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Preface

This monograph is devoted to a study of properties of certain Banach
spaces of weakly differentiable functions of several real variables which arise
in connection with numerous problems in the theory of partial differential
equations and related areas of mathematical analysis, and which have become
an essential tool in those disciplines. These spaces are now most often asso-
ciated with the name of the Soviet mathematician S. L. Sobolev, though their
origins predate his major contributions to their development in the late 1930s.

Sobolev spaces are very interesting mathematical structures in their own
right, but their principal significance lies in the central role they, and their
numerous generalizations, now play in partial differential equations.
Accordingly, most of this book concentrates on those aspects of the theory of
Sobolev spaces that have proven most useful in applications. Although no
specific applications to problems in partial differential equations are discussed
(these are to be found in almost any modern textbook on partial differential
equations), this monograph is nevertheless intended mainly to serve as a
textbook and reference on Sobolev spaces for graduatestudents and researchers
in differential equations. Some of the material in Chapters I1-VI has grown
out of lecture notes [18] for a graduate course and seminar given by Professor -
~ Colin Clark at the University of British Columbia in 1967-1968. '

The material is organized into eight chapters. Chapter I is a potpourri of
standard topics from real and functional analysis, included, mainly without
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proofs, because they form a necessary background for what follows. Chapter
11 is also largely “background” but concentrates on a specific topic, the
Lebesgue spaces L?(Q), of which Sobolev spaces are special subspaces. For
completeness, proofs are included here. Most of the material in these first
two chaplers will be quite familiar to the reader and may be omitted, or simply
given a superficial reading to settle questions of notation and such. (Possible
cxceptions are Sections 1.25-1.27, 1.31, and 2.21-2.22 which may be lcss
familiar.) The inclusion of these elementary chapters makes the book fairly
self-contained. Only a solid undergraduate background in mathematical
analysis is assumed of the reader.

Chapters 1II-VI may be described as the heart of the book. These develop
all the basic properties of Sobolev spaces of positive integral order and
culminate in the very important Sobolev imbedding theorem (Theorem 5.4)
and the corresponding compact imbedding theorem (Theorem 6.2). Sections
5.33-5.54 and 6.12-6.50 consist of refinements and generalizations of these
basic imbedding theorems, and could be omitted from a first reading.

Chapter VII is concerned with generalization of ordinary Sobolev spaces
to allow fractional orders of differentiation. Such spaces are often involved in
rescarch into nonlinear partial differential equations, for instance the Navier—
Stokes equations of fluid mechanics. Several approaches to defining fractional-
order spaces can be taken. We concentrate in Chapter VII on the trace-
interpolation approach of J. L. Lions and E. Magenes, and discuss other
approaches more briefly at the end of the chapter (Sections 7.59-7.74). It is
necessary to develop a reasonable body of abstract functional analysis (the
trace-interpolation theory) before introducing the fractional-order spaces.
Most readers will find that a reading of this material (in Sections 7.2-7.34,
possibly omitting proofs) is essential for an understanding of the discussion
of fractional-order spaces that begins in Section 7.35.

Chapter VI concerns Orlicz-Sobolev spaces and, for the sake of com-
pleteness, necessarily begins with a self-contained introduction to the theory
of Orlicz spaces. These spaces are finding increasingly important applications
in applied analysis. The main results of Chapter VIII are the theorem of N. S.
Trudinger (Theorem 8.25) establishing a limiting case of the Sobolev imbed-
ding theorem, and the imbedding theorems of Trudinger and T. K. Donaldson
for Orlicz-Sobolev spaces given in Sections 8.29-8.40.

~ The existing mathematical literature on Sobolev spaces and their general-
izations is vast, and it would be neither easy nor particularly desirable to
include everything that was known about such spaces between the covers of
one book. An aftempt has been made in this monégraph to present all the core
material in sufficient generality to caver most applications, to give the reader
an overview of the subject that is difficult to obtain by reading research
papers, and finally, as mentioned above, to provide a ready reference for
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someone requiring a result about Sobolev spaces for use in some application.
Complete proofs are given for most theorems, but some assertions are left for
the interested reader to verify as exercises. Literature references are given in
square brackets, equation numbers in parentheses, and sections are numbered
in the form m.n with m denoting the chapter. A
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Introductory Topics

Notation

1.1 Throughout this monograph the term domain and the symbol Q shall be
reserved for an open set in n-dimensional, real Euclidean space R". We shall
be concerned with differentiability and intégrability of functions defined on
Q—these functions are allowed to be complex valued unless the contrary is
stated explicitly. The complex field is denoted by C. For ce C and two
functions v and v the scalar multiple cu, the sum v+ v, and the product uv are
always taken to be defined pointwise as

(cu)(x) = cu(x),
(u+0)(x) = u(x) + v(x),
(uv) (x) = u(x)v(x),
at all points x where the right sides make sense.

A typical point in R" is denoted by x = (x,,...,x,); its norm |x|=
(X5, x;3)'/%. The inner product of x and y is x-y = Y7, x; ;.

If o =(ay,...,a,) is an n-tuple of nonnegative integers a;, we call o a
multi-index and denote by x* the monomial xi'---xj», which has degree
fo] = 3%~ «;. Similarly, if D; = 0/dx; for 1 < j < n, then

. D* = Dt ... D% 3
- denotes a differential operator of order |¢|. D@ Py =u.

1



2 I INTRODUCTORY TOPICS

If « and B are two multi—indices, we say B <a provided f; <a; for
1 <j<n. In this case «— B is also a multi-index and |a—B|+|f|=|«|. We
also denote '

al = ol

(73) 3'(:! P~ (Z)(Z)

The reader may wish to verify the Leibniz formula

andif f<a,

D*w)(x) = > (“) DPu(x) D" (x)
f<a ﬁ
valid for functions u and v that are |«| times continuously differentiable near x.

1.2 If G = R", we denote by G the closure of G in R". We shall write G c < Q
provided G = Q and G is a compact (i.e., closed and bounded) subset of R".
If u is a function defined on G, we define the support of u as

suppu = {x e G:u(x) #0}.

We say that u has compact support in Q if suppu <<= Q. We shall denote by
“bdry G*’ the boundary of G in R", that is, the set G N G° where G° =R"~ G =
{x € R": x ¢ G} is the complement of G.
If x e R" and G = R", we denote by “‘dist(x, G)” the distance from x to G,
that is, the number inf, _¢|x—y|. Similarly, if F,G < R",
dist(F, G) = inf dist(y,G) = inf|x—y|.

yeF xeG
yeF

Topological Vector Spaces

1.3 We assume that the reader is familiar with the concept of a vector space
over the real or complex scalar field, and with the related notions of dimension,
subspace, linear transformation, and convex set. We also assume familiarity
with the basic concepts of general topology, Hausdorff topological spaces,
weaker and stronger topologies, continuous functions, convergent sequences,
topological product spaces, subspaces, and relative topology.

Let it be assumed throughout this monograph that all vector spaces referred
to are taken over the complex field unless the contrary is explicitly stated.

1.4 A topological vector space, hereafter abbreviated TVS, is a Hausdorff
topological space that is also a vector space for which the vector space oper-
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ations of addition and scalar multxphcatxon are continuous. That s, if Xisa
TVS, then the mappings

xy)=»x+y and (c,x) - cx

from the topological product spaces' X x X and C x X, respectively, into X
are continuous. X is a locally convex TVS if each neighborhood of the origin
in X contains a convex neighborhood.

We shall outline below, mainly omitting proofs and details, those aspects
of the theory of topological and normed vector spaces that play a significant
role in the study of Sobolev spaces. For a more thorough discussion of these
topics the reader is referred to standard textbooks on functional analysis, for
example, those by Yosida [69] or Rudin [59].

1.5 By a functional on a vector space X we mean a scalar-valued function f
defined on X. The functional fis linear provided

flax+by) = af(x) + bf()), X,y € X, a,beC.

If X is a TVS, a functional on X is continuous if it is continuous from X into
C where C has its usual topology, induced by the Euclidean metric.

The set of all continuous, linear functionals on X is called the dual of X
and is denoted by X’. Under pointwise addition and scalar multiplication
X' is a vector space:

U+ (x) = fx) +g(x), (NHX)=cdx), figeX', xeX, ceC.

’

X’ will be a TVS provided a suitable topology is specified for it. One such
topology is the weak-star topology, the weakest topology with respect to which
the functional F, defined on X’ by F.(f) = f(x) for each fe X’ is continuous
for each x € X. This topology is used, for instance, in the space of Schwartz
distributions introduced in Section 1.52. The dual of a normed space can be
given a stronger topology with respect to which it is a normed space itself
(Section 1.10).

Normed Spaces

1.6 A norm on a vector space X is a real-valued functlonal fon X which’
satisfies

() f(x) > 0forall x € X with equality if and only if x = 0,
(i) f(cx) =|c|f(x) for every xe X and ce C,
(iii)  fx+») < f(xX)+f(p) for every x.ve X.
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A normed space is a vecfor space X which is proﬁded with a norm. The norm
- will be denoted by ||-; X|| except where simpler notations- are mtroduced
If r > 0, the set

B,(x) ={yeX:|y-x;X| <r}

is called the open ball of radius r with center x € X. Any subset 4 of X is called
open if for every x € A there exists r > 0 such that B,(x) < A. The open sets
thus defined constitute a topology for X with respect to which X is a TVS.
This topology is called the norm topology on X. The closure of B,(x) in this
topology is

B(x) = {yeX:|y-x;X| <r}.

A TVS X is normable if its topology coincides with the topology induced by
some norm on X. Two different norms on a vector space are equivalent if they
induce the same topology on X, that is, if for some constant ¢ > 0

cllxlly < Ixl2 < (/o) x|,

forallxe X, ||-|; and ||- ||, being the two norms.

If X and Y are two normed spaces and if there exists a one-to-one linear
operator L mapping X onto Y and having the property |L(x);Y| = ||x; X||
for every x € X, then L is called an isometric isomorphism between X and Y,
and X and Y are said to be isometrically isomorphic; we write X = Y. Such
spaces are often identified since they have identical structures and differ only
in the nature of their elements. )
1.7 A sequence {x,} in a normed space X is convergent to the limit x, if and
only if lim,_ ,||x,—xo; X[|= 0 in R. The norm topology of X is completely
determined by the sequences it renders convergent.

A subset S of a normed space X is said to be dense in X if each xe X is
the limit of a sequence of elements of S. The normed space X is called separabie
if it has a countable dense subset.

1.8 A sequence {x,} in a normed space X is called a Cauchy sequence if and
only if lim,, ,oq || Xm—X,; X||= 0. If every Cauchy sequence in X converges
to a limit in X ,then X is complete and a Banach space. Every normed space X
is either a Banach space or a dense subset of a Banach space Y whose norm
satisfies ) _ . '
Yl =lxX||  forevery xe X.

In this latter case Y is called the completion of X.

1.9 If X is a vector space, a functional (-, -)y defined on X x X' is called an
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inner product on X proirided that for every x,y,ze€ X and ;b€ C

&i) (x’ J’)x = (y’ x)x: .
(i) (ax+by,z)x = a(x,2)x+b(»,2)y,
(iii) (x,x)xy =0if and only if x =0,

where ¢ denotes the complex-conjugate of ¢ € C. Given such an inner product,
a norm on X can be defined by

If X is a Banach space under this norm, it is called a Hilbert space. The
parallelogram law

lx+y; X2 +llx—y; X|* = 2|x; X|* + 2| y; X | 2

x X[ = (x,x)y2% (N

holds in any normed space whose norm is obtained from an inner product
via (1). .

The Normed Dual

1.10 A norm on the dual X’ of a normed space X can be defined by setting,
for x' e X',

1 = sup FO
i 17 3
x#0
Since C is complete, X’, with the topology induced by this norm, is a Banach
space (whether or not X is) and is called the normed dual of X. If X is infinite
dimensional, the norm topology of X’ is stronger (i.e., has more open sets)
than the weak-star topology defined in Section 1.5.

If X is a Hilbert space, it can be identified with its normed dual X’ in a
natural way.

1.11 THEOREM (Riesz representation theorem) Let X be a Hilbert
space. A linear functional x’ on X belongs to X' if and only if there exists
x € X such that for every y € X we have

xl(y) = ()', X)x,

- and in this case |x’; X’| =|x; X|. Moreover, x is uniquely determined by
x'eX'. : '

A vector subspace M of a normed space X is itself a normed space under ’
the norm of X, and so normed is called a subspace of X. A closed subspace of a
Banach space is a Banach space.
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1.12 THEOREM (Hahn—Banach extension theorem) Let M be a subspace
of the normed space X. If m’ € M, there exists x’ € X' such that N XY =
|m’; M| and x'(m).= m'(m) for every me M. :
1.13 A natural linear injection of a normed space X into its second dual
space X" = (X')" is provided by the mapping Jy whose value at xe X is
given by

Jyx(x") = x'(x), x'€ X'

Since |Jyx(x)| < [x"; X'||{x; X| we have ’
1T x5 X7 < flx; X

On the other hand, the Hahn-Banach theorem assures us that for any x e X
we can find an x’ € X’ such that |x'; X’ =1 and x'(x) = |x; X||. Hence

1% x5 X" = % X1,

and Jy is an isometric isomorphism from X into X",

If the range of the isomorphism is the entire.space X", we say that the
normed space X is reflexive. A reflexive space must be complete and hence a
Banach space.

1.14 THEOREM Let X be a normied space. X is reflexive if and only if
X' is reflexive. X is separable if X' is separable, Hence if X is separable and
reflexive, so is X'.

Weak Topology and Weak Convergence

1.15 The weak topology of a normed space X is the weakest topology on X
that still renders continuous each x’ € X'. Unless X is finite dimensional the
weak topology is weaker than the norm topology on X. It is a consequence of
the Hahn-Banach theorem that a closed, convex set in 2 normed space is also
closed in the weak topology of that space. A sequence convergent with respect
to the weak topology on X is said to converge weakly. Thus x, converges
weakly to x in X provided x’(x,) = x'(x) in C for every x’ € X'. We denote
norm convergence of a sequence {x,} to x in X by x, — x; weak convergence
by x,— x. Since |x'(x =) <|x'; X" | xa—x; X || we see that x, - x implies
x,— x. The converse is generally not true

Compact Sets

" 1.16 A subset 4 of a normed space X is called compact if every sequence of
noints in 4 has a subsequence converging in X to an element of 4. Compact
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sets are closed and bounded, but closed and bounded sets need not be compact '
unless X is finite dimensional. A is called precompact if its closure A (in the
norm topology) is compact. A4 is called weakly sequentially.compact if every
sequence in A has a- subsequence converging weakly in X to a point in A4. The
reflexivity of a Banach space can be charactenzed in terms of this p:operty

1.17 __'I_‘leOREM A Banach space X is reflexive if and only if its closed unit
ball B,(0) = {x e X:||x; X| < 1} is weakly sequentially compact.

1.18 THEOREM A set 4 is precompact in a\’ﬁ;a?h space X if and only
if for every positive number ¢ there is a finite subset N, of points of X with the

property
A< | B.).

yeN,

A set N, with this property is called a finite ¢-net for A.

Uniform Convexity

1.19 Any normed space is locally convex with respect to its norm topology.
The norm on X is called uniformly convex if for every number ¢ satisfying
0 <e <2 there exists a number 8(g) >0 such that if x,ye X satisfy
Ix:X|=]y;X|=1 and {x—y;X|=¢, then |(x+»)/2;X|<1-5(e). The
normed space X is itself called “‘uniformly convex” in this case. It should,
however, be noted that uniform convexity is a property of the norm—JX may
possess an equivalent norm that is not uniformly convex. Any normable
space is called *‘uniformly convex’ if it possesses a uniformly convex norm.
The parallelogram law (2) shows that a Hilbert space is uniformly convex.

1.20 THEOREM A uniformly convex Banach space is refiexive.

The following two theorems will be used to establish the separability,
reflexivity, and uniform convexity of the Sobolev spaces introduced in
Chapter 1L

;1 .21 THEOREM Let X be a Banach space and M a subspace of X closed
with respect to the norm topology on X. Then M is itself a Banach space under ‘
the norm inkterited from X. Furthermore, -

(i) M is separable if X is separable,
(ii) M is reflexive if X is reflexive,
(ili) M is uniformly convex if X is uniformly convex.
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The completeness, separability, and uniform convexity of M follow easily
from the corresponding properties for X. The reflexivity of M is a consequence
of Theorem 1.17 and the fact that M, being closed and convex, is closed in the
weak topology of X.

122 THEOREM For j=1,2,...,n let X; be a Banach space with norm
|- ;. The Cartesian product X = [T}, Xj, consisting of points x = (x,, ..., x,)
with x; € X;, is a vector space under the definitions

X4y =0+Viseoy Xn+ V) cx = (cXyy ..., €X,),

and is a Banach space with respect to any of the equivalent norms

n i/p
et = (£ 0k)" 150 <
j=

Ixlly = max [lx;;.
1<j<n

Furthermore,

(i) if X, is separable for 1 <j < n, then X is separable;
(i) if X; is reflexive for 1 < j < n, then X is reflexive;
(iii) if X; is uniformly convex for | < j <, then X is uniformly convex.
More precisely, | ||, is a uniformly convex norm on X provided 1 <p < co.

The reader may verify that the functionals | -[|,), 1 <p < oo, are in fact
norms on X and that X is complete with respect to each of them. Equivalance
of the norms follows from the inequalities

XMy < Ixllpy < Mxllcry < 1 l¥ll o)

The separability and uniform convexity of X are readily deduced from the
corresponding properties of the spaces X;. The reflexivity of X follows from
that of X;, 1 <j < n, via Theorem 1.17 or via a natural isomorphism between
X’ and [T}-, X;' (see, for example, Lemma 3.7).

Operators and Imbeddings

1.23 Since the topology of a normed space X is determined by its convergent
sequences, an operator f defined on X into a topological space Y is continuous
if and only if f(x,) = f(x) in Y whenever x, - x in X. Such is also the case for
any topological space X whose topology is determined by the sequences it
renders convergent (first countable spaces). -
Let X, Y be normed spaces and f an operator from X into Y. The operator
[is called compact if f(A) is precompact in Y whenever A is bounded in X. [A
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bounded set in a normed space is one which is contained in the ball By ) for
some R.] f is completely continuousif it is continuous and compact. f is bound-
ed if f(A) is bounded in Y whenever A4 .is bounded in X.

Every compact operator is bounded. Every- boundegL linear operator is
continuous. Hence every compact linear operator is completely continuous.

1.24 We say that the normed space X is imbedded in the normed space Y,
and write X — Y to designate this imbedding, provided

(i) X is a vector subspace of ¥, and
(ii) the identity operator / defined on X into Y by Ix = x for all x e X is
continuous.

Since I is linear, (ii) is equivalent to the existence of a constant M such that
lIx; Y| < M|x; X||, xelX.

In some circumstances the requirement that X be a subspace of Y and I be
the identity mapis weakened to allow as imbeddings certain canonical linear
transformations of X into Y. (Examples are trace imbeddings of Sobolev
spaces as well as imbeddings of these spaces into spaces of continuous
functions. See Chapter V.)

We say that X is compactly imbedded in Y if the imbedding operator /
is compact.

Spaces of Continuous Functions

1.25 Let Q be a domain in R". For any nonnegative integer m let C™(Q) be
the vector space consisting of all functions ¢ which, together with all their
partial derivatives D*¢ of orders |a| < m, are continuous on Q. We abbreviate
Co% ) = C(Q). Let C®(Q)={\7=oC™(Q). The subspaces Co(Q) and
Co2(Q) consist of all those functions in C(Q) and C*(Q), respectively, which
have compact support in Q.

1.26 Since Q is open, functions in C™(Q) need not be bounded on Q. If
¢ € C(Q) is bounded and uniformly continuous on Q, then it possesses a
unique, bounded, continuous extension to the closure 0 of Q. Accordingly,
we define the vector space C™(f) to consist of all those functions ¢ € C™(Q)
for which D¢ is bounded and uniformly continuous on Q for 0 <fa| < m.
[Note that C™(R") # C™(R").] C"™(Q) is a Banach space with norm given by

l¢;C™( Q) = max sup|D*¢(x)|.

O<|x|<sm xeQ
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1.27 1f0 <2<, we define C™*(Q) to be the subspace of C™(Q) consisting
of those functions ¢ for which; for 0 <|a| < m, D*¢ satisfies in Q a Holder
condition of exponent 4, that is, there exists a constant K such that

D) - D¢ ()] < Kix—yl,  xyeQ.

C™*(Q) is a Banach space with norm given by

_ _ D - D"
I4:Cm@)] = 15 Cm @)+ max sup PO TPON

O<|alsm x,ye2 "‘7")’|Il
x#y
It should be noted that for0 <v< A<,
C™* @ e C™' (@) g C™(D).

It is also clear that C™'( Q) ¢ C™*'(Q). In general C™*'(Q) ¢ C™1 (DY)
either, but the inclusion is possible for some domains €, for instance convex

ones as can be seen by appealing to the mean value theorem (see Theorem
1.31).

If Q is bounded, the following two well-known thearems provide useful
criteria for denseness and compactness of subsets of C(Q). If ¢ € C(Q), we
may regard ¢ as defined on Q, that is, we identify ¢ with its unique continuous
extension to the closure of Q.

1.28 THEOREM (Stone-Weierstrass theorem) Let Q be a bounded
domain in R". A subset & of C(Q) is dense in C(Q) if it has the following four
properties:

() If ¢,y e and ce C, then ¢+, ¢y, and c¢ all belong to 7.
(i) If ¢ € o, then ¢ € o/, where @ is the complex conjugate of ¢.
(i) If x,y e Q, x # y, there exists ¢ € & such that ¢ (x) # ¢ ().
(iv) If x € Q, there exists ¢ € o such that ¢(x) # 0.

1.29 COROLLARY IfQisbounded in R", then the set P of all polynomials
in x = (x,,...,x,) having rational-complex coefficients is dense in C(Q).
(c € Cisrational complex if ¢ = ¢, + ic,, where ¢, and c, are rational numbers.)
Hence C(Q) is separable.

Proor The set of all polynomials in x is dense in C(Q) by the Stone-
Weierstrass theorein. Any polynomial can be uniformly approximated on the
compact set Q by elements of the countable set P, wl'uch is therefore also dense

inC®. §

1.30 THEOREM (Ascoli-Arzela theorem) Let Q be a bounded domain
in @7 A anheet K of (D) is nrecompact in C(Q) providing the following two
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comiitions hold:

(1) There exists a constant M such that for every ¢eK and x€Q,

@i M.
(i) For every ¢ >0 there exists § > O such that if ¢ € X, x,y €, and

|x—yl<$, then [¢(x)—d(»)| <e.

The following is a straightforward imbedding theorem for the spaces
introduced above.

1.31 THEOREM Let m be a nonnegative integer and let 0 <v< A< |.
Then the following imbeddings exist:

cmHI @) - CM(Q), )]
Ccm @) » C™(Q), @
c™A@) » c™ (). )

If © is bounded, then imbeddings (4) and (5) are compact. If Q is convex, we
have the further imbeddings

cmHi@) - ™ (Y, : (©6)
Cm+1 (ﬁ) - Cm.v(n)' (7)
If Q is convex and bounded, then imbeddings (3) and (7) are compact.
ProorF The existence of imbeddings (3) and (4) follows from the obvious
inequalities
lé; C" @) < |lo; ™ @,
Ié; C™ €] < |lg; C™* ).
To establish (5) we note that for |a]| < m,

[D*¢ (x)— D¢ ()] |D*¢(x)— D*¢(y)|

su < su
F |x—y|” x,yeQ ‘x“yll

x,yeQd
0<ix-y|<1
and
| |D*(x)—D*
sup |D%¢ (x)—D*$ ()| < 2 sup|D*p(x)],

x,yed Ix—}’lv xeN
lx—yj=1

from which we conclude that ' ‘ -
o™ @) < 3|¢; C™ QD).

If Q is convex and x,y €, then by the mean value theorem there is a
point z € Q on the line segment joining x and y such that D*¢(x)— D*¢(y) =
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(x—y)-VD%(z), where ‘V;l = (D, u,D,u,...,D,u). ;l‘hus i
1D (x)—D'¢(y)] < nlx—ylld; C™ ' @), S ®
and so ‘

lé;C™* @) < nf¢; C"* Q).

Thus (6) is proved and (7) foilows from (5) and (6).

Now suppose that Q is bounded. If 4 is a bounded set in C®*(Q), then
there exists M such that |¢;C®*( Q)< M for all ¢eA. But then
[p(x)— (P < Mix—y|* for all pe A and all x,ye Q, whence 4 is pre-
compact in C(Q) by Theorem 1.30. This proves the compactness of (4) for
m=0.If m=1and A4 is bounded in C™*(Q), then 4 is bounded in C%*(8)
and there is a sequence {¢;} < 4 such that ¢; » ¢ in C(Q). But {D,¢;} is
also bounded in C%*(Q) so there exists a subsequence of {¢,} which we again
denote by {¢;} such that D;¢,— ¢, in C(Q). Convergence in C(Q) being
uniform convergence on £, we have y; = D, ¢. We may continue to extract
subsequences in this manner until we obtain one for which D*¢; - D*¢ in
C(Q) for each a, 0 <|a| < m. This proves the compactness of (4). For (5) we
argue as follows:

x -D? D* -D° viA
‘D ¢(lxx)—ylv¢(y)l - (' ¢(;;)—y|l¢(y)l) 'Dq¢(x)_D:¢(y)|l—vl.v.

< const|D*¢ (x)— D*¢ ()|} ¥ 6

for all ¢ in a bounded subset of C™*(Q). Since (9) shows that any sequence
bounded in C™*(Q) and converging in C™(Q) also converges in C™"(Q), the
compactness of (5) follows from that of (4).

Finally, if Q is convex and bounded, the compactness of (3) and (7) follows
from composing the continuous imbedding (6) with the compact imbeddings
(4) and (5) for thecase A = 1. |

The existence of imbeddings (6) and (7), as well as the compactness of (3)
and (7), can be obtained under less restrictive hypotheses than the convexity
of Q. For instance, if every pair of points x, y € Q can be joined by a rectifiable
arc in Q having length not exceeding some fixed muitiple of |x— y|, then we
can obtain an inequality similar to (8) and carry out the proof. We leave it
to the reader to show that (6) is not compact.

r

TlieLébesgueMeasureinR"

1.32 Many of the spaces of functions considered in this monograph consist
of functions integrable in the Lebesgue sense over domains in R". While we
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assume that most readers are familiar with Lebesgue measure and integration,

we nevertheless include here a brief discussion of that theory, especially those
" aspects of it relevant to the study of the LP-spaces and Sobolev spaces con-

sidered hereafter. All proofs are omitted. For a'more complete and systematic
_ discussion of the Lebesgue theory, as well as more general measures and
integrals, the reader is referred to any of the standard works on integration
theory, for example, the book by Munroe [48].

1.33 A collection £ of subsets of R" is called a g-algebra if the following
conditions hold:

(i) R'eX.
(i) IfAeZ then A°={xeR":1x¢ A} e X.
(i) IfA4;eX, j=1,2,...,then %, 4;e L.

It follows from (i)-(iii) that: -

(ivy geX.
(v) If4;€Z,j=12,..,then 7, 4;eX.
(vi) IfA,BeX, then A—B=A n B*cX. .

1.34 By a measure u on £ we mean a function on X taking values in either
R U {+ o0} (a positive measure) or C (a complex measure) which is countably
additive in the sense that

“(O Aj) = i u(4;
j=1 j=1

whenever 4;€X, j=1,2,...,and 4; n 4, = & for j# k. (For. a complex
measure the series on the right, being convergent for any such sequence {4,},
is absolutely convergent.) If u is a positive measure and if 4, Be Z and A < B,
then p(A4) < pu(B). Also, if 4;eZ, j=1,2,... and 4, < A4, < -, then
H(Ufe 1 4;) = lim; o p(4)).

1.35 THEOREM There exists a o-algebra T of subsets of R" and a positive
measure u on X having the following properties:

(i) Every open set in R" belongs to Z.
(ii) IfAc B, BeX, and u(B) =0, then A € X and pu(4) = 0.
(i) fAd={xeR":a;<x;<b;,j=1,2,...,n}, then 4€X and u(4)=
I—['}m (b;—ay). ' i . '
(iv) pu is translation invariant, that is, if xe R" and A € Z, then x+ 4 =
{x+y:ye A} € Z and u(x+A) = u(A). ’ /

The elements of X are called (Lebesgue) measurable subsets of R": u is



14 I INTRODUCTORY TOPICS

called the (Lebesgue) measure in R". (We shall normally suppress the word
“Lebesgue” in these terms as it is the only measure on R" which we shall
require for our purposes.) For 4 € X we call u(4) the measure of A or the
volume of A, since Lebesgue measure is a natural generalization of the concept
of volume in R3. While we make no formal distinction between. “‘measure”
and ‘“volume” we shall often prefer the latter term for sets that are easily
visualized geometrically (balls, cubes, domains) and shall write vol4 in
place of u(A) in these cases. In R' and R? the terms length and area are more
appropriate than volume. '

1.36 If Bc A <« R" and u(B) =0, then any condition that holds at every
point of the set 4 — B is said to hold almost everywhere {a.e.) in A. 1t is easily
seen that every countable set in R” has measure zero. The converse is, however,
not true.

A function f defined on a measurable set and having values in R U
{4+ 00, — 0} is itself called measurable if the set

{x:f(x) > a}

is measurable for every real a. Some of the more important aspects of this
definition are listed in the following theorem.

1.37 THEOREM (a) Iffis measurable, sois |f].
(b) If fand g are measurable and real valued, then so are f+g¢ and fg.
(c) If {f,} is a sequence of measurable functions, then sup, f,, inf, f,,
lim sup,_, f»,» and lim inf,_, , f, are measurable.
(d) Iffis continuous and defined on a measurable set, then fis measurable.
(e) If fis continuous on R into R and g is measurable and real valued,
then the composite function feg defined by fog(x) = f(g(x)) is measurable.
(f)  (Lusin’s theorem) If fis measurable and f(x) = 0 for x € A° where
u(A4) < oo, and if ¢ > 0, then there exists a function ge Cy(A4) such that

SupxeR"‘g(x)' < supxsﬂ"‘f(x)l and ,U{X eR" 1f(X) #* g(.X)} <&

1.38 Let 4 < R". The function y, defined by

) = 1 if xeAd
=30 if x¢4

is called the characteristic function of A. A real-valued function s on R" is
called a simple function if its range is a finite set of real numbers. If for every x,
s(x) € {a;, ...,a,}, then clearly s = 27-18;X4,, Where 4; = {x e R":5(x) = a;},
and sis measurable if and only if A, A,, ..., A,, are measurable. Because of the
following approximation theorem simple functions are a very useful tool in
integration theory.
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l 39 'I'HEOREM Given a real-valued function f with domain 4 = R"
there is a sequence {s,} of simple functions converging pointwise to fon 4.
If f is bounded, {s,} may be chosen so that the convergence is uniform. If fis .
measurable, each s, may be chosen measurable. If fis nonnegative valued, the
sequence {s,} may be chosen to be monotonically increasing at each point.

The Lebesgue Integral

1.40 We are now in a position to define the (Lebesgue) integral of a measur-
able, real-valued function defined on a measurable set 4 < R". For a simple
function s = Z};l A Xa, where A; = A, A; is measurable, we define

~[s(x) dx = ) a;u(A)). (10)
A i=1
If fis measurable and nonnegative valued, we define
f f(x)dx = supf s(x) dx, 18))]
A A

the supremum being taken over measurable simple functions s vanishing
outside A and satisfying 0 < s(x) < f(x) in 4. If fis a nonnegative simple
function, then the two definitions of [, f(x) dx given by (10) and (11) coincide.
Note that the integral of a nonnegative function may be + co.

If fis measurable and real valued, we set f = /" —f~, where f* = max(f,0)
and f~ = —min(f, 0) are both measurable and nonnegative. We define

L f(x) dx = f 70 dx — j £ (%) dx

provided at least one of the integrals on the right is finite. If both integrals are
finite, we say that fis (Lebesgue) integrable on A. The class of integrable
functions on A is denoted L! (A4).

1.41 THEOREM Assume all of the functions and sets appearing below
are measurable.

(@) If fis bounded on 4 and u(A4) < o, then fe L' (4).
(b) Ifa<f(x)<bforall xe 4 and if u(4) < oo, then

ap(Ad) < f JS(x) dx < bu(A).
A
(¢) If f(x) < g(x) for all x € 4, and if both integrals exist, then -

J;f(x) dx ng(x)dx.
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(d) Iff,ge L (4), then f+ge L' (4) and
- f (f+g9)(x)dx = f f(x) dx +f g(x) dx.
JA 4 4
(¢) IffelL!'(A)and ceR, then ¢f e L' (4) and
[ =c[ soax
(f) If fe L'(A), then |f|e L'(4) and

| f flx) dx| < f |£(x)] dx.
A A

(g) Iffe L'(4)and B c A4, then fe L' (B); if in addition f(x) > 0 for all
Xx € A, then

J;f(x) dx < J;f(x) dx.

(h) If u(4) =0, then [, f(x)dx =0.
(i) If fe L'(4) and if [5f(x)dx=0 for every Bc A, then f(x) =0
a.e.on 4.

1.42 THEOREM If fis either an element of L'(R") or measurable and
nonnegative on R", then the set function A defined by

A(A) = J;f(x) dx

is countably additive, and hence a measure, on the g-algebra of Lebesgue
measurable subsets of R".

One consequence of this additivity of the integral is that sets of measure
~ zero may be ignored for purposes of integration, that is, if fand g are measur-
able on A and if f(x)=g(x) ae. on A4, then [,f(x)dx=[,g(x)dx.
Accordingly, two elements of L' (4) are considered identical if they are equal
almost everywhere.

The following three theorems are concerned with the interchange of
integration and limit processes.

143 THEOREM‘ (Monotone convergence theorem) Let 4 < R® be
measurable, and {f,} a sequence of measurable functions satisfying
0<fi(x) sf;(x) < --- for every x € A. Then

lim | f,(x)dx = f‘(lim f,,(x)) dx.
A A\n-wo

n- o
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144 THEOREM (Fatou’s lemma) Let A-c R" be measurable and let )
{/.} be a sequence of nonnegative, measurable functions. Then

) f (lim inf ﬁ,(x)) dx < lim inf fix)dx. ~
A n->o n= oo A

1.45 THEOREM (Dominated convergence theorem) Let A< R" be

measurable and let {f,} be a sequence of measurable functions converging to

a limit pointwise on A. If there is a function g € L' (4) such that | £, (x)| < g(x)

for every n and all x € 4, then

Iim f,,(x) dx = f (Iim f,,(x)) dx.
n= o A \n->®

1.46 The integral of a complex-valued function over a measurable set
A < R" is defined as follows. Set f = u+iv, where u and v are real valued and
call f measurable if and only if ¥ and v are measurable. We shall say that f'is
integrable over 4, and write f'e L' (4), provided |f|= (u*+v?)"/? belongs to
L' (A) in the sense described in Section 1.40. Forf'e L' (A4), and only for such f,
the integral is defined by '

f S(x) dx = f u(x) dx + if u‘(x) dx.
A . A A

It is easily checked that fe L'(4) if and only if u,ve [}(4). Theorem
1.37(a,b,d—f), Theorem 1.41{a,d-i), Theorem 1.42 [assuming fe L' (R"],
and Theorem 1.45 all extend to cover the case of complex f.

The following theorem enables us to express certain complex measures in
terms of Lebesgue measure u. It is the converse of Theorem [.42.

1.47 THEOREM (The Radon-Nikodym theorem) Let /. be a complex
measure defined on the o-algebra £ of Lebesgue measurable subsets of R".
Suppose that 1(4) = 0 for every 4 € X for which u(A4) = 0. Then there exists
fe L}(R") such that for every A e X

A(A)=J;f(x) dx.

The function fis uniquely-determined by 2 up to sets of measuré zero. |
1.48 If fis a function defined on a subset A of R"*™, we may regard f as
depending on the pair of variables (x, y) with x e R" and y e R™. The integral
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of fover A is tﬁen commonly denoted by

L Sy dxdy

or, if it is desired to have the integral extend over all of R**™,
3

£, ) xa(x,y) dx dy,

Rn+m

where y, is the characteristic function of A4. In particular, if 4 = R", we may
write

ff(x) dx = f Slxy, ) dxy - dx,.
A A

1.49 THEOREM (Fubini’s theorem) Let f be a measurable function on
R"*™ and suppose that at least one of the integrals

I, =f | fCx, )| dx dy,
Rn+nl

L= ( [ lf(x,y)ldx) d, (12)
L= ([ venia)as

exists and is finite. Then

@) f(-,y)e L'(R") for almost all y € R™,
(b) f(x,-)e L*(R™ for almost all x € R",
(©) fanf(x,-)dxe L'(R™,

() [amf(-, ) dy e L'(R"), and

() I =L=I,

Distributions and Weak Derivatives

1.50 We shall require in subsequent chapters some of the basic concepts and
techniques of the Schwartz theory of distributions [60], and we present here
a brief description of those aspects of the theory that are relevant for our
purposes. Of special importance is the notion of weak or distributional
derivative of an integrable function. One of the standard definitions of Sobolev
spaces is phrased in terms of such derivatives (Section 3.1). In addition to
Ref. [60] the reader is referred to Rudin [59] and Yosida [69] for more
complete treatments of the spaces 2(Q) and 2'(Q) introduced below, as well
as useful generalizations of these spaces. - '
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151 LetQbea domam in R". A sequence {¢,} of functions belonging to
Co®(Q) is said to converge in .the sense of the space 2(Q) to the function
¢ € Cy*(Q) provided the following conditions are satisfied:

(1) there exists K <'<.Q such that supp(¢,—¢) = K for every n, and
(i) lim,.,, D¢, (x) = D*¢(x) uniformly on K for each multi-index «.

There exists a locally convex topology on the vector space C,®(Q) with
respect to which a linear functional T is continuous if and only if T(¢,) = T(¢)
in C whenever ¢, — ¢ in the sense of the space 2 (Q2). This TVS is called 2 (Q)
and its elements resting functions. 2 () is not a normable space. (We ignore
the question of uniqueness of the topology asserted above. [t uniquely
determines the dual of 2 () which is sufficient for our purposes.)

1.52 The dual space 2'(Q) of 2(Q) is called the space of (Schwartz) distri-
butions. 2'(Q) is given the weak-star topology as dual of 2(Q), and is a locally
convex TVS with that topology. We summarize the vector space and con-
vergence operations in 2'(Q) as follows: if S, T, T, e 2'(Q) and c € C, then

S+1)(P) =S+ T(@), ¢e2(Q),

(cT)(@) = cT(¢), ¢ e D),
T,— T in 2'(Q) if and only if T, (¢) — T(¢) in C for every ¢ € 2(Q).

1.53 A function u defined almost everywhere on Q is said to be locally
integrable on Q provided u € L' (4) for every measurable 4 cc Q. In this
case we write ue L) (Q). Corresponding to every ue L} (Q) there is a
distribution T, € 2'(Q) defined by

T.($) = fﬂu(xw(x) &, $eD@. (13)

It is clear that T,,, thus defined, is a linear functional on 2 (Q). To see that it is
continuous suppose that ¢,— ¢ in 2(Q). Then there exists K c< Q such
that supp(¢,—¢) =« Kforn=1,2,3,.... Thus

160~ Tu(@)] < supldu() =) f ()] dx.

The right side of the inequality above tends to zero as n — oo since qb,, —¢
uniformly on K. : ,

"1.54 Not every distribution T€ 9'(Q) s of the form T = T, [defined by (13)]
for some u € L}, (Q). Indeed, assuming 0 € Q, the reader may wish to convince
himself that there can be no locally integrable function & on Q such that for"
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_ k every ¢ € 2(Q).

[swswax = 0.
Thé linear functional  defined on 2(Q) by
3(¢) = $(0) ' (14)
is, however, easily seen to be continuous, and hence a distribution on Q.

1.55 Let ue C'(Q) and ¢ € 2(Q). Since ¢ vanishes identically outside
some compact subset of Q, we obtain by integration by parts in the variable x;

L(b‘i‘j“("‘))d’m dx = ~ fﬂu(x) (%mx)) dx.

Similarly, integration by parts |«| times leads to

f (Du(x)) p(x) dx = (— l)""f u(x) D°¢(x) dx
Q Q

if ue C*(Q). This motivates the following definition of the derivative D*T
of a distribution T € 2'(Q):

(DT)($) = (= DT (D). (15)

Since D*¢ € 2(Q) whenever ¢ € 2(Q), D°T is a functionél on 2(Q). Clearly
D*T is linear on 2(Q). We show that DT is continuous, and hence a distribu-
tion on Q. To this end suppose ¢, — ¢ in Z(Q). Then

supp(D*(¢,~ $)) < supp(¢,—¢) = K

for some K — < Q. Moreover,

DP[D*(¢,~$)] = D’**($,— ¢)
converges to zero uniformly on K as n— oo for each multi-index . Hence
D*¢, - D*¢ in 2(Q). Since T € 2'(Q) it foilows that
D*T($,) = (- )" T(D*¢,) » (- 1)!"'T(D*¢) = D*T(¢)

in C. Thus D*T € 2'(Q).

We have shown that every distribution in 2'(Q) possesses derivatives of
- arbitrary orders in Q'(Q) in the sense of the definition (15). Furthermore, the
mapping D* from 2'(Q) into 2'(Q) is continuous. If T,— T in 2'(Q) and if
¢ € 2(Q), then

DT, ($) = (= DT, (D*$) - (—l)'“'T(D“rﬁ) = D*T(¢).
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1.56 EXAMPLES (1) If0eQ and é € 2'(Q) is defined by (14), then D"5
is given by .
‘ D*5(¢) = (—D*ID$(0).
2 IfQ=R(.e,n=1)and He L}, (R)is defined by

loc
1 if x>0

Hm:{o if x <0,

then the derivative (Ty) is 9, for if ¢ € 2(R) has support in the interval
[—a,a]l, then

(@) = ~Tu(d") = — f “$x) dx = $(0) = 6(9).

1.57 We now define the concept of weak derivative of a locally integrable
function. Let u € L] . (Q). There may or may not exist a function v, € L! _(Q)
such that T, = D*(T,) in 2'(Q). If such a v, exists, it is unique up to sets of
measure zero and it is called the weak or distributional partial derivative of u
and is denoted by D®u. Thus D*u = v, in the weak (distributional) sense
provided v, € L} (Q) satisfies

oc

f u(x) Db (x) dx = (— 1) f 0o (x) b (x) dx
Q Q
for every ¢ € 2(Q).

If u is sufficiently smooth to have a continuous partial derivative D*u in the
usual (classical) sense, then D% is also a distributional partial derivative of u.
Of course D*u may exist in the distributional sense without existing in the
classical sense. For example a function u, continuous on R, which has a
bounded derivative u’ except at finitely many points, has a derivative in the
distributional sense. We shall show in Theorem 3.16 that functions having
weak derivatives can be suitably approximated by smooth functions.

1.58 Let us note in conclusion that distributions on Q can be multiplied by
smooth functions. If Te 2'(Q) and w e C*(Q), the product wT e 2'(Q) is
defined by -

- (D)) = T(wd), ¢eD(Q).

If T-=T, for some u e LL_(R),.then oT = T, The Leibniz rule (see Seétion

loc

1.1) is easily checked to hold for. D*(wT).
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The Spaces L? ()

Definition and Basic Properties

2.1 Let Q be a domain in R" and let p be a positive real number. We denote
by L?(Q) the class of all measurable functions u, defined on Q, for which

f |ux)|Pdx < 0. )
Q

We identify in L”(Q) functions that are equal almost everywhere on Q. The
elements of L?(Q) are thus actually equivalence classes of measurable functions
satisfying (1), two functions being equivalent if they are equal a.e. in Q. For
convenience, however, we ignore this distinction and write ue LP(Q) if u
satisfies (1), and u = 0 in LP(Q) if u(x) = O a.e. in Q. It is clear that if u € L”(Q)
and c € C, then cu e L?(Q). Moreover, if u,v € L?(Q), then since

[u(x) + v(x)|” < (Ju@)|+{v(x)])" < 2°(|u(x)|? +|v(x)]?),

u+ve LP(Q), so LP(Q) is a vector space.

2.2 We shall verify presently that the functional |- ||, defined by

ful, = { f ‘|u<’x>lpdx}”’
f¢]

is a norm on L?(Q) provided 1 < p < co. (It is not a norm if 0 < p < 1.) In
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arguments where confusion of domams might occur we shall use [ lpqin
place of | - | . It is-clear that |ju|, > 20 and equality occurs if and only if u =0
in L*(Q). Moreover,

Neullp =lellul,,  ceC.

It remains to be shown, then, that if 1 <p <o,
lutoll, < ful,+lol,. )]
which is known as Minkowski’s inequality. Condition (2) certainly holds for

p = 1 since

f u()+0(9)| dx < f lu ()| dx +f lo(:x)| dx.

Q Q Q

If 1 < p < o0, we denote by p’ the number p/(p—1) so that 1 < p’ < o0 and
(I/p)+(1/p) =1

P’ is called the exponent conjugate to p.

2.3 THEOREM (Holder’s inequality) If 1 <p<o and ueLP(Q),
ve L7(Q), then uv € L' (Q) and

fn|u<x)v<x)|dx <l ], @3

Proor The function f(¢) = (¢?/p)+(1/p’)—1 has, for t >0, the minimum
value zero, and this minimum is attained only at ¢ = l. Setting ¢ = ab™?'/?,
we conclude, for nonnegative numbers a and b, that

ab < (a?lp) + (b"p") Q)

with equality occurring if and only if a?=b". If either jull,=0 or
vl =0, then u(x)v(x) = 0 a.e. in Q so (3) is satisfied. Otherwise we obtain
(3) by setting a = |u(x)|/|ull, and b =|v(x)|/{¢], in (4) and integrating over
Q. Equality occurs in (3) if and only if |u(x)|” and |v(x)|?" are proportional
ae.inQ. 1|

We remark that a form of Holder’s inequality for finite or infinite sums,

Ylab < {Z ||} ”"{Z |, |?}177, .

can be proved in the same manner.

24 THEOREM (Mmkawskl s mequahty) If 1 <p < o0, then
lutol, < ul, +lol,. , O]
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[

- PROOF ~ We ‘have already done- the case in whnch p=1 s0 we assume
l<p<oo. We may also assume that u,v € L?(Q), for otherwise the right
side of (5) is infinite. Now

f u) + 0P de < f lex) + 2P (] + oo dix

{ 5 |u<x>+u<x>|vdx} (Il +1ol,)

by separate applications of Holder’s inequality. Inequality (5) follows by
cancellation, which is valid since fu+v|, <co. |

2.5 A function u, measurable on Q, is said to be essentially bounded on Q
provided there exists a constant K for which |u(x)|< K a.e. on Q. The
greatest lower bound of such constants K is called the essential supremum of
|u] on Q and is denoted by ess sup, .o|#(x)|. We denote by L*(Q) the vector
space consisting of all functions u that are essentially bounded on Q, functions
being once again idéntified if they are equal a.e. on Q. It is easily verified that
the functional | - ||, defined by

lufle = ess suplu(x)|

xeQ

is a norm on L*(Q2). Moreover, Hélder’s inequality (3) clearly extends to cover
thetwocasesp=1,p ' =00, and p=00, p' = 1.

The following pair of theorems establishes reverse forms of Holder’s and
Minkowski's inequalities for the case 0 < p < I. The latter inequality will be
used later in establishing the uniform convexity of certain LP-spaces.

2.6 THEOREM LlLet O<p<l1 so that p'=p/(p—1)<0. Suppose
Se LP(Q) and

0 <f |g(x)|? dx < oo.
Q

1/p R 1/p
INCICCE { [ If(x)l"dx} { [ 1owar dx} ®
n. 7 0 Q ) |

PrRoOF We may assume fg € L' (Q); otherwise the left side of (6) is infinite. _
Set ¢=]|g|"? -and ¥ =|fg|® so that ¢|[/ |fIP. Then e L*(Q) where
g =1/p>1, and since p’ = —pq’ where ¢’ = q/(q— 1) we have ¢ € L7(Q). By

Then
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_the ‘direct version of Holder s inequality (3) we have

f f)[Pdx = f SOV dx < ¥l 0,

‘ -
- { fn lf(x)g(x)l.dx} { fn 9GP dx}

Taking pth roots and dividing by the last factor on the right side we obtain

©®. 1
2.7 THEOREM LetO<p<I. IfuveL?), then
IHul+ 1ot = lull, + lol,- ™

PrROOF If u = v =0in LP(Q), then (7) is trivial. Otherwise the left-hand side
is greater than zero. Applying the reverse Holder’s inequality (6), we obtain

[l +1ol I = fn(lM(X)J+IU(X)I)”"(IM(X)HIL’(X)I) dx

1/p
> { | (|u<x>|+|v<x>|)<"-“"'dx} Ml +1o1,)
Q

= [ ul+ ot 157 (lull, + l2l)
and (7) follows by cancellation. |}

The following theorem gives a useful imbedding result for LP-spaces over
domains with finite volume, and some consequences of this imbedding.

2.8 THEOREM Suppose volQ=[oldx<w and l<p<g<ow. If
ue LYQ), then u e L7 (Q) and

full, < (vol@)/P=Ha |y 8)
Hence |
LY(Q) —» LP(Q). , ©)]

If u e E*(Q), then '
tim i, = Jul (10)

Finally, if u € L?(€) for | < p < o0 and if there is a constant K such that for
all such p

lul, < K, (In
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then u e‘L”(-Q) and A .
o~ IR lulo < K. - 12

ProGF If p=4q, (8) and (9) are trivial. If 1 < p<qg<o and ue L(Q),.
Holder’s inequality gives

Jucoras < {Llu(x)‘lqu}”"’{ [rad

from which (8) and (9) follow immediately. If u € L*(Q), we obtain from (8)

limﬂsup lull, < |- (13)

On the other hand, for any ¢ > O there exists a set 4 = Q having positive
measure u(A) such that

lu@o)| = fulle —e if xe A

Hence
f lu(x)|? dx ZJ lu(x)|Pdx = u(4)(|u],.—e)*-
Q A

It follows that [uf|, > (u(A4))"/*(|lu]l, —€), whence
liminfjuf, = |u|. (14)
P
Equation (10) now follows from (13) and (14).

Now suppose (11) holds for 1 < p < co. If u ¢ L*(Q) or else if (12) does
not hold, then we can find a constant K; > K and a set 4 < Q with u(4) >0
such that for x € 4, |u(x)l > K,. The same argument used to obtain (14) now
shows that

liminfu|, = K,,
p—®
which contradicts (11). |

2.9 COROLLARY L*(Q)c L. (Q)for 1 <p < o and any domain Q.

loc

. Completeness of I7(£2)
2,10 THEOREM L(Q) is a Banach space if | < p < .

ProoF First assume 1 < p < o and let {u,} be a Cauchy sequence in L?(Q).
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There i isa subsequenoe {un,} of {u,} such that '
i “u\mn ;u < 1/2 ]"‘ 1 2
Let vm(x) = Zj:l |ull;+ l(x)—uuj(x)l‘ ’I:hen

ol = Y 2) <1, m=1,2,...
= A

Putting v(x) = lim,,_ ., v,,(x), which may be infinite for some x, we obtain by
Fatou’s lemma 1.44

m- w0

f lo(x)|Pdx < lim inff [0, (X)|Pdx < L.
Q Q

Hence v(x) < co a.e. in Q and the series

4,09+ 5 (10,09 =10, () (s)

converges to a limit u(x) a.e. in Q. Let u(x) = 0 whenever it is undefined as the
limit of (15). Since (15) telescopes we have

lim u, (x) = u(x) a.e. in Q.

m= oo
For any ¢ > 0 there exists N such that if m,n > N, then ||u,,—u,|, < ¢. Hence,
by Fatou’s lemma again

[ o=t dx = [ tim ) 17
Q

jo®

< lim inf}~ w4y, (x) = 14, (x)|P dx < €°
Jj o Q
if n>M. Thus u=@u—u,)+u,el’(Q) and |u—ul,-0 as n- .
Therefore L?(Q) is complete.
Finally, if {u,} is a Cauchy sequence in L*(Q), then there exists a set 4 < Q
having measure zero such that if x ¢ 4, then for everyn,m=1,2,...

[ < Nty Ntn () =1 ()] <ty =l | -

Since {||u,] .} is bounded in R, u, converges uniformly on Q ~ 4 to a bounded
function u. Setting u(x) = 0 for x € A4, we have ue L“’(Q) and jju,—u|, 0
as n~ 00, Thus L*(Q) is complete. |}

211 COROLLARY If 1 <p <o, a Cauchy sequence in LP(Q) has a
subsequence converging pointwise almost everywhere on Q. '

2.12 COROLLARY .L2?(Q) is a Hilbert space with respéct to ‘thef inner
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product . -
(u,0) = f u(x) v(x) dx.
1]

Holder’s inequality for L2*(Q) is actually just the well-known Schwarz
inequality _ ’
[, 0)| < Jlulz o]

Approximation by Continuous Functions, Separability
2.13 THEOREM C () is dense in LP(Q)if | < p < 0.

Proor Let ue LP(Q) and let ¢ > 0. We show that there exists a function
¢ € Co(Q) such that lu—¢|, < e Setting u = u; —u, +i(uy—u,) where each
u;, 1 <j <4, is real valued and nonnegative, we find (f)j € Cy () such that
li¢;—uji, <e/4, 1 <j<4. Then Ju—¢ +d,—ilp,—dy)|, < e We assume
without loss of generality, therefore, that u is real valued and nonnegative. By
Theorem 1.39 there exists a monotonically increasing sequence {s,} of non-
negative simple functions converging pointwise to u on Q. Since 0 < 5,(x) <
u(x) we have s, e LP(Q). Since (u(x)—s,(x))" < (u(x))’ we have s, > u in
LP(Q) by the dominated convergence theorem 1.45. We may thus pick
s € {s,} such that |ju—s||, < ¢/2. Since s is simple and p < co the support of s
must have finite volume. We may also assume that s(x) = 0 for all x € Q°.
Applying Lusin’s theorem 1.37(f) we obtain a function ¢ € C,(€) such that
l¢(x)] < s, forall xeQ,
and
vol{x € Q:5(x) # ¢(x)} < (e/4]s]..)"

Hence by Theorem 2.8 we have
fs=l, < Is—l.(vol{x € Q:s(x) # $p(x)})""”
< 2|5 (/4 Is].0) = o/2.
It follows that u—¢|l, <e. |

2.14 The above proof shows that in fact the set of simple functions in L(Q)
is dense in L?{Q) for | < p < co. That this is also true for L*(Q) is a direct
consequence of Theorem 1.39.

2.15 THEOREM L*(Q) is separable if 1 < p < 0.

Proor Form =1,2,... let B}
Q, = {x e Q:dist(x,bdryQ) > 1/m and |x| < m}.
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~

Thus §,, is'a compact subset of Q. Let P be the set of all polynomials on R"
having rational-complex coefficients. Let P,, = {xg_. f:f€ P} where x5, is the
characteristic function of Q,,. By Corollary l .29, P, is'dense in C({3,,). More-
over, | J®_, P, is countable. ‘

If ue LP(Q) and & > 0, there exists ¢ € Co(RQ) such that fu—ol, < &/2.
If 1/m < dist(supp ¢, bdryQ), there exists fe P, such that [¢—f], <
(e/2)(volQ,)” '/7. 1t follows that

lo—flp < l1¢=flo(vol Q)P < ¢/2

and so |u—f|, <e¢. Thus the countable set | ) is dense in L?(Q) and

LP(Q) is separable. |

m=1 m

2.16 C(Q), being a proper closed subspace of L* (Q), is not dense in that
space. Thus neither is Cy(Q) nor C,*(£2), and L*(Q) is not separabie.

Mollifiers, Approximation by Smooth Functions

2.17 Let J be a nonnegative, real-valued function belonging to Cy°(R")
and having the properties

(i) J(x)=0if|x|>1, and
(i) [pad(x)dx =
For example, we may take
_ kexp[—1/(1—|x|%)] if |x] <1
Jx) = {0 it |x> 1,
where k& > 0 is so chosen that condition (ii) is satisfied. If ¢ > 0, the function
J.(x) = ¢7"J(x/¢) is nonnegative, belongs to C,*(R"), and satisfies
(i) J(x)=0if |[x|=¢, and
(i) fpndo(x) dx=1.

J. is called a mollifier, and the convolution

Jorut) = [ stx-puras, (1)

defined for functions u for which the right side of (16) makes sense; is called a
mollification or regularization of u. We summarize some properties of
mollification in the following lemma.. 5
2.18 LEMMA Let u be a function whxch is deﬁncd on R" and vamshes
identically outside the domain Q.
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7

(a) Ifue LIW@) then J,*u'e C""(R")
(b) If also suppucc Q, then J,*ue Co(Q) provnded

¢ < dist(suppu, bdry Q)
() If uel?(Q) where 1 <p<oo, then J, *ueL”(Q) Moreover,
I, *ull, < llul, and lim ||J, * u—ul[,, = 0.
e 0+

(e) Ifue C(Q), then lim,y, J, u(x) = u(x) uniformly on Q. .
ot wid=t ap D= Il x>0 = Jput) =1 pinx QN Pl s
Proor Since J,(x—y) is an infinitely differentiable funcﬂon of x and
vanishes if | y— x| > ¢, and since for every multi-index o and every function u
that is integrable on compact sets in R" we have

5') (d) IfueC(Q)and G c< Q, thenlim,_ ¢, J, u(x) = u(x) uniformly on G.

p—y
DU+ ) = [ D G=n)ut) o,
it follows that conclusions (a) and (b) are valid.
Suppose ue LP(Q). If | <p<oo, we let p" =p/(p—1) and obtain by
Holder’s inequality

e ute = | [ 40100

1/p’ 1/p
< {L"Je(x—y) dy} {Lnle(x—y)lu(y)l”dy}

1/p
= {L Ja(x—y)lu(y)l"dy} . (17)

Hence by Fubini’s theorem

f > u()|Pdx < f f T (=) u ()P dy dx
Q R® JR”

= [ wowdy [ se-pyax = ulz. as
Let n > 0. By Theorem 2.13 there exists ¢ € Co () such that |u—¢|, < n/3.
Thus by (18), |/, xu—J,*¢|, < n/3. Now
M. * 69— (9] = ‘ [ 2e=nem-ec) d,v| ,

< sup [$(N=6@). (19)

jy—xl<e

Since ¢ is uniformly continuous on Q the right side of (19) tends to zero as
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e—0+. Since supp¢ is compact we may therefore arrange to have
. 7.+ ¢—¢ll, <n/3 by choosing ¢ sufficiently small. For such ¢ we therefore

“have |/, *u—uj, » <1 and (c) follows. If p = 1, (18) follows directly from (16)
without use of Holder’s inequality, and the rest of the proof of (c) is the same
as above. The proofs of (d) and (e) may be obtained by replacing ¢ by u in
19). 1

2.19 THEOREM C,°(Q) is dense in L?(Q) if | < p < 0.

The proof is an immediate consequence of Theorem 2.13 and Lemma
2.18(b,e).

Precompact Sets in f ()

2.20 The following theorem plays a role in the study of L’-spaces similar
to that played by the Ascoli-Arzela theorem 1.30 in the study of spaces of
continuous functions. If « is a function defined (a.e.) on a domain Q = R", we
denote by i the zero extension of u outside Q, that is,

: u(x) if xeQ
() = if xeR"~ Q.

221 THEOREM Let | <p <o. A bounded subset K< L?(Q) is pre-
compact in LP(Q) if and only if for every number ¢ > 0 there exists a number
é > 0 and a subset G =< Q such that for every v e K and every 4 € R" with
|hl<d

f [G(x+h)—d(x)|Pdx < & (20)
Q

and
f |u(x)|Pdx < €. 1)
Q~G

Proor 1t is sufficient to ’prove the theorem for the special case Q = R", as
the theorem follows for general Q from its application in this specnal case to
the set K = {ii:ueK).

Let us assume first that K is precompact in L°(R"). Let ¢ > 0 be given. -
Since K has a finite (g/6)-net (Theorem 1.18), and since C,(R") is dense in
LP(R") (Theorem 2.13), there exists a finite set S.of continuous functions
having compact support, such that for each u € K there exists ¢ € S satisfying
lu—¢|, <&/3. Since S is finite there exists r > 0 such that supp¢ < B, for
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every ¢ € S, where B, is the ball {x eR":|x]< r}l. Setﬁng G = B,, we obtain
(21). Also, ¢(x+h)—¢(x) is uniformly continuous for all x.and vanishes
identically outside B, ,, provided |4| < |. Hence

lim |¢(x+h) ¢ (x)|Pdx = 0. (22)

lhj—~0

Since S is finite, (22) is uniform for ¢ € S. For u € K let T, u be the translate
of uby h:

T, u(x) = u(x+h). (23)

If ¢ € S satisfies |u—¢|, < &/3, then also |T,u—T, ¢, < ¢/3. Hence by (22)
we have for |/A| sufficiently small (independent of u € K),

ITyu—ul, < [Tu-T,o|,+|Ti¢—dl,+d—ul,
< 2/ +|To—-¢ll, <&,
and (20) follows. [This argument shows translation is continuous in L?(Q).]

