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PREFACE

Advanced Mathematical Thinking has played a central role in the development of human
civilization for over two millennia. Yet inall that time the serious study of the nature of
advanced mathematical thinking — what it is, how it functions in the minds of expert
mathematicians, how it can be encouraged and improved in the developing minds of
students — has been limited to the reflections of a few significant individuals scattered
throughout the history of mathematics. In the twentieth century the theory of nathematical
education during the compulsory years of schooling to age 16 has developed its own body
of empirical research, theory and practice. But the extensions of such thearies to more
advanced levels have only occurred in the last few years.

In 1976 The International Group for the Psychology of Mathematics (known as PME)
was formed and has met annually at different venues round the world to share research
ideas. In 1985 a Working Group of PME was formed to focus on Advanced Mathematical
Thinking with a major aim of producing this volume.

The text begins with an introductory chapter on the psychology ofadvanced mathemati-
cal thinking, with the remaining chapters grouped under three headings:

the nature of advanced mathematical thinking,

cognitive theory,

and

reviews of the proress of cognitive rescarch into different areas of advanced

mathematics.
It is written in a style intended both for mathematicians and for mathematics educators, to
encourage an interest in the cognitive difficulties experienced by students of the formerand
toextend the psychological theories of the latter through to later stages of development. We
are cognizant of the fact that it is essential to understand the nature of the thinking of
mathemnatical experts to see the full spectrum of mathematical growth. We therefore begin
with an introductory chapter on the psychology of advanced matt ical thinking. This
is followed by three chapters which focus on the nature ofadvanced mathematical thinking:

a study of the mental processes involved, the essential qualities of mathematical creativity
and the mathematician’s view of proof.

The processes prove to be subtle and complex and, sadly, few of the more advanced
processes are mnade available to the average student in an advanced mathemnatical course.
Creativity is concerned with how the subtle ideas of research are built in the mind. Proof
is how they are ordered in alogical development bothto verify the nature of the relationships
and also to present them for approval to the mathematical community.

xiii
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However, there is a huge gulf between the way in which ideas are built cognitively and
the way in which they are arranged and presented in a deductive order. This warns us that
simply presenting amathematical theory asa sequence of definitions, theorems and proofs
(as happens in a typical university course) may show the logical structure of the
mathematics, but it fails to allow for the psychological growth of the developing human
mind.

We begin the part of the book on cognitive theory by considering the way in which
formal mathematical definitions are conceived by students and how this can be at variance
with the formal thecry. As a result of mentally manipulating a (mathematical) concept an
individual develops an idicsyncratic personal concept image which is the product of
experience and mental activity. Empirical research shows how this can give rise to subtle
conflicts that can cause cognitive obstacles in the mind of the developing student and act
as a barrier to attaining the formal ideas in the theory. The next chapter looks at the mental
objects that are the material of math ical thought — the ¢ I entities that arc
manipulated in the mind during advanced mathematical thinking, and how these entities
are represented by different kinds of symbolism. The fimal chapter in this part considers how
these conceptual entities are formed — through the process of reflective abstraction. All
advanced mathemnatical concepts arc “abstract”. This chapter postulates a theory of how
these concepts start as processes which are encapsulated as mental objects that are then
available for higher level abstract thought. Such a theory can give insight into how
mathematicians develop advanced mathematical ideas, yet may fail to pass these thinking
processes onl to students, and what might be done to improve the situation.

The remainder of the book is concerned with overviews of empirical research and theory
in various specific topics. First the question of the nature of advanced mathematical
thinking is addressed and how (ifat all) it differs from more elementary thinking occurring
in younger children. Then there follow chapters on functions, limits, analysis, infinity,
proof, and the growing use of the computer in advanced mathematics. Each one of these
reveals a wide variety of obstacles in students’ mental imagery and often extremely limited
conceptions of formal concepts which are the unforseen consequences of the mauner in
which the subject is presented to the student. A variety of more cognitively appropriate
approaches are postulated, sane with empirical evidence of success. These include:

the participation of the student in the process of mathematical thinking through
an active process of “scientific debate”, rather than passive receipt of pre-
organized theory,

the direct confrontation of the student with conflict which occurs in developing
new theoretical constructs, to help them reflect on the problem and build a new,
more coherent, cognitive structure.

the building up of appropriate intuitive foundations for the advanced math-
ematical concepts, through an approach which balances cognitive growth and
an appreciation of logical development.

the use of visualization, particularly utilizing a computer, to give the student an
overall view of concepts and enabling more versatile methods of handling the
information,
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< the use of programming to cause the student to think through mathematical
processes in a way which can be encapsulated by reflective abstraction.

In all these ways we believe that empirical research into advanced thinking processes
related to complementary cognitive theory can have a significant effect in improving the
education of students at an advanced level.

In every chapter the authors have been encouraged to impress their own personalities
on their view of the phencimena, but this has been done within a framework of internal
cousultation. Each participant operates from personal constructs within acontext of mutual
support and coustructive criticism from other authors and the final manuscript has been
recast by the editor to enable it to be read throughout as a single text rather than as a
collection of disconnected papers. This was made possible through the wonders of modem
technology, using a Macintosh SE/30 computer to enable the editor to redraft the chapters
and set the whole book as camera-ready copy.

The cognitive theory of advanced mathenatical thinking is developing apace. This
study is the first step in making the bread sweep of current ideas in the advanced
mathematical education community available to a wider readership.

David Tall
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CHAPTER 1

THE PSYCHOLOGY
OF
ADVANCED MATHEMATICAL THINKI

DAVID TALL

In the opening chapter of The Psychology of Invention in the Mathematical Field, the
mathematician Jacques Hadamard highli, the fi | difficulty in di ing the

nature of the psychology of advanced matt I thinking:

. tha the subject involves two discipli and ics, and would require, in
order to be treated adequately, that one be bolh a psychologist and a mathematician, Owing lo the
lack of this composile equipment, Lhe subject has been investigated by mathematicians on the one
side, by psychologists on the other .. (Hadamard, 1945, page 1.)

Exponents of the two disciplines are likely to view the subject in different ways — the
psychologist to extend psychological thearies to thinking processes in a more complex
knowledge domain — the mathematician to seck insight into the creative thinking process,
perhaps with the hope of improving the quality of teaching or research. Although we will
consider the nature of advanced mathematical thinking from a psychological viewpoint,
our main aim will be to seek insights of value to the mathematician in his professional work
as researcher and teacher.

We begin by looking at pertinent psychological considerations which will lay the
foundations for ideas mtroduced not only in the remainder of the chapter, but i the book
as a whole. We then focus our attention on the full cycle of activity in advanced math—
ematical thinking: from the creative act of considering a problem context in mathematical
research that leads to the creative formulation of conjectures and on to the final stage of
refinement and proof. We postulate that many of the activities that occur i this cycle also
occeur in elementary mathematical problem-solving, but the possibility of formal definition
and deduction is one facior which distinguishes advanced mathematical thinking. We will
also find that teaching undergraduate mathematics often presents the final form of the
deduced theary rather than enabling the student to participate in the full creative cycle. In
the words of Skemp (1971), current approaches to undergraduate teaching tend to give
students the product of mathematical thought rather than the process of mathematical
thinking.

Not only may current methods of presenting advanced mathematical knowledge fail to
give the full power of mathematical thinking, it also has another, equally serious,
defici a logical} ion may not be appropriate for the cognitive devel
of the learner. Indeed, much of the empirical theary reported in the later chapters of Ihebook
reveals cognitive obstacles which arise as students struggle to come to terms with ideas
which challenge and dict their current k ledge structure. Fortunately, we are zlso
able to report empirical evidence that appropriate of learning and T
designed to help the student actively construct the concepts can prove highly successful.

3



4 DAVIDTALL
1. COGNITIVE CONSIDERATIONS

We begin by looking, not at the logic and order of the public evidence of mathematical
thinking found in research articles and text-books, but at the way in which these coherent
relationships are built in mathematical research and implications for how this might be
implemented in teaching and learning.

1.1 DIFFERENT KINDS OF MATHEMATICAL MIND

Writing in the first decade of this century, the celebrated mathematician Henri Poincaré
asserted:

1 is impossible Lo study (he works of the greal mathemalicians, or even those of the lesser,
withoul noticing and distinguishing Iwo opposite lendencies, or rather (wo entirely different kinds
ofminds. The one sorl are above all preoccupied with logic; 1o read their works, one is lempled Lo
believe (hey have advanced only step by step, afier the manner of a Vauban' who pnshes on his
trenches against the placebesieged, leaving nothing lo chance. The other sorl are guided by infuition
and al Lhe first stroke make quick bul sometimes precarious conquests, like bold cavalrymen of the
advanced guard. (Poincaré, 1913, p. 210)

He supparted his arguments by contrasting the work of various mathematicians, mchuding
the famous German analysts, Weierstrass and Riemamn, relating this to the work of
students:

Weierstrass leads everything back Lo Lhe consideration of series and Uieir analytic transformstions;
Lo express il better, he reduces analysis Lo a sorlof prolongation of arithmetic; you may tum through
all his books without fmding a figure. Riemann, on the conlrary, al once calls geomelry to his aid;
each of his conceptions is an image that no one can forget, once he has caught its meaning.

.. Among our students we notice the same differences; some prefer Lo treal their problems *by
analysis’, others ‘by geometry”. The first are incapable of ‘secing in space”, the olhers are quickly
tired of long calculations and become perplexed. (Poincaré, 1913, p. 212)

Of course, therearenotjust two different kinds of mathematical mind, but many. Kmnonkt.r
agreed with Weierstrass that logical proof was of | importance and

imtuitive visual arguments, but their fundamental beliefs in the nature of mathematical
concepts were very different. Weierstrass declared that “an irrational number has as real an
existence as anything else in the world of concepts”, but Kronecker was unable to accept
the actual infinity of real numbers, asserting that “God gave us the imtegers, the rest is the
work of man”. Based on the Weierstrassian notion of the actual infinity of real numbers,
Cantor was able to produce an infinite counting argument to show that there are strictly
“more” real numbers than algebraic numbers (solutions of polynomial equations with
integer coefficients). He therefore claimed that there exists a real non-algebraic number,
without giving an explicit method to construct one. This was anathema to Kronecker who
caused Cantor’s paper to be rejected from publication in Crelle’s Journal im 1873.

! Scbastien de Vauban (1633-1707) was a French military engineer who revohutionized the art
of siege craft and defensive fortifications.
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different strands of ial phil iing of the twentieth The
intuitionist view represenizd by Kronecker asserted that mathematical concepts only exist
when their construction is demonstrated Irom the inkegers, the formafist view of Hilbert
affimed that mathematics is the meaningful manipalation of meaningless marks writien
on paper, whilst the fogicist view of Russell, declared that mathematics consists of
deductions using the Laws of logic.

Practising mathematicians tend lo distance (hemselves from esoleric arguments and
simply get on with their work of stating and proving theorems. Thes (he twentieth century
has seen the demise of Kronecker’s views and (he (riumph of a pragmatic mixture of
formatism and logic. 1t has scen the creation ofa large number of formal systems based on
logical deduction from formal definitions and axioms — an approach that survived the
spparently mortal blow struck by GadePs incompleteness theorem, that any axiomalic
system i finite
sequence of Heps within the system..

The textbook by Bishop (1967) i s which i
construction proofs and disallows proof by contradiction alone — seems but an isolated
singularity in the dynamic flow of twerfieth century mathematical creativiy.

Nevertheless, the recent introduction of computer technelogy may yet see a new
renaissance in constructibility because of the way thal compaters manipulate data:

Cemputers have affested mathenalics s i 1t cf raileats affected
paternscl with
case Ut formy would have been accessible, f st al, crly wzl)le < sophisticated techniques.
“This has affected ot cnly the scrt of questicns that matberaticiens work ca, butthe very way thal
they think. One has to ask cresell which exvgles can be tested or a computer,  questicn which
foroes cre to ccnsider ccncrete eigeaithira and U try to make them efficient. Because cf this and
because aigorithms have real-life applvcalm.,x ul considerable imyortance, the develcgrrent of
algorithms hes become a respectable b o right (Edviards, 1587)

tuldy st deiim

The reason for raising (hese differences in mathematician’s perceptions is to heighten the
readens’ awareness of (heir own part in Ife’s rich (apestry, with a personal view of
mathematics that will differ in many ways from the conceptions of others. It may come a5
a surprise. when one it realizes (hat other people have radically different (hinking
processes. It happencd o the author when using pictures (o belp students visualize ideas in
mathematical analysis, sl a time when he did nol question the inplicit belief that such an
approach was universally valid. Whilst writing atex! book oncomplexanalysis, acolleagus
in the next room was engaged on a sinilar enterprisc, yet the latler’s book had almost no
pictures at all. He only included a diagram illustrating the argumen ofa complex pumber
allra rest deal of iat sarhing Tobim e uber wasan dlemend of o completc
ordered field (sati was an ordered pair of el
nunibers. The argument ofa cvalcx number (xy) wasdefined asareal number a such that

cos(c) = iy ()= s
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where sin and cos were defined by red power series. The theory did not require a
geometrical meaning. He took this hard line to make sure that his arguments were the
product of logical deduction and not dependent anywhere on gecmemc intuition. At the
time the author was hetic to this phil ut idered it too
sophisticated for students. It was some considerable time la!er that the realization dawned
that not all students shared the geometric point of view. No one view holds universal sway.

1.2 META-THEORETICAL CONSIDERATIONS

The discussion of the preceding session is a salutary reminder that any theory of the
psychology of learning I must take info account not only the growing
conceptions of the students, but the conceptions of mature mathematicians. Mathematics
is a shared culture and there are aspects which are context dependent. For example, an
analyst’s view of a differential may be very different ftom that of an applied mathematician,
and a given individual may strike up different attitudes to this concept depending on
whether it is considered in ananalytic or applied context. We will see (chapter 11) that such
attitudes can cause conflicts in students too.

Ata far deeper psychological level we all have subtly different ways of viewing a given
mathematical concept, depending on our previous experiences. For example, the “com-
pleteness axiom” for thereal numbers is viewed by some as “filling in all the gaps between
the rational numbers to give all the points on the number line”. Such a view may imply that
there is “no room” to fit in any more numbers: the number line is now “complete”. The
“real” number line, in particular cannot contain “infinitesimals” which are smaller than any
positive rational yet not zero. But, for others, “completion” is only a technical axiom to
adjoin the limit points of cauchy sequences of rational numbers. In this case it is perfectly
possible to embed the real numbers in a variety of larger number fields, which imclude
infiitesimals and infiite numbers. It is this view which leads to the modern infinitesimal
theory of “non-standard analysis”. The latter idea, however, is anathema to many
mathematicians, including Cantor, who denied the existence of infmitesimals on the
grounds that it was not possible to calculate the reciprocal of an infiite number in his theory
of cardinal infinities. Even today many mathematicians are troubled by the infinitesimal
ideas of non-standard analysis; they may not deny its logic, but they sense a deep-seated
psychological unease as to its validity.

Thus any theory of the psychology of mathematical thinking must be seen in the wider
context of human mental and cultural activity. There is not one true, absolute way of
thinking about mathematics, but diverse culturally developed ways of thinking in which
various aspects are relative to the context.

1.3 CONCEPT IMAGE AND CONCEPT DEFINITION

In Tall & Vinner (1981). the distinction is made between the individual’s way of thinking
ofa concept and its formal definition, thus distinguishing between mathematics as a mental
activity and mathematics as a formal system. This theory applies to expert mathematicians
as well as developing students:
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The human brain is not a purely logical entity. The complex manner in which il functions is often
al variance with the logic of mathemstics. It is nol always pure logic thal gives s insight, nor is it
chance that makes us make mistakes... We shall use the lerm concept image 1o describe the lotal
cognitive structure Lha is associated with the concepl, which includes all the mental pictures and
associaled properties and processes. 11 is buill up over the years through experiences of all kinds,
changing as the individual meets new stimuli and matures. ... As he concepl image develops it need
nol be coherent at all times. The brain does nol work Lhat way. Sensory inpul exciles certain neuronal
palhways and inhibits others. In this way different stimuli can activale different parts of the concepl
image, developing them ina way which need nol make a coherent whole. (Tall & Vinner 1981)

In this way it is possible for conflicting views to be held in the mind of a given individual
and 1o be evoked at different times without the mdividual being aware of the conflict until
they are evoked simultaneously.

‘The mature mathematician is not immune from infernal conflicts, but he or she has been
able to link together large portions of k ledge into of deductive argument. To
such a person it seems so much easier to categorize this knov\ledge ina logically structured
way. Thus a mature mathematician may consider it helpful to present material to students
in a way which highlights the logic of the subject. However, a student without the
experience of the teacher may find a formal approach initially difficult, a phenomenon
which may be viewed by the teacher as a lack of experience or infellect on the part of the
student. This is a comforting viewpoint to take, especially when the teacher is part of a
nmathematical community who share the mathematical understanding. But it is not mallsuc
inthe wider context of the needsof th d What tial —for them — i
to mathematical knowledge that grows as they grow: a cognitive approach that takes
account of the development of their knowledge structure and thinking processes. To
become mature mathematicians at an advanced level, they must ultimately gain insight info
the ways of advanced mathematicians but, en route, they may find a stony path that will
require a fundamental transition in their thinking processes.

1.4 COGNITIVE DEVELOPMENT

There are many competing theories in psychology. Behaviourist theory, built on external
observation of stimulus and respanse, refuses to speculate about the intemal workings of
the mind. It provides observable and repeatable evidence of the behaviour of animals,
including humans, under repeated stimuli, but it has limited application to mathematical
thinking beyond the mechanics of routine algorithms. Constructivist psychology, on the
other hand, attempts to discuss how mental ideas are created in the mind of each individual.
This may pose a dialectic problem for the mathematician with a Platonic ideal of
mathem: existing imdependently of the human mind, but it proves o give significant
insight info the creative processes of research mathematicians as well as the dfficulties
experienced by mathematics students.

The great Swiss psychologist Piaget saw the individual's need to be i dynamic
equilibrium with his environment as an underlymg theme in his work. This equilibrium
could be disturbed through the confrontation with new knowledge that conflicted with the
old, and so a transition period might occur im which the knowledge structure is re-
constructed to give a more mature level of equilibrium.
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Piaget saw the child grow into the adult through a series of stages of equilibrium, each
one richer than the one before. He identifed four main stages. The first is the sensori-niotor
stage prior to the development of meaningful speech, followed by apre-operationalstage
when the young child realizes the permanence of objects, which continue to exist even if
they are temporarily out of sight. The child then goes through a transition into the period
of concrete operations where he or she can stably consider concepts which are linked to
physical objects, thence passing into a period of fornial operations in the early teens when
the kind of hypothetical “if~then” becomes possible.

Piagetian stage theary has been extended to higher levels to encompass advanced
mathematical thinking. For instance, Ellerton (1985) suggested that Piaget’s cycle of
sensori-motor, pre-operational and concrete is the first level of a spiral cognitive develop-
ment in which the formal stage is the beginning ofanother cycle of the same type at a higher
level of abstraction. Biggs & Collis (1982) suggested a repetition of formal operations at
successively higher levels, each repeating the learning cycle: unistructural, multistructural,
relational.

A difficulty of applying such theary to college mathematics teaching is that many —
probably most — college students are not able to perform at the abstract level of formal
operations, which Piaget reported occurring in children during their early teens. Ausubel
criticized the stage theory:

... because such a high percenlage of American high school and college students fail fo reach Lhis

abstract level of cognitive logical operations. (Ausubel et al 1968, p. 230)
Representative studies have indicaled that only 15% of junior high school students ... 13.2% of

high school students ... and 22% of college students were at this level. (ibid, p. 238)

The concrete/formal distinction has proved to be a useful starting point in developing local
hierarchies of difficulty in extensive studies such as Hart (1981) inthe 11 to 16 age range,
and the development of early calculus concepts by Orton (1980). But a significant failure
of Piaget’s stage theary for the design of new teaching strategies is his own assertion that
the movement from one stage to another cannot be greatly accelerated by the affects of
teaching. Differences of cognitive demand have often been used in a negative sense to
describe students’ difficulties, but rarely to provide positive criteria for designing new
approaches to the subject. Papert (1980) asserted:

The Piagel of stage theory is essenlially conservstive, almost reactionary, in emphasizing whal
children cannol do. 1 strive (o uncover a more revolulionary Piaget,one who see pistemological ideas
might expand te known bounds of the human mind.

Advanced mathematics provides us with a useful metaphor which expands the vision of
stage theary to a theary more valuable in the devel of advanced ical
thinking. Piaget used an analogy with group theory to underpin his sense of the dynamic
equilibrium of cognitive growth. He saw the identity element as representing the stable
state, and noted that stability couldbe maintained ifany transformation from this state could
be reversed, thus suggesting a group structure in which every element has an inverse. But
the maintenance of a dynamic state of equilibrium has a more obvious mathematical
metaphor in dynamical systems and catastrophe theory. Here a system controlled by
continuously varying parameters can suddenly leap from one position of equilibrium to
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another when the first becomes untenable. Depending on the history of the varying
parameters, the transition may be smooth, or it may be discontinuous. This analogy
suggests that stage theory may just be a linear trivialization of'a far more complex system
of change, at least this may be so when the possible routes through a network of ideas
become more numerous, as happens in advanced mathematical thinking.

1.5 TRANSITION AND MENTAL RECONSTRUCTION

A far more valuable aspect of Piaget’s theary is the process of transition from one mental
state to another. During such a transition, unstable behaviour is possible, with the
experience of previous ideas conflicting with new elements. Piaget uses the terms
assimilation to describe the process by which the imdividual takes im new data and
acconmodation the process by which l]n. mdlvldual s cognitive structure must be
modified. He sees assimilation and as I y. During a transition
much accommodation is required. Skemp (1979) puts similar ideas in a different way by
distinguishing between the case where the leaming process causes a simple expansion of
the individual’s cognitive structure and the case where there is cognitive conflict, requiring
a mental reconstruction. 1t is this process of reconstruction which provokes the difficulties
that occur during a transition phase.

Such transitions occur often in advanced mathematics as the imdividual struggles with
new knowledge structure. Canflictis aph 11-k to the matl ical mind.

1.6 OBSTACLES
The most serious problem occurs when the new ideas are not satisfactorily accommodated.
In this case it may be possible for conflicting ideas to be present in an individual af one and
the same time:

Nex knowledge often contadicts he old, and offectve Iearming requires stralcgies Lo deal with such

conflict. the conflicting pieces of can be recanciled, sometimes one or the
other must be abandoned, and sometimes the (wo can both be “kept around” if safely maintained
in separate compartments. (Papert, 1980, p. 121)

The thesis of Comu (1983) studies the conceptual development of the limit process from
school to university and underlines how the colloquial use of the term “limit” effects the
mathematical usage. He discusses the notion of an “cbstacle”, introduced by Gaston
Bachelard (1938):

An obslacle is apiece of | it is parl of the of . This was
al one time generally satisfactory in solving certain problems. Ttis precisely this satisfactory aspect
which has anchored the concepl in the mind and made il an obstacle. The knowledge later proves
1o be inadequale when faced with new problems and this inadequacy may nol be obvious.
(Comu 1983, (original in French))

The obstacles found by Comu inchude the problems student face when they must calculate
limits using techniques more subtle than simple numerical and algebraic operations. He
discusses how the concept of infinity is imtroduced and is “surrounded in mystery”, yet the
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new techniques “work” without the students understanding why. He demonstrates how
students’ experiences can lead tobeliel i the infinitely large and the infinitely small, with
“nought point nine recurring” being a number “just less than one” and the symbol €
representing to many students a quantity that is smaller than any positive real number, but
not zero. There are implicit assumptions that the limiting pro “goes on forever”, that
the limit “can never be attained”. (See chapter 10.)

Tall (1986a) suggests an explanation is given for these phenomena as the generic
extension principle:

If an individual works in a xestricled contex! in which all the examples considered have a certain
property, then, in the absence of counler-examples, the mind assumes Lhe known properties o be
implicil in other contexts.

For example, most described to beginning students are of a simple
kind givenbya formula such as I/n, which tends to the limit( in this case zero), but the terms
never equal the limit. In the absence ofany counter-examples students begin to believe that
this is always so. The rich experience of colloquial language supports this belief
(Schwarzenberger & Tall, 1978), withphrases like“gets closeto”suggesting thatthe terms
of a sequence can never be coincident with the limit. Thus the implicit belief is slowly
formed that a sequence of terms converging to a limit gets closer and closer, but never
actually gels there.

TFurthermore, ifall the terms of a sequence have a certain property, it is natural to believe
that the limit has the same property. Thus the sequence 0.9, 0.99, ... has terms all less than
1, so the limit “nought point nine recurring” must also be less than one... This leads to the
mental image of a limiting object termed a generic limit in Tall (1986a). Ageneric limit need
not be a limit in the mathematical sense, but it is the concept of the limit that the individual
holds in his or her mind as a result of extrapolating the common properties of the terms of

the sequence.

This phenomenon happens not just with sequences of numbers, but sequences of
functions and other mathematical objects hat share a common property. Historically this
is enshrined in the “principle of continuity” of Leibniz:

In any supposed Lransition, ending in any lerminus, il is permissible lo institule a general reasoming,
in which the final tlerminus may also be inchided.  (Leibniz in a letter (o Bayle, January 1687.)
It arises even earlier in the work of Nicholas of Cusa (1401-1464) who regarded the circle
as a polygon with an infinite number of sides, and inspired Kepler (1571-1630) to formulate
a metaphysical “bridge of continuity” in which normal and limiting forms of a figure are
characterized under a single definition. Thus Kepler (Opera Omnia I page 595) saw no
essential difference between a polygon and a circle, between an ellipse and a circle, between
the finite and the infinite, and between an infinitesimal area and a line.

The generic extension principle arises time and agaim i history. For example, Cauchy’s
assertion that the limit of continuous functions is continuous and Peacock’s “Principle of
Algebraic Permanence”, in which the properties of extended number systems, such as the
real and complex numbers, were based on the principle that the any algebraic law which
held in the smaller system also held in the extension. The latter held sway for some time
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in the nineteenth century until Hamilton mvented (discovered?) the quatemions, an
extension of the complex numbers whose iplication fails to be ive.

Obstacles arising from deeply held convictions about mathematics are rarely easy to
erase from the mind. We all carry with us a mental rag-bag of such beliefs, many of which
we suppress, but do not elimimate, when faced with the logic of mathematics. Often the only
trace of such an obstacle is through a sense of unease when there is a logical deduction that
does not “feel right”. We view this as an instance of cognitive conflict between inconsistent
portions of the imndividual’s concept image.

1.7 GENERALIZATION AND ABSTRACTION

A common difficulty observed i students learning advanced mathematics is their
complaint that the subject is “too abstract”. What s the cognitive reason for their difficulty?

The terms “generalization” and “abstraction” are used in mathematics both to denote
processes in which concepts are seen in a broader context and also the products of those
processes. For instance, we generalize the solution of linear equations in two and three
dimensions ton dimensions and we abstract from this context the notion ofa vector space.
In doing so two very different mental objects are produced: the generalizatio® " and the
abstraction, a vector space Vovera field F. Practising mathematicians often regard a vector
space as both an abstraction and a lization of aspects of two di ional space and
it is therefore important to use the terms in a way which is consonant with their use in
mathematics. But the mathematics educator must look at the cognitive processes which are
imvolved, and here we see subtle differences between the two examples just given. The
generalizationR " simply extends the chaimofideas fromR 'to R 2t R*3 andso on, which
is described by applymg the usual arithmetic processes to each coordinate. The abstraction
Vis a very different mental object, which is defined by a list of axioms. Whilst the former
simply imvolves an extension of familiar processes, the latter requires a massive mental
reorganization.

As Dreyfus will discuss in greater detail in chapter 2, the process of defining the abstract
vector space must be followed by a sequence of theorems deducing the properties of a
vector space which follow from the axioms. Cognitively this is not just a deduction process
but a construction process in which the learer is building properties of the abstract object,
for example, that the axioms guarantee the “usual” properties of addition of vectors and
multiplication by scalars, that a linearly independent set of vectors will contain at most the
same number of vectors as a spanning set, that a space witha finite spanning set hasa precise
“dimension” given in terms of an independent spamning set, or “basis”, and so on. In this
process of construction, existing examples of vector spaces (forexample, R 2, R%, etcact
both as supports and potential conflict factors. They support because they suggest
properties which are likely to hold, but they are potential sources of difficulty on the one
hand because the leamer is constrained to prove something that may seem “self-evident”
from the examples and on the other because subtle properties common to all the examples
may be believed to be “generically true” for the abstract concept. During this period there
is a conflict between the properties of the examples which the leamer knows, and the
properties of the new abstract concept which must be deduced from the definition. A period
of re-construction and consequent confusion is inevitable.
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In Harel & Tall (to appear), we propose that a cognitive distinction be made between
different types of generalization in accordance with the cognitive activities mvolved. We
term an expansive generalization one which extends the student’s existing cognitive
structure without requiring changes in the current ideas. On theother hand, ageneralization
which requires reconstruction of the existing cognitive structure we call a reconstructive
generalization. In this terminology we see that the general vector space IR is, for most
students, an expansi lization, whilst the at wvector space is both an abstraction
and a reconstructive generalization.

We also note that it is possible for students in difficulties to operate in a third,
subsequently disastrous, way which simply involves remembering the new ideas as an
additional collection of information 1o be leamed by rote and added to current knowledge
without any attempt at integration with the old ideas. This we call a disjunctive generali-
zation. It is a generalization i the sense that the student may now be able to operate on a
broader range of examples, but it is likely to be of little lasting value to the student as it
simply adds to the number of disconnected pieces of information in the student’s mind
without improving the student’s grasp of the broader abstract implications.

The expansive generalization is a good teaching technique to adopt when it is necessary
to be able to deal with a wider class of applications without having to go through too much
stressful cognitive change. For instance, students who can carry out the process of solving
simultancous linear equations in two variables are usually able to generalize (expansively)
to three, four, or more variables without difficult (though the calculations may soon
become tedious). Indeed, it is relatively straightforward to describe the process in general
terms whilstreferring to a specific set of equations in, say, three variables, x, y, z. (“Subtract
suitable multiples of the first equation from the second and third to eliminate x, then
eliminate y from the resulting equations, solve for z and substitute back to findy, then x.”)
The process is easier Seen by enacting the solution than by describing it. Of course there
may be exceptions (for instance “what to do when the first equation does not containx”),
but these may also be dealt with at the specific level. Atrisk of overusing an adjective we
have already used before, we will regard this type of expansive approach as generic, in the
sense that it describes the typical (general) procedure by referring to a specific case.

Such a generic approach is seen both an easy method of generalization because it applies
a wellknown process in abroader context andalsoas a first step towards formal abstraction
as it does not involve a major cognitive reconstruction. Indeed, once the students have
reflected on the general process and seen it as a conscious act of widening the applicability
of a specific method, it may be viewed as a (relatively painless) form of abstraction which
we term a generic abstraction (Harel & Tall, to appear). This furnishes an approach which
is of particular value for students whose main interest is in applications rather than formal
mathematics. It may also provide a suitable transition phase for students passing on to the
formal abstraction, however, the latter will still require a cognitive re-organization, albeit
one which is better prepared.

Dubinsky encourages students to write programs in a computer language where many
ofthe constructs parallel the constructs of mathematical thinking: sets, sequences, ordered
pairs, relations, functions, and so on. By writing computer code which specifies the
procedure to carry out a function process, including an initial test to see if the input satisfies
conditions which define the domain of the function, the student is required to think through
the enactment of the function process. The act of programming is a generic process: it
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carries out what may be seen as a more general construct in particular cases and gives rise
to a generic abstraction of the function concept. Given the theory just described, this
suggests a further stage is necessary to pass from the generic example of programming,
where the general is seen in the particular instances of functions programmed by the
student, to the formal abstraction which requires a new level of abstract construction from
the definition. Dubinsky formulates this transition within a Piagetian framework of
reflective abstraction, m which processes are encapsulated as objects, so that the function
process leads to the function as a mental object. This theary is further elaborated i chapters
Tand 15.

1.8 INTUITION AND RIGOUR

Mathematicians often regard the terms “intuition” and “rigour”as being mutually exchisive
by suggesting that an “intuitive” explanation is one that necessarily lacks rigour. There is
a grain of truth i this, for usually an mtuition arrives whole i the mind and it may be
difficult to separate its into a logical deductive order. But the iti
between the two concepts is a false dichotomy as we shall soon see.
In a sense we have not one, but two brains. In attempting to assist patients who had
serious epileptic fits, Sperry and his colleagues tock the drastic action of partial or total
severance ofthe corpus callosum that links the two hemispheres ofthe brain and found that
each could essentially operate independently, though carrying out totally dfferent functions:

Though predominantly mute and generally inferior in all performances involving languiage or
linguistic or mathematical reasoning, Lhe minor hemisphere is nevertheless clearly the superior
cerebral member for certain types of tasks. If we rememnber that in the greatmajority of lests it is the
disconnected et hemisphere thal is superior and dominani, we can review quickly now some of the
kinds of exceptional activilies in which il is the minor hemisphere hal excels. First, of course, as
one would predict, these are all nondinguistic non-mathematical functions, largely as they involve
the spprehension and processing of spatial palierns, relations and Lransformations. They seem lo be
holistic and wnitary rather than analytic and fragmentary, and orientational more than focal, and to
involve concrete perceplual insight rather than abstract, symbolic sequential reasouing.

(Sperry, 1974)

This evidence resonates strongly with the observation of the two different kinds of
mathematical mind suggest at the turn of the century by Poincaré. However, subsequent
research suggests that the brains of different individuals need not follow such a simplistic
division of functions. Gazzigna (1985) sees bram activity as a collection of different
modules functioning independently in parallel, with a control unit (usually in the left braim)
making decisions based on the information provided by the various modules. Thus it would
be incorrect to divide human activity simplistically into two different modes, just as it is
imappropriate to consider just two contrasting types of mathematical mind.In particular we
may envisage that the human mind immersed i logical thought may eventually develop
intuitions that are themselves logically based. Poincaré, speakimg of Hermite, said:

His eyes seem lo shun conlact with Lhe world; il is nol withoul, il is within he seeks Lhe vision of truth.

.. When one talked (0 M. Hemmile, he never cvoked a sensuons image, and yet you soon
perceived Lhat the most abstract entities were for him like fiving beings. He did nol see them, bul
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he perceived thal they are nol an artificial assemblage and thal they have some principle of internal
wity. (Poincaré, 1913, pp. 212, 220)

The conclusion is mescapable. Intuition is the product of the concepl images of the
individual. The more educated the individual i logical thinking, the more likely the
dividual’s concepl imagery will resonate with a logical response. This is evident in the
growth of thinking of students, who pass from initial intuitions based on their pre-formal
nmathemalics, to more refined formal intuitions as their experience grows:

We then have many kinds of infuition; first the sppeal lo the senses and the imagination; nexl,
generalization by induction, copied, so (o speak, from the procedures of Lhe experimental sciences;
finally we have (he intuition of pure number... (Poincaré, 1913, p. 215.)

From apsychological viewpoint, Fischbein (1978) comes (o similar conclusions, citing two
different types of intuition:

Primary intutions refer lo (hose cognitive beliefs which develop themselves in human beings, in
a nalural way, before and independently of systematic instruction.

Secondary intitions are those which are developed as aresull of systematic intellectual training
... In the same meaning, Felix Klein (1898) used he lerm “refined intuition™ and F. Severi wrole
aboul “sceand degree intuition” (1951). (Fischbein, 1978, p. 161)

Thus aspects of logic loo can be honed to become more “intuitive” to the mathemalical
mind. The development of this refined logical intuition should be one of the major aims of
more advanced mathematical education.

2. THE GROWTH OF MATHEMATICAL KNOWLEDGE

As we have seen, the nature of mathemalical thinking is mextricably interconnected with
the cognitive processes that give rise to mathematical knowledge. We now focus on the full
cycle of mathematical thinking (o see mathematical proof as the final stage of this
developmental process rather than just the formal framework of the completed knowledge
structure.

2.1 THE FULL RANGE OF ADVANCED MATHEMATICAL THINKING

Mathematical proof, according to Hadamard (1945), is but the last, “precising” phase of
mathematical thinking. Before a theorem can be conjectured, let alone proved, there is
much work 1o be done in conceiving of what ideas will be fruitful and what relationships
will be useful. Hadamard considers Poincaé’s description of his own personal research
activities and notes:

.. [he very observalious of Poincaré show us three kinds of inventive work essentially different if
considered from our standpoin, iz,
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3. fully conscious work
b. illumination preceded by incubation
<. the quile peculiar process of the slecpless night. (Hadamard, 1945, p. 35)

Here Poincaré reports the necessity of working hard al a new problem, then relaxing to
allow the ideas to incubale in his subconscious, during which time he had a sleepless night
thinking vigorously about new ideas until suddenly, some time later, a sudden illumination
bursts into his consciousness with a solution. Aftera further time had elapsed, at his leisure,
he was able (o analyse what had happened and build up a formal justification of his theory
i the fial “precising” phase when the results of the illuminative break-through are
subjected Lo the cold analysis of the light of day, refming the assumptions so that the
deductions will stand analytic scrutiny.
‘What becomes apparent is thal the initial phases of the creative cycle may rely in part
on logic and deduction, but they also need flexible mental activity (o produce mental
between previously d concepls. A ding to Gazzigna’s model of
braim activity, they may occur as juxtapositions from different modules i the braim
processing simultaneously. Part of the success of this phase of mathematical thinking
seems (o be d

1o working sufficintly hard on the problem to stimulate mental activiy,

and then relaxing to allow the p g (0 carry on
22 BUILDING ANDTESTING THEORIES: SYNTHESIS AND ANALYSIS

Poincaré was at pains to show the complementary roles of synthesis and analysis in
mathematical thinking. Synthesis begins with the conscious act of the initial phase to begin
lo pul ideas logether, followed by a more intuitive activity, in which subconscious interplay
between concept images lakes place, until a powerful resanance forces the newly linked
concepts (o erupl once more info consciousness. Analysis, on the other hand, is a much more
cool and logical conscious activity which organizes the new ideas imto logical form and
refines them (o give precise stalements and deductions.

Teaching of younger children emphasizes the hesis of knowledge, starting from
simple concepts, building up from experience and examples (o more general concepts. The
emphasis al this level is now changing lo include more problem salving and open-ended
mvestigali Teachmg at university often emph the other side of the coin: analysis
of k ledge, with general at ions and forming chains of deduction from
them which may be applied in a wide variety of specific contexts.

‘Working with much younger children, Dienes (1960) proposed a theory for building
concepls from concrele examples, yet Dienes & Jeeves (1965) formulates a far more
general deep-end principle in which “there is a preference for extrapolation by leaps and
interpolation, rather than always by step-by-step”. They respond to their own question
“When is it possible to generalize from a simple case to a more general case and when is
it better for them (o particularize from a more complex case lo the simple case?” with the
remark that “this is not likely to be answered by a simple positive or negative statement”.
They suggest thal it is more a question of “the optimum degree of complexity required to
start with” —a response which is just as valid for teaching and learning at more advanced
levels. It is likely to require synthesis ofknowledge to build up theories cognitively as well
as analysis of knowledge (o give the total structure a logical coherence.
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2.3 MATHEMATICAL PROOF

Viewed as a problem-solving activity, we see that proof is actually the final stage of
activity im which ideas are made precise. Yet so much of the teaching in university level
mathematics begins with proof. In his preface (o The Psychology of Learning Mathematics,
Skemp succinetly refers (o this as showing the students the product of mathematical
thought, instead of teaching them the process of mathematical thinking. The splendid tomes
of Bourbaki are a monumenl to the intellect of the mathematical mind, and may be used (o
help the learner appreciate the formal structure of mathematics. But once again, Poincaré
has pertinent observations o make:

Townderstand the demonstration of a theorem, isthat & i ively each of the
composing il and lo ascertain s correctness, its conformily lo Lhe rules of the game? ... For some,
yes; when they have done (his, they will say: Iunderstand. For the majority, no. Almost all are much
more exacting Lhey wish lo know nol merely whether all the syllogisms of a demonstrations are
correet, but why they fink logether in (his order rather than another. In so far as lo them they seem
engendered by caprice and not by an intelligence always conscions of the end lo be altaimed, they
do not befieve thal they understand. (Poincars,1913,p.431)
Inse too many yetpardon You have donblless seen
those deficale assemblages of silicious needles which form the skeleton of certain spanges. When
the organic matter has disappeared, there remains only a frail and elegan! lace-work. True, nothing
is there excepl silica, bul what is inleresting is the form (his silica has laken, and we conld not
understand il if we did not know the fiving sponge which has given il precisely this form. Thus il
is (hal the old infuiliv enotions of our fathers, evenwhen we have abandoned themn, still inprint their
form upon the logical constructions we have pul in their place. (ibid, p. 219)

Thus it is that so many mathematicians demand that a proof should not only be logical, but
that there should be some over-riding principle that explains why the proof works. The
proof of the four colour theorem, by exhaustion of all possible fons using a
camputer search (Appel & Haken, 1976) seems logical, yel many professional mathema-
ticians, though keen to sec the theorem proved once and for all, are nevertheless sceplical
that there may be some subtle flaw in the compuler “proof”, because there seems (o be no
rhyme or reason (o illuminate why il works as it does.

Yetthis principle is not always passed on lo students. Sawyer (1987) reparts how he tried
(o tleach theorems in functional analysis by referring back (o theorems i real variables that
he expected his students to know, only (o find that they had no recollection of them.

‘The reason for Lhis was Ural in their universily loctures they had been given formal lectures thal had
nol conveyed any infuitive meaning; they had passed their examinations by last-minule revision and
by rote.

Hellells how he was shocked to learn of a lecturer whobecame stuck inthe middle ofa proof,
turned his back on the class (o draw a picture (o aid him, then erased i and carried on with
the formal proof without enlightening the class how he had used his imtuition Lo rebuild it.
He observes:

.. lo leach calculns well is a very demandmg lask. Three things have (o be done: first lo show by
3 drawing Lhal some resullis extremely plausible; secand, lo give counler-exaniples, which indicate
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the circumstances in which the conjecture would fail; (hird, (o extracl from these cansiderations a
formal proof of the resull.

These remarks da not apply only (0 lectures and books for undergraduate. Fefix Kicin poited
out thal in papers for rescarch journals the suppression of intuitive cansiderations was a common
and highly undesirable practice. (Sawyer, 1987)

Many mathematicians have learned to present their best face in public, showing their ideas
in polished form and concealing the toil and false turnings that littered their growth. It is
therefore essential (o pose the following question:

How it is possible (o initiate students into the wider vision of the nature of
mathematical thinkng that includes the arduous growth of mathematical
thinking in a manner appropriatefor a learner?

3. CURRICULUM DESIGN IN ADVANCED MATHEMATICAL LEARNING

3.1 SEQUENCING THE LEARNING EXPERIENCE

During the difficull transition from pre-formal mathematics to a more formal understand-
ing ofmathematical processes there is a genuine need (o help students gain insight info what
is going on. A mathematician’s logic may here fail him (or her) in designing a teaching
schedule. A mathematician often takes a complex mathematical idea and “simplifies” il by
breaking it into smaller components ready to Leach each component in a logical sequence.
From the expert’s viewpoinl the components may be seen as parts of a whole. But the
student may see the pieces asthey are presented, in isolation, like separate pieces of a jigsaw
puzzle for which no total picture is available. In fact the scenario may be worse. As the
studen( encounters each piece of the puzzle (s)he forms a personal concept image from the
particular context which may be al variance with the formal idea. Thus, not only is no picture
available for the puzzle, the pieces themselves may now have different shapes so that they
no longer fit.

For example, a mathematical analysis of the notion of the derivative [(x) requires the
notion of the Limit of (fx+h)—fx))/h as I lends lo zero, so mathematically the derivative
must be preceded by the discussion of the notion of a limil. To make the process
mathematically easier the limil process is initially carried out with x fixed; only at a later
stage isx allowed 1o vary (o give the notion of a function. Thus the sequence suggested by
a formal mathematical analysis is:

(1) notion of a limit,

(2) for fixed x, consider the limit of (fAx+r)—f(x))/h as k lends (o zero,

(3) call the limit f'(x), then allow x (o vary (o give the derived function.
However, when the learner is at stage (1), the limit notion is mysterious because it seems
“pluckedoul of the air”, withoul any realreason. There are already cognitive obstacles here,

as observed by Comu (1983), and others. At stage (2) the Limiting process mtroduces further
obstacles (Tall & Vinner, 1981) which will be discussed im more detail in chapter 10. Nor
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is the passage fram (2) to (3) as easy cognitively as il seems mathematically. Many students
see (2) as a purely symbolic activity, and do not see the derivative ['(x) as a function, with
a graph which is everywhere the gradient of the graph of (x) (Tall, 1986).

The problem of curriculum development is therefore (o present the sludcnl with conlexls
in which cognitive growth is possible, leading ulti ly o
thinking in which the formalism plays an appropriate part.

In analysis, for instance, one method which has proved successful might imvolve a more
flexible approach that complements numerical and algebraic approaches lo the derivative
with a global, visual appreciation of the gradient of a graph generated on a computer.

In general il may be possible to use the 1 y power of visualization to give
a global gestall for a mathematical concepl, lo show ils strengths and weaknesses, its
properties and non-properties, in a way that makes it a logical necessity (o formulate the
theory clearly. Visual ideas withoul links (o the sequential processes of computation and
proof are insights which lack mathematical fulfillment. On the other hand, logical
sequential processes withoul a vision of the total picture, are blinkered and limiting. It is
therefore a worthy goal (o seek the fruilful interaction of these very different modes of
thought.

3.2 PROBLEM-SOLVING

For many undergraduales, problem-solving means learning the contents ofa set of lecture

notes and applying this knowledge lo specific problems clearly related to the material

taught. For research mathematicians, problem-solving is a more creative activity, which

imcludes the formulation of a likely conjecture, a sequence of activilies lesting, modifying

and refming until it is possible to produce a formal proof of a well-specified thearem.
Polya (1945) suggested four phases as a framework for problem-solving:

understand the problem,

devise a plan,

carry out the plan,
look back al the work.

This framework has formed the backbone of many subsequent attempts al formulating
problem-solving strategies, though Mason ef al (1982) and Schoenfeld (1985) have seen
the need 1o make the actual heuristics much more explicil and more appropriate for the
Iearner. The idea of “devisimg a plan” is extremely daunting for the novice. More empathetic
is the version suggested by Mason, who proposes three phases:

* entry,

« attack,

© review.

The entry phase covers the first two stages of Polya whilst attack and review correspond
Lo Polya’s third and fourth stage. In the entry phase the polential problem-solver gets
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acquainted with the problem-solving conlext — getting a sense of the problem by playing
with the ideas, perhaps through simple specializations, moving to a position which attempts
Lo specify clearly what is known and what is wanlted, and considering carefully what can
be introduced (notation, procedures of solution, etc.) that might take the problem-solver
from what is known to what is wanted. Then a qualitative change occurs with a committed
atiack on the problem using the ideas that have been introduced. This may be successful,
bul it can more often lead (o an impasse, a seeming dead-end from which the individual
should review what has been done and return (o the entry phase (o consider a new attack.
Once some kind of solution is achieved the mood changes yel again (o one of sober review
—checking the results lo make sure no error has been made, reviewing whal has been done
(o learn of strategies that may prove useful on other occasions and then being prepared (o
extend the problem 1o new levels of sophistication, re-starting the entry cycle at a more
sophisticated level.

The author has had several years of experience teaching problem-solving within this
framework. It has proved possible to gel undergraduates lo develop original ways of solving
problems although the process requires longer initial periods for the students 1o reach a
point of insight than may be apparent when giving the information in a lecture. However,
the pay-off is in the way it can stimulate reflective thinking and develop an intemal monitor
within the student’s mind to sense the progress and appropriate direction of the solution
process.

3.3 PROOF

Students starting out in advanced mathematics have greal difficulty with proof before
they attain familiarity with the workings of the mathematical culture. In a questionnaire
investigating which proof of the irrationality of V2 was more clear, students preferred a
proof that showed that the square of any rational must have an even number of prime factors,
and therefore such a square could not be 2 because the prime 2 occurs an odd number of
times (namely once). They preferred this (o the standard proof by contradiction and another
more general demonstration taken out of Hardy’s Pure Mathematics. This is despile the fact
that this “proof™ is not a formal proof at all, but a discursive explanation with examples
demonstrating what form was taken by the square of a typical rational (Tall, 1979). Once
more we see thal a generic proof: explaiming the general concepl by considering a typical
example, is an easier first step Lo understanding rather than the reconstructive leap o the
general formalism.

Of course it is essential in advanced mathematics to take the step from (generic)
explanation (o formal proof. Some educators, such as Leron (1983ab, 1985ab), see their role
as making the structure of proof more meaningful (o students. His method is, essentially,
(o properly structure the proof, so that it is clear whal is going on at any given time, and to
make the proof as direct as possible. Thus contradiction proofs are re-written so that they
are initially direct and constructive, with any contradiction being introduced as late as is
practicable i the proof.

Others see their duty as the wider role of introducing students (o the full range of
mathematical thinking, icluding conjecture, positive verification through a convincing
argument or refutation through a counter-example. Thus the Grenoble school (Legrand ef
al, 1984, 1988; Alibert, 1988) have mtroduced “scientific debate” o their courses in
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which a full lecture audience is invited to group Logether (o think up likely theorems in the

ical topic under consideration, and then (o attempl (o prove or disprove them. It
is impartanl that the teacher does nol comment on the truth or falsity of the conjectures in
the initial stages, so thal the students are genuinely faced with the task of convincing their
peers of the truth of their arguments. (See chapler 13.)

3.4 DIFFERENCES BETWEEN ELEMENTARY
AND ADVANCED MATHEMATICAL THINKING

Itis ironic that the National Curriculum in the UK and the NCTM standards in the USA for
school mathematics advocate a level of open ended problem \x)]vmb which is r.m.ly

specified i unds duate courses al universities. The probl i of
entry, attack and review can and are being performed by younger chlldlen in such
mathematical mvestigations. Thus many of the p of advanced math i

thinking are already found al a more elementary level. However, Mason et al (1982)
describe the process of verification m Thinking Mathematically at three levels:

 convince yourself,
+  convince a friend,

+ convince an cremy.

Convincing oneself involves having an idea of why some stalement might be true, but
convincing a friend requires thal the arguments be organized in a more coherent way.
Convincing an enemy means that the argument must now be analysed and refined so that
itwill stand the test of criticism. This is the closest that Thinking Mathematically gels 1o the
notion of proof. Whal is entirely absent is the notion of formal defmitions and the logic of
formal deductions from those defmitions.

It may be hypothesized thal mathematical thinking at every level can inchude the phases
entry, attack and review, including a level of mathematical justification, but that elementary
mathematical thinking lacks the process of formal abstraction and does nol include the final
“precising phase” i its most formal guise.

The move from elementary to advanced mathematical thinking involves a significant
transition: that from describing to defining, from convincing \o proving ina logical maimer
‘ased on those definitions. This transition requires acognitive reconstruction which is seen
during the university students’ initial struggle with formal abstractions as they tackle the
first year of university. It is the transition from the coherence of elementary mathematics
lo the of advanced i ics, based on abstract entilies which the
imdividual must construct through deductions from formal definitions.

4. LOOKING AHEAD

Itis a truism that we can only think with the cognitive structure that we have available to
us. When we look at the psychology of advanced ical thinking, it is no wonder
that we each find it easier (o use our own knowledge structure lo formulate our own theories.
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As a mathematician entering mathematics education it is no surprise that the author fist
attempled Lo use catastrophe theory (o describe the discontinuities in learning (Tall, 1977).
Likewise those who begin mathematics education with a background of Piagetian theory
are likely (o attempl (o explain things in these lerms, those with experience in computer
studies are more likely to use computer analogies, mathematicians are likely (o attempl (o
use mathematical constructs, and so on. In trying (o formulate helpful ways of looking at
advanced mathematical thinking, it is important that we take a broad view and try to see the
illumimation that various theories can bring, the useful differences that arise and the
common links that hold them together.

In the remaimder of the fiist part of this book we consider the cognilive processes
imvolved im advanced mathematical thinking and the (wo complementary attributes of the
discipline: creativity in generating new ideas and the mathematician’s notion of proofin
convincing his peers of the truth of his assertions.

In the second part of the book we turn lo cognilive theories that are proving of value in
analysing the difficullies thal students face and providing insights into the learning process
that can be used in designing new ways of helping students construct mathematical ideas
for themselves. First the differences between concept definitions and students’ concept
images are considered, then the nature of the mental objects which mathematicians
construct: the conceptual entities that are the essence of advanced mathematics. This leads
to the theory of reflective abstraction m which processes are encapsulatedas mental objects
which prove o be easier (o manipulate at higher levels of abstraction.

In the third part of the text we review various advanced mathematical concepts from a
cognitive viewpoint, showing the cognitive obstacles thal can occur during their develop-
menl and reporting empirical evidence on the success of instructional sequences designed
from cognitive viewpoints. These mvolve the central ideas of function, limit, more
advanced concepls of analysis, infinity and proof. We then move on (o lock al the new
paradigm: the use of the computer and its cognilive effects m advanced mathematical
thinking.

Finally, in chapter 15, as editor of the book, | take the opportunity of reflecting on the
development of the theories of advanced mathematical thinking and ils teaching and
learning over the last decade and highlight the important themes which recur, the questions
that have been posed and the partial answers that are beginning to show us the way ahead.
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1: THE NATURE OF
ADVANCED MATHEMATICAL THINKING

What is it that is so difficult about Advanced Mathematical Thinking? In Part I
of this book we have three chapters which consider the fundamental nature of
advanced mathematical thinking to lay the groundwork for the cognitive theory
and research reports to follow. First and foremost we acknowledge Advanced
Mathematical Thinking in terms of creative process rather than just proof and
deduction. In Chapter Two, 'Ibmmy Dreyfus recognizes that many of the

of ad d h ical thinking are also found in elementary
m(uhem(mr‘t He considers the standard fornt of conveying information through
lectures and reports consequent student difficulties in coping with anything
which differs even marginally from what is taught. He focuses on the conplexity
of advanced concepts, the need to represent them and abstract their essential
properties to control their complexity, and discusses the cognitive difficulties in
carrying out these processes. In Chapter Three, Gontran Ervynck considers the
enigmatic nature of the creative process in mathematics, which is the focus of the
research process yet plays so little part in student development. In Chapter Four,
Gila Hanna analyses the nature of math ical proof hilosopl

front a p ophical and
pragmatic viewpoint to show that it is dependent on context and beliefs rather
than an immutable standard shared by all mathematicians.

In these three chapters we therefore take a critical look at advanced mathemati-
cal thinking as part of the living process of human thought rather than the
inntable final product of logical deduction.
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CHAPTER 2

ADVANCED MATHEMATICAL THINKING PROCE

TOMMY DREYFUS

Understanding, more than knowing or being skilled, has always been considered an
important goal by ics teachers. | ing, as it happens, is a process
oceurring in the student’s mind; it may be quick, an “Aha-Erlebni click of the mind;
more often, it is based upon a long sequence of leaming activities during which a great
variety of mental processes occur and interact. Therefore, what it means to come to
understand a mathematical notion or concept is extremely difficult to analyze. Researchers
in psychology (e.g., Brown, Bransford, Ferrara, & Campione, 1983) have been asking
themselves what “understanding” means, in particular what are its components, what
mental processes may imfervene and combine together to form that meta-process of
understanding. Researchers in mathematics education, in particular, have become con-
scious of the importance of the component processes for understanding advanced math-
ematics and their interactions.

‘Why would researchers be interested i the processes involved i leaming advanced
mathematics? One reason is to gain basic theoretical knowledge about what is going on in
the student’s mind. There certainly is some infrinsic interest in this fundamental question.
But there are also very impartant applied aspects to this strand of research, and these
concem all teachers ofadvanced mathematics. The processes the teacher hopes to provoke
in the student do not happen by themselves nor, if they happen, are they necessarily
conscious on the students part. It is not sufficient, for example, to define and exemplify an
abstract concept such as vector space. Students must then construct the properties of such
a concept through deductions from the definition. They may mvolve being through
activities that promote abstraction on their part and it has to be brought to theirattention that
this is what is being done, that this is the aim of the exercise. In this chapter, processes,
among them abstracting, are analyzed and discussed with the aim of making teachers of
advanced mathematics more conscious of what is going on during these processes.
Hopefully, this will help teachers introduce such action explicitly in their classrooms.
Recently some controlled trials with similar aims have been made, and they have met with
some success. A conscious process approach to abstracting has been described by Mason
(1989) and experiences with making student teachers reflect upon their mathematical
activity have been reparted by Southwell (1988).

Reflection about one’s mathematical experience is of particular importance in the
solution of non-trivial problems (as opposed to standard exercises). And it is i this
connection that the importance of processes has first been realized by mathematics
educators (Schoenfeld, 1985). Reflection about one’s mathematical experience is an
important aspect of meta-cognizing, another meta-p, . Such reflection is a character-
istic ofadvancedmathematical thinking. We would not usually expect an elementary math
student to stop, after having solved a problem, and think or recount how he went about
solving this problem. We would, however, defmitely like to see much more of this in our
advanced students and, in particular, in our high schoal teachers.
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There is no sharp distinction between many of the processes of elementary and advanced
mathematical thinking, even though advanced mathematics is more focussed on the
ions of defmition and deduction. Many of the processes to be considered in this
chapter are present already in children thinking about elementary mathematics concepts,
say number or place value. They are not exclusively used in advanced mathematics, nor,
indeed, are they exclusively used m mat} i ions are made in physics,
ions are used i psychology, analysis is used in economics and visualization in
arL Here, however, we w1[l descnbe the processes as they are relevant for advanced
mathematical thinking, in particular focussing on those processes whose characteristics
make the mathematical thinking advanced.

It is possible to think about advanced mathematical topics in an elementary way (e.g.,
many standard exercises on rings or groups can be answered by just plugging in the right
numbers), and there is ralher advanced thinking zboul elementary topics (look at some of
the problems in matl piads). One ive feature between advanced and
elemenlary thinking is complexxly and how it is dealt with. Advanced concepts, such as
rings or Lie groups, are likely to be very complex. The distinction is mhow this complexity
is managed. The powerful processes are those that allow one to do this, in particular
abstracting and representing. By means of abstracting and representing, one can move fram
one level of detail to another and thus manage the complexity.

The processes to be discussed in this chapter are mathematical and psychological ones,
and in many cases they are both: i fact, the mathematical and the psychological aspects
of a process can rarely be separated. For example, when you build a graph of a function,
you are executing a mathematical process, following certain rules which can be stated in
mathematical language; at the same time, however, you are very likely generating a visual
mental image of that graph; in other words, you are visualizing the function in a way that
can later help you reason about the function. The mental and the mathematical images are
closely linked here. Neither can arise without the other, and they are in fact generated by
the very same process; they are, respectively the mathematical and the psychological
aspects of this process. A similar linkage between mathematics and psychology exists with
respect to the other processes of advanced mathematical thinking. In fact, it is precisely this
linkage which makes the processes interesting and relevant for understanding learning and
thinking in advanced mathematics.

1. ADVANCED MATHEMATICAL THINKING AS PROCESS

The typical mathematics course at, say, first year university level has a neatly defimed
syllabus, which tells the instructor what material he is supposed to cover by the end of the
term. Whether this is acourse in calculus, algebra, finite mathematics, numerical methods
or other, for the imstructor the content to be taught is a well known, unassailable, accepted
segment of mathematical knowledge: although (s)he will probably think of several
possibilities to organize this material into a logically clean structure, each of these structures
will basically consist of a number of theorems, to be proved, and a number of applications
of these theorems to topics in mathematics and beyond. The instructor will probably
distribute these into as many class periods as are available and lecture during a considerable
part of these class periods, making extensive use of the strikingly convenient formalisms
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of the specific domain of mathematics concerned. In so doing, a very important aspect of
the mathematics which is being taught is presented to the students, namely the finished and
polished product mto which that well known, unassailable, fully accepted segment of
mathematics has grown.

Our instructor presumably knows very well that mathematics is not being created in final
and polished form, but through trial and error, through partially correct (and partially
wrong) statements, through intuitive formulations in which loose terms and imprecisions
have mtentionally been mtroduced, through drawings that try to visually present parts of
the mathematical structures being thought about, through dynamic changes being made to
these drawings, etc., etc.. But the fact that our instructor knows about these other aspects
of mathematics, indeed, is very likely to experience them daily im his or her research work,
does not usually prevent him or her from almost exclusively teaching the one very
convenient and important aspect of mathematics which has been described above, namely
the polished formalism, which so often follows the sequence theorem—proof-application.
This manner of teaching has several advantages: for example, it allows for a well-planned
structure of the course, as well as for predictable progress through the material, and thus for
a fairly certain guarantee that most of the material i the syllabus can be covered.
Unfortunately, it also has at least one very serious disadvantage: it is inflexible in terms of
adaptability to the students. It may work rather well for students who major m mathematics
and who, from some exceptional teacher or on le. basis nflhur own talent and mvestigative
nature, have already hadtt i i itude. Butas is shown,
for instance, by the present calculus cnsls it does not work for the vast majority of students,
those majoring in science, engineering, medicine or the liberal arts and taking mathematics
as a required service subject.

‘What these students learn, and what they don’t learn, is illustrated very well by the results
of a recent study of students who had passed a traditional first quarter calculus course at
Tennessee Teclmological University (Selden, Mason & Selden, 1989). These were well
prepared students who had been taught i small groups by experienced teachers and
teaching assistants, obtaining at least a C grade. The students were presented with five
moderately difficult problems that could easily be solved with the techniques at the
students” disposal. These problems were formulated in a manner that was somewhat non-
standard, for example:

Find at least one solution to the equation 4x3-x*=30 or explam why no such
solution exists.

The function f(x)=4x*-x* has a maximum value of 27 and thus no solution to the given
cquation exists. Although the students i the study were perfectly capable to carry out the
required function discussion, they could not answer the question as given. The situation was
similar with respect to the other four problems. Infact, the authors state that not one student
got an entire problem correct. Most couldn’t do anything.

This is notan exceptional finding, nor is it limited to average university freshman. Davis
(1988), in discussing a class of unquestionably excellent high school seniors, came to the
conclusion that when one looks carefully at how these “apparently successful” students
deal with mathematical problenss, onefinds that they hold many grotesque misconceptions
about mathematics and that the following reasons contribute to their success in passing
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tesls: Most mathematics instruction, from elementary school through college cowrses,
teaches what might be called rituals: "o this, then do this, then do this " and Teachers
willtypi 7 is e time beis

for
In ofher words, what most students learn in their mathematics courses is, (o carmy out s
lag: ramber of nandardizod procedures, cast in precisely deficd fomlisms, for
o clearly delimi e questions. They thus acquire the
capability to pcrfolm albeit much slower, the kind of operation which a computer can
perform by means of a suilable program such as Mathematica. They end up with a
considerable amoun of mathematical knowledge but without the working methodology of
themathematician, thalis they lack the know-how thal allows them (0 us: their knowledge
ina foble man o soh problems ofa type unknow 10 then. They are xamples of
described : they the products of
theactivity of scores ofmathematicians in their finalform, butthey have ot ined insight
into the processes (hal have led mathematicians to create these product
While there is 00 need (o form every student of science or engineering into a full-fedged
mathematician, most teachers of calculus would like their graduates (o be sble (o answer
questions such as

‘What conditions are sufficient o ensure that the fanction fx)- ¥ b+ extd is
increasing at =07

and to tnmedistely star searching for a mistake when they sce a resull that obviously has
the wreng sign such as in

g R
FRLil i
Morcover, one would expect thal they realize rather quickly that

jb () dx= J‘b’k g(xk) dx
a ark

for any continuous function g and that they have litke dificulty in determining which of
thesaicnenis (@) T10) () l"(~aff(a), @I D=, () (D)= Ca)aretrs
for any 0dd differentiable function I Experience shows, however, (hal such tasks are
difficult for caleulus students, end m.u a similar situation pertains o students of ofher
courses such a5 pro-calculus mathematics, linear algebra and differential equations.

The discrepancy belween teacher expectations and student performance on such tasks
oceurs because we, 85 teachers, oflen do nol realize how much of our experience with
mathematical processes and concepts we use. Take, for example, the equality
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J” e axzj'”“ Hx—ky dx:
a ark

here one needs to deal with the function g a5 an object hal is operated on in (wo ways,
namely integrated from @ to & 1o give a mumber as well as translated to (he right and then
integrated over a transhaied interval: one possibility is 1o visualize (he translations of the
function and the inkerval and (o compar them. Albeugh all of this may hardly take more
thana few seconds for theexpet, his
ofrepresenting (the function, maybe graphically), transforming (by translation), visualiz-
ing (the function, the translation, (he area under the graph), dhecking (hal the (wo
translations go in the same direction), and deducing (that the resulting numbers are equal).
Possibly processes of specializing (e.¢, lo posifive functions cnly) and then generalizing
again have also been involved Moreaver, all of this was most certainly based on extensive
prior processing of funtions and inkegrals which included repeated phases of generalizing,
abetracting and formalizing, (hatallow the expert (o view functions and integrals as objects
but may not be availsble lo the student. The message hal 1 am trying to convey here s thal
‘advanced mathematical thinking, as in the expert’s trealmen of the equality of these two
inkegrals, is an exiremely complex process, in which a large number of componert
processes inleradt in infricale ways.

One place (o look for ideas on how (0 find ways to improve students” understandings
is the mind of the working mathematician. Not much has been wiiticn on how mathema-
ticians actually work; certainly the decpest and most elaborate document on (his topic
Hadamard’s book (1945), which refers back extensively (o Poincart’s ideas and was the
source of inspiration for much of the discussion in the previous chapter. Hadamard
explicilly stresses the importance of informal reasoning, of thinking in the abrence of
words, of visual imagery, of menial images (which cannot necessarily be expressed in
words, at least not when they first ocaur), and ol'plzymgaround with ideas,for instance by
repeatedly trying (o fit di
aspoct of mathematics, as well as (he visual means *being ued, have roceived added

yaph:s. gt ‘which are in prici isual.

Tor i fractals. Acwdlrg
to Peilgen & Jirgers (1989), the fundamental mathematical developments in this arca were
made possible only through computer-graphical experiments.

Hoffiman (1989) has propascd a philosophy of mathematics education bascd on (he
simple recognition thal mathematics is a human activity, useful in the real world; on this
basis he requires (hal we should transmit (o our students a picture of mathematics a5 8
ssience which incorporates observation, experiment and discovery.

Soveral projects have been carried out in recent years following basically his philoso-
phy. For example, Breuer, GakEzer & Zwas (1990) propored to teach numerical methods
atcaleulus level in a computational Isboratory and Ruthven (1989) has reported how the
use of graphic cakulators has led students (o s a graphic-trial approach and a numeric-
tra! approach in parallel (o an analytic-construction approach (o pro-<caleulus problems.
Many (though nel all) similar projects make extensive use of computers as experimental




30 TOMMY DREYFUS

tools. Computers can serve as heuristic tools for the mathematician and the mathematics
student m much the same way as a microscope serves the biologist: if the tool is directed
onto interesting phenomena and correctly focussed, it may show an unexpected picture,
often a vlsual one, of the phenomenon undel study, and thus lead to new ideas, to the
of I fore unknown In the case of the researcher, these ideas
and relationships may be expected to be origial; i the case of the student, they were very
likely known to many other people before but they are new to this particular imdividual.
By using computer leaming environments many usually implicit relationships, for
instance between different representations for the same concept, may be made explicit. This
explicitmess contributes to students’ recognition of such relationships and to the emergence
of related ideas, in briefto their formation of concepts. This process thus closely parallels
the recognition of relationships and the emergence of ideas i the research process.
Adumittedly, there are clear differences between the research process and the leaming
process; for instance, in the learning process the material to be learned is presented in a
manner judged by experts to be dlges\lble' and !he average learner should be expected to
be considerably less talented for her; but the point here
is to stress the very important similarities between the Immmg process and the research
process; namely that in both cases the imdividual has to mentally manipulate, mvestigate
and find out about objects, about which his knowledge is very partial and fragmented. Thus,
Jjust as the research process is extraordinarily complex, so is the corresponding leaming
process. It contains the gistof what advanced mathematical thinking is all about. Itis likely
to comprise, at any stage and in tight imteraction, several of the processes mentioned in the
discussion of the translated integral, e.g. representing, visualizing, generalizing, as well as
others such as classifying, conjecturing, inducing, analyzing, synthesizing, abstracting or
formalizing. In other words, advanced mathematical thinking cansists of a large array of
interacting component processes. It is important for the teacher of mathematics to be
canscious of these processes in order to comprehend some of the difficulties which their
students face.

2. PROCESSES INVOLVED IN REPRESENTATION

2.1 THEPROCESS OF REPRESENTING

Representations have a very important function in mathematics: 1f we want to talk about
the group of permutations of n objects, for instance, it will often be convenient to call it the
symmetric group of degree n and denote it by Sy, The notation Syis a sign that refers to,

and thus represents, or symbolizes, the gmup i question; it is a symbolic representation of
the group. Such symbols are absol ble in modem mat] ics, but there
also some danger associated with them. As has been stressed by Olson& Campbell (in
press), symbols involve relations between signs and meanings; they serve to make a
person’s implicit knowledge — the meaning — explicit in terms of symbols. There must be
some meaning associated with a notion before a symbol for that notion can possibly be of
any use; in the educational discourse of teaching ics, this is too often looked
leading to the well known phenomenon of “symbol pushing”. The role of symbols
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discussed in greater detail m chapter 6 by Harel and Kaput.

