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Introduction

Many questions dealing with solvability, stability and solution methods for vari-
ational inequalities or equilibrium, optimization and complementarity problems
lead to the analysis of certain (perturbed) equations. This often requires a re-
formulation of the initial model being under consideration. Due to the specific
of the original problem, the resulting equation is usually either not differen-
tiable (even if the data of the original model are smooth), or it does not satisfy
the assumptions of the classical implicit function theorem.

This phenomenon is the main reason why a considerable analytical instru-
ment dealing with generalized equations (i.e., with finding zeros of multivalued
mappings) and nonsmooth equations (i.e., the defining functions are not con-
tinuously differentiable) has been developed during the last 20 years, and that
under very different viewpoints and assumptions.

In this theory, the classical hypotheses of convex analysis, in particular,
monotonicity and convexity, have been weakened or dropped, and the scope of
possible applications seems to be quite large. Briefly, this discipline is often
called nonsmooth analysis, sometimes also variational analysis. Our book fits
into this discipline, however, our main intention is to develop the analytical
theory in close connection with the needs of applications in optimization and
related subjects.

Main Topics of the Book

1. Extended analysis of Lipschitz functions and their generalized derivatives,
including “Newton maps™ and regularity of multivalued mappings.

2. Principle of successive approximation under metric regularity and its ap-
plication to implicit functions.

3. Characterization of metric regularity for intersection maps in general
spaces.

4. Unified theory of Lipschitzian critical and stationary points in C*! opti-
mization, in variational inequalities and in complementarity problems via
a particular nonsmooth equation.

5. Relations between this equation and reformulations by penalty, barrier
and so-called NCP functions.

6. Analysis of Newton methods for Lipschitz equations based on linear and

Xi



xii Introduction

nonlinear approximations, in particular, for functions having a dense set
of C! points.

7. Consistent interpretation of hypotheses and methods in terms of original
data and quadratic approximations.

8. Collection of basic examples and exercises.

Motivations and Intentions

For sufficiently smooth functions, it is clear that many questions discussed in
this field become trivial or have classical answers. Even the way of dealing with
equations defined by nonsmooth functions seems to be evident:
(1) Define a reasonable derivative and prove a related inverse function theo-
rem. Then, like in the Fréchet-differentiable case,
(2) derive statements about implicit functions, successive approximation and
Newton’s method,
(3) and develop conditions for characterizing critical points in extremal prob-
lems.
Of course, this calls for a deeper discussion.

First

of all, one has to specify the notion of a derivative. This should be a sufficiently
nice function L that approximates the original one, say f, locally at least of first
order like the usual linearization at some argument £ in the Fréchet concept

f(@) - L(z) =0z~ &), llo(z-OIl/llz—¢ll +0asz =&
However, there are many problems when going into the details.

Example 0.1 (piecewise linear o(-)-approximation). Consider the real func-
tion f(z) = z ifz < 0, f(z) = 2% ifz > 0. For £ = 0, the function
Lo(z) = min{z,0} satisfies |f(z) = Lo(z)| < (z = £)? = o(z — €). Our "lin-
earization” Lo of f at the origin is nonlinear, but has still a simple piecewise
linear structure. Taking € # O the linearization Lg of f should be the usual
one, namely, Lg¢(z) = f(§) + Df(€)(z — §). o

Evidently, in this example, we found a o(-)-approximation Lo of f near § = 0
which is simpler than the original function f. But in view of differentiation and
inverse mappings, there arise already three new problems:

What about inverse maps of piecewise linear functions ?

What about continuity of derivatives or of “linearizations” in terms of § ?

Which kind of singularity (critical point) appears at the origin ?

Example 0.2 (no piecewise linear o(+)-approximation). For the Euclidean
norm on R™, one cannot find any piecewise linear o(-)-approximation Lg at the
origin. o
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The functions f and [} - || of these examples are not only of academic interest
because they are typical optimal value functions in parametric optimization;

f(z) =mingzy + 2%(1 —y) withrespectto0<y <1 (for-1<z < 1)
|||l = maxy(z,y) with respect to ||y|| = 1.

They may occur, €.g., as objectives or as constraint functions in other optimiza-
tion problems.

Next,
it may happen that one needs different derivatives for different purposes. To
illustrate this we note that there exists a real, strictly monotonous directionally
differentiable Lipschitz function f, such that
(i) f is C* on R\ Np, where Np is a countable set.
(ii) The inverse f~! is well-defined and globally Lipschitz.
(iii) Newton’s method (to determine a zero of f) with start at any point z €
X := R\ Np generates an alternating sequence and uses only points in
X. Notice that X has full I ebesgue measure.
Concerning the construction and further properties of such a function f we refer
to Chapter 12, Basic Example BE.1.

So, the existence of a Lipschitzian inverse on the one hand and local con-
vergence of Newton’s method on the other hand are different things. Indeed,
we have to expect and to accept that there are generalized derivatives which
allow (for certain nonsmooth functions) the construction of Newton-type solu-
tion methods without saying anything about uniqueness and Lipschitz behavior
of the inverse, whereas other “derivatives”, which characterize the inverse func-
tion, are rather inappropriate for Newton-type solution methods.

Moreover,

the power of the classical differential calculus lies in the possibility of computing
derivatives for the functions of interest. The latter is based on several chain
rules. Related rules for composed generalized derivatives of functions or mul-
tifunctions are often not true or hold in a weaker form only. Even for rather
simple mappings in finite dimensional spaces, it may be quite difficult to de-
termine the limits appearing in an actual derivative-definition. This means an
increase in the technical effort.

In addition,

everybody has an idea about what tangency is or what a normal cone is. This
had the effect that various more or less useful notions of generalized derivatives
have been introduced in the literature, and many relations have been shown be-
tween them. Each of these derivatives has its own history and own motivation
by geometrical aspects or by some statement, say by an application. However,
these applications and motivations often play a second (or no) role in subse-
quent publications, which are devoted to technical refinements of the calculus,
generalization and unification. So, the reader may easily gain the impression
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that “nonsmooth analysis” is a graph the vertices of which are definitions of
generalized derivatives and the edges are interrelations between them. It is
hard to see that the graph is indeed something like a network of electric power
because the lamps that can be switched on are hidden.

In the present book,

as far as general concepts are concerned, we motivate why this or another
concept is appropriate (or not) for answering a concrete question, we develop a
related theory and indicate possible applications in the context of optimization.
We also try to use as few notions of generalized derivatives as possible (only
those mentioned below), and we describe necessary assumptions mainly in terms
of well-known upper and lower semi—continuity properties.

In this way, we hope that every reader who is familiar with basic topological
and analytical notions and who is interested in the parametric behavior of
solutions to equations and optimization problems (smooth or nonsmooth) or in
the theory and methods of nonsmooth analysis itself will easily understand our
statements and constructions.

As a basic general instrument, we apply Ekeland’s variational principle.

A second tool consists in a slight generalization of successive approximation,
which opens the same applications (by the same arguments) as successive ap-
proximation in the usual (single-valued) case, namely implicit function theorems
and Newton-type solution methods.

Further, as a specific topic of our monograph, we use so-called Kojima-
functions (having a nice, simple structure for analytical investigations) in order
to characterize crucial points in variational models. For several reasons, but
mainly in order to establish tools for studying variational problems with non-
C! data and, closely related, stationary points in non—-C? optimization, we
summarize and extend the calculus of generalized derivatives for locally Lip-
schitz functions.

Finally, we connect generalized Newton-type methods with the continuity
of (generalized) differentiability, as in the classical differentiable case; see the
concept of Newton maps. Via perturbed Kojima systems, we establish relations
to other standard optimization techniques, in particular, to penalty and barrier
type methods.

However, the most important tool for understanding nonsmooth analysis
with its various definitions and constructions, is the knowledge of several con-
crete functions and examples which show the difficulties and “abnormalities” in
comparison with smooth settings. Such examples will be included in all parts
of this monograph. The most important ones as well as answers to various
exercises are collected in the last chapter.

We envision that our book is useful for researchers, graduate students and
practitioners in various fields of applied mathematics, engineering, OR and
economics, but we think that it is also of interest for university teachers and
advanced students who wish to get insights into problems, potentials and recent
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developments of this rich and thriving area of nonlinear analysis and optimiza-
tion.

Structure of the Book

In Chapter 1, we start with some basic notation, in particular, with the presen-
tation of certain desirable stability properties: pseudo- (or metric) regularity,
strong and upper regularity. We try to find intrinsic conditions, equivalent or
sufficient, which (as we hope) make the properties in question more transparent
and indicate the relations to other types of stability.

In Chapter 2, we present various conditions for certain Lipschitz properties
of multivalued maps and the related types of regularity, we investigate inter-
relations between them and discuss classical applications as, e.g., (necessary)
optimality conditions and ’stability” in parametric optimization.

A great part of this chapter is devoted to pseudo-regularity of multifunc-
tions in Banach spaces, where the use of generalized derivatives is avoided.
This approach is based on the observation that the concepts of generalized
derivatives which are usually applied for describing this important regularity-
type (contingent derivatives as well as Mordukhovich’s co-derivatives) lead us
to conditions that are not necessary even for level set maps of monotone Lip-
schitzian functionals in separable Hilbert spaces, ¢f. Example BE.2. Therefore,
we present characterizations which directly use Ekeland’s variational principle
as well as the family of assigned inverse functions. They allow characterizations
of pseudo-regularity for the intersection of multifunctions and permit weaker
assumptions concerning the image- and pre-image space as well.

In particular, we reduce the question of pseudo-regularity to the two basic
classical problems:

(iy Show the existence of solutions to an equation after small constant per-
turbations, i.e., provided that f(z) =y and |y’ - y|| is small, verify that
some z’ satisfying f(z') =y’ exists.

(i) Estimate the distance |}z’ -~ z{] for some solution %’ in a Lipschitzian way,
i.e., show that there is z' with f(z') = y' such that ||z’ ~ z|| < L||y’' — yl|-

Pseudo-regularity requires that, for certain neighborhoods U and V of #° and
4°, respectively, one finds a constant L such that both requirements can be
satisfied whenever # € U and 4, € V.

We will demonstrate that, under weak hypotheses, it is enough to satisfy (i)
and (ii) for all x € U, y € V and for g’ satisfying 0 < |ly’ = yl| < dz.y4, Where
dz,y 1S some constant depending on # and y.

Chapter 3 1is devoted to characterizations of regularity by the help of
(generalized) derivatives and may be seen as justification of the derivatives in-
vestigated in the current book.

We also intend to motivate why the regularity concepts introduced in the
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first two chapters are really important. In particular, this will be done in Chap-
ter 4 by showing persistence of regularity with respect to small Lipschitzian
perturbations which has several interesting consequences (€.2. in Section 11.1),
Note that we do not aim at presenting a complete perturbation theory for op-
timization problems and nonsmooth equations, our selection of results is sub-
jective and essentially motivated by the applications mentioned above.

Many general regularity statements can be considerably sharpened for closed
multifunctions in finite dimension and for continuous or locally Lipschitz func-
tion sending R™ into itself. So Chapter 5 is devoted to specific properties of
such mappings and functions where we pay attention to statements that are
mainly of topological nature and independent on usual derivative concepts.

As an essential tool for locally Lipschitz functions, we apply here Thibault’s
limit sets. In contrast to Clarke’s generalized Jacobians, the latter provide us
with sufficient and necessary conditions for strong regularity and, even more
important, they satisfy intrinsic chain rules for inverse and implicit functions.

Basic tools for dealing with several generalized derivatives will be developed
in Chapter 6. Our calculus of generalized derivatives includes chain rules and
mean-value statements for contingent derivatives and Thibault’s limit sets un-
der hypotheses that are appropriate for critical point theory of optimization
problems, where the involved problem-functions are not necessarily C?. Here,
we write coderivatives by means of contingent derivatives (which will be com-
puted in Chapter 7), and we also introduce some derivative-like notion called
Newton function. It represents linear operators that are of interest in rela-
tion to Newton-type solution methods for Lipschitzian equations and describes,
in a certain sense, continuous differentiability for non-differentiable functions.
Derivatives for so-called semismooth functions are included in this approach.

Chapter 7 is devoted to stable solution behavior of generalized Kojima-
functions. By this approach, we cover in a unified way Karush-Kuhn-Tucker
points and stationary points in parametric optimization, persistence and stabil-
ity of local minimizers and related questions in the context of generalized equa-
tions, of complementarity problems and equilibrium in games, as well. The
notation Kojima-function has its root in Kojima’s representation of Karush-
Kuhn-Tucker points as zeros of a particular nonsmooth function. We will see
that basic generalized derivatives of such functions can be determined by means
of usual chain rules. The properties of these derivatives determine, in a clear
analytical way (based on results of Chapter 6), the stable behavior of critical
points. In contrast to descriptions of critical points by generalized equations,
our approach via Lipschitz equations has three advantages:

() The invariance of domain theorem and Rademacher’s theorem may be
used as additional powerful tools (not valid for multifunctions),

(ii) The classical approach via generalized equations is mainly restricted to
systems of the type f(z) € I'(z) where f varies in C' and the multi-
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function T is fixed. This means for optimization problems: The involved
functions are C?, and the perturbed problem has to have the same struc-
ture as the original one. By our approach, for instance, stationary points
of the original problem and of assigned penalty or barrier functions may
be studied and estimated as zeros of the same perturbed Kojima function
(even for involved C!*! -functions).

(ili) The necessary approximations of the multifunction I' - when speaking
about generalized equations - are now directly determined by the type of
derivative we are applying to the assigned Lipschitz equation.

In Chapter 8, the regularity characterizations for zeros of generalized Ko-
jima functions are applied to critical points, stationary solutions and local min-
imizers of parametric nonlinear C!*! programs in finite dimension, the special-
izations to the case of C? data — which is well-studied in the optimization
literature — are explicitly discussed. In particular, we present second order
characterizations of strong regularity, pseudo-regularity and upper Lipschitz
stability in this context, give geometrical interpretations, and derive represen-
tations of derivatives of (stationary) solution maps. Finally, Taylor expansion
formulas for critical value functions are obtained.

In Chapter 9, we regard generalized derivatives of other mappings that are
important for the analysis of optimization models, namely of

() positively homogeneous functions g and
(ii) Clarke subdifferentials 8,f for the maximum f of finitely many C? func-
tions F*,

In particular, g(u) = f'(z;u) may be a directional derivative or a so-called NCP-
function, used for rewriting complementarity problems in form of nonsmooth
equations. We study the latter more extensively in order to show how the
properties of g determine the behavior of first and second order methods for
solving the assigned equations and how related iteration steps can be interpreted
in an intrinsic way. The simple derivative D°g, defined below, plays an essential
role in this context. In view of (ii), it turns out that C8,f (which may be seen
as a proto-derivative, t0oo) depends on the first and second derivatives of the
functions F¥ at the reference point only. We will determine the concrete form of
C8.f in a direct way and establish the relations to C-derivatives of generalized
Kojima-functions.

Solution methods for general Lipschitzian equations are the subject of Chap-
ter 10. Here, we summarize crucial conditions for superlinear convergence,
based on linear and nonlinear auxiliary problems and present typical examples.
In this chapter, our subsequent definitions of Newton maps, derivative D° and
of locally PC*-functions will be justified from the algorithmic point of view.
Moreover, the relations between the regularity conditions, needed for Newton’s
method, as well as upper, pseudo- and strong regularity shall be clarified.
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In Chapter 11, (generalized) Newton methods will be applied in order
to determine Karush-Kuhn-Tucker points of C?-optimization problems. De-
pending on the reformulation as (nonsmooth) equation F(z) = 0 (via NCP-
or Kojima-functions) and on the used generalized derivative "DF” as well,
we formulate the related Newton steps in terms of assigned SQP- models and
of (quadratic) penalty and (logarithmic) barrier settings. The connection of
these different solution approaches becomes possible by considering the already
mentioned perturbed Kojima functions and by studying the properties of their
zeros. Taking the results of Chapter 4 into account, one obtains Lipschitz esti-
mates for solutions, assigned to different methods of the mentioned type. From
Chapter 10 it is obvious that the C*-assumptions are only important for the
interpretations in terms of quadratic problems, not for solving F(2) = 0 ac-
cording to Chapter 10.

Chapter 12 contains Basic Examples which are used throughout the book
at several places, while all numbered Exercises occurring in the first 11 chapters
are once more compiled, now accompanied with the answers. In the Appendix,
we prove some known basic tools for convenience of the reader.
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Basic Notation

(in the order of first occurrence in the text)

Section 1.1

Bx (or B): the closed unit ball in X

B% (or B®): the open unit ball in X

X*; dual of X

X x Y (or (X, ¥)): product of sets X, ¥

{,+): canonical bilinear form of X* x X

R: the reals

C + rD: Minkowski operations for C,D C X, r e R
a+rD:={a}+rD

z+71B = {z' € X|dx(z,2') < r}: convention even if (X,dx) is a metric space
bd M, cl M, int M, conv M: boundary, closure, interior, convex hull of M
(z, D) := {(z,d) | d € D},similarly: {z,D), D -z, etc.

dist (z, 4) := infoe 4 dx(x, @) point-to-set distance in a metric space (X,dx)
near z: (the statement holds) in some neighborhood of z
f€C*(X,Y): fis alocally Lipschitz function from X to ¥

f € C: f has continuous first (Fréchet-) derivatives

f € CY: f has locally Lipschitz first (Fréchet-) derivatives

£ € C%: has continuous first and second (Fréchet-) derivatives

rt = max{r,0}, r~ :=min{r,0} forr e R

r+, r~: defined componentwise for r € R™

IR™: the real m-vectors

o(-), 0(-): o-type and O-type functions

Section 1.2

F: X 3Y: multi-valued map (multifunction) from X to ¥
gph F: graph of F

dom F; domain of F

F(A): image of A under F

F-1:Y 3 X: inverse multifunction of F
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XXvi Basic Notation

CF(z,y)(u): contingent derivative of F at (z,y) € gph F in direction u € X
TF(z,y)(u): Thibault’s limit set of F at (z,y) € gph F in direction u € X
D*F(z,y)(v*): coderivative of F at (z,y) € gph F in direction v* € Y*

—*: the weak* convergence

F'(z;u): (one-sided) directional derivatives of F: X =+ Y at z in direction u
f¢(z%u): Clarke’s directional derivative of a functional f at z° in direction u
8f(z%): (usual convex) subdifferential of afunctional f at z°

8. f(z%): Clarke-subdifferential of afunctional f at z°

Section 1.3

Df(z): (Fréchet-) derivative of f at =

D2 f(z): second (Fréchet-) derivative of f at

8, f: B-subdifferential for f: R" = R™ locally Lipschitz

8f: Clarke’s generalized Jacobian for f: R™ — R™ locally Lipschitz

De° f: another subdifferential

PC!: piecewise C*

f=PCfY,...,fN): fis a PC! function constructed by f*,...,fN e C*
NCP: nonlinear complementarity problem

Sections 1.4-1.6

MFECQ: Mangasarian-Fromovitz constraint qualification

l.s.c.: lower semicontinuous

u.s.c.. upper semicontinuous

lim sup Myg: upper Hausdorff limit of a set sequence {My}

liminf Mg: lower Hausdorff limit of {My}

lim sup,,_,,0 S(y),lim inf,_, 0 S(y): upper and lower limits of a multifunction §
CLM set: complete local minimizing set

epi g: epigraph of afunctional g

Section 2.1

p = 5(y° X°): p describes S near (3°, X°)
n f(2%) 1= 8f'(z°;)(0)
'+ the non-negative real m-vectors
A': A transposed
D:h or hg: partial (Fréchet-) derivative of h with respect to
Dy hor hey: partial second derivative of b with respect to z and y

Section 2.2
E¢(p): set of all local Ekeland points with factor p

dim Y: dimension of Y
R” := -RT
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DIST(z, A): Gfrerer’s DIST function

Section 4.0

sup(g, ) := sup{|lg(z)|ly | z € N}
Lip (g,9) := inf{r > 0|[lg(z) ~ g(z")ll¥ < rd(z,2') Vz,2’ € 0}
f o g: composition of f and g

Section 6.1

C(z,2): contingent cone (Bouligand cone)

Te(2,2Z): Clarke’s tangent cone

T(z,Z): tangent cone related to the Thibault derivative
m(z, P): projection map

Np(z): map of normals

Sections 6.3-6.6

A €exM: A is exposed element of M

T:h: partial Thibault derivative of A with respect to z
f € locPC!: f is a locally PC* function

ker G: kernel of G

Sections 7.1-7.3

F = (F,,Fa,F3) = NM: generalized Kojima-function
LICQ: Linear Independence constraint qualification

SMFCQ: strict Mangasarian-Fromovitz constraint qualification
Rr@®) ={rel0,1]" | n=1ify) >0, ri=0ifyf <0 }

0 ) o m|ri=1ifg? >00rify? =0,4;,>0
Ro(y’v) '—{TE{O’I} ri=0ify! <Oorify? =0,v; <0

fy >0 ify) =0 }

Bi o if y? >0

o 0 ify) <0

T @) = {(a,8) € Fr(¥°)| @i 2028 if ¥ =0 }

Qr(u) := T, F1(8%)(u) or := T,[D, L)(s°)(u), respectively

Qo (u) := Cp Fi(s%)(u) or := Cz[D,L)(2%,3%)(u), respectively

Un, UT, UC(@°), U®: several critical cones

KT (u), K€(u): cones related to the 7— and C-stability systems, respectively

Jr(y°) = { (a,B8) € R*™

Section 8.1

P(y):={ily;=0} fory e R™
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IM(y):={i|yi >0} fory € R™
I(y) :=={ily: <0} fory e R™

S(+) or S(:): critical point map

X() or X(-): stationary solution map
Y () or Y(-): multiplier map

Section 8.2

(SOC): second-order condition
(SSOC): strong second-order condition

Section 9.2

pNCP: cone of pNCP functions



Chapter 1

BASIC CONCEPTS

1.1 Formal Settings

Given a (real) normed space X, we denote by Bx and B% the closed and
open unit ball, respectively. If the space is obvious, we omit the subscript.
The normed spaces under consideration are always real normed spaces. The
canonical bilinear form on the product space X* x X is denoted by {-, -}, where
X* denotes the dual of X.

For C,D c X and r € R, wewrite C +rD := {c+rd|c€ C,d € D} in
the sense of the Minkowski operations. We also often identify a set consisting
of a single element with its element. So,fora € X ,r € R and D C X, we
write a+ rD instead of {a} + rD. In particular, z + 7B is the closed ball with
centre £ and radius . This notation will be also used for metric spaces. In
the suitable context, we denote by bd M, cl1M, int M, conv M the boundary,
closure, interior and the convex hull of a given set M, respectively.

For compact writing sets which result from certain operations, we use sym-
bols of the kind (z,D), {z,D), D -z etc. to denote the sets {(z,d)|d € D},
{{z,d)|d € D}, {Q-z|Q € D} etc. (for some set D under consideration and
in a well-defined setting).

Given a metric space (X, dx(, )}, the point—to—set distance is denoted by
dist (z, A) = inf,e4 dx (2, a) with the convention dist (z,8) = oo .

We say that some statement holds near z if it holds for all £’ in some
neighborhood of .

For metric spaces X and Y, we indicate by the symbol f € C®}(X,Y)
that f : X = Y is a locally Lipschitz function, ie., for each z € X, there
are a neighborhood U 3 2z and a constant L such that dy(f(z'), f(z")) <
Ldx(z',2") V2',2" € U. The constant L is said to be a Lipschitz rank (or
Lipschitz modulus) of f nearz. For Banach spaces X and Y, f € C}(X,Y)
[f € CYH(X,Y)] indicates that f : X = Y is a function having continuous
[ocally Lipschitz] first Fréchet-derivatives. Similarly, f € C?(X,Y) means that
f is a function having continuous first and second Fréchet-derivatives. An
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2 1. Basic Concepts

optimization problem defined by C* functions is said to be a C*-problem.

Often, we will assign, to some Ssequence of real ¢ , certain elements z* €
M C X. To indicate that the elements z¥ € M converge to z, wewrite z* —
in M. In order to avoid unnecessary indices, we will also speak of sequences
of real, converging ¢t — 0 and assigned points z; € X. So the symbol ¢ is not
reserved for a continuou$ quantity, a priori.

For real r, we put 7+ = max{0,r} and r~ = min{0,r}. For r € R™, we
define r* and r~ componentwise.

As usually, o-type functions o(:) are assumed to satisfy o(u)/|[u]| = 0 as
u — 0 and 0(0) = 0, while O(-) denotes a vanishing function O(u) =+ 0 asu— 0
and 0(0) = 0.

1.2  Multifunctions and Derivatives

The symbol F : X 3 Y says that F is a multi-valued map (multifunction),
defined on X with F(z) CY.

We abbreviate: gphF = {(z,y)ly € F(z), z € X}, the graph of F,
domF = {z € X|F(z) # 0}, the domain of F, and F(A) = UseaF(a), the
image of A C X. Most of the multifunctions considered in this monograph will
assign, to certain parameters, feasible sets of optimization problems or solutions
of equations. If, for some neighborhood U of %, F(U) is contained in a compact
(bounded) set C, then F is said to be locally compact (locally bounded) near z.
If gphF is closed in the product space X X ¥, then F is said to be closed.
The inverse F~1 : Y =3 X is given by F~(y) = {z € X|y € F(z)}. For
normed spaces X and Y and (z,y) € gph F, we associate with F the following
maps:

CF(z,y) : X Y, defined by v € CF(z,y)(u) if there are
certain (discrete) ¢ = ¢, J 0 and assigned elements (ug,v:) = (u,v)
such that y + tv, € F(z + tug).

TF(z,y): X 3Y, defined by v € TF(z,y)(u) if there are
certain (discrete) ¢ = ti | 0, assigned points (z;,y:) € gph F with
(z¢, ) = (z,y) and elements (u¢, v;) = (u,v) such that

Yy + tvg € F(-’Et + tut).

D*F(z,y) : Y* 33 X*, defined byu* € D*F(z,y)(v*) if there are
certain (discrete) ¢ =t | 0, r; > 0, assigned points (z¢, ) -+ (=,y)
in gph F and dual elements (uj,v;) —=* (u*,v*) in X* x Y*

such that (uf,§) + (vi,m) < tlléllx +tinlly if [I€llx +lnlly <re
and (IL‘t +§1yt +ﬂ) € gphF’

where —* is the weak* convergence.

Notice that 0 ¢ D*F(z,y)(v*) is an existence condition: For all sequences
t=12 40,710, (2, y:) = z in gph F and (ug,v;) =* (0,v*) there are & ,
with ||| + [|ne]| < r¢and (z¢ + &,y + 7)) in gph F such that, for sufficiently
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large k, (ug, &) + (vf, ) > t[&ll + imell.
The mapping

CF (z,y) is the contingent derivative [AE84], also called graphical deriva-
tive or Bouligand derivative (since its graph is the contingent cone intro-
duced by Bouligand [Bou32]),

D*F(z,y) is (up to a sign) the coderivative in the sense of Mordukhovich
[Mor93], and

TF (z,y) is Thibault’s limit set, it was defined in [RW98] and was called
strict graphical derivative there.

Note that we prefer to use the name Thibault's limit set (or Thibault derivative)
for TF(z,y), since this derivative has been first considered (however, for F €
C%(X,Y) and with another notation) by Thibault [Thi80] and [Thi82]. To
unify the terminology, we call all these mappings generalized derivatives.

Remark 1.1 (derivatives of the inverse). For each of these generalized deriva-
tives, the symmetric definitions induce that the inverse of the derivative is just
the derivative of the inverse at corresponding points.

As usually, we will say that a derivative is injective if the origin belongs only
to the image of u = 0 or v* = 0, respectively.

For functions F, we have y = F(x) and may write CF(z), TF(z) and
D*F(x). Nevertheless, the images of the derivatives as well as the pre-images
F-1(y) may be multivalued or empty.

If the (one-sided) limit limyyo ¢t~ (F(z + tu) — F(z)) exists uniquely for a
function F and all sequences t | 0, then it is called the directional derivative of
F at z in direction %, and denoted by F'(z;u).

Further, for f : X = R, Clarke’s directional derivative of f at 2% in
direction u € X is defined by the usual limes superior

fe(z%u) = limsup t~Y(f(z + tu) — f(x)).

tL0, z—»2?

which is obviously finite for locally Lipschitz functions.
The set 8f(z%) of all z* € X* such that

f@®+u) > @) + =", ) Yue X

is called the (usual convex) subdifferential of f at z°.
The set 8, f(z°) of all z* € X* such that

(2% u) > @, v) Vue X

is called the Clarke-subdifferential of f at 2% Tt coincides with the subdifferen-
tial of f°(z9;.) at u® = 0, and 8, f(z°) = 8f(z") holds for convex f.
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1.3 Particular Locally Lipschitz Functions and
Related Definitions

Let f:R" — R™ be locally Lipschitz.

Generalized Jacobians of Locally Lipschitz Functions
By Rademacher’s theorem (for proofs see, e.g., [Fed69, Har79, Zie89)), the set
© = {z € R™ | the Fréchet derivative of f exists at z}

has full Lebesgue measure, ie., g{R"\ ©) = 0. Moreover, for 2’ € © and %’
near z, the norm of DAz') is bounded by a local Lipschitz rank L of f. These
facts ensure that the mapping 8. f : R™ =3 R™" defined by

d.f(z) = {A|A =1lim Df(z') for certain z' = =z, z’' € B},

has non-empty images. In addition, one easily sees that 8,f is closed and
locally compact. The same properties are induced for the map 8f, defined by
the generalized Jacobian 8f(z) = convd, f(z) of f at z.

These observations, along with an elaborated calculus for 8 f which includes
an inverse-function theorem, cf. Theorem 5.13 as well as close connections to
(several) directional derivatives, in particular 8 f(z) = 8,f(z) for real-valued
f, are the fundamentals of F.H. Clarke’s [Cla83] concept of nonsmooth anal-
ysis. The latter equation induces that, for m = 1 and convex f, there is no
difference between the classical subdifferential of convex analysis 8 f(x) and the
generalized Jacobian 8f(z).

In the literature, the mapping 8, f is often called the B-subdifferential and
also denoted by 8Bf.

Pseudo-Smoothness and D°f

Next let us copy Clarke’s definition. We put
0° = {z € R"| Df exists and is continuous near z}.

and
D°f(z) = {A| A =1lim Df(z') for certain =’ —+ z, 2’ € ©°}.

Evidently,D° f(z) C 8.f(z) C 8f(z). In contrast to the pair (8, f,®), the pair
(D°f,@°%) fulfills D°f = D f on the open set ©°,

However, ©%and D°f(x) may be empty, cf. the real Lipschitz function G in
Example BE.O where also 8G(z) is a constant, proper interval. If ©° is dense
in R", we call fpseudo-smooth.

The function f of Example BE.l obeys this property and satisfies addition-
ally m =n =1 as well as

Df(0) =1, D°f(0) = {3,2}, 8-f(0) = {},1,2} # 8(0) ={(3,2].
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Piecewise C! Functions

The class of PC*-functions (piecewise C*) is defined in the following way. Given
a locally Lipschitz function f from R™ to R™, one says that f belongs to PC! if
there is a finite family of functions f¢ € C*(R",R™) such that, for all z € R™,

the set
I(z) = {2| f(z) = f*()}
is not empty.
We will also write f = PC*[f,..., f¥]. The set I(z) characterizes the set
of active functions at z. The generalized Jacobian of f has the representations

8f(x) = conv {Df*(z) |z € clint I"1(s)},
see [Sch94], and
0f(z) = conv{Df(z) |z € I"'(s) and Df(z') = D f°(z') for certain z' — z},
see [Kum88a)]. Note that z € int I~*(s) if and only if f coincides with f¢ near
z, so the first index set of related 8 may be smaller.

Note. If one defines PC!-functions in the same way, but requiring the weaker
assumption that f is only continuous (instead of being locally Lipschitz), then
one obtains the same class of functions, see [Hag79]. ¢

Obviously, the maximum-norm of R" is a PC?! function, not so the Euclidean
norm.

Every PC!-function is pseudo-smooth since ©° contains the open and dense
set = U, int I~1(s), cf. the proof of Lemma 6.17.

Convex functions are not necessarily pseudo-smooth, cf. Example BE.6.
Nevertheless, in many applications, they are even PC*.

NCP Functions
An NCP function is any function G : R? — R such that
G~1(0) = {(s,t) € R?|s >0, t >0, st =0}.

Such functions are connected with nonlinear complementarity problems (NCPs):
Given u,v : R®* - R" find z € R" such that

ui(z) > 0, vi(z) 20, ui(z)v(z) =0 (1 =1,..,n).
Using G, the NCP can be written as an equation f(z) =0 by setting
fi(z) := G(ui(z), vi(2)).
We will say that the NCP is (strongly) monotone if
(u(y) = u(z),v(y) — v(z)) 2 My ~ 2I* Vz,y € R,
where A > 0 (XA > 0) is afixed constant. A standard NCP is defined by v(z) = z.
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1.4 Definitions of Regularity
Our main subject is the equation
F(z) =0, where F: X CR" =Y =IR™ is a locally Lipschitz function.

Its inverse § = F~1 is a multifunction with possibly empty images S(y) C X.
We shall be interested in the local properties of S = F~! near a pair (22, F(z°)).

Generally, we will speak of regularity whenever F~!(y) is non-empty for
y near y° := F(z®). The type of regularity (strong, pseudo, upper) will be
concerned with Lipschitz properties of F~! only.

So it does not make any difference whether F is a function or a multifunc-
tion having images F(z) C Y and the inverse F~!(y) = {z € X|y € F(2)}.
Moreover, the requirements related to F~! make sense for any multifunction
F acting between metric spaces X and Y. In particular, ¥ may be a subset
of R™,e.g. Y = F(X) = dom F~lwhich already ensures that F~!(y)is non—
empty. Therefore, we present the corresponding definitions - as usually - in this
generality.

Definitions of Lipschitz Properties

Let X and Y be metric spaces, §:Y =3 X and (y°,2°) € gph S.

(D1) The mapping S is said to be pseudo-Lipschitz (with rank L) at (y°,z°)
if there are neighborhoods U and V of 2% and y°, respectively, such that,
given any points (y,2) € (V xU)NgphS andy’ € V,

there exist &’ € S(y') satisfying dx (z',z) < Ldy(¥',y)- (1.1)

(D2) Similarly, if U, V and L exist in such a manner that for ' € V,
o' € S(y') NU = dx(2',2°) < Lay(y',3°), (1.2)

then S is called locally upper Lipschitz (briefly locally u.L.) at (y°,z°)
with rank L.

In many papers, condition (1.1) is written in a weaker form, namely as
dist (2, S(y')) < Ldy(y',y) Vy' € V. (1.3)

Here, dist (z,5(y')) = infareg(y) dx(2,2') is the point-to-set distance in X, as
defined above. Having (1.3) one can satisfy (1.1) with any L' > L. In this
sense, the conditions (1.1) or (1.3) are equivalent. We will prefer the condition
(1.1).

If S is a function, then definition (DI) simply claims Lipschitz continuity
on some neighborhood of y°.
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The notion pseudo-Lipschitz was introduced in [Aub84, AE84], it is also
called Aubin property [RW9S].

It is well-known from Robinson’s [Rob76a] work that a finite-dimensional
system

9(z) <y, h(z) =2z, (1.4)

has, at 8° = (2°,3°,2°) and for (g, h) € C*(R™, R™**), a pseudo-Lipschitzian
solution map S(y, z) if and only if the Mangasarian—Fromovitz constraint qual-
ification MFCQ) [MF67] is satisfied:

Dh(2°) has full rank and there is some u such that
Dh(z%)u = 0 and g(z°) + Dg(z°)u < ¢°,

see also §2.2.4 below. The solution map S defined by (1.4) is crucial for various
properties of an optimization problem min{f(z)|z € S(0,0)}.

MFCQ)

Regularity Definitions
Let S = F~! be the inverse of a given multifunction F: X 3 Y.

If S is pseudo-Lipschitz at (¥°,z%), then F is called pseudo-regular at
(2% y°). If, additionally, neighborhoods U and V of 2° and #°, respectively,
exist in such a way that U N F~!(y) is single-valued for y € V, then we call F
strongly regular at (x°,9°).

Finally, if S is locally upper Lipschitz at (y°, %) and S(y')NU is non-empty
for all ' € V, then F is said to be upper regular at (2°,y°).

In every case, one says that L is a rank of (the related) regularity. To
distinguish the defining neighborhoods assigned to different regular maps F
and G at points (z%,¢°) and (£°,%°) we write Up(2°), Vr(y°) and Ug(€°),
Ve (n°), respectively, and to quantify these neighborhoods, we denote by dyr
(similarly 8y r, dyg, dve) some positive constant such that

2° +8yrB C Up(z°) (1.5)

is satisfied, where we recall the convention 2° + rB := {z € X|d(z,2°) < r}if
X is a metric space.

Pseudo-regularity means that, locally around (z°,3%), a Lipschitzian error
estimate holds true. Having a solution x to y € F(z), one finds some z'
satisfying the perturbed inclusion ' € F(z') with a (small) distance d(z', z) <
Ld(y',y). Identifying the mappings F' = S~!, S from (1.4), this ensures

UNS(y,2) CS(y',2") + Ld((y',2), (y,2))B ¥(y,2),(y',2") e V.

Evidently, condition (DI) remains true after changing the point (3°, z°) € (V x
UyngphS. So, (D) is a property which concerns the Lipschitz behavior of S
near (y°,2°). Moreover, as a direct application of the definition only, one sees
that pseudo-regularity is persistent with respect to composition of maps, and
upper regularity shows the same property after a natural modification.
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Lemma 1.2 (composed maps).

()If G:X 3Y and F : Y 3 Z are pseudo-regular at (2°,y°) and
(¥°, 2°), respectively, then H = FoG : X =3 Z as H(x) = F(G(x)) is
pseudo-regular at (z°,2°).

(it) If G and F are upper regular at the given points, then H =F o (GNQ):
X = Z as H(z) = F(G(z)NN) is upper regular at (2°, 2°) for sufficiently
small neighborhoods § of y°.

In addition, the following estimates hold. LetUg(x®), Vg (y°®) and Ur(¥°), Vr(2°)
be the assigned neighborhoods with related constants 8ug, dvea, Sur, bvr ac-
cording to (1-5), and let Lg, Ly be related ranks of regularity. Then, in both
cases, Ly = LgLF is a rank of regularity for H, and related neighborhoods may
be defined as follows:

Un(2°) = Ug(z®), Q= Va(y®) and Vu(z®) = 2° +rB°
provided that 0 < r < 1o := min{évr, (3Lr) éva, (LeLr) toug}- <
Proof. (i) By the choice ofr we ensured that
224+ rB C Vr(2%), ¥° +3LprB c Vg(y®) and 2° + LgLprB C Ug(z?).
Let z € H(z), z € Ug(z®) and z,2' € 2%+ rB be given. We show that some z'
fulfills2’ € H(z') and d(z',2) < LeLpd(z',2).
Since 2° € F(y¥°) and 2 € Vp(2°), we find y € F~1(2) in such a way that

d(y,y°) < Lrd(z,2°) < Lrr . So we have y € Vg(y°). Since 2’ € Vp(2?), one
finds some y' € F~!(2') satisfying d(y',y) < Lrd(z',z) < 2Lpr. Hence,

v,y € y° + 3LprB C Vg(y°).

Using y° € G(2°) next, some z € G~(y) fulfills d(z,2°%) < Lgd(y,y°) <
LgLpr . This yields 2 € Ug(z?). By pseudo-regularity of G we finally obtain
the existence of ' € G~ (y') satisfying d(z', ) < Lgd(y',y) < LoLrd(7', 2).
Therefore, H is pseudo-regular with neighborhoods Uy = Ug(2®), Vi =
2% + B and rank Ly = LgLpF.
(i) Let z € 2° + rB. Since z € Vp(2°) and F is upper regular, we have

D#£Y(2):=F2)nUr(x®) C y°+ Lrd(z,2°)B
C *+LprB C Q= Ve(?).

Selecting y € Y (2), this ensures y € Q,d(y,y°) < Lrd(z,2°) and, due to upper
regularity of G and y € Vg (y°),
0 # G (y) NUgs(z°) C 2° + Lad(y,3°)B C 2° + LgLrd(z,2°)B.

Soevery z € G~ (y)NUg(z?) belongs to H1(z)NUq(2°)N[z°+LgLrd(z,2°)B).
Since we restricted F to €, the points y € F~1(2)\Q do not belong to the image
of (GNR). Therefore, upper regularity of H with rank LgLg nowfollowsfrom

H™Y(2) NUg(2°) = Uyeany (G (y) N Ug(a®).
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Functions and Multifunctions

Given any closed multifunction F : X =3 Y define f(z,y) = dist((z,y),gph F),
say with distance d((z',¥"), (z,y)) = max{dx(z',2),dy (y',y)} on X x Y. Then,
condition (DI) for § = F~! becomes a typical implicit-function requirement
for the (globally) Lipschitz function f: X x Y — R, namely:

Given (z,y) € U x Vwith f(z,y) =0and y' € V, there is some z'
such that f(z',y') = 0 and dx(2',z) < Ldy(¥',y).

Similarly, (D2) requires;
For all (z,y) € U x V with f(z,y) =0, it holds dx (z,2°) < Ldy (y,%°).

Each multifunction § : Y 3 X is the inverse of the map F : X 3 Y, F =

S~1. Thus, there is no principal difference therein whether we investigate F or

F~1! and speak about pseudo-regularity or the pseudo-Lipschitz condition (DI).

However, in any case, our assumptions should concern the given mapping F,
If F is a function, then S = F~1 gatisfies

SnS@)=0ify#y' (1.6)

Conversely, if S satisfies (1.6), then F = S=1 is a function, defined on dom §-1,
This fact has consequences for extending statements concerning inverse func-
tions to inverse multifunctions: If(1.6) has been nowhere used, then the related
statement on F~! is immediately true formultivalued F = S~!, too. On the
other hand, one cannot expect to obtain specific results for inverse functions
from the theory of multifunctions, as long as (1.6) has been not exploited.

Example 1.3 (regularity forC! functions). If F: X = R®* - Y = R" isa
continuously differentiable function, then all these regularity definitions coincide
- due to usual implicit function theorem - with the requirement det DF (z°) # 0.

o

Example 1.4 (pseudo-regular, but not strongly regular). The complex func-
tion F(z) = 22/|z|for z # 0, F(0) = 0, is a Lipschitz function which is pseudo-
regular and upper regular without being strongly regular at the origin. <

Example 1.5 (strong regularity for continuous functions). For a continuous
function F : R® - R™, strong regularity at (z°,¢°) induces that F is a home-
omorphism between certain neighborhoods U 3 2% and V' 3 y°. Hence, m =n
is necessarily true due to Brouwer’s famous invariance of domain theorem. This
is an essential fact being true for functions, but not for multifunctions. <o

Example 1.6 (pseudo-regularity for linear operators). let F : X — Y be a
linear operator onto Y where X and Y are normed spaces. Pseudo-regularity
now requires that, given ¥', 2 and y = F(z), there is some z' such that F(z') =
y' and ||z’ — z|| < Llly' — y|l. In other words, F~?! is bounded as a mapping in
the factor space X/F~1(0). Conversely, one may say that pseudo-regularity is
just a nonlinear, local version of this property.
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Example 1.7 (Graves-Lyusternik theorem). et F : X = Y be continuously
differentiable nearz®, X and Y be Banach spaces and DF(z°)X =Y. Then,
F is pseudo-regular at (z°, F(z®)) (for references, proof and modifications, see
Chapter 4, Theorem 4.11). One may state that pseudo-regularity is the basic
topological property of F~! near (z°, F(x?)). <

Example 1.8 (subdifferential of the Euclidean norm). A relevant multifunc-
tion F : R™ =3 R" being strongly regular at (0,0): Take the subdifferential (in
the sense of convex analysis) F(z) = 8f(z) of the Euclidean norm f(z) = ||z||:
Then,

F~(y) = {z |z minimizes f(£) — (y,£)} = {0} Vy,|lyll < 1.

1.5 Related Definitions

Let us recall some common notions concerned with multifunctions S : Y = X
for metric spaces X and Y.

Types of Semicontinuity

If z € S(y) and dist (z, S(y')) — 0 for each sequence y' — y, then S is said to
be lower semicontinuous (1s.c.) at (y,z). In the situation of definition (DI),
there is even a Lipschitzian estimate

dist (z,S(y')) € Ldy(y,y') for all %' in some neighborhood V(z,y) of y.

In the latter case, S is called Lipschitz Ls.c. at (y,z) with rank L. If, given y,
S is Ls.c. at all (y,%), ¢ € S(y), then S is said to bels.c. ary.

If dist (z', S(y)) — O for each sequence ¥’ — y, and arbitrary ' € S(¥')
then S is said to be upper semicontinuous (u.s.c.) at y.

This coincides with C. Berge’s [Ber63] u.s.c. - definition if S(y) is compact
(see, e.g. [BGK82, Chapter 2]), where S is called Berge-u.s.c. aty if for any
open set @ D S(y) there is some neighborhood O of y such that S(y') C @ for
ally € O.

The map S is said to be Lipschitz u.s.c. aty (with rank L) if

dist (', S(y)) < Ldy (y,y') for all z' € S(y’)
and all 3’ in some neighborhood V (¥).

If S is a function, we will then also say that S is pointwise Lipschitz aty. In
comparison with the local upper Lipschitz property (D2), one considers now
the whole set S(y') and does not claim that the elements of S(y') converge to
a single point asy’ — y.
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If the requirements of definition (D) are satisfied for U = X, then we have

dist (z,5(y")) < Ldy (y,y') for all z € S(y)
and all y, ¥’ in some neighborhood V of ¢°.

In this case, S is said to be Lipschitz-continuous around g°.

Example 1.9 (F~!is us.c., but not Ls.c.). Assign, to each z € R", the
line-segment F(z) = [%a:,a:] € R". The inverse is

F(y) = [y, 2y),

and F:R™ 3 R" is pseudo-regular at (0,0).
Setting similarly F(z) = [0,z], then F~! becomes

F710) =R" and F~}(y) = {M\y|A > 1} for y # 0.

Now, F~lis Lipschitz us.c. with each L at y = 0 as well as Lipschitz Ls.c.
with L = 1 at the origin (y,2z) = (0,0);but F~lis not Lsc. at y = 0. <

Finally, for any given sequence of sets Mx C X (k = 1,2,...), one defines
limsupM; = {z| ﬁﬂgfdist (z, M) = 0},
liminf My = {z|limsupdist(z, M;) = 0}.
ko0

These sets are often called the upper and lower Hausdorff-limits of the sequence
M., respectively; sometimes the Kuratovski-Painlevt limits. Trivially,

liminf M} C limsup M.

Similarly, the limits lim sup,_,,0 S(y) and liminf,_,,0 S(y) are defined for mul-
tifunctions S:

limsupS(y) = {z|liminfdist(z,S(y)) = 0},
y+y® y—y°
liminf S(y) = {z|limsupdist(z,S(y)) = 0}.
y—y° y—ry°

Note that liminf, in the bracket, has the following meaning: First take any
sequence y* — y°, next consider the usual lower limit # = liminfr; for the
related sequence of extended reals ry = dist (z, S(y*)) € R* U {o0}. Clearly, r
depends on the selected y*Now, liminf,_, e dist (2, S(y)) denotes the infimum
of rover all sequences y* — y°. Analogously, one has to read limsup.

We continue this chapter by clarifying some relations between pseudo-regularity
and other regularity notions.
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Metric, Pseudo-, Upper Regularity; Openness with Linear Rate

Let us first mention a connection between pseudo- and upper regularity at
isolated pre-images.

Lemma 1.10 (pseudo-regularity at isolated zeros). IfF : X 3 Y (metric
spaces) is pseudo-regular at 2° = (2°,y%)and if 2° is isolated in F~1(y°), then
F is upper regular at 2° with the same rank. <

Proof. Indeed, starting with neighborhoods U’ 3 2° and V' 3 y° related to
pseudo-regularity, one may exploit (setting y' = y°) that

dist (z, F1(3°)) < Ld(y,y°) Yz e F1(y)nU’, yye V'

Decreasing U' (then 2 moves to z°), dist (z, F~*(y°)) will be attained at the
isolated point ° € F~1(y°). Thus (D2) holds true for § = F~! with V =
V' and with a new neighborhood U. Decreasing V' we can further arrange,
by pseudo-regularity, that F~*(y) nU # @ forall y € V'. Therefore, upper
regularity of F at 2% holds with rank L. O

Remark 1.11 (pseudo-regularity and Lipschitz continuity). Under the assump-
tions of Lemma 1.10, one shows analogously the existence of neighborhoods U
and V of 2% and 39, respectively, such that themultifunction y = F~1(y)nU
is Lipschitz on V. So, if 2° is isolated in F~1(y%), pseudo-regularity of F at
(z°,y°) and Lipschitz continuity (in the Hausdorff-distance) neary® of the map
y - F~1(y) N (2° + eB) (for fixed small € > 0) mean exactly the same. <o

One says that F : X =3 Y is metrically regular (with rank L > 0) at 2° =
(z°,4°) € gph F if, for certain neighborhoods U and V of 2% and y°, respec-
tively, the estimate

dist (z, F~1(y')) < Ldist (y', F(z)) Vz €U, ¢y €V (1.7)

holds true. For completeness, we present a proof of the well-known fact that
metric regularity and pseudo-regularity describe the same property. Basically,
this statement is known from [lof81, BZ88, Pen89].

Lemma 1.12 (metrically regular = pseudo-regular). F is pseudo-regular at
2% if and only if F is metrically regular at 2°. o

Proof. Writing down the both definitions and using condition (1.3) instead
of (1.1) one obtains

metric regularity:  dist (z, F~1(y")) < Ld(y',y) Vz € U,y € F(z),y' €V,
pseudo-regularity: dist (z, F~1(y')) < Ld(y',y) Vx € U,y € F(z),y,y' € V.

To see that pseudo-regularity ensures (1.7) (the reverse is trivial), note that
in case of y ¢ V, the distance d(y',y) becomes large if one restricts ¥’ to a
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new, smaller neighborhood of y®. We show (1.7) after taking sufficiently small
neighborhoods Uy = 2% 4+ rB and V, = y° + rB.

Obviously, dist (z°, F-1(y")) < Ld(y', ¥°)is valid by pseudo-regularity. Hence,
for x € Ur, y' € V, and y € F(z), we have dist (z, F~*(y")) < d(z,z°) +
Ld(y',y°). So (1.7) is true if d(z,z°) + Ld(y', y°) < Ld(y',»). But otherwise,
the inequality

Ld(y',y) < d(z,2°) + Ld(y',4°) < r + Lr

tells us that ¥ € V forsmall r > 0. So (1.7) follows again from pseudo-regularity.
o

Openness of F with linear rate around 2° € gph F means by definition the
existence of 8 > 0, L > 0 and of some neighborhood £ of 2%, such that

y+rB C F(z+ LrB) Y(z,y) € Qngph F, ¥r € (0, s).

In other words, F~! is Lipschitz 1s.c. with uniform rank L at all (y,z) such
that (z,y) € N gph F, and the related neighborhoods V(z,y) =y + sB% of y
(the Ls.c. Lipschitz estimate holds on which) have again an uniform radius s.
Evidently, this is pseudo-regularity of F at 2°, too.

Calmness and Upper Regularity at a Set

Our local upper Lipschitz property (D2) for § : ¥ = X was used in [Don95]
for instance. More generally, Robinson [Rob81] defined (D2) with respect to a
set® # X® C S@°) by

S(y)NU c X° + Ld(y,y°)Bx Yy € V. (1.8)
Now, the neighborhood U of 2° in (1.2) is replaced by an
open set U containing a set X° + AB := {z|dist (z, X°) < A}, A > 0.

As before, we call F upper regular at (X% if both F~! is locally upper
Lipschitz at (3%, X°) and F-Y(y)NU #0Vy e V.

Another variation of (D2), called calmness of S at (y°,z%) € gph § means
the existence of some L and neighborhoods U, V of 2% and y°, respectively,
such that

S(y)NU c 54°) + Ld(y,4°)Bx Vy € V. (1.9)

If z° € X9, then the local upper Lipschitz condition (1.8) implies (1.9) imme-
diately.  Calmness also means that the pseudo-Lipschitz condition (DI1) has
to hold for particular ¢’ = ¢° only, and has been applied and investigated e.g.
in [Cla83] for deriving optimality conditions. Under this respect, calmness can
be similarly used as the local upper Lipschitz property at a set, cf. Section 2.1
(optimality conditions) and Theorem 2.10. An interesting calmness condition
for multifunctions can be found in [HOO1]. It is applicable to the models in
[Out00] and many models in [I.LPR96].



14 1. Basic Concepts

Example 1.13 (pseudo-Lipschitz, but not locally upper Lipschitz). Lets(y) =
1+ +/Ty|, and let S(y) be the interval [-s(y), s(y)] forreal y. Then, if @ # X° C
S(0), the mapping S is not locally upper Lipschitz at (0, X°) because, for each
set U = X° 4+ B and each L > 0, one finds points z(y) € S(y) NU such that
dist (z(y), X®) > Lly| and Jy|l <e.

Further, S is not calm at (y°,z%) = (0,1). On the other hand, S is pseudo-
Lipschitz at each point (0,z%), z° € int 5(0). o

Example 1.14 (the inverse of Dirichlet’s function). For the real function
h(z) = 0 if z is rational; h(z) = 1 otherwise ,

the inverse § = A~! is calm at (¥° 2°) = (0,0) and locally upper Lipschitz at
(0,5(0)) since c1 S(0) = R. The mapping S(y) = {z|h(z) > y} is even pseudo
Lipschitz at (0,0) since h(z) =1 > y holds for all irrational z and all y near 0.

o

The second example indicates that the usual construction of penalties for
calm equations, F(z) = f(z)+«af/h(z)||, may lead to terrible auxiliary functions
F. For related questions we refer to §2.1 and Lemma 2.1.

1.6 First Motivations

Property (D1) is closely related to continuity statements on parametric opti-
mization models
inf f(z,y) with respect to z € S(y). (1.10)

Here, S: Y =3 X (metric spaces) and f: X xY — R are given, and y plays the
role of a parameter. If z% is a local solution for ®, feasible points =’ € S(y')
can be assigned to £ € S(y) in an uniform Lipschitzian manner provided that
z as well as ¥ and ¥’ are close to z° and 3%, respectively. Under (Lipschitz)
continuity of f, this allows estimates of the related infima

ply) = zeigfy) f(=z,y),

and of solution sets

Y(y) = {z € SWIf(z,9) = o(¥)}.

The properties (D1) and (D2) also ensure the validity of well-known neces-
sary optimality conditions and help to estimate related Lagrange multipliers in
terms of the parameter distance d(y,y%) even if primal-dual solutions are not
unique. These facts, which become clearer below, explain the great interest in
(D1) and (D2) as well as in the other types of regularity and semicontinuity
for multifunctions. As examples and basic results, we mention the following
classical statements.
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Parametric Global Minimizers

Theorem 1.15 (Berge-Hogan stability). Let f be continuous and S be u.s.c.
at ¥° and l.s.c. atsome (¥°,2°),2° € ®(y°). Then one has:

(i) (C. Berge [Ber63]) IfS(¥°) is compact then, at y°, @ is continuous and
T is u.s.c.

(i) (W. Hogan [Hog73]) Let X = R", f(-,y) beconvex, ¥(y°) be compact
and S(y°) be closed and convex. Then, aty°, ¢ is continuous and ¥ is
ws.c. If. in addition, all sets S(y) are closed, then ¥(y) # @ for y near
y°. o

Proof. (i) Let 2° € ¥(y°) and let y = %° denote any sequence that realizes
limsup(y). Since S is Ls.c., one finds = € S(y), = = z°. Hence,y is upper
semicontinuous due to

¢#°) = £(@°,4°) = lim #(z,y) > limsup o(y).

On the other hand, to any z' € S(y'), ¥’ = ¥°, there corresponds some z" €
S(¥°) with d(z",z') = 0. By compactness of S(y°), there exists some common
accumulation point zo € S(¥°) of all z’' and z". Hence, given y — y°, one may
first select a subsequence g’ such that liminf ¢(y) = lime(y’) and next choose
certain ' € S(y') such that lime(y') = lim f(z’,3'). So we obtain continuity
of :
liminf o(y) = lim f(z',y') = f(20,¥°) 2 ©(4°).

Finally, considering the (existing) accumulation points o of any = € ¥(y) as
y — y°, one finds first Zo € S(3°) and next f(zo,y°) = lim(y) = ¢(¥°). Thus
zo € ¥(y%) yields that ¥ is us.c. at y°.

(ii) Again, g is u.s.c. due to the arguments from (i). Therefore, the rest will
follow as above by continuity and compactness, provided that ||z,|| is bounded
for every sequence of z, € S(y) satisfying y = y° and limsup f(z,,%) < ©(3°).
To show the latter, choose r large enough such that ¥(y°) N (z° + rbd B) = 0.
Next assume that certain #, diverge. Then there are points 2z, on the line
segment [z°, z,] with ||zy — 2°|| = r. Since dist (zy, S(¥°)) = 0 holds by upper
semicontinuity, every accumulation point z° of the bounded elements z,, belongs
to the closed and convex set S(y°). Because of X = R" such a point 2% exists.
Since f(-,y)is (quasi-) convex, it holds additionally that

72%4°) < lim:up Fzy,9) < lim:up max{f(z% y), f(z4, 1)} < (&°).

Thus, we obtain 2° € ¥(y°) N (z° + rbd B), in contradiction to the choice of 7.
0

The statements of the foregoing theorem have been generalized under several
points of view: with respect to continuity and compactness, and by investigating
also e-golutions z, ie., z € S(y) and f(z,y) < ¢(y)+€, where€ L 0 and y = ¢°,
see, e.g., [BGK*82, RW9S8]. Even our formulation (ii) is a slight generalization
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of Hogan’s original result. Nevertheless, the basic arguments of the original
proofs remained valid.

It should be also mentioned that the hypotheses concerning S were investi-
gated for several important mappings in finite dimension, e.g., for the mappings

Si(y) = {z € R"| gi(z) < yi, £ =1,..,m}, g; analytic and convex on R";

Sa(y) = S1(y), ¢i (quasi-) convex polynoms, rational coefficients;
S3(y) = {z € Sa(y)| zx integer for k=1,..,5}, 1<K < n.

These investigations are (with appropriate objectives f) closely related to dual-
ity and existence theorems for problems of type (1.10), cf., e.g., [Roc71, Lau72,
Roc74, Kum81, BGK*82, BM88, BA93, Kla97, Shaos].

We further note that stability results of the type presented in Theorem 1.15
may be also formulated in terms of (classical) convergence of functions and sets,
see, for example, [DFS67, Fia74, Kum77].

Parametric Local Minimizers

In the case X = R", the Berge-Hogan theorem may be extended to certain
sets of parametric local minimizers of the problem (1.10). Following Robinson
[Rob87] (see also [FM68, Kla85]), a nonempty set Z C R™ is said to be a
complete (or strict) local minimizing set (CLM set) for f(+,3%) onS(y°) if there
is an open set @ D Z such that

Z = 9(y°) := argmin.{ f(z,3°)|z € S(y°) Nl Q},

where ¢l @ is the closure of @, and “argmin” is written for the set of global
minimizers. Note that @ D Z is supposed being open, hence each element of
a CLM set is a local minimizer for f(+,4°) on S(3°). In particular, {z°} is a
CLM set if 2° is a strict local minimizer for f(-,%%) on S(y°), and ¥(3°) is a
CLM set provided it is not empty. Moreover, certain sets of local minimizers
satisfying a linear or quadratic growth condition (sometimes called sets of weak
sharp minimizers) are CLLM sets, see, e.g., [War94, Kla94a, BS00].

Theorem 1.16 (stability of CLLM sets [K1a85, Rob87]). Consider (1.10) in
the case X = R™. Given y® € Y, let Z be a compact CLM set for f(-,3°) on
S(y°), and let S(y) be closed for each y in some neighborhood ofy®. Further,
suppose that f is continuous on X x Y and that S is both u.s.c. aty® andls.c.
at some (¥°,2°), 2° € Z. Then there are a neighborhood @ ofy® and an open
bounded set @ D Z such that
(1) ao(y) #0 (Yy € O) and ¥y g is us.c. ary® with ¥ o®) = Z,
(i) for eachy € O, ¥ o(y)is a CLM set for f(-,y)on S(y), i.e, in par-
ticular, any element of ¥q g(y) is a local minimizer for f(-,y) on S(y).
o
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Proof. By definition, there is some open bounded set @ O Z such that
Z = ¥40("). Hence, since S is ls.c. at some (y°,2°), 2° € Z, the sets
S(y) Ncl Q are nonempty and compact for y near ¥°. Since f is continuous,
assertion (i) follows from Weierstrass’ theorem and part (i) of Theorem 1.15.
Moreover, when applying that ¥¢) g(y®) is compact, assertion (i) gives the Berge
usc. of ¥g g at ¥°. Hence, for the open set @ containing ¥¢y g(y°), there is
some neighborhood @ of ¥® such that ¥¢g(y) C Q forall y in O, ie., by
definition, these sets are CLLM sets. a

Epi-Convergence

The parametric optimization problem (1.10)
inf f(z,y) with respect to z € S(y)
can be reformulated by introducing an (improper) function g as
g(z,y) = f(z,y) if z € S(y); 9(=,y) = 00 otherwise
and studying the “free” parametric extremal problem
inf g(z,y) with respect to z € X, (1.11)

Conversely, having an improper function g = g(z,y) then, after setting S(y) :=
{z|g(z,y) < oo} (the domain of g), we are just studying problem (1.10) with
an objective f(-,y) = g(*»y) definedon S(y).

Similarly, to obtain an objective that is everywhere finite, one can put

L(y) = epig(-,y) == {(t,2) | t > g(z,9)},

whereupon

¢(y) = inf{t)(t, z) € T(»)}, ¥(y) = {zl(4(y),z) € T(y)}. (1.12)

Of course, the different formulations (1.10), (1.11), (1.12) of the same subject
alone cannot present new insides for the analysis of parametric optimization
problems. However, since the suppositions for (1.11) are usually written by
means of the epigraphs epig(-,%) and their convergence properties (types of
epi-convergence) as y — y°, related conditions have often another (shorter)
form. On the other hand, they must be re-interpreted in terms of dom g(+, ).

Here, we will prefer the classical parametric formulation (1.10), whereas e.g.
in [RW84, Rob87, Att84, RW98] just (1.11) has been favored. Note that, in the
context of approximations to optimization problems, the close relations of the
arguments in the epi-convergence approach to those of the classical theory of
functions were discussed by Kall [Kal86].



Chapter 2

REGULARITY AND
CONSEQUENCES

In this chapter, we present conditions for certain Lipschitz properties of mul-
tivalued maps and the related types of regularity, we investigate interrelations
between them and discuss classical applications as, e.g., (necessary) optimality
conditions and stability in optimization. A great part of this chapter is devoted
to pseudo-regularity of multifunctions in Banach spaces, where we do not utilize
generalized derivatives. We directly use Ekeland’s variational principle as well
as the family of assigned inverse functions. They lead to characterizations of
pseudo- regularity for the intersection of multifunctions and permit rather weak
assumptions concerning the image- and pre-image space as well.

2.1  Upper Regularity at Points and Sets

Characterization by Increasing Functions

Let X, Y be metric spaces, and let ° € Y, §: Y =3 X, 0 # X° c S(3°) and
p: X = R. We call p Lipschitzian increasing near X% if p = 0on X° and
there are ¢ > 0, 6§ > 0 such that

p(z) > cdist (z, X°) whenever dist (z, X°) < 4. (2.1)

Further, we say that p describes S near (§°, X®) (or p is a describing function
for S near (y°, X9)), briefly

p=50° X%,
S is locally upper Lipschitz at (y%, X°)
& p is Lipschitzian increasing near X°.

19
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We will see by Theorem 2.6 that describing functions can play the role of penalty
functions in optimality conditions. So the structure of possible ”candidates” be-
comes interesting. By the next statement, there is always a describing Lipschitz
function, globally defined with rank 1 and not depending on X®. Let us agree
that the metric in product spaces Y x X is defined as

d((y, ), (¢y',2")) = max{dy (y,¢'), dx (z,2")}.

Lemma 2.1 (upper Lipschitz and describing Lipschitz functionals). Given
S:Y =33 X and 0 # X° c S@¥°), the distance function

ps(z) = dist ((3°, ), gph S) (2.2)

satisfies ps = S(y°,X%), i.e., Sislocally upper Lipschitz at (y°, X®) lfand
only if ps is Lipschitzian increasing near X°.

Proof. For simplicity, we write d(:,+) bothfor dx(-,:) and dy (-, ). Evidently,
ps vanishes on X°. et ps be Lipschitzian increasing near X°. Then S is
locally upper Lipschitz with rank L = ¢}, since for dist (z, X°) < 4,

z € 5(y) = cd(z, X°) < ps(2) < d((z,4°), (z,9)) = dy,y°).

Conversely, let pg be not Lipschitzian increasing near X°. This is, for each
€ > 0, there is some z such that dist (2, X°) < ¢ and

dist ((¢°, z),gph §) < t := edist (z, X°).
Select any (y,*:) € gph S with

d((¥°, ), (v, 2¢)) = max{d(z,z;),d(y° 1)} < ¢.
Then,

€+t > dist (x4, X°) > dist (z, X°) — t = (1 - &) dist (z, X°)
and d(y°,y:) < e dist (z, X°).

Thus, both dist (z¢, X°) and d(y°,y:)/dist (z;, X®) vanish (as € L 0 ); so S is
not locally upper Lipschitz at (y°, X°). o

More examples
of describing functions for S : ¥ =3 X near X© are the following ones.

(i) Equations
In the case of functions b : X =+ ¥ and S = h~!, one easily sees that p(z) =
d(h(z),y°) fulfillsp = S(y% X°) and p > ps, too.

In the form considered here, i.e., as an equation h(z) = 0 and with § = h~1,
one can study all maps X that were originally given by afunction G : (X,T) =
R and a multifunction H : X =3 T via

L(y) = {z|G(z,t) <y Vt € H(z)} (v € R);
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this form occurs in models of generalized semi-infinite optimization where X =
R"™. One has only to put

h(z) = max{y°, sup G(z,t)}, (2.3)
teH(z)

whereupon

2% c =(y) = h~(y) fory > y° and A 1(y) # 0
L) cE@) and h(y) =@ for y < 0.

Therefore, the map § = I fulfills (1.8) iff so does h~!, too.

(ii) Cone constraints
Let Y be a linear normed space, X be a metric space, §: X <+ Y, K CY be a
convex cone, 1 € int K\{0} and S(y) = {z € X | g(z) € y + K}.

Lemma 2.2 (Cone constraints). Let® # X° C 8(0) and X, = X®+ rB.
Then, ifg is Lipschitz on Xg for some 8 > 0, the function

p(z) =inf{A > 0] g(z) + My € K} (2.4)

fulfills
c ps(z) < p(x) < 2 ps(z) Vz € X, (2.5)
with certainconstants 0 < ¢; < ¢g and r = §/3. Hence p = S(0, X°). ¢

Proof. Let L, be some Lipschitz rank of g on Xg and n+ aBy C K, a > 0.
Then, one obtains for all A > 0 and z € X3,

A +g(z) € K if [lg(2)]| < A
Hence p(z) < o~ !|lg(z)}] and

dist ((Oy, z), gph 5)
infy5p(y) dist ((Oy, z), (A9, z)) (2.6)
p(@)|inll.

Next, fix any r € (0, 38). We verify

ps(z)

WiA ll

p(z) < (1+ Ly)a'ps(z) Vz € X, (2.7)

Due to (Oy, X?) C gph S, it holds ps(z) < dist (2, X% < r < 38 . Soone finds
some & satisfying ps(z) < € < 38 as well as some (y', z') ) such that

gz ey +K, |Iyll<e and d(z',z) <e.
From g(z') - y' € K we conclude (by adding points of a convex cone) that

9(z") -y + A+ daBy CK VA >0
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Therefore, the inclusion
g@)+ e K (2.8)

holds true, whenever
g(z) € g(z') - ¢ + AaBy.

Because of ||y'|] < €, the latter can be guaranteed by {|g(z) ~ g(z')|| + € < Aa.
Now (by the choice of ), ¢ and ' belong to X andfulfill ||g(z) — g{z')|| < Lye,
whereupon (2.8) is ensured whenever (Ly + 1)e < Aa. Considering inf A, this
yields

p(z) < a”'(1+ Ly)ps(z) via € - ps(z).

The assertion now follows from (2.6), (2.7) and Lemma 2.1. 8]

The convex cone K had not to be closed, indeed. If also X is a linear normed
space and g is linear and continuous, then one easily shows that p is convex.
In addition, p is bounded on some neighborhood of z € int X, due to (2.5). So
it is locally Lipschitz on int X, too. Needless to say that p is simpler than pg
from the viewpoint of computation. For Y = R™, K = {y € Y|y; < 0 V¥i} and
n = —(1,...,1) one obtains the usual penalty term p(z) = max;{0, 9:(z)}.

(iii) Cone constraints and equations
Let

I(y,2) = S(y) NT(2),
where S satisfies the assumptions of Lemma 2.2, A : X = Z sends X into a
linear normed space Z, T(z) = h~*(z) and § # X°® C £(0yxz).
Writing ¥ in form of cone constraints with the cone K’ = (K,{0z}) in the
product space, the interior of K’ is empty and Lemma 2.2 cannot be applied.
In addition, the describing distance-function pg according to Lemma 2.1 only
satisfies

pz(z)

= inf(y 2,21y egph = max{d((Oy, z), (', 2")), d((0z,2), (', z'))}

z ma‘x{inf(y’,z’)égphs d((OY) iE), (y',:c’)), inf(z",z")&gphT d((OZ)m)) (z”) x"))}
=max{ ps(z) , pr(z)}

So we only know, by the previous statements, that the maximum function
q(z) = max{ ps(z) , pr(z) }, T=h"" (2.9)

fulfills
pe(z) > ¢(z), (2.10)

and q is Lipschitzian increasing near X? iff so is
Q(z) = max{ p(z) , [|A(z)|| }, p from Lemma 2.2.

However, due to the gap between px(z) and ¢(z), the function px may Lip-
schitzian increase near X° while ¢ does not (Then S and A~} violate (L1), but
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not so ). In this situation, ¢ and Q are no describing functions for E.

On the other hand, the maximum ¢ turns out to be a describing function under
all classical regularity assumptions that ensure, as in the subsequent Lemma,
that £ is pseudo-Lipschitzian (or only calm) at(Oy,0z,z%).

Lemma 2.3 (the max-form under calmness). Suppose: X, Y,Z are Banach
spaces, g,h € C', Dh(z®)X = Z, some u satisfies Dh(z®)u = 0 and g(z°) +
Dg(z%)u € int K, andz® € X° ¢ £(0y,0z). Moreover, let X° be contained in
a sufficiently small (by diameter) neighborhood S of z°.

Then, q in (2.9) is a describing function for & near (Oy,0z, X°). o

Proof. Our suppositions are nothing but well-known regularity conditions for
optimization problems in Banach spaces, cf. [Rob76a, Rob76¢c, ZK79], which
ensure that the map ¥ is pseudo-Lipschitz at (Oy, 0z, %); see also the discussion
after Theorem 2.22. So, the lemma will follow from Theorem 2.4 below because
T-! = h is locally Lipschitz. )

(iv) Arbitrary Intersections
More general, let X, Y, Z be metric spaces, S : Y =3 X, T : Z =33 X and
E(y,z) = S(y) NT(2).

Theorem 2.4 (the max-form for intersections). Letz® € X® ¢ Z(3°, 2°%), T be
calm at (°,2°,2°) and T~ be pseudo-Lipschitz at (z®,2%). Moreover, suppose
that X° is contained in a sufficiently small (by diameter) neighborhood§¥ ofz°.
Then, the function

g(z) = max{ ps(z) , pr(z) } (2.11)
fulfills g = S(y°, 2°, X©). 3%
Proof. The inequality (2.10) follows as above without any assumptions, we
estimate ¢ in opposite direction. First notice thatg is Lipschitz, so it holds
g(z) | 0as z — z° In consequence, for sufficiently small neighborhoods €,
we find arbitrarily small & > g¢(z). Now,for  near X® C € and (small)

& > g(z), there are (by definition of pg and pr) points (¥',z') € gphS and
(z",2") € gph T such that

max{d(z',z),d(y’,4°)} < § and max{d(z",z),d(z",2%} < 4. (2.12)

Next we apply that T-! is pseudo-Lipschitz at {z°, 2%), say with rank K. Since
2" € T~1(z"), there exists, for small § and §2, some 2' € T~(z') satisfying

d(',2") < Kd(z",z') < 2KS. (2.13)
We thus obtain (¥',2',2') € gph ¥ and
d(y' 2, 2"), @° 2% 2°)) < max{4, & + 2K$, § + d(z,2%)}.
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So, since (y’, z’, x’) is close to (°, 2°,2°), we may use calmness of X, say with
rank L at (¥°,2%,2°%). By (2.12) and (2.13) this ensures the existence of some
¢ € B(y°, 2°) such that

d(6,') < Lmax{d(y',3"), d(', )} < L(1 +2K)é.
Finally, pg(z) < d(§,z) implies the upper estimate
pz(z) S d(é,2) < d(§,2') +d(z',2) < L(1+2K)6 + &

and yields (as & { q(z)) pg(z) < (L(1+2K) +1) g(x). Recalling (2.10)
and Lemma 2.1, the latter tells us that g is a describing function for ¥ near
(%°, 2%, X°) because so is pg. o

Notice that LLemma 2.3 and Theorem 2.4 do not assert the upper Lipschitz
property of & at (§°, 2%, X°), itself. The relation between the upper and pseudo-
Lipschitz properties as well as calmness will be investigated under Theorem 2.10.
Next, we inspect the hypothesis of ¥ being calm in the previous theorem and
reduce calmness of the intersection of two mappings to the intersection of one
mapping with a constant set (a new space X) only.

Theorem 2.5 (calm intersections). Let S be calm at (§°,2°), T be calm at
(2°,2%) and T~ be pseudo-Lipschitz at (z°,2%). Moreover, let H(z) = S(¥°) N
T(2) be calm at (2°,2°%). Then £(y, z) = S¥)NT(2) is calm at (¥°,2°,2°). ©

Proof. Let (y,z,z) € gphEbe close to (¥°,2°,2%). Since S and T are calm
(say with rank L), there are z' € S(¥°) and z" € T(z°) such that

max{d(z,z'),d(z,z")} £ Lmax{d(y,y°),d(z,2°)}.

Since T~!is pseudo-Lipschitz (rank K), 20 € T-*(z") and z',z" are close to
z%, we find 2’ such that

z' € T7Y(z') and d(2',2°) < Kd(z',z").

Next observe that ' € H(2'). Therefore, there exists also some £ € H(2%)
satisfying
d(&-@") <Ly d(zl’zO).

Using these inequalities, we directly obtain the required Lipschitz estimate

d(z,€) < d(z,2') + d(', §)

< Lmax{d(y,1°),d(z,2°)} + L d(2', 2°)

< Lmax{d(y,y°),d(z,2%} + Ly K d(z', ")

< Lmax{d(y,3°),d(z,2°} + 2Ly K L max{d(y,3°),d(z, 2%)}.
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(v) Set-Constraints

Assume that Z(y) = S(y) "M and M is a fixed, closed subset of X. Clearly,
then one may study S on the new metric space X := M which leads us to a
new function pg. However, let us also regard two usual descriptions of z € M
via functions under the viewpoint of the pseudo-Lipschitz assumption for 71
in the theorem.

(a) Setting h(z) = dist (z, M), Z = R*,2° = 0,T = h~? the mapping T~} =
h is pseudo-Lipschitz, and pr(z) = inf { max{z', d(z',z) } | dist (z', M) =
2'}. If S is already calm (w.r. to the space X) then the theorem allows
us to study, instead of S(y) N T'(z), the calmness of the mapping

H(z) = S°)NT(2) = S¢°) n b7 (2).

If H is calm at (0, z°), then sois SNT at (¥°,0, 2°), hence also the original
map Z(y) = S@¥) N M at (y°,2%). This way, one may replace (for the
calmness investigation) the fixed set M by S(y°) and the mapping S by
kL.

(b) Setting h(z) =0if z € M, h(z) = 1 otherwise, and Z, 2%, T as above, the
function T~ = h is discontinuos and it holds pr(z) = dist (z, M) for
dist (z, M) < 1. The theorem cannot be applied. Indeed, for small z > 0,
we would obtain the trivial constant map

H(z)=S@°)nT(z) = S@°)nM

which tells us nothing about Z.

Optimality Conditions

The local upper Lipschitz property of feasible set maps S ensures optimality
conditions for constrained minimization in terms of free (i.e., unconstrained)
local minimizers of an auxiliary function. To study an optimization problem
min{f(z) |z € X°}, consider any map S : ¥ =3 X (between metric spaces) as
a parametric family of constraints satisfying § # X° C S(y°) forsome y° € Y.
The following statement, though more general, applies basically the same simple
arguments as the related proposition in [Cla83] for calm constraints.

Theorem 2.6 (free local minima and upper Lipschitz constraints).  Given
metric spaces X, Y, let8:Y =3 X be locally upper Lipschitz at (¥°, X°) with
rank L, f : X = R be Lipschitz near x® with rank K, and let p = S(y°, X°).
Further, let ° be a local minimizer of f on X°. Then 2° is a local minimizer
of

P(z) = f(z) + ap(z),

whenever a > Kc¢™ withe from (2.1). ol
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Proof. let u > 0,let U be the open set in (1.8) and K be some Lipschitz
rank for f near 2°. Given & € U, select some 7z € X° with

d(z,w;) < dist (z, X°) + p.

Then, d(z,7s) < d(z,2°) +p. For d(z,z°) < §and small §and g, we know that
d(mz,2°%) < d(nz, ) + d(z,2°) is small enough to apply the Lipschitz estimate
f(z) > f(nz) — Kd(z,m;) and f(mz) > f(z®). Further, since p = S(y°, X°), we
have —p(z) < —c dist (z, X°). So, it holds

F@) > f(m) - Kd(z,m2)
£(z%) - Kd(z, )
£(a°) - K [dist(z,X°) +p]

f(z®) =K ¢ 'p(z) - Kp.

IV IV IV IV

After passing to the limit g | 0, the latter ensures the assertion due to
P(z) 2 f(z) +ap(z) 2 P(z°) = f(s°) ifa>Kc™.

a

It is trivial but useful to note that thefunction p £ S(y°, X°) may be replaced,
in Theorem 2.6, by any function p* satisfying p* > p and p*(z°) = 0. Ap-
plying the function p = ps of LLemma 2.1, the new objective P turns out to be
even Lipschitz near z°.

Provided that X and Y are normed spaces, now all necessary optimality
conditions for free localminimizers z° of P induce necessary conditions for the
originally constrained problem. In particular, if directional derivatives P'(z%; u)
of P at % in direction # exist, then it must hold

P'%u)>0 VuelX; (2.14)
and
inf{v|v e CP(z°)(u)} >0Vue X

follows for the contingent derivative CP.

Dual Conditions

Let us mention only two basic approaches for obtaining dual conditions; various
other approaches and more involved results can be found in [Roc70, Gol72,
Roc74, TT74, LMO74, War75, Tof79a, Ben80, KM80, Roc81, BBZ81, BZ82,
Pen82, Cla83, Stu86, Mor88, Cha89, Shad8, BS00].
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Dual conditions via directional derivatives

If f and p are directionally differentiable (below, we see that the directional
derivatives may be generalized) and satisfy

(f + ap)' (%) < f'(2%u) + op'(2%w), (2.15)
then (2.14) yields a condition for the sum

inf ( f'(a®u) + ap' (z%u) ) > 0. (2.16)

Let, in addition, the directional derivatives be continuous and sublinear in u
(which is evident for locally Lipschitz convex functions).

Then, applying the Hahn-Banach theorem, see e.g. [KA64], to the sublinear
function

Q(u,v) := f'(2%u) + ap'(2°,v) in the product space T = X x X,

the supporting functional Lo(u, v) = 0 of Q on the subspace Hp definedby Il =
{(u,v)] v = v} can be extended to an additive and homogeneous functional
L(u,v) = L1(u) + L2(v) on II that supports Q everywhere. Thus,

Li(u) + La(u) =0 and Q(u,v) > Li(u) + La(v)

hold for all ©,v € X. The latter implies (since Q is continuous by assumption)
that L., L, are bounded, and

inf ( f'(2%u) ~ Li(w) ) + inf (ap'(a°,v) ~ La(v) ) 2 0.
So one obtains the existence of some £* = L; € X* satisfying the (conjugate
duality) inequality

inf (f'(2%u) - 2°(u)) + inf (2*(u) + ap'(x®u)) 2 0.
Since the involved directional derivatives are positively homogenous, the infima

are zero and z* belongs (by definition) just to the usual, convex subdifferential
8f'(x0;.)(0). Similarly, one obtains ~z* € 8(ap’)(x®;.)(0).

In other words, after defining a new subdifferential 8, for the non-convex
function f at z° as
Bnf(2®) = 8f'(z%.)(0), (2.17)

(and applying it to ap, too) some z* € X* satisfies the inclusions
z* € 8,f(2°) and - " € Ba(ap)(z®) = @Bap(2°),
which is the generalized LLagange condition
0€ 8,f(z°% + adnp(z°) (2.18)
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or simply
Df(z°) + aDp(z®) =0

for Fréchet differentiable functions.

Recalling the concrete form of p for k in (2.3) or ¢ in LLemma 2.3, one sees
that directional derivatives and contingent derivatives of maximum functions
play a crucial role, in this context.

Further, one observes that several concepts of directional derivatives f/ may
be applied to derive (2.18) for the subdifferential (2.17) in the above way, pro-
vided that

(i) condition (2.16) remains valid for local minimizers 2% of P, and

(i) the existence of directional derivatives as well as sublinearity and conti-

nuity with respect to the directions u can be guaranteed.

For locally Lipschitz functions f : X — R on linear normed spaces X, these
hypotheses are satisfied by Clarke’s directional derivatives f¢ and his subdif-
ferential 8.f(z°) which coincides with 8,f(x%) after identifying f' and f¢, cf.
Sections 12 and 13. For X = R", the equation 8,f(z°) = 8f(2°) in terms
of generalized Jacobians 8f(z°), cf. [Cla76], increases the analytical tools for
computing the derivatives in question.

