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Introduction

One sometimes hears expressed the view that some sort of uncertainty princi-
ple operates in the interaction between mathematics and physics: the greater
the mathematical care used to formulate a concept, the less the physical
insight to be gained from that formulation. It is not difficult to imagine how
such a viewpoint could come to be popular. It is often the case that the
essential physical ideas of a discussion are smothered by mathematics through
excessive definitions, concern over irrelevant generality, etc. Nonetheless, one
can make a case that mathematics as mathematics, if used thoughtfully, is
almost always useful—and occasionally essential—to progress in theoretical
physics.

What one often tries to do in mathematics is to isolate some given struc-
ture for concentrated, individual study: what constructions, what results,
what definitions, what relationships are available in the presence of a certain
mathematical structure—and only that structure? But this is exactly the sort
of thing that can be useful in physics, for, in a given physical application,
same particular mathematical structure becomes available naturally, namely,
that which arises from the physics of the problem. Thus mathematics can
serve to provide a framework within which one deals only with quantities of
physical significance, ignoring other, irrelevant things. One becomes able to
focus on the physics. The idea is to isolate mathematical structures, one at a
time, to learn what they are and what they can do. Such a body of
knowledge, once established, can then be called upon whenever it makes con-
tact with the physics.

An everyday example of this point is the idea of a derivative. One could
imagine physicists who do not understand, as mathematics, the notion of a
derivative and the properties of derivatives. Such physicists could still formu-
late physical laws, for example, by speaking of the ‘‘rate of change of . ..
with . ..” They could use their physical intuition to obtain, as needed in
various applications, particular propetties of these ‘‘rates of change.” It
would be more convenient, however, to isolate the notion ‘‘derivative’” once
and for all, without direct reference to later physical applications of this con-
cept. One learns what a derivative is and what its properties are: the
geometrical significance of a derivative, the rule for taking the derivative of a
product, etc. This established body of knowledge then comes into play
automatically when the physics requires the use of derivatives. Having
mastered the abstract concept ‘“‘rate of change” all by itself, the mind is freed



2 Chapter One

for the important, that is, the physical, issues.

The only problem is that it takes a certain amount of effort to learn
mathematics. Fortunately, two circumstances here intervene. First, the
mathematics one needs for theoretical physics can often be mastered simply
by making a sufficient effort. This activity is quite different from, and far
more straightforward than, the originality and creativity needed in physics
itself. Second, it seems to be the case in practice that the mathematics one
needs in physics is not of a highly sophisticated sort. One hardly ever uses
elaborate theorems or long strings of definitions. Rather, what one almost
always uses, in various areas of mathematics, is the five or six basic
definitions, some examples to give the definitions life, a few lemmas to relate
various definitions to each other, and a couple of constructions. In short,
what one needs from mathematics is a general idea of what areas of
mathematics are available and, in each area, enough of the flavor of what is
going on to feel comfortable. This broad and largely shallow coverage should
in my view be the stuff of “mathematical physics.”

There is, of course, a second, more familiar role of mathematics in phy-
sics: that of solving specific physical problems which have already been formu-
lated mathematically. This role encompasses such topics as special functions
and solutions of differential equations. This second role has come to dominate
the first in the traditional undergraduate and graduate curricula. My pur-
pose, in part, is to argue for redressing the balance.

We shall here take a brief walking tour through various areas of
mathematics, providing, where appropriate and available, examples in which
this mathematics provides a framework for the formulation of physical ideas.

By way of general organization, chapters 2-24 deal with things algebraic
and chapters 25-42 with things topological. In chapters 43-50 we discuss
some special topics: structures which combine algebra and topology, Lebesque
integrals, Hilbert spaces. Lest the impression be left that no difficult
mathematics can ever be useful in physics, we provide, in chapters 51-56, a
counterexample: the spectral theorem. Strictly speaking, the only prere-
quisites are a little elementary set theory, algebra, and, in a few places, some
elementary calculus. Yet some informal contact with such objects as groups,
vector spaces, and topological spaces would be most helpful.

The following texts are recommended for additional reading: A. H. Wal-
lace, Algebraic Topology (Elmsford, NY: Pergamon, 1963), and C. Goffman
and G. Pedrick, First Course in Functional Analysis (Englewood Cliffs, NJ:
Prentice-Hall, 1965). Two examples of more advanced texts, to which the
present text might be regarded as an introduction, are: M. Reed and B.
Simon, Methods of Modern Mathematical Physics (New York: Academic,
1972), and Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick,
Analysis, Manifolds and Physics (Amsterdam: North-Holland, 1982).
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Categories

In each area of mathematics (e.g., groups, topological spaces) there are avail-
able many definitions and constructions. It turns out, however, that there are
a number of notions (e.g., that of a product) that occur naturally in various
areas of mathematics, with only slight changes from one area to another. It is
convenient to take advantage of this observation. Category theory can be
described as that branch of mathematics in which one studies certain
definitions in a broader context—without reference to the particular area to
which the definition might be applied. It is the “mathematics of mathemat-
ics.” Although this subject takes a little getting used to, it is, in my opinion,
worth the effort. It provides a systematic framework that can help one to
remember definitions in various areas of mathematics, to understand what
many constructions mean and how they can be used, and even to invent use-
ful definitions when needed. We here summarize a few facts from category
theory.

A category consists of three things—i) a class O (whose elements will be
called objects), ii) a set Mor(A,B) (whose elements will be called morphisms
from A to B), where A and B are any two! objects, and iii) a rule which
assigns, given any objects A, B, and C and any morphism ¢ from A to B and
morphism 9 from B to C, a morphism, written ¢ o ¢, from A to C (this ¥ o ¢
will be called the composition of ¢ with 1)—subject to the following two
conditions:

1. Composition is associative. If A, B, C, and D are any four objects,
and ¢, ¥, and X\ are morphisms from A to B, from B to C, and from C to D,
respectively, then

Noplop=DXxo(Yoyp) .
(Note that each side of this equation is a morphism from A to D.)
2. Identities exist. For each object A, there is a morphism i4 from A to
A (called the identity morphism on A) with the following property: if ¢ is any
morphism from A to B, then

7

poig=¢p ;
if g is any morphism from C to A, then

1. Here and hereafter, ‘4wo elements’’ means ‘‘two elements in a specific order,” or, more
formally, an ‘‘ordered pair.”
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thop=p .

That is the definition of a category. It all seems rather abstract. In
order to see what is really going on with this definition—why it is what it
is—one has to look at a few examples. We shall have abundant opportunity
to do this: almost every mathematical structure we look at will turn out to be
an example of a category. In order to fix ideas for the present, we consider
just one example (the simplest, and probably the best).

To give an example of a category, one must say what the objects are,
what the morphisms are, what composition of morphisms is—and one must
verify that conditions 1 and 2 above are indeed satisfied. Let the objects be
ordinary sets. For two objects (now, sets) A and B, let Mor(A,B) be the set of
all mappings from the set A to the set B. (Recall that a mapping from set A
to set B is a rule that assigns, to each element of A, some element of B.)
Finally, let composition of morphisms, in this example, be ordinary composi-
tion of mappings. (That is, if ¢ is a mapping from set A to set Band 9 is a
mapping from set B to set C, then 9 o ¢ is the mapping from set A to set C
which sends the element @ of A to the element ¢(p(a)) of C.) We now have
the objects, the morphisms, and the composition law. We must check that
conditions 1 and 2 are satisfied. Condition 1 is indeed satisfied in this case: it
is precisely the statement that composition of mappings on sets is associative.
Condition 2 is also satisfied: for any set A, let i, be the identity mapping (i.e.,
for each element a of A, iy(a) = a) from A to A. Thus we have here an
example of a category. It is called the category of sets.

This example is in some sense typical. It is helpful to think of the
objects as being ‘‘really sets” (perhaps, as in later examples, with additional
structure) and of the morphisms as ‘‘really mappings’ (which, in these later
examples, will be ‘‘structure preserving’’). With this mental picture, it is easy
to remember the definition of a category—and to follow the constructions we
shall shortly introduce on categories.

This example suggests the introduction of the following notation for

categories. We shall write A f» B to mean “A and B are objects, and ¢ is a
morphism from A to B.”

We now wish to give a few examples of how one carries over notions
from categories in general to specific categories.

Let ¢ be a morphism from A to B. This ¢ is said to be a monomorphism
if the following property is satisfied: given any object X and any two mor-
phisms, & and «’, from X to A such that poa = poa’, it follows that
a = a’ (figure 1). This ¢ is said to be an epimorphism if the following pro-
perty is satisfied: given any object X and any two morphisms, § and 8°, from
Bto X such that 3o p = B o ¢, it follows that 8 = B° (figure 2). (That is,
monomorphisms are the things that can be ‘“‘canceled out of morphism equa-
tions on the left’’; epimorphisms can be ‘‘canceled out of morphism equations
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XZ A3

Figure 1

4
A—2-BZ2X
Figure 2

on the right.”)
As usual, one makes sense out of these definitions by appealing to our
example, the category of sets.

THEOREM 1. In the category of sets, a morphism is a monomorphism if and
only if it is one-to-one.

(Recall that a mapping from set A to set B is said to be one-to-one if no two

distinct elements of A are mapped to the same element of B.)

Proof. Let p be a mapping from set A to set B, which is one-to-one. We
show that this ¢ is a monomorphism. Let X be any set, and let a and a” be
mappings from X to A such that poa = poa’. We must show that a =
a’. If a and a” were different, they would differ on some element of X; that
is, there would be an z in X such that o(z) would be different from o (z).
Then, since ¢ is one-to-one, we would have p(a(z)) different from @(a "(z)).
But this contradicts p o @ = ¢ 0o a’. Hence ¢ is a monomorphism.

Let ¢ be a mapping from set A to set B which is a monomorphism. We
show that this ¢ is one-to-one. Let a and a” be elements of A such that (a)
= p(a’). We must show that a = a’. Let X be the set having only one ele-
ment, 2. Let a be the mapping from X to A with a(z) = a, and let «” be the
mapping from X to A with a’(2) = a’. Then, since p(a) = p(a”), p o o(x)
=poa’(z). Thatis, poa = ¢ oa’. But ¢ is supposed to be a monomor-
phism; hence & = a’. In particular, we must have a(z) = a’(z); that is, we
must have ¢ = a’. Hence, ¢ is one-to-one. ||

THEOREM 2. In the category of sets, a morphism is an epimorphism if and
only if it i3 onto.
(Recall that a mapping from set A to set B is said to be onto if every element
of Bis the image, under the mapping, of some element of A.)
Proof. Let p be a mapping from set A to set B, which is onto. We show
that this ¢ is an epimorphism. Let X be any set, and let 8 and B8’ be
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mappings from B to X such that fop = 8 0o ¢. We must show that § =
B’. If B and B’ were different, they would differ on some element of B; that
is, there would be a b in B such that §(b) would be different from °(5). But,
since ¢ is onto, there is an a in A such that ¢ = b. Hence f o p(a) would be
different from 3" o ¢(a). This contradicts fop = B o . Hence ¢ is an
epimorphism.

Let ¢ be a mapping from set A to set B, which is an epimorphism. We
show that this ¢ is onto. Suppose, on the contrary, that there were some ele-
ment b of B which was not the image, under ¢, of any element of A. Let X
be the set having just two elements, z and y. Let 8 be the mapping from B to
X which sends b to z and the rest of Bto y. Let 8 be the mapping from B
to X which sends all of Bto y. Then, since ¢ sends no element of A to b, we
have Bo ¢ = B o ¢ (for both of these mappings from A to X send all of A
to y). Since ¢ was assumed an epimorphism, we must have § = #’. But, by
construction, B does not equal 8°. We have a contradiction. Hence ¢ is
onto. |J

It should be clear that there is no real content to these proofs: all one has
to do to obtain a proof is keep from getting confused. One should think of a
monomorphism as a fancy way of saying ‘‘one-to-one” and of an epimorphism
as a fancy way of saying “onto.” Why does one bother to invent fancy words
and fancy ways of saying these simple things? The point is that the definition
of, for example, monomorphism is different in an important way from the
definition of one-to-one. The latter refers directly to the sets themselves (i.e.,
to the elements of the sets and what happens to those elements under map-
pings). The former, however, refers only to objects, morphisms, and composi-
tion of morphisms. That is, ‘“‘monomorphism” is a statement one can make
about a category, while “‘one-to-one’’ is a statement one can only make about
sets. As we shall see, there are lots of categories other than the category of
sets: in every such category, the notion of a monomorphism will be available.
Theorems 1 and 2 are good examples of the sort of activity that takes place in
category theory. One takes a notion (e.g., one-to-one or onto) that refers
directly to the detailed nature of the objects to which it is applied and finds a
“categorical version” of that notion, a version that refers only to the things
that go into making a category (objects, morphisms, composition). One thus
acquires the ability to carry over this same notion to many different areas of
mathematics.

"

Recall that any composition of one-to-one mappings on sets is itself one-
to-one, and similarly for onto. This observation about sets and mappings sug-
gests a theorem in category theory.
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THEOREM 3. Let A f+ B i C. Then v o © 18 @ monomorphism if both p and
% are monomorphisms; v o ¢ ts an epimorphism if both o and ¢ are ep1-
morphisms.

Proof. Let ¢ and ¢ be monomorphisms. We show that Yo is a

monomorphism. Let X be any object, and o and a” morphisms from X to A

X_ZASB5C
Figure 3

such that (¥ o p) o = (Y 0 p) 0 &’ (figure 3). We must show that o = a”.
By condition 1 for a category, Y o(poa) = Yo(poa’). Since ¥ is a
monomorphism, we have poa = @ o a’. But now, since ¢ is a monomor-
phism, we have & = a’. Hence 9 o ¢ is a monomorphism. Similarly for epi-
morphism. |

Note that theorem 3 is actually easier for categories in general than it is for
the special case of sets. This phenomenon is by no means rare.

Everyone knows what a subset is. We formulate this notion categori-
cally. A subobject of an object A is an object A" along with a monomorphism
A’ — A. Since, in the category of sets, monomorphisms are just one-to-one
mappings, it is clear that, in the category of sets, subobjects are just subsets.

There is, in set theory, the notion of a ‘‘one-to-one correspondence”
between sets. We formulate categorically. A morphism ¢ from A to B is said
to be an tsomorphism if there is a morphism ¢  from B to A such that

4
> B
AT
(4
Figure 4

@ op =14and pop = ig(figure 4). (In words, a morphism is an isomor-
phism if it has ‘“‘an inverse, which works on both the left and the right.”) It
is clear that, in the category of sets, an isomorphism is just a one-to-one, onto
mapping. In fact, the statement of what an isomorphism is, when applied to
the case of sets, is just what one really means by a ‘‘correspondence’” between
sets.

Ezample. A set is said to be countable if there exists an isomorphism
between that et and the set of positive integers. Thus the set of real
numbers is not countable.
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We emphasize that these notions—monomorphism, epimorphism, isomor-
phism, subobject—while of some importance in themselves, are important pri-
marily as examples of the point of view of category theory. We shall shortly
give two additional, somewhat richer, examples. We first need a little termi-
nology. By a diagram we mean any collection of objects along with a collec-
tion of morphisms between various of those objects. (E.g., a diagram is what

AT B
ol
(——D——F

Figure 5

is pictured.) A diagram is said to commute if it has the following property:
given any two objects in the diagram, and any two morphisms between those
objects, obtained by composition of the morphisms in the diagram, those two
morphisms are equal. Thus the statement that the diagram of figure 5 com-
mutes is the statement that « = a’, Y0 f = § o a (both morphisms from A
to D), and v o § = p (both morphisms from B to E). It turns out that many
statements in category theory can be formulated as the statement that an
appropriate diagram commutes. For example, one could (with no gain in clar-

©
ity) define a monomorphism as follows: A — B is a monomorphism if, when-
ever the first diagram of figure 6 commutes, so does the second.

A X
S
qo\BA cNB/a

Figure 6

We now proceed to the final two examples of definitions in category
theory. Let A and B be objects. A product of A and B is an object C,
together with morphisms from C to A and from C to B, such that the follow-
ing property holds: if C* is any object, and " and 8" any morphisms from
C’ to A and from C’ to B, respectively, there is a unique morphism « from
C’ to C such that the diagram of figure 7 commutes. A dsrect sum of A and
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!

C
o b’l g’

C
A/ RB

Figure 7

B is an object C, together with morphisms from A to C and from B to C,
such that the following property holds: if C° is any object, and a«” and 8°
any morphisms from A to C° and from B to C°, respectively, there is a
unique morphism 4 from C to C’ such that the diagram of figure 8

A
N o
&C dl
l
C

Figure 8

Note that a direct product consists not only of an object but also of a
certain pair of morphisms, and similarly for a direct sum. We emphasize that
there is no guarantee that, given two objects, either a direct product or a
direct sum will exist: in fact, there are examples in which one or both do not
exist. However, most of the categories one commonly deals with have the
property that any two objects in the category do have both a direct product
and a direct sum. Finally, we remark that, although we have here defined the
product and sum of only two objects, the definition has an obvious extension
to an arbitrary collection of objects (including infinite collections). The
corresponding diagrams for the direct product and the direct sum are shown
in figure 9. Nothing of consequence happens in the passage from the case of
two objects to the case of an arbitrary collection of objects: proofs, for exam-
ple, can be repeated almost word for word. We treat the case of only two
objects beeause it makes arguments less confusing and because it is this case
which is normally needed in practice.
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?,
/;C\\’ \
AT R D

Figure 9

We now find out what these general definitions mean in the specific con-
text of the category of sets. Recall a construction from set theory. The
Cartesian product, A X B, of sets A and B is the set of all pairs (a,b) with a
an element of A and b an element of B. There is a natural mapping, «, from
the Cartesian product A X B to A, given by a(e,b) = a. (That is, a is the
mapping which ‘‘ignores the second entry” of an element, (q,b), of the Carte-
sian product.) Similarly, (a,b) = b is a mapping from A X Bto B.

THEOREM 4. In the category of sets, (A X B,a,f) is a direct product of sets A
and B, where A X B is the Cartesian product, and o and 3 are the map-
pings above.

Proof. Let C’ be any set, and o’ and 8 any mappings from C’ to A

and from C’ to B, respectively. We define a mapping ~ from C* to A X B

as follows: for ¢ in C’, set A{c") = (a’(c),8"(c)). (Note that the right side

is indeed an element of A X B.) We must show that this 4 makes the
diagram of figure 10 commute (i.e., that oy = &’ and foy = #°), and
that this ~ is the only mapping from C’ to A X B which makes it commute.

To see that & o ¥ = a”, apply the mapping on the left to a typical element,

¢,of C:afy(c’)) = ala’(c’), B'(c”)) = a’(c¢’). Hence a oy = a’ and,

similarly, B oy = B°. Thus the diagram of figure 10 indeed commutes. All
that remains is to show that this 4 is the only mapping which does the job.

Let 7 be another mapping from C’ to A X B which gives a commuting

diagram. Fix an element ¢ of C’, and consider the element y(c’) of A X B.

Since @ 0 4 = a’, we must have a(y{c’)) = a’(¢’); since fory = A", we

must have B(7(c’)) = B’(c’). But the only element z of A X B such that

a(z) = a’(c¢’) and B(z) = B°(c") is the element (a"(c”), B8°(c’)). Hence

Me’) = (a’(c’), B’(c’)). In other words, ¥ = =, establishing uniqueness of

the mapping. |-

To paraphrase this proof, ‘‘y decides where (in A X B) it will send an element
¢ of C’ as follows: it sees where (in A) a” sends ¢’ and where (in B) 8’
sends ¢’ and puts these two into a pair to get an element of A X B.”
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Figure 10

In order to obtain the analogous result for the direct sum, we must again
recall a construction from set theory. The disjoint union of two sets, A; and
A, is the set, written A; Uy Ay, consisting of all pairs (z,n), where n is either
the number “1’" or the number *‘2,”” and where z is an element of A,. (It is
convenient here to call the sets A, and A, rather than A and B.) This
definition requires a little explanation. The elements of A; U, Ay of the form
(2,1) form a ‘“‘copy of A;,” for the z in (z,1) is allowed to range over A,;. Simi-
larly, the elements of the form (2,2) form a copy of A,. But the elements of
the form (z,1) together with the elements of the form (z,2) exhaust the ele-
ments of A; Uy Ay. Thus A; U, A, is ‘‘the union of a copy of A; with a copy
of A, Why this use of copies? Why not just take the union of A; and A,?
This would be fine if A; and A, were disjoint. If, however, A; and A, have
some elements in common, then these elements would be ‘“included only
once’”’ in A; U Ay, whereas they are “‘included twice” (once as an element of
A; and once as an element of Ay) in A; Uy Ay. Denote by a,; the mapping
from A; to A; Uy A, which sends a typical element, a;, of A; to the element
(ay,1) of Ay Uy Ag; similarly for a,.

THEOREM 5. In the category of sets, (A; Uy Ay, o), a3) is a direct sum of the
sets Ay and A,, where A} Uy A, is the disjoint union, and o and oy are
the mappings above.

Proof. Let C’ be any set, and a; " and a,” any mappings from A, to C’
and from A, to C°, respectively. We define a mapping ~ from A, Uy A, to
C’ as follows: 4(z,1) = a,"(2), 7(2,2) = ay’(z). (Note that, in the first equa-
tion, z must be an element of A; while, in the second, it must be an element
of A,.) We must show that this « is the only mapping which makes the
diagram of figure 11 commute (i.e., that this 7, and only this one, satisfies
7oa; = a;  and Yo ay = ay"). To see that Yo a; = a; ", apply the map-
ping on the left to a typical element, z, of A;: 4(ay(2)) = A(z,1) = a, (7).
Hence ’700; = a,’, and, similarly, y0a; = a3". Thus the diagram of
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Figure 11

figure 11 indeed commutes. To show that this ~ is the only mapplng which
glves a commuting diagram, let ~ be another mapping. Then, since 7 o o) =
a,’, we have, applying this to an arbitrary element z of A, fy(al( 7)) =
a;’(2). But ay(z) = (z,1), so A(z,1) = a;’(2), and, similarly, 7(,2) = a,"(2).
But these last two equations are precisely the statement that

=10

Theorems 4 and 5 show, in particular, that direct products and direct
sums always exist in the category of sets. (It is interesting to note that the
definition of a direct sum, in particular, is perhaps more straightforward than
that of the disjoint union.) One expects from these theorems that, even in
other categories, direct products will be ‘“product-like,”” and direct sums
‘“union-like.” This will turn out in some sense to be the case. However, for
objects in more complicated categories, one cannot just go taking naive ‘‘pro-
ducts” and ‘‘unions” and expect to get, as a result, things having the struc-
ture appropriate for objects in that category. These categorical definitions
will force us -within each category to do the ‘‘right” thing and will ensure, in
particular, that we always end up with an object in that category. Whereas
there is nothing very subtle in monomorphisms and epimorphisms (they are
always the obvious things), direct products and direct sums can, as we shall
see, be very clever in combining two objects, and making all the structure
work out right, to get new objects.

One of the things that makes direct products and direct sums interesting
is that they are unique in a certain sense. This is not completely obvious even
for sets. One could, offhand, imagine working very hard to find, for two sets
A and B, a set C and mappings from C to A and from C to B such that the
definition of a direct product is satisfied but such that this C is essentially
different from A X B. In fact, direct products and direct sums are, in an
appropriate sense, unique, and, in fact, this is true in any category. The
‘‘appropriate sense” is the following:
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THEOREM 6. Let A and B be objects, and let (C,a,8) and (C*,a",3" ) be two
direct products of these objects. Then there is one and only one isomor-
phism from C’ to C for which the diagram of figure 12 commutes. Simi-
larly for the direct sum.

(That is, not only are C and C’ isomorphic as objects, but there is a unique

isomorphism between them which preserves their “relationship with A and

B.H)

C,
o C[: ¢’

AP

Figure 12

Proof. Since Cis a product, there is a (unique) morphism ~ such that
the diagram of figure 12 commutes. Since C’ is a product, there is a (unique)
morphism ~” such that the diagram of figure 13 commutes. The first sen-

’

tence implies @oy = a’; the second implies @’ 04" = a. Hence

Figure 13

ao(yox') = (@or)oy” = a’ oq” = a. Similarly, fo(y07") = 4
Now consider the diagram of figure 14. (Note the two (’s.) The result just
derived is precisely the statement that this diagram commutes if g is replaced
by yo 4°. Clearly, this diagram commutes if p is replaced by i,. But Cis a
direct product, so there can be only one p which makes this diagram com-
mute. Hence 404" = ¢o Similarly, 4" oy = ip-. Thus 4 is an isomor-
phism. Similarly for the direct sum. |]

.
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Figure 14

This completes our brief survey of category theory. We emphasize again
that theorems 3 and 6 are about category theory while theorems 1, 2, 4, and 5
are about the category of sets. There are, of course, many more definitions
and theorems in category theory. We shall introduce a few of these, when
needed, later.

Ezercise 1. Prove that every isomorphism is both a monomorphism and an
epimorphism. (The converse is false, for example, in the category of Hausdorff
topological spaces.)

4 ¥
Ezercise 2. Let A — B — C. Prove that, if ¥ o ¢ is a monomorphism, so is
@; that, if ¥ o ¢ is an epimorphism, so is 9. Find examples, in the category
of sets, to show that the converses are false.

Ezercise 3. Let the objects consist of pairs, (4,A"), where A is a set and A’
is a subset of A. Let a morphism from (A,A") to (B,B") consist of a mapping
o from set A to set B such that, whenever a¢” is in A", p(a¢") is in B". Let
composition of morphisms be composition of mappings. Prove that this is
a category. Discuss monomorphisms, epimorphisms, direct products, and
direct sums.

Ezercise 4. Let the objects be sets with exactly 17 elements, the morphisms
mappings of such sets, and composition composition. Verify that this is a
category. Prove that in this category no two objects have either a direct pro-
duct or a direct sum.

Ezercise 5. Prove that the ¢  in the definition of an isomorphism is unique.

Ezercise 6. Fix aset A. For A" and A" subsets of A, write A" < A" if A”
is a subset of A”". It is immediately evident that i) A < A",ii)) A < A”
< A" implies A" < A", andiii) A" < A" and A” < A" imply A" =
A”. Define a similar “<” for subobjects of a fixed object in an arbitrary
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category and prove that these three properties again hold.

Ezercise 7. In the category of sets, the two morphisms {a and f8) in a direct
product are monomorphisms and the two morphisms in a direct sum are epi-
morphisms. Is this true in every category?

3

Ezercise 8. In the category of sets, there is a “natural isomorphism,” given
three sets A, B, and C, from the set (A X B) X Cto the set A X (B X O),
where X is a Cartesian product. This observation suggests a theorem in
category theory. State it and prove it. Similarly for disjoint union.

Ezercise 9. For purposes of this exercise, call an object A in a category
atomic if it has the following property: given any object B, there is one and
only one morphism, pp, from B to A. Prove that any two atomic objects are
isomorphic. Prove that any morphism from an atomic object to another
object is a monomorphism. Prove that, given any objects A and B, with A
atomic, (B, ©p, ipg) is a direct product of A and B. What are the atomic
objects in the category of sets? Do the ‘“‘arrows reversed’ version of all this.

Ezercise 10. In the category of sets, A X (BU,; C) is naturally isomorphic
with (A X BW; (A X C). Is this a special case of some theorem in category
theory?

Ezercise 11. Fix two categories. Introduce a new category that can be
thought of as the “product” of these. (Hint: choose, for the objects in this
category, pairs consisting of one object from each of the given categories.)



The Category of Groups

A group consists of two things—i) a set G, and ii) a rule which assigns, given
two elements (in a specific order) g and ¢° of G, an element (normally written
gg9” and called the product of g with ¢") of G—subject to the following three
conditions:

1. The product is associative. For any three elements, ¢, ¢°, and ¢°’,
of G,

9(9"9")=(99")9”
2. An identity exists. There is an element of G (called the identity, and
normally written e) with the following property: for any element g of G,

eg— ge =g .

3. Inverses exist. Given any element g of G, there is an element of G
(normally written ¢! and called the inverse of g) such that

gl =glg="¢ .
It is immediate that the identity is unique [proof: if ¢’ were another, then ee’
= e’, since e is an identity, while ee” = e, since ¢’ is an identity, whence
e = ¢’] and that inverses are unique [proof: if h and k" are both inverses of
g, then B = h” e = h”(gh) = (h’ g)h = eh = h] and that the inverse of ¢ is e
[proof: ee = ee = ¢].

To give an example of a group, one must, of course, say what the set is
and what the product rule is, and then one must verify that conditions 1, 2,
and 3 above are satisfied.

Ezample. Denote by Z the collection of all integers (positive or negative,
including zero). The rule ‘‘associate with any two integers their sum’ assigns
to any two integers another. This is a group—condition 1 is associativity of
addition of integers; the integer zero will serve as an identity for condition 2;
the integer —n will serve as an inverse for the integer n—called the additive
group of integers.

Ezample. The collection of all real numbers, R, with the rule, again,
being addition is a group, called the additive group of reals.

Ezample. Let S be any set. Denote by G the collection of all one-to-one,
onto mappings from Sto S. Associate with any two elements, ¢ and v, of G
their composition, v o p, another element of G. This G, together with this
product rule, is a group: condition 1 follows from associativity of composition
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of mappings; a suitable identity for condition 2 is the identity mapping from
S to S; condition 3 follows from the fact that one-to-one, onto mappings have
inverses. This group is called the permutation group on the set S.

Ezample. Let A be any object in any category, and denote by G the col-
lection of all isomorphisms from A to A. Choose, for the product rule, compo-
sition of isomorphisms (noting that the composition of two isomorphisms is an
isomorphism). The result is a group: conditions 1 and 2 for a group are
immediate from conditions 1 and 2, respectively, for a category; condition 3
for a group is immediate from the definition of an isomorphism (in a
category).

Most of the groups which occur naturally in physics seem to arise by an
application of this last example in some special case. To describe a physical
situation, one introduces some ‘‘space, with an appropriate structure.” One
makes these ‘‘spaces with this structure” into a category, so the particular
physical situation is described by some object A in that category. Then the
corresponding group, as in the last example, becomes the group of “‘structure-
preserving transformations on A,” that is, the ‘“‘symmetry group.” The last
example above is, if you like, a reason why groups are important in physics.

A group G is said to be abelian if, for any two elements g and ¢ of G,
we have

99 =499 .
(Thus the additive group of integers and the additive group of reals are
abelian. The permutation group on a set S is abelian when and only when S
has no more than two elements.) One almost always uses the following spe-
cial notation for abelian groups: instead of gg°, one writes g + ¢ (and calls it
the sum); instead of e, one writes 0; instead of ¢!, one writes —g; instead of
gh™!, one writes g — h.
Let G and H be groups. A homomorphism from G to H is a mapping ¢
from the set G to the set Hsuch that, for any two elements, g and ¢°, of G,

lgg”) = plg)elg’) -

(That is, “given two elements of G, one gets the same element of H whether
one i) first takes the product of these elements in G and sends the result, by
¢, to H or ii) first sends these elements to H, by ¢, and there takes the pro-
duct.”) It is immediate that, for ¢ a homomorphism, ¢(e) = e (the e on the
left is in G; the e on the right in H) [proof: p(e) = p(e)p(e)[p(e)]! =
olee)p(e)]! = ple)p(e)]! = ¢] and p(g7!) = [p(g)]! for any g in G [proof:
e(6") = e(aMe(9le(@l™ = p(a'9le(d = ple)le(9]™! = ep(g)]! =
[e(9)]™Y. (If either of these properties did not follow from the definition of a
homomorphism, one would change the definition so that they would follow.)
Thus a homomorphism from one group to another is a mapping which
‘‘preserves, in the strongest sense, all the structure available.” Note also that

"] ¥
the composition of two homomorphisms is another: if G — H and H — K are
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°
homomorphisms of groups, then G w—f K is also a homomorphism [proof' for
g and ¢° elements of G, Yo p(ge’) = ¥Yplgg’)] = vYploe(g)] =
Pe(9vle(g”)] = ¢ o wlg)y o wlg”)]-

Let the objects be groups, the morphisms homomorphisms from groups
to groups, and the composition composition of homomorphisms. We thus
obtain a category—composition of morphisms (here, homomorphisms) is asso-
clative because composition of mappings is associative; the identity morphism
from group G to itself is the identity mapping (obviously a homomorphism)
from G to G. This is called the category of groups. Replacing “group” every-
where above by ‘abelian group,” we obtain the category of abelian groups.
Note the way that ‘“‘additional structure” (in this case a product structure) is
incorporated in the passage from sets to groups, in the passage from mappings
to homomorphisms, and in the passage from the category of sets to the
category of groups.

Categorical definitions now become applicable, in particular, to groups.
For monomorphisms, the explicit meaning is the same for groups as for sets.

THEOREM 7. In the category of groups, monomorphisms are one-to-one
homomorphisms.

e
Proof Let G— H be a one-to-one homomorphism, and consider

K‘ ‘G—»H with poa = poa’. If, for some k in K, we had
Ic) 7£ ), then, since ¢ is one-to-one, we would have ¢ o alk)
#Zpoa (Ic), contradicting w o @ = poa’. Hence ¢ is a monomorphism.

Suppose, conversely, that ¢ is a monomorphism. Let g and ¢” be elements of
G with ¢(g) = @(g’). Then @(r) = e, where z= glg°. Let a be the
homomorphism from Z, the additive group of integers, to G which sends every
integer to e (in G). Let a” be the homomorphism which sends the positive
integer n to zz - - - z (n times), the integer 0 to e, and the negative integer -
to (1) - - - («!) (n times). (It is easily checked that this a is indeed a
homomorphlsm.) Since ¢(z) = e, we have p o @ = p o a” (for each side is
the homomorphism which maps Z to the identity of H). But ¢ is a monomor-
phism, whence @ = o’. Hence e = a(l) = a"(1) = z = g¢''¢’. That is,
g = g". Hence ¢ is one-to-one. [_]

Note that the first half of this proof is identical to that for sets, while, for the
second half, one replaces the “‘simplest set’” (one with just one element) by
the “‘simplest group” (additive group of integers). (It is also true that the epi-
morphisms in the category of groups are onto homomorphisms, but the proof
is easier with a little of the technology of group theory and will be
postponed.)

We also have, from category theory: a subgroup of a group G is a group
H and monomorphism H — G. This and other categorical notions will be
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discussed, for groups, later,
Both the statement and the proof of the following result are useful in
group theory.

THEOREM 8. Every group is a subgroup of the permutation group on some set.

Proof. Let G be any group, and denote by Perm(G) the group of all
one-to-one, onto mappings from the set G to itself. Fix an element g of G,
and denote by ¢, the mapping from the set G to itself given by py(z) = gz (z
in G). This mapping is one-to-one (for ¢ (z) = ¢ (z”) implies gz = gz’
implies z = z”) and onto (for <pg(g‘lz) = 7). That is, g, is an element of
Perm(G). Thus we have obtained, for each element of G, an element of
Perm(G); that is, we have a mapping ¢ from G to Perm(G). We claim that
this ¢ is a homomorphism from the group G to the group Perm(G). Indeed,
for fixed elements g and ¢" in G, and for z in G, we have p 0 ¢, (2) =
e, (7)) = pyg°1) = 99"z = pgy-(2). Thatis, p,0 ;- = @y, which is
precisely the statement that ¢ is a homomorphism. Finally, we claim that
this ¢ is in fact a monomorphism. By theorem 7 it suffices to show that ¢ is
one-to-one, that is, that ¢, = ¢ - implies g = ¢". But, if o, = @ -, we have
9=, e) = p,(¢e) = g°. This completes the proof. |]

The proof seems a bit complicated because there are so many mappings
around. The idea is that each element of G defines, via ‘“‘left multiplication
by that element,” a permutation on the set G itself, and this observation
represents G as a subgroup of the permutation group of the set G. The state-
ment of the theorem is of interest because it gives one a sense of control over
groups. There is not much to sets; every set gives rise to a group (of permu-
tations on that set); every group is a subgroup of one of these. It is not
exactly an algorithm for writing down explicitly all groups, but one can feel
more secure knowing that nothing happens in general groups much trickier
than what happens already in the permutation groups. Finally, the proof
itself is a useful construction: it is often convenient to regard a group G as a
subgroup of the group of permutations on the set G.

Looking around for subgroups of permutation groups is one way to
obtain groups. We conclude this section with another. Let S be any set. A
free group on the set Sis a group G together with a mapping a from the set .S
to the set G such that, given any other group G* and mapping o’ from S to
G’, there is a unique homomorphism g from group G to group G’ such that
the diagram of figure 15 commutes. This definition requires a remark. It is
not (at least, as we have stated it) a categorical definition. The @, for exam-
ple, maps S (a set) to G (which begins, at least, as a group): this o does not
know what category it should be a morphism in. On the other hand, it cer-
tainly has the flavor of a categorical definition. Such definitions are (for an
obvious rea.;on) called universal definitions.
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S—G
N

Gl
Figure 15
We show existence and uniqueness.
THEOREM 9. Let (G,a) and (G",a") be free groups on the set S. Then there

is a unique isomorphism (in the category of groups) from G to G* such
that the diagram of figure 16 commules.

o
S—=G
lu
o G,
Figure 16
Proof. Since G is a free group on S, there is a (unique) g such that the

diagram of figure 16 commutes; since G” is free, there is a (unique) g such
that the diagram of figure 17 commutes. Hence (g o p)oa = «. Hence

S —(

A
\G

Figure 17

the diagram of figure 18 commutes both with v replaced by p” o p and with »
replaced by i5. Since G is a free group, we have therefore p” o p = ig.
Similarly, g o p* = ig-.|]

The proof is essentially identical to that of theorem 6.

THEOREM 10. For any set S, there exists a free group on S.
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S——G

RN

G

Figure 18

Proof. Denote by G the collection of all finite, ordered sequences having
the following properties: i) each entry in the sequence is either an element of
the set S or such an element with a prime attached, and ii) no two consecu-
tive entries consist of the same element of S, once primed and once unprimed.
(For example, a typical element of G'is ab”b"adca’cccd”, where ¢, b, ¢, and d
are elements of S.) We now define a product rule on this set G. Given two
elements of G (i.e., sequences), their product is the sequence obtained by writ-
ing these sequences one after another and then removing from the result any
pair of consecutive entries which violate ii) above. (For example, the product
of abe” and b"d’cais abc” b’ d’ ca; the product of ab’c” and cbd” is ad”.)
We claim that this set with this product rule is a group. (The product is
obviously associative. The identity is the sequence with no entries. The
inverse of a sequence is that sequence obtained by reversing the order of
entries, and interchanging ‘“‘primed” and ‘‘unprimed.”) Denote by a the fol-
lowing mapping from the set S to the set G: for each element @ of S, a(a) is
the element ‘“‘a’ of G, that is, the sequence having this one entry.

We now claim that this (G,a) is a free group on S. Let G be any group,
and o’ any mapping from the set S to the set G°. Let g be the mapping
from G to G° which sends, for example, the sequence ab’b’c’d to
a’(a)la” (O] e’ (b)) e ()] 'a’(d) in G’°. This mapping is clearly (because
of our product rule for sequences) a homomorphism from the group G to the
group G°. Furthermore, this # makes the diagram commute (for, given any
element a of S, a(a) is the sequence (element of G) with the single entry ‘‘a,”
while g of this sequence is, by definition of g, a’(a); that is, poa = a”).
We now claim, finally, that this p is the only homomorphism from G to G’
which makes the diagram commute. Let g be another. Then £ and g must
certainly agree on sequences (elements of G) having but a single entry without
a prime, for example, on the sequence ““a,” for, by commutativity, g(e) must
be a’(a). Since the sequence “a’” is the inverse (in G) of the sequence *‘a”
and since homomorphisms take inverses to inverses, we must also have fi(a”)
= [ji(a)]"!. That is, i and p must also agree on sequences with but a single
primed entry. But homomorphisms take products to products (definition of
homomorphism), while every element of G can be written as a product of
sequences each having a single entry. Hence, since ji and p agree on



22 Chapter Three

sequences having but a single entry, they agree on all sequences. That is,
p=pl]

Intuitively, ‘‘since S is only a set, you cannot take inverses or products
therein. So one enlarges S, introducing formal inverses (primed entries) and
formal products (sequences), to obtain a group, the free group on S': a free
group on S is what results if you ‘‘force S to become a group.” Note that the
definition of a free group on S is much simpler than the actual construction of
such a group (in the proof of theorem 10). The uniqueness theorem (theorem
9) makes it clear that all one ever needs to use about the free group is the
universal property of its definition. As we shall see, there are a number of
constructions which begin with a free group. We remark, finally, that many
other categories have similar ‘‘free objects.”

Ezample. The free group on a set with just one element is isomorphic
with the additive group of integers.

If, in the definition of a free group, one everywhere replaces “group” by
“abelian group,” the result is called a free abelian group on the set S.

Exercise 12. Show that, in any group G, (gg')‘1 = g¢'"lgL.

Ezercise 13. Why is the set of real numbers, with the product rule multipli-
cation of numbers, not a group? Show that the set of all positive reals, with
product multiplication, is a group and is isomorphic to the additive group of
reals.

Ezercise 14. Prove that, for any set S, there exists a free abelian group on S.
Prove that the free abelian group on S is isomorphic with the free group on S
when and only when S has fewer than two elements.

Ezercise 15. Fix a set S. Let the objects be elements of S, the morphisms
from s to 8" elements of Perm(S) which send s to 8", and composition product
in the group Perm(S). Is this a category?

Ezercise 16. Fix a group G. Find a natural homomorphism from the free
group on the set G to the group G.

Ezercise 17. Let S and S° be sets, and G and G’ corresponding free groups
on these sets. Construct, for each mapping from the set S to the set S, a
“corresponding’’ (in a sense to be defined) homomorphism from the group G
to the group G”.

Ezercise 18. For which groups G is the homomorphism from the group G to
the permutation group on the set G (in the proof of theorem 8) an isomor-
phism?
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Exercise 19. Is every group a subgroup of a free group?

Ezercise 20. Prove that the only group which is both a permutation group
and a free group is the group with but a single element.

Ezercise 21. Can there exist a homomorphism from an abelian group to a
group which is not abelian? from a nonabelian group to an abelian group?
Same for monomorphism and isomorphism.

Ezercise 22. Define a “free set.”” What is the theme which relates the proof
of theorem 1 to the proof of theorem 7?

Ezercise 23. Find the atomic objects (in the sense of exercise 9) in the
category of groups.

Ezercise 24. Find, for each positive integer n, a group having exactly =
elements.



Subgroups

Recall that a subgroup of a group G is a monomorphism H—f> G. But
(theorem 7) monomorphisms, in the category of groups, are just one-to-one
homomorphisms. Denote by 7{H] the subset of G consisting of elements of G
which can be written in the form 7(h) with A in H. Then 7 is a one-to-one,
onto mapping from the set H to the set 7{H]. Next, note that, if this subset
7{H] contains g (= 7(k)) and ¢" (= 7(h")), then it also contains gg° (= 7{hh"))
and ¢! (= 7(h")). (It follows that this subset also contains e = gg!.) Thus,
if we impose on this subset 7{H] of G the product rule of G, this 7[H] itself
becomes a group and 7 becomes an isomorphism from the group H to the
group 7[H]. Clearly, we could just as well have defined a subgroup of G as a
subset of G having the properties that the product (with respect to G) of any
two elements of the subset is again in the subset, and the inverse of any ele-
ment of the subset is again in the subset. This is what one normally calls a
subgroup.

It is convenient to introduce the following notation for manipulating sub-
sets of a group G. For A and B subsets (not necessarily subgroups) of a group
G, denote by AB the subset of G consisting of all elements of G which can be
written in the form ab, with a in A and bin B, and by A~} the subset consist-
ing of all elements of G which can be written in the form a’! with a in A.
(For example, (AB)C = A(BC).) In this notation, a subset G of group G is a
subgroup provided GG = G!' = G.

Ezample. For G any group, the subset consisting of the identity element
alone is a subgroup; the subset consisting of G itself is a subgroup. The addi-
tive group of integers is a subgroup of the additive group of reals.

Ezample. Let S° be a subset of the set S. The collection of all pu in
Perm(5) (the permutation group on the set S) such that g(s”") = s for each
s” in §° is a subgroup of Perm(S). The collection of all g in Perm(S) such
that p(s”) is in S*” for each 8" in S’ is another subgroup of Perm(S).

We introduce the following terminology. When we say “let Xj ( X in A)
be ...s,”” we mean that A is a set, and for each element X\ of.this set, X, is a ...
Thus, if A were the set consisting only of “1"" and “2,” we would have two
..s, Xj and X,. The terminology is useful because often it does not make any
difference whether one has two ...s, a finite number, a countably infinite
number (e.g., Xj, X3, . . . ), or even more; one is able to give an argument
without committing oneself as to how many ...s are involved.
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One of the most useful properties of subgroups is this.

THEOREM 11. Let Gy (X in A) be subgroups of group G. ThenrAW G, ts a sub-

group of G.
Proof. Let g and ¢~ be in Q Gy. Then g and ¢° are in each of the G).

But each G, is a subgroup, so gg° and ¢! are in each G). Hence gg’ and ¢!
are both in Q Gy. That is, Q G, is a subgroup of G. ]

As an example of theorem 11, consider the following. Let A be any sub-
set of group G. The intersection of all subgroups of G which contain A itself
contains A and is, by theorem 11, also a subgroup of G. This is called the
subgroup (of G) generated by the subset A. It is clearly the smallest subgroup
of G containing A, in the sense that any other subgroup of G containing A
also contains the subgroup generated by A. It is also clear that the subgroup
of G generated by A consists precisely of the elements of G which can be writ-
ten as a product of elements of A and their inverses. Thus, for example, A is
a subgroup of G if and only if the subgroup generated by A is just A itself.
{Not much work is saved here by the use of theorem 11, but the savings
increase quickly as the objects become more complicated.)

Ezample. Regard a set S as a subset of the free group on S. Then the
subgroup of this free group generated by S is precisely the free group itself.

Ezample. Let F be a finite set, and consider the elements of the permu-
tation group on F which interchange two elements of F, leaving the rest
invariant. This subset of Perm(F) generates Perm(F).

The remarks above permit one to obtain subgroups of a group G: pick
any subset of G, and find the subgroup it generates. There is also a way of
getting subgroups from subgroups. Let X be any subgroup of G, and let g be
any element (fixed once and for all) of G. Consider the subset K = gHg™! of
G (i.e., K is the collection of all elements of G’ which can be written in the
form ghg! with hin H). We claim that this subset K of G is in fact a sub-
group of G. [Proof: Let ghg! and gh’g! be elements of K. Then
{ghg)(gh’ g') = g(hh")g! is in K, for, since H is a subgroup, hk’ is in H.
Similarly, (ghg™!) = gh'¢g™' is in K.] Thus a subgroup H of G, together with
any particular choice, ¢, of an element of G, gives rise to some subgroup K.
This subgroup K is in general different from the subgroup H, although it can
be the same. (For example, if G is abelian, then always K = H.) On the
other hand, regarding H and K as groups in their own right, they are always

g
isomorphic. Indeed, consider H w— K, where ¢ is the mapping from H to K
T

which sends the element h of H to the element ghg! of K, and 7 is the map-
ping from K to H which sends the element k of K to the element ¢ lkg of H.
It is easily checked that these mappings are both homomorphisms of groups,
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and that their compositions are the identity homomorphisms on H and K.
Thus this construction yields, given one subgroup of a group, various other
subgroups, each of which is a ““copy” of the original subgroup.

Ezample. Let S be any set, and let G = Perm(S), the permutation group
on the set S. Let T be any subset of S, and let H be the subgroup of G con-
sisting of permutations g which leave T pointwise invariant (i.e., which are
such that u(#) = ¢ for every ¢t in T). Let g be any fixed element of G, that is,
any permutation on the set S. Then gHg™! is the subgroup of G consisting of
those permutations which leave ¢[7] pointwise fixed, where g[7] denotes the
collection of all elements of S of the form g¢(¢) for ¢in T.

An important tool in the study of the structure of subgroups is the
notion of a coset. Let H be a subgroup of group G. A subset A of G is called
a left coset (of Hin G)if A = gH for some gin G, and a right cosel if A =
Hyg for some gin G. (Note that the “¢” such that, e.g., A = gH may not be
unique.) For example, H itself is both a left coset and a right coset of Hin G,
for H= eH = He. The basic properties of cosets are given in the following.

THEOREM 12. Let H be a subgroup of group G. Then each element of G 1s
contained in one and only one left coset of H in G. Furthermore, given
any two left cosets of Hin G, A and A’, there is a one-to-one, onto map-
ping from the set A to the set A”.

Proof. Each element g of G is certainly in some left coset, namely gH,
for ¢ = ge, and ¢ is in H. This left coset is furthermore unique, for if ¢ is in
zH.(z in G), then g = zh for some h in H, whence g = (zh)H = 2(hH) =
zH, where, in the last step, we have used hH = H (which follows from the
fact that H is a subgroup). Finally, let A = ¢H and A’ = ¢’ H be left cosets.
Then left multiplication by a”a! certainly maps A to A°, while left multipli-
cation by a(a’)! maps A” to A. But, since (¢”a)(aa’"!) = (aa" Y (a’ a})
= ¢, the compositions of these mappings yield the identity on A and the iden-
tity on A°. We thus have one-to-one, onto mappings from A to A”. ]

Thus the left cosets of Hin G are all “copies’” of each other, and they ‘‘cover
G without overlapping.” The situation is similar, of course, for right cosets
(although a left coset and a right coset can overlap without coinciding).
There are a large number of assorted facts about cosets, all of which are easier
to prove when needed than to remember. For example: the element g of G is
in the left coset A of Hin G when and only when A = gH; the left cosets gH
and g’ H coincide when and only when g'l¢” is in H; the only coset of Hin G
which is also a subgroup is H (= eH) itself.

Ezample. Let G be a group with n (a finite number) elements, and let H
be a subgroup with p elements. Then every coset of H in G has p elements.
If there are g left cosets of H in G, then (since these cosets cover G without
overlapping) n = pq¢. In particular, p divides n. Thus the only subgroups of
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a group with, for example, 17 elements are the group itself and the subgroup
containing only the identity (since the only integers which divide 17 are 1 and
17). In particular, if G is a group with 17 elements and g 3£ e is an element
of G, then the subgroup of G generated by gis G itself.

The power of cosets is well illustrated by this example. The claims of the
example seem subtle if one has not heard of cosets. Yet facts about cosets are
easy to prove, and such facts about groups are easy to prove using cosets.

Ezample. Let Sbe a set, G the permutation group on S, T a subset of S,
and H the subgroup of G consisting of elements of G which leave T pointwise
invariant. Then, for any ¢ in G, gH is the left coset consisting of permuta-
tions which, restricted to T, have the same action as g.

Let H be a subgroup of group G, and denote by L the collection of all left
cosets of Hin G. Then, since each element of G is contained in a unique left
coset (theorem 12), we have a mapping from the set G to the set L. This
mapping is always onto, and is one-to-one when and only when H consists
only of the identity of G.

Fix an element ¢ of G. Then, for A any left coset of Hin G, gA is
another. Thus this g defines a mapping from L to L. It is easily verified that
this mapping is one-to-one and onto. Thus the mapping from L to L defined
by ¢gin G is an element of Perm(L), the permutation group on the set L. But
this is true for each g in G; hence we have a mapping k from the set G to the
set Perm(L). Since g(g"A) = (gg")A (A a left coset), this mapping is in fact a

K

homomorphism of groups, G — Perm(L).

Thus there are at least two modes of interaction between the group G
and the set L of left cosets of Hin G.

Exzercise 25. Prove that a nonempty subset A of a group G is a subgroup if
and only if, for any a and ¢’ in A4, a'a” isin A. (In practice this is often the
easiest criterion to test whether a subset of a group is a subgroup.)

Ezercise 26. Let G be a group, and consider the collection of all subsets of G
with product (for A and A’ subsets) AA’. Do we thus make the subsets of G
into a group?

Ezercise 27. Find all subgroups of the additive group of integers.

Ezercise 28. Let p be a prime number. Find all groups having exactly p
elements.

Exercise 29. Is any union of subgroups of a group a subgroup?

Ezercise 30. Let S be a finite set. Let A denote the elements g of Perm(S5)
having the property that there are distinct elements s, s”, and s of S with
u(s) = 8, p(s’) = ¢, p(8”’) = s, and with g the identity on all other
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elements of S. Show that the subgroup of Perm(S) generated by A is not
Perm(5) itself.

Ezercise 31. Do there exist groups G and G’ such that there is a monomor-
phism from G to G” and a monomorphism from G to G, but such that there
is no isomorphism from G to G"?

Ezercise 32. Let H be a subgroup of group G. Let A and A’ be subsets of G,
each of which is the intersection of a left coset of H in G with a right coset of
Hin G. Does there exist a one-to-one, onto mapping from A to A’?

FEzercise 33. A group is said to be finitely generated if it contains a finite sub-

. ®
set that generates the entire group. Prove that, if G — H is an onto
homomorphism of groups, with G finitely generated, then H is finitely gen-
erated. Is every subgroup of a finitely generated group finitely generated?
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Subgroups of a group G are ‘‘group-like subsets’: the definition refers only to
the internal structure of the subset itself (and the product in that subset
induced by G). There is also the notion of a subset which is “‘not only inter-
nally group-like, but also particularly well situated in the whole group G.”
The appropriate notion is that of a normal subgroup. By far the most impor-
tant class of subgroups is the class of normal ones.

A subgroup N of group G is said to be a normal subgroup if

gNg' = N

for each element g of G (i.e., if, for any gin G and n in N, gng!isin N).

Thus the normal subgroups are those for which the technique (following
theorem 11) for getting subgroups from subgroups yields nothing new. There
is still another characterization of normal subgroups: a subgroup N of G is
normal if and only if the left cosets of N in G are precisely the right cosets of
Nin G. [Proof: The left coset of N containing g is gV, the right coset Ng. If
N is normal, then gN = (gNg!)g = Ng. If, on the other hand, gN = Ny for
all g, then gNg! = N for all g, so N is normal,|

It is often possible to guess with reasonable accuracy whether a given
subgroup of a given group is normal. Normal subgroups usually ‘‘sit naturally
in G, without making preferred choices that G itself does not make.”

Ezample. The subgroups in the second example of chapter 4 are not nor-
mal unless §° = Sor S’ is empty.

Ezample. Let G be the permutation group on set S. The subgroup of G
consisting of all one-to-one, onto mappings from S to S which leave invariant
all but a finite number of elements of S is normal.

Ezxample. Every subgroup of every abelian group is normal.

Note that (by the same proof, essentially, as for theorem 11) any inter-
section of normal subgroups of group G is a normal subgroup of G. Thus, for
A any subset of G, the intersection of all normal subgroups of G containing A
is a normal subgroup, the normal subgroup generated by A. (Since G is
always a normal subgroup of G, there is at least one normal subgroup in this
intersection.) Even if A itself is a subgroup, the normal subgroup generated
by A may be larger than A (and, of course, is larger if and only if A is not
normal).

Ezample. Let G be any group, and let C be the subset consisting of ele-
ments of G which can be written in the form gg"glg°~! with g and ¢" in G.

™~
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The subgroup of G generated by the subset C'is called the commutator sub-
group of G. The commutator subgroup is, in fact, a normal subgroup of G, so
this commutator subgroup is also the normal subgroup generated by C.

The crucial fact which makes normal subgroups interesting is the
following.

THEOREM 13. Let N be ¢ normal subgroup of group G, and denote by G/N
the collection of cosets (left and right are the same) of N in G. Then, for

A and A’ elements of G/N, AA’ is also a coset of N, and, furthermore,

this product structure makes G/N a group.

Proof. Let A = aNand A’ = a"N be cosets of Nin G. Then AA" =
aNa'N = a(a” Na’a’N = aa’ N(a"'a’)N = aa’ NeN = (aa")N, so AA"
is also a coset of N in G. This product is associative, since (AA")A” =
A(A"A’’). The identity is the element of G/N which is the coset N. The
inverse of A = aNis ¢’'N. [

The group G/N is called the guotient group of G by (the normal subgroup) N.
Thus, if N is the normal subgroup consisting of the identity alone, G/N is iso-
morphic with G; if N is the normal subgroup G of G, G/N is the group whose
only element is the identity. In general, G/Nis not a subgroup of G.

Intuitively, G/N is the group which results if “the elements of G which
lie in N are forced to equal the identity element, with this forcing extended, in
a consistent way, over G.”

Ezample. For any group G, the quotient of G by the commutator sub-
group of G is abelian. (The elements of C, the elements of the form
gg’ g 'g’"!, are the things whose “not being e is the reason the group is not
abelian.” When we ‘‘force these elements to be the identity,” there results an
abelian group.)

Three notions—that of a free group, that of a generated subgroup, and
that of a quotient group—are often used together. One has some set S and a
collection A of formal products of elements of S. One wishes to “‘make S into
a group, but such that these formal products, in this group, reduce to the
identity.”” One proceeds by first constructing the free group on S, then
regarding the set A of formal products as a subset of this free group F, then
taking the normal subgroup of F generated by A, and finally taking the quo-
tient of F by this normal subgroup.

Ezample. Let G be any group, and let F be the free group on the set G.
Denote by A the subset of F consisting of all formal produets g- - - ¢°
(g, ---,9" in G) such that the real product in G (i.e., the element g- - - ¢" of
G) is e. Let N be the normal subgroup of F generated by A. Then F/N is
isomorphic with G. Thus every group is a quotient group of a free group.
(Compare, theorem 8.)



Normal Subgroups 31

Let N be a normal subgroup of group G. Let ¢ denote the mapping from
the set G to the set G/N which sends g to gN. Then, since gNg" N = gg° N,
this ¢ is a homomorphism. Thus, for example, we have the following

n e v
sequence of homomorphisms: N — G — G/N — Perm(G/N), where the first
is the monomorphism which represents N as a subgroup of G, and the last the
homomorphism of theorem 8.

Exercise 34. Prove that a group is abelian if and only if its commutator sub-
group consists only of the identity.

Ezercise 35. Guess whether the subgroup of exercise 30 is normal, and verify.

Ezercise 36. Regarding the additive group of integers as a subgroup of the
additive group of reals, find the quotient group.

Ezercise 37. Show that any subgroup of a group having just two left cosets is
normal.

Ezxercise 38. Let G be a group, and N a normal subgroup such that G/N is
abelian. Show that N contains the commutator subgroup of G.

Ezercise 39. Let G be a group. The center of G is the collection Z of all ele-
ments z of G such that zg = gz for every g in G. Show that Z is a normal
subgroup of G.

Ezercise 40. Let H and H* be subgroups of group G. Prove that i) HH" is
not necessarily a subgroup of G, ii) if one of H or H" is a normal subgroup,
then HH’ is a subgroup of G, and iii) if both H and H* are normal, then HH"
is a normal subgroup of G.

Ezercise 41. Does there exist a universal definition of a normal subgroup?

Ezercise 42. Find a nontrivial normal subgroup of the free group on a set
with, say, three elements.

©
Ezercise 43. Prove that, in the category of groups, G — H is an epimorphism
if and only if ¢ is onto. (Hints: The proof that ¢ onto implies ¢ an epimor-
phism is the same for groups as for sets. For the converse, consider

") a
G— H\_""X, where X is the permutation group on the set H. Let o be the
@

natural homomorphism from H to Perm(H). Let a” be defined by a’(h) =
zo(h)r!, where z is an element of X. One must now choose z % e so that
aop = a’ op. Denote by Y the subgroup of X consisting of elements of
the form a o ©(g) for gin G. Choose z so that it ‘‘rearranges the cosets of Y
in X.”)
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Let G i H be a homomorphism of groups. Since subgroups are in some sense
easier to think about than homomorphisms, one would like to analyze the
structure of this homomorphism in terms of certain subgroups.

The kernel of ¢, Ker(y), is the collection of all elements g of G such that
©(g) = e. The image of p, Im(yp), is the collection of all elements k of H such
that p(g) = h for some gin G.

The kernel is a measure of ‘‘how one-to-one the homomorphism is: the
larger the kernel, the less the one-to-one-ness.” (More precisely, p(g9) =
©(g’) if and only if g7'¢” is in Ker(y).) Similarly, ‘“the larger Im(p), the more
nearly onto ¢ is.” The basic properties of these subsets are the following.

THEOREM 14. Let Gf» H be a homomorphism of groups. Then Ker(p) is a

normal subgroup of G, and Im(p) a subgroup of H.

Proof. If g and ¢g° are in Ker(p), then ©(g99°) = o(g)p(¢9’) = e and
o) = [p(g)]! = e. So Ker(yp) is a subgroup of G. Furthermore, for z in
G and g in Ker(p), p(zgz") = p(2e(g)p(a)]" = p(2)elp(a)]! = e So
Ker(yp) is a normal subgroup. For k(= ¢(g)) and " (= ¢(¢”)) in Im(p), k"
= p(gg’) and k! = (g!), whence Im(yp) is a subgroup of H. ]

Since Ker(p) is a normal subgroup of G, we can form the group
G/Ker(p). Let p be the homomorphism from G to G/Ker(p) (so p assigns to
each element of G the coset of Ker(yp) in G in which that element lies). This
¢t is onto (since every coset of Ker(p) in G contains some element), and, furth-
ermore, Ker(p) = Ker(p) (since the elements of Ker(p) are precisely the ele-
ments of the identity coset of Ker(p) in G, i.e., the elements of the normal
subgroup Ker(yp) of G). Next, consider two elements, g and ¢°, of G that lie
in the same coset of Ker(p) in G; that is, let ¢ = gk for k in Ker(¢). Then
elg”) = plgk) = p(g)p(k) = ©(g). Thus ¢ takes an entire coset of Ker(p) in
G to a single element of H. We have therefore a mapping ¢ from the set
G/Ker(p) to the set H, which is easily checked to be a homomorphism. This
homomorphism is one-to-one (for, for z in G, ¢(z Ker(p)) = ¢(z), whence p(z
Ker(p)) = @(y Ker(p)) implies (z) = ¢(y) implies 'y in Ker(p) implies
Ker(p) = y Ker(p)), while Im(@) = Im(p). Finally, let v be the monomor-
phism from Im(yp) to H which represents Im(p) as a subgroup of H.
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Figure 19

We thus have the sequence of homomorphisms of figure 19, where p is
onto, ¢ is an isomorphism, and v is one-to-one. Furthermore, ¢ = vo ¢ o u.
Thus we have a decomposition of ¢ into simpler homomorphisms. The point
of this decomposition is that the first two groups, G and G/Ker(yp), refer to G
while the last two, Im(y) and H, refer to H. The only link between G and H
is via the isomorphism . In this sense, the structure of the homomorphism ¢
is carried by the structure of the subgroups Ker(y) and Im(y).

We conclude with a few assorted remarks about homomorphisms. Let G
and H be abelian groups, and consider Mor( G,H), the set of (homo)morphisms
from G to H. Given two such, o and 3, we define a new mapping, p =
a + B, from G to H by p(g) = a(g) + B(g) (for g in G; the sum on the right is
in the abelian group H). It is immediate that, since & and A are homomor-
phisms, so is p. Hence we have a rule which assigns, given two elements of
Mor(G,H), another element of Mor(G,H). We claim that Mor(G,H) thus
becomes an abelian group. [Proof: Associativity follows from the fact that,
for a, B, and 7 in Mor(G,H), ((a + B) + 7)(g) = alg) + Alg) + 2g) = (a +
(8 + 4))(9). The identity is the element of Mor(G,H) which sends all of G to e
in H. For a in Mor(G,H), its inverse is the element of Mor(G,H) which sends
g in G to —a(g). The group is abelian since (a + B)(g) = a(g) + Blg) =
(8 + @)(g9).] Thus, in the category of abelian groups, for any two objects G
and H Mor(G,H) also has the structure of an object in the category! It turns
out that this important property holds in a large number of categories (but
not, however, in the category of groups).

Let G be any group, and fix an element g of G. Then the mapping from
the set G to G which sends z in G to gzg™! is clearly an isomorphism from
group G to G: call it p,. Then p o0, sends z to glg zg" Vg =
(997 )=(gg’)!, whence Pg0 Py = Pgqg-. In other words, we have a homomor-
phism from G to the group of isomorphisms from G to G. The elements of
the image of this homomorphism are called inner isomorphisms on G. Thus,
for example, if G is abelian, the only inner isomorphism on G is the identity
isomorphism. (One can now easily understand the structure of the technique
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following theorem 11 for obtaining subgroups from subgroups. This is why
normal subgroups are often called invariant subgroups.)

Ezercise 44. Prove that the kernel of the homomorphism above from G to
the group of isomorphisms on G is precisely the center of G.

Ezercise 45. Find the kernel and image of the homomorphism of exercise 16.

®
Ezercise 46. Prove that G — H is one-to-one if and only if Ker(p) consists
only of e, and onto if and only if Im(p) = H.

Ezercise 47. Show that, in the category of groups, Mor(G,H) does not in gen-
eral have the structure of a group.

Erercise 48. Say what can be said about the kernel and image of the compo-
sition of two homomorphisms in terms of the kernel and image of the original
homomorphisms.

Ezercise 49. Let G and H be groups, N a normal subgroup of G and K a sub-

"
group of H, such that G/N is isomorphic with K. Find G — H with Ker(y)
= Nand Im(yp) = K.

Ezercise 50. For G a set and H an abelian group, endow the set of mappings
from G to H with the structure of an abelian group. Now let G also be an
abelian group, and consider the subset of this collection of mappings consist-
ing of the homomorphisms from G to H. Show that this is a subgroup. Is it
normal?

P
Ezercise 51. Let G — H be a homomorphism, and fix » in H. Show that

w‘
G — H given by ¢’(g) = hp(g)h™! (g in G) is also a homomorphism. Relate
the kernel and image of ¢’ to those of p.
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Direct Products and Sums of Groups

We have the category of groups and the category of abelian groups. We
know what it means in any category to say that an object is a direct product
or a direct sum of others. We now ask what these general notions mean in
our specific categories.

Let G and H be groups. We define a new group. The set is the Carte-
sian product of sets G X H, that is, the set of all pairs (g,h) with gin G and A
in H We introduce, on this set, the rule (g,k)(¢",k") = (gg°",hh"), which
assigns, to two elements of the set, another. That is, we multiply
‘“‘component-wise.” It is immediate that, since G and H are groups, this pro-
duct structure makes the set G X H into a group. (The identity is (e e); the
inverse of (g,h) is (¢"},h™").) We shall also denote this group G X H. Let o be
the mapping from G X H to G with action afg,h) = ¢, and B the mapping
from G X H to H with action B(g,h) = h. These mappings are homomor-
phisms of groups (e.g., al(g,h)(g",h")] = a(gg’,hk") = g9~ = a(g,h)a(g",h")).
We have

THEOREM 15. Let G and H be groups (resp. abelian groups). Then
(G X H,a,B3) ts a direct product of G and H in the category of groups
(resp. abelian groups).

Proof. Let K be any group, and o’ and 8 any homomorphisms in the
diagram of figure 20. Then, for k in K, pu(k) must, in order that the diagram

K
P\

GxH
T Ny

Figure 20

[
«

commute, be such that a(p(k)) = o (k) and B(p(k)) = B’ (k); hence, for com-
mutativity, we must have p(k) = (a’(k),8°(k)). But this p is a homomor-
phism of groups, for u(kk") = (a’(kk"),8"(kk")) = (a (K)o’ (k"),8"(K)B" (k"))
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= (a’(k),8 (K))(a’(k"),8" (k")) = p(k)u(k"). The proof is the same in the
abelian case, noting that, for G and H abelian, sois G X H.[]

This proof is nearly identical to that for sets. Thus direct products exist
in our categories: one imposes the ‘‘obvious group structure on the Cartesian
product.”

The structure of the direct product can be seen in more detail using the
diagram of figure 21. There, 7 is the homomorphism from group G to group

Co o
AT
N

Figure 21

G X H with action ~(g) = (g,e) (where e, of course, is the identity of H), and
& is the homomorphism from H to G X H with action §(h) = (e,h). Note that
this diagram is commutative (e.g., a o 4(g) = a((g)) = alg,e) = g = i49)).
The various homomorphisms available in the presence of a direct product are
easily kept in mind by remembering that there is a commutative “butterfly
diagram.”” Note that 4 and é are monomorphisms (i.e., Ker(y) consists only of
the identity in G, and Ker(é) only of the identity in H), that o and § are epi-
morphisms (i.e., Im(a) = G and Im(8) = H), and that the remaining kernels
and images are related by Im(6) = Ker(a) and Im(y) = Ker(B).

Direct sums also exist in both the category of groups and the category of
abelian groups. This statement has somewhat more content than the
corresponding statement for direct products. Recall that, in the category of
sets, direct products are ‘“‘product-like,”” and direct sums ‘‘union-like.” To
take a direct product of groups, one simply takes a direct product of sets and
imposes on the resulting set an appropriate group structure. One might ima-
gine therefore that direct sums of groups could be obtained in a similar way:
first take the direct sum (disjoint union) of sets and look around for a suitable
group structure on the resulting set. This fails (e.g., Should the identity ele-
ment, in the disjoint union of G and H, be selected from G or from H? Where
should the product of an element from G with an element from H lie?): there
is no natural way to impose, on the disjoint union of sets G and H, a product
so that this set becomes a group. Categorical definitions, however, are clever
in such matters.
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THEOREM 16. Let G and H be abelian groups. Then (G X H,6) is a direct
sum of G and H in the category of abelian groups.
Proof. Let K be any abelian group, and 4* and " any homomorphisms
in the diagram of figure 22. Then, in order that the diagram commute, we

C\, S/H
\CxH/
7 l\,

K

Figure 22

must have, for ¢ in G, v¥(9,0) = v((9)) = ~'(g) and, for h in H, (0,h) =
6°(h). Now, in order that v be a homomorphism of groups, we must have
v(g,h) = v[(9,0) + (0,h)] = v(g,0) + (0,k) = ~"(g) + 6’ (h). But this v, so
defined, is indeed a homomorphism, for v[(g,k) + (¢ ,h" ] = v(g+ ¢",h+ k")
=7(g+ 9 )+ 8 (h+h)=7"(9) + (") + 6 (h) + & (h") = vgh) +
Y(g’,h"). Thus one and only one homomorphism v makes the diagram com-
mute, so we have a direct sum. |_]

Thus, in the category of abelian groups, the direct product and direct
sum are essentially the same thing (for a finite number of groups; they differ
for an infinite number). In the category of groups, G X H is not a direct
sum. The construction of the appropriate group is slightly more technical
than of G X H, seems never to arise in practice, and will be left to the
exercises.

Ezercise 52. Try to repeat the proof of theorem 16 in the category of groups,
and find out what goes wrong.

Ezercise 53. Display explicitly a direct sum in the category of groups.

Ezercise 54. Find the direct product and direct sum of an infinite collection
of abelian groups (in the category of abelian groups).

Ezercise 55. Regard (G,7) as a subgroup of G X H. Show that this is a nor-
mal subgroup and that the quotient group is isomorphic to H. (That is,
(G X H/G=H)

Ezercise 56. Let G, H, and K be groups, and 4 and § monomorphisms, and «
and A epimorphisms such that the diagram of figure 23 commutes, and let
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G H
! x K/ by
G/ N H

Ker(a) = Im(8) and Ker(8) = Im(~). State and prove: there is a natural iso-
morphism from K to G X H.

Ezercise 57. Let N be a normal subgroup of group G. Is there an isomor-
phism from G to N X (G/N)?
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It is convenient at this point to introduce a few facts about relations. This
subject has very much the flavor of a ‘‘service subject’’; that is, it is useful in
certain arguments in mathematics, but rarely directly in applications.

Let S be a set. A relation on Sis a subset of § X S (Cartesian product).
Instead of ‘“(s,s”) (where s and 8" are elements of S) is in this subset,” one
writes sRs’ and says ‘s is in the relation R to s”.”” Just plain relations are
not very interesting; but relations satisfying certain additional conditions are.

Let S be a set. A relation (normally written, in this case, “~’" instead of
“R”) on S is said to be an equivalence relation if the foliowing three condi-
tions are satisfied:

1. For any s, ¢’, and s in S with s~ s" and s" =~ s’", we have
s 8"’ (transitive).

2. For any s in S, s & s (reflexive).

3. For any s and s” in S with s &~ s, we have s* = s (symmetric).

These are properties one would intuitively associate with the word
‘“‘equivalent.”

Ezample. Let G be a group, and H a subgroup of G (here regarded as a
subset). For g and ¢" in G, write g~ ¢~ if ¢g'¢’ is in H This is an
equivalence relation on the set G. (For ¢'l¢’ in H and ¢"'¢"" in H, glg”’
(= (g'¢’)(g""'g’’)) is in H, since H is a subgroup; for any gin G, glg (= e)
isin H; for g¢"lg” in H, ¢"'g (= (¢7'¢")Y) is in H)

Let S be a set, and consider any collection of equivalence relations on S.
Their intersection (i.e., regard each equivalence relation as a subset of S X S,
and intersect these subsets to obtain a new subset of S X §, i.e., to obtain a
new relation) is, as is easily checked, also an equivalence relation. Now let R
be any (not necessarily equivalence) relation on S. The intersection of all
equivalence relations containing R (in the sense that, regarded as subsets of
S X S, they contain the subset of S X S defined by R) is thus an equivalence
relation containing R and is clearly the smallest one (i.e., any equivalence
relation containing R is contained in this intersection). This is called the
equivalence relation generated by R. Many of the equivalence relations one
introduces are obtained in this way.

Let ‘" be an equivalence relation on the set S. An equivalence class
(of this relation) is a subset T of S with the following property: for each ¢ in
T, t ~ s if and only if s is also in T. That is, for an equivalence class T,
“any two elements of T are equivalent and no element of T is equivalent to
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an element of S not in T.”

There is essentially only one theorem in the subject of equivalence rela-
tions. The introduction of an equivalence relation is invariably followed
immediately by application of this theorem.

THEOREM 17. Let ‘X" be an equivalence relation on set S. Then every ele-
ment of S is contained in one and only one equivalence class.

Proof. Let s bein S, and denote by T the collection of all elements ¢ of S
such that s = t. Then T is an equivalence class (for, if ¢ and ¢" are in T, so
s~ tand s &~ t’, then by conditions 1 and 3 above, t =8 t", while, for tin T
and s” not in T, we could not have ¢t =& s, for, since s = ¢, we would then
have s &~ s”). Furthermore, since s~ s, s itself is in T. Finally, if U is
another equivalence class containing s, then u is in U if and only if s~ u
(since U is an equivalence class), whence u is in U if and only if u is in T,
whence U= T.|]

Ezample. The equivalence classes for the equivalence relation given ear-
lier in this chapter are the left cosets of Hin G.

Theorem 17 means that ‘‘the equivalence classes cover S without
overlapping.”

There is a second special kind of relation which is of interest. A relation
(normally written, in this case, ‘‘<") on a set Sis called a partial ordering if
the following three conditions are satisfied:

1. For any s, s", and s in S with s < s” and s" < s”", we have
s < 8.

2. For any sin S, s < s.

3. For any sand s in Swith s < s” and 8" < s, we have s = s”.

These are the properties one associates with ‘‘less than or equal to.”

Ezample. Let P be any set, and consider any collection of subsets of P.
For two such subsets, U and V, write U < V'if Uis a subset of V. This is a
partial ordering. One says that this collection of subsets is ordered by inclu-
sion. (Many useful partial orderings arise in this way.)

Ezample. Let S be the set consisting of all pairs, (¢,2), of real numbers,
each in the open interval (0,1). Write (4,2) < (¢',2") if ¢t < ¢ and (z - z”)?
< (t- t')? (figure 24). (Geometrically, (t,2) < (¢',z") if (¢',2") “lies on or
above” the lines with slope 45° through (¢,z) in the ¢-z plane.) This is a par-
tial ordering on S.

It is convenient, unfortunately, to introduce three definitions. Let “<”
be a partial ordering on the set S, and let A be a subset of S. This A is said
to be bounded above if there is an element 8 of S such that a < s for every a
in A. This A is said to be totally ordered if, for any a and 4’ in A, either
a< a” or a° < a/or, of course, both, if a = a"). To get an intuitive feeling
for these definitions, consider the four diagrams of figure 25 (referring to the
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previous example). In the first, A is bounded above but not totally ordered
(the s does the job for bounded above; neither a < a” nor a” < a for totally
ordered); in the second, A is neither bounded above nor totally ordered (the s
in the figure does not work for bounded above, for it is not true that a < s);
in the third, A is both totally ordered and bounded above (use s for bounded
above; since the slope of the curve is never less than 45°, we have, e.g.,
a < ¢’); in the fourth, A is not bounded above but is totally ordered.
Finally, an element s of S is said to be a mazimal element if there is no s” in
S different from s itself such that s < s”. In the previous example, there are
no maximal elements (for one can always ‘“‘move up a little in the open square
to obtain s°"). If, however, we had chosen for S the collection of pairs (¢,z)
with 0 < 2z < 1and 0 < ¢t < 1 (i.e, if we had “included the top edge of the
square”), then any (¢,z) with £ = 1 would be a maximal element.

Now consider the following.

Statement. Let S be a set with a partial ordering, and suppose that S
has the property that every totally ordered subset of S is bounded above.
Then S possesses a maximal element.
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It is not difficult to convince oneself that this statement seems ‘‘true.”
Pick s; in S. If this s, is not a maximal element, there is an s,, different from
8;, with §; < s5. If s, is not maximal, there is an sz, different from sy, with
35 < 33, ete. Either we eventually obtain a maximal element (in which case
we are done), or we obtain 8 < sy < s3 <---. In this latter case,
{s1,83, - * - } is a totally ordered subset of S, whence it is bounded above, say
by s,". If 34' is not a maximal element, there is s,” with 8~ < 87, ete.
(We “go right through infinity.””) If we find no maximal element in s,°,
83", ..., we obtain, again, a totally ordered set, which must be bounded
above, say by s;”", ete. Suppose we are unlucky and go through an infinite
sequence of such sequences without finding a maximal element. Then we
obtain totally ordered s (m,n = 1,2, . ..}, which must be bounded above,
say by t;, etc. We “continue in this way. At every stage we have a totally
ordered subset, which must be bounded above, so we add in this upper bound
to obtain a new totally ordered subset. We can go through infinity, an
infinity of infinities, etc. We never get stuck; we can always go on. We
should obtain eventually a maximal element.”

The discussion above is not a proof—it simply gives the flavor of what
the statement above asserts. Is there a real proof? The answer is remarkable:
there is neither a proof (unless one assumes essentially the statement) nor a
counterexample. The point is that sets themselves must be regarded, not as
having been somehow ‘“handed down from above,” but rather as just symbols
which may be related in a certain way (e.g., by “‘is an element of”’), with cer-
tain properties to be satisfied by this ‘““is an element of.” (A set theory is a
mathematical structure rather like the notion of a group.) Suppose we intro-
duce the relation “is an element of” and postulate various properties which
reflect things we expect to be satisfied for sets. What happens is that the
statement above does not follow from these properties (in the sense that the
denial of the statement, together with the properties, forms a consistent sys-
tem), while neither does the denial of the statement follow from these proper-
ties. (It is like writing in group theory ‘“statement: g¢° = ¢"¢”". Either the
statement or its denial is consistent with the conditions for a group.)

What one normally does is include our statement, called Zorn’s lemma,
as an additional axiom on one’s set theory. (The result, it has been shown, is
internally consistent.) One normally uses Zorn’s lemma when one wants to do
what was described intuitively just above (‘‘keep going, on and on’).
Although Zorn’s lemma is useful in mathematies, I know of no example in
which one’s stance regarding Zorn’s lemma has a direct impact on one’s mode.
of description of physical phenomena. Such an example might be very
interesting.
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Ezxercise 58. Introduce the category of partially ordered sets, and discuss
therein direct product and direct sums (both of which exist).

Ezercise 59. Let R be a relation on the set 5. Prove that, in the equivalence
relation generated by R, s~ s” if and only if there is a finite sequence
(8,81,89, . . . ,8p,8") such that either sRs; or s;Rs, either s,Rs, or s;Rsy, . .
and either s,Rs” or s’ Rs,. A

M

Ezercise 60. Fix a category. For any two objects, A and B, therein, write
A =~ B if there exists an isomorphism from A to B. Prove that “~’ is an
equivalence relation. What are the equivalence classes?

Ezercise 61. Is it true that, for any set with a partial ordering having a maxi-
mal element, every totally ordered subset is bounded above?

Exercise 62. Let S be a set with partial ordering “<.” Denote by T the col-
lection of all totally ordered subsets of S, ordered by inclusion, so T is also a
partially ordered set. Show that the hypothesis of Zorn’s lemma is satisfied
by T. What are the maximal elements of T like?
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The Category of Vector Spaces

The next structure we shall discuss is that of vector spaces.

A real vector space consists of three things—i) a set V' (whose elements
are called wvectors), ii) a rule which assigns, given vectors v and v”, a third
vector (written v + v and called their sum), and iii) a rule which assigns,
given a vector v and a real number @, a vector (written av)—subject to the
following conditions:

1. The set V'is an abelian group under addition. (The identity is written
“0" (not to be confused with the number “0"); the inverse of v, -v.)

2. For a and @’ real numbers, v and v~ vectors,

(e+alv=av+ a’v

(the “+” on the left is addition of numbers, that on the right addition of vec-
tors) and

av+ v)=av+ av’

(both “+ signs are addition of vectors).
3. For a and a” real numbers, and v a vector,

ala’ v) = (aa’)v

(aa’ is ordinary multiplication of numbers).
4. For any vector v,

Cilv=wv |

where 1 is that number.

Replacing ‘“‘real” above everywhere by ‘‘complex,” we obtain the
definition of a complex vector space. (There are more general vector spaces,
in which ‘real numbers” and ‘“complex numbers'’ are replaced by other
things, but they do not seem very useful for applications.) Most arguments
are identical for real vector spaces and complex vector spaces. We shall use
the generic word ‘“‘number.” It can be replaced, consistently throughout any
argument, by either ‘‘real number” or “‘complex number.”

Thus a vector space is a set on which one can “add” and ‘‘scale by
numbers,” satisfying all the properties one would expect of these operations.
A number of elementary facts follow immediately from the definition, for
example, 0v = 0 (the ‘0" on the left is the number, the ‘0" on the right the
vector; proof: 0v = 0v + 0v - 0v = (0 + 0)v - Ov = Ov - Ov = 0), a0 = O (in
both instances 0" is a vector; same proof), and (-a)v = -(av) (the **-"" on the

’
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left denotes the negative of the number, that on the right the inverse of the
vector; proof: (-a)v = (-a)v + (av) - (av) = (¢ + a)v - (av) = Ov - (av) =
~(av)).

Ezample. Let S be any set, and denote by V the collection of all map-
pings from S to the set of numbers, so V is the collection of all “number-
valued functions” on S. Given two such functions, v and v’, we define their
sum, v 4+ v”, as the function with action (v+ v")(s) = v(s) + v’(s) (s in 5);
given a function v and a number a, we define a new function, av, by (av)(s) =
a[v(s)]. This set V, with these operations, is clearly a vector space; that is, it
satisfies conditions 1, 2, 3, and 4 above.

Let V and W be vector spaces (both real or both complex). A mapping ¢
from the set V to the set Wis called a linear mapping if, for any v and v” in
V, and any number a, we have p(v + av’) = ¢©(v) + ap(v’). It is immediate
that, for ¢ a linear mapping, (v + v') = @(v) + p(v’) (so ¢ is also a
homomorphism from the abelian group V to the abelian group W) and ¢(av)
= ap(v). [Proofs: p(v+v') = pv+1v) = p(v)+ 1lp(v') =
@(0) + (v"); (av) = (0 + av) = @(0) + ap(v) = ap(v).] Linear mappings
are ‘‘structure preserving.”” Note that we do not define the notion of a linear
mapping from a real vector space to a complex vector space, or vice versa.
Note, finally, that the composition of two linear mappings (defined by com-
posing the mappings of sets) is also a linear mapping.

Let the objects be real vector spaces, the morphisms linear mappings
from real vector spaces to real vector spaces, and composition composition.
We obtain the category of real vector spaces and, similarly, the category of
complex vector spaces. The monomorphisms and epimorphisms in these
categories are one-to-one linear mappings and onto linear mappings, respec-
tively. (See exercises.)

Ezample. Let S and S be sets, and let V and V* be the corresponding

vector spaces in the previous example. Let S i S’ be any mapping from set
S to set S°. We define a mapping from the set V’ to the set V. (Note this
reversal of order.) For v" in V”, let p(v”) be the element of V (i.e., the func-
tion on S) whose value at s in S is v'(¢(s)), 2 number. (That is, p(v")
assigns, to s in S, the number that v” assigns to the element ¢(s) of §°.) It is
easily checked that this mapping from set V' to set V is a linear mapping
from vector space V’ to vector space V.

A good way to get hold of some objects is to look at the free ones. Let S
be any set. A free vector space on S is a vector space V, together with a
mapping from the set S to the set V| such that, if W is any other vector
space, and J any mapping from set S to set W, there is a unique linear map-
ping from vector space V to vector space W such that the diagram of figure
26 commutes.
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Figure 26

THEOREM 18. For any set S, there exists a free vector space on S.

Proof. Let S be any set, and denote by V the collection of all mappings
v from the set S to the set of numbers such that ¥(s) = 0 for all but a finite
collection of s in S. Setting (v + v’ )(8) = u(s) + v'(s) and (av)(s) = a[(s)]
(for v and »” in V, a a number, and s in S), we obtain (noting that » + v~
and av are always in V) a vector space V. Let a be the following mapping
from set Sto set V: for sin S, a(s) is the element of V (i.e., the function on S)
given by [a(s)]{s") = 1if s = s, and 0 otherwise. (Note that this statement
defines, for each fixed s in S, a function on S by giving the value of this func-
tion for each 8" in S.) We claim that this (V,a) is a free vector space on S.
Let W be a vector space, and 8 a mapping from set S to set W. We must
find, and show the uniqueness of, a linear mapping from V to W such that
figure 26 commutes. First, note that, in order that the diagram commute, p
must have the following action on the elements of V of the form a(s): pa(s)]
= f(s). Next, note that, since elements of V consist of functions on S which
vanish on all but a finite subset of S, every element v of V can be written in
the form v = a;a(s;) + - - + + a,a(s,). Then, note that, in order that p be a
linear mapping, we must have, for this v, p(v) = apla(s))
+ -+ apfa(s,)) = a8(s) + - - - + a,f(s,). Finally, note that this g, so
defined, is indeed a linear mapping from Vto W.[]

Intuitively, V'is ‘‘the vector space of finite formal sums, each term of which is
a formal product of a number and an element of S. Since we cannot add or
multiply by numbers in S (it is only a set), we appropriately enlarge S to
allow this to be done, obtaining the free vector space on S.” Note that the
construction in this proof differs slightly (but significantly) from that of the
first example of this chapter. Exactly as with groups, the free vector space on
any set is unique in the appropriate sense.

Free vector spaces, as we shall see, play an important role in this subject
(more important than, say, free groups do in the subject of groups). It is
worthwhile therefore to study the structure of free vector spaces in a bit more
detail. We first need some definitions. Let V be any vector space, and K any
subset of V. An element v of V is said to be a linear combination of elements
of K if v can be written in the form a/k; + - - - + a,k,, with ¢, ... ,a,
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numbers and kq, . . . ,k, elements of K. The subset K of V is said to span V
if every element of V is a linear combination of elements of K. Thus, for
example, V spans V; if K spans V and K is a subset of K (a subset of V),
then K’ spans V. A subset K of V is said to be linearly independent if, when-
ever ky, . . . ,k, are distinct elements of K and @y, . . . ,a, are numbers, with
aky + -+ - + a,k, = 0, we necessarily have ¢ = ¢y = ... = a, = 0. Thus,
for example, K is never linearly independent if 0 is in K (for 1 -0 = 0); if K
is linearly independent and K’ is a subset of K, then K’ is linearly indepen-
dent. Finally, a subset K of V is said to be a basis for V if K spans V and
also K is linearly independent. (Note that, in these definitions, one only con-
siders “‘finite sums.” That is because, in a just plain vector space, one does
not know what an “infinite sum’’ means. This notion requires some further
structure, e.g., a topology.)