To prove the converse let ¢ > 0 be given and choose G c < R" such that
forallue K

f u@x)|Pdx < ¢/3. (24)
R ~G

For any n > 0 the function J, * u defined as in (16) belongs to C*(R") and in
particular to C(G). If ¢ € Co(R"), then by Holder’s inequality

[, * ()= (x)]* = ’L"J,,(y)(cb(x—y) —¢(x) dy ’

< [ a0IT 0 —sulray
where T, ¢ is given as in (23). Hence
I, = ¢—ol, < sup ITad—ol,- (25)
If ue LP(R"), let {¢,} be a sequence in Cy(R") converging to # in LP-norm.
By Lemma 2.18(c), {/,*¢,} is a Cauchy sequence converging to J,*u in
LP(R"). Since also T, ¢, — T, u in L*(R"), (25) extends to all u e L*(R"):

I, * u—ul, < sup |T,u—ul,.
- heB, N

Now (20) implies that lim|,,|_,o!|7",,u—u||,,=0 uniformly for u e K. Hence
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lim,,_,o||.1,,*u—uu,, = 0 uniformly for u € K. We now fix n > 0 so that ,.

[ ue- wnwa<3 @6)

21’
forall ue K.

We show that {J, * u:u € K} satisfies the conditions of the Ascoli-Arzela
theorem 1.30 on G and hence is precompact in C(G). By (1?) we have

gy r ) < (s 49 1t
xeR"

which is bounded uniformly for x € R” and u € K since K is a bounded set in
L7(Q) and 5 is fixed. Similarly

|4*uu+m—h*uunS<pruQ 1T u—ul,
xeRn
and so lim,_ o J, *u(x+h) = J,*u(x) uniformly for xe R" and ue K.

Thus {J,*xu:ue K} is precompact in C(G) and by Theorem 1.18 there
exists a finite set {i, ..., ¥,,} of functions in C(G) such that if u € K, then for
some j, | <j<m, and alt x e G we have

.
) 3-27.vol G’
Denoting by x/?,- the zero extension of ; outside G, we obtain from (24), (26),
(27), and the inequality (|a|+ |b])* < 27(]a|® +|b]?)

W () —Jy * u(x)|” < @7

f lu(x)=y(x)|Pdx = f [ ()7 dx +f Ju ()~ (0)|P dx
Rn R"~G

<§+ﬂfﬂmﬂ—h*MﬂPHh*wﬂ—%&Wﬁk

» € € 1
<3+2 (3 7+ 337verg 10

Hence K has a finite e-net in L?(R"), namely {{);:1 < j < m}, and so is pre-
compact by Theorem 1.18. |

222 THEOREM Letl <p<ooandlet Kc L"(Q) Suppose tliere exnsts
a sequence {Q;} of subdomains of Q having the following properties:

(a) for each j, Q, Q.4
(b) for each j the set of restrictions to Q of the functlons in K is pre-
compact in LP(Q;);
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’ . R,
(c) for every ¢ > 0, there exists j such that ‘

J |u(x)|Pdx <&  forevery ueK.
a

~n,

Then K is precompact in L?(Q).

Proor Let {u,} be a sequence in K. Then by (b) there exists a subsequence
{u$"} such that the restrictions {u\"’|q,} converge in L?(Q,). Having selected
{ulV}, ..., {u®}, we may select a subsequence {ul**D} of {u®} such that
{u* Vg, ,,} converges in LP(Q,. ). Hence also {u{**V|g} converges in
LP(Q)) for 1 <j < k+1 by (a).

Let v, = u'™ for n=1,2,.... Clearly {v,} is a subsequence of {u,}. Given
¢ > 0, there exists j [by (c)] such that

[ bao—vatoleax < o2 (28)
a~q,

for all n,m = 1,2, .... Except for the first j—1 terms, {v,} is a subsequence of
{u{”} and so {v,1q,} is a Cauchy sequence in L?(L;). Thus for n, m sufficiently
large we have

J [0, ()= v, (X)|Pdx < ¢f2. (29)
Qy

Combining (28) and (29) we see that {v,} is a Cauchy sequence in L?(Q) and
so converges there. Hence K is precompact in LP(Q). ||

We remark that Theorem 2.22 is just a setting, suitable for our purposes,
of a well-known theorem stating that the operator-norm limit of a sequence of
compact operators is compact.

The Uniform Convexity of L?(Q2)

2.23 For 1 <p <o the space L*(Q) is uniformly convex, its norm {-|,
satisfying the condition prescribed in Section 1.19. This result, due to
Clarkson [19], is obtained via a set of inequalities for L?(Q) that generalizes
the parallelogram law in L?(Q). These inequalities are given in Theorem 2.28,
for the proof of which we prepare the following lemmas.

224 LEMMA Ifl<p<oanda>0,b>0, then
(a+b)? < 2771 (aP+bP). . 30)
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PROOF If a = 0, (30) clearly holds Ifa > 0, (30) may be rewntten in the form
TA4X)P < 2P (1 +xP) : 31)

where 0 < x = b/a. The function f(x) = (1+x)?/(1+x”) satisfies f(0) =1 =
lim,_, , f(x) and f(x) >1if 0 < x < o0, Hence f has its maximum for x > 0 at
its only critical point, x = 1. Since f(1) = 2?~, (31) follows. |}

2.25 LEMMA If 0 <s <, the function f(x) = (1 —s*)/x is a decreasing
function of x > 0.

PrOOF f'(x) = (1/x*)(g(s*)~ 1) where g(¢) = r—tInt. Since 0 <s* < | and
since g'(r) = —Int = 0 for 0 < ¢ < 1, it follows that g(s*) < g(1) =1 whence

S'x0)<0. §
226 LEMMA Ifl<p<2and0<t<I, then

1 1 1/(p—1)
5| < (5-{--2-[") ) (32)

where p’ = p/(p—1) is the exponent conjugate to p.

L+¢]7 1=t}

2

ProOF Since equality clearly holds in (32) if either p=2ort=0or¢t=1,
we may assume that 1 <p <2 and 0 <t < 1. Under the transformation
t = (1-s)/(1+5), which maps the interval 0 <¢ <1 onto the interval
1 > 5> 0, (32) reduces to the equivalent form

A +s)P+ (1 —=5)P] - (1+s2)P" 1 > 0. (33)

If we denote

i

P\ _ B\ pr=D(=2 - (p—k+))
<0>—1 . <k>— k! . k2L

the power series expansion of the left side of (33) takes the form

503300302

k=0

2p-2()

k=0 k=0

P ey

The latter series is convergent for O 5 s < 1. We prove (33) by showing that
each term in the series is positive for 0 < s < . The kth term can be written

k
sZk

[
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in the form
p(p—1)2-p)(3=p)---(2k—1 —p)szk
(2k)!
- (P—1)(2~P)(3—P)-"(2k—I—P)s,,'(zk_l,_*_(P—’l)(Z—P)"'Qk—p)szk,r
(2k—1)! (2k)! '
_ (2—P)(3—P)“'(2k“1’)szk pp=1) p—1 Sp'<2k~1)—zk+";lszkp'~zk
Qk-1) 2k(2k—p) 2k—p 2k

(2_p)(3_p)...(2k_.p) Zkl:l_s(Zk_P)/(P—l) l_szk/(P—l)]
= A - .
(2k—1)! Ck=p)(p=1)  2kj(p—1)
The first factor above is positive since p < 2; the factor in brackets is positive

by Lemma 2.25 since 0 < (2k—p)/(p—1) < 2k/(p—1). Thus (33) and hence
(32) is established. |

2.27 LEMMA Letz,weC.If1 <p <2, then
4 z—wl|?

2

z+w

2

’ 1 1 1/(p—1)
< (EIZIP + 3 lwl") " (34)

where p’ = p/(p—1). f 2 < p < o0, then
P Z—w 4

2

zZ+w
2

<1|l”+ll |” (35)
= = pwlP.
_22 2‘

PrROOF  Since (34) obviously holds if - =0 or w =0 and is symmetric in z
and w, we may assume that |z[>[w|> 0. In this case (34) can be rewritten in

the form
p’ 1 1 t/iip—1)
< — P
< (2 + 2: ) , (36)

where w/z=re®, r>0, 0<0<2n If 0=0, (36) is already proved in
Lemma 2.26. We complete the proof of (36) by showing that for fixed r the
function

| 4 re®
2

P —re®
2

S(0) = |1 +re®” +|1—re'”
has a maximum value for 0 < 0 < 2= at 0 = 0. Since
S(0) = (1+r*+2r cos 072 + (1+r2—=2r cos )73,

it is clear that f(2n—0) = f(n—0) = f(0), so that we need consider f only on
the interval 0 < 0 < n/2. Since p’ > 2, we have on that interval

F0) = —p'rsinO[(1 +r2+2r cos0)P/D1 = (1+r2=2r cos O)*/>~1] < 0.

'
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If 2 <p < oo, then | < p’ < 2and-we have mterchangmgp and p’ in (34) .

and using Lemma 2.24, . )
|2 —wlp Ty e -1
Z4w z—w S(%M” +-%|w|"') k |

2

N’

1 1
= s ll?+ WP,
so that (35) is also proved. |}

2.28 THEOREM (Clarkson’s inequalities) Let u,ve L? (Q) For 1<
p<ooletp =p/(p—1). If2<p< o0, then

P

u+v u—v

— — —||"ﬂ”+-N 5, (37
2 1,772 |, =2 | .
utuoll? - ( Pl

A () i Jull + —nvnp) . (38)
2 |, T

If | <p <2, then
u+o |7 u—ul? | 1 Pt
o) o) (5 nu||z+5uvn:> , (39)
14 P

lu+o P lu—v P 1

— | + > = ulp + 5ol (40)
2 |, T2, T a2 g

ProOF For 2 < p < oo, (37) is obtained by taking z = u(x) and w = v(x) in
(35) and integrating over Q. To prove (39) for 1 < p <2 we first note that
Iu|? ||, = ull? for any u € LP(Q). Using the reverse Minkowski inequality
(7) corresponding to the exponent p—1 <1, and (34) with z=u(x),
~ w=u(x), we obtain _ :

uto|P Mu—vl?  |Huto|” u—vl?
2 P 2 LA 2 p-1 2 p—1
J‘ u@)+o()”  Ju)—o(x) P\t N
= BEE— —_— dx
o 2 2

ranation continues
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< ([ (Goar+ v}

1 1 LA
- (313 + 3013) -
whlch is (39). ‘ .

Inequality (38) can be proved for 2 < p < co by the same method used to
prove (39), except that the direct Minkowski inequality (5), corresponding to
p—1 > 1, is used in place of the reverse inequality, and in place of (34) is used

the inequality
E+nl? pP\p-1 1 1
- > 4 _ 4
(15 > 11¢l7 + Ll

which is obtained from (34) by replacing p by p’, z by £+n, and w by &—n.
Finally, (40) can be obtained from a similar revision of (35). We remark that
all four of Clarkson’s inequalities reduce to the parallelogram law

e+ ol3 + Ju—vl3 = 2Julz + 2]v]3

]
4 -

in thecase p=2. |

2.29 COROLLARY If 1 <p < o0, L7(Q) is uniformly convex.

PROOF Let u,ve LP(Q) satisfy |ul,=lv|,=1 and |u—v|,>¢>0. If
2 < p < 0, we have from (37)
u+uvi? &P
— || Sl-5.
2 |, 2
If 1 <p <2, we have from (39)
u+vll” i
— £ 1-=
2 |, 2°

In either case there exists 6 = d(¢) > 0 such that |[(u+v)/2||, < 1-0. ]

Being uniformly convex, LP(Q) is reflexive for | < p < oo by Theorem
1.20. We shall give a direct proof of this reflexivity after computing the dual
of L?(Q).

The Normed Dual of L?(Q2)

2.30 Let 1 < p < oo and let p’ denote the exponent conjugate to p: For each
element v e jid (Q) we can define a linear functlonal L, on LP(Q) via

L.(w) = Lu(x)u(x) dx, ue L?(Q).
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By Holder’s inequality | L, ()| <|lu}, v}, so that L, e [L”(Q)]" and
4 ILos [LPE@T' || < 0] C))
We show that equality must hold in @1). If t<p<oo, let u(x)=-
o))" ~%0(x) if v(x)#0 and u(x) =0 otherwise. Then ue L?(Q) and
Ly(u) = |ul,|v| . Now suppose p =1 so p’ = co. If ||vf, =0, let u(x) =0.
Otherwise let 0 < ¢ <|v|,, and let A be a measurable subset of Q such that
0 < s(A) < oo and |v(x)|= o], —¢ on A. Let u(x) =|v(x)] " 'v(x) for x€ A4;
u(x) = 0 otherwise. Then u e L' (Q) and L,(u) > {ul, (o], —&). Thus we have
shown that
(Lo [L2ET'} = o]l (42)

so that the operator L mapping v to L, is an isometric isomorphism of L7 (Q)
onto a subspace of [L?(Q)]'.

2.31 It is natural to ask whether the range of the isomorphism L is all of
[LP(2)]’, that is, whether every continuous linear functional on L?(Q) is of
the form L, for some v € L” (). We shall show that such is the case provided
1 <p < 0. For p =2 this is an immediate consequence of the Riesz repre-
sentation theorem for Hilbert spaces. For general p a direct proof can be
given using the Radon-Nikodym theorem (see Rudin [58] or Theorem
8.18). We shall give a more elementary proof based on the uniform convexity
of L%(Q) and a variational argument. This method of proof is also used by
Hewitt and Stromberg [32]. Finally we shall use a limiting argument to obtain
the case p = 1 from the case p > 1.

232 LEMMA Let! <p<oo. If Le[LP(Q)] and |L;[L?(Q)]'|| =1, then
there exists unique w € LP(Q) such that ||w|, = L(w) = 1. Dually, if w e L?(Q)
is given and |w[, =1, then there exists unique Le[L"(Q)]" such that
IL; L7 QY| = L(w) = L.

Proor First assume that L e [L?(Q)] is given and ||L] = 1. There exists a
sequence {w,} € L?(Q) such that |w,| =1 and lim,. |L(w,)|=1. We may
assume that |L(w,)| > % for each s, and, replacing w, by a suitable multiple
of w, by a complex number of unit modulus, that L(w,) > 0. Suppose the
sequence {w,} is not a Cauchy sequence in LP(Q). Then there exists ¢ > 0 such
that |w,—w,|, > & for some arbitrarily large values of m and n, so that by
uniform convexity we have 4(w,+w,)ll, <1—3J, where § is a fixed positive
w,+ w,,,J

number. Thus = _
1> L( Wnt Won )= —IL(Wn'*‘W,..) ‘
||wn+wm"p - 2 Alp 2

, I 1 '
> _1‘:‘5 'E[L(Mn)-*'l‘(wm)]' . (43)
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Since the last expression approaches 1/(1 — &) as n,m — o, we have a contra-
diction. Thus {w,} is a Cauchy sequence in L*(Q) and so converges to an
elemient w of that space. Clearly |w], = 1 and L(w) = lim,,, L(w,) = 1. The
uniqueness of w follows from (43) applied to two distinct candidates.

'Now suppose w e LP(Q) is given and |[w|, = I. As noted in Section 2.30
the functional L, defined by

L,(u) = Lu(x)v(x) dx, uel’(Q), @)

where
G T AR
satisfies L,(w) = ||z =1 and || L,; [L?( @] =|o], = [w]2"* = 1. It remains

to be shown, therefore, that if L, L, e [L?(Q)] satisfy ||L,|=]L,}l=
L,(w)=L,(w)=1, then L, = L,. Suppose not. Then there exists v e L?(Q)
such that L, (u) # L,(u). Replacing u by a suitable multiple of u, we may
assume that L,(u)— L,(u) = 2. Then replacing u by its sum with a suitable
multiple of w, we can arrange that L,(u) =1 and L,(u) =--1. If # > 0, then
L(w+tu)=14+1t; since ||[L,|=1, therefore |w+muj,>= 14+ Similarly,
Ly(w—tu)=1+t so |w—m|,=21+r If 1 <p<2, Clarkson’s inequality
(40) gives

4 p

(W) + (w—tu)
2

{(w+ ) — (w—tu)
2

I+ P fulp =

p P

1

> Hw+tu\l§+%“w——!uﬂg = (1+1). (46)

]|

If 2 < p < o0, Clarkson’s inequality (38) gives

(w+n) + (w—1u) |7 4

2

(w+rtu) — (w—tu)
2

1+ 7 ulfy =

P p

=1

> (% |w+eu|)? + % |!w—tul]:) = (1+1). (47

Equations (46) and (47) are not bossible for all 1 > 0 unless {|u|, = 0 which is
impossible. Thus L, = L,. |

2.33 THEOREM (The Riesz representation theorem Jor LP(Q)) Let
1 < p < oo and let L e [LP(Q)]. Then there exists v € L?(Q) such that for all
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uel’(Q)

- L(u) = f u(x)v(x) dx.
L Ja
Moreover, ||, = | L; [L?(@)T|. Thus [L*(@)] = L”(@).

Proor Lf L =0, we may take v = 0. Accordingly, we assume L # 0 and,
without loss of generality, that |L;[L?(Q)]'|=1. By Lemma 2.32 there
exists we L?(Q) with |w|, =1 such that L(w)=1. Let v be given by (45). _
Then L,, defined by (44), satisfies |L,;[LP()]|=1 and L,(w)=1. By

Lemma 2.32, again we have L = L,. Since |[vf, = I, the proof is complete. |

2.34 THEOREM (Riesz representation theorem for L'(Q)) Let Le
[L'(Q)]. Then there exists v € L*(Q) such that for all ue L' (Q)

L(u) = f u(x)v(x) dx
Q
and [vll,, ={L: [L'(D]']. Thus [L'(Q)] = L*(Q).
PROOF Once again we may assume that L #0 and |L;[L' ()] | = 1. Let

us suppose, for the moment, that Q has finite volume. Then by Theorem 2.8
if 1 <p < 0, we have LP(Q) < L' (Q) and

[L@)] < Jull; < (volQ)' =P ],

for any u e LP(Q). Hence L e [L?(Q)]' and by Theorem 2.33 there exists
v, € L7 (Q) such that

vl < (volQ)'~(/P (48)

p”p’

and for every u € LP(Q)
L(u) = J u(x)v,(x) dx. 49)
Ja

Since Cy*(Q) is dense in L?(Q) for | < p < o0, and since for any p, g satisfying
I < p,q < oo and any ¢ € C,™(Q) we have

f $()0,x) dx = L(9) = f & (x) 0, (x) dx,

it follows that v, = v, a.e. on Q Hence we may replace v, in (49) bv a function
v belonging to L"(Q) for each p, 1 < p < 0, and sausfymg, followmg (48),
loll,r < (vol)! =1/,
It follows'by Theoremv2.8 again that v € L*(Q) and
Iol, < lim (vol @)=/ = 1, (50)

p-w
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The ‘argument at the beginning of Section 2.30 shows that equallty must
prevail in (50).
If Q does not have finite volume, we may nevertheless write Q = Ur

where G; = {x€Q:j—1<|x| </} has finite volume. The sets G, are mutually
disjoint. Let xj(x)' be the characteristic function of Gj. If u; e L‘(Gj),
let ii; denote the zero extension of u; outside G;, that is, i;(x) = u;(x) if
x€G;, d;(x) =0 otherwise. Let L;(u;))= L(d;). Then L;e 5 (GpY and
[L;; [L'(G)T'|| < 1. By the finite volume case considered above there exists
vj € L*(G)) such that |v;], ¢; <1 and

Li(u) = f u;(x)v;(x) dx = f i (x) v(x) dx,
G, Q
where v(x) = v;(x) for xe G; (j=1,2,...), so that |v|, <. If ue L'(Q),

we put u = 3 L, x;u; the series converging in norm in L}(Q) by dominated
convergence. Since

k k k
L( Z Xju) = Z Lj(Xju) = Z xi(X)u(x)v(x) dx,
=1 =1 Qj=1
we obtain, passing to the limit by dominated convergence,
Lu) = f u(x)v(x) dx.
Q
It then follows, as in the finite volume case, that |v|, =1. |

2.35 THEOREM L?(Q) is reflexive if and only if 1 < p < 0.

PrROOF Let X = L?(Q), where 1 < p < co. Since X’ = L7 (Q), to any we X"
there corresponds W € [L”(Q)]’ such that w(v) = W (), where

v(u) = Lﬁ(x)u(x) dx, ue X.
Similarly, corresponding to w e [L?(Q)]’ there exists u € X such that
w(d) = J- (x)u(x)dx, vel” Q).
It follows that ; '
Cw(v) = WD) = L 17/(x)u(x) dx = v(u) = _Jx u(v)

for all v € X', Jy being the natural isometric isomorphism (see Section 1.13)
of Xinto X". This shows that J, maps X onto X" so that X’'= L(Q) is reflexive.

Since L' (Q) is separable while its dual, which is isometrically isomorphic
‘to L*(Q), is not separable, neither L' (Q) nor L®(Q) can be reflexive. I
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2.36 The Riesz representation theorem cannot hold for the'space L°(Q )in
_ a form analogous to Theorem 2.33, for if so, then the argument of Theorem
2.35 would show that L' (Q) was reflexive. The dual of L*(Q) is larger than
L'(Q). It may be identified with a space of absolutely continuous, finitely:
additive set functions of bounded total variation on 2. The reader is referred
to Yosida [69, p. 118] for details.
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The Spaces W™ P?(Q))

Definitions and Basic Properties

In this chapter we introduce Sobolev spaces of integer order and establish
some of their basic properties. These spaces are defined over an arbitrary
domain Q < R" and are vector subspaces of various spaces L?(Q).

3.1 We define a functional ||-{,, ,, where m is a nonnegative integer and
I <p < oo, as follows:
Yiip '
Moy =, 50l v<p<on W)
fellm = max Dl )
O<lal<m

for any function u for which the right side makes sense, |- ||, being, of course,
the LP(Q)-norm. (In situations where confusion of domains may occur we
shall write ||u|,, , o in place of |ul,, ,.) It is clear that (1) or (2) defines a norm
on any vector space of functions on which the right side takes finite values
provided functions are identified in the space if they are equal almost every-
where in.Q. We consider three such spaces corresponding to any given.values
of mand p: ~ ’ ' :

H™?(Q) = the cqmpleﬁoh of {u € C™(Q): ||u|,, , < 00} with respecf to the
norm " ) "m‘w
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wmr Q) = {u € L*(Q): D’u e L(Q) for 0 < |a[s m, where Du is the weak
(or distributional) partial derivative of Section 1.57}, and '
W3 ?(Q) = the closure of C,*(Q) in the space W™P?(Q).

- Equipped with the appropriate norm (1) or (2), these are called Sobolev spaces
over- Q. Clearly W%?(Q) = L*(Q), and if 1 <p <0, W2 P(Q) = L?(Q) by
Theorem 2.19. For any m the chain of imbeddings

WP (Q) » WmP(Q) - LP(Q)

is also clear. We shall show in Theorem 3.16 that H™?(Q) = W™?(Q) for
every domain Q. This resuit, published in 1964 by Meyers and Serrin [46]
dispelled considerable confusion about the relationship of these spaces that
had existed in the literature before that time. It is surprising that this elementary
result remained undiscovered for so long.

The spaces W™P(Q) were introduced by Sobolev [62,63] with many
related spaces being studied by other writers, in particular Morrey [47] and
Deny and Lions [21]. Many different symbols (W™?, H™?, P™P [ P etc.)
have been (and are being) used to denote these spaces and their variants, and
before they became generally associated with the name of Sobolev they were
sometimes referred to under other names, for example, as “Beppo Levi
spaces.”

Numerous generalizations and extensions of the basic spaces W™P?(Q)
have been made in recent times, the great bulk of the literature originating in
the Soviet Union. In particular we mention extensions that allow arbitrary
real values of m (see Chapter VII) and are interpreted as corresponding to
fractional orders of differentiation, weighted spaces that introduce weight
functions into the LP-norms, spaces W™P that involve different orders of
differentiation and different L”-norms in the various coordinate directions
(anisotropic spaces), and Orlicz-Sobolev spaces (Chapter VII1) modeled on
the generalizations of LP-spaces known as **Orlicz spaces.”

It will not be possible to investigate the complete spectrum of possible
generalizations in this monograph.

32 THEOREM Ww™? () is a Banach space.

ProOF Let {u,} be a Cauchy sequence in W™?(Q). Then {D,} is a Cauchy
sequence in L?(Q) for 0 < Ja| < m. Since L?(Q) is complete there exist functions
u and u,, 0 <|af<m, in LP(Q) such that u, - u and D*u, - u, in L?(Q) as
n-» 0. Now L*(Q) < L} (Q) and so u, determines a dlstrlbutlon wE2'(Q)
as in Section 1.53. For any ¢ € 2() we have .

T @®-T@) < [ I -uCI1BC dx < 1ol lug—u,
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" by Hélder’s inequality, where p' = p/(p—1) (orj; =00 if p=1, p r=1if )
p=). Hence T, (¢)-T,(¢) for every e D(Q) as n—co. Similarly,
T,,.,,n(d:) T, () for every ¢ € 2(Q). It follows that

L) = lim T, (@) = lim (- )™T,, (D) = (~ DMT, (0°¢)
n—+co n— o
for every ¢ e 2(Q). Thus u, = D*u in the ditributional sense on Q for
0 <|af < m, whence ue W™?(Q). Since lim,_,[u,—ul, ,=0, W™ (Q) is -
complete. |

Distributional and classical partial derivatives coincide when the latter
exist and are continuous; thus it is clear that the set

S=1{¢peC™Q):|d|n, < o}

is contained in W™ ?(Q). Since W™ ?(Q) is complete, the identity operator in
S extends to an isometric isomorphism between H™ ?(Q2), the completion of S,
and the closure of S in W™?(Q). 1t is thus natural to identify H™?(Q) with
this closure and so obtain the following corollary.

3.3 COROLLARY H™F(Q)c W™?(Q).

3.4 Several important properties of the spaces W™P(Q) are most easily
obtained by regarding W™ ?(Q) as a closed subspace of a Cartesian product
of spaces LP(Q). Let N= N(n,m) =3 |q<m] be the number of multi-
indices o satisfying 0 <|a|<m. For | <p < oo let Ly? =Y., L?(Q), the
norm of u = (uy, ..., uy) in Ly being given by

(imw@w it 1<p<o
Jus Lye) = | V7

max [u, if p= o0.
1<j<N
By Theorems 1.22, 2.10, 2.17, 2.25, and 2.31, Ly® s a Banach space that is
separable if 1 < p < oo and reflexive and uniformly convex if | < p < 0.
Let us suppose that the NV multi-indices « satisfying 0 < |«| < m are linearly
ordered in some convenient fashion so that to each ue W™?(Q) we may
associate the well-defined vector Pu in L, given by

Pu = (D"Wo 1oy am- ' o)

Since || Pu; Ly?|| =it} , p, P is an isometric isomorphism of W™?(Q) onto a

subspace W < L. Since W™ ?(Q) is complete, W is a closed subspace of Ly".

By Theorefii 1.21, W is separable if 1 < p < o and reflexive and uniformly

~ convex if l <p<o. The same conclusions must therefore hold for
wmr @ =r! (W) ~
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3.5 THEOREM W™R(Q) is separable if I <p < oo, and is reflexive and
uniformly convexif | < p < co. In particular, therefore, wm™(Q) 1saseparable
Hilbert space with inner product ‘

T, V=2, (D, D), ’

O<la|<m

where (u,0) = jnu(x)Tx) dx is the inner product in L2(Q).

Duality, the Spaces W ~"*(Q)
3.6 In the following sections we shall take, for fixed Q, m, and p, the number

N, the spaces Ly” and W, and the operator P to be as specified in Section 3.4.
We also define

{u,v) = Lu(x)v(x)dx

for any functions u, v for which the right side makes sense. For given p, p’
shall always designate the conjugate exponent:

o0 if p=1
pr=9plp—1) If I<p<o
1 if p= o0.

37 LEMMA Let | <p<o. To every Le(Ly") there corresponds
unique » € L% such that for every ue Ly?

L(u) = Z <uj, v
Moreover,

ILLyPY | = fos LK. 4
Thus (Ly?) = L%
ProoF If 1 <j< N and we L?(Q), let w;, =(0,...,0,w,0,...,0) be that
element of L,? whose jth component is w, all other components being zero.
Setting L;(w) = L(w;)), we see that L; e (LP(Q))" and so by Theorems 2.33
and 2.34 there exists (unique) v, € L7 (Q) such that for every we L*(Q)

L(w(j,)_= Li(w) = (w,vj).

If ue Ly?, then . o

N
L(") = L<Z 1(1)) Z L( U)) = Z <
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By Holder’s inequality (for functions and for finite sums), we have

N : R
|IL@)| < Zl Netglp gl < s Lol o LE )
J= .

so that || L; (Ly?)' || < v; LY. We show that these norms are in fact equal as
follows:if 1 <p<ooand I <j< N, let
lo; ()" " 20;(x)  if v;(x) £0
4 (x) = {01 T it o) = 0
. Jj .
It is easily checked that |L(uy,...,uy)| = |v; LE |7 = |u; Ly?|||v; LY. 1f p =1,
we choose k so that |[p,]l,, = max, . ;. n[;ll,,- For any ¢ > 0 there is a measur-

able <ubset 4 < Q having finite, nonzero volume, such that |v, (x)| > |l — €
for x € A. Set

u(x) = v (X)[v, (%) if xedA and v, (x) #0
0 otherwise.

Then
L) = <ty = f ol dx = (030 —€)

= ([lo; Ly®| —¢) Wu(k);LN’H~
Since ¢ is arbitrary, (4) must follow in this case also. |
3.8 THEOREM Let | <p < oo. For every L € (W™?(Q))’ there exists an

element v e LY such that, writing the vector v in the form (1,)g <o)< m> WE
have for all ue W™?(Q)

Lu) = . 'Zl (Du,v,). (5
Moreover,
IL; (W™ P @) || = infllo; LF| = minfo; LY}, (6

the infimum being taken over, and attained on the set of all v e L for which
(5) holds for every ue W™P(Q).

PROOF A linear functional L* is defined as follows on the range W of the
operator P defined by (3): )

L*(Pu) = L(u), wue wmr Q).
_Since P is an isometric isomdrphism, L*e W’ and

L5 W) = |L; (W™ P @)
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By the Hahn—Banach theorem there exists a norm preserving extension L of
L* to alt of Ly?, and by Lemma 3.7 there exists ve L” such that if -
U= (ua)05|¢|5m € LN ’ then

Lawy= Y upv,).
O<lal<m

Thus foru e W e (Q) we obtain

L) = L*Pu)y=LPu)= Y <(Duu,).
O<fa|sm

Moreover,

L wmr @) = L5 W' | = [ L (Ly"Y

= [lo; LY. ™

Now any element v € L% for which (5) holds for every ue W™P(Q) corre-
ponds to an extension L of L* and so will have norm {v; L% || not less than
| L; (W™P(Q))|. Combining this with (7), we obtain (6). [

We remark that, at least if 1 < p < oo, the element v € L% satisfying (5)
and (6) is unique. Since Ly? and L% are uniformly convex it follows by an
argument similar to that of Lemma 2.32 that linear functionals defined on
closed subspaces of Ly? have unique norm preserving extensions to Ly?.

3.9 Forl <p < o every element L of the space (W™?(Q)) is an extension
to W™ P(Q) of a distribution T € 2'(Q). To see this suppose L is given by (5)
for some v e LY and define T,_, T e 2'(Q), by

Tva(q&) = <¢!va>’ ¢ € @(9)7 0< id' <m,
T= Y (-=DEDT,. 8)

O<lalsm

For every ¢ € 2(Q) =« W™P(Q) we have
T(¢)= ) T,.(D%) =L(¢$)

O<lalsm

so that L is clearly an extension of T. Moreover, we have, following (6),
|L; (W™P ()} = min{|v; L¥| : L extends T given by (8)}.

The above remarks also hold for L e (W§"?(Q2)) since any such functional
possesses a norm-preserving extension to W™ ?(Q). A

Now suppose T is any element of 2’(Q) having the form (8) for some -
v e LE, where I < p’ < co. Then T possesses possibly nonunique continuous
extensions to W™ P?(Q)). We show, however, that T does possess a unique such
extension to Wi?(Q). If ue W7 (Q), let {¢,} be a sequence in Co°(Q) =
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2(Q) such that /“d),;—ull,,. p— 0‘ as.n — co. Then
T@0-T@) < | ¥ IT.0¢- D*,)|

Sla|jsm

< Zl “Da(d’k_¢n)“p"v¢“p' )

O<lalsm

< bx—Gallm,plo; LEN > 0 . as k,n— oo

Therefore {T(¢,)} is a Cauchy sequence in C and so converges to a limit that

we may denote by L(u) since it is clear that if also {y,} =< 2(Q) and

¥, —ullm ,— 0, then T(¢$,)—T(p,)—0 as n—co. The functional L thus

defined is linear and belongs to (Wg"#(Q))', for if u = lim,,_. . ¢, as above, then
IL(u)I = hm IT(¢n)| = llm "¢Il”lll,p ”Uv L;‘:" = “u%im.p ”U’ LI,‘:“

We have therefore proved the following theorem.

3.10 THEOREM Let | <p<oo. The dual space (W{"?(Q)) is iso-
metrically isomorphic to the Banach space consisting of those distributions
T e 2'(Q) satisfying (8) for some v € L%, normed by

IT) = inf{|v; LE]: v satisfies (8)}.

In general one cannot expect any such simple characterization of (wm™r(Q)y
if Wi ?(Q) is a proper subspace of W™?(Q).

311 Ifm=1,2,...and | <p < o0, let p’ denote the exponent conjugate to
p and denote by W ~™?(Q) the Banach space of distributions on Q referred to
in the above theorem. (The completeness of this space is a consequence of the
isometric isomorphism asserted there.) Evidently W ~™?(Q) is separable and
reflexive if 1 < p < o0.

3.12 Let | <p < . Each element v e LP(Q) determines an element L, of
(W ?(Q)) by means of L,(u) = {u,v) for

lLv(u)l = K"v U)I < HU“p""Hp < “v“p'”u“m.p'
We define the (—m, p’)-norm of v € L”(Q) to be the norm of L,, that is,
[0l =, pr = I Lo3 (WGP (Q)' || = sup [<u, 03],
flullm, ps1

where we have written W to represent Wg"?(Q) on the right side, a practice we
continue below, for simplicity. Clearly, for any u € W and v € L*(Q) we have .

ol < Nl |
1,03 = 1l <t [t 03] < [l p 00 e )

The latter formula is a generalized Holder’s inequality.
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LetV = {L,:v e L¥(Q)}. Thus V is a vector subspace 6f W’ = (W (Q)).
We show that V is in fact dense in W". This is easily seen to be equivalent to -
showing that if Fe W satisfies F(L,) =0 for every-L,eV, then F=0 in
W”. Since W is reflexive, there exists f€ W corresponding to Fe W” such that
{fivd =L,(f) = F(L,) =0 for every ve L”(Q). Since fe L?(Q), it follows
- that f(x) =0 a.e. in Q. Hence f=01in Wand F=0in W".

Let H ™™ (Q) denote the completion of L (Q) with respect to the norm
-l . p- Then we have

Hm™P(Q) = (WPiQ)) = W ™7 (Q).

In particular, corresponding to each ve H ™ ™7(Q), there exists T, e
WmP(Q) such that T,(Q) = lim,_, {(¢,v,> for every ¢ € Z(Q) and every
sequence {v,} < L”(Q) such that lim,. llv,—v|_,, , =0 and conversely any
Te H ™?(Q) satisfies T =T, for some such v. Moreover, by (9), |T,(¢)| <
1D llm, 5 N0l =, -

3.13 Byanargument similar to that in Section 3.12 the dual space (W™ ?(Q))
can be characterized for 1 < p < oo as the completion of L?(Q) with respect
to the norm

N

lolZmp = sup  [Ku,v)l.
ue W P(QQ)
lullm, pst

Approximation by Smooth Functions on €

We wish to prove that {¢ € C*(Q):|¢],,., < o} is dense in W™-?(Q). To
this end we require the following standard existence theorem for infinitely
differentiable partitions of unity.

3.14 THEOREM Let A4 be an arbitrary subset of R" and let O be a
collection of open sets in R" which cover A, that is, such that A = | Jy .0 U.
Then there exists a collection ¥ of functions € Cy®(R") having the following
properties:
(i) Forevery y e ¥ and every xe R", 0 < ¢/ (x) < 1.

(i) If K =< A4, all but possibly finitely many y € ¥ vanish identically
on K.

(iii) For every § € ¥ there exists U € @ such that supplp < U.

(iv) Foreveryxed, Y, o¥(x)=1.

Such'a collection ¥ is called aC ”-partttton of umty Sfor A subordmale 100.

PrROOF Since the proof can be found in many texts we give only an outline
of it here, leaving the details to the reader. Suppose-first that 4 is compact so
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" that A < UJ=1U;, where Uy, ..., Uy € 0. Compact set_S KicU,..,.Kyc Uy
_ can be constructed so that 4 UjL, K;. For 1 <j < N there exists a non-
negative-valued function ¢;€ Co®(U;) such that ¢;(x) >0 for xe K;. A
function ¢ can then be constructed so as.to be infinitely differentiable and
positive on R" and to satisfy ¢(x)=2).,¢;(x) for xe 4. Now ¥ =
{¥;:¢;(x) = ¢;(x)/¢(x), | <j< N} has the desired properties. Now suppose
A is open. Then A = J}., 4;, where
A; = {xe A:|x|<j and dist(x, bdry 4) > 1/j}
is compact. For each j the collection
0; = {U n (interior4;,, n A5_,):Ue 0}

covers A; and so there exists a finite C*-partition of unity ¥; for A4; sub-
ordinate to ¢;. The sum o(x) = 3272 X 4.y, ¢ (x) involves only finitely many
nonzero terms at each point, and is positive at each x € A. The collection
V= {¢:y(x) = d(x)/o(x) for some ¢ in some ¥; if xed, Yy(x)=0 if
x ¢ A} has the prescribed properties. Finally, if A is arbitrary, then 4 ¢ B=
{Uueo U, where Bis open. Any partition of unity for B will do for A as well. ||

3.15 LEMMA Let J, be defined as in Section 2.17 and let | < p < oo and
ue W™P(Q). If Q' c< Q, then lim, ¢, J,*u = u in W™?(Q’).

ProOOF Let ¢ < dist(Q', bdry Q). For any ¢ € 2(Q') we have
[ rumpocoax= | f #(x= ) J,(3) D (x) dx dy
0 R" JR"
=0 [ D=1 dxdy

— (— D) f Jo* Du(x) ¢ (x) dx,
3

where ii is the zero extension of u outside Q. Thus D*J,*u = J,* D*u in the
distributional sense in Q'. Since D*u € L?(Q) for 0 < ja| < m we have by Lemma
2.18(c)

lim |D°J, » u—Dufj, o = lim |[J, * D*u—Duf, o = 0. -
-0+

e=0+
Thus lim,_ o4 | *u~—ullp p00 =0. 1
3.16 THEOREM (Meyers and Serrin [46]) If 1 < p < oo, then
' H™?(Q) = W™?(Q).

PROOF B)-' virtue of Cbrollafy 3.3 it is sufficient to show that WmP(Q) = -
H™P(Q), that is, that {¢ € C™"(Q):|¢|,. , < 0} is dense in W™P(Q). If



APPROXIMATION BY SMOOTH FUNCTIONS ON R ’ 53

' \

ue W""”(Q) and ¢ >0, we in fact show that there exists peC(Q) such
that ju—¢|,,,<e Fork=1,2,.. let

Q, = {xeQ:|x] < k and dist(x, bdry Q) > 1/k},
and let Qo =Q_, = &, the empfy set. Then
0= {U,: Uk—Qk+ln(Qk D5k =12,..3

is a collection of open subsets of Q that covers Q. Let ¥ be a C*-partition
of unity for Q subordinate to @. Let , denote the sum of the finitely many
functions € ¥ whose supports are contained in U,. Then ¥, € C;*(U,) and
Zisi (x)=1onQ.

If0 <& < 1/(k+1)(k+2), then J, » (Y, u) has support in Q, , , N (Q_,) =
Y, €< Q. Since Y, ue W™?(Q) we may choose ¢, 0 <¢g, < I/(k+1)(k+2),
such that

Vew * Wi t) = Y ttl|m, po2 = (Ve * () — Wy tt] e, .4, < &/ 2K

Let ¢ =272, J, * (Y, u). On any Q' << Q only finitely many terms in the
sum can fail to vamsh Thus ¢ € C*(Q). For x € Q, we have

k+2 k+2

w) = YU, b6 = L I, 0.

Thus .
- k+2
“u - d’“m,p,nk < Z:] ”‘,r._,- * (llll u) "'l//ju”m,p,ﬂ <e

By the monotone convergence theorem 1.43, u— ¢ o0 <& |

We remark that the theorem does not extend to the case p = 0. For
instance, if Q= {xeR:—1 <x <1} and u(x)=|x|, then ue W'*(Q) but
ug¢ H'°(Q); in fact, if ¢ < 1, there exists no function ¢ € C'(Q) such that
||¢’—u’||w <e.

. Approximation by Smooth Functions on R"

3.17 Having shown that an element of W™ ?(Q) can always be approximated
. by functions smooth on Q we now ask whether or not the approximation can
in fact be done with bounded functions having bouhdgd derivatives of all
~ orders, or, say, of all orders-up to m. That is, we are.asking whether for any
values of k = m the space C"(ﬁ) is dense in W™ P (Q2). The answer may be -
negative as the following example shows:
Let Q = {(x,y) e R?:0 <|x| < 1,0 <y < 1}. Then the function u specified
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) . -
wpy o [L T x>0
) PE i x<0

evidently belongs to W!-?(Q). The reader may verify, however, that for
sufficiently small ¢ >0 no function ¢ e C'(Q) can satisfy |u—¢|, ,<e.
The difficulty with this domain is that it lies on both sides of part of its boundary
(the segment x =0, 0 < y < 1).

We shall say that a domain Q has the seginent property if for every
x € bdry Q there exists an open set U, and a nonzero vector y, such that
xeU, and if zeQ A U,, then z+1y,€Q for 0 <r < 1. A domain having
this property must have (#n—1)-dimensional boundary and cannot simul-
taneously lie on both sides of any given part of its boundary.

The following theorem shows that this property is sufficient to guarantee
that Co®(R") is dense in W™ ?(Q), and hence in particular that C*(Q) is dense
in W™?(Q) for any m.

3.18 THEOREM If Q has the segment property, then the set of restrictions
to Q of functions in C,®°(R") is dense in W™?(Q) for 1 < p < 0. ‘

PROOF Let fbe a fixed function in Co®(R") satisfying
i) f(x)=1iflx|<1,
(i) fx)=0if |x|>2,
(i) | D*(x)] < M (constant) for all x and 0 < |a|< m.
Let f,(x)=f(ex) for ¢>0. Then f(x)=1 if |[x|<1/e and |D*f,(x)|<
MM < M ife< . If ue W™P(Q), then u, = f,-u belongs to W™ P(Q) and
has bounded support. Since, for 0 < ¢ <1 and |%| < m,

> < MZ(;>|D"u(x)|,

B<a B<a

| D, ()] =

(;) DPu(x) D*~¥f,(x)

we have, setting Q, = {x € Q:|x|> 1/e},
lu—stelm, o0 = |1t = ttellm, 5,02

< im0 + 14clm, 5.0, < cONSE[tt], .-

The right snde tends to zero as ¢ tends to 0. Thus any u e W™?(Q) can be
approximated in that space by functions with bounded supports.

We may now, therefore, assume K = {x € Q:u(x) # 0} is bounded. The
set F =K ~ ({U.cvaryn Uy) is thus compact and contained in Q, {U,} being
the collection of open sets referred to in the definition of the segment property.
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There exists an open set U, such that Fcc U, c< Q. Since K is compact, -
there exist finitely many of the sets U,; let us rename them U, ..., U, such
that K< Uy u U, U---v U,. Moreover, we may find other open sets
00,0, ....0, such that U, cc U;,0<j< k, butstit Kc Tgu T, U - 0T

Let ¥ be a C*-partition of unity subordinate to {U,:0<j<k}, and let
¥; be the sum of the finitely many functions y € ¥ whose supports lie'in U -
Let u; = y;u. Suppose that for each j we can find ¢; € C,*(R") such that

.luj_¢jllnv,p,ﬂ < 8/(k+ 1) (10)
Then putting ¢ = ¥%_, ¢;, we would obtain

6=tlnpa € Y. 16~k pa < &

A function ¢, € Co*(R”) satisfying (10) for j = 0 can be found via Lemma 3.15
since suppu, < U, = < Q. It remains, therefore, to find ¢; satisfying (10) for
1 <j < k. For fixed such j we extend y; to be identically zero outside Q. Thus
u;e WP(R"~T), where I' = UJ- N bdryQ. Let y be the nonzero vector
associated with the set U; in the definition of the segment property (Fig. 1).
Let I, = I'—¢y, where ¢ is so chosen that

0 < t < min(1,dist(T;, R" ~ U))/| »]).

FiG. |
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Then T, & U; and T, n Q is empty by the segment property. Let U; ,(x) =
u;(x+1ty). Then u; , € W™P(R" ~ I). Translation is continuous in L?(Q) so
Du; - D*u; in LP(Q) as t»0+, |aj<m. Thus uj;,—u; in W™?(Q) as
t— 0+ and so it is sufficient to find ¢; € Co™(R") such that N4, 0= Pillm,p i
sufficiently small. However, Q n U; c< R" ~ I} and so by Lemma 3.15 we
may take ¢; = J;*u; , for suitably small 6 > 0. This completes the proof. |

3.19 COROLLARY Wg"?(R") = W™P(R").

Approximation by Functions in Cy,*(Q); (m, p')-Polar Sets

Corollary 3.19 suggests the question: For what domains Q is it true that
wmr(Q) = Wi»?(Q), that is, when is Cy*(2) dense in W™P(Q)? A partial
answer to this problem can be formulated in terms of the nature of the distri-
butions belonging to W~ ™7 (R"). The approach given below is due to
Lions [39].

3.20 Throughout the following discussion we assume that 1 < p < oo and
p’ is conjugate to p. Let F be a closed subset of R". A distribution T € 2'(R")
has support in F (supp T = F) provided that T(¢) = 0 for every ¢ € Z(R")

_vanishing identically on F. We say that the clesed set F is (n1, p’)-polar if the
only distribution 7in W ~™#(R") having support in Fis the zero distribution
T=0.

If F has positive measure, it cannot be (m, p’)-polar for the characteristic
function of any compact subset of F having positive measure belongs to
L”(R") and hence to W ™™ 7 (R").

We shall show later that if mp > n, then W™ ?(R") - C(R") (see Theorem
5.4) in the sense that if u e W™P?(R"), then there exists uy € C{R") such that
u(x) = uy(x) a.e. and

luO(x)l < CO“““““m.p,
the constant being independent of x and u. It follows that the Dirac distribution

S, given by 8, (¢) = ¢ (x) belongs to (W™ P(R") = (WP(R") = W™ ™F(R").
Hence, if mp > n, a set F cannot be (m, p)-polar unless it is empty.

3.21 Since W™*1.?(R") - W™?(R") any bounded linear functional on the
latter space is bounded on the former as well, that is, W™™ P'(Q)
w-m-1.2(Q). Hence any (m+1, p')-polar set is also (m, p')-polar. The con-
verse is, of course, generally not true.

Let the mapping u— i denote zero extension of u outside a domain
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QcR

- u(x) if xeQ , }
i) = { if xeQ- (“).
The following lemma shows that this mappmg takes WJ"?(Q) (isometrically)
into W™?(R"). '

322 LEMMA Let ue W5 P (Q). If |a|<m, then D*i = (D)~ in the
distributional sense in R". Hence @ € W™ ?(R").

Proor Let {¢,} be a sequence in C,*(2) converging to u in the space
Wg P (Q). If Y € 2(R"), we have for |a|<m

(= 1) L () DY (x) dx = (~ 1) f u(x) D (x) dx

lim (— 1y f 6 (%) DY () dx

n— oo

lim | D*¢,(x)y(x) dx
Q

n— o

fﬂ D) ()Y () d.

Thus D*i = (D*u)” in the distributional sense on R” and hence these locally -
integrable functions are equal a.e. in R". It follows that [, , g =

lulmpa- B

We now give a necessary and sufficient condition on Q that mapping (11)
carry W "(Q) isometrically onto W™ ?(R").

3.23 THEOREM (C,*(Q) is dense in W™ ?(R") if and only if the comple-
ment Q° of Q is (m, p’)-polar.

ProOF  First suppose C,*(Q) is dense in W™ ?(R"). Let Te W ™™7(R") have
support contained in Q°. If u € W™ P(R"), then there exists a sequence {¢,} =
Co>(R2) converging in W™P(R") to u. Hence T'(4) = lim,_,, T(¢,) = 0 and so
T =0 and Q° is (m, p')-polar.

- Conversely, if Cy*() is not dense in W™P(R"), then -there exists
ue W™P(R") such that |lu—¢|,, , r =k >0 for every ¢ € Co™(Q), k being.
independent of .¢. By the Hahn-Banach .extension theorem there exists
Te W™ ™F(R" such that T(¢) =0 for all ¢ € Co®(Q) but T(u) ;é 0. Since
supp T < Q° but T # 0, Q° cannot be (m, p')-polar. ||
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As a final preparation for our investigation of the possible identity of
Wg"P(Q) and W™ P (£2) we establish a distributional analog of the fact, obvious
for differentiable functions, that identical vanishing of first derivatives over a
rectangle implies constancy on that rectangle. We extend this ﬁrst to distri-
butions and then to locally integrable functions.

3.24 LEMMA Let B=(a,,b,)x(a,, b,)x -+ x(a,,b,) be an open rectan-
gular box in R". Let ¢ € Z(B). If [zd(x)dx =0, then ¢(x) =T"_, d;(x),
where ¢; € 2(B) and ]
by
f i (X0, Xjy . X,) dx; = 0 (12)

for every fixed (X, ..., X;_ 1, X4, ..., X,) € R"™L.

Proor For | <j < nselect functions u;e Co™(a;, b;) such that {3 u;(¢)dt = 1.
Let

B; = (aj’bj) X (“j+hbj+|) X -+ x (a,,b,),
b, by bj-1
Vixj, . x,) = f dt,J~ dey--- Gty sl Xy ooy X))ty

w; ()= uy(xy) - u;- 1(x;- 1)'/’,( )
Then y; € 2(B;) and w; € 2(B). Moreover,

f Vi(x,, .. x,) dxj oo dx, = fq&(x) dx = 0.
B, B

Let ¢, =¢p—w,, ¢, =w;—w;,, 2<j<n-1), ¢, = w,. Clearly, ¢, € 9(B)
for1 <j<n, and ¢ =3, ¢;. Finally,

by
J ¢,(xy,...,x,) dx,
by by
=f D (xy,.00hX,) dx, _ll’Z(XZ""’xn)f u(x;)dx, =0,

by
[ m

= uy(xy) Uiy (Xj-y)

(f Ui (x5 s X0) dx; — Wi 1 (X s o ,.)f u;(x )dx\)

0, 2<_[<n—1
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On N bn
f o (1r o X,) dxy = u.(x,)---u,.-l(x.,-of Vo) d,

I

= Uy 0) ey (Fam) f S dx = 0. |

3.25 COROLLARY If Te 2'(B) and D;T =0 for 1 <j < n, then there
exists a constant k such that for all ¢ € 2(B)

T($) = k f $ () dx.

ProoF First note that if [ (x) dx =0, then T(¢) = 0, for, by the above
lemma we may write ¢ = 37, ¢;, where ¢; € 2 (B) satisfies (12), and hence
¢; = D;0;, where 0; e 2(B) is defined by

ivi»

*s
0;,(x) = f G (X5 s X 15 X gy 2eny Xp) .
a;

Thus T(¢) = 3}, T(D;0) = -35-, D; T(0;) = 0.

Now suppose T # 0. Then there exists ¢y € 2(B) such that T(¢,) =
ky#0. Hence [zdo(x)dx =14k, #0 and T(Po)=k[po(x)dx, where
k = k,/k,. If ¢ € D(B) is arbitrary, let K(¢) = [5¢(x) dx. Then

L (¢(x) - ("’)4:0( ))

and so T(¢p—[K(¢)/k,]¢o) = 0. 1t follows that

7(9) = ‘i’) T(do) = kK(@) = k f o) dx. 1

It should be remarked that this corollary can be extended to-any open,
connected set B in R" via a partition of unity for Q subordinate to some open
cover of Q by open rectangular boxes that are contained in . We shall not,
however, require this extension.

The following lemma shows that different locally mtegrable functions on
an open set Q determine different distributions on Q

326 LEMMA Let uel]l (Q) satisfy jnu(x)¢(x) dx = 0 for every
"¢ € 2(Q). Then u(x) =0 a.e. in Q.

Proor If Yy e Cy(Q), then for Suﬂiciently small positive ¢, the mollifier
J.*{ belongs to 2(Q). By Lemma 2.18, J, *y — ¢ uniformly on Qas e - 0+.
Hence [qu(x)y (x) dx = 0 for every § € Co(Q).
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Let Kcc Q andlet e > 0. Let yx be the characteristic function of K.
Then g lu(x)| dx-<-co. There exists 6 > 0-such that for any measurable set
A < K with u(A4) < & we have _\'A Ju(x)| dx < /2 (see, e.g., the book by Munroe
[48, p. 136]).

By Lusin’s theorem 1.37(f) there exists ¢ € C,(Q) with suppy = K and

[¥(x)] < 1 for all x, such that
pn({x € Q1Y (x) # yx(x) sgnu()}) < 4.
Here
el if o(x) # 0
sgno(x) = {0 it p(x) = 0,

Hence

f ()] dx = f (%) g () sgn i x) dx
K Q
Lu(x) b (x) dx + L“"‘) [x () sgn #(x) — ¥ ()] dx

<2 _|u@)}dx < e
(xe p(x) # yx(x)sgnu(x)}

Since ¢ is arbitrary, u(x) =0 a.c. in Kand hence a.e. in Q. |

3.27 COROLLARY If B is a rectangular box as in Lemma 3.24 and
u € L}, (B) possesses weak derivatives D;u =0 for 1 <j < n, then for some
constant k, u(x) = k a.e. in B.

Proor By Corollary 3.25 we have, since D;T, =0, 1 <j<n,

[0 ax = @) = k [ gy
B
Hence u{x)—k =0 a.e.in B. |

3.28 THEOREM (1) If W™?(Q) = W P(Q), then Q° is (m, p’)-polar.
(2) IfQ°is both (1, p)-polar and (m, p’)-polar, then W™ ?(Q) = W§"?(Q).

ProoF (1) Assume W™P(Q) = Wg-?(Q). We deduce first that Q° must
have measure zero. If not, there would exist some open rectangle B < R"
which intersects both Q and Q° in sets of positive measure. Let u be the restric-
tion to Q of a function in C,”(R") which is identically one on B n Q. Then
ue W™P(Q) and so ue W"(Q). By Lemma 3.22, iie W™ ?(R"- and
D;ii = (D;u)" in the distribational sense in R", for 1 <j < n. Now (D;u)~
vanishes identically on B whence so does D;ii as a distribution on B. By
Corollary 3.27, & must have a constant value a.e. in B. Since di(x)=1 on
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‘Bn Q and i (x) OonBn Q° we have a contradiction. Thus Q‘ has measure
zero.

Now if ve W™ ”(IR") and u is the restnctxon of v to Q, then u belongs to
" W™P(Q) and hence, by assumption, to WJ"?(Q). By Lemma 3.22, i€
W™ ?(R") and can be approximated by elements of C,*(€2). But v(x) = ii(x)
on Q, that is, a.e. in R". Hence v and i have the same distributional derivatives
and so coincide in W™ ?(R"). Therefore Cy,*(Q) is dense in W™ ?(R") and Q°
is (m, p')-polar by Theorem 3.23."

(2) Now assume Q° is (1,p)-polar and (m,p')-polar. Let ue W™?(Q).
We show that we Wg»P(Q). Since de L°(R"), the distribution Tp ;,
-corresponding to D;id, belongs to W~ L7(R"). Since (Dju)y~ e L"(R") <
H™ "7 (R"), therefore Tip,,~€ W™ ""P(R"). Hence Tp (- € W 1P(R").
But D;ii—(D;u)™ vanishes on Q 5o suppTpg-(p,u~ < Q°. Since Q is (1,p)-
polar D;ii = (D;u)” in the distributional sense on R". By induction on |«
we can show similarly that D*i = (Du)~ in the distributional sense, for
|t} < m. Therefore i € W™ ?(R") whence, by Theorem 3.23, u, the restriction
of i to Q, belongs to Wg"?(Q2), Q° being (m, p’)-polar. ||

If (m, p’)-polarity implies (1, p)-polarity, then Theorem 3.28 amounts to
the assertion that (m, p)-polarity of Q° is necessary and sufficient for the
equality of W™P?(Q) and W{"?(Q). We now examine this possibility, estab-
lishing first two lemmas containing important properties of polarity. The
first of these shows that (m, p’)-polarity is a local property.

329 LEMMA Fc R"is (m,p')-polar if and only if Fn K is (m,p’)-polar
for every compact set K = R".

ProoF Clearly the (m,p’)-polarity of F implies that of Fn K for every
compact K. We prove the converse. Let Te W™ ™F(R") be given by (8) and
have support in F. We must show that 7= 0. Let f'e C;*(R") satisfy f(x) = 1|
if | x| < 1 and f(x) = 0 if |x| > 2. For ¢ > 0 let f,(x) = f(ex) so that D*f (x) =
&'l D*f(ex) - 0 uniformly in x as ¢ = 0+. Thenjc Te W~™?(R") and for any
¢ € 2(R") we have N
IT(®) L. T(D)] = |T(@)—T(/. $)|

A\

[ st~ o

O<lal<sm

-2 36) f ) D) D1~/ (x) |

Slaj<m f<a

IA

[ 1w D260l dx < 181 ws 51

O<ifl<m
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where

W = > (;)v.oéw“"’(i ~£9)
lalsm '
e2f -

= 5@1-L@) - > (;)v,(x) D8, (x:

je]<m
axf,atf

Since f,(x) =1 for |x|< 1/e, we have lim,.o. |w], =0. Thus £,;7— T in
W ~™P(R") as ¢ »0+. Since f,T has compact support in K, it vanishes by
assumption. Thus 7=0. |

330 LEMMA If p’<q¢ and FcR" is (m,p’)-polar, then F is also
(m, ¢')-polar.

ProoF Let K = R" be compact. By Lemma 3.29 it is sufficient to show that
F n Kis (m,q')-polar. Let G be an open, bounded set in R” containing K. By
Lemma 2.8, WMP(G)— W™9(G) so that W™ ™9(G)c W™ ™P(G). Any
distribution Te W~™%(R") having support in K~ F also belongs to
W ~™9(G) and hence to W ~™?(G). Since K n Fis (m, p')-polar, T = 0. Thus
K n Fis (m,q')-polar. |

3.31 THEOREM Let p > 2. Then W™?(Q) = WP(Q) if and only if Q°
is (m, p')-polar. .

PrOOF Since p’ < p, Q is (m, p)-polar, and hence (1, p)-polar, if it is (m,p')-
polar. The result now follows by Theorem 3.28. |}

3.32 The Sobolev imbedding theorem (Theorem 5.4) can be used to extend
Theorem 3.3[ to cover certain values of p < 2. If (m— 1) p < n, the imbedding
theorem gives

wmP(RY) - WHR", g = np/ln—(m—1)p],

which in turn implies that W~ 9(R") < W~ #(R"). Ifalso p < 2n/(n+m—1),
then ¢’ < p, and so by Lemma 3.30, Q¢ is (1, p)-polar if it is (m, p’)-polar. Note
that 2n/(n+m—1) < 2 provided m > 1. If, on the other hand, (m—1)p > n,
then mp > n and, as pointed out in Section 3.20, Q° cannot be (i, p’)-polar
unless it is empty, in which case it is (1, p)-polar trivially. )

Thus, the only values of p for which the (m, p')-polarity of Q° is not known
to imply (1, p)-polarity. and hence be equivalent to the identity of W™?(Q)
and Wg"?(Q) are given by | < p < min(n/(m—1),2n/(n+m—1)).
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3.33 Whenever Wg"?(Q) # W™?(Q), the former space is a closed subspace
‘of the latter. In the Hilbert space case, p = 2, we may consider the space W,*
consisting of all ve W™P(Q) such that (v,¢), =0 for every ¢ e Co®(Q).
Every ue W™?(Q) can be uniquely decomposed in the form u = uy+o,
where u, € W?(Q) and v € W,'. Integration by parts shows that any v € W,*
must satisfy

Y (=DFD*(x) =0

O<lalgm

in the weak sense, and hence a.e. in Q.

Transformation of Coordinates

3.34 Let ® be a one-to-one transformation of a domain Q < R" onto a
domain G = R", having inverse ¥ =®~!, We call ® m-smooth if, writing
y =®(x) and

N = ¢l(xl""’ n)v Xy = ‘/’l(yl""ayn)
Y2 = ¢2(xls"~vxn)’ Xy = lpz(yh"-,yn)

Yo = (l)n(xh-"axn)v .X" = l/’n(yh.,.vyu)v

the functions ¢,, ..., ¢, belong to C™(Q) and the functions y, ..., §, belong
to C™(G).

