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Introduction

A functional analyst is an analyst, first and foremost, and not a degenerate species of topologist.
E. Hille

Most texts in functional analysis suffer from a serious defect that is shared
to an extent by Volume I of Methods of Modern Mathematical Physics.
Namely, the subject is presented as an abstract, elegant corpus generally
divorced from applications. Consequently, the students who learn from these
texts are ignorant of the fact that almost all deep ideas in functional analysis
have their immediate roots in “applications,” either to classical areas of
analysis such as harmonic analysis or partial differential equations, or to
another science, primarily physics. For example, it was classical electro-
magnetic potential theory that motivated Fredholm’s work on integral
equations and thereby the work of Hilbert, Schmidt, Weyl, and Riesz on the
abstractions of Hilbert space and compact operator theory. And it was the
impetus of quantum mechanics that led von Neumann to his development
of unbounded operators and later to his work on operator algebras.

More deleterious than historical ignorance is the fact that students
are too often misled into believing that the most profitable directions for
research in functional analysis are the abstract ones. In our opinion, exactly
the opposite is true. We do not mean to imply that abstraction has no
role to play. Indeed, it has the critical role of taking an idea from a
concrete situation and, by eliminating the extraneous notions, making the
idea. more easily understood as well as applicable to a broader range of

ix



x INTRODUCTION

situations. But it is the study of specific appiications and the consequent
generalizations that have been the more important, rather than the considera-
tion of abstract questions about abstract objects for their own sake.

This volume contains a mixture of abstract results and applications, while
the next contains mainly applications. The intention is to offer the readers
of the whole series a properly balanced view.

We hope that this volume will serve several purposes: to provide an
introduction for graduate students not previously acquainted with the
material, to serve as a reference for mathematical physicists already working
in the field, and to provide an introduction to various advanced topics
which are difficult to understand in the literature. Not all the techniques
and applications are treated in the same depth. In general, we give a very
thorough discussion of the mathematical techniques and applications in
quantum mechanics, but provide only an introduction to the problems
arising in quantum field theory, classical mechanics, and partial differential
equations. Finally, some of the material developed in this volume will not
find application until Volume I11. For all these reasons, this volume contains
a great variety of subject matter. To help the reader select which material
is important for him, we have provided a “Reader’s Guide” at the end
of each chapter.

As in Volume I, each chapter contains a section of notes. The notes
give references to the literature and sometimes extend the discussion in the
text. Historical comments are always limited by the knowledge and prejudices
of authors, but in mathematics that arises directly from applications, the
problem of assigning credit is especially difficult. Typically, the history is
in two stages: first a specific method (typically difficult, computational,
and sometimes nonrigorous)is developed to handle a small class of problems.
Later it is recognized that the method contains ideas which can be used to
treat other problems, so the study of the method itself becomes important.
The ideas are then abstracted, studied on the abstract level, and the
techniques systematized. With the newly developed machinery the original
problem becomes an easy special case. In such a situation, it is often not
completely clear how many of the mathematical ideas were already contained
in the original work. Further, how one assigns credit may depend on
whether one first learned the technique in the old computational way or in
the new easier but more abstract way. In such situations, we hope that
the reader will treat the notes as an introduction to the literature and
not as a judgment of the historical value of the contributions in the papers
cited.

Each chapter ends with a set of problems. As in Volume I, parts of
proofs are occasionally left to the problems to encourage the reader to
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participate in the development of the mathematics. Probiems that fill gaps
in the text are marked with a dagger. Difficult problems are marked with
an asterisk. We strongly urge students to work the problems since that
is the best way to learn mathematics.
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IX: The Fourier Transform

We have therefore the equation of condition
F(x)= I dq Q cos gx

If we substituted for Q any function of q, and conducted the integration from q =0 to q = 0,
we should find a function of x: it is required to solve the inverse problem, that is to say, to
ascertain what function of g, after being substituted for Q. gives as a result the function F(x),
a remarkable problem whose solution demands attentive examination. Joseph Fourier

IX.1 The Fourier transform on #(R") and &'(R"),convolutions

The Fourier transform is an important tool of both classical and modern
analysis. We begin by defining it, and the inverse transform, on & (R"),
the Schwartz space of C* functions of rapid decrease.

Definition  Suppose fe &#(R*). The Fourier transform of f'is the function
fgiven by

J6)= Zn)n,,j emm (x) dx

where X *A = Y 7., x;4;. The inverse Fourier transform of f, denoted by
£, is the function

f0 =5 )n,a J ety ax

We will occasionally write f = Ff.



2 1X: THE FOURIER TRANSFORM

Since every function in Schwartz space is in L!'(R"), the above integrals
make sense. Many authors begin by discussing the Fourier transform on
L}(R"). We start with Schwartz space for two reasons: First, the Fourier
transform is a one-to-one map of Schwartz space onto itself (Theorem IX.1).
This makes it particularly easy to talk about the inverse Fourier transform,
which of course turns out to be the inverse map. That is, on Schwartz
space, it is possible to deal with the transform and the inverse transform
on an equal footing. Though this is also true for the Fourier transform on
I*(R") (see Theorem IX.6), it is not possible to define the Fourier transform
on I*(R") directly by the integral formula since I?(R") functions may not
be in L!(R"); a limiting procedure must be used. Secondly, once we know
that the Fourier transform is a one-to-one, bounded map of #(R") onto
Z(R"), we can easily extend it to &'(R"). It is this extension that is funda-
mental to the applications in Sections 5, 6, and 8.

We will use the standard multi-index notation. A multi-index

=0y, ey 0
is an n-tuple of nonnegative integers. The collection of all multi-indices
will be denoted by I . The symbols ||, x*, D%, and x? are defined as follows:

n
o] =X a
i=1
x* = x‘}lx%z ces xﬁn
e
T OX% 9x%a - Ox3e
n
xr =) x}
i=1
In preparation for the proof that ~ and ~ are inverses, we prove:

Lemma The maps and ~ are continuous linear transformations of
Z(R") into &(R"). Furthermore, if « and § are multi-indices, then

((IAFDFF)(4) = D*((— xS (x) (IX.1)

Proof The map ~ is clearly linear. Since

mﬁm=d¢

= (27:):-/2 —[w (_—ll), (D% e =) (—ix)Pf(x) dx

A(—ix)yPe”xf(x) dx
-

~ | D= P ()
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We conclude that
. w 1
1S llas = Sl:pIA (D7) < '(2%:)‘"f2.| [ DA(x*f)| dx <

so takes #(R") into ¥(R"), and we have also proven (IX.1). Furthermore,
if k is large enough, | (1 + x?)™*dx < oo so that

1 J‘ (1+X2

-k
2n)™ 2 | Da(—ixPf (x)| dx

“f“a.ﬂ < R (1 ¥ xz)_

< (] 0+ <207 x|supl(1 + ) D3y )

Using Leibnitz’s rule we easily conclude that there exist multi-indices «;,
B; and constants c; so that

M
I7es < Y1y,
i=

Thus, ~ is bounded and by Theorem V.4 is therefore continuous. The
proof for is the same. [

We are now ready to prove the Fourier inversion theorem. The proof
we give uses the original idea of Fourier.

Theorem IX.1 (Fourier inversion theorem) The Fourier transform is a
linear bicontinuous bijection from y(lR") onto #(R"). Its inverse map is

the inverse Fourier transform, i.e., f= f= f

Proof We will prove that f = f. The proof that?= fis similar. fc = fimplies
that ~ is surjective and f= f implies that ~ is injective. Since ~ and ~ are
continuous maps of #(R”") into #(R"), it is sufficient to prove that f=r
for f contained in the dense set C§(R"). Let C, be the cube of volume
(2/e)" centered at the origin in R". Choose ¢ small enough so that the
support of fis contained in C,. Let
K, = {k € R|each k/ne is an integer}

Then

f(x Z (18)»/2 ik - x f)(’a nIZ ik x

is just the Fourier series of f which converges uniformly in C, to fsince f is
continuously differentiable (Theorem 11.8). Thus

_ f(k)eik.x 7
fx) —kEZKl Qe ne) (1X.2)
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Since R” is the disjoint union of the cubes of volume (n¢)" centered about
the points in K,, the right-hand side of (IX.2) is just a Riemann sum for
the integral of the function f (k)e* */(2n)"2. By the lemma, f (k)e* * € #(R"),
so the Riemann sums converge to the integral. Thus f=f. |

Corollary  Suppose fe #(R"). Then

[ Jreaax =] |Ff dk

Proof This is really a corollary of the proof rather than the statement of
Theorem IX.1. If f has compact support, then for ¢ small enough,

f(x) =kz ((%S)nIZeik-x, f(x))(%s)"ze""x

Since {(3e)"%e™ *}xc k, is an c;rthonorma] basis for I*(C,),
[ [ f(x)]? dx =J‘ [f(x)I? dx
Im C,
=kEZK [((Ge)"?e™ %, f(x))?
= T 1))

[ |7 dk

This proves the corollary for fe C¥. Since ~ and | - ||, are continuous on
& and Cg 1s dense, the result holds for all of #. |

Example 1 We compute the Fourier transform of f(x) = e~*"2e #(R)
where o > 0.

S =

J- e——ax’/ze—i). 5 dx
24

2 > g [2
2n.|.R\/;exp(—t —ltl\/;) dt

- -

e—/'.z/Zu 2 2d
= —|t +

Jar 2P ( 'Jz;) ‘
e—iz/Zu a e—il/h
= Y dt =

T Ja
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The next to last step follows from the Cauchy integral formula and the
exponential decrease of e~** along lines parallel to the x axis.

We now define the Fourier transform on &'(R").

Definition Let T € &'(R"). Then the Fourier transform of T, denoted by
T, is the tempered distribution defined by T(¢) = T(9).

Suppose that h, ¢ € #(R"), then by the polarization identity and the

corollary to Theorem IX.1 we have (h, @) = (h, ¢). Substituting § = § for h,
we obtain

To) = [ §(x)o(x) dx = [ g(x)o(x) dx = T,(9) = T,(¢)

where T; and T, are the distributions corresponding to the functions § and g
respecnvely ThlS shows that the Fourier transform on &'(R") extends the
transform we previously defined on #(R").

Theorem IX.2 The Fourier transform is a one-to-one linear bijection
from #'(R") to #'(R") which is the unique weakly continuous extension of
the Fourier transform on &£ (R").
Proof 1f@,5 ¢, then by Theorem IX.1, $, 5 ¢, so T(¢,) —» T(¢) for each T
in #’(R"). Thus T(e,) » T(¢), which shows that T is a continuous linear
functional on &(R"). Furthermore, if T, 7, then 7,5 T because
T,(®) = T(p) implies T,(¢) = T(¢). Thus T+ T is weakly continuous.

The remaining properties of ~ follow immediately from the correspond-
ing statements on #(R") (see Problem 19 in Chapter V). |

Example 2 We compute the Fourier transform of the derivative of the
delta function at b e R:

5b(‘P)

I
Qn
o
I\)
§
:n
;.
X
—_—
|
>v~<-.
~—
S
—_—
=
~—
au
=
~——

So, the Fourier transform of 5,, is the function ixe™ %/, /2n.

* %k %
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We now introduce a new operation on functions.

Definitions Suppose that f, g € #(R"). Then the convolution of f and g,
denoted by [« g, is the function

(f+9)0) = S = xg(x) dx

The convolution arises in many circumstances (we have already used it in
discussing closed operators in Section VIIIL.1). In Section 4 we use interpola-
tion theorems to prove I estimates on the convolution f* g in terms of
fand g. In this section we concentrate on the properties of the convolution
as a map from #(R") x #(R") to #(R"). Using these properties we show
that the convolution can be extended to a map from &'(R") x #(R") to
O}, the polynomially bounded C® functions. Convolutions frequently
occur when one uses the Fourier transform because the Fourier transform
takes products into convolutions (Theorem 1X.3b and Theorem IX.4c).

Theorem I1X.3

(a) For each fe #(R"), g— fxg is a continuous map of ¥ (R") into
& (R".

(b) Jg= (2n) "« § and T« g = (22} .

(c) Forf g hin #(R"), feg=g=fand fx(g*h) = (f «g)*h

Proof From the polarization identity and the corollary to Theorem IX.1
we find that (@, ¥) = (@, ¥) for ¢, Y € #(R"). Letting y € R" be fixed, we

. L. . PR
apply this identity to e” *f(x) and g obtaining (¢ *f, g) = (¢”"*f, §). But
(€ F9)=] e % (x)glx)dx

"
and

@ Ty (e TR ot a

=[ T3t

which proves that fg = (27)""2f « §. Using the inverse Fourier transform
this formula may be stated as

@)y TG=f+g
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This shows that convolution is the composition of the inverse Fourier
transform, multiplication by (2n)"?f, and the Fourier transform. It follows
that convolution is continuous.

The statements in (c) follow trivially from (b). i

In order to extend the map C,: g — f*g to &', we look for a continuous
map C,: ¥ — ¥ sothat & | & = C,. We then define C’; to be convolution
on &

Definition Suppose that fe #(R"), T € #'(R") and let f(x) denote the
function, f(—x). Then, the convolution of T and f, denoted T = f; is the
distribution in &%'(R") given by

(T*f)e)=T(] o)
for all ¢ € Z(R").

The fact that g —f+ g is a continuous transformation guarantees that
T * fe ¥ (R"). The following theorem summarizes the properties of this
extended convolution.

Let f, denote the function f,(x) = f(x — y) and f, the function f(y — x).
When f'is given by a large expression (---), we will sometimes write (--)~
rather than (-3-).

Theorem IX.4 For each fe #(R") the map T—-T xf is a weakly
continuous map of &¥'(R") into &'(R") which extends the convolution on
& (R"). Furthermore,

(a) T «fis a polynomially bounded C* function, i.e. T % fe 0% . In fact,

(T * f)(y) = T(},) and
D*(T + f)= (D°T) « f = T « D*f (IX.3)
(b) (Txf)eg=T=(f*g)
N " a
() Txf =Qny?fT

Proof Since T — T = fis defined as the adjoint of a bounded map from ¥
to &, it 1s automatically weakly continuous. The fact that it extends the
convolution on & is just a change of variables. The statements (I1X.3), (b),
and (c), all follow immediately from the corresponding statements for T € &
and the facts that & is weakly dense in .¥” and that .#, D?, multiplication
by f, and convolution are all weakly continuous on %",
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It remains to prove the first part of (a). Since T € &'(R"), it follows
from the regularity theorem (Theorem V.10) that there is a bounded
continuous function h, a positive integer r, and a multi-index g so that

T() = [_heat + Y (PN)(y = x) dx

Since D’fe &, T(f,) is an infinitely differentiable function of y. The change
of variables 7 = y — x shows that

[T < Il [ 1+ X210 = x)] dx
= Iklo [ (14 (= o)y D)) d

from which it follows easily that y+—s T(f,) is polynomially bounded.
A similar proof works for the derivatives of y— T(f,)- Thus T(f,) e O} .

Suppose that a distribution Se &’(R") is given by a polynomially
bounded continuous function s. Then, using Fubini’s theorem we find that
for ¢ € #Z(R")

(S*f)o)=S(T+ o)
= [ st [ 70 = ot )

= J ( J s(x)7,(x) dx) o(y)dy
= (S(/,)e)

so S « f= S(f,). By the regularity theorem T = DS for some such S. Thus
by (IX.3)
Tuf =(DS)x f =S« Df
= S((D°f);)
= (= 1)"IS(D*(},))
= D*S(7))
= T(},)

This completes the proof. ||
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Theorem IX5 Let Te S (R") and fe #(R"). Then fT €0 and

ﬁ(k) = (2n) "2T(fe~* *). In particular, if T has compact support and
¥ € #(R") is identically one on a neighborhood of the support of T, then
T(k) = @) T (e %)

Proof By Theorem IX.4c and the Fourier inversion formula we have
ﬁ= (2r) "?f« T. Thus fT e 05, and

7 -nj25( 7

7T = @n) " T(7)

= (2) 3T (e ) |
We remark that one can also define the convolution of a distribution

T € 2’'(R") with an fe D(R") by (T * f)(y) = T(J,). A proof similar to the
proof of Theorem IX.4 shows that T « f'is a (not necessarily polynomially
bounded) C*® function and that (IX.3) holds.

We have already introduced the term “approximate identity” in Section
VIIL.1; we now define it formally.

Definition Let j(x) be a positive C* function whose support lies in the
sphere of radius one about the origin in R" and which satisfies | j(x) dx = 1.
The sequence of functions j,(x) = & "j(x/e) is called an approximate identity.

Proposition Suppose T € ¥'(R") and let j,(x) be an approximate iden-
tity. Then T = j, » T weakly as ¢ — 0.

Proof 1f ¢ € #(R"), then (T * j,)(¢) = T(J, * ), so it is sufficient to show
that j, * ¢ —2®), . To do this it is sufficient to show that (2n)"%,$ % 6.
Since j,(4) = j(eA) and j(0) = (27) ™"/, it follows that (27)"%j,(x) converges
to 1 uniformly on compact sets and is uniformly bounded. Similarly,
D?j, converges uniformly to zero. We conclude that (2z)"%j,$ % ¢. |

IX.2 The range of the Fourier transform : Classical spaces

We have defined the Fourier transform on £(R") and &'(R"). In this
section, Section IX.3, and Section IX.9, we investigate the range of the
Fourier transform when it is restricted to various subsets of &’(R"). These
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questions are natural and have historical interest, but more important,
characterizing the range of the Fourier transform is very useful. One is often
able to obtain information about the Fourier transform of a function and
one would like to know what this says about the function itself. We begin
with two theorems which follow easily from the work that we have already
done in Section IX.1.

Theorem IX.6 (the Plancherel theorem) The Fourier transform extends
uniquely to a unitary map of I*(R") onto I*(R"). The inverse transform
extends uniquely to its adjoint.

Proof The corollary to Theorem IX.1 states that if fe #(R"), then
I.fl2=1Ifl,- Since F[#] = &, F is a surjective isometry on [}(R"). |

Theorem IX.7 (the Riemann-Lebesgue lemma)  The Fourier transform
extends uniquely to a bounded map from L'(R") into C,(R"), the continuous
functions vanishing at oo.

Proof For f € #(R"), we know that f € #(R") and thus f € C(R"). The
estimate

|71l < @m)~"2| £,

is trivial. The Fourier transform is thus a bounded linear map from a

dense set of I'(R") into C,(R"). By the B.LT. theorem,  extends
uniquely to a bounded linear transformation of I!(R") into C,(R"). I

We remark that the Fourier transform takes ! (R") into, but not onto
C,(R") (Problem 16).

A simple argument with test functions shows that the extended transform
on L'(R") and I*(R") is the restriction of the transform on &'(R"), but
it is useful to have an explicit integral representation. For f € L'(R”"), this
is easy since we can find f, e #(R") so that || f = f|,—0. Then, for
each 4,

7(2) = lim (£,(2))

1 .
= lgn IW JR"E_M ’ xfm(.X) dx}

1 . )
=y T
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So, the Fourier transform of a function in L'(R") is given by the usual
formula.
Next, suppose fe [*(R") and let

1 x| <R
xr(x) = I l

0 |x|>R

Then xi feL'(R") and yz f——f, so by the Plancherel theorem

R— o0

P » -
xr >/ For x f we have the usual formula; thus

JA)y=1im@n)™"2 | e™%f(x)dx
R—o [x|<R
where by “lim.” we mean the limit in the I?-norm. Sometimes we will
dispense with |x| < R and just write

F(2) = Lim.(2n)" "2 J‘ e™ "X (x) dx

for functions f e I2(R").

We have proven above that I>(R") > I*(R") and L'(R") > L°(R") and
in both cases is a bounded operator. It is exactly in situations like this
that one can use the interpolation theorems which we will prove in the
Appendix to Section 4.

Theorem IX.8 (Hausdorff-Young inequality) Suppose 1 < g < 2, and
p ! + ¢! = 1. Then the Fourier transform is a bounded map of I/(R")
to IZ(R") and its norm is less than or equal to (2r)1/2~1/9,

Proof We use the Riesz-Thorin theorem (Theorem 1X.17) with g, =2 =
o, P = 0, and g, = 1. Since | 7], = |15 a0d | 7)., < (2n) "7, we

conclude that || |, < CJlf|l, where p; ' = (1 = t)/2, ¢, = (1 —t)2 + t =
1 —p;7 ' and log C, =t log(2n) "2 |

We now come to another natural question. What are the Fourier trans-
forms of the finite positive measures on R"? Suppose that we define

() = @r)™2 [ o™ du(x)
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Then, if @ € #(R"),

[ ii)p() di= @n) 2 | ( [ e du(X))(P(i) di

Jrn

=) [ ([, "0l ) duts

| L #(x) dux)

so this definition coincides with the restriction of the Fourier transform
on &’(R") to the positive measures. Suppose i,, ..., Aye R" and & =
&y &ysenns &y €CY Then

2 (= A,)E, & =

Zén —ik;* X

This shows that the function 2(X) has the property that for any Xy, ...,
Ay € R {a(\; — X ,)} is the matrix of a positive operator on C". Furthermore,
by the dominated convergence theorem, {2 is continuous, and since

AN < @r) 2 [ e | dux)

= (2n) "2u(R")

du{x) > 0

A(+) is also bounded.

Definition A complex-valued, bounded, continuous function f on R" that
has the property that {f(; — L)} ; is a positive matrix on C" for each N
and all 4,, ..., Ay € R" is called a function of positive type.

There are three properties of functions of positive type which follow
easily from the definition. Letting N = 1, x € RY,

() f/0=0

since f(0) is a positive operator on C'. Letting N =2, and choosing
Ay = x, 1, = 0, we see that the matrix

( o s (X))

f(=x) f(0)

must be positive and therefore self-adjoint with positive determinant. This
implies that

S

() f(x)=f(=x
(3) [/ < s(0)
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Notice that in proving these three properties we did not use the fact that
f(x) is bounded, so we could have left out the word bounded in the
definition and recovered boundedness from (3) above. It is clear that any
convex combinations or scalar multiples of functions of positive type again
give functions of positive type, so these functions form a cone.

Theorem IX.9 (Bochner’s theorem) The set of Fourier transforms of
the finite, positive measures on R" is exactly the cone of functions of
positive type.

Proof We do not give Bochner’s original proof but rather an easy,
interesting argument based on Stone’s theorem. We have already shown
that the Fourier transforms of finite positive measures are functions of
positive type. We need to prove the converse. Suppose f is of positive type.
Let o denote the set of complex-valued functions on R" which vanish
except at a finite number of points. Then
W 0) = 2 flx—yW(x)o®)
X, yeR"

has all the properties of a well-defined inner product except that we may
have (@, @), = 0 for some ¢ % 0. If we let 4" be the set of such ¢, then
XA/ is a well-defined pre-Hilbert space under (-, -),. Suppose that t e R
and define U, on ¢ by (U, ¢)(x) = ¢(x — t). Since U, preserves the form
(, *)s» it takes equivalence classes into equivalence classes and thus
restricts to an isometry on JX'/4. Since the same is true of U_t, this
1sometry has dense range and thus extends to a unitary operator U, on
# = X /A . Furthermore, U,..,=0,0,, U, =1I, and because of the con-
tinuity of f, U, is strongly continuous. Thus the map t — U, satisfies the
hypotheses of Theorem VIIL12 (the generalization of Stone’s theorem).
Therefore, there is a projection-valued measure P;, on R” so that

(0. Opy), = Jwe it'd d(p, Pry),

Let ¢, denote the equivalence class containing the function
1, x=0

(Po(x)= 0 x¢0

Then
f(t)= Ut‘f’o,‘f’o)f'—“ (‘7’0: U—“f’o)f:f‘-’_“'ld(‘f’m lebo)f

so we have displayed f as the Fourier transform of a finite positive
measure. ||
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The notion of positive type may be generalized to distributions. If f(x)
is a bounded continuous function, then f(x) will be of positive type if and
only if

[ [1tx = »eblo(x) dx dy > 0 (IX.4)

for all ¢ e CF(R"). To see this one need only approximate the integral in
(IX.4) by a Riemann sum. This condition can be rewritten as

[[ f@olx=tJo(x)drdx = [ f&)B* o)) dr 20 (IX.5)

where @ is the function @(x) = ¢(— x). This suggests the following definition.

Definition A distribution T € 2'(R") is said to be of positive type if
T(p * ) = 0 for all ¢ € D(R").

The following generalization of Bochner’s theorem is due to Schwartz.
This theorem is particularly interesting since it implies that certain ordinary
distributions must be tempered. The proof is sketched in Problem 20 (or
see the Notes for a reference).

Theorem IX.10 (the Bochner-Schwartz theorem) A distribution
T € 2’'(R") is a distribution of positive type if and only if T € &'(R") and
T is the Fourier transform of a positive measure of at most polynomial
growth.

If f(x)is a function of positive type, then this theorem implies that the
weak derivatives (—A)"f are all distributions of positive type. For = p,

a finite measure by Theorem IX.9, and (/A\"'f |x|*™u, a positive measure
of polynomial growth.

Finally, we determine which bounded measurable functions are distribu-
tions of positive type. A bounded measurable function f on R" is said to
be of weak positive type if (IX.4) holds. Since (IX.5) follows from (IX.4),

the distribution
= [ f(x)o(x) dx

is of positive type and therefore ’i} = u, a polynomially bounded positive
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measure. If j(x) is an approximate identity that is symmetric about the
origin, then

= o~
1/ le 2 T * ) = Te((je *J2))
= (2n)"u(]j(x)]*)
= @ny"? | i) du(x)
On each compact subset of R", j(x) converges uniformly to (2z)~"?2 as
¢ =0, so the y-measure of any compact set is less than (27)"?| f|,, so
u is finite.
We now come to the interesting point. Since y is finite, its Fourier
transform is a continuous function of positive type. Since u and f must
coincide a.e., we have proven:

Proposition A bounded function of weak positive type is equal almost
everywhere to a continuous function of positive type.

IX.3 The range of the Fourier transform : Analyticity

In this section we investigate the connection between the decay properties
of a function or distribution at infinity and the analyticity properties of its
Fourier transform. The most extreme form of decay at infinity is to have
compact support. We will prove the Paley-Wiener and Schwartz theorems
which characterize explicitly the Fourier transforms of C® functions and
distributions with compact support. We then state two theorems relating
exponential decay to analyticity properties of the Fourier transform. We
close the section by characterizing the Fourier transforms of tempered
distributions whose supports lie in symmetric cones. There are many other
theorems of this genre; some of them are discussed in the Notes.

Suppose that fe CF(R"). Then for all { = {{,, ..., {,)> € C", the integral

](C (21': -nf2 J e—i; "‘f(x) dx

is well defined. Furthermore, f({) is an entire analytic function of the n
complex variables {,, {,, ..., {, since we can differentiate under the



16 IX: THE FOURIER TRANSFORM

integral sign. In addition, if the support of f is contained in the sphere of
radius R, then an integration by parts yields

[TG)*F () = (2n)" "/2I e~ *Df(x) dx
i=1 [x|<R
Taking the absolute value of both sides and using the fact that f({) is
bounded on the set {{||Im {| < &}, we easily conclude that for each N,
C eRllm
where Cy is a constant that depends on N and f The interesting fact is

that these estimates are not only necessary but also sufficient for f'to be in
Cq(R").

forall{eC"

Theorem 1X.11(the Paley-Wiener theorem)  An entire analytic function
of n complex variables g({) is the Fourier transform of a C&(R") function
with support in the ball {x| x| < R} if and only if for each N there is a

Cy so that
C Rl[mg|

(IX.6)
for all { e C".

Proof We have already proven the “only if” part. Suppose that g is entire
and satisfies estimates of the form (IX.6). Let { = A + in, where 4, ne R".
Then for each 77, g(A + in)is in #(R") as a function of A, since the derivatives
fall off polynomially by (IX.6) and the Cauchy formula. Let

f(x) = (n)~"2 j R"ei" “Ag(a) da (IX.7)

Then by Theorem IX.1, fe #(R") and g(4) = f(1). We want to show that
f(x) has support in the ball of radius R. Because of the estimates (IX.6)
and Cauchy’s theorem, we can shift the region of integration in (IX.7) so that

flx) = (@u)2 [ B 2g(3 + i) d2 (1X.8)
_
Thus, by (IX.6)
nl—x-n -n, CN
| f(x)] < &t (2n) lzfmdl
Cy

< eR'""*'"(zn)‘"/Zf dl

(L + [A[)Y
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where we have chosen N large enough so that the integral on the right is
finite. Now, f'(x) does not depend on 7, so if we let # — co in an appropriate
direction, we conclude that | f(x)| =0 if |[x| > R. |}

This theorem has a natural generalization to the distributions with
compact support. Recall that a distribution T € &'(R") has support in a
closed set K if and only if T(¢) = 0 for every test function ¢ with support
in R"\K. If K is compact, then T is said to have compact support. The set
of distributions with compact support is the dual space of &(R") (see
Problems 39 and 40 of Chapter V).

Theorem I1X.12 A distribution T € #’(R") has compact support if and
only if T has an analytic continuation to an entire analytic function of n
variables T'({) that satisfies

|TQ)] < C(1 + |L])"eRImdl (1X.9)

for all { € C" and some constants C, N, R. Moreover, if (IX.9) holds, the
support of T is contained in the ball of radius R.

Proof Suppose that T € &'(R") has compact support and let ¢ be a CF(R")
function which is equal to one on the support of T. Define F({)=
T[(2n)~"2e™% *¢p(x)]. By Theorem IX.5, F(A + i0) is the Fourier transform
of T. Furthermore, since

(exp(_'i(xj(Cj + h;) + Zkatj G xi))o(x) — e—i('xfp(x))
hf

— —ixj e g (x)
and T € &'(R"), F({) is differentiable in the complex sense in each variable
and is thus entire.
Since T € ¥'(R"),
TN <€ X [I¥D o

lal N
1BISN

for some N and C; and all f e #(R"). Thus, if ¢ has support in the
sphere of radius R, then
[FE) < Ca(1 + RO)(1 + [(|M)eltmeIR

(
Conversely, suppose that F({) is an entire function satisfying the estimate
(IX.9). Then F(A + i0)e &'(R"), so it is the Fourier transform of some
T € #'(R"). Let j,(x) be an approximate identity. Then by Theorem IX.4,
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T/*\jz = (2m)""?j,(A)F(2). Since j, has compact support in {x||x| < &}, we
know by the Paley-Wiener theorem, that for each M we can find a
constant C,, so that

) Cy
[7.0)] < A+ ™™

etim{|

Therefore

CM Ce(R+s)|lm Z|
1+ [y

which implies (again by the Paley-Wiener theorem) that the support of
T « j, is contained in the sphere of radius R + ¢. Since ¢ is arbitrary and
(T +j,) —» T weakly, we conclude that the support of T is contained in the
sphere of radius R about the origin. |]

[(2m) ™" OF ()] <

One natural way to extend the above theorems is to replace “compact
support” with some weaker notion of decay at infinity. The following pair
of theorems (whose proofs are outlined in Problem 76) will be used in
Chapter XIII to prove the exponential decay of bound states of atomic
Hamiltonians.

Theorem IX.13  Let f bein I*(R"). Then &*If € I>(R") for all b < aifand
only if f has an analytic continuation to the set {{ ||Im {| < a} with the
property that for each 7 e R" with |5| <a, f(- + in)e }(R") and for any
b<a

sup |7 (- + in)] < o0

nisb

Theorem IX.14  Let T be in #'(R"). Suppose that T is a function with an
analytic continuation to the set {{ | |Im {| < a} for some a > 0. Suppose
further that for each e R" with |g| <a, T(- + in)e L'(R") and for any
b <a,supy <, | T(- + in)|; < co. Then T is a bounded continuous function
and for any b < a, there is a constant C, so that

| T(x)| < Gy
The next natural question to ask is what are the analyticity properties of

a function or distribution with support on a half-line, half-space, or in
general in a cone? As a simple example, consider the Fourier transform f of
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a function f'e€ &(R) which has support contained in [0, o). The reader can
easily verify that

FA—in)=(@n) 12 f ™A= im - xf () dx (IX.10)

is a well-defined analytic function in the open lower half-plane (i.e. for n > 0)

and that f(- — in)-Z% 7as 5 | 0. That is, f, which need not be real analytic,
is the “boundary value” of an analytic function in the lower half-plane. The
study of the Fourier transforms of functions and distributions with supports
in half-spaces dates back to the classical investigations of the Laplace
transform and has played an important role in modern analysis. The main
ideas and techniques are similar to those used above in Theorem IX.11 and
Theorem IX.12. However, an additional difficulty arises since one must
specify in what sense the Fourier transform is the “boundary value” of the
analytic function. There is a wide range of such theorems; we will discuss
one which we will use in Section IX.8 in our study of quantum field theory.
Some of the others are briefly discussed in the Notes.

Definition LetaeR" |a| =1, and 6 € (0, n/2). Then
F,o={(eR"| & -a> |&|cosb)

is called the cone about a of opening angle 6. The cone I'} , =T, ;-4 is
called the dual cone. When no confusion arises, we will drop the subscripts
and just refer to I' and T*.

The dual cone I'* will either contain I" (as in Figure IX.1) or be contained
in T'. Notice that T'* is the interior of the intersection of the half-spaces
{n|n-&>0} for Ee T. If T is the open forward light cone in R* (with
the velocity of light equal to one), then I'* is also the open forward light
cone. Given an open cone C < R", we will denote by R" — iC the open
region of those { = (A, —in,, 2, —iny, ..., A, —in,> € C" so that 1 =
Ay ooy AppeRand p={(1n,, ..., n,)> € C. R" —iC is called the tube with
base C.

We can now say what we mean by “boundary value.”

Definition Let Se #'(R") and suppose F({) is a function analytic in
R" — iC for some cone C. Suppose that for each fixed no € C, F(A — ino)is a
tempered distribution (i.e. has at most polynominal growth in 1) and that as
t|0inR

| FO~ ito)o(2) d2  S(e)

for all ¢ € #(R"). Then § is said to be the (distributional) boundary value
of F in the sense of ¥'(R").
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FiGURE IX.1 The cones I', , and I'? ,.

Suppose that T € #’(R") and that the support of T is contained in [, ,
for some ae R" and B € (0, n/2). If T is given by a function T(x), then we
can directly extend T to the tube R" — iI'¥ ; by

T(A = in) = (2n)™"2 j ™A= x(x) dx
Fas

For n e I'} 4, the integral makes sense since

e~ 0=im) x| = g lnllx|costnx) < p=Ixldn)
where d(n) = |n| min, ¢ ar, , cos(n, x) = dist(n, 0T'* ,); see Figure IX.1. Since
T(x) is polynomlally bounded, the presence of the factor e~ X4 means
that we may differentiate under the mtegral 51gn We conclude that

T(2 — in) is analytic in the tube R" — iT* ; since it is infinitely differentiable
in the complex sense. Furthermore, if ¢ € #(R"), and no € Iy 4, then

j T(A — itno)p(d) dA = (2m)™"/2 j f e~il=itno) x(1)T(x) dx dA
R" R YT,

—75 ] #IT() dx = T(e)
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by the dominated convergence theorem. Thus, T is the boundary value of
T(A — in) in the tube R" — il* ,.

If T is not a function but is of the form P(D)G where G is a
polynomially bounded continuous function with support in T, ,, then we
can define

T(A — in) = (2n)""2P(i(A — in)) j e~ =i xG(x) dx

In the same way as above, one can then show that T(1 — i) is analytic
in R" — il’*, and that T is the boundary value of T(4 — in). Thus, we
wish to prove that every tempered distribution T with support in a cone
can be written T = P(D)G for some partial differential operator P(D) and
some polynomially bounded continuous function G with support in the cone.
To see that this is a strong statement the reader should recall that the
analogous statement for compact sets (rather than cones) is false. For
example, the delta function cannot be written as P(D)G where G has support
at the origin.