Dual conditions via generalized subdifferentials

Without applying directional derivatives, one may restrict the functions f,p to
the set X, = 2% + eB, € > 0 sufficientlysmall, whereafter

0 € 8,(f + ap)(z®)

holds true for the minimizer 2° and all types of generalized subdifferentials 8.
Then, provided that a chain rule

By (f + ap)(z°) C 8, £ (2°) + 8,(ap)(z®) (2.19)

is valid, one directly obtains (2.18) with respect to the subdifferential under con-
sideration. We refer the reader who is interested in recent results devoted to
inclusion (2.19) for particular subdifferentials, to [MS97a, Kru00, NTO1, Kru01].
For the related subdifferential-theory (mainly of certain limiting Fréchet sub-
differentials), the Lipschitz property of f and p as well as the fact that X is
an Asplund space play an important role, see also e-Fréchet subdifferentials in
§2.22.

Linear Inequality Systems with Variable Matrix

The upper Lipschitz property is particularly important for linear inequalities
and polyhedral multifunctions. Basic results on this subject go back to Hoff-
man [Hof52], Walkup and Wets [WW69] and NoZitka [NGHB74]. A complete
theory of upper Lipschitz properties in the polyhedral case has been elaborated
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by Robinson [Rob76b, Rob81], for some (incomplete) summary see Theorem
6.4 below. Various results concerning the nonlinear case have been shown in
[Rob76¢] for the first time.

Fixed Matrix

The solution set of a parametric, finite dimensional linear inequality system
S(y)={reR"|Az <y}, ye Y CR™, Ais an (m,n) matrix,
is Lipschitz u.s.c. at ¥®. This is a consequence of the famous Hoffman’s lemma

Lemma 2.7 (Hoffman [Hof52]). There is some constant L depending only on
A such that the inequality

dist (z,5(y)) < L 1l5n£asxm(A"m - )t

holds for all z € R™ and all y with S(y) # 8, where Ai. is the ith row of A. ©

The lemma has initiated various investigations and proofs in order to find error
bounds and best estimates (constants L) for linear inequalities or linear pro-
grams/complementarity problems (see, e.g., {Rob73, Rob76b, Man81a, Klag7,
Man90, 1i93, KT96]) as well as global error bounds for convex multifunctions
or convex inequalities (see, e.g., [Rob75, Man85, 1. P97, BT96, Pan97, Kla98,
1.598, KI1.99]). One of the first extensions of the lemma to Banach spaces can
be found in [lof79b].

If there is some z° with 429 < ® (component-wise), then S(y) is non-
empty for y near y°. Hence 7!, ie, F(z) = {y|Az < y}, is upper regular
at (S(y°),y°%). Moreover, using Az® < y° one easily shows that F is even
pseudo-regular ateach pair (z,y%) with Az <°.

Having only 3° € dom S then, after identifying ¥ with dom S, these state-
ments remain true, and domS = AR™ + R} is an unbounded, convex polyhe-
dral set.

Lipschitzian Matrix

IfS(y) = {z € R"| Az < b(y)}, whereb € R™ depends (locally) Lipschitzian on
y € Y ¢ R, then analogue statements as above can be immediately derived.
If also A depends Lipschitzian on g, then dom S is no longer closed and S is
not locally upper Lipschitz, in general. Even if S(g°) is non-empty and bounded,
the map S is not necessarily l.s.c. But the upper Lipschit; behavior remains
valid. The next lemma is well-known (see Robinson [Rob77]) and applies to the
continuous and Lipschitz continuous situation in the same manner.

Lemma 2.8 (Lipschitz u.s.c. linear systems). Let

S@) = {z e R*| A(y)z < b(y)}, y€ Y C R,



30 2. Regularity and Consequences

let A and b be poimtwise Lipschitz at y°, and let S(y°) be non-empty and
bounded. Then S is Lipschitz u.s.c. at y¥°. <

Proof. Let z(y) € S(y) and ||y — y°|| be small. Writing
A(y) = A@®°) + C(y) and bly) = b(y°) + c(v)
we have, with some L and related norms,

ICWI < Lily - °f and lle@)ll < Lily - ¢°lI.

If, for certain ¥ — ¥°, the elements z(y) diverge, then division by ||z(y)|| yields
(for some subsequence of ¥)

z()/llz@)l = v and A(y°)u 0.

In this case, S(y°) contains the ray {z° + Au|A > 0} and is unbounded.
Hence, if ||y — %°|| is small enough, there is an upper bound X for [jz(y)]|-
Then, setting

g =c(y) - C(y)z(y),

it holds
llall < (1+ K)L|ly - 4°ll and A@°)z(y) < b(x°) +q.

Since, for the fixed matrix A(y%), S is Lipschitz u.s.c. at y® with some rank
L 4, now the estimate

z(y) € S(¥°) + LallgllB € S@°) + La(1 + K)L|ly ~ °||B
completes the proof. 0

The reader will easily see that S is still u.s.c. at y° if both A and b are continuous
aty® and S(y°) is non-empty and bounded.
Application to LLagrange Multipliers

Let A(z,t) € R™** be the (possibly empty) set of Lagrange multipliers, as-
signed to a feasible point z and to some parameter ¢ € IR® of an optimization
problem

n;in{f(:c,t) |g,-(a:,t) <0, hk(m)t) =0,i=1,.m; k= 19"-15},

and suppose that
fr9i b € CHL.

Then we have (¥, 2) € A(z,t) if and only if

Dz.f(ma t) + ng(x7t)-ry + Dzh(xv t)Tz =0, y>0 and (ya g(xa t)) =0.
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Let I(z,t) = {i| gi(z,t) = 0} (the index set assigned to active inequalities) and
put, for fixed (°,¢°), I? := I(2z°,4%) and

D.g(z,8)y + Doh(s,t)Tz = ~D, f(z,1), }

0 — m-+-K
A(x,t).~.{(y,z)€R y>0andy; =0ifi ¢ I°

Due to I(z,t) C I°for (z,t) near (z°,t°), we observe that
A(z,t) C A%z,2) and A(z% ) = A°(2°,19).

Hence, Lemma 2.8 immediately ensures (by setting there y := (z,t), = := (¥,2)
and S = A) the following well-known result (cf., e.g., [Kla91, BS007).

Corollary 2.9 (Lipschitz u.s.c. multipliers). Provided that A(z°,t%) is non-
empty and bounded, the multiplier maps A® and A are Lipschitz w.s.c. at
(z°,t9).

If, in addition, card A(z°,8%) = 1, then the restricted map Algom A is Lip-
schitz I.s.c. at (x°,1%). ¢

Note that, by Gauvin’s theorem [Gau77], A(z?,®) is non-empty and bounded
if and only if z° is a stationary point satisfying MFCQ, while card A(z°,t°) =
1 means in algebraic formulation just the so-called strict MFCQ condition
[Kyp85], for both results see also Lemma A.7 in the Appendix. The require-
ment of A® being Lipschitz lsc. at (z°,°) with respect to dom A® implies rank
conditions concerning submatrices of (Dzg(z,t), Dzh(z,t)) on dom A® which
are often written as the so-called constant rank condition [Jan84]. Having only
I, 9 gzk € C?, the same arguments ensure that A® and A are at least u.s.c. at
(=°,t°).

Upper Regularity and Newton’s Method

Let F: X 3Y be upper regular at {z%4°) with rank L and neighborhoods U,
V, and let g: U = Y be a (pointwise) Lipschitz function with

g9(z®) =4° and d(g(z),g(z%) < Bd(z,2°) for z near z°.

Then (evidently) the map H(z) = F~}(g(z)) NU is locally upper Lipschitz at
(2%, 4°) with rank BL. Supposing

©:=8L <1 and ! close to 20, (2.20)
the iteration process

2 e FYg*)nU; k21 (2.21)
generates a (possibly not unique) sequence satisfying

d(z**1,2°% < ©d(z*,2°); in particular, z¢ = 2% and g(z*) = ¢°.
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The same is true if F~! is only locally upper Lipschitz at (§°,2°) with rank L
and if one knows that zF+! exists.

To obtain a standard application of the process (2.21), let f € C*(R",R"),
f(z°) =0, and let Df(z°) be a regular matrix. Setting

g(z)=z and F(z)={y|f(y) =Dfy)y-=)}
the process (2.21) describes just Newton’s method. Indeed, we obtain § =
1, z° = F~1(z°) and, considering z, ¥ on small neighborhoods U, V of z°,
respectively,
FlynU = {zeUlyeF(z)}
{zeUlf) =Dfy)y - =)}
{y-Dfy)"' f(w)}-

il

So, it holds that
E€F(g(z) ¢ E=z-Df(z)"'f(a)
and (2.21) describes Newton’s method as asserted. Since
F~l(y) — F~(2°) y-Df(y)~ fy) - (&° - Df(=®) " f(z°))
= (y—2° - Df@) " (fly) - (2°) = ofy - 2°),

the assumption L < 1 of (2.20) is valid with arbitrarily small L > 0. The
latter ensures (locally) superlinear convergence.

2.2 Pseudo-Regularity

Pseudo-regularity is the most interesting and most complicated stability prop-
erty we are dealing with in the present book and, in fact, there are still several
open questions (mainly of topological nature) concerning this property even
for Lipschitz functions. For instance, it was a big step ahead to know that, if
f € COY(R™ R"™) is pseudo-regular at (z°,0) and directionally differentiable
at 2%, the zero z° is necessarily isolated (cf. [Fus99, FusO1] and Theorem 5.12).
Notice that this statement is nearly trivial for f € C*. If f is not directionally
differentiable at z°,then the same question is completely open.

Pseudo-regularity may be (and has been) characterized by different means.
For mappings in finite dimensional spaces, contingent and coderivatives de-
scribe the problem sufficiently well. In more general spaces, our Example BE.2
restricts these approaches essentially. For this reason, limits of certain Ekeland
points, which describe the pseudo-singular” situation, will be taken into con-
sideration. In addition, we investigate the intersection of pseudo-regular maps
by means of assigned inverse families. Such families come into the play if one
studies the inverses of pseudo- regular maps in detail.

First of all, we establish a general connection between calm, upper, lower
and pseudo-Lipschitzian maps S and the optimality condition of Theorem 2.6.
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Theorem 2.10 (selection maps and optimality condition). Let S : Y =3 X be
pseudo-Lipschitz at (y°,2°) with rank L and neighborhoods U, V. Let& > 0 be
fixed such thatz° +eB C U, and define

I'(y) = S(y) N {z| d(z,2°) < e ~ Ld(y,y°)}.

Then,
(i) T is Lipschitz u.s.c. at (3°,T(y°))
(i) T is Lipschitz Ls.c. atall (y,z), y €V, z € I'(y)
(both with rank L);
(#3) The functions

ps(z) = dist ((4°,7),gph S) and pr(z) = dist ((4°, ), gphT)

coincide for T near x°;
() Irf: X = R is locally Lipschitz and 2° (locally) minimizes f on S(y°)
then, provided that « is large enough, x° is a free local minimizer of

P(z) = f(x) + aps(z).
Moreover, the statements (i), (i) and () remain true if § :' Y =3 X is only
calm at (¥°,2%) with rank L. <

Proof. (i) let £ € I'(y), y € V. Setting ' = ¥%in (1.1) there is some
z' € S(3°) with d(z',z) < Ld(y,3°). Notice that z' also exists (by definition)
if S is calm at (y°,2°%) with related neighborhoods U, V and rank L. Moreover,
since

d(z',2°%) < d(z’',z) + d(z,2°) < Ld(y,y°) + (e - Ld(y,3°)) = ¢,

we obtain z' € I'(y°) and dist (z,I'(¢°)) < Ld(y, °).
(ii) Let ¥ € V and z € I'(y). Then,

d(z,2% = —p+ € — Ld(y,y®) for some p > 0.

Consider any ¥' € V such that r := d(y, y) satisfies 0 < r < pf(2L). By (1.1),
there is some z' € S(y') such that d(z',z) < Ld(y',y) < Lr. Toshow that z' €
I'(y") we estimate d(z', z°) by applying 2Lr < p and -d(y,3°) < r~d(y',3°) :

d(z',2°) < d(z',z) + d(z,2%) < Lr + d(z,2°)
= Lr - p+¢ — Ld(y,°)

< Lr-p+¢e+ Lr - Ld(y',y°)
<2Lr-p+e—Ldy,y°) <e~Ldy',y°).

So z' € T'(y')holds as required.

(iii) Clearly, ps(2°) = pr(z°®) is evident and pg < pr follows from gphT' C
gph S. Toverify pr(zx) < ps(z) for  near 2%, we consider any = € U such that
z # z° and

(3 +2L) d(z,2°) < e. (2.22)
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Let (y',2') € gph S realize the distance ps(z) up to an error Ad(z, z°), X € (0,1).
We show that (y',z') € gphT. Indeed, since (% I'(y°)) C gph S, it holds

max{d(z', z), d(y',4°)} ps(z) + Ad(z,z°)
dist (z, I'(y°)) + Ad(z, z°)
1+ Nd(z, %)

2d(z, z°).

AN IN A

Thus, the inequalities
d(z',z°%) < d(z',z) + d(x,2°) < 3d(z,2°) and d(y',3°) < 2d(x,z°)
are valid and ensure (%', z') € gphI’whenever
3d(z,2°) < € - 2Ld(z,z°).

The latter holds true due to (2.22) and yields pr(z) < ps(z) + Ad(z,z°) as well
as pr(z) < ps(z) via A L 0.

(iv) For sufficiently small £ > 0, z° minimizes f on I'(%°). By (i), T is
Lipschitz u.s.c., so 2° is, by Lemma 2.1 and Theorem 2.6, a local minimizer of
P(z) := f(z) + apr(z) whenever a is sufficiently large. Using (iii), this is the
assertion. u]

2.2.1 The Family of Inverse Functions

Let us consider the point ' satisfying the requirements (1.1) of pseudo-regularity,
namely
z' € S(¢') = F~(y') and dx(z',z) < Ldy (¥, 1), (2.23)

as a functionof z = (z,y) and ¢ forz € U, 3,y € V.

Then, F is pseudo-regular at 20 iff there is a family ¥ of functions ¢, : V —
X such that ' := ¢,(y') € F~(y') and, for all z € Q := (U,V)Ngph F, one
has d(¥:(y'),z) < Ld(y',y) whenever y’ € V.

So ¥is a special family of selections %,for F~! which tells us that

F~1 is Lipschitz lower semicontinuous (Ls.c.) near 2° with uniform
rank L, i.e., given z € {1, one finds some neighborhood V; of y such (2.24)
that dist (z, F~1(y")) < Ld(y',y) Vy' € V;,

and, in addition,

the neighborhoods V; are fixed: V; = V Vz € (. (2.25)

We will say that %, is a local inverse of F, and ¥ is an inverse family.
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The functions . are not unique a priori and may be discontinuous at y' €
V\{y}. So, an inverse family, assigned to a pseudo-regular mapping F, may
consist (at least theoretically) of more or less complicated selections of F~1,

To get a close connection between inverse families and cones of tangents or
normals, we consider the directions ' —~ z and %' —y for (linear) normed spaces
(X, 1I) and (Y,[ - [}, respectively. Setting y' =y +tv, t > 0, |v| = 1 and
z' =z + tu, wehave 9¥,(y') = z + tu. Now,each u = u,(v,t) is bounded since
tllull = ||z’ ~=z|| < Lly' —y| = Lt. So one may identify ¥ and a related family &
of uniformly bounded functions u,, defined for v € bd By and for all ¢ in some
interval (0,4d), such that

y+tve F(z+tu,(v,t)) if 2= (z,9) €.

Indeed, having ®, one easily sees (by “decreasing” U and V) that F is
pseudo-regular at z%. We call & an inverse family of directions. By our defini-
tions, we have

Remark 2.11 (inverse families and pseudo-regularity). The following condi-
tions are equivalent to each other;

1. An inverse family ¥ exists.

2. An inverse family of directions ® exists.

3. F is pseudo-regular at 2°. o

Up to now, the domain of all ¥, € ¥ was a constant neighborhood V of y2,
containing the second component y of 2 = (z,¥y), while all functions u, (v, -) were
defined on the same interval (0,48). If these domains are replaced by different
neighborhoods V; of y and intervals (0, §(z)), respectively, the existence of ¥ (or
®) describes the Ls.c. property (2.24) of F~1. To indicate that we understand
the families ¥ and @ in this weaker sense, we denote them by ¥* and ¥,
respectively.  Our Theorem 2.17 will say that the existence of ¥ and ¥* - or
pseudo-regularity and the L.s.c. property (2.24) - are equivalent for quite general
mappings F.

Particular Local Inverses

Knowing that, for certain maps, there are particular local inverses, gives us
extra information about where or how one can find some «' satisfying (1.1). Tt
can also mean that not all variations ¥’ of ¥ must be regarded. In this way the
question of whether F is pseudo-regular or not can be simplified. Let us regard
some examples.

Simple Cases

1. Let X be a linear normed space, let f : X =+ R be locally Lipschitz and
F(z) = {y € R| f(z) < y}-
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Provided that Clarke’s directional derivative f¢(z% p®) is negative for some
direction p®, one may put

(@' =)¥:(y) =z + 1y - ylp° (2.26)

in order to see that F is pseudo-regular at 2% = (2%, f(z°)). The related inverse
family consists of functions that move z = ¥,(y) "Lipschitzian far” in a fixed
direction p° only.

2. If, moreover, the locally Lipschitz function f is convex or continuously
differentiable, then one may even state:

Either F is notpseudo-regularat 2% or thereis an inverse family that consists
of functions ¥, having the form (2.26).

Indeed, if f € C, then either F is not pseudo-regular at 2%, namely if
Df(z%) = 0, or one can take any direction p® with (D f(z%),p%) < —1.

If f is convex and continuous, put p® = z* — 2% where z* is any point with
f(z*) < f(x®) as far as z* exists. Otherwise, F cannot be pseudo-regular at 2°
since F~1(f(z%) - ¢) is empty for £ > 0.

3. The reader will easily confirm that, by setting p® = (1,...,1) € R", the
either—or—statement of 2. is true for each mapping

F(z)={yeR™|f(z) 2y}, f:R"-R",

provided that the (possibly discontinuous) components f; are non-decreasing in
each component Tg.

In fact, any point ' satisfying f(z') > ¥’ can be replaced by z"" > z' without
violating this inequality. So one may replace z' in (2.23) by z" = z+||z'~z||p® >
z' after taking the maximum-norm. Having ||z’ — z|| < Lly' —y|, now " can be
again replaced by & = z + (L|y’ — y|)p® > " whereafter f(£) > y' remains true
and the required Lipschitz estimate holds with another constant (or equivalent
norm) only.

For instance, fi may be an extreme value function (also called marginal
function) of the type

fi(z) = inf{hi(z) | grs(2) 2 2x; k=1,...,n}

with arbitrary functions A; and gxi, or f; is a probability distribution function
or an utility function.

More Complicated Cases

1. Discontinuous functions ¥, are needed for those pseudo-regular functions
f € C(R™ R™) which are not strongly regular at 2° = (z°, f(z%)).

Indeed, in that case, the inverse f~! does not possess a (single-valued) se-
lection s(-) € f~!(:), that is continuous on some neighborhood V of f(z%) and
satisfies s(f(z%)) = 29, cf. Theorem 5.10. Thus, every local inverse 4, for
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z = 2% is necessarily discontinuous at some point of V.

2. Pseudo-Lipschitzian level sets without descent directions in Hilbert spaces:
Our Example BE.2, where F(z) = {y € R| f(z) < y} and F~(y) is a lower
level set map for f(z) = infg 2 on X = 2, is helpful in order to understand
pseudo-regularity in general spaces. It shows that locally inverse functions may
have (necessarily) rather bad properties.

In particular, one has to take into account that the bounded directions
u,(v,t) of every inverse family of directions € do not necessarily converge as
t J 0. Even accumulation points may fail to exist, and directional derivatives, for
certain & arbitrarily close to z°, can satisfy the first-order minimum condition
[(z;ju) >20Vue X.

Note that, in our example, f is one of the simplest nonsmooth, non-convex
functions on a Hilbert space: f is globally Lipschitz, directionally differentiable
and concave,

2.2.2 Ekeland Points and Uniform Lower Semicontinuity

In this section, we characterize pseudo-regularity by two topological means:

(i) by so—alled Ekeland points, related to the distance functions dy(z) =

dist (y, F(z)),

(i) by Lipschitz lower semicontinuity of F~! near the reference point.
The first characterization is our basic tool, the second one will help to under-
stand the content of pseudo-regularity. We will require that Lipschitz ls.c.
holds with uniform rank L at the points in question. But the neighborhoods
where the 1s.c. estimates are true, may have different size. For this fact, the
notion uniform lower semicontinuity will be used.

We start with the formal negation of pseudo-regularity; A multifunction F ;
X =3 Y (between metric spaces) is not pseudo-regular at z° = (2°,3°) € gph F'
iff

there are sequences z* — z° (k — o0) and n¥, y* — 3° 221
such that ¥ € F(z*) and dist (z*, F~(g*)) > kd(n*,y*). .
Here, we have identified , 2, ¥ and ¥’ appearing in the definition with k, z*, n*
and y¥, respectively. For instance, (2.27) holds for f(z) = 2® with ¥ =n* =0
and y* 1 0.

In order to show that such points cannot exist, we want to obtain additional
information about possible sequences. This is the purpose of our next consid-
erations where we replace ¥ in (2.27) by an Ekeland-point 2¥ of the function
¢(z) = dist (y*, F(z)).

We apply Ekeland’s variational principle [Eke74] in the following form.
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Theorem 2.12 (Ekeland). Let X be a complete metric space and ¢ : X —
R U {0} be a l.s.c. function having a finite infimum. Let € and abe positive,
and let ¢(z) < e +infx ¢. Then there is some z € X such that

d(z,7) < @, §(2) < ¢(x) and $(§) + (e/a)d(§,2) 2 ¢(2) V€ € X.

A proof of the above theorem will be added in the appendix.

As usually, afunction ¢ with values in R U {oo} is called Ls.c. if all lower
level sets {z|¢(z) < r} are closed. In applications, X is often a closed subset
of a Banach space. Points z satisfying ¢(z) < € + infx ¢ are also said to be
e-optimal.

We say that z € X is a local Ekeland-point of afunctional ¢ with factor p,
for short z € Ey4(p), if ¢(2) is finite and

$() +pd(,2) 2 ¢(2) V¢ € X, £ near z. (2.28)

If (2.28) holds for all £ € X we call z a global Ekeland-point.

Via [¢(€) — ¢(2)]/d(&, 2) > —p, property (2.28) ensures that —p is a lower
bound for several generalized directional derivatives of ¢ at z.

Note that in Example 0.1 we had f(z) = z (if z < 0) and f(z) = z? (if
z > 0). For each p € (0,1), one finds here local Ekeland-points with z > 0, but
not with z < 0.

If X is a normed space and f : X - R U {oo}, one may introduce the
mapping (of approximate local minimizers)

My(z*)={z € X |z € Ey{p) ford=f -2}, z* € X*.
Its inverse M’ ! assigns, to & € X, some subset of X*, and defines via
07 f(z) = Np>e M, (2)

just the so-called e-Fréchet subdifferential of f at z. This subdifferential can
be explicitly defined by saying that =* € 87 f(z) if

Jiminf () - £() ~ (2", € = D/Ig - 3l 2 —e.

It has been extensively studied in the literature during the last years. For
its behavior as z — z% and/or € | 0 and applications as well, we refer to
[Kru85, Fab86, Fab89, Kru96, Kru97, NT01] and [Iof00] where the reader finds
not only a comprehensive overview, but also various further references. As an
introduction into the rich world of ideas for generalized derivatives, subdiffer-
entials and their applications, one has to mention (even now) the paper [lof79a).
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The idea of dealing with pseudo-regularity by applying Ekeland’s variational
principle, was a basic one and goes back to J.P. Aubin and I. Ekeland. The
proof of Theorem 4, §7.5, in [AE84] is a typical example for realizing this idea.
A. Toffe [Iof79b] and A. Auslender [Aus84] also used the Ekeland principle very
early as a crucial tool in a more special context devoted to optimality conditions
and finite systems of (in)equalities, respectively. There, sufficient conditions for
F being pseudo-regular have been derived in terms of generalized derivatives.

Here, we add a condition which is both necessary and sufficient for important
special cases which will be summarized in Lemma 2.13 below.

We say that F : X =3 Y isproper near yCif, for fixed ynear °, the function
dist (y, F(-)) - with values in R* U {00} - is Ls.c. on X.

Lemma 2.13 (proper multifunctions). A multifunction F:X 3Y is proper
(everywhere) under each of the following assumptions.
(i) F is a continuous function;
(ii) F is closed and Y = R™;
(iii) F(z) = f(z) — K, K # 0 is a closed convex set in a real Hilbert space Y
and f: X = Y is a continuous function.
(iv) F is closed and locally compact.
(v) F(z) = f(z) + ®(z) where X, Y are Banach spaces, f : X = Y s
continuous and ® satisfies assumption (iv).
In each of these cases, the sets F(z) are closed and dist (y, F(z)) will be attained,
ie., dist (y, F(z)) = d(y, f) for some f € F(x), provided that F(z) # 0. ¢

Proof. (i) is trivial.
(ii) and (iv) follow by compactness arguments in R™ or cl F(,).
(v): Note that dist (g, F'(z)) = dist (y — f(z), ®(«)), and apply (iv).
(ii1): The existence and the lower semicontinuity follow from
dist (y, F(z)) = inf{||f(z)-y-kl|ke K}
= |f(@) -y - mx(f(z) =),

where 7k is the non-expansive projection map onto K. a

Lemma 2.14 (pseudo-regularity for proper mappings). Let X and Y be metric
spaces, let X be complete, and let F : X =Y be proper neary® € F(z®). Then,
F is not pseudo-regular at (x°,y°) if and only if for each p > 0, there exist
z€dom FN(z®+pBx), y € y* +pBy andr > 0 (all depending on p) such that
z is a global Ekeland-point of dist (y, F(-)) with factor p, and the inequalities

d(n,4°) < p and dist (2, F~(y)) > p~'d(y,n) (2.29)

are true whenever
n € F(2) and d(y,n) < dist (y, F(2)) + . (2.30)
<
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Note: Let the given condition be satisfied. Then, 5 in (2.30) exists since z €
dom F. So, applying (2.29), it holds y ¢ F(z) and dist (y, F(2)) < d(y,n) < 2p.
<

Proof of Lemma 2.14. (<) For this direction, neither the 1.s.c.-assumption
nor any Ekeland property of z is needed. It suffices to know that F(z) # 0.
According to our previous note, we may put p = 1/k, z¥ = z, y* = y and
n* = 7, where 7 satisfies (2.30).

Now (2.29) ensures n* — y° and dist (z*, F~1(y*)) > kd(y*,n*). Thus
(2.27) holds true.

(= ) Let p > 0 be given. We put C = p~!, assume that (2.27) is true, and
fix any k > 3C with

max{Cd(n*,y*), 2d(n*, y*), d(z*,2°), d(*,4°)} < 3P.

Settingy = y* ande = d(n*,y), € is positive by (2.27), ande < p/4, d(y,3°) < p
are true by the choice of k. From n* € F(z*), we have dist (y, F(z*)) <
d(y,n*) = . Hence z* is e-optimal for the 1s.c. functional ¢(-) = dist (y, F(-))
on X. To replace z* by an Ekeland point, we put @ = Ce in Theorem 2.12:
There exists a global Ekeland point 2 with factor p such that

$(z) = dist (y, F(2)) < e and d(z,2*) < Ce < ip. (2.31)
In particular, we observe that
d(z% 2) < d(z°,z*) + d(z*,2) < p, and z € domF.

Next consider any 7 satisfying (2.30) with r = & (n should not be confused with
the already fixed 7n*). Using (2.31) we observe € > dist (y, F(z)) > d(y,n) - r,
hence

2e > d(y,n). (2.32)

Now the estimate
d(n,4°) < d(n,v) +d(y,1°) < 26+ 3p<p

verifies the first inequality in (2.29). On the other hand, it holds — due to (2.27)
and by the choice of k —

dist (z*, F~1(y)) = dist («*, F~1(*)) > kd(n*,y*) = ke > 3Ce.
By (2.31), the latter ensures the estimate
dist (z, F~1(y)) > dist (¥, F~1(y)) - d(z*,2) > 3Ce - Ce = 2¢C.
Taking again (2.32) into account, we thus obtain
dist (2, F~(y)) > Cd(y,n) = p~"d(y,n).
So (2.30) implies (2.29), which completes the proof. O
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From the proof of direction { 4= ) one easily sees that Lemma 2.14 remains true
after replacing the notion “’global Ekeland-point” by local Ekeland point”.

In order to see what happens if gph F is not closed, consider
Example 2.15 (F is not pseudo-regular). For z € R, put
F(z) = {y € R}y rational}.

Then, F~(y) = @ for irrational ¥, F~'(y) = R for rational y.

Clearly, F is not pseudo-regular at (0, 0), and dist (¥, F(z)) = 0 for all z.
Thus each pair (y, 2) trivially satisfies the inequality dist (y, F(z)) + pd(z, z) >
dist (y,F(2)).

To fulfill the implication (2.30) = (2.29), the pair (2,%) must be taken near
the origin, say |z| + |y| < %p with irrational y. With r = -%p, now (2.29)follows
from (2.30) due to

td(n,0) < d(n,y) +d(y,0) <p and dist (z, F~}(y)) = co.
<
The situation becomes simpler if F is supposed to have dosed images.

Theorem 2.16 (pseudo-regularity of proper mappings with closed ranges).
Let F be a closed-valued map satisfying the assumptions of Lemma 2.14- Then,
F is not pseudo-regular at (z°%,4%) if and only if for each p > O, there exist
z € dom FN(z® +pBx) andy € y° +pBy such that % is a global Ekeland-point
of dist (y, F(:)) with factor p as well as 0 < dist (y, F(z)) < 2p. <

Proof. Let p=dist(y,F(z))forsome (y,2) under consideration.

The direction (=) follows as for Lemma 2.14; concerning 0 < p < 2p, see
the Note following LLemma 2.14 and notice that g > 0 follows fromy ¢ F(2)
and the closedness of F(z).

To show (<= ) assume that F is pseudo-regular, contrarily to the asser-
tion. Then, using the equivalence of both properties, F is metrically regular at
(2°,y?) with some rank L. Since we may assume that (z,y) is close to (z%,y%),
this yields dist (z, #~(y)) < Lu. Because of F(z) # @ wehave g < oo and
obtain particularly F~(y) # @. On the other hand, it holds

dist (¥, F(z)) =0Vz € F~Y(y) and dist(y, F(z)) + pd(z,z) > p.

So we derive
d(z,2) > p~lu
as well as
Ly > dist (z, F~'(y)) = inf{d(z,2)|z € F~(y)} 2 p™" .

Dueto g > 0, this yields L > p~! =+ 0o as p 4 0. So F cannot be pseudo-regular.
(W]



42 2. Regularity and Consequences

Partial Inverses

Using Theorem 2.16, the notion of an inverse family (of directions) in §2.2.1
may be weakened without violating the equivalence with pseudo-regularity.
Let X be a metric space, (¥,|-|) be normed and z° € gph F. A partial
inverse (with rank L) at z = (z,y) € gph F is a mapping 7, that assigns, to
v € bd By, some sequence of t § 0 and related elements z: € X,v € Y such
that
¥+ tvg € F(ze), d(ze,z) <tL and v —v.

We say that F is partially invertible near 2% if, for some neighborhood € of z°
and some L, there is a partial inverse at each z € QN gph F with uniform rank
L.

Recalling the convention z + rBx = {z'|d(z',z) < r} in metric spaces, one
can equivalently define

F is partially invertible near 2° if

for each z € gph F near 2%, all v € bd By and some fixed L > 0,
it holds 0 = liminf, o t~1dist (y + tv, F(z + LtBx)).

In particular, F is partially invertible near z° if F~! is Lipschitz ls.c. near
2% with uniform rank K, cf. condition (2.24). In fact, with L = K + 1, a
partial inverse w; can be defined by taking small ¢ and setting v; = v and
I € F“(y+tv)n(m+tLBx).

For showing partial invertibility of the lower level set map F(z) = {y| f(z) <
y} of a continuous and directionally differentiable functional f on a Banach
space, it is enough to assign, to z near % some uniformly bounded direction
u(x) such that f'(z;u(z)) < -1.

Even if u(-) is discontinuous, now =, (v) may consist of all £ in some interval
(0, 7)(where T depends on z and v) and of v¢ = v,z = T + tu(z).

Theorem 2.17 (basic equivalences, proper mappings). Let X be a complete
metric space, Y be a normed space and F : X 3Y be closed-valued and proper
near y° € F(z%). Moreover, let dist(y, F(z)) = d(y, f) hold for some f € F(z)
whenever F(z) # 0. Then, the following properties are equivalent to each other:
(i) F is pseudo-regular at z° = (z°,19).
(ii) F is partially invertible near z°.
(iii) For someneighborhood ¢ of (¥°,%), F~Y is Lipschitz L.s.c. with uniform
rank L at each (y,z) € gph F-1 N A,

<
Note: Concerning our assumptions we refer to Lemma 2.13,

Proof of Theorem 2.17. If F'is pseudo-regular then there is an inverse family
(see §2.2.1), so F is partially invertible and F~! fulfills the Ls.c. condition.
Thus, we have to show that F is pseudo-regular if ' is partially invertible. Let
us assume, contrarily to the assertion, that F' is not pseudo-regular.
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Consider any Ekeland pair (2,¥), assigned to some p > 0 as in Theorem 2.16.
Since F(z) # 0, there is some 5 € F(z) such that dist (y, F(2)) = d(y,n) > 0.
Next put v = (y — n)/d(y,n) and use our assumption. Hence, for certain
t =t | 0, there are z; and v; with n + tvy € F(x;), d(z,2) < tL and v; — v.
Ift is small then one finds

d(y,n + tvy) < d(y,m) — 3. (2.33)
By the Ekeland property of (z,y) with factor p, it holds for small ¢ that
dist (y, F(x¢)) + pd(z¢, 2) > dist (y, F(2)) = d(y,n).
The left-hand side can be estimated with the already shown relations

d(y’ 7]) - %t 2 d(%ﬂ + tvt) 2 dist (y’ F(.’Bt)) and tL 2 d(zhz);

thus
d(y,n) - 3t +ptL > d(y,n)
yields
p2 L7
So, the singularity condition p } 0 of Theorem 2.16 cannot be satisfied. o

It is worth noting that the key inequality (2.33) of the preceding proofis already
true if v; € bd B and ||vy — v|| < % This means that the claim v, —+ v in the
definition of a partial inverse could be even weakened. The foregoing theorem
also holds for closed F and Banach spaces X and ¥, we refer to our discussion
following corollary 3.3 below.

2.2.3 Special Multifunctions

Here, we apply Theorem 2.16 to particular forms of the map F.
Recall that E¢(p) denotes the set of all local Ekeland points of f : X —
R U {00} with factor p, cf. (2.28).

Level Sets of L.s.c. Functions

Lemma 2.18 (pseudo-singular level sets of 1.s.c, functions). Let X be a com-
plete metricspace, f : X = R bels.c, F(z) = {y € Rly > f(z)} and
f(z°) < y°. Then, F is not pseudo-regular at (z°,y%) if and only if (2°,4°) =
lim(z(p), f(2(p))) for certain z(p) € Ef(p), p{ 0. <

Note: For continuous f,the condition takes theform: f(z°) = y®and z° €
lim sup,,o B¢ (p).
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Proof of Lemma 2.18, It holds dist (y, F(z)) = (f(z) — y)* where rt* =
max{0,r}. We may apply Theorem 2.16 since (f(-) = y)* is Ls.c.

(=) Let z and y be assigned to p as in Theorem 2.16. Then 0 < f(2)~y < 2p
and, due to z — 2% and y —+ ¥°, one observes lim f(z) = y°. The local Ekeland-
property of z yields

(f(&) ~9)* +pd(€,2) > (f(2) —y)* >0 V€ near z € X.

For & near z, it holds f(¢) > y because fis Ls.c. and f(z) > y. So we may
write
f(€) =y +pd(€,2) 2 f(2) — y which ensures z € Ey(p).

(4) Due to z € Ey(p) we have, with some a > 0: f(z)+pd(z,z) 2 f(z)Vz €
z+aB. For each § > 0, now the both conditions f(z) < f(z)~é and z € z+aB
yield

f(z) =6 +pd(z,2) 2 f(z) + pd(z,2) 2 f(2);

hence d(z, z) > p~14.

Thus, the map F may be pseudo-regular at (z, f(z)) only with rank L, >
p~t. Because (z, f(z)) converge to (z°,°) as p 4 0, F cannot be pseudo-regular
at (z°,1°). O

Cone Constraints

Next, we consider case (iii) of Lemma 2.13 more in detail. Suppose that

X is a complete metric space and Y is a real Hilbert space with norm |- |,
F€CY%(X,Y), K CY is nonempty, closed and convex,
F(z) = f(z) = K and (z%y°) € gph F.
(2.34)
We wrote cone constraints because K is a convex cone in many applications.
The Lipschitz assumption is crucial for forthcoming estimates, the existence of
inner points of K is not needed.

Let =(z,y) be the projection of f(z) onto the closed convex set y + K.
Equivalently, this means that f(z) — m(z,y) belongs to the normal cone of
y+ K atw(z,y). Clearly, n(-,-) is locally Lipschitz. So pseudo- regularity of F
can be reduced to the study of global Ekeland points 2 for the locally Lipschitz
functionals z — dist (y, F(z)) = |f(z) - 7(z,y)|. Instead of norm-functionals,
let us now use dual functions of the form z = (y*, f(z) — n(z,y)).

Lemma 2.19 (Ekeland-points of norm-functionals in a real Hilbert space).
Under (2.34), letg € COY(X,Y) , |g(2)] > 0 and y* = |g(2)|9(2).
(i) If z € En(p) for h = |g|, then z € Eu(p') for u(’) = (y*,9(")) andall
p'>p
(ii) Conversely, if z € E,(p), then z € Ex(p).
<
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Proof. (i) We have, for some a > 0, |g(z}| + pd(z,2) > |g(z)IVz € 2+ aB .
Taking the square of both sides, we obtain

(9(2), 9(2)) + 2pd(z, 2)|g(z)] + P’d(z,2)* 2 (9(2), 9(2)).
With the notation
w=g(z) — g(z) and 4 = (w,w) + 2pd(z, 2)lg(z)| + P’ d(z, 2)*
this yields
0 < ({9(2) +w,9(2) + w) — (9(2), 9(2)) + 2pd(z, 2)l9(z)| + p*d(z, 2)?
2(g(2), w) + (w,w) + 2pd(z, 2)|g(z)| + p*d(z, z)°
2lg(2)l{y" w) + A.

Let L, be a Lipschitz constant for g near z°. For 2 near 2% and small & then w
fulfills a Lipschitz estimate || € Lgd(2, 2). So, Jw|? = o(d(z, 2)), and the term
A becomes

A = 2pd(z, z)|g(z)] + o(d(z, 2)).
Hence,
0 < 2|g(2)|(y*, w) + 2pd(z, 2)|g(z)| + o(d(z, 2)). (2.35)

Given any 8 > 0, we may further restrict  to a smaller neighborhood of z (if
necessary), such that

2|g(z)| < (2 + B)lg(2)| and o(d(z, 2)) < Bplg(2)ld(z, 2).
Now (2.35) ensures
0 < 2g(2)|{y", w) + (2 + B)pd(z, )lg(2)| + Bplg(2)ld(z, 2)
which is
—(2 +2B)pd(z, 2) < 2(y",w) = 2(y", 9(2) — 9(2)).
So we see that z is a local Ekeland-point of
u(-) = (y*, g(-)) with factor (1 + B)p.
(ii) By the suppositions, it holds with some e > 0 forallz € z + aB ,
lg(2)| = (¥*,9(2)) < (¥*, 9(2)) + pd(, 2) < |g(2)} + pd(z, 2).
a

Returning to the particular (cone-) mapping F under consideration, we have
to put g(z) = f(z) - n(z,y) in order to obtain a characterization of pseudo-
regularity by normalized functionals *. In view of Lemma 2.19, we define

v(',?/.’ y) = (y.af(') - 7’('11/))'

To abbreviate we write B* = By+ and u = v(-,3*,¥), being aware that y and
y* are fixed. Recall that F(z) = f(z) — K, and that 7(z,¥) is the projection
of f(x) onto y + K. For basic techniques of dealing with projections in Hubert
spaces we refer to [Har77] and [Sha88b].
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Lemma 2.20 (pseudo-singular cone constraints). Under the hypotheses (2.84),
one has:
(i) F is not pseudo-regular at (z°,y°)
if and only if there are points z, y depending on p 1 0 such that (2,y) =
(2%,9°), f(2) # n(2,y) andz € Ey(p), where u is defined asu = v(-,y*,y)
with y* = (f(2) = 7(2,¥))|f(2) = 7(z,9)|"*.
(i) If dimY < oo and F is not pseudo-regular at (z°,y°),
then the functional y* (asp } 0} have an accumulation pointn®, and
2° € limsup, g Ey(. pe,y) (P).
<

Note: The inclusion z € E,(p) means explicitly that
y*, f(z) = m(z,y) = (f(2) — 7(2,9))) 2 —pd(z, 2) for = near z = z(p).

Proof of Lemma 2.20.

(i), («) By Lemma 2.19 (ii), the given points z are Ekeland-points with
factor p for h(z) = |f(z) — n(z,y)| = dist (y, F(z)). Thus, F is not pseudo-
regular at (z°,4°) by Theorem 2.16.

(i), (=) Apply first Theorem 2.16, next Lemma 2.19 (i) .

(i1) The existence of i7* is evident. We consider z and y from condition in
(i) and assume that y* = y*(p) — n* for a certain sequence p $ 0. By (2.34), f
is locally Lipschitz. So there is a uniform Lipschitz constant L for the functions
g() = f(-)~n(-,y) near (z° 4°). Then, we obtain for small p and small distance
d(z,z2):

(n",9(z) - 9(2)) v" 9(z) —g(2) +( 7" -y* 9(z) ~ 9(2))
—pd(z,z) - |n* ~ y*|Ld(z, 2)

—(p+In" - y"Ly)d(z, 2).

This ensures z € Ey(. 4 ) (@) With p’ =p + |7* — y*|L.
Since p' } 0and (z,y) = (x°,°), we thus obtain

v 1

z° € limsup E,( (@)
p'40, y—y°

with the fixed element n* € bd B*. ]

Lipschitz Operators with Images in Hilbert Spaces

Having Lipschitzian operators with images in a Hilbert space, we are now in
the situation of cone constraints with K = {0} and #(z,y) = y. Given y* €
B* := By« we put ¢(z) = (y*, f(z)).

Lemma 221 (pseudo-singular equations). Let f € C%Y(X,Y), let X be a
complete metric space and Y be a real Hilbert space, put F = f, and consider
some point 2° = (2%, f(x°)). Then,
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(i} F is not pseudo-regular at 2°
if and only if 2% € limsupy, o (Uy-eba B+ E¢ (D).
(it} If dmY < oo, then F is not pseudo-regular at z°
if and only if ® € Uy»ena B+ limsup,, o Es(p).
<

Exercise 1. The proof of Lemma 2.21 is left as exercise. <

By the Lemma, components of vector-valued functions may be aggregated by
nontrivial linear functionals y*. Let f : X = R™ bealocally Lipschitz function,
X be a complete metric space, f(z®) = y°. Then we obtain, due to norm-
equivalence in R™:

f is pseudo-regular at (z°,3°)
& Vpe R™\{0}: ¢(-) = (u, f(-)} is pseudo-regular at (z°, #(z°).

Necessary Optimality Conditions

To demonstrate how standard optimality conditions may be directly derived
from the equivalences in the last lemmas, we consider only the case ofdimY <
oo where X is a B-space and all functions belong to C*. Recall that, for more
abstract problems with pseudo-Lipschitz contraint maps, the reduction to up-
per Lipschitz constraints is possible via Theorem 2.10, whereafter necessary
optimality conditions can be derived as for free minimizers of C?! functions,
provided the objective is locally Lipschitz, too; see the part "Optimality Con-
ditions” of Section 2.1.

Equality Constraints
Let z° be a (local) solution of the problem
min fo(z) st. fi(z)=0, k=1,...,m.

Then, F(z) = {y|yx = fe(z), k=0,1,...,m} is not pseudo-regular at (z°,y°),
y° := (fo(2°),0,...,0). So, by Lemma 2.21 (ii), there is some nontrivial * and
a sequence z(p) = z° such that z(p) is a local Ekeland point with factor p | 0
to the functional ¢(z) := y§ fo(z) + ... + Ylufm(2).

Clearly, then ||Dz¢(z(p))|| € p must be satisfied. Thus, via p | 0, itfollows
the (Fritz-John condition)

y(‘,'Dfo(mO) + ot y,",,Dfm(:co) =0.

If the constraint map is pseudo-Lipschitz at (0,2°), ie. if G(z) = {ylyx =
fx(z), k = 1,...,m} is pseudo- regular at (z°,0, ...,0), then y§ = 0 is impossible.
Indeed, otherwise the singularity condition (ii) for G is fulfilled. So, division by
yg leads us (with new multipliers) to the Lagrange condition

Dfo(z°) +y1Dfo(z°) + ... + YD fm(2®) = 0.
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Inequality Constraints

Let 2% be a (local) solution of the problem
min fo(z) st. fe(z) <0,k=1,..,m.

Now F(z) = {ylyx 2 fe(x), k =0,1,...,m} = f(z) — RM*™ is not pseudo-
regular at (mO’yO)’ yO = (fO(zo)’oy !0)

By Lemma 2.20 (ii), there is a nontrivial vector n* = (15, ..., 1},) along with
related sequences z(p) = z°, y(p) — ¥° such that z(p) is a local Ekeland point
with factor p to the functional ¢(z) := {n*, f(z) — m(z,y(p))). Here, n(z,y)
denotes the Euclidean projection of f(z) onto the cone y + R:*™, ie.,

f(@) = n(z,9) = (fo(2) ~ %0)¥, s (fm(2) — ym)¥).

Let us write y = y(p) and z = z(p). Since f(z) # n(z,y), the set I*(p) =
{k|f(2) > yx} is not empty. For some subsequence of p { 0, the finite set
I*(p) =: J is constant. By the construction of ¢, and because of

n* = limy*(p), where y* = (f(2) — n(2,))|f(z) — x(z,y)| ",

we have:
n*20,n*#0, nf >0o0nlyfor ke J
and ¢(z) = Tpean *x (fe() — ye)*.

For k € J, we further obtain (fi(2) — y&)* = fe(z) — yx. Since zis a local
Ekeland point of ¢ with factor p, it holds ||Dé(z)|| € p. This yields, as p { 0,
Zresni D fr(2®) = 0. By definition of J, it holds f(z®) > ¥ Vk € J.

Further, f(z°) < ¢° is valid since ° € F(z%). Therefore, the Fritz-John
optimality conditions are satisfied. If 5§ = 0 then, due to Zgesni D fe(z%) =0,
now z(p) = z° is a local Ekeland point with factor p > 0 for

$(x) = Spen\ (o) (fe(z) — ye(p))* where y(p) = 3§ —p.

Thus, again by Lemma 2.20 (i), direction (<), the map G;(y) := {z| fe(z) <
yx Vk € J\{0}} is not pseudo-Lipschitz at (0,z%). So, even more, the original
constrained map G(y) := {z] fe(z) < ¥, k = 1,...,m} has the same property.
In other words, if G is pseudo-Lipschitz at (0, %), now 5§ > 0 yields the Karush-
Kuhn-Tucker conditions.

Exercise 2. How can the situation of mixed constraints (equations and in-
equalities) be handled in a similar manner? ¢

Exercise 3. Verify that, for m > n, every function f € C®(R",R™) is
nowhere pseudo-regular. Hint: Apply Rademacher’s theorem. o
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2.2.4 Intersection Maps and Extension of MFCQ

It was already noticed in Section 1.4 that Robinson [Rob76c] proved the follow-
ing: afinite-dimensional system

flz) =y, g(z) <z with (f,g) € C*(R",R*+™),

has, at 89 = (2% 4°,2°), a pseudo-Lipschitzian solution map S(y,z) iff the
Mangasarian-Fromovitz constraint qualification [MF67](MFCQ),

D f(z%) has full rank, and there is some u
such that Df(z%u = 0 and g(z%) + Dg(z%u < 2°,

is satisfied. The rank condition means that f is pseudo-regular at (z°,°)
whereas the MFCQ direction u is both a tangent direction of the (regular)
manifold f = y°® at 2% and a “descent direction” for the cone-mapping G(z) =
g(z) + RY at (z°,29).

Let us recall the idea of the sufficiency proofin a non-technical way because
we intend to use it under more general settings. To show that S(y', z) contains
a point ' close enough to some given « € S(y, z),move z (relatively)sufficiently
far in direction u. Then, the obtained point p fulfills the constraint g(-) < z
with a big slack and violates the equation f = y only by a little one. Next, using
pseudo- regularity of f near (p, f(p)), one can replace p by a (close) solution
z' of the equation f = ¥'. Due to the big slack z — g(p), the point z' will also
satisfy the inequalities g(z’) < 2’

In the Cl-situation, the existence and suitable estimates for ' are ensured
by the usual implicit function theorem. Now, this tool can be replaced by direct
estimates as already done in [KumOOb]. However, the fixed direction 4 must be
exchanged by (discontinuously) moving directions,

Intersection with a Quasi-Lipschitz Multifunction

Tlet X, Y, Z be normed spaces, and let F : X 3 Y, G : X =3 Z be any
multifunctions. The mapping

H(@) = {@%) |y € Fa),z € 6@))
with
Sy, 2) = H N (y,2) = {z|y € F(2),2 € G(2)}
represents as above the intersection of independent (with respect to y and z)
constraints, We ask for the objects playing the role of the MFCQ direction u
now. Note that we cannot use fixed u due to our Example BE.2.

The following definitions enable us to deal with the quite general constraint
z € G(z), as in the case of inequalities.

A multifunction G : X =3 Z is said to be quasi-Lipschitz near (z°,2%), if
there is some (small) constant ¢ > 0 such that, for (z,z) near (z%,2°%) and
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all sufficiently small § > 0, the inclusion z € G{z') holds true, provided that
2+ 6B C G(z) and ||z’ -z < ¢8.
Needless to say that we are not interested in the trivial case of int G(z) = 0.

Examples

If g € C%(X,R™) and G(z) = g(z) + R then G is everywhere quasi-
Lipschitz. Indeed, it holds z + B C G(z) ¢ gi(z) < z; — § (with maximum
norm in R™). Using some Lipschitz constant Ly, of g near z%, this implies
gi(2') < z; whenever ||z’ - a|| < L, 6. Here, ¢ = Lt

Similarly, G may describe standard cone constraints, ie., z € G(z) if and
only if g(z) € z + C, where g € C¥(X,Z), C C Z is a convex cone, and
intC # 0. Now,z+ 0B CG(z) ® gz)+dBC2+C.

Pseudo-Regular Intersections

To quantify the distance of inner points to the boundary (our ’slack’), we adopt
an idea due to H. Gfrerer, by defining a function DIST with possibly negative
values:

dist (z, A) if z € X\int A

DIST (z, 4) = { —r,where r = sup{s|jc+ 8B C A} ifz€intA4

Of course, DIST may take the values —oo and oo and is therefore not a distance
function in the standard sense. Nevertheless, as noticed in [Gfr98], the function
DIST turns out to be useful when dealing with optimality conditions.

Convention. In the remainder of this subsection, the symbol | - | is used for
the norms in Y and Z while || - || is the norm in X. In product-spaces, we take
the max-norm.

Theorem 2.22 (intersection theorem). Suppose that X, Y, Z are normed
(real) spaces, F: X =3Y andG: X =33 Z , 8% = (2°,4°, 2%) € gph H. Further,
let G be quasi-Lipschitz near (x°,2°%). Then, the intersection map H is pseudo-
regular at 8% if the following conditions hold:

(i) F is pseudo-regular at (z°,y°),

and there are elements u = u(8,t) € B C X, defined for 8 = (z,y,2) € gph H
near s° and for t in some interval (0,T), such that, uniformly with respect to
all sequences t 4 0 and s — &° in gph H,

(i) limsup ¢! DIST (2,G(z + tu)) =-y<0

(i) limsup ¢! dist (y, F(z + tu)) 0.
If G describes standard cone constraints, these conditions are necessary for
pseudo-regularity of H ats®, and (i) may be replaced byy € F(z + tu).
If G describes level sets of a locally Lipschitz functional g, i.e., G(z) = g(z) +
R, then one may restrict all 8 = (z,y,2) to 8 = (z,y,9(z)) everywhere,
without violating any of the above statements. <
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Before proving Theorem 2.22 we quantify the estimates.

Remark 2.23 (estimates). let G be quasi-Lipschitz near (z°,2%) with con-
stant g, let F be pseudo-regular at (z®,y%) with rank L > 0. Then, in a weaker
form, the conditions (ii) and (iii)} in Theorem 2.22 may be written as follows;
For some & € (0, min{~y, %qL‘l}), there are elements u = u(s,t) € B C X,
denned for s = (z,y, 2) € gph H near s® and for 0 < t < 7, such that

(iiy  DIST (z,G(z + tu)) < —e ¢t and
(ii1y dist (y, F(z +1tu)) < &2 t.

These are just the properties we shall need in the proof of the sufficiency part,
and it will turn out that H satisfies the pseudo-regularity condition with the
estimate

llo’ — 2|l < 2L(1+e7 g7y —yl + (g +271))2' — 2.

Proof of Theorem 2.22.

Sufficiency: We consider small t > 0 and points s := (z,y,2) € gph H close
to s%. We further agree that  denotes u(s, t). In product-spaces, as mentioned
above, we take the max-norm. Because of (ii) and (iii) we find, for any € € (0, %),
some & > 0 such that, whenever t + d(s, 8°) < d, we have

2z +¢etB C G(z + tu) (2.36)

and
d(y, f) < te? forcertain f € F(z + tu). (2.37)

Let € € (0, min{v, %qL"}) be fixed. Setting
c=L/q
we note that 2eL < ¢ and
L(1+2ec) < L + gqc =2qc = 2L. (2.38)
From now on, we consider any points (z,,2) and (y', 2') satisfying
(z,9,2) € gph HN[* + aB] and (3',7) € (y,2) + 2aB, (2.39)

with some a € (0,d). Here, B is the unit ball in the related (product-) space.
We have to show that, for small & and some constant K, (2.39) ensures the
existence of some &' such that

(¥, #') € H(z') and [z’ - 2|l < K(ly' -yl + |2’ - 2)). (2.40)
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The appropriate & will be specified during the proof by taking such a which
satisfy the subsequent conditions. To find &', we move z first sufficiently far in
(the moving) direction u: We put

p=gc+tu with t=2e"(cly’ - y| + |2’ - 2]).
If & is small enough, we may apply (2.36) to see that
24+ (|2 — 2|+ 2y ~y|)B Cz+ (22 — 2| + 2|y’ —y|)B = z +&tB C G(p).
Hence, with
B =2 -zl + 2y’ - l,

we obtain
2’ + 8B C G(p). (2.41)

Applying (2.37), the existence of some f € F(p) with |y — f| < te? is ensured.
Next we “solve” y' € F(-). Since y' is still close to f (after decreasing o
once again if necessary) we obtain, due to f € F(p) and by applying pseudo-
regularity of F at (2°,3°), the existence ofsome z' such that

y' € F(z') and ||z’ - pl| < LIy’ - f|.
So we may estimate

Ly -yl +ly - f)

L(ly' — y| + t?)

L(ly' — y| +2¢(cly’ — yl +|2' ~ 2[))
L((1 + 2ec)ly’ -yl + 2¢|2' - 2|).

ll=' - ll

I IA A

Recalling (2.38) this yields
ll=' = ol < 2Lly' — y| + 2eLjz' — 2| < q(2e)’ —y + 2’ — 2) = ¢B.

Since G is quasi-Lipschitz we conclude that 2’ € G(z'). Indeed, this follows
now directly from ||z’ — p|| < ¢B and (2.41). Therefore, the obtained point &'
satisfies

z' € z+tu+¢BB and (¢v,2') € H(z'). (2.42)

Finally, taking ||p — z|| = ||tu|| < ¢ into account, we estimate
= - 2|l < liz' = pll + Ilp - z|| < 2gcly’ — y] + ql2' — 2| +¢.

By our definition of ¢t = 2e™(ely’ — y| + |2’ — 2|), the sum on the right-hand
side has the form
Kily -yl + Ka|2' - 2|,

where K1 and K2 are constants depending on L, g and on the fixed ¢ only. This
gives us the Lipschitz estimate in (2.40) with K = max{K, K,} and verifies
the sufficiency of the given conditions.
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For an explicit estimate, let us summarize that, if 0 < € < min{, %qL‘l},
we have

lp—-=lf = t =2 LMy —y| +12' - 2I),
lz' —pll < 2Ly -yl +4ql2’ — 2],

K, = Lq—l(2L+2€-1)s

Kz = q+2€'1.

Our construction thus presented some z' satisfying (2.40) and belonging to the
set
z+ 267 (L Y ~ gl + 2" = zl)u+ (2LlY' -yl + ¢|2’ - 2|)B.

This yields
o' —zll S2Lly ~yl (1 +e72q7") +]o' — 2| (9 +2671)
which is the claimed estimate.
Necessity for standard cone constraints:I et z € G(z) ¢ g(z) € 2+ C.

Obviously, condition (i) is necessary without any assumption. Let ¢ € int C,
|le)l = 1, and fix any A > 0 with ¢+ AB C C.We consider

8= (x,y,7) € gph H near s® (later we specialize s).

Pseudo-regularity of H at s® with rank Ly provides us, for small 7 and ¢ €
(0,7), with 2’ such that

y € F(z'), g(z') —z—tc€ C and ||z’ — z|| < Lyt.
Since tc+ AtB C C,we obtain, by adding points of a convex cone,
g()-z+MBCC,

hence
DIST (2,G(z')) < =At.
Moreover, due to y € F(z'), we have dist (y, F(z')) = 0.
Writing 2’ = z + tu(s, t), we thus obtain (ii) and (iii). Indeed, the norm
of u is uniformly bounded by Lg, and so we may now replace » and ¢ by
u' =u/Ly € B and t' = Lyt, respectively. Then

DIST (z,G(z + t'u)) < —Lz'A.
Notice that (iii) is evident becauseof y € F(z + tu).

Level sets: Let z € G(z) © g(z) <2 € R.

Now we are in the situation of standard cone constraints with C = R_.
The theorem becomes trivial if g(z®) < z°, because one may put u = 0. Let
9(a®) = 2°



54 2. Regularity and Consequences

Necessity. We have
§' = (z,y,9(z)) is near s° with s’ € gph H

if and only if
(z,y) is near (2°,4°) with (z,y) € gph F.

Therefore, the conclusions of the necessity part for standard cone constraints
are particularly true for the points &'. Due to z = g(z), the above constructed
point =’ does not depend on z and neither doesu(s’,t) = (z' — z)/t.

Sufficiency. Using (ii) and (iii) for the special points s', the general suffi-
ciency proof provides the estimate (2.40) under the additional hypothesis that
z = 2y := g(x). Having other points satisfying (2.39), i.e.

(z,9,2) € gph HN[s° + aB] and (¥,#') € (y,2) + 2B,

it holds z > z, = g(z). Using (2.40)for 2, there is some z" related to y' and
to 2" := z, — |2’ — z| such that

(¥',2") € H(z") and |lz" —z|| < K(|y' —y|+|2" — z|) = K(|y' — y| + 2" - 2[).
Since z* fulfills ¥’ € F(z'") and
9(@") Sz~ |2 -2l Sz -2 < &,

we may put z’' = z”, in order to satisfy (2.40) with the given 2, again. So the
remark and all the statements of the theorem have been shown. a

Special Cases

To interpret the conditions of Theorem 2.22, we consider particular cases and
suppose that

G describes level sets of a locally Lipschitz function g : X = R,
i.e., now the intersection is H(z) = {(y,2) |y € F(z), g(z) < z}.

Corollary 2.24 (intersection with level set). Let X and Y be normed spaces,
§® = (2°,¢°,2°) € gph H. Further, let g be locally Lipschitz and g(z°) = 2°.
Then, H is pseudo-regular at 8° if and only if

(i) F is pseudo-regular at (z°,y°)
and there are elements u = u(z,y,t) € bd B C X which satisfy, uniformly with
respect to all t 4 0 and (z,y) = (z°,%°) ingph F,

(1) limsupt~!(g(z + tu) - g(z)) < 0 and

(ii3) Yimsup t~1dist (y, F(z + tu)) = 0. o

Proof. In comparison with Theorem 2.22, only « € bd B appears as a new
topic. To obtain the necessity of this condition, note first that (ii) must be
true since g(z°) = 2° (see the necessity part of the above proof). Then, v > p
holds with some g > @ since g is locally Lipschitz. So we may replace « by
u' = u/|jy]l.
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By (ii) in the foregoing corollary we know that G is pseudo- regular at (z%, z°)
because there is an inverse family ¥ of selections ¢, . of the form

z' = ¢z,z(z') =z+ tu(zaya t); t= |z' - z|1

whenever the appearing additional parameter y € F(z) is sufficiently close to
4°. Condition (iii) says - but only with dependence on ¢ - that u(z,y,t) is
an object like a “horizontal-tangent direction” to gph F at (z,y). The inverse
families of F are implicitly included in the hypothesis (i). Therefore, we are
requiring that F is pseudo- regular and that, in addition, a horizontal tangent
direction of gph F is a strict descent direction of g, provided that we interpret
directions as bounded functions.

Explicitly, the conditions (ii) and (iii) of the corollary may be written as;

35>0Ve>0 3r>0Vvte (0,7] ¥(z,y) € [(=z°¢°) + rB)Ngph F
Ju € bd B : g(z + tu) — g(z)) < —6t and dist (y, F(z + tu)) < £2t.

Remark 2.23 tells us that we may even require the following (formally weaker)
condition;
(iv) Jeo Ve € (0,0) 3r >0 Vt € (0,7] ¥(z,y) € [(z°9°) + rB] Ngph F
3u € bd B : g(z + tu) - g(z)) < —et and dist (y, F(z + tu)) < &2t.

Let us continue specializing the assumptions of Corollary 2.24.
Case 1:

F = f: X =Y is afunction, continuous at z°.
Then y = f(z), so u = u(z,t) does not depend on y, and (ii) and (iii) in
Corollary 2.24 attain the simpler form

(v)  limsupyg . _z0t™}g(z + tu) ~ g(z)) < O
(vi) Hmsup,yg ,e0 t™ f(z + tu) — f(z) = 0.

Case 2:

F=f: X Y is locally Lipschitz, dim X < oo.
Now it suffices to consider directions « = u(z,t) in a finite subset of bd Bx
only.

Corollary 2.25 (finite sets of directions). Let X = R", H(z) = {(y,2) |y =
f(z), g(z) < z}, 8% = (2°,9°,2%) € gph H. Let f and g be a locally Lipschitz
and g{z%) = 2° € R.

Then, H is pseudo-regular at s° if and only if f is pseudo-regular at (z°,y°)
and, for each sufficiently small € > 0, there exists a finite subset U C bd Bx
such that, for all z near z° and all sufficiently small t > 0, the inequalities

glz +tu) — glz) < —et and |f(z+tu) — f(z)] < €%

can be satisfied with some u = u(z,t) € U. <
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Proof. By Theorem 2.22 and its estimates, the conditions (i) and (iii) of
Corollary 2.24 are equivalent with condition (iv). Therefore, the direction <= is
evident, we show the other one. Let the requirements (iv) be satisfied for some
small € > 0, and let K be a common Lipschitz rank of f and g near z°. Then,
after replacing u = u(z, t) by some u’ € u + aBx where a = ¢2/K, we have

[t (g(z + tu) — g(z)) — t™ (g(z + tu') — g(z))| < Ko

The same inequality holds for the norm of f. Therefore, because of Ko < €2 <
g, the elements «’ will again satisfy the related conditions of (iv); we only have
to take larger €’ = 2e. Since dim X < oo, one may select a finite a-net U of
bd By, i.e. a finite set U C bd Bx such that U + aBx O bd Bx. Sowefind
new elements u' = u'(z,t) € U satisfying (iv) for &' = 2¢, too. o

Note. Already g(z) = —|z| shows that card U = 1 cannot be expected. The
cardinality of U may increase while ¢ is vanishing. But, by the estimates of
Theorem 2.22, the conditions of Corollary 2.25 must be satisfied only for some
sufficientlysmall ¢ which has been already estimated in terms of I, K, v and

q=L(g)~'.
Case 3:

F = f is locally Lipschitz and » = u(z,t) is fixed.
By definition, condition (v) just says that Clarke’s directional derivative

¢°(z%u) = limsup ¢t~(g(z + tu) — g(z))

£10, 220

is negative.
Case 4:
Let X = R"®, F = f € C*(R™,R™). Moreover, suppose that

g has directional derivatives such that g'(-;u) is u.s.c. near z°. (2.43)
We show that these properties are sufficient to put

U = {u%}

in Corollary 2.25, ie., while there (in a more general situation) for each e,
u(z,t) could attain finitely many values, now only one direction in bd B has to
be considered.

To prove this, let 4° be an accumulation point of u(z?,t) as ¢ { 0. Now (v)
and (vi) yield, with some ¢ > 0,

g'(z%u®) < —e <0 and Df(z%)u® = 0. (2.44)
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The first inequality follows from the existence of the directional derivatives g’
and from the Lipschitz property of g'(z%;-). Due to Df(2%)u® = 0 and f € C*,
condition (vi) is satisfied for u = u%:

limsup t7}|f(z + tu) — f(z)| = 0.

t10,2- 20

Since g'(-;u%) is u.s.c., (2.44) yields that g'(z + su®u%) < ~¢ is true for z near
20 and 8 > 0 small enough. Using the estimate

g(z +tu®) — g(z) < t sup ¢'(z + su®5ul)
0<a<t
which can be easily shown for all directionally differentiable functions g € C%1,
cf. Lemma 6.24, we obtain, forany ¢ { 0 and = = z% that
limsup ¢t~ (g(z + tu®) ~ g(z)) € ~e.

Consequently, we have derived (v) and (vi) for fixed = u°,indeed.
Moreover, we have verified that (v) and (vi) together are equivalent with
(2.44). Along with the equivalences

(i) ¢ Df(z%issurective < rank Df(z%) =m,
this leads to the equivalent pseudo-regularity condition
rank Df(z°) =m and 3u®: Df(a®)u’ =0, ¢'(z°%u’) <O. (2.45)
Case 5:

Let X =R", F = f € C*(R",R™) and g be a max—function of a semi-infinite
optimization problem.
For a semi-infinite optimization problem with parametric constraints

f(z) =y and h(z,s) <zVa€S,

put g(z) = max,es h(x,s). If Sis a compact topological space and h : R®* =+ R
is continuous and has continuous derivatives Dzh(:,+), then (2.43) follows from
the well-known formula for the directional derivatives

¢'(z;u) = max{D:h(z, 8)u[ h(z, ) = g(z)}
which also implies that
8.9(z) = conv {D;h(z,s) | h(z,s) = g(z)}.

In this case, the necessary and sufficient condition (2.45) is said to be the
extended Mangasarian-Fromovitz constraint qualification (extended MFCQ), see
[HZ82, ITW92, HK94, Kla94b, Sha94, JRS98].
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If S is finite, then our circle is closed: Condition (2.45) coincides with
MFCQ, see §14.

Exercise. Let M(a,b) = {z|f(z) = a, g(z) < b} with vector-valued g and f in
C!. Show that z° € M(0,0) satisfies MFCQ already under the formally weaker
(but equivalent, because of the C'-assumption) hypothesis that M is Lipschitz
Ls.c. at ((0,0), z%).

Intersections with Hyperfaces

Again, let ¥ be a normed space, but X has to be a Banach space, now. We
further suppose that

F=f:X - Y is continuous at z° and has closed pre-images f~!(y),
g € CO¥Y(X,R), H(z) := {(y, 2) |y = f(2), z = g(x)},
8% = (2%,1°,2°) € gph H.

So, gph H is the intersection of gph f with a (Lipschitz) hyperface.

Theorem 2.26 (intersection with hyperfaces). Under the above assumptions,
H is pseudo-regular at 8° if the following conditions are satisfied:

(i) f is pseudo-regular at (z°,y°),
and there are uniformly bounded elements u(z,t)* andu(z,t)~ in X such that
(i4) Himsupyy0.o 00 =1 9z + tu(a, ¥ - g(a)] < 0,
lim sups 0,220t [—g(z + tu(z,t)™) + g(z)} < O,
(iii) for u = u(z,t)* and v = u(z,t)™, there holds
lim sup; g 5y g0 £ f(z + tu) — f(z)| = 0.
Lo

Note: For f € C*(R",R™), g € C}*(R",R) , the conditions (i), (i), (iii)
together are nothing else but the full rank condition for the (n,m + 1)-matrix
(Df(z°), Dg(z®)). Setting g(z1,z2) = |23 —z2|, one needs directions u* # ~u~,
indeed. <

Proof of Theorem 2.26. By Corollary 2.24, the mappings
H*(z) = (f(z), 9(z) + RY)

and

H™ (z) = (f(2),9(z) + R7)
are both pseudo-regular at s% say with rank K > 0. Let L, be a Lipschitz
constant for g near z° such that ¢ = L,K > 1. Next consider any points

8= (z,y,2) €gphHN[s" +aB), (v',7) € (y,2) + 2B, (2.46)
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where a > 0is small (again fitted during the proof). We have to find some
z* € H-l(y', 2") satisfying a (uniform) Lipschitz estimate

llz* - =ll < LH)(y' -yl +|2' - 2)). (2.47)

Without loss of generality, let 2’ < z. Due to regularity of H* (provided that
« is sufficiently small) there exists z’ such that

(¥,2) e H*(z") and |2’ ~=ll < K(ly' ~yl +|2' ~ 2)).

Put z' = z/. By definition of H* wehave g(z') < 2. Clearly, g(z') < 2/
is the essential case, otherwise we already found z* = z!. In what follows
we construct a converging sequence z* such that g(z*) tends to 2'. By the
Lipschitz property of g, we have

lg(z") — 2| S Lylie’ — =l < LK (ly' -yl + |2' = 21) = e(ly’ — y| + |2’ - 2)).
With ©; = (2’ ~ g(x!))/c, this yields
01 < (z—g@)/c<ly —yl+1e' ~ 2], (2.48)

For small a, we know (since f is continuous at z°) that ©; = ©,(a) and ||z’ —z||
are small enough such that all points in ' + rB with

r=KO,/(1-7y)and y:=1-1/c (2.49)

are sufficiently close to z%, in order to apply pseudo- regularity of H~. We keep
now such a and r fixed.
Then, there is some z? such that

f@*) =y'(= £(z')), 9(z*) 2 g(c') + ©1 and |iz* - 2'|| < K@
The Lipschitz property of g yields
g(2?) < g(z') + L,KO; = g(z*) +¢0; = 2.
Beginning with m = 2 we may now put
Om = (¢ — g(z™))/c
in order to find, again by pseudo-regularity of H~ , some z™*+? such that
Fe™) =y, g(z™!) 2 g(z™) + Om

and
flz™t! — 2™ < KOy,. (2.50)

This yields
g(z™*!) < g(z™) + LK Om = 2'.
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Moreover, as long as ©m—1 # 0 (the nontrivial case) we have

Om/Om-1 (2' - g(z™)/(z' — g(=™ 1))

(2' = 9(&™!) = Om-1)/(2' — (=™ "))
1=Opm-1/(7' — g(z™))

l1-1l/e=v < 1.

LR VAN |}

Y

So, we have defined a fundamental sequence ™ in z’ + rB with r as in (2.49).
Since X iS complete, z* = limz™ exists in z' + rB.

By the closeness of f~1(y') and because of (z' ~ g(z™))/c = Om-,0, it holds
f(z*) =y and g(z*) = 2'. Finally, (2.48), (2.49) and (2.50) yield the regularity

estimate with rank
LH)=KQ2-7)/(1-7)
due to

llz™*! - | Izt - 2|l + |l2® — 2l + ... + lz™ - 2™
K(lyl - yl + |z’ - z‘) + K}:nZI@n
K(ly' =yl +2' = 2]) + K61 /(L - )

K[1+1/(1 =) -yl + ' - z]).

INIA A A

ju]

Combining Corollary 2.25 and Theorem 2.26 one obtains by induction argu-
ments a characterization of pseudo-regular Lipschitz functions f : R* =+ R™
in terms of finite sets of normalized directions.

Corollary 2.27 (Lipschitz equations). Let f € C™'(R™ R™) and f(z°) = 0.
Then, f is pseudo-regular at (g°,0) if and only if for sufficiently small € >
0, there are a finite subset U C bd B and some § > 0 such that, whenever
lz—2°%| <8,0<t<d andk € {1,...,m}, the conditions

[fi(z + tut) = fi@)| + |filz +tu™) = filz) <’ i<k
as well as
fo(z +tut) = fo(z) < —&t and fo(z +tu™) = fo(z) > et ifs2k

can be satisfied by taking certain ¥ = ut(z,t) € U and u~ = v~ (z,t) € U.
<

If f has directional derivatives, then the directions u*(z,t) and u™ (z,t) (which

in general may jump in U as ¢ | 0) can be regarded as being fixed at least for
small t < t(z, k).

Exercise 4. How Theorem 2.26 may be extended to the case of a closed
multifunction F' : X =3 Y. What about necessity of the conditions in Theorem
2.26 (similar to Theorem 2.22) ? &



Chapter 3

Characterizations of
Regularity by Derivatives

This chapter is devoted to characterizations of regularity by the help of (general-
ized) derivatives and may be seen as justification of the derivatives investigated
in the current book.

Let F: X 3 Y be a multifunction, X, ¥ be normed spaces, 2z = (z%,4°) €
gph F.

3.1 Strong Regularity and Thibault’s Limit Sets

According to the definition, strong regularity is pseudo- regularity along with
a uniquely defined (local) inverse function. In what follows, we characterize
this property by means of the generalized derivative TF. As in the context of
pseudo- regularity, we start with the negation.

Assume that F is not strongly regular at z°. Then, equivalently,

there is some sequence y* — y° such that 3.1)
dist (z°, F~1(y*)) > kd(y*,4°) '

or
there are (z*,y*), (¢*,7%) — 2% in gph F (3.2)
such that d(¢%,z%) > kd(n*,v*). '

(3.1) says that F~?! is not Lipschitz 1s.c. at (y°,z°).

(3.2) holds, in particular, if certain pre-images F~!(y*) are multivalued
near z0. Let us put tg = £¥ —~ z* and u* = (€% — 2*)/ti. Now (3.2) just means
equivalently the existence of sequences satisfying

nk € F(zk + tkuk)v {0, (zkvyk) ~2%in gph F, (3 3)
”uk” =1land v:= lim(nk - yk)/tk =0, .

61
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For dim X < oo the sequence ©* has an accumulation point u, hence, in this
case, the origin belongs, for u # 0, to the set V of all limits

v = lim(n* — y*)/tx, where n* € F(z* + tyu*), tx | 0, (3.4)
gph F 3 (z*,4*) = 20 and u* — w. .
This set V is exactly TF(2%)(u), defined in Section 12. In terms of the upper
Hausdorff limit, we have

TF(2%(u) = limsupt; 1 (F(z* + tyuk) — y¥),
with respect to tx 4 0, (z*,y*) — 2% in gph F and u* — u.

By the construction of TF, we obtain

0 € TF(2°)(u) for some u # 0 = (3.2), and (3.5)
(3.2) = 0€ TF(2°(u) for some u # 0, provided that X = R", '
We summarize this first consequence of the definition in a Lemma. As intro-
duced in Section 1.2, we say that TF(z%) is injective if the origin does not
belong to TF(z%)(u) for u # 0.

Lemma 3.1 (strong regularity for multifunctions). LetF : X 3 Y (normed
spaces), 2° = (z°,4°) € gph F. Then, injectivity of TF(2°) is necessary for F
being strongly regular at 2°.

If X =R", then F is strongly regular at 2%if and only if TF(2°) is injective
and F~! is Lipschitz l.s.c. at (¥°,z°). <

Proof. Immediately by the above discussion. n]

For locally Lipschitz functions F, the limit sets TF(2°){u) have been studied
by Thibault [Thi80] (to construct certain subdifferentials) and were denoted
there by Dr(z%u). According to §1.2, we call TF(z°)(u) also the Thibault
derivative of F at 20 in direction u. If F is a function, we write TF(z%)(u)
because y° = F(z®) is unique.

For locally Lipschitz functionals f, these sets were already considered by
F.H. Clarke [Cla76, Cla83], since his directional derivative are

f°(2% ) = limsup t™}[f(z + tu) — f(z)] = sup TF(z°)(u).

t10,z-+20

Concerning strong regularity of Lipschitz functions, the value of the use of TF
and the relations to Clarke’s generalized Jacobians [Cla76, Cla83] have been
shown in [Kum91b] and becomes clear in Chapter 6 below.

For multifunctions, TF(2%)(u) was defined in [RW9S8]. There, the T-operation
was applied to F~1, and the necessary condition of strong regularity took the
equivalent form {0} = TF~}(3°,29)(0).
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3.2 Upper Regularity and Contingent Deriva-
tives
By definition (see Section 2.1), Fis upper regular at 2° = (z°,y°) if there exist
L > 0 and neighborhoods U and V of z° and ¥°, respectively, such that
B#Fy)nUcz®+Ldy,y")Bx VyeV.

This requires (like strong and pseudo-regularity) in particular that F~! is Lip-
schitz ls.c. at (¥°,2°). On the other hand, the local upper Lipschitz condition

Fl'y)nU cz® + Ld(y,3°)Bx WyeV, (3.6)
cannot be satisfied (for each choice of L, U, V) if and only if there are sequences
(z*,y*) = 2° in gph F such that t; := d(z*, z°) > kd(y*,°). 3.7

Now the quotients d{y*,y°)/t) are vanishing. Having an accumulation point
of the bounded sequence u* = (z¥ — z°) /¢y, the latter can be written by means
of the contingent derivative CF as

Oy € CF(2%)(u) for some u # 0. (3.8)
So we have obtained the following well-known result [KR92].

Lemma 3.2 (upper regularity). Let F : X =3 Y (normed spaces), and let
2% = (z°,9°) € gph F. Then, injectivity of CF(2°) is necessary for F~* to be
locally upper Lipschitz at (y°,z°).

If X =R", then it holds

CF(z%) is injective ¢ F~Y is locally upper Lipschitz at (y°,z°)

and
. CF(2°) is injective and
0
Fis upper regular at 2" ¢ F~Y is Lipschitz l.s.c. at (3°,2°).
<
Proof. Immediately by the above discussion. o

Exercise 5. Show that, in the Lemmas 3.1 and 3.2, one may replace Lip-
schitzian Ls.c. by ls.c. for F~1.

3.3 Pseudo-Regularity and Generalized Deriva-
tives

To characterize pseudo-regularity, different generalized derivatives have been
used in the literature, in particular contingent derivatives (Aubin & Ekeland)
and coderivatives (Mordukhovich). These concepts (see Chapter 1 for the defi-
nitions) lead us, for closed F and finite dimension, to (primal and dual) criteria
for pseudo-regularity. Having infinite dimension, additional assumptions must
be imposed for getting equivalent conditions.
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Contingent Derivatives

To keep the technical effort small, we will first use the suppositions of Theorem
2.17. So we assume
X is complete, Y is normed, 2° = (z%,%) € X x Y,
F:X 3Y is closed-valued, proper near 30 € F(z°), (3.9)
and dist (y, F(z)) = d(y, f) for some f € F(z) whenever F(z) # 0.

Concerning the classical hypotheses (F closed and X,Y Banach spaces), we
refer to Theorem 34.

Proper Mappings

To apply Theorem 2.17 in the framework of contingent derivatives, let X in
(3.9) be a Banach space.

The contingent derivative CF(z)(u) (see §1.2), has been successfully applied
to describe locally stable behavior of F in [AE84]. In a related concept of
tangent cones for sets in normed spaces, the set gph CF(z) coincides with the
contingent cone of gph F at z, cf. Section 6.1 below. If F is a locally Lipschitz
function having directional derivatives, then CF(z,F(z)) = F'(z;-). For
chain rules and further properties, see again Section 6 below.

We say that CF is linearly surjective near #° if, for some L and some
neighborhood £ of 29,

By C Uy <tCF(z)(u) Yz € QNgphF. (3.10)

Corollary 3.3 (pseudo-regularity if CF is linearly surjective 1). Let (3.9) be
true, X be a Banach space and z° € gph F. Then, F is pseudo-regular at 2° if
CF is linearly surjective near 2°. For X = R™, the "only if” direction is also
true. <

Proof. lTetz € QNgphF and v € bd B. Using (3.10) we find u € LBx such
that v € CF(2)(u). So we know, by definition of CF (see Section 1.2), that
y + tvy € F(z + tu,) for some sequence ¢ | 0, vy — u and vy — v. Therefore, F
is partially invertible near 2°, and Theorem 2.17 guarantees pseudo-regularity.

Conversely, let F be pseudo-regular. We consider the sequence z: , assigned
to z and v by the partial inverse. Now, the bounded sequence u; := (zy — z)/t
has an accumulation point u since X = R". Thus, v € CF(z)(u) and (3.10)
are true. o

Closed Mappings

The assumptions of Theorem 2.17 and Corollary 3.3 are not the “classical” ones:
In various papers, one imposes the hypotheses

X and Y are Banach spaces and F : X =3 Y is closed. (3.11)
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Theorem 3.4 (basic equivalences, closed maps). Under (3.11), the equiva-
lences of Theorem 2.17 remain true, i.e. the following statements are equiv-
alent:
(i ) F is pseudo-regular at 2° = (z%,30).
(it ) F is partially invertible near 2°.
(iii) For some neighborhood$t of (y°,2%), F~ is Lipschitz l.s.c. with uniform
rank L at each (y,z) € gph F~1 N Q.
<

For proving Theorem 3.4, it suffices to study the original proof of Corollary 3.3
under assumption (3.11) in [AE84] and to note that the hypothesis (3.10) may
be replaced by the assumption of F being partially invertible. We repeat first
the basic arguments given by Aubin and Ekeland, cf. [AE84, Thm. 4, §7.5].

Theorem 3.5 (pseudo-regularity if CF is linearly surjective 2). Let (3.11) be
satisfied and 2° = (2°,4°) € gph F. Then, F is pseudo-regular at 2° if there
exist L > 0 and aneighborhood  of 2° such that (3.10) holds true.

Proof. (by contradiction) Given L from condition (3.10), take r > 0 such that
4r(L + 1) < 1. Next, using points from (2.27), choose k such that k > r~?, set
€ = d(n*,y*) and introduce the functional ¢ as ¢(z, f) = rd(z, z*) + d(f,y*),
(z, f) € gph F. Then ¢(z*,7*) =¢, s0 (z*,7*) is a e-minimizer of ¢.