Another meaning of representations is even more central for leaming and thinking in
mathematics. When we talk or think about a group, an integral, an approximation, about
any mathematical object or process at all, each one of us relates to something we have m
mind — a mental representation of the object or process under consideration. Although most
mathematicians can be expected to came up with roughly equivalent definitions of, say, a
function, theirrespective mental representations of the notion may be vastly different. Have
you ever asked mathematicians working in different areas what comes to their mind when
they think about functions? When you also ask mathematics teachers and students, these
differences become not only more pronounced but also much more important. For example,
a student’s notion ofa function may be limited to processes (of computation or mapping),
whereas the teacher teaching indefinite mtegrals may think of the function in the integral
as an object to be transformed. Such discrepancies easily lead to situations where students
are unable to understand their teachers.

To represent aconcept, then, means to generate an instance, specimen, example, image
ofit. But this short description is insufficient for us, because it does not specify whether the
generated instance is symbolic or mental, nor does it indicate what “generate” means in
terms of the processes by which mental representations come into existence and how they
develop. A symbolic representation is extemally written or spoken, usually with the aim
of making communication about the concept easier. A mental representation, on the other
hand, refers to imternal schemata or frames of reference which a person uses to interact with
the external world. It is what occurs in the mind when thinking of that particular part of the
extemal world and may differ from person to person. In case of the symmetric group, one
person’s mental representation may consist of nothing but the symbol S, another may think
of a set of colored cubes which are being permuted, a third may see “in the mind’s eye”
symbols like (1 3 5)(2 4 6 7) which may or may not have an associated meaning, and still
another person may conceive of the group by way of its irreducible representations.
Another example is that of vector space. When I thinkofavector space, I may “see” arrows
(before my mind’s eye), and | may be able to think in terms of these arrows when dealing
with bases, transformations etc. Others may evoke n-tuples of numbers or abstract symbols
which satisfy the axioms.

Visualization plays an essential role in the work of many eminent mathematicians. For
instance, Emstem wrote to Hadamard:

Words and language, wrilten or oral, scem nol lo play any role in my thinking. The psychological
construcls which are (he elements of (hought are cerlam signs or piciures, more or less clear, which
can be reproduced and cambined al fiberty. (Hadamard, 1945, p. 82)

Visualizing is one process by which mental representations can come into being. A more
general description of how mental representations of mathematical concepts may be
generated has been proposed by Kaput (1987b); according to his theory, the act of

ing a mental rep ion, relies on rep ion systems, i.e. concrete, extemal
artefacts, which can be materially realized. In the case of functions, graphs are one such
artefact, algebraic formulas are another, arrow diagrams and value tables still other ones.
Mental representations arc created in the mind on the basis ofthese concrete representation
systems. A person may thus create a single or several competing mental representations for
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the same mathematical concept. The topic of students” mental images of various math-
ematical cancepts has already been mentioned i the opening chapter of this volume and
will be discussed further by Vinner in chapter 5.

To be successful in mathematics, it is desirable to have rich mental representations of
cancepts. A representation is rich if it contains many linked aspects of that concept. A
representation is poor if it has too few elements to allow for flexibility in problem solving.
Such inflexibility we often observe im our students: The slightest change in the structure of
a problem, or even in its formulation, may campletely block them (see, e.g., the study by
Selden, Mason & Selden described in the previous section). Poor mental images of the
function concept, for instance, are typical among beginning college students, who think
only in terms of formulas when dealing with functions, even if they are able to recite a more
general set-theoretic definition (see Eisenberg, chapter 9).

Several competing mental representations of a concept may coexist im somebody’s
mind, andbe taken advantage of different ones may be called up for considering different
mathematical situations. However, different mental representations may also enter ito
canflict such as, for example, in a calculus student described by Schoenfeld, Smith &
Arcavi (in press), who simultaneously held four competing and conflicting imterpretations
of the y-intercept ofa straight line. In more favorable cases, several mental representations
for the same concept may complement each other and eventually may be imtegrated info
a single representation of that concept. This process of infegration is related to abstraction
and is further discussed below. As a result of this process, one has available what is best
described as multiple-linked representations, a state that allows one to use several of them
simultaneously, and efficiently switch between them at appropriate moments as required
by the problem or situation one thinks about.

2.2 SWITCHING REPRESENTATIONS AND TRANSLATING

Although it is important to have many representations of a concept, their existence by itself
is not sufficient to allow flexible use of the concept in problem solving. One does not get
the suppoart that is needed to successfully manage the information used in solvinga problem,
unless the various representations are carrectly and strongly linked. One needs the
possibility to switch from one representalion to another one, whenever the other one is more
efficient forthe next step one wants to take. The process of switchingrepresentations is thus
closely associated with that of representing. Switching must always be carried out between
existing representations. In our context, it means going over from one representation of a
mathematical concept to another one. And again, functions are probably the clearest
example. A function is an abstract concept with which we usually work in one of several
representations, or preferably i several representations at once; often these mclude the
graphical and the algebraic representation. Teaching and leaming this process of switching
is not easy because the structure is a very complex one; think, for example, of a
trigonometric function, which already has the properties of frequency, amplitude and
phase; now consider the algebraic formula for this function, its graph, and a table containing
the values of the function at special points such as extrema and zeros; moreover establish
the links between these three representations, e.g. clarify to yourself where some of the
points in the table of values appear on the graph or how the value of the phase determines
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the position of the graph; this is already a lot of infc ion to be dealt with, esp
students who lack extensive experience; but all ofthis information may only be the starting
point fora problem such as the behavior of the trigonometric function under a shift orstretch
transformation, i.e. a change of frequency or phase. As a consequence, students very often
limit themselves to working in a single representation; for example, even when they are
required to draw a sketch, say before integrating an absolute value function, they often
ignore their own sketch and thus fail to solve the problem carrectly (Mundy, 1984). One
possible approach is to Y ically use several repi ions in teaching and to stress
the process of switct from the beginning. Computer envil have
been successfully used m achieve this in curricula for funcnons (Schwarz, Dreyfus &
Bruckheimer, 1990), calculus (Tall, 1986a, 1986b), and differential equations (Artigue,
1987). These will be further discussed in chapter 11 by Artigue and chapter 14 by Tall &
Dubinsky. The way in which multiple-linked representations may be treated is well
illustrated by the functions curriculum. This introductory curriculum is based on a
computer micro-world, which has been specifically designed to encourage switching
representations. Students are asked to solve open ended problems such as maximizing, to
a given accuracy, the volume of an open box canstructed from a given sheet of cardboard
(before they leamn any calculus!). To successfully solve this problem they have to use at least
two representations, and they need to transfer information obtained in one representation
in order to use it in another one. A large majority of students in the study have been found
to transfer information between representations and to successfully use the transferred
information for solving problems. It has been concluded that, for these students, functional
representations are symbols in the sense described above, namely signs with associated
meaning; moreover, that meaning was common to several representations of the function;
in other words, these students developeda satisfactory function concept incorporating three
representations, between which they were able to switch during problems solving pro-
cesses. (Schwarz & Dreyfus, 1991).

A process which is closely d to switch fons is lating. One
meaning of translating which is relevant for advamed mathematical thinking is going over
from one formulation of a mathematical statement or problem to another one. Applied
problemns are a case in point. A second order linear differential equation with constant
coefficients may be presented as an oscillation problem, possibly with friction; its solution
may then be discussed in terms of permanent and transient states. From the presem point
of view, this constitutes an additional ion, and one that i
additional difficulties for the beginning student; at least ny students are very apprehensive
about “applied problems” in examinations. This can be easily explained in the light of the
above discussion. Not only does the student need to understand the context of the applied
problems, e.g. an electric circuit, but more importantly, he needs to establish a close and
clear carrespondence between quantities referred to in terms of electric circuits and
quantities referred to in terms of differential equations. This correspondence may be
obvious to the teacher, but for the student the construction of the appropriate mental
schemata is a difficult task which needs to be supported by explicit teacher action.

In this subsection, the distinction, made above, between mental and cancrete and
symbolic representations has been blurred. To some extent, this is necessary when leaming
processes are considered, because mental representations arise from concrete ones. The
section on representing will now be concluded with a process of concrete representing that
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has particular importance in applied mathematics and takes on ever greater weight in
university, and more recently also in school curricula, namely modelling.

2.3 MODELLING

Typically, the term modelling refers to finding a mathematical representation for a non-
mathematical object or process. In this case, it means constructing a mathematical structure
or theory which incorporates essential features of the object, system or process to be
described. This structure or theory, the model, can then be used in order to study the
behavior of the object or process being modelled. For example, the Schrédinger equation
models the behavior of certain phy: systems which obey the rules of quantum
mechanics; or a crystallographic group models the symmetry properties of a chemical
campound. A mathematical model thus has the status of a representation of a (physical)
situation; but for the person thinking about, say the symmetry properties ofa silicate crystal,
this is not enough; that person also needs a mental representation of the silicate’s symmetry
group. This leads toan interesting connection betweenamode land a mental representation.
The process of representing is, to some extent, analogous to the modelling process, but on
another level. In modelling the situation or system is physical and the nodel is mathemati-
cal; in representing the object to be represented is the mathematical structure, and the model
is a mental structure. Thus the mental representation is related to the mathematical model
as the mathematical inodel is related to the physical system. Each is a partial rendering of
the other. Each reflects some (but not all) properties of the other. And each enhances one’s
capacity to mentally manipulate the system under consideration.

3. PROCESSES INVOLVED IN ABSTRACTION

Many of the processes mentioned in this book occur at any level of mathematical thinking:
Certainly, even small children create mental representations of anything they think about,
and particularly of mathematical objects of thought, such as numbers or triangles. Starting
no later than in elementary school, children also work with these objects, especially
numbsers, in different representations. Other processes, however, take on added importance
as students’ mathematical experience and abilities develop and as the mathematical
cantents they deal with become more advanced; the most important among these advanced
processes is abstracting. 1f a student develops the ability to consciously make abstractions
from mathematical situations, he has achieved an advanced level of mathematical thinking.
Achieving this capability to abstract may well be the single most important goal of
advanced mathematical education.

Two processes, in addition to representing, form a prerequisite basis to abstracting:
generalizing and synthesizing; we briefly discuss these first.
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3.1 GENERALIZING

To generalize is to derive or induce from i to identify lities, to expand
domaims of validity. A student may know from experience that a linear equation in one
variable has one solution, and that “most” systems of two (three) linear equations in two
(three) variables have a unique solution. (S)he may then generalize this to systems of n
linear equations in # variables. More importantly, with appropriate guidance, (s)he may be
led to examine the meaning of “most” for #=2 and #=3 in the above statement, formulate
it as an appropriate condition, and generalize also that condition to #>3. In this process, one
needs to make the transition from the particular cases of #=1, 2,3 to general n, one needs
to identify what thecondtions for #=2 and #=3 have in common, and to conjecture and then
establish that the domain of validity of the conclusion “there is a unique solution” can be
extended to general a.

The generalization in the previous example is important in that it establishes a result for
a large class of cases —all systems of # independent linear equations in # variables. It is,
however, limited to establishing analogies between the conerete cases of 7=2 and #=3, and
extending them to the case of n equations in # variables, which may be less concrete but
presents no essentially new features. In particular, the general case does not require the
formation of any mathematical concepts that were not present for 2=3. Other generaliza-
tions do include the need for such concept formation. An example is the transition from
convergence of a sequence of numbers to convergence of a sequence of functions, which
gives rise to the need for a topology on the space of functions. The cognitive requirements
in the process of generalization are thus increased considerably, and for the specific case
of convergence of functions the degree of difficulty of these requirements is well
documented by several decades of discussions between Cauchy, Fourier and Abel at the
begiuning of the 19th century (Lakatos, 1978). Students must thus be expected to have a
hard time with such generalizations, and experience confirms this. It must be pointed out,
however, that even in this case, the generalization takes place with respect to given
(mathematical) objects, equations in the first case, numbers and functions in the second.
The presence of these objects is helpful to the student because it leaves him on (hopefully)
well known, solid ground while trying to grapple with the added generality ofthe situation.

3.2 SYNTHESIZING

To synthesize means to combine or compose parts in such a way that they form a whole,
an entity. This whole then often amounts to more than the sum of its parts. For example,
in linear algebra, students usually learn quite a number of isolated facts about orthogonal-
ization of vectors, di lization of matrices, f ion of bases, solution of systems
of linear equations, etc. Later in the learning process, all these previously unrelated facts
hopefully merge into a single picture, within which they are all comprised and interrelated.
This process of merging into a single picture isa synlhesls Thurston (1990) hasrecogmzed
that, due in part to this possibility of synthesi iy is ly

He has also noted, that while the msight that goes with this compression is one of the real
joys of mathematics, this process is irreversible; therefore, it is very hard for the
mathematician to put himself in the frame of mind of the student who has not yet achieved
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this synthesis, and to see not only how much detail is involved in learning even simple
concepts and operations but how much detailed work with these concepts and operations
is needed to be able 1o start synthesizing.

Classroamn practice often does not put enough stress on this process of synthesis. While
the details are explained at length by the teacher and exercised by the student, few ifany
activities are designed to lead the student to synthesize different aspects of a concept, and
even less different concepts within a domain or even different domains. Obviously, the
good teacher does his part of summarizing and this often includes some synthesis. He does
state, for the students’ benefit, what the connections, relationships, etc. are. But the fact that
it is done by the teacher rather than in a student activity conveys to the students that this is
what the mathemnaticians see, and is of no direct relevance to the problems the student has
to solve. These problems are standard exercises, which do not require synthesis. Conse-
quence: 1do not need it for the exam, why should 1 bother? As we saw earlier in the chapter,
non-standard questions, even if almost trivial, but requiring some amount of flexibility of
thinking and synthesis, are usually out of reach, at least for the average student (Selden,
Mason & Selden, 1989). Students, specifically high schoal students who do well in
mathematics, believe that solving a mathematics problem should typically take one minute,
and never more than ten; they also think that memorizing is extremely important for success
in mathematics and that there is little relationship between the different mathematics
courses (algebra, geomety, trigonometry) which they have taken (Schoenfeld, 1989).
Again, even if synthesis may be in the teacher’s mind, it is sorely lacking from the student’s.

3.3 ABSTRACTING

In the transition fram the concrete vector spacelR * o the notion of an abstract vector space,
the relationships between the vectors became the focus of attention, whereas their specific
realization as triples of numbers is dropped. In order to make this transition, one needs to
e able to conceive of the object “vector”purely in terms of its relationships to other similar
or different objects (vectors or scalars), and accept that the object itself is not further
specified by any intrinsic properties. Considering only these relationships, enables one to
draw conclusions from them which will be generally valid, independently of the specific
intrinsic properties of the vectors. lu this manner, muchof the power of mathematics derives
from abstraction.

The process of ab: ion is thus intil ly linked to g
incentives for abstraction is the general nature of the results that can be obtained. Another
incentive is the achievement of synthesis. Groups show to the student that it is possible to
describe in a unifying manner a vast number of situations that have heretofore been

idered separately and i of each other. But neither generalizing nor
synthesizing make the same heavy cognitive demands on students as abstraction. As we
saw in chapter I, generalization usually involves an expansion of the individual’s
k ledge structure whilst al ion is likely to involve a mental re-construction. In the
transition, say, fram real to complex numbers, we achieve generalization by not insisting
any more on order but we continue working with objects that are represented explicitly
using numbers that we canadd and multiply inafamiliar way. Similarly, astudent may well
learn about the connections between matrix calculus and planar or spatial symmetry

One of the main
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transformations such as principal axis transformations or crystallographic point groups
without forgoing their explicit concrete realization. Abstraction, however, requires giving
up exactly this explicitness: the student is required to focus on the relationships that exist
‘between numbers in order to be able to grasp what a field is, rather than on the numbers
themselves, and similarly for other notions such as function, group and vector space.

Abstraction thus contains the potential for both generalization and synthe:
it gets its purpose mainly from this potential of generalization and synthesis. The nature of
the mental process of abstracting is, however, very much different from that of generalizing
and from that of synthesizing. Abstracting is first and foremost a constructive process —the
building of mental structures from mathematical structures, i.e. from properties of and
relationships between mathematical objects. This process is dependent on the isolation of
appropriate properties and relationships. It requires the ability to shift attention from the
objects themselves to the structure of their properties and relationships. Such constructive
mental activity on the part of a student is heavily dependent on the student’s attention being
focussed on those structures which are to form part of the abstract concept, and drawn away
from those which are irrelevant in the intended context; the structure becames important,
while irrelevant delails are being omitted thus reducing the camplexity of the situation. The
role of mathematical and mental structure in abstraction has been examined by Thompson
(1985a) and Harel & Tall (in press). The cognitive aspects of focussing and shifting
attention during the process of abstraction have been investigated by Dorfler (1988) and
Mason (1989). Abstraction will be further discussed by Dubinsky in chapter 7 from a
Piagetian viewpoint. We here only raise a few points which may serve as background for
the coming chapters.

1t is an open didactical problem, whether one should lead students to abstract from many
cases or from a single one. Schoenfeld, Smith & Arcavi give a very detailed description of
how one above average student constructed her understanding of y-intercept (of a straight
line). They observed her give four different, inconsistent interpretations of y-intercept
depending on the context she had to deal with; e.g., she interpretedy-intercept differently
according to whether the line was given by two points on the same or on different sides of
the y-axis. It took seven hours of work over several weeks for the student to decontextualize
the notion and achieve an abstract unified concept of p-intercept. Given the mstability in
the student’s interpretations, it must be considered unlikely that a single example and an
explicit formal definition would have helped her avoid later misinterpretations. More
generally, having several examples, e.g. of concrete groups, will enable students to identify
commonalities; this is one way for the teacher to focus students’ attention on those
properties and relationships which are important for the intended abstraction. And this way
of focussing attention may work well, if the amount of information in the detailed
description of the internal structure of the examples is limited. If, however, the examples
are too complex, i.e. if they have many properties that are to be ignored in the process of
abstracting, it may be difficult to achieve such focussing. Therefore, it is sometimes better
to abstract from a single case, combined with a definition of the abstract concept. This single
case then needs to be chosen so that the intended properties and relationships take some
evidence, e.g. by being useful in an activity the students engage in. Students’ experience
with making abstractions is also likely tobe a factor here: Grade schoalers who should learn
about place value (a very abstract and difficult concept) are unlikely to have much use for
a defmition; mnathematics students who already have a good grasp of what vector spaces

; vice verss,
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ups are, may not need dozens of examples of rings before king able to digest a
n. The question is thus one of finding the good measure; that this is not easy is well
known, for instance, from all those students in differential equations courses who lack an
abstract concept of a function as a mathematical object and therefore fail to understand that
a function rather than a number canstitutes the solution to a differential equation.

There is a inherent difficulty in abstracting: How can we generate mental structures,
which are so often linked to visual images, if they should represent relationships that are
removed from the concrete objects which they were originally linked to? What is the role
of visualization in the process of abstraction? Again, there is no definite answer to this
question. Visual images are usually global and stress structural aspects. Therefore, if
appropriate visual images can be found, they are likely to be of great help to students
engaged in abstracting. The well known infinite row of domino stones as a model for
mathemnatical induction is a case in point. It incorporates exactly those features that are
common to all inductive processes and it does this in a manner that exhibits the structure
of these common features. For instance, if one stone falls, then so does the next one; this
is so at any place in the whole row of stones; therefore, if one falls, not only the next one
but all following ones fall, each one causing the next one to fall. Furthermore, and this is
central, it is obvious that the if-then-statement does not make the stones fall, but that in
addition to the if-then-statement being correct, one, not necessarily the first, stone needs to
fall. The picture of the domino stones contains the relevant elements of induction without
many extraneous features. It captures the structure of the entire process, globally, into a
single entity. Such a visual image undoubtedly helps students in building and strengthening
their mental representation of induction. It happens, howevcr that visual models appropri-
ate for abstract mathematical concepts are iste lete or even misleadi
and then care must be exercised. A detailed uweshgallon of visually supported abstraction
has been reported by Kautschitsch (1988); he found that dynamic visual sequences were
strongly supporting abstraction because of their analogy to squences of actions.

4. RELATIONSHIPS BETWEEN REPRESENTING AND ABSTRACTING
(IN LEARNING PROCESSES)

Frequently, the cancrete properties we would like to abstract from are linked to particular
representations of an abstract mathematical concept; functions are a case in point, but so
are vectors, vector spaces, groups, fields, C*-algebras, categories and functors. The
properties and relationships of the abstract concept are the representation-independent
ones.

Representing and abstracting are thus complementary processes in opposite directions:
On the one hand, a concept is often abstracted from several of its representations, on the
other hand rep! ions are always rep ions of some more abstract concept.
‘When a single representation ofa concept is used, attention may be focussed on this instead
of the abstract object. However, when several representations are being cansidered in
parallel, the relation to the underlying abstract concept becomes important. Often represen-
tations are needed to carry out some specific work with the concept; for instance, group
representations rather than abstract groups are used to carry out group theoretical calcula-
tions. This need for concrete representations in order to carry out some specific thought
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process is not purely mathematical. There is aparallel cognitive need: The thinking ofmany
mathenaticians and mathematics students is enhanced if they are able to place themselves
mentally in a particular representation, e.g. a visual one. It is even more enhanced, when
they are able to use several representations in parallel. Agaim, there is a complementarity,
this time between the mathematical and the cognitive aspects of representing mathematical
structures.

b

Both these I s, the one by stracting and rep ingand the one
between matl I and mental i may be and have been put to didactic

use in learning processes. Learning processes may thenbe seen as consisting of four stages:

+ Using a single representation,
« Using more than one representation in parallel,
* Making links between parallel representations,

< 1 i ions and flexible switching between them.

In stage one, processes start from a concrete case, a single representation. But in learning
the function concept, for example, students usually meet several representations (graphical,
tabular, algebraic, arrow diagrams, ...). In the second stage, thus, several representations of
the same mathematical object are used in parallel. The difficult process of transition to the
abstract concept depends in an essential manner on the links between the representations
that are formed. The establishment of these links constitutes the third stage. Strong links
allow students to switch representations, which in turn makes them aware of the underlying
concept and is thus likely to positively influence abstraction. At the fourth stage, a process
of integration between the different representations is happening, a synthesis of the kind
that has been shown above to be partial to the process of abstraction: the links, the
relationships, the common properties remain to form the abstract concept, whereas the
representation specific aspects retract to the background. Once this process has been
completed, one has formed an abstract notion of a given concept, one somehow “owns” that
concept. When one then needs to sotve a problem in which this concept occurs, one will
often need to go back to one (or several) of its concrete representations. The wonderful thing
about the abstract concept is that one is able to do precisely that, and to do it in a controlled
manner: One has control over the representations one wants to use.

The use of several representations to help students make the transition from a limited
concrete understanding of a certain topic to a more abstract and flexible understanding, has
been investigated by Kaput and his co-workers (1988) Wlule dealing wuh ratio and
proportion, they used concrete, visual, put whose
design was built on a cognitive basis. They called their approach a “concrete-to-abstract
software ramp”. The functions curriculum described in section 2.2 is another example: It
was systematically built towards the establishment of links between different function
representations and, as results from cognitive research have shown, this eventually lead
most of the students in the experiment to an abstract understanding of the function concept.

For some particularly gifted students, such carefully designed constructions of concepts
appear tobe superfluous; the eight year oldTerence Tao (Clements, 1983) is one such case:
of his age, he was able to learn directly about abstract algebraic structures, and
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concrete representations tended to disturb him, if anything. When asked whether a given
structure was a ring, he immediately realized that he only needed to prove three things and
proceeded to prove these with maximal reliance on earlier proved structural results. A
similar situation may pertain to advanced mathematics students who have had the

oppartunity to acquire iderable experience with ab: ion; this experience is likely
to u)ake some ol l.he above stages superfluous and, for complex mathematical structures,
evenahind ion; ashasbeen pointed out above, ab ion from one, oreven

from zero cases, may be easier forsuch students. But most students taking college and high
school mathematics courses do not belong to this category, and for them abstracting is
probably the most demanding of all advanced mathematical processes.

5. A WIDER VISTA OF ADVANCED MATHEMATICAL PROCESSES

The processes ofrepresenting and abstracting which have been discussed in some detail are
among the most important ones for i ical thinking; they are
only some among many processes which should and do occur as interacting links in chains
that may also include discovering, intuiting, checking, proving, defining and others.

Discovering or rather rediscovering relationships, for instance, is often considered
among the most effective ways for children to learn mathematics. To some extent, this
effectiveness may be attributed to the psychological aspects of the process of discovery: the
persanal involvement, the intensity of the attention, the feeling of achievement and success.
Leaming by discovery, however, is time-consuming, and this is one reason why teachers,
especially teachers of more advanced mathematics, tend not to use it. But the central
question is whether learning by discovery in the early and middle stages of mathematical
education develops reasoning processes which make later learning so much more efficient
that there is, in the long run, no time loss. (Here, efficiency must be measured not only in
terms of topics covered but also in terms of depth of understanding.) More generally, to
what extent could more stress on processes and less on content enable our students to leam
abstract math ics in speedy, independent, and und ding ways?

Intuiting, i.e., apprehending by intuition, by immediate direct cognition without
evidence of rational thought, has a central role in any sequence ofprocesses that starts from
discovery; the role of intuition will be discussed further in chapter 12 by Tirosh. Let us here
only mention its close links to processes of visualizing. For imstance, being interested in the
intrinsic description of curves in terms of curvature (g) and arc-length (s), I was recently
looking at ellipses; on the basis of the periodic increase and decrease of the curvature when
proceeding around the ellipse, my visual intuition told me that a good try could be a
trigonometric function of the form g=A+Bcos(ks) with suitable constants 4, B, and k. By
the way, this intuition was soon proven wrong by more detailed analysis that included
checking particular cases.

Checking means taking actions to convince oneself that a result indeed does answer the
question that was asked, and does answer it correctly. One useful way of checking is to use
an inverse procedure, such as differentiating to check whether one has correetly found a
primitive function. All too often, checking is not seen by students as an essential part of
mathematical activity. Although checking could give them a lot of security, most students
appear not to be very interested in this security. This could and should be changed by
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transferring more of the responsl.blhty for leammg processes from the teacher to the student,
in line with the ind d d in ion with discovert ing. Giving students
open-ended activities rather than one-mimute exercises to work on, is one step in this
direction.

Discovering, intuiting and checking, however, are only the begiuning of a sequence of
mathematical processes — the goal remains understanding of abstract relationships.
Students’ activity must therefore proceed from here to the more formal processes of
defining and proving, which will be analyzed respectively in chapter 5 by Viuner and
chapter 13 by Alibert & Thomas.

It will be seen in the following chapters that many features of these processes need to
be made very explicit to students, down into the smallest details. This does not mean that
students should be told about these details, but that student a es have to be designed
with these details in mind, in such a way that students realize them. These may, but need
not, be details of mathematical facts or relationships; more often, they are parts of the
processes. For example, with respect to switching representations, students must be made
conscious of their act of pulling information out of one function representation and using
this same information in another one (see Schwarz, Dreyfus & Bruckheimer, 1990, for
details on how this can be achieved). Similarly, students need to become conscious of the
interactions between processes such as representing and abstracting. The working math-
ematician is using many processes in short succession, ifnot simultaneously, and lets them
interact in efficient ways. Our goal should be to bring our students’ mathemnatical thinking
as close as possible to that of a working mathematician’s. Understanding advanced
mathematical processes and their interplay is a necessary prerequisite for achieving this
goal.
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CHAPTER 3

MATHEMATICAL CREATIVITY

GONTRAN ERVYNCK

Creativity plays a vital role in the full cycle of advanced mathematical thinking. It
contributes in the first stages of development of a mathematical theory when possible
conjectures are framed as a result of the individual’s experience of the mathematical
context; it is also plays a part in the formulation of the fimal edifice of mathematics as a
deductive system with clearly defined axioms and formally constructed proofs. It is an
essential factor in research mathematics when new ideas are formulated in a manner
previously unknown to the mathematical community. Yet it is external to the theory of
mathematics. It is a human activity, a meta-process, which acts upon and generates new
mathematics. As such it is often viewed as a mysterious phenomenon. Most mathemati-
cians seem to be not interested in the analysis of their own thinking procedures and do not
describe how they work or conceive their theories. Only a few (such as Poincaré,
Hadamard) explicitly attempt to describe ideas related to mathematical creativity. The best
known reference (at least to mathematicians) is probably Hadamard (1945), which has been
followed recently by Muir (1988).

The present chapter will not attempt to give an exhaustive description of the nature of
mathematical creativity and how it works. From a somewhat closer look at the aspects of
different kinds of mathematical activity as an heuristic procedure to register examples of
mathematical creativity, we derive some striking characteristics of the phenomenon and
frame a tentative definition. The reader is invited to activate his/her own imagination and

and to rectify deficiencies in the text with their own personal observations.

1. THE STAGES OF DEVELOPMENT OF MATHEMATICAL CREATIVITY

Mathematical creativity does not, presumably caunot, occur in a vacuum. It needs a context

in which the individual is prepared by previ periences for the signi step forward
in a new direction. Such preparation occurs through previous activities which form an
appropriate envi for creative devel We hypothesize that the context for

creativity is set by a preparatory stage in which mathematical procedures become
interiorized through action before they can be the objects of mathematical thought.
Preliminary to thismay be an imitial stage where the procedures might be used without even
a full appreciation as to their theoretical status.

Stage 0: A prelininary technical stage

We hypotl that genuine ical activity may be preceded by a preliminary
stag isting of some kind of technical or practical application of mathematical rules and
procedures, without the user having any ss of theirth ical foundation. We refer

here to the art of the craftsman who applies a set of mathematical procedures as a toolkit
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providing him with the necessary tools to manufacture his product. The justification for
these procedures is that it has been checked empirically that they work, in the sense that a
carrectly applied rule always yields the desired result. An example of such a practical
procedure is the rule used in Ancient Mesopotamia and Egypt tostake out aright angle: they
used arope with marks dividing it into three parts of length 3, 4 and 5. Forming the contour
ofatriangle, they obtameda rightanglelt thesides of length 3 and 4. This preparatory
stage has become part of modem theories of mathematics learning, for instance, the “tool-
object” dialectic of Douady (1986) which proposes that an idea should be infroduced first
as atool as part of a problem-solving activity, to become part of the imdividual’s experiential
cognitive structure before being reflected on as an object i its own right.

Stage 1 : Algorithmic activity

At this stage procedures are used to carry out mathematical operations, to calculate,
manipulate, solve. Algorithmic activity is essentially concemed with performing math-
ematical techniques. Examples of such lﬂcluuques are: application of an algonthm,
working out formulae, factorizing a poly lating an imtegral, i
activities mvolving computer programs such as in nummcal methods for solving differ-
ential equations. A characteristic of such activities pertaining to this first stage is that they
need to be quite explicit. All mtermediate steps have to be considered, at least implicitly;
if not, a serious error may occur and totally imvalidate the result. In the case of a computer
algorithm, no steps, not even trivial ones, may be forgotten. There is no regeneration of
missing steps in an algorithm.

Such activities are an acceptable part of advanced mathematics because they may be
seen as part of an overall theory, created in accordance with the principles of the higher
activities to be described in stage 2. We hypothesize that algorithmic activity is an essential
part of the learning of mathematics because such processes must be interiorized and
become routinized before they can be reflected upon as manipulable mental objects in a
higher order theary. (See chapter 7 for a discussion of reflective abstraction, in which a
process is encapsulated as a concept). As with the tool-object dialectic, it is essential that
the tool become familiar in action before it becomes the focus of reflective activity.

Stage 2: The creative (conceptual, constructive) activity

It is at this second stage that true mathematical creativity is likely to occur and actas a
motive power in the development of a mathematical theary. A non-algorithmic decision is
taken ina manner which seems to signify a bifurcation of the underlying concept structure.
Mathematical creativity is the ability to perform such steps. The decisions that have to be
taken may be of a widely divergent nature and always imvolve a choice, such as a choice
of a certain concept to be defimed (for instance, as in Hausdorff’s choice of the notion of
an open set, which proved to be of tremendous importance in major parts of mathematics)
or the decision to state and prove a theorem. The latter requires two distinct creative steps:
the choice of adequate hypotheses such that the resulting conclusion is of value within a
wider theary, and the actual deduction from the hypotheses to establish the proof of the
theorem. Note that the initial choice demands also a formulation of the possibilities from
whichthe choice ismade.Itis msuch complex activities that mathematical creativity comes
to the fore.
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In order that mathematical creativity should be activated, there is no need (o have a
formal theory at one’s disposal; (he most active part of creativity acts at the intuitive level
in a spirit of regeneration and renovation. Davis & Hersh (1981) suggest thal it comes
thvough a passage from the caarse: (he intuitive) to the finc (the formalized).

Whatis essenial in(he individual is  sat of mind repared for menka acivty that

Ttis oflen obr afler 8 period of ntense
activity involving a heighiened i
parts. And yetit bear fruit
subconsciously, to relate the ideas in 8 manoer which benefits from quiet, unforced,

contemplation.
High levels of creativity demand a subilety of mental structure that i funed to be able
{0 resonae with underying pattems (hat may fail (0 come (o gt in less refined

at different levels of ! stication. The (hree levels may

a very fypical manner, bascd on (he status of the method used in the solufion. s
clssifiation proves (0 be paralle o the desripion of the stages of developinend of

Afirst

the creatvity involved mqum(;ﬂy recogition of the overall positioning of the problem
in the whole of mathematics and the construction of the appropriate model (for instance,
 system of linear equations or a truth Lable). A sccond (higher) level abandons the
straightforward application o the algorithm, but is bascd on direct ressonirg inside (he

Some insight and i ded (0 develop theright method of
soltion. The environmen (b modeli il bomawd fom s seneal heey, bt soving
A (hird level (the.

Feascning outsidea formalized (heory, consiruct-
ing a solution b ovo by an irtelligent inspection of what s stated in the problem.

+ Problem: A man was  child for one sixth,  yourg man for one twelith and s
bachelor for his life.
and died four yearsearlier than his father. The lifelime ofthe son was halfol the
lifetime of the father. How old was the father vhen he died?

+ Sohution i low level of methematical creativity

Ttis enough (o realize that the problem is subject Lo strict conditions and canbe
modelied in a system of algebraic equations. The abilities involved arc (he
introduction of the necessary unknowns and (he formulation of the equations.
Let

= the age of the father at his deatly
= the time the father has been married;
z = the age of the son athis death.

A careful transhation of the problem gives the cquations

X x
gt y=2
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S+z+d-p

and a knowledge of the solution of lincar equations gives (he solufion x=84.
Solution at a higher level of mathematical creativity

An endeavour (o formulste a concepl inage of the internal struotre of the
problom may yield the awarcness that the siuation has a lincar model. As the
Tives of haman beings oceur in fime, atine axis isall thatis required o represort
all the evends occurring in the problem. Morcover, all evends e (o precise
moments which may easily be located on the fime axis. A simple graphical
represcnlation:

time,

Figure 1:Visualizing the solution

gives (suitably interpreted) the following equation:

1
+E9

and the solution x=84.
A third level solution
A much more scphisticated method for solving the problem is based on

intuition, experience and scme plausible (in (he sense of Polya) sssumptions
‘embedded in (he nature of the problem.

« A firsthypothesis is mcmump«m that the age i generally expressed 25 2
positive inleger is 10 look for an
integer solution.

« A scoond step isthe assunption (hatthe Fractions & .,  oceuring refer to
periods i the e of the faher which are probably whole nambers 85 wel

= A decisive step is (0 realize that the denominators, 6, 12 and 7 have few
‘common multipks between Oand 100, hence it may be valuable (o compute (he
Towest common multiple — indeed the only common multple in this range —
which is 84. Verification confimis that 84 is the (only) solution.
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This higher level of mathematical activity mvolves a highly tuned experience with number
theory as well as an insight into the working methods ofthe problem-poser. It illustrates the
unusual pathways that might be taken by the creative mathematician in solving an old
problem in a new way. But to be able to analyse the role of creativity of new mathematics
in new contexts we must first consider the nature of advanced mathematics as a major goal
of mathematical creativity.

2. THE STRUCTURE OF A MATHEMATICAL THEORY

It is essential to have an overall view of the structure of mathematics as a mental construct
before concentrating on the nature of the creative processes that bring it mto existence. We
see a formal theory of math ics as a framework isting of defmitions of concepts
and relations between the defined concepts, the latter being ofa very particular kind: the
relations emerge from the implementation of very strictly prescribed (deductive) rules. This
entails the necessity to determine (to define) the concepts is a very precise maner. The
concepts may be thought of as the nodes ofa network and the relations are directed arrows
connectimg the nodes. Morcover, the network has an additional feature: the connections are
ordered proceeding from the logically basic nodes towards the more complicated ones.
Mathematical creativity involves both the vision to build up parts of such a framework by
conjecture and argument and also to refime the structure into a mathematically deductive
framework.

We suggest thatan act of creativity requires the realization of at least one of the following
objectives:

(i) to create a useful new concept, where ‘useful’ means favourable to the further
unfolding of the theory at hand;

(ii) to discovera formerly unmoticed relation between two (ormore) nodes, with the
required ordering;

(iii) to construct a useful ordering: to organize a part of a theory such that its logical,
deductive order becomes more apparent.

The specification of a successful set of axioms for a previously unaxiomatized theory (as
with group theory) may be considered as an mstance of mathematical creativity where all
three objectives have been realized.

3. A TENTATIVE DEFINITION OF MATHEMATICAL CREATIVITY
E les of creativity in ics are: the ability to formulate a valuable defmition
using concepts which assure the usefulness of the defined object i the subsequent theory;
or the formalization of a basic idea borrowed from the physical context which was iitially
at the base of the mathematical problem. Hence, we lock at mathematical creativity
essentially as the ability to create mathematical objects, together with the discovery of their
mutual relationships. This activity is idered here as different from, and even opposed
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to, algorithmic mathematical objects (the “first stage” mentioned earlier).
A tentative defmition might be:

Mathematical creativity is the ability to solve problems and/or to develop
thinking in structures, taking account of the peculiar logico-deductive nature of
the discipline, and of the fitness of the generated concepts to integrate into the
core of what is important in mathematics.

4. THE INGREDIENTS OF MATHEMATICAL CREATIVITY
The working procedures of mathematical creativity are mtimately linked with the stages

discussed in section 2. They are essentially a working-out of the impulses which steer the
creativity of the working mathematician and operate generally in the following order:

(1) study, yielding familiarity with the subject,

(2) intuition of the deep structure of the subject,

(3) imagination and mspiration,

() results, framed within a deductive (formal) structure.

It is the effort mvolved in studying and becoming familiar with the subject that sets in the
mind conceptual structures that contain the patential for mathematical creativity. Intuition
is the product of the action of these conceptual structures on newly acquired data. As we
saw in chapter 1, intuition can be honed and palished into a refimed tool. The more refined
the mental structure, the more likely it is to produce refmed mtuitions. It is by reflection on
lhc du.p structure of the subject that such intuitions may lead to the imagination and

ion which latett iredresults, at first man imperfect form, butthen honed
by reflection into formal deducnve order.

5. THE MOTIVE POWER OF MATHEMATICAL CREATIVITY

The power of mathematical creativity results from the interaction of a certaim number of
elements which may be listed as follows (although there is no reason to believe that the list
is exhaustive):

* Unde ding: the ability to the steps of the math ical creativity
of the amhor(s) of a theorem, a part of a Iheory Malhcmancal creativity is
based on, and brings with it, a simul of ding and

insight in a concept.

Intuition: the formation of concept images which are sufficiently close to the
formal concept to allow the conception of plausible conjectures. Intuition
enables the mathematician to perform a fruitful selection as well (see below).
Other factors of equal importance, related to intuition and acting as driving
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forces in the process of mathematical creation are imagiation, mathematical
phantasy and curiosity (Dieudonné, 1974).

Insight: the driving force required to move towards a formulation of new
knowledge. This mvolves a refocussing of interest and a reorientation to
consolidate what is important, and even more, to envision will be important in

the future.
* Ge ization: the ability to lize is linked with imsight because it
depends hmvlly on the ability to foresee what will be important in the future.

a form of matt

| creativity, but imes only a weak
fonn, generalizing a theory is sometimes hard, sometimes straightforward.
Sometimes it may be an illusion: as any finite group has a representation as a
group of permutations, the generalization of the Iheory of permutation groups
of Galois and Jordan in the theary of finite groups is only a reformulation, though

a more i of the former.

‘We see these four ingredients being parallel to the four topics mentioned in the previous
section. By understanding, we mean not just the instrumental understanding mvolved in
being able to carry out processes, but the relational understanding, m the sense of Skemp
(1976), which invols ingful grasp of the relationships between the concepts. Even
this is not enough, for it suggests a meaningful relationship between the concepts in the
context which they are currently known. Creativity demands an extension of this context
i a way that has not before been conceived. It therefore requires the mdividual to create
new ideas andto put old ideas together in a new way, It is not something which can be carried
out on demand.

“The philosopher’s slane can only be found when the scarch lies heavily on the scarcher. Thou
seekes! hard and findest il nol. Seck nol and thou willst find.”

It requires relaxation and incubation in the sense of Poincaré (see page 15). Given good
preparation and good fortune, the incubation may provoke infuitions that lead to the
fundamental isights that break through to give the creative leap.

The latter may be a generalization of previous knowledge, which means the extension
of current schemas to a broader context. In chapter 1 we saw that there were two
fundamentally different kinds of lizati the exp: lizati which
broadens the applicability of the theory without changing the nature of the cognitive
structure, and the reconstructive generalization which requires the knowledge structure to
be reorganized. Whilst the former may be relatively easy, even when it occurs creatively
for the first time, the latter mvolves a cognitive transition of great difficulty which requires
special personal qualities of character to succeed in the struggle.
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6. THE CHARACTERISTICS OF MATHEMATICAL CREATIVITY

In making the great leap of mathematical creation, we see certain characteristics coming
to the fore. Mathematical creativity is:

* Relational (in the sense of Skemp). It stimulates through mteraction: it estab-
lishes a conceptual link between two or more concepts, such that a new idea
emerges which mtegrates different aspects form the mitial concepts mto a single
one. Interaction of ideas in the mind of the mathematician is perhaps the most
important driving force of mathematical creativity. Mathematical ideas and
concepts arise as mobile building blocks and combine (if the subject is not
mathematically totally msignificant) to form same new configuration. If the
configuration is favourable, it enters into the theary. This has already been
described by Poincaré.

A deeper view of the process entails the question:
is mathematical creativity acting just as mutations in biology?

A mathematical mutation occurs when a chain of ideas undergoes a restructuring, maybe
in one single place. Among all restructurings some are useless, others are useful. Some
survive, others are eliminated although they are entirely correct from a formal viewpoint.
An example of such a case is the theory of cubics, algebraic curves of degree three,
developed as a generalization of the theory of conics; this theory was developed in the
nineteenth century, but is seldom taught today.

We therefore alsa see that mathematical creativity is:

Selective. This analogy with biology arises through the struggle for life amongst
mathematical concepts, with a natural selection and survival of the fittest. For
example, the several thearies of mtegration established at the end of the
nineteenth and the begimming of the twentieth century to generalize the Riemann
imtegral entered imto competition with each other and finally the Lesbegue
integral survived to dominate mathematical analysis (Van Dalen & Monna,
1972).

Selectivity gives rise to a related criterion:

 Fiess. This is a qualifying criterion for the value of defmitions and theorems
and sets of axioms in mathematics. The well-known estimation by Stanislas
Ulam of the 200,000 yearly produced thearems makes it clear that a sieve seems
very necessary. In fact, the sieve exists, and in the first place does not consist of
the referees of the numerous journals, but acts spontaneously and unconsciously
intime, through the action of the struggle for mathematical life and the survival
of the fittest ideas.
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Finally, mathematical creativity must lead to new ways of handling the complexity of the
relationships between more complex concepts. It does this by encapsulating new structures
into single objects which are easier to manipulate mentally. It is therefore:

« Condensing. Mathematical creativity includes the ability to choose the appro-
priate wording and symbols for the represenmnon of mathematical concepts.
The imp of symbolic rep ions in ics cannot be overes-
timated. Well-chosen symbols allow for a condensation of several aspects of
one concept into a single whole which is evoked every time the symbol occurs
matext. In this manner the use of the symbol frees “memory space” in the mind
which becomes available for other, till then unknown or unclear concepts.

7. THE RESULTS OF MATHEMATICAL CREATIVITY

After the process of mathematical creativity, there are various qualities that the new ideas
must exhibit i order that they might be accepted and survive in the mathematical
community at large. MacLane (1986) suggests a number of criteria which are required so
that the new idea can be labelled “good mathematics™. Tt must be:

* Hluminating. This seems to be a necessary characteristic of mathematical
creativity. Good mathematics should be of help in understanding. A result that
obscures is not creative, or is creativity used im an inappropriate direction, for
example through mdulging in long technical calculations. For the same reason
we say that mathematical creativity in the first stage (algorithmic activity) is
very low.

+ Deep. Mathematical creativity is supposed to uncover hidden relationships. A
deep result is not necessarily difficult to prove, but it is usually wide in its
relevance and application.

* Responsive orfruitful. The successful product of creativity is based on former
results and often responds to current needs. 1fit is to survive, it also provides a
basis for future development so that it remains an essential part of living
mathematics.

Original. There should be something unexpected in the results, something new
in the field, if it is just a rearrangement of known results, there will be strong
doubts concerning the creative aspect of the achievement.

Inaddition, there are subtle qualities of surprise, even humour, which cause a mathematical
result to appeal 1o a professional mathematician. The following example illustrates the
latter (though it is not put forward as an example of particularly deep mathematics). It is an
inference which occurs using well accepted methodology (use of axioms, logical deduc-
tions, and so on) and is analogous to the usual reasoning m mathematical papers, but the
result of the inference is strange and unexpected.

The problem (from Wille, 1984) runs as follows:
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In the teaching of geometry, how shall the teacher proceed in order to draw a
“general” triangle on the blackboard?

The problem is ill-posed as long as we have no agreement on what a general triangle is;
hence a clear description of the term “general” is required. Thus the first step i
mathematical theary is encountered: the formulation of clear definitions. As we want to
serve the purposes of teaching for mathematically inexperienced students, it is quite
acceptable to say that “general” means a triangle without any particular geometrical
property. Moreover, granted the students lack of mathematical experience, we claim that
it must be seen with the naked eye that the triangle is general. For example, a triangle with
angles 89°, 45°, 46° will be perceived by the students as a right-angled, equilateral triangle,
and so does not fit our requirements. The didactical principle underlying these concerns is
that matl; ical concepts are unds d and developed on the base of concept images
which are present in the learner’s mind. A correct concept image may be generated by a
selection of appropriate examples; hence, in the case of geometry, the selection of the
pictures to be drawn on the blackboard may yield a correct understanding (or not) of the
formal ideas.

The claim that the students recognize the generality of the triangle by naked eye requires
empirical mvestigations. Based on experiments, a model has been constructed that
describes the ability of the human eye to distinguish between angles of different sizes. It
appears that imability to recognize a second angle as different from a first given one is
normally distributed according to the difference between the two angles. Experimentally
the standard deviation is =5.77° with a 9% certaimty obtaimed by a difference interval
of size 2.60 = 15°. We therefore adopt the statement that a triangle is “general” if it is
considered as such by 99% of the students.

This leads to the following axiom system which formalizes the condtions established
in the previous paragraphs:

Axiom I: The triangles not isosceles.
Axiom 11: The triangle is not right-angled.

Axiom I1I: Two angles differing by less than 15° are considered as being equal.
With these axioms we may prove the following remarkable theorem:

Theorent There is, up to similarity (axiom IlI) precisely one general triangle with acute
angles, namely, 45°, 60°, 75°.
(we note that there are an infinite number with one obtuse angle.)

Proof Let the triangle have angles 4, B, C where 90> 4 >B > C.
As 4 differs from 90° by at least 15°, we have 4=90— 15 —a=75—a wherea 20.
Sunilarly, B differs from 4 by at least 15°, so
A=T5-a—15-b=60-a-b
where 20 and fially
C=60-a-b-15-c=45-a-b-cwherec 20.
But the angles add up to 180°, so



52 GONTRAN ERVYNCK

180=75-a+60-a-b+45-a—b-c=180-3a-2b—c
and the non-negative numbers g, b, ¢ satisfy

3a+2b+c
hence a=0,5=0, ¢=0and

A=175,B=60, C=45,
as stated.

8. THE FALLIBILITY OF MATHEMATICAL CREATIVITY

A major characteristic of mathematical creativity which distinguishes it from the generally
accepted qualities of a mathematical theory is that it is sometimes fallible. It puts together
new ideas in a way which may prove to be insightful, or may equally lead to error. There
is no guarantee that theorems may be formulated correctly, or even that such theorems are
accompanied by correct proofs. Famous examples are early proofs of the Four Colour
Theorem, the numerous “proofs” of the fifth postulate of Euclid and the recent “proof” of
the Poincaré Conjecture which seemed plausible for some months before a flaw was
discovered.

Given the view of Lakatos (1976), mathematics does not proceed in a Vauban-like
manner, making step-by-step sure advances in a pre-determined direction, but like the
daring exploits of the cavalryman of the advance guard, the forays o new territory may
be flawed. Mathematical thinking, as opposed to the reflected organization of mathematical
thought, is a creative activity that brings with it the possibility of human error. Indeed the
very possibility of error is what makes the major advances such monuments of human
success.

9. CONSEQUENCES IN TEACHING
ADVANCED MATHEMATICAL THINKING

The fallibility of this vital stage in mathematical thinking is something that students may
find hard to accept. Their whole mathematical training is usually accampanied by the
provision of algorithms that provide certainty to solve a given class of problems, and with
it the (false) belief that, given sufficient time and study, there will be an algorithm that will
solve any given problem. When they study differential equations, they see the solution of
various types of equation: separable equations of first degree, those that can be solved using
an integrating factor, or a power series approach, the special case of simple harmonic
motion, then higher order differential equations with constant coefficients. It will come as
a surprise to such students that the subset of differential equations that can be solved is, in
a genuine cardinal number sense, an insignificant minority of all differential equations.

Students are so often given the impression that, in mathematics, all is logical, certain,
accurate, provable, amenable to clear explanation. Yet mathematical creativity is none of
these things. It offers a major difference between the actual working practices of research
mathematicians and the facets of the mathematician’s art that are selected to teach to the
next generation.
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We have seen that there are certain requirements of mathematical ereativity which seem
to prectude its operation in all but the mnost gifted. In particular it requires a sophisticated
understanding of mathematics in a given context to make creative developments which
extend known theary. Clearly we should not expect students to (re-)invent what has taken
centuries of carporate mathemnatical activity to achieve. Yet if we do not encourage themn
to participate in the generation of mathematical ideas as well as their routine reproduction,
we caunot begin to show them the full range of advanced mathematical thinking.

Such approaches are already beginning in elementary schools where children are being
asked to carry out extended mathematical investigations starting from a context which is,
to them, novel. For them, such an enterprise is creative. It provides an activity which is
camplementary to traditional methods of leamning mathematics without in any way
replacing them. It allows children to begin to explore, to conjecture and test, to formulate
and prove, in ways which give deeper meaning to mathematical processes.

In this way, at a time when the content and approach to elementary mathematics is
becoming more clearly prescribed in national curricula and national standards, there are
camplementary moves to encourage younger children to play their own part in knowledge
generation, to make conjectures, to expect errors, to need to check, to convinee, to prove.
In a society which is fast changing, such flexible thinking beyond the mere application of
algorithms is becaming notjust desirable, but increasingly necessary. Creativity at only the
lowest level is no longer acceptable.

In the next chapter we will see that the apparently unimpeachable bastion of mathemati-
cal truth, the formal proof, is in practice context bound and dependent upon stylistic
canventions of the mathematical community. It is therefore somewhat more fallible than
mathematicians may care to admit. The wider appreciation of the full range of advanced
mathematical thinking, including knowledge generation and creative problem-solving
through conjecture, debate and proof is therefore an objective which is worthy of
caonsideration. In chapter 13 we will return to the question of conjecture and debate in the
creation of mathematical proof. Within this broader framework ofadvanced mathematical
thinking, we therefore see mathematical creativity, so totally neglected in current under-
graduate mathematics courses, as a worthy focus of more attention in the teaching of
advanced mathematics in the future.




CHAPTER 4

MATHEMATICAL PROOF

GILA HANNA

The hallmark of the mathematics curriculum adopted in the sixties was an emphasis on
formal proof. Among the manifestations of this emphasis were an axiomatic presentation
of elementary algebra and increased attention to the precise formulation of mathematical
notions and to the structure of a deductive system.

Indeed mathematics itselfhad grown tremendously since the beginning of the twentieth
cenfury. Entire new fields had come into being in the first half of the century: modem
mathematical statistics, the theory of games, queuing theary, graph theary, and techniques
such as linear programming, often included in the general category of operational research,
which had gained prominence through their successful application during World War II.

The growth of mathematics was accompanied by change of outlook on the part of
practising mathematicians. The work of the logicist, formalist, and intuitionist schools on
the foundations of mathematics had given an impetus to the concern for precision in
definition and for the careful use of language. Also, the axiomatic approach, which these
schools shared despite their nany differences, had becomne a common denominator of most
mathematical endeavours. The new status of deductive rigor as a standard in mathematical
work was stated clearly by the promis French matt ician Dieudonné (1971):

Hence Lhe absofule necessily from now on for every mathemalician concerned with intellectual
probily (o present his reasonings in axiomatic form, Le., in a form where propositions are fimited
by virtue of ndes of logic only, all inuitive “evidence” which may suggest expressions (o the mind
being deliberalely disregarded. (p. 253)

Many important mathematicians saw the axiomatic method not only as the prescribed form
for each individual mathematical discipline, but also as a means of consolidating many
previously unconnecteddisciplines into a small number of “mathematical structures”. This
point of view was promulgated by the group of influential French mathematicians who
wrote under the name of Bourbaki. The Bourbaki group exerted a great deal of influence
internationally on mathematical research. The focus of the group, apart from its attention
to newer mathematical subject matter, was on what has been called the “Bourbaki
approach”: a formal, abstract, and rigorous approach, emphasizing precise definitions and
formal proof.

This chapter discusses the origins of this emphasis on formal preof and cansiders its
limitations as a focus for advanced mathematical thinking in light of those aspects of
mathematical practice which complement and go beyond formal proof.
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1. ORIGINS OF THE EMPHASIS ON FORMAL PROOF

The curriculum revolution of the sixties was predicated upon a number of beliefs, one of
which was that formal proof is the most important characteristic of modem mathematics.
This view was no doubt due in large part to the impressive work done during the first half
of the century in clarifying the very foundations of mathematics, work which had
demonstrated the enormous power of formal systems constructed step by step from a base
of defi

The brilliant mathematicians who were so united in a desire to lay a firm foundation for
mathematics were by no means united in their approach to this task. But though the schools
of thought which came to be known as logicism, formalism and intuitionism differed
greatly in their philosophical accounts of mathematics and even in their criteria for the
validity of a proof, they did share an emphasis on the importance of formal proof, and it is
this emphasis, rather than the differences among the schools, that has so greatly influenced
the mathematics curriculum.

The central assertion of logicism is that mathematics is part of logic. Accordingly, the
aim of the logicists was to produce the corpus of mathematics without introducing concepts
indefmable in logical terms or theorems which caunot be proved from the primitive
sentences of a logical calculus using its tightly-defined rules of proof. Thus formal proof
played a central role in the logicist agenda.

This was true ofthe formalist effort as well. In fact, the thesis of the formalist school was
precisely that mathematics is a science of formal systems: that it deals with the manipulation
of strings of symbols to which no meaning need be assigned. In the formalist view, the
validity of any mathematical proposition rests upon the ability to demonstrate its truth
through rigorous proof within an appropriate formal systemn.

The intuitionists, too, assigned importance to formal proof. Their differences with the
logicist and formalist schools centred upon the types of proof which shouldbe admitted as
valid, with the intuitionists taking a more restrictive view. Intuitionism is the belief that
mathematics and mathematical language are two separate entities, mathematics being
essentially a languageless aclivity of the mind. Mathematical activity then consists of
“introspective constructions”, rather Lhan axioms and theorems. But for the intuitionist the
assertion of a matl i was equivalent to the assertion that there is a
construction of a finite nature which produces the proposition —and such a construction had
to obey rules of rigour.

ons, axioms and rules of inference.

2. MORE RECENT VIEWS OF MATHEMATICS

In the last two decades several and ics educators have
the tenet that the most significant aspect of mathenatics is reasoning by deduction,
culminating in formal proofs. In their view, there is much more lo mathematics than fonnnl
syst This view recognizes the realities of matk I practice. Math

adunit that their proofs can have different degrees of formal validity—and still gain the same
degree of acceptance. Mathematicians agree, furthermore, that when a proof is valid by
virtue of its form only, without regard 1o its content, it is likely to add very little to an
understanding of its subject and ironically may not even be very convincing.
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In these more recent views, a proof is an argument needed to validate a statement, an
argument that may assume several different forms as long as it is convincing. Proof has been
described as a “debating forum” (Davis, 1986), as having “a certain openness and
flexibility” (Tymoczko, 1986), and as possibly depending for its validity on “correct or
reasonable social practice” (Kitcher, 1984).

In examining how proof in mathemnatics takes into account a social process and hence
goes beyond the cancept of formal proof often reflected in mathematics teaching, ideas
advanced by Lakatos (1976), Kitcher (1984), Tymoczko (1986) and Davis (1986) will be
discussed.

Lakatos has expressed the point of view that mathematics is fallible by its very nature.
His account of mathematics is thus at odds with both logicism and formalism, undoubtedly
influenced by their failures. Though mathemati not an empirical science, Lakatos
shows that its methods are very similar to those of the empirical sciences; he refers to

ics as i-empirical. Matt ics, in fact, grows through an incessant “im-
provement of guesses by speculation and criticism, by the logic of proof and refutation”
(Lakatos, 1976). Thus no proof is final, and indeed it is the essentially social process of
negotiation of meaning, rather than the application of formal criteria from the outset, which
leads to the improvement of a proof and its growing acceptance.

According to Kitcher (1984), to understand the development of mathematical knowl-
edge one must focus on the development of mathematical practice: mathematical knowl-
edge owes its growth to rational modifications to this practice. ical practice has
five camponents:

(1) a language,
(2) a set of accepted statements,
(3) a set of accepted questions,

(4) a set of accepted reasonings,

and

(5) a set of metamathematical views.

The latter component includes standards for proof and definition, as well as claims about
the scope and structure of mathematics (p.163). Thus in his view it is not only the carpus
of mathematical results which develops, but also the very ways in which mathematics is
done.

Further, Kitcher does not accept the a priorist view that mathematical knowledge is
based on proof. He attacks the conception that “proposes to characterize the types that count
as proofs in structural terms” (p. 36). It is furthermore historically incorrect to assume that
change in mathematics has consisted only of the discovery of earlier mistakes aml their
replacement by new, carrect d i In his view I is
always sensitive to peer challenges and is sustained, in part, by community nppmval of
assumptions and techniques.

Citing examples from the work of Euler, Cauchy, Weierstrass and Newton, Kitcher
concludes that mathematical proof is not always necessary to mathematical knowledge,
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and that it may not even be rational to attempt toaccumulate a series of certainties; a demand
for rigour may even be a hindrance to the growth of mathematics, because it impedes
problem solving. Indeed, within the set of accepted reasonings (mentioned above as a
companent of mathematical practice), the most interesting are those which occupy an
intermediate pasition in this set: the unrigorous ones.

Tymoczko is a philosopher of mathematics who thinks that what mathematicians
actually do has a bearing on philosophical questions about mathematical knowledge.
According to him, the concept of the “ideal mathematician”, the totally rational agent who
needs only follow formal deductive procedures to generate eternal and infallible knowl-
edge, is not one which is helpful in the philosophy of mathematics (Tymoczko, 1986).

Tymoczko’s account of mathematical knowledge centres upon the community. It views
not only mathematics teaching, but also the cancept of proof and the practice of proving
theorewns, as public activitics. Regarding the concept of proof, he agrees with Lakatos that
“proof ideas” are subject to criticism and even invite it. In his view

Mathematical proofs... generally have a certain openness and flexibilily. They can be paraphrased,
restaled and filledout invarious ways, and lo Lhis extent they transcendany particular formal system.
We might say (hat an mformal proof determines an open-ended class, or family, o use Witigenslein’s
lerm, of more specific proofs. (P.49)

Tymoczko goes on to say that informal proofs are often convincing and can lead to new
discoveries. They are codified in terms of simple proofs ideas and become the property of
a network of mathematicians.

Davis (1986) states that a proof can play several different roles. It can serve as a
validation, it can lead to new discoveries, it can be a focus for debate, and it can help
eliminate errors. According to him, as to Tymoczko, the traditional philosophies of
logicism, formalism and intuitionism are “private thearies” that describe an ideal math-
ematics. But nathematics, being a social activity, requires a public theory.

In the real world of mathematicians, Davis believes, a proof is never complete and
furthermore cannot be completed. Routine calculations will invariably be omitted. There
will always be an appeal to intuition, to pictures. There will be some metamathemnatical
objections, but such apart-proof will nevertheless be convincing because it is addressed to
people who share a mathematical subculture in which an incamplete argument is under-
stood, appreciated and seen as adequate. A typical college lecture in advanced mathematics
will include formulations such as “it is easy to show”, “you can verify that”, “by an
elementary camputation which I leave to you”, and so forth. It is considered perfectly
proper to transmit mathematics in this elliptical way.

Davis is quite explicit in his view of formal proof:

There is a view of proof or a view of malhematics which I disagree with and which T think is amyth,
which says thal mathematics is polentially, lotally formalizable, and Uxerefore, one can say, in
advance, whal aproof is, how il stiould work, ete. (p.336).
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3. FACTORS IN ACCEPTANCE OF A PROOF

Clearly the acceptance ofa theorem by practising mathematicians is a social process which
is more a function of understanding and significance than of rigorous proof. Indeed, the
presence of any proof, rigorous or otherwise, is only one of several determining elements
in acceptance. This process is by no means capricious; the community judges by certain
criteria, as | will discuss. But the significance of a theorem for mathematics as a whole, and
an understanding of its underlying concepts, play a much greater role in creating this
acceptance than does the existence of a rigorous proof.

The develops of ics and the of ising mathematicians
suggest that most mathematicians accept a new theorem when some combination of the
following factors is present:

They understand the theoreni, the concepts embodied in it, its logical anteced-
ents, and its implications. There is nothing to suggest it is not true;

The theorem is significant enough to have implications in one or more branches
of mathematics (and is thus important and useful enough to warrant detailed
study and analysis);

The theorem is consistent with the body of accepted mathematical results;

The author has an unimpeachable reputation as an expert in the subject matter
of the theorem;

+ There is a convincing mathematical argument for it (rigorous or otherwise), of
a type they have encountered before.

Ifthere is a rank order of criteria for admissibility, then these five criteria all rank higher
than rigorous proof.

Perhaps the situation is bestdiscussed in terms borrowed fram Maslow’s theory of social
motivation (Maslow, 1970). Understanding, signifi compatibility, ion, and
convincing argument are “positive motivators” to acceptance: it is these factors which
focus the attention of practising mathematicians on a new theoren and move them to its
active acceptance, lifting it above the great body of equally valid but less attractive theorems
which confront them in the mathematical literature.

On the other hand, the structural validity of the mathematical argument for a new
theorem, that is, the actual or patential validity of its form as distinct fram its content, is
merely a “hygiene factor”, a factor recognized a: ntial but taken for granted. There is
ap ion that any incing proof appearing in a reputable journal is in fact valid in
terms of its form, or could be made sa without violence to its content. The publication of
arigorous proof would provide no additional positive motivation for active acceptance, and
in fact such a proof would not be examined at all in the absence of the motivating factors
enumerated above.
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4. THE SOCIAL PROCESS

The following discussion will establish the fact ofa social process in acceptance, :md lhe
central role played in that process by the factors of ding, significance,

ity, reputation, and convincing argument. The Russian logician Manin is among those who
have stressed the fact that the acceptance of a proof depends much more on a social process
than on same ideal objective criterion:

A proof becames a proof after the social act of “accepling it as a proof ™. This is rue of mathematics
as il is of physics, linguistics, and biology. (Manin, 1977, p. 48)

Manin then goes on to explain that a new proof needs to be accepted and approved by other
mathematicians — who often decide to refine and improve it. The scrutiny to which
mathematicians subject a proof, he points out, is aimed more at weighing the plausibility
of the results than at verifying the deductive process. It is only when they are skeptical of
aresult that mathenaticians will put any great effort into discovering counter-examples.
Manin cites this as the reason why the truth of a theorem in the eyes of the mathematical
community becomes established indirectly, that is, not because the proof has been verified
as error-free, but because the results are compatible with other accepted results and the
arguments used in the proof are similar to ones used in other accepted proofs.

Of the estimated 200,000 theorems published yearly (Ulam, 1976), only a very few are
actively accepted by the mathematical community. It is the theorems judged significant that
have their proofs scrutinized, corrected, and refined, while the proofs of other theorems go
unexamined. C| lwly an alleged proufof Fermat’s last theorem or the four-color theorem,
when submitted by reputable matt i would attract meticulous review, while the
proof of a theorem of no apparent consequence is likely to be ignored, no matter how
original or sophisticated the proof might be in its own right.

Indeed, as Davis (1972) notes, most proofs in research papers are never checked. Many
of them are rife with errors, in fact. This is borne out by the many mistakes found in those
published proofs which have been checked, and is alsa supported by the contention of a
former editor of Mathematical Reviews that as many as half of the proofs published are
false, though the theorems they purport to prove are essentially true. When an error is
detected in the proof of a significant theorem, it is often the proof that is changed, of course,
while the theorem itself stands unquestioned.

The role of proof in the process of acceptance is similar to its role in discovery.
Mathematical ideas are discovered through an act of creation in which formal logic is not
directly involved. They are not derived or deduced, but developed by a process in which
their significance for the existing body of mathematics and their potential for future yield
are recognized by informal intuition. While a proof is considered a prerequisite for the
publication of a theorem, it need be neither rigorous nor complete. Indeed the surveyability
of a proof, the holistic conveyance of its ideas in a way that makes them intelligible and
convincing, is of much more importance than its formal adequacy (Hanna, 1983). Since
fully adequate, step-by-step proof is in most cases impracticable, and since surveyability
is lost when proofs become too long, proofs are conventionally elliptical and brief.

The conclusion therefore is that an orientation towards extreme formalism in proof is
not reflective of current mathematical practice or current philosophies of mathematics.
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There are, as has been shown above, good reasans for this. As Tymoczko has put it,
“Matl icians, even ideal matk icians, are able to do matl ics and to know
mathematics only by participating in a mathematical community.”

5. CAREFUL REASONING

Despite the secondary nature of proof, it is easy to see how misunderstandings about the
nature of ics arise. Matl ical results published for a ical audience
are invariably presented in the form of theorems and proofs. They retain this form,
reflectingas it does the nature of mathematics asa highly structured body ofknowledge held
together by the concept of logical precedence, even though the proofs are not judged by
criteria of campleteness or rigour. To a person only partially trained in mathematics, to
someone who is neither fully equipped to assess significance norable to make the intuitive
Judgments necessary in successfully surveying a proof, it might easily appear that the
manner of presentation — with its possible implication that full rigour is the ideal form —is
the core of mathematical practice. Thus campetence in mathematics might readily be
misperceived as synonymous with the ability to create the form, a rigorous proof.

1t is only one step further, then, to assume that learning mathematics must involve
training in the ability to create this form. To teach abeginning student is assumed to involve
teaching the formalities of proof. Paradoxically, such an emphasis omits the crucial
element. When a mathematician reads a proof, it is not the deductive scheme that
commands most attention. It is, in fact, the ical ideas, whose relationships are
illuminated by the proof in anew way, which appeal for understanding, andit is the intuitive
bridging of the gaps in logic that forms the essential component of that understanding.
‘When a mathematician evaluates an idea, it is significance that is sought, the purpose of the
idea and its implications, not the formal adequacy of the logic in which it is couched.

Tt would therefore appear that what needs tobe conveyed to students is the importance
of careful reascning and of building arguments that can be scrutinized and revised. While
these skills may involve a degree of formalization, the emphasis must be clearly placed on
the clarity of the ideas.

6. TEACEING

That reasoning is a pedagogical issue at all bespeaks a conviction that the learning of
mathemnatics is a dynamic rather than static process, in which students progress towards
deeper level of insight and skill. Thus a teaching activity that includes formal or informal
reasoning can be judged to be of value only to the degree that it promotes greater
understanding.