Theorem 1X.15 (Bros-Epstein—Glaser lemma) Let I' be a proper open
convex cone in R" and let T e #'(R") have support in I'. Then there
exists a polynomially bounded continuous function G with support in I and
a partial differential operator P(D) so that T = P(D)G.

Proof Let {e;};-, be a basis for R" consisting of vectors in I". Every vector
x € R" may be uniquely written x = Y /_, y;e; so that we may use {y;}l-, as
coordinates for R". Define

Fou(V1s -5 Ya) = (mO)7"VEV5 - yi0(y1) -+ 0(y,)

where 0 is the characteristic function of {x|xeR, x>0} Then
F,eC" '(R") and F, has support in . Furthermore, if Q(D)=
3"/dy, -+ dy,, then Q(D)"*'F, =6 as the reader can easily check. We
will show that for m sufficiently large, the convolution T « F,, is a well-
defined continuous function with support in I" and that Q(D)"* (T « F,,) =
T« Q(D)"*'F,,=T*d=T.

If beT, then I is contained in the interior of I' — b so we may find a
C* function ¥ that equals one on I' and has support in I —b (see
Figure IX.2). Since T € &'(R"), there is an N so that

|T(e)| = | TWe)| < C, ; % D* (o)
(<N

Bi<N
<G ¥ ( sup ‘xapa(p(x”) = llell
lajsN \xel—»

la| g N
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FIGURE 1X.2 The cone I' — b.

Thus, T has a unique extension, continuous in |||-|||,, to those C¥ functions
f for which (supp f) n (I — b) is compact.

Choose m = N + 1 and for y e R" define Fy, . ,(x) = Fy,(y — x). Then
Fy.y.,is a C function and (supp Fy,,, ;) n T — b is compact (see Figure
IX.3). Further, the map y — Fy, ., is ||| |ll,-continuous and polynomially
bounded in y (see Figure IX.2). Thus, G(y) = T * Fy,,(y) = T(Fy4y,,) is a
polynomially bounded continuous function and supp G = I since

(supp Fyy1,,)n =g  ifye¢l
Furthermore, if fe CF(R"), then
(f* G)y) = T((f* Fusr)y) (IX.11)

FIGURE IX.3 The support of Fy,,,,.
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and

DA(f* G)(y) = T((D » Fy.1);) (IX.12)

These formulas are analogous to those in Theorem IX.4. Both may be
proven by writing approximate Riemann sums for the integrals on the right
and then observing that the approximate Riemann sums converge in |[||-|||,-
If we now let j,(x) be an approximate identity, then by the proposition at
the end of Section IX.1,

Q(DY'**G = liln; Q(DY**(j. * G)
[by (IX.12)]

= lim T(QOY* %, Fy- )

(by Theorem [X.4)
= lim T((j,» QDY *Fy. .5

= lim T((jz)y)
el 0

=limj,sT=TJ
ARy

Theorem IX.16 Let T be a tempered distribution with support in the
cone I, ,,aeR", 0 <6 <n/2. Then T is the boundary value in the sense
of #'(R") of a function T'(1 — in) analytic in the tube R" — iT'* ,. Moreover,
T(% — in) satisfies the estimate

|7~ )| < |P(L— in)|(1 + [dist(r, T2 )] (X.13)

for a suitable polynomial P and positive integer N.
Conversely, suppose F(A — in) is analytic in R" — i’y , and satisfies the
weaker estimates:

(i) For each 5o e I'y,, there is a polynomial P, in 2n variables so that

|F(4 — i(no + n))| < | Py(4 1)
forall le R"and neI¥,.
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(i) There is an integer r > 0 so that for each noeT'},, there is a
polynomial @, so that

for all ze R" and t € (0, 1].

Then there is a tempered distribution T with support in the cone T, , so
that T is the boundary value of F(4 — in) in the sense of &’(R"). Moreover,
F can be recovered from T by the formula

N
F(- —ig)=e " >T (IX.14)

Proof Suppose that T € ¥'(R") and supp T < T, ;. By the Bros-Epstein-
Glaser lemma, there is a polynomially bounded continuous function G with
support in ', , so that T = P(D)G for some partial differential operator
P(D). From the discussion before the lemma, we already know that T is the
boundary value of the function

T(4 = in) = (2r)~"2P(i(A — in)) j ~ia~in - xG(x) dx

e
R"
Thus,

| T2 = in)] < (27) 2| P2 ~ in)| [_e™14®|G(x)| dx

< C|P(A ~ in))|(1 + (d(n))™)

since G(x) has support in I', , and grows no worse at oo than |x|¥ " for
some N. This completes the proof in the first direction.

Conversely, we suppose that F(4 — in) is analytic in R" — i['* ; and that
the estimates (i) and (ii) hold. The proof is in several steps. First we show
that F(A — itn) has a tempered distribution 7, as boundary value as ¢ | 0.
Then we show that the limit is independent of #. Finally we show that T
has support in T, ,.

For each fixednoe I'} ,,0 <t < 1, F(1 — itny) is a well-defined distribu-
tion in &(R") which we denote by 7, , . Let § € #(R") and set

h)= | FO = itmoly(2) dd = T, 1 (9)

Then,

di d\’
)= [ = ino) i~ 55 w2y
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so,

| Qo)L + [4]Y ] (ino - 0/04)4 (4)]
ll’

‘ he) (IX.15)

< Csup
A

where k has been chosen large enough so that g« (1 + [4])™* d4 converges.
Let p =r + 2. Then, by the fundamental theorem of calculus,

h(zl)=—j:j':---j:_l(g;h(z,)) dt, -+ diy + h(1) + ZQ,(t ( )(1)

where the Q; are suitable polynomials. The estimates (IX.15) show that the
limit of h(z,) exists as t; | 0 and that each term in the limit is less than or
equal to a constant times an &(R")-seminorm of y. Thus F(4 — itn,)
converges in ¥'(R") as t [ 0 to a tempered distribution which we will
denote by T, . Now suppose that 7,, 7,eT*, and that y(x) is in
CF(R"). Then

Tonl) = F(d =ity + itln = na)Ww(2) di
= |_FO. = ion2}b(3 — it(n; = m,))

=T, ) 7 P(3)

where we have used the fact that (1) is entire and the estimates on (1)
in the Paley-Wiener theorem to shift the hyperplane of integration in the

second step. Since § e C3(R"), m Z®, ¢ as ¢} 0. Thus by
Theorem V.8,

T;y ’h(e_l('“ _'“) l xl/;(x)) - Tbv 'lz(l//)

and therefore T, (¥)= ’Ib,,(d/) Since such y are dense in Z(R"),
76.,, = 7},,, Thus, the limit of T as t | 0 is independent of n4; we
denote the limit by T

We have shown that F(4 —in) has a tempered distribution 7' as a
boundary value. It remains to prove that its inverse Fourier transform T
has support in T, , and to verify (IX.14). Let 5, eT*, be given and
suppose that ¢ e CF(R") has compact support in the open half-space
{x | ny - x < 0}. Then there is & > 0 so that x € supp ¢ implies n, ' x < —e.
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FIGURE I1X.4 The support of ¢.

See Figure IX.4. It follows that ¢ is entire and that for each N
|$(2 = isny)| = | @m) ™2 [ _eld=ion) xp(x) dx|
R

CN e_SE

for some constant Cy . Furthermore,

~

T;. ,,,((P) = T; 'l|(¢)

| P~ itn,)p(4) da

| F(L =it + sn)p(2 = isn,) d2

by Cauchy’s formula. Thus, if we use the hypothesis (i) and choose N large
enough in the estimate (IX.16), we find that for arbitrary s > 0,

i’I;, ’ll(¢)| < Ce_-“



IX.4 [’ Estimates 27

and thus T; , (¢) = 0. Therefore, the support of T;, is contained in the
half-space {x | , - x > 0} for each ¢t > 0. Since T; ,, - T ast | 0, we conclude
thatsupp T < {x | n, - x > 0}. Since I, , is the intersection of the closed sub-
spaces {x |n, - x >0} where n, runs through I'},, we see that supp T
=3 P

Finally, suppose § € C¥(R") as above. Then

j F- in)W(A) di = j F(t — isn)p(t — (s — 1)in) dt

- T )
= (e *T)()
= (7T (y)

This proves (IX.4) and completes the proof of the theorem. |

We will use this theorem in our study of axiomatic quantum field theory
in Section 9.

IX.4 I’ Estimates

There are a large number of IP-estimates on Fourier transforms and
convolutions. These estimates are useful because they give conditions on p
and g so that the Fourier transform or convolution by a given function is a
bounded map from I? to I4. The proofs of the estimates typically require
delicate use of I?-interpolation theorems. In this section we state several
IP-interpolation theorems and give examples to show how they may be
used to derive estimates. In the Appendix, we prove the first of these
theorems (Theorem IX.17) and use the idea of this proof to prove a variety
of other interpolation theorems not used in this section.

The simplest I?-interpolation theorem is:

Theorem 1X.17 (The Riesz-Thorin theorem)  Let (M, u) and <N, v) be
measure spaces with o-finite measures, Let 1 < pg, p;, g0, 41 < 0 and
suppose that T is a linear transformation from I7°(M, du) n IP(M, du) to
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[5o(N, dv) n I2(N, dv) which satisfies |Tf|,, < Mol /|, and TS|, <
M,|f],,- Then, for each fe Ifo ~ I?, and each te (0, 1), Tfe I* and
ITfllg < Cll S, where p7 = tpy* + (1 —t)pg ' g ' =gy ' + (1 — t)go
and C,= M§™'M\.

Notice that if the hypotheses of the theorem are satisfied, then T can
be extended by the B.L.T. theorem to be a bounded map from (M, du)
to (N, dv). The Riesz-Thorin theorem says essentially that the set of
{p~',q" ') so that T: I?(M, du) - I}(N, dv) is bounded is a convex subset
of the plane and that on that subset the logarithm of the norm of T is a
convex function. The Riesz-Thorin theorem is a special case of the Stein
interpolation theorem which is proven in the Appendix at the end of this
section.

We have already given one application of this theorem in Section 2
(the Hausdorff-Young theorem). Here is another:

Example 1 (Young’s theorem and inequality) When f and g are in
& (R") we defined the convolution by the formula

(f* 9)x) = [ 1(x — y)g() dy (IX.17)

Suppose p~!'+ g '=1. If fe’(R") and ge I)R"), then the integral
converges absolutely for all x by Holder’s inequality. Thus we can use
(IX.17) to define f x g when fe I?, g IZ. Note that || f* g|, < | f]l,lgl,-
Next, suppose that f, g € L'(R"). Then

[[ 156 = gl dx dy= [ /I lgll,

so by Fubini’s theorem the integral in (IX.17) exists a.e. in x, and the
function f x g (defined a.e.) satisfies || fx g||; < || /].]lg]l;- We can now use
the Riesz-Thorin theorem to define the convolution on other I? spaces.

Suppose that f'e L'(R"). Then Ty(g) =f* g is a bounded operator from
L'(R") to L'(R") (of norm less than or equal to | f]|,) and from L*(R") to
L°(R") (of norm less than or equal to || f|;). Therefore, by the Riesz-
Thorin theorem, T;: I(R") - I?(R") and has norm less than or equal to
| f]l;- Now fix g € I’(R™). Then

T L®)-I®),  |T[ <ldl,
T, BR) - LR,  |T,] < g,
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We now use the Riesz-Thorin theorem again to interpolate between 1 and g
concluding that T,: L(R") — E(R") with norm less than or equal to ||g|,
wherer"! =1 —tp~'and s ! = (1 — t)p~!. Eliminating t, we find that for
1<p,rs, <co,satisfyingp™! +r 1 =1+5s"1,

17+ gls < 1f 119l

This is known as Young’s inequality.

It is sometimes important to know that the extended convolution from
I’ x I’ to £ which we have just defined by using the Riesz-Thorin
theorem can still be computed a.e. by the integral formula (IX.17). The
proof, like the extension, is in two stages. Let p~! + g~! = 1 and suppose
that f'e I, ge !, and h € I%. We may assume without loss that f, g, and h
are positive. Then

J )] = o) ) e = [ o[ 1= 30 )

< /1Ml [ (y) ay

= [/ 1:1Allalgll,

Since this holds for all such h, the integral [ f(x — y)g(y)dy converges
a.e[x] and is in I? with norm less than or equal to | f||,|lg| ,- But the map
f=Jf(x = y)g(y) dy agrees with the convolution for all fe I' n L®, so it
agrees on all of I?.

Now, we use the same trick again. Let p~! +r~' =1 + s~ ! and suppose
that fe I, ge L and he L' n ' where s’ = s(s — 1)~ . Then, using the
Holder and Young inequalities we have

J a0 [ 76 = 9htx) )

< gl 7+ &
< gl 71020

since by the first part of the argument the integral represents the convolution.
Thus, by Fubini’s theorem g(y) f (x — y)h(x) € L'(R" x R"), and as a function
of y, g(y)f(x — y)h(x) e L} (R") for almost all x, and

J Hea] 1= y)a0) o) e < b 1 1

Since h € L' n ' was arbitrary, we conclude that f(x — y)g(y) e L}(R") as a
function of y for almost all x and [ f(x — y)g(y) dy € E(R") with norm less

1
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than or equal to || f||,llg]l,. Therefore, since the bounded maps g—f* g
and g - | f(x — y)g(y) dy agree on L' ~ L, they agree on L.

There is a classical result of Hardy and Littlewood which says that if
pl4+4q'4+41=21<1,and p, q> |, then

[[1/(g)1x = y|™* dx dy < 0 (IX.18)
RZ
if fe I’(R), g € (R). This is a strengthening of Young’s inequality, since
Young’s inequality can easily be transformed into the statement that if
pl4r 44 =2 then

| [[f)g)h(x = y) dx dy | < o

RZ
if fe IP(R), g € E(R), h e I4(R). (IX.18) is a strengthening of this inequality
since |x|™! ¢ L'(R) and therefore |x|™*¢ I2”'(R). In order to deal with
situations like this it is useful to introduce classes of functions which are
barely not in the I¥ spaces.

Definition Let (M, u) be a measure space, u a o-finite measure. A
function fon M is said to be in weak-I?, written f'e LZ(M, dy), if there is a
constant C < co so that
,u{x||f(x)|>t}sCt"’ forallt >0
If fe L?, we write
1S 05w = supeulx || £(x)] > &)

Notice that |||, ,, is not a norm since it does not satisfy the triangle
inequality. The name weak-I comes from the fact that I’ < L? and
[ f1l,.w < | /], (see Problem 24). Further, fe I? if and only if

f:“{x||f(X)|> P dt < oo

This integral is at worst logarithmically divergent if fe L?.

Example 2 The function |x|™™? from R" to R has p{x||f(x)| > t} =
c,t” P where c, is the volume of the unit ball in R". Thus f'is in LZ(R", dx)
but fis not in I!(R", dx) for any gq.
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We state without proof two interpolation theorems about weak-1? spaces.
The proof of Hunt’s theorem is outlined in the problems. References are
given in the notes.

Theorem I1X.18 (Marcinkiewicz interpolation theorem)  Let (M, u> and
{N, v) be o-finite measure spaces and 1 < p, < go < 0, 1 < p, < g, < 0,
go # q;- Suppose that T is a linear transformation satisfying T': I?o(M, du) —
L3(N, dv) and T: I\(M, du) — L%(N, dv) with

I T¢lge.w < colllls,
1 T¥ g, w < el

for all @ € IPo(M, du), § € I?*(M, dy). Then, for any t € (0, 1), T extends to a
bounded linear transformation from I?(M, du) to I#(N, dv) where
prl=tpi' + (1 —t)p;tand g ! = tg; ! + (1 — t)g5 !. The bound depends
only on t and the ¢, g;, and p,.

Theorem 1X.19 (Hunt’s interpolation theorem)  Let (M, x> and {N, v)
be g-finite measure spacesand 1 < p; < p, < 0, ! < g, < go < 0. Suppose
that T is a bounded linear transformation from IPo(M, du) to Lfo(N, dv)
and from I?1(M, du) to IZ*(N, dv). Then for any t € (0, 1), T extends to a
bounded linear map of L2(M, du) to L%(N, dv) (p, and q, defined above).
Moreover, | Tf ||, w < C/|| f |5, w where C, depends only on t, p;, ¢;, and the
bounds at the end points.

We remark that the Marcinkiewicz theorem is the deepest interpolation
theorem since it turns “weak” information into strong information. The
reader is cautioned to remember the p < g condition (see Problem 77 for an
example of the trouble that can be caused by forgetting it). Notice that we
do not have the logarithmically convex bound in either of the “weak”
theorems as we did in the Riesz-Thorin theorem.

As an application of how to use these theorems in tandem, we will prove
a generalization of the Hardy-Littlewood inequality.

Example 3 (Sobolev’s inequality) Let 0 <A<n and suppose that
SeB(R"), he LR with p™' +r '+ An"'=2and 1 < p, r < co. Then

FONRO) o m
LA sy < 1018 1x.19)

To prove this we need the following extension of Young’s inequality:
If 1<p, r, s<oo, pl+rt=s"1+1 felI’(R"), geL,(R"), then
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f*geL(R")and | f* gl < C| fl,llgll,. - First fix fe I?(R"). Then Young’s
inequality (Example 1) shows that T,: L(R") - L(R") where Ty(g) =fxg
and 1 <r < p'. Choosing first r =1 and then r = p’ and using Hunt’s
theorem we conclude that for 1 <r < p', T,: L (R" - L;,(R") is bounded.
Now, we fix g € L (R"). We know that T,: I?(R") - L;(R") is bounded for
p and s suitably related and p < s. Using the Marcinkiewicz theorem we
conclude that f x g € L(R"). Sobolev’s inequality follows directly from this
extended version of Young’s inequality.

Table IX.1 summarizes some of the most important I? inequalities on R”.
There are also IP estimates involving derivatives which we discuss in
the Notes to Section IX.6.

TasLE IX.1
Name Conditions Inequality
Holder l<pgr<o I fall. < 1/ 11als
pl+qg =yt
Hausdorfl-Young 1<p<?2 171, < @)=Y 1],
pTl+qg =1
Young 1<pgr<om 1/ *gl < 1/ 1509l
pt+qt=1+r""!
Generalized 1<pgr<ow 1S gl < Cooll Flllgla w
Young p gt =14r7!
Weak l<p<2 17 Ng.w < Coal £l
Hausdorfi-Young p™'+q '=1
Weak Young l<r,ps<owo ”f" g"r ws p‘q”f“p.w”g”q‘w
p—l +q—l =1 +r-l

Appendix to IX.4 Abstract interpolation

In this appendix, we prove an abstract interpolation theorem and then
give several applications including a proof of the Stein and Riesz-Thorin
theorems. Before turning to the abstract theory we present two propositions
which illustrate the basic idea behind interpolation.

Proposition1 Let 4 and B be matrices on the inner product space C”
with 4 > 0. Suppose that |AB| < 1 and |BA|| < 1. Then |4'?BAY?|| < 1.
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Proof Suppose that Proposition 1 is true for all A > 0. Then we can prove
the proposition for all 4 > 0 as follows. Given 4 > 0 and the conditions
|AB|| <1, |BA|| <1, let ¢>0 and define B = B(1 +¢|[B|)"*. Then
[(4+¢c)B| <1 and |B(A4 +c)| <1 Since A + ¢ >0 we conclude that
(A4 + ¢)'*B'(4 + ¢)"?| < 1. Letting ¢ | 0 we conclude that

”AI/ZBAUZ” < 1

Thus we may assume that 4 > 0.

How shall we turn information about AB and BA into information about
A'2BAY27 Since A* is a well-defined self-adjoint operator, it is natural to
introduce the function F(x) = A*BA'~* We then notice that F(x) has an
analytic continuation, F(z) = A*BA"'"* = e¢?!°84Bell-7)!8 4 o the entire
complex plane. Thus, the hypotheses of Proposition 1 tell us that the
particular matrix-valued analytic function F(z) has the properties
| F(0)| < 1and ||F(1)]| < 1. We must use these inequalities to conclude that
|F@&)| < 1. To do this we use a classical result in function theory due to
Hadamard:

Lemma (Hadamard’s three line theorem) Let ¢(z) be a complex-valued
function, bounded and continuous on the closed strip {z|0 < Rez <1},
analytic in the interior, satisfying

lo(z)] < My if Rez=0
and

le(2)] < M, if Rez=1
Then |@(z)| < M~ Re*M¥e= for all z in the strip.

Proof We may take M, = 1= M, since we can always replace ¢(z) by
@(z)M% M7 We must show that |¢(z)| < 1 in the strip. If ¢(z) -0 at
oo in the strip, then |@(z)| <1 by the maximum modulus principle.
Otherwise, consider ¢,(z) = ¢(z)e*/"e =" Since ¢(z) is bounded, @,(z) - 0
as z— oo in the strip. Thus, |@,(z)| < 1 everywhere in the strip since
|@,| < 1 on the boundary. This is true for all n, so |¢(z)| <1 since
e?/me=1n 5 1 asn— 0. |

Hadamard’s theorem holds for Banach space-valued analytic functions by
the same proofs. We will use this extended theorem without comment. We
can now easily prove Proposition 1.
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Conclusion of the proof of Proposition 1 If y e R, then e84 is unitary, so
|e 18 4| = 1. Thus, on the line Re z = 0, we have ||F(z)|| = |BA|| <1 and
on the line Rez=1, we have |F(z)]| =|AB| <1 Moreover, for
0<Rez<, |F(z)]| < (1 +||A])?|B|. Thus, by the three line theorem,
[F(z)|| <1 for all z in the strip 0 < Re z < 1. In particular, |F3)[| < 1. I

The reader is invited to find a proof of Proposition 1 which does not use
interpolation (Problem 51). The three line theorem aiso gives an easy
proof of Holder’s inequality:

Proposition 2(Holder’s inequality)  Let (M, u) be a measure space and
suppose that fe IP(M, du) and ge (M, du) where p~* + g~ ' = 1. Then
Jge L(M, dp) and || fa; < [ f{l,llgll,-

Proof 1t is sufficient to prove Hdlder’s inequality in the case where fand g

are nonnegative simple functions (finite linear combinations of characteristic
functions of disjoint measurable sets of finite measure). Let

F@) =] f7g" " du

Then F(z) is continuous and bounded on the strip 0 < Re z < 1 and analytic
in the interior. If Re z = 0, then

|F) < [r7%g | dp= [ |g[* du = |g]l3

and if Re z = 1,
@) < [1rog 2 dp= [ | f1Pdu=| ]2

Thus, by the three line theorem |F(x)| < [|g]s* 2| f]|2* for al 0 < x < 1.
In particular for x = p~! we conclude that

1
F(E) = J.Mfg dp < gl I /1, 1

The Hadamard theorem lies behind a general approach to interpolation
theorems using complex methods (for other approaches, see the references
in the Notes). Our discussion is divided into two parts. First we show
that if X is a vector space with two norms ||'|© and |-|* obeying a
consistency condition, then it is possible to define a natural family of
Banach spaces {X, |0 < t < 1} which interpolate between X, and X,, the
completions of X in ||-| and ||-||'". The abstract interpolation theorem
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then follows easily; namely if {X,} interpolates between X, and X, and
{Y} interpolates between Y, and Y,, then any map T which is in
ZL(Xo, Yo) and in £(X,, Y;) extends uniquely to a bounded map of X,
into Y, for each t. In the second part we illustrate how the abstract
theorem may be applied in specific cases. In particular, we will prove the
Stein interpolation theorem, for which the Riesz-Thorin theorem is an
immediate corollary, and several other interpolation theorems. The difficulty
involved in the special cases is the concrete identification of the spaces {X,}
and {Y}.

Definition Let X be a complex vector space. Two norms |- [‘® and
[ <Y on X are called consistent if any sequence {x,} that converges to
zero in one norm and which is Cauchy in the other norm converges to
zero in both norms. If |- and || ||*? are consistent, we define

x|+ = inffly|©@ + 2| x = y + 2}

Proposition 3 Let |- and |-||’ be consistent norms on a complex
vector space X. Then:

(@) ]|+ is a norm.

(b) If X,, X,,and X, denote the completions of X under ||-||®, |- |,
and [|*||,, then the identity map on X extends to a continuous injective
map of X, into X, and of X, into X,

Proof Suppose that x € X and | x|, = 0. Then there exist y, and z, such

that x = y, + z, and y,-%0, z,-%0. But then Yn=X—2, —>' " x, so

X = 0 by the consistency of the norms. This proves (a).

Since |||+ < ||-[|°), the identity map 1 extends uniquely to a continuous
map of X, into X, Suppose that x € X and 1(x) = 0. Then, there exist
X, € X such that x, — x and x,, ~,0. The second statement lmplles that
there exist v,. z,€ X so that x, =y, + z,, y,,LI—“>0 and z,,——»O Thus,

"1 )

5= X, — Yo — x. Since || and ||-|) are consistent, z,--0, so

11 Xo — X, 1s injective. The proof for X, is the same. |

The converse of this proposition is also true: namely, if |||, is a norm
and the extensions of i are injective, then |- || and |- |*) are consistent.
The reader can familiarize himself with consistent and nonconsistent norms
by doing Problem 34. The space X, N X; may be strictly larger than X,
but if we replace X by this larger space and repeat the above construction,
we obtain the same X,, X, etc. We henceforth suppose without loss that
X =X, N X,
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Let S denote the closed strip {ze C |0 < Re z < 1}, S° the interior of S,
and let ||| and ||-|*" be two consistent norms on a complex vector
space X. We define #(X) to be the set of continuous functions f from § to
X ., which are analytic in S° and which satisfy:

@) if Re z = 0, then f(2) € X,and ¢t — f(if) is continuous in |- | ®; if Re
= 1, then f(2) € X, and ¢t — f(1 + if) is continuous in [+ |,
(ii) supllf(z I+ < o0;

(iii) |||f||| = supfllf (i) WS+ i)} < oo,

Proposition 4

(a) £ (X) with the norm ||| - ||| is 2 Banach space.
(b) For each t € [0, 1], the subspace

K,={feFX)| r(t) =

is ||| - |||-closed.
Proof ||| - ||| is clearly positive, subadditive, and positive homogeneous. By
the three line theorem and the estimates |||, < ||-|?, i =0, 1, we see that
suplf@) . < sup S+ <|IfIl (1X.20)
zeS Re z2=0, |
Thus ||| f||| = O implies that f=0, so ||| - ||| is 2 norm on & (X). To see that

F(X) is complete, let {f,} be a Cauchy sequence in & (X). By (IX.20), the
functions converge uniformly to a bounded continuous function f on S. By
the uniform convergence, f is analytic in S° and satisfies properties (i), (ii),
and (iii). This completeness argument also shows that each of the subspaces
K, is closed. |

We now define
X, =F(X)K,, 0O<t<l

We will denote the quotient norm on X, by | -||®. Notice that X may be
identified with a subset of X, under the map which takes each x € X into
[x] the equivalence class of the constant function whose value is x. Further,
X, may be identified with a subset of X, under the map which takes an
equivalence class [ f] into the common value of its members at t. This
map is clearly injective and the following computation shows that it is
continuous: Let [ f]€ X, and x = f(t). By (IX.20), ||x||+ < [||f||l- Thus

Ixll+ < inf{{l 1l £ € & (X). f(6) = %} = LA
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We now define X, to be the completion of X in the norm ||-||. Thus, the
spaces we have defined are related as follows:

XoX,-X X,

where each — is a continuous injective map. For t = 0 (respectively, t = 1),
X, is just the space X, (respectively, X ,) which we started with. To see this,
let xe X and let || - |9 denote the original zero norm. If fe #(X) and
/() = x, then

x| < igg{llf I 1@+ i@} = [l

SO,

Ix1 < inf{lL71ll| £0) = x}

Conversely, let ¢ >0 and consider f,(z) = e”“x. Then, || f(iy)]|® = ||x]
and sup,cg || fi(1 + iy)|*" can be made arbitrarily small by choosing ¢
large. Thus

0)

Ixl© = inf{lll7[ll | £(0) = x}

ic., the quotient norm is just the norm |-|@ previously defined. The
proof for t = 1 is the same. The spaces X, are called interpolation spaces
between X, and X, and the norms ||| are called interpolating norms
between ||-{|? and ||-|*.

We remark that it is possible (though not easy, see Problem 37) to prove
that X, = X,, but we will not need this fact. We need to know only that
the norm on X, is equal (by definition) to the quotient norm on
Z (X)/K,. Later in the examples when we will have to identify X, with a
given Banach space B,, we will always do this by showing that both X, and
B, are the completions of X in the same norm.

Theorem 1X.20 (Calder6n-Lions interpolation theorem) Let X and Y
be complex vector spaces with given consistent norms |- | and |- |{ on X
and ||'||{* and ||||{"’ on Y. Suppose that T(-) is an analytic, uniformly
bounded, continuous, £(X ,, Y, )-valued function on the strip S with the
following properties:

(i) T(t): X — Y foreachte (0, 1)
(i) Forall yeR, T(iy)e L(X,, Yo) and

MO = sup|| T(iy)”-?(xo, Y,) < ©
yeR
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(i) ForallyeR, T(1 +iy)e £(X,, 1) and
My = sup| T(1 + ip)l «qx, 1) < o
y€

Then for any te (0, 1),
TH[X )< Y,

and
1T 2ex, vy < Ms™'MY

Proof Let U(z) = My 'M;*T(z). Then U(-) obeys the same properties as
T(*) except that the bounds on U(z) when Re z = 0 and Re z = 1 are equal
to one. Thus, without loss of generality we may assume that M, = M, = 1.

If fe #(X), then T(z)f(z) is a continuous, bounded Y, -valued function
on S, analytic on S°. By hypotheses (ii) and (iii),

IT @) S < | £ L
IT(1 + i) f(1+ i)l < [ £(1 +iy)]§°

for each y € R. Thus, the map J: #(X) > £ (Y) given by (Jf)(z) = T(z) f(2)
has norm less than or equal to one. Furthermore, if

K,X={fe§*'(X)|f(t)=0} and ={fe F(Y |f

then J[KX] < KY. Thus, J lifts to a contraction J,: X, — ¥,. Since J, acts on
equivalence classes by J[f] = [T(t)f(t)], we see that .7 equals T(¢) | X,
under the natural identification of X with a subset of X, . Finally, since
Te):X-Y, THX]<Y,. 1

We now present several examples which show how to apply this abstract
interpolation theorem.

Example 1 (I? spaces) Let (M, u) be a o-finite measure space and
suppose 1 < py<p, <o0. Let X =I(M, du) (M, du) and let
I = e 1= Iy, We will show that X, = I5(M, dy), 0 <1 < 1,
where p; ! = tp; ! + (1 — t)pg !, except when p, = o0 in which case at t = 1,
X, is the closure of X in the || ,-norm (which may be smaller than
L°(M, du)). The proof consists in showing that the ||-|“-norm and the
|-||,-norm agree on the simple functions which are dense in X. Let
te (0, 1) and let ¢(x) be a simple function with ||¢|, = 1 and define

flz)= |<0( )lp.(zp.“ +(1-2)p," ") exp(i arg ¢(- )
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Then for each z € S, f(z) € X, and

R e E 7O

= | letp dutx) =1
If py = oo, | f(1 +iy)||, =1 and if p, < o0, then

||f(1 + ’y)”l’}l(M‘ )= .[MI |(p(x)|P:P|((l+iy)Pf’_.iypo'l)l d#(x)

= | lo()l du(x) = 1

Therefore, || f|l| = 1, so | ()| = || f|#xyx, < 1. Since the value of f at
tis ¢, we have |@]|® < 1. Thus, we have shown that |¢||® < |¢||p for all
simple functions ¢.

To prove the converse inequality, let fe #(X) and let ¢ be a simple
function on M. Let

= |(p(-)|4:(zqn"+(1~Z)4o")exp(i arg (- ))

where g7 '=1—-p L. Then since f(z) is analytic and bounded as an
X_,_-valued function, H = {mf(2)g(z) dp is analytic and bounded in S and
H(t) = | of (t) du. By the three line theorem,

|H()| < ig%{lH(iy)l, [H(L + iy)|}

< sup{|| f(i)g(@y)le, | £ (1 + iy)g(t + iy)llc}
< :‘:%{”f(iY)"m”g(iJ’)”my [£(1+ ip)|e ] g(t + i) e}

< Sup{ll £ (@y)lees 17 (1 + iy)]| 2 })(sup{llgiy)] ssos 19(1 + iy)] 12:})
= 111l [llglll
= ||l 171

by the above computation. Note that the above triple norms are different:
one is obtained from IP° and I, the second from I to I9. Since

| [ er@du|<lelalisll
we conclude that fe I and

17 @ < AN
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It follows that for ¢ simple and fe ¥ + K,:
[ =inf [/l
Jey+K,

> ||

Thus the norms |-, and |-|* agree on simple functions. Since
X = IP* ~ ' and the simple functions are dense in X, and I?, we conclude
that X, = [P

1

Combining the fact we have proven, namely I# = X,, with the abstract
interpolation theorem we obtain:

Theorem IX.21 (the Stein interpolation theorem) Let (M, u) and
(N, v) be o-finite measure spaces and 1 < py, p;, 4o, g1 < 0. Suppose
that T'(-) is a continuous &L (IP«(M, du) + IP{(M, dy), (N, dv) + L%(N, dv))-
valued function on the strip $={z|0 < Rez < 1} which is uniformly
bounded, analytic in the interior, and which satisfies

() T Doenr—>onLhforallzes.

(i) For all ye R, T(iy) € L(I2o(M, du), (N, dv)) and

Mo = Sl.lp“T(l‘y)“g(Loo’ 190) < 00
yeR

(iiif) For all ye R, T(1 + iy) e £ (I?(M, du), (N, dv)) and
M, = sup| T(1 + iy)l| £z, ) < 0
yeR
Then for each t € (0, 1)
T(t): (M, dy) — I%(N, dv)
and
1T () eqee, ) < Mo ™M}
where p; ' =tp7 '+ (1—t)pg ', g ' =tgr ' + (1 —t)ge "

Using the fact that X, = X it is possible to remove condition (i) from both
the Stein and Calderon-Lions theorems. We also remark that the conclusion
of the theorem still holds if only the weaker analyticity assumption, that
v (T(2)@)(yWW(y) dv(y) is analytic for all simple functions ¢ and y, is
assumed to hold. The Riesz~Thorin theorem is an immediate corollary of
the Stein interpolation theorem for we just take T(z) = T for all z.
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Example 2 (#,) Let 5 be a separable Hilbert space. Recall that the
trace class .#, is the set of A € £(#) so that tr(|4|) < co and that ¥, is
the dual of the compact operators Com(#’) (Theorem VI.26). For
1 < p < o0, we define

S, ={AeL(H)||APe s}

and set |[A|, = (tr(|4|"))"?. For p=co0, we set .$, = Com(#) with
|Allo = ||A]l-If| A" € #,, then by the Riesz-Schauder theorem (Theorem
VL15) a(|A[")\{0} consists of isolated eigenvalues of finite multiplicity. It
follows that | 4| is compact so A = U|A| is compact since Com(#) is an
ideal of £(s#). By Theorem VI.17, A may be represented as A =
YNt Al¥n, * )@, where {i,} and {g,} are orthonormal sets and the 1, are
the singular values of A (nonzero eigenvalues of |A|). Thus,
N

N
41= SAn W and AP = T2, Wy

n=1

SO

N lp
I, = 4P = 3 2]

That is, 4, is just the set of compact operators whose singular values are
in /, and the norms are equal. This remains true even if p = 0.