Put a = ¢r~! and apply Ekeland’s theorem to ¢ on the complete metric
space gph F. Now there is some z = (p,q) € gph F such that

d((p,Q), (Zk,flb)) <a, ¢(p1 q) = rd(p, zk) + d(quk) < ¢(zk’ﬂk) =€
and, by definition of ¢,

rd(z,z*) + d(f,y*) + rld(z, p) + d(£,9)] > rd(p,=*) + d(q,4*) V(z, f) € gph F.
(3.12)
Consider v = y* —q.
If v = 0 then y* = ¢ € F(p) and ¢(p,q) = rd(p,z*) < &. Hence, d(p,z*) <
er~l. By (2.27), we get

r~1e > d(z*,p) > dist (2%, F~ (v¥)) > ke.

Since k > r~1,the latter yields a contradiction.

Therefore, wehave v # 0. The point (p,q) depends on k. Increasing k if
necessary, we have (p,q) € Q. By (3.10), one finds now a direction » and a
sequence t 4 0 such that special points (z, fz) belong to gph F:

f: =q+tv+oy(t), T =p+tutox(t), dz,p) < 2l < 2Lelv]l. (3.13)

This is the crucial inequality for the proof.
With o(t) = oy(t) we obtain

d(fz,y*) llg + tv + o(t) — v*||
(1 = t)(g ~ ¥*) + o(3)|

< (1= livll + llo®)ll
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So (3.12) and (3.13) yield
rd(z,z*) — tllvl] + fo(®)|| + r2Ltllv]| + tllvlf + o)) 2 rd(p,z*).
Using here
rd(z,z*) < rd(z,p) + rd(p,z*) < 2rLt|jv|| + rd(p, =*),
we have
2rLt|jvl| - tllvll + llo(®)l] + r(2Lt||v]| + vl + llo(E)]]) > O.
Due to t||v}j > 0, this leads us to
4L+ -1+ 1+l T lo(®)/t] 2 0,

which cannot hold for small ¢, because 4r(L + 1} < 1. We arrived at a contra-
diction, which completes the proof, O

Proof of Theorem 3.4. In the above proof, the directionu in (3.13) only

had only to ensure

d(z,p) < 2Lt|jv||
to hold. The latter, however, is already guaranteed (by definition) if F is
partially invertible near z°, and L is the related constant. a

Hence, under (3.11), Corollary 3.3 remains valid, too.

Coderivatives
For normed spaces X and Y and F : X 3 Y, one may define a pair (z*,y*) €

(X*,Y™) to be an e- normal to gph F locally around z = (z,y) € gph F, if there
is a neighborhood € of z such that

(@*,2' - 2) + (", —y) <ed(a’, ) +elly’ ~yl] V(z',y') € ANgph F. (3.14)

This definition corresponds with the approximate e-Fréchet normals in [KM80].
For € = 0, condition (3.14) yields a usual definition of normals at z to the set
QNgphF.

The concept of coderivatives (see §1.2) requires to put

u* € D*F(2%)(v*) if (u*,v*) is a weak* —limit of
e~normals (z*,y*) for some pair of sequences (3.15)
€40, (z,y) = 2% in gph F.
Remark 3.6 The inequality in ( 3.14) implies
(', o' —a) + ("¢ —y) < (e+]lg® —u'{) Y2’ ~ 2lf + (e + fly" — v 1D Iy - wil.
Therefore, one may simplify the definition by setting * = «* and y* = v,
respectively, provided that the weak* convergence ensures norm-convergence in

the related dual space (due to finite dimension or because of particular proper-
ties of F). <
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The injectivity of D*F(2®) is an elegant type of a pseudo- regularity condition,
elaborated by Kruger and Mordukhovich.

Theorem 3.7 (injectivity of coderivatives and pseudo-regularity). If dim X +
dimY < oo, then injectivity of D*F(2°) is necessary and sufficient for pseudo-
regularity of F atz°. IfX is an Asplund space anddimY < oo, then injectivity
is still a sufficient condition. ©

Proof. The first statement has been shown in [Mor93] (in terms of openness
one finds this statement already in [KM80, Mor88]), the second one in [MS97b].
Q

We obtain Theorem 3.7, for dim X +dimY" < o0, as a consequence of Theorem
3.11, too. For our Example BE.2 which concemns pseudo-regularity, the suffi-
cient conditions of Corollary 3.3 and Theorem 3.7 are not satisfied due to the
properties (iii) and (iv) of this example. A Banach space X is an Asplund space
if every continuous convex function f : X = R is Fréchet-differentiable on a
dense subset of X, cf. [Asp6S].

Vertical Normals

To derive sharper conditions via e-normals, one has to avoid the requirement
of weak* convergence for defining D*F. To weaken the assumptions concerning
X, one may modify the definition of e-normals by considering the bilinear form
(y*,y) only. If z* = 0 in (3.14), we say that y* is a zero-e-normal. Obviously,
zero-g-normals may be defined for metric spaces X by requiring that

Wy —y) <ed(@',z) +elly’ —yll V(' y')€eQngphF. (3.16)

For brevity, let us further say;
Fhas no vertical normalsnear 2° if there is some & > 0 such that, for all
z € gph F with d(z, z%) < ¢, there is no e-normal to gph F locally around
z which satisfies ||lz*]| < € and |l¥*|| = 1 (with || - || denoting here the
norms in X* Y*)

In this context, X has to be a normed space. If X is a metric space, we say:
Fhas no vertical zero-normalsnear 2° if there is some & > 0 such that,
for all z € gph F with d(z,2°%) < ¢, there is no zero-e-normal to gph F
locally around z which satisfies |jy*}] = 1.

We intend to show that the simpler zero-¢-normals are just the right objects to

characterize pseudo-regularity in a dual manner.

Remark 3.8 (equivalence for normed spaces). For normed spaces X and Y,
the two conditions of having no vertical (zero-) normals are equivalent. <

Proof. Indeed, if F has vertical normals, then the inequalities under remark
3.6 show that F has vertical zero normals, too. Conversely, zero-g-normals are
e-normals with £* = 0; this already completes the equivalence. o
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In the case of finite dimension, weak* and strong convergence coincide. SO one
obtains:

Lemma 3.9 (vertical normals 1). Letz® € gph F.
(i) If dim X < oo then
F has no vertical normalsnear 2% = D*F(2%) is injective.
(it) If dimY < oo then
D*F(2°) is injective => F has no vertical normals near 2°.

Next observe that F has never vertical normals if it is pseudo- regular.

Lemma 3.10 (vertical normals 2). Lerz% € gph F.
(i) If X and Y are normed spaces then
F is pseudo-regular = F has no vertical normals.
(3) Similarly, if X is a metric space and Y is normed, then
F is pseudo-regular =» F has no vertical zero-normals.
<o

Proof. Let F be pseudo-regular with rank L, and let (z*,y*) be an e-normal
to gph F locally around z with ||y*}| = 1. We put 8 = % and choose v € bd By
satisfying {y*,v) > 6. Next consider points z = (z,y) € gph F with d(z, 2°) <e.

If € is small then, for ' = y + tv and small ¢ > 0, one finds (by pseudo-
regularity) some z' € F~(y') such that d(z',z) < Lt. Let 2 be the neighbor-
hood, related to (z,y) in (3.14). Decreasing ¢ if necessary we have (z',y') € Q
and

(z*,2' — z) + (y*, tv) < ed(z, ) + ¢l|tvl].

Dividing by t and using ¢"Yd(z',z) < L yields the key inequality

~Ljjiz*l| £ t7z*,2' ~z)
< et7ld(z',z) + € - (¥*,v)
< e(L+1)-6.

(ii) For proving the second statement, we have to regard a zero-e-normal,
whichisformally (0, y*) and yields the same formula without the terms includ-
ing z*. So we obtain

0<e(L+1)-4,

hence g£cannot tend to zero, and F has no vertical zero-normals.

(i) Concerning the first statement we obtain [lz*|| > L™1(8 — (L +1)). The
right-hand side tends 0 L= as € { 0. So ||z*|| cannot vanish, which yields
again the assertion. a

The condition in terms of zero-¢-normals is motivated by

Theorem 3.11 (vertical normals and regularity). Let2® € gph F.
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(i) If X and F satisfy (3.9) and Y is a real Hilbert space, then
F is pseudo-regular at 2° & F has no vertical zero-normals near 2°,
(it) If. in addition, X is a Banach space, then
F is pseudo-regular at 2° & F has no vertical normals near 2°.
<

Proof. (=) For both statements, see Lemma 3.10.

(«) (i) We suppose that F has no vertical zero-normals. The norm in Y is
denoted by |-{. Assuming that F is not pseudo-regular then, by Theorem 2.16,
there is a sequence of related Ekeland points to p } 0. Using the existence of
n € F(z) with

0<|n—y|l=dist(y,F(2)) <2p

and setting v =  ~ y, the Ekeland property becomes
|f =yl +pd(z,2) 2 |v] V(z,f)€gphF.
Taking the square of both sides, one has
(f = o, f =)+ IS ~ yld(z, 2) + PPd(2,2)* 2 (v, v).
Writing here h = f —n and f —y = h + v, one obtains
0 < 2(v, h) + (h, h) + 2p|v + hl|d(z, 2) + pPd(z, z)*.

Now restrict (z, f) € gph F to = (2 + €éBx) x (n + £¢By), where ¢ = p|v|.
Then

|hl = {f —nl < plvl, (h,B) < plBllv| and Jv+ k| < (1 +p)v].
Hence, we may proceed with
0 < 2(v, h) + plhllv] + 2p(1 + p)jvld(z, 2) + p*|vld(z, 2),
ie., . .
0 < (v/lvl, k) + 3plh| + [p(1 + p) + 5°|d(z, 2).
After re-substituting and setting y* = —v/|vl, (3.16) holds true with € = p(1+
p) + 37°, namely,
" f-n) Led(z,z) +e|lf —n| V(z,f)egph FNQ.
Thus F has vertical zero-normals near 2 which is impossible by the supposition.

(ii) If X is a Banach space, then the vertical zero-normals are vertical nor-
mals with z* = 0. a

The equivalence in Theorem 3.11 (ii) has been already shown for Asplund spaces
X, Y and closed F, c¢f. Theorem 3.4 in [MS98]. Due to this result and the
remark 3.8, Theorem 3.11 (i) holds for Asplund spaces and closed F, too.

The new topic of Theorem 3.11 consists in the fact that, by applying the
simpler zero-g- normals, the geometry of the unit ball in X is completely out of
discussion. Concerning assumption (3.9), we once again refer to LLemma 2.13.
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Concluding Remarks

The Lemmas 3.1 and 3.2 indicate that, at least in finite dimension, a deeper
study of the “derivatives” TF and CF could be valuable, even more since
CF is also important with respect to pseudo-regularity. We investigate these
derivatives in Chapter 6 below.

Until now, we have established characterizations of stability properties by
more or less simple other conditions. However, at this point, we neither know
any practicable criteria for checking some of these properties nor the main
analytical reason why we should do it. Therefore, we will deal in the next
chapter with nonlinear variations of (multi-)functions, with implicit functions
as well as with successive approximation.

In this context, the three regularity notions under consideration shall play
a key role, indeed.

As technical tools in finite dimension, the derivatives CF and TF will con-
siderably help to analyze particular interesting mappings F. If dimX = oo,
the value of these derivative-concepts is essentially limited by our Example
BE.2, while Example BE.5 presents a Lipschitz function with empty contingent
derivatives. In consequence, we will work here directly with the definitions.



Chapter 4

Nonlinear Variations and
Implicit Functions

In this chapter, we will (at least) suppose that

X is a complete metric space, Y is a normed space,
F: X =3Y is a multifunction, 20 = (2°,3°) € gph F, (4.1)
and the sets F~1(y) are closed for y near 3/°.

The notions of regularity, introduced so far, concern the solution sets S(y) of
the inclusion g(z) € F(z) where g(-) =y € Y is a constant function. To study
nonlinear variations of ¥, we consider now inclusions

g(z) € F(z), z€ (4.2)

and their
solution sets S(g) C £,

where Qs some neighborhood of z%and g: © = Yis supposed to be Lipschitz
on . We put

sup(g,2) = sup{llg(=)ily |z € O},
Lip(g,0) = inf{r>0jllg(z) - 9(z')lly < rd(z,2') Vz,2' € 0},
and we equip the space G = C%}(,Y) of our variations g with the norm

lg| = max{sup(g, ), Lip (g,Q)}. (4.3)

Since (4.2) means that
z € F~(g(z)),z € 0,

we study fixed points of F~t o g.

71



72 4. Nonlinear Variations and Implicit Functions

The following approach is essentially based on [Kum99]. To modify the
regularity definitions for variations in

G =C*(Q,Y),

let
9° € G be such that z° € S(g°).

We call F pseudo-regular with respect to G at (z°, g°) with rank L if there are
neighborhoods U of 2%, U € § and V of g° such that, given g,¢' € V(C G) and
z € S(g) NU, there is some z' € S(g') satisfying

d(z',z) < Llg' - gl.

The former neighborhood V of y%in Y is now a neighborhood of g°in G. Notice
that z' € Q holds by definition of S via (4.2).

Further, we say that pseudo-regularity of F at (z°,9°) is persistent with
respectto C%* —perturbations, if there is some neighborhood €1 of z° such that
F is pseudo-regular with respect to G = C%*(Q,Y) at (2°, ¢°%), provided that
g%(z) = y°. The related Lipschitz ranks, say L and Lg, as well as the neigh-
borhoods U and Ug of z° may differ from each other.

In the same manner, we understand strong and upper regularity with respect
to G as well as the related persistence.

4.1 Successive Approximation and Persistence
of Pseudo-Regularity

In what follows we verify that pseudo- and strong regularity are persistent under
small C%!-variations of maps F satisfying (4.1), and we derive estimates for the
assigned solutions. Without these estimates, the result of this chapter reads as
follows (in fact, it will become a corollary of Theorem 4.3 below).

Theorem 4.1 (persistence under C%! variations).  Suppose that F satisfies
(4.1) and is pseudo- [strongly] regular at (z°,4°), ¥® = 0, Q is some neighbor-
hood of 2° and g* € C*Y(Q,Y) fulfill |g*| < € (k = 1,2). Then, ife is small
enough, there exist a secondneighborhood U C § ofz° and a constant K such
that, to each zero ' of F — g* in U, there is a [unique] zero x? of F — g% in Q
satisfying ||zt - 22|| < K|lg*(2') - ¢*(z*)|| £ K sup(g' - ¢%, Q). o

Our concept of persistence ofpseudo-regularity does not only say that a multi-
function g + F is again pseudo-regular (this was shown by Cominetti [Com90]),
it even requires that we have to estimate the distance of solutions in terms of
C%!.norms.

Persistence of strong regularity was originally studied by Robinson [Rob80]
forsmall C*-functions g. In this context, the mapping F~! o g may be directly
investigated by applying Banach’s fixed point theorem. Having pseudo- regu-
larity, F~! is neither a contraction mapping nor convex-valued. This makes a
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direct application of known fixed point theorems more difficult. As a basic tool,
we construct a solution to g € F directly by successive approximation.

Supposing (4.1), we want to solve (4.2) by a modification of Banach’s fixed
point approach, ie., by selecting *+! € F~1(g(z*)) such that d(z*+!,z*) is
“sufficiently small”. However, the following algorithm simply generates (more
general) elements z¥F € X and v* € Y, independently of any function g € G.
In order to start, we need (z%,y°) € gph F, v® € Y and constants A, 8 > 0. For
realizing the initial step, assigned to k = 0, we define v~ = ¢0.

Process (4.4)
Step k 2 0:

Determine z*+! € F~!(v*) such that

(e, z*) < dist (c*, F1(v*)) + Alo* — ok=1).
Choose v**! such that |jv**+! — v¥|| < Bd(z*+!, z*).
Put k := k + 1 and proceed.

(4.4)

Notes

1. Generally, z*+! may not exist, and the procedure becomes stationary if
one selects vk+! = vk,

2. Tosolve (4.2), put v¥+! = g(z*+)which yields [[v¥+! —v*|| < Bd(zk+!, z*)
with 8 = Lip (g,) as far as z*+! and z* belong to Q.

3. Let F = 8f be the subdifferential of a convex function f givenon X =
R™ Put g(z) = fz. Then z € F~(g(z*)) means fz* € 8f(z) and
0 € —fBz* + 8f(z).
Hence, given z¥, we require zF+! € argmin ¢ x f(z) —B(z*, z). A solution
g(z*) € F(z*) now satisfies z* € argmin ¢ x f(z) — B{z*,z).

4. Put F(z) = Bz + 8f(z) and g(x) = fz. Thenz € F~!(g(z*)) means
9(z*) € F(z) and 0 € B(z — z*) + 8f(z).
Hence, «**+! minimizes f(z) + %Bllx - zF||2, and g(z*) € F(z*) & z* €
argmin y¢ x f(2)-
In this case, the algorithm minimizes f by a proximal point method.

5. To solve H(z) N F(z) # 0 for closed H : X =3 Y, assume v° € H(z®) and
select v+t € H(zk+1) with |lu*+! - v*|| < Bd(zF+!, z¥).
The latter is possible if H is pseudo-Lipschitz with rank 8 on €.

Before dealing with the convergence of the process (4.4), some comments are
appropriate.

The concrete, general formulation of our algorithm may be new, not so the
idea of applying successive approximation schemes for showing solvability of
(pseudo-Lipschitzian) equations or inclusions. This idea can be found already
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in [Lyu34, Gra50] as well as in [Com90] and, in a more general form, in [DMO&S0]
and [Sle96].

One can also find extensions of Newton’s method which use linearization
(in the proper Fréchet sense or a generalized one) @(z) := g(§) + Dg(§)(z — &)
of the function g at some iteration point &, and solve the auxiliary problems
#(z) € F(z). Some solution & now replaces £ in the next step. Methods
of this type were studied in [AC95] and [Don96] and were applied to show
persistence of solutions like here, based on Kantorovich-type statements [KA64].
Similar approaches are also known from [Kum92, Rob94] and [Kum95a] where
the “derivatives”, however, had to satisfy conditions which lead to strongly
regular and upper regular solutions, respectively.

Here, we intend to show that zeros of pseudo-regular mappings F' after small
Lipschitzian perturbations g can be determined and estimated via a procedure
like Banach’s successive approximation: not depending on the linear structure
of X and without hypotheses concerning derivatives. So, algorithm (4.4) can be
used in the same manner as successive approximation for functions; in particular
for deriving implicit-function theorems.

The linear structure of Y will not be used, so ¥ may be a metric space.
Then G is no longer normed; sup(g, ) and Lip (g, Q) must be defined via y°
and the metric in Y. In this form, the algorithm and Theorem 4.2 apply to
multifunctions F' : X =3 X whereafter the relation to Banach's fixed point
theorem is even better visible.

Theorem 4.2 (successive approximation). Suppose (4.1}, let F be pseudo-
regular at z° with rank L and neighborhoods U D z°® + B%, V 2 y° + B}, and
assume that

0:=B(L+))<1ando:=|°~90 <d(1-0)/max{l,L+1}. (4.5)

Then,
(i) The process (4.4) generates in U a (geometrically) convergent sequence
z* = 2% with d(z*,2%) < (1 - 8)"Y(L + Na.
(i) It holds v* € V and ||v* - ¢°|| < (1 - ) 1a.
(iii) If v* = g(z*) for k > 0 in (4.4), where g is Lipschitz with rank 8 on U,
then g(z*) € F(z*).
(iv) If one can satisfy v* € H(z*) where H: X =3Y is a closed mapping and
Y is complete, thenlimvk = v* € H(z*) N F(z*).
<

Note: To simplify we will puk ' later applications and will require that
6 =8(L+1)< % which then will lead to d(z*,z%) < 2(L + 1)a whenever

B<2(L+1)""and a < 26(L +1)72 o

Proof of Theorem 4.2. (i), (ii) Let us first assume that the points under
congideration belong to the regions U, V of pseudo-regularity.
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Having z* € F-1(v*~1)(as for k = 0) we see that some point zF*+1 €
F~1(v*) satistying
d(z+, %) < dist (a*, F-1(0)) + Aok — o4~

really exists. Indeed, if v*¥ = v*~! then we put z¥+! = g | otherwise z*+!
exists by the definition of the point-to-set distance. So, by pseudo-regularity of
F, we observe that

d(z*+!,2%) < (L + N)[lv* ~ o5
If kK = 0 then
dw*,v*1) = |)o° = 4°|| = @ and d(z?,2°) < (L + N)e.

If £ > 0 then v¥ has already been defined according to one or more previous

steps, hence
ik = 0%~ < Bd(e*, 241

and
d(z*+, z*) < (L + N)Bd(z*, 2*1) = 8d(z*, z*1).

Moreover, the points v5+* fulfill

|[v*+* — v*(| < Bd(z**, %) < BIL + Niv® - v*2|| = Blf* - v*~1]).

This ensures
d(zk+1,$0) _<_ d(zl,zo) + 215‘9«1(2:‘“,:::‘)
< (L+Na+(L+Nad+...+6%)
< (1-6)"YL+ Mo
and

"+ = 4%l < @+ Bogigallv™ =l < (1 - 0) e,
Therefore, we generate Cauchy sequences to U and V whenever
(1-8)tamax{l,L+ A} <4,

which is ensured, provided that & and 8 are small enough, namely if (4.5) holds
true. The sequence x* then converges in the complete space X, and the limit
z* fulfills

d(z*,2°) < (1 -6)"YL + Na.

(iii) To show g(z*) € F(z*) even if Y is not complete, note first that
g(z*) = lim g(z*) = limo* € V.
Pseudo-regularity and z*+! € F~!(v*) now yield

dist (25, F~ (¢(2"))) < Lllg(z") ~ v*|\.



76 4. Nonlinear Variations and Implicit Functions

Thus, dist (z*, F~*(g(z*))) = 0 and, since F~1(g(z*)) is closed by (4.1), we
have g(z*) € F(z*).

(iv) The existence of g* = limv* and g* € H(z*) is ensured since H
is closed and Y is complete. As under (iii), we obtain the assertion from
dist (z*,F~1¢*)) = 0. m)

Theorem 4.3 (estimates for variations in C%?). Suppose (4.1), and let F, 8,
L satisfy the assumptions of Theorem 4.2. For some r € (0, -21-6), let certain
functions g and ¢' fulfill on U(r) = a® + rB% the following relations:

0,9’ € C*}U(r),Y), Lip(¢',U(r)) < (L + 1)~
sup,eu(r llo(@) — 40l < §(L+1)7,
SuP,cu( 16’ (®) — 30l < §(L +1)7L

Then, if € € 2° + %“I‘B solves g(z) € F(z), there exists a solution & to ¢'(x) €
F(x) such that d(¢',€) < 2(L +1)|ig'(€) — g(&)}l < §r. o

Proof. Having € € 2° + %TB such that g(¢) € F(£), weputn = g(¢) and
§ = -;-r . Then
(§n) €gph F, £+ 8'B°CU(S)

and, since {lg(¢) - ¥°|| < (L +1)7! < §, it holds
n+d6'B° C V(d).
Thus F is pseudo-regular at (§,1) with rank L and neighborhoodsé + 6'B% ,
n + &' By,.
By our assumptions, it is easy to see that
a:= |lg'(§) - nli llg' (&) - °|I +1ly° —7ll

25(L+1)"!
16’(L+ 1)-!

H AIA

and
b:=Lip(¢',€+6'B°) < (L +1)7".

Thus, Theorem 4.2 may be applied to (£,9,¢',d") instead of {z°,3°,g,8). De-
noting the fixed point z* by £ we observe that both g(¢') € F(¢') and

d(¢',€) < 2(L+a=2(L + 1)lg'(¢) - 9(&)ll < &".
o

The next direct consequences of Theorem 4.3 extend pseudo- and strong regu-
larity explicitly to small Lipschitzian perturbations.
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Corollary 4.4 (pseudo- and strong regularity w.r. toC®!). Let(4.1) be
satisfied and let F be pseudo- [strongly] regular at 2° with constant L.
(i) Setting ¢°(-) = ¢°, then F is pseudo- [strongly] regular at (z°,¢°) with
respect to G = COY(U, Y) with rank 2(L + 1).
(i) In particular, ifg € G satisfies sup (g,2°% + rB) = o{r) and Lip (g, 2° +
rB) = O(r), then F is pseudo- [strongly] regular at 2° if and only if so is
g+ F. o)

Proof. Concerning pseudo-regularity, see Theorem 4.3. Concerning strong
regularity note that the function h := F~1 0 g is a contraction on Uif |g — ¢°|
is small enough. Thus fixed points = and £ of k are unique on U due to

d(z,§) = d(h(z), h{£)) < 0d(z,§)
for some ¢ € (0,1). ]

In a slightly more special form and by direct application of Banach’s fixed
point theorem, the strong-regularity-version of Corollary 4.4 was a main result
of [Rob80] while the second statement of Corollary 4.4 can be foundin [Com90].

4.2  Persistence of Upper Regularity

An extension of upper regularity at (X°,3°) (X% may be a set) to the related
upper regularity with respect to G is not possible in the generality of §4.1 in
spite of the fact that the upper Lipschitz estimate is very simple;

9(z) € F(z) = y € F(z) with y = g(z) = dist (=, X°) < Lilg(=) - 3°||.

The problem arises from the requirement that g{z) € F(z) should be solvable.
This cannot be ensured by the weak topological hypothesis of upper regularity
at (X%,4%), alone. So one needs more structure of the mappings, e.g., convexity
in order to apply Kakutani’s fixed-point theorem.

Persistence Based on Kakutani’s Fixed Point Theorem

The next hypotheses permit the consideration of quite general perturbations
of F. The latter is desirable, e.g., if we are interested in minimizing a per-
turbed convex function fon R™. Then, F = 8f is the basic multifunction, but
studying g(z) € F(z) allows us to deal with differentiable perturbations ¢ of
fonly: Dp(z) = g(x). So, if one is interested, e.g., in a homotopy between
two arbitrary convex functions, hy(z) = tfi(x) + (1 — t)f2(x), the mapping
FE,(:) = 8hy = t8f; + (1 — t)8 fa becomes the key for analyzing minimizers. But
F,, being a map “near F”, is no longer a continuous translation of a multifunc-
tion F.

We consider this situation for the case of X =Y = IR"™ where the typical
ideas already apply. For similarly perturbed inclusions 0 € F(x) in Banach
spaces, we refer to [Klu79, Kum84, Kum§&7].
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Theorem 4.5 (persistence of upper regularity). Let F,G : R® =3 R™ be
closed and X® C F~Y(0) be non-empty, convex and compact. Let F be upper
regular at (X°,0) with rank L and neighborhoods U = X°+B8B% ,V = BBY, let
the ranges of G and F~! (on U and V, respectively) be non-empty and convex
and, in addition, let G(z) N K # & (Vz € U) for some bounded set K. Finally,
suppose 0 < & < min{B, BL™'}.

Then, G has a zero in X° + SLB if

§BNF(z) C G(z)+6B Vre X°+4LB (4.6)

is satisfied. ¢

Notes: The additional hypothesis G(z) C F(x) + 6B Vz € U ensures the
estimate

0€G(z) andz € U = y € F(z) forsome y € 6B = dist (z, X% < L.

For continuous functions G, F, the suppositions of the theorem hold true, if
F is upper regular at (X9,0), the sets F~!(y) (¥ € V) are convex and non-
empty (as for strongly regular F) and & := sup,cy ||G(x) — F(z)|| is sufficiently
small.

Our statement then follows already from [Rob79] where inclusions g(z) €
F(z) have been studied (g is a function, F a multifunction). Robinson’s set-
ting allows the direct application of Kakutani’s theorem to the map F~!(g(-)).
Here, we have to prepare this application by partition of unity or by Michael’s
selection theorem. o)

Proof of Theorem 4.5. For y € dB,upper regularity of F yields
B#UNF(y) c X'+ Lily|BC X° + LEBC U.
Therefore, the convex and compact set C = X°® + LéB c U fulfills
B#£CNF ' (y)c X°+LilyllB if llyll <o

In what follows, we consider only points € C. Condition (4.6) ensures that, if
y € BN F(x), there is some y' € G(z) with y € ¢’ +dB. Then [|3'|| < 26 < 28.
Hence, if G satisfies (4.6), so does the map G.(z) := rB N G(x) for r > 28.
Using K we find some r 2 28 such that Gr(z) # @ for all z. The mapping G,
is closed, has uniformly bounded, convex images and fulfills (4.6).

To show that C N G;1(0) # B, we assume the contrary,

0¢G.(z)Vz e C.
Since G,(z) is non-empty, closed and convex, one finds some z € R™ such that

t(z,x) ;== inf{{z,9) |y € G,(z)} > 0.
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Since G- is closed and uniformly bounded, one sees that t(z,z) > 0implies
t(z,2') > 0 forz' nearz. Therefore, the map Z(z) := {z|t(z,z) > 0} is lsc.
and has non-empty convex ranges. By Michael’s selection theorem [Mic56],
there is a continuous selection (-} € Z(:), defined on C. Since y{z) # 0, we
have after normalization,

v(z) =1 and inf{{y(z),y)|y € G-(z)} >0Vz €C. 4.7)

Now consider the mapping T'(z) = C N F~Y(~§v(z)) . Itfulfills I'(z) # P on
C and, due to our hypothesis, T : € =3 C is closed (since 7 is continuous) and
convex-valued. Thus, by Kakutani’s fixed point theorem, there is some z* € C
with z* € F(z*). The latter means

z* € CNF~Y{-8y(z*)), hence -4 y(z*) € F(z*).

On the other hand, since z* € € and || ~ dv(z*)|| = ¢ , G.(z*) contains, due
to (4.6), some element g which satisfies || — éy(z*) — gl| < 4. This contradicts
(4.7) because of

inf{{v(z*),¥) | y € G+(z")} < {v(z*),9) £ {¥(e*),—dv(2*)) +4d = 0.
So € NG;Y(0) # O must be true. 0

For making clear the necessity of the imposed assumptions, it is useful to regard
the following (Lipschitz continuous) multifunctions

F,F:R*" =2 R
and sets X® where G = Fj has no zero near X°for § > 0:

() Fs@)=B\&B°  (§>0), F(x)=B, X°=B.
(i) Fs(z) = conv {x,z} (6 >0), F=Fp, X% =bdB.

Persistence Based on Growth Conditions

Solution sets of optimization problems form a further special class of mappings.
Let us point out here a situation which is simple because the feasible set is
fixed and is interesting because we get a direct relation to quadratic growth
conditions.

In Section 5.1.2 we apply the subsequent theorem to the subdifferential of
convex functions. Suppose

M is a non-empty subset of a real Hilbert space X,
fiM -2 R, and let

¢(y) :=inf{f(z) -~ (y,z) |z € M} fory € X,

U(y) = argmin zenm [f(z) ~ (¥, 7)].

(4.8)

Lemma 4.6 (Isc. and isolated solutions). Under the assumptions (4.8), the
map Wis ls.c. ar (0,2°) € gph ¥ only if ¥(0) = {2°}. <
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Proof. Assume (conversely) the existence of
£€ D), [E~2"=t>0.
Let € > 0 and let, according to the l.s.c. assumption,
x € W(eu) for fixed u = (€ — 2%)/t.
Then, due to optimality of  and £ for the assigned parameters, we notice that
f(@) — elu, z) < £(£) - €(u,§)

and

~f(z) < ~f(§).
Adding both inequalities yields

(w,§ —z) < 0.
But ¢ also fulfills, by definition of u,

(u, 6 -~z =t>0.

Since |jul| = 1,the both inequalities imply [|& — z°|| > t. Recalling that z €
¥(eu) was arbitrarily taken, we obtain

dist («°, T(cu)) > t for all € > 0.
Hence ¥ is not ls.c. at (0,2°) whenevert > 0. ]

As an immediate consequence we obtain

Corollary 4.7 (pseudo-Lipschitz and isolated solutions). Under the assump-
tions (4.8), the solution mapping ¥ is pseudo-Lipschitz at (y°,a°) € gph ¥ only
ifit is single-valued near y°. ¢

Proof. Indeed, considering the neighborhoods U, V in Definition (D1) of §14,
we have ¥(y)NU # 0 Vy € V, and ¥ must be 1sc. at all (y,z) € gph \I'anU
So ¥(y) = {=x} follows.

Next we consider f on small neighborhoods of £°. Given any subset 0 of X,
we define

I'(y) = {z e MNAQ|f(z) - (y,2) < f(z°) - (1, 2°)}

and
Uq(y) = argmin {f(z) - (y,z) [z € M NQ}.

Theorem 4.8 (growth and upper regularity of minimizers). Let the assump-
tions (4.8) be satisfied and x° € ¥(0). Consider the following statements:
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(i) ¥ is Lipschitz Ls.c. at (0,2°) with rank L;
(i) ¥(0) = {z°} and, in addition, there is aneighborhood Q ofx® such that
F€) - f(=°) 2 (L+ )72 - 2P VE € AN M; (4.9)
(iii) the mappings T'(-), ¥(-) Nl Q and ¥ () are Lipschitz u.s.c. at (0,z°)
with rank (L+1)?, and, iff € C(X,R) and X = R", it holds ¥ o(y) =

Ya(y) # 0 for small ||y]|.

Then, the following implications are true: (8) = (i) = (%ii). o
Note: Condition (4.9) is called a quadratic growth condition (of f at z%). ©
Proof of Theorem 4.8. (i) =>(ii) leté e M, t=|¢t-2% >0,u=

(€ = 2%/t and @ = f(€) — f(z°). Forsmall & > 0, consider any (existing by
ls.c.) z € ¥(eu) with ||z — 2°|| < Le. Then

f(@) — {u,2) < f(€) ~ e, €) = £(2°) + o —e(u, ),

hence
0< f(z) - f(2°) S @~ e(u, € - 7).
This yields
(6 ~z) <afe aswell as (u,&—2°% =t, ||ul|=1.
So we obtain
Le > ||z = 2% > (u,2 ~2%) = (u,6 - 2% +z - &) >t —afe
and

Le? > et - a,
as well as, recalling ¢t = ||€ — 2°|| ,
ell§ — 2% — Le? < a = £(£) - f(z°).

In particular, this inequality holds for all & € M with ||¢ — z°) = (L + 1)e.
Thus,
FO -t 2 =llg-2PL+1)2
(i) =+(iii)
Let f(z) > f(z°) + é||lz — 2°||*> whenever z € cl 2N M,where & > 0is fixed.

Notice that
¥(y) Nl C ¥ q(y) CI(y)-

Let z € I'(y). Using
@) - (2% > f(z) - (3,2),
we observe that
—dllz - 2l > £(2%) - £(&) = @ a® - =) 2 |-yl Iz - =°)).
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Hence 6|z — 2°|| < |ly|| yields the upper Lipschitz properties with rank §~*. If
[ly|| is small enough, we have

T a) CT@) ca2® +|jylis*B C Q.

Thus, it holds ¥ o(y) = ¥a(y). Finally, if f is continuous and X = R", then
it suffices to minimize f(z) — {y, ) on the compact set I'(y) (which contains
29), in order to find some element of ¥ (y). (]

We notice that under (ii) in Theorem 4,8, the set ¥1(0) does not necessarily
cover all local minimizers of f with respect to M near 2°, see the discussion
of so-called local minimizing sets. It seems further worth to mention that the
growth condition

f(@) - £(z°) - Df(e°) (= - 2°) 2 dllw - 2°I*

is persistent with respect to small C*»' perturbations of f (cf. Corollary 6.21
and formula (6.43) ).

4.3 Implicit Functions

Knowing that a certain “nice behavior” of solutions z(y) to f(z) = y can be
extended to solutions z(¢) of equations f(z) = @(x) for small functions ¢ in
some class G, we have several means for studying solutions z(t) of the equation

h(z,t) =0, (4.10)
for ¢t near some critical parameter?, say ¢® = 0. As one of the simplest, define
f(z) = h(z,0), g(z,t) = h(=,0) — h(z,1).

Now equation 4.10 becomes g(z,t) = f(z). It remains to ensure that ¢ := g(-,t)
becomes sufficiently small in G as ¢ = 0.
For inclusions of the form

0 € h(z,t) + I'(z), (4.11)

there is only a formal difference after the same settings because inclusion 4.11
takes the form
9(z,t) € F(x) := f(z) + T(z).

”Nice behavior” must be extended from the inclusion ¥ € F(z) to ¢(z) € F(x),
¢ € G. Asbefore, ¢ = g{(-,t) should be small in G provided that ¢ is close to 0.

The "nice behavior” we have in mind is the pseudo-Lipschitz property of
solutions depending on ¥ and ¢ , respectively. This has been clarified by The-
orem 4.3. The unchanged multi-valued term I' in (4.11) makes the hypothesis
of (strong, pseudo-) regularity for ¥ more or less hard.
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However, if this supposition is satisfied, we have to deal with F directly,
and the mapping I’ appears as a formal appendix in the well-known context of
usual implicit-function theorems only.

Thus, as a technical problem, we have to ensure that

9(+t) = h(:,0) - h(-,1)

is indeed sufficiently small (in the sense of Theorem 4.3 for ¢ near @, as far asz
is restricted to a small ball U around z°.

This is the content of the rest of this chapter where we formulate the con-
sequences of Theorem 4.3 in the current terminology and discuss the needed
suppositions for sufficiently smooth .

We impose the general assumption

h: X xT =Y, h(?) is continuous,

I': X =37 is a closed multifunction,

X is a Banach space, Y and T are normed spaces,
and z° solves (4.11) for t = 0.

(4.12)

To indicate that in (4.12), one additionally supposes that
Y is a Banach space, we write (4.12).
As before, we put
U(r) = 2+ rB% and g¢(z,t) = h(z,0) - h(z,t), =€ U(r).

For ¢ : U = Y, recall that Lip (¢, U) denotes the smallest Lipschitz rank, and
sup (¢, U) denotes the sup—norm of ¢ on U.

Theorem 4.9 (estimate of solutions).  Let the assumption (4.12) be fulfilled,
and let F(:) = h(-,0) + I'(:) be pseudo-regular at (z°,0) € gph F with rank L
and neighborhoods U(8) = 2° + 6B% , V(6) = 6By. Suppose that, for some
ro € (0, %6),for all v € (0,79), and for all t in some ball T(r)Br, it holds

a(r) := sup(g(-,1), U(r)) < §(L+ 1),

b(r) := Lip (9(‘,t),U(r)) < %(L + 1)-1. (4.13)

Then, ifr € (O,r0) and s,t € T(r)Br, there exists, to each solution z(t) €
7 + %TB} of inclusion (4.11)y some solution z(s) of (4.11)s for parameter 8
such that

llz(s) = z(B)l} < 2(L + 1)[[A(=(®), 8) — A(z(2), )| < 4L + a(r).
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Proof. Solutions of(4.11); are solutions tog(z,t) € F(z). Because of (4.12),
the pre-images F~(y) = {z |y ~ h(z,0) € ()} are closed. In addition, (4.13)
ensures the estimate

R (=z(t), 8) = h(2(t), )| = llg((t), 8) — g(x(t), )]} < 2a(r).

Since U(d) and V{6) are related to pseudo- regularity with rank L, we have
only to apply Theorem 4.3 with y° = 0, ¢’ := g(-,8) and g := g(-,t). a

Assumption (4.13) is fulfilled, e.g. for g(z,t) = [Jt|lw(z) where w : X = Y is
locally Lipschitz. Setting t = 0 and z(0) = 2° the existence of a solution z(s)
is guaranteed if |g(-, 8)| is sufficiently small as C%'~norm on U(r).

Replacing “’pseudo-regular” by “’strongly regular”, the solutions are unique
in some neighborhood of z°.

In order to apply Theorem 4.9, there are two essential tasks, namely:
simplify, if possible, the condition of pseudo-regularity imposed on F, and
verify whether g(:,t) = h(-,0) — h(-,t) is small enough in C®!(U(r),Y)(for
small ¢ and r) such that (4.13) can be satisfied.

Practically (since L is usually unknown), we have to ensure that g(-, ¢) fulfills

a(r) = sup(g(-,£), U(r)) = ofr) w1
b(r) = Llp (g(a t): U(T)) = 0(1‘)
whenever ¢ belongs to a small neighborhood T(r)Br of the origin. To check

(4.14), the function h(:,0) may be replaced, in the definition of g(:,¢) by any
(simpler) continuous function ¢ such that h{-,0) — ¢ fulfills

sup(h(+,0) = ¢,U(r)) = o(r) and Lip (h(-,0) ~ ¢,U(r)) = O(r). {4.15)

Using a C'-property of h, condition (4.15) is well-known to hold for the lin-
earization
#(€) = h(z°,0) + D h(z°,0)(€ ~ 2°)

of h(-,0) at z°.

The next lemmas as well as the estimates in the proof of Theorem 4.11
below will summarize these facts and are the key for deriving classical implicit
function theorems based on the contraction principle, cf. Zeidler [Zei76]. We
need here (4.12)" instead of (4.12) because integrals in Y are needed for proving
the used mean-value theorem.

Lemma 4.10 (variations inC'). Let (4.12)’ be true andh(-,0) be continuously
Frechet differentiable w.r. to . Then the function p(€) = h(£,0) — ¢(&) fulfills

a(r):= sup |Ip(&) - p()ly S k()I§ - €Il with k(r) 50 asr | 0;
£&'eutr)

and the multifunction
F=h(:0+T

is pseudo-regular at (x°,0y) iff so is ® = ¢(-) + T. ¢
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Proof. It holds

p(§) -p() = h(lﬁ,o) - h(¢',0) - D-h(z°,0)(§ ~ €')
= [y [Dzh(8¢ + (1 ~ 6)¢',0) — Dy h(2°, 0)}(€ — ¢')db.
Thus,
Ip(§) = p(€)ll < supy ||Dah (B¢ + (1 — 8)¢',0) ~ Dzh(z?,0)||[|€ - €|
= k("l§-¢'I
is true with k(r) — 0 as r { 0 due to the continuity of the derivative. For the
second statement, now Corollary 4.4 may be applied. a

The following statement can be also shown via the Newton-approaches in
[AC95, Don96] or by using such assumptions on /# which guarantee that g(:,¢)
fulfills (4.14) because of the so-called (strong) B-differentiability, cf. [Rob91]. In
[Com90], condition(4.14) is rewritten as a strict (partial) differentiability condi-
tion. There, one finds also a brief and precise characterization of the relations to
the Graves-Lyusternik theorem [Gra50, Lyu34] and to the (Robinson-Ursescu)
open mapping theorem in [Rob76al. By our approach, the statement may be ver-
ified, under pseudo-regularity, as an identical copy of the usual implicit-function
proof (based on strong regularity).

Theorem 4.11 (the classical parametric form). Suppose that (4.12)’ holds,
(i) Dzh(-,-) exists and is continuous near (z°,0), and
(ii) h(zC,-) is continuous at 0.
Moreover, let F(-) = h(-,0) + T'() be pseudo-regular at (z°,0) € gphF with
constant L. Then, for sufficiently small v > 0 there exists T(r) > 0 such thar,
whenever 8,t € 7(r)Br and z(t) € z°+ %TB} solves (4.11)y , there is a solution

z(8) of(4.11)s satisfying
llz(s) - 2@}l < 2L + DA (®), 8) ~ A(x(2), Ol < 5.
o

Proof. We have to estimate the quantities a(r) and b(r) of Theorem 4.9. For
small § > 0, &,z € U(d), t € §Br and £ # =, the mean-value theorem implies
that

k@) = |lg(¢,8) - g(=,)/lI€ - =l

A(€,0) — h(,t) — (A(z,0) — Az, )l / I§ — =||

A (€, 0} ~ h(z,0) — (h(£,t) — h(z, )N / 1I€ — =|
sup ||Dgh(z',0) ~ D h(z',¢)]|.

2'€U(d)

Continuity of Dzh(-,:) along with ¢t € 4Bt yields k(d,t) £ O(6). Thus, for
sufficiently small » and for ¢ € rBr, it holds

b(r) := Lip (9(~ ), U(r)) S O(r) < $(L+1)7".

in Al
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To estimate @ := 8Up,¢y(r) [[9(, t)|| one may write

llg(z°,t) + (9(z,t) — 9(=°, 1))
llg(z®, )1} + b(r)ll= — 2°|
[1A(2°,0) = h(z°,t)|| + O(r)r.

llg(z, &)l

IANIA N

With small r, such that o(r) := O(r)r < (L +1)7", and small 7(r) > 0 such
that
7(r) < r and ||h(2°,0) — h(z°,t)}| < ofr) Yt € 7(r)Br,

this inequality yields a < 20(r) < §(L+ 1)~ u]

Let us add an approximation, applied in §6.6.2, where the existence of Dyh is
not supposed. For this reason, we assume that also ¢ varies in a Banach space
and we write, for continuous h,

h(z,t) = h(z,0) + D:h(z°,0)t + a(x, t).

provided that the partial derivative Dk exists on some convex neighborhood
of (z%,0) which contains (z, ).

Lemma 4.12 (linearization w.r. to parameters). Letz € ° +rB and t € roB
where @ > Qis a fixed constant. If Dih exists and is continuous near (x°,0)
then it holds

1t~ ez, 8)|| = O as z = 2 and ||¢|| L O

as well as sup ||a(z,t)|| = o(r). IfDih is even Lipschitz near (2°,0), then
Lip (a(-,t),z% + rB) = O(r). o

Proof. By the mean-value theorem, one obtains
1
a(z,1) = h(z,t) - h(z,0) ~ Deh(z®,0)t = / [Deh(z, 6t) — Deh(a®,0)] ¢ db
0

which yields the first assertion immediately. The second one follows from
sup(a(-,t),2° +rB) < grO(r) = o(r).

If D¢h is Lipschitz near (z9,0) then it even holds, with some constant K,

1
la@,t) ~a(z ]| = | /0 [Deh(z',6t) — Doh(z, 68)) t df |

Kitl i — =]

IA

for z,z' near z°and ¢ near the origin. (]
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In the present case, solutions of
0 € h(z,0) + D;h(z%,0)t + I'(z) and O € h(z,t) + I'(z)
can be compared: With
S =[h(,0) +T()N",

the inclusions become
z € S(-Dh(2°,0)t) and z € S(—D:h(2°,0)t - a(z,t)),

respectively.

Concluding Remarks

1. Tf F is pseudo-regular then the possibly multi-valued solution map g = X {g)
defined by the solutions of g(z) € F(z) behaves even pseudo-Lipschitz with re-
spect to ¢ € G = C%!. Tn addition, solution estimates in terms of sup{g" —¢', U)
can be derived from Theorem 4.3 and lead to implicit-function statement for
systems h(z,t) € F(zx).

2. The estimates (4.13) in Theorem 4.9 do not only hold for small smooth
perturbations of a smooth original function A(-,0). Other simple possibilities
are linear homotopies h(z,t) = (1 — t)p(z) + tg(z) where p and ¢ are locally
Lipschitz, cf. §11.1.

3. All the solutions, whose existence was claimed, can be determined (theoret-
ically) by using successive approximation, see §4.1.



Chapter 5

Closed Mappings in Finite
Dimension

In this chapter, we regard only closed multifunctions F : R"® =3 R™, sup-
pose y° € F(z°), and investigate, in particular, regularity of locally Lipschitz
functions.

5.1 Closed Multifunctions in Finite Dimension

In finite dimension, the regularity conditions derived up to now may be simpli-
fied and allow additional conclusions that are not true, in general.

5.1.1 Summary of Regularity Conditions via Derivatives

Theorem 5.1 (regularity of multifunctions, summary).
Let F:R" 33 R™ be dosed and z° = (2°,4°) € gph F'. Then:

F i3 upper regular at z° (5.1)
& CF(2°) is injective and F~! is Ls.c. at (y9,20). )

. 0
F i3 strongly regular at 2 (5.2)

& TF(2° is injective and F~! is l.s.c. at (3°,2°).

F is pseudo-regular at z°

& 3e>0:eB CCF(2)(B) for all 2 € gph FN (2° + £B) (5.3)
& D*F(2°) is injective.

If P! is Lipschitz Ls.c. at (y°,29) (5.4)
then there ezists r > 0 such that B C CF(2°)(rB). ’

If X is a normed space, the conditions (5.1) and (5.2) are still necessary for
the related regularity. Lo/

89



90 5. Closed Mappings in Finite Dimension

Proof.

For (5.1) see Lemma 3.2 and the related exercise.

For (5.2) see Lemma 3.1 and the related exercise.

For (5.3) see Corollary 3.3 and Theorem 3.7 (§3.3).

For (5.4) see the arguments of the proof to Corollary 3.3 for dim X < oc.

For normed X, the necessity of the conditions (5.1) and (5.2) follows from the
same lemmas. a

The (pointwise) condition (5.4) is indeed not sufficient for F~! to be Lipschitz
Ls.c. at(y®,z°), cf. Exercise 9 below.

The Ls.c. condition under (5.1) and (5.2) is, in general, not ensured by the
already imposed injectivity of CF and TF, respectively.

On the other hand, the condition (5.3) can be replaced by a formally weaker
surjectivity condition. To show this, we establish first a relation between CF
and D*F without considering limits of the dual elements.

Theorem 5.2 (CF and D*F). Under the assumptions of Theorem 5.1, it holds
u* € D*F(2%,y°)(v*) ifand only if
iminf (g y)-+(20.49), y€ F(z) SUP(u,)€B, veCF(zy)(w) ((u*1u) + (V*,¥)) 0. ©

Proof. By Remark 3.6, we have u* € D*F(x%,y°)(v*) iff there are (z,y) —
(2%,°) in gph F and € { 0, r { 0 such that

(w*,a' —z) + (v*, ¢ ~ ) <e(ll’ — 2|l + lly' - wll)

if |z’ — =) + Iy’ - yll < and (',3') € gph F (5.5)

Writing here ' — 2 = tuy and y' — y = tvy with (ug,v¢) € B ( the sum-norm
ball in R®*™ ) this becomes

(u*yue) + (0%, 0e) < ellugll + [lvel)

whenever t is small enough and (2 + tu;,y + tv;) € gph F (5.6)

Since every sequence of (ui,vy) € B (as t = £ § 0) possesses a convergent
subsequence, and the accumulation points (#,v) form just gph CF(z,y), one
easily sees that (5.6) yields both directions of the assertion. (]

The next statement can be shown by using the both pseudo-regularity condi-
tions of Theorem 5.1 and Theorem 5.2 as well. Our proof applies the Ekeland
points of Theorem 2.16 and CF only.

Theorem 5.3 (convCF). Under the assumptions of Theorem 5.1,
(i) the mapping F is pseudo-regular at (z°,y°) if and only if
e > 0: eB C conv[CF(z,y)(B)] V(z,y) € gph F N ((z°,4°) +eB). (5.7)
(ii) F is not pseudo-regular at (z%,%°) ifand only if
there ezist y* € R™ \ {0} and (z*,y*) € gph F
such that (z*,y*) = (z°,94°) ask = 0o and (5.8)
lim SUPgye0 SUP ¢ € CF(zb y*)(B) (y"C) <o o3
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Note. Evidently, condition (5.8) is equivalent to the (also necessary and suffi-
cient) coderivative condition 0 € D*F(z°,°)(y*), but (5.8) requires the study
of contingent derivatives, multiplied with fixed y*, only. In this way, the present
theorem indicates that the condition 0 € D*F(z% y°)(y*) (in finite dimension)
is nothing but a limit-condition for contingent derivatives. <

Proof of Theorem 5.3. (i) By Theorem 5.1, only the sufficiency of the
condition must be shown. We apply Theorem 2.16. Assume that F is not
pseudo-regular at (z°,y°) though ¢ exists in the given way. Then one finds, for
each p > 0, certain z € dom F N (x° + pBx) and y € ¥° + pBy such that both
0 < dist(y, F(2)) < 2p and z € X is a global Ekeland-point of dist (y, F(-))
with factor p. Recall that the latter means

dist (y, F(z)) + pd(z,2) > dist(y, F(z)) Vz. (5.9

Let p be fixed such that p + d(y,¥°) + ||z — z°|) < /3. Since F(z) € R™ is

nonempty and closed, some 7 € F(z) realizes the distance d(y,n) = dist (y, F(z)).
Setting v® = (y — n)/d(y,n) and applying condition (5.7) to ev® € &B, there

exist v € B and v € CF(z,n) satisfying

e = (1°, &) < (°,0).

Next consider any ¢t = t; | 0 such that assigned points s = z-+tue, Yy = n+tv
satisfy uy — u, vy ~ v and y € F(x:). One easily determines, by using the
Euclidean norm and va& +w = /& + %j"a- + o(w) for & > 0 and small jw| that

ly ~yell = ly —n - tvtll|
= |y = nll - tlly ~ 7l = {y = n,v:) + oft)
= |ly = nll — (%, ve) + o(t) < lly — nlf — et/2.

From (5.9), we thus obtain
lly = nll — €t/2 + pt|u.|| > dist (y, F(2:)) + pd(ze, 2) > |ly - nlf

and —et/2 + ptllw)] > 0 aswellas p > €/2. Since p | 0 is impossible, the
assertion now follows from Theorem 2.16.

(ii) This statement can be easily derived by negation of (5.7) along with the
separation theorem. g

Recall that, for locally Lipschitz functions, Corollary 2.27 gave another criterion
without using derivatives.

Exercise 6. Show that, for f € C!, one obtains D* f(z) = —-Df(z)". &

Note: To get here D*f(z) = Df(z)", Mordukhovich [Mor88] defined the
coderivative with the opposite sign.
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5.1.2 Regularity of the Convex Subdifferential

Here, we discuss the content of the regularity definitions for the subdifferential of
a convex function on R"™ by showing how they are related to growth conditions.
Let f be a convex functional on R"® and 8f(z) be its subdifferential at z,

0f(z)={y e R"|f(§) - f(z) 2 (v, - 2) VE€ R},

Then, = € (8f)~1(y) means that z is a solution of

min{f(£) - (y.£) |£ € R"},

and the related infimum value is just the value of the (concave) conjugate func-
tion f* at y. Let us put

h(y)(z) = f(x) - (y’w)'

The inverse (8f)~'(y) is the mapping ¥{(y) of §4.2, now with C = R". Strong
regularityof F = 8f at (z°,0) € gph 8f simply means that hy)(-) has unique
and locally Lipschitz minimizers z(-) for y near the origin.

Next we demonstrate that our three regularity properties can be completely
characterized by growth at a point z° or by (uniform) growth on a neighbor-
hood, respectively. For this reason we introduce the following conditions;

(CG.1) 3& > 0 such that ||g' — ¢"|| > e[|z’ - ="|| whenever
z',2" € 2 +¢B,g',¢" € ¢B and ¢' € 8f(2'),9" € Bf ("),
(CG.2) 3 € >0 such that, for all y € ¢B, a minimizer zof Ag,(-)
exists and satisfies hy)(z 4+ u) > hy)(z) + €||u|* Yu € €B.
(CG.3) 3¢ >0 suchthat f(z° +u) > f(z%) +¢||ul|* Vu € eB.

Taking into account that T8f(z°,0) is a closed and positively homogeneous
map, condition (CG.]) is nothing else but injectiviry of TOf(x°,0).

Condition (CG.2) has been used in [LS97], in a pointwise context. Here,
(CG.2) is an uniform growth condition for all h,) near the minimizers z(y).
For f € C?, this condition simply means that D?f(z°) is positively definite.

Condition (CG.3) is the standard quadratic growth condition with respect
to f at some point z°,

Theorem 5.4 (regularity of the convex subdifferential). Ler f : R™ = R be
convex, and let x° be a point such that 0 € 8f(z®). Then

8f is pseudo-regular at (°,0)

& Of is strongly regular at (z°,0)

& (CG.1)

& (CG.2),
and

8f is upper regular at (x°,0) & (CG.3). ¢
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Notes:

(i) Compared with Theorem 5.1, the Ls.c.-condition of (5.2) does not appear.

(ii) The local monotonicity condition (CG.1) holds true if f is strongly convex;
but the reverse is not true; take f(z) = |¢|. This shows that the local situation
differs from the global one, ie., if (8f)~! is globally unique and Lipschitz, then
f is strongly convex, cf. [1.896, Thm. 2.2].

(iii) For f € C1', the equivalence “’strong regularity < (CG.1y” will also follow
from Theorem 5.14 below. o

Proof of Theorem 5.4. The claimed equivalences essentially follow from pre-
viously proved regularity conditions.

pseudo-regular < strongly regular follows from Corollary 4.7.
strongly regular =(CG.1): see Theorem 5.1.

(CG.1) =>strongly regular: By Theorem 5.1, it is only to show that (8f)~!
is Ls.c. at (0,z%). Setting " = z° and ¢" = 0 in (CG.1), one observes

lg’'ll = ellz’ — 2%l if 2’ € 2° + B, g' € 8f(2") and |lg'l| <&

Taking z' € argmin f,2' near 2° and ¢’ = 0, it follows that z° is isolated
in (8f)~1(0), hence, in particular, the set argmin f = (8f)~*(0) is non-empty
and bounded. So, by Theorem 1.15, the solution sets (8f)~!(y) = argminhy,
are nonempty for sufficiently small {}y|| , and (8f)~! is u.s.c. at 0. Since z%is
isolated in (8f)~1(0), this u.s.c. mapping is Ls.c. at (0,2z%), too.

(CG.2) = strongly regular. Due to (CG.2) and Theorem 4.8, ¥ = (8f)~! is
locally Lipschitz u.s.c. with uniform rank ¢! at the unique minimizers z = 2(y)
fory near 0. By uniqueness of the solutions, it is uniformly Lipschitz 1.s.c., too.
But this is pseudo-regularity due to Theorem 2.17 and strong regularity due to
uniqueness.

strongly regular = (CG.2) see Theorem 4.8

upper regular 4 (CG.3) see Theorem 4.8 and recall again (for <) that
(8f)~(y) is not empty for small |ly|| because (8f)~*(0) -as a singleton- is
non-empty and bounded. a

5.2 Continuous and Locally Lipschitz Functions

In what follows, we intend to elaborate certain deeper, specific properties of
continuous and pseudo-regular functions f: R®™ =+ R™. Let us first note that
we simultaneously speak of mixed systems of equations and inequalities, in this
context.
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For (£, g) € CO{(R",R**™), consider the mapping
M(a,b) = {z € R"| () = a,9(e) < b}
For y € R™ , we write

h(z,y)
H(a,b)

(f(=),9(z) +y) e R*™

{(I, y) I h(:c,y) = (a, b)} c ]Rn+m' (5-10)

Since H = h™!, pseudo-regularity of h is the pseudo- Lipschitz property of H,
and M is pseudo-Lipschitz at ((a®,8°),2°) iff so is H at ((a®,b?), (2%, %%)) for
y0 = b0 - g(29).

5.2.1 Pseudo-Regularity and Exact Penalization

Let
f e CR™R™), f(2°) =0.

On some bounded neighborhood § of 2%, we choose any small function g €
C%1(Q2, R™); recall that

lg| = max{sup(g, ), Lip (g, )}
was defined in (4.3).

Given z near z°®

the equation

we want to find some ' (Lipschitzian close to z) satisfying

f&') - g(a') = £(z).

By the results of Section 4.1, ' exists, provided that f is pseudo-regular at
(z°,0) and |g] is small. Here, we show that ' can be found by an exact penalty
approach if and only if f is pseudo-regular. For this reason, we define for a > 0

Pa(@') = |8’ — 2| + all f(z) + (@) - @) (=" € ).
The function pg is a penalty function (with parameters z and g) for the problem
) min{lle' - 2l||2' € O, £(=') - 9(a') = (2)}.
Let Py(,9) = argming po.
Lemma 5.5 Given a > 0, itholds @ # argmino . gpa = Po(z,g) and
Py(z,9) C z + o|lg(z)||B, whenever |g| and ||z — °|| are small enough such
that z° + rB C Q forr = alg| + ||z — 2°||. o
Proof. It holds z € 2° + rB C Q. Sowehave

Py (z,g) = argmin {p,(')|z’ € Q,pa(z’) < palz)}.
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If pa(z') < pa(z), then
Iz’ — 2|l < Pa(z’) < palz) = allg(z)l| < algl. (5.11)
Thus,
iz’ ~ 2°|| < algl + ||z ~ 2°|| = r and Pa(z,9) = argmin ;0,5 Pa.

Since 2% + rBis compact and nonempty, this yields argmin zo.pps # 0. The
inclusion Py(z,g) C = + a|lg{z)|| B now follows from (5.11). a

The statement (ii) of the next theorem characterizes pseudo- regularity by the
fact that, for large a, pq is a penalty function of problem (P) provided that
[l — z°|| + |g| is small enough. The notion exact penalty indicates here that
the minimizers are feasible points for the original problem (P),

Theorem 5.6 (pseudo-regularity and exact penalization). Letz® be a zero
of f € CAR™R™), let Q be a bounded neighborhood of =°, and put G =
COY(Q,R™). Then the following statements are equivalent:

(i) f is pseudo-regular at (z°,0).

(i) 30,8>0: £ € Pa(z,9) = f(€) = f(2) + 9(¢) Yz € 2°+ BB, g € fBg,
where Bg is the unit ball in G with respect to |+ | given in (4.3). <

Proof.
() = (i4) : Given z € z° + 8B and g € BBg, let £ € Pa(z,g) and assume
that (in contrast to the assertion)

g:=g(§) + f(z) ~ f(€) # 0.

For small 8 > 0, continuity ensures that g has small norm, and by L.emma
5.5, the norm ||¢ ~ || is small, too. From Theorem 4.3 we thus obtain the
existence of a constant C such that, to each small ¢ > 0, there corresponds some
z(t) with

9(z(t)) + f(z) — f(z(t)) = g - tg and ||z(t) — £|| < Cllgllt.
Now choose any @ > C. Then

Pa(z(t)) llz(t) - =l + a(1 - #)llq|
llz(t) - &ll - taligll + (€ — =l + allqll
Ctligli ~ tallgll + pal£) < palf).

So, since z{t) € Q for small ¢ and 8, the point £ € Pa(z,g) cannot minimize
Pe. Hence ¢ = 0.

INIA |

(i4) <= (§) : Decreasing B if necessary, we know that r := alg| + ||z — z°||
fulfills
2% +rB C Q whenever z € z° + 8B and g € 8Bg.
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Next put g constant: g(-) =y’ — f(z) fory' € 6B,z € z° + 6B and 0 < § < B.
If 8 is small enough, continuity of f ensures g € 8Bg. Thus, Lemma 5.5 yields
the existence of some z' € Py(%,g) and guarantees the estimate

llz' — || < allg(@)l| = ally’ - F(@).

Since f(z') = f(z)+g(z') = y', we obtain (i) with pseudo-Lipschitz rank L = a
and neighborhoods U, V having radius 4. o

Let f be pseudo-regular at (z°,0) and € be any fixed bounded neighborhood
of 2%, From the above theorem we know that, for small ||z — z®]|, small |g|
in C%(0, R™) and for sufficiently large @, there is a minimizer &' of pa(€) =
1€ — z|| + all f(z) + g(&) — F(€)]] with respect to € € . Each such &' fulfills the
perturbed equation f(z) + g(z') = f(z') and the estimate py(z') = ||z’ — z|} <
aflg(@)| < algl.

This provides us (at least theoretically) with an exact penalty approach for
computing a solution z' of f(z) + g(-) = f(-) being “Lipschitzian close” to z.
In particular, we may identify f with the function H in (5.10). Then g takes
the place of a perturbation of H, and we are speaking about solutions to a
perturbed system of constraints.

What About the Infinite Dimensional Case ?

We imposed the hypothesis # € IR" to obtain Py(Z,9) # @ in Lemma 5.5.
Concerning the image space, one may formally permit that R™ is replaced by
a Banach space Y. But, if f € C*(R",IR™), the pseudo-regularity of f al-
ready implies m < n (see the Exercise 3 in Section 2.2.3). So, at least for the
locally Lipschitz case, the assumption dimY = oo would be an empty general-
ization because the remaining hypotheses cannot be satisfied even if dimY > n.

5.2.2 Special Statements for m = n

Specific properties of continuous functions f : R® = R™ can be used if m =n
or/and f is locally Lipschitz. As a main motivation for particularly investi-
gating such functions, we mention that (generalized) Kojima-functions are just
of the considered type, provided the functions - involved in the underlying op-
timization problem- have Lipschitzian derivatives. Therefore, our statements
concerning zeros (or level sets) of functions are closely related to critical points
of optimization and variational problems. Iet us start with a consequence
of Rademacher’s theorem. The latter states for any locally Lipschitz function
J:IR" = IR™ that the set Ny of those £ where the Fréchet-derivative D f ()
does not exist, has Lebesgue measure p(Ny) = 0. This yields, for m = n, a close
connection between upper regularity, pseudo-regularity and isolated pre-images.

Theorem 5.7 (pseudo-regular & upper regular). Ler f € C®(R™, R™) be
pseudo-regular at (2%, f(2°)). Then there are neighborhoods U 3 z°,V 3 f(a)
and some ¢ > 0 suchthat
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(i} For almost all & € U , in particular for all points of Fréchet differentia-
bility, f is upper regular at (%, f(z)).
(i) For almost ally € V, the sets f~Y(y) QU are finite.
¢

Proof. (i) If Df(z) exists, one has Cf(z) = Df(z). By Theorem 5.1, the
Jacobians (for  near z®) are regular matrices with uniformly bounded inverses
Df(z)~!. Therefore, the point z is an isolated solutionof f(-) = f(z). The
upper regularity at & follows again from Theorem 5.1.

(i) With some neighborhood U from (i), let M = NyNU. Since u(M) =
and f is Lipschitz on U, also p(f(M)) = 0 is true (note that m = n). By
pseudo-regularity, V = f(U) is a neighborhood of f(z%). Let y € V\f(M).
Using (i), the pre-images € f~1(y) NU are isolated, so they are isolated for
almost all y € V. Taking some closed ball U, = z84-rB C U, the set £~ (y)NU,
must be finite for suchy. Finally, identifying U with int Uy, the assertion has
been shown. (a]

Selections

Given any f € C(R™ R"™) with f(z%) = 0, we ask now for the existence of a
continuous functionh that assigns, to y near 0, pre-images h(y) € f~1(y) and
satisfies h(0) = z°. Evidently, h exists trivially if, for some neighborhood U of
z0, the map y = f~1(y) NU is already single-valued and continuous near the
origin. The next lemma tells us that h exists only in this trivial case.

Lemma 5.8 (continuous selections of the inverse map). Let f € C(R", R"),
0e€V CR" V be open and bounded and h : V. = R™ be any continuous
selection of f~* on V. Then U = h(V) is open, f~1(w)NU = {h(v)} for all
veV and b = fly.

Proof. Since f~1(v') N f1(v") = @ (v' # v"), the selection h : V — Uof
F~1 has the inverse

R1:U =V with A7 = flu.
The function f|v has the inverse k; hence it is one-to-one, which tells us that
[l NU = {h(v)} for all v € V.

By our hypotheses, b and h™! = f|y are continuous; hence V and U are
homeomorphic sets. Since V is open and bounded, so U is open, too. Notice
that this conclusion is just the statement of Brouwer’s invariance of domain
theorem, cf. [AH35, Kap. X.2, Satz IX). 0

Note. Consider, for the situation of the lemma above, the special case of
z° = h(0). Then z° is an isolated zero of £, and U is a neighborhood of z° such
that the map v = f~}(v) NU is single-valued and continuous on V. If there
exist such open sets V and U, we will also say that f~* is locally unique and
continuous near (z°, 0).
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Lemma 5.9 (convex pre-images). Letf € COR",R"™),V C R® beopenand
bounded and suppose that, for some subset X C R", the map v = F(v) :=
F~Yv)YN X is Ls.c. on V. Further, suppose that F has nonempty convex
images for allv € V. Then F is single-valued and continuous on V. v

Proof. The application of E. Michael’s [Mic56] selection theorem yields the
existence of a continuous selection h of F on V. By Lemma 5.8, it holds that
{h(v)} = F~(v)NA(V). Since U = h(V) is open and f~1(v)NX is convex, we
easily obtain from

card (f'(w)NU) =1

that f~*(v) N X is single-valued, too. a

Projections

Let f € C(R™,R"™), f(z®) =0 and f be pseudo- regular at (z°, 0).
Put
¢(y) = inf{|le ~ 2°| |z € ' (¥)} and ¥(y) = argmin 4(y).
With any norm |.| of R", we know that, for sufficiently small > 0 and y,¥’' €
rB, the closed set f~1(y) is nonempty, and

0#¥(y) cz°+ Liy|B,

where L may depend on the fixed norm. Moreover, given § € ¥(y), there exists
r' € f~1(y') such that ||z’ — €|} < L{y’ - y|, hence

¢(y") < ¢ly) + Liy' — vl.
So the distance ¢ is Lipschitz on rB. This yields the well-known observation;
If card ¥(y) = 1 on rB, then the projection ¥ is continuous.

For fixed y, the number of elements in ¥(y) € #~1(y) may depend on the used
norm.

Theorem 5.10 (equivalence of pseudo- and strong regularity, bifurcation). Let
f € C(R™,R™), f(z°) =0 and f be pseudo-regular at (z°,0).

Then the following properties are equivalent.

(i) £~ has, on some neighborhood of the origin, a continuous selection h
with h(0) = 0.

(i) The projection map ¥ is single-valued near the origin.

(i) f is strongly regular at (z°,0).
Moreover, if f is not strongly regular at (2°,0), then (0,2°) is a bifurcation
point of f=Y such that, near the origin, f~' has no (single-valued) continuous
selection s satisfying 8(0) = z°. o

Proof. The statements follow immediately from the Selection Lemma 5.8
along with continuity of ¥ for card ¥(-) = 1. o
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By the theorem, the local uniqueness of the projection ¥ near the origin does
not depend on the used norm, provided that f € C(R™,R™) is pseudo-regular.
Recall that Example 14 presented just a pseudo-regular function which was
not strongly regular.

5.2.3 Continuous Selections of Pseudo-Lipschitz Maps
Suppose that
f € C(R™,R™) is pseudo-regular at an isolated zero z°of f.

Then one easily sees that, if 7 > 0 is small enough, the multifunction H defined

b
d H(y) = £ (y) N (z° + 2L}y|B) (with L from pseudo-regularity)

has compact images, is Lipschitz (upper and lower) on rB and fulfillsH(Q) =

{z°}.

With the same properties, H can be defined for isolated zeros of any pseudo-
regular mapping. However, if 2° is not isolated, the existence of a nontrivial
continuous compact-valued selection H C f~! seems to be an open problem
even for Lipschitz functions f. Nevertheless, the existence of H is ensured for
piecewise C? -functions.

Lemma 5.11 (isolated zeros of PC-functions). Let f € PC'(R",R"™) be
pseudo-regular at (x°,0). Then ° is an isolated zero of f. Thus, near the

origin, f~* has a Lipschitz continuous, compact-valued selection H C f~! with
H(0) = {z°}. o3

Exercise 7. Verify Lemma 5.11. <
The previous lemma is a special case of a powerful theorem, which was recently
shown by P. Fusek.

Theorem 5.12 (isolated zeros of Lipschitz-functions, m = n). Suppose that
f € COY(R"™ R™) is pseudo-regular at (z°,0) and directionally differentiable at
z°. Then ® is an isolated zero of f and, in addition, f'(z%wu) # 0 holds for
all u # 0.

Moreover, if f is even directionally differentiable for * near @°, then there
is some € > O such that |f'(z;u)|| > € for allu€ébd Bandz € z®+eB. ©

Proof. See [Fus99, FusOl). a
Exercise 8. Let F: B c R? = R? be defined as follows:

F@)={z € Bl Iz - ull 2 5}

Analyze the continuity properties for F with the Fuclidean norm, with polyhe-
dral norms and with “ > ” instead of > in the definition of F. Does there
exist a continuous function f : B = B such that f(-) € F(:) on B ? &
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Exercise 9. Find a counterexample {n = m = 2) showing that the pointwise
condition (5.4) in Theorem 5.1 is not sufficient for the Lipschitz 1s.c. of F~1.
<o

5.3 Implicit Lipschitz Functions on R"

For locally Lipschitzfunctions f in finite dimension, the derivative T f describes
precisely (local) uniqueness and Lipschitz behavior of inverse and implicit func-
tions. This will follow from the subsequent Theorems 5.14 and 5.15, shown in
[Kum91b] (including Example BE.3, too) and [Kum91a], respectively.

Let us first recall Clarke’s basic inverse function theorem in [Cla76].

Theorem 5.13 (inverse functions and 8f). If f € COY(R™,R"™) and all ma-
trices in 8f(a®) are regular, then f is strongly regular at (z°, f(x°)). <

This statement follows from the next Theorem and Theorem 6.6. Replacing now
8f by Tf, we obtain a necessary and sufficient condition and a clear description
for the T-derivative of the inverse. In Chapter 6, we shall see that T'f fulfills
also several chain rules which are important for computing them in relevant
special cases.

Theorem 5.14 (inverse functions and TY). A function f € C(R™,R*) is
strongly regular at (2%, f(z®)) if and only if

Je>0: |[f(z') ~ f(z)| 2 cllz’ — z|| Vz,z’ € 2° + ¢cB. (5.12)

Moreover, if f even belongs to CO'(R™ R"), and Q is some neighborhood of
20, then the following statements are equivalent.

(i) [ is strongly regular at (z°, f(z°)).

(i) T f(z°) is injective.
(i#i) f is strongly regular at (2%, f(z®)) with respect to G = C®* (), R™).
If f € COYR™R™) is strongly regular at (29, f(2°)), then the locally unique
(and Lipschitz) inverse f‘1 satisfies the equivalence

u € Tf7H{(f(z°)(v) & v € Tf(z°)(u).
<

Note. In comparison with Theorem 5.1, the requirement ” f~! is Lipschitz
Ls.c. at (y° 2°%)” does not appear and is, on the contrary, a key consequence of
(ii). The first statement of the theorem was already a footnote in [Cla76].

Proof. Iet (5.12) be true. Then the open ball U = 29 + ¢B® and its f-image
V = f(U) are homeomorphic because (5.12) ensures that f~!, as a mapping
of the type V = U, is well-defined and Lipschitz with constant ¢~}. By the
invariance of domain theorem, V is open if so is U. Since f(z°) € V, we thus
obtain f(z°) € int V. Hence f is strongly regular at z°.
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Conversely, (5.12) follows immediately from strong regularity of f at 0 :
Put y = f(z),¥’ = f(z') and apply that f=* is locally Lipschitz. Thus the first
statement is true; (i) & (5.12).

Now, let f be locally Lipschitz, say with some constant K on . (i)=> (ii)
follows from Theorem 5.1. (ii) = (5.12) can be seen as follows: If (5.12) is not
true, then there are sequences z - 2%,z' = z%,¢ } 0 with

/(") - f(@)l < ella’ - =].

Setting &' = (z’' — z)/||z' — =z|| the sequence of ' € R™ has a cluster point
u® # 0. With ¢ = ||z’ —z|| we thus obtain &’ = z+tu' and, for some appropriate
subsequence,

0 =lim¢™! (f(z + tu') - f(2)) € Tf(z°)(u%);

hence (ii) is violated. Thus, using (i) & (5.12), we also have (i) < (ii). For the
equivalence (i) & (iii), we refer to Corollary 4.4.

The formula for Tf~! is an evident consequence of the definitions. ]

The implication (i) = (iii) is not restricted to Lipschitz functions in finite di-
mension, only. As already mentioned in the proof of Corollary 4.4, one may
consider the function z ~ f~!(g(x)) which maps a small neighborhood of z°

into itself and is contractive as far as fis strongly regular at z°and |g|is small
in C%1(,R").

Example BE.3 indicates that the conditions of Theorem 5.14 are weaker
than F.H. Clarke’s requirement of all matrices in 8f(z®) being regular because
there is a Lipschitz-homeomorphism of R? (piecewise linear) such that 8f(z°)
contains the zero matrix. So, Theorem 5.13 presents a sufficient condition for
strong regularity, which is not necessary even for piecewise linearfunctions (n >
1). Equipped with chain rules for computing T f, Theorem 5.14 turns out to be a
powerful tool for strong stability analysis of critical points in (finite dimensional)
C'! optimization and for regularity of generalized Kojima functions.

Additional Nonlinear Perturbations
Theorem 5.14 can be extended to systems of the form
f(z,p) =y, where f € C™(R"*™ R") and f(z°,0) =0, (5.13)
and to the related implicit function
z = z(p,y) for = near z° = z(0,0).

In order to exploit the equivalence of (i) and (iii) in Theorem 5.14, we can
consider, as in §4.3, the nonlinear perturbation g(z,p) = f(z,0) — f(z,p) of the
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original function. But one has to be careful: In §4.1 and §4.3 we needed small
C®!'-norms of g(-,p) on some neighborhood §? of z° as p — 0.

The latter is not necessarily ensured by supposing f to be locally Lipschitz,
see Example 6.7 in §64. We only know that the sup-norm on §2 fulfills

8UPyeq l|f(2,0) - f(z,p)ll » 0 asp - 0.

If f(-,0) is strongly regular at (z°,0) € R?", Theorem 4.5 ensures the exis-
tence and local upper Lipschitz behavior of solutions to (5.13), but not the
uniqueness. Nevertheless, the Thibault derivative T f(z®,0) describes again the
implicit-function situation near (%%, 0,0).

Theorem 5.15 (implicit Lipschitz functions). The implicit functio  # z(p,y)
to (5.13) locally exists as a uniquely defined Lipschitz function (that maps
a neighborhood V of (0,0) into some neighborhood U of 2°) if and only lf
0 & T f(2°,0)(u,0) holds for each u # 0.

Proof.

(«) For p = 0, the function f(-,0) : R®™ = IR™ has an inverse ¢ being
locally Lipschitz near (0, %) by Theorem 5.14. So there are positive & and 8
such that the solutions £ = ¢(y) in z° + @B of f(z,0) = y are well defined and
Lipschitzfor ||y|| < 8. By Theorem 4.5, we find positive &' and 8’ such that

fp)=y, =ze€2®+dB
is solvable whenever ||p|| + [ly|| < B8', and related solutions z(p,y) satisfy
llz(pyy) — 2°| £ C|l(p,)|| with some (local) upper Lipschitz rank C.

Therefore, if (<) is wrong, then there exist sequences pg,p; —* 0,¥x,y; — 0
and related solutions & = ®(pk,yx) and &, = z(p},y,), both tending to z0,
such that

1€k — &1/l @k 92) — (ks g2l = 00.

Then, f(&k.pr) = yx, f(&,P}) = ¥k and || f (&, px) — F(&, DI < Lylipk — pell.
Setting tx = |[€}, — &kl and wy = (€}, — &) /tx € B, we obtain

[ £(&x + trws,pr) = f(Ex, D)l
S| £ L) — £ (&, PRIl + IF (Eks 2x) = £ (& D)
<k = yell + Lyl Pl — pell-

Because of t;*||(p, yi) — (D, yx)|l = 0, this tells us that

lim.tl-cd”{(fk + trwg, ) — f (&, 2|
< Ume (|lyg — well + Lyllpk — pell) = 0.

After selecting a subsequence such that wy converges to some w, this just means

0 € Tf(z°0)(u,0),u # 0.
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(=) If0 € Tf(z°0){u,0) and u # 0, then we find
lim 8! (£ (€ + tiws, pi) ~ £(€,pi)) = 0
for appropriate sequences converging as noted above. Setting

Vi = (6 + tsws,pe) and yx = (&, pr)

one easily sees that the inverse z(p,y), if it exists at all, cannot be locally
Lipschitz. o

Relations between T f and “partial derivatives” Tz f and Tp f will be studied
in Section 6.4.

Exercise 10. Verify: If f € C®1(R",R") is strongly regular at (z°, f(z°))
and directionally differentiable for & near z° then the local inverse f~! is di-
rectionally differentiable for y near f(z°). o



Chapter 6

Analysis of Generalized
Derivatives

In this chapter, we study properties of selected generalized derivatives which
will play a crucial role in the subsequent chapters. We mainly focus on the con-
tingent derivative CF and the Thibault derivative TF of some given (multi-)
function F, both generalized derivatives were introduced in Section 1.2. The
presented properties of CF can be found in [AE84], the related statements for
TF are often similar, we refer, e.g., to [Thi80, Kum91b]. Moreover, we exam-
ine the relations between Thibault derivatives and Clarke’s [Cla83] generalized
Jacobians with respect to locally Lipschitzian functions, and we discuss so—
called Newton maps [KumOOa] which are set-valued first—order approximations
of nonsmooth functions and are of interest in the local convergence analysis of
Newton—type methods.

6.1 General Properties for Abstract and
Polyhedral Mappings

Suppose that
X and Y are normed spaces, F': X 3 Y and z = (z,y) € gph F. (6.1)

We recall the definitions of CF(z) : X 3 Y and TF(z) : X 33 Y given in
Section 1.2 above. One has v € CF(z)(u) if there exists asequence ¢ 4 0 and an
associated sequence (ug,v:) = (4,v) such that y + tv, € F(z + tu;), while v €
T F(z){u) means that there exists some sequence # | 0 and associated sequences
(ug,ve) = (u,v) and (z¢,yt) = (2,¥) € gph F such that y; + tvg € F(z; + tuy).

We will also use the characterization that v € TF(z)(u) iff there are t {
0,(z:, 1) — 2z in gph F and o-type functions 01,03 such that y; + tv + 02(t) €
F(z¢ + tu + 0,(1)). Clearly, 01(t) = t(v; — v) and 02(t) = t(u; ~ ).

105
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By the definitions only, it holds

lim sup CF(2")(u') C TF(2)(u).

z'—z in gph F,u'—u

In general, the inclusion in that relation cannot be replaced by an equation, see
the simple example F(z) = |=]|.

Tangents

Derivatives of multifunctions are closely related to fangents of sets, cf., e.g.,
[Cla83, AES4, RW98, BL0O0]. To see this, let Z € X and z € Z. Note that
convergence of sequences is written index—free according to the convention of
§1L.1.

One says that w € X belongs to the contingentcone C(z,Z) of Z at z (also
called Bouligand cone) if, for some sequence ¢ | 0 and some related sequence
w; — w, there holds z + tw; € Z.

More restrictive, w belongs to Clarke’s tangent cone Ty(z, Z) if, whenever
t1 0 and 2: = z in Z, there are related wy — w such that z; + tw; € Z.

Another cone can be defined by saying that w belongs to T(z, Z) if there
exist certain sequences ¢ | 0,w; =+ w and 2 — z in Z such that 2 + fuwy € Z.
Evidently,

T(z,Z2)C C(2,2) C T(z,2).

If Z is the closure of an open set, then T'(z, Z) is the whole space. If Z is a
convex polyhedral set in finite dimensions, then Te(2, Z), C(2,Z) and T'(z, Z)
are convex polyhedral cones.

Retuming to the map F and setting Z = gph F € X x Y, thedefinitionsof
tangents in the product space (X, Y) yield that

gphCF(z) = C(z,gph F) and  gphTF(z) = T(z,gph F).