The starting point for understanding is the naive mathematical idea rooted in everyday
experience. To provide a basis for further progress, this naive idea must be developed and
made explicit. This requires a degree of formalism. A language must be created: symbols
defined, rules of manipulation specified, the scope of mathematical operations delineated.
Greater precision must be taught, so that the essential can be separated from the non-
essential and greater generality achieved.
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But this has its price. Distanced from the original intuitive context, the student may lose
sight of reality and become a symbol pusher. Experienced mathematicians have learned to
handle this danger by acquiring the ability to make mental shifts in moving among levels
of generality and formalism, and by building on specific examples, drawing only upon
those characteristics pertinent to the more general situation under study. They are able to
exploit symbolism and algorithms to work automatically and efficiently, while retaiming
the ability to intervene in their own work to monitor its accuracy and effectiveness.

What are the issues to be kept in mind in teaching mathematics, then, and in particular
in developing the power of reasoning?

1. Formalism should not be seen as a side issue, but as an important tool for
clarification, validation and understanding. When a need for justification is felt,
and when this need can be met with an appropriate degree of rigour, learning will
be greatly enhanced.

2. Itis not enough to provide mathematical experiences. It is the reflection on one’s
experiences which leads to growth. As long as students see mathematics as a
black box for the instantancous production of “answers”, they will not develop
the patience necessary to cope with the many and erratic paths their minds will
takein trying tograsp what mathematicsis about. Onegoal of pedagogy should
be to help pupils maintain the level of concentration required to negotiate a line
of reasoning.

N

. Ironically for a discipline touted as precise, the student of mathematics has to
develop a tolerance for ambiguity. Pedantry can be the enemy of insight.
Sometimes an explanation is better given pictorially, loosely, by example or by
analogy. Sometimes distinctions are better leftblurred (e.g., the various roles of
the minus sign and the use of “f(x)” as both the function and the value of the
function at x). Sametimes the role of a symbol in the discussion should be
allowed to vary (e.g., the parameter which is sometimes held constant, some-
times allowed to vary).

4. At the same time, when there is a danger that genuine confusion might develop,
the student must learn to become conscious of looseness and to apply the
necessary amount of rigour. It is this judgemental aspect of reasoning, so
essential in mathenatics education, that must be communicated to students.
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11 : COGNITIVE THEORY
OF
ADVANCED MATHEMATICAL THINKING

In this part of the book we begin to develop theories of cognitive development of
particular value in advanced math 1 thinking. In Chapter One we singled
out the importance of abstract definition and deduction at this level. In Chapter
Two we saw how the processes of representation and abstraction play a crucial
role. In Chapter Five Shlomo Vinner considers the diffrerences between the
abstract definition of a concept as given in a mathematical theory and the concept
image as conceived in the mind of an individual. The research in the last decade
clearly shows a wide gulf between desirable theory and actual practice. In
(‘Impler Six, Guershon Harel and James Kaput consider the ways in which

ical processes are lated as 1 entities and symbolized
by notations in ways which may be more or less appropriate in different contexts.
They too see that the formal definitions ofien play only a subsidiary role in
mathenatical thinking and continue the discussion of Dreyfus from Chapter Two
by moving from mathematical processes 1o mental objects that can be manipu-
lated. They reflect on the use of symbols in this thinking process and the manner
in which the rey ion may be appropriately elaborated to enhance its
meaning.

The encapsulation of a process as a mental object is subjected to deep analysis
in Chapter Seven. Here Ed Dubinsky takes an in-depth look at the process of
reflective abstraction, as originally conceived by Piagel for younger children,
and extends Piaget’s theories to advanced mathematics. He has a different
emphasis from other authors in that he sees encapsulation of processes as objects
as the main driving force in mathematical thinking and does not accept the
prominent role given to visualization proposed in several other chapters. This
difference exemplifies the divergence between two different kinds of mind cited
Jfromt the observations of Poincaré in Chapter One. It is a fittingpoint to end the

first half of our book.
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CHAPTER 5

THE ROLE OF DEFINITIONS
IN THE TEACHING AND LEARNING OF MATHEMATICS

SHLOMO VINNER

1. DEFINITIONS INMATHEMATICS
AND COMMON ASSUMPTIONS ABOUT PEDAGOGY

Definition creates a serious problem i mathematics learning. It represents, perhaps, more
than anything else the conflict between the structure of mathematics, as conceived by
professional mathematicians, and the cognitive processes of concept acquisition. It seems
that no-one in the mathematical community disagrees with the claim that mathematics is
a deductive theory and as such, it starts with primary notions and axioms. By means of the
primary notions all other notions are defimed. All the thearems, which are not axioms, are
proved from the axioms by means of certain rules of inference. This might be a too short
and oversimplified description, but essentially, it represents the common view of mathema-
ticians about mathematics. It does not necessarily reflect the process by means of which
mathematics is created, but it tends to be the way mathematics is presented i higher

iy ics text books and ical periodicals. Of caurse, it is not possible to start
with primary notions and axioms in every situation. Typically, one starts with well known
notions and well known thearems and proceeds by defmimg new notions and by proving
new theorems. This might have certain for the way ics is taught,
even before one starts to think about the appropriate pedagogy. Thus, mathematics teachers
might form in their classes a sequence of definitions, theorems and proofs as a skeleton for
their course. Following these consequences may be pedagogically wrong since the teaching
should take info account the common psychological processes of concept acquisition and
logical reasoning.

Let us describe some of the possible consequences which can be derived from
considering the role of definition in mathematics. We claim that the presentation and the
organization of mathematics in many text books and classrooms are partly based on the
following assumptions:

1. Concepts are mainly acquired by means of their definitions.

2. Students will use definitions to solve problems and prove theorems when
necessary from a mathematical point of view.

3. Definitions should be minimal. (By this we mean that definitions should not
cantain parts which can be mathematically inferred from other parts of the
definitions. For instance, if one decides to define a rectangle i Fuclidean
geometry by means ofits angles it is preferable to define it as a quadrilateral with
3 right angles and not as a quadrilateral having 4 right angles. This is because

65
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inBuclidean geometry, if a quadsilateral has 3 right angles one can prove (hat

its fourth ange is also a right angke))

4.Itis desirable that definitions will be elegeon. For instance, some mathematicians
think that the definition of the absolute value a5 [x}= (F) is more elegant than
its definition as

Also, iciansbelieve (hat the definition of a pri (inthe
domain of whole nambers) s a number having exactly two different divisors
is mor clegant than its definition as a number greater than | divisible only by
1 anditsell,

5. Defini itrary. Definitions are “man made”. Defining i
is giving a name. (For instance, when defining a trapezoid, one can define it as
8 quadsilatersl having af least one pair of oppasite sides which are parallel. On
e other hand, he or she can define i, if they wish, a5 a quadrilateral having
exactly one pair of opposite sides which arc paraTlel. 1f you choose the first
definition, a paraliclogremn i also a trapezoid. f you chocse the second one, it
is nol. Now,
fact will nol cause a confsion, otberwise it might cause a great deal.)

The above fi fions dk il iitions in higher

in
of teaching mathematics. A quick lock at the majority of high school and college tex bocks,
and theee demonstrae some concem (o pedagogy, will show that definitions have major
role i ials. Take for instance, (he fabeolute value
of a nuniber, Ts best zation is tha it i without its sign or signs, This
is quiteclear o the students and this is what most ofthean tell you when youask them about
the sbsolute value. You can hardly find s text book which mentions it. Another possibility
o characterize the absolute value of a number is to say thatit is the distance of the namber
from zer0 on the number lie. This is also quite clear (o the students but pertaps less clear
who use i, but
stll he majority of eschers and Lex books willavoid it So he majity ofexchers and
textbooks will use one of th However, some

that these definitions are quite unclear and confusing for most of the studenks. By
advocating that it is possible nol (0 use these fomal definitions we do nol ignore the need,
al a later stage, (o know (hal

xif x20,
""{ il xeD,
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The student should use it when solving algebraic equations and inequalities with absolute
value. However, the above formula can be given and explained to the student at a later stage
as a claim about the absolute vatue and not as its formal definition.

‘The point that we would like to make by discussing the example of the absolute value
is the following: when coming to decide about the pedagogy of teaching mathematics one
has to take into account not only the question how students are expected to acquire the
mathematical concepts but also, and perhaps mainly, how students really acquire these
concepls.

2. THE COGNITIVE SITUATION

“Against definition” is a title ofa paper by Fodor ef al (1980). The paper discusses the way
that “the notion of definition has served to connect several aspects of classical theory of
language with one another and with widely credited accounts of concept acquisition”. The
authors argue with some of the widely accepted views in cognitive psychology, especially
with the following three:

1. “The definition ofa word determines its extension” (p. 266).
2. “To understand a word is to recover its definition™ (p. 274).

3. “Definitions express the decomposition of concepts into their elements” (p. 276).

Fodor ef al claim that these views have no psychological ground. They bring some
experimental evidence which disconfirms these views. Especially, according to Fodor ef
al, the following claim is refuted: “Understanding a sentence token imvolves recovering (i.e.
displaying m working memory) the defimition of such lexical items as the sentence
contains”. Thus, when understanding a sentence token, or when trying to understand it,
people usually do not consult the definitions of the terms which occur in the sentence. Fodor
et al deal with sentences taken from everyday life contexts. A careful examination of their
claims, even without considering their experimental evidence, might lead to the conchusion
that these claims are not only extremely reasonable but that they are even trivial. This is
mainly because many words in everyday language do not have definitions (although they
are “defined” somehow in dictionaries). Think of “car”, “table”, “house”, “green”, “nice”,
efc., and you realize i diately that when ing, for mstance, the sentence “my
nice green car is parked im front of my house” you do not consult definitions. There is still
the question what you do consult when understanding this sentence and we are not sure
whether Fodor ef al, give a clear answer to this question. With this particular sentence you
will not consult definitions because there are no definitions for the words mvolved. On the
other hand, contrary to everyday life contexts, there are the “technical contexts™. In these
contexts meaning is assigned to a term by a stipulation. Terms are defined as in
mathematics. Hence, if you are in a “technical context” you should consult definitions,
otherwise mistakes might occur. Of course, there is no need to consult definitions (which
do not exist) when trying to understand the sentence “among all the cars at the parking lot
my green car s the ni i 1y 1o consult defmitions when trying to
understand the sentence: “among all rectangles with the same perimeter the square is the
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one which has the maximal area”. Note that in everyday life contexts, a square is not
considered as a rectangle by most of the people, whereas in all mathematical contexts a
square is a rectangle.

When Fodor et af spoke “against definitions” they meant it in technical contexts.
They wanted to refute a certain linguistic theory about the role of definitions in non-
technical thought processes. However, in technical contexts, contrary to non-technical
ones, the question is not how people behave but how they should behave. In technical
contexts people are supposed to consult definitions of the technical terms imvolved. On the
other hand, knowing the enormous impact that everyday life has on any situation, it will be
reasonable to predict that definitions will be ignored by many people alsa in technical
contexts. This really happens as we will show in the following. So, what do people consult
when dealing with technical terms i technical situations? We will try to answer this
question in the next section

3. CONCEPT IMAGE

A concept name when seen or when heard is a stimulus to our memory. Something is
evoked by the concept name in our memory. Usually, it is not the concept definition, even
in the case the concept does have a definition. It is what we call “concept image” (Tall &
Vinner, 1981; Vinner, 1983) and others (Davis, 1984) call it “concept frame”.

The concept image is something non-verbal associated in our mind with the concept
name. It can be a visual representation of the concept in case the cancept has visual
representations; it also can be a collection of impressions or experiences. The visual
representations, the mental pictures, the impressions and the experiences associated with
the concept name can be translated into verbal forms. But it is impartant to remember that
these verbal forms were not the first thing evoked i our memory. They came into being
only at a later stage. For instance, when hearing the word “table”, a picture of a certain table
can be evoked in your mind. Experiences of sitting at a table, eating at a table, etc., can be
evoked as well. You can recall that many tables are made of wood, most of them have four
legs; usually you do not lie on a table, you can sit on a table but this can be regarded by some
people as an impolite behavior. When you hear the word “function”, on the other hand, you
might recall the expression “y= f(x)”, you might visualize a graph ofa function, you might
think of specific functions like y = x% or y = sinx, y = Inx, etc. From what we have said, it
is clear that it is only possible to speak of a concept image i relation to a specific individual.
In addition, the same individual might react differently to acertain term (concept name) in
different situations. In Tall & Vinner (1981) the term “evoked concept image” is mtroduced
to describe the part of the memory evoked in a given context. This is not necessarily all that
a certain individual knows about a certain notion. In general, although we may not always
use the term “evoked concept image” m what follows, the reader should always keep this
in mind.
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4. CONCEPT FORMATION

We assume that toacquire a concept means to form a concept image forit. Toknow by heart
a concept definition does not guarantee understanding of the concept. To understand, so we
believe, means to have a concept image. Certain meaning should be associated with the
words. To know, for instance, that the power set of a given set is the set of all subsets of that
given set, does not mean anything unless one can construct some power sets of given sets.
Hence, the image of the power set concept might include some memories of the
construction of some power sefs.

Most concepts in everyday life, like house, orange, cat, etc., are acquired without any
imvolvement of definitions. On the other hand, some concepts, even everyday life concepts,
might be introduced by definitions. The word “forest” might be introduced to a child by
saying “many, many trees together” (the Merriam Webster dictionary definition “a large
thick growth of trees and underbrush” is, of course, a useless definition for a little child).
Defmitions like this help to form a concept image. But the moment the image is formed,
the definition becomes dispensable. It will remaim iactive or even be forgotten when
handling statements about the concept in consideration. Thus, the “scaffolding metaphor”
canbe suggested for the role of definition, in concept formation: the moment a construction
of a building is finished, the scaffolding is taken away.

5. TECHNICAL CONTEXTS

In technical contexts, definitions might have extremely important roles. Not only that they
help forming the concept image but they very often have a crucial role in cognitive tasks.
They have the potential of saving you from many traps which are set by the concept image.
For imstance, if you are asked to find a maximal value ofa function ina closed inferval and
you recall a graph that corresponds 1o a local maximum and you try to differentiate the given
function and to find the zeros of the derivative, then the explicit definition of a maximal
value i a closed mterval might help you to consider other possibilities different from local
maximums. Sometimes, this can prevent mistakes. Not consulting the definition i the
above case, might cause a fixation on the differentiating technique associated with the
maximal value concept in the mind of many students. The differentiating technique leads
to the desirable results in many cases but not in all.

Thus, technical contexts impose on students some thought habits which are totally
different from those typical to everyday life contexts. One can predict that, at least in the
beginning of the leaming process, the thought habits of everyday life will take over the
thought habits imposed by the technical contexts.

6. CONCEPT IMAGE AND CONCEPT DEFINITION —
DESIRABLE THEORY AND PRACTICE
In order to present our ideas by means of diagrams (as i Vinner, 1983), assume the

existence of two different “cells” i our cognitive structure (to avoid confusion, we do not
mean biological cells). One cell is for the definition(s) of the concept and the second one



70 SHLOMO VINNER

i o the conccp . Oncell o evn bt ofthe i b v, (T concet mage
cell i tobe empty s long a5

rame. This can bappen in many sitnations where lmw dcﬁmlwm s memorizod in
meaningless way.) There might be some inieraction between the two cells sithough (hey
can be formed independently. A student might have 2 coneepl image of the notion of

secing 3
concepl image, the (wo axes of a coordinale syslem arc perpendicular (0 each other. Later
on, the student’s mathematics teacher might define a coordinale system as any (wo
intersecting straight lines. As a resul of this, fhree scenarios might oceur:

(1) The concept image may be changed lo include also coordinale systems whose
‘axes do nol form a right angle. (This is satisfactory reconstruction or sccomme-
dation.)

(I) The concept iage may remain as it is. The definition call will contain (he
teacher’s definition for a while but (his definition will be forgotien or distorted
afler a short time, and when the student will be asked Lo define a coordinate
system he or she willtalk about axes foming a right angle. (In (his case the
formal definition has nol been awsimilated.)

(II1) Both cells will remain asthey are. The moment the tudent is ssked to define
‘acoordinate system he will repeat his or ber teacher’s definition, but in afl oiher
situations he or she will hink of coordinate system as a configurstion of two
pemendicular axcs.

A similar process might occur when a concept is first introduced by means of'a definition.
Here, the conecpt image cell is emply in the beginning. Aflr scveral cxamples and
explamlmm' it is gradunlly Filled. However, it does nol necessarily roflect afl the s

he conoepl definition. Similar scenarios (o (I)-(1T1) above might ocar. wn
in Flgum 2

[[Concept deficition |-et—um-

Concept Image |

Figure 2 : Interplay between concepl image and concept definition

Ancther illustration of (IT) above is the following:

There are many students who are ready (o swear that the definition of a imit of a
sequence is a number 1o which the elements ofa given sequence get closer and closer but
never reach it. Thus the sequence whose nth elemert is given by a,~(-1)** does nol have
alinit (sealso

A further ilustration of (IT) abowe is the following:

Some students, afler studying the modem concepl of function, will say that a Function
s any correspondence between (wo sets which assigns (o every element of the first set
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extly one element of the sccond set. On the other hand they will nol admit (hat the
correspondenco which arsigrs (0 every non-zcro b its searc and which aseigrs —|
o zer0 is a function (sec also §7)

Figure 2 refers to the long term pr f Sormation, It hat ma
teachers at i way process for (heconcept
formation as shown in figure 3, namely, they expect that the concepl image will be formed
by means of the concepl definition and will be completely controlled by it.

[[Concept gefinition | - [ Concept Image

Figire 3 :The cognitive growth cf a formal concert

Tn addition lo (he process of (he conoepl formation fhere are also (he processes of
problem solving or task performance. When a cognitive (ask is pared Lo a studend the

concepl i Again il scems
levelexpect that

processcs ivolied wilhthe performancs of  given itellctn] sk shewdd be shenat-

cally expr he three followi only the aspect

ng fi
of concept imsge mdam,x oo e rocessy Too amov inthe Fgaees
represent different ways in which a cognitive system might function.

An imellectual
Output | behavieur
{an answer)
|-y { Conceptimage |

{entitication or

Inpat IAmgmws task
constrction)

Figure 4 : Interplay between definition and image
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°“"“‘$

Concept defirition Concept image

o

Figure 5 : Purely formal deduction

4

Corcept definition Concept knage

ol

Figure 6 : Deduction following intuitive thought

The commen feature of al the processes illustrated in Figures 4-6 is the following: no
matier how your association system reacts when a problem is pored lo you ina lechnical
contxt you are ol suppscd L0 formute yau soltion bfors consfig the conae
definition. This i, ofcoursc, the desii Unfortunately, the p

1t is hard (o train a cognitive system (o act againdt its maturc and lo force it (o consult
definitions ifher when forming a concepl image or when working on a cognitive Lask.
Hence, a more appropriate model, for (he processes which really oceur in practice, is the
following;




THEROLE OF DEFINITIONS IN TEACHING AND LEARNING 73

o

[ Corcept defistion | [ Concept image

ol

Figure 7 : Intsitive raspense

Here, the concept definition cell, even if non-vaid, is nol consulled during the problem
solving process. The everyday life thought habits take over and the respondent is unaware:
of the reed o consullthe fomal definition. Neodless (o say, thal in mest of the cases, the
reference (o 1 concepl image cell will be quile swcessful. This fact does nol encourage
people (0 refer (o (he conocpt definition cell. Only non-routine problems, in which
incomplete concepl images might be mislcading, can encourage people (o refer lo the
concept inisge. Such problems arc rarc and when given (o studens considered as unfair.
Thas, there is no appareni forco which can change the common thought habits which are,
in principle, inappropriatc for lechnical conlexts:

Before closing (his ssction ve
image” we deal only with one’sevoked
conceplimage. We d ‘some image will be
evoked again. Ths, in our discussion, we do nol evaluate somebody’s cognitive system.
Our analysis relates only to the part of the cognifive system which was sctivaled when
working on a given cogiive task.

7. THREE ILLUSTRATIONS OF COMMON CONCEPT IMAGES
I this rction we il bring some experimenta evidere o suppert oar claim at (he

majority when
contexts. To b ific, our claim is that (1 hool and colk
o not dovelop in e scicnce stodens, nol majoring in mahematics, (e (hough| habie

e evoryday life
in technical contexts. (Luckily enough for the stadents, fhis docs nol preven then l‘mn\
passing exams.)

“The concepts that we are going (o discuss are the concepl of Function, (he concepl of
tangentand the concepl of limit of a sequence. Since s more detailed report sbout (hese can
be found elsewhere (Davis & Vinner, 1986; Tall & Vinner, 1951; Vinner 1962, 1983) we
will present Tere only the main aspects of e Findings and the method of getting them. A
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natural method (0 leam about somebody’s concepl definition is by a direct question (what
is a function? what is a tangend? and so on). This is because definitions are verbal and
explicit. On the ofber band, in order o leam sbout somebody’s concept image usually
indirect q\uhmmmldbc poscd, s (he concept image m.y«ux non-verbal and imphiit
Thes the mai polenial

the respondcnl s conccpt inage. We willbring some of thenn. Thcfollowxns questionnaire
was givenlo 147 students who stndied mathematics at a high level in grades 10and 1. In
the firs three questions (he students wero asked (o choose belween “yes” or “no” and (o
explain their answers.

1. Is there & furction in which cach number different from 0 corresponds (o its
square and 0 comesponds 7

2. Is therc  urction in whi comesponds |
number corresponds (o —1, and 0 corresponds (o 07

3. Ts there & function the graph of which is the following?

Figire § : Dogs this graph arise from a function?

4. In your opirion what is a function?

The concept offucton was aughi 1o all (s tulers sccording (ot modean uppmach
namely, a

the fist setexactly oneelement in the sccond set In spite of thal, only 57% ofthe s
gave this definition or something which is partly equivalent (o it s an answer (0 question
4. (Note (hat we are dealing with good students. Thus, the figure S7% which can be
consiceredas a grest shicvemerd in ohercircumstances i bl o in s sitwtion) 4%

i function is a

of an arbitrary correspondence: Rules cann be arbitrary. They have to have a logical or
mathematical ground. An additional 14% claimed thal a furction s an algebraic term, a
fomula, an equation or an arithmetical manipalation. The rest gave no answer or no
satisfactory answer. When it came (o concepl images il furned out (hat at certain situations
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(questions | and 2) between one third to two thirds of the students think thal a funclion

should be given by one rule o, if two rules were given their domains should be half lines

or intervals. A rule for & single poind (fike in question 1) is nol permiticd. Some students

believe thal comespondences which are nol given by an algebraic rule arc not functions
thk ° " - -

w
or a special notation. (This was reflected in answers (o question 2). Ofher students (about
2i5) believe thal a graph ofa Function should be regular, persistent, reasonably increasing
e, (This was reflected in answers (o question 3.) Thos, many students who defined
“function”correctly werenol using their definition when replying lo questions 1-3. In fact,
only one third of the students who gave the correct definition of function also answered
questions -3 correctly. No student with an incorrect definition answered qnestions 1-3
correctly.

Consider now the concept of tangert. I is usunlly introduced to mathematics students
ata geometry course in the conkex! of the circle. The definition of a tangent lo a circle is an
easy one and ifs visual representations is:

Figure 9 A tangent 10 a circle

‘This picturc can serve as a neans Lo construct an image for the tangert concept in
‘additional cases like:

Figare 10 A mental irrage for a targent

Students who lake a caleulus courso usunlly get a formal or a somiformal definition of
the langent (0 a graph ofa differeniable function. However, their concepl image, built up
from experiences involving pictures ke figures 9 and 10 may condain coercive elements
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which insist (hal a Langent lymeet (he cur:

atthat poink, As we shall see, such a concep image may lead the students (o respond by

drawing a line (hat is nol a tangen at the required poini, yt has (he generic properties of

the concepl image. As in chapler 1, Tall (1987) termed such a concept a generic Langert.
The following questionnaire was given to 278 first year college students in cakeulus

courses designed for science studenis (ol majoring in mathematics),

Here are (hree curves. On each onc of them a poirt P is denoted. Next o cach
one of them there are (hree statemerts. Circle the statement which seems true
10 you and follow the instruction in the parerthescs.

A Thiough P it s possible to draw exactly one tangent (o the curve (draw i)

B. Through P it possible o draw more than one Langent (specily how many, one,
two, three, infinitely many. Draw all of them in case their namber is finite and
some of the in case it is infinite).

C. Tuis impossible (o draw Grough P a tangent (o the curve:
I 2. 3.
P Y _/
P P
Figure |1: Which graphs have tangenl(s) al P 7

4. What lslhedefnllm ofthe. unsemu youremember it from thiscourse o from
vious courscs. 1f you do nol remeniber the definition of the Langent try (o

The curves in 1,2,3 are the graphs ofy = Vi and

x2: x20
05 x<0

bt was ol gven o s, Theangenswas e e sbove courescter
asa

is the derivative at (his pamcular pairt. However, nl\|y4| % nflhe udent gave onc of th:
course definitions as an answer (0 question 4.35% gave descriptions thal suit the cass of
the tangert to a circle. They chaim (hal a tangent touches the curve but does ol intersect
it, or that it meets (he curve but does nol cut it or that |l has acommon pmll wl‘h the curve
butit i The
students concepl images were expressed in the answers Lo questions 1, 2, 3 and e given
in the following tables.
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A B C D E

Theright | Agemnc | iwotangents |  Ancther No
answer tangent drawing drawing

185% 38% 6% 0% 2%

Tabke 1 : Distribution of stuent drawings to questicn | (N=278)

A B D E
Theright | two tangenis A “balance’ No
answer many tangent drawing
tangents
8% 18% 18% 14% 42%
Table I : Distributicn f student draveings to questicn 2 (N=276)
A B B F
Theright | A genenc wo Infinitely | Another No
answer wngent | tangents many drawing | drmwing
tangents
12 3% 16% 7% 4% 27%

“Tabe I © Distrituticn of student drawings to questicn 3 (N=278)
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Some of the drawings are especially teresting. For instance, in 1B, 2B and 3B the
students try to force the graph inorder to meet the image formed by the tangent to the circle.
1B and 3B seem to be classic ‘generic tangents’ generated by their concept image, 2D is
a generalization in which the ‘tangent’ is balanced on the cusp. In I1C, 2D (the bottom
drawing) and 3C there is another phenomenon. It may be that the old concept image (a
tangent to a circle) and the new concept image (constructed by the course definition) act
at the student’s mind simultaneously. It is a well known phenomenon i science leaming,
where, very often, old schemas are found together with new schemas in students’ thinking.

Tall (1987) found some students responding with a dynamic image of a tangent, for
example, intimating that the picture in figure 3B is such that the tangent “begins to turn”
at the poimt in question, and so the tangent is drawn at a tilt to represent this tendency, even
though the student concerned might sense that the turning does not actually begin until after
the point concerned.

In 2C and 3D the students even imvent the case of infinitely many tangents, on one hand,
im order to meet the old image formed by the circle and on the other hand, realizing that there
is no reason to prefer one “tangent”, drawn according to the old image, to other, infinitely
many, “tangents”. Contrary to these students, there are the students in 2D (the top drawing)
and 3B who, perhaps, prefer a kind of symmetry and thus stay with only one tangent, or
perhaps, take as a starting point that there should be only one tangent and therefore conclude
that it should be the one that has symmetry.

Fimally, we will say few words about the notion of a limit of a sequence. Although our
findings here come from a very small sample (V=15), they are more than typical because
of the following reasons:

(1) The respondents are mathematically gifted students at a university high school.
(2) An “appropriate pedagogy” was used to teach them the notion of limit (with the
teacher being aware of the necessity of bringing typical and non-typical
examples of sequences which tend or do not tend to a limit. This is, of course,
inaddition to the formal definition. For more details see Davis & Vinner, 1986).

The concept was taught to the students at the end of their eleventh grade. Immediately after
the summer vacation, on the first day of class, the following was given to the students by
their teacher as a written test:

1 need to know how much you remember about the concept of a limit of a
sequence. Please, write a few paragraphs to show me what you remember. 1
suggested you may want to include:

1) A description of a sequence in intuitive or informal terms.
2) A precise formal definition.

Out of the 15 students only one gave an answer that can be considered as indication of
reasonably deep understanding of the concept. This was:

The limit ofa sequence is the number from which all the terms in the sequence,
affer a certain point, vary only by a little number €.
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(This answer misses the most important element of the formal definition, namely, a
statement that the above is true for every >0, Thus, this answer is treated quite literally.
Ifonly tough measures would have been taken then the result would be that not a single
student showed a decp understanding of the formal definition. The ability to construct a
formal defimition is for us a possible indication of deep understanding. Of course, it is not
sufficient, since the reconstruction of a formal definition can be obtained by rote
memorization).

In the other 14 students some typical misconceptions were found which influenced the
formal definitions that the students were asked to give. In our terminology, the concept
definition was reconstructed by referring to the concept image. Since the concept image
was icorrect this resulted in an incorrect formal definition. The main misconceptions were:

(1) A sequence “must not reach its limit” (thus, the sequence: 1, 1,1,... would be said
not to converge to a limit),

(2) The sequence should be either i or
dt.cn.a.smg (thus, for instance the sequence whose nth clement is given by
a,= IH(~1 )"/n does not tend to a limit),

(3) The limit is the “‘last’” term of the sequence. You arrivedto the limitafter“going

through” infinitely many elements.

In the three central concepts discussed above there is a conflict between the formal
definition and the concept typical examples which might cause an incorrect concept image.
The findings show that, in spite of the emphasis which was given to the definition of the
concepts, many students did not use them when working on tasks i which formal
definitions should have been used. This can lead to two opposite conclusions:

(1) Giving up the goal of changing the students’ thought habits from the everyday
mode to the technical mode.

(2) Trying to change the students’ thought habits by an appropriate treatment
(perhaps as an independent topic which might lead to more awareness. The
itegration of this topic in the common courses does notattract enough attention
that can lead to the desired results). More about this dilemma in the next section.

8. SOME IMPLICATIONS FOR TEACHING
We would like to recommend here two didactical rules which are relevant to the problem
raised in this paper.
(1) To avoid unnecessary cognitive conflicts with students,
(2) To initiate cognitive conflicts with students when these conflicts are necessary
im order to enhance the students to a higher imtellectual stage. (This should be
done only when the chance of reaching a higher tellectual stage is reasonably

high.)
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We claim earlier that one of the gods of teaching mathematics should be changing the
thought habits from the everyday life mode to the technical mode. This canot be done in
a short period and cainot be successful with everybody. Our belief is that mathematical
concepts, if their nature allows it, should be acquired in the everyday life mode of concept
formation and not in the technical mode. One should start with various examples and non-
examples by means of which the concept image will be formed.

This does not mean that the formal defmition should not be introduced fo the student.
However, the teacher or the text book writer should be aware of the effect that such
introduction can have on the student’s thinking. (Ifthe concept is not too complicated the
teacher can even ask the students to suggest their definition for the concept.) If our students
are candidates for advanced mathematics then, no doubt, they should be trained to use the
defimition as an ultimate criterion in various mathematical tasks. But in order to achieve this
goal, one should do more than introducing the definition. One should point at the conflicts
between the concept image and the formal definition and deeply discuss the weird examples
(like the tangent to the graph of y =x3 at (0,0) or the limit of the sequence whose nth element
is (=1)27,n=1,2,3 ..., etc.). If,onthe otherhand, ourstudents are not candidates foradvanced
mathematics, then it is better to avoid the conflicts. There is no harm if the students
memorize the formal definition and repeat it in various occasions. The teacher and the text
book writer, on the other hand, may even feel that they have completed their task by
introducing the formal definition. But they should have no illusions about the cognitive
power that this definition has on the student’s mathematical thinking.

Thus the role of definition in a given mathematics course should be determined
according to the desired educational goals supposed to be achieved with the given students.
If the students are candidates for advanced mathematics then, not only that definitions
should be given and discussed, the students should be traimed to use them as an ultimate
criterion in mathematical tasks. This goal can be achieved only if the students are given
tasks that caimot be solved correctly by referring only to the concept image. As long as
referring to the conceptimage will result ina correctsolution, the student willkeep referring
to the concept image since this strategy is simple and natural. Only a failure may convince
the student that he or she has to use the concept defmition as an ultimate criterion for
behavior. Thus we do believe that changing students’ thought habits from the every day
mode to the technical mode is an important goal for teaching mathematics. Contrary to
Fodor ef al (1980) we campaignfor definition and not against definition but we claim that
this aspect of definition cannot be achieved with all students. There might be various
opinions about the percentage of students who are capable of this aspect and there is also
the practical questionhowto decide whether a certain student can change his thought habits
from the everyday life mode to the technical mode. We do not have answers to these
questions yet. Therefore, the decisions about the goals ofteaching definitions should be left
to the intelligent and sensitive mathematics teacher.

The role of definition in mathematical thinking is somehow neglected in official
contexts (text books, documents about goals of teaching mathematics, etc.). We are not sure
whether this is because it is taken for granted or because it is overlooked. It is obligatory
to remember that there are some contexts in which referring to the formal definition is
critical for a correct performance on given tasks (among them there are the identification
of examples and non-examples of a given concept, problem solving and mathematical
proofs). On the other hand we want to be realistic about the chance ofachieving the above
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goals. We do not believe in “mathematics for all”. We do believe in some mathematics for
some students. And even this can be achieved only by appropriate pedagogy under
appropriate conditions for learning.



CHAPTER 6

THE ROLE OF CONCEPTUAL ENTITIES
AND THEIR SYMBOLS
IN BUILDING ADVANCED MATHEMATICAL CONCEPTS

GUERSHON HAREL & JAMES KAPUT

Mathematical thinking is carried out using mental objects. For example, suppose one asks
if avector space Vandits double dual ¥** are isomorphic. At one level, one is asking about
the “objects” Vand ¥** and, to begin describing an isomorphism, one may go on to describe
a correspondence between respective vectors in the two spaces, which again, are treated
mentally as objects, although they might be n-tuples or matrices, for example. Similarly,
one may need to define a mapping between two function spaces, where the elements of the
domain and range of the mapping must be treated cognitively as objects, as opposed to the
mapping itself, which may be treated as a process, with imputs and outputs. In yet another
instance, one may need to reinterpret a universal construction i the sense of MacLane
(1971) as an adjoint functor pair, where the existence of a unique mapping with a certain
property in fact defines a natural transformation between functors — so the mapping must
play the role of an object on which the natural transformation acts. Such experiences are
quite common in mathematics at all levels, but they feature widely throughout advanced
mathematical thinking. The aim of this chapter is to begin to discuss them and their roles
im helping us to build ever more complex mathematical concepts.

The idea of conceptual entities formation was suggested by Piaget (1977) in his
distinction between form and content. Recently, several researchers have recognized its
value in the learning of mathematics. It has been called encapsulation (Ayers, Davis,
Dubinsky & Lewin, 1988), reification (Sfard, 1989), integration operation (Steffe &
Cobb, 1988), for example, this process is an instance of reflective abstraction (Beth &
Piaget, 1966), m which “a physical or mental action is reconstructed and rearganized on a
higher plane of thought and so comes to be understood be the knower” (p. 247). Greeno
(1983) defines a conceptual entity as a cognitive object for which the mental system has
procedures that can take that object as an argument, as an imput. He distinguishes cognitive
objects from aftributes, operations and relations, which attach to or act on objects. Further,
he suggests that to qualify as objects, they mustbe permanently available in the individual’s
mental representation (p. 277).

The construction of function as a conceptual entity is an example of the entitication
process (Thompson, 1985a; Harel, 1985; Ayers ef al, 1988). One level of understanding
the conceptof function is tothink of a function as a process associating elements in a domain
with elements in a range. This level of understanding may be sufficient to deal with certain
situations, such as interpreting graphs of functions point-wise or sotving for x inan equation
ofthe form f(x)=b, but it would nof be sufficient to deal meaningfully with situations which
involve certain operators on functions, such as the integral and differential operators, as we
will see later in this chapter. For the latter situations, the three components of function —the
rule, the domain, and the range — must be encapsulated into a single conceptual entity so

8
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that these operators can be considered as procedures that take functions as arguments.
Incidentally, a formal definition of a function as a single sef of ordered pairs, a mathematical
entity, does not appear to play a role in these situations — when would one canceive of a
function as a set of ordered pairs in the context of applying a differential operator to that
function? In this way the concept image evoked in a given context may be different from
the formal definition, and nay even at times be in conflict with that definition, as discussed
in the previous chapter.

The construction of coanceptual entities embodies the “vertical” growth of mathematical
knowledge (in the sense of Kaput, 1987). For example, at lower levels, the act of counting
leads to (whole) numbers as objects, taking part-ofleads to fraction numbers, functions as
rules for transforming objects become !hf:ulselves objects l.hal can then be further operated
upon, for instance they maybc i d or integrated. This compl the kind of
“horizontal” growth iated with the lation of matt ical ideas across represen-
tation systems and between non-mathematical situations and their mathematical models.

In the next section of this chapter we lay out some of the circumstances under which
conceptual entities are created and used and what their cognitive function might be, often
by pointing to consequences in students’ reasoning processes where they have not yet been
mentally constructed. In the following part we will shift attention to the complex roles of
notation systems in building and using conceptual entities. We regard this chapter as a foray
into relatively unexplored territory, and do not nake claims of completeness or of empirical
substantiation for the framework being suggested.

1. THREE ROLES OF CONCEPTUAL ENTITIES

‘We will discuss the concepts of function, operator, vector space, and limit in terms of the
role that canceptual entities have for:

1. Alleviating working mentory or processing load when concepts involve mul-
tiple constituent elements.

2. Facilitating comprehension of complex concepts: the cases of “uniform”
operators, “point-wise” operators, and “object-valued” operators.

3. Assisting withthe focus of atiention on appropriate structure in problem solving.

Greeno (1983) suggested a number of functions of representational knowledge involving
conceptual entities: forming analogies between domains, reasoning with general methods,
providing computational efficiency, and facilitating plauning. He offered empirical
findings that are consistent with his suggestions; these findings deal with elementary
mathematics — geometry proofs and multi-digit subtraction — as well as physics, puzzle
problems, and binomial probability. He alsa suggesls that instructional activities with
concrete manipulatives can lead to an of rep ional knowledge that
includes conceptual entities. Other researchers suggest different types of instructional
activities for the construction of cunccptual entities. For example, Ayers ef al, (1)88)
demonstrate how computer activities in leaming mathematical induction and conp

of functions can facilitate the construction of these cancepts as entities (see the next chapter).
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1.1 WORKING-MEMORY LOAD

One psychologlcal Justification lol forming conceptual entities lies in their role in

ing or chunking k ! to P for the mind’s limited processing
capacity, espccnlly with respect to working memory. To avoid loss of information during
working memory processes, large units of information must be chunked into single units,
or conceptual entities. Thus, thinking of a function as a process would require more
working-memory space than if it is encoded as a single object. As a result, camplex
concepts that involve two or more functions would be more difficult to retrieve, process,
or store if the concept of function is viewed as a process. This is true for many concepts in
advanced mathematics. Imagine, for example, the working-memory strain in dealing with
the concept of the double dual space ofa space of nX n matrices if none or only a few of the

concepts, matrix, vector space, ional, and field are ived as d entities.

1.2a COMPREHENSION: THE CASE OF “UNIFORM”
AND “POINT-WISE” OPERATORS

Despite the heavy working-memory load involved in understanding the dual space of an
nxn matrix space without most of its subconcepts being entities, ill possible to make
sense out of it, at least momentarily. In some situations, however, the justification for the
formation of conceptual entities is more than just a matter of cognitive strain that results
from a memory load. In such jons camprehension requires that certain concepts act
mentally as objects due to an intrinsic characteristic of the construct involved. Examples
of such situations include those which involve the integral or differential operators. These
types of “uniform” operators cannot be understood unless the concept of function is
conceived as a total entity. We distinguish these from other types of operators on functions
which could be termed “point-wise” operators, and for which there is no need to conceive
functions as objects, but only as processes acting on individual elements of their domains.
For example, sum and ition can be treated as point-wis ators; this position is
different from Ayers er al's (1988) position who argue that mmposmon of functions
requires the encapsulation of function as an entity. Further research is needed to examine
the two arguments. The cognitive process of understanding these operators involves the
conception of a function as a process acting on individual elements of the domain. In
canstructing the camposition of two functions fand g, say feg, one must first perform the
process g on an arbitrary element x of the domain, generating a result g(x), and then perform
the process of fon that result to obtain f(g(x)), all conceivable as acting on individual
elements of the domain. These two separate operations are coordinated to produced a new
process. Similarly, in constructing ftg, for every input x, the outputs, f(x) and g(x), are
produced to construct the sum, f(x)+g(x). This sum can even be illustrated graphically by
using a sample set of directed line segments for the distances between the horizontal axis
and the graphs off and g, respectively. Then the graph of ftg is the graph whose distance
from the horizantal axis is given by the vector sum of the directed line segments. Clearly,
the sum f+g can be illustrated point-wise.

The limit of a one variable function is another case which may be regarded as a point-
wise operator. To understand this complex concept, many chusters of knowledge about
different concepts in mathematics are required whose rich conceptual content is reflected
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in the complexity of its historical developmert. We will nol atiemp (o analyze this
knowledge here; howover, the process-conception of furction is sufficiend (and necessary)
o understand the imit concept. Tis i =0 because fm_ f(x) = £ may be viewed interms
of the point wise dependency between the belavior of he numbers “hear” ., or inpuds
off,md e blvir o s, ', “ear

By contrast, “uniform when the poi is incpplicable
For example, (0 understand the meaning of:

1)

J" (x)dx

‘55 a function of 1 it is necessary Lo think of (1) as an operator (hat acts on fhe process.x —>
£{x) as a whole to produce a new process:

HJ" H(x)dx

1t is the awareness of acting on a process asa whol:,asulnla\i(yfrmi poirt-by-point — that
constitutes the conception of thal process a5 an object.

Mathematically unsophisticatcd studerts afiempt (o irterpret “uniform” operators as
“poini-wisc” object.
Consider fhe derivative operator. Our experience in the classroom suggests hal many
students d that [(x) means: for the inpulx there is the output 1(x), and for that
output we get the derivative ['(x). Faced with the question,

find the derivative of the function (x) = {"’I‘“f_ : ’g
izt

a common resporse is:

oseif 240,
r“"{ 0 if x=D.

The student is no longer treating iffereniation as a limit process, but as an algorithm to
be applicd (0 he fomula at cach point (orto the 10 separate fomulas i the expression).
Tobe able lo , the studert der the values of the
Turction near xand renegotiate he limilprocess. In Greeno’s terms, (he function I must act
as an argument for (e (cognitive) differentiation operator, which it cannct do unless the
function is conceived as a conceptual entity.
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1.2b COMPREHENSION: THE CASE OF OBJECT-VALUED OPERATORS

As the nofion of function develops, it can have differcrt objects as inputs and outpuls, in
particular, it can output anodher function. For instance, the reak-valued furction f(x,g) is
usually (houghi of as a process mapping poirts on the plane, (x, 3), into poirts on the real
line, fixy); (s, stoderds who possess (he process-conception of funciion would fikely
Have o dilficlty deling it s itrpcsion. A more sl ikpresalion can view
%, ions () where the
lattcrassig 7)oy Inthis i i on with input
xandoutput cognitively, thinking of : i
is 10t ifferen from hinking ofLas an inpu,in the sense (hat in both cases a function must
be treated as  variable, as a conceptual entity. In this respect, his interpretation of fx),
fike the “unifor” operator, demands thal the concepl of function will be treatcd as an
object. However, the cognitive demands of such a viewpoirt are ofien great,

“This analysis, which has yet tobeempirically substantiated, is supported by ourinformal
obscrvations while leaching undergmduate mahematics classes (he concepts of double
fimit, fin ) oy FCx 37 and the iorated linvit i, lim, s, 3 As some extbook
authorshave indicaled (e Munroe, 1965, p. 108), we cbscrved that while computationally
the iterated Fimit is casier than (he double limit, conceptually the itcrated limil involves
more sophisticated idea, which cawes difficuly for students in particular circumstances:
In stating and proving certain theorems on ierated limifs (eg,, theorems conceming
conditions on equality between this limit and (he double fimit), one needs to regard
S, Jiy ) 2 2 compesition ofthe fllowirg fhee mappings (o g 12)

Figice 12l lry M) e a compsiton fthre ragpings

1 M: x = £5(3), whose: domain s a set of real numbers and whose range isa st
of functions;

™

liy  Fx(y) > f(x), whose: domain and range aro sets of furctions;

-

Jimy : f@)—>¢, whese domain is a space of functions and rarge is a sot of
nunbers.



CONCEPTUAL ENTITIES AND SYMBOLS 87

Students responses and questions indicate difficulty in dealing with aspects conceming the
operator M, which, as indicated earlier, requires the object-conception of function. While
the operator M must be understood as an object-valued operator, the other two operators,
yl‘l% and lim can be viewed in two ways, which determine different levels of
understanding the concept of iterated limit. In one way ylLS‘}, and g are uniform
operators acting on objects which happen to be functions. This level of understanding,
although desirable, is not achieved by the average student, who usually views these Limits,
and the concept of limit in general, in a less sophisticated way as point-wise operators.

Besides the iterated limit, the undergraduate mathematics curriculum is replete with
situations involving object-valued operators, for example those which concern parametric
functions, such as f(x)=axtd, f(x)=sin(ax), f(x)=logs,x, etc or parametric equations
involving such functions. In these situations the between the
and the function, or the equation, constitutes an object-valued operator. The difficulties
involved in understanding object-valued operators was investigated by Harel (1985) in the
context of linear algebra (taught to advanced high-school students in Israel). It was found
that students usually had difficulty dealing with such a correspondence, unless they were
able to tag the outputs of the correspondence with familiar geometric figures, such as lines
or planes (e.g., > (a, byH(c, d) or (1), 1,) > (a,b) + 1/(c, d) + tfe,f). These geametric
figures, which were manipulable objects for the students, apparently helped the students
to construct such a correspondence as an object-valued operator.

Another common example involves the construction in abstract algebra of the quotient
object associated with a “normal” sub-object, e.g., in the case of groups. The cosets must
be conceived as objects if they are to participate as elements of a group. However, the
existence of a “representative element” for a coset, where the operation defined on cosets
can be given in terms of an operation on their representatives, makes it possible to deal
successfully with many aspects of the quotient group on a symbol manipulation level
without treating the subsets of the group as objects, or even as subsets. Students’ inadequate
conceptions are revealed when one asks them to attempt to create a group using a non-
normal subgroup’s cosets — they often cannot understand why the subsets “fall apart” when
they attempt to multiply them together as sets, or by using representatives.

Finally, data reported by Kaput (in press) can further support the cognitive distinctions
among the different types of operators made above. Secondary level students were asked
to determine an algebraic rule that fits a student- llable set of numerical domain-dat:
(they pick the x’s and the computer provides the f(x)’s). Examination of their behavior
revealed a clear and stable decomposition of the group of students (in a sample of over 40
high school students) intotwosets, one of whom consistently useda point-by-point pattern-
matching process, mediated by natural language formulations of their proposed “rules,”
while the other searched for and applied a parametrically mediated formulation of their
proposed rules. The latter, for example, would look for constant change in the dependent
variable, identify this as the “m” in y=mux-+b, and proceed from there. For them the process
was a search for parameters that indexed functions as objects. In effect, they were dealing
with a space of functions (albeit a limited one), whereas the other group of students
conceptualized the task as a point-wise attempt to build a function whose point-wise
behavior matched the rule that they had formulated using natural language.
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1.3 CONCEPTUAL ENTITIES AS AIDS TO FOCUS

The third role of conceptual entities we have identified involves facilitating focus on those
aspects of a problem representation that are most relevant to the solution of a problem. In
a one-on-one inferview with an experimental group of Israeli high-school students
regarding the concept of vector space (after several mstructional sessions in which this
concept was gradually abstracted from two and three dimensional representations; see
Harel, 1989a, 1989b), the first author asked the following question:

Let ¥ be a subspace of a vector space U, and let 3 be a vector in Ubutnot in V.
Is the set F+B={v+f}| v is a vector in ¥} a vector space?

There were clearly two groups of students: those who answered this question by checking
the whole list of the vector-space axioms, and those whose answer was something like, “you
moved the whole thing, it doesn’t have the zero vector any more”, or “the new thing, V+3,
is not closed under addition”. Clearly, the latter group of students viewed V as a total entity,
a “thing,” and thus they were able to view +[3 as a shift operator which takes ¥ as an
argument, an input. This enabled them to focus on those vector space properties that are
most relevant to the solution of the given problemn, namely, the zero property or one of the
closure properties. The other group of students, on the other hand, relied on the formal
definition of vector space by checking whether the individual axioms apply. That }4[ is
a subset of the vector space U, which guarantees the existence of most of the axioms, was
not visible to these students. Morcover, many ofthese students failed to check some of the
axioms, including those essential to the solution of the problem (e.g., the existence of zero).

2. ROLES OF MATHEMATICAL NOTATIONS

The power of i iated with the roles of | entities is closely related
to the roles of mathematical symbolism. Using mathematical notations, complex ideas or
mental processes can be chunked and thus represented by physical notations which, in turn,
can be reflected on or manipulated to generate new ideas. In this section we will discuss
three aspects of the interaction between formation of conceptual entities and mathematical
notation:

1. The role of mathematical notation in forming conceptual entities.

2. Different types of mathematical notations, elaborated and tacit notations, and
the mauner in which they represent conceptual structure.

3. Notations as substitutes for concepts.
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2.1 NOTATION AND FORMATION OF COGNITIVE ENTITIES

Greeno (1983) stated two canditions that help distinguish entities from other mental events.
One is its continual presence in a mental representation; the other (mentioned earlier) is its
ability to act as an argument in another mental procedure or argument. By providing
continual perceptual experience, material notations help provide the basis for continuimg
conceptual presence. This role is based simply on notations as names — the notation serves
to name an item in our conceptual world. We might term this the “nominal” role. Nul«. IJul
the parts of the syntax of a notation systemn iated with identification and discri

of notational objects plays an important role here. Having an explicit name for a mental
event helps objectify it through a kind of transference of object permanence — from the
permanence of the physical notational name (which produces perceptual experience on a

more or less continuous Ixasls) to a cognitive p Of caurse, the perceptual itemn
must 1 dwithth lone. Other wise, allone mightend
up with is, say, an casily reproducible mental experience of'a nark or character string, with

no other mental activity or structure beyond that primitive experience — which is the
experience of altogether too many students.

The nominal role of symbols is frequently played out using conventions that help
distinguish the status or differing roles of objects in complex situations —convention-based
variations in the names of objects help distinguish the classes to which they belong.
Suppose a concept involves a process which takes entities ofa different order as inputs and
outputs, e.g. differentiation operating on functions. Then there is a need to distinguish
between the higher level process and its lower level inputs and outputs, a need which is
typically satisfied by using systematically different symbols for the itemns at each level.
Then the conceptual activity of keeping the things distinguished is off-loaded onto the
notation system. For example, many higher level mathematical activities involve defining
functions between sets of functions —as between a vector space and its double dual. Another
typical example occurs in topalogy, when one defines various compactifications, e.g., the
Stone-Czech compactification of a regular Hausdorft space based on sets of contimious
functions on the unit interval. In all such cases, one finds that, typically, different classes
of characters are used to distinguish the different levels of functions - say, one Greek and
the other contemparary English-based.

Systematic variation in names also is employed through the use of different classes of
symbols to distinguish when an object is being treated in two different ways, where it has
essentially two different identities. Consider the conventions used to distinguish the
identity ofa real number x from its identity as a member of the field of complex numbers,
where it may be denoted by x+0i. Similar distinctions are made whenever a canonical
embedding is being employed, not merely in the case of algebraic closures, because it is a
characteristic of “canonicaluess” that the substructure is maintained within the larger
structure. A related case involves the distinction between a canstant function and its vatue.
In all these cases, object identity is identified and maintained notationally.

Relative to Greeno’s secand condition for cognitive entities acting asarguments in other
procedures, the syntax of a notation system specifically structures the place of the material

ional objects in a cal ly ized physical system. Such a system is designed to
suppart a given type oflhmkmg For example, the character string notation for functions
supports highly sophisticated manipulations, which in turn, are used to facilitate a wide
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variety of mental operations on the conceptual objects that those character strings denote.
Thus, the act of factoring the character-string rep ion of a polynomial function to
help identify its roots may be based on some syntactic rule (e.g., applied to the difference
of cubics), which obviates the need to justify all the steps of the process. The strength of
anotation system maybe measured by whether, and to what degree of fidelity, syntactically
guided actions on its objects reflect and/or subsume important mental operations.

‘We conclude this section with two specific examples to illustrate the variety of ways
notations either help encapsulate nathematical concepts as entities or supplant conceptual
entities in reasoning processes. Goldin (1982) discusses the impacts of languages or
notations on the different stages of the problem salving process, citing his own data as well
as the well-known problem-isomorph work by Simon and colleagues. The following
discussion can be thought of as samewhat preliminary to the issues discussed by these
researchers in the sense that we are dealing with the concept-notation relationship ata more
primitive level.

Example I: Consider the use of graphical nomnon the slope of straight lines, to
described as linear functions

facilitate the order comparison between r:
between sets of objects, measures, or even numbers. To compare two such on
the basis ofa table of data (a sequence of ordered pairs) or even on the basis of
a pair of fractions is not as easy as comparing the slopes of their associated
straight lines in acoordinate plane. In this case one need only attend totwo things
(2 lines) as distinguished by their nost salient attribute, their slope. Each single
line embodies an infinite set of equivalent pairs of ratio values. This seems to
be an instance of a one-for-many substitution of a single notational object for a
set of mental objects, although from another perspective it amounts to an
integration of detailed features into a single object.

Example 2: Recall the study mentioned in § 1.2 where students were determining
functions from numerical data. There were two types of students: One type of
students were essentially “pre-algebraic” in their thinking, and treated every
potential rule that they inferred from the numerical data in a table (which they
generated) as a natural language-based rule. That is, they thought of 2x+1 as
doubling and adding one, in terms of a natural language interpretation, rather
than in terms of parameters m and b in nx+b. Thus they did not see growth in
the numerical data in the same way as those who were looking for values of these
parameters. Basically, the latter were looking for growth rates, which they
interpreted as the first parameter’s value, ete. For them, a linear function was
experienced as a “thing”, a conceptual entity, whose identity is determined by
the two parameters. The other students were looking for a way to translate from
their natural language-based encoding of an unencapsulated process to algebra.
They quite often succeeded — as long as the parameters involved were positive
whole numbers. For negatives, they fell apart, because they were not able to get
casy natural language encodings of what for then was a process rather than a
thing (Kaput, in press). An open question is what is the relation between the
conceptualentity and the parameter notation? Which came first? Or did they co-
evolve? In any case, this example seems to offer an mstance of the functional
power of the nominal use of symbols —as do most systematic uses of parameters.
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22 REFLECTING STRUCTURE IN ELABORATED NOTATIONS

The invertors of e (0 express (he fiheir own
minds, both to themselves, (o aid (heir own (hinking, and to ofhers, to aid in the
communication of their conceptions. As Leibriz, thal great master of notation-inverdion
patit,

da ﬂnrg krel‘y‘ and, as it were, picture it lhen indend T I €1 lh:ughl s venderfully
din (Queted in Czjcr, 1929, p.1€<)

‘Extending his remark, we mighiadd that the structure of the conceptions i, in some way,
being reflected in the structure of the nctaticns, especially in (heir syntax. Or, pu more
constructively, the experience of perceiving fhe natations shares importan features with

from any Exlending this observation
Turther, we suggest thal it is even more important (hat actions on notational objects in soime
regular way reflect mental actions on the conceptions. (We again hasten (o add, however,
thal we are nol suggesting any kind of simple relationship between notation and concep-
tion!)

But mathematical symbols diffr in the extert o which they include featurcs that reflect
the structure of the mathematical objects, relations or operations that they stand for. Some
arc morc elaborated than oihers (Harel, 1987), For example, the place-valued symbol 324
expresses a specific structure of thequankiy it represents: three hundreds, [ tens, and four
ones. Of course, this number writien in expanded nolation is even more claboraled.
Similarly, (he more sbstract symbols, (x, ) for an crdered paimmmbag 1) =32 for
3 specific realvalued function, A2 for s fine segment whose endpairts src A and B, and

ay G - G
@ G- G
Gont Gmz - Cmn,
for an mxn atri, i because hey encode

or relationships among components of (heir referents.

On the other hand, for example, the concepl “matrix of (he lincar transformation T
relative lo the pair of ordered bares 1 and v” can be symbolized by the significandy less
elaborated symbol [T}, .. A more elaborated symbol for this concept conkd be [Thy 5y

which indicates that the matrix representation of a transformation T depends on
relationship belween the bases. range and in its domain. An even further elaborated
symbal for this concept is:
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[Ty (702

which encodes many of the variables includ:d and nﬂc!‘crenl. Inconirast, the symbol [1;]
g, 1970, o represert

symbol T is a non-claborated, or facit, symbol. Tact bl provide eseréally an

indexical function — they tame (hings, wilhout denoting aspects of the strudture of what is

named.

Onecategory of tacit symbols consists of those which, during a discussion or proof, are
uscalorepresond variables: For example, the stalcment, “let Bboan ordered pair..”, typifics
 conkext in which such a tacit symbol is used; here, (he symbol b docs ol encode the
structure of its referent — an ordered sequence of 1w abjects — bul it, logether with e
surrounding pheases, docs name the st over which the variable varies.

“Thie exten Lo which a notation is elaborated is determined by the extend to which it ties
o prior mathematical knowledge, which is very much a cogrifive matter. Indecd, wha is
clborate forone person may appear vry bare and ot for ancher. Nonethelss e act

elaborated one is a translation act, which, do

cw.\mlmnus, may operale ineither direction. The notation’s perceived connection with

or knowledge (akes (he form of perceived features (hat reflect features of the prior
kmwluigc. For example, (w0 different symbols are usually used to represent fhe compo-
ition of two functions fand g: (s(x) and (feg)). Thcmvbol T(gx) exprosses the process
i which the (wo functions arc composed: the input x in the function-machine g produces
(he oulput (), where g(x) now acts as an mput o the S aching 10 produce (he
output f(g(x)). (Noke the strong use of Lemporslity here.) Thas the symbol f(g(x)) is
amemble (o the thinking of a function as a process, but dopends on the prior knowledge of
input-outpud relations cxpressed using (he Randard f(x) nolation. The symbol (Tog)r), on
the ofher hand, deseribes an operation between (wo functi
 hird one — (fog)(x). This symbol describes I and gas npu
o, and thus to understand ils meaning functions must be viewed as conceptual entities. Tn
this exampl, the prior knowledge is (hal of operating on inputs (o furctions, and the
notation feature i reflected in a paralielism of structure, exoept hat the first function in the
wn\ponlw acts as (he input.

Tuyp)ly ] (usedby Anton, 1981),

be mmma Vi the symbol (ggx)); for example, pesustions operator:

()= ]’m)m.

Studerts have rouble kg of the irkegral as a function ofix —which is revealed when

itlike a function. O ) for s i ih
Ihis — it assists entification by treating it nolationally as a function, claborating it in sucn a
way that the functional dependence on the variable x is highlighted.

The distinction between elaborated symbols and Lacit symbols has important conse-
ences for larmabilty and wiaily. In Harel (1987) i was Iypallesized . an
elaborsted symbol expresses
salient variables in its referent. Here, we additionally hypolhcslzc fhat s tacit symbol can
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be more meaningfully used when its referent is encapsulated mto a conceptual entity. That
is, in developing a symbol for a concept one must try to match the degree of elaboration of
the symbol with the degree of elaboration of the user’s concept, which in turn must match
the user’s needs for the task at hand. Afterall, i i detail,
and in others the detailed structure plays a role in what one is trying to do. It seems, then,
that one’s control of the amount of structure explicitly represented in the symbolism is a
major factor m mathematical thinking, because one can adjust the “focus of one’s mental
microscope”by adjusting the notation. This we believe tobean important facilitating factor
that notations offer us.

3. SUMMARY

‘We hope to have mtroduced some useful ways of thinking about some important aspects
of the learning of mathematics that highlight the role of conceptual entities and their
relationships with mathematical notations. We regard this chapter as but a begining into
an area of research that others may find productive to pursue in the future.

In § I we laid out some of the cii under which | entities
and used and what their cognitive function might be, often by pointing to consequences in
students’ reasoning processes where they have not yet been mentally constructed. We
observed three cognitive functions:

*  Alleviating working memory or processing load when concepts mvolve mul-
tiple constituent elements, facilitating comprehension of complex concepts,

* the cases of “uniform” operators, “point-wise” operators, and “object-valued
operators”,

« assisting with the focus ofattention on appropriate structure in problem solving.

These functions, undoubtedly, play an important role in mathematical thinking and in
fostering the vertical growth of mathematical ideas, at all levels.

In §2 we analyzed the key role that notations play in the entification process by helping
substitute names for complex conceptual structures and/or operations. We have discussed
three aspects of the interaction between formation of conceptual entities and mathematical
notation:

«+ the role of mathematical notation i forming conceptual entities,
< different types of mathematical notations — elaborated and facit notations, and
the manner in which they represent conceptual structure,

* notations as substitutes for concepts.

lust as notations can help the formation and application of mental entities, notations can act
as substitutes for conceptual entities, supplanting the need for them. It is here where both
the great power and the great danger in using mathematical notation systems become
particularly and unavoidably evident. Accampanying the great power of notations as aids
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to mathematical thought based on their identity-management role and their structure-
substitution role is the great danger that the notations do not refer to any mental content
‘beyond the experienced physical structure of the notations themselves, ¢.g., as when one
deals with an algebraic statement as a character string. This seems to be the case with
altogether too many students. While the inventors of notations created them to express and
perhaps elaborate their own pre-existing conceptions, in schools we often begin in reverse
order, concentrating on manipulation of notations, e.g., the techniques of differentiation
and integration in calculus, before providing sufficient experience that would enable the
building of mental referents for those notations (Davis, 1986). Students should be given
opportunities to build their own notational expressions of their ideas, which can then be
guided in the direction of the standard ones. In this way, one builds both notations and
canceptions simultaneously, rather than building one or the other first and then attempting
to connect the two.




CHAPTER7

REFLECTIVE ABSTRACTION
IN ADVANCED MATHEMATICAL THINKING

ED DUBINSKY

Our purpose in this chapter is to propose that the concept of reflective abstraction can be
a powerful tool in the study of advanced mathematical thinking, that it can provide a
thearetical basis that supports and contributes to our understanding of what this thinking
is and how we can help students develop the ability to engage in it. To make such a case
completely, it would be necessary to do at least several things:

explain exactly what we mean by reflective abstraction;

show how it can be used to describe the epistemology of various mathematics
concepts;

indicate how it can suggest of some of the difficulties that students

have with many of these concepts;

and

establish that it can influence the design of instruction in ways that result ina
significant improvement in th extent to which students appear to acquire these
concepts.

‘Weare certainly not ready to do an exhaustive job on all four of these tasks. Indeed, ourmain
concern here is to make some progress with the first two. There will be a few examples of
the third, and we will make reference to other papers i which we have made a start on the
fourth especially mvolving the use of computer activities to help students make mental
constructions, with results that are encouraging.

Reflective at ion is a concept introduced by Piaget to describe the construction of
logico-mathematical structures by an individual during the course of cognitive develop-
ment. Two important observations that Piaget made are first that reflective abstraction has
no absolute beginning but is present at the very earliest ages in the coordination of sensori-
motor structures (Beth & Piaget, 1966, pp. 203-208)' and second, that it continues on up
through higher mathematics to the extent that the entire history of the development of
mathematics from antiquity to the present day may be considered as an example of the
process of reflective abstraction (Piaget, 1985, pp. 149-150).

In the majority of his own work, however, Piaget concentrated on the development of
mathematical knowledge at the early ages, rarely going beyond adolescence. What we feel
is exciting is that, as he suggested, this same approach can be extended to more advanced
topics goimg into undergraduate mathematics and beyond. It scems that it is possible not

! Piaget repeated many of his comments on reflective abstraction in several places, bul was
quile consistent on Lhis topic. Hence, (he references we give should be laken as representative.

95
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only to discuss and conjecture, but to provide evidence suggesting, that concepts such as

i} ical induction, itional and predicate calculus, functions as processes and
objects, linear independence, topological spaces, duality of vector spaces, duality of
topological vector spaces, and even category theory can be analyzed in terms of extensions
of the same notions that Piaget used to describe children’s construction of cancepts such
as arithmetic, proportion, and simple measurement.

This is a strong claim embodied i the phrase “can be analyzed” and, before going
further, it is necessary to explain what sort of analysis we mean. The goal of our study of
reflective abstraction is a general framework which can be used, in principle, to describe
any mathematical concept together with its acquisition. We refer to this as a general theory
of mathematical knowledge and its isition. This is the first imgredient of the analysis,
but it does not, by itself, lead to any particular description. In addition, the mvestigator needs
to make use of her or his understanding of the mathematics. Together these two are enough
to obtaina description ofany cancept but the result would be far too ex post facto to expect
it to have any relation to how students actually might go about constructing the concept. A
third and essential ingredient in the study of any concept is a long drawn-out, time
consuming effort ofobservation of students as they try to construct mathematical concepts
im order to make sense out of situations in which they find themselves (presumably, but not
necessarily, as the result of activities of a teacher). The analysis then consists of a synthesis
of these three imgredients brought to bear on the question of how a particular topic in
mathematics may be learned. The starting point of our general theory is Piaget’s notion of
reflective abstraction. Unfortunately, this is nota simple idea clearly explained in one place,
but rather something that Piaget appeared to work with over a long period of time after he
completed his empirical studies of children in development. It is important, however, that
we begin with a solid understanding of what he meant by it before trying to extend it to a
wider class of mathematical topics. Therefore we begin this chapter with a section that gives
a brief summary of this concept as Piaget elaborated it im a number of books and papers,
mostly written in the last 15 years of his life. We will emphasize the construction aspects
of reflective abstraction because these are the most important for the development of
mathematical thought during adolescence and beyond.

In the second section we will show how Piaget’s ideas can be extended and reorganized
to form ageneral theary of ical k ledge and its isition which is applicabl
to those mathematical ideas that begin to appear at the post-secondary level and continue
to be constructed in the course of mathematical and other scientific research. It is here, in
§ 2 that we relate various aspects of the general theary to specific topics in advanced
mathematical thinking and give several examples of how reflective abstraction can suggest
explanations of student difficulties.

Our analysis of a particular mathematical concept leads to what we call a genetic
decomposition of the concept which is a description, in terms of our theory, and based on
empirical data, of the mathematics mvolved and how a subject might make the construc-
tions that would lead to an understanding of it (which, in our theory, are not very different).
It is important to note that we do not suggest that a concept has a unique genetic
decomposition or that this is the way every subject will leamn it. We only claim that
observations of leamning in progress form an important source for our genetic decomposi-
tions and we offer them as a guide for one possible way of designing instruction. In § 3 we
present genetic decompositions for three concepts: mathematical induction, predicate
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calculus, and function, msofar as we have constructed them. The references given in § 3
contain more information about examples of mstructional treatments based on these
genetic decompositions, using computer experiences, and about the generally encouraging
results of implementing these treatments.

Finally, in § 4 we discuss some of the educational implications of our theary of
knowledge and learning and give an overview of how we go about designing an
instructionaltreatmentbasedonit. We feelthat the material in this section is very much akin
to the ideas in Thompson (1985a).

1. PIAGET’S NOTION OF REFLECTIVE ABSTRACTION

1.1 THE IMPORTANCE OF REFLECTIVE ABSTRACTION

Piaget distinguished three major kinds of abstraction. Empirical abstraction derives
knowledge from the properties of objects (Beth &Piaget, 1966, pp. 188-189). We interpret
this to mean that it has to do with experiences that appear to the subject to be external. The
knowledge of these properties is, however, internal and is the result of constructions made
intemally by the subject. According to Piaget, this kind of abstraction leadsto the extraction
of common properties of objects and extensional generalizations, that is, the passage from
“some” to “all”, from the specific to the general (Piaget & Garcia, 1983, p. 299). We might
think, for example of the color of an object, or its weight. These properties might be
considered to reside entirely in the object but one can only have knowledge of them by doing
something (looking at the object ma certain light, hefting if) and different imdividuals under
different conditions might came to different conclusions about these properties.

Pseudo-empirical abstraction is intermediate between empirical and reflective abstrac-
tion and teases out properties that the actions of the subject have introduced into objects
(Piaget, 1985, pp. 18-19). Consider, for example the observation ofa 1-1 correspondence
between two sets of objects which the subject has placed m alignment (ibid, p. 39).
Knowledge of this situation may be considered empirical because it has to do with the
objects, but it is their configuration in space and relationships to which this leads that are
of cancem and these are due to the actions of the subject. Again, of course, understanding
that there is a 1-1 relation between these two sets is the result of internal constructions made
by the subject.

