])(eD2 F2[ j2])]| j1= j2= j , (2.9)

and can be extended to products of more than two functionals in an obvious
manner. In words: expD is a “linkage operator”, which first links all pairs of
j-factors within each functional by the operation of expD on that functional
(these may be called the “self-linkages”); and which then links the different
functionals by means of the operators exp[Di j ]. These forms will appear with
a certain frequency when describing the Green’s functions of QFT.

The evaluation of expD upon the Gaussian functional exp[ i
2

∫
j B j] is some-

what more interesting, and we begin by following the parametric method of
Zumino3 and Sommerfield,4 by considering the quantity

Fλ[ j] = exp

[
− i

2
λ

∫
δ

δ j
A

δ

δ j

]
· exp

[
i

2

∫
j B j

]
, (2.10)

where both A(u, v) and B(u, v) are symmetric functions of their arguments.
Again, one constructs the DE corresponding to variation of λ,

∂ Fλ[ j]

∂λ
= − i

2

∫
δ

δ j(u)
A(u, v)

δ

δ j(v)
· Fλ[ j]. (2.11)

An intuitive ansatz is then chosen for this Gaussian quantity,

Fλ[ j] = exp

[
i

2

∫
jχλ j + i

∫
hλ j + Lλ

]
, (2.12)

where χλ(u, v), hλ(u), and Lλ are three functions of u, v, and λ to be deter-
mined. Note that these quantities satisfy the boundary conditions: χ0(u, v) =
B(u, v), h0(u) = 0, L0 = 0.

Substituting (2.12) into (2.11), canceling a factor of Fλ[ j] from both sides
of the equation, and equating coefficients of j(z) of the remaining terms, one
finds the simultaneous relations

dχλ

dλ
(u, v) =

∫
χλ(u, w)A(w, z)χλ(z, v),

dhλ

dλ
(u) =

∫
χλ(u, w)A(w, z)hλ(z),

and

dLλ

dλ
= 1

2

∫
A(u, v)χλ(v, u) + i

2

∫
hλ(u)A(u, v)hλ(v).
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In a more compact, matrix notation, these equations read

dχλ

dλ
= χλ Aχλ,

dhλ

dλ
= χλ Ahλ,

dLλ

dλ
= 1

2
Tr[Aχλ] + i

2
hT

λ Ahλ,

and can be solved making use of the conditions: χ0 = B, h0 = 0, L0 = 0.
One immediately sees that hλ(u) = 0; that χλ = B[1 − λAB]−1; and that
Lλ = −(1/2)Tr ln[1 − λAB]. With λ = 1, we then have the desired formula,

exp

[
− i

2

∫
δ

δ j
A

δ

δ j

]
· exp

[
i

2

∫
j B j

]

= exp

[
i

2

∫
j B(1 − AB)−1 j − 1

2
Tr ln(1 − AB)

]
. (2.13)

For this shorthand, matrix notation, 〈x |A|y〉 = A(x, y), 〈x |B|y〉 = B(x, y),
while the matrix element 〈x |B̄λ|y〉 = 〈x |B[1 − λAB]−1|y〉 = B̄λ(x, y) is to
satisfy the integral equations

B̄λ(x, y) = B(x, y) + λ

∫
B(x, u)A(u, v)B̄λ(v, y),

or

B̄λ(x, y) = B(x, y) + λ

∫
B̄λ(x, u)A(u, v)B(v, y).

In terms of this function, the formal expression above for Lλ is simply the
statement: Lλ = (1/2)

∫ λ

0 dλ′ ∫ A(u, v)B̄λ′ (v, u). It will shortly become clear
that (2.13) is a statement of Gaussian functional integration.

An immediate and most useful generalization of (2.13) is

exp

[
− i

2

∫
δ

δ j
A

δ

δ j

]
· exp

[
i

2

∫
j B j + i

∫
f j

]

= exp

[
i

2

∫
j B(1 − AB)−1 j + i

∫
j(1 − B A)−1 f

+ i

2

∫
f A(1 − B A)−1 f − 1

2
Tr ln(1 − AB)

]
. (2.14)

In this case, the hλ(u) term of the ansatz (2.12) turns out to be non-zero and
easily calculable.

A slightly different form of (2.13) is useful in charged-boson situations,

exp

[
−i
∫

δ

δ j
A

δ

δ j∗

]
· exp

[
i
∫

j∗ B j

]

= exp

[
i
∫

j∗ B(1 − AB)−1 j − Tr ln(1 − AB)

]
, (2.15)
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and is easily obtained by the same parametric technique. Note that A(u, v) and
B(u, v) are here no longer symmetric functions of their variables.

There exists a simple extension of (2.13) which is of immediate use in theories
containing fermions. If Aαβ(u, v) and Bαβ(u, v) are now non-symmetric, (Dirac)
matrix-valued functions, and if the c-number fermionic sources ηα(u), η̄β(v)
which replace the bosonic sources j(u) are taken to be elements of the anti-
commuting (Grassmann) algebra, satisfying

{ηα(u), ηβ(v)} = {ηα(u), η̄β(v)} = 0,{
δ

δηα(u)
, ηβ(v)

}
=
{

δ

δη̄α(u)
, η̄β(v)

}
= δαβδ(u − v),

then a very similar construction may be carried through, yielding

exp

[
−i
∫

δ

δηα

Aαβ

δ

δη̄β

]
· exp

[
i
∫

η̄α Bαδηδ

]

= exp

[
i
∫

η̄B(1 + AB)−1η + Tr ln(1 + AB)

]
. (2.16)

Dirac matrices have been suppressed on the RHS of (2.16), but it should be
noted that the trace operation Tr here includes a summation over Dirac indices
as well as over space–time coordinates.

Note also that factors of (1/2) are absent, and that the sign of A on the RHS
of (2.16) appears to be reversed in comparison with the bosonic result (2.13).
More importantly, the sign of Tr ln[1 + AB] is reversed, which is the origin of
the “extra minus sign multiplying each fermionic closed-loop” rule of pertur-
bation theory, and which plays a role in the “supersymmetric” cancellations of
divergences between bosonic and fermionic closed-loops.5

2.4 Functional integration

The object here is to generalize ordinary integration over a real variable,
∫

dx ,
to integration over a real function, u(x). One must first define the integration
measure, which is typically done by breaking up all space–time into a fine mesh
of N small cells of volume �, each labeled by a subscript i referring to the i th
cell: u(x) → u(xi ) = ui . Then, the functional integral (FI)

∫
d[u] is defined as

the product over all ordinary integrals of the ui ,

∫
d[u] = lim

N→∞

N∏
i=1

∫ +∞

−∞
dui . (2.17)
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Sometimes a divergent normalization factor is included in this definition; but it
is not really necessary as long as proper care is taken to normalize all physical
expressions.

The simplest, non-trivial integrand to insert under the FI is one which leads
to a Dirac δ-functional, expressing the equality of one function with another
for all values of their arguments. Following the spirit of (2.17), one writes∫

dxu(x)[ j(x) − f (x)] as �
∑N

i=1 ui ( ji − fi ), and calculates

δ[ j − f ] = η−1
∫

d[u] exp

[
i
∫

u( j − f )

]
, (2.18)

with η a normalization constant to be determined. Equation (2.18) represents
the δ-functional, defined in this way as the product of N ordinary δ-functions,
one at each space–time coordinate i ,

η−1
N∏

i=1

∫ +∞

−∞
dui exp [i�ui ( ji − fi )] = η−1

(
2π

�

)N N∏
i=1

δ( ji − fi ).

With the normalization η chosen as (2π/�)N , this δ[ j − f ] will under subse-
quent functional integration act to replace each j(x) by the function f (x).

Equation (2.18) is a special case of a functional Fourier transform (FFT), in
the sense that the FFT of δ[u] is a constant. It is frequently useful to imagine
an arbitrary functional F[ j] as given by its FFT,

F[ j] = η−1
∫

d[u]F̃[u] exp

[
i
∫

ju

]
,

and we have already done the equivalent thing in constructing the solution to
(2.4), above. Again breaking up the space–time region into a fine mesh of small
volumes �, the existence of the FFT can be understood in terms of the existence
of an ordinary FT at each mesh coordinate.

It may also be noted that the measure of the FI can be defined in terms of the
FT ũ(k) of u(x), by breaking up all of k-space into a fine mesh, and integrating
the ũ(k) in each mesh volume. However, if u(x) is real, ũ(k) is complex, and
one must be careful to integrate over both the real and imaginary parts of each
mesh variable ũi = ũ(ki ).

Just as for the case of ordinary integration, the most complicated FI that can
be performed exactly is a Gaussian. One requires

I [ j ; A] =
∫

d[u] exp

[
i

2

∫
u Au + i

∫
ju

]
, (2.19)

where, again, A(x, y) is a symmetric function of its variables, and j(x) is an
arbitrary source function. Without performing any calculation at all one can
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obtain the j-dependence of (2.19), by making the variable change: u(x) =
v(x) − ∫ dz A−1(x, z) j(z), where the quantity A−1 is assumed to exist, and to
satisfy the relations∫

dz A(x, z)A−1(z, y) =
∫

dz A−1(x, z)A(z, y) = δ(x − y).

The exponential of (2.17) then becomes

i

2

∫
vAv − i

2

∫
j(x)A−1(x, y) j(y),

so that I [ j ; A] ∼ exp[−(i/2)
∫

j A−1 j]. The proportionality constant, and in
particular its A-dependence, is a quantity of considerable interest, and the most
straightforward way to obtain it is by direct integration.

Imagine an orthogonal matrix 〈x |M |y〉 = M(x, y) with a continuous number
of indices, satisfying the normalization condition∫

dzM(x, z)MT(z, y) = δ(x − y), (2.20)

with MT(x, y) = M(y, x) = M−1(x, y). When configuration space is broken
up into small cells of 4-volume �, there will be correspondingly many dis-
crete components of this matrix, Mi j ; and with the replacement δ(x − y) →
δi j/�, one finds the discrete version of (2.20),∑

l

Mil MT
l j = δi j/�

2. (2.21)

The orthogonal M is to be chosen such that it diagonalizes A,∫
MT(x, z)A(z, w)M(w, y) = δ(x − y) a(x), (2.22)

where a(x) represents the continuous-valued eigenvalue of A. [Note that for
A(x, y) = δ(x − y), (2.22) reduces to (2.20) if a = 1.] For discrete indices
(2.22) becomes ∑

αβ

MT
iα Aαβ Mβ j = δi j ai/�

3. (2.23)

Indeed, for any f (A) expressible as an infinite polynomial in A, these become∫
MT(x, z)〈z| f (A)|w〉M(w, y) = δ(x − y) f (a(x)), (2.24)

and ∑
αβ

MT
iα fαβ(A)Mβ j = δi j f (ai )/�

3, (2.25)
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where 〈x | f (A)|y〉 and fi j denote projections of f (A) in the continuous and
discrete cases, respectively.

Under the variable change: u(x) = ∫ dzM(x, z)q(z), the FI of (2.19) becomes

I [ j ; A] =
∫

d[g] exp

[
i

2

∫
g2(x)a(x) + i

∫
g(x)J (x)

]
, (2.26)

where the “new source” J (x) is related to j(x) by: J (x) = ∫ MT(x, z) j(z). Note
that (2.21) implies that the new, discrete measure d[g] is exactly the same as the
original d[u], since the N × N matrix �Mi j is orthogonal, with determinant
unity. The discrete version of (2.26) is

N∏
i=1

∫ +∞

−∞
dgi exp

[
i

2
�ai g

2
i + i�gi Ji

]
=

N∏
i=1

(
2π i

�ai

)1/2

e− i
2 �J 2

i /ai . (2.27)

With the f (A) of (2.24) and (2.25) given by f (A) = A−1, the product over all
cells of the exponential factor on the RHS of (2.27) yields

exp

[
− i

2

∫
j(x)A−1(x, y) j(y)

]
,

which is just that found above without any integration. With f (A) now chosen
as f = ln(A), the A-dependence of the factors

N∏
i=1

(ai )
−1/2 = [det a]−1/2 = exp

[
− 1

2

∑
i

ln ai

]

can be written in terms of:
∫

dx〈x | ln(A)|x〉 = Tr ln(A), after passing to the
continuous limit. Denoting the remaining (2π i/�)N/2 by the constant C , one
has the precise evaluation

I [ j ; A] = C exp

[
− i

2

∫
j A−1 j − 1

2
Tr ln A

]
. (2.28)

Every physically-significant computation of an FI such as (2.19) is always
phrased in such a way that the divergent, normalization constant C disappears
from the final result.

There is another way of evaluating (2.19) which brings out the equivalence of
the parametrically-obtained relation (2.13) and Gaussian functional integration.
From the definition (2.19) and the translation property (2.3), there follows

exp

[
− i

2

∫
δ

δ j
D

δ

δ j

]
· I [ j ; A] = I [ j ; A + D]. (2.29)



2.5 Examples drawn from quantum field theory 27

If one substitutes into (2.29) the ansatz

I [ j ; A] = N [A] · exp

[
− i

2

∫
j A−1 j

]
, (2.30)

there results

N [A] exp

[
− 1

2
Tr ln(1 + D A)−1

]
= N [A + D], (2.31)

where a common factor exp[−i/2
∫

j(A + D)−1 j] has canceled from both sides
of (2.31). The latter can be rewritten in the form

N [A] exp

[
1

2
Tr ln A

]
= N [A + D] exp

[
1

2
Tr ln(A + D)

]
, (2.32)

and since the LHS depends only on A, while the RHS depends only on A + D,
both sides must be constant, independent of A and D, from which follows

N [A] = C · exp

[
− 1

2
Tr ln A

]
. (2.33)

With C chosen as the constant of (2.28), (2.33) and (2.30) again reproduce
(2.28).

The corresponding, direct functional integration over fermionic variables is
left as an exercise for the interested reader.6 It is less intuitive than that of
the bosonic case because of the presence of anticommuting variables, but it is
somewhat simpler because all products of like-Grassmannian variables vanish.
Equation (2.16) plays an essential role in all field theories containing fermions,
and will find application in the next section.

2.5 Examples drawn from quantum field theory

Illustrations of the functional techniques of the previous sections, which serve
to illustrate the ability of functional methods to display an overall view of the
entire structure of interactions in realistic QFTs, are presented here by two
examples drawn from QED and from a generically related pair of interacting
scalar fields. For each case, we begin by writing Schwinger’s formal, functional
solution for the relevant generating functional; and we shall use units such that
h = c = 1.

(1) A pair of interacting scalar fields may be described by the Lagrangian
density

L1 = −1

2
[µ2 A2 + (∂ A)2] − 1

2
[m2 B2 + (∂ B)2] − g

2
B2 A, (2.34)
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and corresponds to scalar particles of mass m interacting with scalar particles of
mass µ. [The masses and charges in these examples are “bare”, unrenormalized
quantities. Renormalization comes later on, when one makes the transition, by
calculating relevant elements of the S-matrix, from the underlying fields to
properties of measurable particles.]

All of the correlation functions, or n-point functions, of this theory may be
obtained by functional differentiation of the generating functional (ĜF)

Z[ j, k] = 〈0|
(

exp i
∫

[ j A + k B]

)
+
|0〉

with respect to its sources, where j(z) and k(z) are c-number, bosonic sources
associated with the boson field operators A(z) and B(z); and where the ordering
of this OE is with respect to the time-variable of the 4-dimensional integrals∫

d4x = ∫ d3x
∫

dt . Functional differentiation, followed by vanishing sources,
then generates the desired correlation functions,

〈0|(A(x1) · · · A(xn)B(y1) · · · B(yl))+|0〉

= 1

i

δ

δ j(x1)
· · · 1

i

δ

δ j(xn)
· 1

i

δ

δk(y1)
· · · 1

i

δ

δk(yl)
Z
∣∣∣∣

j=k=0

.

In this case, the Schwinger/Symanzik constructions described in refs. 1 and 2
of the Preface provide the formal solution

Z[ j, k] = 〈S〉−1e−i g
2

∫
( 1

i
δ
δk )2( 1

i
δ
δ j ) · e

i
2

∫
j Dc j · e

i
2

∫
k∆ck, (2.35)

where 〈S〉 denotes the relevant vacuum-to-vacuum amplitude, and where Dc

and �c are the free-particle propagators of masses µ and m, respectively. Note
that the argument of the functional operator of (2.35) is given by the interaction
part of the action, with field operators replaced by factors of −i multiplying
functional derivatives of their sources; and that this functional operator then
acts upon the product of free-particle GFs.

With (2.13), the quantum fluctuations of the B-field may be performed, lead-
ing to

Z[ j, k] = e
i
2

∫
kGc[ 1

i
δ
δ j ]k · eL[ 1

i
δ
δ j ]

〈S〉
· e

i
2

∫
j Dc j (2.36)

where Gc(x, y|A) denotes the scalar GF 〈x |Gc[A]|y〉, Gc[A] = [m2 − ∂2 +
g A]−1, and L[A] = −1

2 Tr ln(1 + g A�c) = −g
2

∫ 1
0 dλ

∫
d4xGc(x, x |λA) · A(x).

With the aid of the elementary manipulation

F

[
1

i

δ

δ j

]
e

i
2

∫
j Dc j = e

i
2

∫
j Dc j · e− i

2

∫
δ

δA Dc
δ

δA F[A],
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which may easily be demonstrated using our previous representation of an
arbitrary functional, F[A] = F( 1

i
δ
δ j ) exp[i

∫
g A]|g→0, (2.36) may be rephrased

in a somewhat more intuitive form, as

Z[ j, k] = e
i
2

∫
j Dc j · eDA · e

i
2

∫
kGc[A]k · eL[A]

〈S〉

∣∣∣∣∣
A≡∫ Dc j

, (2.37)

expressed in terms of the linkage operator exp[DA], where DA = − i
2

∫
δ

δA(x) ×
Dc(x − y) δ

δA(y) . From the normalization requirement Z[0, 0] = 1, it then
follows that

〈S〉 = exp[DA] · exp(L[A])|A→0. (2.38)

(2) QED is described by the Lagrangian density

L′ = −ψ̄[m + r · ∂]ψ − 1

4

∑
µ1ν

F2
µν + igψ̄γ · Aψ,

and has the corresponding ĜF

Z[ j, η, η̄] = 〈0|
(

exp

[
i
∫

(ψ̄η + η̄ψ + j · A)

])
+
|0〉.

Here, jµ(z) is a bosonic c-number, 4-vector source; but the spinorial sources
ηα(x), η̄β(y) are Grassmann variables, anticommuting with themselves and with
all fermion fields, as in (2.16).

Schwinger’s functional solution for QED may then be written as

Z[ j, η, η̄] = 〈S〉−1ei
∫

δ
δη

(gγ · δ
δ j ) δ

δη̄ · ei
∫

η̄Scη · e
i
2

∫
j Dc j ,

and the quantum fluctuations of the ψ, ψ̄ fields may be calculated using (2.16),
and yield

Z[ j, η, η̄] = e
i
2

∫
j Dc j · eDA · ei

∫
η̄Gc[A]η · eL[A]

〈S〉
, (2.39)

where Aµ(z) = ∫ d4wDc,µv (z − w) jv(w),DA = − i
2

∫
δ

δAµ
Dcµν

δ
δAν

, Gc[A] =
[m + γ · (∂ − ig A)]−1, and L[A] = +Tr ln[1 − igγ · ASc]. Here, Dc and Sc

are free-particle photon and fermion propagators, respectively. Again,

〈S〉 = exp[DA] exp{L[A]}|A→0. (2.40)

From these two examples one sees in each case the difference between the
“first quantization” of potential theory, and the full, “second quantized” QFT.
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In the first case, the B particles have interactions only with a specified, external
field Aext(z), corresponding to the ĜFs

Z[k] = exp

[
i

2

∫
kGc[Aext]k

]
or Z[η, η̄] = exp

[
i
∫

η̄Gc[Aext]η

]
,

while in the second case, one requires the functional linkage operator to act
upon products of Gc[A] and L[A]. For example, the probability amplitude for
the scattering of a pair of electrons, due to the exchange of an infinite number of
virtual photons, including all possible arrangements of closed-fermion loops, is
frequently expressed by the sum over an infinite number of Feynman graphs of
increasing order and complexity. But the essential part of the same expression
(before MSA) may be displayed in a simple, non-perturbative form by the
functional expression

eDA Gc(x1, y1|A)Gc(x2, y2|A)
eL[A]

〈S〉
∣∣∣∣

A→0

− (x1 ↔ x2),

from which one can readily understand the field-theoretic interest in obtaining
quality approximations for Gc[A] and L[A].

2.6 Cluster decomposition

Consider a functional L[A] which is acted upon by the linkage operator exp[D],
with, for this discussion, D = − i

2

∫
δ

δA(u)�c(u − v) δ
δA(v) . The notation is sug-

gestive of QFT, but the discussion is quite general. For simplicity, we denote
this operation upon L[A] by L̄[A],

L̄[A] = eDL[A]. (2.41)

The question posed here is how to represent the operation

S[A] = eD · eL[A]. (2.42)

One method of approach is, using the techniques of the previous sections, to
convert (2.42) to the FI

S[A] = exp

[
− i

2

∫
J�c J

]
· N
∫

d[χ ]

· exp

[
− i

2

∫
χ�−1

c χ + i
∫

χ J + L[χ ]

]
, (2.43)

where J = ∫ �−1
c A. In appropriate situations, semi-classical methods may be

designed to give an approximate evaluation of this FI.
There is another method of approach, with origins in the cluster expansions

of Statistical Physics, which may sometimes be useful. This method converts
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S[A] directly to an exponential whose argument is an infinite sum over a set of
“connected” quantities, in the form

S[A] = exp

[ ∞∑
N=1

QN /N !

]
, (2.44)

where the QN [A] are connected functionals, defined as

QN [A] = eDL N [A]|conn

=
N∏

i> j=1

eDi j ·
N∏

i=1

eDi L[Ai ]|conn,Ai →A

=
N∏

i> j=1

eDi j

N∏
i=1

L̄[Ai ]|conn,Ai →A. (2.45)

In obtaining (2.45), the trivial generalization of (2.9) to N factors of L[A] has
been written, using individual fields Ai (and followed by the final limit wherein
all Ai are replaced by the same A); and where

Di = − i

2

∫
δ

δAi
�c

δ

δAi
, Di j = −i

∫
δ

δAi
�c

δ

δA j
.

The subscript “conn” indicates that at least one linkage must be retained between
any and each pair of L[Ak] terms; all terms without such linkages are to be
discarded. For N = 1, (2.45) defines Q1[A] = L̄[A].

A combinatoric derivation of this cluster expansion has been given in both
HMF#1 and 2, and need not be repeated here. Rather, we shall use only a simpler
scaling argument to produce a method of calculation for each and every QN ;
that argument has also appeared in HMF#2. One asks how such quantities would
change if each L[A] were multiplied by a constant factor λ; clearly, if L → λL ,
then QN → λn · QN , and, with (2.44), S[A] becomes

exp

[ ∞∑
n=1

λn

n!
Qn

]
= eD · eλL ,

or

∞∑
n=1

λn

n!
Qn = ln[eD · eλL ]. (2.46)

Each QN can now be obtained by calculating (∂/∂λ)N |λ = 0 on (2.46). For
example,

Q1 = [eD · LeλL ]/[eD · eλL ]|λ=D = eDL = L̄; (2.47)
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and

Q2 = eD · L2 − (eD · L)2 = [eD12 − 1]L̄[A1]L̄[A2]|A1=A2=A, (2.48)

which gives expression to the “connected” subscript of (2.45). A pictorial rep-
resentation of some of the higher QN and their weightings is given in HMF#2.

Notes

1 The origins and the development of a functional approach to QFT has benefited
from the thought of many, including Symanzik, Fradkin, Zumino, and Sommerfield;
but foremost among them, as the originator of the functional description for QFT,
stands Julian Schwinger. Perhaps the best way of expressing the quality and quantity
of his work is to point to the collection of 183 of his most relevant papers, from 1937
to 1976, compiled by M. Flato, C. Fronsdal, and K. A. Milton, as Selected Papers of
Julian Schwinger, D. Reidel (1979); and to the subsequent collection by K. A.
Milton, A Legacy: Seminal Papers of Julian Schwinger, World Scientific (2000), a
grouping of some 43 additional papers. In these collections are gems of unchanging
quality, including the sequence entitled “The Theory of Quantized Fields, I–V”, and
his 1951 masterpiece: “On Gauge Invariance and Vacuum Polarization”.

One must also point to the Quantum Action Principle invented by Schwinger,
which generalizes all of those due to Fermat, Bernoulli, Euler, Lagrange, and
Hamilton, who preceeded him. And, one might also remark that Schwinger was a
kind and gentle man, one whose grasp and usage of the English language was
mellifluous beyond compare. In one of the final lectures of his life, he gave a
seminar at the University of Nottingham, entitled “The Greening of Quantum Field
Theory: George and Me”, in which he paid homage to George Green, and the
functions he invented, and which Schwinger so modified to produce new
descriptions for a variety of physical processes. For those readers who would enjoy
an in-depth biography of Schwinger, see K. A. Milton, Climbing the Mountain,
Oxford University Press (2000).

In contrast to the “Lagrangian” approach of Schwinger, Feynman’s path to
functional methods can be characterized as “Hamiltonian”, described in the text he
coauthored with A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill
(1965). The intuitive and special touch that was Feynman’s can be seen in his early
papers on QFT: R. P. Feynman, Rev. Mod. Phys. 20 (1948) 367; Phys. Rev. 76 (1949)
749 and 769; and in his book Quantum Electrodynamics, W. A. Benjamin (1962).

The many and profound contributions of E. S. Fradkin, spread across five decades
and a wide variety of subjects, deserve special mention. In this book a derivation (in
Chapter 3) and repeated use are made of his GF representation, which, in effect,
serves to move the formal operations of Schwinger into the realm of practical,
functional calculations. The explanation of his techniques given in this book follows
the notation used in HMF#2.

2 K. Symanzik, Z. Naturforschung, 92 (1954) 809.
3 B. Zumino, NYU Lecture Notes (1958).
4 C. Sommerfield, Ann. Phys. 26 (1963) 1.
5 B. Zumino, Nucl. Phys. B 89 (1975) 535.
6 F. A. Berezin, Dolk. Acad. Nauk. SSSR 137 (1961) 311.
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Schwinger–Fradkin methods

The general construction of the functional solution to an inhomogeneous
Green’s function equation, such as that for a scalar function with scalar inter-
action, as defined in a 4-dimensional context,[

m2 − ∂2
x + g A(x)

]
Gc(x, y|A) = δ(4)(x − y), (3.1)

will be given in this chapter, along with the construction of corresponding
Green’s functions in QED and QCD. These are the generalizations of the “free-
particle” propagators noted in (1.30), each defined in the presence of an arbitrary,
“external” or “background” source A(z); in every causal theory there is a way
to express physical quantities of interest in terms of such Green’s functions.
Very similar techniques will be relevant if one is interested in Galilean rather
than Lorentz symmetry; or if one requires the Green’s function for interactions
of arbitrary tensorial character, in arbitrary numbers of space–time dimensions;
examples in QED and QCD will be sketched below.

3.1 Proper-time representations of Schwinger and Fradkin

It will be convenient to rewrite (3.1) as

[m2 − ∂2 + g A]Gc[A] = 1, (3.2)

in which the formal operators ∂2 and A are local and satisfy 〈x |∂2|y〉 =
∂2

x δ(x−y), 〈x |A|y〉 = A(x) · δ(x − y), while the Green’s function is given by
the projection: Gc(x, y|A) = 〈x |Gc[A]|y〉. As mentioned in the first chapter,
there are really four possible and independent solutions to (3.1), specified by
the symbols c, c̄, R, and A, depending on whether the desired solution is causal,
anticausal, retarded, or advanced. For definiteness, simplicity, and usefulness,
we shall consider only causal Green’s functions, defined (as in every order of
perturbation theory) by the replacement: m2 → m2 − iε, ε → 0+.

33
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It was Schwinger1 who rewrote (3.2) in the form

Gc[A] = [m2 − ∂2 + g A − iε]−1, (3.3)

and introduced the exponential representation appropriate to a causal propaga-
tor, in a manner analogous to (1.27),

Gc[A] = i
∫ ∞

0
ds e−ism2 · e−is[g A−∂2]. (3.4)

The denominator of (3.3) is an hermitian operator with real eigenvalues, and
hence, when diagonalized, each such term is reduced to the real-number analysis
of (1.27). The parameter “s” over which integration is performed in (3.4) is
called the “proper time”, although it rarely carries the true dimensions of its
name; in relativistic field theory its most important characteristics are that it
is gauge invariant and Lorentz invariant.

One should observe that any perturbative expansion of (3.3) or (3.4) in
powers of g A is exactly equivalent to the expansion of the integral equation for
Gc(x, y|A) in powers of g A,

Gc(x, y|A) = �c(x − y) − g
∫

d4z�c(x − z)A(z)Gc(z, y|A),

or

Gc(x, y|A) = �c(x − y) − g
∫

d4zGc(x, z|A)A(z)�c(z − y),

where Gc(x, y|0) = �c(x − y; m2) denotes the free-particle propagator of
(1.42). The intention of all that follows is to provide a representation of Gc[A]
which is exact, and which, if necessary, can be easily and reasonably approxi-
mated in a non-perturbative way.

The utility of such forms was demonstrated by Schwinger in his seminal
paper,2 where explicit solutions were produced for fermion GFs Gc[A] and the
associated, closed-fermion-loop functional L[A] in the QED case of particle
propagation in either a constant electromagnetic field or a laser/plane-wave field
of a single frequency. A decade later, Fradkin3 published an exact functional
GF representation for particle propagation in an arbitrary, external field, one
which can be generalized to all causal problems of any symmetry, and used to
construct a variety of non-perturbative approximations to Gc[A] and L[A].

The derivation of Fradkin’s representation begins by rewriting (3.4) in the
apparently more-complicated form

Gc[A] = i
∫ ∞

0
ds e−ism2(

e−i
∫ s + δ

0 ds ′[g A − ∂2 + ivµ(s ′)∂µ]
)
+

∣∣∣∣
vν → 0, δ → 0

, (3.5)
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where vµ(s ′) denotes an arbitrary vector function of the parameter s ′, and ( )+
is an OE, ordered with respect to s ′; when vµ vanishes in (3.5), the resulting
OE is exactly equivalent to the ordinary exponential of (3.4).

The OE of (3.5), hereinafter called U (s), displays the properties

δU

δvµ(s)
= ∂µU, (3.6a)

and

∂U

∂s
= −i[g A − ∂2 + ivµ(s)∂µ]U = −i

[
g A − δ2

δv2(s)
+ iv(s) · ∂

]
U.

(3.6b)

From its definition in (3.5), one sees that U (0) = 1. A solution satisfying these
requirements is given by

U (s) = e
i
∫ s

0 ds ′ δ2

δv2(s′ ) · (e∫ s+δ

0 ds ′[v(s ′)·∂−ig A]
)
+, (3.7)

in the limit of δ → 0+, a limit that shall subsequently be understood; this limit
is needed only to insure (in this formulation) the necessary commutation of
exp[i

∫ s
0 ds ′ δ2

δv2(s ′) ] with (v(s) · ∂).
As discussed in the previous chapter, the exponential of a quadratic functional

derivative, as in (3.7), is equivalent to an FI with Gaussian weight over the v(s) -
dependent OE V (s),

V (s) =
(

exp
∫ s

0
ds ′[v(s ′) · ∂ − ig A]

)
+
, (3.8)

and may easily be rewritten in the form

U (s) = N (s)
∫

d[φ] e
i
4

∫ s
0 ds ′φ2

µ(s ′) · V (s|φ), (3.9)

where N (s) is the appropriate, Gaussian normalization factor,

N−1 =
∫

d[φ] exp

[
i

4

∫ s

0
ds ′φ2

µ(s ′)
]
.

The OE V (s) can be obtained explicitly, and we here sketch that construction
by first writing

V (s|v) = e
∫ s

0 ds ′v·∂ · e
∫ s

0 v·∂ V (s|v) ≡ e
∫ s

0 ds ′v·∂F(s), (3.10)

so that F(s) satisfies the DE

∂F
∂s

= −ig e−∫ s
0 ds ′v·∂ Ae+∫ s

0 ds ′v·∂F(s). (3.11)
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It is now useful to take partial matrix elements of (3.11), applying 〈x | to both
sides of that equation, and using the properties 〈x |∂µ = (∂/xµ)〈x |, and 〈x |A =
A(x)〈x |. One readily obtains

∂

∂s
〈x |F(s) = −ig e−∫ s

0 ds ′v·∂ x
A(x)e+∫ s

0 ds ′v·∂ x 〈x |F(s)

= −ig e−∫ s
0 ds ′v·∂ x

A(x)

〈
x +

∫ s

0
ds ′v(s ′)

∣∣∣∣F(s)

= −ig A

(
x −

∫ s

0
ds ′v

)
〈x |F(s), (3.12)

which is an explicit DE for 〈x |F(s), with solution

〈x |F(s)|y〉 = e−ig
∫ s

0 ds ′A(x−∫ s′
0 v)δ(4)(x − y), (3.13)

after projecting both sides of this solution onto |y〉. From (3.10), matrix elements
of V (s) are immediately given, so that the complete GF may be written as

Gc(x, y|A) = i
∫ ∞

0
ds e−ism2

ei
∫ s

0 ds ′ δ2

δv2(s′ ) · δ

(
x − y +

∫ s

0
v

)
e−ig

∫ s
0 ds ′A(y−∫ s′

0 v).

(3.14)

For more complicated interactions, where, e.g., A(z) is a matrix, it should be
emphasized that the solution of (3.12) is an OE:

〈x |F |s)|y〉 = (e−ig
∫ s

0 ds ′A(x−∫ s′
0 v)
)
+〈x |y〉, (3.15)

where the ordering is with respect to s ′. Only when and if all quantities A(z)
bearing different s ′ values commute will the OE of (3.15) reduce to the ordinary
exponential of (3.13).

Equation (3.14), or its equivalent FI obtained from (3.9), is the Fradkin
representation for Gc[A], appearing in an explicit form for a specified A(z). All
the complexity of the problem, due to the original lack of commutivity of ∂2 and
A(x) in (3.3), has been replaced by Gaussian fluctuations over the v-dependence
of (3.14), whose evaluation is limited only by the nature of the argument of A.
It is immediately clear that any function A(z) linear or quadratic in its argument
will allow the functional operation of (3.14) to be carried through exactly.
With few exceptions, a more complicated z-dependence of A(z) will lead to a
Gc[A] that cannot be expressed exactly in closed form – that is, in terms of
a finite number of quadratures – and the practical question then becomes one
of finding simple, sensible, and (if at all possible) physically-intuitive ways of
approximating this exact Fradkin representation.
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3.2 Fradkin representations for QED and QCD

The basic DE for the GF of QED is(
m + γµ

[
∂ x
µ − ig Aµ(x)

])
Gc(x, y|A) = δ(4)(x − y), (3.16)

which can be written in a symbolic, operator form (for any number of dimen-
sions), as

Gc[A] = [m − iγ · �]−1, (3.17)

where �µ = i(∂µ − ig Aµ). We shall use g to denote the (unrenormalized) elec-
tric charge. When g → 0, Gc[A] → Sc, the free-fermion propagator satisfying

(m + γ · ∂) Sc(x − y) = δ(4)(x − y),

and given by

Sc(x − y) = (m − γ · ∂ x )�c(x − y; m2).

One can then write an integral equation for Gc[A] in the form

Gc = Sc + igScγ · AGc, (3.18)

or

Gc = Sc + igGc(γ · A)Sc, (3.19)

using the convenient, formal notation. Equations (3.18) and (3.19) are equivalent
in so far as their pertubative expansions are concerned; but for strong-coupling
problems these forms are not particularly useful. The Dirac matrices here satisfy
{γµ, γν} = 2δµν , and (no sum) γ 2

µ = 1.
Following Schwinger, one first rationalizes the denominator of (3.17) by

rewriting it as

Gc = (m + iγ · �) · [(m − iγ · �)(m + iγ · �)]−1,

or

Gc = (m + iγ · �) · [m2 + (γ · �)2]−1, (3.20)

where (γ · �)2 = �2 + igσµν Fµν , with σµν = ( 1
4 )[γµ, γν]. Remembering that

m is to have an infinitesimal, negative, imaginary part, as appropriate to the
definition of this causal propagator, one introduces the representation

[m2 + (γ · �)2]−1 = i
∫ ∞

0
ds exp{−is[m2 + (γ · �)2]}, (3.21)
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where the “proper-time” variable really has the dimensions of (time)2; fre-
quently, the continuation s → −iτ is made, and τ is then referred to as the
proper time.