Livearly
Independent

cots N
Set N
Figure 27

We illustrate these definitions schematically in figure 27. Each point of
the figure represents a subset of vector space V. We order by inclusion, so the
collection of all subsets of V is partially ordered. ‘‘Increase in size” of the
subset is represented by “moving upward” in the figure. (Thus V itself, the
largest subset of V, is at the top, while the empty subset—the smallest—is at
the bottom.) The hatched regions represent the subsets which are linearly
independent and the subsets which span V. The intersection represents the
subsets that are a basis for V.

There are a number of assorted facts connecting these definitions, of
which we give just two examples. If K is a linearly independent subset of V,
and v is an element of V which is not a linear combination of elements of K,
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then K, the subset of V consisting of K with v included, is also linearly
independent. [Proof: Suppose K° were not linearly independent, so
aky” + -+ ak,” = 0 with k°, ...k, distinet elements of K*, and
a, ..., e, numbers, not all zero. Then v had better be included in this
linear combination—and with nonzero numerical factor—for otherwise we
would violate linear independence of K. Hence the linear combination above
must really be of the form bv + byky + - - - + b, 1k, ; = 0, with b 5~ 0, and
ky, ...k, in K. But now we have v = (=b,/b)k; + - -+ + (~b,_;/b)k,_;-
This violates the assumption that v is not a linear combination of elements of
K] If K spans V, and kin K is a linear combination of elements of K, the
set consisting of K with k excluded, then K’ also spans V. [Proof: Since K
spans V, and v in V can be written as a linear combination, v =
aky + - - - + ayk,, of elements of K. If k does not appear in this linear com-
bination, then here is an expression for v as a linear combination of elements
of K’, and we are done. If k does appear, on the other hand, write k¥ =
aky” + -+ bk, with k", ...k, in K. Substituting this expression
for k in the above expression for v, we eliminate k in that linear combination
and obtain an expression for v as a linear combination of elements of K’.
Hence K* spans V(] -~

We now return to the free vector space constructed in the proof of
theorem 18. Recall that, there, V was the vector space of all number-valued
functions on the set S which vanish on all but a finite number of points of S.
Also, a was the mapping from S to V which associates, with s in S, the fune-
tion whose value is 1 on s and 0 elsewhere. Denote by K the subset of V con-
sisting of all elements of V of the form a(s), s in S, that is, the subset of V
consisting of all functions whose value is 1 at one point of S and 0 elsewhere.
Since the only linear combination of such functions which is the zero function
is a linear combination with all numerical coefficients zero, K is linearly
independent in V. Furthermore, since V consists of functions on S which van-
ish on all but a finite number of elements of S, every element of Vis a finite
linear combination of elements of K. That is, K spans V. What we have just
shown is that K is a basis for V. It is equally clear, conversely, that, if Vis
any vector space and K is a basis for V| then V is isomorphic with the free
vector space on the set K. Thus we have the following conclusion: a vector
space Vis isomorphic to a free vector space if and only if V possesses a basis.

We now give the main structure theorem in vector spaces: every vector
space has a basis. The idea of the proof is the following. Begin with any old
linearly independent subset of vector space V (e.g., the subset with just one
element, that nonzero). If this subset is not a basis (i.e., if it does not span
V), there is a v in V which cannot be written as a linear combination of ele-
ments of the subset. We can therefore include this v in the subset and still
have a linearly independent subset. If it is still not a basis, we can add
another element, etc. We ‘go on and on, adding more and more elements,
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until we finally do get a basis.” That is, we use Zorn’s lemma.

THEOREM 19. Every vector space V is isomorphic to a free vector space on
some set.

Proof. By the remarks above, it suffices to prove that V possesses a
basis. Denote by L the collection of all linearly independent subsets of V,
ordered by inclusion. Let Ly (X in A) be any totally ordered subset of L.
(That is, each Ly is a linearly independent subset of V, and any two Ly’s have
the property that one is a subset of the other.) Then LAJ L, is also linearly

independent (for any finite collection of elements of E‘J L, are all elements of

some Ly, so no linear combination of these could vanish without violating
linear independence of that Ly). This LAJ L, is clearly an upper bound (in the

partially ordered set L) of Ly (A in A). Thus the hypothesis of Zorn's lemma
is satisfied by L—so there exists a maximal element K of L. (That is, K is a
linearly independent subset of V and is such that, if any other elements of V
are included in K, the resulting subset is no longer linearly independent.) We
claim that this K is a basis for V (i.e., that K spans V). Suppose not. Then
there would be a v in V which could not be expressed as a linear combination
of elements of K. But, were this the case, we could include v in K and still
have a linearly independent subset of V| violating maximality of K. Hence
this K is in fact a basis for V. []

The proof is a bit tricky because the essential idea (‘‘keep on adding vectors
to a linearly independent set, preserving linear independence, until you get a
basis’’) tends to get lost in all the groundwork at the beginning which
prepares the way for Zorn’s lemma. (If you think there is no content to
Zorn’s lemma, try to find explicitly a basis for the vector space of the first
example of this chapter.)

Theorem 19 is the reason why vector spaces are so simple. There is
nothing much to sets, every set gives rise to a vector space (the free one on
that set), and every vector space is isomorphic to one of these. The situation
is much nicer than even that for groups.

The mopping-up is completed by

THEOREM 20. Let V be a free vector space on S, and V' a free vector space
on S°. If Vand V' are isomorphic (as vector spaces), then S and S are
isomorphic (as sets).

Proof. From the remarks above, it suffices to prove that, if Vis any vec-
tor space, and K and L are two bases for V, then there is a one-to-one, onto
mapping from set K to set L. Denote by B the collection of all triples,
(P,@,¢), where P is a subset of K, Q is a subset of L, and ¢ is a one-to-one
onto mapping from P to @, which are such that the following condition is
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satisfied: (L — @) U P (i.e., the set of elements of V which are either in L and
not @, or in P} is a basis for V. Introduce the following partial ordering on B:
(P,@e) < (P",Q ") if Pis a subset of P’, @ is a subset of @, and ¢ =
@  on P (i.e., wherever both are defined). Any totally ordered subset of B,
(Py,@y,y) (M in A), is bounded above by (P,Q,p), where P = &‘JPX, Q =

E‘J @y, and where ¢ is defined as follows: for p in P (so p is in one of the Py),

©(p) = @x(p). By Zorn’s lemma there is a maximal element, (P,Q,p), of B.
We must show that P = K and @ = L (for then y is a one-to-one, onto map-
ping from K to L). Suppose, for example, that P did not equal all of K: then
there would be an element k in K but not in P. Since (L - @) U P is a basis,
this k can be written as a linear combination of elements from this set. This
linear combination cannot contain only elements from P, for that would
violate linear independence of K. Hence at least one element, 1, of L - Q
must be included in the linear combination. But now (P”,Q",p"), where P’
consists of P with k included, @ consists of @ with 1 included, and ¢~ is the
mapping from P’ to @ which agrees with ¢ on P and which sends k to 1, is
also an element of B. Furthermore, (P,Q,0) < (P",Q",»"). This violates

maximality of (P,Q,p). Thus P = K and, similarly, @ = L. []

The proof of theorem 20 is rather like that of theorem 19, but with even more
technical details around to obscure the idea of the proof. The idea of the
proof is this (figure 28). We have a basis K and a basis L for V, and we wish
to obtain a one-to-one, onto mapping from K to L. We want to “replace the
basis vectors in L by those in K, one at a time, until L itself has disappeared
and been replaced by K. A (P,Q,p) represents a ‘“‘stage in this replacement

K L
(L'Q)uPF’

-

¢

Figure 28
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process, namely the stage in which we can replace all the vectors in the part
Q@ of L by the vectors in the part P of K and still get a basis (the ¢ just
ensures that we put back into L the same number of vectors that we take
out).” The partial ordering represents ‘‘how far along we are in the replace-
ment process.” We ‘‘keep replacing vectors in L by those in K, going on and
on until we cannot go further.” The result is the maximal (P,Q,p). This
maximal ‘‘stage of replacement” must be such that ‘“‘we have replaced all of L
by K, for if it were not, we could always switch one more vector over from K
to L. This is just a fancy version of the familiar row-reduction procedure for
matrices.

The notion of the dimension of a vector space arises from theorems 19
and 20. Let V be any vector space. Then V'is isomorphic to the free vector
space on some set S (and any other set for which this is true is isomorphic to
this S). If S has a finite number n of elements, Vis said to have dimension n.
If S has an infinite number of elements, Vis said to be infinite-dimensional.
(Of course, one could further subdivide the infinite-dimensional vector spaces
according to the cardinality of S.)

Ezercise 63. Prove that, in the category of vector spaces, a linear mapping
is one-to-one if and only if it is a monomorphism. (Hint: The proof that
one-to-one implies monomorphism is easy. For the converse, consider

a, ¥
XT_»V — W, where X is a free vector space on a set with one element.)
a

Ezercise 64. Let V be a vector space, K a subset of ¥V which spans V, and K~
a subset of K which is linearly independent. Prove that there is a basis for V
which contains K and is contained in K.

Ezercise 65. Give an alternative proof of theorem 19 in which one “begins
with a subset which spans V| and keeps removing elements.”

Erercise 66. Let V be a vector space. Prove that a subset K of V'is a basis if
and only if it has the following property: if any element of V not in K is
included in K, the result is not linearly independent, while if any element of K
is removed from K, the result does not span V.

Ezercise 67. Let V and V’ be free vector spaces on sets S and S’, respec-
tively. Prove that there is a monomorphism from Vto V” (category of vector
spaces) if and only if there is a monomorphism from S to S’ (category of
sets). Similarly for epimorphism. What does this mean for finite-dimensional
vector spaces?

Ezercise 68. Let V and V” be free vector spaces on sets S and S, respec-
tively. Show that any mapping from S to S° induces a natural linear map-
ping from V to V’. (Compare the second example of this chapter. What
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B
goes wrong if one tries to use that method to obtain, from S — S°, a linear
mapping from V* to V?)

Ezercise 69. Can the underlying abelian groups of two vector spaces be iso-
morphic (as groups), although the vector spaces themselves are not iso-
morphic? Is there a simple characterization of which abelian groups are
underlying groups of vector spaces?
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Subspaces

Let V be a vector space. A subspace of Vis a vector space W together with a

monomorphism Wf» V. Denote by W’ the collection of all elements of V of
the form p(w) with w in W. Then 0 (= ¢(0)) is in W’, and, for w,” (=
e(wy)) and wy” (= p(wp)) in W7, sois w" + awy” (= p(w; + aw,)). Thus,
under addition and multiplication by numbers (as given from V), W” itself is
a vector space, and, clearly, ¢ is an isomorphism from W to W’. Thus we
could just as well have defined a subspace as follows: for V a vector space, a
subspace of V' is a subset W of V such that i) 0 is in W, and ii) whenever w
and w” are in W, and e is a number, w + aw” is in W. Thus a subspace of a
vector space is a subset such that ‘“one remains in the subset under all
vector-space operations on elements of that subset.”

Note that any intersection of subspaces of a vector space is again a sub-
space. [Proof: Let W, (X in A) be subspaces, and set W = Q W,. Then 0 is

in W, since it is in each W,. Furthermore, for w and w” in W, sois w + aw’,
for w and w” must be in each W), whence w + aw’ must be in each W,.] Let
K be any subset of vector space V. The intersection of all subspaces of V
containing K is a subspace of V called the subspace generated by K. (Note
that this is precisely the subspace containing zero and all linear combinations
of elements of K.) Thus, for example: a subset of V spans Vif and only if V
is in fact the subspace of V generated by this subset.

Ezample. A subset K of V is a basis for Vif and only if K has the fol-
lowing property: the subspace generated by K is V itself, and the subspace
generated by any K’, consisting of K with one or more elements removed, is
not V.

We introduce the following notation for subsets of a vector space (similar
to that for groups). For K and L subsets of vector space V, we write K + L
for all elements of V which can be written in the form k + ! with kin K and
in L. We write ¢K (a a number) for the collection of all elements of V which
can be written in the form ak with k¥ in K. For subsets having only one ele-
ment, we represent the subset by writing that element, for example, k¥ + L.
Thus, for W a subspace of V, we have W+ W = W and, for ¢ £ 0, ¢ W
=W

Note that a subspace of a vector space is also a subgroup of the
corresponding abelian group.
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Let W be a subspace of vector space V. A coset of Win Vis a subset of
V which can be written in the form v + W for some v in V. Note that every
element of V is in some coset of Win V (namely, visin v + Wior v = v +
0) and, in fact, in a unique one (for, if v were in v + W, we would have v =
v" + w, with win W, whence v + W= v-w+ W= v+ W). The cosets
of Win V*cover V without overlapping.” (Note that we do not have to dis-
cuss left and right cosets; they would turn out to be the same, because addi-
tion in Vis commutative.)

Let W be a subspace of vector space V. We denote the collection of all
cosets of Win V' by V/W. We now define a few operations on this set V/W.
For v + Wand v" 4+ W cosets, we define their sum by (v + v") + W (a result
which, clearly, depends only on the cosets themselves and not on how each is
represented as “v + W’). For v + W a coset and ¢ a number, we define a
new coset by av + W (which, again, depends only on the coset itself). Thus
V/Wis now a set on which we can ‘‘add and multiply by numbers.” We now
claim that, with these operations, V/ W is in fact a vector space, that is, that
conditions 1-4 in the definition of a vector space are indeed satisfied. (Each
property follows immediately from the corresponding property in V.)

This V/ W is called the quotient space of V by (the subspace) W.

We now define a mapping ¢ from the set V to the set V/W as follows:
for vin V, ©(v) is the coset v + W. This g is, in fact, a linear mapping from
vector space V to vector space V/W. [Proof: p(v+ av’) = v+ av” + W,
which is precisely the coset v + W plus a times the coset v* + W, which is
precisely o(v) + ap(v”).]

We have already seen that vector spaces are simpler than groups because
all vector spaces are free, while not all groups are. Now, vector spaces are
again simpler, because all subspaces have quotients, while all subgroups (i.e.,
the ones which are not normal) do not.

Not only does any subspace of a vector space have a quotient space, but
the quotient space can, in a certain sense, be “put back into the vector
space.”” We now explain what this means. Let V be a vector space. Two
subspaces, U and W, of V will be said to be complementary if i) every element
vof Vcan be written in the form v = u 4+ wwith v in U and win W, and ii)
whenever v + w = 0, with v in U and win W, we have « = 0 and w = 0.
(The first condition ensures that the union of U and W spans V; the second
states that the intersection of U and W is the subspace consisting only of 0.
In this sense, U “complements’” W.) This definition has rather the flavor of
that of a basis.

Let W be a fixed subspace of vector space V. Let U be another subspace
of V such that U and W are complementary. We wish to show that U
represents ‘‘V/ W inserted into V.’ First note that, for any vin U, u + Wis
certainly a coset of Win V. Now consider any coset of Win V, for example,
v+ W(vin V). Write v=u + w, with uin Uand win W. Then v+ W=
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v+ w+ W= u+ W. Thus every coset of Win V, that is, every element of
V/ W, can be written in the form v + W with »in U. Finally, note that, if u
+ W=u" + W(vand ¢’ in U), so u- v" = w(win W), then, by condition
ii) above, we have u - u” = 0, whence u = u’. Thus every coset of Win V
can be written uniquely in the form v + W, with ¢ in U. We have therefore
an isomorphism from the set U to the set V/W. But the mapping from, for
example, U to V/ W (which sends u in Uto u + W) is clearly a linear mapping
of vector spaces. We have proven the following.

THEOREM 21. Let U and W be complementary subspaces of vector space V.
Then every coset of Win V can be written in one and only one way in the
form v + W with u in U, and this correspondence between U and V/ W is
an isomorphism of vector spaces.

In this sense, then, U ‘‘represents V/Win V.”
What we have not yet shown, however, is that such complementary sub-
spaces exist. We do this now.

THEOREM 22. Let W be a subspace of vector space V. Then there exists a
subspace U of V such that U and W are complementary.

Proof. Denote by U the collection of all subspaces U of V such that u +
w=0(uin U and win W) implies ¥ = w = 0. Order by inclusion, so U is
partially ordered. If Uy (X in A) is any totally ordered subset of U, then it is
bounded above, by Li Uy. (Note that LAJ Uy is indeed in U, for it is a sub-

space, and, if v + w = 0, with w in W and v in U U, then u is in some U,
A

whence v = 0.) By Zorn’s lemma, there is a maximal element, U, of U. We
claim that U and W are complementary, that is, that every v in V can be
written v = u + w with » in U and w in W. Suppose not, for some v in V.
Let U’ be the subspace of V generated by U and v, so every element of U’ is
of the form # + av (v in U). Then U’ is also in U, for v + ev + w = 0
implies (since v cannot be the sum of an element from U and one from w) a =
0, =0, and w= 0. But U < U’, contradicting maximality of U. Hence U
and W are complementary. [J]

It is the usual Zorn lemma thing. We consider subspaces which satisfy half
the properties for complementarity and maximize to get the other half of the
properties satisfied too.

We illustrate the situation with the following example.

Ezample. Let V be a three-dimensional vector space. Let z, y, and z be
three elements of V which form a basis, so every element v of V can be writ-
ten v = az + by + cz (uniquely), with ¢, b, and ¢ numbers. Let W be the
subspace of V consisting of all elements of V of the form az, so W is the
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subspace generated by the element z of V. The cosets of Win V are subsets
of the form v + W. Thus two elements of V, az + by + czand ¢’z + by +
¢’ 2, are in the same coset if and only if b = b and ¢” = ¢. In figure 29, the
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Figure 29

cosets are ‘‘vertical straight lines.” Then V/W is the “space of all vertical
straight lines,” that is, the horizontal plane in figure 29. The mapping from
Vto V/W is the mapping which projects each vector in V downward to the
plane at the bottom. A subspace U complementary to W is, for example, the
plane in the top half of the figure. (The most general such U is that gen-
erated by y + az and z + bz for fixed numbers a and .) The isomorphism
from V/W to U is “vertical motion upward from V/W until you reach U.”
The coset of Win Vshown in the figure is u + W.

Ezercise 70. Prove that, in the category of vector spaces, a linear mapping is
onto if and only if it is an epimorphism. (Hint: The proof that onto implies

, I . e B
epimorphism is easy. For the converse, consider V — W?.vX, and choose X

= Wand 8 = iy. Let P = ¢[V], and let @ be a complementary subspace.
Let 8 agree with Son P, and let 87(¢) = 0 for ¢ in Q.)

Ezercise 71. Let W be a subspace of vector space V. Prove that any basis
for Wis a subset of some basis for V. Obtain, from a basis for V so obtained,
a basis for V/W.

Ezercise 72. Let U and U’ be complementary subspaces of V, and let S, S”,
and T be sets the free vector spaces over which are isomorphic to U, U’, and
V, respectively. Prove that T is isomorphic to SU; S (disjoint union).
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Ezxercise 73. Let W be a fixed subspace of vector space V. Let U be a com-
plementary subspace, and let 1 be a linear mapping from U to W. Let U’
consist of all elements of V which can be written in the form u + ¢(u), with «
in U. Prove that U’ is a subspace and is, in fact, a complementary subspace
to W. (Thus complementary subspaces are not, except in degenerate cases,
unique.) Prove, furthermore, that every complementary subspace to W can
be obtained, from U, by this construction.

Ezercise 74. Let K, L, and M be subsets of vector space V, and let K + L =
M. Does therefore K = M- L

Egzercise 75. Let V be a vector space, and U, U", U”" subspaces of V with U
contained in U’ and U’ contained in U”. Consider: (U /U)/(U"JV) =
U JU’. State the theorem and prove it.

Ezercise 76. Find all vector spaces whose only subspaces are the one contain-
ing only 0 and the entire vector space.

Ezercise 77. Find an example of a vector space V which has a subspace
(other than V itself) that is isomorphic to V.
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Linear Mappings; Direct Products and Sums

The analysis of linear mappings of vector spaces is essentially the same as the
analysis of homomorphisms of groups.

Let V f» W be a linear mapping of vector spaces. We denote by Ker(yp),
the kernel of ¢, the collection of all v in V with ©(v) = 0, and by Im(yp), the
image of o, the collection of all w in W such that w = ¢(v) for some v in V.
Then Ker(¢p) is a subspace of V [proof: p(0) = 0, and, for v and v” in Ker(yp),
we have (v + av’) = p(v) + ap(v’) = 0, so v + av’ is in Ker(p)] and
Im(yp) is a subspace of W [proof: ¢(0) = 0, and, for w (= ¢(v)) and w’ (=
e(v))in W, s0is w+ aw” (= p(v + av”))].

o

Consider V — V/Ker(p) —w+ Im(p) —ﬁo W, where o is the mapping that
associates, with each vin V, the coset v + Ker of Ker(¢) in V; ¢ is the map-
ping that associates, with the coset v + Ker(p) of Ker(p) in V, the element
©(v) of Im(¢p) (noting that this ¢(v) is independent of how the coset is written
as v + Ker(p)); and J is the mapping that represents Im(y) as a subset of W.
These are all linear mappings; « is an epimorphism, ¢ an isomorphism, and 8
a monomorphism.

Now let V and W be any two vector spaces (both real or both complex).
We construct a new vector space (written V@ W). Let the set V@& W con-
sist of pairs, (v,w), with vin V and win W. We define addition of such pairs
by (vyw) + (v',w’) = (v + v",w + w’). We define multiplication of such
pairs by numbers by a(v,w) = (av,aw) (a a number). We claim that, with
these operations, the set V @ W becomes a vector space. (Each of properties
1-4 is immediate from the corresponding property for V and W.) Now con-
sider the ‘‘butterfly diagram’ shown in figure 30. Here, a is the linear map-
ping from vector space V to vector space V @ W with action a(v) = (v,0),
and 8 is the mapping with action A(w) = (0,w). Furthermore, a” is the linear
mapping from vector space V @ W to vector space V with action a’(v,w) =
v, and B the mapping with action S(v,w) = w. We claim, first, that this
diagram commutes (for, e.g., for vin V, a” o a(v) = a’(v,0) = v = i v)).
Note also that o and § are monomorphisms, that a* and 3" are epimor-
phisms, and that Im(a) = Ker(8") and Im(8) = Ker(a"). Finally, Vand W
(regarded as subspaces, via the monomorphisms o and B, of V @ W) are
complementary.

One can also describe the structure of this V @ W using bases. Let K
and L be bases for V and W, respectively. Then we claim that the collection
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of all elements of V' & W of the form (k,0) (kin K), together with those of the
form (0,/) ({ in L), forms a basis for V @ W. [Proof: Since K spans V and L
spans W, any element of V@ W, (v,w) = (v,0) + (0,w), can be written as a
linear combination of elements of the form (k,0) and (0,/). If some such linear
combination vanished, e.g., if (ajk; + - - -+ a,k,, by +-- -+ b,l,) van-
ished, then we would have ajk; + - - - + a,k, =0 and b)ly + -+ b,l, =
0, whence, by linear independence of K'in V, a¢j = - - - = a, = 0, and, by
linear independence of L in W, b = - - - = b,, = 0.] Thus a basis for VE W
is isomorphic (as a set) to the disjoint union of a basis for V and a basis for
W. (In this sense, at least, V @ W is more “union-like”’ than “product-like.”)
We have

IS
»u

®

72\

V

Figure 30

THEOREM 23. Let V and W be vector spaces. Then (V @ W,a,B) is a direct
sum of V and W, while (V@ W,a’,8" ) is a direct product of V and W.
Proof. Consider the diagram of figure 31. Since (v,0) = a(v), we must

have, in order that the diagram commute, 4(v,0) = p(v), and, similarly, 4(0,w)

= v(w). In order that 4 be a linear mapping, we must therefore have ~(v,w)

= 1[(v,0) + (0,w)] = p(v) + (w). But this 7, so defined, is indeed a linear
mapping. Hence V@ Wis a direct sum.

V A

N, LV
Ve W

AN
U

\

Figure 31

In the diagram of figure 32, we must have, in order that the diagram
commute, that 4(u) (v in U) is that element of V @ W with a’[y(u)] = o(u)
and 8’[Y(u)] = 7(u). But there is only one such element of V @ W, hence we
must have 4(u) = (o(u),7{z)). But this 4, so defined, is indeed a linear map-
ping. Hence V @ W is a direct product. []
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U
T l‘ v
Vo W
v o~ W
Figure 32

This V @ W is normally called the direct sum of ¥V and W. For vector
spaces, as for abelian groups, the direct product and direct sum are the same
thing (for a finite number of vector spaces; they actually differ slightly for an
infinite number).

Exercise 78. Let V be a vector space. Find a necessary and sufficient condi-
tion on vector space W such that there exists an isomorphism from Vto V &

W.

Ezxercise 79. Given linear mappings from Vto V' and from Wto W, find a
corresponding linear mapping from V@ Wto V' @ W’. When is the latter
a monomorphism? When an epimorphism?

Ezercise 80. Let U and V be vector spaces. Make Mor(U,V) into a vector
space. Now let W be another vector space, and fix a linear mapping « from V
to W. Then “‘composition with &’ is a mapping from Mor( U, V) to Mor( U, W).
Prove that this is a linear mapping of vector spaces. What is its image and
kernel?

Ezercise 81. Construct a direct product and a direct sum for an arbitrary col-
lection of vector spaces.

Ezercise 82. Describe a subspace of V @ W completely in terms of subspaces,
linear mappings, etc., but involving only V and W separately.
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U—20 vV

S

Figure 33

Ezercise 83. In the diagram of figure 33, let a and £ be given linear map-
pings. Prove that there exists a linear mapping 4 which makes the diagram
commute if and only if Ker(a) is a subset of Ker(3). When is there a unique ~
which makes the diagram commute?
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From Real to Complex Vector Spaces and Back

It is by no means rare in applications that one wishes to obtain, from a given
real vector space, a complex one, or vice versa. There are at least three tech-
niques available for making such transitions. We here describe them.

Let V be a fixed complex vector space. We obtain a real vector space.

Let V be a set, and V-f» V an isomorphism of sets. (Instead of writing ©(v)
all the time, we shall write 9, so a tilde denotes membership in ‘7.) We now
define some operations on this set V.. For 4 and 4" in V, we define the left
side of ¥ + v = (v + v") by the right side. (That is, to “add’’ two elements
of the set V, you carry them, via the isomorphism, back to V, there add them
(in the vector- -space structure of V), and then carry the result, via the isomor-
phism, back to V) Next, for v in V, and a a real number, we define the left
side of av = (av) by the right side. (Carry v back to V| there multiply by the
real number @ (we even know how to multiply by complex numbers in V), and
carry the result back to V.) We claim that this set V, with these operations,
is a real vector space. [Proof: Properties 1-4 hold in V. Applying a tilde to
each, we obtain properties 1-4 in V,]

Thus we obtain, from a complex vector space, a real one. All we have
done is to ‘‘forget the possibility of multiplying by complex numbers in V,
using instead only multiplication by real numbers.”” Not only is this V, so
constructed, a real vector space; it has some additional structure. We intro-
duce a linear mapping}t from the real vector space V to V, defined as follows:
for v in V, (v) = (#v). (Here i is that complex number; iv is well defined,
because V'is just a complex vector space.) This ¢ is clearly a mapping from 1%
to V—and is clearly a linear mapping. Furthermore, we have tot = -1,
where —i;; is the linear mapping from V to V which sends  in V to -9.
(“Since V is a real vector space, you cannot multiply by i therein. But the
fact that this V originally arose from a complex vector space is nonetheless
reflected within this V by the mapping ")

The second construction is just the reversal of the first. Let V be a real
vector space, and let ¢ be a linear mapping from V to V satisfying ¢ o ¢ =
-iy. (It follows that this ¢ is an isomorphism from Vto V,forto(totod)
= (totot)ot=1i;.) We define a certain complex vector space. Let V be

e .
a set, and V — V an isomorphism of sets. As above, we use attachment and
removal of a tilde to denote passage, via this isomorphism, from set V to set
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V. We define addition within this V as follows: (v/+\v/) = 9+ v". (That is,
v+ v is defined as that element of the set V which, when carried over to the
real vector space V, is the element % + " of 17.) We next define, within this
set V, multiplication by complex numbers. Let (a + 1b) be a complex number
(a_and b real numbers), and let v be an element of V. The definition is
[(a + b)v] = a¥ + by(?). (The instructions: For vin V, (a + ib)v is that ele-
ment of V which, when carried to the real vector space V, is the sum in V of
the element ai of V an/d\thf:/element bi(?) of V. Note that this is all well
defined and that, e.g., [(a + 1b)y] = (@ + #b)¥ is not, for we do not know how
to multiply, in 17, by complex numbers.) We now claim that this set V, with
these opetations, is indeed a complex vector space. (All properties are
immediate except possibly property 3, which, in turn, is immediate from ¢ o ¢

Thus a complex vector space defines a real vector space (on which there
is a certain linear mapping ¢), while a real vector space with such an ¢ defines
a complex vector space.

The final construction yields a complex vector space from a real one,
even though there is not given, on the latter, any preferred ¢. Let W be a real
vector space, and consider the real vector space W @ W. We define a linear

t

mapping W d W—- WO Wby ww') = (-w',w) (w and w” in W, so
(wyw’) is in W @ W). We have, for this ¢, ¢ o (w,w’) = (|(-w’,w)] =
(-w-w’) = fye ylw,w’). That is, we have t ot = —fgy. Thus, by the
preceding construction, we obtain a complex vector space. (This is the con-
struction in which one allows oneself to ‘“naively multiply vectors in a real
vector space by complex numbers.” Write (w,w’) = (w,0) + (0,w") = (w,0)
+ ¢(w”,0). Think of (w,0) as the ‘‘real part” of (w,w") and of (0,w") as the
“imaginary part,’’ so ¢ is “multiplication by .”)

Of these three constructions, the first is used rarely (because, I suppose,
it has so little content), and the second and third occasionally. We conclude
with the following remark: there is no such thing, in a complex vector space,
as a “real vector’’ or as the ““complex-conjugate of a vector.”” These notions
are simply not part of the structure that goes into a complex vector space.
One needs, for such notions, a preferred isomorphism from the complex vector
space to a complex vector space of the form W @ W (W a real vector space)
as obtained in the last construction above.

Ezercise 84. Let V be a real vector space. Prove that there exists a linear
mapping ¢ from V to V satisfying ¢ ot = -i; if and only if either i) V is
infinite-dimensional, or ii) V has (finite) even dimension.

Ezercise 85. Let V be a real vector space, with linear mapping ¢ from Vto V
satisfying ¢ o ¢ = -i;;. Let W be a subspace of V. Find a simple necessary
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and sufficient condition that the corresponding subset W of the corresponding
complex vector space V be a subspace.

~ ~ ~ ¢ -~ -~ L' ~
Ezercise 86. Let Vand V’ be real vector spaces, with V— Vand V' — V*

~ a ~
satisfying to¢ = —iy and t" ot” = —iy. Let V— V'. Find a necessary
and sufficient condition that the corresponding mapping from the complex
vector space V to the complex vector space V” be linear.

Ezercise 87. In each of the three constructions of this section, one obtains
one vector space from another. Given in each case a basis for the original
vector space, find a set isomorphic to a basis for the constructed vector space.

Ezercise 88. Let Vand V° be real vector spaces, with V—‘> Vand V* L—» v’
satisfying t o ¢t = —iyand ¢” o t” = -1y Introduce a similar linear mapping
from V® V' to V@ V’. Show that the corresponding complex veector space
is isomorphic to the complex vector space V& V’.



13

Duals

One of the very useful constructions in working with vector spaces is that of
taking the dual. We here describe the situation. It is convenient (because we
shall so frequently refer to the numbers) to carry out the discussion in the real
case (denoting the collection of real numbers by R), noting at the end that
nothing whatever changes in the complex case.

Fix a (real) vector space V. A mapping f from the set V to the set R of
real numbers (i.e., a real-valued function on the set V) is said to be linear if
fav+ v') = afflv) + [v')(vand v" in V, ¢in R). (Thus fis a linear map-
ping from the vector space V to the vector space R.) Denote by V* the collec-
tion of all such linear mappings. We define, on this set V* addition and mul-
tiplication by real numbers as follows:

(f+ 1)) = flo) + X (v)

and f
(e)(v) = qf(v)]

(the left side in each case defines an element of V* by specifying the number

it associates with v in V). With these operations, this set V* becomes a real

vector space. This vector space V*is called the dual of the vector space V.

The following is a geometrical picture of an element of V* Let f be a
nonzero element of V* and consider Ker(f) (i.e., the collection of all v in V
such that flv) = 0). This Ker(/) is, of course, a subspace of V. We claim,
furthermore, that the quotient space, V/Ker(/), is one-dimensional (for there is
an isomorphism from V/Ker(f) to Im(f), while Im(f) = R). Next, note that, if
fand f° are nonzero elements of V* and are proportional (i.e., if f/* = af),
then Ker(f) = Ker(f’) (for, evidently, flv) = 0 if and only if f'(v) = 0).
There is a sort of converse to this last statement: if W is any subspace of V|
with V/W one-dimensional, then there is an fin V¥ unique up to a factor,
with Ker(f) = W. [Proof: Let U be a (necessarily one-dimensional) comple-
mentary subspace to W. Fix u 3£ 0 in U, so this u is a basis for U. Then, for
vin V, write v (uniquely) as v = au + w(ain R, win W), and set f[v) = a.
Then Ker(f) = W, and this fis unique up to a factor.] Thus subspaces W of
V with V/W one-dimensional represent “elements of V* up to a nonzero
factor.”
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Since every vector space has a basis, the following example is, in a sense,
generic. It will be necessary to refer to it again later.

Ezample. Let V be a vector space, and K (a subset of V) a basis for V.
Fix any real-valued function f on the set K. We define, using this f, an ele-
ment fof V* For any vin V, write v = ak, + - - - + a,k, (a,, . . . ,a, in R,
ky ...k, in K), and set flv) = a;fik}) + - - - + a,f{k,). (That is, one writes
v as a linear combination of elements of the basis K, evaluates the function f
on each of these basis vectors to get a real number, and takes the correspond-
ing linear combination of real numbers to get flv).) Thus every real-valued
function on the set K defines an element of V*. A converse is also true: every
element of V* arises in this way. Indeed, let fbe in V* (so f associates a real
number with each element of V and, in particular, with each element of K).
Then flk) = f(k), for each k in K, defines a real-valued function f on the set
K. Evidently, flajk; + - + a.k,) = afik) + - -+ + a,f(k,). Thus this
function fon the set K indeed defines our original element f of V* That is,
V*is precisely the vector space of real-valued functions on the set K.

The discussion above is misleading in one important respect. Recall that
we can regard V as the vector space of all real-valued functions on the set K
having the property that they vanish for all but a finite number of elements
of K. But V*is the vector space of all real-valued functions on the set K.
Hence we may regard V as a subspace of V*. Unfortunately, this representa-
tion of V as a subspace of V* depends on the choice of basis: if we choose a
different basis, a fixed element of V will define a quite different element of V*.
That is, although there always exists a monomorphism from V to V¥ there is
no ‘“natural’’ (i.e., basis-independent) one.

Now let V and W be (real) vector spaces, and Vf» W a linear mapping.

*

We define a linear mapping W*i V* as follows: for fin W* (i.e., f a real-
valued function on W),

e N ="Jop
(the right side is the real-valued function on V obtained by first sending v in
Vto W using ¢, and there (in W) evaluating f). This ¢ * is clearly a linear
mapping of vector spaces. (It is often called the adjoint of ¢.) Thus, not
only does every vector space give rise to another vector space (its dual), but
every linear mapping between vector spaces gives rise to an ‘“order reversed”
linear mapping on the corresponding dual spaces.
o

Now let U— V — W be linear mappings of vector spaces. We claim
that

(Boa)*=a*op* .
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(Note first that this is meaningful, for foa maps U to W, whence
(B o alpha)* maps W* to U* while #* maps W* to V* and a* maps V* to U¥
whence a*o 8* also maps W* to U*) [Proof: a*o 8*(f) = ¥[8 N)] =
alfofl = fofoa = (Boa)¥y), for fin W ] A number of other proper-
ties are satisfied by this *-operation on linear mappings. Thus, if Vf» Wis a
monomorphism, then ¢* is an epimorphism. [Proof: Let fbe in V*; we must
find h in W* so ©*h) = f Since ¢ is a monomorphism, V is a subspace of
W. Choose a complementary subspace U. Then, for w = v + u in W, set
hw) = flv). This his certainly in W* and clearly satisfies p*(h) = f] Simi-
larly, if ¢ is an epimorphism, then ¢ * is a monomorphism, and if ¢ is an iso-
morphism, so is p*

This operation of taking the dual is often applied twice. Let V be a vec-

* . .
tor space. Then V7, the dual of V] is also a vector space, so we can, in turn,
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take its dual, V** (Note that, e.g., if V— W is a monomorphism, then

*
*+ ¥ *h : x *k

V¥ — W' is also a monomorphism, etc.) Of course, elements of V" are

real-valued functions on the collection of all linear, real-valued functions on V.

There is an important relation between V and V** there is a linear mapping

V—”b V** of vector spaces. To say what this g is, we must give a rule which
associates, with each v in V, an element of V**; that is, a rule which associ-
ates, with v, a real-valued function on linear functions on V. The rule is this:
for vin V, p(v)(f) = fv), for each fin V* This formula indeed defines an ele-
ment, p(v), of V*¥ for it associates a real number (namely, f(v)) with each ele-
ment fof V¥ that is, for it defines a function, u#(v) on V* Thus, for each v in
V, u(v) is an element of V** so p is a (clearly linear) mapping from Vto V**
This construction is a bit complicated; we repeat it in different words. Our
V* is a certain collection of real-valued funetions on V. For fixed v in V,
“evaluation at v’ associates a number with each such function, that is, defines
a function on V¥ that is, defines an element of V** Repeating for each v in
V, we obtain a mapping from Vto V**

We next claim that this linear mapping g is in fact a monomorphism.
What we must show is that if v in V has the property p(v) = 0, then v = 0.
That is, we must show that, if v in V has the property that f{v) = 0 for every
fin V* then v = 0. But this is true: for v 0 in V, let U be a complemen-
tary subspace to the subspace generated by v. Then every element of V can
be written in the form av + u (¢ in R, u in U): set flav + u) = a. Then fis
in V* and flv) = 1 3 0. Thus we have a monomorphism from V to V**
(Note that, since we have made no mention of bases lately, this monomor-
phism is basis-independent.) In other words, the original vector space Vis in
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fact a subspace of V**

It is not too easy, offhand, to think of an element of V** not in Im(p).
One is thus led to ask when the monomorphism j is in fact an isomorphism.
The answer is pretty.

B
THEOREM 24. Let V be a vector space, and V — V** the natural monomor-
phtsm. Then p is an isomorphism if and only if V is finite-dimensional.
Proof. Let V have finite dimension n. Then, choosing a basis K for V

(so K has exactly n elements), both V and V* can (by the previous example)
be regarded as the vector space of real-valued functions on the set K. (Since
K has a finite number of elements, every such function vanishes outside of a

finite set.) Hence dim(V) = dim(V*) and, similarly, dim(V*) = dim(V**. So
m

dim(V) = dim(V**). Thus V— V** is a monomorphism from a finite-

dimensional vector space to another of the same dimension, whence g must be

an isomorphism.
Let V be infinite-dimensional, and K a basis for V. We shall find an ele-

ment of V** not of the form p(v). Regard V* as the vector space of all real-

valued functions on the set K, and denote by B the subspace of V* consisting
of bounded functions (noting that, since K has an infinite number of elements,

there are nonbounded functions on K, so B# V. Let W be a complemen-
tary subspace to B, and fix, once and for all, an element w £ 0 of W. Let U
be a complementary subspace, in W, of the subspace generated by w. Finally,

let X be the subspace of V* generated by U and B. Then X is a complemen-
tary subspace (in V*) to that generated by w. Now consider the function &
on V* which associates, with the element aw + z (a in R, z in X) of V* the
number a. This « is certainly an element of V**. Furthermore, (since B is a
subspace of X = Ker(k)) k(f) = O for any element of V* (i.e., any function on

k) which is bounded. We claim, finally, that this element & of V**is not of
the form p(v) for any vin V, for, for any v 7 0 in V, there is a bounded func-
tion on K (e.g., the function which represents v itself) which yé v) fails to
annihilate, while & annihilates all bounded functions on K. |]

The complication in the proof is the presence of so many subspaces. The idea
of the proof is this: if we can only find an element k of V** which annihilates
all the elements of V* (i.e., all the functions on K) which are bounded, then
we are done, for no element of V** of the form p(v) has this property. What
functions, then, will k annihilate? It must annihilate a subspace X of V*

with V*/X dimension one, and with X including all the founded functions.
All that talk about complementary subspaces at the beginning is the construc-
tion of an appropriate X. You begin with the subspace B of bounded
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functions, pick one element w of a complementary subspace, and ‘‘join the
rest of that complementary subspace (namely, U) with B to get our X.”” This
X then leads immediately to k, an element of V** which does not come, via
i, from any element of V.

Theorem 24 is perhaps the basic reason why finite-dimensional vector
spaces are simpler than infinite-dimensional ones. With infinite-dimensional
vector spaces, one ‘‘keeps getting bigger things on taking duals,” while, in the
finite-dimensional case, the situation remains more manageable. (We remark
that, when a sufficiently nice topology is available on V (e.g., for a Hilbert
space), the definition of the dual must be modified to take into account this
additional topological structure, with the result that we can have V = V**
even in the infinite-dimensional case.)

It is interesting that intricate arguments such as the one above should be
available in vector spaces when, since every vector space is [ree, the subject
looks at the beginning as though it will be straightforward.

This entire chapter can be repeated, replacing everywhere ‘‘real’” by
“‘complex.” \

Ezercise 89. State and prove: (V& W)*= V* @ W*

Ezercise 90. Let V be a vector space. We have seen that a one-dimensional
subspace of V*is completely and uniquely determined by a subspace Wof V

with V/ W one-dimensional. Show that a two-dimensional subspace of V* is
similarly determined by a subspace Wof V with V/W two-dimensional.

Ezercise 91. Show explicitly that the linear mapping from V to V* (in the
example above) in fact depends on choice of basis.

Ezercise 92. Let V be a vector space. For fin V¥, denote by U[(f) the collec-
tion of all vin V such that flv) = 1. Show that U{f) = U(f’) implies f = f~.
Characterize the subsets of V which are of the form U(f) for some fin V*
Thus one could as well have defined V* as the collection of all subsets of V
which satisfy this characterization. Now figure out, geometrically, how to
“add” such subsets, and “multiply by numbers,” to reflect the operations
available in V* Describe various things about the dual geometrically, for
example, the action of p.

Ezercise 93. Is there a reasonable notion of a “‘dual’’ for abelian groups?

Ezercise 94. Fix a vector space X. Define the X-dual of a vector space V|
VX to be the vector space of linear mappings from V to X. Show that a
linear mapping ¢ from Vto W gives rise to a linear mapping, ¢%, from WX to
VX. Does ¢ a monomorphism imply ©X an epimorphism? Does (p o 9)X =
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¥X 0 X7 Is there a monomorphism from V to VXX? When is there an iso-
morphism?

Ezercise 95. Let V be a real vector space. Consider the mapping from V §
V*to R which associates, with (v,f) in V @ V* the number flv). Why is this
not an element of (V & V**
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Multilinear Mappings; Tensor Products

In this chapter we shall introduce two further constructions which yield vector
spaces from vector spaces.

Let Vi, .. .,V,, Vbe(n+ 1) vector spaces (all real or all complex). Let
v be a mapping from the set V; X Vo X -+ X V, (Cartesian product of
sets) to the set V. Recall that this Cartesian product is just the set of all n-
tuples, (v, . ..,v,), with »; in V|, ... v, in V,. Hence v assigns to each
such n-tuple an element, v(v;, ... ,v,), of V. In other words, v is just a
vector-valued (in V) function of n vector variables (in Vj, ...,V,). Such an

v is said to be multilinear if it satisfies the following » conditions
v(v + avy 0, ..,y = Uy, L ,0) + oau(y 7, L),

U(vlvv‘l + (1112’, st 7vn) = U(”lv”m e rvn) + av(vlva’r e rvn) ’

Uy, .o 0,0+ av,) = (Y, .. ,Y,) + au(Yy, L. ,Y,T)

for any number a, and for any v; and v;" in V}, . .. ,v, and v,” in V,. (Thus
a multilinear mapping is ‘“linear in each of its variables separately, keeping
the others fixed.””) For n = 1, multilinear mappings are called just plain
linear; for n = 2, bilinear; for n = 3, trilinear, etc. We denote the collection
of all such multilinear mappings by Lin(V}, . ..,V V).

Ezample. Lin(V;W) is just Mor(V, W), the collection of all morphisms (in
the category of vector spaces, i.e., linear mappings) from vector space V to
vector space W.

Ezample. Let V be a real vector space. Then Lin( V;R) (where R is the
vector space of real numbers) is V* the dual of V. Consider the rule which
associates, with (v,f) (vin Vand fin V*), the number f{v). This is an element
of Lin( V,V*R).

Ezample. Consider the rule which associates, with the element (v,w) of
V X W, the element (also written) (v,w) of the direct sum, V @ W. This is
not an element of Lin(V,W;V @ W), for the mapping is not bilinear. (For
example, (av,w) does not always equal o(v,w) in V O W, for the latter is
(av,aw).)

We next introduce structure on the set Lin(Vj, . . . ,V,; V) so that it, too,
becomes a vector space. For v and v” in Lin(V;, ...,V V), define 2 new
element, v + v”, of Lin(V;, . . . ,V,; V) by its action:
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W+ v Yoy - v)=0v(vy, ..., 0)+v (v, ...,v,) .

For v in Lin(Vj, . ..,V,;V) and a a number, define a new element, av, of
Lin(Vy, . . ., V, V) by its action:

(av)(vy, - - . ,0) = du(yy, . .. ,0,)] .
With these operations, the set Lin(Vj, ... ,V,;V) clearly becomes a vector
space.
Thus V* is a vector space, as we have seen. In the category of vector
spaces, Mor( V, W) has the structure of an object in the category.
Since the “Lins’ are vector spaces, we can combine them just like other

vector spaces.
Ezample. Fix vector spaces V and W. With each pair (p,v), with

V—W» W and v in V, associate the element p(v) of W. This is an element of
Lin(Lin(V, W), V; W).
Ezample. Fix vector spaces V and W. Associate, with Vf» W,
o*
W* — V* This is an element of Lin(Lin( V, W);Lin( W* V¥)).
Ezample. Composition of linear mappings is an element, for example, of

Lin(Lin(U, V),Lin( V, WyLin(U, W)).

]

Ezample. Fix vector spaces U, V, W, and fix U @ V — W. Then, res-
tricting the action of ¢ to elements of U @ V of the form (u,0), we obtain a
linear mapping from U to W, similarly, a linear mapping from Vto W. Con-

o
versely, given U — W and V—ﬂ> W, the mapping from U @ V to W which
sends (u,v) to a(u) + A(v) is linear. Thus Lin(U & V;W) = Lin(U;W) @
Lin(V;W). Similarly, Lin(U;V @ W) = Lin(U,V) @ Lin(U; W).

The complexities here seem to be getting out of hand. We shall return to
this point shortly.

The final method we shall discuss for constructing vector spaces from
vector spaces is the tensor product. Let V and W be vector spaces (both real
or both complex). A tensor product of V and W consists of a vector space T,
together with a bilinear mapping ¢ from V X Wto T, such that, if T" is any
vector space, and ¢” a bilinear mapping from V X Wto T’, there is a unique
linear mapping 7 from vector space T to vector space T  such that the
diagram of figure 34 commutes. (Although we have, to simplify the
discussion, given the definition of the tensor product of only two vector
spaces, there is an obvious generalization to any finite number (and, in fact,
an only slightly less obvious generalization to an arbitrary number).) Tensor
products are unique in the following sense: if (T,¢) and (T’ ,¢") are two tensor
products of V and W, the unique linear mapping ~ in the diagram is in fact
an isomorphism of vector spaces. (The proof is identical to that (theorem 9)
for free groups.)



Multilinear Mappings; Tensor Products 73

Vx W ——T

S~

-l—/

Figure 34

It remains to be shown, however, that tensor products even exist. We
now show this. Let V and W be vector spaces. Let X denote the free vector
space on the set VX W, and let a be the natural mapping from the set
V X Wto the set X (i.e., the mapping which is part of the definition of a free
vector space; chapter 9). Thus, for each (v,w) in V' X W, there is an element,
a(v,w), of X. Every element of X is a linear combination of elements of the
form a(v,w), and the only such linear combination which vanishes is the one
with zero coefficients. We first note that this a is not a bilinear mapping
from V X W to X, for, for example, a(v + v",w) - a(v,w) — o(v",w) is not the
zero element of X, but rather the nonzero element which is that linear combi-
nation of the three basis vectors a(v + v",w), a(v,w), and a(v’,w). We wish
to ‘‘force a to be bilinear.” To this end, we denote by Y the subspace of X
generated by the collection of all elements of X of the forms

af(v + av’,w) - a(v,w) - aa(v’,w) ,
a(v,w + aw’) - a(v,w) - ac(v,w")

forall vand v" in V, w and w” in W, and a a number. The elements of Y are
precisely ‘‘the things which would have to vanish if @ were to be bilinear.”

Denote by A the natural linear mapping Xf» X/Y from X to the quotient
space, X/Y. Then Ker(8) = Y. We now claim that ¢ = foa (so
V X W—fv X/Y) is in fact bilinear. Indeed, (v + av’,w) - ¢(v,w) —ag{v’,w) =
Bla(v + av’,w) -o(v,w) -aa(v’,w)] (since B is linear). But the expression
a(v+ av’,w) —a(v,w) —ea(v’,w) is in Y (that is how we constructed Y) and
hence is in Ker(f). Thus g, applied to this element of X, gives zero. We have
shown ¢(v + av”,w) —¢(v,w) —ag(v’,w) = 0, and similarly reversing the roles of
V and W. That is, we have shown that ¢ is bilinear. Thus we have the
diagram of figure 35.

xop

—
Vil — o X — X/ Y

Figure 35
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We now claim that this (X/Y ) is a tensor product of Vand W. Let T

be any vector space, and V X W — T any bilinear mapping. Then, since X
is the free vector space on the set V' X W, there is a unique linear mapping p
from X to T such that the diagram of figure 36 commutes. (This is just the

Vew —5 X Py
\l

Figure 36

definition of a free vector space—we do not, here, even need bilinearity of £.)
Now consider any element of X which happens to lie in the subspace Y, for
example, the element a{v + av’,w) - a(v,w) - ea(v’,w). Then, applying p to
this element, we obtain pla(v+ e’ w) -ea(v,w) -a(v,w)] =
poa(v+ av ,w) -poa(vw) -apoca(v,w) = v+ av,w) - €vw)
- af(v’,w) = 0, where, in the first step, we have used linearity of g, in the
second, the fact that the diagram of figure 36 commutes, and, in the third,
the fact that £ is bilinear. That is, every element of X which happens to lie in
the subspace Y is annihilated by p. In other words, p takes all the elements
of a single coset of Y in X to the same element of T. That is, there is a map-
ping ~ from X/ Y (the space of cosets of Y in X) to T such that the diagram of
figure 37 commutes. This mapping ~ is linear (because of the definition of

Vew —2ax —Faxy
'M
E /
T
Figure 37

vector-space operations on X/Y) and unique (for, given any element of X/,
e.g., the coset = + Y, we must have A(z+ Y) = p(2) in order that the
4

diagram commute). Thus every bilinear V X W — T gives rise to a unique p
and ~ such that the diagram of figure 37 commutes. It follows that every bil-

inear V X W—€> T gives rise to a unique ~ such that the diagram of figure 38
commutes, for every 4 determines also a g (namely, 4 = 4o f). Thus we
have demonstrated precisely the defining property of a tensor product.

It is conventional to write V @ W instead of X/Y. We have proven
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THEOREM 25. Let V and W be vector spaces (both real or both complex).
Then (V @ W) s a tensor product of V and W.

The following feature of the proof above should be noted. It is, on the one
hand, explicit (i.e., we actually construct a tensor product) and, on the other,
somewhat abstract (for the substance of the proof is to push arrows around,
using, e.g., the universal definition of a free vector space). One can’: if one has
the inclination, often use the defining (often universal) properties of various

things in proofs rather than the more explicit construction.
|

VxW——S—7X/Y
KT/
Figure 38

The structure of this tensor product can be seen still more concretely.
For (v,w) in V X W, we write, instead of ¢(v,w) (for the corresponding element
of V® W), v ® w. Then bilinearity of ¢ becomes (v+ av') Q@ w=v Q@ w+
aw Quwand v®@ (w+ aw’) = v @ w+ av ® w’. Furthermore, “any linear
combination of these v @ w (in V @ W) is equal to some other linear combi-
nation of these v @ w only when the two linear combinations can be made
identical by repeated use of the two bilinearity formulae above.” (This is just
the intuitive statement of the definition of the subspace Y in the construction
above.) Finally, every element of V ® W is some (finite) linear combination
of various v @ w (that is how free vector spaces work). To see in more detail
what is going on, we choose bases: let K be a basis for V, and L a basis for W.
Then, for kin K and lin L, k ® [ is certainly an element of V® W. Further-
more, every element of V ® W of the form v @ w is a linear combination of
those of the form k @ ! (for v must be a linear combination of k's, and w a
linear combination of I's, so we can expand out v @ w as a linear combination
of k @ I's using bilinearity of “®"). Thus the collection of elements of V &
Wof the form k ® lspans V@ W. Note, furthermore, that this collection of
elements of V @ W is linearly independent (for no linear combination of dis-
tinet k @ I's, with nonzero coefficients, could be zero in V @ W, i.e., could be
reduced to zero using bilinearity of “‘®,” for the k are linearly independent in
V, and the /in W). Thus the subset of V ® W consisting of elements of the
form k ® I (kin K, lin L) is a basis for V. ® W. Note that this subset is iso-
morphic to the set K X L (Cartesian product). (Thus one could have defined
the tensor product of V and W as the free vector space on K X L, where K is
a basis for V, and L a basis for W.)
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One can think of the direct sum as being ‘“‘product-like on the spaces”
(e.g., the direct sum of a one-dimensional vector space (‘‘a line”’) and a one-
dimensional vector space is a two-dimensional vector space (‘“‘a plane”)) and
“sum-like on the bases” (for dimensions add under direct sum). From this
viewpoint, the tensor product is ‘“‘ultra-product-like: even product-like on the
bases” (for dimensions multiply under tensor product).

There are a number of properties of the tensor product, of which we give
a few examples. Let V and W be vector spaces, and fix an element, (v,w), of
V X W. We define, using this (v,w), an element of Lin( v W). Given fin
V* so fis a linear function on V, associate with it the element [f{v)]w of W
(i-e., the element of W which is the product of the number f{v) with the vector
w). Thus we have here a mapping ¢ from V X W to Lin(V*W). This map-
ping is clearly bilinear. Hence (by definition of tensor product) there is a

unique linear mapping v from V ® W to Lin(V* W) such that the diagram of

V x W———)V@W

NS

Lin (V¥

Figure 39

figure 39 commutes. It is easily checked that this V & W—7> Lin( VX W) is in
fact a monomorphism. (For finite dimensions it is actually an isomorphism,
but not in general for infinite dimensions.) Thus V' ® W can be regarded as a
subspace of Lin(V* W)—similarly, as a subspace of Lin( W* V). Now again fix
(vyw) in V X W. For (f,g) in V¥ X W* (so fis a linear function on V, g a
linear function on W), consider the number [f{v)][g(w)] (product of numbers).
This is a mapping (for fixed (v,w)) from V* X W*to R (or C, in the complex
case)—a mapping which is certainly bilinear. Hence this is an element (for
fixed (v,w)) of Lin(V* W*%R). We thus have a (bilinear) mapping from
V X W to Lin(V* W*R), and so, by the tensor product definition, we have a
linear mapping from V ® W to Lin(V* W*R). This, too, is a monomor-
phism, so we may also regard V ® W as a subspace of Lin(V*,W%R) (and, if
you like, as a subspace of (V* ® W*)*).

As a final example, let V, U, and W be vector spaces, and consider V @
(U® W). A typical element of U @ Wis (v,w) (v in U, win W). A typical
element of Vis v. Given a (u,w) and a v, we obtain an element, v @ (u,w), of
V® (U ®&@W). Every element of V ® (U @ W) can be written as a linear
combination of elements of this form. Suppose we now associate, with v @

(u,w), the element (v @ 1, v @ w)of (VO V) D(V® W). (Thatis, v® uis
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inV® U, while v @ wisin V® W, s0 (v Q@ u,v @ w)isin (VO U)D(V®
W).) This is a linear mapping from V@ (U® Wjto (V® U) (VO W),
which is easily checked to be an isomorphism. Hence we can write V® (U &
WM=(VR U) & (VR W. (“Multiplication distributes over addition.”)

What can one do with vector spaces to get vector spaces? One can take
the direct sum (which adds dimensions), the tensor product (which multiplies
dimensions), multilinear mappings (which normally increase dimension even
faster), and duals (which are a special case of multilinear mappings). (One
can also take quotient spaces, but let’s ignore that for the present.) Suppose
we begin with just one vector space V. Then, using just this vector space, we
can construct an enormous collection of vector spaces, for example, Lin(V* ®
Lin(V @ VX V:V¥,V,V* ® Lin(V,V*V & V);V* ® V*) ® Lin(V:V*. Some
of these vector spaces will have ‘‘natural preferred elements’’; some will be
subspaces of others; some will be “‘naturally isomorphic” to others.

Problem. Organize this situation so that one has an overview of what is
going on—when preferred elements, preferred monomorphisms or isomor-
phisms, etc., exist. Then invent a notation in which moving around from vec-
tor space to vector space (e.g., via natural monomorphisms), introduction of
preferred elements, etc., can be done effortlessly.

Such an organization is in fact available in the finite-dimensional case; we
shall introduce it later. One would like, however, to cover also the infinite-
dimensional case in order to have facility with the infinite-dimensional vector
spaces (e.g., Hilbert spaces) which arise in applications. Ideally, one would
also like to choose a notation such that, when the vector spaces have addi-
tional structure (so that, e.g., more things become isomorphic), these addi-
tional structural features are incorporated easily into the notation (e.g., by
‘“ignore all primes for topological vector spaces”). Finally, we remark that
one can forget about the direct sum, since, because Lin( V @ W;U) = Lin( V;U)
@ Lin( W;U), Lin(U;V @W) = Lin(U; V) @ Lin(U; W), and VR (US W) =V
®@ UD V ® W, every vector space one can construct using our three tech-
niques can be written as a direct sum of vector spaces constructed without
using direct sum.

Ezercise 96. State and prove: U@ (V@ WM)=(U® V) ® W.

FEzercise 97. Just prior to the ‘‘problem’ above, there appears a complicatéa\v
expression for a vector space constructed from V. Write out the isomorphic
vector space which is a direct sum of vector spaces, each constructed from V
without using direct sum.

Ezercise 98. Construct a natural isomorphism from Lin(V},...,V,;V) to
Lin(V; @ - - - @ V,; V). (Thus tensor products allow one to consider only
spaces of linear mappings rather than of multilinear mappings.)
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Ezercise 99. Consider the mapping from V ® V* to Lin(V;V) which sends v

® f(vin V, fin V¥ to the linear mapping from V to V which sends v" in V.
to [f{v")]v. Prove that this is a linear mapping and that it is a monomor-
phism. Prove that it is an isomorphism if and only if V is finite-dimensional.

Ezercise 100. Which of (V@ W)* V* @ W* can be regarded as a subspace
of the other?

Ezercise 101. Find a preferred element of (V ® V** (In matrix algebra,
this element is called the trace.)

Ezercise 102. Prove that every vector space is isomorphic to some vector
space of the form V @ W.

Erercise 103. Is there any natural way in which V can be regarded as a sub-
space of V@ W?

Ezercise 104. Consider, on the collection of all vector spaces, the rule which
associates, with any two, their tensor product. Does this collection thus
become a group?
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Example: Minkowski Vector Space

We now give an example of the application of some of these notions to the
description of a physical situation.

Let V be a fixed real, four-dimensional vector space. Let g be an element
of Lin(V,V;R), so, for vectors v and v", g(v,v") is a real number. Let this ¢
by symmetric in the following sense: for any vectors v and »", g(v,v") =
g(v',v). Call a vector v (in V) timelike if g{v,v) is negative, null if ¢gv,) is
zero, and spacelike if g(v,v) is positive. Let us suppose, finally, that the fol-
lowing (signature) condition is satisfied: there exist timelike vectors, and, for
any timelike vector ¢ and nonzero vector v, with g(¢,v) = 0, v is necessarily
spacelike. Such a (V,g) will be called Minkowski vector space.

We now describe the physical setup that a Minkowski vector space is
intended to represent. By an event, we shall mean an occurrence in the phy-
sical world having extension in neither space nor time. Thus the snapping of
one’s fingers or the explosion of a firecracker would represent an event. Now
fix, once and for all, a particular reference event 0. The vector space V
represents the collection of all “nearby events” to the event 0. The event 0
itself is represented by the zero vector in V. (Think of v in V as being the
“displacement vector” from O to the event described by v.) The multilinear
mapping ¢ describes, within the mathematics, the results of the following
thought experiment (figure 40). Fix an event, described by vector v, and let
the event 0 be the snapping of fingers by some observer. Now let our
observer send out a light signal (a pulse of light) at just the right time, and in
just the right direction, so that the light signal arrives at the event » when
this event occurs. Let another light signal be sent, at the occurrence of v, in
just the right direction so that it returns to our observer. Denote by p and p”*
the events ‘‘the sending out of the light signal” and ‘“‘the reception of the
return signal” (by our observer), respectively. Denote by ¢ (a real number)
the elapsed time, according to our observer, between the event p (when our_
observer sent out the light) and the event 0; similarly, denote by ¢° the
elapsed time between event 0 and event p°. Then g(v,v) is supposed to be the
real number ¢ (product of numbers).

In order to get a feeling for what this ¢(v,) means physically, we con-
sider some special cases. Suppose ¢{ = t’. Then one would say ‘‘it took light
t s (before 0) to get to the event, and ¢t* (= {) s after 0 to get back, so the
event v occurred at the same time as 0.” Furthermore, one would regard the
product ¢¢° as the ‘‘square of the distance (in units of light-seconds) of the
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event v from the event 0.” If {” were a little larger than ¢, then one would
say that ‘““the event v occurred shortly after the event 0.” If ¢ were zero (so
g(v,v) = 0), that would correspond to the situation in which the light signal,

Figure 41

so timed to reach v, would have to be sent out at event O itself (figure 41).
One would say that ‘‘the elapsed time between 0 and v, and the spatial dis-
placement of v from 0, have been so adjusted that light just makes it from 0
to ».” As t continues getting smaller, that is, goes negative, one regards ‘“the
event v as occurring later and later in time.” The limiting case t = -t~
(figure 42) corresponds to the physical situation ‘‘the return light signal
arrives essentially the moment the original signal is sent out,” that is, to the
situation ‘‘the event v occurs in the immediate presence of the observer, but
later than O by an elapsed time £°.” In this last case, g(v,v) = {t’ is negative.

To summarize, our observer regards event v as having occurred ‘‘a dis-
tance (1/2)(¢ + ¢°) from O and a time (1/2)(¢" - ¢) later than 0.” But g¢(v,v)
w0t [(1/2)(8° + O - [(1/2)(t" - ¢} the difference between the square of
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Figure 42

the “spatial distance” and the ‘“‘elapsed time.” Thus timelike vectors are
those v whose corresponding events have an ‘“elapsed time’’ (in seconds) from
0 which exceeds the “spatial distance” (in light-seconds) from 0. Vice versa
for spacelike vectors.

So that is what g(v,v) means physically. What does g(v,v”) (with
v v’) mean? Here is where multilinearity and symmetry come in. We
have gv+ v ,w+v") —glv-v ,v-v") = [fv,v) + g(v,v") + ¢v',0) +
g(v’,v")] = [g(v,v) — g(v,v") - g(v",v) + ¢g(v",v")] = 4¢(v,v"). The quantity on
the left has already been interpreted physically, while g(v,v”) appears on
the right.

We can now reintroduce our observer into the formalism. Denote by v
the event which occurs in the immediate presence of the observer but 1 s later
than 0. Then, for this v, we have { = -1 and t" = 1, so ¢(v,v) = -1. This v
“describes the observer within the mathematics.” Consider, for example,
another event, v, with times tand t’. Let’s evaluate g(v,0). The event v + o
has times -1 + £ and 1 + t~’, while the event v— % has times -1 - { and
1-t. Hence glo+ v+ 9)-glv—dv-9) = (-1 + §(1 + t)]
(-1~ 1 - &) = 2(t - t"). Thus g(#,v) = -(1/2)(¢" - 1), so g(v,7) is minus
the quantity we interpreted as the ‘“‘elapsed time between the event o and the
basic event 0.” In particular, g(v,9) = 0 means that ‘‘our observer thinks
that the event ¢ has a purely spatial (no temporal) displacement from 0.”
Thus the results of various physical observations of our observer can be
expressed by replacing our observer with a certain vector v and writing
expressions (to represent those observations) involving this v. !

The signature condition, it should now be clear, merely represents the
incorporation into the mathematics of the physical observations described in
the preceding paragraph.

It is intended that the discussion above make the point that all the struc-
ture of (V,g) has physical meaning, that anything one says within this struec-
ture can be interpreted as a physical statement, that any theorem about this
structure is a physical prediction, etc. There are no ‘‘irrelevant things”
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around. We emphasize, however, that a Minkowski vector space is to be
nothing more and nothing less than its mathematical definition above. One
must prove things within that framework, providing physical interpretations
where they are interesting or useful. (The idea is to use one’s physical insight
in the interaction between the mathematics and the physics, i.e., in the
definition of a Minkowski vector space, and the following discussion.) In par-
ticular, the use of the two “times,” ¢t and ¢’, just gives the flavor of what is
happening physically and can now be dispensed with.

We give a few examples of this viewpoint.

1. Let ¢ be a timelike vector, with g(¢,{) = -1 (this vector ¢ not to be con-
fused with the number ¢ above), and denote by t1 the collection of all vectors
v with g(t,v) = 0. Then this ¢} is a subspace of V and is complementary to
the subspace generated by ¢ [Proof: Since g{t,v + av’) = g(t,v) + ag(t,v"),
and since the right side vanishes if v and v are in tl, this ¢4 is certainly a
subspace. For any vin V, we have v = [v + tg(t,v)] - tg(t,v). But the first
vector is in ¢4 (for g(t,v + tg(t,v)) = g(t,v) + g(t,t)g(t,v) = g(t,v) - g(t,v) = 0),
and the second is in the subspace generated by ¢. Hence every vector is a sum
of vectors, one from each subspace. Finally, let at + s = 0, where a is a
number and s is in ¢+ Then 0 = g(t,at + s) = ag(t,t) + ¢(t,s) = —a. Thus a
= 0, whence s = 0. This establishes that the subspaces are complementary ]

Physically, think of ¢ as describing an observer. Then vectors v in 1
represent, as we have seen, ‘‘pure spatial displacements’ (according to this
observer), while vectors in the subspace generated by ¢ represent ‘“‘pure tem-
poral displacements.” The statement above thus asserts, physically, that
“every displacement can be decomposed uniquely into its spatial part and its

)

temporal part, according to any observer.” One can now understand physi-
cally what addition of vectors means: one ‘‘adds the spatial parts, and adds
the temporal parts, separately.” Finally, let v = at + s, with s in tL Then
g(v,v) = glat + s,at + s) = a®g(t,t) + 2ag(t,s) + g(s,5) = g(s,8) — a>. This lit-
tle calculation reflects, within the formalism, the formula in the fi'th para-
graph of this chapter. It also shows that g(s,s) should be interpreted as the
“square of the magnitude of the spatial displacement represented by s.”

2. For ¢t and t” timelike vectors, write t =t if ¢(¢,t") is negative. Then
this is an equivalence relation on the collection of all timelike vectors and
there are precisely two equivalence classes. [Proof: For any timelike vector ¢,
t=t for ¢(t,t) is negative. If t = t", then t" = ¢, for g(t,t’) = g¢(t",¢).
Finally, let t =~ t" and t=t"", so g(t,t’) and ¢(t,t"") are both negative.
Then, since g(t,t" - at”") = g(t,t") - ag(t,t’"), there is a positive number e
such that g(t,t" - at’") vanishes. But ¢(t" —at”" ,t" —at”") = ¢(t",t")
- 2ag(t’,t”") + dPg(t”",t”"). If g(t’,t”’) were nonnegative, this right side
would be negative, whence ¢’ — at’* would be a timelike vector which (by
construction) would satisfy g(¢t,t" - at”*) = 0. This would violate the signa-
ture condition. Hence = is an equivalence relation. There are just two
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equivalence classes since, for g(t,t") and g¢(¢,t"") positive, g(t",t"") is negative:
two vectors not in the equivalence class of ¢ are in the same equivalence class.]

This result presents us with the possibilities for the distinction between
past and future. Pick an equivalence class, and call its elements ‘“‘future-
directed timelike vectors,” those in the other equivalence class ‘‘past-
directed.” Note that the mathematics does not tell us which class to pick; it
only tells us what the possibilities are. This is a physical distinction which
must, here, be incorporated into the formalism.

3. Let t and t” be timelike vectors in the same equivalence class, and let
n be a nonzero null vector. Then the numbers g¢(¢,n) and ¢(¢’,n) are both
positive or both negative. [Proof: If one were positive and the other negative,
there would be a positive number a with g¢(t+ at”",n) = 0. But
gt + at’,t + at’) = g(t,t) + 2ag(t,t’) + d®g(t’,t’) is negative, since ¢ and ¢°
are in the same equivalence class. Thus ¢ + at” is timelike, and n nonzero
and null, with g¢(¢ + at’,n) = 0, violating the signature condition.]

This result allows us to extend the notion “future- and past-directed” to
null vectors: call null n future-directed if ¢(t,n) is negative for every future-
directed timelike ¢, and past-directed otherwise. Physically, future-directed
null vectors represent events which ‘‘can be reached from 0 by a light signal
from 0,” and past-directed events “from which 0 can be reached by a light
signal.” One expects physically that a future-past distinction should be avail-
able for null vectors—and indeed it is. Figure 43 is useful ‘or keeping these

Fotore-directed
Timelike

P Foture-directed null

Spacelike PasT -directed null

Pu.ST - Jfr c.r,feJ
Timelike

Figure 43

properties straight, suggesting new properties, and suggesting proofs. One
thinks of “increasing time going upward in the figure.” Null vectors lie on
the cones, timelike inside, and spacelike outside. (Warning: One dimension
is, of necessity, suppressed in the figure, so it can on rare occasions be
misleading.)
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4. Let n be a nonzero null vector, and v some vector with g(n,v) = 0.
Then either v is spacelike or v is a numerical multiple of n (hence null).
[Proof: Certainly v cannot be timelike, for that would violate the signature
condition. If v were spacelike, we would be done. So let v be null. Then, for
every real number ¢, v - an is null (since v and » are null, and g(n,v) = 0).
Choose any timelike ¢, and consider g(t,v - an) = ¢(t,v) — ag(t,n). Since g(¢,n)
cannot vanish (signature condition), there is an a such that this expression,
g(t,v - an), vanishes. Such a null v - an would violate the signature condition
unless v - an = 0, whence v is a numerical multiple of n.)

Thus, for a null n, nlisnot a complementary subspace to that generated
by n.

5. The sum of two future-directed timelike vectors is future-directed
timelike; the sum of two future-directed null vectors (neither a numerical mul-
tiple of the other) is future-directed timelike. [Proof: For ¢t and ¢’ future-
directed timelike (so ¢(t,t") is negative), g(t + t",t + t") = g(t,t) + 2g(t,t") +
g(t",t") is negative, so the sum is timelike. Since g(¢,t + t") = g(t,t) + g(¢,t")
is negative, the sum is future-directed timelike. Let n and n" be future-
directed null, neither a numerical multiple of the other. Fix a future-directed
timelike ¢, and consider g(t,n - an”) = g¢(t,n) - ag(t,n”). Since ¢(t,n) and
g(t,n" ) are both negative, some positive a makes the right side above vanish.
By the signature condition, this n- an” must be spacelike, whence

g(n-an’,n- an’) = -2ag(n,n”") must be positive. Hence ¢(n,n") must be
negative. Hence g(n + n’,n+ n’) = 2¢(n,n") is negative, whence n + n’ is
timelike. It is future-directed, since g¢(t,n+ n’) = g(t,n) + ¢(t,n”) is
negative.]

These examples are intended to illustrate the point that there are
numerous geometrical properties of Minkowski vector space and that all are
easily derived from the definitions. (In practice, of course, a hundred or so
such properties become incorporated into one’s repertoire, to be used, without
derivation, when needed.)

We next give some examples of more physical calculations within a Min-
kowski vector space.

Fix, once and for all, an observer, represented by a future-directed time-
like vector ¢ with g(t,t) = -1. Now consider a second observer, who is ‘“mov-
ing by, but passes our original observer just at the event 0.” This observer
could be represented by a future-directed timelike ¢*, with ¢(¢",t") = -1. By
property 1 above, we can write t* = at + s, with s in tl This ¢’ represents
“an event occurring in the presence of the second observer and 1 sec later
(according to the second observer) than 0.” According to the fundamental
observer (figure 44), this event has a “spatial displacement” s from O and a
“temporal displacement” a. Hence the vector a!'s would be interpreted by
the fundamental observer as the ‘‘velocity of the second observer as that
second observer passes by”: write v = a’'s. Then g(v,v) is to be interpreted
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Figure 44

as the ‘‘speed squared of the second observer, as seen by the fundamental
one.” (We shall write +? for g(v,v).) Let’s evaluate this v>. We have +* =
ga's,a7ls) = a2¢(s,s). But -1 = g(t",t") = g(at + s,at + s) = —a* + ¢(s,s),
while ¢(t,t’) = g(tat+s) = aglt,) + ¢ts) = -a Thus * =
[o(t,t")? - 1]/g(t,t")*§4. Tnverting, ¢(t,t") = -(1 - v*)"1/2. These formulae
show, in particular that ‘“‘the speed with which the t-observer sees the t’-
observer go by is the same as the speed with which the ¢ -observer sees the ¢-
observer go by.”” Note, for example, that the familiar time-dilation formula, a
= (1 - ¥*)"/% is immediate.

Let us now consider the situation in which our fixed observer (described
by vector t) sees two objects go by. Let future-directed 7 and 7° describe
these objects, with ¢(r,7) = ¢(7",7") = -1. Let us suppose, further, that the
objects are seen to ‘‘go in the same direction” (by our observer), that is, that
@ 7, and 7° are linearly dependent. We first decompose these vectors accord-
ing to our observer: 7 = at+ o and 7" = a’t+ ¢, with 0 and ¢’ in tL
Then ¢(r,7) = ¢(r’,7’) = -1 imply g(o,0) = a’-1and g(o',0") =a’2 -1,
Now cons@r _(](1',1").,1—_z glat+ o,0’t+0°’) = -~aa” + g(o,0"). But o and

o’ are in 1) while ¢, o, 'and ¢ are linearly dependent: hence o is a multiple
~—~—— N
of g. Therefore glo,0’) = -[g(0,0)g(c",0")]'% = —[(a®-1)(a’?- 1)]V/2

Thus we have g{7,7°) = -aa” - [(@® - 1)(@’% - 1)]/2. This formula provides
a relationship between velocities. We have o = (1 - v?)"1/% where v is the
speed that our observer sees the 7object go by, and, similarly, " =
(1 -0 1/2 Substituting, ¢(r,7") = —(1 + w’)[(1 - ¥*)(1 - v"?)]"V/2. But
grnr’) = -(1- V212 where V is the relative speed of the two objects.
Hence V= (v + v")/(1 + vv’), the familiar formula for addition of velocities.

Now again fix our fundamental observer (described by f), and consider a
particle going by. This particle is described by a certain future-directed time-
like vector p, where, setting p = mr, 7 represents the “1 s later event of an
observer following the particle,”” so ¢(7,7) = -1, and m the rest mass of the
particle. Thus g(p,p) = -m%. Decompose as usual: p = Et + P, where E is a
number (the energy of the particle, as seen by our observer) and Pis in ¢4 (its
“spatial momentum). Thus E = —¢(t,p) = -mg(t,7) = m(1 - ¥*)"V/2, where v
is the speed of the particle as seen by our observer. Furthermore, m? =
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-glp,p) = -g(Et + PEt+ P) = E% - ¢(P,P). That is, E2 = m® + ¢(P,P),
the usual energy-momentum formula.

Finally, consider a light ray going by. We would expect it to be
described by a future-directed null vector n. As usual, decompose according
to our fundamental observer: n = wt + k, where w is a number (the angular
frequency of the light) and « is a vector in ¢! (the wavenumber of the light
beam). We have 0 = g(n,n) = g(wt + k,wt + k) = —w? + g(k,k), s0 g(k,k) =
«?, the usual formula relating frequency and wavelength for a light ray. Now

consider a second observer, described by ¢° = af + s, with s in ¢t This
second observer looks at the same light beam and says that its frequency
is w' = -g(t’,n) (for, above, w = -g(t,n)). Thus w” = —¢(t’',n) =

-glat + s,wt + &) = aw - ¢(s,k). This is the Doppler shift formula. For
example, if g(s,k) = O (physically, the fundamental observer sees the second
observer and the light ray going off in orthogonal directions), then w’ = aw
= w(1 - ¥*)"1/2, where v is the relative speeds of the two observers. This is
the formula for the transverse Doppler shift.

Other standard formulae are obtained with similar ease.

We emphasize the following points in connection with the discussion
above.

1. One uses very little mathematics, and certainly nothing sophisticated.
One does, however, need an overview of vector spaces, multilinear mappings,
etc., and the flavor of what can be done therein.

2. One takes care at the beginning to be sure that “the mathematics is
appropriate for the physics,” that is, that everything in the mathematics has
physical meaning and that all of the physics one wishes to talk about is
describable in terms of the mathematics. In particular, one tries to avoid
structural features (e.g., a basis for the vector space) which have no physical
significance.

3. One allows physical things to be described by the mathematics which
naturally describes them. For example, one does not regard a vector or a
multilinear mapping as “less real,”” ‘‘less physical,” or ‘‘less explicit” than a
number or a function of one variable.

4. To answer a physical question, one first translates that question into
various objects (including only objects which are relevant to the question) in
the mathematics, with various properties describing the physical setup. Then
one manipulates these objects within the mathematics and translates results
back into physical terms. (These “translations” ultimately become
automatic.)
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Example: The Lorentz Group

Let V,g be a Minkowski vector space. A Lorentz transformation on V,g is an
isomorphism ¢ from vector space V to V which satisfies the following condi-
tion: for any v and v” in V, g(p(v),o(v")) = ¢(v,v”). Thus a Lorentz transfor-
mation ‘‘preserves all the structure of the Minkowski vector space.” In par-
ticular, if ¢ is a Lorentz transformation and v is timelike (resp., null, space-
like), then ¢(v) is also timelike (resp., null, spacelike). Denotc by L the collec-
tion of all Lorentz transformations on V,g. Let ¢ and % be in L, and consider
¥ o ¢, a linear mapping from V to V. This ¢ o © is certainly an isomorphism
from V to V (for composition of isomorphisms is an isomorphism) and is, in
fact, a Lorentz transformation, for g(1 o ©(v),¥ o p(v")) = g(¥[e(v)],¥[e(v)])
= g(p(v),o(v")) = g(v,v"). With this product rule on the set L, it becomes a
group. (The identity is the identiti( isomorphism on V; the inverse of the

Lorentz transformation ¢ is the ¥V — V such that po X = X o p = 1y (the
existence of which is guaranteed by the fact that ¢ must be an isomorphism
from Vto V). One easily checks that this X is in fact a Lorentz transforma-
tion.) This L is called the Lorentz group (on V,g).

Thus L is a subgroup of the group of all isomorphisms from vector space
Vto V (but not, e.g., a subspace of Lin(V;V)).

We next give some explicit examples of Lorentz transformations. Let ¢
be a future-directed timelike vector, with g({,t) = -1. Denote by R, the col-
lection of all Lorentz transformations ¢ such that p(¢) = t. (Physically, these
represent ‘“‘spatial rotations as seen by the observer described by ¢.”’) Then,
for ¢ in R, and s in t4 we have that o(s) is also in t4, for g{p(s),t) =
9(p(9),0(t)) = ¢(s,t) = 0. Next, note that the inverse of an element of R, is
in R, and that the composition of two elements of R, is in R,. That is, R, is a
subgroup of L (called the subgroup of spatial rotations defined by ¢).
Consider, in particular, the element o of R, with the following action: for v
in V, write v = at + s, with a a real number and s in £!; then set o(v) =
at-s. (This is indeed a Lorentz transformation: g¢(o(v),0(v’)) =
glo(at + s)o{a’t +8°)) = glat-s,a’t-3") = -aa” + ¢(ss’) =
glat + s,a’t + s”).) This o is called the spatial reflection defined by ¢ Simi-
larly, the Lorentz transformation 7 given by 7{at + s) = —at + s (a a real
number, 8 in ¢{) is called the temporal reflection defined by t. (Note that 7 is
not in the subgroup R,) Of course, for ¢t t°, the spatial and temporal
reflections defined by ¢ will not be the same as those defined by ¢* (although
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the product of the two for ¢, the mapping which sends v in V to -v, is the
same as the corresponding product for £°).

To obtain other Lorentz transformations, we proceed as follows. Let P
and @ be complementary subspaces of V, each two-dimensional, and such
that, for p in P and ¢ in @, g(p,q) = 0. Suppose, furthermore, that P con-
tains both timelike and spacelike vectors, while every nonzero vector in Q is
spacelike. (It is easy to construct such. Choose timelike ¢ and spacelike s,
and let P be the subspace generated by the subset consisting of ¢ and s. Then
let @ be the subspace of all ¢ with ¢(¢,g) = ¢(s,g) = 0.) A Lorentz transfor-
mation ¢ such that ¢(p) = p for each p in P (whence ¢(g) is in @ for each ¢
in Q) is called a rotation in @, or a rotation about the axis P. (Note that, in
four dimensions, rotations have a two-dimensional axis.) Similarly, a Lorentz
transformation o such that ¢(g) = ¢ for each ¢in @ (whence p(p) is in P for
each p in P) is called a boost in P, or a boost about the axis Q. To interpret
these physically, choose future-directed timelike ¢ in P, with ¢(¢,{) = -1. Find
spacelike s in P with ¢(t,s) = 0. Then a rotation in @, according to this
observer, is ‘‘a spatial rotation about the spatial axis s.” A boost in P,
according to this observer, “‘gives every object a certain increment of velocity
in the sdirection.”

Write Rp (resp., Rg) for the collection of all rotations (resp., boosts)
about the axis P (resp., @). (To construct an element of Rp, choose ¢ and ¢~
in @ with ¢(q,9) = ¢(¢",9°) = 1, and ¢(q,¢°) = 0. Then, for v=10ag+ a’ ¢’
+ p, with p in P, set (v) = (a cos b + a” sin b)g + (~asin b + a” cos b)g" +
p, where b is any real number. Similarly for Rg.) The subgroup of L gen-
erated by the union of Rp and Ry is that consisting of ¢ in L such that (p)
isin Pand o(q) in @, for any p in P and ¢ in @. But note that every such ¢
can be written uniquely in the form ¢ = a o f (= f o o) with a in Rp and 8
in Ry Thus the subgroup generated by the union of Rp and RQ is iso-
morphic to the direct product of groups Rp and Ry (Of course, each of Rp
and Ry is itself a subgroup of the Lorentz group L.)

Denote by K the group with just two elements, e (the identity) and & (so
ee = kk = e, ek = ke = k). We define a homomorphism g from the Lorentz
group L to K. For ¢ a Lorentz transformation, let p(p) be e if ¢ takes
future-directed timelike vectors to future-directed timelike vectors, and k if ¢
takes future-directed to past-directed. (Note that a Lorentz transformation
necessarily takes either all future-directed timelike vectors to future-directed,
or all to past-directed.) Thus, for ¢ the temporal reflection defined by ¢, p(y)
= k, while, for ¢ the spatial reflection defined by ¢, p(p) = e. Thus this
homomorphism p is in fact an epimorphism of groups. The kernel of p,
Ker(y), is a normal subgroup of L (the Lorentz transformations which do not
reverse ‘‘time sense’’). Since g is an epimorphism, there are precisely two
cosets of Ker() in L. Fix 7, the temporal reflection defined by ¢. Then every
element of the other coset (i.e., besides Ker(p) itself) can be written uniquely
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in the form 7o a, with a in Ker(p). Note, however, that there is no ‘“pre-
ferred element’ of this coset.

An analogous construction is available for spatial reflections. Denote by
X the subspace of the 256-dimensional vector space Lin(V,V,V,V;R) consisting
of € in this Lin(V,V,V,V;R) which ‘‘reverse sign under interchange of any two
vectors,” that is, which satisfy e(v,v",v"",v""") = -¢(v,v""",9"",v"), and
similarly for all other interchanges. This X is in fact a one-dimensional vector
space, for, fixing a basis v, v, v3, v4 for V, € in X is completely and uniquely
determined by the value of the number €(v,v,,v3,94). We define a homomor-
phism 4 from the Lorentz group L to the group G of all isomorphisms on X.
For ¢ a Lorentz transformation, associate with it the isomorphism on X which
sends € in X to the multilinear mapping €(p(v),p(v"),0(v""),o(v” " ")) from
VX VX VX VtoR. Next, note that, since X is one-dimensional, the only
isomorphisms on X are those which send z in X to az, with e a nonzero real
number. Hence we have a homomorphism é from G (the group of isomor-
phisms on X) to K, where § sends the isomorphism “z goes to az” to e if a is

positive, and to k if a is negative.
)

Thus we have L —7> G — K, homomorphisms of groups. Set v =807, a
homomorphism from the Lorentz group L to the group K (with just two ele-
ments). Clearly, if p is either a temporal or a spatial reflection, then v(p) =
k. For o the Lorentz transformation which sends v in V to —v, we have v(p)
= e. Intuitively, “v sends Lorentz transformation ¢ to e if neither a spatial
reflection nor a temporal reflection is involved, or if both a spatial reflection
and a temporal reflection are involved, and v sends ¢ to k otherwise.”

The subgroup L of L consisting of all Lorentz transformations ¢ such
that p(p) = e and v(p) = e is called the proper Lorentz (sub)group. Clearly,
L (since it is an intersection of two normal subgroups) is a normal subgroup of
L. Elements of L are ‘“‘those Lorentz transformations which reverse neither
spatial nor temporal sense.” There are precisely four cosets of L in L. (The
cosets can be thought of as “Lorentz transformations which reverse spatial
and not temporal sense,” “Lorentz transformations which reverse temporal
and not spatial sense,” ‘Lorentz transformations which reverse both,” and
‘“Lorentz transformations which reverse neither.”)

f
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Functors

The notion of a category can, as we have seen, help one organize one’s think-
ing in mathematics. There is a second, closely related notion—that of a fune-
tor. As is the case with categories, there is essentially only one use we shall
make of functors: to call them functors when they arise. (We have postponed
until this point the discussion of functors in order to accumulate first a few
examples.)