If u is a measurable function defined on Q, we can define a measurable
function on G by

Au(y) = u(¥(»)). (13)
Suppose that @ is 1-smooth so that for all x € Q
¢ < |detd'(x)] < C (14)

for certain constants ¢, C,0 < ¢ < C. [Here, of coﬁrse, @’(x) denotes the
Jacobian matrix d(y,, ..., ¥,)/0(x,, ..., X,).] 1t is readily seen that the operator
A defined by (13) transforms L?(Q) boundedly onto L?(G) and has a bounded
inverse; in fact (for 1 < p < ), ‘

?lul,q < lAul, 6 < C7|ul,,q.

We establish a similar result for Sobolev spaces.

3.35 THEOREM Let ® be m-smooth, where m > 1. Then A transforms
W™ ?(Q) boundedly onto W™ ?(G) and has a bounded inverse.



64”, N " I THE spacEs W™?(Q) »

ProOF We show that the inequality | 4u},, , ¢ < const|ul,, , o holds for any
ue W™ P(Q), the constant depending only on the transformation ®. The
. reverse mequahty | Au|, ,, ¢ = constful|,, , o can be established in a similar
_manner usmg the operator A~! taking functions defined on G into functions
defined on Q.

By Theorem 3.16 there exists for any ue W"""(Q) a séquence {u } of
functions in C*(QQ) converging to u in W™?(Q)-norm. For such smooth u, it
is easily checked by induction that

D (Au)(y) = ¥ Myp(0IADMu)1(), (15)

18f < el

where M, is a polynomial of degree not exceeding |f| in derivatives, of orders
not exceeding |«|, of the various components of V. If ¢ € 2(G), we obtain
from (15) and integration by parts

(= 1)"‘L(Au..)(y) D¢ (y)dy = f [A(D'u,)1(y) Moy (y) dy, (16)

18l < }al
‘or, replacing y by ®(x) and expressing the integrals over Q,

(- l)""'fn u, (x) (D*$) (B (x)) !det o'(x)] dx

-S> juﬂu () Moy (@) [det @' (x)| d. (a7
1815 ol ¥

Since D*u, — u in L*(Q) for |B} < m, we may take the limit through (17) as
n — oo and hence obtain (16) with u replacing u,. Thus (15) holds in the weak
sense for any v e W™?(Q). We now obtain from (15) and (14)

JGID’(Au)(y)l"dy

< ( z l) max (sulew(y)l”f l(D”u)(‘P(y))l"dy)
181 <lal ¢

181<la] \yeG

< const max f | DPu(x)|? dx
181s)a) JQ -

whence it follows that |[Aull,, ,,¢ < const ) m, o K

Of special importance in later chapters is the case of the above theorem
corresponding to nonsingular linear transformations ® or, more geénerally, -
affine transformations (compositions of nonsingular linear transformations
and translations). For such transformations det ®’(x) is a nonzero constant.
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Interpolation and Extension Theorems

Geometrical Properties of Domains

4.1 Many properties of Sobolev spaces defined on a domain Q, and in
particular the imbedding properties of these spaces, depend on regularity
properties of Q. Such regularity is normally expressed in terms of geometrical
conditions that may or may not be satisfied by any given domain. We specify
below five such geometric conditions, including the segment property alrcady
encountered in Section 3.17, and consider their interrelationships. First,
however, we standardize some geometrical concepts and notations that will
prove useful.

Given a point x € R", an open ball B, with center x, and an open ball B,
not containing x, the set C, = B, n {x+A(y—x):y€ B,, 2> 0} is called a’
finite cone in R" having vertex at x. We also denote by x+ Cy = {x+y:y € Co}
the finite cone with vertex at x obtained by parallel translation of a finite cone
C, with vertex at 0. -

Given .linearly independent vectors y,»s,...,y,€ R", the set P=
(Z;’ 124jy;:0<A; <1, 1 <j<n} is a parallelepiped with one vertex at the
origin. Slmxlarly, x+Pisa parallel translate of P having one vertex-at x. By
the center of x + P we mean, of course, the point c(x+ P) = x+3(y, 4 - +,).
Every parallelepiped with one vertex at x contains a finite cone with vertex at
x, and conversely is also contained in such a cone. -

An open cover 0 of a set S = R" is said to be locally finite if anv compact .
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- set in R" can intersect at most finitely many elements of 0. Such locally finite
collections of sets must be countable, sp their elements can be listed in sequence.
If S is closed, then any open cover of S possesses a locally finite subcover.

We now define five regularity propertles which an open domain Q < R"
may possess.

4.2 Q has the segment property if there exists a locally finite open cover { U}
of bdry € and a corresponding sequence { y;} of nonzero vectors such thal 1t
xeQ n Ujfor some j, then x+1y;€ Qfor 0 < < 1.

4.3 Q has the cone property if there exists a finite cone C such that each point
x e Q is the vertex of a finite cone C, contained in Q and congruent to C.
(Note that C, need not be obtained from C by parallel translation, just by
rigid motion.)

4.4 Q has the uniform cone property if there exists a locally finite open cover
{U,} of bdryQ, and a corresponding sequence {C;} of finite cones, each con-
gruent to some fixed finite cone C, such that:

(1) For some finite M, every U; has diameter less than M.
(ii) Forsome d>0, )7, U; > Q; = {x e Q:dist(x, bdry Q) < 3}.
(iiiy Forevery j, Usenny,(x+C) = Q;c Q.
(iv) For some finite R, every collection of R+ 1 of the sets Q; has empty
intersection.

4.5 Q has the strong local Lipschitz property provided there exist positive
numbers & and M, a locally finite open cover {U;} of bdry €, and for each U;
a real-valued function f; of n—1 real variables, such that the following con-
ditions hold:

(i) For some finite R, every collection of R+ 1 of the sets U; has empty
intersection.

(i) For every pair of points x, yeQ; = {xe Q:dist(x, bdryQ) < 4}
such that |x—y| < ¢ there exists j such that

x,y € ¥; = {x € U;: dist(x, bdry U;) > 6}.
(iii) Each function f; satisfies a Lipschitz condition with constant M:
[FCSIRSEVELY (PR MY [ (TR TOER SR N

(iv) For some Cartesian coordinate system (¢; ;, , &;.n) in U, the set
Q n Uj is represented by the inequality '

fj.n <f;(€, 1o ees j,n—l)'



1
GEOMETRICAL PROPERTIES OF DOMAINS . 67

v

We remark that if Q is bounded, the rather complicated conditions above
reduce to the simple condition that Q have a locally Lipschitz boundary,
that is, that each point x on the boundary of Q should have a neighborhood
U, such that bdry Q n U, is the graph of a Lipschitz continuous function.

4.6 Q has the uniform C™-regularity property if there exists a locally finite

open cover {U;} of bdryQ, and a corresponding sequence {®;} of m-smooth

one-to-one transformations (see Section 3.34) with ®; taking U; onto
= {y e R":|y|< 1}, such that:

(i) Forsome d >0, {J7L, W;({y e R":|p|<1}) > Q;, where \¥; =d; "
(i) For some finite R, every collection of R+ 1 of the sets U; has empty
intersection.
(i) For each j, ®;(U; n Q)= {ye B:y, >0}
@(iv) If (¢; 1»-...0;,) and (¥} ,,...,¥; ) denote the components of @;
and ¥, respectively, then there exists a finite M such that for all «, |a| < m,
for every i, 1 <i<n, and for every j, we have

D¢ :(x)| < M, xe U;
| D, (] < M, yeB.
4.7 With the exception of the cone property. all the other properties above

require Q to lie on only one side of its boundary. The two-dimensional domain
Q mentioned in Section 3.17, that is,

Q={xyeR:0<|x|<1,0<y<1}

has the cone property but none of the other four. The reader may wish to
convince himself that

uniform C™-regularity property (m > 1)
= strong local Lipschitz property
= uniform cone property
=> segment property

for any domam Q.
Most of the important imbedding results of Chapter \' require only the
cone property though one requires. the strong local Lipschitz property. .

Although the cone property implies none of the other above properties it . »

“almost” implies the strong local Lipschitz property for bounded domains,
in a sense made precise in the following theorem of Gagliardo [24].
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4.8 THEOREM (Gagliardo [24]) Let Q be a bounded domain in R”
having the cone property. For each p > 0 there exists a finite collection
{Q,,9,,...,Q,} of open subsets of Q such that Q = { J7-, Q;, and-such that
to cach.Q therc corresponds a subset 4; of Q; having diameter not exceeding p,
and an open parallelepiped P; with one vertex at 0, such that Q; =
Uxea,(x+ P;). Moreover, if p is sufficiently small, then each Q; has the strong

local Lipschitz property.

Proo¥F Let C, be a finite cone with vertex at 0 such that any x € Q is the
vertex of a finite cone C, < Q congruent to Cj,. It is clearly possible to select
a finite number of finite cones Cy, ..., C, each having vertex at 0 (and each
having aperturc angle smaller than that of C,) such that any finite cone
congruent to C, and having vertex at 0 must contain one of the cones C;,
| <j< k. Foreach C;let P; be an open parallelepiped with one vertex at the
origin and such that P; = C;. Then for each x € Q there exists j, 1 <j <k,
such that

x+Pcx+CcCicl

Since Q is open and x+ P; is compact, it follows that y+ P; = Q for all y
sufficiently close to x. Hence for every x € Q we can find y € Q such that
xey+P;c Qforsomej, | <j< k. (Any domain with the cone property can
therefore be expressed as a union of translates of finitely many parallelepipeds.)

LetA ={xeQ:x+P,cQ}. [fdtamA < p for each j, we take m =k,
set A4; = A and Q; = Ux“ (x+ F;), and note that the first part of the theorem
is proved Olherwxse we decompose A into a finite union of sets A;; such that
diam Aj; < p, sct corresponding P;; = P;, rearrange the totality of sets Aj;
into a finite sequence 4,, ..., 4,,, rename the corresponding P;’sas P,,..., P,,,

and finally set Q; = UXG,,J(X-{- P,) to achieve the same end. (Figure 2 attempts
to illustrate these notions for the case

Q={xy)eR:0<|x|<1,0<y<1},
Co={(x,)eR?:x>0,y>0, x2+y* <3},
p = 13/16.

In this case Q can be covered by as few as four open subsets Q; corresponding-
to only two distinct parallelepipeds.)

It remains to be shown that if p is sufficiently small, then each Q; has the
strong local Lipschitz property. For simplicity of notation we suppose,
therefore, that Q = | J,. .(x+ P), where diam 4 < p and P is a fixed parallele-
piped. and we show that Q has the strong local Lipschitz property.
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For each vertex v; of P let Q; ={y=v;+A(x—v;):x€ P, 1> 0} be the
nfinite pyramid with vertex v; generated by P. Then P = () Q;, the inter-
:ection being taken over all 2" vertices of P. Let Q(;, = J,c4(x+Q)). Let
v = dist(center of P, bdry P) and let B be an arbitrary ball of radius ¢ = /2.
For any fixed x € Q, B cannot intersect opposite faces of x+ P so we may pick
a vertex p; of P with the property that x+v; is common to all faces of x+ P
that meet B, if any such faces exist. Then BN (x+P) = B~ (x+Q;). Now
let x,y € A and suppose B could intersect relatively opposite faces of x+ P and
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. y+ P, that is, there exist pomts a and b on opposlte faces of P such that
x+aeBandy+be B. Then

p = dist(x,y) = dist(x+b, y+b)
> dist(x+b, x+a) — dist(x+a, y+b)
> 26— 20 = 4.

It follows that if p < §, then B cannot meet relatively opposite faces of x+ P
and y+ P for any x,y € A. Thus B n (x+ P) = B n (x+Q;) for some fixed j
independent of x € 4, whence BN Q=8n Q.

Choose coordinates ¢ = (£,¢,) = (&, ..., &~ 1, &) in B so that the &, axis
lies in the direction of the vector from the center of P to the point v;. Then
(x+Q;) \ B is specified in B by an inequality of the form ¢, < £, ('), where
/. satisfies a Lipschitz condition with constant independent of x. Thus
Q; n B, and hence Qn B, is specified by ¢, <f({') where f(&)=
sup, . 4 f(&') 1s itself a Lipschitz continuous function. Since this can be done
for a néighborhood B of any point on bdry Q it follows that © has the strong
local Lipschitz property. |

Interpolation Inequalities for Intermediate Derivatives

4.9 We consider the problem of determining upper bounds for LP-norms
of derivatives D%u,|B| < m, of functions ue W™?(Q), in terms of the LP-
norms of u and its derivatives D*u of order |a|= m. Such interpolation in-
equalities have been obtained by many writers including Ehrling [23],
- Nirenberg [53, 54], Browder [11, 12], and Gagliardo [24, 25], and are
amenable to numerous generalizations. Extensions of the definition of
W™ F(Q) to cover the case of nonintegral values of m can be carried out (see
Chapter VII) via suitable interpolation arguments.

It is convenient to begin with a straightforward one-dimensional inter-
polation inequality which nevertheless typifies and provides a basis for the
proof of the more general theorems which follow.

410 LEMMA Let —wo<a<b<ow,let] <p<oo,andlet0<egy <oo.
There exists a finite constant K = K(eg, p, b—a), depending continuously on
b—a for 0 < b—a < o0, such that for every ¢ satisfying 0 < ¢ < ¢,, and for
every function f twice continuously differentiable on the open interval (a,b) -

' b e b
: f |f(t)|Pdt < Kef | S|P dt + Ke™? f [£(0)|7dt. )

Moreover, if b—a = oo, thén K = K(p) can be found so that (1) holds for
_every positive number &.
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ProoF It.is sufficient to prove (1) for real-valued functions f, for, assuming
. this done and writing arbitrary f in the form f=u+iv with u,v real valued
we obtain

b b .
f I Olf dr = f [u'(0)* + v'(6)*17* at

IA

b
mux(l,Z”’"Z”Z)f Ll (O + [o'(2)|7] dt

IA

2K max(l,2tr- /%) {a fblj"’(r)l"dr +e ! fb]j'(r)lptlr}.

We may also assume, without loss of generality, that &, = 1, for, assuming
the lemma proved in this case, we obtain from (1), since 0 < g/g, <1,

b b b
f IS (O1Pdr < K-(efeo) f LSO di + K- (eofe) f ()P dt.

This, in turn, implies (1) with K = K(go,p,b—a) = K(1,p,b—a) max(ey, &5 ).

We assume, therefore, that f'is real valued and g4 = |. For the moment we
suppose also that a=0and b=1. If 0 <& <} and £ <5 <1, then there
exists A € (£, n) such that

/W) =

lf(ﬂ) —f(%) < 311+ 3£

It follows that for any x € (0, 1)
el =17+ [

< 31D+ 31/ + J:lf”(r)ldh

Integrating the above inequality with respect to & over (0, 4) and with respect
to n over (%}, 1), we obtain

1/3 1 1
B0 < f Q)] de + f rooldn + 3 f o

1 1
< [+ s f 7ol de

whence, by Holder's inequality, .

P < 2o f e+ 2 f o
[1] 0
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) }
Hence,

1 " ll - 41
f |f'(OPdt < K, f If"(t)l’dt+K,,f LA(O)|? dt,
0 - 0 0

where K, =27"1.97_ It follows by a change of variable that for any finite
interval (a, b) )

b ‘ b b
[1rwra < go-ar [1rora g e-o [ora o
Since 0 < ¢ < 1 there exists a positive integer # such that

1et? < Ijn < &P,

Setting a; = a+(b—a)j/n for j=0,1,...,n, we obtain from (2), noting that
aj-—a_’-_l = (b“‘a)/n,

b n aj
[irwra= % " 1ropa
< ((b—a\ (% ., , n \P [ ’
= Kij{(T) J;,--;lf @] dH‘(B_—_“;) L_l|f(t)l dt}
< Rip,b=a) {e [iropase| blf(t)|"dt}, 3
where K (p,b—a) = K, max[(b—a)", 2P (b—a)™"].
Now let
max K(p,s) if b—ax>1
K(,p,b—a) =4 "'=?

max K(p,s) if 0<b—-a< .

b-axgs<2

Then K(1,p,b—a) is finite for 0 < b—a < oo and depends continuously on
b—a. For b—a < 1, (1) follows directly from (3). For | <b—a < w0, the
interval (a, b) may be partitioned into (possibly infinitely many) subintervals
each of length between | and 2, whence (1) follows upon summing (3) applied
to each of these subintervals.

Finally, suppose that b—a = o0. To be specific we assume a is finite and
b = o, the other possibilities being similar. For given ¢ > 0 let a; = a+je'/?,
j=0,1,2,.... Then a;—a,;_, = ¢'/? and we have, using (2),

f wlf’(t)l’dr= f N TEOIL

Jj=1 Jaj-1
<KeY | Urord+Kety | 1ford
j=1Jaj-, o J=1 Jaj- -

which is (1) with K = K, depending only on p. | ‘
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l

411 Forl < p < o and for integers j, 0 < j < m, we introduce functionals
|-1;,, on W™?(Q) as follows: .

. : 1/p
oy = Wina={ 2 [ 1Pueras]
lej=j J2
Clearly, |ulo,, = [lulo, , = |4l , is the norm of u in L?(Q)-and

y =j ule 1/p '
" “m.p [ Z lllvl’} :

0<j<m

If j=1,[-|; , is a seminorm—it has all the properties of a norm except that
|ul;. , = O does not imply that u vanishes in W™ ?(Q); for instance, u may be a
nonzero constant on a domain Q having finite volume. Under certain circum-
stances which we investigate later, |- |, , is an equivalent norm for the space
Wg-P(Q). In particular this is so if Q is bounded.

At the moment we are concerned with establishing interpolation in-
equalities of the form

lul;,, < Kelul,, , + Ke= /" Dul, | ' 4)
where 0 < j < m—1. The following lemma shows that in general we need only
establish (4) for the special case j = 1, m = 2, a reduction that will be used in
the three interpolation theorems that follow.

412 LEMMA Let0<d,< o0, let m> 2, and let
80 = min(éo, 502, ey 5'8_1).

Suppose that for given p, 1 < p < o0, and given Q < R" there exists a constant
K= K(do,p,Q) such that for every finite 6, 0 < <, and for every
ue WP(Q), we have

tuly., < Kélul,, , + K6~ ulo, ,. (5

Then there exists a constant K = K(¢q, h1, p, Q) such that for every finite ¢,
0 < e < e, every integer j, 0 <j<m—1, and every u e W™?(Q), we-have

lul;,, < Kelul, ,+ Ke™/"""Dlul, . (6)
PrOOF  Since (6) is obvious for j = 0 we consider only the case | <j<m—1.
The proof is accomplished by double induction on m and j. The constants
K, K,, ... appearing in the argument may depend on J, (or &), m, p, and Q.

We first prove (6) for j = m—1 by induction on m, so that (5) is the specml‘
~ case m = 2. Assume, therefore, that for some k, 2 <k <m-1,

lulx-1,, < Kl‘s'“!k,y + Klé_(k—'l)lulo,p @)
holds for-all 8, 0 < < &,, and all ue Wh?(Q). If ue W**':7(Q), we prove
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. that (7) also holds with k+1 replacing k (and a different constant K;). If
. |la}=k~—1, we obtain from (5) ‘ :

|D%uls,p < Ky8|D%uls,, + K267 " | D%l .
Combining this inequality with (7), we obtain, for 0 < n < §,,

lulk,p S_KSI Z ‘IDauh.p

a|=k~-
< Kablulerr,p+ Kad™ Hulioy
< Kyblulisy,, + K4K16—1'I|u|k,p + K4K15_1"Il_k]“]o,p-

We may assume without prejudice that 2K, K, > 1. Hence we may take
n = 6/2K, K, and so obtain

luli, p < 2Ky ulisy,, + (62K, Ka)_klulom
< Ksdlulgsy,, + K56~ ulo, ,-

This completes the induction establishing (7) for 0 < § < J, and hence (6)
forj=m—1and 0 <e¢ < §,.
We now prove by downward induction on j that

lulj,p < K™ [tthm, p + K687 utlo,, ®)

holds for I <j<m—1 and 0 < < d,. Note that (7) with k =m is the
special case j=m—1 of (8). Assume, therefore, that (8) holds for some j,
2 <j<m—1. We prove that it also holds with j replaced by j—1 (and a
different constant K,). From (7) and (8) we obtain

lu;= )., < K;8|ul;, , + K;8" I ulo,,
K 0{Ks0" I |ul, ,+ K0 ulo, .} + K58 T ul,,
Ks(;m—(jﬂ)‘ul

IA

IA

+ Kgd~ Y7 Dl .

m, p

Thus (8) holds, and (6) follows by setting & = ¢/~ 4 in (8) and noting that
e<eg if 0 <, |

4.13 THEOREM There exists a constant K = K(m, p, n) such that for any
Q< R", any ¢ > 0, any integer j, 0 < j < m—1, and any u e W *(Q),

i la;,, < Kelulp,, + K™ ul, . o)
ProoF By Lemma 3.22 the operator of zero extension outside Q is an iso-
metricisomorphism of WJ"?(Q) into W™ ?(R"). Thus it is sufficient to establish
(9) for Q = R". Also, by Lemma 4.12 we need consider only the case j =1,
m =2, (The case j=0m =1 is trivial.) For any ¢ > 0 and any ¢ € C,*(R")
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~

we obtain from Lemma 4.10 *

Il

(3x_,-
Integrating the remaining components of x, we are led to

ID; ¢l < Ke?| D¢y + Ke™ |17,

.
é(x)

2
0x;

@

¢ ‘(x) |$(x)|? dxj .

?
~dx; + Ka"’f

7 ‘ ®
dx; < Ke? f

il o}

whence
lol5., < Ke? Z. 1D;2¢||2 + nKe™?|$|5. , < Ke?|p|3 , + nKe™?|¢l5 .
j=

The case j = 1, m = 2 of (9) now follows by taking pth roots and noting that
Co®(R") is dense in W™ P (R"). |

4.14 THEOREM (Ehrling [23], Nirenberg [53], Gagliardo [24]) Let
Q < R" have the uniform cone property (Section 4.4), and let ¢, be a finite,
positive number. Then there exists a constant K = K(gg, m, p, Q) such that
for any ¢, 0 < ¢ < ¢, any integer j, 0 <j<m—1, and any ue W™ ?(Q)

lul;,, < Kelul,, , + Ke™ /™" D, . (10)

Proor The case m = | is trivial; again Lemma 4.12 shows that it is sufficient

to establish (10) for j = 1, m = 2. In addition, the argument used in the second
paragraph of the proof of Lemma 4.10 shows that we may assume ¢, = 1.

In this proof we make constant use of the notations of Section 4.4 describing

the uniform cone property possessed by Q. If ¢ is the constant of condition (ii)

of that section and if 2 = (4,, ..., 4,) is an n-tuple of integers, we consider the
cube

Hy = {xeR": 1, 8/2Jn < x, < (4 +1)8/2/n}.
Then R" = | J, H, and diam H, = 8/2. Let Qo = J;y,cqH,. Thus Q ~ Q; =
Qo = Q. If the sets U,, U,, ... and Q,,0,, ... are as in Section 4.4, then
j=1 j=1

We shall prove that for any u € W2-?(Q)

|ulf, p.no < Ki8” |l p00 + Ki& P lul8 oy (@
and for j=1,2,3,... o )
luH,p.anﬂ < KZEP‘ul‘Z’.P.Qj + Kzer_pluls.P-QJ’ . . (12)

where K, is independent of j. Since anv R+2 of the sets Q.. 0..0.. ... have
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empty intersection, (11) and (12) imply that
’ : 0
lulf.p,ﬂ < luI‘l’,p. [2 7 + leulg, »Uinn
J=1
: _ -
"< max(K,, K;) {s’ U5, 500+ € D ul8, 5.0,
i=1

+e"P|ulf 0t leu[&p,QJ}
l:
< (R+1) max(Kl,Kz){apIulg,p,n‘*‘s_p]uls,p, o}

and this inequality yields (10) (case j =1, m = 2) on taking pth roots. It
remains therefore to verify the validity of (I1) and (12).

If ue C*(Q) n W*?(Q), we apply Lemma 4.10 to u considered as a
function of x, on the interval from 4,6/2 \/E to (Ak+l)6/2ﬁ, and then
integrate the remaining variables over similar intervals to obtain, for any
H;=Q,

|Du(x)|Pdx < K3s”f |D2u(x)|Pdx + K3a"’f lu(x)|?dx, (13)
H, H, . Hj,
where K; depends only on p and the length of a side of H, (which in turn

depends on Q via é and #). Summing (13) for 1 < k& < n, we obtain
[ulf, pu, < Kae|ul} p u, + nKye P lul, pu,- (14)

Since the cubes H do not overlap, we sum (14) for all cubes H, = Q and
obtain (11) with K, = nKj;. Since C2(Q) n W P(Q) is dense in W 2(Q), (11)
holds for all ue W?(Q).

The constant K, in (12) will turn out to depend only on p, M and the
dimensions of the cone C; (see Section 4.4). Anticipating this, and noting that
these dimensions are specified by the single cone C to which all cones C; are
congruent, we drop, for simplicity, all subscripts j in considering (12). Let ¢
be a unit vectorina directionin C,and let Q, = {y+1:ye Qn U, 0 <t < h},
where /1 is the height of the cone C (Fig: 3). Thus (Q n U) = Q; = Q by con-
dition (iii) of the uniform cone property. Any line L parallel to £ either has
empty intersection with Q, or else intersects Q, in an interval of length p,
where h < p < h+diamU < h+M by- condition (i) of the uniform cone
property. By Lemma 4.10, if u € C*(Q) n W7(Q),

f [D;ulPds < Ku:"J‘ |D2 u|"ds+ K,eZ? [ [ulds, (15)
Lnf . - LnQ; JLn Q: h

where D, denotes differentiation in the direction of { and where K, can be
chosen to depend only on p, h, and M, that is, on p and Q. We now integrate
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(15) over the projection of Q, on a hyperplane perpendicular to £ and so obtain
f |Dsu(x)|Pdx < f | Deu(x)|? dx
anU oM
< K&’J‘ | D2u(x)|Pdx +_K4s"’_f Ju(x)|Pdx
. J Q

< K4s"f |D2u(x)|? dx + KJ“’J‘ lu(x)|Pdx.  (16) .
Q Q ’ .
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Now let C,, .,&, be a basis of unit vectors in R" each lying in a direction
contained in the cone C. For | <k <n, Du(x)=31_,a;D;u(x) where
the constants a; satisfy |a; 1<1/V, 1 <j<n, V being the volume of the
parallelepiped spanned by &,, ..., &,. (The reader might verify this assertion.
It is a simple exercise in linear algebra.) A lower bound for V can be specified
in terms of the aperture angle of the cone C—that is to say, the basis &,, ..., &,,
which varies with the covering patch U, may always be chosen in such a way
that ¥ is independent of U. 1t now lollows from (16) that

| peoras < K 5[ pgucoras
Qn

n

Ks Y {K,;E”J. | D u(x)|”dx + Ku;’"f [u(x)]”dx}
Q Q

j=1

IA

< Kee?|ulf , 0+ Kee Plulf 4 0

The desired inequality (12) now follows by summing on k and using the
density of C*(Q) n W2P(Q) in W*7(Q). |

If Qis bounded, the above theorem can be proved under weaker hypotheses.

4.15 THEOREM Let Q be a bounded domain in R” having the cone
property. Then the conclusion of Theorem 4.14 holds for €.

PrROOF By Theorem 4.8 there exists a finite collection {Q,,...,Q,} of open
subsets of Q such that Q@ = | J%., Q; and such that each Q; is a union of trans-
lates of some open parallelepiped. 1t is clearly sufficient to prove an inequality
analogous to (11) for each Q;. We may therefore assume without loss of
generality that Q = |, ,(x+ P), where A is a bounded set in R" and P is an
open parallelepiped with one vertex at the origin. Let ¢, ..., {, be unit vectors
in the directions of the n edges of P that concur in the origin, and let / be the
minimum length of these edges. Then the intersection with Q of any line L
parallel to one of the vectors {; is either empty or a finite collection of segments
each having length between / and diam Q. 1t follows as in (16) that

f |Dg,u(x)|Pdx < K, a"f | DF,u(x)}? dx + Ks"’f |u(x)|?dx
o o _ Q

for smooth functions u. Since {f,,ﬁ,, ...,&,} is a basis for R" one can now
show, by an argument similar to that following (16), that
[ulf .0 < KaePlul5 , 0+ K27 |ulf ,

holds for all u e Wz"’(Q). 1
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416  COROLLARY The functional ((+)),, ,. o defined by

((u)v)m,p,ﬂ>= {I‘ulgn.p,(i + ]ul(’;.p,ﬂ}”p

is a norm, equivalent to the usual norm ||-{,, , . on each of the following -
spaces:

(i) WP Q) for any domain Q,
(i) W™ 7(Q) for any domain Q having the uniform cone property,
(iii) W™ ?(Q) for any bounded domain Q having the cone property.

4.17 THEOREM (Ehrling {23}, Browder [12]) 1fQ < R" has the uniform
cone property or if it is bounded and has the cone property, andif | < p < oo,
then there exists a constant K = K(m, p, Q) such that for 0 < < m and any
ue Wm™r(Q),

Nl p < KNuall307, lull 675 . (17

In addition, (17) is valid for all u e W§"?(Q) with a constant K = K(m, p, n)
independent of Q.

PrOOF Inequality (17) is obvious if either j = 0 or j = m. For 0 <j < m we
can obtain from successive applications of (10) that

lulyp < Kieluln,, + Ky g™ PNul,,, (18)

holds for alle, 0 < e < 1, and all ¥ € W™?(Q) with K, depending only on m,
p, and Q. (By Theorem 4.13 the same inequality holds for all u e W ?(Q)
with K, depending only on m, p, and n.) Inequality (17) now follows for u # 0
if we set €= (Jullo, ,/|tllm )™ "™ in (18). &

We remark that (17) also implies (18) algebraically: specifically, set
p=mlj, p'=mlim—j), a=(lul, )" and b= /" |ufi" " in in-
equality (4) of Chapter 11,

ab < (@p) + (®"[p"),  (A/p)+(1/p) =1,
to show that the right side of (17) does not exceed the right side of (18).

Interpolation Inequalities Involving Compact Subdomains

'4.18 Upper bounds for the L?(Q)-norms of intermediate derivatives Dy,
1Bl < m—1, of a function u € W™?(Q) can be expressed in terms of the semi-
norm |ul,, , o and the LP-norm of u over a suitable subdomain whose closure
is a compact subset of the bounded domain Q. We establish some hybrid
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interpolation inequalities of this sort by methods that follow somewhat the
same lines as those used for the interpolation mequalmes derived above
(See, for instance, the work of Agmon [6].)

419 LEMMA Let (a,b) be a finite open interval in R and let 1 < p < c0.
There exists a finite constant X = K(p, b—a) and, for.every positive number &,
a number § = d(g, b— a) satisfying 0 < 20 < b—a such that every continuously
differentiable function f on (a, b) satisfies

[1rora < [irapas k[ ora. (19)
a a at+o

Moreover, fixed values of K and 9, independent of b — a, can be chosen so that
(19) holds for all intervals (a,b) whose lengths lie between fixed positive
bounds: 0 </, <b-a <!, <.

PrOOF The proof is similar to that of Lemma 4.10. Suppose for the moment
thata=0and b=1,and let } <n <% If0<x <1, then

|/l =

St + f ") de

< |fm+ L l Lf(0)] dt.

Integrating n over (4, %), we are led to

2/3 1
) < 3 j Vel + f o dr,

so that by Holder’s inequality if p > 1,

2/3 t
Sl < 3-2"“[”3 If(t)l"dt+2”"J; SO,

Integrating x over (0, 1), we obtain

1 1 2/3
f foPdi < K, f SOPdi+ K, f o,
0 0 1/3

where K, = 3.2°71 The change of variable a+t(b—a)— t now yields, for
any finite interval (a, b),
b—-(b-a)/3

b b
[rora < ko-ar [1rora &, [ ropra
at(b~-a)/3
For given £>0 pick a posmve integer -n such that n""Ss Let aq; =
a+((b-a)jinfor j=0,1,:..,n and pick & so that 0 < & < (b—a)/3n. Then

b n e
f sorda=3 (7 rord

j=1Jaj-y . .
equation continues
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‘— SKZ{(Q;—'—‘{) [ 1repa +'f"";i;f(;)i"dt} :

j~1 a,-1
- j 2

b—

b : é
<K, max(l,(b—a)"){s f L@+ f ., If(t)l"dt}

which is the desired inequality. |i

The reader may convince himself that Lemma 4.19, unlike Lemma 4.10,
does not extend to infinite intervals (a, b) if the intention is that the second
integral on the right side of (19) should be taken over a compact subinterval.

420 THEOREM Let Q be a bounded domain in R" that has the segment
property. Then there exists a constant K = K(p, Q) such that to any positive
number ¢ there corresponds a domain Q, < Q such that

f”lo,p,n < Ks'“ll.p,ﬂ + K‘“'O,p,ﬂ; (20)
holds for every u e W ?(Q).

PrROOF The proof is similar to that of Theorem 4.14. Since Q is bounded the
locally finite open cover {U;} of bdryQ and the corresponding set {y;} of
nonzero vectors referred to in the description of the segment property (Section
4.2) are both finite sets. Therefore open sets ¥; c< U; can be found so that
bdryQ < | J;¥;. (See the first part of the proof of Theorem 3.14.) Moreover,
for some 6 >0, Q; = {x e Q:dist(x, bdryQ) < 8} = {J;#; so that we may
write Q= {J;(¥;n Q) U, where & =< Q. It is thus sufficient to prove
that for each j

|4[8, 5, 5,0 < Kig Ul , o+ Kilul§ , a0,

for some Q, ; =< Q. For simplicity we drop all subscripts j.
Consider the sets 0,0,,0 <75 <1, defined by

Q=1{x+ty:xeUnQ,0<r<l1}
O, ={x+ty:xe¥V nQ, n<t<l1}.

If >0, Q, =< Q. By the segment property, Q < Q and any line L parallel
to y and passing through a point of ¥"-n Q intersects @, in one or more
intervals each having length between |y| and diam Q. By Lemma 4.19 there
exists n > 0 and a constant K such that for any 4 € C*(Q) and any such line L

Lo

f [u(x)l”dssKls”f |Dyu(x)|”ds+K,J. |u(x)|?ds,
LnQo LnQo Qn



'
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D, denoting differentiation in the direction of y. We integrate this inequality
over the projection of Q, on a hyperplane perpendicular to y and §0 obtain
’ulg,p, any < 1“15.?,00 = K!. aplulp,p Qo + Kl'lu's,p,Q,,
< K ePlulf , o+ Ki|ulf . 0. .
where Q= Q, =< Q. By density this inequality holds for any u € wh Q). 1

4.21 COROLLARY The conclusion of Theorem 4.20 is also valid if Q is
bounded and has the cone property.

PROOF As remarked earlier, a domain Q with the cone property need not
have the segment property. By Theorem 4.8, however, Q is a finite union of
domains having the strong local Lipschitz property. We leave it to the reader
to show that a bounded domain with the strong local Lipschitz property has
the segment property, and thus complete the proof. ||

422 LEMMA Let Q,,Q be domains in R" with Q; c< Q. Then there
exists a domain Q' having the cone property such that Q, c Q' c< Q.

PrOOF Since Q, is a compact subset of Q there exists 6 >0 such that
dist(Qo, bdry Q) > 4. The domain Q' = {y e R":|y—x| < d for some x € Q,}
clearly has the desired properties. §

4.23 THEROEM Let Q be a bounded domain in R” having either the
segment property or the cone property. Let 0 < g, < 00, let | < p < o0, and
let j and m be integers with 0 <j<m~1. Then there exists a constant
K = K(gy,m, p,Q), and for each ¢, 0 < ¢ < g5, a domain Q, such that Q, c<= Q
and such that for every u e W™ *?(Q)

lulj, pa < Kelu|m, pa+ Kﬁ*j/(m_j)luio.p.nc- (21)
ProoF We apply Theorem 4.20 or its corollary to derivatives Dfu,
|B|=m—1, to obtain

|u|m—l,p,0 < Klslulm,p,ﬂ+ Kllulm~1,p,n.’ (22)

where Q, cc Q. By Lemma 4.22 we may assume that Q, has the cone
property. For 0 < £ < ¢,, we have by Theorem 4.15 °

Iu!m x’p.n'. = KzeiulmA 2,8 + Kzs_(m_nlulo P, Qe ) (23)

‘Combining (22) and (23), we get the case j = m—1 of (21). We complete the
proof by downward induction on j. Assuming (21) holds for some j > I and
replacing ¢ by €~/ (with consequent alteration of K and Q,), we obtain

Julj,poa < K& U], o + KJE_{I“,o,p,n;- (24)
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Also by (21) with jand m replaced byj—1 and J, respéctively (the case already
proved), we have )

lu)j-1,p.0 < Ke&lulj p0+ K45 U= l)Iulo .9z - (25)
Combining (24) and (25), we get '
Iu,j-l,p,ﬂ < K58m_(j-l)|u|m,p,ﬂ + Kss_(j_l)lulo,p,n,,

where K5 = K,(K;+1) and Q, = Q,’ U Q. Replacing & by /™ /"1 we
complete the induction. |

Extension Theorems

4.24 Let Q be a domainin R". For given m and p a linear operator £ mapping
W™ P(Q) into W™P(R") is called a simple (m,p)-extension operator for Q
provided there exists a constant K = K(m, p) such that for every ue W™?(Q)
the following conditions hold:

(i) Eu(x)=u(x)a.e.inQ,
(”) "Eu“m,p,ﬂ" S K”u"m,p,n'

Eis called a strong m-extension operator for Q if E is a linear operator mapping
functions defined a.e. in Q into functions defined a.e. in R” and if for every p,
1 <p <o, and every k, 0 < k < m, the restriction of E to W*?(Q) is a
simple (k, p)-extension operator for Q. Finally, £ is called a rotal extension
operator for Q provided E is a strong m-extension operator for Q, for every m.

4.25 The existence of even a simple (m, p)-extension operator for a domain
Q guarantees that W™ ?(Q) inherits many properties possessed by W™ ?(R").
For instance, if the imbedding. W™ ?(R") - L(R") is known to hold, then the
imbedding W™?(Q) —» L*(Q) follows via the chain of inequalities

lulo.q.a < | Ettlo, g8 < Kil| Ettlm, pn < Ky K||tt|lm, p, 02-

We shall not, however, use this technique to prove the Sobolev imbedding
_ theorem in Chapter V as we shall prove that theorem under rather weaker
hypothesis on Q than are needed to guarantee the exxstence ‘of an (m, p)-
extension operator.

We shall construct extension operators of each of the three types deﬁned '
above. The method used in two of these constructions is based on successive
reflections in smooth boundaries. It is attributed to Lichenstein [35] and later
Hestenes [31] and Seeley [617. The third construction, due to Calderén [14]
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involves the use of the Calder6n-Zygmund theory of singular integrals. It is
less transparent than the reflections method and yields a weaker result, but
requires much less regularity of the domain Q. Except for very simple domains
all of the constructions require the use of partitions of unity subordinate to
open covers of bdry €} chosen in such a way that the functions in the partition
have uniformly bounded derivatives. Because of this, domains with bounded
boundaries (both exterior domains and bounded domains) are more likely to
be easily seen to satisfy the conditions of our extension theorems. Exceptions
are half-spaces, quadrants, etc., and smooth images of these.

426 THEOREM Let Q be either

(1) a half-space in R", or
(i) a domain in R" having the uniform C"-regularity property, and also
having a bounded boundary.

For-any positive integer m there exists a strong m-extension operator E for Q.
Moreover, if « and y are multi-indices with |y| <|«| < m, there exists a linear
operator E,, continuous from W/?(Q) into W¥?(R") for 1 <j< m—|a|
such that if u e Wi2l-?(Q), then

Iyl <lal

DEu(x)= Y E,Du(x) ae inR" (26)

ProoF First let Q be the half-space R," = {x € R": x,, > 0}. For functions u
defined a.e. on R.," we define extensions Eu and E,u, {a|<m, a.e. on R" via

u(x) x, >0
Eu(x) = ¢m+1
N AUy ey Xy gy —jXy) if x, <0,
" (27)
u(x) if x,>0
E,u(x) = {m+1

Zl (=) Ajuxy, ..o, Xp gy = jX,) if x,<0,
=

where the coefficients 2,,...,4,,, are the unique solutions of the
(m+ 1) x (m+ 1) system of linear equations

m+1

2 =1 k=0L..m i
j= K3

If ue C"(R.), then it is readily checked that Eu e C™(R") and
D*Eu(x) = E, D*u(x), jaf < m.
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“Thus

f | D*Eu(x)|Pdx = J' | D*u(x)|? dx
Rn : R4"

T

p
Z (_J)a"}' Dau(xh' Xn-1> jxn) dx
< K(m,p, oz)f [ D%u(x)|? dx.
R4+n

ji=1

The above inequality extends, by virtue of Theorem 3.18, to functions
ue WhP(R,"), m > k >|a|. Hence E is a strong m-extension operator for R, ".
Since D*E,u(x) = E,+pu(x), a similar calculation shows that E, is a strong
(m —|a])-extension. Thus the theorem is proved for half-spaces (with
E,, = E,, E,, = 0 otherwise).

Now suppose Q is uniformly C™-regular and has bounded boundary. Then
the open cover {U;} of bdry(Q, and the corresponding m-smooth maps ®;
from U; onto B, referred to in Section 4.6, are finite collections, say | < j < N.

Let 0 = {y e R":[y'|=(£3215,")""> <4, |yal < /3/2}. Then
{yeR:|yl<i} c Q< B={yeR:|yl<l}.

By condition (i) of Section 4.6 the open sets ¥ = W¥;(Q), 1 <j < N, form an
open cover of Q; = {x € Q:dist(x, bdryQ) < 6} for some 6 > 0. There exists
an open set ¥, of Q, bounded away from bdryQ, such that Q < { ¥ ;=07
By Theorem 3.14 we may find infinitely differentiable functions wq, w,, ..., Wy
such that suppw; = ¥/ and Z?Lowj(x) = | for all x € Q. (Note that supp w,
need not be compact if Q is unbounded.)

Since Q is uniformly C™-regular it has the segment property and so
restrictions to Q of functions in C,®(R") are dense in W*?(Q). If ¢ € C,°(R"),
then ¢ agrees on Q with the function Z’}’=D¢j, where ¢; = w; ¢ € Co™(7)).

For j>1and ye Blet y;(y) = ¢;(\¥;(»). Then ¢; € Co*(Q). We extend
; to be identically zero outside Q. With E (and E,) defined as in (27), we have
Eyje Co"(Q), EYj=y;on Q, ={yeQ:y,>0}, and

!E‘I’J“k p.Q = Kl “‘//1“1( P, Q4+ 0 < k < m,
where K, depends on k, m, and p. If 0;(x) = EY;(®;(x)}, then 6; € C;"(¥))
and 0;(x) = ¢;(x) if x € Q. It may be checked by induction that if |a| < m, then

DO;(x) = Y ¥ () [Eplbsp, (D50 i)).](q)j(x))’

18I slaf tyi<lal

where a;, .4 € C™~*(U;) and b; 5, € C™ ~1#!(B) depend on thé transformations
®; and ¥; = ®; ! and satisfy -

z aj;ap(x)bj;ﬁv(q)i(x)) = {(1)

18] < ||

if y=u«
. otherwise.
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By Theorem 3.35 we have for k < m,

. "oﬂlh,p,R" < KZ “E‘//j“k.p.Q < Kl KZ '“'I’j"k,p Qs = K3 ||‘//,"k,p,n,
where K, may be chosen to be independent of j. The operator E defined by

E¢(x) = ¢o(x) + .; 0;(x)

clearly satisfies E¢(x) = ¢ (x) if x € Q, and

N
NEdlk, o0 < Ibolli,pa + Ks.; 1®5lk, p.0

< K (1+NK3) @l poaas (28)
where

K, = max max sup |Dw;(x)| < co.
O<j<Nla|smxeRr

Thus E is a strong m-extension operator for Q. Also
D*E¢(x) = o ;a (Eqy D) (x),
where
Env@ = % T 0BG 0 0) ¥))(0,00)

if a # y, and
N
E,v(x) = (v wo)(x) + _; qu Iaj;aﬁ(x) [Es(bj;pa - (v - @) o ) [(®;(x)).

We note that if x e Q, E,,v(x) =0 for a # y and £, v(x) = v(x). Clearly
is a linear operator. By the differentiability properties of a;,,; and b; 4, E. lS
continuous on W4 ?(Q) into W/P(R") for 1 <j < m—la| This completes

the proof. |

The representation (26) for derivatives of extended functions was included
in the above theorem because it will be needed when we study fractional-order
_spaces in Chapter VII.

The reflection technique used in the above proof can be modified to yield a
total extension operator for smoothly bounded domains. The proof, due to
Seeley [61], is based on the following lemma.

4.27 LEMMA There cxists a real sequence {a,,}k=0 such that for every
nonnegative integer n we have -

3, 2a = (-1 (29)
k=0 i
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and

8

2|a,| < co. @0

k

[}

ProOF For fixed N, let q; v, kK =0,1,2,..., N, be the solution of the system
of linear equations

N
Y 2%g = (=1, n=0/1,2..,N. (31
k=0
In terms of the Vandermonde determinant
1 [ |
A‘O ‘Xl e xN N
V(xoyxh"'axN) = on xlz .\'NZ — 1—[ (xj-xi)
: . : 1,.j<=_0
: : : <
x¥ a8 xV
the solution of (31), given by Cramer’s rule, is
V(t,2,..,2¢ 1, —1,204 o)
a =
kN v(,2,...,2%
-1
N 3 k_l - N . N . .
= H (2’—2‘)]—1(—-1—2') n 2+ H (2/-2Y
i,j=0 i=o0 j=k+1 i,j=0
i,j#k i<j
i<j
= AkBk.N
where
T LY AN
k= EYIEYR KN T 57 Ak
i=02_2 j=k+121_2
it being understood that ], P; = 1 if [ > m. Now
k=1 5it+1
- — M3k—-k2)/2
lAkls]':‘l[zk-x—? .
Also
N
|+2¢
logBk,N = Z ]0g(1 -+ F——zi)
jsk+1
: N . N .
* 142 1
—_— < (1429 — <4
Jj__nk =1 s
j'—'zk;-l ¥-2 o jgl 2

where we have used the inequality log(1+x) < x valid for x > 0. 1t follows
that, the increasing sequence {B, y}x¥-o converges to a limit B, <e*. Let
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ak = Ak Bk SO that .
la < €4 23k—K2
Then for any n .
. i 2nk|akl < et i 2(2nk+3k=k)/2 . o '
) k=0 k=0 :
Letting N tend to infinity in (31), we complete the proof. |

4.28 THEOREM Let Q be either

(i) a half-space in R", or
(i) adomainin R" havingthe uniform C™-regularity property for every m,
and also having a bounded boundary.

Then there exists a total extension operator for Q.

Proor It is sufficient to prove the theorem for the half-space R.”; the
proof for Q satisfying (ii) then follows just as in Theorem 4.26.

The restrictions to R.." of functions ¢ € Co*(R") being dense in W™ ?(R ")
for any m and p, we define the extension operator only on such functions. Let
/ be a real-valued function, infinitely differentiable on [0, c0) and satisfying
fH=1if0<r<L,f(1)=0ift > 1. If ¢ € Co™(R"), let

P (x) if xeR,"
E =< o (32)
() Y a f(=2%) d(x, —2*x,) if xeR_",
K=o

where {a,} is the sequence constructed in the above lemma, and x' =
(x1,....x,-). Then clearly E¢ is well defined on R" since the sum in (32) has
only finitely many nonvanishing terms for any particular xe R_" =
{xeR":x,<0}. Morcover, E¢p has compact support and belongs to
C*(R,") N C*(R_"). If xe R_". we have
D@ (".”)( 2o =2 DD (', = 2,

J

k=0 j=0

= Z Yi(x).

Since ¥, (x) = 0 when —x, > 1/2* "1 it follows from (30) that the above series
converges absolutely and uniformly as x, tends to zero from below. Hence by
(29)

D*Ed(x)

lim DES) = 3 (—29%a, Dip(x',0+)
Xp—0 - k=0 -

= D*¢(x',0+) = lim .D*E¢(x) = D*E¢(0).

Xpn=0+
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Thus E¢ € Co®(R"). Moreover, if [x| <m,
Wi )I” < K\Pla 2" 3 |DP(x', —2x,)IP,

1Bl<m

where K, depends on rh, p, n, and f. Thus

) 1/p
||m||o_,,..,-nsl<.|ak|2*"{ ) f "w%(x',-z*x,,)wx}

1Bl<sm

. ip
K1|ak|2*m{<1/2*> > | “!D"¢(y)l"dy}

18T m

Kllaktzkm ”¢"m,p.R¢"‘

IN

It follows by (30) that

HDJE(b“O,p,IR.." < Kl |I¢i|l",p,R+"kzozk"IIa‘\[ < KZ H(b"m,p.[ﬂ#"

Combining this with a similar (trivial) inequality for |D*E¢|, , g, We
obtain

“E(b“m.p.R" S KJ “¢”m.p,m+"
with K3 = K;(m, p,n). This completes the proof. ||

4.29 The restriction that bdry Q be bounded was imposed in Theorem 4.26
(and similarly in Theorem 4.28) so that the cover {#7} would be finite. This
finiteness was used in two places in the proof, first in asserting the existence of
the constant K,, and secondly in obtaining the last inequality in (28). This
latter use is, however, not essential for the proof, for, were the cover {#7} not
finite, (28) could still be obtained via the finite intersection property [Section
4.6, conidition (11)]. Theorems 4.26 and 4.28 extend to any suitably regular
domains for which there exists a partition of unity {w,} subordinate to the
cover {¥}} with D*w; bounded on R" uniformly in jfor any given «. The reader
may find it interesting to construct, by the above techniques, extension
operators for domains not covered by the above theorems, for example,
quadrants, strips, rectangular boxes, and smooth images of these.

It might be noted here that although the Calderon extension theorem
(Theorem 4.32) is proved by methods quite different from the reflection
approach used above, nevertheless the proof does make use of-a partition of
unity in the same way as does that of Theorem 4.26. Accordingly, the above
considerations also apply to it. The theorem is proved under a strengthened
form of uniform cone condition that reduces to the uniform cone-condition of
Section 4.4 if Q has bounded boundary.. ’

Before proceeding to Calderdn’s theorem we present two well-known

" results on convolution operators that will be needed for the proof. The first
is a special case of a theorem of W. H. Young.
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EN

‘430 THEOREM (Young) Let 1 <p <o and suppose that ueL’ (IR")
andve L"(R") Then the convolution products

ux x) = L w0 b, vsue) = [ o=p)ue) dy
are well defined and equal for almost all x € R". Moreover, u*v e L?(R") and

laxoll, < fully llof,- (33)

ProorF The proof is a simple consequence of Fubini's theorem if p =1, so
we assume | < p < . Let we LP(Q). Then

w(x)f u(x—y)v(y)dy dx
R" 334

- ’ f w(x) f u(y)v(x—y) dy dx
R" R" _

< [ WOy [ 1o-pliweods

< [wona] [ lo-ppast ™| [ oo as}”
= buls bol Il

Since w may be chosen so as to vanish nowhere, it follows that u*v(x) and
v+ u(x) must be finite a.e. Moreover, the functional

utv(") - f U*U(x) W(X) dx
Rn

belongs to [L7(R™] and so by Theorem 2.33 there exists 4 € L?(R") with
121, < lull, fivil, such that

f Ax)w(x)dx = f u*v(x)w(x) dx
R ®n

for every we LP(R"). Hence A =uxve L”(R") and (33) is proved. The
equality of uxv and v+*u is elementary. |}

The following theorem is a special case, suitable for our purposes, of a
well-known inequality of Calder6n and Zygmund [16] for convolutions
involving kernels with nonintegrable singularities. The proof, which is rather
lengthy and may be found in many sources (e.g., Stein and Weiss [65]), is
omitted here. Neither the inequality nor the extension theorem based on it
will be required hereafter in this monograph.
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Let By = {xeR":|x|< R}, Sg={xeR":|x|= R},-and let dog be the

area element [Lebesgue (n— 1)-measure] on Sz. A function g is said to be

" homogeneous of degree u on By ~ {0} if g(¢x)=1t"g(x) for all xe Bg ~ {0}
and0<s<l. : ) o

431 THEOREM (The Calderon-Zygmund inequality) Let

g(x) = G(x)|x|™",
where

(i) G is bounded on R" ~ {0} and has compact support,
(i) G is homogeneous of degree 0 on By ~ {0} for some R > 0, and
(i) f5,G(x)dog=0.

If | <p < oo and u e LP(R"), then the principal value convolution integral
wrg@ = tim [ uGx-yg0)dy
-0+ JR*~B,

exists for almost all x € R", and there exists a constant K = K(G, p) such that
for all such u .

luxgl, < Kjul,.

Conversely, if G satisfies (i) and (ii) and if u * g exists for all u € C,*(R"), then
G satisfies (iii).

4.32 THEOREM (The Calderon extension theorem) Let Q be a domain
in R" having the uniform cone property (Section 4.4) modified as follows:

(i) the open cover {U;} of bdryQ is required to be finite ,and
(if) the sets U; are not required to be bounded.

Then for any me {1,2,...} and any p, | < p < o0, there exists a‘simple (i, p)-
extension operator £ = E(m, p) for Q.

ProoF Let {U,,U,, ..., Uy} be the open cover of bdry Q given by the uniform
cone property, and let U, be an open subset of Q bounded away from bdry Q
such that Q = U, o U;. [Such U, exists by condition (ii), Section 4.4.] Let
W, Wy, ..., Wy bE a C”-partmon of unity for Q with suppw; = U;. For
1<j< N we shall define operators E; so that if ue W™ "(Q), then E ue
W™ P(R") and satisfies

Eu=u in UnQ,
”Eju"m,p.ﬂ" < Ki".p,j"“"nt,p.ﬂ' (34)
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L

The desired extension operator is then clearly given by
- Eu = wou + Z w; E;u.
=1

We shall write x € R” in the polar coordinate form x = pa where p > 0 and ¢
is a unit vector. Let C;, the cone associated with U; in the description of the
uniform cone property, have vertex at 0. Let ¢; be a function defined in
R" ~ {0} and satisfying

(i) ¢;(x)=0forall x#0,
(i) suppe; = —C; U {0},
(i) ¢;e C*®R" ~ (0}),
(iv) for some &> 0, ¢; is homogeneous of degree m—n in B, ~ {0}.

Now p"~'¢; is homogeneous of degree m—12>0 on B, ~ {0} and so the
function ;(x) = (d/dp)"[p"~'¢;(x)] vanishes on B, ~ {0}. Hence y;,
extended to be zero at x = 0, belongs to Cy™(— C;). Define

' © o\"
E;u(y) = Kj{(_l)mLJ; ¢;(PG)P"_1(%> u(y—po) dp do

- [ [Twworu-pordo da} 35)

s Jo
where |- do denotes integration over the unit sphere, and the constant X
will be determined shortly. If y € U; n Q, then, assuming for the moment that

u e C*(Q), we have by condition (iii) of Section 4.4 that u(y — po) is infinitely
differentiable for po € supp ¢;. Now integration by parts m times yields

e C’; m
(—l)"‘J ﬂ"*‘¢j(ﬂa)<0—> u(y—po)dp
Y 1Y

m—1 a k a m-k~1
= Z(—H"‘“(—) [p""«i);(pa)](—) u(y—po)
A=0 cp op

a m
+f (55) ("~ '¢;(po)u(y—pa) dp

p=w

0

it

p

(1]
N\ .
.= (a—) [o"~';(p0)]
\op

u(y) + J; w%(pa) u(yQ po) dp.
V]

p=

Hence

do.

p=0

’ . J\»1!
E;ju(y) = K;u(y) f (5") [p" "' ¢;(pa)]
s\0p
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. Since (9/0p)"~'[p"~'¢;(po)] is homogeneous of degree zero near 0, the
above integral does not vanish if ¢; is not identically zero. Hence Kj‘ can be
chosen so that E;u(y) = u(y) forye U; n Q and all u e C*(Q). Since C*(Q)
- is dense in W™?(Q) we have Eju(y)=u(y) ae. in U;nQ for every
ue Wm™P(Q). It remains, therefore, to show that (34) holds, that is, that

"Danll"o.p’Rn < -Kz "u"m.l'-ﬂ

for any a, |a| < m.

The last integral in (35) is of the form 0; * u(y), where 0;(x) = ¢;(x)|x|' "
Since 0; € L' (R") and has compact support we obtain via Young’s theorem
4.30 and a suitable approximation of u by smooth functions,

IiD“(O,-*u)llo,p.wn = “0j*(DJu)“0,p,R" < ||0jii0,l,[R" ”Dauuo,p,n-

It now remains to be shown that the first integral in (35) defines a bounded map
from W™P(Q) into W™?(R"). Since (0/0p)™ = X4y = m(m!/a!)a*D* we obtain

| " YA e
fs L ¢;(po) p (ap> u(y—po) dp do

1!
= z n_j‘ ¢;(x) D,*u(y—x)o*dx -
i @1 SR
= Z ¢, % Du,
la]=m
where &, = (—l)'“'(m!/a!)c‘qu is homogeneous of degree m—n in B, ~ {0}
and belongs to C*(R" ~ {0}). It is now clearly sufficient to show that for any

B, 1Bl<m
HDﬂ(éa*U)HO,p,[R" < Ka.p"’)“o.p.n- (36)

If |Bi<m—1, then DP¢, is homogeneous of degree not exceeding | —# in
B, ~ {0} and so belong to L'(R"). Inequality (36) now follows by a Young's
theorem argument. Thus we need consider only the case |f] = m, in which we
write D? = (8/0x;) D’ for some y, |y|=m~—1, and some i, | <i < n. Suppose,
for the moment, that v € Cy*(£2). Then we may write

d
D, *v)(x) = [D¢,]) * [(5;)v](x) = fR ) D;v(x—y) D', (y) dy

= lim D;v(x—y) D'&,(y) dy.
_ 30+ JR"~Bs :
We now integrate by parts in the last integral to free v and obtain D?{, under
the integral. The integrated term is a surface integral over the sphere S; of the
product of v(x —-) and a function homogeneous of degree 1 —n near zero.
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This surface integral must therefore tend to Kv(x) as 8 — 0+, for some constant
K. Noting that D,v(x—y) = —(3/dy;)v(x—y), we now have

D(Ero) ) = lim f v(x=y) DE,() dy + Ko).
~o0+ Jan | _

Now DFPZ_ is homogeneous of degree —n near the origin and so, by the last
assertion of Theorem 4.31, D?Z_ satisfies all the conditions for the singular
kernel g of that theorem. Since p > | we have for any v € LP(Q) (regarded as
being identically zero outside Q)

”Dﬁéa*vno.p,ﬁ" < Ka,ﬂ “UHO,p.Q'

This completes the proof. |}



Imbeddings of W™?(Q)

The Sobolev Imbedding Theorem -

5.1 Itis primarily the imbedding characteristics of Sobolev spaces that render
these spaces so useful in analysis, especially in the study of differential and
integral operators. The most important of the imbedding properties of the
spaces W™P?(Q) are usually lumped together in a single theorem referred to
as the Sobolev imbedding theorem. The core results are due to Sobolev [63]
but our statement (Theorem 5.4) includes refinements due to others, in
particular to Morrey [47] and Gagliardo [24].

Most of the imbedding results hold for domains Q in R” having the cone
property but otherwise unrestricted; some imbeddings however require the
strong local Lipschitz property. Specifically no imbedding of W™ ?(Q) into
a space of uniformly continuous functions on Q is possible under only the cone
property, as can be seen by consndermg the example given in the second
paragraph of Section 3.17,

5.2 The Sobolev lmbeddmg theorem asserts the existence of 1mbeddmgs of
W™ #(Q) into spaces of the following types:

i) W*1(Q),j<m,and in particular LY(Q).
(i) Cg/(Q) = {ue C/(Q): Du is bounded on Q for |a| < j}. This space
is larger than C/(£) in that its elements need not be uniformly continuous on
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Q. However, Cy (Q) is a Banach spaée under the norm

lu; Cs’ @) '= max sup|Du(x)|.
T Oxglalsj xeQ
(iii) C**(@) (see Section 1.27) and in particular C/(Q).
(iv) W¥9(Q"), and in particular L1(Q"). Here Q* denotes the intersection
of Q with a k-dimensional plane in R", considered as a domain in R*.

Since elements of W™ ?(Q)) are, strictly speaking, not functions defined
everywhere on Q but rather equivalence classes of such functions defined and
equal up to sets of measure zero, we must clarify what is meant by an imbedding
of W™?(Q) into a space of type (ii)-(iv). In the case of (ii) or (iii) what is in-
tended is that the “equivalence class” u € W™ P(Q) should contain an element
belonging to the continuous function space that is target of the imbedding,
and bounded in that space by a constant times |u|,, , o. Hence. for example,
WwmP(Q)— C/(Q) means that each ue W™P(Q) can, when considered as a
function, be redefined on a set of zero measure in Q in such a way that the
modified function & [which equals u in W™?(Q)] belongs to C/(Q) and
satisfies ||#; C/(Q)| < K ||u},n, .o With K independent of u.

Even more care is necessary in interpreting the imbedding W™ ?(Q) —
Wia(Q") where k < n. Each element ue W™?(Q) is, by Theorem 3.16, a
limit in that space of a sequence {u.} of functions in C*(Q). The functions u,
have traces on Q* belonging to C*(Q*). The above imbedding signifies that
these traces converge in W¥(Q") to a function & satisfying ||il]|; , o« <
K| u||m, .o With K independent of u.