Before discussing Fradkin’s representation of exp[−is(γ · �)2], it will be
useful to derive Schwinger’s initial representation for the fermion closed-loop
functional L[A] = Tr ln[1 − ig(γ · A)Sc], which produces a form analogous to
that of (3.21). Using the parametric representation of (2.16),

L[A] = −i
∫ g

0
dg′ Tr{(γ · A)Sc[1 − ig′(γ · A)Sc]−1},

or

L[A] = −i
∫ g

0
dg′ Tr{(γ · A)Gc[g′ A]}, (3.22)

one substitutes into (3.22) the form (3.20) and the representation (3.21), and
discards all terms proportional to the vanishing (Dirac) trace over an odd number
of γ s to obtain

L[A] = i
∫ ∞

0
ds e−ism2 ·

∫ g

0
dg′ Tr

{
(γ · A)(γ · �)e−is(γ ·�)2}

, (3.23)

where the coupling constant inside � is g′. Because of the trace operation,
(3.23) can be rewritten as

L[A] = −1

2

∫ ∞

0

ds

s
e−ism2

∫ g

0
dg′ ∂

∂g′ Tr{exp[−is(γ · �)2]},

or

L[A] = −1

2

∫ ∞

0

ds

s
e−ism2

Tr{exp[−is(γ · �)2]} − (g → 0), (3.24)

where the coupling constant of � is again g.
For both Gc[A] and L[A], the essential quantity to be understood is U (s) =

exp[−is(γ · �)2]. A perturbative development, along with a solution for the two
special cases of constant Fµν and fields depending on a single frequency, was
given by Schwinger;2 but it is possible to arrange a non-perturbative approach
with the aid of the representation introduced by Fradkin. For this, one replaces
U (s) by the seemingly more-complicated OE

U (s, v) =
(

exp

{
−i
∫ s

0
ds ′[�2 + igσ · F + vµ(s ′)�µ]

})
+
, (3.25)

with the property that U (s, v)|v=0 = U (s). One notes that U (s, v) satisfies the
relations

∂U

∂s
= −i[�2 + igσ · F + v(s) · �]U (3.26)
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and

δU

δvµ(s)
= −i�µU (3.27)

and the initial condition U |s = 0 = 1.
As in the scalar case, the reason for doing this is that U (s, v) can be given a

particularly elegant representation, of the form

U = exp

[
i
∫ s−δ

0
ds ′ δ2

δv2
µ(s ′)

]
W (s, v)|δ → 0,

with

W (s, v) =
(

exp

{
−i
∫ s

0
ds ′[vµ(s ′)�µ + igσ · F]

})
+
. (3.28)

And, as in the previous section, it is easy to see that (3.28) provides a solution to
(3.26) and (3.27) in the limit δ → 0; and we shall assume this limit in everything
that follows.

We now calculate, explicitly, configuration-space matrix elements of W , and
begin by writing the LHS projection of W as

〈x |W (s) = 〈x | exp

[ ∫ s

0
ds ′vµ(s ′)∂µ

]
F(s) = exp

[ ∫ s

0
ds ′v · ∂ x

]
〈x |F(s).

(3.29)

Using the DE satisfied by W (s), which may be read off from its definition in
(3.28), one finds

∂

∂s
〈x |F(s)

= −ig e−∫ s
0 v·∂ x

[v(s) · A(x) + iσ · F(x)] · e+∫ s
0 v·∂ x 〈x |F(s)

= −ig

[
v(s) · A

(
x −

∫ s

0
ds ′v(s ′)

)
+ iσ · F

(
x −

∫ s

0
ds ′v(s ′)

)]
〈x |F(s),

(3.30)

which is an explicit equation for 〈x |F(s) in terms of the fields, and has as its
solution

〈x |F(s) =
(

exp

[
− ig

∫ s

0
ds ′
{
v(s ′) · A

(
x −

∫ s ′

0
ds ′′v(s ′′)

)

+ iσ · F

(
x −

∫ s ′

0
ds ′′v

)}])
+
〈x |,
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so that

〈x |W (s)|y〉 =
(

exp

[
−ig

∫ s

0
ds ′
{
v(s ′) · A

(
y −

∫ s ′

0
v

)

+ iσ · F

(
y −

∫ s ′

0
v

)}])
+

· δ

(
x − y +

∫ s

0
v

)
. (3.31)

Note that the OE is necessary in obtaining (3.28) only because of the
s ′-dependent (Dirac) matrix σ · F . In two dimensions, however, there is just
one antisymmetric matrix σ14 which can enter, while for a constant Fµν , σ · F
becomes a constant (independent of s ′) matrix which commutes with itself and
unity; and in both of these cases, the OE becomes an ordinary exponential.

With the aid of (3.20), (3.21), and the Fradkin solution of (3.28), one can
write, finally, the representations

Gc(x, y|A) = i
∫ ∞

0
ds e−ism2

(
m − γµ

δ

δvµ(s)

)

· exp

[
i
∫ s

0
ds ′ δ2

δv2(s ′)

]
· 〈x |W (s)|y〉|v → 0 (3.32)

and

L[A] = −1

2

∫ ∞

0

ds

s
e−ism2

tr ·
∫

dD x · ei
∫ s

0 ds ′ δ2

δv2(s′ )

· {〈x |W (s)|x〉 − 〈x |W (s)|x〉|g = 0}|v → 0, (3.33)

where tr denotes a trace over Dirac coordinates, and in which all the field
dependence is explicit.

3.3 Gauge structure in QED and QCD

In order to isolate the gauge-variant part of 〈x |W |y〉 – that is, those parts which
change under the U (1) gauge transformations of QED, Aµ → Aµ + ∂µ� – it
is useful to consider the quantity

Q(λ) ≡
∫ s

0
ds ′vµ(s ′)Aµ

(
y − λ

∫ s ′

0
v

)
,

which for λ = 1 appears in the exponential of (3.31). A simple integration-
by-parts produces

Q(λ) = Aµ

(
y − λ

∫ s

0
v

)
·
∫ s

0
ds ′vµ(s ′)

+ λ

∫ s

0
ds ′
∫ s ′

0
ds ′′vµ(s ′′)vν(s ′)∂ν Aµ

(
y − λ

∫ s ′

0
v

)
, (3.34)
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but, because of the δ(x − y + ∫ s
0 v) factor of (3.31), the first RHS term of (3.34)

may be replaced by (y − x)µ Aµ(λx + [1 − λ]y). Then, with the definition of
Fµν , (3.34) can be rewritten as

Q(λ) = (y − x)µ Aµ(λx + (1 − λ)y)

+ λ

∫ s

0
ds ′
∫ s ′

0
ds ′′vµ(s ′′)vν(s ′)

[
Fνµ

(
y − λ

∫ s ′

0
v

)

+ ∂µ Aν

(
y − λ

∫ s ′

0
v

)]
. (3.35)

But the last RHS term of (3.35) may be replaced by

−λ

∫ s

0
ds ′vν(s ′)

∂

∂λ
Aν

(
y − λ

∫ s ′

0
v

)
= −λ

∂

∂λ
Q(λ),

which, when substituted into (3.35), produces the DE

∂

∂λ
(λQ(λ)) = (y − x)µ Aµ(λx + (1 − λ)y)

+ λ

∫ s

0
ds ′
∫ s ′

0
ds ′′vµ(s ′)vν(s ′′)Fνµ

(
y − λ

∫ s ′

0
v

)
. (3.36)

The integral of (3.36) between λ = 0 and λ = 1 is immediate, and yields

Q(λ) = −
∫ x

y
dξµ Aµ(ξ )

−
∫ 1

0
λ dλ ·

∫ s

0
ds ′
∫ s ′

0
ds ′′vµ(s ′)vν(s ′′)Fµν

(
y − λ

∫ s ′

0
v

)
, (3.37)

where ξµ denotes the straight-line path between xµ and yµ, ξµ = λxµ +
(1 − λ)yµ.

By this simple computation, one sees that L[A] is gauge invariant; and that
the only gauge-variant part of Gc(x, y|A) is that factor coming from (3.37),
exp[ig

∫
dξµ Aµ(ξ )]. Under the gauge change Aµ → A′

µ = Aµ + ∂µ�, the only
variation of the complete Gc[A] is

Gc(x, y|A + ∂�) = eig[�(x)−�(y)]Gc(x, y|A), (3.38)

a property which may be inferred directly from the equations which define
Gc[A].

It will also be useful to comment on the corresponding gauge properties
found in QCD, with the definitions of Gc[A] and L[A] the same as in QED
except for the replacement Aµ → Aa

µλa , where the λa are the fundamental or
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defining matrix representations of SU (N ) (for N = 3, the Gell–Mann matrices)
satisfying

[λa, λb] = 2i fabcλ
c, {λa, λb} = 4

N
δab + 2dabcλ

c,

tr[λa] = 0, tr[λaλb] = 2δab. (3.39)

Following from an original Lagrangian density of the form

L = −1

4

(
Fa

µν

)2 − ψ̄
[
m + γµ

(
∂µ − ig Aa

µλa
)]

ψ,

local, position-dependent gauge transformations which leave this quark–gluon
Lagrangian invariant are given by

Aa
µ(z)λa ≡ Aµ(z) → A′

µ(z) = V +(z)

(
Aµ(z) + i

g
∂µ

)
V (z),

Fa
µν(z)λa ≡ Fµν(z) → F ′

µν(z) = V +(z) · Fµν(z) · V (z), (3.40)

for arbitrary V (z) = exp[iλaωa], where Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + g fabc Ab

µ Ac
ν .

The Fradkin representations for Gc[A] and L[A] go through as before, ex-
cept that the color matrix factors λa require the use of OEs everywhere in the
formula corresponding to (3.31), and the tr operation includes a summation
over such color variables.

The invariance of L[A] under the full transformation (3.40) can be shown
in a simple way, by writing 〈x |W (s)|x〉 = U (x)δ(

∫ s
0 ds ′v(s ′)) and seeing how

U (s) changes under a gauge transformation, where U (s) → U ′(s), and

U ′(s) =
(

exp

[
−ig

∫ s

0
ds ′
{
vµ(s ′)V +

(
x −

∫ s ′

0
v

)(
Aµ + i

g
∂µ

)
V

+ iσµνV +
(

x −
∫ s ′

0
v

)
FµνV

}])
+
, (3.41)

and where, in writing (3.41) and similar expressions, dependence on the com-
mon variable x − ∫ s ′

0 ds ′′v(s ′′) is exhibited only in the first term of any product.
To understand the relation between U and U ′, it is useful to consider the DE
for U ′,

∂U ′

∂s
= −ig

[
vµ(s)V +

(
x −

∫ s

0
v

)(
Aµ + i

g
∂µ

)
V

+ iσµνV +
(

x −
∫ s

0
v

)
FµνV

]
· U ′. (3.42)
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Setting U ′ = V +(s) · Z (s), with V (s) ≡ V (x − ∫ s
0 v), substitution into (3.42)

generates the DE for Z ,

∂ Z

∂s
= −ig

[
vµ(s)Aµ

(
x −

∫ s

0
v

)
+ iσµν Fµν

(
x −

∫ s

0
v

)]
· Z , (3.43)

where the replacementsvµ(s)V +(s)∂µV (s) = −V +(s) ∂V
∂s and ∂V +

∂s V = −V + ∂V
∂s

have been made.
Taking into account the initial condition Z (0) = V (0), and in comparison

with the equation and solution for U (s), one can write the solution of (3.43)
as Z (s) = U (s)V (0), so that, finally, U ′(s) = V +(s)U (s)V (0). But V +(s) =
V +(0), by the closed-loop condition

∫ s
0 ds ′v(s ′) = 0, as required by the repre-

sentation (3.33). Hence tr[U ′] = tr[U ], and L[A] has been shown to be invariant
under the full gauge transformations of QCD. This is not a surprise, of course,
for the Fradkin representation is exact; but it is useful to see how the exact
gauge property is fulfilled before attempting any approximations.4

3.4 Soluble examples: quadratic forms
and perturbative approximations

Consider first the scalar-interaction Gc[A] of (3.14). Because the most com-
plicated functional integral that can be performed exactly is Gaussian – as
is the case for ordinary integration – and because, as shown in Chapter 2, the
linkage operation defining the Fradkin representation is equivalent to Gaussian-
weighted functional integration, there follows from (3.14) the immediate rule-
of-thumb for solubility: any A(x) which is constant, linear, or quadratic in
x leads immediately to an explicitly soluble Gc(x, y|A) in the sense that the
functional operations may be carried through in closed form. The result may
still require the solution of an integral equation, but that is a different matter;
“solubility” here means that the functional operations may be carried through
without approximation.

For the case of QED, the Gc(x, y|A) of (3.32) displays similar features:
any Aµ(x) which is linear in xν is, in this sense, exactly soluble. This means
that a constant Fµν generates a soluble result, as first noted and calculated
by Schwinger 2 many years ago; and we shall reproduce his result in the next
section, along with a non-trivial generalization. Almost identical remarks may
be made for the Gc(x, y|A) of QCD, except that here an Aa

µ(x) linear in xν does
not imply a constant Fa

µν . This means that the Fradkin linkage operation must
be carried out upon Gaussian vµ dependence inside the OE, a procedure which
appears formidable, but which can be carried through at least partially, as in the
context of the quasi-Abelian limit of Chapter 8.
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Fortunately, experience has taught that there are other exactly soluble prob-
lems, which have nothing to do with the Gaussian rule-of-thumb.These solutions
are associated with potentials A(x) that either represent plane-wave (or “laser”)
fields, or have a restriction on the type of x-dependence they carry, viz.:
A(x) → A(x3 − x0). Such models can be used to represent and calculate sums
over significant subsets of Feynman graphs for high-energy (eikonal) scattering
problems, while their generalizations can point the way to the development of
new and useful approximation methods. For example, the “scalar laser” so-
lution of Section 4.2, for which full solubility of Gc(x, y|A) is obtained if
A(x) → A(k · x), when k2 =∑4

µ=1 k2
µ = 0 can be looked upon as the zeroth

term in an approximation for which −k2 = µ2 �= 0, but for which (µ/m) � 1.
And the forms one finds bear a strong resemblance to those appearing in the
non-soluble situation wherein A(x) → A(x3 + x0, x3 − x0), a function of both
light-cone variables.

Ordinary perturbation theory represents one systematic approximation
method which is always “soluble”, in the functional sense, because any ex-
pansion of these Gc[A] in powers of the coupling constant leads to linkage
operations which can be trivially performed by repeated use of

e− i
2

∫
δ

δA Dc
δ

δA A(x1) · · · A(xn)|A = 0

= −ie− i
2

∫
δ

δA Dc
δ

δA

∫
Dc(x1 − u)

δ

δA(u)
A(x2) · · · A(xn)

∣∣∣∣
A → 0

= −i
n∑

j=2

Dc(x1 − x j )e
− i

2

∫
δ

δADc
δ

δA [A(x2) · · · A(xn)] j,A = 0,

where [A(x2) · · · A(xn)] j contains all n − 2 factors A(xi ) except that A with
i = j .

Perturbation theory applied to QED has been most useful in developing our
trust in QFT as a fundamental expression of the quantum world – comparisons
of experiment and theory in agreement to more than eight significant figures
cannot be dismissed – but the perturbative approach should always be viewed
with suspicion, especially in the light of Dyson’s famous observation:5 Vacuum
structure in QED, expressed as some f (e2), cannot be expected to possess a
convergent expansion within a circle, however small, about e = 0, for such a
region involves negative values of e2, for which an e+ and an e− would repel
each other; here, the vacuum would have no lower energy bound, and would
spontaneously tend to decay into charged pairs. In fact, for all the known exam-
ples, exact and approximate, of charged pairs torn from the vacuum by intense
external fields, one finds expressions for the vacuum persistence probability
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(or equivalently, the probability of pair production) which contain an essen-
tial singularity in the coupling constant at e = 0, and to which perturbative
techniques cannot be applied.

3.5 Pair production in generalized electric fields

One of the best-known, non-trivial examples of a QED process which can be car-
ried out without approximation is Schwinger’s 1951 calculation2 of the “vacuum
persistence probability” corresponding to the probability for the production of
oppositely-charged pairs in the presence of a constant, external field. That cal-
culation is rather more potential theory than field theory, in that it neglects radia-
tive corrections of the photon field, replacing (2.45) by 〈0|S|0〉 = exp{L[A]},
where A denotes the external vector potential. Schwinger’s result has since
been obtained in a variety of ways,6 along with some generalizations; from the
present, functional point-of-view, one can begin from the L[A] of (3.33) and
(3.37). The gauge-invariant result is “soluble” because the Fradkin linkage op-
eration is Gaussian; but different formulations and different gauges will display
differing levels of complexity in arriving at the same result.

In this section we give a new treatment suggested by the non-trivial general-
ization recently discovered by Tomaras, Tsamis, and Woodard;7 it is not only
simpler than previous functional calculations but, when used for selected Gc[A],
can provide structures useful for qualitative descriptions of other processes, as
in the eikonal scattering model of Section 8.4.

The essence of the model is the restriction of the argument of Aµ to the light-
cone coordinate x(+) = x3 + x0 : Aµ(x) → Aµ(x(+)), corresponding to fields
that “propagate” in the −x3 direction. For simplicity, we suppress any associated
magnetic fields or electric fields in perpendicular directions, with the choice
A1,2 = 0; and choose the gauge specified by A(−) = A3 − A0 = 0. In terms of
the “light-cone projectors”, n(±)

µ = (0, 0, 1; ∓i), with the properties [n(±)]2 = 0,
n(+) · n(−) = 2, these statements may be rephrased as: n(+) · A = A(+)(x(+)),
n(−) · A = 0, and x(+) = n(+) · x . The electric field E(x (+)) in the z-direction is
then given by – (d/dx(+))A(+)(x(+)).

Using (3.31) and (3.33), we begin by writing the complete expression for
L[A],

L[A] = −1

2

∫ ∞

0

ds

s
e−ism2

∫
d4x

∫
d4 p

(2π)4
e

i
∫ s

0 ds ′∑
µ

δ2

δvµ (s′ )2 · ei
∫ s

0 v·p

· e−ig
∫ s

0 ds ′vµ(s ′)Aµ(x (+)−∫ s′
0 ds ′′n(+)·v(s ′′))· (eg

∫ s
0 ds ′σ ·F(x (+)−n(+)·∫ s′

0 v))+ − (g → 0),

(3.44)
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and then, as we shall employ in various contexts in subsequent chapters, intro-
duce unity under these integrands in the form

1 =
∫

d[u]δ

[
u(s ′) − n(+)

µ

∫ s ′

0
ds ′′vµ(s ′′)

]
or

1 = N ′
∫

d[u]
∫

d[�]ei
∫ s

0 ds ′u(s ′)�(s ′) · e−i
∫ s

0 ds ′�(s ′)n(+)·∫ s′
0 ds ′′v(s ′′), (3.45)

where N ′ is a normalization constant. Abel’s trick can be used to rewrite the
second exponential factor of the RHS of (3.45) as

−i
∫ s

0
ds ′v(s ′) · n(+)

∫ s

s ′
ds ′′�(s ′′).

All of the v-dependence inside the arguments of Aµ and Fµν has now been
“extracted”, and replaced by appropriate factors of u(s ′), so that the complete
Fradkin linkage operation takes the form

ei
∫ s

0 ds ′ δ2

δv2 · ei
∫ s

0 ds ′vµ(s ′)[pµ − g Aµ(x (+) − u(s ′)) − n(+)
µ

∫ s
s′ ds ′′�(s ′′)]∣∣

v → 0,

which can be evaluated exactly as

exp

{
−i
∫ s

0
ds ′
[

p − g A
(
x (+) − u(s ′)

)− n(+)
∫ s

s ′
�

]2}
,

or as

exp

{
−i
∫ s

0
ds ′
[

p2+g2 A2−2gp · A − 2p(+)s ′�(s ′) + 2g A(+)(s ′)
∫ s

s ′
�

]}

(3.46)

using the property that [n(+)]2 = 0, which conveniently removes all quadratic
exponential dependence on the �. (Were this not the case, the functional
integration over � could still be performed, but not the subsequent one over
u(s ′).) Because A1,2 = 0, p · A may be written as p3 A3 − p0 A0 = 1

2 [p(−) A(+) +
A(−) p(+)]; and since we have chosen the gauge A(−) = 0, p · A → p(−) A(+)/2.
For the same reasons A2 = 0; and using Abel’s trick in reverse, functional
integration over � takes the form

N ′
∫

d[�]ei
∫ s

0 ds ′�(s ′)[u(s ′)+2s ′p(+)−2g
∫ s′

0 ds ′′A(+)(x (+)−u(s ′′))]

= δ

[
u(s ′) + 2s ′ p(+) − 2g

∫ s ′

0
ds ′′ A(+)

(
x (+) − u(s ′′)

)]
,
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which means that the only u(s ′) which can enter must be a solution of the
nonlinear integral equation

u(s ′) + 2s ′ p(+) = 2g
∫ s ′

0
ds ′′ A(+)

(
x (+) − u(s ′′)

)
. (3.47)

One can now evaluate
∫

d[u] in terms of the solutions u(s ′) to (3.47) by making
a change of (functional) variable to a new f (s ′), defined as the argument of the
delta-functional of (3.47), where

δ f (s1)

δu(s2)
= δ(s1 − s2) − 2gθ (s1 − s2)E

(
x (+) − u(s2)

)
and

∂

∂x (+)
A(+)

(
x (+) − Z) = −E

(
x (+) − Z).

Hence, the Jacobian of the transformation from
∫

d[u] to
∫

d[ f ] is given by

det

∣∣∣∣ δu

δ f

∣∣∣∣ = exp[−Tr ln(1 − 2g · θ · E)], (3.48)

where 〈s1|θ · E |s2〉 ≡ θ (s1 − s2)E(x (+) − u(s2)), and the
∫

d[u]δ[ f ]F[u] can
be written as

e−Tr ln(1−2gθ E)F[u], (3.49)

where the u(s ′) of (3.48) are restricted to the solutions of (3.47). Here, F[u]
refers to all u-dependence arising from (3.46) and from the OE. Finally, there
is a lovely simplification arising from the “retarded” nature of the θ -function of
(3.38): only the first term in an expansion of the Trace log in powers of g can be
non-zero; and hence, with θ (0) = 1/2, the RHS of (3.48) may be replaced by

e+g
∫ s

0 ds ′ E(x (+)−u(s ′)). (3.50)

Setting s ′ = s in (3.47), one sees that the needed exponential factor
igp(−)

∫ s
0 ds ′ A(+)(x (+) − u(s ′)) of (3.46) may be replaced by ip(−)[ u(s)

2 + sp(+)].
Further, for a purely electric field, the trace of the OE collapses into

4 cosh

[
g
∫ s

0
ds ′E

(
x (+) − u(s ′)

)]
,

as is easily seen by summing all the non-zero terms of its expansion in powers
of g. Thus, the functional parts of the calculation are completely specified by
the solutions u(s ′) to (3.47); and there remain only the subsequent integrations
over x , p, and s.

There are now two distinct ways of proceeding: (i) first find the solutions
u(s ′) and then calculate

∫
d4 p; or (ii) the converse. For a constant E , the first
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path is the simplest, and both of its operations are trivial. However, path (ii) is
much more appropriate, since it immediately gives the answer for any varying
E(x(+)); and it is this route which we here follow, by first performing∫

d4 p e−isp2+igp(−)
∫ s

0 ds ′A(+)(x (+)−u(s ′))F[u], (3.51)

where u(s ′) = u(s ′|p(+)) is the solution of (3.47), and

F[u] = eg
∫ s

0 ds ′ E(x (+)−u(s ′)) · cosh

[
g
∫ s

0
ds ′E

(
x (+) − u(s ′)

)]
.

Now (3.51) can be rewritten in the form

∫
d2 p⊥e−isp⊥2 ·1

2

∫
dp(+)

∫
dp(−)e−isp(+) p(−) ·eip(−)[ 1

2 u(s|p(+))+sp(+)] · F[u[p(+)
]]

=
(

−i
π

s

)
· 1

2

∫
dp(+)F[u]

∫
dp(−)eip(−)u(s|p(+))/2

= −2iπ2

s

∫
dp(+)F[u[p(+)

]]
δ
(
u
(
s|p(+)

))
, (3.52)

and instead of attempting to integrate directly over p(+) it is convenient to make
a change of variable to u(s|p(+)), defined implicitly in terms of p(+) by

u(s|p) = −2sp + 2g
∫ s

0
ds ′ A(+)

(
x (+) − u(s ′|p)

)
, (3.53)

where we have dropped the superscript of p(+). With the fixed “initial condition”
u(0|p) = 0, obvious from (3.53), the latter may be replaced by a first-order dif-
ferential equation (DE) whose solution, for a specified A(+)(x), is unambiguous.
Upon changing variables from p to u(s|p), one requires the integral equation
constructed by variation of (3.53) with respect to p,

J (s|p) = −2s + 2g
∫ s

0
ds ′E

(
x (+) − u(s ′|p)

)
J (s ′|p), (3.54)

where J (s ′|p) = (d/dp)u(s ′|p). The DE corresponding to the s-variations of
(3.54) is

J ′(s|p) = −2 + 2gE
(
x (+) − u(s|p)

) · J (s|p), (3.55)

which, with the initial condition J (0|p) = 0, is equivalent to (3.54).
But (3.52) requires that for every p, u(s|p) = 0, so that (3.55) simplifies to

J ′(s|p) = −2 + 2gE
(
x (+)

) · J (s|p),
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which has the immediate solution

J (s) = −2egs E(x (+)) · sinh
(
gs E

(
x (+)

))
gs E

(
x (+)

) ,

and is independent of p. Hence (3.52) can be written as

− i�2

s
· J−1(s)F[u(s ′|p)]|u(s|p) = 0, (3.56)

where the value of p to be used in (3.56) is obtained from (3.53) by setting
u(s|p) = 0, namely

p = g

s

∫ s

0
ds ′ A(+)

(
x (+) − u(s ′|p)

)
. (3.57)

In fact, the situation is somewhat simpler than this. Had we considered path
(i), for example for a constant E , we would have found a specific u(s|p) =
lim u(s ′|p)|s ′ → s which is non-zero, as is the u(s ′|p), s ′ < s. And, as stated
above, the

∫
d4 p is then immediate, leading to Schwinger’s result. But once

the requirement is made, by first integrating over p−, that u(s|p) = 0, then it
follows from (3.53) that u(s ′|p) = 0 for all s ′ (although J , the variation of u
with respect to p, is non-zero). This can be seen by calculating (d/ds ′)u(s ′|p),
which generates the relation

u′(s ′) + 2p = 2g A(+)
(
x (+) − u(s ′)

)
, (3.58)

which we use to fix u′(s ′) – suppressing the p-dependence for the moment – at
different values of s ′ between 0 and s. For example, if u(0) = u(s) = 0, then
from (3.58) the slopes u′(0) = u′(s). Assume the slopes are positive
(or negative). There must then be one point in the interval 0 to s, call it s1,
where the function u(s1) vanishes with slope opposite to that of u′(0) and u′(s).
But if there is such a vanishing point, u(s1) = 0, then from (3.58) one sees
that it has the same slope as at 0 and s; and therefore each region, 0 to s1 and
s1 to s, must contain a vanishing u(s2) of opposite slope; etc. But all such points
of vanishing u(sk) must have the same slope, etc.; and hence the only possi-
bility is that u(s ′) = 0. Restoring the p-dependence to u(s ′), (3.57) simplifies
to p = A(+)(x (+)), which is the value of p(+) obtained from integration over the
delta function of u(s|p).

Putting everything together, and with the aid of (3.56), one obtains

2L[A] = ig

4π2

∫
d4x E

(
x (+)

) ∫ ∞

0

ds

s2
e−ism2 cosh

(
gs E

(
x (+)

))
sinh

(
gs E

(
x (+)

)) − (g → 0),

(3.59)
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in which the electric field is now an arbitrary function of x(+). Note that the
sign of E(x(+)) is irrelevant, and for simplicity it will be taken as positive, while
its dependence upon x(+) will be suppressed. Rotating contours such that, in
effect, s → −i · t , with t real and positive and integrated between 0 and +∞,
one sees that singularities of the integrand arise at the points t → tn − iε,
tn = nπ/gE ; and with the aid of the familiar relation: [t − (tn − iε)]−1 =
P/[t − tn] − iπδ(t − tn), one easily finds

2ReL[A] = − α

π2

∫
d4x E2

∞∑
n = 1

1

n2
e−nπm2/gE , (3.60)

which, with α = g2/4π , is Schwinger’s 1951 result for the vacuum persistence
probability, but here generalized to an electric field E which is an arbitrary
function of x(+). (Note that the n = 0 term of the sum is missing, because of
the necessary subtraction of any g = 0 dependence.)

The fact that this is an old result, at least in form, should not detract from its
importance as an example of an exact calculation every term of which result is
intrinsically non-perturbative about g = 0. Other, more recent calculations of
analogous production processes6 show a similar behavior, displaying essential
singularities of various forms, as do instanton approximations to vacuum struc-
ture in a variety of field theories.8 It should be noted that Dyson’s observation
was made concerning vacuum structure in the context of field-theoretic fluc-
tuations of the quantized electromagnetic field, while the present singularities
are associated with particle production from the vacuum due to an external,
classical field. But both situations involve the vacuum, and lead to the clear
conclusion that interactions associated with vacuum structure are intrinsically
non-perturbative.

Notes

1 See Note 1, Chapter 2.
2 J. Schwinger, Phys. Rev. 82 (1951) 664.
3 E. S. Fradkin, Nucl. Phys. 76 (1966) 588.
4 The gauge invariance of IR approximations in QCD has been discussed in HMF#2,

Chapter 12.
5 F. J. Dyson, Phys. Rev. 85 (1952) 631.
6 See, for example, M. N. Hounkonnou and M. Naciri, J. Phys. G: Nucl. Part. Phys.

26 (2000) 1849; and the many references given therein.
7 T. N. Tomaras, N. C. Tsamis, and R. P. Woodard, Phys. Rev. D 62 (2000)125005;

hep-th/0007166. An improved derivation, and its application to 1 + 1 dimensions,
has been posted at hep-th/0108090.

8 Many references to instantons and large-order perturbation theory, in QED, QCD,
QM and Critical Exponents, may be found in an unpublished HET Brown Report by
P. F. Mende.



4

Lasers and crossed lasers

The title of this chapter is really a misnomer, for the word “laser” should
properly be replaced by “electromagnetic plane wave” (epw); but we ask the
reader’s indulgence for this simple idealization, which is reasonable as long
as the perpendicular dimensions of the laser beams under question, henceforth
called the “width”, are much larger than the dimensions of the charged particle
on which they are acting, or than the transverse distances over which the particle
is to move. The latter condition, in particular, is not always satisfied, and pro-
vides a limit of applicability of the idealization, as in the first section, below.
Certainly, for the case of charged-pair production in the overlap region of vol-
ume D3 of two perpendicularly-oriented laser beams, each of width D, one
expects this idealization to be reasonable as long as D > u0λ̄c, where λ̄c de-
notes the Compton wavelength of each of the produced particles, and u0 ∼ 102

sets the scale for distances over which coherent absorption of the laser photons
can take place.

4.1 Classical charged-particle propagation in a laser (epw) field

This problem can be and has been solved in several ways;1 and its solution
is worth discussing here, before quantum-mechanical treatments are begun, in
order to provide a simple example of the utility of OEs, and to set the stage for
what may occur after a pair is torn from the vacuum in the region of intersection
of two intense lasers.

The Physics of the problem is simple, especially if the laser beam is imagined
end-on, moving in the +ẑ direction (into the page), with electric field E in
the +ŷ direction and in-phase magnetic field B pointing in the +x̂ direction.
As it acts on the charge, initially assumed at rest, the E field causes an upwards
velocity v⊥, and the B field then provides a force proportional to v⊥ × B, in the
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52 4 Lasers and crossed lasers

same direction as the beam, which continues until this part of the wave passes
over the particle (which is moving with velocity <c) and the E and B fields
at the position of the particle reverse. Because the particle has inertia, its v⊥
can only be decreased gradually, while the reversal of B causes a deceleration
of its forward motion, so that by the time that E and B are again zero, the
particle’s longitudinal motion has been stopped, and it finds itself a distance
down the beam depending upon the intensity of the beam. As stated above,
we must make the restriction that the particle’s transverse velocity never takes
it out of the beam; and we also neglect the (classical) radiation which must
occur when the charge is accelerated. Other, practical limitations are discussed
in the reference in Note 1; but it is clear that a sufficiently intense laser of
sufficient width can provide a charged particle with enormous velocities over
macroscopic distances.

We begin with the classical DE for a particle of charge e and mass m in an
electromagnetic field, Fµν(x, τ ),

d2xµ

dτ 2
= e

m

4∑
ν=1

Fµν(x, τ ) · dxν

dτ
, (4.1)

where τ is the particle’s proper time (the time measured in its rest frame),
and we use the Minkowski metric: xµ = [x(τ ); ix0(τ )], with units in which
c = h = 1. Note the “mass shell” property, obtained by multiplication of (4.1)
by
∑

µ dxµ/dτ is maintained:
∑

µ(dxµ/dτ )2 = constant → −1, since the par-
ticle’s 4-momentum is given by pµ = m dxµ/dτ , and p2 + m2 = 0.

A formal, first-integral of (4.1) can be written in terms of the OE

dxµ

dτ
= (eg

∫ τ

0 dτ ′ F(x(τ ′),τ ′))
+,µν

· wν, (4.2)

where g = e/m and wµ = dxµ/dτ |τ = 0. There is a considerable simplifi-
cation for a laser (epw) field, where Fµν(x) = fµν cos(k · x), fµν = kµεν −
kνεµ, with, k2 = k · ε = 0, and where kµ = (0, 0, ω; iω) is the 4-momentum
of the laser photons of energy ω, and εµ is their polarization. Since ( f 2)µν =∑

λ fµλ fλν = −kµkνε
2, then ( f 3)µν = ( f n)µν = 0, for n ≥ 3. In this way, the

OE reduces to just three terms,

δµν + g fµν

∫ τ

0
dτ ′ cos(k · x(τ ′))

+ g2
∫ τ

0
dτ1

∫ τ1

0
dτ2 cos(k · x(τ1)) cos(k · x(τ2)) · fµλ fλν.
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The ordering of the third term is trivial, and it may be rewritten as 1
2 [
∫ τ

0 dτ ′ ×
cos (k · x(τ ′))]2; and, with u(τ ) = k · x(τ ), one has

dxµ

dτ
= wµ + g fµνwν

∫ τ

0
dτ ′ cos(u(τ ′)) − kµ(k · w)

g2ε2

2

[∫ τ

0
dτ ′ cos(u(τ ′))

]2

.

(4.3)

To determine u(τ ), multiply (4.3) by
∑

µ kµ, for which case the equation
collapses to du/dτ = k · w, with solution u(τ ) = δ + τ (k · w), where δ is a
constant. The integrals of (4.3) are then elementary, and one finds

dxµ

dτ
= wµ + g fµνwν

(k · w)
[sin(δ + τ (k · w)) − sin δ]

− kµ

g2ε2

2(k · w)
[sin(δ + τ (k · w)) − sin δ]2. (4.4)

It should be noticed that
∑

µ(dxµ/dτ )2 = w2.
We choose the simplest initial conditions such that τ = 0 at x0 = t = 0, at

which time xi (0) = 0 and dxi/dτ |τ=0 = 0. Since dx0/dτ = dt/dτ = E(τ )/m,
where E(τ ) is the particle’s kinetic energy at proper time τ , at τ = 0, E = m.
Here, wµ = (0; i) and k · w = −ω; also, δ = k · x(0) = 0. Extracting the time
component of (4.4) then yields

E(τ )/m = 1 + g2ε2

2
sin2(ωτ ). (4.5)

Further, dxi
dτ

= dxi
dt · dt

dτ
≡ vi (τ ) · E(τ )

m , so that the spatial components of the par-
ticle’s velocity vi (τ ) are given by

vi (τ ) = gεi sin(ωτ ) + ki
ω

· g2ε2

2 · sin2(ωτ )[
1 + g2ε2

2 sin2(ωτ )
] . (4.6)

With the polarization chosen as εµ = (ε1, ε2, 0; 0), one obtains the transverse
velocities

vi=1,2 = gεi sin(ωτ )[
1 + g2ε2

2 sin2(ωτ )
] , (4.7)

and the longitudinal velocity

v3 =
g2ε2

2 sin2(ωτ )[
1 + g2ε2

2 sin2(ωτ )
] ; (4.8)

and the requirement that v2 < c2 = 1 is clearly satisfied.
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Finally, one must invert t(τ ) into the form τ (t), in order to obtain expressions
for xi (t) ≡ xi (τ (t)) and vi (t) ≡ vi (τ (t)); and for this (4.4) can be integrated
once, and with xµ(0) = 0, yields

x (τ )
i=1,2 = gεi

ω
[1 − cos(ωτ )], x3(τ ) = g2ε2

4

[
τ − sin(2ωτ )

2ω

]
,

and

t(τ ) = τ

[
1 + g2ε2

4

(
1 − sin(2ωτ )

2ωτ

)]
. (4.9)

In general, the desired inversion of (4.9) cannot be performed analytically,
although approximate, or “averaged” inversions are possible. We bypass this
difficulty by choosing that value of τ = τ0 = π/2ω, when E(τ ) and v3(τ ) have
their maximum, “first peak” values, and evaluate all quantities at that (proper)
time,

t (τ0) = π

2ω

[
1 + g2ε2

4

]
, x3(τ0) = g2ε2

4

(
π

2ω

)
, x (τ0)

i=1,2 = gεi

ω
,

v3(τ0) = g2ε2/2

1 + g2ε2/2
,

E(τ0)

m
= 1 + g2ε2

2
.