Fally, reflective abstraction is drawn from what Piaget (1980, pp. 89-97) called the
general coordinations ofactions and, as such, its source is the subject and it is completely
imternal. We will see many instances of reflective abstraction, but a very early example we
can mention now is seriation, in which the child performs several individual actions of
forming pairs, triples, etc., and then iteriorizes and coordinates the actions to form a total
ordering (Piaget, 1972, pp. 37-38). This kind of abstraction leads to a very different sort
of generalization which is constructive and results in “new syntheses in midst of which
particular laws acquire new meaning” (Piaget & Garcia, 1983, p. 299). An example of this
is the concept of euclidean ring which is certainly an abstraction and generalization. It might
be considered, however, to derive from the properties of a single example — the integers.
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We can see, therefore, that these different kinds of abstraction are not completely
imdependent. The actions that lead to pseudo-empirical and reflective abstraction are
performed on objects whoseproperties the subject only comes to know through empirical
abstraction. On the other hand, empirical abstraction is only made possible through
assimilation schemas which were constructed by reflective abstraction (Piaget, 1985, pp.
18-19). Consider, for example a physics experiment which may have the purpose of
making an empirical abstraction to obtain factual data about a certain object. The
experiment presupposes, however, an enormous range of logico-mathematical preliminar-
ies — in deciding how to pose the question, in the construction of apparatus for “indirect
observations” (e.g., triangulation to obtain distances between stars), in the use of particular
forms of measurement, and finally, in setting out the results i logico-mathematical
language. All of these are concepts that must have been canstructed using reflective
abstraction. (Piaget, 1980, p. 91). This mutual mterdependence can be roughly summarized
as follows. Empirical and pseudo-empirical at ion draws k ledge from objects by
performing (or imagining) actions on them. Reflective abstraction iteriorizes and coordi-
nates these actions to form new actions and, ultimately new objects (which may no longer
‘be physical but rather mathematical such as a function or a group). Empirical abstraction
then extracts data from these new objects through mental actions on them, and so on. This
feedback system will be reflected in our extension of these ideas in the next section.

In empirical abstraction the subject observes a number of objects and abstracts a
common property. Pseudo-empirical abstraction proceeds i the same way, after actions
have been performed on the object. Reflective abstraction, however, is much more
complicated. This is not surprising since, according to Piaget, “The development of
cognitive structures is due to reflective abstraction...” (Piaget, 1985, p. 143). Before going
into the nature of this fundamental process, therefore, we should say a few things about its
importance, m Piaget’s view, o cognitive thought in general and mathematics in particular.

In two books Piaget (1976, 1978) mterpreted the results of many experiments with
children in terms of reflective abstraction. But its role is not restricted to the imtellectual
development of children. From Piaget’s psychological viewpoint, new mathematical
constructions proceed by reflective abstraction (Beth & Piaget, 1966, p. 205). Indeed, he
considered it to be the method by which all logico-mathematical structures are derived
(Piaget, 1971, p. 342); and that “it alone supports and animates the immense edifice of
logico-mathematical construction” (Piaget, 1980, p. 92).

In support of his position on the role of reflective abstraction in advanced mathematical
thinking, Piaget tried to explain a number of major mathematical concepts i terms of the
constructions that result from this psychological process. These included the idea of
Godel’s incompleteness thearem (Beth & Piaget, 1966, p. 275), the abstract concept of
groups (1980, p. 19), Bourbaki’s attempts to encompass all of mathematics within three
“mother structures” (1970a, p. 24), the general theory of categories (Piaget 1970, p. 28),
the impossibility of constructing the set ofall sets (1970b, pp. 70-71), and the mathematical
concept of function (Piaget et al, 1977, p. 168). More generally, Piaget considered that it
is reflective abstraction in its most advanced form that leads to the kind of mathematical
thinking by which form or process is separated from cantent and that processes themselves
are converted, in the mind of the mathematician, to objects of content (Piaget, 1972, pp. 63—
64 and pp. 70-71).
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Returning to the ideas of Piaget, it is important to emphasize that there is no suggestion
here thatall (or any) of the advanced mathematics described above is actually done by any
kind of direct application (conscious or otherwise) of reflective abstraction. This was not
Piagets purpose i trying to analyze that aspect of thinking. The point, rather, is that when
properly understood, reflective abstraction appears as adescription of the mechanism of the
development of imtellectual thought. It is important for Piaget’s theory that this same
process that describes advanced mathematical thinking appears in cognitive development
throughout life from the child’s very first coordinations that lead to concepts such as
number, measurement, multiplication, and proportion (Piaget, 1972, pp. 70-71). An
important ingredient of Piaget’s general theory (on which he worked for 60 years) that
relates biological evolution to the development of intelligence is the idea that reflective
abstraction is one isolated case of certain very general processes that are found throughout
living creation (Piaget, 1971, p. 331).

1.2 THENATURE OF REFLECTIVE ABSTRACTION

As we have seen, reflective abstraction differs from empirical abstraction in that it deals
with action as opposed to objects and it differs from pseudo-empirical abstraction i m l.hal
it is concerned, not so much with the actions themselves, but with the i
among actions, which Piaget (1976, p. 300) called “general coordinations”.

According toPiaget, the first part of reflective abstraction consists of drawing properties
from mental or physical actions at a particular level of thought (Beth & Piaget, 1966, pp.
188-189). This imvolves, amongst other things, cognizance or consciousness of the actions
(1971, p. 320). It can also include the act of separating a form from its content (1972, pp.
63-64). Whatever is thus “abstracted” is projected onto a higher plane of thought (1985,
pp- 29-31) where other actions are present as well as more powerful modes of thought.

It is at this point that the real power of reflective abstraction comes i for, as Piaget
observes, one must do more than dissociate properties from those which will be ignored or
separate a form from its content (1975a, p. 206). There is “a process which will become
imcreasingly evident over time: the construction of new combinations by a conjunction of
abstractions” (Piaget, 1972, p. 23).

Piaget seemed to feel that this construction aspect of reflective abstraction is more
important than the abstraction (or extraction) aspect (ibid, p. 20). Not only did he assert, as
we observed earlier, that construction of this kind is the essence of mathematical
development, and that combining formal structures is a natural extension of the develop-
ment of thought (ibid, p. 64), but he also used his analysis of this process to deal with the
philosophical question of the nature of mathematical thought (Beth & Piaget, 1966).

Certainly for ourpurposes, the construction aspect of reflective abstraction will play the
major role.
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1.3 EXAMPLES OF REFLECTIVE ABSTRACTION
IN CHILDREN’S THINKING

‘We begin with some of Piaget’s examples of reflective abstraction in logico-mathematical
thinking at the earlier ages. This is important because of his insistence on the continuity of
(kv(.l()pmx.nl as part of his search fur a single process or set of processes that related to

ical lop as well as intell | develof (Piaget, 1971, p. 331). Our
suggesuon m this chap'er Js that the specific construction processes that can be used to build
can be found, already, in the thinking of young

children.

comnuutativity of addition. The discovery that the number of objects i a
collection is independent of the order in which the objects are placed requires
first that the child count the objects, reorder them, count them again, reorderand
count, ete. Fach of these actions are mteriorized and represented mtemally in
some manner so that the child can reflect on them, compare them, and realize
that they all give the same result Piaget, 1970a, pp. 16-17).

number. According to Piaget (1941), the concept of number is constructed by
coordinating the two schemas of classification (construction of a set in which
the elements are units, indistinguishable from each other) and seriation (which,
as we observed earlier, is itselfa coordination of the various actions of pairing,
tripling, etc.).

trajectory. The traversal of a path is und d a dination of
displacements to form a continuous whole (ngeL 1980, p. 90).

see-saw. The balancing of objects on two sides of a see-saw by a combination
of actions on both sides mvolves more than just keeping two things in mind at
the same time. Because he observed a considerable delay between the time that
a child could create the balance and the time that the child appeared to
understand how he or she had done it, Piaget saw this as a coordination of two
actions into a single system (Piaget, 1978, p. 96).

lipli Both psychologically and math icall ltiplication is the
addition of additions. It i is, however, objects that are added in the sense that
addition is an operation applied to something. In order, therefore, to multiply,
it is necessary first to encapsulate the (mental) action of addition into an object
(or set of objects) to which addition can be applied (Piaget, 1985, p. 31).

Sluid levels. In an experiment asking children to predict the level to which a
known amount of fluid would rise in a vessel with sloping sides and markings
at equal height divisions (Piaget ef al, 1977, chapter 7). Piaget pointed out that
this situation is a case of “variation of variations”. That is, the differential intwo
vertical markings is a variation, but the amount of change also varies because
of the sloping sides. Hence, the first variation must become an object to which
an action is applied (sloping sides) resulting in a higher order variation.
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1.4 VARIOUS KINDS OF CONSTRUCTION
IN REFLECTIVE ABSTRACTION

In considering the at of reflecti as methods of construction, we
can isolate four different kinds which will be important for advanced mathematical
thinking. We add a fifth which Piaget considers at length, but was not, for him, part of
reflective abstraction.

+ With the appearance of the ability to use symbols, language, pictures, and
mental images, the child performs reflective abstractions to represent (piaget,
1970, p. 64), that is, to construct infernal processes as a way of making sense
out of perceived phenomena. Piaget called this interiorization (1980, p. 90) and
referred to it as “mranslating a succession of material actions imto a system of
imteriorized operations” (Beth & Piaget, 1966, p. 206). The commutativity of
addition described above is one example of this. (See also Thompson, 1985a,
p- 197)

Several of ourexamples such as trajectory and see-saw imvolve the composition
or coordination of two or more processes to construct a new one. This is to be
distinguished from Piaget’s phrase, “general coordinations of actions” which
refers to all ways of using one or more actions to construct new actions or
objects.

Multiplication, proportion and variation of variation exemplify the construction
which is perhaps the most important (for mathematics) and most difficult (for
students). Thi lation or ion of a (d process into a
(static) object. As Piaget put it (1985, p. 49), “... actions or operations become
thematized objects of thought or assimilation”. He considered that “The whole
of mathematics may therefore be thought of in terms of the construction of
structures, ... mathematical entities move from one level to another; an operation
on such ‘entities’ becomes i its turn an object of the theory, and this process is
repeated until we reach structures that are alternately structuring or beimg
structured by ‘stronger’ structures” (Piaget, 1972, p. 70). From a philosophical
point of view, Piaget was applying the idea of encapsulation to the relativity
between form and content when he referred to “...building new forms that bear
on previous forms and include them as contents” and “reflective abstractions
that draw from more elementary forms the elements used to construct new
forms” (Piaget, 1985, p. 140).

+ When a subject learns to apply an existing schema to a wider collection of
phenomena, then we say that the schema has been generalized. This can occur
because the subject becomes aware of the wider applicability of the schema. It
can also happen when a process is encapsulated to an object as, for example, the
ratio of two quantities, or addition, so that an existing schema such as equality
or addition can then be applied to it to obtain, respectively, proportion or
multiplication. The schema remains the same except that it now has a wider
applicability. The object changes for the subject i that he or she now under-
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stands that it can be assimilated by !Jxe extendcd schema. Piaget referred to all
ofthisas a ductive or ilation (1972, p. 23), and he called
the generalization extensional Piaget & Garcia, 1983, p. 299).

Once a process exists internally, it is possible for the subject to think of it in
reverse, not necessarily in the sense ofundoing it, butas a means of constructing
a new process which consists of reversing the original process. Piaget did not
discuss this m the context of reflective abstraction, but rather in terms of the
INRC group. We include it as an additional form of construction.

2. ATHEORY OF THE DEVELOPMENT OF CONCEPTS
IN ADVANCED MATHEMATICAL THINKING

2.1 OBIECTS, PROCESSES, AND SCHEMAS

Although, as we have pointed out, Piaget believed that reflective abstraction was as
important for higher mathematics as it was for children’s logical thinking, his research was
m.uuly concerned with the latter. In order to try to develop the notion of reflective

for advanced math ical thinking, we will isolate what seem to be the
essential features of reflective abstraction, reflect on their role in higher mathematics, and
reorganize or reconstruct them to form a coherent theory of mathematical knowledge and
its construction.

For us, reflective abstraction will be the construction of mental objects and of mental
actions on these objects. In order to elaborate our theory and relate it to specific concepts
in mathematics, we will use the notion of schema. A schema is a more or less coherent
collection of objects and processes. A subject’s tendency to mvoke a schema in order to
understand, deal with, organize, or make sense out of a perceived problem situation is her
or his knowledge ofan mdividual concept m matk ics. Thus an individual will have a
vast array of schemas. There will be schemas for situations mvolving number, arithmetic,
set formation, function, proposition, quantification, proofby mduction, and so on through-
out all of the subject’s mathematical knowledge. Obviously, these schemas must be
interrelated in a large, complex organization. For example, there will be a proof schema,
which can inchude a schema for proof by mduction. This latter i turn could mclude a
schema for proposition valued functions of the positive integers (seep. 112). Hence there
would be a relation with the schemas for number, for function, and for proj ion. On the
other hand, there is a sense in which a proofis an action applied to aproposition, so that the
proof schema might be one of the processes in the proposition schema.

We will also sometimes use the term process or mental process mstead of mental action
when we are emphasizimg its mternal (fo the subject) nature. Fmally the term object will
refer to amental or physical object (avoiding any discussion of the nature of the distinction).

One of our goals i elaborating the general theory is to isolate small partions of this
camplex structure and give explicit descriptions of possible relations between schemas.
‘When this is done for a particular concept, we call it a genetic deconposition of the concept.
We should also point out that although we only give, for each concept, a single genetic
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decomposition, we are not claiming that this is the genetic decomposition, valid for all
students. Rather it represents one reasonable way that students might use to construct a
cancept.

Itis not easy to separalc a description of matt ical k from its
As Piaget put it, “... the problem of knowledge, the so-called epjstemologlcal problem,
carmot be cousidered separately from the problem of the development of intelligence”
(Piaget, 1975a, p. 166). It is not possible to observe directly any ofa subject’s schemas or
their objects and processes. We can only infer them from our observations of individuals
who may or may not bring them to bear on problems — situations in which the subject is
seeking asolution or trying to understand a phenomenon. But these very acts ofrecognizing
and solving problems, of asking new questions and creating new problems are the means
(in our opimion, essentially the onfy means) by whicha subj: ical
knowledge.

This is where reflective abstraction comes . Thus, although we might say that
mathematical knowledge consists of a collection of schemas, we have little to say about
how that knowledge exists inside a person. It does not seem to reside in memory or ma
physiological configuration. All we can say is that a subject will have a propensity for
responding to certain kinds of problems in a relatively (but far from totally) consistent way
which we can (as faras our theory has been developed) deseribe in terms of schemas. When
the subject is successful, we say that the problem hasbeen assimilated by the schema. When
the subject is not successful then, in favorable conditions, her or his existing schemas may
be accommodated to handle the new phenomenon. This is the constructive aspect of
reflective abstraction to which we referred as fonmng the maim object of our concern.

In this sense, the study of reflective ab: ion is 1 y o i igation of
notions such as epistemological obstacles as studied by Cornu (1983), and Sierpinska
(1985a, 1985b) or the conflict between cancept image and concept defmition as imvesti-
gated by Schwarzenberger & Tall, 1978; Tall & Vinner, 1981; Dreyfus & Vinner, 1982;
Vinner, 1983;Tall, 1986a; Vinner & Dreyfus, 1989).Onecanthink of reflectiveabstraction
as trying to tell us what needs to happen whereas the other notions attempt to explain why
it does not. It is possible that our idea of using computer experiences (Ayers ef al, 1988;
Dubinsky, 1990a, 1990b) to help students make reflective abstractions can be a way of
dealing with these obstacles and conflicts. But these are matters for other investigators and
other papers.

2.2 CONSTRUCTIONS IN ADVANCED MATHEMATICAL CONCEPTS

In the previous section, we isolated five kinds of construction that Piaget found m the
development of children’s logical thinking: interiorization, coordination, encapsulation,
generalization, and reversal. We will reconsider each of them in the context of advanced
mathematical thinking to describe how new objects, processes and schemas can be
constructed out of existing ones.

Some of the following examples will apply to a single one of the five kinds of
construction and others will apply to a combination of two or more of them. Some of the
statements we make are based on observations of stud d others are only iti
derived as a preliminary to observations, from the general theory and our knowledge of the
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nmathematics.

As we make these statements about constructions that we have seen students appear to
make or that our investigations suggest they need to make, or as we conjecture that certain
concepts could be constructed in these ways, the reader should be aware that we are not
suggesting that it is automatic, natural, or casy for students to take these steps. An important
aspect of the whole problem of education that we do not consider in this paper is to explain
why students do or do not make these particular constructions and what can be done to help
them. This is an important issue for research in mathematics education.

An important part of understanding a function that we have observed is to construct a
process (Dubinsky e al, 1989). For individual examples this means that the subject
responds to a situation in which a function may appear (via formula, as an algorithm, or
represented by data) and for which there is aprocess by which the value of the function, for
aparticularvalue in thedomainis obtained. Given suchasituation, the subject may respond
by constructing, inher or his mind, a mental process relating to the function’s process. This
is a prime example of imteriorization.

An example ofthe same kind of mental activity in a completely different mathematical
situation could arise in understanding proofs. When the mathematician exclaims (as which
of us has not?) that “I can understand each step of the proof, but I don’t see the whole
picture”, it could be the case that he or she is expressing the necessity of interiorizinga whole
collection of processes and coordinating them to obtain a single process. The interiorization
of the total process can be, in our opiion, the fimal step in “making a proof your own”.

Interiorization may notalways be difficult. Most students seem to have little trouble with
constructing a mental process for multiplying a matrix and a vector, or two matrices. This
could be because there is a straightforward “hand-waving” action, used by most teachers,
that is a physical representation of the multiplication and could form an mtermediary
between the external action and its interiorization. It seems that mathematics becomes
difficult for students when it concerns topics for which there do not exist simple physical
or visualrepresentations. One way in which the use of computers can be helpful is to provide
concrete representations for many important mathematical objects and processes (see
Chapter 14).

Turning now to coordination, one of the most important examples that we have seen
occeurs in the formation of the composition of two functions. Based on our research (Ayers
etal, 1987; Dubinsky ef al, 1989), we would like to propose the following psychological
description. Composition is a binary operation which means that it acts on two objects to
form a third. Thus, it is necessary to begin with two functions, considered as objects. The
subject must “unpack” these objects, reflect on the corresponding processes, and mteriorize
them. Then the two processes can be coardinated to form a new process that can then be
encapsulated into an object which is the function that results from the composition. This
is much more complicated than simple substitution and perhaps explains why students have
so much difficulty with ideas like the chaim rule for differentiation, in which it would be
necessary to coardinate this view of composition with the notion of derivative. It could also
explain those results of Ayers ef al (1988) in which students seem to improve their
understanding of composition as a result of performing computer tasks designed to foster
these mental operations.

A whole class of examples of that could be described as coordination of schemas in
advanced mathematics is given by the “mixed” structures: topological vector spaces,
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differentisble manifolds, homotopy groups, eic.
Tuis i i

of sefs such as

@, {3,2,-17), {17,5})).

Very often, ill hink that this set has 6 ek (eather than 3). We.
suggest thal the difficully is (hal the studerts have nol encapsulated the sets {-3, 2, ~177),
{17, 5 inko objects 50 85 lo understand fhe nested structure of the given set.

“The indefinite inkegral forms an important example thal can be inkerpreted as encapsu-
tati her with interiorization. Estimating a2 curve with sums and passi

toa fimit is, of course, aprocess:
with the next step of varying, say, the upper limit of the inlegral to obtaina function. What
i lacking, we suggest, isnmmapsumim of the enfirc arca process info an objct which

codldhen Tom a “higher-level” process
which spexilics the function given by the mdchnm: inkegral. The complexity of his otal
then explain why withnol ouly the Fundamen-

15 Theorem of Cakcls, but such powerful &efinions as
logl) = f x>0

A rather pervasive example that can be interpreted s encapsulation in mathematics is
Guslity. The dual of vector space, for example, is oblainedby considering all of the finear
transformations from the space (o its scalar ficld s bjects, collecting them in a set, and
infroducing a natural algebraic structure on this set. Tt scems (o us thal this is an act of
encapsulation (hal i essendial in (his branch of mathematics.

The simplest and most famifiar form of reflective sbstraction is generslization.
According 10 our investigations, we can say (hal a subject’s function schema, in which
Rurcions ransform mumber, is genralzed o inclide furcions which transfom other
Kinds ofcbjects (once they have such as vectors, els, propesiticns, or

n bcscncrahzod in thie way o factoring polyremiats,and then ton arbitrary cuclidean
ring, Veclors of Gimension two and hree can bo generalzd (o inclode higher, ad ven
infinite, host

(o imvolve the application of an existing schema, essentially unchanged, (o new abjects
(which are often he result of encapsulation).

Tinally there is reversal ofa process. We can menfion a umber of famifiar activities in
mathematics thal sppear o ivolve the roversal of a process: sublraction and division,
solvig an equation, inverting a function, proving an incquality (in which one often starts
with the conclusion, manipulates unkil something known (o be true is obizined, and then
sees if the argument can be reversed), and (he mysterious choice of expressions such as

3
27 mproving i theoems.
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2.3 THE ORGANIZATION OF SCHEMAS

In the previous section, we suggested how the construction of various concepts in advanced
mathematics could be described in terms of the five forms of construction in reflective
abstraction: interiorization, coordination, encapsulation, generalization, and reversal. We
offer the conjecture that the canstruction of all mathematical concepts can be described in
these terms. It may be that additional forms of reflective abstraction will have to be added
as additional concepts are considered, but we suggest that the five given here tell something
like the full story.

Of those concepts (mathematical mduction and predicate calculus) for which we have
made a more or less complete genetic decomposition (Dubinsky, 1986; Dubinsky,
Elterman & Gong, 1988), our analysis has been greatly influenced by data obtaimed from
observations (interviews, written tasks, computer work, etc.) of students while they are
trying to understand the concept in question. The genetic decomposition is then derived
from a synthesis of these empirical results, our general theory, and our mathematical
knowledge of the cancept in question. This is why it takes a long time and has only been
done extensively for two concepts. Work on other concepts (e.g., function, limit) is
proceeding slowly and, we hope, deliberately.

The following description of the organization ofa schema is just a summary of what we
have seen in the concepts investigated thus far and, therefore, is somewhat tentative. We
give it here in general terms and then, in the next section, see how it looks in the context
of mathematical induction and predicate calculus. In addition, with more anticipation than
certainty, we will suggest how it might look for the concept of function, after considerably
more data has been gathered.

The structure of a schema is displayed in figure 13.

As we have already indicated, one should not think of a schema statically, but rather as
a dynamic activity (or propensity for such activity) by the subject. Moreover, the existence
of a schema is inseparable from its contimuous construction and reconstruction. Thus, n
describing the system in Figure | we will try to do several things simultaneously: describe
what is there, describe what happens, describe how things are constructed, and refer to some
of the examples we have discussed previously. An additional lication is that, as
indicated in the picture, a schema is not a linear list of items but rather a circular feedback
system. Our description, ne ily linear, must break in at some point. In any case, the
following discussion is an altemative way of organizing the five kinds of construction
analyzed in the previous two sections. Here we also include the results of the constructions
(objects and processes).

‘We begin with objects. These encompass the full range of mathematical objects:
numbers, variables, functions, topological spaces, topologies, groups, vectors, vector
spaces, etc., each of which must be constructed by an idividual at some poimt im her or his
mathematical development.

At any point in time there are a number of actions that a subject can use for calculating
with these objects. These actions go far beyond numerical calculation resulting i
numerical answers. The putation of the I py group of a ical space is a
calculation. So is the determination of the (topological) dual of a (locally convex
topological) vector space. We will return to this example a few paragraphs below when we
discuss coordination.
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For cxample, the comprtation of the du.:l ofa particular vedtor space is an action on hat

objoct. The idea, independent of any particular veclor space, (hal it may have a dual and it
can oflen be computed, is the process tal results from inkeriorizing this action.

Interiorizing actions s one way ofconstructing processes. Anofher way is o work with

form new ones. This can be done, forexample, by reversal. A cakculus

student may have interiorized the action of taking the derivative of a function and may be

ablot0.do s secesstully w|lhu]argc number of exam ples, using various techniques (hat

eriorized,
the s1udcn1 might be sble to reverse Lo solve problcans in which a function is given and
it is desired (o find a function whose derivative is (he original funcfion. This is anti-
&ffercrtiation or integration, and it oo, is fist an action and (hen must be interiorized to
become a process. Encapsulating both (he differcrtiation and inkegration processes — st
Teast 1o the poirt of having them as objects of reflection — would scem 1o be an esserial
prerequisito for understanding the fundamerdal theorem of calculus.
‘Another way of making new processcs out of ld ones i 1o Compose o coordinate (o
o more processes. For example, let us return Lo the dual of an infinitc dimensional vector
spaccand inagine (this is purely conjectural) how  subject might think about it A stbject
may havea schena (dircusscd in (e previous section) for contructing the dual ofa fnite
thenit seems
that exactly the same schema can be used lo construet its dual, a5 well. We would say fhat
the new phenomenon (infinits dimensional vector space) has been assimilated to this
schema, As mathematical experience goes further, however, this result would not be very
satisfaclory, and it is particularly conveniend to make use of opological structures. 1f there
is, in the stbject’s schema,  process for cquipping st with a lopdlogy, then this could
be coordinaled with the vedor space schema Lo obiain a topalogical vector space. Now
within a schema for topological space there should be a schema for the concepl of
continuous function and within a vector space schema there should b a nofion of Fincar
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function. Coordinating continuity and linearity, one can obtain the idea of a continuous
linear function. This coardination would permit the subject to extend and reorganize the
process for canstructing the dual ofa vector space to apply to the set of those functions from
the original set to the scalar field which are continuous as well as linear, thereby obtaining
the topological dual. In such a situation we would say that the schema for duals has been

dated to the new (mvolving logies) and experiences which made
the old schema less than satisfactory.

In addition to using processes to construct new processes, it is also possible to reflect on
a process and convert it into an object. Anytime a set of functions is considered, it seems
necessary to think of the functions in question as objects. Initially, functions are processes
and so the subject must have performed an encapsulation in order to consider them as
objects. It is important, for example in composition of functions, for the subject to alternate
between thinking about the same mathematical entity as a process and as an object. (¢f. p.
104)

A more advanced, and yet more fund: I example where lation may occur
is in the concept of a topology. Initially, there is the notion of nearness or convergence,
which is a process. One of the accomplishments of twentieth century mathematics is to
capture this idea with the device of a callection of subsets (so-called “open sets”) which
must satisfy certain condtions but is otherwise arbitrary. The interaction (really another
form of coordination) between, on the one hand, a collection of sets which may be taken
as arbitrary in order to investigate general topological properties related to but not identical
with notions of “nearness”, and on the other hand, a very specific choice of this collection
so as to apply those properties to important concrete situations, say i analysis, and the use
ofthe resulting observations to stimulate the development of further general properties, and
so o, has led to a great dea! of important new mathematics of both abstract and concrete
natures. A key step in this progress may be described as the encapsulation of the process
“nearness” to the object “topology”.

‘We conclude this section with a recapitulation of our description of the construction of
schemas in the context of the example, already mentioned on several occasions above, of
the (topological) dual of a (topological) vector space. This suggestion of a genetic
decomposition for the concept of dual is totally speculative in the sense that it depends
entirely on our theory and our understanding of the relevant math ics. We have
gathered no data (other than introspection on our own experience) to support our
suggestions. On the other hand, it may be inferesting for those with a background i
mathematics to see that our theory at least appears to be reasonably compatible with a topic
from the arena of mathematical research. It is an important point that the same ideas that
described the thinking of young children and adolescents can be used to talk about higher
mathematics.

In the beginning, there are vectors, which are the objects, and actions on vectors
including addition, scalar multiplication and the gal.hermg together of vectors in a set with
these operations, to form a vector space. This is a schema that we assume the subject
possesses. We also assume that the subject has a schema for functions that transform
numbers into other numbers.

The firststep, dingto our j isto the function schemato imclude
as a function any process that transforms vectors imto scalars. This could then be
coordinated with the addition of vectors and their multiplication by scalars to restrict the
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functions to processes that transform vectors into scalars, but preserve the algebraic
operations of addition and scalar multiplication.

‘We would then say that these functions are encapsulated into objects called linear

Sfunctionals and collected together in a single set. At this point we would like to suggest that,
although the assigning of a name like linear functional toa process is closely connected with
its encapsulation imto an object, it is the encapsulation that is fundamental and gives
“meaning” to the name. To name processes without encapsulating them is the essence of
Jjargon. When there is acomplaint that aparticular discourse has too much terminology and
not enough meaning, we feel that the real difficulty is that labels are being assigned without
an opportunity for encapsulating that which is being labeled.

In any case, the set of linear functionals can be assimilated to the vector space schema
(which may have to be accommodated to this purpose — that s, it may be necessary to project
and reconstruct this schema on the higher level ofa vector space whose elements are linear
functionals) by defining addition and scalar multiplication of these functionals. This can
be done very naturally, interpreting the functions as processes and using “pomt-wise
operations”. In this way, the set of linear functionals becomes a vector space, called the
algebraic dual.

Now comes a major interiorization. What we have been describing is an action applied
to a vector space E that constructs its algebraic dual £*. When this has been inferiorized,
one has constructed the beghming of duality theory. One can reverse the process to look
for a “pre-dual”, that is, given a vector space F, can one find a vector space E whose
algebraic dual is F? (The answer is yes if E is “fiite-dimensional”, but otherwise it may
or may not be possible.) Or one can perform the process twice. When two instantiations are
coordinated, one obtains the bidual E** The concept of reflexivity (fairly simple i the case
of the algebraic dual) has to do with whether E=E**.

Next, as we mentioned above, topology and algebra can be coordinated to obtain the
concept of topological vector space and the schema for dual can be projected onto this
higher plane and reconstructed by introducing considerations of contimuity, to obtain the
topological dual E’ of a topological vector space E.

Again the action of constructing the topological dual can be interiorized imto a process
and the concepts of pre-dual and reflexivity (much more interesting in the topological case)
can be reconstructed and their properties investigated. Even more interesting, the content
of forming the topological dual can be removed from the fornt of this process (by reflecting
on it) and this would give rise to the idea of dual pairs { EF° ) im which algebraand topology
are mixed in free and varying combinations to obtain the modern theory of dual systemns
i linear topological spaces.

3. GENETIC DECOMPOSITIONS OF THREE SCHEMAS

We will consider three schemas in some detail: mathematical induction, predicate calculus,
and function. Our goal is to show how the general theory elaborated in the previous section
can be used i possible descriptions of the nature and construction of these specific
schemas. Thus in each case we will point out the relevant objects and processes as well as
the instances of reflective abstractions that seem to us can be used in constructing them.
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The details that we are about to present come from our three sources. First, there is the
psychological data that we have gathered through observations of students in the midst of
trying to learn these concepts. These experiments are described in full detail im Dubinsky
(1986, n press a,b), Dubinsky ef al (1986, 1989, in press). This data, along with the ideas
of Piaget formed the basis for the derivation of our theory, which is the second source of
the genetic decomposi That is, for each phenomenon that was observed, we tried to
use our theory to describe it, adjusting the theory when necessary. (As the necessity for
adjustment occurs less often, our confidence in the theory imcreases.) The third source of
the descriptions is our mathematical understanding of the concepts in question. It seems
important that a genetic decomposition should make sense from a mathematical point of
view, although it might not be exactly how the mathematician might have analyzed the
subject in thinking about how to teach it.

These three sources actually only apply in full to the first two examples: mathematical
induction and predicate calculus. Because our data, and the analysis that leads to our
canclusions, already appears in the above references, we do not repeat it here. In the case
of function, we have begun to gather data, but our studies were not yet complete at the time
of writing and so we make some mention of it, although very limited. Thus the genetic
decomposition of function given here is based mainly on the theory and our mathematical
understanding of function. As such, it must be taken as speculation that may form a bridge
for future work. As we obtain and analyze data on students’ leaming the concept of function,
it will be inferesting to see how close the genetic decomposition postulated here comes to
what is derived when the genetic data are taken into account. In a sense, this can provide
an indication of the predictive value of our theory as it has been developed so far.

3.1 MATHEMATICAL INDUCTION

The aspect of induction that we are interested in has to do with a subject’s understanding
of the induction process, why it “works” to establish something and how to canstruct an
induction proof. Ultimately, this has to be coardinated with a notion of infmity but it may
be that understanding the induction process is a precursor to constructing a notion of
infinity. It would be an interesting investigation to apply, to the concept of infinity, our
method of helping students learn induction (Dubinsky, 1986, in press).

In the first instance, mathematical induction is a process in that one mteriorizes the
actions of moving along (as “n increases”) from one proposition to the next and, after an
imitial independent determimation, establish the truth of a statement by applying a tool (truth
of an implication) that was previously d

Mathematical induction is also an object in the subject’s general schema for proofs. This
means that the induction process must have been encapsulated in order that the subject can
reflect on it, along with other methods, when confronted with a theorem to prove, so as to
select induction as the method for a particular problem.

The method itself is constructed by working with two major schemas: function and
logic. The developments of these two schemas are infertwined through various coordina-
tions. We can illustrate the process with a chart as shown in figure 14.

We start with the assumption that the subject possesses a function schema and a logic
schema that are already developed to the poit where, for example, the function schema
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‘The formation of it order propasitcns i a proccss inthe logic schema which can come
from interiori disjurctions, implications, declora-
tive statements (objets). The subject can perform a reflective abstraction on his process
10 oblain new objects which are the propasitions of the fis! order propositional calculus,
on which the same actions can be performed. Consider for example, a simple proposition
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PVOAR

where P, ( and R are simple deelarations. The formation of the disjunction v Qcan be

0. 1t
in this expression. The sbject must also construct a mental image involving the two
statements and the determination of the troth or falsity of the disjunction in various
situations. 1f nothing further i done aflr (his action is interiorized, then it will nol be
iswith R (0 get the First, e disjuncti
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be encapsulated to form a new object (Pv() which is a statement that can be conjoined with
another statement, such as R. Note how the use of parentheses in mathematical notation
carresponds to encapsulation.

Tteratimg this procedure, the subject enriches her or his logic schema to obtain a host of
new objects isting of first order propositions of arbitrary complexity. Next the function
schema comes in. We are assuming that this schema can be used by the subject to construct
processes that transform numbers (for example an integer) into other numbers. It must be
generalized to permit the subject to construct processes that transform positive imtegers into
propositions, to obtain what we shall call a proposition valued function of the positive
integers. Cansider for example, a statement such as,

Given a number of dollars, it is possible to represent it with $3 chips and $5 chips.

Far such the subject tructa process whereby, for each positive integer
n, a proposition is constructed which is the same statement, but with “a number of dollars”
replaced by that value of . This is the proposition valued function. In order to evaluate it,
the subject must construct another process whereby, given n, a search is made and it is
determined whether it is possible to find non-negative mfegers j such that

n=3j+ 5k

It is useful for the subject to discover that the vale of this functicn is true for n=3, 5, false
forn=1,2,4,6,7and then appears to be rrue for all higher values.

1t is only at this point that the subject can realize that the problem of “proving” the
statement cansists of determining that the value of the function is true for all values of
n 2 8. For this, the proof schema can be imvoked. If it contains the schema for induction,
it can be used, if not, further (re-)construction must take place. In describing this
canstruction, we reiterate that, in the context of this theory, it is never clear (nor can it be)
whether one is talking about a schema that is present or one that is being (re-)constructed.

Before going on with the description, there is a side issue that should be considered.
Whether the subject is able to canstruct a proposition valued function of the positive
integers to deal with a particular statement depends not only on the existence of the schemas
we are talking about, but also may require additional knowledge about the particular
situation — so-called “domain knowledge”. Thus, although the above example of chips is
probably well within the domain knowledge of most students who find themselves trying
to learn imduction, others may not be. We have found, for example, that the following
statement provides difficulty for university undergraduates.

An imteger consisting of 3" identical digits is divisible by 3%

The trouble could lie in understanding the relationship between the value ofan integer and
its representation with digits. It is a sort of “grown-up” version of the difficulty with the
concept of place value and it suggests that many students have not really constructed this
concept —at least in a sufficiently powerful form.

Returning now to the canstruction of proof by mduction, the next development provides
an example of a cognitive step which our research has pointed out as providing a serious
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difficulty, whereas if one takes only the mathematical point of view, there is not even a step
that needs to be taken. This is the case even though it relates to an overt difficulty
encountered by everyone who has tried to teach mathematical induction.

‘We are referring to the notion that the essential point in an induction proofis that one
does not prove the original statement directly, but rather the implication between two
statements derived from it. This is the major difficulty for students. It requires a cognitive
step which is not necessary as a mathematical step. To explain, let us denote by P the
proposition vatued function to be proved. Now P(#) can be any proposition, in particular,
it can be an implication. Therefore, if we define the proposition valued function O by

O) = (P)=>P(nt1))

then, from a mathematical point of view there is nothing new in @, that is, once one
understands P then, as a special case, one understands Q. We have observed, however, that
with students, this is not the case from the cognitive point of view. In the first place,
implications are the most difficult propositions for students and they are generally the last
to be encapsulated. Furthermore, there is a difference between constructingP from a given
statement and constructing Q from P. This is the step which must be taken. If there is some
subtlety here, then it might help explain the difficulty that students have at precisely this
point.

To summarize, this step appears to require the encapsulation of the process of
implication so that an implication is an object and can be i the range of a function, the
generalization of the function schema to include implication valued functions, and the
interiorization of the process of going from a proposition valued function of the positive
integers to its corresponding implication valued function.

The next step is to add to the logic schema a process which we shall call modus ponens.
This process is an interiorization of an action applied to implications (assuming as above
that they have been encapsulated info objects). The action consists of beginning at the
hypothesis, determining that it is true, and then “crossing the bridge” to the conclusion and
asserting its truth.

Finally, there is a coardination of the function schema, as it applies to an implication
valued function  (obtained from a proposition valued function P) and the logic schema
as it applies to the process modus ponens which has just been constructed. Included i the
function schema is the process of evaluation, that is, sampling values # of the domain
(positive integers in this case) and computing the value of the function, Q(n), that is, P(x)
=> P(nr+1). Suppose that it has been established that Q has the constant value true. The first
step in this new process which must be constructed is to evaluate P at 1 and to determine
that P(1) is true (or, more generally, to find a value #0 such that P(n) is true). Next, the
function Q is evaluated at 1 to obtain P(1) = P(2). Applying modus ponens and the fact
just established) that P(1) is true yields the assertion P(2). The evaluation process is again
applied to O but this time with #=2 to obtain P(2) = P(3). Modus ponens again gives the
assertionP(3). This is repeated ad infinitum, altemating the processes of modus ponens and
evaluation. Thus we have a rather complex coordination of two processes that we believe
leads to an infinite process.

This infimite process is encapsulated and added to the proof schema as a new object,
proof by induction.
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3.2PREDICATE CALCULUS

The predicate calculus schema appears to be obtained through are construction ofa schema
resulting from coordinating a schema for first order propositional calculus with a function
schema. The construction is iltustrated in Figure 15. Accarding to this analysis, the objects
in the propositional calculus schema are the propositions. The most important process is
the determination of the truth or falsity of a proposition. Other processes include the
formation of new propositions by the standard logical operations such as conjunction,
disjunction, implication and negation. They also include the process of expressing an
English statement in the formal language of symbolic logic and translating from that syntax
back to English. Then of course there are all the usual tasks that students are asked to
perform such as manipulation of the formulas, construction of truth tables, determination
of the validity of arguments and so on. Finally, we can mention the process of reasoning
about a statement, for example, to know if the truth or falsity of the statement

(P=0) v (not (Q A R)

is determined once you know that P = R is false.

Amongst the various manipulations of logical expressions, one in particular will be
important i the sequel. That is the process of applying the conjunction operation (“and”
or A) to a set of propositions as i

(>B)A (x> b)A ..~ (apbn).

There is a similar process for disjunction (“or” or v). This is a manipulation of symbols, but
there is an underlying process connected with the truth value of the resulting proposition.

In a sense, the objects i the first order propositional calculus are constants. In an
expression such as (P=0) v (not(Q A R)) the quantities P, O and R are constants whose
value maybe unknown, but fixed. The subject’s thinking about such matters can be elevated
to a higher plane when the propositional calculus schema is coordinated with the function
schema (appropriately reconstructed on this higher plane) to consider such an expression
as determining a function — in this case of the three variables, P, Q and R. This is the
begitming of the predicate calculus schema. Of course, a part of this coordination and
reconstruction was discussed already in the previous section for the special case of
proposition valued function of the positive integers.

As before, an important new process that can be constructed is the iteration (in the
subject’s mind) through the domain ofaproposition valued function, checking the truth or
falsity of the resulting proposition for each value of the variable. Cansider, for example a
statement such as

Given a car in the parking lot, if the tire fits the car, then the car is red.

Here, tire may be considered to be a constant, but car should be thought of as a variable
whose domain is the set of cars in the parking lot. There is an obvious action of walking
through the parking lot, checking each car to see if the tire fits and, if it does, secing if the
car is red. When such a statement appears in a mathematical context, as in
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The process which we just described for ing simgle-level ifications ended
with an encapsulation so that the result becomes a proposlllon which is a mental object.
Note that the effect of a quantification is to eliminate a variable. Ifthe original proposition
valued function had two variables, then the resulting object actually depends on the value
of the other variable and the schema for single-level quantifications can again be applied
to this proposition valued function. For example, in the case of the tires and cars, the
universal quantification over cars results in a proposition valued function of the single
variable, tire. This function can then be subjected to an existential quantification to obtain
asingle, canstant proposition. Thus, whenanalyzinga statement which requires a two-level
quantification over two variables, the subject can begin by parsing it into two quantifica-
tions. There is an inner quantification over one of the variables in a proposition vatued
function oftwo variables. There is also an outerquantification over the other variable. What
we have described is a coordination of these two quantifications to obtain a process which
will be a two-level quartification. In order to proceed to higher-level quantifications this
new process is agar lated to obtaina bject. Once it i lated, it can then
be subjected to the same processes (thereby generalized) as were the single level
quantifications.

Given a statement which is a three-level quantification, such as the definition of
continuity of F atx,

Ve >038> 05 Vx e domain(F), |x-x0|<8= [F(x)-F(x0)|<e.

the subject can group the two inner quantifications and apply the two-level schema to again
obtain a proposition which depends on the outermost variable (in this case €). This
proposition valued function is then quantified as before to obtain a single proposition. The
entire procedure can now be repeated mdefinitely to obtain quantifications of any level. At
each level, the same processes of logical operations, negation, reasoning, etc. are recon-
structed.

3.3 FUNCTION

As we indicated earlier, the thoughts about the function concept given here are based mainly
on the general theory and our understanding of this concept from the mathematical point
of view. Our purpose for mcluding it and giving some examples of preliminary data is to
illustrate the explanatory power of our theory and to set guideposts for subsequent empirical
work. In the past decade, the function concept has been mvestigated by a number of authors
in ways that are quite different from the approach described here (see especially Dreyfus
& Eisenberg, 1983,1984; Dreyfus & Vinner, 1982; Vinner & Dreyfus, 1989). For a fuller
discussion of research on learning the concept of function, see chapter 9.

For most students, and indeed for many scientists, the idea of function is completely
contained in the “formula”. If you ask students for an example ofa function, you will often
get an algebraic expression such as x2+3 with no mention of any kind of transformation.
Just as with the concept of variable in which the student insists that x “stands for” a single
number (which may not be known), the concept of function as formula has a very static
flavor.



REFLECTIVE ABSTRACTION 17

There are a number of ways i which such a function schema is madequate. For one
thing, the objects are restricted to those functions which can be conveniently expressed with
a formula. This may suffice for elementary mathematics but it will not do for advanced
mathematical thinking. When a function is the same as a formula, the action of evaluation
on this object consists of plugging in numbers for letters and composition of two functions
is restricted to substitution of a formula for each occurrence of a letter. The notions of
domain andrange have no place in this schema and graphs, while manageable in themselves
(because of their concrete and visual nature), have no connection with functions for the
student with a function-as-formula schema. When the graph does not display aclear picture
(as is the case with the characteristic function of the irrationals), then the student is unable
to think about it.

A more powerful schema for functions will mvolve mteriorization of actions. When a
subject perceives a situation that can be dealt with in terms of a function, then we suggest
that he or she can view the situation as an action on objects that transforms them into other
objects. This action is teriorized. Thus, an important part of what it means to know a
function is to construct a certain kind of process that can be used to make sense of a certain
kind of phenomenon. Some may refer to this as a mental representation of the function, but
we prefer to avoid such terminology because of its tendency towards the misleading
suggestion that the internal process Jsacopyol some “external rmhty" lhe mlpnzm pomt
isthat whena function isknown asan imteriorized then thisk
flavor which affects the nature of the subject’s interaction with the function smmlmn

Evaluation becomes the action of taking a particular value (in the domain of the
function) and performing the process on it to obtain a new value (in the range of the
function). It may then be possible for the subject to coardinate a function’s process and its
graph. That is, there is the understanding that the height of the graph of a function fat a point
x on the horizontal axis is precisely the value f(x). The subject can then relate to the full
power of graphing which is the relationship between the physical shape of the graph and
the behavior of the function.

Several important ideas in mathematics can be described as doing some of the things we
have discussed with the process of a function. For example, the coordination of two
processes and the composition of the functions (see Ayers ef al, 1988).A function’s process
can be reversed, thereby obtaining the imverse function. It is by reflecting on the totality of
a function’s process that one makes sense of the notion of a function being onto. Reflection
on the function’s process and the reversal of that process seem to be imvolved in the idea
of a function being one-to-one.

‘We have done some preliminary empirical work relative to the points in the preceding
paragraph. We find, for example, that students seem to have more difficulty with the
concept of one-to-one than with onto. We suggest that the presence of the reversal in one-
to-one explains this observation. Similarly on several occasions we have given subjects the
following kinds of problems relative to three specific functions, F, G, H. (See Ayers et al,
1988 for details.)

1. Given F, G find H such that H=FeG.
2. Given G, H find F such that H=FoG.
3. Given I, H find G such that H=FoG.
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Of course the first is much easier than the other two, and we find mvariably that the third
is harder than the second. We can suggest an explanation derived from our theory. The first
kind of problem seems to require only the coordimation of two processes that, presumably,
have been interiorized by the subject. The second, however may require that the following
be done for each x in the domain of H.

2a. Determine what H does to x obtaining H(x).
2b. Determine what G does tox obtaining G(x).

2¢. Construct a process that will always transform G(x) to H(x).

The thud kind of problem may be solved by doing the following for each x in the domain
of H

3a. Determine what H does o x obtaining H(x).

3b. Determine vahue(s) y having the property that the process of F will transform
ytoH(x).

3c. Construct a process that will transform any x to such 2.

Comparing 2b with 3b (the only point of significantdifference), wecan see that 2b is adirect
application of the process of G whereas 3b requires a reversal of the process of F.

It is perhaps interesting to note that this difference in difficulty (between 2 and 3), which
is observed empirically and explained epi ically, is absent from a
purely mathematical analysis of the two problems. They are, from a mathematical point of
view, the calculation of HeG™ and FG, respectively, which appear to be problems of
identical difficulty. This seemsto be another important example i which the psychological
and mathematical natures of a problem are not the same (¢ p. 113).

Another situation in which relative difficulty can be imed by the requirement of
reversing aprocess occurs in the development of children’s ability in arithmetic. According
to Riley, Greeno & Heller (1983, p. 157), “Problems represented by sentences where the
unknown is either the first (? + a = b) or secand (a + ? = ¢) number are more difficult than
problems representedby equations where theresult is theunknown (@ + b = ?).”Obviously
al of the process which, in the thud t can

the first two problem types mvolve a reve
be applied directly.

A number of important mathematical activities may require that the function schema be
reconstructed at yet a higher level where a function is not only an imteriorized process, but
as a result of encapsulation, this process can be treated as an object by the subject. One
representation that could help with this is the set of ordered pairs (with the “uniqueness to
the right” condition) and another is the graph. We refer to chapter 9 fora discussion of some
of the difficulties in this connection. Inorder for a function to be the resultof a mathematical
activity (such as solving a differential equation or setting up an indefinite integral) it must
be an object. Similarly, it scems to us that the elements of a set must be (epistemological)
objects and thus, all of functional analysis with its sets and even structured spaces of
functions depends on the object nature of a function.
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At the same time, and this may be a further reconstruction of the function schema, it
seems necessary i many situations that the subject think of a function simultaneously (or
at least in rapid succession) as both a process and an object. Consider, lor example, the
various binary operations on functions such as pomt-wise addition, point Itipli
tion or composition. In reflecting on the addition oftwo functions, the subject must see this
as a binary operation which takes two objects and transforms them in a new, third object.
To actually do this, however, it would scem that the origimal two objects must be unpacked
or “decapsulated” back into processes, these two processes coordinated (by means of
“point-wise addition”) and the resulting process encapsulated into an object which is the
new function that appears as the result of the operation of addition. The same kind of
description can be used, as we have indicated above (see page 104), for composition of
functions.

As a final example, consider how complex, in these terms, is the following mathemati-
cally straightforward statement.

In the semigroup hom(G, °) of endomorphisms of agroup G under the operation
of composition, the subset of those endomorphisms which are isomorphisms
form a group.

From our point of view it scems that to understand this statement (and check that it is true)
the subject must think of functions as objects since they form a set, and later a subset, and
then understand composition as we have described it to get a firm grasp on hom(G, ©). Now,
im dealing with the group axioms, the cognitive iterpretation of function goes back and
forth between process and object. The two interpretations must be coordinated in order for
the subject to grasp the somewhat subtle idea that the group identity is the identity function
and the group inverse of a function is its function theoretic mverse — and this connection
is not exactly an accident.

4. IMPLICATIONS FOR EDUCATION

We conclude this chapter with some comments on teaching mathematics i light of the
theory we have expounded. Our theory does not have anything to say about the affective
aspects of the teaching/learning situation. In particular, we have ignored Piaget’s notion of
equilibration (1985) which for him was the driving force behind the (re-)construction of
schemas. We have also omitted consideration of various issues such as discovery versus
guided learning, and large classes versus idividual mstruction versus small-group
problem solving. The main implication for education that our theory has, as far as we have
taken it, is that, whatever happens, in or out of the classroom, the main concern should be
with the students’ construction of schemas for understanding concepts. Instruction should
be dedicated to inducing students to make these constructions and helping them along m
the process.

We can offer one general canjecture about motivation. Whatever is the mechanism (le
source according to Piaget & Garcia, 1983) that moves students to make cognitive
constructions, tol earn, it seems to us to be a very natural human drive, ona par with the drive
for food or sex. We admit that this suggestion is inconsistent with the experience of most
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mathematics teachers, especially at the post secondary level, where students, other than
those with obvious talent for mathematics, do not seem to be imterestedat all. Our conjecture
is that this is due to the overall approach in the traditional classroom, where the goal, as
presented and defended by the teacher, is for the student to develop skills im computational
du to display on inations, and to “get a good grade”. For reasons which we

w1ll elaborate below, the student cannot learn these procedures through understanding,
whereas he or she is presented by the teacher with a conflict-free way out — imitate and
memorize. Unsurprisingly, most students accept the offer and take this route. But imitation
and memorization do not lead to cognitive constructions and the result is that the students’
desire o leam through growth is suppressed. He or she is “tumed off mathematics”.

Our experience has been that when a student is presented with concepts that he or she
is capable of understanding, when the constructions are possible for the student, and if this
capability is apparent to the student, then a natural drive to learn, to understand, to construct
is released and the level of effort and concentration on mathematical ideas leaves little to
be desired. This happens even in the presence of difficulty, when the student is confronted
with mathematical problems that her or his existing schemas cannothandle. As long as there
is something for the student to think about, as long as he or she perceives that cognitive
activity is leading to some sort of growth that could, eventually, lead to a solution of the
problem, then there is little difficulty in maintaining the students’ interest.

‘We will present, therefore, some examples of how traditional teaching methods do not
relate to canceptual understanding as the theory presented here explains it and close with
a few brief words about what directions an altemative approach might take.

4.1 INADEQUACY OF TRADITIONAL TEACHING PRACTICES

If we are carrect in our hypotheses that learning involves applying reflective abstraction to
existing schemas in order to canstruct new schemas for understanding concepts, then it is
a trivial but critical observation that a schema can not be constructed in the absence of
prerequisite existing schemas. Traditional teaching often ignores this. Consider, for
example, a lecture on induction which begins, “Today, we are going to learn how to make
proofs by induction™. This statement assumes that the listener has a “proof schema”, that
is, he or she is conscious of various methods of proof which could be applied in a given
situation and is therefore capable of adding a new one. For any students in the class who
do not possess such a schema, the statement is not very meaningful. It gets worse when
actual problems, theorems to be proved by mduction, are imtroduced. 1fastudent’s function
schema does not inchude functions that deal with transforming integers into propositions,
then the very statement of a problem can be meaningless. Many students are probably
somewhat bemused when, later, the teacher is roaring the admonition, “You don’t prove
the statement for every n, you prove the implication from # to #+ 117 If proof is meaningful
at all, it means that you prove something. For students who have not encapsulated the
process of implication and for whom proposmon valued functions of the positive mlegers
are not objects, there may be no ings” im that ition. If such i are
not dealt with, then it is no wonder that the student gives up on trying to understand (he or
she does not have the right tools) and, because success on examinations is both essential
and possible, looks for something to imitate.
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Another kind of difficulty arises with the predicate calculus. For many teachers,
understanding the meaning of a statement such as,

For every function f in 4 there is another function g in 4 such that f(g(x))=x for
all x

is essentially a language problem, not very different from understanding statements such as,

Every student in the class has a counselor who will be available to give advice
every Monday at 9 am.

But there is much more than language present — in both statements. For the first, according
to our theory, the student must have constructed (in her or his mind) a set of functions,
imteriorized a process of iterating through this set picking an object, iterating again to pick
another object, and converting the two objects back to their function processes so that it is
possible to iterate once again, this time through the domain of the functions, testing the
equality. Only after these constructions are made can the problem be treated linguistically.
From our point of view, it is the constructions that provide the essential difficulties, the
language aspect being fairly trivial. Similar comments can be made about the second
statement which most students have little difficulty in understanding. This is because each
construction required to understand the second statement is made naturally, in the course
of normal student life and every day experience.

This poimt about languages, if generalized, suggests to us that the traditional lecture
itself, depending largely on linguistic transmission, is not very useful in helping students
acquire concepts in mathematics. Mental objects and processes, although they may well
exist in the mind of the teacher, cannot be transmitted verbally, or even with pictures, to
listeners. It is necessary that the listener engage in active construction.

Anocther difficulty, related to the problems of imitation, memorization, and verbal
transmission arises with examples. Itis anarticle of faith with most mathematics imstructors
that “lots of examples” must be an imtegral part ofany mstructional treatment. It is certainly
the case that mvolvement wih examples, whether it be doing exercises or thinking about
illustrations and demonstrations, serves to reinforce the concepts that are present in the
mind of the subject. We suggest, however, that working with examples may not help very
much with the construction of concepts. Indeed, weagree with Tall (1986)and it is a major
aspect of our theory that understanding mathematical ideas come from sources other than
lookingat many examples and “abstracting their common features”, which is what happens
if there is only empirical abstraction. Something more is needed and we suggest that it is
precisely the construction aspects of reflective abstraction that we have discussed. It is not
clear that more thana very few examples are necessary to construct a concept: in some cases
(such as the tegers in the initial construction of the concept of a ring) a single example
might suffice to induce appropriate reflective abstraction. As we have said, we cannot in
this chapter give full consideration to the question of how to induce conceptual learning,
‘but one might well reflect on the contrast between the repetitive examples that seem to be
required by conventional wisdom and the single, representative example which so often
seems to be in the mind of the mathematician who understands a particular cancept. Tall
(1986) has referred to this as the generic example and it is a promising notion well worth
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further imvestigation.

‘We would go farther i our critical view of repetitive examples and suggest that practice
can even be harmful. Yes, the effect of practice will be to reinforce structures that are
present. But we would raise the question, what structures are these? Are they part of a
student’s concept image which conflicts with the concept defmition (see Tall, 1977)?
Consider what happens when a teacher is explaining, with reference to conceptual
understanding, how to solve a certain kind of problem. As we have indicated, the student
may not be able to understand the concept behind the method. A general mvestigation of
what drives cognitive development may reveal that whenever a subject is subjected to
phenomena, some sort of construction takes place. To say that the student does not
understand could mean that the student has not and does not construct an appropriate
schema for the concept being explaimed. But if it is the case that something is constructed,
then it would have to be an inappropriate schema. This result is not inconsistent with what
teachers seem to observe in their students afler making explanations. What, then, will be
the effect of following the explanation with “lots of examples™. The inescapable conclusion
is that the incorrect interpretations will be reinforced, and teachers will pay a heavy price
later on in efforts to correct students’ misunderstanding. This may well be a source of
epistemological obstacles (Cornu, 1983).

This argument is not sophistry. It is offered as an explanation of a phenomenon in
education that seems 1o be generally recognized, but not very well understood. It seems that
Van Lehn (1980) was referring to it quite specifically when he wrote, in a study of the
procedural “bugs” observed in students doing subtraction, “When a student has just
invented a bug, practice may solidify the bug in memory, thus making remediation more
difficult” (p. 47). It is possible that this effect also explams the near impossibility of
disavowing undergraduates of various misconceptions observed by Tall (1986), Cornu
(1983) and others conceming the concept of limits as well as the persistence, in the face of
a variety of instructional treatments, of reversal errors i algebra (Clement ef al, 1981).

It maybe argued that these difficulties can be avoided by giving both examples and non-
examples with the examples graded so as to display various features gradually. This could
be reasonable, but there are dangers. The decomposition should be based on more than the
curriculum developer’s understanding of the mathematics. Also, there is no certaimty that
the student will see the examples in the same way that the instructor did. Finally, this really
avoids the issue which is that i order to construct a mathematical idea it is necessary to be
mentally active. The really important issues in mathematics education have to do with the
nature of this activity and what can be done to foster it

We do not conclude from this dis on that practice with examples should be

i d. In addition to rei: ing concepts, they may be important for students to
become facile with calculations, to develop a “feeling” that something is wrong, or that it
all “hangs together properly”. Indeed, it is pure speculation but it may be that practice with
aprocess will tend to induce the subject to encapsulate it. It could be that this is the essential
point i the relationship between procedural knowledge and conceptual knowledge
(Hiebert, 1986). We do not, therefore reject examples and practice. We only caution the
instructor to pay attention to what concepts the students have and what exactly is being
reinforced when they are set to do “all the even numbered exercises”. It is also important
to be aware of the fypes of mistakes that a student makes, how he or she tries to justify an
answer (whether it is “correct” or nof) or just explain how it was obtained.
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4.2 WHAT CAN BE DONE

At this point we must conclude, not, unfortunately, with a prescription for putting things
right, but witha brief indication of a research and development program that we are engaged
in with the hope of canstructing a viable alternative to traditional practice for helping
students develop advanced mathematical thinking. There are important cannections
between what is written here and the ideas found in (Thompson, 1985a; Dreyfus &
Thompson, 1985).

Our instructional approach to fostering conceptual thinking in mathematics has four
steps.

Observe students in the process of learning a particular topic or set of topics to
see their developing conceptual structures, that is, their concept images.

Analyze the data and, using these observations, along with the theory we have
elaborated in this paper and the designer’s understanding of the mathematics
involved, develop a genetic decomposition for each topic of concern that
represents one possible way in which a subject might canstruct the concept.

Design instruction that attempts to move the student along the cognitive steps
in the genetic decamposition; develop activities and create situations that will
induce students to make the specific reflective abstractions that are called for.

Repeat the process, revising the genetic decamposition and the instructional
treatment, and continue as long as possible oruntil stabilization occurs (ifit does).

To this general description we can add the fact that, in designing instruction, we have found
activities with camputers to be a major source of student experiences that are very helpful
in fostering reflective abstractions. For example, it seems that if a student implements a
process on a computer, using software that does not intraduce programming distractions
(such as complex syntax, canstructs that do not relate to mathenatical ideas, etc.), then the
student will, as a result of the work with camputers, tend to interiorize the process. If that
same process, once implemented, can be treated on the computer as an object on which
operations can be performed, then the student is likely to encapsulate the process. It turns
out Io be posslble to create such opportunities for computer experiences relative to
refl a wide variety of concepts inmathematics, but
that is a topic for another chapler.

We have used this approach to design instruction, with extensive involvement of
computers, to help students learn mathematical induction, predicate caleulus and many
other topics in discrete mathematics. Present efforts are directed towards applying the
method to functions and to calculus.
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[11 : RESEARCH INTO THETEACHING
AND LEARNING OF
ADVANCEDMATHEMATICALTHINKING

The final part of the book is devoted to a wide review of the literature of research
in the teaching and learning of advanced mathematics. Much of it comes from the
last decade and the task is onlyjust begun. In Chapter Eight, Aline Robert and
Rolph Schwarzenberger pause to consider the role of Advanced Mathematical
Thinking by looking at the transitionfrom school to university to see ifthere is a
noticeable change. Although there is an increase in complexity and in the need
Jor formal definitions andproof, theyfind that the intellectual viewpoints already
developed by students are ofien carried over to advanced mathematics with
serious consequences in lack of success. In particular the training in elementary
mathematics 1o expect an algorithm 10 carry out the solution of a problem leads
students to seek similar success in contexts where this is no longer appropriate.

In Chapter Nine, Theadore Eisenberg considers the function concept, which is
given as aformula or a graph in elementary school, and shows that this proves
1o be resistant to traditional methads hing via formal itions. Bernard
Cornu reveals a crucial example of the discontinuity between elementary and
advanced mathematics when he investigates the concept of fimit in Chapter Ten.
In ele y h ics there are algorithmsfor arithnietic, for c: i

in trigonometry, for solving equations, but in advanced mathematics a limit
usuallyneeds to be calculated by indirect methods which are quite diferent from
the student’sprevious experience. In particular, the limit, as aprocess of getiing
closer, may be in terms of an “arbitrarily small quantity” rather
than conceived in terms of the definition, leading 1o serious conflict between
concept definition and concept image. The same story continues with Michéle
Artigue’s review of research into the teaching of analysisin Chapter Eleven and
with Dina Tivosh’s consideration of the concept of infinity in Chapter Twelve.
Here we find explicit conflicts between the concept of infinity in the limiting
process and the concept ofinfinity met in set theory. Often they are kept mentally
indifferent compa , but when intuiti one area are brought to mind
in an inappropriate context, then conflict isinevitable. At this stagean experiment
is reported in detail which is designed to encourage students to reflect on the




126

nature of their beliefs and to reconstruct their knowledge.

Chapter Thirteen focuses on the way in which students build theprocess of proof.
Daniel Alibert and Michael Thomas review both the student’s success and
difficulties with proofspresented to them through traditional exposition and also
look to the possibilities of students engaging in the process of conjecture and
debate appropriate for the creation of new advanced mathematical ideas.

Finally, in Chapter Fourteen, we close thisreview by looking topresent research
andfuture use of the computer in advancedmathematics. Ed Dubinsky and David
Tall return to the question ofthe increasing use ofcomputersand the way in which
the new technology may be changing the nature of the subject.



CHAPTER 8§

RESEARCH IN TEACHING AND LEARNING MATHEMATICS
AT AN ADVANCED LEVEL!

ALINEROBERT & ROLPH SCHWARZENBERGER

The seven preceding chapters of this book have examined various aspects of “advanced
mathematical thinking”; the six chapters which follow report research into the teaching and
learning of specific topics. At this point of transition it is therefore apposite to look back
to see in what sense the previous chapters have specified aspects ofadvanced mathematical
thinking which are distinct from mathematical thinking at a more elementary level. In
particular, in the first part of this chapter we will address the question:

+ To what extent are there aspects of advanced mathematical thinking which are
specific to the learning of advanced ics at college and university?

We will also take the opportunity to look forward to the specific research to come. We will
find that the remainimg chapters of the book address themselves mainly to specific topics
in advanced mathematics, to study the concept images which students develop and the
consequent difficulties which they face in their encounters with the subject. We will
therefore spend the secand part of this chapter casting the net wider to look at other research
in advanced mathematical thinking, in particular to ask:

* What research has been done in the developi of advanced I ical
thinking which goes beyond the specifics of the acquisition of individual
concepts and the associated leaming difficulties?

‘We shall find that the work to come in the book overlaps with the ideas discussed in earlier
chapters. For in studying the IL.dmmb g difficulties nflmh\'ldual students we are gaining some
imsights into those who are t ing part of the y of advanced i
thinkers. Certainly we will find differences between those who study mathematics as a
means toan end and those who study mathematics as an end in itself. But since mathematics
may be defined as “what mathematicians do”, to observe and reflect upon the activities of
advanced mathematical thinkers is in principle the only possible way to define advanced
mathematical thinking. And to study the difficulties of students will focus on central
epistemological problems in the growth of mathematical thought. Conversely the aspects
ofadvanced mathematical thinking discussed in the preceding chapters need to be used in
the analysis of particular leaming difficulties, if only for the formulation of hypotheses
which may be tested empirically.

In this chapter, with an eye on earlier chapters and those to come, we therefore consider
the teaching and leaming of mathematics at the post-secondary level, that is, in most
countries, students aged 18 and above taking specialist mathematics courses at colleges or
universities. We concentrate in turn on the two questions formulated above.

! Thanks are extended (o Ed Dubinsky for his initial translation of the drafi of (his chapler into Ehglish.
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1. DO THERE EXIST FEATURES SPECIFIC TO THE LEARNING
OF ADVANCED MATHEMATICS?

Inanattenpt to answer this question we will take a broader view than just the psychological
factors which have been considered i m Ihe first part of the book to attempt to identify
differences between elementary in ducation and specialist
mathematics at colleges and university.

1.1 SOCIALFACTORS

A sociological viewpoint focuses first upon the characteristics of the group of students
taking specialist mathematics courses. At first sight it appears that there is a major
discontinuity from secondary school education: the students are no longer attending
compulsory mathematics courses but are continuing voluntarily after a selection process.
One might think lhal at least above a certain level, the students might already regard
tt Ives as p I icians or alternatively that some learning difficulties
might have been removed by enhanced self-motivation and greater willingness to work.

However, a closer look suggests greater continuity than discontinuity. The students are
young adults but are not yet financially independent; they usually have to study a mixture
of subjects among which mathematics may not be a first priority and do not usually display
an aftitude to work much different from that at secondary school. In some cases mathemat-
ics is a compulsory pre-condition for studying another subject which is the student’s main
interest. Teaching methods rarely treat the student as an expert but continue to lay stress on
the greater and more accurate knowledge of the p ional mathematician. One canot
compare “experts” and students. From a sociological viewpoint, a class of mathematics
students at college or university does not look much different from a class in secondary
school.

‘We conclude that it is necessary to look elsewhere for features specific to advanced
mathematical thinking.

1.2 MATHEMATICAL CONTENT

From a mathematical viewpoint we see an immediate change in the nature of mathematics
being taught. In particular there are more new concepts to teach in less time. Furthermore,
from a certain stage onwards there is a greater concentration on a small number of fairly
similar mathematical topics with each benefiting from the student’s experience in the
others, in a mauner qualitatively different from anything experienced in earlier years. On
the other hand the student is faced by a wider range of possible problems arising in a variety
of different contexts which caunot all be discussed in full detail.

This has important consequences. The change in the ratio of quantity of knowledge to
available acquisition time means that it is no longer possible for the student to learn all new
concepts in class time alone; significant individual activity outside the mathenatics class
is nowan absolute necessity. The concepts themselves are also radically different from the
student’s previous experience; they often involve not merely a generalization but also an
abstraction and a formalization, as outlined by Tall in chapter | and Dreyfus in chapter 2.
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(See also Robinet, 1984.) The student is required to absarb formalized concepts very
quickly, which historically evolved more slowly from a mass of special solutions to special
problems by many mathematicians. At the same time the student is expected to adopt new,
and often strange, standards of rigourous proof (discussed further in chapter 13).

This formalization involves the at ion of specific ies which apply now not
only to the objects from which they were abstracted but alsa to any objects which obey the
properties. This involves the construction of a new mental object which is different from,
and therefore may canflict with, the old objects. It causes the long period of confusion which
first year university students meet and is a significant barrier to formal advanced
mathematical thinking. It givesrise to a fundamental discontinuity in the difficult transition
from elementary to advanced mathematics.

Examples are:

+ the concept of convergence of sequences and series (completely formalized for
the first time by Cauchy in 1827, although the prachczlmﬁ were already well
known); this rep a major lization and unil

The concept of vector space which appeared as a formalization in the nineteenth
century although specific properties had already been used and understood by
physicists in special cases.

The concept of group which was formalized as a useful unification after
approximately fifly years of working with special cases of groups of permuta-
tions and groups of transformations arising from analysis and gecmetry.

In each case note that the problems from which these concepts arose in an essential manner
are not accessible to students who are begining to study (and expected to understand) the
concepts today: for example, from problems like Céaro’s lemma to the defmi f
convergence via €8 methods, or from function spaces to the concept of an inf
dimensional vector space, or from solutions of differential equations to the concept of a
group of substitutions.

This leads to an apparent feature that distinguishes advanced mathematical teaching
from teaching in elementary mathematics: at this level the teacher is usually obliged to
present the notions in a lecture course before getting the students to work with them: there
seemns to be no question of allowing, or mnaking, the students (re)discover certain aspects
of the notions before they are formalized. For example, there does not seem to be a way to
make the concept of convergence (ina nbuumus %mt) accessible to students in which the

-8 definition is likely tobe ly. A lecture course at this level seems
to have a specific purpose, quite dlllelem from the way in which mathematics developed
historically.