Let us note as a point of interest (though of no use to us later) that the
imbedding W™FP(Q)— W/1(Q) is equivalent to the simple containment
wmP(Q) c Wi-9(Q). Certainly the former implies the latter. To see the con-
verse suppose W™ ?(Q) <« W 9(Q) and let / be the linear operator defined on
W™ P(Q) into W/ 9(Q) by fu = u. If u,— uin W™?(Q) [and hence in L?(Q)]
and Ju, - v in W/%(Q) [and hence in L¥(Q)], then, passing to a subsequence
if necessary, we have by Corollary 2.11 that u,(x) - u(x) a.e. in Q and u,(x) =
Tu,(x) = v(x) a.e. in Q. Thus u(x) = v(x) a.e. in Q, that is, Ju =v, and 7 is
continuous by the closed graph theorem of functional analysis.

5.3 Let Q be a domain in R" having the cone property specified by a certain
finite cone C (see Section 4.3). C may be regarded as. the intersection of an
infinite cone C* having the same vertex as .C with a ball B centered at that
vertex. By the height of C we mean the radius of B. By the opening of C we mean
‘the surface area [(n— 1)-measure] of the intersection of C* with the sphere of
unit radius having center at the vertex of C. These geometric parameters are
clearly invariant under rigid transformations of C.
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" In asserting that an imbedding of the form B
wmr@) - X W

(where X is a Banach space of functions defined over Q) holds for Q having the
cone property, it is intended that an imbedding constant for (1), that is, a
constant K for which the inequality

“ll; ’\,H < K"u“m.p.i!

is satisfied for all u € W™ ?(Q), can be chosen to depend on Q only through the
dimension n and various such parameters of the cone C which are invariant
under rigid motions of C.

5.4 THEOREM (The Sobolev imbedding theorem) Let Q be a domain in
R" and let Q" be the k-dimensional domain obtained by intersecting Q with a
k-dimensional plane in R", | < k <n. (Thus Q"= Q.) Let j and m be non-
negative integers and let p satisfy 1 < p < 0.

PART I [IfQhastheconeproperty, then there exist the followingimbeddings:

CASE A Suppose mp < n.and n—mp < k < n. Then

Witme(Q) - wiiQY,  p < q < kplin—mp), (2
and in particular,
WitmrQ) » wiHi(Q),  p < q < np/in—mp), 3
or
wmr(Q) - LY(Q), p < ¢4 < np/(n—mp). 4
Moreover, if p = 1, so that m < n, imbedding (2) also exists for k = n—m.

Case B Suppose mp = n. Then for each &k, 1 < k < n,
witme@Q) - whQY),  p<q< o, %)
so that in particular
WmrQ) - L1(Q), p<g<ow. : (6)

Moreover, if p = 1 so that m = n, imbeddings (5) and (6) exist with g = o0 as
well; in fact, o ~ : L

witn Q) - Cg'(Q). : , )

Case C Supbose mp > n. Then
Witme(Q) —» Cy/(Q). (8)
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PART II If Q has the strong local Lipschitz property, then Case C of Part [
can be refined as follows:

Cast C'* Suppose mp > n > (m—1)p. Then
witmrQ) o CPA@), 0< 1< m-—(np). ©)

Case C” Suppose n = (m—1)p. Then .
witme(Q) » C4(Q), 0<i< 1. 10)
Also, if n = m—1 and p = 1, then (10) holds for A =1 as well.

PART 111 All the conclusions of Parts I and 1l are valid for arbitrary domains
provided the W-spaces undergoing imbedding are replaced with the corre-
sponding W;-spaces.

5.5 REMARKS (1) Imbeddings (2)-(8) are essentially due to Sobolev
[62, 63] whose original proof did not, however, cover the cases ¢ = kp/(n— nip)
in (2), or ¢ = np/(n—mp) in (3) and (4). Imbeddings (9) and (10) find their
origins in the work of Morrey [47].

(2) Imbeddings of type (2) and (5) involving traces of functions on planes
of lower dimension can be extended in a reasonable manner to apply to traces
on more general smooth manifolds. For example, see Theorem 5.22.

(3) Part 111 of the theorem is an immediate consequence of Parts I and 11
applied to R" because, by Lemma 3.22, the operator of zero extension of
functions outside Q maps W™ ?(Q) isometrically into W™ ?(R™).

(4) Suppose that all the conclusions of the imbedding theorem have been
proven for Q = R". 1t then follows that they must also hold for any domain Q
satisfying the requirements of the Calderén extension theorem 4.32. For
example, if W™ P(R") > L*(R"), and if £ is an (i, p)-extension operator for Q,
then for any u e W™?(Q) we have

ll“"o,q.n < "E"llo.q,m" < Kl”Eu”m,p,IR" < Kl KZ ”u”m,p,ﬂ

with K; and K independent of u. We shall not, however, prove the imbedding
theorem by such extension arguments.

(5) 1t is sufficient to establish each of the imbeddings (2), (3), (5), (7)-
(10) for the special case j = 0. For example, if W™?(Q)— L(Q) has been
established, then for any ue W/*™?(Q) we have D"u e W™ ?(Q) for |a| <},
whence D*u € L4(Q); thus u € W/ 9(Q); and

1/q
ful,.q =( y no*un_a,.,) ‘
laj<Jj

p
< Kl(,”zs ||D“u|x.,,) < Kyl m .



PROOF OF THE IMBEDDING THEOREM . ' 9

Accordingly, we will always specialize j = 0 in the proofs o
(6) If Q* (or Q) has finite volume, it follows by Theorem 2.8 that im-
beddings (2)~(6) hold for 1 < g <pin addition to the values of g asserted in
the theorem. It will be shown later (Section 6.38) that no imbedding of the form

wm™P(Q) —» L7(Q) where ¢ < p is possible unless Q has finite volume.

Proof of the Imbedding Theorem

5.6 The proof given hereis due to Gagliardo [24]. Though it is rather lengthy,
the techniques involved are quite elementary, being based on little more than
simple calculus combined with astute applications of Holder’s inequality.
Moreover, Gagliardo’s proof establishes the imbedding theorem in the
greatest possible generality and is capable of generalization to produce
imbedding results for some domains not having the cone property (see
Theorems 5.35-5.37).

The proofis carried out in a chain of auxiliary lemmas. In each such lemma
constants K, K, ... appearing in the proof are allowed to depend on the same
parameters as the constant K referred to in the statement of the lemma.

57 LEMMA Let
R={xeR:g,<x;<b;l1<i<n}
and
={x=(x,..ox-)eR" T ig,<x;<b;l <i<n—1}
be bounded open rectangles in R" and R"™*, respectively. If a, < { < b, and
p > 1, then for every u e C®(R) n W!?(R) we have
4, Dllo,p.rr < Kllully, 5 (1)

where K = K(p, b,—a,). Thus the trace mapping v — u(-,{) extends to an
imbedding of W!?(R) into LP(R}™'), where R}™' = Rn {xe R":x,={}.

Proor By Theorem 3.18, C*(R) is dense in W!'P(R) so we may assume

ue C°(R). Thus [z |u(x’, -)|?dx’ belongs to C*([a,,b,]) and by the mean
value theorem for integrals we have

bn :
Null®. .z =J <f |u(x’,x,,)|”dx’> dx, = (b,,Td,,)f lu(x', 0)? dx’
an \ JR' R’

for some o € [a,,b,]. Now

Ju(x', C)'l" = | u(x',o) + ICD,u(x', 1) dtl’

<2 ['u(x', o +le=otr [ 1Dutr.0 'pdt]
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by Holder’s inequality. Integration over R’ leads to
“u(':C)“s,p.R’ < 20" ! [”“(',G')ﬂ&p.x' + (bn_an)p- : HDnu“t)’,p‘R]
< 227 [(by—a,) " ulf g + (ba~a,)? " D, ul§ , k]
which yields (11) with K = [2°""max((b,—a,)” ', (b,—a,)’~")]"/?. We note
that K depends continuously on b,—a, but may tend to infinity if b, — «, tends
to zero or infinity. |}
5.8 LEMMA Let R be as in the previous lemma. Then
wm1(R) - C(R).

The imbedding constant depends only on n and the dimensions of R.
PrROOF Let x be any point of R, and let R’ be as in the previous lemma. If
ue C*(R) and || < n— 1, we have by that lemma that

(D%u(-, x )Mo, r < Ki|D%ully, 1, k-
Thus

HeCes x)ln-1,1,8 < K [ulla,1,x

with K, depending on b,—a,. Iteration of this argument over successively
lower-diemnsional rectangles leads to

”u("xz’xla"' n)”l 1,(a,by) < K3 “ulm 1,R

with K, depending on b;—a;, 2 <j<n. By the mean value theorem for
integrals there exists o € [a,,b ] such that

fuxg, .o H)HO,I.(m,bl) = (b, _al)lu(asxb e X))
Hence

)| < Ju(o, % - ,xn)l+f 1Dyt X3y oy x0)| di

< [1/by—a)u(-,x25 .- os X0, 1, an,b)
+Dyu(-, x3, s X)lo,1, ar. 1)
< Klulp,1,&- (12)
Now suppose u € W™'(R). By Theorem 3.18, u is the limit in W™ '(R)
of a sequence of functions belonging to C*(R). It follows from (12) that this

sequence converges uniformly on R to a function & € C(R). Since u(x) = u(x)
a.e. in R, the lemma is proved. |}
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We now turn our attention to more general domains. The following lemma
of Gagliardo, which is essentially combinatorial in nature, is the foundation
on which his proof of the imbedding theorem rests.

59 LEMMA Let Q be a domain in R" where n > 2. Let & be an integer
satisfying 1| < k < n, and let k¥ = (x,,k,,...,k,) denote a k-tuple of integers
satisfying | <k, < Kk, < -+ < &, < h. Let S be the set of all () such k-tuples.
Also, given x € R", let x, denote the point (x,, ..., X,,) € R*; dx, = dx,, --- dx,, .

For given k € S let E, be the k-dimensional plane in R" spanned by the
coordinate axes corresponding to the components of x, :

E ={xeR" :x,=0if i ¢ «};
and for any set G = R" let G, be the projection of G onto E,; in particular
Q. = {xekE,:3IyeQsuchthat y, = x,}.

Let F, be a function depending on the k components of x, and belonging
to L*(),), where 1 = (§Z}). Then the function F defined on Q by

Fx) = [] Fe(x)

xeS§

belongs to L'(Q), and ||F||;,q < TTkes | Fxll1. 0, that is,

U lF(x)ldlel < T1 | 1F(x) dx,. | 13)
Q

KeS o Q%

ProoF For ke S and ¢, e RF let Q(,) denote the k-dimensional plane
section of Q by the plane x, = £,:

Q) = {xeQix, =g}

We establish (13) by induction on #n, and so consider first the case n = 2, We
may also suppose that k = 1 since, for any », the subcase k = n of (13) is
trivial. For n =2, k =1, we have A =1 and S has only two elements, ¥ = 1
and k = 2. Hence

f |F(x,) Fy(xg)| dx, dxy = f dx, f |Fy(x1) Fy (x5)] dx
Q Q, Q(xy)
- f |Fl(x,)1dx1f |, (x2)] dixy
[*1 ((x1))2

Sf |F1(x1)ldx1f [F3(x2)] dx,
[+1) Q

since clearly (Q(x,)), = Q, for any x,. This is (13) for the case being con-
sidered. (A similar calculation will yield (13) for arbitrary nand & = 1.)
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Now we assume that (13) has been established for n = N— 1. We consider

the case n= N and, as noted above, may assume 2 <k < N—1. Thus

A=) Let p=(§Z) and v = (}=2). The integrand on the left side of (13)

is a product of (§) factors |F,| each belonging to the corresponding space

L*Q,). Exactly (*;') of these factors, say those correspondingto k€ 4 < S,

are independent of x,. It follows from applying the induction hypothesis over
the (N — 1)-dimensional domain Q(xy) and noting that (Q(xy)), = Q, that

1/
1_.[ IFx(xx)luudxl "'de—l < ],—[ [J. IFx(xx)‘Adxx] ’
(QxNe

(xn) x€A xed

< H[ lFx(xK)i‘dxx]/“. (14)

KeA

The remaining ({)—(";!) = A factors |F,| depend on xy, and so when
restricted to Q(xy) depend on only k— | variables. Applying the induction
hypothesis over Q(xy) again, but this time with k—1 in place of k, we obtain

J:: H IFx(xx)lll\.dxl cedxy o,y

(XN) KeES~ A

i/
< J1 U |F,(xx)|*dxx,~--dxxk_,] ; (15)
xeS~A (2(xn))e

Now u+v = 2 and so by Holder’s inequality, and (14) and (15),

H lFx(xx)ldxl ”'de—l

Q(xy) k€S

I [ f mwvdxx]'”

1/4
. x 1 U IFK(xx)l‘dxm"-dxxk_.} . (16)
KES~A (XN

Since S ~ A contains A elements we obtain by (the several function form of)
Holder’s inequality that

1/
f H [f 'Fx(xx)'ldxm o dxm.-t] dxy
Oy xeS~A| J(R(xN))x

1/4
- A
= .‘.1.1,4 [Inu J;n(m).‘m(xx)l dx‘]

: . 1/4 ’
< 11 Un IF.:(x.:)|“dx.¢] . a”n

xeS~4

IA
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It follows by insertion of (17) into (16) that |
[ IR = [ anef -~ TLIAG0dxdiy

xKeS (XN) KES

1/2
sHU IFK(x,)l‘dx,] :

which completes the induction and the proof of (13). |

5.10 LEMMA Let Q be a bounded domain in R” having the cone property.
If 1 <p<n, then W"?(Q)— LYQ), where g = np/(n—p). The imbedding
constant may be chosen to depend only on m, p, n, and the cone C determining
the cone property for Q.

PROOF We must show that for any u e W!?(Q),

lullo,q.0 < Klully, 5.0 (18)

with K = K(m,p,n, C). By Theorem 4.8, Q may be expressed as a union of
finitely many subdomains each of which has the strong local Lipschitz
property (and therefore the segment property), and each of which is itself a
union of parallel translates of a corresponding parallelepiped. A review of the
proof of that theorem shows that the number of subdomains and the dimen-
sions of the corresponding parallelepipeds depend on n and C. It is therefore
sufficient to establish (18) for one of these subdomains.

By Theorem 3.35 and a suitable nonsingular linear transformation we may
assume that the parallelepiped involved is, in fact, a cube Q having edge
length 2 units, and having edges parallel to the coordinate axes. Accordingly
we assume hereafter that Q = (. ,(x+ Q) with 4 < Q, and that Q has the
segment property. By Theorem 3.18 it is sufficient to establish (18) for
ue C2(Q).

For x € Q let w;(x) denote the intersection of Q with the straight line
through x parallel to the x; coordinate axis. Clearly, w;(x) contains a segment
of unit length with one endpoint at x, say the segment x+re;, 0 <t <,
where ¢; is a unit vector along the x;-axis.

Let y = (np—p)/(n—p) so that y > 1. Integration by parts gives, for
ue C*(Q),

Jﬂ [u(x+ (1—1t)e)|?dt
-Jo

1 d
=Iu’(x)l"—vfo tlu(x+(1—t)es)l’-"‘;,;lu(x+(l—t)e;)ld_t- (19) -

Let g“ = (xl, ...,X,-_ 1; xi.‘,l,. ...,x") and set
Fi(2) = sup [u(y)|P/=»,

yewi(x)
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Then (19) gives - o

a7 [ ol Ducolas. @

wi{x)

Fer < |

wi(x)

Integration over Q;, the projection of Q onto the plane x; = 0, now leads to

J\ |F@R)" 1 < f |u(x)|”dx + yf [ ()]~ | D; u(x)| dx.
Q Q o

If p > 1, then y > 1 and an application of Holder’s inequality gives

1/p ) 1/p
IES w10 < Vl:j ([u(x)|+|Diu(x)|)”dx:| I:J.nlu(x)l(’—”” dx:I

< 20 mp)’”“”l,p,ﬂ"”l 0,4, 0
since (y—1)p’' =4¢.

We now apply Lemma 5.9 to the functions F;, 1 <i < n, noting that
k = n—1 so that the exponent 4 of that lemma is itself n—1:

“““g,q,n = fnlu(xnnp/(n—p)d_x < J;) 1:11 Fi(&) dx < 1:[1 ”Fi"o,n-l,m

< (e~ Py jul L,p.8Q ““"3’,';’, PN AR

Since (n—1)g/n—gq/p’ =1, (18) follows by canf:eliation. The cancellation is
justified, for since u € C*(Q) and Q is bounded, [|u,,, o is finite. Since C*(Q)
is dense in W1 ?(Q), (18) extends by continuity to all of W'7(Q). ||

5.11 REMARK Let ue Cy(R™) and let g,r be as in the above proof.
From the identity

wil 1 l?d[ — b

L o luGette)|7dt = ~[u(x)],

we obtain

sup u()]’ < ¥ f O™ | Dy ()| dx,

yewi(x)

where w;(x) is the line through x parallel to the x;-axis. Comparing this with
(20), we see that the computations of the above proof can be reproduced to
yleld in this case °

Nuho,que < Kiuls pigms S )

where the seminorm ||, , is defined in Section 4.11. Inequality (21) is known
as Sobolev’s inequality.



PROOF OF THE IMBEDDING THEOREM _ 105

' 512 LEMMA LetQbea bounded domain in R” havmg the cone property.
If mp < n, then W™?(Q) - L1(Q) for p < q < np/(n—mp). The imbedding
constant may be chosen to depend only on m, p, n, g, and the cone C deter-
mining the cone property for Q. - -

PrOOF Let g, =np/(n—mp). We first prove by induction on m that
Wwm P (Q) — L%(Q). Note that Lemma 5.10 establishes the case m = 1.

Assume, therefore, that W™~ 1?(Q) — L (Q) for r = np/(n—mp + p) when-
ever n > (m—1)p. If ue W™?(Q), where n > mp, then u and D;u (1 <j< n)
belong to W™~ 17(Q). It follows that u e W' "(Q) and

lulls,r0 < Ky []lm,p.0-
Since mp < n, we have r < nand so by Lemma 5.10 we have W7 (Q) —» L°(Q)
where g, = nr/(n—r) = np/(n—mp) and
"u”o.qo,n < KZ ”u”l,r,n < KS ”u"m,p,ﬂ' (22)

This completes the induction.
Now suppose p < g < go. We set

s = (90— Pp/(9o—p) and 1= pls = (qo—P)/(q0—
and obtain by Holder’s inequality

3,0 = fntu(x>|5|u<x>|“dx

) e
< [J |u(x)|“dxi| [f |u(x)i(“""'dx]
Q

= Jul§l’, o lul&%, o < K2 [ul?, , 0 (23)
by(22). 1

5.13 COROLLARY If mp=n, then W™P(Q)— L1(Q) for p <q < .
The imbedding constant here may also depend on vol Q.

Proor If ¢g>p' =p/(p—1), then q=ns/(n—ms), where s=pq/(p+q)
satisfies 1 <s < p. By Theorem 2.8, W™?(Q) - W™*(Q) with imbedding
constant dependent on vol Q. Since ms < n, W™ ‘(Q) — L7(Q) by Lemma 5.12, -
If p<g<p’ the desired imbedding follows by interpolation’ between .
Wwm™P(Q) - IP(Q) and W™?(Q) —» LP(Q) as in (23). ] .

For mp =n and q > p the dependence of the imbedding ‘constant on
vol Q may be removed as we show in the following lemma which removes the
restriction of boundedness of Q from Lemma 5.12 and Corollary 5.13.
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S.14 LEMMA Let Qbeanarbitrary domain in R" having the cone property.

If mp < n, then W™?(Q)— LYQ) for p < q < np/(n—mp). If mp =n, then
Wwmr(Q) - L1Q) for p<g<o. If p=1 and m=n, then W™?(Q)—>. -
Cy° (). The constants for these imbeddings may depend on m, p, n, ¢, and the
cone C determining the cone property for Q.

ProoF We tesselate R” by cubes of unit side. If 1 = (4, ..., 4,) is an »#-tuple of
integers, let H={xeR":4;<x;<A+1;1<i<n}. Then R" =, H,.

As remarked in the first paragraph of the proof of Theorem 4.8, even an
unbounded domain Q with the cone property can be expressed as a union of
finitely many subdomains, say Q = {J¥., Q;, such that Q; = Uxea, (X+P)),
where 4; = Q and P, is a parallelepiped w1th one vertex at the origin. The
number N and the dimensions of the parallelepipeds P; depend on # and the
cone C determining the cone property for Q. Foreach 2 and for I <j < N let

Q= U &+P).

xeA,nH,

The domains Q; ; evidently possess the following properties:

(i) Q=‘Ul.,jga\,j;

(i) Q,,;is bounded;

(iii) there exists a finite cone C’ depending only on P,, ..., Py (and hence
only on n and C) such that each Q, ; has the cone property determined by C’;

(iv) there exists a positive integer R depending on » and C such that any
R+ 1 of the domains Q, ; have empty intersection;

(v) there exist constants K’ and K” depending on » and C such that for
each Q, ;,

K' <volQ, ; < K"

Suppose mp < n and let ue W™P(Q). If p < ¢ < np/(n—mp), then by (it),
(iii), and Lemma 5.12, we have

ﬁ”“o,q,n,\,j < K“u"m,p.ﬂg.l’ (24)

where K = K(m,p, n,q, C) is independent of 4 and j. Hence by (i) and (iv) and
since g > p

Ilu"%,q.n S ).z. "u"?),q.ﬂ,\, - Kq Z ["u"m p,ﬂ,\, j]q/p
sJ

ql
< K[ T iz, ] < KR Pl 0
)l

Thus W™?(Q) - L*(Q) with imbedding constant KR'/?.

"If mp = n, (24) holds for any ¢ such that p < ¢ < o by virtue of Corollary
5.13, and the constant K can be chosen independent of 1 and j thanks to (v).
The rest of the above proof then carries over to this case..
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.. Finally, if p=1 and m = n, we have by Lemma 5.8 and a nonsingular
linear transformation that W”™'(P)- C°(P) for any parailelepiped P <.Q,
the imbedding constant depending only on n and the dimensions of P. Hence
w1 (Q) - C5°(Q) by virtue of the decomposition Q=) Q; ;. |

We have now proved Part I, Cases A and B of Theorem 5.1 for the case
k = n. Before completing these cases by considering the. trace imbeddinge
(k < n), we establish the continuous function space imbeddings, Part I, Case
C, and Part 11.

515 LEMMA Let Q be a domain in R" having the cone property. If
mp > n, then W™?(Q) - Cp°(), the imbedding constant depending only on
m, p, n, and the cone C determining the cone property for Q.

ProOF Suppose that we can prove that for any ¢ € C*(Q),
S“gld’(X)l < K| ¢lm, 505 (25)

where K= K(m,p,n,C). If ue W™?(Q), then by Theorem 3.16 there exists
a sequence {¢,} in C®(Q) converging to « in norm in W™ ?(Q). Since {¢,} is
a Cauchy sequence in W™ ?(Q), (25) implies that {¢,} converges to a continuous
function on Q. Thus ¥ must coincide a.e. with an element of Cz°(Q). It 1s
therefore sufficient to establish (25).

First suppose m =1 so that p > n. Let xe Q and let C, = Q be a finite
cone congruent to C and having vertex at x. Let & be the height of C. Let
(r,0) denote spherical polar coordinates in R" with origin at x so that C, is
specified by 0 < r < h, 8 € A. The volume element in this system is denoted
by r* 1w (0) dr do. We have

rd
b0 = 60,0 = 60,0 - [ Sow0 dr
o dt
from which we conclude, for 0 < r < A,

h
()| <|b(r,0)] + f \grad ¢ (1, 0)| dr.

Multiplying this iriequality by r""'w(0) and integrating r over (0,4) and 6
over A, we 'obtain
|grad ¢ ()|
vol C, x)| < J )| dy + —_—
(VICI$(] = | 16O e o

< (vol C)M* ||¢I|o,p.c,

h ' ~(n—-1)p 4
+;I|grad¢llo,,,c, A |x—y| ay|
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the last inequality following from. two applications of Hélder’s inequality.
Since p > n we have (n—1)(1-p)>—1 and so

, »
[x—y|~ @~V dy = J‘ (0) dﬂf re- VG- gp <« .
Cx 4 0

Hence

o) < K|dly,pc. < Klid)1pa

with K = K(m,p,n, C,) = K(m, p,n, C). Thus (25) is proved for m = 1.
If m > 1 but p > n, we still have

o] < K[¢l1,p.c. < Klidblmpco < K@l pa-

If p < n < mp, there exists an integer j satisfying 1 <j< m—1 such that
jp<n<(j+)p If jp <n,setr = np/(n—jp); if jp = n, choose r > max(n, p).
In either case we have by the result proved above and by Lemma 5.14 that

)| < Killdllrc, < Killdlm-jirc, < Kl@lmpc. < K|lm,p.05
the constants depending only onm, p, n, and C. This completes the proof. ]

5.16 COROLLARY If mp > n, then W™?(Q)—> L1(Q) for p < g < o0.
The imbedding constants depend only on m, p, n, g, and the cone C.
PrROOF We have already established that

lullo,c0,0 = ess supu(x)| < K|ufm,p.0
xef2

forallue W™?(Q). If p < g < 00, we have
(408,00 = [ GOl oy dx
< KR uliop allulf, e < KT ulf 0

5.17 LEMMA Let Q be a domain in R" having the strong local Lipschitz
property, and suppose that mp > n > (m—1)p. Then W™?(Q)— C%*(Q)
for:

(i) 0<A<m—njpifn>(@m—1)p,or
(i) O0<A<lifn=(m-1)p, or
(i) 0<i<lifp=Ln=m-1.

In particular W™?(Q) —» C° (). The imbedding constants depend on m, p, n
and the parameters 6, M specified in the description of the strong local
Lipschitz property for Q (see Section 4.5).
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PrROOF Let u € W™P(Q). The strong local Lipschitz property implies the cone
property so by Lemma 5 15 we may assume that u is continuous on Q and
satlsﬁes :

.sulzllu(x)l < Kl “u“m.p,n' » . ) - ’ (26)
XE
It is therefore sufficient to establish further that for suitable 4,
lu(x)—u(y)|
sup ———=~

< K ||ullm p.a- 27
xyefl Ix_yll 2" " , P, ( )
x#y
Since mp >n>(m—1)p we have by Lemma 5.14 that W™?(Q)—
Wl (Q) where:

(i) r=np/(n—mp+p)and 1 —(njr) =m—(n/p) if n > (m—1)p, or
(ii) risarbitrary, p<r<wandO0<1—-(n/r)<lifn=@m—-1)p, or
(i) r=o00,l—Mm/ry=m—(@n/p)=1ifp=1and n=m—1.

1t is therefore sufficient to eastablish (27) for m = 1; that is, we wish to prove
that if n < p <00 and 0 < A < 1 —(n/p), then

lu(x)—u()|

sup ) < K lully, p0- (28)

ea |
Suppose, for the moment, that Q is a cube, which we may also assume
without loss of generality to have unit edge. For 0 <t < |, Q, will denote a
cube of edge ¢ with faces parallel to those of Q and such that Q, = Q. Let
ue C*(Q).
Let x,y € Q, |x—y|=0 < 1. Then there exists a fixed cube Q, with x,y €
Q,cQ. IfzeQ,, then

u(x) = u(z) — Jq iu(x + t(z—x)) dt,
o dt
so that
’ 1
ju(x)—u(2)| < \/;af |gradu(x + t(z—x))| dt.
0

Hence -

;1; f (u(x)—u(z)) dz
Jn

_a"' =

utx)—-;‘;L u(z)dzl <

dzf |gradu(x+t(z x)|dt

equation continues
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1
= i__n—,f t""dtJ.- |grad u(z)| dz
" Jo o

‘ 1 .
< o,i_nfllgl'ad"“o,p.nf (vol Q) 7t="dr (29)
0

S K4al —aip) “grad u"O,p,n’

where K, = K,(n,p) = \/;j(’,t'"/”dt < 00. A similar inequality holds with
in place of x and so

[u(x)—u(p)| < 2K |x—y|' """ lgraduly , q

It follows for 0 < A < 1 —(n/p) that (28) holds for Q a cube, and so, via a
nonsingular linear transformation, for Q a parallelepiped.

Now suppose that Q has the strong local Lipschitz property. Let 6, M, Q,,
U;, and ¥ be as specified in Section 4.5. There exists a parallelepiped P of
diameter 6 whose dimensions depend only on 6 and M such that to each j
there corresponds a parallelepiped P; congruent to P and having one vertex
at the origin, such that for every x € ¥; n Q we have x+ P; < Q. Further-
more there exist constants 6, and 6, depending only on é and P, with §, < 9,
such that if x,ye ¥; " Q and |x—y|<d,, then there exists ze (x+P) N
(y+P) with |x—=z|+|y—z|<d,|x—y|. It follows from application of (28)
to x+ P; and y+ P; that if u € C*(Q), then

fux)—u(y)| < lu@x)=u(@)|+ [u(y)—u(2)|
< K5|x_Z|A"u"l,p.ﬂ + KSIy_zV"qu.p,ﬂ
< ZI—AK.‘)&IAIX—.VIA"u"l.p.ﬂ' (30)

Now let x,y € Q be arbitrary. If [x—y| <y <J and x,y € Q;, then x,y € ¥
for some j and estimate (30) holds. If {x—y| < dy, x € Q;, y € Q ~ Q;, then
x € ¥; for some j and (30) follows by application of (28) to x+ P; and y+ P;
again. If |[x—y| < d, and x,y € Q ~ Q;, then (30) follows from application of
(28)tox+ P’, y+ P’, where P’ is any parallelepiped congruent to P and having
one vertex at the origin. Finally, if {x— y|> &,, then we have

[u(x)=u(Y)| < luX)|+|u()| < Kgluly,p0 < K6661|x-y|1“u"l.p.ﬂ'
This completes the proof of (28) for u e C*(), and so by Theorem 3.16, for

all continuous u. ||

We have now completed the phof of all parts of the imbedding theorem |
5.4 except the trace imbeddings of Cases A and B (corresponding to k < n).
For the proof of these we will need the following interpolation resulit.
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5.18 LEMMA . Let Q be a cube 6f edgé length /, having edges parallel to
the coordinate axes in R™. If p> 1, ¢ > 1 and mp—p < n < mp, then there
CXIStS a constant K = K(p,q,m,n,l) such that for everyue W™ "(Q) we have
(a.e.in Q)

[u@)] < K|ul§,q,0luln o @31

where s = (mp—n)q/[np+ (mp—n)q].
Proor It is sufficient to establish (31) for u € C*(Q). Since each point of
is a corner point of a cube contained in 0, having edges parallel to those of Q,
and having edge length //2, we may assume without loss of generality that x is
itself a corner point of @, say Q = {y e R":x; <y, <x;+/5; 1 <i<n}.
By Lemma 5.17 we have for y € Q,
lu(x)‘ - Iu(y)' < |u(x)—u(y)| < Kl"x_ylm_(”/p) ”u”m pQ: (32)

Let U= |u|,, 5o, which we may assume to be positive; let p =|x— y| and
{ = [Ju(x)|/K, U*"P~"_ Suppose for the moment that { < /. We have for

p<{
lu(p)| = |u(x)| - K, Up™~ P > 0.

Raising the above inequality to the power ¢ and integrating y over Q, we
obtain

-

4
f lu(W)*dy = Kzf (lu(x)| = K, Up™~@ipyipn=1 gy
Q 0

1

= KZC"|u(x)]"f (1—o™ Py "~ do
0

= K3 lu(x)lqﬂnp/(mp-n))U‘NP/(Mp—n),

from which (31) follows at once.
If, on the other hand, { > /, then from (32) we obtain

()] = )] = Ky Up™ ) 2 Ju()] = (] (11"~

>0 if p<l.
If t > 0, then

[Lworray = ks [lucora—mr-emye=ido = Kylucor.

7/

Set ¢t = [(mp—n)q+np]/mp. Then

.lu(x)'[(mp—n)q+np]/mp < (1/K4)f'[Iu(y)lq](mp—n)/mp[Iu(y)l,,],./mpdy

< (1/Ky) flu Q(.':pn e 1] '(')/";», Qr
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by an apphcatxon of Holder’s mequahty Since |ulo, 5,0 < ||u||,,,, pas (1)
. follows at once. | o
We remark that the above lemma also holds for the case p=1,m=n.
In this case we have from Lemma 5.14 that W™ ! (Q) — L"’(Q) so that |u(x)l <
Klul,,i,q a.e. in Q, which is (31) in this case.

5.19 LEMMA Let Q be a domain in R"” having the cone property, and let
Q* denote the intersection of Q with some k-dimensional plane, where
1 <k<n@Q=Q).1fnz=mpand n—mp < k < n, then

wmr(Q) » LY (33)

for p<qg<kp/(n—mp) if n>mp, or for p<g<oo if n=mp. If p=1,
n>m and n—m < k < n, then (33) holds for 1 < g < k/(n—m).

The imbedding constants depend only on m, p, k, n, g, and the cone C
determining the cone property for Q.

Proor It is sufficient to establish the above conclusions for Q bounded,
n > mp, and g = kp/(n— mp), as extension to the other cases can be carried out
in the same manner as was described for the case & = n in Corollary 5.13 and
Lemma 5.14. We may also assume, as in Lemma 5.10, that Q is a union of
coordinate cubes of edge 2 units.

Let R, be a k-dimensional coordinate subspace of R” on which Q* has a
one-to-one projection Q,*. Suppose, for the moment, that p > 1. Let v be
the largest integer less than mp. Then mp—p < v < mp and since n—mp < k
we have n—v < k. (Note that if p =1, the same conclusion holds with
k=n—m,v=m) Let pu=(,*,) and let E; (1 <i<pu) denote the various
coordinate subspaces of R,* having dimension n—v. Let Q; denote the projec-
tion of Q,* (and hence of Q") onto E;. Also, for each x € Q; let Q; , denote the
intersection of Q with the v-dimensional plane through x perpendicular to
E;. Then Q; , contains a v-dimensional coordinate cube of unit edge with one
vertex at x. By Lemma 5.18, with ¢ = g, = ap/(n— mp), we have fqr ue C*(Q)

sup [u(p)| "7V < K Jullgree 90 m uln, q, - (34)
yeQ,x
Let dx’ and dx,’ denote the volume elements in £; and the orthogonal comple-
‘ment of E;, respectively. Integration of (34) over £, leads to ’

L sup |u(y)l(u v)pl(n M)dx

i y€ Ry,

‘ . mp—vymp .
< Klf f | ()| dxy! :
QL i - equation continues
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- . ) : v/mp
X U 5 |D“u(x)|’dx,..‘] dx’
Q, _

i, x laj<m -

| (m -v)im v/m, '
ce{ [} el

= Ky Jul o ime Ju) 2 (35)

m,p,Q
by Hélder’s inequality.

Finally, we apply Lemma 5.9 to the subspaces E; of Ry*. Note that the constant
4 of that lemma is here equal to (,*7!,). Letting dx® denote the volume
element in Ry* and setting ¢ = kp/(n—mp), we obtain

n

il g0 Ko [T sup lu(p)pax®

=1yei,x

1/4

<K, H [f sup |u(y)|*™ dx"] ’ (36)
i=1 Qi ye Qi

Since gi/u = (n—v)p/(n— mp), it follows from (35) and (36) and from Lemma

5.14 that

lullo, g, 0x < Ky H lulgera > e

< Ko [lul gl e Jull i, o1/ = Ko|ullm,p,0-

This establishes the desired imbedding. §

We have now completed the proof of Theorem 5.4.

Traces of Functions in W™ 7(Q)) on the Boundary of Q

5.20 Ofimportance in the study of boundary value problems for differential
operators defined on a domain Q is the determination of spaces of functions
defined on the boundary of Q containing the traces |y, q of functions u in
W™?(Q). For example, if W™?(Q)— C(Q), then clearly ulyq,yq belongs to
C(bdry Q). We outline below.an L*-imbedding theorem for such traces which
can be obtained as a corollary of Theorem 5.4.
The problem of characterizing the image of W™ ?(Q) under the operator
U= Ulpg,yq has been cxtensxvely studied by many authors. The solution,
which involves Sobolev spaces of fractional order m will be given in Chapter
VII (see in particular Theorem 7.53). The approach used in that chapter is
due to Lions [37, 38].
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521 Let Qbe a domain in R" having the uniform C™-regularity property.
Thus }here exists a locally finite open cover {U;} of bdry ©, and corresponding
m-smooth transformations ¥; mapping B = {yeR":|y|< 1} onto U; such °
that U; » bdryQ = Y¥,(By); Bo={yeB:y,=0}. If fis a function havmg
support in U;, , We may define the integral of f over bdryQ via

S(x)do = J

Uynbdry Q

Fx) do = f fowj(y',0)1,<y') dy’,

bdry Q

where y" = (y;, ..., ¥,-,) and if x = ¥;(), then

oY < a(xl,---’)?k""’x") 2
JJ(})— {2( a(yl”yn—l) >}

k=1

yn=0
If fis an arbitrary function defined on bdryQ, we may set
f(x)do =} S(x)v;(x) da,
bdry Q J Jedryq

where {¢;} is a partition of unity for bdry Q subordinate to {U;}.

522 THEOREM Let Q be a domain in R" having the uniform C™-
regularity property, and suppose there exists a simple (i, p)-extension operator
E for Q. If mp < n and p < g < (n—1)p/(n—mp), then

w™P(Q) - Li(bdryQ). (37)
If mp = n, then (37) holds for p < g < c0.

ProoF Imbedding (37) should be interpreted in the following sense: If
ue Wm™P(Q), then Eu has a trace on bdry Q in the sense described in the final
paragraph of Section 5.2, and || Eully, 4 parye < Kl|tt],. 5, o With K independent
of u. [ Note that since Cy(R") is dense in W™ P(Q), || Eul ., bary o is independent
of the particular extension operator E used.]

It is sufficient to prove the theorem for mp < n and ¢ = (n—1)p/(n—mp).
There exists a constant K, such that for every ue W™?(Q)

N Eulm, .0 < Kil|te]m, p.c2-

By the conditions of the uniform C™-regularity property (Secfion 4.6), there
exists a constant K, such that for each j and every y € B x= ¥;(»)e U;

’ 10 V)
IJ,'(y)Ius, and- J[a(x,,..,.,x',.)

Noting that 0 < v;(x) <1 on R’ and using imbedding (2) of Theorem 5.4

<K,
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applied over B, we have for u e W™?(Q), -

f |Eu(x)|%do < ) |Eu(x)|"do
bdry Q J JUnbdryQ

<K, ZJ: | Eue¥;|8, . 86

' q/p
< Ky z(usuo%na,,.y)

J

<K, (; |Eulz,,, )’
< K4R ”Eu”?n,p.lR"

< Ks|ullf, 5. a-

The second last inequality above makes use of the finite intersection property
possessed by the cover {U;}. The constant K, is independent of j since
|D*¥; ;(y)| < const for all i,j, where ¥; = (¥;y,...,'¥;,). This completes
the proof. |

Ww™?(Q) as a Banach Algebra

Given functions ¥ and v in W™?(Q), where Q is a domain.in R", one
cannot in general expect their pointwise product uv to belong to W™?(Q).
[(uv)(x) = u(x)v(x) a.e. in Q.] It is, however, a straightforward application
of the Sobolev imbedding theorem to show that this is the case provided
mp > n and Q has the cone property.

523 THEOREM Let Q be a domain in R” having the cone property. If
mp > n, then there exists a constant K* depending on m, p, n, and the finite
cone C determining the cone property for Q, such that for all u,v e W™?(Q)
the product uv, defined pointwise a.e. in Q, belongs to W™ ?(Q) and satisfies

"uU"m P < K*"u"m P, ﬂ“U“m P, . (38)

In particular, W™?(Q) is a commutative Banach algebra with respect to
pointwise multlphcatxon and the equivalent norm

"u"m.p,ﬂ = K*"u“m.l’.ﬂ'

PrOOF In order to esiablish (38)it is sufficient to show that ifvvlazl < m, then

f ID*[u(x) v ()] [P dx < K, Jul?, . o012, .00
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where K = K(m p,n,C). I.et us assume for the moment that ue C"°(Q) By
Leibniz’s rule for distributional denvatlves that is,

D*luv] = Z(;)D"ub’;”v,

Bsa

it is sufficient to show that for any f < «, |a| < m, we have
| 1D D20 s < Ky g bl a0l
Q

where K, ; = K, ;(m,p,n,C). By the imbedding theorem there exists, for
each f with |f|<m, a constant K(B) = K(B,m,p,n, C) such that for any
we Wm™P(Q)

fnlv"w(x)rdx < KB IWl .0 (39)

provided (m—|Bl)p <n and p<r<np/(n—(m—|B|)p) [or p<r<oo if
- |ﬁ')p = n]’ or

[ D'w(x)] < K(B) Wm0 2e inQ

provided (m —|S))p > n.
Let k be the largest integer such that (m— k) p > n. Since mp > n we have
that k > 0. If |B| < k, then (m—|B|)p > n, so

f | DPu(x) D=~ Ao ()P dx < K(BY [ul2, , ol D*~%0)5., o

< K(B)p ”u”m P, ﬂ” ”r’:l.p.ﬂ'
Similarly, if |« — | < k, then

fawﬂum D*Po(x)|Pdx < K(a— By Jul2,, alolZ., o

Now if |8| > k and |a— | > k, then, in fact, [|=k+1 and |a—B| = k+1
so that n > (m —|B|)p and n = (m — |a— B|) p. Moreover,

no(m—|Bhp n—(m=le—BDp _, Q@m—la)p
n o n B n

mp

<2-—<1.
n

Hence there exist posftive numbers r, r’ with (1/r)+(1/r') =1 such that- ,

‘ np , np
n—m—1fp’ TP S a—m—la=B)p’

p=<rp<



~ COUNTEREXAMPLES AND NONIMBEDDING THEOREMS : 117

A\
i

Thus by Holder’s mequahty and (39) we have
f |D”u(x)D""v(x)|”dx < [J. |D”u(x)|"’dx] [f |D"l ‘v(x)l"’dx]

< [KB)" [K@—B)Y" |uls, 5. a0l 5.0-

This completes the proof of (38) for ue C“’(Q), ve W™P(Q).

If ue W™?(Q), then by Theorem 3.16 there exists a sequence {u,} of
C*(Q) functions converging to u in W™?(Q). Then by the above argument
{u,v} is a Cauchy sequence in W™?(Q) so converges to an element w of that

space. Since mp > n, u and v may be assumed continuous and bounded on Q.
Thus

I

[w—uvllo, pa < [W—=ty0]0, p,0 + [ —w)0]0, p,a
< w=u,0l0,p,0 +0l0,0,0ll4—ulo,p.a
-0 as n— .

Hence w = uv in LP(Q) and so w = uv in the sense of distributions. Therefore
w=uvin W™?(Q) and

”uvlm.p o= “W“m.p,n < llm sup “u v“m,p, Ilullr';.p.ﬂllv|lm,p,ﬁ'

n=+o0

This completes the proof of the theorem. |

We remark that Banach algebra W™ ?(Q) has an identity if and only if Q
is bounded, that is, the function e(x) = 1 belongs to W™ ?(Q) if and only if
volQ < oo, but there are no unbounded domains with finite volume having
the cone property.

Counterexamples and Nonimbedding Theorems

5.24 Consideration of the statement of the Sobolev imbedding Theorem 5.4
may lead the reader to speculate on several directions of possible generaliza-
tion. Before exploring the possibility of proving imbedding theorems for -
domains not satisfying the conditions of Theorem 5.4, we first construct
examples showing that in certain respects that theorem gives “‘best possible”.
imbedding results for the domains considered, and indeed for-any domain.
Let Q be an arbitrary domiain in R" and assume, without loss of generality,
that the origin belongs to Q. Let R > 0 be such that the closed ball B,y is
contained in Q. (Here Bz = {xeR":|x|<R}.) In each of the following
examples we construct a function ue C®(B3p ~ {0}) depending only on
=|x]|. If fe C®(0, o) satisfies f(z) = 1 if t < R while f(r) = 0if t > 2R, then
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the function w defined by C
0 if p=|x 23R
SJu@) if 0<p<3R

has compact support in Q and belongs to W™?(Q) if and only if u e W™ P (Bg).

w(x) =

5.25 EXAMPLE Let k be an integer such that | < k < n and supposc that
mp <n and g > kp/(n—mp). We construct u so that ue W™P?(B;) but
u¢ L(BgY), where Bg* = {x € Bg:x;4, = --- = x,, = 0}. Hence no imbedding
of the type W™?(Q) —» L(Q") is possible if ¢ > kp/(n—mp).

Let u(x) = p*, where p =|x| and the exponent 2 will be specified below.
1t is readily checked by induction on || that

Dru(x) = Py (x)p*~ 2?0 (40)

where P, is a polynomial homogeneous of degree || in the components of x.
Hence | D*u(x)| < K, p* ~'*! and

R
f [D*u(x)|?dx < constJ~ pA-labptn=1 g,
Br . 0

Therefore u belongs to W™ ?(Bg) provided
A—m)p+n>0. 41)
On the other hand, if ¢ = (x;2+ -+ x,%)"/?, then

R
f [u(x)|9dx, - dx, = constf oMt "l dg
Brk

0
so that u ¢ LY(Bg) if
g+ k <O. (42)

Since g > kp/(n—mp), it is possible to select A to satisfy both (41) and (42)
as required. |}

- Since the function u constructed above is unbounded near 0, no imbedding
of the form W™?(Q) - Cz°(Q) is possible if mp < n.

526 EXAMPLE Suppose p > 1 and mp = n. We construct u € W™?(Bpg)
so that u¢ L®(Bg). Hence the imbeddings W™?(Q)— LY(Q), valid for
p<q<o if mp=n and Q has the cone property, cannot be extended to
~yield W™?(Q) - L*(Q) or W™?(Q) —~ C,,°(Q) unless p=1and n=m (see,
however, Theorem 8.25). e

Let u(x) = log(log4R/p), where p=|x|. Clearly u ¢ L>(Bg). Again it is
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easily checked by induction that

' : . N
DuG) = § Pus)p™Ios@RIAT, @)
where P, ;is a polynomxal homogeneous of degree |«| in the components of
x. Since p = n/m we have

12|
[Du(x)|? < ), K, ;p~ """ [log(4R/p)] 7",
i=1

so that

R

laj ,
|D*u(x)|Pdx < const ) | [log(4R/p)) Jop~lelwmen=1 45
Br ji=1

The right side of the above inequality is certainly finite if |a| < m. If |a|=m,
we have, setting o = log(4R/p),

|D"‘u(x)|”dx < const Z ¢ i?dg

i= log 4
which is finite since p > 1. Thus ue W™?(Bg). 1

1t is interesting that the function u above is independent of the choice of
m and p with mp = n.

5.27 EXAMPLE Suppose mp >n> (m—1)p, and let 1 > m—(n/p). We
construct u € W™P(Byg) such that u ¢ C%*(Bg). Hence no imbedding of the
form W™ ?(Q) —» C%*(Q) is possible if mp > n > (m—1)p and 1 > m—(n/p).

As in Example 5.25 we take u(x) = p" p=|x|. From (41) we have
ue W™P(Bg) provided p > m—(n/p). Now |u(x)—u(0)|/|x—0]* = p*~* so
that u ¢ C%*(Bg) when u < A. Thus « has the required properties if we choose
u to satisfy m—(nfp) <u< i 1

5.28 EXAMPLE Suppose (m—1)p=n and p>1. We construct ue
W™P(Bg) such that u ¢ C%'(By). Hence the imbedding W™?(Q) —» C**(@Q),
valid for 0 < A1 <1 whenever Q has the strong local’ LlpSChltZ property,
cannot be extendedto A=1 unlessp=1,m—1=n.
Let u(x) = p log(log 4R/p) where p = |x| Since
|u(x)—u(0)|/]x—0] = log(log 4R/p) » © as x —»0

it is clear that u ¢ C%*(Bp). Followi'ng (40) and (43) we have

el
Du(x) = Zl (%) p' "2 log (4R/p)]~/,
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where P,;isa p_olynomial homogeneous of degree |x|. Hence

« ,’l
DUl < ¥ K., 0% 0 [log(@RIp)] .
j=1
It then follows as in Example 5.26 that ue W™P?(Bg). |

5.29 The above examples show that even for very regular domains there can
exist no imbeddings of the types considered in Theorem 5.4, except those
explicitly stated there. It remains to be seen whether any imbeddings of these
types can exist for irregular domains not having the cone property. We shali
show that Theorem 5.4 can be extended, with weakened conclusions, to certain
types of such irregular domains, but we first show that no extension is possible
if the domain is “too irregular.”

An unbounded domain Q in R" may have a smooth boundary and still
fail to have the cone property if it becomes narrow at infinity, that is, if

lim dist(x, bdryQ) = 0.

Ix] =
xeQ

The following theorem shows that Parts I and II of Theorem 5.4 fail completely
for any such unbounded Q which has finite volume.

530 THEOREM Let Q be an unbounded domain in R” having finite
volume, and let ¢ > p. Then W™?(Q) is not imbedded in LY(£2).

ProoF We construct a function u(x), depending only on the distance
=|x| of x from the origin, whose growth as p increases is rapid enough to
preclude membership of 1 in L7(Q) but not so rapid as to prevent u € W™ P(Q).
Without loss of generality we assume volQ = 1. Let A(p) denote the
surface area [(#n— l)-measure] of the intersection of Q with the spherical
surface of radius r centered at the origin. Then

J;wA(p)dp =1

"Let £y = 0 and define r, forn=1,2,... by

f:A(p)d'p =12 = ﬁ:-.’“”) dp.

Clearly r, increases to infinity with »#. Let Ar, = r,, ,—r, and fix ¢ such that
0.< & < [1/(mp)]—[1/(mgq)]. There must exist an mcreasmg sequence {n;}5%,
such that Ar,, > 27, for otherwise Ar, <27* for all but possibly ﬁmtely
many values of n whence we would have Z o Ar, < 0, a contradiction. For
convenience we assume n; > 1 so that n; > j for all j. Let ag=04a; =71, .,
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and b; =r,,. Note that a;,_, < b; < a; and a;—b; —Ar,,,22""l
Let f be a nonnegative, mfhutely dlffercntlable functxon on R having the
" properties: :

() 0<f()<1forally,
@) f(O=0ifr<0,f(r)=1ifr>1,
Gii) |(d/dtyf ()| <M forall tif1 <k <m.

If x e Q and p =|x]|, set

2"1-1/41 for aj—l < p = b

Uux) =
( ) 2mi-1/9 4 (2n,/q onj- x/q)f< b) for bj <p < a;.

Clearly u € C*(Q). Denoting Q; = {x € Q:q;_; < p <a;}, we have

Lj|u(x)|"dx = {J:J_, +J:j}[u(x)]v,4(p) dp

<2 (7 Aty dp 4 2o [ dp
aj-1 : b;
= _}[2_”1—1(1'1’/1])_,_2""}(1_P/q)] < 2-U-DU-ple)

Since p < g the above inequality forces

f|u(x)|vdx= 3 f lu()|Pdt < oo.
o i=1 Ja,

Also, if 1 < k < m, we have

J‘ d*u
Q;

dp*

k

4 a, d u p
dx = — A(p) d
L P p)dp

< MP2Pl[q—b] 7 faJA (p) dp

b,

= '%Mpz-nj(l—p/q-rkp) < 1MP2€i,

where C = 1 —p/q—ekp > 0 since ¢ < [1/(mp)]—[1/(mq)]. Hence D*u € L (Q)
for |a| < m, that is, u e W™ ?(Q). However, u ¢ L"(Q) for we have for each j,

U@t dx > -+ f " A dp

aj-y

= 2’,,,_,[2—::;-,-.1_2—1-;—1] > %

Q

Therefore W™ ?(Q) cannot be imbedded in L*(Q). 1
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The conclusions of the above theorem can be extended (see Section 6.35)
to unbounded domains Q having infinite volume but satisfying
limsup vol{xe Q: N<|x]< N+1} = 0.

N-w

5.31 Parts I and 1I of Theorem 5.4 also fail completely for domains with
sufficiently sharp boundary cusps. If Q is a domain in R" and x, is a point on
the boundary of Q, let B, = B,(x,) denote the open ball of radius r about x,,
let Q, =B, nQ, let S,=(bdryB,) nQ, and let 4(r,Q) be the surface area
[(n—1)-measure] of S,. We shall say that Q has an exponential cusp at
X, € bdry Q if for every real number k, we have

lim 209 _ ¢ (44)

r=0+ r

5.32 THEOREM If Qis a domain in R" having an exponential cusp at the
point x, on bdryQ, and if g > p, then W™?(Q) is not imbedded in L1(Q).

ProOF We construct ¥ € W™?(Q)) which fails to belong to L(Q) because it
becomes unbounded too rapidly near xy. Without loss of generality we may
assume x, =0 so that r=|x|. Let Q* = {y=x/|x|*:xeQ,|x|<1}. It is
easily seen that Q* is unbounded and has finite volume, and that

A(r,Q*) = r*®=D4(1/r, Q).

Let £satisfy p < t < q. By Theorem 5.30 there exists a function i € C™(0, o0)
such that

i d(r)=0if0<r<li,

(ii) f [0 A(r, Q") dr < 0 if 0<j<m,
1

(iii) ﬁ 15 A, Q) dr = o

[If r=|yl|, then v(y)=(r) defines ve W™?(Q*) but v¢ LY(Q*).] Let
x=p/|p|* so that p=|x|=1/|y|=1/r. Set A=2n/q and define u(x)=
ii(p) = r'v(r) =|y|*v(y). It follows for |a| —j < m that

DU < TR S $ et 500,

where the coefficients [ depend only on A. Now u(x) Vamshes for |xl2 1
and so

f [u(x)|9dx = f |a(p)|2A4(p, Q) dp = f 15()|24 (r,Q*) dr =
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On the other hand, 1f0$|a| j<m, we have ) N
[[iucoras < [ rieac.o ap
Q 0

i fe )
< const Y. | [§O()|PrAtitOR-Ing(r Q¥ dr.  (45)
i=0 J1

If it happens that (A+42m)p < 2n, then, since p < t and vol Q* < o0, all the
integrals in (45) are finite by Holder’s inequality and so u € W™ ?(Q). Otherwise
let

k = [(A+2m)p — 2n][t/(t—p)] + 2n.

By (44) there exists a < 1 such that if p < a, then A(p,Q) < p*. It follows
that if r > 1/a, then

rk—ZnA(r’Q*) < rk—2pk — r—2.
Thus

J |ﬁ(i)(r)|pr(/1+j+i)p—2nA (r, Q*) dr
1

= f “ |50 ()PP 4 (r, Q%)
1

©° Pt © —-p)t
< { f [5D(r)|" 4 (r, Q%) dr} {f T4 (r, Q%) dr}
1 1

which is finite. Hence u e W™?(Q) and the proof is complete. |}

Imbedding Theorems for Domains with Cusps

5.33 Having proved that Theorem 5.4 fails completely for domains that are
sufficiently irregular we now show that certain imbeddings of the types con-
sidered in that theorem do hold for less irregular domains that however fail
to have the cone property. Questions of this sort have been considered by
several writers—see, for instance, the work of Globenko [26,27] and Maz’ja

[44,45]. The treatment given below follows that given in one of the author’s
papers [1].

"We consider domains = R” whose boundanes consist only of (n— 1)-
dimensional surfaces, and it is assumed that Q lies on only one side of its
boundary. Q is said to have a cusp at the point x, € bdryQ if no finite open
cone of positive volume contained in Q can have vertex at x,. The failure of a
domain Q to have any cusps does not, of course, imply that Q has the cone
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property. We consider, fof the moment a family of special domams that we
call standard cusps and that have cusps of power sharpness (less sharp than
exponential cusps).

534 If 1<k<n—1and A>1, let Q, ; denote the standard cusp in E,
specified by the inequalities

2 2 22
x 2P+ -+ xr<xfl, x%e0>0,...,x,>0,
(x12 4o+ xkz)“‘1 + x,f“ 4o x,,2 < a?, (46)

where a is the radius of the ball of unit volume in R". We note thata < 1, Q, ;
has axial plane spanned by the x,,,...,x, axes, and verticial plane (cusp
plane) spanned by x, . ,, ..., x,. If Kk = n— 1, the origin is the only vertex point
of @, ;. The outer boundary surface of @, , is taken to be of the form (46) in
order to simplify calculations. A sphere, or other suitable surface bounded
away from the origin, could be used instead.

Corresponding to the standard cusp Q, , we consider the associated
standard cone Q, = Q, ; specified in terms of Cartesian coordinates y;;, ..., ,
by

2

Y2+ +0E < Vi Vo1 > 0,..,0, >0,

ittt < dl

Figure 4 illustrates standard cusps and their associated standard cones in R?
and R*. In R? the cusp Q, , has a single cusp point at the origin, while Q, ,
has a cusp line along the x;-axis.

It is convenient to adopt generalized ‘‘cylindrical” coordinates
res @1 os P15 Vir 15 -5 Yy in Eysothat , 20, ~n< ¢, <7, 0< ¢y, ...,
¢y, <m, and

Y1 = rsing;sing, ---sing,_,,
Y2 = rycosd;sing, ---sing,_,,
Yy = r, COS ¢ - sing, _, 47)
Ve = © g cosgy_;.

In terms of these coordinates Q, is represented by
0SS <Verns Vw1 > 0,05, >0,
rE+yia t eyt <dk

The standard cusp Q, ; may be transformed into the associated cone @, by
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AN

Y T ’ A2
R2
9, 17 !
x, I
(a)
A*x; A7s
2,, Q, -
x; v
x, Y1
A X3 {\ V3
RS

Nl |

(by

Fi6. 4 Standard cusps and cones in (a) R? and (b) R3.
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" means of the one-to-one transformation
Xy = rtsing, sing, ---sing,_,

Xy = rltcosg,sing, ---sindy_,,

x3= - n’cosg,--sing,_,
A (48)
Xy = r cos dy _y,
X+t = Vr+ 1>
Xn = Vn»
which has Jacobian determinant
O(Xqs ees Xy)
T JrA- Dk 49)
a(yly--'yyn) g . (

We now state three theorems extending imbeddings of the types considered
in Theorem 5.4 (except trace imbeddings) to domains with boundary irregular-
ities comparable to standard cusps. The proof of these theorems will be given
later in this chapter.

5.35 THEOREM Let Q be a domain in R" having the following property:
There exists a family I of open subsets of Q such that

() Q=UgerG;

(i1) I has the finite intersection property, that is, there exists a positive
integer N such that any N+ 1 distinct sets in I have empty intersection;

(i) at most one set G € " has the cone property;

(iv) there exist positive constants v > mp—n and A4 such that for any
G eI” not having the cone property there exists a one to one function
mapping G onto a standard cusp @, ,, where (A—1)k < v and such that for
alli,j(1<i,j<n),allxeG,andall ye Q, ;,

-1
% <A and gu < A.
0x; 0y;
Then
< M - (50) .

wmEQ) - LMQ), p=<g< w——

[If v=nmp—n, (50) holdsforp<g<o (andg=ow if p=1). fv<mp—n,
(50) holds for p < ¢ < 0.]
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N . ’ T
/536 THEOREM. Let Q be a domain in R" having the following property:
There exist positive constants v < mp—n and A such that for each x € Q there -
exists an-open set G with x € G ='Q and a one-to-ore mapping ¥ of G onto a

 standard cusp Q; , with'(A— 1)k < v and such that for all i,/ (1 <i, j<n), all
xeG,and all ye @, ,, :

-1
6_11/1 <A and IM| < A.
ox; 9y
Then
wmr(Q) - Cg°(Q). (51)

More generally, if v < (m—j)p—n, where 0 < j < m— 1, then
- Wm™P(Q) - Cg'(Q).

537 THEOREM Let Q be a domain in R” with the following property:
There exist positive constants v, §, and A4 such that for each pair of points
x, y € Q with |x—y| < d there exists an open set G with x,ye G = Q, and a
one to one mapping ¥ of G onto some standard cusp @, , with (A1 —1)k <,
and such that for all /,j (1 <i,j<n),all xe G,and all ye @, ,

o, oW
ox; oy
Suppose that for some jwith0<j<m—1 we have (im—j—1)p<v+n<
(m—j)p. Then

wmr@) - @), 0<p<sm—j-[ntv)pl (52)

If (m—j—1)p = v+n, then (52) holds with 0 < u < I. In either event we have
wm e Q) - CHQ).

< A.

< A and l

5.33 REMARKS (!) The reader may wish to construct examples similar
to those of Sections 5.25-5.28 to show that the three theorems above give the
best possible imbeddings for the domains considered.

(2) The following example may help to illustrate Theorem 5.35: Let
Q= {(x;, X3, x3) € R3:x, >0, x,2 < x, <3x,2}. Setting a = (3/4n)'/3, the
radius of the ball of unit volume in R?, we may readily verify that the trans-
formation _

Y =X +2%2 y, = X3 P3=X3- (k/a), k=0,+1,+2,.

transforms a subdomam G, of Q onto the standard cusp Q; ,in the manner
required of the functions y in the statement of Theorem 5. 35. Moreover,
{G\} _ , has the finite intersection property and covers.Q up to a set with the
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cone property, Hence W™?(Q) — L? (ﬂ) for p<qg< 4p/(4 mp) if mp < 4
orforp<q<oolfmp 4, orp<q$oolfmp>4

Imbedding Inequalities Involvinngeighted Norms

5.39 The technique of mapping a standard cusp onto its associated standard
cone via (47) and (48) is central to the proof of Theorem 5.35. Such a trans-
formation introduces into any integrals involved a weight factor in the form
of the Jacobian determinant (49). Accordingly, we must obtain imbedding
inequalities for such standard cones, corresponding to LP-norms weighted by
powers of the distance from the axial plane of the cone. Such inequalities are
also useful in extending the imbedding theorem 5.4 to more general Sobolev
spaces involving weighted norms.