For intense lasers, with (gε)2 � 1, one finds longitudinal velocities close to the
speed of light. But if this epw-idealization of a laser beam is to be at all realistic,
the extent of the particle’s transverse motion cannot exceed the beam width D,
so that gε/ω = gελ/2π < D. For “squeezed” lasers of λ ∼ 1 µm, and beam
width D ∼ 10 µm, this means (gε)2 � 103, so that the order of magnitude of
the maximum KE that can be realized before the particle leaves the beam is
about a thousand times its rest-mass energy.

4.2 The “scalar” laser solution for Gc[A]

The simplest idealized plane-wave “laser” solution occurs for the scalar Gc with
scalar interaction A(x) ⇒ A(k · x), where the functional form of A is arbitrary,
but k2 = k2 − k2

0 = 0; although less complicated than the full laser solution of
QED, the essential features of solubility are the same.

Here, one makes the substitution in (3.14),

∫ s

0
ds ′ A

(
y −

∫ s ′

0
v

)
→
∫ s

0
ds ′ A

(
k · y −

∫ s ′

0
ds ′′k · v(s ′′)

)
, (4.10)
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and, in the manner of (3.45), inserts an expression for unity under the integrals of
(3.14) with the express purpose of extracting the v-dependence which appears
in the argument of A,

Gc(x, y|A) = i
∫ ∞

0
ds e−ism2

∫
d4 p

(2π)4
eip·(x−y) N ′

∫
d[u]

∫
d[�]ei

∫ s
0 u� · F[u]

· ei
∫ s

0
δ2

δv2 · ei
∫ s

0 ds ′vµ(s ′)[pµ−∫ s
s′ ds ′′kµ�(s ′′)]∣∣

v→0, (4.11)

where F[u] = exp[−ig
∫ s

0 ds ′ A(k · y − u(s ′))], and Abel’s replacement of∫ s
0 ds ′�(s ′)

∫ s ′

0 ds ′′vµ(s ′′) by
∫ s

0 ds ′vµ(s ′)
∫ s

s ′ ds ′′�(s ′′) has again been used. The
Fradkin functional operation of the second line of (4.11) is now immediate, and
yields

exp

{
−i
∫ s

0
ds ′
[

pµ − kµ

∫ s

s ′
�

]2}
= exp

[
−isp2 + 2ip · k

∫ s

0
ds ′ · s ′�(s ′)

]
,

(4.12)

where the inverse of Abel’s trick has once more been used. The essential fea-
ture which guarantees solubility is then apparent: because k2 = 0, there is no
quadratic �-dependence, and its functional integral yields the simple delta
functional: δ[u(s ′) + 2s ′ p · k]. Then,

∫
d[u] is immediate, replacing F[u] by

F[−2s ′ p · k],

Gc(x, y|A) = i
∫ ∞

0
ds e−ism2

∫
d4 p

(2π )4
eip·(x−y)e−isp2 · e−ig

∫ s
0 ds ′ A(k·y+2s ′ p·k).

(4.13)

Note that in the QED pair-production problem of Section 3.5, which restricts
the vector potential to a similar argument, there is an extra term proportional
to Aµ, which contains u(s ′) dependence and appears in the corresponding delta
functional, leading to a non-trivial determinantal factor.

Equation (4.13) can be further simplified. In essence, with z = x − y, one
requires the integral ∫

d4 p

(2π)4
eip·z−isp2

Q(k · p), (4.14)

where Q may be read off directly from (4.13). One proceeds in a manner
analogous to that used above by introducing under the integrals of (4.14) a
factor of unity,

1 =
∫ +∞

−∞
du
∫ +∞

−∞

dω

2π
eiω(u−k·p),
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from which one obtains

Gc(x, y|A) = i
∫ ∞

0
ds e−ism2

∫ +∞

−∞
du e−ig

∫ s
0 ds ′ A(k·y−2s ′u) ·

∫ +∞

−∞

dω

2π
eiωu

·
∫

d4 p

(2π )4
e−isp2+ip·[z−kω]. (4.15)

The last line of (4.15) is a simple Gaussian, yielding( −i

16π2s2

)
ei(z−kω)2/4s,

and one notes that because k2 = 0, the ω2-term in the expansion of the expo-
nential factor is missing, so that the ω integration generates

δ(u − k · z/2s),

permitting the u-integral to be performed. With the variable change λ = s ′/s,
one obtains

Gc(x, y|A) = 1

16π2

∫ ∞

0

ds

s2
e−is[m2+g

∫ 1
0 dλA(k·ξ (λ))]+ i(x−y)2

4s , (4.16)

where ξµ(λ) = λxµ + (1 − λ)yµ represents the straight-line path between the
points yµ and xµ. Finally, one realizes that (4.16) is just the ordinary, scalar,
causal, Boson propagator �c(x − y, M2) = Gc(z) of (1.41) and (1.42), but
with its mass2 replaced by a position-dependent mass2: m2 → M2 = m2 +
g
∫ 1

0 dλA(k · ξ (λ)). A quite similar result appears for that scalar Gc[A] when
the argument of A is restricted to a simple, light-cone variable; and that exact
Green’s function solution will find application in Section 8.4.

4.3 The QED laser solutions for Gc[A] and L[A]

Historically, solutions to this QED problem were first given by Schwinger2 in
his 1951 seminal paper on Gauge Invariance and Vacuum Polarization. One
can obtain the same results starting from the Fradkin representation (3.32) for
the propagator Gc[A] in the presence of the external field Aµ(x) = εµ A(k · x),
where k2 = k · ε = 0, and A(k · x) is arbitrary.

In order to display, subsequently, a related effect, we shall begin not with the
precise form (3.32) – which would be the simplest approach – but with a Gc[A]
written in the form

Gc(x, y|A) = [m − γ · (∂x − ig A(x)] · Jc(x, y|A), (4.17)
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where the Fradkin analysis has been carried through only for

Jc(x, y|A) = i
∫ ∞

0
ds e−ism2 · ei

∫ s
0 ds ′ δ2

δv2 · δ

(
x − y +

∫ s

0
v

)

· e−ig
∫ s

0 ds ′vµ(s ′)Aµ(y−∫ s′
0 v) · (eg

∫ s
0 ds ′σ ·F(y−∫ s′

0 v)
)
+
∣∣
vµ→0. (4.18)

One again inserts a factor of unity under the integrals of (4.18), in the form

N 1
∫

d[u]
∫

d[�]ei
∫ s

0 ds ′�(s ′)[u(s ′)−kµ

∫ s′
0 ds ′′vµ(s ′′)],

and introduces the Fourier representation of δ(x − y + ∫ s
0 ds ′v(s ′)), along with

the notation z = x − y, fµν = kµεν − εµkν , so that (4.18) then becomes

Jc(x, y|A) = i
∫ ∞

0
ds e−ism2 ·N ′

∫
d[u]

∫
d[�]ei

∫ s
0 ds ′�u

·
∫

d4 p

(2π )4
eip·z · (eg

∫ s
0 ds ′(σ · f )A′(k·y−u(s ′)))

+

· ei
∫ s

0
δ2

δv2 · ei
∫ s

0 ds ′vµ(s ′)[pµ−kµ

∫ s
s′ �−gεµ A(k·y−u(s ′))]∣∣

v→0. (4.19)

Again, the result of the Fradkin functional operation is immediate, replacing
the last line of (4.19) by

exp

{
−i
∫ s

0
ds ′
[

p − k
∫ s

s ′
� − gε A(k · y − u(s ′))

]2}
or

exp

{
−isp2 − ig2ε2

∫ s

0
ds ′ A2(k · y − u(s ′)) + 2ip · k

∫ s

0
ds ′s ′�(s ′)

+ 2igε · p
∫ s

0
ds ′ A(k · y − u(s ′))

}
, (4.20)

and again, the
∫

d[�] may be performed, resulting in δ(u(s ′) + 2s ′ p · k), so that
(4.20) becomes

exp

{
−isp2 − ig2ε2

∫ s

0
ds ′ A2(k · y + 2s ′ p · k)

+ 2igε · p
∫ s

0
ds ′ A(k · y + 2s ′ p · k)

}
.

As in the scalar computation, we are left with the integral∫
d4 p

(2π )4
F(k · p)e−isp2+ip·[z+Q(p·k)], (4.21)
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which has the slight complication of an extra phase factor, dependent on
Qµ(p · k) = 2gεµ

∫ s
0 ds ′ A(k · y + 2s ′ p · k). Nevertheless, (4.21) may be evalu-

ated in the same fashion, as∫ +∞

−∞
du
∫ +∞

−∞

dω

2π
F(u)eiuω

∫
d4 p

(2π )4
e−isp2+ip·[z+Q(u)−ωk].

The Gaussian momentum integral yields( −i

16π2s2

)
exp

{
i
z2

4s
+ i

Q2(u)

4s
+ i

z · Q(u)

2s
− iω

z · k

2s

}
,

and, again, integration over ω generates δ(u − z · k/2s), so that, with ξµ(λ) =
λxµ + (1 − λ)yµ, one finally obtains

Jc(x, y|A) = eigε·z ∫ 1
0 dλA(k·ξ (λ)) ·

(
1

16π2

)∫ ∞

0

ds

s2
e−ism2+iz2/4s

· e−isg2ε2[
∫ 1

0 dλA2(k·ξ )−(
∫ 1

0 dλA(k·ξ ))2] · eg(σ · f )
∫ 1

0 dλA′(k·ξ ). (4.22)

In writing (4.22), the ordering symbol has been omitted because this choice
of field implies σ · F → (σ · f )A′, where σ · f is a constant matrix. In fact,
this exponential factor may be further simplified because (σ · f )2 = 0; this is
most simply seen by fixing the spacelike εµ = (ε1, ε2, 0; i0), and the null kµ =
(0, 0, ω; iω) so that σ · f = ω(ε1γ1 + ε2γ2)(γ3 + iγ4), and observing that (γ3 +
iγ4)2 = 0. All terms higher than linear, in the expansion of this exponential
factor, will therefore vanish.

The essential features of (4.22) are then a multiplicative phase factor,

eiφ(x,y) = eigε·z ∫ 1
0 dλA(k·ξ ),

and the configuration-space-dependent “variable mass” term, M2 = m2 +
g2ε2〈(�A)2〉, with 〈(�A)2〉 = ∫ 1

0 dλA2(k · ξ ) − (
∫ 1

0 dλA(k · ξ ))2:

Jc(x, y|A) = eiφ(x,y)

[
1 + ig(σ · f )

∫ 1

0
dλA′(k · ξ )· ∂

∂m2

]
�c(x − y; M2(x, y)).

(4.23)

The desired Green’s function, Gc(x, y|A), is then given by the operation of the
first RHS factor of (4.17) upon the Jc(x, y|A) of (4.23). With the aid of the
identity ∫ 1

0
dλ[A(k · ξ (λ)) + λk · (x − y)A′(k · ξ (λ))]

=
∫ 1

0
dλ

∂

∂λ
[λA(k · ξ (λ))] = A(k · x),
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it is not difficult to see that Gc(x, y|A) may be rewritten as

Gc(x, y|A) = eiφ(x,y)

[
m + γµ

(
∂ x
µ − ig(x − y)ν ·

∫ 1

0
dλ · λFµν(k · ξ (λ))

]

·
[

1 + igσµν

∫ 1

0
dλFµν(k · ξ (λ))

∂

∂m2

]
· �c(x, y|M2(x, y)),

(4.24)

which explicitly shows that the only gauge dependence of Gc[A] resides in the
muliplicative phase factor iφ(x, y), and is associated with gauge transformations
of the form εµ → εµ + αkµ, with arbitrary α.

It is interesting to ask how M2 can differ from m2, and for this we consider
a specific form of plane wave, A(k · x) = cos(k · x), and two limiting cases.
(a) For |k · (x − y)| → 0, k · ξ is independent of λ, so that 〈(�A)2〉 → 0, and
M2 → m2. The leading terms entering into this cancellation are of order ω4,
and hence sufficiently-soft laser photons do not influence charged-particle
propagation. (b) For |k · (x − y)| → ∞, 〈(�A)2〉 → 1/2, so that M2 → m2 +
g2ε2/2 = m2 + g2U/2ω2, where U is proportional to the laser energy density.
This suggests that the quantum-mechanical, effective mass of a charged particle
moving over considerable distances within a laser beam is increased, depending
upon the intensity of the beam.

It will be useful to derive the corresponding L[A], and simplest to construct
it from the representations of (3.33) and (3.34). As did Schwinger, we will find
that the result vanishes, a situation that can be guessed (as below) from the
Physics of the situation; but it is not so much the result that is of interest here,
as much as the techniques used for its extraction. In particular, it was shown in
Chapter 3 that L[A] is really a functional of Fµν ,

L[F] = −1

2

∫ ∞

0

ds

s
e−ism2

∫
d4 p

(2π)4

∫
d4x · ei

∫ s
0

δ2

δv2 · eip·∫ s
0 ds ′v(s ′)

· tr

{
exp

[
−ig

∫ s

0
ds1vµ(s1)

∫ s1

0
ds2vν(s2)

∫ 1

0
λ dλFµν

(
x − λ

∫ s1

0
v

)

+ g
∫ s

0
ds ′σ · F

(
x −

∫ s ′

0
v

)]
− (g → 0)

}
, (4.25)

which immediately generates the gauge-invariant form associated with current
conservation. Because any current 〈 jµ(x)〉 induced in the vacuum by an arbitrary
source Aν(y) satisfies the relation3

δL

δAµ(x)
= ig〈 jµ(x)〉,
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for that current to be conserved it must be true that ∂ x
µ

δL
δAµ(x) = 0. But if

L = L[F], as is clear from (4.25), then

δL

δAµ(x)
=
∑
ν,ρ

∫
d4 y

δL

δFρν(y)

δFρν(y)

δAµ(x)
=
∑
ν,ρ

(
∂ x
ρ δνµ − ∂ x

ν δρµ

) δL

δFρν(x)
,

and this current is identically conserved.
For the present choice of a laser field, and using our previous notation, one

may evaluate (4.25) by again inserting the same form of unity under the integrals,
to obtain

L[F] = −1

2

∫ ∞

0

ds

s
e−ism2

∫
d4x · N 1

∫
d[u]

∫
d[�] exp

[
i
∫ s

0
ds ′�(s ′)u(s ′)

]

·
∫

d4 p

(2π )4
tr

[(
exp

[
g
∫ s

0
ds ′(σ · f )A′(k · x − u(s ′)

])
+

]

·F[u] − {g → 0}, (4.26)

where

F[u] = ei
∫ s

0 ds ′ δ2

δv2 ·exp

[
−i
∫ s

0
ds1

∫ s

0
ds2vµ(s1)Kµν(s1, s2)vν(s2)

]
· e−i

∫ s
0 vµ Qµ,

(4.27)

with

Kµν(s1, s2) = gθ (s1 − s2) fµν

∫ 1

0
λ dλA′(k · x − u(s1))

and

Qµ(s ′) = pµ − kµ

∫ s

s ′
ds ′′�(s ′′).

Because (σ · f )n = 0, n ≥ 2, and tr(σµν) = 0, the trace of the exponential
σ · f term = tr(1) = 4, while the functional operation of (4.27) is Gaussian,
and, by (2.14), yields

exp

[
−i
∫

Q · (1 + 2K )−1 · Q − 1

2
tr ln(1 + 2K )

]
. (4.28)

The determinantal factor of (4.28) may be evaluated by expanding tr ln(1 + 2K )
in powers of K , and noting that, because of “retardedness”: θ (s1 − s2) · θ (s2 −
s1) = 0; the only possible non-zero contribution would be the term linear in K;
but since tr( fµν) = 0, the exponential of this factor may be replaced by unity.
In the remaining Q-dependence, the requirement kµ fµν = 0 removes all the
K terms in the expansion of (1 + 2K )−1, when such dependence is associated
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with that portion of Qµ proportional to kµ. In this way, (4.28) may be replaced
by

exp

[
−i
∫ ∫ s

0
ds1 ds2 pµ〈s1|(1 + 2K )−1

µν |s2〉pν + 2ip · k
∫ s

0
ds ′ · s ′�(s ′)

]
,

(4.29)

where we have dropped the term proportional to k2, and used 〈s1|s2〉 =
δ(s1 − s2).

Integration over � again produces the factor δ[u(s ′) + 2s ′ p · k], and then∫
d[u] generates

L[F] → −2
∫ ∞

0

ds

s
e−ism2

∫
d4 p

(2π)4

∫
d4xF̄(k · p) − (g → 0), (4.30)

with

F̄(k · p) = exp

[
−i
∫ ∫ s

0
ds1 ds2 pµ(1 + 2K )−1

µν pν

]
≡ exp[−ipµ Qµν pν].

As in the preceding section, we introduce a factor of unity into the p-integrand,
so that

L[F] → −2
∫ ∞

0

ds

s
e−ism2

∫ ∫ +∞

−∞

du dω

2π
eiωu

∫
d4 p

(2π )4

·
∫

d4x e−ipµ Qµν pν−iwk·p − {g → 0}. (4.31)

The Gaussian
∫

d4 p then produces the factor

−iπ2[det Q]−1/2 · exp

[
i
ω2

4
kµ(Q−1)µνkν

]
, (4.32)

which may be most easily evaluated by adopting an expansion of Q−1 in powers
of K ,

(Q−1)µν = 1

s

[
δµν + 2

s

∫ ∫ s

0
ds1 ds2 Kµν(s1, s2) + · · ·

]
,

where, here,

Kµν(s1, s2) = 2g
∫ 1

0
λ dλ fµν A′(k · x + 2λs1u)θ (s1 − s2).

Because k2 = kµ fµν = 0, the exponential factor of (4.32) vanishes; and this
then allows

∫
dω to generate a δ(u), so that

∫
du effectively removes all si
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dependence from the argument of A′ which defines K, and Qµν takes on the
simple form,

Qµν → sδµν − (2g A′)
s2

2
fµν + (2g A′)2 s3

3!
( f 2)µν.

Finally, with the aid of the relation det[(Q)]−1/2 = exp[−(1/2)tr ln(Q)], where
tr now refers to Lorentz indices, and using the properties tr( f n) = 0, n ≥ 1,
one sees that det[(Q)]−1 reduces to s−2, and is independent of g. This term
would give a divergent contribution as s → 0, except that (4.31) requires the
subtraction of all g = 0 dependence; and hence, for this simple laser field, the
resulting L[F] vanishes.

This null result can be guessed by considering the simple kinematics re-
quired were 2Re L[A] – which corresponds to the log of the vacuum persis-
tence probability, as in Section 3.5 – not to vanish. Remembering that L[A] is
given pictorially as that virtual process consisting of the sum over all Feynman
graphs corresponding to one closed fermion-loop, to which are here attached
all possible numbers (starting with two) of the real laser photons, it is clear
that if all of those photons are of the same 4-momentum, the absorptive part
of any such loop can never correspond to the reaction nk → p + p′, where n
photons are selected from the beam to convert into an electron–positron pair:
the (4-dimensional) square of the LHS must vanish, for real photons satisfying
k2 = 0, while the negative of the RHS is, in the CM system, the total e+e−

(energy)2. If a dispersion relation exists for this process, as one expects from a
simple causality argument, where the dispersive part of the vacuum’s dielectric
function is given as an integral over its absorptive part, then the vanishing of
the latter suggests that the dispersive part of the dielectric function is just a
constant, corresponding to our result that the entire L[A] must vanish.

4.4 Pair production via crossed lasers

It has been noted immediately above that pair production cannot occur in
the field of a single laser, of whatever intensity, because the conservation
laws nkµ = pµ + p′

µ cannot be satisfied. The situation changes qualitatively
in the overlap region of two (or more) crossed lasers4, since solutions exist
for n1k(1)

µ + n2k(2)
µ = pµ + p′

µ, for a variety of integers n1,2. For calculational
simplicity we shall assume that both lasers are composed of photons of the
same energy �1 eV, that the lasers are oriented at a relative angle of 90◦,
with a zero angle between their polarization vectors, and with an arbitrary
phase difference between their fields; for purposes of estimation, we assume
the lasers to have identical intensities F0 = 1022 Watts/meter2, each produc-
ing a beam over a small area of dimension D ∼ 10−5 meters, with a pulsed
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duration of 102 femtoseconds (10−13). These numbers define our “ideal”, cur-
rently highest-intensity laser, and will be used at the end of this section when
obtaining numerical estimates for the rate of such pair production. An explicit,
exact solution to this problem does not seem to be possible; but the techniques
of this section provide an introduction to methods which can be employed to
provide estimates for such processes.

We again neglect the radiative corrections of the quantized photon field,
which in the presence of an external potential Aext

µ appear in the generalization
of (2.40) as

〈0|S[Aext]|0〉 = e− i
2

∫
δ

δA Dc
δ

δA eL[Aext+A]
∣∣

A→0, (4.33)

using instead 〈0|S[Aext]0〉 = exp{L[Aext]} = exp[−�t/2 + iφ], where one as-
sumes that the field is turned on at time t = 0; and, henceforth, we suppress the
superscript ext. The reason why such radiative corrections are neglected here is
that any charged particle so produced will find itself in the presence of intense
laser beams, and its subsequent motion may be expected to be essentially clas-
sical. This is not true for the gluon-mediated “radiative corrections” of QCD,
as discussed below.

Physically, we are asking for the amplitude for a total of at least n laser pho-
tons to be absorbed coherently, and to make an e+e− pair produced at rest in
their CM, n = 2mc2/h̄ω = 106; this means a factor of gn in the production am-
plitude, and a factor of αn in the cross section. What could possibly compensate
such a minuscule factor? The fact that in the overlap volume D3 of the crossed
lasers, there can be N “available” photons, and the production probability must
include a counting factor similar to N !/n! · (N − n)!, the number of ways of
selecting n photons out of N available photons. If N/n = f � 1, that factor is
approximately f n; and in this way, as long as f > α−1, the multiple factors of
αn are effectively neutralized. By using a functional representation for L[A],
all such counting factors are automatically, and correctly, included.

We again begin with the exact relation (3.33) for L[A], which, with the
relation

ei
∫ s

0 ds ′ δ2

δv2 eip·∫ s
0 ds ′v(s ′)F[v]

∣∣
vµ→0 = e−isp2

ei
∫ s

0 ds ′ δ2

δv2 F[v − 2p]
∣∣
vµ→0,

generates

L[A] = −1

2

∫
d4x

∫
d4 p

(2π )4

∫ ∞

0

ds

s
e−is(m2+p2) · ei

∫ s
0 ds ′ δ2

δv2

· {e−ig
∫ s

0 ds ′[vµ(s ′)−2pµ]Aµ(x+2s ′ p−∫ s′
0 v)

· tr
(
eg
∫ s

0 ds ′σ ·F(x + 2s ′ p−∫ s′
0 v)
)
+ − (g → 0)

}∣∣
vµ→0. (4.34)
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The entire problem reduces to the evaluation of the integrals of (4.34) for the
case when the external potential Aµ(x) = ε(1)

µ sin(k(1) ·x) + ε(2)
µ sin(k(2) ·x + δ)

corresponds to the fields of a pair of intersecting laser beams of well-defined
frequencies and polarizations. As noted above, we assume both beams have
the same frequency ω, the same magnitudes of polarization ε, and the same di-

rection of polarization ε̂(1) = ε̂(2) = ε̂, with k̂
(1) · k̂

(2) = ε̂ · k̂
(1) = ε̂ · k̂

(2) = 0;

also, εµ → εε̂, where ε̂ lies in the x̂ direction, k̂
(1) = ŷ, and k̂

(2) = ẑ. Then,
Aµ(x) = εµ[sin δ1 + sin δ2], with δ1 = ω(y − t), and δ2 = ω(z − t) + δ. Until
the very last step, we shall use “natural units”, with h̄ = c = 1; here, ω and ε

have units of mass, and the average energy density U of each laser is given by
ε2ω2/8π .

There are three operations which must be performed in (4.34) – the functional
linkages, and the x- and p-integrations – and the complexity of the result can
depend on the order in which these operations are arranged. However, it is useful
to realize at once that the fundamental process we are trying to describe is such
that a large number of coherent photons of energy ω � m are to be absorbed
by the produced e+ and e− 4-momenta, p and p′. We therefore expect that the
formulae can be well-approximated by treating the absorbed photons as “soft”
compared to the lepton 4-momenta; and this naturally suggests a simplifying,
no-recoil approximation, of which several are available.5

For our problem, perhaps the simplest such approximation is obtained by
dropping the remaining v-dependence inside the arguments of the Aµ and the
Fµν of (4.34), for the function of this dependence is to produce corrections to
the p, p′ fermion momenta as they absorb the soft, laser photons. Hence, based
on the reasonable expectation that soft corrections to hard e+e− momenta are
irrelevant, we here perform the first simplification of the exact (4.34), replacing
the latter by

L[A] = −1

2

∫ ∞

0

ds

s
e−ism2

∫
d4x

∫
d4 p

(2π )4
e−isp2 · ei

∫ s
0 ds ′ δ2

δv2

· {e−ig
∫ s

0 ds ′[vµ(s ′)−2pµ]Aµ(x+2s ′ p)tr
(
eg
∫ s

0 ds ′σ ·F(x+2s ′ p)
)
+ − (g → 0)

}∣∣
vµ→0.

(4.35)

In the Schwinger model, the only function of the OE is to provide a contri-
bution to the normalization of each of the sequence of essential singularities
that comprise the vacuum persistence probability P0; those singularities arise
from the functional operations upon the Aµ dependence, followed by an appro-
priate

∫
d4 p. In the present problem, complicated by the necessity of spatial

averaging, the essential singularity will also arise from the corresponding Aµ

factor, with the σ · F term contributing to the normalization. Since we are only
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interested in the order of magnitude of �, generated by the essential singularity,
and since we have every confidence that a complete calculation which includes
the σ · F term will provide a positive � (that is, a negative log Re L[A]), we
shall simply drop the σ · F OE, replacing its trace by +4. In principle, the entire
analysis can be organized without this approximation; but it would add nothing
but complexity to the extraction of the essential singularity. Thus, we further
simplify the expression for L[A] as

L[A] → −2
∫ ∞

0

ds

s
e−ism2

∫
d4x

∫
d4 p

(2π )2
e−isp2 · ei

∫ s
0 ds ′ δ2

δv2

· {e−ig
∫ s

0 ds ′[vµ(s ′)−2pµ]Aµ(x+2s ′ p) − 1
}

vµ→0, (4.36)

and we now briefly sketch, in rapid sequence, three models for its estimation.
For all details, the reader is referred to the original paper.4

In the First Cumulant Model, the linkage operation is first carried through, and
then integration over

∫
d4 p is attempted (by the insertion of a useful expression

for unity in the integrand), resulting in a reduction to a two-fold integral over
an exponential factor that contains all the configuration-space dependence. One
must then integrate, or average, that spatial dependence over the overlap region
of the two laser beams. We assume that the linear dimension D of this volume
D3 is significantly larger (at least by a factor of 10) than the laser wavelength
λγ , so that the averaging procedure adopted here and in the two subsequent
models is sensible.

The “first cumulant” approximation replaces the spatial average of the expo-
nential factor, D−3

∫
d3x exp[S(x)], by the exponential of the average:

exp{D−3
∫

d3x S(x)}. This is a familiar approximation, perhaps the simplest of
those used in statistical problems to treat a full cluster expansion; in that con-
text, it is equivalent to retaining only the Q1 term of the expansion of (2.39). In
the Second Model, the spatial averaging and a portion of

∫
d4 p are performed

exactly, but a variant of the “first cumulant” approximation is used to estimate
the forms obtained. The Third Model is obtained by summing an approximation
to (what are expected to be the major) contributions from each of the cluster
coefficients neglected in the Second Model, and generates the most interesting
result of all three estimates.

In each model, we find a result dependent upon two dimensionless variables,
gε/m and ±m/ω, with the latter appearing as integration limits. Since m/ω ∼
106, we make the further approximation of replacing m/ω by ∞, in which case
certain simplifications appear, and generate for the First Model the result

L1[A] → i
D3ct

2(2π )2
m4
∫ ∞

0

dt

t3
e−it

[
1√

1 − (γ t)4
− 1

]
, (4.37)
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where γ = gεω/m2
√

6. Thus, in the limit of arbitrarily large m/ω, but fixed
gεω/m2, L1 → L1(γ ). The same behavior will occur in all three models, and
its relation to the Schwinger constant-field result will be discussed below.

One now sees that an (improper) expansion of the square root of (4.37) in
powers of γ will generate a sequence of imaginary contributions to L1, for the
integral

∫∞
0 dt t1+4neit is real for every integer n. Hence, ReL1 does not have

an expansion in powers of the coupling; it is intrinsically non-perturbative. Its
value is most easily obtained by remembering that the path of the t-integration
of the original Schwinger/Fradkin representation may be taken as running just
below the positive t-axis; and because the cut structure of [1 − (t/t0)4]−1/2, with
t0 = 1/γ , shows that a rotation of the t-contour to run according as t → ε − iτ
is permissible, (4.37) may be rewritten as

L1[A] = −i
D3ct

2(2π )2
m4
∫ ∞

0

dτ

τ 3
e−τ

[
1√

1 − (τ/t0)4
− 1

]
,

and

Re L1[A] = − D3ct

2(2π )2
m4
∫ ∞

t0

dτ

τ 3

e−τ√
(τ/t0)4 − 1

, (4.38)

where the branch of the square root has been chosen to yield a negative value for
ReL[A]. Under the variable change y = τ/t0 − 1, the integral of (4.38) becomes

t−2
0 e−t0

∫ ∞

0

dy

(1 + y)3

e−yt0√
(1 + y)4 − 1

� t−2
0

e−t0

2

∫ t−1
0

0

dy√
y

= t−3
0 e−t0 ,

since the y-integral effectively cuts off at t−1
0 � 1. Hence

Re L1[A] � − D3ct

2(2π)2
m4γ 3e−1/γ , (4.39)

which clearly displays the essential singularity in γ .
The Second and Third Models are obtained by first performing the spatial

integrations of (4.36), which we write in the form of averages over the arguments
of the sin terms there, in the form∫

d3x → D3

(
1

D3

∫
dx
∫

dy
∫

dz

)
→ D3〈· · ·〉θ,θ̄ ,

where the symbol 〈· · ·〉θ,θ̄ signifies independent averages over the factors
sin(θ + u(s ′)) and sin(θ̄ + ū(s ′)), where θ = ω(y − t), θ̄ = ω(z − t) + δ,

u(s ′) = 2s ′k(1) · p, ū(s ′) = 2s ′k(2) · p.
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Upon expansion of the exponential, one can then show that the averages

1

(2π )2

∫ 2π

0
dθ

∫ 2π

0
dθ̄

· exp

{
−ig

∫ s

0
ds ′Vµ(s ′)

[
ε(1)
µ sin(θ + u(s ′)) + ε(2)

µ sin(θ̄ + ū(s ′))
]}

can be expressed as

∞∑
l=0

(−)l

(
g2 A1

2

)l
(l!)2

∞∑
n=0

(−)n

(
g2 A2

2

)n
(n!)2

= J0

(
g

√
A1

2

)
J0

(
g

√
A2

2

)
, (4.40)

where

A1 =
∫ s

0
dsa

∫ s

0
dsb
(
V (sa) · ε(1)

)
cos(u(sa) − u(sb))

(
V (sb) · ε(1)

)
,

A2 =
∫ s

0
dsa

∫ s

0
dsb
(
V (sa) · ε(2)

)
cos(u(sa) − u(sb))

(
V (sb) · ε(2)

)
,

and Vµ = vµ − 2p.
To perform the linkage operation, it is most convenient to introduce the

representation

J0(z) = 1

2π i

∫ 0+

−∞

dt

t
et−z2/4t ,

where the contour is specified as approaching the origin from −∞ underneath
the negative t-axis, swinging in a half-circle around the origin, and moving
out to −∞ above the negative t-axis. The Fradkin linkages are Gaussian, and
yield

L2[A] = −2
(D3ct)

(2π )4

(
1

2π i

)2 ∫ 0+

−∞

dt1
t1

et1

∫ 0+

−∞

dt2
t2

et2

∫ ∞

0

ds

s
e−ism2

·
∫

d4 p e−isp2{
e− 1

2 Tr ln(1+2K ) · eip·Q·p − 1
}
, (4.41)

where

Qµν(s) =
∫ s

0
ds1

∫ s

0
ds2〈s1|

(
2K

1

1 + 2K

)
µν

|s2〉

and

〈s1|Kµν |s2〉 = i
g2

4
εµεν

[
cos
(
2p · k(1)(s1 − s2)

)
t1

+ cos
(
2p · k(2)(s1 − s2)

)
t2

]
.
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Here, both K and Q depend on p, and so we introduce

F(2p · k(1), 2p · k(2)
) =

∫ ∫ +∞

−∞
du1 du2F(u1, u2) ·

(
1

2π

)2∫ ∫ +∞

−∞
d�1 d�2

· ei(u1�1+u2�2)−2ip·k(1)�1−2ip·k(2)�2 ,

where F(u1, u2) represents all the 2p · k(1,2) dependence in the curly bracket
of (4.41). Integrating over p, and then over �1,2, one obtains

L2[A] = i
(D3ct)

16π3

(
1

2π i

)2 ∫ 0+

−∞

dt1
t1

et1

·
∫ 0+

−∞

dt2
t2

et2

∫ ∞

0

ds

s3
e−ism2 ·

(
s

2w2

)
·
∫ ∫ +∞

−∞
du1 du2

· eiu1u2s/2ω2{
e−1

2 Tr ln(1+2k) · e− 1
2 tr ln(1−Q/s)−1

}
, (4.42)

with

〈s1|2Kµν(u1, u2)|s2〉

= i
g2ε2

2

(
εµεν

ε2

)[
1

t1
cos(u1(s1 − s2)) + 1

t2
cos(u2(s1 − s2))

]

≡
(

εµεν

ε2

)
2K (s1, s2).

It then follows that Qµν/s may be written as q(s)( εµεν

ε2 ), and we henceforth
suppress the factors ( εµεν

ε2 ).
The calculation now reduces to the evaluation of repeated integrals over

2K (s1, s2) – we here emphasize its s1,2 variables – e.g.,

Tr ln(1 + 2K ) =
∫ s

0
ds1

[
2K (s1, s1) − 1

2

∫ s

0
ds2 2K (s1, s2) · 2K (s2, s1) + · · ·

]
,

and adopt the notation K (s1, s2) = K (s1 − s2). Note that K (s1, s1) = K (0),
which quantity would be the only one appearing were ω → 0. But, physically,
for ω → 0 at fixed ε, L must vanish; and one must therefore find that the
curly bracket of (4.42) must vanish when each K (s1 − s2) is replaced by K (0).
This suggests expanding Tr ln(1 + 2K ) and tr(1 − q(s)) in powers of the rel-
evant quantity: δK (s1 − s2) = K (0) − K (s1 − s2), and retaining only terms to
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first order – which defines the Second Model – and leads, after some further
manipulations, to

Re L2 → m4

(4π )2
(D3ct)

∫ ∞

0

dτ

τ 3
e−τ cos τ

[
1 − J 2

0 ((γ τ )2)
]
. (4.43)

One can see, directly from the perturbation expansion of (4.43), that the co-
efficient of every term (proportional to g4n) is identically zero, so that the
non-perturbative aspect of Re L has been maintained.

We are only able to evaluate (4.43) in an approximate way, and observe that
the sign of our approximate result,

Re L2 � m4

(4π )2
(D3ct) · γ 3

2
e−1/γ [cos(γ −1) − sin(γ −1)], (4.44)

is apparently related to its oscillatory dependence. One can invent an averaging
process so that the final sign is negative; but the proper answer to this question
must wait upon the evaluation of the neglected σ · F terms, and then – if there
is any choice of branch – to the physical requirement that the final sign of
Re L must be negative. We therefore write

�2 � m4(D3c)

(4π )2
γ 3 e−1

γ (4.45)

and again emphasize that it is only the order of magnitude of this result which
is believed to be a correct prediction of the Second Model. Comparison with
(4.39) shows that this is essentially the same result as obtained for the First
Model.

The Third Model is obtained by returning to (4.42) and developing a better
approximation for the combination Tr ln(1 + 2K ) + tr ln(1 − Q/s), an ap-
proximation which contains all powers of the coupling, rather than just its
quadratic dependence. Further, any such realization must be simple enough to
permit its evaluation in closed form.