Proposition5 Let 1<p<oo and q7'+p '=1 If Ae s, and
Be #,, then ABe $, and ||4B|, < | 4| ,|B,-

Proof For p=1, gq= oo, this is just Problem 28 of Chapter VI. For
1 < p < oo, the proof is similar to the proof of the Holder inequality
given in Proposition 2: Let A = U|A4| and B= V|B| be the polar de-
compositions of 4 and B and define

F(z) = tr(U|A|™V|B[*'~?)

F(z) is bounded and continuous on the strip S ={z|0 < Rez< 1} and
analytic in the interior. Since |A|” is unitary on the line Re z=0 and
| B]** =2 is unitary on the line Re z = 1,
[P = lieU] AP | B[ B9
< te(|Bf) = | B];
[F(L+iy)| = (U] 4| A[>V]B]"™)]
< tr(l4p) = [4]3
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We have used the properties of the trace that tr(CD) = tr(DC) and
|tr(CD)| < ||D| tr(C) if C = 0. Thus, by the three line theorem |F(z)| <
4] 2% B]|&* = for all z in (0, 1). In particular, for z = p~*, we find

1
|tr(AB)| = IF(E)
Suppose that A = U|A4|e £, and define B=|A|°~'U*| 4], 7. Then
|Bll, = uf| ||~ "U*[T ) A 2

= tr[(UlAlz“’_ 1)Ut)q/2]l/q“A||;p/q

— tr[UlAP“’_ l)U*]llq”A”;p/q

— tr[|A|q(p—l)]llq”A”;plq

=1

since Ker U = Ker 4. A similar computation shows that tr(4B) = |A4],.
Thus, by Proposition 5,

< |4l,18l, B

|41, = sup Jur(4D)]

Now, suppose that 4 and C are in .#,. Then
|4+ Cll,= sup |tr((4 + C)D)|
IDj=1
< sup |tr(AD)| + sup [tr(CD)|
[Df,=1 Dle=1
= ll4ll, + <,

Thus £, is a vector space and ||, is a norm on £ .

Proposition 6 Let 1 < p < . Then

(a) 4, is a Banach space with norm |-|,.

(b) 4, < #,< Com(s#)and £, is the closure of the finite rank operators
in the norm |||,

) fAes,, then A* e S, and |4*|, = |4],.

Proof For p = oo, (a), (b), and (c) are standard properties of the compact
operators. So, suppose 1 < p < oo. For any sequence {4},

Mo < {2, < 1AM

SO
Il < ll4ll, < [ 41

Thus any Cauchy sequence {4,} in £, converges in the uniform norm to a
limiting operator A. The reader can easily check for himself that Ae s,
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and |4, — 4|, 0. Therefore, .#, is complete in the norm |-[,. As
indicated above, each 4 € .#, is compact and 4|, = [[{4.}]|,, where the
{4,} are the singular values of A4 in the representation 4 = Y2, 4,(¥,, " )@,
Thus, the finite rank operators Ay = Y ., 1,(¥,, ‘)@, converge to A in
the ||||,-norm. The inclusions %, « .#, = Com(#) follow immediately
from the above inequality. This proves (a) and (b).

To prove (c) we observe that 4 and A* have the same singular values. ||

Proposition7 Ifl<pg<owandp™'+¢ '=1thens*=70,.

Proof Proposition S and the remark thereafter show that for each A€ .#,
the map B—tr(4B) is a bounded linear functional on ., of norm
[A4ll,- Conversely, let Ae.#% Then since |4, < ||4];, Ae.F} so by
Theorem V1.26 there is an A € £ (o) so that A(B) = tr(AB) for all Be .# .
We want to show that 4 € .#,. A may be written D + iC where D and C
are self-adjoint. Since

|tr(4*B)| = |tre(AB*)| < | A|l [B*], = | All | B,
we have

|tr(DB)| < [A[ Bl [tr(CB)| < [|A] |1 Bl
Thus it is sufficient to prove that A € ., in the case where 4 is self-adjoint.
Let a > 0 and E(a, o) be the spectral projections of A4 corresponding to

the interval (a, o). Suppose E(a, o) is infinite dimensional and let {¢,}
be an orthonormal basis for E(a, o). If we define

(a5

n=1 n?

where P, is the projection onto ¢,, we have | By, = 1. But

AB M a M 1 ~lp M-
tr - — —_
(4Bu) 2 (ngl ") (n=21 "p) *

which contradicts the fact that |tr(4B,)| < |A[. Thus, E(a, o) is finite
dimensional and a similar proof shows that E(—co, —a) is finite dimen-
sional. It follows that 4 is compact and therefore may be represented as
A=Y%, pu,Py, for some orthonormal set {y,}. If {y}*., is any finite
sequence so that (Y'Y |y,[F)!” = 1, then B, = Y} y, Py € #, and

M
Y Ynbtn
1

so {uyet, since £,=¢r Thus, (tr(|A["))"2=(} |p.]9)'" <o and
Aes, . 1

= [tr(4By)] < [[A]
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Proposition 8 Let1 < p, < p, < oo and define X = #, . Then ||-|© =

|15, and |-V = |- }|p are consistent norms on X and X #p, where
po=tpr' + (1 —t)po .

We omit the proof of Proposition 8; it is almost identical to the proof
in Example 1 except that the decomposition ¢(x) = |¢(x)| exp(i arg ¢(x)) is
replaced by the decomposition A = U|A| and the integral is replaced by
the trace.

Theorem 1X.22 Let s, and s#, be separable Hilbert spaces with
corresponding spaces £}, #{? of operators. Suppose that T takes &, the
finite rank operators on J#,, into Com(s#,), and that

(i) [ T(A)|q, < Mol Ay, for all Ae &7 ,.
(i) [T(A)|, < M,||4l,, for all Ae F,.

Then || T(A)|, < M\M§™ ‘| 4ll,, for all Ae &, so T extends uniquely to a

bounded map of #, into #, where p ' =tp;' + (1 —1t)pg' and
-1

Q@ = (1= t)‘lo .
Proof The theorem follows immediately from Proposition 8 and the
Calderon-Lions interpolation theorem. J

Example 3 (rigged Hilbert spaces) Let s# be a Hilbert space and
suppose that A4 is a positive self-adjoint operator on s# with Ker 4 = {0}
so that A™! is also self-adjoint (both 4 and A~! may be unbounded).
Let X = C*(4) n C*(A4™') and for each m e R, let 5#,, be the completion
of X in the norm |¢|,, = |4™?¢| ». By the spectral theorem we may
assume that s = [*(M, du) where (M, p) is a measure space and A is
multiplication by a function f > 0. Clearly, #,, = [*(M, f™ du), and a short
argument shows that the norms |-||,, are consistent. Let m, and m; be
fixed, m, = tm, + (1 — t)my. Then a similar proof to that in Example 1
shows that X, =¥, . The proof that s, < X, uses the function

Fz)=f(: )”"l*“ Imo. The proof that X, c #,, uses the natural identifica-
tion of #°% with s _,. The reader is asked to provide the details in
Problem 35. Once one has identified X, as H,, , the abstract interpolation
theorem can be applied to make concrete statements about operators on J#.
Here are two simple examples:

Proposition9 Let 4 and B be positive self-adjoint operators with
(possibly unbounded) inverses on a Hilbert space s#. Let T be a bounded
linear transformation of 3 into itself which satisfies:
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() Te| < Mol|¢| for all ¢ € #.
(i) T:D(4*)— D(B*)and |B’T¢| < M,|A%p| for all p € D(4?).

Then T: D(A) - D(B) and
IBTo] < MYMiZ|Ag]  for all g e D(4)

Proposition 10 For me R let W, be the mth Sobolev space (defined
in Section 1X.6). Suppose that ge C* and D°g is bounded for all « with
|ae| < k. Then, for each m with |m| <k, fi~gf is a bounded map of W,
into W,,.

Proof We first show that g: W, — W, is bounded. By Proposition 1 of
Section IX.6, fe W, if and only if D*fe I? for all |«| < k. From this it
follows easily that the norm || f i, 2 = X<k | D% ||z is equivalent to the
norm || f ||, on W,. By Leibnitz’s rule and the fact that the derivatives of g
are bounded we have

laf 2= Y I1D°afll2< C ¥ [l =C fll.2
[a] sk o] sk

Thus g: W, — W, is bounded. By duality, g: W_, —» W_, is bounded. The
spaces W, are the rigged Hilbert spaces associated with the operator
—A + I, so by the interpolation theorem, g: W,, - W,, is bounded for each
m with [m| < k. |

For another application of the # ,-interpolation theorem, see the proof
of Theorem X.18. For another illustration of interpolating spaces, see
Problem 36.

IX.5 Fundamental solutions of partial differential
equations with constant coefficients

In this section and the next we will describe two applications of the
Fourier transform to the study of partial differential equations. This is not
a book about partial differential equations though we have touched on
the subject from time to time, so our purpose here is neither to discuss
in detail the techniques nor give the strongest results, but to illustrate and
explain the application of the methods of functional analysis.

As in Chapter V, p(x) denotes a polynomial in several variables
x = {Xy,..., X, and p(D) denotes the partial differential operator obtained
by substituting d/0x, for x; wherever it occurs in p(x).
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Definition A fundamental solution for the partial differential operator
p(D) is a distribution E € 2’ so that p(D)E = é.

The reason for studying fundamental solutions is that if we define
u = E » f where fe CF(R"), then

p(D)yu = p(D)E «f) = p(D)E + f
=0xf
=f
Thus, if we can find a fundamental solution, then we have an existence
theorem for all the partial differential equations p(D)u = fwhere fe Cg(R").

Furthermore, if we can find an expression for E, then we have an explicit
representation of a solution, namely u = E « f.

Example (Poisson’s equation)  For Poisson’s equation, Au = f; in three
dimensions, the function E(r) = — 1/4nr is a fundamental solution. This can
be seen as follows: We denote by B, the ball about zero of radius e. Let
¢ € C3(R?). Then

(AE)o) = Ea0) = = [ o dp dx

. 1
= lim — —Ap dx
51 0 JRS\B, 47tr qo

1 - 1 0 01
—Al— = - 2
J-IIP\B, (4nr)¢ dx + Jasl 4nr Or v dS .[33‘40 or (4nr) dS}

where dS denotes the usual measure on the surface 0B, of B,. The first term
on the right-hand side equals zero. The second term converges to zero and
the third term converges to ¢(0) as ¢ | 0 because ¢ is continuous at zero.
Thus AE(¢) = ¢(0) so AE = 6.

= lim
el O

In order to see the difficulties in finding fundamental solutions, let us work
formally for a moment. We would like to solve the partial differential
equation p(D)E = 6. Taking the Fourier transform of both sides we obtain
p(ix)E = (2m) ™"/, so we expect

N

E = ((2m)"2p(ix))™!
If p(ix) has no real zeros, then we can use the Fourier transform on
&'(R") to define E. However, p(ix) is a polynomial in several variables and

may have whole manifolds of zeros. Thus p(ix)~' may not be locally
integrable in which case | p(ix)~'¢(x) dx does not make sense as it stands,
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so we cannot immediately interpret p(ix)™' as a distribution. This is
reminiscent of the situation in Examples 6 and 9 of Section V.3 where the
function 1/x in one variable could not be immediately interpreted as a
distribution since it is not locally integrable. Even in that simple case, a
limiting procedure was required. As in that case, we expect that different
limiting procedures will give different distributions. In fact, in general,
partial differential equations will have many fundamental solutions in &',
and sometimes have more than one in &'(R").

The Maigrange-Ehrenpreis theorem states that every constant coefficient
partial differential operator p(D) has a fundamental solution. The proof
depends on a complex-variables argument and the Hahn-Banach theorem.
Before giving a sketch of the proof, we will illustrate the Hahn-Banach part
of the argument by a simple example. Consider the operator I — A. In this
case p(ix) = 1 + x* has no zeros, so E = {(2n)"?(1 + x?)} ™! is a weli-defined
tempered distribution and E satisfies (I — A)E = 6. We now give another
argument which proves the existence of E without using the fact that
we have extended the Fourier transform to &’. Let ¢ € C§(R"). Then

8o(@)] = |@(0)] < [l0]l
<lel.
= (1 +[APYo()(1 + |27,
< I+ 1APYo ()
where we have chosen m large enough so that (1 + |4[*)~" e [*(R"). Using
(IX.1) and the Plancherel theorem, we have

I+ 12702 = (1 = AYel
and thus
|@(0)| < Cll(1 — A)0||, (1X.21)
Therefore, the map T from (I — A)"[CZ(R")] to C given by
T-(1 - A — 0(0)

is well defined and bounded in the [?-norm. By the Hahn-Banach theorem
T can be extended from (I — A)"CZ(R") to a bounded linear functional T on
all of I>(R"). It follows from the Riesz lemma that there is a t(x) e [*(R")
so that

3(p) = @(0) = T((I — AY"o)
= j 1(x)(1 — A)"p dx

=[(1 - A" 'TI((1 - A))
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If we set E = (1 — Ay""'T, then clearly (1 — A)E = 6.
We are ready to state the Malgrange-Ehrenpreis theorem and sketch the
proof.

Theorem 1X.23 For every constant coefficient partial differential oper-
ator, p(D), on R", there is a distribution E € 2’ so that p(D)E = 4.

Proof Define p*(x) = p(—x) and g(x) = p*(ix) and let ¢ € CJ(R"). From
the Paley-Wiener theorem we know that for each y e R",

RS N
(P*(D)o)y + ) =0y + Oaly + {)

is an entire function of { e C" Let Q(x) =), |D*q(x)|; notice that Q is
positive and bounded away from zero. The first step in the proof uses
the Cauchy integral formula to show that

10()(x)] < Co | |6(x + alx + )| 4™

lElse

PR
=¢ o Pt + O] L

where C, depends on ¢ but is independent of ¢ and d** is Lebesgue
measure on C". This complex-variable argument is outlined in Problem 41.
Using the above estimate, we have

|9(0)] < (2m)™"" fwlé(y)l dy

<G, (J ,C,sslm(y +0llew)|™ dz"c) dy

OIS
=G| | [pP*(D)o(y + A + i) |Q()| ™" A du dy
R+ s e

For |1 <& Q(y + 2)(Q(»))~! < C; independently of y, so

PO S Caf [ JFDRO+ 2+ @+ ) dhdudy
iRy
<Cs .[Rn J |M,SSJP"(D)qJ(y + i) |(Q(y))” " dudy (IX.22)
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This estimate takes the place of the simple a priori estimate (IX.21) in the
above example (all the C; depend on ¢ but are independent of ¢).

From here on the structure of the argument is the same as in the
example. Let

lolo={_ ], o0+ m(@u) " |dudy

We first show that || is a continuous norm on 2. Since Q is bounded
from below

lele<Co [ |0y + in)l dudy
R Jul<e

< Cy sup|(1 + ¥ o(y + ip)|
yeR"
lu|<e
< Cqsup||(I — Ay et Fo(x)],
lul<e
The right-hand side is a continuous norm on Cg§(K) for each compact
set K = R". Since 2 has the inductive limit topology, |||, is a continuous
norm on 9. The basic estimate (IX.22) shows that the map

E: p*(D)p — (0)
is well-defined. That is, if p*(D)p, = p*(D)p,, then ¢,(0) = ¢,(0). E is

continuous since [|-||g is a continuous norm. Thus by the Hahn-Banach
theorem there is an E in 2’ which extends E. Since

(p(D)E)(@) = E(p*(D)p) = ¢(0)
we have found a fundamental solution for p(D). |

IX.6 Elliptic regularity

I turn away with fear and horror from this lamentable plague of functions which do not have
derivatives. Hermite, in a letter to Stieltjes

Suppose that u is a weak solution of —Au = g in a region Q. Our main
goal in this section is to prove that if g is C* in Q, then u is C® in Q also.
This theorem, known as Weyl’s lemma, has many important generalizations.
We restrict ourselves here to a proof of Weyl’s lemma, leaving a discussion
of the generalizations to the notes. The importance of these so-called
“regularity ” theorems is that they provide the second step in the proof
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that certain classes of elliptic partial differential equations have strict
solutions. One first uses the Hahn-Banach theorem or a self-adjointness
argument to prove the existence of a weak solution (see Section IX.5 or X.3),
and then uses a regularity theorem to prove that any weak solution is a strict
solution. In Section V.4 we noted that u,, — u,, = 0 has many weak solutions
which are not strict solutions. The difference between the two cases
u, — u,, = 0and u, + u,, =0 lies in the fact that the polynomials xt, x, ¢,
and 1 can all be bounded by C(x? + ¢2) but not by C(x* — t?). The reader
will see how such estimates enter into the proof. Although a regularity
theorem of the C®-type (or even the C*-type) does not hold for non-
elliptic partial differential equations, there is a weaker regularity theorem
which we discuss in the Notes to Section IX.10.

The proof of Weyl's lemma itself is divided into two parts. The first is to
show that if —Au = g and if all the weak derivatives of g of order less
than or equal to m are I? functions, then all the weak derivatives of u of
order less than or equal to m + 2 are I? functions. The second part, known
as Sobolev’s lemma, shows that any function in I*(R") which has
k > (n/2) + o weak derivatives in [*(R") is equal (a.e.) to a function in C°.
Weyl’s lemma results from combining these two parts with the assumption
that g is C®.

We begin by introducing the Sobolev spaces and several of their
important properties.

Definition A distribution T € &'(R") is said to be in W,, the mth
Sobolev space (m € R) if T is a measurable function and

1T = [ (1 + ARPIT@P d2 < o0

W, is a Hilbert space under the norm (T, T)'? = |T|,. As in the
discussion of quadratic forms in Section VIIL.6, it is useful to suppress the
correspondence between W* and W, given by the Riesz lemma. Instead we
identify W* and W_,, by associating T € W_,, with the functional on W,
given by

This identification is natural since it agrees with the meaning of T(¢) when
¢ e #(R") and T is viewed as an element of &'(R").
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Proposition 1 If m is a nonnegative integer, then fe W, if and only if
D*fe IZ(R") for all « satisfying |o| < m, where D means the derivative in
the sense of distributions.

Proof By Theorem I1X.2, DT = (iA)T for all T in &'(R"). If T € W,,, then
(iAyT e 2(R") if |a| <m, so by the Plancherel theorem D*T e I*(R").

Conversely, if D*T € I2(R") for all & with |a| < m, then (iAY'T = DTe 2(R")
iflal<msoTeW,. |

Proposition2 Let m be an integer. If Te W, and ¢@e CM with
bounded derivatives, then ¢T € W,,.

Proof If m> 0, then the conclusion follows from Leibnitz’s rule and
Proposition 1. If m <0, multiplication by ¢ on W, is the adjoint of
multiplication by ¢ on W, under the natural identification of W, and
Wi,- Thus multiplication by ¢ is bounded. [

The above proposition is a special case of Proposition 10 in the Appendix
to Section IX.4. We have repeated the proof since this part of Proposition
10 does not need interpolation.

Definition Let Q be an open subset of R" The local Sobolev space
W,(Q) is the set of distributions T ¢ 2'(R") so that T e W, for all
® € CP(R") with support in Q.

The useful property of the local Sobolev spaces is:

Proposition3 If Q is an open bounded region in R", then every
T € 2'(R") is in W,,(Q) for some m. That is, 2'(R") = | ;= - » WalQ).

Proof Let n be a function in CF(R") which is identically one on {). Since
nT is a distribution with compact support, |(nT)(1)| < C(1 + |A|M
for some M by Theorem IX.12. Thus, if p is an integer larger than
M + (n/2), nT € W_,. By Proposition 2, if ¢ € C3(R") with suppp c Q,
then T = onT € W_, also. Thus T € W_,(Q). ]I

We are now prepared for the first part of the proof of Weyl’s lemma.
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Lemma Let T e 2'(R") and Q be an open set in R".

(@)  TeW,and —AT e W, then Te W,,,,. Furthermore, if T € W,
then 0T /0x;e W,,_

(b) I TeW,(Q)and —AT € W,(Q), then T € W,,,,(Q).

{c) If T e W, and m is an integer, then T € W, (Q).

Proof To prove (a), notice that if T € W,,, then (1 + |4|?)™2T e I>(R"); and
if —AT € W, then |A[>(1 + |A]*)"2T e I2(R"). Thus

(1 + |;L|2)(m/2)+17‘- € LZ([R"),
so TeW,,,. Further, if TeW, then (1 + ||} V2T e [}([R"), so
0T/0x;e W,,_,

To prove (b), we first note that Leibnitz’s rule holds for the product of a
distribution and a function, i.e.

2 _ (00 aT
5%, (oT) = ( ax,) T+ — o, (1X.23)
—A(eT) = 257 a—“’ 5_[ _ QAT (IX.24)

J
Now, suppose T and —AT are in W,(Q) If @ € CF(Q), then by (IX.23)
and part (a), ¢ 0T/0x;€ W,,_,. Thus, by (IX.24), —A(eT)e W,,_,, so by
part (a) we conclude that ¢T € W,,, . We now use (IX.23) again obtaining
¢ 0T/dx; € W,, and (1X.24) again obtaining —A(pT) e W,,. Thus, it follows
from part (a) that 9T € W, ,. Since ¢ € C§(Q) was arbitrary, T € W,,, ,(Q).
This proves (b).
(c) follows from Proposition 2. ||

Theorem 1X.24 (Sobolev’s lemma) Let T € 2'(R") and let Q be an open
set in R". Suppose that T € W, (Q), where m > n/2 and let ¢ be a non-
negative integer satisfying £ < m — (n/2). Then on Q, T is equal to a C’
function.

Proof We begin with the case where Q = R™ Since T € W,,,
(1 + |A)™2T e 2(R").
Thus, since (1 + |4[?)~™* ¢ is also in I*(R") for each ¢ > 0, we conclude
e (1 + AR =1 + |APY2T(A) e L(R")
Therefore, whenever |a| < ¢
|22 T(A)] < | A1 + |4 ) D+ i +eG(h)
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where G e L'(R"). Since we can choose & >0 so that £/ < m— (n/2) - 2,
2*T e '(R") for each |«| < £. By the Riemann-Lebesgue lemma,
T(x) = (2r)™"2 j et *T(1) dA
and
S(x) = (2m)~"? j et x(i)T(4) dA
are continuous R- and R"-valued functions respectively. Moreover, by the
dominated convergence theorem

T(x + h) — T(x) — h - S(x)
|h

i (x+h) _ ei).-x_il,heil-x

= (n)™ | [e n () di.

converges to zero as |h| | 0. Thus T is C' with DT = S. Using the fact that
(1 +|A|Y)T € L'(R"), we repeat this process ¢ times to conclude that T(x)
is £ times continuously differentiable.

We now treat the general case. Let # and ¢ be in C3(Q) and suppose
that both # and y equal one in a neighborhood N of a point x € Q. Since
T € W,(Q), YT and nT are C’ functions on R". Furthermore we must have
(¥T)(x) = (nT)(x) since otherwise we could find a ¢ with support in N so
that T(p) = WT)e)# (#T)(@) = T(p). Thus we can define a function
F(x) = (Y T)(x) on Q by letting ¥ be any C3(Q) function that is one in a
neighborhood of x. By what we proved above, F(x) is £ times continuously
differentiable.

We complete the proof by showing that in Q, T is given by F(x). Suppose
p e CP(Q) and let «(x) be a function in CF(Q) which equals one on
supp @. Then

T(¢) = T(xw) = @T)lp) = | F(x)o(x)dx I

Sobolev’s lemma has extensions to various I? spaces and under certain
conditions to the case where £ = m — (n/2). These extensions are more
difficult to prove and are discussed in the Notes.

Theorem IX.25 (Weyl’s lemma) Let u be a weak solution of the equa-
tion —Au = gonR". If g is a C™ function on an open set Q < R", then on Q,
u is equal to a C’ function for each 7 e 1, satisfying £ <m — (n/2) + 2. In
particular if g is C® in Q, then u is C® in Q.
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Proof We may assume, without loss of generality, that Q is bounded. Since
pg e W, for each ¢ € C3(Q), g € W,(Q). By Theorem IX.23, u e W(Q) for
some k since u € 2'(R"). If k < m + 2, then, using the facts that ue W, (Q),
—Au = g e W,(Q), and the lemma, we conclude that u € W, , ,(Q). Repeating
this process we obtain the result that ue W,,,(Q) which implies by
Sobolev’s lemma that u is a C* function on Q for £ < m — (n/2) + 2. |

Theorem 1X.26 (local regularity for Schrodinger’s equation)  Let u be a
weak solution of the equation (—A + V)u = Eu where V is a measurable
function and E is a complex number. Then, if V is equal to a C* function
in an open region £, u is C* in that region also.

Proof Without loss we may suppose that Q is bounded. Since u € 2'(R"),
ue W,(Q) for some k by Proposition 3. But, since Vis C*, Vue W(Q)
by Proposition 2. Thus, ue W,(Q) and —Aue W,(Q), so by the lemma,
ue W, ,(Q). By repeatedly using the lemma we find that u e ()i -, Wi(Q)
which implies by Sobolev’s lemma that u is C* in Q. |

We remark that our method of proof of Theorem IX.26 can be extended
toshow thatif IV e C™(Q), then u e C/(Q) if £ < m — (n/2) + 2 (Problem 45).

IX.7 The free Hamiltonian for
nonrelativistic quantum mechanics

In this section we study —A as an operator on I*(R"). There are two
reasonable domains to choose for —A,

Diax = {@ | @ € IZ(R") and Ag € I?(R") in the sense of distributions}

Dmin = CSO(R")
We denote —A [ D, by T.,., and —A [ D, by T,;,.

Theorem 1X.27
(@) @€ Dy if and only if |4]?p(1) e I2(R") and in that case T, ¢ =
|17500).

(b) T, is self-adjoint.

(¢) T, is essentially self-adjoint and T,

min — Tmax .
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Proof (a) follows immediately from the formula -AT = |AJ*T which is
valid for arbitrary tempered distributions. By Proposition 1 of Section
VIIL3, multiplication by || is self-adjoint on {p e }(R") | |A|*p e X(R")}.
Since & is unitary and T,,,,= F ~'|1|2#, T,.,Is self-adjoint on D,,,.

To prove that T, is essentlally Self-adjomt it is sufficient to show that
Tk = T, since then T, = T** = T, ... Suppose that y € D(T%,.). Then
(~ A, ¥) = (Tn @ ¥) = (¢, Thn¥) for all g e C3(R?). Thus —Af e 2(R")
in the sense of dlstnbutxons so YyeD,,, and T¥ V= —-AYy =T ¥
Conversely, suppose that € D, Then —Ay e I}(R") so that for all
o€ CE.(=Bp, Y) = (@, —AY). Thus, ¥ & D(T%,,) and Th,y = —Ay. I

Definition We denote —A with the domain D,,, by H, and call it the
free Hamiltonian.

In the remainder of this section we use the Fourier transform and the
estimates in Section IX.4 to study various properties of Hy. First we prove
a theorem that gives further properties of the functions in D(H,). Then we
derive explicit formulas for R,(H,) and e"fo. Finally, we prove some
asymptotic properties of e*Ho which will be useful when we treat scattering
theory in Chapter XII.

Since H, is self-adjoint, its powers Hy are also self-adjoint. Since
HY =~ '|A|>#, the domain of HY is just the Sobolev space W,,
introduced in Section IX.6. Sobolev’s lemma (Theorem IX.24) immediately
implies:

Proposition A vector ¢ € I2(R") is in C°(H,) = ()2~ D(Hg) if and
only if ¢ € C*°(R") and D*¢p € *(R") for each «.

More importantly, the vectors in D(H,) itself have the following
properties:

Theorem 1X.28 Let ¢ e I?(R") be in D(H,). Then

(a) If n<3, ¢ is a bounded continuous function and for any a > 0,
there is a b, independent of ¢, so that

lello < alHoel + bllel (1X.25)

(b) Ifn>4 and 2 < g <2n/(n—4), then ¢ € [*(R") and for any a >0
there is a b (depending only on g, n, and a) so that

lell < alHool| + blo| (X 26)
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Proof By the Riemann-Lebesgue ‘lemma and the Plancherel theorem,
(a) will follow if we can prove that ¢ € L'(R") and

Il < all2?¢]|, + b o], (IX.27)

We will prove (IX.27) in the case n=3. Suppose ¢ e D(H,), then
(1 + 2%)¢ and (1 + 2%)7! are in I*(R%) so ¢ € I'(R%) and by the Schwarz
inequality

16l < el + D§ll. < <1270 2 + [ 6]2) (IX.28)
where ¢? = [ (1 +42)"2dA For any r>0, let §,(4) =r3p(rd). Then
@lly = |@l]1s @2 =r"?]|@]2, an Grllz=r" @[ 2. Thus, usin
19:0: = 1)1 19,]l2 = r*?]|¢]2, and|4*¢,] Y2|12¢||, - Thus, using

(IX.28) for §,, and using these equalities, we obtain
I¢ll: < er™"2)229]|; + er*?|p]

for any r > 0. If we choose r large enough, (IX.27) follows.

By the Hausdorff-Young inequality and the Planchere] theorem, in order
to prove (b) we need only show that for any p satisfying 2n/(n + 4) < p < 2
and a > O there is a b so that

|ll, < all2*0|l, + ] 8],
The Holder inequality implies that
llp < 1+ 2277 (1 + 22718 Pl
= 1. Choosing s = 2/p, the triangle inequality shows that
I+ 22210l = (1 + 2%) 9] |1
<(Iol2 + [4%¢]2)
Thus if | (1 + A2)7 7| 32-p)-+ = ¢; < o0, we have

Il < ci”(1426]2 + [2]l2)

where r~! + 57!

But

-1 da
2y-p[22-p)" _
||(l + A ) p“ZEZ—’;’;" —Jw< 0
if 4p(2 — p)™' > n, ie. if p> 2n/(4 + n). The method of proving that the
constant in front of |[123| can be chosen arbitrarily small is the same as

in part (a). i

We will see in Section X.2 that part (b) of the theorem holds in the
case n > S and g = 2n/(n — 4) for some fixed a.
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We turn now to computing explicit formulas for (Ho — E)™ !, E € C\[0, «0),
and e~Het, Im t < 0. Since Hy = & ~'22F, f(Hy) = F ~'f(A*)F where fis
any bounded measurable function. That is, both (Hy — E)™! and e~ H«
can be expressed in terms of multiplication operators:

(Ho—E) ' =F A2 -E)'F;, e Hi=g le-itig
Since the Fourier transform takes multiplication into convolution, we will
get simple expressions for (H, — E)™! and e~H¢' as convolution operators.

Let fe L°(R"); we denote the operator (p»-.(}é) on IZ(R") by f(—iV).
Notice that f(—iV) is a well-defined bounded operator since multiplication
by fis bounded.

Theorem 1X.29 Let fe I°(R"). If either (i) fe (R") or (it) fe [}(R"),
then

(F(=V)o)x) = (21)72 [ T (x = y)e(y) dy (1X.29)

for all @ € I>(R"). The integral converges for all x in case (i) and for almost
all x in case (ii).

Proof Suppose fe [> A [* and ¢ € &. Then fe & so by Theorem IX.4,
f(=iV)o = (@)= (2r) "f+ o
= 2m) ™2 [ J()olx = y) dy

so (IX.29) holds if ¢ € &. For @ € I*(R"), we can find a sequence ¢, € &

so that (p,,,g @. Since fe L°, fp,, 5f¢, so f(—iV)p,, = f(—iV)e. Thus we
can find a subsequence (which we also call {¢,}) so that f(—iV)e,, —
f(—iV)e pointwise a.e. Since fe I*(R"),

lim (f(=iV)p,)(x) = lim (21)™2 [ F(x — y)on(y) dy

= (27)™" [ F(x - yely) dy

for each x € R". We have thus proven IX.29 in case (i).
To prove (IX.29) in case (ii), observe that if f,, and ¢ are in S(R"), then
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f.(—iV)e = (27)""2f, * . Choose f, € #(R") so that f, L 7 Thenf, 5 s0
fu® 5 . Thus

f(—=iV)p = lim (2n)'"/2fm * Q@

m— oo

= (2n) " f« o
by Young's inequality. Since the bounded operators, f(—iV) and con-
volution by (21)"*f agree on &, they agree on all of *(R"). That the
convolution, f * @, is given by an absolutely convergent integral is proven
in Example 1 of Section IX.4. ||

Example 1 (the free resolvent, n=3) Let E= —x? where Rex > 0.
Thus Ee p(H,). Since f(1) = (22 + k?)" ! e I2(R?) n L°(R®), we can use
part (i) of Theorem IX.29 to compute (H, — E)™ . Since fe L%,
A x
2r)"3%f(x) = Lim.(2n LA
( f R ) '[|A|SR ;{'2 + K2
Changing to spherical coordinates, set u = cos 0 = 4 - x/|x||4| and r = |4|.
Then

1 eir|x|u

Cn) () = Lim )2 [ | N

R~ o'-1T
(27T)_2 R eirlxlr

. d
R—w i,xl '[-R r2+K2 d

(2m)~?2 Feimlxl -
Jc,( F+ ix)(F — ix)

where r is in the complex r plane and Cp is the curve shown in

Cr

-R+iJR R+iJR

7 plane 4

r axis

-R 0 R

FiGURE IX.5 The path Cy.
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Figure IX.5. For each | x| the limit exists and equals e~**/4z|x|. Thus, from
Theorem IX.29 we have

(n=3) [(Ho + 1) 0](x) = (4n)™* |

e= k)l
|x — y]

The function Go(x, y; E) = e ~*¥~W4n|x — y|is often called the free Green’s
function.

o(y) dy (IX.30)

Example 2 (the free resolvent, n # 3)  If n does not equal one or three,
the computation of the inverse Fourier Transform of (4% + k%)~ ! is not as
explicit as in Example 1; it turns out to be an expression in terms of
Bessel functions. It is not hard to see, however, that if f(1) = (42 + x¥?)7 1,
then fe L!(R") (see Example 6 in Section IX.10 and Problem 49). Thus, we
are in case (ii) of Theorem IX.29. Additional properties of Green’s functions
are given in Problem 49.

Example 3 (the free propagator) We want to compute an explicit
formula for e~'He! t ¢ R, the unitary group which gives the free quantum
dynamics. e~ does not satisfy either of the criteria in Theorem 1X.29 so
we proceed as follows: Suppose that « € C and Re o > 0. Then

e *e e Z(R") N [*(R")
so

(e~ ) (x) = (ﬁ) " [ e=teg(y) dy

since & ~!(e~4'¢) = (2a) "2e~*"/% (Example 1 of Section IX.1). Now,
suppose that g € I ~ I2. Since e~ {t=iMHogp L, g=itHogy a5 ¢ | 0, we can find a
subsequence which converges pointwise a.e. Thus

(e p)x) = lim(e~Ht-ip)(x

= lim(4ni(t — ic))~"'? _[ e~ IPfile =iy () dy
el0

= (4nir) ™2 [ ek Pitg(y) dy

by the dominated convergence theorem. For general ¢ € [?(R"), we can now
use the trick employed in Section IX.2 to conclude that

(e~ tHog)(x) = Lim.(4mir)~"? j el ig(y) dy (IX.31)
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The function Po(x, y; t) = (4nmit)” "2elx~W* is often called the free
propagator.

To show how useful these explicit formulas are, we will derive two
consequences of (IX.31) which are useful in scattering theory. The first is an
estimate reflecting the spreading of free wave packets.