Let C and C’ be categories (so C consists of objects, morphisms, and a
composition rule, subject to associativity of composition and the existence of
identities, and similarly for C*). A covariant functor F from category C to
category C’ consists of two things—i) a rule which associates, with each
object A of category C, an object, written F(A), of category C’, and ii) a rule
which associates, with each morphism ¢ from object A to object B in category
C, a morphism, written F(p), from object F(A) to object F(B) in category
C’ —subject to the following two conditions:

[ ¥
1. Composition is preserved. For A — B — C a diagram in category C,
we have

F(y o o) =F(¥) o F(p) .
(Note that this is meaningful, for each side of the equation is a morphism, in
the category C’, from object F(A) to object F(C) of that category.)
2. Identities are preserved. For A any object in category C, we have

F(ig) = ip(a) -
(Note that this is meaningful, for each side is a morphism, in C’, from object
F(A) to object F(A) therein.) Thus a functor is a ‘“‘structure-preserving map-
ping from one category to another.”
As one might expect, the key to the definition is examples.
Ezample. Let C be the category of groups, and C° the category of sets.
For G a group (an object of category C), let F(G) be its underlying set (an

object of category C*). For G — H a homomorphism of groups (2 morphism

of category C), let F(G) — F(H) be the corresponding mapping from the set
G to the set H (a morphism of category C’). The first property above holds
by definition of composition of homomorphisms (compose the corresponding
mappings of sets). The second property above holds since the identity
homomorphism from a group to itself is just the identity mapping from the
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corresponding underlying set to itself. Thus we have a covariant functor from
the category of groups to the category of sets. (This functor ‘‘just ignores the
group structure.”)

Ezample. Let C be the category of vector spaces, and C’ the category
of abelian groups. For V a vector space, let F(V) be its underlying abelian

Fi
group. For V i W a linear mapping of vector spaces, let F(V) —f F(W) be
the corresponding homomorphism of abelian groups. (We have seen that this
is indeed a homomorphism in chapter 9.) This is a covariant functor from the
category of vector spaces to the category of abelian groups. (‘“Forget how to
multiply vectors by numbers, but do not forget how to add vectors.”)

In each case, the covariant functor “merely ignores some (or all) of the
structure which is available, so the functor is from a category to a category
whose structure is less rich.” Such functors are often called ‘‘forgetful func-
tors.” Similarly, there is the forgetful functor from the category of vector
spaces to the category of sets. The first construction of chapter 12 is of a for-
getful functor from the category of complex vector spaces to the category of
real vector spaces.

We have already encountered examples of more subtle functors.

Ezample. Let C be the category of sets, and C’ the category of groups.
For S a set, let F(S) be the free group on set S. (Thus this F associates an

7]
object in C with each object in C”.) Next, let $— S’ be a mapping of sets,
and consider the diagram of figure 45. Here, u is the mapping (part of the

S ——"(S5)
@] |+ ¢ 3®)

S ——3(5)

definition of a free group) from the set S to the underlying set of the free
group F(S5), and similarly for z°. By the definition of a free group, there is a
unique homomorphism ~ of groups which makes the diagram commute. In

7]
this way, with S— S° (morphism in category C), we associate

F(S) Fif) F(S’) (set F(¢) = ~; morphism in category C”). Properties 1 and 2
are easily checked. Thus we obtain a covariant functor from the category of
sets to the category of groups.

Ezample. Let C be the category of real vector spaces, and C’ the
category of complex vector spaces. For W a real vector space, let F(W) be

2
the complex vector space constructed in chapter 12. For V — W a linear
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]
mapping of real vector spaces, let V@V — W @ W be given by §(v,v") =

(p(v),0(v")). This mapping is in fact a linear mapping, F(V) F—-f F(W), of
the corresponding complex vector spaces. Properties 1 and 2 are immediate.
Hence we have a covariant functor from the category of real vector spaces to
the category of complex vector spaces.

One normally thinks of a functor, as in these last two examples, as being
a ‘“construction’” (or, in the case of a forgetful functor, as a “destruction”).
An intermediate example is the covariant functor from the category of abelian
groups to the category of groups which associates, with abelian group G, the
group G. (An abelian group is nonetheless a group.) ‘‘Take the free vector
space’’ is a covariant functor from the category of sets to the category of
vector spaces.

We now consider an example of something which is nearly, but not quite,
a covariant functor. Let C and C~ each be the category of (say, real) vector

spaces. For V a real vector space, let F(V) be the real vector space V* (the

dual of V| i.e., Lin (V;R)). Now let V—ﬁ W be a linear mapping of real vector
spaces. If we are going to obtain a covariant functor, we shall have to say
what F(p) is supposed to be: that is, we must specify a certain linear mapping
F(p) from V* (= F(V)) to W* (= F(W)). Unfortunately, there does not

seem to be any natural linear mapping of this type available. What is avail-
*

able is the adjoint of p. But W*i V* that is, the adjoint, although it is
indeed a linear mapping on the dual spaces, is not a candidate for F(p), for it
maps W* to V* rather than V* to W* Nonetheless, the adjoint does satisfy
a property analogous to property 1 for a functor, for (chapter 13) (p o 9)* =

¥* o0 p* This example suggests the following definition.

A contravariant functor F from category C to category C° consists of
two things—i) a rule which associates, with each object A of category C, an
object, written F(A), of category C’, and ii) a rule which associates, with
each morphism ¢ from object A to object B in category C, a morphism, writ-
ten F(p), from object F(B) to object F(A) in category C’—subject to the fol-
lowing two conditions:

P ¥
1. Composition is preserved. For A — B — C a diagram in category C,
we have }

F(Yop)=F(p)oF(y) .
2. Identities are preserved. For A any object in category C, we have
F(ig) = irga) -
Note that there are only two minor differences between this definition and

v F(e)
that of a covariant {unctor. First, from A — B, we obtain F(B) — F(A)
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F(p)
(rather than F(A) — F(B), as for a covariant functor). Second, property 1 is
F(Wop) = F(p) o F(¢) (rather than F(o p) = F(¢) o F(p), as for a
covariant functor). The second change is actually made necessary by the first.

4 ¥
Consider A — B — C'in category C. Then, for F a contravariant functor, we

Fi

have F(C) Fﬂ) F(B) &:) F(A). Thus F(p) o F() and F(¢ o o) are both mor-
phisms (in C”) from F(C) to F(A), while F(¢)) o F(p) is not even defined. It
is clear from the discussion above that the construction of taking the dual is a
contravariant functor (now using F(p) = ¢¥) from the category of real (resp.,
complex) vector spaces to the same category.

Ezample. Let C be the category of sets, and C’ the category of (say)
real vector spaces. For S any set, let F(S) be the vector space of all real-
valued functions on the set S. (See the first example in chapter 9.) For

S f» S’ a mapping of sets, let F(S") F—V:) F(S) be the linear mapping of vector
spaces given in the second example in chapter 9. This is a contravariant func-
tor from the category of sets to the category of real vector spaces.

Note, for example, that functors take isomorphisms to isomorphisms, for,

if A f» B is an isomorphism, so the top diagram of figure 46 commutes, then
so does the bottom diagram, where the solid arrowheads are to be used for
contravariant functors, and the regular arrowheads for covariant functors. In
general, functors do not take monomorphisms or epimorphisms to themselves
(although this often turns out to be the case for categories of interest).

A|/~
“ CA‘C@EBD ’

3(r)

s AV B ) v

°F(9)

Figure 46

It is sometimes convenient to adopt the following picture when thinking
about functors: imagine that there is some sort of ‘‘supercategory” whose
‘“objects’’ are ordinary categories and whose ‘“morphisms’’ are functors. This
picture, for example, suggests the following definition. Let C, C’, and C”*
be three categories, and let F be a functor from category C to category C”,
and G a functor from category C’ to category C’°. We define a new
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functor, written G o F, from category C to category C’". For A an object of
category C, let G o F(A) = G[F(4)] (i.e.,, F(4) i lS an object of category C°,

so G[F(A)] is an object of category C*). For A — B a morphism of category
C, let G o F(p) = G[F(p)]. Thus, if F were covariant, and G contravariant,

we would have F(A) —») F(B), and hence G o F(B) °F—>( G o F(A). That is,
in this case, G o F would be contravariant. Clearly, G o F is covariant if
both F and G are covariant, or if both are contravariant, while G o F is con-
travariant if one of F,G is covariant and the other contravariant.

Ezample. Let C be the category of sets, C° the category of vector
spaces, and C’” the category of vector spaces. Let F be the covariant functor
“take the free vector space’’ from C to C’. Let G be the contravariant func-

or “take the dual” from C’ to C”*. Then G o F is the contravariant func-
tor from the category of sets to the category of vector spaces given in the
example above.

This G o F is called the composition of functors F and G.

We conclude with a final example of how the notion of a functor can be
used as a tool to organize ideas. Fix a covariant functor F from category C
to category C’. Let A" be an object in category C’. A free objecton A’
(via F) consists of an object B in category C together with a morphism a”
from A’ to F(B) (in category C’) such that the following property is
satisfied: given any object C in category C together with morphism 3° from
A’ to F(C) (in category C’), there is a unique morphism ~ from B to C (in
category C) such that the left diagram of figure 47 commutes.

A —573(B)

B
\ l?(f) LB’
£ >50) C

Figure 47

Like all such definitions, this one sounds more complicated than it is
(perhaps because definitions are conventionally single sentences). Pictorially,
we have figure 48.

Ezample. Let C be the category of groups, C” the category of sets, and
F the forgetful functor. Let S be a set. A free group on S consists of a group
G, together with a mapping a’ from set S to set G, such that the following
property is satisfied: given any group H, together with mapping § from set S
to set H, there is a unique homomorphism 4 of groups such that the diagram
of figure 49 commutes. This will be recognized, on the one hand, as a special
case of the free object definition above and, on the other, as precisely our
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! Free objcr.T consists of /\

4

A — 3B > B

e— Sveh that given ony oy
\ l’f}(u) There \s o unigue \—//\ l
3 (C) Such that the c

diagram commutes.

Figure 48
(2
S —2 55t G Grovp G
\ l‘a(v) »’l
S T Groop H
3 (H)
Figure 49

earlier definition of a free group.

Of course, free objects may not exist given a covariant functor. The
definition is normally used for forgetful functors. Thus the definition of a free
vector space is just that of a free object via the forgetful functor from the
category of vector spaces to the category of sets. What is nice about the
above definition is that one can use it via functors which “are forgetful, but
not completely forgetful,” that is, for forgetful functors which are not all the
way to the category of sets. Thus one is able in a systematic way to ‘“‘expand
the structure of things which already have some structure, preserving all the

LERT]

old structure and ‘freeing the new.

Ezercise 105. Is composition of functors associative?

Ezercise 106. Define the identity functor from a category to that same
category. What do you suppose is meant by equivalent categories?

Ezercise 107. Associate with each vector space a basis for that vector space
(regarded as a set). Does this lead to a functor from the category of vector
spaces to the category of sets?



96 Chapter Seventeen

Ezercise 108. Compose the forgetful functor from the category of vector
spaces to the category of abelian groups with the forgetful functor from the
category of abelian groups to the category of sets. What is the result?

Ezercise 109. State and prove: free objects are unique.

Ezercise 110. Let F be a covariant functor from category C to category C’.
Suppose that every object A” of C’ possesses a free object via F. Construct
the corresponding “free object” functor from the category C’ to category C,
and prove that it is indeed a (covariant) functor.

Ezercise 111. Does there exist some notion of ‘‘free objects” but via contra-
variant rather than covariant functors?

Ezercise 112. Investigate the existence of free objects via various covariant
functors which are not forgetful (e.g., via the functor from the category of sets
to the category of groups: ‘‘free group”). Are there any interesting such
examples for which free objects exist?

Ezercise 113. Try (and fail) to prove that every covariant functor takes a
monomorphism to a monomorphism.

Erercise 114. Is there any sense in which functors take direct sums to direct
sums, or direct products to direct products?

Ezercise 115. For S a set, let F(S) be the collection of all subsets of S. For

Fi
S—v: S’ a mapping of sets, let F(S") —(f) F(S) be the mapping which sends
subset A” of S° to the subset of S consisting of all s in S with ¢(s) in A”.
Prove that this is a contravariant functor from the category of sets to the
category of sets.
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The Category of Associative Algebras

We continue, in our study of algebraic categories, in the direction of ‘‘increas-
ing structure.”

A real associative algebra consists of two things—i) a real vector space V,
and ii) a rule that assigns, given vectors v and v’, an element (written vv’
and called the product of v and v’) of V—subject to the following two condi-
tions:

1. The product is linear in each factor. For v, v*, and v’ vectors, and a
a number, we have

’

(v+ av’ ) = v + av’'v’

’

and

v’ + av”’) = v’ + avw”’

’

2. The product is associative. For v, v*, and v** vectors, we have
(v0")v” = vfv'v"") .
Replacing ‘‘real’” everywhere above by “‘complex,” we obtain the definition of
a complex associative algebra. Note that the first condition above is precisely
the statement that this ‘‘product structure” is an element of Lin(V,V;V).
This same condition implies that 0v = v0 = 0, where ‘0" is the zero element
of the vector space. (It follows immediately that the only associative algebra
which is also a group under the product operation is that based on a zero-
dimensional vector space, for 0v = 00, together with the assumption that the
product operation satisfies the conditions for a group, implies v = 0.) Note

Ll

that three operations are actually available in an associative algebra: sum of
vectors, product of vectors, and product of vector with number. Finally, note
that it is not necessarily true in an associative algebra that vv’ = v’ .

Ezample. Let S be any set, and denote by V the vector space of all real-
valued functions on the set S (so addition of vectors is addition of functions;
multiplication of vectors by real numbers is multiplication of functions by real
numbers). For v and v" in V (so v and v” are functions on S), let vv” be the
product function (i.e., the function on S whose value at s in Sis the number
v(8)v’(8), product of numbers). Properties 1 and 2 are immediate: we have a
real associative algebra.

Ezample. Let G be any group. Denote by V the free vector space on the
set G, and let a denote the corresponding mapping from set G to set V. Thus
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every element of Vis of the form ¢;a(g;) + - - - + @,a(g,), where q;, . . . ,q,
are numbers, and g¢;, ...,g, are elements of the group G. Consider that

linear product in V which, for elements of V of the form a(g), is a(g)a(g’) =

a(gg’) (g and ¢” in G). (Knowledge of the action of the product on this basis

for V, together with linearity, determines the product completely. Thus, e.g.,

(a10(g)) + ax0(go))(azalgs) + a4(g4)) = (0101)30(919;4 + (aa)a(g194) +

(agaz)a(gags) + (aga4)a(gagy).) Associativity of the product is immediate from

associativity in the group G. Thus we obtain an associative algebra, called

the group algebra of G.

Ezample. Let W be any vector space, and let V denote the vector space
Lin (W;W). We introduce a product in V: for ¢ and 9 in V (so each is a
linear mapping from W to W), let the ‘‘product” be ¥ o ©, the composition of
linear mappings. Then property 1 is immediate from the definition of linear
combinations of elements of Lin( W; W), while property 2 is the statement that
composition of mappings is associative. Thus Lin( W; W) has the structure of
an associative algebra.

Now let V and W both be associative algebras (both real or both com-
plex). A mapping ¢ from set V to set Wis called a homomorphism (of associ-
ative algebras) if it is “‘structure preserving,” that is, if ¢ is a linear mapping
of vector spaces and if, furthermore, p(vv’) = p(v)p(v”) for any v and v’ in
V. Note that the composition of two homomorphisms is a homomorphism.
Let the objects be real associative algebras, the morphisms be homomor-
phisms of real associative algebras, and the composition be composition of
ho}nomorphisms. We obtain the category of real assoctative algebras and,
similarly, the category of complex associative algebras.

We have available now a way to get a quick picture of what structure is
involved in a new category: look for the forgetful functors. From the category
of associative algebras, there are forgetful functors to the category of vector
spaces (‘‘forget how to take products of vectors”), to the category of abelian
groups (‘‘forget both how to take products of vectors and how to take pro-
ducts of vectors by numbers’’), and to the category of sets (‘“‘forget every-
thing”’). There is also a forgetful functor from the category of complex associ-
ative algebras to the category of real associative algebras (‘‘forget how to mul-
tiply vectors by the complex number ‘i"").

Perhaps the most useful free construction in this category is that via the
forgetful functor from the category of associative algebras to the category of .
vector spaces. We now introduce this construction. Let W be a vector space.
A free associative algebra on W (via the forgetful functor) consists of an asso-
ciative algebra V, together with a linear mapping a from vector space W to
the underlying vector space of V, such that the following property is satisfied:
given any associative algebra U, together with linear mapping # from vector

-
space W to vector space U, there is a unique homomorphism V — U of associ-
ative algebras such that the diagram of figure 50 commutes. What we
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b

v

Figure 50

propose to do is to construct explicitly this associative algebra V.

Now W'is just a vector space: we do not know how to take products of
vectors therein. We wish to ‘‘free a product structure on W, preserving its
intrinsic vector-space structure.” Let w and w” be vectors in W. The ‘‘pro-
duct” (that we wish to define) of w and w” could hardly be an element again
of W (for that is not the way free constructions work). What vector space,
then, should it be an element of? A perfect candidate is available: W @ W,
the tensor product. Now, for the ‘‘product” of w and w’, we can choose the
element w @ w’ of W ® W. The problem now is that this ‘“‘product’ takes
us out of our original vector space W. That is, we have gained a product
structure (within W) but lost our vector-space structure, for we do not know
how, for example, to add an element w of W to an element w* @ w”” of W ®
W. To ‘“‘restore a vector-space structure,” we take a direct sum; that is, we
consider W @ (W @ W). Then w in W can be represented as the element
(w,0) of WD (WQ® W), while w” @ w”* in W ® W can be represented as
the element (0,w” ® w’’). But now we can add these elements (in W & (W
® W)), to obtain the element (w,w” @ w’’) of this direct sum.

Thus we decide to consider W @ (W ® W). This is a vector space.
Furthermore, we take, for the product of elements (w,0) and (w’,0) of this
vector space, the element (0,w ® w’) of this vector space. Unfortunately, we
do not yet have an associative algebra, for we do not know how to take the
‘‘product” of any two elements of this W @ (W @ W), for example, of the
two elements (w,0) and (0,w” @ w’"), or of the two elements (0,w ® w") and
(0,w” ® w’”"). In what vector space would, for example, the ‘‘product of
(w,0) and (0,w” @ w’")" like to be? Perhaps the best vector space would be
W@ W® W, so the product could then be w @ w” & w’’ therein. Simi-
larly, the “product” of (0,w @ w’) and (0,w”” ® w” " ") would like to be w ®
w @uw”’  Quw ' in WO WX WQ® W. To now ‘‘restore a vector-space
structure,” we again use the direct sum; that is, we consider W@ (W ® W) &
(W W W (W W® WQ® W). Then, for example, the product of
(1,0,0,0) and (0,w” ® w’",0,0) in this vector space is to be the element (0,0w
® w @ w”,0). We still, however, do not have an associative algebra, for
some products (e.g., of (0,0,w @ w” ® w’’,0) and (O,w"" " ® w”""",0,0))
now want to be in ‘“still larger tensor products’ (in this case,in W@ W® W
® W ® W). What is needed (to get an associative algebra) is an infinite
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direct sum of tensor products. That is, we must consider the vector space W

BWROWO (W WO W)@ - - (Recall that, for W), W,, - - - vector
spaces, W, @ W, @ - - - is the vector space of all (wy,wp, w3, - - - ) with w; in
W;(i= 1,2, - - - ), and with all but a finite number of the w; zero.)

The discussion above, of course, is merely intended to motivate the fol-
lowing construction. Let W be a vector space, and let V be the vector space
V=W (WRI WS (W W@ W@ - We define a product in this
V. For (0,...,0,wy @ -+ @ w,,0---)and (0,...,0,0," @ --- @
w,”,0,-++)in V(so wy, ..., wyw",...,w," are all in W), let their pro-
duct be (0,... 0,0, ® - Q@ w, @ w,’ @ - w,”,0,--+)in V.
Extend this product to all of V by linearity. Then this V becomes an associa-
tive algebra. Now let a be the following linear mapping from vector space W
to vector space V: for win W, let a(w) be the element (,0,0, - - - ) of V. We
claim that this (V,a) is in fact a free associative algebra on W. Indeed, let U

be any associative algebra, and W — U a linear mapping of vector spaces.

,,
We must find, and show the uniqueness of, a homomorphism V — U of associ-
ative algebras which makes the diagram of figure 50 commute. For any ele-

ment of V of the form (w,0,0, - - - ) (i.e., of the form a(w)), we must choose
Aw,0, - - - ) = B(w) in order that the diagram commute. But, in order that ~
be a homomorphism, we must have AO0,w &® w0, ---) =

Nw0, -~ Yw",0, - -+ )] = w0, - (w0, ) = f(w)ph(w’). Simi-
larly, we must have 4(0,0,w @ w* @ w™,0, - ) = Bw)B(w’)B(w""), etc.
But every element of Vis a linear combination of elements of this form (i.e.,
of elements with only one nonzero entry, and that a tensor product of ele-
ments of W). Hence #, if it is to be a homomorphism (and, in particular, a
linear mapping) is completely and uniquely determined by its action on these
elements. Thus (V,a) is indeed a free associative algebra.

The construction above has the characteristic feature of free construc-
tions: it uses ‘‘brute force” to make available the operations desired. One
then ‘“expands the size of what one has, minimally, to get the appropriate
structure.”” The result is always a free object because, in this example, ‘“‘the
action of 4 on elements of V which come directly from W (i.e., elements of the
form (w,0, - - - )) is determined by commutativity of the diagram, while the
action on other elements of V is determined (since every element of V can be
obtained, using the operations in V, from elements which come directly from
W) by the requirement that 4 be a homomorphism.”

Ezample. Let W be a one-dimensional vector space: let w in W be a basis
for W. Then w @ wis a basisfor W® W, w® w ® wis a basis for W® W
® W, ete. (Each of W® W, etc., is one-dimensional.) Then the general ele-
ment of V is (quwaw @ w,...,qw @ --- @ w00, --), where
ay, . . . ,a, are numbers. It is convenient to denote this element not as above,
but rather as follows: a,w + au? + - - - + a,w™ (This is simply a change to
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a more suggestive notation.) Thus V, as a vector space, is just “‘the vector
space of all polynomials in the ‘variable w’ having no ‘constant term.”” Note,
furthermore, that the product structure in V'is just the usual rule for multi-
plication of polynomials. Thus the free associative algebra on a one-
dimensional vector space is the ‘‘associative algebra of polynomials in one
variable, having no constant term.” The statement that this Vis a free asso-
ciative algebra becomes, in the present example, the following: ‘‘given an asso-
ciative algebra U, if you know where in U w is to be sent, then you also know
where in U every polynomial in w must be sent, provided you require that the
resulting mapping from the algebra V of polynomials to U be a homomor-
phism of associative algebras.”

Fix an associative algebra V. A subalgebra of V consists of a nonempty
subset W of V such that i) for any w and w” in the subset W, and any
number ¢, w + aw’ is also in W, and ii) for any w and w’ in W, ww’ is also
in W. Thus a subalgebra is a subset “in which one remains under all the
operations available, if applied to elements of the subset.” (This definition is,
of course, a special case of that of a subobject.) Note that a subalgebra of V
is itself an associative algebra, with the operations of V. Of course, a subalge-
bra W of associative algebra V is, as a vector space, a subspace of vector
space V.

Fix an associative algebra V. An ideal of V consists of a nonempty sub-
set Wof Vsuch that i) for any w and w” in the subset W, and any number a,
w4 aw’ is also in W, and ii) for any win Wand vin V, vw and wv are both
in W. Note that an ideal is not only a subalgebra; it is more: let W be a sub-
space of vector space V—then, in order that W be a subalgebra, wv (win W)
must also be in W provided v is in W, while, in order that W be an ideal, wv
and vw must be in Wfor all vin V.

Ezample. Let V be the real associative algebra of all real-valued func-
tions on an infinite set S. Denote by W the collection of all bounded func-
tions. Then W is a subalgebra of V (for linear combinations and products of
bounded functions are bounded), but W is not an ideal of V (for the product
of a bounded function and an arbitrary function need not be bounded). Let
S” be a subset of S, and denote by U the collection of all functions on §
which vanish on the subset S°. Then U is an ideal of V (for not only do
linear combinations and products of functions which vanish on S’ vanish on
S’, but, furthermore, the product of a function which vanishes on S° with an
arbitrary function on Sis a function which vanishes on S°).

Next note that any intersection of subalgebras of an associative algebra is
a subalgebra and that any intersection of ideals of an associative algebra is an
ideal. Let K be any subset of associative algebra V. The intersection of all
subalgebras containing K is called the subalgebra generated by K; the inter-
section of all ideals containing K is called the ideal generated by K. Of
course, the subalgebra generated by K is the collection of all linear
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combinations (in V) of products of elements of K, while the ideal generated by
K is the collection of all linear combinations (in V) of products of elements of
V, where each product contains at least one factor from the subset K.

Ezample. Let V be the real associative algebra of all real-valued func-
tions on set S. Let K be the subset of V consisting of all functions whose
values are always between the numbers 4 and 5. Then the subalgebra gen-
erated by K is the subalgebra of bounded functions, while the ideal generated
by Kis Vitself.

We now describe the sense in which the following statement is true:
“Subalgebras are to subgroups as ideals are to normal subgroups.” Fix an
associative algebra V| and let W be a subalgebra of V. Then, in particular, W
is a subspace of vector space V: hence we may take the quotient space, V/W.
For W a just plain subalgebra, that is all we can get—a just plain vector
space V/W. Now suppose that this W is not only a subalgebra, but actually
an ideal. Consider two elements of V/W, that is, two cosets of W in vector
space V: v + Wand v° + W. We wish to define the product of these cosets
to be the coset vv° + W. We must, however, check that this is well defined.
Our cosets could as well have been represented as (v + w) + Wand (v" + w’)
+ W, with w and w” in the subspace W. Had we written them this way, we
would have for the product (v + w)(v" + w') + W= vv’ + vw’ + wv” +
ww” + W. But, since Wis now assumed to be an ideal, vw’, wv’, and ww’
are all in W. Hence the above becomes (v+ w)(v' + w') + W= v’ + W.
That is, our product is indeed independent of how the cosets are represented.
Thus, on the vector space V/W, we have defined a product operation, an
operation which is easily checked to satisfy the two conditions for an associa-
tive algebra. That is, V/W, where Wis an ideal in V, has the structure of an
associative algebra. This V/ W is called the quotient algebra of the associative
algebra V by the ideal W.

Ezample. Let Sbe a set, V the associative algebra of functions on S, and
W the ideal consisting of functions which vanish on some fixed subset S” of S.
Then V/W (“functions on S modulo addition of a function which vanishes on
S”") is isomorphic (as an associative algebra) to the associative algebra of
functions on the set S°. (“It does not make any difference what values a
function takes off S’, for one can always add to any function, while remaining

[ART}

within the same coset of W, any function which vanishes on S°.”)

7]

Ezercise 116. Let V— W be a homomorphism of associative algebras.

Define Im(p), and show that it is a subalgebra of W ; define Ker(y), and show
a

that it is an ideal of V. Give the homomorphisms in V — V/Ker(p) — Im(p)

k'l
- W.
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Exercise 117. Prove that every associative algebra is a quotient algebra of a
free associative algebra.

Ezercise 118. A semigroup is a set on which there is given an associative pro-
duct. Introduce the category of semigroups, and a forgetful functor from the
category of associative algebras to the category of semigroups. Prove that a
group algebra is a free object via this forgetful functor.

Ezercise 119. Find all associative algebras based on a two-dimensional vector
space. (Meaning: Find a collection of associative algebras on two-dimensional
vector spaces such that no two are isomorphic and such that any associative
algebra on a two-dimensional vector space is isomorphic to one in the collec-
tion.)

Ezercise 120. Find the direct product and direct sum of two associative alge-
bras (both of which exist).

Ezercise 121. Let W be a subalgebra of associative algebra V. Define a com-
plementary subalgebra. Does one always exist? Does one always exist if W is
an ideal?

Ezercise 122. Find all finite-dimensional free associative algebras.

Ezercise 123. A unit of an associative algebra V' is an element e of V such
that ev = ve = v for every vin V. Find an example of an associative algebra
which has no unit. State and prove: every associative algebra is a subalgebra
of a “minimal” associative algebra with unit.

Ezercise 124. Let W be a vector space, and let V be the free associative alge-

bra on W. Let W be the associative algebra of functions on the set W* Con-
sider the linear mapping from vector space V to vector space W which sends,

for example, (0,0,w ® w” ® w’’,0, - - ) in V to the function on W* whose

value at ¢ (in WY is p(w)p(w’ )p(w’"). Show that this is a homomorphism
of associative algebras. What is its image and kernel?
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The Category of Lie Algebras

A real (resp., complez) Lie algebra consists of two things—i) a real (resp.,
complex) vector space V, and ii) a rule which assigns, given vectors v and v”,
an element (written [v,0°], and called the bracket of v and v") of V—subject
to the following three conditions:

1. The bracket is linear in each factor. For v, v*, and v** vectors, and a
a number, we have

[v+ av’ 07 = [v,v"] + a[v",v”’]
and
[v,0" + av”’] = [v,v"] + a[v,v”"] .
2. The bracket is antisymmetric. For v and v° any vectors, we have
[vv'] = ~[v’,4] .

3. The Jacobi relation is satisfied. For any vectors v, v", and v"", we
have

[wfo" 0] + [v"[v" ] + [0, [0,0 ] =0 .

Note that the three terms in the Jacobi relation are obtained by cyclic
permutations of v, v’, and v”. It is immediate from antisymmetry of the
bracket that [v,9] = 0 for any vector v. Setting any two of v, v*, v** equal to
each other, the Jacobi relation becomes an identity. Note also that a Lie
algebra does not differ all that much from an associative algebra. More gen-
erally, a vector space V, together with an element of Lin(V,V;V), is called an
algebra. Both Lie algebras and associative algebras are special cases of alge-
bra in which the particular element of Lin(V,V;V) satisfies certain additional
conditions. Thus one thinks of conditions 2 and 3 above as analogous to the
associativity condition for an associative algebra.

Ezample. Let V be any vector space, and let ¥ be any fixed element of
V* For v and v* in V, set [v,9°] = k(v)v’ - k(v")v. That this bracket
satisfies conditions 1 and 2 above is immediate. We check the third condi
tion: [vv", 0] = [vk(v’ )0 - k(v )] = k(@*)(&(v” - k(v”)d)
- k(v ) k() - k(v )r) = k(v)(v )" - k(v)k(v)v’. Similarly for
[v',[v",]] and [v”",[v,v"]]. Adding these three expressions, one obtains the
Jacobi relation. Hence we have a Lie algebra.

Let V and W be Lie algebras (both real or both complex). A mapping ¢
from set V to set Wis called a homomorphism (of Lie algebras) if ¢ is a linear
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mapping of vector spaces and if, furthermore, p([v,v"]) = [p(v),o(v")] for any
v and v~ in V. Note that the composition of two homomorphisms is a
homomorphism. Letting the objects be real (resp., complex) Lie algebras, the
morphisms homomorphisms of real (resp., complex) Lie algebras, and the com-
position composition of homomorphisms, one obtains the category of real
(resp., complex) Lie algebras. As was the case with associative algebras, we
have forgetful functors from the category of Lie algebras to the category of
vector spaces, the category of abelian groups, and the category of sets.

The discussion of subalgebras and ideals for associative algebras can be
repeated, without change, for Lie algebras. A subalgebra of Lie algebra V con-
sists of a nonempty subset Wof V such that i) for any w and w” in the subset
W, and any number @, w + aw” is also in W, and ii) for any wand w” in W,
[waw’] is also in W. An ideal of Lie algebra V consists of a nonempty subset
Wof Vsuch that i) for any w and w” in the subset W, and any number a, w
+ aw’ is also in W, and ii) for any win Wand v in V, [w,v] (and hence also
[v,w]) is in W. Any intersection of subalgebras (of a Lie algebra) is a subalge-
bra; any intersection of ideals is an ideal. Let V be a Lie algebra, and K any
subset of V. The intersection of all subalgebras (resp., ideals) containing K is
called the subalgebra (resp., ideal) generated by K. Let W be a fixed subalge-
bra of Lie algebra V. Then V/ W (quotient space of vector spaces) is a vector
space. Suppose now that Wis in fact an ideal of V. Then the bracket opera-
tion [v+ W,v” + W] = [v,v’] + W on the vector space V/ W makes this vec-
tor space into a Lie algebra called the quotient algebra of the Lie algebra V by
the ideal W.

Ezample. In the example just above, let W be the subset of Lie algebra
V consisting of all elements v of V with k(v) = 0. Then W is certainly a sub-
space of vector space V. For w in W and v in V, we have [w] = x(w)v
- k(v)w = —k(v)w. Thus Wis an ideal of V. The quotient algebra, V/ W, is
one-dimensional (as a vector space). Since, given any two elements of the
quotient algebra, one is a numerical multiple of the other, the bracket of these
two elements (in the Lie algebra V/W) must be zero. Thus, in the quotient
algebra V/ W, the bracket of any two elements vanishes.

There is an important functor from the category of associative algebras
to the category of Lie algebras. Let V be any associative algebra (with pro-
duct written vv’). Given any two vectors, v and v”, define the left side of

[v,0’] = w0’ - v’

by the right side. Thus we have defined a “bracket operation” on the associa-
tive algebra V. This bracket operation is clearly linear in each factor (because

the product in the associative algebra V'is). Furthermore, [v,v"] = -[v’,v].
We claim, finally, that this bracket operation satisfies the Jacobi relation.
Indeed, we have [v,[v",v”]] = [v,0" v - v v’ ] = vw'v” - v -v v v

s o

+ v”v’v. (No parentheses are“needed in these products, since V is an
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.

associative algebra.) Evaluating [v’,[v"",v]] and [v"",[v,v"]] similarly, and
adding, one easily checks (all the terms cancel) that the Jacobi relation is
satisfied. Thus the vector space V, with this bracket operation, is a Lie alge-
bra. Now, for V any associative algebra, let F(V) be this Lie algebra just con-

structed. Next, note that, for V—f» W a homomorphism of associative alge-
bras, the mapping ¢ from set V to set Wis also a homomorphism (which we
can write F(yp)) from Lie algebra F(V) to Lie algebra F(W). The two proper-
ties for a functor are immediate. Thus we have obtained a covariant functor
from the category of associative algebras to the category of Lie algebras.

We shall regard the functor above as forgetful. The reason is this. Let V
be an associative algebra. Then, for v and v" in V, we have the identity vv’
= (1/2)(vv” + v’ v) + (1/2)(vv" - v"v). The first term on the right is a pro-
duct in the vector space V which is linear in each factor, and which remains
the same under interchange of v and v”. The second term (which we wrote as
(1/2)[v,v"] above) is also a product in the vector space V which is linear in
each factor, but which reverses sign under interchange of v and v". Thus we
‘“‘decompose the product in the associative algebra V into two products, one
symmetric and one antisymmetric.”” The covariant functor F ‘‘forgets
the symmetric part of the (associative) product of V.”” In this sense, F is a
forgetful functor.

The following situation arises occasionally. One has a certain Lie algebra
V. One wishes to obtain the free associative algebra on V via the forgetful
functor above. We now carry out this construction of a free object. The
result is conventionally called the universal enveloping algebra of V (rather
than “‘the free associative algebra on Lie algebra V via the forgetful functor
from associative to Lie algebras™). A universal enveloping algebra of Lie alge-
bra Vis an associative algebra W, together with a linear mapping ¢ from vec-
tor space V to vector space W satisfying ¢([v,v"]) = @(v)p(v") - o(v")e(v),
such that the following condition is satisfied: given any associative algebra U,
together with a linear mapping % from vector space V to vector space U satis-
fying ¢¥([v,v"]) = ¥(v)¥(v’) - ¥(v")¥(v), there is a unique homomorphism

Lie
@

VvV —
v Ass_ocjaf ive
/\r\
Vit
Figure 51

¢
W — U of associative algebras such that the diagram of figure 51 commutes.
Note that this definition is a special case of the general definition of a free
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object. (Let V be a Lie algebra, and W an associative algebra. Then a
“homomorphism from Lie algebra V to Lie algebra F(W), where F is the for-
getful functor,” is precisely the same thing as a “linear mapping ¢ from vec-
tor space V to vector space W satisfying o([v,v"]) = @(v)p(v’) - o(v”)e(v).”
The former, which appears in the general definition of a free object, is
replaced by the latter in the definition above of a universal enveloping
algebra.)

Fix once and for all a Lie algebra V. We construct its universal envelop-
ing algebra. The first step is to consider the free associative algebra on vector
space V, K=V O (VR V)OS (VO V®V)D --- Let a be the linear
mapping from vector space V to associative algebra K which sends v in V to
(#,0,0, - - - ) in K. Thus the first step is to “ignore completely the Lie algebra
structure of V, but not its vector-space structure, and ‘free’ on this vector
space an associative product.” Of course, this (K,a) is not even a good candi-
date for the universal enveloping algebra of V, for we do not have o([v,v’]) =
a(v)e(v’) - a(v’)a(v). In fact, for v and v" in V| a([v,v’]) is the element
([v,v°],0, - - - ) of K, while a(v)a(v’) - a(v’)a(v) is the element (0,9 @
v' - v @ 0,0, ) of K:these are not even close to being equal. To ‘‘make
them be equal,” we proceed as follows. Denote by I the ideal of associative
algebra K generated by elements of K of the form a([v,v’]) - a(v)e(v’) +
a(v’)a(v), with v and v in V. (Thus the ideal I represents the ‘‘elements of
K we wish to make equal to zero.”) Let Wbe the quotient algebra, W= K/I,

and let # be the homomorphism K f» W (of associative algebras) which sends
kin K to the coset k + I of I'in K. Finally, set ¢ = f o a, so ¢ is a linear
mapping from vector space V to vector space W. We now claim: ¢([v,v"]) =
o()p(v’) - p(v')p(v). Indeed, for v and v° in V, we have p([v,v"])
= p(0)e(v) + (v () = Blal[v,0°]) - av)a(v’) + a(v”)a(v)]. But this last
quantity in square brackets is in the ideal I of K (that is the way we defined
I), whence B of that quantity is zero. Thus we have shown o([v,v’]) =
e(v)p(v') — p(v")p(v). (This is not very surprising. One generates an ideal
by “what one wants to make be zero,” takes a quotient, and ‘‘what one wants
to make be zero indeed becomes zero."")

We began with a Lie algebra V. We have now obtained a certain associ-
ative algebra W and a mapping ¢ from vector space V to vector space W
satisfying @((v,v"]) = p(v)p(v") — (v )p(v). We claim that this (W) is a
universal enveloping algebra of V. Indeed, let U be an associative algebra,

and V — U a linear mapping of vector spaces satisfying ¢([v,v"]) = ¥(v)y(v")
- ¢(v")¥(v). Then, since K is the free associative algebra on vector space V,

there is a unique homomorphism K —”v U such that the diagram of figure 52
commutes. Given any element, for example, a([v,v’]) - a(v)a(v’) +
a(v’)a(v), of the ideal I of K, p of this element is zero, for pla([v,v"])

a(via(v’') + a(v’)a(v)] = P([v,v4]) - Y(V)Y(v") + ¥(v")Y(v) = 0, where, in
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V—20k—F 5w (= k/D)

Figure 52

the first step, we have used commutativity of the diagram and, in the second,
we have \,\sed the property above of 3. In other words, p takes entire cosets
of I'in K to single elements of U. Hence there is a homomorphism 7 of associ-
ative algebras such that the diagram of figure 53 commutes. Noting that this
~ is unique, we have that (W,p) is indeed the universal enveloping algebra of
the Lie algebra V, as claimed. (Note that the structure of this construction is
almost identical to that of the tensor product of vector spaces.)

v—2 ok —F
Xlﬁ/
U

Figure 53

W (= K/I)

Example. Let V be the two-dimensional Lie algebra in which [y,v"] = 0
for every v and v” in V. Let z and y (elements of V) be a basis for V. Then z
Qr,rzQy y®zx y@ yis a basis for V@ V, etc. Thus a typical element
of Kis(z+2y,2Q@2-2Q 43202z y+y®@®z® y 0, ). We agree
to write this element (for example) in the following simplified form: z + 2y +
rz - 2y + 3zry + yry. Thus K is the associative algebra of ‘‘polynomials in
the variables z and y having no constant term, where the order of the z and y
in each term of the polynomial is relevant.” Since all brackets in V vanish,
any two such elements of K which ‘‘differ only in the order of the z and y in
each term’ lie in the same coset of I Thus, for example, the above element
of K is in the same coset of I as the element z + 2y + zz - yz + 3zyr + yyz of
K, for the difference (in K) between these two elements can be written
~(zy - yx) + 32({xy - yr) + y(ay - yz). Since “zy - yr” is in the ideal I, so,
must be this expression. Thus ‘‘cosets ignore order,” whence the quotient
algebra, W = K/I, is the associative algebra of “‘all polynomials in variables =
and y having no constant term, and where the order of the z and y in each
term is irrelevant.” This W is the universal enveloping algebra of the Lie
algebra V.

We conclude our discussion of Lie algebras with a definition. Let V be a
Lie algebra, and W its universal enveloping algebra. Denote by C the subset



The Category of Lie Algebras 109

of W consisting of all win W with ww’ — w”w =0 for all w" in W. (A simi-
lar C could, of course, be defined for any associative algebra W.) Clearly,
linear combinations and products of elements of C are in C' hence C is a
subalgebra of W (not in general an ideal). This C is called the Casimir
subalgebra (of the universal enveloping algebra of the Lie algebra V). This
Casimir subalgebra, as we shall see, plays an important role in the theory of
representations.

Ezample. In the example above, Casimir subalgebra of the universal
enveloping algebra of Lie algebra V is the entire universal enveloping algebra
(since products in W commute).

Ezxercise 125. Find all Lie algebras whose underlying vector space is two-
dimensional.

Ezercise 126. Suppose that, in the definition of a Lie algebra, one had
changed one of the signs in the Jacobi relation. Prove from this ‘“modified
Jacobi relation’ that [v,[v",v""]] = 0 for any v, v", v”

Exercise 127. Construct direct sums and direct products of Lie algebras.

Exercise 128. Is it true that, given any Lie algebra V, there exists an associa-
tive algebra W, together with an isomorphism from Lie algebra F(W) to Lie
algebra V, where F is the forgetful functor?

Exercise 129. Define the kernel and image of a homomorphism of Lie alge-
bras, and verify that the former is an ideal and the latter a subalgebra.

Exercise 130. Let V be any vector space, and let K be the vector space
Lin(V;V) @ V. Introducing, on this K, the bracket [(p,v),(p",v")] =
(pop” —p  op,p(v) - p'(v)), verify that K becomes a Lie algebra.
(Check that the product (p,v)(p",v") = (po ¢ ,p(v)) does not, however,
make K an associative algebra.) Next, show that the subspace of K consisting
of elements of the form (,0) is a subalgebra and that the subspace consisting
of elements of the form (0,v) is an ideal. Find, for the latter, the quotient
algebra.

Ezercise 131. Find an example of an associative algebra which is not the
universal enveloping algebra of any Lie algebra.

Ezercise 132. Find associative algebras V and V’ which are not isomorphic,
but which are such that F(V) and F(V’) are isomorphic, where F is the for-
getful functor to the category of Lie algebras.

Ezercise 133. Let V be a Lie algebra, W its universal enveloping algebra,
and F(W) the corresponding Lie algebra via the forgetful functor. Find a

v
natural homomorphism V — F(1%) of Lie algebras. Prove that this ¢ is a
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monomorphism. Find a necessary and sufficient condition (on V) that it be an
isomorphism.

Ezercise 134. Let V be a two-dimensional vector space, and let z and y be
two elements of V that form a basis. Introduce, on V, the bracket
laz + by,cz + dy] = (ad - be)z. Prove that V becomes a Lie algebra. Find its
universal enveloping algebra and Casimir subalgebra.
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Example: The Algebra of Observables

We have some physical system whose properties we wish to study. We adopt
the point of view that the description of this system is to be carried out by
means of certain observations on the system. We wish to obtain a mathemat-
ical formalism in terms of which these observations can be organized.

Let V be a two-dimensional, complex vector space, and let P and @ be
two elements of V which form a basis. Consider the associative algebra O =
COVOR(VO V)B(VROV® V) -, where C denotes the vector
space of complex numbers. (That is, except for the inclusion of C, this O is
the free associative algebra on the vector space V.) Thus an element of O is
“a polynomial in P and @, in which the order ot the P and @ in each term is
relevant,” for example, 471 + 2P - {QPQQ + PPQQP.

This setup is intended to represent the following physical situation. We
think of @ as representing a certain ‘‘observation of configuration’ that can
be made on the system, and of P as an ‘“‘observation of momentum.” We
imagine, furthermore, that we know, given two observations which can be
made on our system, how to construct physically a new observation which can
be regarded as ‘‘a linear combination of the two observations” and another
which can be regarded as “the product of the two observations.” (We can
imagine such a thing if we like. I do not know, however, how actually to give
a physical prescription for so combining actual physical measuring instru-
ments to obtain, in each case, the new measuring instrument. In other words,
that the set of observables on a physical system seems to have the structure
of an associative algebra is apparently a rather subtle feature of our descrip-
tion of physical systems.) Thus we form an associative algebra out of the
basic elements, P and @, an algebra whose elements are to represent ‘‘observ-
ables of the physical system.” (In order to simplify this discussion, we have
suppressed one feature, which should, for correctness, be noted. Denote by
‘%" the mapping from O to O satisfying the following properties: i) for A and
Bin O, and a a complex number, (A + aB)* = A* + aB” ii) for A and B in
O, (AB)* = B*A* and iii) Q* = @ and P* = P. Note that these properties
define the mapping “*'" completely and uniquely, e.g., (4¢ + 2P - iQPQQ +
PPQQP)* = —4i + 2P + iQQPQ + PQQPP. In fact, the observables are
only those elements A of O satisfying A* = A.)

. We next note that there are, in fact, some additional physical things
about the space of observables that we have not yet incorporated into O. Let
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us suppose, first, that our system is subject to the laws of classical mechanics.
But in classical mechanics, ‘‘observations can be made on a physical system in
such a way that the disturbance of the system by the observation is negligi-
ble.” In other words, the order in which observations (and, in particular, our
fundamental observations, P and @) are made on the system, in classical
mechanics, is irrelevant. Thus, if our system is to be classically described, we
would expect to have PQ = QP. Suppose, on the other hand, that our sys-
tem is subject to the laws of quantum mechanics. Then ‘‘an observation has
a non-negligible effect on the system observed,” a fact which is to be reflected,
within the formalism of quantum mechanics, by the canonical commutation
relation, PQ — QP = 1 /i, on the fundamental observables, where i is a cer-
tain real number called Planck’s constant. Of course, within the associative
algebra O, PQ - QP is just PQ - QP: it is neither zero nor i /i. It is con-
venient to treat the classical and quantum cases simultaneously: we wish to
impose, within our algebra O, the additional condition PQ - QP = r/i, where
ris an (as yet unspecified) real number.

Of course, the way to ‘‘impose additional conditions’’ on an algebra is to
take a quotient algebra by an appropriate ideal. Thus, denote by I, the ideal
of O generated by the element PQ - QP — r/i of O. Then the most general
element of I, is a linear combination of elements of O of the form
A(PQ - QP - r/9)B, with A and Bin O. Set O, = O/I,, the quotient algebra
of the associative algebra O by the ideal I,. Thus an element of O, is “a
polynomial in P and @ in which order of factors is relevant, but in which P
and @ can be interchanged, provided an additional term r/7 is included in the
polynomial.” Thus the element of O, represented as PPQ) is the same as the
element PQP + Pr/i (for both lie in the same coset of I, in O).

The situation is now the following. The elements of O represent ‘‘poten-
tial observables of the system—potential in the sense that they have not yet
been told whether the system is to be treated classically or quantum mechani-
cally; only after they are provided with this additional information will they
become actual observables.” The quotient algebra O, represents ‘‘the associa-
tive algebra of classical observables,” and Oy ‘‘the associative algebra of
quantum observables.” A given element A of O ‘‘defines the classical observ-
able (element of Oy) given by the coset A + I,”" and ‘‘defines the quantum
observable (element of Oy) given by the coset A + L.”" The only relationship
between the classical and quantum observables is that which arises from thes
fact that each is a quotient algebra of the associative algebra O (figure 54).

Note in particular that, since Iy is a different ideal in O than k, each
coset of Jy in O intersects many cosets of ; and vice versa. In this sense,
“with each classical observable there are associated many quantum observ-
ables (namely, those whose cosets intersect the coset representing the classical
observable)” and vice versa. Nonetheless, it is possible, at least in this exam-
ple, to invent a correspondence between classical and quantum observables

"
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Figure 54

(although this prescription fails for systems with more degrees of freedom).
Denote by K the subspace of vector space O generated by polynomials which
consist of the sum of a given number of P and @ written in all orders (e.g.,
PPQQ + PQPQ + PQQ@P + QPQP + QPPQ + QQPP). Then this K, it can
be checked, is complementary, as a subspace of vector space O, to both the
subspace [ and the subspace k. Thus the quotient spaces Oy = O/, and
Oy = O/ are each isomorphic to vector space K, whence we have an iso-
morphism between vector space Oy and vector space Oy. Thus the space of
classical observables is isomorphic, as a vector space, to the space of quantum
observables. This is not, however, an isomorphism of associative algebras
(e.g., because the product in O, is commutative, while that in Oy is not).

The mathematical formalism makes it easy to decide what is true and
what is not about these classical and quantum observables, and how the
observables in the two cases are related to each other.
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Example: Fock Vector Space

In this chapter we describe the mathematical formalism within which one
treats quantum systems of many identical, noninteracting particles.

The states of a quantum system form a complex vector space (actually, a
Hilbert space, which is a complex vector space with certain additional struc-
ture. We shall here be concerned only with the vector-space structure on the
space of states. We introduce Hilbert spaces later.) The operation of taking
linear combinations of vectors in this vector space corresponds physically to
that of taking superpositions of quantum states.

We first wish to decide how the vector spaces of quantum states for two
systems are to be combined when the systems are combined in certain ways.
Consider two systems, the states of the first described by complex vector
space Vj, and the states of the second by V,. Suppose we ‘‘regard these two
separate systems as one,”’ that is, we consider a new system having ‘‘these
two systems as components.” (Note that we are not here turning on an
interaction between the systems; rather, we are simply looking at the two sys-
tems from a different viewpoint.) Then, we claim, the vector space of the
combined system’s states is just V; @ V,, the tensor product. Thus, if the
first system is in state v; (element of V}), and the second system in state vy,
then the combined system would be in state v; ® v,. Note, however, that it
is not true in general that every element of V; ® V, is of the form v; ® wv,.
Thus it is possible to have a state of the combined system (e.g., v; @ vp + v;”
® wvy") for which the individual components are not in definite states. We
think of the state above as ‘‘a superposition of the states in which the first
system is in v; and the second in v, with the state in which the first system is
in v;” and the second in v,".”
this state, and if we somehow determined the state of the first system and
found it to be vy, then the second system would have to be in .

There is a second way to combine systems, but it is difficult to describe
this combination procedure in the same generality as that above. Suppose,
for example, that each of the two systems consists of a potential in which a
particle moves. For the combined system, we wish to take the two potentials,
but introduce only a single particle to move about in these potentials. Then
the complex vector space of states of this combined system would be V; &
V,, the direct sum. Thus the most general state of the combined system is of
the form (v;,%5), with v; in V| and v in V,. We regard this state as ‘“‘the

If the combined system were known to be in
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superposition of the state, (v;,0), in which the particle is certainly in the first
potential, with the state (0,v,), in which the particle is certainly in the second
potential.” For the state (v;,v,), we think of v; as ‘‘the amplitude that the
particle has in the first potential’” and of v, as “the amplitude for the second
potential.” In such a state, of course, the particle is not definitely in either
potential.

We now return to the system of interest, a system of many identical,
noninteracting particles (e.g., photons). Suppose that we are given a certain

¢

complex vector space V which represents the ‘“space of one-particle states.”
(We shall discuss later how one obtains this V.) Then, by the remarks above,
one should take, for ‘“the space of two-particle states,” V & V, and, ‘“‘for the
space of three-particle states,” V & V @ V, etc. For the ‘‘space of zero-
particle states (i.e., vacuum states),” one takes C, the vector space of complex
numbers. Now, our system need not, in general, be in a state corresponding
to a definite number of particles: it could, for example, be in a superposition
of states having different numbers of particles. These remarks suggest that
we take, for the space of states of our system, the complex vector space F' =
COVR(VOV)D(VOV® V)® - --adirect sum. (Note that we are
here interested in this F only as a vector space, not as an associative algebra.)

What we must do next is ‘“‘correct’’ this F' to take account of the fact
that our particles are to be indistinguishable. Denote by ¢ the linear mapping
from V® Vto V® V which sends v ® v to (1/2)(v @ v" + v* @ v), where
the action of o is extended to all of V ® V (i.e., to linear combinations of ele-
ments of the form v ® v’) by linearity. Similarly, denote by ¢ (this use of
the same letter for different mappings does not lead to confusion) the linear
mapping from V@ V® Vio V& V@ V which sends v @ v" @ v"* to
(1/6)(v® v @v”" +v®@v”" @v +v Qv Qv+ v Qv®v” + v”’
Qv®v + v’ Qv @ v). (Note that one simply writes the vectors in all
orders.) Similarly for V® V® V @ V, etc. Application of this o to an ele-
ment of V& -+ ® Vis called symmetrization of the element of the tensor
product. An element w of V@ - -+ ® V such that o(w) = w is said to be
symmetric. Since,on V@ - -+ @ V, we have ¢ 0 60 = o, it follows that, for
any win V ® - - - ® V, o(w) is symmetric. Of course, the symmetric ele-
ments form a subspace of V ® - - -+ ® V. Similarly, denote by 7 the linear
mapping from V@ Vto V@® V whichsends v® v" to (1/2)(v® v -v" @
v); by 7 the linear mapping from V® V® Vio V® V @ V which sends v
Qv v to(1/6)v®@ v @v” +v  @v”" Qv+ v’ @v®uv -v”’
v Quv-v Qu v’ -v®v” @ v'), etc. (The formula is the same as
for o, except that one attaches a minus sign to odd permutations of the vec-
tors.) Application of this 7 to an element of V® - - - @ Vis called antisym-
metrization of the element of the tensor product. An element w of V
® - - - @ Vsuch that 7(w) = wis said to be antisymmetric. We have 70 7=
7. Antisymmetrization yields an antisymmetric element of the tensor product;
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the antisymmetric elements of V@ - - -+ @ V form a subspace.

The discussion above permits one to construct elements of the tensor pro-
duct V@ - - - @ V which “treat each V the same.” One might expect, there-
fore, that such elements might be appropriate for the description of identical
particles. The question is, Should one use the symmetric elements, the
antisymmetric elements, or perhaps elements satisfying some other type of
symmetry? It turns out that the appropriate description of systems of identi-
cal particles, for particles that actually occur in nature, requires either the use
of symmetric elements or the use of antisymmetric elements (depending on
the type of particle being considered), and that no ‘“‘other types of sym-
metries’’ apparently are necessary. Denote by F, the subspace of vector space
F consisting of elements of the direct sum each entry of which is a symmetric
element of the corresponding tensor product, and by F, the subspace of F con-
sisting of elements each entry of which is an antisymmetric element of V
® -+ ® V. This F,is called the symmetric Fock space (on vector space V),
F, the antisymmetric Fock space. Particles (e.g., pi-mesons, photons, gravi-
tons) whose space of (many-particle) states is the symmetric Fock space F,
are called bosons; particles (e.g., neutrinos, electrons) whose space of states is
the antisymmetric Fock space F, are called fermions. Of course, whether a
particle is to be a boson or a fermion must be decided by experiment.

We give one example of the difference between bosons and fermions. Let

'\7\ be an element of V (a ‘“‘one-particle state”), and consider the element (0,0,v
® v0,---) of F (a “two-particle state, with both particles in state v'").
Then the corresponding element of the antisymmetric Fock space is (0,0,7{v @
0,0, - ) = (0,0,(1/2)(v ® v -v @ v),0,--:) = (0,000, ). (The
corresponding element of the symmetric Fock space is, of course, just (0,0, @
v,0, - + - ) itself.) This state of affairs is described by saying that “you cannot
have a two-particle state, for fermions, with both particles in the same state.”
This is the Pauli exclusion principle.

We have now obtained the space of quantum states for our system of
many identical particles (at least, once it has been decided whether those par-
ticles are bosons or fermions). We now wish to introduce a few linear map-
pings on these spaces of states.

Fix a complex vector space V, andlet F=C O VO (VO V) D - --
Thus a typical element of F is f = (v,v;,0, * - * ), where v, is a complex
number, v; is an element of V, v, is an element of V @ V, etc. Denote by N
the linear mapping from complex vector space F' to F which sends this f to

N(f) = (0,1”1,21]2,303, st ) .
Clearly, if fis in F, (i.e., in the symmetric Fock space on V), then so is N/);
if fis in F}, then so is N(f). Thus we obtain a linear mapping (which we also

denote by N) from F, to F,, and another linear mapping N from F, to F,.
These N are called the number (of particles) operators on the Fock spaces.
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For f in N, for example, we have Mf) = 5f if and only if f =
(0,0,0,0,0,v5,0, - - - ), that is, if and only if “f represents a state having pre-
cisely five particles.”

Another class of linear mappings are those which ‘‘create or annihilate
particles.” Fix an element v of V. We introduce, using this v, a certain linear
mapping C, from F to F as follows: for f= (vg,v),v3, - - - ) in F, set

Cc\N= (0,\/-1—1)00,\/51) ®v;,V3v Qup, -+ ) .

Note that this is well defined; for example, v, is an element of V@ V,s0 v @
vy is an element of V® V ® V, and this v ® v, indeed appears in the Y@
V ® Ventry” of C/(f). Of course, this C, is a linear mapping (which, how-
ever, depends on the choice of v} from F to F. (The reason for the introduc-
tion of the numerical factors, vI,v2, . . ., in the definition of c, depends on
a Hilbert space structure on F, a structure we shall only introduce at a later
stage.) We shall think of the action of this C, as representing “‘creation of an
additional particle in state v.”' This interpretation is reasonable: for f =
(v,0, - - - ) (“*a vacuum state”), C(f) = (0,%v,0, - - - ) (“'a one-particle state,
with the particle in state a multiple of v}, for f = (0,v,,0, - - - ) (“one parti-
cle, in state v,’), C\(f) = (0,0,V2v ® ©,,0, - - - ) (“a two-particle state, with
one particle in state v, the other in state v,”'), etc. There is, in fact, a little
formula which reflects this interpretation of C, (it ‘“‘creates a particle”),
namely No C, - C o N = C,. (We check that this formula holds, e.g., on
the state f = (v,v,,%,0, - - - ). We have Cv(/) = (0,7v,V20 ® vl,\/gv ®
1,0, * - ), whence No C/(f) = (0,%,2v20 ® ,,3V3v ® v,0, - - -). But
Mf) = (0,v,2v5,0, - - -), whence C o Mf) = (0,0,V2v @ v,2V3v ®
15,0, +). Thus (No C,- C,o N)() = (0,40,V2v ® v,,V3v ® 1,0, - - - ).
But this is precisely C,(/).) Note that our formula can also be written in the

form
NoC,=C o(N+ ) ,

where I is the identity mapping on F. In this form, it says ‘“counting the
number of particles after applying C, is the same as counting the number of

particles before applying C and adding one.”

Similarly, fix an element ¢ of V* the dual of V. We introduce, using
this , a certain linear mapping A, from F to F. The rule is this: for f =
(a0, -+ ) (ein C), A () =(0,0, - - - ); for f=(0,0,0, - - - ) (vin V), A () =
(\/ISG(”):O, <o) for f= (0,00 ® v',0,- ), Ap(f) = (01‘/590(”)””0) )
for f= (0,000 ® v" @ v",0, - ), A(f) = (0,0,V3p(v)v’ ® v 0, - -);
etc. (That is, “one lets the element ¢ of the dual of V seize the first element
of a tensor product, to produce a complex number, which then is to multiply
the remaining vectorsin a tensor product.”) Since this A, takes “‘a one-
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particle state to a vacuum state, a two-particle state to a one-particle state,
we think of the action of A, as “annihilation of a particle (via the ele-

L2}

ete.,

ment p of V*).”” This remark can be expressed symbolically by the formula
(N+IoA,=A,0N .

Note that the information one needs to ‘“know how to create a particle”
is a knowledge of v, “‘the state the created particle is to be in,” while the
information one needs to ‘“‘know how to annihilate a particle” is a knowledge
of ¢, “an element of the dual of V|, which tells how much vacuum (namely,
() is to be produced from one-particle state v.”

A few minor modifications are necessary to take into account the fact
that our particles are actually identical. First, note that, for fin F, (resp., in

F,

T

), Ag(f) is also in F, (resp., in F,). Thus, for each element ¢ of V* we have
a linear mapping, A, from symmetric Fock space F,, to F,, and a linear map-
ping (also written A ) from antisymmetric Fock space F, to F,. Things are
not quite so simple for the creation operators. Fix vin V. Then, for example,
for the element f= (0,4,,0, - - - ) of F,, C\() = (0,0,V2v ® ©,,0, - - - ) is not
in general in F,. That is, creation of a particle (since it always “puts the
created particle in the first entry of the tensor product’) in general destroys
symmetry or antisymmetry. To correct this, we simply symmetrize or
antisymmetrize after application of C. Thus, for f = (v,v,,1, - ") in F,
we now set C\(f) = (0,909,V20(v ® v,),V30(v @ wy), - - - ), so Cy/) is again
an element of F,. We thus obtain a linear mapping C, from F, to F,. Simi-
larly, for f = (vp,v,v,* - ) in F,, we now set C[(f) = (0,5v,V2r (v ®
v),V3{v ® vy), - - - ). We thus obtain a linear mapping C, from F, to F,.
(This use of the same symbol for different mappings does not lead to confu-
sion in practice, because one deals with just one type of particle at a time.)
To summarize, given the vector space V of ‘‘one-particle states for a
boson particle,” one can construct the Fock space F, of ‘“‘many-particle states
of these particles’” together with linear mappings N (‘“‘number of particles’),
C, (“creation of a particle in state v”), and A, (“annihilation of a particle via

pof V*') from F, to F,. Similarly for fermions.
We now claim that, in the boson case, these creation and annihilation
operators satisfy the following commutation relations:

C,oCp-CpoC =0,
AyoC - CloA,= [go(v)]Ipa ,
A 0A, ~A, 0A4,=0 .

The verification is straightforward: one applies both sides to a typical element
[ of F, and checks that the two sides agree. As an example, we check the
second equation, applied to the element f = (0,9,,0,: - ) of F,. We have
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cN= (0,0,(V2/2)(v ® v, + v; @ v),0, - - - ), whence Ay o C () = (0,p(v),
+ ©(v)v,0, - ). But A f) = (p(v),0, ), whence C oA () =
(0,0(v)v,0, - - - ). Subtracting, we have (A,0C -C oA)) =
(0,0(v)vy,0, - - - ). But this is just ©(v)(0,v,,0, - ) = @(v)f = [p(V)]IAN.
Similarly for other elements of F, and for the other equations just above.
The equations above will be recognized as the standard commutation relations
for the creation and annihilation operators for bosons.

In the fermion case, one has instead the following (called anticommuta-
tion) relations: '

Cvo C, +Cpo Cv=0 ,

Ayo0 Cp+ C oA, = [p(v)IF ,

AlpoAp' +Apr 0A, =0 .
(Of course, nothing stops one from working out the left sides of the commuta-
tion expressions in the fermion case. What happens is that one obtains a
complicated, and uninteresting, formula. It is only when one uses plus signs,
as above, that one obtains a simple expression in the fermion case.) These are
the standard anticommutation relations for creation and annihilation opera-
tors for fermions. Note, incidentally, that, setting v = v” in the first formula,
we obtain C o C, = 0. “You get zero if you try to create two fermions in
the same state.”’ This, again, is essentially the Pauli exclusion principle.

» We remark that the only subtle part of all this is at the beginning when

one\ decides what mathematics to use, what spaces things are going to be in,

etc.| Everything is quite simple after that. In particular, one gets along quite
well without any bases for one’s vector spaces.
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Representations: General Theory

In this chapter we introduce a general framework for the theory of representa-
tions. This framework is useful, it turns out, for a number of reasons: i) it
provides a simple, broad, and easily remembered context into which the
details of the subject fit; ii) the framework actually includes a number of
other ideas that one does not normally associate with representation theory;
iil) a significant fraction of the definitions and properties of representations in
many common special cases fit easily into the general theory. Representations
on vector spaces—the most important special case for physical applications—
will be discussed in more detail in the next chapter.

The idea of a representation is to ‘‘represent an object as a collection of
morphisms.” In this way, one ‘“‘makes the elements of the object more
concrete—instead of being just abstract elements, they actually do something,
namely act as morphisms.” The setup is the following. Let C and C’ be two
categories. We suppose that we are given the following two things: i) a for-
getful functor F from the category C to the category of sets, and ii) a rule
which assigns, to each object P’ in category C’, an object Z in category C
and an isomorphism (in the category of sets) from set F(Z) to the set
Mor(P*,P"). The situation is much simpler than the above suggests. There
is an obvious forgetful functor from every category we shall consider to the
category of sets, and we shall always use this one for item i). The purpose of
i) is to allow us to speak of ‘‘elements’” of objects in category C. Item ii) is
just a fancy way of saying ‘“we are to have available a procedure for introduc-
ing, on the set Mor(P",P"), structure so that it becomes an object in category
C.” We have already seen several examples of categories C* such that each
Mor(P’,P’) is more than just a set—such that additional structure appears
naturally on Mor(P’,P’) so that it actually becomes an object in some
category. We shall simply incorporate i) and ii) into our terminology as fol-
lows: we shall allow ourselves to speak of elements of objects in category C,
and we shall simply regard Mor(P’,P") (for P* an object in C’) as an object
in category C.

For C and C’ as above, a representation of object A in C consists of an

object P’ in C’ together with a morphism A i Mor(P’,P’) (in category C).
Thus, for each element @ of object A, we must have a certain morphism,
which we write 1, from object P’ to itself. This ‘‘rule 3 which assigns to
each element a of A a morphism from P’ to P’ cannot in general be
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arbitrary, but must be such that ¢ itself is a morphism in category C.”” Thus
“the object A is represented as a bunch of morphisms (from P’ to P’), with
this representation (by which @ in A goes to morphism ¢, from P’ to P)
reflecting the structure within the object A.” Some examples will make this
clearer.

Ezample. Let C be the category of sets, and C’ the category of Lie alge-
bras. Fix a set S. A representation of S (in the category of Lie algebras) con-
sists of a Lie algebra P’, together with a rule which assigns, to each element s
of 5, a homomorphism ¢, from Lie algebra P’ to Lie algebra P’.

Ezample. Let C be the category of associative algebras, and C’ the
category of vector spaces. Fix an associative algebra V. A representation of
V (in the category of vector spaces) consists of a vector space W, together
with a rule which assigns, to each element v of associative algebra V, a linear
mapping ¢, from vector space W to W, subject to the following properties:
Y(asto’) = ¥, + ¥+ (@ 2 number), and 9,,» = 9, 0 9,-. Note that, for W
any vector space, Mor(W,W) has the structure of an associative algebra.

Thus the two properties above are precisely the statement that Vi
Mor( W, W) be a homomorphism of associative algebras. The associative alge-
bra Vis ‘‘represented as linear mappings on vector space W.”

Ezample. Let G be a group. A representation of G (in the category of
vector spaces) consists of a vector space W, together with a rule which
assigns, to each element g of G, a linear mapping ¢, from vector space W to
W, such that ¥ . = 9,0 Y, and ¥, = iy This is also a special case of the
definition of a representation (exercise 137).

As one might expect, there are a number of ways to combine and mani-
pulate representations. We give a few examples. Fix categories C and C* as
above. Let A be a fixed object of category C, and consider two representa-

¢ 4
tions of A, A — Mor(P’,P’) and A — Mor(Q’,Q"). Thus, for each a in A,
¥

a

a
we have P* — P’ and Q" — @°. Using the definition of the direct product
and direct sum in the diagrams of figure 55, we obtain a morphism 7, from
the direct product of P* and @° to itself, and a morphism 6, from the direct

¢l
sum of P’ and @~ to itself. It is normally the case that A — Mor(Prod,Prod)
)

and A — Mor(Sum,Sum) are both also representations of A. The former is
called the direct product representation, the latter the direct sum representa-

¥ ®
tion (of the representations A — Mor(P’,P’) and A — Mor(Q’,Q")). Thus,
from two representations, one normally obtains, by taking direct products or
direct sums, two others.

¥
Again, let A be a fixed object in C, and let A — Mor(P’,P’) be a

T
representation of A. Let K° — P’ be a subobject of P, so 7 is a monomor-
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phism. We wish to obtain a representation of A on K’. However, this will
not always be possible, because, intuitively, ‘it may happen that, for some a
in A, 9, takes elements of the subobject K* out of K’.” We proceed there-
fore as follows. The subobject K” is said to be an fnvariant subobject if, for
every a in A, there is a A\, such that the diagram of figure 56 commutes.

K
]
K

’
—_—

T P'
lﬂra
7] 7_) P’

Figure 56

(Note that this X\, if it exists, is unique, for the 7 on the bottom line is a
monomorphism.) Thus, for K” an invariant subobject, we obtain, for each a
Y
a
in A, K’ — K’. This is normally a representation of A on K’. Thus a
¥ r
representation A — Mor(P’,P’), and an invariant subobject, K° — P’, nor-

Y
mally leads to another representation (called a subrepresentation), A —

Mor(K*,K").

Ezample. Let A—d}» Mor(P’,P’) and A-ﬁ Mor(@",Q") be representa-
tions. Consider their direct sum representation, A —i Mor(Sum,Sum). The
morphism P’ —l-‘* Sum is normally a monomorphism, whence P’ is a subobject
of Sum. This subobject is easily chegked to be invariant. Hence A —y

Mor(P’,P") is a subrepresentation of A — Mor(Sum,Sum).
Ezample. Let S be any set, and let V be the vector space of all real-.
valued functions on set S. For s in § let ¢, be the linear mapping from V to

V that sends vin V (so v is a function on S) to the function whose value at s

14
is (s) and whose value elsewhere is zero. This § — Mor(V,V) is a representa-
tion of S (in the category of real vector spaces). Let W be the subspace of V
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consisting of functions on S that vanish for all but a finite number of elements
of . This is an invariant subobject (for, for each win W, d)a(w) is in the sub-

®
space W). Thus we have a subrepresentation, S — Mor( W, W).
In the constructions above, we were concerned with ‘‘manipulations on
”

the object on which the representation acts.
tions of the object represented.”

We next consider ‘“‘manipula-

¥
Let A, again, be an object in category C, and let A — Mor(P’,P’) be a
K
representation of A. Let B be any other object in C, and let B— A be a
Yox
morphism. Then, of course, B — Mor(P’,P’) is also a representation of B.
Thus a morphism from B to A, together with a representation of A, leads

immediately to a representation of B. In particular, B might be a subobject
of A.

¥ 4
Next, let A — Mor(P’,P’) and B — Mor(P’,P’) be representations of A
and B (both on P’). Write A @ B for the direct sum of A and B. Then, by
definition of the direct sum, there is a unique morphism ¢ in the diagram of

s
figure 57 such that the diagram commutes. This A @ B — Mor(P’,P’) is,

h \A ® B‘/
Mor (P', P)
Figure 57

of course, a representation of A @ B. Thus, from a representation of A and a
representation of B (on the same P’), we get a representation of A @ B.

¥ P
Ezample. Let S and T be disjoint sets, and let S — Mor(V,V) and T —
Mor(V,V) be representations of S and T (say, in the category of complex vec-

¢
tor spaces). Then we have a representation SU; T — Mor(V,V), where §, =
Y, for s in S and ¢, = ¢, for t in T. Now regard S as a subset of SUy T.
s
Then we recover from SU; T — Mor(V,V), by the first construction above,

the original representation of S, S — Mor(V, V).

Ezercise 135. Fix categories C and C’ as above, and fix an object A of
¥

category C. Let the objects consist of representations, A — Mor(P’,P"), of A
"

in category C. Let tfle morphisms be as follows: for A — Mor(P’,P’) and
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A -f» Mor(Q’,Q") objects, a morphism is a morphism P’ —L @’ (in category
C’) such that 709, = @, o 7 for each element a of A. Prove that this is a
category (the category of representations of A in C”). Show that the con-
structions of this chapter are just those of direct product, direct sum, and
subobjects in this category.

Erzercise 136. Let C and C° both be the category of sets. Prove that a

¥
representation of S, S — Mor(T,T), is the same thing as a mapping of sets,
SX T— T

Ezercise 137. A semigroup with unit is a set on which there is given a pro-
duct that is associative and has an identity. Define morphisms, and obtain
the category of semigroups with unit. Show that, for any object P’ in
category C’, Mor(P’,P’) has the structure of a semigroup with unit (the
“product” is composition of morphisms). Thus we know what it means to
talk about a representation of a semigroup with unit in any category. Note
that there is a forgetful functor from the category of groups to the category of
semigroups with unit. Now complete the third example in this chapter.

14 .
Ezercise 138. A representation A — Mor(P’,P’) is said to be faithful if
® is a monomorphism. Are subrepresentations of a faithful representation
faithful?

o
FEzercise 139. Let V be a vector space, and V — U the free associative alge-
braon V. For vin V, let ¥, be the mapping from U to U which sends » in U
to o(v)u. Is this a representation of Von I?
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Representations on Vector Spaces

It turns out that the most important representations for applications are those
in which the category C” is that of (usually complex) vector spaces. (The
reason, I guess, is that the space of states of a quantum system is a complex
vector space.) In fact, the term ‘‘representation” is often taken to mean a
representation on a vector space. We here discuss some properties of
representations on vector spaces.

What sort of objects will have representations on vector spaces? It all
depends, as we have seen in the previous chapter, on what sort of structure
one can discover on the set Mor(V,V), for V any vector space. But we have
etty well decided that issue: Mor(V,V) has the structure of an asso-
ciative algebra. (The vector-space structure of Mor(V, V) reflects the fact that
any linear combination of linear mappings from V to V is again a linear map-
ping from V to V; the product structure on Mor(V,V) is composition of linear
mappings.) Thus, in particular, any category one can obtain via a forgetful
functor from the category of associative algebras will be a category whose
objects can have representations on vector spaces. (This is, of course, because
Mor(V,V) can be regarded as an object in any such category.) It turns out
that, among all the possibilities, only three are of practical interest: groups
(see exercise 137), Lie algebras, and associative algebras. Thus, specializing

from the previous chapter, we have:
1. Let G be a group. A representation of G (on a vector space) consists
of a vector space V, together with a rule which assigns, to each g in G, a

linear mapping V—f Vsuch that ¢ .- = 9, 0 ¢,- and P, = 4.

2. Let U be a Lie algebra. A representation of U (on a vector space) con-
sists of a vector sp;ce V, together with a rule which assigns, to each uin U, a
linear mapping V—': Vsuch that Yyguya) = ¥, + ¥y and Yy )= Py 0 Yy
- 'pu' o '/)u'

3. Let T be an associative algebra. A representation of T (on a vector
space) consists of a vector space V, together with a rule which assigns, to each

t
tin T, a linear mapping V — V such that ¢(y,) = a9, + ¢ and ¢y =
7 °l¢¢"
it is immediate that, for a representation of a group, each ¥, is invertible
(for ¢, 0 Vo= Y =19, = iy). For a representation of a Lie or associative
"
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algebra, this is not in general true. (In fact, we have immediately in this case
that ¥, is the zero linear mapping.)

¥
Consider two representations (say, of a group G), G — Mor(V,V) and

Gf» Mor( W, W). Consider the direct sum of vector spaces, V& W. With
each g in G, associate the linear mapping from V@& Wto V & W which sends
(v,w) to (Y (v),p(w)). This is clearly a representation of Gon V& W, a par-
ticular case of the direct sum of general representations. (Similarly, of course,
for representations of associative or Lie algebras.) Since direct products, in
the category of vector spaces, are the same as direct sums, that yields nothing
new. However, there is, in the case of vector spaces, an additional way to
combine representations: using the tensor product. Consider again our two

representations of G, G i Mor(V,V) and G f» Mor( W, W). Consider the ten-
sor product, V @ W, of vector spaces. For gin G, let £, be the linear map-
ping from V ® Wto V ® W which sends v @ w to 9 (v) ® ¢ (w). (Of
course, these instructions determine the linear mapping completely, since
every element of V@ Wis a linear combination of elements of the form v @

K
w.) Clearly, we have a representation, G — Mor(V @ W,V ® W). This
representation is called the tensor product representation of our two represen-
tations. (Similarly for representations of Lie or associative algebras.) Finally,
as a special case of the previous chapter, a subspace W of vector space Vis an

invariant subspace of the representation G — Mor(V,V) (say, of a group) if,
for each g in G and win W, ng(w) is also in W. For W an invariant subspace,

"
we obtain a subrepresentation, G — Mor(W,W), of G on W (since each 1,
maps Wto W, whence each ¢, can be regarded as an element of Mor( W, W)).

¥
Ezample. Let G be a group, V a vector space, and G — Mor(V,V) a
representation. Consider the tensor product of this representation with itself,

G —'c» Mor(V @ V,V ® V). Denote by K the subspace of V ® V generated by
elements of the form v ® v + v° ® v, and by L the subspace generated by
elements of the form v ® v" — v* @ v. Then, evidently, K and L are comple-
mentary subspaces of V @ V. Next, note that K is an invariant subspace of

K
the representation G — Mor(V ® V,V® V), for kv @ v + v" ® v) =
Py(v) @ Yy(v7) + Py(v") ® 9y v) is also in K. Similarly, L is an invariant

m v
subspace. Thus we have subrepresentations G — Mor(K,K) and G —
Mor(L,L). Since K and L are complementary in V' @ V, there is a natural iso-
morphism of vector spaces from V & Vto K @ L. Clearly, therefore, the

T
direct sum representation, G — Mor(K @ L,K @ L) is essentially the same as
K
the representation G — Mor(V @ V,V® V).
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Ezample. Let G ib» Mor(V, V) be a representation. For each g in G, let
v* —7» V* be given by vy = [¥] * (adjoint mapping on the dual). Then this
is also a representation, for 7,07, = lwg_;]"o [ng»_l]* = [$ya0 zpy_,]" =
[¥g 141 Y= [w(w»)-x] Y= Yge'- (Note that, in this example, we actually require
that G be a group, for we need a g!.) Take the tensor product of the two,

G — Mor(V® V*V® V*). Now denote by X the linear mapping from V ®
V* to the numbers that sends v ® ¢ (5o ¢ is in V¥ to the number ().

Then Ker () is an invariant subspace of the representation G — Mor(V @
vVive v

There are a number of ways to get from one to another of groups, Lie
algebras, and associative algebras, many of which lead to ways to get from
one representation to another.

Let G be a group, and let U be the group algebra of G (chapter 18).
Thus, with each g in G there is associated an element, a(g), of U, and the
most general element of U is a linear combination of such elements: a,a(g,)
+ -+ a,0(g,), with g, . . . ,a, numbers. The product in Uis a(g)a(g’) =

a(gg’), extended to all of U by linearity. Now let G’—'p» Mor(V,V) be a
representation of G. We introduce a representation of the associative algebra
U. For u= aa(g) + - + a,a(g,) in U, set v, = a1, + - - - + a,9,, so
7, 1s a certain linear mapping from V to V. This is clearly a representation of
U. One often ‘uses essentially this idea to obtain a representation of a given
group G. Let G be given, and let U be the group algebra of G. For g in G,
let o, be the linear mapping from U to U which sends ea(g) + - - +
a,o(g,) to aja(ggy) + - * - + a,0(gg,). One thus obtains a representation G —
Mor(U,U) (called the regular representation of G).

Next, let U be any associative algebra, and denote by F(U) the
corresponding Lie algebra (via the forgetful functor). Consider a representa-

¥
tion U — Mor(V,V) of U. Then, applying the forgetful functor to both of the
v=F(¥)
associative algebras U and Mor(V,V), we have a morphism F(U) —

F(Mor(V,V)). Thus we obtain a representation of the Lie algebra F(U). In
this representation, for example, Y[y '] = V(wu'-w'w) = Yu © Yur — Yy’ 0 Yy
Finally, let L be a Lie algebra, and U its universal enveloping algebra.

¥
Consider a representation of L, L — Mor(V,V). Then, by definition of the
universal enveloping algebra, there is a unique homomorphism 7 of associative

T
algebras such that the diagram of figure 58 commutes. Thus we obtain U —
Mor(V,V), a representation of the universal enveloping algebra of L. This lit-
tle construction is essentially the reason why one introduces the universal
enveloping algebra. “Mor(V,V) really wants to be an associative algebra, but
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L —— U

1"1’

Mor (V, V)

Figure 58

we can force it to be a Lie algebra by applying the forgetful functor. Then,
we have the notion of a representation of a Lie algebra. By ‘freeing’ an asso-
ciative structure on the Lie algebra L, one obtains its universal enveloping
algebra, the thing that really should have been represented on V in the first
place.”

Example. Let L be a three-dimensional real vector space, with basis z, y,
and 2. Define a bracket on L by [2,9] = -[yd = 2, [y,4] = -[2,3] = 2, [2,2] =
-|#,7 = y, extending to all of L by linearity. Then, noting that the Jacobi
relation is satisfied, we have on L the structure of a Lie algebra. The free
associative algebra on vector space L is the algebra of ‘“‘all polynomials in
7,y,2, having no constant term, where order of factors in each term is
relevant.” The universal enveloping algebra, U, of L is the algebra of “all
polynomials in z,9,z, having no constant term, where the order of factors is
relevant, but in which one may substitute zy - yz for 2, yz- zy for 2, and
zz — zz for y.”' (Thus, in U, zzyz = zyzz + zzz.) Now suppose that we have a

representation, L — Mor(V,V), of L. Then, in particular, since z, y, and 2 are
elements of L, we have ¢,, ¥, and ¢,, linear mappings from V to V. Since ¢
is a representation of our Lie algebra, 4,0 Yy, Yo, = P, Pyo,
-Y,0¢, = ¢, and Y,0 9P, - P, 09, = ¥, Clearly, this representation is
uniquely determined by ¢,, v¥,, and ¥,. The corresponding representation of
the universal enveloping algebra U is this. For, for example, v = zzyz + 2yz
in U, set v, = ¥ 09,09, 09, + 29,01, This actually is a representation
of U. For example, zzyz = zyzz + zzz in U (since zy - yz = z in U), and,
indeed, ¥, 0%, 0v,0%, = Y,09,0%,0%, + Y0909, (since Y, 0,
- 9,019, = ¥,). Note what has happened: “since our original representation
was of the Lie algebra L, the bracket structure of L was reflected in the 9.
This bracket structure is also incorporated into the construction of the univer-
sal enveloping algebra U. Everything works out just right so that ‘polynomi-
als which are the same as elements of U lead to the same element of
Mor(V, V). "

Note that any representation (of a group, Lie algebra, associative algebra,
etc.) on a vector space V always has two invariant subspaces: the subspace of
V consisting only of the zero element, and Vitself. A representation in which
these two are the only invariant subspaces is said to be irreducible. In many
situations, one can reduce the study of all representations to the study of
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irreducible representations by the following technique. Let G i Mor(V, V) be
a representation (say, of a group). If this representation is not irreducible,
there is some invariant subspace W (neither V nor the zero subspace). Sup-
pose one managed to find a subspace U of V which was complementary to W
and which was also invariant. Then we would have representations of G on
W and U, and our original representation would be a direct sum of these
(since V is naturally isomorphic to W @ U). If, for example, the representa-
tion on W is not irreducible, then there is an invariant subspace. If, again,
one can find a complementary subspace, one can repeat the process. With
any luck, one will end up writing the original representation as a direct sum
of irreducible ones (‘keep decomposing in this way until no further decompo-
sition is possible, i.e., one hopes, until one has irreducible representations’).
Unfortunately, it is not true in general that one can always find a complemen-
tary invariant subspace in order to continue the ‘‘decomposition process’
above. (Although certain situations are known for which a complementary
invariant subspace can always be found—e.g., when G has only a finite
number of elements—there is no simple criterion, as far as I know, in the gen-
eral case.) Fortunately, it turns out that many of the representations one
meets in practice are in fact a direct sum of irreducible ones (actually, most
are already irreducible). Thus irreducible representations are interesting.
One of the crucial facts about irreducible representations is this.

¥
THEOREM 26 (Schur). Let S — Mor(V,V) be an irreducible representation (of
a

anything) on a finite-dimensional, complex vector space V. Let V — V be

a linear mapping such that a o ¢, =9, o a for every s in S. Then a =

asy for some number a.

Proof. Since V is finite-dimensional and complex, there exists an eigen-
vector of a, that is, there exists a nonzero vin V and number a such that a(2)
= au. (This follows because det(a — al) = 0 must have complex root a.)
Denote by W the subspace of V consisting of all v in V such that a(v) = av
(fixing this particular number a). Then W is an invariant subspace: for w in
W (s0 a(u) = au), we have a(p,(u)) = ¥ a(u)) = ¥ av) = dp(w)],
whence 9 (w) is in W. (We used a o 9, = ¢, o a in the first step.) Since our
representation is irreducible (and since W cannot be the zero subspace, for it
contains v £ 0), we must have W = V. That is, a(v) = av for every vin V,
or, what is the same thing, o = aiy. |

The conclusion of theorem 26 holds in many cases more general than that of
the hypothesis (in particular, for certain infinite-dimensional V).

We give an example of a use of theorem 26. Let L be a Lie algebra, and
U its universal enveloping algebra. Consider an irreducible representation of
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¥
L, L — Mor(V,V), on a finite-dimensional, complex V. Then we obtain a

representation of U, U-l Mor(V, V). Now let u be an element of the Casimir
subalgebra of U (chapter 19). Then, for each u in U, we have 7,017, =
Yu © Yy (since yu = uy in U). By theorem 26 there is a number a such that 7,
= aiy. Thus, in this representation, u is represented as a numerical multiple
of the identity linear mapping. Thus one can classify the irreducible represen-
tations of L (at least, complex ones on a finite-dimensional vector space) by
the ‘“‘numerical values” taken by the elements of the Casimir subalgebra. The
attractive feature of this situation is that the universal enveloping algebra U
and the Casimir subalgebra are already known once one knows L—they do
not refer directly to the representation being considered. (In physics, ‘“‘spin”
and ‘“‘mass’’ arise in just this way.)

Ezample. In the prior example, consider the element ¥ = zz + yy + 2z
of U. Then this u is in the Casimir subalgebra, for, for example, u - uz =
ez + "+ 22) - (22 + "+ 22)z = zyy + 222 - Yyr — 222 = yYry + 2y + 222
-yz-yyr - zz22 = yyr + yz + zy + 22z - 2y — yz — yyz — zzz = 0. Thus,
given any irreducible representation of L on a finite-dimensional, complex vec-
tor space V, we have 7, = Y 09, + Y 09, + ¥, 09, a multiple of the
identity.

Ezercise 140. Let U be an associative algebra, and write U for vector space

©
U. Consider U — Mor(U,U) with the following action: for u in U, ¢, sends u
in U to uy. Prove that this is a representation. Prove that every ideal of U,
regarded as a subspace of U, is an invariant subspace.

Ezercise 141. Let G be the additive group of reals, V a two-dimensional vec-
tor space with basis z,y. For gin G, let ¢, send z to z and yto y + gz (g is
just a real number). Prove that the subspace generated by z is invariant and
that there is no complementary invariant subspace.

Exercise 142. Let G be the additive group of reals, and V a real two-
dimensional vector space with basis z,3. For gin G, let ¢, send z to z cos g +
ysin g and y to y cos ¢ - zsin g. Prove that this is an irreducible representa-

o
tion. Find V — V such that a o ¢, = 9, 0 @, but with o not a multiple of
the identity.

Ezercise 143. Are direct sums, direct products, and subrepresentations of
irreducible representations irreducible?
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Ezercise 144. Let V be a vector space, and regard Mor( V, V) as an associative
algebra. Then the identity mapping from Mor(V,V) to Mor(V,V) is a
representation of Mor(V,V) on V. Prove that this representation is irreduci-
ble.