Elementary Properties

Because of the definition via limits, the sets TF(z)(u) and CF(z)(u) are closed
in Y. If the images of F are convex then CF(z)(u) or TF(z)(u) are not neces-
sarily convex again. This fact explains one type of difficulties for establishing
a related differential calculus for CF and TF as well.

Another type of difficulties comes from the fact that, for writing some el-
ement v € TF(2)(u) in limit-form, it may happen that one needs a partic-
ular sequence t = tx | 0. In other words, some sequence t | 0 already as-
signed to the derivative of another function may be inappropriate to represent
v € TF(z)(u) in limit-form. This leads to difficulties if we want to show the
additivity TF(z) + TG(z} = T(F + G)(z) or other chain rules.

On the other hand, many proofs concerning chain rules for generalized
derivatives are only straightforward consequences of the definitions: One has to
select appropriate converging subsequences from a given one (which exists by
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the definitions only). If this is possible, we will say that the related rule can be
shown in an elementary way.

As a drastic example of an invalid chain rule we regard the following
conjecture: Given real functions f, g that are continuous at 2, it holds

C(f + 9)(2)(u) = {0} provided that Cf(z)(u) = Cg(z)(u) = {0}.

Put f(z) = /]z[ ifz is rational, f = 0 otherwise; g(z) = /][ if # irrational,

g = 0 otherwise. Then (f + g)(z) = /][ and C(f + 9)(2)(u) = @ for z = 0 and
u© = 1. Hence, the conjecture is false.

Lemma 6.1 (TF, CF are homogeneous; TF~!, CF~Y). Suppose (6.1). Then

TF(2)(ru) rTF(z)(u) VreR VYuelX,
CF(2)(\w) ACF(2)(u) VA20 VueX.
v € TF(z,y)(u) v € T(F)(y,2)(v),
v € CF(z,y)(u) u € C(F')(y,z)(v).

g

<

Proof. Given v € TF(z)(u)one may reverse the role of y¢+tv; and y; aswell
as of zy+tuy and x; in the definition of TF. Then one obtains —v € T F(z)(—u).
Thus, TF(z) is a homogeneous mapping. Similarly, one sees that CF(z) is only
positively homogeneous. As already noticed in Remark 1.1, the equivalences
for the inverse multifunction - are evident due to the symmetric definitions
of the derivatives. O

Lemma 6.2 (variation by C!functions). Suppose thatX and Y are normed
spaces, f€CHX,Y), F: X 3Y and G=f+ F. Then

TG(z, f(2) + y)(u) = Df(z)u+TF(z,y)(u),
uw € TG )y + f(z),z)(v) & ueTF)yz)(v-Df(z)u).
The mappings G and T, where T is defined by
L(€) = f(z°) + Df(z°) (€ — 2°) + F(¢),

have the samederivatives TG(2%) = TT(2%) at 2° = (2°,3°) € gph G.
All these statements are also valid for the contingent derivatives CG, CG™*
and CT. <o

Proof. By writing down the related limits, one directly sees that

TG(z, f(z) + y)(u) = Df(z)u + TF(z,y)(u),
CG(x, f(z) +y)(u) = Df(z)u + CF(z,y)(u).

Taking I.emma 6.1 into account we thus obtain that

u € T(G )y + f(z),z)(v) & veTG(z,f(z)+y)(u)
& v-Df(z)u € TF(z,y)(u)
& u€T(F Y (y,2z)(v— Df(z)u).
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The analogous arguments hold true for contingent derivatives. Moreover, if in
particular Df(z) =0 andf(z) =0, then

TG(z,y) = TF(z,y) and T(G~)(y,2) = T(F")(y,2).

Applying this fact to the “difference” of G and ' at z = 2%, G and T have the
same T-derivatives at 2°. Again, the analogous arguments are valid for CG and
CT. o

Similarly, one shows by elementary means

Lemma 6.3 (small variations of given mappings). Let X and Y be normed
spaces, F,G: X 3Y, 2% € X, f(2°) = 0 and 2° = (2°,4°) € gph FNgphG.
Then the following properties hold.

1. IfLip(f,2° + rB) = O(r), then T(f + F)(z°) = TF(2°).

2. If f(z) = o(z — 2°), thenC(f + F)(z°) = CF(z9).

3. If Tf(z°)(u) = {0} andf € C%1, thenT(f + F)(2°) = TF(2°).

4. If dg(F(z),G(z)) = o(x — z°), thenCF(2°) = CG(2°).

Polyhedral Maps

An important special class of multifunctions F : R™ =3 R™ was introduced and
studied by S.M. Robinson [Rob81]. One says that Fis polyhedral, if gph F is a
union of a finite number of convex polyhedral sets P (bounded or not). Such
a union wi}l also be called a polyhedral set. Clearly, F is polyhedral if and only
if so is .

Examples

Given a convex polyhedron P C R, the following mappings are polyhedral
and send R” into itself:

(i) theprojectionmap n(z, P) of z onto P, which is multivalued for polyhe-
dral norms and piecewise linear for the Euclidean norm:;

(iiy the map of normals Np(z) = {y|(y,p—2) <0V p € P} (if z € P) and
Np(z) = @ (if z € R"\P), which is related to the Euclidean projection
by y € Np(z) & n(z+y,P) ==

Further important examples are the solution maps of parametric linear inequal-
ities and parametric linear complementarity problems, respectively,

(iii) S(y) ={z € R"|4z <y}, y € R,

(iv) F(2) = {(z,y) € R*"|Az + By = z,2 2 0,y > 0, (z,y) = 0}, z e R™,
where A, B are given (m,n)-matrices, as well as linear transformations of con-
vex hulls

(v) M(z) = conv {p* + Lyzlk = 1,.., N} with given points p* € R™, and
linear functions Lg : R™ -+ R™.
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Properties

Having a finite representation of the graph by closed sets,
gphF = Up Py,

the submappings Fj, defined by gph Fx = Pk, still describe the contingent-
tangent cones and the contingent derivatives via

ClzgphF) = | C(zR) and CF(x)w) = |J CR(:)w), (62)
k: 2€ P, k:z€EP,

respectively. Clearly, some of these sets CFi(z)(u) may be empty. For polyhe-
dral mappings, the cones C{(2, P} are solution sets of linear inequality systems
Apv £0, hence they are computable and have a nice structure. This is the key
for showing the next well-known statements.

Given a linear transformation A : R™ — R? we define

AF() ={Ay|y € F()}.
Clearly, AF is polyhedral if F is so.

Theorem 6.4 (polyhedral mappings). Let F : R™ =3 R™ be a polyhedral
multifunction, and let z = (%,y) € gph F. Then:
(i) The contingent derivative CF(2)(") is again polyhedral.
(1) (exact approximation). For sufficiently small € > 0, it holds
(# +eB)ngph F = (24 eB)N (z + gph CF(2)), and
CFP()u)={veR™y+tve F(z+tu) Vi€ (0,6)} i |lu)l <L
(it) (linear transformation). Under linear transformations A : R™ = R%, it
holds
AlCF(z,y)(w)] C C(AF)(z, Ay)(w)
Conversely, if ¢ € C(AF)(z, Ay)(u), then one has
c€ A[CF(z,y)(u)] & t—T(t),t20, isls.c. at (0,y), (6.3)
where T is defined by T'(t) = F(z + tu) N {n|An = Ay + tc}. <

Note. Inparticular, I'is 1.s.c. at (0,y) provided that

(i) the matrix A is regular (due to 7 =y +tA™l¢), or

(i) F is upper regular at (z,¥) and I'(t) # @ for small ¢ > 0.
In general, the Ls.c. condition for I' may fail to hold: Tet gphF = PUQ be
given by P = {(£,0)|¢ € R} C R? and Q = {{0,)} with fixed ¥ # 0. Then
CF(0,y)(u) is empty for u # 0, but 0 € C(AF)(0, Ay)(u) holdsfor Ay =0. <

Proof of Theorem 6.4. The statements (i) and (i) are left as Exercise 11.
We consider the statements (ii).
() Letv € CF(x,y)(u). Then, forsmall ¢ > 0, it holds y + tv € F(z + tu)
and, by definition,
Ay + tAv € (AF)(z + tu).
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Hence,
Av € C(AF)(z, Ay)(v).

(D) The supposition ¢ € C(AF)(z, Ay)(u) means that, for certain ¢ { 0,
there are elements 7 satisfying
Ay+te=An and n € F(z + tu). (6.4)

We have to verify that ¢ = Av holds for some v € CF(z, y)(u).

If the latter holds true then, as shown in the first part, n = y + tv be-
longs to I'(¢) andfulfills ||n — y|| < t||v||. Thus T is necessarily ls.c. for
¢ € A[CF(z, Ay)(u)].

Weshow the sufficiency. If ' is 1.s.c. at (0,y), then the optimization problem

min, {|ln — yl| | n satisfies (6.4)}

has solutions y(t) forsmall ¢ | 0, and y(t}) = y. Because F is polyhedral, we
find a subsequence of ¢ and a fixed convex polyhedron P ¢ gph F such that the
points (z + tu, y(t)) belong to P. Let P have the implicit description

&nMeEP & M{+Nn<w

with appropriate fixed matrices M, N and vector w. Then, for certain ¢ | 0,
our minimum problem reads

(6.4); mﬂinlln—yll s.t. An= Ay +te, Nn<w - Mz - tMu.
The linear constraints depend on a real parameter £ > 0 on the right-hand
sides, and the related feasible set map is Lipschitz ls.c. on its closed domain,
by Hoffman’s lemma given in Section 2.1 above. Therefore, ||ly(¢)—y|| < Lt holds
for some L and small ¢. After selecting an accumulation point v of (y(t)—y)/tfor

t { 0, one sees that v € CF(z,y)(u). Along with (6.4)for n = y(t) = y+tv+o(t),
this yields the claim ¢ = Av. o

Exercise 11. Prove the statements (i) and (i) of Theorem 6.4. ©

6.2 Derivatives for Lipschitz Functions in Finite
Dimension

In this section, we suppose that
f:R"™ 5 R™ is a locally Lipschitz function with rank L near z.

Then the differences after replacing « by a sequence u* — u in the definition
of Tf,

d(k) =t [f(a* + tuu®) - f(@*)] - 5 [F(2* + taw) - £(z*)],



6.2. Derivatives for Lipschitz Functions in Finite Dimension 111

are vanishing due to [|d(k)|| £ L|ju® — u|| = 0.
The same holds in view of C f. Hence,

— Vi +=L[ £k -
THW = {o] L et romd a5 | Jr @)
= Yim =1 -
010 = {3 tramen o "0 T 6o

These sets are
non-empty, closed and bounded (C Lllu}|B)
because f is locally Lipschitz and ¥ = R™.

For f € C*(R™,R™), it holds
Cf=Tf=Df.
For the absolute value f(z) = |x| we observe that
CF(0)(u) = {f'(0;u)} (the usual directional derivative),

and
Tf(0)(u) = [~|ul,|ul]] (a closed interval).

So Cf and T fare different even for elementary functions.

Further Properties
T f(x)(u) and Cf(z)(u) are connected sets. (6.7)

Proof. We consider T'f. Assume there are some z° and disjoint open sets £
and , such that M := T f(2°)(u) meets 3 and 3 , and M C £, UQ;. Then
the same is true for the (larger) set

M) = {v|v=t" (f(z + tu) - f(z)), d(z,2°) <&, 0 <t <&}

as far as € > 0 is sufficiently small. Indeed, it holds M = limsup, o M(e),
and all the sets under consideration are uniformly bounded. Next, let ele-
ments v* € M(e) N be written with related ¢; and z*. Setting, for 0 <
A< 1, z(0) = Azt + (1 = XN)z? and £()) = My + (1 = A)tg, the points
v(A) = HA)"F(z(A) + t(A)u) — F(z(A))} belong to M(e) and form a con-
tinuous curve, connecting v* and v%. So M (g) C 4 Uy cannot be true; M is
connected. For Cf, put z = z°. O

Both mappings are Lipschitz in u, i.e.

Tf@)(w) C Tflz)(u)+ Lilw'-u|B (6.8)
Cf(z)(w') C Cf(z)(u)+ Ll —ul|B. (6.9)
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This follows from the Lipschitz estimate
llt5 [f (* + taw') = £(2°)] = £ (£ + tau) = f(&*)]I| < Ll - wl],

by assumption. a

The mapping Tf has a useful subadditivity property which was already
shown in [Thi80].

Tf(z)(u' +u") C TH(z)(w') + T f(z)(u"). (6.10)
Setting ¢* = z* + t,u", (6.10) follows due to

f(z® + (' +u")) - f(z*)
= f(z* + tpu” + tpu') — f(z* + ") + f(2F + teu") - f(2*),
= f(E% + teu') — F(EF) + f(z* + tpu") - f(z*)

and by passing to the limits as & = oo. o

The statements

Tf is a closed mapping of both arguments, (6.11)

T(f +9)(z)(u) C Tf(2)(u) + Tg(2) () (©12)
if f and g are locally Lipschitz, ’

follow directly from the definition by selecting appropriate subsequences. O

For locally Lipschitz functions, the relation between D*f and Cf is very
close. To see this, we prove a further characterization of D*f. Tet

sup(v*, Cf(£)(u)) denote sup,ecy(gy(u) (v*) v)-

Theorem 6.5 (Cfand D*f). For f € C®*'(R",R™), onehas:
(i) u* € D*f(z)(v*) if and only if
0 € D*g(z)(1) for g={(u*,") +{v*, f(:))
(i) u* € D*f(z)(v*) if and only if
lim inf{—m SUPyep ((u‘:“> + sup (v*, Cf(f)(u») <0. 1%

Proof. (i) By Remark 3.6, the relation u* € D" f(x%)(v*) means that

(u,u) + 87 (u*, f(ze + su) = f(p)) S t+t57 | f@e + su) ~ f(z)]
whenever 0 < s € r; and u € B hold for certain sequences
t=t 10,2 5> zand r | 0.
(6.13)
The left-hand side of (6.13) does not depend on t explicitly. The right-hand

side fulfills
t+ta7 Y| f(zs + su) — f(z)]| (1 + Ly)

with some Lipschitz rank Ly of f near °
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and vanishes.
So u* € D* f(z)(v*) means equivalently that

SUPye B, 0<a<r(t) {u*,u) + 3_1(”‘, f(ze + su) - f(z)) < e(t) (6.14)
with e(t) { 0 for certain ¢t = ¢, | 0,z — z,r(¢) L 0. :

The same condition appears for 0 € D*g{z)(1) for the given g. This verifies (i).
(il We show first (¢=). Let

lim sgg((U‘,U) + sup{v*, C£(§)(u))) <0,

§=z oy
for certain £ = 2. The contingent derivatives fulfill by definition
Co(§)(u) = (u*,u) + (v*, Cf(§)(u)),

hence ¢(§) := supyep sup Cy(€)(u) satisfies limgg e(é) < 0. For fixed € we
may estimate

9(z) < g(&) + c(E)llz — €|l + o{z - €),
see Lemma A.2. So, given any £(€) { 0, one finds r(¢) > 0 such that

s [g(€ + su) — 9(&)] < c(§) +€(€) VYueBand 0< s <r(¢).
This ensures, for certain € — ,
lim¢ ¢ 8UPye B 0<a<r(c) 87 Mg(€ + su) - g(£)] < 0,

ie., 0 € D*g(1). From (i), we thus obtain the assertion u* € D* f(z)(v*).
(ii) (=»). Using

sup(v*, Cf(x:)(u)) < suPocsgrry 87 (0", f(22 + 8u) — flz2))
which is true (for all r(t) > 0) by definition of C' f, we obtain from (6.14)

supuEB((u" "’) + sup(v“, Cf(zt)(“)))
< SUPyeB o<agr(t) (U 1) + 871 (v, fzs + su) — f(z:)) <e(?)

with &(t) } 0, again for certain sequences of ¢ = tx 4 0,2¢ — z,7(t) 4 0. Setting
& =z , the latter yields the assertion. a

6.3 Relations between Tf and 2f

Again, let f:R™ = R™ be locally Lipschitz.
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Generalized Jacobians
We briefly recall the needed definition, see Chapter 1:
© = {z | Df(x) exists as Fréchet derivative},
85 f(z) = {A | A =lim Df(z*)for certain z*¥ — z in 0}

and

8f(z) = convd, f(z)

is the generalized Jacobian of f at = in Clarke’s sense.
Since gph8,f is closed (in finite dimension), 8f : R® —+ R™" is also a
closed mapping, by Caratheodory’s theorem concerning convex hulls. We show

that
8o f(z)u C T f(z)(u).

Let A € 8,f(z). Considering points ¥ = z such thatz¥ € © and D f(z*) = A,
one finds ¢, > 0 such that

F(@® + tyu) - f(z*) = 4 Df(z*)u + r*, where ||[r*|| < te/k.

Hence,
limDf(z*)u = Au € Tf(z)(u).

Afterreplacing 8, f () by its convex hull, one obtains 8f (z)u C conv (T f(z)(u)).
Further, if A € 8f(z) is an exposed matrix (i.e., A is not a proper convex com-
bination of elements in 8f(z)), then 4 € 8, f(x), and, consequently, the related
set fulfills

(ex8f(z))u C 8o f(z)u C Tf(z)(u) and Of(z)u C convT f(z)(u), (6.15)

where the symbol “ex” refers to the set of exposed elements.
Conversely, the (deeper) relation
Tf(z)(u) C 8f(z)u. (6.16)
holds. To verify this inclusion, one may apply the mean value theorem
F(&* + tru) — £(z*) € conv [Up<o<18f(z* + tyu)(tru)),

shown in [Cla83] and the fact that 8f is closed and locally bounded. Moving
z* = 2 and t; | 0 here, and taking into account that (obviously)

t;’@f(z" + Btpu)(teu) = 8F(z® + 6t u)(u),

the inclusion (6.16) follows immediately.
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Theorem 6.6 (T'f and generalized Jacobians)
8f(z)u = conv (T f(z)(u)). (6.17)
o

Proof. Now, the assertion is a consequence of (6.15) and (6.16) because 8f(z)u
is convex. O

The inclusion (6.16) may be strict even for piecewise linear functions f :
R? - R?, see Example BE.3.

For m = 1, (6.17) shows 8f(z)u = T f(x)(u) because T f(z)(u) is convex as
a connected subset in R.

The listed properties concerning T f, including also chain rules for composed
functions, have been shown basically in [Thi80], while (6.7) and (6.17) were
proved in [Kum91b]. Concerning properties of 8f we refer to [Cla83], and
concerning C'f to [AE84].

6.4 Chain Rules of Equation Type
6.4.1 Chain Rules for Tf and Cf with f € C%?

In what follows we derive chain rules for functions in finite dimension and
impose the general assumptions:

g:R* =5 R™,
f:R™ = RP is locally Lipschitz,
h=f(g(-)) and y = g(x).

Then one has

Th(a:)(u) C Tf(y)(Tg(:c)(u)) = UvETy(z)(u)Tf('y)('U), (6 18)
Ch(z)(u) C Cf(y)(Co(z)(u)) := Uvecy(a)w) Cf () (v). '

The proof is elementary: Let w € Th(z)(u) and w = limt~t[h(z, +tu) — h(z;))
for certain £ } 0 and =z = z. One can select a subsequence such that v, :=
t=[g(zs + tu) — g(z¢)] has a limit v € Tg(z)(u). Setting now y: = g(z;), one
obtains g, —+ y and w = lim ¢~ [f(ye + twe) — (), ie. w € Tf(y)w).

Ifz, = # and y¢ = y are fixed, our arguments remain valid, so one obtains
the assertionfor Ch, too. 0

For the reverse inclusions, one needs extra assumptions, because elements
v € Cg(z)(u) and w € Cf(y)(v) may require different sequences t | 0 for the
related limit representations. If the limits do not depend on the particular
sequences, the difficulties vanish. So we leave the following chain rule as an
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Exercise 12, Verify the following stronger versions of (6.18):

3] If f or g is directionally differentiable,
then Ch(z)(u) = Cf(y)(Cy(z)(w)).
(ii) If f € C*, then Th(z)(u) = Df(y)(Tg(z)(w)). (6.19)

(iii) If ge C! and g~ ! is l.s.c. at (y,2),
then Th(z)(u) = Tf(y)(Dg(z)(u)).

If f and g are not continuously differentiable, then it still holds:

If g is pseudo-regular at (z,y),
then Tf(y)(v) C Th(z)(Tg~* (y, 2)(v)).

Proof. let w € Tf(y)(v) be writtenas w = limt™!{f(ys + #v) — f(v1)],
with some ¢ | 0,  — y. Since g is pseudo-regular, we find first certain
z¢ € 97 1(y) tending to z, and next related points z} € g~ (y: + tv) satisfy-
ing a Lipschitz estimate ||z} — z¢)} < Lt. Thus, the points a' := ¢~ (z} — z;)
form a sequence with some cluster . Then a € Tg~*(y,z)(v) and, due to

=lim¢~1[f(g(=})) - f(9(zt))] and z} = =, + ta’, it holds also w € Th(z)(a)
as requ1red

(6.20)

Note. We have shown that w € T f(y)(v) belongs to Th(z)(a) for some a €
Tg9~}(y,z)(v), and we already know that v € Tg(z)(u) & u € Tg™}(y,z)(v).
Hence, if Tg~(y, z) is single-valued, then a = u and

Th(z)(u) = UpeTg(z)w) T () (@)
hold true. ©

However, even if g is linear, the reverse inclusion O may fail to hold for Th
in (6.18).

Example 6.7 (chain rule, counterexample). Let g{z) = (z,0)and h(z) =
f(g(z)), where

0 ify, <0
flyya) =< 1 H0<y < e
lya| otherwise.

Then f(y1,0) =0, h(z) =0, Th(0)(1) = {0}, but 1 € T'f(9(0))(1,0). o

Partial Thibault Derivatives

The next chain rules appear to be the key for our later applications. We consider

f($,y) = h(m:g(y)); h: ]R’H'q - ]Rp, g: R™ — ]R'q: f: R™™ - RP,
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Again, hand g are supposed to be locally Lipschitz. We are interested in the
formula

T f(z,y)(u,v) = Toh(=, 9(1))(v) + Tyh(z, g))(Tg(y)(v)), (6.21)

where Tzhand Tyh denote the partial T-derivatives, defined - as usually - by
fixing the remaining arguments. In general, (6.21) is not true, we need a special
property of g.

”Simple” Lipschitz Functions

A locally Lipschitz function g : R™ ~ IR? is said to be simple at y if, for all
v € R™, w € Tg(y)(v) and each sequence t; { 0, there is a sequence y* — y
such that

w = lim 5 [g(y* + tav) — g(y*)] holds

at least for some subsequence of k — oo.

It is remarkable that neither all functions g € €% (R, R?) nor all PC*-functions
g are simple. On the other hand, all g € C®(IR™,R) are simple (cf. [Kum91b]).
Further simple functions are y — y* and y — (y*,y™), see Lemma 7.4 below.
Detailed investigations of simple functions and relations to the following chain
rule may be found in [Fus94].

Theorem 6.8 (partial derivatives for Tf). Let g and h be locally Lipschitz,
f = h(z,9(y)), and let Dyh(-,") exist and be locally Lipschitz, too. Then

T f(z,y)(u,v) C Tzh(z, 9(y))(u) + Tph(z, 9(y))(Te(y)(v))-

Let, additionally, g be simple at y. Then the equation (6.21) holds true.
Moreover, given any

a € T;h(z,g())(u), ¢ € Tg(y)(v) and b€ Tyh(z,g(y))(q),
there are sequences ¥ > 2,9% o y and tg L 0 such that

a+b =Ume  [f(z* + teu, y* + txv) - f(2,4F)]  as well as

g = limty :[y(y" + tw) — g(¥¥)),
b = lim ¢} [h(z, g(y*) + trq) — Rz, 9(¥"))],
e =limt[A(z* + tau, g(y)) — h(z*, 9(3))].
o
Note. Clearly, Tgh = Dgh. <

Proof of Theorem 6.8. All sequences t&, 8,7t will be supposed to be posi-
tive and vanishing. Let (z*,y*) = (,¥)-
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Proof of "c”: Letw € Tf(z,y)(%,v) be given by
w=limw® and wF = t7{f(2* + teu, y* + tev) ~ f(2F,9%)).

We put £* = z* + t3u, n* := y* + ;v and analyze the right-hand side of (6.21).
The set Tyh(z,9(y))(u) contains the accumulation points of

t; [h(2* + teu, g(p)) — h(z*, 9(y))]
ty ek, 9(v)) - h(z*, 9@))].

Since the sequence {ax} is bounded, convergence ax — @ may be assumed (at
least for some subsequence). Next consider

¢* =t g(n*) - 9(y")).

Again, convergence ¢* = ¢ € Tg(y)(v) may be assumed (again for some subse-
quence if necessary). Thus, Tyh(z, g(y))(g) contains the limits of

be ty [h(z, g(y* + trg®) — h(z, g(¥*))]
ty L[h(z, 9(n*)) = h(z, 9(4*))].

Since also {bx} is bounded, now by —+ b € T,h(z,9(y))(g) may be assumed.
Therefore, the right-hand side in (6.21) contains @ + & = lim(ax + be). It
remains to show that

Qg

i

¢t i=wk —ay by
is vanishing. Explicitly, we have

thek = [ h(E5,g(n")) ~  h(=*,g(y*")) ]
~{ h(&k,g(¥) - (=t )] - [M(z,9(n*)) — h(z,g(")) |

Adding elements of “vertical groups” as well as 0 = h(z*, g(n*)) — h(z¥, g(n*)),
this yields

tec® = [ {h(€* g(n")) — h(EF,9())} — {h(zk, g(n")) - h(z*,9(1))} ]
+[ {%z*,gl(ank))—h(z",y(y"))}—{h(w,y(n“))—h(z,g(y"))} ]
= 4- ,

where A and B denote the two squared brackets.

The term
Ay = k(g 9(n")) - h(€*,9(v))
may be written as

1
A = fo D,h(E*, o(v) + sla(n*) ~ 9(u)]) de.

Similarly, we may write the other three differences:

1
Ay = fo Dyhiz*,g(y) +slg(n®) — o(w)]) do,
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1
By = /0 Dgh(z*,g(v*) + slg(n*) — 9(v*))) ds,

1
Br= [ Dyhte, o) +alateP) - o)) s

Since the derivatives Dgh as well as g are locally Lipschitz, we thus obtain
estimates of the form;

41l = {41 ~ Aall < LIig* ~ 2*{|{|n* ~ ylI,

1Bl| = (1B - Bal| < Lll=* ~ zllln* - g,

for some L > 0. Finally, recalling that ||£*—z*|| = t,}jul| and ||n* ~y*¥|| = t&l|v|],
we see that
llc*ll < (A + B)

tends to zero, indeed.

Proofof ">”. Suppose that g is simple. Now let & + b be any element of
the right-hand side in (6.21),

a € T:h(z,9(y))(u), be Tyh(z,9(y))(q) with ¢ € Tg(y)(v).
We have to verify that there are sequences =¥ — z, y* — y and t; | 0 such that
a +b=w:=limeg [f(z* + tpu, y* + tev) - f(z*,4*)).

The limit expressions of g, @ and b will be a by-product of the construction.
Due to our assumptions we may write

o = lima¥, o* = t;'[h(z® + tyu, g(y)) - R(z*, 9(¥))],

b=1lmb*, b* = r;'[h(z, 0" + req) - h(z,9%)),

with g* = g(y). Since gis simple, ¢ € T'g(y)(v)can be written as a limit (of a
subsequence), where the already given sequence of tx occurs:

¢ =limg*, ¢* =t [9(y* +tiv) — g(¥*)],
provided that ¥* — y has been suitably taken. Notice that
9(y* + tiv) = 9(u*) + trg".
Using next that Dgh(-, ) exists and is locally Lipschitz, the limit
b=limb* = Dyh(z,9(4)) 9

does not depend on the selected sequences g* and rx. So we may change them
and put g* = g(y*) and ry = t;. Additionally, the terms rxg may be replaced
(without changing) by txq* since g* — ¢. In this way we obtain b = lim 8* with

8% =t [h(z, 9(y*) + teg*) = bz, g(u*))] = £5 (2, 9(v* + tav)) — h(=, 9(¥*))].
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Setting now
& =zF + tu, n* = yf + tpv

as well as
w* =7 [f(€, %) - f(=h,9M),
we observe that (again for some subsequence)
w = limw® € Tf(z,y)(u,v).

Moreover, the elements az and by of the first part *C” are now

a = t;[h(€*, 9(v)) - h(z*,9(y))] = a*
and

be = t; ' [h(z, 9(n*)) - h(z, g(s*))] = B*.
So we can estimate as above and obtain w* — (a* 4 #¥) = 0. This proves the

theorem. o

Corollary 6.9 (standard partial derivative). Suppose that [ = f(z,y) is
locally Lipschitz, Dy f(:,-) exists and is locally Lipschitz as well. Then

Tf(z,y)(u,v) = T f(z,y)(u) + Dy f(z, y)v.

Proof. The function g(y) =y is simple.

The next conclusion will be our key for dealing with generalized Kojima func-
tions in the subsequent chapter.

Corollary 6.10 (product rule). Let F(z,y) = M(z)N(y), where M{-) and
N(-) are locally Lipschitz matrix-valued functions of related size. Suppose that
one of them is simple. Then the product rule of differentiation holds for TF,
ie.,

TF(z,y)(u,v) = [TM(z)(W)]N(y) + M(z)[TN(y)(v)].
o

Proof. If, for example, N is simple, put g = N and h(z, g(y)) = M(2)g(y).
a

Note that the result of the operation TM (z)(u) is a set S of matrices A having
the size of M(z). To get the first set [TM{z)(u)]|N(y) of the sum, one has to
multiply all A € § by N(y). Needless to say, Corollary 6.10 holds (by the same
arguments) for sums

F(z,y) = M(z} + N(y),

too. The latter is formally needed if one writes g(z) < 0 as the equivalent
equation g(z) + y* = 0.
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Partial Contingent Derivatives

What about the contingent derivatives under similar assumptions? To study
this problem, we must put z* = = and y* = y and, of course, replace the
derivatives under consideration. We have to begin with the definition of a
simple locally Lipschitz function g with respect to Cg. To be simple at y, now
means the following:

For each v € R™, w € Cg(y)(v) and every sequence £ { 0, there holds
w = lim 5 [g(y + txv) — g(y)] at least for some subsequence of tx.

This is nothing else but the existence of the directional derivative at y, ie.,

Ce(v)(v) = {¢'(m;v)}-

The proof of Theorem 6.8 now remains valid step by step in the present con-
text, it becomes only shorter due to the fixed sequences (z*,y*) = (z,¥), and
the notion simple at y with repect to Cg may be replaced by directionally
differentiable aty. The results are the following analogous statements.

Theorem 6.11 (partial derivatives for Cf). Letg and h be locally Lipschitz,
f(z,y) = h(z,9(y)), and suppose Dgh(-,") exists and is locally Lipschitz, too.
Then

Cf(z,y)(w,v) C Czh(=, 9(y))(u) + Dyh(z, 9(1))(C(y)(v))-

If, additionally, g is directionally differentiable aty, then the inclusion holds as
equation:

Cf(z,y)(u,v) = Czh(z, g(¥))(u) + Dyh(z, 9(1))g (y; v).

As a product rule this yields

Corollary 6.12 Let F(z,y) = M(x)N(y), where M(:) and N(-) arelocally
Lipschitz matrix-valued functions of related size. Suppose that one of them is
directionally differentiable. Then

CF(z,y)(u,v) = [CM(z)(u)]N(y) + M(z)[CN(y)(v)].

6.4.2 Newton Maps and Semismoothness
Newton Functions

Let f : X =+ Y be any function and X, Y be normed spaces. If f is continuously
differentiableand =* is fixed, the two approximations

f(z) - f(z*)=Df(a")(z —2") +or(z~2")  and

f(z) - f(=*) = Df(z )z — z*) + 0a(x — 27)



122 6. Analysis of Generalized Derivatives

may replace each other because both, 0, and o satisfy ox(u)/||u]| = 0.

For f(z) = z%sin(1/z) if z # 0 and f0) =0, 01 exists but oz does not so. For
f(z) = |=|, the reverse situation occurs. When applying solution methods, we
need (orhave) Df at points £ neara solution z*. So the second approximation
becomes important and, if f ¢ C?, the condition must be specified for multi-
valued derivatives.

Let Rf : X = Lin(X,Y) be locally bounded. We say that Rf is a Newton
function of f at z*if

Rf(z* +u)u € f(z* +u) — f(z*) + o(u)B. (6.22)

Our notation will be motivated by Newton’s method, see Lemma 10.1. At
this moment, one may regard the actual property as being a generalization of
continuous differentiability for nonsmooth functions.

Notice that in (6.22), o{x) > 0 may be replaced by the u.s.c. function

Osup(u) == lim sup o(u') > o(u) (6.23)

without violating this condition. So o(+) may be supposed to be u.s.c. (or
continuous as well).

Further, the function Rf may be arbitrary at z* and is not uniquely defined
at z # z*. IfRf satisfies (6.22), then it is also a Newton function of g at z*,
whenever g(z) = f(z) + o(z — z*). Here, g — f is not necessarily small in the
C°%! - norm, cf. (4.3).

Newton functions at z* are (single-valued) selections of locally bounded
maps M : X =3 Lin(X,Y) such that

0 # M +u)u:= {Aujd € M(z*+u)} C f(=*+u)—f(z*)+o(u)B. (6.24)

Accordingly, we call M a Newton map of f at z*.
This property is obviously invariant if one forms the union or the convex
hull of two Newton maps (the set on the right-hand side of (6.24) is convex).

Example 6.13 (examples of Newton functions).
1. If f € C*(R™,R™) and B™™ denotes the unit ball of (n, m)-matrices, then

M(z) = Df(z) + |f(2) = f(=")}|B™™

is a Newton map at z*.
Indeed, since f € C! is locally Lipschitz with rank Ly, every matrix 4y €
1 f(z* +u) ~ f(z*)||B™™ satisfies

l4ull < Lylfull-

Thus, (Df(z* + u) + Au)u = Df(z* + u)u + Ayu with ||Ayu|| < Lylu|?, and
we may write

(Df(=" +u) + Au)u = f(z* +u) — f(z") + o(u) + r(u),
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where ||r(u)]| € L¢|lu||®. Using the new o-type function
llo(u)ll + Lllulf®

in (6.24), this is the assertion.

2. For f = PC[f%,..., f¥] and f(z*) = 0 one may put

M(z) = {Dfi(=)li € J(2)}, where J(@) = {i | [|f}(z) - f(2)l < I1f(=)II*}.

Indeed, for |[u|| sufficiently small, the index sets fulfill J(z*+u) C J(z*). Thus,
with some Lipschitz rank L of f near * , we obtain

f(z* +u) - fz* - Dfi(z* +u)u
€ fHz*+u) - fiz*)-Dfix*+wu + [|If(z*+u)|’B
C oi(u)B +  L%|u|*B.

Hence, o(u) = L?||u||?> + max; 0;(u) satisfies (6.24). o
If dim X 4+ dimY < oo, then, due to
f(a* +u) - f(z*) C Cf(z")(u) + o(u)B,

cf. Lemma A2, one easily confirms that (6.24) implies (with a possibly new
o-type function),

M(z*+u)u C Cf(z*)(u) +o(u)B
C Tf(z*)(u)+o(uw)B (6.25)
C 8f(z*)(u) + o(u)B.

However, fis not necessarily directionally differentiable (see the next theorem),
and M does not have a socalled approximate Jacobian [JLS98] which would
require

(¥*,Cf(x)(u)) C conv (y*, M(z + u)u + o(u)B) Vy* € bd By..

Surprisingly, condition (6.22) is a weak one, and Newton functions satisfy a
common chain rule.

Theorem 6.14 (existence and chain rule for Newton functions).

(i) Every locally Lipschitz function f : X =Y (X, Y Banach spaces) pos-
sesses, at each x*, a Newton function Rf being locally bounded by a Lip-
schitz constant L for f near z*.

(i) Leth: X =Y andg:Y - Z be C®' with Newton functions Rh at z*
and Rg ath* := h(z*). Then Rf(z) = Rg(h(z))Rh(z) defines a Newton
function of f(-) = g(h(-)) at z*.

<o
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Proof. (i) Given u € X\{0}, there is a linear operator &, : X = Y with
®u(u) = f(z° +u) - f(=").
By Hahn-Banach arguments, . even exist with bounded norm

@ull < 11f(2" +u) — £/ lull.

For small ||u|| , this yields [|®4)| < L. So it suffices to put Rf(z* + u) = &,
and o(u) = 0.

(i) The straightforward proof is basically the same as for Fréchet deriva-
tives. We put v = h(z* + u) — h(z*) and z = z* + u. Our assumptions yield

v = Rh(z)u + rp, where ry € op(u)By,

and
g(h* +v) — g(h*) = Rg(h* + v)v +r,, wherer, € 0,(v)Bz.

Thus,
f(z* +u) - f(z*) g(h* +v) — g(h*)
Rg(h* +v)v + 1y
Rg(h(z))v + 1,
Rg(h(z))Rh(z)u + Rg(h(z))rn + 4
Rf(z)u + Rg(h(z))rn +ry.

Now Rg(h(z))rs is of type o(u) since Rg(h(z)) is uniformly bounded for z near
z*. If v = 0 then r, = 0. Otherwise, we obtain from

llvll = lik(z" + u) = A(*)|| < Lallul

that og(v) /|||l = (og(v)/I[v|l)([lv]|/[lell) vanishes as|ful| { 0. Hence f(z* +u)—
f(z*) € Rf(z* + u)u + o(u)Bgz. 0

By Theorem 6.14, it turns out that, having Newton maps Mg and Mh at
the related points h(z*) and z*, then the canonically composed map M =
Mg(h(-))Mh(:) is a Newton map for the composedfunction f = goh. However,
the function Rf, defined under (i) in the previous theorem, does not use local
behavior of f near # and depends on z* which is often an unknown solution. So
one cannot directly apply statement (i) of Theorem 6.14 for solution methods
since first one has to find Rf satisfying (6.22) without using z*.

Nevertheless, having Rf, it can be applied for Newton’s method exactly
like D f under the usual boundedness condition of the inverse, see Section 10.1.
To investigate convergence of Newton’s method for f € C%1(X,Y), maps M
satisfying (6.24) and particular realizations have been considered in [Kum8&8b].
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Semismoothness

A function f € C™(R™ R™) is said to be semismooth at * if M = 8f is a
Newton map at £*. This notion, based on Mifflin [Mif77], has been introduced
and used for Newton’s method by [PQ93] and [QS93] and in many subsequent
papers. Some modifications of semismoothness are mentioned in Section 10.1.
One well-known class of semismooth functions is the class PC*[f!,...fN)

since .
8f(z) € conv {Df'(z)|f*(2) = f(z)}

and each f* is trivially semismooth (everywhere). Another class consists of cer-
tain NCP functions, which will be considered in Section 9.2. The real, globally
Lipschitz function h in Example BE.O is nowhere semismooth.

Before showing how Newton maps may be applied to the class locPC?,
defined below, we recall conditions for semismoothness given by [Mif77, Prop.
3, Thm. 2].

Theorem 6.15 (semismoothness; Mifflin).  Convex functions f : R™ -+ R
and maximum functions f(x) = maxyey 9(z,y) over compact sets Y are semi-
smooth, provided that g is continuous and Dgzg(:,+) exists and is continuous,
too. o]

Proof. We present a proof for completeness and in order to show how the
inclusion I(z) C I{z*) which holds for £ near £* in the case of a finite set ¥
(where I(z) := {y € Y|f(z) = g(z,y)}) will be modified in the current case of
a compact index set Y. For seek of simplicity, let * = 0.

(i) Let f be convex. The inclusion
(¥2, ) € [f(z) - £(0) — o(z) , f(=) - £(0) + o(2)]
must be shown for all y, € 8f(z). By the definition of 8f, we already have
f(0) - f(2) 2 (va, -2}, ie. (v2, %) 2 f(z) - £(0).

Since 8f is u.s.c., it holds 8f(z) € 8f(0) + O(z)B. Thus, one finds some
Yoz € 8F(0) such that ||yoe — ¥e|| < O(z). This ensures

(U2, %) < (Yoz, 7} + O(@)||zf| < f(z) = f(0) + ofz)

as reqired.

(ii) For the maximum function, it holds
0f(z) = conv {D.g(z,y:)|y= € 2(z)}

where @(z) = argmaxyey g(2,¥). The semismoothness condition becomes by

definition
D.g(z,y2)z € f(z) — f(0) + oz)B Yy, € ¥(z). (6.26)
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We will see that this is equivalent to

inf{g(0,:)ly= € ¥(z)} 2 £(0) — o(z) (6.27)

which is just the mentioned inclusion I(z) C I(0) for z near z* if Y is finite.
Using compactness of Y and continuity of Dzg one estimates uniformly

Dzg(z,y2)x € g(2,y2) — 9(0,4z) + o(2) B. (6.28)

By upper semicontinuity of @ (cf. Theorem 1.15), one has ®{z) C $(0)+O0(z)B.
So let yor € B(0) fulfill ||lye — yoz|| < O(z). Notice that

9(0,¥z) < 9(0,y02) and g(z,y:) 2 9(2, yoz). (6.29)

Thus, taking (6.26) and (6.28) into account, we have to show that (6.27) is
valid, indeed. Suppose contrarily that

9(0,92) < 9(0,30z) — cllzll, c > 0

holds for certain z — 0, and related ys,%0z. Via the mean-value theorem, we
obtain points zz, 2g, (between 0 and =) satisfying

9(z,yz) = 9(0,9z) + Dag(2z,y:)x
g(x,y0z) = 9(0,%0z) + Dz9(z0z, Yoe ) -

It follows
90, y2) + D29(2z,9z)x 2 9(0, Yo0z) + D2z9(20z, Yoz)Z,

9(0,y0z) — cllzll + Dzg(2z,92)z > 9(0, yoz) + D29(20z, Yoz )T

and
D 9(22:¥2)2 2 Deg(20a, Yoz )z + cllz||.

Passing to a subsequence if necessary, there exists a common accumulation
point yp ofy, and yoz- So, with some accumulation point « of z/||z|], = — 0,
we finally arrive at a contradiction

D29(0,y0)u 2 D2g(0, yo)u + c.

o

Note. In consequence, the function fy(z) = min{llz —y||> | y € Y}is
semismooth for Euclidean norm and compact, non-empty ¥ € R". Further,
each DC-functional f (difference of convex functions) is semismooth. The
same holds (by Theorem 6.14), if f : R® — R™ has DC components since
0 # 8f(z) C (8fi(z), ..., Ofm(2)). o
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Pseudo-Smoothness and D°f

Wecall f € C%(R™,R™)pseudo-smooth if f is a C'~function on an open and
dense subset € R". These functions appear in many applications, cover the
class PC! by Lemma 6.17, have locally bounded derivatives on €, and obey
nonempty sets

D° f(z) :=limsup,,, yea{Df(y)} (as upper Hausdorff-limit). (6.30)

Nevertheless, in Example BE.6, §12.1, we present a real convex function that is
not pseudo-smooth.

Let ©!(f) be the set of all C* points of f. It makes no difficulties to see that
De f(z) does not depend on the choice of  in (6.30). One could even replace
2 by any dense subset §q of ®!(f), in (6.30).

In addition, it holds

D°f(z) = Df(z) Yz € O (f). (6.31)

The single-valued selections of D°f are natural candidates for being Newton
functions, because D°f(-) € M(-) holds necessarily for all closed maps M
satisfying

M(z) = {Dj(z)} Vz € ©'(f),
hence also for all closed Newton maps M which assign, to z € ©*(f) , as usu-
ally, the Jacobian M (z) = {Df(z)}.

In order to check whether D° f is a Newton map for a pseudo-smooth func-
tion f at x*, it suffices to consider all points z* + u in a dense subset 4 of
©(f), and to investigate whether

f@@* +u)— f(z*) - Df(z* +u)u € o(u)B (6.32)

holds true. In this case, the contingent derivative can be estimated by D° f(z*),
too.

Lemma 6.16 (selections of D°f). If f is pseudo-smooth and some selection
Rf of D°f is a Newton function, then M = D° f is a Newton map at the same
fixed x*, and it holds

Cf(z*)(u) C D°f(z%)u. (6.33)

o

Proof. Tet Sf € D°f be a second selection. By (6.31), Sf satisfies (6.22) for
pouits z* +u' € Q. Ifo(-) in (6.22) is not u.s.c., we replace it by osup(+) in (6.23)
which is again of litle-o-type. Then, since each #* + u is a limit of elements in
Q, condition (6.22) holds by continuity arguments for v’ = u at z* + u, too.
Thus, every selection of D° f fulfills (6.22), so (6.24) is true.

Inclusion (6.33): For small ¢ > 0, due to pseudo-smoothness, the quotients

a(t) :=t7[f(z* + tu) — f(z")]
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can be approximated (with error < t) by
b(e) = ¢ f (=" + tul?)) ~ (=),

such that |jlu(t) — u|| < ¢ and z* + tu(t) € . Then (6.31) and (6.22) guarantee
that b(¢) € D f(z* +tu(t))u(t)+t~ o(tu(t)) B, which yields the assertion because
limb(t) = lima(t) € D°f(z*)u ast { 0. o

In Example BE.1, f is pseudo-smooth and directionally differentiable with
Def(z*) # 8.f(z*), (6.33) fails to hold though Df(z*) exists, and neither
D°f nor 8,f contain a Newton function at z* = 0. Nevertheless, there are
pseudo-smooth functions outside PC* such that D°f is always a Newton map.

Locally PC* Functions

Let f be pseudo-smooth. We call f locallyPC! (and writef € locPC!) if there
is an open and dense subset 2 C R" such that fis C* on Q and the following
holds:
There exists a finite family of open sets U* € R™ and continuous functions
f2:R™ = R™ satisfying
(i) f*is C* on U?* and Df?(-} is uniformly continuous on U? N K for each
bounded set K, and
(i) for each z € R", there exists an r = r(z) > 0 such that, given y €
QN (z+rB), one finds some s with rel intconv {z,y} C U?, f*(z) = f(z),
f*(y) = f(y) and Df*(y) = Df(y).
In comparison with (proper) PC* functions, we do not claim that £° is C* on
the whole space. The set £ in the previous definition will be also called C*-set

of f-
Lemma 6.17 (special locally PC? functions). The Euclidean norm of a linear
function f(y) = ||Ay|| and all functions f € PC* arelocally PC!.

A pseudo-smooth function f is locally PC* if there is a finite covering
{P?ls = 1,...,N} ofR™ by convex polyhedra P® such that f is C* and Df
is uniformly continuous on intP®.

In addition, if g and h arelocally PC* and ® € C*, then f(z) = ®(g(z), h(z))
is again locally PC* (provided that g, h, ® are of appropriate dimension). <

Proof. Euclidean Norm: TfA#0, put Q =R "\ker4,U' =Q,f = f,r =1
if z € ker A and r = 1 dist (z, ker A) otherwise.

PC': Let f = PCY(f',..., fN) and I(y) = {s|f*(y) = f(¢)}. Note that f*
coincides with f near yif y € int I"*(s). We put

U*=R" and Q = U, int I7(s).

The set £ is dense in R™. We prove this known fact for completeness: Other-
wise, one finds some ball V = y° + ¢B with V N = . Then the relatively
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open sets N* = {z € V|f*(z) # f(z)} are dense in V, by definition of 2. So
the intersection D = Ny,N*® is again dense. But y € D means f*(y) # f(y) Vs,
which contradicts f € PC!. Thus, 2 is dense, indeed.

Next, given &, one findsr > 0 such that

Iy)cI(z) Yyez+rB.

Now assign some 8 to ¥ € N (x + 7B) such that y € int I~(s). Then the
equations f*(z) = f(z) and f*(y) = f(y) follow from the choice of § and r, and
Df{y) = Df*(y) is valid because f and f? coincide near y. Finally, Df%(-) is
uniformly continuous on U® N K since D f? is continuous on R™.

Covering: Define f¢ = f, U® = int P?, 8 = U U® and take r small enough
such that, for 0 < & < r, the set S(¢) := {s{(z + eB) N U* # B} is constant.
The existence of r is ensured since all P* are polyhedral sets.

®(g(-), h(-)) : With the related sets and radii assigned to g and h, one may
put
Q=0(g) NQ(h), U =U*(g)NU"(h), f* = B(¢*,h")

and r(z) = min{r(z, g),r(z, h)}. o
We are now ready to present the motivation for the above definitions.

Theorem 6.18 (Newton maps of f € locPCY. Let f be a locally PC! function
and z* € R™. Then

(i) M = D°f is a Newton map of f at z*.

(i) The function o(:) in (6.24) can be taken as o(u) = |[ullO(l{ull) provided
that both O(lJull) is a modulus of uniform continuity for all functions
Dfe(:) on U® near x* and O() is continuous.

(iii) For the composition f = g(h(x)) of locally PC* functions g and h,
the mapping M(x) = D°g(h(x))D°h{z} is a Newton map of f at z*.

<

Note. Modulus of uniform continuity means that
IDfe(=") = D (2")|| < O(llz’ — ="||) forall ', 2" € U® near z*.

If all Df* are globally Lipschitz on U?, then o{u) < K|jul|? holds for small ||ul].
<

Proof of Theorem 6.18.

Proof of (i) and (ii). Given z* wefindsome r that defines the ball * 4+ B in
the definition of loePC?, Let y = z* +u € 2N (z* + rB). With some s and
U¢, f¢ according to the definition of loePC?, we obtain

int conv {=*,y} C U*, f*(z") = f(z*), f*w) = f(v), Dfy) = Df*(w).
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This allows us to integrate and to estimate
f(y) - f(=*)
= f*(y) - f*(z")
= fol Df*(x* + tu)udt
€ Jy Df*(y)u dt + lull supogegy 1DF*(@* + tu) = Df*(z* + u)||B.

Due to uniform continuity, the supremum is bounded by O(|||]). Using D f(y) =
D f*(y), this guarantees

fz*+u)—f(@*)-Df(z* +u)u € ||u||O(||ul)) B ¥z*+u € QN(z*+rB). (6.34)
Let Rf be any selection of D°f. Since Rf = Df on , now (6.22) holds true,
provided that z* + u belongs to the dense subset

Qn(z* +rB)

of z* + rB. Because Df(z* + «) remains bounded, continuity arguments then
yield that (6.34) also holds for the upper Hausdorff limit;

A :=limsup, . [f(z* +u) — f(z*) - Df(z* +u)u] C [lu*||O(|[w*) B
ifz*+ue2n(z*+rB).
(6.35)
Replacing here © by any open and dense set Q(f) where f is C* on, we obtain
the same set A on the left side of (6.35) because Df and f are continuous on
Q(f) and each z* +u' € Q(f) can be approximated by z € RNN(f) arbitrarily
close. Thus, by (6.35) and definition of D° f, we obtain for all u*,
f(@" +u) - f(z*) - D°f(z* + u")u" C |*lO(lju*})B

which verifies (i) and (ii).

Proof of (iii), Knowing (i), statement (iii) follows from Theorem 6.14. O

Remark 6.19 Combining (6.25) and (6.33) one obtains upper and lower esti-
mates of Cf for f € locPC?, with certain o-type functions oy, 03:

Def(z* +u)u C Cf(z*)(u) + o1 (w)B C D°f(z*)(u) + 02 (u)B. (6.36)

Here, 01,09 will depend on z*, too.
However, for f € PC*(f,.., f™), it becomes obvious that these functions
are uniformly bounded for all z* in some compact set K and v € B, by

r(a*,v) =Y |f*(z* +v) ~ f4(2") = Df¥ (")l
k

as 01(v) = sup{r(z*,v) | * € K and v € B} and o03(v) = 201 (v). o

Exercise 13. Let f € CO}(R",R") be strongly regular at (z*,0). Show that
f~1is semismooth at 0 if f is semismooth at z*. Note that you cannot apply
invertibility of the matrices in 8f(z*) due to Example BE.3. e
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6.5 Mean Value Theorems, Taylor Expansion
and Quadratic Growth
In this section, we establish the Taylor expansion of a C** -function f infinite

dimension in terms of T'(D f) as in the smooth case. We start with the simplest
case of a mean value theorem. There holds:

If heCOH(R,R) and h(0) = (1)
then 0 € Th(§)(1) for some 8 € (0,1).

Notice that (6.37) fails to hold with Ch in place of Th.

(6.37)

Proof of (6.37): Assume first that some & € (0, 1) realizes max h(t) on [0,1].
Then
(h(t) - h(@)t-0) <0 forsmallt—8>0

yields @ € Th(#)(1) forsome a < 0 and
(h(@) - h@®)O@-t)20 for@-t>0

yields @ € Th(6)(1) forsome & > 0. Since Th(6)(1) is connected, we obtain
0 € Th(6)(1). If there is no maximizer of k on [0,1] in (0,1), then h(0) =
h(1) implies that there is a minimizer of h on [0,1] in (0,1), and, by similar
arguments, one comes to the same inclusion. D

By using a linear transformation and L.emma 6.2, we have the statement:
If h € C*(R,R), then A(t) — h(0) € Th(6)(t) for some # € (0,t). (6.38)

For f € C*'(R",R™), a rather large set must be used for estimates. There
holds
f(@+u)— f(z) € C:=cleonv Ugg(o,1) T f(z + Ou)(u). (6.39)

Proof. Indeed, otherwise one may separate {f(z+u) — f(2)} and C, ie., there
is some v € R™ with

(v, fz +u) — f(2)) < (v,¢) VceC.
Put A(t) = (v, f(z + tu)). Then property (6.38) yields, with some ¢ € (0, 1),
(v, f(z + u) = f(2)) = h(1) — h(0) € Th(6)(1) C (v, Tf(x + Bu)(u)).

The last inclusion holds true due to property (6.18), where (v, @) denotes the
set {{v,q)|q € Q}. Considering all ¢ € T'f(x + fu)(u) C C, one obtains a con-
tradiction. u]

Statement (6.39), in terms of 8f instead of T f, has been shown and is a
main theorem in [Cla83]. Our set C is formally smaller than the related set

C' = clconv Ugg(g,1) O (2 + 6u)(u),
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since Tf € 8f. So (6.39) looks even stronger. But recall that, for showing
Tf C 8f, we had already applied the 8f-version of the mean value theorem
(based on Rademacher’s theorem and Fubini’s theorem in [Cla83]). Really, the
two versions are equivalent because of the convex-hull operation and Theorem
6.4.

The next theorem extends well-known facts from C? to C1!' functionsby
using the some devices concerning the proof.

Theorem 6.20 ( C'*-Taylor expansion). Let f € CY(R™ R). Then
f(z +u) - f(z) — Df(z)u = 3(u,q)
holds for same 8 € (0,1) and some ¢ € TD f(z + u)(u). <o

Proof. Without loss of generality let £ = 0, f(0) = 0 and u # 0. Moreover,
replacing f by ¢(:) = f(-) + {¢,"), we do not change the statements, since this
transformation does not change the set TDf. So we may assume that f(u) = 0.
Next put g(¢) = f(tu),t € R. Then

9(0) = 9(1) =0, ¢'(t) = (u, Df(tu)), Df(O)u =g'(0) (6.40)
and Tg'(s)(1) € (u, T(DS)(su)(w)). '

The last inclusion is justified by (6.18). Due to the transformations (6.40), it
suffices to show that

—g'(0) € 1T¢'(6)(1) for some @ € (0,1).
For this reason we define the real function r(¢) = g(t) + ¢'(0)(¢t — -;-)2. Then

r(0) =r(1), r'(t) = g'(t) + 2¢'(Q)(t ~ 3), T'(0) =0,
and Tr'(8)(1) = Tg'(6)(1) + 2¢'(0).

Applying the usual mean value theorem, there is some 8 € (0, 1) such that
0=r(1) - r(0) =+'(s).
Next we use property (6.38) to obtain
0=r'(s) ~r'(0) € Tr'(8)(s) forsome @ € (0, s).
With our settings, this means that
0 € sTr'(6)(1) = 5 (Tg'(9)(1) + 2¢'(0)),
and, since ¢ > 0, —¢'(0) € %Tg'(ﬂ)(l) as required. 0O

For the related statement based on Clarke’s generalized Jacobian 8[Df], we
refer to [HUSN&4].
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Quadratic Growth

The following statements are of particular interest if the subsequent constant ¢ is
positive, because then f is locally growing in comparison with its linearization.
Nevertheless, ¢ may be any real.

Corollary 6.21 (quadratic growth on a neighborhood). Let f € C*'(R",R),
U Cc R™ be a cone and € be a constant such that

¢ < inf{{q,udlg € TDf(2")(v)} YueUNbdB. (6.41)

Then there exist a neighborhood S of x° and some € > 0 such that, for all € € Q,

f(=) = £(§) 2 DF(E)(m - &) + Fellz — €12
Vz € Q withdist (x - §,U) < eﬁm - &) (6.42)

<o

Note. In particular, one may put £ = € + u,u € U (aslongas z,§ € ) in
(6.42). Since TDf(z?) is homogeneous, (6.41) holds also for —u, hence for a
“double cone”. <

Proof of Corollary 6.21. The mapping TDf(-)(:) is closed and locally
bounded, and T D f(£)(-) is Lipschitz in 4. So, if € > 0 is small, (6.41) re-
mains validfor £ near z° and v € bd B with dist (u,U) < &. Applying Theorem
620 to &€ and u = z — ¢ (and using Au € bd B + £B) now proves the corollary.

a

Even for convex C! functions, quadratic growth at a point, ie. (6.42) for
£ = z° only, does not induce that (6.41) holds with some ¢ > 0.

Example 6.22 (counterexample). Take a real, monotone Lipschitz function
g such that g(0) = 0,g9(x) > z and g is constant on intervals of the form
2-(+k) < 2 < 27k for odd k. Setting

t
1) = [ otw)as,
one obtains aconvex C1' function f satisfying (6.42) for U = Rand § = 2° = 0.

Simultaneously, inf{{g,u}{g € TD f(z°)(x)} = 0 holds. o

Condition (6.42) for & = 29 requires a less strong assumption, hence we may
replace TDf by CDf there.

Theorem 6.23 (quadratic growth at a point). Ler f € C**(R",R), U ¢ R"
be a cone and ¢ be a constant such that

(641  c<inf{(u,q)lg € CDf(z")(w)} VYue€UNbdB.
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Then there exist aneighborhood §& of £° and some € > 0 such that (6.42) holds
for€é =2% e,

v f(@) - f(z°) 2 Df(E)(z - 2°) + c||z ~ 20|
(6:42) Vz €  with dist (x - 2%, U) < eﬂg: - a:°|\.z

<o

Proof. We assume Df(z°) = 0, otherwise consider g(z) = f(z) — D f(z°)(z -
z%). Given any sequence  —+ z° there exists a subsequence such that z can be
written as

z = z(X) = 2% + u()) where, for certain A 4 0,u(A) = Mu® + o(A).

If (6.42) is false -with € = 2% - then it does not hold for related z with u® €
U N bd B. We consider such z = z()). Let

¢ <7 < inf{(u’, g)lg € CDf(2°)(u°)}

and
8(t, A) = Df(z° + thu® + to())) — Df(z® + thuf).

Since f € C**, there is some K depending on f only, such that
16¢, )| < Kllo(A)|| for 0 < ¢ < 1. (6.43)

Now it holds

Fz(N) - f(=%)

= [ Df(a® + tu(\))u(A)dt

= fo Df(2® + tAu® + to(N)u(N)dt

= [y [Df(2° +tAu) + 8(t, 1)) (M + o(A))dt

= A [} Df(a® + thu®)udt + f [Df(z° + tAu®)o(A) + (¢, A)(Mu® + o(N))]dt.

Due to (643) and Df(z% = 0, the second integral turns out to be of type
Ao(A). By (641y and by the choice of ¥ we have, for A > 0 sufficiently small
and 0 <t <1,

Df(a° + tau)u® = [Df(2° + tAu®) — DF(2%)]u® > tAy.
Therefore,
1 1
f@) - £2°) 2 X / txydt = Jo(d) = 2722 ~ Ao(Q).
0

Recalling that ¢ > ¢, this shows, for sufficiently small A > 0 of the selected
sequence, the inequalities

£EO)) = 1(a%) 2 370% ~ dol) 2 3ella(¥) ~2°I”.

This verifies the assertion. a
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Further, the contingent derivative can be applied in order to derive a first-order
estimate for functionate.

Lemma 6.24 (mean values via Cf). Iff € C(R",R) and inf C f(z+tu)(u) <
cVte (0,1) then f(z +u) < f(z)+ec. ol

Proof. Let g > ¢ befixed and let T C [0,1] be the set of ¢ satisfying
flz +tu) < f(z) + qt.

Then T is closed and 0 € T. Let 8 be the maximal element of 7. To show
that s = 1, assume s < 1. Since

inffCf(z+su)(uy<gands € T,
we know that
flz+suteu) < flx+su)+qex < f(z)+qs+qes,

for certain € 4 0, i.e., s+ €x € T. This contradiction shows 1 € T'. Because
g > ¢ was arbitrary, the lemma is shown. a

Corollary 6.25 (Lipschitz condition). Let f € C(R",R™) and suppose, with
some & > 0 and max-norm inR™, that Cf(z)(u)NaB # @ holds for all x near
z* andu € bd B. Then f is Lipschitz near &* with rank a. <o

Proof. Otherwise there are ' and z" near z* such that, with some 1,
fi(") = filz") > alla” - 2/||.
Put z" = z' + su,u € bd B,s > 0. Since, by assumption,
Cfi(z' +t su)(su) N[-sa,5a] #0 VYVt € (0,1),
Temma 6.24 yields the opposite inequality
fi@") = fi(@') = fil@' + su) - fi(2') < sa = allz” - ||,
which completes the proof. ]

Exercise 14. Show that f € C®'(R",R™) is C* on an open set Q if T f(z) is
single-valued Vz € 2. <
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6.6 Contingent Derivatives of Implicit (Multi—)
Functions and Stationary Points

Let us consider the set ®(p) of solutions x to the equation
F(z,p) =0, (6.44)
under the assumptions that F maps & x P to Z, and

X, P, Z are Banach spaces, some point z° € X satisfies F(2°,0) =0,
F, exists and is continuous on some neighborhood (£, II) of (z°,0),
(6.45)
where Fp denotes the partial derivative with respect to p. In order to avoid
confusion in notation of the present section, we use calligraphic letters to denote
the spaces under consideration. Let

S =QnF(0)},

ie., S(z) = {z € 0| F(z,0) = z}.

Under the hypotheses of the usual implicit function theorem for F € C?, & and
S are single-valued and locally C? (with derivatives D®, DS), and there holds

D¥(0) = —DS(0)F,(2°,0) = —F,(z°,0) "1 F,(°,0). (6.46)

In this section, we are interested in a similar characterization of the contingent
derivative C®(0, z°)(-) for the multivalued map ® under the assumption (6.45).
Moreover, we shall derive contingent derivative formulas for mappings of the
(projection-) type p = X(p) = {£|3n : F(€,n,p) = 0}. In particular settings,
this may be interpreted as a mapping of stationary solutions € with associated
multipliers 7.

A crucial motivation to study these questions comes from the sensitivity
analysis of solutions to nonlinear programs. A.V. Fiacco and G.P. McCormick
[Fia76, FM68] were the first who derived sufficient conditions for the validity
of the formula (6.46) when &, P, Z are finite—dimensional spaces and @ is the
(single—valued and differentiable) primal—dual critical point mapping of a per-
turbed equality/inequality-constrained C? program. However, it is well-known
that even in this special case, the assumptions to guarantee formula (6.46) are
very restrictive, involving LICQ and the technical assumption of strict comple-
mentarity. The situation is similar for the stationary solution mapping. So, for
non-C? optimization problems or for smooth programs under weaker assump-
tions one may only expect the existence of either one or the other generalized
(directional) derivative of critical point or stationary/optimal solution maps,
including related formulas. For this reason, such generalized differentiability
properties play some rule in the literature, see the bibliographical note at the
end of the section.
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Our purpose is to point out which assumptions ensure (different levels of)
generalizations of the relation (6.46) to contingent derivatives if @ is defined by
an equation, and this under a smooth parameter—dependence (6.45). For several
instances of (6.44) which are related to nonlinear programs or complementar-
ity problems (for example, if F is a so—called generalized Kojima function, see
[KK99a]), the contingent derivative of § = @ N F(-,0)! has an explicit repre-
sentation — and this carries over to C® provided that a suitable extension of
formula (6.46) is true.

6.6.1 Contingent Derivative of an Implicit (Multi-)
Function

In this subsection, we are concerned with the contingent derivative of the solu-
tion set mapping ®(p) of the equation F(z,p) = 0. Assume that (6.45) holds.
By definition, the contingent derivative C®(0,2°) contains all limits of usual
difference quotients:

there exists some sequence ¢ | 0 along with
£ € 0%(0,2%)(q) & | related o-type functions oy (-), 02(")
such that 20 + ¢€ + 01(t) € ®(iq + 02(t))

-

i.e., C®(0,2°)(q) consists of all limits £ = lim t~*(z(t)~z°) that can be obtained
for certainsequences t | 0 and z(t) € ®(tq + 0a(t)). Note that here and in the
following, o-type functions will often be equipped with a subscript o in order
to distinguish them. In any case, writing ox we are saying that [jox()I[/]] -1l 4 0
as |-l 40.

As only the local behavior of & near (z°,0) isofimportance, we may identify
&(p) with ®(p)NQ, where £ is the neighborhood of % appearing in assumption
(6.45). Notice further, that one could similarly regard points p(t) = tg + oz(t)
in a fixed subset Fp C P only.

As it is standard in the smooth case, we consider, for (z,p) near (z°,0), the
function

r(m,p) = F(a:,p) - F(:L‘, 0) - Fp(xor 0)1” (6'47)

By the mean-value theorem, one obtains

1
r(z,p) = /o [Fp(z,0p) ~ Fp(2°,0)] pdo,

where a(z,p,8) = ||Fy(z,8p) — Fo(2°,0)|| can be estimated (uniformly for 0 <
6<1) by

a(z, p,8) < O(z,p) with O(z,p) | 0 as  — z° and |p|| 4 0.
Due to ||Ir(z,p)|| < O(z,p)lipll, one easily sees that
llpll=llr(z, p)|| =+ O as = — z° and [}p|| 4 O, (6.48)



138 6. Analysis of Generalized Derivatives

and, moreover,
r(z(t), p(t)) = 02(t) if z(¢) = 2° and p = tg + 0y (t) with some q.  (6.49)
Further, for (z,p) near (z°,0), we have that
F(z,p) =04 F(z,0) = —~F(z°,0)p - r(3,p),

ie.,
z € ®(p) & 7 € S(—Fy(2°, 0)p - r(z,p)). (6.50)

If , moreover, Fy is locally Lipschitz near (2%, 0) with rank K, we even know
that the difference

1
r(@,p) — r(z,p) = /0 [F,(', 8p) — Fi(z, 8p)] pd8

satisfies
llr(z’, p) — r(z,p)I| < Kll' - z|l|ipll (6.51)

for (a',p), (z,p)near (2°,0).

From now on, #(-,+) according to (647) remains the same function, only
z will be replaced by (z,y) in the next section. Note that we consider the
mapping S = F(-,0)™}, because, due to Remark 1.1, the contingent derivative
CS is known if and only if so is CF:

u € C5(0,2°)(¢) © ¢ € CF(-,0)(z°)(u).

In the following we intend to exploit (6.48) and (6.50) under different fopological
assumptions concerning ® and S, while, in the chapter on parametric optimiza-
tion, we will additionally apply algebraic properties of ¥, which are available
when stationary points of optimization problems in R™ come into the play.

Note that the (simple) inclusion (i) in the following theorem could be derived
from [Lev96, Thm. 3.1]. To abbreviate, we denote the linear map Fy(z®,0) by
Fp.

Theorem 6.26 (C-derivative ofthe implicit function). Let (6.45) be satisfied.
Then

(i) (inclusion) C%(0,2%)(q) € CS(0,2°)(—FZq).

(ii) (existence) Let dimX < 0o. If ® is Ls.c. at (0,2%) and S = F(-,0)~1 is
locally Lipschitz u.s.c. at (0,z°), then § # C®(0,2°)(qg).

(i) (best case of a Lipschitzian inverse) Let dim X +dim 2 < 0o. If® is Ls.c.
at (0,2°) and 8§ = F(-,0)™! is a locally Lipschit; function near (0,z°),
then B # C®(0,2°)(g) = CS(0,2°)(-F2q).

¢
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Proof, (i) Let¢ € C®(0,2%)(q). Bydefinitionof C®, there are some sequence
t } 0 and related 01(t) and o02(t) such that

z(t) 1= 2% + t§ + 01 (t) € B(tq + 02(2)).
Setting p(t) = tg + 02(t) and taking (6.50) into account, we obtain

2 +tE+oilt) € S(-Fp(tg+ oa(t)) — r(a(t),p(t))
= S(-tFpq - Fjoz(t) — r(2(t), p(t))).

After subtracting 2° € S(0) and division by £, now (6.49) ensures that
£ € CS(0,8%)(~F2a).

(ii) We have to show that C®(0,z°)(g) # 0. For ¢ = 0 this is trivial, so
let ¢ # 0 and ¢t } 0. We put p = tg and use the assumption that S is locally
Lipschitz u.s.c. with rank L. Since @ is Ls.c. at (0,z°) there exist z(p) € ®(p)
such that z(p) = z° Applying (6.48) and (6.50), we observe for sufficiently
small 7 > 0and 0 < ¢t < 7 that

lir(=(@),p)I| < Ltligll

and
z(p) € S(~tFgq — r(z(p),p)) C 2° + t(L + |IFZ)llgll) Bx.

Thus the sequence ¢~!||(z(p) ~ 2%)|| remains bounded since dim X < 0. So
¢ € C%(0,2%)(g) holds for every accumulation point £ of this sequence as ¢
vanishes.

(iii) It remains to show that CS(0,z%)(—F2q) C C®(0,2°%)(g). et €
C'5(0,2%)(—F7q). Then for a certain sequence ¢ | 0 and some related o (t), 0a(t),
one has

2° + t + 01(t) € S(~tF3q — 05(t)).

Due to the lower semicontinuity of @ we find, for the same sequence ¢ J 0, points
y(t) € ®(tqg) such that y(t) = =% as t 1 0.
Once more we apply (6.50) and obtain
y(t) = S(~tFyq — r(y(t), tq)).
Since S is a locally Lipschitz function near (0,2°), say with rank L, we conclude
ly(t) — (2° + t€ + o1 () < Llir(y(t), tg) + o2(t)l| =: 03 ().

This ensures, for the current sequence, (y(t) — %)/t = £ and £ € C®(0,2%)(q).
a
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Note that indeed C®(0,2z°)(q) may be empty if any of the assumptions of (ii)
does not hold. Consider, as a first example, ®(p) = S(») = {z € R|g(z) =
p} with g(z) := min{z,z%}. Then &(p) = {\/p} for 0 < p < 1, and so
C®(0,0)(1) = @. Here @ is lsc. at (0,0), but the local Lipschitz upper
semicontinuity fails. A second example gives a locally Lipschitz u.s.c, map-
ping 5, but the ls.c. of ® fails. Consider F(z,p) = (Fi(z,p), F2(z,p)) with
Fi(z,p) = = — p and F3(z,p) = z. Obviously ®(p) := {z|F(z,p) = 0} is empty
for p # 0and is equal to {0} for p = 0. Hence C%®(0,0)(g) = @for ¢ # 0.
However S(z) := {z|F(z,0) = z}is empty for z = (21, 22)with 2z, # za,but co-
incides with {8} for z; = 23 = 8, hence S is locally Lipschitz u.s.c. at the origin.

Remark. From the proof of the preceding theorem, one observes that in (ii)
as well as in (iii) the ls.c. assumption on € may be weakened: Given some
direction ¢, one has only to suppose that the multifunction ¢t € Ry — ®(tq)
is 1s.c. at (0,2°). In the latter case, we shall say that & is Ls.c. at (0,2°) in
direction gq. In the following, we construct a problem for which this weaker 1.s.c.
assumption on ® is satisfied, and property (ii) holds but property (iii) fails, i.e.,

0 # C2(0,2°)(q) & CS(0,2°)(-Fyq).

In this example, F is even a locally Lipschitzian function satifying (6.45). Con-
sider

3(p) = {(z,w ¢ R?

|l +lyl—
Fewn) = (AxU-? Y=o}, pem,

in direction ¢ = 1. Then ®(p) = {(0,p)} for 0 < p < 2 and ¥(p) = @ for
p < 0,hence @ is ls.c. at O in direction ¢ = 1 (but not Ls.c. at 0). More-
over, C®(0)(1) = {(0,1)} and ~F,(0) -1 = (1,1). One easily verifies that
S = F(.,+,0)"! is locally Lipschitz us.c. at 0. However, CS(O)1, 1) is the
convex hull of (1,0) and (0,1). <

To show the equation in assertion (iii) of Theorem 6.26 but allowing that
the related sets are empty, it suffices to know that S is pseudo—Lipschitz and
that Fp(-,-) is locally Lipschitz. As a basic tool we use the implicit (multi—
) function estimate of Theorem 4.9 in the case of a pseudo—Lipschitz inverse
mapping. Note that F(z,0) = g(z,p) with g(z,p) = —Fp(z° 0)p ~ r(z,p)
defines a nonlinear perturbation of the initial equation F(z,0) = 0, so the next
theorem does not immediately follow from the pseudo—Lipschitz continuity of
the solution set mapping S(z) of F(z,0) = z.

Theorem 6.27 (the case of pseudo-Lipschitz S).  Let (6.45) be satisfied,
and let Fp(+,+) be locally Lipschitz near (z°,0). If S is pseudo-Lipschitz near
(0,2%), then C®(0,2°)(q) = CS(0,2°)(~F3q). If, moreover,dim X < oo, then
C%2(0,2%)(q) # 8.
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Proof. By assumption, F(z°,0) = 0. Moreover, we note that now the
Lipschitz estimate (6.51)

lir(z", p) ~ (=, Pl < Klplillz’ - =ll

holds locally with some K. The inclusion (i) of Theorem 6.26 is true as shown
above. Hence, we have only to verify that C®(0,2%)(g) D CS(0,2°)(-F2q).
Let p = tq and u € CS(0,2°)(- Fq). So, for some sequence t J 0 and related
01(t) and 0a(t) the equations

F(z(t),0) = —tF2q+ 0a(t),  2(t) =2° + tu + 01(t)

are valid. By (6. 50) we have F(z,p) = 0 & F(z,0) = ~tF2q — r(z,1q).
Since § = F(-,0)~! is pseudo-Lipschitz (say, with constant L) at (0,29), we
may apply Theorem 4.9 which states the following result:

Let € > 0 be sufficiently small, and suppose that any locally Lipschitz func-
tions g and § with values in Z fulfill the estimates Lip (§, U(€)) < §(Z + 1)7},

£ - . e _
sup lg(z)]| < g(L+1)~" and sup [I3)l} < 5L+,
z€U(s) z€U(e)

where U(g) := 2° + eBx, and Lip (§, U(€)) denotes the smallest Lipschitz con-
stant of § on U(e). Then, if £ € U(§) solves F(z,0) = g(z), there exists a
solution £ to F(z,0) = §(z) such that ||€ — £|| < 2(Z + 1)|F(&) — g(&)Il.

Setting now €& = z(t), g(z) = —tF°q+oz(t) and §(z) = —tFq—r(z,tq), we
observe that ||z(t) ~ 2°|| < t(|ju]| + 1) : £, and the L1psch1tz rank of r(-, tq)
becomes arbitrarily small for sufficiently small ¢. Thus, there is a solution
£ = y(t) to F(z,0) = j(z) such that

1€ - €Il < 2(Z + 1)IIF(€) = (&)} =: 0s(2).

This yields ||y(£) — (20 +tu+o01(t))|| < os(t) and F(y(t),tg) = 0. So the current
sequencefulfills (y(t) — 2°)/t = u and u € C¥(0,2°)(g), and the main assertion
of the theorem is shown.

For the second statement C®(0,2%)(¢) # @ under dim X' < oo, itsuffices
now to verify that C8(0,2°)(¢) # 0 forall ¢ € Z. By assumption, S is pseudo—
Lipschitz at (0,2°) with some rank L. Hence, given any sequence t } 0, there
are zy € S(t¢) such that ||z — 2°|| < ¢tL||¢]| provided that ¢ > 0 is small enough.
If 7; = £° then 0 € CS(0,2°)(¢) is evident, otherwise an accumulation point ¢
of the sequence (z¢ — £°)/||zs — «®| exists and fulfills £ € CS(0,°)(¢). w]

6.6.2 Contingent Derivative of a General Stationary Point
Map: Topological Assumptions

In contrast to the former settings, let F depend on a third variable y € Y, and
suppose that the spaces

X, Y, Z are finite—dimensional.
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We are now interested in the projection X(p) of the solution set

o(p) = {(=,Y)|F(z,y,p) = 0} (6.52)
onto the x-space, ie. we put
z € X(p) if (z,y) € ®(p) for some y. (6.53)

In several settings, e.g., if (z,y) is a primal-dual solution of the KKT system to
a parametric optimization problem, then z is said to be a stationary point for
the parameter p. This explains the title of this subsection.

In accordance with the previous subsection, we suppose

F:XxYxP—Z, F(2°4°0) = 0 holds for some (z°,y°),

and the partial derivative F} exists and is continuous on ({2, ),II), (6.54)

where again, (2, 1) denotes a neighborhood of (z%,0). To abbreviate, let
8% = (2%,9°) and Fy = Fyp(s°,0).

We want to characterize the contingent derivative CX(0,2%), where we only
use topological properties which are typical for standard stationary point map-
pings. A crucial special realization — devoted to stationary solutions of nonlin-
ear programs — will be regarded in the chapter on parametric optimization. By
definition only, it holds

for some sequence t | 0 there are functions
o1(-) and o03(-) such that, setting
€ € CX(0,2%)(g) & | p(t) = tq + 0a(t), () = 2° + t€ + 01 (2), (6.55)
the points z(t) with some related y(t)
fulfill (z(t),y(t)) € 2(o(t)).

The former mapping S now reads
S = F(',',O)—l’

and is given by the solutions (z,y) to F(z,y,0) = z. Then it holds for directions
¢ being assigned to z € Z

(u,v) € C5(0,5°)(C) & ¢ € CF(,-,0)(s°)(u,v).
Again, CS is known if so is CF. We summarize these facts by
(& n) € CS(0,8°)(~Fpq) & —Fpq € CF(.,-0)(s°)(¢ ) (6.56)

and
(€,7) € C9(0,5%)(q) = £ € CX(0,2°)(q) (6.57)

Further, we mayidentify (z,y) with z of the previous subsection and set

r(z,y,p) = F(z,y,p) - F(z,y,0) - F:p
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in order to obtain (by the same arguments) the same estimates, in particular,

Il lir(z, y, p)Il = 0 as (z,y) = s° and |jpl| 4 0, (6.58)

and
(z,y) € ®(p) & z € S(—Fp(s°,0)p - r(z,y,p)). (6.59)

In the following, we intend to obtain a statement saying that § € CX(0,z%)(q)
for some 8% = (2%,4%) € ®(0) yields the existence of some 7 such that

(& n) € CB(0,5°)(q)- (6.60)

Having this statement, it is quite natural to write C®(0,3%)(¢) by using the set
C5(0, s°)(~F2q) and, finally, to write it via (6.56) in terms of CF for the given
F. The inclusion (6.60) means that the equation

F(x,y,P) =0 or, equivalently, F(z,y,0) = "'F:p" "‘(x,y,P)
has solutions satisfying (for some sequence t | 0 and related 01 (t), 02(2), 03(t))
z=3"+tE+01(t), y =4 +tn+o0a(t), p=tg+os(2) (6.61)

So (6.58) ensures, with some 04(:), F(z,y,0) = —tFJq — 04(t) and (§,n) €
CS5(0,%)(~Fgq) as well as

C%(0,5°)(g) C CS(0,5°)(~Fpq). (6.62)

Moreover, if ||€|| + |[g]] > O then it is easy to see that the sequences (6.61) nec-
essarily satisfy a 1s.c. condition (with respect to y) of Lipschitz-type, namely,

lly = 4°ll = litn + o2 (&)l < Lli(z — 2°,p)il for small ¢ > 0,

where L is chosen such that 7 < 3L(||¢]l + llg]]). So, to simplify the further
presentation, we impose this 1s.c. assumption which is needed anyway if {|€]] +
|lg|]| > 0 holds:

If z(p) € X(p) is any given sequence with (z(p),p) = (2°,0),
then, at least for some subsequence of it, there exist y(p) and
L > 0 in such a way that both (z(p),y(p)) € ®(p) and an esti-
mate |ly(p) — y°Il < Lii(z(p) - 2°, p)|| hold true.

(6.63)

We will use this condition for points of the form p = tg + 03(t). Recall that X,
Y and Z are in general supposed to have finite dimension.

Theorem 6.28 (C—derivatives of stationary points, general case). Let (6.54)
and (6.63) be satisfied, let 8° = (x°,4°) and F = Fp(29,4°,0). Then one has:

(i) (inclusion) Foreach & € CX(0,2°)(q) there is some 0 such that
(&,m) € C®(0,5%)(g)- (6.64)
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(ii) (existence) IfX is ls.c. at (0,2°) and S is locally Lipschitz u.s.c. at
(0,8%), then CX(0,2°)(q) # 0.

(iii) (Lipschitzian inverse) IfX is lLs.c. at(0,2°) and S is a locally Lipschitz
function near (0, 8%), then for each q, one has both CX(0,2°)(q) # 0 and
£ € CX(0,2%)(q) & (&n) € CS(0,8°)(~F2q) with some 1.

<

Proof. (i) Let ¢ € CX(0,2°)(g). Then, according to (6.55), there are some
sequence t J 0 and functions oy(-) and o0a(+) such that by setting p(t) = tq +
02(t), z(t) = 2° + t€ + 01(t), the points z(t) with some related y(t) fulfill
F(z(t),y(t),p(t)) = 0. By (6.63), the points y(t) can be taken in such a way
that ||y(t) — ¥°|| < Lt with some fixed L. Thus, since an accumulation point 7
of (y(t) — ¥°)/t € Y exists, (6.64) follows by definition of C®.

(ii)Now & is Lsc. at (0,8%) due to (6.63), and Theorem 6.26 (ii) tells us
that C®(0,s%)(g) contains some element (£,7). So ¢ € CX(0,2%)(g) follows
from (6.57).