We begin with some one-dimensional inequalities for functions contin-
uously differentiable on a fixed open interval (0, T) in R. ‘

540 LEMMA If v>0 and ue C'(0,7T), and if |J|u'(r)]¢"dt < co, then
lim, o |u(®)|2* =0,

ProOOF Let £ > 0 be given and fix 5, 0 < s < T/2, small enough so that for
any £, 0 < 1 <s, we have

fs|u’(t)lr"a’1: < ¢/3.

Now there exists §, 0 < 6 < s, such that
T/2
Mu'(T/2)] < ¢/3 and (5/5)"f Ju'(x)| " de < /3.
If0 <t <0, we have
T/2
ol < )+ [ o) de

so that

s T/2
rlu()] < (5"|u(T/2)|+J~ |’ ()| e dr + (5/s)"f Ju'(@|"dt < &..
- t S
Hence lim,qo+tY]u(t)l=0. 1 ’
541 LEMMA Ifv>0,p>1,and ue C!(0,T), then

f ju(D)|Pr*~ 'dr < -———J. lu(0)|Pt* dt + = J. |u(t)|" ‘]u’(t)]t dr. (53)
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‘ PROOF We may assume wuhout loss of generallty that the right side of (53) ‘
is finite, and that p = 1. Integration by parts gives '

v= +1 : = - T v__!_ v+ d .
J; |u(t)|[vt . - ]dt J; [t 7! l]gilu(t)ldt’

Lemma 5.40 assures the vanishing of the integrated term at zero. Transposition
and estimation of the term on the right now yields

T vl [T T
vJ lw@)| e~ tdr < —f Iu(t)]t”dt-i—f lu'(¢)| " dt,
) T Jo 0
which is (53) forp=1. |

542 LEMMA Ifv>0, p>1, and ue C'(0,T), we have the following
pair of inequalities: )

2 T T
sup ) < 2 [ ol +p [ ol ol a, e

0<t<T

sup |u()|Pt* < %3 lu(e)|Pe? dl+2pfr|u(t)|"‘lIu’(t)|t'dt. (55)

0<i<T

PrOOF Again the inequalities need only be proved forp =1. If 0 < ¢ < T/2,
we obtain by integration by parts
t+ !
u ——7
2

T/2 T T T2
J; u<t+§—-r>dr=§|u(t)|—J; T

ol < 7 [ o)l do + [ w0 o

dt

whence

For T/2 <t < T the same inequality results from partial integration of
§&/? lu(t+1—T/2)| dv. This proves (54) for p = 1. Replacing u(r) by u(t)t’
in this inequality, we obtain

2 (T ' T
sup |u(n)]¢” < —J lu(e)| 2" dt +f Ll @) e +v|u@)] 1] dt
TJo )

0<t<T

2 T T , N
STL lu(@®)|¢ dt+.[) |w'()| ¢ dt

+v {% J;Tlu(t)] ?'dt + %J;Tlu’(t)l t"dt},

where (53) has been used to obtain the last inequali.ty. This is the desired
result (55)forp=1. |
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543 Now we turn to R, n = 2, If x € R, we shall make use of the spherical
polar coordmate representation

‘ X = (p:¢) (p5¢l""’¢n-l)a
where p30, —n< ¢, <7,0< ¢,,...,¢,_, <7, and

x, = psing, sing, ---sing,.,
X, = pcos¢,sing, esing,_y,

xs=  peosg,sind,.,
Xy = /)COS ¢n—l'
The volume element is
n—1
dx = dx,dx,--dx, = p" "' ] sin’~ ' ¢; dp d¢,
j=1

where d¢p = dp;---d¢,_,.
We define functions r, = r,(x) for | < k < n as follows:

n=1
ri(x) = plsing,| 1'[2 sin¢;,
i=

n—1
r(x) = p I1 sing;, k=23,..,n—1,
=k

r,,(.X) = p.
Forl <k < n—1, r(x)is the distance of x from the coordinate plane spanned
by the axes X, 4, ..., X,; r,(x) being just the distance of x from the origin. In

connection with the use of product symbols of the form P =TT}, P;, be it
agreed hereafter that P=1if m < k.
Let Q be an open, conical domain in R” specified by the inequalities

O0O<p<a, ~B, < ¢, < By, 0 < ¢; < B, j=23,..,n—-1,
(56)

where 0 < f; < n. [Inequalities “<” in (56), corresponding to any f; = =,
are replaced by ““ <.” If all §; = x, the first inequality is replaced by 0 < p < a.]
1t should be noted that any standard cone Q, (introduced in Section 5.34) is
of the form (56) for some choice of the parameters §;, | <i<n—1.

The following lemma generalizes Lemma 5.41 m a manner suitable for
our purposes.

544 LEMMA Let Q be specified by (56) and let p > 1. Suppose that either
m=k=1lor2<m<nand1 <k <n Suppose also that | —k <v, <v <
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v, <'oo. Then there exists a constant K= K(m,k,n,p,v,,v,,B,, G ﬂ,; 9]

independent of v and a, such that for every function u € C*(Q) we have

[ et a1

< Kfqll!(x)lp— '[(1/a)|u(x)| + |grad u(x)|] [r, (x)]" dx. 7)

ProorF Once again it is sufficient to establish (57) for p=1. Let Q, =
{x=(p,9)eQ:¢,20}, Q_={xeQ:¢,<0}. Then =0,V Q_. We
shall prove (57) only for @, (which, however, we continue to call Q); a similar
proof holds for Q_ so that (57) holds for the given Q. Accordingly, assume
0=0,.

For k < m we may write (57) in the form (taking p = 1)
k=1 m=1 n—1
lu| [T sin’~'¢; [] sin** = ¢, [] sin**/~2¢;p"* " 2dp d¢
Q j=2 i=k j=m

k-1 n—1
< K| [(1/a)|u}+|gradu|] [] sin/ "' ¢; [] sin**i~1 ¢, p**"~ 1 dp dgp.
Q ji=2 j=k
, (58)
For k > m > 2 we may write (57) in the form

m—1 k—1 n—1
f luf T] sin’~'@; T] sin’~2¢; [] sin**/"2¢; p**" "2 dp d¢
0 =2 i=m i=k

k-1 n—1
< K | [(1/a) ul + |graduf] [T sind =" ¢, [ sin™i~" ¢, p"**" ' dp d.
Q j=2 i=k
(59)

By virtue of the restrictions placed on v, m, and & in the statement of the
lemma, (58) and (59) are both special cases of

i-1 n—1
f ju] I sin* ¢, [] sin“s~"¢; p**" "2 dp d¢p
e j=t i=i
n-1
< K | [(1/a)|u]+|gradu|] [] sin®/ ¢, p**"~ ' dp d¢, (60)
0 j=1

where | <i<n,p;>0,and 0 < p;* < y;if j > i. We prove (60) by backwards
induction on i. For i = n, (60) is obtained by applying Lemma 5.41 to u con-
“sidered as a function of p on (0, a) and then integrating the remaining variables
with the appropriate weiglits. Assume, therefore, that (60) has been proved for..
i=k+1 where 1'< k < n—1. We prove it now holds for i = k.

If B, < =, we have
‘ sing, < ¢ < K;sing,, 0<¢<B, (61)
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where K, = K,(f,). By Lemma 5.41, and since

(0u/o9u] < plgradul T] sing,,

=k+
we have

B
[ o, o siner g, a,
%
sL u| =" dy
n-1

P
KZJ:) [|u|+|gradulp l:[ 5i“¢j:|¢fkd¢k
J=K+1

i n-—
K[! o+ lerada T
o j=K

A

IA

+

sin ¢ j:l sin*< ¢, do, . (62)
1

Note that K,, and hence K, depend on , but may be chosen independent of
M, and hence of v, under the conditions of the lemma. If f, = n, we obtain
(62) by writing [§ = [§/2+[7,, and using, in place of (61) ,the inequalities

sing, < ¢, < (n/2) sin ¢, if 0< ¢, < nf2

sing, < 1 — ¢, < (n/2) sin g, if n/2< ¢, <n.

(63)

We now have, using (62) and the induction hypothesis,
k-1 n-1
u| [T sin*i¢; [] sin* =" ¢, p**""2dp d
e =1 j=k

a k=1 f;
Sfp”"”zdpn sin“' ¢, do;
0 Jj=1J0
n—1 Bi | B .
X sm“"’¢jd</>jf |u] sin®~ 1 ¢, dop,
j=k+1Jo 0

n=1

< Ky | lgradu| [] sin*¢; p**" "' dp d¢
0 i=1

k n-t
+ KJJ |u| H sin ¢; H Sin"""'¢jp"+"_zdp do
: Q j=1

i=k+1
n—1 .
< K | [(1/a)|u}+ |grad u|] [] sin*¢; p** "~ dp d¢.
Q j=1
This éompletes the induction establishing (60) and hence the lemma. g |

In the following lemma we obtain an imbedding inequality similar to that
- of Lemma 5.10 for the domain Q and appropriately weighted L?-norms.
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545 LEMMA Let Q be as specified by (56) andletp=1Tand 1 <k <n.
‘Suppose that max (1 —k, p—n) < v, < v, < co. Then there exists a constant
K= K(k,n,p,v,,v5,B1s..:s Ba~1), independent of a, such that for every v
satisfying v, < v < v,, and every function u € C*(Q) n C(J) we have

1/q
{ fq |u<x)l*[_rk(x>]“dx}

1/p
< K{fa[(l/ap)l“(x)l"+|gfad“(x)|"][rk(x)]”dx} © (69
where ¢ = (v+n)p/(v+n—p).

ProoF Letd=(v+n—1)p/(v+n—p),s=v+n=1/v,s' =w+n—1)/(n—1).
We have by Holder’s inequality and Lemma 5.44 (the case m = k)

1/s 1/s'
[ ietncoras < { [ sl ™{ [ e vrpenas]
Q Q Qo

< K1{L[ul""[(l/a)luHIgraduf]rk“dx}”s

1/s
x {f ]ul"""‘”—”r:vl‘"_')dx} . (65)
Q

In order to estimate the last integral above we adopt the notation
=B am1)s O =0 b B bmn)s J= 12,001,
where the caret denotes omission of a component. Let
Q% = {p*: (p,pMeQ for0<p<a}
Qj* = {4’1* {p,p)e Q for 0 < ¢ < ﬁ,}

Qo and Q;* (1 <j < n—1) are domains in R"™'. We define functions F, and
F;on Q,* and Q;*, respectively, as follows:

[Eo(pNT™" = [Folserns o)1
sup [lul’p"*" ‘]H sin ¢,"Hlsm' L,

0<p<a

[F (p’ ¢l’ ¢p ¢n—l)]n__l

sup_ [julfsin"*/~!¢,3p"**"
°<¢J<ﬂ1

T x ]_[sm"qS,l_[ sin'~1¢; H sin'"2¢,.

i=j+1

~

i

[Fi(e*
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Tﬁen we have
) ‘ n—1 n—1
IuIM/(n— l)rz\'!(n-l)pn- 1 H si'ni— 1 ¢i < Fo(P*) H I:j(¢j*)
. i=2 =1
Applying the combinatorial Lemma 5.9, we obtain

Llul"‘/("‘l)r:\'/("")dx
n—1
< fQ Foto™) TL Fx@y") dp di

1/(n-1
< { fQ LRGN ‘d¢n [E ™ dp dqo,} TS

Now by Lemma 5.42, and since |du/dp| < |gradu|,

Qs

sup [uf'p"~ < Ky [ lul'™ [(1/a) ul+ lgradul " d,

O<p<a

where K, is independent of v for | —n < v; < v < v, < co. It follows that
[ Rt d8 < Ko [ LUl + leradul 1 d. 67

Similarly, by making use of inequality (61) or (63) as in Lemma 5.44, we obtain
from Lemma 5.42

sup |ul®sin"*i"1¢;
0<¢;<hj

ou
<Kz,f |ul®~ ‘[|u1+

0¢;
bi o1 = v j-1
< KMJ; ul [|u|+lgradu|pi=al31n¢i] sin*/ "1 ¢, do,

l] sin"* =1 ¢, d;

since |Ou/og;| < pT1i=}., sin¢;. Hence
[, R dp do,
Q,°
= Kl.]f |gréd u““la—lrkvdx + Kz,jf Iul"r,, l'].H dx
] (1)

< KMLqu"[(l/a)lu|+|gradu|]r,'dx (68)
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where\We have used Lemma 5.44 again to obtain ihe last inequality. Note that
the constants K, ; and K; ; can be chosen independent of v for the values of
v allowed. Substitution of (67) and (68) into (66) and then into (65) leads to

I |ulr,’ dx 4
e ' -

1/s+n/(n—1)s’
< K, J|u|""[(l/a)|u|+]gradu|]r,,"dx}
Q

\ (p—1)/p
< s
Q

1/pY(v+n)/(v+n—-1)
x {ZP'IJ [(1/a?) |u]? + Igradul"]rk”dx} } ’
Q
Since (v+n—1)/(v+n)—(p—1)/p = 1/q, inequality (64) follows by cancel-
lation for, since u is bounded on Q and v > 1 —n, [4|u|r,’ dx is finite. |

546 REMARKS (1) The assumption that u € C(Q) was made only to
ensure that the above cancellation was JUSt]ﬁCd In fact the lemma holds for
any ue C*(Q).

2) fl—-k<v,<v,<o0 and v, < v <v,, where v < p—n, then (64)
holds for any g satisfying 1 < g < co. 1t is sufficient to prove this for large g.
If g=@+n)/(v+n—1), then g = (v+n)s/(v+n—s) for some s satisfying
1 <s<p. Thus

{ L |ulr,” dx}w

< K f [(1/a*) Jul* +|grad ul']r, dx
Q

~

(p—=s)/p

s/ip
< K{Z""S”‘f [(1/a”)|u|? + |grad u|’]rk”dx} {f rk”dx} ,
e e

which yields (64) since the last factor on the right is finite.
' (3) If v = m, a positive integer, then (64) can be obtained very simply as
follows. Let y = (x,2) = (X1, ..., Xp, Z1, ..., 2,) denote a point in R**™ and
- define u*(y) = u(x) for xe Q. If '

= {yeR™":y=(x2),x€0,0<z; < r(x),1 sjsﬁi}, :
R J

then Q* has the ccgne property in R"*™ whence by Theorem 5.4 we have,
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‘putting g = (n-+m)p/(r+m—p),

{ [ = [ o} ™

1/p
< K{ fq @) ()P + |gradu* ()] dy}

1p
= K{f [(1/a")|u|"+|gradu|"]rk"'dx}
Q

since |grad u*(y)| = |grad u(x)), u* being independent of z.
(4) Suppose that u e C,™(R"), or, more generally, that

| et dx < oo

with v as in the above lemma. If we take f;=n,1 <i<n-—1, and let a » o0
in (64), we obtain

1/q 1/p
{f Iu(X)l”[rk(x)]"dx} < KU lgrad u(x)i”[rk(X)]'dX} .
RrR" Rn
This generalizes Sobolev’s inequality as given in Section 5.11.

We now generalize Lemma 5.15 to allow for weighted norms. It is con-
venient to deal here with arbitrary domains having the cone property, rather
than the special case Q considered above. The following elementary result
will be needed.

547 LEMMA Let z e R and let Q be a domain of finite volume in R*. If
0 <v <k, then

f |x—z] 7 dx < K(volQ)' Y/, (69)
Q
where the constant K depends on v and k& but not on z or Q.

PrROOF Let B be the ball in R* having center z and the same volume as Q. It
is readily verified that the left side of (69) does not exceed [z|x—=z| "dx.
But (69) clearly holds for Q= B. }'

548 LEMMA Let Q be a domain with the cone property in R". Let

I < k < nand let P be an (n—k)-dimensional plane in R". Denote by r(x) the
distance from x to P. If 0 < v < p—n, then for-all ue C1(Q) we have -

Suglu(x)| < K{J.ﬂ[lu(x)l”ﬂgfad u(X)l"][r(X)]VdX} ,,, - (70)
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where the constant K may depend on v,n,p, k and the cone.C determmmg the
' cone property for Q, but not on .. :

ProoF Throughout this proof A4; and K; will denote various.constants
depending on one or more of the parameters on which K is allowed to depend
in (70). 1t is sufficient to prove that if C is a finite cone contained in Q having
vertex at, say, the origin, then

’ - 1/p
()] < K{ f [lu(x)|"+|gradu<x)|"1[r(x)]"dx} : 1)

For 0 < j < n let 4; denote the supremum of the Lebesgue j-dimensional
measure of the projection of C onto R/, taken over all j-dimensional subspaces
R/ of R, Writing x = (x', x") where x' = (X, ..., X, ) @nd X" = (Xy—y 4 15 +1s Xp),
we may assume, without loss of generality, that P is orthogonal to the co-
ordinate axes corresponding to the components of x”. Define

S = {x eR"*:(x",x") € C for some x" € R},
R(x') = {x" e R*: (x', x") € C} foreach x’ € S.

For 0 <1< 1 we denote by C, the cone {tx:xe C} so that C,= C and
C, = Cif t = 1. For C, we define the quantities 4,.;, S, and R,(x") analogously
to the similar quantities defined above for C. Clearly 4, ; = t‘4;. If xe C,
we have

14
u(x) = u(0) +J; Zu(tx) dt,
so that
lu(0)] < Ju(x)]+ ]x|f1|grad u(tx)| de.
0

Setting V' = vol C and a = sup,.¢|x|, and integrating the above inequality
over C, we obtain

Viu(©)| < f [u(x)] dx + af fllgradu(tx)ldt
(o C JO

=J|u(x)];1x+aflt‘”dtf |grad u(x)| dx. (72)
C V] Ce

Let z denote the orthogonal projection of x onto P. Then r(x)=|x"—2z"|.
Since 0 < v < p—n we have p > 1, and so by Lemma 547

..[r(x)]—v/(P— l)dx = f dx' J‘ Ixn__znl ~v/(p=1) gyt
€. st JRx) _

< Kl [Az,k]! —vik(p— l)dx:
Se

S Kl[A"k]l—V/k(P—l)A,'n_k — Kztn_v/(p_”_
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Tt follows that

‘ f Igradd(x)ldx < {f |gradu(x)|’[r(x)]"dx}w
- JCe Ce

x { [ | [r(x)]'"’w-”dx}”"

1/
< K,t"“"*"”’{f |gradu(x)|"[r(x)]"dx} p. 73)
C
Hence, since v < p—n,
1 1/
f t‘”dtf lgradu(x)| dx < K4\U‘ |grad u(x)i”[r(x)]"clx} p. (74)
(1] Ce C

Similarly,

1/p 1/p
flu(x)ldx < U Iu(X)|"[r(x)]"dx} {f [r(x)]'”/(”‘”dx}
(o} C c

< Ks{ | |u<x)|’[r(x)]"dx}”". 75)
c ,
Inequality (71) now follows from (72), (74), and (75). |}

5.49 LEMMA Suppose all the conditions of Lemma 5.48 are satisfied and,
in addition, Q has the strong local Lipschitz property. Then for all u € C'(Q)
we have

B ip
lu—u)l K{ f [|u<x)|"+|gradu(x)|"][r(x)rdx} - (76)
x:‘y:ﬂ !x_ylll 2

where u = 1 —(v+n)/p satisfies 0 < u < 1 and K is independent of wu.

ProorF The proof is the same as that given for inequality (28) in Lemma 5.17,
except that the inequality

i/p
J‘ |grad u(z)|dz < K, t"“"*"”"{f lgrad u(z)|”[r(z)]”dz} )
Qe . Q
is used in (29) in place of the special case v = 0 actually used there. Inequality
(77) is obtained in the same way as (73) above. |
Proofs of Theorems 5.35-5.37

550 LEMMA Let #>0. If #>p—n, let 1<q<@F+n)p/(F+n—p);
“otherwise let 1 < ¢ < oo. There exists a constant K = K(n, p, ¥) such that for
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~ everystandard cusp domain Q4 » (see Section 5. 34) for which (,1 Dk=
V<9 and every ue C*(Qy, »), we have .

) “uuo,q.Qk,A. < K““"l,l.gk,," (78)

ProoF Since each Q, , has the segment property, it suffices to prove (78) for
ue C*(Q,,,)- We first do so for given k and A and then show that K may be
chosen so as to be independent of these parameters.
First suppose v > p—n. 1t is sufficient to prove (78) for
q = (V+n)/(V+n—p).

ForueC! (@:_:) define @ (y) = u(x), where y is related to x by (47) and (48).
Thus 7€ C'(Q) n C(Q,), where Q, is the standard cone associated with
O...- By Lemma 5.45, and since ¢ < (v+n)p/(v+n—p) we have

i/q
40,000, = {A [, |a<y>|q[rk<y)rdy}

1/q
sKl{L [lﬁ(y)l”+Igradﬂ(y)|"][rk(y)]"dy} . (9

Now x;=ri"'y; if 1<j<k; x;=yp; if k+1 <j<n. Since r?=
¥i2+ -4y we have

0x; Sri™t + A=Dri 7y y; if 1<i, j<k

B
Since r,(y) < 1 on @, it follows that

Oy otherwise.

lgrad #(y)| < K, |grad u(x)|.

Hence (78) follows from (79) in this case. For ¥ < p—n and arbitrary ¢ the
proof is similar, being based on Remark 5.46(2).

In order to show that the constant K in (78) can be chosen independent of
k and / provided v = (A— 1)k < ¥, we note that it is sufficient to prove that
there is a constant K such that for any such k, A and all ve C*(Q,) n C(Q))
we have

1/q
{ fq |v(y)|"[rk(y)]"dy}

. : 1/r
< K{L [Iv(y)l”+igradre(y)|"][rk(y)]'dy} . (80)

In fact, it is sufficient to establish (80) with K depending omk-as we can then
use the maximum of K (k) over the finitely many values of k allowed. We
distinguish three cases.
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‘Casgl ¥ <p—n i <g<oo. ByLemma 548 we have for0 <v <,

x EQk

Since the integral on the right decteases as v increases we have K (v) < K(¥)
and (80) now follows from (81) and the boundedness of Q, .

Casell v>p—n Again it is enough to deal with g = (V+n)p/(v+n—p).
From Lemma 5.45 we obtain

1/s 1/p
{ [ vady} sK,U [|v|"+lgradv\"]rudy} C®
Qx Ox

where s = (v+n)p/(v+n—p)>¢q and K, is independent of v for p—n <
vo < v < v. By Holder’s inequality, and since r,(») <1 on Q,, we have

1/q 1/s
{f |U|4’kvd}’} S{f Iv!‘r,“’a’y} [vol Q, ]G~ /s4
Qi Ok

so that if vy < v < ¥, then (80) follows from (82).

If p—n < 0, we can take vo = 0 and be done. Otherwise p > n > 2. Fixing
vo = (V—n+p)/2, we can find v, suchthat 0 <v, <p—n(orv,=0if p=n)
such that for v; < v < vy we have

(v+n)(+n)p < p

<tl= = )
v+n)F+n)+F—v)p = l+g

where g, > 0 and depends only on ¥, n, and p. Because of the latter inequality
we may also assume t—n < v,. Since (v+n)t/(v+n—1) = g we have, again by
Lemma 5.45 and Holder’s inequality,

1/q
|ol®r" dy
Qx

1/t
K, {f [lv)" +|grad v|] rk”dy}
Qs

IA

IA

. 1/p
2oy | o+ eral b} Tvol .10, @
Ox

where K, is independent of v for vi < v < v,.

In the case v, >0 we can obtain a similar (uniform) estimate for
0'< v < v, by the méthod of Case 1. Combining this with (82) and (83), we
/p'i'ove (80) for this case.

Case Il ¥=p-n,1<g<oo Fix s=>max(gn/(n—1)) and let r=
(v+n)s/(v+n+s) so that s = (v+n)t/(v+n—1t). Then | <t < ps/(p+s)<p

) ;- ’ . -)i/p
sup lv(x)ISK(V)U<2 [Iv(y)l’+Isradv(y)l”]['ra(y)]'dy} NIV

t
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for 0 < v < ¥. Hence we can select v, > 0 such that t—n < v, < p—n. The rest

of the proof issimilar to Case 11. This completes the proof. |}

5.51 ProoOF oF THEOREM 5.35 By the same argument used-in the proof of
Lemma 5.12 it is sufficient to consider here only the special casem = 1. Let ¢
satisfy p < g < (v+n)p/(v+n—p) if v+n>p, or p<g<oo otherwise.
Clearly g < np/(n—p) if n > p so in either ¢ase we have by Theorem 5.4

lullo,q.c < Kilully,pa
for every u € C'(Q) and that element G of " which has the cone property (if
such G exists.) If G € I' does not have the cone property, and if Y: G — Q, ;,
where (1—1)k < v, is the 1-smooth mapping specified in the statement of the
theorem, then by Theorem 3.35 and Lemma 5.50

lullo,q,6 < Ky luo '//-1”0‘1,,@(_,1 < Ksluo™,y o < Kalluly, pgs
where K, is independent of G. We have, therefore, noting that g/p > 1,

q/p
luld o< X lulld g6 < Ks 2 (thl’f,,,a)
Gel r

Ge

q/p
< Ks(czr"“"’f,p,o) < KsN%|[ul$,, a»

where we have used the finite intersection property of I' to obtain the final
inequality. Imbedding (50) now follows by completion. [If v < mp—n, we
require that (50) hold for ¢ = co. This is a consequence of Theorem 5.36
proved below.] |1

5,52 LEMMA Let0 <V < mp—n. There exists a constant K = K(m, p, n, V)
such that if @, , is any standard cusp domain for which (A-1)k = v < v and
if ue C™(Q,.,), then
Sgp lu(x)| < K”“”'";P-Qk./l' (84)

Proor 1t is sufficient to prove the lemma for the case m = |; the proof for
general m then follows by the same type of argument used in the last paragraph
of the proof of Lemma 5.15.

If ue C'(Qy.,), (A—1)k =v < ¥, we have by Lemma 5.48 and via the
method of the second paragraph of the proof of Lemma 5.50,

sup |u(x)| = sup |d(y)|

x€Qi, A yeQu

. . 1 )
<K, {L_‘[Iﬁ(y)l"+|gradﬁ(y)l”][rk(y)]Ydy} g

- ) 72
<K, {J; [lu(x)|? + |grad u(x)|"] dx} . (85)
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_ Since r,(y) <1 for y € Q, it is evident that K, and hence‘le, can be chosen
“independent of k,A provided 0 <v=(1-1)k <¥. |

5.53 Proor or THEOREM 5.36 It is sufficient to prove (51). Let ue C™(Q).
If x € Q, then x € G = Q for some domain G for which there exists a 1-smooth
transformation Y:G - Q, ;, A—1)k < v, as specnﬁed in the statement of the -
theorem. Thus

[u(x)| < supju(x)| = sup |ucy™'(y)

x€G yeQi,a

< Kl ”“ ° lp_l”m.p,Qk_A < K2 ”u“m.p,G
< K |ullm, p, (86)

where K; and K, are independent of G. The rest of the proof is similar to the
first paragraph of the proof of Lemma 5.15. ||

5.54 Proor oF THEOREM 5.37 Asin Lemma 5.17 it is sufficient to prove that
(52) holds when j = 0 and m =1, that is, that

lu(x)—u()|

S egp = Kl «
xty

holds when v+n<p and O < u < 1 —(v+n)/p. For x,y e Q,|x—y|> 9, (87)
holds by virtue of (86). If |x— y| <, there exists G with x,ye G = Q, and a
l-smooth transformation ¢ from G onto a standard cusp Q, , with
(A— 1)k < v, satisfying the conditions of the theorem. Inequality (87) can then
be derived from Lemma 5.49 by the same method used in the proof of Lemma
5.52. The details are left to the reader. |



VI

Compact Imbeddings of W™ ?(L2)

The Rellich-Kondrachov Theorem

6.1 Let Q be a domain in R" and let Q, be a subdomain of Q.- Let X(Q)
denote any of the possible target spaces for imbeddings of W™ ?(Q), that is,
X(Q) is a space of the form Cp/(Q), C/*(Q), LY(Q¥), or W/ 4(Q"), where Q*,
1 < k < n, is the intersection of Q with a k-dimensional plane in R". Since the
linear restriction operator iq,: ¥ — u|g, is bounded from X(Q) into X(Q)
[in fact i, u; X(Q)|| < |u; X(Q)}|] any imbedding of the form

wm™P(Q) - X(Q) (0
can be composed with this restriction to yield the imbedding
Wm™P(Q) - X(Qp) )

-and (2) has imbedding constant no larger than (1).

If Q satisfies the hypotheses of the Sobolov imbedding Theorem 5.4 and
if Qq is bounded, then, with the exception of certain extreme cases, all imbed-
dings (2) (corresponding to imbeddings asserted in Theorem 5.4) are compact.
The most important of these compact imbedding results originated in a
lemma of Rellich [57] and was proved specifically for Sobolev spaces by -
Kondrachov {33]. Such compact imbeddings have many important applica-
tions in analysis, especially to showing the discreteéness of the spectra of linear
elliptic partial differential operators defined over bounded domains.
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We summarize the various compact imbeddings of W”' P (Q) inthe followm g
theorem : . / '

~

'/ 6.2 THEOREM (The Rellich-Kondrachov theorem) Let Q be a domain
in R", Q, a bounded subdomain of Q, and Q,* the intersection of Q, with a
k-dimensional plane in R". Let j, m be integers, j > 0,m > 1,and let 1 < p < c0.

PART I [If Q has the cone property and mp < n, then the following imbed-
dings are compact:
witmrQ) - Wie(Qy if 0O<n—mp<k<n and
1 < g < kp/(n—mp), (3)
Wwitme Q) - Wi Q)  if n=mp,” | <k<n and
1 <g< o0 4)
PART II If Q has the cone property and mp > n, then the following
imbeddings are compact:
witmr Q) —» C5' (Q), &)
witmerQ) - Wii(Qgh) if 1<gq< 0. 6)

PART III If Q has the strong local Lipschitz property, then the following
imbeddings are compact:

Witmp(Q) —» CI(@Q,) it mp > n, (M
witmr(Q) » CH4(Qy)  if mp >n=(m—=1)p and
0 < i< m—(nfp). ®)

PART IV If Q is an arbitrary domain in R", all imbeddings (3)-(8) are
compact provided W/*™?(Q) is replaced by W{*™?(Q).

6.3 REMARKS (1) If X, Y, and Z are spaces for which we_have the im-
beddings X = Y and Y — Z and if one of these imbeddings is compact, then
the composite imbedding X — Z is compact. Thus, fonf example, if Y- Z is
compact, then any sequence {#;} bounded in X will be bounded in ¥ and
therefore have a subsequence {1;'} convergent in Z: N

Since the extension operator u — & where i (x) = u(x) 1f X€Q, u(x)
if x ¢ Q defines an imbedding W{*™ P(Q) - W/*m™P(R") by Lemma 3. 22
Part 1V of Theorem 6.2 follows from the application of Parts I-11I to R".
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(2) In proving the compactness of any of the imbeddings (3)~(8) it is
sufficient to consider only the case j = 0. Suppose, for example, that (3) has-
been proven compact if j=0. For j>1 and {4} a bounded sequence in
Wwitmp(Q) it is clear that {D%;} is bounded in W™?(Q) for each a such that -
|a] < j. Hence {D°u;} is precompact in L7(Q,*) with ¢ specified as in (3). It is
possible, therefore, to select (by finite induction) a subsequence {«;'} of {4} for
which {D*;'} converges in L7(Qg*) for each « such that |«|<j. Thus {1}
converges in W4 1(Q,*) and (3) is compact.

(3) Since Q, is bounded, Cz°(Q,) - L1(Q,") for | < g < c0; in fact,
lullo. 4. a0x < ll#5 C5° Q") [vol, 26*]"/%. Thus the compactness of (6) (for
j=0) follows from that of (5).

{4) For the purpose of proving Theorem 6.2 the bounded subdomain Q,
of Q may always be assumed to have the cone property if Q does. If Cis a
finite cone determining the cone property for Q, let  be the union of all
finite cones congruent to C, contained in Q and having nonempty intersection
with Q,. Then Q, = = Q and Q is bounded and has the cone property. If
W™ P(Q) - X(Q) is compact, then so is W™?(Q) — X(Q,) by restriction.

Note that if Q is bounded, we may have Q; = Q in the statement of the
theorem.

6.4 PROOF OF THEOREM 6.2, PART III If mp>nz=(m—1)p and 0 < <
(m—n)/p, then there exists g such that 1 < u < m—(n/p). Since €, is bounded,
the imbedding C%#(Q,) —» C**(Q,) is compact by Theotem 1.31. Since
WmP(Q)— CO*(Q) » C%*(Q,) by Theorem 5.4 and restriction, imbedding
(8) is compact for j = 0 by Remark 6.3(1).

If mp > n, let j* be the nonnegative integer satisfying (m—;*)p >n>
(m—j*—1)p. Then we have the imbedding chain '

Wmr(Q) - W (Q) - CO*(Qp) = C(€) 9

where 0 < u < m—j*—(n/p). The last imbedding in (9) is compact by Theorem
1.31. Thus (7) is compact for j=0. |

6.5 PROOF OF THEOREM 6.2, PART Il  As noted in Remark 6.3(4), Q, may be
assumed to have the cone property. Since Q, is also bounded it can, by
Theorem 4.8, be written as a finite union, Q, = |}, Q,, wheré¢ each Q, has
the strong-local Lipschitz property. If mp > n, then W™?(Q) - W™?(Q,) -
C(Q,), the latter imbedding being compact as proved above. If {u;} is a
~ sequence bounded in W™?(Q), we may select (by finite induction on k) a
subsequence {u;'} whose restriction to Q, converges in C(Q,) for each k,
1 < k < M. But then {u;'} converges in Cz°(€,) proving that (5) is compact
for j = 0. Therefore (6) is also compact by Remark 6.3(3). i ’
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. 6.6 LEMMA Let Q be a domain in R", Q, a subdomain of Q, and Q% the
. intersection of Q, with a k-dimensional plane in R" (1 s k<n). Let
1< ql < qo and suppose .

WmP(Q) - LOQgY, (10)
w™P(@Q) - L (Qo"). (1)

Suppose also that (11) is compact. If g, < g < g, then the imbedding
WmPQ) » L(Q") (12)

(exists and) is compact.

Proor Let 1 =q(9o—9)/9(q0—q,) and p=qo(9—q,)/q(9o—q,). Clearly
2 > 0and p > 0. By Holder’s inequality and (10) there exists a constant K such
that for all ue W™?(Q),
lelo,q, 000 < Hull5. g, o 14115, 4o, 0%

< K||ulls,q,, oo 4, 5, 0 (13)
Let {u;} be a sequence bounded in W™ ?(Q). Since (11) is compact there exists
a subsequence {u;'} that converges, and is therefore a Cauchy sequence in
L (Q4"). By (13), {u;'} is a Cauchy sequence in LY(Q,*) as well. Hence (12) is
compact. |

6.7 PRrOOF OF THEOREM 6.2, PART I First we deal with the case j =0 of
imbeddings (3). Assume, for the moment, that k = » and let q, = np/(n— mp).
In order to prove that the imbeddings

WmPQ) - LYQo), | <g <4o (14)

are compact it suffices, by Lemma 6.6, to do so only for ¢ =1. For
Jj=12.3,... let

Q; = {x e Q,: dist(x, bdryQ) > 2/j}.

Let S be a set of functions bounded in W™?(Q). We show that S (when
restricted to Q) is precompact in L'(Q,) by showing that S satisfies the
conditions of Theorem 2.21. Accordingly, let ¢ > 0 be given and for each
ue W™r(Q) set

_()_{u(x) if ero.

otherwise.

By Hélder’s inequality and sinpg W™ P(Q) - L1(Qy), we have

o : /g0 1-1/g0
f lu(x)|dx < {f lu(x)|% dx} {f 1 dx}
o~y Qo~1y Qo~ Sy

< Ky [|t]lm, p,alvol (@ ~ ;)] /%0,
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 with K 1 independent of u. Smce Q, has finite volume, _1 may be selected large
~ enough to ensure that for every u € S, '

j lu(x){dx <g
o~y )
and also, for every h € R",
f it (x+h) — 4 (x)| dx < &f2. (15)
Qo~Q;

Now if |h} < 1/j, then x+th e Q,; provided xe Q;and 0 < ¢t < 1. Ifu e C*(Q),
it follows that

fﬂj]u(x-l»h)— u(x)ldx < L de:

1
< IhIJ; dtJ‘n |grad u(y)| dy
2j

< Aluls a0 < Kz lhllulm, 5,00 (16)

where K, is independent of u. Since C*(Q) is dense in W™ ?(Q), (l6j holds for
anyue W™r(Q). Hence if |A| is sufficiently small, we have from (15) and (16)
that

d
E;u(x+th) dt

f f{d(x+h)—i(x)] < e
2

Hence S is precompact in L' (Q,) by Theorem 2.21, and imbeddings (14) are
compact.

Next suppose kK <n but p>1. Let r be chosen so that 1 <r < p and
n—mr < k. Let v be the largest integer less than mr; let s = kr/(n—mr), and
let ¢ = nr/(n—mr). Assuming, as we may, that Q, has the cone property we
obtain from inequalities (35) and (36) in the proof of Lemma 5.19,

lullo, 1,000 < Ksllulo, 500 -
< K4 "uHO q, Qo "u"m r, Qo 3
< KS u“”o.q,no"“"m P, v (17)

where A = n(mr—v)/mr(n—v) satisfies 0 < 1 < 1, and where K, K, and K
are independent of u. Note that 1 < g < g,. If {1} is a sequence bounded in
W™?(Q), we have shown that it must have a subsequence {1’} which con-
verges in L(Q,). From (17), {»;} must be a Cauchy sequence in L' (Q,") so
that W™?(Q) - L' (Q,") is compact. By Lemma 6.6 so are the 1mbcddmgs
“WmP(Q) - LYY for 1 < g < kp/(n—mp).
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. Finally, suppose p=1 and 0 < n—m < k <. Then clearly n—m+1 <
k <n so that 2 <m <n. By Theorem 5.4, W™ (Q) - W™ 1" (Q) where
r=nf(n-1)>1. Also, k=n=(m—1)>n—~(@m—1)r so the imbedding
Wwm=11(Q) - L' (Q,*) is compact as proved above. This is sufficient to com-
plete the proof of the compactness of (3).

To show that (4) is compact we proceed as follows. If n = mp, p > 1, and
1 <qg<oo, we may select r such that | <r<p, k>n—mr>0, and
kr/(n—mr) > ¢q. Assuming again that Q, has the cone property, we have

TWmQ) - WM(Q) - LY(QY). (18)

The latter imbedding in (18) is compact by (3). If p =1 and n = m > 2, then,
setting r = n/(n—1) > 1 so that n = (n—1)r, we have for | < ¢ < 0,

\W”’I(Q)—’ Wn—l,r(Q)_)Lq(on)’

the latter imbedding being compact as proved in (18). Finally, if n —m= p=1,
then of necessity k = 1. Letting g, > | be arbitrary chosen, we prove the com-
pactness of W' 1(Q) - L' () exactly as in the case k = n of (3) considered
above. Since W!''(Q)— L1(Q,) for | < g < oo all these imbeddings are
compact by Lemma 6.6. ||

6.8 The reader may find it instructive to carry out the obvious gencralization
of Theorem 6.2 to the imbeddings supplied by Theorems 5.35-5.37.

Two Counterexamples

6.9 Two obvious questions arise from consideration of the statement of the
Rellich-Kondrachov Theorem 6.2. First, can that theorem be extended to
cover unbounded Q,? Second, can the “‘extreme cases”

Witmpr Q) » Wi9(Qyh, O<n—mp<k<n,

q = kp/(n—mp) (19
and
witme(Q) —» CH4(Qy), mp >n> (m—1)p,.

A= m—(n/p) . (20)
ever be compact?
The first of these questions will be mvestlgated later in this chapter For
the moment we show that, at least for k = n, the answer is certainly *
unless Q, is quasibounded, that is, unless

lim dist(x, bdryQ,) = 0.
xe o

Jx}— 0
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610 EXAMPLE Let Q be an unbounded domain in R" which is not
quasibounded. Then there exists a séquence {B;} of mutually disjoint open
balls contained in Q and all having the same-positive radius. Let ¢, € Co*(B,)
and suppose | @, |l;, .5, = 4, , > 0 for each k =0,1,2,... and p > 1. Let ¢,
be a translate of ¢, having support in B;. Then clearly {¢,} is a bounded
sequence in WJ*™?(Q) for any fixed j, m, p. But for any g,

”¢i_¢k"j.q.ﬂ = ["d’i"‘,".q,ni+"¢k"?,q.nk]”" = zl/qu,q >0

so that {¢;} cannot have a subsequence converging in W#%(Q). Thus no
imbedding of the form W{*"™?(Q) - W/9(Q) can be compact. The non-
compactness of the other imbeddings of Theorem 6.2 is proved similarly. J

We now show that the second question raised in Section 6.9 always has a
negative answer.

6.11 EXAMPLE Let Q be any domain in R"” and Q, any bounded sub-
domain of Q. Let Q,* be the intersection of Q, with a k-dimensional plane in
R", say (without loss of generality) the plane spanned by the x,...,x, co-
ordinate axes. Let {a,,a,,...} be a sequence of distinct points in Q*, and
{r1,72, ...} a sequence of numbers such that 0 <r; <1, such that B, (a) =
{xeR":{x—a;<r} < Q, and such that all the balls B, (a;) are mutually
disjoint.

Let ¢ € Cy™(B,(0)) satisfy the following conditions:

(i) For each nonnegative .integer h, each real ¢ > 1, and each k,
1 <k <n, we have

|¢lh,q. RE = ‘d’lh,q,w‘ﬁﬂx(o)
1/q9

= ];—h ”Dz(b"%,q.R“ABI(O) = Ah,q,k > 0'
B+ 1= =an=0
(ii) Thereexistsa € B,(0), a # 0, such that for each nonnegative integer 4,
|D,*¢(a)| = B, > 0. 21

Fix p > 1 and integers j > 0 and m > 1. For each i let
$i(x) = riTm PG ((x—a))ry).
Then clearly ¢; € Co®(B,,(a;)) and a simple computation shows that
| NDilh, g e = rfFmTrETI AL, - (22)
If h < j+m, it follows from (22) and r; <1 that

|¢i|h,p,m < Appon
so {¢;} is a bounded sequence in W/*™?(Q).
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Suppose mp < n and‘nsm‘p < k < n. Taking q = kp/(n—mp), we obtain
from (22) ' .
@ill), g 00 = @il g0 = 4, g,

Since the functions ¢; have disjoint supports, we have

“¢i—¢h"j,q,no" = zl/qu.q.k >0

and so no subsequence of {¢;} can converge in W/ 9(Q,*). Thus imbedding
(19) cannot be compact.

On the other hand, suppose mp >n > (m—1)p and let 2 = m—(n/p).
Letting b; = a;+r;a, we obtain from (21)

[Dy?¢:ib)| = r"~"P|DJp(a)| = ’ABJ > 0.

Let ¢; = a;+ar;/|a| so that ¢;e bdry B, (a;) and |b;—c;|= (1 —|a|)r;. Again
since ¢; have disjoint supports,

(b= s CH @)] = max sup 2 G~ A0) = D(6u(») = u ()

lal = j x,ye o |x—.)’|l
X#Ey
> |D1j¢i(bi)—D1j¢h(bi)—Dlj¢i(ci)+D1j¢h(ci)|
|bi"Ci|A
B;
= >0
(1 —lap*

Thus no subsequence of {¢;} can converge in C¥*(£,) and imbedding (20)
cannot be compact. |

Unbounded Domains—Compact Imbeddings of W 3" ?(Q)
6.12 Let Q be an unbounded domain in R”. We shall be concerned below
with determining whether the imbedding
Wehr () — LP(Q) (23)

is compact. If (23) is compact, it will follow as in Remark 6.3(2) and the
second paragraph of Section 6.7 that the imbeddings

W@ - WY,  O<n—mp<ks<n p<q<kp/(n—mp),
and ‘ )
WitmP(@Q) » WiiQY),  n=mp, 1 <k<n p<qg<wm

are also compact.
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. AsL was shown in Example 6.10, imbedding (23) cannot be compact unless
Q is quasibounded. In Theorem 6.13 we give a geometric condition on Q that
is sufficient to guarantee the compactness of (23), and in Theorem 6.16 we
give an analytic condition that is necessary and sufficient for the compactness
of (23). Both theorems are from the work of Adams [2]. ,

* Let Q, denote the set {x € Q:|x|>r}. Be it agreed that in the following
discussion any cube H referred to will have its faces parallel to the coordinate
planes.

6.13 THEOREM Let v be an integer such that | <v <#n and mp > v (or
p=m=v=1). Suppose that for every ¢ > 0 there exist numbers s and r
with 0 < /1 < 1 and r > 0 such that for every cube H = R” having edge length /4
and having nonempty intersection with Q, we have

-y (H, Q)R ™" 2 RP[e,

where y,_,(H, Q) is the maximum, taken over all projections P onto (n-v)-
dimensional faces of H, of the area [that is, (n— v)-measure] of P(H ~ Q).
Then imbedding (23) is compact.

6.14 The above theorem shows that for given quasibounded Q the com-
pactness of (23) may depend in an essential way on the dimension of bdry Q.
Let us consider the two extreme cases v = 1 and v = n. For v = n the condition
of the theorem places on Q only the minimal restriction of quasiboundedness.
Thus if mp > n, then (23) is compact for any quasibounded Q. It can also be
shown that if p > 1 and Q is quasibounded and has boundary consisting
entirely of isolated points with no finite accumulation point, then (23) cannot
be compact unless mp > n.

If v =1, the conditions of Theorem 6.13 make no requirement of m and p
but do require that bdryQ be *‘essentially (n— 1) dimensional.”” Any quasi-
bounded domain whose boundary consists of reasonably regular (n—1)-
dimensional surfaces will satisfy these conditions. An example of such a
domain is the *“spiny urchin” (Fig. 5), adomain in R? obtained by deleting from
the plane the union of all the sets S, (k = 1, 2, ...) specified in polar coordinates
by

S.={(r0):r=k,0=nn/2",n=1,2,..,2""}.
Note that this domain, though quasibounded, is simply connected and has

-empty exterior.

More generally, if v is the largest integer less than mp the conditions of
Theorem 6.13 require that in a certain sense the part of the boundary of Q
having dimension at least n— v should bound a quasibounded domain.
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FIG. 5 A “spiny urchin.”

6.15 Let H be a cube of side #in R” and F a closed subset of H. Given m and
p we define a functional I}}*? on C*(H) by

mrw= Y K, ,= Y h'“"JID“u(x)]"dx.
H

1sj<m t<jalsm

We denote by C™?(H, E) the *‘(m, p)-capacity” of E in H defined by

C™P(H,E) = inf 1,,_"(;4)

wecou, by U8 5 1

where C*(H, E) is the set of all functions u € C®(H) that vanish identically

in a neighborhood of E. Clearly C™P(H,E)< C™*V?(H, E) and for

Ec Fc H C™P°(H,E)<C™P(H,F). Theorem 6.13 will be deduced from

the following theorem characterizing in terms of the above capacity those
domains for which (23) is compact.

*

6.16 THEOREM Imbedding (23) is compact if and only if Q satisfies the
following condition: For every ¢ > 0 there exists # < | and r > 0 such that the
inequality
o C™?(H,H ~ Q) > h/e
- holds for every n-cube H having edge length 4 and having nonempty inter-
~ section with ©,. (This condition clearly implies that Q is quasibounded.)

6.17 LEMMA There exists a constant K= K(n,p) such that for any
n-cube H of edge length A, any measurable subset 4 of H with positive volume,
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" and any ue C'(H), we have ; - c
2271 e »
Teld o <~ ||u||0',A+K lAugmd,,uo . @)

PROOF Let ye A and x = (p, ) € H, where (p, ) are spherical polar co-
ordinates centered at y, in terms of which the volume element is given by
dx = w(p)p"~'dp dp. Let bdry H be specified by p = f(¢), ¢ € E. Clearly
f(@) < /nh. Since

rd
u) = u) + [ Su. ) an
[\) dr
we have by Holder’s inequality,

f lu(x)|?dx
H

p
< 2”"|u(y)|”h"+2""f lfpiu(r,¢)dr dx
H|Jo dl'

<27 u(y)|P + 207 f“’((#) d¢ fﬂmﬂ"""dp fplgrad u(r, $)|* dr

— Wmypro- [ lEnduOl

lz—y|*?

Integration of y over A using Lemma 5.47 leads to

<2 ‘h"lu(y)l”+

(vol Al < 27 |ulB, 4 + KIr"*"J |grad u(x)|? dx
H
from which (24) follows at once. ||

6.18 PROOF OF THEOREM 6.16 (Necessity) Suppose Q does not satisfy the
condition stated in the theorem. Then there exists a finite constant K, = 1/e
such that for every h with 0 < /& < | there exists a sequence {H;} of mutually
disjoint cubes of edge length /1 which intersect Q and for which

Cm'p(Hj, HJ ~Q) < thp

By the definition of capacity, for each such cube H; there exists a function
ujeC (H;, H; ~ Q) such that |u ||o ot = ||gradu 18,50, < Ky ", and
- Nuh, pn, S K2 (h). Let A; = {x e H;:|u;(x)] < 4}. By Lemma 6.17 we have

. 27" vold; KK,
"< .
vol 4; 2° vol A4;

h2n+p
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from which it follows that vol4; < K3h**?. Let us choose h so small that
K3 h* < 4, whence vol 4; < § vol H;. Choose functions w; € Co™(H)) such that
w;(x) =1 on a subset S; of H; having volume no less than % vol H;, and.
such that ' ‘
sup max sup |[D*w;(x)| = K, < co.
Jj lalsm xeH;
Then v; = uyw; € Co®(H;nQ) = Co®(Q) and |v;(x)| =4 on S; N (H; ~ 4)),a
set of volume not less than #"/3. Hence ||v;[|§ , ,s, = A"/3-2”. On the other hand,

f | D°u; (x)|? - | DPw;(x)|P dx < K"K, (h)
Hy

provided |a|, || < m. Hence {v;} is a bounded sequence in Wg"?(Q). Since
the functions v; have disjoint supports, [[v;— v, || , o = 24"/3-2” so imbedding
(23) cannot be compact.

(Sufficiency) Now suppose Q satisfies the condition in the statement of
the theorem. Let £ > 0 be given and choose r > 0 and /# < 1 such that for every
cube H of edge s meeting Q, we have C™P(H, H ~ Q) > hP/e?. Then for
every u € Cy®(QQ) we obtain

lull8, p,u < (EP/HP) L5 2 (u) < &P |ullE, . u-

'Since a neighborhood of Q, can be tesselated by such cubes H we have
by summation

"“"o,y.n, <e “u"m.p.ﬂ'

That any bounded S in Wj"”?(Q) is precompact in L?(Q) now follows at once
from Theorems 2.22 and 6.2. |

6.19 LEMMA There is a constant K independent of 4 such that for any
cube H in R" having edge length 4, for every ¢ satisfying p < g < np/(n—mp)
(orp<g<ooifn=mp, or p<q<wif n<mp), and for every u e C*(H)
we have

i/p
““"o,q.u < K{ Z Ri=ip=n*npla IID"uIIS,,..u} . (25)

le]<m

ProOF We may suppose H to be centered at the origin and let A be the cube
of unit edge concentric with H. Inequality (25) holds for A by the Sobolev
imbedding theorem. For given u € C*(H) we define corresponding i € C*(H) -
by @(p) = u(x) where x = hy. Since o

ol < k Deu()Pdyb
{J;lu(y)l y} < {MZS:MLI u(y)] y}
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. it follows by change of variable that
I (. \lp
h"”"{ f lu(x)l'dx} < K{ 3 plele=n f |D:u(x)|-dx} ,
H la|<m H
whence (25) follows. |
620 LEMMA If mp>n (or m=p=n=1), there exists a constant

K = K(m, p,n) such that for every cube H of edge length 4 in R" and every
u € C*(H) vanishing in a neighborhood of some point y € H, we have

Null§, p 0 < KIE-?(w).

ProofF The proof is somewhat similar to that of Lemma 5.15. First suppose
p < n<mp. Let (p, ¢) denote polar coordinates centered at y. Then

d
u(p, §) = L e )

If n > (m—1)p, let g = np/(n—mp+p) so that g > n. Otherwise let ¢ > n be
arbitrary. If (p, ¢) € H, then by Holder’s inequality

! Vrh a—1
iu(f, ¢)\ ! dt{f z-(n—n/(q—ndt}
dt o

d ‘ n—1
Eu(t, ¢)‘ "t

(o, 1" < (Vahy~? L ’

sK,h«-lf”
0

It follows, using Lemma 6.19 with m— 1 replacing m, that
8,00 < Ko | leraduciras
H

< th"I !Zl 1D%ul§, ¢,
of2

) q/p
< K3ht Z{ > h""”"‘*""’"IID”"uIlE,,,H} . (26)
laf =1

1Bl<m—1

A further application of Hélder’s inequality yields
N8, p. 5 < Nual§, g, (vOl H)YE~ P8

< K3 .‘S.ES...”""/"D’"“&»- = KI™? ().

If p > n (or p = n = 1), the result follows directly from (26) with ¢ = p,

Nullg, p.n < KIir? () < KIP(u).
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6.21 ProoF oF THEOREM 6.13 Let H be a cube for which, for mp > v (or
m=p=v=1)and u,_,(H,Q)/h"™" = hP[c. Let P be the maximal projection
referred to in the statement of the theorem, and let E = P(H ~ Q). Without
loss of generality we assume that the (n—v) dimensional face F of H con-
taining E is parallel to the x,,,,...,x, coordinate plane. For each point
X =(x",x") in E, where x' = (x,,...,x,) and x" = (x,4+,,-...,X,), let H,. be
the v-dimensional cube of edge # in which H intersects the v-plane through x
normal to F. By definition of Pthereexistsye H,. ~ Q. Ifue C*(H, H ~ Q),
then u(-,x") e C*(H,.,y). Applying Lemma 6.20 to u(-, x"), we obtain

f fu(x',x")|Pdx" < K, Y, h'“"’f | D*u(x’, x")|Pdx’,
H e 1<lal<sm Hyxn
where K| is independent of /4, x”, and u. Integrating this inequality over E and
denoting H' = {x':x = (x’, x") € H for some x"}, we obtain

Null§, o xe < Kidg:lg(u) < Ky I (u).

Now we apply Lemma 6.17 with 4 = H’x E so that vol 4 = h'u,_,(H,Q).
This yields

hll"'v
Hn-(H, )
where K, is independent of A. It follows that

Moy (F,Q) AP
—_——— 2 _—
Kh ek,

“““5,;,:1 S KZ 1}7"(“),

C™"(H,H~Q) >

Hence Q satisfies the hypothesis of Theorem 6.16 if it satisfies that of Theorem
6.13. 1}

The following two interpolation lemmas enable us to extend Theorem
6.13 to cover imbeddings of W§"? () into continuous function spaces.

622 LEMMA Let 1 <p<ow and O< pu< 1. There exists a constant
K= K(n,p, p) such that for every u € C,°(R") we have

u(x)—u(y)*
y su']l) lu(x)| < Kllu“ﬁ,,,a..{ sup M} , 27
: xeR"

x, yeR" Ix—ylﬂ
, X#Ey
B
where 4 = pp/(n+pp).
P .
PgooF 'We may assume

sup [u(x)] = N>0  and sup W@A—uO _ o o,

xeR® x,yeR" Ix—yl“
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Let e satisfy 0 < ¢ < N/2. There exists xo € R such that Iu(xo)l 2 N —&2 N/2
-Now lu(xo) u(x)|/lxo—x]“ < M for all x, so -

o U ()| = 1 (xo) — Mlxo~x* = $lutxe)|
provided |x — x,| < (N/4M)'/* = r. Hence

, Ju(xo)] N—¢e\?( N \'*
L”Iu(x)[ deJ;r(m( 20 ) K,( 3 )(m-) .

Since this holds for arbitrarily small ¢ we have

Ilullo,p,w > (Klllp/2,4niﬂp)N1+n/puM-n/pu

from which (27) follows at once. ||

6.23 LEMMA Let Q be an arbitrary domainin R, andlet0 < A< u < 1.
For every function u e C%*(Q)) we have

lu; C** @) < 317 u; C@|* ™4 Ju; CH* @) . (28)

ProOF Let p = /A, p' = p/(p—1), and let

{lu(x)—u(Y)l He
sup { ——————4 |
x,yeQ |x—y}*

x#ty

A, = |lu;CE)| ", B, = sup |u(x)—u(y)|”.
x,yefd
x#y

Clearly 4,°+ B,? = |u; C>*(Q)| and B < 2|u; C(Q)|. We have

A, = u;C@Q|"", B,

— — ulx)—u
Ju; COA@)] = Ju; C@)| + sup D=4
x:‘;:yﬂ IX‘_,VI

< A A, + BB,
< {47+ B "} {A5 + B}
< Ju; CO @3 u; C@)|)* ~H
as required. |}
624 THEOREM Let Q satisfy the hypothesis of Theorem 6.13. Then the
following imbeddings are compact: '
W@ - CIQ@) . if mp>n (29)
Witme@Q) » CHA@)  if -mp>n>(m—1)p and
0 < A < m—(nlp). (30)
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" _Proor It’is sufficient to deal with the case j = 0. If mp > n, let j* be the non-
»negatwe integer satisfying (m—j*)p > n > (m—j*— l)p Then we have the
“chain

W"""(Q) W"'”"’(Q) Co* @) — CE),

where 0 < u < m—j*—(n/p). If {u;} is a sequence bounded in Wg (), then
{u;} is also bounded in C%*#(Q). By Theorem 6.13, {1;} has a subsequence
{u;'} converging in LP(Q). By (27), which applies by completion to the func-
tions u;, {;'} is a Cauchy sequence in C(Q) and so converges there. Hence (29)
is compact for j = 0. Furthermore, if mp > n > (m—1)p (that is, j* = 0) and
0 < / < p, then by (28), {4} is also a Cauchy sequence in C%*(Q) whence
(30) is also compact. |

An Equivalent Norm for WJ"?(Q)

6.25 Closely related to the problem of determining for which unbounded
domains Q the imbedding Wj"?(Q) — LP(Q) is compact, is that concerned
with determining for which domains Q the seminorm |-|,, , o defined by

hapa = { £ 10180}

a—m

is actually a norm on W{"?(Q), equivalent to the given norm | |, ,.o. Such
is certainly the case for any bounded domain as we now show.

6.26 A domain Q < R" is said to have finite width if it lies between two
‘parallel hyperplanes. Let Q be such a domain and suppose, without loss of
generality, that Q lies between the hyperplanes x, =0 and x, = d. Letting
x = (x',x,) where x’ = (x,,...,x,_,), we have for any ¢ € Cy*(Q)

¢(x)j S0, 0 de

so that .
d
161850 = [ ax [16coras,
- rd d
<[ [an f Dpw Ol
< @Ip)I418. 5.0 @)
- and

[615.5.0 < 1615, 5,0 = 15,5, n+|¢|1 ra < (L+@[p))|81] 5 0-
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Successive application of the above inequality to derivatives D‘¢, la| 5 m— l
then yields - .- ,
Vld’nlm,p,ﬂ S "¢"m,p.fl’S K|¢lm,p,n » (32)

aﬁd by completion (32) holds for all u e W"?(Q). Inequality (31) is often
called Poincaré’s inequality.

6.27 An unbounded domain Q in R” is called quasicylindrical provided
lim sup dist(x, bdryQ) < co.

x€8,|x|— o

Evidently every quasibounded domain is quasicylindrical, as is every (un-
bounded) domain of finite width. We leave to the reader the construction of a
suitable counterexample to show that if Q is not quasicylindrical, then
|*|m, p, 0 is DOt an equivalent norm to |- |, ,.o On Wg"?(Q).

The following theorem is clearly an analog of Theorem 6.13.

6.28 THEOREM Suppose there exist constants K, R, h, and v with
0<K<I,0<R<o,0<h<oo, and | <v<n, v an integer, such that
either v < p or v = p = 1, and such that for every cube H in R", having edge
length & and having nonempty intersection with Qp = {x € Q:|x]> R} we
have

Ha—y(H, QK™ > K,
where p,_,(H,Q) is as defined in the statement of Theorem 6.13. Then

|lm, p.0 and |- |, .o are equivalent norms for Wg"?(Q).