Theorem I1X.30 Let H, be the free Hamiltonian on R". Let 2 < g < o
and p=(1—q~')" ! Then

le~itHop|, < t="™" = 1) g, (IX.32)

Proof Since e~tHo js unitary on I2(R"), [le~"*Hop|, = |o|,. If o L n L7,
then it follows from (IX.31) that ||e~*Hog||, < (4nt)”"'*|¢]|,. By the Riesz-
Thorin theorem, e~ o extends uniquely to a map from IP(R") to I(R") and
the estimate (IX.32) holds. ||

The second application of (IX.31) is to prove an explicit asymptotic
formula for et

Theorem IX.31 Let H, be the free Hamiltonian on R" and suppose
@ € *(R"). Then

(e~ #Hogp)(x) — (2it) "2 41 (x/21) (IX.33)
in the sense that the difference goes to zero in I?-norm as ¢ — co.
Proof For fixed t, the map V,: ¢ — (2it)”"2e*"/4p(x/2t) is unitary so we

need only prove the statement of the theorem for ¢ € & and then use an
&/3 argument. Since

exlx e ezx’/4te—ax yﬂlexy/
from (IX.31) we have
(e~ Hig)(x) — (Vi @)(x) = (4mit) ™"/ [ (&4 — 1)e=tx P2 (y) dy

eiX 14

= G131
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where G,(y) = (e¥"/* — 1)p(y). Thus
le=Holp — Vo], = (2072 G(-/21)]»

= ”Gt ’“2
= HGllz

<2 o0l

-0 as t—w
In the last step we used the estimate
e g

d—x(e )dx

2
<y—|

iy?/de __ p—
e I =4

Formula (IX.33) has a simple physical interpretation. To see this, we
reintroduce the mass m by taking H, = (—1/2m) A. If the system is in state ¢
at t = 0, then by (IX.33) the asymptotic probability density for position is
(m/t)"|@(mx/t)|*. But |@(1)|? is the initial probability density for momentum.
Thus, for large times, the probability of a particle being at x at time ¢ is
proportional to the probability of its having momentum mx/t initially. So,
for large times, the quantum free particle behaves like a classical free particle
starting at x = O at time ¢ = 0 with momentum density |$(1)|>.

IX.8 The Garding-Wightman axioms

In this section we discuss several applications of the Fourier transform
to the theory of quantized fields. It is not necessary for the reader to have
had any previous experience with quantum field theory. We begin with a
brief history, state the Wightman axioms, and define the Wightman functions.
Then we use the Fourier transform to prove analyticity properties of the
Wightman functions, outline the proof of the PCT theorem, and derive the
Killen-Lehmann representation for the two-point function. In an appendix,
we discuss Lorentz invariant measures.

Quantum field theory began in the twenties as an attempt to combine
quantum mechanics and special relativity in a quantum generalization of
the classical models for electromagnetic phenomena. Since then, field theory
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has been used extensively to construct models for many elementary particle
phenomena. From the beginning, it was apparent to the founders of the
subject (Heisenberg, Pauli, Dirac) that there were many mathematical
difficulties in the theory. Nevertheless, field theory continued to grow and
by the forties had become a maze of folk theorems, conjectures, and
complicated perturbation theory calculations, all difficult to prove since the
central objects of the theory, the fields themselves, were only vaguely defined.
Despite the fact that the theory lacked sound mathematical foundations,
Schwinger, Feynman, Tomonaga, Dyson, and others systematized pertur-
bation theory in the late 1940’s to make calculations about electrodynamics.
The striking experimental verification of these calculations suggested that
within quantum field theory there were sound mathematical models for at
least some elementary particle phenomena.

It was in this atmosphere that Garding and Wightman formulated a
definition of “quantum field” by proposing a set of mathematical properties
which they argued every quantum field theory should possess. These
properties are called Wightman axioms. The study of the Wightman axioms
and their mathematical consequences is usually called axiomatic quantum
field theory. This name is somewhat misleading for it has given many
people the mistaken impression that the main interest is the axioms them-
selves rather than their mathematical consequences and the construction
of specific examples. For this reason the subject is sometimes called “the
general theory of quantized fields.”

For simplicity we will only give the axioms for a “Hermitian scalar
quantum field theory”; other cases are mentioned in the notes. We use units
where the rationalized Planck’s constant and the velocity of light are equal
to one. Since we discuss each property briefly the definition is rather spread
out.

A Hermitian scalar quantum field theovy is a quadruple {3, U, ¢, D) which
satisfies the following properties (1-8):

Property 1 (relativistic invariance of states) 3¢ is a separable Hilbert space
and U(:, *) is a strongly continuous unitary representation on # of the
restricted Poincareé group.

The restricted Poincaré group is defined as follows: Let x =
(x% x', x% x3 and y=° y', y? y*> be two vectors in R* The
Lorentzscalar product of x and y is defined to be x°y® — x!y! — x?y? — x3y3,

x? is called the time component of x; {x!, x?, x3) is called the space
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component. We denote by x, the components of the vector %=
(x°, —x', —x? —x3)so the Lorentz scalar product of x and y is just the
usual inner product of x and . Using the Einstein convention we will
sometimes write the sum Y 2_, x*y, simply as x*y,, the summation being
understood. The Lorentz group .# is the set of linear transformations on R*
that preserve the Lorentz scalar product. The restricted Lorentz group &',
is the subgroup of those A € & with det A = 1 and with the matrix element
between (1, 0, 0, 0) and itself positive. The restricted Poincaré group 2.,
is the set of pairs (a, AY where ae R* and Ae ¥ with the group
operation

a, Apd<b, Ayd = (a + Ab, A A

', acts naturally on R* by (a, Adx = Ax + a and is sometimes called the
family of relativistic transformations of R*.

If we fix A =1, then U(a)= U(a, I) is a strongly continuous unitary
representation of R4, From Theorem VIIL12 if follows that there are four
commuting self-adjoint operators Pq, P;, P,, P; on 3 and a projection-
valued measure Eg on R* so that

(6, Ul@)o) = (0, exp(ia"P,)o) = | e d(p. Eyp)  (IX34)

Pg is called the Hamiltonian (or energy operator); P,, j =1, 2, 3, are the
momentum operators.

Property 2 (spectral condition)  The projection-valued measure Eq on R*
corresponding to U(a, I) = €'“F« has support in the closed forward light cone.

The closed forward light cone is the set V, = {x | x- %> 0, x° > 0}. Its
interior will be denoted by V, . The spectral condition is equivalent to the
condition that the operators P, and P3 — P? — P2 — P3 are both positive.

Property 3 (existence and uniqueness of the vacuum) There exists a
unique vector Yo € X so that U(a, IWo = Yo for all ae R 4 is called the
vacuum.

Property 3 implies that the point {0, 0, 0, 0> has nonzero Eq-measure
and that E., ¢, 0,0, has a one-dimensional range. The U(0, A) leave
Ran E 4 o, 0, 0y invariant so U(0, A) | Ran E 4 ¢, ¢, o, is 2 One-dimensional
representation of £ . Since the only one-dimensional representation of
2%, is the identity representation, it follows that U(a, AW, = ¥, for all
{a, N> e 2}, .
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Property 4 (invariant domains for fields) There is a dense subspace
D < # and a map ¢ from & (R*) to the (unbounded) operators on # so that

(i) Ff})chl? fe #(R*), D < D(p(f)), D = D(o(f)*) and o(f)* [ D =
(i) :Zo e D and o(f)D < D for all fe (R,
(iii) For fixed y € D, the map fi— @(f )y is linear.

Early formulations of field theory treated ¢ as an operator-valued function
though the founders of the subject were aware that ¢(x) was a very singula
object. The operator ¢(x) was said to be the “field at the point x’
analogously to the classical electromagnetic field. This formulation led tc
various difficulties which were overcome by taking the field ¢ to be ar
operator-valued distribution rather than an operator-valued function;i.e., ¢
is defined on &(R*) rather than on R* ¢(f) should be thought of as the
space-time average of the hypothetical ¢(x) with the averaging function f.
Symbolically

o(f)= [ _o0x)f(x)dx

Bohr and Rosenfeld pointed out that from a physical point of view it is
impossible to measure the electric field strength at a point because of
certain quantum-mechanical effects related to the uncertainty principle.
So, from a mathematical and a physical point of view it is reasonable
to consider the smeared field ¢(f). In fact, it can be shown (Problem 53)
that in a quantum field theory satisfying Properties 1-8, the field ¢(f)
cannot arise from integrating a well-defined operator-valued function ¢(x)
against f (x).

The choice of ¥(R*) as a test function space for ¢(-), rather than
Cy(R*) or some other test function space, is not absolutely necessary.
Jaffe has made a detailed study of this question (see the Notes). The reason
that we require (ii) is so that the vacuum expectation values
(Yo, o(f1) - o(fu¥o) make sense. One might suppose that it would be
more useful to assume that ¢(f) is essentially self-adjoint on D rather than
just symmetric, but this extra assumption seems to have few consequences.

Property 5 (regularity of the field) For any , and {, in D, the map
S (. o(f W) is a tempered distribution.

The stronger statement that for Y € D, f> ¢(f )Y is strongly continuous
is a consequence of Properties 4 and 5 (Problem 54).
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Property 6 (Poincaré invariance of the field) For each {a, A) e P,
U(a, A)D < D and for all fe #(R*), Yy € D,

Ula, Mo(f)U(a, AY 'Y = o<a, AXI W

where
(a, A f(x)= f(A"'(x — a))

The invariance condition is often written formally as
Ula, Np(x)U(a, A)™! = ¢(Ax + a)

Property 7 (local commutativity or microscopic causality) If f and g in
& (R*) have supports which are spacelike separated, then

[e(N)elg) — o(@e( /)Y =0
for all y € D.

Two sets S,, S, = R* are called spacelike separated if xe S, and ye S,

. . —— .

implies that (x — y) - (x — y) < 0. Property 7 expresses mathematically the
quantum-mechanical statement that measurements in spacelike separated
regions should not interfere with each other.

Property 8 (cyclicity of the vacuum)  The set D, of finite linear combina-
tions of vectors of the form ¢(fy) -+ o(fu)Wo is dense in .

This property ensures that the Hilbert space 5 is not too large, or put
another way that the theory can be described in terms of a single field ¢.

This completes the definition of a Hermitian scalar quantum field theory.
There are two ways in which a mathematical investigation can now proceed.
First, one can investigate the consequences of these axioms. The main bulk
of the work in axiomatic field theory in the fifties and early sixties was of
this type. In the remainder of this section we will show how the Fourier
transform is used in deriving consequences of the axioms. The second
general problem is to construct models satisfying all (or at least some) of
the axioms. It was known when the axioms were formulated that they were
consistent since the theory of free fields (see Section X.7) satisfies all the
properties. Unfortunately, free field theories describe systems of particles
that do not interact. It has proven very difficult to construct interesting
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(ie. interacting) examples. Some progress has been made on this problem
in recent years (see Section X.7 and Chapter XIX).

We begin our discussion of the consequences of the axioms by defining
the functionals

WS- o) = Wo, o(f1) - (L Wo)

The {#",} are called Wightman functions or Wightman distributions or
vacuum expectation values; %", is sometimes called the n-point function. We
will see in Chapter XVII that a field theory can be recovered from a
knowledge of its Wightman functions. Let ¥, = ¢(fi—;) -** o(f; W, and
V2= @(fir1) - ©(fLWo- Then by Property 4, y, and y, are in D so by
Property S W (f1, ---» Ju) = ($1, ©(fi)¥2) is continuous in f, when the other
f’s are held fixed. Thus, # ,(f;, ..., f,) is a separately continuous multi-
linear functional on X7%(R*). Thus, by the nuclear theorem (Theorem
V.12), there is a distribution #7, in &'(R*") so that ¥ ,(f,, fa, ..., f,) =
WA fif2 - 1) if fi € P(R*). We denote #, by %, also.

From Properties 3 and 6 it follows that %, has the invariance property:

Wn(<a’ A>f15 LR} <a3 A>j;1) = Wn(fl’ o 91;1)

for all <a, A) € 2, . In particular,

Wn(fl(xl - a),fz(xz - a)» . "’fn(xn - a)) = Wn(fl’ . ’j;n) (IX35)

By a simple analysis (see Problem 56), it follows from (IX.35) that there is
a distribution W, e &#'(R*"~*) so that symbolically

WXy oons Xp) = W (X = X3, Xg — X34 ce0y Xy — X,)
That is, for f € F(R*"),
W)= [ W) dx

4

where

ﬁx)(éli""én—l)=f(x’x—él’x_él ~=&ayein X — & ““‘—én—l)

We have already introduced the notation V, for the forward light cone
and V, for the closed forward light cone. Define

Vi ={x,, ..., x,> € R*"|x; € V, for each i}
Note that V% and its closure V' are cones. Let
T, =R — iV

We will call 7, the forward tube.
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We are now ready to state and prove an important theorem about the
Wightman distributions.

Theorem IX.32 For each n > 1, W, has support in — V%~ and W, is
the boundary value of a function analytic in the forward tube 7 ,,_,.

Proof Let k be given, 1 < k < n, and let g be in R* Then

Wa(f1(x1) -l ) fur 1 (X sr — @) - fulxn — a))
= o, @(f1) - @(fJU@)o(fer1) - @(flo)

= [ Ty, E, )
RA

=[ T ed Eyo)
R‘

= [ et ey, Exga)
RA

where Y, = o(fi)* - - o(f1)*Woand ¥, = @(fis1) - - @(fu)¥o - By Property
2, d(y,, E; ¥,) has support in V,. Since A1 takes V, into itself,

d(yy, Ezy,) also has support in V, . Now let
9(51, LR ] én- l) = I:IZL( - 'Zlci)

and suppose that h, € #(R*) is real-valued. In the following calculation we
suppress the arguments &,, ..., &y, vy --vs Epmq Of g

| @l o (fi) - fulxi = a) - f(x, - a)) da (IX.36)

=[ [ Waes = xi. &+ @)ilxi ) d, da

= (] ] o6 = &+ e )e) d, da)

=Wig» (fliik))
= (20" 2 W5 £,y
where ki (a) = h(—a). On the other hand,
(IX.36) = j ‘h,,(a)J- el dy,, Ezy,)da
R R

= (@n)"2] hu(2) dly, Exva)
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Therefore W,(§f k) = 0 if (supp i) n V, = . Since this is true for each
k and since the set of finite linear combinations of such functions fid is
dense in &(R*"~*), we conclude that the support of W, is contained in

—V@=1 The conclusion of the theorem now follows from Theorem
1X.16. |

Because the cone V§~ " does not have a spherical base (if n > 2), we
have used the generalization of Theorem X.16 given in Problem 23. The
phrase “boundary value” in the statement of the theorem means boundary
value in the sense of tempered distributions as explained in Section IX.3.
Although we have not stated them explicitly, the estimates of Theorem IX.16
give corresponding estimates on the analytic continuation of the Wightman
distributions.

An important use of the analyticity properties is to show that the
Wightman functions obey certain symmetry relations. Here is a sketch of a
typical argument. For simplicity of notation, we will pretend that the
Wightman distributions are functions W,(£,, ..., &,-,). The reader can
easily supply the necessary test functions. Limits are always taken in the
sense of &' (R*"™4).

Because of Property 6,

W (zy, ..oy 2y q) = WAz, ..., Az,_,) (IX.37)

for all z; = ¢ —in;, n;e V, and A e &7, . Notice that the right-hand side
of (IX.37) makes sense since A: V, >V, . Let £ (C) denote the set of
complex 4 x 4 matrices, A, of determinant one that satisfy Az-Az=2z" 2
£.(C) is a six-parameter complex manifold which contains the six-
parameter real manifold #7, . An elegant technical result, the Bargmann-
Hall-Wightman theorem, states that W, can be extended to be an analytic
function on

T, ={(Azy, ..., Az,_ > | Zyer 2y €Ty A L, (C)}

so that (IX.37) still holds, but A is now allowed to range over ¥ _(C).
T i_, is called the extended forward tube. 7,°_, contains certain real points
called Jost points; in fact it canbeshown that (&,, ..., &,_ > € T, n R4
if and only if all vectors of the form { =72 1;¢;, with 4;,>0 and
Y. 4;> 0, are spacelike, that is, & - & <0. Thus if {x, — x;, X — X3, ...,
X,-1 — X,» is a Jost point, then

(xi=x;) (xi— x;) <0
for each i and j. By Property 7, it follows that
WoX1s ooy Xn) =W y(Xns .oy Xy)
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or
Wi s Gut) = W= &amss ooy —&4) (IX.38)

when (¢,, ..., &,_,) is a Jost point. Since —I € & ,(C), (IX.37) and (1X.38)
together imply that

VVn(él""aén-l): VVn(én-l"“’él) (IX-39)

Since W, is analyticin 7 ;_, and (IX.39) holds on an open subset of a R*"~ -
dimensional subspace, (IX.39) holds throughout 77;_, ie.

Wizyy ooy 2pmy) = Wzyoys...0 24) (IX.40)

for z=<zy, ..., z,. D €T 4. If z;=¢&;—in; with n;eV,, then by
Theorem IX.16, W(zl, ...y Z,-4) converges to W,(&,, ..., &,_,) and
W,(2,-y, ..., zy) converges to Wy(,- ,, ..., &,)in the sense of distributions as
1 10. Thus (IX.39) holds for all (¢,, ..., &,_,> e R*~* and it follows that

WoXgs ooy X)) =W (—=Xps 0y —X4) (IX.41)

4 n

for all (x,, ..., x,> € R*". Now, define an operator © by

O0(f,) @ for s Wo = 0(2)** @(Jus 1 Woo

and extend © to D, by real linearity. By (IX.41), ® is norm-preserving
and thus well defined. It is easily checked that ©(y, + ,) = O(¥,) + O(¥>)
and ©(cy) =<cOy; such an operator is called antilinear. By Property 8,
D, is dense in #. So, since ®% = I, ® extends uniquely to an antiunitary
operator on J# which satisfies

Op(f)O~' = (f) forallf e #(R%)

The existence of such a © is just the celebrated PCT theorem for the case
of a Hermitian scalar field theory.

We remark that some care is needed in using these analyticity arguments.
For example, (IX.38) and the analyticity imply that

VV"(ZI,.,., n—~ l)— ( Zy- 1a~-,_21) (IX42)

throughout the extended forward tube. But, we cannot conclude from this

that
VVn(cla""én-l)= VVn(_én—p---, ‘61) (IX43)

for (&, ..., &,- 1> € R*"~* by taking boundary values. W,(¢,, ..., &,-,) is
the boundary value of W(z,, ..., z,-,) as z;—> x; in the forward tube.
But, if n;€ V, then —n;¢ V, so (—2z,_,, ..., —2z,) is not in the forward
tube. Thus the limit of W,(—z,_,, ..., —z,) in the sense of &'(R*"™*) may
have nothing to do with W,(=¢,_, ..., —&,).
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The Wightman axioms place fairly strong restrictions on the distributions
W,. As a final illustration of this fact we will use Fourier transform
methods to derive the Kallen-Lehmann representation of the two-point
function W,. In order to do this we need a theorem about Lorentz
invariant measures. For each m> 0, let H,, = {xe R*|x - X = m?, x, > 0}.
The sets H,,, which are called mass hyperboloids, are invariant under L% .
Let j, be the homeomorphism of H,, onto R* (or in the case m = 0 onto
R>*\0) given by j,,: {xo, X;» X3, X3>> {Xy, X3, X3> = X. Define a measure
Q,, on H,, by setting

3

Q,(E) = J' —2‘1#

JnE) /M + |x|?
for any measurable set E < H,,. The measure €, can easily be seen to be
L' -invariant. In fact, up to a constant multiple, 3, is the only L', -invariant
measure on H, (see the Appendix). Furthermore, every polynomially
bounded L, -invariant measure on V, is the sum of a multiple of § and an
integral of the measures Q,,. We state this fact as a theorem.

Theorem 1X.33 Let u be a polynomially bounded measure with support
in V, . If uis L' -invariant, there exists a polynomially bounded measure
pon [0, o) and a constant ¢ so that

[ Jau=g0)+] ( [ 1 dnm) dp(m)

for all fe #(R*).
Proof See the Appendix to this section.

Theorem 1X.34 (Killen-Lehmann representation)  Let W, be the two-
point function of a field theory satisfying the Wightman axioms and the
additional condition that (Yo, @(f)¥o) =0 for all fe #(R*). Then there
exists a polynomially bounded positive measure on [0,00) so that for all
fe#RY),

( 7 dnm) dp(m)

Symbolically,
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where

. — 2 2 Ty e
A, (x; m?) = i 3f exp(—ixgy/ m +l + ix k)d3k
2(2n)* g Jm? +k?

Proof Let fe #(R*). Then

[[ TGS 0)Walx = y) dx dy = (o, @(T)0 (o)
= [@(fWoll>= 0

Thus W, is a distribution of positive type. By the Bochner-Schwartz
theorem, W, is a polynomially bounded measure and by Theorem IX.27
the support of W, is contained in V,. Since #°, is &, -invariant, W, is
invariant and the reader can easily check that this implies that W, is
1, -invariant. Thus W, satisfies all the hypotheses of Theorem IX.33, so

W) =T 0+ [ (], 7 ) dotm)

for some polynomially bounded measure p on [0, o) and some constant c.
To conclude the proof we will use the hypothesis that (Yo, o(f )W) =0
for all fe #(R*) to prove that ¢ = 0. Let g € &(R*) and define G(a) =

(@90, U(=a Nelgho). Then,
Gla) = (Yo, ¢@)0(9-(WWo) = (W * 9-.)(@)
= (W; + 9)(@.) = (W, * g+ §)(a)
Therefore, G is the measure |g(k)|*W,. But

G(a) = f e~ 2 d(p(gWo, E, 0(@Wo)

= J e A d(p(gWo, Ex@(gWo)

so G is also the measure (27)? d(¢(9)¥o, Ex@(9)¥o)- Since the vacuum is
unique (Property 3), the mass of d(o(g)¥o. Ezp(gW,) at the_ origin is
|(Wo, @(g)¥o)|* which equals zero by hypothesis. Thus |g(k)|*W, has no
mass atlthe origin. Since this is true for all ge & (R*), we conclude that
c=0.

We remark that Theorem IX.32 can be combined with microscopic
causality to prove analyticity properties for certain distributions arising
from commutators of the field. For example, if we define

Cay ~— x) = (Yo, 0(x)0(yWo) — Yo, @(¥)o(x)¥0)



72 IX: THE FOURIER TRANSFORM

then by Property 7, C, has support in V, u (—V,). Such a distribution
can be written C, = R, + A, where supp R, < P, and supp 4, < -V, ;
see Problem 56. R, is obviously determined up to a distribution with
support at the origin. Since supp R, < V., the Fourier transform of R,
is analytic in the tube R* — iV, . For R, this can be seen directly from
the Kallen-Lehmann representation. For a general model, one would like
to prove that the higher order commutators C, can be written as a sum
of distributions with supports in cones. The corresponding retarded func-
tions R, would then have Fourier transforms which are the boundary
values of analytic functions. The analyticity properties of the R, are related
to the analyticity of the scattering amptitude.

Appendix to 1X.8 Lorentz invariant measures

The purpose of this appendix is to prove the facts about Lorentz
invariant measures used in Section IX.8. In particular we will prove Theorem
IX.33. First we need some general results about measures on product spaces.

Theorem I1X.35 (a) Let X be a locally compact space and let {T.},.,
be a family of homeomorphisms of X into itself. Suppose that there is
precisely one (up to constant multiples) Baire measure u invariant under
all the T,. Let Y be another locally compact space and define T, x I by
T, x I: {x, y)— (T, x, y) for all {x, y> € X x Y. Then any Baire measure p
on X x Y invariant under all the maps T, x I is of the form p=puQ®v
for some Baire measure v on Y.

(b) If X and Y are locally compact spaces and u; ® v, = u, ® v, for
NONZEro measures U, fy, vy, v, then du; = c du, and dvy = ¢! dv,.

Proof Let p be invariant under the T, x I and choose fe k(Y), the con-
tinuous functions of compact support, with f > 0. Let p, be the map from
k(X) to R defined-by p,: g+ p(g ® f). Since p, is a positive linear form on
x(X), it is a Baire measure. In addition p, is invariant under the maps T,
since p is invariant under the maps T, x I, so by hypothesis p, = c, u for
some constant c . Since, by hypothesis u # 0, we can find a positive function
g € k(X) so that u(g) > 0. Then ¢, = p(g ® f)/u(g) is a positive linear form
on k(Y) so ¢, =v(f) for some Baire measure v, ie. p=pu®yv. This
proves (a).
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To prove (b) we first observe that y, and p, and also v, and v, must
have the same sets of zero measure, Let f and g be the characteristic
functions of sets E and F in X and Y respectively where u,(f) # 0 # v,(g).
Then p,(E)/uy(E) = v,(F)/vy(F) from which (b) immediately follows. ||

We will need some information about measures on R" and R*.

Theorem 1X.36

(a) Constant multiples of Lebesgue measure are the only translation-
invariant Baire measures on R™

(b) The only Baire measures on R* = (0, o) that are invariant under
all the transformations T;: x+— e°x (all a € R) are constant multiples of the
measure dx/x.

Proof We begin by proving (a) for the case n = 1. We need only show
that if u is translation invariant and p([0, 1]) = I, then u is Lebesgue
measure. Since p({x}) is independent of x and [0, 1] contains infinitely
many points, we must have u({x}) = 0. Thus p([0, 1)) = L. Since [0, 1) is a
union of n translates of [0, 1/n), we have u([0, 1/n)) = 1/n and it easily
follows from this that u([0, r)) =r for any positive rational number r.
Translation invariance then implies that if a and b are rationals and a < b,
then y((a, b)) = b — a. But since p is a Baire measure, it is regular which
implies p((a, b)) = b — a for all a < b. Since u is determined by its values
on finite open intervals, 4 must be Lebesgue measure.

We now complete the proof of (a) by induction. Suppose that the only
translation invariant measures in R* are multiples of d*x and let p be a
translation invariant measure on R**! = R* x R. Since p is invariant under
the subgroup of translations of the form T x I it is of the form d*x ® dv by
Theorem IX.35a. Since p is also invariant under the subgroup of the form
I x T itis of the form du ® dx. Thus, by Theorem IX.35b, p = c d*x ® dx =
cdtlyx,

(b) follows from (a) since In: x — In(x) is a homeomorphism of R* onto
R under which T, goes over into translation by a. ||

We are now ready to examine Lorentz invariant measures on V,; ie.
polynomially bounded measures with support in V, which are invariant
under £%,. V, can be written V, = {0} U (| & H,). Further, the set {0}
and each of the H,, are taken into themselves by %, . First we will examine
H, and show that it has only one invariant measure Q, (defined in
Section 8). Then we will prove Theorem IX.33 which says that any Lorentz
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invariant measure on ¥, can be obtained by “adding up” a delta function
at {0, 0, 0, 0> and these invariant measures on the H,,. Although there
will be many changes of variable in the following proofs, the idea of all of
them is the same: to homeomorphically map the space one is interested in
onto a product space X x Y, to analyze the invariant measures on X and
Y by Theorem IX.36, and then to determine the invariant measures on
X x Y (and thus on the original space) by using Theorem IX.35.

Lemma The measure Q,(-) on H,, is invariant under £, .

Proof One straightforward way of seeing that Q,, is Lorentz invariant is to
compute the action of any A € £, on H,,, proving that the Jacobians work
out to keep Q,, invariant. A more instructive proof first notes that d*x is
£ -invariant since A € &, implies det A = 1. Let fe CF(0, c0); then since
V, is £, -invariant, the measure f (x - %)y d*x is &', -invariant where y is the
characteristic function of V,. Now map V, homeomorphically onto
R?* X R™ by h: {xq, XY (X, y> where y = x - X. Then dy/dx, = 2x, so

d3x dy

2/m* + x?

d*x =

Thus, the measure

JHE) /m* + X2

is £ -invariant. If f,(y) is a sequence in C(0, c0) converging to 5(y — m?),
m > 0, then Q% converges to Q,, in &’(R*) and thus Q,, is £, -invariant in
the sense that Q,(g(x)) = Q,(g(Ax)) for all ge L(R*), Ae £, . By a simple
argument, this implies Q,,(E) = Q,,(AE) for m > 0. Since Q,, - Q, in &'(R*)
as m | 0 we have also proven the case where m = 0. I

Because of the way dQ, was constructed in the above proof, some
physics literature denotes d),, by 3(x2 — m?) d*x or even as §(x* — m?).

Theorem IX.37 Q,, is the unique £, -invariant measure on H,,, m > 0.

Proof We begin by choosing a new coordinate system for R* by letting
T=2""2(xg — x3), 2= 2""*(xy + x3), and x = (Xx;, x,> € R2. In this new
coordinate system the Lorentz inner product is

X'X=2zz2t—x*X
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On any H,, m>0, we can use 7 and x as coordinates since z=
(2r)"*(x - x + m?). Notice that if x e H,, and m > 0, then both z and 7 are
in (0, o).

Let p be an invariant measure on H,,, m > 0, and let s be the homeo-
morphism of H,, onto R?> x R* given by x+ (x, 7). Let L,, a€ R, be the
linear transformation on R* given by 7 —e°1, z—e %z, x - x. Since L,
preserves the form 2zt — x - x,det L, =l and L,: V, -V, , it is a Lorentz
transformation and sL,s™': (x, t) > (X, e*t). Since s(dp) is a measure on
R? x R* invariant under sL,s™! for all a e R, we conclude from Theorem
IX.36b and Theorem IX.35a that s(dp) = du(x) ® dt/z.

Now, let T: R* — R*, b e R? be the transformation

T: <1, 2, x) <7,z + b - x + 3|b|*t, x + 1b)

A short calculation shows that TyeLl. It is clear that sTys™':
(X, D (x + th, ). Let £: (X, t)+—<(x/7, 7). Then t: R? x R* > R? x R*
and tsTys™ 't71: (x, 1)+ (x + b, 7). Using Theorems IX.36a and IX.35a
we conclude that ts(dp) = d*x ® dv(t); i.e. s(dp) = d*x ® dv(t)/z>.

Since s(dp) = dp® dr/tr and s(dp) = d*x ® dv(z)/z?, we conclude by
Theorem 1X.35b that s(dp) = ¢ d*x ® dz/1. Since s sets up a one-to-one
correspondence between the measures on H,, and the measures on
R? x R*, it follows that there is at most one (up to constant multiples)
measure on H,, invariant under #',. By the lemma we know there is at
least one such measure, so there is exactly one.

The proof for the case m = 0 is similar. We only note first that the set
{x | * = 0} must have p-measure zero. |l

Proof of Theorem 1X.33 Let u be a polynomially bounded measure
invariant under #', with support in V,. Let y, be the characteristic
function of H,, x the characteristic function of | J,»¢ H,. Then yop is
&L -invariant, so yop=eQq, ie. p= p({0})0, +eQ + yu. Let j be the
homeomorphism of | J,,» ¢ H,, defined by j: (xq, XY (x/x - %, x - X). For
eachA e LY,jAj ! acts on R® x R* by a product action A, x I. The meas-
ure j(xu) is invariant under the maps A; x I. By Theorem IX.37 there is a
unique measure Q on R? invariant under all A and Q = c,, j(Q,,) for each m.
By Theorem IX.35a, h(xu) = Q ® § for some Baire measure p on (0, o).
That is, for fe #(R*)

Iy‘f(x) du(x) =f “naf(i—l(x» dQ) dp(m)

R*

-] ( f, 6k dnm) dp(m)
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Now define p on [0, o) by p = ¢, 5 + €d,. Then,

J 09 dut) = oD 10) + ([0 d20) dptn

The fact that p is polynomially bounded follows from the polynomial
boundedness of 4. |

1X.9 Restriction to submanifolds

Let M be a hyperplane or a compact submanifold of R" of dimension
n — 1or less. In this section we consider the problem of which fe I>(R") can
be restricted in a natural way to M. Since M has Lebesgue measure zero in
R", we will not be able to restrict every fto M. We only expect to be able to
restrict those fsuch that there is a distinguished element in the equivalence
class of f which is suitably smooth. For example, an fe &(R") has a natural
restriction T,, fgiven by merely taking the values of fon M. The idea of our
approach is to find a Banach space B with #(R") = B = [*(R") so that for
fe PR | T fllzmy < C|| fll 5 f #(R") is dense in B, then we can use the
B.L.T. theorem to extend T,, to all of B. A second approach to the restriction
problem is discussed in the Notes to Section IX.10.

What shall we take for the Banach space B? Our experience suggests that
smoothness conditions on f are equivalent to decay bounds of f so it is
natural to try to use the Sobolev spaces W,,. For notational convenience
we introduce the weighted L2 space L. We say fe LZ(R") if and only if
fe W, ie, if and only if

[ 4 xPrIS ) dx < oo

There is a natural question which is dual to the restriction problem that
we have posed. Namely, given f'e [*(M), we can associate f with a tempered
distribution T¥ fon R" with the action T} f: ¢ — [, f(x)e(x) dw where w
is the natural measure (see below) on M. What are the growth properties of

P
Fu f=TY f7 We begin by solving these two problems for hyperplanes.

Theorem 1X.38 Let fe #(R") and suppose that M is a plane in R" of
codimension k, I < k<n— 1.
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(a) Let T, f be the restriction of f to M. Then there is a constant C
(independent of f) so that || Ty fllzm < C|| fllw, for all m> k — 4.
Thus T,, extends uniquely to a bounded map of W, into I?(M).

(b) Let d,; x be Lebesgue measure on M (defined for example by translat-
ing M to the origin and choosing an orthonormal basis) and let
fe I}(M, d\ x). Define

Fu s )= 1)"/2 [errdex (X4

Then &, f is the Fourier transform of f regarded as a tempered
distribution and &, f € L(R") for all m < —k + %.

Proof We will give a proof for the case n =2, k= 1. The proof of the
general case uses the same ideas and is left as an exercise (Problem 57).
Since both the hypotheses and conclusions are invariant under translations
and rotations of M, we may assume that M = {¢(x,, 0> | x, € R}.

To prove (a), let m > 3. Then

eix,ll
| f(x1,0)| < J { J’—f(,ll, Az) dA, | dAy

di, \'?
<( 1+,12) ([1+|,12

so, by the Plancherel theorem in one variable,
. di, |
[1fCen 0 dxy < € (j (1 + |22 | [ e b7 (A, 45)—2 dxz) dx,

J2n
= C[ (1 +14:PY"IF (31, 2:)[* dA, dd,

di,

" 2 1/2
aAf(Qy, Ay) —=— | dA
e f( 1 z) o 2)

< CI (L+ |4+ lez)mlf’\(lh A;)|? da, dA,

=C|fllw,

Thus, the restriction map 7,, f = f(-, 0) extends to a bounded map of W,
into I}(M).

Now, suppose that g e I2(M, d; x) = I*(R). Let x, be the characteristic
function of (—n, n). Then x,(x,)g(x,)d(x,) is a distribution on R? with
compact support, so by Theorem IX.5,

S 1 —idyx
Xn98(ds, Az) = 5 [ e nug, (xyJg ) dxy
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If ¢ € #(R?), then

1T (55 e teadate) dxl)cpul, 1,) dA, di,

o f 1 .
—’JJ‘ (E}ZJ e~ "¥ig(x,) dxl)‘P('ln» Az) dA, dA,
so, since x,g — g weakly and the Fourier transform is weakly continuous,
(2r)~ "' [ e~th*ig(x,) dx, is just the Fourier transform of g(x,)d(x,) as a
distribution on R2. To complete the proof, we let m < —3. Then

[[ @122 + 1217 (Frg)ds, 22) ddy dd,
< @n)7H [ (1+ 14 Py15@) * day da,

< (@m)! (j (1+ |4, d,lz) lol 2
so Frge LL(R?). I

We turn now to the case where M is a compact submanifold.

Definition A hypersurface M in R" is a set of points with the following
property: there is a real-valued C* function F on R" so that M =
{x| F(x) =0} and so that VF = (8F/0x,, ..., 0F/dx,) # 0 at each xe M.
More generally, a regularly imbedded submanifold of codimension & is the
set of points where k real-valued C* functions vanish with the additional
property that the Jacobian matrix {0F/0x;}; <i<k 1<j<n have rank k at each
point in M.