Ezercise 145. Let S be any set, V the free vector space on S, and G the per-
mutation group of set S. Then, for g in G, let ¢, be the mapping from V to
V which sends v (a function on S) to the function 1(g(s)). Prove that this is a
representation of G on V. For which S is this representation irreducible?

¥
Ezercise 146. Let G — Mor(V,V) be an irreducible representation, and fix
nonzero vin V. Show that the subset of V consisting of elements of the form
¥y(v) (gin G) spans V.

Ezxercise 147. Prove that, if a finite-dimensional, complex V is the vector
space for an irreducible representation of an abelian group, then V is one-
dimensional or zero-dimensional.
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The Algebraic Categories: Summary

We have now completed our study of things “whose only structure is purely
algebraic.”” There are many other categories which would also fall under this
description—for example, semigroups, lattices, rings, integral domains,
modules, fields—but which we have omitted because they are less important
for applications.

The forgetful functors provide an easy way to get an overall picture of
the nine algebraic categories we have discussed. In figure 59, the solid arrows

e T T - >
Rea| ~ Real ~ > Reol
i Vector &————— |ije &————— Asseciative
‘\ Spaces A|3Lbru9 Alael’us
\
Ll T I
¥
Complex Complu Complex )
Veetop & Lie e Associative
SPu.cts - Alﬂebrms ——— —’7;’A|gcbrns

- — -

Figure 59

represent the action of the forgetful functors while the dashed arrows
represent the free constructions we have introduced. (Other forgetful functors
are obtained by composition.)

Other assorted properties of these categories are in the table below.
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Quotient
Quotient  Object
Category  Set for for Ker(p) Im(¢p) Mor(A,B) Remark
Abelian Abelian Sum =
Groups Subgroup  Subgroup  Subgroup Subgroup  Group Product
Normal Normal
Groups Subgroup  Subgroup  Subgroup Subgroup = Set
Vector Assoc. Tensor
Spaces Subspace  Subspace  Subspace  Subspace  Algebra Product
Lie Sub- Sub- Assoc.
Algebras  algebra Ideal Ideal algebra Algebra
Assoc. Sub- Sub- Assoc.
Algebras  algebra Ideal Ideal algebra Algebra
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Subsets and Mappings

It is convenient at this point to introduce some definitions and notation, and
to recall a few facts about sets, subsets, and mappings. It is, in my opinion, a
waste of time to try to memorize all the various properties listed below.
Rather, one should try to become skillful at guessing with reasonable accuracy
what is true, and to become adept at quickly finding the (always easy) proofs
and at effortlessly manipulating the symbols.

Fix a set S. We denote by @, the empty set, the subset of S having no
elements. For A and B subsets of S, we write A C B or B D A if every ele-
ment of A is also an element of B. In this case, one says that A is a subset of
B and that B is a superset of A. (Note that A = B is not excluded.) Thus
@ C Bfor all B. For A a subset of S, denote by A, called the complement of
A (in S), the set consisting of all elements of S which are not in A. Then
(A°)* = A for any subset A of S, while §° = S and S° = 0. Furthermore,
A C Bif and only if A° D B°. For A and B subsets of S, one writes A - B
for the set of all elements of S which are elements of A and not elements of B.
Thus A- B= AN B, while A-A=0and A- 8 = A. Finally, let A, (A
in A) be a collection of subsets of S. Then (Li A = Q Af [proof: s (in 5) is

in (5\) A,)¢ if and only if s is not in Li A, if and only if s is in no A, if and
only if s is in every A§ if and only if s is in QAi]’ and, similarly,

Ay = U Af.
(Q ») U A%

Now let S and T be two sets, and let Sf» T be a mapping of sets. For A
a subset of S, one writes p[A], called the image of A (by ), for the set of all ¢
in T such that p(a) =t for some e in A. For B a subset of T, one writes
¢ 1[B], called the inverse image of B (by ), for the set of all s in S with o(s)
in B. Note that p|A] is a subset of T, while ¢7![B] is a subset of S. Thus
o' [T] = S, while it is false in general that p[S = T. This notation can be
confusing: for example, it is false in general that o[ ![B]] = B or that
¢ 'plA]] = A. (Let S have just two elements, s and s, and T have just two
elements, ¢ and t". Let ¢(s) = (8") = t. Let A be the subset of S consist-
ing of s°. Then ¢ ![p[A]] = S5 A. Let B be the subset of T consisting of
t’. Then o[ }[B]] = 0 % B.) *

The behavior of complements under inverse images is this: for B a subset
of T, we have ¢ 1[BY = (¢"[B])°. [Proof: s (in S) is in ¢~![B] if and only if
©(8) is in B° if and only if o(s) is not in B if and only if s is not in ©7'[B] if
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and only if s is in (¢7![B]).] Complements do not behave so well under
images: for example, it is false in general that ©[A°] = (p[A])°. (For example,
let S have just three elements, s, s”, and s”", and let T have just three ele-
ments, £, ", and t”. Let p(s) = @(s") =1t  and p(s"") = t"". Let A be the
subset of S consisting of s and s”". Then p[A] consists only of ¢, while
([A])¢ comsists only of t.)

Next, we consider the behavior of unions and intersections under images
and inverse images. Let By, (M in A) be a collection of subsets of T. Then
p‘l[Q B\ = T @ YB,). [Proof: s (in S) is in ga'IIQ B,] if and only if p(s) is in

QBX if and only if (s) is in every B, if and only if s is in every ¢ }[B,] if
and -only if s is in Q ¢ ![B,].] Similarly, go'l[LAJ B\ = LAJ @7 1[B,]. To consider

the behavior under images, let 4, (A in A) be a collection of subsets of S.
Then go[LAJ Ayl =LAJ'»0[Ax]- [Proof: ¢t (in 7) is in go[E\J A,y] if and only if

t = ¢(s) for some s in E‘J A, if and only if t = p(s) for some s in some A, if
and only if ¢ is in p[A,] for some A, if and only if ¢ is in LAJ ¢[Ay].] On the
other hand, it is false in general that go[f; A = Q ©lAy]. (For example, let S

have elements s and s”, and T elements ¢ and ¢". Let p(s) = p(s”) = t. Let
A consist of s, and A" consist of s'. Then p[ANA’]| =0, while
©[A] N p|A’] consists of £.)
® ¥
Finally, let S — T — U be mappings of sets. Then, for A a subset of S,
(¥ 0 ©)[A] = ¥[p|A]] and, for C a subset of U, ( o )'[C] = [y '[C]].

Ezercise 148. Does (A-A")* = A"¢ - A?

Ezercise 149. Does ¢ Y[B- B'| = ¢’ ![B] - ¢ ![B"]? Does ¢lA-A"] =
olA] - plA"]?

Ezercise 150. Does A C A” imply ¢[A] C p|A’]? Does BC B’ imply
o l[Bl C ¢[B]?

0

Ezercise 151. Let S — T be a mapping of sets. Prove that ¢ is a monomor-
phism if and only if ¢ [p[A]] = A for every subset A of S. Prove that ¢ is
an epimorphism if and only if p[¢p~![B]] = B for every subset Bof T.
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Topological Spaces

We now begin the study of topological spaces. As we shall see, the viewpoint
is somewhat different in topology than it was in the study of groups, vector
spaces, etc. If one had to characterize this difference in terms of a single
feature, perhaps it would be this: whereas in the algebraic categories one is
concerned principally with elements (of sets), one is in topology more con-
cerned with subsets. Nonetheless, a number of the ideas used in the algebraic
categories have topological versions.

A topological space consists of two things—i) a set X, and ii) a collection
of subsets of X (subsets in this collection are called open (sub)sets)—subject to
the following three conditions:

1. The subsets @ and X of X are both open.

2. For O, (X in A) any collection of open sets, Li O, is open.

3. For O and O’ open sets, O N O’ is open.

It is immediate from condition 3 that the intersection of any finite
number of open sets is open (while, by condition 2, the union of any number
of open sets is open). Elements of the set X are normally called points.
Given a set X, a collection of subsets of X satisfying conditions 1, 2, and 3 is
called a topology on X.

Ezample. Let S be any set. Consider the collection of all subsets of S.
Then (since @ and S are both subsets of S, since any union of subsets of Sis a
subset of S, since any intersection of two subsets of S is a subset of S) we
have a topology on S. This is called the discrete topology.

Ezample. Let S be any set. Consider the collection of subsets of S which
includes only these two: @ and S. Condition 1 is clearly satisfied. Since any
union involving only @ and S is either @ or S, condition 2 is satisfied. Since
dN0=20,0NS=0,and SN S = S, condition 3 is satisfied. Thus we have
a topology on S, called the indiscrete topology.

Ezample. Let the set be the set R of all real numbers. Let the collection
of subsets of R consist of the following: we call a subset O of R open if, for
each point r (a real number) of O, there exists a positive number € such that
all r* with |r" — r] < € are also in O. (Intuitively, a set O is open if O
includes all points ‘“sufficiently close’” to any point of O.) We verify the three
conditions above. Clearly, both @ (because it contains no r) and R (because it
contains every r’) satisfy the condition above for openness. Let O, (M in A)
be any collection of open sets: we show that 'X' O, is open. Let r be a point of
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L/{ O,, so ris in some Oy. Then, since that O, is open, there is an ¢ > 0 such
that every r” with |r” — 1] < € is in that O,. Hence every such r’ is in LAJ O,.
That is, Lle O, is open. Finally, let O; and O, be open: we show that O; N O,

is open. Let r be in O; N Oy, so r is in both O; and O,. Since O, is open,
there is an €, such that all " with |r" - 1§ < ¢, are in Oy; since O, is open,
there is an €y such that all r* with |r" - r] < €y are in O,. Let ¢ be the
smaller of ¢ be the smaller of ¢; and €. Then all r* with |r* - r| < € are in
both O, and O,, whence all such r* are in O, N O,. That is, O; N O, is
open. We have verified the three conditions above. This topological space is
called the real line.

For ¢ and b real numbers with a < b, write (a,b) for the set of all
numbers r with a < r < b, (a,b] for the set of all r with ¢ < r < b, [¢,b) for
the set of all r with ¢ < r < b, and [a,b] for the set of all r with a < r < b.
We now claim that each subset (a,b) of R is open in the topological space
above. (That is why (a,b) is called an “‘open interval.”’) Indeed, let r be a

r- r+€

€
LS
r b

Figure 60

point of (a,b). Clearly (figure 60), there is a positive number ¢ such that r + ¢
and r- € are both in (gb). Then all " with |r" - r]| <€ (ie, all r" in
(r - ¢,r + €)) are in (a,b). Hence (@,b) is open. On the other hand, for exam-
ple, [a,b) is not open: choose r = a and note that no ¢ > 0 does the job.

Let, in the last example above, O, = (0,2/1), =(0,3/2), O3 =
(0,4/3), - - - Then each of O, O,, - - - is open. But N O, (the intersection of
an infinite number of open sets) = (0,1] is not open.

There is another way to obtain topological spaces, using the idea of the
real line. We first need a definition. A metric space consists of a set X

together with a mappmg of sets, X X X—» R (so, for z and z” in X, d(z,2”) is
a real number, which we think of as the ‘distance between z and z°”’), such
that i) for any z and z’, d(z,2”) > 0, with equality if and only if z = 2°, ii)
for any z and z”, d(z,z") = d(z”,2), and iii) for any z, z’, and 2",

diz,z") + d(z",2”") > d(z,2”") .

(Condition i) says that “distances are non-negative”; condition ii) says that
“the distance from z to z” is the same as the distance from z” to z”’; condi-
tion iii) says that ‘it is generally shorter to go directly from z to z*” than to
go by way of z°.”") For example, R is a metric space with, for r and r’
numbers, d(r,r’) = |r-r’|.
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Ezample. Let (X,d) be a metric space. Call a subset O of X open if, for
any z in O, there is a positive number € such that all 2" with d(z”,z) < € are
also in O. Then this collection of subsets of X is a topology on X. [Proof:
The argument of the previous example goes through word for word, replacing
|- 1by d(,)]

Ezample. Let X = R X R, Cartesian product of sets. Let d{, ) be the
usual Euclidean distance on the plane X. We thus have a metric space. By
the example above, we have a topological space. This topological space (a
convenient one for drawing pictures) is called the topological plane.

We have now accumulated enough examples to discuss in general terms
what a topological space is. Think of a metric space as a set on which one
knows a ‘“‘distance of any point from any other,” that is, on which one has a
notion of ‘‘how close” one point is to another. A topological space has just a
little less structure. While one does not know ‘‘how close’” (numerically) one
point is to another, one still has a notion of “sufficiently close.” This notion
is embodied in the open sets. One should think of an open set as a set having
the property that “any point sufficiently close to a point of the open set is
also in the open set.”” In other words, one thinks of an open set as having the
property that ‘‘given any point of the open set, sufficiently small variations of
location of that point do not take one out of the open set.”” The three condi-
tions for a topological space can now be seen as reflecting this intuitive pic-
ture of an open set. We now introduce a number of definitions and remarks
which are intended to amplify the discussion above.

Let X be a topological space. A subset C of X is said to be closed if C°
{complement) is open. (Intuitively, “sufficiently small variations of any point
not in a closed set yield points also not in that closed set.””) For example, in
the real line, each [a,8] (“‘closed interval”) is closed. Caution: Some subsets of
X can be neither open nor closed, for example, the subset [a,b) of the real line.
The basic properties of closed (sub)sets follow from those of open sets by tak-
ing complements: i) @ and X are closed. (We have ¢ = X and X°* = 0.) ii)
For C) (X in A) closed sets, Q Cy is also closed. (We have (T G) = 5\) Cs.

7

Since each C) is closed, each C° is open. Hence %J C§ is open. That is,
(N G))¢ is open, whence N C) is closed.) iii) For C'and C” closed, CU C” is
A A

closed. (Since (CUC')* = C*N C’¢, and since C° and C’° are open,
(CU C") is open. Hence C'U C” is closed.) In short, the three properties of
closed sets are just the three properties of open sets, but with union and inter-
section interchanged.

Ezample. The integers form a closed subset of the real line. Any subset
of a set with the discrete topology is closed.

Let X be a topological space, and let z be a point of X. A subset Nof X
is said to be a neighborhood of z if NV is a superset of some open set O contain-
ing 2. Note that a neighborhood need not be either open or closed. Thus, on
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the real line, (-1,2), [-1,2), and [-1,2] are all neighborhoods of the point 0.
Every open set is a neighborhood of each of its points. There are two funda-
mental properties of neighborhoods: i) Any superset of a neighborhood of z is
a neighborhood of z. [Proof: Let N be a neighborhood of z, so N D O with O
open and containing z. Then, for N* a superset of N, N° D O, whence N’ is
a neighborhood of z.] ii) If N and N’ are neighborhoods of z, so is NN
N’. [Proof: We have N D O and N° D O, with each of O and O’ open, and
each containing z. Then ON O is open and contains =z, while
NN N D 0N O0’.] The following example provides an intuitive picture of
a neighborhood.

Ezample. Let (X,d) be a metric space, and let z be a point of X. Fix a
positive number ¢, and let N denote the subset of X consisting of all z* with
d(z",z) < e. Then N is a neighborhood of z. [Proof: Since d(z,z) = 0, N con-
tains z. We show that Nis open. Let z be a point of N, so d(z,2) = a is less
than €. Choose ¢ = ¢ -a > 0. Then, for d(z",z) < ¢ we have d(z°,7)
<dz ,z2)+ dzz)<a+e=a+ (ec-a)=¢ whencez” isin N. Thus Nis
open.]

This example suggests that one think of a neighborhood of z as
representing ‘‘all points which can be reached from z under a sufficiently
small, but otherwise arbitrary, variation of position.” Our earlier intuitive dis-
cussion of open sets can now be sharpened as follows.

THEOREM 27. Let X be a topological space. A subset A of X 1s open if and
only tf, for each point x of A, some neighborhood of z 13 a subset of A. A
subset A of X is closed if and only if, for each point x not in A, some
neighborhood of z does not intersect A.

Proof. Suppose that A is open. Then A (a subset of A) is a neighbor-
hood of each point of A. Suppose, conversely, that, for each z in A, there is a
neighborhood N, of z with A D N,. Then, for each z in A, there is an open
set O, containing z and with A D O,. Set B = U O,, where the union is
over all zin A. Then B, as a union of open sets, is open. Since A D O, for
each z;, A D B. But each z in A is in some O, and hence is in B ; thus
A C B. We have shown A = B, whence A is open. The last statement is
immediate from its predecessor, noting that A is closed if and only if A,

is open. [

Note that there is very little real content to theorem 27: open sets lead to
neighborhoods which can then be used to characterize open sets. The only
point to this theorem is that ‘“neighborhood” somehow has more intuitive
content than ‘“‘open set.”

Let X be a topological space, and let A be any subset of X. Denote by
Int(A) the union of all open subsets of A, so Int(A) is itself an open subset of
A. This Int(A) (which should perhaps be called the open set generated by A)
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is called the interior of A. The interior of A is, of course, the largest open
subset of A in the following sense: for any open O with A D O, Int(4) D O.
Similarly, denote by Cl(A), the closure of A, the intersection of all closed
supersets of A, so Cl(A) is itself a closed superset of A. This Cl(A4) is the
smallest closed superset of A: for any closed C with A C C, Cl(A) C C.
Finally, set Bndy(A) = Cl(A - Int(A), the boundary of A.

Ezample. Let A = [a,b), a subset of the real line. Then Int(A) = (a,b)
[proof: this (a,b) is certainly an open subset of A ; the only larger subset of A
is A itself: but A is not open] and Cl(A) = [a,b] [proof: this [a,b] is certainly a
closed superset of A ; the only smaller superset of A is A itself: but A is not
closed]. Hence Bndy(A) is the subset consisting of just two points, a and b.

Ezample. For A any subset of a set with the discrete topology, Int(A) =
Cl(A) = A, whence Bndy(A) = 0. For A (say, neither @ nor X) a subset of X
with the indiscrete topology, Int(A) = # and CYA) = X, whence Bndy(A)
=X

Ezample. Let A be the set of integers in the real line. Then Int(4) = @
while Cl(A) = A, whence Bndy(A) = A.

Ezample. Let A be the subset of the real line consisting of all the
rational numbers. Then, since the only open set containing only rationals is
the empty set, Int(A) = @ while, since the only open set containing no ration-
als is the empty set (whence the only closed set containing all the rationals is
R), Cl(4) = R. Thus Bndy(4) = R. (Every real number is a boundary
point of the rationals.)

As usual, one can get a quick intuitive picture of something by character-
izing it in terms of neighborhoods.

THEOREM 28. Let A be a subset of topological space X. Let z be a point of X,
Then i) z is a point of Int(A) if and only if some neighborhood of z is a
subset of A, it) z is a point of CYA) if and only if every neighborhood of =
intersects A, and iii) z is a point of Bndy(A) if and only if every neighbor-
hood of z contains both points in A and points not in A.

Proof:

i) For z a point of Int(A), Int(A) itself is both a neighborhood of z and a
subset of A. Next, let point z have a neighborhood N with N C A. Then
there is an open set O containing z and with O C N. Thus O is an open sub-
set of A containing z, whence Int (A) (the union of all open subsets of A) also
contains z.

ii) Let z be a point of Cl(A). Then every closed superset of A contains z,
whence (taking complements) every open set not intersecting A fails to con-
tain z, whence every open set containing z intersects A, whence every neigh-
borhood of z intersects A. Next, let z be a point with the property that every
neighborhood of z intersects A. Then every closed superset C of A contains z
(for, if not, C° would be a neighborhood of z not intersecting A). But Cl(A) is
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the intersection of all such closed supersets, whence z is a point of Cl(A).

iti) The point z is in Bndy(A) if and only if z is in CI(A) and not in
Int(A), that is (by i) and ii)), if and only if every neighborhood of z intersects
A but is not a subset of A. []

Bndy (A [

Figure 61

The setup regarding the interior, closure, and boundary of a set A is
illustrated in figure 61. We regard theorem 28 as a means of strengthening
one'’s intuition about these notions. These concepts, in turn, can be regarded
as a means of strengthening one’s intuition about open sets. We have

THEOREM 29. Let A be a subset of topological space X. Then A is open if
and only if no point of Bndy(A) is a point of A, while A is closed if and
only if every point of Bndy(A) is a point of A.

Proof. It is immediate (e.g., from figure 61) that, if no point of Bndy(A)
is a point of A, then A = Int(A) is open, and that, if every point of Bndy(A)
is a point of A, then A = Cl(A) is closed. Conversely, if A is open, then,
since Int(A) is the union of all open subsets of A, we have A = Int(A),
whence no point of Bndy(A) is a point of A. If A is closed, then, since Cl(A)
is the intersection of all closed supersets of A, we have A = Cl(A), whence
every point of Bndy(A) is a point of A. []

Thus theorem 29 provides still another characterization of open sets: they
are sets which include none of their boundary points. (E.g., (a,b) is open in
the real line, while neither (e8] nor [e,b] is open.) Once again, this is all cir-
cular: the open sets lead to the notion of a boundary, which can, in turn, be
used to characterize the open sets.

Everything we have done since the definition of a topological space has
been intended as an amplification of that definition, a picture of how one
thinks of an open set. What we now wish to do is obtain an overview of the
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possibilities for introducing a topology on a given set X.

Fix a set X. We denote by P(X) the collection of all subsets of X. Thus,
for example, a point of P(X) is a subset of X while a subset of P(X) is a col-
lection of subsets of X. Next, note that a topology on X is also just a certain
collection of subsets of X (namely, a collection of subsets of X satisfying the
three conditions defining a topological space). Thus a topology on X is just a
certain subset of P(X). What is the advantage of thinking of topologies on X
in these terms? It is that subsets of P(X), and hence topologies on X, are
ordered by inclusion. Thus, for T and T’ topologies on X (regarded as sub-
sets of P(X)), we write T < T if every open set with respect to topology T
is also an open set with respect to topology T . (‘“The larger the topology,
the niore open sets it has.”) For T < T’, one says that topology T " is finer
than T and that T is coarser than T . Now, we can draw a little picture of
the partially ordered set of all topologies on set X (figure 62). One “moves to

«—~— discrefe

’ topology
finer
Coarser
indiscrete
7 top ology
Figure 62

finer and finer topologies (those with more and more open sets)”’ as one moves
upward in the picture. At the top is the finest of all topologies, the discrete
topology (with respect to which every set is open). At the bottom is the coar-
sest topology, the indiscrete topology (in which there are as few open sets as
possible consistent with having a topology, namely @ and X). Obviously, the
interesting topologies on X (those which convey some genuine information) are
those around the center of the figure. (Think of X as a rock pile and of the
rocks as open sets. Then finer topologies correspond to smaller rocks. In the
discrete topology, every point is an open set—the finest topology—while, in
the indiscrete topology, there is just one large rock—X itself.)

We give one example of the use of this organization of the collection of
topologies on X. Let T, (X in A) be a collection of topologies on X (so, for
each X\, T, is a certain subset of P(X)). Consider T = Q T,, the intersection

of subsets of P(X). We now claim: this T is in fact also a topology on X. We
already know that T is a subset of P(X) (i.e., a collection of subsets of X—
namely, the collection of all subsets of X which are open in each of the topolo-
gies T,): what we must show is that the three conditions for a topology are
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satisfied. We do this: (1) Since @ (a subset of X and hence a point of P(X)) is
in each Ty, @ is in T. Since X is in each T,, Xis in T. (2) Let O, (¢ in 1)
each be in T. Then each O, is open in each topology T,. Hence (since each
T, is a topology), U O, is open in each topology T,. Hence U O, is in T.

(3) Let O and O’ each bein T. Then both O and O are openlitn each topol-
ogy T,. Hence (since each T, is a topology) O N O’ is open in each topology
T,. Hence ON O’ isin T. Thus T is indeed a topology on X: any intersec-
tion of topologies on X is again a topology on X (figure 63). We can, for
example, characterize this T as follows: it is the finest topology on X which is
coarser than each topology T,.

Let A be any collection of subsets of X. Consider topologies on X with
respect to which every subset in the collection A is open. (There certainly is
one such topology: the discrete one.) The intersection of all these topologies is,
as we have seen above, a topology on X. This is called the topology generated
by the collection A of subsets of X. Clearly, the topology generated by A is
the coarsest topology with respect to which every subset (of X) in A is open
(figure 64). One ‘“‘requires that the subsets in A be open, and includes what-
ever other open sets are (absolutely) necessary in order to obtain a topology.”

discrete ™Y

" Topolag ies U)

~ Tnfe‘oj Yy C?

indiscre*ﬁ

Figure 63

discrete m,
Tof’olagig (n which
_— Sobsets in A

are open

— Tofology genera.fed
by T4

indiscrefe o

Figure 64



144 Chapter Twenty-Six

Ezample. Let X = R, the set of real numbers. Let A be the following
collection of subsets of R: the subsets of the form (a,5). Now, this A is not
already a topology on R: it is false, for example, that the union of two such
“open intervals’’ is another. We claim that the topology generated by A is
the usual topology, T, of the real line. First, note that every element of A is
indeed open in the topology T. We must show that the topology T is the
coarsest one which has this property. Let T’ be another topology on the set
R with respect to which each subset (a,b) is open. Then all unions of subsets
of this form must be open with respect to T'. But every open subset with
respect to T (the usual topology) is a union of subsets of this form: hence
every set open with respect to T is also open with respect to T’. That is, T
is coarser than T".

Ezample. Let X be any set, and let A be the collection of all subsets of
X having but a single element. Then the topology generated by A is the
discrete topology on X.

Finaily, we introduce an example of an additional ‘‘niceness” condition
on topological spaces. Let X be a topological space. This X is said to be
Hausdorff if the following condition is satisfied: given any two distinct points
r and z° of X, there are neighborhoods N of z and N” of z° which do not
intersect: NN N” = 0.

Ezxample. Any X with the discrete topology is Hausdorff (for, given any
z3 z’ in X, z itself is a neighborhood of z, and z” is a neighborhood of z’
(since z and z” are open sets)).

Ezample. If X has two or more elements and has the indiscrete topology,
then X is not Hausdorff (for, for z in X, the only neighborhood of z is X
itself).

Ezample. The real line R is Hausdorff. Given distinct numbers a and b,
then, for sufficiently small positive ¢, (a - €,a + €) is a neighborhood of ¢, and
(6 - €,b + €) a neighborhood of b, with these neighborhoods not intersecting
(figure 65).
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Figure 65

iR

Clearly, any topology on X finer than a Hausdorff topology is Hausdorff.
(Intuitively, ‘‘finer topologies give one more open sets, hence more neighbor-
hoods, hence an even better chance of finding two neighborhoods, of given z
and z’, respectively, which do not intersect.””) This situation is illustrated in
figure 66.

Finally, we give an example of a consequence of Hausdorflness.
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THEOREM 30. Let X be a Hausdorff topological space. Then each point z of X

(regarded as a subset of X) is closed.

Proof. Let z° 5 z. Then, since X is Hausdorfl, there are neighborhoods
Nof z and N’ of z” which do not intersect. Hence, in particular, z is not a
point of N°. By theorem 28 (part ii) z* is not in Cl(z). Since this is true for
every z° # z, we have Cl(z) = z. Hence the point z, regarded as a subset of

X, is closed. 1

Ezample. The real line is Hausdorfl. Every point of the real line is a
closed subset.

Ezample. For X a set with two or more elements with the indiscrete
topology, X is not Hausdorfl. Indeed, for any zin X, Cl(z) = X, so the subset
consisting of only z is not closed.

Essentially every topology which arises in applications is Hausdorfl. As a
general rule, one’s intuition is fairly reliable for Hausdorfl topological
spaces—and somewhat less so for non-Hausdorfl.

Ezercise 152. Let A, (X in A) be subsets of topological space X. Prove:
cln4) CN Cl4y), C(UA) DU Cll4), ItN4y) CN Int(4y),
Int(U Ay) D U Int(A,).

Ezercise 153. Let A be a subset of topological space X. Prove that Cl(A¢) =
(Int(A))°. Prove that Bndy(A°) = Bndy(4). Find an example to show that
this is false: Int(C1(A)) = Int(A4).

Ezercise 154. Let A be a subset of topological space X. Why are these
definitions pointless? Let - - - of A be the union of all open supersets of A.
Let - - - of A be the union of all closed subsets of A.

Ezercise 155. Prove that every subset of the real line is an intersection of
open sets. (It is easier than it looks.)
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Ezercise 156. Prove that, for any subset A of topological space X, Bndy(A) is
closed.

FEzercise 157. Find an example of a topological space X such that X is not
Hausdorff, but such that every point of X is a closed subset.

Ezercise 158. Prove that, given any metric space, (X,d), the corresponding
topological space X is Hausdorf!.

Ezercise 159. Prove: given any neighborhood N of point z of topological
space X, there exists a neighborhood N of z such that N is a neighborhood of
every point of N”.

Ezxercise 160. Prove that a Hausdorfl topological space having the property
that every open set is also closed is discrete.

Ezercise 161. Define a neighborhood space as a set X, together with a rule
which assigns, to each point z of X, a collection off supersets of z (to be called
neighborhoods of z) subject to the conditions - - - Now define open subsets of
X by the statement of theorem 27. Figure out what - - - should be in order
that i) these open sets define a topology on X, and ii) the neighborhoods, as
defined by this topology, are precisely the neighborhoods given in the original
neighborhood space.

Ezercise 162. Let X be a set on which there is given a collection of topolo-
gies. Show that their union is not in general a topology. Prove that nonethe-
less there exists a finest topology which is coarser than all the topologies in
the collection.

Ezercise 163. Let A be a collection of subsets of set X. State explicitly which
subsets of X are open in the topology generated by A.

Ezercise 164. Let (X,d) be a metric space. Define, for z and z” in X, D(z,2")
= d{z,2")/(1 + d(z,z"}). Show that (X,D) is also a metric space. Prove that
these two metrics define the same topology on X.

Ezercise 165. Prove that the only subsets of the real line which are both
open and closed are the empty subset and R itself.

Ezercise 166. Let V be a real vector space. Call a subset O of V open if, for
any point v of O and any v” in V, there is a number ¢ > 0 such that v + av”
is in O whenever |a| < €. Prove that this is a topology on V. Is it Hausdorff?

Ezercise 167. Prove that every open subset of the real line is a union of operr
intervals.

Ezercise 168. Let X be a set. Let the open subsets of X be either those
whose complement is all of X or whose complement has only a finite number
of points. Prove that this is a topology on X.
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Continuous Mappings

The primary tool for the study of the structure of topological spaces and their
relationship with each other is the notion of a continuous mapping.

Let X and Y be topological spaces, and let X-‘i Y be a mapping of sets.
This ¢ is said to be a continuous mapping if, for each open O in Y, ¢ ![0] is
open in X. That is, a mapping is continuous if inverse images of open sets are
open. We shall be concerned for the remainder of this chapter with under-
standing this definition.

Fzample. Let X and Y be topological spaces, with X discrete. Then any

)
mapping of sets, X — Y, is continuous. Indeed, for any open Oin Y, ¢7![O]
is a subset of X and hence, since X has the discrete topology, is open in X.

Ezample. Let X and Y be topological spaces, with Y indiscrete. Then

©
any mapping of sets, X — Y, is continuous. Indeed, since Y has the indiscrete
topology, the open subsets of Y are just @ and Y. But ¢ 1[0] = 0 and ¢7![Y]
= X, while, since X is a topological space, @ and X are open subsets of X.

Q)

v

Figure 67

Ezample. Let X and Y each be the real line, and let Xi Y be given by
©(z) = |z| (absolute value of the real number z). This mapping is continuous
(figure 67). First, note that, for (a,b) any open interval (in Y), ¢ ![(a,b)] is
open in X. (If a and b are both positive, p7'[(q,b)] = (a,b) U (~a,-b). If a is
negative and b positive, with |a| < |b|, then ¢ ![(a,b)] = (~b,b). Similarly for
other possibilities.) Continuity follows from the fact that the open subsets of
Yinclude the unions of open intervals.

©
Ezample. Let X and Y each be the real line, and let X — Y be given by
o(z) = 1for 2 > 0 and = -1 for z < O (figure 88). This o is not continuous.
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Indeed, (1/2,3/2) is an open subset of Y, but ¢71[(1/2,3/2)] = the collection
of all z > 0, which is not an open subset of X.

/\y

(Y, %) {-———

Figure 68

To get an intuitive picture of what is involved in the notion of con-
tinuity, we express it in terms of neighborhoods.

THEOREM 31. Let X and Y be topological spaces, and let X i Y be a map-
ping of sets. Then o is continuous if and only if the following condition ss
satisfied: given any point z of X and any neighborhood M of ©(z), there is
a neighborhood N of z such that o[N] C M. [See figure 69.]

X 9, Y
N cp(x)\ M
-
Q[N]-
Figure 69

Proof. Suppose first that ¢ is continuous. Let z be a point of X, and M
a neighborhood of ¢(z). Then there is an open subset O of M with ¢(z) a
point of O. By continuity of ¢, N = ¢ 1[0] is an open set in X. But z is a
point of this N (since ¢(z) is in O), so N is a neighborhood of z. But
©[M C o C M. Suppose, conversely, that the condition of the theorem is
satisfied. Let O be any open subset of Y: we must show that ¢ ![O] is open
in X. For any point 2 of ¢~1[0)], ¢(2) is in O, whence O is a neighborhood of
¢(z). By hypothesis, there is a neighborhood N of z with o[N] C O. That is,
N C ¢Y[0]. That is, ¢"'[O] contains a neighborhood of each of its points,
whence (by theorem 27) 1[0 is open. []
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Intuitively, theorem 31 says the following. Let X f» Y. Suppose that, given
any point z of X and given ‘‘how close you want to be to ¢(z),” I can tell you
“how close you must be to z in order that ¢ send you that close to ¢(z).”
Then ¢ is continuous. Suppose, for example, that, for some z in X, ‘“‘small

X o Y

—_
(p()(') "
X
Q@(x)
x &
Figure 70

variations in z result in large jumps in the location of ¢(z).”” This is the sig-
nal that ¢ is not continuous. Choose the neighborhood M of o(z) (figure 70)
so that these ‘‘large jumps in the location of ¢(z) take one out of M.” Then
one will never find a neighborhood N of z with o[N] C M, for N, if it is to be
a neighborhood, must allow ‘“‘small variations in z,”’ while these ‘“‘nearby
points to z will be sent, by ¢, out of M.” The beautiful thing is that all this
content is expressed so neatly and cleanly by the definition of continuity.

Ezample. Let X and Y each be the real line, and let X —‘f» Y be a map-
ping of sets. Then ¢ is continuous if and only if, given any number z (point
of X) and any 6 > O (which will shortly define a neighborhood of ¢(z)), there
is an € > 0 (which will shortly define a neighborhood of z) such that, when-
ever |z-2"| < ¢, we have |p(z) - p(z")] < 6. (Thus M is all y in Y with
le(z) - ] < 8, while N is all 2° in X with |z~ 2| < e The phrase
‘... whenever |z - 2’| < ¢, we have |p(z) - p(z")] < 6 " above is another
way of waying @[N] C M.) Note, on the one hand, that, by theorem 31, the
statement above is true and, on the other hand, that this statement is just
the usual characterization of continuity of functions of a real variable.

Since ¢ 1[0] = (p'[0])¢, it is immediate that, for a continuous map-
ping, the inverse image of each closed set is closed. On the other hand, it is
false in general that, for a continuous mapping, the image of an open set is

)

open or that the image of a closed set is closed. (For example, let X — X be
the identity mapping of sets, and let the X on the left have the discrete topol-
ogy, the X on the right the indiscrete topology.)

Next, let X, Y, and Z be topological spaces, and let X f» Y i Z be con-
tinuous mappings. Then ¢ o ¢ (composition of mappings) is continuous.
Proof: Let O be open in Z. Then (¢ o ¢)1[0] = ¢ ![¢![O]]. Since ¥ is con-
tinuous, ¢7![O] is open in Y; then, since ¢ is continuous, ©~[¢y"![0]] is open in
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X. Thus composition of continuous mappings yields a continuous mapping,.

We have been discussing whether a mapping of topological spaces is con-
tinuous. The following type of question is also often of interest: if the map-
ping is already given, what are the possibilities for choosing topologies on the
sets involved so that this mapping is continuous?

Let X be a set, Y a topological space, and X—f» Y a mapping of sets. We
wish to find a topology on X such that this mapping is continuous. (Of
course, the discrete topology on X would do the job, but that is not a very
interesting choice.) We proceed as follows. Consider the collection of all sub-
sets of X of the form ©7![0], for O open in Y. Then: (1) The empty set # and
X itself are in this collection (for @ = ©![0] and X = ¢ ![Y]). (2) Any union
of sets in this collection is a set in this collection. (Let ¢7![0,] be sets in our
collection, so each O, is open in Y. Then U ¢ [0y] = ¢ ![U O,], whence,
since U Oy is open in Y, U ¢ 1[0,] is in our collection.) (3) The intersection
of two sets in our collection is a set in our collection. (For O and O’ open in
Y, o0l N ¢ [0°] = ¢[ON O’].) That is, the subsets of X of the form

[}
©71[0] form a topology on X. We call this the topology on X induced by X —

Y. Now let X and Y both be given topological spaces, and Xi Y a mapping
of sets. Then, if y is continuous, every subset of X of the form ¢ '[0] (O
open in Y) must be open in X. That is, every open set in X in the induced
topology must be open in the given topology on X. It is equally clear that, if
every open set in the induced topology on X is open in the given topology on

©
X, then ¢ is continuous. Thus: X — Y is continuous if and only if the topol-
ogy on X is finer than the induced topology on X. Another way of saying the

. I
same thing: the induced topology on X is the coarsest for which X — Y is
continuous. The situation is illustrated in figure 71.

discrete — Tovalomies i
opologies (n
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indiscrete ~

Figure 71

We give one example of the use of the discussion above. Let Y be a

")

topological space, and let A be a subset of Y. Let A — Y be he natural
monomorphism which inserts A into Y. Then we have, on A, the induced
topology, with respect to which ¢ is continuous. In more detail, the open
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subsets of A in this topology are subsets of the form A N O, with O open in Y
(figure 72). This A, with this (induced) topology, is called a subspace of Y.

Y

O (Open — OnA (Open
in Y) |7 (N in A
A
Figure 72

We next consider the reverse of the situation above. Let X be a topologi-

cal space, and Y a set, and let X f» Y be a mapping of sets. Consider the col-
lection of all subsets O of Y for which ¢1[0] is open in X. We claim that
this collection of subsets of Y defines a topology on Y. [Proof: (1) ¢7![0] = 6,
¢ '[Y] = X. (2) For O, (X in A) in this collection, so each ¢1[0,] is open in
X, U ¢[0y] = ¢7Y[U O] is open in X, whence U Oy is in the collection. (3)
For 0 and O’ in this collection, so is O N O, since p71[ON 0’] = ¢![0]
N ¢ }[0’].] We call this the topology on Y induced by X f» Y. The induced

topology on Y is the finest for which ¢ is continuous, so, for X and Y topolog-

"4
ical spaces, X — Y is continuous if and only if the topology of Y is coarser
than the induced topology on Y (figure 73). (No confusion results from these
two meanings for the term “induced topology.”)

discrete =,
Induceol Topology

on ¥
Topologies
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Figure 73

Finally, we give an example of a use of the induced topology above. Let
X be a topological space, and suppose that we are given an equivalence rela-
tion, “a2,” on the set X. Denote by Y the collection of all equivalence classes.

P2

Let X — Y be the mapping which sends each point of X to its equivalence
class. Then we have, on Y, the induced topology, with respect to which ¢ is
continuous. In more detail, this topology is the following. Let O be a subset



152 Chapter Twenty-Seven

of Y, so each point of O is a subset of X (an equivalence class). Then ¢ 1[O]
is just the union (in X) of all the equivalence classes represented by points of
O. Thus, in the induced topology, this O is open in Y whenever this union of
equivalence classes is an open subset of X. In figure 74, the equivalence rela-
tion on X is ‘‘two points of X are equivalent if they lie on the same horizontal
line.” Then the equivalence classes are the horizontal lines. Hence Y (the set
of all horizontal lines) can be represented as a vertical line. A subset of Y is
open in the induced topology if and only if the union of the corresponding col-
lection of horizontal lines is open. In general, the topology on Y, obtained as
above, is called the guotient topology (on the set of equivalence classes of the
equivalence relation “/2’’ on the topological space X).

X .Y

e%ui‘valence —
eless [
700 io
9101/
Figure 74

v
Ezercise 169. Let (X,d) be a metric space, and fix a point zof X. Let X - R
be the mapping with p(z) = d(z,z). Prove that o is continuous.

7]
Ezercise 170. Let R — Y be continuous, where Y has the discrete topology.
Show that, for any numbers r and r”, o(r) = ¢(r").

Ezercise 171. Let X and Y be sets. Find all mappings of sets, Xf» Y, which
are continuous for all topologies on X and Y.

12N
Ezercise 172. Let X be a set, Y a topological space, and X — Y (XA in A) a
collection of mappings from X to Y. Construct the coarsest topology on X
such that all these mappings are continuous.

73
Ezercise 173. Is it true that, for X and Y topological spaces and X — Y a
mapping of sets, ¢ is continuous if and only if inverse images of closed sets
are closed?

Ezercise 174. Let Y be the topological plane, so a point of Y is a pair, (y;,%),
of real numbers. Let A be the subset of Y consisting of all points for which
()% + (%) = 1. (The subspace A, as a topological space, is called the
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[
topological one-sphere.) Find explicitly the open sets in A. Let R — A be
given by ¢(r) = (cos r, sin r). Show that this ¢ is continuous.

Ezercise 175. Let V be a real vector space with the topology of exercise 166.
p

Show that every linear mapping, V — V'is continuous.

Ezercise 176. Let V be a real vector space, W a subspace of V, and V/W the

]
quotient space. Then, giving V the topology of exercise 166, V — V/W
induces a topology on the vector space V/W. Show that this topology is also
that of exercise 166.

Ezercise 177. Let X be a topological space. Call an equivalence relation on X
Hausdorff if the induced quotient topology on the set of equivalence classes is
Hausdorfi. Show that the intersection of all Hausdorff equivalence relations
on X is a Hausdorff equivalence relation. (Thus one ‘“‘makes equivalent as few
points of X as necessary to get a Hausdorfl quotient space.”) Give this
equivalence relation explicitly.

73
Ezercise 178. Let X — Y be a continuous mapping of topological spaces, and
let A be a subset of Y. Is it true that p! [Cl(4)] = Cl(p7[4])? that
¢ ![Int(4)] = Int(p'[A])?

7]
Ezercise 179. Let X — Y be a continuous mapping of topological spaces. Let
L be the subspace p[X] of Y, and let K be the quotient space of X by the

equivalence relation z = z" if p(z) = p(2°) on X. Show that the natural

a B gl
mappings X — K — L — Y are all continuous and that p = v0 fo a.
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The Category of Topological Spaces

Let the objects be topological spaces, the morphisms continuous mappings of
topological spaces, and composition composition of continuous mappings (not-
ing that the composition of two such is another). We thus obtain a category,
the category of topological spaces. (Similarly, e.g., the category of Hausdorff
topological spaces.) In this chapter, we shall specialize various categorical
notions to the category of topological spaces.

There is apparently only one forgetful functor from the category of topo-
logical spaces—that to the category of sets (i.e., for X a topological space, let
F(X) be the set X). The corresponding free construction would be this. Let S
be a set. A free topological space on S consists of a topological space X

u

together with a mapping S — X of sets, such that the following condition is
v

satisfied: given any topological space Y and mapping S — Y of sets, there is a

¢
unique continuous mapping X — Y of topological spaces such that the
diagram of figure 75 commutes. We now claim: (X,u) is a free topological

Figure 75

M
space on S provided S — X is an isomorphism of sets (i.e., provided ‘‘set X is
just a copy of set S'), with X having the discrete topology. [Proof: Let Y be
v

M
a-topological space, and S — Y a mapping of sets. Then, since S — X is an

isomorphism of sets, there is certainly a unique mapping of sets, Xl Y, such
that ‘the diagram of figure 75 commutes. But, since X has the discrete topol-
ogy, this ~ is necessarily a continuous mapping of topological spaces.] Thus
nothing essentially new results from this construction. Instead of “taking the
free topological space on set S,”’ one might just as well “endow the set S with
the discrete topology” (since X is just a copy of set S anyway).

Next, let X and Y be topological spaces. An fsomorphism from X to Y is

"3
a continuous mapping X — Y of topological spaces for which there exists a

continuous mapping Y — X with o o = iy and p o ¥ = i. We now claim:
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X i Y is an isomorphism if and only if i) ¢ is one-to-one and onto, and ii)
images and inverse images of open sets, under p, are also open sets. [Proof:
Clearly, these conditions imply (choosing for 9 the inverse of ¢, the existence
of which is guaranteed by condition i)) that ¢ is an isomorphism. Suppose,
conversely, that ¢ is an isomorphism. Then ¢ must be an isomorphism of
sets, i.e., ¢ must be one-to-one and onto. By continuity of ¢, inverse images
of open sets must be open. Finally, for O open in X, p[0] = ¢![0] must be
open in Y, by continuity of 4.] Thus an isomorphism, in the category of topo-
logical spaces, is ‘‘a correspondence between set X and set Y which takes open
sets in X to open sets in Y, and vice versa.” It “‘makes X and Y identical as
topological spaces.” (An isomorphism, in this category, is normally called a
homeomorphism.)

It is easily checked that monomorphisms, in the category of topological
spaces, are just one-to-one continuous mappings. Thus, for Y a topological
spaces, a subobject (in this category) consists of a topological space A

©
together with a one-to-one continuous mapping A — Y. Since ¢ is one-to-
one, we may regard A as a subset of Y. Then, in order that ¢ be continuous,

the topology on A must be finer than the topology induced by A —ﬁ Y. Thus,
for Y a topological space, any subset of Y, given a topology finer than the
induced topology on that subset, yields a subobject. In particular, there are
in general many topologies on such a subset (e.g., the induced topology itself,
the discrete topology, or any in between) which make it a subobject. (Note
that no such feature arises, e.g., for subgroups.) It is conventional to reserve
the term ‘‘subspace’” for the case when the subset is given the induced
topology.

These preliminaries out of the way, we now turn to the interesting part:
direct products and direct sums.

Let X and Y be topological spaces. Then (from category theory) a direct
product of X and Y consists of a topological space Z, together with continuous

a B
mappings Z — X and Z — Y, such that the following condition is satisfied:

M
given any topological space W, and any continuous mappings W — X and W
v ¢l
— Y, there is a unique continuous mapping W — Z such that the diagram of

figure 76 commutes. In fact, direct products indeed exist in this category.

Choose, for the set Z, Z= X X 'Y, the Cartesian product of sets. (As regards

underlying sets, topology is very ‘‘set-theory-like,” much more so than is, say,

group theory.) Thus a point of Z is an ordered pair, (z,y), with z a point of X

and y a point of Y, and a(z,y) = z and fB(z,y) = y. For the topo;ogy of Z, we
o

choose the coarsest one for which the mappings Z — X and Z — Y are con-
tinuous. (Motivation: We are trying to get a direct product here, so we want
to choose a topology on Z so that « is ‘‘as likely as possible to be continuous.”
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Hence one wants to place on Z the coarsest topology possible. We cannot,
however, go too far in this direction—e.g., choose the indiscrete topology on
Z—for we might thereby fail to have a and B continuous. So we strike the
best possible compromise.) In more detail, the topology on Z is that gen-
erated by the subsets of Z of the form &![0], with O open in X, and 8-![U],
with U open in Y. (Note that, for O open in X, a '[O] consigts of all points
(z,9) of Z with zin O.) In still more detail, the open sets in{ Z are unions of
sets of the form a~![O] N A~'[U], with O open in X and U open in Y. (Note
that a![0] N B'[U] consists of points (z,3) of Z with z in O and y in U))
This is clearly a topology on Z and is clearly the coarsest one with respect to

o
which both Z — X and Z — Y are continuous. We now claim that this
(Z,0,B) is a direct product of X and Y. Proof: Let W, u, and v be as above.
Then, since Z is the Cartesian product of sets X and Y, there is certainly a

unique mapping of sets, W 1» Z, such that the diagram commutes. We have
only to prove that this 7 is continuous. First, note that, for open sets in Z of
the form «7![O] N A'[U] (O open in X and U open in Y), we have
7' 0 N AU = o [O N AU = (e 0[Ol N (BoA)'[U]
= p~1[0] N v"![U] which (since g and v are continuous and since the intersec-
tion of two open sets is open) is open in W. Thus inverse images, by ~, of
open subsets of Z of this form are open. But every open set in Z is a union of
open sets of this form: hence 7 is continuous. Thus (Z,a,p) is indeed a direct
product of X and Y.

Ezample. The direct product of two topological spaces with the discrete
topology is the Cartesian product with the discrete topology. The direct pro-
duct of two topological spaces with the indiscrete topology is the Cartesian
product with the indiscrete topology.

Ezample. Let X and Y each be the real line. Then the set Z of the topo-
logical space that is the direct product of X and Y is the collection of all pairs
of real numbers. Given an open set O in X, for example, the open interval
(a,b), and an open set U in Y, for example, the open interval (c,d), the open
set «1[0] N B} U] in Zis the collection of all pairs (z,y) with ¢ < z < b and
¢ < y < d, that is, an “open square” in the plane Z. (Note that the notation
“(,)" has two different meanings in the sentence above.) (See figure 77.)
The most general open set in Z is a union of such “open squares.” Clearly,
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this topological space Z is just the topological plane.
Once again, let X and Y be topological spaces. Then (again from
category theory), a direct sum of X and Y consists of a topological space Z,

a B
together with continuous mappings X — Z and Y — Z, such that the follow-

ing condition is satisfied: given any topological space W, and any continuous
" v
mappings X — Wand Y — W, there is a unique continuous mapping 7 — W

such that the diagram of figure 78 commutes. Direct sums also exist in this
category. Choose, for the set 7, Z = X U, Y, the disjoint union of sets, and

a B
for X - Z and Y — Z the usual mappings of sets. For the topology of Z, we
a B

choose the finest one for which X — Z and Y — Z are continuous (for “‘we
want to make it as likely as possible that 4 will be continuous, whence we
want the topology of Z to be as fine as possible, while we cannot afford to
make it so fine that either o or j fail to be continuous.”) Thus a subset U of
Z will be taken to be open if a~![U] is open in X and 8![U] is open in Y. This
is clearly a topology on Z, and clearly the finest one for which @ and j are
continuous. (Note that, in this case, we do not have to consider the topology
generated by something.) We now claim that this (Z,c,8) is a direct sum of X
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and Y. Proof: Let W, g, and v be as above. Then, since Z is the disjoint

union of sets X and Y, there is certainly a unique mapping of sets, Z —7> W,
which makes the diagram commute. We must show that this 7 is continuous.
Let O be open in W: we must show that 7“[0] is open in Z. That is, we
must show that o ![y![O]] is open in X, and 8-'[y'[O]] is open in Y. But
o '[Y[0]] = (vo a)![0] = p![O] is indeed open in X, by continuity of g,
and similarly for #'[y[0]]. Thus 7 is continuous, whence this Z is indeed a
direct sum of X and Y.

The situation is illustrated in figure 79. Since the set Z is the disjoint
union of sets X and Y, Z consists of ‘‘a copy of X placed beside a copy of Y.”
A typical open set O in Z is a subset whose ‘““overlap with the copy of X is
open in X and whose overlap with the copy of Y is open in Y.” (This admis-
sion of open sets in Z which intersect both ‘‘the copy of X and the copy of Y’
is necessary because, if Z is to be a topological space, unions of open sets must
be open.)

Figure 79

Ezample. The direct sum of two topological spaces with the discrete
topology is the disjoint union with the discrete topology. The direct sum of
two topological spaces with the indiscrete topology is the disjoint union, with
just four open sets: the empty set, the disjoint union itself, the “copy of X,”
and the “copy of Y.”

Ezample. The subspace (0,1) U [2,3] of the real line is isomorphic to the
direct sum of the subspace (0,1) with the subspace [2,3]. It is false, however,
that the subspace (0,1) U [1,2] of the real line is isomorphic to the direct sum
of the subspace (0,1) with the subspace [1,2].

Ezercise 180. Prove that any subspace of a Hausdorfl topological space is
Hausdorff.
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Ezercise 181. Find an isomorphism from the subspace (0,1) of the real line to
the real line. Prove that there is no such isomorphism from the subspace
[0,1].

Ezercise 182. Give a universal definition which leads to the introduction of
the indiscrete topology on a set.

Ezercise 183. Prove that every topological space is a direct product of two
topological spaces.

Exercise 184. Find an isomorphism from X, the subspace of the topological
plane consisting of all points except the origin, to Y, the direct product of the
topological one-sphere and the real line.

Ezercise 185. Prove that both the direct product and the direct sum of two
Hausdorff topological spaces is Hausdorff.

Ezercise 186. Prove that the continuous mappings a and S in the definition
of a direct product take open sets to open sets. Find an example in which
they do not take closed sets to closed sets.

Ezercise 187. Prove that the continuous mappings o and A in the definition
of a direct sum take open sets to open sets and closed sets to closed sets.

Exercise 188. Prove that, in the category of topological spaces, epimorphisms
are onto continuous mappings. Prove that, in the category of Hausdorff topo-

©
logical spaces, a continuous mapping X — Y with Cl[p[X]] = Y is an epimor-
phism.

Ezercise 189. Let X be the rational numbers (as a subspace of the real line),

©
Y the real line, and X — Y the mapping with ¢(z) = z. Prove that ¢ is a
continuous mapping, a monomorphism, and an epimorphism—and that ¢ is
not an isomorphism.

Erercise 190. Prove that, if the topologies of X and Y are replaced by finer
topologies, then the topology of the direct product becomes finer. Similarly
for the direct sum.

Exzxercise 191. Let A and B be disjoint subsets of topological space X. Find a
simple necessary and sufficient condition that the natural mapping from the
subspace A U B of X to the direct sum of subspace A with subspace B be an
isomorphism.

Ezercise 192. Let X and Y be topological spaces. Define an equivalence rela-
tion on the direct product: (z,9) &~ (2",y") if z = z". Find an isomorphism
from the quotient space to Y.



29

Nets

We introduce in this chapter the notion of a net. One can regard this notion
as analogous to that of a boundary or to that of a neighborhood in the follow-
ing sense: each contributes a slightly different point of view to the concept of
an open set.

K
Fix a topological space X. A sequence in X is a mapping, Zt — X, from
the set Z * of positive integers to the set X. Instead of writing, for n a posi-
tive integer, k(n) for the corresponding point of X, we may write z,. Thus a
sequence in X consists of z;, z;, 73, ..., a “numbered list of points of X."
The intuitive notion (see figure 80) of such a sequence’s ‘‘approaching a point

X

Figure 80

zof X' certainly has a topological flavor. Thus one might imagine introduc-
ing such a notion in topology and proving theorems about it. It turns out,
however, to be easier to deal with things somewhat more general than
sequences: these “things” will be called nets. The idea is to deny the positive
integers the special role they play with regard to sequences.

A directed set is a nonempty partially ordered set A having the following
property: given any elements § and §° of A, there is an element §°” of A with
§< 6 and 6" < 67,

Ezample. The positive integers Z% (on which “<’’ is given its usual
meaning) is a directed set: given any two positive integers, there exists a posi-
tive integer greater than or equal to both.

Ezxample. The set of real numbers (with the usual “ <"} is a directed set.

Ezample. Let X be a topological space, and z a point of X. Denote by A
the collection of all neighborhoods of z. For § and 6" neighborhoods of z,
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write § < §” if §° C 6. (Note that ‘“‘larger elements of the directed set A are
smaller neighborhoods.””) This A is a directed set. Indeed, for 6 and 6" ele-
ments of A (i.e., neighborhoods of z), 6 = § N 6" is also a neighborhood of
z, while 6§ < 6°” and 6" < §”°. This A will be called the directed set of
neighborhoods of z.

Ezample. The partially ordered set of figure 24 (see chapter 8) is not a
directed set.

Fix a topological space X. A net in X consists of a directed set A

K

together with a mapping A — X from set A to set X. Instead of writing, for
§ in A, k(6) for the corresponding point of X, we shall write z;, (We shall
usually refer to a net thus: “ - - - net z;5 (6 in A) - - ") Thus, for example,
every sequence is a net (where the directed set is the directed set of positive
integers). The advantage of nets over sequences is that, since the former
‘“allow larger and more complicated directed sets, nets are able to approach
points in more sophisticated ways.”

Let X be a topological space, and let 5 (6 in A) be a net in X. A point z
of X is said to be a limit point of this net if the following condition is satisfied:
given any neighborhood N of z, there is an element § of A such that all z;.
with § < §° are points of N (figure 81). One says, when this is the case, that
the net converges (to z). (Intuitively, a net converges to z in X if “the points
of the net eventually get into, and remain in, every neighborhood of z.")

X

N
Xs,/\
. k"s

Figure 81

Ezample. Let X be any topological space, z any point of X, and A any
directed set. Then the net with 23 = z for every é converges to z.

Ezample. Let X be the real line, and consider the sequence with z; =
1/2, 2y = 1/4, z3 = 1/8, - - - This net converges to the point 0 (for, given
any neighborhood of 0, there is a positive integer such that all z, with n
greater than or equal to this integer are in the given neighborhood).

Ezample. Let X be the real line, and consider the sequence with z; = 0,
z2p =1 23 =0, 2 = 1, - - This net does not have any limit points.
Indeed, given any real number r, choose a neighborhood of r which excludes
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either the point 0 or the point 1 (always possible). Then, since “every other
z, is outside this neighborhood,” there is no integer such that every z, with n
greater than or equal to this integer is a point of our neighborhood.

Ezample. For X indiscrete, every point of X is a limit point of every net
in X.

This last example, in particular, suggests

THEOREM 32. Let X be a Hausdorff topological space. Then any net in X, if
it has any limit point, has a unique one.

Proof. Let z; (6in A) be a net in X, and let this net have two different
limit points, z and z°. We obtain a contradiction. Since X is Hausdorff,
there are neighborhoods N of # and N” of z°, with NN N° = 0. Since the
net converges to z, there is a § with z;- in N whenever § < §”°. Since the
net converges to z°, there is a 6" with z;- in N° whenever §° < 6”°. Since
A is directed, there is a §”° with § < 6" and 6" < §°". Hence, for this 6",
we have z;- a point of N and ;- a point of N, contradicting NN N’

=0.]

We now describe the ‘“‘net point of view” toward open sets and continu-
ous mappings.

THEOREM 33. Let A be a subset of topological space X. Then Cl(A) consists
precisely of the limit points of nets in A (i.e., nets each of whose z; is a
point of A).

Proof. Let z be a limit point of net z; (6 in A) in A. Then, given any
neighborhood N of z, there is a § with (in particular) z; a point of N. But this
z; is also a point of 4, whence this neighborhood NN intersects A. Since every
neighborhood of z intersects A, z is a point of Cl(A). Now suppose, con-
versely, that z is a point of Cl(A), so every neighborhood of z intersects A.
We must find a net in A converging to 2. Let A be the directed set of neigh-
borhoods of z. For § in A (so é is a neighborhood of z), choose z; a point of
6N A. This is a net in A. Furthermore, it converges to z, for, given any
neighborhood N (= §) of z, all z;- with § < é” (i.e., with §° C N} are points
of N.|J

The only tricky part of the proof is in the last half, in which one uses the
directed set of neighborhoods of z to construct a net. It is crucial here that
one have available the notion of a net (rather than just that of a sequence).
In fact, theorem 33 is false if ‘“‘net” is replaced by ‘“‘sequence” (for ‘“sequences
are not long enough, in general, to probe out all points of Cl(A) while remain-
ing in A”).

It is immediate from theorem 33 that a subset C of topological space X
is closed if and only if C contains every limit point of every net in C.
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(For example, [0,1] is a closed subset of the real line.) Thus a subset O of X
is open provided no point of O is a limit point of a net none of those z are
points of O. (Nets ‘“cannot converge to a point of open O without actually
entering 0.")

Next, we characterize continuous mappings.

THEOREM 34. Let X and Y be topological spaces, and X i Y a mapping of
sets. Then @ is continuous if and only if the following property is
satisfied: given any point z of X, and any net z; (6 in A) in X that con-
verges to z, the net p(z5) (6 in A) in Y converges to p(z).

Proof. Suppose first that © is continuous. Let z; (6 in A) be a net in X
that converges to z. By continuity of ¢ there exists, for any neighborhood M
of ¢(z) in Y, a neighborhood N of z with ¢[N] C M. By convergence of the
net to z, there exists a § with z;- in N whenever § < §°. Hence p(z;) is a
point of M whenever § < §°. This is so for every neighborhood M of o(z), so
the net ¢(z;) (6 in A) converges to (z) in Y. Now suppose, conversely, that
the property of the theorem is satisfied. We show that the assumption that ¢
is not continuous leads to a contradiction. By theorem 31 (assuming ¢ not
continuous), there is a point z of X and a neighborhood M of ¢(z) such that
for no neighborhood N of z is ¢[N] C M. Let A be the directed set of neigh-
borhoods of z. For é in A, choose z; a point of neighborhood & with (z;) not
a point of M (possible, since p[d] is not a subset of M). Then this net in X
converges to z, while, since no ¢(z;) is a point of neighborhood M in Y, the
net ¢(zs) in Y does not converge to ©(z). This contradicts our supposition
that the property of the theorem is satisfied. Hence  must be continuous. |’

Theorem 34 gives perhaps the best intuitive picture of a continuous mapping;:
it ‘“preserves limit points, whence it does not permit the image of a point to
move too wildly with motion of the point itself.”

We conclude this chapter with one more definition. For z;(§in A) a net
in topological space X, point z of X is said to be an accumaulation point (of
this net) if, for any neighborhood N of z and any 6 in A, there exists a §°
with § < §” and with z;- in N. (Intuitively, z is an accumulation point of a
net if the net ‘“‘continually reenters” every neighborhood of 1z, i.e., if the net
“never gets out of and remains thereafter out of any neighborhood of z.’")
Clearly, every limit point of a net is an accumulation point of that net,
although the converse is false: the numbers 0 and 1 are both accumulation
poinfs of the net on the reals consisting of a sequence which alternates
between 0 and 1.
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Ezercise 193. State and prove the converse of theorem 32.

FExercise 194. Prove that every net z; (6 in A) on a topological space X with
A finite converges.

Ezercise 195. Let z be a point of topological space X. Let A be the directed
set of neighborhoods of z, and let z; be a point of & for each §. Prove that
this net converges to z.

Ezxercise 196. Let z; (§ in A) be a net in Z, the direct product of X and Y
o B

(with Z — X and Z — Y the corresponding continuous mappings). Prove
that this net converges if and only if the nets a(z;) in X and f(z) in Y con-
verge.

Ezercise 197. Characterize the nets, on a discrete topological space, that con-
verge.

Ezercise 198. Prove that, for any topological space X, there exists a net in X
having every point of X as an accumulation point. (Hints: Every set can be
given a partial ordering so that it is a directed set. One might as well give X
the discrete topology.)

"]
Ezercise 199. Find an example of a continuous X — Y, and a net z; (6 in A)
in X which does not converge to z but with ¢(z;) converging to ¢(z).

Ezercise 200. Prove that every net in the subspace [0,1] of the real line has
an accumulation point.

Ezercise 201. Let X = R, the set of real numbers. Let the open sets in X
consist of the empty set together with sets whose complements are countable.
Prove that this is a topology on X. Prove that the element 0 of X is in the
closure of the subset (0,1) of X. Show that no sequence in (0,1) converges, in
this topology, to 0. Find a net in (0,1) that converges to 0.
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Compactness

We now introduce the notion of compactness in topology.

It is convenient to have available the following definition. Let S be a set,
A a subset of S, and A4, (X in A) some collection of subsets of S. Then the Ay
are said to cover Aif A C %J A,, that is, if every point of A is a point of some

A,. In particular, the collection A, (X in A) of subsets of S covers Sitself pro-
vided S = 5\) A,y

Let X be a topological space. This X is said to be compact if it has the
following property: given any collection O, (X in A) of open sets that cover X,
some finite number of these O, also cover X.

Ezample. Let X be any infinite set with the discrete topology. Then X is
not compact. Consider the collection of all subsets of X that contain just one
point of X. These are open sets (since X is discrete), and they cover X (since
every point of X is a point of one of them). But, since X is infinite, no finite
number of these cover X.

Ezample. Let X have the indiscrete topology. Then X is compact. Con-
sider any collection Oy (X in A) of open sets that cover X. Then, since the
only open sets in X are X and @, at least one of these O, must be X itself.
This single O, itself covers X.

Ezample. Let X be the subspace of the real line consisting of the open
interval (0,1). Then X is not compact. Let O, = (1/4,3/4), O, = (1/8,7/8),
O3 = (1/16,15/16), . . ., open subsets of X. These clearly cover X. But no

finite number cover X (for, given any finite number of Oy, O,, ..., there is
some small € > 0 (so ¢ is in (0,1)) which is in none of that finite number of
open sets).

Ezample. Let X be the subspace of the real line consisting of the closed
interval [0,1). Then X is compact. (First, note that the technique of the pre-
vious example will not work here. The O;, O,, * - - of that example do not
cover [0,1], for the points 0 and 1 are in none of these open sets. Suppose
that we add a couple of open sets to obtain a collection which does cover this
X. Thus we might add [0,1/16) and (15/16,1). (Note that these are actually
open sets in X. Since X is the subspace [0,1] of the real line, the open sets in
X are the intersections of [0,1] with open sets in the real line.) Now we have
a collection of open sets in X that cover X, but a finite number will also work:
in this example, (1/32,31/32), [0,1/18), and (15/186,1].) To prove that this X
is compact, let O, (X in A) be any collection of open sets that cover X. We
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suppose that no finite number cover X and obtain a contradiction. Since mo
finite number cover X = [0,1], it must be true that either no finite number
cover [0,1/2] or no finite number cover [1/2,1] (or both, in which case, pick
one). Suppose that no finite number cover [1/2,1]. Then either no finite
number cover [1/2,3/4] or no finite number cover [3/4,1]: say, no finite
number cover [1/2,3/4]. Then either no finite number cover [1/2,5/8] or no
finite number cover [5/8,3/4], etc. We “keep dividing the half that no finite
number cover in half, and asking which half no finite number cover.” Repeat-
ing this process, we obtain successively smaller closed intervals, which must
converge on some real number a in [0,1]. But our original collection O, of
open sets cover X = [0,1], whence one of them, say O,, must contain a. But
since the closed intervals in the construction above converge on g, one of
them must be a subset of this Oy. But this closed interval does have the pro-
perty that a finite number of the O, (M in A) cover it, namely the single O,
itsell. This contradicts our construction of the closed intervals above. Hence
X is compact.

Nets often provide an easy way to get a feeling of what is involved in
something. The situation in the present case, as suggested by the previous
two example, is this:

THEOREM 35. Let X be a topological space. Then X is compact if and only if

every net in X has an accumulation point.

Proof. Suppose first that X is compact, and let z; (6 in A) be a net in X.
We show that the assumption that this net has no accumulation points leads
to a contradiction. For z any point of X, then, since z is not an accumulation
point of the net, there is an open neighborhood O, of z and a §_in A such
that no z; is in O, with §, < 8. These open O, (as Z ranges over X) certainly
cover X. Since X is compact a finite number also cover X: denote by A this
finite collection of points z such that U O = X. Since A is a directed set,

~yin A z
there exists an element § of A with § < & for all zin A. The corresponding

point z; is therefore in no O_ (z in A-)-. This contradicts the fact that the O_
(zin A) cover X. B -

Next, suppose that X is not compact. We construct a net on X that has
no accumulation point. Since X is not compact, there exists a collection O,
(N in A) of open sets that cover X and that are such that no finite number
cover X. Denote by A the directed set of all finite subsets of A, ordered by
inclusion. For 6 in A (so & is a finite subset of A), set K; = )EIJ‘ s 0,, a union

of a finite number of the O,. Since no finite number of the O, cover X, no Kj
is all of X: hence we may choose, for each § in A, a point z; of X - K; We
have thus constructed a net in X. We claim that it has no accumulation
points. Let z be a point of X. (We want to show that this z is not an accu-
mulation point of our net.) Since the O, cover X, there is some O, containing
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the point z. Denote by § the finite subset of A consisting of this single ele-

ment A\. Then, for § < é (i.e., for § a finite subset of A containing the element

A), we have Oy C K; (since K; = XU s O, and since )\ is among the X in the
mn

union). The corresponding element z; of our net is not in Kj (by construc-
tion), and so this z; is also not in O,. That is, we have found, for each z in
X, a neighborhood Oy of z and a § such that no z; is in Oy for § < 6. In
other words, we have shown that our net z; (§ in A) has no accumulation
points. |

This difficult proof requires some explanation. For the first part, one supposes
that X is compact and that some net in X has no accumulation point. Then
every point of X has an open neighborhood such that ‘‘the net gets out of
that neighborhood and remains out of that neighborhood” (for otherwise that
point would be an accumulation point). But we have one of these open neigh-
borhoods for each point of X. Thus we have a collection of open sets that
cover X. By compactness, a finite number will serve to cover X. Now we
have a finite number of open sets that cover X and such that, for each one,
“the net gets out of it and remains out of it.” But there are only a finite
number of these open sets: how can the net “get out of and remain out of all
of them”? Where is the net supposed to go? This is the contradiction for the
first half of the proof. For the second half, one supposes that X is not
compact—so one has some collection of open sets that cover X such that no
finite number will do. Thus, given any finite number of these open sets, one
can find a point of X outside all of them. These “points outside” are made
into a net, where the directed set A is the set of all ‘‘finite numbers of open
sets.” This construction makes the net unable to have an accumulation
point. Suppose a point z of X wanted to be an accumulation point. Since
one of our open sets, O,, contains z, all of the points of the net associated
with a finite number of the open sets which include this O, must be outside
this Oy. That is, the net “gets out of and remains out of this 0,.” Thus z
(for every point z of X) cannot be an accumulation point.

Now let X be a set, and consider the partially ordered set of all topolo-
gies on X. The coarser the topology on X, the fewer the number of open sets
on X, the more difficult it will be to find a collection of open sets that cover X
such that no finite number cover X, the more likely it will be that X is com-
pact in this topology. More precisely: if some topology on X makes X com-
pact, then any coarser topology on X also makes X compact. The situation is
illustrated in figure 82.

Next, let X be a topological space, and let A be a subset of X. The sub-
set A is said to be compact if the subspace A (a topological space based on set
A) is compact as a topological space. Since the open sets in A are the inter-
sections of A with the open sets in X, we have the following: the subset A is
compact provided the following condition is satisfied: given any collection O,



168 Chapter Thirty

discrele 7>

Tof’olyitb
°on '§< Topo|09;e$ n
which
\ is compoc
. >
|hd\5cv~e,Te\_/

Figure 82

(N in A) of open sets in X that cover A, a finite number of these also cover A.

One can think of a compact subset of X in the following terms. A subset
A of X is closed if “all boundary points of A made available by X are con-
tained in A.”” For compactness of A, we require somewhat more—that ‘‘all
points which could conceivably be made available as boundary points
(whether or not those points are actually made available by X) for A are
included in A.”” Thus, for A to be closed, we require that ‘‘given any net in
A, and if it has an accumulation point (in X), then that accumulation point
be in fact a point of A, while compactness requires that every net in A actu-
ally have an accumulation point (in A). Thus, in particular, ‘“‘whether or not
A is closed depends on what X is, while whether or not A is compact depends
only on the subspace A itself.” Take the case A = X. The subset X of X is
always closed (in X) (for, intuitively, X certainly contains all boundary points
made available by X), while X may not be compact (since there may be other
points which ‘‘could conceivably be made available to this X as boundary
points”’).

The following two results illustrate these remarks.

THEOREM 36. A closed subset C of a compact topological space X is compact.

Proof. Let O, (X in A) be any collection of open sets in X that cover C.
Then, including the vpen set C ¢ to this collection, we obtain a collection of
open sets in X that cover X. Since X is compact, a finite number cover X.
Hence, in particular, this finite number cover C. If C ¢ happens to be in this
finite number, we still have, on deleting it, a finite number of the O, that
cover C (since C ¢ “does not contribute to covering C "’). That is, given any
collection of open sets in X that cover C, a finite number cover C; so Cis
compact. |

In intuitive terms, ‘“since X is compact, every boundary point which could
conceivably be made available to X is included in X, while, since C is closed
in X, “every boundary point which X makes available to C is included in C.”
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Hence “every point which could conceivably be made available to C as a
boundary point must be included in C,” whence C is also compact. The
second result is:

THEOREM 37. Let C be a compact subset of Hausdor[f topological space X.
Then C 1s closed.
Proof. Fix a point z of X that is not a point of C. Given any point ¢ of
C, then, since X is Hausdorff, there is an open neighborhood O, of ¢ and a
neighborhood N, of z, with O, N N, = 0. The collection of all these O, (as ¢
ranges over C) clearly cover C. Since C'is compact, a finite number cover C':
denote by A this finite number of ¢ such that _UA O, C C (figure 83). Then

cm

ﬂA N, (the intersection of a finite number of neighborhoods of z) is certainly
ecin
a neighborhood of z. Since each N, does not intersect the corresponding O,
and since the O, for ¢ in A cover C, this _ﬂA N, does not intersect C. Thus

¢ In

we have found, for each point z of X that is not a point of C, a neighborhood
of z that does not intersect C. Hence (theorem 27) C'is closed. []
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N
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Intuitively, since Cis compact, it must include ‘“‘every point which could con-
ceivably be made available to it as a boundary point,” and so C must cer-
tainly include ‘‘every boundary point actually made available by X.”” Thus C
must be closed.

As an example of these theorems, we find all the compact subsets of the
real line. A subset of the real line is said to be bounded if it is a subset of
some closed interval. Suppose first that Cis a compact subset of the real line.
Then C must certainly be bounded, for, were it not, one could find a sequence
in C(‘‘going off to infinity’’) having no accumulation point. (The existence of
such a sequence would, by theorem 33, violate compactness of C.) Further-
more, this C must be closed (by theorem 37, since C'is a compact subset of a
Hausdorfl topological space, namely the real line). Thus every compact subset
of the real line is closed and bounded. Now suppose, conversely, that Cis a
closed and bounded subset of the real line. Then, since C is bounded, C is a
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subset of some closed interval. But, as we have seen, every closed interval in
the real line is compact. Thus this C is a closed subset of a compact space,
whence (by theorem 36) C must itself be compact. We have shown: a subset
of the real line is compact if and only if it is closed and bounded. Finally,
note that the closed and bounded subsets of the real line are precisely those
which satisfy our intuitive picture of compactness.

Perhaps the most useful fact involving compactness is the following;:

THEOREM 38. Let X f» Y be a continuous mapping of topological spaces.
Then, for C any compact subset of X, p[C] is a compact subset of Y.
Proof. Let Oy (X in A) be a collection of open sets in Y that cover p[C].

Then ¢7![0,] is a collection of open sets (since ¢ is continuous) in X that

cover C. Since C is compact, a finite number of these ¢™![0,] cover C. The

corresponding Oy then cover p[C]. Since, for every collection of open sets in

Y that cover ¢[C ], a finite number cover p[C], this ¢[C'] is compact. |]

Ezample. Let X be a compact topological space. Let X -f» R be a con-
tinuous mapping to the real line, so ¢ is a real-valued function on X. By
theorem 38, ¢[X] is a compact subset of the real line, that is, a closed
bounded subset of R. But ¢[X] is just the range of the function ¢, that is,
the set of all values assumed by this function. Since ¢[X] is closed and
bounded in R, this set contains a maximum real number. Thus every con-
tinuous, real-valued function on a compact topological space assumes a max-
imum value.

Ezercise 202. Prove that the direct product and direct sum of two compact
topological spaces are compact.

Ezercise 203. When is the topology generated by a collection of subsets of set
X compact?

Ezercise 204. Find all compact subsets of the topological plane.

Ezercise 205. Let X be a topological space. Prove that the union of a firite
number of compact subsets of X is compact and that the intersection of an
arbitrary collection of compact subsets of X is compact. (Thus, if X itself is
compact, the complements of compact subsets of X define a topology on X,
When is this the original topology on X ?)

®
Ezercise 206. Let X be compact, Y Hausdorff, and X — Y continuous. Prove
that images of closed sets, by ¢, are closed.
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Ezercise 207. Let X be a compact, Hausdorff topological space. Prove that,
for any topology on X finer than, and different from, the given topology, X is
no longer compact and that, for any topology on X coarser than, and different
from, the given topology, X is no longer Hausdorff. (Compare ‘“linearly
independent’’ and ‘“‘span.”)

Ezercise 208. Find, on the set of integers, a compact, Hausdorff topology.

Ezercise 209. A topological space X is said to be locally compact if every
point of X possesses a compact neighborhood. Prove that the real line is
locally compact and that the rationals (as a subspace of the real line) is not.

Exercise 210. Let X be a locally compact topological space. Prove that there
exists a compact topological space Y, and point y of Y, such that Y - yis iso-
morphic to X. (Hint: One already knows what the set Y is. What are the
open sets to-be?)
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The Compact-Open Topology

We have seen several examples of categories in which the set of morphisms
from one object to another has more structure than just that of a set. For
example, in the category of vector spaces, Mor(V,W) has the structure of a
vector space. It is natural to ask what happens in this regard in the category
of topological spaces.

Let X and Y be topological spaces, so Mor(X,Y) is the set of all continu-
ous mappings from X to Y. We introduce a topology on this set. For C a
compact subset of X, and O an open subset of Y, denote by K{(C,O) the col-

")
lection of all continuous mappings X — Y such that p[C] C O. Thus, for
each C and O, K(C,0) is a subset of Mor(X,Y). The compact-open topology
on Mor(X,Y) is that topology on this set generated by the subsets of the form
K(C,0).

X o Y
QD

PLx] N

@ (0

Figure 84

Ezample. Let X be the subspace [0,1] of the real line, and let Y be the

®
topological plane. Thus a continuous mapping X — Y'is a ‘“‘curve in Y, with
an endpoint on each end.” (See figure 84.) Then Mor(X,Y) is the set of all

such curves. Fix one curve, X fv Y. We describe some open neighborhoods
of this g, that is, some open sets in Mor(X,Y) (in the compact-open topology)
containing the point g of Mor(X,Y). Let C be the compact subset [0,1/10] of
X = [0,1], and let O be some open subset of Y = topological plane with

®
@[C] C O. Then the collection of all such curves X — Y with p[C] C Ois
a neighborhood of our curve . For this neighborhood, one places no
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restriction on ‘‘where the curve goes for z in X outside [0,1/10].” (See figure
85.) Thus there are many curves in this neighborhood K(C,0), some quite
different from our original curve . In other words, this is a ‘“rather large”
neighborhood of the point ¢ of Mor(X,Y). To get ‘“‘smaller neighborhoods,”
we take an intersection of several (a finite number!) of these. Let C|, =
[0,1/10], C, = [1/10,2/10],...,C,y = [9/10,1], compact subsets of X.
Choose Oy, . . . ,0,4 open subsets of Y with [Cj] C Oy, . . . ,2[Ci] C Oy
(To get a good small neighborhood of g, make these O small) Then
K(C,00) N -+ - N K(Cyg,04¢), the intersection of 10 neighborhoods of g, is a

neighborhood of . A curve X f» Y is in this neighborhood provided
olC] C Oy, . .., and ©[Cy] C Opp. Thus a curve g, in order that it be in
this neighborhood, must ‘“‘not differ very much from g along the whole of
[0,1].” The compact-open topology on Mor(X,Y) reproduces in this example
one's intuitive notion of ‘“nearby curves.”
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Ezample. Let X and Y each be the real line. Then a continuous map-

[
ping X — Y is just a continuous real-valued function of one real variable. We
can represent such a function by its graph as in figure 86. Then Mor(X,Y) is

the set of all such continuous functions. Fix one continuous X f» Y. Then a
typical neighborhood of this g, in the compact-open topology on Mor(X,Y),
would be the following. Fix some compact subsets, Cj, . ..,C;, of X, and
some open subsets, Oy, ...,0; of Y, with g[C}] C Oy, ... ,0[C;] C Os.

Then the corresponding neighborhood consists of all continuous X fv Y with
p[C] C Oy, . .. ,p[C5] C Og as shown in figure 87. Note that a function ¢
can be in this neighborhood and yet “do anything it wants (provided only
that it be continuous)” outside Cy, . ..,Cs. In particular, since these C are
compact, this neighborhood ‘‘does not restrict functions for large z.”
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In this example the compact-open topology on Mor(X,Y) perhaps does
not completely reproduce one’s intuitive picture of ‘‘nearby functions.” The
compact-open topology seems just a bit too coarse (because ‘“‘one cannot get
neighborhoods as small as one might like’’). We introduce another topology
on the set Mor(X,Y), for this example, which is finer than the compact-open

topology. Given any continuous X f» Y, and any number ¢ > 0, denote by
L{g,€) the collection of all curves o with |p(z) - o(2)] < € for all z in X
(figure 88). Consider the topology on Mor(X;Y) for which a subset of
Mor(X,Y) is open provided that, for any o in that subset, there exists an ¢ >
0 such that all ¢ in I{gp,€) are also in that subset. In this topology, a neigh-
borhood of function g consists, for example, of ‘“all functions which are every-
where within € of the function g.” Clearly, this topology is finer than the
compact-open topology and perhaps closer to one'’s intuitive picture of
“nearby functions.” (Note that this last topology uses essentially the fact
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that Yis not any old topological space, but rather the real line.)
There are still finer topologies, for this example, on the set Mor(X,Y).
Consider this one: given any open set O in X X Y (direct product), consider

73
the collection of all functions X — Y whose graphs lie in O (figure 89). These
are the open sets for a topology on Mor(X,Y). In this topology, a neighbor-

hood of X f» Y consists of functions ¢ which “are permitted to differ from g
by a little bit for each z, where this ‘little bit’ must vary continuously, but
otherwise arbitrarily, with 2.”” (The ‘“continuously varying ‘little bit’ is
described by the open set O in the topological plane X X Y.”) This topology
differs from the previous one in that, there, the “little bit’’ was required to
remain constant—at ¢; it could not ‘‘get smaller and smaller, for example, for
large 2.”” Clearly, the present topology is finer than its predecessor.

9?'&]7"'!

Figure 89

Of course, one could invent other topologies in this and in other situa-
tions. The topology one chooses in practice depends on what one wants the
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topology to do. If one had to make a general statement about the compact-
open topology, perhaps it would be this: when X is compact, the compact-
open topology on Mor(X,Y) is usually the ‘right” one; when X is not com-
pact, this topology is often too coarse.

Erercise 211. Let X and Y each be the real line, and consider the set

Mor(X,Y) of the last example above. Let R i Mor(X,Y) be the mapping
which sends real number @ to the element ¢ of Mor(X,Y) with o(z) = a for
all z in X (i.e., each real number goes to that constant function). Prove that
this ¢ is continuous when Mor(XY) is given either of the first two topologies
above and is not continuous for the third topology.

"
Ezercise 212. Let X and Y be topological spaces, and let X X Mor(X,Y) —+ Y
be given by the mapping which sends (z,p) to ¢(z) in Y. Assigning Mor(X,Y)
the compact-open topology, when is 9 continuous?

Ezercise 213. Let X, Y, and Z be topological spaces, and let Mor(X,Y) X

¥
Mor(Y,2) — Mor(X,Z) be composition. Using the compact-open topology for
each Mor( , ), when is ¥ continuous?

Ezercise 214. Prove that, if X and Y are both compact, so is Mor(X,Y).
Prove that, if Y is Hausdorff, so is Mor(X, Y).

P2
Ezercise 215. Let X and Y be topological spaces. For X — Y continuous, let
K, be the subset of X X Y consisting of all pairs (z,y) with y = ¢(z) (the
“graph” of ¢). For each open set O in X X Y, consider the subset of

Mor(X,Y) consisting of all Xf» Y with K, C O. Show that these subsets are
the open sets for a topology on Mor(X,Y). Show that this topology is finer
than the compact-open topology on Mor(X,Y). Prove that, when X is com-
pact, the two topologies coincide.

Ezercise 216. Let X and Y be topological spaces. For z a point of z and O

open in Y, let K(z,0) denote the subset of Mor(X,Y) consisting of Xf» Y with
@(z) a point of O. The topology on Mor(X,Y) generated by these subsets is
called the point-open topology. Prove that the point-open topology is coarser
than the compact-open topology. When do they coincide?
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Connectedness

One has an intuitive notion of what it means to say, of a topological space X,
that “X is not connected; it consists of several pieces which do not touch each
other.” We now wish to introduce a definition in topology which represents
this idea. To get a notion of what is involved, consider the following situa-
tion. Let X and Y be topological spaces, and let Z be their direct sum, with X

: Zand Y f» Z the corresponding continuous mappings. Then one would
certainly think of a[X] (the “‘copy of X'in 2") and J[Y] as ‘‘separate pieces of
Z, pieces which cause Z not to be connected.”” We look for some characteris-
tic property of the subset a[X] of Z which might be used to formulate a
notion of connectedness. There is indeed one: the subset a[X] of Z is both
open and closed in Z.

The remarks above are motivation. Let X be a topological space. Then
X is said to be connected if the only subsets of X which are both open and
closed are X itself and the empty set (each of these always being an open and
closed subset of X). (Note that, by theorem 29, a subset A of X is both open
and closed if and only if the boundary of A is empty. Thus X is connected if
and only if the only subsets of X having empty boundary are X and .)

Ezample. Let X be a set having two or more points, with the discrete
topology. Then X is not connected. Indeed, each point z of X is both open
and closed.

Ezample. Let X be a set with the indiscrete topology. Then X is con-
nected, since the only open and closed subsets of X (in fact, the only open
subsets of X) are X and 0.

Ezample. Letting X be the real line, X is connected. Indeed, let A be
any nonempty subset of the real line which is both open and closed. Choose a
number a in A. If A does not include all numbers greater than a, there exists
a number b such that A is a superset of [a,b) and such that b is the largest
number with this property. Since A is closed, b must be a point of A. But
now, since A is open, A must contain a neighborhood of b, which contradicts
our assertion that b must be the largest number having the property above.
Hence A includes all real numbers greater than a and, similarly, all real
numbers less than a. Thus A = R. Since the only nonempty subset of R
which is both open and closed is R itself, R is connected.

Ezample. Let X be the subspace of the real line consisting of the rational
numbers. Then X is not connected. Let A be the subset of X consisting of all
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rational numbers ¢ with -7 < @ < +m (where 7 is that irrational number).
Then A is an open subset of X (for it is the intersection of X with the open
subset (-m,+) of the real line), and A is also a closed subset of X (for it is the
intersection of X with the closed subset [-m,+] of the real line).

Xz- 5"'( /),)

ﬂﬂf\ ay
U\/\/&

Figure 90

Ezample. Let X be the subspace of the topological plane consisting of all
points (z,25) of that plane with either i) z; > 0 and z, = sin(1/z,;), or ii) =,
= 0. (See figure 90.) This topological space X is in fact connected. The best
candidate for a subset of X both open and closed is the following: let A be the
subset of X consisting of all points (z;,25) with z; > 0 and z, = sin(1/z,).
Then A is indeed an open subset of X, for A is the intersection of X with the
open subset O of the topological plane consisting of all (z;,z,) with 2, > 0.
However, this A is not a closed subset of X: there is no closed subset C of the
topological plane whose intersection with X is A. (For example, the closed C
consisting of (z,2,) with z; > 0 will not do, for, for this C, CN X = X))

Let X be a set. It is immediate from the definition that, given some
topology on X such that X is connected, any coarser topology on X also
makes X connected. (See figure 91.)

~—discrete
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Figure 91

Let X be a topological space, and let A be a subset of X. This subset A
is said to be connected if the subspace A (a topological space based on set A)
is connected. Recall, however, that the open sets in the subspace A are the
intersections of A with open sets in X, while the closed sets in the subspace A
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are the intersections of A with closed sets in X. Clearly, then, subset A of X
is connected if and only if the following property is satisfied: given any open
O in X and closed Cin X, with ON A= CN A, we have either ONA = A
or 0N A= 0. Thus, for example, the rationals do not form a connected sub-
set of the real line, while the last example above gives a connected subset of
the topological plane. Any subset of a topological space containing either just
one, or no, points is connected.