PROOF As noted in Section 6.26 it is sufficient to prove that ful, , o <
Kilul;, .0 forue Cy™(Q). Let H be a cube of edge length / having nonempty
intersection with Q. Since v < p (or v = p = 1) the proof of Theorem 6.13
(Section 6.21) shows that

CUP(H, H~Q)-2 p,,(H, QK 1" 2 KIK,
for all u e Co*(H), K, being independent of u. Hence
hall8, 5.1 < (Ko K) TP () = Ksulf,, u- - (33)

By summing (33) over the cubes H comprising a tesselation of some neigh-
borhood of Qg, we obtain ‘

lulld, s 0n < K3l4ld 50 - (34)
It remains to be proven that ' ‘

18,50 < Kalulf, 5.0,
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where By - {x € R":|x| < R}. Let (p, ¢) denoteé spherical polar coordinates
of the point x in R" (p > 0, ¢ € ¥) and denote the volume element by dx =
p"'w(¢) dp dp. For any ue C®(R") we have

u(p,$) = u(p+R,¢) - f U o) dt
so that
lup, ) < 277 u(p+ R, $)I” + 2”"R""p’_"f“plgradu(t, $)|7e"~ 1 dt.
Hence ’

R
1418 1,00 = [[0®) a8 [ “luto. 0" dp
) R
< 2““fw(¢) d¢f lu(p+ R, )| (p+ Ry ' dp
I 0

+ 2P~ 1Re f w(¢) dp f2R|grad u(t,§)|Pt" "' dt.
t 0

Therefore we have for u € Cy*(Q)
"ullg,p,ﬂn S 2P_1 "u"'(;,p,ﬂzk“'ﬂn + ZP_lRP|ulq p.B2r
< 277wl 00 + 27T RP(UR 0 < Kilulf ,q

by (34). 1}

Unbounded Domains—Decay at Infinity

6.29 The vanishing, in a generalized sense, on the boundary of Q of elements
of WJP(Q) played a critical role in our earlier establishment of the compact-
ness of the imbedding

WP (Q) = LP(Q) (35)

for certain unbounded domains. For elements of W™ ?(Q) we no longer have
this vanishing and the question remains: when, if ever, is the imbedding

W™P(Q).— LP(Q) - (36)

compact for unbounded Q, or even for bounded Q which are sufficiently
" irregular that no imbedding of the form :

j S WP Q) - L? @ 37

exists for any ¢ > p? Note that if Q has finite volume, the existence of (37) for
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- . . 4 i ) B y ,’ <
some ¢ > p implies the compactness of (36) by the method of the first part of
Section 6.7. By Theorem 5.30 imbedding (37) cannot, however existif g >p
and Q is unbounded but has finite volume.

6 30 EXAMPLE Forj=1,2,... let B;bean open ball in R" having radius
;> and suppose B; n B, is empty 1f j# k. LetQ = {7, B;; Q may be bounded
or unbounded. The sequence {u;} defined by
(vol )"HPif xeB;
if x¢B
is clearly bounded in W'”"’(Q) but not precompact in L?(Q2) no matter how
rapidly r; = 0 as j tends to infinity. Hence (36) is not compact. [Note that

(35) is compact by Theorem 6.13 provided lim;_ r; = 0.] If Q is bounded,
imbedding (37) cannot exist for any g > p.

uj(x) =

6.31 There do exist unbounded domains Q for which imbedding (36) is
compact (see Section 6.48). An example of such a domain was given by
Adams and Fournier [3] and it provided a basis for an investigation of the
general problem by the same authors [4]. The approach of this latter paper is
used in the following sections. First we concern ourselves with necessary
conditions for the compactness of (37) (g = p). These conditions involve rapid
decay at infinity for any unbounded domain (see Theorem 6.40). The techniques
involved in the proof also yield a strengthened version of Theorem 5.30 (viz.
Theorem 6.36) and a converse of the assertion [see Remark 5.5(6)] that
wm™r(Q) - LP(Q) for I < g < p if Q has finite volume.

A sufficient condition for the compactness of (36) is given in Theorem 6.47.
It applies to many domains, bounded and unbounded, to which neither the
Rellich-Kondrachov theorem, nor any generalizations of that theorem
obtained by the same techniques can be applied (e.g., exponential cusps—see
Example 6.49).

6.32 Let T be a tesselation of R" by closed n-cubes of edge length h. If H is
one of the cubes in T, let N(H ) denote the cube of side 34 concentric with H and
having faces parallel to those of H. The N(H) will be called the neighborhood
of H. Clearly N(H) is the union of the 3" cubes in T which intersect H. By the
fringe of H we shall mean the shell F(H)=N(H)~ H.

Let Q be a given domain in R" and T a given tesselation as above. Let
A> 0. A cube H e T will be called A-far (with respect to Q) if

w(H N Q) > Ap(F(H) n Q),

“where u denotes n-dimensional Lebesgue measure in R". (We use “u” instead
of “vol” for notational simplicity in the following discussion where the symbol
must be used many times.) If H is not A-fat, it is called A-thin.
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'6.33 THEOREM Suppose that there exists a compact imbedding of the
“form - y
] wmrQ) - L'Q) | (38)
‘for some g > p. Then for every 4 > 0 and every tesselation T of R" by cubes of
fixed size, T has only finitely many A-fat cubes.

PROOF  Suppose, to the contrary, that for some A > O there exists a tesselation
T of R" by cubes of edge length 4 containing a sequence {H;}7., of A-fat
cubes. Passing to a subsequence if necessary we may assume that
N(H;) n N(H,) = & if j # k. For each j there exists ¢; € C;*(N(H)) such
that

(i) |¢;(x0)f<1 forall xeR",
(i) ¢;(x)=1if xe H},
(iii) |D%¢;(x)|< M for all xe R" and 0 <|aj < m,

where M = M(n,m, h) is independent of j. Let §; = c; ¢;, where the positive
constant ¢; is so chosen that

1,150 0 2 cf L 1,0l dx = a0 @) = 1.

in
But then

Wiktna=e T [ \0epds

O<lalsm
< MPcfu(N(H)) n Q)
< MPcfu(H; n Q[1+(1/A)] = MP[1+(1/2)]c?74,

since H; is 2-fat. Now p(H; Q) < u(H;) = " so ¢; > h™"%. Since p—¢ < 0,
{¢;} is bounded in W™?(Q). Since the functions y; have disjoint supports,
{¥;} cannot be precompact in L(Q), contradicting the compactness of (38).
Thus T can possess only finitely many A-fat cubes. ||

6.34 COROLLARY Suppose there exists an imbedding (38) for some
¢ > p. If Tis a tesselation of R" by cubes of fixed edge length 4, and if 2 > O is
given, then there exists ¢ > 0 such that u(H Q) > ¢ for every 2-fat HeT.

PROOF Suppose, to the contrary, there exists a sequence {H;} of A-fat cubes
with lim;_,, u(H; Q) = 0. If ¢; is defined as in the above proof, we have
lim;_, ¢; = co. But then llmj..w"l/l]“,,,,,a—o since p <gq. Since {Y;} is
bounded away from 0 in L(Q) we have contradicted the continuity of
imbedding (38). |



UNBOUNDED DOMAINS—DECAY AT INFINITY ' ' 163

6.35 Let us consider the 1mphcatlons of the above corollary If. 1mbeddmg :
(38) exists for some g > p, then one of the following alternatives must hold: -

(a) There exists £ > 0 and a tesselation T of R" consisting of cubes of
fixed size such that u(H N Q) > ¢ for infinitely many cubes He T. '

(b) For every 1 > 0 and every tesselation T of R" by cubes of fixed size, -
T contains only finitely many A-fat cubes.

We shall show in Theorem 6.37 that (b) implies that Q has finite volume.
By Theorem 5.30, (b) is therefore inconsistent with the existence of (38) for
g > p. On the other hand, (a) implies that u({x e Q: N <|x|< N+1}) does
not tend to zero as N tends to infinity. We have therefore proved the following
theorem strengthening Theorem 5.30.

6.36 THEOREM Let Q be an unbounded domain in R" satisfying
limsupvol{xeQ: N<|x]<N+1} =0.

N-w

Then there can be no imbedding of the form (38) for any ¢ > p.

6.37 THEOREM Suppose that imbedding (38) is compact for some g > p.
Then Q has finite volume.

ProoF Let T be a tesselation of R” by cubes of unit edge, and let 1 =
1/[2(3"—1)]. Let P be the union of the finitely many A-fat cubes in T. Clearly
#(PnQ) < u(P) < oo. Let H be a A-thin cube. Let H, be one of the (3"—1)
cubes of T contained in the fringe F(H) and selected so that u(H, nG) is
maximal. Thus

u(H ~ G) < Ju(F(HY A G) < A(3"=D)u(H, n G) = u(H, n G).

If H, is also A-thin, we may select H, € T, H, = F(H,)suchthat u(H, nQ) <
$u(H; N Q).

Suppose an infinite chain {H, H,, H,, ...} of A-thin cubes can be con-
structed in the above manner. Then

WH Q) < 3u(H, A 0Q) < - < (12)u(H; A Q) < 1/2

- for each j, since u(H; nQ) < u(H) = 1. Hence u(H N Q) = 0. Denoting by
P,, the union of A-thin cubes H e T for which such an infinite chain can be
constructed, we have u(P,nQ) = ’ .

Let P; denote the union of the l—thm cubes He T for whlch some such
chain ends on the jth step (that is, H; is A-fat). Any particular A-fat cube H’
can occur as the end H; of a chain begmnmg at H only if H is contained in the
cube of edge 2j+ 1 centered on H'. Hence there are at most (2j+ 1)" such cubes
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" H < P; having H’ as chain endpoint. Thu§
WP A=Y pHAQ)

HePy

W/2) T u(H; n0)
Hcp;

A

< [@j+1)727] Z HH' N Q) = [(21+1)"/2’]#(Pﬂ Q),

so that Y%, u(P;nQ) <o0. Since R"=Pu P, U PyuUP,uU - we have
nQ) <. 1

Suppose | < g < p. By Theorem 2.8 the imbedding
w™r Q) - L1(Q) (39)

exists if volQ < co. We are now in a position to prove the converse.

6.383 THEOREM Suppose imbedding (39) exists for some p, q such that
1 < g < p. Then Q has finite volume.

ProOOF Let 7, A be as in the proof of the previous theorem. Once again let P
denote the union of the A-fat cubes in T. If we can show that u(P n Q) is finite,
it will follow by the same argument used in the above theorem that vol Q is
finite.

Accordingly, suppose (P n Q) is not finite. Then there exists a sequence
{H;} =, of A-fat cubes in T such that 37, u(H; n Q) = co. If L is the lattice
of centers of the cubes in 7, we may break up L into 3" mutually disjoint
sublattices {L;}?”, each having period 3 in each coordinate direction. For each
i let T, be the set of all cubes in T with centers in L;. For some / we must have

Sianer H(HNQ) = 0o, Thus we may assume the cubes of the sequence
{H;} all belong to T, for some fixed i, so that N(H;) n N(H,) do not
overlap. ,

Let the integer j, be chosen so that
i1
2< Y pH;nQ) <4
i=1
Let ¢ ; be as in the proof of Theorem 6.33, and let
- g1
Vi) =271 3. ¢;(0.
) i~

We have, since the supports of the functions ¢; are disjoint, and since the
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cubes Hare J-fat, f9r~|a|(g'm, e
ID9lea =4 %, [ I0sras
S S ) 9)

Ji
< IMP(1+(1/A) ¥ u(H; A Q) < 2M?(1+(1/3)).
i=1
On the other hand,
Mo lg g0z 2797 {: H(H; n Q) > 2" 797,
i=

Having so defined j; and ¥,, we may now define j,,j3,... and ¥, 3, ...
inductively so that

Ji
2< S uH;AQ) < 2
J=Jrk-1
and )
Jr
) = 274 S ().
J= k-1
As above we have for |a| <m,
1D*ell3, . 0 < (/6% MP(1+(1/2)
and
[9ell§, 0,0 = 25721 k)24/P.

Thus ¢ =32, ¢, belongs to W™?(Q) but not LI(Q), contradicting (39).
Hence u(P n Q) < co as required. ||

6.39 If there exists a compact imbedding of the form (38) for some ¢ > p,
then, as we have shown, Q has finite volume. In fact, considerably more is
true: u({x € Q:|x| = R}) must tend very rapidly to zero as R — o0, as we now
show.

If Q is a union of cubes H in some tesselation of R", we extend the notions
of neighborhood and fringe to @ in an obvious manner:

N = U N(H), F(Q) = N(@Q)~ Q.

-Given § >0, let 2 = 6/3"(1 + ). If all of the cubes H c Q are A-thin, then'
Q is itself &-thin in the sense that
m(Q Q) < 5u(FQ) N Q). (40)

To see this note that as // runs through the cubes comprising Q, F(H) covers
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'N(Q) at most 3" times. Hence :
w@nQ) = Z WHAD) <2 Z H(F(H) N 9) < 3"p(N(@) N Q)

. = 3""~[It(Q n ﬂ)+#(F(Q) N Q)]
from which (40) follows by transposition (permissible since u(Q) < ) and
since 3"2/(1-3"1) = 4.

For any measurable set S < R" let Q be the union of all cubes H of our
tesselation whose interiors intersect S, and define F(S) = F(Q). If Sis at a
positive distance from the finitely many A-fat cubes in the tesselation, then Q
consists of A-thin cubes and we obtain from (40),

S N Q) < u(Q@ N Q) < Su(F(S) N Q). 41)

6.40 THEOREM Suppose there exists a compact imbedding of the form
(38) for some q>p. For each r>0 let Q, = {xeQ:|x|>r}, let S, =
{xeQ:|x|=r}, and let 4, denote the sutface area [(n— l)-measure] of S,.
Then:

(a) For given ¢, > 0 there exists R such that if r > R, then
u(Q) < ou({xeQ:r—e<ix|<r}).
(b) If A4, is positive and ultimately nonincreasing as r tends to infinity,
then for each ¢ > 0
lim 4rte _ g,

r—+ao r

ProoF Given ¢ >0 let T be a tesselation of R" by cubes of edge length
6/2\/5. Then any cube H.e T whose interior intersects €, is contained in
Q,_,,, and

FQ)c{xeQ:r—e<|x|<r}.
For given § > 0 let A be as given in Section 6.39. Let R be large enough that the
finitely many A-fat cubes in T are all contained in the ball of radius R—g/2
centered at the origin. Then for any r > R all the cubes in T whose interiors
intersect Q, are A-thin and (a) follows from (41).
. For (b) choose R, so that A, is nonincreasing on [R,, ). Fix ¢, 8 > 0,
and let & = &/2. Let R be as in (a). If r > max(R,+¢', R), then

Ao < W) [ A s < (UONO,) < @ouixeQirslsls e
P

{

]

(5/s)j A ds < 84,. - ‘_\ .

Since ¢’ and ¢ are arbitrary, (b) follows. [



UNBOUNDED DOMAINS—DECAY AT INFINITY - . 167
PR ) A' ) v \ - »
6.41 COROLLARY If there exists a cofnpaét imbedding of the form (38)
_for some g > p, then for every k we have

lim ep(Q,) =

r—=o

Proor Fix k and let = e~**". From conclusion (a) of Theorem 6.40
there éxists R such that r > R implies p(Q,, ;) < du(,). Thus if j is a positive
integer and 0 <7 < |, we have

MR Q) < ST U@y < HETDMOQp)
— MR+ l)ﬂ(QR)e-j'

The last term tends to zero as j tends to infinity. |

6.42 REMARKS (1) The argument used in the proof of Theorem 6.40(a)
works for any norm p on R" in place of the usual norm p(x) =|x|. The same
holds for (b) provided 4, is well defined (with respect to the norm p) and
provided

r+¢

H{xeQ:r<px)<r+e}) = J A, ds.

r

This is true, for example, if p(x) = max, ¢;<.|xi|.

(2) Forthe proof of (b) it is sufficient that A, have an equivalent, positive,
nonincreasing majorant, that is, there should exist a positive, nonincreasing
function f(r) and a constant M > 0 such that for all sufficiently large r,

< f(r) < MA4,.

(3) Theorem 6.33 is sharper than Theorem 6.40, because the conclusions
of the latter theorem are global whereas the compactness of (38) evidently
depends on local properties of Q. We illustrate this by means of two examples.

6.43 EXAMPLE Let fe C'([0,0)) be positive and nonincreasing with
bounded derivative f’. We consider the planar domain (Fig. 6a)

Q={xy)eR:x>0,0<y<f(x) (42)

" With respect to the supremum norm on R?, that is;, p(x,y) = max(|x|,|y|),

~ we have A4, = f(s) for sufficiently large s. Hence Q satisfies conclusion (b) of
‘ Theorem 6.40 [and since f is monotonic conclusion (a) as well] if and only if

lim f(s+e) -0 ' " ~

s= 00 f(s)

holds for every &> 0. For example, f(x) = exp(—x?) satisfies (43) but

43
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Fi6. 6 Domains: (a) Q of Example 6.43 and (b) & of Example 6.44

/{(x) = e”* does not. We shall see (Section 6.48) that the imbedding
WwmrQ) - L(Q) (44)

is compact if (43) holds. Thus (43) is necessary and sufficient for the compact-

ness of (38) for domains of the type (42).

6.44 EXAMPLE Let f be as in Example 6.43 and assume also that

/'(0) = 0. Let g be a positive, nonincreasing function in C* ([0, 00)) satisfying

(i) 9(0)=1/(0),4'0)=0,
(il)  g(x) < fix) forall x = 0, :
(iii) g(x) is constant on infinitely many disjoint intervals of unit length.

Let h(x) = f(x)—g(x) and consider the domain (Fig. 6b) _
Q={(x)eR?:0<y<g(x)if x=0,0<y<h(—x)if x <0}.
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Again we have A4, = f(s) for sufﬁclently large sso0 8 satisfies the conclusions
of Theorem 6.40 if (43) holds.

If, however, T is a tesselation of R? by squares of edge 1 having-edges
parallel to the coordinate axes, and if one square of T has center at the origin,
then T has infinitely many }-fat squares with centers on the positive x-axis.
~ By Theorem 6.33, imbedding (44) cannot be compact.

Unbounded Domains—Compact Imbeddings of W™ 7(Q)

6.45 The above examples suggests that any sufficient condition for the
compactness of the imbedding

Wmer(Q) —» LP(Q) (45)

for unbounded domains Q must involve the rapid decay of volume locally in
each branch of Q, as r tends to infinity. A convenient way to express such local
decay is in terms of flows on Q. ,

By a flow on Q we mean a continuously differentiable map ¢: U— Q,
where U is an open set in Q x R containing Q x {0}, and where ®(x,0) = x for
every x € Q.

For fixed x € Q the curve t - ®(x,1) is called a streamline of the flow.
For fixed ¢ the map ®,: x — ®(x,7) sends a subset of Q into Q. We shall be
concerned with the Jacobian of this map:

a(q)l’ ~~~,(Dn)
a(x]_) "'7xn) (x,0) -

It is sometimes required of a flow @ that <I)s+,'= @, -, but we do not need
this property and so do not assume it.

det ®,/(x) =

6.46 EXAMPLE Let Q be the domain given by (42). Define the flow

O(x,p,0) = x—6,[f(x-D/f(0)]y), 0<i1<x
The flow is toward the line x = 0 and the streamlines diverge as the domain
widens (see Fig. 7). @, is a local magnification for r > 0:
det ®/(x,y) = f(x—1)/f(x).

Note that lim,_, . det ®,(x, y) =0 if f satisfies (43).
For N=1,2,... let Qy*={(x,»)eQ:0<x < N}. Qy* is bounded and
has the cone property, so the imbedding )

“WhPQy*) - L”(QN*)

is compact. This compactness, together with properties of the flow ® are
sufficient to force the compactness of (45) as we now show.

’
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FiG. 7 Streamlines of the flow @ given in Example 6.46

. 6.47 THEOREM Let Q be an open set in R” having the following
properties:

(a) There exists a sequence {Qy*}%., of open subsets of Q such that
Q\* < QF ., and such that for each N the imbedding

WP (Qy*) - L*(Qy*)
is compact.
(b) There exists a flow ®: U — Q, such that if Qy = Q ~ Q,*, then

(i) Quyx[0,1] c U for each N,
(i) @, is one-to-one for all ¢,
(iii) |(0/0t)®(x,1)| < M (const) for all (x,1) e U.

(¢) The functions dy(t) = sup,.q, |det @, (x)| ™" satisfy

(i) limy,,dy(1)=0,
(i) limyog fody(t)dr=0.

Then imbedding (45) is compact.

PrOOF Since we have W™?(Q) - W' ?(Q) — LP(Q) it is sufficient to prove
that the latter imbedding is compact. Let u € C!(Q). For each x € Qy we have

1
() = u@,09) - [ Zu@,9) .
Now

f (@, ()| dx < dy(1) f (@) [det @,(x)] dx
. Jan O

= dy(1) |u(¥)| dy

@1(2N)

< dN(l)Llu(y)l dy.
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- Also

J.

19 ‘
J; % u(®,(x)) dt dt

e
dx < fn dx L |grad u(@,(9)|

i)
S ®, (x)

<M f ‘o) dt f |grad u(®,(x))]|det @,(9)| dx
(1] N

1
< M{J; dy(t) dt}{L]grad u(y)| dy} .

Putting 6y = max(dy(1), M [§dy(t) dt), we have

L ()] dx < S f ()| + |gradu)) dy < Swluls 1o (46)

and limy_, 6y =0.
Now suppose u is real valued and belongs to C!'(Q) n W?(Q). By
Hélder’s inequality the distributional derivatives of |u|?,

D;(lul”) = p-|u|*~" - sgnu- D;u,
satisfy

f 1D, ()| dx < pD;ullo,palulE e < plulf a0

Thus |u|? e W''(Q) and by Theorem 3.16 there is a sequence ¢; of functions
in C'(Q) n W' 1(Q) such that lim,_,, |, — |u|"],.;.q = 0. Thus by (46)

[ wepras = tim [ 4,60 dx < tim supd 41,10
QN

j=o JON j=
= O |u|ly,1,0 < Kou[ulf,,, a5 (47)

where K = K(n,p). Inequality (47) holds for arbitrary (complex-valued)
ue C*(Q) n WP(Q) by virtue of its separate application to the real and
imaginary parts of u. (The constant K may be changed.)

If S is a bounded set in W'?(Q) and ¢ > 0, we may, by (47), select N so
that forallue S

f |u(x)|Pdx < e.
Qn

~ Since WwiP(Q~ Q) - LP(Q ~ Qy) is compact, the precompactness of S in
LP(Q) follows by Theorem 2.22. Hence W!:?(Q) — L?(Q) is compact. |

6.48 EXAMPLE Consider again the domain Q of Examples 6.43 and 6 46 ‘
and the flow @ glven in the latter example. We have '

dy(t) = sup Sx)

<1 - if 0<t<1
x=N (X—I)
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— ~and by (43) _
- limdy(t)=0 if ¢>0.
' N-ew )

{Thus by dominated convergence

1
lim | dy(t)dt =
0

N-ow

The assumption that /* is bounded guarantees that the speed |(8/dr) ®(x, y,1)|
is bounded on U. Thus Q satisfies the hypotheses of Theorem 6.47 and (45) is
compact for this domain.

6.49 EXAMPLE Theorem 6.47 can also be used to show the compactness
of (45) for some bounded domains to which neither the Rellich-Kondrachov
theorem nor the techniques used in its proof can be applied. For example, we
consider

Q={(x)eR*:0<x<2,0<y<f(x)}

where e C*(0, 2) is positive, nondecreasing, has bounded derivative f’, and
satisfies lim,_ o4 f(x) =0. Let U= {(x,y,1) e R*:(x,)) e Q, —x<t<2—x}
and define the flow ©: U - Q by

O(x, 1) = (x+t, My)

S(x)
Thus det ®,(x, y) = f(x+1)/f(x). If Qy* = {(x,y) € Q: x> 1/N}, then

S(x)
Sflx+1)
satisfies dy(r) <1 for 0 <r <1, and limy_.  dy(¢) =0 if 1 > 0. Hence also
limy_, [ dy (1) df =0 by dominated convergence. Since Qy* is bounded and

has the cone property, and since the boundedness of d®/dt is assured by that
of /', we have by Theorem 6.47 the compactness of

wme(Q) - L?(Q). (48)

dy(t) = sup

O0<x<I1/N

Suppose lim, .o f(x)/x* = 0 for every k. [For éxample let f(x) = e~ /%]
Then Q has an exponential cusp at the ongm and so by Theorem 5.32 there
exnsts no imbedding of the form -

wmP(Q) > LY(Q)

for any g > p. Hence the method of Section 6.7 cannot be used to show the
compactness of (48). -
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6.50 REMARKS (1) It is easy to imagine domains more general than
.those in the above examples to which Theorem 6.47 can be applied, although
it may be difficult to specify a suitable flow. A domain with many (perhaps
infinitely many) unbounded branches can, if connected, admit a suitable flow
provided the volume decays sufficiently rapidly and regularly in each branch,
a condition not fulfilled by the domain & of Example 6.44. For unbounded
domains in which the volume decays monotonjcally in each branch Theorem
6.40 is essentially a converse of Theorem 6.47 in that the proof of Theorem
6.40 can be applied separately to show the volume decays in each branch in
the required way.

(2) Since the only unbounded domains Q for which W™?(Q) imbeds
compactly into LP(Q) have finite volume there can be no extension of Theorem
6.47 to give compact imbeddings into L7(Q) (g > p), C5(Q), etc.—there do not
exist such imbeddings.

Hilbert-Schmidt Imbeddings

651 A complete orthonormal system in a separable Hilbert space X is a
sequence {e;}2, of elements satisfying

1 if i=j
(ei’ej)x - {0 if i#j

[where (-, -)x is the inner product in X], and such that for each x € X we have

K
lim|lx— Y (x,e)xe; X[ = 0. (49)
& i1

ind-o)

Thus x = 32, (x,e;)xe;, the series converging with respect to the norm in X.
It is well known that every separable Hilbert space possesses such complete
orthonormal systems. There follows from (49) the Parseval identity

X2 = 3 x el

Let X and Y be two separable Hilbert spaces and let {¢;}2, and {f;};2, be
given complete orthonormal systems in X and Y, respectively. Let 4 be a
bounded linear operator with domain X taking values in Y, and let A* be the
adjoint of A taking ¥ into X and defined by

(x, A*y)y = (4x,y)y, xeX, yeVY.
Define

N4i? = lelAea:Yllz, 4™ = 3 1477 X1
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If Jj A} is finite, A is called a Hilbert-Schmidt operator and we call |||
its Hilbert-Schmidt norm. (Recall.that the operator.norm of A is given by

IIAx Yt

41 = sup- 2]

)

We must justify the above definition.

6.52 LEMMA The norms [|4|| and ||4*|]| are independent of the
particular orthonormal systems {e;}, {f;} used. Moreover,

Al = N4* = 4]
PrOOF By Parseval’s identity

Al = Z le;YI? = 3 3 [(des fl?

i=1 i=1 j=1

= 3 Sl Al = T 1400 = A,

8

. Hence each expression is independent of {e;} and {f}. For any x € X we have
2 [ 2
< (£ I eonllaei i)
< (£ osennt)( £ 14ei717) = peiximane
= J=

Hence | 4| < || 4]]| as required. |

l4x; Y |2 =

Z (x,e)x Ae;; Y
i=1

We leave to the reader the task of verifying the following assertions:

(a) If X, Y, and Z are separable Hilbert spaces and A, B bounded linear
operators from X into Y and Y into Z, respectively, then Bo 4, which takes X
into Z, is a Hilbert-Schmidt operator if either 4 or B is. (If 4 is Hilbert-
Schmidt, then || B 4[| < || Bl || 4]ll.)

(b) Every Hilbert-Schmidt operator is compact.

The following theorem, due to Maurin [43] has far-reaching implications
for eigenfunction expansions corresponding to differential operators.

6.53 THEOREM LetQbea bounded set having the cone property in R".
Let m, k be nonnegative integers with k > n/2. Then the imbedding mappings

wrrhi Q) > w™(Q) (50)
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are Hilbert-Schmidt operators. Similarly, the itribcddings .
wethi@) - W@ SN CY
are Hilbert-Schmidt operators for any bounded-domain Q.

ProOF Given y € Q and a with |a| <m we define a linear functional T,* on
wm +k,2 (Q) by
T, (w) = Du(y).

Since k > n/2 the Sobolev imbedding Theorem 5.4 implies that 7,* is bounded
on W™**2(Q) and has norm bounded by a constant K independent of y and
a:
IT,@)| < max sup|Du(x)| < K{ju|mis,2,0- (52
O<ja|<smxeQ
By the Riesz representation theorem for Hilbert spaces there exists
v, € W™ 2(Q) such that

Du(y) = T, (W) = (4,0, )ms> (53)
where (-, -),,+, is the inner product in W™**2(Q), and moreover
1o, lmsk, 2.0 = TSP 42 @QT| < K. (54

If {¢;}2, is a complete orthonormal system in W™**2(Q), then

a0 a0
oy lm sk, 2.0 = _Zl (i, 0 mail® = .Zl |De;(»)]2.
i= i=

Consequently,

Slelinas ¥ fnuv;l|i+k,2,ndys T KvolQ < oo  (55)
= a Sm

lal<m

Hence imbedding (50) is Hilbert-Schmidt. The same proof holds for (51)
without regularity needed for the application of Theorem 5.4. |

The following generalization of Maurin’s theorem is due to Clark [17].

6.54 THEOREM Let u be a nonnegative, measurable function defined on
the domain Q in R". Let W 2#(Q) be the Hilbert space obtained by com-
pleting C,*(2) with respect to the weighted norm

: . 1/2
e = { £ [ 10uour )"

la]sm

For y € Q let t(p) = dist(y, bdryQ). Let v be a’honnegative integer such that

J;[r(y) u(y)dy < oo. (56)
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Ifk> v+n/2, then the imbedding ) : . ,
Wm+k,2(ﬂ) - Wm, 2,;.«1) \ , (57)
(exnsts and) is Hllbert—Schmldt

Proor Let {¢;}, T,", and v,* be defined as in the previous theorem. If y € Q,
let y, be chosen in bdry Q such that 1(y) =|y—y,|. If v is a positive integer
and u € C,*(2), we have by Taylor’s formula with remainder

Du(y) = ”:L; (1/BY D Pu(yp) (y—y,)

for some points y, satisfying |y—ys| < t(y). If |a|<m and k& > v+n/2, we
obtain from the Sobolev imbedding theorem [as in (52)]

|D*u(Y)| < Kllullmss, 2 [xNT". (58)

Inequality (58) holds, by completion, for any u € Wr**2(Q), and also holds
if v = 0, directly from (52). Hence by (53) and (54)

"Uya"m+k,2 = sup  |Du(y)| < K[x(»)7".

[{wllm+x,2=1

It finally follows as in (55) that

Slelisns T [ 10 mm0)d

<kKk*Yy [r(y)]“u(y) dy < o

|a|<m

by (56). Hence imbedding (57) is Hilbert-Schmidt. |

6.55 REMARK Various choices of y and v lead to generalizations of
Maurin’s theorem for imbeddings of the sort (51). If u(x) =1 and v =0, we
obtain the obvious generalization to unbounded domains of finite volume. If
1(x) =1 and v > 0, Q may be unbounded and even have infinite volume, but
by (56) it must be quasibounded. [Of course quasiboundedness may not be
sufficient to guarantee (56).] If u is the characteristic function of a bounded
subdomain Q, of Q, and v = 0, we obtain the Hilbert-Schmidt imbedding

Weth?@) » W™2(Qo), k> nj2.
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Fractional Order Spaces

Outline

7.1 Inthis chapter we are concerned with the problem of extending the notion
of Sobolev space to allow for nonintegral values of m. There is no unique
method for doing this, and different approaches may or may not lead to
different families of spaces. The major families of spaces that arise are the
following:

(1) The spaces W*?(Q)—which can be defined by a *‘real interpolation”
method but can also be characterized in terms of an intrinsically defined norm
involving first-order differences of the highest-order derivatives involved.

(i) The spaces L*P(Q)—which can be defined by a “complex inter-
polation” method but, if Q = R", can also be characterized in terms of Fourier
transforms.

(iii) The Besov spaces B*?(Q)—defined in terms of an intrinsic norm
similar to that of W*?(Q) but involving second rather than first differences.

(iv) The Nikol’skii spaces H ""(Q)—havmg norm mvolvmg Holder
conditions in the L*-metric.

Only the spaces w*?(Q) and L"’(Q) coincide iv‘ith; W"'"(Q) when s = m,
an integer. B>?(Q) coincides with W*?(Q) for all 5 if p = 2 but otherwise only
for nonintegral s. The space H*?(Q) is always larger than (but close to)
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~

~ W*?(Q). From the point of view of imbeddings, the simplest and most com- -
" plete results obtain for the spaces B*? and H*? (see Theorem 7.70 and
Section 7.73). However, it is in terms of the W*? spaces that the problem,
mentioned in Section 5.20, of characterizing the traces on smooth manifolds
;. of functions in W™ ?(Q) has its solution (Theorem 7.53). For this reason we
concentrate our effort in this chapter on elucidating the properties of the
spaces W*?(Q) and give only brief descriptions of the other classes.

About half of the chapter is concerned with developing the “trace inter-
polation method” of Lions, on which we base our study of the spaces W*?(Q).
These latter spaces are introduced in Section 7.36. The trace interpolation
method is one of several essentially equivalent real interpolation methods for
Banach spaces concerning which there is now a considerable literature.
Descriptions of these methods may be found in the work of Butzer and Berens
[13] and Stein and Weiss [65], and the interested reader is referred to the
work of Peetre [56] and Grisvard [28] for some applications in the direction
of fractional order Sobolev spaces. A treatment of these spaces is also given
in Stein [64a]. Most of the material in this chapter follows that of Lions [37,
38] and Lions and Magenes [40].

The Bochner Integral

7.2 In this chapter we shall need to make frequent use of the notion of
integral of a Banach space-valued function f defined on an interval of R. We
begin therefore with a brief discussion of the Bochner integral, referring the
reader to the text by Yosida [69], for instance, for further details and proofs
of our assertions.

Let B be a Banach space with norm denoted by |- | 5. Let {4, 4,,..., A,.}
be a finite collection of mutually disjoint, measurable subsets of R, each having
finite measure, and let {b,,b,, ...,b,,} be a corresponding collection of points
of B. The function f on R into B defined by

ft) = i o

: x4 being the characteristic function of A, is called a simple function. For
simple functions we define, obviously,

[ rerae = £ ncapn, | -

where u(A) denotes the (Lebesgue) measure of 4.
Let 4 be a measurable set in R and f an arbitrary function defined a.e. on
A into B. The function fis called (strongly) measurable on A if there exists a
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sequence {f,} of snmple functlons W1th supports in A such that

lim | f,,(t)—f(t)ll, =0 aeind 1)
Let ¢-,-) denote the pairing between B and its dual space B’ (i.e., b'(b) =
{b,b’), be B, b’ € B’). It can be shown that any function f whose range is
separable is measurable provided the scalar-valued function {f(-),b’) is
measurable on A for each be B'.
Suppose that a sequence of simple functions f, satisfying (1) can be chosen
in such a way that

lim f 1) —f() ] di = 0.

n-o JA

Then fis called (Bochner) integrable on A and we define

ff(t) dt = lim f,,(t) dr. 2)
A n- oo
[The integrals on the right side of (2) do converge in (the norm topology of)
B to a limit which is independent of the chonce of approximating sequence
{31

A measurable function f is integrable on A if and only if || f(-)|, is
(Lebesgue) integrable on 4. In fact,

[0 dt” 10y

73 let —o0 <a<b<oo. We denote by L°(a, b; B) the vector space of
(equivalence classes of) functions f measurable on (a,b) into B such that
/()5 € L?(a, b). The space L?(a, b; B) is a Banach space with respect to the
norm

b 1/p
{ Hf(t)ll.,‘?dt} if 1<p<o
I f; LP(a,b;B)) = { **° .

ess sup I/l if p=oo.

te(a, b

Similarly, if fe L?(c,d; B) for every c¢,d with a < ¢-< d <b, then we write
f€ L{.(a,b; B), and, in case p = 1, call flocally integrable.

A locally integrable function g on (a,b) is called the jth dlstnbutlonal
derivative of the locally integrable functnon S provided

f $9() (1) dt = (~1Y f $(g()dr

for every (scalar-valued) testing function ¢ € 9(0, b) = Cy*(a, b).
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Semigroups of Operators and the Abstra@:t Cauchy Problem

7.4 The following sections present a discussion of those aspects of the theory
of semigroups of operators in Banach spaces which we shall require in the
subsequent development of ‘“‘trace spaces’ and the fractional order spaces
Ww*P(Q). In this treatment we follow the work of Zaidman [70].

7.5 Let B be a Banach space, and L(B) the Banach space of bounded linear
operators with domain B and range in B. We denote the norms in B and
L(B) by ||| and |- | s, respectively.

A function G with domain the interval [0, o0) and range in L(B) is called
a (strongly) continuous semigroup on B provided

(i) G(0) = I, the identity operator on B,
(i) G@G)G()=G(s+1t)foralls, t >0,
(iit) for each be B the function G(-)b is continuous from [0, ) to
(the norm topology of) B.

We note that (ii) implies that the operators G (s) and G (z) commute. Also,
(iii) implies that for each 7 > 0 the set {¢:]G ()]s > to} is open in R and
hence measurable. If 0 < ¢, < ¢, < o0, then for each b € B, G(-)b is uniformly
continuous on [#g,¢,] and hence there exists a constant K, such that
IG)bls <K, if to<t<t,. By the uniform boundedness principle of
functional analysis, there exists a constant K such that |G ()|, < K for
all be B and all t€[t,,1,]. Thus |G(-)| s € Lioc(0, 0). We amplify this
result in the following lemma.

7.6 LEMMA (a) The limit
lim(1/¢) log||G(t)| sy = J
=0

exists and is finite.
(b) For each § > §, there exists a constant M, such that for every ¢t > 0

1GOLay £ M;e™.

. 1G s+ Ly < GG o 1G] isy
we have that N is subadditive;
N(s+t) =< N(s) + N(r)

Let 6o = |nf,>o N(r)/t 'Ckeacl'y-o < 60 <oz “Let &> 0 be given and choose
r>0 so that N(r)ir <do+e If 1> 2r, “let k be the integer such that
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(k+Dr<e<(c+2)r.Then A L

N(t) Nkr) + N(t—kr)

“ 0 £
0 t

< N( r)+ - N(t kr).
Now t—kr € [r,2r) so, as noted above, N(t—kr) is bounded, say by K. Thus
N K K
dg < —§Q < —-(60+ )+ < (1 —;)(50+s)+7.

The right side tends to é,+¢ as t — 00, and (a) follows since ¢ is arbitrary.
If 6 > &, there exists ¢; such that if 1 > ¢;, then N(¢) < 8¢, or equivalently
1G(t)]| sy < €. Conclusion (b) now follows with

M, = max(l,supo <<, |G () s) |1

7.7 For given b e B the quotient (G(¢)b—b)/t may or may not converge
(strongly) in B as t - 0+. Let D(A) be the set of all those elements b for which
the limit exists, and for b e D(A) set

b— HNb—G(
Ab = lim 20278 _ iy G2=COD
-0+ t =0+ t

Clearly D(A) is a linear subspace of B and A a linear operator from D(A) into
B. We call A the infinitesimal generator of the semigroup G. Note that A
commutes with G(¢) (¢ > 0) on D(A).
78 LEMMA (a) ForeachbeB

lim (1/¢) G(‘c)b dr = b.

=0+

(b) For each be B and ¢t > 0 we have
t t
fG(t)b dte D(A) and AfG(r)b dv = G({t)b —b.
] o]
(¢) For each b e D(A) and t > 0 we have
t
f G(t)Abdr = G(t)b - b.
(d) D(A)is densein B.
{e) Aisaclosed operator in B, that is, the graph {(b,Ab):be D(A)} isa
closed subspace of B x B.

PrROOF Let b € B. By the continuity of G(-)b we have lim, .o, |G(t)b—b| s =
lim,_o, | G(r)b—G(0)b| 5 = 0. Conclusion (a) follows since b = (1/1) [§ b dr.
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~For fixed ¢ wé have .

s-‘O+ 504 §

o s+t 1t
lim (—f G(1)b dr——fG(r)b d‘t)
s—»0+ \J Js SJo
1 s+t l s
lim (—f G()bd ——fG(t)b d‘t)
s=0+ \S Jt SJo

1 s
lim - | G()G(t)bdt — b = G(1)b — b.
0

s—+0+

This proves (b). If b e D(A), then
f G(2) (ﬂs)Tb”—b - Ab) dr
0

Thus

G(S) G_(_o_) f G@bdr = lim - [G(S+t) G@]bdr

G(s)b-b
<t $up |G (@ |~ — Ab

0<t<t B

-0 as s—»0+.

fG(r)bdr = lim G()G(s)b b a _f'c(r)/\bdr,

s-+0+

which proves (c). Part (d) is an immediate consequence of (a) and (b).
If b, € D(A), b, — b and Ab, — b, in B, then by (c)

G()b, — b, = J"G(r)Ab,, dr.
0

We may let n — o0, justifying the interchange of limit and integral in the same
way as was done in the proof of (c), and obtain

G(t)b—b = f’G(z)bo dr.
0

. Thus by (a)
" — t
lim g(i)—I-J——b = lim -l-f G(1)by dt = by,
-0+ t -0+ Jo :

‘whence b € D(A) and Ab = by. This proves (). §

7.9 REMARK It follows from the closedness of A that D(A) is a Banach
space with respect to the norm |b; D(A)|| =|b]|5 + | Ab]lz. We have, more-
over, the obvious imbedding D(A) — B.
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The following theorem is concerned with an abstract setting of a typical
Cauchy initial value problem for a first-order differential operator.

7.10 THEOREM Let A be the infinitesimal generator of a continuous
semigroup G on the Banach space B. Let a € D(A) and let £ be a continuously
differentiable function on [0, c0) into B. Then there exists a unique function
u, continuous on [0, o) into D(A), and having derivative u’ continuous on
[0, o0) into B, such that

u'(t) — Au(t) = f(1), t=0
u() = a.

3
In fact, u is given by

u(t) = G(t)a +J:G(t—r)f(1) dt. 6]

PROOF (Uniqueness) We must show that the only solution of (3) for
S(t)=0and a=0isu() = 0. If u is any solution and ¢ > 1, we have

%G(f—‘f)u(‘l') _ lim U= 9u+s) — GU—1u()

s=0 S

= limG(t—T—S)— G(I_r%‘,\ /1/
§=0 § .

u(t+s)—u(r)

+1limG(t—1—9)

s—0

~Gt—1)Au(t) + G(r—1)u'(r) = 0.

Thus G(t—1)u(t) = G(t)u(©0) =0 for all +> 1. Letting ¢t - 7+, we obtain
u(t) =GO)u(t)y=0for all T >0. ’

(Existence) We verify that u given by (4) satisfies (3). First note that
u(0) = a and (d/dt)G(t)a = AG(t)a. Hence it is sufficient to show that the
function ‘ .

git) = J:G (t—1) flz) dx ' —

is continuously differentiable on [0, c0) into B, takes values in D(A), and
satisfies g'(¢) = Ag () +/(2).
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Now

g(t+s)—g(1)
A

1 ft+s = l .
-1 J; G+s-0)f) di = [ G- 1) de
~= %f G(t—1) f(r+5) & —-fo(, 1) f(7) dr

= J“G(t—r)w + %f.+30(r)f(t+s-t) dt.
0

t

Since f'is continuously differentiable on [0, c0) into B we have that
50 = [[Gu=0 70 de + G0 S0
[

exists and is continuous on [0, c0) into B. On the other hand,

gu+s)—g(0) _ f'a(s)—G(O)
N

N

G(t—1)f(r)dr + lzf'+sG(t+s——t)f(t) dt

0
ﬂs)—sc(—o) )+~ st(S~r)f(t+r)df-

By Lemma 7.8(a) and the continuity of f the latter integral converges to f(¢)
as s-—0+. This, together with the existence of g’(¢) guarantees that
lim;.o,[G(s)—-G(0)]g(t)/s exists, that is, g(¢r)e D(A). Thus g'(t) =
Ag(t)+/f(1) as required. ||

The Trace Spaces of Lions

7.11 Let B, and B, be two Banach spaces with norms |- |, and |-,
respectively, and let X be a topological vector space in which B, and B, are
each imbedded continuously (i.e., B; n Uis open in B, i =1, 2, for every U
open in X). Then the vector sum of B, and B,

Bl + Bz = {b1+b26X2b1 GBl, bzeBz}
-is’itself a Banach space with respect to the norm:

lu; By +B,| = inf ([|by]ls, +[b2)5,)-
b.b-l{:zl‘w
Letl < p s 00, and for each real number v let t” denote the real-valued
function defined on [0,0) by 1'(t) =1",0 < t < 0. '
We designate by W(p,v; B,, B,), or when confusion is not likely to occur

simply by W, the vector space of (equivalence classes of ) measurable functions
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fon 7[0, ) into B, + B, such that A
'fel’©,0;B,) and 1f e L’(0, w;B,),

S’ denoting the distributional denvatxve of f The space W is a Banach space
with respect to the norm /

I lw = 1fsW (1%00 By, B,)|
= max([[£'f; L7(0, co; B, [1/"; L (0, c0; By)]).

As an example of this construction the reader may verify that
W(p,0; W!P(R"), L*(R") is isomorphic to the Sobolev space W' 7(Q)
where Q = {(x,1) = (x,, ..., x,, 1) e R"" 1 :¢>0}.

We shall show that for certain values of p and v, functions fin W possess
“traces” f(0) in B, + B,.

7.12 LEMMA Let fe W. There exists b € B, + B, such that
4
f() =056+ f f)dr a.e. in (0, o). )
1

Hence fis almost everywhere equal to a continuous function on (0, o) into
B, +B,.

PROOF Since 1*fe LP(0, c0; B,), therefore fe L (0, c0; B)). Similarly f’ e
LF (0, 00; B,), and the function v defined a.e. on (0, c0) into B, + B, by

o(t) = £(1) — f () de

belongs to L{_(0,00;B,+B,). It follows that the scalar-valued function
v(-),b") belongs to LI _(0,00) for each b'e (B, + B,)". Thus for every
¢ € Cu®(0, 0) we have

loc

o oo
[ Gewesend = - ["wns sma
o at 0

- <fwu(t) d'(2) dt, b’>
0
—< [[roswa-["vwa|rodw b'>

<rf'(r)¢(t) dr — f N () () dt, b’> ~0.
0 1) . ‘

(The change of order of integratibn and pairing (-, - ) above is justified since
vis integrable on the support of ¢ and so can be approximated there by simple
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functions for which thie .interchange is clearly valid.) By Corollary 3.27,
" (o(t), b is constant a.e. on (0, 0) for each b’ € (B,\+ B,). Thusv(t)=b, a
fixed vectorin B, + B, a.e. on (0, o) and (5) follows at once. Clearly the integral
in (5) is continuous on (0, ) into B,, and hence'into B, + B,. | ;

7.13 LEMMA Suppose (1/p)+v < 1. Then the right side of (5) converges
in B, + B, as t - 0+. The limit is defined to be the trace, f(0), of fat ¢ = 0.

. ProorF If 0 <s <t we have, for | <p < oo,

ﬁ%mﬁ

E f @yt e

' (= 1)/p
< |5 170, 005 By)| (j r‘vp/tp-l)dr> _
0

The last factor tends to zero as t — 0+ since (1/p)+v < 1. (The same argument
works with the obvious modifications if p =1 or p = c0.) Thus [} (1) dt
converges in B, as t — 0+, which proves the lemma. |}

7.14 Given real p and v with I <p < o0 and 0 = (1/p)+v < 1 we denote by
T(p,v; B,, B;), or simply by T, the space consisting of all traces f(0) of
functions fin W = W (p,v; B,, B,). Called the trace space of W, T is a Banach
space with respect to the norm
luly = inf {flw.
u=f(0)
»fe w

T is a subspace of B, + B, and lies topologically “between” B, and B, ina
sense which will become more apparent later.

Before developing some properties of the trace space T we prepare one
further lemma concerning W which will be needed later.

7.15 LEMMA The subspace of W consisting of those functions fe W
which are infinitely differentiable on (0, o) into B, isdensein Wif 1 <p < c0.

Proor Under the transformation

oo t=¢, fle) =@,
_we have that fe W if and only if -

[© @it + e 17 & < o,

where 8 = (1/p)+v. If J, is the mollifier of Section 2.17, then, just as in Lemma
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2 18, J * ]' is mﬁmtely dlﬂ'erentlable on IR into B, and

e~+0+

- lim ) (e""ll-’.*f(f)—f(f)llﬁ, @ VP (J, o fY (T)—f (f)lln,) dt =

Thus f,(¢) = J,,,*f(log?) is infinitely differentiable for 0 <t < oo with
values in B,. Since f, — fin W the lemma is proved. |

We now investigate interpolation properties of the space T.

7.16 LEMMA Let 0 = (l/p)+v satisfy 0 <8 < 1. Then
(a) every u e T satisfies
lulr = iﬂ£ l2°f; L7 (0, 005 B) | ' = £ *; L7 (0, 05 By)|% (6)
A=
(b) ifueB, nB,, thenue T and
lullz < Kllulp uls, M
where K is a constant independent of u.
ProoF (a) Fix ueT and £¢>0 and let fe W satisfy f(0)=u and
I/ 1w <llullz+e. Let
R =|[0f;LP(0,00;B)], S§=[f";L°(0, 0;B,)|.

For 2 > 0 the function f, defined by f,(¢) = f(At) also belongs to W and
satisfies £, (0) = u. Moreover,

|2°f2; LP(0, 00; By)| = AR, Htv(f).)’;Lp(O’ OO;BZ)” = A170s.

These two expressions are both equal to R' ~°S? provided we choose A = R/S.
Hence

max(R,S) = |fllw < lu|r +¢

inf 1 falw + &

l/\

< inf max(A7°R,2!17%S) + ¢ < R'7°S? + ¢ < max(R,S) + &.
A>0

Since & is arbitrary, (6) follows at once.

(b) Let ¢ e C([0, 0)) satisfy. ¢(0) =1, ¢(t1)=0if 1> 1, |p(1)] <1,
and |¢'(1)] < K, forall £ > 0. lfu € B, N By, let f(¢) = ¢(¢)uso that u —f(O)
Now

"t‘:f’ LP(O* 00, BI)" < K2 "u"Bl’
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where K, = {[}¢*"dt}'/*. Similarly,
\ £°f'; L?(0, 003 B,)|| < K K, [lul g,
Hence f'e W and (7) follows from (6). |}
The above lemma suggests the sense in which T lies “between” B, and B,
provided 0 < 0 < 1. The spaces T corresponding to all such values of 0 are
sometimes described as constituting a scale of Banach spaces interpolated

between B, and B,. Many properties of T can be deduced from corresponding
properties of B, and B, via the following interpolation theorem.

7.17 THEOREM Suppose that B, n B, is densc in B, and B,. Let B,,
B,, and X be three spaces having the same properties specified for B,, B,, and
X in Scction 7.11. Let L be a linear operator defined on B, n B, into B, n B,
and suppose that for every v e B, n B, we have

ILo|lp, < Ky lv]s, @®)
ILo]s, < K3 v],- ©)

Thus L possesses unique continuous extensions (also denoted L) to B, and
B, satisfying (8) and (9), respectively, and hence to B, + B, satisfying

[ Lu|g,+5, < max(K,, K,)|ulp,+ s,

If 0<0=(l/p)+v <1, then for every ueT=T(p,v;B,,B,) we have
LueT=T(p,v;B,, B;) and

ILulr < K{7°K,° Julz. (10)

ProoF L is defined on B, + B, and hence on 7. By (6) we have forue T

|Lullp = inf ||/ LP(0, c0; B (10" L7(0, 005 B, |°.

5% L
Also, there exists, for any given ¢ > 0, an element fe W with f(0) = u such that
23 LP(O, 003 BOI' =1 £f"; LP(0, 00; BY)|® < |ulr + &

For 1 > 0 let f(£) = Lf(t) so that f(0) = Lu and

[e2f5 L0, 00; B |0 L0, 003 By))*

< K7\ 0f 120,003 B))| ' T°K,° |25 L0, 05 By) |
Hence R ‘ -
ILullr < KI7°K°(Jul7+e).

Since ¢ is arbitrary (10) follows. ||
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’

If we denote by ||L|| LS. the norm of L as an element of the Banach space
L(S,8) of continuous linear operators on S into § we may write (10) in the
“form

"L“L(T T < “L“L(B.,B.)"L“?.(nz,lb)-

7.18 LEMMA Suppose that B, n B, is dense in B, and B,, and that there
exists a sequence {P;}?., of linear operators belonging simultaneously to
L(B,) and L(B,) and having range in B, n B,. Suppose also that for each
b;eB;,i=1,2,

fim || P b;— by, = 0.

Jj—
Then for every u € T we have

lim[|Pju—u|; = 0.

Jj—w

In particular, B, n B, is dense in T.

ProoF Fix ue T and choose fe W such that f(0) = u. Let f;(t) = P; f(¢).
If b, e B;, i = 1,2, there exists an integer j, = j,(;) such that if j > j,, then

"iji"bi“m <1

Hence {P;b;} is bounded in B;, i = 1,2, independently of j. By the uniform
boundedness principle there exist constants K, and K, such that for every j

[PillLsn < Ki-
It follows that

1Ols, < Kl SOls,s 15O, < K[/ (D5,

Since for almost all + > 0, £;(¢) = f(¢) in B, and f;'(t) = f'(t) in B, as j — oo,
we have by dominated convergence that ¢°f; —¢'f in L(0,c0;B{) and
t'f; = t’f"in LP(0, c0; B,). Hence f; — f'in Wand so P;u = P; f(0)— f(0)=u
in T. Since ¢'f, and 1'f;’ take values in B; n B,, P;u belongs to B, n B,. |

We quote now a theorem characterizing the dual of a trace space as another
-trace space. The proof is rather long and will not be given here—the interested
" reader may find it in the work of Lions [37] where trace spaces soméwhat*mo;e
general than those introduced above are studied. (The following theorem i is
a special case of Theorem 1.1 of Ref. [37, Chap. 11].)

- 719 THEOREM Suppose that B, and B, are reﬂexive and also satisfy the
conditions of Lemma 7.18. If 1 < p < oo and (1/p)+v = 0 satisfies 0 < § < 1,
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then (I/p)—v=1—(1/p)~v=1-0and
LT(P’ v; By, By)]' = T(p, —v;B,', By').
In particular, T(p, v; B,, B,) is reflexive.
We now prove an imbedding theorem for trace spaces between two L°-
spaces which will play a vital role in extending certain aspects of the Sobolev
imbedding theorem to fractional order spaces (see Theorem 7.57). If Q is a

domain, in R", then B, = L*(Q) and B, = L?(Q) are both continuously
imbedded in the topological vector space X = L} (Q). (A subset U c L! (Q)

loc loc

is open if for every ue U there exists ¢ >0 and Kcc Q such that
lo—ullo, ;. x <& ve Ly () impliesve U.)

7.20 THEOREM Let p,q,0satisfy | <p<q<o0,0<0<1,0=(1/p)+v.
Then

T(p,v; L1(Q), L*(Q)) - L (Q), n
where

1/r = [(1=0)/q] + (0/p).
ProOF  Suppose that fe C*([0, c0)). From the identity

10) = fit) - f oy,

we may readily obtain

1/O)] < j )l de + f ) de

20 t/p kS ‘l/p 1 t/p
< {(f 1""lf(t)|”dt> + <f r””lf'(t)l"dt> }(J. t‘”"a‘t)
1] 4] (1]

= Kl(']tyllo,p.(o.w) + ”f‘f'uo,p,(o,oo));

where K, < oo since 0 = (1/p)+v < 1. By a homogeneity argument similar to
that used in the proof of Lemma 7.16(a), we may now obtain

SO < 2K, |12 116, 0,50y} L7119, . 0, - (12)

Now suppose that f e W(p,v; L1(Q), L?(Q)) and, for the moment, that fis
infinitely differentiable on (0,c0) into LI(Q). ‘Let f(x,1) = f(r)(x) for
0 <1<, xeQ. From (12) we have that f(x,0) = lim,.o f(x, 1) satisfies

: © ‘ A~0r/p [ poo 3 P \orie
li(x,owskz( [ t""lf(x,t)l"dt> ( [| 27 dr)
(1] 0
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for almost all x € Q. Thus, by Holder’s inequality,

Q ' a\ Jo
X (J;( J:o‘ ® 'a%] (x,1) pdt )wl’ dx)m ,

where (1/s)+(1/s") =1. If we choose s so that (I —@)rs=g¢, then also
Ors' = p and we have

17¢: 00,0 < K <I (fwt“”lf(x,t)l”dt>q/pdx>(l_ow
a\Jo
® p 8/p
X (J f tf dtdx)
a Jo

© (1-6
[“isora
o]

0
-a_if(x’ t)

) p
775 L2 (0, oo; L (Q))°

0,9/p, R

= K,

© (1-0)/p
sks(ﬁ r"'u|f<t>|”no,q,,,ndt) [0 L2 (0, oo; LE@)°

= K, ||£"f; L?(0, co; LY Q)| 1 ~° || 2*f"; LP(0, o0; LP () ]I°.

By the density of infinitely differentiable functions in W (Lemma 7.15) the
above inequality holds for any fe W.
It now follows that if u € T(p, v; L1(Q), L?(2)), then

lullo,r,a < inf Kiyf2’f; L7(0, 0o; LY Q)| ~°[I2f"; LP(0, 05 L ())||°
I{OG)ZM
= Ky |ulr
by Lemma 7.16(a). This establishes imbedding (11). |

7.21 REMARK With minor modifications in the proof, the above

theorem extends to cover ¢ = co provided we use in place of LY() the closure
of L?(Q) n L*(Q) in L*(Q).

Semigroup Characterization of Trace Spaces

722 LetBbea Banacﬁ space and G a continuous semigroup on B which i‘sv
uniformly bounded, that is, for which there exists a constant M such that

IG)ls < M, 0<t< oo
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Let A be the infinitesimal generator of G so that (see Remark 7.9) D(A), the
domain of A in B, is a Banach space with respect to the graph-norm

4 lu; DAY = [[ulls+ [ Aul g,

and is also a dense vector subspace of B. The spaces B, = D(A) and
B, = X = B satisfy the conditions of Section 7.11, and we may accordingly
construct the trace space T = T(p,v;D(A), B) provided 0= (l/p)+v <1
Theorem 7.24 characterizes T in terms of an explicit norm involving the
semigroup G. First, however, we obtain an inequality of Hardy, Littlewood,
and Polya [28] which will be needed.

7.23 LEMMA Let fbe a scalar-valued function defined a.e. on [0, ) and
let

gty = (1) L o) de.

If1 <p<ooand (I/p)+v=20<1, then

f gl de < [1/(1—0)] J-wt“"lf(t)l"dt. (13)
[4] 0

PROOF We may certainly suppose that the right side of (13) is finite. Under
the transformation ¢ = ¢°, f(€*) = f(x), & = €%, g(€°) = §(1), (13) becomes

f e g\Pdr < [1/(1-6)7] fw & | J(@)|? k. (14)
Note that
g = e"f‘ f(o)e’ do.

Let E(t) = €™ and

O if >0
,, F(T)‘{o if <0
Then E-§-= F+(E-f), and so by Young’s theorem 4.30,
' 1E-Glo.p.r < IFlo,1.R 1 Ef o, p.0-

“This inequality is precisely (14) since |© |F(z)|dr = 1/(1—6). .1
7.24 THEOREM - Let A be the infinitesimal generator of a uniformly
bounded, continuous semigroup G on the Banach space B. If | < p < o and
0 < (1/p)+v <1, then T = T(p,v; D(A), B) coincides with the space T° of
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~ all ue B for which the norm

!

. “no S - ) 1/p .
e = (g [T riooumagar)” s
is finite. The norms | ||y and || - | ;o are-equivalent.

Proor First let u e T and choose f'e W such that f(0) = u. For the moment
let us assume that f is infinitely differentiable on (0, c0) into D(A). Let
/@)= Af(t) = h(t). If t > ¢ > 0, we obtain by Theorem 7.10,

f(t) = G(t—¢) f(e) +f'G(t—t)h(t) dr.

Hence .
G(t—¢) fle)—fle) = f'f’(t) dt —f'G(t—r)h(r) dr.

Letting ¢ — 0+ in this identity and noting that f(g) — f(0) by definition, we
obtain

mnﬂm—ﬂm=Jp%0w-Lbu—ﬂm0m. T a6

Now (16) holds for any fe W since, by Lemma 7.15, f'is the limit in W of a
sequence {/,} of infinitely differentiable functions on (0, c0) with values in
D(A). Hence for u € T and any f'e W with f(0) = u, we have

GHu—u = J:f’(t) dr — J:G(t—-r)h(r) dr, h(t) = f'(r) — Af(2).

Thus
GHu—u

1 t . M t
< [ @lde+ 2 [ 1ol
B 0 tJo

where we have used the uniform boundedness of G. Applying Lemma 7.23,
we obtain, putting 8 = (1/p)+v,

F"“'”” IIG(t)u—ungdi
o
1 ® !
(1_g)pJ; t”(“f‘(’)”ri-M“h(z)"s)lpdt
(1-6y
PEAUEN)
(1-0y

<
(Ilt"f'; L*(0, o0; B)||? + ||[£*Af; L?(0, o0; B)||%)

/1%
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Since this holds for any fe W with f(0) = u we have
® 14
[Cerie@u-sigan < (7 v
0 . ‘ ’ -

Also; the identity operator on B provides imbeddings of B-into B (trivially)
and D(A)into B, each imbedding having unit imbedding constant. By Theorem
7.17 we have as well, T— B and |u| g <|lu|;. Hence u € T implies u € T° and

2M+2
bz = (14 2250

Conversely, suppose that ue T° Let ¢ e C*([0, 0)) satisfy ¢(0) =1,
¢()=0fore>1,|p(t) <1 and |¢'(t)| < K, for = 0. Let

J(1) = ¢(0)g(),

where
g) = (I/t)f G(Y)udr, t > 0. (17)
o

In order to show that u € T and |u|y < K, [ju] 1o, it is sufficient to prove that
Se W and
1flw < K [ulzo 18) .