For simplicity of notation we will discuss only the case of codimension
one. Once F is given, the hypersurface (and more generally, regularly
imbedded submanifolds) carries a natural measure. We will describe it in a
neighborhood of x e M. Since VF{(x)# 0, dF/dx, # 0 for some ¢. By the
implicit function theorem of advanced calculus we can find a neighborhood
N of x and a smooth function h, on R"™! so that x, = h/(x,, ..., %7, ---, X,)
for all {x,, ..., x,> e N n M, where {(x,,..., X, ..., X,» means omit the
¢th coordinate. For each S < (N n M), we define

o dx, - d%, - dx,
®) =] " oFmw|
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Then by the chain rule and the Jacobian formula for change of variables the
measure w, is independent of which ¢ with dF/dx, # 0 we chose. By
piecing the measures wy together we can get a natural measure on all of M.
The reader can check that the natural measure on $"~ ' (the surface of the
unit ball in R") is just the usual spherical measure if

F(xy,....x,) = % (igx,-z - 1)

We remark that the measure we have constructed above is F dependent.
But, if M is compact, then any two such measures are absolutely continuous
with respect to one another and their Radon-Nikodym derivatives are
bounded from above and below by positive constants. Thus the correspond-
ing I2-spaces on M are the same in the sense that their norms are equivalent.
We warn the reader that there is a natural measure on M which can be
constructed geometrically but which may differ from the ones we have
constructed; see the Notes. If M is compact, then the I? space of this
geometric measure is the same as the I spaces of the F-dependent measures,

Theorem IX.39 Let M be a regularly imbedded compact submanifold
in R" of codimension k given by k C® functions F;, ..., F,. We denote
by w the natural induced measure on M. Suppose that fe & (R").

(a) Let T f be the restriction of f to M. Then for all m > k — 3, there
is a constant C (independent of f) so that | T, f |z, dwy < C| ] w,
so T, extends uniquely to a bounded map of W,, into I*(M, dw).

(b) Letfe I}(M, dw) and define

Fu Ny s ) =(ﬁ fM e~ M (x)do  (IX.45)

Then &, f is the Fourier transform of the tempered distribution on
R" associated to f, &, fis in C*(R"), and &, f e LLR") for all
m< -k +31.

Proof As before, we only give the proof in the case of codimension one.
The proof consists of essentially the same computations as in Theorem
IX.38, except that we must break the manifold up into a finite number of
pieces each of which we flatten out so we can use the Plancherel theorem.
In this way we will prove (b). We then avoid the computation in (a) by a
duality argument.
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Letfe [*(M, dw). Then f can be associated with a distribution of compact
support under the action

o[ f(x)o(x) do

Since this distribution has compact support, Theorem IX.5 implies that the
formula (IX.45) gives its Fourier transform. #,, fis in C* by the Paley-
Wiener theorem for distributions.

By using the implicit function theorem and the compactness of M, we can
find a decomposition of M into disjoint measurable sets S, ..., Sy:
Sj = {(xl, ...,X"> i x,m = hj(xl,...,)‘c/(j), ...,x,,), <X1, ey )%/(j), veay x,,) € VJ}

where V; is a measurable subset of R"™', ¢, < (0F/dx,;))(y) < c, for all
ye §;,and ¢, >0, ¢, < 0. Define

G,(A) = (2m)™"? -[s

For simplicity of notation we assume that /(j) = n. Then

n—1
G(A) = (2m)™"? J'Vexp(—-i/l,,hj(xl, s Xog) — 1Y, AiX)
g 1

J

e~ X (x) do

J

Slegs oo Xy hy(xy, o, X2 1))
oF
™ (gs-ees Xy ps Bi(X0, o0y X2 y))

n

dx, - dx,_,

so the same computation as in the proof of Theorem IX.38b implies that
for m < —3, we can use the (1 + A%)" factor to control the A, integration
and then the Plancherel theorem to conclude

X1y eeos Xpe s Bi{Xgs ooy X 1) |2
“GJ'HZL,,,’(IR")S CJAV(alﬁ( 1 1 }( 1 l)l 5 dxl'“dxn—l

(X1 -on X1y Bj(X g, -y X y)

Ox

n

C
< = | S as, do

¢y
Summing from 1 to N we conclude that there is a constant C so that

| Z 0 flL 2 < CHfH[}(M_ Jw) for all £ This proves (b).

We have just seen that &, [}(M, dw)— L%, (R") is bounded if m > 3.
We can identify L2(R") with the dual of L2, (R") by associating to each
fe LL(R") the functional

g [ T(x)g(x) dx
o
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Thus, #¥ maps L2(R") boundedly into I}(M, dw). So we can uniquely
associate with each fe W, a function T, f = #%(f) in }(M, dw), so that if
fe #(R"), this mapping is just the restriction of f to M. Moreover,

| Toa S 2, dey < €l S - 1

One is often interested in knowing how the restriction maps change as
the submanifold M changes. Consider the case where M = S"~!  the
(n — 1)-sphere in R", and let §;7' = {x e R"| Y-, x} — A =0}. Theorem
IX.39 implies that the restriction map T, is a bounded map from W, (R")
into 2(S5™", dw) for each A if m>3. Define (U, f)(x)=f(4x); then
U,: IXS87 ', dw) > I}(S""!, dw). We would like to know the continuity
properties of the family of maps U, T;: W,,(R") —» Z(S"" !, dw).

Definition A function g from a metric space (X, p)> to a Banach space
(B, ||*||> is called Hélder continuous of order &, o (0, 1], if for each
xe X, there is a 6 >0 such that |g(x) —g(y)| < Cp(x, y)* for all y
satisfying p(x, y) < 4.

Theorem IX.40 Let R, = U, T, be the family of restriction maps defined
above with m > 3. Then for each fe W,,(R"), R, fis Holder continuous of
order « as an I*(S""', dw)-valued function of A for each o« with
O<a<m-—4i

Proof We sketch the proof leaving the details to the reader (Problem 58).
Let fe (S 1, dw) and define the dilated Fourier transform by
(FDf)(k) = (2n)~"? J e”* 2f(x) dw
Sn— 1]

Notice that |e=#* & — g~k ¥x| < C|A — X'[*|k[* for any « < 1. Using this,
one proves that
|70 = FOf | @y < CLA = (S | s ao)

if @ <m—1%. Since R, f=(FW)*f (under the duality described in the
proof of Theorem IX.39) we conclude from this that

IRy f= Ry Sl < Cla = XF| fllw, N

We remark that it is possible to prove the following stronger result:
Suppose n + 3 <m < n+ 3; then R, f, regarded as a map of W, (R") into
I2(S"" !, dw) is n times differentiable and the nth derivative is Holder
continuous of order o forall 0 <6 <m —n — .
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Our final topic in this section is the investigation of the map
— —
S (k2 = 2)7)
for A positive. We are interested in this map because it is just the
unbounded inverse (—A — 1)™! for A > 0. We will continue our study of
(—=A — 4)™! in Section XIIL7, where we study the spectral properties of
certain quantum-mechanical Hamiltonians. The idea of the following
theorem is that (k* — )™! is singular only on S, the sphere of radius

A2 s0 if the restriction of f to Siw! is zero we expect that fi— (k? — A)™'f
should not be too singular. For convenience, we denote the norm on
LR by |-, -

Theorem I1X.41 Let fe L2(R") for some a >4 and suppose that the
restriction of f (given by Theorem 1X.39) to the sphere of radius A'/? (1 > 0)
is the zero function. Then for each ¢ > 0,

\/
B, f= (k2 - A)_lfe Lz—x-ze
Moreover, for each ¢ > 0, & > 4, and 4 > 0, there is a constant C so that
1Bz flla-1-2e < €[l fa
for allfe L(R") such that fvanishes on S}7%'. C remains bounded if A varies

through a compact subset of (0, o).

We will prove Theorem X.41 by a series of lemmas. The first is a direct
consequence of the fact that L? is the set of Fourier transforms of the
Sobolev space W, and the proof of Proposition 2 in Section 1X.6.

Lemma1 Let F be a C® function so that all the derivatives of F are
S~~~
bounded. Then fi— (Ff) is a bounded map on each L2.
Our technique for proving Theorem IX.41 will be to prove the theorem

first in the case n =1 and then to use this special case along with a
“cutting and pasting” argument to do the general case.

Lemma2 Let fe LZ(R) with o >3 (so that fe [}(R)). Suppose that
{2 f(x) dx = 0. Then,

(@) There is a one-parameter family of tempered distributions satisfying
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kg(k) = f (k). Each is a continuous function and there is a unique one
g with lim, _, ; , g(x) = 0.
(b) For each sufficiently small ¢ > 0, g obeys the bound

lg(x)| < C|| flla(1 + |x[?) 737472 (IX.46)
where C depends only on a and e.
Proof Let g(x) be defined by

g)=i[ fO)dy=~i[ fl)dy (IX 47)
hall- ¢} x
Suppose that x < 0 and choose ¢ > 0 small enough so that a > 4 + & Then

o) < ff IO + |91+ [yP) 241 + |x]?)He42dy

2

< (U Pye ol [ s Pt dy

For x >0, one uses a similar argument using the second equality in
(IX.47). Since fe L'(R), g is absolutely continuous and g'(x) = if (x), thus
kg(k) = f(k). By the hypothesis on f, g (x) =0 as x = + c0. If g4 is another
tempered distribution satisfying kg, = f, then k(§ — g,) =0, so § — g, has
support at the origin. This implies that §, — g is a finite linear combination
of the delta function and its derivatives. Since k(§, — §) = 0, the coefficients
of the derivative terms vanish, so g, =g + pd,. It follows that g, =
g + B(2n)~ "2, This shows that g, — 0 at + oo if and only if 8 =0. |

We can now prove the one-dimensional case of Theorem IX.41.

Lemma3 LetA>Oanda > . Suppose that he L}(R)and A(+A!/?) = 0.
Then, there is a continuous function g going to zero at oo so that
(k* — A)g = h. Moreover, g obeys

|g(x)| < Dyf|Aflo(1 + |x[?)re~*72 (IX.48)

where D, is a constant depending only on A, ¢, and & For fixed a and e,
D, is bounded for 4 in any compact subset of (0, o).

Proof By a simple argument using the formula e'/‘fa = f(k —y), one
can see that Lemma 2 implies that if f(y) = 0, then there is a g obeying

(IX.46) so that (k — y)§ = h. We will denote such a g by m Choose
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a C* function y so that y(k)=0 if k < —1A"? and y(k) =1 if k > §A}/?
and define

Fy(k) = (k + AV2) x(k),  Fy(k) = (k = 2"2)71(1 — x(k))

so that (k -11/2)-*F, + (k+ W) ‘F = (k* —A)"". Let f;= F,h. By
Lemma 1, || fil, < Ciullh|s- Let § = (k — 227, + (k + 2"/%)7'f,. Then
(K* = )g=h and

lg0e)| < Cllfills + 1201+ [x[?)7He3
< DAl (1 + [x[?)7re72 70

That D, is bounded as A runs through a compact subset of (0, ) is a
simple consequence of the above proof. I

Note that by (IX.48),

[1gGR( + =12 d < DRI [ (14 [x[?)

so that Lemma 3 is, indeed, a strengthened version of Theorem IX.41 in
the case n = 1.

Lemma4 Let fe L2(R") with « > % and suppose that f vanishes on the
sphere of radius A. Then for almost every pe R"™},

hy(y) = (2m)=0 =02 [ttt ()

isin L2(R)and for almost every p e R"~! with |p| < 4, A, (/4 — [p|*) =

Proof 1If fwere in I}(R"), the conclusion of the lemma would be trivial,
but we must work a little harder. Since f (x,, ..., x,- . Y)(1 + 2571 x7 + y2)/2
is in }(R"), we know that f(x,, ..., x,_,, y)(1 + y*)*? is in [}(R"). Thus,
by the Plancherel theorem,

[ )P+ |y dy d='p < o0

It follows that for almost all p, h,(-) e LZ(R). Now, choose f,, € #(R") so
that || f— f.]l. = 0. By Theorem 1X.39, f,, —»f in I?(S:™'). Therefore, by
passing to a subsequence if necessary, we may assume that:

(1) Julps £/ 2 = [p[?) = 0 for almost all pe R™™ ! with |p[* < 2
2) [fu=Slasd™™
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Define

n-1

HP0) = @n) 0 [ exp =0T posfulin 5 ) 7'

We claim that |A — h || ) — 0 a.e. in p. For by the argument at the
beginning of the proof | |A™ — h,||2 d"~'p < 47> Thus, for each m, the
set U, ={p| [ — h,|, <2~ ™} has a complement with measure less than
4" Let T,= ﬂ,, >m U, and let u denote Lebesgue measure. Then

p(R*NT,) <47 so y(R"" "\ T,n) = 0. But on each T,,, h" > h, in
L%(R) so [ — h,||l, > O for almost all p. Therefore, by Theorem IX.39,
R+ /A% — |p|z)—:hp(-i_~,/).2 —|p?) =7(p. /A* — |p|?) for almost all p
with |p|? < A. Since A (+ \/A — |p*) = F.(p, £/4 — |p|*), (1) implies that
h(£/2—p[?)=0.1

Lemma5 Fix 2> 0 and let

V= {k
Let fe L(R"), a >4, and suppose that f has support in V and that

f18:=* = 0. Then

— (K Fel, oR)  and By fler-ze< ClSf ]

Proof Define h(y) as in Lemma 4 and notice that by the argument at
the start of the proof of Lemma 4 we have

n—1
T (ki + [ky — 2122 <42} R
i=1

j k12 d"*p < || f]|2 (IX.49)

By the hypotheses h =0 if |p| > 412, For each p with |p| <$A'2, we
define §,(k) = (k? —|p|}) A, k) Then, by Lemma 3,

|9p(.V)|2 < D2||hp||a(l + ,ylz)-(u—x/z—;)

Since

a4 = (2™ [ exp =T ) (B, S5V

i=1

the Plancherel theorem and (IX.49) imply that

1B, £ XD & < DA FI2(1 + |y )=
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There are now two cases to consider. If & — 1 — 2¢ < 0, then

(1+|x|2)a—1—2¢s(1+|xn|2)a—1—2s
SO

1By £ 2120 < [ 1B f)0s oo )P+ [, Y12 i
<D f)2 [ (1+]x,[2)7 27 dx,

On the other hand, if &« — 1 — 2¢ > 0, we must use a subtler argument. Let
e,= (0,0, ..., 1). If e is a unit vector sufficiently close to e,, then by
mimicking the above argument one can show that

[ 1B f)xr, s %P+ [x €772 dx < DY f]2 (IX.50)

Choose unit vectors vy, ..., v, near e, so that {v,}/_, is a basis for R".
Then, there is a constant C so that

T+ [xP<CY (1+|x-v[)
i=1

Thus, for some other constant C’

(1 + |x|2)u—l—25 < CIZ (1 + ‘x. vi|2)a—l—2£

=1

Therefore by (IX.50)
1By fili-1-2. < C'DY| f[z 1

Proof of Theorem I1X.41 By a simple compactness argument we can cover
R” by finitely many neighborhoods V,, ..., V,, so that

Vi={k||k= 2| <42} for i=1,2,..,m-2
where e, ..., e,_, are unit vectors and where

Vor = (k| (K[ < 302), Vo= (k| K] = 3217

Choose C* functions {y;}j.,, with supp y; = ¥, so that Y™, y,= 1. By
Lemma 1, Y7, HZ?H,, < Cy|f|.- Therefore, by Lemma 1 for i=m— 1
and i=mand Lemma S fori <m — 2,

m 2\(
||B).f||z:!-l—2t:S Z"(k _'1) Xifl|a—l—2tsc2||f“a I
i=1

Strc prst skrs krk A Czech tongue-twister
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IX.10 Products of distributions, wave
front sets, and oscillatory integrals

In this section we wish to discuss some results connected with the problem
of defining the product of two distributions. If T € &’(R") and S € O}, then
we have already defined ST (see Example 7 and Operation 1 in Section V.3).
More singular products often occur in applications. For example, in the
theory of the free quantum field, one would like to define 6(x — y)A, (x — y)
+ 8(y — x)A , (y — x) where A, is the two-point function and

0(f)=| [flx)d*x
X020
The problem of defining products is not to define a single product TS but
to define a product with reasonable properties for a large class of T and S.
In the above example, both 8 and A, are singular at x = 0, but in a sense
which we will make precise, the singularities are compatible in a way which
allows us to define 6A , .

We will attack the problem of products in two steps. First, we will
“localize” T and § in such a way that we need consider only the case
where T and S are distributions of compact support. Secondly, we will use
the fact that the Fourier transform of a product is the convolution of the

Fourier transforms and try to define TS so that TS = (2n)""2T % §. This
way of looking at products will lead naturally to the notion of the wave
front set of a distribution. We complete the section by developing a method
for computing the wave front set of a class of distributions called oscillatory
integrals. Finally we use this machinery to define the product discussed
above.

We remark that we will not have occasion to use the elaborate
techniques of oscillatory integrals again and that they can be avoided if
one merely wants to define the product 6A,. We have included these
techniques partly as an introduction to a set of important ideas which
have found application in partial differential equations. We mention some
of these applications in the Notes.

As motivation and as an introduction to localization techniques we first
consider the case where T and S are singular at different points in the
following precise sense:

Definition Let T € 2'(R"). We say that x € R is a regular point of T if and
only if there is a neighborhood U of x and a function F, which is C* on U,
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so that T(f) = { f(x)F(x) dx for all fe 9 with supp f < U. The complement
of the regular points of T is called the singnlar support of T and will be
denoted by sing supp(T).

From the definition, it is clear that:

Proposition  The singular support of T is a closed subset of supp T.

In one case, it is easy to define TS; we just localize the notion of product
used in Section V.3,

Theorem IX.42 Let T and S be in &'(R"). Suppose that sing supp(T)
~ sing supp(S) = J. Then there is a unique W e 2’ so that

(a) If x ¢ sing supp(S) and S = F, a C* function, near x, then W = FT
near x. That is, if S(f) = | F(x)f(x) dx for all f with suppf< U, an
open set about x, then W(f) = T(Ff) for all f with supp f< U.

(b) If x¢singsupp(T)and T = G, a C* function, near x, then W = GS
near x.

Proof Let us first prove that there is at most one such W. For suppose
that W;, W, satisfy (a), (b), and let f be given. Let B denote the ball of radius
R. Since sing supp(T) n sing supp(S) = &, for any x € By, we can find a
ball BY), of radius r(x) about x so that W(g) = Wy(g) for all g with
supp g = BY), since either (a) or (b) holds near x for both W, and W,.
Choose finitely many x,, ..., x, in B,y so that | Ji-, Bﬁ(;))ﬂa Bg and
choose nonnegative y,, ..., x, With

x€C¥ suppycBY), and x| BY,=1

Define h = Y*., x,and let y be a C§ function identically one on By with
support in N, a neighborhood of B on which h is bounded from below
by a strictly positive constant. Then for every fe C§ with supp f< By,
we can write

f=IE ™" = _Zinh_l =1/

where f;=y;h™'f is C® with suppf; cBi{x By the above argument,
WL (fi) = Wa(fi) so W(f) = W,(f). Since R was arbitrary, W, = W;.

This proves uniqueness. Now suppose for each R we can construct a
distribution Wy on 2(Bg). Then, by the above uniqueness, the Wy must
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agree on their common domain, i.e, if R, > R, then Wy, [.@(BRI) = Wg,
so the Wy fit together to form a functional on 2 that is continuous since
it is continuous on each 2(Bg).

Now fix R. For each X € B,g, x is either a regular point for T or one
for S, so pick B{), so that either S| B, is a C* function F, or
T [ Yx is @ C° function G,. As above, choose finitely many x; and
label them so that x,, ..., x, have associated F’s and x,,, ..., X; have
associated G’s. Also, as above, let u; = yy;h™! so that wu; is C%,
supp u; < B, and ¥, u; = 1 on Bg. Define Wi by

Wi(f) = ‘_2 T(F uf)+ Z S(Gyu; f) (IX.51)

i=/+1

That (IX.51) obeys (a) and (b) is left to the reader. Il

The above procedure of defining W(f) in terms of the functions v, f is
known as localization. There is an important element in the above proof
which implies that we do not lose anything by localization, i.e., that we can
put the local pieces back together. This is the fact that the topology on
9 is defined locally, i.e., for a functional T on 2 to be continuous, we need
only know that its restriction to each 9(Bg) is continuous. This is not true
of the topology on &. In fact, one can take two tempered distributions T
and S which have a product TS by Theorem IX.42 but the product is not
a tempered distribution!

Example1 Let F be the bounded C* function F(x) = exp(ie*). Since F
is bounded, F € &'. Let F’ be the distributional derivative of F. Certainly
F' e &. Applied to any ge 2

F(g) = f g(x)(ie)F(x) dx (IX.52)

although (IX.52) is not true for arbitrary ge &. Let F be the tempered
distribution exp(— ie*). As ordinary distributions, both F and F’ have empty
singular supports and so by Theorem IX.42 we can define an element
W of @' with W = —iFF'. In fact W is just ¢* but ¢ is not tempered (since
any positive distribution which is tempered must be given by a poly-
nomially bounded measure).

This example illustrates the unsuitability of localization techniques when
dealing with tempered distributions. For example, F’ is given locally by a
C* function, but it is not equal to any C* function as an element of &".
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Now we want to try to define products of distributions that may have
some common singular support. The most important property of products
which we want to preserve is their connection to convolutions via the
Fourier transform. Of course, in general, elements T € 2’ may not have a
Fourier transform, but if we localize, i.e., consider some f T with fe€ 9, then,

by Theorem IX.IZ,ﬁ is an entire analytic function. Thus, we try:

Definition Let T, Se 2. We say that W e @' is the product of T and S
if and only if for each x € R", there exists some f€ 9, with f= 1 near x so
that for each k e R":

s f N N
12W(k) = 2r)™"? JR_ TT() Sk —¢)d¢ (IX.53)

where the integral in (IX.53) is absolutely convergent. If such a W exists, we
say the product of T and § exists.

Theorem 1X.43

(@) The product is well defined, i.e., there is at most one W satisfying the
definition.

(b) If fe2 and Te 2P, then fT exists and is given by the usual
definition, i.e., f T(g) = T(f9).

(c) If TS, (TS)V, SV, and T(SV) all exist, then T(SV)= (TS)V; if TS
exists, then ST exists and TS = ST.

(d) If T and S are distributions with disjoint singular supports, then TS
exists and is given by the product W of Theorem 1X.42.

(e) If T and S are distributions of compact support, a sufficient
condition that TS exist is that | T(£)S(k — ¢) d¢ converge absolutely
for each k and define a polynomially bounded function of k.

(f) A sufficient condition for W = TS to exist is that for each x € R", there
is some f'e 9 with f(x) # 0 so that the integral on the right-hand side
of (IX.53) converges absolutely and yields a polynomially bounded
function of k.

(g) If TS exists, then supp(TS) = supp T n supp S.

Proof We will prove (a) and (g) and leave the rest to the problems. We
first note that if (IX.53) holds, then for any g € 2,

P N~ A~
af*W = (2r)""*gf T +fS = (2n)™"*f T « of (IX.54)
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(IX.54) follows from the associativity § = (f7 * 7S) = (§ » fT) #fS, which
is true because the necessary change of variables is legitimate on account of
the assumed absolute convergence of (IX.53). Thus, if W, and W, both
satisfy the definition, then for each x € R" we can find f and g identically one

e PN P —~ o~
near x so that f2W, = 2n) "*fT +fS and g*W, = (2n) "*yT * yS. By

(IX.54), we conclude thatﬂz\w1 =m, so W, — W, vanishes near x,
and thus by the argument in Theorem IX.42, it is zero.

To prove (g) we need only show that if x ¢ supp T, then x ¢ supp(TS) and
evoke symmetry. By the argument in Theorem IX.42, it is sufficient to prove
that TS(f) = 0 for all f with support in N, some small neighborhood of x.
So choose N with T(f) =0 if supp f = N. Then f T = 0 since for all g € 2,
fT(g) = T(fg) =0. Thus, by (c), f(TS)=(fT)S = 0. Finally letting x be
any function in 2 identically one on N, we have TS(f)= TS(fx)=
(/TS)(x) = 0. I

Example2 LetT =S=4in 2(R). Then T = § = (2n)" "2 and for any
fidentically one near x =0, fT = T so that the integral (IX.53) diverges.
Thus the product TS does not exist.

Example3 T =S =2(l/x)— ind(x) where 2 is the Cauchy principle
value (Example 6 of Section V.3). As we have seen (Problem 22 of
Chapter V),

T = lim - (IX.55)
c10 X+
Using (IX.55), it is easy to show (Problem 54) that
T(k) = —(2n)~'2(2mi)6(k) (IX.56)

where 6§ is the Heavyside function given in Example 8 of Section V.3. Thus
(2m)~ 172 j T(¢)8(k — ¢) d¢ = — (2n)"¥2(2n)? j 0(2)0(k — ¢) d¢
= —(27)(2r)" ' 2k6(k)
= (k)T (k)
Thus, by (e) of the last theorem, TS exists and TS = —T’; explicitly,
(TS)(/f) = lim | (f () +1 (;2") —y (O)) dx — inf"(0)

al0va
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Example 4 There is a simple generalization of Example 3 to distribu-
tions in R". Namely, if T and S have Fourier transforms with supports
in a convex cone with a dual cone C having nonempty interior, then it
can be shown that T * § exists. In this case there is an alternative way of
defining TS (Problem 62); for since T has support in a cone, by
Theorem IX.16 there is an analytic function T on R" +iC with
T =limy o «cc T(- + ix). Then, since T and § are polynomially bounded
ask —0,s50is T8 so that lim, | g. e ¢ T(- + ix)S(- + ix) exists and defines a
distribution. This is identical to the TS defined by our general procedure.

In Example 3, T and S are singular at x =0, but their Fourier trans-
forms are not badly behaved in all directions. This suggests that we single
out singular directions as well as singular points:

Definition Let Te 2'(R"). A point {x, k) € R" x (R"\{0}) is called a
regular directed point for T if and only if there is a neighborhood N of x,
a neighborhood M of k, and a function g € 2, identically one in N, so that
for each m > 0, there is a constant C,, with

|S(p)| = 3T (3p)| < Colt + |27 (IX.57)

for all pe M, Ae R, =[0, c0). The complement in R" x (R"\{0}) of the
regular directed points for T is called the wave front set of T and denoted
WEF(T).

Tlus {x, k) is a regular directed point if the localization gT of T near

X has a Fourier transform falling off faster than any power in a cone
about k (Figure 1X.6).

FIGURE 1X.6 The cone | J; 50 (AiM).

p=0

Theorem IX.44 Let T € 2'(R"). Then:

(a) WF(T)is a closed subset of R" x (R"\{0}).
(b) For each xe R",

WF(T) = {k | (x. k> e WF(T)}
is a cone, ie., ke WF,(T)and A > 0 implies Ak e WF (T).
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(c) WF(T + S)c WF(T)u WF(S).

(d) {x| WF(T)# @} is sing supp(T).

() If Te s and T has support in a closed cone C, then for each x,
WF(T) < C.

(f) Let M be a diffeomorphism of R" to R" (i.e., a C* map with a C*
inverse) and let T o M be the distribution

(ToM)(f)=T(g (/o M™"))
where g is the determinant of the Jacobian matrix dM, given by
(dM,),; = OM/0x;. Let M : R" x (R"\{0}) » R" x (R"\{0}) by
M x, k> = {M(x), dAM¥(k)>
where dM¥ is the adjoint of dM_ with respect to the Euclidean inner
product on R". Then
WF(T « M) = M [WF(T)]
Proof (a)-(c) follow directly from the definition of WF(T). For the case of
linear coordinate change, (f) is easy, but in general a subtle argument is
needed (Problem 75). To prove (d), we must show that x is a regular point
if and only if ¢x, k) is a regular direction for all k € R"\{0}. The “only if”
statement is clear, so suppose that {x, k) is a regular direction for each k.
Then for each k in the unit sphere S = {k | |k| = 1}, there exist g,, N;, M,
so that (IX.57) holds. By the compactness of S, we can find k,, ..., k, with
Ur, Mk‘: S. Let g =[], gx, and N = [} Ni,. By (IX.57) and the lemma

below, gT falls off faster than any power in each U;>0 le, where
Mk is an arbitrary compact subset of M, , and therefore in R"\{Ol It

follows that ng (2m)~"2G » gT lies in &(R") so that g*T is C*. Since g
is identically 1 near x, T is C°° near x. _
To prove (e), choose f positive near x so that f has compact support.

Then f T(k) = T(,) where gil#) = (2r)""*f (¢ — k). If k ¢ C, then for some
small open set U about k, U n C = . For all large 4, suppg;y n C=

forall e U and soﬁ(k) vanishes on AU for 4 large. Now, given x, find

he 9 so that hf is identically 1 near x. By the lemma, 7f T falls off faster
than any power in U,1>0 AU where U is a compact neighborhood of k
in U. 1

The following lemma completes the proof of Theorem 1X.44.
Lemma Let M be an open set disjoint from 0 and suppose S e O},

obeys (IX.57) for e R, , ke M. Let M be an arbitrary compact subset of
M and let he . Then h+ S obeys (IX.57) for all ke M, Ae R, .
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Proof Let U =|J;50AM and write
(S * h)(Ak) = j S()h(Ak — ¢) d¢ + j S(¢)h(ak — ¢) d¢
(eU ¢ U

On U, | S(2)] < Ca(1 + |¢])™™ for any m and on all of R", |h(¢)] <
Dyl + |¢])”/ for all j. Now
[Ak|+ 1< |dk— 2|+ 2]+ 1 < (JAk = 2| + 1)(|2] + 1)

so that for any k,

SJ 1+n+1(‘lk|+l I(|+l e ld(

j S(O)h(Ak — ¢) d¢
telU

< (const)(|4k| + 1)~
Nextlet U = { Ji>0 AM and let & = sup{¢ - k| |¢| = |k| =1, ¢ U, ke U},
Then by the compactness of M and the openness of M, o < 1. Thus for
t¢ U ke U,
|6 = k[ 2 [¢? + |k = 2a] ] [k| 2 (1 = a)(|£]* + [k]?)
> 3(1 — a)(|¢] + |k])?
so [{ k| > B(|¢] + |k|) for suitable B> 0. Now, since Se O}, |T(k)

1 + |k[?) for suitable p and [A(¢)| < Dpype i 4m(l + |2]) "*"“*"” Thus
forke U:

J S(f)h(lk '_[) d[‘S EDP+n+l+mJ‘(1 + |Ak| + Ill)—p‘n—m—l
revU

x (1 + |£])? df < const(|Ak| + 1)~
Thus for ke T,
(S * h)(Ak)| < const(1 + |k|)"
Since inf{|k| | k € M} > 0, the lemma is proven. |

Example 2,revisited WF(5) = {<0, ) | 4 # 0}.

Example 3,revisited WF(2(1/x) — ind(x)) = {€0, 2> | A > 0}.

If {x, k) e WF(T), gT is still polynomlally bounded in derCtIOn k since
gT is a tempered distribution. Thus, in “ good ” directions gT falls off faster
than any polynomial, while in “ bad ” directions it is polynomially bounded.
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Thus, for any integral like | ﬁ([)ﬁ(k — /) d¢ to converge, it is enough that
each direction be good for either T or S. This suggests the following which
is the first main theorem of this section:

Theorem IX.45 Let T and S be distributions. Suppose that
WF(T)® WF(S) = {(x, ki + k) | <x, k> € WF(T); {x, ky) € WF(S)}

does not contain any element of the form {x, 0). Then, the product TS
exists and

WF(TS) c WF(T)u WF(S)u [WF(T)® WF(S)]  (IX.58)

Proof By definition, we need only define the product locally. So given
xeR" let Ty = WF(T), T'; = WF,(S). By hypothesis, 0¢ T, + I';, so
since I'; and T, are closed, supfk, - k;|k; e I';, —k;, e T',} < 1 where we
denote by C, {xe C||x|=1} for any cone C. For any closed cones
K., K, in {R"0} with T, c K™, T', c K", we can, by a compactness
argument, find fidendcally one near x so that

|FTW)| < c 1+ k|)™F  allkg Ky, allj (IX.59)
I7S(k)| < d(1 + |k|)™9  allk¢ Ky, allj (IX.60)
Moreover, since f T and fS have compact support, there is an m and a D
so that
I7S(k)| + | FT(K)| < DL + |[k|]y"  allk (IX.61)
Let us suppose that K,, K, are chosen so “close” to I'}, I", that one has
B =suplk, - ky |k, e Ry, ~k;e K3} <1

Since the corresponding sup with K; replaced by T is less than 1, this is
always possible.
We will prove that the integral

k=] JSle)fT(;)de,
l3=k—¢,
converges absolutely, is polynomially bounded, and falls off faster than any
power in a neighborhood of any direction k ¢ K; v K, u (K; + K;). This
will prove the existence of the product by part (e) of Theorem IX.43 and
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that WF(TS) < K; u K, v (K, + K;). Since K; is an arbitrarily small
cone about I';, we will then have WF(TS)cT,ul,u (T, +T),)
thereby concluding the proof of the theorem.

Decompose I(k) as the sum of four integrals

I(k) = I,(k) + I(k) + I5(k) + L.(k)

over the four regions £, e K, £, € K,; ¢, e K, ¢, ¢ Ky, 21 ¢ Ky, (€ Ky;
£, ¢ K, £, ¢ K;. We will often use the estimate of the lemma above that

[x|+1<(ly|+1)(|x—y|+1) (IX.62)
By (IX.59), (IX.60) and (IX.62),

1001 < €idyesen [ (1] + )79 (2 = k| + 1) dey

< (|k| + 1)‘1'[cjd,,ﬂ.+1 J (|£:| + 1)~ tde,

so the integral in I, converges and falls off faster than any power in all
directions.

Now I,(k) = Ounless k e K; + K, so we need only prove the convergence
of the integral and its polynomial boundedness to control the contribution
of I, for it is automatic that WF(I;) < K, + K,. Now, if ¢, € K,, £, € K3,
then

|¢y + 22 =31 = B)(|24| + |22])

Thus, for fixed k, the only /s that enter in the integral I, have |Z,],
|£2] < 2(1 — B)~'|k| Using (IX.61), we see that I,(k) converges and

Lk < | D[1+2(1 = )" k| de,
el <2(1- )1«
= D[1 + 2(1 — B)™'|k|]*"*" x (volume of unit ball)

Finally we consider I,; the proof for Iy is similar. By (IX.61) and
(1X.60):

L) < Ddjypanes [ (14 [k =] )(1 4 [£]) 757" ey
k—¢,€ K,
If we ignore the k — ¢, € K, condition and use |k — £,| < |k| + |£,], we
see that the integral converges and is polynomially bounded. We also claim
that I, (ko) falls off polynomially if k, ¢ K,, so that WF(I,) c K,. For if
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ko ¢ K, choose a cone K3 about ky so that sup{k, * k,|k; € Ky, ky € K3} =
y < L.Thenforke K5,k — £, € K,, we have [£,| = 3(1 — y)(|k| + |k — ¢2]),
so that for k € Kj,

Iy(k) < Ddj i msnst J (U4 |20 [0 + 30 = y)(|k| + [, )] 7m " dey

< const(1 + |k|)™
Thus WF(I,) « K,. By Theorem IX.44c,

4
WE(I)c | JWF(I)) < (K, + K;)U K, U K,. I
=1

J

Example 3, yet again  WF(2(1/x) — ind(x)) = {<0, 4> |4 > 0}. Thus, by
Theorem IX.45, all powers of 2(1/x) — ind(x) exist.

Example 5 Let x, and x, be the coordinates in R* and let &(x,), 5(x,)
be defined in the usual way, e.g.