We give two examples of properties that are satisfied by this notion of
connectedness.

THEOREM 39. Let X be a topological space, and A a connected subset of X.

Then Cl(A) is also connected.

Proof. Let O be an open subset of X, and C a closed subset of X, with
onNn Cl(A) = CN Cl(A). We must show that either O N Cl(A) = CI(A) or
O N Cl(A) = 8. We have, in particular, O N A = CN A, whence, since A is
connected, either ONA=Aor ONA=0. HONA= A then CNA=
A, that is, A is a subset of C, whence (by definition of closure) CI(A) is a sub-
set of C, that is, C' N Cl(4) = C](A), whence O N Cl(A) = Cl(4). f ON A
= 0@, that is, A is a subset of O, then (by definition of closure) Cl(A) is a sub-
set of O°, that is, O N Cl(4) = 0. Thus either O N Cl(A4) = Cl(4) or ON
Cl(4) = 0, whence CI(A) is connected. []

The statement of theorem 39 is in agreement with one’s intuitive picture of
connectedness. It says that “‘if you attach, to a connected set, its boundary,
the result is again a connected set.”

THEOREM 40. Let X be a topological space. Let Ay (N in A 5£ 8) be a collec-
tion of connected subsets of X, any two of which intersect. Then their
unton, %l Ay, 18 also connected.

Proof. Let O be an open subset of X, and C a closed subset of X, with
on (k) Ay). We must show that O N (k} A,) is either L/{ A, or 0. Fix one of

these sets, Ay. Then, since this A, is connected, we have either O N Ay = Ay
or ON Ay, = @, say ON Ay = A,. Then, since each A, intersects A, and
hence O, and since each A,, being connected, satisfies ON A, = A, or
0N A, = 0, we must have O N A, = A, for each X\. That is, we must have
on (Lj{ Ay) = LAJ A,. Similarly, the supposition ON Ay, = @ leads to

Oﬂ(%JAx)=ﬂ.|:]

Intuitively, since each A, is connected, that is, since each ‘“‘cannot be divided
into separate pieces which do not touch, and since all the A, overlap with
each other,” the union of the A is also connected. (See figure 92.)
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We next introduce an important tool for analyzing the connectivity pro-
perties of a topological space. Let X be a topological space. A subset C of X
is called a connected component of X if i) C'is a connected subset of X, and ii)
no superset of C (except C itself) is connected. Thus the connected com-
ponents of X are ‘‘maximal connected subsets.”

Ezample. For X a connected topological space, the only connected com-
ponent of X is X itself. For X discrete, the connected components of X are
just the points of X.

Ezample. If X and Y are connected topological spaces, and Z is their

direct sum (with X 1 Zand Y f» Z), then there are two connected com-
ponents of Z, namely a[X] and 8[Y]. ’

Ezample. The connected components of the rationals (regarded as a sub-
space of the real line) are precisely the points of this topological space (exer-
cise 217).

It is immediate from theorem 39 that connected components are always
closed subsets. However, we have as yet no guarantee that, given a topologi-
cal space, it even has any connected components. The following theorem not
only settles this question, but shows that ‘“‘the connected components of X
cover X without overlapping.”

THEOREM 41. Let X be a topological space. Then each point of X is a point

of one and only one connected component of X.

Proof. Let z be a point of X, and let C denote the union of all connected
subsets of X which contain z. Then (since any two sets in this union inter-
sect, namely at z) we have from theorem 40 that C is connected. Any con-
nected superset of C containing z would have been included in the union
which defined C and hence must be C itsef. Thus Cis a connected com-
ponent containing z. If C° were another, then, by theorem 40, CU C’ would
be connected, whence, since C and C° are connected components, we must
have CU C° = Cand CU C’ = C’. That is, we must have C = C".
Hence there is a unique connected component containing z. |
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Thus the connected components of X provide a “subdivision of X into disjoint
connected pieces.”” Note, incidentally, that every connected subset of X is a
subset of some connected component of X. [Proof: Let A be a connected com-
ponent of X containing z. Then, by theorem 40, A U Cis connected, whence,
since C'is a connected component, A U C = C, i.e., A is a subset of C]

Finally, we consider the behavior of connected sets under continuous
mappings. The main result, analogous to theorem 38 in the compact case, is
this:

THEOREM 42. Let Xfr Y be a continuous mapping of topological spaces, and
let A be a connected subset of X. Then [A] is a connected subset of Y.
Proof. Let O be open, and C closed, in Y, and let ON p[4] =

C N p[A]. Then, by continuity of ¢, ¢'[0] is open and ¢ ![C] is closed, in

X, and ¢ [O]N A = ¢![C] N A. Since A is connected, we have either

¢ '[0]N A = A (in which case O N p[A] = p[A4] or ¢ [O]NA = @ (in

which case O N p[A4] = 8). Thus ¢[A] is connected in Y. |]

Intuitively, since, for a continuous ¢, “‘¢o(z) cannot change a great deal with
small changes in z,” it follows that, for A connected, ¢[A] cannot consist of
several pieces which do not touch. For example, it is immediate from theorem

42 that, for Y discrete and Xf» Y continuous, each connected component of
X is taken, by ¢, to a single point of Y. As another simple application of
theorem 42, we have

Ezample. Let X be a topological space, and suppose that X has the fol-
lowing property: for any two points, ¢ and z°, of X, there is a continuous

mapping R i X with p(0) = z and (1) = z° (i.e., “there is a curve in X
which passes through both z and z”"’). This is illustrated in figure 93. Then
(as one would expect) it follows that X is connected. Proof: Fix a point z of
X, and let C be the connected component of X containing z. Since the real

line R is connected, for each continuous mapping R i X, o[R] is connected
in X. Hence, for each such curve with ©(0) = z, p[R| is a subset of C. But,
for every point z° of X there is a curve with ©(0) = z and ¢(1) = z”; hence
every point z° of X is a point of C. That is, C = X, whence X is connected.

Ezercise 217. A topological space X is said to be totally disconnected if every
connected component of X consists of but a single point. Show that the
rationals (a subspace of the real line) is totally disconnected.

Ezercise 218. Prove that no subset of a Hausdorff topological space, with the
subset consisting of exactly two points, can be connected.
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Exercise 219. Prove the following generalization of theorem 39. If A is a con-
nected subset of topological space X and if B is a superset of A and a subset
of Cl(A), then B is connected.

Ezercise 220. Find an example (e.g., in the topological plane) of two con-
nected sets whose intersection is not connected.

Ezxercise 221. Find an example of sets A and B, neither of which are con-
nected and which do not intersect each other, such that A U B is connected.
Find a connected set whose interior is not connected.

Ezercise 222. Find an example to show that the converse of the result of the
last example above is false.

Ezercise 223. Let X be a topological space having only a finite number of
connected components. Prove that each connected component of X is open.

Ezercise 224. Let A and B be connected subsets of topological space X such
that A intersects Cl(B). Prove that A U B is connected. Find an example to
show that it is not enough to assume that Cl(A) intersects Cl(B).

Ezercise 225. Prove the following generalization of theorem 40. Let A, (X in
A # 0) be a collection of connected subsets of topological space X, and let the
equivalence relation on this collection of sets generated by A, =~ A,. if
Ay N Ay 7 0 have just one equivalence class. Then LI{ A, is connected.

Ezercise 226. Let X be a topological space. Write z & z” if there exists a
connected subset of X containing both z and z’. Prove that this is an
equivalence relation. What are the equivalence classes? Prove that the quo-
tient space by this equivalence relation is totally disconnected.
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Example: Dynamical Systems

A topology on a set endows that set with ‘‘a notion of closeness of its points."’
Such a structure is often what is needed for physical applications, for the fol-
lowing reason. We examine physical systems—we learn about their
structure—by making observations. But any physical observation,
apparently, is necessarily accompanied by a certain error. Thus, from a phy-
sical viewpoint, we are concerned not so much with ‘“‘exactly what the situa-
tion is”" as with ‘“what the situation is to within the errors of our observa-
tions.” In other words, “sufficiently close is all that is physically relevant
anyway, where ‘what is sufficient’ depends on how good our measuring instru-
ments are.”” One expects that the notion of a topology will be appropriate for
the description of these physical ideas. As an example of an application of
topology, we now consider the description of (e.g., classical) dynamical
systems.

We imagine some physical system that we wish to study. It is perhaps
difficult to say exactly what one means by ‘‘a physical system,” but we ima-
gine it as consisting of some mechanism which sits in a box on a table,
unaffected by ‘‘uncontrollable external influences.” We shall, however, allow
ourselves to influence the system (e.g., by hitting it with a stick) so that we
may manipulate the system to study its properties. We introduce the notion
of ‘“‘the state of the system,” where we think of the state of the system as a
complete description of what every part of the system is like at a given
instant of time. (For example, the state of a harmonic oscillator is specified
by giving its position and momentum.) Thus, at each instant of time, the sys-
tem is in a certain state, and all we can ever hope to know about the system,
at a given instant, is what state it is in. By an extended series of manipula-
tions on the system, we ‘‘discover all the states which are available to it,”
that is, we introduce a set I' whose points represent the states of our system.
Thus our mathematical model of the system so far consists simply of a certain
set I'.

We next decide that, more or less, we know what it means physically to
say that two states of the system (i.e., two points of T') are ‘‘nearby.”
Roughly speaking, two states are ‘‘nearby” if ‘‘the system does not have to
change all that much in passing from the first state to the second.” We wish
to incorporate this physical idea as mathematical structure on the set I'. The
notion of a topology seems to serve this purpose well. Thus we suppose that
the set of states, I', of our system is in fact a topological space, where the
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topology on I reflects ‘“physical closeness” of states. This topological space T’
is usually called the phase space of the system.

We have now completed the description of the kinematics of our
system—what possibilities are available to it. The following remarks are
intended to illustrate further what is going on.

How would one describe an observable of the system within this frame-
work? We think of an observable as an instrument with a dial such that,
when the instrument is brought into contact with the system, the dial reads a
certain real number. Thus an observable assigns a real number to each state

of the system, that is, it is a mapping of sets, T’ i R. (That an observable
assign a unique number to each state of the system is, if you like, part of
what we mean by a ‘‘state.””) We now wish to claim that it is only the con-
tinuous mappings (from topological space I' to the real line) that one should
regard as observables. There are at least two points of view one could take
toward this statement. On the one hand, a discontinuous mapping, if taken
as an observable, could be regarded as ‘“unphysical,” or at least as ‘“‘unrepeat-
able,”” for even arbitrarily small changes in the state of the system (which
should make no difference from a physical viewpoint) could result in large
changes in the value of the observable. On the other hand, one could regard
this continuity as part of what we mean physically by the topology which is
to be selected for I'. (If there are things that we want to call observables and
if they are not continuous in a given topology on I', then we should choose a
finer topology on I' so that they become continuous.) In any case, the physi-
cal idea of an observable is incorporated into the mathematics as a continu-
ous, real-valued function on I'.

Is it reasonable to assume that I' is Hausdorff? If not, we would have dis-
tinct points z and z” of I' such that every neighborhood of z intersects every
neighborhood of z*. That is, we would have “two distinet states, z and z°,
such that, if you tell me how close you want to be to z and how close you
want to be to z°, I can find a state which is within the given tolerances of
both z and 2".” This contradicts one’s intuitive picture of what one wants to
mean by ‘‘distinct states.” It therefore seems reasonable, physically, to sup-
pose that I' is Hausdorfl.

Consider next two systems, with phase spaces I'; and I'y. We now ‘‘con-
sider these two separate systems as one,” that is, we put them side by side in
a large box without allowing them to interact. What should be the phase
space of the combined system? To specify a state of the combined system,
one would have to give the state of each of the two subsystems, that is, one
would have to give a point of I'; and a point of I';. We therefore choose, for
the set I' of states of the combined system, the Cartesian product of sets,
I'; X T'y. We must now select a suitable topology on this set I'. Physically,
“two states, (2,2,) and (2, ",2,"), of the combined system may be regarded as
nearby if z, and z;” (states of the system with phase space I';) are close, and
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also zy and z,” are close.”” We incorporate this idea into the mathematics by
placing on T' the product topology (for that is, intuitively, just what it is).
Thus we choose, for the phase space I' of the combined system I'; X I'y, the
direct product of topological spaces.

We next wish to describe the dynamics of our system—how it actually
evolves with time. It is observed, in the physical world, that prediction is
normally possible for physical systems: if you tell me the state of the system
now and how long you are going to wait (and if you do not interfere with the
system during its evolution), then I can tell you what state the system will be
in at the end of that time. This dynamical information would be described by

a mapping of sets, ' X R -i I', where there appears on the left the Cartesian
product of sets: for z a point of I', and ¢ a real number, ¥(z,t) is to represent
the state in which the system will be after elapsed time ¢ if it was initially in
state z. (Thus, e.g., ¥(2,0) = 2z.) This mapping ¥ is, of course, to be deter-
mined physically by merely watching the system as it evolves.

It seems normally to be the case for actual physical systems that this

I''xR i I' is in fact a continuous mapping of topological spaces (where
there now appears on the left the direct product of topological spaces). Let us
see what this means physically. For fixed initial state g, continuity of ¥(z,t)
in ¢ means that ‘‘the system does not, during the course of its evolution,
change its state suddenly with time.” For fixed time ¢, continuity of 4(z.f) in
z means that ‘‘the state the system will be in a time £ from now does not
change discontinuously with the present state of the system.” In fact, con-

tinuity of ' X R —¢> I' seems to be necessary in order that one be able to
make accurate predictions. One can specify the initial state of the system, z,
and the elapsed time, ¢, only to within a certain error. Were it not true that
one could, by making these errors small, make as small as one wished the
error in the predicted final state of the system, ¢(z,f), one’s ‘‘prediction”
would be subject to large and essentially uncontrollable errors. This would
hardly be a prediction at all. Thus the dynamics of the system is described

by a continuous mapping I' X R i T’ of topological spaces.

We give two examples of consequences of this formulation of the dynam-
ics of our system.

Suppose that the phase space I' of our system were compact. It then fol-
lows that the system is almost-periodic, in the following sense: there exists a
state z such that, given any neighborhood N of z and any time ¢, the system
can begin in N and return to N after some elapsed time greater than ¢. (That
is, ‘‘the system continually returns, as closely as you wish, to the state z.")
Proof: Fix point g, and consider 4(z,¢) a mapping from R to I'. Since R is a
directed set, this is a net in I'. Since I' is assumed compact, this net has some
accumulation point, z. The statement that this z is an accumulation point of
our net is precisely the statement of almost-periodicity above.
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What is the significance of T' having more than one connected com-
ponent? Fix an initial state gz, and regard ¢(z,?) (the evolution of the system
from this initial state) as a mapping (necessarily continuous) from R to T.
Since the real line R is connected, the image of R under this mapping (the set
of “‘states the system visits as il evolves from z'’) is necessarily connected.
Hence all of these states are in the same connected component of ' as is z.
That is, the system remains throughout the course of its evolution in a single
connected component. (It is perhaps not unreasonable, therefore, to require
that I" have a single connected component, i.e., that ' be connected.)

Finally, we show how the topology on the phase space can be used to for-
mulate the notion of stability for a system. A point z of I" will be called a
stationary state if ¥(z,t) = z for all & Thus the system, initially in a station-
ary state, remains in that state for all time as it evolves. Stability of a sta-
tionary state refers to the behavior of the evolution from nearby initial states
(figure 94). Does the system in the course of such an evolution remain near
the stationary state g, or does it eventually wander away?

Station ary X~
P

€ T——|"nearby x —~_ M\

— "f‘(x,t)\/

stable unstoeble

Figure 94

We may call a stationary state z weakly stable if it satisfies the following
property: given any neighborhood N” of gz, there exists a neighborhood N of g,
with N a subset of N”, such that, for any z in NV, ¢(=,f) is in N for all £ In
other words, weak stability of z requires that there exist ‘‘arbitrarily small
neighborhoods of z which the system, once in, always remains in.” This is
illustrated in figure 95. The stationary state of a harmonic oscillator, for
example, is weakly stable in this sense.

We may call a stationary state z strongly stable if it satisfies the follow-
ing property: there exists a neighborhood N of z such that, given any neigh-
borhood M of z, there is a number ¢, with ¢(z;¢) in M for all zin N and ¢ >
- Thus strong stability of z requires that, “if you start off within N, you
eventually get, and remain thereafter, as close as you like to 2" Note that a
harmonic oscillator is not strongly stable at its stationary state but that, for
example, a damped harmonic oscillator is.
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Of course, one could invent, using only the topology of phase space, other
notions of stability. More generally, other intuitive properties of the system,
provided only that they involve no more structure than that of “closeness,”
should be expressible in topological terms. Still more generally, if one wishes
to speak of things other than just ‘‘closeness of states,” then one introduces
other, appropriate, structure on the set T'.

It should be emphasized, finally, that topology does not “tell one any-
thing about the way nature behaves.” Rather, topology is just a few
definitions, a few constructions, and a few theorems which often happen, for
some reason, to provide a convenient and appropriate framework for the
description of the way nature actually does behave. It is just like the notion
of a derivative: derivatives just exist as mathematics, but often happen to find
application to physics. In neither case does the mathematics serve, in any
sense of which I am aware, as a substitute for the physies.
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Homotopy

It is often the case that a complete and detailed examination of the internal

structure of some given topological space can become quite a complicated
business. One would like to have available simpler ways to look at a space.
It is natural, therefore, to search for various characterizations of a topological
space that refer not so much to its detailed structure as to its structure as a
whole. We have already seen one example of such a characterization: that of
connectedness (which refers to ‘“‘the possibilities for dividing the space into
several pieces’”). We now wish to study another global property of topological
spaces, this one referring to ‘‘the multiple-connectedness of the space, that is,
the presence of holes or of interconnections between various regions.” Con-
sider, for example, the punctured plane, the topological space, as illustrated in
figure 96, consisting of the subspace of the topological plane given by (z')? +
(%) > 1. Clearly, the “presence of a hole” represents an intuitive property
of this space not possessed, for example, by the topological plane itself. This
is the type of structure we now wish to examine.

Xa

\xl
(‘L‘ I"t’.MUVCJ

Figure 96

In fact, there are two different approaches to this intuitive idea of

multiple-connectedness—that via homotopy and that via homology. These

two approaches are very similar not only in terms of the structure they
describe, but also technically. Nonetheless, we shall consider them both.
Homotopy is perhaps conceptually somewhat simpler, and leads to an impor-
tant notion with a wide variety of applications—that of a ‘“‘continuous defor-
mation.” Homology, on the other hand, is very often what is actually used in
practice, for example, for the description of regions of integration. We shall
discuss homotopy in the present chapter and homology in the next.

¥
1
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Fix, once and for all, a topological space X and a point z of X. Denote
by I the subspace of the real line consisting of the closed interval [0,1]. By a
w

loop (based at z) we mean a continuous mapping I — X with w(0) = w(1) =
z. Thus, for each real number ¢ in [0,1] = I, w(f) is a point of X: we have a

s X

w( )

w(')y w(/4)

Wlo) 7y = w(i)

Figure 97

“curve in X which begins at z and ends at z.”” (Note, however, that by a loop
we mean the continuous mapping w, not just the subset w[I] of X.) A loop is
illustrated in figure 97. The loop given by w(f) = z for all ¢ in I (note that
this w is necessarily continuous) will be called the zero loop. Next, denote by
X,z), the loop space of X (based at z), the collection of all such loops.
Thus, for example, if X is discrete, then (since / is connected, since the image
of a connected set under a continuous mapping is connected, since no con-
nected subset of X has more than one point) the only loop based at z is the
zero loop, whence £2(X,z) has just this one element.

The loop space is not quite the right thing to describe the “multiple-
connectedness structure’” we have in mind. The problem is that it is far too
large. For example, the topological plane is “not very multiply-connected,”
although it has an enormous loop space. What we wish to do is “regard two
loops as essentially the same if one can be continuously deformed into the
other” and then consider only ‘“‘loops up to such continuous deformations.”

Let z be aspoint of topological space X, and let w and w” be two loops
based at . We say that w and w” are homotopic if there exists a continuous

mapping [ X I i X (where we shall write, for s in Jand ¢ in I, ¢,(f) instead
of ¢(s,)) satisfying the following conditions: i) ¥ ,(0) = z and ¢ (1) = z for
all sin I, ii) ¢o(f) = w(?) for all ¢ in [, and iii) ¥,(!) = w’(¢) for all tin I Let
us see what this definition means geometrically. For each fixed value of s, ¥,

is a continuous mapping from / to X (namely, the mapping which sends ¢ in
to ¥ ,(¢)). Condition i) just guarantees that this mapping is a loop. Thus each

¥, is a loop, so we have a one-parameter family (parameterized by s in I) of
loops. Condition ii) requires that ‘‘the first loop in this family,” 4, is the
given loop w, while condition iii) requires that the ‘‘last loop,” ¥,, is the given
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¥
loop w’. Finally, continuity of I X I — X guarantees that “this family of
loops 1, varies continuously with s.” In other words, loops w and w’ are

homotopic if theie exists a ‘“‘continuous deformation of w to w’” (figure 98).

We shall call the corresponding continuous mapping I X I — X a homotopy
from w to w”’.

Yo |—

Yy—

" // (’

.6

oy - , \—“Y\::“"

Figure 98

Ezxample. Let X be the topological plane, and let z be the origin, that is,
the point (0,0) of 2. We claim that every loop based at z is homotopic to the
zero loop. Indeed, let w be a loop. Then, for each ¢ in I, w(t) is a point of X
whence there are real-valued functions z,(f) and z,(f) with w(t) = (z,(f),zo(t))
and with 2(0) = 2(0) = =z(1) = z(1) = 0. Next, set ¢ (f) =

¥
((1 = 8)z(£),(1 - 8)zy(t)), for s and ¢ in I This I X I — X is clearly continu-
ous. We have 9,(0) = ((1 - 8),(0),(1 - 8)z,(0)) = (0,0), and similarly ¥ (1)
= (0,0), whence condition i) above is satisfied. Furthermore, ¥y(t) =
(z1(),22()) = w(t), while 9(¢) = (0,0). Thus this ¢ is a homotopy from the
loop w to the zero loop. (Geometrically, we ‘“‘uniformly shrink the loop w,
radially, to the zero loop.”)
w

Ezample. Let z be a point of topological space X, and let ] — X be a
loop based at z. Choose any continuous function I — I with f{0) = 0 and f{(1)
= 1. We claim, first, that w” = wo f(so, for ¢ in [, w’(#) is the point w(f(¢))

o
of X) is also a loop. [Proof: This I — X, as a composition of continuous map-
pings, is continuous. Furthermore, w’(0) = «(f(0)) = w(0) = 2, and w’'(1) =
7] We next claim that the loops w and w” are in fact homotopic. Let I X [
¥
— X be given by 9,(f) = w((1 - 8)t + sf(#)) (where 4+ denotes addition in
the additive group of reals). First, note that ¢ is continuous (for the mapping

K
I X I — I which sends the point (s,f) of I X I to x(s,t) = (1 - 8)t + sfit) is
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continuous, and ¥ = wo k). Furthermore, ¢,(0) = «((1 - )0 + sf{0)) = w(0)
= 1z, and (1) = gz, so each ¢, is a loop. Finally, ¢,(¢) = w((1 - 0)¢t + Oft))
= w(t), and ¥;(¢) = w((1 - 1)t + 1(t)) = w(f(t)) = w’(¢). Thus 9 is a homo-
topy from the loop w to the loop w”. To see what this means geometrically,
first note that w[I] = w’[I], that is, our two loops ‘““pass over precisely the
same points of X.”” The only difference between the two loops, then, is ‘“the
way in which the points w[] of X are parameterized by £.” We shall say that
loop w” is obtained from loop w by reparameterization. This reparameteriza-

tion is described, of course, by the function I-—f+ I Since fl0) = 0 and f{1) =
1, the two loops ‘‘start out the same and end up the same.” It is just that
“one loop can get ahead of, or fall behind, the other, with the passage of ¢, as
they traverse the same actual path on X.” The homotopy is a ‘“‘continuous
adjustment from the parameterization via w to the parameterization via w’.”
Thus we have shown that one loop obtained from another by reparameteriza-

tion is homotopic to it. The following two points should be noted. First, we

need not require that I—fv I be monotonic (i.e., w” can ‘“backtrack a little bit
along the path of w before going ahead”). Second, the homotopy argument
above does not work if we impose on f the alternative boundary conditions
flo)=1and f{l1) =0.

Ezample. Let X be the punctured plane, and let z be the point given by

(2,0). Let I — X be the loop given by w(t) = (cos(27t),sin(27t)). (The loop
‘“‘goes around the hole,” as shown in figure 99.) It is true, intuitively clear,
but rather difficult actually to prove that this loop is not homotopic to the

zero loop.

Figure 99

Let z be a point of topological space X. For w and w’ loops based at =z,
write w &~ w’ if w is homotopic to w’. One expects intuitively that this rela-
tion " on Q(X,z) will be an equivalence relation, and this in fact turns out
to be the case. Proof: (1) Every loop is homotopic to itself, for, for w a loop,
¥,(f) = w({) is clearly a homotopy from w to w. (2) Let loops w and w” be
homotopic, with homotopy ¢ (so ¥y = w and ¢, = w”). Then ¥ given by
v;’J‘(t) = '/’“,.)(t) is clearly a homotopy from w’ to w. Thus w=a w’ implies
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w A~ w. (3)Letw, w’, and w’* be loops, and let ¥ be a homotopy from w to
w’, and ¥’ a homotopy from w’ to w’’. We obtain a homotopy from w to

w’. Let IX I i X be given by ¢ () = {12)23(0 for 0 <8< 1/2, and
12)'20‘1(0 for 1/2 < 8 < 1}. Since ¥ = 9’ (= w’), this mapping ¥ is con-
tinuous. Clearly, each ¢, is a loop. Finally, ¢ = 1,7)0 = w, and Y; = v’ 1=
w”’, so 9 is a homotopy from w to w”’ (figure 100). (Intuitively, we first “fol-
low the continuous deformation from w to w” and then follow the continuous
deformation from w’ to w’’, obtaining a continuous deformation from w to
w”. The (23) arise because we are only allowed to have s in the homotopy 9
go from O to 1, while s already goes from 0 to 1 in ¥ and from 0 to 1 in ¢°.
In order to complete the whole deformation ¥ by s = 1, therefore, we must
first do the deformation 3 twice as quickly (in terms of s), followed by the
deformation ¢ done twice as quickly.”)

Figure 100

Thus, “is homotopic to” is an equivalence relation. We denote the set of
equivalence classes by m(X,z). Thus an element of m(Xz) is a collection of
loops all based at z, where any two loops in this collection are homotopic, and
any loop homotopic to one of these is included in the collection. We call a
loop in the collection a representative of the corresponding element of =,(X,z).

Ezample. Since, in the topological plane X, any loop (say, based at the
origin z) is homotopic to the zero loop, 7 (X 2) in this case has a single ele-
ment. The zero loop is a representative of this element.

Ezample. 1t is intuitively clear that, for the punctured plane, two loops
are homotopic if and only if they “go around the hole the same number of
times and in the same direction.” Thus one expects (and it is in fact true)
that 7(X,2) in this case is isomorphic to the set of integers.

In some sense, we are now done. This m;(X,z) is a fairly simple set (e.g.,
usually simpler than the topological space X) which seems to characterize the
“multiple-connectivity properties of X.”” The remarkable thing is that we can
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actually go one step further: we can endow the set m (X z) with the structure
of a group.
Let z be a point of topological space X, and let w and w” be loops based

at 2. Consider the loop I — X given by w” (f) = {w(2¢) if 0 < ¢t < 1/2, and
w'(2¢-1) for 1/2 < t < 1}. (This w’’ is continuous, since w(1l) = w’(0) (=
), while w”"(0) = w(0) = z, and w’’(1) = w’(1) = 2.) We shall write this

X

Figure 101

loop w”* as ww’ (figure 101). (Note that this is not a composition of map-
pings. In fact, the composition of w and w” is not even defined.) Intuitively,
we “first follow w and then w’, going twice as fast all the time in order to
finish by ¢t = 1.”

This “product structure’” on the set 2(X,2) has almost no nice properties:
it is not associative, there is no identity, etc. Niceness comes only when we
pass to m(X,z). This “passage,’
fact: if loops w; and w;" are homotopic, and wy and w,” are homotopic, then
wywe and w;“w,” are homotopic. Indeed, if ¥ is a homotopy from w; to w,’,
and ¢ is a homotopy from w, to w,”, then ¢, given by V() = {7])6(2t) for 0
< t<1/2, and 121"(2t— 1) for 1/2 < t < 1}, is a homotopy from ww, to
w; wy”. Thus we may define the product of two elements of m;(X,z) by tak-
ing the product (in Q(X,z)) of their representatives and finding the
equivalence class (element of 7;(X,z)) in which it lies. Independence of choice

’

in turn, is accomplished by the following

of representatives is guaranteed by the result just proven. The whole point of
this construction is the following:

THEOREM 43. Let z be a point of topological space X. Then the set (X, z),
with the product structure above, is a group.

Proof:

i) Consider three elements of m (X z), with representatives w, w’, and
w’’. Then (ww’)w”" is the loop given by {w(4f) for 0 < t < 1/4, w’(4t- 1)
for 1/4 < t < 1/2, and w’’ (2t - 1) for 1/2 < t < 1}, while ww'w™") is the
loop given by {w(2¢) for 0 < ¢t < 1/2, w'(4t-2) for 1/2 < t < 3/4, and
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w’ (4t - 3) for 3/4 < t < 1}. The former is clearly a reparameterization of
the latter, whence (ww’)w”” and w(w’w’") are homotopic. Thus the product
in m(X,z) is associative.

ii) The equivalence class containing the zero loop is an identity in
m(X;2). Denote by w, the zero loop, and consider any element of (X,z),
with representative w. Then wyw is the loop given by {zif 0 < ¢ < 1/2, and
w(2t - 1) for 1/2 < t < 1}. Bat this loop is a reparameterization of the loop
w itself, so wgw is homotopic to w. Similarly, wwy is homotopic to w.

ili) Consider an element of m,(X,z), with representative w. Denote by w’
the loop with w’(f) = w(1 - {). Then ww’ is the loop given by {w(2¢t) for 0
< t<1/2, and w(2 -2t) for 1/2 < t < 1}. But this loop is homotopic to
the zero loop, for example, by choosing ¢ (f) = {w((1 - s)2f) for 0 < t < 1/2,
and w((1 - 8)(2 - 2¢)) for 1/2 < t < 1}. Similarly, w’w is also homotopic to
the zero loop. Thus inverses exist in m,{X,z) under this product structure. |]

Like most proofs, this one is much simpler conceptually than in detail. For
the first part, both (ww’)w”™* and w(w’w’’) are loops in which one *‘first fol-
lows along w, then along w’, and then along w’". The only difference is that
the rates are different, because you have to follow each loop in a product
twice as fast. The rate correction is a reparameterization, which does not
count, up to homotopy.” For the second part, the zero loop is ‘“‘a representa-
tive of the identity, because wyw is the loop in which you sit at z for the first
half of your allotted finterval, and then cover w twice as fast, which differs
from w itself only up to a reparameterization.” For the third part, “w” is just
the loop for which you follow w, but in the other direction. Thus ww” is the
loop in which you first follow along w (twice as fast), and then turn around
and follow w in the opposite direction. But this is homotopic to the zero loop,
the homotopy being that for which one only follows w for a little while (less
and less as s gets nearer to one) before turning back to retrace w to z,”’ as in
figure 102.

The group m(X,z) is called the first homotopy group of X (based at z).
(“First”” because there is a second, third, etc., although we shall not discuss
them.) A topological space X is said to be simply connected if, for every point
z of X, my(X,2) is the group with a single element (the identity). (Thus X is
simply connected if and only if any two loops based at the same point are
homotopic.)

Ezample. The first homotopy group of the topological plane has only a
single element, so the topological plane is simply connected. The first homo-
topy group of the punctured plane is the additive group of integers.

Ezample. Every discrete topological space, and every indiscrete one, is
simply connected.

Ezample. Let X be the topological space consisting of the subspace of
the topological plane that results from the removal of the points (0,1) and

,
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(0,~1), as in figure 103. Let z be the origin. Denote by a and b the two loops
shown, and by a! and b™! these loops, traversed in the opposite direction. It
is clear intuitively that any loop based at z is homotopic to some product of
the form aaba'bab 'b"!. Thus one expects that the first homotopy group of
this space will be the free group on a set with two elements. This is in fact
true. (Note, in particular, that homotopy groups need not be abelian.)

There is one final issue we wish to discuss: what is the dependence of
m(X,z) on the base point z? Let z and z” be points of the topological space

X. A curve from z to z” is a continuous mapping I—7> X with A(0) = z and
(1) = z° (so a loop is a curve from z to z). Consider first the case when
there exists no curve from z to z°. Then there is no necessary relation
between m;(X,z) and m(X,z"); for example, X could be the direct sum of two
topological spaces, with z in one piece and z° in the other. The case when
there is a curve 5 from z to z° is more interesting. We define in this case a
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mapping &, from Q(X;z") to ((X,z) as follows: £ sends loop w based at z” to
the loop (based at z) given by {+(3¢) for 0 < t < 1/3, w(3t-1) for 1/3 <
t < 2/3, and A(3 - 3t) for 2/3 < t < 1}. (That is, “we follow ~ from z to z~,

X

€

11— Kylw)

Figure 104

then the loop w, then retrace ~ back from z° to z, to obtain a loop at z."")
(See figure 104.) We now wish to make two claims about this mapping K.
First, if w and w” are loops based at z” and if these loops are homotopic, then
so are the loops k,(w) and k,(w”) (both based at z). [Proof: If ¢ is a homo-
topy from w to w’, then ¢, given by ¥ (f) = {1(3¢) for 0 <t < 1/3,
$,(3t - 1) for 1/3 < t < 2/3, and (3 - 3¢) for 2/3 < ¢ < 1}, is a homotopy
from k. (w) to k.(w’).] Second, if w and w’ are loops based at z’, then
Kk (ww’) is homotopic to &, (w)k.(w). [Outline of proof: For the loop & (ww”)
at z, you first follow 7 from z to z°, then go around w, then go around w’,
and then retrace v back to z. For the loop &, (w)k.(w") at 2, you first follow ~
from z to z”, then go around w, then go back to z along 7, then return to z”
along 7, then go around w’, and finally again return to z along 4. To show
that these loops are homotopic, first ‘“homotopy away’ from the second loop
the extra visit to = between going around w and going around w’. Then note
that the resulting loop is a reparameterization of the first loop.]

Ky
The first observation above is just the statement that Q(X,z") — Q(X,z)
sends all the points of an entire equivalence class of {}(X,z") into the same
equivalence class in €)(X,z). Thus we obtain a corresponding mapping,

m(Xz") f—: m,(X,z) between the sets of equivalence classes (i.e., given an ele-
ment of my(X,z"), of which w is a representative, . sends that element to the
element of m(X,2) of which x.(w) is a representative). The second observation
above is now precisely the statement that ¢, is in fact a homomorphism of
groups. To summarize, we have shown so far that a curve from z to z° leads
to a homomorphism ¢, from m(X,z°) to my(X,z).
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We next claim that this homomorphism ¢, is in fact an isomorphism of
groups. Indeed, denote by 4° the curve from 2" to z given by ~'(¢) =
A1 - t). Then, for w any loop based at z’, k,(w) is a loop based at z, whence
K.(k(w)) is again a loop based at z’. In fact, this loop k,-(k.(w)) is homoto-
pic to w. [Outline of proof: For the loop .-(x.,(w)) at z”, you first go from z*
to z via 7, then go back to z” via ~, then go around w, then go again to z and
back to z” along 4. To see that this loop at z” is homotopic to w, just
“homotopy away’’ the two visits to z.] Expressed in terms of our homotopy
groups, the statement that k. .(k,(w)) is homotopic to w is just the statement
that ©. o ¢, is the identity homomorphism on m(X,z"). (Note that this

makes sense, for m;(X,z") f: m(X,2) and m(X,2) ﬁ m(X2"), so m(X,z")
0!

%—»m m(X,z").) Similarly, ¢, 0 .- is the identity homomorphism on m(X,z).

Thus ¢, is an isomorphism of groups.

To summarize, there need be no relation between m(X,z) and 7 (X,z")
when there exists no curve in X from z to z°. When such a curve does exist,
these groups are necessarily isomorphic. Thus, for a topological space X hav-
ing the property that any two of its points can be joined by a curve (e.g., the
topological plane), we may speak of the first homotopy group of X (since the
base point makes no difference).

Exercise 227. Let X be a topological space. For z and 2" points of X, write
z a2 2" if there exists a curve from z to 2z°. Prove that this is an equivalence
relation. (The equivalence classes are called curve-connected components of
X)) Prove that m(X,z) depends only on the curve-connected component of X
containing z in the following sense: if there exists an isomorphism (of topologi-
cal spaces) between the curve-connected component of X containing z and the
curve-connected component of Y containing y, then there exists an isomor-
phism (of groups) between m((X,z) and m,(Y,y).

Ezercise 228. The category of pointed topological spaces is that whose
objects are pairs (X,z), where X is a topological space and z is a point of X
and whose morphisms (from (X,z) to (Y,y)) consist of a continuous mapping X

-f» Y of topological spaces with ¢(2) = y. Show that ‘“‘take the first homo-
topy group’ is a covariant functor from the category of pointed topological
spaces to the category of groups. Why not just from the category of topologi-
cal spaces?

Ezercise 229. Analyze the dependence of the isomorphism ¢, above on 4. In
particular, let 4 and 4" be two curves from z to z°, and let q be the element
of 7 (X,z") having as representative {(2 - 2¢) for 0 < t < 1/2, and ~"(2¢t - 1)
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for 1/2 < t < 1}. Prove that, for p any element of m(X,z"), ga?,ll ° <p7(p) =
-1

q 79

Ezercise 230. The two-sphere is the subspace of R X R X R given by (z,)?

+ ()% + (23)> = 1. Prove that the two-sphere is simply connected.

Ezercise 231. A topological space X is said to be contractible (to point z; of

X) if there is a continuous mapping I X X-'f» X with 9(0,2) = z and ¢(1,7) =
zy for all z. Show that the topological plane, for example, is contractible.
Prove that every contractible topological space is connected and simply con-
nected. Find an example to show that the converse is false.

Ezercise 232. A topological space is said to be locally simply connected if
each of its points has a neighborhood which, as a subspace, is simply con-
nected. Find an example of a topological space which is not locally simply
connected.

Ezercise 233. Let X be a topological space, z a point of X, Y a topological
space, and y a point of Y. Prove that = (X X Y,(z,y)) is isomorphic to
m(X;2) X m(Y,y) (where % is direct product in the appropriate category).

Ezercise 234. Is any given group some m(X,z)?

Ky
Ezercise 235. Is Q(X,z") — (X z) an isomorphism of sets?

Ezercise 236. Find two topological spaces that are not isomorphic but whose
first homotopy groups are.
Ezercise 237. Assigning to the loop spaces the compact-open topology, is

Ky

X,z") — (X z) continuous?
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Homology

We now consider the second approach to the “multiple-connectedness struec-
ture” of a topological space.

Fix a non-negative integer n. We denote by K, the subspace of R X R
X - -+ X R (the direct product of the real line with itself (n + 1) times) con-
sisting of (ao,'al, ...,a,) with ¢y > 0,a, >0,...,a, > 0, and with a3 + ¢,
+ -+ a, = 1. The first few are illustrated in figure 105. Thus K is the
subspace of R, the real line, consisting of the single point, (1). K, is the sub-
space of R X R, the topological plane, consisting of pairs of real numbers,
(ag,@), with each non-negative and with ay + a; = 1. Thus K| is a “line seg-
ment (with endpoints)” in the topological plane. Similarly, K, is the subspace
of R X R X R consisting of (ag,a,,a,), with each non-negative and with a5 +
a; + @ = 1. That is, K, is “a triangle in Euclidean 3-space.” Kj is a
“tetrahedron,” and so on for higher dimensions. Note that each of K, K|,
K,, - - - is an explicit, given topological space, fixed once and for all.

The idea is to use K (a “‘point”), K; (a “line”’), Ky (a “triangle”), etc.,
to construct various geometrical figures within a topological space X which
can then, in turn, be used to describe the structure of that space. The first
step is to ‘“‘insert the K, into the space X.” To this end, we define an n-

stmplez (in X) as a continuous mapping K, —0> X. Thus a O-simplex in X is a

mapping from the “‘one-point space” Kj to X (i.e., it is essentially a point of

X). A 2-simplex is a continuous mapping from the ‘“‘triangle” K, to X. We

can think of a 2-simplex in X as a sort of “curvilinear triangle which sits in

X" (figure 106). (It should be emphasized, however, thag an n-simplex con-
g

sists of a continuous mapping, K, — X, and not just the image, o[K,], of that

o
mapping. Thus, even if Ky — X takes all of K, to a single point of X, this is
nonetheless a 2-simplex in X.) Note, incidentally, that a loop in X is also a
1-simplex in X.

We regard the n-simplices as the ‘‘building blocks’ which are to be used
to construct more complicated figures in X. Thus we need some way to
“string together a lot of n-simplices.” One could imagine, for example,
proceeding by the ‘‘prefabrication method”: one could first “hook together” a
lot of K, (e.g., in some Euclidean space) and then map the entire thing, all at
once (continuously), into X. It turns out, however, to be more convenient to
use ‘‘on-site construction.” Thus what we next wish to do is ‘‘consider a lot
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of n-simplices in X all together.”

Fix a topological space X and a non-negative integer n. Denote by C,(X)
the free abelian group on the set of all n-simplices in X. Thus a typical ele-
ment of Cy(X) is ‘‘a formal linear combination of n-simplices in X, where the
coefficients are (positive or negative) integers.” For example, 70 - 30° + 20°°
is a typical element of Cy(X), where o, ¢, and ¢"* are 2-simplices in X.
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Consider Cy(X). Since a 0-simplex in X is essentially a point of X, an element
of Cy(X) is ‘‘a finite list of points of X, each assigned a multiplicity (some
integer).”” Similarly, one can picture an element of, for example, Co(X) by
drawing in X the ‘“curvilinear triangles” (which represent the 2-simplices
which appear in this element of Co(X)) and assigning to each a “multiplicity
integer.”” (One can think of, e.g., ‘‘a curvilinear triangle of multiplicity three”
as three identical curvilinear triangles all on top of each other. We allow
negative multiplicities to make it easier to ‘“remove curvilinear triangles”
when necessary.} Note that each C,(X) is always an abelian group and that,
except for rather trivial X, C,(X) is enormous in size.

Ezample. Let X be discrete. Then (since K, is connected, since the
image of a connected topological space under a continuous mapping is con-
nected, since no connected subset of X has more than one point) every n-

simplex, K, 1 X, takes all of K|, to a single point of X. Thus, for example, if
X contains exactly five points, then each C,(X) is the direct sum of the addi-
tive group of integers with itself five times.

We think of the elements of C,(X) as representing the desired “geometri-
cal figures in X.”” Two things have yet to be done. First, since an n-simplex
is simply a continuous mapping (into X), we have not yet incorporated a
notion of “the simplices in an element of C,(X) all joining together properly
to make reasonable geometrical figures.” What we are really interested in is
elements of C,(X) which represent ‘“‘n-dimensional surfaces in X.”” Second, we
have to figure out some way to cut down the size of C,(X) to obtain a simple
description of X. In the previous chapter, “homotopic” served this purpose:
we need an analogous notion here. It turns out that a single concept—the
notion of a ‘‘boundary”—will serve both of these needs.

Fix a positive integer n, and consider K,. We now introduce (n + 1)

fo
mappings, fo, f1, * * *, Jo, from K, ; to K, as follows: K, ; — K, is the map-
ping which sends (¢, . . . ,e, ;) (a point of K, ) to the point (0,q, . . . ,a, ;)

1

of K,; K,; — K, sends the point (g, ...,s, ) of K, to the point

(a9,0,0q, . - . ,a,_q) of K;; ... ; K, 4 f—» K, sends the point (aq, . .. ,a, ;) of
K, to the point (a, ...,s,1,0) of K, (That is, given a point,
(a9, - - . ,8, 1) of K, ,, f; sends this point to the point of K, which results
from “‘adding an extra zero, in the sth place.”) Note that these mappings are

well defined, for, if (ay, . . . ,@,_;) is # non-negative numbers with sum 1, then
(ag, .. .,0,...,a,)is (n+ 1) non-negative numbers with sum 1. Note also
that each of the mappings f, fi, . - - ,f, is continuous. There is a simple

geometrical interpretation for these mappings, as illustrated in figure 107.

(]
Consider Ky, the ‘‘triangle.” Then K; — K, sends (ay,¢,) to (0,¢y,4,), f; sends
(ag,a;) to (ay,0,a,), and £, sends (ag,a;) to ay,a,,0). But the points of K, of the
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form (0,ap,a;) form one ‘‘edge” of the triangle and, similarly, (a,0,a;) and
fo

(a,@,0) represent the other two edges. Thus the three mappings K; — K,,
h J
K; — K,, and K; — K, describe the “three edges of the triangle K,.” Simi-
[

larly, K, —0» K, and K, i K, describe the “two endpoints of the line segment
K;”; the four mappings from K, to Kj describe the ‘“four faces of the
tetrahedron Kj3"; etc. (Note, incidentally, that, since, for any topological
space Y, Bndy(Y) = 0, the images of the f do not really form Bndy(K,) in
this strict sense.)

We now know how to describe the “boundary of a K.

“carry this idea over to X,” that is, to define the boundary of an n-simplex.
4 fo o
Let K, — X be a fixed n-simplex in X. Then, since K, ; = K, and K, —» X
oofo
are continuous, so is K, ; — X. Thus oo fy is an (n - 1)-simplex in X, and

similarly for oo f;, . . . ,0 o f,. That is, from a single n-simplex o, we obtain
a total of (n + 1) (n - 1)-simplices. For example, the three 1-simplices that
arise in this way (figure 108) from a 2-simplex o represent the three ‘‘curved
edges of the curvilinear triangle represented by ¢.” But the whole idea of
going to the free abelian groups, the C,, was to be able to talk about a
number of simplices at the same time. Thus, for o an n-simplex, we define
d(0) as the element of C,_(X) given by d(¢) = 0o fy-0ofi+00fhb-00fz
+:--%x00f, (For o a O-simplex, we set d(6) = 0.) Thus, for ¢ a 2-
simplex, (o) is the element of C)(X) obtained by ‘‘adding (in Cy(X)) the

”

We now wish to
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edges of the curvilinear triangle ¢.”” The reason for the alternating signs of
the multiplicities in the formula above can be seen in figure 109. A 2-simplex
o, together with J(¢), is shown. Note that the second ‘“‘edge of the triangle”
gets “mapped in backward’ (i.e., the three arrows do not all go around the
triangle in the same direction). This is corrected by the negative multiplicity.
To take a second example, let ¢ be a 1-simplex in X as in figure 110. Then
0(o) is the difference of two 0-simplices (the “endpoints of the curve ¢”’). The
one with plus multiplicity is the one that rises from the point (0,1) of Kj;
negative multiplicity, from the point (1,0). In this case, the multiplicities
reflect the ‘“‘starting point” and ‘‘ending point” of the curve.

Thus, for ¢ an n-simplex, d(o) is a linear combination (with integer
coefficients) of (n — 1)-simplices, that is, an element of C,_{(X). We next wish
to extend this action of d from n-simplices to all linear combinations of n-
simplices, that is, to define an action of d on C,(X). Given an element of
C/X) (e.g., 76 - 30" + 20", where 0, 0", and ¢”" are n-simplices), we define
d of that element, for example, by the formula 8(7¢ - 30” + 20°") = 79(0)
-30(6”) + 20(0""). (Note that the sums on the left are in C,(X); those on
the right are in C,_;(X).) (More precisely, the action of @ on C,(X) is defined
by requiring that, on a single n-simplex, it be the 8 above and that this 8
satisfy d(a + B) = 8(a) + 8(B) for any a and B in C,(X).) Thus, for any ele-

F]
ment a of Cy(X), 8(a) is an element of C, ((X), so 8 is a mapping, C,(X) —
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C,.1(X). It is obvious from the definition that this mapping 0 is in fact a
homomorphism of (abelian) groups. For a in C,(X), the element d(a) of
C, 1(X) is called the boundary of a. Thus the boundary of an n-simplex (or of
any linear combination, with integer coefficients, of n-simplices) is a linear
combination of (n - 1)-simplices (as one would expect intuitively).

A few intuitive examples will make the setup clearer. Consider the ele-
ment of Cy(X) illustrated in figure 111. (Our element of Cj(X) is the linear
combination 26 - 36" of 1-simplices.) The boundary of this element is-a cer-
tain linear combination of four O-simplices with multiplicities -2, +2, +3, and
-3. The whole point of the multiplicities, it can now be seen, is that they
“allow interior boundaries (i.e., common boundaries of two simplices that fit
together)” to cancel. Thus the boundary of the element of Cj(X) pictured at
the right is just & - 3, where a and @ are the O-simplices shown. The two
“interior O-simplices of the curve” appear twice in the boundary, once with
multiplicity +1 and once with -1, and hence cancel (in the group Cy(X)).
Similarly, the boundary of the element of Cy(X) shown in figure 112 is a com-
bination of four 1-simplices, the ‘“interior simplex appearing twice in the
boundary with opposite multiplicities, and hence canceling out.” A similar
phenomenon occurs in higher dimensions. It is precisely this cancellation
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property which makes what we define as the boundary have the correct
geometrical properties.

To summarize, we first introduce a family, K, Kl, - -+ of “figures in
Euclidean space.”” Continuous mappings from these ‘“figures’” to topological
space X define O-simplices, 1-simplices, . . . , in X. By taking “formal linear

combinations, with integer coefficients” of n-simplices, we obtain an abelian
group C,(X). Next, we introduce, in a natural way, the notion of the boun-
dary of an n-simplex (where this boundary is an element of C,_;(X)) and then
extend this notion, by linearity, to C,(X). Thus we obtain, finally,

a a a a a a a
= GX) = G = = GX) = G — Gl =0

It is only these groups and these mappings which will now be needed to
obtain the homological description of topological spaces. (The fact that the
same symbol, 8, denotes a number of homomorphisms of groups does not lead
to confusion.)
We next obtain an important propgr;y of the homomorphisms §. We
0

have Cy(X) i 'w_1(X), and hence C(X) — C, 5(X). We now claim that this
homomorphism 8 o 3 is in fact the zero homomorphism, that is, 8 o d(a) = 0
for every a in Cy(X). (That is, “‘the boundary of the boundary is zero.”) It
clearly suffices to show that 9 o § gives zero on any n-simplex. Fix n > 2,
and let ¢ and j be integers with 0 < ¢ < j<n Both fiof, and fio
are mappings from K, , to K,. We claim that they are in fact the same
mapping:. each sends the point (ay, ...,a,5) of K,, to the point

(a9 ...,0,...,0,...,8,9) of K,, where the zeros occur in the sth and jth
places. (Indeed, f; sends (g, . . . ,8,5) to (a, .. .,0, ... ,a,5), with O in the
ith place, while f; sends this point of K, to (a9, ...,0,...,0,...,a,),

with zeros in the sth and jth places. Similarly, f;, puts in a zero in the
(j - 1)st place of (ag, . . . ,6,3), while f; puts in a zero in the sth place. But,
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since § < j, this last putting in a zero in the sth place shifts the original zero
(which was in the (5 - 1)st place) to the jth place.) Next, let o be an n-
simplex in X. Then d 0 8(0) = Y 7, Yl (- -1)*eg o fio f;- But since, for 0
<i<j< n fiofy =/ o/, all the terms in this last sum cancel. Thus the
boundary of the boundary of any element of C,(X) vanishes. This property is
much easier to see explicitly for low dimensions, for example, by finding the
boundary of the element of Ci(X) in figure 109.

We now wish to restrict consideration to a certain class of ‘‘particularly
interesting geometrical figures in X.”” An element a of C,(X) will be called an
n-cycle if d(a) = 0, that is, if “‘all the terms in the linear combination of
(n - 1)-simplices which constitute the boundary of o cancel.” Intuitively, one
thinks of an element of C,(X) as “little pieces of n-surfaces sitting in X"’ and
of an n-cycle (a particular kind of element of C,(X)) as a “closed n-surface in
X, one that connects up with itself along all edges.” For example, figure 113

X X

Figure 113

represents a typical l-cycle and a typical 2-cycle in X. Note, in particular,

that every loop in X (regarded as an element of Cj(X)) is a 1-cycle. Since 0

= 0 on Cy(X), every element of Cy(X) is a O-cycle. Next, note that, since
a

C(X) — C,;(X) is a homomorphism, we have d(a + f) = d(a) + 9(8) and
d(-a) = -9(e) for any elements a and S of C,(X). In particular, the sum of
two n-cycles is necessarily an n-cycle and the (additive) inverse (in thelgroup
C,(X)) of an n-cycle is an n-cycle. (Thus a 1-cycle could consist, for example,
of “several separate closed curves.”) Thus the collection, Z,(X), of all n-cycles
forms a subgroup of the group C,(X). What we have said in this paragraph,

with motivation removed, is: let Z,(X) denote the kernel of Cy(X) — C,_;(X),
and call its elements cycles.

We have now, finally, obtained the ‘‘geometrical figures in X’ that we
wish to study, namely the n-cycles. Only one further difficulty remains: there
are, for any reasonable X, too many n-cycles to make Z,(X) provide a reason-
able description of X. One can think of the n-cycles in homology as playing a
role somewhat analogous to that of loops in homotopy. What we now want is



Homology 207

something in homology analogous to ‘‘is homotopic to’” in homotopy. In order
to get an idea of what one should try, we ask, “How does one know that there
tend to be so many n-cycles?”’ For one thing, if we take any element ~ of
C,1(X), then 9(7) is necessarily an n-cycle (for its boundary, 9(9(~)), is zero
since 8 o @ = 0). This observation suggests the following definition. Two n-
cycles,  and 3, will be called homologous if there is an element v of C,,,(X)
with @ - f = (7). (Note that there is no point in requiring that v be an
(n + 1)-cycle, for then we would have 8(7) = 0, and hence a = 3.)

X

~¢

Figure 114

This notion ‘‘is homologous to’’ has very much the intuitive flavor of ‘“‘is
homotopic to.” For example, the two 1-cycles represented in figure 114 are
homologous with each other. The ‘‘triangulation of the region between o and
B” suggests how one would construct an element v of Cy(X) with & - 8 =
(7). Consider next the situation illustrated in figure 115. The 1-cycle

X

— ’_‘“ho|e “

Figure 115

denoted a is homologous to the zero 1-cycle (i.e., @ = 9(n) for some 7), for
example, by the “‘triangulation” suggested by the figure. (There is little point
to writing everything out explicitly. How one would actually write out ~ in
detail is perhaps clearer from the figure than it would be from explicit formu-
lae.) On the other hand, the 1-cycle 8 in this figure is not homologous to the
zero l-cycle, for “‘the hole in X prevents one from finding any « in Cy(X) with
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B = 8(v).”" The difference (at least formally—a difference we shall refine in
the next chapter) between homologous 1-cycles and homotopic loops is that
the latter require the existence of a “continuous deformation” from one loop
to the other, while the former require the existence of ‘‘some 2-surface in X
whose boundary is the difference of the 1-cycles.” This intuitive state of
affairs continues into higher dimensions. Thus two 2-cycles are homologous,
intuitively, if “there is a 3-surface in X of which the two 2-cycles form a
boundary.” It is easy, for O-cycles, to describe the situation more precisely.

Ezample. Let X be a topological space, and let X have the property that
between any two points of X there passes a curve. Let ¢ and ¢” be O-
simplices (and hence 0-cycles) on X, and let z and z° be the corresponding
image-points of these mappings. Then, evidently, 0 - 0" = 9(9), where ~ is
the element of Cj(X) which is the curve from z to z”. Thus any two ¢
simplices are homologous. Now consider two 0-cycles, for example, 20 + o’
and -0 + 30’ " . Since any two 0-simplices are homologous, it is clear that
these two will be homologous if and only if the “sum of the multiplicities”
(i.,e, 2 + 1 = 3 and -1 + 3 = 2) is the same for the two (so these two 0-
cycles are not homologous).

Thus we now have the notion of a “boundaryless surface” (an n-cycle),
the set Z,(X) of these n-cycles, and the relation ‘‘is homologous to’” on these
n-cycles. We next claim that this is in fact an equivalence relation on Z,(X).
[Proof: (1) Each n-cycle o is homologous to itself, for a — a = 9(0). (2) If o is
homologous to § (so a - f = 9(u) for some g in C, (X)), then B is homolo-
gous to a for # - a = d(-x). (3) If a is homologous to 3, and B to v (so a - B
= d(p) and B - v = 3(v)), then a is homologous to ~ for & — v = d(p + v).]
We denote the collection of equivalence classes by H,(X). Thus an element of
H,(X) is “an n-cycle (i.e.,, a boundaryless thing) modulo the boundary of
something of one higher dimension.” (This H,(X) is somewhat analogous to
the set of equivalence classes of loops under ‘‘is homotopic to.””) Next, note
that, if o is homologous to a”, and # is homologous to 3°, then a + A is
homologous to a” + #°. Thus we can define addition in H,(X): given two
elements of H,(X) (i.e., two equivalence classes in the set Z,(X) of n-cycles),
pick an n-cycle from each equivalence class, add them, and see what
equivalence class (element of H, (X)) the sum lies in. By the observation
above, this rule is independent of the original particular choices of n-cycles.
Thus H,(X) has the structure of an abelian group and is called the nth homol-
ogy group of the topological space X. (In a more algebraic setting, the above
could be stated as follows. Since d 0 d = 0, the image of the first & in

Coii(X) —a> C.(X) —a» C, 1(X) is a subgroup of the kernel, Z,(X), of the second
9. The quotient group is H,(X).)

To summarize, we begin with n-simplices in X and then ‘‘string them
together, with integral multiplicities’” to obtain the abelian group C,(X).
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Next, one constructs the “boundary homomorphism,” C,(X) —3» ' 1(X). One
next obtains two subgroups of C,(X): Z,(X), the subgroup of n-cycles, consists
of elements of C,(X) with zero boundary; and (say) B,(X), the subgroup of
C,(X), consists of elements which are boundaries of elements of C,,;(X).
Since 308 = 0, B,(X) is a normal subgroup of Z,(X). Set H,(X) =
Z,(X)/B,(X), the nth homology group.

Ezample. Let X be a topological space any two points of which can be
joined by a curve. Then, as we saw above, any two O-simplices in X are
homologous. Fix a 0O-simplex ¢ in X. Then any 0-cycle is homologous to some
multiple of g, for example, 20 + 90" — 0" is homologous to 10g. Thus Hy(X)
in this example is the additive group of integers.

Ezample. Let X be the topological space with a single point. Then each
C,(X) is the additive group of integers (since there is only one n-simplex for
each n, so only the multiplicity counts). From the definition of 9, it is

v

immediate that C,,(X) — C,(X) is the zero mapping for » even, and the
identity mapping for n odd. Hence Hy(X) = Z, with all other H,(X) the zero
group.

Ezample. The homology groups of the real line are the same as those of
the previous example. We sketch a proof. It suffices to show that every n-
cycle for n 2> 1 is homologous to the zero n-cycle. Introduce, as in the last
chapter, a ‘‘uniform contraction” of the real line to its origin, and use this to
construct, for any n-cycle a, a g with o = 0(p). A similar argument shows
that the homology groups of the topological plane are the same as those of
the real line.

Ezercise 238. Prove that the homology groups of the punctured plane are the
following: Hy(X) and Hi(X) are the additive group of integers, all others zero.

Ezercise 239. Let X be a topological space with seven path-connected com-
ponents. Prove that Hy(X) is the direct sum of the additive group of integers
with itself seven times.

Ezercise 240. Let X and Y be topological spaces. Prove that, for each n,
H(X + Y) is isomorphic to H,(X) + H,(Y), where each “+ denotes the
direct sum in the appropriate category.

Ezercise 241. Find an example of a topological space which has a nonzero
nth homology group for every n.

Ezercise 242. Find the homology groups of an indiscrete topological space.
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Ezercise 243. Investigate the behavior of homology groups under direct pro-
ducts of topological spaces.

Ezercise 244. Find an example of a topological space X such that H(X) is
not isomorphic to m(X,z).
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Homology: Relation to Homotopy

It is clear intuitively that the first homology group of a topological space
should be closely related to its first homotopy group (relative to some base
point). In each case, one deals essentially with ‘‘equivalence classes of
curves,” the only difference being that the equivalence relation, for homotopy,
is “is continuously deformable into’’ and, for homology, is ‘‘together form the
boundary of a 2-surface.” We briefly discuss this connection in this chapter.
Recall, from chapter 34, that I denotes the subspace [0,1] of the real line
and, from chapter 35, that K; denotes the subspace of the topological plane
T

consisting of (ag,a;) with ag > 0, a; > 0, and a3 + a; = 1. Let K; — I be
the mapping which sends (ag,a;) to the number (point of I') a;. This 7is, of
course, an isomorphism of topological spaces.
Next, let X be a topological space, and z a point of X. Let w be a point
w
of (X,z) (i.e., a loop based at z, i.e., a continuous mapping I — X with w(0)

woT
= w(l) = z). Then wo 7 is a continuous mapping K; — X, that is, a 1-

simplex in X, that is (since Cj(X) is the abelian group of all linear combina-
tions, with integral coefficients, of 1-simplices), an element of Ci(X). Thus a
loop (based at z) defines an element of Ci(X). This mapping of sets, ) X,z)

i C1(X), will be used to relate homotopy to homology groups.

We next claim that, for any loop w, ¢(w) is in fact a 1-cycle (i.e., d(¢(w))
= 0). [Proof: For w a loop, the 1-simplex w o 7 sends the point (0,1) of K to
the point z of X, and the point (1,0) of K; to the point z of X. Since d(w o 7)
is the difference of these two O-simplices and since they are the same O-

‘e

simplex, d(w o 7) = 0.] (This property is, of course, clear geometrically: ‘“‘a

¢
loop closes on itself.””) Thus 2(X,z) — Cj(X) sends loops to 1-cycles, whence
(since Zy(X) is the subgroup of Cy(X) consisting of just the 1-cycles) we have

¢
(X,2) — Z(X).
The next step is to compare the two equivalence relations: ‘‘is homotopic
to” and “is homologous to.”” We claim: if loops w and w’ are homotopic,
then the corresponding 1-cycles, ((w) and ¢(w”), are homologous. Proof: Let I

¥
X I — X be a homotopy from w to w’, so ) = w, ¥; = w”, and ¢ (0) =
’
¥, (1) = z for all 5. Let K, — I X I be the continuous mapping that sends

[
(ag,0),8;) to the point (1 - a5,4;) of 7 X I, and K; — I X I the continuous
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mapping that sends (ag,0y,60) to (ag,1 — a;) (figure 116). Then each of Yo p
and ¢ o p” is a continuous mapping from K, to X, that is, a 2-simplex in X.
Let o be the element of Cy(X) given by a = pop -~ o p’. Then 9(a) =
dw’) —g(w), that is, gw) and ¢w”) are homologous. (Intuitively, we “triangu-

late the square I X I,” so the homotopy I X I — X leads to two 2-simplices
in X. The triangulation is so chosen that the boundary of the difference of
these two 2-simplices in X is just w’) — g(w). Thus, since gw”) - gw) is the
boundary of this element of Cy(X), ¢(w) and ¢(w”) are homologous. Still more
intuitively, ‘‘the continuous deformation from one loop to the other must be
over a certain 2-surface, so the difference of the loops must be the boundary
of this surface, so the loops must be homologous.”)

an

Ka

.t
)

£'we)
JII)

Figure 116

Thus every loop defines a 1-cycle, and homotopic loops define homolo-
gous 1-cycles. Recall, however, that m,(X,z) is the set of equivalence classes of
(X,2) under the equivalence relation “is homotopic to,” while H)(X) is the
set of equivalence classes of Z;(X) under the equivalence relation ‘‘is homolo-

s
gous to.” Thus, by the remark above, )(X,z) — Z,(X) induces a mapping
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e
m(X,2) — Hi(X) (namely, given an element of 7,(X,z), choose a loop in that
equivalence class, apply ¢ to it, and find the equivalence class (element of
H(X)) in which the resulting 1-cycle lies).

2

We now have a mapping of sets, m(X,z) — H;(X). But each set is actu-

ally a group. Our final claim: this ¢ is in fact a homomorphism of groups.
To prove this, it suffices to show that, for any two loops w and w”, the 1-cycle

f(ww”) is homologous to the 1-cycle w) + ¢(w”). To this end, let K, 4 X be
the 2-simplex in X given by o(ag,a;,0) = {w(ay - ap) for ay < gy and
w(ag - ay) for @y < ay}. (The edge (0,4;,a)) is sent to the loop w’, the edge
(@9,0,85) to ww’, and the edge (g9,4,,0) to w.) Thus d(w) = ¢w) + ¢(w’)
- ¢(ww’), so g(w) + ¢(w”) is homologous to ¢(ww”).

Thus we obtain, finally, a homomorphism of groups, m(X,z) 4 H(X).
Note that this need not be an isomorphism, for example, because 7,(X,z) need
not be abelian, while H,(X) is always abelian. In fact, one can see this feature
more geometrically: there exist (for certain X) loops w and w’ that are not
homotopic, but whose corresponding 1-cycles are in fact homologous. An
intuitive example of such (the “doughnut with two holes) is shown in figure
117. The loop w is not homotopic to w” (the zero loop) because “you cannot
continuously deform w over the hole.” Yet the corresponding 1-cycles
together bound a 2-surface (the left half of the figure).

& € Cy(X)
— X

w

2
%

Figure 117

Ezercise 245. Show that, for the real line, the topological plane, and the
)
punctured plane, m;(X,z) — H;(X) is an isomorphism.

Ezercise 246. Why is there no way in general to obtain a homomorphism
from H;(X) to m (X,z)?

Ezercise 247. Prove that the commutator subgroup, [m,7], of 7 (X,z) is a sub-
group of the kernel of . Thus, obtain a homomorphism from m;(X,z)/[m,x]
(quotient group) to Hy(X). Prove that, if X is curve-connected, this is an iso-
morphism. Why is “curve-connected’ needed?
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The Homology Functors

Fix a non-negative integer n. Then, as one would expect, “take the nth
homology group” is a covariant functor from the category of topological
spaces to the category of abelian groups. We now verify this assertion.

Recall (from chapter 17) that a covariant functor from one category to
another is a rule which associates, with each object of the first category, an
object of the second, and with each morphism of the first category a mor-
phism of the second, such that the identity morphism and composition of
morphisms are preserved. Fix a non-negative integer n. Then, for X any
topological space, let F(X) be the nth homology group of X, H,(X). This is
the first of the two ‘‘rules” needed to specify our functor.

P
Next, let X — Y be a continuous mapping of topological spaces. We

F(p
must find a homomorphism of groups, H,(X) — H,(Y). Consider first an n-
4 poo
simplex in X, K, — X. Then K, — Y is continuous, whence ¢ o o is an n-

simplex in Y. More generally, for « = 30 - 70" + 0" an element of C,(X)
(so 0, ¢, and ¢ are n-simplices in X), set P(a) = 3pooc -Tpoa’
+poo”, so pla), as a linear combination, with integral coefficients, of n-
simplices in Y, is an element of C,(Y). Thus we obtain a mapping C,(X)

7

— C,(Y), a mapping which is clearly a homomorphism of abelian groups. We
next wish to figure out how these homomorphisms ¢ interact with the boun-
dary homomorphisms 3. Consider the diagram of figure 118. We claim that

G (X) =250, (02 C (X) 2 e

~

9 7

|

e G (V) 250, (N (. (Y) S -

Figure 118

the interaction between ¢ and 9 is the following: this diagram commutes.

Indeed, let K, :v X be an n-simplex in X. Then @(0) = ¢ oo, whence
3(@(0)) = 1% (-1){(¢ 0 0) o f;. On the other hand, d(0) = Y% (-1)'7 o £,
whence @(3(0)) = %o (-1)p o (c0f). Thus 8o @ = @ o @ when applied
to any n-simplex in X, and hence (since everything is a homomorphism, since
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C,(X) is the free abelian group on the set of n-simplices in X) dop = po 8
when applied to any element of C,(X). Thus the diagram above indeed com-
mutes. (This is not unexpected geometrically. Think of an n-simplex in X as
an ‘‘n-dimensional tetrahedron sitting in X.” Then ¢ ‘“sends this n-
dimensional tetrahedron sitting in X over to an n-dimensional tetrahedron sit-

ting in Y, via Xf» Y.” The statement of commutativity of the diagram above
is, essentially, “you get the same result whether you first take the boundary
of this tetrahedron in X and send that boundary, via ¢, over to Y, or first
send the whole tetrahedron over to Y via ¢ and there take its boundary.”)
Commutativity of the diagram having been established, all that remains

is algebra. We first claim that C,(X) i 2(Y) takes n-cycles in X to n-cycles
in Y. In fact, if a is any n-cycle in X (so &(a) = 0), then @(a) is an n-cycle in
Y, for 8(p(a)) = @(8(a)) = p(0) = 0, where we used commutativity in the
first step. Thus (recalling that Z, is the subgroup of C, consisting of n-cycles)

we have Z,(X) f» (Y). Now let o be an n-cycle in X which is in fact a
boundary, that is, let « = d(p), with p in C, 1(X). Then the n-cycle (a) in
Y is also a boundary (of something in C,.\(Y)), for p(a) = H(d(n)) =
O(p(p)), where we used commutativity in the last step. Thus (recalling that
B, is the subgroup of Z, consisting of n-cycles which are boundaries of ele-

P
ments of C,,;) we have that Z,(X) — Z,(Y) takes elements of the subgroup
B,(X) of Z,(X) to the subgroup B,(Y) of Z,(Y). But H, = Z,/B,, the quo-

F

tient group. We define the homomorphism H,(X) —f H,(Y) as follows: given
an element of H,(X) (i.e., a coset of B,(X) in Z,(X)), choose an element of
Z,(X) in that coset, apply @ to it to get an element of Z,(Y), and find the
coset of B,(Y) (i.e., the element of H,(Y)) in which that element lies. This

@
rule is independent of the choice of element of Z,(X), since Z,(X) — Z,(Y)
takes By(X) to B,(Y).

We are now nearly done. We have, for each topological space X, an
©
abelian group F(X) (— (X)) and, for each continuous mapping X — Y, a

homomorphism F(X) — F( Y), namely that constructed above. We must
verify that the two conditions for a covariant functor are satisfied. It is obvi-
!x F lx
ous that, for X — X the identity (continuous) mapping, F(X) — F(X) is the
P
identity homomorphism. So let X — Y — Z be continuous mappings of topo-
logical spaces. We must show that F(¢ o ¢) = F(¢)) o F(¢) (each side being a

(4
homomorphism from F(X) to F(Z2)). Let K, — X be an n-simplex in X. Then
the n-simplices ¢ o (p 0 ) and () o ) o o in Z are the same (since composi-
. . . . s as NS - .
tion of continuous mappings is associative). Hence (1 0 ) = ¢ o o (each side
a homomorphism from Cy(X) to C,(2). But this fact, together with the
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F(p)
definition of H,(X) — H,(Y), implies immediately that F(¢op) =

F(¢) o F(0). Thus we have a functor.

Note that we obtain not just a single covariant functor from the category
of topological spaces to the category of abelian groups, but an infinite number
(i.e., one for each non-negative integer n). These are called the homology
functors. Note also that the homology functors are ‘‘nontrivial” in the follow-
ing sense: they are certainly not forgetful, and neither are they free (for we
have no forgetful functor from the category of abelian groups to the category
of topological spaces). Note finally that the statement that the homology
furctors are functors has some real content to it: we actually had to work,
and prove things. In other words, the idea of a functor here made a contribu-
tion, in that it suggested what one should try to prove.

Finally, we remark that this chapter provides an example of how one
works with homology. One first deals with the simplices, using properties of
continuous mappings. Then, using properties of free abelian groups, one
extends what one knows to the C,. The next step is to see how this structure
interacts with the boundary homomorphisms (here using both properties of
continuous mappings and properties of abelian groups). Finally, since the C,
and the boundary homomorphisms together define the homology groups, the
H,, one proceeds (purely algebraically) to say what one can about the homol-

ogy groups.

Ezercise 248. Is F(yp) necessarily a monomorphism (resp., epimorphism) if X
"3

— Yis?

Ezercise 249. Let X be a topological space. The nth cohomology group of X

is the group of all homomorphisms from H,(X) to Z, the additive group of
integers. Construct the (contravariant) cohomology functors.
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Uniform Spaces

Let X be a set. We may regard a topology on this set as providing one with
the following structure: the notion of what are the neighborhoods of each
point of X. On the other hand, a metric (chapter 26) on X provides some-
what more structure: not only can one speak of the neighborhoods of each
point of X, but also one can assign to these neighborhoods a ‘‘numerical size.”
(For example, a neighborhood of “radius 7" about point z consists of all z*
with d(z,2") < 7.) In particular, one can, in a metric space, ‘‘compare sizes of
different neighborhoods.” The structure we now wish to consider can be
regarded as an intermediate one between these two extremes. We shall have
“neighborhoods, together with a certain ability to compare them with regard
to size, but with no precise numerical measure of that size.”

It is convenient first to introduce a little notation. Let X be a set, and
consider X X X, the Cartesian product of X with itself. Denote by D the
subset of X X X consisting of all elements of the form (z,z). This D is called
the diagonal of X X X. For A any subset of X X X, we write A”! for the
subset of X X X consisting of all pairs (z,2”) with (z",z) in A. Finally, for A
and B subsets of X X X, we write AB for the subset of X X X consisting of
all pairs (z,z") for which there exists an z with (z,z) in A and (z,2") in B.
Thus, for example, D! = D, AD = DA = A and (A™!)"! = A for every A,
and (AB)C = A(BC) for every A, B, and C. (We do not have a group, how-
ever, for, e.g., it is false in general that A™1A = D.)

A uniform space consists of two things—i) a set X, and ii) a collection of
subsets of X X X (subsets in this collection will be called entourages}—
subject to the following four conditions:

1. The intersection of all the entourages is precisely the diagonal D.

2. For any entourage A, A™! is also an entourage.

3. For any entourage A, there exists an entourage B with BB C A.

4. The intersection of two entourages is another, and any superset of an
entourage is another.

A number of properties of the entourages are immediate from this
definition. Condition 1 implies that every entourage is a superset of the diag-
onal. Hence, for A and B entourages, AB is a superset of both A and B (for
AD = A and DB = B). By conditions 2 and 4, for A any entourage, A N A™!
= B is another. This B is symmetric, in the sense that B! = B and, by the
remark above, is a subset of A. Thus every entourage is a superset of a sym-
metric entourage. Repeated application of condition 3 establishes that, for A
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any entourage, there is an entourage B with BB - - + B (n times) a subset of A.
Finally, condition 4 guarantees that the intersection of any finite number of
entourages is an entourage.

There is one important example which both motivates this definition and
makes sense out of it.

Ezample. Let X, d(,) be a metric space. For each positive number e,
denote by K, the subset of X X X consisting of all (s,s") with d(z,z2") < .
Let the entourages be the subsets A of X X X for which there exists an ¢ with
A a superset of K,. We claim that this set X, with these entourages, is a uni-
form space. (1) Since, for every z, d(z,2) = 0, the diagonal is a subset of
every entourage. For z 5% z°, d(z,z”) is positive, whence there is some K,
(i.e., some entourage) not containing (z,z°). Thus the intersection of all the
entourages is the diagonal. (2) Since, for any z and 2°, d(z,2") = d(z’,z), we
have K;! = K, for each ¢. Hence, for A any entourage (so A D K,), we have
A1 D K,, whence A! is an entourage. (3) Let A be any entourage, so A
D K,. By the triangle inequality, K ;K C K. But K, is an entourage.
(4) Let A and A’ be entourages (so A D K, and A” D K,-). Denote by ¢ the
smaller of ¢ and ¢”. Then AN A" D K, whence AN A’ is an entourage. It
is obvious that any superset of an entourage is an entourage. Thus every
metric space yields, by the construction above, a uniform space.

This example suggests that one think of a uniform space as “a metric
space modified so that the real numbers lose their special role.” Thus one
interprets the four conditions in the definition of a uniform space as follows.
The first condition reflects the condition for a metric space that d(z,z") is
non-negative and vanishes when and only when = 2. The second condi-
tion reflects symmetry of the metric, d(z,2") = d(z",z). The third condition
for a uniform space is a sort of truncated version of the triangle inequality for
metric spaces. The first part of the fourth condition reflects the ordering on
the set of real numbers. Finally, the last part of the fourth condition ensures
that no ‘‘additional structure has been surreptitiously included in the uniform
space by cutting down the number of entourages.”

Some further special cases of the example above will make the situation
clearer. It is convenient, first, to have available the following definition.
Given a set X, a collection of subsets of X X X satisfying the four conditions
above is called a untformity on X.

Ezample. Let X = R, the set of real numbers, and, for r and r’
numbers, set d(r,r’) = |r - r’| (the usual metric on the reals). Then X X X
can be represented as the plane as shown in figure 119, and the diagonal D is
the line indicated. For each positive ¢, K, is a ‘“‘strip centered on D.”” The
entourages are the supersets of these K,. This uniform space is called the uni-
form space of reals.

Ezample. Let X = R, and set

drr)=|r-r|/(1+]|r-r)) .
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%= IR

«_—diagonal D

Figure 119

Then, noting that this is a metric, we have a metric space. (Note that this

metric space is essentially different from the one above, for here ‘‘no two

points are a distance greater than 1 apart.”) Each RE in this case is just one

of the K, above (namely for ¢ = €/(1 - €)). Thus “the K, in the two cases are

essentially the same, but are labeled in a different way by the number e.”” We

obtain, therefore, the same uniformity in this example as in the previous one.
Ezample. Let X = R, and set

d(r,r’) = |(2r + sin r) - (2r" + sin ') ,

noting that we thus obtain a metric space. A typical IA(C is shown in figure
120 (the “‘waviness” is caused by the sin’s in d( , )). Note first that each of

x:1R
ke’
AT
Aﬂ 4;2
AMLAAY S xR

Figure 120

these Kc is a superset of one of the K, of the first example. Thus every
entourage in the present uniformity on X is an entourage in the uniformity
above. Similarly, each Kc is a subset of a K,. Thus every entourage in the
uniform space of reals is an entourage in the present uniformity. Thus the
metrics d( , ) and d( , ) define the same uniformity on X.
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Ezample. Let X = R, and set
U
d(r,r’) = |tan”lr - tan~!r’|
(where, by “tan”l,” we mean the value between -m/2 and 7/2). This is a
U Ue
metric space. A typical K is shown in figure 121. Note that each such K—
and hence each entourage in this uniformity—is a superset of some K, and
hence an entourage in the uniform space of reals. The converse, however, is
false. A K, (i.e., an entourage) in the uniform space of reals is not a superset
V)

€
of one of these K. Thus none of these entourages in the uniform space of

reals is an entourage in the present uniformity. We have here a uniformity
different from that of the uniform space of reals.

X’JR D

A
Z A

Figure 121

It is clear from these examples that the uniform space obtained from a
metric space ‘‘ignores certain of the finer numerical details of the metric but
does retain the asymptotic, gross shapes of the K,.”

We next consider the relation between uniform spaces and topological
spaces. Let X be a uniform space. We call a subset O of X open if, for each
point z of O, there is an entourage A such that, whenever (z,z") is in A, 2’ is
in 0. We claim that these open sets define a topology on the set X. [Proof:
(1) The empty set (which contains no z) and X itself (which contains every
z’) are certainly open. (2) Let O, (X in A) be open, and let z be a point of
&\J O,. Then zis a point of some O,, whence there is an entourage A with z’

in O, whenever (z,2") is in A. Thus z’ is in L‘{l O, whenever (z,2°) is in A,
whence E{IO)‘ is open. (3) Let O and O be open, and let A and A be
corresponding entourages. Then A N A is an entourage. But, for zin O Ny 0,
and (z,2") in AN A, z’ is in both O and O, whence z” is in ON O. Thus
ON O is open.] Thus a uniformity on a set X yields, by the construction

above, a topology on the set X. We can now go back and reinterpret the
entourages in our original uniform space topologically. In fact, we have
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THEOREM 44. Let X be a uniform space, z a point of X, and A an entourage.

Denote by N the collection of all points z° of X with (z,2°) in A. Then N

i3 a neighborhood (in the topology above) of z.

Proof. Choose entourage B; with BBy C A, then entourage B, with
B,B, C By, then entourage By with ByB; C By, ete. Then B, C A, and BB,
C BB, C A, and BiByBy C B\B;By C BB, C A, etc. Thus, since each
B\By -+ * B, is a subset of A, B= B, U BBy U BiB;By U * * * is a subset of
A. Denote by O the subset of X consisting of all z” with (z,2") in B. Note
that z is a point of O and that (since B C A) O is a subset of N. The proof
that N is a neighborhood is completed by showing that this O is open. Let z”
be any point of O (i.e, let (z,z") be a point of B, say (z,z’) is in
BB, - -+ B,). Then, for any z** with (2",2"") a point of B, (z,2”") is a
point of ByB, - - - B,B,,,, and therefore a point of B. That is, for any z"~
with (z°,2"") a point of B,,, we have that z°" is a point of O. That is, O is

open. ]
Thus the ‘‘topological viewpoint” toward uniform spaces is this. We

regard the entourages of uniform space X as obtained as follows. For each
point (z,z) of the diagonal, one chooses a neighborhood of z and considers the

X

“Vertical

sets”" —
\
7

Enfourage
A

Figure 122

“vertical set” (figure 122) consisting of all (z,z") with z" in this neighborhood.
Repeating for each point of the diagonal and taking the union of these “verti-
cal sets,” we obtain a candidate for an entourage. Condition 4 for a uniform
space just reflects the basic properties of neighborhoods (finite intersections
and supersets of neighborhoods are neighborhoods), while condition 1 guaran-
tees that one can find ‘“‘small neighborhoods.” However, not every candidate,
constructed as above, will in general be an entourage. Condition 2 requires,
roughly speaking, that “‘the neighborhood chosen for each point z vary con-
tinuously with 2."” Finally, condition 3 requires that “into every neighborhood
one can fit neighborhoods about half as large.” Since an entourage represents
a ‘‘system of neighborhoods, one attached to each point of z varying
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continuously with z,”’ the entourages give more information than just the
neighborhoods. That is, a uniformity gives more information than a topology.
On the other hand, a metric gives even more information, namely that of “the
numerical size of a neighborhood.”

Note that all four uniformities on the set R of real numbers given in the
earlier examples yield the same topology on R, namely that of the real line.
Thus different uniformities can yield the same topology. Note also that, for
X, d(, ) a metric space, if we first take the corresponding uniformity and then
the corresponding topology, we obtain the same topology as would be
obtained directly from the metric space (by the construction of chapter 26).
Finally, note that every topology that arises from a uniformity is Hausdorff.
[Proof: Let X be a uniform space, and let z and z” be distinct points of X.
Choose entourage A with (z,z”) not in A, and entourage B = B ~! with BB C
A. Then the neighborhoods of z and z° constructed from this B as in
theorem 44 do not intersect.]

All we have done so far is to define, motivate, and discuss intuitively the
notion of a uniform space. We next wish to introduce the notion of a
“structure-preserving mapping’’ between uniform spaces. Let X and Y be

v ¢

uniform spaces, and let X — Y be a mapping of sets. Let X X X - Y X Y
be the mapping which sends the point (z,2”) of X X X to the point (¢(z),
p(z’)) of Y X Y. (Note, incidentally, that this takes the diagonal of X X. X

to the diagonal of Y X Y.) This Xf» Y is said to be uniformly continuous if,
for each entourage A of uniform space Y, gb'l[A] is an entourage of uniform
space X. (Note how similar this notion is to that of a continuous mapping of
topological spaces.)

[
Ezample. Let each of X and Y be the uniform space of reals, so R — R.

e
Then (since the entourages in this case are the supersets of the K) R — R is
uniformly continuous if and only if, for each K, $![K,] is a superset of some

K. That is (reintroducing the metric), R 2 R is uniformly continuous if
and only if, for any positive €, there exists a positive € such that |p(r) -
o(r")] < € whenever |r-r'| < €”. This will be recognized as the standard
definition of uniform continuity for functions of a real variable. (It says that
‘“you tell me how close you want ¢(r) and ¢(r’) to be, and I will tell you how
close r and r* must be to guarantee the desired closeness of (r) and o(r").”

73

Thus, for example, R — R with ¢(r) = ¢ (figure 123) is not uniformly con-
tinuous (for, given ¢, no matter how small one chooses €, one can find (very
large) r and r” within ¢” but whose squares are not within €¢). On the other

"
hand, R — R with ¢(r) = 1/(1 + #?) is uniformly continuous.

It is immediate from the definition that the composition of two uniformly
continuous mappings is uniformly continuous.
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Y= ‘R (p(ﬂ_‘kz
|
QPv)= |+
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Figure 123

Let the objects be uniform spaces, the morphisms uniformly continuous
mappings of uniform spaces, and composition composition of uniformly con-
tinuous mappings. We thus obtain a category, called the category of uniform
spaces.

We have seen that every uniform space defines a topological space (in
fact, a Hausdorff one). It is natural to try to describe this state of affairs by
means of a functor from the category of uniform spaces to the category of
topological spaces. For X a uniform space, let F(X) be the corresponding

7]
topological space. Next, le¢ X — Y be a uniformly continuous mapping of

uniform spaces. Then X —‘p» Yis also a continuous mapping of the correspond-
ing topological spaces (since, by theorem 44 and the definition of uniform con-
tinuity, inverse images, by g, of neighborhoods in Y are neighborhoods in X,
whence, by theorem 31, ¢ is continuous). Thus we have a continuous map-

ping F(X) Fif) F(Y) of topological spaces. That the defining properties of a
covariant functor are satisfied is immediate. We shall (because of the “topo-
logical viewpoint” toward uniform spaces) regard this as a forgetful functor
(you “forget how the neighborhoods are assembled into entourages but not
what the neighborhoods are”).

Why does one not try to introduce a forgetful functor from the category
of metric spaces to the category of uniform spaces? The reason is that there
just does not seem to be any well-behaved ‘““‘category of metric spaces.” It is
easy to decide what the objects should be for such a category: the problem is
to come up with a decent notion of a morphism. If you like, the notion of a
uniform space arises from ‘‘categorization of that of a metric space.” Finally,
we remark that many of the constructions available in a metric space are both
available and simpler in the underlying uniform space. It often happens in
physical applications that one ‘‘has a metric space, but the details of the
actual numerical values of the metric are essentially gauge.” In this situation,
the underlying uniform space is almost always what is physically significant.
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f
Ezercise 250. Fix R — R, a mapping of sets. Find a necessary and sufficient
condition on f that d(r,r") = |(r) -~ f{r’)| be a metric on R. Find a necessary
and sufficient condition for this metric to yield the uniform space of reals.

Ezercise 251. Let X be a uniform space. Prove that each entourage is a
superset of an open (in the product topology on X X X) superset of the diago-
nal.

Ezercise 252. Let X be a topological space, and let the entourages be super-
sets of open (in the product topology on X X X) supersets of the diagonal.
Decide whether each of the four defining conditions for a uniform space is
satisfied in general by these entourages.

Ezercise 253. Find a set X and a uniformity on X which comes from no
metric on X.

Exercise 254. Discuss products, sums, isomorphisms, and subobjects in the
category of uniform spaces. Prove that the uniform space of the fifth example
of this chapter is isomorphic to the subspace (-7/2,7/2) of the uniform space
of reals.