[since f(0) = lim,_ o, ¢(¢)g(#) = u by Lemma 7.8(a)] and this can be done by
. showing that 1'ge L?(0,1;D(A)) and t'g’ € L?(0,1; B) with appropriate
norms bounded by K ||u| 7.
By Lemma 7.8(b), {, G(t)u dr € D(A) and
I N .
AJ G(Mudt = G(t)u — u.

0

Thus

i 7 g(1): DAYP e

1 P
=f t‘"“"’( ) dt
o B

1 oc '

< 2""’M"||ul|,€f t"’dt+2""’f (VPG (Yu—u| L dt
0 (1]

< 2P  max(M?6/p, 1) |u]%o.

+ "A J-’G(r)u dr
B o

er(t)u dri
0

Since

g'@t) = ~(1‘/t) G(t)u—(1/t%) LIG(r)u dt

= (1/)(G()u—u) — (1/t?) J:(G(r)u—u) dr,
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and since

M d, <l

e

and, by Lemma 7.23 with v—1 replacing v,
1
[
(4]

we therefore have

" dr < [1/2=0y] f " 100G (ryu—ul g dr
B 0
< [1/Q2— 01 ]ulo

(1/¢?) J:(G(t)u— uv) dt

1
[[e1gigar < Kofulgo
Thus g € W, (18) holds, and the proof is complete. ||

7.25 For our purposes we require a slight generalization of Theorem 7.24,
Let A, A,, ..., A, be a finite family of infinitesimal generators of commuting,
uniformly bounded, continuous semigroups G,,G,, ..., G, on B. Thus

1G;(Dllsy < M;; l<j<n tz=0;
G;(5) Gi(1) = Gy (1) G;(s); 1<jk<n s5t=20.

Let B" denote the product space Bx Bx --- X B (n factors) which is a Banach
space with norm

"(bl’bZa""bn)”B" = Z " HB
The operator A is defined on D(A) = ﬂ;=1 D(A,;) into B" by
Au = (Aju,Ayu, ..., A u).

We leave it to the reader to generalize Lemma 7.8 to show that D(A) is dense
in B, that A is a closed operator, and hence that D(A) is a Banach space with
respect to the norm :

1 DI = il + Al = ||uu.,+iuA,~uu,,.

7.26 THEOREM If0< (/p)+v< 1,1 <p<co,then T= T(p, v,D(A), B)
coincides with the space 7° of all u € B for which the norm

, n o ) Ip
fulre = (uuns+ | t"“”IIGf(t)u—ullsdt)
=t do :

is finite. The norms || - ||+ and || | ;o are equivalent.
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_ 'PRoOF The proof is nearly identical to that of Theorem 7. 24 exoept that in
place of the function g(¢) given by (17) we use .

g@) = (l/t")J; L -—-J;G,(rl') G,(ty) - G (t)udr, d‘tz,\--' dr,.
-Thc details are left to the reader. || )

7.27 EXAMPLE Let B=L?(R"), 1 <p < oo, and for ue B set
(Giu)(x) = u(xy, ..., x;+t,..,x,); j=12,..,n

Clearly the G; are commuting, uniformly bounded (M;=1), continuous
semigroups on LP(R"). (In fact they are groups if we allow 1 < 0.) The corre-
sponding infinitesimal generators satisfy

D(A) = {ue L*(R"): D,ue L*(R")},
Aju = D;u, ue D(A)).
Accordingly, D(A) = (Y}-, D(A;) = W'?(R"). By Theorem 7.26 the norm

. PO 1ip
(||u1|5,p'“..+ Y ft("_”"J.. [(X g, s X1, o X =Xy, oy X)) P dx dt)
i=1Jo [y

is equivalent to |ulr on the space T = T(p,v; W"?(R"),L*(R"),
0<(l/p)+v< 1.

Higher-Order Traces

7.28 Up to this point we have considered only traces f(0) of functions satis-
fying, with their first derivatives f, suitable integrability conditions on [0, c0)
into various Banach spaces. We now extend the notion of trace to obtain
values for fUN0),0 <j<m—1, provided f,f’,....f™ satisfy such inte-
grability conditions. As a result of this extension we will be able later to
characterize the traces on the boundary of a regular domain Q, of functions
belonging to W™ ?(Q).

7.29 Let B be a Banach space and A,, , A, infinitesimal generators of
commuting, uniformly bounded, continuous semigroups G, ..., G, on B. For
each multi-index o we define a subspace D(A*) of Band a co’rresponding linear
operator A® on D(A®) into B by induction on |a] as follows.

If a = (0,0, ...,0), then D(A%) = B and A® = I, the identity on B.

Ifa =(0,...,1,...,0) (1 in the jth place), then D(A") = D(A;)and A* =

If D(A®) and A* have been defined for all g with |8| < r, and if |a|=r+1,
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then , - .
D(A") = {u:ue D(A®) and A" Pue D(A®) for all B < o},

A% = A% .. A, R (
If k is a positive integer, let D(A*) = () s- + D(A%). Once again we leave to
the reader the task of verifying (say by induction on k) that D(A¥) is dense in

B, that A* = (A%, <, is a closed operator on D(A¥) into [];,<«B, and
hence that D(A¥) is a Banach space with respect to the norm

lu; DAY = 3 A%l 5.

lel <k

7.30 For positive integers mand real p, 1 <p < oo, let W™ = W™ (p,v;A; B)
denote the space of (equivalence classes of) measurable functions f on [0, c0)
into B such that

©f® e [2(0,00; D(A™%)  0<k <m,

f® being the distributional derivative d*f/dt*. The space W™ is a Banach space
with respect to the norm

I/ wm = max le2f®; L7 (0, 005 D(A™9)].
<k<m
Note that W' = W(p,v; D(A), B) with D(A) as in Section 7.25.

731 LEMMA LetfeW", m>1.1f0<k <m—1 and a is a multi-index
such that |a| + k < m—1, then the function f, = A*f® e W' and

1 fallws < §S (lwm-

ProorF We have (for 1 < p < 0)

% is LP(0, 00; D(A))|? = L”,vp(";\af(k)(t)uﬂ + g‘ M/\j/\y(v(,)“")”dt

< ”z”ﬂ( > nABf“’mnB)"dr
[¢] 1Bl<m—k

= {2495 L2(0, 005 DA™ )P < | f -
Also,

I 20, coi B = [ AT ol
i sfwt"(. > 'II’A’f"‘*"(t,)ila)pd‘t
o |Blsm—k—1
L = R L2(0, 00 DA™ TP < (S e

whence the lemma follows. |
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7.32 Let us assume hereafter that 0 < (1/p)+v <1 and denote by T° the
trace space T(p, v; D(A), B) correspondmg to W!. By Theorem 7.26 we may
take the norm in T to be

lufzo = (uu||s+nunz)*".‘
where

n © 1/p
lullg = (jzl J; ‘(v—”"IIGj(t)u—u"Edt)

Higher-order trace spaces may now be defined as follows. For £ =0,1,2,...
we define T* = T*(p,v;A; B) to be the space consisting of those elements
ue D(AY) for which A®ue T°® whenever |a] < k. The space T* is a Banach
space with respect to the norm

e = (uu;Dm*)uwMz:k 11~u||s)”’

It follows from Lemmas 7.31 and 7.13 that if fe W™ and |a|<m—k—1,
then A%f™(0) exists in T° and

1A O 70 < K|S s

where K, is a constant depending on « and k. Hence f®(0)e 7™~ *~! and

i/p
FAO) p— =(l!f""(o);D(A"""“)H"+ ) IIA”/"“’(O)IIZ>

1Bl=m—-k-1
< Kl flwm-
It follows that the linear mapping
f = (f0), £0), ..., £~ 1(0)) 19)
is continuous on W™ into 7"~ ! x T™ 2 x ... x T =T[[rZ} T™~*~!; that is,

N PO S

We shall prove that this mapping is onto (see Lions [38]).

7.33 THEOREM The range of the mapping (19) is [[rg 7%~ ' If

(Mos Uyy s thpy— 1) € [ I P24 T™ %71, there exists fe W™ such that f&(0) = u,,
0<k<m—1,and :

- m—1 ~ .

I lwm < Kohzo fetalirm--1. N

?Roof The proof i§ similar to the second part of that of Theorem 7.24, but

is rather more complicated. To achieve some simplification we shall deal with
the special case n = 1 so that A; becomes just A and A* becomes A* (jo| =
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. !
Suppose we have constructed for each k, 0 s ksm-1, a functlon .
f,‘ € W™ such that S¥(0) = u, and
I fllwm < K st zmsc-1.
Let 4, ,, 0 < r < m—1, satisfy the nonsingular system of equations
mo1 1 if j=k
i)y =
I {0 if 0<j<m—1, j+#k

Then the function
m—1 . )
gi(t) = Z Ak Ju(rt)
r=0
satisfies
90) =, g0 =0, O0<j<m-1, j#k
Moreover, it is easily checked that

Mgl < Kk I fell e

Hence the function f(¢) = ¥7'=4 g,(2) has the properties required in the state-
ment of the theorem. Thus we need only construct f,.

In the rest of the proof we shall make extensive use of the convolution
product of operator-valued functions on [0, o). If for 1 > 0, Fi(¢) and F,(r)
belong to L(B), we define F, « F, on [0, o0) into L(B) by

t
F,x F,(t)b = f F(t—1) F,(1)b dr, be B.
0
(All the operators we use will commute.) If F; is continuously differentiable
on [0, ) into L(B) so that F,’(¢) € L(B), we have evidently
(Fi=E)@) = F' % F,(1).

We denote by F“) the convolution product F F-.. % F having m factors;
this is well defined since * is associative for mutually commuting factors. If
I(t) = I denotes the identity on B, we have clearly

1(('-!))(,) = [™ 1/(m— 1)!] L

If G is the continuous semigroup whose infinitesimal generator is A, then -
by Lemma 7.8 we have

AU*G) =G—1
or, when both sides are restricted to elements of D(A),.
I*AG=G-1I
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{

~k=1 we define

Su@) = [m+ )Yk ()9 (1)

where ¢ & C([0, o)) satisfies $()=1 if 1< 3, $(t)=0 if 1>1, and
|¢m(f)| < K,, 0 <j<m, and where

g(1) = 7P Gty 20)

[Note that this is the same function g as defined in (17) in the proof of Theorem
7.24 if m =1 and k = 0.] We must verify that

SBO0) = u @n

Givenu=u, e T

and
I fllwm < K ]| pmmsc-s. (22)

In view of the constancy of ¢ for ¢ < 1, (21) will follow if we can show that
g®(0) = [k!)/(m+k)']u.
However,
g(t) = t ™™D o (G— I+ 1) ™)(t)u
-3 (’”)]«kﬂm-m « (G=D)D()u.
i=o\J

Since ¢ MW+ +m=iN(r) = (*7J/(k4+m—j)!)] has vanishing kth derivative
if j > 0 we have

d\F ¢
(k)( )_( ) (k+m)!

In order to establish (22) it is clearly sufficient to show that

— )y = :
e + (G- D POu = o

fl'v'llA‘y‘j’(f)||§df < Ky fulfm-s- 23)
0

holds for every i,j such that 0 < j < mand 0 < i < m—j. We distinguish three
cpses
Case 1 Suppose 0<j<k and m—k <i<m—j. Let w=A""*"1y
'l“hus weB. Let/=k+1+i—msothat/>1and k+1—/2>j. Now
A (t) = ~mKH1=D) 4 A UAD)  GU)  GUm= '”(t)w
Since A(I»G) = G— I we have '
AT o GO = (G-,
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and so
(,) = t—ml((kﬂ 1, G“"' " 4 (G- 1)((1))(,)“,
Since k+1—12_1we have, for ¢ > 0,

Jj
NgP) = 3 w,(),
where
w,(t) = Krt—m—rl((k+l~l-j+r)) * GUm=1) (G—I)((m(t)w.

Now
“1((k+1-l*j+r)) * G((m—l)) * G((,_l))"L(B) S K4t(k+1—l—j+r)+(m—~l)+(l—1)

=K t2m-i—j+r—2
- 4

Hence

1w, ()]s < Kt ™™~ f (=PI |G w—wllp de

t
< K,t"'"""zf 1G (@) w—wl|5 dr.
V]
Since i < m—j we therefore obtain for 0 < <1
. » - t
INgPOls < Kot 2 [ |G @w =iy e

It follows by Lemma 7.23 (with v—1 in place of v) that
1 o 1 t P
[ ingmongar < x, | t“—“"((x/r) [ nG(r)w—wanr) p
[} (1] (V]

< K7j (0= 8 |G (£) w— w2 dt
0
< Ky [wlfo < K Julgmcs

Case2 Suppose 0<j<kand0<i<m—k—1.Then w= A'ue Band
Alg(f) = £=mI@+D) 4 GEY(p)y,
Hence

ANg¥() = 2 w,(t) = i R, t=morp@+1=i+m o GUm(r)yy,

r=0

Now

Iw,()la < Kot ~m=rtrizivn=temy), = Kgt“~ |w| 5.
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Thus
A gD s < Kot~ wi

and

l - s
L P INGIONF dt < KoP[wls = Ko® | A'ulls < Ko® |ullpm-s-s.

CAse3 Suppose k+1<j<m and 1 <i<m—j. Then i<m—k-1 and
i =Aue™ "1 with

77 P /7] -
Let h(t) = A'g(,). Thus
h(l) '= t—m[((’H- 1) * G((M))(t)a. (24)

In order to prove (23) in this case it is sufficient to show that
l e
[[emoonsa < Kiolita-ver-. @5)
o

Now G = A(I*G)+1 so that
h(t) = Tmp+2)) G(('"))(I)Aﬁ 4pTmpkE) G«"'_l»(t)ﬁ.

Another m—1 repetitions of this argument yields
h(t) — mil t-—mz((k+2+l)) * G«m-’»(f)/\ﬁ + 1_m1((k+1+m))(t)ﬁ.
i=0 R

For purposes of proving (25) we may omit the term
¢TI g = [k +m)!]d

since the jth derivative of this term vanishes for ¢ > 0. Accordingly we consider
m=—1

h(t) ~ Y 17mE 240 GUm=D) () A (26)
=0

We repeat m—k—i—2 more times the preceding argument used in
deriving (26) from (24), each time discarding terms which are polynomials of
degree <j~1 and so contribute nothing to A, This leads to

h(t) ~ mz.:‘ (M U+ 24 (m-k=i=2)+D) *'G((m—l))(t)Am—k—;l—iﬁ.
-~ f=0 . , .
Let w= A""%"1-15 = A" %=1y The terms of the above sum are of the
form . _ ‘
wy(t) = t—ml((mH-i))* G“"'"”(t)w.
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where 0 < Is m—1. Note that m+1 -i 2 j. In order to’ prove (25) it is suffi-
cient to show that

1 .
f WO de < Kyglwlge. @n
0

At this point we must distinguish two subcases, i < m—~j—~1 and
i=m—j.
If i < m—j—1, then w{) is a linear combination of terms of the form

t—m—rl((m+l—i—j+r)) * G((m—l))(t)w
whose norms in B are bounded by
Klzt—m—r+(m+l—i~j+r—l)+m—l”w”B < Klztm—j-l'-l ||W||T°

and (27) follows at once.
If i = m—j, we have

wlt) = (IO s G 4 G- Dy o)
= M+, GUm=-1-1)) G-nHE)w
4 TG GUn == D))y,

We repeat this procedure on the last term m—/~1 more times to obtain

m=1=-1
wi(t) = Z mplGriEs) , Glm=l—s- l))*(G 1)(I)W+t_'”1((’+"'»(t)w

§=

Again we may discard the last term which makes no contribution to (27). It is
therefore sufficient to establish (27) with w, replaced by

wi (1) = ¢ TP GUn=l=s=10) o (G- ]) () w.
However, w{i(t) is a linear combination of terms of the form
t—m—rI((l+s+r)) * G((m—l—s—l)) * (G—‘I) (t)W

for 0 < r <j. It follows just as in Case | that for0 <7 <1,
t B
[W20ls < Kist™? [ 166 w=wla ds

and hence, using Lemma 7.23 again, that (27) is satisfied. This completes the
proof ] .

We remark that the proof for general # is essentially similar to that gi\}en
for n =1 above. In place of (20) one uses (a suitable multiple of)

g(t) = M), G % ooo % GE™(1) u,
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7.34 EXAMPLE Let B=L°(R") and G,, 1< J<n, be as- in Examplc
7.27 so that A; = D;. Evidently

DAY = (ue P(RY: D'ue (R, |e| <k} = e (R,
For each ue L? (R%*1) define @i a.e. on [0, o) into L?(R") by
@)Xy ooy X)) = U(Xqy ey Xy 8).

Then ue W™P(R%'') provided @™ e LP(0,00; W™ :P(R"), 0<k <m.
Accordingly,

wmP(RY) = W™(p,0;A; LP(RY)
with A = (D,,...,D,), If I < p < o0, the mapping y
Yu— (u(" reey ':O)an+lu(" veey '10)9 Dnm+1u( PREEE yo))

is an isomorphism and a homeomorphism of W™?(R"*')/kery onto the
product [[r=3 7™7*~* where

T" = T*(p,0; A, L (R") = {ve W"?(R") : D've T° |«| < k}

and

ol = { %, 10008, e

f t "f [D*o(xy, ..., x;+ 1, ..., X,)
|a| kj=1/J0

— Dv(xq, ..., xp)|? dxdt}

The Spaces W*?(Q)

7.35 We now define spaces W*?(Q) for arbitrary domains Q in R", arbitrary
values of s, and | < p < 0. These spaces coincide for integer values of s with
the spaces W™?(Q) and W ~™?(Q) defined in Chapter 11l. For s >0 the
definitions can be extended to p =1 and p = o0, but for the time being we
ignore these limiting values. :

The'spaces B, =W"P(Q)and B,=X= L"(Q) clearly satisfy the con-
“ditions laid down in Section 7.11. For 0 < 0 <1 let

T%*(Q) = T(p,v; W"*(Q), L* (),
where v+(1/p) = 0. Denoting W = W(p,v; W'?(Q), L*(Q)), we write the
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normof u in T*?(Q) as

. © Up
T @) = inf max{(f t"llf(t)llf.p.nd') :
N eW 0 '

ui!(o) .
© 1/p
( f % llf’(t)lls.,.ndt> } @8)

7.36 Let s> 0 be arbitrary. If s =m, an integer, we define W*?P(Q) =
wm™P(Q). If s is not an integer, we write s = m+ ¢ where m is an integer and
0 <o <I. The space W*P(Q) is, in this case, defined to consist of those
(equivalence classes of ) functions u € W™ ?(Q) whose distributional derivatives
Du, |a|=m, belong to T'~*?(Q). Then W*P(Q) is a Banach space with
respect to the norm

i/p
il 0 = {Ilull.';,,,,a+ z uD"u;T‘-wm)u'} . @

7.37 The operator P given by
Py = (u» (Dau)|¢|=m)

(the multi-indices « with |a| = m being ordered in some conveient way) is an
isometric isomorphism of W*?(Q) onto a closed subspace of the (product)
Banach space

S=wmr@x [] T'"*7Q)

having norm

i/p
s @i ST = {nuu:;,,,Q+ T o T‘*“'Pm)u"}

la|=m

Since W™P(Q) and T! 7 ?(Q) are reflexive (Theorems 3.5 and 7.19) it follows
by Theorems 1.21 and 1.22 that W* ?(Q) is reflexive.

7.383 THEOREM For any s > 0, C,*(R") is dense in W*?(R").

Proor This result has already been proved for s =0, 1,2, ... (Theorems 2.19
and 3.18) and in particular W':?(R") is a dense subset of L?(R") [i.e., dense
with respect to the topology of L?(R")]. If s =m+0 >0, where m is an
integer and 0 < ¢ < 1, the theorem may be proved as follows.- -

Let ¢y € C°(R) satisfy Yy(t)=1 it +<0 and Y () =0 if ¢ 2 1. For
i=1,2,3,... let §; € Co*(R") be defined by

¥;(x) = ¥ (lxj—
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. Let J, be the mollifier mtroduced n Sectlon 2. 17 If uisa functlon defined
(a.e.) on R", set

Pu= JyirWou), n= 1,‘2,....

Evidently P; is a bounded linear operafor on W™P(R") into W™?(R") for
=0,1,2,..., and has range in C,*(R") in each case. We can deduce from
Lemmas 2.18 and 3.15 that if w € W™?(R"), then

lim | Pju—ul,, pmn = O.
jrtw
It follows by Lemma 7.18 that if 0 < 0 < | and u € T*?(R"), then
lim | Pju—u; T*?(R")| = 0.

j-o

Since
D*Piu = Jy;» D“(l//j-u) = PjD“u+Jw * W;,
where
a _
w; = Z( )Da "://J.D”u,
f<a ﬂ

and since

llm "wj" i,p,Rr = 0

j—=o
provided u € W*l-?(R"), it follows that for any u € W*?(R") we have, taking
|o| =

lim | D*P;u— D*u; T' = P(R")| = 0.

Jj=wo
Hence

lim|Piu—ul ,q=0

j=©
and the proof is complete.

7.39 Let W5 P(Q) denote the closure of Cy®(Q) in the space W*?(Q) (s > 0).
By the above theorem Wj:?(R") = W*?(R"). For s < 0 we define

WerQ) = [(We =7 @Y, (/p+(/p)=1.
It follows by reflexivity that for every real s
CWHPR)Y = W ’(R").

.We shall mot comment further-on the structure of the spaces W*?(Q) for
s < 0 except to note that, being duals of spaces having 2(Q) = C,*(Q) as
dense subsets, they are spaces of distributions on Q.
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Many properties of the spaces W*?(Q) are conveniently proven only for
Q = R", and must then be deduced for more general Q with the aid of an
extension operator extending functions defined on Q to R” with preservation
of differential properties (see Section 4.24). For fractional s = m+ ¢ suitable
extensions are obtained by interpolation. Thus the existence of a strong
(m+ 1)-extension operator for Q will normally be required. Such is, for
example, assured if Q satisfies the hypotheses of Theorem 4.26 (sec also
Section 4.29).

7.40 THEOREM [f s = m+0 where m is an 'mteger' and 0 <o <1, and
if there exists a strong (m+ 1)-extension operator E for , a domain in R",
then the set of restrictions to Q of functions in Cy®(R") is dense in W*?(Q).

ProoF (Recall that the conclusion holds for W™ ?(Q) under the assumption
only that Q has the segment property.) The proof follows the same lines as
that of Theorem 7.38 except that in place of the operator P; we use the operator
P, defined by

P;u = RqP; Eu, u defined on Q,

where R is the operator restricting to Q functions defined on R". The details
are left to the reader. |

The following localization theorem requires, in addition to the existence
of a strong (m+ 1)-extension operator E for Q, a representation for the
derivatives D*Eu(x) in terms of the derivatives of u such as is provided by
Theorem 4.26. Thus the hypotheses of the theorem below will certainly be
satisfied by any domain satisfying the hypotheses of Theorem 4.26.

741 THEOREM Let Q be a domain in R" for which there exists a strong
(m+ 1)-extension operator E and, for |y|<|a|=m, linear operators E,,
continuous from W ?(Q) into W' ?(R") and from L*(Q) into LF(R") such
that if ue W™?(Q), then

D*Eu(x) = Y E,Du(x) ae. inR" (36)
lrl<m

Ifs=m+0>0,0<0<I, then W*?(Q) comcxdes with the set of restrictions
to Q of funcitons in W*?(R").

Proor If o = 0, the result is an immediate consequence of the existence of
a strong m-extension operator for Q. Suppose 0 < ¢ < 1. If u e W*?(Q), then
ue W™P(Q) and Eue W™?(R,); also

1 Etllm, p e < Kiltlim, p,0 < Killtes,p, 00 €1y
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t

If ly|<m, then D'ue T'~*?(Q) and | -
-, i "DYu Tl G.P(Q)n < K2 "u"’. 7Q (32)

(This holds by definition if |y| = m and via Lemma 7.16 if |y| < m.) Since E,,
is linear and continuous on W'-?(Q) into W' ?(R") and on L?(Q) into L?(R"),
by Theorem 7.17 it is also continuous on T ~*?(Q) into T* ~'?(R"). By (30)
and (32) we have for |a]=m

ID*Euw; T'7° R < Ks |luls, oo
Combining this with (31), we obtain
"Eu"s.p,lR" < K4 ““”;,p,n

and u is the restriction to Q of Eu e W*?(R").

Conversely, the operator R, of restriction to Q, being continuous from
W™ P(R") into W™P(Q) for any m, is also continuous by Theorem 7.17 from
W*P(R") into W*?(Q) so the restriction Rqu of ue W*?(R") belongs to
w=rQ). 1

We remark that under the conditibns of the theorem the extension
operator E is continuous from W*?(Q) into W*?(R") for any 5,0 <s < m+1.

An Intrinsic Norm for W*:?(Q)

7.42 We now investigate the possibility of constructing a new norm for
W=?(Q), s > 0, which is equivalent to the “‘trace norm’’ (29) (s not an integer)
but which is expressed ‘‘intrinsically” in terms of properties of the element
involved. In view of Example 7.27 it is most convenient to begin with the case
Q = R". Following Lions and Magenes [34] we define new spaces W*?(Q)
with intrinsically defined norm and then show, at least for suitably regular
domains Q, W*?(Q) coincides with W*?(Q).

743 For0<6<1and 1 <p<oolet T%?(Q) denote the space of (equiv-
alence classes of) functions u € L?(Q) for which the norm

» -, i/p
i (@) = {Nuno.,,.n+ L] I'L"‘l)——‘(y)'—)dx dy} 33)
is ﬁp.ite, where: v+(l/p) =4. S

744 LEMMA The spéce TP(R" coincides with the Banach space
T%?(R™, the norms in the two spaces being equivalent.
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PROOF The norm of an element u in T%?(R") was defined [in (28)] to be its

norm in the trace space T(p, v; W' *(R"), L* (R")) By Example 7.27 we may
take the norm to be

el = 4 Jull§, 5, me
P

1/p
+ Z t(” ‘)"f ]u(xl,...,xj+t,...,x,,)—u(xl,...,x,,)l"dxdt} .
Rn
Let us denote the norm given by (33) as |u| 5.

Let u € T%?(R"). Putting A = 4[n— 1 + (1 —v)p] and writing u(x) — u(y) in
the form

'Zl [u(y19 '-'7yj—19x x}+1) "':xn)_ u(yb ""yj-l9yj5xj+1! "‘!xn)]r
ji=

we have
_|ux)—u)” .
dxdy < K 0.,
f" IR"l-x yln Ty —om—1+(L-v)p 'y 1121 J
where
(P15 s Vim 19 Xja eees X = Uy eoes Vis Xi g 15 oo er X)|?
0, = J o L dx dy.
! R JRP (Zk=1(-xk—yk)z)l
Thus
Qj=J. dy1"'dyj
R/
xf jdxj---dx,,lu(y,,...,yj_l,xj,...,x,,)
RR+1~
_u(yl,"'ayjyxj‘f-l?""‘xn)tpRj (34)
where

R, _f f dx; - 14y 1+~ dy,
Re-J JRI! (Zk 1(xk—J’k)2)A

Let p? = (x;—y) + - + (xj-1 _yj-l_) + (X544 —J’j+1)2 + o (X — YR

Then
Rk (fm-—m ‘+fw ) o
=K , © )e—————=dp
! : 0 lx; =yt [pz“‘*' (x_]'.}’j)z]l1

K, fln-nl i _
< pn-zdp +K f pu 2-“dp
|xj—yj|“ 0 2 Ix5=jl .

= K lx—y|ePr (35)
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since-A > 0 and n—1-24 < 0. Setting /V
}’5=Z(, 1Si$j, xj=t+y‘l, xi=2i, j+lSiSn
in (35), we obtain, using (34), ‘
Q; < 2K3f t“’"”’dtf lu(zy, .yzj4+t, .. 2,) —u(zy, ..., 2,)|P dz.
(V] R

Thus u e T*?(R") and ||u}l; < K, |julr.
Conversely, suppose ue T? ?(R"). Let X' = (x,,...,x,) and 2’ = (z5, ..., 2,)
and integrate the inequality

|u(x,+4,x") —u(x, x)P < Ks(Ju(x, +1,x) — u(x, +41,2)°
+lu(x, +38,2°) — u(x, x)|?)

with respect to z' over the disk D(s,x’) centered at x’ € R"~! and having
radius 1t, thus obtaining

ey + 8, X7y = u(xy, XN < (Ke/t"™ )L (8, %)+ 4,(0, x)),

where
I1,(s, x) =f fu(x;+5,x")— u(x, +3¢,2')|Pdz’
D(t,x)

for s =t or s = 0. Now
© 1
f t(""”’dtf ——I,(t, x) dx
0 Rn!
’ @ 1 ’ @ ’ ’
=f dxf —ﬁdrf dz f |u(x, +t,x") —u(x, +4t,2')|Pdx,
Rn-1 o ! D(1,x’) - o
o ] * 0
_—.f dx' f dtf dz’J [t (xy, x") — ulx, —4t,2)|P dx,
- t D(t, x’) -~®
© I — —_ ’ p
Rn 2|z’ =x| t

n= 11 ()~ ()P
f o L nd f 6=z &

() —u@)”
S-Z_‘if..dx x—z]*% 4z,

where we have put z, = x, — 3, dz = —& dt and used the fact that in the inner
integral in the second last line |x, —z,|>|x'—2'| so that |x, —z,| > |x—z|//2.
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[

A similar mequahty holds for I,(0, x). Thus-
J‘wt“"”‘"J‘ |u(x1+t Xgseees Xp) = u(xl,...;x,)}’dx dt
(1]

J‘ Ju@)—u@)|® dx ds.

n Jrn Ix zIn 1+(1 v)p
Similar inequalities hold for differences in the other variables x,, ..., x, and

combining these we obtain |ufy < Kgllully. |

In order to extend the above lemma to more general domains Q we require
the following extension lemma.

745 LEMMA Let Q be a half-space in R” or a domain in R" having the
uniform I-smooth regularity property and a bounded boundary. Then there
exists a linear operator E mapping L?(Q) into LP(R") such that if u € LP(Q),
then

Eu(x) = u(x) a.e. in Q,
and if 0 < 8 < 1 and u e T%?(Q), then Eue T%?(R") and
|Ew; TR < K|u; T*? (@)
with K independent of u.
ProoF The proof is quite similar to that of Theorem 4.26. We begin with the

case Q = R," = {x e R": x, > 0}. Let us denote by x’ = (x,, ..., x,-,) and for
ue LP(Q) set

ae.in R."
Futx) = 1“9 S,
u(x', —x,) ae.in R"~ R."

Then

© = 0
1Bl e = dx'{f e+ [ juce, - ,w’dxn}
Rn-1 0 - . L

= 2|u]5,,.an, -
Also, setting 2A = n—1+(1—-v)p=n+(1-0)p >0, we have '
f [ E@—Eu)l?
Rn

Ix-—y|21 dxdy=1++ +[ _+1_+ +1__,
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where

I, = f f Iu(x) t;g’)l’ dedy,
R4+"® JR4™
© ° u(x)—u(y, =yl
= ‘ dy'
fn—ldx 'Ln—t Y J:) dxnf—w[lx’—y,l2+(xn—yn)z:ll dy'l
_ , [ *  u(x)—u(y)?
“Ln-.d" J;n-.dy_[) dx"L [Ix’—y’l’+(xn+yn)2]‘dy"

lu)—u(y)|?
dx d
f f Ty B
[since (x,+¥,)* = (x,—y,)? when x, > 0 and y, > 0], and similar inequalities

hold for I, and J_ _. Thus
VEw TP R < 4177 Ju TP R, ).

Now suppose that Q is uniformly C'-regular and has a bounded boundary.
Then the open cover {U;} of bdryQ and the corresponding collection {®;} of
1-smooth maps of U; onto B = {ye R":|y|< 1} referred to in Section 4.6
are both finite collections, say 1 <j < N. We may also assume that the sets
U; are bounded. Let Ug be an open subset of Q, bounded away from bdryQ,
such that Q c { )., U;. Let {w;}7% be a C*-partition of unity for Q sub-
ordinate to {U; } Gwen ueL"(Q) let u; be defined a.e. in Q by u;(x) =
w;(x)u(x). Clearly u;e LP(Q) and |u;lo, .0 <lullo, pa- If ue T® "(Q), then
for 1<j<N

: —Uu. p — 4
aJa IX-‘,VI QJa lx"‘J’|

) — . p
k[ oy [ 1220
QnU, U; Ix—y|

But since U; is bounded we have for y € Q n U; by Lemma 5.47,
f |w; (x)—w; (N
U; ‘x__y|21

and K, may be chosen independent of the finitely many values of j involved.
Thus u; € T*?(Q) and

luy; T** @ < Ko |lu; T

Since wq(x) =1 for all x € Q lying outside’ the bounded set Y, U;, the
above inequality also holds for u,.

dx < K, f lx—y|P* 1 "dx < K,
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_ For 1 s;s N let v; be defined on R,* by
- uj°‘{,j(y) if yGBﬁR.,.
%) 5 {0 if yeR,"~ B,
where ¥; = ®;'. Then v; € T*?(R.."). In fact, putting y = ®;(x), n = ®;(£),
we have

o T2 R ,7)]? =f O dy

+

| (¥;(0) =, (¥; ()1
Lwna.l;hnng ly— nlzz dy dn

= f |u; (x)|7 |det @;(x)| dx

f f Ig(g) o((i;:u'de“"’<x)lldetd> @) dx df

< Ks lu TP ()7 (36)

since |det ®,’| is bounded and since, ¥; being 1-smooth on B,

jx—¢&| = I‘Pj()’)"q’j('l)' < Ks')""ﬂ = K6|(Dj(x)—¢j(f)l-
Now Ev; e T®?(R") and

|Eoj; T** (R < K o TP (R,

Also supp Ev; c< B. We define w; a.e. on R" by

Ev H(®)  if xeU;
if xeR"~Uj.

Then clearly w;(x) = u; (x) a.e. in Q, suppw; c< U;, and by a calculation
similar to the one carned on in (36),

lw; T*P (R < K® | Ev;; T*P(R")].

wi(x) =

Finally, we set
N
E*u(x) = ug(x) + Y, w;(x).
j=1

It is clear that E* has all the properties required of u in the statement of the
lemma. §

It should be remarked that the comments made in Section 4.29 concerning
weakening the hypotheses for the extension theorems 4 26 and 4.28. apply as
well to the above lemma.

746 COROLLARY Under the conditions of Lemma 7.45 the spaces
T%7(Q) and T*7(Q) coincide, and their norms are equivalent.
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Proor The coincidence of the two vector spaces follows from the fact that
they coincide with restrictions to Q 6f functions in the coincident spaces
T?(R") and T*?(R"). If ue o *P(Q) and E is the extensxon operator con-
structed in the above lemma, we have

lu; TP @l < | Eu; T*P (R < K, | Ew; TP (R < K, |u; T* Q).

The reverse inequality follows in the same way, using instead of E the strong
l-extension operator constructed in Theorem 4.6 (the case i = 1) which, as is
implicit in the proof of Theorem 7.41, is an extension operator for
T (). |

7.47 For s> 0 let W*?(Q) be the space constructed in exactly the same way
that W= P(Q) was constructed in Section 7.36 except using the spaces
T'-2P(Q) in place of T'~*?(Q). In view of Corollary 7.46 we have proved
the following theorem.

7.48 THEOREM Let Q be R", or a half-space in R", or a domain in R"
which is uniformly C*-regular and has a bounded boundary. Then the spaces
W*?(Q) and W*?(Q) coincide algebraically and topologically for each s > 0.
In particular, if s = m+ o where m is an integer and 0 < ¢ < I, then the norm
I- 1.5 q given by

1/p

dx dy

f f |D°u(x)— D*u(y)|”

“u";p.ﬂ = {“““;,»ﬂ‘*’ |x_yin+¢p

la]=m

is equivalent to the original norm |- [; , o on W*?(Q).

7.49 REMARK It is the spaces which we have above denoted W*?(Q)
which one encounters most frequently in the literature, and which are usually
designated W*?(Q). The space W**(Q) may obviously be defined in an
analagous way. It consists of those u € W™ ®(Q) for which the norm

D*u(x)~ D
lully, e, @ = max ("u“m,w,ﬂ, max ess supI utx) “(y)l)

la]=m x,yeQ |x_y‘a'
x#y

is finite.

Imbedding Theorems

7.50 As we have already seen '(in Example 7.34), if 1 < p < oo, the linear
mapping '
u— yu = (you, ...,'y,,,_,u);' yiu= D,ju(-,...,-,0)
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establishes an isomorphism and a homeomorphism of W™?(R, ")/kery onto
motm=k=1(p,0; A; LP(R""')), where A = (D,,...,D,_,). Since D(A*) =
W" "(R"") and since 7°(p,0; A; L*(R""!)) = T“”"’(R"“‘), we have

Tk(Pa O;A; LP(R"™ 1)) = Wt1-lUnp(ge-1),

Thus y is in fact an isomorphism and homeomorphism of W™P(R  ")/kery
onto o Wm=k=1p-p(R"=1) In particular, the traces on R"~! = bdry R,"
of functlons in W™P(R,") belong to, and constitute the whole of the space
wm=1/e-p(bdry R,"). [This phenomenon is sometimes described as the loss
of (I/p)th of a derivative on the boundary.] The result can be extended to
smoothly bounded domains.

7.51 If Qis a domain in R" having the uniform C™-regularity property and
a bounded boundary, then the open cover {U;} of bdry 2 and the associated
collection {¥;} of m-smooth maps from B = {yeR":|y|< 1} onto the sets
U; (referred to in Section 4.6) are finite collections, say | <j<r. If {w;} is a
partmon of unity for bdry Q subordinate to {U;} and if u is a function deﬁned
on bdryQ, we define 0;u on R"~! by

(0;w)(P;(¥,0))  if |y <1
0 otherwise,

6ju(y’) = {

where ' = (¥, .-y Vu-1)-

For s>0 and 1 <p <o we define W*?(bdryQ) to be the class of
functions u € L?(bdry Q) (see Section 5.21) such that 6, u belongs to W*?(R"~ ')
for 1 <j <r. The space W*?(bdry Q) is a Banach space with respect to the
norm

R {z 16,ull? }/

As defined above, the space W*P?(bdryQ) appears to depend on the
particular cover {U;}, the mappings {'¥;}, and the partition of unity {w,} used
in the definition. It can be checked that the same space, with an equivalent
norm, results if we carry out the construction for a different collection {U},
{\'l"j}, and {®;}. (We omit the details; see Lions and Magenes [40].) It can also
bé checked that €*(bdryQ) is dense in W*?(bdry Q).

7.52 Let u € Co°(R"). [The réstrictions of such functions to Q aré dense in
W™P(Q).] Let y denote the linear mapping

- dul|
u-—yu= (you""’)’m-lu); yju= o ’ (37)
. on bdry Q
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where &//0n’ denotes the jth directional derivative in the direction of the ins
ward normal to bdryQ. Using a partition of unity for a neighborhood of
bdryQ subordinate to the open cover {u;}, we can prove the following
generalization (to Q) of the result of Section 7.50. (The details are left to the
reader.) ‘

7.53 THEOREM Llet 1 <p<oo and let Q satisfy the conditions
prescribed above. Then the mapping y given by (37) extends by continuity
to an isomorphism and homeomorphism of W™?(Q)/kery onto

m-1
kI:[o wm-k-1pp (bhdry Q).

7.54 Itis an immediate consequence of the following theorem that the kernel
kery of the mapping y, that is, the class of u e W™?(Q) for which yu =0, is
precisely the space W§"?(Q). We adopt again the notations of Section 7.30.
Let W,™ denote the closure in W™ = W™(p, v; A; B) of the set of functions
fe W™, each of which vanishes identically on an interval [0,¢) for some
positive € (which may depend on f).

7.55 THEOREM If fe W™ and if f®0)=0 for 0 <k <m—1, then
fe Wo™. Thus W,™ is the kernel of the mapping

S = (f(0), £0), ..., f"D(0))
of W™ onto [[rze T %1,
PrOOF Let fe W™ satisfy f(0) = --- = f™~1(0) = 0. Let y e C*(R) satisfy
y()=0fort<1,y(t)=1Tort>2,0<y(t) <1 and |y*(1)| < K, for all
t, 0 <k <m. Let f,(t)=y(nt) f(t). Clearly f, € W,". We must show that

SO —fo (1) =(1=y(nt)) f(t) > 0 in W™ as n— oo, that is, we must show
that for each k, 0 < k < m, and each multi-index «, || < m—k, we have

f P A=) dt -0 as n o .
0 .
Now

f”t"’ I =y () A D)3 dr < f A g de - 0
0 o

as n — oo since f € W™, Hence we need only show that if 1 <j <k, then

f m’”[(i)’(l —v/(nr))]PIIAV‘*'f>(r>||s dt -0 (38)
o dt
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as n-» 0. But the left side of ‘(38) does not exceed a con;tant times
- ) 2/n -. L . : -
e [Teeiyerglga ®)
Ji/a '

Since f(0) = f'(0) = - = f™~10) =0, and since k—j<m—1 we have
[where p~1+(p")~! =1]

) 1
Iy oig s {=

Do

G- he t & p t , plp’
vp Aa p —vpd
< o AT ot [ i)

i
< K,tipvrt L TP A O()| 5 d.

[ =ty dr}"

It follows that (39) does not exceed a constant times

Corzin ¢ ] 2/n
niv f et dy f 22 JAYO@|p s < (277jp) f P A O |5 dr - 0
1/n 0 0
‘as h— oo since fe W™, | '

7.56 The characterization of traces on bdryQ of functions in W™?(Q) has
important applications in the study of nonhomogeneous boundary value
problems for differential operators defined on Q. Theorem 7.53 contains
both “direct” and ‘“converse” imbedding theorems for W™P?(Q) in the
following sense: If ue W™?(Q), then the trace v = ulyq,,q belongs to
Wwm=1/p-(bdry Q) and

||U||m—1/p,p,bdryn <K, ”“”m,p.n;
and conversely, if ve W™~ /77 (bdry Q), then there exists u e W™?(Q) with
v = U|pary and

“““mpﬂ KZ ” ||m 1/p. p,bdry Q*

Before stating a very general imbedding theorem for the spaces W*7(Q)
we show how some (but not all) imbeddings for these spaces can be obtained
from known cases for integral s by the interpolation Theorem 7.17.

7.57 THEOREM Let Q be a domain havmg the cone property in R”. Let
s>0andl <p<n. :

(@ Ifn> sp, then W*? (Q) - L'(Q) for p < r < np/(n—sp).
(b) If n=sp, then W*?(Q)— L' (Q) for p < r < o0.
(¢) Ifn < (s—j)p for some nonnegative integer j, then W*?(Q) —» C,/(Q).
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ProOF The results are already known for integer s SO we may assume s is
not an integer and write s = m- ¢ where m is an integer and 0 < ¢ < 1. First
_let us suppose m = 0. Then

Wor@Q) = LY@ A TH-*?(Q)
= LM(Q) n T(p,1—a—(1/p); W' ?(Q), L* ().

Now the identity operator is continuous from W!'?(Q) into L""/*~P(Q) and
(trivially) from L?P(Q) into LP(Q). By Theorem 7.17 it is also continuous from
T(p.1—a—(1/p); W P(Q), L7(Q)) into T(p, | —a~(1/p); L'/~ P(Q), L* ().
By Theorem 7.20 this latter space is imbedded in L"/"~°?) provided n > op.
Hence

W"'”(Q) - an/(n~ﬂp)(Q).

For general m, we argue as follows. Let ue W™**?(Q). If |aj=m
then Due WP (Q)— L'P/"~P(Q). If |a|<m—1, then D'ue W"P(Q)—
Lme/n=eri( Q). Hence W™t ?(Q)— Wmme/n=op\Q). If n> sp, we have by
Theorem 5.4 that Wmrelte=eP Q) , ["P/n=sPXQ)), Hence (a) is proved. If
n = sp, then Wm-rr/n=eP) 3y _, [7(Q) for any r such that p < r < o0, so (b) is
proved. If (s—j)p > n, then (im—j)np/(n—ap) > n and so Wmneltn=opl(0yy _,
Cy’(Q) and (c) is proved. |

The restriction p < n in the above theorem is unnatural and was placed
only for the purpose of achieving a very simple proof.

The following theorem contains all the imbedding resuits cited above as
special cases. It comprises results obtained by several writers, in particular,
Besov [9, 10], Uspenskii [67,68], and Lizorkin [41]. The theorem is stated
for R" but can obviously be extended to domains with sufficient regularily,
such as those satisfying the conditions of Theorem 7.41. We shall not attempt
any proof.

7.58 THEOREM Let s>0, I <p<g<oo, and | <k <n Let y=
s—(n/p)+(k/q). 1If
(i) y=0andp<gq,or
(ii) x> 0 and y is not an integer, or
(i) x=20and1<p<2,
then (direct imbedding theorem)
WP (R") - W*(RY. ' (40)

Irr{bedding (40) does not necessarily hold for p = g > 2 and x a nonnegative
integer. (In particular, one cannot in general strengthen Case A of Part 1
of Theorem 5.4 to allow k =n—mp.)
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- Conversely, if p = g and if either

(iv)y x= s—(n——k)]p > 0 and is not an integer, or
(v) x=0andp2>2, )

then we have the reverse imbedding
WrP(RY - W*P(R")

in the sense that each u e W*P(R*) is the trace on R (i-.e., u=wg) of a
function w e W*P(R") satisfying

“w”s,p, 3 < K“uux.p,ﬂ“

with K independent of . (The trace is understood in the sense of Section 5.2.)

Bessel Potentials—The Spaces L*'7(Q)

7.59 We shall outline here, without proofs, another method of constructing
fractional order spaces which originates in studies of Bessel potentials by
Aronszajn and Smith [7] (and their collaborators—Adams et al. [5] and
Aronszajn et al. [8]) and which is presented by Calderon [13] and Lions and
Magenes [40]. The resulting spaces, denoted L*?(Q) (or H*?(Q) by Lions
and Magenes—but not to be confused with the H-spaces of Nikol'skii defined
in Section 7.73) coincide with the spaces W*?(Q) for integer values of s if
| < p < o0, and for all s when p = 2.

The space L*?(R") is constructed directly in terms of Fourier transforms
of tempered distributions. It is shown then that for | < p < co0, L*?(R") and
W*?(R") are isomorphic and homeomorphic when s is an integer. For any
values of s,,s5,5, with s, < s <s,, the space L*?(R") can be identified as an
intermediate space interpolated between L*?(R") and L°>7(R") by a ““‘com-
plex’ interpolation method (see Calderén [15] or Lions [36]) which is not
identical to the trace method of Lions described earlier. This interpolation
method then provides a means of defining L*?(Q) for domain = R” as an
intermediate space between spaces of the form W™ P?(Q) for integer values
of m. :

Proofs of assertions made in the discussion of the spaces L*?(2) and their
relationship to the spaces W*#(Q) can be found in one or another of the
papers by Calderén, Lions, and Lions and Magenes cited above.

7.60 First we introduce the notion of tempered distribution. We denote by
&Z(R") the space of rapidly decreasing functions in R®, that is, functions ¢
satisfying .

sup |x*Dfp(x)| <

xelRn
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for all multi-indices « and 8. The space & (R") carries a locally convex topology\\
characterized by the following notion of convergence: The sequence {¢;}
converges to 0 in & (R") if forall « and B _ .

lim x’D”¢,-(x) = 0 uniformly on R".

Jj—=o-

It may be readily verified that the Fourier transform

Fo(y) = Q)2 L G (x) dx

and the inverse Fourier transform

700 = @ [ e60) dy

are each continuous on Z(R") into £ (R"), and, since & 'F¢ =
FF '¢ =¢, each is in fact an isomorphism and a homeomorphism of
& (R™) onto & (R").

It is clear from the definition of & (R") that 2(R") - & (R"). Hence the
dual space &’(R") consists of those distributions T e 2’'(R") which possess
continuous extensions to & (R"). For instance, if | < p < o0 and fe LP(R"),
then

) = [ 600 dx

defines T, € &'(R"). The same holds for any function f of ‘‘slow growth™ at
infinity, that is, for which for some finite k¥ we have | f(x)| < const|x|* a.e. in
some neighborhood of infinity. The elements of .¥'(R") are therefore called
tempered distributions. &'(R") is given the weak-star topology as dual of
& (R") and is a locally convex topological vector space with this topology.
The direct and inverse Fourier transformations are extended to &'(R") by

FT($)=T(F¢), F'T(¢p)=T(F '$).
Once again, each is an isomorphism and a homeomorphism of Z'(R") onto
S'RYand F'FT=FF 'T=T.
7.61 Given a tempered distribution # on R" and a complex number z the .
Bessel potentlal of order z of u is denoted J*u and defined by
Ju = FNA +]- )2 Fu).

Evidently J* is one-to-one on &'(R") into &'(R"). If Rez>0and 1 < p <00,
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or if Rez > 0and I < p < oo, then J* transforms rr (R") contmuously mto,.
- P(R"), and DJ** 1=l does likewise.

7.62 For real s and | < p< oo let L*?(R") denote the image of LP(R")
under the linear mapping J°. Thus L*?P(R") - &#'(R") for every s, and
"L*P(R") - LP(R") for s > 0. If u € L*?(R"), then there exists unique @ € L?(R")
with u = J%i. We define .

lu; L P (RO = |||, p, mn-

With respect to this norm, L*?(R") is a Banach space. We summarize some
of its properties.

763 THEOREM (a) If s>0 and 1 <p < oo, then 2(R") is dense in
L*P(R").

(b) Ifl <p<ooandp =p/(p—1), then [L>?(R)] = L™ 5" (R".

(©) Itt<s, then L*P(R") - L'?(R").

(d) Ifr<sandifeitherl <p<q<np/[n—(s—t)p] <ooorp=1and
1 < g <nf(n—s+1t), then L*P(R") - L"I(R").

() If0<pu<s—(n/p)<]l, then L5?(R") » C%*(R".

(f) If s is a nonnegative integer and 1 < p < oo, then L*?(R") coincides
with W*?(R"), the norms in the two spaces being equivalent. This conclusion
also holds for any s if p = 2. .

(g) If1 <p<ooande>0, then for every s we have

Ls+:,p(Rn)_) W"’p(R")-* Ls—':’p(R").

7.64 We now describe a complex interpolation method of Calderén [15]
and Lions [36] in which setting the spaces L*?(R") can also arise.

Let B, and B, be Banach spaces both imbedded in a topological vector
space X as in Section 7.11, and let the Banach space By + B, be defined as in
that section. We denote by F(B,, B,) the space of functions f of a complex
variable z = o+ it taking values in By + B, and satisfying

(i) fis holomorphic on the strip0 <o <1,
(ii) fis continuous and bounded on the strip0 < g < 1,
(ili) f(it) € B, for T € R, the map 7 — f(i1) is continuous on R into B,
and limj, ., ., f(it) = 0, and
Giv) f(1+it)e B, for 1R, the map t - f(1+i1) is continuous on R
into By, and lim ;.. , f(1+i7) =

F(B,, B,) is a Banach space with respeét to the ndrm

I.f3 F(Bo, By)| = max {Suﬂg LA sup Ifa +ir)||,,,}.
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For0< & <1 set
B, = [By; B,, = {ue Bo+ B, : u = f(o) for some [ F(Bo, B)}.
With respect to the norm - ‘
luls, = lu;[Bo; ByJoll =  inf | f; F(Bo, B,

S eF(Bo, By)
Sf(o)=u

B, is a Banach space imbedded in B, + B,.

The intermediate spaces B, possess interpolation characteristics similar to
those of the trace spaces of Lions. If Cy, C,, and Y are spaces having properties
similar to those specified for By, B,, and X, and if L is a linear mapping from
By, + B, into Cy+ C; satisfying

ILule, < Koluls,  lLulc, < Kiluls,,
then for each u € B, we have Lu e C, and
1Lulc, < Ko™K, |ullg,-

The following theorem may be found in the papers by Calderén [15] or
Lions [36].

" 7.65 THEOREM For any real s, and s,, and for 0 < ¢ <1 we have
[Lso.P(Rn);le.p(Rn)]a = LU -a)so+a.n,p(Rn). '

We remark that the corresponding statement for intermediate spaces
between W ?(R") and W*s-P(R") obtained by trace interpolation is not
valid for all sy and s, though it is for certain values, in particular if s, and s,
are consecutive nonnegative integers.

7.66 The above theorem suggests how the spaces L*?(Q) may be defined for
arbitrary domains Qc R". If s>0, let m be the integer satisfying
s<m<s+1 and define L*?(Q) = [W™?(Q); L* (V)] u-sym- If Q is suffi-
ciently regular to possess a strong m-extension operator, then an interpolation
argument shows that L*?(Q) coincides with the space of restrictions to Q of
functions in L*?(R"). Also, Theorem 7.65 is valid for the spaces L*? (Q)
provided 0 < 54, 5, < M.

The definition of L*?(Q) for negative s is carried out in the same manner
" as for the spaces W*?(Q). One denotes by L%?(Q) (where s > 0) the closure
of 2(Q) in L*?(Q) and defines, for | < p < o0 and s < 0, the space L*?(€) to-
be [L5*7(Q)Y, where (1/p)+(1/p) = 1. .

All the properties stated for L ?(R") in Theorem 7.63 possess analogs for
L*?(Q) provided Q is suitably regular.
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- Other Fractional Order Spaces

7.67 Certain gaps in the general imbedding theorem for the spaces
W*?(R") (see Theorem 7.58) led to the construction by Besov [9, 10] of a
family of spaces B*?(R") which differ from W*?(R") when s is a positive
integer and which naturally supplement these latter spaces in a sense to be
made precise below.

B*P(R") is defined for s>0 and 1 <p <0 as follows Let s=m+a
where m is a nonnegative integer and 0 < ¢ < 1. The space B*?(R") consists
of those functions u in W™?(R") for which the norm [u; B8*?(R")| is finite.
Ifi<p<oo,

flu; B=P(R™)||
| Du(x) — 2D"u((x+y)/2) + D*u(y)|® }”"
= ro dx d .
{uu“m,p,ﬂ + lulz=m J;& - lx_yln+ap x y
If p = o0,

llu; B> (R

= max{ [u], o,gn, Max ess sup |Du(x) — ZDG"((X+‘}”)/2) + Dul|
lef=m x,ye k" fx—yl

B*#(R") is a Banach space with respect to the above norm. If 1 < p < o0,
Co™(R") is dense in B*P(R").

7.68 LEMMA If | <p < oo and s> 0 is not an integer, then the spaces
W*?(R") and B*?(R") coincide, and have equivalent norms.

Proor For functions u defined on R" we define the difference operator A, by
A u(x) = u(x+z) — u(x).
The second difference operator A,? is then given by
Au(x) = A A u(x) = u(x+2z) — 2u(x+2z) + u(x).
The identity ‘
Au = (1/29A,u—1% Z (1/2 NAZ, u ' A N CI

‘ may readily be vesified by expanding the sum on the right side.
* Evidently, the norm of a function u in B*?(R") is equivalent to

1/
{Huli&.p:m+ Y ( |Zi'"'”dzf !A:ZD"u(x)l"dxl ’, (42
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while by Theorem 7,48 the norm-of u in W*?(R") can be expressed in the form
1p
(et 5[ o [ paoucopad”.
lef=m JR" [ :

It is clear that (42) is bounded by a constant times (43); we must prove the
reverse assertion.
Suppose, thercfore, that u € C;* (R"). We have, using (41),

i/p
{J- lz| ~""Pdz f |A, D“u(x)|”dx}
R"I R"

< (I/Zk){f |z|“""”dzf IAZ,‘ZD“u(x)I"dx}”p
R'I
1/p
+4Y 1) ~n-or g [ 1A2,, Du o) dx
P ){let : [, Ik Dol sy
- u/zk“-")){ [Limeras [ 1, Ducorpas)™
Rn R“

k-1 1/p
+1y (1/2""-“’){ j ol ="~ dp f lApzD“u(x)I"dx}
i=0 g 3

(We have substituted p = 2'z in the first integral, p = 2z in the second.)
Since s is not an integer, we have ¢ < | and so k may be chosen large enough
that k(1 —o) > 1. It then follows that (43) is bounded by a constant times
(42). Since Cy,*(R") is dense in B*?(R") the lemma follows. ||

7.69 If s is a positive integer and p = 2, the spaces W*2(R") and B%2(R")
coincide. For p # 2, s an integer they are distinct but for any ¢ > 0 we have

WSHeP(RY) — B P(R™) —» WP(R"  if | <p<?2
B EP(R™ > WRP(R™ - BSP(RY)  if p > 2.

The spaces B*7(R") are of interest primarily for their imbedding character-
istics. They possess a “‘closed system” of imbeddings and at the same time fill
gaps in the system of imbeddings for the spaces W*?(R").

7.70 THEOREM Lets>0, 1 Sp<q<oo and 1 <k<nk anmtegcr
Suppose
r=s-— (n/p) + (k/g) > 0.
Then -
B*?(R") - ‘B™(RY).



OTHER FRACTIONAL ORDER SPACES : © 225

Conversely, if p=gq and r = [s—(n—k)]/p > 0, then the reverse itﬁbedding
B"?(R") —» B%?(R")

holds, in the sense that each element u in B™?(R*) is the trace u = v|g. of some
element v in B*?(R") satisfying

lv; B2 (R < K |u; B? @Y,

where K is independent of .

771 THEOREM If s>0, 1 <p<o, and 1 <k <n, and if r=
[s — (n—k)]/p, then

W*P(R") - B"?(R")
and conversely
BrP(RY - WP(RM.
7.72 The definitions and theorems above can be extended to suitable domains

O < R" and smooth manifolds Q* of dimension k contained in Q. For
1 < p < oo the norm in B¥?(Q) is

Ju; B2 Q)]

2 - a 3 1/p
_ {uuuﬁ,,,,,n Ly L f | D*u(x) — 2D%u((x+)/2) + D*u(p)|? ” dx} ’

lal=m lx—y["*P

where Q. = {yeQ:(x+»)/2e Q}.

7.73 A different class of spaces having imbedding properties similar to the
Besov spaces are the spaces H*?(Q) introduced by Nikol’skii {49-517. These
spaces, having norms involving Holder conditions in the LP-metric, were
studied earlier than the (fractional order) W- or B-spaces and provided
impetus for the latter. _

Again we set s =m+o where m >0 is an integer and 0 <o <1. For
1 < p <o and Q = R a function u belongs to H*?(Q) provided the norm

i/p
- 1A Df(x)|?
s HSP(Q)|| = 4 Th F I
fu " )| Iluuo,,.n{rmzm :2% o TH
: 0<"|h|<n ’

is finite, where Q, = {x € Q; dist(x, bdry Q) > 25}. The obvious modification
is made for p = 00 so that in fact H*>*(Q) = B>*(Q). An argument similar to
‘that of Lemma 7.68 shows that if s is not an integer. the second difference A2
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in the norm of H“"(Q) can be replaced by the first difference A without
changing the space.

The spaces H*?(QQ) are larger than thc correspondmg spaces W*?(Q);
but if ¢ > 0, we have

HE*o2(Q) —» W*?(Q) » H>?(Q). .

The spaces H*?(R") possess a closed system of imbeddings identical to those
of the Besov spaces, that is, Theorem 7.70 holds with B everywhere replaced_
by H. Strong extension theorems can be proved for H-spaces over smoothly
bounded domains so that the imbedding theorem can be extended to such
domains and traces on smooth manifolds in them.

The imbedding theorems for the spaces H*?(R") and B*?(R") are proved
by a technique involving approximation of functions in these spaces by entire
functions of exponential type in several complex variables (see Nikol'skii
[49], for example).

7.74 Numerous generalizations of the above spaces have been made, partly
for their own sake and partly to facilitate the solution of other problems in
analysis. We mention two such directions of generalization. The first involves
replacing ordinary LP-norms by weighted norms. The second involves the use
of different values of s and p in terms of the norm involving integration in
different coordinate directions (anisotropic spaces). The interested reader is
referred to two excellent survey articles (Nikol'skii [52] and Sobolev and
Nikol’skii [64]), and their bibliographies for further information on the whole
spectrum of spaces of differentiable functions of several real variables.
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Orlicz and Orlicz-Sobolev Spaces

Introduction

8.1 Inthis final chapter we present some recent results involving replacement
of the spaces LP(Q) with more general spaces L, () in which the role usually
played by the convex function 17 is assumed by more general convex functions
A(t). The spaces L,(Q), called Orlicz spaces, are studied in depth in the
monograph by Krasnosel’skii and Rutickii [34] and also in the doctoral
thesis by Luxemburg [42] to either of which the reader is referred for a more
complete development of the material outlined below. The former also
contains examples of applications of Orlicz spaces to certain problems in
‘nonlinear analysis. .

Following Krasnosel’skii and Rutickii [34] we use the class of *“N-
functions” as defining functions A for Orlicz spaces. This class is not as wide
as the class of Young’s functions used by Luxemburg [42] (see also O’Neill
[55]); for instance, it excludes L' (Q) and L*(€) from the class of Orlicz spaces
However, N-functions are simpler to deal with and are adequate for our
purposes. Only once, in the proof of Theorem 8.35, is it necessary to refer to a
‘more general-Young’s function.. - ' .