[ £ (e x2)8(x,) dxy des = [ £0, x2) dx,

Then
WF(3(x;)) = {<0, X35 4, 0) | x; € R, 4 # 0}

WF(5(x,)) = {<x1,050,2) | x; € R, 4 # 0

By the theorem, &(x)d(y) exists and is clearly &(x,, x,), the distribution
taking f into f(0).

To employ the machinery we have developed, one needs a method for
computing wave front sets. We consider first a special example which we
will then generalize sufficiently to compute the wave front set of the two-
point function A (x; m?) for a free quantum field.

Example 6 Let T, be the Fourier transform of (2r)” /(1 + |kJ*) in
'(R). If a is a positive integer n, then

7= % (-1 ,';) 59m(x)
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clearly has support at zero with WF(T,) = {<0, 1 | 2 # 0}. One can also
compute T_, explicitly by a contour integration:

T_,(x) = (zn)-lj e” M1 + k2)" ! dk

-

— x|

e
and more generally any T_,. T_, does not have {0} as support, but it does
have it as singular support. This suggests that, in general, T, might have
{0} as singular support. How might we show this? If 7, is C* away from
zero, then we would expect x"T, to be globally smoother and smoother as

n gets larger and larger. Moreover, if we can show for any m, there is an n
with x"T, € C™(R), then clearly T, is C* away from zero. But

np _ d”'“_
xn_(ﬂ) =fn

where, by explicit computation

lﬁ" | (1+k2)a n/2

Thus, for any fixed « and m we can find n with k"f, (k)eL' (e.g
n>m+ 20+ 3)and so T, is C* away from x = 0. Finally one can see that
T, is not smooth near zero. For by the Paley-Wiener idea and the fact that
(1 + k?)* is analytic in the strip [Im k| < I, T, and its derivatives all fall
off exponentially. If T, were C*® at zero, T, and thus 7, would be in &.

What was essential in the above argument was that all the derivatives of
T, fall off faster and faster, ie., that it not behave like x™"sin x whose
derivatives are asymptotic to +x7"sin x or +x~"cos x at infinity. We
thus define:

Definition A C* function F on R" is called a symbol of order & on
{0} x R"if and only if for all « € I",, there is a d, with

|(D*F)(x)] < dy(1 + | x| )tk

A distribution F on R" is called an approximate symbol of order & on
{0} x R" if and only if, for any « € I, there exists a compact set S, and
a constant d, so that F is equal to a Cl function outside S, which
satisfies

[(D*F)(x)] < d,(1 + [ x| )t
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The phrase “on {0} x R"” is included since this will be a special case of
a definition to appear shortly. For the present, we suppress the phrase
“ on {0} X R”.”

Theorem IX.46  Let F be an approximate symbol of order k. Let T = F.
Then the singular support of T is either empty or {<0, ..., 0>}.

Proof The proof using the basic idea of Example 6 is left to the reader
(Problem 66).

The above theorem does not cover many examples of interest: for
example, we recall that A, (x; m?) has the form

oy , d3k
B (xim?) = 55 s [ expliy(x k) NCEY

with Y(x, k) = —xo/m* + k* + x - k. This is something like the examples

given in Theorem IX.46 but the phase factor is more complicated than

ik - x and the integration variables are fewer than in the Fourier transform.
We thus introduce a larger class of examples:

Definition Let Q be an open set in R". A function a(-, -): Q x R*->C
is called a symbol of order m on Q x R® if and only if, for each compact
K< Qandael, Be I, there is a constant d, g x with

|(D% D a)(x, B)| < d, k(1 + |6] " (IX.63)
for all x € K, 6 € R®. The family of all symbols of order m with the seminorms
lalla, 5. x = sup (1 + [6])#~"|(D% Df a)(x, )]

xekK,8

will be denoted by Sym(Q, s, m).

We say that a(-, -): Q x R* - C is an asymptotic symbol of order m on
Q x R*ifand only if a = a; + a, with a, e Sym(Q, s, m) and where (i) a, has
compact support in the 0 variables and (ii) the map x — a,(x, -)is C*® as a
map from Q to [*(R*).

Definition A phase function on Q x R®is a function ¢: Q x R*— R such
that

(i) ¢ is continuous and homogeneous of degree 1 in 0, ie., @(x, 10) =
Ap(x, 0) for all (x, 6> € Q x R*and 1 > 0;



100 IX: THE FOURIER TRANSFORM

(i) @ is C* on Q x (R*\{0});
(i) ¢ has no critical points in Q x (R°\{0}), i.e, the R" x R*-valued
function (grad, ¢, grad, ¢) is never zero.

Definition An oscillatory integral on Q x R* is a formal expression
| ewtsDa(x, 0) do
fe R

where ¢ is a phase function and a is an asymptotic symbol.

Example7 We can write

A, (x; m?) = Je""("- Oa(x, 0; m) do

i
22mp
where
@(x, 0)= —x,|0| +x-0
a(x, 0;m) = (m* + |0]*)7 "% exp(—ixo[(m* +[0]7)" —16]])

Let Q=R* Clearly ¢ is a phase function since d¢p/0xo=[0|#0 if
{x, 0) € R* x (R*\{0}). The function a is not C* because || is not smooth
at 0 = 0, but using|/m* + 6% — |6]| < C(|6| + 1)7%, itis not hard to prove
that a is an asymptotic symbol of order —1 (Problem 68). For example, let
us show that da/d0, falls off like |6|~2 (for 0 large). Let f= (m* + 6%)~ /2
and g = [(m? + |6]*)'/* — |0].] Then
a5 =[5+
(

<c|l8|™*  for 6 large

6_6,- 0 |l (m? +62)—3/2
and
dg 0; ~152
EARH o-1)
<[ +m*O]72) 12— 1] < |02
Thus
da of —s
2, <‘60 xof <c|6|

Since a is an asymptotic symbol, A, is an oscillatory integral.
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We are heading toward a general theorem which will tell us that any
oscillatory integral defines a distribution in a natural way and which
identifies the wave front set of the distribution so defined. We first note two
simple facts without proof (Problem 69):

Lemma1 The C* functions of compact support in  x R* are dense in
Sym(€, s, m) in the topology of Sym(Q, s, m’) whenever m’ > m. In particular,
a map from the functions of compact support to a topological space has at
most one continuous extension 1o | J, <. Sym(Q,-s, m) continuous on each
Sym(Q, s, m) in its natural topology.

Lemma2 Leta(x,8)be a function of compact support in Q x R* so that
x > a(x, §) is C* as an L®-valued function on Q. Then, for any phase
function, { a(x, 6)e*9 df is a C* function of x.

For the main theorem, we will need to define and develop one more
concept:

Definition Let ¢(x, ) be a phase function on Q x R* where Q is an
open set in R". Let

M(p) = {(x, 6> € Q x R\(0}| (V, 0)(x, 6) = 0}

SP(p) = {{x, (V. 0)(x, 6) | <x, 05 € M(p)} = Q x R”
SP(¢) is called the manifold of stationary phase for ¢.

Lemma3 SP(¢)is a closed subset of Q x (R"{0}) and if {x, k) e SP(p),
then {x, 1k) e SP(¢) for all 1 > 0.

Proof Since ¢ is a phase function, it has no critical points so if
{x,8) € M(¢p), then V ¢ # 0. Thus SP(p) = Q x (R"\{0}). If {x, 8 € SP(¢),
then {x, 40) € SP(¢p) since ¢ is homogeneous of degree one so that
(V. o)x, 40) = AV, 0)(x, 8). Finally, since M(¢) is the set of zeros of a
continuous function, it is closed. By a simple argument {x | M (¢) # &} is
closed. Since V ¢ is continuous, SP(¢) is closed as the graph of a continuous
function on a closed set. ||

Example 7, continued  ¢(x, 8) = —x,|60| + x - 0. Thus
Vo(p= —‘x°0|6|_1 + X
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50
M(g) = {{x,0) | x = 0} U {<x,0> | [x] = |xo| # 0;0 = Ax/xo with 1 > 0}
Since V, ¢(x, 8) = (-6, 8> we conclude that

SP(p) = {0,0; —|6],6>]6 € R*}
U {(x|x],x; —A|x], FAx)|x e R® and 1> 0}

Thus {x | SP,(¢) # &} is the light cone {x | xo = £|x|}, and SP(p) is the
family of tangent vectors to the light cone which are lightlike and have
negative time component (see Figure IX.7).

FiGURE IX.7 The set SP(yp).

We come now to the second main theorem of this section.

Theorem IX.47 LetQ < R" be a fixed open set and let ¢(x, ) be a fixed
phase function on Q x R®. Then, with each asymptotic symbol a on  x R®,
we can associate a distribution D,(a) on Q so that:

(@) a-— Dy(a) is a linear map.
(b) If a has compact support in 6, then D ,(a) is the C* function

j a(x, 8)e'#(= 9 dg
fe R

(c) The restriction of D,(*) to Sym(£, s, m) is a continuous function from
Sym(Q, s, m) to 2q.
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D, is uniquely determined by (a)-(c) and moreover:

(d) For any asymptotic symbol a, WF(D,(a)) = SP(p), the manifold of
stationary phase for ¢.

D,(a) is denoted by the formal expression
D,(a) = j a(x, B)e*™9 do

The main element of the proof is the development and exploitation of an
“integration-by-parts ” machine generalizing the fact —ix™!(d/dk)e** = ¢**
used in analyzing Example 6:

Lemma4 Let ¢ be a phase function on Q x R* with Q < R". Then there
exist functions a,, ..., a,, by, ..., b,, and ¢ on  x R* so that

(1) a,eSym(Q,s0);i=1,...,s
(2) b;jeSym(Q,s, —1);j=1,...,n
(3) ceSym(Q,s, —1)

(4) Ve =ée

where V is the differential operator

s

V—Zajaej Z

k=1
and 'V is its adjoint

0
W= - z ae @)= 3 5 b+ of

k=1
Proof Since ¢ has no crmcal points on Q x (R*\{0}), the function n(x, )
given by
n a(P) 2 s (a(p) 2
x, ) = —| + |6 s

15 0)= 3 (32) + 103 (G
is nonvanishing on Q x (R*\{0}). Moreover, since ¢ is homogeneous of order
1 in 6, n is homogeneous of order 2, i.e., n(x, 16) = Ay(x, 6). Let x(6) be a
function in C§(R®) identically one near 6 = 0 and let
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Let U=},a;¢/00; + Zk bk 8/8x, + & Then Ue = —i(l — x)n~ (niei“‘)
+ x€'® = €. Moreover g; , b, are C*® functions which are homogeneous in 6
near 6 = oo (e.g., d,(40, x)— a0, x) if > 1, 6 > radius of supp x). As a
result the derivatives of 4; and bk are homogeneous near infinity in just the
right way to guarantee that d;e Sym(Q, s, 0) and b, e Sym(Q, s, —1).
Clearly & € Sym(8,s, — 1). Lettmga = —d;,b;= —bj,c=¢— )3, da;/00,
— Y., 0b/Ox,, the lemma is proven. §

Proof of Theorem IX.47 Let a be an asymptotic symbol and write
a=a, + a, where a, has compact support and a, is a symbol. Then
D,(a,) is determined by (b) and is C* by Lemma 2. Moreover, if we can
construct D (a,) obeying (b) and (c), it is uniquely determined by Lemma 1.

We claim we are thus reduced to proving that D (a) defined by (b) extends
continuously to | J,,>0 Sym(Q, s, m) (in the sense of (c)) and that for any
symbol a, WF(D,(a)) = SP(¢). For, if WF(T)= g, then WF(T + S)
< WF(S)and WF(S) = WF(T + S — S)« W(T + S) so WF(D,(a,)) = &
implies that WF(D,(a)) = WF(D,(a,)) = SP(p).

Now, let a have compact support in Q x R° and be C*. Let D, (a) be the
distribution given by the C* function [ a(x, 6)e"~ 9 d@. Fix fe 9q. Then,
for any integer p,

[D,(@))(f [ x, 0)e’™9f (x) dx d6
= J [(V)Peto™a(x, B) f (x) dx dO

= J o= OY2(a(x, 0) f (x)) dx db
SO

ID,@](/)] < [ |V(alx. ) (x))| dx d6

Now, it is easy to see that {a, f>+af is a continuous bilinear map of
Sym(Q, s, m) x CF(Q) — Sym(Q, s, m) and that V is a continuous map of
Sym(Q, s, m) to Sym(S, s, m — 1) (Problems 70, 71). Thus V?(a(x, 8)f(x))
is a compactly supported symbol of order m — p and, in pamcular

[V2(a(x, 0)f (DI < [llalllo | £1l(1 + [0~

for suitable norms |||-|||, and ||||‘D on Sym(Q, s, m) and C(K) (support
f< K < Q; K compact). Fixing p > n + m,

1D,(a)()] < Cp.klllalll, /15
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where C, ¢ is a constant only dependent on K and p. Thus the map
a— D,(a) from CP(Q x R?) to Zq extends to a continuous map from
Sym(Q, s, m) to 9q.

All that remains is to prove that WF(D,(a)) = SP(@) for any
a e Sym(€), s, m). To do this, we must develop our machinery a little further:

Lemma5 Let M be an open set in Q and C a cone in R"\{0} so that
M x C is disjoint from SP(p). Then there exist functions Ay, ..., A,
B,,...,B,and D on M x C x (R*\{0}) so that:

(a) A;, B;, and D are C* on M x C x (R*\{0}) and homogeneous of

degree — 1 jointly in (k, 6), e, A,(x, 2k, A0) = A~ ' A,(x, k, 0), etc.
(b) 'V exp(i®) = exp(i@) where

Vi = iA»(x k 0)|0|—a + Zn:B,(x k, 6) i-+—D
= FACOE IAS) ael & s Ry ax[
and
@(x, k, 0) = ¢(x,0) — k - x

Proof Let

. s 5(0 2 n 5(0 2
W6,k =101y (29 + (-_k)
rl( ) | I jgl (66) /gl aX[ !

Then, by the definition of SP(¢), 7 is nonvanishing on M x [C x (R°\{0})].
Define

(10]4;) , & 9B,
LI S pg,
j=1 601 kgl 6xk

Since 7 is nonvanishing on M x C x (R*\{0}) and homogeneous of degree 2
in ¢k, 6 the lemma follows as in Lemma 3. |l

Conclusion of the Proof of Theorem 1X.47 Suppose {x,, ko> & SP(¢).
Choose a neighborhood of {x;, ko), M x C, as in Lemma 5. Let x be a
C¥(R") function with support in M identically one near x,. For each
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pair of positive integers m, n, we will find a continuous norm |||*|[iim. »
on Sym(Q, s, m) so that

—— —n

[xDy(a)k)| < [lalllm. m(t + [k])™™  forallkeC  (IX.64)

for any ae C3(Q x R*). By the continuity we have already proven, (IX.64)
will extend to all a € Sym(, s, m) thus proving that {x,, ko> ¢ WF(D,(a)).
Choose y(8) in CF(R*), identically one if |#| <1 and identically zero if

6] > 2. Write a=ya+ (1 - $)a. By Lemma 2, yD,(Ja)(k) obeys an
estimate of the form (IX.64). For k € C, write

XD.((1 = ¥la)()] =

[|exp(i(x, k. O)x(x)1 — ¥(@))alx, 6) dx o [

[ exp(ig(x, k. 0)VElx(x)al, 6)(1 - w(6))] dx do ’

< j [VE[xa(l — y)]| dx db (IX.65)

We claim that |VE[xa(1 = ¥)]| < [llalll(|k| + 10])77(1 + [6])", where |||-||
is a norm on Sym(Q, s, m), on account of the homogeneity properties of
A, B, D in <k, ). Since 1 — ¢ vanishes if |0| < 1, for all § in the integral
(IX.65), we can use

([k[+[8D)7" < (|k|+ 1)~

([kI+16))" " < (l6])~' < G +1|6])"
and so obtain (IX.64) by taking p sufficiently large and using the fact that
the y factor makes the x integration in (I1X.65) finite.

* ok x

Throughout this chapter, we have developed various techniques for using
the Fourier transform to analyze functions or distributions. Now, we can
use these methods to analyze the distribution A, (x, m?).

Theorem 1X.48 The two-point function A, (x, m?) of the free field has
the following properties:

(@) A, is Lorentz invariant.
(b) WF(A,)={0,0; —|6], 8> ] 6 e R3}

v {K£|x}, x, —4|x|, F Ax) | xe R, 1> 0}
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() There exist C* functions f,, f,”, and f; on (0, co) so that

fi(x?; m?) if x*2<0
A(x;m¥) =1 f1(x3;m?) if x*>0,x>0
frm?)  if x?>0,x,<0

where x? = x - ¥ = x3 — x? — x} - xi.

(d) Fory>1,f£(y*) < C, exp(—(m —&)y).
(C) limy-'w‘ylznftt(y =
) fFp)=r70)

Proof (a) follows from the fact that A, is the Fourier transform of a
Lorentz invariant measure. To prove (b) we note that, by our analysis of
Example?and Theorem IX.47, WF(A , )iscontained intheset S w S, U S_
where S = {<0,0, —[0],65]6 € R*}; S, = {<(&[x],x —4|x|, FAx)|x e R?,
x # 0, 2 > 0}. Moreover, since A, is Lorentz invariant, WF(A,) must be
Lorentz invariant which means that S, is either contained in WF(A,) or
disjoint from it. If S, were disjoint from WF(A,), then A, would equal
a C* function on {<t, x|t > 0}. Since we will see that A, (o, x) and its
derivatives fall off exponentially as x - co with ¢, fixed, it would follow
that for to > 0 A, (¢, -) was in &(R3). Since its Fourier transform is not
even L', S, cannot be disjoint from WF(A,). By (f), once we know that
S, € WF(A,), we can conclude that S_ =« WF(A,). Finally, since WF(A )
is closed and S, = S, , we have S, < WF(A,). (b) implies that the singular
support of A, is {x|x? =0} so A, is C* in the regions in question and
Lorentz invariant. This proves (c).

To prove (d), consider the distribution on R? whose Fourier transform is
(k* + m?)~'/2. By the Paley-Wiener idea (Problem 76) and the fact that
(k* + m?)~'/2 is analytic in a tube, this distribution falls off exponentially
with any exponent a < m — ¢. Since A (0, x) is this distribution (up to a
constant) we have proven (d).

To prove (e), we note that formally

B 0% m) = 555 [ exp(=il x|/ 4 ) RS+

By mimicking the analysis of Example 6, we see that |x|?"f}*(x%; m?) is
bounded so long as n > 2 (Problem 72).
Finally, since A, is real, A, (—x) = A, (x) proving (f). I
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Corollary  The product 6(x,) A, (x, m?) exists where 6(x,) is defined by
0(f) = fx,20 f(x) &x.

Proof WF(0)={<0,x, £4,0>|xe R AeR,}so WF()® WF(A.) does
not contain any vector of the form (x, 0>. Thus, by Theorem IX.45, the
product exists. ||

NOTES

Section [X.1 J. Fourier’s original argument for the inversion formula appears in his
classic La Theorie Analytique de Chaleur, Didot, Paris, 1822. Although his argument would
not be considered a “rigorous proof” by modern standards, it contained the main ideas of
the proof we have presented. The approach of first defining the Fourier transform on #(R")
and %'(R") and then restricting to the classical I? spaces is due to L. Schwartz and is
described in Théorie des Distributions, Vol. 11, Hermann, Paris, 1954. Schwartz's lucid book
is the basic reference for the study of the Fourier transform on spaces of distributions and
the theory of convolutions of distributions.

The Hermite expansion discussed in the Appendix to Section V.3 can be used to provide
short proofs of the Fourier inversion and Plancherel theorems since @,(k) = (—i)@,(k).

Section 1X.2 The Riemann-Lebesgue lemma was first proven for a restricted class of
functions in B. Riemann, “Ueber der Darstellbarkeit einer Function durch einen trigono-
metrische Reihe” in Math. Werke, Teubner, 1876, pp. 213-253, and for all of L' in
H. Lebesgue, “Sur les Sértes Trigonométriques,” Ann. Sci. Ecole Norm. Sup. 20 (1903),
453-485. The Planchere] theorem appears in M. Plancherel, “Contribution a I'étude de la
représentation d'un fonction arbitraire par des intégrales définies,” Rend. Circ. Mat. Palermo
36 (1910), 289-33S5. The Hausdorfl-Young theorem was first proven in W. Young: “Sur la
généralisation du théoréme de Parseval,” C. R. Acad. Sci. Paris Sér. A-B 155 (1912), 30-33;
and extended in F. Hausdorfl, “Eine Ausdehnung des Parselvalschen Satzes iiber Fourier-
reihen,” Math. Z. 16 (1923), 163-169.

The original proof of Bochner’s theorem appears in S. Bochner, Vorlesungen iiber
Fouriersche Integrale, Akademie-Verlag, Berlin, 1932. For a proof of the generalization to
distributions, see Schwartz’s book. The proof of Bochner's theorem which we give depends
on Stone’s theorem. Conversely, it is possible to derive Stone’s theorem from Bochner’s
theorem, see E. Hopf: Ergodentheorie, Springer-Verlag, Berlin, 1937, or F. Riesz and
B. Sz.-Nagy: Functional Analysis, Ungar, New York, 1955. ’

In some sense, the “natural™ setting for the [? theory of the Fourier transform is on an
arbitrary locally compact abelian group; see Chapters XIV and XV.

Section 1X .3 The close relationship between the support properties of a function and the
analyticity properties of its Fourier transform was first developed by R. Paley and N. Wiener
in Fourier Transforms in the Complex Domain, Amer. Math. Soc. Collogium Publication,
Providence, Rhode Island, 1934. Their work concerned I? functions and [? boundary values
(see below). Nevertheless, a whole class of theorems relating support properties to analyticity
properties are usually called Paley-Wiener theorems. The connection between analyticity and
the Fourier Transform was further studied by E. C. Titchmarsh, Introduction to the Theory
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of Fourier Integrals, Oxford Univ. Press (Clarendon), London and New York, 1937. The
generalization to distributions with compact support was first proven in L. Schwartz,
“Transformation de Laplace des distributions,” Comm. Sém. Math. Lund, tome suppl. dédié
a M. Riesz (1952). A more detailed relation between support and analyticity for functions
supported on compact, convex, balanced sets is given in Problem 22.

The idea of regarding the Fourier transforms of more general distributions as the
boundary values of analytic functions is also due to Schwartz who proved that if T € &'(R")

has support in a cone I, then F(4 — int) = ﬁ has polynomial growth in the sense of
estimates (i) and (ii) as t > 00 and as t— 0. To prove this weaker version of one half of
Theorem IX.16, one does not need the lemma of Bros-Epstein-Glaser. If a € I', one chooses a

C= function ¢ so that supp g € I' — a and ¢(x) =1 for x e T. Then F(A — itn) = e"'T'W"
is analytic in R" — i, satisfies the growth properties, and has T as a boundary value.
However, to obtain the estimate (IX.13) which gives polynomial growth near the whole
boundary of R" — iI"*, one needs the Bros-Epstein-Glaser lemma which was proven in J. Bros,
H. Epstein, and V. Glaser, “On the connection between analyticity and Lorentz covariance
of Wightman functions,” Comm. Math. Phys. 6 (1967), 77-100. The proof we give of the
second half of Theorem IX.16 is due to L. Garding (unpublished). His proof is based on the
ideas of Kothe and Tillman who realized that a necessary condition for an analytic function
to have distribution boundary values on a smooth boundary is polynomial growth; see G. Kéthe,
“Die Randverteilungen Analytischer Funktionen,” Math. Z.57 (1952), 13-33 and H.-G. Tillman,
“Randverteilungen analytischer Funktionen und Distributionen,” Math. Z. 59 (1953), 61-83.
We remark that we have stated and proved Theorem IX.16 for a spherically symmetric
cone, I', 4, but the same proof may be carried through for an arbitrary convex cone
(Problem 23). Then I'* is given by I'* = {|n-x > 0 for all xe I'}.

There is another formulation of the Paley-Wiener-type theorems in terms of I? functions.
Suppose fe I2(0, co). Then F(4 — in) = (2r)™ Y2 [@ ™ **e~"*f(x) dx satisfies

(i) F is an analytic function in the open lower half-plane,
(ii)
sup“ |F(A — in)? dA} < o0
720\ -

and
(iii)
[ IFa—im - dr—0 as n-0

by the Lebesgue dominated convergence theorem. That is, F(A — i) takes on the boundary
value f(4) in the sense of I?. Analytic functions in the open lower: half-plane satisfying (i),
(i), and (iii) are said to belong to the Hardy-Lebesgue class, 5#2(R). In the book by Paley
and Wiener cited above, the converse statement is proven. Namely, if F(4 — in) is in the

Hardy-Lebesgue class, then there is a function f e I2(0, o) so that F(1— in) = e/"'\‘f and

F(l — in)Ef().) as 7} 0. Another related theorem says that e~ "f(x) € I*(R) for all n & (a, 8),
an open interval containing zero, if and only it'](/l) has an analytic continuation f(A — in)
to the strip & <n < B and {2, | f(A — in)[? d1 < oo for each 1 € (&, B). The reader can easily
formulate the generalization of these theorems to several variables.

By Theorem IX.13, if a function f falls off faster than any exponential, then its Fourier
transform is an entire function. There are connections between the type of the analytic function
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and the detailed rate of falloff; see L. Ehrenpreis, Fourier Analysis in Several Complex
Variables, Wiley (Interscience), New York, 1970.

Section 1X .4 I estimates aroused interest very early in the. development of functional
analysis. Young's inequality was proven in W. Young, “The determination of the summability
of a function,” Proc. London Math. Soc. 12 (1913), 71-78. The Hardy-Littlewood inequality
appeared in G. Hardy and J. Littlewood, **Some properties of fractiona! integrals, I Math. Z.
27 (1928), 565-608. Earlier a similar inequality for sequence spaces appeared in G. Hardy,
J. Littlewood, and G. Polya, “The maximum of a certain bilinear form,” Proc. London Math.
Soc. 25 (1926), 265-268. Their work is essentially a generalization of Hilbert’'s work on the
bilinear form Y, , a,b./(n + m), see H. Weyl, Singulare Integralgleichungen mit besonderer
Beruchsichtigung des Fourierschen Integraltheorems, Inaugural Dissertation, Gottingen, 1908.
Sobolev proved his generalization by reducing to the case n =1 in S. Sobolev, “Sur un
théoréme d’analyse fonctionelle,” Mat. Sb. (Recueil Math.) 46 (1938), 471-496. The proof was
greatly simplified in N. du Plessis, “Some theorems about the Riesz fractional integral,”
Trans. Amer. Math. Soc. 80 (1955), 124-134.

The Hausdorfi-Young theorem states: if p~' + g7 ' =1 and 1| < p <2, then the norm of
the Fourier transform from I? to I¢ is less than or equal to (2z)"“/2~'/" It has recently
been proven in W. Beckner, “ Sharp inequalities in Fourier Analysis,” Bull. Amer. Math. Soc.
(to appear) that the norm is actually equal to

( p 1ip q 1/971172

5 1G]

That the norm could not be smaller than this constant can be seen from the fact that
171, = Clp. a)lf 1, it/ = ==,

The Riesz-Thorin theorem was first proven by M. Riesz, “Sur les maxima des formes
bilinéaires et sur les fonctionelies linéaires,” Acta Math. 49 (1926), 465-497. The idea of using
complex methods to prove the theorem is due to C. Thorin, “Convexity Theorems,” Comm.
Sém. Math. Lund, 9 (1948). The idea of extending the Riesz-Thorin theorem to analytic
families is due to E. Stein, “Interpolation of Linear Operators,” Trans. Amer. Math. Soc. 83
(1956), 482-492.

Before the weak [P spaces were formally defined, inequalities were proven which we
would now describe as saying that a certain map is bounded from I? to weak If. The weak I?
spaces were then a natural abstraction. The inequalities appeared first in the I! context in
G. Hardy and J. Littlewood, “A maximal theorem with function theoretic applications,” Acta
Math. 54 (1930), 81-116, and then in the I? context in the Marcinkiewicz paper quoted below.

The Marcinkiewicz theorem was announced in J. Marcinkiewicz, “Sur l'interpolation
d’operateurs,” C. R. Acad. Sci. Paris 208 (1939), 1272-1273, and was proven in full generality
by A. Zygmund, “On a theorem of Marcinkiewicz concerning interpolation of operators,”
J. Math. 35 (1956), 223-248. Hunt's theorem appeared in R. Hunt, “An extension of the
Marcinkiewicz theorem to L(p, q) spaces,” Bull. Amer. Math. Soc. 70 (1964), 803-807.

The L(p, q) spaces are a generalization of the weak If spaces and were introduced by
G. Lorentz in “On some new functional spaces,” Ann. Math. 51 (1950), 37-55. Suppose that
(M, p) is a measure space. For each measurable function f on M we can define a measurable
function on R by

Cp.g)=

S*(x) = inffy > 0| A,(y) < x}
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where A,(y) = p{x||f(x)| > y} is the distribution function of f. Now define L{p, q) to be the
set of functions on M so that || f|* , < oo where

o d 1/¢ 1
I AR R
”f,:q= °
sug{t”"f‘(t)}, l<p<oo,g=o0

Thus I = L{p, p) and L = L(p, o). In fact, it can be shown that if 1 < g, < p< g, < oo,
then

L(p.q\) = L < L(p, q;) = L&,

For a discussion of these spaces and the related interpolation theorems see R. Hunt, “*On L(p, g)
spaces,” Enseignement Math. 12 (1966), 247-276. A very readable discussion of interpolation
theorems (in particular, a proof of the Marcinkiewicz theorem) may be found in E. Stein and
G. Weiss: Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton,
New Jersey, 1971.

The abstract interpolation theory which we present in the appendix to Section IX.4 is due
to A. Calderdn, “Intermediate spaces and interpolation, the complex method,” Studia Math.
24 (1964), 113-190 and J. Lions, “Théorémes de traces et d'interpolation 1, IL” Ann. Scuola
Norm. Sup. Pisa 13 (1959), 389-403; 15 (1960), 317-331; 111: J. Math. Pures Appl. 42 (1963),
195-203. There are other methods of abstract interpolation. For a description of these and
related topics, see the review article by S. Krein and 1. Petunin, “Scales of Banach spaces,”
Russian Math. Surveys 21 (1966), 83-157.

The Hadamard three line theorem is just one of a large class of theorems called
Phragmén-Lindelof theorems which are essentially generalizations of the maximum principle
to certain unbounded domains. The original papers are E. Phragmén, “Sur une extension
d’un théoréme classique de la théorie des fonctions,” Acta Math. 28 (1904), 351-368 and
E. Lindel6f and E. Phragmén, “Sur une extension d'un principe classique de I'analyse et sur
quelques propriétés des fonctions monogenes dans le voisinage d'un point singuliér,” Acta Math.
31 (1908), 381-406. In the bounded case, the three line theorem was announced in J. Hadamard,
“Sur les fonctions entiéres,” Bull. Soc. Math. France 24 (1896), 186-187.

The material discussed in Example 2 of the Appendix is a special case of noncommutative
integration theory. In general one would like to define analogues of the I? spaces for any
von Neumann algebra (in our case the algebra is just &(#)). The basic references for this
theory are J. Dixmier, “Formes linéaires sur un anneau d'opérateurs,” Bull. Soc. Math.
France 81 (1953), 9-39; I. Segal, “A non-commutative extension of abstract integration,” Ann.
Math. 57 (1953), 401-457, Correction 58 (1953), 595-596: and R. Kunze, “ &, Fourier transforms
on locally compact unimodular groups,” Trans. Amer. Math. Soc. 89 (1958), 519-540. Some
of the proofs we use follow the ideas and suggestions of E. Nelson, “Notes on non-
commutative integration,” J. Functional Analysis 15 (1974), 103-116.

Section 1X.5 The Malgrange-Ehrenpreis theorem was proven independently by
B. Malgrange: “Existence et approximation des solutions des équations aux dérivées partielles
et des equations de convolution,” Ann. Inst. Fourier (Grenoble) 6 (1955-56), 271-355, and
L. Ehrenpreis: “Solution of some problems of division,” Amer. J. Math. 76 (1954), 883-903.
The use of fundamental solutions has long been a standard technique in the theory of ordinary
differential equations and elliptic boundary-value problems. For an introduction to these
methods, see R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. 1, p. 351,
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Wiley (Interscience), 1953. For a more advanced approach, the reader should consult the
four books by Stakgold, Friedmann, Agmon, and Hormander referred to in the Notes to
Section V.4,

The Malgrange-Ehrenpreis theorem shows that the equation P(D)f = J has a solution in
Z'(R"). It is a natural question to ask whether there is a solution that lies in &'(R"). This
question was answered in the affirmative by L. Hérmander who proved the stronger statement
that P(D).#’] = &’ in “On the division of generalized functions by polynomials,” Ark. Mat.
3 (1958), 555-568. For a general discussion of the ranges of constant coefficient partial
differential operators on various spaces of distributions, see M. Agranovich, * Partial differential
equations with constant coefficients,” Russian Math. Surveys 16 (1961), 23-91.

Section 1X.6 Weyl's lemma is due to H. Weyl: “The method of orthogonal projection
in potential theory,” Duke Marh. J. 1 (1940), 414-444. Sobolev's lemma and spaces were
introduced in S. L. Sobolev: “Sur un théoréme d’analyse fonctionelle,” Mar. Sb. 45 (1938),
471-496 and Certaines applications de [l'analyse fonctionelle a la physique mathématique,
Leningrad, 1945.

Weyl's lemma has many generalizations; we will describe two of them. Let Q be an open
bounded set in R” and let C,5(x), 0 < ||, |B| < m, be a collection of m times continuously
differentiable functions. The differentiable operator A =3, \1<m (— 1)*1D*C,,(x)D* is said to
be strongly elliptic if

Rel Y Cy(x)E*&) = ColE]*™, Co>0
lal. 1| =m
for all x € Q and all real vectors & € R". The following theorem is due to K. O. Friedrichs:

“Differentiability of solutions of elliptic partial differential equations,” Math. Scand. 1 (1953),
55-72.

Theorem  Let ¢ be a weak solution of Ap = /. If fe W(Q), then ¢ € W, 1,(R).

In “On the theory of general partial differential operators,” Acta Math. 94 (1955), 161-248,
L. Hormander introduced the following definition. A constant coefficient operator P(D)=
P(i™* 8/dxy, ..., i"! 3/dx,) on § (open, not necessarily bounded) is said to be hypoelliptic
if whenever fe C=(Q), every distribution solution ¢ of P(D)e = f which is locally I in Q is
in C*(Q). Hormander then proved:

Theorem  P(D) is hypoelliptic if and only if for every large constant M, there is a positive
M, so that every zero { = & + in of P({) which satisfies || < M, also satisfies |{| < M,.

The reader can easily check that A is hypoelliptic but 3%/dx? — %/t is not. This theorem
has various generalizations to nonconstant coefficient operators, see: L. Hormander, “On the
interior regularity of the solutions of partial differential equations,” Comm. Pure Appl. Math.
9 (1958), 197-218; B. Malgrange, “Sur une classe d’opérateurs différentielles hypoelliptiques,”
Bull. Soc. Math. France 85 (1957), 283-306; and J. Peetre, “A proof of the hypoellipticity of
formally hypoelliptic differential operators,” Comm. Pure Appl. Math. 16 (1961), 737-747.

Sobolev’s lemma (and thus the resulting regularity theorems) can be generalized to various
I? spaces. We say that a function fis in L{(R"} if ail the partial derivatives of order less than
or equal to k are in IP(R"). The generalization of Sobolev's lemma states:

Theorem  Suppose that k is a positive integer and ¢~' = p~' — k/n.

(a) If g<o (ie, p<nfk), then L{(R") < I4(R") and the natural inclusion map is
continuous.
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(b) If g = oo (i.e., p = n/k), then the restriction of any fe I?(R") to a compact subset of
R” belongs to L(R") for every r < oo.