We begin by calculating 〈s1|(2K )2|s2〉, a straightforward computation; with
χ = ig2ε2/2, and s12 = s1 − s2, one finds:

〈s1|(2K )2|s2〉 = χ2

{
s

t2
1

[
cos(u1s12) + sin(u1s)

(u1s)

]
+ s

t2
2

[
cos(u2s12) + sin(u2s)

(u2s)

]

+ s

t1t2

[
cos

([
u1 + u2

2

]
s12

)
· sin

([ u1 − u2
2

]
s
)

[ u1 − u2
2

]
s

+ cos

([
u1 − u2

2

]
s12

)
· sin

([ u1 + u2
2

]
s
)

[ u1 + u2
2

]
s

]}
. (4.46)
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In comparison, 〈s1|2K |s2〉 = χ [ 1
t1

cos(u1s12) + 1
t2

cos(u2s12)], where the trivial
εµεν/ε

2 factors have been suppressed. Upon subsequent integration of (4.46),
the terms sin([ u1 ± u2

2 ]s)/[ u1 ± u2
2 ]s will take appreciable values only for u1 ±

u2 � 0, where they become unity, so that the cos([ u1 ± u2
2 ] · s12) factors multiply-

ing them can be replaced by cos(u1s12) or cos(u2s12), precisely the terms which
appear in 〈s1|2K |s2〉. This suggests that a model be defined by the statement

〈s1|(2K )2|s2〉 = F〈s1|2K |s2〉, (4.47)

withF = sχ [ 1
t1

+ 1
t2

] (which quantity was previously called sK (0)). This model
neglects certain oscillatory terms of (4.46), but it does correspond to an order-
by-order extraction of what are probably the most significant pieces of every
perturbative term, those which are not expected to vanish upon subsequent
integration over fluctuating u1,2 dependence.

With (4.47), and the arbitrary number of iterations that can be formed from
it,

〈s1|(2K )n|s2〉 = Fn−1〈s1|2K |s2〉,
one easily calculates

Tr ln(1 + 2K ) = ln(1 + F)

and

tr ln(1 − Q/s) = −ln(1 + F) + ln

[
1 + sχ

(
1

t1
φ(u1s) + 1

t2
φ(u2s)

)]
,

where φ(x) = 1 − sin x
x , so that the combination e−1

2 Tr ln(1+2K )−1
2 tr ln(1−Q/s) − 1

becomes [
1 + χs

(
1

t1
φ(u1s) + 1

t2
φ(u2s)

)]− 1
2

− 1,

which can be rewritten as

2√
π

∫ ∞

0
du e−u2{

e−χsu2[ 1
t1

φ(u1s)+ 1
t2

φ(u2s)] − 1
}
.

Again, one introduces the J0 representation following (4.40), and finds that the
only difference between L2 and this L3 is that the latter is given by a Gaussian-
weighted integral over the previous L2, so that one can write the output of the
Third Model as

�3(γ ) =
√

2

π

∫ ∞

0
du e−u2/2�2(uγ ),
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or

�3 = m4(D3c)

(4π )2
γ 3

√
2

π

∫ ∞

0
du e−u2/2 · u3 · e−1/uγ . (4.48)

Since γ � 1, (4.48) is easily approximated as

�3(γ ) � 2√
3

m4(D3c)

(4π )2
γ 2e−3/2γ 2/3

, (4.49)

which represents a significant change in result compared to the previous mod-
els, mostly because the essential singularity has been changed (weakened) to
exp[−3γ −2/3/2].

This change in form of the essential singularity may have a physical inter-
pretation which is of some interest. Elementary QED processes, such as e+e−

pair creation, are usually thought of as taking place over distances on the order
of λ̄c, the electron’s Compton wavelength. Here, however, we expect coherent
absorption of the laser photons by the incipient, still virtual pair, over distances
larger than λ̄c, perhaps as large as some fraction of the laser photons’ wave-
length λ̄γ , because there are so many photons which must be absorbed. This
coherence is made explicit by the u-integration, as the parameter u varies over
distances centered about u0 ∼ γ −1/3, which is considerably larger than one.
In physical terms, the exp[−1/γ ] = exp[−√

6( m
gε

)(λ̄γ

λ̄c
)] of �2 is here replaced

by exp[−√
6( m

gε
)( λ̄γ

u0λ̄c
)], where u0λ̄c is perhaps 102–103 times larger than λ̄c,

and which can be interpreted as the qualitative distance over which coherent
absorption takes place.

After all the preceding analysis, it may be somewhat discouraging to learn
that the intensity of even our “ideal” crossed lasers is too small by about seven
orders-of-magnitude to allow a pair to be produced (assuming that a pair is
to be produced after every ten pulses each of duration 10−13 seconds). This
best estimate arises from the Third Model; and the numerical estimates may be
found in the original paper.4 But, since laser intensities appear to increase by
at least an order-of-magnitude each year, it may be that the needed intensities
will be available in the near future. This is a practical problem, about which the
author can make no statement.

But let us suppose that sufficiently high-intensity lasers can be made which
achieve e+e− and even µ+µ− pair production; then, there is no reason why
one cannot contemplate laser-induced quark–antiquark production.6 Here one
cannot neglect the QCD radiative corrections, since it is the gluon clouds sur-
rounding q and q̄ which form a flux tube/string, and produce quark confinement.
But one can idealize what may happen in terms of two extreme, and differing,
possibilities: (1) q and q̄ appear with their flux tube/string in place, so that one
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has produced, in effect, a π0, which the laser fields are incapable of tearing
apart; or (2) q and q̄ materialize, each surrounded by its virtual gluonic struc-
ture, which immediately begins to form itself into a tube/string joining q and q̄ .
The formation of the tube/string is surely not an instantaneous effect, but one
which can be characterized by a “string-formation velocity” vf. As a physical
process, one expects that vf cannot be larger than c, while it is perfectly possible
for the q and q̄ to be accelerated away from each other by the crossed lasers so
that their relative velocity of separation could equal or exceed vf. This suggests
that, by this mechanism, q and q̄ might temporarily reach separation distances
considerably larger than a few fermis. (Of course, after the laser beams’ phases
pass over the q and q̄ , deceleration occurs, and the tube/string wins.)

What could be a signal of this second possibility? Large energy deposition
in a small spatial region, perhaps leading to a pair of hadronic jets, built around
the outgoing q and q̄, and arranged so as to maintain an overall color-singlet
property. Other structures are also possible, such as the q and q̄ falling back
together and annihilating à la positronium, but with a relatively large energy
(absorbed from the intersecting lasers when the beams pulled the q and q̄ apart,
and converted into potential energy of qq̄ separation) converted into a few
high-energy gammas, or into a “fireball” of X-rays. Much more theoretical
work needs to be done on these questions; but the qualitative way in which the
qq̄ pair materialize should be amenable to experimental determination.
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5

Special variants of the Fradkin representation

5.1 Exact representations for scalar interactions

Exact Fradkin representations have found explicit realizations in special, soluble
situations of the previous two chapters. For interactions which are not soluble,
one would like to have a general method for displaying the content of the exact
representation for arbitrary potentials A(z), which method may even suggest a
form of non-perturbative approximation useful in various situations. One feature
of the method presented here1 is that it provides a qualitative measure of error
for the approximations it suggests, which is at least a partial improvement over
the more usual practice of generating uncontrolled approximations to these,
and other, nonlinear problems. For simplicity, we begin with a scalar-potential
interaction, in a relativistic framework.

These variants of the exact Fradkin representation are an outgrowth of older,
no-recoil models for Gc[A],2 which will be derived and employed for specific
scattering processes in Chapter 7, and which generate the so-called Block–
Nordsieck (BN) functional,

〈p|GBN[A]|p′〉 = i
∫ ∞

0
ds e−is(m2+p2)

∫
d4z

(2π )4
e−iq·z · e−ig

∫ s
0 ds ′ A(z+2s ′ p),

(5.1)

where q = p − p′. In any expansion of the exact Gc[A] in powers of A,
one finds a sequence of propagators of momentum-space form [m2 + (p −∑

j k j )2]−1, which, in a no-recoil approximation, are replaced by [m2 + p2 −
2p · ∑ j k j ]−1, under the assumption that the Fourier-transform momenta kµ

of Ã(k) are to be treated as much smaller than the momentum pµ of the scat-
tering particle. (More precisely, |ki · k j | � |p · ki | or |p · k j |.) This approxi-
mation, made in every order, and then summed over all orders, leads directly
to the GBN[A] of (5.1). While most useful in problems in which sums over all

75
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soft-photon contributions and processes are desired, as detailed in Chapter 7,
this approximation is not without a serious drawback. The reason is that, in
configuration space, the exact (scalar-interaction) Gc(x, y|A) must be symmet-
ric in x and y, while, in momentum space (with p the momentum entering
and p′ the momentum leaving any Feynman graph) the corresponding sym-
metry is 〈p|Gc[A]|p′〉 = 〈−p′|Gc[A]| − p〉. In non-relativistic, spinless, time-
independent, potential-theory scattering, this is just a statement of time-reversal
invariance (TRI), which appelation we shall continue to use for the present
case.

A cursory inspection of the GBN[A] of (5.1) shows that TRI is not satisfied
by this functional; but it is satisfied by the symmetrized form:

〈p|G〈ph〉
c [A]|p′〉 = i

∫ ∞

0
ds e−is[m2+p2]

∫
d4z

(2π )4
e−iq·z

· exp

[
−ig

∫ s

0
ds ′ A(z + s ′(p + p′))

]
, (5.2)

of the approximation, which will be denoted by the superscript 〈ph〉, for
“phase-averaged”. (One need perform only the pair of variable changes:
z → z − s(p + p′), followed by s ′ → s − s ′, to demonstrate this invariance
explicitly.) The approximation of (5.2) reduces to that of (5.1) in the special
case when all the k of A(k) are much smaller than p or p′ (or, equivalently, when
the magnitude of momentum transfer |q| � |p| or |p′|); but it is not derived with
any reference to a no-recoil approximation, and it even provides a reasonable
approximation to a potential-theory scattering problem when one of the scat-
terings is “hard” and all the others are “soft”. Clearly, G〈ph〉

c [A] represents one
further step on the road to a better approximation of Gc[A] than does GBN[A];
and the basic question of this chapter is how to define such improvement in a
systematic way.

We begin with the exact Fradkin representation for the configuration-space
causal propagator in four dimensions, (3.14), and expand in powers of g to
obtain

Gc(x, y|A) = i
∫ ∞

0
ds e−ism2

∫
d4 p

(2π )4
eip·(x−y)

∞∑
n=0

(−ig)n

n!

∫ s

0
ds1 · · ·

∫ s

0
dsn

·
∫

d4k1

(2π )4
Ã(k1) · · ·

∫
d4kn

(2π )4
Ã(kn) · exp

[
i

n∑
l=1

kl · y

]

· ei
∫ s

0 ds ′ δ2

δv2 · exp

[
i
∫ s

0
ds ′v(s ′) ·

[
p −

n∑
l=1

klθ (sl − s ′)
]]∣∣∣∣

v→0

.

(5.3)
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The functional operation of the last line of (5.3) is immediate, yielding

exp

{
−i
∫ s

0
ds ′
[

p −
n∑

l=1

klθ(sl − s ′)
]2}

= exp

{
−isp2 + 2ip ·

n∑
l=1

klsl − i
n∑

l,m=1

kl · kmh(sl, sm)

}
, (5.4)

with

h(sl , sm) =
∫ s

0
ds ′θ (sl − s ′)θ (sm − s ′) = 1

2
[(sl + sm) − |sl − sm |]. (5.5)

The essential 〈ph〉 approximation of the reference in Note 1 was to retain the
first, and simplest part of h(sl , sm), approximating the latter by (1/2)(sl + sm);
this generates a simple “factorization” of the s-dependence such that all terms
of the expansion are easily summed, generating (5.2).

In order to retain the second, and more complicated part of the h(sl , sm)
of (5.5), one needs to find a sufficiently simple representation of the remain-
ing −|sl − sm |/2 term. Because each sl lies in the range 0 ≤ sl ≤ s, the quantity
|x | = |sl − sm |/s satisfies 0 ≤ |x | ≤ 1; and one can invoke the well-known
“saw-tooth”, Fourier series representation:

|x | = 1

2
− 4

π2

∞∑
N=1,3,...

cos(Nπx)

N 2
, (5.6)

or, since
∑′

N
1

N 2 = π2/8, with
∑′

N ≡∑∞
N=1,3,5,...,

|x | = 4

π2

∑
N

′ 1

N 2
[1 − cos(Nπx)], (5.7)

which extends over an arbitrary number of quadrants. In our case, we need to
describe |x | only in the region 0 ≤ |x | ≤ 1, which is automatically enforced by
the integrals

∫ s
0 dsl . Equation (5.6) then provides a representation for |sl − sm |

which can be put into a “factorized” form,

|sl − sm | = s

2
− 4s

π2

∑
N

′ 1

N 2

[
cos

(
Nπsl

s

)
cos

(
Nπsm

s

)

+ sin

(
Nπsl

s

)
sin

(
Nπsm

s

)]
. (5.8)

The contribution of the third phase factor of (5.4) may then be written as

−i

[∑
l

kl sl

]
·
[∑

m

km

]
+ is

4

[∑
l

kl

]2

− 2is

π2

∑
N

′ 1

N 2

[∑
l

kl cos

(
Nπsl

s

)]2

− 2is

π2

∑
N

′ 1

N 2

[∑
l

kl sin

(
Nπsl

s

)]2

. (5.9)
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It is now convenient to introduce the variables K =∑l kl , z =∑l kl sl ,

Cn =∑l kl cos( Nπsl
s ), SN =∑l kl sin( Nπsl

s ), and to rewrite the exponential of
(5.9) under its

∫ s
0 dsl integrals in the form

∫
d4 K d4 Q

(2π )4
exp

[
iQ ·

(
K −

∑
l

kl

)
+ is

4
K 2

]

·
∫

d4zd4 P

(2π )4
exp

[
iP ·

(
z −

∑
l

kl sl

)
− i z · K

]

· �′

N

∫
d4CN d4 PN

(2π )4
exp

[
iPN ·

(
CN −

∑
l

kl cos

(
Nπsl

s

))
− 2is

π2

1

N 2
C2

N

]

· �′

N

∫
d4SN d4 QN

(2π )4
exp

[
iQN ·

(
SN −

∑
l

kl sin

(
Nπsl

s

))
− 2is

π2

1

N 2
S2

N

]
.

(5.10)

No perturbative index “n” is needed for any of these auxiliary variables K ,

Q, z, P, CN , PN , SN , QN , for exactly the same integrals, and their weights,
are needed for each n. The first line of (5.10) reproduces the contribution
−i/2

∑
klkm(sl + sm) of the 〈ph〉 approximation, while the remaining terms

of (5.10) generate all the corrections.
With (5.10) inserted under the integrals of (5.3), the “factorized” sum over n

may be performed, yielding

Gc(x, y|A) = i
∫ ∞

0
ds e−ism2

∫
d4 p

(2π )4
eip·(x−y)−isp2 ·

∫
d4 K d4 Q

(2π)4
eiQ·K+ is

4 K 2

·
∫

d4z d4 P

(2π )4
eiP·z · �′

N

∫
d4CN d4 PN

(2π )4
ei[PN ·CN −2 s

π2
C2

N
N2 ]

·
∫

d4SN d4 QN

(2π )4
ei[QN ·SN −2 s

π2 S2
N /N 2]

· exp

[
−ig

∫ s

0
ds ′ A

(
y − z − Q + s ′(2p − P)

−
∑

N

′
[

PN cos

(
Nπs ′

s

)
+ QN sin

(
Nπs ′

s

)])]
.

(5.11)

Now the CN and SN integrations may be performed immediately, and yield,
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for each N ,

(
− iπ6 N 4

4s2

)
exp

[
i
π2 N 2

8s

(
P2

N + Q2
N

)]
,

which suggests that a rescaling of all eight components is appropriate:

PN →
(

2
√

s

Nπ

)
PN , QN →

(
2
√

s

Nπ

)
QN ,

leading to

Gc(x, y|A) = i
∫ ∞

0
ds e−ism2

∫
d4 p

(2π)4
eip·(x−y)−isp2

∫
d4 K d4 Q

(2π )4
eiQ·K+ is

4 K 2

·
∫

d4z d4 P

(2π )4
eiP·z · �′

N (−i)2
∫

d4 PN d4 QN

(2π)4
· e

i
2 [P2

N +Q2
N ]

· exp

[
−ig

∫ s

0
ds ′ A

(
y − z − Q + s ′(2p − P) − 2

√
s

π

∑
N

′ 1

N

·
[

PN cos

(
Nπs ′

s

)
+ QN sin

(
Nπs ′

s

)])]
. (5.12)

Note that if any of the PN , QN dependence inside A is dropped, the normaliza-
tion of those integrals gives exactly the factor +1.

As in the reference of Note 1, we now simplify by first reflecting z → −z,
P → −P , and then by translating: z → z − y, so that all y-dependence disap-
pears from the argument of A. Finally, the translation z → z + Q removes all
Q-dependence from the argument of A, so that inegration over K and Q may
be readily performed. The result is

Gc(x, y|A) = i
∫ ∞

0
ds e−ism2

∫
d4 p

(2π )4
eip·(x−y)−isp2

∫
d4z d4 P

(2π)4
eiP·(z−y)+is P2/4

· �′
N (−i)2

∫
d4 PN d4 QN

(2π )4
e

i
2 [P2

N +Q2
N ]

· exp

[
−ig

∫ s

0
ds ′ A

(
z + s ′(2p + P ′) − 2

√
s

π

∑
N

′ 1

N

·
[

PN cos

(
Nπs ′

s

)
+ QN sin

(
Nπs ′

s

)])]
, (5.13)
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and, with q = p − p′, it will now be convenient to pass to the momentum-space
representation

〈p|Gc[A]|p′〉 = i
∫ ∞

0
ds e−is(m2+p2)

∫
d4z

(2π)4
e−iz·q+i s

4 q2

· �′
N (−i)2

∫
d4 PN d4 QN

(2π)4
e

i
2 [P2

N +Q2
N ]

· exp

[
−ig

∫ s

0
ds ′ A

(
z + s ′(p + p′) − 2

√
s

π

∑
N

′ 1

N

·
[

PN cos

(
Nπs ′

s

)
+ QN sin

(
Nπs ′

s

)])]
. (5.14)

Equation (5.14) differs from the 〈ph〉 approximation in two ways: (i) it con-
tains the phase factor exp[isq2/4]; and (ii) it requires integration over all
the PN , QN variables. Note that the phase factor of (i) can be written as
�′

N exp[2isq2/π2 N 2], with each N -dependent factor inserted under its own
phase-space integral.

Equation (5.14) is exact, but it is certainly not the only form possible. For
example, consider the variable change z → z′ = z +∑′

N αN PN , where the
αN are a set of coefficients to be chosen such that the phase factor of (i) is
removed. That is, −iz · q → −iz · q − i

∑′
N αN q · PN , with an addition to the

PN -phase dependence which suggests a further change of variable PN → P ′
N =

PN − qαN , so that

i

2
P2

N − iαN q · PN = i

2
P ′2

N − i

2
q2α2

N . (5.15)

With the choice αN = 2
√

s/π N , and the property:
∑′

N N−2 = π2/8, the phase
factor of (i) is removed; but the new z′ and old PN dependence inside A
must be re-expressed in terms of P ′

N , so that the new argument of A becomes

z + s ′(p + p′) +∑′
N αN (P ′

N + qαN )

−2
√

s

π

∑
N

′ 1

N

[
(P ′

N + qαN ) cos

(
Nπs ′

s

)
+ QN sin

(
Nπs ′

s

)]
.

With the aid of (5.7), the q-dependence arranges itself into

(
2
√

s

π

)2

q
∑

N

′ 1

N 2

[
1 − cos

(
Nπs ′

s

)]
= sq

(
s ′

s

)
= s ′(p − p′),
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so that all explicit p′ dependence vanishes, leaving

〈p|Gc[A]|p′〉 = i
∫ ∞

0
ds e−is(m2+p2)

∫
d4z

(2π)4
e−iz·q

· �′
N (−i)2

∫
d4 PN d4 QN

(2π )4
· e

i
2 [P2

N +Q2
N ]

· exp

[
−ig

∫ s

0
ds ′ A

(
z + 2s ′p − 2

√
s

π

∑
N

′ 1

N

·
[

PN

(
cos

(
Nπs ′

s

)
− 1

)
+ QN sin

(
Nπs ′

s

)])]
, (5.16)

where the prime of P ′
N has been suppressed. Clearly, (5.16) is the appropriate,

exact generalization of the BN functional, (5.1).
The fact that one finds equivalent relations of the form (5.14) and (5.16) is

really no surprise, for the original Fradkin representation involved the operation

ei
∫ s

0 ds ′ δ2

δv2 · ei
∫ s

0 ds ′v(s ′)·p · e−ig
∫ s

0 ds ′ A(y−∫ s′
0 v)|v→0, (5.17)

where p denotes the momentum used to provide a Fourier representation of
δ(x − y + ∫ s

0 v). Now, using the relation quoted just before (4.34), (5.17) can
be re-written as

e−isp2 · ei
∫ s

0 ds ′ δ2

δv2 · e−ig
∫ s

0 ds ′ A(y+2s ′ p−∫ s′
0 v)|v→0, (5.18)

while, from Chapter 2, the linkage operation of (5.18) can be cast into that of
functional integration, in the form

N
∫

d[v]e
i
4

∫ s
0 ds ′v2(s ′) · e−ig

∫ s
0 ds ′ A(y+2s ′ p−∫ s′

o v), (5.19)

where N is a normalization constant: N−1 = ∫ d[v]e
i
4

∫ s
0 ds ′v2

.
Imagine now expanding the 4-vector v(s ′) in a Fourier series over the range

0 ≤ s ′ ≤ s: v(s ′) = − 2√
s

∑′
N [PN sin( Nπs ′

s ) + QN cos( Nπs ′
s )], so that the func-

tional integral of (5.19) is converted into an infinite number of properly-
normalized integrals over all the PN , QN . The Gaussian weighting of (5.19)
becomes (1/2){P2

N + Q2
N }, while the integral − ∫ s ′

0 v inside the argument of A
produces exactly the quantity appearing in (5.16).

Both (5.14) and (5.16) are exact variants of the Fradkin representation, but it
should be noted that partial summations over all N have been used in demon-
strating their equivalence; approximations to (5.14) and (5.16) which involve
only a finite number of N -values will not necessarily generate the same re-
sults. Because the ‘zeroth’ approximation to (5.14) – the neglect of all N -terms
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inside A – leads to G〈ph〉
c [A], which quantity satisfies TRI (as do all of its sub-

sequent corrections), one is moved to concentrate on approximations to (5.14).
Of course, in the limit of small-momentum transfers, |q| � |p| or |p′|, both
forms lead to equivalent results. But, at least in potential scattering at large mo-
mentum transfers, it is known4 that a very good approximation obtains when
there is but one hard- plus many soft-interactions with the scattering potential;
and here, again, G〈ph〉

c [A] displays the correct form if only one of its Fourier
momenta, k, is allowed to be large. For these reasons, we shall consider only
approximations to the Gc[A] of (5.14).

5.2 Finite-quadrature approximations

We now argue that the use of only a few, lowest N-values in (5.14) will lead to a
respectable approximation for Gc[A], and demonstrate that this claim is true in
one special case where the exact, non-trivial solution is easily calculable. The
motivation for this claim obtains by re-writing (5.7) in the form

|x | = 8

π2

∑
N

′ 1

N 2
sin2

(
Nπx

2

)
, (5.20)

and by comparing both sides of (5.20), as in Fig. 5.1. The sum over all odd N
is necessary to reproduce |x | exactly; but the use of just N = 1, or of N = 1, 3,
etc., gives a reasonably accurate approximation to |x |. The error induced in
〈p|Gc[A]|p′〉 by such approximations will depend upon the relevant kinemat-
ical domains of q2 and (p + p′)2, and on the way those domains depend upon
the difference variables which form |x |. On the other hand, because this is the
only approximation contemplated, one can certainly anticipate the order-of-
magnitude of the errors which will be generated.

A glance at Fig. 5.1 makes this clear. Suppose one chooses, as the mea-
sure of error, the relative deviation of the area under each curve, between

N = 1 N = 1,3 N = 1,3,5

Fig. 5.1 A plot of (8/π 2)
∑′

N N−2 sin2(Nπx/2) vs x , for N = 1, N = 1 and 3, N = 1,
3 and 5; and a comparison with x , the value of this sum over all odd N .
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x = 0 and x = 1. The relative error involved in using N = 1 only will then
be � = [ 1

2 − 8π2
∫ ′

0 dx sin2(πx
2 )]/( 1

2 ) �0.19. When contributions from N = 1
and N = 3 are used, � is reduced to �0.099; and when N = 1, 3, and 5 terms
are included, � drops to �0.067. Of course, there is no guarantee that the error
in any kinematical domain is not larger than these estimates; but one would
expect the overall error – measured in some average way – to be reduced from
the 20% of N = 1 to the 10% of N = 1 and 3, and to the 7% of N = 1, 3, 5. In
the example below, where we have some control over the precise kinematical
regions, the errors are in fact considerably smaller, suggesting that these esti-
mates are probably upper bounds. It should perhaps again be emphasized that
the only approximation contemplated in this Green’s-function construction is
the replacement of |x | by one or another of the curves of Fig. 5.1.

Of course, these curves say nothing about the quality of the 〈ph〉 approxi-
mation, which is the “zeroth-order” approximation of this approach; the above
estimates concern only the results generated by different choices of N . If no
value of N is used, if the −|sl − sm |/2 term of h(sl , sm) is neglected altogether,
one must turn elsewhere for an estimate of that error. Fortunately, as described in
the previous section, we know that G〈ph〉

c [A] provides a very good description
of small-momentum-transfer Physics, as well as a respectable description of
large momentum transfers;4 but, unfortunately, we have at present no estimate
of its quality at intermediate momentum transfers.

In order to have a non-trivial, exact result with which to compare finite-
N -quadrature approximations, one may turn to that soluble example mentioned
in Chapter 3, wherein A(z) is quadratic in its argument, which we take in the
form of an inverted SHO potential, g A(z) = g A0z2 ⇒ −(λ/4)z2, with λ > 0.
Thus, the A-dependence of (3.14) can be written as

−ig
∫ s

0
ds ′ A

(
y −

∫ s ′

0
v

)
= i

λ

4

{
sy2 − 2

∫ s

0
ds ′(s − s ′)yµvµ(s ′) +

∫ s

0
ds1

·
∫ s

0
ds2vµ(s1)h(s − s1, s − s2)vµ(s2)

}
,

where the linear v-dependence has been recast by Abel’s transformation, and
the function h(s1, s2) is the same quantity – the smaller of the values of s1 and
s2 – as defined in (5.5).

The functional operation of (3.14) may be performed using (2.14), and
yields

exp

[
− 1

2
Tr ln(1 + λK ) − i

∫
f (1 + λK )−1 f

]
, (5.21)
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where Kµν(s1, s2) = δµνh(s − s1, s − s2) and fµ(s ′) = pµ − λ
2 (s − s ′)yµ. To

evaluate (5.21), it is convenient to introduce the Fourier series representation

h(s1, s2) = 8s

π2

∑
N

′ 1

N 2
sin

(
Nπs1

2s

)
sin

(
Nπs2

2s

)
, (5.22)

where, again,
∑′

N indicates a sum over all positive, odd integers N . Using the
orthogonality relation,∫ s

0
ds ′ cos

(
Nπs ′

2s

)
cos

(
Mπs ′

2s

)
= s

2
δN ,M ,

one easily obtains

〈s1|[(1 + λK )−1]µν |s2〉

= δµν

[
δ(s1 − s2) − 8λs

π2

∑
N

′
(

1

N 2 + λκ2

)
cos

(
Nπs1

2s

)
cos

(
Nπs2

2s

)]
,

where κ = 2s/π . Since
∑

µν δ2
µν = 4, the first term of the exponential of (5.22)

generates

−1

2

∑
µν

∫ λ

0
dλ′
∫ s

0
ds1

∫ s

0
ds1〈s1|Kµν |s2〉〈s2|[(1 + λ′K )−1]νµ|s1〉

= −1

4
· 4 ·

∑
N

′
ln(1 + λκ2/N 2),

and its exponential yields

[�′
N (1 + λκ2/N 2)]−2 = [cosh(s

√
λ)]−2. (5.23)

The second exponential factor of (5.22) can be evaluated in like manner,

−i
∫ s

0
ds1

∫ s

0
ds2 fµ(s1)〈s1|[(1 + λK )−1]µν |s2〉 fν(s2)

= −is

[
p2 − λs

2
(p · y) + s3

3

(
λ

2

)2

y2

]

+ is

{
p2[1 − γ (s

√
λ)] − λs

2
(p · y)

[
1 − γ (s

√
λ)γ

(
s

2

√
λ

)]

+ λ2s2 y2

12
− λy2

4
[1 − γ (s

√
λ)]

}
, (5.24)

where γ (x) ≡ tanh(x)
x = 8

π2

∑′
N

1
N 2+4x2/π2 .
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Combining all factors, one obtains

〈p|Gc[A]|p′〉 = i
∫ ∞

0

ds e−ism2

cosh2(s
√

λ)
·
∫

d4 y e−iq·y−isp2γ (s
√

λ)

· ei[ λs2

2 (p·y)γ (s
√

λ)γ ( s
2

√
λ)+ λsy2

4 γ (s
√

λ)]. (5.25)

There is one remaining Gaussian integration (over y) to be performed in (5.25),
straightforward but tedious; and the result is

〈p|Gc[A]|p′〉 =
(

4π i

λ

)2

·
∫ ∞

0
ds[s2 D(s

√
λ)]−1 · e−ism2

· exp

{
− i

2λ

[
P2 tanh

(
s

2

√
λ

)
+ q2 coth

(
s

2

√
λ

)]}
,

(5.26)

with P = p + p′, q = p − p′, and D(x) = [sinh(x)/x]2. Incidentally, this ex-
hibition of Gc[A] in terms of an integral over proper time is what is here meant
by the phrase “exact solution”.

In contrast, the 〈ph〉 approximation requires but one Gaussian integration,
which yields

〈
p|G〈ph〉

c [A]|p′〉 = (4π i

λ

)2 ∫ ∞

0

ds

s2
e−ism2 · e−i[s P2

4 (1− λs2

12 )+ q2

λs (1+ λs2

4 )], (5.27)

while the 〈ph〉 + (N = 1) = 〈ph|1〉 contributions require an extra pair of
Gaussian integrations, over P1 and Q1, and generate

〈
p|G〈ph|1〉

c [A]|p′〉 = (4π i

λ

)2 ∫ ∞

0

ds e−ism2

s2 D1(s
√

λ)
e−i[s P2

4 A(s
√

λ)+ q2

λs B(s
√

λ)],

(5.28)
where

D1(s
√

λ) =
[

1 + λs2

π2

(
1 − 8

π2

)]2

·
[

1 + λs2

π2

]2

,

A(s
√

λ) = 1 − λs2

12
+ 8

π2

(
λs2

π2

)2[
1 + λs2

π2

]−1

,

and

B(s
√

λ) = 1 + 8λs2

π4

[
1 + λs2

π2

(
1 − 8

π2

)]−1

.
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We now compare the three results, (5.26), (5.27), and (5.28). In general, as q2

decreases, the dominant contributions of each must come from small s – that is,
small s

√
λ – in which region all three integrands exhibit the same s-dependence,

defined in part by the limits

P2

2
√

λ
tanh

(
s
√

λ

2

)
� s

4
P2

[
1 − λs2

12
+ · · ·

]
;

q2

2λ
coth

(
s
√

λ

2

)
� q2

sλ

[
1 + λs2

12
+ · · ·

]
.

This is no surprise, because we expect such convergence in the limit of small
momentum transfer. In each integrand, the dominant contributions will come
from the range smax > s > smin; and for each, it is clear that smin ∼ q2/λ.

Let us now suppose that m = 0, to insure that the smax of each integral depends
upon its own distinctive features; the argument to follow will only be enhanced
if m �= 0. The integral of the exact solution is cut off by the D-factor when
s ∼ smax ∼ (λ)−1/2, whereas in (5.27) and (5.28) it is controlled (assuming
|P2| > q2) by P2: smax ∼ 4/|P2|. (In the region near λs2 ∼ 12, there can be a
large contribution to the 〈ph〉 integrand, although the latter’s denominator factor
of s−2 means that such a contribution is weighted with a factor of λ/12, which
is small if λ < 1. If q2 ∼ |P2|, however, the (−isq2/4) phase factor will serve
to define smax ∼ 4/q2 ∼ 4/|P2|.)

In order to have the same smax ∼ (λ)−1/2 for each integral, let us choose the
simple (and physically reasonable) kinematical restriction: |P2|/4 ∼ (λ)1/2 >

q2. In the contributing region, between smin ∼ q2/λ and smax ∼ (λ)−1/2, all
of the exponential factors are essentially the same, and the only real distinc-
tion between these three results can arise from the different denominator fac-
tors, D, D0, and D1. We evaluate these in a crude way by calculating the
first term in each small –λs2 expansion, assigning to it its largest value at
s = smax: D0 ≡ 1, D(s

√
λ) ∼ 1 + λ s2

3 + · · · → 4/3,

D1(s
√

λ) ∼ 1 + 2
λs2

π2
(2 − 8/π2) + · · · → 1.24.

The maximum relative error of the 〈ph〉 approximation is then

�0 =
(

4

3
− 1

)/(
4

3

)
= 1

4
→ 25%,
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but the maximum relative error of the 〈ph|1〉 result will be

�1 =
(

4

3
− 1.24

)/(
4

3

)
� 0.068 → 7%.

In this crude way, and for this special choice of potential and kinematical
restriction, one sees that the 〈ph|1〉 approximation will be an improvement of
the 〈ph〉 result, and that the latter is a decent representation of the exact solution
to within an overall error of 25%.

5.3 Exact and approximate vectorial interactions

Our starting point is again the exact Fradkin representation for a causal QED
fermion propagator moving in an arbitrary external (or “background”) field
specified by the vector potential Aµ(z), as expressed in (3.32).3 Inserting a
Fourier representation for the function of (3.31), the linkage operator
exp[i

∫ s
0 ds ′δ2/δv2] is required to link in a pairwise fashion, that is, to “fac-

tor pair” all the vµ upon which it acts. The essential difference between the
present vector and previous scalar case, given in terms of a scalar potential
A(y − ∫ s ′

0 v), is the appearance of the vector forms vµ(s ′)Aµ(y − ∫ s ′

0 v), and
the necessity of factor-pairing all pairs of the v-dependence; in particular,
one must retain those linkages of vµ(s ′) and Aν(y − ∫ s ′′

0 v), which will appear
upon expansion in powers of g. That is, because the linkage operator can only
link v-dependence at the same value of s ′, a factor pairing between vµ(s ′)
and its immediate coefficient Aµ(y − ∫ s ′

0 v) must vanish. But in the linkages
of
∫ s

0 ds1vµ(s1)Aµ(y − ∫ s1

0 v) · ∫ s
0 ds2vν(s2)Aν(y − ∫ s2

0 v) there will be contribu-
tions coming from pairings of vµ(s1) and Aν(y − ∫ s2

0 v), and from Aµ(y − ∫ s1

0 v)
and vv(s2), depending on the relative size of s1 and s2. Of course, there are also
the relatively simple pairings between the vµ(s1) and the vν(s2), as between
Aµ(y − ∫ s1

0 v) and Aν(y − ∫ s2

0 v), which were fully analyzed in Section 5.1; but
a novel structure now appears when we include pairings between the vµ(s ′) and
the Aν(y − ∫ s ′′

0 v).
To see how this goes, we trivially replace the exponential factor of (3.31),

exp

[
−ig

∫ s

0
ds ′vµ(s ′)Aµ

(
y −

∫ s ′

0
v

)]
,

by ∫
d[φ]δ[φ − v] exp

[
−ig

∫ s

0
ds ′φµ(s ′)Aµ

(
y −

∫ s ′

0
v

)]
,
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and insert a by-now standard representation of the δ-functional,

N ′
∫

d[�] exp

[
i
∫ s

0
ds ′�µ(s ′)[φµ(s ′) − vµ(s ′)]

]
,

with N ′ an appropriate normalization constant. In this way, the “external”
vµ(s ′) terms may be isolated and removed from their immediate neighbors

Aµ(y − ∫ s ′

0 v), so that Gc[A] may be re-written as

Gc(x, y|A) = i
∫ ∞

0
ds e−ism2

∫
d4 p

(2π )4
eip·(x−y)

[
m − γ · δ

δv(s)

]
· ei

∫ s
0 ds ′δ2/δv2

·
(

exp

[
g
∫ s

0
ds ′σ · F

(
y −

∫ s ′

0
v

)])
+

· N ′
∫

d[�]
∫

d[φ]ei
∫ s

0 ds ′�µ(s ′)φµ(s ′)

· ei
∫ s

0 v(s ′)·[p−�(s ′)] · eig
∫ s

0 ds ′φµ(s ′)Aµ(y−∫ s′
0 v)|v→0. (5.29)

How does the Gc[A] of (5.29) differ from the scalar Gc[A] of (3.14)? Aside
from the vectorial and spinorial indices, both Green’s functions have the same
formal dependence upon the Fradkin vµ, except that the former requires the
additional N ′ ∫ d[φ]d[�] integrals, and that its exponential coefficient of vµ

is pµ − �µ, rather than just pµ. Imagine performing all the operations of
Section 5.1 at this point; one would obtain

〈p|Gc[A]|p′〉 = i
∫ ∞

0
ds e−ism2

N ′
∫

d[�] d[φ]e−i
∫ s

0 ds ′[p−�(s ′)]2

·
∫

d4z

(2π )4
e−iz·q+i sq2

4 �′
N (−i)2

∫
d4 PN d4 QN

(2π )4
e

i
2 [P2

N +Q2
N ]

· ei
∫ s

0 ds ′φµ(s ′)[�µ(s ′)−g Aµ(ζ (s ′)−2
∫ s′

0 ds ′′�(s ′′))]

· [m − iγ · (p − �(s))]

(
exp

[
g
∫ s

0
ds ′σ

· F

(
ζ (s ′) − 2

∫ s ′

0
ds ′′�(s ′′)

)])
+
, (5.30)

where ζ (s ′) = z + s ′(p + p′) − 2
√

s
π

∑′
N

1
N [PN cos( Nπs ′

s ) + QN sin( Nπs ′
s )];

this is simply a transcription of (5.14), including the extra functional integrals
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over φ and �, and the replacement of p by p − �(s ′). Now, however, the
∫

d[φ]
is immediate, and generates the δ-functional

δ

[
�(s ′) − g A

(
ζ (s ′) − 2

∫ s ′

0
ds ′′�(s ′′)

)]

which restricts admissible �(s ′) to those functions which satisfy the nonlinear
equation, or “map”,

�µ(s ′) = g Aµ

(
ζ (s ′) − 2

∫ s ′

0
ds ′′�(s ′′)

)
, (5.31)

and it is this requirement, as discussed in the next chapter, which opens the
possibility of chaos, or of chaotic effects, appearing in these otherwise well-
behaved Green’s functions of potential theory.