Ezercise 255. Let X be a set. Partially order the set of uniformities on X,
and introduce coarser and finer uniformities. Does there exist, for any collec-
tion of uniformities on X, a finest one coarser than all in this collection?

Ezxercise 256. Can two distinct uniformities on set X both yield the discrete
topology on X7 the indiscrete topology?

Ezercise 257. Prove that two uniformities on set X that yield the same com-
pact topology on X coincide.

"4
Ezxercise 258. Let X and Y be uniform spaces, and let X — Y be continuous
(on topological spaces). Prove that, if X is compact, ¢ is uniformly
continuous.
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The Completion of a Uniform Space

Let X be the subspace (0,1) of the real line. One has the intuitive feeling that
“within X is somehow recorded the information that X could naturally accept
the two points ‘0’ and ‘1’ as ‘additional boundary points.””” On what
mathernatical structure is this intuitive feeling based? It could hardly be just
the topological structure of X for, for example, X is isomorphic, as a topologi-
cal space, to the real line, while the affixing of two additional points (now at
“minus infinity’’ and ‘“‘plus infinity’’) seems somewhat less natural for the real
line. Introduce the metric on X given by d(r,r’) = |r- r’|. One would now
like to reformulate the idea “X could naturally accept ‘0’ and ‘1’ as additional
boundary points’’ using this metric, for example, by something like “you can
get to the edges of X by traversing only a finite distance.” The problem now
is that “X does not have actual points at its edges to take the distance from.”
Fortunately, it is possible to express this idea within X itself (i.e., without
already having the boundary points). A Cauchy sequence in metric space X is
a sequence, z;,%, . .., of points of X having the following property: given
any positive number ¢, there is an integer n such that d(z,-,s,-) < ¢ when-
ever n” 2> nand n”” > n. Thus the points of a Cauchy sequence ‘‘get closer
and closer to each other.” In the example above, z; = 1/2, z, = 3/4, 23 =
7/8, - - - is a Cauchy sequence (which is “trying to converge to the point ‘1,
except that this is not a point of the metric space X ). Thus Cauchy
sequences (note that this is a metric-space concept and not merely a topologi-
cal one) provide ‘‘an internal mechanism for detecting missing points.”

Thus we can ‘‘detect the absence of natural edge-points” in a metric
space and not in a topological space. It is natural to ask how uniform spaces
fit into this scheme. We shall see in this chapter that, in the category of uni-
form spaces, not only ‘‘detection,” but also ‘“‘restoration’’ is possible.

Let X be a uniform space. By a net in X, we mean a directed set A
together with a mapping from A to X. (As in the topological case, we write
z; for the point of X to which this mapping sends point § of A.) Such a net is
called a Cauchy net if it has the following property: given any entourage A,
there is a 6 in A such that (z;-,2;--) is in A whenever §" > 6and 6" > 4.

Ezample. Any Cauchy sequence in a metric space is a Cauchy net (with
the directed set A the set of positive integers) on the underlying uniform
space.

Thus Cauchy nets generalize Cauchy sequences in two directions: one
passes from the directed set of positive integers to any directed set, and from
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metric spaces to uniform spaces.
The following suggests that Cauchy nets appropriately describe the struc-
ture in which we are interested.

THEOREM 45. Let X be a uniform space, and z5 (6 in A) a net in X. Suppose
that this net converges, in the underlying topology on X, to point z of X.
Then this net is a Cauchy net.

Proof. Let A be any entourage in the uniform space X. Choose
entourage B with B= B! and BB C A. By theorem 44, the set Nof all z
with (z,z) in B is a neighborhood of z. Since our net converges to z, there is a
6 in A with z; in N whenever §° > 8. That is, (z,2;-) is in B whenever §° >
6. Therefore, for §° > 6 and §°° > 6, we have (z,7;-) in B and (z,2;--) in B,
whence (since B = B! and BB C A) (7;,7;-) is in A. Thus the net is a
Cauchy net. |

It is clear from theorem 45 that a uniform space X normally has many Cau-
chy nets, for example, the “‘constant nets,” with z; = z for all §, where g is
some fixed point of X. The question of ‘‘missing points’ hangs on whether
there are Cauchy nets which do not converge to any point of X. A uniform
space X is said to be complete if every Cauchy net in X converges to some
point of X.

Ezample. The uniform space discussed in the introduction to this
chapter is not complete, for we displayed in that introduction a Cauchy net
which does not converge. The uniform space of reals is complete. [Sketch of
proof: Let x5 (6 in A) be a Cauchy net in the uniform space of reals. Then
there exists a 4 such that, whenever 6" > 6 and 6" > §, (z;-,25) is in the
entourage K;. Thus all z;; with 6° > 6 lie in the closed interval
|25 - 1,25 + 1] of the real line. Since this subspace of the real line is compact,
the Cauchy net has an accumulation point. The next theorem will show that
this net therefore converges.]

A couple of theorems will illustrate that the notion of completeness
indeed has the properties one would expect. :

THEOREM 46. Let X be a uniform space, and suppose that the underlying
topological space 1s compact. Then the uniform space X 1s complete.
Proof. Let z;(6in A) be a Cauchy net in X. Then, since the underlying

topology is compact, this net has an accumulation point z. We shall show

that this net in fact converges to z. Let N be a neighborhood of 2. Choose
entourage A such that z is in N whenever (z,2) is in A, and entourage B with

B = B! and BB C A. Since our net is Cauchy, there is a & such that,

whenever §° > 6 and 6" > 6, (z;-,25-) is in B. Since the net has z as an

accumulation point, there is a § > 6 with (z,z;) in B. Now consider any 8’ >

4 (so, in particular, §° > §). Then (z42) is in B, while (g,7;) is also in B.
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Hence (since BB C A), (z,7;5-) is in A, that is, ;- is in N. We have shown
that, for any §° > §, #;- is in N. Hence the net converges to z. |

Intuitively, since the net is Cauchy, its points “‘get closer and closer to each
other,” while, since the net is in a compact space, it ‘“‘continually comes back
and gets close to some z,”’ with the result that the net must converge to z.

For the second result illustrating the notion of completeness, we need a
definition. Let X be a uniform space, and Y a subset of X. Then Y X Yis a
subset of X X X. Let the entourages for Y be the intersections of the
entourages for X with the subset ¥ X Y of X X X. It is easily checked that
we thus obtain a uniformity on Y. This uniform space Y is called a uniform
subspace of X.

THEOREM 47. Let X be a complete uniform space, and let Y be a closed (in
the underlying topology on X) subset of X. Then the uniform subspace Y
is also complete.

Proof. Let y; (6 in A) be a Cauchy net in Y. Then, since Yis a uniform
subspace of X, this is also a Cauchy net in X. Since X is complete, it con-
verges, say to the point £ of X. Since Y is closed, we have by theorem 33 that
z is actually in Y. Thus, since every Cauchy net in Y converges to a point of
Y, Yis complete. |]

Again, ‘“‘since no points are missing from X and since Y, being closed, took
every point of X that it possibly could be expected to, there could hardly be
points missing from Y.”” The following statement is perhaps not too mislead-
ing: completeness is to uniform spaces as compactness is to topological spaces.

Let the objects be complete uniform spaces, the morphisms uniformly
continuous mappings of complete uniform spaces, and composition composi-
tion composition of uniformly continuous mappings. We thus obtain the
category of complete uniform spaces.

We now have the notion of ‘‘no points are missing” from a uniform
space, namely that of completeness. It is natural to ask whether, given a uni-
form space which is not complete, there is some unique way to ‘“attach the
missing points.” Let X be a uniform space. A completion of X is a complete

- v _
uniform space X, together with a uniformly continuous mapping X — X, such
that the following condition is satisfied: given any complete uniform space Y,

o
together with a uniformly continuous mapping X — Y, there is a unique uni-

formly continuous mapping X —(> Y such that the diagram of figure 124 com-
mutes. (Note that this is a free construction (via the obvious forgetful functor
from the category of complete uniform spaces to the category of uniform
spaces). Hence a completion, when one exists, is unique in the appropriate
sense.)
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We wish to show that every uniform space possesses a completion. The
idea is to let X consist of “points of X, together with additional ideal points
which serve as limit points for Cauchy nets in X which do not already have
limit points in X.”

Denote by C the collection of all Cauchy nets in uniform space X. For z;
(6in A) and z, (v in T') two such Cauchy nets, write {z;} ~ {z,} if the fol-
lowing condition is satisfied: given any entourage A in X, there exists a § in A
and a v in I such that (z;-,2,-) is in A whenever 6" > 6 and 7" > 4. (Thus
“~"" means that “the two Cauchy nets approach each other.”) We now
claim that this “a2” is in fact an equivalence relation on the set C of Cauchy
nets. [Proof: (1) Let z; (6 in A) be a Cauchy net, so, for each entourage A,
there exists a & in A such that (zs-,25--) is in A whenever 6" > dand 67 > é.
Hence {z;} ~ {z;}. (2) Let {z;} ~ {z,}, and let A be any entourage. Then,
since A is an entourage, there exists a § and a 7 such that (z57,2,) is in Al
whenever " > 6 and 4v° > 7. That is, (z,-,75) is in A whenever §” > 6 and
v° 2 7. Hence {z,} ~ {75}. (3) Let {z;} ~ {z,} and {2,} =~ {z,}. Let A
be any entourage. Choose entourage B with BB C A. By the two assumed
instances of ‘" there exist§ a 6 and a ~ such that (z5-,2,-) is in B whenever
6 :>_ dand v > 7, and a v and a & such that (:C,,-,I,") is in Bwhen?ver N’
> ~vand £° > k. Fix this §, this £, and an element 4 of I' with v > v and 7
> 4. Then, for 8" > 6and £~ > k, we have (%5-,,) in B and (z,,2,-) in B,
whence (since BB C A) (z;-,%,-) is in A. That is, {z;} ~ {z,}.] (Incidentally,
note how, in proofs of this sort, the conditions for a uniform space are just
right to give one what one wants. That is how one knows that the definition
is “right.”)

Denote by X the set of equivalence classes of C by the equivalence rela-
tion above. This X is our candidate for the underlying set of the completion
of X. Note that an element of X is an equivalence class of Cauchy nets in X;
we shall call a Cauchy net in a given equivalence class a representative of that
element of X.

The next step is to figure out what we should choose for the mapping
from X to X. That is easy: for z a point of X, let ©(z) be the element of X
(i.e., the equivalence class of Cauchy nets) that contains the constant Cauchy
net, z; = z for all 6 (in some directed set A). Note that Cauchy net z., (v in
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T) is in the equivalence class o(z) if and only if z, (v in T') converges to z.
[Proof: Cauchy net z, (yinI') is equivalent to the constant Cauchy net at z if
and only if, for every entourage A, there exists a 4 such that (z,2,-) is in A
whenever v° > 7. But, by theorem 44, this holds if and only if the net . (v
in T') converges to z.] Thus the points of X are of just two types: those of the
form (z) for some « in X (in which case the point of X is just the equivalence
class of all Cauchy nets which converge to z), and those not of the form (z)
(in which case the point of X is an equivalence class of Cauchy nets none of
which converge to any point of X). Furthermore, since the underlying topo-
logical space X is Hausdorfl, no net therein can converge to more than one
point. Hence () 7 o(z’) for ¢ £ 2°. Thus (as one would certainly have

| -
wished) the mapping of sets X — X is always one-to-one, and is onto if and
only if X is complete.

We so far have the set X and the mapping of sets Xi X. The next step
is to make the set X into a uniform space, that is, to select a suitable collec-
tion of entourages. Clearly, we have no choice but to construct the
entourages for X using those for X. Fix an entourage A for X. For z; (6 in A)
and z, (v in T') Cauchy nets in X, we {z;} ~4 {2z} if the following property is
satisfied: there exists a 6 in A and a v in I such that (z5,2,-) is in A when-
ever §° > 6and v* > 7. Intuitively, {z;} ~, {z,} means that “the Cauchy
nets eventually get and remain within A of each other.” Our earlier
equivalence relation, for example, is easily formulated in this notation: {z;} ~
{z,} means that {z;} ~4 {=,} for every entourage A. (Note also that {z;}
~4 {z,} and {z,} ~p {z,} imply {25} ~,p {2,}.) We now wish to “carry
entourages over from X to X.”” Let A be any entourage for X, We write A
for the subset of X X X consisting of all pairs of elements of X such that, for
any representatives z; (6 in A) and z, (v in T') of the entries in this pair, we
have {zs} ~4 {z,}. Now let the entourages for X consist of the supersets of
the A.

We claim that this set of entourages for X in fact defines a uniformity on
the set X. Proof: (1) Let Zbe in X, and let z; (§ in A) and z, (7 in T) be any
representatives of ¥ Then, for any entourage A for X, {z;} ~4 {z,} (since
these two are in the same equivalence class), whence (%) is in A. Hence
every entourage for X contains the diagonal of X X X. For T and ¥ distinct
elements of X, choose representatives z; (6 in A) and z, (7 in T). Then, since
these two nets are in different equivalence classes, there is an entourage A for
X with {z;} A4 {z,}. Hence (%,7") is not in A. Thus the only elements of X
X X in every entourage for X are those on the diagonal. (2) It is immediate
from the definition that, for A any entourage for X, A = AT Hence, since
the entourages for X are the supersets of the A, the inverse of one such
entourage is another. (3) Let A be any entourage for X, and choose entourage
B with BB C A. Let (£F’) and (¥',7"") both be in B, so, for z; (6 in A), z,



230 Chapter Thirty-Nine

P

(v in T'), and z, (k in K) representatives of 7, T
have {z;} ~p {z,} and {z,} ~p {z.}. But this implies {z;} ~pp {2} and
hence {5} ~4 {2,}. Thus we have (ZF") in A, that is, we have BB C A.
(4) Let A and B be entourages for X. Then, for (Z,7") in AN B and z; (6 in
A) and z, {7 in T') any representatives of 7 and 7', respectively, we have {z;}
~anp {7,}, whence {z;} ~, {z,} and {z;} ~p{z,}. Thus (Z7")is in both A
and B, and hence in A N B. We conclude that AN B C A N B, that is, that
the intersection of two entourages for X is another. It is obvious that any
superset of an entourage for X is another.

We have so far, starting from the uniform space X, constructed i) a set

, and T'’, respectively, we

X, ii) a mapping of sets, X i X, and iii) a uniformity on the set X. The next
step is to show that this mapping ¢ (now of uniform spaces) is uniformly con-
tinuous. Let A be any entourage for X, and choose entourage B with BBB C
A. Let (7,2") be a point of B, and let z; (6 in A) and z,, (7 in T') be represen-
tatives of (z) and ¢(z"), respectively. Then {z;} =~p {z} (since these nets
are in the same equivalence class), {z} =p {2’} (since (z,2") is in B), and
{2’} ~p {2,} (since these nets are in the same equivalence class), whence {z5}
~ppp {2,}. But BBB C A, so {z;} ~4 {z,}. That is, (p(2),p(2")) is in A.
We have shown that @ ![A] is a superset of some entourage (namely B) for X,
whence the inverse image by @ of any entourage for X is an entourage for X.

| -
Thus X — X is uniformly continuous.
Thus, starting from a uniform space X, we have constructed a uniform

space X and a uniformly continuous mapping X f» X. The next step is to
show that the uniform space X is in fact complete. Let Z, (7inT) be a Cau-
chy net in X. We must find a point of X to which this net converges. (The
idea is to use representatives of the Z, to construct a Cauchy net in X which
will be a representative of the limit point.) For each 7 in T, T, is a point of
X: choose a representative, z; (8, in A,). (Thus, for each 4, A, is a directed
set and each of these directed sets is associated with a certain Cauchy net in
X.) Denote by Q2 the set whose elements consist of an element 7 of I' together
with, for each v > 7, an element §, of that A,. (That is, an element of 2 is
one element each from certain of the A , namely all those with v > q.) For
(2.4,) and (2°,4,") two elements of (2, write (3,4,) < (17,6,") if 2 < 3" and,
for each v > 37, 8, < §,”. (Thus “larger” in Q0 is “moving farther along T
before you start to pick elements of the A, and farther up each AL
Clearly, this set Q2 with this ordering is directed (using first the fact that T is
directed and then the fact that each A, is directed). We now use this
directed set to construct a limit point of our original net in X. For w = (2,4,)
an element of this , set z, = ;, (i.e., consider the net associated with A,
and see where this sends the element §, of A)). We thus have a mapping
from the directed set { to X, and hence a net in X. We claim that this net in
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X is in fact Cauchy. [Proof: Given entourage A for X, choose B with BB C
A. Choose 7y such that the pair consisting of any two elements of the net {Z.}
with their 4 beyond 7y is in B, and, for each 7 > 3, choose §, in A, such that
the pair consisting of any two elements of this net beyond §, is in B. Set w =
(2.4,). Then, for w” > wand w” > w, we have (z,,7,--) in A] Thus we
have constructed a Cauchy net z, (w in ) in X. Let T be the point of X of
which this net is a representative. We claim, finally, that our original net,
(y in T) in X converges to this point Z [Proof: Given entourage A for X,
choose B with BB C A. Then choose 4 in T with (Z-,Z,) in B whenever ~°
> vand ¥°° > 4. Then (ZZ-) is in A for v° > ~. Thus 7, (yin I') con-
verges to Z.|

We are now nearly done. Starting from a uniform space X, we have con-
structed a complete uniform space X and a uniformly continuous mapping

e
X — X. What we must show, finally, is that this setup satisfies the universal
property of the definition of a completion. It is convenient, however, to
postpone this final demonstration for a moment to make the following obser-
vation.

THEOREM 48. Let X and Y be uniform spaces, and let X i Y be uniformly
continuous. Then, for any Cauchy net z5 (6 in A) in X, the net a(z;) (6
in A) in Y is also Cauchy.

Proof. Let A be any entourage for Y, so d'l[A] is an entourage for X.
Then there exists a & such that (z;,2;-) is in & '[A] whenever §° > & and 6°°
> 6. Hence (a(z;,0(z5-)) is in A whenever § > §and 6§ > 6. Thus the
net o(z;) (6 in A) in Y is Cauchy. []

Now let Y be any complete uniform space, and let Xi Y be a uniformly
continuous mapping. Let T be any point of X, and let z; (6 in A) be any
representative. Then a(z;) (6 in A) is a Cauchy net in Y, whence, since Y is
complete, it converges to some element y of Y. Set ¢((Z) = y (noting that,
since o is uniformly continuous, this specification of y is independent of

representative of z). Thus we have a mapping X —f» Y. This ¢ is certainly
uniformly continuous. (For, for A any entourage for Y, a”![4] is an entourage
for X, whence a~![4] is an entourage for X. But ¢![4] C m.) Further-
more, this ¢ makes the diagram of figure 125 commute, for, for z a point of X,
©() is the point of X having as representative the constant (at z) net, whence

de(2) is just a(z). Finally, this X —f» Y is the unique uniformly continuous
mapping that makes the diagram commute, for any other ¢’ must agree with
¢ on elements of X of the form ¢(z) (in order that the diagram commute),
while, since the closure of the subset of X consisting of elements of this form
is all of X, this fact and continuity of ¢ determine ¢ uniquely.
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Figure 125

We have now, finally, completed the proof of the following.
THEOREM 49. Every uniform space possesses a completion.

One had to choose the completion, X, to be “large enough to have points for
every Cauchy net in X to converge to, but not so large that it contains extra,
unrelated points which can destroy the uniqueness of ¢ in the universal pro-
perty.” The remarkable thing about all this is that the seeds of the original
construction and the many verifications were already in the original, very sim-
ple, universal definition of a completion as a free object. One did not have to
proceed in an aimless way: one knew what one wanted, and needed only a bit
of optimism to feel confident that one would get it. Fortunately, the proof of
theorem 49 has to be carried out only once: the universal definition of the
completion (and the existence of one) is all that one ever will need to know
about it.

Finally, we remark that the more familiar notion of the completion of a
metric space reduces to that of taking its underlying uniform space and tak-
ing the completion of that via theorem 49.

Exercise 259. Show that uniform space X can be regarded as a uniform sub-
space of its completion X. Show that the closure of this subset is X. Is X
always an open subset of X?

Ezercise 260. Prove that the completion of the rationals (as a uniform space,
with the obvious uniformity) is uniform-isomorphic with the uniform space of
reals.

Ezercise 261. Let X and Y be uniform spaces. Show that X X Y is naturally
isomorphic, as a uniform space, to X X Y (where “X" is direct product in
the category of uniform spaces).

Ezercise 262. Prove that the completion of a connected uniform space is
connected.
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Ezercise 263. Is it true that a uniform space is complete if and only if each of
its connected components (as a uniform subspace) is?

Exercise 264. Prove that every discrete uniform space is complete.

Ezercise 265. Prove that the image of a complete uniform space, under a uni-
formly continuous mapping, is complete. (Compare, theorem 38.)

Ezercise 266. Let X, d( , ) be a metric space in which every Cauchy sequence
converges. Prove that every Cauchy net in the underlying uniform space
converges.

Ezercise 267. Do there always exist free objects via the forgetful functor from
the category of compact, Hausdorff topological spaces to the category of Haus-
dorfl topological spaces?

Ezercise 268. Show that, in the category of complete uniform spaces, the
subobjects are closed subsets.

Ezercise 269. Is it true that, if a mapping from one uniform space to another
takes Cauchy nets to Cauchy nets, then it is uniformly continuous? (Com-
pare, theorem 34.)

Exercise 270. Prove that a compact topological space can have only a finite
number of connected components. Can a complete uniform space have more
than a finite number of connected components?

Ezercise 271. Let X be a set. Discuss the structure of the set of complete
uniformities on X in the partially ordered set of all uniformities on X (exercise
255).

Ezercise 272. Let X be a topological space, and #; (6 in A) a net in X. Call
this net Cauchy if, for any neighborhood N of the diagonal in X X X, there is
a & with (z5-,25--) in N whenever §° > § and 6" > 6. What is wrong with
this definition?

Ezercise 273. Let A be a uniform subspace of the uniform space of reals, and
suppose there exists an isomorphism from uniform space A to uniform space
R. Prove that A = R.
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Topological Groups

We now begin our study of structures that “mix topology and algebra.” The
importance of such structures is twofold. First, it is a common situation in
physical applications that one winds up with a set on which there is a “notion
of closeness” together with ‘“‘the availability of algebraic combinations of ele-
ments of that set.” Thus a topological group (and, perhaps even more com-
monly, a topological vector space) is often just the mathematical structure
that is needed to describe what is going on physically. Second, and even more
important, a brief look at a few ‘‘mixed structures” enables one to define, and
obtain the properties of, other such structures when they are needed. A good
fraction of the mathematical structures one needs in physical applications
must be invented on the spot to suit the problem at hand.

s
Let G be a group. We write G X G — G for the mapping of sets (where
the Cartesian product of sets appears on the left) that sends the element

L

(9,9") of G X G to the element g¢g° of G, and G — G for the mapping of sets
that sends the element g of G to the element g!. A topological group consists
of three things—i) a set G, ii) a rule which assigns, given any two elements of
G, a third, and iii) a collection of subsets of the set G—subject to the follow-
ing three conditions:

1. The set G, with the product rule ii), is a group.

2. The set G, with the collection iii) of subsets of G (as the open sets), is
a Hausdorff topological space.

n t -

3. The mappings G X G — G and G — G of topological spaces (direct
product of topological spaces on the left in the first formula) are continuous.

That is, a topological group is ‘“both a group and a topological space,
where these two structures interact by the condition that the group opera-
tions be continuous.”

Ezample. Let G be any group, and place on the set G the discrete topol-
ogy. The first condition is immediate, while the second follows from the fact
that any discrete topological space is Hausdorfl. For the third condition, note

k4 t
that each mapping G X G — G and G — G is from a discrete topological
space (since, for the first, the direct product of two discrete spaces is discrete),
and hence is necessarily continuous. We thus have a topological group.
Ezample. Let the set be the set of real numbers, let the product rule be
addition of numbers, and let the subsets of R be the open subsets of the real
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line. The first two conditions are immediate. For the third, note that, for
(r,#’) any open interval in R, 7Y[(r,r")] is the subset of R X R consisting of
all (¢,b) with a + b in (r,r")—certainly an open subset of the topological
plane—while ¢ ![(r,r")] = (-r",~r) is also open. Thus 7 and ¢ are continuous.
We have a topological group, called the topological group of reals.

A number of properties of topological groups follow immediately from the
12

definition. The continuity of G — G can be stated in terms of neighborhoods
as follows: for g an element of G and N a neighborhood of g, the subset of G
consisting of all elements g° with g’~! in N is a neighborhood of g!. Con-

T

tinuity of G X G — G can be restated as follows: given any neighborhood M
of gg°, there are neighborhoods N of g and N” of g such that, whenever g is
in Nand ¢° is in N, g¢° is in M. (Intuitively, “if you choose an element
close enough to g and another close enough to g°, their product can be made
as close as you wish to g¢g”.”) Next, fix an element g of G, and denote by ¢,
the mapping from G to G that sends g to gg. This mapping is continuous.
[Proof: The mapping from G to G X G which sends ¢ to (g,g) is continuous
by the universal definition of the direct product of topological spaces, while 7
composed with this mapping is just <p1.] Similarly, @y is continuous. But
pgo P and P10 pg are both the identity mapping of G. Thus each ¢, is
an isomorphism of topological spaces.

Adjectives for groups and adjectives for topological spaces are applied to
topological groups and refer to the appropriate structure. Thus an abelian
topological group means that the underlying group is abelian; a compact topo-
logical group means that the underlying topological space is compact.

As an example of the interaction between the algebraic and topological
structures of a topological group, we prove

THEOREM 50. Let G be a topological group, and denote by C the connected

component of G containing the identity e. Then C is a normal subgroup
of G.

13
Proof. Since G — G is an isomorphism of topological spaces, ¢[(] is con-

nected. But ¢[C] intersects C (namely at e), so ¢[C] is a subset of C. Thus the
inverse of any element of Cis in C. Let ¢ and ¢° be elements of C. Then
©,[C] is connected (since  is continuous). But  [C] intersects C'(namely at
g), so Q] C C. But g [C] contains gg°, so g¢” is in C. Thus Cis a sub-
group of G. Let g be in C, and let ¢’ be any element of G. Then the map-
ping from G to G which sends g to g’ gg’~! is continuous, and hence takes C
to a connected set. But this connected set intersects C'(namely at e), and so
is a subset of C. Thus g"gg’~'is in C. That is, C'is a normal subgroup. []

)
Let G and H be topological groups, and let G — H be a mapping of sets.
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This G i H is called a continuous homomorphism if it is both a continuous
mapping of topological spaces and a homomorphism of groups. The composi-
tion ot two continuous homomorphisms is another (immediately from this fact
for continuous mappings and for homomorphisms).

Let the objects be topological groups, the morphisms continuous
homomorphisms of topological groups, and composition composition of con-
tinuous homomorphisms. We thus obtain a category, the category of topologi-
cal groups.

What are the forgetful functors from the category of topological groups?
There are, of course, two obvious ones: one to the category of groups and one
to the category of topological spaces. What we now wish to show is that this
last functor can be strengthened somewhat: there is actually a functor from
the category of topological groups to the category of uniform spaces. This is
exactly what one would have expected. A uniform space is ‘‘a topological
space in which neighborhoods can be compared with regard to size,” while, in
a topological group, the action of the group (i.e., the ¢ ) yields “‘topology-
preserving motions on the group, which should permit one to bring neighbor-
hoods close to each other for comparison.”

Let G be a topological group. For N any neighborhood of the identity e
of G, let Ay denote the subset of G X G consisting of all pairs (g,¢") of ele-
ments of G' with g¢°~! in N. Let the entourages be the supersets of the Ay
We claim that these entourages define a uniformity on the set G. [Proof: (1)
Each (g,g) is in every Ay, since gg°! = eisin N. For g 54 ¢’, (g,¢’) is not in
Ay for N a neighborhood of e excluding gg'~! (the existence of which is
guaranteed by Hausdorffness). (2) For N any neighborhood of e, the subset
N’ of G consisting of inverses of elements of N is also a neighborhood of e (by
continuity of ¢). But A7} = Ap-. So inverses of entourages are entourages.
(3) Let N be any neighborhood of e, and choose neighborhood M of e such
that, whenever g, and g, are in M, g,g, is in N. (The existence of such an M
is guaranteed by continuity of 7.) Then, for (¢,¢") in Ay, and (¢7,9”") in Ay,
(so gg! and ¢'¢”! are in M), (g97) is in Ay (for g¢”!' =
(99" D(g"¢”""Y)). That is, ApApys C Ax- (4) That the intersection of two
entourages is another is immediate from Ay N Ay- = Apqn-- That the
superset of any entourage is another is obvious.| Thus, given any topological
group G, we obtain a uniformity on the set G, and hence a uniform space,
which we denote by F(G). Note that, from the way we defined the
entourages, the underlying topology from this uniformity on set G is just the
given (by the original topological group) topology on G.

"]

Next, let G — H be a continuous homomorphism of topological groups.
We claim that this mapping ¢ is also a uniformly continuous mapping of the
corresponding uniform spaces. Indeed, let N be a neighborhood of e in H, and

Ay the corresponding entourage for H. Then @ '[Ap] consists of all elements
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(9,97) of G X G with (¢(g),¢(¢")) in Ay, that is, all (g,9") with o(g)[e(g")]™*

in N, that is, all (g,¢’) with ©(gg’~!) in N, that is, all (g,¢") with gg’~! in

¢ ![N. That is, $'[Ay = Agayn- Uniform continuity is now immediate
p

from the fact that, since G — H is continuous, the inverse image by ¢ of any
neighborhood of e in H is a neighborhood of e in G.
Thus, for G a topological group, let F(G) be the uniform space obtained

P
above, and, for G — H a continuous homomorphism of topological groups, let

F(G) Fif) F(H) be the uniformly continuous mapping obtained above. It is
immediate that we thus obtain a covariant functor from the category of topo-
logical groups to the category of uniform spaces. We shall regard this functor
as forgetful. (You ‘‘remember the topology of G, and remember the group
structure long enough to turn this topology into a uniformity, but then forget
the group structure.”)

We may now apply adjectives for uniform spaces to topological groups:
they refer to the underlying uniformity. In particular, a complete topological
group is a topological group whose underlying uniformity is complete. We
also have, among others, the category of complete topological groups.

One free construction in this business is of particular interest. Let G be
a topological group. A completion of G consists of a complete topological

- P
group G, together with a continuous homomorphism G — G, such that, given
o

any complete topological group H and continuous homomorphism G — H,
—

there is a unique continuous homomorphism G'— H such that the diagram of

figure 126 commutes. We wish to show that every topological group possesses

a completion.

GG

N

H

Figure 126

Choose, for the set G, the completion of G as a uniform space. We next
wish to make this set into a group. Let §and § be two elements of G (so
each is an equivalence class of Cauchy nets in G). Let g; (6 in A) and g, (7 in
I') be representatives. Let (2 be the set A X T, and, for (6,7) and (6',7") in
this 2, write (6,7) < (6",y") if § < 6 and v < 7. We thus obtain a
directed set. For w = (4,7) an element of this (2, let g, be the element g5, of
G. This is a net in G. We claim that it is Cauchy. [Proof: Let M be a neigh-
borhood of ¢ in G, and choose neighborhood N with NN C M. Then set w =
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(6,7), where & is such that (g4 ,g5-) is in Ay for 6° > 6 and 6" > 6, and
where 7 is such that (g,-,,-) is in Ayfor 7" > v and v** > 7. It follows
that, for w*° > wand w” > w, (¢,7,9,~) is in Apz] We now define gg~ to be
the element of G of which this Cauchy net is a representative (noting that the
resulting element of G is independent of the choices of representatives for g
and §'). This set G, with this product structure, is a group. [Proof: (1) Asso-
ciativity is immediate from (gs9.)9, = 9gs(9,9c)- (2) The identity is the con-
stant net at e. (3) The inverse of the element of G’ with representative g; (6
in A) is the element with representative gz! (6 in A).] Thus we have a group
G. For the topology on G, we choose that which comes from the uniformity
on G (since, after all, G is the completion of uniform space G). Thus this G is
a complete topological group.

v —_
Next, let G — G be the mapping which sends ¢g in G to the element of G
having as representative the constant net at g. This is a continuous

homomorphism of topological group. [Proof: It is continuous because G i G
is just the completion of the uniform space G. It is a homomorphism because,
for g and ¢” in G, p(g)p(g’) has as representative the constant net at gg”’,
Le.,is p(gg” ).

Finally, we check that this G f» G satisfies the universal property which
defines the completion of a topological group. Let H be any complete topolog-

o
ical group, and G — H any continuous homomorphism. Then there is cer-

tainly a unique uniformly continuous mapping G -i H that makes the
diagram commute (since G is the completion of G as a uniform space). Hence
all that we must check is that this ¢ is a homomorphism of groups. Let §and
7’ be elements of G, and let g; (6 in A) and g, (7 in T') be representatives.
Then ¢(7) is the element h of H to which the Cauchy net a(g;) (6 in A) in H
converges, and, similarly, ¢o(§’) = h°. But p(gg’) is the element of H to
which the Cauchy net a(gsg,) in H converges, and this element is clearly hh’.

- S
Thus G — H is a homomorphism.
Thus every topological group possesses a (necessarily unique) completion.

Ezxercise 274. Let G be a topological group. Prove that the mappings G X G
L L

— G and G — G are uniformly continuous.

Exercise.275. Prove that the third condition for a topological group can be

replaced by the following: the mapping from G X G to G that sends (¢,9") to
g9’ "L is continuous.

Ezercise 276. Show that the completion of the topological group of rationals
is the topological group of reals.
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Exercise 277. Prove that both direct products and direct sums exist in the
category of topological groups.

Ezercise 278. Prove that the completion of an abelian topological group is
abelian.

Exercise 279. Let G be a topological group, and let H be a normal subgroup
of G that is closed as a subset of G. Show that the quotient group G/H,
endowed with the quotient topology, is a topological group. What can one
say about this quotient when H is the connected component of G containing
the identity?

Exercise 280. Let the group be the additive group C of complex numbers,
and let the topology be that given by the metric d(a,a’) = |a- a’|. Show
that this is a topological group.

Ezercise 281. Let X be a Hausdorff topological space, and let G be the group
of all isomorphisms from X to X, with the compact-open topology. Prove
that G is a topological group. When is G complete?

Erercise 282. Find an example of a uniform space that is not the underlying
uniform space of any topological group.

Exercise 283. Are there free objects via the forgetful functor from the
category of topological groups to the category of topological spaces?
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Topological Vector Spaces

We now consider our second of two examples of structures that mix topology
and algebra. Topological vector spaces are somewhat more useful, a bit more
complicated, and considerably richer in structure than topological groups. We
reg\ard the previous chapter as just an introduction to the present one.

o T
Let V be a real vector space. We write VX V— V,R X V— V, and

[3

V — V for the mappings with action o(v,v") = v + v, n(a,v) = av, and ¢(v)
= -v, respectively. A (real) topological vector space consists of four things—i)
a set V, ii) a rule that assigns, given two elements of V| a third, iii) a rule
that assigns, given a real number and an element of V, an element of V, and
iv) a collection of subsets of V—subject to the following three conditions:

1. The set V, with the rules ii) and iii), is a real vector space.

2. The set V, with the collection iv) of subsets, is a Hausdorfl topological
space.

o T L

3. The mappings VX V— VR X V— V,and V — Vare all continu-
ous (where R is assigned the topology of the real line).

Ezample. Let V be any real vector space (of dimension greater than
zero), and assign V the indiscrete topology. The first and third conditions
above are satisfied, but the second is not, since V' is not Hausdorfl. We do not
obtain a topological vector space.

Ezample. Let V be any real vector space (of dimension greater than
zero), and assign V the discrete topology. The first and second conditions are

o ]
immediate, while V X V — Vand V — V are continuous (since the left sides

T

are discrete). However, R X V — Vis not continuous. We have 0v = 0 for
some nonzero v in V (where ‘0"’ denotes that vector). Let M be the neighbor-
hood of 0 in V consisting only of this vector (noting that M is indeed a neigh-
borhood, since V is discrete). Do there exist neighborhoods N of 0 in R, and
N’ of vin V, such that av’ is in M whenever ais in N and »" isin N°? The
answer is no, for, since N is a neighborhood of 0 in R, it contains a nonzero
number ¢, while v itself must be in N, and €v is not in M (for it is not the
zero vector). Thus we do not obtain a topological vector space.

These examples illustrate the point that one must be at least a little sub-
tle in one’s choice of topology if one wishes to obtain a topological vector
space. Since the topology of the real line enters explicitly into the definition
of a topological vector space, the topology on V must be ‘‘reminiscent of that
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of the real line.”

Ezample. Let S be any set, and denote by V the collection of all
bounded, real-valued functions on S. Add such functions, and multiply them
by real numbers, pointwise. We thus obtain a vector space V. For fand f’
two such functions, denote by d(f,f") the upper bound of the function |f - f"|
on S. This is a metric on V. We claim that this vector space V, with the
topology induced by this metric, is a topological vector space. The first two
conditions are immediate. For continuity of &, let M be the neighborhood of f
+ J consisting of functions f with d(f+ f*.f) < e. Choose N and N’ the
neighborhoods of f and f*, respectively, consisting of f with d(/,/) < €/2 and
d(f',f) < €/2, respectively. Then, evidently, the sum of any function in N
with any in N’ is in M. For continuity of m, let M be the neighborhood of af
consisting of functions / with d(a/f) < €. Denote by m an upper bound for f.
Let N be the neighborhood of a in R consisting of @ with |a — 4] < ¢/2m, and
let N° be the neighborhood of f in V consisting of [ with dff) <
€/(2a + ¢/m). Then, for ¢ in N and / in N’, a/ is in M. Continuity of ¢ is
obvious. Thus we obtain a topological vector space.

Ezample. Let V again be the vector space above, but choose the follow-
ing topology. A subset of V is open if, for every fin that subset, there is a
finite collection, sy, . .. ,s,, of points of S, and a finite collection, ¢, . . . ,¢,,
of positive numbers, such that every f with |fs,) - fs;)] < €, ..., and
[(8,) - f8,)] < €, is also in that subset. Noting that this is a Hausdorff topol-
ogy on V, the first two conditions for a topological vector space are satisfied.
We verify the third condition. Let M be the neighborhood of f + f* defined
by (84, . .. ,845€1, - - . ,€,)- Choose N and N’ the neighborhoods of fand f~
defined by (s, . .. ,8,:€,/2, .. .,6,/2). Then, for f and f* in N and N’,
respectively, f+ f is in M. Hence o is continuous. Let M be the neighbor-
hood of af defined by (s, ...,s,€, ...,6,). Let ¢ be the smallest of
€1, . - - €, and let m be an upper bound for f. Let N be the neighborhood of
ain R consxstmg of awith |a - a] < €¢/2m, and let N be the neighborhood of
[in V defined by (s, . . . ,8,5¢/(2a + e/m), ... ,e/(2a + ¢/m)). Then, for a
in N and fm N’, df is in M. Continuity of ¢ is obvious. Thus we obtain a
topological vector space. Note that the topology on V in this example is
strictly coarser than that in the previous example (provided S is infinite: the
two topologies coincide for finite S).

Ezample. Let V again be the vector space above, but now choose the fol-
lowing topology. A subset of Vis open if, for every fin that subset, there is a
positive real-valued function ¢ on § such that every f with |f{s) - fs)] < €(s)
for all s is also in that subset. (Thus, if we had only admitted constant func-
tions €(8), this topology would be just that of the earlier example.) Provided
only that S has an infinite number of elements, we do not obtain a topological
vector space. The problem, as one would expect, is continuity of x. Let f; be
the function with fy(s) = 1 for every s in S. Then 1 f5 = f5. Let M be the
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neighborhood of f; defined by some positive function ¢ which assumes values
arbitrarily close to zero. (For example, if S is the set of positive integers, we
might choose for the function ¢, ¢(1) = 1, €(2) = 1/2, €(3) = 1/4, - - - ) Any
neighborhood N of 1 in R contains a number a greater than 1; any neighbor-
hood N’ of fy in V contains f;. But afy is not in our neighborhood M (for afy
is the function with constant value a, while the function ¢ assumes arbitrarily
small values). For the case of S infinite, this topology on V is strictly finer
than that of the third example of this chapter; for the case of S finite, the two
topologies coincide.

We conclude from these examples that ‘‘the crucial question is normally

”

continuity of R X V — V. Normally, the coarser the topology on V, the
more likely one has a topological vector space, provided only that the topol-
ogy is not so coarse that Hausdorffness is destroyed. Very fine topologies tend
not to give a topological vector space.”

Let us examine the case of S finite in the examples above in more detail.
Let S consist of n elements, s;, . . .,s,. Let v; be the function (element of V)
whose value at s; is 1, and zero elsewhere, and similarly for v,v3, . . . ,v,.
Then, evidently, every element of V can be written in one and only one way
as a linear combination of v, . . . ,v, (the value of f at s; is the coefficient of
v; in this expansion of f). That is, v, ... ,v, is a basis for V, so Vis n-
dimensional. The above topology on V is the following. To obtain a neigh-
borhood of f = a;v; + - - - + @,v,, choose a positive number ¢, and consider
all f= av; + * -+ a,v, with each @; within ¢ of a; Thus V, as a topologi-
cal space, is isomorphic with the topological space that is the direct product
of the real line with itself n times. We shall call this topology on V, in the
finite-dimensional case, the FEuclidean topology. (Note that the Euclidean
topology is independent of the choice of basis.) .

It is not just a coincidence that the various topologies on V reduce to the
same topology—the Euclidean one—in the finite-dimensional case. In fact, we
have

THEOREM 51. Let V be a finite-dimensional topological vector space. Then
the topology on V i3 the Euclidean topology.
Proof. Let N be a neighborhood of 0 in V. Fix vector yin V. Then, by

(4
continuity of V' X V — V, the set N’ consisting of all elements of V of the
”
form v + y with vin N is a neighborhood of v. By continuity of R X V — V,

,

there is a positive number ¢ such that avis in N° whenever 1 ~¢ < ¢ < I' +
€. Thus ap is in N whenever —¢ < a < ¢. Next, note that, by continuity of
us

R X V — V, there is a neighborhood M of 0 in V such that avis in N when-
ever vis in M and |a| < 1. Hence the collection K of all elements of V of the
form av with vin M and |a| < 1 is a subset of N and a neighborhood of 0
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(since K is a superset of neighborhood M). For purposes of this proof, call a
subset K of V star-shaped if i) for every vin K and |a| < 1, avis in K, and ii)
for every vector in V, some nonzero multiple of it is in K. We have just
shown above that every neighborhood N of Oisa superset of some star-shaped
neighborhood (namely, the K constructed above). Next, note that, for K
star-shaped, K + K (i.e., the set of all v + »" with v and v" in K) is a

Euclidean neighborhood of 0. But, by continuity of V X V~1 V, every neigh-
borhood of 0 in the given topology on Vis a superset of some K + K with K
star-shaped. Hence every neighborhood of 0 (and hence of any element of V)
in the given topology is also a neighborhood in the Euclidean topology: the
given topology is at least as coarse as the Euclidean one. We now prove the
reverse. Choose basis vy, . . . ,v, for V, and denote by S, the subset of V con-
sisting of ayv; + « - - + a,v, with () + - - - + (a,)?> < ¢, and by C, the sub-
set consisting of those with (¢ + - - - + (a,)* = €. This C, is compact in
the Euclidean topology, and hence (since the given topology is at least as
coarse) is also compact in the given topology. By Hausdorffness of the given
topology, there is a neighborhood of 0 in this topology which does not inter-
sect C,: hence there is a star-shaped one, K. Since this K is star-shaped and
does not intersect C,, K is a subset of S,. But every neighborhood of 0 in the
Euclidean topology contains some S,—and hence some neighborhood of 0 in
the given topology. We conclude that the given topology is at least as fine as
the Euclidean one. Thus the topologies coincide. [J

Thus, for a finite-dimensional vector space, there is no choice of what
topology one should choose if one wishes to obtain a topological vector space.
Our earlier examples show that this is not true in the infinite-dimensional
case.

We are now, finally, in a position to give an intuitive picture of the
topology of a topological vector space. Let V be a topological vector space.
Theorem 51 shows that every one-dimensional subspace of vector space V
(i.e., every ‘‘ray’’) is, as a subspace of topological space V, isomorphic to the
real line. The question is “‘how these different rays are tied to each other
topologically.” If we “‘turn a ray through a two-dimensional subspace of V,
the topological behavior is just that of the Euclidean case’ (since the two-
dimensional subspace of V, by theorem 51, has the Euclidean topology). The
real question therefore is ‘‘how the different rays are tied to each other topo-
logically when they have an infinite number of directions to turn in.”” Now
some freedom becomes available. Suppose we fix an open neighborhood N of
0. This N cuts each ray in a Euclidean-open set. The ‘“‘set varies as we move
the ray about, never becoming zero, since it must be Euclidean-open.” When
an infinite number of dimensions are available, however, ‘‘the open set has a
genuine choice as to how small it should become on turning in the various
directions.” This ‘‘choice” represents the possibility for choosing various
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topologies on V, in the infinite-dimensional case, to obtain a topological vector
space.

Next, let V and W be topological vector spaces. A mapping of sets, V f»
W, is called a continuous linear mapping if ¢ is a linear mapping of vector
spaces and also a continuous mapping of topological spaces. We see from the
examples of this chapter that, at least in the infinite-dimensional case, linear-
ity of ¢ is not alone sufficient to imply continuity. (In the finite-dimensional

case, by contrast, linearity of V -v—’» W already implies continuity, for, in this
case, V and W must have the Euclidean topology.) Note that the composition
of two continuous linear mappings is another. '

Let the objects be real topological vector spaces, the morphisms continu-
ous linear mappings of real topological vector spaces, and composition compo-
sition of continuous linear mappings. We thus obtain the category of real
topological vector spaces.

We have immediately two forgetful functors from this category. The
first is to the category of abelian topological groups (i.e., we forget how to
multiply vectors by numbers, noting that the third condition for a topological
vector space already requires that the group operations be continuous). The
other forgetful functor is to the category of real vector spaces (i.e., we forget
the topology). Other forgetful functors are obtained by composition of forget-
ful functors with these two. In particular (since a topological vector space
defines an abelian topological group, which defines a uniform space), we have
a forgetful functor from the category of topological vector spaces to the
category of uniform spaces.

A real topological vector space V is said to be complete if its underlying
uniform space is complete. For V a topological vector space, a completion of
Vis a complete topological vector space V, together with a continuous linear

L -
mapping V — V, such that the following property is satisfied: given any com-
o
plete topological vector space W and continuous linear mapping V — W,

there is a unique continuous linear mapping V—g» W such that the diagram of
figure 127 commutes. We note that this is a free construction (via the forget-
ful functor from the category of complete topological vector spaces to the
category of topological vector spaces), and therefore that the completion is
unique if one exists.

Ezample. The topological vector space of the third example of this
chapter is complete. Let f; (6 in A) be a Cauchy net in V. Then, for each s
in S, fi(s) (6 in A)is a Cauchy net in R, the uniform space of reals. Since the
latter is complete, this net converges to some real number, fls). It is easily
checked that this element fof V is a limit point of our Cauchy net.

Ezample. The topological vector space of the fourth example of this
chapter is also complete, by the argument sketched for the first example.
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vy

i

Figure 127

Ezample. Let V denote the set of all bounded, differentiable functions,

R — R. Add such functions, and multiply them by real numbers, pointwise,
so we obtain a vector space. For fand f° two such functions, let d(f,f") be
the least upper bound:of the function |f- f'| on R. This metric on V induces
a topology, so we obtain a topological vector space. This topological vector
space is not complete. The sequence of functions f;,f,, -+ illustrated in
figure 128 is Cauchy. This Cauchy net has no limit in V (for the limit would
“like to be’’ the function indicated; but this function is not differentiable, and
hence does not represent a point of V). It is not difficult to show that the
completion of V in this example is isomorphic with the topological vector

!
space of all continuous, bounded functions R — R.

A

Figure 128

THEOREM 52. Ewvery topological vector space possesses a completion.
Sketch of proof. Let V be a topological vector space. Choose for V the
completion of V as a uniform space, so V is a uniform space, and we have V

ar

f» V. For 7 and 7 elements of V (with representatives s (6 in A) and v, (v
in T), let ¥+ T be the element with representative v, (w in 1), where 2 is
the directed set on A X I' and where, for w = (§,9) in 2, v, = v; + v,. For
vin V (with representative v; (6 in A)) and a a number, let a7 be the element
of V with representative av; (6 in A). Thus Vis a complete topological vector
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space. One checks that it satisfies the universal property. |J

A number of facts about the topology of a topological vector space follow
immediately from theorem 51 (together with the observation that any vector
subspace of a topological vector space, with the induced topology, is also a
topological vector space). Thus every topological vector space is connected
and simply connected. Only for dimension zero can a topological vector space
be compact.

Finally, we remark that all of the discussion above goes through, without
change, if “‘real” is everywhere replaced by ‘‘complex,’” where, for the topol-
ogy on the set C of complex numbers, we choose that given by the metric
dlaa’)=|a- a’|.

Ezxercise 284. A subset A of topological vector space Vis said to be convex if,
for any v and v’ in A, and number @ with 0 < ¢ < 1, the vector av +
(1 - a)v” is in A. Prove that the closure of a convex set is convex.

Exercise 285. A topological vector space V is said to be locally convex if
every neighborhood of 0 contains a convex neighborhood. Which of our
examples are locally convex?

Exercise 286. Show that the closure of a vector subspace of a topological vec-
tor space is again a vector subspace. Why is this neither true in general nor
interesting when true for the interior?

Exercise 287. Prove that the homology groups of a topological vector space V
re (V) = Z, H|(V) =0, Hy(V) =0, - - - '

Erercise 288. Define the direct sum of topological vector spaces, and prove
the existence of one. For which topological vector spaces Vis V isomorphic to
V+ 17

Ezercise 289. Is there a reasonable notion of the tensor product of two topo-
logical vector spaces?

Exercise 290. Is it true that every linear mapping from topological vector
space V to R is continuous?

Ezercise 291. A subset B of a topological vector space is said to be bounded
if, for every neighborhood N of 0, there is a positive number ¢ with eB C N.
Let V and W be topological vector spaces, and consider Mor( V, W), the set of
continuous linear mappings from V to W. Verify that this Mor(V, W) has the
structure of a vector space. For B a bounded subset of V, and O an open

'3
subset of W, write K(B,0O) for the subset of Mor(V, W) consisting of all V —
W with p[B] C O. Let the topology on Mor(V, W) be that generated by these
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K(B,0). (This is called the bounded-open topology on Mor(V,W).} Prove
that Mor(V, W), with the bounded-open topology, is a topological vector
space. Prove that Mor(V, W) is complete if V and W are. Find an example to
show that the mapping Mor(V,W) X Mor( W,Z) — Mor(V,Z2) given by compo-
sition is not in general continuous. What is a simple condition that implies

continuity?
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Categories: Summary

The various categories we have introduced are listed in figure 129. The for-
getful functors are indicated by solid arrows, the various free constructions we

have discussed by dashed arrows (there are, of course, many more), and the
homology functors by the railroad tracks.
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Measure Spaces

We now begin our discussion of the theory of integration. We proceed in two
steps. In the first, we introduce the notion of measure, which appropriately
generalizes that of “area” (e.g., of regions in the plane). In the second, we use
this measure to define the notion of an integral.

We first introduce a little notation. Denote by R* the set consisting of
the non-negative real numbers, together with one additional element, which
we write c0. The element oo of R* is called infinite, the others finite. For a
and b elements of R* we write a < b (or b > a) if either i) a and b are both
finite, and @ < b as numbers, ii) a is finite and b is infinite, or iii) both are
infinite. (Note that this is a partial ordering on R the minimum element is
0, the maximum o0.) For a and b elements of R* we write a + b (called their
sum) for the element of R* which is the sum a + b of numbers if both a and b
are finite, and which is oo if either is infinite. Note that ¢ + b = b + @, and
a+ (b+ ¢) = (a+ b) + ¢, but that we do not have a group, because there
are no inverses. Finally, for a;,a5,a3, - ' - 2 sequence of elements of R* we

write Y] ¢; (also called their sum) for the element of R* which is the sum
3> a; of numbers if each of aj,a,, - - - is finite and this sum converges to some
number, and which is co otherwise. Note that Y] a;, so defined, is indepen-
dent of the order of aj,ay, - - -

A measure space consists of three things—i) a set X ii) a collection M of
subsets of X (subsets of X in this collection are called measurable sets), and

iil) a mapping of sets, M i R” (for A a measurable set, the element y(A) of
R*is called the measure of A)—subject to the following four conditions:

1. The empty set @ is measurable, and p(@) = 0.

2. For A any measurable set, A° is also measurable.

3. For A,A,y, -+ - measurable sets, U A; is also measurable.

4. For A, A, - + - measurable and disjoint (i.e., no point of X is in more
than one Ai)i ”(U Al) = E ﬂ(A,) ‘

One thinks of the measurable sets as those for which “the notion of area
makes sense’ and of the measure of such a set as its “area.”

A number of facts follow immediately from the definition. The first and
second conditions imply that X (= @) is measurable. The second and third
imply that, for A;,A,, - - - measurable, so is N A; (= (U Af)°). The first and
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third imply that, for A and B measurable, so is A U B (choosing A; = A,A,
= B,A; = 0,A;, =0, - - - ), and similarly for any finite number of measurable
sets, and similarly for intersections of a finite number of measurable sets.
Hence, for A and B measurable, so is A - B(= A N B°). The first and fourth
conditions imply that, for A and B measurable and disjoint, g(4 U B) = p(A)
+ p(B) (choosing A;,A,, * - * as above and using p(#) = 0), and similarly for
any finite number of measurable sets. Finally, for A and B measurable, with
A a subset of B, we have u(A) < p(B) (for Bis the disjoint union of measur-
able sets A and B - A, whence p(B) = p(A) + p(B - A)).

Example. Let S be any set, and let the measurable sets be all subsets of
S. Let p(@) = 0, and p(A) = oo for A any nonempty subset of S. That the
four conditions above are satisfied is immediate, whence we obtain a measure
space. (Alternatively, one could set y(A) = O for every subset of S, and
obtain a measure space.)

FEzample. Let S be any set, and let the measurable sets be @ and S. Let
u(0) = 0, and p(S) = 17 (or any other element of R*). We obtain a measure

space.
Example. Let the set X consist of the set of positive integers. Choose

any sequence, a,,d,, * * * of elements of R* Let all subsets of X be measur-
able. For A a subset of X, set p(A) = Y, (a;), where the sum on the right is
fin A

over the integers 7 in A. Again, the four conditions for a measure space are
immediate.

All of these examples are rather uninteresting (the last perhaps less so).
Fortunately, there is a single example which plays a central role in this sub-
ject: It both motivates and illustrates the definition, and is by far the most
useful for applications. We now give this example.

Let X = R, the set of real numbers: Let A be any subset of R. Con-
sider a countable collection, I; = (a;,b;),l, = (ay,by), . . ., of open intervals
in R (where, for convenience, we allow the empty open interval, (¢,a) = 0)
which covers A (i.e., which is such that every element of A is in at least one
of the I;). For C such a collection, we write m(C) = (b; - a;) + (by — ap)
+ - - - Since each term in this sum is a non-negative number, m(C) is an ele-

ment of R* Next, denote by 7i(A) the greatest lower bound (in R*) of ele-

ments of R* of the form m(C), for C such a countable collection of open
intervals which covers A. In this way we associate, with each subset A of R,
an element, fi(A), of R*.

Ezample. Let A be the open interval (0,1). Let C be the collection I; =
(-3,7), L = (-1,1), Iy = (0,0), Iy = (0,0), - - - of open intervals, which covers
A. Then m(C) = 12. But we can find such instances of C with smaller
m(C). Let C" be the collection I; = (0,1), , = (0,0), - - - Then m(C") = 1.
Clearly, there is no such C with m(C) smaller than one. Hence ff(4) = 1.
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Ezample. For A = R, fi(A) = oco. Let B consist of the elements
1,2, - - - of R. Then fi(B) = 0. Indeed, given any positive number ¢, let C be

the collection I, = (1-¢el+¢€), L = (2-¢€¢/22+¢/2), L =
(3 -€¢/4,3 + €/4), - - - of open intervals, which covers B. Then m(C) = 2 +
2(¢/2) + 2(e/4) + - - - = 4e. Hence i(B) < 4e for every positive ¢, whence
B(B) = 0.

One might imagine that we could now obtain a measure space by letting
the measurable sets all be subsets of R and letting the measure of such a sub-
set A be i(A). However, as we shall see shortly, this does not work: one has
to proceed in a slightly more subtle way. We first observe that this i satisfies
the following three conditions (where, recall, we have set X = R):

a(0) = o.
. For A and B subsets of X, with A a subset of B, fi(A) < fi(B).
. For A},Ay. - - - any subsets of X, fi(U A;) < Y F(A)).

That the first condition is satisfied is obvious. For the second, note that,
for I},l;, - - - any collection of open intervals that covers B, this collection also
covers A. But fi(B) is the greatest lower bound of m(C) for C covering B,
while fi(A) is the greatest lower bound for covering A. Hence fi(A) < f(B).
Finally, we check the third condition. Choose any positive number ¢. Let C!
be the collection 11,18, - - - of open intervals which covers A;, with m(C!)
< A4 + € let C? be the collection B BB -+ of open intervals which
covers Ay, with m(C?) = fi(Ay) + €/2; let C? be similar, with m(C3) = f(A,)
+ €/4, etc. (We can always find such, for, e.g., since fi(A;) is the greatest
lower bound of m(C) with C covering A, there is one such C, which we call
C!, with m(C') only ¢ greater than fi(4,).) Denote by C the collection of all
these open intervals, £ (ij = 1,2, - - - ). Then m(C) = m(C') + m(C?) +
m(C%) + - - < A(A) + € + [(Ag) + ¢/2 + [(Ag) + e/d+ - - - =3 F(A) +
2¢. But notice that C is a collection of open intervals which covers all of
U A;. Hence g(U A;) < m(C). Thus we have g(U A;) < ¥ f(A;) + 2¢. But
this must be true for every positive number ¢, whence zi{U A;) < Y fi(A4)).

Thus our f satisfies the three conditions listed above. (Note that these
conditions are somewhat different from those for a measure space. In particu-
lar, the third condition above does not demand that the A; be disjoint, but
requires only an inequality rather than an equality.) The final step in the
construction of a measure space is the use of the result below. Since this
result has a number of other applications and since, in particular, we shall
have to use it again later, we prove it in a context somewhat broader than
needed for this particular example.

ol vof |

THEOREM 53. Let X be any set, let P(X) be the collection of all subsets of X,

B
and let P(X) — R* be any mapping satisfying the three conditions just
above. Denote by M the collection of all subsets A of X satisfying the
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following condition: B(E) = A(A N E) + B(A° N E) for every subset E of

X. For A in M, write p(A) = p(A). Then X, M, M —”> R* is ¢ measure

space.

Proof. We verify each of the four conditions for a measure space. (1)
For E any subset of X, fi(d N E) + f(0° N E) = A(0) + F(E) = B(E). Thus #
is in M. Also, p(8) = E(0) = 0. (2) For A in M, we have F(E) = (A N E)
+ pE(A° N E) for every subset E of X, whence A°is in M. (3) Suppose first
that A and B are in M. Then, for E any subset of X, we have f(E) =
BANE) + B(ANE) = g(ANBNE) + p(ANB° NE) + (AN E),
where we have used A in M in the first step, and B in M in the second. But

E AnBAE= (AnB)NEnA
/

AAE= (AnB) s EAAC
Figure 130

ANBNE={ANB'NENA and AN E= (AN BN EnN A° (figure
130). Hence the above becomes fi(E) = B(ANBNE) + g{(AN BN EN
A +FHANB*NEN AY) = g(AN BN E) + E(AN B N E), where we
used A in M in the last step. We conclude that A N B is also in M, whence
AU B (= (A° N B%) is also in M. Thus we have so far verified the third
condition for a measure space for a finite number of sets. Next, let A and B
be in M, and let these sets be disjoint. Then E(E) = f(A N E) + g(A N E)
for every E, whence, replacing E by (4 U B) N E, we obtain E((A U B) N E)
= BANE) + A(BN E). Now let A} AyAs - - be elements of M. We
might as well take them to be disjoint (for, were they not, A,, Ay — A}, A3 —
Ay - Ay, - - - would be disjoint elements of M with the same union). Then,
for E any subset of X, and for any n, we have

F(E) = E(Y 4) N B) + F(UA) 0 B)

v
-0 -4 -0

AA:NB) + () A) 0 B)

(o]

AN B) + B(UA) 0 B)

v

FAN B) + B(G A) N B)
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> F(Y 4) N B) + AU A) N B)

v
|

(E)

where, in the first step, we have used the fact that the union of any finite
number of elements of M is in M; in the second, we have used the fact that,
for A and B disjoint and in M, E((AU B) N E) = (AN E) + f(BN E); in

- n P
the third, we have used property 2 and the fact that (LlJ A)f D (LIJ A;)% in the
fourth, the fact that the previous inequality holds for every n; in the fifth,

-— [e9]
property 3; and, in the sixth, property 3 again and the fact that ((LIJ A)NE)

[0 0]

U ((U A)° N E) = E. Since f(E) appears at each end of this string of ine-
1

qualities, each ‘‘>"" must be an “=." Since this must be true—in particular,

(e 0]
in the last step—(U A4;) is in M. (4) Let A, A,, - - - be disjoint elements of
1
(o)
M. In the string of inequalities above, let £ = (U A;). In particular,
1

the fourth line must equal f(E) = ;‘i((LlJ A})). Thus we have p(U A) =
¥ u(4A). 3

Applying theorem 53 to our particular example, we obtain a measure
space. This measure space is called the measure space of reals (or, more com-
monly, Lebesque measure on the reals).

Note how the measurable sets arise in theorem 53. For A and E subsets
of X, AN E and A° N E are two disjoint sets whose union is E itself. In order
that A be measurable, we require that the sum of i(A N E) and fi(A° N E) be
fi(E) for every E. In other words, the measurable sets are those which, “‘when
used to divide any other set into two pieces, give a division for which g is
additive’” as in figure 131. It is always true, whether or not A is measurable,
that Z(AN E) + G(A°N E) > E(E) (by condition 2). One thinks of non-
measurable sets as those ‘‘whose points are so densely distributed in X, with
so many holes in between, that, whenever you try to cover A N E by open
intervals, and A° N E by open intervals, the open intervals for the two cover-
ings are forced to overlap—overlap so much that you can actually do better
by just covering E itself with open intervals, rather than by taking together
these two coverings of AN E and A°N E.”

Ezample. Let A be the subset of the set R of reals consisting of the open
interval (0,1). Then A is measurable in the measure space of reals. Indeed,
let E be any subset of R, and let C be a collection, /;,h, . . ., of open inter-
vals that covers E. Fix positive ¢. Let I; = (a,;), and introduce the three

<
.0
a
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| L/AE
Figure 131

open intervals I, = I, N A, I; = (ay,¢), and ;" = (1 — €,b;) (where, when the
first entry in an open interval exceeds the second, it represents the empty
interval). Similarly, set fz = L N A, iz = (a,,€/2), iz’ = (1 - €/2,by), ete.
Let € be the collection i,,]2, - - - of open intervals, and C the collection
i,,i,’,fz,fz’,is, -+« Then m(C) > m(C) + m(C) - 4¢. But C covers A N E,
whence i(A N E) < m(C), and C covers A° N E, whence F(A° N E) < m(C).
Thus m(C) > a(ANE) + f(A°N E) - 4e. Choosing the covering C of E
with m(C) < R(E) + ¢, we have g(E) > g(AN E) + f(A° N E) - 5¢. Since
this is true for every ¢, i(E) > B(A N E) + g(A°N E). But g(E) < g(AN E)
+ f(A° N E), whence p(E) = f(A N E) + g(A° N E). Of course, the measure
of this measurable set A is one.

Ezample. By the argument above, every open interval is a measurable
subset of the measure space of reals. Hence every open subset of the real line
(since it is a union of a countable collection of open intervals) is measurable.
So every closed subset (as the complement of an open subset) is measurable.
In particular, every point of R is measurable (and has measure zero). Every
countable subset of R (as the countable union of its points) is therefore
measurable and has measure zero. Every subset of R which can be obtained
by taking countable unions and intersections of open or closed sets is
measurable.

This last example might suggest that perhaps every subset of the meas-
ure space of reals is measurable. This is not true, but is ‘‘nearly true’: it is a
rather subtle business even to construct a subset of the measure space of reals
which is not measurable.

Ezample. For a and b numbers in the open interval (0,1), write a = b if
a - bis rational. This is an equivalence relation. Let A be a subset of R con-
sisting of exactly one element from each equivalence class. (Thus no two ele-
ments of A differ by a rational, while any number in (0,1) differs by a rational
from some element of A.) We remark that we are actually using a version of
Zorn’s lemma (chapter 8) here. We show that the assumption that this A is

measurable (with, say, #(A) = a, an element of R*) leads to a contradiction.
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For each rational number r in (0,1), let A, consist of all numbers « in (0,1)
with (¢ + r) (mod 1) in A. Then each A, is measurable, with p(A4,) = a.
Any two A, are disjoint (since no two elements of A differ by a rational), and
the A, cover (0,1) (since every number in this interval differs by some rational
from an element of A). Hence we must have 1 = p(0,1) = p(U A,) =
Y u(A) =a + a + a+ - - But this is a contradiction (for, if & = 0, the
sum on the right is zero, while, if @ > 0, the sum on the right is oo; in nei-
ther case is that sum equal to one).

To summarize, we introduce the notion of a measure space, which
represents “‘sets which have a reasonable notion of area, together with the
areas of such sets” (where we regard ‘“reasonable” as the conditions for a
measure space). In the case of the reals, one knows what the ‘“‘area” of an
open interval should be. Then, for any subset of the reals, one “covers it with
open intervals, takes the sum of their ‘areas,’ and then keeps trying coverings
until this sum takes its smallest value.”” The result is a certain function fi.
This 7, however, does not satisfy the additivity property necessary for a
measure. One therefore takes, for the measurable sets, those which “split any
other set into two parts for which i is additive.” These measurable sets give
a measure space. For this, the measure space of reals, practically every subset

3

of R that one is ever likely to confront is measurable.

Exercise 292. Prove that every isomorphism (of topological spaces) from the
real line to itself takes measurable sets to measurable sets. Find one such iso-
morphism which takes a set of measure zero to one of nonzero measure.

Ezxercise 293. Let X be a measure space, and let A;,A,, - - - be measurable
sets, with A} C A, C Az - -+ Prove that the limit of u(A,) as n approaches
infinity is just p(U A)).

Ezxercise 294. Prove that, in the measure space of reals, every subset of a
measurable set of measure zero is measurable.

Ezxercise 295. Consider the following subsets of the measure space of reals: A,
= [0,1], 4, = [0,1/3] U [2/3,1], A3 = [0,1/9] U [2/9,3/9] U [6/9,7/9] U
[8/9,1], A, = [0,1/27) U [2/27,3/27) U [6/27,7/27] U [8/27,9/27] U
[18/27,18/27) U [20/27,21/27] U [24/27,25/27] U [26/27,1], etc. Let C =
N A; (This C is called the Cantor set.) Show that C is uncountable, is
measurable, and has measure zero. Using these facts and the previous
exercise, show that there exist measurable subsets of the measure space of
reals that cannot be written as countable unions and intersections of open or
closed sets.

Ezercise 206. Let X be any measure space. For E any subset of X, let C be a
collection, A,,A,, ..., of measurable sets that covers E. Set m(C) =
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Y u(4;), and let f(E) be the greatest lower bound of these m(C). Prove that
this fi satisfies the three conditions 1, 2, and 3. By theorem 53, we obtain a
new measure on X. Prove that every subset of X measurable in the original
measure space is measurable in this new one. Show that repeating this opera-
tion again, starting with the new measure space, yields nothing new.

Ezercise 297. Is there some way to make measure spaces into a useful
category?

Ezercise 298. Does these exist some other way to make a measure space out
of the set of reals such that every measurable set in the measure space of reals
is also measurable in this new measure and has the same measure?

Ezercise 299. Let X be a measure space. For A and B measurable sets, write
A=~ Bif both A- B and B- A have measure zero. Prove that this is an
equivalence relation and that two measurable sets in the same equivalence
class have the same measure.

Exercise 300. Let E be a subset of the measure space of reals. Does there
exist a measurable superset A of E such that every measurable B with £ C B
C Ahas p(A - By=0?
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Constructing Measure Spaces

In this chapter, we describe various techniques that yield measure spaces from
measure spaces.

I

Let X, M, M — R* be a measure space. Let K be a measurable subset
of X. Denote by N the collection of all subsets of K which, as subsets of X,
are measurable (i.e., which are in M). For A in N, set ¥(A) = p(A). Then K,

v
N, N — R*is a measure space. [Proof: The first, third, and fourth conditions
for a measure space are immediate from those conditions on measure space X.
For the second condition, note that, for A in N, the complement of A in K is
K - A, which, since K is in M, is itself in M, and hence is in N.] This K, N,

v 7
N — R*is called a measure subspace of X, M, M — R”*.

Next, let X', M, M~ L R*and X', M, M” ”—> R* be two measure
spaces. We define another. Let X = X’ U; X*’, the disjoint union. Thus a
subset of X is a pair, (A",A""), where A’ is a subset of X" and A"’ is a sub-
set of X*°. Denote by M the collection of all such subsets with A" measur-

able in X* and A"’ measurable in X"*. Finally, for the measure of such a
subset (A",A"") of X, we take p(A",A”) = p'(A") + " (A”"). We claim

that X, M, M 2 R*is a measure space. [Proof: (1) @ = (0,0) is measurable
in X, and p(0) = p"(0) + (@) = 0. (2) The complement of A = (A",A"")
in X is (A"%5A77°). (3) The union of A4 = (4,",4,"), A, =
(A2" A7), - tis (UAUA”). (4) Let A = (A7,4,7), A, =
(A37,427"), - - - be disjoint and measurable in X (so 4;",A4,", - - - are disjoint
and measurable in X, and A;"",4,"", - - are disjoint and measurable in
X”). Then ¥} p(A) = Yk (A7) + s"(A7) = Yu(47) +
uTAT) = p VA + 7 (UAT) = nU AU A7) = s A)]
This measure space is called the disjoint union of measure spaces X" and X"".

For the third construction, let X, M, M -i R*and X, M, M L R* be
measure spaces (i.e., they have the same underlying set X and the same
measurable sets, but they may assign different measures to these measurable
sets). We may write p < p” if p(A) < p’(A) for every measurable set A,

noting that this is a partial ordering. Note also that X, M, M p:': R*is also
a measure space, where we set (4 + p")(A) = p(A) + p’(A) for any measur-
able set A. This is called the sum (of these two measures on X). Note that
the sum is commutative and associative (i.e., p+p"  =p" + pand (p + p”)



258 Chapter Forty-Four

+p” =p+ (p” +p"")). Finally, fix any positive number r. Then X, M,
.

M —”> R* is a measure space, where, for A measurable, (ap)(A) is the element
ap(A) of R* if p(A) is finite, and is the element oo of R* if u(A) is infinite.
That the properties one expects to be satisfied are indeed satisfied is immedi-
ate: f(r'p) = (rr')p, lp + p") =rp + rp”.

The final construction is the most interesting. We first need some nota-
tion. Let a and b be elements of R*. We denote by ab the element of R*
which is i) this product of numbers if both a and b are finite, ii) the element
oo if one of a or b is infinite, and the other is nonzero (in particular, if both
are infinite), and iii) the element O if one of a or b is infinite, and the other
zero (!). We have, as is easily checked, ab = ba, a(bc) = (ab)c, and o(b + ¢)
= ab + ac.

Now let X', M", M’ —l: R*and X", M, M”’ “—» R* be measure
spaces. Let X = X° X X', Cartesian product, and, for A" in X" and A"’
in X”*, write A" X A" for the subset of X consisting of (z",2"") with 2" in
A" and z”" in A”". Now let E be any subset of X. Let C denote a collection
of subsets of X of the form A;” X A;",A," X Ay”,..., with
A;"Ay", - - - measurable in X* and A,”",A,”, - - - measurable in X", and
such that this collection C covers E. Set m(C) = pu’"(4; )" (A;”") +
p (A2 )" (A2”") + - - - (Think of p"(A;")p""(A;"") as the ‘“‘area of the rec-
tangle A;” X A;”" in X,” so m(C) is the “sum of the areas of this family of
rectangles, which covers E.”) Finally, let i(E) be the greatest lower bound of
these m(C). This JI satisfies the three conditions 1, 2, and 3 (by a word-for-
word repetition of the argument which follows those conditions). By theorem

"
53, we obtain a measure space, X, M, M — R¥ called the product of measure
u’ L
spaces X', M", M’ — R*and X", M, M"” — R*
Ezample. Let each of X* and X" be the measure space of reals. Then
X is the underlying set of the topological plane. Ordinary rectangles in this
plane have as their measure their usual area. The measure of a disk of radius

ris 7%, and similarly for other geometrical figures. Thus this product of
measure spaces yields the usual notion of ‘‘area of figures in the plane.”

Ezercise 301. Can one take disjoint unions, sums, and products of an infinite
collection of measure spaces?
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Measurable Functions

We now introduce the functions that are ‘“‘candidates for those that can be
integrated over a measure space.”

Let X, M, M -i R* be a measure space. Let X—f-> R be a real-valued
function on the set X. We say that this fis measurable if inverse images by f
of open sets are measurable, that is, if, for each open O in the real line, f ![O]
is measurable in X. A number of facts about measurable functions are
immediate. First, note that (since complements of open sets are closed, since
inverse images take complements to complements, since complements of
measurable sets are measurable), for f measurable, f~1[C] is measurable for
each closed C in the real line. In particular (since each point of the real line
defines a closed subset), the inverse image, by a measurable function, of any
point of the real line is a measurable subset of X. Similarly, the inverse
image, by a measurable function, of any subset of the real line which can be
written as a countable union or intersection of open or closed sets is measur-

able in X. The following fact is often useful: X -i R is measurable if and
only if, for each real number r, f~![(-c0,r)] is measurable. [Proof: The “‘only
if’’ part is immediate, since (—oo,r) is open in the real line. For the converse,
suppose that each f~![(-oo,r)] is measurable. Then each f~![[ro00)] (=
{f Y(~00,7)]}¢) is measurable. Hence each f~[(r",00)] (= f~Y(r" + 1/2,00)]
U S Y(r + 1/4,00)] U f7Y(r" + 1/8,00)] U - - ) is measurable. Hence each
SN0 (= £ ,00)] N f7Y(=00,7)]) is measurable. Since every open sub-
set O of the real line can be written as a countable union of such open inter-
vals, each f~1[O] is measurable. Hence fis measurable.]

Ezample. Let R — R be continuous. Then, regarding the R on the left
as the measure space of reals, f is measurable. Indeed, for O open in R,
S7[0] is open in R, and hence measurable, since every open subset of the real

!
line is measurable. The function R — R with f{r) one if r is rational, and
zero if ris irrational, is measurable, since both the set of rationals, and the set
of irrationals, is measurable in the measure space of reals.
F !
Next, let R — R be continuous, and let X — R be measurable. Then X

Fof
— R is measurable, for, for O open in the real line, F "![O] is open in the real

line, whence f~![F~'[0]] is = measurable subset of X. But f![F![0] =
(Fof)'0]. In particular, for X — R measurable, so is |/| (the function on X
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F
whose value at z in X is |[f{z)]), for R — R given by F(r) = |1] is continuous,
F

while |l = F o f. More generally, let R X R X -+ X R — R be any con-
tinuous function of n real variables, and let f;, . .. ,f, be measurable func-
tions. Then F(fy, . ..,f,) (the real-valued function on X whose value at z in
Xis F(fy(z), . . . ,f,(z))) is measurable. [Proof: For O open in the real line,
F-10] is open in R X R X - -+ X R. This open set can be written as the
union of a countable collection of open sets of the form O; X Oy X + - - X

O,, where each of Oy, ... ,0, is open in the real line. But the inverse image
hy ook
of thisset by X — R X ---X Ris fi1[0]] N 50 N+ N f;YO,],

and hence is measurable.] Thus, for example, for f and f° measurable, both
f + /° (the function whose value at z in X is flz) + f'(z)) and ff" are
measurable.

We next consider the behavior of measurable functions under taking lim-
its. Let f;,f, - + - be measurable functions on measure space X. Let lim f,
exist, and denote this function by f (that is, let, for each z in X, the sequence
fi(2),f5(7), - - - in the real line converge, and let f be the function such that

this sequence converges to f{z) for each z in X). We claim that X —f» R is
therefore measurable. [Proof: Fix number r. For € a positive number, and n
a positive integer, set K(e,n) = f;l[(~00,r—¢)] U fik[(-oo,r-€)J U -, a
measurable subset of X. Set K(¢) = K(e,1) N K(¢2) N+, so Kle) is
measurable. Note that f~![(-co,r-2¢)] C K(¢) C f7!(-o0,r)]. Hence
Y (~00,7)] (= K(1) U K(1/2) U K(1/4) U - - - ) is measurable. That is, f is
measurable.] Thus limits of measurable functions yield measurable functions.

In short, ‘“‘essentially every finite or countable operation one can think of,
applied to measurable functions, yields a function which is again measurable.”

A certain, particularly simple class of measurable functions is of special

interest. Let X, M, M -”> R* be a measure space, and let X-,> R. This fis
said to be a step function if i) fis measurable and ii) f[X] is a finite subset of
R. Thus, for f a step function, there is a finite number, r, ... ,r,, of
numbers, with A; = f~![r], . . . ,A, = f~![r,] measurable subsets of X which
are disjoint and whose union is X. With the exception of taking limits, most
operations, when applied to step functions, yield step functions. For example,
if fand f° are step functions, then so are |f], f+ f*, and ff*. Limits of step
functions are, of course, measurable functions, by the remark above.

The interest in step functions lies, in part, in the fact that every measur-
able function is a limit of step functions. In fact, we have the following
slightly stronger result.

u /
THEOREM 54. Let X, M, M — R* be a measure space, and let X — R be a
measurable function with [ > 0 (i.e., with {z) > 0 for every z in X).
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Then there exists a sequence, fi,fo, - * * of step functions with 0 < f; < fp
<+, and with lim f, = [.
Proof. The proof is by construction. Set

filz)=0if0< flz) < 1

M@ =1i1< f2)

flz) =0if 0 < fla) < 1/2
flz)=1/2if1/2 < f5) < 1
filz) =1if 1 < fla) < 3/2
filz) = 3/2if3/2 < fla) < 2
hiz) =2if2 < fl2)

and similarly for f; (using a subdivision in intervals of 1/4 from 0 to 3),
fi, ete. It is clear that this is an increasing sequence of step functions, with

limit /. [

Now consider a (not necessarily positive) measurable function X —{» R. Write
f=[f, - [, where f, (= 1/2(|f1 + /) and [ (= 1/2(|/] - /)) are non-negative
measurable functions. Since each of these is, by the theorem above, a limit of
step functions, so is f.

Thus the measurable functions are precisely the functions which can be
obtained as limits of step functions.

Ezercise 302. Find an example of a function on the measure space of reals
that is not measurable.

Exercise 303. Let fi,f, - - * be measurable functions on measure space X. For
each z in X, let the least upper bound of the numbers fi(z),f5(2), - - - exist,
and let fbe the function such that this bound is f{z) for each z. Prove that f
is measurable.

FEzercise 304. Is it true that fis measurable if and only if |/] is?

! F
Ezercise 305. Let X — R be a step function, and let R — R be any function.
Prove that F o fis a step function. Does this work in more than one variable?

Ezercise 306. Find an example of measurable functions f and f° with f > f~
such that there is no step function fwith f > > f’.
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Integrals

The “space over which integrals are to be performed” is a measure space.
The “things which are to be integrated’” are measurable functions. We now
define integrals and give a few of their properties.

The idea is to treat the step functions first and then to extend this treat-

I
ment to all measurable functions. Let X, M, M — R* be a measure space,

and let X —j» R be a step function. Let q;, ... ,a, be the n values that f can
assume, and set A; = fq], ... ,A, = f![a,], the (measurable) subsets of
X on which f assumes each of its n values. In this case, one has a good idea of
what the integral of f “should be,” namely a;p(A;) + - - - + au(A4,) (i.e., the
sum of the values of f, each multiplied by the measure of the region on which
f assumes that value). There are, however, a couple of problems with this.
First, it may happen that, for example, g, is nonzero but p(4,) is infinite.
Then our “‘integral”’ would be infinite. Second, and even more serious, it may
happen that, for example, a; is positive and ay is negative, while both u(A,;)
and p(Ap) are infinite. Then we would want to add ‘‘+o0’ to
sum above, with, presumably, an indeterminate result. It is convenient to
rule out such pathologies at the beginning. Thus a step function f is said to
be integrable if (with e, ... ,a, and Ay, ... ,A, as above) whenever g; is
nonzero, p(A;) is finite. In this case, the real number a;u(4;) + - - +
a,p(A,) is called the integral of f and is written fo dp.

All the properties one would expect to be satisfied by integrals are in fact
satisfied. Thus, if fis an integrable step function and @ is a number, then af
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is integrable (since, whenever af is nonzero, so is f) and fX af dp = a fo dp.
If fand f° are integrable step functions, then f+ f” is an integrable step func-
tion (since, whenever f+ f is nonzero, at least one of for f is nonzero) and
fX (f+[f) dp = fxf dp + fxf’ dp. If fand f° are integrable step functions,
with f < f°, then fxf dp < fxf’ dp.

We thus know how to integrate step functions. Next, one wishes to
define the integral of an arbitrary measurable function using, somehow, the
fact that this function is necessarily a limit of step functions. There are, how-
ever, a number of technical problems which force one, in order to obtain a
reasonable definition, to make it with some care. Two examples will illustrate
this remark.
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Ezample. Consider, on the measure space of reals, the sequence
fi.fa, - - - of functions, with f,(z) equal to one if n < z < n + 1, and to zero
otherwise. These are shown in figure 132. Each is an integrable step func-
tion, and, in fact, each has integral one. But lim f, is the function which is
zero everywhere (because the ‘‘unit humps move off to infinity”), while this
integrable step function has integral zero.

R
fy
|——| > IR
R
f
|_| 2 > R
R
AR
|_| 5 IR
Figure 132

The problem here is that one can have a “hump which contributes to
each f, but which does not contribute to the limit function.” In order to rule
out this type of behavior, one would like to require that ‘‘once such a hump
appears in one f,, it does not move away in later instances of f,.”” One might
accomplish this, for example, by requiring that f; < f, < - - -

Ezample. Consider, on the measure space of reals, the (measurable) func-
tion f with flz) = -1/(1 + z,) (figure 133). One would certainly want this
function to, ultimately, be integrable (and, in fact, to have integral -x). On
the other hand, no step function f* with f* < fis integrable (for, since f takes
only negative values, the a;, . . . ,a, for f* must all be negative while at least
oneof Ay, ... ,A, must have infinite measure).

It is clear from these examples that what one wants to do is have one’s
sequence of step functions ‘‘increase to f when fis positive and decrease to f
when f* is negative.”

Let X M| M —”> r* be a measure space, and let X —f> R be a measurable
function. Suppose first that f > 0. Then this f is said to be integrable if
every step function [ with f > £ > 0 is integrable and the set of values of the
integrals of such step functions is bounded. The least upper bound of these
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I

Figure 133

Bhon o nn s

Figure 134

numbers f‘(‘[ dp is called the tntegral of f and is written fo du. More gen-

erally (i.e., not assuming f < 0), we call X—fr R integrable if, writing f = f, -
[ with f, and f non-negative, both f, and f_ are integrable (in the sense just
defined). Of course, the integral of fin this case is just fo dp = fo+ dp -
fX f du. We note that these definitions—of integrable and of the value of the
integral—agree when more than one is applicable (e.g., a step function is
integrable as a step function if and only if it is integrable as a measurable
function, and the two values of the integral then agree).

Let us look at this definition in a little more detail. Let X ——f+ R be
measurable, with f > 0. Then we may ‘“‘approximate f as closely as we wish
by a step function £, with f > £ > 0.” We think of fX_[ dp as ‘‘an approxima-
tion to fX f dp, an approximation which becomes better and better as the step
functions increase to approach f.”” Let us compare this situation with that of
the Riemann integral. In the Riemann case, one must consider only functions
on the measure space of reals rather than on an arbitrary measure space. Let

!
R — R be measurable, with f > 0 (figure 134). To obtain the Riemann
integral of f, one divides a portion of the real line into intervals, that is, one
considers numbers 7y < 1, < - - < r,. One then approximates f by a
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function f, where, for z in the interval [r,,r ,{),f(z) is the greatest lower bound
of fon this interval. This, too, is a step function, for it is constant on each of
the intervals (rg,r), - * *, (n1,7s)- Thus, in the Riemann case, one approxi-
mates by functions which are ‘‘constant on intervals.”” On the other hand, for
the integral as defined above, one approximates by step functions which are
‘“constant on arbitrary measurable sets.” In short, one broadens one’s class of
approximating functions and is thus able to integrate more functions. Note
also that one has no notion of an “‘interval” on an arbitrary measure space X
(as opposed to on the measure space of reals), and hence has no notion of a
“Riemann integral’’ on an arbitrary measure space.

There is another way to view this difference between the integral as

defined above and the Riemann integral. Let R —/> R. To obtain the
Riemann integral of f, one splits the R on the left (the measure space of reals)
into intervals to obtain an approximating step function for f. In the present
case, by contrast, one obtains approximating step functions for f by splitting
the R on the right into intervals (see, e.g., theorem 54). Since the integral of
fis to be roughly the “sum of the values of ftimes the measure of the region
on which f has that value,” the latter seems more natural.

/
Ezample. Let R — R be given by flz) = 1if z is rational and flz) = 0 if
z is irrational (figure 135). Then f is integrable (in fact, is a step function)
and fo dp = 0. On the other hand, this fis not Riemann integrable.

I

Figure 135

Ezample. Let R —f> R be given by flz) = (2 sin 2)/(1 + 2%). Then fis
measurable but not integrable (for, e.g., f, is not). (One sometimes says that
such functions are “‘integrable but not absolutely integrable.” This notion,
like that of the Riemann integral, refers, e.g., to an ordering of the reals and
hence is not applicable for general measure spaces.)

There must be thousands of properties of integrals. One’s response to
this situation is the usual one: one tries to develop a feeling for what sorts of
things are true and what sorts are false, and to become adept at finding
proofs and counterexamples when needed. We here illustrate this art with a
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few examples.
First, note that, if f < f* are integrable functions, thenf fdp < f I
dp. Hence, in particular, if fis integrable with f < 0, we have f [ dp < 0.
It is of interest to ask when equality holds. So let f be integrable, w1th <o
It is clear that, if f{z) = 0 except for a subset A of X with u(A) = 0, then fo
dp = 0. We claim that the converse is also true. Indeed, set A =
17Y(1/2,00)], Ay = f7Y(1/4,00)], - - - Then A, C Ay C - - - If, for any n, we
had p(A,) # 0, then we would have f [ dp # 0. Hence each A, has measure
zero, whence 0 = p(U 4,) = f7Y[(0, oo)] That is, f vanishes except on a set
of measure zero. It often happens in this subject that some statement about
points of X is true except on some measurable set of measure zero. When this
is the case, the statement is said to be true almost everywhere. Thus we have
just shown that a non-negative integrable function has vanishing integral if
and only if that function vanishes almost everywhere.

!
Next, let X — R be an integrable function, and let A be any measurable
subset of X. Then we may regard A as a measure subspace of X and, restrict-

ing f to A, obtain a mapping A —/» R. It is clear that this fis also integrable:
we write its integral as f f du and call A the region of integration. It is
immediate from the definition that, if A and B are disjoint measurable sets,
then fAUBf du = fA [dp + fo dp. This is also true in 2 certain sense for
any countable collection of disjoint measurable sets. To see what the sense is,
we first consider an example.