(c) If p > nj/k, then every fe L{(R") can be modified on a set of measure zero so that the
resulting function is continuous.

A proof of this theorem and related results may be found in E. Stein, Singular Integrals
and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970.

The Sobolev inequalities which we have discussed bound an If-norm of a lunction by its
If-norm and the If-norms of some of its derivatives. In some special cases, one can bound the
E-norm of a function just by the I?-norms of derivatives if the function is small near infinity.
For example, in Section X.13 we will prove and use the estimate

)
ax; ||,

Section 1X.7 Most of this section is standard folk wisdom. Theorem IX.31 is due to
J. Dollard, “Asymptotic Convergence and the Coulomb Interaction,” J. Math. Phys. 5 (1964)
729-738.

3

IflssCX

for functions on R>.

Section 1X.8 The Garding-Wightman axioms were formulated by L. Géarding and
A. S. Wightman in the early 1950’, but they felt it would be premature to publish them
until nontrivial examples existed. However, preliminary versions of the axioms appeared in
various places, and on the basis of these axioms, the Haag-Ruelle scattering theory was
developed (see Section XIL.15). This was, in turn, such a beautiful and physical theory that
it motivated the publication of the axioms in A. S. Wightman and L. Garding, “Fields as
operator-valued distributions,” Ark. Fys. 28 (1964), 129-189.

The axioms are thoroughly discussed and many consequences are derived in the two books:
PCT, Spin and Statistics, and All That, Benjamin, New York, 1964, by R. F. Streater and
A. S. Wightman; The General Theory of Quantized Fields, Amer. Math. Soc., Providence,
Rhode Island, 1965, by R. Jost. These books also contain many references to early work in
the subject.

The first question that naturally arises about the Wightman axioms is whether they are
consistent. This is not a trivial question since so many mathematical structures are involved.
In fact, if the commutator in the local commutativity axiom is changed to an anticommutator,
then the axioms are inconsistent (see the spin-statistics theorem below). In Section X.7 we
show that the axioms are consistent by showing that, for each m, they are satisfied by the
free Klein-Gordon field of mass m. It has not been proven that there are any really interesting
field theory models in four space-time dimensions involving interacting particles that satisfy
the Wightman axioms. Recently, models obeying the analog of the Wightman axioms in two
dimensions have been constructed: see, for example, Constructive Quantum Field Theory
(G. Velo and A. S. Wightman, eds.), Springer-Verlag, Berlin, 1973, and references therein or
B. Simon, The P(@), Euclidean (Quantum) Field T heory, Princeton University Press, 1974.

Since we still do not possess large classes of mathematical models, let alone a theory.
to describe completely the phenomena of elementary particle physics, there has been a great
deal of “experimentation™ with axioms. This experimentation has consisted of slightly changing
the axioms, finding equivalent axiom schemes, or formulating axiom schemes based on some
fundamental structures other than the local field structure of the Garding-Wightman axioms.

If we wish to perturb the axioms slightly, one candidate for change is the purely technical
axiom that specifies the test function space be #(R*). In fact, there is a folk theorem that
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assures as that a class of formal models known as nonrenormalizable Lagrangian models
will lead to Wightman functions which are not polynomially bounded in the tube. This can
only be true if a test function space other than &(R*) is used. A whole class of alternative
test function spaces which still allow one to phrase the microscopic causality condition are
proposed and developed in A. Jaffe, “ High energy behavior in quantum field theory, strictly
localizable fields,” Phys. Rev. 158 (1967), 1454-1461.

There are two types of equivalent reformulations of the Wightman axioms. The first is due
to Wightman, who wrote down a set of postulates for a sequence of tempered distributions
(W, |#,e P(R*"), and proved that the postulates guarantee that the %', arise as the
Wightman distributions of a unique field theory satisfying the Garding-Wightman axioms
and that conversely the postulates hold in any Wightman field theory. This reconstruction
theorem appeared in his paper “Quantum field theory in terms of vacuum expectation
values,” Phys. Rev. 101 (1956), 860-866, and is further discussed in Chapter XVII. Wightman's
paper did not contain a translation of the axiom of uniqueness of the vacuum to properties
of the #',. This was later added due to work of K. Hepp, R. Jost, D. Ruelle, and O. Steinmann,
“Necessary conditions on Wightman functions,” Helv. Phys. Acta 34 (1961), 542-544, and
H. Borchers, “On the structure of the algebra of field observables,” Nuovo Cimento 24 (1962),
214-236.

A second reformulation of the Wightman axioms is in terms of the Schwinger functions,
that is the restriction of the Wightman functions to those points in the permuted forward
extended tube (i.c., the union of the extended forward tube and its images under permutation
of the x-space coordinates) which have purely real spatial coordinates and purely imaginary
time coordinates. This reformulation is connected with the Euclidean approach to field theory
which we discuss below, so we temporarily defer the historical notes on its development.
Axioms on the Schwinger functions equivalent to the Wightman axioms can be found in
K. Osterwalder and R. Schrader, “Axioms for Euclidean Green’s Tunctions, 1, Comm. Math.
Phys. 31 (1973), 83-112; II, (to appear).

Finally, there are axiom schemes which involve as fundamental structures objects that are
distinct from purely local fields. One version emphasizes the role of “asymptotic fields” and
thereby makes a direct connection with scattering theory. This is the LSZ axiom scheme of
H. Lehmann, K. Symanzik and W. Zimmerman, “Zur Formulierung Quantisierter
Feldtheorien,” Nuovo Cimento 1 (1955), 205-225, *On the formulation of quantum field
theortes, 11" Nuovo Cimento 6 (1957), 319-333. As a consequence of the machinery of
Haag-Ruelle scattering theory (see Section XII.15), K. Hepp proved that a version of the LSZ
axioms holds in any Wightman theory which is supplemented by suitable additional
hypotheses on the mass spectrum. See K. Hepp, “On the connection between the LSZ and
Wightman quantum field theory,” Comm. Math. Phys. 1 (1965), 95-111, and his article in
Axiomatic Field Theory (Brandeis Summer Institute, 1965), Gordon and Breach, New York,
1966.

A second approach to local quantum axiomatics involves the use of Banach algebras.
Von Neumann first suggested the use of algebras of bounded operators to axiomatize
quantum mechanics and developed much of theory of W*-algebras (“von Neumann algebras™)
for this purpose. His work was clarified and expanded by I. Segal in “Postulates for general
quantum mechanics,” Ann. Math. 48 (1947), 930-947. Throughout the fifties Segal championed
an algebraic approach to the problems in ficld theory and in 1964, R. Haag and D. Kastler
formulated a set of axioms in “An algebraic approach to quantum field theory,” J. Math.
Phys. 5 (1964), 848-861; see also, H. Araki, “Local quantum theory, I,” in Local Quantum
Theory (R. Jost, ed.), Academic Press, New York, 1969. The relationship between the
Haag-Kastler axioms and the Wightman axioms is not direct. If the fields in the Wightman
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axioms are self-adjoint, then one can form a family of algebras out of their spectral projections,
but it is not clear that they satisfy the Haag-Kastler axioms for technical reasons, e.g., the
commutation of fields in the Wightman sense might not imply commutation of the spectral
projections (see Section VIILS5). Conversely, it is not clear how to reconstruct the fields from
the Haag-Kastler local algebras. Nevertheless, the two sets of axioms are closely related and
one expects them both to hold in reasonable models. This has been the case in the two-
dimensional models constructed so far. We discuss the algebraic approach to field theory in
Chapter XIX.

A third approach involves the analytic continuation 1o imaginary time where the Poincaré
group is replaced by the Euclidean group. On the level of perturbation theory, this goes back
to F. Dyson, “The S-matrix in quantum electrodynamics,” Phys. Rev. 75 (1949), 1736~1755;
and on the level of Wightman functions to Wightman’s 1956 paper and the Hall-Wightman
paper discussed below. It is at this level of continuation of Wightman functions that the
Osterwalder-Schrader axioms operate. But there is a level which is probably more
specialized in that it does not follow from only the Wightman axioms, in which one looks
for Euclidean fields, i.e., operators whose expectation values are the Schwinger functions.
Such an approach was first advocated by J. Schwinger, “On the Euclidean structure of
relativistic field theory,” Proc. Nat. Acad. Sci. U.S.A. 44 (1958), 956-965, and T. Nakano,
“Quantum field theory in terms of Euclidean parameters,” Progr. Theoret. Phys. 21 (1959),
241-259. The connection of this formulation with probabilistic ideas, such as the Feynman-Kac
formula of Section X.10, and with classical statistical mechanics was first emphasized by
K. Symanzik in “Euclidean quantum fields, 1, equations for a scalar model,” J. Math. Phys.
7 (1966), 510-525, and in “Euclidean quantum field theory” in Local Quantum Theory,
(R. Jost, ed.), Academic Press, New York, 1969. Subsequently, E. Nelson, in “Construction
of Quantum Fields from Markoff Fields,” J. Functional Analysis 12 (1973), 97-112, proposed
a set of axioms defining a Euclidean field theory and showed that from any such theory,
one could construct a quantum field theory satisfying the Wightman axioms. The converse
probliem of what must be added to the Wightman axioms to enable one to construct a Euclidean
theory obeying all Nelson’s axioms has not been definitely solved but a partial solution can
be found in B. Simon, “Positivity of the Hamiltonian semigroup and the construction of
Euclidean region fields,” Helv. Phys. Acta 46 (1974), 686-696. This paper includes an example
obeying the analogue of the Wightman axioms in one space-time dimension but not obeying
Nelson’s axioms, which shows some additional structure is present in Euclidean field theories.

The Bargmann-Hall-Wightman theorem appeared in D. Hall and A. Wightman, “A theorem
on invariant analytic functions with applications to relativistic quantum field theory,” Mat.-Fys.
Medd. Danske Vid. Selsk. 31 (1957), 1-41. V. Bargmann’s name is attached to the theorem
because of the contributions he made to its proof.

A precursor of the PCT theorem was proven in G. Lilders, “On the equivalence of
invariance under time reversal and under particle-antiparticle conjugation for relativistic field
theories,” Danske Vid. Selsk. Mat.-Fys. Medd. 28 (1954), 1-17. The PCT theorem itself was
proven in W. Pauli, “Exclusion principle, Lorentz group, and reflection of space-time and
charge,” in Niels Bohr and the Development of Physics (W. Pauli, ed.) Pergamon Press,
Oxford, 1955, and R. Jost, “Eine Bemerkung zum CTP Theorem,” Helv. Phys. Acta 30 (1957),
409-416. For a discussion of the physical significance of the PCT theorem, see S. Gasiorowicz,
Elementary Particle Physics, Wiley, New York, 1966, pp. 508-519.

The representation of the two-point function given in Theorem 1X.34 is called the Kallen-
Lehmann representation because it was discovered by H. Umezawa and S. Kamefuchi in
“The Vacuum in Quantum Electrodynamics,” Progr. Theoret. Phys. 6 (1951), 543-558. See
also G. Kiillen, “On the definition of the renormalization constants in quantum electro-
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dynamics,” Helv. Phys. Acta 25 (1952), 417-434, and H. Lehmann, “Uber Eigenschaften von
Ausbreitungsfunktionen und Renormicrungskonstanten quantisierter Felder,” Nuovo Cimento
11 (1954), 342-357.

It is clear from Section IX.8 that the problem of calculating the holomorphy envelopes
of the permuted forward tube, the “primitive domain” for the n-point functions is important.
For the three-point function, see G. Kallen and A. S. Wightman, “The analytic properties of
the vacuum expectation values of a product of three scalar local fields,” Mat.-Fys. Skr.
Danske Vid. Selsk. 1 (1958). For a general discussion of analyticity and quantum field theory,
see A. S. Wightman, “ Quantum field theory and analytic functions of several complex variables,”
J. Indian Math. Soc. 24 (1960), 625-677, or H. Epstein, “Some analyticity properties of the
scattering amplitude in quantum field theory,” in Axiomatic Field Theory (Brandeis Summer
Institute, 1965). Gordon and Breach, New York. 1966.

Finally, let us briefly describe the role of “spin™ in field theory and the resulting
modification of the axioms to accommodate “spinor fields.” To explain one of the subtleties
associated with spin, we must return to our discussion of dynamics in the notes to
Section VIIL.11. There, dynamics is described a priori, not by unitary operators, U, obeying
U,,, = U, U, but by automorphisms of the states a, obeying «,.,, = a,a,. It is a theorem that
every such automorphism which is a square of some other automorphism is induced by a
unitary U unique up to an overall phase transformation U — ¢®U. Thus U, can be chosen so
that U, induces a, and then, by uniqueness up to phase, U,,, = A(t, s)U, U, where A(t, s) is a
phase factor. In the case of dynamics where the group is R, we can always find u(t) with
Aty 8) = p(t + shu(r) 'u(s)”! so that V()= u(t)U(r) obeys V(i + s) = V(t)V(s). An analysis
stmilar to this works for the Poincaré group but only up to a point. One indeed obtains a
strongly continuous map of £, into the unitaries obeying U(4AB) = A(4, B)U(A)U(B) where
/(A, B) is a phase factor. But it is no longer possible, in general, to obtain a strict representa-
tion by the substitution V(A4)= p(A4)U(A) for suitable u. Rather one has the following
situation:

There is a group, SL(2, C), and a two-to-one map A of SL(2, C) onto £ . One forms a
group InSL(2, C) from R* and SL(2, C) by taking InSL(2, C) = SL(2, C) x R* in the set
equality sense with group operation

<A, a)(B, by = (AB, a + A(A)b>

Thus the map A: (4, a) = (A(A4), a) is a two-to-one map of InSL(2, C) to #',. The basic
theorem is that given a map U from InSL(2, C) to the unitaries with U(4B)= A(4, B)
x U(A)0(B), we can find p(-) on InSL{2, C) so that V(A4) = u(A)U(A) obeys P(4B)=
7(4)P(B). Given U, a representation up to phase of 2!, , we can then define U on InSL(2. C)
by O(A) = U(A(A4)) and thus associate with U a representation of InSL(2, C). This reduction
is due to Bargmann and Wigner in the papers quoted in (4) of our discussion of dynamics in
the notes to Section VIIL.11; see also Chapter XI1V.

Let 1 and —1 be the two elements of SL(2, C) which go into the unit element of £,
under A (in fact, SL(2, C) is the group of all 2 x 2 complex matrices with determinant 1
and the matrices, 1, —1 go into the unit of £\ when one defines A(A) by A(4),, =
tr(o, As, A” ') where 6, = 1 and g, are the Pauli matrices). Then an irreducible representation,
V. of InSL(2, C) is always one of two types: either ¥(—1)= 1 or V(—1)= —1. These types
are usually referred to respectively as the integral spin and half-integral spin cases, since in the
two cases, the eigenvalues of the angular momentum operator J,, the infinitesimal generator
of the subgroup of SL(2, C) which goes into rotations about the z axis are respectively 0, + 1,
+2,...0r +4, +3, +3,.... We note that it is natural to extend the analysis of irreducible
representations of InSL(2. C) further to a complete set of invariants, namely the mass and the
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“spin” (see, e.g., Wigner’s paper), but we will only need this V(—1)= +1 classification
below. We also note that the integral spin cases are precisely those where the representation
of InSL(2, C) yields a representation of £, rather than just a representation up to a factor.

Next, we define spinor fields, temporarily deferring the discussion of their connection with
spin. Let S(-) be a finite-dimensional (of necessity not unitary!) irreducible representation of
SL(2, C), on a space of dimension d. A spinor field of type S is an object obeying the
axioms stated for a Hermitian scalar field, with five changes:

(1) The single field ¢(-) is replaced by a d-tuple of fields <@, (*). ..., @a(*)).
(2) The field o(f), with f real, is not required to be symmetric.
(3) The transformation law, Property 6, is replaced by

U(A, a)p,(x)U(A, a)" ! = i S(A™ Y0 {Ax + a)
j=t

where A = A(A).
(4) The vacuum is only required to be cyclic for

{1 od ) @SN 02| f € SRY)

(5) The relation o(f)p(g) — @(9)p(f) =0 if f and g are spacelike separated is replaced
by either:
(a) (Bose statistics)

‘P-‘(f)‘ﬂj(g) - ool f)=0
e (e g) = og)e?(f) =0

or
(b) (Fermi statistics)

ol Ne)g) + oigled{f)=0
ot (Nwig) + efg)o?(f) =0

Depending on whether S(—1) =1 or S(—1)= —~1, we refer to integral or half-integral
spin spinor fields. One has the remarkable

Theorem (spin and statistics theorem) Let {¢p} be a field of type S. Then, if ¢ obeys Bose
statistics, S has integral spin, and if ¢ obeys Fermi statistics, S has half-integral spin.

The spin and statistics theorem for free fields appeared in M. Fierz, * Uber die relativistische
Theorie kriftfreirer Teilchen mit betliebigem Spin,” Helv. Phys. Acta 12 (1939), 3-37, and W.
Pauli, “On the connection between spin and statistics,” Phys. Rev. 58 (1940), 716-722. For the
general case, see G. Lidders and B. Zumino, “Connection between spin and statistics,” Phys.
Rev. 110 (1958), 1450-1453, and N. Burgoyne, “On the connection of spin with statistics,”
Nuovo Cimento 8 (1958), 607-609. When one has a theory with several different fields the
relation of the spins to the commutation relations is somewhat complicated: see the Streater-
Wightman book and G. F. Dell'antonio, “On the connection of spin with statistics,” Ann. Phys.
16 (1961), 153-157.

There is also a PCT theorem for spinor fields. The PCT operator ® acts on the fields by

Opx)@ ! = Z Ajjef(—x)

i=1
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where A4 is an explicit matrix depending only on S. For a discussion, see the PCT papers
quoted above or the Streater-Wightman book.

There has also been some discussion of “infinite spin fields,” i.e., fields where S(A) is
replaced by some infinite dimensional representation of SL(2, C). One difficulty with such
fields is that the Bargmann-Hall- Wightman and PCT theorems may fail for them. See A. Oksak
and I. Todorov, “Invalidity of the TCP-theorem for infinite-component fields,” Comm. Math.
Phys. 11 (1968), 125-130.

Finally, let us say a word about the connection between spinor fields and the spin of

particles. * Particles” enter field theory as eigenstates of the “mass” operator M = \/F_I2 -P=
(P P)!% The subspace #,, = {y/| My = m} is left invariant by InSL(2, C) and the representa-
tion of InSL(2, C) on ', is a direct sum of irreducibles. If there is a single irreducible
summand, we say there is only one particle of mass m and its spin is the invariant associated
to the representation. In general, there is only a tenuous connection between the “spin” in the
S describing the spinor field and the spin of the particles of a theory. However, one critical
connection remains: If ¢,, ..., ¢, are fields (not necessarily in the same multiplets and not
necessarily distinct), then ¢ (f;)* @.(fu¥o can “couple” to one particle states (i.e., is not
orthogonal) of half-integral spin (respectively, integral spin) only if an odd number of ¢;'s
(respectively, even number) are half integral spin. This allows one to relate the physical spin
of a particle to its statistics. Other than this one connection, one can say almost nothing,
for there can be more particles than fields, or more fields than particles or particles whose
spins are unrelated to the spins of the fields (all these phenomena occur with suitably modified
free fields based on the simple model of Section X.7).

Section IX .9 The ideas and proof in this section go back to the work of E. Gagliardo,
**Caratterizzazioni delle trace sulla frontiera relative ad alcune classi di funzioni in n variabli,”
Rend. Sem. Mat. Univ. Padova 27 (1957), 284-305, and N. Aronszajn and K. Smith, “Theory
of Bessel Potentials, 1,” Ann. Inst. Fourier (Grenoble) 11 (1961), 385-475. For a more detailed
discussion of the restriction problem, see E. Stein, Singular Integrals and Differentiability
Properties of Functions, Princeton Univ. Press, Princeton, New Jersey, 1970, Chapter VI.

The restriction results we discuss hold for flat or curved submanifolds. Much more subtle
are a class of results which only hold for curved submanifolds. For example, if fe IP(R?)
with p < %, then f may be restricted to an I? function on the unit circle (but, if p>1, it
may not be possible to restrict it to a piece of coordinate axis). This result and the extensions
appear in C. Fefferman, “Inequalities for Strongly Singular Convolution Operators,” Acta
Math. 124 (1970), 9-36.

The geometric measure which we referred to immediately before Theorem 1X.39 is a
generalization of arc length measure for curves. Intuitively, it is described as follows: At any
point x € M, choose an orthonormal set of tangent vectors to M at x and take the Lebesgue
measure on the tangent space with respect to these coordinates. Then the measure of a very
small set about x is approximately the Lebesgue measure of its normal projection onto the
tangent space. In the usual differential geometric language, this is the measure on M associated
with the metric on M induced by the natural metric on R".

Section 1X.10 The elaborate machinery of wave front sets and oscillatory integrals was
developed in order to study partial differential operators and not merely for the modest problem
of defining products of distributions. We have presented our discussion as an introduction to
this machinery. Our treatment is closely patterned on parts of L. Hoérmander, “Fourier
integral operators, I* Acta Math. 127 (1971), 79-183. This paper introduced the notion of wave
front set and originally defined it by using pseudo-differential operators (see below). It is a



Notes 119

proposition in Hormander’s paper that his definition is equivalent to the one we use. Notions
similar to wave front set can be found in M. Sato, “Hyper-functions and partial differential
equations,” Conference on Functional Analysis and Related Topics, Swets and Zeitlinger, Tokyo,
1969, pp. 91-94. Detailed applications of wave front sets and oscillatory integrals to partial
differential equations can be found in J. Duistermaat and L. Hérmander, “Fourier integral
operators, I1,” Acta Math. 128 (1972), 183-269.

Fourier integral operators are the natural outgrowth of several lines of development.
Pseudo-difierential operators arise naturally as a generalization of partial differential operators
with nonconstant coefficients. Let g, € C*(Q2), @ = R" and let p; be a homogeneous polynomial
of degree i. Then, for all ¢ € C§(Q)

N N

~S—
Y. ai(x)p{ — iD)p(x) = 3. a(x)(p{6)d(6)

i=1 i=1

= @ e 2{ an(®) o(6)

Since p; is a polynomial of degree i, 3 |-, a;(x)p;(f) is a symbol of order N. If we replace
S*_1 ai(x)p;(0) by an arbitrary symbol of order N, the corresponding operator

(Ag)x) = | e a(x. 6)(6) do

is called a pseudo-differential operator of order N. A systematic calculus for such operators
was developed in J. Kohn and L. Nirenberg, “On the algebra of pseudo-difierential dperators,”
Comm. Pure Appl. Math. 18 (1965), 269-305.

Pseudo-differential operators of order zero are called singular integral operators. Such
operators arose in the classical technique of reducing a boundary value problem for an elliptic
operator in a region  to an integral equation problem on dQ (see the example in Section VI.5).
For a discussion of these techniques see, for example, L. Hormander, “Pseudo-differential
operators and non-elliptic boundary value problems,” Ann. Math. 83 (1966), 129-209, or R.
Seeley, “Elliptic singular integral equations,” in Singular Integrals, Proc. Symp. Pure Math.,
Amer. Math. Soc., Providence, Rhode Island, 1967, 308-315, where a detailed historical review
1s given.

For nonelliptic equations, it is quite natural to replace x-6 by a more general phase
function and such a procedure was followed by a variety of authors before Hormander’s
systematic developments: P. D. Lax, “Asymptotic solutions of oscillatory initial value problems,”
Duke J. Math. 24 (1957), 627-646; D. Ludwig, “Exact and asymptotic solutions of the
Cauchy problem,” Comm. Pure Appl. Math. 13 (1960), 473-508; V. P. Maslov, Theory of
Perturbations and Asymptotic Methods, Moskov. Gos. Univ., Moscow, 1965 (in Russian;
French translation by J. Lascoux and R. Senor published by Dunod, Paris, 1972); G. I. Eskin,
“The Cauchy problem for hyperbolic systems in convolutions,” Mat. Sb. 74 (1967), 262-297;
Yu. V. Egorov, “On canonical transformations of pseudo-differential operators,” Usp. Mat.
Nauk. 25 (1969), 235-236; and L. Nirenberg and F. Tréves, “On local solvability of linear
partial differential equations, Parts I, II, Comm. Pure Appl. Math. 23 (1970), 1-38: 459-510.
In particular, Maslov’s book contains ideas which have been crucial in further developments.

Wave front sets are especially useful in discussing regularity (and nonregularity) of solutions
of partial differential equations. For example, one has the following generalization of the
elliptic regularity theorem (see, e.g., Fourier integral operators, II):
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Theorem  Let P(x, D) = Y ;< a,{x)D" be a partial differential operator with C* coefficients
and let fbe a C* funcnon IfTe 9,,.. solves P(x, D)T = f, then
WF(T) < <x k)’Px K=Y ax)=0 (IX.66)
laj=n

There is a further refinement of this theorem which asserts that if a point (x4, ko) in the
set on the right-hand side of (IX.66) lies in WF(T), then automatically an entire associated
set (the bicharacteristic strip with initial point (xo, ky)) lies in WF(T). This refined theory
goes under the name “propagation of singularities™ and has its roots in geometrical optics.

Example | was shown to us by O. E. Lanford, III.

Theorem 1X.44f has a natural translation if we consider distributions on a manifold M.
It asserts that WF(T) is a subset of the cotangent bundle of M.

Theorem 1X.46 has an application to the problem of restricting a distribution to an
embedded submanifold, a problem which we discussed from a different point of view in
Section IX.9. Let us consider the case of an embedded curve in R"; for the general case,
see Hormander’s paper: * Fourier integral operators, 1,” Theorem 2.5.11. Let F: R — R" be an
injective C* function obeying: (i) grad F(r) # O for any ¢; (ii) lim,_ . ., | F(t}| = oo (F is called
a regularly embedded, proper, simple, smooth curve) Any function ge C¥(R") has a
“restriction” to the curve F, to wit F_(g)(t) = g(F(t)). Now let T € 2'(R"). Can we find a
natural meaning to F,(T), at least for some set of T € 2'(R")? To do this, we rephrase the
definition of F,(g). Given f € Cg(R), let f3; be the distribution in 2(R") given by

(Bee) = [ F(0alF@) e

-

If we think of F,(g) as a distribution, then
F (a)(f) = (f3e)a9)

More to the point, if we pick a function y € C§(R") identically one in a neighborhood of
(t)|t € supp f}, then

F(a)(f) = [a(3e)lx) (IX.67)

where g(f3¢) denotes the product of g and the distribution f3. If WF(T)@ WF(f3;) is dis-
joint from {<x, 0}, then we can use (IX.67) to define F,(T)' Thus, we must find WF(f5;). A
simple argument (Problem 67) shows that WF(3;) = {(x, k)|x = F(t); k- grad F = 0, k # 0},
the normal bundle N(F) to the curve F and that WF(fd;) =« WF(8;). Thus, by Theorem 1X.46,
we have:

Theorem I T € 2'(R") has its wave front set disjoint from the normal bundle N(F), then
F,(T) can be defined by (IX.67) and moreover

WF(F,(T)) < F*WF(T)) = (<t grad F - k> | (F(t), k> € WF(T)}

PROBLEMS

1. Find the Fourier transform of 3x2 + |.

t2. Give the details of the convergence of the Riemann sum to the integral at the end of
the proof of Theorem IX.1.



Problems 2

. (a) Let R be a rotation and R' its transpose. Let f€ &. Prove thatﬁ =f-R"
(b) Let D, be the map D, x = Ax on R". Let fe #(R"). Prove that

TN _
feD,=4 '?:’DA"
(c) Let T e &#'(R"). Prove that

N . NN N
(T-R)y=T-R, ToD,=A"F-D,

. Compute the Fourier transform of 2(l/x), the Cauchy principle part, by using
Equation (V.4).

. Compute the Fourier transform of f(x) = e~ ***/? as follows:

(a) Prove that —~Af(4) = « df (A)/dA and conclude that f(1) = ce™ /2
{b) Use the Plancherel theorem to prove ¢ = l/\ﬂz.
(c) Check the Fourier inversion formula explicitly in this example.

. Let # = (R, e”*" dx) and define y, = x"e # forn=0,1,....
(a) Prove that Y M_, ((ik)"/m" ). VY e** in the norm topology on ¥ .

(b) Suppose 1 € # and (x™, ) = O for all m. Prove ¢ = 0. (Hint: show that ne™** = 0.)

(b’) Reach the conclusion of (b) without recourse to the Fourier transform. (Hint: Use the
fact that the functions (x £ i)™" are total in C,(R) and the formula (x +i)™! =
iJ§ e7%e™ ds).

(c) Let {H,} be the orthonormal set obtained from {i,} by Gram-Schmidt orthogona-
lization. Prove that {H,} is a basis for ). .

(d) Prove that {H ,(x)e~*"/3}®,  is an orthonormal basis for *(R, dx).

(e) Prove that H,(x)e”*'/? is just the nth Hermite function (defined in the Appendix
to Section V.3).

. Let {4,()} be the polynomials determined by the formula

= “" —a2+2al
Ene
Define 6,(1) = (2'n!)” 2A4,(A)e~ 2.

(a) Prove that

$a(A) = \(7_% eﬂn(d—da)""-“

so that the ¢,(4) are just the Hermite functions of the Appendix to Section V.3.
(b) Iif fe (R, dx) and (f, ¢,) =0 for all n =0, 1, ..., prove that for all g,

[ Sl ax =0

(c) Use the Fourier transform to show that if g f(x)e"™*"*"? dx =0 for all 4,
then f=0.
(d) Conclude that {¢,} is a basis for I*(R, dx).
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8.

10.

11.

12.

IX: THE FOURIER TRANSFORM

The purpose of this problem is to prove the Plancherel theorem and the inversion
formula by using the Hermite functions. Let

d

A L + and A' L d
=-—{x+ — n = - -
ﬁ( dx) Nz ( dx)

(a) Il fe Z(R") prove A (A) = —(AT)(A)

(b) Prove that @, = (=i)y'¢,.

(c) Supposing the fact that the Hermite functions are a basis for I>(R), prove the
Plancherel theorem and the inversion formula.

. Suppose that C is a continuous map of &(R") into C*(R") which commutes with

translations. Prove that there is a T € &'(R") so that C(¢) = T * ¢, for all ¢ € L(R").
(Hint: f T € &'(R") and ¢ € #(R"). then T(p) = (T *+ $)(0).)

Prove directly (without using the Fourier transform) that for fixed fe &(R"), the map
g+ f* g is a continuous linear transformation of #(R*) into ¥(R").

Let u, and u, be finite Borel measures on R" and define

(1 % m)EY= [ 1y(E = y) dpa(y)

Jen

(a) Prove that u, * u, is a finite Borel measure on R", that y; * y, = pu, * p,, and that
for any fe C(R")

(e N =[ [ 16+ 9) dua(x) ()

(b) Prove that y, + u, is absolutely continuous with respect to Lebesgue measure if
either y, or pu, is absolutely continuous with respect to Lebesgue measure. Give
an example where y, * y, is not absolutely continuous.

The Fourier transforms of Borel measures of mass one on R” are sometimes called

“characteristic functions.” A characteristic function E(A) is said to be infinitely divisible

if for all positive integers n, there exists a characteristic function E (1) so that

E(}) = (ED)"

(a) Let u be a Borel measure of mass one on R and let E be the corresponding
characteristic function. Prove that E is infinitely divisible if and only if for all n
there is a Borel measure of mass one, 4,, so that

B= % %y
n times
(b) Show that
E() = exp(iaA — $812) +j (€™ - 1)dp

is an infinitely divisible characteristic function if « € R, § >0, and p is a Borel
measure of finite mass on R. Give a (convolution) formula for the corresponding
measure in terms of «, f§, and p. What is the corresponding measure if p =0?
What is the corresponding measure if x = 0 = f and p = 6(x — x,)?
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Remark: There is a characterization of the Fourier transforms of all infinitely
divisible distributions known as the Levy-Khinchin formula. See, for example,
L. Breiman, Probability, Addison Wesley, Reading, Massachusetts, 1968, 193-195.

13. Let Q be an open set in R", K a compact subset of Q. Prove that there is a function
in C§(Q) which is equal to one on K. (Hint: See Problem 61 of Chapter V.)

14. The purpose of this exercise is to prove the Fourier inversion formula by an
alternative method. Suppose that fe £(R").
(a) Prove that lim, | o [} ((sin x)/x) dx exists. Call it d. Now, show that

1/e o R
limJ- sm R dx=d forany R> 0
e 0% e X
(Hint: Use facts about telescoping series.)
(b) Prove that

S

dy——0
R—-xo

To-u SOy ] sin R
J.o 2 u

(Use the Riemann-Lebesgue lemma.)
(c) Using (b) conclude that
@® R
4df(y) = lim J' (J‘ =34 (k) dk) dx
R—x " ~® -~
(d) Prove that f(y) = (/2n/ad) [=,, €®] (y) dk.
(e) By letting f(x) = e™*'/2, conclude that d = =/2.

15. The purpose of this exercise is to provide an alternative proof of the Plancherel
theorem.
(a) Prove directly that if f, g € & (R")

N .
frg=(n"7g
(b) Letting f(x) = f(— x), prove that
(f <)) = [ 17 (k) 2e™ dk
(c) Set y = 0 and conclude that
[ 1 dx =[] (k) dk

*16. Prove that the map L'(R") > C,(R") is not onto by exhibiting a function in C,(R")
which is not in its range.

17. The purpose of this problem is to develop the Fourier transform on L'(R") without
reference to Z(R").
(a) If f € L'(R"), prove directly that

F0) = @r)2 [ e (x) dx

is a bounded continuous function. (Hint: Use the dominated convergence theorem.)
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(b)If fe I!(R"), prove that f(A)—0 as |i| »co. (Hint: Prove that 2f(1)=
@r)™™2 [ e~ ™ (f(x) — f(x — mA/|A|*) dx.
(c) Prove directly that (2m)"?f§ =f/‘\g.
18. Find a function f(x) that satisfies all the conditions in the definition of “functions of

positive type” except continuity. To which function of positive type is f(x) equal a.e.?

19. Display a distribution of positive type that is not a function. What is its Fourier
transform?

*20. Prove the Bochner-Schwartz theorem (Theorem IX.10). (Hint: Mimic our proof of

Boghner’s theorem using the inner product (¢, Y)= T(¢ » §) and the formula
TG+ 0.) =T =% p)(x))

21. What does the generalization of the Paley-Wiener theorem to distributions with
compact support say about the Fourier transform of distributions with support at the
origin? Compute the same result directly by using Theorem V.11.

22. Let C be a convex, compact, balanced set in R". Let
C°={k|k-x= —1forallx e C}
be its polar. Let p be the Minkowski functional of C°, ie,
p(n) = sup(n - x) = inf{A]1e R, ne C°}
A>0

xeC

Prove the following version of the Paley-Wiener theorem:

A function f e %(R") has support in C if and only if f is the restriction to R" of
an entire function f(z) which obeys the condition that for any n there is a constant
D, so that

|7(@)] < DJ(1 + |2[2)emptm

23. Prove the extension of Theorem IX.16 in the case where I', , is replaced with an
arbitrary proper, open, convex cone I' and

I ={n|n x=0forallxel}
24. (a) Let f be a measurable function on a measure space (M, u). Let
my(t) = pl{x| | f(x)| >t}
Prove that if fe I2(M, dy), then
IM|f|' dy = —I:t’ dmg(t)  (Stieltjes integral)

(b) Prove that if fe IZ(M, dy), then

my() < | flpe*
(c) Prove that fe IZ(M, du) if and only if

©

jo *7tm(t) dr < ©

and in that case || f]|2 = p J§ *~ 'm(r) dt.
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Prove that if r < p < s and fe L[, n L%, then fe I and

1 1

P< + r (s~ pM(s—r)| s p—r)is—r)

Y e L T A i (W

(Hunt’s interpolation theorem)

() Let t<py<py<o0,0<t<l,p '=tp;!+ (1 -1)pg!' Show that fe L? il and
only if there exists 2 C so that for 1> 0, f can be decomposed as f=f, ; + f, ;
with f, ;e I, f; ;€ I2' and

oall,, < CIAT®P L fyall, < ClAJH@ren
]

(Hint: Try fo, a(x) = f(x)if | f(x)| > 1)

(b) Prove that | f||,., = C, where C is the smallest constant which can be used in
part (a).