Integration
∫

d[�] over this δ-functional is performed by changing vari-
ables to an f (s ′) defined as the argument of the δ-functional of (5.30), and
yields

[det(δ f/δ�)]−1 = exp[−Tr ln(δ f/δ�)], (5.32)

evaluated at that � which is a solution of (5.31). If there is more than one such
�(s ′) satisfying (5.31), a summation must be made over all such solutions.

With

δ fµ(s ′)
δ�ν(s ′′)

= δµνδ(s ′ − s ′′) + 2gθ (s ′ − s ′′)
∂

∂zν

Aµ

(
ζ (s ′) − 2

∫ s ′

0
ds ′′�(s ′′)

)
,

and because of the “retardedness” of the θ (s ′ − s ′′) factors, the tr ln(δ f/δ�) of
(5.31) may be replaced by its lowest-order term (which vanishes in the Lorentz
gauge), so that

〈p|Gc[A]|p′〉
= i
∫ ∞

0
ds e−ism2

∫
d4z

(2π )4
e−iz·q+isq2/4�′

N (−i)2

·
∫

d4 PN d4 QN

(2π )4
e

i
2 [P2

N +Q2
N ] · e−i

∫ s
0 ds ′[p−�(s ′)]2

· exp

[
−g
∫ s

0
ds ′ ∂

∂zµ

Aµ

(
ζ (s ′) − 2

∫ s ′

0
�

)]
· {m − iγ · [p − �(s)]}

·
(

exp

[
g
∫ s

0
ds ′σ · F

(
ζ (s ′) − 2

∫ s ′

0
�

)])
+
. (5.33)
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Not only is the Gc[A] of (5.33) more complicated than that of the corresponding
scalar Green’s function, but it contains something quite new: the map of (5.31),
whose solution must be obtained as a functional of z, s, PN , and QN , and then
substituted into (5.33). In the paper of Note 5 it is emphasized that this double
complexity, while gauge dependent, is not a gauge-dependent artifact. However,
the most striking aspect of this potential-theory representation is the possibility
of chaos appearing in solutions of the map (that is, the appearance of ultra-
sensitive dependence of �(s) on initial conditions, which are given in terms
of z, and the PN, QN ), a behavior which could wreak havoc in any numerical
integration of Gc[A] (given in terms of integrations over these quantities) and
in the correlation functions of QFT constructed from such Gc[A]. For those
who believe in QFT, this is a horrifying prospect; but, happily, one which is
apparently removed upon calculating the totality of radiative corrections (that is,
quantum fluctuations of the Aµ fields) which define such correlation functions.
How this comes about, and what it may portend for classical as well as quantum
chaos, is briefly described in the next chapter.

5.4 The Stojkov variation

A completely independent variation of the Fradkin representation has been
proposed by Stojkov,6 one which does not employ the expansion (in g) and re-
summation of Section 5.1, and which gives results comparable to, and frequently
simpler than, those of the preceding sections. We give a very brief sketch of the
basic method, and refer the interested reader to the original paper for further
approximations and applications.

The essential idea is to substitute the expansion

vµ(s ′) = Vµ +
∞∑

n=1

[
Q(n)

µ cos(nωs ′) + P (n)
µ sin(nωs ′)

]
(5.34)

into Fradkin’s exact (scalar) representation (3.14), where ω = 2π
s , and Vµ is a

constant 4-vector. One requires the (ad hoc) constraint
∫ s

0 ds ′vµ(s ′) = sVµ, leav-
ing the coefficients of the oscillatory modes unconstrained. Properly normalized
basis functions on the interval 0–s are given by

φn(s ′) =



√

1
s , n = 0√
2
s cos(nωs ′),

√
2
s sin(nωs ′), n ≥ 1,
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so that the corresponding completeness statement is given by

δ(s1 − s2) =
∑

λ

φλ(s1)φλ(s2) = 1

s
+ 2

s

∞∑
n=1

cos(nω[s1 − s2]). (5.35)

Then, requiring that δvµ(s1)
δvν (s2) = δµνδ(s1 − s2), one obtains a decomposition of the

functional derivative,

δ

δvµ(s1)
= 1

s

∂

∂Vµ

+ 2

s

∞∑
n=1

{
cos(nωs1)

∂

∂ Q(n)
µ

+ sin(nωs1)
∂

∂ P (n)
µ

}
, (5.36)

and one can then calculate∫ s

0
ds ′ δ2

δv(s ′)2
= 1

s

∂2

∂V 2
+ 2

s

∞∑
n=1

{
∂2

∂ Q2
n

+ ∂2

∂ P2
n

}
,

∫ t

0
ds ′vµ(s ′) = Vµt + s

2π

∞∑
n=1

1

n

{
Q(n)

µ sin(nωt) + P (n)
µ [1 − cos(nωt)]

}
,

and ∫ s

0
ds ′vµ(s ′) = sVµ.

It then follows that

Gc(x,y|A) = 1

16π2

∫ ∞

0
ds e−ism2+iz2/4s · e

2i
s

∑∞
n=1{ ∂2

∂ Q2
n
+ ∂2

∂ P2
n

}

· exp

[
−ig

∫ s

0
ds ′ A(ξ (s ′/s)) + s

2π

∑
n

1

n

{
Q(n) sin(nωs ′)

+ P (n)
µ [1 − cos(nωs ′)]

}]
, (5.37)

where ξµ(λ) = xµλ + (1 − λ)yµ. Equation (5.37) is a convenient variant of the
Fradkin representation if one intends to approximate Gc[A] by a sequence of
terms corresponding to corrections to the straight-line path ξ between x and y;
that lowest order approximation in which all the Pn, Qn are neglected is called
G〈0〉

c [A] by Stojkov, and is somewhat simpler to work with in configuration
space than is the corresponding G〈ph〉

c [A], although the latter appears to be
more convenient in momentum space. Stojkov discusses correction to G〈0〉

c [A],
as well as similar approximations to the L[A] of this problem; and he provides
a most useful section in which the exact Fradkin representation is recast in the
form of a path integral. In this paper, an example of the “triviality” of the scalar
interaction L′ = −g A4 is also given in the context of the 〈0〉 approximation.
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Functions, hep-th/9706135, 18 June 1997. While a second-year graduate student in
Theoretical Physics at Brown, Stojkov produced his solution a few days after
learning about the results of Fried and Gabellini.1



6

Quantum chaos and vectorial interactions

The possibility of quantum chaos for vectorial interactions is here described in
some detail, along with its apparent suppression when the radiative corrections
of quantum field theory (quantum fluctuations of the classical, “external” elec-
tromagnetic field) are introduced. Based on these quantum-mechanical ideas, an
application is made to classical-chaotic systems, of perhaps the simplest form –
a forced Duffing model, without damping – where it is found that the chaos
is first suppressed and then (apparently) removed by introducing couplings to
random and/or chaotic sources. This may be characterized as “quantum me-
chanics with h̄ ∼ 1”, and suggests a brute-force method by which the chaos of
a classical system may be at least diminished. A similar effect is noted for a
different classical system that displays chaos – a pair of coupled oscillators –
independently of any external forcing.

6.1 First-quantization chaos

The reader is now asked to return to the Gc[A] representations for vectorial in-
teractions of the previous chapter; for simplicity, the arguments of this chapter
are presented only for QED in a relativistic context, but have obvious general-
izations to non-relativistic QED, and to relativistic QCD.

The map (5.31) defines the quantity �µ(s ′), which is needed for the explicit
solution of (5.33). It is the existence of such a map which carries with it the
inescapable possibility of chaotic behavior, at least in the present context of
vectorial interactions in potential theory. The analysis used here is given directly
in terms of proper time τ , of which xµ(τ ) is a function. In principle, one might
expect nonlinear quantum systems to reflect at least partially the chaotic nature
of their classical limits. Indeed, solutions for classical, charged particles moving
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in a specified Maxwell field Fµν(x) described by

d2xµ

dτ 2
= g

mc

∑
ν

dxν

dτ
Fµν(x) (6.1)

for appropriately nonlinear x-dependence of Fµν must be expected to display
the chaotic behavior now well-documented in a variety of fields, and by a
variety of methods.1,2 We comment below that, with one important modifica-
tion, the Green’s-function map (5.31) may be related to a “first integral” of the
classical (6.1).

High-energy Physics has heretofore escaped the impact of classical chaotic
dynamics because of its fortunate ability to rely on perturbative expansions,
which destroy the non-perturbative arguments leading to the possibility of
chaos. Even certain non-perturbative approximations, such as the standard
eikonal methods,3 remove the possibility of chaos because they destroy the
needed, nonlinear structure of relevant maps. This can be seen immediately
from (5.31), whose perturbative expansion in effect removes

∫ s ′

0 � from the
argument of Aµ,

�µ(s ′) ≈ g Aµ(ζ (s ′)) − 2g2 ∂ A

∂zµ

(ζ (s ′)) ·
∫ s ′

0
ds ′′ Aν(ζ (s ′′)) + · · · , (6.2)

so that one sums a gn expansion for �µ, as in (6.2), rather than solving an
integral or differential equation. An eikonal approximation, on the other hand,
would replace the

∫ s ′

0 ds ′′�(s ′′) in the argument of A by s ′�̄µ, where �̄µ is
an appropriately chosen, averaged 4-velocity suggested by the specific scat-
tering problem. For both approximation schemes, the repeated “feedback”
obtained from the � dependence within Aµ is missing, as will be any sug-
gestion of chaotic behavior in the final results. One sees below that strict at-
tention to the exact forms of these vector interactions, especially when using
the non-perturbative, finite-N -quadrature approximations of the previous chap-
ter, must finally bring the possibility of chaos into the realm of high-energy
Physics.4

In a Green’s-function context, this possibility appears in a most efficient way,
for it is specified not in terms of time, nor of space, nor by a mixed partial-
differential-equation formulation, but in terms of proper time. This suggests
that chaotic behavior in proper time, when restricted to lie inside the light cone,
will correspond to (temporal) chaos; while such behavior outside the light cone
may refer to a form of (spatial) turbulence. (It should be noted that Schwinger–
Fradkin representations involving a variable analogous to relativistic “proper
time” can be written for non-relativistic problems.) We shall not elaborate
further on this distinction here, but only note that such a Green’s-function
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description in terms of proper time would seem to be an obvious method for
simultaneously describing both chaos and turbulence.5

For more than a decade there have been examples of “quantum chaos” for
a particle whose motion is in some, semi-classical sense partially governed
by Bohr–Sommerfeld quantization. One of these examples,6 the case of an
electron moving in a Coulomb potential upon which is superimposed a mag-
netic field, will be used for illustration of the way in which chaos can appear
in the present context. By the criterion of the present discussion, the “semi-
classical” Green’s function of this example does not appear to be chaotic; but
when at least a part of the quantum fluctuations corresponding to a finite num-
ber of the PN , QN terms are retained, one appears to obtain certifiably chaotic
behavior.

We first ask if there is any connection between the map (5.31) and the classical
equation of motion (6.1). Let us initially approximate Gc[A], and hence (5.31),
by the neglect of all quantum fluctuations exhibited by the PN , QN terms inside
the argument of Aµ and Fµν – this is the QED version of what was termed
the 〈ph〉 approximation of Chapter 5 – and, secondly, by imagining that the
momentum transfer q is small, so that the difference between p and p′ is not
important. This latter step, of replacing Gc〈ph〉[A] by GBN[A], is not essential,
but makes for conceptual simplicity.

The length ζ (s ′) of (5.30) then becomes z + s ′(p + p′) → z + 2s ′ p, and we
switch to a proper-time variable with proper dimensions, by the replacement of
s ′ by τ/2m. With the representation �µ = dXµ

dτ
, the map now reads

dXµ

dτ
= g

2m
Aµ

(
z + τ

p

m
− 2

[
X

(
τ

2m

)
− X (0)

])
,

but it will be more convenient to denote the argument of Aµ by x , and to write
the equivalent

dxµ

dτ
= pµ

m
− g

m
Aµ(x). (6.3)

Then

d2xµ

dτ 2
= − g

m

∑
ν

dxν

dτ

∂

∂xν

Aµ(x) = g

m

∑
ν

dxν

dτ

[
Fµν(x) − ∂

∂xµ

Aν(x)

]
,

(6.4)

and inserting (6.3) into (6.4), there follows

d2xµ

dτ 2
= g

m

∑
ν

dxν

dτ
Fµν(x) + 2

∑
ν

dxν

dτ

∂

∂xµ

(
dxν

dτ

)
. (6.5)
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But the last RHS term of (6.5) may be rewritten as

∂

∂xµ

∑
ν

(
dxν

dτ

)2

,

which quantity must vanish if the 4-velocity vµ = dxµ/dτ is to represent a
particle on its mass shell (or energy shell, in a non-relativistic context), an
association which is certainly compatible with the remaining terms of (6.5),
and which we shall assume temporarily. The result is then just (6.1), showing
that, in an appropriate semi-classical limit, the map (5.31) is compatible with
the standard, classical equation of motion, if only the mass-shell property of the
particle were guaranteed (rather than assumed). In fact, the map might be called
a “first integral” of (6.1), since it involves terms of one derivative fewer, although
appearing in the decidedly non-trivial form of a map.

For reasons which will become clear immediately, we allow the magnetic
field to vary in two transverse directions, by introducing a function φ(x2

⊥) into
the expression for the vector potential,

Aµ(x) = B

2

[
x1δµ2 − x2δµ1

]
φ
(
x2

⊥
)+ iZg

r
δµ4, (6.6)

where r = [
∑3

i=1 x2
i ]

1/2 , x2
⊥ = x2

1 + x2
2 , and the 4-vector notation used here is:

aµ = (a, ia0).
Substitution of (6.6) into the map (6.3) leads to

dxµ

dτ
= vµ − g

m
Aµ(x) ≡ fµ(x),

or, in component form, with vµ = pµ/m, x4 = ix0 = it ,

xµ(τ ) = zµ + τvµ − 2[Xµ(τ ) − Xµ(0)], ω = gB/2m,

dx1

dτ
= v1 + ωx2φ

(
x2

⊥
) = f1(x),

dx2

dτ
= v2 − ωx1φ

(
x2

⊥
) = f2(x)

dx3

dτ
= v3 = f3,

dt

dτ
= v0 + Zg2

mr
= f0. (6.7)

We have neglected the quantum fluctuations specified by variations of the PN ,
QN terms, so that xµ(τ ) acts as the effective position and time coordinates of
a particle with momentum p. Note that the 4-velocities calculated from (6.7)
will not, with constant vµ, satisfy the mass-shell condition.
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To test for chaos, one is instructed1,2 to calculate the local, or instantaneous,
Lyapunov exponents λα as the eigenvalues of the Jacobian of continuous
transformation: det | δ f

δx − λ|, and then to average the λα – there is a variety
of ways to do this – over a sufficiently long τ -interval (such as a period, or
periodic orbits), to be able to see if any 〈λα〉 may be considered a positive con-
stant over that interval; if so, the system is expected to be unstable, and perhaps
chaotic. In this case, the calculation of the local exponents is straightforward,
yielding two zero exponents and a pair which satisfy

λ = ±iωφ
[
1 + 2x2

⊥(φ′/φ)
]1/2

. (6.8)

From (6.8), it is clear that a constant magnetic field, B → B0, for φ → 1,
corresponds to imaginary roots, and thus to pure oscillations in the distance
between neighboring trajectories. Hence, this Green’s function, in its semi-
classical limit, does not display the chaotic behavior found in the classical limit;
and the reason for the difference appears to be that the “motion” to which (6.7)
corresponds does not contain the needed mass-shell restriction. If the map (6.6)
is altered so that the mass-shell condition is maintained, one finds equations
reminiscent of Hamilton–Jacobi theory, in which the same analysis does lead
to the possibility of chaos.

If we allow the ratio φ′/φ to become sufficiently negative to convert the square
root of (6.8) to imaginary values, one might hope to gain a positive eigenvalue.
However, if the magnetic field is allowed to fall away to zero, or even to change
sign, the “recurrence” of the motion will be lost, as the particle moves out to
larger and larger x⊥ values. What is needed, then, is another augmentation so
that the particle is bound in a narrow x⊥ range, and where the possibility exists
that the average value of one exponent will be positive.

This motion, however, appears to be integrable,7 with explicit, oscillatory
solutions possible in relevant energy ranges. In order to achieve chaotic mo-
tion in the present context, one must retain at least a part of the oscillatory
τ-dependence contained in the PN , QN terms. Then the problem is no longer
integrable, overlapping frequencies will appear, and chaotic motion almost al-
ways occurs. Examples of this are well known in the mathematical literature
of chaos,2 and in the present context signify that there is a fundamental uncer-
tainty built into any of these approximations to the exact Green’s functions of
first quantization which contain vectorial interactions. Note that the sum over
all such PN , QN terms need not lead to chaos; it is only when these correc-
tions to the semi-classical behavior are taken into account, involving specific,
oscillatory τ-dependence, that one can expect KAM tori, on which a phase
point would move, to be disrupted, and Arnold diffusion of that phase point to
appear, heralding the onset of chaos.
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6.2 Chaos suppression in second quantization

Consider the exact representation of Chapter 5 for the calculation of the simplest,
two-point function of QED, the dressed fermion propagator in an external field,

〈p|S′
c[Aext]|p′〉 = eDA〈p|Gc[Aext + A]|p′〉 · eL[Aext+A]

〈S[Aext]〉
∣∣∣∣

A→0

, (6.9)

where DA = − i
2

∫
δ

δAµ
Dc,µν

δ
δAν

, Dc,µν is the (bare) photon propagator
(containing a mass µ, as temporary insurance against any IR difficulty), L[A] =
Tr ln(1 + igγ · ASc) is the fermion closed-loop functional, associated with
the vacuum-to-vacuum amplitude as normalization factor 〈S[Aext]〉 =
eDA eL[Aext+A]|A→0. As described and used in previous chapters, the functional
linkage operations here are exactly equivalent to Gaussian-weighted functional
integration,

eDAF[A]|A→0 = N
∫

d[A]e− i
2

∫
A(µ2−∂2)AF[A],

where µ2 − ∂2 = D−1
c , and N−1 is the same functional integral but with F[A]

replaced by unity.
It will be simplest to work in the “quenched” approximation, neglecting

the A fluctuations of L[Aext + A]; this means the replacement of L[Aext + A]
by L[Aext], and 〈S[Aext]〉 by exp{l[Aext]} in (6.9). This simplification is not
essential to subsequent arguments, for one can include arbitrary powers of
L[Aext + A] fluctuations with unchanged conclusions. The same remark is true
for all other n-point functions of the theory, as will be made clear below.

We now ask the reader to return to the exact representation (5.30) of Gc[A]
before the final

∫
d[φ]

∫
d[�] integrations were performed; in compact notation,

this can be written as

〈p|Gc[A]|p′〉 = i
∫ ∞

0
ds e−ism2

∫
d4z e−iq·z+isq2/4�′

N

(−i)2

(2π )4

·
∫

d4 PN d4 QN e
i
2 (P2

N +Q2
N ) · N ′

∫
d[φ]

∫
d[�]F[�]

· exp

{
i
∫ s

0
ds ′φµ(s ′)

[
�µ(s ′) − g Aµ

(
ζ (s ′) − 2

∫ s ′

0
�

)]}
,

(6.10)

where F[�] represents all the remaining �-dependence visible in (5.30). For
simplicity, we suppress the σ · F OE of (5.30); but that dependence can be
incorporated without difficulty, and the conclusions are unaltered. The effect
of all the radiative corrections corresponding to non-perturbative fluctuations
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of the quantized electromagnetic field can now be seen by inserting (6.10) into
the quenched version of (6.9):

〈p|S′
c[Aext]|p′〉 = eDA〈p|Gc[Aext + A]|p′〉|A→0. (6.11)

The essential operation is the linkage operator acting on the second line of
(6.10), which yields

N ′
∫

d[�]F[�]
∫

d[φ]ei
∫ s

0 ds ′φµ fµ

· exp

[
i
g2

2

∫ s

0
ds1

∫ s

0
ds2φµ(s1)Dc,µν(�)φν(s2)

]
, (6.12)

where

fµ(s ′) = �µ(s ′) − g Aext
µ

(
ζ (s ′) − 2

∫ s ′

0
�

)

and

�(s1, s2) = (s1 − s2)(p + p′) − 2
∫ s1

s2

ds ′′�(s ′′).

The functional integral (FI) of (6.12) is now Gaussian, and produces

[N ′]
1
2

∫
d[�]F[�]e−1

2 Tr ln K

· exp

[
− i

2

∫ s

0

∫ s

0
ds1ds2 fµ(s1)〈s1|(K −1)µν |s2〉 fν(s2)

]
,

or

[N ′]
1
2

∫
d[ f ]F[ f + g Aext]e−1

2 Tr ln K · e− i
2

∫
f ·K −1· f · exp

{
−tr ln

[
1 − g

δAext

δ�

]}
,

(6.13)

where 〈s1|Kµν |s2〉 = g2 Dc,µν(�). Equation (6.13) is a Gaussian-weighted FI
over

∫
d[�], or over

∫
d[ f ], which is sufficiently complicated that it cannot

be evaluated explicitly. However, the map of (5.33) no longer appears, nor
will the possibility of chaos which results from that map. Here, the sharp
δ-functional has been replaced by a smoother, Gaussian-weighted integrand
over a kernel defined by the radiative corrections; and however complicated the
non-perturbative result may be, it is not the chaos of Section 6.1. Rather, it is a
clear example of what has been termed8 “environment-induced decoherence”,
as the radiative corrections remove the special coherence of the δ-functional,
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along with the map that can lead to chaos. It is straightforward to see that
the same conclusions will be reached when any number of Gc[Aext + A] and
L[Aext + A] factors are included, and hence the possibility of chaos stemming
from vectorial interactions in QED (and, similarly, in QCD) is removed by the
totality of radiative corrections.

An interesting explanation of this effect has been suggested in a recent paper
by Dabaghian;9 and while the method used is somewhat heuristic, and not math-
ematically rigorous, it is intuitive and well worth describing in some detail.
Dabaghian first rephrases the Fradkin representation of Gc[A] in terms of a
functional integral over particle-like trajectories xµ(s), with vµ(s) = dxµ(s)/ds,
which are solutions to an effective, dynamical equation, dxµ

ds = 1
m Pµ(s) −

g
m A(0)

µ (x), that (depending on A(0)
µ ) may or may not be chaotic. The quenched

propagator , S′
c[A(0)], with full radiative corrections, is then exhibited as a FI over

a new, vector field Aµ, which displays Gaussian-weighting [in the difference
variable g(A − A(0))] over a quantity that resembles the original Gc[A(0)], but
is defined in terms of solutions to the dynamical system dxµ/ds = 1

m Pµ(s) −
g
m Aµ(x). For the quantity |S′

c[A(0)]|2, Dabaghian then shows how the properties
of these effective, dynamical systems can be compared and understood.

The behavior of each system can be analyzed in terms of trajectories of
an equivalent phase-space point. There is, for |S′

c|2, an FI to be estimated,
whose major contributions arise from trajectories corresponding to phase-point
motion on KAM tori of effectively-integrable systems. If the original A(0) sys-
tem is chaotic, its phase point can display “Arnold diffusion”,10 as it wanders
in-between the web of rational tori. According to this picture, a system will
naturally use available tori in phase space to produce the most important contri-
butions to a relevant FI; but if the number of conserved integrals-of-motion of
that system is less than the number of degrees of freedom, a portion of its trajec-
tories will wander over the phase space and display the “diffusion” associated
with chaos.

But once the radiative corrections are included, the situation changes drasti-
cally. New, “virtual tori” appear, corresponding to motion defined in terms of
Aµ, rather than A(0)

µ ; and the important contributions to the new integral will be
those corresponding to the effectively-integrable motion of the phase point on
these new, virtual tori. Although the functions Aµ are “g-close” to the original,
chaos-inducing A(0)

µ , in the sense of the Gaussian-weighted distribution, some
of the systems characterized by Aµ are certainly integrable; even more, it is
known that integrable trajectories are dense around each non-integrable trajec-
tory, so that those Aµ which correspond to integrable systems are not rare. In
the limit when the radiative corrections’ coupling g → 0, the Gaussian distri-
bution simply yields the result corresponding to the original A(0) system, as all
quantum field-fluctuations disappear, and so do the virtual tori. This means that
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the “white noise” of the radiative corrections in effect restructures the phase
space, and in this way removes the original chaos of the A(0) system.

The interested reader is urged to refer to Dabaghian’s paper for relevant,
mathematical details. In the next section, we define a crude method for applying
“radiative corrections” to a pair of simple, well-known, classical, chaotic sys-
tems; and observe that such “quantum fluctuations” do indeed tend to suppress
the original chaos. And the way in which this happens, in the most striking
example, is very much suggestive of a phase point initially displaying chaotic
“wandering”, and then suddenly finding a new, Dabaghian, multiply-periodic
set of orbits, corresponding to subsequent, integrable motion.

6.3 Fluctuation-induced chaos suppression

Even though the chaos displayed by solutions to the differential equations (DEs)
of this section have little to do with that generated by interactions with a vector-
function A(0), the inclusion of external random and/or chaotic fluctuations –
which mimic the above radiative corrections – can be performed in such a
way as to correspond to the behavior of (macroscopic) quantum fluctuations. It
should be emphasized at the outset that this is not an attempt to remove chaotic
behavior in a sophisticated manner, such as that suggested by Auerbach et al.,11

wherein one tries to anticipate and direct the motion of a chaotic phase-space
point; rather, the method suggested here goes best by the name “brute force”,
and leaves various questions unanswered. (For example: what is the form of
the new, integrable Hamiltonian?) Nevertheless, one observes behavior which
is strongly suggestive of Dabaghian’s analysis; and which, therefore, deserves
a rigorous, mathematical proof, or disproof.

Imagine a DE whose solution x(t) displays obvious chaotic behavior. We
insert into the DE, in an appropriate fashion, “oscillatory” time dependence,
say cos(tω), where ω is first chosen as a random input function, ω(t). Then, in the
numerical integration of the resulting equations, there will be uncontrollable
fluctuations �ω at each step, which roughly corresponds to the insertion of
quantum fluctuations of a system satisfying an h̄ ∼ 1 version of the Heisenberg
Uncertainty Principle. Essentially, large fluctuations are associated with small
time-intervals, while the large-time behavior of the system should correspond to
averaged ω-variations of smaller magnitude than the individual�ω fluctuations.

The result of this insertion is a clear diminution of the region of phase space
in which chaotic motion takes place. If one goes a step further, and replaces the
external ω(t)-fluctuations in the original DE for x(t) by internal x-fluctuations,
one finds that, after an initial period of “diffusion”, the chaos is apparently re-
moved, as the phase-point’s motion appears to become integrable. This suggests
that the phase point “wanders” just until it finds a nearby, Dabaghian virtual
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Fig. 6.2 f (t) = 0.05 sin(t)

torus, about which it then performs integrable motion. Similar effects occur for
a second, well-known system, whose original chaos is of a completely different
origin.

In detail, consider the forced Duffing model, described by the DE
ẍ + (x2 − 1)x = f (t). For f (t) = 0, and the initial conditions (which are not
relevant to the procedure) x(0) = 2, ẋ(0) = 0, one has a well-known problem
with solution given by the Jacobi elliptic function corresponding to positive en-
ergy, as shown in Fig. 6.1. Chaotic motion is most simply achieved by choosing
f (t) oscillatory, beginning with a small magnitude, as in Fig. 6.2, and proceed-
ing to an amplitude of reasonable magnitude, e.g., f (t) = 5 sin(t), as in Fig. 6.3.

The phase portrait of Fig. 6.3 leaves no doubt that this is now a chaotic sys-
tem. Imagine another system with a random coordinate, or perhaps a system
with a phase portrait similar to that of Fig. 6.3, and denote its coordinate by y(t).
Then, the coupling of this external, chaotic “y-system” can be accomplished
by inserting a certain measure of y-dependence in f (t), replacing the latter by
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f (t · H (y)), where H (y) may be chosen in a variety of ways, of which perhaps
the simplest is illustrated in Fig. 6.4, H (y) = y. Because H (y) is chaotic, and
is therefore in some measure random, one can think of H (y) as a frequency
ω = E/h̄, whose random variations correspond to quantum-like energy fluctu-
ations of “classical” size. One sees that the phase point is essentially confined to
the darker, band-like regions of phase space, within which the motion appears
chaotic.

Since the motion within the bands is still chaotic, one may ask if it is
necessary to use an external chaotic signal, H (y); why not simply use the
chaotic self-interaction H (x)? Accordingly, we again begin with the chaotic
choice f (t) = 5 sin(t) of Fig. 6.3, and then replace this by f (t H (x)), with
H (x) = 1 + cx , with increasing values of c as shown in Figs. 6.5, 6.6, and 6.7.
Now what happens is clear, and quite attractive. After a few chaotic-seeming
excursions, the previous band-motion is replaced by a combination of small,
rapid oscillations superimposed on a (relatively) slowly varying background.
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As the parameter c is increased, the rapid oscillations decrease in size, while the
background figure resembles more and more closely the original Jacobi solution
without forcing. It is the combination of initial, wild excursions, plus an abrupt
settling down to motion which certainly looks integrable (rapid oscillations on
a slowly varying background), that brings Dabaghian’s “virtual tori” to mind,
and gives one the hope that his intuitive analysis can be made mathematically
precise.

A similar, self-interaction effect can be seen for the chaotic system defined
by the pair of coupled-oscillator equations

ẍ + y2x = 0, ÿ + x2 y = 0,

which can be re-written in first-order form as

ẋ = u, u̇ = −y2x, ẏ = v, v̇ = −x2 y. (6.14)

These equations follow from the variation of the Lagrangian

L = 1

2
(ẋ2 + ẏ2) − 1

2
x2 y2,

which generates a conserved Hamiltonian as the only constant of the motion.
Instantaneous Lyapunov exponents are easily calculated, and one can show that
there always exists one which is positive, indicative of instability, and in this
case, chaos. When (ẋ, x) and (ẏ, y) phase portraits are calculated, that chaos
takes the form of unpredictable oscillations of both variable pairs such that, e.g.,
the x-motion resembles a horizontal oval, while the y-motion resembles a ver-
tical oval; and, then, unpredictably, the two motions are suddenly interchanged.

Now, let us add a “quantum mechanical” coupling to these equations, which
can be done in a variety of ways; e.g., by adding to the RHS of the second
and fourth equations of (6.14) the terms f0 cos(t x) and f0 cos(t y), respectively.
Immediately there is a change in the motion, with, e.g., the x-motion continuing
to be mainly vertical, while the y-motion takes the form of very slow horizontal
motion; it is as if chaos is here being removed, or at least suppressed, because
the y-motion is almost fixed in place, while the x-motion appears integrable.

To a physicist, from these two examples it is intuitively clear that such
“quantum-mechanical” coupling can act to remove chaos; to a mathematician,
the problem has just barely been formulated. But the questions of if and how
this procedure does work are surely most interesting. The above results are the
antithesis of previous examples where periodic forcing is used to remove the
chaos originally present in a Lorenz model.12 They do have a certain similarity
to the biological observations of Halloy et al.,13 where the coupling of chaotic
cells to periodic cells tends to suppress the original chaos (as the combined
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systems bifurcate towards a different regime of total chaos). Here, however, we
are basically considering the interaction of two chaotic systems, or of the self-
interaction of a single chaotic system; and we find that the chaos of the affected
system becomes limited in the sense that the chaotic regions of phase-space tend
to be squeezed into bands, or, for the self-interacting system, that the chaotic
system is apparently changed by the quantum-mechanical fluctuations into one
strongly resembling an integrable system14.
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Infrared approximations

No book on Green’s functions can omit a discussion, however brief, on the sub-
ject of Infrared (IR)/no-recoil/Block–Nordsieck models, which have played a
central role in the description of those processes for which there is a clear, phys-
ical separation between large and small frequencies. The most famous example
is probably the removal of all IR divergences in QED, and the way in which
this may most simply be illustrated clearly exhibits the power of functional
methods.1 A second example, which has hardly received the attention it merits,
is the propensity of virtual soft-photons to damp processes involving large mo-
mentum transfers,2 a subject which will be briefly described in Section 7.2.

In modern language, the true role of soft photons, or very low-frequency
photon fluctuations, was anticipated by Bloch and Nordsieck in their seminal
paper3 of 1937; but not until almost two decades had passed was a proof given
of the cancellation of all IR divergences for any scattering process in QED. The
latter constructions, by Yennie, Frautschi, and Suura,4,5 were performed by
identifying and extracting the IR divergent terms in every order of perturbation
theory, and then summing over them all to obtain a final |amplitude|2 explicitly
free of all IR divergences. Shortly afterwards, Schwinger6 and Mahanthappa7

invented a functional method for the direct calculation of probabilities, in which
the IR difficulties never appear. Following in these footsteps, the author has
given explicit functional constructions1 in which the IR divergences of QED
are shown to cancel, leaving behind the residual and experimentally-important
“radiative corrections”;4 and the starting point for those functional calculations
was the construction of the electron propagator GBN[A] in the limit where
the frequency k of Ãµ(k) is much smaller than the relevant electron momenta
p: |k2| � |p · k|. Such approximations were originally defined without the aid
of the Fradkin representation, and for completeness and subsequent usage in an
eikonal context, Section 7.1 reproduces the corresponding Svidinski/Symanzik
construction;8 for the application of this result to the functional elimination of
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IR divergences, the reader is referred to the books of Note 1, as well as for a
brief description of how and when IR divergences are removed in QCD.

Section 7.2 deals with the damping of large-momentum-transfer processes
by soft, virtual photons; and a use for this property is displayed by recalling
simple, two-parameter fits to well-known electromagnetic-vertex form factors,
and wide-angle scattering amplitudes.9 Even though this material is some three
decades old, it is, in the author’s judgement, worth mentioning because of the
very real possibility that analogous forms (with one important difference) in
QCD may be able to shed some non-perturbative light on spin-polarization
experiments at high energies and large momentum transfers; this will be briefly
discussed in Sections 8.1 and 8.2. In Section 7.3, the forms of GBN[A] are used
to set up eikonal representations of scattering amplitudes in particle physics, as
an introduction to Section 8.4; and, finally, in Section 7.4, IR approximations
and their rescaling corrections for non-scattering problems – another subject
deserving of more attention than it has received – are briefly discussed.

7.1 The Block–Nordsieck approximation

We work directly with the fermion Gc[A] of QED, satisfying

[m + γ · (∂x − ig A(x)]Gc(x, y|A) = δ(4)(x − y), (7.1)

or, using our previous, formal notation,

[m + γ · (∂ − ig A)]Gc[A] = 1. (7.2)

This Gc[A] is to describe a charged fermion emitting or absorbing real or virtual
photons (or any NVM quanta to which the fermion field is coupled); and since
4-momentum conservation must hold in every such emission or absorption,
the fermion motion must reflect this conservation. However, if the fermion
momenta are much larger than the boson momenta emitted or absorbed, the
fermion hardly suffers any recoil in each such event. This is just the IR limit
of QED, where only very small photon 4-momenta are considered; it is also a
useful limit that can be applied in other situations, when the fermion 4-momenta
are large, and the boson mass need not be zero.