- If the role played by L?(Q) in the definition of the Sobolev space W™ ?(Q)
is assigned instead to an Orlicz space L, (Q), the resulting space is denoted by
W™L,(Q) and called an Orlicz-Sobolev space. Many properties of Sobolev
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spaces have been extended to Orlicz-Sobolev spaces, mainly by Donaldson
and Trudinger [22]. We_present some of these results in this chapter.

It is also of some interest to note that a gap in the Sobolev imbedding
theorem 5.4 can be filled by consideration of Orlicz spaces. Specifically, Case
B of that theorem provides no ““best” target space for imbeddings of W™*(Q)
with Q a “‘regular” domain in R" and mp = n. We have W™?(Q) — L(Q) for
p < q < oo but W™P(Q)+ L*(Q). In Theorem 8.25 an optimal imbedding of
W™ P(Q) into an Orlicz space is constructed. This result is due to Trudinger
[66].

N-Functions

8.2 Let « be a real valued function defined on [0,00) and having the
following properties:

(@ «0)=0,2@)>0ift>0, lim,,, «(t) = ©;
(b) « is nondecreasing, that is, s > ¢t > 0 implies « (s) = «(¢);
(¢) « is right continuous, that is, if > 0, then lim,_,,, 2(s) = ().

Then the real valued function 4 defined on [0, ) by

At) = J:a(‘t) dt (1)

is called an N-function.
It is not difficult to verify that any such N-function 4 has the following
properties:
(i) A is continuous on [0, c0);
(ii) A is strictly increasing, that is, s > ¢ > 0 implies A(s) > 4(t);
(i) A is convex, thatis, if s, r > 0 and 0 < 4 < 1, then
A(As+(1=A)1) < LA+ (1 =) A(1);
(iv) lim,_o, A(t)/t=0,lim,. A1)/t = 0;
(v) ifs>1>0,then A(s)/s > A(t)/t.
Properties (i), (iii), and (iv) could have been used to define N-function since
they imply the existence of a representation of A in the form (1) with « having
the required properties (a)-(c).
The following are examples of N-functions:
A(t) = 1%, - l<p< oo,
o A@W)=e—1-1, ‘
A(t) = " —1, 1 <p< oo,
Ay = (1+t)log(1+¢) —1t.
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Evidently A(r) is represented by the area under the graph ¢ = «(7) from
" 7= 0to.1 = t as shown (Fig. 8). Rectilinear segments in the graph of 4 corre-
spond to intervals of constancy of «, and angular points in the graph of 4
correspond to discontinuities (i.e., vertical jumps) in the graph of 2. - -

¢ As

a=af7)

T 0

~TIMN_

FiG. 8

8.3 Given & satisfying (a)~(c), we define
a(s) = sup t. (2)

a(t)<s

It is readily checked that the function « so defined also satisfies (a)-(c) and
that # can be recovered from & via

«(t) = sup s. (3)

a(s)<t

(If « is strictly increasing, then & = «~'.) The N-functions 4 and A given by

A(l) = L w@dt, Al = L "7 (0) do )

are said to be complementary; each is the complement of the other. Examples
of such complementary pairs are:

A@) = t*[p, A@s)=s5"lp,  1<p<oo, (Hp)+(p)=1;
Aty =€ —1—1, A@s) = (l+s) log(1+3s) —s.

- A(s) is represented by the area to the left of the graph o = : (1) [or more
correctly 7 = z(0)] from ¢ = 0 to ¢ = s as shownin Fig. 9. Evidently we have

st < A(t) + A(s), ' (5)

~Y
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which is known as Young’;‘ine'quality.' Equality holds in (5) if and oﬁly if
either t = Z(s) or s = a(t). Writing (5) in the form

A@) = 51— A@)
and hoting that equality occurs when ¢ = 2(s), we have

A(s) = max(st—A(1)).
20
This relationship could have been used as the definition of the N-function 4
complementary to A.

ko
o=af1)
) ) T=dlo)
Afs)
JER

FiG. 9
Since A4 and A are strictly increasing they have inverses and (5) implies
that for every t > 0
AN A1) < A4 @)+ A4 (@) = 2t

On the other hand, 4 (¢) < t«(¢t) so that, considering Fig. 9 again, we have for
t>0

A(A@)]t) < (A1)t = A1) : (6)
Replaéing' A(t) by t in (6), we_obtain
‘ ‘ A@ja~1@) < t.
Hence, for any ¢ > 0 we have '
<A AT 0 <n N
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84 We shall require certain partial-ordering relationships. among N-
functions. If A and ‘B are two N-functions, we say that B dominates A globally
provided there exists a positive constant k such that

A(t) < B(kt) . ®

holds for all 7 > 0: Similarly B dominates A near infinity if there exist positive
constants k and ¢, such that (8) holds for all ¢ > 1,. The two N-functions A
and B are equivalent globally (or near infinity) if each dominates the other
globally (or near infinity). Thus 4 and B are equivalent near infinity if and
only if there exist positive constants k,, k,, and 14 such that if 1 > ¢, then
B(k,t) < A(t) < B(k,t). Such will certainly be the case if

B(t)

O<lim— < ®©
~e A()

If A and B have respective complementary N-functions 4 and B, then B
dominates 4 globally (or near infinity) if and only if 4 dominates B globally
(or near infinity). Similarly 4 and B are equivalent if and only if 4 and B are.

8.5 If B dominates A near infinity and A and B are not equivalent near
infinity, then we say A increases essentially more slowly than B near infinity.
This is the case if and only if for every k >0

Akt
lim ——= ( )
- B(t)
The reader may verify that (9) is in turn equivalent to the condition
fim 50 _
o A7)
Let 1 < p < oo. We shall hereafter denote by A4, the N-function
A,(t) = 1°lp, 0<1t<o0. (10)

®

If 1 <p<g<oo, then A, increases essentially more slowly than A4, near
infinity. However, A, does not dominate 4, globally,

8.6 An N-function A is said to satisfy ‘a global Az-condmon if there ex1sts
a posmve constant k such that for every t > 0,

AQ8) < kA®). o an

1t is readily seen that this will be the case if and only if for every r > 1 there
exists a positive constant k = k(r) such that forall 1 >0

Al = L AN PRI
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Similarly A is said to satisfy a A,-condition nea)l infinity if there exists 1o > 0
such that (11) [or equivalently (12) with r > 1] holds for all ¢ > ¢,. Evidently
t, may be replaced by any smaller positive number ¢,, for if {, < ¢t < ¢,, then

A(rt) < [A(rto)/A(1,)] A (D).

If A satisfies a A,-condition globally (or near infinity) and if Bis equivalent
to A globally (or near infinity), then B also satisfies such a A,-condition.
Clearly the N-function A,(t) =t?/p, | <p <o, satisfies a global A,-
condition. It may be verified that A satisfies a A,-condition globally (or near
infinity) if and only if there exists a finite constant ¢ such that

(1/c)ta(t) < A1) < ta(t)
holds for all ¢ > 0 (or for all > 1, > 0) where A4 is given by (1).

~-

Orlicz Spaces

8.7 Let Q be a domain in R” and let 4 be an N-function. The Orlicz class
K,(Q) is the set of all (equivalence classes modulo equality a.e. in Q of)
measurable functions u defined on Q and satisfying

f A(ju@)) dx < w.
Q

Since A is convex K, (Q) is always a convex set of functions but it may not be
a vector space; for instance there may exist u € K,(Q) and A > 0 such that
Aud¢ K, ().

We call the pair (4, Q) A-regular if either

(a) A satisfies a global A,-condition, or
(b) A satisfies a A,-condition near infinity and Q has finite volume,

8.8 LEMMA K,(Q)is a vector space (under pointwise addition and scalar
multiplication) if and only if (4, Q) is A-regular.

ProOF Since 4 is convex we have:

(i) Aue K,(Q) provided ue K,(Q) and || < 1, and : :
(i) ifue K (Q)implies Au e K,(Q) for every complex A, thenu,v e K, (Q) -
lmplres u+ve K, (Q).

It follows that K,(Q) is a vector space if and only if u € K,(Q) and |/‘.| >1
implies Au € K,(Q).
If A satisfies a global A,-condition and |{A|> 1, then we have by (12) for
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ue K,(Q)

an(llu(x)l)dx < k(lA) f A(u)]) < 0.

Similarly, if 4 satisfies a A,-condition near infinity and volQ < oo, we have
for |A|> 1, ue K,(Q), and some 7, >0

J A(JAu(x)]) dx = (J +f )(Mu(x)l)dx
Q {x: fu(x)f = 10} {x: Ju(x)j <to}

< k(]l])LA(]u(x)l)dx + A(|2]15) vol © < oo

In either case K, () is seen to be a vector space.
Now suppose that (4,Q) is not A-regular and, if volQ < oo, that 7, >0
is given. There exists a sequence {¢;} of positive numbers such that
() AQ2t)=2'4(), and
(i) ;21> 0if volQ < c0.

- Let {Q;} be a sequence of mutually disjoint, measurable subsets of Q such that

ol = 1/224(t) if volQ = o
77 Ate) vol Q2 A1) if volQ < 0.
Let
L if xeQ;
u(x) = {0 if xeQ~ (U Q,.).
ji=1
Then
jA(Iu(x)I) dx = ) A(t) volQ;
Q j=1
-1 if volQ =
T Aty volQ  if volQ < co.
But '

L f A(2u(x)])) = Y, 27A(1) volQ; = c0.
- J0 boj=t
Thus K, () is not a vector space. |
8.9 The Orlicz space L,(Q) is déﬁned to be the linear hull of the Orlicz class

K ,(Q), that is, the smallest vector space (under pointwise addition and scalar -
multiplication) containing K,(Q). Evidentlv I .{) consists of all <ealar
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multiples Au of elements ue K A(ﬁ). Thus K,(Q) L 4(R); thése sets being
equal if and only if (4, Q) is A-regular.
The reader may verify that the functional

Il = [l o0 = inf{k>0:fn (' (")‘)d <1} (13)

is a norm on L (). (This norm is due to Luxemburg [42].) For [u}l , > O the
infimum in (13) is attained; in fact, letting k decrease toward [uf, in the

inequality
f A([u(_x)|> dx < 1, (14)
Q k

we obtain by monotone convergence

|u ()]
LA( ul, ) dx < 1-. (15)

Equality may fail to hold in (15) but if equality holds in (14), then k = [[u| ,.

8.10 THEOREM L, (Q)is a Banach space with respect to the norm (13).

The completeness proof is quite similar to that for the space L?(Q) given
in Theorem 2.10. The details are left to the reader. [We remark that if
I <p < o0 and 4, is given by (10), then

LPQ) = Ly, () = K, Q).

Moreover, |[u] 4,0 =p~ V" |ull,,a-]

8.11 If 4 and A are complementary N-functions, a generalized version of
Holder’s inequality

< 2ull4,0lvl 1.0 (16)

f u(x)v(x)dx
o

can be obtained by applying Young’s inequality (5) to |u(x)|/llu||, and
|o(x)]/|v| 5 and integrating over Q.

The following elementary imbedding theorem is ‘an analog for Orlicz
spaces of Lemma 2.8.

8.12 THEOREM The imbedding Lgz(Q)— L,(Q) holds if and only if
either

(a) B dominates 4 globally, or
(b) B dominates 4 near infinity and volQ < co.
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PrROOF If A(t) < B(kt) for all t 2 0, and if u € Ly(Q), then -

|u<x)'|) ' (Iu(x)‘l) '
an(k“““B ""anB huf, ) <

Thus ue L,(Q) and |ul, < k Jul|5.

If volQ < o0, let t; = A~ ((2 vol Q)~!). If B dominates 4 near infinity,
then there exist positive f, and k& such that A(t) < B(kt) for ¢ > ¢,. Evidently
we have for > ¢,

A(t) < K, B(kt),

where K, = max(l,4(f,)/B(kt,)). If ueLg(Q) is given, let Q'u) =
{xeQ:|u(x)/2K k||u|g <t} and Q"(u) = Q ~ Q'(u). Then

lu(x)| )d _( ) < lu(x)| )d
j (2K1kllu“5 J;l ‘(u) fﬂ "(u) 2K k||u|g o
[u(x)|
=32 V01 Q fn'(u) ax+K L"(u)B<2K1 ||“l|a) dx

TR

Thus ue L,(Q) and |u|, < 2kK, |u]5.
Conversely, suppose neither hypothesis (a) nor (b) holds. Then there
exist points £; > 0 such that

A@) = B(jt), Jj=12,...
If volQ < o0, we may assume in addition that
> (1/j) B~ (1/vol Q).
Let Q; be a subdomain of Q having volume 1/B(jt;), and let

Ji if xeQ
40 = { if xeQ~Q,

Then
LA(luj(x)Uj) dx > quu,(x)ndx -1
so that [u;flp = 1 but Jull = j. Thus Lg(Q) is not imbedded in L,(Q). §

8.13 A sequence {u;} of functions in L, () is said to converge in mean to
ue L, (Q)if .

lim | A(Jlu;(x)~u(x)|)dx =0

jo0 JOQ
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L

~ Convexity of A implies that for 0 < & <1 we have _

[ AGueo-uen dx < & [ aueo-uelie)ax

from which it is clear that norm convergence in L, () implies mean conver-
gence. The converse holds, that is, mean convergence implies norm con-
vergence if and only if the pair (4, Q) is A-regular. The proof is similar to that
of Lemma 8.8 and is left to the reader.

8.14 Let E,(Q) denote the closure in L () of the space of functions u which
are bounded on Q and have bounded support in Q. If u € K, (Q), the sequence
{u;} given by

u(x) if Ju(x)<j and |x|<j, xeQ

4(x) = {0 otherwise {an

converges a.e. on Q to u. Since A(|u(x)—u;(x)|) < A(Ju(x)|), we have by
dominated convergence that u; converges to « in mean in L ,(Q). Therefore if
(4,Q) is A-regular, then E£,(Q) = K,(Q) = L,(Q). If (4,Q) is not A-regular,
we have

E Q) = Ku(Q) & La(Q) (18)

so that E,(Q) is a proper closed subspace of L ,(Q) in this case. To verify the
first inclusion of (18) let u € E,(Q) be given. Let v be a bounded function with
bounded support such that [u—uv|l, < 4. Using the convexity of 4 and (15),
we obtain

: fA(|2u(x)—20(x)[)dx < J A(

12u—20], Ja h

uwm—zwngd

x <1,
12u—2v] ,

whence 2u—2ve K,(Q). Since 2v clearly belongs to K,(Q) and K, (Q) is
convex we have u = §(2u—2v)+4(2v) belongs to K, (Q).

8.15 LEMMA E (Q)is the maximal linear subspace of K, ().
PROOF Let S be a linear subspace of K,(Q) and ‘let ueS. Then Aue K,(Q)

for every scalar A. If € > 0 and u; is given by (17), then u;/¢ converges to u/e in
mean in L4 () as noted in Section 8.14. Hence for sufficiently large values of

[ Atwe-uel ax < 1

and therefore u; converges to u in L,(Q). Thus S < E,(Q). |
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8.16 THEOREM LetQ have firfite volume and suppose that the N-functlon
A increases essentially more slowly than B near infinity. Then

Ly(@) - E,@).

ProoF Since Lg(Q) — L,(Q) is already established we need only show that
Lg(Q) c E (Q). Since Lg(Q) is the linear hull of Kz(Q2) and E,(Q) is the
maximal linear subspace of K (Q), it-is sufficient to show that lue K (Q)
whenever u € Kg(Q) and A is a scalar. But there exists a positive number ¢,
such that A(|A]|t) < B(¢) for all ¢ = ¢,. Thus

f A(JAux)]) dx = {f +f }A(Mu(x)|) dx
Q {x: [u(x)| <10} {x:|u(x)| > 10}

sﬂW@mm+wawDﬁ<w
Q

whence the theorem follows. |}

Duality in Orlicz Spaces

A 8.17 LEMMA For fixed v e Lz(Q) the linear functional L, defined by

L,(w) = Lu(x) v(x) dx (19)

belongs to [L (Q)]’. Denoting by ||L,| its norm in that space, we have
lolz < WL < 2]o]l5. (20)

Proor It follows by Holder’s inequality (16) that if u e L,(R), then
IL, )] < 2[|ul 4 o] 2.

Thus L, is bounded on L () and the second inequality of (20) holds.
~ To establish the first inequality we may assume that » # 0 in L3z(Q) so
that |L,|= K> 0. Let

~(lo@)|\ fv(x) .
u(x) = A(‘ X )/—K— if v(x)#0

0 if p(x) =0,

* If Jul, > 1, then for sufficiently small & > 0 we have

! . Juea)l
s Jo A0 5 2 an<||u"A—5) > 1
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Letting ¢ —» 0+ we obtain, using inequality (6),

ules | AQuC0)) dx = [ A(z('i’%’i')/""_;)‘) ix

< fni(gg(i)) dx = "—le—u fnu(x)v(x) dx < |lu| 4.

This contradiction shows that u|, < 1. Now
(IU(X)I> l
X
L]

IL,| = sup

llujj a1
A o
Q “Lv"

We remark that the lemma holds also when L, is restricted to act on E , (Q).
To obtain the first inequality of (20) in this case take |L,] to be the norm of
L,in[E ()] and replace u in the above proof by x,u where y, is the character-
istic function of Q, = {x e Q:|x| <n and |u(x)| < n}. Evidently y,u belongs
to E,(Q), lx.ull4 <1, and (2!) becomes

R “(luéftl) x=l

Since x,(x) increases to unity a.e. in Q we obtain by monotone convergence

- |v(x)|)
A
fn <||L.,u desd

so that |jv]| ; <{L,| as before.

so that

A

@D

Thus o)z <|[L.]. 1

8.18 THEOREM The dual space [E,(Q)] of E,(Q) is isomorphic and
homeomorphic to Lz(Q).

PROOF We have-already shown that any element ve L; (Q) determines via
(19) a bounded linear functional on L,(Q), and so also on E,(Q), having in
either case norm differing from |v]} ; by at most a factor of 2. It remains to be
shown that every bounded linear functional on E, (Q) is of the form L, for
some such v,



¢

DUALITY IN ORLICZ SPACES ‘ ‘ 239

Let L € [E,(Q)] be given. We define a complex measure A on the measur-
able subsets of Q having finite volume by setting

A(S) = LQxs),

{s being the characteristic function of S. Since

f A(|xs ()4~ (1/vol 8)) dx = f (I/vol S) dx = 1 (22)
Q S
we have

[AS)] < [L)xsha = ILIC1/47 " (1/vol S)].

Since the right side tends to zero with vol S, the measure A is absolutely con-
tinuous with respect to Lebesgue measure and by the Radon-Nikodym
theorem 1.47, A may be expressed in the form

A(S) = Lv(x) dx,

where v is integrable on Q. Thus
L(u) = f u(x)v(x) dx
Q

holds for measurable, simple functions u.

If u € E4(2) a sequence of measurable, simple functions u; converging a.e.
to u can be found such that [u;(x)| <|u(x)| on Q. Since |u;(x)v(x)| converges
a.e. to |u(x)v(x)|, Fatou’s Lemma 1.44 yields

f u(x)v(x)dx| < supf |u;(x)v(x)| dx = sup|L(Ju;| sgnv)|
o i Je i

< IL)sup sl < IL|ful 4.
J
It follows that the linear functional

L,(u) = L u(x)v(x) dx

is bounded on E, (Q) whence v € L3(Q) by the remark following Lemma 8.17.
Since L, and L assume the same values on the measurable simple functions,
a set which [see the proof of Theorem 8.20(a)] is dense in E " (Q), they agree
on E,(Q) and the theorem is proved ]

A simple application of the Hahn—Banach extension theorem shows that
if E,(Q) is a proper subspace of L,(Q) [that is, if (4, Q) is not A-regular], then
there exists a bounded linear functional L on L, () not given by (19) for any
ve Lz(Q2). We have as an immediate consequence the following theorem.
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8.19 THEOREM L,(Q) is refiexive if and only if both (4,9Q) and (4,Q)
_are A-regular. '

We omit any discussion of uniform convexity for Orlicz spaces. This
subject is treated in Luxemburg’s thesis [42].

/

Separability and Compactness Theorems
We next generalize the approximation Theorems 2.13, 2.15, and 2.19.

8.20 THEOREM (a) C,(Q)is densein £,(Q).

(b) E,(Q) is separable.

(¢) If J, is the mollifier introduced in Section 2.17, then for each
ue E (Q) we have lim,, ¢, J,*u = u in E (Q).

(d) Co*() is dense in E,(Q).

PrOOF Part (a) is proved by the same method used in Theorem 2.13. In
approximating u € E,(Q) first by simple functions we may assume that u is
bounded on Q and has bounded support. This is required for the. dominated
convergence argument used to show that the simple functions converge in .
" norm to u in E4(Q). (The details are left to the reader.)

Part (b) follows from part (a) by the same proof as given for Theorem 2.15.

Consider (c). If u € E (), let u be extended to R" so as to vanish identically
outside Q. Let v € L;(Q). Then

f (/. * u(x) — u(x))v(x) dx
Q

< fan(Y) dy fn!u(x—sy) —u(x)||v(x)| dx

< 2olza j

Iyl=

by Hélder’s inequality (16), where uE,(x)=u(x——sy). Thus by (20) and
Theorem 8.18,

lJ(y) ey —ttll 4, 2 dy

|J.»u—uls0= sup
livlld,as1

<2 f. IO = ilady

Given & > 0 we can find i € Co(Q) such that |u—ii|, o < /6. Evidently
Y., — e, 4.0 < 8/6 and for sufficiently small ¢, ||id,,— | .o < 6/6 for every y
with |y|< 1. Thus |J,*u—uf 4 o < and (c) is established.

Part (d) is an immediate consequence of (a) and (c). |

f (J, * u(x) — u(x))v(x) dx
Q
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We remark that LA(Q) is not separable unless LA Q)= EA(Q), that is,
unless (4,Q) is A-regular. A proof of this fact may be found in the work of
Krasnosel’skii and Rutickii-[34, Chapter 11, Theorem 10.2].

8.21 A sequence u; of measurable functions is said to converge in measure on
Q to the function u provided that for each ¢ > 0 and 6 > 0 there exists an
integer M such that if j > M, then

vol {x € Q:|u;(x)—u(x)|> ¢} < o.
Clearly, in this case there also exists an integer N such that if j, kK > N, then

vol{x e Q:|u;(x)—u (x)|= ¢} <.

8.22 THEOREM Let Q have finite volume and suppose that the N-
function Bincreases essentially more slowly than 4 near infinity. If the sequence
{u;} is bounded in L () and convergent in measure on Q, then it is convergent
in Lg().

ProoF Fix &>0 and let v;,(x)=[u;(x)—u.(x)]/e. Clearly {v;,} is
bounded in L,(Q); say ||v; |4, < K. Now there exists a positive number ¢,
such that if r > t,, then

B(t) < $A(1/K).
Let 6 = 1/4B(t,) and set
= {xeQ:|v; (%)= B~ (1/2 vol Q)}.

Since {u;} converges in measure there exists an integer N such thatif j, k > N,
then volQ; , < d. Set
Q"k = {XGQI’,(ZIDJ’,‘(XNZIO}, Q’I{,k = Qj,k ~Q},k'

gy

For j, k = M we have

[, 3t ax = ( foot ) )BGonato) ds

volQ 1 o @ .
—_— - N RAELLINEA) < 1.
S2VOIQ+_4 o A( X )dx+6B(to)

Hence {ju; —u,‘|| 5.0 <eand so {u ;} converges in Ly(Q). 1

The following theorem will prove useful when we wish to extend the
Rellich-Kondrachov Theorem 6.2 to imbeddings of Orlicz-Sobolev spaces.
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8.23 THEOkEM Let Q have finite volume and suppose thaﬁ the N-function .
B increases essentially more slowly than A near infinity. Then any bounded
subset S of L,(Q) which is precompact in L' (Q) is also precompact in Lg(Q).

Proor Evidently L,(Q)— L'(Q) since Q has finite volume. If {u*} is a
sequence in S, it has a subsequence {u;} convergent in L' (Q); say u; - u in
L'(Q). Let & 6 > 0. Then there exists an integer N such that if j > N, then
luj—ull, o < ed. It follows that vol{xeQ:|u;(x)—u(x)|>e} <d so {u;}
converges in measure on  and hence also in Lg(Q). |

A Limiting Case of the Sobolev Imbedding Theorem

8.24 If mp = n and p > 1, the Sobolev imbedding Theorem 5.4 provides no
best (i.e., smallest) target space into which W™?(Q) can be imbedded. In
fact we have in this case, for suitably regular Q,

wmrQ) - L'(Q), p=<qg< o,
but (see Example 5.26)
W™P(Q) & L°(Q).

If the class of target spaces for the imbedding is enlarged to include Orlicz
spaces, then a best target space can be found. We consider first bounded
domains Q. The case m =1 of the following theorem was established by
Trudinger [66].

825 THEOREM Let Q be a bounded domain in R" having the cone
property. Let mp =n and p > 1. Set
A(t) = exp[t""™™] — | = exp[tP/?" D] - 1. (23)
Then there exists the imbedding
W™ Q) ~ Ly(S).

ProOF Let x e Q-and let C be a finite cone contained in Q having vertex at
" x. Let ue C™(C). Applying Taylor’s formula

] = S99 1 :
= L(',T(‘) + fo “ — ) di

“ (m—1)!

to the function f(¢) = u(y+t(x—y)), and noii'ng that

o0 = > Lou+ -,

laf=j "
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we obtain

1
k@l D DUyl

Slajsm-1

b 3 Syt [ Q=0 DU + =)l

Let V be the volume and A the height of C. Let (p, ) denote spherical polar
coordinates of ye C referred to x as origin so that C is specified by
O0<p<h6eX, and the volume element dy can be written in the form
" 'w(6) dp dO. Then

1 1 Al
el = f wldy <y > o [

[a|5m 1

+5 Z fw(@)d()f ntm= ’dpf (= ty"= | D*u((1 —1)p, 0)| dt

la|= m

h »
< K, {“““m-l-l.ﬁ Y | w® dﬂf p"“dpf a"‘“ID“u(o,o)ida}
lej=m JE 0 0
h h
= Kl{"“"m-x.:.ﬁ ) w(ﬂ)dofo’""ID“u(a,o)ldafp""‘dp}
lal=m JZ 0 : o

< Kz{"“”m 1,1,c+ Z |D°‘u(z)| }

. |Z xI" m

By density the above incquality holds for all u € W™ !(C). In particular, for
any u e W™?(Q), and for almost all x € Q, we have

|u<x)1sz<2{nunm_1_,,ﬂ+ > [ iz, }

W= Jalx =yl

where K, depends on m,n and the height 4 and volume ¥ of the cone deter-
mining the cone property for Q.

We wish to estimate |ju], , for arbitrary s > |. Accordingly, if ve L*(Q)
where s’ = s/(s—1), then - -

fn u(x) 0(x)| dix
[ [, ,

AT . dx + K 2
N e P A W Rt

lal=m

< K lullm-1,112lo, o (vol Q)
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Iv(x)’ : l—(l,p)r
Ial=m{f L'x y|" (m/s) dx}

| Du(»))?|v(x)| »
{f fn [x—y|®=ms @ d} '

Now we have from Lemma 5.47 that if 0 < v < n, then

1
fnu_—Tr dx < K3(v,n)(vol Q)' ~¢M,

In fact a review of the proof of that lemma shows that K;(v,n) = K,/(n—v)
with K, depending only on »#. Hence

J’ f |v(-nx)|(m/s) dy dx < K4i(V°lQ)MImf IU(X)!(]X
Ix yl m Q
< Kss(vol Q)P+ g, o

Also

D o) , L
| e @i < [ o | [, g

< [ Dulls oo, (Ks(vol Q)'7P) s,
Hence
fn [u(x)o(x)]dx < Ky |[uflm-1,4 NvHo,,»(volQ)”‘

+Ks Y, sPTVRDfulo, oo, (vol ).

laj=m

Since s~ 1/7 > | and since W™~ !1-1(Q) -» W™P(Q) it follows that

o, = sup iml(IvE0ldx

< K757 VP (vol )M ul,, -
 vels() folo,s

The constant K, depends only on m,n and the cone determining the cone
property for Q. Setting s = nk/(n—m) = pk/(p— 1), we obtain

f |u(x)]"*’(‘""dx5vom { }(1{7 1], 372D

k k p (p—Dip pk/(p—1)
= VO]Q'{W} {€K7 (p—l) "u“m.p}
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Since e"""‘) > e, the series 2l ,(I/k')(k/e”’("”)" converg&e to a ﬁmte
sum, say K. Let K = max(1, Ky volQ) and put

. Kxo = e/I(9K7[p/(p'—l)](p-l)’p Huum,p = Kll“u“m,p'

lu(x)|\pr/te— volQ kK Y volQ/ k \
—_— dx < — <
a\ Ko . ng/(p-l) ePl(p—1) K, epltr=1)

since Ky =1 and pk/(p—1) > 1. Expanding A(t) in power series, we now

obtain
I“(x)l) < lf l“(x)l)pk/(p-”
Al ——]dx = — d.
fn (Kw ;k! a\ Ko *
volQ < 1 k \
<—-—-K9 Zk—!<——ep/(p_l)) < 1.
k=1

Thgn

Hence u e L,(Q) and
lula < Kio = Kysllulla, p»

where K, depends on n, m, volQ, and the cone determining the cone property
forQ. 1

The imbedding established in the above theorem is ““best possible™ in the
sense that if there exists any imbedding of the form

W P(Q) = L),

then A dominates B near infinity. A proof of this fact for the case m =1,
n=p>1 can be found in the notes of Hempel and co-workers [30]. The
general case is left to the reader as an exercise.

Theorem 8.25 can be generalized to fractional-order spaces. For results
in this direction the reader is referred to Grisvard [28] and Peetre [56].

8.26 1fQisunbounded and so (having the cone property) has infinite volume,
then the N-function 4 given by (23) may not decrease rapidly enough at zero
to allow membership in L, (Q) of every u e W™?(QQ) (where mp = n). Let k,
be the smallest integer such that ko > p— 1 and define a modified N-function
A, by

T ko—1
Ag(t) = exp(tP/®?~ 1) — 02 (1/jt) ¢ i#1e=1),
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Evidently Ao ié equivalent to A4 near _'[nﬁnity so for any domain Q having
finite volume, L,(Q) and L, (Q) coincide and have equivalent norms.
However, A4, enjoys the further property that forO<r <1,

Ag(rt) < rrePlP=04 (1) < rPA,(t). . (24)

We show that if mp = n and Q has the cone property (but may be unbounded),
then

wmrQ) = L, (Q).

As in the proof of Lemma 5.14 we may write Q as a union of countably
many subdomains Q; each having the cone property determined by some fixed
cone independent of j, satisfying for some constants K, and X,

and finally such that for some positive integer R any R+ | of the subdomains
Q; have empty intersection. It follows by Theorem 8.25 that if u e W mP(Q),
then

uu"Au Q; = = K3 "u"m P>

where K, does not depend on j. Using (24) with r = R'7|ju| % o lullm 5.0
and the finite intersection property of the domains £;, we have

e ()|
J. "°(R”"K3 uuum,,n)"" = an (R”"Ks nunm,,,.n)d"

Hence |u] 4.0 < RY?K; [t|, 5. as required.
We remark that if £, > p—1, the above result can be improved slightly
by using in place of 4, the N-function max(¢?, 4, (1)).

. Orlicz-Sobolev Spaces

8.27 For a given domain Q in R” and a given defining. N-function A4 the
Orlicz-Sobolev space W™L, (Q) consists of those (equivalence classes of)

functions w in L,(Q) whose distributional derivatives D*u also belong to

- L,(Q) for all o with || <m. The space W™E,(Q) is defined in analogous
fashion. It may be checked by the same method used in the proof of Theorem
3.2 that W"L,(Q)is a Banach space with respect to the norm

llm, 4 = ltlm 1,0 = max |D%u|, q, (25)

Oglal<sm
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and that W™E,(Q) is a closed subspace of W™L ,(Q) and hence also a Banach
space under (25). It should be kept in mind that W™E (Q) coincides with
W"L,(Q) if and only if (4,Q) is A-regular. If 1 <p < oo and A4,(t) = t*,
then W"L, ()= W"E, (Q) = W™?(Q), the latter space having norm
equivalent to that of the former.

As in the case of ordinary Sobolev spaces, W,™L,(Q) is taken to be the
closure of Co®(Q) in W™L,(Q). [An analogous definition for W,"E,(Q)
clearly leads to the same space in all cases.]

Many properties of Orlicz-Sobolev spaces are obtained by very straight-
forward generalization of the proofs of the same properties for ordinary
Sobolev spaces. We summarize some of these in the following theorem and
refer the reader to the corresponding results in Chapter 111 for method of proof.
The details can also be found in the article by Donaldson and Trudinger [22].

8.28 THEOREM (a) W™E, (Q)is separable (Theorem 3.5).

(b) If (4,Q) and (4,Q) are A-regular, then W™E,(Q) = W™L,(Q) is
reflexive (Theorem 3.5).

(c) Each element L of the dual space [W™E,(Q)]’ is given by

L) = f DPu(x)v,(x) dx
Os|¢|5m

for some functions v, € L;(Q), 0 <|a| < m (Theorem 3.8).

(d) C*(Q)n WmE, () is dense in W™E,(Q) (Theorem 3.16).

(e) 1f Q has the segment property, then C*(Q) is dense in W™E,(Q)
(Theorem 3.18).

(f) Co*(R") is dense in W™E,(R"). Thus W,"L,(R") = W"E ,(R")
(Theorem 3.18).

Imbedding Theorems for Orlicz-Sobolev Spaces

8.29 Imbedding results analogous to those obtained for the spaces W™ ?(Q)
in Chapters V and VI can also be formulated for the Orlicz-Sobolev spaces
W™L,(Q) and W™E ,(Q). The first results in this direction were obtained by
Dankert [20] and by Donaldson. A fairly general imbedding theorem along
the lines of Theorems 5.4 and 6.2 was presented by Donaldson and Trudinger
-[22] and we develop it below.

As was the case with ordinary Sobolev spaces, most of the imbedding
results are obtained for domains having the cone property. Exceptions are
those yielding (generalized) Hélder continuity estimates; these require the
strong local Lipschitz property. Some results below are obtained only for
bounded domains. The method used in extending the analogous results for
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ordinary Sobolev spaces to unbounded domains (see Lemma 5.14) does not
appear to extend in a straightforawrd manner when general Orlicz spaces are
-involved. In this sense the imbedding picture is still incomplete.

8.30 We concern ourselves for the time being with imbeddings of W!L,(Q);
the imbeddings of W™L ,(Q) are summarized in Theorem 8.40. In the following
Q is always understood to be a domain in R".

Let A be a given N-function. We shall always suppose that

t47(D) '
J; mdt < 00, (26)

replacing, if necessary, 4 by another N-function equivalent to A near infinity.
[If Q has finite volume, (26) places no restrictions on 4 from the point of view
of imbedding theory since N-functions equivalent near infinity determine
identical Orlicz spaces.]

Suppose also that

©A”H(1) '
For instance, if A = A, given by (10), then (27) holds precisely when p < n.
With (27) satisfied we define the Sobolev conjugate A, of A by setting
- A7)

ATN() _f <o dn, 120 (28)
It may readily be checked that 4, is an N-function. If 1 < p < n, we have,
setting g = np/(n—p),

Apu(t) = q' 774 (1)

It is also readily seen for the case p = n that A,,(?) is equivalent near infinity

to the N-function ¢'—¢—1.

Before stating the first imbedding theorem we prepare the following
technical lemma that will be needed in the proof.

8.31 LEMMA Let ue W,;}.'(Q) and let f satisfy a Lipschitz condition on
R. Thenge W,“,c‘ (Q) where g(x) = f(Ju(x)|), and

D;g(x) = f'(|u(x)]) sgnu(x) - Dyu(x)..
ProoF Since |u|e W;'(Q) and D;|u(x)|=sgnu(x)-D;u(x) it is sufficient

to establish the lemma for positive, real-valued functions u so that
g(x) = f(u(x)). Let ¢ € 2(Q). Letting {e;}]_, be the usual basis in R", we
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obtain

()~ becmhe)

—J;lf(u();))DJ¢(x) dx = —limff(u(x))
J‘ /i (u(x+he;)) —f (u(x))

¢(x)dx

— lim Q( ) u(x+hej) —u(x)
h=0 h

¢ (x) dx,

where, since f is Lipschitz, for each 4 the function Q(-, /) is defined a.e. on
Q by
S(u(x+he)) — f(u(x))
Q(x,h) = u(x+he;) — u(x)
S'(u(x) otherwise.
Moreover, |Q(-, M)|,,qo < K for some constant K independent of 4. A well-
known theorem in functional analysis assures us that for some sequence of

values of 4 tending to zero, Q(-,h) converges to f'(u(-)) in the weak-star
topology of L*(Q). On the other hand, since u € W' ! (supp ¢) we have

u(x+he ) u(x)

if u(x+he) # u(x)

lim

h—=0

in L* (supp ¢). It follows that

- fnf(u(x)) D;b(x) = fnf'(u(x)) D;(x) $(x) dx,

which evidently implies the lemma. |

¢ (x) = Dju(x) - ¢(x)

8.32 THEOREM Let Q be bounded and have the cone property in R, If
(26) and (27) hold, then

WILL(Q) - Ly(Q.

Moreover, if B is any N-function increasing essentially more slowly than A4,
near infinity, then the imbedding

WL, (Q)-— Lg(Q)
is compact.

ProoF The funcnon s = A,(t) as defined b); (28) satisfies the diﬁ’e;ehtial
equation. - ..

PRI ®
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’ ’ - A

and hence, by virtue of the left mequahty of (7),

- ds
< l / n !
AR Z ).

Therefore 6 (1) = [A4(1)]" /" satisfies the differential inequality
da

~1,
= < fTA (100 L)) (30)

Let ue W'L,(Q) and suppose for the moment that u is bounded on Q
and is not zero in L,(Q). Then [qA.(Ju(x)|/A) dx decreases continuously
from infinity to zero as A increases from zero to infinity, and accordingly
assumes the value unity for some positive value of A. Thus

| A*('“(")') dc=1, K= lul,. (1)
0 K

Let f(x) = o(Ju(x)|/K). Evidently ue W"'(Q) and o is Lipschitz on the
range of |u|/K so that, by Lemma 8.31, f belongs to W1 (Q). By Theorem 5.4
we have W1 (Q) » /™~ 1(Q) and so

1 Mo, mrn-1) < Ky { Z ID; fllo.1 +1 /o, 1}

- [S 4 [(2)a]

(32)

By (31) and Holder’s inequality (16), we obtain
2K, < |”| |“(x)|
< — D; .
%2 () o & [ o(“)ae o
— n/(n—1)
&)L <))
K a n K Fi
n I - A
Suppose A > 1. Then ) :

R R G- L N
Making use of (30), we have
- 3-“—'inf{,1>o£f ( 1(""(I“(")'/K»)d <1}
LI(’I-I(”*(L"("WK») dx < %LA*(I—I‘—%)-I) dx = % <1 |
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o' |ul < h—
r'd| B £

aon
Letg(t) = A, (t)/t and h(z) = o (¢)/1. It is readily checked that /4 is bounded
on finite intervals and lim,_,, g(¢)/h(t) = co. Thus there exists a constant ¢,
such that if ¢ > ¢, then A(t) < g(1)/2K,. Putting K, = K, supg<,<,, #(1), we
have, for all 1 = 0,

Thus

iy

o(t) < (1/2K;) AL (1) + (K, /K))t.

an a(lu([:)l) dx < if *(Iu(x)l)d L %2 f]]u(x)|| dx
Q Q

1 K
<3+ 3““".4’ (35

where K3 = 2K, || 1]|; < oo since Q has finite volume.
Combining (33)-(35), we obtain

I < QK(/K)Y(n—1)|ufly, 4 + % + (K3/K) |ul 4,

Hence

so that
lullyy, = K < Kgllully, 4 (36)

We note that K, can depend on n, 4, vol(, and the cone determining the cone
property for Q.
To extend (36) to arbitrary ue W'L,(Q) let

u(x) if lux)| <k

= 37

i (%) {k sgnu(x) if |u(x)| > k. 37

Evidently u, is bounded and belongs to W'L,(Q) by Lemma 8.31. Moreover,

|| 4, increases with k but is bounded by X, fjull,, 4. Thus hm,(..uo luha, =K
exists and K < K, |lu}, . By Fatou’s lemma

Iu(x)l Iuk(x)l
x <
f A*( K 31.!2 K - 1
whence u e L 4.(Q) and (36) holds.
Since Q has ﬁmte volume we have
W'L,(Q) —» W (@Q - L' (Q),

the latter imbedding being compact by Theorem 6.2. A bounded subset S of
W'L,(Q) is bounded in L, (Q) and precompact in L'(Q), and hence pre-
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compact in L,(Q) by Theorem 8.23 whenever B mcreases essentlally more
slowly than A near infinity. | ’

Theorem 8.32 extends to arbitrary (even unbounded) domains Q pi‘ovided
W is replaced by W,. B
8.33 THEOREM Let Q be any domain in R". If the N-function A satisfies
(26) and (27), then

WOILA (Q) - LA‘(Q).
Moreover, if Q, is a bounded subdomain of €, then the imbeddings
WolLA (Q) - Lp(Q)

exist and are compact for any N-function B increasing essentially more
slowly than A near infinity.

PrOOF If ue Wy'L,(Q), then the function f in the above proof can be
approximated in W' (Q) by elements of C,°(Q). By Sobolev’s inequality
(Section 5.11), (32) holds with the term | f||o.; absent from the right side.
Therefore (35) is not needed and the proof does not require that Q has finite
volume. The cone property is not required either since Sobolev’s inequality
holds for all ue Cy®(R"). The compactness arguments are similar to those
above. ||

8.3 REMARK Theorem 8.32 is not optimal in the sense that for some A,
L,, is not necessarily the smallest Orlicz space into which W'L,(Q) can be
imbedded. For instance if 4(¢) = A4,(¢) = t"/n, then, as noted earlier, 4,(¢)
is equivalent near infinity to ¢'—¢t— 1. However this N-function increases
essentially more slowly near infinity than does exp(t""~")—1 so that
Theorem 8.25 gives a sharper result than does Theorem 8.32. Donaldson and
Trudinger [22] assert that Theorem 8.32 can be improved by the methods of
Theorem 8.25 provided 4 dominates near infinity every 4, with p <n, but
that Theorem 8.32 gives optimal results if for some p < n, 4, dominates 4
near infinity.

8.35 THEOREM Let have the cone property in R". Le&A be an N-
' function for which

fwé—-—l(—t)dt<op' B 38)

" T('+1"3

-Then .
WL, (Q) = C3(Q) = C(Q) n L°(Q).
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PRdOF Let C be a finite cone contained in Q. We shall show that there exists -
~a constant K, depending on #, 4, and the dimensions of C such that
o Netlleo, e < Kifjully, 4,c- - 39)

In so doing, we may assume without loss of generality that A satisfies (26),
for if not, and if B is an N-function satisfying (26) and equivalent to 4 near
infinity, then W'L ,(C) —» W' Ly(C) with imbedding constant depending on
A, B, and vol C by Theorem 8.12. Since B satisfies (38) we would have

lullw,c < Kz llulli,5,c < Kslully, a.c

Now Q can be expressed as a union of congruent copies of some such
finite cone C so that (39) clearly implies

lulw, @ < Killully, 4,0- (40)
Since A is assumed to satisfy (26) and (38) we have

A7l (@)
J; mdt = K, < o0,

t 41
A"(t)/=J‘ A—(T)dr
0

T(n +1)/n "

Then A~! maps [0, ) in a one-to-one way onto [0, K,) and has convex
inverse A. We extend the domain of definition of A to [0, o) by setting
A(t) = o for t > K,. The function A, which is a Young’s function (see
Luxemburg [42] or O’Neill [55]), is not an N-function as defined in Section
8.2 but nevertheless the Luxemburg norm

luliac = inf{k > 01f A(lu(x)|/k) dx < 1}

is easily seen to be a norm on L*(C) equivalent to the usual norm; in fact,
(/K wo,c < lulla,c < /AT (A/vol O] flul . c- (41)

Moreover, s = A(r) satisﬁes the differential equation (29) 56 that the proof
of Theorem 8.32 can be carried over in this case to yield, for ue WL ,(C),

lulla,c < Ksilully, ac- . (42)

Inequality (39) now follows from (41) and (42). o

By Theorem 8.28(d) an element ue W'E,(Q) can be approximated -in
norm by functions continuous on Q. It follows from (40) that ¥ must coincide
a.e. in © with a continuous function. (See the first paragraph of the proof of
Lemma 5.15.)
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-Suppose that an N-function B can be constructed so that B(t) = 4(1) near
zero, B‘increases essentially more slole than A4 near infinity, and

“ley © A7 (1)
J; t(""'l)l"d < J‘l t—(mmdt< o0,

Then by Theorem 8.16, ue W'L,(C) implies ue W'Eg(C) so that
WL ,(Q) = C(Q) as required.

It remains, therefore, to construct such an N-function B. Let
Il <t, <t; <--- be such that

©471(t) 1 [(2471()
J:k PLCER dt = Ez_kfl (0 +D)n dt.
We define a sequence {s;} with s, > t,, and the function B~ (¢), inductively
as follows.

Let s,=¢, and B '(t)=A4"'(t) for 0<:<s,. Having chosen
$1,525.-+s5x— and defined B~ (¢) for 0 < ¢ < 5,4, we continue B~ !(¢) to the
right of s,_, along a straight line with slope (4~ !)(s,_,—) (which aiways
exists since 4~! is concave) until a point #,’ is reached where B~!(s,’) =
271471 (r."). Such ¢ exists because lim,., A7'(1)/t=0. If ,'> 1, let
sy = 4. Otherwise let s, = f, and extend B~ ! from 1,’ to s, by setting B~ (f) =
2*~14=1(¢). Evidently B~! is concave and B is an N-function. Moreover,
B(t) = A(t) near zero and since

. B7H(»)
mEo S

B increases essentially more slowly than A near infinity. Finally,
© B1(1) SlA"(t‘) se 2kl g7

J.] t(n+l)/n d’ < J; t(n+l)/u z f t(n+l)/n dt
A7 O

< fl R dt + z - 1[ o

O,
= 2‘[ (n+l)/n

.as required. ||

8.36, THEOREM Let Q be a domain in R”® having the strong local Lipschitz
property. If the N-function A satisfies

o 41 4 “
f A4 04 < o, @)
1

t(u'l' 1)/n
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then there exists a constant K such that for any u e WL, (Q) (which may be
assumed continuous by the previous theorem) and ait x, y €  we have

© A‘l
4N < Klihioan [~ T @)

PrROOF We establish (44) for the case when Q is a cube of unit edge; the
extension to more general strongly Lipschitz domains can be carried out just
as in the proof of Lemma 5.17. As in that lemma we let 2, denote a parallel
subcube of Q and obtain for xe Q,

1
u(x —i"f u(z) dzj < —;,\/_ilf f_"dtf |grad u(z)| dz.
g Jja, g 0 Qo

By (22), |1]|1.0,, = 1/A ™" (¢t ""a™™. It follows by Holder’s inequality and (7)
that

fn |gradu(2)| dz < 2lgrad ul 0, 1} 1.0,,

2ufy anfd" "0

<
< 20" ully 4047 707"

Hence

u(x) — ﬁfn u(z) dz

! 1
< 2vn A7t dt
Vialuliea [ 47 (i)

2 © g1
= _/; “uul.A.ﬂf Sarnt 1()1;7), dt. (45)
\ -3

If x,yeQ and o=|x—y|<]1, there exists such a subcube Q, with
x,y € Q, < Q. Using (45) for x and y, we obtain -

4 © AT
=4 < =bulipa [ Tt
For |x—y| = 1, (44) follows from (40) and (43). 1§

8.37 Let M denote the class of positive, continuous, increasing functions of '
t > 0 which tend to zero as f decreases to zero. If p e M, the space C,(Qd),
consisting of functions u € C(Q) for which the norm

: lu(x)—u(p)|
. = Ju;C@Q il
Ju; C, @) = Jlu; C( )"“L,iﬁ’;‘:n w(x—7D)
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is ﬁmte, is a Banach space under that norm. The theorem above asserts that if
(43) holds, then

. e e .
WiL(Q) - C,@)  with u(r) = f (,,“(,’,Z dr. (46)

If u,ve M are such that p/ve M, then for bounded Q we have, as in
Theorem 1.31, that the imbedding
C.@ - C,Q)
is compact. Hence so also is
WL, (@) - C,Q),
if u 1s given by (46).

The following is a trace imbedding theorem which generalizes (the case
m =1 of) Lemma 5.19.

8.33 THEOREM Let Q be a. bounded domain in R" having the cone
property, and let Q* denote the intersection of Q with a k-dimensional plane
in R". Let A be an N-function for which (26) and (27) hold, and let 4, be given
by (28). Let | € p<n where p is such that the function B given by
B(1) = A(+''?) is an N-function. If either n—p <k <n, or p=1, and
n—1<k < n, then )

WIL(Q) = Lym(@Y),

where AY" (1) = [A(£)]V"
Moreover, if p>1 and C is an N-function increasing essentially more
slowly thain A%" near infinity, then the imbedding

WILWQ) - Lo (47)

is compaci.

ProOF The problem of verifying that 4%" is an N-function is left to the
reader. Let v e W'L,(Q) be a bounded function. Then -

fn kA’,‘."‘(lu(y)l)d _ 1, K = ful g, e @8y

We wish to show that
‘ K< Klul,ae ' (49)

with K, independent of u. Since (49) is known to hold for the special case
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-~

k = n (Theorem 8.32) we may assume without loss of generality that _
K = |ul a0 = lul grm, 0n- - (50)
Let w(t) = [A44(1)]"4 where g = np/(n—p). By Lemma 5.19 (the case m = 1)

we have
(%) >loe(] (D)

<xf>
kp/(n—p), Q¥ j=1 p.Q
|D;u(x)|”dx

ol S
+fn w(luL]:)g pdx}.

Using (48) and noting that |[v}?||5 o <[|v]|4, o, We obtain

(L

Ap/(n=p). Q¢

2K, ||/, {1ul\ I"')
S—Fj:l (w<K>) 12sko.0+ Kz o (K/ rnQ
< 2nkK, o' lul VY ful? + K, lw M (51
S Tk K)) o2 """ T TNK e

Now B~ !(t) = [4~*(£)]” and so, using (29) and (7), we have
[w'(D)]” = (1/g7) [44(1)1"" P[4,/ (1)]”
= (1/g") Ax()[1/B™ (Ax(1))] < (1/g°) B~ (A,(1)).
It follows by (50) that

~( (o (Ju@)|/K)Y u(x)]

M@ (ul/KY g0 < 1/g°. . (52

Now set g(t) = A,(t)/1? and A(t) = (w(2)/t)”. 1t is readily checked that
hm,_.qv g(8)/h(t) = co. In order to see that A(¢) is bounded near zero let .
5= Ay(t) and con51der - :

(A )t/ sum=am <‘ si/p
trAT@ T BT
oFnn 9t dr
o7 0 T

So

(h@)'? =
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Since B is an N-functlon lim,, .. B~} (‘t)/t = . Hence for sufﬁclently small
values of 1 we have

1y stie i
- OP" < g
Therefore there exists a constant K such that for 1 > 0
(@) < (1/2K,) Au(t) + Ky t*.

Using (50), we now obtain

” (lul) < 2—K—2f A*('um') flu ()| dx

12K,

< E[‘(‘ + '_—” ()]s, alltls.0

1
€ — 4=
<35+ ol 59

From (51)-(53) there follows the inequality

2nkK, 1 : 1 K,K
2"‘1—,,"“"‘1’,,4,0'*‘54' .

e,

and hence (49). The extension of (49) to arbitrary ue W'L,(Q) now follows
as in the proof of Theorem 8.32.

Since B(t) = A(t'/?) is an N-function and Q is bounded we have
WL, (Q)—» W'P(Q) - L' (QY), the latter imbedding being compact by
Theorem 6.2 (provided p > 1). The compactness of (47) now follows by
Theorem 8.23. |1

8.39 We conclude this chapter with the general Orlicz-Sobolev imbedding
theorem of Donaldson and Trudinger [22]. For a given N-function 4 we
define a sequence of N-functions By, By, B,, ... as follows:

By(1) = 4(1)

1
B0 = f‘”“—(.‘,?ﬁ,,—"—’dr, k=12

At each stagé we assume that

'BY ()

o T(n-l- 1)/n

dr < o, (59
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replacing By, if nééessary, by another N-function equivalent to-it near infinity
and satisfying (54). Let J =J (A) be the smallest nonnegative integer such that
© ()" ()

‘t(”+ 1)/n

dr < o©

Evidently J(4) < n.

If u belongs to the class M defined in Section 8.37, we define the space
C,"(Q) to consist of those functions u € C™(Q) for which D*ue C,(Q). The
space C," () is a Banach space with respect to the norm

|u; C,"(Q)| = max | D%u; C,(Q)].

lajsm

840 THEOREM Let Q be a bounded domain in R" having the cone
property. Let 4 be an N-function.

(@ f m<J(A4), then W"L,(Q)—Lg () and the imbedding
W™L,(Q)— Lc(2) is compact for any N-function C increasing essentially
more slowly than B,, near infinity.

“(b) If m> J(A), then W™L,(Q) - Cp(Q) = C(Q) n L*(Q). ‘

(c) If also Q has the strong local Lipschitz property and if m > J = J(A4),

then W™L,(Q) - Cr'~’/~'(Q) where

[l(t) — fw w dt.

- n t(n+l)/n

Moreover, the imbeddings W™L,(Q)—C™ '"(@Q) and W™"L,(Q)-
Crm~J-1(QQ) are compact provided ve M and u/ve M.

841 REMARK The above theorem follows in a straightforward way
from Theorems 8.32, 8.35, and 8.36. Moreover, if we replace L, by E, in part
(a), we get W™E,(Q) — E_ (Q) since the sequence {«,} defined by (37) in the
proof of Theorem 8.32 converges to u if ue W'E, (Q). Theorem 8.40 holds
without restriction on Q if W™L,(Q) is everywhere replaced by W,"L ().
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norm, 4 Fourier transform, 220
weak, 6 Fractional order spaces, 177
Convexity Besov spaces, 223
local, 3 Niko!’skii spaces, 225
uniform, 7, 34, 46 Sobolev spaces, 204, 206
Convolution, 29, 90, 199 spaces of Bessel potentials, 219, 221
Countably additive, 13 : Fringe, 161, 165
Cusp, 122, 123 Fubini’s theorem, 18
exponential, 122 Functional, 3
standard, 124 G
Cylindrical °°°rdmat::' 124 Gagliardo, E., 67, 68, 70, 75, 95, 99, 101
A-regular, 232 - H
A,-condition, 231, 232 Hahn-Banach extension theorem, 6
Dense, 4 Hestenes, M., 83 -
Derivative Hilbert space, 5
_of a distribution, 20 Hilbert-Schmidt imbeddirg, 175, 176 .
distributional, 21, 179 Hilbert-Schmidt operator, 174
weak, 21 Holder condition, 10
Distribution, 19 Holder's inequality, 23, 234
tempered, 220 reverse form, 24
Distributional derivative, 21, 179 Homogeneous function, 91
Domain, 1 i

Dominated convergence theorem, 17
Dominating N-function, 231
Donaldson, T. K., 247

Imbedding, 9, 96
compact, 9, see also Compact imbedding

Dual space, 3 theorem
of a Lebesgue space, 40, 41 :'mbef;;SChmldl, 175, 176
of an Orlicz space, 238 race,
pace Imbedding constant, 97

of an Orlicz-Sobolev space, 247

of a Sobolev space, 48-51 Imbedding inequality, weighted norms, 128,

133, 136, 138

E Imbedding theorem

Ehrling, G., 70, 75, 79 for Besov and Nikol'skii spaces, 224-226

Embedding, see Imbedding . for continuous function spaces, 11
.enet, 7 . ) for cusp domains, 126, 127

Equivalent N-function, 231 . direct and converse, 217-219

Equivalent norm, 4,8 for Lebesgue spaces, 25

for Sobolev spaces, 79, 158, 214, 223 " for Orlicz spaces, 234, 237
Essential rate of increase, 231 for Orlicz-Sobolev spaces, 249, 252, 255,

Essential supremum, 24 256, 259
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for Sobolev space W™ ?, 97, 242
for Sobolev space W=7, 216-219
Infinitesimal generator, 181
Inner product, 5
Integrability
Bochner, 179
Lebesgue, 15, 17
local, 19, 179
Integral :
Bochner, 178, 179
Lebesgue, 15, 17
Interpolation inequality, 70, 74, 75, 78, 79,
81, 82
Interpolation method
complex, 177, 221
real, 177
trace, 178, 186
Interpolation space, 188
Interpolation theorem
between Banach spaces, 188, 222
involving compact subdomains, 81, 82
between spaces L7, 222
between spaces W™ ?, 74, 75, 78, 79
Isometric isomorphism, 4

K

Kernel, 204, 214-218
Kondrachov, V. 1., 143
Rellich-Kondrachov theorem, 144

L

A-fat cube, 161

Lebesgue dominated convergence theorem,
17

Lebesgue integral, 15, 17

Lebesgue measure, 13, 14

Lebesgue spaces, 22, 24

Leibniz formula, 2, 21

Lichenstein, L., 83

Linear functional, 3

Lions, J. L., 56, 178, 184, 219

Lipschitz property, 66

Lizorkin, P. 1., 218

Local intcgrability, 19, 179

Localization theorem, 207

Locally convex TVS, 3

Locally finite, 65

Lusin’s theorem, 14

Luxemburg norm, 234, 253

i M

Magenes, E., 178, 219 B
Maurin, K., 174
Measurable function, 14, 17, 178
Measurable set, 13
Measure, 13

complex, 13

Lebesgue, 14

positive, 13
Meyers, N., 45, 52
Minkowski’s inequality, 23

reverse form, 24-25
Mollifier, 29
Monotone convergence theorem, 16
Morrey, C. B., 95, 98
Multi-index, 1

N

N-function, 227, 228
Nikol’skii, S. M., 177, 225, 226
Nirenberg, L., 70, 75
Norm, 3
equivalence, 4, 8, 79, 158, 214, 223

-Normable space, 4

Normed dual, 5
Normed space, 4

Operator, 8
bounded, 9
compact, 8
completely continuous, 9
extension, 83
imbedding, 9
Orlicz class, 232
Orlicz space, 227, 233, 236
Orlicz-Sobolev space, 246-247
Orthonormal system, 173

P

- Parallelepiped, 65

Parallelogram law, 5
Partition of unity, 51
Polar set, 56
Precompact set, 7, 31, 33, 242
Product ,

Cartesian, 8

inner, 5
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Quasibounded domain, 148
Quasicylindrical domain, 159

R

Radon-Nikodym theorem, 17
Reflexivity, 6
of Lebesgue spaces, 42
of Orlicz spaces, 240
of Orlicz-Sobolev spaces, 247
of Sobolev spaces, 47, 205

of trace interpolation spaces, 189-190

Regularization, 29
Rellich, F., 143
Rellich-Kondrachov theorem, 144
Riesz representation theorem
for Hilbert space, 5
for Lebesgue spaces, 40, 41

S

Scale of spaces, 188
Schwartz distribution, 18, 19
Second dual, 6
Seeley, R., 83, 86
Segment property, 54, 66
Semigroup of operators, 180
Separability, 4
of Lebesgue spaces, 28
of Orlicz spaccs, 240
of Orlicz-Sobolev spaces, 247
of Sobolev spaces, 47
Serrin, J., 45, 52
o-algebra, 13
Simple extension operator, 83, 91
Simple function, 14, 178
Smith, K. T., 219
m-Smooth transformation, 63
Sobolev, S. L., 45, 95
Sobolev conjugate N-function, 248
Sobolev imbedding theorem, 95, 97
limiting case, 242
Sobolev inequality, 104
Sobolev space, 44
equivalent definitions, 52

fractional order, 177, 204, 205, 206

integral order, 44 :
negative order, 50, 51

Spherical coordinates, 130

Spiny urchin, 151-152
Stone-Weierstrass theorem, 10
Streamline, 169

Strong éxtension operator, 83, 84
Strong local Lipschitz property, 66
Subspace, 5

Support, 2

T

Tempered distribution, 220
Tesselation, 106, 161

Testing function, 19

Topological vector space (TVS), 2
Total extension operator, 83, 88
Trace, 96, 185, 186

INDEX

on the boundary, 113, 114, 215-217

higher-order, 196, 198
interpolation method, 178, 186
interpolation space, 186, 198
on a subspace, 96, 112

Transformation of coordinates, 63-64

Trudinger, N. S., 228, 242, 247

U

Uniform C™-regularity, 67
Uniform cone property, 66
Uniform convexity, 7
of Lebesgue spaces, 34, 38
of Sobolev spaces, 47
Uspenskii, S. V., 218

\4

Vector sum of Banach spaces, 184
Volume, 14

w

Weak convergence, 6

Weak derivative, 21

Weak sequential compactness, 7
Weak-star topology, 3, 19
Weak topology, 6

Y

Young's function, 227, 253
Young’s inequality, 230
Young's theorem, 90