(iii) Again by Theorem 6.26(iii), we observe that

0 # C%(0,5%)(g) = CS(0,8°)(~Fpq)
holds, and (ii) shows CX (0,z%)(q) # 9. Using (i), this is the assertion. 0

From the proof of the preceding theorem, one observes that in (ii) and (iii) the
Ls.c. assumption on € may be replaced by the ls.c. of @ in direction g (see
the remark following Theorem 6.26). Further, notice that Theorem 6.27 can
be applied to the current maps ® and S if one is interested in obtaining the
assertions under (iii) without supposing (6.63). In the particular setting of opti-
mality conditions, this relates metric regularity and the local Lipschitz property
of 5, we shall discuss this in the chapter devoted to parametric programs.

On Assumption (6.63)

In the next theorem we shall substitute (6.63) by a fransversality condition. To
do this we first suppose local boundedness of y(p) asfollows:

If (z(p), p) = (2°,0), 2(p) € X(p), is any given sequence, then
at least for some subsequence of the original one, there exists (6.65)
a bounded sequence y(p) such that (z(p), y(p)) € &(p).

Then some accumulation point ¥° of the sequence y(p) € Y exists, since Y is
finite—dimensional by assumption, and — after selecting another subsequence if
necessary — we may assume that

w = lim [|y(p) ~ |~ (w(p) — ¢°) (6.66)
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exists, too. We also consider the partial inverse mapping
5°(z) = {y|F(z°,9,0) = 2}

and suppose that S is upper Lipschitz at the origin in the following sense: For
every bounded set V C Y there is a constant K > 0 such that

Vs cS°0)+K|z|jB VYze K7'B.

We note that for X being the stationary point mapping of a standard C?
program, assumption (6.65) is satisfied if theMangasarian-Fromovitz constraint
qualification (MFCQ) holds at z° (for p = 0). In this special case, it is obvious
that condition (6.63) is stronger than MFCQ; in our general setting (6.53),
(6.54), a transversality condition will be added to the boundedness assumption
(6.65).

Let

Y?:= {y|F(=%y,0) = 0},
and let C(¥°,Y?) be the contingent (or Bouligand) tangent cone of Y0 at 3°,
ie.,
cw’, Y = lim sup AN Y —y°).

Finally, let CyF(z%,4°,0) denote the (partial) contingent derivative of F with
respect to y at (z%,y°,0), and let ker Cy F(z°,1°,0) = {w|0 € C, F(z°,3°, 0)w}
be its kernel.

Theorem 6.29 (transversality condition). Let F satisfy (6.54) and (6.65). In
addition, let F be locally Lipschitz and 8® be upper Lipschitz at the origin. Let
y® be some accumulation point of y(p) where (z(p),y(p)) € ®(p) and (p, z(p)) =
(0,2°). Then |ly(p) — ¥°|| < L{|(z®) = 2° p)| holds for some subsequence and
some L whenever the transversality condition

{0} = C(¥°, Y% Nker C, F(2°,°,0) (6.67)
is satisfied. o]

Proof. Assume that (6.63) does not hold. Then, by (6.65), for given(z(p),p) =
(2°,0), z(p) € X (p) and some related subsequence y(p) considered under (6.66),

it holds
ly(®) - ¥°ll/(2(p) ~ 2% p)|| - (6.68)
We show that the nontrivial vector w from (6.66) belongs to
C@°,Y°) Nker CyF(2°,9°,0).
With £ = 2(p), y = y(p) and F(2°,4°0) = 0, we obtain that

F(z,y,p)
(F(zoi Y, O) - F(mo1y0)0)) + (F(m’ %P) - F(zo,y,o))

0



146 6. Analysis of Generalized Derivatives

where, since F is locally Lipschitz with some rank Lr, one has
|F(z,y,p) - F(z°,9,0)l| < Lrli(z - 2°, p)l. (6.69)
Further, in finite dimension and for locally Lipschitz F, the differences
F(z°y,0) - F(z°4°,0)
satisfy
F(z°y,0) = F(z°,4°,0) € Gy F(2°,3°,0)(y ~ °) + o1 (y - 4°) Bz.

So we obtain from (6.69)

0 € CyF(%1°,0)(y - v°) + (o1 (v — ¥°) + Lrli(z — 2°,p)|) Bz.

Taking (6.68) into account, division by {|ly — ¥°|| and passing to the limit p — 0
yield
0€C F(z%4°,0) w, ie, wekerCyF(z°4°0)

Hence there exists some sequence A § 0 such that F(2%4° + Aw,0) = o0y(A).
Since S° is upper Lipschitz we derivefrom y° + Aw € $%(02(})) that there exist
ya and a constant K such that both F(z% yx,0) = 0 and ||y° + dw — y»]] <
K||oa(A)||. Thus, it holds yx € Y as well as w = lim(yx - %)/A. So w belongs
to C(y°,Y?), too. &)

IfY? is a singleton then (6.67) holds trivially. For standard nonlinear programs,
this means uniqueness of the Lagrange multiplier to 2%, and is often written
in an algebraic manner as strict MFCQ at z° (for p = 0). It is worth noting
that the particular structure of F is not needed for showing (6.63) under this
condition,

Nevertheless, a complete description of CX as in Theorem 6.28 (iii),

¢ € CX(0,2%)(q) & (&n) € CS(0,5°)(~Fpy),

needed hard suppositions due to the following facts.

Having some pair (y°,1) such that (¢,1) € C$(0,5°)(q) holds, where s® =
(2°,4°), we know that (£,1) € CS(0, s%)(—F2q), but the reverse conclusion is
not true, in general. Indeed, the latter inclusion only says that certain sequences
(as t | 0) satisfy

=20 +tE+o01(t), yt =y° +tn+o03(t) and F(zy,9:,0) = —tF7q — 03(t).

But it must be shown that (as in the proof of Theorem 6.27), the particular
nonlinear equation

F(z,y, 0) = _tF:q -7z, y, tq)
has solutions close enough to (z¢,y:). This requires basically irnplicit~function
arguments. To avoid them, often the extended stationary point map X defined

as
X (p, z) = {z|F(z,y,p) = z for some y} (6.70)
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has been investigated. We will follow this line in our application to nonlinear
programs, see Chapter 81. -

The contingent derivatives of X and X are (using the definitions only) re-
lated to each other by

CX(0p,2%)(q) C CX((0p,02),2°)(q,0z), (6.71)

where the subscript of 0 refers to the corresponding space.

Bibliographical Note. The approach presented in Section 6.6 is based on
the authors’ paper [KKO1]. In the context of inclusions, contingent derivatives
of general implicit multifunctions were studied, e.g., in [AF90, LR94, Lev96,
RW98].

In the context of nonlinear programming, generalized differentiability prop-
erties have been investigated in the literature quite often. By using the theory
of second—order optimality and stability conditions, the existence and repre-
sentation of standard directional derivatives of stationary or optimal solutions
to C%?-programs in R™ were studied, for example, in the papers [GD82, (GJ8S,
Sha88b, RD95]. For a recent survey of this approach, we refer to [BS98] and
[BS00, Chapter 3].

In [LLR95] the existence of the proto—derivative (and, hence, of the contingent
derivative) of the stationary solution map of a parametric C? optimization
problem in R™ was shown to hold under the Mangasarian-Fromovitz constraint
qualification, and a derivative formula was given. The approach in [LR95] was
based on the study of proto-derivatives in the context of subgradient mappings,
see [PR94, LR96, RW98] and Section 9.3. More results on the existence and
representation of proto—derivatives or B—derivatives of the stationary solution
mapping (or of the solution sets of parametric nonsmooth equations), can be
found, e.g., in [Rob91, Pan93, Lev96, RW9S]. For nonlinear programs with C+
data, an extension of formula (6.46) to Thibault derivatives of the critical point
map was given in [Kum91a] under the assumption of strong regularity. <



Chapter 7/

Critical Points and
Generalized
Kojima—Functions

In order to study critical points of optimization problems as well as solutions of
generalized equations and complementarity problems in a unified way, we prefer
to use a direct, analytical approach for characterizing such points; namely as
zeros of some nonsmooth function F sending R into itself. Various functions
are suitable for this purpose, and later we will deal with several of them, indeed.
In the present chapter we consider systems of equations which are defined by
locally Lipschitz functions of a special structure and are adapted from Kojima’s
[Ko0j80] form of the KK T conditions for C2-optimization problems. This leads
to the notion (generalized) Kojima—function. We shall investigate different reg-
ularity concepts for such systems, or, equivalently, difterent Lipschitz properties
of critical point and stationary solution mappings.

7.1 Motivation and Definition

As a starting point let us consider the nonlinear optimization problem

min f(z) st. z€M, (7.1)
where @ < 0 (=1 )
_ a| sz < i=1,.,m
M‘{”en h‘k(a:) =0 (k=1,..,k) }

and the functions f, g, he : R™ = R (Vi V&) are (at least) continously differ-
entiable near some point of interest.

In the following, however, we will mainly deal with the case that the func-
tions f, g¢ and Ay belong to the class C!'1. The latter hypothesis opens the

149
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use of several technical tools and allows us to weaken the standard smooth-
ness assumption of critical point theory in nonlinear programming. The weaker
supposition makes sense, for example, in two—level optimization, decomposition
approaches and semi—infinite optimization, where C!! data appear in a nat-
ural way. Note that even for problems without constraints, the gap between
f e CW and f € C? is very large. This will become clear in several situations
below.

KKT Points and Critical Points in Kojima’s Sense

Using the standard Lagrange function L(z,y,2) := f(z) + (y, 9(z)) + (2, h(z)),
the classical necessary optimality conditions to problem (7.1) in the sense of
Karush, Kuhn and Tucker have the form

D L(z,y,z) =0, h(z) =0, g(z) <0,y 2 0, (y,9(2)) =0, (7.2)

a solution (z,y, ) of this system is called a Karush—Kuhn—Tucker point (KKT
point) of (7.1). If (y, z) exists such that (z,y, 2) satisfies (7.2), then z is said to
be a stationary solution to (7.1). It is well-known that a local minimizer of (7.1)
is necessarily a stationary solution, provided that some constraint qualification
holds.

Following Kojima [K0j80], one may assign to (7.1) the function F : R% —
R4, d = n + m + &, with the components

Fy = Df(z) + i, ¥ Dgi(z) + Y5, 2xDhi(z) Lagrange term,
=gz -y, feasibility term,  (7.3)
F3 = h(z), feasibility term,

where yi := max{y;,0} and y; := min{y;,0}, and the vectors y* and y~ are
defined by the components y; and y; (V%), respectively. Evidently, y~Ly*
and y = y* +y~. Notice that y* and y~ are the Euclidean projections of ¥ to
the nonnegative and non-positive orthant of IR™, respectively. As projections,
they are connected with the related normals in an evident way, in particular,
y"=y-y" € Ngr(v")

The function F is called the (usual) Kojima—function of the program (7.1).
If 8 = (z,y,2) € R%is a zero of F, then we say that s is a critical pointand z is
a stationary solution of the system F(z,y,z) = 0 (or simply of F). Moreover,
if ¢ = f(z) for some stationary solution & of F, then we say that ¢ is a critical
value of (7.1).

Since, in general, ¥ may have negative components, the Lagrangian L is now

L(z,y,2) = f(2) + Y_ 4 gu(a) + Y 2uha(),

=1 k=1

and Fy = D;L. We do not need a new symbol because ¥ was nonnegative in
the former settings. One immediately sees that

(z,y,2) KKT point = (z,y + g(z), 2) critical

(x,y,2) critical = (z,y*,2) KKT point. (7.4)
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Note that both transformations are locally Lipschitz, this is important in view
of our regularity notions.

One may even directly identify critical points and KKT points: By conti-
nuity, inactive constraints — i.e., such with gy(z) < 0 — remain inactive for z'
near . So these constraints do not play any role for the local analysis of KKT
points near 8 = (z,y,2), and we may delete g; in such a context. Hence, one
might suppose that g(z) = 0 at the given stationary solution z of interest (but
not at &' near &), whereupon 8 is a KKT pointiff 8 is critical. Nevertheless, we
will not always make use of this fact, in order to show also certain symmetries
concerning active and non—active constraints in several statements.

Generalized Kojima—Functions — Definition

It was first observed in [Kum98] that several regularity results with respect to
the Kojima—function F defined in (7.3) do not require the concrete form of the
first component Fy of F, but only the affine—linear structure of Fy with respect
to (y*,2), ie, in (7.3), Df, Dg; and Dhyg can be replaced by arbitrary (con-
tinuous) functions ¥, ¥; and T. This extension maintains the nice separable
form of F, namely, F(z,y,2) can be written as the product of the row vector

N(y,z) =Lyt y7,2), (7.5)

and a specially structured matrix M (). This is our key observation and sug-
gests the following definition. In the next section, we shall see that this product
describes besides Kojima’s function (7.3) several further objects of interest in
the context of optimization. Iet againd =n 4+ m + k.

Definition. A function F : R? — RY, is said to be a generalized Kojima-
function if it has the representation

F(z,y,z) = N(y, Z)M(z)v
where N(y,2), (¥,z) € R™"* is given by (7.5), M(z), z € R", is defined by

®(z) g(x)7 h(z)T
() 0 0

0 -E 0 ’
I(z) 0 0

M(@z) = (7.6)

and E is the (m, m)-identity matrix, ®(x) € R" is arow vector, ¥(z) and I'(z)
are matrices formed by the row vectors ¥1(z),..., ¥m(z),I'1(2),...,Ix(z) in
R", and g(z), h(z) are regarded as column vectors of length m and &, respec-
tively. <

Convention. To avoid the frequent use of the transition symbol, we often will
omit it if the context is clear. In particular, we sometimes write (e, 4) to denote
a column vector composed by the column vectors @ and b, and we identify uA
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and ATu for the product of a vector  and a matrix A. Further, we will agree
in several applications of generalized Kojima functions to

write F = MN instead of FT = MTNT (7.7)
and to omit the transition symbol in ®(z), ¥;(z), and so on. o

Obviously, F is the usual Kojima—function if ®(z) = Df(z), ¥i(z) = Dgi(x)
and T'y(z) = Dhi(z). In view of a second-order” analysis, we shall often
suppose in (7.6) that ®,%¥,T € C% and g,h € C'*, but formally this is not
required in the above definition.

The notions critical point and stationary solution are used similarly to those
for the usual Kojima—function. A generalized Kojima—function F with compo-
nents Fy, Fy and F3 has the explicit form

F1 = ‘I’(m) + E::.l y;*-‘I"(.’E) + E::l Zkrk(z),
F = g(z) -y, (78)
By = h(z).

Of course, the components F3 and Fj are still the same as in (7.3). The equation
F(z,y,z) = 0 is sometimes called a (generalized) Kojima system.

The separable structure of F = NM and the special form of N are very help-
ful for computing generalized derivatives. The function N is locally Lipschitz
and has, in addition, a special simple structure (as a projection onto a polyhe-
dron). We will see that N is simple in the sense of Section 6.4. Exploiting this
fact and supposing that M is locally Lipschitz, one can determine the Thibault
derivative TF and the contingent derivative CF (recall that they are crucial for
strong, upper and pseudo-regularity of F, cf. Theorem 5.1 and Theorem 5.14)
by the product rule of differentiation, cf. the properties (6.5) ... (6.8) of Section
6.4. We shall see below that these derivatives can be (more or less explicitly)
described and interpreted in terms of the original functions involved. This is
the most hard and interesting task for applying abstract stability statements
formulated in any equivalent setting.

Clearly, if one of the input functions in M is a complicated Lipschitz func-
tion, the remaining problem may be serious. On the other hand, if M is
even continuously differentiable (in particular, if M corresponds to the clas-
sical Kojima—function (7.3) with £,g,4 € C?), then only the function N(y) =
(y*,y™) is nonsmooth, and F becomes piecewise smooth. If, in addition, at
some zero .sf = (z%,y, 2) the strict complementarity condition y; # 0 Vi holds
true, also N(-) is smooth near y, and the usual implicit function theorem is
applicable in order to study regularity of F: In fact, then all our regulari-
ties (strong, pseudo, upper) coincide and are satisfied if and only if DF(s%) is
nonsingular. However, in the following we are just interested in the opposite
(non—standard) case.

Having (pseudo, strong) regularity of F at 8° = (z°,%°, 2%), we may modify
all the functions in (7.8) as long as the variations remain sufficiently C%*-small
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(see the Theorems 4.1 and 4.3 concerning existence and behavior of related
zeros). If we vary only M, but not the fixed elements 0 and 1 in (7.6), then
we are still in the classical framework of parametric optimization. But what
happens after changing the functions y* and ¥~ in N(-) or the other elements
of M? The result and interpretations of such perturbations will be studied in
Chapter 11 for usual critical points.

For many stability statements, the assumed constraint qualifications are of
crucial importance. In the regularity context, they clarify the local behavior
of the feasible points under right—hand side perturbations or, from the dual
point of view, the behavior of the related normal cone map. Mostly, one sup-
poses MFCQ or the more restrictive Linear Independence constraint qualifica-
tion (LICQ) which says that the gradients of active constraints are linearly
independent.

Therefore, before we consider particular cases and apply rules for differenti-
ating F, let us state that LICQ is a necessary consequence of pseudo-regularity
for generalized Kojima functions under quite weak assumptions. Our proof
directly indicates which perturbations disturb the pseudo—Lipschitz property,
provided LICQ is violated.

Lemma 7.1 (necessity of LICQ for pseudo-regularity). Let F = NM be a
generalized Kojima function, where ®, ¥ and T are continuous and g,h € C1.
Then, F is pseudo-regular at some zero 8% = (z0,3°,2°) only if the gradients
of active constraints {Dhp(z®)|1 < k < &} U {Dgi(z®)|g:(z®) = 0} are linearly
independent. <

Proof. Without loss of generality we may assume g¢(z®) = 0. For simplicity,
put gm+k = hg, Yk := Iy and ymyr = 25 for 1 € k < &, and omit the
summationindex ¢ = 1,...,l :=m + k. For1:= (1,..., 1)T eR ande > 0,we

set
a(e) =€) ¥i(a?).
Then, the point (z%,3° + €1) solves Fi = a(e), (F2, F3) = 0.
Next let any e satisfy
> aiDgi(a) = 0.
We will show that & = 0. To this end, with § > 0, consider solutions (z,¥y) t0
F1 = a(e), (Fg,Fs) = Ja.

For small fixed g, and for § tending to zero, now there are such solutions (z,y)
which satisfy the pseudo-Lipschitz inequality

li(z,) = (2°,4° + e)|| < Léljex]. (7.9)

The first m components of y°4-¢1 are not smaller than €. Hence, it holds y; > 0
for 1 € i < m and small 4. This implies

da; = gi(z) for 1 <i<m.



154 7. Critical Points and Generalized Kojima—Functions
For equality constraints g;,¢ > m, da; = gi(z) is trivially true. By the mean-
value theorem and due to g(z%) = 0, we derive the identities

9i(z) = Dgi(8)(z ~ 2°), where 8; = z° (as & — 0).
Therefore,

§llel* = (o, 60) = (0, 9(x)) = Y i Dgi(6:)(x — z°).
Since Dgis continuous and § =+ 0, there holds

Y @iDgi(6:) =+ Y o4Dgi(a®) = 0.
Recalling (7.9) one thus observes that
llz ~ 2°|] < Lélie]

and hence
Sllell* = 1Y euDgi(8:)(z — )| < | 3 «sDgs(8i)llllz ~ 2°|| = o(8)
for arbitrarily small §. But this inequality yields a = 0. a

7.2 Examples and Canonical Parametrizations

In this section, we discuss relations to other settings of critical point systems. In
particular, we give typical examples of generalized Kojima—functions and show
which kinds of parametrization appear if the system F(z) = 0 is perturbed in
the right—hand side.

The Subdifferential of a Convex Maximum Function

The two basic notions of convex analysis, the conjugate f* and the subdiffer-
ential 8f of a given convex functional f on R", just describe key quantities
of some parametric optimization problem. So f*(z*) yields the infimum value,
and (8f)~}(z*) the minimizers of the perturbed function f(§) — (z*, £).
Strong regularity of 8f(-) at (z%,0) means Lipschitz continuity and unique-
ness of (8f)~! near (0,2°). Further, we know that strong and pseudo-regularity
here coincide, cf. Theorem 5.4. The inclusion z* € 8f(z) cannot be modeled by
Kojima functions, in general. But for solving it (or for any analysis of related
solutions), one needs information concerning f. At this stage, Kojima functions
come into the play. To see what happens we regard one of the simplest cases.

Let f be a maximum function on R", ie., f = maxjci<m ff, where all fi
are convex functions belonging to the class C**!. Then

8f(z) = conv {Df'(z)|f'(z) = f(x)}
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and
0€df(z) & 0=0,y'Df\(x), f@)+y; =fi=z), Lo =1
Setting
h(z,2):=2z€R and gi(z,2):= fi(z) - 2,
now we have D;gi(z, 2) = —1, and our conditions attain the form

m m
0= 4 D.gz,2), -1=) 4 Digilz,2), ¥i = gilz,2),

i=1 i=1

iLe.,
m
Dh(z,2) + ) _4i Dgi(2,2) =0, gi(=,2) ~y =0. (7.10)
i=1

These equations form the Kojima system of the problem

gniI}{zIf‘(z) -2<0,i=1,...,m}, (7.11)
T,Z
this is a program with convex and smooth C*! data.

Strong regularity of the system (7.10) means local Lipschitz continuity of
the unique solutions to

Dh(z,2) + Y y! Dgi(z,2) = (a,a), gi(z,2) -y ="b; (7.12)

i=1

for the parameter (&, @,b) having small norm. The latter is the Lipschitz prop-
erty of unique primal-dual solutions to the parametric problem

min{(1 — @)z — {a,z) | fi(z) -2 < b;, i=1,...,m}. (7.13)

According to LLemma 7.1, strong regularity of system (7.10) at (z°,°, 20) re-
quires LICQ. In the current case for z° and 2° = f(29), LICQ means: The
vectors {D f#(z?)|i € I°} have to be affinely independent, where

I° = {ilf*(=") = f(=°)}.

It is worth noting that the weaker MFCQ requires the existence of (u,{) € R™!
such that D f*(z%u ~ ¢ < 0 Vi € I° and is always satisfied.

In contrast to the initial situation when studying the subdifferential mapping
df, in system (7.12) additional parameters &, b; appear, and we are speaking
about dual solutions, too. By variation of b; , we may modify the functions f;
separately such that foew(z) = max;(f*(z) — ;). This was an impossible vari-
ation as long as we considered f without any inner structure. Keeping b = 0
fixed we just return to our initial question of strong regularity of &f.

The question arises whether the two forms of strong regularity are indeed
different, or not. The answer is yes.
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Remark 7.2 (strong regularity of 8f).
1. Clearly, if the Kojima function in (7.10) is strongly regular then so is 8f.
2. On the other hand, 8f may be strongly regular while the Kojima system
(7.10) does not so. This case happens if and only if 8f is strongly regular
at 20 and {Df#(z%)|i € I°} are affinely dependent. <

To see [2.], we first recall that under strong regularity of (7.10), LICQ holds
because of Lemma 7.1. Conversely, let 8f be strongly regular at z°, and, in
addition, let LICQ be true. Then 20 is isolated in (8f)~1(0), and the (uniform)
growth condition holds, see Lemma 3.1 and Theorem 4.8. So (7.13) is still solv-
able with solutions (z(a,a,b), z(a,a,b)) near (z%,2%) = (29, f(z°)) for small
parameters (because (8f)~! is Ls.c. at 0). By LICQ, the duals y(a, @, b, z, z) in
(7.12) uniquely exist and are Lipschitz in the indicated variables. This is just
strong regularity of (7.10).

Summary. Strong regularity of 8f means only uniform growth of f (and
can evidently hold even if all f# coincide). Strong regularity of system (7.10)
means just both, uniform growth and LICQ at the solution to problem (7.11).

Complementarity Problems
Given locally Lipschitz functions u,v : R® = R", find z such that
u(z) 20, v(z) 20 and (u(z),v(z)) =0. (7.14)

With y € R"™, we rewrite the conditions as u(z) = y*, v(z) = —y~ which
yields the equation

F(z,y) =0,  where Fi(z,y) =u(z) —y*, Fa(z,y) = -v(z)—y~.
In fact, F is a generalized Kojima-function on R*":
&(z) = u(z), ¥(z) = -E, g(z) = ~v(z),

where E is again the {n,n) identity matrix. Clearly, z and F3 do not appear.
The perturbed system Fy = a, F3 = b means

uz)-yt =a and -—-v(z)—-y~ =b (7.15)

and describes a natural parametrization of the original problem with parameters
e and b: Find z such that

u(z) 2 a, v(x) 2 -b and {(u(z)—-a,v(z)+b)=0. (7.16)

In the standard case v(z) = x, we obtain a generalized Kojima—function where
¥ = Dyg, ie., in comparison with the usual Kojima—function (7.3) only Df is
replaced by ® = u. Explicitly,

Fy=ui-y}, Fu=-zi-y;.
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The special relation ¥ = Dg becomes interesting, e.g., in Lemma 7.18.

Several other descriptions of the complementarity problem are possible, for
example, via an optimization problem. Instead of (7.16), one may investigate
the optimization problem

min (u(z),v(z)) st. —u(z) <0, —v(z) <0, (7.17)

provided the original problem (7.14) is solvable and u,v € C*. The right-hand
side perturbations of the related Kojima-system lead us to

(4, DvY + (v, Du) ~y* -2t =¢, —-u—y~"=a, —v—2z"=b.
The system describes the critical points of the perturbed problem
min (u(z),v(z)) - {(c,z), 8t. u(z)>a, v(z)>b

with parameters a, b,e. Compared with (7.16), an interpretation in the context
of complementarity is now less obvious and the analytical form of the Kojima-
system is more complicated. Concerning approaches via so-called NCP func-
tions we refer to Chapter 9.

Generalized Equations

Given any closed, convex set € C R? and any continuous function H : R? —
RY, ageneralized equation (written in traditional form as variational inequality)
claims to find some s € C such that

(H(s),c—s8) <0 VeeC.
After introducing the (contingent) normal cone
No(s)={¢CeRY((,c—8) <0VeeC} (sel),

this means
H(s) € N¢(s), s€C. (7.18)

The introduction of generalized equations for the unified study of KKT systems,
complementarity problems and equilibrium problems is due to S.M. Robinson
(see, e.g., [Rob80, Rob82]).

The general equation (7.18) becomes an eqguation by writing Ne(+) in terms
of the Euclidean projection onto C. But more interesting, let us suppose that
some analytic description of C is given, say C is polyhedral,

C={slds<a},

with some suitable matrix A and vector . Taking the particular form of the
normal cone into account, (7.18) is equivalent to

H(s)=y A, As—a=y" (7.19)
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for some y. With g(s) = As — @, this is a generalized Kojima system with
® = ~-H, ¥ = Dg, and F; does not appear. The related parametric equation
F = (Fy, F3) = (a,b) now becomes

~H@$)+ytA=a, As—a-y =b (7.20)

This system characterizes, by putting C(b) := {s|As — & < b}, the solutions of
the parametric generalized equation

H(s)+a€ Now) (8), s€ C(b) (7.21)

with parameters a,b. Here, the feasible set C is no longer constant.

When studying (7.21) directly in a general framework (e.g. by the tools of
Chapter 2), new difficulties will appear because N¢ depends on b. However,
knowing that (7.21) is only a perturbed generalized Kojima-system in the sense
that

s satisfies (7.21) & s satisfies (7.20) with some y

keeps the things simpler since the consideration of multifunctions can be avoided
at all.

On the other hand, the traditional form of parametrizing (7.18) according
to Robinson’s work [Rob80, Rob82] leads to a problem where C remains fixed:

H(s)+p€ Ng(s), seC (parameter p). (7.22)

So the parametrizations (7.21) and (7.22) are dealing with different subjects,
both closely related to the original problem. A similar situation was discussed
above concerning subdifferentials. Again, with the same arguments as for the
subdifferential, linear independence of all active gradients (i.e., of all A; satis-
fying A;8° = ey for the solution (8% 4°) to (7.19) under consideration) is the
crucial condition which ensures that strong regularity in Robinson’s sense (i.e.,
the existence of locally unique and Lipschitz solutions to (7.22)) implies strong
regularity with respect to the parametrization (7.21).

In particular, if the generalized equation (7.18) describes KKT points of the
nonlinear program (7.1), ie. if (7.18) has the particular form

Df(z)+ X%, %iDgi(x) + ., zDhi(z) = 0
g9(z) € Npr() (7.23)
h(z) = 0,

then the parameterization (7.22) with p = —(a,b, ¢} coincides with the right—
hand side perturbation of the Kojima function (7.3) due to the special kind of
H and C. Both parameterizations now describe exactly the KKT points of

min f(z) - {a,z) s.t. g(z) <b, h(z) =c, (7.24)

which follows easily from the particular form of C. Besides, strong regular-
ity with respect to (7.22) implies here strong regularity with respect to (7.21)
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because the linear independence condition concerning A holds true; not that
C= {(zs 1, Z)l - E’I < 0}'

Finally, if C is not polyhedral (and/or non—convex), but say C is described
by C = {s|g(s) < 0}, g : R? - R¥ with g € C?, the situation is similar. The
interesting set N¢(s) in (7.18) is now the normal cone of the contingent cone
to C at s. Under a constraint qualification like MFCQ, there holds

Ne(s) = {y"Dg(s) |y such that g(s) = y~}.
So, setting F' = (—H(s) + y+Dg(s), 9(8) — y~), equation (7.20) passes into
~-H(s)+y*Dg(s) = a, g(s)—y~ =b. (7.25)

Clearly, F is again of generalized Kojima-type, where, ® := K and ¥ = Dy,
i.e., in comparison with the usual Kojima function only D f is replaced by — H.

Nash Equilibria

Consider the following problem of a (Nash) equilibrium of the non-antagonistic
2-person game (u,v, X, Y): Given continuously differentiable functions u,v :
R™™ o R and compact convex sets X,Y in R"™ and R™, respectively, find
(z°,¢4°) € X x Y such that

w(z%y°) > u(z,y°) VreX
v(z% %) 2 v(=%y) Vyev. (7.26)

Writing down the first order necessary optimality conditions for both opti-
mization problems, we get the generalized equation

D,u(z%,5°) € Nx(z%)
Dyv(2°,4°) € Ny(y°)

where Nx, Ny are again the usual normal cone maps.

For seek of simplicity, let X be the unit simplex of R™, ie., X = {z]|1,"z =
1,z > 0} (where 1,7 := (1,...,1) € R™), and let Y be the unit simplex of
R™. Further, let 7, s be the dual vectors associated with —z < 0 and -y < 0,
respectively, and let p,g € R be the dual variables with respect to the equations.
Then the critical point system takes the form

-Dyu(z,y) - rt+pl, = 0,

-Dy(z,y) - st+ql, = 0,
-z -7~ =0, 1,7z-1 = 0, (7.27)
_y -8 = 0, lmTy - 1 = 0-

This system can be rewritten as F = 0 by means of a generalized Kojima-
function F with

&(z,y) = (—Dzu(,v), ~Dyv(z,y)).
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In (7.6), the matrix M depends now on the strategies & and y, and the vector
N depends on the dual vector (r,8,p,q). The related system F = ¢ with right-
hand side perturbations ¢ = (a,b, &, 8,&,n) leads us to linear perturbations of
the utilities in the player’s variables as

u(xay) - aTxr v(z,y) - bTy
and claims perturbations of the simplexes X and Y as well: z > £, 172 = 1+¢,
y >, 17y =1+ B. Similarly, one can handle games of more players.
Piecewise Affine Bijections

If F is the usual Kojima—function of a quadratic optimization problem, say
min{z"Qz +a"z| Az < b, Bxr = ¢},

then ¥ and I' are constant and ®, g, h are linear. The investigation of F~?
then leads us to piecewise linear systems studied by Kuhn and Lowen [KI.87].
Basic extensions of their results to the case of PC!-equations can be found in
[JP88, Sch94, PR96, RS97].

7.3 Derivatives and Regularity of Generalized
Kojima—Functions

The possibilities for computing relevant derivatives are important for any analy-

sis of nonsmooth functions, in particular also for generalized Kojima—functions.

Because of the crucial role which the Thibault derivative TF and the contingent

derivative CF are playing for strong, pseudo— and upper regularity, it is desir-

able to have an explicit and intrinsic description of these mappings in terms of

the original functions. We shall derive such descriptions and utilize them both
for characterizing regularity and solving Kojima systems.

Properties of N
Recall that F(z,y,z) = N(y, 2)M(z), where N(y, z) is the row vector

N(y,z) = (Ly*,y7,2),
and M (z) is defined according to (7.6), ie.,
o(z) g(z)" h(=)"

va = | Y 5 g
T'(z) 0 0

Below we shall show that N is simple, hence, we can apply Theorem 6.8 and
the Corollaries 6.9 and 6.10 in order to represent TF and CF. We will see that
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CN # TN, and that, even if M is arbitrarily smooth, we will get CF # TF in
general.

However, the only part interesting in this context is the piece-wise linear

function -
y~ N =@why)=@Fy~y") eR™

Tts derivatives TN {y®){v) and CN{y®){v) = N'(y%v) can be written down by
considering the components separately.

Obviously, by defining
Rr(®) ={re(0,1]™ | n=1ify§ >0, r;=0ifyf <0 }, (7.28)
the set TN (y°)(v) consists of all vectors
(e, v — a) satisfying a; = ryvg (Vi) with some r € Rr(y°).

The reader easily sees that Rr(y°) = 8(y*)(¥°) and hence TN (y°,2%)(-) co-
incides with the multivalued directional derivative 8N (g%, 2%)(:) in terms of
Clarke’s generalized Jacobian. Setting similarly,

ri=1ify! > 0orify) =0, v; 2 0;

0 v— m
Rely'v) = {"e {0,1} ri=0ify <Oorify! =0,vi <0 }’ (7.29)

we obtain a singleton and
ﬁ'(y“;v) = (a,v - a), where a; = rg; (Vi) and Re(y®,v) = {r}.

For 3@ = 0,now r; is simply the directional derivative of y; + yF at O in
direction signwv;. Hence, CN is the directional derivative of N. Trivially,
Re(y°,v) C Rr(y°).

Some Transformation

For several reasons, it makes sense to rewrite the representations (7.28) and
(7.29) by using the transformation

ai=rivy, Bi=(1-rv (Vi) (7.30)
with r € Rr(y®) or r € Re(y°,v). The reader easily sees that
@) if r € Ry(y°) then (a, 8) € Jr(°),
@) ifr € Re(y®,v) then (o, B) € Jo(¥®),

where

ofi 20 ﬂyg 0
Bi = o ify >0 (7.31)
o =

Ir°) = { (e, ) € R*™
0 ify) <0
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and
Jo@°) = {(e,8) € Tr(4°)| @i 202> B;ify? =0 }. (7.32)

Conversely, if @ and 8 satisfy the conditions under (I) or (IT), wedefine v and
T by
v=a+pf, r,-=a,-/v,- ifv;#0, ri=1ifv; =0. (7.33)

Then, one concludes in an elementary way that r € Rr(y¥°) and r € R (¥°,v),
respectively. Moreover, in both cases, the one-to-one correspondences (v,r) «
(a, B) satisfy

v=a+f and v=0 & (a,p)=0. (7.34)

The latter will be important for studying the injectivity of the derivatives TF
and CF of the generalized Kojima-function.

Derivatives of N

In the following lemma, we summarize representations of 7NV and CN which
immediately follow from the discussion above.

Lemma 7.3 (TN, CN). Let A® = (¥%,2%) and p = (v,w) € R™+*,

Then, TN(X%)(u) has the following representations:
TN(’\O)(I") = {(D’ a,v-—-a, ’LU) | Qi = TiVs (Vi)a re RT(yo)}:
TN(X%)(u) = {(0,, 8, w) | (&, 8) € Tr(y°), v= e+ 8},
TN(\) () = pON(N) = {uJ | J € NG},

Moreover, CN(X®)(u) has the following representations:
CN(A%) () = {(0,0,v — o, w)} with a; = ryvs (Vi), Re(y°,v) = {r},
CN(X%) () = {(0,, 8, w)} with Jo(4°) = {(e, B)}, v =0+ B,
CN(A%) () = N'(A% p). o

Basic Lemma on N

Now we make sure that (the locally Lipschitz functions) ¥ and N are simple
in the sense of Section 6.4 and have further useful properties which are based
on their special structure.
For real y, the functions y* and y~ are monotone and satisfy y* = %(y+|y|),
¥y = 2(y ly]). So the related derivatives of N = (y*,y™) are component-
vVlsely given by the “derivatives” of the absolute value function y = |y|. Let
N; denote the R? components (yF,y;") of N. Since N(y) is component-wisely
defined via independent variables, all the following statements must be shown
only for each component. In addition, they are evident for y, # 0 (where N; is
locally linear), and they also hold for N which differs from N only by additional
linear and independent components.

Lemma 7.4 (N simple, and further properties).
1. The functions N and N are simple everywhere.
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2. Given (3% 2°) and (v,w) with ||v|| € 1, one has for all z and small € > 0
that 0 <t < € and ly — y°|| < € imply the inclusions

(@ tN@y+tv,z+tw) ~ N(y,z)] € TN (v,w),
) tHUNG +t0, 2% +tw) - N(E%2%) € N'((3°2°);(v,w)).
o

Proof. 1. Obviously, N is simple if and only if so is N=~N (). Given
arbitrary ¥° and v, let (e,v — a) belong to N@%)(v) and let ¢t = ¢, | 0 be
any given sequence. To show that N is simple, we have to construct elements
y = y(t) = y° in such a way that

(a,v = a) =limt~Y(N(y + tv) - N(p)), (7.35)

with the chosen sequence of t (or with some infinite subsequence). To do this,
write @ = 139 with r € Ry (y°) and define 3 = ¥? — tAju;, where

0 @) ¥ #0
Nic={ 1—p; if(ii) p?=0andv; >0,
ry  if (i) y) =0andv; <0
Now one easily determines in case of

G) (gi+tw)t ~yt =ta,
Gi) (v +tw)* -y = rity; — 0 = toy,
(i) (g + )t =y = (1 = r)tw)t = (=ritw)t = 0 = (-ritv;) = toy.

Therefore, even _ _
tN(y + tv) - N@)) = (o,v - a)

holds for the constructed sequence of y — y°.

2. The proof of (a) and (b) is ensured by piecewise linearity and is left to
the reader. O

By construction, the points g defined under (i), (ii), (iii) in the previous proof
belong to a line given by * and v.

Conventions
Throughout the rest of this section, we suppose that

80 = (2°,1°,2°) and o = (u,v,w) are fixed in R?, (7.36)
where d = n + m + k. Further, we shall use the abbreviations

&° = 8(z°), ¥°:=¥(2%, I°:=0I(?, (7.37)
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and we write

I = {ilyf = 0}, I* := {ily > 0}, I := {ily] < 0} (7.38)
and
Tapi = T Lk = Lg% (7.39)
Moreover, we put for « € R,
Qr(u) :==T:Fi(s°)(u) and Qc(u) := CuFi(s%)(u), (7.40)

where F} is the first component of F, ie., Fi(z,y,2) = ®(z) + ¥ jmy ¥ ilz) +
Y k=1 2:T%(z), while Tz F}(s°)(u) denotes the partial Thibault derivative of F
at 8% with respect to  in direction u. Analogously, CpFy(s%)(u) denotes the
corresponding partial contingent derivatives.

Recall again that for the optimization model (7.1), s° corresponds to a
primal-dual vector, while ®(z) = Df(z), #° = Df(z®), ¥;° = Dgi(z°) and
Fk° = th(zo).

Formulas for Generalized Derivatives
Product Rules

From Lemma 74 and LLemma 7.3 we know that N is simple and directionally
differentiable. Hence, if M € C% then results of §64.1 immediately imply the
partial differentiation and product rules for TF and CF. For completeness, we
repeat here the product rules.

Theorem 7.5 (TF, CF; product rules). Let F' = NM be a generalized Kojima—
function according to (7.8), 8 = (2%9° 2% and o = (u,v,w). Suppose
MeC™.

Then the Thibault derivative TF of F has the representation

TF(s%)(0) = N(@°2°)TM(2)(u) + TN, 2%) (v, w)M(20). (7.41)
Moreover, given Mg € TM(2°)(u) and No € TN(y°,2°) (v, w), the three condi-
tions

N(y°, 2%)[Mo + NoM(z°)]

M,
No

limt=![F((z,y,2) + to) = F(z,y,2)},
Hm it~ [M(z + tu) — M(z)], (7.42)
t7[N((y,2) + t(v,w)) — N(y,2)]

can be satisfied with the same sequences 8¢ = (z,y,2) = s® and t =t | 0,
where z = 29, all y are located on a line and oy = T (ys + o))t - y;"]

Finally, for the contingent derivative CF, the same statements are true, one
has only to replace "T” with "C” and &t = (z,y, z) with %, <

Proof. Since N is a simple function according to Lemma 7.4, the statements
concerning TF follow from Theorem 6.8 and Corollary 6.10. The contingent
derivative can be determined similarly, one has to apply Corollary 6.12 instead.

0
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Explicit Formulas

Theorem 7.6 (TF, CF; explicit formulas). Assume the hypotheses of Theo-
rem 7.5, and suppose in addition that g,h are C*~functions.

Then, TF(8%) (o) consists exactly of all vectors p = (€,1,¢) such that

£ € QT(U) + 2‘ rs 0 + Zk w [ °
7 = Dgi(z%u—(1~-ry Vi (7.43)
G = Dh(z%)u Yk

holds with some r € Rr(y®).
Equivalently, TF(s%)(0) consists exactly of all vectors p = (€,9,¢) such that

£ € Qr(u)+ Y, a¥’ + 3, wels®
m = Dg(z®)u- B Vi (7.44)
G = Dhy(z%u vk,

holds with some (e, B) € Jr(y°®) satisfying v = a + B.

Further, CF(s°)(0) consists exactly of all vectors p = (&,,¢) such that (7.43)
or (7.44) hold after replacing Qr(u) with Qc(u) as well as R(y®) and Jr(y°)
with Re(°,v) and Jc(y°), respectively. In this case, the elements r € Reo(y°,v)
and (a, B) € Jo(y°) with o+ B = v are unique. <o

Note. The vectors (u,v,w, &,1,(, a, 8) satisfying (7.44) withv = a+ describe
exactly the set gph TFE(s%), where FZL is defined by FE(s) := (F(s),y*,y™)
for 8 = (z,y,2). The analogous result for gph CFE(s%) holds after replacing
Qr(u) with Q¢ (u) and Jr(y®) with Jo(y°). o

Proof of Theorem 7.6. To show (7.43), we have still to determine the terms of
the product rule (7.41) by using that g, A € C. Recall that M has the structure
(7.6). Since g,k € C', the derivative T'M (2°)(u) yields (independently of
concrete choices of z = 2z and ¢ 4 0) with respect to the columns 2 and 3

of M the submatrix
Dg(z®)u Dh(z%)u

0 0
0 0
0 0

The related limits of column 1 are just given by all elements
(¢,4,0,7) € T(8,¥9,0,T)(z°)(w).

So, the vectors of the product N (y°, 28)TM (z°)(u), in (7.41), have exactly the
form

@+ @°", ¥) + (z°,7), Dg(c®)u, Dh(z")u),
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where the three blocks are assigned to the components Fy, Fz and F; of F. By
the chain rule (6.19), the elements

o+ @, ¥ + (%)

are also forming the set Qr(u) = TF (-, 3%, 2%)(x) (), since

Fi(z,9°,2°) = 8(2) + ;9] ¥i(2) + Ty elne(2)-
By the structure of TN according to I.emma 7.3, the second term
TN (y°, 2°) (v, w)M (%)
assigns to Fy, Fy, and Fj all triples
(3 rvi® + 3, wele®, =(1 - r,)u,, 0) € RIS

where r € Rr(y°). Thus, the explicit formula (7.43) follows from the chain
rules.

The equivalent formula (7.44) follows from (7.43) and Lemma 7.3 based
on the transformations (7.30). The explicit formulas for CF can be shown
similarly, according to Theorem 7.5. O

The main point of the above proof was the product rule TF = T(NM) =
N (TM) + (TN) M, Since our way via the rather general Theorem 6.8 and its
corollaries is quite long we add a direct proof in the appendix as LLemma A.6
which is valid for the actual product rule only.

Let us emphasize that in order to apply the explicit formulas, we supposed
(at least) that M € C%! and g,k € C*. The foregoing theorem will allow us to
show that TF and CF are related in a very simple way, provided that M(:) is
even a C! mapping. This will be done in §74.1.

Further notice that in the context of C?-optimization, Q7 (u) coincides with
Qc(u) and reduces to a singleton, namely to Hu, where H is the Hessian
H = D3}, L(z°%4°, 2%).

Subspace Property

The following lemma will be important for deriving marginal value formulas.
Suppose M € C%! and g,k € C*. Further, let us agree that

T~ and C~ are the maps which assign to (€,%,¢) all (v,v,w,r) satisfying
the explicit formula (7.43) concerning TF and its modification concerning
CF, respectively.
Then,
TF~1(0,5%) (&, ¢) = {(w,v, w)|(w,v,w,7) € T(§,7,()}-

If Fis C* near ° and strongly regular, the map (£,9,¢) ~ (u,v,w) plays the
role of DF(s%)~1.
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Generally, the component %, which characterizes the movement of the sta-
tionary solutions under variations of F, is not uniquely determined by T~.
However, in the essential case of ¥ = Dg and ' = Dh, the inner product
(®(x), u) is fix at critical points.

Lemma 7.7 (subspace property of TF~!). Let M € C%, g,h € C* and
F(s%) = 0. Further, let ¥ = Dg and T' = Dh. Then,
m + K
(@@, u)y == 9Tm + Y A4G)
i=1 k=1

holds for all (u,v,w) in TF~1(0,3s%)(&,n,¢).

<
Proof. Since F(s%) =0, we obtain from the explict formula that
0 = (B(a),u)+ iy ¥ (W, u) + Tk, zi(%°, )
= (@) W)+ (SZi 9l + Tin 4G)
is true. 0o

Evidently, the lemma similarly also holds for CF-! ¢ TF-1,

Regularity Characterizations by Stability Systems

Using the explicit representations of TF and CF derived in the previous subsec-
tion, we shall characterize strong regularity of a generalized Kojima—function
F = NM and local upper Lipschitz continuity of its critical point mapping,.
From Theorem 5.14 we know that the generalized Kojima—function F is strongly
regular at a zero §° of F if and only if TF(s°) is injective, ie., if there is no
nontrivial direction ¢ = (u,v,w) such that 0 € TF(s%)(s) holds. Further, the
specialization of Lemma 32 to F says that the critical point mapping F™!
is locally upper Lipschitz at (0,s%) if and only if CF(s%) is injective, ie., if
0 € CF(s% (o) implies ¢ = 0.

Hence, these injectivity properties can be verified by using the explicit for-
mulas derived in Theorem 76: Given 8° = (2°,4°,2°% € F~1(0), we have to
look for solutions (u, &, 8, w) of the T—stability system

Qr(u) + E,‘ a ¥ + 3 wle® 3 0, (7.45)
Dg(z%)u — B =0, Dh(z%)u =0, (a,B) € Ir(¥°), ’

or of the C-stability system

Qe(u) + 3 \I’5°+Ew[‘°30,
DZ(:O)u_ﬂiza:), Dh(zo)u": ’6, k(a,ﬂ) € JC(?JO)' (7.46)
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In the analysis of strong regularity, we shall also consider the problem of finding
solutions (u, v, w,r) of the system related to (7.43),

Qr(u) + Limrwi ¥ + TP, we Ix® 30, (7.47)
Dgi(z%)u — (1 = r)v; = 0(V%), Dhe(2%)u = 0(Vk), r € Rr(y°), )

which is equivalent to the T—stability system. Now, the next theorem imme-
diately follows.

Theorem 7.8 (M(-) € C%'). Let F= NM be a generalized Kojima—function
according to Definition (7.8), and let §° be a zero of F. Suppose that M € C%1
and g,h € C. Then the following properties are equivalent:

(i) F is strongly regular at 8°.

(ii) The T-stability system has only the trivial solution (i.e., TF(8®) is injec-

tive).

(iti) If (u,v,w,r) solves (7.47), then (u,v,w) = (0,0,0).
Moreover, F~* is locally upper Lipschitz at (0,8°) if and only if the C—stability
system has only the trivial solution (i.e., CF(8%) is injective). <o

Geometrical Interpretation

Under the assumptions of Theorem 7.8, the T-stabsility system permits a geo-
metrical interpretation of strong regularity, first given in [Kum91b, §5] for usual
Kojima functions. Set

Un = {u € R"|Dh(z)u = 0},

and let Xr be the subspace of R", generated by the vectors I't°, 1 < k < &,
where we put Xr = {0} if no equations are required. Define the (large) tangent
space

UT = Uy n {u € R"|{Dgi(z°),u) =0 Vi € I*},

and introduce the polyhedral cone
KT(u) = Xr + { Tiereorn M° | M € R Vi, Aj(Dg;(2%),u) <0 Vi€I®}.

Remark 7.9 (nontrivial solution of the T-stability system). The T-stability
system has a nontrivial solution (u, a, 8)

@) with =0 ¢ some pair (e, w) # 0 satisfies
EiEI"‘UIO aiq’io + E:.___l wiT® = 0;

(i) with u #0 & Qr(w)NKT(u) #0 and u € U7,
Lol

Indeed, using B = Dg(z")u, the assertion of the foregoing remark follows from
the condition (a, 8) € Jr(¥°) in (7.45).
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If I% = Dh(z°) and ¥° = Dg(2°) hold in Remark 7.9(i), then (i) means
precisely that LICQ is violated. Therefore, in the general case, we say that
the generalized LICQ holds (at 2°) if such a pair (e, w) # 0 does not exist.
Notice, however, that the generalized LICQ does not coincide with the linear
independence of related vectors Dg; and Dhy (at 2°), considered in Lemma 7.1.
So one obtains, for 8° = (z%,y9, 2%),

Remark 710 (TF injective). TF(s%) is injective if and only if
(i) the generalized LICQ holds (at z°) and
(i) Qrw)NKT(v) =0 YueUT\{0}.

For the special case of C2-optimization, (i) and (ii) take the form
LICQ and Hu ¢ KT (u) Vu € UT \ {0}.

Similarly, the C-stability system permits a geometrical interpretation of F~!
being locally upper Lipschitz at s°. Let Xr and Uy be as above, and put

UC = U N {u € R"|(Dgi(z°),u) = 0 Vi € I'", (Dg;(z°),u) <0 Vj € I°}.
Further, introduce the cone
KCwu) = Xr + { Ticr+ur M¥:° | Aj(Dgs(x%),u) =0 VjeI}.
Now we obtain

Remark 711 (nontrivial solution of the C-stability system). The C-stability
system has a nontrivial solution (u, a, 8)

(i) with u =0 « some pair (a,w) # 0 satisfies a; > 0Vj € I°
and Yieprure @i¥i® + Limy wals® = 0;
Giy with u#0 & Qc(u) N KC (u) # @ for some u € UC \ {0}.
o

To prove this, one has again to put 8 = Dg(z®)u and to apply that (a,8) €
Jc ).

Having I'® = Dh(z®) and ¥° = Dg(z°) in (i), this condition means precisely
that the strict MFCQ is violated. In the current case, we say that the generalized
strict MFCQ holds (at 2°) if such a pair (e,w) # 0 does not exist. So one
obtains for §? = (29,3, z°),

Remark 7.12 (CF injective). CF(s°) is injective if and only if
(i) the generalized strict MFCQ holds (at 2°) and
(ii) Qc(w)NKC(u) =0 YueUC\ {0}. o
For the special case of C2-optimization, (i) and (ii) take the form
strict MFCQ and Hu ¢ K°(u) Vu € UC \ {0}.
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7.4 Discussion of Particular Cases

In this section, we specialize the results of the previous section to the case
of M(-) € C! and apply them to nonlinear complementarity problems. In
particular, we discuss consequences for Newton—type methods. However, the
application to usual Kojima functions related to nonlinear programs will be
postponed to Chapter 8.

7.4.1 The Case of Smooth Data

Let 8 = (29,4°,2%) be a zero of the Kojima function . We again use the
abbreviations (7.37) .. (7.40). To avoid the transposition symbol, we agree
that the vectors

u, v, w, o, ¥, ¥;, I'y are columns

Dg;(29), Dhy(z°) are rows

and use the convention (7.7). Suppose that M(-) € C. For Fi(s) = ®(z) +
Sy ¥i(z) + L5y 2Tk(2), now one has

Qr(u) = Qo(u) = {Hu} with H := D Fj(s°). (7.48)

For example, if F is the Kojima function of the nonlinear program (7.1), H is
the (partial) Hessian with respect to z at s° of the Lagrangian

L(z,y,2) = f() + 3_ v 9:(2) + ) zuhu(z).
i=]1 k=1

Matrix Representation

From Theorem 7.6 we know that the Thibault derivative of F at s° in direction
o = (u,v,w) can be written as

TF(s°)(0) = {P(r)o|r € Rr(y")},

where P(r), r € Rr(y°), is the quadratic matrix of order d = n +m + k,

H T1\I’1° Tm‘l'mo F1° F,‘°
Dg1(2%) —(1-r) 0
P(r) = . (7.49)
Dgm (2°) ~(1=7m) 0
Dh(z) 0 1] 6 .- 0

and Rr(y°) is given according to (7.28).
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Specializations of Regularity Characterizations

We know that F is strongly regular at (°,0) if and only if 0 € TF(s%)(0)
implies & = 0, this obviously yields

Fis strongly regular ats® <> det P(r) # 0 Vr € Rr(y°)

in our special case. Now let Z be the set of all matrices P(r) under consideration.
Since & is (arc—wise) connected in the space of (d, d)-matrices, one obtains

F is strongly regular at s°
& det P(r) has the same sign # 0 Vr € Rr(y°).

Because each 4 appears in exactly one column and is affine-linear, the function

r +» P(r) is affine-linear in each 7y, too. So (by induction arguments) it suffices

to check only all determinants det P(r) for r € Rr(y°) with r; € {0,1}.
Moreover, since only N(-) includes nondifferentiable terms and

ING, )orw) = NG9 (Y),

one easily sees that the set of matrices Z is just Clarke’s [Cla83] generalized
Jacobian 8F(s%). Clarke’s sufficient condition for local Lipschitz invertibil-
ity (i.e., strong regularity) of F says that all matrices in 8F(s%) have to be
non-singular. Hence, in our particular case, this sufficient condition is also a
necessary condition for strong regularity of F.

Finally, along with F, let us also study the linearized Kojima function LF =
(LFy, LF;, LF3)

LFi(8) = ®(z°) + H(z - 2°%) + Lo, v ¥° + Tkey 2125,
LF;(s) = g(z°) + Dg(a%)(z - 2°) —y~, (7.50)
LF3(s) = h(z®) + Dh(z%)(z - z°).

Clearly, it holds LF(s%) = F(s%), and the related derivatives of F and LF
evidently coincide at the point s°.

Now we summarize in the smooth case several characterizations of strong
regularity and local upper Lipschitz continuity of F.

Corollary 713 (M € C%; strong regularity and local u.L.. behavior). Let
F = MN be a generalized Kojima—function according to (7.8), and let F(s%) =
0. Suppose that M € C*.
Then the following properties are mutually equivalent:

(i) TF(s%) is injective (i.e., F is strongly regular at 8° ).

(ii) LF is strongly regular at 8°.

(iii) det P(r) # 0 for all r € R.

(iv) det P(r) has the same sign # 0 for all r € R with 5 € {0,1} (Vi).

(v) J € 8F(s%) are non-singular matrices.
Moreover, the following properties are mutually equivalent:
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(a) CF(s°) is injective (i.e., F~1 is locally u.L. at (0,8°)).
(b) CULF) (8°) is injective.
(c) (LF)™Y islocallyuL. at(0, s%). <o

Proof. Both sets of equivalences are consequences of Theorem 7.8 according
to the above discussion. a

Note. With respect to C*—optimization problems, Corollary 7.13 ensures, that
the injectivity condition for TF does not change if, instead of the original
problem, we study its quadratic approximation at 8%, namely,

P min Df(z°%)(z - 2°) + }(z — z°, H(z — z°))
(FQ) s.t. g(z°) + Dg(z°)(z — z°) < 0, h(z°) + Dh(z°)(z — 2°) = 0.

Hence, strong stability of the original problem and its quadratic approximation
(PQ) at s° coincide. This reduction to quadratic problems was a key result of
Robinson’s paper [Rob80]. By Corollary 7.13, the same may be said about the
locally upper Lipschitz property of KKT—points at (0, 8°%).

Concerning necessity of .LICQ under strong regularity, let us add the follow-
ing argumentation, based on Corollary 7.13 and proposed in [Kum91b]: Strong
regularity implies that 0 € TF(s%)(¢) for all & = (0,v,w) # 0, and this again
implies LICQ viary = 1if ) > 0.

Some Historical Notes on Strong Regularity

The history of the strong regularity conditions presented in Corollary 7.13 (in
the context of C?-optimization problems) is quite long. The conditions are ba-
sically known from Kojima’s and Robinson’s work in 1980, see [K0j80, Rob80].
Robinson wrote the condition in a different algebraic way by means of Schur
complements. Kojima proved the characterization (i) <« (iv), however, LICQ
was still an additional assumption. Again LICQ extra assuming, Jongen et al.
[IMRTS87] proved in 1987 that Robinson’s and Kojima’s matrix conditions are
equivalent.

A little gap was remaining after the mentioned papers: the proof that
LICQ is a (simple !) consequence of strong regularity at critical points. In
our knowledge this gap was first time closed in 199091 in the papers [KT90,
Thm. 2.3] and [Kum91b, Thm. 5.1]. Further, in [JKT90], the equivalence be-
tween Clarke’s regularity condition for 8F(s%) and strong regularity has been
shown, so it became again evident, now by means of nonsmooth analysis, that
the earlier conditions imposed by Robinson and Kojima are both sufficient and
necessary for strong regularity.

The strong regularity conditions of Corollary 7.13 can be also derived from
the stability results for PC? equations, presented in [RS97] in terms of the so-
called coherent orientation property, note that Fis PC! in this special case.
For recent self-contained presentations of characterizing strong regularity in C?
optimization, we refer, e.g., to [Don98, KK99b, BS00].
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Additionally, by using the injectivity condition of coderivatives (see our
Theorem 3.7), characterizations in terms of intersections of polar cones have
been also derived via generalized equations, see [DR96]. There, as a new final
result, it has been shown that (in our terminology) strong and pseudo-regularity
of generalized Kojima functions coincide provided that M is a C! function. An
alternative proof and an example for the fact that this statement does not hold
for C1! optimization without constraints and piecewise linear D f, has been
given in [Kum98], we will present this result in §7.5 and Example BE4.

The present approach to strong regularity of C!''-optimization problems
(via injectivity and computing TF) has been developed in [Kum91b, Kum91a],
extensions to generalized Kojima systems and conditions for upper regularity
have been presented in [KK99a, KK99b]. The reader will easily find various
other approaches and remarkable contributions devoted to stability of critical
and stationary points for optimization problems and related variational prob-
lems, we refer to [KR92, Mor94, PR96]. However, by our opinion, the applied
techniques in these papers or in the book [I.LPR96] are essentially restricted to
M e C! and f,g,h € C?, respectively.

In this historical series, we have to include A.V. Facco’s pioneering work
concerning sensitivity in parametric optimization, see [FM68, Fia83], though he
studied even differentiability properties of solutions. But, at the crucial points,
there strict complementarity has been supposed which allows to apply the usual
C*-implicit function theorem to the KKT-system for deriving a local stability
theory. Nevertheless, our desire of extending his clear analytical approach to
stability in optimization, was just a key idea for writing this book at all.

Difference between TF and CF

Let us return to the derivatives T F and CF and regard its difference. Actually,
only the replacement of Rr(y®) and Re(y°,v) is of importance for comparing
them.

Corollary 7.14 (difference between TF and CF). Let §° = (z°,y4°,2%), o =
(w,v,w) , and let M(-) € C1. Then

TF(s%) (o) = CF(s®)(o) + P,

where, with d =n +m + & and e := i-th unit vector of R™,

S i 1} ¢ 0 -
P= P(xo,yﬂ’v) = {_ Z /\ilUg’l(‘I’io, eho) € Rd />\: i[g’ e}[sv; Yi 01 .
i=1

<

Note. The statement says that in the smooth case, TF(s%)(c) is a translation
of the polyhedron P along the vector CF(s%)(c).
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Proof of Corollary 7.14. We apply the explicit formulas. Since Fy € C1,
we have Qr(u) = Q¢(u) = {Hu}, where

H=D,FR (zo,yo,zo)-

The only difference concerns r; when y? = 0. TF permits full variation r; €
[0,1), CF restricts r; to O or 1, depending on the selected v; . This leads to
different elements § and #; of the derivatives. First, to see what happens, let
us suppose that I° := {ily? = 0} has only one element. Having (§,7,4) €
CF(s%)(o) and (¢',9',p) € TF(s%)(c), we observe that if v? > 0 then

—-¢ = rm¥°-v¥° = (rn-1u¥°,
mi—m = —(-rdui+0y = (ri—1v;

if v; < 0 then
¢-¢ = rivy®° -0 = rv ¥,
- = —(1-r)vi+Q1-0v = r,

where r; € [0,1] in both cases. Unifying both cases, we have
(€ = &ni — ni) = —Xivi|(T:°, 1),

and each such difference with A; € [0,1] may occur. Considering now the case
cardI9 > 1, the difference (¢’ — &,7' — 1) can be written as a sum:

€ —&n' —n) =—D Mluil(:°,e), M €[0,1].
I°

Again, all right-hand sides may appear. Finally, to send the interesting sets
into R? , we defined just the polyhedron P. 0

So, even for C?-optimization problems, TF and CF are different if I° # §.
On the other hand (see Section 7.2), by Robinson’s approach via generalized
equations (cf. §7.1), there is only one crucial generalized equation, based on the
linearization of H for such problems. In this framework, one may understand
our derivatives TN and CN as different approximations of the normal map.

The injectivity check for TF as well as computing all elements in the set
TF~1(s%)(¢,9,¢) requires to solve a finite number of linear equations assigned
to the matrices P(r) for r € Rr(y®), r; € {0,1}. In particular, for CF, the
nontrivial solutions of the C—stability system are of interest. This leads us,
by definition of J¢(y¥°), to a (generally non-monotone) linear complementarity
system.

Consequences for Newton Methods

For computing solutions of the generalized Kojima systems by a Newton method
(based on linear auxiliary problems), one may fix some matrix P(r, s), assigned
to ¢ = (2,y,2) and » € Rr(y), in order

to find o with F(s) + P(r,8)o =0

and to put spew = 9 + 0, (7.51)
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where P(r, 8)denotes the matrix (7.49) with s in place of s®. Concrete methods
then differ each to each other by the selection of 7 € Rr(y) at a current iteration
point 8.

Lemma 7.15 (Newton’s method under strong regularity). Under strong reg-
ularity at the solution 8° and for M(:) € C*, these methods converge (locally)
superlinearly to 8° for all selections of r € Rr(¥y). o)

Note. Whether strong regularity is really needed for convergence, depends on
the choice of r.

Proof of Lemma 7.15. Put P = P(r,s8). We have
snew — 8 = 8—38"~ P Y(F(s) ~ F(s)
= ~P~Y(F(s) — F(s%) - P(s — 3%)).

By strong regularity, all matrices P € 8F(s) have uniformly bounded inverses
for s near 8°. Since M(:) € C!, it holds that F is a PC' function. So F
is semismooth, cf. §6.4.2, and the matrices P(r,8) € 8F(8) form a Newton
function of F at 8°. But this yields spew — 8° € o(s — s%)B. a]

In Chapter 10 we will see that this statement remains even true if F' is less
smooth, and we will interpret the auxiliary Newton-systems.

7.4.2 Strong Regularity of Complementarity Problems

Given u,v € C1(R",R"), the nonlinear complementarity problem (NCP) claims
to find some z such that

u(z) 20, v(z) 20 and (u(z),v(z)) =0. (7.52)
To this problem, we assign the generalized Kojima function
F=u(x)-y", F:=-v(z)-y , (7.53)

F3 does not appear. It holds y* = u(z*) — v(z*) at any solution z* of the NCP.
Strong regularity of the NCP (i.e., by definition, strong regularity of F) at
(z*,y*) means regularity of all matrices P(r) in (7.49). In the present context,
the rows of P(r), r € Rr(y*), auain the form

Dui(z*) 0 ... =-7r ... 0 (rowi, —r; at column n + 1),
~Dyy(z*) 0 ...—(1~7y)... 0 (rown+i, ~(1~-r;) at column n + 2).
(7.54)
In complementarity theory, one often uses matrices combined by Du and Duv,
so let us transform the system again.

Lemma 7.16 (strong regularity of an NCP). Let u, v € C*, and let x*be a
solution of the NCP (7.52). Denote by C(r) the matrix formed by the rows
Ci(r) = (1 —r;)Duy(z*) + riDv;(z*). Then, for every fixed r € R", the matrix
P(r) in (7.54) is singular if and only if so is the matrix C(r). Moreover, the
NCP is strongly regular at x* if and only if the matrices C(r) are non-singular
forall r € Rr(u(z*) — v(z*)). <
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Proof. We verify the first statement, the second one is a consequence of
Corollary 7.13.

(=) Let P(r)(S) =0, (S) # 0. Then £ = 0 yields n = 0, hence £ # 0. The
two equations

Duy(z*)6 —rm; =0,  Du(z*)é+ (1 —ri)y =0, (7.55)

assigned to lines ¢ and n + ¢, now yield Ci(r)€ = 0 due to (1 ~ r;)Du;(z*)¢ =
(1 = rg)rimy = —riDvi(z*)€ .
(«) Let C(r)§ = 0, £ # 0. Then one finds n such that P(r)(§) = 0 by
setting
m = Duy(z*)§  ifr=1,
m=—Duy(z*)§ ifri=0,
n; = Duy(z*)é/r; otherwise

If r; € {0,1}, (7.55) follows elementary. In the last case, it holds Du;(z*)¢ =

rin; by definition and Dvy(z*)é = —(1 — ry)r; ! Duy(z*)€ = —(1 — r;)mi, again
(7.55) is shown. O

To characterize the Newton equations (7.51) for the actual case, let
[Lu)i(2, §) := ui(z) + Duy(x)€
be the linearization of %; at z.

Lemma 7.17 (transformed Newton solutions). Let r € Rr(y), and let o =
(&,m) solve (7.51) for s = (x,y) = (xu(x) — v(x)). Then,

0= (1 - r)[Luli(=,§) + ri[Lv)i(z,§). (7.56)

Conversely, if € satisfies (7.56) for r € Rr(y) and y = u(x) = W(x), then (7.51)
is satisfied with 9 as

m = Fi(z,y) + Dui(x)¢ if rg =1,
% = Fayi(z,y) — Dug(x)¢ if rg =0,
ni = (Fi(z,y) + Dui(z)§)/r; otherwise

<

Proof. To abbreviate we omit the arguments z,y of F; and Fn4¢. By (7.51)
it holds

Fi+ Dui(z)§ =rys and  Fpyq ~ Dvy(2)€ = (1 — ri)ms.
Then we have riy; = (1 — r;)yF due to r € Rr(y) and

(1 =r)Fi + (1 —r)Dui(z) € = (1 = r)ray = riFppq — riDuvi()€.
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Thus,

0 = (1 - T,')F{ -~ r,'Fﬂ.H + [(1 - r,-)Du,-(a:) + T{D‘U,’((D)]E
(1 = ro)(wi(z) — yi) + ri(vi(z) + 977) + Ca(ri)é
(1 = rdui(z) + rivg(z) + [(1 = 1) Dui(z) + riDui(z)]€.

So (7.56) is valid. Conversely, we have to discuss the three possible cases,
namely,

ri = 1:

Then y; =0, F; + Dui(z)é = 1, = ryn; and 0 = vi(z) + Dwi(z)€. Thus,

Foti — Dui(x)€ = Fpyi +vi(z) = —vi(x) —y; +vi(z) =0 = (1 — ).

ri=0:
Then yf =0, Fops — Duy(z)€ =15 = (1 = ri)mi and 0 = uy(z) + Duy(z)é.
Thus F; + Dui(z)€ = Fi — ui(z) = ui(z) -y — wi(z) = 0 = ryn;.

O<r; <1:
Now we have ¥ = 0 and F; + Du;(z)€ = ryn; as well as
Foyi = Duy(2)€ = —vi(z) — Duy(2)€ = [Loli(z, §) = ri7 (1 — ) [Luli(z, §)
=M1~ 7¢)(Fs + Dug(z)€) = (1 — o).
This completes the proof. a

Having y; = 0, all choices of r; € [0,1] are possible in (7.56), and F; = wu,
Fanti = —v;. The equations (7.56) are crucial if one solves the complementarity
problem by means of certain positively homogeneous NCP-functions g. The
coefficients ryin (7.56) are then defined as normalized partial derivatives of g
at (ui(x),v;(z)). For details we refer to Section 9.1.

7.4.3 Reversed Inequalities

If M is only a C°* mapping, the equation Qr(u) = Qc(u) = {Hu} (see (7.48))
is no longer true. The linear operator P(r) of (7.49) now includes the multi-
function u ~ Q(u) at the place of H and becomes a nonlinear, set-valued
operator which is defined in accordance with the explicit formula of Theorem
7.6 foreach r € Ry (y°). This operator P(r) is still linear in the dual directions
v and w.

Let us next again assume that
U(z) = Dg(x) and [(x) = Dh(z),

ie., in contrast to Kojima systems for standard nonlinear programs, only D f
is replaced by ®. Suppose that 8% is a zero of F such that strong regularity at
8% is violated, i.e.,

0 € TF(s%(u,v,w) forsome (u,v,w) # 0.
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Further, let i be some index such that g = 0.

Since g4(z%) = 0, the point §°is also a zero of the function F* which differs
from F only by changing the sign of both g; and ¥; = Dg;(x). This procedure
simply means that the original inequality g;(z) < 0has been reversed. Changing
the sign of v; in the vector {u,v,w), we see that F* is not strongly regular at
8% , too. Therefore, we may state

Lemma 7.18 (invariance when reversing constraints). Suppose ® € C%!,
g,h € C, ¥(x) = Dg(x) and I'(z) = Dh(z), and let 8° be a zero of F. Then,
strong regularity of F at §° is invariant with respect to multiplication of any g;
with py # 0 provided that yi = 0. ¢

The previous lemma explains why characterizations of strongly regular critical
points may differ by sign, compare, e.g., differences in such conditions given in
[Kum91b] and [DR96], It is worth to mention that the lemma fails to hold for
the related injectivity of CF.

7.5 Pseudo—Regularity versus Strong
Regularity

In Chapter 5 we gave a characterization of pseudo—regularity for continuous
functions. Instead of specializing these results to generalized Kojima functions
(which would not give much new insight), we shall discuss the close connections
to strong regularity in various situations.
Throughout this section, let F be a generalized Kojima function, and sup-
pose that
®, ¢, T, g and h are C%! functions.

In the first two lemmas we shall show that zero—Lagrange—multipliers (zero
LM) do not play an essential role for the relation between pseudo— and strong
regularity. For the given F, define F¢™ by removing both, the m~th component
of F3 and the product y} ¥, in Fi. Obviously, F(™) is again a generalized
Kojima—function. Let as above d =n + m + k.

Lemma 7.19 (deleting constraints with zero LM, pseudo-regular). If F is
pseudo—regular at somezero (z°,3°,2°%) of F with 49, = gm(z°) = 0, then F(™)
is again pseudo—regular at (2%, . ..,y%_;,2°). ©

Proof. Specify the norms used in R? and R¥! to be the maximum-norm,
and put § := (F{™)~1, We use the letters a,z for elements of R", 8, for
elements of R™, b,y for elements of R™ ™!, and ¢, z for elements of R*. In the
definition of pseudo-regularity of F, let L be the Lipschitz constant, let V be
the open ball 6B C R? and let U := 5% + eBY ¢ R, where € > 0 is already
small enough such that

lz' -2° <e = gm(z') <6/3.
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Again by continuity, there is some ¢ € (0,48) such that
lz" - 2% <e+Le => gm(z") <5/2.
Now let
(@', ¥,¢), (@",b",¢") € 1B, and (z',y/',#') € (s° +€BY_;) N S(d",¥,¢)

be arbitrarily fixed. We have to show that there is some point (z”,y",2") €
S(a",b", ") such that

="y, 2") = (", y", ") < Lll(d', ¥, ') = (a",b", ")l (7.57)

For this reason, we define the vector 8’ with (a',8',¢') € §BY, which differs
from b’ by the additional component 8, := 34 only. Similarly put 8l := 36
for defining (e”,8",c") by using(a’,¥,c).

Because of gm(z') < 6/3 < B, the m-th inequality is not active at z'.
Hence the point (z',7',2') := (2, ¥/, gm(z') = B, 2') belongs to F~1(a’, &', ¢').
The pseudo-regularity of F provides us with some (z”,%",2") € F~1(a",8",c")
satisfying

=", 0", 2) = (=",0", ") < Lil(@', 8, ¢') = (", 8", )| < Le.

Hence, ||z" — 2°|| < € + Lg, and so, the choice of r yields gm(z") < 16 = By
This gives 5} = gm(z") — B, < 0. Therefore, the point (z",y", 2") defined by
deleting o in (z",",2") belongs to S(a”,¥",¢") and satisfies (7.57). ]

Recall that a (multi-valued) selection A(8) C (s) (Vs) of a given multifunction
2 : R =+ R is said to be continuous if it is upper and lower semicontinuous.

Lemma 7.20 (deleting constraints with zero LM, not strongly regular). Let
F be pseudo-regular at some zero 8° = (2°,y°,2%) of F with 43, = gm(z°) = 0.
Further, suppose that F~} has a closed—valued and continuous selection & such
that 8(0) = {s°}. Then, if F is not strongly regular at s°, so FU™ is also not
strongly regular at (z°43,...,4%_1,2%). <o

Proof. Consider the mapping p = (a,b,c) = E(p) := argmin {yn,|(z,y,2) €
A(p)} and suppose first that T is single—valued on some ball eB. Then, by
the properties of A, ¥ is a continuous selection of F~1, (0) = {s°}, and, in
accordance with Theorem 5.10, F is strongly regular at 8°. Hence, if F is not
strongly regular, then for some sequence p =+ 0, there exist certain elements
s =(z",y,2'), 8" =(2",y",2") € T(p) satisfying

o=vw):=E" -2, -y, -2)#0 and y, =y, (7.58)

Our assumptions concerning A ensure that ¢ = 0 and ym — 2, = 0. Next,
consider the inverse map § of F(™ at the parameter points

P =(a~— W) ¥n@)nb),c) and p"=(a~ Un) ¥m(z"),x(),c),
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where w(b) is the projection of b onto R™~!. Deleting the ym-coordinates of
the points in (7.58), we define points (z',%’,2') and (z",9",2") in S(p') and
S(p'""), respectively. Due to vy, = 0, the difference of the parameters becomes

' = 2"ll = )" Tm(z") = W)™ Em(@) = () N Tm(z") = Tm ().

To show that F(™ is not strongly regular at 8%, we assume the contrary is
true (with rank L). With some Lipschitz constant K for ¥,, near z° and
Om = (%,v1,...,Um-1,w), one then obtains

llowmll < Lilp" = 2"ll
= L(ym) || ¥m(z") = U (@)l
< Liym)* Kllull < L(yy)* Kllom|l.

Since yi, = 0and o, — 0, the estimate implies om = Oand, due to vm =0,
even o = 0. This contradicts (7.58) and so completes the proof. a

Recall that, by Lemma 5.11, ° is an isolated zero of a PC'~function F from
R? in itself, provided that F is pseudo—regular at s°. In this case, near the
origin, F=1 has a continuous multivalued selection A with compact images and
A(0) = {s°}. This result, together, with the foregoing lemmas allow for special
cases a simple reduction procedure, which has an interesting application: for
the usual Kojima—function of a C?~program, regularity and pseudo-regularity
coincide.

Theorem 721 (reduction for PC! data). Let F = NM be a generalized
Kojima—function, and suppose that gi,hy,®,¥;,I'yx are PC'~functions. Let
8 = (2%,9°%,2% be a zero of F and It = {ily > 0}. Define the reduced
generalized Kojima—function FTby deleting from F all components Fy; and all
products y;" ¥, in Fy withi € I't. IfF is pseudo-regular but not strongly regular
at 8°, then the same is true for F™ at the reduced part s* of 8°.

Proof. The function F is PC!, hence F~! has a compact—valued and con-
tinuous selection A with A(Q) = {s°} as long as F is pseudo—regular at s°.
Due to the Lemmata 7.19 and 7.20, one may successively remove all constraints
with y§ = 0 (which automatically includes that g;(z°) = 0). After deleting the
related components, the corresponding reduced part 8" of 8° is still a zeroof FT,
which remains pseudo-regular but not strongly regular. By standard continuity
arguments, this reduction may be continued for the components with g < 0
without affecting the desired properties. a

With respect to F' the reduced zero s™ now fulfills the strict complementarity
condition. So, if all data in M are even C'-functions (which means for the
usual Kojima-function that f,g,h € C?), then the system F" = 0 is locally a
C'-equation and TF"(s")(¢) = CF"(s")(¢) = {DF"(s")o} holds. Therefore,
Theorem 5.1 yields that pseudo—regularity of F* at 8" implies non-singularity
of the Jacobian DF"(s") and hence strong regularity of F* at 8. So wehave
proved
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Corollary 7.22 (M € C!; pseudo-regular = strongly regular). If F = NM is
a generalized Kojima—function with g, h, ®, ¥, T’ being C' -functions, then, at
any zero 8°, F is strongly regular if and only if F is pseudo—regular. <

The results of this subsection on pseudo-regularity were taken from [Kum98].
Note that in the context of C? optimization problems and related variational
inequalities, Corollary 7.22 also appears in [DR96]. However, even for station-
ary points of a C*! function (unconstrained), both regularity concepts do not
coincide, see Example BE 4.



Chapter 8

Parametric Optimization
Problems

In this chapter, we study the local Lipschitz behavior of critical points and
critical values as well as stationary and (local) optimal solutions for parametric
nonlinear optimization problems in finitely many variables. We do not aim
at a comprehensive or even complete presentation of all aspects of sensitivity
and local stability analysis in nonlinear optimization. Our purpose is to derive
(Lipschitz) stability results for programsinvolving €** data, and for that to
apply largely the results of the previous chapter on regularity and Kojima—
functions.

It will turn out that our approach also yields several known (or new) ba-
sic results for perturbed nonlinear programs with C? data. The statements
shall concern strong regularity, pseudo regularity and upper Lipschitz stability,
second order characterizations, geometrical interpretations, as well as represen-
tations of derivatives of solution and marginal value maps.

Note that there is a well-developed perturbation theory for programs with
smooth (i.e., usually at least C?) data, for a book reflecting the state of the art
of this theory we refer to Bonnans and Shapiro [BS00]. Basic monographs in
the field of parametric nonlinear optimization are, e.g., [BGK*82, Fia83, Mal87,
DZ93, Lev94], crucial aspects and applications of this field are systematically
handled, e.g., in the books [Gol72, BM88, GGJ90, BA93, Gau94, RW98]. More-
over, for programs with C3-data, there exists a powerful and deeply developed
singularity theory based on the characterization of generically appearing sin-
gular cases of Kojima’s system, we mainly refer to the basic work of Jongen,
Jonker and Twilt [JJT86] and to [JJT83, JJT88, JIT91].

As a starting point, we introduce the parametric nonlinear program
P(t), teT: mzin f(z,t} st. g(z,t) <0, h(z,t) =0, (8.1)

183
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where 7 is a subset of R", and f, ¢ and A map R" x 7 to R, R™ and R",
respectively. If f(-,t), g(-,¢) and h(:, t) belong to the class C¥, then the problem
(8.1) is called aparametric C* program. 1In particular, we are interested in the
classes C** and C2. Recall that the related parametric Kojima system defining
the critical points of P(t), t € T, then becomes F(s,t) = 0, where 8 = (z,¥, 2)
and F = (FI,F2’F3)1

Fi(s,t) = Dy f(z,t) + Dog(z,t)Ty* + Dehlz,t) 2
Fy(s,t) = g(z,t) -y, (8.2)
F3(s,t) = h(z,?).

The associated Lagrangian L(:,t) of P(t) is defined by

L(z,y,2,t) = f(z,8) + )_ vl 0u(=,8) + ) znha(z, 1), (8.3)
=1 k=1

and we have Fy = D, L in (8.2).

An Ilustrative Example

Even if T is a subset of R and if all data functions are arbitrarily smooth, then
critical points and critical values considered as functions of ¢ may behave rather
badly (in particular, discontinuity may hold).

Example 81 (see [BGK*82]). Consider the real convex, quadratic one—para-
metric problem

P(t) : min P2 -2(l-t)z 8. t. —2<0.

For 0 < t < 1the stationary (= optimal) solutions z(t) and the critical (=
optimal) values ¢(t) are unique, namely,

o) = 2%, plt) = ~(1- 1)
For t = 0 all feasible z are critical, and ¢(0) = 0. For ¢ > 1 and ¢ < 0 we have
z(t) = 0 and ¢(t) = 0.

The special discontinuity of ¢ at t = 0 (note that ¢ is not lower semicontin-
uous at 0) has a strange consequence: If P(0) should be solved but (because of
a former computational error) really one solves P(t} with some ¢ > 0, then the
error |¢(t) — ©(0)| becomes as larger as better ¢ approximates the true value 0.
On the other hand, if the t-error is large enough (¢ > 1), then one gets again
the exact critical value. o

Thus, even under the practical point of view, the preceding example illustrates
the need of some “stable behavior” of problem (8.1) with respect to parameters
describing the involved functions.
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Results on Parametric Optimization from Previous Chapters

Many results of the first chapters of the present book (in particular, those of
Chapter 7) can be considered as contributions to stability and parametric anal-
ysis of feasible and stationary point sets to optimization problems. We compile
here a list of propositions explicitly devoted to parametric optimization prob-
lems: Theorem 1.15 (Berge/Hogan stability), Theorem 1.16 (stability of com-
plete local minimizing sets), Theorem 2.6 (free local minima and upper Lipschitz
constraints), Lemma 2.7 (Hoffman’slemma), LLemma 2.8 (Lipschitz u.s.c. lin-
ear systems), Theorem 2.10 (selection maps and optimality conditions), l.emma
4.6 (Isc. and isolated optimal solutions), Corollary 4.7 (pseudo-Lipschitz and
isolated optimal solutions), Theorem 4.8 (growth and upper regularity of min-
imizers).

8.1 The Basic Model

Throughout the present chapter, our basic model is

Pt,p):  min{f(z,?) - a"z|g(z,) S b}, (8.4)

where t varies in T ¢ R", p = (a,b) varies in R®*™, and f, g are given as
above. This is a parametric program with additional canonical perturbations
which are particularly needed in showing that certain sufficient conditions for
Lipschitz stability (in the one or the other sense) are also necessary ones.