In all such cases, the essential physical approximation is the lack of fermion
recoil. The mathematical expression of this limit is the replacement of the
Dirac γµ matrices by c-number constants, −ivµ, representing an “averaged”
fermion 4-momentum, unchanged by multiple soft emission and/or absorp-
tion. Here, vµ is to represent the 4-velocity, vµ = pµ/m, of that (incoming or
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outgoing) fermion which appears, e.g., in an appropriate place in the functional
construction of a scattering amplitude; in each case, v2 = −1, and in that
fermion’s rest frame, v0 = +1. The basic DE satisfied by Gc[A] is now changed
to read

[m − iv · (∂ − ig A)]G(v)
BN[A] = 1, (7.3)

and may be solved exactly for any A(x). Note that (7.3) is a first-order DE –
basically non-relativistic, in spite of the 4-dimensional notation, because the
antiparticle pole in the k0 plane is missing – and its solutions may be expected
to be either “retarded” or “advanced”; our construction yields the former.

The solution for G(v)
BN[A] proceeds in a manner similar to (but much simpler

than) the Fradkin construction of Chapter 3; one writes the inverse of (7.3) in
the form

G(v)
BN[A] = i

∫ ∞

0
ds e−is[m−iv·(∂−ig A)] = i

∫ ∞

0
ds e−ism · e−sv·∂ F(s), (7.4)

where F(s) = esv·∂ · e−sv·(∂−ig A).

To determine the explicit form of F(s) one calculates the variation of its 〈x |
projection with respect to s,

〈x |∂ F

∂s
= ∂

∂s
〈x |F(s) = igv · A(x + sv)〈x |F(s),

so that

〈x |F(s) = eig
∫ s

0 ds ′v·A(x+s ′v)〈x |,

and

G(v)
BN(x, y|A) = i

∫ ∞

0
ds e−ismδ(4)(x − y − sv)eig

∫ s
0 ds ′v·A(x−s ′v). (7.5)

Note that GBN[A] is a retarded function in any Lorentz frame, and hence the
L[A] constructed from (7.5) must vanish.

In order to proceed from n-point functions to S-matrix elements, certain
operations upon the former are necessary; in particular, the requirement of
mass-shell amputation8 is paramount. Here, one must, e.g., take Gc(u, x |A),
where x corresponds to an incoming configuration-space variable, and operate
upon this Gc with the Dirac operator [m − γ · ∂x ] or [m + iγ · p], then cal-
culate its Fourier transform

∫
d4x exp[+ip · x], and then go to the mass shell

(which, between Dirac spinors, means the algebraic statement equivalent to the
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limit: m + iγ · p ⇒ 0). For our BN model, this is simply the combination∫
d4xeip·x G(v)

BN(u, x |A)(m + v · p)|m.sh.,

which, after an integration by parts, yields

eip·u · exp

[
ig
∫ ∞

0
ds v · A(u − sv)

]
. (7.6)

Similarly, if y denotes an outgoing particle, of momentum p′, one obtains∫
d4 y e−ip′ ·y(m + v′ · p′)G(v′)

BN(y, w|A)|m.sh.

= e−ip′ ·w · exp

[
ig
∫ ∞

0
ds v′ · A(w + sv′)

]
. (7.7)

Both (7.6) and (7.7) are quite useful relations, for both close-to-forward and
wide-angle scattering, as will be seen in the following sections.

7.2 IR damping at large momentum transfers

Imagine that a charged particle is scattering in a weak, external field, for which
the Green’s function Gc(x, y|A + Aext) is needed, with A(z) denoting the vector
potential of the fluctuating (“soft”) electromagnetic field. To first order in Aext,
one writes

Gc(x, y|A + Aext) � Gc(x, y|A) + ig
∫

d4zGc(x, z|A)γ · Aext(z)Gc(z, y|A),

(7.8)

where the first RHS term of (7.8) may be dropped, since the reaction we wish
to study requires at least a first-order dependence in Aext, in order to achieve the
desired wide-angle scattering. We now specialize to the case of soft photons,
replacing the remaining RHS term of (7.8) by

ig
∫

d4zG(v′)
BN(x, z|A)γ · Aext(z)G(v)

BN(z, y|A), (7.9)

where v = p/m and v′ = p′/m; this corresponds to a (semi-classical) electron
scattering from y to x , with a corresponding momentum change from p to p′.
From Section 2.5, one sees that the quantum fluctuations of the electromagnetic
field for this process – and here we adopt the “quenched’ simplification, ne-
glecting closed fermion loops, with L[A] → 0, 〈0|S|0〉 → 1 – are expressed by
the linkage operator exp[−(i/2)

∫
δ

δA Dc
δ

δA ], where Dc(k) = [k2 + µ2 − iε]−1

is the free, causal photon propagator, in (for simplicity) the Feynman gauge,
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Dc,µν = δµν Dc, and µ is a small photon mass inserted to regulate any untoward
IR divergences.

All the A-dependence here lies in the exponential factors of (7.6) and (7.7);
and the linkage operation (after which A → 0) is immediate, generating

exp

[
i

2
g2v2

∫ ∞

0
ds1

∫ ∞

0
ds2 Dc([s1 − s2]v)

]

· exp

[
i

2
g2v′2

∫ ∞

0
ds1

∫ ∞

0
ds2 Dc([s1 − s2]v′)

]

· exp

[
ig2(v · v1)

∫ ∞

0
ds1

∫ ∞

0
ds2 Dc(s1v + s2v

′)
]
. (7.10)

The first two RHS terms of (7.10) are associated with the self-energy structure
of the incoming and outgoing electrons, and a similar factor appears in the
proper definition of the S-matrix which relates the Green’s function to the
desired probability amplitude; the combination, treated in detail in HMF#1 and
HMF#2, produces the multiplicative factor

exp

[
ig2

2(2π )4

]
d4k

k2 + µ2 − iε

(
p

k · p + iε
− p′

k · p′ + iε

)2

, (7.11)

where both p and p′ are assumed to be on their mass shells, p2 = p′2 = −m2.
For small, virtual, photon momenta, (7.11) multiplied by γµ represents the
soft-photon renormalized vertex function to all orders in g2.

In the limit of µ → 0 the exponential of (7.11) displays an IR divergence,
which, in QED, will damp to zero every amplitude constructed from it, unless
the possibility of scattering and simultaneously producing an infinite number
of real, soft photons is calculated; and in that case all IR divergent factors in
the expression for the probability of this process exactly cancel. If one studies a
massive NVM theory, so that one need not consider soft-photon production in
order to remove the IR divergences, then the evaluation of this vertex function is
of considerable interest, for it provides a significant damping at large momentum
transfer, real or virtual. As it stands, however, (7.11) requires a UV cut-off,
simply because all virtual photon momenta considered in its construction were
initially assumed soft. Other forms, used in the classic papers of Notes 4 and 5,
have replaced the combination

(
p

k · p
− p′

k · p′

)2
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of (7.11) by (
2p + k

k2 + 2p · k
− 2p′ + k

k2 + 2p′ · k

)2

,

which resembles the ordinary perturbative functions – and does not require a
UV cut-off in (7.11) – and which will lead to an extra factor of ln(q2/m2) in
the exponential of (7.11) for q/m � 1, e.g.,

�µ ∼ γµ exp[−λ ln2(q2/µ2)], λ > 0,

a result originally obtained by Jackiw10 as the sum of the leading ln(q2) depen-
dence in every order of perturbation theory for the vertex function in massive-
photon QED.

The required UV cut-off of (7.11) can be conveniently arranged by inserting
under the k-integral the factor exp[−iαk2], where the variable α is treated as
a real, positive number, and at the end of the calculation is continued to an
imaginary value according as α → −iµ−2

c , where µc represents a real, positive
cut-off with dimensions of mass. With this prescription, the exponential of
(7.11) may be easily evaluated to yield γ F(t), where

F(t) = t
∫ ∞

4m2

dt ′

t ′
1

(t ′ − t)

(
1 − 2m2

t ′

)(
1 − 4m2

t ′

)−1/2

, (7.12)

and

γ = g2

8π2

∫ ∞

0

db

b + µ−2
c

e−bµ2 � g2

8π2
ln
(
1 + µ2

c/µ
2
)
.

One pleasant feature of this method of approximation is that the three constants
needed to specify the soft exchanges, g, µ, and µc, coalesce into the single
constantγ , which may be treated as a parameter to be determined by experiment.
For negative t, F(t) is real and negative,

F(t) = 1 − 2x + 1

[x(x + 1)]1/2
· ln (

√
x + √

x + 1), x = − t

4m2
> 0,

with limiting forms t/3m2 and −ln(−t/m2) for small and large −t , respectively.
If m denotes the nucleon mass, a very good approximation for all −t (and |t | in
GEV2) is given by F(t) = −ln(1 + 0.4|t |); and this has been used to give a two-
parameter fit to the nucleon electromagnetic form factors9 which is considerably
better than the more common, empirical, two-parameter dipole-fit formula.

For positive argument, one can show that Re F(s) = F(4m2 − s), a relation
which becomes part of quality, wide-angle fits to nucleon–nucleon scatter-
ing at large momentum transfers. Here, one has an exponential factor of the
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form (7.6) or (7.7) for each fermion leg entering or leaving the reaction, and the
soft linkages across each pair of legs produce damping of the scattering ampli-
tudes, leading in the appropriate limits to experimentally-observed behavior:
for s → ∞ and fixed (but large) |t |, to the Chou–Yang–Wu observation;11 and
for large s, −t, −u, to qualitatively correct dependence on the Krisch variable,
ut/s.12 In brief, at least for energies below which one must seriously take the
quark/gluon content of matter into account, these IR summations provide a
simple way of understanding a wide range of experimental data.

There is another, and somewhat tantalizing, theoretical idea which may be
worth mentioning. Ordinary perturbation theory, e.g., of massive NVMs cou-
pled to fermions, is plagued with UV logarithmic divergences which happily
disappear when renormalization – the passage, as Schwinger used to say, from
the field to the particle point of view – is taken into account. Some years ago,
such divergences were taken seriously, with Källén13 arguing that at least one of
the renormalization constants of QED was infinite, while Baker and Johnson14

tried to develop a scheme that would tie the vanishing of these UV divergences
to the experimental value of the renormalized, fine-structure constant. Now, of
course, we know that QED cannot be considered independently of the weak
interactions, while many believe that the weak, strong, and electromagnetic
interactions are just broken-symmetry forms of a grand unified theory. What-
ever one believes, we still characterize our theories in terms of perturbative
expansions: is it renormalizable or not? But even for the simplest of non-
trivial, 4-dimensional theories, order-by-order the renormalization constants
diverge.

Our experience above of summing over soft, NVM radiative corrections
suggests that a modified perturbation expansion (MPE) might be possible: not
an expansion in powers of an unrenormalized coupling, but rather an expansion
in “powers” of boson propagators which contain only large momenta, with the
soft linkages counted as the zeroth part of the expansion. Could such a MPE
generate a sequence of terms each of which is finite before renormalization?

A simple example will make this clear. Consider the simplest, fermion, self-
energy graph; but for one vertex – as suggested by the corresponding Dyson–
Schwinger equation – insert the soft-photon, renormalized, vertex function
under the integrand. It is not difficult to see that the IR damping obtained above
for large k2 when both fermion legs were on their mass shell is still present –
although changed somewhat in form – if only one fermion leg is on its mass
shell; and since the integrand without the soft-damping is only logarithmically
divergent, any extra convergence factor at large k will be sufficient to render
the entire integral finite. This suggests a scheme in which all soft radiative
corrections are introduced and retained as the very first step of an MPE, while
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higher-order corrections are obtained by expanding in the number of “hard”
virtual quanta exchanged.

Any such scheme must preserve the gauge-independence of L[A], or L[F].
Any function of Fµν is, by definition, gauge invariant in QED; but in QCD, where
L[F] is rigorously gauge invariant, any approximation to L must also display
that property. What is required here is invariance under local, configuration-
space transformations; but the IR approximation begins with a local restriction
in momentum space. How can any IR prescription, which is then non-local in
configuration space, be compatible with invariance under local, configuration-
space transformations? In fact, this is possible; and three distinct methods
for preserving the QCD gauge invariance of the final results are described
in HMF#2.

The same source describes an IR approximation to L[F] in QED, which is
a generalization of Schwinger’s solution for the special case when the Fµν are
constant; there the frequency components of Fµν are not zero, but are care-
fully arranged to be (qualitatively) less than the loop momenta. For technical
reasons, a second, “multipole” approximation is here required and introduced.
From this L one constructs, by functional differentiation, the photon propagator
containing all possible “soft” radiative corrections, a quantity which superfi-
cially appears to be finite, and which would enter into the subsequent “hard”
corrections. The word “superficially”, however, is most appropriate, because
of the need to blend gauge invariance with such soft-photon corrections in the
lowest and in every subsequent order. It is not clear, as least to the present author,
that this can actually be done; but the damping of hard momenta by sums over
virtual soft momenta suggests that this approach should be tried, for it could
well lead to finite QFT, even for interactions which are presently believed too
“non-renormalizable” to be attempted by ordinary perturbation theory.

7.3 Eikonal scattering amplitudes in particle physics

A brief but self-contained, functional derivation of eikonal scattering amplitudes
may be found in HMF#1 and HMF#2, and need not be repeated here; this
subject requires a certain familiarity with the S-matrix, and the way in which
its elements may be expressed in terms of appropriate, mass-shell-amputated,
n-point functions of QFT. Perhaps the most comprehensive collection of eikonal
references may be found in the book by Cheng and Wu,15 whose later chapters
describe the perturbative calculations which have been made for the eikonal
function in QCD. The intent of the present remarks is more in the nature of
a survey of what has been done, rather than a derivation of those results; and
to set the stage for an explicit and partially complete eikonal for high-energy
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scattering in the so-called “multiperipheral model”, as derived in the following
chapter and involving a soluble and most relevant Green’s function.16

Aside from multiplicative and renormalization constants, the essence of the
connection between Green’s functions and corresponding S-matrix elements,
in the limit of large scattering energy and small momentum transfer, lies in
the exponential factors of (7.6) and (7.7). When the scattering fermion couples
to an NVM, and the exchange of arbitrary numbers of NVMs between a pair
of scattering fermions is desired, eikonalization of the amplitude takes place17

such that the scattering amplitude is expressed in terms of an eikonal function

T (s, t) = is

2m2

∫
d2beiq⊥·b[1 − eiχ (s,b)

]
, (7.13)

where −t = q2 and s = (total CM energy)2. The eikonal is a function of impact
parameter b, and of s; and for the simple case of the exchange of an arbitrary
number of virtual NVMs between the scattering fermions, one finds the result

iχ1(b, s) = − ig2

2π
γ (s)K0(Mb), γ (s) = (s − 2m2)√

s(s − 4m2)
, (7.14)

where g is the fermion-NVM coupling constant, and M denotes the NVM mass;
to this eikonal there correspond the graphs of Fig. 7.1. At high energies, the
invariant differential cross section is given by dσ/dt = (m4/πs2)|T |2, while
the total cross section is given by

σTOT(s) = 2Re
∫

d2b
[
1 − eiχ (s,b)

]
. (7.15)

Equations (7.13) and (7.15) are generic results, for any eikonal function, while
(7.14) denotes the eikonal built from virtual NVM exchange between the
scattering fermions.

One should understand, at least qualitatively, the straightforward, non-
perturbative steps involved in the passage from (7.6) and (7.7) to (7.13) and
(7.14). These steps consist of the following operations:

Σ
G

Fig. 7.1 The sum of all virtual NVMs exchanged between a pair of scattering fermions.



116 7 Infrared approximations

(i) Perform mass-shell amputation (msa) not on each Green’s function that
comprises T , but rather on each Green’s function obtained by first calcu-
lating either ∂T/∂g2 or ∂2T/∂g1∂g2, where g1,2 are the couplings of the
respective fermions to the NVMs. The reason for this indirect operation
is that each Green’s function then needs but one msa operation on one of
its coordinates, and passage may at that time be made to the BN forms of
(7.6) and (7.7). At the very end of the calculation, one must integrate over
the couplings to achieve T (g).

(ii) Retain, as the only explicit q-dependence, the difference of p and p′

in the exp[ip · z] factors of each fermion line, so that each fermion’s
A-dependence takes the form

ei
∫

d4w f µ

I,II(w)Aµ(w), f µ

I,II(w) = gpµ

I,II

∫ +∞

−∞
dsδ(w − xI,II + spI,II). (7.16)

(iii) Perform the linkage operations corresponding to the exchange of all possi-
ble NVMs between the two fermions. Because the A-dependence of (7.16)
is the exponential of a linear form, the linkage operation is immediate, and
yields the eikonal of (7.14).

It should be noted that total cross section calculated for this eikonal from
(7.15) becomes a constant, independent of s, as s/m2 → ∞, a fact which can
be understood physically by the observation that the only inelastic graphs of
this model are those of bremsstrahlung, and the latter always vanish for zero
momentum transfer.

The important observation made by Cheng and Wu18 was that, in massive
NVM QED, there is another type of inelastic process which can contribute
to inelastic production at small |t |/s, the so-called “multiperipheral” graphs
pictured in Fig. 7.2, which, by unitarity, correspond to the “inelastic shadow”
graphs of Fig. 7.3, graphs that must diminish the elastic amplitude if such

Fig. 7.2 An example of the tower graphs of Cheng and Wu. It should be understood that
sums are to be performed over all possible numbers of closed fermion loops, and that
all possible numbers of such towers are to be exchanged.
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2

Fig. 7.3 A representation of the absolute square of the production amplitude obtained
by calculating the absorptive part of the graph of Fig. 7.2.

Fig. 7.4 Scalar mesons exchanged between virtual NVMs, as a variant of the Cheng–Wu
model.

inelastic production increases as energies increase. In fact, there is a phase-
space factor proportional to ln(s/m2) for the probability of each fermion pair
to be produced in this way, which suggests that the graphs of Fig. 7.3 are
the relevant graphs to consider at high energies. Such “tower graphs” were
calculated by Cheng and Wu, and yielded an eikonal of the form

iχ2(s, b) = −asαe−µb, (7.17)

with a, α, µ constants, which leads directly to the estimate that σTOT(s) ∼
ln2 s + · · · in the limit of very high energies.18

Shortly after this observation, it was pointed out by various authors19 that
another, and simpler form of multiperipheral interaction generates a very similar
result; this appears if scalar particles are exchanged between the NVM pairs,
which are themselves exchanged between the scattering fermions, as in Fig. 7.4.
Again, the unitarity “shadow” corresponds to inelastic graphs of the form shown
in Fig. 7.5, where the phase-space of each scalar particle emitted contributes a
factor of ln(s/m2). The corresponding eikonal, constructed from the graphs of
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2

Fig. 7.5 A representation of the absolute square of the production amplitude obtained
by calculating the absorptive part of the graph of Fig. 7.4.

Fig. 7.5, takes the form

iχ2 � − a

ln(s/s0)
(s/s0)αe−µ2b2/ ln(s/s0), (7.18)

with a, α, µ, s0 constants, which leads to a very similar elastic amplitude, and
to the same form of high-energy σTOT(s) as that of Cheng and Wu.

A functional description of all the eikonal graphs, including those not con-
sidered by Cheng and Wu and successors, was formulated by the author,1 and
can be expressed in simple functional language. One begins by considering
fermions coupled to NVM fields, and the latter coupled to “scalar pion” (π )
fields; and one then organizes the functional pieces that are involved in the
desired scattering amplitude, discarding all terms which correspond to more
structure than that of NVMs exchanged between a pair of scattering fermions,
with all possible virtual π exchanges between all possible NVMs. In analogy
with the forms quoted above, the NVM interactions eikonalize, carrying with
them the composite substructures corresponding to multiple π exchange
between all possible NVMs, with a resulting expression for the eikonal

eiχ = exp

[
− i

2

∫
δ

δπ
Dc

δ

δπ

]
· exp

[
i
∫

fI · �̄c[π] · fII

]∣∣∣∣
π→0

, (7.19)

where �̄c(x, y|π ) denotes the propagator of a NVM of mass M in the presence
of a (fictitious) field π (z), Dc is the free propagator of a scalar pion of mass µ,
and the f µ

I,II denote the classical currents of the two fermions. The only modifi-
cation of (7.19), simple to perform in this functional context, will be to discard
all terms which correspond to self-energy structure of virtual π emission and
absorption along each NVM; the only graphs one wishes to retain are to cor-
respond to virtual π exchange between NVMs, and in all possible ways. We
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shall return to (7.19) in the next chapter, with the aid of a new expression for a
simplified �̄c[π ] which contains the essential Physics of this model.

7.4 IR approximations and rescaling corrections to non-linear ODEs

IR approximations to non-scattering problems such as the L[A] of Potential
Theory and QFT, to the motion of fluids governed by the Navier–Stokes and/or
Euler DEs, and to integrable, second-order ODEs have been presented, with ref-
erences, in the later chapters of HMF#2. The IR method introduced was, firstly,
used to discuss a suitably-modified Green’s function for each problem, and then
to perform an appropriate IR approximation designed to capture all (or almost
all) of the solutions’ relevant, long-distance, low-frequency behavior. Then, for
non-linear ODEs, global “glissando” rescaling corrections (GRC) were devised
to insert into those IR approximations some of the higher-frequency depen-
dence which had initially been discarded. The purpose of this section is to
simplify that IR/ODE analysis,20 illustrated most simply by the Duffing ODE,
and in particular to show explicitly how the first GRCs to the IR model corre-
spond to a significant improvement in accuracy obtained in a simple way. Thus,
with just a few moments’ work, one can construct an analytic solution whose
graph, to the naked eye, is indistinguishable from that of the exact solution, and
whose relevant “parameter of quality” deviates from that of the exact result by
less than 2%. The entire GRC procedure can be repeated, with the expected
(but as yet unproven) result of decreasing even further, in a global way, errors
that remain after the first GRC is employed.

For simplicity, consider the conservative Duffing equation, without damping
or sources,

d2x

dt2
= ẍ = −x · φ(x), φ(x) = x2 − 1, (7.20)

a DE which has a long history and many current applications; almost all the
statements made below will be relevant to more complicated, nonlinear φ(x).
The first (energy) integral of this system is

E(D) = 1

2
ẋ2 + V (x) = D2

2

(
D2

2
− 1

)
,

where V ′(x) = x · φ(x), and D is a maximum of |x(t)|, appearing here through
the initial conditions: x(0) = D, dx(0)/dt = 0.

In the reference in Note 20, a “wavelet”-type of IR approximation was
used to define an IR approximation to the Green’s function of this problem,
and methods of choosing sequential corrections to this IR approximation are
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suggested. However, it was noted there that by far the most efficient route to a
simple, analytic approximation to the exact Jacobi elliptic functions (for E(D)
positive or negative) or to the exact solution for E = 0 (x(t) = √

2/ cosh(t)) is
obtained by selecting any reasonable IR “smoothed” solution, and rescaling
that particular solution. We shall here choose the simplest possible form for a
smoothed, IR approximation to the exact solution for E(D) = 0, and show how
the RC procedure may be improved by using various forms of rescaling, and
one in particular that takes into account time-reversal-invariance of the expected
solution.

For such a second-order ODE, there are regions where one expects a positive
ẍ/x , and regions where this ratio is negative. From the DE, one sees that an
inflection point may occur when |x | = 1, and we shall call the t-value where
this takes place ti , and the difference between ti and the t-value at which our IR
model solutions satisfy |x | = 1 will be taken as the measure of the quality of
our approximation. From the exact Duffing calculation for E(D) = 0, and with
the initial condition that D = √

2 at t = 0, one sees that the solution begins in
an “oscillatory” region, that is, with ẋ/x negative; and that after x decreases in
magnitude to values x < 1, it finds itself in an “exponential” region. Since E(D)
is fixed at 0, both |ẋ | and x must continually decrease, as indicated by the DE,
which shows that the asymptotic fall-off of x(t) must take the form ∼exp[−t].
This problem is simple because there is but one transition, from oscillatory (O)
to an exponential (E) region; but the techniques can also be used20 even when
there are transitions back and forth between O and E zones.

As a “smoothed” IR approximation to the solution in the O region, we choose
xO(t) = √

2 cos(Mt), where M is a constant to be determined. If x(t1) = 1, this
requires Mt1 = π/4, and substituting this into the expression for E(D) = 0
requires that M = (2)−1/2, so that t1 = (π/4)

√
2 � 1.11. In comparison, the

exact inflection point occurs at ti = 0.881, so that there is a fractional error of
this relevant parameter of the amount (t1 − ti )/ti = 0.23. In the E region, the
solution must change to a decaying exponential, which we write as xE(t) =
exp[−N (t − t1)], and using continuity of x and ẋ at t1, rapidly determine that
N = M = 1/

√
2. One sees immediately, as plotted in Fig. 7.6, that the curves

x(t)

t

Fig. 7.6 A superposition of the simplest IR solution (top curve) with the exact, zero-
energy solution (bottom curve).
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of the exact and IR-approximated solutions are similar, but that the fall-off of
the latter is too weak, compared to the former, for essentially all t .

We now invoke the GRC, which will bring the two solutions into very close
agreement, for all t . The idea is to introduce a stretching, or a rescaling of all
values of time, in both the O and E regions. In the former, we keep the form of
the smoothed IR solution, but replace t by t · b(t), where b(t) is a function to
be determined,

x0(t) =
√

2 cos(Mt · b(t)),

and we expect that the O-to-E transition will now take place at a smaller time,
t2, where t2 < t1. In order to retain the same forms entering into the x and ẋ
continuity conditions at x = 1, one requires

[t · b(t)]t2 = t1 (7.21)

and

d

dt
[t · b(t)]t2 = 1, (7.22)

conditions which can be satisfied in a variety of ways. Following our “glissando”
idea, we use (7.21) to rewrite (7.22) in the form 1 = b(t2) + t1b′(t2)/b(t2), and
accomplish this by finding a solution of the DE for variable t < t2,

1 = b(t) + t1 · b′(t)
b(t)

, (7.23)

which is

b(t) = [1 − c e−t/t1 ]−1. (7.24)

Here, c is a constant to be determined by substituting the rescaled solution into
the original DE, which identifies b(0) = √

2, and hence c = 0.293. Finally, we
determine t2 by substituting (7.24) into (7.21), which yields t2 = 0.975, to be
compared with the previous value of t1 = 1.11. Instead of an error of more than
20% in the relevant parameter, the rescaled solution has reduced the error to
less than 7%.

With this new value of t2, it is not necessary to resort to a DE to determine the
scaling function in the E region, There, one already knows that the large-t fall-
off is incorrect, and one may trivially use the rescaling method to correct that
error. One simply writes the rescaled E-solution as xE(t) = exp[−N zbE(z)],
where z = t − t2, and uses the conditions for no change of normalization of the
continuity equations at z = 0 to obtain the pair of relations

[zbE(z)]z=0 = 0, and
d

dz
[zbE(z)]|z=0 = 1. (7.25)
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x(t)

t

Fig. 7.7 A superposition of the once-rescaled IR approximation to the exact solution.

A simple choice of function bE(z) which satisfies (7.25) and contains the correct
asymptotic form is just the fraction

bE(z) = (1 +
√

2z)/(1 + z), (7.26)

and one can then appreciate, from the superpositions of Fig. 7.7, the closeness
of the new, GRC approximation to the exact result.

Can these rescaling operations be repeated to generate an even closer ap-
proximation to the exact answer? There is no reason why this cannot be done,
except that the amount of work involved tends to become tedious. That is, in the
O region, one can introduce a new variable T = tb(t), and look for a solution
xO(t) = √

2 cos(MTB(T )), where B(T ) is a rescaling function to be deter-
mined so that the new transition time, t3, is even closer to ti than was t2. How
fast such iterations converge – assuming they do – remains to be determined;
but on the basis of the example of this section, one would expect a reasonable
convergence.

One very definite method of increasing the accuracy of these rescaling cor-
rections is to include any natural symmetry of the exact DE as part of the GRC
procedure. In this case, one can evoke a simple “time-reversal-invariance”,
which consists of the replacement: b(t) → b(t2). If we write the rescaled
O region solution as

xO(t) = cos[(Mtb(t2)],

then the scaling requirements analogous to (7.21) and (7.22) are given by

t2b
(
t2
2

) = t1, 1 = [b + 2t2b′]t=t2 = [b + 2t2t1b′/b]t=t2 , (7.27)

with b′(u) = db/du. If we choose the DE for b(u) as

1 = b + 2t1t2 · b′

b
, (7.28)
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with solution

b(u) = [1 − c e−u/2t1t2 ]−1, (7.29)

where b(0) = √
2 and c = 0.293, as before, one now finds that t2 = 0.893,

which is a very good approximation, corresponding to a relative error of the
inflection point of 1.5%.

In summary, this “glissando” method of using a rescaling to insert a spectrum
of frequencies higher than that, or those, chosen to provide a first IR approxima-
tion appears to work in a simple and straightforward fashion, and can provide
quality approximations for nonlinear, integrable ODEs. What is not known are
the convergence properties for multiple rescalings; nor have the complete set
of such rescaling methods been enumerated and compared. But for situations
where one desires an analytic, if approximate, solution for a given, nonlinear
ODE, the method outlined above would seem to provide the necessary tools;
and for this reason, the method would seem to justify serious mathematical
study.
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Models of high-energy, non-Abelian scattering

Ordered exponentials appear in Green’s functions in a natural and fundamental
way. There are, however, certain limiting situations in an Abelian theory where
kinematic simplifications make it possible to avoid treating the OEs which hap-
pen to be present. (An example in QED is the neglect of σ · F dependence
in the representation (3.31), and for two reasons: when the virtual NVMs ex-
changed are soft, each Fµν is proportional to a small momentum; and, for small
momentum transfers, the expectation value of any such spin quantity between
the fermions’ Dirac spinors will be very small. This is NOT true for wide-
angle scattering in QCD, and the OEs which remain can give rise to interesting
spin-polarization effects.)

What happens when the theory is fundamentally non-Abelian, when trans-
fers of charge, or isospin, or of color degrees of freedom are to be expected
between scattering particles? Can kinematic simplifications be found for the
non-Abelian structure? For close-to-forward scattering in QCD, the QED quan-
tities Aµ and Fµν of (3.31) are to be replaced by Aa

µλa and Fa
µνλa , where the

λa are matrices of the fundamental, or defining representation of SU (N ). (For
N = 2, λa → σa/2, the Pauli matrices; for N = 3, the λa can be chosen as the
Gell–Mann matrices.) The entire exponential dependence of such quantities
must now be ordered, as in Chapter 3; and previous linkage operations upon
the Aµ dependence can no longer be performed non-perturbatively, because the
latter appear within the confines of a non-trivial OE.

In fact, there is a way to extract such Aµ dependence, so that the desired
linkage operations can be explicitly performed, but it requires the introduction
of an additional pair of FIs. In certain cases of limiting kinematics, such as
scattering at very high energies, these new FIs can collapse into a set of ordinary
quadratures, and – with appropriate care to maintain unitarity – may be used to
advantage; these topics form the first two sections of this chapter. The remaining
sections will return to Abelian physics, with the introduction of a special Green’s

125



126 8 Models of high-energy non-Abelian scattering

function most useful for a Modified Multiperipheral Model (MMM), including
all crossed and ladder graphs, in the tower-graph approximation to the eikonal
scattering amplitude; and this will be followed by an explicit summation over
all the eikonal graphs of the MMM. That result will then be “converted” to a
model QCD result, by the artificial introduction of asymptotic freedom into the
final answer.

8.1 An Abelian separation

Consider first a theory of fermions and bosons with an interaction Lagrangian
density of the form L′ = −gψ̄γµ Aa

µλaψ , so that the relevant representation for
an MSA Gc[A] to be used for close-to-forward scattering will contain the OE(

exp

[
ig
∫ sA

sB

ds ′λa
dQ(s ′)

ds ′ · Aa(z − Q(s ′))
])

+
, (8.1)

where the Q(s ′) of (8.1) may refer to the quantity
∫ s ′

0 v of the original Fradkin
representation (with sA → s, sB → 0); or, with different limits of integration,
it may correspond to 2s ′ p, as in the BN/no-recoil approximation. (Strictly
speaking, for wide-angle scattering one should also retain the σ · F term as
part of the OE; but, for simplicity, we ignore this complication here.)

Extraction of the A-dependence from the OE of (8.1) may be achieved by
rewriting it in the form

N ′
∫

d[α]
∫

d[u]ei
∫

dsua (s)αa (s)
(
ei
∫

dsλaua (s)
)
+e−ig

∫
dsαa (s) dQ

ds ·Aa (z−Q(s)), (8.2)

where all the
∫

ds integrations run over the same interval as that of (8.1),
but the latter’s prime of s ′, and the limits of integration, are suppressed. The
normalization N ′ is such that the FI

N ′
∫

d[α] exp

{
i
∫

αa(s)

[
ua(s) − g Aa(z − Q(s)) · dQ

ds

]}

is the delta-functional δ[ua(s) − g dQ
ds · Aa(z − Q(s)), while subsequent

∫
d[u]

reproduces exactly the OE of (8.1). If the interval
∫

ds is broken up into very
small intervals labeled by si , of width �s, where n factors of �s equal the size
of the integration range, then N ′ = (Ni )n , where

N ′
i =

(
�s

2π

)D

(8.3)

and D is the number of dimensions over which each
∫

dpu(si ) runs.
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Of course, this separation does not solve the non-Abelian problem, but only
postpones the evaluation of the OE of (8.2) until a later stage.The A-dependence,
however, is now effectively Abelian, and operations upon it can be performed ex-
actly. For example, consider the case of high-energy/small-momentum-transfer
scattering of charged pions between nucleons, or gluons exchanged between
quarks (neglecting, for the moment, all three- and four-gluon vertices, along
with all closed-quark loops, so that the interactions between gluons, as they are
exchanged between the scattering quarks, are suppressed). The linkage operator
acting on the gluon vector potentials Aa

µ is then

expD1,2 = exp

[
− i
∫

δ

δA(a)
1,µ

Dab
c,µν

δ

δAb
2,ν

]
, (8.4)

where Dab
c,µν(x − y) is the bare gluon propagator, which – for simplicity – we

take as δµνδab Dc(x − y), with D̃c(k) = (µ2 + k2 − iε)−1. The generic expres-
sion for the eikonal of this amplitude may then be represented as

eiχ = eD1,2
(
eig

∫ +∞
−∞ ds1 p1·Aa

1 (z1−s1 p1)λ(1)
a
)
+
(
eig

∫ +∞
−∞ dt2 p2·Ab

2(z2−t2 p2)λ(2)
b
)
+
∣∣

A1,2→0,

(8.5)

where z1,2 and p1,2 are the incident configuration-space and 4-momentum coor-
dinates of the scattering quarks, respectively. The eikonal scattering amplitude
corresponding to these graphs is then given by

T (s, t) = is

2m2

∫
d2beiq⊥·b[1 − eiχ (s,b)

]
, (8.6)

where s = −(p1 + p2)2, t = −(p1 − p′
1)2, m is the mass of each quark, and

the impact parameter b = (z1 − z2)⊥ is the transverse (perpendicular to the
incoming quark momenta) separation of the two quarks.

It should be emphasized that an integration over coupling constants, here
suppressed, must really be performed at an earlier stage, before one can identify
the RHS of (8.5) as exp[iχ ]; but, for our purposes, (8.5) does express the
qualitatively-correct form of that functional operation which can be identified
as the eikonal of this problem. It should also be noted that there is much less
structure in (8.5) than in the MPM of (7.19), because we have here dropped
all linkages between the gluons that are exchanged between the quarks; in
fact, (7.19) will be used as a model for the calculation of the latters’ effects.
The principal thrust of the present remarks is to find a way of performing the
needed functional linkage operation when the original A-dependence is sitting
inside an OE; and for this discussion it is simplest to neglect (temporarily) the
interactions between the virtual gluons.
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We now invoke the representation of (8.2), for each OE, and write

eiχ = N ′
∫

d[α]
∫

d[u]ei
∫

α·u(ei
∫

λ(1)·u)
+

· N ′
∫

d[β]
∫

d[v]ei
∫

β·v(ei
∫

λ(2)·v)
+

· eD1,2 e−ip1µ

∫ +∞
−∞ ds1αa (s1)Aa

1,µ(z1−s1 p1) e−ip2ν

∫ +∞
−∞ dt2βb(t2)Ab

2,ν (z2−t2 p2)
∣∣
0, (8.7)

in which we may immediately perform the linkage operation of (8.5),

eD1,2 e−i
∫

α·p1·A1 · e−i
∫

βp2·A2 |0 = exp

[
i
∫ ∫ +∞

−∞
ds dtαa(s)Qab(s, t)βb(t)

]
,

(8.8)

where z1 − z2 = z, Qab(s, t) = g2δab(p1 · p2)Dc(z − sp1 + tp2), and the
dummy s, t variables are not to be confused with the Mandelstam scattering
invariants. Perturbative, and then non-perturbative attempts to approximate the
eikonal of (8.7) at extremely large energies, lead in a most natural way to the
QAL of the next section.