Nevertheless we must acknowledge that, far from being a feature specific to advanced
mathematical thinking, this may be a result of the unimaginative teaching methods
currently adopted in colleges and universities. In the past, similar remarks could have been
made of most mathematical instruction at primary or secondary school level. But today,
with the advent of more use of concrete materials and computer simulations, and greater
emphasis on investigative work in many countries, it is less common to find new concepts
imposed prior to the students’ ability to solve problems and to construct the concepts for



130 ALINE ROBERT & ROLPH SCHWARZENBERGER

themselves. One may hope therefore that improvements in teaching methods at advanced
level may ultimately ramove this apparent feature specific to advanced mathematical
teaching and lead to a fuller appreciation of the full cycle of advanced mathematical
thinking processes mentioned in earlier chapters. In view of the cognitive conflicts
involved, such improvements must pay particular attention to the treatment of definitions
and to agreement on the acceptability of given levels of proof.

1.3 ASSESSMENT OF STUDENTS" WORK

The teacher of advanced mathematics must also double as an assessor. Therefore much of
what is taught must also feature in the assessment process, indeed may be required by the
assessment process. Such evaluationusually requires the student to be able to correctly state
definitions and reproduce correct proofs as well as apply the theory in related problems.
Research into concept defmitions (chapter 5) underlines that the correct statement of
definitions in examinations is liable to degenerate into learning by rote and that many
students are often unable to relate directly to the form of the defiition. Carresponding
research info students’ ability to follow or produce proofs (to be reported in chapter 13)
confirms that students find proof difficult, with proofs by induction and proofs by
contradiction presenting particular difficulty. The only generality on which there is any
unanimity seems to be that the required proofs often appear to the student more as a diffcult
exercise in the use of stylistic set-picces rather than as an exercise in convincing somebody
else of an uncertain result.

It is therefore necessary to question the fundamental premises behind the teaching of
advanced mathematics. Is the purpose of learning such a vast quantity of abstract concepts
part of a wider scientific, critical and even creative form of advanced mathematical
thinking, or is it merely to be able to reproduce leamed materials and mechanical skills?
Does the assessment process actually reflect the learning that is desired?

It is difficult at this level of complexity, so eloquently formulated in earlier chapters, to
decompose the student’s activities into elementary tasks. The various aspects of their work
are so diverse, yet so interrelated and interdependent, that they will necessarily depend upon
components derived from different points in the course which may be widely separated in
time. It follows therefore that any short-term assessment of leaming is likely to be unreliable
and may even be impossible. We conclude that the cumulative character of mathematical
knowledge implies that assessment must be long-term. Only in the long run might it be
possible to establish accurately any links of cause and effect between instruction and
acquisition of knowledge and understanding.

In this respect there scems little distinction between the problems of assessing advanced

ics and elementary ics in primary or secondary school. The experience
of short-term assessment in the U.S.A., and the madequacy of current plans to test pupils
atages 7+, 11+, [4+and 16+ in England and Wales, suggest that the necessity oflong-term
assessment actually applies to mathematical thinking at all levels.
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1.4 PSYCHOLOGICAL AND COGNITIVE CHARACTERISTICS OF STUDENTS

A psychological viewpoint is more likely to focus on older student’s enhanced capacity to
reflect on their own activity, as advocated in chapter 2 by Dreyfus and chapter 7 by
Dubinsky. According to Skemp (1979) this is a feature of all intelligent behaviour which
we surely may assume is common to all of those who advance to college or university,
particularly to study mathematics. We could therefore hypothesize that advanced math-
ematical thinking includes the ability to distinguish between math ical k ledge and
meta-mathematical knowledge (e.g. of the correctness, relevance, or elegance ofa piece of
umlhemallcs), in addition, that students at this level should carry a substantial quantity of
ledge, experience of matl ical strategies, and working methods,
and be able to commumcale them at Jeast at some minimal level. However, an investigation
of pupils in the upper section (age 18) of French lycées (Bautier & Robert, 1987) showed
that the existence of such abilities was by no means uniform and depended crucially upon
the current mathematics teacher of the pupil concerned. No doubt studies of sixth form
pupils (age 17-18) in England would yield similarresults. We conclude from this that these
factors may be relatively easy to change but, to the extent that they help to determine the
work habits of students at college and university, they must be explicitly taught.

During the years of secondary schooling students seem to develop preferred methods
of approach to solving problems which are relatively stable yet may prove too narrow for
a wider range of applications. For example, in geometry some students never use vectors
and always employ analytic methods, in analysis some students make systematic use ofthe
graphical approach to solve problems, some rely on formal symbolism and others on
numerical methods. Some students systematically aftempt to use algorithms to solve
problems even when they are mappropriate for the problem in question. A study of students
beginning real analysis in the first year of university (Robert & Boschet, 1984) revealed a
range of systematic behaviour which was not always correct and showed that good students
were often characterized by their versatility in being able to change their mode of approach
to suit the particular task. Even in countries where entry to university is restricted to a low
percentage of the population, it should be noted that the level of attamment may vary
significantly and this difference in ability adds to the divergence in student performance.
In England and Wales this is indicated clearly by the wide variation in A-level grades (taken
at 18+) attained by students taking mathematics courses. In France the same pre-test on
mathematical analysis for students entering university (at age 18+) resulted in a 20%
difference between the mean score of students registered at the university and those
registered in a class preparing for the entrance competition of the grandes écoles for
engineering (Robert, 1984).

Later chapters look at specific research into topics in advanced mathematics. This will
reveal a wide range of difficulty which confirms the loss of meaning encountered in the
work of students at university level. It is as if the great complexity encountered by students
causes them to lose all means of control over the material.

To summarize, although the students in question may have full capacity for meta-
mathematical reflection, they are often hampered by having too narrow a perspective using
particular methods of approach or through having conceptual difficulties with the subject.




132 ALINE ROBERT & ROLPH SCHWARZENBERGER

1.5 HYPOTHESES ON STUDENT ACQUISITION OF KNOWLEDGE
IN ADVANCED MATHEMATICS

Although advanced mathematical thinking in research mathematicians may be character-
ized by the full cycle of activity from mitial intuitions and conjectures through abstractions
to definition and proof, it must be clear from the foregoing discussion that little of these
creative activities are found in most advanced math ical students. It is a bl
hypothesis to suppose that the various cognitive mechanisms which govern individual
learning are not qualitatively different for students from those which apply to younger
children. Following Piaget, it is therefore important to stress the central role of individual
action at this level, especially through the active solution of problems and the idea that a
driving force for the construction ofknowledge comes from the process of disequilibrium
and re-equilibrium as outlined in chapter 1. Also fundamental is Piaget’s notion of
reflectiveat (chapter 7) in the meta-theory ofnathematical learning and Vygotsky's
hypotheses on the role of communication, with the teacher or with other students, in the
formation of personal concepts. From a social psychological viewpoint we also underline
the importance of socio-cognitive conflicts, of different conceptions about mathematics,
and methods of working in mathematics, as envisaged and expressed by pupils and
teachers.

The psychological and cognitive characteristics described in §1.4 above lead to a
particular interest in the existence of preferred methods for different students. Our
hypothesis is that there is a better prospect of successful mathematical learning for the
student with knowledge (however imperfect) in many contexts than for a student having
greater knowledge in a single context. This preference for versatile learning is based upon
repeated verification of the hypothesis with first year university students studying the
beginnings of real analysis (Robert & Boschet, 1984). It was found that the weakest
performances in the course of the year were by students having imitial knowledge in very
few cantexts (usually numerical) whereas the more successful students also had initial
knowledge in the graphical or even the symbolic context. Such results are easily verified
but must be viewed with caution — there is of course a danger that they say no more than
that those who succeed on a university course are those who knew the material already. The
crucial difference appears to be not the mere existence of prior knowledge but the difference
between two very different ways of thinking: the reductive effect of systematically
functioning through a preferred context as against the liberating effect of bringing to bear
changes of context in problems.

A final hypothesis concems the possibility of explicitly involving students in their own
learning. This mightbe by helping students to participate consciously in their own learning,
that is by helping them to leam how to learn or, on the other hand, by the adoption of a
specific and explicit didactic contract by the whole class. It takes account of the reflective
capacity of older pupils and is particularly relevant where not all the desired concepts can
be approached via meaningful problems.

One can cite here similar ideas in the work of Schoenfeld (1985) who is concerned with
problem-solving, and not with the mere acquisition of knowledge. For him, performance
in “problem-solving” requires not only knowledge (“resources”) but also the use of
heuristics much more precise and detailed than that of Polya (1945). This use is governed
by a conscious control on what one is in the process of doing and requires compatible
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canceptions of mathematics. To achieve this, Schoenfeld engages i explicit teaching of
heuristics and explains the rules of control (that is, in our terminology, gives instructions
of a meta-mathematical kind).

1.6 CONCLUSION

The search for single features which are specific to the learning ofadvanced mathematics
proves to be imconclusive. Many proposed features are seen, on closer examination, to
display strong continuity with the learning of mathematics at younger ages. Nevertheless,
it seems that, when all these features are taken together, there is a quantitative change: more
cancepts, less time, the need for greater powers of reflection, greater abstraction, fewer
meaningful problems, more emphasis on proof, greater need for versatile learning, greater
need for persanal control over learning. The confusion caused by new definitions coincides
with the need for more abstract deductive thought. Taken together these quantitative
changes engender a qualitative change which characterizes the transition to advanced
mathematical thinking.

2. RESEARCH ON LEARNING MATHEMATICS AT THE ADVANCED LEVEL

‘We now tum our viewpoint from looking back at the nature of advanced mathematical
thinking and the characteristics of thecognitive nature of the processes to explicit empirical
research that has been performed i recent years. For the purpose of this chapter it is useful
to distinguish three broad types of research:

< First one can distinguish research centred upon student’s acquisition of specific
concepts. In general the object here is essentially to diagnose those difficulties
of students which relate specifically to the mathematical structure of the
cancepts in question. This mvolves working “inside” the student, for example,
by attempting to defime those cognitive processes which are assumed to be
imvolved in the student’s acquisition of the concept. Alternatively, the student’s
failure to acquire the concept may be studied by analysing possible conceptual
obstacles i the way.

Secondly, there is research which is centred upon the organization of math-
ematical content. Such research may focus upon the sequence of problems and
courses offered to the students, on the advantages or disadvantages of particular
programmes (e.g. in France for engineers), on methods of making use of the
student’s own resources to enable them to discover concepts for themselves
prior to explanation by the teacher, and so on. Here one tries to adapt to advanced
mathematical cancepts the work by Piaget on action and by Vygotsky on
communication, but again with an analysis appropriate to advanced mathemati-
cal learning (e.g. Brousseau, 1988; Douady, 1984).

Thirdly, there is research which concentrates upon the external conditions
under which teaching and learning take place: can one discover and recreate
environments that are productive of advanced mathematical thought? For
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example, such an environment might be created by a meta-mathematical style
of teaching, or by appropriate explicit contracts between teacher and pupils, or
by some combination of these.

2.1 RESEARCH INTO STUDENTS’ ACQUISITION OF SPECIFIC CONCEPTS

This is the area that has attracted most research imto the development of advanced
mathematical thinking. At the beginning of the 1980s, simultaneous research by Cornu in
France on the learning of limits (inspired by the work of Brousseau and the carlier ideas of
Bachelard on epistemological obstacles), by Vinner i Israel on concept images i the
learning of geometry and Tall on cognitive conflict in the learning of limits and continuity,
all focussed attention on the mental images conjured up by students which conflicted with
accepted mathematical definitions. This research will feature in chapter 10 in the writing
of Bernard Cornu. His idea of “spontaneous conceptions” (Comu, 1981) and Tall &
Vinner's jomt work on “concept image” were the beginning of a whole sequence of pieces
of research on coguitive mnﬂlcl in advanced mathematical concepts. At thc same Ilme
Robert (1982a, 1982b) was i igated student ions of
between responses which were dynamic (with a sense of motion towards the limit) and
static (beig “close” to the limit, or using a formal e-8 defmition). This contrast between
dynamic and static, which also featured in the work of Schwarzenberger & Tall (1978), Tall
& Vinner (1981), Comu (1982) was an early characterization of the process-concept
duality which appeared quite separately i the work on conceptual entities (chapter 6) and
reflective abstraction (chapter 7). The process-concept duality is at the heart of the
difficulties with the function concept in all its complexity, which will feature in the next
chapter. The conflicts i the limit concept extend into the topics of more advanced analysis
to be discussed in chapter 11 and canflict, in a different way, with the concept of cardinal
infinity, to be discussed in chapter 12. Only i in chapler 13 does the flavour of the research
change from difficulties with i concepts to the procedural difficulties
with mathematical proof.

‘We shall leave the discussion of these conceptual difficulties to their proper context in
later chapters, here we will dwell in more detail on the second and third broad types of
research mentioned above.

2.2 RESEARCH INTO THE ORGANIZATION OF MATHEMATICAL CONTENT
AT AN ADVANCED LEVEL

‘We begin with an example from France of research which falls within the second broad
type. Various researchers, in particular Douady (1986), have examined the efficacy, for the
development of student’s problem-solving abilities, of organizing mathematical content
according to the following prescription:

* give a new concept which it is hoped that students will leam, design problems
which are undertaken before the formal study of the concept and which contain
the possibility of using the concept in their solution.
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lfpcmble, the conocpl shouddarise in at eas two conkexts and in cne of these the studend
if' insight L

on nn; problen.
In rescarch which follows this prescription, based on “old” knowlodge, the instruction
Tollows in clearly defined stages:

« explanation of the role of the concept in problems,
« instintionaization through the Laught course,
« familiarization by means of further problems for reinforcemert,
and
= transfer o contexls where the concepl is nol explicitly apparent.

To summariz: (hs cyclic programme, duc to Douady, one may say (hal the knowledge of
the pupils begins with old todls available for new objects (uplmmnwv), which are
successively brought into play (insti become.
ization) o ones again be ncw (ools for yet nesver objects (mwjm Tobe eﬂeclwe this
progranne for a sufficiently ber of d especially for
thosc conccpts which cause persistent errors. Thas plans for instruciion according to this
prescription must be based upon rescarch of the first broad fype irlo the mathematical
structure of conlent and persistent difficulties of students.
Agood cxample ofsuch work s hat of Atiguc (1987) on teaching lhcqualmnvc thery
ol'dlﬁ‘cn:nl\ul equations

d uw\glhc

ubovc prescription, armives at a programme of teaching in four phases:

Phase 1. Introduction (0 the qualitat h and discussi
todis (isoclines, translations, ivariance. under symmetry and dircction of
variation of solutions) with the help of simple examples of curve fracing
(explanation).

Phase 2. Exploitation of the nes concepis (hrough examles which require
matching of picturcs of solution curves (o the comesponding differcriial
equations (institutionalization).

Phase 3. Comparisons between the methods available for solving problems
using the quaitative or the algebraic approach by particular refercnce (o the
differential equticn

%:(z—l){y’—l) (famitiarization).

Phase 4. Concepts and fundamental theorems of the qualitative theory of
differenial equations, with proofs bascd upon pictures of solution curves,
dealing with barriers, trapping regions, funnels, atiactors and so on (transfer).
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‘This teaching programme was given lo (hrec groups each conlaining about 30 students.
They were then tested by an examination which inchoded both the algebraic solution ofa
Linear differcriial equation and (he qualitative study of the non-Jinear equation:

& 1y
@ (l+11) a
We ke however at il is practically impossible o oblain valid comparisons of the
ofsuch a (eachis course;
s appeopist in the two cases will incvitably differ. Nor is the above prescription
dap! First, (hereare
Which do nol admit a “good®” niial peoblem which can precede (he formal sty of the
concept. Secondly, it may be diffialt (o find suitable problems from & new domain where
the concept is nol immediatcly apparent.

In lixe manner, Tall (1990) recks tartng points in loarming scquences which arc
meaningful to the polential logrow
into fully fledged mathematical conccpts. His archetypal cxample i fhat of “local

straightness” which suderts can visulize ina siniple intuitive way, giving meaning (0 the
derivalive as (he gradient of a locally straight curve, yet conlaining he seods of the
definition of a differentiable manifold. He calls such a concepl a “cogritive rool” for a
theory, a5 it is infended Lo lakerool inth yet
grow intoa fully fedged formal matheniatical notion.

Such cognilive roofs also prove hard to find. Indeed, a good cognitive rool may oficn
prove (0 be a process fhat needs encapsulaling as a concept, such examples migh inchide
the process of counting as (he cognitive rool of whole number arithmetic, an inpu-cutput
process s & cogpive root for funcio, o the ides of n inpu-cutpu machin, whose

input accuiacy, for
fanction. All of h iples aler requi on of the process
a5 meani 2 i g Tormal
i E Object. Such routes from
informal sowces sill need (o pass (rough difficult encapsulation and reconstruction
phases before being brought (o formal fruition.

23 RESEARCH ON THE EXTERNAL ENVIRONMENT
FOR ADVANCED MATHEMATICAL THINKING

Mostrescarch which falsin tis third broad fype has ben concerned with lmchmgwhlch
Thereare, apriori, many

One method is o teach diredlly in (he manner in which we think (hal one k.m by
explaining the importance to discover and leam simullancously, by making clear the
effectiveness nl'gcr:rul mcthods, and by clarifying the basis of the new knowledge. This
Bberl in chapler 13, in which
scientific debnles are Mld betneen stoderks i lectus room. I isdesigned o ervouage
lhccmlwc, synlhcuc side ofm conjec
g i inati mfotmul proof (hal was suggested
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as the true nature ofadvanced mathematical thinking in chapter 1. A basic difficulty of this
method is that not all students do in fact learn in the same way, so that some way must be
found ofenabling students to make their own choices anddecisions. It is important to define
clearly the contract between teacher and students i the first few sessions; this may then be
justified by the dynamics of learning which it can generate, and used subsequently as a
procedural framework.

The objectives and hypotheses behind such a contract are articulated by Legrand ef al
(1988). The objective is to permit the majority of students to understand the meaning of the
algorithms that they are using and to achieve positive ownership of the mathematical
concepts which arise. For this theresearchers recommenda contract based on the following
conditions:

. ion of indications of truth, especially by the teacher,

restitution of an official, and approved, status for uncertainty,

creation of a climate that encourages discussion and debate between students,

direct engagement in mathematical material by students,

devolution by the teacher of authority and competence to the students collec-
tively,

use of complex problems to prevent premature or simplistic algorithms which
inhibit concept formation.

Further details will be given in chapter 13.

‘We note that a very early example of such an approach, in this case at graduate level,
was the Texas seminar in point-set topology of R. L. Moore i the 1940s. In this activity
Moore also encouraged the students to formulate and prove their own theorems without
having formal lectures on the topic. For a persenal description, and other remarks on
advanced mathematical thinking, see Halmos (1985).

A second way to encourage meta-mathematical reflection is to teach generalized
method (Robert ef al, 1987). By this is meant a set of procedures applicable to a collection
of similar problems; thus the use ofthe method implies a certain class of problems to solve
and the fixing of the available tools, techniques and methods of attack. It may also imply
the development of a certain number of general ideas such as the usefulness of changing
the context, the strategy, or even the formulation of the problem. It may include more
specifically mathematical points such as the idea of considering the parameters which arise
in a problem as variables, or the idea of looking for invariants which characterize the
problem that is being considered. It may include the heuristics of Polya or specific
techniques of different conceptual fields (geometry, analysis, ...). The work of Schoenfeld
already cited illustrates this point of view, clearly showing the difference between explicit
instruction in problem-solving techniques and the more common, but much less effective,
implicit imstruction based on unspoken imitation. Schoenfeld also demonstrates that it is
absolutely necessary to clarify the heuristics of Polya by developing more examples of their
use in different contexts and he insists on the necessity of the student’s control of their own
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problem-solving. A similar approach is advocated by Mason ef al (1982) where the focus
is purely on the meta-mathematics of formulating, refining, attacking, reviewing problems
and their solutions, using general techniques such as specializing to simple cases, or
generalizing through syslemallc speclallnnon seeking patterns. It seeks to give students

fidk through ies when they come up against a seemingly
impenetrable barrier and the sense to check insights that come suddenly yet may be flawed.

Thirdly, one can suggest istruction based upon the activities of mathematicians
themselves, for example through the study of historical mathematical texts. A difficulty
here is the barrier of notation and language as well as the extreme difficulty of many
concepts when formulated in their origimal contexts.

‘We note that each of these three ways of encouraging meta-mathematical reflection may
be suitable in one mathematical context but not im another. None is a prescription for
automatic success in any area of advanced mathematics. Moreover, there is no guarantee
of successful transfer of such meta-mathematical knowledge from one cantext to another;
10 more, in any case, than of ful transfer of k !

To encourage the transfer of meta-mathematical knowledge it is clcarly nmssary to
create opportunities for such knowledge to be used. It is therefore essential to introduce
situations which complete a round trip between meta-mathematical instruction and
mathematical experience. For example, Robert & Tenaud (1989) have conducted research
on the learning of geometry in the final year (age 18) of the French lycée based upon the
following scenario: the students receive explicit instruction in the methods of geometry
and, simultaneously, work in small groups on geometric exercises, set without hints, for
which the solution is facilitated by bringing these methods to bear. Our hypothesis is that
this scenario allows the students to improve their ability to get started on a problem, that
it permits the teacher to then usefully continue the instruction in methods, and that all this
can serve to accelerate the students’ learning of geometry. A similar philosophy, though
less carcfully structured, lies behind the current research info explicit instruction in
investigative methods for secondary school children aged 11-16 in England and Wales.

An additional feature of the research of Robert & Tenaud is that it provides case studies
for the use of groupwork to t: ical reflection. They place three to
four students in each group, and find that the recent instruction im methods leads to group
discussion about what method to choose to get started on the problem. Not only do the
students become more aware of the effectiveness of the methodological approach but they
‘became more receptive to further instruction in methods (agam, always returning to further
groupwork on problems), and they appear to become better able to solve more difficult
problems. Thus it is the combination of meta-mathematical instruction, return to appropri-
ate problems, and the use of groupwork which together seem to aceelerate the students’
learning.

Despite all these positive indications, many questions on the encouragement of meta-
mathematical reflection remain unanswered. What s the optimal mix of meta-mathemati-
cal instruction and ordinary mathematical instruction? What method of meta-mathematical
instruction should be used, and how does this depend upon the particular area of
mathematics? Where more traditional teaching has led to particular gaps in understanding,
or to misconceptions, how can the use of meta-mathematical instruction avoid the same
faiture? Again, does the answer to this question depend upon the previous experience of the
students?
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On the one hand there is a need for much more experimental research to answerall these
questions. On the other hand, such research can do no more than provide illuminating case
studies, and it might be argued that there are unlikely to be general answers to such
questions. Background of the students and the social context of their study are important
variables which will vitally affect any results. The setting up of research which requires
non-traditional organization of teaching may in any case provoke objections both from the
institution, which m many countries works under rigid constraints, and from the students
and teachers who have deeply held beliefs about the teaching contract between them. We
have seen that such views, at least on the part of students, are changeable. Teachers also can
change their views, but may sometimes use alleged rigidity of institutional structures as an
excuse not to do so. Added to these difficulties is the problem of objective evaluation and
comparison. At the level of the individual student we have already mentioned the need for
measures of long-term as well as short-term progress; at the level of different instructional
treatments it is necessary, for any valid comparison, to find tasks that are symmetrical with
respectto, or “equidistant” from, the teaching and this may not be possible. We cannot count
on a clear and convincing general result which will influence the views of unconvinced
teachers. We can, however, hope for case studies which follow students’ long-term
development provided that they are not dispersed too widely. All these caveats explain,
perhaps, the still very tentative and hypothetical character of this type of research.

3. CONCLUSION

How can we bring together the discussion of what features, if any, are specific to the
learning of advanced mathematics in the first part of this chapter, with the examples of
research on the learning of advanced mathematics in the second part?

+ One still finds over and over again a certaim number of difficulties, mentioned
in the first part of this chapter, that are related to the complexity of the contents
of advanced mathematics: abstraction and formalization being particular stum-
bling blocks. All research in mathematical education shows that there seems to
be no easy way of avoiding the difficulty of abstraction discussed in earlier
chapters by Tall, Dreyfus and Dubinsky. On the contrary it seems essential to
develop new ways of approaching it.

Putting aside the research directed at particular complexity of mathematical
content, examples of which are described in subsequent chapters, the remaining
research (ofthe second and third broad types described in the second part of this
chapter) does have a cammon feature: the attempt to change the scientific
environment of the students to give them a new and more authentic relationship
to knowledge that is more akin to that of experts (i.e. researchers and practiti
ners) than to that of school pupils. It is here perhaps that we might find agenuine

lication of advanced math ical thinking: having available in full the
resources of the scientific spirit to contral, create, and systematically introduce
methods of learning and even, perhaps, of effective research.




CHAPTER 9

FUNCTIONS AND ASSOCIATED LEARNING DIFFICULTIES

THEODORE EISENBERG

1. HISTORICAL BACKGROUND

The function concept has become one of the fundamental ideas of modem mathematics,
permeating virtually all the areas of the subject. Yet, despite being a powerful foundation
for the final edifice of mathematics organized in a formal Bourbaki style, it proves to be one
of the most difficult concepts to master in the learning sequence of school mathematics. In
part this is due to the layers of ity and the sub-notions iated with
the concept, for even at the most elementary level functions can beapproached in a variety
of contexts, and depending upon the approach taken, various difficulties surface from the
outset. It has been suggested that the problem of mastering this concept, or any mathemati-
cal concept, is simply a task-sequencing problem: provide the student with good exposition
and appropriately structured exercises to reveal various aspects of the notion, and students
will understand, mtemalize and master the notion. But this is has proved to be theoretical
fantasy. For at this point in time, after millions of dollars have been spent on research inan
effort to understand how we acquire mathematical concepts, we still do not know how
people learn. It is true that learning takes place, but the precise mechanism by which it
oceurs is unknown. Indeed, we do not even kunow how to structure activities to teach
children how to order the natural numbers (Sinclaire, 1987). Children eventually leam to
do this, and we can roughly identify the stages through which this learmning passes. But how
it occurs, and identifying and sequencing the essential experiences children must have to
acquire this skill, remains a mystery. It is the same with acquiring a deep understanding of
functions. Initially this was approached as a problem of task-sequencing i order to give
children the foundations for the logic of mathematics, but in thls regard, with hindsight, we
can see that such an effort was a tota! failure.

In the 1960s new math i a ion of influential
proposed that the function concept be used as a unifying factor in school mathematics.

By grade 6 the word fnction ... (and the ideas behind if) should be established frmly... .
(Cambridge Conference, 1963, p. 98)

Concepls like ... function ... can be introduced in rudimentary form (o very young children, and
repealedly applied until a sophisticaled comprehension is buill up. We believe (hal these cancepts
belong in Lhe curricutum nol because they are inodern, bul because they are useful in organizing the
inalerial we wanl Lo present. (Cambridge Conference, 1967, p. 10)

A formalist approach to functions soon found its way into the classroom based on the
of influential p imcludimg Adler (1966), Beberman (1956), Begle

140
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(1968) and Fehr (1966). The warnings of others, mcluding Kline (1958), MacLane (1965),
Wilder (1967), and Buck (1970), went initially unheeded until it began to be seen that this
supposed logical approach to the curricutum did not work.

At the definition level the function concept can be infroduced in a variety of contexts,
through arrow diagrams, tables, algebraic description, as a black mput-output box, as
ordered pairs, etcetera. Of all of these approaches the pedagogically weakest and non-
Ittuitive one seems to be the approach using ordered pairs. Here, a function is defined as
a certaim sort of set; one which is made up of ordered pairs im which no two ordered pairs
have the same first element and different second elements. This seemingly inmocent
definition proved to conjure up all kinds of logistic and epistemological problems, which
imeredibly, were often addressed explicitly in some school curricula. For example, logically
it might be considered necessary to explain what is meant byan ordered pair and the phrases
first element and second element? Norbert Wiener found a way around this problem by
defining the ordered pair (a, b) tobe { { {a},0},{ {b} } }, and variations on this notion ofa
function were taught at literally all levels of the curriculum, from high school (Kline,
Oesterle &Willson 1959) to graduate school (Cohen & Ehrlich, 1963).Commenting on this
approach to functions Buck stated:

Experience seems Lo show thal the “a function is a class of ordered pairs’ approach is one which
imposes severe limitations upon (he student and provides a poor preparation for any further work
wilh functions, cither in school or later. (1970, p. 255)

Buck was being kind. Others made sharper criticism ofthis formalistic approach to school
mathematics (Hammersley, 1968), andof the perceived philosophical error of building the
new mathematics movement upon a Bourbaki-type foundation prominent in higher
mathematics at that time, Thom (1971) and Kline (1970).

Many teachers soon became aware of the limitations of the formalistic approach and
used more than one of the ioned settings for mtroducing the concept. This was
done with the hope that the notion would be well understood in one context and that this
deep understanding would be transferred to the other cantext settings. It did not happen.
Students with a clear idea of function notions in one setting had no idea how they applied
im other settings. For example extending the concept of a zero of'a function im one variable
to functions of two or more variables was beyond most high school students. If transfer of
learning occurs between contexts research has shown that the situations have to be very

similar, and often th fer hastobx ifically pointedout (Carter, 1970). This hasbeen
known to researchers for a long time, and was also familiar to many teachers. Indeed, the
imability of ke “obvious” ions led Sweller (1990) toquestion whether

or not transfer of learning exists in the real world as something more than a theoretical
construct. Although some recent studies show that transfer of learning can in general be
obtaimed (Brown & Kane, 1988; Case & Sandleson, 1988; Lehinan, Lempert & Nisbett,
1988), it seems that in the domaim of school mathematics, situations in which transfers do
oceur are only epsilons apart from one another; the medium level jumps and quantumn leaps
which might be hoped for seem 1o escape all but the most able students.

This phenomenon necessarily led to a multiple embodiment approach — mtroducing the
function concept ina variety of settings withthe hope of effecting transferoflearning. Some
textbooks developed all new function notions in one base setting (such as a graph, ordered
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pairs, or table) and then applied them to other settings. Other texts used a smorgasbord
approach, letting learners sift-out and build their own concept images and modus operandi
for intemalizing the concepts. (See Harel, 1988.) But i spite of all of these efforts, the
function concept was and remains difficult for students to learn (Vinmer & Dreyfus, 1989).

2. DEFICIENCIES INLEARNING THEORIES

A major obstacle in discussing the learning problems associated with functions in
particular, and mathematics in general, is that there is no generally accepted theoretical
framework as a basis for discussion. Functions are found everywhere in mathematics; the
binary opemnons of ordinary addition and multiplication can be thought of as mappmgs
from B Buto'Bthe mechanics of solving th dard i lities problems

im algebra and trigonometry can be thought of in a function format, as can many of the
standard problems in differential and imtegral calculus. All techniques, which form a major
component of school and university mathematics courses, can be discussed from a
functional approach.

Many attempts have been made to build theoretical models forsuch discussions.But two
general types of problems emerge with these models. One is that they are episodic in nature,
trying to explain why certain errors occur. But the errors are context dependent — and the
explanations necessarily differ from context to context. The second general problem is that
when more global schemas are developed, they seem to be too general to be ofany use to
describe and prescribe remedies to overcome the learning difficulties of specific situations.
In short, models oflearning are either too specific or too general. Let us look at three models
currently in vogue which try to describe how mathematicalconceptsare learned which have
been applied to the learning of functions.

Gagné (1970) developed a theory of learning mathematics which is based within a
behavioristic framework. He claims that if learning occurs as a result of instruction, then
one can do something after instruction that he could not do before instruction. Leaming
implies achange in behavior; changes are observable and therefore measurable. Hence, for
Gagné, evidence of having learned topic X is being able to perform a specific set of tasks
which are related to X. He decomposes topic X to sub-topics and each sub-topic info its
pre-requisites. For each sub-topic there is a set of tasks which can be used as evidence that
one has mastered that particular subtopic. A tree of pre-requisites unfolds, and continues
to unfold until it can be assumed that all tasks for aparticular level are within the knowledge
base of the learner. That is to say, Gagné builds a hierarchy of tasks through which one must
progress to master a particular topic. The problem here is that such hierarchies rarely
coincide with real learning. It may be possible to have all the prescribed sub-topics yet not
be able to leamn the next stage; the subdivision may be such that the low-level detail may
obscure the whole picture. The problem with this theary is that it is task-oriented and says
little about the learning characteristics of the student.

Schoenfeld, Smith, & Arcavi (1989), on the other hand, have developed 2 modus
operandi for analysing how mathematical understanding evolves. Their chapter im Glaser'’s
text, Advances In Instructional Psychology “. . . focuses on the changes in the mathematical
understandings of one student as she explored.. . the graphs of simple algebraic functions
in the Cartesian plane.. .”. It provides a fime-graimed characterization of the structure of the
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student’s subject matter understanding, and a description of the nature of the change in her
knowledge structures as aresult ofher i ions with the learning envi (page 1).
The essence of their approach is that acquired knowledge must pass through four levels of
understanding.

Level 1 is concerned with a macro-organization of knowledge at a schema level;
for example understanding that in the equation of the lime L: y=nux+b, the mrand
b represent the slope and the y-intercept.

Level 2 deals with compiled k led; tities and i for
example if >0 the line rises, if m| is large the line is steep, the point (0,b) is
the y-intercept of the line, etcetera.

Level 3 relates to the fine grained superstructure supporting the knowledge, such
as realizing that the slope (y;31)/(x,—x)) ofa line through two given points can
be thought of as two directed line segments and that when x=0 in y=nix+b one
gets the y-intercept of the line.

iduals construct the

Level 4 is when the limited ications context out, and ind:
conceptual atoms that are seen at level 3.

In acquiring a deep understanding of any topic one must necessarily pass through these
levels.

Dubinsky’s theory of learning adapts aspects of Piagetian theory to the acquisition of
mathematical concepts (1988 and Chapter 7 this text). Each individual constructs his own
mathematical knowledge through the process of reflective abstraction. The theory is
concemed with the way in which processes are interiorized to become routinized,
encapsulated to be considered as concepts, coordinated (by following one procedure by
another), reversed (to be performed in the reverse direction) and generalized by being
placed in a broader context. The meanings of these notions are given more fully in Chapter
7. Dubinsky believes that an individual’s mathematical knowledge is concerned with their
tendency to respond to a perceived problem situation by (re-)constructing (new-) schema
inan effort to deal with the situation. Leaming is episodic. He analyses such episodes and
puts a partial ordering on the subject matter to produce what he terms a genetic decompo-
sition, then I igates how the genetic d position meshes with the schemata of the
student. (In addition to the examples given in Chapter 7, see his paper with Lewin on the
genetic decomposition of induction and compactness, 1986).

There are obvious similarities between these theories. Each has aspects of decomposing
the subject matter into a learning sequence, in which Schoenfeld ef al and Dubinsky try to
determine a closeness of fit between the content decomposition and the changing schemata
in the student’s mind. In particular, Dubinsky’s formulation proves to be specifically
apposite for the function concept because the function is both aprocess (input - output) and
amathematical object that needsto be treated as a conceptual entity(as described in chapter
6). Therefore the technique of encapsulation of the function process into a mathematical
object seems to be aperfect match for the development of the function concept. Indeed, by
getting the students to concentrate on the process of programming functions i an
appropriate language which allows the functions (or rather their symbols) to be used as
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objects, Dubinsky has shown some success i the encapsulation process.
But herein comes the major problem which Dubinsky (1988) explicates:

Itis ol possible (o observe directly any of a subject’s schemas or their objects and processes.

@®7)

Ifthis is the case, then it makes it very difficult to map out how one learns in any terms but
generalones. States ofknowledge can be observed, but the actual movement from one state
to another cammot. As Sinclaire (1987) stated, learning occurs, but when observing its
growth,onemust be content with seeing it in progressively higher but static states. Because
of its complexity it is impossible to observe a continuous development. And it is only
possible to infer the cognitive structure of students’ conceptualizations through the concept
images they evoke in written and spoken communication. So how can one be absolutely
sure that the student has an abstract function concept, related to the function defimition, as
opposed to a generic function concept that can handle all the tasks in a given context, such
as the programming of specific functions?

A major problem with developing Gagnéan type hierarchies and “fine structures” of
genetic decompositions is that they can get very complex. The lists of prerequisites which
must be mastered for even the simplest of the tasks get unwieldy; the topic gets over
atomized — and the whole seems to be much more than the sum of its parts. In a Gagnéan
hierarchy the imtegration of the component steps may not be made and, in many cases, seem
to result in the accumulation of isolated skills. So to this point in time, although there are
bench marks against which one’s knowledge of functions can be measured, the content
matter delineates the particular states of one’s knowledge. Although a lexicon seems to be
developing a la Schoenfeld er al and Dubinsky to discuss learning in more general terms,
attentionismainly d toepisodc learning, andtocatalog the areas students
have with the function concept. We rarely know why these problems oceur, nor do wereally
know how to guarantee a cure. With this inmind, we now focus on some ofthe fundamental
and documented problems in understanding basic notions of functions.

3.VARIABLES

The role of a variable is imperfectly understood. Although it is the building block for all
abstractions in mathematics, its meaning escapes many students. Wagner, Rachlin &
Jensen (1984) worked with small but carefully chosen groups of ninth grade students n
Athens, Georgia and Calgary, Canada. Collectively, the students represented the whole
spectrum of ability levels. The purpose of their study was to investigate leaming difficulties
in elementary algebra. One of the tasks given was to solve an equation for a particular
variable: the imvestigators changed the name of the variable and the students were asked
to solve the “new” equation for the “new” variable. With the solution to the origimal problem
i front of them, one-third of the students resotved the problem from the start. Wagner
(1981) found similar results with even older high school students, average age 16+. The
students seemed to react to such exercises in one of two ways. Either they would accept the
change of variable name and state that the letter makes no differenceas long as the numbers
stayed the same, or they would regard the change of variable name as producing a
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completely new problem. Transfer of learning was not there. Wagner related this lack of
understanding to Piaget’s theory of conservation of variable and she tried to categorize
several of the miscanceptions. But why didn’t transfer occur, especially with such a basic
idea? On a large scale, even if 25% oreven 15% react as did the older students im Wagner’s
study, the situation is alarming. Who is at fault? The teacher? The students? The authors?
The material? The cancept of variable is surely not that difficult to understand — or is it?

Arcavi & Schoenfeld (1987) developed a unit to sensitize teachers to how elusive the
concept of variable can be and why their students often have trouble with it. Part of their
unit demonstrates the variable meaning of variable. The notion of concept images and
concept definitions have been discussed in chapter five and also in several papers (Tall &
Vinner, 1981, Vinner, 1983), but the main idea therein is that students develop mental
pictures of concepts and definition by circumscription. Exemplars andnon exemplars forge
the concept, which emerges intobeing inclusive and exclusive. But “the set of mathematical
objects considered by the student to be examples of the concept is not necessarily the same
as the set of mathematical objects determined by the defmition” (Vinner & Dreyfus, 1989).
Arcavi and Schoenfeld’s work alerts teachers to the hidden problems of learning the
cancept of variable itself. It is not as simple as writing a definition on the board. Wagner’s
research drives this poit home; but teachers, who themselves have imternalized the variable
cancept, seem to pay little attention to it. As Freudenthal(1983; p. 469) states:

1 have observed, nol only with other people bul also with myself .., thal sources of insight can be
clogged by automalism. One finally masters an activity so perfectly thal Lhe question of how and
why [students don’l understand them] is not asked anymore, cannol be asked anymore and is nol
even undersiood anymore as a meaningful and relevan! question.

4. FUNCTIONS, GRAPHS AND VISUALIZATION

Although most students can graph simple functions, they often treat the graph ofa function
as something extemal to the function itself and not really part of its essence (Vinner &
Dreyfus, 1989). Moreover, they may imcarrectly relate to data in graphs of functions they
themselves drew. The following problem was on a recent matriculation exam in Isracl for
students i the least demanding mathematics track.

A circle of radius 8.5 cm is circumscribed aboul a triangle with angles of 100°349, and 46°. Find
the radius of U inseribed circle.

1t is almost impossible to start this problem without first drawing a sketch. But thousands
of the students who took this exam drew the sketch incorrectly, and never referred to it
again. Students drew the diagram without taking mto account the givens of the problem,
which force the triangle to sit in a half-circle. But the odd part in all of this is that it really
doesn’t matter; drawing the diagram correctly seems to complicate the solution process!

This problem was also given to a group of ten high school mathematics teachers. Eight
of them drew the problem incorrectly, and only half of them solved the problem within the
15 minute time spanallotted. In another problem, more than 300 students were asked to find
the equations of the tangent lines to the circle x 2+ 32 = 10 which pass through the point (5,5).
Eighty percent of them, including their mstructors, did not draw a sketch for the problem.
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Similar observations were obtained when students were asked to find values for a and b
such that the line 2 x + 3y = a is tangent to { x )= bx2 at x =3, and when students were asked to
solve the mequakity x-32 V{2 x +9), both were approached analytically — without utilizing the
visual imterpretation of the givens (Selden, Mason &Selden, 1989).

It seems natural to view many aspects of general mathematics, and functions m
particular, im a graphical way. But students simply do not have this concept image of a
function. They seem tied to processing information and solving exercises analytically, not
visually. This is nota new problem. Historically, the “visual concept image” for a function
versus an “analytic characterization” was debated for hundreds of years, with the visual
image eventually losing out (Klener, 1988).

In (he wake of (his development, (he geametric conceplion of function is gradually abandoned. A
new tug of war soon ensues (and is, in one form or another, still withus loday) between this novel
“logical” (“abstract”, “synthetic”, “postulalional”) conceplion of function and the old “algebraic”
(“cancrete”, “analylic”, “canstructive”) conceplion.

The tug of war between thesect izations actually t hree way battle, with the
“logical” description entering info the picture too. Today, this conception problem seems
to have been settled in favor of the analytic description, at least mathematically speaking.
But something much deeper seems to have happened. The nature of mathematics itself
seems to have been determined in the process. Consider Hilbert’s comment (quoted
Hadamard, 1945):

I have given a simpfified proof of part (a) of Jordan’s Lheorem. Of course, my proof is campletely
arithmetizable, (otherwise il would be cansidered non existent bul, investigating il, I never ceased
thinking of the diagram (only Lhinking of a very (wisted curve), and so do Istill when remembering
il. T cannol evensay that I expicilly verified (or can verify) every Link of the argumenlas 01l being
arthmetizable (in other words, the arilhmetized argument does ol generally appear in my full
cousciousness). However, thal each Link can be arithmetized is unquestionable as well as for me as
for any mathemalician ... 1 can give il instanlly in ils aritimetized form, which proves that
arithmetized form is present in my fringe-cousciousness.

Hence, although he had an intuitive and visual understanding of the theorem, he did not
consider it ics unless it was arit i This point of view has dominated the
20th century mathematics (Davis & Hersh (1986), it is perpetuated in the classroom and
it is the view most students have of mathematics in general and functions in particular.
Mathematics is analytic in nature — that is the nature of the beast.

Clements (1984) has shown that although the mathematically talented can think
visually, they have a strong tendency not to do so. Krutetskii (1976) went even further. He
claimed that the ability to visualize is not a pre-requisite for having mathematical talent.
This certainly provides evidence for the Hilbertian view that mathematics should be
formalistic, even though as in Hilbert’s proof of lordan’s theorem, the formalism emerges
from an intuitive-visual base. This visual base is often down-played i theclassroom, With
the emphasis being placed on the analytic formalization of it. For many students this is
wrong; they can “see” the mathematics, they just caunot formalize it. They need to be taught
how to analytically describe their visualizations (Vinner, 1983).
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Caleulus is a case in point. Tall (1978) and Mundy (1985) bave shown fhal studenis
simply ignore fhe inconverient, Ninety percent of first year caleulus students simply

2
dropped the sbsolute value sign in inkegrating I x| dx Dreyfus & Eisenberg (1987)
have observed that students seldom relate Lo e graphs they themselves draw. Students
4
skelched a correct graph lo evaluale J' |x2+Saf+] dx but they sinply ignored the
4

skachwhen evaluating e integral. Schoenfeld (1985) has made similar obrervations. The
Tist could g0 on, but e point i that students do nol sce elementary functions of a single
variable as being inherently tied Lo a graph. Whal is worse, neither do their instructors.
Dreyfus & Fisenberg (1986) gave the following problem (o professors of mathematics,

3
| R

and asked them how (hey would go about solving the prblem. Allstated by saying that

ol one saw initially
i5 odd, and because of the Timits of itegraton, had (o bo o, These professors of
mathematics did nol sex the function as a graph because they failed Lo spot the oddness of
the Function which (rivializes the solution. Ofher problems, in which bofh visual and
analytic solution mefhods were equally likely, were presented to the professors. Their
overall teudency was to approach the problems and process the information thercin
analytically. Thinking visuslly was forcign to them, 5o how can their students be expected
1o dovelop (heir visualization skills?

“The work of Janvier (1978), Karplus (1979) andPontz (1984) also poin to the fact that
students simply do nol imderstand some of the graphs thal they themselves drew. Indecd,
fhese stndies show (hal many stodents cannol interpret graphs. That is, they do nol
understand the relationship the graph describes belween the independent and depeudent
varisbles. As an example (o illustate this dichotomy between (he graph of s Function and
the function itsef, consider the cass of a group of 40 post caleulus students asked Lo find

ph which was given i

ofthem were able lo do this for the algebraic case: with 55% being sbl: tojustify why heir
procedure worked. Thirty percent knew the “reflecting fhrough e Line y=* technique for
fhe geometric case, but nol ons could justify (he procedure. (And not one knew (e
technique of flipping the paper and rolating il 90°). The studerts obtained correct resulls
without understanding why they worked. This conceplof theinverse function wasdivorced
from a visual inkerpretation. Hadar, Zaslavsky & Inbar (1967) have categorized errors like
theso that studerts make with functions. Thomas (1969) has tried (o identfy the ages and
toleam specific But such
categorizations and identifications are only first steps and no onc (o date, seems to have
Forther. Why Ghese errors and misunderstandings continue 1o occur with

stodents stdying from (he newest of curricula, remains a topic for further rescarch.
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It is true that a certain type of elementary mathematics cannot be done without a fair
amount of visualization skills, and that this precedes most work with functions. Again we
look at calculus. Here, for example, students must be able to visualize the common volume
of two right cylinders of equal radii which intersect at right angles. They must also be able
to visualize an object if it is known that it has a circular base and that every plane passing
through it, which is perpendicular to a fixed diameter, generates an equilateral triangle.
Exercises such as these form the heart of calculus. But the analytic description of the
volume, i.e. the function to be integrated, is the key. Tall (1986a), Blackett (1987), Rival
(1987), and Thomas (1988) have shown that students can develop a deep understanding of
higher level function concepts by developing them visually. Moreover, they have shown
that when the empha: laced on the visual development, I.h(.n. is higher rdmlmn of
them than if they were developed in an analytic . But is matl the
visualization of such situations or is it the symbolization of them? It is with the symboliza-
tion of situations that students seem to have trouble not, when applicable, with their visual
interpretation. (Leinhardt, Zaslavsky & Stein, 1990).

Asevidenced at a debate at a meeting of the Working Group on Advanced Mathematical
Thinking, there are two schools of thought among researchers as to whether or not school
and university mathematics should emphasize the visual aspects surrounding elementary
functions (see, for instance, Dubinsky, 1989; Dreyfus 1991). The majority seemed to be in
favor of a pro-visualization stance, but there were eloquent pleas for the symbolic view.
Those in favor of visualization consldcred that functions should be thought of graphically

wherever it d when i them should be thought of i this way
too. F le, thesimpl L ions (x)k, 2k (x), (k) (ke ), 1000, ], £2(x),
1/f(x), etcetera, should be viewed graphically and that this method of viewing functions can

be instilled in students through carefully chosen sequences of exercises. The evidence
presented in this chapter suggests that progress will be made only through a major shift in
how we approach school and university level mathematics. The Hilbert-Bourbakian view
of mathematics has produced generations of semi-literates, in part because the pictures
which motivate the proofs and which are behind the big ideas are seldom emphasized in
the classroom.

Tt islikely that the situati be improved by emphasizing the role playedby the visual
representation of a function. Ben-Chaim (1985) has shown that visualization skills can be
leamed and should be emphasized. Cipra’s supplemental text for calculus (1983) which
builds imtuitionand visualizationskills is a good example of such an approach. Itis mybelief
that the present tendency not to teach in a visual way needs to be reversed, unless of course
mathematicians are satisfied with the semi-literate and mathematical phobics produced by
the present methods (Paulos, 1988).

5. ABSTRACTION, NOTATION, AND ANXIETY

Functions and their associated sub-concepts have degrees of abstraction. Open any higher
level mathematical journal or textbook at random and apage of symbols and formulae will
generally appear. Students often scan the page to see if the symbols and formulae are
familiar; But far too often they are foreign to them and it soon becomes apparent that a
tremendous amount of work will have to be done to understand what is written. Davis &
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Hersh (1986, p. 269) label this: the loss of meaning through the itellectual process of
mathematical abstraction and, as we have seen in chapter 8, it is a widespread problem
amongst students. But abstraction is what mathematics is all about, at least according to
Hilbert, the Bourbakists and most university p And this ab: ion, along with
the pace with which it comes i the umvcrslly classroom, is often the downfall of many
students. Obviously there are levels of abstraction. But too often this is not realized in the
classroom for the topics have been mternalized by the instructor; they have mastered the
topic and they expect their students to do it too, in record time. Freudenthal’s comments on
automaticity (op.cit.)arecertainly apposite. Butthis fecling that instructors of mathematics
can absorb a page of mathematics as though it were an article in a newspaper is often
conveyed to the student. And in many cases, students are discouraged before extending an
effort. In the literature this is called math phobia oranxiety and surely enough, it is a cause
of student failure. That is, leaming fails for affective (emotional) reasons, not cognitive
ones. But there is irony i all of this, for math anxiety touches every individual — even
instructors of mathematics.

Hard as it is for many students to believe, even mathematicians have entire domains of
mathematics with which they do not feel camfortable. For some this may be working in 3-
space, for others it may be Galois, probability, or ergodic theory; but every individual has
“grey areas” which they often try to avoid. It is only within recent years that mathematicians
have recognized this obstacle to leaming. The “humanistic mathematics movement” led by
Alvin White is devoted to sensitizing instructors to thls learning dlfncuhy (White, 1988)

Although there are many facets to math | anxiety, are
often obstacles m preventing understanding of function concepts. Again we meet the
problem that it is not the matk but the rep ion of the matl ics. Indeed,

Pimm (1984) posits thatapositive correlation willbe foundbetween learning in texts which
minimize the notation and personalize the presentation. His arguments are persuasive, but
heretofore untested. Notational difficulties sneak in everywhere i elementary mathemat-
ics, but we will chronicle only a few of the pitfalls associated with nitial notions on
functions.

1. The f{x) notation itself is confusing because f(x) is usually read to mean x under the
function f goes to.. . In the early 70’s a movement led by Howard Fehr (1974) used the
standard algebraists notation of x5 but the movement never caught on. Nevertheless, this
notation captures the dynamic aspects of a function which should initially be emphasized.
Perhaps then students will have less trouble with understanding composite functions of the
form x5 (), g(x)ii f(g(x)). Moreover, this notation should further help students
understand the meaning of the argument. E.g., seventy percent of beginning calculus
students at Ben-Gurion University could not solve the following problem:

1f 2 and 4 are Lhe values of x for which f(x }=0, whal are the values ol x for which f{4x )=07

This same problem was rephrased:

Only the values of 2 and 4 go (o zero under the function . Whal values mnltiplied by four will go
o zero under the function £7
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in his form, and they seemed to
Teve  basic m\mmndms of what they were doing, This is a common phenomenon even
in simple word problems: thal the phrasing of the question greally affests the studerks
abil

position. U
off{x) cannol be fully mderstood.

2. Realizirg that | of the form J dwiu is already evidence of looking at furctions

_
o)
in @ more general way, although even (his may only involve manipulation of symbelic
formulac. Butdefinixg a functionintems of an inkegral suchasinIngx)=[, drir is beyond
most studerts in elementary courscs —a common difficully in nn; ﬁm stages of sdvanced
mathematics where the idea of definition, rather than ewise,
visualizing functions in parametric form, also proves (o be vlnlcmbly difficull, especially
when the representation moves from two dimensions (o three.

Functions can be thought of as representing forms, and students need a wide set of
experiences in looking at functions in (his way. Morcover, this inability to work with
concepts like functions, a5 (hough they are objects is a major obstacle for many stodens,
muny of whom have demonstraled an ability Lo work with lower level abstractions in the

pas
A, Harel and Kaput Invc slcady assercd in chapter 6, (e isomorphisin beween &
ts dualin linear

|=mmg ifuly, A Tincarirandormation fom s vecorspce V1o b vectorspoco. B s
calleda finear functional. The set ofall linear functionals from ¥ o/B! Forms a vecor space:
called the duaf of ¥; (his veclor space i usually denoed as V' Here, fhe vectors in ¥* are
functions, which arc combined in (e usual way. Bul the dual of ¥, isalso avaclor space,
¥+, whichi V. very hard time in ing (he role of
G vedors in ¥ #%. Certainly they are functions. But fuctions do things to objects ina
‘domain. Whal do thesc functions do to he functions in 7+ 7 The functions in J*# must send
e functionsin 1+ memc,m towhere? As has been dimmcd in chapter 6 intemis
itie [ z i i Tor students

is difficult
for students (0 understand because of the layaring of the abstractions. And higher level
‘mathematics is full of such situations.

Theproblem solving research of Major & Clark (1963) has shown thal when experts are
prcnted with el ey ar secing fo th s e and hich s ok e close:
1o their & fon in the same is,
there is 3 playing around period, and genmﬂly an incubation period beforo rahmg a
solution. For example, consider the followirg fwo mathematical problems:

1. For each read rumber x, el {x) be the mitirmum of the nurkers dx+1, x32, and -2+, Whatis
the massimum value of f(x)?
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2. There is a Kingdom where if & person drinks poison be will die. The only way to counteract the
Feiscn is to drink a strengsr cre. Then the reecticn stops. The king decides that be must tave the
Strongest peiscn availabl ssessicn. So, be sets up a conteat between bis court atyiser and
bis vazard. Ech must Bnd the strcngest peisc in the kingdom and give it o bim. But to be sure that
be will gt the strongest peiscn, b will foroe earb to et drink the ctbers” peiscn. Teen they will
drink their own. Gue of them vill die, but the king will certainly then bave the stronges! poison in
bis pesse

The court adviser
few days time be will

s Urat be can rever out smast the wizand, and bemczas the fect thatin a
Bt scon, be ad bis wife think cl &l 1o oubract the wizart,
peison, and viee-versa. Then they

drink tieir own and the wizard dies.
Vhat was the edviser's trick?

These problems were given (o novice and experts in mathematics. Both groups were
observed trying to set up functional relationships to describe the various situations in
problem fwo and o sbstitule values into problem one. But the fwo groups essertially
sttacked the problems in the same way. Polya’s (1954) and Schoenfelds (1985) map of
problem-solving tactcs was followed almost Lo the leter, inchuding the fact (hatnol onc of
the interviewees This, Schoenfeld
clains i i in the curricubun, from grade school through the
wiversity. Tnterestingly, most of he inkerviewees fet the socond problem wasn't math-
ematics, in spile of their symboliclogistic solution paths. There is relevance in (hese
problems for our discussion on functions.

In order to solve the above problents a reversal tactic must be used. This is exactly the
same sortof kill which must be usedto find g x), given fig(x )) andf(x), or f(x ), given fig(x )
and g(x). Morcover such reversals are necessary when delermiring, for example, the

function wnder consideration if it

1
is known (hal the integral nI -5 -1%]dx
represerts (he volue generated when o cune i revolved arond a certain fine and you
must determine the the y-axis. Such
problems are very difficult for students, even nmy\ they often have all the skils to work
outthe solution They necdtime o intermalize the skills invalved inworking with functions
in this way. Freudenthal’s admonitions on antomaticity must always be in cur minds;

K L i i them.

6. REPRESENTATIONAL DIFFICULTIES

Birkhoff (1956) developed a metric for acsthelics which showed (hal & mathematical
objects appeal, be it a function, axiomatic system or whalever, is inversely proportional
to its complexity. How onc measures this is anolher matler. But it seems obvicus that (he
more symbols, signs, efcetera, the more complex — and everyone, nol just studerts, has
trouble with complexity.



152 THEODORE EISENBERG

g 5.0 o)

is & function which gives, for positive inkegers x fhe largest prime factor ofx (Boas, 1960)

Nolation often causes problems with students, even though, like many of the problems
discussod above, the basic underlying ideas which theyrepresent are simple. Anxiety, the
nature of mathematics and (e loss of meaning through the “inkellectual” process of over
ambitious use of symbolism and abstraction have been discusscd above. Good mathemat-
ics is ol necessarilly complex mathematics, and complex mathematics is not necessarily
‘good mathematics. But, given the choice, it seems obvious fhal one would opt for the less
complex and the more intuitive. Unfortunately, this has not been fhe option chosen in fhe
past.

7. SUMMARY

In this chapler we have surveyed some of the learning difficulfes students have with
function concepts, and why they occur from historical and psychological points of view.
Perocived helplessiess and anxiety seem (o hinder leaming, and fterature has been cited
which stndies (hesc psychological barrirs. But the major theme of this chapier is (hat
foncions and (i asocited nions arc ol conecived visally,and ha his non-visw!
approach hindersone’s dovel of havinga o think
of furction concepis in only a symbolic ltprutllalu)ml mode. Indecd, ol only are
funciions thought of this way, but his secmis symplomatc of the fact that (he nisjorly of

1.1t on of the author
hat (his wwillingness (o stress the visual aspects of matheaties in general, and of
Tunctions in particular, is a serious impediment to studerts’ learning.




CHAPTER 10

LIMITS!

BERNARD CORNU

The mathematical concept of a limit is a particularly difficult notion, typical of the kind of
thought required in advanced mathematics. It holds a central position which permeates the
whole of mathematical analysis — as a foundation of the theory of approximation, of
continuity, and of differential and integral calculus.

One of the greatest difficulties in teaching and learning the limit concept lies not only
in its richness and complexity, but also in the extent to which the cogniti
be generated purely from the matl ical definition. The disti
definition and the concept itself (discussed in detail by Vinmer in chapter 5) is didactically
very important. Remembering the definition of a limit is one thing, acquiring the
fundamental conception is another. One facet is the idea of approximation, usually first
encountered through a dynamic notion of limit, and the way in which the concept of limit
is put to work to resolve real problems which rely not on the definition but on many diverse
properties of the intuitive concept. Starting from such apoint of view students often believe
that they “understand” the definition ofa limit without truly acquiring all the implications
of the formal concept. Students are often able to complete many of the exercises they are
asked to perform without having to understand the formalism of the definition at all.
Meanwhile, the quantifiers “for all”, “there exists”, which occur i epsilon-delta defini-
tions, have their own meanings in everyday language subtly different from those encoun-
tered in the definition of the limit concept. From such beginning arise conceptual obstacles
which may cause serious difficulties.

In teaching mathematics, certain aspects of the limit concept are given greater emphasis
which are revealed by a review of the curriculum, the textbooks, exercises and examina-
tions. In the first half of the twentieth century, French mathematics texts used be notion of
limit in an infuitive maimer without a formal definition to introduce the definition of the
derivative. Later in the same text a definition would be given which is more in the manner
of an “explanation” in a note at the foot of the page. The official French programme of
school mathematics first cited the term limit with respect to the derivative as long ago as
1947. In 1966 the notion was properly introduced into the programme. Books generally
devoted a chapter to the general limit concept including a formal definition, a statement of
its uniqueness, and theorems about arithmetic operations applied to limits. The exercises,
however, did not concentrate on the limit concept, but on inequalities, the notion of absolute
value, the idea of a sufficient condition and, above all, on operations: the limit of a sum,
of a product, and so on. These exercises are far more related to algebra and the routines of
formal differentiation and integration than to analysis. They take on such an overwhelming
importance that one textbook cited thirty one different thearems on operations on limits!

1 The author wishes o thank Rebecca Tall for her initial translation of the draft of this chapler
into English, and the edilor for help and assistance in canplefing the task.
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Given such a bias in emphasis it is therefore little wonder that students pick up implicit
beliefs about the way in which they are expected to operate.

Different mvestigations which have been carried out show only too clearly that the
majority of students do not master the idea ofa limit, even ata more advanced stage of their
studies. This does not prevent them from working out exercises, solving problems and
succeeding i their examimations!

In this chapter we will study some didactic aspects of the idea of limits: concepts linked
to this notion, various obstacles which stand in the way of students learning the limit
cancept, and discuss various strategies for teaching the limit concept.

1. SPONTANEOUS CONCEPTIONS AND MENTAL MODELS

For most mathematical concepts, teaching does not begi on virgi territory. In the case of
limits, before any teaching on this subject the student already has a certain number of ideas,
intuitions, images, knowledge, which come from daily experience, such as the colloquial
meaning of the terms being used. We describe these conceptions of an idea, which occur
prior to formal teaching, as spontaneous conceptions (Comu 1981,1983). When a student
participates in a mathematics lesson, these ideas do not disappear — contrary to what may
be imagined by most teachers. These spontancous ideas mix with newly acquired
knowledge, modified and adapted to form the students personal conceptions. We know that
in order to resolve a problem, we do not in general call uniquely on adequate scientific
theory, but on natural or spontancous reasoning, which is founded on these spontancous
ideas. This phenomenon is well-known in the empirical and theoretical development of
scientific concepts since Bachelard in the nineteen-thirties, but it is only in the last decade
that it has been fully realized that exactly the same forces operate in the apparent logic of
mathematics.

In the case of the limit concept, we observe that the words ‘tends to’ and ‘limit’ have a
significance for the students before any lessons begin (Schwarzenberger & Tall, 1978), and
that students continue to rely on these meanings after they have been given a formal
definition. Investigations have revealed many different meanings for the expression ‘tends
towards’:

to approach (eventually staying away from if)

to approach ... without reaching it

to approach.... just reaching it

to resemble (without any variation, such as “this blue tends towards violet”)
The word limit itself can have may different meanings to different imdividuals at different
times. Most often it is considered as an ‘impassible limit’, but it can also be:

* an impassible limit which is reachable,

+ an impassible limit which is impossible to reach,

+a point which one approaches, without reaching it,
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a point which one approaches and reaches,

a higher (or lower) limit,

a maximum or minimum,

aninterval,

that which comes ‘immediately after’ what can be attained,
a constraimt, a ban, a rule,
+ the end, the finish. (Comu, 1983)

From one student to another the meaning given to words varies; forone student it may have
many meanings, according to the situations. Spontancous ideas live on a long time;
investigations show that they may remain with students at a much more advanced stage of
learning. In the face of a variety of spontancous notions and the student’s growing
awareness of the formalisms it easily happens that contradictory ideas may be held
simultaneously in the mind of an individual, leading to a global “concept image” which
contains potential conflicting factors in the sense of Tall & Vinmer (1981), as discussed in
chapter S.

Aline Robert (1982a,b) has studied different models which students may hold of the
notion of the limit of a sequence. Despite the fact that students have been given a formal
definition of a sequence, when asked to describe the notion of a sequence, like as not they
would be liable to evoke conceptions relating to various aspects of their previous
experience. Some students d primitive, rudi y models, remin of those
which might be evoked spontancously, such as:

 stationary: “The final terms always have the same value”,
« barrier “The values caunot pass /7.

In addition there were more models which arose more from the formal teaching:

Monotonic and dynamic-nonototic :
“a convergent sequen
ing bounded below)”;

“a convergent sequence is an increasing (or decreasing) sequence which
approaches a limit”.

1 increasing sequence bounded above (or decreas-

* Dynamic :

“tt, tends to 17,

“14y, approaches I

“the distance from 14, to  becomes small”;

“the values approach a number more and more closely”.
* Static :

“The 1, are iman terval near /7;

“the 1, are grouped round /7,

“The elements ofthe sequence end up by beimg found ina n
* Mixed : a mixture of those above.

ighbourhood of 1™
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Once more she found these models influencing the manner in which students at university
solved problems. There is clearly no single notion of limit in the minds of students. It is
evident that the students have a variety of concept images.

Moreover, it is also evident that the witial teachung tends to emphasize the process of
approaching a limit, rather than the concept of the limit itself. The concept imagery
associated with this process, as exemplified above, contaims many factors which conflict
with the formal defnition (“approaches but cannot reach”, “camuot pass”, “tends to”, etc).
Thus itis that students develop images oflimits and iufuliiy which relate to misconceptions
concerning the process of “getting close” or “growing large” or “going on forever”.

In an eth hic study of the ptions of students g limits and infuity,
Sierpuiska (1987) analysed the concept images of 31 sixteen yf:ar old pre-calculus
mathematics and physics students. She then classified them into groups which she labelled
with a single name for each group:

Michael and Christopher are uncanscious infhnitists (al least al the beginning): they say “infinite”,
bul think “very big”. ... For bolh of them the limits hould be the last valuie of the term ... for Michael
this last value is either plus infinily (avery big positive number) or minus ifinily. .. 1t is nol so for
Christopher who is more receplive Lo the dynamic changes ofvalues of the Lerms. The last value is
nol always lending (o imfinily, it may tend (o some sruall and known number.

George is @ conscious infinitist: Infiinily is aboul something metaphysical, difficull (o grasp with
precise definilions. 1f mathenualics is lo be an exact science then one should avoid speaking about
infinily and speak aboul finile numbers ouly. In formulating general laws one can use letters
denoting cancrete bul attilrary finite numbers. In describing the behaviour of sequences the most
important thing is to characierize the nth term by wiiting the general formuta. For a given n one can
then campule Lhe exact valuc of Uhe lerm or one can give an approximation of lhis value.

Paul and Robert are kinetic infinitists: theidea of infinily in then s counceted with the idea of time.
.. Paulis apotentiatist: To Lhink of some whole, asct orasequence, onehas (orunin though through
every element of il. Il is inipossible (o think this way of an ifinile number of elements. The
canstruction of an mfinite set or sequence cannever be completed. Infinily exists polentially ouly.
Robertis apotential actuatist: it is possible [for him] to make a jump to mfinily” in though: the
imfinity can polenlially be ultimately actualized. For both, Paul and Robert, the important thing is
{0 sec how the lerms of the sequence change, if there is a lendency (o approach some fixed value.
For Paul, even if the (erms of a sequence came closer and closer so as (o differ less tan any given
value they will never reach i, Robert thinks theoretically the lerms will reach it in the infinity.

In this way she exhibits timeless c its and infinity which have been with
us since time immemorial and which continue to hold i our students today.

Other limiting processes, such as the concept of continuity, differentiation, integration,
and so on, whilst on the surface being very different, in cognitive terms exhibit similar
difficulties. For wstance, continuity suffers from having a spontaneous conception that is
evoked through the use of everyday language in phrases such as “it rained continuously all
day” (meaning there was no break in the rainfall) or “the railway line is continuously
welded” (meaning that there are no gaps i the rail). This viewpoint is often reinforced by
teacher’s attempts to give a simple insight info the notion of continuity by speaking of the
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‘graph “being in one picce” or “dravm wilhout laking (he percil off (he paper”, (hereby
confusing the mathematical notions of continuity and connecledness.

A questonmaire administerd lo [yt yer wriversity mathemalics stoders (Toll &
Vinner 1981) inciuded the a question lo investigale (he students” conoepd images of
continuity (figure 16)

Mathematically I, f; and f are cortinuous, whilst I, and f are not. But the studerts”
concepl images suggest otherwise (Table TV — “cormect” responses in bold prind).

Allhough sl lhresponszs o, arc “corret”, e majorly arc “ight answrs fo wrorg

reasons”, such as (he idea thal f is conti ‘because it is given by only
The. Fanction £, often causes disputc even amorgst scasoned mathernaticians. 1t s
fxe B |x# 0).
t0)=x?
)= 1 (x0) ~
Which of the following
functions are continuous?"
1f possible give reasons. 0(<0)
for your answer. L= {
06:<0)
= { | oo
- {0
N 1 (irrationaf)

Figure 16 : the concept imge clontinuity

N=41 f; 5 5 T fs
continvous |41 6 | 27 | 1 8
discontinwous | 0 | 35 | 12 | 38 | 26
no response. 0 [ 2 2 7

Table IV : Responses to figire 16
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concept images suggest:

It is continuous because:
“the function is given by a single formula”.

It is not contimuous because
“the graph is not in one piece”,
“the function is not defined at the origin’
“the function gets infinite at the orign”.

Inthe initial stages of learning, we therefore see spontaneous conceptions arising which are
often in conflict with the formal definition.

2. COGNITIVE OBSTACLES

The notion of a cognitive obstacle is mteresting to study to help identify difficulties
encountered by students in the leaming process, and to determine more appropriate
strategies for teaching. It is possible to distinguish several different types of obstacles:
genetic and psychological obstacles which occur as a result of the personal development
of the student, diductical obstacles which occur because of the nature of the teaching and
the teacher, and epistemological obstacles which occur because of the nature of the
mathematical concepts themselves. In planning to teach a mathematical concept it is of the
utinost importance to determine the possible obstacles, particularly the endemic epistemo-
logical obstacles.
The term was introduced by Gaston Bachelard (1938):

“We must pose the problem of scientific knowledge in lerms of obstacles. I is not just a question
of considering external obstacles, like he complexity and the Lransience of scienific plienomena,
nor lo lament the feebleness of the human senses and spiril.1t is m the act of gaining knowledge ilself,
to know, intimalely, whal appears, as an imevilableresull of functional necessily, (o retard the speed
of lcaming and cause cognilive difficullies. It s here Lhal we may find the causes of stagnation and
even of regression, hat we may perceive lhe reasans for the imertia, whicl we call epistemological
obstacles.”