/
Ezample. Let X = R, the measure space of reals, and let X — R have
action flz) = sin 27rz. For n = 1,2,..., let A, = [n - 1,n), a measurable
set. Then fis integrable on each A,, and, in fact, f f dp = 0 for every n.

Hence 3] f f dp = 0. On the other hand, f f d[l does not even exist,
since fis not lntegrable onU A,.

/
The example suggests what must be done. We claim: if X — R is integr-
able, and Aj,A,, - - - are measurable disjoint subsets of X, then ) fA fdu =
n

qu [ dp. [Sketch of proof: It suffices to consider the case f > 0. Given any

ste; function f, with 0 < f < f, this step function, restricted to each A,, is a
step function on that A,. Hence Zf fdap < fA fdp. To prove the

reverse inequality, note that, given step functlons 11,‘[2, cron A Ay, ...,
with 0 < £, < fon A,, the sum of any finite number of these is a step func-
tion fon U A, with0 < [ < fon U A4,]
»
Consider now a measure space X, M, M — R* and a measurable func-

v
tion f with f > 0. Consider X, M, M — R* where, for A measurable, UA) is
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oo if fis not integrable on A and is fA [ dp if fis integrable on A. The result

obtained above shows that X, M, M —V» R*is a measure space.

We next consider the behavior of the integral under linear combinations
of functions. It is immediate that, if fis integrable and a is any number, then
af is integrable and fX of dp = anj’ dp. We claim, furthermore, that if f and
¢ are integrable, then so is f + g, and fX(j’+ g) dp = fX/ dp + fxg dp.
[Sketch of proof: It suffices to consider the case f > 0, ¢ > 0. Choose positive
numbers N and ¢, and denote by A the subset of X consisting of z with 1/ N
< flzg) £ Nand 1/N < g(z) < N. Choose step functions fand g on A with f
>[>(1-¢€fand g > g > (1-¢€)g. Then, for h any step function on A
with f+ ¢ > h > 0, we have h < f+ ¢ < f/(1-¢€¢) + g/(1 -¢€). Hence
fA f+ g9 dp < fA]du/(l -€ + fA gdpf/(1-¢€). Since € is arbitrary,
fA f+9dp < fA fdp + fA g du. Since this is true for every N,
[ U+g) de < fxf dp + fA g du. To obtain the reverse inequality, note
that, for £ and g step functions, with f>f> 0and ¢ > ¢ > 0, [+ gis a
step function, with f+ ¢ > f+ g > 0.] We can state these conclusions thus:
“take the integral’ is a linear mapping from the vector space of integrable
functions to the vector space of real numbers.

As a final example of manipulating integrals, we consider limits. Let
fi.fo, -+ - be integrable functions, and let f = lim f, exist. We wish to con-
sider conditions under which lim fo,, dp is equal to fo du. The first exam-
ple of this chapter shows that at least some additional condition will be neces-
sary. The following example may suggest what this condition should be.

R
__V\
Ya £
—
R
Figure 136

Ezample. Let X = R. Let fi,f5, - * - be the sequence of functions illus-
trated in figure 136 (the “hump gets flatter and wider as it moves off to
infinity with n, keeping always ij" dp equal to one’’). The limit of this
sequence is f = 0, a limit whose integral is zero. Alternatively, one might let
Jifa, - - - be the sequence of functions illustrated in figure 137 (the “hump
gets higher and thinner, but approaches, e.g., zero, i.e., it remains within a set
of finite measure, keeping fx /. dp equal to one”’). Again, the limit function is
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Figure 137

[f=0.

One of the more useful results on interchange of limits and integration is
this: if f = lim f, and if there is an integrable function g with |f,| < ¢
for every n, then lim fon dp = fo dp. [Sketch of proof: For each n, let
h, be the function with h,(2z) = least wupper bound of
[fu(2) = A2),/fus1(2) = f2)], - - - Then, for each n, h, > 0, h, is measurable
and, since h, <2g, h, is integrable. We have lim h, = 0, whence lim fX h, dp
= 0, whence lim fX |fa = fl du = 0, whence lim | fX (f» — /) du| = 0, whence
lim fo,, dp = fo dp.]

Ezercise 307. Find an example to show that the product of two integrable
functions need not be integrable.

Ezercise 308. Prove that an integrable function on the measure space of reals
is Riemann-integrable if and only if it is continuous almost everywhere.

FErercise 309. Let fbe an integrable function on measure space X. Suppose
that, for every measurable set A, fA fdu = 0. Does it follow that f vanishes
almost everywhere?

Ezercise 310. Let fbe an integrable function on the measure space of reals.
For each real number r, let A, = (~o0,7), and set g(r) = fA [ dp. Prove that

the derivative of ¢ exists and is equal to f almost everywhere.

Ezrercise 311. Let X be a measure space. Denote by V the set of equivalence
classes of integrable functions under the equivalence relation ‘‘equal almost
everywhere.” Make this V into a real vector space. Given two elements of V,
with representatives f and g, let the distance between them be given by
f. ¢ If - gl du. Prove that this is a metric on the set V. Next, show that, with
the topology induced by this metric, V becomes a topological vector space.
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Prove that the topological vector space V'is complete. Finally, check that the
closure of the subset of V consisting of the integrable step functions is V
itself.

Ezercise 312. Prove that [is integrable if and only if |/] is.

Ezxercise 313. A sequence f,fp, - - - of measurable functions is said to con-
verge to fin measure if, for any positive ¢, lim g(A,) = 0, where A, consists
of points ¢ with |f,(z) - z)] > ¢. Give an example to show that lim f, = f
does not necessarily imply that f, converges to fin measure. Prove that this
implication does hold if g(X) is finite.
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Distributions

There are certain applications for which one wishes to ‘‘broaden the class of
ordinary functions” to include ‘‘generalized functions, which one can think of
as ordinary functions for which it is allowed that the function become infinite
in an infinitesimally small region,” where this type of behavior is restricted
only by the requirement that certain integrals converge. These ‘‘generalized
functions’ are called distributions. We shall here give the definition of a dis-
tribution, and a few elementary properties. In order to avoid certain
irrelevant technical complications, we shall work on a compact subset of the
real line. Generalizations to R X - - - X R, to arbitrary manifolds, and to
noncompact subsets are available and involve essentially no new ideas.

Let R —{> R be a mapping of sets. By the support of f, we mean the sub-
set C1(f ![R - 0]) of the set of real numbers, that is, the closure of the set of
numbers r for which f{r) is nonzero. Note that, for example, the support of f
+ g is a subset of the union of the support of f and the support of g. Such a
function is said to be Cif it is continuous. If, in addition, the derivative of f
exists (i.e., if the limit, as z approaches zero, of (f{r + z) - f{r))/z exists for
every r) and if this derivative, which we denote by f”, is also continuous, then
[is said to be C'L. If fis C'! and if the derivative of f* exists and is continu-
ous, then fis said to be C'2, ete. Finally, if all derivatives of f, to all orders,
exist and are continuous, then fis said to be C'*.

Now fix a compact subset K of the real line. We denote by T the collec-
tion of all C'™ functions R — R whose support is a subset of K (that is, T
consists of functions that vanish outside of K, and all of whose derivatives
exist and are continuous). Clearly, the sum of two such functions is another,
and any numerical multiple of such a function is another. Thus T is a real
vector space. What we now wish to do is to make this T into a topological
vector space. For fand g two functions in T, set

___ max|f-g¢ max|f” - [
dh9) =3 + max|f - ¢| +(1/2) 5 + max|f’ -

max|f” - ¢7|

+ (/49 77 maxl” — T
where “max’’ refers to the maximal value on K (which always exists, since K
is compact). Note also that the sum above necessarily converges, since the
first term cannot exceed one, the second 1/2, the third 1/4, etec. Finally, note
that this “d( , )" is a metric on the set T (since each term defines a metric on
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T). Thus, since we have a metric on the vector space T, we have a topology
on T. (Intuitively, two functions in T are ‘close” if ‘‘their values and all
their derivatives are close at every point of K.”) It is easily checked that T
thus becomes a topological vector space.

A distribution is a continuous linear mapping T f» R of topological vec-
tor spaces (where, on the right, there appears the obvious topological vector
space of reals). That is, a distribution ¢ assigns, to each C *° function fwith
support in K, a real number (f), where this assignment is linear (i.e.,
o(f + ag) = o(f) + ap(g)) and continuous (i.e., “functions whose derivatives
are all close at every point of K are taken, by ¢, to nearby real numbers”).

o
Ezample. Let K = [0,1]. Let R — R be any continuous function (just
integrable on K would suffice). For fin T, set p(f) = fK af du, where the
measure is that for the measure space of reals. Since the integral is linear,

this mapping T f» R is linear. This mapping is also continuous (for, for
max|f - g =€, p(f) - plg) < ¢ fK |@] dp). Thus we obtain a distribution.

This example is the key to the definition. Ordinary functions yield, by
“integrating the product,” distributions. It is also easily checked that, if two
continuous functions define the same distribution, then they are equal. Thus
“the distributions include the ordinary functions as special cases.” In order to
" we must display
some distributions which do not result from the construction above.

Ezample. Let K = [0,1]. For fin T, set p(f) = f(3/4) (i.e., p(/f) assigns
to f the real number that is the value of fat the point 3/4 of [0,1]). This T

claim that distributions represent ‘‘generalized functions,’

»

— R is clearly a continuous linear mapping. This distribution is called the
Dirac delta distribution (at 3/4). Let us show that this distribution cannot be
expressed as in the previous example. Suppose that there were a continuous

function R 1 R such that f{3/4) = fK af dp for every fin T. We show that
this supposition leads to a contradiction. If there were a number r in K
different from 3/4 with a(r) nonzero, then, choosing fin T to vanish except
near r, and there having the same sign as a(r), we would have f{3/4) = 0, and
fK af dp positive, violating f(3/4) = fK af dp. Hence we must have a(r) = 0
for every r different from 3/4. Since o is continuous, & must be zero every-
where in K. Hence fK af dp vanishes for all f,; again violating f(3/4) =
fK af du. Hence the Dirac delta distribution does not arise from any ‘‘ordi-
nary function.” '

There is, however, a certain sense in which the Dirac delta distribution
arises from ‘‘a limit of ordinary functions.” Choose a sequence of continuous
functions, a;,ay, - - - each “having integral one, and peaked about the value
3/4,” such that, as one moves along this sequence of functions, ‘‘the peaks
become higher and narrower.”” These are illustrated in figure 138. Then it is
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clear intuitively (and also true, provided this intuitive characterization of the
a, is made precise) that lim fK a,f dy = fl3/4). Thus one can think of the
Dirac delta distribution as ‘““the limit of the sequence of distributions defined
by these a,.”” Of course, there is no function that is the limit of the sequence
ay,aq, * * - of functions.

Ezample. Let K= [0,1]. For fin T, set o(f) = f"(1/3) + f(1/2). This
is a distribution.

Note what a pretty, and simple, idea this is: one ‘‘reinterprets’” ordinary
functions as continuous linear mappings from T to R, an interpretation which
leads immediately to ‘‘generalized functions.”

We now wish to give some examples of properties of distributions. Rule
of thumb: first think of things one can do with ordinary functions c, then
reexpress that ‘‘thing” in terms of the corresponding distribution of the
first example in this chapter and thus obtain a ‘‘thing’ one can do with
distributions.

Note that, for o and B continuous functions, and f in 7, we have
fK of dup + fK Bf dp = fK (o + B)f dp. That is, the linear mapping (from T
to R) associated with the sum of functions o and # is the sum of the linear
mappings associated with « and f separately. This observation suggests the

following definition: for Tf» R and T — R two distributions, their sum, p +
9, is the distribution given by (¢ + ¥)(f) = ©(f) + ¥(/). Thus addition of dis-
tributions generalizes addition of ordinary functions. Similarly, for ¢ a distri-
bution and a a real number, we denote by a ¢ the distribution with action
(ep)() = ap(f). This generalizes multiplication of functions by numbers.
Clearly, under these operations, the set of all distributions (for fixed compact
set K) is a vector space.

We can also generalize multiplication of functions by functions. Fix,
once and for all, a function A in T. Then note that, for a continuous and fin
T, we have fK (ha)f du = fK a(hf) du. This little formula is the rule for how
to relate the distribution defined by a to the distribution defined by ha. It
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©
suggests how one should define the product of a distribution with k. For T —
R any distribution (and A in T still fixed), let hp denote the distribution with
action (hp)(f) = p(hf) (noting that the right side is well defined, for, since h

and fare in T, so is hf). This formula indeed gives a continuous linear map-
ho
ping T — R, and hence defines a distribution. We call it the product of the

distribution ¢ by the function A (in 7).

We next define the derivative of a distribution. To see what the
definition should be, we again return to the special case of distributions
defined by ordinary functions. Suppose now that « is C'!. Then, for fin T,
we have fKa'f dp = - fK af dp (integrating by parts and using the fact

that the support of fis in K to throw away the surface term). Thus: let T -ﬁ
R be any distribution. We define the dersvative of this o, written ", as the
distribution with action ¢ (f) = -@(f’). (The right side makes sense since,
for fin T, so is f.) Note that this derivative is well defined for any
distribution—even, for example, one which arises from an ordinary function o
which is not differentiable. Does this derivative satisfy the properties one
expects of a derivative? It is obvious that, for ¢ and 4 distributions, and a a
number, (¢ + ay)” = ¢~ + ayp’, that is, that the derivative is linear. What
about the Leibniz rule? One would like to ask, for example, whether, for two
distributions, (p¥)” = @¥” + ¢ . Unfortunately, this is not possible, for
we have not defined the ‘“‘product of two distributions’ (something which, in
fact, can be given no sensible definition). We can, on the other hand, ask the
following question: is it true that, for A in T and ¢ a distribution, (hp)” =
h'p + hp’? (Note that the right side is a well defined distribution: since A’
isin T, h"p is a distribution while hp " is a distribution, and this right side is
the sum of distributions.) This is in fact true, as one shows by verifying that
the two sides give the same number when applied to any fin T: (hp) (/) =
(hR)I) = (k") = k[~ (R)") = o(h")) - p(h)") = (" Q)N + o (k)
= (k")) + (k")) = (k" + hp")(N)-

Ezample. Let K = [0,1]. The derivative of the Dirac delta distribution
at 1/3 is the distribution with action p(f) = -f"(1/3).

We next define the support of a distribution. It is convenient to write
TK) instead of T to indicate dependence on the compact set K. Let O be
any open subset of K. Then CI(O), the closure of O, is a compact subset of
K. Just as above, we obtain a topological vector space, T(Cl(0)), of all C' *®
functions with support in CI(O). But, since Cl(O) is a subset of K, every such
function also has support in K. Thus every function in 7(Cl(O)) is also in
T(K), that is, T{Cl(O)) is a subset of T(K) (and, in fact, a closed subspace of
the topological vector space T{K)). Now suppose we have any distribution,

")

NK) — R. Then, since T[CI(O)) is a subset of T(K), we also have a mapping
®

NCO0)) — R (in fact, a continuous linear one). We shall say that the
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distribution ¢ vanishes on O if this is the zero mapping, that is, if ¢(f) van-
ishes for every fin T(Cl(O)). (Of course, this just generalizes the notion of a
continuous function a vanishing on O.) The complement of the union of all
open subsets O of K on which ¢ vanishes is called the support of p. (Note
that this set, as the complement of an open set, is automatically closed.) It is
immediate that this notion of the support of a distribution generalizes that of
the support of a function. In fact: let a be a continuous function on K. Then
the support of the distribution with action fK af dp is precisely the support of
the function a.

As a final example of structure on the space of distributions, we intro-
duce the notion of the order of a distribution. Fix the compact set K, and
write T * instead of T as above. Next, for n any non-negative integer, write
T " for the vector space of all C'* functions with support in K. We wish to
make each of T% T - -into a topological vector space. We cannot, unfor-
tunately, use the metric of T, for, for example, for fand gin T2 f°
¢’ "’ may not exist. We therefore choose, for the metric on T ", that given
by the first n terms on the right in the expression near the beginning of this
chapter. (“Two C ™ functions are close if their values and first n derivatives

" and

are close throughout K.) Thus we obtain a sequence, T% T, . . ., of topolog-
ical vector spaces. Next, note that T ® may be regarded as a vector subspace
of each of TO T -- - (for a C * function with support in K is certainly also

a C " function with support in K). Finally, we note that the closure of the
subset 7 of T ™is T " itself (since every C " function may be approximated,
to arbitrary accuracy, by a C *® function).

7]
Now, fix a distribution 7 — R. Given n, we ask whether it is possible
e 4
to extend this mapping 7 — R to a mapping 7" — R, that is, whether

there is a continuous linear mapping T " i R such that ¢ agrees with the
mapping ¢ on the subset T ®° of T ". (That is, we ask whether it is possible
to extend the action of the distribution, defined originally on C *® functions,
to C' ™ functions.) Such an extension may or may not exist, but if one does
exist, it is unique (since the closure of 7® in T "is all of T "). Next, we note

e ¢
that, if there is such an extension of 7 — R to T " — R, then there is
")
necessarily an extension to T "*! T ™2 etc., for, if T" — R is an extension
¥
to T ", then, writing T ™! — T ™ for the natural continuous linear mapping

poy
(every C ™! function is also C'"), T™' — R is an extension to T "I

"]

Thus, for every distribution T *° — R, there is a smallest integer n for which
there exists an extension to T " (or else there may be no extension for any n).
We call this n the order of the.distribution and take the order to be oo if no
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extensions exist. Thus the order of a distribution reflects ‘“how differentiable
functions must be in order that the distribution still know how to act
on them.”

Ezample. Let K = [0,1]. The Dirac delta distribution at some point of

7]
K (e.g., the point 1/3) is of order zero, for the mapping T *° — R given by

©(f) = f(1/3) for fin T ® can be extended to a mapping T ° f» R (namely,
that given by @(f) = f{1/3) for fin T9). The derivative of the Dirac delta
distribution is of order one (for we can extend ¢(f) = —f"(1/3) for fin T},
but this will not work for an extension tolg'o, because f° may not exist for
[ in T°. Any distribution given by [ of duy with a continuous is of
order zero.

The lower the order of a distribution, the ‘less it requires of the func-
tions on which it is willing to act,” that is, the ‘‘more nearly like an ordinary
function it is.”” In fact, it is perhaps not too misleading to think of ordinary
C ™ functions as ‘‘distributions of order —n'’ (although, mysteriously, the inter-
face between ‘‘order 0" and “‘order ~0'" does not look right).

Ezercise 314. Prove that the order of the sum of two distributions is less
than or equal to the maximum of the orders of the summands. Prove that,
for ¢ a distribution and A in T, the order of hp is less than or equal to that of
@. Prove that the order of ¢~ is one greater than that of .

Exercise 315. For which ordinary differential equations is it meaningful to
ask for solutions which are distributions?

Ezercise 316. Show that the topology on T is independent of the choice of
coefficients in the formula for the metric of T.

Ezxercise 317. Is there a reasonable notion of “p < ¢ for distributions?

Ezercise 318. Are there simple necessary and sufficient conditions on a distri-
bution for it to arise, as in the first example of this chapter, from an ordinary
function?

Ezercise 319. Let ¢ be a distribution of order n, and let A be in T ™ Define
hp, and prove that this distribution is of order n.

FEzercise 320. Generalize our treatment of distributions to noncompact sets K
andtoR X --- X R.

Ezercise 321. Why does one bother to introduce a topology on T at all?

Ezercise 322. Define the Fourier transform of a distribution.
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Ezercise 323. Let K = [0,1], and let ¢ be a distribution whose support is the
single point 1/2 of K. Does it follow that ¢ is a linear combination of the
Dirac delta distribution at 1/2 and its derivatives?

Ezercise 324. Prove that, for S the support of any continuous function,
Cl(Int(S)) = S. Is this true for the support of any distribution?
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Hilbert Spaces

A Hilbert space consists of two things—i) a complex vector space H, and ii) a
rule that assigns, to any two vectors h and A" in H, a complex number (writ-
ten (h,h") and called the inner product of h and h”)—subject to the following
four conditions:

1. For any vectors h, b, and h°*, and any complex number ¢, we have

(h+ ch’ k)= (hh") + TR",h")
and
(hh* + ch”) = (hh") + c(hh")

where a bar over a complex number denotes the complex-conjugate of that
number.
2. For any vectors hand h’, we have

(hE7) = (h",h) .

3. For any nonzero vector h, the real (by the previous condition) number
(h,h) is positive.

4. The topological vector space H is complete, as described below.

To complete this definition, we must explain what the fourth condition
means. It is convenient, however, to postpone this explanation for a moment
in order to make a few observations. For any vector h in H, set ||h|| =
[(h,h)]‘/2 (a real number, by condition 3, and, since we now agree to take the
positive square root, a non-negative one), and call this number the norm of A.
This norm satisfies the properties one might expect from its name. For exam-
ple, for any vectors h and k’, we have |[(hA")] < ||A|| |[|h°|] [proof: for any
real number r, we have 0 < ||h+ rh’||? = (h+ rh",h + rh’) = (hh) +
r(hh’) + r(h”,h) + 2(h°,h") < |[A]]? + 27|(h,h°)| 4+ 72||k"]|% thus this poly-
nomial in r can never become negative, a statement equivalent to the desired
inequality] and ||k + h’|| < ||A]] + ||A°]| [proof: ||k + h"||? = ||Al|*> + (hh")
(B + (IR < (1A + 2(hA )]+ 1”1 < 11B2 + 21Al] 137+ |1A° 1
= (||#l] + [|h"]])!]. Next, for h and h’ any vectors, set d(hh’) = ||h— h’||.
We claim that this d(, ) is a metric on the set H [Proof: (1) By the third
condition, d(h,h") is non-negative and vanishes only when A = &’. (2) d(h,k")
= (h-h"h-h )2 = (K" - hh" - W)Y/2 = dh" k). (3) d(hh’) + dh’,h")
= A=Wl + I =A< Nh=-h") + (B = k) = |lh-h7]| =
d(h,h’’).] Thus we now have a metric on the set H, and hence a topology on
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H. We now claim, finally, that the complex vector space H, with this topol-
ogy, is a topological vector space. [Proof: Since, for d(h,h) < ¢ and d(h",k")
< ¢ we have dh+h" A+ h") < 2¢ addition is continuous. Since, for
le - ¢] € € and d(hh) < ¢, we have d(ch,ch) < € ||h]| + €|¢|, multiplication of
vectors by complex numbers is continuous.] Thus we have a topological vec-
tor space H. (Statements within H referring to a topology hereafter refer to
this one.)

The fourth condition in our definition requires that the topological vector
space H, with the topology just constructed, be complete. One can, in fact,
restate this fourth condition (inserting directly all the various definitions—of a
topological space, of a topological vector space, of a uniform space, of a com-
plete uniform space-—that underlie it) as follows:

4”. Consider any sequence, hj,hy, . . ., of vectors in H with the follow-
ing property: given any positive ¢, there is a number N such that ||k, - &,]|
< ¢ whenever n > N and m > N. Then there is a vector h in H such that
lim||A - A,|| = 0.

A number of facts follow immediately from the definition. The first
condition requires that, for fixed h, the complex number (h,h") is linear in A’
and that, for fixed A", the complex number (A,h") is antilinear (i.e., linear,
except that one must take complex-conjugates of coefficients in linear combi-
nations) in h. Note also that, for ¢ any complex number and A any vector,
ekl = Il [1A] (For llchl> = (ch,ch) = c(chk) = clhk) = |cf* [IWJ%). In
particular, the norm of the zero vector is zero (and only the zero vector has
this property). It is sometimes convenient to make use of the fact that, if one
knows what the norms of the vectors in H are, then one already knows what
the inner products are. This claim is immediate from the formula (hh") =
(L/)[h+ 2|2 - ||k-k")|2 - 4k + h°||> + &|h - ih°||?], which is easily
verified by expanding the right side. We next remark that the operation
“take the inner product” (regarded as a mapping H X H — C) is continuous.
Indeed, for ||k - Aj| < € and ||B" - &"|]| < €, we have [(hh*) - (BL")] =
((hh7) - (BR") + (BA7) - (A7) = (- b,h") - (Bh" - &) < |(h- bA")] +
(B = 5] < (1= AL 1871+ AT 1A - &) < ellA” ]| + ellAll. (Intuitively,
“Uf his close to h and h” is close to A", then (h,h") is close to (h,h").”) Thus,

in particular, if hj,hy, - - is a sequence of vectors that converges (in the
topology on H, of course) to vector h, then for any vector A~ we have
lim(kh",h,) = (h",h). Note, incidentally, that the statement that

hihy, - - - converges to h is just the statement that lim||k - &,)| = 0.
As one might expect (e.g., from the complexity of the definition), exam-
ples of Hilbert spaces play an important role.

u
Ezample. Fix a measure space X, M, M — R* Denote by F the collec-
tion of all complex-valued, measurable functions f on the measure space X

/
(i.e., functions X — C whose real and imaginary parts are both measurable)
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that are square-integrable (i.e., which are such that the function ff is integr-
able on X). Given two such functions, fand f, in F, write f~ f* if fand [~
are equal almost everywhere. Note that “a” is an equivalence relation on
the set F. Denote by H the set of equivalence classes. Given any complex
number ¢ and any elements k and A" of H, with representatives fand f*, let h
+ ch’ be the element of H with representative f + ¢f’ [noting that, i) this
prescription is independent of choice of representatives, ii) f + cf” is measur-
able if both fand f* are, and iii) f + ¢f’ is square-integrable if both fand f*
are, since (f + cf )(f+ ¢f’) g,,([f+ le)3f7) f)]. With this definition of addition
in H and of multiplication of elements of H by complex numbers, we obtain a
complex vector space H. We next introduce an inner product. Given ele-
ments h and b of H, with representatives fand f*, we set (hh") = fXZf dp,
where the integral of a complex-valued function on X is defined as the integral
of its real part plus ¢ times the integral of its imaginary part [noting that, i)
ff’ is integrable on X if fand f* are square-integrable, since |ff'| < Jf+ [/,
and ii) the value of the integral is independent of the choice of representa-
tives, since functions equal almost everywhere have the same integral]. Thus
we have a complex vector space H and, for any two elements h and " of H, a
complex number (k,h°).

THEOREM 55. The H, (, ) of the paragraph above 1s a Hilbert space.

Proof. (1) The behavior of the inner product under linear combinations
is immediate from f T+ dp = f 7 de + 7 f ff du and
f i +¢f)du = f 7 du + cf I du. (2) The behav1or of the inner
product under complex conjugation is immediate from f I dp = f 7 dp.
(3) Let h be an element of H, with representative f. Then (hh) = f Fduis
certainly non-negative, since the function ff is non-negative. Furthermore
this integral vanishes when and only when ff vanishes almost everywhere, that
is, only when f vanishes almost everywhere, that is, only when f = 0, the zero
function, that is, only when the equivalence class & contains the zero function,
that is, only when h = 0. (4) Let f;,f, - - - be a sequence of measurable,
complex-valued, square-integrable functions on X satisfying the following con-
dition: for any positive ¢, there is a number N such that fX Ifo = ful?dn < €
whenever n > N and m > N. We must find a measurable, complex-valued,
square-integrable function f with lim f If - fo|?dp = 0. There is no loss in
generality in assuming f /o = fus1l®d < 1/2% for, were this not satisfied by
our original sequence, 1t is easy to select a subsequence for which this would
be satisfied. Fix positive ¢, and denote by A, the collection of all points z of
X such that, for every number N, |f,(z) = fu(2)| = € for some n > N and m
> N. Since f [fu = fas1l?ds < 1/2%, the measure of the set of all z with
[fa(2) = fagr(2)] > € is less than 1/€%2". Therefore the measure of the set of all
z with |f,(2) - fm(2)] = € for some n > N and m > N is less than or equal to
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8/e22N. Thus u(A,) < 8/e%2N for all N, whence pu(A,) = 0. Next, set A =
Ayp U Ayyg U Ay oo+, so p(A) = 0. But A is precisely the set of points z
for which the sequence fi(2),f5(2), - - - of complex numbers is not a Cauchy
sequence. That is, the sequence fy(z),f5(2), - * - of complex numbers converges

for 2 not in A. Let X — C be the function with f{z) this number to which the
above sequence converges, if z is not in A, and (say), set flz) = 0 for z in A.
This function f is clearly measurable. Next, note that, for m > n,
fX |f, - f..]%du < 2/2" whence, taking the limit m — oo, fx If, = Ndp < 272",
Thus f(as the difference of square-integrable functions f, and f, - f) is square-
integrable, and lim fX If - ful?dp = 0. ]

As far as I am aware, every Hilbert space which arises in applications is
essentially a special case of this example (or, occasionally, a minor
modification of the example). In particular, the case when the measure space
is the measure space of reals (so the Hilbert space is that of measurable,
complex-valued, square-integrable functions on the reals, with two such
identified if they agree almost everywhere) is common. Another common spe-
cial case is the following.

Ezample. Let X be the set of positive integers. Let every subset of X be
measurable, and, for A such a subset, let p(A) be the number of points in A
(if that number is finite; let p(A) = oo if A contains an infinite number of

points). This is a measure space. A complex-valued function X—fv C can be
represented as a sequence, (¢;,¢o, * * * ), of complex numbers (where ¢; is the
value of f at the point “1” of X| etc.). Since every subset of X is measurable,
every such function is measurable. The integral of such a function is, of
course, the sum of its values. Thus the function represented by (¢q,¢9, - - - ) is
square-integrable provided |¢;|? + |eg|? + - - - converges. The Hilbert space H
is therefore the set of all sequences, (¢j,¢q, - - - ), of complex numbers for
which the sum |¢;|> + |¢g)? + - - - converges. (Note that we need not in this
example take equivalence classes: since the only subset of X of measure zero is
the empty subset, two functions equal almost everywhere are equal every-
where.) For linear combinations of such sequences, owe takes the correspond-
ing linear combinations of the corresponding functions: (¢j,ep, - ) +
(e yep”, -2 ) = (e; + ¢ecy”yep + ccy”, - - - ). Finally, for the inner product
of two such sequences, we have ((¢j,¢5, " * * ),(¢;",¢2", == *)) = €16,” + €acp”
+ -+ One could, of course, show directly, that is, without recourse to
theorem 55, that this is a Hilbert space.

Let H be a Hilbert space. A subset Vof H is said to be a subspace of this
Hilbert space if i) Vis a subspace of vector space H (i.e., any linear combina-
tion of vectors in Vis again in V) and ii) Vis a closed subset of topological
space H.
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Ezample. Let H be the Hilbert space of all square-integrable functions on
measure space X, and let A be a measurable subset of X. Denote by V the
collection of all elements of H having representatives that vanish on A. Then
V is a subspace of Hilbert space H. For H the Hilbert space of all square-
integrable functions on the measure space of reals and V the subset consisting
of elements of H having representatives which are C!, V is not a subspace of
Hilbert space H (for, although V is a subspace of the vector space, V is
not closed).

Next, note that any intersection of subspaces of Hilbert space H is a sub-
space (since intersections of vector subspaces yield a vector subspace and
intersections of closed subsets yield a closed subset). Thus, given any subset
K of H, the intersection of all subspaces of H that are supersets of K is a sub-
space of H; clearly, the smallest one which is a superset of K. This subspace
of His called the subspace generated by K. Note also that every subspace of
Hilbert space H is itself a Hilbert space, where addition, scalar multiplication,
and inner products are those inherited from H. (The first three conditions for
a Hilbert space are immediate. The fourth follows from the fact that a closed
subset of a complete uniform space is complete.)

Two vectors, h and h°, in a Hilbert space are said to be orthogonal if
(hh") = 0. Thus, for example, the zero vector is orthogonal to every vector
and only the zero vector is orthogonal to itself. Now let V be a subspace of
Hilbert space H. We denote by V+ the set of all vectors h in H that are
orthogonal to every vector in V. Perhaps the most important single result
about subspaces is the following.

THEOREM 56. Let V be a subspace of Hilbert space H. Then V%is also a sub-
space. Furthermore, V and viare complementary, that is, every vector
tn H can be written in one and only one way as the sum of one vector
from V and one from vi -

Proof. Let h and h* be any vectors in V1 and ¢ any complex number.
Then, for vin V, (h+ ch’,v) = (h,v) + &h’,v) = 0, s0o h + ch” is in VL
Thus V%is a vector subspace of vector space H. Since the inner product is
continuous, any limit A of vectors ky (X in A) in Visatisfies (h,v) = 0 for all v
in V, whence this limit is in VL Thus Viis closed, and so Viis a subspace
of Hilbert space H. We have only to show that V and V!are complementary.
Fix vector & in H, and denote by k the greatest lower bound of numbers
||# -] for v in V. Choose vectors v;,vy, - - in V with lim ||k - v,|| = &
(figure 139). By direct computation, we have ||v, - v,[|> = 2||h - v,||> +
2|k - v,|2 - 4]k - (1/2)(v, + v,,)||>- By choosing m and n sufficiently large,
we can make each of the first two terms as near 2«2 as we wish. Since
(1/2)(v, + v,,) is in V, we have, by definition of «, that ||h ~ (1/2)(v, + v,,)||?
> «x% Thus v;,u, - - - is a Cauchy sequence, whence it must converge to
some vector v. This v must be in V (since Vis closed), and we have ||k - v||
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Figure 139

= lim||h - v,|| = k. We next show that h— vis in V% For any v* in V, set
o = (h- v,v"). Then, for every number ¢, we must have |[h- v-ev’|* =
k2 - ea - €@ + |e|||v’||* > «? by definition of k. But this inequality can hold
for every € only if @ = 0. Thus every vector h in H can be written as the
sum of a vector v (obtained above) in V and a vector, k- v, in VL This
decomposition is unique, for any vector in both V and V! must be orthogonal
to itself, and hence must be the zero vector. []

Ezample. Let H be the Hilbert space of square-integrable functions on
measure space X. Let V be the subspace consisting of elements of H having
representatives that vanish on some measurable set A. Then V1is the sub-
space consisting of elements having representatives that vanish on A°.

There are many applications of theorem 56, of which we give three as
examples. Let V be a subspace of Hilbert space H. Then V& = V. First
note that V C Vﬂ(for every vector in Vis certainly orthogonal to everything
in V4 and hence is in V). To obtain the reverse inclusion, let k be a vector
in VL Then h=h" + h”", with &” in Vand &~ in VL But VC VL so
we must have & in V& Since V%1and VU are complementary and since h
was already in Vu, we must have b = 0 and A" = h. Hence his in V.
Thus V4 C V, whence V&= V.

Fix a vector hin H Then the mapping from H to C which sends A to
(k,h) is certainly continuous and linear. As a second example of theorem 56,

we prove the converse: if H i C is any continuous linear mapping, then there
exists a vector h with ¢(h) = (h,h). Denote by V the subset of H consisting of
all vectors v with ¢(v) = 0. Then V (as the kernel of a linear mapping) is a
subspace of vector space H, while V (as the inverse image of a closed set—
that consisting only of zero—under a continuous mapping) is closed. Hence V.
is a subspace of Hilbert space H. Now consider VL If V1= 0, then V =
(VY = H, whence p is the zero mapping, whence i = 0 will do the job. So
suppose that Vtis not the zero subspace: choose vector k in V with (k) = 1.
Then, for any h° in V4 &° - ¢(h')li isin VL But o(h" - o(h*)h) = p(h*) -
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o(h’)p(h) = 0, so b’ - ©(h*)h is also in V. Hence we must have h* — o(h” )h
= 0, whence &" is a multiple of h. In other words, V1 is one-dimensional.
We now claim that o(h) = (h/||k]|,h) for every h. Indeed, writing h = ah +
v, with v in V, we have p(h) = p(ah +v) = ago(h) + ¢(v) = a and
(/IEILR) = (A1l ok +.9) = a(h/IIALE) + (R/IRILY) = a(b/IIFLE) = o
This result is called the Rész representation theorem.

For the third example, we need a definition. Let H be a Hilbert space. A
subset of H is called an orthonormal basis for H if i) every vector in this sub-
set has unit norm, ii) any two distinct vectors in this subset are orthogonal to
each other, and iii) this subset generates the entire Hilbert space H. (In more
detail, the last condition means that, given any vector A and any positive
number ¢, there is a vector A" that is a finite linear combination of vectors in
our subset and that satisfies ||h - h"|| < €.)

Ezample. Consider the Hilbert space of the example following theorem
55. Consider the sequence hy = (1,0, ), hp = (0,1,0, - "), hy =
(0,0,1,0, - - - ), - - - in H. This is an orthonormal basis.

Our third example of an application of theorem 56 is this: every Hilbert
space possesses an orthonormal basis. To prove this assertion, denote by K
the collection of all subsets K of H such that every vector in K has unit norm
and such that any two distinct vectors in K are orthogonal. Order K by
inclusion. Any totally ordered subset of K has an upper bound (namely, the
element of K obtained by taking the union of all the K in that totally ordered
subset). Thus the conditions of Zorn's lemma are satisfied. Let K be a maxi-
mal element of K (so K is an orthonormal subset of H and there is no bigger
orthonormal subset). Let V denote the subspace of H generated by this maxi-
mal K. Then V1 must be the zero subspace, for, were there a nonzero vector
in V4 there would be a vector with unit norm and we could include this vee-
tor in K, violating maximality. Since Vi=o0, V= vl=H Thus K gen-
erates H, so K is an orthonormal basis.

This last result already makes a highly nontrivial statement \about meas-
ure spaces. Let X be a measure space. Then we can find a collection f, (X in
A) of measurable, square-integrable functions on X such that fX fih duis one
if X\ = X, and zero otherwise, and such that any measurable, square-
integrable function f can be approximated, in the sense of fX If - 1 |2dp, to
within arbitrary accuracy by some finite linear combination of the f,.

¢
Ezercise 325. Let H be a Hilbert space, and let H — R be given by ¢(h) =
[|4]]. Prove that ¢ is continuous.

Ezercise 326. Let K be an orthonormal basis for Hilbert space H. Prove that
K is linearly independent. Show that K is a basis for vector space H (in the
sense defined in chapter 9) if and only if H is finite-dimensional.
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Ezercise 327. Let hy,hy, - - - be an orthonormal basis for Hilbert space H. Let
h be any vector in H. Prove that there exists a sequence ¢;,¢y, - - - of complex
numbers such that the sequence hy,hy, - - -in H, with h, = ¢;b; + coho
+ -+ + c,h,, approaches the vector h. Prove that the choice ¢, = (h,,h) is
the unique one for this to be true.

Ezercise 328. Find a Hilbert space H and a linear mapping H — C that is
not continuous.

Ezercise 329. Find a Hilbert space H and a sequence hy,hy, - - - such that
lim(k,,k) = O for every A but such that this sequence does not approach the
zero vector.

Ezercise 330. Let H be the Hilbert space of square-integrable functions on the

¢ )
measure space of reals. Define H — C by (f) = fR fe**du, where k is any

number. This ¢ is apparently continuous and linear, and apparently not of
the form ¢(h) = (&,h). What is wrong?

Ezercise 331. Define a free Hilbert space on a set. (Hint: Let the set be a
measure space, with every subset measurable, and the measure of a subset the
number of its elements.) Prove that every Hilbert space is free.

Ezercise 332. An isomorphism of Hilbert spaces, H f» G, is a linear mapping
that is one-to-one and onto, and with (p(h),(h")) = (h,h"). Prove that the
free Hilbert spaces on sets K and K’ are isomorphic if and only if these sets
are isomorphic.

Ezercise 333. Let H and G be Hilbert spaces. Consider H @ G, the direct
sum of vector spaces. For (h,g) and (h",¢") in H & G, set ((h,g),(k",97)) =
(hh”) + (g,97) (sum of inner products on the right). Prove that H® G, (,)
is a Hilbert space. (It is called the direct sum of Hilbert spaces H and G.)
Define the tensor product of Hilbert spaces.

Ezercise 334. Prove that every Hilbert space is homogeneous, that is, that,
given vectors h and h° with the same norm, there is an isomorphism that
sends hto h”.

Ezxercise 335. Let H be the Hilbert space of square-integrable functions on
measure space X. Is it true that every subspace of H arises as in the text,
from some measurable subset of X?

Ezercise 336. Let Hbe a complex vector space with an inner product, satisfy-
ing the first three conditions in the definition of a Hilbert space. Then H can
be regarded as a topological vector space. Show how to extend the inner pro-
duct to the completion of H (as a topological vector space) and that the result
is a Hilbert space.
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Bounded Operators

One class of things that live in the environment of a Hilbert space—a class we
shall be studying for a while—is that of operators. In this chapter we define
and discuss the properties of the ‘“‘most well-behaved’ operators, the bounded
ones.

Fix a Hilbert space H. A bounded operator (on H) is a continuous linear
mapping H — H. Denote by B the set of all bounded operators on H.

Ezample. Let X be a measure space, and consider the Hilbert space of
measurable, square-integrable, complex-valued functions on X (a Hilbert space
we hereafter denote by L% X)). Choose any bounded, measurable, complex-
valued function o on X. With each square-integrable f, associate the function
af Note that af is measurable and (since |af |> < M ?|f|%, where M is an
upper bound for |a|) square-integrable and that, if f and f° are equal almost
everywhere, so are af and af’. Thus this function o defines a mapping,
which we denote by A,, from L% X) to L%(X). Since a(f + ¢f’) = af + caf’,
this mapping is linear. Since fX If= ' |2dp < e implies fXIaf~ af |2dp <

M2 (ie., since nearby elements of L%X) are taken, by A,, to nearby
A

elements of L% X)), this mapping A, is continuous. Thus we have L*(X) -
L¥X), a continuous linear mapping. That is, we have a bounded operator
on L¥(X).

It is nowhere near being true that every bounded operator on L*(X) is
one of the A, obtained above. Nonetheless, these particular bounded opera-
tors are simple and (since they refer to bounded, complex, measurable fune-
tions on X) rather ‘“‘explicit.” We shall refer to this particular example a
number of times in what follows.

Our immediate goal is the following: we wish to find whatever structure
we can on this set B of bounded operators on Hilbert space H. It turns out
that the structure available is remarkably rich: one finds algebraic structure,
topological structure, and adjoint structure. Each “type of structure” comes
with its own properties, and, in addition, there are properties which relate
several structures.

Let A and B be bounded operators on Hilbert space H. Then A + B,
defined by the action (A + B)(k) = A(h) + B(h), is also a bounded operator.
[Proof: This A + B is clearly a linear mapping from H to H. To see that it is
continuous, consider H — H X H — H X H — H, where the first mapping
sends h to (h,h), the second (hh") to (A(h),BAh")), and the third (hh°) to
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h + h’. Each of these mappings is continuous, and their composition is A +
B.] Next, for A a bounded operator and ¢ a complex number, let ¢A be the
bounded operator with action (cA)(h) = c¢(A(h)). We can thus add elements
of B and multiply elements of B by complex numbers. Clearly, this set B
thus acquires the structure of a complex vector space. Next, note that, for A
and B bounded operators on H, so is their composition, which we write AB
(for the composition of two linear mappings is linear and the composition of
two continuous mappings is continuous). It is immediate that this composi-
tion is associative (i.e., A(BC) = (AB)C) and linear (i.e., (A + ¢cB)C = AC +
¢BC and A(B + ¢C}) = AB + ¢AC). Thus we have a vector space on which
there is given a linear associative product. That is, B now has the structure
of a (complex) associative algebra. This is the “algebraic structure’” on B.

Ezample. Consider the bounded operators A, on L% X). Then, clearly,
A, + Ag = Ayyp and cA, = A,,. In other words, addition of bounded
operators, and multiplication of bounded operators by numbers, reflects addi-
tion of (bounded, measurable) functions, and multiplication of functions by
numbers. Furthermore, A,A5 = A, that is, composition of bounded opera-
tors reflects multiplication of functions. (Note, however, that A,A; = ApA,,,
while, on the other hand, it is false in general that AB = BA for arbitrary
bounded operators.)

Ezample. Let H be a finite-dimensional Hilbert space, with orthonormal
basis hy,hy, . . . ,h,. Then any n X n matrix, with complex entries a;; (1,5 =
1,2, .. . ,n) defines a bounded operator A, with the following action. For h =
ethy + -+ cyh, in H, A(R) = dihy + - - - + dyh,, where d; = Y7, ajc;.
Then linear combinations of bounded operators correspond to linear combina-
tions of matrices, and composition of operators to multiplication of matrices.

For the next structure on the set B, we have to use the fact that our

bounded operators are continuous. Let H i H be a bounded operator. For
any positive number ¢, denote by N, the neighborhood of the zero vector con-
sisting of vectors h with |[h]] < €. Now, we have A(0) = 0 (by linearity),
whence, by continuity of A, there is a positive ¢ with A[N] C N,. It follows
that A[N;] C Ny, (for, for [[A]| < 1, we have |[eh]| < ¢, whence [|A(eh)]| < 1,
whence ||A(h)|| < 1/e). The least upper bound of real numbers r with A[V}]
C N, is called the norm of A and is written |A|. (This least upper bound
exists since, by the argument above, A[N;] C N, for some r.) We can restate
this definition in the following form: the value of |A| is the smallest real
number r such that ||A(R)|| < r||h|| for every vector h. (Intuitively, |A| is the
“maximum expansion factor you can get on any vector by applying A to it.”)
This definition is the origin of the adjective “bounded” in “bounded opera-
tor.” Thus, with each element A of B, we associate a non-negative real
number |A|.
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Ezample. Consider the bounded operators A, on L*X). Let M be an
upper bound for |a|. Then, since fxlaj]2dy < M? fX |/12du, we clearly must
have |A,] < M. One might imagine therefore that the least upper bound of
|| will be the norm of A,. This is ‘‘almost true.” Consider, however, a func-
tion a which vanishes almost everywhere and which assumes the value 3 on
some nonempty set of measure zero. Then the least upper bound of |o] is 3,
while [4,| = O (since always fX|aﬂ2d[t = 0). We therefore proceed as fol-
lows. Let @ be a measurable, bounded function on X. By the almost every-
where least upper bound of a, we mean the smallest real number M such that
|| < M almost everywhere. We show that [A,| = M, where M is the almost
everywhere least upper bound of a. Clearly, |[4,] < M. To establish the
reverse inequality, fix any positive €. Let fbe the function with flz) = 1 for =
with |a(z)| > M - ¢, and zero otherwise. Then, since ftakes the value one on
a set of nonzero measure, fX |2dp > 0. Furthermore, since |af]> >
(M - ¢)?|f2, we have fX lef?dp > (M- €)? fX |f%du. Thus |A,| > M-e.
Since ¢ is arbitrary, |4, > M. We conclude that |A,| = M, that is, that the
norm of A, is precisely the almost everywhere least upper bound of .

We now wish to obtain a few properties of norms of bounded operators.
First, note that, for A and B bounded operators, |[A + B| < |A| + |B]| (for, for
h any vector, [[(4 + BYRII = [IA(K) + BRI < (LAY + IBWII < 1] (1Al
+ |B| |lA| = (J4] + |B)I|#]]). Furthermore, for A any bounded operator and

¢ any number, [cA| = [¢| [A] (for, for any h, [|[(cA)(R)[| = [c] ||A(R)I]).
Finally, for A and B bounded operators, |AB| < |A| |B| (for, for h any vector,
1AB(R)|| = [[ABR)I < [A] [|BA)I] < |A] B [[4]]). Note that the first two

of these properties are the same as those for the norms of vectors in our Hil-
bert space (and the last one would be too, except that we do not know how to
take the ‘“‘product’” of two vectors). In particular, these three properties of
the norm, together with the previous example, establish the following elemen-
tary facts: i) the almost everywhere least upper bound of & + f is less than or
equal to the almost everywhere least upper bounds of & and f, ii) the almost
everywhere least upper bound of ca equals ¢ times the almost everywhere
least upper bound of a, iii) the almost everywhere least upper bound of af is
less than or equal to the product of the almost everywhere least upper bounds
of o and §.

Next, for bounded operators A and B, write d(A,B) = |A - B|. We claim
that this is a metric on the set B. [Proof: (1) If |[A - Bl = 0, [|[(A - B)(h)]] <
|A - Bl ||h]| = O for every h, whence (A — B)(h) = O for every h, whence A =
B (2) |[A-B| = [B-Al (3) [A-B| + [B-C] < |(A-B) + (B- O =
|A - C|.] Thus we have a metric on the set B, so this set has the structure of
a topological space. Now this set B is both a topological space and a vector
space: we claim that it is in fact a topological vector space [the proof is identi-
cal to that for Hilbert spaces at the beginning of chapter 48]. We in fact wish
to claim even more than this, namely, that the topological vector space B is



288 Chapter Forty-Nine

complete. Let A;,A,, - - - be a Cauchy sequence in B, so, for every positive ¢,
there is a number N such that |A, - A,| < € whenever n > Nand m > N.
We show that this Cauchy sequence converges to some bounded operator.
For each h in H, ||A,(h) - A, (h)l] < |A,- A, ||}]], whence the sequence
A(h),Ag(R), - - - of vectors in H is a Cauchy sequence in H. Since H is com-
plete, this sequence conj;rerges to some vector in H, which we write A(h), thus

defining a mapping H — H. This mapping A is clearly linear. To see that A
is continuous, note that ||A(h) — A(h")|| = ||A(k) - A (k) + Au(h) - A(R") +
Ah) = AR < (AR = A + [A] k- B[] + [[AL(h") - AK)]|. We
can make the first and third terms on the right as small as we wish by choos-
ing » sufficiently large, and the second term as small as we wish by choosing
||k - #7]| sufficiently small (noting that |A4,| is bounded as n varies). Thus
this mapping A is in fact a bounded operator. Finally, we must show that A
is the limit of A;,Ay, ..., that is, that lim|JA - A,] = 0. Given positive ¢,
choose N so |A,- A,| < efor n > Nand m > N. Then [|(A, - A)(B)|| =
lim |4, - An)(R)| < lim [A, - A,] [[H] < ek for n > N. Thus |4, - A| <
m

¢ for n > N. That is, lim |A, - A| = 0. Thus the topological vector space B
is complete. We note in addition that the operation of composition (regarded
as a mapping B X B — B) is continuous, for, for |[A - A°| < € and |B - B’|
< ¢ |AB-A'B| = |AB - A'B+ A'B- A'B"| < |[A-A"||B +
[A°]|B-B’| < €|B + €]A"].

Finally, we remark that |A| also has the following alternative interpreta-
tion: |A| is precisely the smallest number r such that |[(A(k),4")| < #|4|] [|R"]]
for any vectors h and h°. Proof: Let ry be this smallest number. Since
I(ACR),R ) < NA(R)IT A" < AL 1Al []A7]l, we have rg < |A]. To obtain the
reverse inequality, let € be any positive real. Choose vector k with |[A]| > 0
and with [[AR)] > (1A4] - Ol[Al. Then (IA|- R|IAIE < (ARLA®R) <
rollAl] [JA(B)|] < rolA| |[A]|?>, whence 7o > (|A| - €)?/|A|. Since € is arbitrary,
rg > |A|l. Hence ry = |A|.

To summarize, B is so far an associative algebra with norm, such that
the three algebraic operations (addition, scalar multiplication, and composi-
tion) are continuous in the topology of this norm and such that B, regarded
as a topological vector space, is complete.

We now come to the third, and final, type of structure on B. The intro-
duction of this structure begins with the following result.

THEOREM 57. Let A be a bounded operator on Hilbert space H. Then there is

one and only one bounded operator A* such that (A(h),h") = (h,A*(h"))
for all vectors h and h”.
Proof. Fix vector h’, and, for any vector h, set (k) = (h",A(h)), so H

v
— C. This mapping ¢ is linear (since (b + ch) = (h",A(h=ch)) =
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(h",A(h) + cA(R)) = (h",A(R)) + c(h”,A(h)) = ©(h) + cp(h)) and continuous
(since |¢(k)] = |(k",A(R))] < |A] [|R"]| ||A]]). Hence there exists a vector k in
H such that ¢(h) = (k,h) for every A (and this k is unique, for, were there two
such, their difference would be orthogonal to every vector). Let A* be the
mapping from H to H with A*h’) = k Thus we have (h",A(k) =
(A*(h*),h) for every h and h’. All that remains is to show that A* is a
bounded operator (since this last equation is the complex-conjugate of the
equation in the theorem). Since (A*(h’ 4 ch’),h) = (k" + ch’,A(h)) =
(h",A(R) + Tk",A(h) = (A*(h"),h) + TAL")h) = (A*(h") + cA'(R"),h)
for every h, h°, and h’, A* is certainly linear. To see that A* is continuous,
first note that |[JA'R')|? = (AXR),A%R) = (AA*(h')h) <
|A[ [JA%A")I[ [|A"]|. Hence (replacing h" by h" —4"), [|[A%(r") - A% <
|A] ||[k" = |- That is (since A* takes nearby h* and A" to nearby vectors),

A'is continuous. Thus A*is a bounded operator, completing the proof. []

For A any bounded operator, the operator A* whose existence is guaranteed
by the above theorem is called the adjoint of A.
Ezample. Consider the bounded operators A, on L% X). It is immediate

from the fact that &((17)]' dp = fXj(&'[')dp that the adjoint of A, is AY =
A Thus the taking of the adjoint represents, for these examples, the taking
of the complex-conjugate of the function a.

What we now wish to do is discover what properties we can of this
operation ‘‘take the adjoint.”” There is only one mode of interaction of
“adjoint” with itself: for any bounded operator A, A** = A. Indeed, apply-
ing theorem 57 twice, (A(h),h") = (h,A¥(h")) = (A"(h"),h) = (h",A*(h)) =
(A*¥(h),h") for any h and h’.

We next consider interaction with the algebraic operations. For A and B
bounded operators, and ¢ any complex number, we have ((4 + ¢B)*(h),h") =
(h(A+ cB)(h")) = (hA(R)+ cBR") = (hA(R") + c(hBR") =
(A*(R),h°) + c(BY(h),h") = ((A*+ EB*)(h),h"), whence (A + cB)* = A*'+
TB*. Thus the operation of taking the adjoint is antilinear under forming
linear combinations of bounded operators. We next consider the behavior
under composition. We have ((AB)*(h),k") = (h(AB)(h")) = (hA(BK’))) =
(A%(h),B(h")) = (B*A*(h),h"), whence (AB)* = B*A* That is, the adjoint of
the composition is the composition of the adjoints, but in the opposite order.
Finally, we consider the relation of adjoints to norms. We claim: for any

bounded operator A, |[A| = |A*. But this is immediate from theorem 57 and
the fact that |A| is the smallest number r such that |(Ak,k")| < r|[h|| ||| for
every hand A’.
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Note that all of these properties of the adjoint could have been guessed
from the example above: they reflect the various properties of ‘take the
complex-conjugate function” applied to complex functions.

This completes our discussion of the structure on the set B of bounded
operators on Hilbert space H. We can summarize this structure by means of
the following definition (which we shall, in fact, never use). A C*algebra con-
sists of three things—i) a complex associative algebra C, ii) a rule that
assigns, to each element A of C, a real number |A|, and iii) a rule that
assigns, to each element A of C, an element A* of C—subject to the following
five conditions:

1. For any nonzero A in C, |A] is positive.

2. For any A and B in C, and any complex number ¢, |[A+ B <
|Al + [Bl, |eA| = |¢| |4], and |AB| < |4] |BI.

3. For any A and B in C, and any complex number ¢, (A + B)* = A" +
B* (cA)* = 7A* and (AB)* = B*A”.

4. For any Ain C, |A*| = |A4] and A** = A

5. The topological vector space C (i.e., the vector space C, with the
topology which comes from | [} is complete.

Thus the set of bounded operators on a Hilbert space has the structure of
a C*algebra.

There are various special classes of bounded operators which are of par-
ticular interest and which one singles out for detailed study. We shall con-
sider three such classes.

A bounded operator A is said to be Hermitian if A = A,

Ezample. Consider the bounded operators A, on L*X). Then, evidently,
A, is Hermitian if and only if @« = @ almost everywhere.

Since (A + B)* = A* + B the sum of two Hermitian operators is Her-
mitian, while, since (¢A)* = €A* cA is Hermitian provided A is and ¢ is real.
Of course, the adjoint of a Hermitian operator is Hermitian. Any limit of a
sequence of Hermitian operators is Hermitian. Note, however, that it is false
in general that, for A and B Hermitian, AB is Hermitian. [The obvious
“proof”’ will not work, for {AB)* = B*A* = BA, and not AB] Note, how-
ever, that, for A and B Hermitian, AB + BA and {AB - BA) are both Hermi-
tian. The following remark makes stronger the analogy between Hermitian
operators and real numbers: every bounded operator can be written (in fact,
uniquely) as the sum of a Hermitian operator and s times another Hermitian
operator. The proof consists of the observation that A = (1/2)(A + A% +
(i/2)(-iA + iA¥) and that each bounded operator in parentheses on the right
is Hermitian.

A bounded operator P is said to be a projection operator if P is Hermi-
tian and if, in addition, P satisfies P = PP. (Purists like to write these two
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conditions as one: P = P*P.)

Ezample. Consider the bounded operators A, on L% X). Then, evidently,
A, is a projection operator if and only if « is real almost everywhere and o =
o? almost everywhere, That is, A, is a projection operator if and only if the
function a takes one of the two values zero or one almost everywhere.

There is a sense in which one understands completely the structure of
projection operators. Let H be a Hilbert space, and V any subspace of H.
Then any vector h in H can be written uniquely in the form kb = v + A, with
vin Vand & in VL Write Py for the mapping from H to H that sends b in H
to Py(h) = v. We now have

THEOREM 58. Let H be a Hilbert space. Then every mapping H ireH, with V
a subspace of H, is a projection operator. Furthermore, every projection
operator P is a Py for some subspace V.

Proof. 1t is obvious that, for V a subspace of H, Py is linear. Further-
more, Py is continuous, for, for any A = v+ hin H, with vin Vand 4 in vi
AP = [lv + &7 = (1ol + (k) + (&) + [IA® = [|o]” + [|&I° > [|o|* =
[IP/R)®> Thus Py is a bounded operator. To see that Py is Hermitian, con-
sider h=1v+ hand B =v" + k", with vand v’ in Vand hand 4" in VL
Then (Py(h),h") = (v,v" + £") = (v,v") + (v,h") = (v,v"), while (h,Py{(h"))
= (v+ hv") = (v,v"). Thus Py is Hermitian. Finally, note that, for h = v
+ b, with vin Vand & in VL Pyh) = v, whence Py Py(h) = v = Py(h).
Thus PyPy = Py. Hence Py is indeed a projection operator. To prove the
converse, let P be any projection operator. Let V be the subspace of H con-
sisting of all vectors of the form P(h) with kin H. Then, for hin Vi we have
(k,P(k)) = O for every h, whence (P(h),h) = O for every h, whence P(h) = 0.
Furthermore, for v in V (say, v = P(h) for some &), P(v) = P(P(h)) = P(h) =
v. Now let k be any vector, and write h = v + k with vin Vand & in vi
Then P(h) = P(v + h) = P(v) + P(k) = v. Thatis, P = Py. ]

That is, projection operators are a fancy way of talking about subspaces.

We now obtain a few properties of projection operators. First, note that,
if Pis a projection operator, then so is I— P, where Iis the identity bounded
operator on H. Indeed, I - Pis certainly Hermitian, while (I - P}~ P) = I -
2P+ PP=1-2P+ P=1- P. Infact, I - Py = Py, Furthermore, PyPy,
= PyPy = Py when and only when V C W. Thus the ordering of subspaces
by inclusion is reflected in the corresponding projection operators. Next, note
that PPy = PPy = 0 when and only when V C W1 (or, what is the same
thing, W C V4). In general, the sum of two projection operators is not
another (for, although this sum is Hermitian, we will not have
(P+ P')(P+ P’) = (P+ P’)). However, this sum is a projection operator
if PP = P°P = 0. Numerical multiples of projection operators are not in
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general projection operators, while limits are.

It is particularly easy to find the norm of a projection operator P. First,
note that necessarily |[P| < 1. If P is the zero operator (that’s a projection
operator), then |P| = 0. Otherwise, there is a nonzero vector h with P(h) = h
(h = P(any vector), if nonzero, will do), whence ||P(h)|| = ||A]|. Thus, for a
nonzero projection operator P, we must have |P| = 1.

A bounded operator U is said to be unitary if U*U = UU*= I

Ezample. Consider the bounded operators A, on L*X). Then, evidently,
A, is unitary if and only if |¢|?> = 1 almost everywhere.

Thus the unitary operators are those whose adjoints are their inverses.
To see what this definition means, consider any two vectors, h and h°. Then
(hh*) = (Kh),h") = (U*U(h),h") = (U(h),U(h")). Thus the unitary operators
are the “inner product-preserving linear mappings from H to H.” In other
words, the unitary operators are precisely the isomorphisms from the Hilbert
space H to itself.

The sum of two unitary operators is not in general unitary. For U uni-
tary, cU is unitary provided |¢| = 1. The composition of two unitary opera-
tors is, however, unitary, for, for U and U’ unitary, (UU')(UU’)* =
UU' U *U* = UIU* = UU* = I, and, similarly, (UU"){UU’) = I The
adjoint of a unitary operator is unitary. For any unitary operator U, we have

|Ul = 1, for, for any h, [|UK)||* = (ULK),ULk)) = (U*U(h),h) = (h,h) = |[A||*.

Ezercise 337. Prove that, if P is a projection operator, and U a unitary

operator, then UPU* is a projection operator. Show that the only operator
which is both a projection and unitary is the identity operator.

Ezercise 338. Find a unitary operator U with (U{k),h) = O for all A.
Ezercise 339. Let X be a measure space, and consider a one-to-one, onto

K
mapping X — X with k[A] measurable if and only if A is, and with p(x[A]) =
u(A). Consider the mapping from L*(X) to L*X) that sends fto fo k. Show
that this is a unitary operator.

Ezercise 340. When is the composition of projection operators a projection?
Ezercise 341. When does |[A + B| = |A| + |B)? When does |AB| = |A] |B|?

Ezercise 342. Can one find an inner product, (A,B), on the set B such that
|A| = (A,4)/%? Does the method in chapter 48 work?
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The Spectrum of a Bounded Operator

An important tool for unraveling the internal structure of a bounded operator
is the study of what is called its spectrum. In this chapter, we motivate,
define, and discuss the spectrum of a bounded operator. It turns out that the
spectrum tells us more about certain types of operators than eothers, with the
Hermitian operators perhaps the most revealing in this respect.

Let H be a Hilbert space, and A a bounded operator on H. A nonzero
vector k in H for which A(k) = kk, where k is a complex number, is called an
eigenvector of A. The complex number « is called the corresponding eigen-
value. Thus the eigenvectors of A are vectors that ‘‘remain invariant, except
for scaling” under the action of A.

Ezample. Consider the bounded operators A, on L*X). Let x be any
complex number. Let the function a on X be such that a takes the value &

Figure 140

on some measurable set B with u(B) neither zero nor infinite (figure 140).
Then, we claim, & is an eigenvalue of A,. Indeed, let f be the function on X
with flz) = 1 if z is in B, and f{z) = O otherwise. Then fis measurable (since
B is), is square-integrable (since y(B) £ o0), and does not define the zero ele-
ment of L*(X) (since pu(B) 7% 0). Furthermore, of = kf. Thus the element of
L*(X) defined by this fis an eigenvector of A, with eigenvalue «.

It is clear from this example that the eigenvectors and eigenvalues of a
bounded operator tell one something about the operator. The eigenvalues of
a bounded operator, in particular, satisfy the various conditions one might
expect. A few such conditions follow.

Let A be a bounded operator, k an eigenvector of A, and « the
corresponding eigenvalue, so A(k) = k. Taking the norm of each side,
ARl = I« I|K]. But JJA(K)I] < |A[||H]|. Hence || < |A|. The absolute
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value of each eigenvalue of A is less than or equal to the norm of A. Now
suppose, in addition, that A is Hermitian. Then, taking the inner product of
each side of A(k) = kk with k, we obtain (k,A(k)) = (k,kk) = k(k,k). But,
since A is Hermitian, (kA(k)) is real (for (k,A(k)) = (A(k),k) = (k,A(k))), while
(k,k) is real and nonzero. Thus k must be real. Each eigenvalue of a Hermi-
tian operator is real. Next, suppose that A is in fact a projection operator.
Then, applying A to A(k) = &k, we obtain A(A(k)) = A(kk). But A(A(k)) =
A(k) = &k (since, for the first step, A is a projection operator), while A(kk) =
kA(K) = &%k. Thus kk = &2k, whence, since k # 0, K = k% The only possi-
ble eigenvalues of a projection operator are zero and one. Now suppose,
finally, that A is a unitary operator. Taking the inner product of A(k) = kk

with itself, (A(K),A(k)) = (kk,kk). But (A(K),A(K) = (A*A(k),k) = (I (K),k) =

(k,k), while (kkkk) = «(kkk) = &x(kk). Hence, since (k,k)
is nonzero, Kk = 1. Each eigenvalue of a unitary operator has absolute
value one.

In the light of these observations, one might imagine using the set of all
eigenvalues of bounded operator A as a means of studying the structure of A.
The following example illustrates the problem with such a program.

Ezample. Consider the bounded operators A, on L*X). Let, for exam-
ple, X be the measure space of reals, and let o be the function with action
a(z) = 1/(1 + 2%). We claim that the (in fact, Hermitian) operator A, has no
eigenvectors whatever. Suppose there were one, k, with eigenvalue «, and let
[ be a representative of k. Then, since A (k) = kk, we must have af = «f
almost everywhere. But «(z)f{z) = kf{z) can hold at a point z only if either
a(z) = k or flz) = 0. But, for fixed «, @(z) = k can hold for at most two of
z (e.g., from the graph of figure 141). Therefore we must have flz) = 0

KR

Figure 141

almost everywhere. But this means that k = 0, and so k cannot be an eigen-
vector. The following assertion should, from this and the preceding example,
be clear: the complex number « is an eigenvalue of A, if and only if the func-
tion o assumes the value ¥ on a measurable set of measure neither zero nor
infinite.
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Thus the problem is that a bounded operator need not have “enough”
eigenvectors or eigenvalues. What we want is some less strict definition, along
the same general lines, which will open things up a bit—which will give us
more information about the structure of a bounded operator than its eigen-
values do. We now introduce the appropriate notion.

It is convenient to have available the following definition. A bounded
operator A is said to be invertible if there exists a bounded operator (written
A1) such that AA™! = A'A = I The (easily checked to be unique) bounded
operator A7l is called the inverse of A. Thus, for example, (A1) = A,
(AN 1= (A" and (AB)! = B'A"L

Now fix a bounded operator A on Hilbert space H. A complex number &
is said to be a regular value of A if the bounded operator (A — k[I) is inverti-
ble. The set of complex numbers k that are not regular (i.e., the set of & for
which (A - k1) is not invertible) is called the spectrum of A and is written
Y, (A). Thus, for A a bounded operator, Y] (A) is some subset of the set C of
complex numbers.

Ezample. Let A be a bounded operator on Hilbert space H, and let k£ be
an eigenvalue of A, with eigenvector k. Then, we claim, « is in the spectrum
of A. Indeed, (A - k1) could hardly be invertible, for we have (A - kI )(k) =
0, whence, if (A - kI)"! existed, we would have (A - kI ) YA - «l)(k)
(A - kI)Y(0), and therefore k = 0. This would contradict ks being an eigen-
vector.

Thus Y (A) includes, in particular, all of the eigenvalues of A. To

decide whether the spectrum of A can include anything else, we return to our
earlier example.

Ezample. Consider the bounded operator A, on L*R) of the previous
example, where o is the function with action a(z) = 1/(1 + 2°). Let  be any
real number with x > 1. Then & is a regular value of A, and, in fact,
(A, -kI)! = Ap, where g is the function § = (& - x)"! (noting that 8 is
bounded). Similarly, any real k < 0, and any complex &, with nonzero ima-
ginary part, is a regular value. Now consider a real £ in the closed interval
[0,1], for example, £ = 1/2. We claim that « is in the spectrum of A,.
Choose a sequence hy,hy, - - - of vectors, represented by functions as in figure
142, with ||h,]| = 1 for each n. Then, setting k, = (A, - ¥ )(h,), we have,
evidently, lim||4,|| = 0. Now suppose that (A - k1) were invertible. Then
we would have lim||(A, - k1) (&,)|| = lim||A,]| = 1. But ||(A, - I ) (h)||
< |(Ay— &I)Y||A| for all h, which contradicts lim[|h,]] = O and
lim||[(A - kI )"Y(&,)|]] = 1. This contradiction shows that (A4 - «I) is not
invertible, and hence that this x is in Y] (4). Thus the spectrum of this A
consists of all real « in the closed interval [0,1].

By simply noticing what properties were actually used in this example,
one concludes: complex number « is in the spectrum of bounded operator A,
on L*X) if and only if the following property is satisfied: for every positive e,
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=2 HH‘;
- ~_F

Figure 142

there is a measurable subset B of X, with p(B) neither 0 nor oo, and with
|la(z) — k] < € whenever zis in B.

These examples show that the spectrum of a bounded operator A is in
general larger than just the set of eigenvalues and is larger in an “appropriate
way.” One’s picture is that the bounded operator A ‘‘reacts allergically to
elements k of its spectrum,” not necessarily in the most violent way—that
(A - kI') annihilates a nonzero vector k—but perhaps in a more gentle way—
that (A — k1) refuses to be invertible.

Our program for the remainder of this chapter is to say what we can
about the spectrum of a bounded operator, first for the general case and then
for the particular types of operators we have introduced.

The basic fact, which gets one started in the discussion of the spectrum
in the general case, is the following.

THEOREM 59. Let A be a bounded operator on Hilbert space H. Then, for any
complex number k in the spectrum of A, we have |k| < |A|.
Proof. Let || > |A|; we show that (A - kI') is invertible. Consider the

sequence of bounded operators By = -k}(I),B, = -k I+ A/k),By =
-k YI+ A/k + AA/k?), - - Then B,,,-B, = -k'(A"/k"), where A"
means AA - - - A (n times). Hence |B,,; - B,| < |«7!|a", where we have set a

= |Al/|k] < 1. Therefore, for m > =n, we have |B,-B, <
[c7Y|(a® + a™*! + - -+ ) = |k7Ya"/(1 - a). We conclude that B,,B,, - - - is a
Cauchy sequence in the set B of bounded operators. Hence it converges to
some bounded operator B. The proof is completed by showing that this B is
the inverse of (A - kI). First, note that, by direct computation, B,(A - k)
= [ - A"/k" Hence |B,(A-«kl) - I| = |A*/k" < @ That is,
lim(B,(A - kI)) = I Since composition of operators is continuous, (lim
B)(A- kl) =1 that is, BlLA - kI) = I Similarly, (A - kI)B= I Thus B
is indeed the inverse of (A - kI).[]
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Note that the proof consists of noticing, with a little care, that (A - kI ) =
kN I- AJk) = kN I+ A/k + A%/k2 + - - ).

Geometrically, theorem 59 says that Y, (A) lies entirely within the circle
in the complex plane with radius |A|, as illustrated in figure 143.

Figure 143

We can actually use theorem 59 again to obtain another little fact about
the spectrum. Let A be a bounded operator on Hilbert space H, and let k¥ be
a regular value of A. Let £ be a complex number with |[¢" - k| <
1/|(A - kI)Y|. We claim that x* is then also a regular value of A. Consider
the bounded operator I - (A-kI)Y A -k’I). For its norm, we have
[-(A-kD)MA-&T) = [A-kD)HA-&I) - (A-x'T)] =
[(A-&I)Y(k" -K))| <|e” -&||(A-&I)! < 1. By theorem 59, “1” is a
regular value of this operator, that is, (/- (A-kI)Y A-k"1) - I =
«(A-&kIyYA-«k’I) is invertible. Call its inverse B, so
-BA-kI)yY A-k"I) = L That is, -B(A-«kI)"! is the inverse of
(A-k"I). Thatis, (A-«&"I)is invertible, so £ is a regular value of A. We
conclude in particular from the above remark that every complex number
sufficiently close to a regular value of A is itself a regular value of A. That is,
the set of regular values of A (regarded as a subset of C) is open. The spec-
trum of A, as the complement of this set, is therefore closed. Thus, for any
bounded operator A, Y (A) is compact, for it is a closed subset of the com-
pact set consisting of all k with |k] < |A|.

The above is about all one can say easily about the spectrum of a general
bounded operator. (Note that there are some gaping holes. For example, we
do not now know (although it is true) that every bounded operator even has a
number in its spectrum.) We now turn to the study of the spectrum of the
various special classes of operators: Hermitian, projection, and unitary. Our
expectations will be confirmed: in each case, the spectrum satisfies the condi-
tions we were able to show earlier for the eigenvalues. It is convenient first to
dispense with the two easier cases, those of projection and unitary operators.

Let P be a projection operator on Hilbert space H. Then, we claim,
Y (P) can contain no more than the two numbers zero and one. Indeed, let
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be a complex number neither zero nor one. Then (P - kI )(P/k(1 - &) - Ifk)
= P*/k(1 - k) - P/(1 - k) - P/ + I = I, where we used P> = P in the last
step. Similarly, (P/&(1 - k) — P/&)(P - kI) = I Thus (P/k(1 - k) - P/k) is
the inverse of (P - kI). We conclude that this x must be a regular value of
P. Note furthermore that, for P neither the zero nor the identity operator,
Y, (P) actually contains both zero and one, for these are both eigenvalues.

Next, let U be a unitary operator on Hilbert space H. We claim that
every k in ¥ (U) satisfies |k| = 1. First, note that, since |U| = 1, every
such & satisfies |k| < 1. Next, note that U itself is invertible and, in fact,
that U ! = U* Consider the bounded operator I - U "YU - kI), where & is
any number with || < 1. For its norm, |I- U U-«klI) =
[UNU-(U=«kl))| = |Uk| = |U%| = |U" |k] = || < 1. Hence, by
theorem 59, ‘1" is a regular value of this operator, that is, (I- U YU - k1))
- I = -U~"YU-«I) is invertible. Call its inverse B, so -BU YU - kl) =
~U"U-kI)B= I Thus -BU ! is the inverse of (U - kI ). Since (U- &I)
is invertible, k is a regular value of U. Since every k with |k| < 1is a regular
value of U and since every k in the spectrum of U satisfies |&| < 1, every « in
3> (U) must satisfy |&| = 1.

Finally, we come to the (slightly more difficult) Hermitian case. Fix a
Hermitian operator A on Hilbert space H, and fix a complex number k = a +
1, with ¢ and b real and b nonzero. We shall have to use the result of
the following little calculation several times. Let h be any vector in
H  Then |[(A-&kI)R)|?> = ((A-al-bI)h),(A-al-ibI)h) =
(A= al)(h),(A-al)h) + ((A-al)(h)-ibh) + (-ibh(A - al)(h) +
(~ibh,—ibh) = ||(A - aI)(R)||> - ¢b((A — al )(h),k) + tb(h,(A - al )(h)) + b||h||?
= ||(A - al)(R)||> + b*||h||>, where, in the last step, we used the fact that
(A - al') is Hermitian. Comparing the first and last expressions, we have the
desired result:

(A4 - KIY(RI > BIIAP

Now consider the bounded operator (A - kI). We first note that it is
one-to-one, for, if (A — ki)(h) = 0, then, by the inequality above, ||A]|*> = 0,
whence h = 0. Denote by V the subset (A - kI)[H] of H, that is, the subset
consisting of all vectors of the form (A - kI)(h) with h in H. Since (A - k1)
is linear, this V is certainly a vector subspace of vector space H. We next
show that V is closed. Let hy = (A - kI)(h)),hy = (A -&I)(hy), - be a
sequence of vectors in V, with limit A = lim h,. We must show that this A is

also in V. Since hy,hy, - - - converges, it is a Cauchy sequence. But, by our
inequality above, b2”hn - hm”2 < ”(A -kl )(hn - hm)”2 = ”l‘-n - hm”27 so
hi,hy, -+ - is also a Cauchy sequence. Hence hy,hy, - - - converges to some vec-

tor h. Since (A - kI) is continuous, (A - kI )(h) = lim(A -~ kI )(h,) = lim A,
= h. Thus h is indeed in V. Thus Vis closed. We conclude that V, as a
vector subspace of vector space H which is also closed, is a subspace of Hilbert
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space H. The next step is to show that V= H. Let h be any vector in V4 so
(A-&I)(h"),k) = 0 for every h". Then 0 = (h’,(A-«kI)*h) =
(h",(A - RI)(k)) for every h”. In particular, choosing h” = (A - RI)(h), we
obtain (A - €I )(k) = 0. But, since the Hermitian operator A can have no
eigenvectors with nonreal eigenvalue &, we must have A = 0. We have shown
that V4 contains only the zero vector, whence V= vii=H

The statement that V = H is precisely the statement that (A - k1) is
onto. Since B(A - k1) is one-to-one and onto, there exists a (clearly linear)

mapping H — H with B(A - k1) = (A- kI)B= 1. We next want to show
that B is a bounded operator, that is, that this B is continuous. Let h be any
vector in H, and set h = (A - kI )(h"). Then ||B(h)||? = ||B(A - I )(h")||? =
[lh°]|? < b2||(A - kI)(h")||* = b2||h||?, where, in the second to last step, we
once again used our inequality. We conclude that B is continuous (and, in
fact, that |B| < b71).

The previous two paragraphs are the proof that, if £ has nonzero ima-
ginary part, then (A - kI) is invertible. That is, every such & is a regular
value of A. We conclude: the spectrum of a Hermitian operator A consists
only of real numbers.

One can actually say a bit more about the spectrum in the Hermitian
case: for A a Hermitian operator on Hilbert space H, either |A| or -|4]| (or pos-
sibly both) is in ¥} (A). Fix any positive number ¢, and let h be a vector with
[[A]] = 1 and with ||A(h)||> > |A]?> - €% Let g be any vector with ||g|| = 1
and (h,g) = 0. Then, for any complex number \, we have ||A(k + Mg)||*> =
lAMRIZ +  MA(h),A(g) + NA(g),A(R) + INAGGIP > |47 - & +
AA(h),A(g)) + X(A(g),A(h)). But,' by definition of the norm of A,
AR + X)||* < |AP||h + Mgl|? = |A*(1 + |\|?) where, in the second step, we
used |[|[k]| = ||g]| = 1 and (h,g) = 0. Comparing these two inequalities, we
have —e2 4+ X(A(g),A(h)) + MA(h),A(g)) - |A]*|N? < 0. Since this quadratic
expression in A can assume only nonpositive values, we must have
[(A(g),A(R))] < €|A], or, since A is Hermitian, |(g,A%(h))| < €|A], or, since (g,k)
= 0, (¢,(A%-|A’I)(h) < €¢|Al. To summarize, we have shown so far
that, for any g with ||g]] = 1 and (h,g) = 0, |(g,(A% - |A]2I)(h))] < €|A].
Next, note that |(h(A%Z-|API)R) = |(hA%K)-|AH?H =
[(A(R),A(R)) - |A|*||R]|}| < €% Thus, for any vector h* with |[h’|| = 1, we
have |(h*,(A% - |A|2)(h))] < ¢ + |AJe (since this is true for k" either parallel
or orthogonal to k). In particular, choosing h* a multiple of (A% - |A|?I)(k),
we conclude that [|(A% - |[A]2T)(B)|| < €2 + |Ale.

To summarize, we have shown in the paragraph above that, for any posi-
tive €, there is a vector h with ||k]| = 1 and with ||(A - |APT)(h)|| < e
Intuitively, this means that ‘“‘h is within € of being an eigenvector of A% with
eigenvalue |A|°.” This intuitive picture suggests the next step: we want to
show that |A|? is in the spectrum of A% Choose a sequence, hyhy, . . ., of
vectors with ||A,[|> = 1 and with lim||[(A% - |A[2T)(h,)|| = 0. If (A% - |A|*])
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were invertible, we would have, setting h, = (A% - |A|*I )(H,), lim||A,|| = O,
while lim||(A% - |A]2T ) Y(&,)|| = lim||,|| = 1, contradicting ||(A% - |A|*I )(h)||
< |(A% - |API )Y ||A|] for all . Thus (A% - |AJ*I) cannot be invertible. We
conclude that the number |A]? is in the spectrum of the bounded operator A2.

Now suppose that both |A| and —|A| were regular values of A, so both
(A-]AlI) and (A+]A/I) are invertiblee. Then their produet,
(A-|A[T)(A + |A|I) = A? - |A|%I, would have to be invertible. But we have
just shown that A% — |A|?is not invertible. Hence at least one of |A| or —|A|
must be in Y7 (A).

Note, as a consequence of the result above, the spectrum of a Hermitian
operator is not empty. Note also that, for a Hermitian operator, the spectrum
actually determines the norm: |A| is the smallest number such that ¥ (4) C
1AL | Al].

We summarize these conclusions about the spectrum in the Hermitian
case.

THEOREM 60. Let A be a Hermitian operator on Hilbert space H. Then
3 (A) ts a closed subset of the closed interval [-|Al,| Al including at least
one endpoint.

Erercise 343. Let C be any compact subset of the complex plane C. Prove
that there exists a Hilbert space H, and bounded operator A on H, such that

Y ()=

Ezercise 344. Find an example of a Hilbert space H, and bounded operator A
on H, such that the set of eigenvalues of A is not closed.

Ezercise 345. Is it true that a bounded operator with a real spectrum is Her-
mitian? with a spectrum including only zero and one is a projection? with
every element of its spectrum having absolute value one is unitary?

Ezxercise 346, Consider the Hilbert space L%(X) given in chapter 48. Let A be
the operator with action A(cy,¢q, * * ) = (0,159, - * * ). Find the norm of A,
its eigenvalues and eigenvectors, and its spectrum.

Ezercise 347. Say what one can, given the spectra of A and B, about the
spectra of AB, A + B, and cA.

Ezercise 348. Prove that 3 (4) = 1 (4%).

Ezxercise 349. Prove that two eigenvectors of a Hermitian operator, with
different eigenvalues, are orthogonal.

Ezercise 350. Does there exist an example of a bounded operator A such that
|k] < |A] for every « in Y (A)?
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Exercise 351. The argument earlier in this chapter shows that, if A is Hermi-
tian and ||A(R)|| < b||A|| for all h, with b < 0, then A is invertible. Find
an example to show that the requirement that A be Hermitian is actually
necessary.

Exercise 352. Relate the spectrum of an invertible Hermitian operator A to
that of AL,

Ezercise 353. Let A be a bounded operator on Hilbert space H. Prove that,
if A¥ = -A, then the spectrum of A includes only purely imaginary elements;
if A2 = I then the spectrum of A contains no more than 41 and -1.

Ezercise 354. Let A be a Hermitian operator. State and prove: U= I + {A
+ (iA)%/2! + (iA)*/3! + - - - exists and is unitary.
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The Spectral Theorem: Finite-dimensional Case

Our ultimate goal is to state and prove a certain theorem, called the spectral
theorem, which provides ‘‘a complete and unique description of the internal
structure” of any Hermitian operator on any Hilbert space. A special case
occurs when the Hilbert space is finite-dimensional: in this particular case the
spectral theorem is easy to prove, and its statement in fact reduces to a well-
known fact about matrices. Nonetheless, the finite-dimensional case is of
interest, for it serves as both a guide to the proof and a source of motivation
for the (far more difficult) general case. In this chapter, we shall discuss the
spectral theorem on a finite-dimensional Hilbert space.
The finite-dimensional spectral theorem is the following:

THEOREM 61. Let A be a Hermitian operator on a finite-dimensional Hilbert
space H. Then there erists a finite collection, K, < Ko < -+ < K,
of real numbers, together with a collection, Py, ... ,P, of nonzero
projection operators on H, satisfying the following three conditions:
i) =P+ -+P, i) PP;=PP;=0 for i % j, and iii)
A=k P+ -+ «k,P, Furthermore, this k,, ... ,k,, P, ... ,P, 1s

unique.
Proof. Denote by S the (topological) subspace of topological space H
consisting of all vectors h with ||A|]| = 1. Since H is finite-dimensional, S is

compact. Consider S f» R with action p(h) = (h,A(h)), for h is S (noting
that, since A is Hermitian, (k) is necessarily real). Since A is continuous and
since the inner product is continuous, ¢ is continuous. Therefore ¢ achieves
its minimum, «,, that is, there is a vector k with ||k|| = 1 and (k,A(k)) = &,
such that (h,A(h)) > K, for every h with ||h]| = 1. We claim that k is there-
fore an eigenvector of A. Indeed, letting g be any vector with (k,¢g) = 0, and
\ any complex number, (k + Xg)/(1 + A\X(g,¢))'/2 is a vector with unit norm,
whence (1 4 AN(g,9)) 'k + g, A(k + \g)) > k,. Expanding, we have
Ag,A(k) + N(g,A(k) > -A\X(g,A(h)) + £, XX(g,9), an inequality which can
hold for all X only if (g,A(k)) = 0. Thus every vector orthogonal to k is also
orthogonal to A(k), whence A(k) must be a multiple of k, whence k must be an
eigenvector of A. Since (k,A(k)) = k;, the corresponding eigenvalue is ;.
Let V; be the subspace of H consisting of all eigenvectors with eigenvalue «,
and set P; = Py, a nonzero projection operator.
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Now consider the Hilbert space V; L For hin Vll (so (v,h) = 0 for all v
in V), A(R) is also in V, 1 (for, for any vin V|, (v,A(h)) = (A(v),h) = (k,v,h)
= k,(v.h) = 0). Thus A can be regarded as a Hermitian operator on the Hil-
bert space V) L Repeating the argument above, we obtain a real number «,
> Ky, a subspace Vj of V) 4 consisting of eigenvectors of A with eigenvalue Ko,
and a projection operator P = PV2. Repeating the argument again, begin-

ning with Hilbert space (V; + Vy) ! we obtain k3 > Kk, and P; = Py, ete.

Since H is finite-dimensional, this process terminates (when (V; + - - - 4+ V)1
= 0) after a finite number of steps, resulting in k¥; < k9 < -+ < Kk, and
Py, ... ,P

Since: V; C V4 for i 5% j, PiPj= PiP;= 0 for i 5 j. Since V,, ..., V,
together generate the entire Hilbert space H, Py + - -+ + P, = I For any h
in H, P;(h) is in V,, whence A(P; (h)) = k;P;(h). Therefore, for any h in H,
Ahy = AI(h) = AP+ -+ P)h) = AP|(h) + - -+ AP,(h) =

ICIPl(h) 4+ 4+ K:nPn(h) = ('ClPl + 4 K/nPn)(h). That iSY A =
KP4+ 4 kP,
To prove uniqueness, let «;, ... ,k, P, ...,P, be as in the theorem.

Let k be any eigenvector of A, with eigenvalue k. Then, applying P; to A(k)
= kk, we have kP; (k) = P;A(k) = P;(k;Py + - - - + k,P,)k) = k;P; (k).
We cannot have P; (k) = O for all ¢, since /= P, + - - - + P,, so ¥ must be

one of the ;. Then, for j3i, P;(k) = 0, whence P;(k) =
(I-Py-++ =Py -Pyy-----P)k) = I(k) = k. We conclude: for
Ky, - .. ,KqPy, ... ,P, as in the theorem, the k, ... ,k, are precisely the

eigenvalues of A, and each P; is precisely the projection operator onto the
subspace consisting of eigenvectors with eigenvalue ;. It is immediate from
this characterization that &y, . . . ,&,,P,, . . . ,P, is unique. |]

Theorem 61 will be recognized as a fancy way of saying the familiar fact
that every Hermitian matrix can be diagonalized, with the eigenvalues ‘‘along
the diagonal.” In fact, the language of theorem 61 is normally the most con-
venient expression of this idea. For example, h = I(k) = (P, + - - - + P,)(h)
= Py(h) + - - - + P,(h) states that every vector can be written as a sum of
eigenvectors of A. Since P;P; = 0 for ¢ £ j, eigenvectors with distinct eigen-
values are orthogonal, etc.