8.2 The quasi-Abelian limit

There are several methods of approach to this problem – and to any non-Abelian
scattering problem, at small or large momentum transfers – which lead to the
idea that the Quasi-Abelian Limit (QAL)1 is intuitively reasonable at ultra-high
energies. Consider first the exponential term of the RHS of (8.8), and note
that were this an Abelian problem, the αa, βb factors multiplying the NVM
propagator Dc would be replaced by unity, as would the remaining FIs of (8.7),
and the result would be the Abelian eikonal of (7.14). For this non-Abelian
problem, in the limit of large energy E and small momentum transfer, (8.8)
contains the CM 4-momenta p1 = (0, 0, E ; iE) and p2 = (0, 0, −E ; iE); and
introduce there the following, rescaled, proper-time variables: s̄ = Es, t̄ = Et .
The exponential factor of (8.8) then becomes

ig2
∫ +∞

−∞
ds̄
∫ +∞

−∞
dt̄

(
p1µ

E

)(
p2ν

E

)
αa

(
s̄

E

)

· Dab
c,µν

(
z − s̄

(
p1

E

)
+ t̄

(
p2

E

))
βb

(
t̄

E

)
. (8.9)

The ratios p1/E and p2/E are independent of E ; and the only visible, overt
energy dependence of (8.9) is that of the arguments of αa and βb. Imagine
that a calculation is now carried out using (8.9), and that at the end of that
calculation the limit E → ∞ is taken. The leading results of that calculation
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might be expected to correspond precisely to what is obtained by taking the
limit E → ∞ under the s, t integrals in the relations which correspond to (8.9).
Here, that limit would correspond to the replacement of (8.9) by

ig2αa(0)βb(0)
p1µ

E

p2ν

E
·
∫ ∫ +∞

−∞
ds̄ dt̄ Dab

c,µν

(
z − s̄

p1

E
+ t̄

p2

E

)
,

or, by what is the same (rescaled) thing:

ig2αa(0)βb(0)p1µ p2ν

∫ ∫ +∞

−∞
ds dt Dab

c,µν(z − sp1 + tp2), (8.10)

in the limit of extremely large E . Were the αa and βb smooth, analytic functions
of their arguments, one could argue that corrections to this limit would vanish as
E → ∞; but, although written in continuous form, the αa(s) and βb(t) represent
functions which are at best piecewise continuous, and no statements can be made
about their derivatives. Yet, one has the intuitive expectation that the large E
limit of the complete FIs without approximation – if such could be performed –
would be very close to that generated by the QAL.

This is perhaps the simplest definition of the QAL, where one imagines that
the non-perturbative result at high energy is correctly described by the great
simplifications that follow from (8.10); two other approaches, which have the
same QAL consequence, are described below. Mathematically, until one learns
how to estimate corrections to this limit, the procedure is surely an unjustified
interchange of limiting operations, for one is supposed to calculate all the FIs
before allowing E to become arbitrarily large. Physically, this limit interchange
suggests that sums and averages over all parameters of color exchange will, at
very high energies, behave in the same way, and need be calculated just once – at
s = t = 0 – because not enough proper time is available for fluctuations in the
possible methods of color transfer; one might say2 that the sum of all “color
moments” effectively vanishes as E → ∞. That is, regardless of the space–time
point along a quark’s trajectory where a virtual gluon is emitted or absorbed, the
variables describing that color exchange are those associated with the quarks’
distance of closest approach.

If this interchange of limits defining the QAL is reasonable, one sees that the
only values of s and t which can enter into the non-trivial FIs over αa, βb, ua, vb

are those of s = t = 0. Breaking up these integrals into distinct integrations
over averaged variables carrying the values si and tj, integration over all the
si �= 0 �= t j intervals gives in each case, after extracting the proper parts of the
normalization factors N ′, precisely a factor of unity. Each OE is then replaced
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by an un-ordered exponential factor depending on either ua(0) or vb(0), e.g.,(
ei
∫ +∞
−∞ dsλaua (s)

)
+ = ei�sλ·u(sn ) · · · ei�sλ·u(s1) · ei�sλ·u(0)

· ei�sλ·u(s−1) · · · ei�sλ·u(s−n )
∣∣

sn>···>s1>0>s−1>···>s−n ,

sn→+∞,s−n→−∞

which gives just

ei�sλ·u(0),

because the integrals
∫

dDα(si ) and
∫

dDβ(t j ) for si and t j produce factors of
δ(ua(si )) and δ(vb(t j )), so that each OE reduces to the un-ordered form above.

For SU (2), for simplicity, where the D of (8.3) equals 3, what remains is the
set of quadratures

eiχ =
(

�s

2π

)6 ∫
d3α(0)

∫
d3β(0)

∫
d3u(0)

∫
d3v(0) · ei�s[α(0)·u(0)+β(0)·v(0)]

· e
i
2 σ I

a�sua (0) · e
i
2 σ II

b �svb(0) · e−iKαa (0)βa (0), (8.11)

where K = (g2/2π )K0(Mb), and for simplicity, we have chosen Dc,µν =
δab δµν�c. A trivial change of variables, �sua(0) = ua, �svb(0) = vb, αa(0) =
αa, βb(0) = βb, converts (8.11) into

eiχ = (2π )−6
∫

d3α

∫
d3β

∫
d3u

∫
d3v exp[i(α · u + β · v − iα · βK )].

· exp

[
i

2
σ I · u

]
· exp

[
i

2
σ II · v

]
. (8.12)

Integration over
∫

d3α,
∫

d3β is easily performed, yielding, after another re-
scaling,

eiχ = (2π )−3
∫

d3u
∫

d3v ei(u·v) · e
i
2 σ I·u√

K · e
i
2 σ II·v√

K . (8.13)

Were the σ
I,II
i of (8.13) treated as ordinary numbers, the remaining integrals

would immediately generate what might be called the naive result

eiχ0 = e−i(σ I·σ II)K/4; (8.14)

however, a more careful, if elementary, evaluation of (8.14) is needed, which
yields

eiχ = cos

(
K

4

)
−
(

K

4

)
sin

(
K

4

)
− i

3
(σ I · σ II)

·
[

sin

(
K

4

)
+
(

K

4

)
cos

(
K

4

)]
. (8.15)
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Since the product σ I · σ II has eigenvalues of +1 (triplet state) and −3 (singlet
state), the singlet eikonal function is then given by

eiχS =
(

1 + i
K

4

)
eiK/4 = ρei( K

4 −θ ), (8.16)

where ρ = [1 + ( K
4 )2]1/2 and θ = tan−1(K/4). Using the same notation, the

triplet eikonal may be written as

eiχ� = ρ

3
ei
(

K
4 −θ

)
+ 2ρ

3
e−i( K

4 −θ ). (8.17)

Assuming the validity of the QAL, these are the correct, high-energy eikonals
of this problem, which is equivalent to that of nucleon-nucleon scattering by
the exchange of charged rho-mesons.3

Generalizations from SU (2) to SU (3) are possible, although somewhat te-
dious; here, for any SU (N ), a convenient representation for needed exponentials
can be written in the form

eiλ·u = 1

N

∑
n

[
1 + λa

∂rn

∂ua

]
eirn , (8.18)

where the rn are the eigenvalues of the matrix λ · u. For SU (3), for example,
one must solve the triplet of equations∑

n

rn = 0,
∑

n

r2
n = ā · δab(uaub),

∑
n

r3
n = b̄(dabcuaubuc),

where ā and b̄ are real constants, for the three rn , which is equivalent to finding
the roots of a relevant cubic equation; for SU (2), one has, immediately, e

i
2 σ·u =

cos( u
2 ) + iσ·u

u sin( u
2 ).

We next turn to a partial justification of the QAL, and attempt to do this with
two distinct arguments, as follows.

(1) Imagine a perturbative calculation of the eikonal, in which there appear
multiple commutators, of the form

[λa1 , [λa2 , · · · [λan−1 , λan ] · · ·]]
corresponding to variations in the color (for SU (3)) or isotopic (for SU (2))
coordinates along each fermion line. Perturbatively, these commutators – and
here we do not include perturbative contributions coming from other, interior
parts of the graphs – generate multiple ln(E/m) factors; and it is possible to
extract the leading-log dependence of every such nth perturbative order, which
appears in the form (x)n , where x = K ln(E/m), and K = (g2/2π )K0(Mb). In
order to sum such contributions over all n > 0, one must limit the magnitude of
x by |x | < 1, and the result is: x/(1 − x). If one now takes the limit as x → ∞,
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one sees that all the leading-log terms, in effect, self-cancel, and produce for
each quark line a factor of −1. The simple and succinct way of bypassing all the
effort of this example is to adopt the QAL, since the latter procedure will display
no ln(E/m) dependence at all for these contributions, neither leading-log, nor
next-to-leading-log, etc.

One can see that this is just the content of the QAL, by noting that the product
of two relevant exponential factors is not equal to the product of their sum,

eiλ·aeiλ·b �= eiλ·(a+b).

But if we believe that the sum of such perturbative, leading-log terms is going
to self-cancel, let us neglect all such multiple commutator dependence, and
calculate the result. For this, it is useful to note that the FIs over the αi and β j

of (8.7), with (8.8), can be performed exactly, with the result that the remaining
FIs of (8.7) may be replaced by the (asymmetric but convenient) form

II
i, j

(2π )−D
∫

dD
ui

∫
dD

v j
e−iui·v j · · · e+iλI·∑k �c,ik uk · · · eiλII·v j . . . , (8.19)

where the �c,ik denote discrete si , tk values of g2(p1 · p2)�s�t Dc, and where
the dots in (8.19) indicate the exponential λI, λII factors with all the differing
values of si and t j . If we now neglect all such commutator dependence, we may
replace in (8.19)

II
i

eiλI·∑k �c,ik uk by eiλI·∑i,k �c,ik uk ,

or in the continuum limit by

exp

[
ig2(p1 · p2)

∫ ∫ +∞

−∞
ds dt�c(z − sp1 + tp2)u(t) · λI.

Inserting the Fourier representation for �c and integrating over
∫

ds then gen-
erates a δ(k3 − k0), which permits the

∫
dk0 to be performed, and generates

the simple result exp[−iKλI · u(t0)], where t0 = (z3 − z0)/2E . For large E , we
may take t0 to be equal to zero (the classical coordinates for z = z1 − z2 may
be defined so that the differences z3 − z0 in the CM will cancel, regardless of
the value of E), and the result (in SU (2)) will be just a rescaling away from
that of (8.13). In other words, the self-cancelling ln(E/m) dependence coming
from the multiple commutators along each fermion line may be thought of as
the essence of the QAL.

(2) A second method of approach to the QAL utilizes the fall-off (in space-
like regions, or rapid oscillations in time-like regions) behavior of the propagator
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�c(Z ), which decreases roughly as exp[−M(Z2)1/2] for large values of Z2 =
(z − sp1 + tp2)2. In our case, for s and t �= 0, this means a propagator fall-off
as roughly exp[−M Esi t j ]. In terms of the s, t variables, the region of impor-
tance is within the “star” formed by the hyperbolae |si t j | < (M E)−2; all other
s, t will give a negligible contribution to the product α(si)�c,i jβ(t j ). It should
be noted that arbitrarily large αi , β j values are allowed, but then the entire in-
teraction exponential oscillates to zero. The point of the exercise is that, in the
limit E → ∞, the “star” shrinks to the point s ∼ t ∼ 0, so that, again, only
these are the significant values.

With these mathematical “justifications”, and with the physically intuitive
picture of color transfers between scattering fermions taking place at high
energies very close to their distance of closest approach, one has in QAL
an approximate tool at non-asymptotic energies which one can employ, in
a non-perturbative way, for calculations relevant to high-energy scattering.
For example, it should be possible to use QAL in evaluating wide-angle,
non-Abelian scattering, and in particular to obtain statements describing the
observed, nucleon-spin-polarization experiments, which still demand non-
perturbative explanation.4 And it should be possible to extend the analysis
of Section 8.4 to the high-energy elastic scattering of quarks, bound in distinct
nucleons.

8.3 Loop, ladder, and crossed-ladder approximations

Prior to displaying a model Green’s function of relevance to the question “What
is the effect of all the neglected, non-tower eikonal graphs?”, we first summarize
the situation which has been known for several decades; and we shall emphasize
possible forms, predictions, and experimental values for total cross sections,
σTOT(s) (rather than for the other quantities of interest, such as differential cross
sections, and shrinkage of elastic-scattering diffraction peaks). Here, s will refer
to the Mandelstam variable, corresponding to the square of the total CM energy
of the incident particles.

In Chapter 7, we described three possible forms of eikonal, which result from
different classes of graphs exchanged between a pair of scattering fermions.
These are:

(a) The simplest eikonal of (7.14), obtained by the interchange of all possible
virtual NVMs between the fermions; this real χ1 produces a constant σTOT

as s becomes arbitrarily large. Physically, and as noted in Chapter 7, this
model’s shortcoming is that it contains no mechanism for the inelastic
production of large numbers of particles at very small momentum transfers.
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(b) Towers of rungs of closed fermion loops, attached to each other and to the
scattering fermions by a pair of NVMs, generate the original Cheng–Wu
eikonal exhibited in (7.17). This eikonal function is imaginary, correspond-
ing to a diminution of the elastic amplitude as inelastic production occurs,
as required by unitarity. Such towers are able to model significant particle
production at small momentum transfers, and generate a σTOT which in-
creases as ln2 s, the form of the maximum such dependence allowed by the
Froissart bound.

(c) Towers composed of ladder graphs, with rungs of scalar quanta, exchanged
between a pair of NVMs, yield the eikonal of (7.18), which is qualitatively
equivalent to that of (7.17), and for the same physical reason.

It will be useful to illustrate how the eikonals of (b) and (c) generate their
σTOT(s), and for this we shall consider the simplest case of all, that of the
original Cheng–Wu eikonal, for which one may write iχ = −ρ(s, b), ρ(s, b) =
a · sα exp[−µb]. Equation (7.15) may then be written as

σTOT = 2
∫

d2b
[
1 − e−ρ(s,b)

]
, (8.20)

and to evaluate the form of the resulting s-dependence it is convenient to define
a quantity b0(s) by the relation: 1 = ρ(s, b0(s)); that is, b0(s) � α

µ
ln s + · · · is

that value of impact parameter where any increase of ρ with increasing s is just
counterbalanced by the damping with respect to b. One sees from (8.20) that
for b < b0, ρ is large and the exp[−ρ] is small, so that this contribution gives
essentially

2
∫ b0

0
d2b[1] � 2πb2

0(s) ∼ ln2 s + · · · . (8.21)

In contrast, for b > b0, ρ is small, and the exponential of (8.20) may be ex-
panded, and that portion of the integral approximated by

2
∫ ∞

b0

d2b · ρ ∼ ln s + · · · (8.22)

which is down by one factor of ln(s) compared to the leading s-dependence
of σTOT, which arises from large b ∼ ln(s). It is left as an exercise for the
interested reader to repeat this calculation using the eikonal of case (c), and to
verify that both (b) and (c) describe the same Physics, at least in the form of
their predictions for σTOT(s).

It should be emphasized that these ladder-graph calculations have made use
of an additional, unjustified approximation, by retaining only the “leading-log”
terms of every perturbative order; that is, if the coupling constant of the NVM
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to the scalar particle is G, a ladder graph with n rungs contributes an amount
proportional to Gn[ln(s)]n , in contrast to a ladder in which one pair of rungs is
crossed, of contribution proportional to Gn[ln(s)]n−1; every time another pair
of rungs is crossed, the ln(s) dependence drops by another power. The total
number of such graphs is given by n!, and if only those terms with the largest
powers of ln(s) are kept, this means that (n! − 1) “less-important” terms are
discarded, an approximation that is mathematically untenable for n sufficiently
large such that n! is of the order of ln(s), or larger. Nevertheless, for reasons of
“simplicity” – one calculates what one can, and hopes for the best – this type
of approximation has long been made, without justification.

Another approximation, made for the same reason, has been to neglect con-
tributions coming from eikonal graphs more complicated than the towers. To
even attempt such a calculation one is forced into a functional description, for
the number of classes of graphs which must be included, corresponding to the
exchange of all possible t-channel NVMs, between which are exchanged all
possible numbers of scalar mesons, is simply staggering. Such a functional
description, given in (7.19), has been known for three decades; but what was
lacking was a suitable NMV propagator �̄c(x, y|π ) in a fictitious scalar field,
which could realistically model the inelastic production of scalar particles, here
called “scalar pions”, and which could be used to estimate the elastic-scattering
eikonal of (7.19). Such a Green’s function is presented immediately below, and
is used to suggest one possible form of the eikonal in a “generalized” Cheng–
Wu context, containing towers formed from ladders and crossed-rung ladders,
in all possible combinations; and to compare the result with the leading-log
eikonals of cases (b) and (c). In the next section, the calculation is extended to
include the sum of all eikonal graphs of this model, without exception.

As a preliminary step, the reader is referred to the functional cluster expansion
of Chapter 2, in particular to

exp

[
− i

2

∫
δ

δπ
Dc

δ

δπ

]
· exp[L[π ]] = exp

[ ∞∑
N=1

QN

N !

]
, (2.46)

where the QN are the connected cluster functionals, derived in subsequent para-
graphs of that section. In the present context, the functional L[π ] is given by the
RHS exponential factor of (7.19), and is operated upon by the linkage operator,
as shown. Because we are interested only in the exchange of virtual πs between
the virtual NVMs – that is where the Physics of this problem lies, governed
by unitarity – we first drop all radiative corrections along each NVM, which
is a simplification that can easily be performed functionally. In particular, the
NVM mass M and coupling G to the πs are taken as “renormalized” constants
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(at least until the end of the next section, when a closer correspondence of this
model with QCD is attempted).

Dropping all radiative corrections along the NVMs, the quantity Q1, as de-
fined in (2.47), becomes just the iχ1 of (7.14), while the Q2 of (2.48) may be
written as

Q2 = [e−i
∫

δ
δπa

Dc
δ

δπb − 1
]
L[πa]L[πb]|πa,b→0 , (8.23)

and is the “tower graph” approximation to the eikonal of this problem, with all
numbers of virtual πs exchanged, as ladders and crossed-rung ladders, between
one pair of NVMs. The QN for higher powers of N correspond to corrections
to this tower eikonal, constructed from π -exchange between more than two
NVMs, and in all possible ways between these multiple NVMs.

The next step is the specification of a suitable Green’s function, �̄c[π ],
which can model the emission of relatively high-energy πs from each NVM.
Experimentally, most of the momenta of particles emitted inelastically are in
close-to-forward directions, and so we may imagine that the field π (x) depends
only on x3 and x0, with transverse momentum components subsequently limited
(which is also in agreement with experimental inelastic emissions) in another,
model-dependent way. Because these emitted particles (gluonic jets, in QCD)
are of high energy – or, more accurately, we wish to extract those parts of these
individual processes which increase as ln(s) – we can assume that these are all
relativistic particles, and replace π (x3, x0) by π(x3 − x0).

This form suggests particles moving relativistically in the +x3 direction; but
whether that direction lies in the +z3 direction of the CM depends on how these
x-variables connect to the pion propagator Dc(u − v). The latter is perfectly
relativistic, in the sense that it contains both particle and anti-particle poles
in its k0-plane; and it will generate a logarithmic divergence corresponding
to particles emitted in the ±z3 directions, as dictated by energy–momentum
considerations. That log divergence corresponds to one that would be found
in the probability for emitting a scalar pion of arbitrarily high longitudinal
momentum; and just as is done for the ordinary tower (ladder) graphs, we
regulate that log divergence by the physically-sensible requirement that each
(k3)max ∼ √

s. The model is completed by inserting, by hand, a k⊥ cut-off in the
definition of Dc, and one can then study the effects of doing this for different
types of k⊥ cut-offs.

These physically-motivated restrictions and insertions define the model,
which can then be used to reproduce the essential results of the ladder-graph
towers, and to explore the “internal, unitarity cancellations” which one might
expect to result from summing over all the eikonal graphs, as in the next section.
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However, even with the physical attributes of this model, one is not yet able to
perform the full analysis without an additional assumption, which, eventually,
must be justified.

The model’s simplicity can now be realized by rewriting π (x3 − x0) as
π (n(−) · x), and by recognizing the similarity of the Green’s function with that
of the “scalar laser” solution for Gc[A] of Chapter 4, where A(x) was written as
A(k · x) = A(ωn(−) · x), for kµ = (0, 0, ω; iω). All the results of that analysis
may be taken over immediately by replacing kµ of (4.16) by kµ/ω, so that one
can write �̄c,µν = δµν�̄c, with

�̄c(x, y|π ) = 1

16π2

∫ ∞

0

dsa

s2
a

e−isam2+i (x−y)2

4sa · e−iGsa
∫ 1

0 dλπ(n(−)·ξ (x,y(λ)), (8.24)

where ξµ = λxµ + (1 − λ)yµ, and where we will use the subscripts a, b, c, . . .
to distinguish the different NVM propagators.

Each such Green’s function enters into (7.19) in the form

ig2(p1 · p2)
∫ ∫ +∞

−∞
ds̄ dt̄ δ(u − [z1 − s̄ p1])δ(v − [z2 − t̄ p2])�̄c(u, v|π )

= ig2(p1 · p2)

16π2

∫ ∞

0

dsa

s2
a

e−isam2
∫ ∫ +∞

−∞
ds̄a dt̄a e

i
4sa

(z12−s̄a p1+t̄a p2)2

· e−iGsa
∫ 1

0 dλaπ (n(−)·ξa (λa ))

where ξa(λa) = ξa(z1 − s̄a p1, z2 − t̄a p2|λa), and the “bar” notation does not
imply a rescaling (as in the previous section). Restricting the calculation to Q2,
which will yield this model’s version of iχ2, from (8.23) we need calculate

[
ig2(p1 · p2)2

16π2

]2 ∫ ∞

0

dsa

s2
a

∫ ∞

0

dsb

s2
b

e−im2(sa+sb)

·
∫ ∫ +∞

−∞
ds̄a dt̄a

∫ ∫ +∞

−∞
ds̄b dt̄b · e

i
4sa

(z12−s̄a p1+t̄a p2)2 · e
i

4sb
(z12−s̄b p1+t̄b p2)2

· [e−i
∫

δ
δπa

Dc
δ

δπb − 1
] · e−iGsa

∫ 1
0 dλaπa (n(−)·ξa (λa ))

· e−iGsb
∫ 1

0 dλbπb(n(−)·ξb(λb))
∣∣
πa,b→0, (8.25)

where D̃c(k) = e−γ 2k2
⊥ [µ2 + k2

3 − k2
0 − iε]−1, and γ is the k⊥ cut-off to be spec-

ified below.
The last lines of (8.25) are immediate,

ei
∫ 1

0 dλa
∫ 1

0 dλb ·G2sasb Dc(ξ (−)
a (λa )−ξ

(−)
b (λb)) − 1, (8.26)
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while the propagator of (8.26) may be written as∫
d2k⊥
(2π )2

e−γ 2k2
⊥ · 1

2

∫ ∫
dk(+) dk(−)

(2π )2

e
i
2 k(+)(ξ

(−)
a (λa )−ξ

(−)
b (λb))

µ2 + k(+)k(−) − iε
, (8.27)

where k(±) = k3 ± k0. With Z = ξ
(−)
a −ξ

(−)
b

2 , the k(±) integrals of (8.27) may be
rewritten as

1

2
· 1

(2π )2
·
∫

dk(−)

k(−)

∫
dk(+)e

ik(+)Z
[

µ2

k(−)
+ k(+) − iε · ε(k(−)

)]−1

,

where ε = 0+, and ε(x) = θ (x) − θ (−x). Integration over k(+) depends on the
sign of k(−) and yields

(2π i)
{
θ
(
k(−)e

)−i|Z|µ2/k(−) − θ
(−k(−)

)
e+i|Z|µ2/k(−)

}
, (8.28)

so that both terms of (8.28) contribute equally to the remaining
∫

dk(−) yielding

i

2π

∫ ∞

0

dk

k
e−i|Z|µ2/k . (8.29)

This integral diverges logarithmically for large k, and as explained above, we
insert a cut-off kmax ∼ √

s, and an arbitrary scale-parameter m, to obtain the
dominant contribution for large s: i

4π
ln(s/m2). In this way, (8.27) becomes

i
(4πγ )2 ln(s/m2); and because this leading s-dependence is independent of λa,b,
(8.26) simplifies to

exp

[
−αG

(
sasbm2

4πγ 2

)
ln(s/m2)

]
− 1, (8.30)

where

αG = G2

m2
/4π, and αg = g2/4π.

The parametric integrals over s̄a,b, t̄a,b still remain to be done, with (8.25)
replaced by

− α2
gs2

4(4π)2

∫ ∞

0

dsa

s2
a

∫ ∞

0

dsb

s2
b

e−im2(sa+sb) · [e− αG m2

4πγ 2 ·sasb ·ln(s/m2) − 1
]

·
∫ ∫ +∞

−∞
ds̄a dt̄a

∫ ∫ +∞

−∞
ds̄b dt̄b exp

[
i

4sa
(z12 − s̄a p1 + t̄ a p2)2

+ i

4sb
(z12 − s̄b p1 + t̄b p2)2

]
,
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and with p1µ = En(−)
µ , p2µ = −En(+)

µ , b = (z12)⊥, those integrals display a
lovely cancellation of all non-transverse z12 dependence, and generate

iχ2 = −α2
g

∫ ∞

0

dsa

sa

∫ ∞

0

dsb

sb
e−im2(sa+sb)+ ib2

4 ( 1
sa

+ 1
sb

) · [e−m2αG ( sa sb
4πγ 2 ) ln(s/m2) − 1

]
or

iχ2 = −α2
g

∞∑
n=1

1

n!

(
m2αG

4πγ 2

)n

lnn(s/m2)
∫ ∞

0

dsa

sa

·
∫ ∞

0

dsb

sb
(−sasb)n e−im2(sa+sb) · ei b2

4 ( 1
sa

+ 1
sb

)
. (8.31)

It is now convenient to make the standard continuation: sa → −iτa, sb → −iτb,
so that (8.31) becomes

iχ2 = −α2
g

∞∑
n=1

1

n!

(
m2αG ln(s/m2)

4πγ 2

)n
[∫ ∞

0

dτ

τ
τ n e−m2τ−b2/4τ

]2

. (8.32)

Since the integral inside the squared bracket of (8.32) is proportional to the
Bessel function Kn(mb), an alternative expression is

iχ2 = −4α2
g

∞∑
n=1

1

n!

[
αG

16π

(
b2

γ 2

)
ln(s/m2)

]n

K 2
n (mb). (8.33)

This eikonal is properly absorptive, but appears too complicated to be inserted
into (7.15) and evaluated in a straightforward (and finite) manner. But since we
expect a strong correlation between the behavior of σTOT(s) and large b values
[b ∼ b0(s) ∼ ln(s)], we can ask if (8.33) simplifies in the limit of large b; and
this is exactly the case for b � 1/m, which is certainly expected, since one
assumes that ln(s/m2) � 1. Note that, for large impact parameter, the only
natural k⊥ cut-off in the model propagator is b itself, and this is our choice:
γ = b.

One would like to be able to replace each Kn(mb) of (8.33) by its large-mb
asymptotic form, [ π

2mb ]1/2 e−mb[1 + · · ·], but any such interchange of sum and
asymptotic limit must be viewed with suspicion, and justified, even if the result
is so reasonable that it is not difficult to suppress disbelief. The mathematically-
improper step that one would like to take, for mb � 1, is to replace each Kn(mb)
of (8.33) by its asymptotic form above, with leading term independent of n,
so that the sum again exponentiates. This is correct only if mb > (n2 − 1)/2,
as is easily seen by examining the next terms of the expansion.5 Were there
only a finite number of such large-n correction terms, one could argue that
the essential results of that approximation would be correct. But the sum of
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(8.33) runs over all n; and hence this simplifying approximation is clearly
incorrect.

In fact, what this does suggest is that the model needs to be refined so that
a new set of functions Hn(mb), whose asymptotic n-dependence is sufficiently
weak, should replace the Kn(mb) of (8.33), in order to permit the interchange
of limits stated above. This can be accomplished if one imagines that the ne-
glected self-energy structure along each �̄c[π ] line is included, with a net ef-
fect of damping away large-τ contributions to the previous representations. The
model used above for extracting the non-perturbative forms of high-momentum
linkages between different �̄c[π ] is not necessarily the one appropriate for the
less-energetic self-linkages along each �̄c[π ]; but were it used for the latter,
an extra factor of exp[−iG2 · τ 2 · I/2], I = ∫ 1

0 dλ
∫ 1

0 dλ1 Dc(ξ (−)
(λ) − ξ (−)(λ1)),

would appear in each τ -integral, and for Re I �= 0, and/or Im I < 0, would
generate significant damping for very large τ .

A completely different, soluble model is one in which the original, Fradkin-
variable statement of all possible self-linkages is exactly expressed by the ex-
ponential of i G2

m2

∫ s
0 ds1

∫ s1

0 ds2 Dc(
∫ s1

s2
ds ′v(s ′)), and where the latter quantity is

then approximated in a “no-recoil” fashion by i G2

m2

∫ s
0 ds1

∫ s1

0 ds2 Dc(v0(s1 − s2)),
with v0 corresponding to an “averaged” NVM 4-velocity, such that v2

0 = −1.
For zero-propagator mass, it is well-known that this propagator can be expressed
exactly by

Dc(z) =
(

i

4π2

)
1

z2 + iε

∣∣∣∣
ε→0+

, Dc(v0s12)→−
(

i

4π2

)
1

(s1 − s2 − iε̄)2

∣∣∣∣
ε̄→0+

,

and, as evaluated in HMF#1, Chapter 8, Section B, the corresponding, self-
linkage computation for linkages by a scalar field π(x) yields the factors
eis�2 αG

π · e− αG
π

ln( �2

m2 ) · (sm2)−αG/π , with momentum cut-off �2 ∼ (ε̄)−1. In se-
quence, these terms correspond to a model-dependent mass renormalization, a
wave-function renormalization, and a damping of the s-integrand for large s.
It is this latter factor which is of interest here, which damping remains after
the s → −iτ variable change introduced above. The model is not particularly
realistic; but it again displays damping at large s, or τ , values.

Let us therefore assume that, in general, such large-τ damping does result
from previously-neglected self-linkages along each line; and take the simpli-
fying step of inserting an effective, upper cut-off q/m2 in the τ -integral of
(8.32), corresponding to the largest value of τ that enters when self-linkages
are included, ∫ q/m2

0

dτ

τ
τ n · e−m2τ−b2/4τ ≡ 2

(
b

2m

)n

Hn(mb). (8.34)
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In effect, Kn(mb) will then be replaced by Hn(mb), a real, positive quantity
with an upper bound given by

Hn(mb) <
1

2

(
2q

mb

)n ∫ q

0

dt

t
e−t−(mb)2/4t . (8.35)

What is the dimensionless quantity q? It can depend on the relevant, renormal-
ized parameters of the theory, an effective αG, m, and b. If q is chosen as a
constant, q0, then the summation of (8.33) will yield an approximate factor of
s(q2

0 αG/8π (mb)2) · K̄ 2
0(mb), where K̄ 0 differs from K0 in that its defining integral

has an upper limit q0, rather than ∞. But it is easy to show that, for mb � 1,
there is (exponentially) little difference between K̄ 0 and K0, so that an argu-
ment similar to that leading to (8.21) produces the quantity q2

0 αG

8π(mb0)2 ln(s/m2) ∼
2mb0, so that b0 ∼ [ln(s/m2)]1/3, and σTOT(s) ∼ [ln(s/m2)]2/3.

If, however, q is assumed to grow linearly with mb, q ∼ mb, then the same
argument reproduces the old Cheng–Wu result, σTOT(s) ∼ ln2(s/m2).

It seems that whichever form one adopts, for any q ∼ (mb)i , with 0 ≤ i < 1,
one will find the tower-graph prediction of a slowly-rising σTOT. Hence, the
inclusion of all crossed- as well as ladder-graphs, in this model version of
the tower graphs which requires strong, proper-time damping attributable to
the self-linkage graphs, generates a slowly-rising σTOT(s); and for one special
choice of cut-off, q ∼ mb, it reproduces the form of the original Cheng–Wu
result. This model is surely crude – and was so from the beginning – but crude-
ness does not necessarily preclude correctness; and the predictions of the next
section could, conceivably, lead to qualitatively-correct Physics.

For mb � 1, the transverse cut-off γ should be taken as the inverse of an
appropriate mass, and not as the smaller impact parameter; that is, γ should
always be chosen as the largest, relevant quantity with the dimension of length.
In this region, the corresponding sum of the tower-graph contributions to the
eikonal of (8.33) does not appear to converge, since the leading term of Kn(mb)
is ∼ (1/2)(n − 1)!/(mb/2)n for small mb, a situation unchanged by the replace-
ment of Kn by Hn if the self-linkage cut-off q can no longer be proportional to
(mb)i . What this indicates is that this eikonal is totally absorptive at small b;
and just as in elementary, potential-theory calculations, it is to be replaced by
a sufficiently large number, η, such that the entire contribution to

�2σTOT = (4π/m2)
∫ 1

0
dx · x

[
1 − e−η(s,x)

]
(8.36)

is just the “black disk” amount: �2σTOT = 2π/m2. In this way, the complete
tower-graph contributions for ladder and crossed-rung graphs again produce
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a slowly-rising σTOT with a maximum growth given by the old Cheng–Wu
result. In the following section, we choose for simplicity q ∼ mb, so that
Kn → Hn → Hnmax → K0; but quite similar results will follow for any other
choice of q ∼ (mb)i , 0 ≤ i < 1.

8.4 Summing all the eikonal graphs

We now turn to the second unanswered question of the eikonal approach to
high-energy scattering: what is the effect, as posed in this model, of summing
over all the remaining QN , N > 2? From the complete formula, (7.19), one
can anticipate possible cancellations from or enhancements to the tower-graph
eikonal, but how severe will they be?

It is certainly possible to calculate each of the remaining QN from their
definition, in (2.46), but enforcing the requirement of “connectedness” becomes
tedious. It is much simpler to expand the RHS factor of (7.19) in powers of g2,
to perform the needed functional operations on the nth term of that expansion,
and then – if possible – to sum the results. One has

eiχ =
∞∑

n=0

1

n!
(ig2)n e−i

∑
a>b

∫
δ

δπa
Dc

δ
δπb

(∫
fI�̄c[πa] fII

)
· · ·
(∫

fI�̄c[πn] fII

)∣∣∣∣
πl→0

,

(8.37)

with the multiple factors of (
∫

fI�̄c fII) occurring a total of n times; (8.37) is the
form that this nth functional approximation takes when all radiative corrections
along each NVM are suppressed, and are included when each Kn → K0.

For clarity, we work out the n = 3 term, state the form of the n = 4 term,
and then infer the general result. Using the notation of the previous section,
this is

1

3!

(
ig2

16π2
(p1 · p2)

)3 ∫ ∞

0

dsa

s2
a

∫ ∞

0

dsb

s2
b

∫ ∞

0

dsc

s2
c

e−im2(sa+sb+sc)

·
∫ ∫ +∞

−∞
ds̄a dt̄a

∫ ∫ +∞

−∞
ds̄b dt̄b

∫ ∫ +∞

−∞
ds̄c dt̄c

· exp

[
i

4sa
(z12 − s̄a p1 + t̄a p2)2 + i

4sb
(z12 − s̄b p1 + t̄b p2)2

+ i

4sc
(z12 − s̄c p1 + t̄c p2)2

]

· e
∑

a>b Dab · e−iG[sa
∫ 1

0 dλaπa (ξ (−)
a (λa ))+sb

∫ 1
0 dλbπb(ξ (−)

b (λb))+sc
∫ 1

0 dλcπc(ξ (−)
c (λc))]|πl→0 ,

(8.38)
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where Dab = −i
∫

δ
δπa

Dc
δ

δπb
. As before, each linkage operator – and there are

now n(n − 1)/2 = 3 of them – generates a term of the form

exp

[
−m2αG

(
sasb

4πγ 2

)
ln(s/m2)

]

– the result of (8.30), but without the factor of (−1) – while the
∫

ds̄a · · · ∫ dt̄ c

integrations remove all non-transverse (z12)2 dependence, generating(
8π

s

)3

· sa · sb · sc · e
i
4 b2( 1

sa
+ 1

sb
+ 1

sc
)
,

so that this n = 3 contribution to exp[iχ ] produces

(−iαg)3
∫ ∫ ∫ ∞

0

dsa

sa
· dsb

sb
· dsc

sc
e−im2(sa+sb+sc)+ ib2

4 ( 1
sa

+ 1
sb

+ 1
sc

)

· exp

[
− m2αG

4πγ 2
(sasb + sbsc + scsa) ln(s/m2)

]
.

Expanding each of the n(n − 1)/2 factors of the form exp[−m2αG
4πγ 2 · sasb·

ln(s/m2)], one obtains

(−2iαg)3

3!

∞∑
n1,2,3=0

[
αG
8π

b2

γ 2 ln(s/m2)
]n1+n2+n3

n1!n2!n3!
Kn1+n3 (mb) · Kn1+n2 (mb) · Kn2+n3 (mb).