Since we study the local stability behavior of solutions, throughout we asso-
ciate with the unperturbed problem a fixed element of ¢°, where we shall often
identify f = f(:,1%), g = g(:,t%), F = F(-,£°). The related problem

(P)(p): min{f(z) —a"z|g(z) <b}, p = (a,b) e R™™, (8.5)

is called a parametric program with canonical perturbations, i.e., the perturba-
tions of the corresponding Kojima system are only in the right-hand side.

To get a compact and brief description of our results, we have omitted the
equality constraints h(z) = 0 (or h(z,t) = 0). As far as we apply results on
Kojima functions, it can be easily and directly seen by the assumptions and
proofs below that the equalities play the same role as inequalities with positive
multiplier components % of the critical point (z°,4°) under consideration. This
becomes also formally clear from the explicit representations of the derivatives
CF and TF in Theorem 7.6, since there f; =0 or r; = 1if 3 > 0.

We are mainly interested in a local stability analysis of C*** (or C?) pro-
grams around some given stationary solution z° of (P)=P(¢°,0) and for small
perturbations (¢, p). So, the following general assumptions are supposed to hold:

z° is a stationary solution of (P)=P(t°,0),* € T,

£, s € CHL(Q, R), where 2 is a neighborhood of (z0,20). (&)
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Note that many stability results derived in the present chapter can be extended
to more general parameter spaces and less restrictive assumptions on the data
functions, in particular, when taking the results of the Chapters 2 and 3 into
account.

Recall that the parameterized Kojima function has the product representa-
tion F(z,y,t) = M(z,t)N(y) with

O G 67)

and N(y) = (l,y"'T, (y —y"))7, where E means the (m,m) identity matrix.
Here, the convention (7.7) is used, i.e., D f, g and (D.g;)7 are considered as
column vectors. We again put

0=l e 5 YT 000 )

see (7.31), and

. m| @i =0G€I"y), fi=0(iel*
Tow) = {(@ ) e mom| 2 =0 G W) A=Dle W) }

see (7.32), where
I°(y) == {ilgi =0}, I*(y) :={i]yi >0}, I" () := {i|p < 0}.

The sets of critical points, stationary solutions and multipliers related to P(¢, p)
and (P)(p), respectively, are denoted by

~

Stp) = {=|F@yt)=p}, Sp =5¢t,p)
_X(t,p) = {z|3y: F(z,p,t) =p}, X(p):=X(°p), (8.8)
Y(z,t,p) = {y|F(z,ut)=p}, Y (z,p) := Y (z,10,p),

with p = (a,b). If the multiplier ¥° associated with z° is fixed, we use the

abbreviations
It=1t0, °=1°G%, I- = I" ("), (8.9)

and

A = D.g(z% t°) with rows A; ;= D,g;(z°,t°). (8.10)
Further, since Fy = DgL, the sets @r(u) and Qc(u) defined in (7.40) become
”generalized Hessians” of L, namely

QT(“) = Tz[DzL](wO,yo1to)(u)a (8 11)
QC(“) = Cz[DzL](x‘)’yoa to)(u), )

where Tz[D; L)(z° 3°,t°)(u) (Cz[D:L](z% 4%, t°)(u)) is the partial Thibault-
derivative (contingent derivative) of D,L with respect to z at (z°4°,¢°) in
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direction .

To have a concise formulation of stability conditions, we will sometimes
suppose that g(z%t°) = 0 holds at some initial stationary solution z° of the
program (P)(0)= P(t°,0), ie., I (y) = @ forall y € Y(22,°,0). Of course,
under the general assumptions (8.6), X is locally upper Lipschitz (or locally
single-valued and Lipschitz) at ((t°, 0),2°) if and only if the stationary solution
set map of the parametric program

min{f(z,t) - (a, z)|gi(2,t) < bs (Vi: (2% £°) = 0)}

has this property. The same argument applies to the critical point mapping 5
at some {(t%,0), (z°,3°)) € gph 5.

8.2 Critical Points under Perturbations

In this section we shall discuss local Lipschitz continuity and local upper Lip-
schitz behavior of critical points to parametric C1'' and C? programs. In the
case of canonical perturbations, these properties are defined via the Kojima
function F = F(-,t°). In the case of nonlinear perturbations, the implicit
function theorems of previous chapters are helpful. Of course, the regularity
characterizations given in Chapter 7 apply to the situation of the present section
by putting there ® = Dy f and ¥ := Deg.

8.2.1 Strong Regularity

We shall say that the optimization problem (P)=P(t%,0) given in (8.4) is
strongly (pseudo) regular at a critical point 8° = (z°,3°) (or, synonymously,
s% is a strongly (pseudo) regular critical point) if the associated Kojima func-
tion F = F(-,4°) has this property.

Theorem 8.2 (strongly regular critical points). Let (z°,y°) be a critical point
of the problem (P). For f, gs € C*, with the notation (8.9)—(8.11), the fol-
lowing properties (i) — (iii) are all equivalent to each other, and each of them
implies that LICQ holds at z°:

(i) The problem (P) is strongly regular at (z°,y°).

(#) For each solution (r,u,v) of the system

QT(u) + ET—-I T.'ng;-r 3 0,
A - (A-roy = 0, Vi, (8.12)
re0,™, r=1Gel*),r=00G0€l™),

one has (u,v) = (0,0).
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(i4i) The T—stability system
Qr(v) + ATa 3 0,
Au - B = 0,
(aaﬂ) € jT(yo))

has only the trivial solution (u,a,f) = 0.
If f, 91 € C2, then each of the conditions (i) — (iii) is equivalent to each of the
following conditions:
(i) The problem (P) is pseudo-regular at (z°,y°).
(v) The determinants of all matrices

H riA] rmAn
Al —(1—1"1) 0

(8.13)

An 0 . —(1—tm)

with r € [0,1]™, re = 0 ifk € I" and re = 1 if k € I't have the same
non—vanishing sign, where H = D2 _L(z°,y°). ¢

Proof. Apply Lemma 7.1, Theorem 7.8, Corollary 7.22 and Corollary 7.13.
8]

Remark 83 (necessity of LICQ variation of a). In the previous theorem, we
used that LICQ is a consequence of pseudo-regularity for generalized Kojima-
functions, see Lemma 7.1. For the present situation, one also knows that if the
critical point map e~ S(a) := S(a,0) of the particularly perturbed program

P(a,0): min{f(z) - (a,z) | g(z) <0}, f,ge€C, (8.14)

is locally single-valued near (0,z°%,3°), then LICQ has necessarily to hold, see
[KT90]. For completeness, we give the proof: Assume that S() NN is single-
valued on some open neighborhood O of 0, where A is an open neighborhood of
(z°,9°), but LICQ fails at 2°. Then there is some p # 0 such that 3¢, pids =
0,where I :=I*UI® and A; = Dg;(z°). Leta:= - Y,,; Ai and y;(8) := y?+4
if i € I'and =0 if ¢ € I for given 6 € R. Hence, for sufficiently small ¢ > 0,
one has —¢a € @, and the point (z°,y(¢)) € N satisfies

Fi(a2°y(e)) = —ea, Fu(z°,y(e)) =0.

However, for any sufficiently small number > 0, one also has F(z°, y(e+68u)) =
(—€a,0), and again (2% y(e + Op)) # (=° y(e)) belongs to A, which yields a
contradiction. o

Corollary 8.4 (nonlinear variations, strongly regular). Consider the paramet-
ricprogram P(t,p): ming {f(z,t)—(a, z)|g(z,t) < b},t € T, p = (a,b) € R**™.
Suppose T is an open subset of R", and f, gi are real-valued C'*! functions de-
fined on R™ x T. Let 8° = (z°¢°) be some critical point of (P)=P(t°,0).
Then,
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1. the critical point mapping S is locally single—valued and Lipschit; around
(t2,0,8%) if and only if 0 € TF(s°t°)(u,0) holds for each u # 0. More-
over,

2. if, in addition, IZ‘F (++) exists and is Lipschitzian on some neighborhood
of (8°,10), then S is locally single-valued and Lipschitz around (t°,0,s%)
if and only if (P)=P(t°,0) is strongly regular at s°. <

Proof. The first assertion immediately follows from Theorem 5.15, and it
implies the second assertion by using Theorem 8.2 and the standard partial
derivative formula for Thibault derivatives (cf. Corollary 6.9). (]

Remark 85 (strong stability in Kojima’s sense). Adapting Kojima’s [Koj80]
definition, we say that a critical point 8° = (z%,y°) of (P)s,4 : = (P) is strongly
stable with respect to some perturbation class € C2(R"”,R™™) if (i) there
is a constant € > 0 such that the equation F(s) + AF(s) = 0, s € B(s%,¢),
has a unique solution 8 = s{Af, Ag) (where F + AF is the Kojima function of
(P)(4+a1.g+ag))> Whenever (Af, £g) is small in the C* norm on B(s?,¢), and
(i) s(-)is continuous at the zero map O with 8(0) = &°. To get a relation to
strong regularity, one has to ensure that the perturbation class is rich enough.
If ® contains all small perturbations of the type [Af](z) = %zTD:c +a"z (D
symmetric) and [Ag](z) = b, then, by Kojima [Koj80], ° is strongly stable
with respect to @ if and only if (P) (ie. F) is strongly regular at % For a
discussion of this relationship see also [KT90, KK99b]. <

In view of the previous corollary and remark, we now concentrate ourselves to

canonically perturbed programs. The next discussions specialize several facts
known from Section 7.3.

Geometrical Interpretation

Here we adapt the geometrical interpretation of strong regularity given in Re-
mark 7.10. Put there ¥ = Dg, and let (z%,3%) be a given critical point of
(P)=(P)(0). Then we obtain

UT = {ue R*|4iu=0, i€ I},

and

KT)={d_ NANeR™, NAu<0,ie I’ N\ =0,kel}).
i

Hence, it holds the
Corollary 86 (geometrical interpretation, strongly regular).

8% = (z°,9%) is a strongly regular critical point of (P)
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if and only if

(LICQ) {Ai, i€ It UI°} are linearly independent, and

(50C) Qr(uyNKT(u)=0 for eachueUT, u#0 (8.15)

are valid.

Since £ € Qr(u) N KT (u) and v € UT imply (£,u) = ¥ ;cp0 Midiu £ 0, the
second—order condition (SOC) is always true if

(SSOC) (¢,u)>0forallt € Qr(u) andue UT,u#0 (8.16)

is fulfilled. Inthe C? case, it holds (¢,u) = (u, D2, L(z%y°)u), ie., (SSOC) is
the so—called strong second-order condition.

Direct Perturbations for the Quadratic Approximation

For C?-problems, the T-stability system (8.13) indicates that and where, near
a KKT point (z° y°) of the initial problem and for certain (a,b) with small
norm, there are two different KKT points to the quadratic problem, with H :=
D:::L(zo’yo)’

such that strong regularity fails to hold. This can be formulated precisely as
follows, where g(z®) = 0, i.e, I~ = @, is assumed without loss of generality.
Note that the rule of the quadratic approximation PQ(a, b) in the analysis of
strong regularity of (P) was pointed out by Robinson in [Rob80]. The following
lemma was first given in [Kum98].

Lemma 8.7 (two close critical points, quadratic problems). Let (z°,3°) be a
KKT point for (PQ)0,0) with g(z°) =0, i.e, I” =0, and suppose f,g € C?.
(i) If (z,y) and (z'\y") are KKT points for (PQ)(a,b), sufficiently close
to (2°,4°), thenu=x' -z, a=y' -y and B = Au solve (8.13).
(ii) If (u, e, B) solves (8.13) and has small norm, then, setting a = —AVa~
and b = B*, the points (z,y) = (2%,9° —a~)and (=',y') = (z,y) + (v,0) =
(2° +u,9° + at) are KKT points for (PQ)(a,b). <

Proof. One has to put the given points in the related equations. The proof is
similar to that of Lemma 8.17 below, we omit the details. ]

Corollary 8.8 Ler (z°,3°) be a KKT point for (PQ)(0,0) and g(z°) =0, and
suppose f,g € C%. Then problem (P) is not strongly regular at(z°,y®) if and
only if for some sequences of vanishing vectors v = (a,B) and corresponding
perturbations a = —AVa~ and b = B+, the quadratic problem (PQ)(a,b) has two
different KKT points (z',y')(v) and (z,y)(y) converging to (z°,4°) asy — 0.

<
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Proof. Indeed, if such KKT points exist then we obtain a nontrivial solution
of (8.13) via Lemma 8.7. Hence, (P) is not strongly regular.

On the other hand, if (P) is not strongly regular at (z°,°), then some non—
trivial (u, a, 8) solves (8.13). Multiplying this point by some small A > 0, then
it remains a solution, and we obtain two different KKT points for PQ(a, b) by
Lemma 8.7(ii). O

So, in order to characterize strong regularity of critical points, KKT point of
problems involving particular canonical perturbations a = A¥ p with p > 0 and
b > 0 must be considered only.

Lemma 8.7 cannot be applied for C!+!~problems since the quadratic program
(PQ) is not defined. Nevertheless, if the Kojima—function is still piecewise
linear, problem PQ(a,b) may be perturbed in a similar way, only z = z° is not
longer true in (ii).

Lemma 89 (two close critical points, piecewise quadratic problems). Lef the
functions involved in (P) of (8.4) have piecewise linear first derivatives, and let
(2°,4°) be a KKT-point for (P) with g(z®) = 0.

(i) If(z,y) and (z',y') are KKT points for (P)a,b) in (z°,4°) + B and
e + |[(a,b)|| is small enough, thenu=1"'~z, a =y' -y and B = Au solve the
system (8.13).

(ii) If (u,a,B) solves (8.13) and has small norm, then given any §, one
finds © and t > O such that both ||z — 2|} + t < & holds and the point q
defined by q := 8~ (DgL(zx + tu,y°) — D,L(:c,yo)l) satisfies ¢ € Qr(w) as well
as ¢+ Aa = 0. Moreover, by setting a = ~A'a~ and b = 8%, the points
(z,y) = (2,4° — a™) and (z,y) + (v, ) are KKT points for (P)(a,b). <o

Proof. The representation of ¢ as a difference quotient now follows from the
piecewise linear structure of the matrix M in the Kojima function F = MN.
The rest again requires only the direct calculation. a

So the particular perturbations which must be considered have the same form
as in Lemma 8.7 above.

Strong Regularity of Local Minimizers under LICQ

We finish this subsection by specializing Theorem 8.2 to the case of critical
points (z,y) of C? programs such that the z-parts are local minimizers. Recall
that UT := {u|4ju =0,i € I't}.

Theorem 810 (strongly regular local minimizers). Suppose that f and g
are C? functions. Let 8 = (2°,y°) be a critical point of the program (P),
and suppose that ° is a local minimizer of this program. Then (P) is strongly
regular at 8° = (z°,9°) if and only if z° satisfies LICQ and H = D% L(z°,°)
is positive definite on UT (i.e, (SSOC) holds). In this case, if (z(a,b),y(a,b))
denotes the critical point of the canonically perturbed program (P)(a,b), then
z(a,b) is a local minimizer of (P)(a,b) whenever (a,b) is sufficiently small. <
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Proof. Before proving the equivalence, we note that the additional proposition
on persistence of the local minimizing property is an immediate consequence of
Theorem 1.16

”If ”—direction of the equivalence: This immediately follows from the char-
acterization (8.15) and the sufficient condition (8.16) discussed above.

”Only if” —direction of the equivalence: Suppose that F is strongly regular
at 8° = (2%¢°). Then, as shown above, z° satisfies LICQ. Note that, by
convention, LICQ is also satisfied if I* UI® = @. To prove (SSOC), we consider

. e ify) =0,
P(e): min{f(z)|g(z) < ble)}, € 20, where ble); := 0 ifyd #0
1 )
and first show that
3e>0:  z°is alocal minimizer of P (¢). (8.17)

Indeed, strong regularity at (z°,y°) particularly includes that the local mini-
mizer z° of P (0) is a strict one. Hence, Theorem 1.16 applies and so, for some
d,¢' >0andall € € (0,¢'), we have

0 # @5(c) = argmin {f(z)lg(z) < ble), ljz — 2°}} < 8} C {=|l}z ~ 2°)| < 8},

and therefore, each element of ¥5(¢) is a local minimizer of P (¢). Assume that

d, ' were already small enough such that for € € (0,¢’), both LICQ holds on

¥s(e) — thus, each z € ¥4(¢) is a stationary solution of P () — and P (¢) has

a unique stationary solution in B(z®,d), which is implied by strong regularity.

Since, by construction, 2% is a stationary solution of P (¢) even for all € > 0,

we then finally conclude that ¥s(¢) = {z°}, ¢ € (0,&'). So (8.17) is shown.
Because of (8.17), the relation

(v, Hu) 20 VueUT, (8.18)

holds by a classical necessary optimality condition. Theorem 8.2 implies that,
in particular, the matrix of (v) in that theorem with r; = 0ify) <Oandr; =1
if y? > 0 is nonsingular, and so

( Do () Pors ') )

is also nonsingular, where gy+ is the vector function built by g;, ¢ € I't. Hence,
by a known fact from linear algebra, we then obtain that the strong inequality
in (8.18) is satisfied for u € U T\ {0}, i.e., (SSOC) holds, which completes the
proof. O

Note. In the case of C1'! programs, strong regularity of (P) at (z°y°) for a
local minimizer z® in general does not imply the corresponding second-order
condition (SSOC) defined in (8.16), see the counterexample of a simple uncon-
strained C*! program presented in Example 6.22. <
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8.2.2 Local Upper Lipschitz Continuity

Consider again the basic model (P) of (8.4) and the parametric pendants
P(t,(a,b)) and (P)(a,b), where ¢ and (a,b) vary. Let, as above, F(s,t) (or
F(s) := F(s,t°) if t = t° is fixed) denote the associated Kojima function.
In this subsection, we are interested in necessary and sufficient conditions
for the local upper Lipschitz continuity of the critical point mappings § and
S = F(-,t°"!, respectively. Similarly to the case of strong regularity, we
again discuss quadratic approximations and geometrical interpretations, how-
ever, now the Thibault derivative TF is replaced by the contingent derivative
CF.

Recall that a multifunction E from R” to R is said to be locally upper Lip-
schitz (briefly locally u.L.) at (¢°, 8°) € gph ¥ if there are positive real numbers
g, 6,& such that

X(q) N B(s%¢) Cc B(s%0llg—¢°|l)  whenever flg~¢°[| < 4. (8.19)

Again we note that definition (8.19) includes that s° is isolated in £(g°), but it
does not include that £(g) N B(s®,¢€) is nonempty for ¢ near ¢°.
As above, we use the notation

Jc(y°) = {(a,ﬁ) (8.20)

Qa4 =O(iEI—)1 B‘ =0(i€I+)1
aifi=0, a; 2025 (iel®

for given y° € R™ and with I, I't, I° according to (8.9). Now, Theorem 7.8
which was proved in the context of generalized Kojima functions immediately
gives the following characterization theorem.

Theorem 811 (locally u.L.. F(-,t%)Y). Let (2°,4°) be a critical point of the
problem (P)=P(t°,0). For f = f(-,1°), gi = gi(,t°) € C'?, and with the
notation (8.9)~(8.11) and (8.20), the critical point map S = F(-,£°)™Y islocally
upper Lipschitz at (0, 8°%) if and only if the C—stability system

Qc(u) + ATa 3 0,

Au - B =0, (a,B) €Tl (8:21)

has only the trivial solution (u,a, ) =0. o3

It is worth noting that for unconstrained programs, the condition of Theorem
8.11 is reduced to the second-order criterion

0¢ CIDf)a%)(w) Vu#0,

which would imply for f € C? even strong regularity. However, in the case of
Ot programs, this criterion in general does not imply upper regularity, i.e., the
existence of critical points of slightly perturbed problems cannot be guaranteed,
see the following simple example.
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Example 8.12 (no upper regularity for C'! programs). Put f(z) = jz|z|.
Here, f'(z) = |z|, C[f'](0)(v) = |u] and u C[f'](0)(u) = u|u|. The origin is not
a minimizer, but a stable critical point in the sense of local upper Lipschitz
behavior. Indeed, for a > 0, stationary points £(a) to f(z) — ax exist (not
uniquely) near z° = 0 and |¢(a) - z°| < |a|. Ifa < O then S(a) = §. Moreover,
replacing the generalized derivative we obtain 0 € T'[f'](0)(u) = [—|ul, Juf] Vau.

<

If all data in the problem P(t,p), (¢,p) near (t°,0), are supposed to be C!
functions with respect to a finite-dimensional (s,t), the Kojima function (8.2) is
locally Lipschitzian with respect to (s, t). Hence, with 8° = (29,3°), F(s°,1°) =
0, one has

F(s,t)=p & F(5,t°) =p+G(s,t), where G(s,t) := F(s,t°) - F(s,t),

and there exist 4 > 0 and y > 0 such that ||F(s,t) — F(s,t%)] < 7||t — t°|| for
all (s,t) € (s°,t%) + uB. Thus, if

g+ 8(q) = {s|F(s,t°) = g}

is locally u.L. at (0, s%) with constants g, 6, & according to (8.19) (put there ¢° =
0 and £ = S), then each s € S(t,p) = S(p + G(s,t)) with (s,¢) € (s°,2°) + uB,
l|s — s°|| < € and ||p}| + ||t — t°|| < & satisfies the estimate

lls =8l < ellp+Gis, )l < ellpll + it - ¢l

This means that S is locally u.L. at (¢°,s%). From these observations, we
immediately obtain

Corollary 813 (nonlinear variations, u.L..). Let T C R" be open, and sup-
pose that f, gi : R™ x T = R belong to the class C*'. Then the critical point
map S of the parametric program P(t,p), (t,p), near (t°,0), is locally upper
Lipschitz at (t°,0,8%) if and only if the critical point map S of the canonically
perturbed program (P)(p)=P(t°,p), p near0, is locally upper Lipschitz at (0, s°).

Q<

In view of the previous corollary, we now again concentrate ourselves to canoni-
cally perturbed programs. The next discussions partially specialize facts known
from Section 7.3.

Reformulation of the C-Stability System

In what follows, we give a reformulation of the C-stability system (8.21), which
will allow to reduce in the C? case the characterization of a locally u.L. crit-
ical point to the question whether the reference point is an isolated critical
point (i.e., the unique critical point in some neighborhood of it) to the assigned
quadratic problem (PQ)o=(PQ)(0,0) defined in §8.2.1. Tt will be also seen how
the quadratic problems can be substituted for (f,g) € C:1,
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Replacing TF by CF, we may apply similar arguments as above in the case
of strong regularity. As above, let

Y0 = {y{(2%y) is critical for (P)},
UC®) = {u| Au <0 ifg? =0 and Aju =0 if y? > 0}.
Further, we define
U° = {u| Aju < 0 if g4(z°) = 0 and Df(2°)u < 0}.

For some given 3° € Y?, the cones coincide, since for each vector u satisfying
A <0 Vi e IT(y%) U I°(y), one has

v eU@Y") = Df"u=-ZuyltAu=0 = uwelU°,
and
uelU® = Df(x%u=-SydtAiw <0 = Au=0ify? >0 = ue U°QO).

Remark 8.14 (reformulation of the C-stability system). By Theorem 8.11,
the critical point map S = F~1 of the canonically perturbed program (P)(a, b),
(a,b) € R™"*™, is locally u.L. at ((0,0),(z% %) € gphS if and only if the
system (8.21) has only the trivial solution (u,a,8) = 0.

Using the structure of Jo (%), some point (u, e, B) solves (8.21) if and only
if Au = 8, a; = 0 (¢ € I"), and, for some ¢(z) € Q¢ (u), the point u is an
optimal solution of the linear program

(L)owy ~ min{(g(u),z) | Az <0 Vie I and Aix=0VieIt},

where again I® = I%(y%) and It = It(y°). If (f,g9) € C% wehave q(u) =
D2 L(x° y%)u = Hu, and so we arrive at the auxiliary problem

mzin{-zl-(a:,Ha:) [Aiz <O0VieI®and Az =0Vie I} (8.22)

From Theorem 7.6 we know that the set Z = CF~1((0,0), (z°,4°))(a, b) is just
defined by all points
(u, 0 + Au ~ b)

satisfying the perturbed system
Qo(u)+ATada, (adu-b)€Jc(”),

ie., if g(z®) = 0 (without loss of generality), Z is given by all those KKT points
(u, &) of the perturbed linear program

(LYo ap min{{g(v) —a,z)| Az < biVie I° and Aiz =b;Vie It},

which satisfy, in addition, q(u) € Qc(u). In the C? case, this is the quadratic
program (8.22), perturbed by a and b. %
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The remark tells us that the analysis of system (8.21) is nothing else than the
analysis of a family of linear optimization problems and of quadratic problems,
respectively. So it is not surprising that the roots of the following statements
are basically quadratic parametric optimization.

Lemma 815 (auxiliary problems). Some point (u,e, ) solves (8.21) ifand
only ifz = u is a stationary point of

min, {{g(u), z} |z € U} with some ¢(u) € Qc(u) for (f,g) € CM;
ming {3(2, D, L(2°,3%)z) |z € U°) for (f,9) € C?,
(8.23)
respectively. o

Proof. Recall that U® = U€(y°) for every 3° € Y9, So, given any objective
function h € C*,the stationary points of the problems

min{h(z) |z € U°}

and
min{h(z) |z € U°(y°)}

(defined as z-part of KKT-points) coincide because all constraints in U9 =
UC(y°) are linear. In particular, this holds both for

h(z) = {g(u), %) and h(z) = §{z, D3, L(z°,3°)).
So our Remark 8.14 finishes the proof. o

Geometrical Interpretation

Next we adapt the geometrical interpretation of F~? being locally u.L., which
was given for generalized Kojima—functions in the Remarks 7.11 and 7.12. The
cone U€ considered there now becomes

Ue =U°@%) =U°,
(see the previous proof), while

KCw={ 3 MAdMeR, kelt; N >0and MAu=0,i€I°).
ier+ure
The cone K€ (u) is just polar to the tangent cone C{u,US). Since UC = U9,

so K€(u) also coincides with the polar cone K'(u) of C(u,U%. By putting
J(2°) = {i|gi(z®) = 0}, the latter can be written as

K(u) = {«\oD.f(z°)+ S My ){“"go‘f’mﬂ’j (;‘?j‘fe"",(xo) } (8.24)

t€J(=%)

So we obtain from the Remarks 7.11 and 7.12 the following corollary.
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Corollary 816 (geometrical interpretation, u.l..).  The critical point map
S = F-! of (P)((a,b)), (a,b) € R™™, is locally u.L at ((0,0),(z% %) €
gph S if and only if
(i) strict MFCQ and
(ii) Qe(u)NK(u) =0 Vue U\{0}
are satisfied. Moreover,
i) is violated if and only if (8.21) has a nontrivial solution with u = 0, and
(i) is violated if and only if (8.21) has a solution with u # 0.
<o

Now € € Q¢(u) N K€(u) and u € UC imply (€,u) = 0. Thus, (ii) holds true
under the sufficient condition

(SSOCYy (€,u) #0 Yu e U°\{0} and € € Qc(u).

Direct Perturbations for the Quadratic Approximation

We show for C? problems, how the system (8.21) indicates where, near (z°, %),
there is a second KKT-point forPQ((0,0)). In contrast to the corresponding ge-
ometrical interpretation of strong regularity, here we have only to deal with the
unperturbed quadratic approximation, i.e., we study with H = D2_L(x%,y°),

(PQ)o min{Df(z°)(z - 2°) + 3(z - 2°, H(z - 2°)) | Az - 2°) < 0},
where we again assume, without loss of generality, g(z°) = 0 (i.e., I~ = 0).

Lemma 817 (two critical points, quadratic problems). Let (f,g) € C?,g(z°) =
0 and (2°,y°) be a KKT-point for (PQ)o (or, equivalently, for (P)). Let 8(y°) =
min{y?)i € It} if I* #0 and 6(3°) =0 if It = 0.
(i) If (@ v)is a critical point for (PQJo and |yi - 12| < 8(y°) Vi € I't, then
(u,e,8) = (z — 2% y*+ — y°, Au) solves (8.21).
(i) If (u,a,B) solves (8.21) and |ay| < 8(y°) Vi € I, then (z,y) = (z° +
u,y® + a) is a KKT-point for (PQ)o .

Proof. Some point (z,y) = (z° + u,y) is critical for (PQ)p if and only if
Df(z°) + Hu+ A%yt =0and Au -y~ =0.

Setting o = y* -y, B = y~ — y° and using Df(z°) + ATy*t = 0 and
y°~ =0, this is
Hu+ATa=0, Au=48. (8.25)

Proof of (i). Let (z,y)be critical for (PQ)g. So we already know that (8.25)
holds, and we have only to show that (a,8) = (y* — 3,4~ —4°") € T (¥®),
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provided that the condition |y; ~ ¥?| < 6(¥°) Vi € I* holds. Indeed, from
0<yt =y +aand 0>y~ =y + B we obtain that
ifi €I’ then ai=y] >0and 0> B,
ifa; >0 then 3 = @* +a);i >0,
hence 0 =y, =3~ + Bi = Bi.

Thus, in any case, a;f8; = 0 if i € I°. Moreover,

Ifi e It then |y;—y?| <6(3°) and 3 > 0 yield y; > 0
as well as 0=y =y7~ + B = Bi.

Summarizing, this is (@, 8) € Je(¥°), so (u,a, B) solves (8.21).

Proofof(ii). Let (u,a,f) solve (8.21) at (0,0). Using (z,y) = (z°+u,y°+a)
and (a, ) € Jo(y°), we see that

for i € I'*, itholds pi=0and yi=(x"+a)i>0

since ¢ > 0 and |e;| < 8(y°), while
for i€ I° itholds B;<0,0<a;= ¥+ a)i=u

as well as 0 = ayf; = yiAsu.

Hence, since also (8.25) follows from (8.21), (z,y) is a KKT-point for (PQ)o .
]

Analogously to the discussion following [.emma 8.7, one has

Corollary 818 Let(f,g) € C?, g(z°) = 0 and (2°,4°) be a KKT-point for
(P). Then, the critical point map 8 = F~! of(P)(a,b), (a,b) € R"*™, islocally
wL. at ((0,0),(z°,3°)) if and only if the point (z°,9°) is an isolated KKT-point
of problem (PQ)o. ¢

Proof. If (821) has a nontrivial solution (u,ea,B) then, using the solution
A (u,a,p) for small A > 0, we find KKT-points (z,y) # (z°,3°) arbitrarily
close to (z°,4°) by Lemma 8.17(ii). Conversely, having such KKT-points for
(PQ)o, we find related (u,a,8) # 0 by Lemma 8.17(). Taking Theorem 811
into account, this yields the assertion. a

8.3 Stationary and Optimal Solutions under
Perturbations
In this section, we characterize Lipschitz propetties of the stationary solution set

maps X (t,p) and X (p) of the parametric problems P(t,p) and(P)(p) introduced
in §8.1. Let the general assumptions (8.6) be satisfied, ie., 2° is a stationary
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solution of (P)=P(t%,0), t* € T, and £, g; € C**(£2,R) for some neighborhood
Q of (29,1%).

The results will be used to give conditions for the Lipschitz behavior (in
the one or the other sense) of perturbed local minimizers near a strict local
minimizer of the initial problem.

8.3.1 Contingent Derivative of the Stationary Point Map

From the general theory developed in the chapters before, we know that gener-
alized derivatives of the mappings X and X play an essential role for character-
izing Lipschitz stability. In this subsection we describe the contingent derivative
of X in terms of the contingent derivative of Kojima’s function F.

Throughout Subsection 83.1, we put without loss of generality t° = 0 for
the initial parameter, and we assume that

z° is a stationary solution of P(0,0),
f,gi € CY1{), R), where  is a neighborhood of (2°,0) € R**",  (8.26)
and f, g;: have continuous second derivatives fy:, (g;)»: on Q.

By these assumptions, F' is the product of a locally Lipschitz matrix-function
M (z,%) (cf. (8.7)) with the piecewise linear vector N(y) = (1,y*", (y—y*))".
This yields, for fixedt = 0 and contingent-derivative Cz 4 F of F with respect
to (z,y), the elementary product (or partial derivative) rule

Claa) F(2°3°,0)(u, v) = [Co M(2®, 0)(w)]N (3°) + M(2°, 0)[CN (3°)(v)]

holds, which provides us CS via (6.56). For sufficiently small ||(%,v,7)|| and
some ¢° satisfying F(z,°,0) = 0, the formula

FE+uy"+0,7) € [CME,0W) +ME,0INGY) oo

+M(0,0[CNGO)w)] +ow,n)B &2
can also be easily shown, where here and in the following subscripts denote par-
tial derivatives in the contingent and Fréchet sense, respectively, and B denotes
a closed unit ball independently of the space under consideration. Indeed, the
inclusion

M(z® +u,7) € CaM(2°,0)(1) + My(s°, 0)7 + 01 (u, 7)B

is true since M is locally Lipschitz and continuously differentiable with respect
to t. The identity
N +v) = N°) + CN (") (v)

holds for small ||v}| since N is piecewise linear. Rewriting F as a product by
using these terms, (8.27) follows immediately.

Nevertheless, even for arbitrarily smooth involved data in (8.26) there is (up
to now) no complete formula which describes for the stationary point mapping
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t = X(t) := {z|3y : F(z,y,t) = 0} the contingent derivative CX under MFCQ
only. However, the contingent derivative can be computed, under MFCQ, when
including additional canonical perturbations, i.e., for the stationary point map
X defined in (8.8),

X(t,p) = {=|F(z,y,t) = p for some y}.

The importance of adding such canonical (also called ’tilt’) perturbations for
characterizing stability properties of optimization and variational problems is
well-established in the literature. In our context, a map similar to CX((0, 0), z°)
has been considered in [I.R95]. There the authors assumed that f, g are C?func-
tions and were able to put the additional tilt perturbation only in the objective
function. So, their results are, in this smooth case, stronger than those of the
following Theorem 8.19. On the other hand, our result applies to C!*!-problems
in which quadratic approximations of the input functions cannot be applied.

The Case of Locally Lipschitzian F

The following approach was recently presented in [KKO1] and is based on the
results obtained in [KK99a] for parametric C*! programs under canonical per-
turbations only. In both papers, MFCQ was a crucial assumption. Note that
this assumption may be slightly weakened, see [Kla00] and the remark follow-
ing Theorem 8.19. To compare with the usual case of F' € C!, let us, for the
present, assume that M and N are C*functions, F = M(z,t)N(y), and (z°,1°)
is a regular zero of F(z,y,0). Then we obtain by the classical implicit function
theorem that

¢ € DX((0,0),2°)(r, 7
& 7 € [DM(2°,0)(¢, 7)IN(¥°) + M(2°,0)DN(y°)R™.

Now we derive the same formula for Kojima’s function in terms of contingent
derivatives by considering all 4° in the set ¥° = {y € R™|F(z°y,0) = 0}
which is bounded under MFCQ. Tet M; denote the partial derivative of M
with respect to ¢.

Theorem 8.19 (CX under MFCQ). Let F = M(z,t)N(y) be the Kojima
function of problem (8.26), and let MFCQ be satisfied at ® € X(0,0). Then,
it holds _

£ € CX((0,0),2°%)(r,m) (8.28)

if and only if
m € [CaM(2%,0)(€) + My(z°,0)r)N(y°) + M(z°,0)[CN(z°)(R™)]  (8.29)
for some y° € Y°. o

Proof. Condition (8.28) means that, for some sequence & = 8;, | 0 and certain
o-type functions 05 , the points

z =20 4+ 06 + 01(8), t =07 + 05(8), p=0r + 03(d) and related y = y(8)
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fulfill
F(z,y,t) =p.

Due to MFCQ we find (for some subsequence of §) some
y° € Y0 such that y = y® + v(6) where ||u(6)|| vanishes. (8.30)
Then (8.27) tells us that

Or +03(0) = F(z,y°+v(8),t)
€ 6[C.M(2°,0)(§) + Mi(a®, 0)T]N (y°)
+M(2°,0)[CN(3°)(v(6))] + 04(6) B,

and after division by 8,

m+07103(8) € [CaM(2°,0)(§) + M(z°,0)T|N(¥°)
+M(2°,0)[CN(y°)(8-1v(8))] + 604 (6) B.

Since N is piecewise linear and M (z%,0) is a fixed matrix, the set
¥ := M(2°,0)[CN(y°)(R™)),

is closed as a finite union of polyhedral cones, and ¥ contains, by the above
inclusion, certain elements

¥(6) € 7+ 67" 05(8) — [C. M (2°,0)() + My(2®, 0)rIN(4°) — 67" 04(6) B.

On the other hand, the set C:M (2%,0)(£) is compact because M is locally
Lipschitz. So there is some accumulation point ¥ of the sequence ¥(8) under
consideration and

¥ € TN (1 - [CaM(2°,0)() + My(z°,0)7]N (3°)).
Thus, since the intersection is not empty, (8.29) is true.

Conversely, let (8.29) hold and note that N is directionally differentiable.
Then one finds certain

u € Co M (2°,0)(€) + My(z°,0)r, v e R™

as well as some sequence 8 = 8 } 0 and related 04(6) such that, with =
CNGO)W), o
m=uN(y") + M(z",0)n

d
" p=lim8~ (M (2 + 6¢ + 01(6), tT + 02(8)) — M(2°,0)).

For small 8 (of the given sequence), we know that
N(y° +6v) - N(y°) = On.
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After an elementary calculation, this tells us, because of F(z° 3% 0) = 0 and
F = MN, that

F(z° + 0¢ + 0,(8),34° + 0v,07 + 02(6)) = 07 + 03(6).
The latter gives (8.28). |

Remark 8.20 (selection property). The crucial assumption MFCQ was only
used in the proof of the “only if” direction in order to show that assertion (8.30)
holds. Indeed, it is immediately clear from this proof (see also [Kla0OO0]) that
MFCQ may be replaced by the following selection property:

Given a sequence (z*,t*, p¥) = (2°,2°,p°) (put above p° = 0) with
zF € X(t*,p*), there exists a sequence of associated multipliers
y* € Y(x*,t*, p*) such that {¢*} has an accumulation point y° € Y?,

where Y = ¥(22, %, p%). In particular, Corollary 2.9 says that under MFCQ,
one may take any sequence {y*} of associated multipliers. Further, the so—
called constant rank condition guarantees the selection property, see [Kla0O,
Lemma 5]. In the case of fixed t = t°, a linearly constrained program also
fulfills the selection property, this will be shown in Lemma 8.29 below. <o

The Smooth Case

In specializing the result of Theorem 8.19 to C?-problems, we again suppose
g(z%,0) = 0 and hence y® > 0. This convention is used in the following discus-
sion,

For C2- problems, the multivalued term C; M (2, 0)(£)+ M;(z°,0)T becomes
(single-valued and) linear in £ and T, namely,

CxM(xoa 0)(6) + Mt(xoa O)T = {Mz(moa 0)£ + Mt(a:o,O)T}.
Explicitly, the term DM (z°,0)(¢,7) = [M,(2°,0)¢ + M(2°,0)7] for M(z,t)
according to (8.7) is a matrix of the form

fzz€ + forT (g-‘czf + gth)T 0 )

( 96 + i 0 0) (8.31)
where all first and second—order partial derivatives are taken at (z%,0). So,
(8.29) requires, writing CN(¥°)(v) = {(0, ¢, 8)},
feal + farm + (yg)+(g::z£ + 92t7) + gz
92§ + T — B

for some y° € Y andv € R™.
Next consider, for comparison, the following quadratic approximation of
problem (8.26) at (z°,0):

min  [f2+ fut)(z = 2°) + 3 (z ~ 2°)7 fra(z - 29)
s.t. (92 + gastl(z —2°) + 5(z = 2°) Tgee(z —2°) < O

m
w3

(8.32)
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where f9 = f,(29,0),similarly g%. When specializing (8.7), the related matrix
M = Mg of Kojima’s function, assigned to (8.32), attains the form

IO+ fat + foxDz (92 + goet + g2eAz]T O
ay(z,t) 0 -E

where ag4(z,t)is the constraint function of the problem (8.32), and Az =z —
2% So, the derivative DMg(z®,0) coincides with DM (z%,0). Moreover, at
(2°,0), the problems (8.26) and (8.32) have the same set Y? of dual vectors.
By Theorem 8.19, this yields

Corollary 8.2t If f, g9 € C* and MFCQ holds at (x°,0), then the derivative
CX((0,0),z°) coincides for the problems (8.26) and (8.32).

Note that in the quadratic—quadratic program (8.32), the parametert appears
now only linearly in the first—order terms with respect to .

8.3.2 Local Upper Lipschitz Continuity

In this paragraph, we characterize local upper Lipschitz continuity of the sta-
tionary point maps X and X of the parametric problems (P)(p) and P(t,p),
respectively, and this by supposing the data belong to the class C**! (or C?) and
MFECQ holds at the initial stationary solution. It turns out that the (general-
ized) second-order approximation developed in §8.2.2 carries over to stationary
and optimal solutions, where the representation of CX given in the previous
paragraph plays an essential role. Moreover, we discuss these second-order type
conditions with respect to local minimizers.

As above, we consider the parametric problems P(t,p) and (P)(p)=P(t°,p)
according to (8.4) and (8.5), and we suppose at least that

29 is a stationary solution of (P)(0)=P(t°,0), 8.33
f, 9 € CYY@Q,R), R is a neighborhood of (z°,1) e R+, (839)
Then, for the Kojima function F(z,y,t) = M(z,t)N(y), M is Lipschitz on
. Note once more that equality constraints could be included without any
problems, we have not done this for brevity of presentations.

The presentation is based on the authors’ papers [KK99a, KK01] and is
related (in the C? case) to [Lev96, DR98, HG99, L.PROO].

Two Illuminating Examples

To illustrate typical difficulties, we start by two interesting examples. The first
example illustrates that even for smooth data standard first and second—order
optimality conditions do not imply that the solutions behave locally upper
Lipschitz. Some stronger” second—order sufficient condition is needed. Note
that this example was first given in [KK85], it modifies a proposal made in
[GT77].
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Figure 8.1: Strict local minimizer is not isolated for f € C12.

Example 8.22 Minimize 3 subject to xz > z%, T2 > b, where b € R is

a parameter. Then the optimal solution set (= set of stationary points) is
X(b) = {(0,0)} if b < 0 and X (b) = {(21,b)] = Vb < 1 < VB} if b> 0. In this
example of a perturbed convex quadratic program, the solution set mapping is
not locally upper Lipschitz. Note that MFCQ holds, and (0,0) is a strict local
minimizer of order 2. ©

The next example illuminates an essential difference between C?~optimization
problems and C'!-problems, see Figure 81.

Example 8.23 (Ward [War94, Ex. 3.1]) Let Z denote the set of integers, and
define f : R = R by

0, ifz=0
f(x) = z?+z(cos[2"t?z — 3n)+1)/2", ifzel,, ne€EZ,
f(_x)) ‘f z <0,
where I, := {z|r/2"*! < ¢ < ®/2"}. fis a CM! function, and z° = 0 is a

strict local minimizer of order 2. For the derivative of f at ¢ € I, n € Z, we
have

2" f'(x) = (cos[2"*2z — 3n] + 1) + 2" (1 ~ 26in[2"2z - 3n]).
It is easy to see that for each n, f' has two zeros in I, and

/242 > 0, if x=3n/2""2
*f(z) =< -Trfd+1 < 0, if z="Tn/2"+3,
2m > 0, ifz= =/2".
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Hence, each of the intervals I,, n € Z, contains a local minimizer and a local
maximizer of f. This example shows: for a C**! function it may happen that
in any neighborhood of a strict local minimizer of order two there are infinitely
many other stationary points of this function. Hence, in particular, X = S is
not locally u.L. at (0,0). For C? functions, unconstrained strict local minimizers
of order 2 are automatically isolated stationary points. Under C? constraints,
to get this property, one has additionally to assume that MFCQ holds, see
Robinson [Rob8&2]. O

The latter example was originally given in [War94] to illustrate that some
second-order optimality condition [Kla92] in terms of Clarke’s generalized Hes-
sian is not equivalent to strict local minimality of order 2. Since this example
concerns the unconstrained minimization of a C*? function, it applies also to
”most regular” constrained problems.

Injectivity and Second-Order Conditions

Combining Theorem 8.19 on the representation of CX and the Theorems 7.5
and 7.6 on representations of CF, we now will easily obtain that the stationary
solution set mappings X and X are locally upper Lipschitz (locally u.L..) if and
only if a restricted injectivity condition on the Kojima function F is satisfied.

Given a stationary solution z? of (P)=P(¢%,0), we say that (z°, ¥?) satisfies
the injectivity condition for CF = CF(-,-,t%) with respect touifforally € Yo
and all u # 0, one has 0 € CF(2°,y)(u, R™), where Y° = Y (2°,t°,0) is the set
of multipliers associated with z%. If the included parameters are obvious, we
will also say that (x°,Y?) satisfies CF-injectivity w.r. to u. If the same sense,
TF-injectivity w.r. to u will be used.

If the original problem (P) is a linear program, then one easily observes:
(2%, Y9) satisfies CF-injectivity w.r. tou iffz® is the unique solution of (P)(0).
(z°,Y?) satisfies TF-injectivity w.r. tow iffz® is, foreach y € Y?, the unique
solution of

min f(z) st gi(z) =0Vie It(y).

Theorem 8.19, specialized to X, says that for a stationary solution z° of
P),
£ € CX(0,2°%)(m)

& YO 1 e CMENONGY) + MEONG@™). Y

The basic notation is used according to §8.1, in particular, z° is a fixed station-
ary solution of (P). Moreover, as defined in §8.2.2, consider the cones,
UC(y) = {u] A <0 ify; =0 and A = 0if 3 > 0},

and
U® = {u| Aix < 0 if gi(z°) = 0 and Df(z%)u < 0}.
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For some given y € Y?, these cones coincide, see the dicussion prior to Remark
8.14. We also recall the definition (8.24) of the polar cone K(u) of C(u,U?%),
namely, with J(z°) = {i|gi(z?) = 0},

K(u)={/\on($°)+ il 2 >0, ,\.A-u—O) i€ :7( %) }
ieJ(z°)

Given any y € Y? and any direction 4 € R™, we write

Qo (y)(u) = C[D.L)(2% y)(w),
because in thefollowing y may vary.

Theorem 8.24 (locally u.L. stationary points). Consider the parametric pro-
grams(P)(p) and P(t,p), t near t°, p near 0, and let f, gibe CY' functions
with respect to (z,t). Suppose that z° € X(0) = X(£2,0) satisfies MFCQ. Then
the following properties are mutually equivalent.
(i) The stationary point map X of (P)(-) is locally u.L. at (0,2°).
(ii) The stationary point map X of P(+,") is locally u.L. at ((t°,0),2°).
(ii5) (2°,Y°) satisfies the injectivity condition for CF(-,-,°) with respect to u.
(iv) Foreachy € Y°, the C-stability system {Qc(y)(u)+ATa 30, Au—-F =0,
(o, 8) € Jc(y)} has no solution (u,a, B) withu # 0.
(v) For eachu € U°\ {0} and ally € Y°, one has Qe(y)(u) N K(u) =
o

Proof. The equivalence of (iii) and (iv) is a direct consequence of Theorem
7.6 (see also Remark 8.14). Because of the product rule of Theorem 7.5

CIF(,+ )1, 9)(&m) = [CM(e°)OIN (¥) + M(z°)[CN () (m)],

Theorem 8.19 applied to the mapping X = X(t°,") and (8.34) immediately
yield the equivalence of (i) and (iii). The equivalence of (iv) and (v) follows
from the second part of Corollary 8.16.

In order to show the equivalence of (i) and (ii), we use, similarly to the proof
of Corollary 8.13, the reformulation

F(z,y,t)=p & F(z,y,t°) =p+G(z,y,1), (8.35)

where G(z,y,t) := F(z,y,t°) - F(z,y,t).

Since (if) = (i) is trivially fulfilled, it suffices to prove the direction (i) =
(ii). Suppose X = X(-,°) is locally u.L. at (0,z°), i.., there exist €,8,cx > 0
such that

X(#,p)NB(¢) C {2°} +cx|lpll B V¥p € B(0,29). (8.36)
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Assuming on the contrary that (i_i) is not true, we conclude that there is a
sequence {(z*,t*,p*)} with z* € X(t*,p*) (and associated y* € Y (z*, t*, p*))
such that (z*,t*, pF) — & = (29,¢9,0) and

llz* = 2%l1/(lle* = ¢l + lip*])) = o0 (8.37)

By MFCQ, Corollary 2.9 particularly yields that Y is usc. at s2, and so, {y*}
has an accumulation point y° € Y'(s°). By F € C%!, ¢ > 0 may be regarded
being so small that

F is Lipschitz on B((z°, 3% t°),¢) with some rank cp. (8.38)

Hence, G(z,y,t) € B(0,9) if (z,y,t) near (2% 3°,°). Then (8.36) and (8.38)
imply that for sufficiently large k,

lle* — 2%l < ex|ip* + G(a*, ¥*, t*)| < ex (Ip*[l + cr {it* - 1)
is satisfied, which contradicts (8.37) and so completes the proof. |

Note. By a slight modification of the proof, one obtains that in the last theo-
rem, MFCQ may be replaced by the selection property defined in Remark 8.20.
In this form, the result was given in [Kla00]. <

Corollary 8.25 (second—order sufficient condition). Suppose the assump-

tions of Theorem 8.24 are satisfied, in particular, let 2° be an element of
X(0) = X(°,0). If for each y € Y°, the condition

SOCL: 0¢ (u,Qc(y)(u)) Vu e U°\ {0}

holds, then X and X are locally upper Lipschitz at (0,2°) and (t°,0,2°), re-
spectively. ¢

Proof. If X is not locally u.L. at (0,29), then, by Theorem 8.24, there are
some y € Y% and a solution (u,a,8)of

QeW)(w)+ ATa30, Au—8=0, (a,8) € Jo(v) (8.39)

with u # 0. This implies u € U° \ {0}. After scalar multiplication of the
inclusion in (8.39) by u and of the equation in (8.39) by a, we obtain 0 =
—a'f € u"Qc(y)(u). By contraposition, this completes the proof. 0

Remark 8.26 (illustration by examples). The injectivity condition of Theo-
rem 8.24 is obviously not fulfilled in both Example 8.22 and Example 8.23.
Choose in Example 8.22 the multipliers y; = 0 and y2 = 1 and the non-
trivial direction u = (1,0). Then Dg(z°); = Dg(z%)2 = (0,-1) implies that
(8.39) can be satisfied with ¥ and a = 8 = 0.
In Example 8.23 no constraints appear, and (8.39) reduces to 0 € Cf'(u)
which is trivially satisfied for u # 0, by definition of f. o
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Conditions via Quadratic Approximation

The quadratic approximations introduced in §8.2.2 with respect to the upper
Lipschitz behavior of critical points to C? or C**! programs are now be studied
under the viewpoint of upper Lipschitz behavior of stationarypoints. By The-
orem 8.24, we may restrict our analysis without loss of generality to canonically
perturbed programs,

Theorem 8.27 (quadratic approximations). Letx® be a stationary point of
(P)=(P)(0), and suppose that x° satisfies MFCQ. Then, the following state-
ments are equivalent:
(i) The stationary point map X of (P):) is locally u.L. at (0,z°).
(ii) Forally® € Y®, the origin u = 0 is the unique point which, for some
q € Qc(y°)(u), solves min{{g,z)|z € U°}.
For (f,g) € C?, condition (ii) coincides with the following one:
(iii) For all y® € Y°, the origin is the unique stationary point of the quadratic
program
min{{z, D2, L(z°,y°)z) | = € U°}. (8.40)
<

Note. To have, for (f,g) € C?, a relation to the second quadratic approxima-

tion (PQ)o: min{Df(z°)(x ~ 2°) + 3(z ~2°, H(z - 2°)) | A(z — 2°) < 0}, with

H = D2 L(z°4°), we have to apply Lemma 8.17: Suppose g(z°) = 0, then
condition (iii) equivalently means that

(iv) forall y° € Y°, with 6(y°) defined according to Lemma 8.17, it holds that

if (z,y) is critical for (PQ)o and |y; —y?| < 8(y°) Vi € It (y°) then z = 29,

&

Proof. By Theorem 8.24, (i) holds if and only if for ally® € Y° one has that
each solution (u,a, 8) of the C-stability system (8.21) satisfies 4 = 0. Then the
Lemmas 8.15 and 8.17 establish correspondences between solutions (u, a, 8) of
(8.21) and the stationary points  of the auxiliary optimization problems in
such a manner that 4 = 0iff x = 0 for the problems (8.23), and u = 0iff z = 2°
for (PQ)o. Using Remark 8.14, so nothing remains to prove. 0O

To derive an alternative form of characterization (iii) in the preceding theorem,
we consider the function

&(y) = min{(u, D2, L(z°,y)u) |u € U’ Nbd B}.

Here z°is again a given stationary solution of (P)=(P)(0). Note that the set
Y? of multipliers, assigned to £°, may be unbounded.

Lemma 8.28 (uniform sign of the Hessian form). Let(f,g) € C? anda® €
X (0). Suppose that for each y° € Y°, the origin is an isolated stationary point
of (8.40). Then ¢ has no zero in Y°, and so, by continuity, sign¢ is constant
on YO, <



8.3. Stationary and Optimal Solutions under Perturbations 209

Proof. Indeed, if ¢(y) = 0 for some y € Y?, then the related minimizer u® of
uw' D2, L(z% y)u overU° Nbd B fulfills

{u, D3, L(z°, y)u) > (u°, D2, L{z° y)u°) Vu € U°.

So we obtain stationary points Au® (A > 0) of (8.40) arbitrarily close to the
origin, a contradiction. a

The previous two theorems particularly imply that under MFCQ at 29, sign ¢
is necessarily constant on ¥'¢ if the stationary solution set mapping X is locally
u.L. at (0,z°).

Linearly Constrained Programs

For canonically perturbed programs under affine-linear constraints, our charac-
terizations of the local upper Lipschitz behavior of X become simpler and hold
without assuming MFCQ [K1a00]. To obtain this, one essentially uses that the
selection property of Remark 8.20 for the multiplier mapping Y is automatically
satisfied in this case:

Lemma 8.29 (selection property, linear constraints). Let A be an (m, n)-
matrix, B € R™ and f € C*(R™,R), consider the parametric program

min{ f (z) ~ {a,z)|Az ~ b° < b}, p = (a,b) varies, (8.41)
and let ° be a stationary solution of this program forp = 0. Then, for any
sequence {(z*,p*)} C gph X with (z*,p*) = (2°,0), there exists a sequence of

multipliers y* € Y (z%,p*) such that {y*} has an accumulation point y® € Y° =
Y (2°,0). Lo

Proof. Because of the Lipschitzian one—to—one correspondence between crit-
ical points and KKT points, we may assume that Y(z,p) is the (standard)
Lagrange multiplier set, ie., for (z,p) € gph X, p = (a,d),

Y(z,p) ={y €R™|Df(2)+ ATy =0, y 20, y"(4z - 1° - b) = 0}
For I C {1,...,m} and q € R", let
Hi(q) = {(neR™|[ATn=q, m20ifiel, n;=0if j ¢ I},
and for (z,b) € R"™ x R™, we put
Kz, b):={i e {1,...,m} | {4z - 8°) = &]}.

Hence, for (z,p) € gph X, p = (a,b), one has Y(z,p) = HI@¥(q — Df(z)).

Now let {(z*,p*)}, »* = (a*,b%), be any sequence in gph X such that
(z*,p*) ~ (2°,0). Then there are some I C {1,...,m} and some infinite
set K € {1,2,...} such that

I=I(z* V) VkeK.
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By Lemma 2.7 (Hoffman’s lemma), the multifunction H’ is Lipschitz on its
effective domain dom H’. Therefore,

I'*(g) = axgmin {n"nln € H'(¢)} (8.42)
is single-valued and continuous on dom HY. '

Since H! is a closed multifunction, one has
H'(®) =0 = H'(q) =0 forall ¢ near ¢°.

Hence, (z*,a*)(k € K) — (2°,0), the continuity of Df(-) and H¥(a* -
Df(z*)) # 0 (Vk € K) imply that H{(~Df(z)) # 0. Now, (8.42) applied
to the sequence ¢* := a* — Df(z*) (k € K) = —Df(z°) yields the desired
result. 0o

Theorem 8.30 (locally u.L. X, linear constraints). For the stationary point
mapping X of the parametric problem (8-41) and given x° € X(0), the following
statements are equivalent:

(i) X is locally upper Lipschitz at (0,z°).

(ii) There exists at least one multiplier y € Y (z°,0) such that the system

CIDfi%) W) + a4 3 0,
Au—-f=0, Bu=0, (a’ﬂ) € JC(y)

has no solution (u,0,8) with u # 0.
(i5) The origin u = 0 is the unique point which, for some q € C[Df](z°)(u),
solves min{{g,z)|z € U°}.

(8.43)

<

Proof. By the note following Theorem 8.24, the characterization (i) 4 (iv)
of that theorem also holds if MFCQ is replaced by the selection property for
Y which is, by Lemma 8.29, automatically satisfied under linear constraints.
Since Q¢ (y)(u) = C[D f](x°)(u) does not depend on the multiplier y, Theorem
8.27 yields the claimed result (note again that in the proof of Theorem 8.27 the
assumption MFCQ can be replaced by the selection property on Y). a

The specializations to the C? case and to a second—order condition similar to
Corollary 825 are now obvious, again MFCQ is not needed, and the phrase
"for all multipliers ¥ ” may be replaced by " for at least one multipliery”. By the
previous theorem, related results in [HG99] are covered.

8.3.3 Upper Regularity

In general, the local upper Lipschitz property of the stationary point mapping
to a parametric program does not include persistence of the existence of sta-
tionary solutions. However, starting with a strict local minimizer of the initial
problem, Theorem 1.16 on stability of complete local minimizing sets guarantees
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the existence of local minimizers of slightly perturbed problems under natural
assumptions. In the present subsection, we derive sufficient conditions for the
stationary or (locally) optimal solution set mapping to be locally nonempty-
valued and upper Lipschitz (briefly, this is called upper regularity).

Again we consider the parametric programs P(¢,p) and (P)(p) (cf. §8. 1,
t near t°, p = (a,b) near (0,0), and its stationary solution multifunctions X
and X, respectively. We suppose that some stationary solution z° of the initial
problem (P) = P(%,0)is given, and f, g; are at least in C*(Q, R), where Qis
a neighborhood of (z9,1% € R™*".

Lemma 8.31 (upper regularity implies MFCQ). For the parametric C* pro-
gram (P)(0, b), b varies near 0, let ° be a stationary solution of (P)=(P)(0,0).
If X(0,-) is locally nonempty-valued and upper Lipschitz at (0,2°) then MFCQ
holds at z°. o

Proof. By assumption, for some constant L > 0 and each sequence € { 0
there exist some sequence z€ € X (0, b(¢)), bi(e) = —¢ if gi(z®) = 0, b;(g) = Oif
gi(z%) <0, and ¢ sufficiently small, such that

iz - z°)| < Le for small &€ > 0.

Hence, one has that, with J(2°) = {i|g:(z%) = 0},
~2lla® ~ %l > ¢ > gi(s) = Dgu(a*)(a® ~ %)+ ofla* 2%, i € J(a),

holds for small positive €. Therefore, division by ||z¢ — 2|} and passing to the
limit u of a suitable subsequence of (z° — z9)/||z* — z°)| yield

Dg(au < -7, i € J@),
which means that MFCQ is fulfilled at z°. 0

Upper Regularity of Isolated Minimizers

Denote by ¥j,c(t,p) the set of all local minimizers of P(¢,p) for fixed (¢,p),
p = (a,b), and put

M(t,b)
\I’Q(tsp)

where Q is a given nonempty subset of R". In the following lemma, we recall
conditions (cf. [Kla86], and [Rob82] for the C? case) which ensure that

0 # Yot NQC X(t,p)NQ

is fulfilled for all (t,p) near (t°,0) and for some neighborhood Q of an initial
minimizer z°. In the C? case, Robinson [Rob82, Thm. 3.2] has essentially used

{z € R"|g(z,t) < b}
argmin,{f(a:,t) - (a,a:)la: € M(tvb) n Q}a

ee ae

(8.44)
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the fact that a strict local minimizer of order 2 under MFCQ is automatically
an isolated stationary solution. Example 8.23 shows that this is no longer true
for Ct! programs, we have to make an extra assumption.

Recall that z is said to be an isolated stationary solution of P(1%) if {z} =
X (t% NN holds for some neighborhood A of .

Lemma 8.32 (u.s.c. of stationary and optimal solutions). For the parametric
C* program P(tp), let ° be a stationary solution of (P)=P(t°,0). Suppose
that MFCQ holds at x° with respect to M(t%,0). Then one has:

(i) X()NN is us.c. at (t0,0) for someneighborhood N of .

(i) If. in addition, x° is both a local minimizer and an isolated stationary
solution to (P), then § # ¥p,.(t,p) Ncl Q@ C X(¢t,p) Nel Q (V(t,p) € O)
holds for some neighborhoods © of (t°,0) and @ ofz®. Further, %p,,(-)N
clQ and X()NclQ areu.s.c. at (2,0).

&

Proof. By MFCQ, we have from Corollary 2.9 and from persistence of MFCQ
under small perturbations that there are neighborhoods N of 2% (N may be
assumed to be compact), U of t®and W of 0 such thatY isu.s.c on N xU x W.
Hence, in particular, there are a compact set Z and some € > 0 such that

Y(z,t,p) CZ V(z,t,p) € N xU x W) +¢€B.

It suffices to show that the multifunction X (-) NN is closed at (t°,0). Taking
any sequence {(z*,t*,p*)} satisfying z* € X(t¥,p*) NN (with related y* €
Y(z*,t*,p*)) and (z*,t*,p*) = (2*,1°,0), wehave z* € N and the existence
of some accumulation point y* € Z of {y*}. Hence, y* € f"(a:‘,t",O) because
Y is closed at (z*,t%,0). This yields z* € X(%,0) NN, and so, (i) is shown.

To show (ii), we first use that z° is an isolated point in X (t9,0). Because
of the MFCQ, then z° is also an isolated local minimizer. Thus, with A from
(i), there is a neighborhood V C N satisfying

{z°) = X2, 00NV = B,.(2,0) Nl V = ¥y (2,0). (8.45)

Since MFCQ persists under small perturbations, we may assume with no loss
of generality that MFCQ holds at each point in M(¢,#)NelV, (¢,b) near (t%,0),
and s0 ¥yoe(t,p) NelV is a subset of X(¢,p) NclV for all (t,p) near (¢°,0).
By Theorem 1.16, there exist a neighborhood O of (t%,0) and a neighborhood
Q C V such that @ # ¥¢1 o(t,p) C ¥y (t,p) is true for (¢, p) € O. Hence, from
(i)0 and (8.45), we obtain that ¥),.(-) Necl @ and X()NelQ are also us.c. at
(¢°,0).

Let again 5
Y? =Y(2°,4°,0).
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Note that, in particular, the injectivity condition at (z°, ¥?) ¢ §(t°,0) for CF
with respect to u implies that 2° is an isolated stationary solution of (P). Now,
Theorem 8.24 and I.emma 8.32 immediately yield the following result.

Theorem 8.33 (upper regular minimizers, C'?Y). Consider the parametric
C™ program P(t,p), and letz® € X (8°,0) be a local minimizer of (P)=P(1°,0).
Then X is locally nonempty-valued and u.L. at ((t°,0),2°) if and only if both
MFCQ holds atx® with respect to M(t°,0) and (a®,Y®) satisfies the injectivity
condition for CF(+,+, %) with respect to u. Further, if X is locally nonempty—
valued and u.L. at ((#°,0),2°), then ¥y, has this property, too. o

Remark 8.34 (isolated minimizing sets). In the case of replacing z° by an
isolated compact set X of local minimizers of (P), characterizations of upper
regularity in the sense of Theorem 833 are still not known.

However, under MFCQon X° and under a growth condition of order g > 1
imposed on f(-,£%) with respect to an open bounded set @ containing X9,
local upper Holder continuity of order g~* for ¥ g has been shown in the
literature; details may be found in Klatte [Kla94a] for a general setting including
Lipschitzian programs, for ¢ = 1, 2 in Bonnans and Shapiro [BS00, Prop. 4.41]
concerning C? optimization problems and Ioffe [Tof94] concerning Lipschitzian
programs with fixed constraints. For the case X9 = {2}, results of that type
are well-known already from the 80ies, see, e.g., [Alt83, Don83, Aus84, Kla85,
Gft87].

Local upper Lipschitz continuity of ®¢j g holds under LICQ (on X?) already
if quadratic growth of f(:,2%) with respect to @ D X? is assumed; this was
shownfor C? programs first in [Sha88a], and for C* programs in [Kla94a] and
[BS00, Thm. 4.81]. Related results under a different set of assumptions can be
found in [Iof94]. In the case X = {2}, the mentioned condition reduces to
that of Robinson [Rob82]. <

Remark 8.35 (some consequences of Theorem 8.33). Recall that, by Corol-
lary 8.25, the second order condition SOCL implies that (z°,Y?) satisfies the
injectivity condition for CF with respect to %. Hence, by Theorem 833, SOCL
on (z°,Y®) and MFCQ at 2° together ensure that X and ¥),, are locally
nonempty—valued and u.L. at ((¢°,0),z°), provided that 2° is a local minimizer
of (P). Below we shall derive second—order optimality conditions for C** pro-
grams which guarantee that a stationary solution £° of (P) is a (strict) local
minimizer and also satisfies SOCL at some {z°,3°) € (z°,Y?).

If 29 is a global minimizer of (P), then one may replace in statement (ii) of
Theorem 833 the local minimizing set mapping ¥}, by the global optimizing
set mapping ¥, provided that ¥ is locally bounded near that point. o

We finish this paragraph by a complete characterization of upper regularity of
the stationary solution set mapping for parametric C? programs, provided that
29 is a local minimizer of (P). Because of Lemma 831, MFCQ may be supposed
without restriction of generality. Note that the proof of the inclusion (i) = (iii)
in the following theorem essentially uses an idea proposed by Gfrerer [Gfr00].
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Theorem 8.36 (upper regular minimizers, C3. Let z° be a local minimizer
of (P)=P(t°,0), and suppose that f,gi belong to C*(4, R), O a neighborhood
of (2°,t%). If z° satisfies MFCQ, then the following properties are equiva-
lent to each other and imply that W},. is locally nonempty-valued and u.L.
at ((t°,0),2°):

(i) X is locally nonempty-valued and u.L. at ((2°,0),2°).

(ii) X is locally u.L. at ((t°,0),20).

(iii) 20 satisfies the quadratic growth property

min{{u, D2, L(z%,y)u) ly € Y°,u € U°Nbd B} > 0.
(iv) For eachy € Y®, SOCL is satisfied on (2°,Y?), ie.,
(u, D3, L(z%,y)u) #0 Yy e Y’Vue U'Nbd B

holds true.
<

Proof. Without loss of generality, let g(z°) = 0. Then, in particular, KKT
points and critical points in Kojima’s form coincide, and L is the usual Lagrange
function. Note that z° is a stationary solution of (P) due to MFCQ.

The equivalence (i) & (ii) follows from Theorem 833 together with Theorem
8.24. The inclusion (iii) = (iv) is trivial, while (iv) = (ii) under MFCQ follows
from Corollary 8.25. Put

Qy = D2, L@’ y), y € Y* :=¥Y(2°,1°,0).

If (iii) does not hold, then for some & € U® Nbd B and some y € Y°, one has
(@, Qy4) < 0. Then, by a known second-order necessary optimality condition,
there is some 77 € Y° with (&, @4} > 0, hence, for some § € conv {y,n} C Y°,
it follows (&, @5@) = 0. Therefore (iv) is not true, and we have shown that (iv)
= (iii).

It remains to prove that (ii) => (iii) is true. Note that for fixed u, the
function y ~ (u,Q,u) attains its maximum on Y in vertices of the bounded
convex polyhedron Y°. Let Y = conv{y',...,y%}. Putting Q; := Q,,we
define the continuous functions

p(u) = max;gjcafu, Qu), ue U°,
v(u) = (u,Qu), ueU?
e(N) = min{Au(u) + (1 - Ar(u)lu € U Nbd B}, A€ [0,1).

If (iii) does not hold, then ¢(0) = min{r(u)|u € U°Nbd B} < 0 since otherwise
already Lemma 828 yields the assertion. Further, the second-order necessary
optimality condition used above gives (1) = min{u(u)|u € U°Nbd B} > 0.
By continuity of ¢, it follows ¢(A) = 0 for some fixed A € [0,1]. Since u(fu) =
62 p(u) and v(u) = 6*v(u), this means

0 = Au(uf) + (1 = Aw(?®) = p(A) = min{Ap(u) + (1 - Mr(u)ju € U}
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for some u® € U° N bdB. Hence, for all directions u — u®, u € U9, the
directional derivatives of Au(+) + (1 — A)»(:) at »® are non-negative. Setting
J={je{1,...,d}|{(u? Q;u% = u(u®)} the latter means

0 < Amaxjey(u—u® Q;u% + (1= A)u — 40, Q,u%)
= maxses(u—u® (AQ; + (1 - 2)@1)u?)
< maXyeyo (u - u°,D3,L(z°,y)-u°).

So we obtain, for some compact, convex neighborhood W of u?

: 0 2 0 ,\..0
min max{u—-u,D x >
ucBin  max( » D2, L(2, y)u’) 2 0
and the minimax theorem ensures the existence of a multiplier ° € Y? such

that
(u—u® D3, L(z%y%)u®) >0 Vue U nW.

Thus, ©® € U°Nbd Bis a stationary solution of the quadratic auxiliary program
min{(z, D2, L(z°,1%z) |z € U°).

By Theorem 8.27, this contradicts (ii), and so, (ii) =+ (iii) is shown. This
completes the proof. o

Corollary 8.87 (necessary condition for strong regularity, C? case). Let
the assumptions of Theorem 8.36 be satisfied. If X is locally single-valued and
Lipschitz near ((t°,0),2%), then a® satisfies the strong growth property

min{{u, D2, L(z% y)u) |y € Y°, u e U* () Nbd B} > 0.
o

Proof. In particular, X is locally u.L. at each {(¢,p),z) € gph X in some
neighborhood of ((t?, 0),z°). Considering for each y € Y? the particular right-
hand side perturbation b(e) with b; = ¢ > 0 for i € I°(y) and b; = 0 for
i € I°(y), we then have the result immediately from Theorem 8.36. ]

The opposite direction (under MFCQ) is not true, cf. the counterexample given
by Robinson [Rob82]. From the proof of Theorem 8.36 and Corollary 8.37 one
sees that the strong growth property already follows if only perturbations (a, b)
appear.

Second-Order Conditions for C!'! Programs

Second-order optimality conditions for C1'! programs were given in terms of
Clarke’s generalized Hessian [HUSN84, KT88] and second-order (tangential)
directional derivatives [War94] of the Lagrangian. Here we present necessary
and sufficient optimality conditions in terms of the contingent derivative of
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DL (cf. [Kla0O]). In particular, this is of interest with respect to the reg-
ularity assumptions discussed in Remark 835. Throughout we consider a
given stationary solution z° of the unperturbed C*! problem (P) = P(t9),
and we again write f = f(:, t°), g = g(-,1°), and so on. Recall that the set
Qc(y)(u) = Cz[DzL](2°,y)(u) is connected and compact. We denote by M
the constraint set of (P), and the abbreviation SMFCQ means the strict MFCQ.

Theorem 8.38 (local minimizer and quadratic growth, C**! case). Consider
the C* program (P). Suppose that (z°,y) is a critical point of (P).

(i) If ming{(u,q} : ¢ € Qc(y)(w)} > ¢ holds for some c > 0 and for
each u € U°, ||ull = 1, then there exists aneighborhood Q of ° such that for
all x € M N Q, the quadratic growth condition f(z) - f(2°) > %c |z — =92
is  fulfilled.

(ii) Ifz° is a local minimizer of (P), and SMFCQ is satisfied at z°, then
there holds max 4{(u,q)} : ¢ € Qc(y)(u)} 20 for everyu € U°. o

Proof. Assertion (i) was proved in Theorem 6.23.

It remains to prove (ii). Since y is a fixed multiplier vector, we write
L(-) := L(-,y). All constructions in the proof can be restricted to points in
some neighborhood A of 2°. Assume A being small enough such that DL is
Lipschitzian on A with constant gg.

By assumption, SMFCQ holds at z°, hence statement (i) of Corollary 8.16
and Gordan’s theorem of the altermnative (see (A.8) or, e.g., [Man81b, Man94])
imply that MFCQ holds at z° even with respect to the constraint set

M = {z]g(z) <0, 9:(z) = 0, i € I*(y)}.

Let u € U° be any vector with u # 0, with no loss of generality suppose that
lull = 1. Note that U is the linearization cone of M. Hence, by the classical
theory of constraint qualifications, there exists a sequence

{z*} c M\ {=°}: 2*¥ 5 2° and u* = |z* - 20| (z* - 2°) > w.

By the assumption of (i), @° is a local minimizer of (P). Note that M C M.
Thus, for sufficently large k, there holds with some ¢ > 0 that

f(z*) = £(2°) 2 ella* - 2°|I%. (8.46)

Since {z¥} € M,wehave L(z*) = f(z*)forall k. Hence, thereexist 0 < 7 < 1
such that with 8 := ||z* — 0|,

f(z*) - £(2°) = L(z*) — L(2°) = DL(z° + 0¥ ) (z* - 2°), (8.47)

by the mean value theorem. Using that DL € C®! and DL(z®%) = 0, wefind
that some subsequence of (Tx8%)~* DL(x° + 150, u*) converges to a limit g which
must belong to Qc(y)(u). Then, after dividing (8.47) by mi||z* — 2°|| and
passing to the limit for the corresponding subsequence, we see that (846) and
(847) imply u"gq > &. This completes the proof of (ii). w]
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Note. A local minimizer «® which satisfies the quadratic growth condition of
Theorem 838 (i) is called a strict local minimizer of order 2 to (P). If 2% is a
strict local minimizer of order 2 to (P) and SMFCQ holds at z°, then

max {(u,q) : ¢ € Qc(y)(u)} >0 forevery u € U\ {0},
this is easy to see from part (ii) of the above proof. ¢

We learn from Example 8.23 that the condition in (i) is not necessary for the
quadratic growth property at z°. However, statement (ii) of Theorem 8.38 can
be considered as a compromise. Moreover, we mention that for a C? program,
statement (i) of this theorem carries over into [Rob82, Thm. 2.2].

8.3.4 Strongly Regular and Pseudo-Lipschitz Stationary
Points

In this subsection, we are interested in characterizations of strong regularity
and of the pseudo-Lipschitz property of stationary solutions if LICQ fails to
hold.

Strong Regularity

A necessary condition for strong regularity when supposing that z° is a lo-
cal minimizer of a C? program was given in Corollary 837. To find even a
characterization, we know from Lemma 3.1 that a suitable representation of
the Thibault derivative of the stationary solution set mapping might be help-
ful. Indeed, Lemma 3.1 and Exercise 5 imply that the stationary point map
X = X(a,b) of the parametric C'*! program (P)(a,d), (a,b) € R**™ is a lo-
cally Lipschitz function near (¥°,z°) € gph X if and only if both the Thibault
derivative satisfies {0} = TX (% 2°){0) and X is a Ls.c. multifunction.

This gives rise to look for a suitable representation of 7X in terms of the
problem data for (P)(a,8). It will turn out that under MFCQ, this is a more
difficult task than the description of the contingent derivative CX. We were
only able to give a limit representation of 7X. It is an open question whether
there exists an explicit form of description, or not.

For seek of simplicity, we again assume that g(z°®)} = 0 holds for the given
stationary solution 2% of (P)(0). Hence, under MFCQ at 2%, the multiplier set
Y? = {y|F(z% y) = 0} is a bounded subset of RY.

Theorem 8.39 (TX under MFCQ). Suppose that x° is a stationary point of
(P)(0), x° satisfying MFCQ and g(z°) = 0. Then there holds u € TX(0,z°)(a, b)
if and only if there exist 8 = 6 4 O and related points t = z* — 2%, y = y* -
P ey =g =yt € YO such that

(i) 07 (M(z + 0u) = M(z)) = Mo € TM(2°)(u) and

(i) with s=F—yb, 6 =9 —y°, the vectors

hy =0 M(2)[N(y') - N(g°) + N'(y;8) ~ N'(3°; 6)]
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fulfill MoN(y') + hg = (a,b).
In terms of original data, the latter means thata =g+ -yt and B=§~ —y
satisfy

go:=0"(L'(z+0u)—-L'(x)) = ¢°e€TL % (w),
@ +0'Dg(x)a = a,
Dg(z%)u-6"18 — b,

where L'(+) := DL(-,y"). o

Proof. (=) Let v € TX((0,0),2%(a,b). Then, for some sequence § =
6 1 0, assigned sequences of parameters p = p(8) = (0,0), z = z(6) = 2° and
appropriate o-type functions o.(f),05(8), we have

z=z(8) € X(p(6)) and z'+ Ou+o0-(0) € X(p(0) + 0(a,b) + 0p(9)).

Due to MFCQ, Y? is compact, so there exist dual variables y = y(8), § =
g(f) = y + v(8), assigned to z and Z, respectively, such that

F(Exg) - F(.’L‘, y) = 0(“! b) + OP(O)

and, for some subsequence, the points y and ¥ converge: y — P ey jo
y' € Y°.Since ||6]| and ||d]| vanish, N(y) and N(#) can be written by the help
of N',

N(y) = N@°) + N'(y%4), N(§) = N(y') + N'(y"; 9).
This yields

6(a, b)

=FG§H-Fly)  _

M(@)[N(y") + N'(y*; 6)] — M(z)[N(3°) + N'(y%; 6)}

[M(Z) - M@)IN(y') + M(z)[N(y') + N'(y';9) = N(y°) — N'(3°; 6))
+ [M(Z) - M(2)]N'(y";0).

After divisionby @ (and after selecting an appropriate subsequence), the bounded
matrices 87 [M (%) — M(z)] converge to some element Mo € TM (z°)(u) while
the term 8~ [M(Z) — M (z)]N'(y*;d) vanishes. Thus, the limit of

he = 0 M@)ING) = NG°) + N'(y458) - N'(°; )]
exists and satisfies hy — (a,b) — MoN(y*). So we derived (=).
(«) Conversely, assume that such sequences have been found. Setting & =

z+0u, p = F(z,y) and § = F(Z,%), one easily determines (by the above
calculation) that

F(z,9) - F(z,y) = MEN(y) - M(z)N(y) = 0(a, b).
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So, we know that
€ X(p),T€X(®),T~z=0u and 85— p) = (a,b).
Using also
z—+2%y 4%, 7y, and F(z,5°) = F(z,3') =0,

weobtain B, p ~ 0. This yields « € TX(0,2%)(a,b) by definition of TX.
The second description follows by direct calculation from the first one. This
completes the proof. ]

Remark 8.40 If f,g € C? then we obtain in Theorem 839 that

D, L(z®,y" )u+6"'Dg(z)Ta — a
Dg(z%)u -6718 -~ b

Notice that 87! Dg(z)Ta and ~8-1 are assigned to the part M (z®)TN(y°)(v),
v = § — ¥, in the explicit formula for the derivative TF, see Theorem 7.5.
However, now ||§ — y|| is only bounded and, even more important, both 20
and z (near z°) appear in the formula. For this reason, the description of
TX(0, °%)(a,b) in terms of first and second derivatives of f,g at z° makes
difficulties even for arbitrarily smooth functions. We are not sure that such a
description exists at all. For linear problems (P), the condition attains the form

(a,b) € M(z°)N'(y,R™) forsome y € Y°.
<

On the other hand, the derivative TF presents a necessary condition for X
being locally unique and Lipschitz.

Lemma 841 (TF-injectivity w.r. to w). Let X be locally single—valued and
Lipschit; at (0,2°) € gph X. Then, (2°,Y?) satisfies TF-injectivity w.r. to u.
<

Proof. Otherwise, it holds 0 € TF(z% 4°)(u,v) with some y® € Y° and
u # 0. Then, by definition of TF, there are sequences t = tx | 0, related
(z1, ) = (2°,9°), (g, v¢) = (4,v) and we — 0 such that

twe = F(xe + tue, ye + tvy) — F(ze,91)-
Setting
P} = F(z¢,ye) and p? = F(ze + tue, ye + tvy),

one sees that oy € X (p}), ¢ +tus € X(p?), and ||pf —pill / ||(@e + tue) — 2| =
||lwe|l/lluell vanishes. So X cannot be locally single-valued and Lipschitz near
(0,2%). 0
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Pseudo-Lipschitz Property

As before, we investigate the map X = X(a,b) at (0,2°) under MFCQ at z°.
Due to MFCQ, X is closed (near (0, %)), so we know from Theorem 5.3 that X
is not pseudo-Lipschitz at (0, %) if and only if T' = X ~? satisfies the (““pseudo-
singularity’’) condition of Theorem 5.2. In the current case, this means

3 (u*,v*) € R™™ (u*,v*) # 0 and (p*,z*) € gph X
such that (p*,z*) = (0,2%) as k = o0 and (8.48)
8UP (4,5) € CX-1(z¥,p*}(B) ((u",v‘), (a, b)) < €, 0.

We close this subsection with a direct relation between this condition and the
derivative TF.

Theorem 8.42 (TF and pseudo-regularity of X). Let z° € X(0) fulfill MFCQ.
(i) If the constraints g; are (affine) linear then (8.48) vyields w* # 0.
(ii) Let (8.48) be satisfied and f,g € C®. Then the point (u*v*Au*) is a
solution of the T-stability system (8.13) for some y° € Y%and (a,b) = 0.
(iii) If the constraints g; are (affine) linear, f € C? and (2°,Y°) satisfies
TF-injectivity w.r. to u, then X is pseudo Lipschitz at (0, z°).
]

Proof. From Theorem 8.19, we have CX~}(0,z%)(u) = CF(z°, Y% (u,R™).
So the set {(u*,v*),CX~1(0,2°)(B(0,1))) coincides, by Theorem 7.6, with the
set of all sums

S = (u',q(u) + ATa) + (", du= f) 649
= (u*,q(u)) +{(v*,Au) + 3 (oyAju® — v} Bi) ’
such that g(u) € Qc(u), (,8) € Je(y®), ¥° € YO and w is restricted to the
unit ball.