Thus every Hermitian operator on a finite-dimensional Hilbert space can
be decomposed in terms of simple things—projection operators—by A =

kP, + -+ k,P, Furthermore, given P, ... P, satisfying conditions i)
and ii) of theorem 61, and given real numbers &k, ...,k, A =
kP, + -+ k,P, is, clearly, Hermitian. In this sense, then, one ‘‘under-

stands completely the structure of a Hermitian operator on a finite-
dimensional Hilbert space.”
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The spectral theorem is a generalization of theorem 61 to the infinite-
dimensional case. There are essentially three things involved in the decompo-
sition A = &Py + - - - + k,P,: the k; the P; and the sum. It is of interest
to ask how each of these three things will be generalized in the final spectral
theorem.

The set of k,—the set of eigenvalues of A in the finite-dimensional
case—is generalized to the spectrum, Y7 (A), of A. From our earlier remarks
concerning the spectrum, this seems reasonable. Note also that such a gen-
eralization is consistent with the finite-dimensional case. In fact, we claim: for
A a Hermitian operator on finite-dimensional H, Y (A) consists precisely of
the n numbers &, ... ,k, Proof: For k different from all «;, the bounded
operator Py/(k — k) + -+ P,/(k - k,) is the inverse of (A - kI). (Note,
incidentally, that we therefore have, in the finite-dimensional case, that | 4| is
the maximum of |k|,|&q|, . . . ,|K,].)

The fact that a sum appears in the decomposition of Hermitian A in the
finite-dimensional case is a reflection of the fact that Y (A) is finite in this
case. In the infinite-dimensional case, on the other hand, Y] (A) may be
infinite and could even be, for example, an entire closed interval in the reals.
Thus we must discover some way to ‘‘sum over a continuum of values.” But
we already have such a ‘“way’: the notion of an integral. One might imagine
therefore that Hermitian A will be represented, in the infinite-dimensional
case, by a suitable integral rather than a sum.

The projection operators—the P;—of the finite-dimensional decomposi-
tion will essentially remain as projection operators in the infinite-dimensional
case. But one thing, at least, must change: the relation of the P;to A. In the
finite-dimensional case, P; is the projection operator onto the subspace con-
sisting of eigenvectors with eigenvalue k;. This could hardly be the situation
in the infinite-dimensional case, however, for we need not, in this case, have
any eigenvectors at all. Let us first replace the P; by another set of projection
operators. For each real number «, let P, = P, + : -+ 4+ P, where the sum
extends over all P; with k; < k. Thus, for ¥k < k;, P, = 0; for & in [Kk},Kk5),
P, = Py; for k > k,, P, = I Each P, is a projection operator, an operator
which “projects onto a larger and larger subspace as k increases, where the
subspace jumps a dimension or two as k passes an eigenvalue of A.” One
might expect, in the infinite-dimensional case, for the P, to again ‘‘project
onto larger and larger subspaces as K increases, although the size of the sub-
space may increase more continuously with k¥ as k increases through the spec-
trum of A.”

However, these remarks do not as yet suggest how one is to recover
the projection operators from A without reference to eigenvectors. To
see how this is to be done, first note that, in the finite-dimensional case,
AZ = (ICIP1+"'+'C"P,‘)(KIP1+' "+IC“P,,) = quni'cJPtPJ =
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(k1)?Py + - -~ + (k,)?P,. More generally, for p = ¢y + a;z + - - + a.’x:" a
polynomial in variable z, let p(A) = ¢ + ;A4 + - - - + a’Az, a bounded
operator. Then, evidently, we have p(A) = p(k,)P; + - - - + plk,)P,. In
other words, to evaluate a polynomial of A, one just applies that polynomial
to each k;, multiplies the resulting number by the corresponding P; and sums.
Now suppose that it were somehow possible to apply more exotic functions—
not just polynomials—to A. One might still expect to have, in the finite-
dimensional case, f4) = flk,)P; + - - - + fi£,)P,. What one would like to do
is find a suitable fso that, when applied to A, it produces precisely the P,
above. What function should we choose? For real k, let 6, be the function
with 6,(2) one for 2 < &, and 0,(2) zero otherwise. Then, from the remarks
above, one would expect that 6,(A) will be precisely P,.

Thus, if one can find a reasonable meaning for ‘“f{A),” where f begins as
a real function of a real variable—and if one can do this for sufficiently exotic
instances of f—then one might have a hope of obtaining the projection opera-
tors appropriate for a decomposition of a Hermitian operator in the infinite-
dimensional case. It turns out to be convenient to proceed in two steps: first
for continuous f and then for others. We now begin this program.
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Continuous Functions of a Hermitian Operator

In this chapter, we show that, given a continuous real-valued function of one
real variable, a sensible meaning can be attached to the sentence ‘‘Apply that
function to a Hermitian operator A.”

Fix, once and for all, a Hilbert space H and a Hermitian operator A on H.
Denote by C the collection of all continuous functions ¥ (A) — R, where the
topological space Y (A) on the left is that subspace of the real line. Our first
goal is to decide what is the structure of this set C. Note that, for fand f~
such continuous functions, and r any real number, f + f*, ff’, and rf are all
continuous functions on Y (A). Thus C has the structure of an associative

algebra. Next, for fand f* in C, write d(f,f") = m%)((A) [fz) - f(2)]. This is

clearly a metric on the set C, whence C has the structure of a topological
space. Note that the three algebraic operations in C are all continuous: addi-
tion of functions, multiplication of functions, and multiplication of functions
by real numbers. In particular, the vector space C, with the topology above,
is a topological vector space.

Now let fbe an element of C. What we are trying to do is define a cer-
tain bounded operator, associated with this f, which we may write flA). In
other words, we want to associate, with each element f of C, anl§ element,
flA), of the set B of all bounded operators on the Hilbert space H. In other

¥
words, we want to find a certain mapping C — B. If we regard C and B as

¥
just sets, then there will certainly be many mappings C — B of sets. We will
have no particular criterion to decide which mapping is the ‘‘right one,” and
hence will have no ‘“natural’’ flA) associated with f. The idea, then, is to
¥

impose on this mapping C — B certain ‘“niceness conditions,” with the hope
that these conditions will make the mapping unique. What conditions should
we impose? Note that we can add continuous functions (i.e., elements of C)
and that we can add bounded operators (i.e., elements of B). It would cer-
tainly be convenient if addition were preserved by ¥, that is, if (f+ f")(4) =
flA) + [ (A) for all fand f* in C. Similarly, we can multiply continuous
functions by numbers and multiply bounded operators by numbers; we can
multiply continuous functions by such functions and multiply (compose)
bounded operators, and one might like to ask that these operations be

¥
preserved by C — B. We can express the same idea in terms of the structure

v
of C and B. Each is an associative algebra, and we might require that C —
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B be a homomorphism of associative algebras. Similarly, one might like to

require that, if f and f° are “nearby’ continuous functions, then fA) and

[ (A) be “nearby”” bounded operators. That is, one might like to require that
¥

C — B be a continuous mapping of topological spaces.
One might imagine that some such set of conditions would give us a

¥
unique mapping C — B, that is, would define a unique bounded operator f{A)
for each fin C. That is, one suspects that some result along the following
lines will be true.

THEOREM 62. Let A be a Hermitian operator on Hilbert space H, and denote
by C the set of all continuous, real-valued functions on Y, (A), s0o C is a
topological space and an associative algebra. Then there ts one and only

one mapping C _'/: B satisfying the following three conditions: i) ¢ is a
homomorphism of associative algebras, ii) ¢ is a continuous mapping of
topological spaces, and iii) for f the element of C with action flz) = ay +

a7 (ag and a; real numbers), Y(f) is the bounded operator ayl + a;A.

FA) =2y
In fact, theorem 62 is true: we now proceed with a rather leisurely proof.

By condition iii), for fz) = ¢y + a;2, {A) = ¢y/ + a¢;A. In other words,
for linear polynomials f; f{A) is the obvious bounded operator. Let us next
consider a quadratic polynomial, that is, fin C with action flz) = gy + a2 +
a,2%. Then, letting g have action g(z) = =z, we have f = ay + ;9 + a¢*
Since, by condition 7, ¥ is to be a homomorphism, we must have flA4) = ¢)] +
a,9(A) + ap9(A)%. But g(A) = A, so l[A) = eyl + ¢,A + a,A% Similarly for
polynomials of higher order. We conclude: for fin C with action flz) = ay +
ar + -+ a,2" with g, ... ,a, real numbers, we must; by conditions i)
and iil), have flA) = g/ + ¢jA + - - - + a,A™

This observation does not, however, complete the proof, for there will, in
general, be functions fin C which cannot be expressed as polynomials. It is
also clear that conditions i) and iii) will not tell us what f{A) should be for
such functions, for such an fcannot be written as a linear combination of pro-
ducts of polynomials of the form @, + a;z. In short, we have essentially
exhausted what we can deduce from conditions i) and iii): to decide what f{A)
is to be for a nonpolynomial f, we must use condition ii). The idea is to
‘“approximate f by polynomials, which yield bounded operators as above,
which will serve as approximations to f{A).”

We first make the following observation. Let fin C be a polynomial: f{z)
=g+ ¢z + - + a,2" Then ¥, (flA)) = Y (4)), that is, the spectrum
of the bounded operator flA) = ay/ + - - - + a,A" is precisely the set of real
numbers of the form f{x) with « in Y (A). Indeed, let & be in ¥ (A). Then,
since 2 = k is a root of the polynomial f{z) - fix), we have f(z) - flx) =
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(z - k)p(z) for some polynomial p. Hence fA) - fix)] = (A - kl}p(4). But
now flA) — flr)I could hardly be invertible, for had it an inverse, B, Bp(A)
would, by the equation above, be an inverse of (A ~ k1), violating the assump-
tion that x is in the spectrum of A. Thus f(k) is in the spectrum of the
bounded operator flA). We have shown that Y (f4)) D A} (4)). To
obtain the reverse inclusion, let A be in the spectrum of flA). We have (by
the fundamental theorem of algebra) flz) -\ = r(z - k,;) - - - (z - k,), where r
is a real number and ky, . . . ,k, are the n complex numbers with flx;) = X\.
Therefore lA) ~ N[ = (A - k4) - - - (A - k,I). It cannot be true that each of
(A -k d) -+, (A-k,D is invertible, for that would imply that ffA) — X/ is
invertible, contradicting the assumption that X is in Y7 (f{A4)). Hence at least
one of Ky, . . . ,k, must be in the spectrum of A. Since flk;) = X for each i
this implies that X\ is in f{}] (4)). Thus ¥; (4)) C A} (A)). We conclude
that ¥ (4) = A3 (4)).

Thus the operation “apply a polynomial to A” has the expected action
on the spectrum of A. But from this we can deduce the action on the norm.
Indeed, for A any Hermitian operator, |A] is the maximum of |k|, for & in
Y. (A). Hence |fA)] is the maximum value of |\| for X in Y] (A4)), which
(since Y3 (A4)) = Y (4))) is the maximum value of || for X in A} (4)),
that is, the maximum value of |f{)| for k in ¥ (A4). That is (using the metric
d(,) on C), |{A)| is just d(f,0). Replacing fby f- f°, we conclude: for f and
[” polynomials in C, [flA) - f"(4)| = d(ff’). In other words, ‘‘nearby polyno-
mials” (in terms of the metric of C) yield ‘‘nearby bounded operators” (in
terms of the norm on B).

Now consider a function fin C, not necessarily a polynomial. Suppose

we can find a sequence, f,f3, . . ., of polynomials in C with lim f, = fin C,
that is, with lim d(ff,) = 0. Then, in particular, f;,f, - - 'is a Cauchy
sequence in C. Now, for each of the polynomials f;,f5, ..., we have a
corresponding bounded operator, fi(A),/o(4), - - - Since fi,fp, - - - is a Cauchy

in C and since [f(A) - [ (4)] = d(f,.f,), the sequence fj(A)f(A), - - - of
bounded operators is Cauchy in B. Hence this sequence converges to some
bounded operator, which we may write flA). This f{A) is clearly independent
of the choice of Cauchy sequence (for, if f;",fp", - * * converges to f, we must
have, for every positive €, d(f,,f,”) < € for all sufficiently large n, whence
Ifu(A) = [, (A)] < € for all sufficiently large n, whence fj(A), - * - must con-
verge to the same bounded operator as f;"(4), - - + ).

That every continuous function f on Y, (4) can be approximated as
above by polynomials is a consequence of the following: Let C be any compact
subset of the real line, f any continuous function on C, and € any positive
number. Then there exists a polynomial f* such that |[f{z) - f'(z)] < € for all
zin C. This is the Weierstrass approximation theorem (whose proof we omit,
since the theorem is not unreasonable intuitively, since the proof is technical
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and not very difficult, and since almost every textbook in mathematics gives
a proof).

We now have our mapping C —’1)» B—by construction, the unique one
which is even a candidate for satisfying the three conditions of theorem 62
What remains is to verify that these three conditions are in fact satisfied by
this . For condition i), consider f and f* in C, and let f = lim f, and f* =
lim f,”, with fj,f5, - - -and f;",f3", - - - polynomials. Then lim f.f," = ff,
whence lim f,(A)f,” (A) = flA)f (A), whence (ff')(A) = AA)f (A). Similarly,
(f + ')A = fl4) + f(4), and (r/)(A) = 7A4). Thus ¢ is a homomorphism
of associative algebras. For condition ii), let fand f* be in C, and let f= lim
[, and f* = lim f,°, with f,f,, - - - and f;",f,", - - - polynomials. Then lim
dfufy’) = dfJ°), whence lim |f,(A) - f,"(4)] = IA4) - /'(A)], whence
[lA) - f(A)] = d(f,f"). Thus ¢ is distance-preserving and hence continuous.
Condition iii) is obvious.

This completes the proof of theorem 62.

Note that, for any fin C, f{A) is necessarily Hermitian (since this is cer-
tainly true for f a polynomial and since any limit of Hermitian operators is
Hermitian). One can also define f{A4) for fa continuous, complex-valued func-
tion: set f= f, + if;, with f, and f; real (and necessarily continuous), and then
set 4) = f(A) + if{A). Thus, for example, for A a Hermitian operator, we
know what sin A, 24, and e mean. If the spectrum of A has only non-
negative values, we know what vA means.

This taking of continuous functions of a Hermitian operator is often of
practical interest in itself, that is, without reference to applications to the
spectral theorem.

Ezercise 355. Consider the bounded operators A, on L*X). State and prove:
fA,) = Apa-
Ezercise 356. Let A and A" be Hermitian operators on Hilbert space H, with
AA” = A’ A. Prove that, for any continuous functions f and f*, fA)f"(A")
= ["(A")fA).
FEzercise 357. Consider the function f with action f{z) = z7'. Show that, for

A a Hermitian operator, with zero not in the spectrum of A, f{A) exists and
is AL

Exzercise 358. Let A be a Hermitian operator with positive spectrum. Prove
that A™A® = A™*" and (A™)® = A™" for (not necessarily integral) real m
and n.

Ezercise 359. Let A be a Hermitian operator. Let fbe a continuous function
on the spectrum of A, with f{z) always either zero or one for r in Y] (A).
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Prove that f{A) is a projection operator.

Ezercise 360. Let A be a Hermitian operator. Let f be a continuous,
complex-valued function on Y (A), with |ffz)] = 1 for z in ¥ (4). Prove
tA

that f{A) is unitary. (In particular, e is unitary.)

Ezercise 361. Why cannot one easily introduce continuous functions of arbi-
trary bounded operators?

Ezercise 362. Prove that, if fis a positive continuous function and A is Her-
mitian, then f{A4) is invertible.

Ezercise 363. Prove that any Hermitian operator whose spectrum does not
include zero can be written as the difference of two Hermitian operators with
positive spectrum.

Egzercise 364. Prove that, if fand g are continuous real functions, then flg(A))
= (fo g)(A).
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Other Functions of a Hermitian Operator

The purpose of this chapter is to show that one can give reasonable meaning
to the sentence ‘‘Apply the function f to Hermitian operator A” for certain
real, not necessarily continuous, functions fon Y, (A4). It is convenient to pre-
cede this generalization of theorem 62 by the introduction of certain addi-
tional structure on the set of Hermitian operators on a Hilbert space.

Fix a Hilbert space H, and denote by H the collection of all Hermitian
operators on H. Then, of course, this H has the structure of a real topological
vector space (where the topology on H is that which comes from the norm).
In fact, there is still more structure on this H, structure we now introduce.
For A and B Hermitian operators on H, write A < B if (h,A(h)) < (kB (h))
for every vector h in H (noting that (k,A(h)) and (h,B (h)) are real, since A and
B are Hermitian). We claim that this ‘<’ is a partial ordering on the set H.
It is obvious that A < A for every A in H, and that A < Band B < Cimply
A < C. Thus we have only to show that A < B and B < A (i.e., that
(h,A(R)) = (h,B (h)) for all k) implies A = B. Since (h,A(k)) = (h,B (k) for
all h, we have (b + h"A(h+ k")) = (h+ k", B(h+ h")) for all h and A",
that is, (h,4(h)) + (A", A(R)) + (RA(R")) + (R",A(R")) = (KB (k) + (h",B (k)
+ (BB (h")) + (h",B(h")), whence (h",A(k)) + (hA(R")) = (h",B(h) +
(h,B (k")) for all h and h°. Comparing this last equation with the result of
replacing A" by ih’ therein, we have (h",A(h)) = (h’,B (h)), or, what is the
same thing, (h",(A - B)(h)) = O for all h and h". Since h" is arbitrary,
(A -~ B)(k) = O for all A. That is, A = B. We conclude that “<" is indeed a
partial ordering.

Thus the set H of Hermitian operators on Hilbert space H has the struc-
ture of a partially ordered set. We next wish to see how this partial ordering
interacts with the other structure on H.

Ezample. Consider the bounded operators A, on L%X). For a and 3
real (bounded, measurable) functions on X; A, and A, are Hermitian. We
have A, < Az if and only if o < # almost everywhere.

The interaction with the algebraic operations is quite simple. If A, B,
and C are Hermitian operators, with A < B, then A + C < B + C. [Proof:
(hA(R)) + (h,C (h) < (h,B(h)) + (h,C (k) for all h.] Furthermore, for A <
B and r a real number, r4 < rBif r is positive, and rA > rB if r is negative.
[Proof: (h,(rA)(k)) = r (h,A(R)) and (A,(rB)(k)) = r (h,B (h)).] Note also that,
for A Hermitian, so is A% and A2 > 0 (for, for any h, (h,A%(k)) = (A(h),A(h))
2 0).



312 Chapter Fifty-Three

The interaction of the partial ordering with the spectrum is more subtle.
We claim: for any A in H, A > 0 if and only if Y] (A) contains only non-
negative numbers. First, note that, if Y (A) contains only non-negative
numbers, then B = VA exists, with B2 = A. Hence A > 0. To prove the
converse, let A > 0, and let b be any positive real. We have only to show
that A + b7 is invertible (for this will imply that —b is a regular value of A
and hence that Y (A) contains only non-negative numbers). First, note that,
for any h, [I(4 + bI)RIE = (A(R,AR) + 2b(hA(R) + B(hA) > B|IAII,
where we used A > 0 in the last step. The rest of the proof is identical to

the argument regarding the spectrum of a Hermitian operator at the end of
(A+b1)
chapter 50. The mapping H — H is one-to-one (since, by the above ine-

quality, (A + bI) cannot annihilate a nonzero vector). Set V= (A + bI)[H],
a vector subspace of vector space H. To prove that V is closed, let h; =
(A+ bI')hy), by = (A + bI')(hy), - - - be a sequence in V converging to A.
Then hy,hq, - - - is a Cauchy sequence in H, whence, by the inequality above,
hyhg, - - - is a Cauchy sequence, whence it converges to some vector h.
Therefore b = (A + bI)(h) is in V. That is, V is closed. For h iniVY
(h(A + bI)(h")) = O for every h”, whence ((A + bI)(h),h") = O for every h°,
whence (A + bI)(h) = 0, whence (since (A + /) is one-to-one) A = 0. Thus
V = H, so (A 4 bI) is both one-to-one and onto. Therefore there exists a
linear mapping from H to H which is the inverse of (A + bI), a mapping
which, again by the inequality above, is continuous. Thus (A + bI) is inverti-
ble. This proves the assertion at the beginning of this paragraph. Note that
this relationship between the partial ordering and the spectrum permits us to
define “>" in terms of spectra: A > Bif and only if Y (A4 - B) contailtls only
non-negative numbers. '

Since “>'" has now been tied to the behavior of spectra, we can relate
this partial ordering to norms. For example: if A > B > 0, then |A| > |B].
[Proof: Let & > |A|, so, for some positive ¢, (k — €) > |A|. Then (k — €)] >
A, whence (k — €)] > B. Since -B + kIl — €l > 0, the spectrum of -B + &I
includes only positive numbers, whence ~B + &I is invertible. Since every &
> |A| is a regular value of B, |A] > |B]|]

There is one further respect in which the partial ordering on H is analo-
gous to the partial ordering on the reals. Every nonincreasing sequence of real
numbers, bounded below, converges to some real number. Similarly,

THEOREM 63. Let A, Ay, - - - and B be in H, with A} > Ay > -+ > B.
Then there exists one and only one Hermitian operator A such that lim
A, (k) = A(h) for every h in H.
Proof. Let m > n, so A, ~ A,, > 0. Then there exists a Hermitian
operator C with C2 = A, - A,,. For any vector h, we have ||(A, - A,)(h)|]?
= ICHNIF = llc(CcmP < ICRICHIP = |CHCA).C (k) =
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|C [A(h,C%() = |C [*(h(As~ Am)(h). But |C|* = |C¥ < |A; - B, where,
in the first step, we have used ¥ (C'?) = (Y (C))? and, in the second, C 2
< A; - B. We conclude: [|(4, - A,)()|]* < |4, - B|(h(A, - A,)(h)). Now,
for fixed h, (h,A;(h)),(h,Ag(h)), - - - is a nonincreasing sequence of real
numbers, bounded below (by (k,B (k))), whence it is a Cauchy sequence. By
the inequality just obtained, A,(h),Aq(h), - - - is a Cauchy sequence in H.
Hence it converges to some vector, which we write A(h), thus defining a map-

ping H f» H. This mapping A is clearly unique. What remains, therefore, is
to show that A is a Hermitian operator. This A is certainly linear, for, for h
and h* in H and ¢ a complex number, Ak + ¢h’) = lim A,(h+ ch’) =
lim(A,(k) + cA, (k")) = lim A, (k) + ¢ lim A,(h") = A(h) + cA(h"), where we
have used continuity of addition and scalar multiplication in H. To see that
A is continuous, set n = 1, and take the limit of infinite m in ||(A4, - A,,)(R)||?
< A-Bl(hA- A)K)  to  obtain  [I(4, - ARIE <
|4y - BI(h(A; - A)(h) < |A; - B|(h(A; - B)(h) < |A; - B [||#l[*. Hence,
for every b, ||A(R)|| < (|Ail + |A; - B|)||A||. Finally, to see that A is Hermi-
tian, note that, for any vectors h and k", (hA(L")) = (h, lim A (k")) =
lim(h,A,(k")) = lim(A,(h),h") = (lim A,(h),h") = (A(h),h"), where we have
used continuity of the inner product. |J

One might well wonder why the statement of theorem 63 ends with
‘- -such that lim A,(h) = A(h) for every h in H' rather than simply
“ .- -such that lim A, = A.” The reason is that the theorem would be
made false by such an alteration.

Ezample. Let H be the Hilbert space of all sequences, (¢y,¢q, - - - ), of

complex numbers with |¢;|> + |co|2 4 - - - finite. For n = 1,2, ..., let A,
be the bounded operator on H with action A,(¢p6, ) =
(0, ...,065¢u41, - - ° ). Then each A, is Hermitian (in fact, a projection
operator), with A, > 0. Furthermore, 4; > Ay > -+ - Clearly, for every

vector h, lim A,(h) = 0, so A = 0 is the bounded operator whose existence is
guaranteed by theorem 63. Does lim A, = 0, that is, does lim |A,| = 0? The
answer is no, for, since each A, is a nonzero projection operator, |4,| = 1 for
every n.

As this example shows, theorem 63 states that “A is the limit of
A, Ag, ¢ - - in a sense somewhat different from that which comes from the
(norm) topology on H. This alternative notion of “‘limit of a sequence of Her-
mitian operators’’ will play an important role in what follows.

These preliminaries out of the way, we now return to the question at
hand: the application of (not necessarily continuous) functions to a Hermitian
operator. The idea is to “‘approximate such a function by a nonincreasing
sequence of continuous functions, and then use theorems 62 and 63.” It is
convenient to first settle on the class of functions with which we shall be
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concerned.

Fix a Hermitian operator A on Hilbert space H, and consider ¥ (A). A
real-valued function fon Y (A) is said to be upper semicontinuous if there
exists a sequence, fj,f5, . . ., of continuous, real-valued functions on ) (A4),
with f; > f, > -+ -, and with lim f,(2) = f{z) for every z in ¥, (A).

Ezample. Fix a real number &, and let 6, be the function with §,(z) one
if z < k, and zero otherwise (figure 144). Then 0, is upper semicontinuous.
On the other hand, -0, is not upper semicontinuous.

&

Figure 144

We note that every continuous function fis upper semicontinuous (choos-
ing fy = f5 = - - - = /) and that the sum of upper semicontinuous functions f
and f° is upper semicontinuous (for, if fi,fp, - - - and f"},f’5, - - - are the
corresponding sequences of continuous functioms, (f; + f"y) > (o + f2)
2+, and lim(f, + f",)(2) = (f+ f")(z) for each z in }] (A)). Further-
more, if f and f° are non-negative upper semicontinuous functions, then so is
Jf (for, if fi,fo, - - - and f",f"5, - - - are the corresponding sequences of con-
tinuous functions, then fif" | > fif 5 > - -, and lim(f,f",)(z) = (ff" )(z) for
each z in Y7 (A)). The only problem with the set of upper semicontinuous
functions is that it does not have a very rich algebraic structure, for example,
it does not form a vector space (as the example above shows). We recover a
more satisfactory structure (and thus make theorems easier to state) by brute
force. .
Denote by € the collection of all real-valued functions f on Y (A) that
can be written in the form f= u - u’, with each of u and u” upper semicon-
tinuous and non-negative. This C is the set of functions with which we shall
be concerned: we wish to decide what structure it has. First, note that every
continuous function on Y7 (A) is in C, so we have C C C. Next, note that
the sum of two functions in € is in C, for, iff=u-u" and ¢g=v- v, then
f+g¢={(u+v)- (v + v"). Furthermore, for f= u- u” in C, and r a real
number, rf is in € [proof: write rf = (ru) — (ru”) if r is positive and rf =
(-r¢”) - (~ru) if r is negative]. In short, C has the structure of a real vector
space. We next note that the product of two functions, f= u- 4" and g= v
-v,inCisin € (for fg = (uv + w’v’) - (w0’ + u’v)). Thus this € has the
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structure of an associative algebra. Note, incidentally, that C is a subalgebra
of C. We next wish to define a topology on this associative algebra C. First,
note that, for u a non-negative, upper semicontinuous function on Y, (A), u is
bounded (for, for fi,fp, - - the corresponding sequence of continuous func-
tions, f; > u > 0, while f;, as a continuous function on a compact set, is
bounded). For fand gin C, set d(f,g) = least upper bound of [2) - g(z)|, for
z in Y (A) (noting that, by the previous remark, this least upper bound
exists). This is a metric on C, and hence defines a topology on C. Note that
this topology is ‘‘the same” as that which we introduced on the continuous
functions precedmg theorem 62. More precisely, C is a subspace of topologi-
cal space C. To summarize: C is an associative algebra with a topology.

The purpose of this chapter is to establish the following generalization of
theorem 62:

THEOREM 64. Let A be a Hermitian operator on Hilbert space H. Then there

erists one and only one mapping C i B satisfying the followmg four con-
ditions: 1) Yisa homomorphism of associative algebras, i1) z/) is a continu-
ous mapping of topological spaces, iii) for f the element of C with action
flz) = ay + a;2 (a5 and a, real numbers} (/) is the bounded operator ayl
+ aqA, and ) forfi > fo 2> 2> f>0in C, with each [» continuous
and with lim f,(2) = flz) for every z in Y] (A), we have lim ¢(f,)(h) =
Y(N(h) for every h in H.

It is convenient, as was the case with theorem 62, to mix the motivation with
the proof.

Let us first agree to use the more suggestive notation flA) rather than
12)(]) Now, the first three conditions of the theorem are identical with the
three conditions of theorem 62, and, furthermore, C C C. Hence we must
have ¢ = ¢ on C (i.e., whenever both mappings are defined). In other words,
we ‘“‘already know’ what flA) means for f continuous. The thrust of the
theorem, therefore, is that condition iv) permits one to ‘‘extend the definition
of l[A) (uniquely)” to functions f which need not be continuous, namely, to
functions in C. Suppose first that fand f* are continuous functions, with f >
f. Then f-f° > 0, whence there exists a Hermitian operator B with
(f- /" )(A) = B2, whence, for every vector h, (h(f- f)(A)(h)) = (h,B(h) =
(B (h),B(h)) > 0. That is, fA) > f'(A). In other words, ‘‘larger continuous
functions, when applied to A, give larger Hermitian operators.” Now let f be
upper semicontinuous (we might as well assume f > 0, since this could always
be accomplished by adding a constant). Let f.f,, - - - be a sequence of con-
tinuous functions, with f; > fo > - - - and with lim f,(2) = f(2) for every z in
Y> (A). Then, by the remark above, we have fi(4) > f(A) > -+ - > 0. We
now use theorem 63: there is a unique Hermitian operator C such that lim
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[,(A)(h) = C(h) for every hin H. This Cis our candidate for fA4). That is,
we “know how to apply f,f, - - - to A (since these functions are continuous),
but we do not yet know how to apply f(not necessarily being continuous) to
A.” We use theorem 63 to get a candidate.

The next step is to show that this “‘candidate’” depends only on f itself
and not on the choice of the sequence f,fp, - -+ - to this end, let [y > 5
> -+ - be another sequence of continuous functions, with lim [ (z) = f{z) for
every z in Y, (A), and let C* be the corresponding Hermitian operator. We
must show C = C’. Fix the integer n, and fix positive ¢, and consider the
function f, + €. For each integer m, let K, consist of all points z of }; (A)
for which f*,(2) > f.(2) + ¢. Then each K,, (as a closed subset of compact
set Y, (A)) is compact. Since f'; > f'9 >+, wehave K} D K, D - -
Furthermore, since lim [, (2) < flz) < f(2) + ¢, we have N K, = 0. We
claim that these properties imply that some K,, is empty. [Proof: If not,
choose #; in K, z, in K,, etc. Then 2,75, ..., as a sequence in a compact
set, has an accumulation point z. By construction, this z is in every K,
whence z is in N K, violating N K, = 0.] Thus, for some m, f*, < f, + ¢,
whence f*,(A4) < [,(A) + el Therefore C° < f,(A) + eI, whence, since ¢ is
arbitrary, C* < f,(A), whence, since n is arbitrary, C° < C. Similarly, C <
C',s0 C= C".

What we have shown so far is that, if there is to be any 12) satisfying the
conditions of theorem 64, it must agree with ¢ on the continuous functions
and it must have the action described above for non-negative, upper semicon-
tinuous functions. Next, let f be any function in é, and write f = v - u”,
with v and u” non-negative and upper semicontinuous, Then, since 1Zv is to be
a homomorphism, we must choose, for our candidate for fA), fA4) = «(A) -
u'(A) (noting that u(A) and u’(A) were defined above). We have next to
show that this candidate is independent of the choice of # and u”, that is,
that, if f= v — v with each of v and v" non-negative and upper semicontinu-
ous, then u(A) - v (A) = ®A) - v"(A). Noting that u - v° = v- v" implies
u+ v = u" + v, and hence (v + v")(A) = (u" + v)(A), it suffices to prove
that (v + v )(A) = u(A) + v"(A). But this is immediate, for, for f; > f,
>---and f°; > [ > - - continuous, with lim f,(z) = »(2) and lim f* (z)
= v’(2) for each zin Y] (A), we have (u + v")(A)(h) = lim(f, + [, )(A)(k) =
lim(£,(A)(k) + [ ,(A)(R)) = lim [(A)(R) + lim [* (A)(h) = w(A)(h) + v(A)(h).
Thus fA) = u(A) - u’(A) is independent of the decomposition, f = u - u”,
of f.

To summarize: we have defined a mapping C i B and have shown that
this is the only mapping which is even a candidate for satisfying the four con-
ditions of theorem 64. What remains, therefore, is to show that this 4 does in
fact satisfy conditions i)-iv). For condition i), first, note that, for v and v
non-negative and upper semicontinuous, (z + v)(A) = u(A) + ®A) (as shown
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in the previous paragraph). It is obvious, furthermore, that, for u non-
negative and upper semicontinuous, and r a real number, (ru)(A) = ru(A).
Thus 9 is indeed a linear mapping of real vector spaces. To show that ¢ is a
homomorphism, we must show that, for « and v non-negative and upper sem-
icontinuous, (uv)(4) = u(A)»(A). But this is immediate, for, for f; > f,
>---and f'{ > f'9 2> - the corresponding sequences of continuous func-
tions, (uo)(A)(K) = Lim(ff" NANR) = lim LA (A)(K) = lim [(A)lim
I Ja)(B)) = lim f,(A)(«(A)(h)) = u(A)»(A)(k). Hence ¢ is a homomorphism of
real associative algebras. For condition ii), we must show that, for f upper
semicontinuous and non-negative, with |f] < ¢, |[{A4)| < e. Let § be any posi-
tive number, and choose continuous function g on Y (A) with g > fand |g|
< €. Then |g(A)] < € + 6. But ¢ > f > 0, whence g(4) > fl4) > 0, so
IfA)| < |g(A)] < € + 6. Since 6 is arbitrary, |{A)] < e. Thus ¥ is continu-
ous. Conditions iii) and iv) are obvious.

This completes the proof of theorem 64. Note, incidentally, that each
bounded operator f{A) is Hermitian (although we could not replace “B” by
“H” in theorem 64, for H is not an associative algebra). Furthermore, in the
proof of continuity, we actually proved somewhat more: for f and f in é,
with dff") < € [f4) - [ (4)] < «.

A few remarks about theorems 62 and 64 may better explain what is
going on. First, theorem 62 is rather useful for a variety of applications: one
occasionally wishes to evaluate a continuous function of a Hermitian operator.
Theorem 64, on the other hand, is somewhat less useful, for it is more rare
that one wants a discontinuous function of a Hermitian operator. Further-
more, even when theorem 64 is used, it is normally only the first three proper-
ties which are of interest. What, then, is the role of the fourth condition?
Consider the statement which is theorem 64 with condition iv) omitted.

iR
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Figure 145

There certainly exists a mapping (o] i B satisfying the remaining three condi-
tions (namely, the mapping whose existence is guaranteed by theorem 64
itself). Is this ;b unique? In fact, the answer is no, a point we may best illus-
trate by the following observation. Consider the function 6, in ¢ (figure 145).
The best chance of having a unique bounded operator 6,(A) would be if we
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could suitably approximate 6, by a continuous function. What notion of
“suitably approximate” must we use? We are forced, since our statement
refers only to the topology of C‘, to use that topology. We thus ask: is it true
that, for every positive ¢, there is a continuous f with |0, — /| < €? It is clear
that there is none (e.g., for ¢ = 1/3). What happens in theorem 64, then, is
that one introduces a weaker notion of ‘‘nearby functions’ (pointwise limits of
nonincreasing functions) and a weaker notion of ‘‘nearby operators” (vector-
wise limits on H), and thereby becomes able to sensibly speak of fA) for a
wider class of functions f. This extension—from continuous functions to a
wider class—nonetheless continues to satisfy the conditions (homomorphism,
continuity) that were satisfied in the continuous case.

Ezercise 365. Prove that, for fin C, 7 ({4)) = AT (4)).

Ezercise 366. Consider the following topology on B. To define a neighbor-
hood of A in B, fix n vectors, Ay, . . . ,h,, and positive €. Consider all Bin B
with |[|[(A - B)(h)|| < €, ..., |[(A- B)(h,)]| < €. Prove that this defines a
topology on B and that theorem 63 refers to convergence in this topology.

Ezercise 367. Fix Hermitian operator A. Consider the mapping from C to
the set of all compact subsets of the real line which associates, with fin C,
Y (AA4)). Find a suitable topology on this set of compact subsets for which
this mapping is continuous.

Ezercise 368. Is there some natural ‘‘maximal” set of functions which could
replace C for which theorem 64 would still work?

Ezercise 369. State and prove: ¢ is order-preserving. Could such a condition
satisfactorily replace condition iv) in theorem 64?

Ezercise 370. On the set R of reals, let the open sets be @, R itself, and sets
of the form (~00,a). Prove that this is a topology on the set R. Prove that a
function R — R is upper semicontinuous if and only if it is continuous, where
the R on the left is the real line, and that on the right the topological space
above. Define lower semicontinuous, and prove that a function, if both upper
semicontinuous and lower semicontinuous, is continuous.

Ezercise 371. Find an example of a measurable function not in C.

Ezercise 372. Prove that every function in C that is a limit (in the topology
of C) of a net of continuous functions is continuous.

Ezercise 373. Define the absolute value of Hermitian operator 4, and com-
pare its norm with that of A.
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The Spectral Theorem

We establish, in this chapter, an infinite-dimensional generalization of
theorem-61, a result for which the previous two chapters are the groundwork.
As it turns out, one requires only a single fact from these two chapters,
namely, theorem 64.

Fix a Hilbert space H, and a Hermitian operator A on H. For each real
number k, let 6, be the real-valued function with action 6(z) one if z < &,
and zero otherwise. Then 0, regarded as a function on Y] (A), is in C (and,
in fact, is itself upper semicontinuous). Thus, by theorem 64, there is a Her-
mitian operator P, = 0,(A). For each real k, we obtain a bounded operator
P,: this family of bounded operators is called the spectral family of A.

Ezample. Consider the bounded operators A, on L%*X). Fix a real-
valued, measurable, founded function o on X, so A, is a Hermitian operator
on L*X). Fix a real number k. Then 0,(4,) = Agoq- Now, 0.0a is the

Figure 146

function on X whose value is one for z with a(z) < k, and zero otherwise
(figure 146). Thus the action of P, = 6,(A) is the following: for f a represen-
tative of an element of L%(X), P, sends this fto (6, o a)f, that is, sends this f
to the function whose value is f{z) for z with a(z) < k, and zero otherwise
(figure 147). This is the structure of the spectral family of A,

There are three important properties of the spectral family of Hermitian
operator A. First, note that, for any real x, the function 6, satisfies 0,0, =
0, (for this function takes only the values zero and one). Since “‘apply func-
tions to A" is a homomorphism of associative algebras, we have 8,(A)0,.(A) =
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0.(A), that is, PP, = P,. That is, each P, is a projection operator. Since,
furthermore, for & < &°, we have 6,0,- = 0, for functions, it follows that
PP, = P..P, = P, for the spectral family. Finally, for £ < Y (4) (ie,,
for £ less than each number in the spectrum of A), the function 6§, vanishes
on Y (A), whence §,(4) = 0, that is, P, = 0. Similarly, for £ > ¥, (4), P,
= I These algebraic properties can be expressed more geometrically. Since
each P, is a projection operator, each is the projection onto some subspace,
V,, of the Hilbert space H. For kK < &°, we have P.P,. = P..P, = P, we
claim that this means that V, C V... Indeed, let v be a vector in V,, so
P (v) = v. Then P,-(v) = P,.(P.(v)) = P,-P,(v) = P(v) = v, so v is also
in V... Finally, for k < Y] (A4), P, = 0, so V, is the zero subspace of H,
while, for & > Y (A), V, is the entire Hilbert space H.

Consider now the behavior of V,, the subspace onto which P, projects,
as k increases. For k < Y (A), V, = 0. As « begins to increase through the
spectrum of A, V, becomes larger than the zero subspace. As k increases, the
size of V, increases. Finally, when & has finally passed through the spectrum,
that is, when k£ > Y] (A), V, has increased to become the entire Hilbert
space. ‘‘The size of V, normally increases continuously as k increases.” Sup-
pose that this were not the case, that is, let k be a nonzero vector and &, a
real number with P, (k) = k, and with P, (k) = 0 for & < ky. Then, as we
shall show shortly, kis an eigenvector of A with eigenvalue ;. Thus “sudden
increases in the size of the subspace V, with « indicate eigenvectors for that
point of the spectrum, while gradual increases allow more and more vectors to
be included in V, as k increases without these vectors having to be eigenvec-
tors.” In this way ‘“eigenvector-like structure” of A is described without a
commitment to A's actually having eigenvectors.

It should be noted that all these (general) remarks about the spectral
family are precisely what one knows (explicitly) to be true in the example
above as well as in the finite-dimensional case (chapter 51).



We now come, finally, to the spectral theorem for Hermitian operators.

THEOREM 65. Let A be a Hermitian operator on Hilbert space H. Then, for
every posttive number € there exists a number & with the following
property: for any real numbers k) < Ky <+ -+ < K,y with k; < Y (A)
< Kpyp and |kyq-k] < 6 for § = 1,2,...,n, we have
A~ X1 kAP, - Pl < €.

Proof. Let fbe the function on Y (A) with action flz) = z, so fl4) = A.

By continuity in theorem 64, there exists, given ¢, a § such that, for any func-

tion g in C with |f- g| < &, |AA) - ¢(4)] < €. (In fact, by the remark follow-

ing theorem 64, § = ¢ would do.) Fix this 6, and, for £, . . . ,k,,; as in the
theorem, let ¢ = Y.} lc.{0,c'_+l - ﬂ,c'_) (figure 148). Then |f- g] < 4, whence

MA) - dA) < e But flA) = 4, and gd) = ¥ xf0,, (4) - 6,(4) =
E ICI(PIC'-_'_I - Px‘-)' |j

Figure 148

The thrust of the theorem is that ‘‘A can be approximated, as closely as one
wishes, by an appropriate linear combination of the operators in the spectral
family of A.” Since one ‘“‘understands projection operators completely,” one,
in some sense, ‘‘understands completely the structure of Hermitian operators.”
Note that this theorem, together with the properties of the spectral family,
represents an infinite-dimensional generalization of theorem 61.

The second sentence in the statement of theorem 65 is often reexpressed
as follows: “Then A = | " dP..’ (The notation will be recognized by

those familiar with the Riemann-Stieltjes integral.) One’s immediate reaction
to the symbol [ is “What is the measure space in terms of which all this
would be most neatly formulated?”” The underlying set for this measure space
would be Y (A), the spectrum of A. The problem, however, is that the
“measure of a set'’ must be, not an element of R” but rather a certain

“
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projection operator. Then, it would be claimed, ‘“‘the integral of the real-
valued function with action flk) = k, over this ‘measure space,” is precisely
the original Hermitian operator A.”" In fact, such a program could be carried
out. One has to redo the subject of measure spaces and integrals to allow
“the measure to be valued in more general spaces, for example, the space of
projection operators on a Hilbert space.”” Such an ambitious program is,
perhaps, not worthwhile if its only purpose is to simplify the statement of a
single theorem.

Let f be any continuous function on Y, (4). A check of the proof of
theorem 65 shows that the theorem remains valid if the last equation is
replaced by |fA4)-Y, _/('c,-)(P,ci_'_1 - P,C'.)| < e. In integral form, flA) =
fE(A) fik)dP,. Thus, taking continuous functions of A has the expected effect

on the spectral decomposition: one just applies the function to «.

Let us now use theorem 65 to prove a statement we claimed earlier
without proof: if k is a nonzero vector and kg a real number with P, (k) = &,
and P,(k) = 0 for k < kg, then k is an eigenvector of A with eigenvalue «,.
Fix positive €, and let ky, . . . ,k,y be as in theorem 65. Then, from the con-
clusion of that theorem, ||A(k) - Y] :c,(P,c._H(lc) - P,c‘_(k))“ < ¢||k|]. But, by

assumption, ¥ K'(P"iﬂ(k) - P,ci(k)) = k;k, where 7 is the integer with &, in

(K;k41). Thus ||A(K) - k4| < €||k]|. We conclude: for every positive € there
is a 6 such that, whenever |k — kg| < 6, [|A(k) - kk|]| < €||k]|. Clearly, this is
impossible unless A(k) happens to be the vector kyk.

The spectral theorem represents a rather brute-force way of dealing with
Hermitian operators. If one wants to say something about a Hermitian opera-
tor, one first approximates it by an appropriate linear combination of the
bounded operators in its spectral family, then tries to make one’s statement
about these approximations, and finally, using the fact that one can ‘‘make
the approximation as good as one wants,” tries to extend the validity of one’s
statement to the original Hermitian operator itself. For example, almost
every statement we have made about Hermitian operators can now be proven,
more or less directly, from the spectral theorem (‘‘directly” in the sense that
one does not need clever ideas; usually, but not always, “easily’”). We give
one further example of this viewpoint.

In chapter 23, we proved Schur’s theorem in the finite-dimensional case
and remarked that there are infinite-dimensional generalizations. We now
establish one such. We claim: let By, (A in A) be a collection of bounded
operators on Hilbert space H, such that the only subspaces V of H with B( ;))
in V for every vin Vand X\ in A are V=0 and V = H. Then a Hermitian
operator A with AB, = B, A for every A must be a multiple of the identity
operator. Proof: Since AB, = B, A for each X, this is true if A is replaced by
any polynomial in A, hence if A is replaced by any continuous function of A,
hence if A is replaced by any function (in C) of A. Hence P.B, = B,P, for
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each k. For v in the subspace V, on which P, projects, P, B\(v)) =
By(P.(v)) = B,(v) for each \. Hence V, is an invariant subspace of the B,,
whence each V| is either zero or H. We conclude: there is a number &, such
that P, = I for K > kg and P, = O for K < k. Hence Y, fc,(P,c‘_+l - P".') =
k;l, where { is the integer with kg in (£,K;,;]. By theorem 65, for every posi-
tive €, there is a § such that, whenever |k - kg| < 6, |A - k]| < €. This is
possible, clearly, only if A = kol.

Ezrercise 374. Let A be a Hermitian operator on Hilbert space H. A point &
of ¥ (A) is said to be in the discrete spectrum of A if some neighborhood of x
(in the real line) contains no other points of Y (A). Prove that every point of
the discrete spectrum is an eigenvalue. Is every eigenvalue a point of the
discrete spectrum?

Ezercise 375. Prove, from the spectral theorem, that the spectrum of A is a
closed subset of [-|A|,|A]], including at least one endpoint.

Ezercise 376. Find an infinite-dimensional version of the finite-dimensional
fact that two commuting Hermitian matrices can be simultaneously diagonal-
ized.

Ezercise 377. Prove theorem 62 directly from the spectral theorem.
Ezxercise 378. Prove theorem 61 directly from the spectral theorem.

Ezxercise 379. Prove, from the spectral theorem, that, for continuous f and

Hermitian A4, Y (fA4)) = [} (4)).
Ezercise 380. Let there be a point of Y] (A) in (k,k"]. Prove that P, 3£ P,-.

Ezercise 381. Find a spectral decomposition for a bounded operator that

satisfies AA* = A*A. (Hint: Real and imaginary parts, together with exercise
376.)

Ezercise 382. Prove that two Hermitian operators with the same spectral
family are equal.

Erercise 383. Let A and B be Hermitian operators. Find a necessary and
sufficient condition, in terms of the spectral families, that there exists a con-
tinuous f with B = f(A).
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Operators (Not Necessarily Bounded)

The spectral theorem for Hermitian operators is a pretty and subtle—and
perhaps even rather surprising—result. The sad truth, however, is that this
theorem is not very useful for physical applications. An example from quan-
tum mechanics will illustrate this point.

Consider a (spin-zero) one-dimensional particle (e.g., in some potential).
The set of ‘‘classical configurations’”’ of the particle is represented by the
points of the real line R. The set of ‘‘quantum states’ of the particle, there-
fore, would be represented by L%R). Consider an element of L%*R),
represented by a complex-valued, measurable, square-integrable function 4 on
the measure space of reals. This ¢ is called the wave function of the particle
(the thing which describes the quantum state of the particle). One often
hears the assertion that ‘‘observables on the quantum system are to be
represented by Hermitian operators on its Hilbert space of quantum states.”
Thus the configuration observable should have the following action: the state
represented by wave function 9 is to be sent to the state represented by the
wave function with action zy(z). Unfortunately, there is a problem: it is not
true in general that, for ¢ complex-valued, measurable, and square-integrable,
so is z1p. (Although z¢ is certainly complex-valued and measurable, it is not
in general square-integrable, e.g., for ¥ with action 9(z) = (1 + |2|).) Thus
these instructions do not even define a mapping from the Hilbert space L%(R)
to itself, much less a Hermitian operator. Similarly, for the momentum
observable, one wishes the following action: ¢ is to be sent to the function
with action #(d/dz)y(z) (where we have suppressed Planck’s constant). But
this is not well defined (as a mapping from L% (R) to L%*(R)) either, for
complex-valued, measurable, square-integrable ¢ need not be differentiable
(and, in fact, need not even be continuous). Thus, whatever the configuration
observable and momentum observable are to be, they do not seem to be
bounded operators on L¥(X).

This may seem like a rather technical issue. Why does one allow all
those exotic wave functions (i.e., those not differentiable, those which do not
die off quickly enough at infinity) to be in the Hilbert space? Why not try to
make a Hilbert space out of, say, the C *® complex-valued functions of com-
pact support? The set of such functions certainly forms a complex vector
space. Furthermore, for two such functions, f and f*, ff* is certainly integr-
able, so we could define the inner product by (ff") = fR J* du. This inner
product has the appropriate linearity and positivity properties for a Hilbert
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space. Unfortunately, we do not obtain in this way a Hilbert space, for the
resulting topological vector space is not complete (a Cauchy sequence of C'
functions of compact support need not converge to a C' * function of compact
support). The completeness property of Hilbert spaces has, of course, played
a central role in our treatment of these spaces. One would not like to give up
all the technology that has been developed.

The remarks above suggest that the interesting things, at least for appli-
cations to quantum mechanics, will not be Hermitian (or even bounded)
operators, but will rather be ‘‘things which are somewhat like Hermitian
operators, except that their action is not defined on the entire Hilbert space.”
These physical ideas suggest that ome introduce and study the following
definition.

Let H be a Hilbert space. An operator on H consists of a vector subspace
D, (called the domain of A) of vector space H, together with a linear mapping

A

D4 — H of complex vector spaces.

Ezample. Let A be a bounded operator on Hilbert space H. Then, set-
ting D, = H, this A is also an operator on our Hilbert space.

Ezample. Consider the Hilbert space L*R). Let D, consist of all ele-
ments of L2(R) having, as a representative, a C'® function of compact sup-
port. Then (since linear combinations of such functions are again such), D, is
a vector subspace of vector space L*R). For h an element of D, with
representative f (C *, compact support), let A(h) be the element of H with
representative zf (noting that zf is necessarily complex-valued, measurable,
and square-integrable). Thus we obtain an operator on H.

Ezample. Consider the Hilbert space L*R), and let D4 consist of all ele-
ments of L(R) having, as a representative, a C' ™ function of compact sup-
port. For A an element of D, with representative f (C *°, compact support),
let A(k) be the element of H with representative #d/dz)f(z) (noting that this
function is necessarily complex-valued, measurable (since it is continuous),
and square-integrable). Thus we obtain an operator on H.

Two operators, A, Dy and B, Dp, on H are said to be equal if Dy = Dp
and A = B on this common domain. Note that any modification of the
domain (even a rather minor one, e.g., throwing away a few vectors) gives a
different operator. It is convenient, in fact, to have available the following
definition: operator A, D, is said to be an eztension of operator B, Dgif D,
D Dpg, and A = B whenever both are defined (i.e., on Dg). Thus, for exam-
ple, two operators are equal if and only if each is an extension of the other.

It should be emphasized that two things have happened in the passage
from bounded operators to operators. First, the requirement Dy = H (for the
bounded case) has been dropped. Second, we no longer require that Dy — H
be continuous (where D, is to be given the topology as a subspace of topologi-
cal space H). It is of interest to ask why these two properties were discarded
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simultaneously and not one at a time (leading, e.g., to a definition of a

“quasi-bounded operator’”). It turns out that operators with D, = H, but

which are not continuous, seldom arise in applications, and, even when they

do arise, one gains little from the fact that D, = H. Little is lost by regard-

ing such operators as just plain operators. The other possibility is D, # H,
A

but Dy — H continuous. This possibility warrants further consideration.

A subset of a topological space is said to be dense if its closure is the
entire topological space (so, e.g., the set of rationals is dense in the real line).
In particular, the domain D4 of an operator is dense in H if and only if, for
every h in H and every positive €, there exists a vector A" in D, with
||Ih=h"|] < e. Tt turns out that essentially every operator of interest has
dense domain (and, in fact, we would have included this condition in the
definition of an operator, except that it would make certain assertions
awkward).

Ezample. The domain D, of the last two examples is dense in L%(R).
We must show that, given any complex-valued, measurable, square-integrable
function f and any positive €, there is a complex-valued, C *®°, function f* of
compact support with fR If- f|?dp < e. Sketch of proof: There is a step
function, f;, with fR If - fil’de < e. Given any measurable set K, there is a
measurable set K’, the union of a finite collection of open intervals, with
MK-K") < eand p(K’ - K) < e. Hence there is a step function f,, with
each f;![r], for r £ 0, at most the union of a finite collection of open intervals,
and with fR Ifi - fol*dr < € (figure 149). Now choose C *® function f*, with
compact support, such that fR lfo— 1 Pde < e

R

f-

N8 %

Figure 149

The fact that an operator has dense domain is often used in arguments,
for example, via the following: if D, is dense in H and if h is a vector in H
with (h,h") = O for every h*, in D,, then A = 0. Proof: Fix vector h in H.
Given any positive €, choose h* in Dy with ||h- £°|] < e. Then |(hh)| =
[(h8) - (A k") = I(hk - h) < 11K llk - Il < ellAll. Since this is true for
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every €, (h,h) = 0. Since this is true for every hin H, h = 0.

The “‘other possibility” referred to above can now be dealt with as fol-
lows. We claim: a continuous operator A with dense domain D4 has one and
only one extension to a bounded operator. Proof: Since A is continuous, there
is some number r such that ||A(h")|| < r||h’|| for every A" in D,. Let h be
any vector in H, and let hj,hy, - - - be any sequence of vectors in D,, converg-
ing to h (the existence of such a sequence is guaranteed by the fact that D is
dense). Then hy,hy, - - - is a Cauchy sequence in H, whence, by ||A(R")|| <
rl|h°]l, A(ky), A(hs), - + - is a Cauchy sequence in H. Denote by A(h) the vec-
tor to which this sequence converges (noting that this A(h) is independent of

A

the choice of hy,hy, - - - ), thus defining a mapping H — H. This mapping is
clearly linear, and hence is an operator which is an extension of A, D,.
Finally, ||A(h")|| < #||k’|| for every h* in D, implies ||A(k")|| < r||h’]| for
every h” in H, so A is a bounded operator. Uniqueness is clear from the con-
struction. Thus there is no point in considering continuous operators
with dense domain: one might just as well consider their unique bounded
extensions.

Since it is apparently operators (not necessarily bounded) that play an
important role in applications, the natural next question is, What, of all the
structure that was available on the set of bounded operators, is still available
on the set of operators? The answer is, Very little indeed. First, note that,
for A, D, an operator and ¢ a number, Dg = D, and action B(h) = cA(h) for
h in Dp defines an operator, which we may regard as cA. We next consider
addition of operators A, D, and B, Dg. We presumably wish to have action
(A + B)(h) = A(h) + B(h), so A + B will only ‘“know how to act” on h if
both A and B do. Thus we must set Dy, p = Dy N Dp (noting that this
intersection of vector subspaces is a vector subspace) and define the action of
(A + B) on this domain as above. Note that the domain ‘continually gets
smaller as one adds operators’’ (and, indeed, we could even have Dy, N Dp =
jf although both D, and Dp are dense). In particular, the set of operators
does not have the structure of a vector space (since, e.g., A + (-A) has
domain D, rather than H). A similar problem with domains occurs for com-
position. For A, D, and B, Dg operators, AB has action (AB)(h) = A(B(h)),
but its domain consists of all h in Dpg for which B(h) is in D, (indeed, a vector
subspace). Finally, unbounded operators do not have norms or adjoints (at
least, for the latter, not via theorem 57), for these notions make use of con-
tinuity. In particular, we have no obvious topology on the set of operators on
Hilbert space H.

In short, we seem to be forced, by physical considerations, to consider a
set (that of all operators) on which there is little useful structure and in terms
of which we cannot even begin the program which, for bounded operators, led
to the spectral theorem. One is apparently faced with the situation that what
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one wants physically and what one can do mathematically do not meet on
common ground.

Ezercise 384. Let A, Dy, B, Dp, and C, Dy be operators. Does (A + B) + C
= A+ (B+ O)! A(BC)=(AB)C? A(B+ )= AB+ AC?

Ezercise 385. Prove that every operator has an extension to an operator
defined everywhere on H and that this extension is unique only if the original
operator was defined everywhere.

Ezercise 386. Is “is an extension of’’ a partial ordering on the set of operators
on a Hilbert space?

Ezercise 387. Find an example of an operator A, D4, which is not continu-
ous, but with D, = H.

Ezercise 388. Find explicitly the sum and composition of the two operators
given in the second and third examples of this chapter.

Ezercise 389. Consider the Hilbert space H of sequences (cy,cy, - - - ) of com-
plex numbers. Let D, consist of sequences that are zero after some entry.
For (e¢y,¢9) - .. ,€4,0,0,---) in D, let Ale,...,c,0,---) =
(€4,2¢9,3¢3, . . . ,nc,,0, - - - ). Prove that this is an operator. Is it densely
defined? Suppose, instead, we had defined the action of A by
Alegy « o 5600, - =) =(cy, . - . ,6,,1,0,0, * - - ). Is this an operator?

Ezercise 390. Find an example of two operators, each densely defined, whose
sum is not. Prove that, nonetheless, this sum has an extension that is an
extension of each of the summands.
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Self-Adjoint Operators

It turns out that there is a way to get around the difficulty described in the
previous chapter: there exists a satisfactory mathematical treatment for a
large class of operators, a class which includes many of physical interest. The
key observation that makes such a treatment possible is the following: what
one is actually interested in is not arbitrary (not necessarily bounded) opera-
tors, but rather certain ones which satisfy some condition analogous to Hermi-
ticity in the bounded case. The idea is to choose very carefully this ‘“‘condi-
tion analogous to Hermiticity.”

Let H be a Hilbert space, and let Dy, A be an operator on H, with D,
dense in H. Denote by DA, the collection of all vectors & in H for which there

exists a k" in H such that (h,A(h)) = (h’,h) for every hin D, (i.e., for every h
for which this formula makes sense). In other words: DA* consists of all vec-

tors h in H for which the linear mapping Dy — C which sends & in D, to the
complex number (h,A(k)) is continuous (for continuity of this mapping is com-
pletely equivalent to the existence of a vector A" in H such that (h,A(h)) =
(h",h)). Note next that this DA* is necessarily a vector subspace of H, for, for

hand gin D,, (say, with (hA(h) = (h",5) and (,A(k) = (¢ ,h) for every h

in D4), we have (h + cg,A(h)) = (h* + cg’,h) for every h in D,, whence h +
cg is also in DA‘,

We next show that this vector subspace DA* of His the domain of a cer-
tain operator. First, note that, for Ak in DA"’ so there exists an &" in H with

(h,A(R)) = (h",h) for every h in D,, this A" is unique (for, were there two,

their difference would be orthogonal to every A in D,, whence, since D, is
Al

dense, their difference would be zero). Let DA,——» H be the mapping with the
following action: for A in DA, (so there exists a unique k" in H with (h,A(h))
= (h",h) for every kin D), set A¥(h) = h°. It is immediate that this map-
ping A* is linear.

Thus, starting from an operator Dy, A on H, with D, dense in H, we
obtain an operator DA" A*. This DA,, A% is called the adjoint of D,, A.
Thus: for A in DA. and A in D,, we have (h,A(h)) = (A*(h),h). Note that this

definition agrees with that of the adjoint for the case of a bounded operator.
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Comparison of the discussion above with the proof of theorem 57 shows that
all we have done is to repeat, for the unbounded case, the construction of
the adjoint in the bounded case, taking appropriate care to get the domains
right. In fact, we may summarize the above in a form analogous to that of
theorem 57.

THEOREM 66. Let D4, A be an operator on Hilbert space H, with D, dense in
H. Then there exists one and only one operator DA, , A¥ on H satisfying

the following two conditions: 1) for every h in DA* and h in Dy, (h,A(hk)) =
(A*(h),ﬁ), and 1) DA,, A* is an extension of every operator satisfying

condition i).

One of the key facts about adjoints is this: if A, D, is an extension of

Dp, B (each with dense domain), then DB,, B* is an extension of DA, , A%
[Proof: Let h be in DA,, so, for some h”, (h,A(k)) = (h°,h) for every hin D,.

Then, since A is an extension of B, we certainly have (h,A(k)) = (h",k) for
every h in Dp, and therefore (h,B(h)) = (h’,h) for every h in Dp. Thus his

also in DB* and, furthermore, B*(h) = A¥().] That is, as the domain of an

operator gets larger, the domain of its adjoint gets smaller.
Let Dy, A be an operator, with dense domain, on Hilbert space H. This
operator is said to be self-adjoint if it is equal to its adjoint, that is, if DA, =

Dy, and A = A* on this common domain. Thus, for example, every Hermi-
tian operator is self-adjoint (but, as we shall see shortly, the converse is false).

The concept of a self-adjoint operator is a central one in this subject: it
represents a common ground between the mathematics and the physics of Hil-
bert spaces. In order to justify this assertion, we must deal with two issues.
On the one hand, we must make a case that the standard operators that arise
in physical applications are (or at least can be made to be) self-adjoint. On
the other hand, we must show that mathematical tools are available for deal-
ing with self-adjoint operators. Neither is obvious. One must in each case
pay attention to the apparently irrelevant technical details (i.e., the question
of domains) of the definition of self-adjoint. We now discuss briefly each of
these two issues.

Ezample. Consider the second example of chapter 55 (the operator ‘“‘mul-
tiplication by z on C * functions of compact support’). First, note that, for f
and f any two C® functions of compact support, we have fR flzfdp =
fR (z)f dp. That is, for h in D,, we have (h,A(k)) = (A(h),k) for every h in
D,. We conclude that this h is therefore necessarily in DA* and, furthermore,

A*(h) = A(h). In other words, we have shown that the adjoint of D4, A is an
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extension of DyA. Is this operator, or is it not, self-adjoint? To answer this
question, we must decide whether there are any vectors in DA, which are not
in Dy. In other words, we must decide whether hand A” in H and (h,A(k)) =
(h",h) for all b in D, implies that h itself is in D4. In still other words, we
must decide whether f and f° measurable and square-integrable, and
fR fzfdp = fR f7f dp for all C °f of compact support, implies that f itself is
C*® with compact support. Let, for example, f be the (not C ) function
illustrated in figure 150, and let f° = zf. Then, clearly, both f and f* are
measurable and square-integrable. Furthermore, we have fR flzfhdp =
fR L du for every C® function f of compact support. That is, we have h
and b’ in H, with h not in D, but with (h,A(h)) = (h",k) for every h in D,.
That is, we have a vector A in DA, with h not in Dy. That is, the adjoint of
Dy, A is not only an extension of Dy, A, but has a strictly larger domain: DA*

D Dy, and not equality. That is, this operator Dy, A is not self-adjoint.

R

At

> R

Figure 150

Our ‘‘physically interesting’” operator Dy, A turns out not to be self-
adjoint, for the domain of its adjoint is larger than D,. What has gone
wrong? Recall that increasing the size of the domain of an operator decreases
the size of the domain of its adjoint. Thus, if we are ever going to obtain a
self-adjoint operator out of all this, the best chance would be to increase the
size of D4, thereby decreasing the size of DA,, hoping to ‘‘get the two into

line.” It would be instructive to carry out this ‘‘enlargement of the size of the
domain of A" in small steps, for example, by first dropping the C' ® condition
and then compactness of the support. We shall, however, jump directly to
the “right answer.”

Ezample. Let H be the Hilbert space LR). Let Dy consist of all vectors
in H having, as representative, a function f with zf square-integrable. We
note that Dp is a vector subspace of H (for, for zf and zf” square-integrable,
sois o{f+ ') = zf + zf’). Since Dp includes, in particular, the C * func-
tions of compact support, this Dp is, by chapter 52, dense in H. For A an ele-
ment of Dp, with representative f, let B(h) be the vector in H with representa-
tive zf (noting that, by definition of the domain Dp, this zf is indeed in H).
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Clearly, Dp —li H is linear. Thus we have an operator (called the
configuration operator on L*(R)). Is this operator self-adjoint? First, note
that, for f and f measurable and square-integrable, with both zf and zf
square-integrable, we have fR _T(x_[)dp = fR (E’)_[ dp. Thus, for both h and & in
Dp, we have (h,B(h)) = (B(h),h). That is, every vector h in Dy is also in DB"’

and, for such an h, B¥(h) = B(h). The adjoint of Dp, B is an extension of Dp,
B. Are they equal? Let fand f° be measurable and square-integrable, and let
fR flzfdp = fR f71 dp for every frepresenting an element of Dg. (That is, let
[ represent an element of DB,, .) Then, clearly, we must have f* = zf almost

everywhere. Hence, since f* is square-integrable, zf must be square-integrable.
That is, this f must represent an element of Dg. We have shown, in other
words, that every element of DB* is also in Dp. Since the adjoint of Dp, B is

an extension of this operator, we conclude that Dp, B is identical to its
adjoint. The configuration operator is self-adjoint.

Note what has happened here. The configuration operator B of the
example above is an extension of the operator A of the earlier example. By
taking such an extension, we obtain a self-adjoint operator. What domain did
the trick? One had to choose ‘“‘the largest reasonable domain on which multi-
plication by "z could be expected to act,” that is, the most ‘‘natural-looking
domain for ‘multiplication by .’ It is easy to understand why such should
be the proper choice. Note that the only self-adjoint extension of the
configuration operator is this operator itself, and the only self-adjoint operator
of which the configuration operator is an extension is again the configuration
operator. [Proof: The larger the domain of an operator, the smaller the
domain of its adjoint.] Self-adjointness ‘knows how big the domain must
be,” and this proper domain is normally the “most natural one.”

The pattern of this example is typical. We give a second example.

Example. Consider the third example of chapter 55 (the operator ‘¢
times the derivative on C' ® functions of compact support’). First, note that,
for fand fany two C * functions of compact support, we have fR flidf/ dz)du
= fR (¢df/dz){ dp (integrating by parts and noting that, by compact supports,
the surface terms vanish). Thus the adjoint of D4, A is again an extension of
D,, A. To test for self-adjointness, let f be the function with action flz) = =
for z in [0,1), {z) = 2 - z for z in [1,2], and flz) = O otherwise. Let f* be the
function with f*(z) = i for z in (0,1), f*(2) = —i for z in (1,2), and f'(z) = O
otherwise. (That is, both f and f° are measurable and square-integrable,
though neither is C ®—or even differentiable. The function f* is “doing its
best to be 1 times the derivative of f.””) We now claim: for any C ®fof com-
pact support, fR fidf/dz)dp = [ f'Ldp (a claim which is easily verified by
splitting each integral into four, over (-00,0), (0,1), (1,2), and (2,00), respec-
tively). Thus this fis a representative of an element & of DA «, although A is
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not in Dy (since fis certainly not C' ®). We conclude that this operator is not
self-adjoint.

As usual, we want to correct our operator by enlargement of its domain.
It is convenient to first introduce a few facts about functions. A complex-
valued function fon R is said to be absolutely continuous if it is an indefinite
integral, that is, if there is a measurable function g, mtegrable on closed inter-
vals, such that fhaq the following action: flz) = ¢ + f g du for £ > 0, and
fl2) = ¢ - fz g dp for x < 0, for some constant c. Note that this g, when
one exists, is—unique almost everywhere: we write ¢ = Df. Thus, for example,
every absolutely continuous function is continuous; for f C!, Df is the deriva-
tive of f. Note, however, that the function f of the example above is also
absolutely continuous and, in fact, ¢{Df is the function f* of that example.

Ezample. Let H be the Hilbert space L*(R). Denote by Dy the collection
of all elements of H having an absolutely continuous representative f with Df
square-integrable. Then (since, for f and f° absolutely continuous, so is f +
¢f’, and D(f + ¢f") = Df + ¢Df") Dpis a vector subspace of H. For kin Dp
(with absolutely continuous representative f ), let B(h) be the element of H
with representative iDf (noting that, by definition of Dp, iDf is square-

B

integrable). Thus Dp — H is linear. This operator Dg, B is called the
momentum operator on L*(R). We claim that this momentum operator is
self-adjoint. Suppose first that f and f are representatives of elements of Dp.
Then f fiDpdp - f (DAL dp = t'fR D(fdp. For -any positive r, we have
f Dﬂ)dp = finfn WO). Since the limit, as r approaches infinity, of the
left side exists, f{r)r) must approach a constant, whichr, by square-
integrability of fand f must be zero. Thus fR D(ff)dp = lim f_' D(ffydu = o.
We conclude that every element h of Dp is also in DB,, and then B*(h) =

B(k). That is, the adjoint of Dp, B is an extension of Dg, B. To prove that
Dp, B is self-adjoint, we must show that every vector in D o is also in Dp.

Thus let f and f° be measurable and square-integrable, wnth f fiDfdp =

f L dp for every f a representative of Dp. We must show that f is abso-
lutely continuous, with f° = iDf. Given positive r and ¢, let f be the C >
function illustrated in figure 151. Then, since f 7(£Dﬂdp f fLdp for
every €, we have, taking the limit as e approaches zero, t(/(r) flo) =
f f dp. Since this is true for every r, fis indeed absolutely continuous, with
f° = iDf. The momentum operator is self-adjoint.

These examples at least make the point that one can attack directly the
problem of constructing a self-adjoint operator, given the physical idea of
what the operator ought, roughly, to be. We emphasize, however, that this
issue must apparently be faced on a case-by-case basis: one must find a suit-
able domain and actually check self-adjointness. For example, the domains
above will certainly not do for an operator involving second derivatives. Note
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also that the sum of two self-adjoint operators is not in general self-adjoint—
for example, the sum of the configuration and momentum operators above is
not self-adjoint. It is mysterious why this sort of activity should have any
relevance to physical problems.

This completes the first half of our program: the demonstration that the
self-adjoint operators include many of physical interest. For the second half,
we must argue that self-adjoint operators can be dealt with, in some reason-
able way, mathematically. The basic ‘‘niceness feature” of self-adjoint
operators—the feature which gets one started—is the following:

THEOREM 67. Let Dy, A be a self-adjoint operator on Hilbert space H. Then
A+il
the linear mapping Dy — H s one-to-one and onto.
Proof. For any h in D4, we have ||(A + {I)(h)||*> = (A(h),A(k)) +
(A(R) By + (b, A(R) + (ih,ih) = (A(R)A(R) + (A(R)B) — {hA(R) + (hh) =
(A(h),A(h)) + (h,h) > ||h]|®>. We shall several times use this inequality.

By the inequality above, for al}Iy hin D, with (A + i )(h) = 0, we have
h = 0. Hence the mapping D4 A—+>I H is one-to-one. Denote by V the vector
subspace (A + i[)[Dy] of H. We shall show that this V is closed. Let
hy,hy, - - - be a sequence of vectors in V (so there are vectors hy,hy, - -+ in Dy
with by = (A + I )(ky), by = (A + iI)(hy), etc.) converging to some vector h.
We must show that h is also in V. Note first that hjh,, - - -is a Cauchy
sequence. But, by our inequality, ||k, - h,|I> = |I(A + {T)(k, - kp)|]* >
||k, - Bl|> and so kb, - - - is also a Cauchy sequence. Hence this sequence
converges to some vector h. We have, for any h" in D,, (hA(R")) =
lim(k,,A(k")) = lim(A(k,),h") = lim(h, - th,,h") = (k- sh,h"), where we
have used self-adjointness in the second step and A(k,) = h, - ik, in the
third. But this equation is precisely the statement that h is in DA,, with

A*(h) = h - ih. Since Dy, A is self-adjoint, h is also in D,, with A(h) = h -

th. That is, (A + ¢I')(k) = h. We have just shown that A is also in V. Thus
V is indeed closed. We next wish to show that V = H (i.e., that (A + ¢I) is
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onto). It suffices, since Vis closed, to prove that the only vector hin V%is A
= 0. For hin V! we have, for every hin Dy, (h(A + iI)(k)) = 0. That is,
we have (h,A(h)) = (ih,h) for every hin D,. But this is precisely the state-

ment that h is in DA,, with A*(h) = ih. By self-adjointness, h is in D, with

(A - ¢I)(h) = 0. Therefore, 0 = (h,(A — il )(h)) = (h,A(k)) - i(h,h). Since the
first term on the right is real, and the second imaginary, (h,h) = 0, that is, &
= 0. Thus V = H, completing the proof. |]]

The proof will be recognized as a more careful version—keeping track of
domains—of the earlier proof that the spectrum of a Hermitian operator is
real. Note the essential use made of self-adjointness.

Ezample. Consider the configuration operator on L%R). Theorem 67, in
this case, reduces to the following statement. Given any measurable, square-
integrable function f, there is one and only one measurable, square-integrable
function g, with zg square-integrable and with (z + /)¢ = f. It is easy to con-
vince oneself directly that this statement is true.

Ezample. Consider the momentum operator on L%R). Theorem 67, in
this case, reduces to the following statement. Given any measurable, square-
integrable function f, there is one and only one absolutely continuous function
g, with Dg square-integrable and with (iDg + ig) = f almost everywhere.
This is a—by no means obvious—assertion about existence and uniqueness of
solutions of a certain differential equation.

Theorem 67 states that, for Dy, A self—adjoinf, D, is a ‘“‘vector-space
copy” of H, with A the isomorphism of vector spaces. Self-adjointness is a
rather strong and ‘‘tight” condition. It is immediate from theorem 67,
incidentally, that no alteration of the domain of a self-adjoint operator can
preserve self-adjointness (for such an alteration could hardly preserve the
one-to-one, onto character of (A + ¢I)). Of course, theorem 67 is equally true
for (A - 4I).

Now let Dy, A be a self-adjoint operator on Hilbert space H. Set U =
(A-4I)A+ iI)". Then, since (A+ ¢I)! is a one-to-one, onto mapping
from H to D, while (A - ¢I) is a one-to-one, onto mapping from D, to H, Uis
a (clearly linear) one-to-one, onto mapping from H to H. In short, U is an
operator with domain H. This observation suggests that we try to show that
Uis in fact a bounded operator. First, note that, for k in Dy, ||(A + ¢ )(h)||?
= ||A(R)||?> + ||&|?> = ||(A - i )(h)]|>. Now let h be any vector in H, and set A
= (A + I )(k) with hin D, (always possible, by theorem 67). Then U(k) =
(A-dI YA+ i)Y k) = (A- I ) A+ sy A+ il )(k) = (A - ¢I)(k). Hence
NUWIE = II(A =D = (A + ) = [|A|*. Thus Uis in fact a
bounded operator: its norm is |U] = 1. Furthermore, this U is actually a uni-
tary operator. Replacing h in ||U(h)||2 = ||A||?> successively by h + ih” and A
- ih’, we obtain (Ulh),U(h")) = (h,h") for all h and h’. That is, (U*U(h),h")
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= (h,h’") for all hand h’. Since h’ is arbitrary, U*U = I Since U is one-to-

one and onto, this also implies UU* = I.
Thus every self-adjoint operator defines, by the construction above, a
unitary operator. Let us look a bit at the mechanism of this construction.

iR C
1

 —)

Figure 152

o

Consider the mapping R — C with action a(r) = (r - §)(r + #)! (figure 152).
Then, for each real r, |a(r)] = 1, so @ maps the set of reals to the unit circle
in the complex plane. The real line is ‘“‘wrapped once around the unit circle in
the complex plane,” with +1 sent to —f, -1 sent to +¢, etc. “If +00 and -oo
were real numbers, these would both be sent to one. Now, the construction
above amounts essentially to setting “U = a(A).” (This intuitive picture,
however, ignores some important technical details. For example, had we set
U= (A + {I)YYA - iI) rather than U = (A~ ¢I)(A + I )}, then U would
be a one-to-one, onto mapping from D, to D, rather than a one-to-one, onto
mapping from H to H.) One thinks of a self-adjoint operator A as “‘essentially
a Hermitian operator, except that, for certain vectors h (namely, those not in
D,), we have A(h) = ooh.” Behavior of this sort is unacceptable for a
bounded operator, which is why the domain of A ends up not being the entire
Hilbert space. Fortunately, the function a ‘“knows exactly what to do with
00, namely, send it to the finite number one.” Thus “U knows how to act
even on those vectors on which A itself refuses to act.” In this way U becomes
a bounded operator. One also sees in this picture why U ends up as a unitary
operator: the function o sends the real line to the unit circle in the complex
plane.

What fact is analogous to the fact that a(r) = 1 for no r? It is this: the
number one is not an eigenvalue of U. To prove this last assertion, suppose
there were a nonzero vector h with Uh) = h. By theorem 67, there is a A
in D, with (A+iI)h) = h. Then Uh) = (A-iI)A+ Iy (h) =
(A=) A+ IV A+ I)h) = (A-4I)h). Thus Uh) = h becomes
(A-4I)(h) = (A + il')(h), which implies immediately that 4 = 0 and hence
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that 0 = (A + ¢I)(h) = h. Thus this h cannot be an eigenvector.

To summarize, we have shown so far that every self-adjoint operator
leads, via U = (A - i )(A + iI)7}, to a unitary operator not having one as an
eigenvalue. There is, in fact, a converse to this statement. In order to guess
what it should be, one solves ¢ = (r - #)/(r + §) for r in terms of ¢, obtaining
r= (1 + ¢)/(1 - ¢). This suggests

THEOREM 68. Let U be a unitary operator on Hilbert space H, and suppose
that one i3 not an eigenvalue of U. Set Dy = (I- U)[H]. Then A =
{1+ U)Y(I- U)? exists as a mapping from Dy to H, and Dy, A is a self-
adjoint operator.

Proof. First, note that D, as the image of a vector space under a linear

mapping, is a vector subspace of H. Next, note that, since one is not an
LU (-vyt
eigenvalue of U, H — D, is one-to-one and onto, whence D, — H exists.
A

Hence we indeed have Dy — H, a well-defined linear mapping. That is, A, D,
is certainly an operator.

To prove that D, is dense in H, it suffices to show that the only vector h
orthogonal to every vector in D, is the zero vector. Let h be such a vector, so
(h(I- U)(h")) = O for every h* in H Then ((I- U*)(h),h") = 0 for every b,
whence (I - U*)(h) = 0. That is, U¥(h) = h, or, applying U to this equation,
h = U(h). Since one is not an eigenvalue of U, it follows that h = 0. Thus
D, is dense in H. We next show that the adjoint of "D4, A is an extension of
D,, A. We must show that, for h and k" in Dy, (hA(h")) = (A(R),h"). Set
h = (I-Ug) and b = (I-VU)(g’), so A(h) = {I+ U)g) and A(k")
= I+ U)(g"). Then

(hA(R )= ((I- U)(g) i+ U)(g))
= ((I+ U)I- U)(g)ig")
= ((I+ U™)(I- U)g)ig")
= ((U+ I UY(I- U)g)ig")
= ((I+ U)U - TI)g)ig")
= ((I+ O)(U* - I)(9),ig")
= ((U"- 1)1+ U)9)ig")
= ((I+ U)(g),{U-I)g")
= ({I+ U)(g),(I- U)(g"))
= (A(h),h°) .

The proof is completed by showing that every vector in D,, is also in Dj4.
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Thus let h and A" be vectors, with (h,A(k)) = (h’,h) for every hin D,. We
must show that A itself is in D4. Set b = (I- U)(g), with g in H, so A(h) =
I+ U)(g). Then we have (hi(I+ U)(g) = (k",(I- U)(g)) for every g in H,
that is, (-#(1 + U™)(h),q) = ((I- U™ (h"),g) for every g in H. Since g is arbi-
trary, —i(I + U*)(h) = (I- U*)(h"), or, applying U, {1+ U)(k) = (I- U)(h").
But this equation can be rewritten h = (I- U)(-th’ /2 + h/2), which shows
that his indeed in D,. |

This straightforward, computational proof involves no new ideas.

Thus, not only does every self-adjoint operator define a unitary operator
for which one is not an eigenvalue, but every such unitary operator defines a
self-adjoint operator. Furthermore, these two constructions invert each other,
that is, if we begin with self-adjoint A, D, and then construct the correspond-
ing unitary U and then the corresponding self-adjoint operator, the result is
just the original self-adjoint operator. [Proof: Let D,, A be self-adjoint,
and set U = (A-iI)(A+4)'. Then I - U= I - (A-il)(A+ i)}
= (A+)-(A-dl))A+ i)' = 2{A+il)'. By theorem 67, the
domain of the self-adjoint operator A constructed from U (via theorem 68) is
precisely D,. Since, furthermore, I + U = I + (A-il)A+)! =
(A+ i)+ (A-dI)A+)' = 24A+4)!, we have A =
I+ O)(I- U)! = 2A(A + iI)Y(1/20)(A+ i) = A] Thus we have
obtained a one-to-one correspondence between the set of all self-adjoint opera-
tors on Hilbert space H and the set of all unitary operators on H not having
one as an eigenvalue. But unitary operators are bounded: we know how to
deal with them. The idea, then, is to describe various properties of our self-
adjoint operators in terms of the corresponding properties of the unitary
operator. Some examples of this approach follow.

How can one tell, from U, whether A is actually Hermitian (i.e.,
bounded)? We claim that A is Hermitian if and only if one is a regular value
of U. First, note that, if one is a regular value of U, so (I- U)™! is bounded,
then A = (I + U)(I- U)!is certainly bounded. If, conversely, A is bounded,
then, since (I- Uy! = (1/2¢)(A + iI), one must be a regular value of U.
Several other facts follow from the (easily checked) formula (A-«I) =
(& + )[U~ (x - 9)/(k + HI)(I- U)!, applied to vectors in D,. Suppose that
hin D, is an eigenvector of A with eigenvalue «, that is, that A(h) = «h.
Then, from the formula above, [U- (k - §)/(k + §)](I- Uy(h) = 0. Now,
(I- U)! certainly cannot annihilate h (for this is the inverse of some map-
ping), so (U - (k - §)/(x + )] ] must annihilate the nonzero vector (I - U)'\(k).
In other words, (k - 4)/(k + {) must be an eigenvalue of U. Conversely, if h*
is an eigenvalue of U with eigenvalue (k - §)/(x + 1), then (I- U)(h") is in Dy
and is an eigenvector of A with eigenvalue k. We have shown: & is an eigen-
value of A if and only if (k - §)/(x + 1) is an eigenvalue of U. The function a
takes eigenvalues to eigenvalues.
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A similar remark applies to the spectra. A number x will be said to be in
the spectrum of self-adjoint operator D,, A if there exists no bounded opera-
tor B with B(A - k1) the identity (on D,) and (A - 1 )B the identity (on H).
Then (again by the formula above), k is in the spectrum of A if and only if
(k ~ 1)/(k + ¢) is in the spectrum of U.

We have in some sense now completed the second half of our program.
We have made available to ourselves mathematical tools which should allow
us to do reasonable things with, and make interesting statements about, self-
adjoint operators. We claim that the self-adjoint operators are ‘“mathemati-
cally tame,” at least far more so than general (not necessarily bounded)
operators.

It is natural to ask how “mathematically tame’’ the self-adjoint operators
really are. There is, for example, a spectral theorem for Hermitian operators;
is there such a theorem for self-adjoint operators? In fact, the answer is yes.
As a final example of the present technique, we discuss how this theorem goes.
One first defines continuous functions, and then ‘“other functions,” of a uni-
tary operator. This is done along the same general lines as for Hermitian
operators, except that one constantly uses U* = U ! (rather than A*= A4, in
the Hermitian case). Next, for each point w on the unit circle in the complex
plane, one considers the function 8, shown in figure 153. Set P, = ().

iR

ew‘o

Figure 153

This family of projection operators is analogous to the spectral family for a
Hermitian operator. One next shows U = fcircle
spectral theorem for unitary operators. Set P, = P(;_j/ (x4 for each real .
Then, using the relationship between self-adjoint A and unitary U, one shows
that A can be expressed as A = fR k dP.. Essentially the only change in the
spectral theorem in the passage from the Hermitian to the self-adjoint case is
that the range of integration (the spectrum of A) is compact in the former
and not in the latter.

It would perhaps be of interest to understand the following issues better:
i) why does this notion of self-adjoint-ness play such a central role?! and ii)

w dP,, that is, one obtains a

1. Operators corre:rond to observables in quantum mechanics, and the spectrum of an
operator corresponds to; in some sense, ‘‘the values that can be obtained on measuring
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why does one describe the structure of a (say, physically interesting) self-
adjoint operator in terms of a unitary operator which, apparently, has no
physical significance?

Ezercise 391. Consider the sum of the configuration and momentum opera-
tors on L%(R). Show that the adjoint of this sum is an extension of the sum
but that the sum itself is not self-adjoint. Find a self-adjoint extension.

Exercise 392. Find explicitly the adjoints of the operators in the first and
third examples of this chapter.

Ezxercise 393. An operator Dy, A is said to be closed if it satisfies the follow-
ing condition: whenever hhy, - --in D, converges to h, and
A(hy),A(hy), - - - converges to h”, h is itself in D, and A(k) = h". Prove that
every self-adjoint operator is closed.

Ezercise 394. Consider the Hilbert space L (R X R X R) (products of meas-
ure spaces). The momentum operator in this Hilbert space should, roughly
speaking, be ‘¢ times the gradient.” Is there some suitable generalization of
absolutely continuous to this case? Does there exist, on this Hilbert space, a
self-adjoint momentum operator?

Ezxercise 395. Can two self-adjoint operators have only the zero vector in the
intersection of their domains?

Ezercise 396. Does the sum of two self-adjoint operators always have a self-
adjoint extension? Is the adjoint of such a sum always an extension of the
sum?

Ezercise 397. Find explicitly the action of the unitary operators associated
with the configuration and momentum operators.

Exercise 398. Let H be the Hilbert space L[0,1] (where [0,1] is that subspace
of the measure space of reals). Let D, consist of all elements of H having
representatives f with i) f absolutely continuous, ii) Df square-integrable, and

iii) f0) = f{1) = 0. Let the action of A be A(f) = iDf. Prove that DA,, A*
is an extension of D4, A and that DA . consists precisely of elements of H hav-
ing representatives satisfying i) and ii) above. (Thus D,, A is not self-
adjoint.) Prove that the adjoint of DA,,, A*is Dy, A (so DA,,, A% is not self-

adjoint either). Is it true that there is no self-adjoint extension of D,, A?
What does this mean physically?

the observable.”” Thus the physical role of Hermiticity in the bounded case is to give a
real spectrum._But why, physically, is there all this concern about domains?
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Ezercise 399. Is it true in general that the adjoint of the adjoint of an opera-
tor with dense domain is that operator?

Ezercise 400. Consider the Hilbert space L¥R). The Hamiltonian on this
Hilbert space is to be “~d ?/dz 2 + V,”” where V (the potential) is a real func-
tion on R. Under what conditions on V can one construct a self-adjoint
operator along these lines?

Ezercise 401. Let U be a unitary operator, and let w be a complex number
with |w| = 1 and with w a regular value of U. Then one is a regular value of
the unitary operator w!U. Use the spectral theorem for the Hermitian opera-
tor associated with w™1U to obtain directly a spectral theorem for U.

Ezercise 402. Let D,, A be self-adjoint, with real £ not in its spectrum.
Then (k - ¢)/(k + ) is a regular value of the corresponding U. Use exercise
401 to obtain directly a spectral theorem for Dy, A.

Ezercise 403. What are the spectra of the configuration and momentum
operators?

Ezercise 404. Why does one not consider ‘‘not necessarily bounded unitary or
projection operators’’?
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