He goes on o say:

“We encounter now i i and in deing so must destroy
ifl-fornied previous idcas.”

He indicated that epistemological obstacles occur both in the historical development of

scientific thought and in edu | practice. For him, epi: logical obstacles have two
essential characteristics:
« they are idable and essential i of knowledge to be acquired,

+ They are found, at least in part, in the historical development of the concept.
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Many authors have become interested i epistemological obstacles. Guy Brousseau defmes

an logical obstacle as k ledge which functions well in a certain domain of
activity and therefore becomes well-established, but then fails to work satisfactorily m
another context where it mal ions and leads to dicti 1t therefore becames

necessary to destroy the origimal insufficient, malformed knowledge, to replace it with new
concept which operates satisfactorily in the new domain. The rejection and clarifying of
such an obstacle is an essential part of the knowledge itself; the transformation cannot be
performed without destabilizing the original ideas by placing them in a new context where
they are clearly seen to fail. This therefore requires a great effort of cognitive re-
construction.

3. EPISTEMOLOGICAL OBSTACLES INHISTORICAL DEVELOPMENT

1t is useful to study the history of the concept to locate periods of slow development and
the difficulties which arose which may indicate the presence of epistemological obstacles.
In the case of the history of the limit concept, we see that this notion was introduced to
resolve three principal types of difficulty:

geometric problems (area calculations, consideration ofthe nature of geometric
lengths, “exhaustion”),

the problem of the sum and rate of convergence of a series,

theproblemsofdifferentiation, (which come from the relationship between two
quantities which simultaneously tend to zero).

There are four major epistemological obstacles in the history of the limit concept:
1) The failure to link geometry with mumbers.

When the Greeks became mterested in mathematics about 400-300 BC, we must ask why
it happened that the limit concept was not clarified at the time. The problem of calculating
the area of a circle, for example, supplied an opportunity to develop the tools very similar
to the limit concept. Hippocrates of Chios (430 BC) wanted to prove that the ratio between
the area of two circles is equal to the ratio of the squares of their diameters. He inscribed
regular polygons within the circles and, by indefinitely mcreasing the number of sides, he
approached the areas of the two circles. At each step the ratio of the areas of the mscribed
polygons is equal to the ratio of the squares of the diameters, and it followed that, “in the
limit”, it would be true also for the areas of the circles.

This passage towards the limit, very sparingly explained, would be defined a year later,
in terms of the method of exhaustion, credited to Eudoxus of Cnidos (408-255 BC). The
method is based on the principle of Eudoxus (Euclid’s Efements, book 10, proposition 1)
that “given two unequal lengths, iffrom the first is taken apart larger than its half, then from
the remainder a part more than half what remains, and the process is repeated, then there
will come a time when what remains will be less than the second length”. In other words,
by successive halving we can attain a size as small as we wish. From this the principle of
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exhaustion follows whi s to stale hal for i polygon

jithir vhe differs from that less than €. Ifthe ratio
ofareas of two circkesis 4 /4, and that of the squares of the radiiis 1%/ 1,2, then we have
one of threc possible cases:

Ay <rfr?, Afhy > ndir? or Adg = nn?

first two by the principk ion, and hence deduce the (ruth of the

desired equal
Huwcver, d&pne the fact that the exhaustion methed scems extremely clows (o the
notion of limit, ot affim that the Gi modem fi The

‘method of exhaustion is in esscuce a geometrical method vhich allows the proofof results
without having to deal with the problem of infinity. It isapplicd to geomelrical magnitudes,
ol 1o panibers. Each case is deall with on an individual basis using a specific argument
tailored tothe geometrical context. There is o transfer from geometrical figures (o apurely
nunerical interpretation, so the unifying concept of limit of numbers is absent. The
geometrical i P i i ing perti i

10 cause:an obstacle which prevents the passage to the notion of a numerical Limit.

2) The notion of the infinitely large and infinitely smat.

‘Thicoghoat he ity of the nction of i we et the suppesition of the exiseuce of
quantities. Is it pos which

alniost 1o, and yet not having a spasific ‘assignable’ sizc? What happers at (he insant

when one of (hese quanlilies becomes zerc? Such philosophical problems have occupied

the attention of numerous mathematicians who, like Newton, spoke ofthe “soul of departed

quaniies” at he tine tha they disappear o enable him Lo caculte heir “vltinste raic”.

Eler the infiritcly q
2 . D Alembert dthe use ofinfnily snial quantites and
h from the differential caleulus. He reasoned tha a quartity is either

something or nothing, Ifitis something it cannot be madezeroandif it isnothingit is already
20, Thus the suppasition (hal there s an inkermediate stale between (he two he described
as a wild dream.

Cauchy also used the Ianguage of the infinitely small. In his Cowrs d"analyse de I'Ecole
Polytechnigue of 1821, he defined a continuous function in thess terms:

The function fix) is ccntinicus within given limits een these lirils 2 tely small
incremment i in Wb viriable x produces always an infunitely small increrrent, [Oc+)-1(x), in the
Torclicn el (a5 translated in Eoyer, 1939, p. 277)

He explained the idea of an infinitesimal as fallows:

One says that a variable qranlity becores infinitely smll when its numerice! value decreases
irdcfinitely in sich a way & to converss 1o the limit zero.  (quoted from Boyer, 1939, p. 273).
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TFor Cauchy an infinitesimal is simply a variable which tends to zero.

The idea of an ‘mtermediate state’ between that which is nothing and that which is not is
frequently found in modem students. They often view the symbol € as representing a
number which is not zero yet is smaller than any positive real number. In the same way
individuals may believe that 0.9%9... is the ‘last number before 1” yet is not equal to one.
There is a carresponding belief in the existence ofan integer bigger than all the others, yet
which is not infiite.

3) The metaphysical aspect of the notion of limit.

The notion of limit is difficult to introduce in mathematics because it seems to have more
to do with physics or philosophy. Matt icians are often reticent in speaking of
such concepts, from the time of the Greeks through to D’Alembert who wrote “One can
quite easily do without the rest of all this metaphysics of the 'ml'ulile in the differential
calculus”. Lagrang dasimilar horror of the physical aspects. Although i his
early career he belleved he could make the use of infinitesimals rigourous, he later
considered that the infinitesimals of Leibniz has no satisfactory metaphysical basis and
recast the foundations of the caleulus using infinite series i purely algebraic terms.
However, this too proved elusive, for

When Lagrange endeavored (o free the calculus of ils metaphysical difficullies, by resorting to
common algebra, he avoided the whirlpool of Charybdis only lo suffer wreck against the rocks of
Scylla. The algebra of his day, as handed down (o him by L. Euler, was founded on a false view of
infinity. No rigorous theory of infinile series had been established. (Caiori, 1980, p. 257)

In this way, whichever way mathematicians seemed to turn in the historical development
of the subject, they came against profound theoretical difficulties.

The metaphysical aspect ofthe notion of limit is one of the principal obstacles for today’s
students. In an imterview one said, “It is not really mathematics”, because the initial stages
of caleulus no longer rely purely on simple arithmetic and algebra. The students may have
difficulties handling the cancept of infinity, “It isn’t rigourous, but it works”; “it doesn’t
exist”, “it is very abstract”, “the method is all right, provided you are content with an
approximate value”. This obstacle makes the camprehension of the limit concept extremely
difficult, particularly because a limit cannot be calculated directly using familiar methods
of algebra and arithmetic.

4) Is the limit atigined or not?

This isadebate which has lasted the history ofth pt. Far example, Robins
(1697-1751) estimated that the limit can never be attained, just as regular polygons
inscribed ma circle cannever be equal to the circle. He asserted “We give the name ultimate
magnitude to the limit which a variable quantity can approach as near as we would like, but
to which it cannot be absolutely equal”. On the other hand, lurin (1685-1750), said that the
“ultimate ratio between two quantities is the ratio reached at the instant when the quantities
cancel out”, “it is not a question whether the increment is zero, but that it is disappearing,

or on the point of vanishing”, “there is a last ratio of increments which vanish”, “an
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increment born is an increment which starts to exist from nothing, or which begins to be
generated, but which has yet to attain a magnitude that may be assigned to such a small
quantity”. D” Alembert insisted that a quantity should never become equal to its limit: “To
speak properly, the limit never coincides, or never becomes equal to the quantity of which
it isthe limit, but is always approaching and can differ by as small a quantity as one desires”.

This debate is still alive in our students. In adiscussion one asked, “When n tends to zero,
isn’t n equal to zero?” The following dialogue between students clearly illustrates the
epistemological obstacle:

— the more n grows, the more 1/n approaches zero.
as much as one would like?

— no, because one day they will meet.

There are certainly many other obstacles to the notion of limit other than these four. The
mistakes which students make are valuable indications for locating obstacles. The
construction of pedagogical strategies for teaching students must then take such obstacles
into account. It is not a question of avoiding them but, on the contrary, to lead the student
tomeet them and to overcome them, seeing the obstacles as constituent parts of the revised
mathematical concepts which are to be acquired.

4. EPISTEMOLOGICAL OBSTACLES IN MODERN MATHEMATICS

It is inferesting for mathematicians to look back at history and note the struggles that gave
birth to modem ideas, leading to the logical state of the art today. However the twentieth
century quest for certainty based on a secure axiomatic foundation begun by Hilbert
foundered on Gédel’s imcompleteness theorem, and so uncertaimty remains. In chapter 4,
Haina has shown that acceptance of proof remains strongly dependent on peer approval.
The introduction of Weierstrassian analysis, d ding only on logical defiitions of
number concepts failed to elimimate the infinitesimal concepts that were an essential part
of earlier mathematical culture. Although we may formulate defmitions of limits and
continuity i epsilon-delta terms, we still have occasion to use dynamic language of
“variables tending to zero” in a manner analogous to that of Cauchy, with the resultant
mental imagery linked to the “arbitrarily small”.

Coguitively this phenomenon is to be expected. The idea of an “arbitrarily small”
number is but the object produced by the encapsulation of the process of getting small im
terms of Dubinsky’s theory of encapsulation (chapter 7). As Tall hypothesizes (chapter 1),
the formation ofa mental concept ofan “arbitrarily small number” is ageneric limit concept
where the encapsulated object is believed to have the properties of the objects i the process.
Thus the generic limit of a set of numbers which tend to zero is an arbitrarily small, yet non-
zero, number. The concept is a natural consequence of the way i which the mind is
hypothesized to work.

Hence, despite the attempts atbanning infinitesimals from modem analysis, it continues
to live in the minds and communications of professional mathematicians, even if it was
eliminated from formal proofs. The return of the logically based infinitesimal in the work
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of Robinson (1966) re-opened the debate, which continues to be hotly contested. Although
Robinson thought that his neat logical solution would solve the three hundred year conflict,
this proved not to be so. For Robinson’s construction of a hyperreal system containing real
numbers and ifinitesimals depends on a version of the axiom of choice and is therefore
non-constructive. This is becoming more a bone of contention as the arrival of computers
begins to focus mathematicians on the pragmatic need to provide finite algorithms for
canstruction of concepts. For imstance, the itermediate value theorem is seen to be
constructive but the existence of a maximum value of a continuous function is not. The
former asserts the existence of a zero of a continuous function between two places where
the function has opposi s and can be programmed on acomputer by a simple bisection
argument, but the latter depends ially on a noj ive proof by icti

In this way we see a recurrence of the problem of Lagrange as he attempted to remove
the metaphysical ambiguity from the calculus: just as difficulty seems to be resolved,
another seems to appear to take its place. This is typical of the complexity of the ideas in
analysis and of the fundamental limit concept.

That the limit concept is essentially difficult may be seen in the way that it is defined in
terms of an unencapsulated process: “give me an €>0, and I will find an N such that .. .”
rather than as a concept , in the form “there exists a function N( € ) such that...” This means
that the proof of the first thearem on the algebra of limits (that the sum, product etc of the
limit of two sequences is the sum, product etc of the limits) is framed in process terms as
the coordination of two processes, rather than as the combination of two concepts. Were
the latter to be the case, then the proof would follow a similar format, but it would have the

‘ that it could be d on a computer in such a way that the proof of
continuity is merely the operation of a computer algorithm. Yet this unencapsulated
pinnacle of difficulty occurs at the very beginning ofa course on limits presented to a naive
student. No wonder they find it hard!

5. THE DIDACTICAL TRANSMISSION OF EPISTEMOLOGICAL OBSTACLES

Given the lexities of modem math ics and the cultural col ions in meaning,
it is no surprise that such complex mteractions affect students in their learning. In their
human interactions they are very sensitive to tone of voice and implicit meanings and such
ideas are conveyed to them by their teachers. Although such meanings may be avoided in
written texts, they can passed on madvertently from generation to generation as the teacher
tries to “simplify” the complexities to “help” the students. When Orton ( 1980) mvestigated
the limit concept in terms of a “staircase with treads”, he showed a student the picture in
figure 17 and asked

(a) If this procedure is repeated indefinilely, whal is the final resull?
(b) How many tinies will extra steps have o be placed before (his “final resull” is reached?

(c)Whalis Lthe area of Lhe final shapein lerms of “a”, Le. what is Lhe area below Lhe “final staircase™?
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o M

Figure 17 :

imiting staircase
1f's student gave a formula in response (o (c) he asked:

Can you use this formula to cktsin the “final term” or lirit of the sequence 7,

His justification for using this terminology was (hat:

The expression “firal term” was agaln used in #n aUemp o help the stidents understand the
mening of limits.

However, in the light of what has becn said in this book about generic Limit concepts, it is
evident thata phrase such as “the final staircase”, far from helping fhe students with the
formalifies, is lkely (o croate 8 generic limit concept in which he studenl imagines a
staircase with an “infinte namber of steps”. This is precisely [he response (hat it cvoked

In such ways, despile ol ou atempts (o help studerts tvough e complexites,
uncmpts 1o “simplify” which we h:

Snxh obstacles are almost certainly essential parts of (he learning process. Davis &
Vinner (1986) suggest (hat here are scemingly unavoidable stages in which misconcep-
tions are bound to oceur, inline with our assertion fhat such obstacles require a cognitive
roconstnuction which are bound to involve a period of conflict and confusion. They too
Hightgh the misconceptions (hal ari from the e of langunge evakin inappropeisc

inwhich
the word i was nol uwd P the intia stages, they conclused that “avaiding appeals
Lo such pr ry well be fuile”. They

cbscrved (hal another pwblem arises from the sheer complexity of e new ideas whicl
cannot appear “instanianecusly in complelc and mature form” and so “some parts of the
idea will get other parts”. They give evidence, substant-
aing the discussion of Robert and in the p chapler, thal specific
xmples dominate the kearring, 5o fhal when monotonic sequences feature heavily in he
student’s earlicr experiences, it is nol surprising (hat they dominate the students” concept
images.
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6. TOWARDS PEDAGOGICAL STRATEGIES

The diversity of conceptions, the richness and complexity of notions, and the cognitive
obstacles makes the teaching of the limit concept extremely difficult. Numerous attempts
have been made and the problem remains unresolved! On considering these attempts, it is
possible to focus on certain fundamental points and to pose essential questions.

In the first place, far too many teachers seem to consider that it is sufficient to present
a clear exposition of the limit concept to enable the students to understand. It is far more
important that the students are made aware of the complexity of the notion and to reflect
on their own ideas and epistemological obstacles. Research so far shows clearly that the
students own conceptions are very varied, that they make fundamental mistakes and that
they do not necessarily overcome epistemological obstacles. It is necessary for teacher
education to take place to help teachers become aware of the problems mvolved. It is
equally important for students to become explicitly aware of the essential difficulties.
Experiments have been carried out m which, before starting a session on the notion of limit,
the students were given appropriate activities to help them become aware of their own
spontaneous ideas, images, mtuitions, experiences which they possessed before and which
would necessarily be brought into play during the learning process. In particular, they were
made aware of the different meanings of the words which they were going to use. This
proved to be a valuable technique and enabled them to build on their own knowledge and
understanding (Cornu, 1983; Robert, 1982a).

A further problem is that of the context in which the learning takes place. An effective
apprenticeship needs to take place in a problem-solving context. The notion of limit has to
be used to solve specific problems. It is therefore necessary to present situations in which
the student can see that thelimit isausefultool,in which the limit is seenas part of the answer
to questions which the student may have asked for him (or her)self. This is often lacking
in contemporary teaching. A defmition of the notion of limit is given, followed by a
sequence of problems and exercises, usually based solely on handling the algebra of the
limit concept the limit ofa sum, ofaproduct, of the composition of two functions or of two
series ... We have already seen just how difficult the unencapsulated logical form of the
limit definition is to handle for experts, let alone beginners.

It is important to consider the order in which the limit concepts are presented. Not only
is there the question of designing a logical mathematical order of concepts, but also the
cognitive appropriateness of the curriculum sequence and of the problems to be solved. It
is now well-established that in the transition to advanced mathematical thinking a purely
logical sequence of topics, in which the mat} ical concepts are introduced through
definitions and logical deductions, is likely to be insufficient.

Some alternative methods of approach will be discussed in later chapters. Tall (1986),
for example, decided that the research evidence on students’ difficulties with the limit
concept made it totally mappropriate to approach it either through the formal defmition or
even (in the case of the derivative) through a geometric experience ofa secant ” tending to
a tangent”. He hypothesized that the limit process should be used inplicitly in the calculus
as part of a magnification process to “see” the gradient of a curve and gaim experience of
the concept in action before the concept becomes the focus of formal discussion. In this
sense he is following a similar path to that of Douady (1986) in her “tool-object” dialectic
i which the concept is first used implicitly and informally as a tool to gain appropriate
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cognitive experiences before it becomes the explicit focus of attention as a mathematical
object. (Douady’s ideas are also discussed in §2.1 of chapter § and Tall’s graphic approach
to limits in the calculus will be discussed in the next chapter).

Dubinsky (chapter 7) has formulated the notion of a “genetic decomposition” of
mathematical concepts, that is to say a collection of reflective abstractions which are
approached ina certain order to provoke the learning of the concept envisaged. Thus if we
wanl to introduce the concept of the limit ofa series we must first try to describe the concept
image and the sequence of mental constructions which are necessary for the student to
make. As students with different experiences and different cognitive structures are unlikely
to require exactly the same sequence, one may hypothesize that it is essential that the
students actively and consciously participate i the reflective abstraction process to
reconstruct their knowledge structure and build the limit concept.

As we shall see in chapter 14, the computer may very well play a significant role in
providing an environment where the student may gaim appropriate experiences to construct
the limit concept. However, such approaches are very likely to contain their own peculiar
epistemological obstacles (Tall & Winkelmanun 1988) and it is necessary to reflect deeply
on student experiences in the new environment to see precisely what is leamt and in what
form the knowledge is held in the mind. The inferaction with the computer may involve
programming, for the individual to construct computer processes wlmh Lhmubh reflec-
tion,may permit the acquisition and yofthe correspond: ical
It may involve pre-prepared software to enable the student to experience carefully selected
environments which model the idea of a limit. It is equally possible to imagine a kind of
computer “toolbox” for the ]I..Anllnb of the limit concept: a computer tmvlmnmt.nl which
will permit the students t i b d to construct knowledge: to and
construct sequences, to operate on them, constructing new sequences, transforming and
manipulating them, studying their behaviour and the nature of their convergence.

Various other approaches are possible. In a context such as that of studying limits it is
vital that the computer software is designed within a teaching strategy based on the careful
analysis of the concept due to be acquired. Spontaneous conceptions, concept images,
obstacles, reflective ab ion, and genetic d ition, are all 1 tools
designed to assist in the design of such pedagogical strategies.




CHAPTER 11

ANALYSIS

MICHELE ARTIGUE!

The conceptual field of analysis
notions of:

s vast. At the elementary level it is structured around the

« real number,

< function,

« limits of numerical sequences and functions,

 contimuity,

« the derivative and mtegral of functions of one real variable.
At more advanced levels these extend to analysis of several variables, complex analysis,
functional analysis, measure theory and so on.

The two preceding chapters have summarized empirical research and cognitive theory

relating to the first four of these headings. This chapter concentrates on the smaller body
of work foc

ng on the fundamental notions of differential and imfegral calculus.

In the initial section we will briefly review major points in the histerical evohution of the
concepts and the ways that they have been taught. In the second we will use empirical
research and theoretical inferpretations to draw up a catalogue of the mental conceptions
constructed by students engaged i traditional education. Finally, i the third, we will
present some instructional treatments taking this research imto account and designed to
improve student understanding.

1 Thanks are due to Ed Dubinsky for his inilial lranslation of the fist drafl of this chapler and
Lo the edilor for his assistance with the final version.
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1. HISTORICAL BACKGROUND

1.1 SOME CONCEPTS EMERGED EARLY
BUT WERE ESTABLISHED LATE

It is well known that the fundamental notions of differential and integral calculus appeared
on the mathematical scene very early, but their development was very slow.

Fram the time of antiquity, calculations of length, ara and volume, based on the method
of exhaustion, opened the way to integral calculus. In the seventeenth century, the problems
of tangent, maxima and minima, linked in particular to the study of celestial mechanics and
ballistics in their turn opened the way to differential calculus. This set the scene for the
independent development of the calculus by Newton and Leibniz, culminating in the
reciprocity of the operations of integration and differentiation. The first text-book: Analysis
of the infinitely small for understanding curved lines was published by the Marquis de
I’Hospital (1696).

It was not until the beginning of the nineteenth century that Cauchy developed a firmer
theoretical basis for the calculus using the notion of limit, and mtegration was developed
using continuous functions. In the remaimder of the nineteenth century the arithmetization
of analysis was carried out, through formal definitions of the real line by Dedekind cuts or
Cauchy sequences, and formal defiitions of limits and cantinuity using €—8 methods in
a purely arithmetic form by Weierstrass. This led Boyer (1939) to claim:

the unequivocal symbolism of Weicrstrass may be regarded as effectively banishing from the
calculus the persistent notion of infinitesimal.

Meanwhile, it was not until 1893 that Stolz mtroduced the notion of differentiability for
functions of several real variables and only in 1911 that the development of functional
analysis led to Fréchet imtroducing the differential in its modem iterpretation in terms of
linear tangent maps.

The latest twist in the story occurred in the 1960s, when Robimson formulated arigorous
theory of non-standard analysis, reintroducing infmitesimals on a logical basis after a
century of rejection.

1.2 SOME CONCEPTS CAUSE BOTH ENTHUSIASM
AND VIRULENT CRITICISM
It is well known that from its birth, infinitesimal calculus has excited passions. On the

onehand there is the enthusiasm of those who, like theMarquis de I'Hospital, are ished
by the possibilities opened up by the algebraisation of calculus:

The extent of caleulus is inmense: it is as casy for mechanical curves as for geametrical ones; il is
indifferen fa radical signs and even makes use of them; il extends (o as many variables as one would
wish; comparisons of all kinds of infnilesimals are equally easy. Furthermore, an infinity of
surprising discoveries has come out of it (preface Lo de I"Hospilal 1696)
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On the other there is virulent criticism from those for whom infinitesimals are beings
without roles, carriers of paradoxes, the manipulations of which are based on dubious
practices. Thus Berkeley fiercely criticizes the arguments of Newton:

‘This reasoning seems neither correct nor honest. For when one says (hal increments are no longer
anylhing or thal here are no Lo the effect thatinerements
were something or Lhat there were increments is destroyed, yet a consequence of he supposition is
retained... This is a false reasoning.

Likewise, D' Alembert wrote (in hisarticle “Differentiel” in the Encyclopedie Methodigue):

1L is nol al all a question of how one speaks ordinarily of infinilesimal quantities in differential
calculus: il isjust aquestion of fimits of finile quantities. Thus the metaphysics of infinity and some
infinitesimal quantities being larger or smaller than others, is lotally useless in di fferential calculus.
One only uses the lerm infinitesimal Lo abbreviste expressions. We would nol say Uerefore, as do
many geameters, thal aquantly is infinitely small neither before il vanishes nor after it is vanished,
bulin the very instant st which it vanishes: for wonldn*t that mean a very false definition, a hundred
tinies more obscure Lhan that which one wishes (o define?

A little later Lagrange (1797) would attempt to liberate analysis simultaneously from both
limits and infinitesimals, judging each of the two approaches to be as subject to criticism
as the other.

1.3 THE DIFFERENTIAL/DERTVATIVE CONFLICT
ANDITS EDUCATIONAL REPERCUSSIONS

At the heart of these differences of opinion is the differential/derivative conflict, originally
a debate between the English school using Newton’s fluxions and the continental school
using the differential of Leibniz. On the continent during the eighteenth century, the
differential of Leibniz was one of the essential motors of the development of differential
and integral calculus.

But the structuring of differential calculus around the notion of limit led to the
progressive decline of infimitesimals and in their wake differentials were supplanted by
partial derivatives (defined i terms of the limit concept). The differential survived i
analysis — reduced to the role of a formal expression invariant with respect to a change of
variables and therefore a useful tool for calculation and memorization. It survived also in
applications, especially in physics, with a role approaching its original status under Leibniz
— as an infinitesimal increase —a useful tool for itution in equations, but d of
being based on less rigorous practices.

The article “Differential Calculus”, i the French version of the German Encyclopedia
of Mathematical Sciences, gave a very good account of the situation at the end of the 19th
century. The differential was defined only at the end, i reference to work of Cauchy, as
the product of the derivative by an arbitrary increase of the variable. The author accompa-
nied his definition with the following comment:




170 MICHELE ARTIGUE

In fact the Leitniziancctaticn is thearefically superflucus. Practically, ithas a grea! imgcttarce.
In applicaticns, usege is facilitated if one agrees, once z1d for !l bt one understands by the syrbol
ey . o ). iy

Uiatis,arelaticn bebween X,y, dx 413 dy, 3
h longer has,its true, any precis It bowever,
T no Incmvenicace msins , fe neader e 11 acque & procie esnins, ! sufices to cvide
both sides by dx nd pass to the limitas dx tends toward 0.

(Voss, 1859, transtated from the Frerch edition p. 279)

ue. tavicla physica)

Itis only in fhe course: of the twentieth cenfury (hat the differential reappeared, in the
development of functional analysis, as he key nofion of Jocal approximation, but this time
with a sublly differen role: hal of a langent linear functional.
These debales and conflicts, and (he atmosphere of scicntific uncertainty thal they
engendered, reverberaled throughout education for an even longer fime.
seconda

Differential and ikegra calulus was ikroduced into ry education at he
beginning of d in 1913 the Commissi P
PEnscignement des Malhématiques (CIEM)? organized  stody of the subjoct, poblished

by the journal “Enseignement Mathématique” the following year. The general reporter
wrote:

Scientific literature itsll has not made a clear resolution of the diverse defmiticas cf differential.
(Beke, 1914, . 272)

‘The stmosphere of uncertainty sill persisied in 1930:

“Thisquesticn (differentials)is coe cf the peinls in mrathematics where tesewto search fer precisica
do mat Mys find, even wilh the best authrs, the esired clarity. Prident recommendatcos 2 to
¥ the expesilion, doublless
et correc ccdoron with Ol el b the gt of edocai 4 reee tha

(Delers, 1930, p. 333)

“To this is added the problem of developing he most rigorous possible instruction, without
metapliysics and therefore without infinitesimals, and o eliminate emors by beginners
bascd on formal and automatic manipulation of differentials influcnced by (heir stalus

A scon a5 one passes Lo Cerivalives ofthe seccrd crir, one sems in absurdity letz be a function
oF a variable y which is iself a Rurcticn of x; 1 wrile:

Wy

In this formulal write ¢2 bwice, and the symbol as bwo different meznings

2 The CIEM later became ICMI (Intermationa} Commission for Mathermatical Instruction).
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The dificulty is sgeravatod if cne bas severs] indefendent varsbles. T vrite:
drmEace g
2o e e .
Here again we have (hvee occurrences of the symbol dz with three differen meanings...
How can we avoid tese rags? Begjnners will nol be able lo doso.  (Foincard, 1899, p. 107)
The author ciles  delightful story, where a studeni canie Lo fhe equation of propagation of

sound, and afer having simplified dr”, extracted the square roots of diferential clemerts
by simply suppressing the indices 2

a% de

Gedogsta
Bek of his CIEM report dedicated to dif ials in Oy
Wears o deing i o enter
i tica. 1 i to not ietroduce differentials

stallin sevondary edesion. “This view s justified by the actual tendercy to dliminate differentials
in the whele of mathematical sience. How rmuch mere recessary would it appear to reject the
teaching cf al noticns v rise to 50 rch misunderstanding,

‘Thas in sccondary education, teaching differential calculus was based on the nofion of
derivative, defined 55 a Limit ofa quotient and associsted with he geometric picture of the
tangend a5 a limiting position of secants. In higher elementary education, preference was
given to derivatives and partial derivatives, whilst differcntials were defined in terms of
(s and limited to first urd':

Even so, to
be virulent (see, for cxamplc, u.mu, 16%9). In mcuamemml Gazetic, controversy
raged for several years following the appearance of an article of E.G. Phillips (1931)
regretting hal students might come to the university without having heard a menkion of
differentials. He proposed to introduce them from fhe beginning of*Elementary Calculus”
using the modcm definition nfdm‘ercrlmblll\y arising from the increase of he function

riable. There fllowed a debale on this question af the
annel meeting ol‘lhe hesocationin 1530 Subsequently the derivativewas Srodwedas:

8 _ &
& ™ o B
4
wheto 8y—f(x -840 The symbal & nor single

indivisible symbel where dy and dx are given no individual meaning:
yldx must, at east for sorme considersble lime, be regande as an mepmme whole, just as B s
It does not in any simple or strsighticrvard way mean zngth vied by dx’ and a
Staterent such as “dyldex dx/dt - dyldt by cancelling d" s just so much yhbensh

(SMP Advancid Mathematics Beckl, 1561, . 221)
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1.4 THE NON-STANDARD ANALYSIS REVIVAL
AND ITS WEAK IMPACT ON EDUCATION

The publication in 1966 of Robinson’s book Non-Standard Analysis constituted, in some
sense, a rehabilitation of infinitesimals which had fallen imto disrepute since the
arithmetization of analysis. By using a logical construction based on ultrafilters, he
proposed a rigorous foundation for the approach to differential and integral calculus using
the infimitely small and the infinitely large. Tt was met with s ion, even hostility, by
many mathematicians who saw it only as a useless reintroduction of discredited, even
dangerous, archaic tools whose rejection had done nothing to hinder the development of
mathematics for more than a century. Nevertheless, despite the obscurity of this first work,
non-standard analysis developed rapidly both in mathematical research and in research into
logical foundations. In the latter case a major goal was that of simplifying the initial
canstruction of Robinson or to propose axiomatic approaches (for example, Nelson, 1977).

The attempts at simplification were often conducted with the aim of constructing an
elementary way of teaching non-standard analysis. This was the case with the work of
Keisler (1971,1976) and Henle & Kleinberg (1979). The first work of Keisler served as a
reference text for a teaching experiment in the first year of university in the Chicago area
during 1973-74. Sullivan (1976) used two questionnaires to evaluate the effects of the
course: one designed for teachers, the other for students. The eleven teachers involved gave
a very positive opinion of the experience. The student questionnaire revealed no significant
difference in technical performance between standardists and nonstandardists, but showed
that those following the non-standard course were beater able to interpret the mathematical
formalism of calculus and to make sense of it.

The appearance of the second book by Keisler (1976) led to a virulent criticism by
Bishop (1977) in the Bulletin of the American Mathematical Society, accusing Keisler of
w(.kmb the goal of modem mathematicians: to convince students that mathematics is only

“an esoteric and meaningless exercise i technique”, detached from any reality. These
criticisms were in opposition to the declarations of the partisans of non-standard analysis
who affirmed with great passion its simplicity and intuitive character. For example Henle
and Kleinberg wrote in the preface to their work:

Thus we were led (o the &8 approach Lo calculus, an approach thal, although lotally precise and
rigorous, was a disaster for students Lo lcam and (cachers 1o (each... A most natural place for
Robinson’s insight is a next (and possibly final) point in the evolution of the (caching of calculus.
We can now develop calculus using infinilesimals and enjoy all of their simplicity and intuitive
power, yel al e same time work in a mathematically precise and rigorous atmospherc.

‘We shall return to this question at the end of this chapter. However, it is necessary to
emphasize the weak impact of non-standard analysis on contemporary education. The
small number of reported instances of this approach are often accompanied with passionate
advocacy, but this rarely rises above the level of personal conviction.
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1.5 CURRENT EDUCATIONALTRENDS

As the majority of research cited in the remainder of this chapter is from France and
England, we restrict ourselves to very brief descriptions of recent educational trends in
these two countries.

Calculus/Analysis Teaching in France:

After the reform of 1902, the derivative was introduced in secondary education to students
aged 16-17.1n 1971 theclassicaldefinition, interms of the limit of a quotient of differences,
gave way toa definition in terms ofaffine approximation, the derivative appearing as a by-
product of the approximation — the coefficient of the linear part, as evidenced by the
following extracts from the curriculum:

“Lincar function langent al apoint (o a given function; derivative al this point..” 1971

“Expansion limiled lo order 1; derived number, dynamic inferprelations (velocily) and geometric
interpretations (tangen()...” (1982)
“Approximation by an affine function in a neighborhood of 0, functions which associate (o a given
B (b (1+hYS, 1/(1+k), ¥(1+k). When, for a neighborliood of =0, etk can be wrilten in the
Form I{aHhy=f{ay+-Ak-+re(k) with lim €(k)=0 when J lends (o 0, one says thal Lhe function [has 4
for ils derived value al ..” (1985)

Carrespondingly, the tangent is presented as the straight line of best local approximation
to the curve associated with the function. But, since the reform of 1982, the ££8
formalization of the limit has been omitted.

Integration is now introduced in the last year of secondary education (age 17-18),
traditionally defined in terms of the primitive, whose existence is assumed for a function
cantinuous on an interval. The calculation of primitives is mmledlalely applied to the
calculation of areas (area of a domain in the plane defined ina dinate system
by the relations a<x<b and 0<y<f(x), f| bemg a continuous positive [ulxcllon) is specified
in the syllabus that the difficulties involved in the notion of area will not be introduced.

The reform of 1972 also introduces a more ambitious program in the domain of integral
caleulus, with the definition of Riemanun sums for a numerical function of a real variable
on a bounded interval: the theorems on the i bility of i or pi i
monotone functions are admitted.

The reform of 1982 sees the return of the integral as primitive and as the area under a
positive function, and introduces examples of- the value of an integral by
various numerical methods.

Differential equations in the syllabus are only cancerned with algebraic solutions in the
most simple cases. The latest programs only mention linear differential equations with
constant coefficients of the first and second order without a second term.

At university, in mathematics or physics, formal struction in analysis constitutes the
major part of the first two years. In differential calculus, the derivatives, partial derivatives
and lacobian matrices occupy centre stage. The notion of differential is introduced at the
beginning of the study of functions of several variables. For the last twenty years this has
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been in terms ofits modemn role in the tangent linear map. Integration is concerned with the
classical development of the Riemaun integral. Differential equations are taught, but
essentially only with the goal of obtaining algebraic solutions.

Calculus/Analysis Teaching in England:

InEngland prior to the Education Reform Act of 1989 there were no national directives on
the curriculum and this act only concerns itself with education to the age of 16. The
syllabuses at “advanced level” in school (aged 16-18) are determined by external
examinations which are offered by a variety of campeting examination boards who decide
their own content subject to the agreement ofadvisors from the teaching profession and the
universities, subject to an agreed “common core”. The pure mathematics content of the
various syllabuses is based on the algorithms for differentiation, integration and simple
ideas about differential equations. Th plainedinadynamic way (“asxtends
to a” or “x—a”) and the course is mainly concerned wnh the nleﬂtods and applications of
differentiation and integration; only a very few may see the €~8 definitions at a later stage.
The methods of the calculus may be applied in other areas such as mechanics. At university,
maﬂlemaucs students study the loglcal foundations of analysis using € —8 definitions (or
k logical formul whilst other students study calculus methods or
analytic theory to a level appropriate for their nain subject. Formal analysis is known to
trouble allbut the most able mathematics students and in some universities there is a trend
to reduce the formalities of the subject and concentrate more on methods and applications.

2. STUDENT CONCEPTIONS

One can associate some apriori concepts with the notions of derivative, integral, tangent
and tangent plane. For example, one can conceive of the tangent to a curve at a point 4 as:

a line passing through4 but not crossing the curve in a neighbourhood of 4 (the
point of view used notably by Appollonius to determine the tangents to the
conics and not requiring a differential approach),

a line having a double intersection with the curve at 4 (a point of view present
in the works of Euler and Cramer for example, then later systematized in the
context of algebraic geometry),

a line passing through two points infinitely close to 4 on the curve (the point of
view of Fermat, Leibniz,...) or the line which the curve becomes when one
magnifies it in a neighborhood of 4,

the limit of the secants (4M) as the point M tends toward 4 along the curve, as
in figure 18 (the viewpoint of D'Alembert for example, traditional in educa-
tion),

the best linear approximation or the only linear approximation of the first order
to the curve in a neighborhood of 4 (leading to the more sophisticated idea of
the tangent linear map),
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Figiure 18 : The dynamic moverrent of a secant ko a tangential yceition

« the line passing (hrough A whose slope is given by the derivative at 4 of the
function associated with the curve (where the derivative is assumed to exist).

Similarly, one can see in (he derivative at x=n of the function [ as:

= the limit of the ratio (Fa-+)-)/A when & tends toward 0,

« the first order cocfficent of the expansion liniited to order 1 of the function at
a (a5 in the contemporary French programme),

= the couficient of fhe first order term in the full series expansion of faround a
(poind of view of Lagrange),

« the coefficient characlerizing the Tinear map, tangent (o fat a,

= the slope of he tangent at

= the number or the function oblained by applying the usual rules of differentia-
tion, knowing (e derivatives of he elemertary functions

or again,

- the slope of shighly magnified portionaf the graphitsclf (fora “locally strsight”

‘grmph- the view poinl advocaledby Tall (1986a) andnow adopiedby the British
School Mathematics Project in its new curriculum).

Similarly the inlegral has several differend conceptions: (he inverse operstion of differen-
tiation, a process for oblaining lengths, areas, volumes, a continuous lincar form ona space
of functions, or more generally a process of measure.

Onecan imagine that
being preferred because of the mathematical conlext or because of individual preference.
One or another situstion can lead (o (heir being called forth and put inko eficct. What
happers for students? In particular, which viewpoirts are preferred and which are difficult
1o put into effect? Ase Ihere sublle transitions belween different levels of functioning, are
Ihere conflicts, obstacles? What rdle does education play in all this?

Whilst the research discussed in the next section was nat designed to answer (hese
specific questions, it fumishes a good indication of the conceptions of studenfs and the
manner in which they develop.
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2.1 ACROSS-SECTIONAL STUDY OF THE UNDERSTANDING OF
ELEMENTARY CALCULUS IN ADOLESCENTS AND YOUNG ADULTS

The study conducted by Orton in his thesis (1980) is experimentally based on individual
interviews conducted with 110 students aged 16 to 22 (60 in their last year of secondary
school — the English “sixth form” — and 50 in college) all having chosen to study
mathematics and having taken at least one course in calculus. The different tasks proposed
in the interview were regrouped by items in the analysis, each concerning just one aspect
of elementary calculus, and the responses were evaluated for each item on a scale of from
0to4. TablesVand VI, below—extracted from Orton (1983a, 1983b)— givea global idea
of the levels of success corresponding to each item for the two populations involved.

Following the work of Donaldson (1963), Orton classified the errors into three
categories: “structural errors”, “executive errors”, and “arbitrary errors”.

Structural errors were those which arose from some failure (o appreciale the relationships involved
inthe pr orlo 1 o solution. Arbitrary errors were said (o be those
in which the subject behaved zrhll.ranly and failed Lo take accounl of (he constraints laid down in
whal was given. Exectilive errors were those which involved failure (o carry oul manipulations,
though the principles involved may have been understood.

Without going into further details, it seems important to note that the research showed:

* a reasonable mastery of algorithmic algebra in terms of calculation of deriva-
tives and primitives, at least for the simple functions, as indicated by the degree
of success in tables V and V1.

significant difficulty in conceptualizing the limit processes underlying the
notions ofderivative and integral: For instance, when questioned what happens
in figure 19 to the secants PQ on a sketched curve as the point Oy, tends towards
P on the circle, 43 students seemed incapable, even when strongly prompted, to

L . Mean Scaores (out of 4)
Description of task Sehool College
Infinite geometric sequences 2.88 256
Limits of geornetric sequences. 292 2.78
Substitution and increases from equations 332 3.68
Rate of change from straight line graph 222 202
Rate, average rate, instantaneous rate 088 1.18
Average rate of change from curve 222 202
Carrying out differentiation 3.62 350
Differentiation as a limit 1.88 114
Use of d-symbolism 1.52 1.40
Significance of rate of change from differentiation] 343 362
Gradient of tangent to curve by differentiation 3.63 376
Stationary points on a graph 230 2.54

Table V: Performance on calculus tasks
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e Mean Scores (out of 4)
Description of Lask o | Calese
Limits of sequences of numbers 328 3.06
Limits from general tems. 28 2.90
Heights of rectangles wnder graphs 265 3.4
Use of previous heights in a new situation 2.40 k373
Caleulalion of arcas of rectangles 3.03 3.6
Simplification of sum of aress of rectangles 243 35
Sequence of approximations Lo area wnder graph 218 32
Limit of sequence equals area wnder graph 078 1.00
Limit from sequence of fractions, from general term| 167 248
Carrying oul integration 298 3.40
Integral of sum cquals sum of integrals 110 060

ons in area calculstions. 255 278
Volume of revolution 0.95 088
Tatle VT
5 e proces o e a0 e cunc?
Th fusion in thal the secant

many students, they appearcd only (o focus (heir attention on the chord (),
despite (e focf (hat the diagram and explanation were infended lo try Lo insurc
hat his did not happen... Typical unsatisfactory responses included : “the line
gets shorter”, “it becomes a point”, “the area gets smaller

“These responses are entirely consistent wilh (he nature of the geometric cbstadle studied
scparalely by Comu and Sierpirika (scc Chapter 10).
Similarly, aMhough students showed certain competencics in calculafing limils of
noes given explicitly in terms of numbers or simple functicnal expressions, only 10
were capable of expressing that (he exact area under part of a parabola could be oblained
s the Timit of the sums of approximating rectangular strips. Orton conchded:

Y

7 X

Figure 19 : Secants “lending 1o a tangent
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Students were able Lo obtain a limil from a sequence whien the sequence was direclly requested bul
were ol able (o appreciale when a fimil would solve a problem.

A similar difficulty arises evaluating areas bounded by curves in slightly more general
circumstances (the presence of negative values, discontinuities, or curves associated with
functions x=f(y) for example):

Many students appeared (o know what (o do, bul when questioned about theirmethod, didn*t really
know why they were doing il.

Further difficulties included:

« the difficulty of using relevant graphical representations. Students could
usually calculate derivatives of polynomials correctly and were equally suc-
cessful with a task in the form:

Find the gradient of the tangent to the curve y=x*-3x2+4 when x=3.

But having to evaluate these same rates of growth from the graphs for functions
of similar camplexity, a non-negligible proportion made errors, confusing
average and instantaneous rate of growth or simply giving the vatue of the
function at the point in question. In a graphical context the expression of the
derivative as a limit was poarly understood: 96 students, after having found the
expression for average rate of growth of the function f(xy=3x2+ 1, between a and
ath, could not see how to obtain the rate of growth at 2.5 or at a general x.

the minimal meaning ascribed to the symbols used.
For instance, when asked to explain the meaning of dx, dy, dy/dx, 71 gave

incorrect responses for the rate of growth:

rate of change of y

rate of change of x ' “rate of change at a point”, “small increase in the rate

of change”

and 25 interpreted dx as the limit of & when &x tends toward 0.

is strength in the algorithms of algebra as opposed to weakness in graphs and geametry
is also found by other authors, some already cited in the preceding chapter, for example,
Tall, 1977, Artigue & Szwed, 1983. The latter presents an account of the responses of 89
first year university mathematics students of mathematics to the question in figure 20.

The first question yielded 28 carrect responses (with some minor errors in calculation),
29 incarrect responses, and 31 incomplete responses, the errors being principally based on
canfusion between continuity and diffe iability or between diffe iability and exist-
ence of derivatives to the left and to the right.
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Let fbe the function whose graph is drawn above.
at which points is f diffcrentiable? differenuable Lo the right? (o the left?

» describe the behavior of the graph of £
= describe the behavior of (he graph of the function g defined by

0= J" G0y at
.

Figure 20 : A conceptual task on differentiability 2nd integration

For thegraphof 1"
= 67 students (out of 89) gave a correct graph on the portion 14,2[ and S ofhers
had an incorrectly positioned horizontal scgment on (his portion,
63 considered hesignof the derivative on the interval [2,5[, but only 18 students
m when ‘and
1*(5) e taken into sccount, only 10 pupils gave a satsfactory graph.

‘The graph of the Function g was only attempied by 35 students. The curves produced werc
extremely diverse and scemed to have only one property in common: the graph is a line
scgmenton [-2,2]. Only 14 graphs were
Oflhe 35 graphs produced, only 13 considered the direclion of variation in g, and only 3
could be considered acceplable solutions.

Analysis of the transcript and the errors commitied shows (hat many students did nck
vk dieely wih (he graphs but sought to oham algebraic cxpreesions for £ on cach
interval in ordert
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‘When the results produced were inconsistent with the graph, there seemed little awareness
of canflict, their confidence being placed more in the calculation than the picture.
A sunpllred version ol’lhe derivative part of this test has been used for several years in
y entrance ions for potential matk ics students. The results obtained
are in the same spirit: significant confusion over continuity and differentiability of the
graphs, with carrect responses only for linear parts of functions (cf. Robert, 1983; Authier,
1986).

2.2 A STUDY OF STUDENT CONCEPTIONS OF THE DIFFERENTIAL,
AND OF THE PROCESSES OF DIFFERENTIATION AND INTEGRATION

To investigate students ions in the related disciplines of math ics and physics,
two teams from mathematics education and one from physics education collaborated in a
research study of the effects of current educational practices in the first two years of
university (cf. Alibert et al, 1987; Artigue & Viennot, 1987; Artigue ef al, 1989). The
researchers conducted their work in three directions:

analysis of the historical evolution of the concepts and how they were taught,

analysis of student conceptions and, to a lesser extent, of the teachers, through
ly 10 i ires from a 1 or physical viewpoint,
'ogethcr with individual interviews,

« experimentation with, and evaluation of, sequences of instruction.
The analysis of historical evolution suggested three directions for analysis of students’
canceptions:

+ the meaning and usefulness of differentials and differential procedures,

+ approximation and rigour in

« the role of differential elements.

We cansider the role of each of these in turn.

2.2.1 THE MEANING AND USEFULNESS OF DIFFERENTIALS
AND DIFFERENTIAL PROCEDURES

Matt ical ionnai leted by 85 third year university students, revealed an
important difference between the declarative level (how the students described the
concepts) and the proccduml level (how they czmed them ouf). At the declarative level, the
tangent linear app differential conforming to the definition in the
course. At the procedural level, the differential tended to lose its functional role and the
status of approximation disappeared, to be replaced by algebraic algorithms using partial
derivatives and Jacobian matrices.
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A typical manifestation of this was reveated in fhe responses (o fhe following two
questions:

14) What definiticn veuld you give?
1b) Vet notations would yea intrccuce?
1e) What examyles would you use?

1¢) What important points would you stress7"

and
Ls the unction CR—R detined by ) « 2ewiy+y’ W 1-cosxty) diffrentiatle
at e point (0,0)7 Justify yeur azswer.

The for 12) i the notion oft: lincar maps; i

of the question

* 33 mentioned (he relation between the differential and related nofions
(Gonvity, difleeniabiliy, extene ofparial deiatvs),

-1 idea oflocal approximation, the functional and linear aspect,

* only 11 mentioned the algorithmic procedures of calculation.

In the econdcase,  small minority (13%) recogrined rl he givenfunction s alrcady in

by fhe vanishing of the square rootat the point in question, wenl directly to the caleulation
of partial derivatives. Even among those who recognized the Tincar part, very few
succecded in proving thal the remainder is of higher order.

The percentages of respones (0 ofber questons confim (s impresions: §6%

e function al the end
of the questionaire; Tess than 10% mspmded to questions requesting a justification of
classical approximations for calculating a volume by cutting il inlo skices. Some students
even complained (hal they thought the latier was off the syllabus.

“The questionnaires formulated from a physical viewpoint show clearly that first and
second year students do not understand the differential procedures. For example, they were
provided with (he beginning of'a classical cakulation of atmospheric pressure leading to
e differential expression dp = ~pg dz. (figure 21

“The responses, summarized in figure 21, show:

- the strong conviction of students fhat the atmosphere needed lo be cut inko
infinitesimal skices (90%),
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Tora. cyhndm:d c)enrnl of volume,
z with base area

Force te sopressurc on the lower facer Sp (2.

Toroc due fo pressure o1 e upper face:§p (4 H-2)

Welght: pgSdei)

Palance of foroes:Sp (z) —Sp sk ) -psSe =0
p=-pgis

Question: dzis supposed tobesmall.  A=18  N=26  N=49
Is it mecessary?
1fso,why?  becavse of pla)

because of pie) or £€) [:l [:l I:I

Is it pecessary with water?

Figure 21

but

+ theis justifications were based mainly on the mistaken view thalp i
of 2, rather than he foct thal pg is nof constant it is a function of ).

With water the factor pg is constant and cutting o slices is o longer necessary, but
s whogi i isnecessary
Locut into shees.

2.2.2 APPROXIMATION AND RIGOUR IN REASONING

In general requests on e ires for justification of
were poorly ansvered and wersconsidted “a e sylabus”urless they could be sved
theorens. |

by the stodents were incorrect more (han halfof the fime and Ihcyulmaj ity of errors
were concerned with (he remainders, s if e fact of writing an € arbitrarily af fhe end of
2 formula is sufficient to make it rigorous.

In physics, the problem of rigour is handled differently, with phn..cs such as “provided
(hal d: is sufficienlly small” being used instead ofe—8 - method:

These conceptions remained persistent, even with mor atvanced. stodeis. The
problen in figure 22 was prescnked (0 50 (hird year mathematics studerks, 22 fourlh year

13 fourth year inavery for

teachirg.
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The votume of such 1 slice &t height 2is
T a: assimilatcd to that of a right cylinder
of the same thickness dzand of base rea:
117¥es showa in the drawing)
X SodV=mride= m(RE-2Me
and the volumie of the sphere

"
V=L " R2-2) dz g7t

3 the same procedure is used 1o find the area of a sprere, the following cxpression
is obuained for the area of an elementary sfice of thickness dzat beight z

dS=2mrdz =2y Rz dz
and therefore the arca of ibe sphere s given by the integral:

[ W20 = [ on kriir0 a0 = n,

Could you explain why the same method leads to a corredt valuie in the first case
toa Talse value in

Figure 22

Onlya small proportion of oned (ess than 25%) scemed capable of giving
n ncceplable response. For instanoe, a fuluwe teacher wrote:

‘Mybe itis ot by chance liat it works (mn;ulzhon of the volume). Indeed, the relationship
y ecmputation abcut the arez of the sphere

doss not work”

‘The results oblained here are completely compatible with those oblained in another
mahenatial qustionire givn (o 35 sudents of the Bird ye . figure 23

“The majority tobe valid
because (he given sfices Lend lowards a spherical e Ot b impression tha, for
the, (his geomelric convergence guarartees (he convergence of all quantities associated
with the figure, even though this is falsc.
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o i th volure f a sphors, physicisis cut t into clcmmmy stiecs
and ico by 2 small ri lindel

Is it possible 10 choose otber approximations, for mw do ihe
following approximations lead to the same result?

/ N\ / A\
/ \ / \

Stices gencrated by chords Shees generated by tangents

Figure 23 : Elerents] slices
2.23 THE ROLE OF DIFFERENTIAL ELEMENTS

‘The responses o (he questionnaire show that the functional role of differentisls is hardly
present in mathematics students al he declarative level less than a third of the differcntials
given in respons Lo various questions were in (he form of a function. Morcover, (he
‘eometric images associated with (he concept were wesk and restricled 1o one dimension.
For instance, this is manifested in the responses Lo the following questions:

“The map - R is defined by:

Tx)-exph+ x)* i)
Find its differential at (e poind (1,0) and give a geometrical inlerpretation.”

Ofthe 85 third year ioned, ony 31 dealt
only 8 gave acorrect interpretation in lerms of the Langent plane. In particular, many spoke
of fhe Langen Lo he curve 85 if they were still in the one dimensional cas.

In physics, the results oblained show that the role of differcntial elements orcillales
between fwo poles:

« Al one extreniity, e differential elemerts have s purely fomal role of
indicating the variable of integrationanditwasbetter to avoid thinking toomuch
about what (hey could mean when manipulating them:

“To inlegrate, it essertial not (o think about whal i represents, but to procecd
‘mechanically, otherwise we are done for” (student of the first year) —“dLx s not
real” — “immaterial” ~“the length is fictitious” — “in fact, it does not matler al
all, when integrating, df becomes 8 variable of integation”.

Atihe ofherend, i el have

‘which can exchude all ofher meaning:

“dl is a small lengh”, “a littke bit of wirc”,
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‘The problern is 10 find ke muggneric fiekd created by & current flow
of length a1 & poini A (as in the drawing below).

An element of Wire di, round a point #
atr crcates e fied B at M.
In s case, e vectoried wldition leds
1oun ulgebradc one, with;

1yl dicos
gt
an?
H - M
Questions

+ can 4B be considered as the differential of & fencticii?
150, u function of what variables?

= same question for .

« express 6B wiih only one variable,

Figure 24 ¢ The role of differentid elements
Betwoen (hese fwo pokes, there are a wide range of views such as,
“dz is the Limit o Az when Az—0%, “d! is an infinitely small element”, “one

cannoi find anything smaller”, it means very simple” (which apparcntly means
that differentils are oficn used to simplify the situaticn).

Ofien, to solve & problem, it is necessary lo give a functional meaning (o the differenial
elements. The authors consider (hat strong conceptions, either purely formal or purely
material, can make this process more difficull. Thus, faced with (he pmblem of cakulating
the induction created by a straight clectic wirc (hrough which a currend s passed (ﬁgurc
24), the only students who did nol ke thecL

dlinloa fu (1,6 as dl = r 6,
capn.blc nl'swms 2 furctom role fo differental ciements.
From the b , it Seems that ~wo

for the M potendially in conflict with he definitions, bul governed by cerlain
tendenci

. e algorith shelm the meaning linear approxi-
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« questions of rigour are reduced to formalism,

+ the functional mode of thought is weak.

It should be emphasized that the existing gap between teaching in the two disciplines
usually prevents the potential conflicts from being realized.

2.3 THE ROLE OF EDUCATION

The empirical results discussed so far show a broad coherence over a wide range of
students: in every case there is a dominance of the algebraic mode of procedure contrasting
with a frailty in geometric and graphic modes, and a lack of meaning for limits and/or
approximation. Questions of rigour or justification linked to the treatment of approxima-
tions are conceived as secondary.

But how are these observations influenced by the educational process? Alibert e al
(1987) reinterpret the results obtained in the context of their current instructional proce-
dures i analysis. Two contexts appear: algorithumic procedures and the conceptual
viewpoint involving questions of meaning and legitimacy of the theory. Each discipline
tries to manage the relations between these two contexts, in a manner appropriate to the
subject, Whl]s seeking an optimal balance b(.lwu,n rigour and operational practice. The

developed by students are ially a reflection of the very unsatisfactory
equlllbna found by education.

In mathematics the means of justification is classically that of proof. However, from the
start, education distorts real difficulties conceming limits, functions, basic tools of
approximation (such as imequalities, absolute values, reasonmg with sufficient conditions,
&¢), and the und ing and i ion of ifi Instead it conceals
them all by using powerful algebraic algorithms (calculation of derivatives, partial
denvallves Jacobian matrices, primitives) and potent theorems which reduce theoretical

ions to algebraic techni (such as theorems involving the sum, producl and
camposition of C! functions). R ibly this algebraic algori on
the one hand gives too privileged a role to the algebraic setting, and on the other tends to
drain the differential and integral procedures of their real meaning.

In physics, not being constrained to requiring proofs, it is possible to take refuge i the
conviction that it works, even if one does not know why, once again denying students a
satisfactory scientific experience.

3. RESEARCH IN DIDACTIC ENGINEERING

The work discussed in thissection complements the research described imthe preceding one
by using acquired knowledge about the learning process, and the effects of the usual
pedagogy, to develop and test new methods of teaching and learning. The French term
ingénierie didactigue for this activity translates literally as “didactic engineering”.
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3.1 “GRAPHIC CALCULUS”

“Graphic Calculus” is an approach to the calculus developed by Tall (1986a, 1986¢, 1990)
which acknowledges the known conceptual obstacles in the limit concept Alld proposes
instead a new leammg sequence built on the visuali of the “local ” of
graphs. It uses the graphic and dynamic fih puter to give a cognitive base
for the notions of derivative and imtegral in secandary education which can lead to later
formalizations in either standard or non-standard analysis.

In order to achieve this objective, the student is fumished with a computer environment
(or microworld) designed to encourage the exploration of examples of specific mathemati-
cal processes and concepts. This requires a special kind of software:

An environment (hat provides the user (he facilities of manipulating examples (and, where possible,
non-examples) of aconcepl, 1 lerm ageneric organizer. The word“generic” means (hat the leamer’s
attention is direcled (o certain aspects of the examples which embody the more abstract concept
Thus (he cqualily 3+2=2+3 may be seen as a specific example of the commulative properly of
addition. The generic example s seen as a representalive of Lhe whole class of examples which
embody Lhe general properly.

Tall recagnizes that ageneric organizer does not guarantee its use by the student as a tool
of abstraction and suggests the need for an “organizing agent”

“guidance from a teacher, a textbook or appropriate computer material.”
For this reason the instructional treatment is based on three phases:

« afirst phase of familiarization and negotiation of meaning. It is conducted in the
form ofa dialogue between the teacher and the students, a dialogue designated
as the “enhanced Socratic mode”, the term “enhanced” referring to the aid
provided by the computer to communication:

“The mathematics is no longer just in the head of the teacher, or statically
recarded in a book. It has an external representation on the computer as a
dynamic process.”

« a second phase of autonomous work by students with the generic organizer,
and finally,

« a last phase of discussion and evaluation looking towards establishing the point
and making sure that the concept images constructed by the pupils are compat-
ible with those of the community of mathematicians.

The generic organizers claborated by the author are specifically adapted for mtroducing the
ideas of derivatives, integrals and differential equations.

For instance, the software “Gradient” contains various modules permitting the graphing
of functions defmed by a formula, magnifying a graph around apoint, superimposing onto
the graph y=f(x) the line passing through the points (x,f(x)) and (x+c,{(x-+c)) (for fixed c),
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1(x)}=sin x

—— ¥

magn.x8
1

-2 2

12 u=0.841471

Figure 25 : a lccally straight curve (mzgnified a litle)

and dynamically sceing he evalution of this line and the curve representing its slope, a5 x
varies. 1t also allows fhe superimposition of a graph, lo test conjectures made about the
derivative of his or that Runction (monomials or frigonometric. functions for example)
Finally, as an archelypal non-cxample, it conlains a module which shows the construction
by steps ofa function continuous and non-differentiable al every point: “the bancmange
Fnction?”.

As conceived by the author, (hesc generic organizers arc designed to permit the pupil
at the pro-caleulus level to develop a concepl image of the notion of derivative based on:
= The concepiion of a funlion differentiable &l a poind as a function which, by
magnification around the poirt, eventually becomes like a straight line.
- A global image of a derived function associated with the nofion of “practical
tangend”: a straight lin: passing through tsvo points very close (o cach ofher on
the curve,

c ing gencric 50 been designed for i differential
equations. These are discussed in greater detail in chapter 14,
Experimertl stuies using generic organizers described above were done in severl
clascs ofscoondry educalion wilholherclasss s cosrols. The reulsconfim on the
hand the dif ¢ limit, both
intermis oftangent as a limit of sccants And of the derivative as alimit of slopes of sccans.
The resulls of the postest differed litke from those of the predest, in the experimertal
‘groups 25 well as (he control groups. Tall concluded:
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1(x) = b1(x)

FRadn.x16
8, (8.68

8.66

-8.5 8.5
6y, 8.3
-8.5 %x=8.333333
y=P.666667

Figure 26 : a highly wrinkied function Uat is nowhere lecally straight

““The low level of respenses i i reinfercing:
the opinion thal, although the notion cf a limit is the nalunl foundaticn of a rmmerrzhml
Cevelcpment of the calculus, it is not 2 natural starting, peict for a cognitive developme

mu. 19864)

As & result of the instruction, a significant number of the experimental pupils tended to
A straight lis i two i CunK

po
But they were far betier al recognizing and drawing derivatives, even attaining perfor-
mances comparable to fhosc of university students. For exaple, 67% of the experimental
students recognized and justified that graph (2) in figure 27 (overleat) is the one whoso
derivative s graph (1), (with 68% for university students), while only 8% in the control
group were successful.

Tall concludes in thesc terms:

“Once more empirical research has demonstrated a precess of didactic inversion at gives an
atirartive cognitive approach. Tn this case, the cogitive pproach, in the shape of the prartical
tangent, proves o be surprisingly gocd matheratics.” (Tall, 15864)

Other approaches using the computer (o reorganize the syllabus and lo introduwe the
Halluin & Poisson
(1988), for instaee, parsoed rescarch on “a strlesy for teacing matbematic: O
inlegrating puter a5 a tool and a5 a mod
A

associaled in inleradtion : Picture, Graph, Formula ((he triple “PGF”) on i
computer pernits global operations. The inirodiction of the differentiation-inkegration
concepl takes place first al the numerical and graphical level, exploiting the computer,
starting from a physical situation: (he construction ofa road. The problers of pitchand of
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Graph 1 s the derivasive y=£(z)
of a function y=1(x) defined for
O<xs<g.

which of the graphs2, 3, 4 could be
theoriginal graphy=1(9?

Gise the roasonds) for your choice:

Figure 27 : Recegnizing an antl-derivative

digging and filling give s meaning o the derivative cormespording (o that of the practical
tangentof Tall and lo fhe inkegral in
reciprociy of the operaons of differeriation and inegration (hiough calulation of
difference (ables for the slope, ables of sums for the areas, global visualization of the slope
‘and area curves. They next ask (he stodents (0 study situstions of speed (motion spproach)
and of distrbution of salaries (atistical approach to fhe inkegral). The algebraic
operstionalization comes laler, building on simple cakculations of slopes and areas, using
previously developed tools.
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3.2 TEACHING INTEGRATION THROUGH SCIENTIFIC DEBATE

aform of scienific debate hasbeen i niversity of Grenoble
(Legrand ctal, 1986). Full details of the methodology wil be discussed in the chapier 13
on proof i ical thinking. Here we will on (w

this approach inthe learring of concepts in analysis. I sccurred ina conlex where students
were encowaged o corjecture and debale ideas in groups within a large class, where
argumerts werc proposcd and addressed to ofher students rather than the teacher.

“The concept of integzal was stodied in great depth during (his rescarch. The associated
didhctic Sfirtyear
he sccondary curriculum described carier, including cakulation of simple primitives and
the conception of he integral both s the inversc operation of differentistion and the arca
imder a curve: The new curriculum was designed o enrich the conceptions of studenis by
giving a meaning (o the notion of inlegral procedure.

Ttbegan with the fallowing problem (Alibert et al, 1967b):

Whatis the inkensity of tke force F which is exened beiween a point massm
of 2kg and a thin bar M of nass 18 kg and length 6 m, amanged as herc?

figure 28 : A preblem to initiate debate In analysis

The rescarchers hypolhesize (hal, appropriately managed, scienfific debate can felp to
solve his problem. One method is through visualizing (he bar as being made up of tiny
slices, caleulting he force, the refining and passing to the linit vough inkgation.
However, the vast
concentraed al the centre of gravity, which proves eroncous. In the course of (he
experiments, students were atways foand who proposed lesting fhe validity of such a
cakulation by catting he bar i two.and applyin the priciple ofcetre of ravity Locach

the principle is b flict with
itself. T the idea of concentrating (he mass al a point is to be retained, new methods are
suggested by placing fhe point mass L one end, or the alher, (o cbiain incqualities.
Repeating such process on each halfof the rod, then on each quarter, and so on, keads (o a
conviction that one is going (o be able to obiin a valuc Lo any desired precision, prior lo
the passage to the Timit
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“This first problem was followed by others aimed at extracting the inlcgral procedurc
from ofher sitations (averages, problems using e a5 @ varabl, spce varables in (w0
di Only afler is (he study properties of

G inkegral operation begun, largely based on e vk developed by the students.

“The results of the First to experiments conducted in first year at Grenoble University
with 105 students in 12 wo hour sessions and 101 students in 14 two hour sessions are
reported in Legrand et al, (1956) The effects of scienific debate within (e overall
instruction revealed improved understauding of inkegrafion in the final exam. For instance,
e problen! in figure 20 was given in 1986,

Let £be 1ke function defined on the interval 2 = [0,4] of R as follows:
x
VxeloZ, r(x)=J e
o
vxe 3, =2

VxeBal, =5V olx*
and =1

Give a rough sketch of the graph of { on €2,
Determine the subsel & of somutions in' €2 of the equation () =5 .

x
LetF(x) =I ) du
2
(@) draw a skeich of the graph of F on its domain of definitien,
(b) show that ike equalion F(x)=2.5 admits a unique solition & on £,
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89 students (84%) passed this test and only 20% tried to solve the problem by looking
for primitives. This led the authors to conclude:

“The results show thal a majority of students acquired a satisfactory level of understanding of the
integral concepl introduced by Lhe method of scientific debale and (hal they understand it
sufficient depth as Lo know how Lo explore their knowledge, even when the usual algorithms are nol
applicable.” (Alibert et al, 1987b)

3.3 DIDACTIC ENGINEERING IN TEACHING DIFFERENTIAL EQUATIONS

Traditionally differential equations have been taught as a catalogue of recipes for algebraic
solution i the classical imtegrable cases. Recently software has been developed for the
effective teaching of differential equations by a number of authors (e.g. Tall, 1986b; Tall
etal, 1990; Kogak, 1986; Hubbard &West, 1990). The research reported here, conducted
by Artigue (1987), is aimed at studying the viability of a (eahing approach which tries from
the beginning to coordinate the algebraic, numerical, and graphic approaches with the
solution of associaled differential equations. The author interpreted present-day instruction
as a position of stable equilibrium of a system subject 1o a set of constraints (epistemologi-
cal, cognitive, didactic conventions, the available mental representations of the students
and (eachers) and seeks 1o modify some of these Lo permit the system (o come (o another
stable equilibrium thal is more satisfying from the point of view of the epistemology of the
field. Computer software constitutes the principal lever employed to modify the space of
constraints, facilitating access (o numerical and graphical representations. In the new
curriculum it is used in both interactive and ready prepared form (using supplied computer-
generated graphs) to take account constramts of time and malerial, and to optimize
management.

For example, i the graphical context, it is first used im prepared form o give meaning
lo the qualitative solution: drawing curves compatible with a field of tangent directions. It
is then used (o introduce elementary qualitative Lools: isoclinic lines, i particular, the
isoclinic line 0 as being essential to determine the direction of variations of the solutions
thal act as barriers or separatrices between different types of solutions, lo identify stability
by simple geometric transformations (such as symmetry, translation). Such an approach
proves lo be motivating in significantly improving students’ abilities to associate pictures
of solutions with algebraic equations ina way which is far less complex than having to make
drawings by hand (figure 30).
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Figure 30 : Relating graphica) and symhelic representaticns

The computer is also used in an inkeractive manner. For instance, when stodying
differential equaticns depeuding on a parameler; the software allows cxperimental
detemination of the differcr {ypes of pictures of possible phasc portaits, then students
have (o jusfy the most likely graphs oblaincd by using algebraic andior graphical
arguments, (0 address a ist of unsolved probilems and to formulate, if possible, appropriate
conjectures.

Although cnly a short fime was available for the insruction, rescarch revealed very
pasitive resulls. The students showed hemsclves capable of giving meaning Lo the
qualitative approach, o describe and draw solutions without algebraic integration in simple
cases such as (he equation:

Ly,
Y (H,z)*)

and to coordinale the algebrakc and graphical cortxis
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3.4 SUMMARY

1t is important to emphasize once more the convergence of the research. In the work on
didactic engineering there are themes which relate the different approaches:

« focus on construction and the control of meaning,

scarch for a better equilibrium between the different representations for the
concepts, in particular, concern with a better use of a graphical context,

concem lo use the possibilities offered by the computer (o rethink the content
of education in terms of
and the cognitive capacity of students.