Now we apply these equivalences to the points (p*,z*) in (848) and take
into account that the index sets I+, 1%, I~ and the allowed variationsof (e, 8) €
Jo(y) in (7.32) depend on the selection of y = y* € Y* = {y|F(z*,y) = p*}.
Similarly, A = A(z*) and Q¢ (u) = C[D-L}(z*,y*)(u) depend on z* and y*;
we will write Qo (u) = @Q(z*, y*)(u). Next observe that (8.48) and (8.49) imply

3 (i’ - v;B) <0, (A= A@a*)

for all (a, 8) in the polyhedral cone Je(y)and all y € Y~

Due to the possible variations of (e, 8;) in (R,0) Gf y; > 0), (0,R) (if
yi < 0) and in (0,R™) U (R*,0) (if y; = 0), this restricts (u*,v*) (with
A= A(z*)) by

Aw* =0 ify; > 0for somey € Y*
v} =0 if y; <0 for somey € Y* (8.50)
Aiw* <0and v} <0 if y; = 0 for some y € Y
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The conditions (8.50) define a polyhedral cone K*(z*,Y*) ¢ R™*™ and ensure
max{aydiu® - v} By | (@, 8) € To(¥*)} = 0.
So, the crucial inequality of (8.48) becomes

sup (u*,q(u)) +{v*,Dg(c*)u) < e (8.51)
u€B(0,1), ¢(u)€Q(z",y)(u), ycY*

along with (8.50), ie., (u*,v*) € K*(z*,Y*). Selecting an appropriate subse-
quence, the three index sets in (8.50) are constant for all &, we denote them by
J*t,J-,J% Then (u*,v*) € K*(z*,Y*) if and only if

Az®)u* =0(GeJt) v} =0(ieJ”)

A(z*)u* <0 and v} <0 (i€ J?) (8.52)

For the non-empty set ¥'°5 = limsup Y* ¢ Y?, one so derives

sup (u*,q(x)) + (v*, A(z")u) < 0. (8.53)
ueB(O.l), Q(ﬂ)60(3°-u)(")- yeyas

We consider now the particular cases mentioned in the theorem.

(i) If u* = 0 and all g; are affine-linear, then one can show thatv* = 0, To
do this, note that now v*A = 0 and the matrices A do not depend on z. Next
we verify that,for § € J*+ := J*\ J%, the components »§ must vanish. Indeed,
the relation § € J*+ means that g* > 0 ¥y € Y*. Having v} > 0 for some
i € J**, then one finds, with appropriate A > 0, that y(\) := y — Av* belongs
toY* and fulfillsy(A)y = 0 for somev € J*+, a contradiction by definition of
J++, Thus, v} €0 for alli € Jt*. The latter yields y(X) € Y* YA > 0. Since
Y* is bounded, we conclude v = 0 Vi € J*+. Multiplying finallyp*4 = 0 with
a MFCQ direction % (Au < 0), itfollows v* = 0 as claimed. So the non-trivial
vector (u*,v*) vanishes, ie., 4* = 0 is impossible.

(ii) Since f,g € C?, wehave g(u) = D2, L(z*, y)u, hence (8.53) means
w* D L(z%,y) +v*A(e®) = 0 Vy € Y°S
and (8.52) holds with ¥ = 2%, too. For each y® € Y°5 and (a,b) = 0, so the
point (u*,v*, A(z%)w*) is a solution of system (8.13).

(iii) If (2, Y®) satisfies TF-injectivity w.r. tou, then it follows 4* = 0 from
(ii), and v* = 0 from (i). So we obtain (u*,v*) = 0, ie., the pseudo-Lipschitz
property must hold. o

8.4 Taylor Expansion of Critical Values

In the present section, we derive formulas for the Taylor expansion of the critical
value function ¢ with second—order terms T Dy and C Dy, supposing different
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regularity properties of the critical point map. These results are understood as
supplements to the well-developed theory of first- and second-order directional
differentiability of the optimal value function, for which we refer to the books
[Gol72, DM74, Fia83, Gau94, Lev94, BS00] with many references to the field.

8.4.1 Marginal Map under Canonical Perturbations
Again we regard the canonically perturbed standard problem
P(a,b) : min{f(z) - {a,z)|g(a) < b}, (f,9) € CV'(R",R'*™),

at some critical point §° = (2®,°) for (a,?) = (0,0).

Supposing strong regularity, the critical points (,y) € F~!(a,b) are locally
unique and Lipschitz for small parameters, and so is the marginal map (or
critical value function)

¢ = p(a,b) defined as = f(z) - (a,7) , (2,y) € F~!(a,b). (8.54)

Under convexity and/or C? hypotheses, the structure of ¢ is well-known, for
basic studies we refer to the literature just mentioned.

Because f € C! and F~! € C™! (of course, locally), we may apply chain
rule (6.19) to determine the T-derivative of ¢:

¥ = Df(z%u —~ (@, 2°) with some
(u,v) € TF1((0,0),5°)(e, 8) }

The elements of the set S := TF~((0,0),5%) (e, §) are known by Theorem 7.6
and Lemma 6.1: One has (u,v) € Siff

Qr(u) + Z rviA; € a, (8.55)
Au —-(1-r)v; = B, reRrY, (8.56)

where Qr(u) = T[D.L)(s%)(u)and Rr(y°)are defined according to Chapter
7. Recall that the set T~ (a, 8) collects all (u,v,r) satisfying (8.55) and (8.56),
and C~(a, B) is the corresponding set for the contingent derivative, where one
has to replace in (8.55) Qr(x)by Qc(u) = C[D-L](s%)(4) and in (8.56) Rr(y°)
by Re(¥°).

In what follows, we make sure that Dg exists and study the explicit form
of the C!+1- derivatives TDy and C'D¢p. Throughout this section, we often use
the convention to

write Cg(z)(u) = Dg(z)uinstead of Cg(z)(u) = {Dg(z)u}

T(0,0)(e, 8) = {w

if Dg(z) exists, the same for T'g(z).

Theorem 8.43 (C'* derivatives of marginal maps). Under strong regularity
of F at a zero 8° = (2°,y°), the map ¢ belongs to C**, it holds

Dy(0,0) = ~(2°,5°")
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and

TDp(0,0)(e,8) = {~(%7r1v1,.s,"mVm)|(x,v,7) € T (e, B)},
CDLp(0,0)(O!,,B) {"(uarlvl’ ---:rmvm)[(u)v) 1') € C'(a,ﬁ)},

and moreover,

Or = {—(QT(H),'U) - 2Z,Birivi - Zri(l - r;)v?l(u,v,r) € T—(arﬂ)})
i i

e

{_<QC(u)su) - 2Zﬂirivi I(uav:r) € C—(aa /3)}:

where Il := {(a, 8), T Dip(0, 0)(e, B)) and Ilc := {(a, B), CDp(0,0)(e, B)). ©

Note: Under strict complementarity of a C2problem andwith I+ = {i|y° > 0},

this yields

My =Tg = {~(u, Hu)-2 Y _ vif;|Hu+ Y vAi=aand Aju =, i € I},
ielt ier+

which is a singleton. ¢

Proof. (Representation of D). We show that
Dy(a,b) = ~(z,y%), (z,9) = F~'(a,b). (8.57)
Since F(s%) = 0,we have by Lemma 7.7,

Df(")u=~ Z(y?)+ﬁi- (8.58)

Therefore, independently of the choice of (u,v) € S, the set T(0,0)(e, 8)
consists only of the element

{(=(2°4°"), (@, B)),

i.e., the inner product of the negative KKT point and the direction under
consideration. Since strong regularity is persistent, the same applies to small
parameters (a,b). Hence, T is single-valued near the origin. So (see Exercise
14) D locally exists and has the form (8.57).

(Representation of TDy). Up to the term y* (in place of y), Dy is —F~!
where S := TF~1((0,0), s°)(e, 8) is given by the components (1, v)of T~ (e, 8).
By Lemma 74, the terms r;v; form just the T-derivative of the proper Lagrange
multiplier, i.e.,

67 (y + 6v)t —yt] = (r1v1, ..., TmUm), T € Rr(y°) (forsmall 8).

Taking into account that for each (u,v,7) € T (a, 8), we can find sequences
6 0 and (z,y) —= 8 which realize all limit-relations of Theorem 7.6 at once,
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we obtain that all vectors —(u,r1v1,...,"'m¥m) belong to TDy(0,0)(e, B). So
the representation of TDy is correct.
(Representation of ). By definition, we have

Iy = {_«a)ﬂ)’ (u"rl”la ..-,vam)) ‘ (‘U,U,T‘) € T—(O!, ﬂ)}

To see how ¢ € Il depends on Qr{u) which reduces to D2L(z?,y%+)u for
C? problems —, we use (8.55) and (8.56) in order to replace a and B:

«a’ ﬂ)’ (’U, 1?1, ..., rmvm))

Q1)+ Y ravidi,u) + 3 Biravy
i 3
(Q@r(u),u) +2) Birwi + Y _ri(l =i}
i i

-q

m

For the contingent derivatives of D, the same system (8.55), (8.56) is crucial
after the replacements mentioned above. The formulas follow now by analogue
arguments, and r4(1 - ;) = 0 holds due to the definition of R¢(3°,v). D

In accordance with Theorem 6.20, the set IIr provides us with a second-order
approximation of ¢ near the origin: For fixed (e, 8) and 8 | 0it holds

0(6(2,8)) - ©(0,0) = Dp(0,0)(a, B) + 56%4(6)

with some
9(6) € {(, B), TDy(gb(cx, B)) (e, B)), 0 € (0,1).

Clearly, q(8) has a cluster point g°in IIz. Thus,

¢ = —[{a,u) + Zﬂ;rw;] for some (u,v,r) € T~ (a, B).
i

Having ¢, Theorem 6.23 gives us a condition for growth ar some point (like
Corollary 6.21 for growth near a point via Ilz).

Corollary 8.44 (lower estimates). Under strong regularity of F at azero $°,
it holds:
(i) If A\ <infllg , then one has for & sufficiently small,

#(0(a,8)) - 9(0,0) 2 8Dp(0,0)(a, 6) + 36*A

(ii) If A <inf g , then this estimate is locally persistent, ie., there exists
€ > 0 such that

o((@,5) +8(a, B)) = p(a,b) > 0Dp(a,b)(a ) + 36X

whenever 0 < 8 < € and ||(a,b)|| <
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8.4.2 Marginal Map under Nonlinear Perturbations

For parametric problems of the kind
P(t)  min{f(z,0)lg(z,%) < 0}, (f,9) € CH' (R, R*™),
the Kojima-function F depends on . For any ¢, we denote by

g (2) the set of stationary points,
S(t) the set of critical points.

We assume that
¢ varies near 0, and s° = (2,3°) € 5(0).
Throughout this subsection we suppose at least that

the partial derivative D, F (w.r. to all arguments) exists
and belongs to C%?, and X is upper regular at (0, z°%), (8.59)
say with rank K and neighborhoed € 3 29,

where the latter means that for some & > 0,
9 # X(2) N0 c B(a% Kljt||) whenever ||¢]| < &
We consider -
@(t) = {f(z,t)lz € X(t) nQ}

and are interested in the interplay of the different regularity assumptions for
obtaining more or less detailed characterizations of the map .

Formulas under Upper Regularity of Stationary Points

Note that, by (8.59),
@(0) = {£(°,0)},
but ¢ may be multivalued for ¢ # 0. Further, the set CX(0,2°) has non-empty

images by (8.59). Let us first observe that, due to f € C* and again (8.59), it
holds the usual chain rule formula

CH(0)(r) = D f(z°,0)CX(0,2°)(7) + Do f(z°,0)r VreR*. (8.60)

Indeed, to each sequence z(t) € X BN, t=0r+0(8),8 =060, there
corresponds, by (8.59), at least one approach direction & = lim ~(z(t) - z%) €
CX(0,2°)(r) (for a certain subsequence of 8 4 0). Since every element of B(t)
coincides with some f(z(t),t) and because

F(z(t),t) = f(2°,¢) + 0D, f(z°,t)7 + 01(8) holds with
t~lo1 ()]} 4 O as 8 { O uniformly for v € B,
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we obtain the inclusion ”C”. The reverse inclusion becomes evident after writ-
ing any ¢ € CX(0,2°%)(r) inlimit-form.

Having (8.59) and (8.60), we can apply all the arguments of §6.6.2 given
there for the contingent derivative CX. There, the hypothesis (6.63) had turned
out to be crucial. In the present context, (6.63) attains the following form:

For given points z € X (t) with (z,t) — (:v°,0)~and t—0,
there exist y in such a way that both (z,y) € S(¢) and a (8.61)
Lipschitz estimate ||y — °|| < L|l(z — °,¢)|| holds true.

Theorem 8.45 (C¢ for nonlinear perturbations T). Let f and gbelong to C*+,
and suppose (8.59) and (8.61). Then, for 8° = (z°,y°) € 8(0), one has

CH0)(7) = {Def(z°,0)7 +((3°)*, Deg(2%,0)7)} = {D.L(s°,0)r}, (8.62)
where L(z,y,t) = f(z,t) + {y*, 9(z,t)) is the related Lagrangian. <

Remark 8.46 In (8.62), C@(0)() is alinear map and approximates the (locally
upper Lipschitzian) multifunction ¢ in the form

@(7) = ¢(0) = C(0)(7) + o(7),

cf. Lemma A.3 and the subsequent remark. So C@(0) can be identified with
the Fréchet derivative of ¢ at the origin.

Note that Theorem 845 even holds if f, g; are only C* functions (in par-
ticular, without supposing the smooth parameter dependence of (8.59)). This
follows from [IMT86, LLemma 2.1], where Fréchet differentiability at the ori-
gin was proven straightforwardly when assuming the existence of a pointwise
Lipschitz (at 0) selection of S. o

Proof of Theorem 8.45. By Theorem 6.28 (i), it holds with (a,8) =
-—DtF(SO,O)T,

CX(0,2°)(r) C Uo(e, B) i= {u|Fv: (u,v) € CS((0,0),8)(, B)}, (8.63)

where the images of S are the critical points of problem P(0)(a, b), i.e., S(a,d) =
F~Y(a,b,0). Thus,

u € Uo(a, B) & (u,v,r) € C(a, ) forsome (v,r).

Since F(s%,0) = 0, Lemma 7.7 ensures

Duf(2%,0u = = 00 B = - S0 (~Degi(8,0)7)  VYu € U, B).
H [

Again, this term does not depend on the selection of u. Hence (8.60) and (8.63)
ensure (8.62). ]



8.4. Taylor Expansion of Critical Values 227

Note. Writing canonical perturbations as t = (a,b), f(z,t) := f(z) - {(a,z),
g(z,t) := g(x) — b, and splitting T into (7,4, 7), formula (8.62) yields for the
corresponding marginal function ¢ that
Co(0)r = DL(s°, 0)r = —(a°,7a) - 4°*, m),

this is again again formula (8.57). ¢
Condition (8.61) is valid under several constraint qualifications which have been
already discussed in Chapter 5. Let us consider two special cases of the foregoing
theorem,

(i) In particular, (8.61) holds true if § = F(:,+,0)~? is pseudo-Lipschitz at
((0,0), s9), because the latter yields LICQ due to Lemma 7.1. Then, (8.63) is
even valid as equation. To see this, one can use the same arguments as under
Theorem 6.28 (iii), now supported by Theorem 6.27. So, formula (8.62) holds
true though the set X (r) of stationary points is not necessarily single-valued.

(ii) If the Kojima function F(+,,0) of the unperturbed problem P(0) iseven
strongly regular (ie., F(-,+,0) is locally Lipschitz invertible), then the critical
point mapping ¢~ S(t) = {8(t)} is Lipschitz near 0, and (8.62) is true not only
fort = 0 but also for parameters ¢ near0, ie.

Co(t)(r) = Dy L(s(t),t)r.
In the present situation, we again easily see that
Dp(t) = DeL(s(t), t) (8.64)

locally exists as a Lipschitz function.

Formulas under Strong Regularity and Smooth Parametrization

Suppose that P(0) is strongly regular at s° and hence the critical point map S
is locally single-valued and Lipschitz near (0, 8°). Further suppose that

D¢L(:,") is continuously differentiable near (s°,0). (8.65)

Then the Thibault derivative of D¢ can be computed via formula (6.19). In-
deed, let us first put

H(s,t) = DiL(s,t) and G(t) = (s(t),id (t)),
whereid (-) denotes the identity mapping. Then, by (8.64),
D(t) = Dy L(s(2), t) = H(G(t)). (8.66)
Since G is locally Lipschitz and H € C?, it holds
TDg(0)(r) = DH(GO)[TG(0)(7)].
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We show that the crucial component T's(t) of TG(0) fulfills the natural chain

rule
Ts(0)(r) = TF; (~DyF(s°,0)7)

with the local inverse F; ! of F(-,0). Indeed, by putting

ro(t) 1= F(s,1) = F(5,0) + DeF(s°,0),
the function G assigns to the point ¢ the pair (s(t),t), where s = s(t) is the
critical point given by

0 = F(s,t) = F(s,0) + D: F(s°,0)t + r,(2).
Using F; L, this is
8(t) = F5 ' (=Dy(s°, 0)t = r4(t)).

In order to estimate r4(t), let (s,t) € (s + 6K B,é B). Then we obtain (uni-
formly) for the quantities of the C®! norm of r4(-) on 4B,

Lip (r5,6B) < O(6) and sup lirs (@) < o(8) if s € s° + 6K B.
tesB

So, since F,;™! is locally Lipschitz by assumption and O(d) vanishes, we obtain
infact

Ts(0)(r) = TF;}(~D:F(s°,0)7). (8.67)
The latter set is given by Theorem 7.6 and the rule of the inverse derivative.
The same formula for the contingent derivative

Cs(0)(r) = CF; (- D F(s°,0)7) (8.68)

follows (under strong regularity) by completely analogous arguments, we omit
the details.

Theorem 8.47 (C@ for nonlinear perturbations II). Let f and g belong to
CY, and suppose (8.65). Ifs® = (x°,9°) is a strongly regular critical point of
P(0), then

TD@(0)(r) = D3, L(s°, 0)TF;} (~Dy F(s°,0)r) + D} L(s°, 0)r,

CD@(0)(r) = D4 L(s°,0)CF; (~DF(s°,0)r) + DEL(s°,0)r.

<

Proof. With H(s,t) = D¢L(s,t)and G(t) = (s(t),t) = (s(t),id (¢)), one has,
as shown above,

D@(t) = DyL(s(t),t) = H(G(t)) and TDE(0)(r) = DH(G(0))[TG(0)(7)).
Hence, Theorem 6.8 yields

TDg(0)(r) = TD.L(s(?),id(:))(s°,0)(r)
Ty D:L(s°,0)Ts(0)(r) + Ty D, L(s(0), 0)(r)

D,DL(s°,0)T3s(0)(r) + Dy D:L(s°,0)r,

ie., by using (8.67), the assertion for TD¢ is shown. The second assertion
follows analogously. o

wow
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Note. Writing canonical perturbations as ¢ = (a,b}, f(z,t) := f(z) — (a,z),
g(z,t) := g(z) — b, and splitting 7 into (74, ), the term DL (8% 0)7 vanishes,
and we have for F = (Fy, F;) and s° = (29,30),

—DiFy(s%,0)r =7, and — D Fz(s%,0)r = .
Further,
D3,L(s%, 0)(¢,n) D3,L(s°,0)¢ + Dj,L(s°, 0)n
[D2:£(2°,0) + 3232, (W) + D2ogu(2°, 0)j¢
+[D3t Tim (U?)+D§:Qi($01 0)Jn

holds true. <

Formulas in Terms of the Critical Value Function Given under
Canonical Perturbations

One can directly compare C¢ with the contingent derivative C¢ of the marginal
map ¢ of the canonically perturbed problem at ¢ = 0,

(P)(a,b): min{f(z,0) - (a,z)| g(z,0) < b}.
To do this we suppose again that

8% is a strongly regular critical point of (P)(0,0),
and DyL(-,-) is locally Lipschitz near (s%,0).

We consider
F(31 t) = F(av 0) + DtF(sl O)t + 0(3! t)r 8= (x, y)n

and use that 8 € RNS(¢) holds if and only if 8 € § is a critical point of (P)(a, b)
for the perturbation (a, ) = ~[D:F(s,0)t + o(s, t)).
Setting ¢ = 87 + 01(6)(6 § 0), we may write

(a,b) = —[8DcF(s,0)7 + 03()).

Here, o3 depends also on 8, but it holds |lo2(8){}/8 | O for @ } 0uniformly
with respect to 8 =+ 8% Due to strong regularity and ¢ =+ 0, the points 8 €
QN I(f7 + 0y(8)) converge to s°, indeed. We thus obtain with some new o(-)
that

(a,b) = 6(a, B) + o(8), where (a,8) = —D,F(s°,0)x.

Hence,
@07 + 01(8)) - @(0) = (8(ex, B) + 0(6)) — ¥(0,0).
Due to C(0)(x) # @, this yields

C@(0)() = Dio(0,0)(a, B) = D(0,0)(—Dy F(s°,0)).
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By persistence of strong regularity, the obtained formula
D@(0) = ~Depo(0,0) D F(s°,0) (8.69)

then holds once more also for parameters ¢ # 0 near the origin. By Theorem
6.11, this yields the contingent derivative of D@ as

CD@(0) = ~[CDy(0,0)D,F(s°,0) + Dy(0,0) D} F(s°,0)), (8.70)
and the set II¢ becomes

g {{m, CDE(0)(m))} (8.71)
—(m,CDy(0,0)D,F(s°,0)7) — (m, (z,y°+) D F(s%,0)n). '

Note that only differentiability properties of F along with strong regularity
played any role in the present context. So, in particular, we did not utilized
that the parameter ¢ appeared only in the matrix M of the Kojima function
F=MN.

Remark. The set Ilg is interesting if the original problem appears in a de-
composition setting: a and b are parameters given by the “master” to some
(or more than one) follower who solves his problem P(a,b) with primal-dual-
solution z(a,b), y(a,bd). The objective of the master consists in minimizing a

function
H(a: b, (P(a'a b)a :‘E(O,, b)’ y(a’ b))

with certain constraints concerning e, b, ¢ and y. In the simplest case, we have
H = —p(a,b) without constraints which yields a max-min problem, namely,

max p(a, b) = maxmin{f (x) ~ (a, x| g(z} < b}

Clearly, the master is interested in (stationary) points where g(a,b) = 0. To
show that such a point is a local solution, one may consider CDy(a, b) in all
directions (a, f) (or under constraints in the “feasible” directions at (a, b)).



Chapter 9

Derivatives and Regularity
of Further Nonsmooth
Maps

9.1 Generalized Derivatives for Positively

Homogeneous Functions
Several practically important functions are positively homogeneous, e.g., Fu-
clidean projections onto a closed convex cone, among of them many NCP func-
tions, the function N(y,z), which appears in Kojima functions and the di-
rectional derivative (-) = f'(z;-) of a directionally differentiable, locally Lip-
schitz function f. Injectivity of T¢(0) for the directional derivative then means:

There is a unique and (globally) Lipschitzian assignment » = u(v) such that
v = f'(z;u).

In the current subsection we will investigate the derivatives of such functions
while, in the next one, those properties of NCP-functions will be studied that
are important for solving the related NCP-equations, cf. Section 13.
Accordingly, we suppose that

g € COYR"™,IR™) is positively homogeneous,
and want to determine the derivatives T'g(y), Cg(y) and D°g(y) at the origin.
First of all we observe that, for all p,g € R" and positive ¢, A,

Hoto+tg) - g0)) = 293P+ £ 9) - 93 P)].

231
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This tells us that the derivatives 7' f and Cf are norm-invariant, i.e.,
Tg(p) = Tg(Ap) YA > 0; similarly for Cg. (9.1)
Next, we immediately see that
Cg(0)(r) = {g(r)}-
In consequence, (9.1) along with closenness of T'g(-)(r) yields
Tg(y)(r) C Tg(0)(r) ¥y. (9.2)

We will show that, for the set T'g(0)(r), the following collection of difference
quotients

P(r) = {a"Yg(p+ ar) — g(p)][a > 0 and p € bd B}

which is {g(g + r) — g(q) | ¢ # 0}, plays a key role. Let ©*denote the set of all
C" points of g.

Lemma 9.1 (Tg(0) and D°g for positively homogeneous functions). Let g €
COY(R™ R™) be positively homogeneous. Then, g is simple at the origin, and
it holds

(i) Tg(0)(r) =clP(r)=cl(P(r) U Tg(®R"\{0})(r)).

(it) If m =1, one has

Tg(0)(r)

cl (conv {g(r), —g(—r)} UTg(R™\{0})(r) )
cl convTg(R"\{0})(r).

(iii) If g is pseudo-smooth then D°g(0) = ¢l Dg(©!).

<o
Proof. (iii) This statement is a direct consequence of formula (9.1) and the
gffienlition of D°g(0) as being the set of all limits of sequences Dg(y) for y = 0
(i) To determine all limits L of terms
Q=t""[gy+tr) - g)] (£10, y = 0),
weput h = ||ly||/t and distinguish three cases.

CASE 1: h— 0.
Then Q = t~1g(y + tr) — t7'g(y) = g(y/t +r) — g(y/t) and L = g(r).

CASE2: h—+>0.
Now @ = t=lyll[ g(llgll~*y +tllwll =) - g(llyl =) ]. Without loss of generality,
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y+tr

° y+tr
y+r °
y ey y
[ ] [ ] °
[ ] ° o
0 0 0
case 1 case 3 case 2

Figure 9.1: Limit situations in the proof of Lemma 9.1.

we may assume that ¢ :=ylly]|™! +p € bd Band s = ¢yl = a =y
Then

Q = [9(q + sr) — g(q)]/s tends to L = a~[g(p + ar) ~ g(p)}.

CASE 3: h = .
With the settings of case 2, we now obtain

Q = [g{g + sr) — g(g)}/s where 5} 0.
Thus, L € Tg{p)(r).

In the cases 2 and 3, each pairof @ 2 0 and p € bd B can be written as

a = limt||y||™? and p = lim [ly||~'y by suitable choice of ¢ and y.

This yields {g(r)} U P(r) C Tg(0)(r).

Moreover, T'g(p)(r) C Tg(0)(r)is true due to (9.2). So Tg(0)(r)is just the
closed set which contains {g(r)} U P(r) as well as Uy0Tg(y)(r). Taking into
account that

g(r) = limas00 @~ [g(p + ar) — g(p)] € cl P(r),

we now obtain assertion (i).

(i) If m = 1, the terms d = a~}[g(p + ar) ~ g(p)] may be split into two
groups Gyand Ga.

For group G, the origin is not contained in the line-segment S connecting
p + ar and p. By the mean-value statement (6.38), we can write d € T'g(y)(r)
with some y € S. Because y # 0, we get d € UyzoTg(y)(r).

For group G?s, it holds 0 € S. Considering g on S one easily sees that d
is a convex combination of g(r) and ~g(-r). Conversely, every such convex
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combination can be written as a quotient d = a~[g(p + ar) - g(p)]. So it
follows from (i) that

Tg(0)(r) = cl (conv {g(r), ~g(~r)} U | Ta(v)(r)).
y#0

Moreover, as a connected set in IR, T'g(0)(r) is convex. Hence,
C := clconv Uyxo Tg(y)(r) is contained in Tg(0)(r).

Since the elements g(r) — g(0) and g(0) — g(—r) belong to C (again due to
(6.38)), the same holds for conv {g(r), —g(-r)}. This yields C = T'g(0)(r).

So, (i), (ii) and (iii) have been verified. The proof of the simple-property is
left as Exercise 15. o

Exercise 15. Verify that positively homogeneous g € C®!(R",R™) are simple
at the origin. ©

Exercise 16. Show that, for m = 1, the situation conv {g(r),—g(~r)} &
cl Uyzo T9(y)(r) must be taken into account. e

Difficulties for Compositions

We are now going to study T f(0)(x) for a composed function f(z) = g(z(z)),
where we suppose that

g € CO%(R™,R™) is positively homogeneous,
and z € C*(R*,R"), 2(0) = 0.

We even suppose that
gis C' on R™\{0},

so only zeros of z can make any difficulties.

Clearly, it holds T f(0)(u) C Tg(0)(Dz(0)u), but not any of our chain rules
in Section 6.4 guarantees the equality. So the present function is a good example
for discussing the related problems in detail. We have to regard all limits

L = limt Y [g(z(z¢ + tu)) — g(z(x:)))] for certain £ =1, 0 and z; —~ 0.

Setting r = Dz(0)u we may write L = limt~'[g(z(x¢) + tr) — g(2(z¢))]. For
7y =0 we obtain L = g(r); the same is true if z(z;) = 0.

So let us turn to the crucial case of z(z¢) # 0 for all ¢ under consideration.
With y = z(z), the possible limits L have been considered in the proof of
Lemma 9.1. So we know that L depends on

v =lim|lz(z)ll/t and p = lim 2(z.)/|2(x)]]
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according to the cases considered under Lemma 9.1;

L=g(r) i y=0, (9.3)
L=ao1gp+ar)-gp) if a=4'cR (9.4)
L=Dg(pr if v=o0. (9.5)
Therefore, we put
8(t) = ||zl w(t) = z¢ /|2

and select a (further) subsequence of t = tg such that the limits
B =lims(t)/t € R* U {00}, w = limw(t)

exist.

The vector w plays, for the sequence #; — 0, the role of a normalized
approach direction. So the directional derivatives Dz(0)w become important.
We consider the simple cases first.

(i) If Dz(0)w # 0, the limits -y and p are uniquely determined, namely,

lim ||s(¢) D2(0)w + o(s(2))}|/¢
1Dz (Q)w(|lim s(2) /¢
1D2(0)w]|B.

This yields p = Dz(0)w/||Dz(0)w||. Hence « and p are uniquely defined
by B and w. So also L is well-defined by (9.3), (9.4) and (9.5).
(i) Let Dz(0)w = 0 and 0 £ B < . Then v = 0. Indeed, writing each
component of z, say 21, by using the mean value theorem,
z(z) = s(t) Dz (Os()w(t)) w(t), © € (0,1),
one sees that lim ||z(z¢)||/8(t) = 0. So B < oo yields 4y =0 and L = g(r).
(iii) The crucial case consists of Dz(0)w = 0 and B = oo. Now

v

|lzs}] is much greater than ¢,

For this reason, the quotients

lz(ze)ll/t = of=:)/¢

may have limits 4 which depend on the high-order term o(:).

In the last case, ¥ and p cannot be written by means of the approach directions
w, u and first derivatives only. This makes the explicit computationof T f(0)(u)
hard. To see that the unpleasant situation may really appear, let Dz(0)w = 0
and w # 0.

Setting, e.g., £ = sw + 01(s) and ¢ = 8%, we get z(z) = o02(s) (Whichmay
be non-zero due to 01(8) even for linear 2) and 8 = o0. Now v = lim ||z(z)||/¢
depends on oz(s)/s?.
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9.2 NCP Functions

NCP-functions are functions g: R? = R satisfying
g0 ={(s,t) eR2 | st =0},

which is supposed for all functions g appearing in this section. They are used
in order to formulate the NCP (or the subsequent complementarity conditions
in some more complex system)

uw(z)20, v(z)20, (u(z),v(z))=0,
cf. Section 1.3, as an equation
h(x) =0, where hi(z):= g(z(z)), and z = (u,v) : R® -+ R?". (9.6)

Because of the composed structure of h and the difficulties for computing 7h

(as mentioned above) and similarly for its convex hull map §h, the application

of the derivatives D°g and D°z is more convenient in the present situation.
Therefore, we will apply the results of Section 6.4.2 and suppose throughout

that
g € locPC* with C-set ©'(g),
z € locPC! with C!-set ©1(2).

We further recall that the NCP is said to be (strongly) monotone if
(u(y) — w(z),v(y) —v(@)) 2 Mly -2l  Vz,ye R"

holds true, where A > 0 (A > 0) is a fixed constant. A standard NCP is defined
by v(z) = . Finally, let g, and g; denote the partial derivatives of g on ©*(g).

9.7

If z € ©'(2) then monotonicity yields (viay = x + w and first-order ap-
proximation):
Muwll? < 3 (Dui(@)w)(Dui(z)w).

The same remains true (consider limits for &' — z in ©(z)) if the pairs
(Dui(z), Dui(z)) = (Ryu(z), Ryv(z)) are components of a Newton function
Rz(z) € D°2(x), ie,

Muwl? £ 3 (Ruu(z)w)(Riv(z)w). (9.8)

In order to find some zero of h, several NCP functions g can be (and have been)
used, cf. [SQ99] for some overview. Necessary and desirable properties of g may
depend on 2z, but also on the method one is aiming to apply. So we will regard
two principal possibilities of solving (9.6).

(5) minimize a so-called merit function, e.g.,

OES DIMACK (9.9)

by a descent method or
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(ii) solve (9.6) directly by a Newton method.

Though also combinations of both ideas are possible, we study these cases
separately because they require different properties of the NCPfunction g. We
will see that, having satisfied these properties, the concrete definition of g plays
a less important role.

CASE (i): Descent Methods

Having 2 € C?, the function g should ensure that ¢ € C*. This is true if g
satisfies
0'(g)ug~'(0) = R (9.10)

As a second requirement, Dg(z) = 0 shouldimply g(z) = 0. The latter cannot
be ensured for all problems, but at least for monotone standard NCP’s. Clearly,
then g has to be monotone in a certain sense, too.

We call an NCP function g strongly monotone if

ab > 0 for all (a,b) € D°g(s,t) with (s,t) € R?\g~*(0).

Lemma 9.2 (NCP: minimizers and stationary points).  Let g fulfill (9.10)
and be strongly monotone. Further, let the NCP be monotone, z € C' and
Dv(z) be a regular matrix. Then Dq(z) = 0 implies g(z) = 0. <

Proof. Given ¢ = z(z), define w by
Dv;(z)w = hi(z)gs(03) (if h; = 0 then put hig, = 0).
Then

Dq(zyw =3 hi(x)gs(a:) Dui(z)w + 3 hi(zx) g¢(os) Duy(z)w (9.11)
= ¥ (Dvi(z)w)(Du;(z)w) + I hi(z)? 9e(04) 95 (o). '

The first sum is non-negative by (9.8), the second one is positiveiff g(z) > 0.
0

Notes

(i) For strongly monotone NCP’s, the same is true if g is monotone in the
weaker sense

ab>0anda#0  V(a,b) € D°(s,t) & (s,t) € R¥\g~*(0), (9.12)
because now (9.11), (9.12) and h(z) # 0 ensure w # 0 and

0 < Mwlf? <Y (Dui(@)w)(Dvi(z)w).
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(i) For z € locPC!, one may replace Du and Dv by a Newton function as
in (9.8) and can define

Rg(z) := Y _ hi(x)[gs(0:) Riu() + gu(0:) Riv(x)).
Then Rg(z) = 0 implies g(z) = 0 by the same arguments.

(i) Without supposing the smoothness (9.10), one may also replace the pair
(9s(03), ge(i)) by pairs (as, b;) € D°g(g;) and comes to the same conclu-
sion,

Knowing that Dg = 0 implies ¢ = 0, all first order methods for minimizing a
C'— or a C'— function may be applied to g.

NCP-functions g satisfying the assumptions of the lemma can be chosen
arbitrarily smooth. Nevertheless, one may also apply methods of nonsmooth
convex optimization (cf. [SZ88, SZ92, HUL.93, OKZ98]) for minimizing

Q(z) = Z |hi(z)|

as long as G := |g| is sublinear and the NCP is monotone. Then we have at C*
points that

Q(z) = 3 ({DG(zi(@), u(x)),  DQ(z) =3 DG(xi(z))Dzi(z)

and

Q(z) + DQ(@)w = Y ( DG(x(2)), zi(x) + Dzi(z)w)
[
hold true. Directions w satisfying
( DG(z(z)), 2i(x) + Dzi(x)w ) =0 for all §
will just appear as Newton directions in the next subsection.

CASE (ii): Newton Methods

Having Newton’s method in mind, we require that the NCP functiong satisfies
with the Cl-set ©! = ©'(g),

g € locPC! and 0 ¢ ©7, (9.13)

g is positively homogeneous, (9.14)

e! = (1,0),e? = (0,1) € O (9.15)
Dg(o) > 0 and Dg(o) # 0 Vo € O (9.16)

Let us discuss these conditions.
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If for g € locPCY, in contrast to (9.13), 0 € ©!, then Dg(0) = 0, hence
Dhi(z) = 0 if both zi{(z) = 0 and z € C*. Sosystem (9.6) degenerates whenever
strict complementarity (z;(z*) # 0 Vi) does not hold.

By (9.14), g belongs to the simplest class of functions satisfying 0 ¢ ©1(g).

Condition (9.15) guarantees that g is C* on g~*(0)\{0} and h is C! at
strictly complementary solutions z* as long as v and v are continuously differ-
entiable, too.

Condition (9.16) is consistent with the assumption of Lemma 9.2 and avoids
singular derivatives of h for strongly monotone NCP’s, cf. Theorem 10.6.
Properties and Construction of g € pNCP

Let
pNCP be the cone of NCP-functions g satisfying (9.13) ... (9.16),
such functions are called pNCP functions. Due to (9.14), we have
Dg(o) = Dg(Ao) YA >0 Vo € O, (9.17)
Hence one easily derives that
D°g(0) = cl Dg(@'), g(o) = Dg(o)o Yo € @ and g(o) = D°g(c)s. (9.18)
In consequence, there is a positive lower bound for all gradient norms:
3p > 0 such that || Dg(o)|| > p Yo € ©! and inf ||[D°g(0)|| > p. (9.19)

Moreover, Dg(e!) = Ae? and Dg(e?) = pe! hold with certain A, pu > 0.
Taking into account that Dg is norm-invariant and locally bounded, we
obtain the basic properties

9(y') = Dg(y')y' Wy’ € O, (9.20)
9(y) € D°g(y)y VyeR" ‘

The first equation is just 0 — g(y') = Dg(y')(0 - ¢').

Examples of pNCP functions

(i) Put g = gmin(8,t) := min{s,t}, this is an often used concave standard
function, or

(i) g = gaist(s,t) := dist ((s,2),g71(0)), and, to satisfy (9.16), change the
sign of g on R?\IR3..

(iti) One candefine g via any norm of R2, such that its unit sphere bd B is
piecewise smooth, has no kinks at the positive axes and fulfills

el+e?¢B, BCe'+e?—R* and {e',e?} Cbd B.
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Setting ¥(p) = e' + €2 —pfor p € bd B and g(Ap) = M¥(p), p) for A >0,
one easily infers that g belongs to pN PC.

With the Euclidean ball, one obtains the strongly monotone concave func-
tion

g2(s8,t) =8+t —+/82 + 13,
used e.g. in [Kap76] (for penalization), [Fis97] and [KYF97].

(iv) In addition, g can be defined (and each g € pNCP can be written) by
means of a real 2r-periodic locPC? function ¢ with zeros at 0 and %ﬂ’

g(s,t) = ré(w), where (r,w) are the polar coordinates of (8,t).
Then, by well known derivative transformations,

Dg(s,t) = r~!(sp(w) — tD$(w), tp(w) + sDp(w))
for radius r > 0 at (s,t) € ©1.

In particular, the natural setting
$w) =sin(2w) for0 S w < -;-w

with the symmetric extension
$w) = —-3¢(%(21r —w)) for -21-1r Sw<2r

defines a function g¢ which satisfies, like ga, all the already mentioned
conditions.

Lemma 93 (limits of Dg/g for pNCP). Forg € pNCP,one has
limg,(c)/g(ec) =0as0—e! in@,
limgi(a)/g(c) =0 as0— e in O
Lod
Proof. We apply the polar representation of Dg, put o = (8,¢) = r(cosw, sinw)

and study the first limit for w = 0,¢ = 0.
Due to (9.15), the function ¢is C* near 0, so one may write

$(w) = Dg(0)w + o(w), and Dg(w) = D¢(0) + O(w),
where D¢(0) # 0 by (9.16).

Hence g, (0‘)/9(0)
r~2(s¢(w) — tD(w))/ p(w)

123 — r=24(D¢(0) + O(w))/(DF(O)w + o(w))
r~2s — r-1w=! sinw(D¢(0) + O(w)/(D¢(0) + o(w)/w).

Since 8 = 1,7 = 1 (due to ¢ = €') and w™'sinw = 1, we obtain the first
assertion, the second one is left to the reader. ]
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The previous lemma allows us to interpret a Newton step in terms of the original
functions. The linearized equation (9.6), i.e.,

h(z) + Dh(z)w = 0, (9.21)
means with
o; = (ui(z),vi(x)) at C*-points ,
g(o4) + gs(a:) Dug(z)w + g (o) Dvi(z)w = 0,
ie.,

[a;Du.-(z) + b.-Dv.-(n:)]w =~1 (9.22)

where g is only a vehicle for defining the coefficients a;, b; as

a; = gs(0:3)/9(0¢), b = ge(0:)/g9(0%).

If g; is close to some point (0,p;),p; > 0, then the previous lemma tells us that
the weight a; is large (near to some positive real) and b; is small. So, roughly
speaking, we solve, independently of the concrete choice of g € pNCP,

[a;Dui(z) + Olw = ~1.

This is exactly the form of the Newton equation with g = gmin, where (a;, b;) =
(1,0). If oy is close to (p4,0), the symmetric situation appears.

Finally, if ¢; = 0 holds at the solution z° then we cannot predict how the
derivatives of the functions #; and v; will be weighted by (ay, b;) for z near
2%, So we have to hope that the Newton equation has still uniformly bounded
solutions for all limits of (as,bs) as o; € ©' vanishes ("Newton-regularity”),
whereupon we can define the weights at the non-C?! point (0,0) by some of
these limits. Similarly, we may proceed at other non-C* points of g.

Depending on g, "Newton-regularity” may be a more or less strong assump-
tion. Though gmin does not fulfill the requirements of Lemma 9.2, our Theorem
10.5 will indicate that it belongs to the best pNCP-functions in view of this reg-
ularity hypothesis for Newton’s method.

9.3 The C-Derivative of the Max-Function
Subdifferential

To illustrate the above settings and assumptions in the context of multifunc-
tions, we study here the contingent derivative CF where F = 8,f is Clarke’s
subdifferential (the generalized Jacobian) for a maximum function

f(z) = max; F*(z), F*e C*(R™,R), k=1,..,m. (9.23)

We begin with some basic facts. It is well known that 8, f(z) is the convex hull
of all active’” gradients, i.e.,

8.f(x) = conv {DF*(z), k € I(z)}, where I(z) = {k|F¥(z) = f(z)}. (9.24)
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So we have by dualization
z* € 9,.f(z) & (DF*(z) — z*,u) > 0 Yu Vk € I(z). (9.25)

Further, for all  and € = 2 +u in some compact set we obtain due to F* € C?
that
FE(£) = F*(z) + DF*(z)u + 3{u, D*F¥(z)u) + r4 o (u),

where
e,z (u)| < O(u)lfull®.

Let z* be any convex-combination of related active gradients

¥ = Zj(z)akDF"(a:) € O.f(z), ZJ(z)ak =l,a>0; J(z)CI(z). (9.26)

We denote
by A(z,z*, J(x)) the related set of weights a € R™
and put
a; =01if i g J(z).
Then,
f(&) 2 maxpeyq) F*(E)
2 Yy arFE(€)

X 5oy @k[F*(x) + DF*(z)u + %(u, D2F*(z)u) + 14 0 (u)] (9.27)
f(:'B) + (z*,u) + %ZJ(z)ak[ (u, D?Fk(x)u> + Tk,z(u) ]’

and equality holds if J(z) C I(£). Hence (9.26) ensures, for all z,£ in any
compact set and withu =§ -~z

F(€) 2 £(z) + (2", u) + § T jmyan (u, D2 F*(z)u) - Ow)flufl®.  (9.28)

So the convex combination 3 y(,y ax D? F*(z)u plays, in view of lower estimates,
the role of a second derivative. Reversing the role of ¢ and z = £ — u yields

f(@) 2 f(&) — (€, u) + %E;(g)ﬂk (u, D*F*(£)u) — O(u)||u|)?
whenever £* € 8, f(£), J(&) C I(€) and B € A(E, &%, J(§)).

Adding (9.28) and (9.29), one obtains a monotonicity relation

(6. -z, u)
2 5 522k (¥, D FE(@)u) + 33 56) B, DPF*(€)u) — 20(U)||u||2-(
9.30)

(9.29)



9.3, The C-Derivative of the Max-Function Subdifferential 243

Contingent Limits

Now assume, in addition, that

=z +tu, and €* = z* +tu} € (0.1)(€)
for certain t = t, | 0, 4y = u, uj = u*,
where z,z*,u and u* are fixed,

ie, u* € C(8.f)(z,2*)(u).

With related coefficients 8* € A(€,£*, I(£)) and for some subsequence, the index
sets JU = {§]B¢ > 0} C I(€) are constant JY = J and B* converge,say 8 = a.
Hence (9.28) and (9.29) can be applied with J(€) = J(z) = J, and (9.30) yields,
up to terms of order oft?) :

(9.31)

t2(u'au) 2 t? ZJ o (1, D2F’“(a:)u),
thus
(u"u) 2 ZJ Qg (u,DzF"(m)u).

Moreover, since J € I(€) C I(z) for small ¢, now (9.28), (9.29) and (9.30) hold
as equations, so

'y =3 ax{u, D'F*(z)u)
and
(@) + t{z*, u) + 322 3, ak (u, D*F¥(z)u) + oft?)
(f(2) + t{x*, u) + 3t2(u",u) + ot),

1(§)

and C(8.f)(x, z*)(u) may be seen as second order derivative of f in direction .

The analysis of C 8.f from the viewpoint of second order derivatives has
been developed in [Roc88] and can be applied even to composed function
f = ho F where h € PC?(h,...,h") is convex with polyhedral structure of
the sets I7Y(k) = {y|h*(y) = h(y)} and F is C?, cf. [Pol90], and to sensitivity
analysis, as well, cf. [LLR95].

The crucial point for this approach consists in the fact that (not only Clarke’s
subdifferential) 8f can be interpreted as a composed map of the subdifferentials
to the functions

h(y) = max y; and F = (F!,...,F™).
Indeed,
y* € Oh(y) & y* € conv{e’lyr = h(y)} = conv {Dh¥(y)|k active at y}
and

z* € 8f(z) & z*=y*"DF(z):= Zy;DF‘(m) for some y* € h(F(z)),
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briefly
0f(z) = 8h(F(z)) c DF(z).

Here, 8h is the usual subdifferential of a convex function, but 8f(z) must be a
generalized one (since f is not convex). The crucial question then consists in
the validity and interpretation of the chain rule

C(0f)(x,2*)(u)
= Uye g(on)(F()) [C(OR)(F(2),y")(w)] ° DF(z) + Bh(F(z)) o D*F(z)u.

In what follows, we determine
C 8f (for 8f = 8.f)

directly, based on the €2 property of F and Ekeland’s principle only, and show
the relations between C 8. f and the contingent derivative CX of the stationary
point map in Chapter 8. This way we obtain, for a particular case, known
statements (including the above chain rule).

On the other hand, our proof is self-contained and does not require an
extension of the tools by proto-derivatives, epi-convergence and approximate
subgradients. In addition, we pay attention to those functions F* that are
active at £ near z up to order o(||¢ — z||*) and show (cf. Corollary 9.6) that
variations of F of this order keep C(8.f){zx,z*) invariant though the (proper)
active index sets I(€) may switch around z.

Characterization of C 8.f for Max-Functions: Special Structure

To determine C(8, f)(x, z*)(u), several simplifications are possible.

We may assume € = 0, f(0) = 0 and F*(0) = 0 Vk since other F* than
those with F*(0) = 0 are not maximal for € near z = 0 and could be deleted.
After adding a (symmetric @) quadratic function

G*(z) = F(z) - (z*,2) + 5(z,Qx),
and setting g = max G*, we have
O.9(z) = O:f(z) — z* + Qx

and
y € Oc9(z) — Qz & y + z* € 8.f().

The latter follows easily from the definition of €' 8.g and yields
u* € C(8:.1)(0,z*)(u) & u*+ Qu € C(8.9)(0,0)(u). (9.32)

Thus, we may assume that z* = . Finally, taking any @ with Qu = —u*,
we must only investigate the situation 0 € C(8,9)(0,0)(u) which characterizes
just singularity with respect to upper Lipschitz behavior of the stationary point
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map (8.g)~! at the origin, cf. §4.2 and §5.1.2 where local minimizer and/or
convex function have been regarded.
Therefore, we study the essential case of

(z,2") = (0,0), F¥(0) = f(0) =0, u* =0 € C(8.)(0,0)(u), u #0. (9.33)
Let us abbreviate
c* = DF*(0), Q* = D*F*(0), K(u) = {k € I(0) | ¢* L u}. (9.34)
The normal cone of 8f(z°) at 0 € 8f(z°)is denoted by NJ,. Clearly,
u€Ng,; & (c*u) <0 VkeI(0). (9.35)

Theorem 9.4 (particular structure of C 8. f for max-functions). Under the
settings (9.34), it holds 0 € C(8:£)(0,0)(us) if and only if both the direction u
belongsto N§. 7 and there are an index set® # J C K(u), elements z2° € R" and

a,n € RY with ay+n; = 0 fori € J such that, with v, := {c*,2%) + %(u,Q"u),

w2 Vied ke K(u). (9.36)
0=3Y0uc', Y ai=1, (9.37)
0= E‘,mQ‘u + E‘,mc". (938)

<

Before proving the theorem some comments are appropriate because the require-
ments (9.36) and (9.38) permit several equivalent descriptions. These comments
basically apply facts from linear optimization.

Remark 9.5 (equivalent conditions). In Theorem 9.4, condition (9.36) may
be replaced by

y = a solves the linear problem (P), with optimal value 0, (9.39)

where

E uykck=0’2 uy=1)
@ maxy { St @uim| TG ORI T

while (9.38) may be replaced by
0 = min {Y ;(axQ*u,2) | (c!,z) <OVke J). (9.40)
<

Proof of Remark 9.5. First note that one may identify J = {i|a; + n; > 0}
by removing other indices from J. Further, the condition n; 2 0is not essential

for i satisfying a; > 0 because it can be satisfied (keeping the rest valid) by
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forming new n as 17 + Aa with large A.

Condition (9.36): Under the remaining conditions, the real numbers v, (2) :=
(ck, z) + %(u,Q"u) satisfy for all z,

Tyati(z) = Tyou(c's2) + 3T 00w, Q') = 0~ 3T ymlc,u) = 0.
So, (9.36) may be replaced by
Y <0Vke K(u), v=0VieJ, (9.41)
because the value g = maXge(u) Yk in (9.36) fulfills
p=Ygaip=3 ;0% =0.
Condition (9.41) can be written (put { = 22) by
0 = max{(0,¢) | (¢!, ¢) = —(u, Q*u) ¥i € J, (c*,¢) < —(u,Q*u) Vk € K(u)\J}.
Hence, by duality of linear programming,
0 = min{~Fxvk (u, Q*u) | Typuc® = 0, yu 2 0Vk € K@\J).  (942)

Further, having solvability of problem (9.42) the point y = a is a nontrivial
solution because feasibility is obvious and (9.38) yields

"EK(u)ak (u,Q u) = -2 s (u, Q*u) = X yme (c*,u) = 0.
Thus, instead of (9.36), one may equivalently claim that ¥ = a solves

mjx{EKyk (u, Q*u) | T g =0, yrps 2 0}

with optimal value0.
Then, the additional constraint y_ g,y = 1 (satisfied by a) does not change
this condition and leads us to (9.39).

Condition (9.38): Again by duality, (9.38) means

max{0Tn| ¥ ,mic* = =% ;aiQ’u, n > 0}
miny {—-(3,0:Q%,y) | (¢}, y) 2 0Vi € J}

0

and
0= mzin{(z‘,a.'Q‘u, z)|(c',2) < OVie J},

which is (9.40). Q
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Note that by parametric linear programming (via Hoffman’s lemma and the
global Lipschitz property of the linear objective), (940) means exactly that
there exists a constant @ > 0 such that

-0¢ < min, {(T,0:Q', 2) | (¢}, 2) < eVi € J} (Ve > 0). (9.43)

The latter will be important for the second part of the subsequent proof.

After replacing (9.36) by (9.39) and (9.38) by (9.40), respectively, the ex-
plicit variables z° and % disappear while a and J are connected by the relations
@ # {ila; >0} C J C K(u).

Proof of Theorem 9.4. With u = 0, the statement becomes trivial, so let
u#0.

(=) Let 0 € C(8.f)(0,0)(u). By definition of C 8, f there are points
z=tu+o(t) and g =Y ADF*(z) € 8.f(z)

such that, for certain ¢ = ¢, } 0, one has B 2 0,8k = 1,8, = 0if k ¢ I(z)
and, in addition, w := g/t = 0.

Clearly, z,g,w and B depend on ¢; for seek of simplicity, we avoid to write
it explicitly.

(Notice, in view of the following corollary, that the conclusions in this part
of the proof are even valid if I(x) contains all k such that F*¥(z) > f(z) - o(t?),
i.e., F*¥ must be only ”approximately active” at .)

Selecting an appropriate subsequence, the sets J(t) = {k|8x > 0} are con-
stant;

J(t)=J CI(z) C I(0).

Further, convergence of the bounded elements 8 may be assumed, say 8 = a.
Next, each w can be written, as

w =t"1Y B DF*(z) = wy 4wy, where
w = t! Z ﬂkck’
wy =t1Y B[DF*(x) ~ ] =t~ T Br[@Fz + si ().

Here, s(z) is the error of the first-order approximation of DF* near z° = 0,
so 8;(z)/t vanishes. In consequence, ws converges:

Wy = W) = ZakQ"u.
Due to w = 0, the limit w} = limw; = ~wj exists, too. This implies (9.37):
Zakc" = limzﬂkc" =0.
In addition, for wy = w}, there are solutions y = t~!8 > 0 of the linear system

Tresmrc® = w1
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This yields solvability for the right-hand side wy ;
Zkeﬁnc” = wj holds for certain nx 2 0.

Therefore, (9.37) and (9.38) are valid.
We derive (9.36). Using second order expansion, we conclude that

F*z) = (c*,2) + 3(z,Q"z) +1(z) (where ri(z)/¢* =+ 0)
= t(ck, u) + (c’“ o(t)) + 5 t2 (u + o(t)/t, Q% (u + o(t) /1)) + ri(z)
= t(c*, u) + t2[{c*, o(t)/t"‘) + 2(u Q*u)] + Ri(z),
(9.44)
where again R (z)/t® = 0.

Let i € J. Since Fi(z) is maximal (or maximal up to o(t)) and t vanishes,
we obtain (c?,u) > (c¥, u) for all k. Knowing that 0 € conv {c*|¢ € J}, one has
(c',u) =0 > (c*,u) forall k. Sowehave u € N§; and @ # J C K(u).

Next, considering any k € K (u), we obtain by (9.44) for ¢ € J,

(' 0(t)/£2) + 3(u, Q'u) + Ri(z) /8 > (c*,0(t)/8?) + 5 (u, Q*u) + Ri(2)/F.

Therefore, the linear systems (in &)

(¢ =€) + 2w (Q ~ Q)u) > (Ru(z) - Ri(z))/t® (i € ik € K (u))

have solutions £ = o(t)/t? for each ¢ under consideration. The right-hand sides
vanish. So also

(¢ =k, &) + 3(u, (@ - Q")) 2 0Vie J k€ K(u)
remains solvable, and every solution 2° fulfills (9.36).

(&) If the assertion does not hold then, by formal negation, there exist
positive pe and gg such that

llz*|| > pot Yz* € 8. f(tu + tgoB), (9.45)

whenever ¢ > 0 is small enough. By the well-known relations between f!,8.f
and Clarke’s directional derivative f¢, cf. [Cla83] and Chapter 6, it holds

f(z;v) = fo(z;v) = max (z°,0).

'58 f(z)

Selecting 3 € 8.f(z) with minimal Euclidean norm and setting ve = —z%/||z2]l,
this yields for = € tu + tqo B,

fo(mv) = max(ave) = -la3ll < ~put.

Therefore, one obtains from (9.45),

f/(z;v) < —pot for all x € tu+ tgB and certain v =v, € bdB.  (9.46)
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We will show that (9.46) cannot hold. Let 2% J and a satisfy the conditions of
the theorem. We fix 8§ > |}2°]| and put

Co > max{||c’l|ll <v<m},
C1 = max{(ck,u}k € I(0), {c*,u) < 0} (only important if such k exists)
C; > max{[|Q"lik € K(u)}.

Let g € (0,1) be sufficiently small such that, if Cy is defined, Cy + g6Cp < %Cl
holds true. For any z € §B, we put

Ty = tu + 82, |s] < gt (¢ >0 small)
and apply

Fh(za) = #c*u)+8{ck, 2) + t*(u, Q*u) (9.47)
+st{z, Q*u) + £5%(2QFz) + ri(Tar), '
where |ri (zot)] < $O(t)2. If (¥, u) < 0 then
t(c*, u) + s(ck, z) < tCy +gdCo < 5tCy < 0

implies that F* (being smaller than F* for i € J) is not active for sufficiently
small positive ¢ < t(Cy, C3). So, in what follows, we must only regard k € K (u).

First we intend to show that, for sufficiently small ¢ > 0,
f(zs) > ~Cq*t? holds true with C' = 26%C,. (9.48)

Due to ¥ axck = 3 jar(u, Q*u) = 0 (from (9.37), (9.38)), it holds

f(ze) > maxees F*(zq)
2 EJaka(zst)
= sty ou{z, Q u) + §8°% janlz, Q42) + T 0urk (Tac) (949)
> stY ou(z Q u) ~ 57(g8)°Ca ~ FO()E*.

Again for small t < ¢t(Ct,C3,q), we have O(t) < (g8)2C,. Hence the crucial
inequality

f(zat) 2 8t anlz, Q4u) — £2(¢8)°C (9.50)
is valid. We are now able to apply (9.50) for proving (9.48).

CASE 1
If 8/t is small enough, namely if & 8||u||C; < t(¢d)2Ca, then (9.50) yields

|st }:Jak(z,Q*u)[ < t?(g6)2Cy and f(z.) > ~26%(q6)%C,.
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The latter is (9.48). So let the opposite hold,
sft> ¢ = (¢0)* 67" |lul| ™,
and put &(z) = max; c'z for the current s,t and 2.
CASE 2
If £(z) is small, namely if ©¢(z) < gd2Cs, we may use (9.43), i.e.,
Tres arlz, Q%u) > -0k,
in order to obtain again
F(Zet) 2 —8tOe(2) = t7(¢0)°Cs 2 ~qt*0e(2) — 1*(¢6)*Ca
> —q*t26%C, ~ t2(¢6)%C, = —2t%(¢6)%C,.

CASE 3 ,
Finally, if e(2) = ¢! 2 = 0 > ©~1¢6*C, for some i € J, we estimate by the help
of (9.47) and s/t > ¢' in order to deduce (for small ¢ not depending on z),

f@a) 2 Fiza) >8(0+t(z Q'u)) + 5t3(u, Q') — t3(g6)2Cy

> q'tlo +t(2Q')) + t2(u Q’u) - 13(g8)%Cy > 0.
Summarizing, (9.48) is true, provided that ¢ is sufficiently small (depending on
g only).
Next, setting 8 = ¢2 and 2z = 2%, (9.47) ensures for all k € K(u)

F¥(zy) = 2({c*,2%) + t"’(u QFu)) + t3(2%, Q*u) + t“(zO,ka") + ri(zse)
t3(z%, Q*u) + t‘(z Q%20 + ri(xat)
Ri()t® with Rk(t) - 0.

So, for the particular points z(t) = zs,, wehave f(z(t)) < R(£)t2, R(t) 0.

WA |l

It remains to apply Ekeland’s principle for f on
X(t) = tu + tqdB.
Using (9.48) and R(t)t? < Cq®t? for small ¢, the point z(t) € X (t) is e-optimal
for f on X(t) with € = 2C ¢® t? for small ¢t > 0. Let z(t) € X(t) be a related
Ekeland-point with a = %tq&. This ensures
F(&) + (e/a)d(€, z()) 2 f(=(t)) V€ € X(t) and d(z(t),=(t)) < .
Clearly, now €/a = 4C =1 g t vanishes (as t § 0).
Moreover, by the construction of z(t) and a, the point z(t) belongs to the
interior of X (t) for small t. So, the Ekeland- inequality yields necessarily
F(z(t);v) > ~¢/a for all v € bd B.

With small g, such that 4C 6~ ¢ ¢t < pp ¢, this contradicts (9.46) and proves
the assertion. Q
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Corollary 9.6 (approximations of high order). Suppose, for any index set J
and z =tu+o(t),t =ty 1 0, that

F¥z) > f(z) - o{t®) Vk € J and 0 =limt 'dist (0, conv {DF¥(z)/k € J}).

Then 0 € C(8.£)(0,0)(u), and the conditions of Theorem 9.4 are fulfilled with
the given set J (though these F¥ are not active at € in general). o

Proof. By the first part (=) of the proof to Theorem 94 we obtain the related
conditions, the second one (<=) verifies 0 € C(8: £)(0, 0)(x). o

Note. The part (<) of the proof indicates (via g = ¢(t) § 0) that, for
every given sequence ty 4 0, it holds 0 = lim¢;dist (0,8, f(2¥)) with certain
2V =t,w',w’ = u.

This means that if 0 € C(d.f){0,0)(u), ie., by definition,

0 € limsup limsup ¢! dist (0, 8, f(tw)),

tio W=t

then even
0 € liminflimsup ¢~! dist (0,8, f(¢, w)).
0 Wi

is valid.

Mappings F possessing a contingent derivative that satisfies (like 8¢f) this
limsup = liminf-equation are introduced in [Roc88] as being proto-differ-
entiable multifunctions. This property is a multivalued version of “’simple” in
§64.1 and turns out to be similarly useful for establishing chain rules (because
of the same technical reasons as for functions). o

Characterization of C 8.f for Max-Functions: General Structure

Theorem 9.7 (general structure of COcf). It holds u* € C(8.f)(0,z*)(u) if
and only if there exist a,n € RY and z € R" such that 8 # J := {ifoi +m >
0} C I(0) and
(i) (DF*(0)-2*,u) <0  Vke€ I(0),
(i) (DF%(0) —z*,u) =0 VkeJ,
(i) (DF¥(0) - z*,2) + (u, D2 F*(O)u) < (u*,u) if (DF*(0) ~ 2*,u) = 0 and
k € I{0), and equation holds for k € J,
(iv) z* = E_,aiDF‘(O), E,a; =1,
(v) u* =Y, ;a;D*Fi(0)u + Y m:(DF0) — z*).
<

Remark 9.8 (equivalent conditions). In the theorem, condition (iii) may be
replaced by

y = a solves the linear problem (LP),, with optimal value (u*,u), (9.51)
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where

: (DF*(0) - 2*) =0,
we)e e {0 EGZT N0 )

and
K = {k € I(0) | (DF*(0) ~ z*,u) = 0}.

Condition (v) may be replaced by
0= min,{(EJ oi(D*F'(O)u - u*),z) [{DF*(0) —z*,2) <OVie J}. (9.52)
<

Proof of Theorem 9.7. For characterizing u* € C(8.f)(0,z*)(u) generally,
we apply the transformations between f and g in (9.32):

u* € C(8.£)(0,2*)(u) & u*+ Qu € C(8:9)(0,0)(u) with Qu = —u”.

The quantities of Theorem 9.4 have now the form
DG*(0) = DF*(0) — z* = ¢*, D’G*(0) = D® F*(0) + Q = @*

Thus, the related conditions for u* € C(8. f)(0, z*)(w) are as follows:

u € No,40)(a*), 07 J C K(u) = {k € I(0) | (DF*(0) - =*,u) = 0},
the real numbers v¢ = (DF*(0) ~ z*,2%) + & (u, (D*F*(0) + Q)u) fulfill

Y% =02>vforalliec J ke K(u),
0= Y ,ai(DF}(0) - 2*), T, =1,
0= X ;a(D*F}(0) + Q)u+ L ;m(DF'(0) - z*).

These conditions are independent of the choice of Qin the equation Qu = —u*.
Condition (9.38) becomes

u* =Y ,0:D*Fi(0)u + ¥ i (DF*0) — z°)
and & in (9.36) attains the form
T = (DF*(0) = ", 2) + 5 (u, D F*(0)u) — 5(u", u)

Substituting finally z by 2z, and using Remark 9.5, the theorem is verified. O
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Application 1

Let us compare the conditions of Theorem 9.7 with those which describe the
contingent derivative CX of the stationary point map X for the C?-problem

min{z|z € R", f{(z) —2 <0 Vi} (2= f(z) = max f'(z)) (9.53)

in Section 8.2. The map X (ag,a,b) is defined by the stationary points (z,z) of
the (canonically perturbed) parametric problem

min( ;) {z — aez ~ {a, o) fix)-2< by, i=1,...,m} (9.54)

where a = (ay,...an). Since MFCQ holds everywhere for (9.53), we know that,
in terms of the related Kojima function F and with (ug,u) € R'*™,

(ug, u) € CX((0,0), (2°,2%))(n)
& 3% e YO : 1 € CF((2%2%),1°) (1o, u), R™) C RM™H™,

Using the explicit form of CF (see Theorem 7.6), direction 7 is characterized
by (we write here (p, q) instead of (e, 8)),

D2L(2°,2%,3%)(uo, u) + 3_; pe(~1, Dfi(z°))
—ug + Dff(z®)u — ¢

™
w24

for some (p,q) € Jo(y°) (for the definition see (7.32)), and the set Y of dual
solutions for (2%, z°) has the form

yeY® & 3 yiDfiE) =0, Z‘. v =1and fi(z°) - 2° =y}

Here, D2L denotes the second derivative of L = z + Y, g (f* — z) with respect
to (2%,29),

D2L(2°,2°, y)(uo, u) = (0, Z‘ ¥ D?f(z%)u) € R™™ for all up.
To model the variations of f that correspond to 0 € C(8. f)(0,0){u), we put
a6 =0,=0,2"=0,25=0,7=(0,u*),u* =0 and m =0.

Then,
uo = Dff(a%)u~g; and 0= 3" p;

follow. Therefore,
ug = D f*(z%)u = 0 forall ¢ with g; > 0 and (in consequence) up = 0

follow, too.
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Corollary 9.9 (reformulation 1). For the stationary point map X of the C?
program (9.53), the elements (ug,u) € CX((0,0), (2% 2°)(01,%”,0p) are ex-
actly characterized by the conditions of Theorem 9.7, except for condition (iii).

<

Proof. Indeed, the explicit formula for CX attains the form

(UOa u) € CX((Ov 0)7 (zos xo))(ols u'1 Om)
& ug =0 and there exist y € Y and (p, q) € Jc(y) satisfying
(0 =)u" = 3,57 D2 (@) u+ 3, pDf(z°) and Df(z%)u = .

So, the point (a@,7n) in Theorem 9.7 and the current vector (y*,p) may be
identified, while J becomes the set J = {¢|yf + pi > 0}. Here, we do not
require p; > 0 Vi because (p, q) € Je(y) permits p; € R if i > 0. However, as
already noted after Theorem 9.4, the condition 74 2> 0 is not essential for those
i satisfying a; > 0. o

The absence of condition (iii) arises from different variations of the same prob-
lem (9.54).

The relation u* € C(8.f)(0,x*)(u) describes the existence of stationary
points (z,z) to problem (9.54) with

(2,2) = (2%,2°%) + £(0,u) + oft)
for variations ag = 0,a = tu* +01(t) and b= 0.

The relation (ug,u) € CX((0,0), (2% 2°))(01, u*,0,,) describes the existence of
stationary points (z,z) to problem (9.54) with

(2,7) = (2°,2°) + (0, u) + o?)
for variations (ao,a) = t(0,u*) + 01(¢) and b = 0,(t).

Here, the replacement of ag by ap = 0 does not change the stationary points
(z,z). However, the original constraints

f"(x)—sz,-EO

must be satisfied up to error ea(t) only. Thus, in comparison to b = 0, the
possible sets of active constraints may increase, and new stationary points may
occur.

However, the requirements b = o(t?) and b = 0 are equivalent in accordance
with Corollary 9.6.

Application 2
Let X; be the mapping a + X} (a) given by the stationary points for

min{f(z) - {a,2) | 9(z) < 0}, (f,9) € C*(R",R™*™),
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and let F = MN be the associated Kojima function. Consider the contingent

derivative
CX1 (0, .’50)(7&)

at some stationary point z° € X1(0), and suppose that
z° satisfies MFCQ.
To simplify the calculations, we further suppose that

g(z®) = 0, and f has small C'-norm such that (by MFCQ) any
possible Lagrange multiplier vector(y1, ...,¥m) for (z,a) near (z°,0)
fulfills 3~7; < 1 (otherwise replace f by #f with some small 8 > 0).
(9.55)
In order to establish the correspondence between €8 f and the contingent
derivative of Kojima’s function, introduce the functions

go = 0 and G(z) = max{gi(z)|0 < i < m}.
Then one may write
z € X1(a) & —(Df(z) - a) € 8.G(z) and G(z) = 0.
Here,
8:G(z) = conv {Dgi(z)li € I(z)}, I(z) = {ilgi(z) = G(z)}.

If —(Df(z) ~ @) = ¥ y(z) 11Pgs(x) holds with weights Yo, ..., Ym (put v = 0if
i & I(z)), then (v1,...,'Ym) is a Lagrange multiplier for (z,a). This yields:
ue CX](O, 1’0)(1(1)
& certain z(t) = 20 + tu + 01 () fulfill, for ¢ = ¢, | 0, x(t) € Xy1(tm + 03(t))
& —[Df(z(t)) - tm — 02(t)] € 8.G(x(t)) and G(2(t)) =0
& —Df(z0) — t(D*f(z)u — m) + o(t) € 8:G(x(t)) and G(z(t)) = 0.
Thus, setting z* = —Df(z% and u* = —[D?®f(z%)u ~ m], one has u* €
C(8:G)(a°, =*)(u).
Corollary 9.10 (reformulation 2). Under assumption (9.55), the application
of Theorem 9.7 to u* € C(8.GQ)(2°,x*)(u) leads, via the transformation
p=3_ M 4 = au, pi =+ pag, g = Dgia)u (i >0),

to a particular solution (u,p,q) of the system

(m1,0) = [DM (2°)u]N (3°) + M(z°)(0, p, 9)"
(0,p,q) € N‘(Vo)(m'm)’ F($°,y°) =0
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such that (y°,u,p,q) in addition satisfies p > 0 and

(“’DgzL(xoay)u) < (u, D:::L(moayo)u) = (u,m)
if D:L(z°y) =0 and yxny 20,

with L = f + Y50 419i (not with yt), K' = {ilg = 0}, and J' = {i|ps > 0}

(9.56)

Proof. Note that I(z°) = {0,...,m} since g(z®) = 0. By Theorem 9.7, we
have with

c* = Dg*(z°) -~ z* and K = {k| & L v} c {0,....,m}
that {(c,u) < 0 ¥v and 3a,7 € RLT™ such that
0 # J:= {ilay+n > 0} C K and
¥ = a solves
max {3 (u, D?g* (e | 30, wne* = 0,30 v =Lyx\s 20} (9:57)
with optimal value {(u*,u) = —(D? f(2°)u — m1,u), and one also has

z* =) aiDg(z"), (9,58)

u' =) aD(@%)u + Y mc (9.59)

By (9.58), (a1, -..am) is a Lagrange multiplier vector for (z?, 0). Since Ei>0 ay <
1, we obtain from (9.58) that ag > 0 and 0 € J. This yields, due to c® L u,

(Df(2°),u) = (z*, u) = 0, (Dge(2°), u) <0 Vv, (Dgi(z°),u) =0Vk € K.
Because of 4T D?f(z%)u = 3, yk{D? f(2°)u, u), the conditions (9.57) and
(u, D3, L(2° y)u) < (u, D3, L(2°,4°)u) = (u,m1)
if Txync® =0, gy = Lyxs 20

coincide. Using cf = Dg*(z®) + D f(z°), g0 = 0 and noting that n; + a; > 0 iff
pi > 0, the latter is equivalent to (9.56).

The subset of non-negative feasible points y in (9.56) is just the set of
Lagrange multiplier vectors for (z% 0) (without component yo). Since y =
277k We also have

T ym(Dg'(2%)~2*) = T mDg*(a®)+u¥ ;aiDg'(z°) = T ;(m +pa;) Dg'(z°).
So (9.59) becomes:

D?f(e®)u+ Y ;0,D% (=% + 3 m(Dg'(2°) - 2*),

D2, L(2%y%)u + X ,(n + poi)Dg'(2°).

The latter verifies the assertion. O

m



Chapter 10

Newton’s Method for
Lipschitz Equations

For computing a zero of a locally Lipschitz function & : X — ¥, several Newton-
type methods have been developed and investigated (from the theoretical and
practical point of view as well) during the last 20 years. They have been ap-
plied to variational inequalities, generalized equations, Karush-Kuhn-Tucker
systems or nonlinear complementarity problems, see, e.g., [KS87, Kum88b,
HP90, Pan90, IK92, Kum92, PQ93, QS93, Rob94, Don96, BF97, Fis97, KYF97].
Accordingly, one finds various conditions for convergence of nonsmooth Newton
methods (mainly written in terms of semismoothness) and many reformulations
of identical problems by means of different equations. Especially for comple-
mentarity problems, a big number of so-called NCP functions have been applied
in order to obtain such a description cf. [SQ99].

In this chapter, we elaborate those properties of h and related derivatives
which are necessary and sufficient for solving h = 0 by a Newton method, and
we compare the imposed assumptions in terms of the original data.

Before going into the details we suggest the reader to study Example BE.1,
which indicates that Newton methods cannot be applied to the class of all
locally Lipschitz functions, even if X = Y = R (provided that the Newton
steps have the usual form at C!-points of the given function). We also mention
the well-known real function h(z) = z7 for fixed ¢ € (0,1) which shows the
difficulties if b is everywhere locally C? excepted the origin, and if k is not
locally Lipschitz.

10.1  Linear Auxiliary Problems

Newton’s method for computing a zero z* of h : X = Y (Banach spaces) is
determined by the iterations

$k+l - :Ek - A—lh(mk),

257
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where A = Ay = Dh(z*)is supposed to be invertible.
The local superlinear convergence of this method means that, for some o-
type function r and z°® near z*, we have

ght! — z* = 2F with ||2%|| < r(=* - 2*), (10.1)
which is, after substituting z¥+! and applying Ay to both sides,
Al(z® - 2*) = 2*] = h(z*) - h(z*), with ||z¥]] < r(z* - 2*). (10.2)

The equivalence between (10.1) and (10.2) is still true if one defines, in a more
general way,

o+t = g% — A1 h(z*), with some A € M(z*) (10.3)

where M (z*) # @ is a given set of invertible linear maps. A method of this type
is often said to be a generalized Newton method.

The elements z*+! in (10.3) and z* in (10.2) now depend on the selected
elements A. So we have to precise that the inequality in (10.1) should hold
independently of the choice of A € M(z*).

Next suppose that there are constants K+ and K~ such that
|A]l < K* and [[A~Y|| < K~ for all A € M(z* +u) and small ful|. (10.4)

Omitting the indices and setting u = z — 2* , A € M(z), the convergence
condition (10.2) now attains the equivalent form

Au = h(z) — h(z*) + Az, ||2]] < r(u) (10.5)
and yields necessarily, with o(u) = K+r(u),
Au € h(z* +u) - h(z*) + o(u)B for all A € M(z* + u). (10.6)
Conversely, having (10.6), ie.,
Au = h(z* + u) - h(z*) + v for some v € o(u)B,

then, via z¥*! —z* = z = A~'v € K~ o(u)B and (10.5), one obtains the
convergence

llz*+! ~ 2*|| < K~o(z* - z*)

for all initial points z° sufficiently close to z*. (16.7)

But (10.6) is condition (6.24) in §64.2: M has to be a Newton map of h at *.
So we have shown

Lemma 10.1 (convergence of Newton’s method - I). Suppose the regularity
condition (104). Then, the method (10.3) fulfills the convergence condition
(10.7) if and only if M satisfies (10.6). The latter means that M is a Newton
map of h at z*. <
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Remark 10.2 If the conditions (10.4) and (10.6) hold true with
o(u) < pllu|® for all ||u]] < 4,
then the method converges for all initial points z%satisfying
ll2° — z*|| = g with g < g, := min{é,(K~p)~'}
since, by induction arguments,
llz*+! — 2*|| < K~o(z* ~2*) < K~ pgljz* —z*|| and K"pg < L.
o
In the current context, the function h : X = Y may be arbitrary (even for
normed spaces X, Y) as long as M(z*) consists of linear bijections between X
and Y. Nevertheless, we will suppose that

h is locally Lipschitz near z*.

This is justified by two reasons:
(i) If h is only continuous, we cannot suggest any practically relevant defini-
tion for M(z).
(ii) Having uniformly bounded }|4|| < K+ and writing z = =¥, (10.2) implies
that h satisfies a pointwise Lipschitz condition at £*, namely

a(z) - h(z*)|| < 2K*|le —2*||  for ]z ~ 2°| <, (10.8)
if € is small enough such that |jr(u)|l < }lfull for |jull < e. Since the
solution z* is unknown, our assumptions should hold for all z* near the

solution. Then, the local Lipschitz property of k (near the solution) fol-
lows necessarily from (10.8).

Further, having uniformly bounded ||A™}|| < K=, now (10.2) guarantees
after applying A~Y, z —z* - 2 = A~Y(h(z) — h(z*)) and

Sllz =2l < 1z = 2* = 2| < K~Ih(@) ~ A" if 1z - 2°]| < e.
Therefore,

Ih(@) - Rl 2 3(K) e -2l for llz ~ || <&, (10.9)
restricts h again in a canonical manner: A~! is locally upper Lipschitz at (0, *).

Condition (10.6) can be met in various versions in the literature. Let & be
locally Lipschitz with rank L near z* and X =¥ =R":
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If Clarke’s generalized Jacobian M (z) = 8h(z) is a Newton map at z*, then
h is called semismooth at * , sometimes — if o(-) is even quadratic —also strongly
semismooth.

In several papers [PQ93], [QS93], [Fis97], semismoothness has been defined
in a slightly different way by using directional derivatives h'(z*;u) at the place
of h(z* + u) — h(z*),

Au € h'(z*;u) + o(u)B VA € 8h(z" + u). (10.10)

For M C 8h, condition (10.6) now follows from (10.10) due to the uniform
approximation of h by directional derivatives (see Lemma A1l):

k' (z*;u) € h(z* + u) ~ h(z*) + o(u)B.

In others papers, M is a mapping that approximates &h; and functions h sat-
isfying the related conditions (10.6) are called weakly semismooth. However,
neither the relation between M and 8k nor the existence of A'(z*;+) is essen-
tial for the interplay of the conditions (10.4), (10.6), (10.7) in accordance with
Lemma 10.1. The main problem consists in the characterization of those func-
tions which allow us to find a practically relevant Newton map. These function
classes are not very big up to now. The biggest class of pseudo-smooth functions
for which nonsmooth Newton methods have been successfully applied is -at least
up to now and by our knowledge- the class of composed locally PC-functions,
cf. §64.2.

10.1.1 Dense Subsets and Approximations of M

For X =Y = R", the conditions (10.4) and (10.6) define M not uniquely and
must hold on a dense subset of a neighborhood of z* only.

Indeed, let X =Y = R", and assume (without loss of generality) that the
function o(u) under consideration is upper semi-continuous. Then, in order to
fulfill (10.4) and (10.6), it suffices to know some M such that (10.4) and (10.6)
hold for all z = z* 4+ u in a dense subset S of aneighborhood § of z*. Having
this, one may define

M,(x) = limsup,_,, ,es M(s) for x € Q\S as Hausdorff - limit

and

M,y(z) = M(z) forz € S.
The map M, has non-empty ranges (for this reason, finite dimension was re-
quired), and M, fulfills (10.4) and (10.6) on §? by continuity arguments.

Further, if M satisfies (10.4) and (10.6), then (10.4) holds for each M' with
@ # M' Cc M; and (10.6) holds for each map M' with @ # M' C conv M.
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Finally, one may replace M satisfying (10.4) and (10.6) by another map M’
as far as

B # M'(z) C M(3) + O — 2*)Brx,x) (Br(x,y) = unit ball in L(X,Y)).
In particular, consider
N(z) € M(z) + ||h(z)|Br(x,v) (10.11)
which permits to approximate the elements of M (z) with accuracy ||h(z)]|.

Remark 10.3 When using N instead of M, condition (10.4) is still satisfied
with each K5 > K~. The function o(-) in (10.6) changes only by Z}|.}}?>. Thus,
the replacement (10.11) of M by N will not disturb locally quadratic (or worse)
convergence. <o

Indeed, let A € N(z) and |[h(z)|| < 1/K~. Then v = Au yields
llvll > ((1/K~) = |a@)|}) lfull, and [JA7Y| < K~ (1 - K~ |lh(=)]))~*

With some Lipschitz rank L of h near z*, inclusion (10.6) ensures, for all linear
functions P € Brx,y) and A € M(z* + u),

Au+ ||h(2)||Pu € h(z* +u) ~ h(z*) + (o(u) + ||h(z)]||[u]))B
C h(z* + u) = h(z*) + (o(u) + L||u||?)B.

This provides us o(:) for N.

Remark 10.4 Similarly, the related Newton equation (10.3) may be replaced

b
g ot = gk — A~ (h(z*) + u(z¥)), A € N(z%)

as long as (10.4), N(z) = M(z) + ||h(z)||Brix;y) and [|u(@)ll < o(h(z)) are
satisfied. o]

Note that, in this case, fju(z)l} < Co(z — z*) is true with some constant C.

10.1.2 Particular Settings
If X =Y = R", the following particular settings seem to be appropriate:

M(z) = 8h(z) or M(z) = Hh(z).
One could also define
A € M(z) if the rows A; of A belong to &hy(z) Vi,
or one considers the sets A;; of all difference quotients (with unit vectors ef)

[hi(z + te?) ~ hi(z - sef)]/(s +t), with s,t>0and
s+t =|h(z)] if h(z) #0, 0 < s+t < const (> 0) if h(z) =0
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and defines
A € M(z) ¢ the entrees a;; of A belong to cl Ay forall i, j.

In the latter cases, M(z) C 8h(z) is not necessarily true.
If h is a PC"-function generated by h!,...,hA" € C?, then one may put

M(z) = {Dh'(z) | h'(z) = h(z)}.

This is the setting of one of the first paper on "non-smooth Newton methods”,
cf. Kojima and Shindoh, [KS87].

In each of these cases, it is easy to see that M is closed and locally bounded,
and that (10.4) holds true if and only if sup{||4~}||| A € M(z*)} < oc.

The both conditions (10.4) and (10.6) however are not fulfilled a priory.
They require different properties of h, depending on the choice of M.

10.1.3 Realizations for locPC?! and NCP Functions

For locally PC* functions h, Theorem 6.18 yields that M = D°h is a Newton
map, so only condition (104) becomes crucial.

We consider the case of a complementarity problem with locally PC! data
in detail. Let g € pNCP, z = (u,v) € locPC?, and denote the related sets of
C*-points by ©} and ©3.