(8.39)

In contrast, for n = 4, one would find n(n − 1)/2 = 6 summations over
n1, . . . , n6,

(−2iαg)4

4!

∞∑
n1,...,n6=0

[
αG
8π

· b2

γ 2 · ln(s/m2)
]∑6

i=1 ni

n1! . . . n6!
KN1 (mb)KN2 (mb)KN3 (mb)KN4 (mb),

(8.40)

where Ni =∑6
j=1 n j − ni .

Can one sum the series of these terms? Again, there is a great simplification
for γ = b, mb > 1, and Kn(mb) ⇒ [π/2mb]−1/2 exp[−mb]; and in this way,
(8.39) becomes

(−2iαg)3

3!

(
π

2mb

)3/2

e−3mb · (s/m2)3αG/8π ,

while (8.40) yields

(−2iαg)4

4!

(
π

2mb

)4/2

e−4mb(s/m2)6αG/8π ,
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and the general pattern is clear:

eiχ |mb>1 � 1 + iχ1 +
∞∑

n=2

(−2iαg)n

n!

(
π

2mb

)n/2

e−nmb(s/m2)
n(n−1)

2 · αG
8π .

(8.41)

The next task is to give a meaningful value to the unusual sum of (8.41). Because
of the factors (−i)n , there will be an alternation in the signs of the terms that
comprise Re exp[iχ]; and because the s-dependence has the form san(n−1)/2,
these alternations can be important. To see this in detail, we make use of a
representation6 expressed in terms of a convergent power series,

∞∑
n=2

(−iZ )n

n!
≡ F(Z ) = e−iZ − 1 + iZ , Z = x̄

y
e2αβ,

and note that

S(x̄, y) ≡ 1√
π

∫ +∞

−∞
dα e−α2

F

(
x̄

y
e2αβ

)
=

∞∑
n=2

(
−i

x̄

y

)n 1

n!
en2β2

.

This is the same series as that of (8.41), if the identifications

y =
(

s

m2

) αG
16π

, β2 = ln y, x̄ = αg

√
2π

mb
· e−mb

are made, and we may therefore replace (8.41) by the integral

eiχ |mb>1 → 1 + iχ1 + 1√
π

∫ +∞

−∞
dα e−α2

{
e−i
(

x̄
y e2αβ
)

− 1 + i
x̄

y
e2αβ

}
,

(8.42)
so that the contribution of (8.42) to σTOT is given by

�1σTOT = 2√
π

∫ ∞

1/m
d2b

∫ +∞

−∞
dα e−α2

[
1 − cos

(
x̄

y
e2αβ

)]
. (8.43)

It will be convenient to make the variable change: α → 1
2β

ln( y
x̄ z). Approximat-

ing ln(x̄) by −mb, and with the additional variable change mb = β2(u − 1),
and with x = 4β2, one finds

�1σTOT =
√

π

4m2
x3/2

∫ ∞

1+4/x
du(u − 1) e− xu2

16

∫ ∞

0
dz

(1 − cos(z))

z1+u/2
e− 1

x ln2 z,

(8.44)

where �1σTOT is again that contribution to σTOT arising from b > 1/m. These
integrals are real and positive definite, but cannot be evaluated analytically, so
that a numerical approach is necessary. However, it is fairly easy to approximate
(8.44), so that the evaluation can be done in an analytic manner, and for this one
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Fig. 8.1 A plot of exp[−x−1(ln(z))2 − (1 + u/2) ln(z)] vs z for x = u = 2.

first rewrites the z-integral of (8.44) as
∫∞

0 dz exp[− f (z)][1 − cos(z)], where
f (z) = −[ 1

x (ln z)2 + (1 + u
2 ) ln(z)], and where a typical graph of exp[− f (z)],

for u = x = 2, is displayed in Fig. 8.1. The peak of that curve occurs at a
value z0 < 1, and its peak height is exp[− f (z0)]. For z > z0, the curve has a
rough, Gaussian appearance, but for z values less than z0 this is not the case,
for the curve vanishes rapidly as z → 0. However, exp[− f (z)] is multiplied by
2 · sin2(z/2), which vanishes as z → 0; and therefore it is not too inaccurate to
replace exp[− f (z)] by a simpler Gaussian form about z0, since the contributions
for z < z0 are going to be very small; and we will therefore write f (z) �
f (z0) + (1/2)(z − z0)2 f ′′(z0), with z0 determined by the condition f ′(z0) =
0 : z0 = exp[−(x/2) · (1 + u/2)]. The argument of this exponential factor is,
following from the lower limit of the u-integral, always more negative than
−(1 + x/2), so that z0 is always small, expecially for large values of x . If no
further approximation is used, the

∫
dz would be given in terms of probability

integrals, �(x).
But the smallness of z0, especially in a region where the vanishing of [1 −

cos(z)] removes most of the error, now suggests an additional approximation:
replace

∫∞
0 dz by (1/2)

∫ +∞
−∞ dz, so that the integral can be evaluated7 immedi-

ately as

1

2

∫ +∞

−∞
dz′ = 1

2
e− f (z0)

√
2π

f ′′(z0)
· [1 − e− 1

2 f ′′(z0) · cos z0
]
, (8.45)
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Fig. 8.2 A plot of [(me)2/2π]σTOT(s) vs x = (αG/4π) ln(s/m2).

which is a convergent integrand for large u. Further, since z0 < 1, expansion
of the cos(z0) of (8.45) will give corrections to the result obtained by setting
z0 → 0, which are smaller by exponential dependence on x ; and hence it is
legitimate to replace cos(z0) in (8.45) by unity.

Although the resulting integrand is reminiscent of that of (8.20), the technique
used for the approximate evaluation of the latter will not work here; rather,
because umin = 1 + 4/x , and x > 0, h(u, x) = (x/4) exp[−x(1 + u/2)] is < 1
for any value of x , and the terms of (8.45) may be expanded in powers of h(u, x),
with the linear term in h generating

�1σTOT(s) �
(

2π

m2e2

)
· x e−7x/4, x =

(
αG

4π

)
ln(s/m2), (8.46)

and with corrections which are smaller by exponential factors of x .
The graph of (8.46) in Fig. 8.2 tells the entire story. As x increases from

zero, �1σTOT rises linearly with ln(s), peaks at x = 4/7, and then falls off
exponentially. There are therefore, as suspected, sufficient cancellations within
this model to remove the rising total cross section of the tower-graphs. The
details of the calculation are certainly subject to correction; but the result of
(8.46) does suggest serious cancellations away from the tower-graph result. If,
for example, one imagines that scattering at s ∼ 1TeV2 corresponds to values
of x ∼ 0.3, then the peak of �1σTOT should appear at x ∼ 0.6, corresponding
to a doubling of the value of ln(s). Such an energy is probably higher than that
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of the so-called “cosmic ray point”, and if so there is little possibility of its ever
being measured directly.

Without any further calculation, one expects the mb < 1 contributions to re-
duce (as for the tower-graphs, but more quickly) to the same value of �2σTOT =
2π/m2, which result has no real bearing on the question of σTOT at asymptotic
energies.

Could this model possibly apply to QCD? Not directly, for scalar pions are
neither gluons nor closed quark-loops. But if one’s imagination is allowed free
rein, and if scalar pions are replaceable by gluons (as the basic elements of
gluonic jets), then one might imagine that timelike renormalization effects of
the asymptotically-free QCD could decrease αG by a factor of ln(s/m2), so that
x = (αG/4π ) ln(s/m2) can never increase significantly past a constant amount,
say xmax; and hence that σTOT would become a non-zero constant, larger than
2π/m2, at xmax, and would stay at that value for larger values of s. Of course,
this is rampant speculation, and one does not yet know the answer for real
QCD. Modulo questions of mathematical rigor, the arguments of this section
suggest that, at truly asymptotic energies, and if no further fields with higher-
mass quanta appear, total cross sections could become constants, either large
constants if asymptotic freedom holds, or smaller constants if it does not; but
they need not continue to grow in the form of the Froissart bound.

Notes

1 H. M. Fried, Y. Gabellini, and J. Avan, Eur. Phys. J. C 13 (2000) 699.
2 The author thanks Prof. Berndt Müller for this felicitous phrase.
3 To the best of the author’s knowledge, this is another unsolved problem of several

decades ago: to start from first (Lagrangian) principles of QFT, and construct these
simplest of all non-Abelian scattering amplitudes.

4 See, for example, A. Krisch, Polarized Protons and Siberian Snakes, Proceedings of
the Fourth Workshop on QCD, at the American University of Paris, June 1998;
published by World Scientific.

5 The author is indebted to Prof. T. T. Wu for several informative discussions and
suggestions concerning the asymptotic behavior of the Kn .

6 HMF#1, Chapter 10. This representation was used, and a similar result found, by
R. Blankenbecler and H. M. Fried, Phys. Rev. D 8 (1973) 678, in an evaluation using
a model Green’s function which the author believes less compelling than the present
�̄c[π ].

7 I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series, and Products,
Academic Press, N.Y. (1965), #3.896/2.
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9

Unitary ordered exponentials

Section 1.3 provides a definition of ordered exponentials (OEs) and some
algebraic analysis based on differential and/or integral equations. More
mathematically-detailed descriptions, plus a wide variety of references, may
be found in the Ph.D. thesis by P. Stojkov.1 In this chapter, to illustrate the rich
structure of OEs in a relatively simple, physical setting, we treat the unitary (U)
OE found in the quantum-mechanical problem of the interaction of a fermion’s
intrinsic spin-angular momentum with a varying magnetic field. Starting from
the basic differential equation (DE) in this simplest of SU (2) problems, an-
alytic approximations are constructed to this UOE – or, equivalently, to the
relevant Schrödinger equation – in both the adiabatic (Section 9.2) and stochas-
tic (Section 9.3) limits, and are compared to the exact numerical integrations.
In Section 9.4, we show how “white-noise Gaussian” functional integration
(FI) over our stochastic-limit approximations reproduce a result very close to
the exact one; and in Section 9.5 display the connection between the IR ap-
proximation to a relevant DE and the stochastic limit of this OE. It should be
emphasized that the techniques and approximations of these sections are strictly
non-perturbative.

9.1 Algebraic and differential structure

The basic DE of interest here may be written as

dU

dt
= iσ · B(t)U (t), U (0) = 1, t ≥ 0, (9.1)

and, with B(t) replaced by eB(t)/2mc, corresponds to the Schrödinger equation
for the wave function of a non-relativistic fermion of spin-angular momentum
µ = eh̄/2mc interacting with a varying magnetic field, B(t). For simplicity,
we absorb the factors e/2mc into the magnitude of B, as written in (9.1), and

149
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understand the corresponding solution to the Schrödinger DE to be given by
ψ(t) = U (t) · ψ(0), where ψ(0) represents the wave function at the earlier time,
t = 0. Here, the σi denote the 2 × 2 Pauli matrices, and the Bi (t) are real input
functions. The unitary solution to (9.1) is

U (t) = (ei
∫ t

0 dt ′σ·B(t ′))
+, (9.2)

using the notation of Section 1.3. The material presented here was published2

in 1987, with subsequent3,4 additions; prior work on the SC adiabatic limit can
be found elsewhere.5,6

The SC situation may be defined by the requirement
∫ t

0 dt ′ B(t ′) > 1,

B = +
√

B2, in contrast to the weak-coupling, or perturbative regime for which
one assumes the converse,

∫ t
0 dt ′ B(t ′) < 1; in the latter case it is simple to de-

rive a valid representation for U in terms of an expansion in multiple integrals
over ascending powers of B(t ′). For the SC case, two distinct limiting regions
can be defined, one for which |dB̂/dt | is “small” (the adiabatic, or quasistatic
limit), and the opposite (“stochastic”) situation for which it is large. Clearly,
if B̂(t) ≡ B(t)/B(t) did not depend on time, and were fixed in one direction,
a choice of coordinate axes could be made so that only one of the σi need
appear, and the OE would become an ordinary exponential (oe) involving that
σi . When B̂(t) varies with t , however, the problem becomes non-trivial, and
naturally divides into these two quite different limits.

By “large” or “small”, one must mean the magnitude |dB̂/dt | with respect to
the only other relevant quantity of like dimension, B(t); and hence if one defines
ρ(t) ≡ | dB̂(t)

dt |/B(t), the SC adiabatic and stochastic limits are defined by ρ � 1
and ρ � 1, respectively. The word “stochastic” might properly be replaced by
“rapidly varying input”; but it is appropriate because such behavior of ρ is
expected in situations where a subsequent FI is performed with a “white-noise
Gaussian” weighting, as discussed in Section 9.4.

Because it is always possible by a unitary transformation to reduce this
problem containing a three-dimensional B(t) to an equation of the form (9.1)
with a two-component B(t), we henceforth assume that B(t) lies in the (x, y)
plane. Some of the analysis of subsequent approximations is changed upon
returning to a three-dimensional input; but, as noted in Note 2, it is not sig-
nificant. It will also be convenient to express a portion of these results in
terms of the representation U = F0 + iσ · F(t), with the unitarity restriction:
F2

0 + F2 = 1.

9.2 The SU(2) adiabatic limit

In the extreme adiabatic limit, ρ = 0, corresponding to dB̂/dt = 0, all the com-
plexity of the problem disappears, for then, as noted above, one can choose an
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arbitrary spatial axis to lie along the direction of B, and the OE becomes an
ordinary exponential, U = cos(G) + iσ · B sin(G), with G(t) = ∫ t

0 dt ′ B(t ′).
Suppose now that B̂(t) is a slowly varying unit vector, in the sense of very

small ρ; then it is reasonable to choose as an initial guess for U (t) the same
limiting form,

U0(t) = eiσ· Q0(t), (9.3)

where Q̂0(t) = B̂(t) and Q0(t) = |Q0(t)| = ∫ t
0 dt ′ B(t ′), B = |B|. This is not

correct, but it is unitary, and its deviation from the exact V can be expressed
by a unitary V (t): if U (t) = U0(t)V (t), with U0 given by (9.3), then V must
satisfy the exact DE

dV

dt
= iσ ·

(
B − Q̂0

dQ0

dt

)
V − iQ0

∫ 1

0
dµ e−iµσ·Q0σ · dQ̂0

dt
e+iµσ·Q0 V,

(9.4)
or

dV

dt
= iσ · B1V,

with

B1(t) = B − Q0
dQ0

dt
+ 1

2

{
sin (2Q0)

dQ̂0

dt
− [l − cos(2Q0)]Q̂0 × dQ̂0

dt

}
.

(9.5)

We write (9.5) in the form B1 = B(Q0, Q̂0; B), and note that while the first
two RHS terms of (9.5) will cancel for the specific choice of Q0 and Q̂0, the
functional form of (9.5) will be useful later on.

Under the initial condition V (0) = 1, the exact solution to (9.5) is the OE

V (t) =
(

exp

[
i
∫ t

0
dt ′σ · B1(t ′)

])
+
. (9.6)

But if, in the ρ � 1 regime, the U0 of (9.3) is a reasonable first approximation
to U , then a reasonable approximation to (9.6) should be given by

V1(t) = eiσ·q1(t), (9.7)

where

q1(t) = Ê1(t), q1(t) = |q1(t)| =
∫ t

0
dt ′|E1(t ′)|. (9.8)

With this approximation, we have an “improved” estimate of U (t),

U1(t) ≡ U0V1 = eiσ·Q0(t) · eiσ·q1(t). (9.9)
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But the combination of (9.9) is unitary, and can be rewritten in a manifestly
unitary form as

U1(t) = eiσ·Q1(t), (9.10)

with

Q1(t) ≡ |Q1(t)| = arc cos[cos Q0 · cos q1 − (Q̂0 · q̂1) sin Q0 · sin q1],

or

Q1(t) = Q(Q0, q1; Q̂0 · q̂1); (9.11)

and

Q̂1(t) = [Q̂0 sin Q0 · cos q1 + q̂1 sin q1 · cos Q0

+ (q̂1 × Q̂0) sin q1 · sin Q0] · (sin Q1)−1,

or

Q̂1(t) = Q̂(Q̂0, q̂1; Q0, q1), (9.12)

where the quantities Q and Q̂ are defined by (9.11) and (9.12), respectively.
But the same process can be repeated: instead of the U0 of (9.3) we now have

the U1 of (9.10), and can define a better approximation U2 = exp[iσ · Q2], with

B2(t) = B(Q1, Q̂1; B),

q̂2(t) = B̂2(t), q2(t) =
∫ t

0
dt ′|B2(t ′)|,

Q2(t) = Q(Q1, q2; Q̂1 · q̂2), Q̂2(t) = Q̂(Q̂1, q̂2; Q1, q2).

Clearly, the process can be repeated an infinite number of times; and if it
converges, can be represented by the fixed-point equations

Q∗ = Q(Q∗, q∗; Q̂
∗ · Q̂

∗
), Q̂

∗ = Q̂(Q̂
∗
, q̂∗; Q∗, q∗),

q̂∗ = B̂(Q∗, Q̂
∗
; B), q∗ =

∫ t

0
dt ′|B(Q∗, Q̂

∗
; B)|, (9.13)

where Q∗, Q̂
∗
, q̂∗, q∗ and B are functions of t , and the functional forms Q, Q̂,

and B are given by (9.5), (9.11), and (9.12).
For an arbitrary input B(t), there is probably little hope of finding or proving

convergence, although for some suitably simple input this might be possible.
For the simplest input vector of constant magnitude B rotating in the (x, y) plane
at constant angular frequency ω, where ρ = ω/B, then for small ρ = 0.1 one
can see from Fig. 9.1 that U1 is a better approximation to the exact (numerically
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(a)

(b)

(c)

Fig. 9.1 Curves of (a) F0, (b) cos Q0, and (c) cos Q0 · cos q1; for the situation ρ = 0.1.
(N.B. In this and the following figures, all curves plot the negative of every function
indicated. Time increases from left to right.)

integrated) U than is U0; there, the first two approximations to F0, labeled (b)
and (c), are to be compared with the exact result, labeled (a). Curve (b) represents
F0 = cos[Q0(t)] for the adiabatic limit, ρ = 0, while (c) is the first correction
to F0, cos[Q0] cos[q1]. As t increases, one is “beating” two frequencies against
each other, the Larmor B and the smaller ω, with the latter providing a slow
modulation of the former. While (b) contains no modulation, (c) provides a bit
too much, which should be corrected, in part, by the next approximation, etc.
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(a)

(b)

Fig. 9.2 Superpositions of (a) F0 and F̄0, and (b) F3 and F̄3; for ρ = 1.

9.3 The stochastic limit

As ρ is increased, the forms of the exact solutions change dramatically. For
ρ ∼ 1, with constant ω and B, the exact F0 is displayed in Fig. 9.2, and bears
no resemblance to its form in the adiabatic limit. As ρ is increased further,
for ρ � 1, there is a great simplification, with F0 taking the form of small,
rapid, ω-oscillations superimposed upon a cosine of larger magnitude and much
slower frequency ∼ B2/2πω. When B and ω are themselves time-dependent,
the slowly-varying behavior of F0 can become considerably more complicated
than a simple cosine.

For ρ � 1, we again choose for U (t) the manifestly unitary form,

U (t) = exp[iσ · G(t)], G = ĜG, G = +
√

G2,

and substitute into (9.1) to obtain

σ · B(t) =
∫ 1

0
dµ eiµσ·G

(
σ · dG

dt

)
e−iµσ·G, (9.14)

or

B(t) = Ĝ
dG

dt
− 1

2
[1 − cos(2G)]

(
Ĝ × dĜ

dt

)
+ 1

2
sin(2G)

dĜ
dt

, (9.15)
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which is equivalent to the pair of exact relations

dG

dt
= Ĝ(t) · B(t), (9.16)

and

dĜ
dt

= B[Ĝ × B̂ + (B̂ − Ĝ(B̂ · Ĝ)) cot G]. (9.17)

With the initial conditions: G(0) = 0, Ĝ(0) = 0, the magnitude G(t) is com-
pletely determined by Ĝ. For simplicity, we again assume that B lies in the
(x, y) plane.

Since Ĝ is a unit vector, it can be specified by two independent quantities,
which we choose as φ and δ, and write, with τ = Bt ,

Ĝ(τ ) = cos φ(τ ) · B̂
(∫ τ

0
dτ ′ρ(τ ′) − δ(τ )

)
+ ẑ sin φ(τ ), (9.18)

whose (x, y) projection is taken as a phase-changed B̂. The latter, a solution of
the DE

dB̂
dτ

= ω × B̂,

can be written as

B̂
(∫ τ

0
ρ dτ ′

)
= î cos

(∫ τ

0
ρ dτ ′

)
+ ĵ sin

(∫ τ

0
ρ dτ ′

)
.

Substitution of (9.18) into (9.17) yields the two independent equations

dδ

dτ
= ρ − tan φ · cos δ − sin δ

cos φ
· cot G, (9.19)

and

dφ

dτ
= sin δ − sin φ · cos δ · cot G, (9.20)

which, together with the initial conditions δ(0) = φ(0) = 0, and the relation
(following from (9.16)),

G(τ ) =
∫ τ

0
dτ ′ cos δ(τ ′) · cos φ(τ ′), (9.21)

completely determines Ĝ.
The above relations are quite nonlinear, and it is difficult to have any intu-

ition about their solutions in the large-ρ limit. To this end, we again, for (initial)
simplicity, consider ω and B and ρ = ω/B as constants, and watch the exact
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solutions for F0 = cos(G) change as ρ is increased. Just the “experimental”
knowledge that, for ρ � 1, F0 consists of rapid, small oscillations superim-
posed on a slowly varying cosine function is enough to suggest an argument
that can be followed to extract the form of that slowly varying function. For,
from (9.21), this means that as far as the “averaged” behavior is concerned,
the quantity J = cos(δ(τ )) cos(φ(τ )) can be treated as a constant (a statement
which, clearly, must be re-examined when one discusses the rapid oscillations
about the slowly varying solution). It will be useful to define the associated
quantity H = cos(φ(τ )) sin(δ(τ )), so that cos2(φ) = J 2 + H 2, and the exact
relations (9.19)–(9.21) can be expressed as

J ′ = −ρH + [1 − J 2] cot G, (9.22)

H ′ =− sin φ + ρ J − H J cot G, (9.23)

and

G =
∫ τ

0
dτ ′ J (τ ′). (9.24)

For the “averaged” behavior, J ∼ constant ≡ ξ (ρ), and (9.22) may be replaced
by

H =
(

1

ρ

)
(1 − ξ 2) cot G, (9.25)

with G � τξ . Just as G depends on the slowly varying time dependence, so must
the “averaged” H of (9.25). Substituting the latter into (9.23), with G = τξ ,
yields an equation for an “averaged” sin(φ),

sin φ = ρξ + ξ (1 − ξ 2)/ρ. (9.26)

The form of (9.26) will be more complicated if ρ depends upon t , or τ , but
for ρ � 1 this extra dependence need not be important. For the remainder of
this derivation we shall continue to suppose that ρ is essentially constant; but
we shall not hesitate to state the results for time-dependent ρ, where the final
formulae continue to work in a satisfactory way. In the figures that follow,
we denote the exact, or numerically integrated solutions, by F0, Fi , and our
approximations to them by F̄0, F̄ i .

If the analysis leading to (9.26) is correct, sin φ should display an “averaged”
behavior, with rapid oscillations superimposed on a constant background; and
this is true, experimentally, as one can see in Fig. 9.3. One should note that
there has been a change of procedure used here, in the following sense. An
exact (numerical) integration of (9.19)–(9.21) yields a value of G that never
increases past π , while sin φ and J are positive when the average G is increasing
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(a)

(b)

(c)

Fig. 9.3 Graphs of (a) sin φ, (b) J = cos φ · cos δ, and (c) a superposition of F0 and F̄0;
for ρ = 6, E = 10.

and negative when it decreases (so that Ĝ can cover all points on the unit sphere).
In contrast, our “averaged” G will increase without limit, so that sin(G) may
become negative (just when the exact G was decreasing), while the averaged
sin φ and J are replaced by positive constants. In this way we are able to
represent the correct signs of all of the F0, Fi . This same feature of always
positive sin φ and J can occur in numerically-integrated solutions of the exact
(9.19)–(9.21), depending on the accuracy of the computation and the passage
through the singular regions of cot(G). For our purposes, both sin φ and J can
be thought of as having an “averaged” constant value, even though in reality
they oscillate about that value, and oscillate wildly near the regions G ∼ nπ .
In contrast, a plot of sin δ displays an almost uniform density of points spread
over the same intervals.

We now use the “averaged” constancy of sin φ, or of cos2 φ = J 2 + H 2, to
determine the dependence of ξ on ρ. For, if the averaged value of d

dτ
(cos2 φ)

is to vanish, from (9.22) and (9.23) one finds another expression for the
averaged H ,

O � H sin φ + J [1 − (J 2 + H 2)] cot G,

or

H = ξ sin φ cot(ξτ ). (9.27)
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Comparing with (9.25) we obtain

ξ sin φ = (1 − ξ 2
)
/ρ, (9.28)

and, finally, comparing (9.28) with (9.26) yields

(1 − ξ 2)/ρ = ρξ 2[1 + (1 − ξ 2)/ρ2],

or

ξ (ρ) =
√

1 + ρ2/4 − ρ/2. (9.29)

In obtaining (9.29) it has been supposed that ξ > 0 and 1 − ξ 2 > 0. Limiting
forms are

ξ (ρ)|ρ�1 ∼ 1/ρ − 1

ρ2
+ · · · , and ξ (ρ)|ρ�1 ∼ 1 − ρ/2 + · · · .

With these relations our “averaged” solutions for F0, F3 are given by

F̄0 = cos G, (9.30)

F̄3 = sin G, (9.31)

where

G = τξ (ρ) →
∫ τ

0
dτ ′ξ (ρ(τ ′)) (9.32)

is appropriate as a first generalization to time-dependent B and ω. The accu-
racy of these expressions is quite good for ρ > 5, where deviations from the
numerically-integrated F0, F3 are rarely worse than a few percent, and fre-
quently much less. Even for ρ ∼ 1, where this analysis is certainly not valid,
one finds that these expressions for F̄0 and F̄3 do tend to average out the then
non-rapid fluctuations of the machine-integrated F0, F3. Some typical outputs
may be seen in Figs. 9.4–9.6, including several examples of time-dependent
B and ω. One finds, generally, that even if ρ has some oscillations superim-
posed on a constant value �1, the F̄0, F̄3 given by (9.30)–(9.32) continue to
be reasonably accurate.

Analogous approximate expressions are easily written for F1,2. Exactly, one
has

F1 = sin G [J cos L + H sin L] , (9.33)

and

F2 = sin G [J sin L − H cos L] , (9.34)
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(a)

(b)

Fig. 9.4 Superpositions of (a) F0 and F̄0, and (b) F3 and F̄3; for ρ = 6, E = 10.

(a)

(b)

Fig. 9.5 Superpositions of (a) F0 and F̄0, and (b) F3 and F̄3; for ω = 60, E(t) =
10 + 5 sin(5t).

with L = ∫ t
0 dt ′ω(t ′). Inserting the same “averaged” approximations for J, H, G

as before, one finds

F̄1 = ξ sin (G + L) , (9.35)

and

F̄2 = −ξ cos (G + L) , (9.36)
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(a)

(b)

Fig. 9.6 Superpositions of (a) F0 and F̄0, and (b) F3 and F̄3; for ω = 60, E(t) = 10 +
cos(t2).

(a)

(b)

(c)

Fig. 9.7 Superpositions of (a) F1 and F̄1, (b) F0 and F̄0, and (c) F2 and F̄2; for ρ =
6, E = 10.

where G is again given by (9.32). For large ρ, ξ ∼ 1/ρ, and these F̄1,2 ∼
O(1/ρ), in contrast to F̄0,3 ∼ O(1). These F̄1,2 are therefore small, and oscillate
rapidly, and should have little physical importance in any specific problem.
However, as seen in Fig. 9.7, they do miss some of the slowly varying
dependence of the exact F1,2, even if the dependence is of the order of 1/ρ.

This trouble arises in our neglect of small, rapid oscillations of J and H ,
because those neglected, fast oscillations could themselves be combined with
similar oscillations appearing in the definition of F1,2. We refer the interested
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(a)

(b)

(c)

Fig. 9.8 Superpositions of (a) F1 and F̄ ′
1, (b) F0 and F̄ ′

0, and (c) F2 and F̄ ′
2; for ω =

60, E = 10.

reader to the correction of this oversight given in Note 2, and simply write
down the resulting, modified expressions for the new F̄1,2, now correct to
O(1/ρ):

F̄ ′
1 = ξ [sin(G + L) + sin G], (9.37a)

F̄ ′
2 = −ξ [cos(G + L) − cos G]. (9.37b)

The agreement between (9.37) and the exact F1,2 is so good that on the scale
used in Fig. 9.8 there is no visible difference between them. Only when the
scale is enlarged to show the effects of order 1/ρ2 can one see the superposition
of two distinct curves.

These new values of (9.37) can now be used, together with a simple unitarity
argument, to produce new values of F̄ ′

0,3 which are correct to O(1/ρ2); and,
again, we refer the interested reader to Note 2 for details. The results are plotted
in Figs. 9.9 and 9.10, and give a visual description of the accuracy of this
effective expansion in 1/ρ.
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Fig. 9.9 Detail of the first shoulder of the superposition of F0 and F̄ ′
0; for ω = 60,

E = 10.

(a)

(b)

Fig. 9.10 Detail of the first shoulder for the superpositions of (a) F0 and F̄ ′
0, and (b) F3

and F̄ ′
3; for ω = 60, E(t) = 10 + 5 sin(5t).
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9.4 Functional integration over the stochastic limit

One very nice check on the above approximations is their ability to reproduce the
result of the one, non-trivial FI over an OE which can be performed analytically,
that of “white-noise Gaussian” (WNG) integration over the U (t |B) of (9.2).
Indeed, one type of application of these results should be to stochastic FI over
weightings more complicated than Gaussian. In this section, we first show why
the stochastic limit is appropriate to WNG integration, and then just how closely
our approximate forms reproduce the known, exact result

N
∫

d[B] exp

[
− 1

2c

∫ t

0
dt ′ B2(t ′)

]
U (t |B) = e−tc, (9.38)

where N is a normalization constant defined by

N−1 =
∫

d[B] exp

[
− 1

2c

∫ t

0
dt ′ B2(t ′)

]
.

In (9.38) we denote by c a real, positive constant, and continue to suppose that
B lies in the (x, y) plane.

We first remind the reader of the derivation of (9.38). As in Chapter 2, imagine
the interval (0, t) broken up into n subintervals each of width �t = t/n and
labeled by an index i , so that the B(t ′) field in each subinterval is denoted by
Bi . Then, this FI may be written as

Lim
n→∞

n∏
i=1

Ni

∫
d2 Bi e−�t B2

i /2c
(
ei�tσ·B)

+ (9.39)

and the ordering of the brackets is such that terms with the larger value of i
stand to the left. But each integral yields a result independent of i – that is,
independent of σ – by the following argument.

Because of the Gaussian weighting, each Bi scales as (�t)−1/2; that is,
in (9.39) replace each Bi by Fi/(�t)1/2 (including the normalization, Ni →
N ′

i /(�t)1/2), and for small �t expand each exp[i(�t)1/2σ · Fi ] so that (9.39)
becomes

Lim
n→∞

n∏
i=1

N ′
i

∫
d2 Fi e−F2

i /2c

(
1 + i

√
�tσ · Fi − �t

2
F2

i + · · ·
)

, (9.40)

of which we retain only the leading, non-zero dependence proportional to �t
(the coefficient of (�t)1/2 vanishes by symmetry). Each i th integral is the same,
and is trivial, yielding

Lim
n→∞(1 − c�t)n = e−ct . (9.41)
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The essential part of this computation has been the observation that, for WNG
integration, each Bi scales as (�t)−1/2. We now consider the same FI over
our “averaged” forms. The first point to be settled is whether the stochas-
tic limit is valid, and for this we must estimate the size of ρ2 = ( dB̂

dt )2/B2.
But, upon breaking up the interval (0, t) into subintervals, any ρ2(t) would be
replaced by

ρ2
i = (B̂i − B̂i+1)2/B2

i (�t)2.

The B̂i dependence is of O(1); but because Bi scales as (�t)−1/2, ρ2
i ∼ O(1/�t),

and is large. Hence the stochastic limit most certainly is relevant, and we
consider the FIs of our “averaged” forms in the limit of very large ρ, U →
F̄0 + iσ3 F̄3, F̄0 = cos(G), F̄3 = sin(G). One then requires

N
∫

d[B] exp

[
− 1

2c

∫ t

0
dt ′ B2(t ′)

]
· e±iG, (9.42)

which, upon writing G � ∫ t
0 dt ′ B/ρ, and breaking up the integration region

into subintervals, generates

Lim
n→∞

n∏
i=1

Ni

∫
d2 Bi e−�t B2

i /2c · e±i�t Bi /ρi , (9.43)

where ρi = +[(B̂i − B̂i+1)2]1/2/Bi�t . Again rescaling Bi , we now find in each
subinterval both an integral over the magnitude Fi and a non-trivial angular
dependence. Integration over each magnitude is immediate, leaving

1

2π

∫ 2π

0
dθi

(
1 ∓ ic�t

|sin(θi/2)|
)−1

. (9.44)

The integral of (9.44) can be done exactly; with q = ±c · �t , it is

1 + 2iq

π (1 + q2)1/2
ln

[(
1 − (1 + q2)1/2 − iq

1 + (1 + q2)1/2 − iq

)
·
(

1 + (1 + q2)1/2

1 − (1 + q2)1/2

)]
.

As �t → 0, the argument of the log becomes ±2i/c�t , generating for the
complete FI

Lim
n→∞

n∏
i=1

(
1 − c�t ± 2ic�t

π
ln

(
2

c�t

))
, (9.45)

which can be written as

e−ct · e±(2ict/π )·ln(2/c�t)
∣∣
�t→0. (9.46)
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Comparison with (9.38) shows that a spurious phase has appeared, but one
that can be understood, and removed, by the following argument. In every
subinterval’s integration, our “averaged” forms have made a small error, which
is (fortunately) imaginary, and which must be removed “by hand”. Instead of
calculating (9.42) as we have done, we must add the proviso that we keep
only the real part of every subinterval’s contribution; and in this way, by not
retaining and compounding the small error generated by our “averaged” forms,
we can reproduce (9.38). We expect this tendency towards a spurious phase
factor to appear in more complicated FIs, or in FIs that are Gaussian but not
precisely in the white-noise limit; and it will be necessary to remove such
spurious dependence. This can be most simply done by replacing the FI over
exp[±iG], which we call 〈exp[±iG]〉, by the quantity [|〈exp(±iG)〉|2]1/2, a
computation that we henceforth label “renormalized”.

More general, non-WNG weightings may be treated by calculating Gaussian
fluctuations with a correlation function given by

�i j (t1 − t2) = 〈Bi (t1)B j (t2)〉 = δi j (Em/2τ ) exp(−|t1 − t2|/τ ),

where τ is a correlation time, and Em an appropriate magnitude. The limit
τ−1 → ∞ for Em = 1 is the WNG case, �i j → δi jδ(t1 − t2), while the opposite
limit, τ−1 → 0 is effectively the adiabatic limit. (This last statement would be
strictly true if ρ were defined as |dB/dt |/B2, rather than as |dB̂/dt |/B; in
practice, there seems to be little difference.)

We illustrate in Figs. 9.11 and 9.12 FIs in the WNG region (τ−1 = 100) over
a variety of different possible approximations, and note that the best agreement
with the exact FI is obtained by first performing the large-ρ approximation
of ξ, ξ (ρ) ∼ 1/ρ, and then performing the FI. Why this is true, and not the
converse, is explained for the interested reader in Note 2; here, it is simply noted
that the very close agreement of these figures, depicting WNG FI over the exact
and renormalized stochastic forms is surely no accident, and is indicative of the
robust nature of the stochastic approximation’s 1/ρ expansion.

Finally, one may add that a completely independent method of finding the
lowest-order terms in the 1/ρ expansion has been outlined in Note 4 for SU (2),
although it is not unambiguous for SU (3). The connection here is between the
first-order DE analysis discussed above, and that of the second-order DE which
may be constructed to study the F0 and Fi . In particular, when certain input func-
tions of the second order DE are large and slowly varying, the solutions obtained
are precisely those of the leading terms of the 1/ρ expansion of the stochastic
limit. Efforts to extend these strong-coupling results to SU (N ), N > 2, have
been made, but have only met with partial success, as in Note 3.
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Fig. 9.11 A comparison of the result of functional integration over the exact U (t |E)
with several approximations, for τ−1 = 100, Em = 10, �t = 0.005. The labeling of
the curves is A = exact, numerical; B = renormalized (1/ρ); C = (1/ρ); D = full
ξ (ρ); E = renormalized, full ξ (ρ); F = renormalized adiabatic; G = adiabatic.

G

E
F

D

CA
B

Fig. 9.12 The same comparisons, with the same labeling as in Fig. 9.11, using τ−1 =
100, Em = 1, �t = 0.005.
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