1 adequacy of the domains considered

As for the precise contents envisaged by the research, even where the works concern
different levels, one finds again common preoccupations:

+ concem with developing a functional approach,

+ concern (o focus the notion of derivative on the existence of a good approxima-
tion of the first order, the compuler allowing exact visualization of this property

by magnification of the graph, even before the notion of limit is mastered.

However, the research is largely focussed on the imtuitive begimmings of the subject and it
is natural to ask the question: can the development of strong conceptions of this type
subsequently form an obstacle to the construction of more formal concepts such as the
measure interpretation of the integral procedure? On this poimt there is need for more
empirical research.

The differences between these various experiments are more concemed with the
proposed management of instruction. In all didactic engimeering there is a place for an
experimental approach (o mat] ics and ization of the ion of k
around the activity of the pupils. Bul the researchers at Grenoble also have the conviction
that in order to allow the students (o establish a correct epistemology of mathematical
knowledge, il is necessary lo change their relationship with mathematics created during
their schooling, which is based on the predominance of an algorithmic approach and on a
vision of proof as a simple contractual agreement rather than a means of convincing or of
lifting uncertainty. In association with this, there is a conviction that this change can only
be made by a break with the traditional learing contract through the notion of scientific
debate. Such a conviction is developing i a number of different countries (cf. for example
Schoenfeld, 1985 or Robert in chapter §) and researchers seek Lo exploit the capacities of
pupils at the end of secondary education to help them reflect explicitly on the mathematical
processes.
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4. CONCLUSION AND FUTURE PERSPECTIVES IN EDUCATION

The results obtained in the various research projects described in this chaper, present a
strong coherence nol only between themselves but also with those of the preceding chapler
on pre-calculus concepts. Learning the begimmings of analysis presents certain difficulties
which appear (o be due lo different factors, in particular:

« the highly sophisticated level of structure of the objects in the foundations of this
conceptual ficld, such as sequences and functions,

the existence of various obstacles, mcluding those evident in the historical
development, those due (o the conflicting everyday meaning of some of the
lerms, obstacles due (o the all-pervading problem of infinity, and to pupils’
conceptualizations of the reals more consonant with the non-standard theory
than the standard formalization,

difficulties posed in leaming specific techniques of the field: such as use of
upper and lowerbounds, use of thecompleleness axiom, reasoning by sufficient

condition which forces the acceptance of loss of information,

finally the difficulties due to formalization in this field: first because it
imtroduces structural definitions which may canflict in the students mind with
more intuitive spontaneaus conceplions, and secondly because il bases proofs
on cemplex propositions involving quantifications which operate in a direction
seemingly contrary to the dynamic flow of intuitive thought.

These difficulties are far from being resolved by students in secondary education and are
reflected in learning calculus which canstitutes the most important part of education in
mathematics during the first two years of the university. The research suggests that, faced
with these difficulties, the usual instruction takes refuge inan hensive “algebraisation” of
analysis: manipulating formulae rather than functions, emphasizing the calculation of
derivatives rather than the theory of linear approximations, calculating primitives in
integration rather than delving into the meaning of the imtegration procedure and learning
recipes for solving differential equations without developing a general numerical or
graphical approach o the solution. Moreaver, one tries 1o resolve difficulties due (o
formalization by first giving definitions then quickly proving or quoting powerful theorems
which permil the learner to move on from the subtle theory o retum to algebraic algorithms.

The resulls of the research cited bring oul clearly the perverse effects of this avoidance:

in avoiding difficulties of formalization and tec! of approximation, a real chasm is
crealed between concept definition and concepl image; in excessively emphasizing the
algebraic approach through facile algorithmization, the possibilities of changing points of
view, essential to the real practice of the mathematician, are reduced. Furthermore it
exchudes the possibility of laking advantage of cognitive diversities which can exist among
students. By avoiding the problems of legitimization one leads students (o see proofs as a
simple matter of didactic contract — something to be done to fulfil the requirements of the
caurse. Certainly the students come (o obtai a reasonable level of success in a certain
number of algoritlhmic tasks, but it must be emphasized that there is not, in the context of
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this instruction, a real mtroduction (o analysis: the conceptions developed by the students
are poor and the subtle lechniques m the field are not adopled.

However, the different experiences of didactic engimeering presented here prevent
fatalism. They tend to show in particular that the cognilive capacities of students, properly
exploited, could warrant a more satisfying equilibrium between conceptualization and
algorithmization as well as between the different contexts in which the concepts arise. And,
as Dubinsky and Tall will discuss in chapter 14, use ofappropriate compulter languages can
help the students handle ifiers and construct a rful concept image of rigorous
proof. Thus we see that the compuler offers a number of didactic advantages:

it provides possibililies for dynamic visualization (o make the geometric and
graphical contexts much more accessible and, properly exploited, it can help Lo
bring out the necessary relations between algebraic and geometric representa-
tions,

i the graphical conlext becomes more familiar, the unity of the graphic
representation of the functional object which it furnishes can help to establish
the concepl image of the foundational concepts by enriching the stock of mental
images,

through experimental activities with the interactive simulations, students may
be initiated imto mathematics as a constructive scicntific activity.

appropriate computer languages can help with the problems of formalization,
the ive use of ifiers and the develop: ofrigour (as we shall see

inchapter 14).

However, the compuleris not a tool that will miraculously sotve all the problems of leaching
analysis. It can without doubt help overcome certain difficulties, but the different studies
reported i this chapter show clearly that it will only be effective within a coherent teaching/
learning context. Elaboration, experimentation and evaluation of such an approach is costly
work. Moreover, even ifit can help sotve certain problems, the introduction ofthe computer
tool into education cannot fail to create, i its turn, new problems in classroom management

y of dination of compuler use with other supports for learning,
and so on) and even cogml iveproblems which, in their turn, shouldbe the subject of further
research.

We mentioned non-standard analysis in the first part of the chapler and at this point we
return for further consideration.

The results of the research presented in thepreceding chapter show that students” mental
representations of the reals seems closer (o non-standard representations then to standard
represenlations. Some of them are not in perfect with classical st
representations: for example when students said that 0.999... is the last number before 1,
they adopl an alomistic poimi of view incompatible with the axioms of non-standard
analysis, but one could imagine that it would be easier to move these conceptions towards
coherent non-standard conceptions, which might then lead back mto standard analysis.

The results of the research show equally the importance of the void thal separales
sity students and the operational

concept defmition and concepl image for school and unive
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deficiency of given definitions. Non-standard definitions are closer to the descriptions of
differential and itegral problems in physics than standard analysis. They also have fewer
quantifiers and do nol require the reversing of direction of the standard € — d or € —~ N
formulations: for example, a sequence uy, is convergent (o a limit | ifand only if for every
infmitely large N, uy—1 1 infinitesimal. Perhaps the defmitions are more useable by
students and the chasm between concept image and concept definition may be diminished
by permitting a more gradual initiation to formalization.

The few picces of rescarch to date suggest that the logical baggage for current simplified
introductions does not constitute a severe obstacle for students (cf. for example, Tall,
1980, Artigue ef al, 1985). Bul al the present time we cannol say wha difficulties will be
introduced by a non-standard approach to analysis, no more than we can say how standard
and non-standard concepts might be coordinated in the minds of the students, nor what
problems this coordination could pose. Al the very least, however, the non-standard
approach seems an inleresting road to pursue i future research, if institutional conditions

permil.




CHAPTER 12

THE ROLE OF STUDENTS’ INTUITIONS OF INFINITY
IN TEACHING THE CANTORIAN THEORY

DINA TIROSH

Here a difficully presents ilself which appears to me insohuble. Since il is clear thal we may have
one line segment longer than another, each contzining an infinite number of points, we are forced
1o adwil thal, within one and the sawnc class, we may have something greater than infinity, because
the infinity of points in the long line segment is greater than the infinily of points in the short line
segmenl. This assigning (o an infinile quantily a value grealer than infinily is quile beyond my
comprehension. (Galileo, 1638)

Infinity is undeniably one of the central concepts in philosophy, science and mathematics.
In this chapter we review the nature of this concepl and find that in different contexts the
term infinity means different things, it might be potential infinity (representing a process
thal is finite and yet could go on for as long as is desired), or actual infinity i the sense of
the cardinal infinity of Cantor, or ardinal infinity, also in the sense of Cantor, but this time
representing correspondences between ordered sets, or non-standard infinity which arises
i the study of non-standard analysis, and, unlike the others, admits all the operations of
arithmetic, mcluding division to give infinitesimals. 1t s clear that with this wide variety
of technical meanings which often have quite different, even conflicting, properties, the
possible intuitive meanings that arise in various conlexts are likely also to be varied and in
conflict. Indeed this is a common fact to be found throughout the research on the cognitive
nature of the concepl images associated with ifinity. They are usually transient, unstable
and conflicting. In this chapter we will first review the different perceptions of infinity in
which we shall see that experiences of everyday life give little preparation for the nature
of the cardinal infinity encountered i set theory.

Given the conflict between previous experience and the formal theory, this is therefore
an ideal opportunity 1o test the thearies enunciated in previous chapters i which students
are confronted with the cognilive obstacles and encouraged (o reflect on them in an effort
lo re-construct their knowledge to come 1o a new and richer cognitive equilibrium. The
second part of the chapler lays the groundwork by reporting a sustained mvestigation imto
the intuitive criteria thal students use (o determine whether two infinite sets have the same
number of elements. The final part of the chapler considers a research study tohelp students
develop a formal knowledge of the Cantorian sel theory supported by an adequate intuitive
background. It offers a possible model for the way in which students may be helped to come
to terms with the kind of abstract thinking that causes such difficulty m the transition to
advanced mathematical thinking. In this case the students are in the later years of secondary
school and are therefore at a suilable stage of development (o Lest oul value of reflection on
cognitive obstacles (o assis! transition o the more abstract forms of thiuking at higher
levels.

199
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I. THEORETICAL CONCEPTIONS OF INFINITY

In the early history of mathematical development the two competing ideas of infinity
were potential infinity m which a mathematical process can be carried out for as long as
required (o approach a desired objective, and actual infinity in which one contemplates the
totality of infimity, through, for example, conceiving the totality of al natural numbers al
one time.

Ever since Aristotle, philosophers and mathemalicians have mvariably rejected the
concepl of actual infinity. Aristotle himselfargued that

“The infinile is polential, never actual™ (Aristolle, Physics, Book 3, Ch. 7).
Similarly, in 1831 Gauss stated

“1 prolest above all the use of an infinile quantily as a completed one, which in inathematics is never
allowed. The infinile is only a fagon de par fer in which one properly speaks of limils”.

(Gauss, in Dauben, 1983).

Rejection ofthe notion of actual infinity can be found even at the beginning of the twentieth
century: Poincaré, in an essay on “The logic of infinity”, noted that

‘There iss no actual infinity, and when we speak of an infinite callection, we understand a collection
(o which we can add new clemenls unceasingly. (Poincars, 1963/1913, p. 47).

Why have matt icians argued so agaist actual infimity? A main source of
their opposition (o the idea is that it has given rise lo numerous paradoxes and difficulties
in mathematics. Even those mathematicians who essentially accepled the existence of
actual infimity, such as Galileo, Bolzano, Dedekind, Hahn, Hilbert and Russell, were aware
of the difficulties mvolved. Galileo, for example, poinied oul that if the number of natural
numbers is not onlypotentially but actually infinite, then there are as many perfect squares
as there are natural numbers, since for every natural number there is a perfect square and
every perfect square has a square root. He further noted that it is also possible (o determine,
on the basis of the “part-whole” principle, thal there are more natural numbers than square
numbers. Galileo tuded that infiite quantities are i ble. He was one of the
first to mention that

Difficulties arise when we atiempl, with our finile ininds, lo discuss the infinile, assigning (o il those
properties which we give (o the Anile and limited. (Galileo, 1954/1638, p. 31).

Cantor made a significant and surprising breakthrough i creating a theory of actual
infmity. He defimed nol one, but two, distinct kinds of infinite numbers: transfinite ordinal
numbers, which are denoted by @, w+1, 0+2,... 20, elc.; and transfinite cardinal numbers
whicharedenotedby R, & Ry ete. The transfinite ordinal numbers, which werethe first
tobe introduced, are an extension of the notion of ordinal numbers (o the infinite case. They
were defined only for ordered sets.Two ordered sets are considered 1o have the same ordinal
number if they can be put into a 1-1 correspondence with one another in such a manner as
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(o maimiain the order relation between corresponding elements. The transfinite cardinal
numbers are an extension of the notion of counting. Two sets are considered (o have the
same cardinal number if they can be put imto a I-1 correspondence with each other. These
wo notions of transfimile numbers are clearly distinct from one another. In fact, Cantor
showed that it is possible to construct an infinite number of infinite sets having different
ordinal numbers but the same cardinal number.

Cantor’s reatment of infinile sets leads (o unexpected conclusions, such as: there are as
many odd numbers as natural numbers; the number of even numbers is equal (o the number
of rational numbers; and the number of poinis in a line segment is greater than the number
of natural numbers. These propemes of infinite numbers are so startling that not a few of
Cantor’s and philosophers were reluctant to accepl the new
doctrine. Even (,amor himself admitted thal certain conclusions deriving from it appeared
lo be counter-intuitive.

2. STUDENTS’ CONCEPTIONS OF INFINITY

The Cantorian set theory is the most commonly used theory of infinity today. Yet, recent
psycho-didactical studies have shown that students face great difficulties i acquiring
various properties of cardinal infinity that give the impression of being impossible or even
self-contradictory (Fischbein, Tirosh, & Hess, 1979; Fischbein, Tirosh & Melamed, 1981;
Duval, 1983; Borasi, 1984; Borasi, 1985; Tirosh, 1985; Martim &Wheeler, 1987; Wheeler
& Martin, 1988; Tall, in press). It has been found that:

1. Thereare profound contradictions between the concept of actual infinity and our
intellectual schemes, which are naturally adapted (o finite objects and finite
events. Consequently, some of the properties of cardinal infinity, suchas the fact
that RQHZNO and 28y=Ry are very difficull for many of us (o swallow
(Fischbein, Tirosh, & Hess, 1979; Fischbein, Tirosh & Melamed, 1981; Tall,
1980c, 1981, in press; Duval, 1983).

~

Intuitions of actual infinity are very resistant o the effects of age and of school-
based instruction (Fischbein, Tirosh & Hess, 1979; Martin & Wheeler, 1987;
Wheeler & Martin, 1988). This means that what we consider as self-evident
concerning the magnitude of infinile sets remains largely unchanged from the
age of 12 on, and these mtuitions are unaffected by regular mathematical
training which strengthens the logical schemes which are genuinely finitist.

w

. Intuitions of actual infinity are very sensitive (o the conceptual and figural
conlext of the problem posed (Fischbein, Tirosh & Hess, 1979; Martin &
Wheeler, 1987).

4. Students possess different ideas of infinity which largely influence their ability

to cope with problems that deal with actual infmity ( Sierpifiska , 1987,1989).

These ideas are usually based on the notion of potential infinity (Fischbein,

Tirosh & Hess, 1979).
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5. The experiences hat children encounter with actual i
notion of dinal numbers. But they do b
inliod of quaniiies which grow large or small (Tall, 1980, 1951).

ity rarely elatc o fhe

Based on this cby  Tall factual infirity (1981), infinite
measuring mumbers, which generalize the notion of measuring from real numbers o 8
arger number system. Th in formal on of the ficld

of real numbers, such as the hyperreal number system of pon-standard analysis. Tn this
notion of infinity a line segment (wice as long as another line segment conlains twice as
many infiritesinally small points as the other, and a line cortains more points than a line
segment. Tall argues that experiences of infinity thal children encounter are more related
1o the nofion of infinite measuring nmber and are closer Lo the modem theory of non-
standard analysis than (o cardiral number (heory. For instance, in Tall, 19804, he asked
students to compule various lnis, including the limits of

P
Ly
85 i lends Lo infinity. A student who wrole

e
i e

was shown (hal a similar argument would give
5 e
P
e
but she reglied firnily “no it woudr’t, because in this case the denominator is a bizger
iniity, and (e resul woudd be zc”. I is casc Tallclsms G e intiin i based
) infinity,

is more akin Lo measuring infinity.

Fischbein ef al (1979) cite an example where
[ |
T gegt
is staled Lo be.

1
$=2- ., “because (here is o end Lo the sum of scgments”.

Here the potertial infinity of the limitingprocess leads o a imit concept where (he student
ivides by an ifinitly rge punibes o gt an infintely sl on. Ths (00 i  lor it

nunibers be divided.
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Following such cases Tall (to appear) suggests:

Most experiences with Limils relate (o Lhings gelting large, or small, or close Lo one another. All of
these extrapolale experience from arithmetic rather than comparisans between sels and are more
likely Lo evoke measting infinity, rather hal cardinal infirity. 1t follows thal the ideas of limits and
infinity, which are ofien considered (ogether, relate to two diffevent and conflicting paradigms.

These findings clearly indicate that our primary intuitions are not adapted to the notion of
cardinal infinity. Thus, it wouldseem (o require a considerable effort (o develop appropriate
“secandary intuitions” (i.e., intuitions which are acquired through educational interven-
tion) of the notion of cardinal infinity. Such secondary intuitions are in conflict with same
of our deeply held convictions, such as thal the whole can nol be equivalent (o any of its
parts and that there is only one level of infinity.

In the next section we consider the intuilive crileria adopled by students when
determining whether two infinile sets have the same number of elements. In the section
which follows we describe a research study in which students are assisted in constructing
anadequateintuitivebackground forCantorian set theory to lay the foundations fora formal
knowledge of cardinal infinity.

2.1 STUDENTS’ INTUITIVE CRITERIA
FOR COMPARING INFINITE QUANTITIES

Only a few studies have investigated students” intuitions concerning the camparison of
infinite quantities (Duval, 1983; Fischbein, Tirosh & Hess, 1979; Martin & Wheeler, 1987,
Sierpiriska, 1989). In one of these studies, which is described fully in Tirosh (1985), 1381
students in the age range 11-17 years (grades 6-11) were given 32 mathematical problems
thal called fora comparison of infinite quantities. In each of these problems two infinite sets,
with which the students were relatively familiar, were given. The students were asked to
determine whether the two sets were equivalent and Lo justify their answers. A sample of
the problems and the distribution of the students’ answers appears in Table VII.

In line with the results of the above mentioned studies, il was found that students”
responses to the problems included in Table 1, as well as 1o other problems which are not

Table VII: Sofutions (a Problems dealing with Equivalent Sels (%)

The Sets compared Same  [Different | No
AvsB Cardinal [Cardinal [Answer
[The positive even numbers  [The positive odd numbers 85% 15 0
All the points in a line [The natural numbers 80 19% I
All points in a line segment [The natural numbers 56 42 2
[The natural numbers [The positive even numbers | 48* 51 1
[The natural numbers [The rational numbers 46* 51 3
JAll points in a line segment |All points in a line 40* 59 1
IAll points in a line segment [All points in a square 39* 59 2
*Correct answers
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presenied here, were relatively stable across the age groups. Moreover, students of various
ages used the same intuitive crileria lo compare two infinite sets.

The main argument used by the students tojustify their claim that two sets have the same
number of elements was: “All infinite sets have the same number of elements”. For
imstance, 80% of the students claimed that there is an infinite number of natural numbers
and also an infinite number of points in a line, and therefore there are as many natural
numbers as points in a line.

The claim that two infinile sets were nol equivalent was justified by one of three
arguments:

(a) “A proper subset of'a given set contains fewer elements than the sel itself.” For
example, 51% of the students claimed that there are fewer posilive even
numbers than natural numbers, since the former is a proper subset of the latter;

(b) “A bounded sel contains fewer elements than an unbounded set.” For instance,
12% of the students used this argument Lo justify their claim thal the number of
the points in a square is greater than that in a line segment;

(c) “A linear set contains more elements than a two dimensional set.” This argument
was used by 38% of the students (o justify the claim that there are more points
in a square than in a line segment.

The following observations were made with respect to the students’ responses.

(a) A very small percentage of the students (less than 1 %) intuitively employed the
notion of 1-1 correspondence, which is the rigorous criterion used in the
Cantorian theory, (o compare the cardinality of infinite quantities.

(b) The students tended 1o think that all infinile sets have the same number of
elements. This belief stems from their intuitive understanding of infinity as
identical to inexhaustibility.

(c) Many children and adolescents incorrectly assumed thal all methods suitable for
comparing finile sets are adequate for infinite sets as well. Thus, most of the
students who argued thal two infinite sets were nol equivalent based their claims
on the assumption that the maxim “the whole is greater than each of its parts,”
which is adequate for comparing finite sets, holds for infinite sets as well. This
maxim was well-rooled in the students’ minds and they expressed a high degree
of confidence in it

(d) The intuitive criteria thal the students used to compare infinile quantities were
inconsistent with each other and led to conflicting resp and lo contradi
tions of which most of them were unaware. In fact, all but 16% of the students
treated each problem separately, and were greatly influenced by the figural
context of the problem ilself. They justified some of their answers by arguing
that all infinite sets had the same number of elements, while justifying other
answers with the claim that one infinile set had fewer elements than the other.
Only aboul 8% of than mentioned that they realized the inconsistencies in their
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responses. One of the students wrote: “All these problems deall with campari-
son of infinite sets. When answering some of the problems, I instinctively felt
that all infinite sets have the same number of elements, because they all have an
infinite number of elements. However, when answering other problems, such
as the problem which deall with a square and a plane, 1 felt that there are more
elements in the plane, since the plane contains the square. Bul it seems
impossible that one infinile set is greater than another infinile set. I realized, after
answering these questions, thal there are inconsistencies in my answers, and 1
would like to know if all infinile sets have the same number of elements”.

The 16% of the students who were consistent in their answers concerning the
comparison of infinite quantities justified their answers (o each of the math-
ematical problems by claiming that all infinile sets have the same number of
elements.

(e) There are conflicts between the intuitive criteria that the students used to
compare infinite quantities and the formal definitions and theorems of set
theary, ie., between the intuitively accepled statement, “the cardinality of a
proper subset is smaller than that of the entire sel”, and the formal statement,
“every infinite sel has a proper subsel with the same cardinality”.

The contradictory and persistent nature of the students’ intuitive beliefs in regard (o the
comparison of infinile sets, as well as the conflicts between these beliefs and the thearems
of the Canlorian sel theory, is a real challenge for those attempting to teach this theary. In
fact, there is evidence, both in the science and mathematics education literature, that
contradictory intuitions may be a main obstacle (o acquiring formal knowledge (Fischbein
& Gazit, 1984; Stavy, Eisen & Yakobi, 1987). Moreover, inadequale intuitive beliefs ofien
conlinue to affect student’s choices of solutions to problems even after formal instruction
of the relevant theories (Clement, 1983; McCloskey, 1983). Thercfore, instruction of the
Cantorian theary of transfinite numbers must take into account the intuitive biases of the
learners. 1t should attempt not only 1o help learners acquire the definitions and theorems of
sel theary, bul also (o assist them in developing efficient secandary intuitions about actual
infinity.

3. FIRST STEPS TOWARDS IMPROVING STUDENTS’ INTUITIVE
UNDERSTANDING OF ACTUAL INFINITY

In what follows we shall fist present a learning unit of the Cantorian set theory, which is
called: “Finile and Infinite Sets”. We shall then describe a study which was aimed at
assessing the effects of the unit on students’ formal and intuitive understanding of infinity.
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3.1 THE “FINITE AND INFINITE SETS” LEARNING UNIT
This unil cansists of 20 lessons and is subdivided into four sections:

1. Basic Notions of Set Theory,
2. Equivalence of Infinile Sets,
3. Enumerable Sets,

4. Non-enumerable, Linear Sets.

A special attempl was made, throughout the unil, o interact with the students’ intuitive
background in regard (o infinity and to change their allitude (owards their primary intuitive
reactions. The following strategies were used (o help the students overcame the inner
contradictions in their intuitive understanding of actual infinity.

3.2 RAISING STUDENTS" AWARENESS OF THE INCONSISTENCIES
IN THEIR OWN THINKING

In our opinion, in order to forestall the use of intuitive methods that are inadequate for
camparing infinile quantities in terms of the Cantorian theory, students should realize that
these intuitive criteria lead Lo contradictory answers. Only after they recognize these
contradictions, can we proceed (o raising their awareness of the need to use rigorous crileria
for comparing infinite sets.

Several methods were employed (o raise the students’ awareness of the inconsistencies
in their own thinking about infinity. The most prominent one is the conflict leaching
approach based upon Piaget’s notion of cognitive conflict Paiget, 1975). It is aimed at
involving students in discussion of and reflection on the inconsistencies in their thinking.
Awareness of inconsistencies is expected to lead (o a stale of inner disequilibrium which
can be used 1o help students resolve the apparent canflicts in their thinking, create new
modified concepts and lead (o a new equilibrium.

The following example of an activity which makes use of the cognitive teaching
approach comes from the section on “Equivalence of Infinite Sets”. In this activity the class
is divided into teams of four. Each student is asked (o answer the following question:

Two sets are given:
M= {4,81216,20, ..}, N= {2,4,6810, ..}.

Is the number of elements in set M equal (o the number of elements in set N ?
Explain your answer.

Each team is then instructed (o discuss its answers and (o came (o mutual agreement about
the correct response. It is likely that in each team some students may claim that “both sets
have the same number of elements because they are both infinite”, whereas others may
argue that “the sel M is smaller because i is a proper subset of the set N”. Consequently,
the participating students will note that both answers seemn reasonable and tha they are
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unable to decide which of them is correct.

Then the ¢ couraged to discu:
criteria. 1t is tuded that the 1-1 corresp
of elements in both finile and infinite sets.

the consequences of relying only on intuitive
dence may be used 16 compare the number

3.3 DISCUSSING THE ORIGINS OF STUDENTS' INTUITIONS
ABOUT INFINITY

It is widely accepled that students’ understanding of the sources of their intuitive beliefs is
essential to enable them to develop their ability (o monitor and control the effects of primary
intuitions on their thinking processes. Therefore, the learning uni includes explanations
about the sources of relevant intuitivebeliefs. For instance, the unit explains thal our mental
schemnes, buill as they are on our real life experiences, are naturally adapted to finite sets.
We lend toapply these schemes Lo infinile sets and (oaccepl intuitively generalizations such

as: “A proper subset of an infinile set contains fewer elements than the entire set”. The
It.ndl.n(,y to relale properties of finite sets to infinite sets is one of the main sources of the
inadequacy of intuitive beliefs with respect lo the Cantorian set theory.

Students are also asked questions such as: “What is infinity?” or “How would you
explain the idea of infinity 10 a friend of yours?” Such questions are aimed at eliciting
spontaneous responses reflecting the idea that infinity is identical to inexhaustibility, or, the
intuitive interpretation of infinity as pure potentiality. It is then explained that this
interpretation of infinity is the source of the intuitive belief that two infinite sets are always
equivalent, which is inadequate in respect to the notion of transfinite numbers.

3.4 PROGRESSING FROM FINITE TO INFINITE SETS

1t is largely acknowledged that infinity can be viewed as an extrapolation of our finite
experiences (Tall, 1981; Rucker, 1982; Dauben, 1983). In particular, infinite sets may be
seen as an extrapolation of finile sets. Therefore, throughout the unit an effort is made to
refer first to finite sets, with which the students are already familiar, and then (o deal with
infinite sets, discussing the similarities and differences between them.

For instance, the students are d 1o solve several problems that deal with a
comparison of the number of elements in finile sets. They are
methods, such as counting, 1-1 correspondence and the part-whole principle, in order (o
solve these problems. This activity evokes a number of questions such as:

structed 1o use various

Whal is the basis of each of these methods?

Can the same methods be used (o compare the number of elements in (wo given
infinite sets?

Is there one general criterion that would enable a comparison of any (wo sets,
finite or infinite?

Whal might have led Cantor to choose 1-1 correspondence as the criterion for
comparing infinitc quantities?
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+ Whal are the similarities and differences between the comparison of finite sets
and that of infinite sets?

A discussion of these issues may lead (o an examination of the adequacy of each of the
intuitive methods used by the students o compare infinile sets with reference (o the
cantorian set theory.

3.5 STRESSING THAT IT IS LEGITIMATE TO WONDER
ABOUT INFINITY

Saue of the comments of mathematicians on the puzzling aspects of infinity are quoted in
the unit in order to give the students the feeling that it is legitimale o find these aspects
perplexing. For instance, we quoted Hahn’s comments aboul the theorem:

An infinile set is equivalent 1o al least one of ils proper subsets. If we look for examples of

Tive al highly surprising resulls. The setof all the positive
even numbers is an emumerable infrile sel and has the same cardmal number as the set of all the
natural numbers, though we would be inclined (o think tha there are fewer even numbers Lhan
natural numbers.

Later, he suggests his own intuitive explanation of this discrepancy by drawing an analogy
between the intuitive definition of cardinal numbers and the discovery of a new species of
animals:

This species must be different in some way from Lhe known ones, olherwise il would nol be anew
species. (Hahn, 1956, p. 1604)

Comments of other mathematicians, such as Uilbrt (1964), Russell (1956), Frankel (1953)
and Cantor himself, which are included in the unit, illustrate thal these mathematicians were
aware thal a major breakthrough was needed in the concepts of number, comparison and
infinity in order (o make the transition from finile to infinile numbers.

3.6 EMPHASIZING THE RELATIVITY OF MATHEMATICS

Yet another stralegy is to describe ral allemnative concepts of infinte numbers
developed by different mathematicians such as Bolzano (1950), Cantor (1955), Robimson
(1966) and Tall (1980c). Emphasis is placed on analyzing the possible reasons that led each
of them to devise his own way of perceiving infinity. Several extensions of the concept of
natural numbers are introduced. It is hoped thal this exposure will help the students gain a
clearer realization of the relativity of mathematics.
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3.7 STRENGTHENING STUDENTS’ CONFIDENCE
IN THE NEW DEFINITIONS

Students are provided with opportunities (o perform mental activities developed with an
eye lo ing their confid in the new definitions and theorems they have just
learned. For example, when dealing with the equivalence between the set of the natural
numbers and the set of positive even numbers, students are asked to write down 10 pairs
of elements with each containing one element from the set of natural numbers and one from
the set of positive even numbers. In this way an attempt is made (o offset their tendency to
treat each of the sets separately. Rather, they are directed to look at both sets simultaneously
by referring to the corresponding pairs. The next step is (o guide them to discovering for
themselves the formula, f(x) =2x, which describes a 1-1 correspondence between these sets.
In the discussion that follows, emphasis is pul on the need to use formal methods to
delermine whether (wo infinile sets are equivalent, rather than relying on intuitions alone.

4. CHANGES IN STUDENTS’ UNDERSTANDING OF ACTUAL INFINITY

In order (o examine the impact of the “Finite and Infinite Sets” learning unit on high-school
students’ understanding ofactual infinity, the unit was taught to students aged 15-16 in four
tenth-grade classes. Although our main aim was o assess its effects on the students’
intuitive understanding ofactualinfinity, such an evaluation would be meaningless without
an assessment of the extent (o which the students also acquired the definitions and the
theorems which they were taught. Thus, 1wo questionnaires were employed 1o examine the
effects of the instruction on both the students’ formal and their intuitive understanding of
infinity.

Questionnaire A was designed o check the extent lo which students were able to use the
concepts and procedures they were laught. It contained 10 mathematical problems which
deall with the definition of equivalent sets, ivalent and ivalent sets, and the
equivalence between a sel and one of its proper subsets. It was administered to the students
twice, the first time immediately after instruction and again two months later.

Questionnaire B was designed Lo assess the effects of instruction on students’ intuitions
of infinity. Tttco wasadministered lo the students twice, the first lime before mstruction and
again (wo months after instruction. This i i tained 14 i ical prob-
lems. In each, two infinite sets were given. The students were asked to determine whether
the (wo sets were equivalent and lo justify their claims. Al least one of the sets in each
problem was two dimensional (i.e., the set ofpoints in a square or the se(of points ina plane).
Two dimensional sets were not introduced in class during instruction and thus all these
problems presented situations that were not deall with in the leaming unil. A brief
description of these 14 problems appears in Tables 2 and 3.

The data oblained from Questionnaire A show thal 86% of the students acquired the
basic concepts, definitions, theorems and stralegies necessary Lo establish the cardinality
ofand equivalence between infinite sets. These students gave correct solutions (o problems
that dealt with equivalent and non-equivalent sets, used only formal strategies to justify
their claims, and agreed with theorems that contradict maxims which they had regarded as
self-evident prior to instruction. The substantial gains mnade by the students during the
imstruction phase were maintained over the two-month period between the administration
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of the two post-lests.

Only 14% of the students used primary intuitive arguments to justify their responses to
at least one of the problems in Questionnaire A. Most of these students claimed that an
infinite set can not be equivalent to any of its proper subsets and used the part-whole
principle 1o justify this inadequate claim. The intuitive claim that all infinite sets have the
same number of elements was rarely used. It is noteworthy that some students reported that
they fell uncomfortable with their answers although they knew they were carrect. For
imstance, 8% mentioned that: “It is odd that the set of natural numbers is equivalent to the
sel of square numbers, which is its proper subsel”. Similarly, 14% claimed thal: “Although
the line segment [0,2] is longer than the line segment [0,1], these (wo sets are equivalent”.

Several comments about the extent to which students acquired the cancepts they were
taught seemn appropriate here.

1. After imstruction, about 10% of the students incorrectly argued that “a finite set
might be equivalent (o one of its proper subsets”. These students apparently
over-generalized the theorem “an infinite set is equivalent (o at least one of its
proper subsets”. A possible source of this misapprehension is our natural
tendency lo generalize theorems in order (o use them in a variety of situations.
This difficulty could probably be overcome by a greater emphasis of the
differences between finite and infinite sets with respect (o the part-whole
principle. The idea that properties that hold true for infinite sets may not
necessary hold true for finite sets should be discussed.

Lad

Students” performance on problems involving equivalent sets was better than
their performance with non-equivalent the percentage of adequate re-
sponses (carrect claims and full justification) to problems dealing with equiva-
lent sets ranged from 88% (o 97%, whereas the percentage of carrect responses.
to problems dealing with non-equivalent sets ranged from 74% (o 80%. One
possible explanation for this difference is the fact thal the students spent more
time and had more practice with enumerable sets. Another possible explanation
is that claims of equivalence are verified by direct methodsof proof while claims
of non-equivalence are verified by the indirect method of proof, which is |
familiar (o and more problematic for high school students (Roberti, 1987). Il is
reasonable (0 assume that explanations about the indirect method of proof, as
well as more practice with non-enumerable sets, could improve students”
performance on these problems.

In general, our findings indicate that the learning unit on infinite sets may be introduced
withoul particular difficulty starting from the tenth grade. Although some problems were
identified, we assume thal an improved version of the leaming unit would be able to
overcome them.

The situation in regard o the effects of mstruction on students’ intuitions of infinity is
far more camplex. Tables VIl and IX present students’ responses (o Questionnaire B.



INTUITIONS OF INFINITY AND THE CANTORIAN THEORY 21

Before Instruction ‘Aler Instruction
The Sets Compared Cardinaliy Candinality
A vB Same® | Differes fo | sume | Ditforent|
respons¢]
T Allpoints | Allpoints n = P o 0
innsquue | imalinc
2 Allpoins | Alpoints .
inatiangle | Jnanere @ 3 N @ 16
3. Allpoints | Al poinis 6 3 3 76 2
naplane | inalinc
4. Allpoints | All points s | @ 5 w“ 16
inesquae | inaline sogment
S.Allpoinis | All points 2 | @ ) 7 P
inaplane | inacirde
6. Allpoints | Al points o | « , @ "
inasquuc | in s triengle
7. Alipoints | AL poirts . N %5 5
inasquae | inalager square
8 Allgiangles | Al equituceral
maphme | wangesinaphy | 0 | 5 0 £ »

* Corect answers

Table VITT : Scluticas to Frotlems Dealing with Equivatent Sets (%)

Before instroction Aer rsimucion
“The Sets Compared alit Canfinatly
AwB - [seme| Mo [same] R
. et weply [0 5™ reply|
S Allpoins in | Tox naardl
Pt e w| 0| o || a|m w|o
10- Allpoiris Toxralom) 2| 3| o |e| 6| 8| z|s
inaplace anbers
11, Allpotris emmiorst | oo [l s | | s | e s
inaline poinks ina plane
1z Anpoininite | Metmionat” |y [ 5 [ o [ e | 2| s | 6] o
intersor of a cirle | points in
13. Altpolnts Teraions” | o | 3| 2 sl 7| & || s
14he “evasional” | The “raional™
. af o s ]| n|wlw|o
pointsin aphanc | poirts ina plane
* Comsctanswers
Tzble I : Solutiors to Problems Dealing with Nor-equivalent Sets (%)



212 DINA TIROSH

The above data indicate that the percentage of adequate responses increased after
instruction. The lowest percentage ofadequale responses after instruction, were yielded by
problems that deall with the comparison of a linear set and a two dlmeuslonal unbounded
sel(problems 3,5, 11 and 13). All students who gaveinad bl
argued that the cardinality of a two dimensional unbounded sets (i.e., the set of- al] points
in a plane or the sel of all rational points in a plane) was higher than ¢, ihe cardinal number
of the set of reals.

The changes in students’ responses to problems dealing with a camparison of infinite
quantities are also reflected in the crileria they used (o determine their solutions. After
mstruction, the majority of the students made an attempl to implement the formal strategies
and theorems that they had learned. For example, on problem 9, 82% of the students
claimed that: “We have learned thal the cardinality of natural numbers is ®;. The
cardinality of the sel of points in a plane is at least ¢, since il is at least the same as the
cardinality of the sel of points in a line. Thus the cardinality of the sel of points in a plane
is greater than that of the sel of natural numbers”.

Another strategy used by the students (o justify their solutions was that of indicaling an
analogy between the given problem and one they had discussed in class. For example, in
the case of problem 7, 19% of the students claimed that “the problem of comparing the
number of points in a square with the number of points in a larger square is similar to that
of camparing the number of points in a line segment with the number of points in a larger
line segment. The set of points in a line segment is equivalent Lo the set of points in a larger
line segment; thus, the set of points in a square is equivalent (o the set of points in a larger
square.” Only 13% of the students used their former intuitive arguments 1o justify their
solutions (o at one or more of the problems in Questionnaire B.

The students’ responses (o the various problems showed that as a resull of mstruction
the vast majority of them realized that the intuitive criteria they had used when camparing
infinite quantities were inadequate in respect to the Canltorian sel theory. The mudems
became aware of the need for formal ical proof dio intuitive
Same of their responses clearly illustrate that they became critical about their natu:al
intuitive attitudes. For instance, insalving problem 7, one of the students wrole: “According
(o my natural reasoning the (wo sets are equivalent. However, | realize that sometimes my
reasoning is misleading. Therefore, T cannot depend only on my natural reasoning and T will
try to prove, formally, that the two sets are equivalent.” Another student commented, with
reference (o the same problem, that: “This case is similar to that of the line segment [0,1]
and the line segment [0,2]. Therefore, it seems thal these sets are equivalent. However, 1
am nol sure since unexpecied things happen with infinite sets.”

Can one conclude, based on these findings, that as a resull of instruction the students
developed modified intuitions towards the comparison of infinite sets? Our data do not
allow us lo draw such a conclusion with confidence. They do not provide evidence to
support the claim that ideas that were originally regarded as preposterous by the students,
such as the possibility of equivalence between an infinite set and a proper subset of it, now
became self-explanatory concept for them. The changes in students’ reactions (o non-
standard situations may indeed be due to modified intuitions, but it is also possible that these
changes are a resull of the newly acquired formal knowledge of the Cantorian sel theary
logether with an increased awareness of the need to control intuitively basedreactions. The
fact that some students reported that they felt uncomfortable with their answers although
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they knew they were carrect may be viewed as supporting the claim that as a result of
instruction, the students realized that when comparing infinite sets they had to consciously
monitor their reactions and not base them on their intuitions, but that their imtuitions per se
were not modified.

Other data which may be viewed as providing suppart for this claim derive from the
students’ responses tomathematical problems mvolving two dimensional, unbounded sets.
As mentioned above, a substantial number of them claimed that a two dimensional,
unbounded set contains more elements than a linear set. This may indicate that when
dealing with mathematical problems with which they were unfamiliar, the students were
still, implicitly, influenced by their primary infuitions. However, it is equally reasonable to
argue that students were reluctant 1o accept the possibility of equivalence between a
‘bounded linear set and a two dimensional, unbounded set because during instruction they
had no experience of equivalent sets that differ in dimension. 1f so, the learning unit may
have effectively changed the students’ intuitions cancerning the equivalence of bounded
and unbounded sets, but the change in this specific mtuition may not necessarily lead to a
change in their intuitions in respect to the equivalence of sets that differ in dimension. It is
certainly feasible that eradicating one madequate intuition does not necessarily eliminate
another.

Thus, it seems safe to conclude that the instruction influenced the explicit decisions of
the vast majority of the students concerning the comparison of infimite sets. They learned
to give canceptually controlled answers rather than spontaneous imtuitive ones. A substan-
tial portion of the students developed an “alarm techmique” for problems dealing with a
comparison of infmite sets. This teclmique was an upshot of their realization that it is risky
to support a mathematical statement by imtuitive evaluations alone. These students
mentioned that the intuitive criteria they had previously used to compare infinite quantities
had led them to contradictions and imadequate solutions. It became apparent to them that
their solutions to problems dealing with infinitesets should be based on the formaltheorems
and strategies that they were taught.

This study shows that the camparison of infinite sets, which illustrates some of the more
perplexing aspects of mathematics, can be used to enable students

(@) to accept conclusions which at first appear paradoxical,
(b) to recognize the coercive nature of imfuitive thinking,
(c) to understand the need to control their primary intuitions,
(d) to refrain from responding mtuitively,
and
(e) to use explicit theorews in order to determine their solutions to the problems.
It is hoped that such instruction would raise students’ awareness of the role of mtuition in

their thinking and affect their attitude towards intuitive respanses not only in respect to
infinity but also with reference to other mathematical and scientific processes.



214 DINA TIROSH

5. FINAL COMMENTS

1. Developing a learningunit that takes into account the intuitive backgroundof the leamers
requires a profound knowledge of the nature of students’ intuitions towards the specific

ical theory. The identification of relevant, madequate mtuitions held by the
students is extremely important. This study has shown that im the case of comparing infinite
sets, many of the students’ primary intuitions were similar to those experienced by
mathematicians in the history of the development of the concept. Such palpable parallelism
between phylogeny (historical development of the species) andontogeny (development of
the individual), reveals the former as a potential source for identifying students’ ituitions.

2. We have already seen that some of the students justified their responses to certain
problems by pointing outthe analogy between the given problem and one discussed imclass.
Analogies were not discussed during instruction, yet students used them spontaneously and
carrectly. Recent studies have shown that analogical reasoning can be useful for helping
students achieve conceptual changes (Strauss & Perlmutter, 1986; Clement, 1987; Stavy,
im press). The potential of analogies to help students recognize the dissonance i their
thinking about infinity and the consequences of including them in instruction examples
which illustrate possible correct and incorrect uses of analogies should be explored.

3. In a paper on “Mathematics and the Metaphys s”, Bertrand Russell argues that:
On Lhe subject ofinfinity it is impossible to avoid conclusions whichal first sight appear paradoxical,
and his is (he reason why so many philosophers have supposed thal Uere were inherent
cantradictions in the infinite. Bul alittle practice enables one (o grasp the true principles ofCanlor’s
doctrine, and (o acquire new and betterinstincts as Lo the true-and the False. The oddities then become
1o odder than the people al the antipodes, who nsed (o be thought impossible because Lhey would
find il so inconvenient lo stand on their heads. (Russell, 1956, p. 1578).

Russell here distinguished between gaining a conceptual knowledge of infinity and
acquiring new mtuitions. He also claimed that a little practice would enable the leamers to
acquire both. Our study has shown that the pracess of acquiring new instincts is not quite
that simple. Further, our data indicate that theroad from a conceptual grasp of the principles
of set theory to acquisition of better mtuitions in respect to the camparison of infinite sets
may be a long one.

It seems that the various strategies that were used in the learning unit “Finite and Infinite
Sets” did indeed enable the students to progress towards acquiring infuitions which are
consistent with the theory they leamed. However, we lack the means to evaluate these
effects systematically. In order to proceed in devising instructional strategies that take mto
account the intuitive background of the learners we need to develop means to measure
“degrees of mtuitiveness”. A preliminary attempt to measure the imtuitive acceptance of a
mathematical statement is described i Fischbein, Tirosh & Melamed (1981). Yet, if we
believe that the mtuitive attitudes of the learner have a crucial effect on his or her concepts
and capacity to understand mathematical theories, and if we further believe that mtuitions
can’be modified, we need to devote much greater efforts to devising means that will enable
us to base our assessments of the effectiveness of various methods of instruction in
modifying students’ intuitions on systematic evaluation.



CHAPTER 13

RESEARCH ON MATHEMATICAL PROOF

DANIEL ALIBERT & MICHAEL THOMAS

1. INTRODUCTION

The formulation of conjectures and the development of proofs are two fundamental aspects
of a professional mathematician’s work. They have a dual character. Firstly there is the
personal, intimate side, which aims at clarifying the position the researcher has reached in
his/her own understanding, through the statement of explicit hypotheses. Secondly there
is the callective side, where a canjecture is proposed for the reflection of other mathema-
ticians, sharing ideas, as yet unsure. In this context a proofis a means of convincing oneself
whilst trying to convince others.

These two facets of advanced mathematical thinking are generally absent in under-
graduate mathematics af university, where the subject matter is presented as a fmished
theary, where “all is calm ... and certain” and proofs are developed along traditional ‘linear’,
deductive lines.

The epistemology (the understanding of the structure of knowledge) generated by such
teaching practices is thus diametrically opposed to the reality of the mathematical
community.

A study of textbooks for students at this level appears to confirm that the semantic
characteristics of the mathematics — the control of meaning — is not a primary aim. Instead
emphasis is placed on the syntactic aspects in carrying out and using the results of
algorithms.

This apparent conflict between the practice of mathematicians on the one hand, and their
teaching methods on the other, creates problems for students. They exhibit a lack of concern
for meaning, a lack of appreciation of proof as a functional tool and an inadequate
epistemology.

It may well be that the students’ view of whether proof is a necessary mathematical
activity, their understanding ofthe need forrigour, and their preference forone type of proof
over another, are concerns which have been neglected by some mathematics educators m
favour of a perceived need to preserve the precision and the beauty of mathematics. A
cansideration of the students’ view may be especially important during the transition phase
when they are first exposed to the rigour of formal proof as it often occurs in a first year
university mathematics course.

Researchers in this area of mathematics education have demonstrated that there is an
important difference between icating sufficient und ding of a proof to
convince students of a result, and a formal, rigorous proof that it is true. Balacheff (1982,
1988) has described various |\.vx.|s on which proof may exist, and the importance of
distinguishing between i and rigorous proof. The latter may well be
a suitable instrument to be used in Ihe kind of formal fext that mathematicians write i books

215



216 DANIEL ALIBERT & MICHAEL THOMAS

or research articles, but may not be suitable when initially passing on acquired knowledge
to students. One difficulty associated with achieving a proof which is both meaningful and
formally acceptable to students is:

How do we inchide the main ideas through which we understand why the result
is true at the same time as the necessary details to make it rigorous?

‘We shall discuss this and other aspects relating to how understanding of proofs may be
better cammunicated to students. We shall also pay particular attention to studies
emphasizing the nature of proof as an activity with a social character, a way of communi-
cating the truth of a mathematical statement to other people, helping them to understand
why it is true.

A major area of difficulty linked with this social character of proof which we shall
consider here is:

How can we manage to make students sce proof as a necessary step in the
scientific process, alongside activities such as research, the formulation of
conjectures etc. and not just as a formal necessity required by the teacher, or as
an answer given by the teacher in response to a question which the student may
not have asked?

These two problems, respectively, have been the subject of research by Leron i the
Department of Science Education of Haifa University, Isracl and Alibert, Grenier, Legrand
and Richard in the Research Group in the Didactics of Mathematics at the University of
Grenoble, France. Leron (1983a, 1985a) has proposed a method of structuring proofs to
improve the way students understand them, while Alibert er al (1986, 1987, 1988abc,
1991), Grenier et al (1984, 1985) and Legrand & Richard (1984) have designed a new
teaching method imvolving scientific debates in order to encourage students to see the
necessity for proof as a mathematical activity.

2. STUDENTS’ UNDERSTANDING OF PROOFS

First we shall turn our aftention to the students’ perspective of proof in a
course. Whatare the characteristics of the proofs which they prefer and claim to understand
better, and how good is their understanding?

Several researchers, including Fischbein (1982), Movshovitz-Hadar (1988) and Tall
(1979) have mvestigated aspects of the teaching of proofs which may be appropriate for
presenting material in a potentially meaningful mamner for the leamner. There are proofs,
for example where the inner parts of the proof are not trivial, where structured proofs and
linear (or formal deductive) proofs display similar pedagogical problems.

Tall (1979) is concerned with the students’ first acquaintance with proof at university
and investigates which of several types of proof they find more understandable. Following
Steiner (1976), he suggests the concept of a generic proofas a potential way round such
problems. Such aproof works at the example level but is generic in that the examples chosen
are typical of the whole class of examples and hence the proof is generalizable. This may
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be contrasted with general proof which works at a more general level but consequently
requires a higher level of abstraction. Whilst there may be no replacement for the formal
proof from the purely logical point of view, the generic proofmay sometimes be preferable
ifit results in improved understanding on the part of the students.

Discussing the proof of the irrationality of ¥2,Tall describes a study in which 33 first
year university students were presented with three proofs of the result: one general, one
generic and the ‘standard” proof by contradiction. In a second questionnaire, 37 students

responded to a generic and a contradiction proof for the irrationality of ‘\/ 5/8.

The generic proof as used here was :

We will show (hal if we slarl wilh any rational p/g and square il, then Lhe resull p%g? cannol be
5/8.

On squaring any integer », the number of times thal any prime factor appears in the factorization of
s doubled in he prime factorization of %, 5o cach prime factor ocours an even number of times
inn?. (Forinstance, ifn = 12 = 223, then 12°=2%32)

In the fractionp /g2, factorize p* and g inlo primes and cancel commen factors wherepossible. Each
Factor will cither cancel exactly or we are lefl wilh an even number of appearances of thal factor in
the numeralor or denominalor of the fraction. The fraction p2/g? can never be simplified to 5/8 for
the latler is 5/23, which has an odd number of §°s in the numerator (and an odd number of2°s in the
denominalor).

The results showed that the generic proof for the irrational /ol"\/S_lﬂ was signi I
preferred to the proof by contradiction, both in terms of understanding and lack of
confusion. Furthermore there was a highly significant preference for both the generic proof
and the proof by contradiction over the general proof of the irrationality of ¥2.

Dreyfus & Eisenberg (1986) gave five proofsof the irrationality of ¥2 to
who were asked to rank them according to elegance. It is of interest that the experts’
personal preferences were for the proofs which were older and more elementary, including
a proof along the lines of that described above lbr\) 5/8. Dreyfus and Eisenberg conclude
that clarity and simplicity of argument arc two principal factors which should guide one
when trying to nurture mathematical appreciation. The use of generic examples i proofs
may be a way to promote such arguments.

Movshovitz-Hadar (1988) also recommends a “generic-example assisted” type of
proof. Applying this method of proof to the theorem:
For any nX» malrix, n a posilive inleger, such thal the rows form arithmetic progressions with the
same common difference d, then the sum of any # elements, no two of which are in the same row

or calumn, is invariant.

She uses an 8X8 matrix as an example:
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small enough o serve as a concrele example, yel lange encugh to be considered a nor-specific
representalive of the geners) case. The prec forthe B8 case . is kind of “usnsyarent”, one can see
the geners) preof Wrough it because nothing specific 1o the BX case enlers the proof

(MovshovitzHadar, 1983 5. 19)

1t would seem (hat ihe explanatory power of such a proof may supplan the generality of
‘general proofs for (he student, resulling in more meaningful understanding. Mathematical
insight in proof may be more anportant than precision in fhese circumstances.

Rescarch by Vinner (1988) shows that when taking this generic approach ta proofs, one
should be aware (hal students may be resistant (o accepting the proof due lo cognitive
obstacles arising from fheir pre-dispasition (o linear formalism. He gave students two
proofs of the mean value theorem which states:

IF a functien [ differentiatle between a and b, asd continvcus ala and b, then there is a oint

)1

etween o and b sueh el I ) =~ = —

The £t proof was the standard algebraic proof applying Rolle’s Theorem lo

9" 0y,

‘The second was 2 visual proof involving moving the chord AB ss shown below, paralle o
itselfuntl it becomes a tangent.

Figure 31 : The mean value theorsm

om Students, 29 found the visul proaf more convincing, 28 the algebraic proof and
ofequal value. Those preferr
|hm there was something wrong or ilicgal® in the visunl approach, And\/mncrwsMﬂbd
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‘convenience’ rather than cognitive necessity. This feeling of needing a formal deductive
proof may emanate from a lack of confidence in any other approach rather than an affinity
for the aesthetics of algebra.

Research by Fischbein has uncovered another aspect to the understanding of proof by
students. He has found that they may understand the theorem statement itself, they may
even, through the use of a structured proof, or otherwise, grasp the structure of the proof,
and yet still they may fail to appreciate the universal validity ofthe statement as guaranteed
and imposed by the validity of the proof. This canclusion was reachedfollowing a research
project in which about four hundred high school pupils with advanced training in
mathematics were presented with a carrect proof of the theorem:

1 is divisible by 6 for every integer .

The students were then given various questions about the validity of the theorem. Whilst
81 % checked the proof and claimed it to be correct in every detail, 68.5% agreed with the
thearem and 60% considered the generality of the thearem guaranteed by the proof, only
41% of the students accepted all three of these. Further only 24.5% accepted the correctness
of the proof and at the same time answered that additional checks are not necessary, and
only 145% were campletely consistent in their answers.

To a mathematician the proof of a theorem is

the absalule guarantee of the universal validity of the theorem. He believes in that validity.
(Fischbein, 1988, p. 17)

The question is how does one convey, in a proof or otherwise, the information necessary
for the imdividual student to sy ize cognitively the formal und ding of the truth
of the result and an acceptability of its universal validity? This pedagogical necessity i
mathematical proof exposition may be one which still needs to be addressed.

3. THE STRUCTURAL METHOD OF PROOF EXPOSITION

Mathematical proofs have long tended to have a format which requires them to be read in
a strictly serial/sequential manner, with sub-proofs, or lemmas, which are themselves also
strongly sequential. Such a style of proof makes the acquiring of a global over-view
something which requires sufficient mathematical sophistication to understand the details
of the sequence well enough to be able to relate them to the overall theme as one progresses
through the proof. Such an ability to switch as and when necessary from a sequential view
of the mathematics to a global one and vice-versa is a characteristic of one who has been
described as a versatile learner (Tall & Thomas, 1989). In order to promote versatility m
students, Tall & Thomas (1990) have highlighted the importance and value of actively
encouraging a global view of the mathematics, indeed promoting it n one’s teaching in
addition to the more familiar serialist presentations of mathematics. Using the benefits
provided by the computer paradigm they have obtained some evidence that a versatile
learner, who is able to switch between a global and a sequential view of the mathematics,
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is more likely to be successful in the early learning of algebra as generalized arithmetic
(with 12—14 yearold pupils) and in the initial stages of the calculus, and have placed this
improved ability in a theoretical context applicable to other areas of mathematics.

Leron (1983a, 1985a) has attempted to fuse formal and informal methods of presenta-
tion into a proof which is rigorous and yet explanatory. The two informal practices
(heuristics) he has built into the formalism are:

the prefacing of a long, camplex proof with a short, intuitive overview,

a method of constructing a mathematical object, a solution-object, to satisfy a
system of constraints by using the given constraints to search for the solution-
object and then using its form to define it.

This kind of proof he calls a structural proof.

Here the primary aim is not merely to convince, but to help the listener or reader gain
a real understanding of the ideas behind the proof and its connections with other
mathematical results. In comparison, the usual ‘linear code’ type of proof not only often
fails to elucidate the main ideas, but may even obscure them. This type of proof may well
be suited to ensuring the validity ofa proof; but it is itable for the role of matl i
communication. It has even happened, in some extreme cases, that the author recognizes
that his/her own proof fails to give any real insight into the understanding of the
mathematics. For instance Deligne, one of the most famous contemporary mathematicians
(and winner of a Fields Medal), wrote after a very formal proofabout derived functors and
categories,

“ would be grateful if anyone who has understood this demonsiration would explain il to me”.
(Deligne, page 584)

Clearly proving and explaining seem to be two different kinds of mathematical activities.
The linear formalism of traditional proof may be described as the minimal code
necessary for the t itting of the ical k dge. It appears, however, that in
several important respects, it is a sub-minimal code, resulting in an irretrievable loss of
information vital for understanding.
Whilst most of the work m mathematics ed

ation rightly seeks to improve the learning
and of matl ics by 1 ing the formalism, it is also important
to look at the formalism itself-and consider how it too might be improved, leading to better
communication and understanding. 1t is certainly to be hoped that students of mathematics
areactively engaged in discovering and constructing as much ofthe mathematics they leam
as possible, but it is also necessary to find better ways of communicating the products of
such mathematical activity to others.
The fundamental concept underlying the structural method of presenting proof is to
arrange the proof in levels, proceeding from the top down. Each level consists of short
modules, each embodying one main idea of the proof. This type of structure
is already recognized and well-known in computer science as a method of structuring
camplex computer programs, where it is called top-down programming.
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Tt should be noted that the term ‘main idea” which we here refer to is used more i the
abstract sense of that idea which enables one to gain an overview of a sub-section of the
proof rather than indicating that which is mathematically among the most important ideas
im the proof.

Ttis useful to analyze some examples of this type of structural proof (see below) i order
to ascertain the difference in the treatment given by the two methods and to see specifically
what is meant by the ‘main ideas’ of a proof. A main idea is often contained by the
construction of a new, intermediate object called thepivor (so namedbecause the rest of the
proofhinges upon it), designed to mediate between the hypotheses and the conclusion. The
pivot occupies a central position i the proof (or sub-proof), and so it of fers a vantage point
from which one may view the global architecture of the proof. In the limear approach, the
pivot is often poorly treated and its potential for improving understanding wasted. Rather
the proofbegins to resemble the pulling of a rabbit from the hat, since the pivotal concept
may be imtroduced near the beginning of the proof, possibly by simply a bare statement of
its definition.

In the first level of the proofone fool-pivot is identified (e.g. set, relation, function efc...),
the existence of which is essential for the proof to be developed. Since this is to be a tool,
it is then given some properties which are also to be used in the proof, although the actual
existence of the tool-pivot is not proved at this stage of the proof, but at a later, deeper one.

In the second level of the proof the tool-pivot becames an object-pivot which is to be
constructed, subject to certain imts. An heuristic dit ion follows ing the
possibility of achieving the construction under the given constraimts. This construction
itself may, if necessary, be further divided up and treated on several levels. Proceeding in
this way avoids the view that the pivot is justa construction which in the eyes of the student
is ‘an extremely clever answer to a question which was never asked’. These concepts are
probably best understood by considering some examples of structural proofs and their
‘linear’ equivalents. We shall consider here two of the examples given by Leron (1983a).

Theorem : There exist infinitely many triadic primes
(i.e. numbers of theform 4k + 3, for integral k)

3.1 APROOF IN LINEAR STYLE

Consider Lhe product of two monadic numbers :
(4t L) + 1)=4k 4o+ 4k+-da+ | =4(8km +k+m)+ |
which is again monadic. Similarly, the product of any number of monadic primes is monadic.

Now assume the Lheorem is false, so there are only finitely many iadic primes, say p1,p2,
Define

Prr

M=4p, p, py-p,~ -



222 DANIEL ALIBERT & MICHAEL THOMAS

16p1| M thenpy | 1Since pi | 4 pop3 . . . pn. Since thisis impossible, we canclude (hal no p; divides
M. Also 2 does nol divide Af as Af is odd. Thus all A’s prime factors are monadic, henceA/ itself
must be monadic. Bul

M=4p, p,ps- p=1=4P1P2ps-Pn— D3

i clearly iadic — a contradiction. Thus the theorem is proved.

We note that in the above proof the geneml plan is never revealed, neither is the purpose
of the varioussteps taken. Inthe abs i why certain steps are taken
(such as considering the product of two monadw numbers) the student may be reduced to
merely checking the validity of the deduction at each step.

3.2 A PROOF IN STRUCTURAL STYLE

Level { —suppose the theorem is false andlet py ,p s, -, b, beall the riadic primes. We construct
(in level 2) anumber Af [the pivol] having the following (w0 properties :

(a) M as well as all ils factors is different frompy , 7y 5 7 »

(b ) A has a riadic prime factor.

These (wo properties clearly produce a contradiction, as we get a riadic prime which is not one of
Pi» Pa» Py » e » Py - Thus the theorem is proved.

I the Efevator — (ametaphor for Lhe process of descending in levels)

How shall we approach the definition of M? In the light of Euclid’s classical proof, il is natural (o
try M=4pl p2p3 ... p, + 1. This indced meets requirement (a) but nol (b). In fact, since for all we
Know M ilselfmay tum out (o be prime, il must be Lriadic lo meel (b).

Thus anatural second guess isAf=4p, pops .. py+ 3. However, this has another “bug”- since one
of thepi’s is 3, M is divisible by 3, in violation of (a). Bul this bug, once discovered, is easy Lo fix
— simply elimiate 3 from the product in Lhe bugged definition.

Level2 ~LelM=Ap,py. . . p,, +3 (we assumepl = 3). We show that Msafisfies e 1wo requirements
from Level 1.

Requirement (a) means (hat nop should divide Af. Indeed, py, s, .. , 7y do nol divideAf as they
leave a remaindar of 3; and 3 does nol divide A as il does nol divide 4pps - . pyr

As for requirement (b), suppose on the contrary thal all of Af’s prime Factars were monadic. Then
Ad, as a product of monadic numbers, would itsc!fbe monadic (Lemma, Level 3 )  a contradiction.
Thus (a) and (b) are salisfied.
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Liwel $ ~Lemma. A product of monadic numbers is again a monatic number. (The proof s given
above)

We note here hal the Lop level | gives aglobal view ofthe proof. The ‘elevalor” affords the
opportunily for informal discussion within he proof, including part of the process of
finding a proof. The necessary lemma is only infroduced wihen it is necded, avoiding its
introduction at the start of the proof with no mention as Lo its laler usc.

As 8 sceond example, Leron considers (he proof of he theorem:

If tim f()=Land lim g(x) =N, then im (()gl)=LM.
x—a xoa x50

A standard toxt-book
howa 6>0can b found so hat, when - {<Bwe have LML e, Alleve 1, Leren
starts with €0 and assumes (hal the pivol, 8>0, can be found at lovel 2, (hus proving the
theoren subject o the level 2 construction. He then s out to find such a 8, by locking at
whal he i trying lo achieve, using the incquality
Wa)g(x) ~ LA = L{g(x) ~ M) + () -L) + () -L)((2) M)
SULLIgCx) — M1 4 ITLIGE) — L+ 16 —LLig () — M1

Lo break this down o level 3 problem seeking to bound the terms in the second line.

After a precess of trial and improvement to achieve this, he s able 1o take the “elevator”
back through the levels Lo complete the proof.

‘The format for structural proofi suggested by Leron and seen in thes examples is:

1. Tntrsduce the Fivot as & system cf constraints, ie. define it implicitly by postulating its
properties.

2. Without zctually solving the system, use the pivot as intrduced in step | 10 derive the
cerclusicn of the thecrem

3. Discuss nmnxﬁcalky the solution of the system 1o find how the pivol might be
censtructe.

4. (Recursicustep). Sclve the system, repeating steps |4 If necessary. Thatis constnct (o

Frove the existence cf) Uhe pivet then prove that it satisfies the pestulated properties. If

scrte f the sub-procfs are themselves conlicated, intoduce sub-pivots and repeal the

feur step precedure.

(Leron, 19854, p. 12)

Mhoughsuch prcfs arcclesrly o tansadard i e proos, el f e

is tha yis leamirg, and
it A—— Iuwlevcl datails from fhese structural proofs,
ibrevity isrequired, outby fincar,

deductive exposiions.
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It may be argued that the knowledge of the structure of the proof, as illustrated above, is best
left for the students themselves to discover, however experience shows that this kind oftask
is beyond the capability of most undergraduates with a standard mathematical training.
They are simply unable to decode the proofand are reduced to meaningless manipulation
of the formal code itself, with no awareness of the ideas and concepts it represents. One of
the goals of the structural method is to train students to structure linear proofs. Using the
structural method of proof also leads to the possibility of several new structure related
activities which encourage the learner to reflect on the process of thearem proving itself.
For example they may

complete the lower levels of a proof, given the higher levels.

take a standard proof and examine its structure (not an easy exercise but one
which may result in decper understanding of the proof).

examine the depth of similarity of two thearems which exhibit some similarity
in terms of the levels of the thearems.

‘The major difference between the approach outlined above and the traditional linear proof
style is that the students are given a means ofunderstanding the choices that, generally, the
teacher presents without any indication that there had actually been a choice involved.
Previously some questions about the choices made may have arisen in the minds of some
alert students (although no answers would generally be provided during the presentation
of the proof) but for many of them unds ding a proof is with merely
checking in a sequential mamner the validity of the deduction at each step, much as a
computer might execute a program. Unable to construct any personal meaning for proofs
like these, even simple ones, many of them must feel either cheated or stupid, and certainly
they are not in a good position to further develop their scientific capability. In contrast, the
understanding gaimed by the students from a structural type of proof may lead to real
scientific autonomy on their part.

4. CONIECTURES AND PROOFS - THE SCIENTIFIC DEBATE
IN A MATHEMATICAL COURSE

A further step in the direction of scientific autonomy is taken by the Grenoble school
(Alibert et al, 1986), attempting to enable students to see proof as a necessary part of the
scientific process of advancing knowledge, rather than just a formal exercise to be done for
the teacher. An experimental teaching method, set in a thearetical framework, was devised
and applied to the teaching of mathematics in the first year of university. The theoretical
framework was based on the following general cognitive and didactic hypotheses:

1. G jivism - the Lheory of isition in which students construct their
own knowledge Uhrough inferactions, conflicts and re-equilibrations involving math-
ematical knowledge, other students and problems. The interactions are managed by the
teacher who makes the fundamental choices. (Brousseau, 1986)

2. Knowledge is made firmer when il has been constituted and applied in more than one
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appropriate conceptual selting. (Douady, 1986)

3. The role of contradictions — how Lhey may be made sharper and more explicil and how
they may be resolved. (Balachef, 1982)

4. The importance of Lhe role of a group of students in the consruction of individual
meaning (Bishop, 1985; Balachelf & Laborde, 1985)

5. The influence of mela-mathemalical factors such as the syslems of represenlations and
how Lhese may be worked on explicilly in order (o emphasize (eaching poinls.

6. The ion of a leamer’s which includes Lhe sel of problems,
situations, etc, which in the studenl’s mind give meaning o the concepl through their
wilh the and progr of the concept.

The experiment (ook place at the University of Grenoble with sections of aboul one hundred
students (95 of the first year and 130 of the second), all of whom were in the first year of
a programme called DEUG A (First year university students all taking courses in
mathemaics, physics and chemistry). The lessons were given to the whole ofa section in
an ordinary lecture theatre and the experiment lasted the complete year with the group.

4.1 GENERATING SCIENTIFIC DEBATE

The classroom teaching was buill around several new customs. Uncertainty in the learning
place is important and room should be left for it. In mathematical knowledge this
uncertainty is institutionalized in the notion of conjecture, and in this study the validation,
and even the production of these, was devolved to the community of students. They were
required to produce and validate conjectures relevant (o their mathematics curricutum.
Underpinming this custom was the principle that the functional nature of proof only arises
in situations where students meet the uncertainty of mathematical propositions.

This worked in the classroom as follows:

* First step: the leacher initiates and organizes the production of scientific
stalements by the students. These are written on the blackboard withoul any
immediate evaluation of their validity.

Second step: the statements are pul lo the students for consideration and
discussion. They come 1o a decision aboul their validity by taking a vote, with
each opinion supparted i some way, e.g. by scientific argument, by proof, by
refutation, by counter-example, elc.

Third Step: the stalements which can be validated by a full demonstration
become thearems, whilst those which are established as rncom:cl are preserved

as “fal ”, with a corr di I ple.

The demonstrations are produced through iteraction between the students and, when
necessary, the teacher, after the students have been confronted with the particular problem
during a debate. In this form of ‘scientific debate’ the arguments forming the proofare not
addressed by the students (o the teacher, but rather o the other students. We have lo
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disinguish here between ‘proofs Lo convince’ someone (such a5 anofher stodent) of
oofs Lo show’,
where the aim s (o show someone (such 5 (he leacher) thal one has reached some
knowledge (hal hefshe already possesses. One of he main hypothescs of research is (hal the
activily involved in the first process is fundamentally different from that involved in the
sccond, and is able (o produce a decpening of knowledge and its meaning, The theordtical
descripion of such  aching systm, used since 1964, isbascd on (his hypothess and is
on” (Alibert, 1991).

seeks Lo convince both himselffherself, and ofhers at (he same time, of the truth of a
conjecture formulated in response (o a problem which e whole group is trying Lo solve.
‘The students are all aware (hat the conjecture is nol necessarily frue and in particular that
it s ol yet an established part o institutionalizzd knowledge:

4.2 AN EXAMPLE OF A SCIENTIFIC DEBATE

A scientific debale of the type desaribed above starts with a stalement such as in (he
following actual example :

IfZisaninterval oo the reals,aisafixed clementcfJ, and x n elementof , thenwe set, forf integratle
overl,

m,=_|' i
a

The teacher then asks (e question -

“Can you make some conjectures of the form : i (. then F ..7"

this,in i libert (1988a), about varying
complexity . On ' i i
of the first of thesc.
I Fis increasing then F is incressing too” (which happens to be False).