We already know that the maps z — D°2(z) and y — D°g(y) are Newton
maps. Given some element Rz(z) € D°z(x), let Riz(z) = (Riu(z), Riv(z))
denote its i* component.

Further, let ®(z) consist of all matrices A the rows A; of which satisfy

A € 8(z) iff A; = G*Riz(x) with G* € D°g(2;(z)) and Rz(z) € D°z(x) Vi.
(10.12)
This map ®, contained in the carthesian product of all sets D°g(z;(z))D°zi(z),
is a Newton map for the function h as

hi(z) := g(z(2)),

cf. Theorem 6.18. Hence condition (10.4), namely the existence of K, remains
the only problem for applying Newton’s method to the NCP-equation h = 0
with Newton steps

9(zi(z)) + Asw = 0 and Tnew =z + w. (10.13)
Moreover, method (10.13) just means to solve the “weighted equation”

Gf,(u;(?:) + Riu(z)w) + Gi(vi(z)w) + Riv(z)w) = 0,
(G}, GY) € D°g(ui(z),vi(z)).

Indeed, by (9.20), it holds at any (s,t) € ©}, after setting (Gs, Gt) = Dg(s, ),

(10.14)

9(s,t) = sG, + tG;.
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This equation is still valid for the limits (G, Gs) in D®g. The latter ensures for
the i** Newton equation

0 =g(z(2)) + Aw
= Glui(z) + Gvi(z) + G Riu(z)w + GiRv(z)w.

Theorem 10.5 (regularity condition (10.4) for NCP). Let ¢ € pNCP, z € C*,
and let £* be a solution of the complementarity problem.

(i) If condition (10.4) is satisfied for the settings of method (10.13), then
(10.4) is also satisfied for the special NCP function gmin{s,t} = min{s, t}.

(ii) Condition (10.4) holds true if the NCP is strongly regular at x*.
(iii) Condition (10.4) is equivalent with strong regularity of the NCP at z* if
there is an arc in the C*- set ©} of g that connects the unit vectors of
R o

Proof. Recalling (9.19), it holds max{G?%,G}} > p (Vi) forsome p > 0. So we
see that the matrices A in (10.12) are regular iff so are the matrices with rows

Ci(r,z) := (1 — ;) Riu(z) + rRiv(z)

where ) ) ) )
ri=GiG, + G|, 1-n =Gl[G, + G
and )
(G', G}) € D°gui(z), vi(2)).

For z € €1, these rows have the form
Ci(r,z) = (1 — r;)Dui(z) + 4 Dvy(),

and the coefficients r; form a subset Si(z) C [0, 1]. By continuity arguments, it
suffices toconsider z = 2* only for showing (10.4). So, (10.4) holds true if and
only if all matrices C(r,2*) (which form a compact set) are invertible. This
condition is as weaker as smaller the sets S;{z*) are.

To study S;(z*), let y* = u(z*) — v(z*). The pairs (G%,G}) vary in
Dglui(z*), w(z*)). Ify! > 0, we obtain that g is C! near (us(z*), ve(z*))
and G% = 0,G} > 0,r; = 1. Similarly, y} < 0 yieldsry = 0.

Now let yf = 0. Then (G%,@G}) is any limit of derivatives Dg(s',¢') for
(¢',¢') = (0,0) in ;. By norm-invariance of Dg, we conclude that D°G/(0,0) =
clDg(©}). So, the pairs (G, G}) vary in the whole set ¢l Dg(©}), and

Si(z*) = {Gi[G, + G:]™! |G € c1 Dg(@})}.

In the ”smallest case”, Sy{z*) contains O and 1. This is just the situation for
g = gmin. In the “largest one”, the full interval [0,1] belongs to S;(z*) whenever
y; = 0. Then, nonsingularity of all C(r,&*) coincides, by Lemma 7.16, just
with strong regularity of the NCP at z*. Clearly, having an (continuous) arc
in @ which connects the unit vectors of R?, the set Si(z*) is connected and
contains 0 and 1. So the equation Sy(z*) = [0,1] is in fact true for y§ = 0. This
proves the theorem. Qo
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Theorem 10.6 (uniform regularity and monotonicity). Let the NCP be strongly
monotone. Then, for g € pNCP and z € locPC?, every matrix A € ®(z) ac-
cording to (10.12) is regular and fulfills, for each bounded set X C R™,

|47 oo € 2nC:(Ap)™! Vz € X,

where Cgp := max;sup{||Dzi(z)|lc | € X N O}, X = Mu,v) is the strict
monotonicity constant of NCP, andp = p(g) is the constant from (9.19) taken
with the max-norm. o

Proof. Suppose onefindse > 0, z € X, A € ®(z) and some w € bd B
(Euclidean sphere) such that

€ > | A;w| for all rows A; of A. (10.15)

This corresponds to the fact that A is singular or [|A™|jeo > 1/e in terms of
the maximum-norm. By definition of @, it holds for certain G* € D°g(z(z))

Aiw = G Ryu(z)w + GiRywv(z)w.

Weknow that Rz € D°z is a Newton function for z at every fixed z by Theorem
6.18. The strict monotonicity of NCP vyields, setting ¥ =z + tw, t > 0,

My = =l < (u(y) = u(z), v(z) ~ v(E)) = (LRu(y)w + 0u(?), tRu(y)w + 0u(t)).
This ensures, for small 0 < ¢t < 7(z),
32 < £ (Ru(y)w, Ru(y)w)

and
%,\ < (Ru(z + tw)w, Ru(z + tw)w).
For any (U, V) € limsup,,_,, (Ru(z'), Rv(z')), and in particular for each (U, V) €
Dr°z(z), we thus obtain
A (Uw, V).

Hence ;
31X < Tu(Rau(@)w) (Ro(z)w) =: T, P,
Let
X = 7 and P, = max; P..
Due to

P> X /n, (10.16)

the factors a = Rpu(z)w and b = Rpv(z)w have the same (non-zero) sign.
Further, max{|a|, |b|} < Cz. So, the inequality ab = Py > X'/n ensures

min{lal, [b]} > X'CZ/n.

Returning to (10.15) for i = k, and taking into account that G¥ > 0 and G% > 0,
the latter yields by (9.19),

€2 |G*a+GEb| > [NC7Y/n] max {Gk,G¥} > [NCo /nlp.
Therefore, ||[A™Y|loo > 1/eimplies 1/e < ([NC;t/n]p)~! as asserted. a
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Taking any g € pNCP and u = 0 as well as v(z) = z; > 0, one sees that
Theorem 106 fails to hold for a monotone standard NCP, since 4; = 0 follows
from Dg(z;(z)) = (D.g9(0,:),0) and Dzi(z) = (0,¢€).

On the other hand, the theorem still holds without strong monotonicity
of NCP whenever (10.16) remains true for some A = X(z) > 0 and some
k= k(z,w).

Moreover, if g has locally Lipschitz derivatives on an open and dense subset
of R? (which is fulfilled for all the given examples of g in Section 9.1) and if
z € CV1, then one obtains quadratic convergence because of-) in (10.6) now
fulfills o(-) < L|| - ||

10.2  The Usual Newton Method for PC?
Functions

Condition (10.6) also holds for all PC? - functions h, if we put
M(z) = {Dk(z)|s € I(z)}; I(z) = {s|h*(z) = h(z)}.

The remaining condition (104) now means regularity of all matrices Dh?(z*),
s € I(z*). In this case, z* is obviously a strongly regular zero of each C!
-function h®, 8 € I(z*). However, then one may apply the usual Newton
method to any fixed generating function g = h®, active at 2%, provided that
(as usually supposed) x° is already close enough to the solution.

Notice that this simplification is possible, if all generating functions h* are
explicitly known. But the functions h® are needed anyway in order to find some
element of M(x) and are known for many problems, e.g. for an NCP with
z = (u,v) € C* or for polyhedral generalized equations with C* - functions, cf.
Section 7.1.

10.3 Nonlinear Auxiliary Problems

Solving linear auxiliary problems is only one possibility of dealing with a Lip-
schitzian equation, many other approaches are thinkable. In this section, we
consider linear and non-linear auxiliary problems which may be solved only ap-
proximately. In contrast to the previous sections, now the existence of exact
solutions (for the auxiliary problems) must not be required.

Let h : X = Y (normed spaces) be locally Lipschitz with rank L near
z* € X, let h(z*) =0 and let

Gh: (X, X)33Y
be a mapping satistying the general supposition

0 # Gh(z,u) and Gh(z,0) = {0} (10.17)
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of this section. Having z*¥ we want to solve an inclusion of the form
0 # a|lh(z*)||B N [h(z*) + Gh(z*,u)], and put z** ;= 2F + u.  (10.18)
The fixed parameter & prescribes the accuracy when solving
0 € h(z*) + Gh(z*,u). (10.19)

If (10.19) holds true, we call u and z*** = z* + u exact solutions.

One may identity Gh(z*,u) with any (suitable) multivalued generalized di-
rectional derivative of h at z*. In particular, the settings of the former section
are still possible,

Gh(z,u) := M(z)u := {Au| A € M(z)}, (10.20)

where
M(z) is a set of functions in Lin (X,Y).

Notice, that the existence of an inverse or even surjectivity are not explicitly
required, now. This is a realistic assumption for equations arising from control
problems. Basic ideas to this topic can be found, e.g., in [Alt90].

Feasibility: We call the triple (h, Gh,z*) feasible if, for each € € (0,1), there
are positive 7 and « such that, whenever ||z° — z*|| < r, process (10.18) has
solutions and generates iterates satisfying

lle*+ - 2*|| < eflz® - z*||.

To ensure feasibility of (h, Gh,z*), we will impose the following conditions for
z near z* which now replace (104) and (10.6) in the previous section.

Condition (CI) (injectivity of the derivative).
[lwl| 2 ellull Yv € Gh(z,u) Vv € X (c > 0 fixed).
Condition (CA) (condition for the approximation).
h(z) - h(z*) + Gh(z,u) C Gh(z, 2 +u—z*) + o(z — z*)B Yu € X.

Considering only the directions u = z* — x in (CA) we get a weaker condition
by using Gh(z,0) = {0}, namely,

Condition (CA)* (simplified condition CA).
h(z) — h(z*) + Gh(z,z* — z) C o(z — z*)B.

This condition requires a good behavior of the “directional derivatives” Gh(z, -)
with respect to difference quotients including z*, provided that Gh is positively
homogeneous in the second argument:

Gh(z, (2" — z)/||z - =*|]) C [A(z") - h(z)}/l}z — 2*|| + O(z — =*) B.
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Since h € C%*(X,Y), (CA)* implies, for all v € Gh(z,z* — z),
[Ilvll < l1A(z) ~ A(z*)ll - oz — z*) < Lijz — 2*|| - o(z - 2*) < 2L|lz — z*|],
ie.,
Gh(z,z* - z) C 2L||z - =*||B for small ||z — z*||. (10.21)

It turns out that
(CA) & (CA)

holds for many relevant settings of Gh, c¢f. Theorem 108.

10.3.1 Convergence

Based on (CA) and (CI), let us summarize the convergence properties for the
current method (10.18).

Theorem 10.7 (convergence of Newton’s method - IT).

(i) The triple (h,Gh,z*) is feasible if there exist ¢ > 0,8 > 0 and a function
o(+) such that, for all x € z* + 6B, the conditions (CI) and (CA) are
satisfied.

Moreover, having (CI) and (CA), let

e € (0,1), a € (0, %ceL‘l], and let r € (0,6] be small

enough such that o(z — z*) < %cll:c - z*|| Yz € z* + rB. (1022)
Under this condition, the convergence can be quantified as follows:
(ii) If r even satisfies
oz -z*) < %ac"m‘ ~z|| Vrez*+rB, (10.23)

then €,a and v fulfill the requirements in the definition of feasibility. In
particular, (10.18) remains solvable if ||z° — z*|| < r.
(iii) If there exists a solution @ of (10.18) for every z* € =* + rB, then

[la** — 2*}| < 3(1 + eMllz* — 2"|l, provided that ||z° ~ 2*|| < r.

So (10.23) and ||z**+t - z*|| < eflz* — z*|| hold for large k.
(iv) Ifall =*t! are exact solutions of (10.18), then they fulfill

ellz*+t — 2*|| < o(&® - z*) with o(*) from (CA) if ||z® — z*|| < .
o]

Note: The conditions (CI), (CA) and (CA)*, respectively, must be imposed
for ||ul] < 2||z — z*|| only. ©
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Proof. Given £ € (0,1), let r be taken as under (10.22), and let z € z* + rB.

(Preparation)
First we apply (CA)* and (CI) to elements u € ||z — z*||B only. With u* =
z* —z, (CA)* and (10.17) yield

@ # h(z) + Gh(z,u*) C o(u*)B,

and (CI) ensures
llvll 2 clw*(| Yo € Gh(z, u*).

Thus, since o(u*) < -1-c||u*||, it follows
Al 2 gellu*ll (10.24)
This yields that, for each a > G,
sacllz* — ofl < alih(@)]) < aLile - *| (10.25)
holds true.

(ii, existence of a solution to a > 0)

Now let a € (0, ltscL‘l] and r be small enough such that (10.23) holds true.

Then h(z) + Gh(za:, u*), contained in o(u*)B, meets the larger balls
Socljz* ~ 2l|B C ellh(2)||B.

Hence u* = 2* — 2 solves (10.18) for z* = & with the current a.
Up to now we only applied the conditions (CA)* and (CI).

(ii, estimate of any solution to o > Q)
Next, let 4 by any solution of the auxiliary problem (10.18) at ¢ = z*. By
(CA) we observe

0 # allh(z)||BN[A(z) + Gh(z, u)] (10.26)

C oflh(z)||B N (Gh(z,z + u ~ 2*) + o(z — 2*)B), )

and by (CI), each v € Gh(z,z + u — 2*) + o(z — =*)B) has at least the norm
lvll 2 ellz + u — *|| - o(z ~ z*).

Because some v belongs to al||h(z)||B, this yields with (10.25) that the key
inequalities

ez +u - z*|| < o(z - z*) + a|lh(z)|| < o(z — z*) + aLi|lz* —z|| (10.27)

hold true.
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(iv, estimate of any exact solution)
For exact solutions « of (10.18), condition (CA) yields

0 € h(z) + Gh(z,u) C Gh(z,z +u - 2*) + o(z — z*)B,
so the estimates (10.26) and (10.27) hold even with e = 0 and lead us to
clz +u-z*|| S o(z ~ 2*) < Jellw —z*|| < Fer.

Thus, exact solutions z*+! = x4y satisfy ||z**+! —z*|| < %r, sogkt! g z‘+%rB
and (iv) is true.

(Note)
Recalling our basic settings in (10.22), namely

o(x — z*) < %c”z ~2*|| and @ < %ceL'l,

inequality (10.27) provides (for exact and “inexact” solutions as well) an esti-
mate for u, namely,

lull < lle —2*I + lla* — = — uf|
< |lz = 2*[| + c*o(z — 2*) + e L|jx — 2*||
1 *
< llz = z*|| + 3llz - =*|| + %E“z - z*||
< 2l — 2|l

(10.28)

So, our assumptions (CI), (CA) and (CA)*, respectively, have to hold for
llull < 2flz - =*(|
only.

(iii)
Additionally, (10.27) ensures

1 1 1
lz +u - 2*|| < 5llz - 2*|| + jellz — 2*|| = 3(1 + e)llz — 2*||.
Thus, all %+ are again in z* +rB and converge to z* as asserted under (iii).

(i) and (ii)
Finally, if also (10.23) holds true, then (10.27) ensures
cllz +u - 2|l sacllz® — || + aLllz* - 4|
2al|z-2z
ce L™ Lz - z*|).

IAIAIN

So (ii) (and hence (i)) is valid as desired: ||z +u — z*|| < €|lz — z*||. O
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The proof also shows that, with the constants of the theorem, the following
holds:

Due to (10.24), the zero =* of h is isolated. For & > 0 and = = z* near z*,
the point u* = z* — z is a solution of the auxiliary problem (10.18) satisfying

0 =)llz+u* - 2| < ellz — 2*||.

The full condition (CA) - not only (CA)* - was needed for showing that all
solutions u of (10.18) satisfy this estimate

e +u— 2l < ellz - 2*|},

thus they fulfill (10.28), too.
Finally, using (ii), the inequalities (10.24) and |[|z*+! — z*|| < el|z* - =*||
ensure

A1)l < Llia*+ ~ 2*|| < Lellz® — 2*|| < 2Lec™[|(=*)l|.  (10.29)
So [|h(-)|] is decreasing provided that e (depending on L and ¢) has been taken
sufficiently small.

10.3.2 Necessity of the Conditions

Under several particular settings, the technical condition (CA) may be replaced
by (CA)*.

Theorem 10.8 (the condition (CA)). Suppose X =Y = R”, and let Gh
denote any of the following generalized directional derivatives:

Gh(z,u) = Th(z,u),

Gh(z,u) = Ch(z,u),

Gh(z,u) = 8h(z)u (Clarke’s Jacobian applied tou),

Gh(z,u) = h'(z,u) (usual directional derivatives, provided that they exist)
Gh(z,u) = {Au|A = Dh*(z) and h*(z) = h(z)}if h € PC'(h!,....,hA™).
Then, the conditions (CA) and (CA)* are equivalent. <

Proof. If Gh(z,u) = M(z)u where M(z) is a set of linear functions, condition
(CA)* means

h(z) + A(z* - z) € o(z —z*)B VA € M(z).
One obtains (CA) by adding Au:
hMz)+Aue Az —2* +u)+o(z—z*)B VA e M(z).
For Gh = Th, the proof follows from the subadditivity inclusion
Th(z,v' +u") € Th(z,u') + Th(z,u"),
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cf. (6.10) in Section 6.2, and is left to the reader.

Next we will only consider directional derivatives k', because the proof for
Ch is basically the same (one has only to select appropriate subsequences).
Thus, let h be directionally differentiable near z*. We may suppose that
o = o(u) in (CA)* is u.s.c. and decreases for |ju|| = 0. Further, z* = 0 may be
assumed. We have to show that, for arbitrarily fixed v € X,

h(z) + K'(z,u) € k' (z,z + u) + o(z)B. (10.30)
Our assumption (CA)*, h(z) + h'(z, —z) € o(z)B, allows us to write

h(z — Az) = h(z) + AW (z, —z) + alz, )

= h(z) + M=h(z) +&(z)) + a(z, \) (10.31)

where e(z) € o(z)B and |la(z, A)||/A = 0as A = 0. Regarding the assigned
limits (for ¢ § 0) we have

K (z,z + u) limth(z + t(u + 7)) — h(z))

K (z,u) + lim ¢~ [A(z + tu + tz) — h(z + tu)]

So we have to verify that
h(z) = limt~[h(z + tu + tz) — h(z + tu)] € o(z)B.
After setting
8=1/Q+t),r=83/1+t)andp=p(t) =z +tu+tz

we notice that
T+tu=38p+ru

d
" h{z + tu + tz) — h(z + tu) = h(p) — h(sp + [*/(1 + t)]u).

When computing the limit of the crucial quotients
t~ [h(z + tu + tz) — h(z + tu)] = t "1 [h(p) — h(sp + [2/(1 + 8)]w)],

the term [t2/(1 + t)]u may be omitted because h is locally Lipschitz.
Next, write h(sp) = h{p — Ap) with

A=t/(1+1)
and apply (10.31). Then,
(h(p — Ap) = A(D)l/A = —h(p) + £(p) + alp, A)/A.

For small ¢, it holds ||a(p, A)||/A < o(z) and, since e(p) € o(p)B and o(-) is
norm-decreasing and continuous,

lle)ll < o(22).
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Thus the limit lim [h(z + tu + tz) — h(z + tu)] /t (for vanishing ¢t or A) belongs
to
~h(z) + (o(2z) + o(z))B.

This ensures the assertion (10.30) with a new function o'(z) = 20(2x). m]

Using the approximation of a Lipschitz function by directional derivatives (if
they exist near z*), i.e., h(z)—h(0) € h'(0;z)+o(z)B, our Theorem 10.8 verifies
the following statement:

If h(z) — h(0) + h'(z; —z) € o(z)B
then h'(0;z) + h'(z;u) € A'(0 + z;z + u) + o(z)B.

This is an interesting additivity property of directional derivatives for €%
functions.

Having normed X and Y, the equivalence (CA) & (CA)* for directional
derivatives remains true (by the proof just given). However, when dealing with
contingent derivatives and dimY = oo, one needs a strong extra assumption
that replaces the existence of &': Given any sequence #x | O there is always a
(norm-)convergent subsequence of t; ! [h(z + tyu) = h(z)].

At the end of this section, we characterize the necessity of (CI) and (CA)
for several relevant settings.

Theorem 10.9 (the condition (CI)). Suppose thath € C%(R",R") and
n(x*) = 0.

Let Gh(z,u) = Th(z)(u).
Then (CI) holds atz* & (CI) holds for © nearz* & h is strongly regular at z*.
Having (CI), Condition (CA) is necessary and sufficient for (h,Gh,z*) being
feasible.

Let Gh(z,u) = 8h(z)u.
Then (CI) holds at &* € (CI) holds for x near =* ¢ Oh(z*) non singular.
This condition is stronger than strong regularity.

Let Gh(z,u) = Ch(z)(u).
Then (CI) holds atz* < h~Y is locally upper Lipschitz at(0,z*).

Let Gh(z,u) = h'(z;u), provided that directional derivatives exist near z*.
Then, supposing strong regularity, (CA) is necessary and sufficient for{h,Gh,z*)
being feasible; supposing pseudo-regularity, (CI) is satisfied for & nearz*. <

Proof. Let Gh(z,u) = Th(z)(u).
The first assertions follow from Theorem 5.14 and closeness of Th(-). To show
the necessity of (CA) [for sufficiency apply Theorem 10.7], we may assume that
z* =0.

Let v € h(z) + Th(z)(~z). We have to show that v € o(z)B. Using the
inverse and subadditivity (6.10) of Th™1, it holds

—-z € Th™ (h(z))(v - h(z)) C Th~ (h(2))(v) + Th~}(h(z))(~h(z)).



10.3. Nonlinear Auxiliary Problems 273

We select
w € Th™Y(h(z))(v) and v € Th~}(h(z))(—h(z)) such that —x = w + u.

Every u € Th™}(h(z))(—h(z)) solves 0 € h(z) + Th(z)(u). Hence, due to feasi-
bility, —w = z + u belongs to o(z)B. Since v € Th(x)(w), this yield as desired
v € Lo(z)B where L = Lip (h).

Let Gh(z,u) = Oh(z)u.
By Clarke’s inverse function theorem, we have 8h(z*) non singular = (CI). By
Example BE.3 we see that the reverse statement does not hold, in general. The
rest follows from closeness of 8h(+). Notice that the piecewise linear function of
this example fulfills condition (CA); so the example is relevant in the present
context.

Let Gh(z,u) = Ch(z)(u).
The statement follows immediately from Theorem 5.1.

Let Gh(z,u) = h'(z;u).
Let h be strongly regular. Then (CI) is obviously true for £ near *. Moreover,
under strong regularity one can show that h is directionally differentiable iff
h~! shows the same property (cf. Exercise 10). Then is also holds - since the
next equivalence is valid for contingent derivatives,

0 = h(z) + A'(z;u) & u € (hY) (h(z); ~h(z)).

Because (h~!)’ exists, there is always some u = u(z) satisfying this equation.
Having feasibility of our triple (or superlinear convergence of the (a = 0)—
version), we obtain once more z+u € o(z)B. Accordingly, we write 4 = —z+0;.

Now, to show that (CA) is valid, assume that v = h(z) + b'(z; —z). Then,

—~h(z) € K'(z; -z + 0;) and — h(z) + v € h'(z; —z).
Since h'is Lipschitz (with rank L) in the second argument, it follows
llell < Lilozl| with oz € o(2)B,
which gives (CA)* and — by Theorem 108 —even (CA).

Finally, if & is only pseudo-regular at &*, the assertion is true due to Theorem
5.12. m}



Chapter 11

Particular Newton

Realizations and Solution
Methods

After some problem has been modeled as a (nonsmooth) equation, the Newton-
steps for solving the latter induce particular iteration steps (actions) and reg-
ularity requirements in the original problem; for instance, compare equation
(9.21) and the intrinsic equivalent equation (9.22). We study these actions and
requirements for Karush-Kuhn-Tucker systems (KKT) of optimization models,
and want to demonstrate their dependence on the applied Newton techniques
and the corresponding reformulations.

We will see that the related auxiliary problems (being linear or nonlinear
equations a priori) describe solutions of quadratic optimization problems in all
cases. So one can solve the auxiliary problems by several methods (of sec-
ond or first order), in particular if certain numerical difficulties occur with the
current one, In this way, connections to SQP-methods (sequential quadratic
programming) become evident, but we also establish a bridge to methods of
penalty-barrier type and will compare the hypotheses and actions in terms of
the original problems.

Our tool consists in studying certain perturbed Kojima systems that de-
scribe, in a uniform way, stationary points of assigned penalty or barrier func-
tions close to an original solution z*. So the approach permits solution es-
timates, based on regularity assumptions at x*. In addition, it makes also
clear (by using general properties of pNNCP functions) that reformulations of
the KKT- complementarity condition by pNCP functions can be always mod-
eled in form of particularly perturbed Kojima systems with perturbations that
depend on g;(z) and y; only.

275
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11.1 Perturbed Kojima Systems

We consider perturbations of the Kojima functionF' : R™*™ — R™™, assigned
to the C'*! problem

min f(z) s. t. g(z) <0, (11.1)
namely,
Fi = Df(z)+Zy] Dgi(x),
Fi = a@) -y —tyf
and study solutions of the system
F1 = 0

Let us show that this system is closely related to penalty and barrier methods
for problem (11.1). Note again that - in contrast to the common terminol-
ogy in the literature - the whole auxiliary function (i.e., objective function +
penalty/barrier term) is said to be a penalty/barrier function.

Quadratic Penalties
Suppose t; > 0Vi. Let (x,y) solve (11.2). Then we know:

If y; <0, then it follows g = 0 and gi(z)* = 0.
Ify: > 0, then itfollows gi(z) = tiy and g = £ gi(z)*.

Hence, we obtain in both cases 0 = Fy = Df(z) + £ t; ' g;(z)* Dgi(z) , i..,
z is a stationary point of the penalty function

P(z) = f(2) + 3 T 7 [s(@)* .
Conversely,if z is stationary for Py(z), then (z,y) with
yi =t7"gi(z) for gi(z) > 0 and yi = gi(z) for gi(z) < 0
solves (11.2).

Logarithmic Barriers

Let t; < 0 Vi. Now, the second equation of (112), gi(z) = y;” + tiy (< 0),
implies feasibility of « in (11.1). Let (z,y) solve (11.2). Then:

If yi <0, then gi(z) =y; and y;7 = 0 does not appear in the Lagrangian.
Ify; >0, then gi(z) = tiy} and yf = t;7 gi(z)".

Setting J = {i|y; > 0} we thus observe
0=F =Df(z)+ Xy 17 9i(z)” Dgi(a).
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Hence, the point & has the following properties. It is feasible for (11.1), fulfills
gi(z) < 0Vi € J, and is stationary (not necessarily minimal !) for the function

Qu@) = f(2) + § Ties 7 ' los(@) 1"
Conversely, having some z with the latter properties, the point (z,y) with

yi=t; g;(:c) (ied) and g =gilz) G € J)

solves (11.2).
For i € J, the terms gi(z)~Dgi(z) coincide with g;(z)2D(In(~gi(z)). Sowe
see that

t; 9i(x)” Dgi(z) = t;  gi(2)* D(In(-gi(x)) = ¢; y} D(In(~g:(z)).

Accordingly, the current point z is also stationary for the logarithmic barrier

function
By(z) = f(2) ~ Ties It 4 In(-gi(2)).

Theorem 11.1 (perturbed Kojima-systems). Under the above settings, zeros
of the perturbed Kojima equation (11.2) and critical points of the well-known
auxiliary functions Py, Qs, By correspond to each other.

Under strong regularity of (11.1) at a critical point (x*y*) of F, the solu-
tions (ze,¥e) of (11.2) are, for small \|t||, locally unique and Lipschitz. So, it
holds

Hzer s ye) — (zes we)ll < L)t — t]) for all t,t' near the origin. (11.3)
<

Proof. This follows directly from the given transformations and Corollary 4.4,
since the maps y; ++ &y are small Lipschitz functions in the C®'-norm. D

Remark 112 (modifications). The inequality (11.3) now compares solutions
of different methods in a Lipschitzian manner. Further, one may mix the signs of
the t-components and obtains similarly stationary points for auxiliary functions
containing both penalty and barrier terms. So, given some initial point z, it is
quite natural to put

t; <0 ifgi(x) <0 and t; > 0if g;(z) > 0.

Moreover, for critical points (z,y:) which are not locally unique, the same
arguments including Corollary 4.4, present estimates of (z¢,3:) under pseudo-
regularity of F at (z*,y"*) or ensure estimates of the difference (z, y) - (z*, ¥*)
under the upper Lipschitz property of F~1 at (z*,y*), evenif f and g are only
C* functions.
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If problem (11.1) includes also equality constraints
h(z) = 0 with related duals z,
then additional perturbations of the type
hy(z) = 76 2

change thefunctions P, @¢ and By only by additional terms
1 -1 2
+3 2; ot he(z)2.

Concerning other auxiliary problems and more details we refer to [Kum95b,
Kum97].

11.2 Particular Newton Realizations and SQP-
Models

Let us assume that k in Section 10.1 coincides with Kojima’sfunction F(z,y),
assigned to our standard optimization problem (11.1),

Fi(z,y) = Df(z) + ) _yi Dai(z),  Fas(z,y) = g;(z) - v} .

For deriving relations to SQP-methods, we suppose f,g € C?. Then Fis a
PC! function, and all the mentioned derivatives are Newton maps (or satisfy
condition (CA)). Again, we omit additional equality constraints only for seek
of brevity.

Depending on the choice of a Newton map M (or of a generalized derivative)
we investigate the kind of the related auxiliary problems and the meaning of
the (Newton-) regularity condition (10.4), imposed for points z = (z,y) near a
zero z*, In all subsequent cases, we assume that 2 is the current iteration point
and (u,v) describes the movement (Z,¥)new — (2,¥), defined by the Newton
step.

It will be seen that (u,v) is a solution (primal-dual) of some quadratic opti-
mization problem. So the (generalized) Newton-methods are at the same time
SQP-methods, and differences between them arise from the different approxi-
mations of A = Fin the related Newton equations.

We are now going to study this interrelation for particular settings.

Case 1:

Apply the usual Newton method to any fixed generating function FS of F
being active at the initial point (z°,y%).
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The functions FS are defined by index sets § C {1,...,m} as

Fi(z,y) = Df(a)+ Lics viDgi(@)
F,‘,;(z,y) = giz) ifieS
Fy(z,y) = gs(z) —y; if j € {1,...,m}\S.

Here, we assigned, to (§7,%;"), the function y; = (i, 0)if ¢ € § and y; ~ (0,9;)
otherwise. The initial set S° has to be active at (z°,3°), ie.,

i€8%ify) >0 and j € S°if y§ <O.

If 9 = 0, we may fix any of the two alternatives. Because S = §°remains fixed
during all steps, the iterations require

Fs(zv y) + DFS(“"’ y) (v, t1)T =0
The equations related to FBSJ- for j € § have the form

gi(z) + Dgj(z)u=y; +vj (= yjnew ),
and v; does not appear in any other equation. Thus, we have to solve the
problem

p[S%:  min f(£) s.t. g(§) =0Vie S°

by linearization of the related C*— Karush-Kuhn-Tucker system at (z,y).

Condition (10.4) requires regularity of the Jacobians DF#(z*) for all S, ac-
tive at z*. This is strong regularity of all related problems p{S] at the solutions
(=*,¥%). So condition (104) is weaker than strong regularity of the original
problem at (z*,y*).

Case 2:

With the Kojima-Shindoh approach (see §10.1.2), one selects some set S
being active at the current point (z,y) and makes next a Newton step based
on (changing) S as above. The condition (10.4) is the former one. The method
is a classical ” active index set” algorithm.

Case 3:

Applying the generalized Jacobian M = 8F (= TF, since f,g € C?*) one
may take any matrix P(r) € 8F(z), cf. (7.49), for the Newton step

F(z) + P(r)(u,v)T = 0.

Condition (104) requires more than above, namely just strong regularity of
problem (11.1) (or of F) at (z*,y*).
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We study the Newton steps for the original Kojima system and the per-
turbed equation (11.2) at once by considering any ¢; € IR and dealing with the
Newton equation for F*t

F'(z) + P(r,t)(u,v)T =0, P(r,t) € 8F'(2). (11.4)

Recall that this setting represents a mixed penalty-barrier approach, cf. Section
11.1, for solving (11.1).

Let z = (z,y)and t be fixed. Practically, ¢ may depend on z (in each step).
To obtain locally superlinear convergence, it suffices to ensure that

It = o(F(2)), e.g., |t:| = IF(2)II,

cf. the Remarks 10.3, 104 concerning approximation (10.11) in Section 10.1
and notice that not only 8F but also the original Kojima function F has been
changed by {.
We abbreviate Df = Df(z),Dg; = Dgj(z) and F = F(z,y). Given r €
Rr(y), cf. (7.28), we put
bi=1l—-ri+tiry Vi

in accordance with the 7-derivativeof y;” + tiy; .

Below, D2, L(z) will stand for D,Fj(z),so theLagrangian L = f+(y*,g)
does not depend on y; £ 0 (in contrast to the case 4 following next). Finally,
put

J = {i| b # 0}, K = {k| by = 0}.

Ify; < Othen r; = 0, b; = 1; hence ¢ € J, and our weights w; in the next
statement are zero.

Lemma 11.3 (Newton steps with perturbed F). In the current case, a Newton
step (11.4) means to find a KKT- point (u, ) of the problem

ming (Df + Xye e Dgr)u + juT D3, Lu + 33, ywilgi + Dgiu)? (11.5)

st. ge+Dgru=0 VkeK; '

where wi = b7 and L = f+{y*,g). The vectorv in (11.4) is then given by
vg = (1 — t) (k € K) and v; = b7 (g; + Dgsu — (y + i) (i € J).

<o

Proof. The linearized equations Fy; = 0 require (equivalently), by the product
rule given in Corollary 6.10,

gi + Dgiu = bivy = y7 + tiy}H,
1le.,

v; = b7 gi + Dgiu — (yi” +tiy])1 (6 € J) and g + Dgru = 0(k € K).
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By substituting v; in the linearized equation Fy =0, i.e., in
Fl + D:gLu + Ekekrkkagk + Zie"riviDgi = 0,
and setting
pr =1rvp = (1= t) v, for k € K,
one obtains
0=F + D Lu+ P ek eveDgr + Loy wilgs + Dgiu — (37 + iy )] Dy
= D3, Lu+Df + Lyex g + 1x)Dgs
+ Yies W + wilgi + Dgeu ~ (y7 + tw)])Dgi
= DZ,Lu+Df + Lyex (vi + 1e)Dgx
+ e (1 = wit)y§ ~ wiyy + wilgi + Dgu]) Dyg;.

For i € J, we have (1 — wit;)y} — wiy; = 0. Indeed, if y; < 0, we know that
vy =0, w;=0. Ify; >0 we haver; = 1, wy =b;'1 and b; = ¢;.
So the Fy - Newton equation becomes

0=D2,Lu+Df + X, cxyrDgr + Licswilgi + Dgiu)Dgi + ¥4 cxchr Do
and has the form
0= DyQ(u,) + Lre itk Dgs,
where
1 1
Q=(Df+ ZkEKykng)u + EUTDLL'LL + 3 Zw.'(g; + Dg; u)?.
ieJ

This proves the assertion. O
Note. The case of K = @ (no constraints in problem (11.5)) can be easily
forced by setting ¢; # 0Vi and r; = 1 whenever y; > 0.

Let ¢; > 0. Then, if y; > 0, the weights w; = t;' are just the penalty
factors. For y; = 0 and ¢; = 0, all choices of 7y € [0,1] are allowed. So w; may
attain all non-negative values.

Let t; < 0. If gy > 0,now w; = ¢;! is negative, and stationary w are not
necessarily minimizer of problem (115). Ify; =0, it holds 0 > wy > ¢;!. ¢

Case 4:

Application of NCP functions. To solve the KKT-system of the C? - prob-
lem (11.1) by the help of some function G € pNC P, require the usual Lagrange
condition (without y;7 !)

®1(z,y) := Dz L(z,y) := Df(z) + LpiDgi(z) =0
and write the remaining conditions as

®3(,y) = G(-gi(z), 1) =0.
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Using the derivative D°G in accordance with (10.12) we have to solve

DyL(z,y) + D2, L(z,y)u + Y, viDgi(z) = 0 (11.6)
—ai(gi(z) + Dgi(z)u) + bi(yi + v;) 0, (11.7)

with (a;,b;) € D°G(~gi(z),9:). Let
J = (i b # 0}, K = {k| bx = 0}.

Now the Newton equation has again the form of case 3, only a@; and r; must be
identified for ¢ € J and L stands for the usual Lagrangian.

Lemma 11.4 (Newton steps with pNCP). In the current case, a Newton step
means to find a KKT-point (u,u) of problem (11.5)

ming(Df + ¥ gex ¥ Dgr)u + 3uT D2, Lu+ 1 3, ; wig: + Dgiu)?
st. g+ Dgru =0 VkeK;

where w; = aib;1 20and L= f+{y,9) . The vectorv in (11.6), (11.7) is
then given by

vk = pr(k € K) and vy = ~y; + wi(gi + Dgiu) (i € J).
<
Note. It holds y* > 0, and non-zerocoefficients w; = a.-b;'1 (1€ Jy; 2 0)
coincide with w; = ri(1 — r; + #;7;)~? of case 3 after setting ¢ = bia] ! and
ry=1. <
Proof. Since (a;,bs) # 0,(11.7) yields

0 = gr+Dgru(keK)
vi = -y +wg+ Dgiu) (i € J).

Replacing vy in (11.6) we obtain

0 = Di,Lu+t Dol + Y 4cpusDgr + X iesl~vi + wi(gi + Dgiu)| Dy
= DZ,Lu+Df(Z) + X rcxWr + ve)Dgr + 3ic; wilgs + Dgiu) Dgy.
So the equivalence follows by the same arguments as under case 3. a

For k € K, nowyx <0 is possible. Further, theconvergencez — 2* yields both
wi +ooifyf >0, andw; L 0if g;(z*) <0.

So the method realizes basically a penalty approach.
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Case 5:

Perturbed generalized Jacobians and unperturbed Kojima function. et
the Newton step be given by

F(z) + P(r,t)(u,v)T =0,  P(r,t) € 8F(2), (11.8)

where F* belongs again to the perturbed equation (11.2), t; € R. We are now
using approximations of the (unperturbed) Newton map M = 8F(z) whichis
justified as long as we select t (assigned to z) in such a way that |[t]| < ||F(2)]l,
cf. the Remarks 103 and 104
Compared with case 3, the terms £y do not appear, and the above proof
leads us via
(A - wit)yf —wiyy =y —wy =y}

directly to the modified objective
1 1
(Df + Licku¥i Dai)u + -éuTDgzLu + -2-2,-6‘,104(9.- + Dg;u)2.

All the other conclusions of case 3 remain true after setting &; yi =0, ie.,

r € Rr(y), bi=1-ry+tyr; Vi
J={i|bi#0}, K ={k|b =0}

This way one obtains

Lemma 11.5 (Newton steps with perturbed 8F). Inthe current case, a New-
ton step (11.8) means to find a KKT-point (u, u) of the problem

min, Dy Lu + juT D2, Lu+ } T,y wi(gi + Dgyu)?

11.9
st. g +Dgru=0Yk€ K, (11.9)

where wiy = b7  and L= f +{y*,9). The vector v in (11.8) is then given by
vk = pi(l - te)(k € K) and vs = b7 (gi + Dgiu - y; )i € J).
<

Note. In comparison with (11.5) now the first derivative of the full Lagrangian
appears in the objective. Setting particularly ¢; # 0V ¢ and selecting r € Rr(y)
with r; = 1if g > 0, we obtain K = @ as well as:

A Newton step (11.8) means to find a stationary point of

1 1
DiLu+ 5u"D},Lu+ 55 et (96 + Dgi w)® (11.10)

where L= f+(y*,g).
The vector v is then given by v; =t Y(g: + Dgsu — y7) Vi. o
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Case 6:

Solving auxiliary problems of Wilson- type, means to apply Newton’s method
by using directional (or contingent-) derivatives of F:

F(z,y) + CF(z,y){u,v) = 0. (11.11)
The solutions (u,v) fulfill the same conditions as in case 3 since CF C TF.
The structure of Re(y,v), cf. (7.29) implies additionally that r; € {0,1} and
ur = et 2 0. So the constrains may be written as inequalities.

Since f,g € C?, it holds CF = F' (directional derivative). Now we have to
solve the system

DizL(z)u + Z?‘.”U‘Dg;
Dgiu - (1—1‘_1)‘0.'

"Fl
"(gi - yi—)’ re RC(y’v)’

where again L = f + ¥, y; 9i. With the transformations (7.30) &; = ryv; and
B; = (1 — r{)v; the conditions become

(11.12)

ai=0fory; <0,8; =0 fory; >0, and &;8; = 0,04 2 0,8, < 0 for y; = 0.
The left side in (11.12) is

D% L(z)u +Dg’a
Dgu -B.

Therefore, we are solving a linear complementarity problem, and since oy > 0
and B; < 0 for y; = 0, the solutions are the critical points (u, &) of the quadratic
problem (now with inequality constraints)

min D.Lu+ $uTD3, Lu
st. gi+Dgu<0 for y; = 0,
gk +Dgru=0 for yx > 0,

where L = f + (y*,g). The vector v is then given by

vy = ai+g+Dgiv for yi 20,
vi = —yi+gi+Dgu fory <O

So we are applying, as before, a method of sequentially quadratic approxima-
tion,

Basically, the present one is Wilson’s method which has been originally de-
veloped under the strict complementarity assumption, LICQ and the strong
sufficient second order condition (i.e., positive definiteness of the Hessian on
the (y%)- tangent space). We investigate condition (CI).

Let S have the same meaning as in case 1. Recall that S is active near z if
FS = F holds on some neighborhood of z. We put

S € I°(2) & S is active near 2’ for certain 2’ — 2.
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Lemma 11.6 (condition (CI) in Wilson’s method). Condition (CI) for method
(11.11) means equivalently that

DF5(2*) is regular for each S € I°(z*).

Proof. Assume (CI) holds true. We show first

IDF3(2)7}| < 1/c if S is active near z € z* + £B° and ¢ is small enough.
(11.13)
Indeed, for ||z — 2*|| < &, the terms CF(z)(u,v) in (11.11) satisfy

inf [CF(2)(bdB)||2¢>0

If S is active nearz € 2z* + €B%, then from CF(z) = DF5(z), it follows
(DFS(2)M|| < 1/e.

Conversely, we show that (11.13) ensures (CI). The set € of the points
z under consideration in (11.13), is dense in 2* 4+ €B?® (shown in the proof
of Lemma 6.17). We thus conclude (by continuity arguments) that all P €
D°F(2')for ' € z* +¢B satisty ||P7Y|| < 1/e.

Formula (6.33) in Section 6.4.2 now yields CF(z'}(u,v) C D°F(2')(u,v) and
ensures (CI) because of

inf ||CF(z')(bd B)|| 2 inf |D°F(2')(bd B)|| 2 ¢  Vz' € 2* +£B.

So (CI) and (11.13) are equivalent.

Taking into account that I®(z) C I®(z*) for 2 € 2* + &B and small ¢,
condition (CI) can be equivalently written as regularity of all DFS(z*) for
S € I*(2*).
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Chapter 12

Basic Examples and
Exercises

12.1  Basic Examples

Example BE.O
A pathological real Lipschitz function (lightning function).

We present a simple construction of a special real Lipschitz function G such
that F.H. Clarke’s subdifferential fulfillséG(z) = [-1, 1]. The existence of such
functions has been clarified in [BMX94],

It will be seen that thefollowing sets are dense in R:

the set Dy = {z| G is not directionally differentiable at x},

the set of local minimizers, and the set of local maximizers.
To begin with, let U : [a,b] =+ R be any affine-linear function with Lipschitz
rank L(U) < 1, and let ¢ = %(a +b) . As the key of the following construction,
we define a linear function V by

V(z) = U(c) ~ ag(z — ¢) if U is increasing,
1 Ulc) +ag{z —¢) otherwise.

Here,

and k denotes the step of the (later) construction. Given any € € (0, 3(b - a))
we consider the following 4 pointsin R?:

p1 = (a, Ula)), p2 = (c—e, Vic—¢€)), ps = (c+¢&Vic+e)), ps = (b, U(b)).
By connecting these points in natural order, a piecewise affine function

w(e,U,V):{a,b] > R

287
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Figure 12.1: Lightning function: principle of successive construction.

tipFunation such that tha Clarke-tubdiff. = [ =1 , 1 } svervwhare

Global_Lip = 3.133000E-0001 = 3 kK = 1
Glabal_Lip = 3S.09672E-0001 P = 9 k = 2
Global_Lip = 7.813211E-0001 [ 27 Rk = 3
Global _Lip = - ~000 1 n = a1 k = 4
Global Lip 5 9.951068E-0001 P = 243 k= 3
Global Lip = 9.993972E-0001 = 79 ik = 6
Glabal _Lin = 9.996833E-D0001 e = 2187 k= 7

Figure 12.2: Lightning function: g for k = 7 (z = 1 lies outside).

is defined. Tt consists of 3 affine pieces on the intervals
[a,c—gl,[e—&,e+gl,[c+¢,b]
By the construction of V and py,...,ps, it holds
Lip (w(e,,U, V)) < 1 provided that £ is small.

After taking € in this way, we may repeat our construction (like defining Can-
tor’s sety with each of the related 3 pieces and larger k, see Figures 12.1 and
12.2.

Now, start this procedure on the interval [0, 1] with the initial function
Uiz)=0 and k=1.

In the next step k = 2 we apply the construction to the 3 pieces just obtained,
then with k = 3 to the now existing 9 pieces and so on.

The concrete choice of the (feasible) € = (k) > 0 is not important in this
context. We obtain a sequence of piecewise affine functions g on [0,1] with
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Lipschitz rank < 1. This sequence has a cluster point g in the space C[0,1] of
continuous functions, and g has the Lipschitz rank L = 1. Let

N = {y €(0,1)| gr has akink at y} and N be the union of all N;.

If y € Nj , then the values gi(y) will not change during all forthcoming steps
i > k.Hence g{y) = gr(y). The set N is dense in [0,1].

Connecting arbitrary 3 neighbored kink-points of gx and taking into account
that these points belong to the graph of g, one sees that g has a dense set of
local minimizers (and maximizers).

Further, let D be the dense set of all centre points ¢ belonging to some
subinterval used during the construction. Then each y € D is again a centre
point of some subinterval I(k) for each step with sufficiently large k. Thus,
9(y) = gr(y) is again true.

Moreover, for arbitrary & € (0, 1), one finds points

v,y € (y,y+6) such that ¢, y" € N
and g(y') - g(y) > (1 =) (¥’ —y) as well as
9(y") —9() < -1 =& (Y" —y);

namely the nearest kinks of gz on the right side of g where k is (large and) odd
or even, respectively. This shows that directional derivatives g'(y;1) cannot
exist for y € D. In addition, by the mean-value theorem for Lipschitz functions
[Cla83], one obtains 8g(z) = [~1,1] ¥z € (0,1).

To finish the construction define G on R by setting G(z) = g(z— integer (z)),
where integer () denotes the integer part of . Needless to say that G is also
nowhere semismooth.

Derived functions: 1et h{z) = }(z + G(z)). Then 8h(z) = [0,1] for all =,
h is strictly increasing, has a continuous inverse A~! which is nowhere locally
Lipschitz, and h is not directionally differentiable on a dense subset of R. In the
negative direction — 1, h is strictly decreasing, but Clarke’s directional derivative
he(z; —1) is identically zero. The integral

i
F@t) = / h(z) dz
0

is a convex C%! function with strictly increasing derivative A, such that
0 € Th(t)(1) =[0,1] YVt and 0 € Ch(t)(1) forall ¢ in a dense set
holds true.

Example BE.1
Alternating Newton sequences for real, Lipschitzian | with almost all initial
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Lip_Fuot loa sueh thal Neuton's Hethed corwaerses nouhara

Lip_Conat = 2.4D0E+0000 /

SuliDIFrf at Zaro = [ 0.3 , 2 1 o~

Figure 12.3: Alternating Newton sequences for Lipschitzian f.

points.

To construct f : R — R, consider intervals I(k) = [k~*,(k - 1)~!] C R for
integers X 2 2, and put

c(k) kT4 (k- 1)71 (the center of I(k))
c(2k) = }[(2k)~'+ (2k ~ 1)71] (the center of I(2k)).

it

In the (z,y)-plane, define

gk = g&() to be the linear function through
the points ((k — 1)~1, (k = 1)~!) and (—c(k),0),

le.,
gx(x) = ax(z + ¢(k)), where ax = (k — 1)~ /[(k — 1)~ + ¢(k)].
Similarly, let

hi = hy(x) be the linear function through
the points (K™%, k™) and (c(2k),0),
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e hi(z) = bi(z — c(2k)), where by = k=1/[k™ — ¢(2K)).

Evidently, g =0 atz = —¢(k),hx =0 at z = ¢(2k). Now definef forz > 0 as
f(z) = min{ge(z), he(2)} ifz € I(k) and f(z) = ga(z) if z > 1.
We finish the construction by setting f(0) = 0 and f(z) = —f(~=) for z < 0.

The related properties can be seen as follows:

For k — o00,0ne obtains lima; = §and lim b = 2. The assertion Df(0) =1
can be directly checked. Again directly, one determines the global Lipschitz
rank

1.1 1 I 2
One the left side of the interval I(k), f coincides with hy,one the right with gg.
Since gx(c(k)) < hi(e(k)), f coincides with g on a small neighborhood of the
center point ¢(k).

Now, let us start Newton’s method a some z® € 8. Then the next iterate
z! is some point *ec(k) € @!. There, it holds Df = Dgy (or Df = —~Dg; for
negative arguments). Hence, the method generates the alternating sequence
20, 2!, 2 = 21,23 = 7!,

Example BE.2

A function f which is one of the simplest nonsmooth, nonconvex functions on
a Hilbert space. Pseudo-regularity of the map F(z) = {y € R| f(z) < y} can
be easily shown. However, the sufficient conditions of Section 3.3 in terms of
contingent derivatives and coderivatives will not be satisfied.

Let

X =08, ¢=(z1,%3,..) and f(z) = infi z.
Now F-1(y) = {z € X | f(z) < y} is the level set map of a globally Lipschitz
functional. Since f is concave the directional derivatives f‘(z;u) exist every-
where. Further, f is monotone with respect to the natural vector ordering, and
f is nowhere positive.

(1) The mapping F is (globally) pseudo-regular, e.g., with rank L = 2, In-
deed, 1f J(z) <yand y' <y, there is some k such that 2 <y + 5 ]y yl.
Put ' = z - 2|y’ — yle¥ where e* is k-th unit vector in 2’ Then,
pseudo-regularity follows from ||z’ — z|| < 2|y’ ~ y| and &' € F~(y)
since f(a') <z} <y -3 -yl < ¢

(1) Next we are going to show that, at each € with & > f(£) Vk, it holds
fluy>2vue X (12.1)

in spite of (uniform) pseudo-regularity of F. We show even more:
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If f(& + tu) < f(&) —t for certain ¢ § 0 and bounded wu, say for ||u|| < C,
then u = u(t) necessarily dependsont and there is no (strong) accumu-
lation point of u(t).

In fact, by the choice of €, wehave & > f(£) = infn€n = 0 and & +tug <
-—%t forsome k. Due to |ug| < C, the latter inequality can never hold for
t | 0 if k = k(t) is bounded. So one obtains uxy < —3 for an infinite
number of components.

Assuming u to be fixed, this yields the contradiction u & I2. Hence u
depends on ¢. Assuming convergence u(t) — u? for certain ¢ { 0, we
obtain again a contradiction, namely

1
lim infyyo w(t)r) < ~3 for certain k() — oo,
though el yields limg_yo0 u?, =0.
Finally, we consider e-normals of F.
The point (z*,y*) = (e™, —1) is an e-normal to gph F around(z,y) =
(—ee™, —¢).
Clearly, (z,y) € gph F due to f(z) = —e.
Setting ' = = + tu,u € bd B,t > 0,3y’ = f(2') + 8,8 > 0, the condition
(3.14) for e-normals requires
te* u) S s+ f(@ +tu) - f(z) +te +els + f(z + tu) - f(z)|
provided that |ju|| = 1 and t, 8 are small, say max{s,t} < d < e. But then
we have f(z + tu) — f(z) = tum, and condition (3.14) becomes
" u) = tum < 8+ tum + te + €3 + f(z + tu) — f(z)|.

Since & 2 0 is small, this condition is always true, so our assertion is valid.

Further, since m was arbitrary, we may put m > 1/e as € { 0 in order to
obtain £* -+ 0 (weak*). Thus, 0 € D*F(0,0)(~-1).

For the points z = (£, f(£)), € from (ii) and for 0 < € < -.i:, there is no
weak* or strong accumulation point (£*, n*)of e-normals (z*,y*)to gph F
around z with |n*| = 1.

To verify this, we show that |y*| < 2e.

Due to f(€) =0, condition (3.14) particularly requires that
He* u) +y*[s + F(€ +tu)] < te +els + f(§ + tu)| (12.2)

holds for small s,¢ > 0 and all v € 2bd B.

With t = 0 and small 8 > 0, this implies y* < «.

It remains to consider negative y*. Then we select u = —2e* with large
k = k(t) such that f(€+tu) < —t. Now (12.2) yields the assertion (setting
8 = 0 and using that f has Lipschitz rank 1),

-2tThy) + |y*]t < te +eft], hence [y*] < 2.
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b3
b4 b2

b5

ad bb
Figure 12.4: Piecewise linear bijection of R® with 0 € 87(0).

While (iv) says that D*F(0,0) is not injective, the property (v) indicates that
the sets D*F(0,0)(n*) for |n*| = 1 tell us nothing about e~normals at points
(¢, £(£)) from(ii).

Example BE.3
Piecewise linear bijection of R2with 0 € 8f(0).

On the sphere of R?, let vectors a® and b*(k = 1,2, ...,6) bearranged as follows:

Put a7 = a!,b" = ¥ and notice the following important properties:
(i) o' =b,a® = b%at = —b4,a® = PP
(i) The vectors a* and b* turn around the sphere in the same order.

(iii) The cones K; generated by af and a*t*, and P; generated by b and b+,
are proper.

Let L; : R? = R? be the unique linear function satisfying Li(a*) = &* and
Li(a**1) = o1, Setting f(z) = Li(z) if = € K; we define a piecewise linear
function which maps K; onto P;. By the construction, f is surjective and has
a well-defined inverse; hence it is a (piecewise linear) Lipschitzian homeomor-
phism of R2, Moreover, f = id on int K and f = —id on int Kj.

Thus, 8f(0) contains the unit-matrix £ as well as —E and, by convexity,
the zero-matrix, too.

Example BE4
A piecewise quadratic function f : R? = R having pseudo-Lipschitzian sta-
tionary points being not unique.

We put z = (¢,y) € R? in polar-coordinates,

z=r(cos ¢ +1i sin @),
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f = P2, OFf = Placw.Lin. T

N
For z In tha sohare: ‘,"‘ L T e Y

inage of Df 1

valuas of f

Figure 12.5: The image of D f and the behavior of the values f(z) when z turns
around the sphere.

and describe f as well as the partial derivatives D, f, Dy f over the 8 cones

Ok) = {z |4 € [3(k - Dm, gha]}, (1S k<),

cone f D,f D,f

c(l) y(y-=) -y -z

c2 =z@y-z) 224y T

C@3 z(y+z) +2x+y z

CH) -yly+=z) -y -W-=z
and on the remaining cones C(k + 4), (1 £ k £ 4), f is defined as in C(k).

Studying the D f-image of the sphere, it is not difficult to see (but needs

some effort) that Df is continuous and Df~! is pseudo-Lipschitz at the origin.
For a € R?\{0}, there are exactly 3 solutions of Df(z) = a.

Example BE.5

A Lipschitz function f + [0,3) = C such that directional derivatives f' nowhere
exist, neither as strong nor weak (pointwise) limits; and contingent derivatives
are empty.

For z € [0,4) define a continuous function h, : (0,1} - R by

0 for0<t<e
he(t) =< t—z forz<t<2z
z for2z<t<1
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The mapping f(z) := hs is a Lipschitz function from the interval [0,4) into
C[0, 1]. For small |A] > 0, consider the function

9(@, ) = (f(z + A) — f(=))/.

If A > 0, then
gz, A)(2z) < 0 and g(z, \)(2z +2)) = 1.

Hence, the limit lim g(z, A) (as A { 0) cannot exist in C[0,1] (neither in a strong
nor in a weak sense). If A < 0, then we obtain for > 0 that

g(z, A)(2z) > 0 and g(z, A)(2z + 2)) = —1.

Thus lim g(z, A) (as A +0) cannot exist, t00.
This shows that f is a Lipschitz function without directional derivatives and
with empty contingent derivatives for nontrivial directions.

Example BE.6
A convex function f: R - R, non-differentiable on a dense set.

Consider all rational arguments y = g € (0,1) such that p, ¢ are positive

integers, prime to each other, and put

1
W) = -

For fixed g, the sum S(g) over all feasible A(y) is bounded by

S@< g and 3 S@)=e<eco
q

Now define
91(z) by g1(0) = 0 and g1 (2} = ¥, <, A(¥) for = € (0,1).

Then g, is increasing, bounded by ¢ and has jumps of size (g") ™! at = = y.
Next extend g1 on Ry by setting

9z)=kg()+(z—~k)ifzelkk+1), k=12, ..

and put g(z) = —g(~z) for z < 0. Since g is increasing, the function

¢
fit) = / g(z)dz as Lebesgue integral
0

is convex and for t { y and t 1y (¢ irrational, ¥ rational) one obtains different
limits of Df(t). Thus f is not differentiable at y-
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12.2 Exercises

Exercise 1
Proof of Lemma 2.21.

(i) («) Let F be pseudo-regular at (2% y°) with rank L and neighborhoods
U, V. For fixedy* € bd B*, then the mapping Fy(zx) = {r € R}¢(x) <r}
is again pseudo-regular at (z°,¢(z°)) with rank L and the same neigh-
borhoods U, V.

The second part of the proof to Lemma 2.18 now shows
UNEy(p)=0 if p<Ltand ¢(z) € V.
Since y* € bd B* was arbitrary, this yields

z° ¢ limsup,, (Uy-ebd 5+ Es ().

(i) (=) By Lemma 2.20, there are points z and y, depending on p | 0, such
that z = 2%, y = 3%, f(2) # #(z,y) and z € E,(p), where y* € bd B*.

Since m(z,y) = y,now z € E,(p) means;
", f(z) — y) + pd(z,2) 2 (y", £(2) — ) if d(z,2) < a(2),
hence z € E4(p).
(i) (¢=) F is not pseudo-regular at (z°,y°) because of (i).

(ii) (=) The condition holds true due to Lemma 2.20 (ii).

Exercise 2
How the situation of mixed constraints (equations and inequalities) can be han-
dled in a similar manner?

Define the cone C = {y|y; = 0 if i corresponds to an inequality, y; = 0if ¢
corresponds to an equation}.

Exercise 3
Verify that, for m > n, every function f € CO'(R",R™) is nowhere pseudo-
regular. Hint: Apply Rademacher’s theorem.,

Assume the contrary. Take  near x° such that D f(x) exists (Rademacher’s
theorem). Since m > n, there exists g # 0 such that 3, u;Dfi(z) = 0. The

function
$(€) = X Dfi(€)
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has derivative O at . Thus, # is a local Ekeland-point for ¢ with each p > 0.
Apply LLemma 2.21 (ii) to obtain a contradiction.

Exercise 4
Show how Theorem 2.26 may be extended to the case of a closed multifunction
F: X 3Y. What about necessity of the conditions in Theorem 2.26?

One can repeat all the arguments of the necessity part for Theorem 2.22.

Exercise 5
Show that, in the Lemmas 3.1 and 3.2, one may replace ”Lipschitzian’l.s.c.”” by
“ls.c.”.

Proof: If F~1lis lsc, at (y° 2% without being Lipschitz 1.s.c. then, for
certain y* — y°(y* # y°) we find z* € F~1(y*) with t5 := ||zF - 2°|| = 0 and
tx/lly* — y°ll = oo

Since X = R™ we obtain, via u¥ = (z*¥ — £°)/#; a convergent (sub)sequence
which shows that 0 € CF(2°)(u) for some u # 0. So, already the necessary
injectivity conditions for the related regularity are violated.

Exercise 6
Show that for f € C*, one has D* f(z) = -Df(z)T.

The simplest way is to use Theorem 6.5. For f € €, statement (ii) yields
(v*, Df(z)(u)) + (u*,u) <0 forall u € B, so the linear function

u = (v, Df(z)(u)) + (u*,u)

is identical zero. But this means just u* = ~D*f(z)7(v*).

Exercise 7
Proof of Lemma 5.11.

By definition, fis continuous, and f(z) = hi(z) is always true for some hy
where k = k(z) and hy belongs to a finite family F of Ct-functions. Wemay
assume that the sets X¢ = {z|f(z) = hi(z)} fulfill z° € ¢l (int X;), otherwise the
local representation of f {near z°) by the family F would need less functions k.
Applying Theorem 5.1 to ¢ € int X;N(z®+a~1B) we obtain ||Dhi(z) || < 1/a
for some large a. Hence, locally, gph f~! consists of arcs belonging to the
strongly regular, inversefunctions hy! :

Iy >0: Y y)N(z® +vB) C {h; (y)|i € I} for sufficiently small ||y]|.

Thus, z° is an isolated zero, and H exists as required.

Exercise 8
Analyze the continuity properties forF(y) = {z € BC R?| |z —y|| %} for
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F with the Euclidean norm and with polyhedral norms, respectively, and with
“>instead of "2". Does there exists a continuous function f : B = B such
that f(-) € F(:) on B?

The first part is left to the reader. A continuous function with f(-) € F(:) on
B cannot exists because is would have a fixed point.

Exercise 9
Find a counterexample (n = m = 2) showing that the pointwise condition (5.4)
in Theorem 5.1 is not sufficient for the Lipschitz Ls.c. of F~2.

We construct f : R? = R? continuous with
f'(0;u) =u YueR? and 0 ¢ int f(R?).

Let
M={(z,y) €R?|[y 22 if220,2* +3* <1,z < §}
and G = conv M. For(z,y) € M, letf(z,y) = (x,y). For(z,y) € G\M and
y >0 put f(z,y) = (z,2?).
In order to define f at (z,y) € G\M with 0 > y > ~z? , let D be the
triangle given by the points

P! = (z,~-2?%), P? = (0,0), P? = (z,2°) and let t = t(z,y) := —;—g.

Then ¢ € (0,1). We shift the point (z,¢(—2z?) + (1 — t)=?) to the left boundary
of D and define f to be the related point:

_ ) @t =1)(x, ~z2) fort > -1-,
fzy) = { (1-2t)(z,2%) fort< %.
So f becomes a continuous function of the type R? — M. Setting g(z) =
f(7(2)) where m(z) is the projection of z onto G, f can be continuously ex-
tended to the whole space. We identify f and g. Clearly, f'(0;%) = u holds for
all u, and 0 ¢ int f(IR?).

Exercise 10

Show that if f € COYR™ R™) is strongly regular at (2°, f(z°)) and direc-
tionally differentiable for * nearz® then the local inverse f~1 is directionally
differentiable fory near f(z°).

Otherwise one finds images y = f(z) for £ near z° and v € R"™ such that
Cf~1(y)(v) contains at least two different elements p and g. Since f’ exists and
p € Cf~l(y)(v) iff v € Cf(z)(p), one obtains f'(z;p) = v = f'(z;q). For small
t > 0, then the images

f(z+1tp) - f(z +tg) = f(z + tp) — f(2) — (f(z +tq) - f(z))
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differ by a quantity of type o(t) while the pre-images differby ¢(p — g). There-
fore, the local inverse f~! cannot be Lipschitz near (f(z%),z°) for p # gq.

Exercise 11
Verify Theorem 6.4, first part “polyhedral”.

The statements (i) and (ii) can be easily seen for each submapping F; ,defined
by gph Fy = P , since Py is a convex polyhedron. From gph F' = Uggph F,
and (6.2) then the assertions follow via selection of subsequences assigned to
fixed Fy.

Exercise 12
Verify

(1) If f or g is directionally differentiable, then Ch{z){u) = Cf{y)(Cg(zx){u)).
(i) If f € C* then Th(x)(u) = Df(y)(Tg(z)(u)).
(ili) If g € C! and g™! is ls.c. at {y,z) then Th(z)(u) = T f(y)(Dg(z)(u)).

Proof. Note that the functions are locally Lipschitz by assumption.
(1) g directionally differentiable:
Let v = g'(z;u) and w = im ¢~ [f(y + tv) — f()] for certain ¢ § 0. Write
g(z + tu) = g(z) + tv +o(t) = y + tv + o(t)

(possible with given t, since g is directionally differentiable). Then,

lim¢~*[f(g(z + tu) - o(t)) - f(g(2))]
lim¢~*[f(g(= + tu) - f(g(2))] € Ch(=)(u).

f directionally differentiable:
Let v € Cg(z)(u) and w = f'(y;v). We may write, with certain ¢ 0,

w

g(z + tu) = g(z) + tv + o(t) and w = lim ¢t~ [f(g(z) + tv) - f(g(x))].
Using again g(z) + tv = g(z + tu) — o(t) we get w € Ch(z)(u) as above.
(i) Let w = Df(y)v, and let v € T'g(z)(u) be written as
v=limv'; v =t} g(z' +tu) - g(2)], 2’ = 2, t } 0.
Then g(z' + tu) = g(z') + tv'. Since f € C1, it holds
w=lms™}[f(y' + sv') - f(y')] for all s L 0 and ' — .

Setting ' = g(z') and 8 = t this yields w = Emt~[f(g(z’ + tu)) -
f(g(="))] € Th(z)(u).
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(iii) Let v = Dg(z)u, and let w € T f(y)(v) be written as
w=lmt 1 (f(y +tv) — f{y')) with y' = 9,21 0.

Since g~! is ls.c. at (y,x), one finds & — z such that ' = g(z').
Substituting, we obtain w = lim¢t~!(f(g(z’) + tv) — f(g(z"))) and, since
g(z') + tv = g(z' + tu) + o(t), it follows w € Th(z)(u) as required.

Exercise 13
Let f € COYR"™, R™) be strongly regular at (z*,0). Show that f~ is semi-
smooth at 0 ifso is f at x*.

Otherwise, 8(f ') is not a Newton map at 0. Then, due to convTf~! = 8(f~!)
(cf. (6.17)), also Tf ! is not a Newton map at 0.
So one finds some ¢ > 0 and elements u € T f~(y)(y — 0) such that

[l = (£ () = 71O > cllyll  where u = u(y) and y — 0.

Setting £ = f~!(y) and using that f and f~! are locally Lipschitz, we obtain
with some new positive constant C ;

llw— (-2l 2 Cllz - =*|l.
Since T'f is a Newton map at z*, we may write (with different o— functions)
Tf(z)(z - 2*) C f(z) - f(&") + o(¢ = 2*)B = y + o(z — z")B.

Next apply that v € Tf~Y(y)(y) < y € Tf(x)(u) By subadditivity of the
homogeneous map T'f (cf. (6.10)), we then observe

yeTf(x)u) C Tf(x)(u+z"—z)+Tf(z)(z-z")
C Tf(zl{u+z*-z)+y+olr—2z*)B.

Hence
OeTf(r)(u+z* —z)+w with certain w € o(z — z*)B.
We read the latter as
u+z* ~z €T Hy)(~w)
which yields, with some Lipschitz rank L of f~! near the origin,
Cllz — z*|| < llu - (z — 2*)|| < Lllw|| £ Lo(z ~ z*).

This contradiction proofs the statement.
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Exercise 14
Show that f € COY(R",R™) is C* on an open set  if card T f(z)(u) = 1 for
allz € Q andu € R",

By its basic properties, now the map T'f(z) is additive and homogeneous
for each € Q. In addition, as a locally bounded and closed mapping, T'f is
continuous on £2.

Exercise 15
Verify that positively homogeneous g € C**(R™,R™) are simple at the origin.

Let v € T'g(0)(r) and ¢ { 0 be given (k = 1,2,...). We know by the structure
of T'g(0)(r) that there exist g such that ve := g(gx + 1) — g(qx) — v.
Given k select some v > k such that |[t.gx{| < 1/k and put py = t,ge. Then

Vg = t;'l[g(tu‘Ik + tuT‘) - g(tu‘Ik)] = t;:l[g(Pu + tuT) - g(pu)]-

Next select k' > v and choose a related v > k' in the same way as above. Re-
peating this procedure, the subsequence of all 8 € {t,,t,,ty», ...} then realizes,
with the assigned p(8) € {py,Pw Py, ...}, v = lims™[g(p(s) + sr) — g(p(s))]
and p(s) = 0.

Exercise16
Show that, for m = 1, the situation conv {g(r), ~g(—r)} € cl Uyzo Tg(y)(r)
must be taken into account.

The situation conv {g(r),—g(~r)} & cl Uyzo Tg(y)(r) occurs once more for
9() =yl
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In this section, we present proofs of often applied (and well-known) basic tools
for convenience of the reader.
Ekeland’s Variational Principle

Theorem A.1 (Fkeland’s variational principle, appears also as Theorem 2.12).
Let X be a complete metric space and ¢ : X = R U {00} be a ls.c. function
having a finite infimum. Let € and a be positive, and let $(x) < € + infx ¢.
Then there is some z € X such that

d(2,7) S @, #(2) < ¢(z) and $(§) + (¢/a)d(§,2) 2> (2) VE € X.
<

Proof. Put h(z) = infeex[#(€) + (e/a)d(€, 2)]. For arbitrary &,z and 2’ in X,
we observe

B(€) + (e/a)d(, 2) < B(€) + (e/)[d(€, 2') +d(2',2)].
Taking the infimum over all £ € X on both sides, we obtain
h(z) < b(z') + (e/@)d(2', 2).

Therefore, his a Lipschitz function; in particular, kis us.c. To construct a
sequence z¥ we set 20 = z.

If h(2°%) > #(2°) then z = 2° realizes all the assertions of the theorem. Thus,
beginning with k = 0, assume that h(z*) < ¢(2*). Then one finds some z*+!
such that

#(z"+) + (e/a)d(**?, 2¥) < ¢(2*) (A1)

and, in addition,
(2*H) + (e/a)d(z*1!, 2%) < h(2*) + 27F. (A.2)
From (A.1) and ¢(2°) < inf, ¢ + €, we obtain for each ¥,
(/)L ,x (2, 2°) < T,k (9(2°) = (6(z"H1)) = §(2°) — $(**") < e.

303
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This yields particularly
d(2**1,2°) < T, d(2°, 2°) < (a/e)[9(2°) - (2" < @ (A.3)

By (A.1) and (A.3), z = z* is again the point in question whenever ¢(z*) <
h(z*). Otherwise (A.3) shows that the Cauchy sequence z* has a limit z* in
the complete space X. Since ¢ is Ls.c., we observe ¢(z*) < liminf ¢(z*).

By (A.1), the sequence of ¢(z*) is decreasing, hence liminf ¢(z*) < ¢(2°).
Moreover, using (A.3) we even obtain

d(z",2°) < (a/e)[¢(2°) - 8(2")]-
Finally, recalling that & is u.s.c., we infer due to (A.2), the key relation
6(z") < iminf[p(2**?) + (¢/@)d(z**?, 2*)] < limsup[h(z*) + 27%] < h(2").

The latter proves the theorem. o

Approximation by Directional Derivatives

The following lemma can be found in Shapiro’s paper [Sha90] where a survey
of concepts of directional differentiability and their interrelations is presented,
see also [BS00].

Lemma A.2 (approximation by directional derivatives 1). Let f : R® =+ Y
be locally Lipschit; (Y normed), and let directional derivatives f'(z°;u) exist
for allu € R™. Then

f(z° +v) - £(2°) € f'(2%u) + o(u)B.
¢

Proof. Otherwise one finds converging ¢ = 0 (a sequence) and some ¢ > 0
such that

[£(2° +u) = F@)/llull - £'(% u/llull) = y(u), where |ly(u)lj > c.

The directions v = u/||u|| € R™ have some cluster point; so they converge for
some subsequence, v — v°. Setting ¢ = |ju|| we obtain

[£(2° + tv) — f(2))/t = §'(2%0) = y(u). (A.4)

Since f is locally Lipschitz, say with rank I, we also observe (for all small t)
that

I [ F(2® +0%) = f(2O)]/t = [ (% + tv) = f(=°) )/t || < Liw —o°

and
I F(2%v) = f'(z%°) )| < Lijv=-°)).
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So, replacing v by v® in A4, it holds for some subsequence,
limego [| {[£(2° + t0*) = £(2%) )/t = f'(% 0 2 e >0,
in contradiction to the directional differentiability. ]

Lemma A.3 (approximation by directional derivatives 2). Let f: R" -+ R™
be locally Lipschitz. Then

f(2° +u) - f(z°) € Cf(z°)(u) + o(u)B.
<

Proof. Otherwise one finds a sequence of converging directions © — 0 and
some ¢ > 0 such that

dist ([f(z° + u) ~ F())/llull , CF®)(u/llull)) > ¢
Setting £ = ||u|| and v = u/t, this is
dist ([f(2° + tv) — £(2°))/t, Cf(z°)(v)) > c. (A.5)

The directions v € R™ have some cluster point. Thus, for certain ¢ J 0, (belong-
ing to some subsequence) the bounded quotients [f(z? + tv) ~ f(z°))/t € R™
converge to an element ¢ € Cf(z%)(v*). Since f € C%! the multifunction
Cf(z%)(-) is Lipschitz with respect to the Hausdorff-distance. In particular,
it is lower semicontinuous, so dist (g, C f(z°)(v)) vanishes, in contradiction to
AS. u}

Remark A.4 Analogously, one shows that if F : R® =3 R™ is locally upper
Lipschitz at (z°,°) € gph F and CF(2°,4°)(-) is lower semicontinuous, it holds

(F(z® + u) N Q) —3° ¢ CF(2°,4°)(u) + o(u)B.
for some neighborhood Q of y°. o

The 1.s.c. assumption is essential even for pointwise Lipschitz functions f: Put,
forzeR? andt € R,

f@)y=tifz= (1) and f(z) =0 otherwise.

Lemma A.5 (descent directions). Let f : X — R belocally Lipschit; (X
normed), and let directional derivatives f'(z%;u) exist for each . Further, let
t 4 0 be some sequence such that related elements w(t) fulfill f(z° + tu(t)) -
J(2%) < et with some fixed ¢ € R. Then, it holds f'(z°%u®) < ¢ for each cluster
pointu® of the sequence u(t). o
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Proof. If, for certain 8} 0 we have u(8) ~ u® then using some Lipschitz rank
L for f near 29, it follows

es 2 f(2° + su(s)} ~ £(a°)
= [f(2® + 5u°) - f(2%)] + [f (z° + su(s)) - f(2° + su°)]
2 [£(a + 8u®) — f(2%)] — La]|u(s) - u°]I.

Thus,
¢ > limsup s~ [f(z° + su?) ~ £(z°)]

holds for the particular sequence 8 4 0. Since f is directionally differentiable,
this yields

¢ 2 lim¢™ ! {f(z® + tu®) - f(2%)) = f'(a%u°)
for every sequence ¢ { 0. Q
Proof of TF = TINM) =N TM + TN M

The main point in the proof of Theorem 7.6 was the product rule TF =
T(NM) = NTM + TNM. Since the way via the more general Theorem 6.8 is
quite long we add a direct proof which is valid for the actual product rule only.

Lemma A.6 (direct proof of the product rule).
TF=T(NM)=NTM+ TN M. (A.6)
¢
Proof. To begin with we set
0F = F(z +v,y + v,z + ') - F(z,y,2)
(similarly N and M are defined), and observe that

0F =Ny,2)M@Ex+v')-Mz)+ (Ny+v,z+w')~ Ny, 2))M(z+u')
= N(y,2)5M + SNM(z) + SNEM.

Now put (u',v',w') = t(u,v,w) = te for any given sequence t J 0.
Then 6F,dM and 6N depend on ¢ and

0F(t)/t = N(y,z)(0M(t)/t) + (ON(t)/t)M () + SN (t)6M(t)/t.

If, moreover, (z,y,2) - 8° = (2°,4°,2°) then - since M and N are locally
Lipschitz - the bounded sequences dM(t)/t and dN(t)/t have accumulation
points My € TM(z°)(u) and Ny € TN(y°, 2°) (v, w), respectively. The third
term SN (¢)dM (t)/t is vanishing. So we obtain, for all converging subsequences
dF(t)/t, that the limit can be written as

lim §F(t)/t = N(g°, 2°) Mp + NoM (z°).
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This tells us TF(s%)(e) € N(y°, 2%)[T M (2°)(u)] + [TN (3°, 2%) (v, w)| M (°).

For showing the reverse inclusion, the special structure of N comes into the
play. Let

My € TM(z%)(u) and Ny € TN(3®, 2°) (v, w)

be arbitrarily given, and let £ = x(t) — 2° and ¢ | 0 be appropriate sequences
such that My = lim¢~}(M(z + tu) — M(z)). The existence of such sequences
is ensured by the definition of TM. To show that N(y°, 20) Mo + NoM(z°) €
TF(s°%)(0), we have to find elements (y,2) = (y(t),2(f)) = (¥°,2°) in such a
way that Np can be written as

No = limt™Y(N(y + tv, 2 + tw) — N(y, 2)). (A7)

with the already given sequence of t (or with some infinite subsequence). If this
is possible then, considering 8F(t) for (z,y, 2) + t(u,v,w) as above, we obtain

N(y°, 2°) My + NoM(z°) = lim6F(t)/t € TF(s°)(0),

which proves the lemma. We are now going to construct (y(t), 2(t)) for given
t | 0. By definition of N = (1,y*,y™,2), the first and the last components
of any element Ny € TN(y° 2% (v,w) belong to the map z = (1,2) and are
obviously 0 and w, respectively. The remaining components of Ng are formed
by the T-derivative of the function ¥ —+ ¢(y) at y° in direction v, which has
been already studied in Lemma 7.4. Accordingly, we find y = y(t) such that
t~e(y+tv)—~c(y)] = (o, v~—a) for small ¢ > 0, and (A.7) holds even as identity:

No =t} [N(y + tv, 2 + tw) — N(y, 2)] for small ¢ > 0.

Hence the lemma is true, indeed. O

Constraint Qualifications

The following lemma compiles some basic facts on crucial constraint qualifica-
tions (CQ) for a nonlinear program

(P) min{f(z)|g(z) £ 0,h(z) = 0},

with f, g, and h being C?! functions defined from R™ to R, R™ and R,
respectively.

Recall that MFCQ (Mangasarian-Fromovitz CQ) is said to hold at some
feasible point Z if both DR(Z) has full row rank and

{u| Dgi(®)u < 0 (i € I(2), Dh(Z)u =0} #9,
while LICQ (Linear Independence CQ) is said to hold at % if
{Dg‘(i) (e I(f)), Dh,(f) (G=1,.., IC)}

is linearly independent, where I(2) = {i|g(£) = 0}.
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Given a stationary solution  of (P), SMFCQ (strict MFCQ) is defined to
hold at Z if the set of Lagrange multipliers

A(Z) = {(§, 2)I(2,7,2) is a KKT point of (P)}

is a singleton. To have a unified algebraic description of the above CQs, let
us introduce, for any feasible point # of (P) and any index set J C I(%), the
polyhedral cone

A7(2) := {(a,w)|Dg(z) "a+Dh(Z)"w = 0, ai(z) 2 0,i € J, a; =0, j € I(Z)}.

Let us also recall Gordon’s theorem of the alternative [Man81b, Man94] which
says that for matrices @ and R of suitable dimensions,

{v| Qu < 0, Ru= 0} # 0, and R has full row rank

< {(’U,‘W) I QT‘U + RT’w = 0, v > 0} = {0}’ (AS)

and, by a standard argument from convex analysis (see, e.g., [Man81a, Man94,
Roc70, SW70]), this equivalently means that for any right-hand side g, the
linear system {Q@Ty+ Rz = ¢, y > 0} has a bounded (possibly empty) solution
set.

Hence, it follows immediately that a feasible point # of (P) satisfies

LICQ if and only if A’(Z) = {0} for J = 0, (A.9)
MFCQ if and only if A”(Z) = {0} for J = I(Z). (A.10)

Moreover, given a stationary solution Z and (y, z) € A(Z), the following lemma
states that Z satisfies

SMFCQ if and only if A7(%) = {0} for J = I°(y), (A.11)

where again I°(y) := {i|y; = 0} C I(%). From (A.9)—(A.11), the known impli-
cations
LICQ = SMFCQ = MFCQ

are obvious.

Lemma A.7 (Gauvin’s theorem [Gau77] and Kyparisis® [Kyp85] theorem).
Let & be a stationary solution of (P). Then
(i) A(Z) is bounded if and only if MFCQ is satisfied at %.
(1) A(Z) is a singleton (i.e., SMFCQ is satisfied at ) if and only if for some
(v, 2) € A(Z), one has AT W)(z) = {0}. <©

Proof. (i) follows from (A.8) and (A.10) according to the discussion above.
To show the “only if-direction of (ii), let (y,z) € A(Z) and (e, w) € A" W)(F)
with {a,w) # 0. Then, for all € > 0 sufficiently small, one has

Df(®) + X imy (i +€0a)Dgi(Z) + 35—, (2x + ewy) Dhe(Z) = 0,
Yi +eog 2 0’ i€ I(f’) = Io(y)UI+(y)’
Yj +5a.7' = 0’ J gI(i)’
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where I*(y) = {i|lg: > 0}. Thus, A(Z)is not a singleton.
To show the ”if*-direction of (ii), assume that A(Z) is not a singleton. Tet
(7, %) be any element of A(Z). Then there is a second element (%, %) € A(E)

such that both (§, £) and (¥, %) satisfy

Df(2) + Dg(%)"y + Dh(2)Tz =0,
¥yi20,i€I(®), y;=0,j¢I(F).

Hence, Dg(%)T(§ — §) + Dh(Z)T(Z - 2) = 0and
(g— y)o 2 01 i€ 10(37) C I(i): (g— g)J = 0: 3 ¢I(§’)3

ie, 0@ —-§,2~32)€ AP (0)(z), which completes the proof. O
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