The variation of F is one of the items from e curriculum @hat the stodents had (0 learn.
During this session the following steps of the proof construction were observed:

(@) Cowrter-example - one stoden produced an cxample of a function fcontradict-
ing the statement. The class (hen concluded (hal fhe stalcment was false.

(b) Statement Modification - anolher student proposed fhat “If Fis monolonic then F
i monolonic (00.” (This, of course, is also false:)

(©) Cownter-example - e same Function as used before under (a), but defined on
a different interval, contradicted (he modified statement too.
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(d) Observation : by considering the counter-example it seemed that if £ 0 then F
is increasing.

() A New Conjecture : A student now proposed that “If 2 0 then F is increasing.”
(The majority of the students thought that this statement was false though it is
of course true.)

(f) An Argument : the student produced the explanation:
»

F(z')—F(x)z_[ i) dr20 if £20andx'>x.
X

Interestingly, many of the students did nol believe that this was always true and this stage
of the debate revealed Lo the (eacher thal some of the results and definitions, previously
discussed and settled, had been misunderstood by many of the students. In particular they
had not fully understood the convention that

X

'[ f{#) dt is the Riemaun imegral on the segment [x, x"] if x™>x,
x

and minus the itegral if x'<x.

Analysing this phenomenon we may say thal this was a reappearance of old, stable
knowledge about the integral learned in previous years.

(g) Validation : the students reached a validation of the argument of (f) with:
X

'[ f{r) dr 2 (x’— x)inf{x), in this case.
x

This debate took up most of a two-hour class.

The above example illustrates that the propositions debated during the sessions were far
from trivial. They alsoallow students totackle real problems imvolving impartant concepts.
Even though many of the stalements considered are false they are still very importan
because, firstly, they discover whal students really think about aconcept at that precise point
in the course and, secondly, the debate about their proposals enables students to be
convinced of any false ideas or deep misunderstandings of the concepts which they may
hold.

This experience teaches them that proof is really a lool which may be used lo improve
ideas and separale false mtuition, however natural it may appear, from true mathematical
statements; (o communicate and hence validate or refute mathematical ideas.
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4.3 THE ORGANIZATION OF PROOF DEBATES

The organization of the type of debale outlined above mvolves the use of some precise
techniques, such as:

Initialization time-during the first lesson of the year the teacher outlines the way
that the course will proceed, partly through explanation and partly through
illustrating the process using a debate on a simple mathematics problem. The
teacher initiales this by asking a question and a debate about the validity of the
answers proceeds, withoul specific rules.

Reinforcement time — There should be two or three of such lessons al the start
of the course, with rules for the debales progressively mtroduced. Some are
simple ones — for example speak loudly; speak (o one another; listen lo the other
students — whilst others are more subtle.

Theteacher’s position—The teacherhas a precise role to play right from the first
lesson. 1f he/she faces aquestion which should be considered by all the students
then hefshe should ask for a conjecture (o be produced. The conjectures
produced in answer (o the problem sel should be written on the blackboard
withou( comment. After allowing (wo or three minutes for reflection the (eacher
asks fora vole. The students are asked to vole true, false, can’t decide or refuses
to decide on each conjecture. Then each opinion has lo be supported by
mathematical arguments.

In this way the students as a group learn that the formulation of conjectures is
a useful and necessary activity and thal to make mistakes is a normal stage in the
learning process.
The rules — 11 has been observed that, al this stage in the course, the leacher is
frequently called on to close a debate by expressing his/her opinion on the
question in hand because the students have been unable to agree. This mability
{o convinee one another needs addressing and a special lesson called the circuit
is introduced. The aim of this lesson s (o give the students the means 1o refute
Stud fold that: “In matt ics a statement is true ifand only
if it has no counter-example.” This lesson uses some very simple situation lo
produce conjectures, (o refute them and so gradually build up the rules used in
mathematics. It is very important here that the mathematical context does not
hide the logical problems.

Afer this session the counter-example should become a very pawerful ool for students to
use Lo refule a stalemenl or, more generally, Lo understand a particular proof. For instance:

To express im mathematical form that a function F does not have an ‘infinite
positive limil’ as the variable becomes infinile is not a simple exercise for
students al this level. They do know, however, how (o express theidea that F has
an ‘infinite limit’ as x becomes infinite (positive), namely :

For every real 4 there exists B such that ifx>B then F(x)>A4.
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Some have also learned that lo negale such a statement one ‘replaces for every by there
exists andvice-versa’, but this becomes merely ameaningless manipulation of formal code,
as we have discussed above. The understanding of this manipulation becomes clear ifil is
presented as the formulation of the existence of a counter-example for the previous
stalement.

4.4 EVALUATING THE ROLE OF DEBATE

As a resull of this teaching method, concerning the role of proof m mathematics, and the
formation of scientific truth, it has been observed that erroncous ideas are no longer
considered by the students as faults but as a normal scientific event, and a productive one
al that. The students in the study described above were given a questionnaire aboul the
comparison of teaching methods. Many of the students replied thal they preferred the
course incorporaling debates and emphasized that they allowed them (o understand the
problem which the new mathematical knowledge was aimed al solving, and also what
errors may be made loo. Some of the comments about the scientific debates from the
questionnaires were :

“It compels us lo reflect more on the question. One ofien listens Lo a clear lecture withoul reflecting
deeply.”

“A cancepl introduced through some canjecture makes the problem (hat Lhe cancepl poses much
clearer than in a lecture.”

“Il allows us (o have several views, lo eliminale some inluilive ideas Lhal are wrong.”
Many students also stated how difficult they found the study of a conjecture to be, mvolving
as il does the stating of the problem, the construction of the proofand the formulation of
ideas when one is uncertain about the truth of'a proposition.
“Forme Lhe hardest Lhing is Lo find counler-examples when 1 think (hal a conjecture is false.”
“1 oflen have difficully forming an opimion, and following il up with a proof.”
Certainly the students felt imvolved and imferesied and, withoul excluding the value of
‘traditional’ lectures, found the debales very useful.

5. CONCLUSION
In this chapler we have looked briefly al some of the research into mathematical proof and
its presentation. We have considered different methods of presenting proofs in order to
improve students’ understanding, including generic proofs and structural proofs. We have

also looked af the environment within which these proofs are examined by students with
particular regard (o the scientific debate as an allemative to traditional presentations.
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Amongst the conclusions which some researchers are reaching with regard to students’
perceplions of the importance of proof and their understanding of individual proofs are:

(a) There should be a d)slmd and impartant difference between the kind of proofs
produced by a ing new areas of) ics in order to
convince others that they have indeed broken new ground and the proofs of these
results which will later be used to transmil the results lo students of higher
mathematics. The latter proofs may need 1o have extra material included which
gives a global view of the proofand its structure if they are (0 be meaningful to
the average student and nol just a linear sequence of symbolic reasoning whose
step-by-step validity is lo be checked.

(b) The context in which students meet preofs in mathematics may greatly
influence their perception of the value of proof. By establishing an environment
in which students may see and experience first-hand what is necessary for them
to convince others, of the truth or falsehood of propositions, proof becomes an
imstrument of personal vatlue which they will be happier to use in future.

Whatever the cognitive benefils of these approaches lo students’ i
of specific proofs, and of proofas a mathematical tool, the problem remains ol’lransmllimg
the methodologies o other teachers so that they may investigale their effectiveness for

themselves. The reader might thus like to consider his/her role in this, and review

(i) students’ reactions to the proofs presented. Do they display both appreciation
for them and understanding of them?

(ii) how proofs which (s)he currently teaches could be restructured (o present a
palentially more meaningful face o students.

(iil) how a topic/course which (s)he currently teaches could be developed along the
lines of a proof debate i the light of the methodology described above, to
promole greater appreciation of the necessity of proof in mathematics.

Such a self-appraisal of one’s current practice could be very vahuable both from the paimnt
of view of one’s own appreciation of the results and the understanding of one’s students.
Those readers not so closely involved im these aspects of mathematics education (and
others) may like lo assess their own understanding in depth of a proof which they are
familiar by re-writing the proof ina structural form. Allernatively (and rather more testing)
it might be more imteresting to attempt lo produce structural proofs of one or more of the
following results from the usual formats given in standard texts:

1. Cantor-Bemstein Theorem —Let A and B be Iwo sets, If there exists one-lo-one
maps from 4 into B and from B into 4, then there exists a one-lo-one map from
AonloB.

2. A d manifold is path

3. Sylow’s Third Theorem — The number of Sylow p-subgroups of a finile group
G isequal to | modulop.



CHAPTER 14

ADVANCED MATHEMATICAL THINKING
AND THE COMPUTER

ED DUBINSKY AND DAVID TALL

1. INTRODUCTION

The compuler can be used as a (ool Lo complemenl advanced mathematical thinking in a
variety of ways. In research il has been used (o provide data (o suggest possible theorems,
lo seek counter examples and lo carry oul onerous computations lo prove theorems
involving only a finite number of algorithmic cases. In education il can be used for the same
objectives, and for one other major purpose: lo help students conceptualize, and construct
for themselves, mathematics that has already been formulated by others.

There are already many compuler lools available for general use. Symbolic manipula-
tors have been used in research, but with less initial success in education. We hypothesize
that success using the computer in education is enhanced by using the computer for explicit
conceptual purposes and repart empirical research which supports this hypothesis. New
software environments are being developed which enable the student to explore concepls
in adirectedand meaningful way,and which suggest new approaches to mathematics more
appropriate for the learner.

Programming can be used (o support both research and
teaching. Bul when it is simply added (o the curriculum without very specific aims in mind
it has not always been successful. We will discuss the way in which a computer language,
designed so thal the programming constructs mirror mathematical constructs, can assist
students lo carry oul ical processes and late them as mathematical
concepls.

2. THE COMPUTER IN MATHEMATICAL RESEARCH

Mathematical research passes through several distinct stages of development, from the
germ of an idea to the formalities of proof:

In Mathemstics, as in the Natural Sciences, tere are several stages involved in a discovery, and
formal proofis only Lhe lasl. The earliest slage consisis in the identificalion of significant facls, Lheir
amrangement into meaningful pattems and the plansible extraction of some law or formula. Next is
(he process of lesting this proposed formula against new experimental facts, and only then docs one
consider Lhe question of proof: (Aliyah, 1984)

Computers have proved useful in every stage of this development. In the initial exploration
phase compuler generated data has led lo surprising new intuitions and new theary. The

21



232 ED DUBINSKY AND DAVID TALL

famous example is that of Lorenz, studying the outcome of differential equations (o predict
the weather, who wished (o repeat a cycle of events lo analyse il in greater detail. Instead
of starting from the beginning of a run, he took numbers occurring part way Lhrough a
previous runand found, o his that the subsequent pattern diverged

from his previous data. He then realized that the output of the previous run had given
numbers only to threeplaces: 0.506 instead of the internally stored number 0.506127. The
small variation in initial conditions had given a large variation in long term behaviour —
knowing initial conditions i a practical sense cannot be used lo predict the eventual
outcome and chaos theory was bom (Lorenz, 1963).

Since that time, sensibly programmed envil have proved i ingly valuable
lo produce data lo suggest possible conjectures. Recent developments in the theory of
iteration of functions, leading (o the beautiful fractal pictures that have become well known
even (o the general public, arose from research begun, bul abandoned, in the earlier part of
this century because of the massive computations imvolved. It was only with the arrival of
the computer that the results of the ions could be hically, leading
to surprising pictures and new hypotheses o be tested first by drawing, then by a search for
formal proof. Likewise, in the theary of dynamical systems, computer graphics have
exhibited phenomena that might not have otherwise come (o light. Software for the
imvestigation of such phenomena is now generally available. For istance, figure 32 shows
amodel ofa possible orbit of a tiny satellite round two larger bodies, allernately oscillating
between revolving round one then moving into a position of superior gravitational pull of
the other and moving, for a time, Lo revolve round the other (Kogak, 1986). It is iteresting
to nole thal this book features a significant number of research problems for which there
is a clear visual idea of possible solutions bul for which no formal proof was available al
the time of publication. The theary of ical systems and chaos is a paradigmatic
example of a new branch of mathematics im which the complementary roles of computer
generated experiments (o suggest thearems and formal mathematical proof lo establish
them with logical precision go hand in hand.

Chaos has became notjust a theory bul also a method, nol just a canon of beliefs bul also a way of
doing science. Chaos has created ils own lechnique of using compulers, @ lechique thal does nol
require Lhe vast speed of Crays and Cybers but iustead favours medest lerminals thal allow flexible
inleraclion. To chaos researchers, mathemsfics has become an experimenlal science, wilh the
computer replacing laboralories ful oftest hubes and microscopes. Graphic images ar thekey. “I’s
for 1o do *ane chacs specialist would say. “How can

they see e relationship between (hal molion and (his, how can the develop intuition?”,
(Gleick, 1987, pp. 38-39)

In the second stage of mathematical thinking, where conjectures have been made more
precise and serious attempls are being made (olest them, compulers may be usedsomethes
(o generate appropriate examples or counter-examples. Neally two centuries ago, after a

digious number of calcul Euler lated the that a sum of al least
n posilive nth powers of integers are required (o produce an nth power. So forbidding were
the caleulations required lo ivestigate this that it stood without proof or refutation until a
compuler search in 1969 by Lander and Parkin produced the counter-example:

2P+88+ 1107+ 133 = 1445,



ADVANCED MATHEMATICAL THINKING AND THE COMPUTER 233

[RindoSizel
[ITTLITIES|
[CTSUALATD|
[Puit |

Fignre 32 : Chaotic movement of & satellte round two larger bodies

This case was fortunale, in (hal the discovery of a counterexample showed (he conjocture
tobe false. On the ofber side of the coin, (e inability to find such a counter-example will
not show a conccture to be true. Goldbach’s conjecture, (hat any even number greater than
fwo is a sum of two primes, remains wrproven, even though computers have found an

opriate decompositions into two primes for all even numbers up (o a formidable size.
In' 1916 Bieberbach conjectured thal an analytic function

gzt by
which was 1-1 on Ihe unit disc satisfied
el

Bicberbach proved (hecase =2, but by the carly 1980s, orly the cascs up to and including
11=6 had been proved, by a variety of different methods. Louis de Branges workedfor scven
years and in 1984 developeda technique which provad the Bicberbach conjecture subject
A colleague, Walter Gautschi, ran the
method on the Purdue university super-compuler — one of only three in the United States
ot the time—and verified (he method as far as e 25th coefficicni. The compuer proved
a vital confirmation at a difficult time for de Branges who had previously Iwice poblished

suspect by he mathematical community. His proof was subscquently vindicated when e
final sleps were confirmed by other means (Kolata, 1954).

T (re fim stage of mathematical Ihinking, whena formal prof s being sough, the
computer ofcascs,
each which can be investigated algoritmically. The most famous example is e four
colour problem, which Appel & Haken (1976) reduced to a finite (but large) number of
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alternatives which were resolved by computer. Now the computer is being widely used im
combinatorial problems in group theory, Alg.hml(, geometry, and other arcas with an
algorithmic content thatcanbep 2! puter tocarry out the complex
calculations.

The proof of the four colour theorem raises asignificant is:
thinking. For, although there is an apparently impeccable logic in the listing of the
possibilities and their checking by computer, the proof itself seems to shed no light as to
wity the theorem is true. Some mathematicians are happy with the situation. For them the
process of proof is a mechanistic sequence of deductions from axioms and it is important
that, in the actual proof process itself, there are no intuitive leaps that are not subject to
logical serutiny. The logic of the computer is for them an acid test.

However, others involved with mathematical research sense the need not only for the
security of logical deduction from a proof, but also some kind of msight as to how the
concepts fit with other known results. Without such msight there is always for them the
imsecurity that some small logical error may be found which renders the argument
fallacious. Without some overall view of the pattern there may be a distinct lack of vision
as to the possible direction of future research. And, given the ever growing complexity of
computer software, there may be errors in the programming which, ifthe principles are not
fully understood, may lead to precisely the weak links that those requiring only a logical
approach may fear.

Thus there is value in using the computer to complement the human creative thinking
process both in providing environments for exploration into possible new theorems and
also to carry out algorithmic calculations to provide mathematical proof, but it is necessary
to acknowledge that such methods have weaknesses as well as strengths.

e in advanced mathematical

3. THE COMPUTER IN MATHEMATICS EDUCATION — GENERALITIES

All the various ways that computers are used i research are potentially available for
teaching and learning advanced mathematics. For example, students may learn to program
in order to tackle certain types of problem, or they may use general purpose software as an
environment to explore ideas. The main difference between the activities of undergraduate
students and mathematical research is that the former usually covers knowledge domains
which are known to the more experienced members of the mathematical community,
whereas research is attempting to break new ground. Of course, fo the student the
mathematics is new, and here there may be strong analogies with research, but the far
greater partion ofa student’s work is concemed with mathematics that is already part ofan
orgmnzedknowledge system. This opens up a further possibility for the use ofthe computer

ducation, through the develog of computer software designed to
help the student conceptualize mathematical ideas.
Recent research into concept P shows i ly the ity of an

imdividual’s mental imagery: students can give the “right” answers for the wrong reasons,
whilst “wrong” answers may have a rational origin. In particular, many researchers have
realized that student errors are often the product of misconceptions brought about using old
knowledge in anew context where it no longer holds good. This leads to the hypothesis that
learning may be improved by helping students construct knowledge in their own minds in
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a context which is designed to aid, or even stimulate, that construction. One way of doing

this is through providing richly endowed computer software which embodies powerful

mathematical ideas so that the student can manipulate and reflect on them. Another is to

have the student program mathematical constructions in a computer language designed so

that the act of programming parallels the construction of the underlying mathematical

processes.
A

Hh 1

can also give ded meaning to
may feel are “not of the physical world but in the mind, or in some ideal world. It is
generally agreed that ideas are easier to understand when they are made more “concrete”
and less “abstract”. When an abstract idea is implemented or represented in a computer,
then it is concrete in the mind, at least in the sense that it exists (electro-magnetically, ifnot
physically). Not only can the computer construct be used to perform processes represented
by the abstract idea, but it can itselfbe manipulated, things can be done to it. This tends to
make it more concrete, especially for the person who constructed it. Indeed, it is in general
true that whenever a person constructs something on a computer, a corresponding
construction is made in the person’s mind. It is possible to orchestrate this correspondence
by providingprogramming tasks in an appropriate programming language designed so that
the resulting mental constructions are powerful ideas that enhance the student’s mathemati-
cal knowledge and understanding. Moreover, once the various constructions exist on the
computer, it is very useful to reflect on what they are (in terms ofhow the computer makes
them) and what processes they can engage in.

| concepts that students

4. SYMBOLIC MANIPULATORS

The use of symbolic manipulators has powerful advocacy fram several quarters. Lane ef
al (1986) suggests ways i which symbolic systems can be used to discover mathematical
principles and Small ef al (1986) reports the effect of using a computer algebra system in
college mathematics. In the latter case the activities often consist of encouraging students
to apply a technique already understood in simple cases to more complicated cases where
the symbolic manipulator can cope with the difficult symbolic manipulations.

However, i the initial stages of use of symbolic manipulaton i education, Hodgson
observed:

Inspileof the fact thal symbolic mamipulation systems are now widely available, they seem (o have
had litle effect on the actual (caching of mathemalics in the classroom.  (Hodgson, 1987, p. 59)

He quoted a report of Char ef al (1986) on the experiences of using the symbolic system
Maple im an undergraduate course in which students were given free access to the symbolic
manipulator to experiment on their own or to do voluntary symbolic problems which they
could elect to count for credit. He noted a “somewhat limited acceptance of Maple by the
students™

While many explanations can be pul forward for such a reaction (little free lime, no immediate
payof, weaknesses of the symbelic calculalor for certain types of problems, absence of numerical
or graphical interface, lack of user-friendliness), il is clear thal the crux of the problem concerns the
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full integratian of the symblic system o the course in such a waythatitdoesnol remainjust an extra

activily. This calls for arevision of the curriculum, idenlifying which topics should be emphasized,

de-emphasized or even eliminaled, and for the development of appropriale instruction malerials.
(ibid.)

Subsequent developments have seen Maple extended to imchide both numerical and
graphical facilities and improved radically m user-friendliness. Yet there is an underlying
reason why there may be a major problem with symbolic manipulators in mathematical
education which is more than a question of interface, available facilities, and the need for
integration im the curriculum. A symbol manipulator is a tool—a very powerful tool —but
any tool can only be used to its fullest capabilities by those who know how to use it. The
situation is parallel to the use of simple calculators: they do not teach a child how to add
(or divide), but they are useful tools for adding or dividing when one knows what arithmetic
is all about. Once one knows how to cope with small numbers, perhaps the calculator can
be used to mvestigate facts with much larger numbers. Likewise, symbolic manipulators
are likely toprove more useful — as they have proved use ful in mathematical research — once
the student has progressed to the stage of knowing what the tool is being used for.

The later ion of symbolic i particularly Math have made
astep im helping the user come to terms with the nature of the concepts by including word-
processing facilities as well as symbol manipulation. This allows the development of
teaching material in the form of electronic notebooks, m which symbols present may be
manipulated or edited at will by the user. In this way it is possible to introduce the user to
new concepls in a cybernetic environment which responds to the users needs m manipu-
lating the symbols which appear. It promises to be an exciting development which has been
met with more enthusiasm than the environment which requires the user to type in the
complete command in the idiosyncratic syntax of the particular manipulator. Here words
can tell the user the meaning of a command and the user may just select it and imstruct the
computer to carty it out. However, our experience in all the earlier chapters tells us to
beware ofthe simple solution. It is likely to contain seeds for misconceptions and cognitive
conflict. In order that students can re-construct their knowledge faced with the radical new
concepts ofadvanced mathematics, they need to gain experience ofhow the ideas work and
actively reflect on the cognitive changes required to integrate this new knowledge into a
more appropriate mental structure. Two thousand years ago Euclid is reported to have told
Ptolemy that there is no Royal Road to Geometry, given the nature of the human animal,
even in collaboration with the computer, we should not be deluded into believing that the
computer will provide an entirely smooth path to mathematical knowledge.

Having a computer to perform the algorithms, even to show how those algorithms work
is one thing, being able to cope with these concepts meaningfully is another. Some symbolic
manipulators include facilities to allow the user to step tlrough the manipulation, seeing
what is done at cach stage. This can be very helpful to the student who is trying to learn how
to reproduce the algorithm, but knowing how to differentiate symbolically is very different
from knowing what the derivative means. Likewise, knowing routines for solving
differential equations symbolically by reversing this symbolic differentiation pro isa
very different process from being able to visualize a solution or a family of solutions. What
may help to broaden the student’s understanding is to set the use of the symbolic
manipulator in an appropriate conceptual environment.
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5. CONCEPTUAL DEVELOPMENT USING A COMPUTER

Heid (1985,1988) spent the first twetve weeks of a fifteen week applied calculus course
studying fundamental concepts using graphic and symbol-manipulation software to
perform routine calculations whilst she focussed the students on the underlying concepts.
Only in the last three weeks did they practice any routine algorithms for differentiation and
itegration. She found the learning of fundamental concepts was greatly improved in the
experimental class:

Students showed decp and broad understanding of course concepts and performed almost as well
on a final exam of routine skills as a group who had studied the skills for the entire fificen weeks.
(Heid, 1985, p. 2)

In the classes the experimental students were encouraged to use a large variety of concept
representations and to reason with them, for imstance using computer generated graphs and
tables of values to solve real world problems and make conclusions about applications:

One student, for example, located (he sales level for maximum profit by finding the x-value for the
grealest vertical difference between the revenue and cost curves. Another formulated consumers’
surplus as (he sum of the areas of rectangles without the typical first translation to a Riemann sum
formula. A third gave a new inlegration formuta for Lhe arca between curves by conjuring up an
allemative geamelric explanation and Lranslating il directly info a statement aboul integrals.
Reasoning in non-algebraic modes of representation characterized concepl development in experi-
menlal classes. (Heid, 1988, p. 10)

By encouraging the students to think for themselves and to construct their own ways of
handling the cancepts, it became apparent that they had integrated the ideas info their own
knowledge structure:

... when (he studenls realized thal (hey had made misstalemenis aboul concepls ... on many of hese
occasions, on their own initiative, the students in the experimental classes recanstructed facts ... by
reluming lo basic principles. When [they] spoke about limits, functions, derivalives and Riemann

sums, the wording was oflen clearly their own. (ibid,p. 15, 16)
In contrast:
‘When (he studenls in the (hal they had aboul

cancepls, there was no evidence of aliempis (o reason from basic principles. They often alluded lo
having been taught the relovant malerial bul being unable (o recall whal had been said in class.
(ibid,p. 16)

Thus Heid’s research shows clear evidence of the value of giving meaning to the basic
concepts, even before the students have had any extended practice with the algorithmic
techniques.
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6. THE COMPUTER AS AN ENVIRONMENT FOR EXPLORATION
OF FUNDAMENTAL IDEAS

In her research, Heid used existing software for graphs and symbolic manipulation to build
conceptual insights. This software is built on mathematical principles: to draw graphs, to
carry out mathematical processes, and so on. Another possibility is to design software
which uses a combination of mathematical and cogmnitive principles — building on what
students already know in a way which is consistent with their cognitive development.

Students meeting advanced mathematical concepts such as infinite processes, limits,
continuity and differentiability for the first time are known to have serious cognitive
difficulties (see chapters 10,11). The mathe: educator, with aknowledge of both the
mathematics and the cognitive devel can play a fund | role by identifying
powerful ideas i the theory that can be presented in a meaningful way to the students at
their current point in devel yet play a fund: I role throughout the theory. To
illustrate this we return to the cognitive approach to the calculus illustrated in chapter 11
and concentrate on the computer environment which it uses.

Graphic Calculus (Tall, 1986, Talletal, 1990) was conceived asan example of software
designed to provide students with a cognitive approach to the calculus and differential
equations. Because of students’ known conceptual difficulties in understanding the Limit
concept, it was decided to found the approach on the notion of local straightness. Here the
possibility of computer magnification of graphs allows the limiting process to be implicit
in the computer magnification, rather than explicit in the limit concept. Students therefore
begin the calculus by exploring the magnification of graphs of functions of one variable.
They can see that most of the familiar graphs (polynomials, trigonometric, exponential,
logarithmic and their combinations) are all locally straight, but some, such as f(x)=|sinx|
have points where left and right gradients differ. They can be guided to look at graphs such
as f(x)=x sin(1/x) (with (0)=0) which oscillates so wildly that it never looks straight at the
origin, whilst f(x)=(x+[x])sin( 1/x) looks straight to the left from the origin, but not to the
right. Other functions are available for exploration, including fractal functions that are so
wrinkled that they never look straight under magnification, giving students mental images
of differentiability and various ways i which non-differentiability may arise. Thus the
local straightuess of differentiable functions, and non-straightuess of non-differentiable
functions allows the student to gain a fundamental insight mto the notion of differentiability
from the very beginning, instead of founding their understanding on simpler ideas
concemed only with polynomials.

Local straightuess also links naturally to the ideas of differential equations (building
locally straight curves, knowing their gradient) and to the general study of differentiable
manifolds (locally flat substructures of higher dimensional spaces). The idea is also
enshrined in nonstandard analysis (e.g. Keisler, 1976) where it is proved that under an
infinite magnification (the standard part of) an infinitesimal portion ofa graph is precisely
straight.

As discussed in chapter 11, a student with the mental ability to view a small part ofa
displayed graph and to see its gradient, can then conceptualize the numerical gradient

fixth)flx) for variable x and fixed f. By ivestigating the numerical gradient i simple

h . .
cases using the computer, it is found that students can conjecture the formula for the
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gradiond, which is the ability (o derive
the formula algebraically from first principles (Tall, 1986).

Furthermore, he pictoris] ideacan leadto the notion ofa differential. Ifa graph s locally
straight, then a small portion of the tangend ata given point (x) will closely approximate

the curve. Denoting the components of the Langert vector by dxgy then r@:id‘f and
vimny, one can sec (hat (he paint (x+dx, i) is on the tangent, closely approximating
e when dx is small
"Thie leads naturally inlo the notion ofa first order differential equation

% =Fxy)

whero the gradientat any poin (x,y) is given as F(x,y). The Solution Sketcher (Tall, 1989)
allows the user (o specify a [ order differertial equation, then move a poinker
screen window represerting the (x) plane, drawing a small line-segment through (x)
with gradient F(x,y). By & simplk: key stroke the line-scgment may be left as a permanent
mark, and sucsessive scgments may be placed end (o end (o constrct an approximat
solution to the differential equation. Thus the studend can gsin aphysical idea of what the
solution of s first order differential equation actually mear
Itis a simple matier Lo show (hal a higher order itornsal equation

K
a2 =W

two ial eg Y i 8

&

dx
@~ e g =
‘This too has a (locally straight) solution in (1) space with Langend direction given by

(¢ )= (@ v, F) )

which s in the direction (1, v, F(1,v). Thus the simple idea that a solution “Follows the
‘gradient direction” istrue ol only for firstorder differential equations, but fo higher order
(simultaneous) differential equaticns in a suitable solution space.

Hubbard & West (1985) developed a computer graphics approach lo differential
equations. They found thal, without computer graphics, students had difficulty apprecist-
ing the notions of existence and uniqueness of solutions. When so much of their work had
involved roatine symbolic manipulation (o produce an answer, many students found it
Gifficult i ifil could nol b das a familiar
fomula. The computer graphics helped hem o sec cxistence as the ability to draw a
solution-asolution hatexisted visually even thoughthey wercunable loprovidea formula

“This links closely (o the formal theory — the solution exiss, and is unique, provided
the dif ¥ A each point. Solutions
fail o exist where the differential equation fails (o specify  unique direction

e need to incorporate numerical and graphic representations with symbolic methods. A
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compute i able o process a vast amount of uerical dtaand o present i in raphical
boli they

form. Ben where e may necd intrpre:
tation, Tall (195 the follov from anati iration in (e UK«
-
y%mn, 15
Ttis easily solved by scparating the variables:
# dy = cas 2x d, ®

and may be integrated to give:
_1 2
2 Il =g sin2x +c.

Bt whal docs his meas? Regarding (%) as spcifying fhe direcion of he (angond vector

(s o the p shortline
segmerts lo e dnem i ate directi lhmug\ an poirts in the planc
(figure 33).

Tt can be seen that some solutions arc closod loops whils! ofhers may be conceived as
Functions in the form y={(x). The symbolic solution i i his case of il value withouta
‘graphical representation of ls meaning, whilst the graphical interpretation alone lacks the
precision of (e symbolism. 1t thercfore needs e complementary power of visualization
nd symbolic manipulation to give a decper mathematical insight

2
dysdx=cos2xC(1l-y >/y

Figure 33 : Solutiors to a first onder diflerential equation
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7. PROGRAMMING

In recent years moves have been made to mtroduce student programming info mathematics
courses. lnitially this tended to be in the form of enhancing ready existing i
courses by introd and calcu! to carry out numerical algorithms and
perhaps represent the resulls graphically. It has met with mixed success. With younger
children there is considerable evidence that if programming is simply attached to a course
without any thought about conceptual itegration, then there is no reason to expect an
improvement i conceplualization of the course content (Menis ef al, 1980; Cheshire,
1981). Some research projects have shown that when programming is introduced as an
extra ito the traditional curriculum it may reduce the time spent on traditional skills,
causing a lower level of performance in them (Reding, 1981; Robitaille ef al, 1977).
However, Thomas & Tall (1988) found that teaching algebraic concepts in a module
including programming at first gave the usual iitial losses in traditional skills to balance
gains i conceptual understanding, but after a briefreview of skills at a later date, this was
changed into a gain on both skills and concepts.
At university level, Simons (1986) reported on the use of hand-held computers to be
d in BASIC to I the traditional teaching of calculus i these terms:

.. the introduction of a personal compulerinto acourse of (his nature, whilst enhancing (eaching and
presentation in many areas, raises profound problems. (Siwmons, 1986, p. 552)

There were evident gains in the immediate usefulness ofthe work, but a substantial number
of staff, long experienced in mathematics teaching yet new to the computer and numerical
analysis, did not like the course. Simons suggests that the aversion displayed by some
members of staff lies in the feeling of uncertainty im applying a numerical method:

The traditional mathematician ... is clearly aware that for every numerical method a function exists
for wehich the method produces a wrong answer. .. The statement thal nolhing is belioved unt it is

for leaching ing the compuler forces the Leacher
away from Lhis starting poinl. (ibid, p. 552)

A recurring observation is the difficulty experienced by teachers, both at university and in
school, to come to terms with the new technology. We are at present in the throes of a
paradigmatic upheaval and cultural forces operate to preserve what is known and
comfortable, and to resist new ideas until they are proven better beyond doubt.

On the other hand, there is also evidence that when programming is used for conceplual
purposes, such as solving problems where the programming parallels the underlying
mathematical processes, or using computer activities to foster specific mental construc-
tions that can lead to mathematical understanding, then there is a much higher level of
success.

Several universities i the U.K. now imchide mathematical problem-solving through
programming — usually in structured BASIC — as an element of the undergraduate
mathematics course. The problem-solving often requires program construction to give
numerical or graphical data and experience shows that the students gain considerably from
the task.
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Various ing are b img available which are almost certainly
more appropriate for mathematics than BASIC. Some are specifically designed to make
concepts in mathematics easy to program. For example, Mathematica, as well as providing
a symbolic manipulation system within a word-processing package that will draw graphs,
also gives a complete programming system that allows a powerful blend of functional and
structural programming constructs. Such developments within a multi-purpose computer
environment are likely to prove of increasing use im advanced mathematical thinking in the
future. It should be noted, however, that the principal aim of the programming system of
Math ica is predominantly for doing math ics, rather than learning mathematics.
It is therefore better designed for the expert than the novice.

A language specifically designed for mathematics learning is ISETL (Interactive SET
Language). Dubinsky and his colleagues have found that having students make certam
constructions in the ISETL can lead to their making parallel mathematical constructions in
their minds and thereby come to understand various mathematical concepts (Ayers ef al,
1987; Dubinsky, 1986, 1990a, 1990b; Dubinsky et al, 1988; Dubinsky et al, 1989;
Dubinsky & Schwingendorf, 1990a, 1990b). The specific use of computers in this work is
driven by the theoretical analysis laid out in Chapter 7 and a brief description of the language
is given in an appendix to this chapter.

These experiences, both positive and negative, tell us that the issue i using program-
ming to help students learn mathematical concepts is not whether it should be done, nor is
it the particular language that is used. The main consideration is how the instructional
treatment uses the language through the design of the programming tasks for the students.

Although the nature of the computer language is not the primary consideration, it is an
important one. The inconvenience of working with Fortran or Pascal syntax introduces
difficulties for students and teachers that have nothing to do with mathematical issues. The
same is true o a lesser extent of LISP, APL and PROLOG. BASIC s easier to use and is
adequate for numerical algorithms and representing numerical data ina graphical form, but
it is inappropriate for arithmetic with large integers, for symbol manipulation and for most
higher-level mathematical thinking. LISP is particularly powerful for symbol manipulation
and LOGO is almost as good (for the purposes of mathematics) with much less syntactic
overhead. APL makes working with vectors and matrices especially easy while PROLOG
is designed for programming systemsof complex logical inferences. ISETL supports most
of the standard mathematical constructs with a syntax very close to mathematical notation.
It is the only one of these languages that treats functions as data.

Graphics have often only been added to languages at a later stage. The omission of
graphics from the first version of BASIC led to a proliferation of different dialects. Given
the acclaim for turtle graphics, it is a salutary experience to realize that these were almost
an afterthought in the initial specification of LOGO. ISETL was also origimally designed
without graphics which were added later.

To ask which kind of programming language is most beneficial to help students learn
mathem: one must first ask what it is one is trying to teach and how:

1s mathematics a bag of lricks (hal may be useful (o later Life? Is mathematics taught because il is
an important part of our culture, or because it helps youmg people (o (each logically and abstraclly?
These are questions for mathemalics leachers. In the long run, campuler software can be adjusted
o their requirements. (Grogono, 1989)
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Grogono shows how different kinds of languages may be used to model different kinds of
thinking processes. The question is equally applicable at more advanced levels of
mathematics. Ifits answer is that one wishes to encourage students to think mathematically
about mathematical concepts, then a computer language is required that supports these
requirements.

8. THE FUTURE

Thus we see the computer already proving a powerful tool in advanced mathematical
thinking, both in mathematical research and in mathematics education at the higher levels.
The empirical evidence shows that it proves more successful in the educational process
when it is used to enhance meaning, either through ing i a language i
the mathematical processes or through the use of computer environments for explorahon
and construction of concepts.

Computers are likely to prove a profound influence over the next N years, where the
reader may care to estimate the value of NV. It is possible, but it may not be meaningful, to
speculate on the changes that new technology will bring Already the promise ol'parallel

img may bring new ies, for instance in the simultaneous processing of
several different representations. Intelligent tutoring systems currently seem to promise
more than they deliver, but it is conceivable that new teclmiques may bring greater success.
Already we have video discs carrying large amourts of information for the user to explore
in new and unforseen ways.

However, it is our belief that mathematics is not a spectator sport, and that advanced
mathematical thinking will contiue to blossom through the constructive actions of the
human mind, albeit I d by the p ing power of the computer.
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APPENDIX TO CHAPTER 14

ISETL : A COMPUTER LANGUAGE
FOR ADVANCED MATHEMATICAL THINKING

ISETL is a computer language which has been designed and used to foster mathematical
thinking at advanced levels. The language and its use will be indicated by giving some
examples ofactual code along with idications ofhow this relates to some specifics of the
constructivist analysis given in Chapter7. We will use terminology such as process, object,
interiorize, encapsulate, coordinate, and reverse which are explained fully in that chapter.

The imteractive set language ISETL is designed to implement many mathematical
constructions in ordinary mathematical language. Sets can be listed in the usual way within
braces {}, cither asa list of elements separated by commas, or 2 definedby a property.
Square brackets [ ] denote sequences, and the notation [a.b] for integers a , b denote all the
integers from a to b.

The following line entered into ISETL:

P := {x : x in [2.1000] | not exists y in |2..(x~1)] | x mod y=0}

assigns to P the set of numbers x between 2 and 1000 which do not have a smaller factor
y —in other words P is the set of primes less than 1000.
In full generality a set m ISETL can be specified as:

{ €Xpr : XY, o in S, uy, ... in T, .. | condition | condition ..}

where expr is an expression, generally imvolving variables x, y. u, v, etc whose domains
are previously constructed sets S, T, ... and each condition is an expression whose value is
true or false. It is important for the student to think about how the computer might handle
this construction: by iterating the variables through their domains, and for each value to
evaluate the conditions and, if it is true, placing the expression in the set.

The assumption made by those who use this language im education is that by writingsuch
code the student will interiorize the process of forming this set.

Asetis notonly a process of formation, it is an object with its own existence; for imstance,
ithas a cardinality operator, it can be itselfa member of a set, etc. One way to check that
someone has an understanding of the process is to ask her or him to calculate the number
of elements in a set such as

{142, {143, “cat”, {1,2,3}, {{“house”, “dog™, 3}, 31
im this case it is 5). ISETL does this with a single operation. Thus,
P

#({1+2, {1..4}, “cat”, {1,2,3}, {{*“housc”, “dog”, 3}, 3}});
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retumns the value 5.

Again there is an assumption that if you write code that applies operators, then you will
tend to think of that to which an operator applies as an object. In this way, it is considered
that students will came to encapsulate the process of set formation and think of the resulting
set as an object.

A function can be represented in ISETL as a dynamic process which transforms
elements in one set to elements in another. For instance:

F = func(k);
return %+[i**2 :
end;

in [2,4.K]

defines F as a function of k and returns the sum (denoted by %+) of the squares of all even
numbers between 2 and k.

An important effect of writing procedures that express mathematical actions is that, in
the sense of Chapter 7, the students tend to interiorize these actions and construct mental
processes that contribute to their understanding the underlying concepts.

As we pointed out im Chapter 7, it is important to encapsulate functions that are
understood as processes and think of them as objects. The best way to achieve this is to
operate on functions and/or make new ones. This is possible in ISETL because a function
is treated as data. It is possible to form sets of functions, have functions as parameters to
other functions and also to have a func construct and retun a function. Consider the
following example.

co = func(f,g);
return func(x);
return [(g(x));
end;
end;

ca is an operation which will take two representations of functions, say f1 and g1 and return
a ion of their ition. Th ite function co(f1,12) may alsobe written
using infix notation as (1 .co 12). Assuming that f1 and I2 represent functions and the value
of expr is in the right set, the computer will accept

(01 .cogl) (expr);

and return the value of

11 (gl(expr)).

A powerful way to use this idea is to have students construct ca and use it, preferably
to solve problems of interest to them. The student will tend to have a number of important
experiences as a result of constructing co. First, it is necessary to think of functions as
objects in order to imagine applying some process to two functions. Then these two objects
must be unpacked to reveal their processes which can be coordinated by linking them
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sequentially. The resulting process is then converted back to an object by the three lines
beginning with return func(x);. This code, which has the effect of returning a represen-
tationofa function whose domaimvariable willbe denoted by x, is very difficult for students
and having them struggle to construct it in order to solve a problem can have a profound
positive effect on their conceptualization of functions.

A second way of representing functions in ISETL, which corresponds to one way that
mathematicians think of functions is to list the ordered pairs, for instance

H = {|xx**2] : x in P};

assignsto the variable H the set of ordered pairs [x,x**2], wherexis a prime lessthan 1000
and x**2 denotes x2.
Within ISETL a set of ordered pair works like a function, so an expression such as

HERHE):HE);

will print on the screen the values 9, 49 and om, the last symbol being the sign that 1 (4)
is not defined because 4 is not in P.

Ina sense, this reverses the mental excursion. Ifa function is constructed as a func which
is then operated on, one is influencing students to think about a function first as a process,
then as an object. A set ofordered pairs, on the other hand, is most likely to be considered
to be an object, especially if previous study of the language has treated sets in this way.
Having students write such code and then do evaluations tends to have them think first of
a function as an object, and then as a process. Clearly, students should experience both
excursions and see them as two aspects of the same notion. The fact that ISETL will treat
sets of ordered pairs and funcs in many similar ways (for example, co will work justas well
ifits mputsare setsoforderedpairs rather than funcs, orevena mixture) helps students unify
their thoughts about the two points of view.

An example of the mputs to a function being a combimation of functions and numbers
is the following func to calculate a Riemann sum for the function ffrom a to b using # equal
width strips whose height is the left endpoint of each subinterval:

RiemLe!

func(fa,b,n);
a+((b-a)/m)*(i-1
return %HxE*(x(+)-x(7)

end;

X

in [L.n]];

Students can also encapsulate the notion of integration as a function operating on other
functions by defining:

Int = func(f;a,n);
return func(x,a,n);
return RiemLelt(f;a,x,n);
end;
end;



ADVANCED MATHEMATICAL THINKING AND THE COMPUTER 247

Here Int(f;a,n) represents a function off, @ and n where Int(f;a,n)(x) gives the Riemann
sum for ffrom a to x using # equal steps.

ISETL is also ideal for other mathematical cancepts and the benefits to learning canalso
be delineated in terms of the general theary presented in Chapter 7. We mention briefly a
few additional things one can do i this language and how they relate to understanding
mathematical concepts.

For instance, it is helpful for students to write programs to construct the truth table for
a given expression. With the first order calculus there is agaim the dichotomy and synthesis
ofthinking ofa logical expression as a process and as an object. Thus, in an expression such
as

P rQ)=(-QVEVR)

the expression (P A () can represent, in the mind of the student, a process consisting of
putting together P and Q and evaluating the truth or falsity for various values of the
variables. But in order to combine (P A Q) with the rest of the expression, it must be treated

as an object.
Once boolean c\presslons (having the value true or false) are considered as objects, they
canbecallected Thisisacriticalstepin the transition to the second order

predicate calculus in which quantification is mvolved. In order to interpret the logical
stalement

Axe § 3P(x)

one has to imagine a set of propositions indexed by x. The existential operator is performed
by iterating x through the domain §, evaluating the proposition valued function P at x and,
if once the result is true, declaring success and going home. This is exactly what the
computer does when given the ISETL command

existsx inS | P(x)

and thinking about the ISETL procedure helps the student think about the corresponding
mathematical process. Beginning with a function P of two variables and applying two
quantifiers (generally one existential and one universal) leads to a second order quantifi-
cation. Writing the code helps the student to coordinate two instances of the quantification
process and make the appropriate mental construction.

Formal defmitions of mathematical structures are straightforward to implement (for
finite sets) im ISETL. For instance, if G is a finite set with binary operation op, then the
following ISETL func tests whether it is a group:

grouper = func(G,0p);
return (forall xy in G| x .op y in G)
and (forall xy,zin G| (x .op ¥) .op )= (x .0p (v .0p 7))
and (exists ein G | (forall x in G| x .op e=x))
and (forall x in G | (exists y in G| x .opy =¢));
end;
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Nouce how closely this code resembles the formal defmition ofa group. It also fosters
the p logical ions necessary to und d the group axioms. There are
several instances of processes and objects here as well as coordination of two processes.
In addition, the axiom for imverses requires a reversal of the process which arose in the
axiom for identity.

It turns out that, whether or not the students succeed in writing such a func, once they
have it and understand it, they can write funcs to test for subgroups and even normal
subgroups. Then, it is very effective to have them construct the set of cosets, define the
appropriate binary operation and use grouper to decide whether it gives a group. This can
be carried at least up to the fundamental theorem of homomorphisms.
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CHAPTER 15

REFLECTIONS
DAVID TALL

The production of this book is a first stage in a journey which sixteen authors and a wider
group of co-workers in AdvancedMathematical Thinkinghave shared. It is pertinent, given
the nature of the thinking processes that we have unfolded, to reflect upon what we have
done with the spiral of canceptual development in mind. First one begins with a problem
whichmay notbe well-defied. Then one uses what toolsare available toattack the problem
as it progressively becomes clearer, with all the false starts and hard-won minor advances
that are imevitable ingredients of the struggle. And now there is a calm after the storm to
reflect, to see what gains have been made and what remains to be done.

It would be good to be able to look back on the defmitive book on Advanced
Mathematical Thinking, with all the resolutions of all the problems that occur and a
coherent theory that explzms what it is and how to help others achieve it. This task i is not
yet complete, certainly not in a definition-theorem-application format that a matk
might require of a theory. What has been done is to set out on a journey, on which the reader
has been encouraged to participate, to consider the way in which advanced mathematical
thinking functions, to understand what makes some thinkers successful and to help others
on their journey to greater success. "Thejourney is the reward”. And at this time we can
look back on the pathways we have taken to see what problemns have been well-formulated
and what solutions have appeared as we move on to the next stage of the journey.

For me, as editor, it has been a fascimating study to see the development of various parts
of a theory, to see consonances and dissonances, some of which have been resolved whilst
othersremain suspended in the ether. At the beginning of the journey 1 saw through a glass
darkly. T have yet to see face to face.

But now there are clearer avenues to follow, beginning with a more focussed picture of
the nature of the advanced mathematical thinking and moving towards pertinent questions
and pamal answers. First we must highlight the different ways in which individual
ns may think lly. In particular, the need for all of us, successful in
our various ways, to give space to others to helpthem use their own particular talents to build
up their mathematical thinking processes. Then there is the realization of the thorny nature
of the full path of mathematical thinking, so much more demanding and rewarding than the
undoubted aesthetic beauty of the final edifice of forma! definition, thearem and proof.

1t is clear that the formal presentation of material to students in university mathematics
courses — including mathematics majors, but even more for those who take mathematics
as a service subject — imvolves conceptual obstacles that make the pathway very difficult
for them to travel successfully. And the changes i technology, that render routine tasks less
needful of labour, suggest that the time for tuming out students whose major achievement
is i reproducing algorithms in appropriate circumstances is fast passing and such an
approach needs to move to one which attempts to develop much more productive thinking.

It is therefore no longer viable, if indeed it ever was, to lay the burden of failure of our
students on their supposed stupidity, when now the reasons behind their difficulties may
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be seen to be in part to be due to the epi logical nature of mat} ics and in part to
misconceptions by mathematicians of how students leam. We often teach certain skills
because we know that these will bring visible, albeit limited, success, but we now know,
somewhat furtively, that the acquiring of those skills may develop concept imagery that
contains the seeds of future conflict. We have evidence that a formal approach, which
appeals to the sophisticated expert may be cognitively totally mappropriate for the naive
leamner and demands new forms of teaching to pass through the transition from elementary
mathematics to a point where the economy and structure of modem mathematics is seen
as a meaningful goal.

It seems incredible that our list of refe is largely dominated by papers written in
the last decade with only a few honourable exceptions before the early eighties. What has
emerged from a meeting of individuals over a five year period, to reflect on this newly
developing area of concern, is a clearer understanding of the full cycle of mathematical
thinking: the need to begin with conjectures and debate, the need to construct meaning, the
need to reflect on formal defmitions to construct the abstract object whose properties are
those, and only those, which can be deduced from the defmition. Advanced mathematics,
by its very nature, imchudes concepts which are subtly at variance with naive experience.
Such ideas require an immense personal re-construction to build the cognitive apparatus
to handle them effectively. It involves a struggle which virtually every author in this book,
both severally and individually, sees in terms of a reflection on personal knowledge and a
direct confrontation with the inevitable conflicts which require resolution and reconstruc-
tion.

College professors see this conflict daily in individual students as they struggle to come
to terms with new ideas. In the past they have ofien tried to help by providing clearer
lectures, making the transitions as simple as possible, presenting the ideas in a way which
reduces the strain. This may even lead to the successful professor being lauded by his or
herstudents for the clarity of their exposition, but the acid test is what do the students learn?
And this needs to be assessed in a wider sense than just which algorithms closely related
to their course they can carry out, or which defmitions and proofs can they correctly
reproduce.

Our cognitive studies have shown the manifold differences between the formal
defmitions of concepts and the images we use in our minds to work with these concepts.
They show how the complexity of the subject demands a “chunking” of information in an
efficient way so that it can be easily handled, and this is linked to the appropriate use of
symbolism for a given context and the appropriate meaning which the individual links to
that symbolism.

‘We have seen a divergence between the visualizers and verbalizers amongst us, just as
there appears to be a time-honoured difference between the mental processes of the
mathematical giants of the past. In recent months, as | have teracted with the various
authors i1 an attenipt to either come to an agreement or to hone our differences into explicit
focus, | have been privileged to gain some additional insights.

It is clear that mathematics without process to give results is of little value, in other
words, visualizing an idea without being able to bring it to fruition is virtually useless. I
emphasize this fact even though a major thrust of my work is in the use of visualization. On
the other hand, simply to be able to carry out procedures in a narrow way, without being
able to see the overall connections, is also grossly limiting. For me this has led to a belief
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ina versatile form ofthinking which complements the procedural with the global overview.
However, we have evidence of mathematicians, such as Hermite, steeped in the logic of
their subject who develop a powerful intuition of the processes and their symbolism in such
away as to render visualization — for them — redundant. Weall idenceof successful
students (such as the case of Terence Tao, Clements, 1984) who vastly prefer the power of
logical deduction. We therefore need to cater for different types of minds.

Recently, however, in avery different context, I was able to obtain an insight which may
prove helpful in this apparent di Mat: ding to the Oxford
Dictionary — is said to be “the Science of’ bpace and Number”. In recent months | have been
reflecting on the fundamental differences between these two different forms of mathemat-
ics and the manner in which they develop cognitively. Space, through the study of
geometry, begins with gestalts — “that is a triangle”, “this is a straight line”, “that there is
arectangle” and “this is a square”. The child leams to recognize these visual gestalts from
examples and non-examples. “Yes, that is a square, but don’t think it is not a rectangle,
because a square is a special kind of rectangle”. Through exploration and interaction with
others, the child learns to discriminate between these various gestalts and to isolate some
of their properties: “a rectangle has four right-angles and opposite pairs of sides equal”, “a
square has four right-angles and all four sides equal” and to begi to see relationships “an
isosceles triangle has two equal angles and two equal sides”. From here the relationships
begii to build into deductions “if a figure is a square, then it is a rectangle”, “ifa triangle
has two equal sides, then it has two equal angles”, definitions begin to be isolated and,
fmally, these can be formulated in an axiomatic way to give the framework for logical
deduction. Indeed, what 1 have just described in outline was formulated about the
development of geometry more clearly as a hierarchy over thirty years ago by V an Hiele
(1959).

Number on the other hand is a very different animal. It begins with imitation of the
number names recited in sequence, “one, two, three, ...”, perhaps imperfectly at first, ..
four, five, nine, seven, ...”, then with more confidence, until the routine of pointing at objects
and reciting the number names in proper sequence leads to the concept of counting. This
is an encapsulation. The process of counting leads to the concept of number. By various
further strategies of process, “counting all” of two sets (a coordination of two processes),
or “counting on” (combining the concept of number of the first set with the process of
counting the second) leads from the process of counting to the concept of “sum”. A vital
phenomenon occurs here in that the symbolism 4+3 represents to the user both the process
of counting and the product of that process, the sum. The rest of the “number” part of
mathematics proceeds, in the same way, by encapsulating processes as concepts, offen
using the same symbolism for both process and concepl. Thus the process of “repeated
addition”, “five threes” becomes the concept of “product”, “5 times 37 —both written as 5x3.
The process of “repeated multiplication” becomes the concept of “power” and so on. Of
course this prescription is exactly parallel to the discussion of Dubinsky on reflective
abstraction. It is a phenomenon known to Piaget and to many an observant teacher since
time began — except that there is an amazing simplicity about what is being done. In the
number side of mathematics the mathematician makes progress by being ambiguous about
notation. (S)he uses the same notation for process and product deliberately, so that (s)he
can powerfully use whichever is appropriate fora given task. To calculate means to use the
process, to manipulate is easier with a single object which involves using the product.
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As whole number generalizes to signed integer, the symbols +2 and -7 also have dual
roles as process and the product: “shift two units right on the numbr line”, “the integer plus
two”, “shift seven units left”, “the number minus two”. The same happens with fractions:
“3/4™ is both “divide three by four” and the product of the process: “three-quarters”. It is
the same with trigonometry, where

sine = opposite/hypotenuse

is both an instruction to calculate and a symbolism for the result.

Algebra too exhibits this same dualism ofnotation where 2+3x means both the process
of adding two to the product of three and x and also the result of that process.

In chapter4 Hannaremarkson the irony that ina “discipline touted as precise, the student
must develop a tolerance for ambiguity”. Instead of bemg defcnslve about this state of
affairs, it is more appropriate to note that the is the individual who
sees the duality of this kind of notation as process and product and who uses the ambiguity
in a flexible way. Given the importance of a concept which is both process and product, 1
find it samewhat amazing that it has no name. So | coined the portmanteau term “procepf”
for a process which is symbolized by the same symbols as the product. It seems that the
whole of number and algebra is built on procepts, so a theary of procepts and their use in
mathematics has a vast potential domain of application.

Yet space and geametry are different. They seem to be built on gestalts whoseproperties
are only slowly teased out and put into coherent relationships, then definitions and
deductions.

There are therefore (at least) two different kinds of mathematics. One builds from
gestalts, through identification of properties and their cof on to definition and
deduction at advanced levels of mathematical thinking. The other continually encapsulates
processes as concepts, to build up arithmetic, then generalizes these ideas in algebra before
formalizing them as definitions and deductive thearems in the advanced mathematics of
abstract algebra.

If we look at the discussion of Viuner in chapter 5, we find his theories origimally began
with geontetry, and his examples include “car”, “table”, “house”, “green”, “nice”, etc.None
of these areprocepts. However, if we look at the discussion of Dubinsky in chapter 7, we
find his examples include * commulanv:ly of addition”, “number”, “wajectory” (as a

ination of ive di “see-saw” (as the balancing of two objects),
“multiplication”, “fluid levels™ (as a ‘variation of variations’). All these are processes
which become encapsulated as concepts. As they stand, they are not all procepts within the
narrow meaning of the term just defined. However, they all involve manipulation of
quantities, or balancing of quantities, or variation of quantities, and this in turn involves
number, which brings us back to proceptual ideas where symbolism is used both to
represent a process of manipulation and the result of that process.

The fascinating thing is that, by the time we reach the level of formalism in advanced
mathematics, these two different strands move to a similar formulation: the definition of
concepts and the deduction of properties of those concepts.

1 believe that the major catastrophe of the new mathematics movement was due to the
unproven assumption that “if only the concepts are properly defined, then everything will
be OK’. The need for clear definitions and deductions caused math icians to be covert
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about the power of their ambiguous use of procepts. This move served our students badly
because it failed to acknowledge the methods of the working mathematician. The power
in mathematics is not given through umqm and precise meaning to symbolism —“afunction
isa set of ordered pairs such that.. .” — but through a duality which gains flexibility through
ambigui‘j»] a function is both aprocess (to be able to calculate) and a concept (which can
‘be manipulated). It is as simple as that. We cheated our students because we did not tell the
truth about the way mathematics works, possibly because we sought the Holy Grail of
mathematical precision, possibly because we rarely reflected on, and therefore never
realized, the true ways in which mathematicians operate.

The evidence which we are collecting with a wide range of ability of much younger
children is that the most able naturally use this flexibility (Gray, 1991). In arithmetic they
soon learn a few facts then, when they are faced with a new arithmetic problem, they are
often able to relate it to one they know and derive new facts from old. The more able
therefore have a built-in knowledge generator that develops new arithmetical knowledge
from old. Once they grasp this, they realize that they do not need to remember so much
because they can soon derive what they want to know. They have a flexible proceptual
knowledge in which number problems such as 4+5 can be decomposed as the process 4+5,
which might be seen as 4+4+1 and (if they know 4+4=8) can be reassembled as 8+1=9.
Thus the procept 4+5 is decomposed into process and parts of this are recomposed back to
derive the concept, or result, 4+5=9.

Meanwhile the lower ability children remember few facts and continue to use the
process of counting to add numbers together. Ifasked 8+4, they faithfully count on four to
get “nine, ten, eleven, twelve™ but this is rarely remember as a known fact and, mstead of
having a knowledge generator, they have an unencapsulated process which produces
answers which are ot manipulable objects. Thus there grows a “proceptual divide”
between the more able, using proceptual flexibility, and the less able, locked in process.

The same proceptual divide occurs with algebra. The child who sees algebraic notation
only as process, is faced with a nightmare, for how can (s)he conceive of 243x as a process
when, without knowing x, it is a process which cannot be carried out. And if x is known,
why is it necessary to use algebra anyway? Only the child who can give meaning (o the
symbolism as a conceptual entity can begin to ij more complex
meaningfully in the sense of Harel and Kaput in chapter 6.

This same division between those who conceptualize process as product and those
locked in process occurs again at higher levels. The limit concept lim an is again a

procept. The same nofation representsboth the process of tending to the Iimit, and also the

value of the limit. But this phenomenon is very different from procepts met in elementary
mathematics. There the process could be used to caleulate the product. Now we have the
phenomenon that Cormu identified as an obstacle in chapter 10 understanding the
dynamics of the process does not lead directly to the calculation of the limit. lnstead indirect
alternative methods of computation must be devised.

Just as with arithmetic, the theory of limits has a structure for devising new facts from
old. But in arithmetic the new facts are derived from old using the calculation processes of

1 1 am grateful (o my calleaguie Eddie Gray for (his phrase, which comes the litle of a joint
paper (Gray & Tall, 1991) based on his work with the number processes of younger children.
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arithmetic and the new facts have the same status as the old they can be calculated by the
processes of arithmetic in thesame way. In the case ofthe theary of limits, the“known facts”
are one or two “elementary” deductions from the definition: that lim 1/n is zero, or that

.

aconstant function and the identity function are continuous. All three of these “elementary”
facts are derived from the definitions in singularly peculiar ways which can cause initial
confusion. The fact that 1/n tends to zero might be deduced from Archimedes’ axiom, or
perhaps by somne heuristic appeal to the fact that :”I can make 1/» smaller than € by making
n bigger than the integer part of 1/€ plus one”, both of which are strange ways of asserting
1/n gets small as » gets large — the student krows that anyway! To establish the fact that a
constant function is continuous is just “tell me € and 1 will tell you 8, in fact you can take
any 8>0 you like, say 8=1066". It is a joke that few students have the experience to find
funny. The continuity of the identity function is equally enigmatic “OK, take ¢ then,
when [x—x0[<8, we have |f(x)-f(x0)<e, because x=f(x),can’tyousee,youdummy?” Unlike
arithmetic, once these few “elementary facts” are deduced, few, ifany, other such “facts™
are calculated directly. Instead the “algebra of limits” is proved, using the coordination of
the “unencapsulated definition of the limit” as reported inchapter 10, which isat, orbeyond,
the zane of competence of most students. The result is that the derived facts are “proved”
(any polynomial is “continuous” by an induction argument combining sums and products
of constant functions and the identity) yet the actual definition is no longer used because
the calculations become horrendous.

Thus it is that the procepts in advanced mathematics work in a totally different and
completely enigmatic way compared with the procepts in elementary mathematics. It is no
wonder that, faced with this confusion, so many students end up conceiving the limit either
as an (unencapsulated) process or in terms of meaningless rote-learned symbol pushing.

Likewise the gestalt geametric concepts work differently in advanced mathematics too.
Instead of being “described” and having coherent relationships, they are “defined” and
other properties must be “deduced” from the definitions. Again, given the conflictbetween
the elementary ideas where the facts are known and the abstract ideas where they need to
be deduced confusion, as discussed by Vinner (chapter 5), is almost inevitable.

So what s the solution? First it should be noted that the chapters of this book nowhere
give methods that will produce guarantied success. There is no dispute that, for the most
able, aformalpresentation maybe sufficient to show the structure of the subject which they
may appreciate and build into a deductive system. But for the vast majority of students, the
way ahead is stony and littered with cognitive obstacles which, if not addressed, will only
be isolated in the mind insuch a way that they lie there ready to cause cnflict in future times
— if they do not cause outright canfusion already.

The evidence is that students of a wide range of abilities prosper when they can give
meaning to the ideas. This does nof mean that they must always relate the concepts back
to same concrete foundation that has physical meaning. lustas thechild who counts objects
su ully moves on at a very carly age to mentally manipulate number symbols in

ithmetic, so ive layers of lation of process into procept only need refer to
the level of the previous proceptual layer. In fact, once the encapsulation has occurred, the
use of the same symbolisimn causes the process and concept 1o coalesce into a single level.
Thus the so-called hierarchy of concepts, which is an obstacle to leaming, becomes, to the
successful encapsulator, a single level in which process and concept are dually represented,
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with the complexity disguised by the simplicity of the symbolism.

The question to be addressed is: if this is the way of success for the more able, what
should we do with, or for, or to, the vast majority of our students? The evidence in this book
is, that to give them a sense of the full range of advanced mathematical thinking, it is
essential to help them reflect on the nature of the concepts and the need for mental
reconstruction in an overt and explicit way, and to give them opportunities in which they
can learn to conjecture and debate, so that they may participate in mathematical thinking,
1ot just learn to reproduce mathematical thought.

This is not going to be an easy task. What stands against it is, in many cases, fear. Fear
of professional mathematicians for the unknown when they leave their neatly plaimed
caurse structures of thearem-proof-application and give open-ended opportunities for
problemn-solving. Fear of the increased time that this will take and that they will not “get
through the course”. Fear that “standards will drop” because students will not be able to
exhibit theability to carry out all the processes that need to be taught in an “honours degree”.
Fear that they dare not make any changes whilst other institutions maintain the traditional
standards.

In recent years the fast changes in society are causing all of the well-established truths
to be reassessed. In Britain through the Institute of Physics, university departments of
physics have mutually agreed to reduce the content of the three year physics course by one
third to give more room for understanding what is actually taught. In mathematics a step
in similar direction might not be out of place. It is not necessary to change the whole of the
approach in a single step. Given a modest reduction incontent, a new flexibility could allow,
say, a single course in problem-solving, of a general nature, to be introduced early in the
caurse, to encourage creativity in mathematical thinking, even though it introduced no new
content, but compensated in terms of reflection on higher processes. For ten years I have
run such a problem-sotving course and I know the way it changes students’ perceptions of
themselves and builds up confidence through success in small things that steadily grow
more complex. They leam to falk to each other, to verbalize mathematics, to speak
coherently. They even learn to enjoy interchanging information and helping each other,
whereas before they had often believed that good students only do mathematics for
themselves, on their own.

Given a modest reduction in content, it might be possible to allow time for students to
explore their own conjectures in a specific subject area. In my own analysis lectures |
regularly set up a problem scenario and leave the students to work in groups to try to solve
the problem. “OK, so the intermediate vatue theorem seems obvious, but suppose you knew
fwas continuous between a, b and that f{a) and f{b) had opposite signs —how would you
prove that it is zero in between?” Setting this as homework does not have the same effect
as encouraging students to talk together in class time, and the best way to do this is for the
instructor to make sure that there is a good topic for investigation and then leave the room.
Some of my best teaching occurs when 1 am somewhere else drinking coffee and getting
paid for it! A return to the classroom afteran appropriate passage of time may find that the
students have not solved the problem, but they often have experiences on which a proofcan
then be constructed through a inutual dialogue. In this way they learn to participate in the
canstruction of mathematical knowledge rather than just remembering and repeating it.

Viewing the third part of this book —the review ofthe literature —we see authors adopting
very different stances. Robert and Schwarzenberger highlight the difficulties of the
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transition from school to university, Eisenberg begins with a catalogue of failure in the
teaching of the function concept. Cornu is fascinated by the p of k ledg
creation and the parallel between the epistemological obstacles in the past and the cognitive
obstacles of students. Artigue continues the study to further levels of mathematical analysis
and certain avenues ofhope begin to appear. Tirosh reviews the cognitive canflicts inherent
in contemplating the infinite and gives a detailed report ofa single experiment exemplifying
how students may be taught to reflect on their knowledge and actively participate in its
reconstruction. Alibert and Thomas look at the process of proof and show the difficulties
of the formalism and how it might be tackled through debate. Finally Dubinsky and I look
forward to the use of the camputer and the way in which this may change the nature of
mathemnatics and provide an environment for leaming. Despite the different tone of some
chapters, the message of hope for reflective recanstruction of knowledge is there in all of
themn.

My recent thinking has led me to realize that the computer can be used in a very special
way in learning — to carry out the processes, so that the user can concentrate on the product.
This is the essence of a spread-sheet, a graph-plotter, a symbol manipulator, and so on. In
other words, the computer allows a change in the encapsulation from process to object.
Instead, of forcing the student first to learn and interiorize the process, the computer can
carry out the process and allow the user to focus on the properties of the product. In this way
there can be a shift of aftention away from the process (in which the less able may became
trapped) and towards the mathematical objects, and their relationships at a higher level.
Instead of just learning the processes of solving differential equations, students may first
appreciate the existence and unigueness of solutions, and construct themn in a meaningful,
quasi-physical way, building an approximate solution curve by putting together short
straight-line segments of the appropriate gradient.

Thus the final plank in the new charter of advanced mathematical thinking in the
information age is what | have termed the principle of selective construction of knowledge,
in which the learner is allowed, even encouraged, to focus separately on the processes of
mathematics and the procepts produced by those processes. It is now possible to get a
computer to carry out the algorithms so that the student can concentrate on the properties
of the product. In this way the student can be encouraged to construct the properties and
relationships enjoyed by the product whilst suppressing consideration of the process which
is constructed internally by the computer. The student may at one time selectively
concentrate purely on the process and at another on the higher level relationships. Both
activities remain essential, for the process is needed to be able to do mathenatics and the
higher level relationships are essential to fit it together in a meaningful way. The interesting
factor is that the focus on the process need not always precede the construction of the
properties of the product. The intuitive idea of existence and uniqueness of differential
equations can be investigated before formulating any symbolic solution. In this way the use
of the computer gives new teaching and leaming strategies in advanced mathematics.

We therefore arrive at a possible new synthesis in teaching and learning advanced
mathematics which offers a more complete cycle of advanced mathematical thinking to
students, even those of more modest abilities. The active participation in thinking is
essential for the personal construction of meaningful concepts. Students need to be
challenged to face the cognitive reconstruction explicitly, through conjecture and debate,
through problem-solving, and they may be assisted in the acquisition of insights at higher
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levels by selectively sharing the construction with the computer. This does not remove the
need topass on information in the theorem-proofapplication mode, for this is the crowning
glory of advanced mathematics. But students need to be assisted through a transition to a
stage where they see the necessity and economy of such an approach. Therefore, step by
step, through professors being given a little space to experiment, initially as part of a
traditional curriculum, a new balance may be struck, between the shining edifice of
advanced mathematics that is the rightful pride of the mathematical community and the
fuller range of advanced mathematical thinking that gave rise to its construction.
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