{c) Use (a) and (b) to prove Hunt's interpolation theorem.

() Let fe I2(M, dy). Prove that tPu{x|| f(x)| >t} -0 ast -0 or co.

(b) Puta metricon L5(M, du)by p(f,9) = || f — g, .- Prove that IZ(R", dx)is not dense
in L(R", dx) in this metric.

Note: In Hunt's theorem, T is defined on L% not by a density argument (which does

not work by the above) but by showing that if fe L% for py < p < p,, then f can be

written /= f, + f, with f, € I° and f, € I2'. Thus we can define Tf = Tf, + Tf,.

Fill in the details in the derivation of Sobolev’s inequality (Example 3, Section 4).

Prove that the extension of the Fourier transform to IZ(R”) given by the Hausdorff-
Young theorem coincides with the restriction to I?(R") of the Fourier transform on
&' (R™.

(weak Hausdorfi-Young) Prove thatfe LY iffe L% wherel <p <2andp™'+4~'=1.

Prove Young's Theorem in the case 1 < p, g <2, r > 2 by using Holder’s inequality
and the Hausdorfl-Young theorem twice.

(weak Young theorem) Use the generalized Young inequality to prove that f» ge L],
ilfeL?,geLliandp ! 4q '=14+r""1<p, g r<ow.

Provide a proof of Proposition 1 of the Appendix to Section IX.4 which does not use
interpolation.

(a) Let ||-|o be the I? norm on CZ(R") and let | f|, = |fllo + |/(0)]. Show that
[Illo and |-|I, are not consistent. Compute the interpolation spaces X, anyway.

(b) Let X = C[0, 1]. Define | /o = [4 | f(x)| dx and tet | £, = ¥, 27| /(r.)| where
{r.}== 1 is an ordering of the rationals. Show that || f||, = 0 for all fe X.

Fill in the details of the proof that X, = s, in Example 3 of the Appendix to
Section IX.4.

Suppose € R and p > 1. Define H? to be the completion of C§(R") in the norm

10l » = I((1 + K70,

(a) Show that the norms ||-|, , are consistent.

(b) Let po, py > 1 and a5, a; € R be fixed. Prove that the interpolating spaces X,
between H23and Hf: areequal to H2foreach0 < ¢ < 1 wherep, = tp; ' + (1 = t)pg
and &, =t + (1 — tha,
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*37. Let X be a complex vector space with consistent norms ||-[| and |:||"". The purpose
of this problem is to sketch the proof of the statement X, = X, in the Appendix to
Section 4. We use the notation introduced there.

(a) Show that if x € X, n X, there exists x, € X so that x, — x in both the |||
and the | ["-norm.
(b) Use (a) and the inequality

©_norm

Ixlte < el < max{fx], <]}

to prove that it is sufficient to prove that X, n X, is dense in X, in order to
conclude that X, = X,.
(c) Define &, to be those f€ & such that
() G| >0asa—+oo
@) |/t +ia)" >0asa— too
(i) | f()ll+ =0 asImz— +co in the strip, uniformly in Re z.
Prove that # /(% , A K,) = #(X)/K,.
(d) Suppose that h € #(X) and h(z) = h(z + ia) for all z € §. Define

ya(t)=a"! J.‘ g™ rtismiap(y 4 is) ds
o

Show that y,(t) = y, is independent of ¢, y, € X4 N X,, and

LYy = . .
- Z Z ynermz/a ”l ”l h(Z)
N m=1n=-m
where the convergence is uniform with respect to y in ||-||"*) for z =1 + iy and in
-1 for z = iy.

() Show that the set of functions in &, of the form e’ (YV_, x,e™') where
x,€ Xo N X,, with >0, o,, and N arbitrary, is dense in & ,. (Hinz: Since
#7729 £ e need only look at functions of the form g = e2#*°f Let h = &f*f
and show that

h.(2) = i h(t + inm)

ms — o

is a well-defined periodic element of #(X). Then, use (d) and the statement
lim,.,, &k, = g.)
(f) Conclude that X, = X,.

38. (a) Let {g,} be an orthonormal set (not necessarily complete) in a Hilbert space »#.
Show that if C is a compact operator on #, then ||Ce,| — 0.
(b) Let F e L'(R", dx) and define

(Ap)(x) = L F(x = y)o(y) dy

Prove that A is not compact unless F is the zero function.

39. (@) Letfe L% ; ge L% where p~* + (p')"! = 1. Suppose that g satisfies g™ + p~' < 1.
Then for all h e I4, prove that

"f(g * h)"q < Cp.q"f"p.w"g"p'.wuh“q

(b) Let 0 <s < n/q. Let |p| be the operator \/~A on I{R"). Show that [x|™*|p|™*
defines a bounded map of I{(R") into itself.
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Let N(h, /') be the operator g - h(f+ g) on }(R").

(a) Prove that N(h, f)e £, if h, fe I? and ||N Bl < 8l20 £ 12

(b) Prove that [N(h, f)lep < IR} /g if p™ + 47" = 1and p = 2.

(c) Prove that N(h, f} is compact if he I?, ge I3, 2 < p < c0.

(d) Iffe ' ~ 2, prove that N(f, h)e # ,if he I?,2 < p < 0. (Hint: Use interpolation.)

This problem outlines the complex variables argument in the Malgrange-Ehrenpreis

theorem.

(a) Let f(z) be an analytic function of one complex variable on the disk |z| < 1 and
let p(z) = a, 2™ + a,,- 2" ' + - + a,. Prove that

lao £00)] < @x)" [ I 7(e)pte®)] a0

(Hine: Let g(z) = ([ (Z;z = 1)/(z = z;))p(2) where the z; are the zeros of finside the
unit circle. Notice that g is analytic on the disk and |g(z)| = |p(z)] for |z| = 1)

(b) Let f and p be as in part (a) and prove that

2=
la, SO) < @a)7 [ 1/ (eple”)] db

k'( k)'

(c) Let F({) be an entire function of n complex variables and let p({) be a polynomial
of degree n. Suppose that g({) is a nonnegative integrable function with compact
support depending only on the absolute values |{;|,i=1,..., n. Prove that

[FODO)! [, 1EFaR) & < Co [ [FIp(0)](0) &

(d¢ denotes Lebesgue measure on C” and C,, is a constant depending on « and m.)
(d) Use part (c) to prove the statement

a0 < €[ [0+ Dalx + O &
Klse
in the proof of the Malgrange-Ehrenpreis theorem.
Reference: K. Yosida, Functional Analysis, Springer, Berlin, 1965, pp. 185-186.

Find explicitly a fundamental solution for the ordinary differential equation u* = f.

What do the regularity theorems of Section 6 say about the regularity of elgenfuncuons
of atomic Hamiltonians?
References: T. Kato, Comm. Pure Appl. Math. 10 (1957), 151-171; Section XII1.10 in
Volume I1I of this series.

(2) Define the operation 9 on the C® functions from C to C by df = 8f/dx + i 2fjdy
where ze C is writlen z = x + iy. Prove that Jf=0 is a restatement of the
Cauchy-Riemann equations.

(b) Let T € D'g: where C is thought of as R? and let 3 = 8/dx + i 3/3y. Prove that if
OT =0, then T is actually an analytic function. (Hint: Prove that AT =0 and
apply the elliptic regularity theorem.)

(c) Let T € Dqa. and suppose §; T =0 for all j = 1, 2, ..., n. Prove that T is analytic.

(a) Prove that if Q is a bounded open set and ¥ € C™(Q), u e Wy(Q) with k < m, then
Vue W(Q).

(b) Prove that if u is a weak solution of —Au+ Vu=Eu and ¥V e C"(Q), then
ue Ct(Q)for £ <m—4n+ 2.
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Using Sobolev’s inequality (1X.19), prove the I Sobolev imbedding theorem; ie. if
——
g l=p '—na'(@>0,1<p g<oo)and iffe I’ then g = (1 + k?) *fe 4.

Suppose that fe I2(R®) and 9f/dx; e I}(R®) for i = 1, 2, 3. Prove that fe I?(R%) for all
p < 6. (Hint: Use the Plancherel theorem, the function (1 + |k|?)%, and the Hausdorff-
Young theorem.)

Let {f}uism be a family of C! functions on R”. Let T and S be the differential
operators
T¢=“Z D, S¢=”Z (= 1D%(f 0)
al S m a| <m
Let T, denote the operator T defined on CZ(R") and let T, be T defined on
{o|pe X(R"), Toe (R} Similarly define S,;, and S,,, .
(a) Prove that Sk, = Thaxs Tohin = Siax -
(b) Prove that T, is essentially self-adjoint if and only if both T, = S, and T,.,
is self-adjoint.
Remark: When T, = S..,, one says that T is formally self-adjoint. It may happen
that T, is formally self-adjoint but not even essentially self-adjoint, e.g. —A — x* on
R". This is further discussed in the Appendix to Section X.1 and in Section X.5.

Let H,(x; k)= & ~ (A% + k?)"!). Thus Gy(x, y) = H,(x — y; k) is the free Green’s
function on R". Suppose that k > 0.

(a) Prove that H,(x; k) = k"~ 2H,(xx; 1).

(b) Prove that

- o~ |s2jas 40
H,(x; 1) = (4n) "’ZJO e g IxM14s 7t

Hint: Use the form of the free propagator and the relation

(IX.68)

(Ho+ 1)1 = [ et~ Mo dr
[

{c) Prove that H(x; 1) is monotone decreasing in x and positive and that for n > 3,
H(x; )< |x]*"
(d) If n > 3, prove that
; n- . w2 (T - vjay Y
Tim |x['"*H,(x; 1) = (47" Jo i
(Hint for (c) and (d): Let y = §/|x|*)
(e) Prove that lim ., *!|x|"?~"?H (x; 1) exists and is nonzero.

(Hint: Let y = 26/|x|.)

(a) Let T, = |x]|™®e #(R") with 0 < & < n. Prove that 7, is a C* function on R"\{0}
with T R=T for any rotation and T oD, = A""**T where D, is given in
Problem 3. Conclude that

~
[x|7*(k) = C,.alk|™"**

(b)Let T,, = (|k +2172)"%%, 6<a<n, on R* Prove that T,, » T, , as 10
uniformly on compact subsets of R"\{0}. Prove that T, , = A""**T, , - D,., and
conclude that |k[*"*T; (k) is bounded on the unit ball.

(c) Prove that T, (k) falls off exponentially and conclude that 7, (k)e Li"™°
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Let ¢ € #(R") and let o > 0. Prove that there is a constant C, ,,, so that

sup <C, t™  for t>1

Ix|s 1

(5] te =000

Reference: J. Kupsch and W. Sandas: “Mgller Operators for Scattering on Singular
Potentials,” Comm. Math. Phys. 2 (1966), 147-154.

Let Hy= —A on R".
(a) Prove that —A is essentially self-adjoint on C§(R™\0)if n > 4.

(b) Suppose that n<3 and A= ~A [ CF(R"0). Let = (A’/—?‘ Prove that
¢ € D(A*) and that A*¢p = ip. Conclude that —A is not essentially self-adjoint on
C(R"\0)ifn< 3.

Use the Killen-Lehmann representation to prove that a quantum field ¢(x) cannot
be a well-defined operator-valued function on R*. (Hint: Prove that (y,. @(x)@(y)o)
is a bounded function, so that ¢(f )y, = 0 for all fe #(R*), thus violating the cyclicity
of Uy

Let f, — fin £(R*). Let y € D. Prove that properties 3 and 4 of Section IX.8 imply
that {f, ¢>—<y, o(f)p(g)y> is jointly continuous. Conclude from this that

oSl = oS W

(a) Letg e C3(R"™), with {2, g(x,, X5, ..., x,) dx; = 0 for each fixed (x,,..., x,> € R"" .
Prove that g = dh/dx, for some he C§(R").

(b) Let T € 2'(R") with T(x, + a, X5, ..., %,) = T(xy, X;, ..., X,) for all a in the sense
that T(U, f) = T(f) for all fe 2(R") where (U, f)(x, ..., x,)=f(x, —a, ..., x,)
Prove there exists S€ 2'(R"™ ') with

T(Xyy Xg4nes Xg) = S(X3,5 ..., X,)

in the sense that T(f)= S(I,(f)) for all fe D(R") where (I,(f))(xz, ..., X,) =
§ f(xy, ..., x,) dx,. (Hint: Choose F & D(R) with | F(t) dt = 1. Recall from Problem
47 of Chapter V that 3T/dx, = 0. Finally use (a) to prove that

g =/~ F(x)I(f) = 0h/ox,)
(c) Let T and S be as in (b). Prove that if T is tempered, then § is tempered.

The goal of this problem is to prove that any tempered distribution T with support in

V., v (~V,)can be written T = R + A where supp R< P, and supp A< -V,.

(a) Let f be a C* function on the unit sphere S in R* with f=1 on V, ~ § and
f=00n -V, _~A S Let x(x) = f(x/|x]). Show that (x?)'x(x) is a C*"~! function.

(b) Suppose that |T(g)| < Y yusn. 185 m [|¥*D?g|| . - Prove that (x*)**' T can be written
as S, +S_ where supp S, <V, and supp S. « —V,. (Hint: Let S.(f)=
T "' 1)

(c) Pick a fixed h in CP(R*), with h = | near x = 0. Let

ey -y E0,,
<M+ B!

Prove that T(f) = (x2™*'T(Hf) + T, where T, has support at the origin.

Prove Theorem 1X.38 for the case of codimension greater than one.



130

+58.
59.

160.
61.

62.

63.

*65.

66.

67.

t68.

169

I1X: THE FOURIER TRANSFORM

Fill in the details of the proof of Theorem 1X.40.

Give an example of a tempered distribution T given by a polynomially bounded C*
function F so that the family of translates {T,} is bounded as a family of distributions
but such that F is not a bounded function. (Hint: Modify Example 1 of Section 1X.10).

Complete the proof of Theorem IX.43,

Let T, S € 2°(R) so that the products TS, T'S, and TS all exist. Prove that (TS) =
TS +TS.

Let C be a convex cone in R” with nonempty interior. Let ./ be the family of functions
analytic in R” + iC, polynomially bounded at infinity and as Im z | 0. For Fe &, let
BV(F) denote the distributional boundary value of F. If F, G € &, prove that the
product BV(F)BV(G) exists and that

BV(F)BV(G) = BV(FG)
For any T € 2'(R") and any a € I", prove that WF(D*T) = WF(T).
. (a) For any T € 2'(R") and f e 2(R"), prove that
WF(fT) < {{x, k> | x e supp f; (x, k) e WF(T)}
and that
WF(ST) > {<x k| £(x) # 05 (x, k> € WF(T))
(b) Give an example of f, T as in part (a) for which
WE(ST) # {(x, k)| x€ supp f; <x, k) € WF(T)}

(a) Define the asymptotic conical support ACS(T) of a distribution T as the comple-
ment of those k # 0 for which there exists a neighborhood N and a A, so that
supp T~ AN = F if A > A,. Prove that ACS(T) is a closed cone.

(b) Prove that for T &€ #'(R"), WF (T) < ACS(T) for any x e R".

(c) Without using the machinery of oscillatory integrals, obtain enough information
about WF(A,) to prove that the product 8A, exists.

t(a) Prove Theorem IX.46.
(b) Refine Theorem IX.46 by finding necessary and sufficient conditions on F, an
asymptotic symbol of order k, so that sing supp(F) = &.

Define Sym(Q, s, m, p, 6) as Sym(Q, s, m) was defined but with (IX.63) replaced by
|(D5 Dia)(x. 6)] < d(1 + 6]y~ #iot+ol
Extend Theorem 1X.49 to thecase 6 < 1, p > 0.
Prove that
a(x, 65 m) = (m* + |6]*)~"% exp(—ixo[(m* + |8]*)'* ~ |0]])

is an asymptotic symbol of order —1.

. Prove Lemmas 1 and 2 in the proof of Theorem IX.47.
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+70. Prove that the map V used in the proof of Theorem 1X.47 maps Sym(€, s, m) continuously
to Sym(Q, s, m — 1).

+71. Prove that (a, ) - af is a continuous bilinear map of Sym(Q, s, m) x C§(Q) to
Sym(Q, s, m).

+72. Complete the proof of (c) of Theorem 1X.48. Hint: Show that

t" exp(io(k)t) = ﬁ)l(cig

where w(k) = /m? + k.

+73. Under the situation described in the notes to Section IX.10, prove that WF(f8;) < N(F)
and that WF(é;) = N(F).

(k . Vk)] eiw“(. t)

+74. Find two distributions T; S of compact support so that TS exists but | T()S(k — ¢)d¢
diverges absolutely for all k.

1,*75. The purpose of this problem is to prove the change of variables formula in () of
Theorem 1X.44.
(a) Verify the formula when M is a linear transformation.
(b) Show that it is enough to prove that

WFx=0(T° M) = WFx=0(T)

whenever M is a diffeomorphism with M(0) =0 and dM,_, = identity map and
T is a distribution of compact support.
(c) Prove that if g e CP(R"), then

BT+ M)O)= @x)™ ([ g(e)T(h)explik- M(x) — ¢ )] e dk
in the sense that the integral formula is correct if (1 + k2)"*'2T(k) is bounded
and for fixed Z, the map
T — integral
is continuous in the norm ||T|, = sup,|(1 + k2)"™T(k)| for each m > 0. (Hint:
Use the integration by parts machine based on |(dM¥)™" grad,(k - M(x)})| = |k].)
(d) Suppose k, is a unit vector with ko ¢ WF,.o(T). Show that under the conditions

in (b) one can pick open cones Cy and C; about k, and a neighborhood N of
x = 0 so that: (i) For every m,

~\
sup (1 + k2)"|gT (k)| < oo
keCy

for any g with supp g < N.
(ii) sup{¢ - [dM(k)]|¢ € Co k¢ Cyxe N; 2| = |k| =1} =a< 1

(e) Prove that for any m,

1+ /2)mj g(x)T (k) exp[i(k - M(x) — £ - x)] dx dk

keC,

sup

¢ .
is finite. (Hint: Use (i) of (d) and the integration by parts machine based on
¢2 exp(—if - x) = —A[exp(—i/ - x)].)
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(f) Let
F(k, )= [ g(x) explik - M(x) = ¢ x)] dx
Prove that for any m > 0
sup{(1 + 22)"F(Akq, Alo)|ko ¢ Cy, £o€ Co, |ko + £o| =1} <
Hint: Use (ii) of (d) and the integration by parts machine based on
|dM (k) — £]*{(dM3(k) — ¢) - grad,[k - M(x) — ¢ x]} = 1

(8) Prove that sup,, ¢, sec, (1 + |k| + |£]|)"F(k, £) < co for all m and conclude that

k¢ WF,_o(T - M).

(h) Use symmetry and the result WF, . o(T - M)c WF,_,(T) just proven to conclude
the proof.

+76. The purpose of this problem is to outline the proofs of Theorems 1X.13 and IX.14.

77.

78.

(a) Prove that e!*if e I? for all b <a if and only if ¢ *f e I? for all neR" with
| <a. X
(b) Ife*!lfe I? forallb < a,provethat f(:)has an analytic continuation to {z||Im z| < a}

and that f(- + in) =@Concludc that the bound in Theorem IX.13 holds.

(c) Suppose that f has an analytic continuation to the tube {z||Imz| < a} with the
given bound. Use the Cauchy integral theorem to prove that for any ge C3(R")
and ne R" with |n| <a,

[ gCa)f (x) dx = [ gk = i) (k + in) ak

- ~
(d) Prove that if f obeys the hypotheses of (c) and if h, = f(- + in), then h,(x) = " ¥
almost everywhere and so conclude the proof of Theorem IX.13.
(¢) By mimicking the above, prove Theorem IX.14.

(a) Use Hunt’s interpolation theorem to prove that if p~* 4+ ¢7' =r"", p and g less
than co, r > 1, and if fe I?(R"), g € L1(R"), then fg e L, (R").

(b) Show that if the Marcinkiewicz interpolation theorem held without the restriction
p, < q,, then it would follow that fe I*(R") and g e L%(R") implies that fge *(R").

(c) Find explicit functions fe I}(R") and g e L(R") so that fg ¢ [>(R").

(the uncertainty principle) Let P = —ih(d/dx) and Q = x be operators on *(R). Let
¢ € #(R) with |l¢|| = 1 and define:

m, = (Po, ¢), m, = (Qo, ¢)
6p2 = ”(P - mp)q’l 2v 642 = ”(Q - mq)q’”2

(a) Using the commutation relation PQ — QP = —ih, prove that 6,0, > h/2.

(b) Restate the result of part (a) in terms of y, and p,, the spectral measures of ¢ for
Q and for P, and explain what this means for measurements of position and
momentum in quantum mechanics (see Section VIIL.11).

(c) Reformulate the result of part (a) as a statement about the Fourier transform.
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READER'S GUIDE

Chapter IX is essentially self-contained and the prerequisites for it are minimal. The
reader should know the properties of the Lebesgue integral, the elementary notions of Hilbert
and Banach spaces, and the definition and basic properties of the Schwartz space of rapidly
decreasing functions and its dual, the tempered distributions. This material is covered in
Chapters I-1II and Sections V.1-V.3 of Volume I and in many other functional analysis texts.
The occasional reference to theorems in Volume I is usually descriptive so that the reader
familiar with another elementary text can understand the reference.

We give a section by section description below. Here is a summary: The most basic
material in Chapter IX is in Sections 1, 2, and the first part of 3. The reader mainly
interested in quantum mechanics should consult especially Sections 1, 2, the first part of 3, 4, 7,
and have some acquaintance with Section 9 and the Appendix to Section 4. The reader
interested in quantum field theory should consult Sections 1, 2, 3, and 8. For partial
differential equations, he should consult Sections 1, 2, the first part of 3, 4, 5. 6, and 10.

The fundamental properties of the Fourier transform are presented in Sections 1, 2, 4, and
the first part of 3. In Section !, the Fourier transform is defined on &(R") and extended to
&'(R") by the adjoint map. The Fourier inversion theorem is proven, and we define and
investigate the properties of convolution. In Section 2 we study the range of the Fourier
transform on the classical spaces, proving the Plancherel, Hausdorff-Young, and Bochner
theorems. In the first part of Section 3 we prove the Paley-Wiener theorems characterizing
the Fourier transforms of C* functions and distributions with compact support. In the second
part of Section 3 we prove a more difficult theorem characterizing the Fourier transforms
of tempered distributions in R* with supports in cones. The reader should skip this part on
first reading unless he is interested in the Wightman axioms (Section 8). Finally, in Section 4
we present various [?-estimates relating Fourier transforms and convolutions. The reader should
know how to use the interpolation theorems given in the Appendix since they are the basic
too! for proving the estimates. The idea of interpolation is beautiful, but the proofs of the
interpolation theorems are involved, so the proofs in the Appendix should be skipped on first
reading.

The remaining sections, 5-10, deal with more advanced material and applications.
Sections S and 6 present applications of the Fourier transform to partial differential equations.
In Section 5 we prove the existence of fundamental solutions for constant coefficient partial
differential equations. In Section 6 we investigate the Sobolev spaces and prove that every
weak solution of Au = f'is in fact a strict solution (Weyl's lemma),

In Section 7, we use the Fourier transform to derive properties of the free quantum-
mechanical Hamiltonian Hy = —A, its resolvent (Hy + x2)™!, and the group it generates
e—iHo(_

In Section 8, we present and discuss the Garding-Wightman axioms for a Hermitian scalar
quantum field theory. No previous acquaintance with quantum field theory is necessary for
reading this section. We show how the Fourier transform may be used to determine the
analytic continuation properties of the Wightman function and to prove the PCT theorem.
The technical appendix is devoted to proving a representation formula for polynomially
bounded, Lorentz invariant measures with support in the closed forward light cone.

In Section 9, we consider the question of which I? functions on R" have a natural
restriction to a lower dimensional submanifold. This material will not be applied until we
investigate the spectrum of gquantum mechanical Hamiltonians in Chapter XIII. On first
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reading, the statement of Theorem 1X.41 and the general idea of its prool should be under-
stood, but the gory details should be omitted.

Section 10 is intended as an introduction to wave front sets and oscillatory integrals,
two important tools for the study of partial differential equations with nonconstant coefficients.
This theory can be used to give conditions on two distributions so that their product is well
defined. The material in Section 10 is not used again in Volumes II and III.



X: Self-Adjointness and the
Existence of Dynamics

People used to think that when a thing changes, it must be in a state of change and that when
a thing moves, it is in a state of motion. This is now known to be a mistake. B. Russell

X.1 Extensions of symmetric operators

We begin this chapter by studying symmetric operators and their exten-
sions. Primarily, we wish to answer two questions: When do symmetric
operators have self-adjoint extensions and, if they do, how can the extensions
be characterized ? These questions are answered by von Neumann’s theory
of deficiency indices which we will develop using many of the techniques
we have already used in proving the basic criterion for self-adjointness
(Theorem VIIL3) in Chapter VIII.

It is useful to begin by explaining why symmetric, non-self-adjoint
operators are of interest in the first place. Typically, in quantum mechanics
or quantum field theory, physical reasoning gives a formal expression for
the Hamiltonian of the system; it is usually a partial differential operator
on an appropriate I? space. We say “formal” when the domain of the
Hamiltonian is not specified. It is usually easy to find a dense domain
on which the formal Hamiltonian is a well-defined and symmetric operator H.
The quantum dynamics should be given by a unitary group, and we know
from Stone’s theorem (Theorem VIIL.8) that the infinitesimal generator of
such a group must be self-adjoint. If H, the closure of H, is self-adjoint,

135
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then we can use H. But if H is not self-adjoint, then we must ask: Does H
have self-adjoint extensions? And if it has several, which one shall we choose
to generate the dynamics? In the case where there are several self-adjoint
extensions, they are usually distinguished by the physics of the system being
described. The problem of choosing the “right” self-adjoint extension is not
just a mathematical “technicality” but is intimately related to the physics.
For further discussion, see Examples 1 and 2 in this section.

We remark that throughout this section we discuss the extensions of
closed symmetric operators. There is no loss of generality since every
symmetric operator has a closure, and the operator and its closure have
the same closed extensions.

Theorem X.1  Let 4 be a closed symmetric operator on a Hilbert
space 5. Then

(1a) dim[Ker(i — A*)]is constant throughout the open upper half-plane.
(1b) dim[Ker(AI — A*)] is constant throughout the open lower half-plane.
(2) The spectrum of A4 is one of the following:

(@) The closed upper half-plane
or (b) the closed lower half-plane
or (c) the entire plane
or (d) a subset of the real axis

(3) A is self-adjoint if and only if case (2d) holds.

(4) A is self-adjoint if and only if the dimensions in both (1a) and (1b)
are zero.

Proof Let A =v+ iu, u# 0. Since A is symmetric,

1A = Aol* = 12]o|? (X.1)

for all ¢ € D(A). From this inequality and the fact that A4 is closed, it
follows immediately that Ran(A — A)isa closed subspace of #. Furthermore,

Ker(A — A*) = Ran(1 — A)* (X.2)

The proof of these statements are the same as the case 4 =i which is
given in the proof of Theorem VIIL.3.

We will show that if neC is small enough, Ker(A — 4*) and
Ker((A + n) — A*) have the same dimension. Let u in D(A*) lie in
Ker((4 + n) — A*) with |lu|| = 1. Suppose (1, v) = 0 for all ve Ker(d — 4*).
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Then by (X.2) u € Ran({ — A), so there is a ¢ € D(4) with (1— A)p = u.
Thus,
0=(((2+n) — 4%, ) = (u, (1 - A)o) + 71w, 0)
= [|ul)* + (s, ¢)
This is a contradiction if || < || since by (X.1) @] < |u|/|x|. Thus for
|n| < |u|, there is no ue Ker((A + n) — A*) which is in Ker(d — A*)*. A
short argument with projections (Problem 4) now shows that

dim[Ker((A + ) — A*)] < dim[Ker(A — 4*)]

The same argument shows that if || < |x|/2, then dim[Ker(A — 4*)] <
dim[Ker((4 + n) — A*)], so we conclude that

dim[Ker(1— 4%)] = dim[Ker(( + n) — 4%)]  if |n| < [u]/2

Since dim[Ker(1 — A4*)] is locally constant, it equals a constant in the upper
half-plane and equals a (possibly different) constant in the lower half-plane.
This proves (1).

It follows from (X.1) that if Im A0, A — 4 always has a bounded
left inverse and from (X.2) that the inverse is everywhere defined if and
only if dim[Ker(1 — A*)] = 0. Thus it follows from part (1) that each of the
open upper and lower half-planes is either entirely in the spectrum of 4
or entirely in the resolvent set. This, plus the fact that a(A4) is closed
proves (2). (3) and (4) are restatements of Theorem VIIL3. ||

Corollary If A is a closed symmetric operator that is semibounded,
ie. (Ap, ¢) > —M||p|)? then dim[Ker(A — A*)] is constant for

Ae C\[-M, o)

Proof This corollary follows from the proof of Theorem X.1. The same
argument about the invariance of dimension can be carried out for real 1
in (—oco, —M), thus connecting the upper and lower half-planes.

Corollary  If a closed symmetric operator has at least one real number
in its resolvent set, then it is self-adjoint.

Proof Since the resolvent set is open and contains a point on the real axis,
it must contain points in both the upper and lower half-planes. The corollary
now follows from part (3) of Theorem X.1.

Since the dimensions of the kernels of i — A* and i + 4* play an important
role, it is convenient to give them names.
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Definition Suppose that 4 is a symmetric operator. Let
A, = Ker(i — A*) = Ran(i + A)*
A _ = Ker(i + A*) = Ran(—i + A)*

A, and i _ are called the deficiency subspaces of A. The pair of numbers
n,, n_, given by n,(A4) =dim[>¢",], n_(4) = dim[>¢"_] are called the
deficiency indices of A.

We remark that it is possible for the deficiency indices to be any pair of
nonnegative integers; and further it is possible for n, or n_ (or both) to
equal infinity. The reader is asked to construct examples in Problem 1.

We now set about the task of constructing the closed symmetric
extensions of A. Let B be such an extension. Then for ¢ € D(B*), we have
(¥, B*p)= (By, @)= (Ay, ¢) for all Yy € D(A). Thus ¢ € D(A*) and
B*p = A*¢p so

A< Bc B¥c A* (X.3)

We introduce two new sesquilinear forms on D(A*):

((0, lp)A = ((ps Rb) + (A*(p’ A*‘p)
[, Y14 = (4%, ¥) — (@, A*Y)

A subspace of D(A*) such that [¢, ¥], = 0 for all ¢ and ¢ in the subspace
will be called A-symmetric. When we refer to subspaces of D(A4*) as A-closed
or A-orthogonal we mean in the inner product given by the graph inner
product (-, -),.

Lemma Let 4 be a closed symmetric operator. Then

(@) The closed symmetric extensions of 4 are the restrictions of A* to
A-closed, A-symmetric subspaces of D(A*).
(b) D(A), A" ,, and A _ are A-closed, mutually A-orthogonal subspaces
of D(A*) and
D(A¥)=D(A)®,H . @ _

(c) There is a one-to-one correspondence between A-closed, A-symmetric
subspaces S of D(A*) which contain D(A4)and the A-closed, A-symmetric
subspaces S, of ", @, _ given by S = D(4)®,S,.

Proof To prove (a), notice that (X.3) implies that every symmetric exten-
sion of A is contained in A*. Further, the extension is closed if and only
if its domain is A-closed and the extension is symmetric if and only if its
domain is A-symmetric.
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To prove (b), notice that D(A4) is A-closed since A is closed, and ",
and X _ are A-closed since they are already closed in the weaker topology
given by the usual inner product. The fact that the three subspaces are
orthogonal is a straightforward calculation which we omit. Suppose
veD(A*)and y L ,D(A)®D,H , ®,H _. For ¢ € D(A), we have (o, ¥)
+ (A%, A%Y) = (¢, ¥), =0, s0

(@) = — (Ao, A%))
Thus, A*y € D(A*) and A*A*y = —y. Since
(A* + i)(A* — i)y = (A*4* + I} =0,
we conclude that (4* — i}y e o _ . But if p e & _, then

i, (A* — D)) = (@, ¥) + (A%@, A*Y)
= ((P, ll/)A = 0

since Y L , ¢ _. Thus, we must have (A* — i} = 0, which implies that
yexA,. Since y L, A ,, we conclude that ¢ =0 which completes the
proof of (b).

Let S, be an A-closed, A-symmetric subspace of )" _ @, ... Suppose
that @ = @o + @1, ¥ = Yo + Y1 With @o, Yoe D(4); @,, ¥, €S, Then
[©o,¥o)« = Osince Aissymmetricand [¢,, y,], = Osince S, is A-symmetric.
Further,

[‘Po’ Yils = (A%@o, ¥,) — (00, A*Y))
= (A@g, Y1) — (@0, A%, )
=0

since @q¢ € D(A) and y, € D(A*). A similar proof shows that [¢,, Y,], = 0.
Thus,

[0, V14 = [0os Yolu + [@1s olu + [0o, ¥1)a+ (01 ¥1]4 =0

so S=D(A)®,S, is an A-symmetric subspace. S is A-closed since D(A)
and S, are A-closed and A-orthogonal.

Conversely, let S be an A-closed, A-symmetric subspace of D(A*) contain-
ing D(A). Let S, =Sn (X, @, -) Then S, is clearly A-closed and
A-symmetric. Now suppose that ¢ € S. Then ¢ can be uniquely expressed
© = @o + @, Where ¢oe D(4) and @, e ¥, ®,H _. Since D(A) = S, we
have ¢q € S which implies ¢, € § also. Thus ¢, €S, so S=D(4)®,S,.
This proves (c). i

We are now ready to prove the main theorem of this section.



140 X: SELF-ADJOINTNESS

Theorem X.2 Let A be a closed symmetric operator. The closed
symmetric extensions of 4 are in one-to-one correspondence with the set of
partial isometries (in the usual inner product) of o, into )¢ _. If U is
such an isometry with initial space I(U) = ", , then the corresponding
closed symmetric extension 4, has domain

D(4y)={p + ¢, + Up, |p e D(A), . € I(U)}
and
Ayl + @+ + Up,)=Ap +ip, — iUgp,

If dim I(U) < oo, the deficiency indices of Ay are
ny(Ay) = ny(4) — dim[I(U)]

Proof Let A, be a closed symmetric extension of A. From the lemma we
know that D(4,) = D(A)®,S, where S, is an A-closed A-symmetric sub-
space of A", @ A _ . If o € Sy, it can be written uniquely as ¢ = @, + @ .
Since S, is A-symmetric

0 = (A*0, @) — (0. A*0p)
=2i(p_, 0-) — 20+, 0.)

which implies that

o = lle-I? (X.4)

Since S, is a subspace of A", @, _, (X.4) shows that ¢, —¢_ is a
well-defined isometry from a subspace of ¢, into " _ . Call the correspond-
ing partial isometry U. Then

D(4,)={p + 0. + Up. |0 D(4). 0, € [(U)) (X.5)

and

Ao+ 0. +Up,)=A*o+ 0. + Up,)=Ap + ip, —iUp, (X.6)

Conversely, let U be an isometry from a subspace of ", into o _ and
define D(A,) and A4, by (X.5) and (X.6). Then D(A4,) is an A-closed,
A-symmetric subspace of D(A*), so by the lemma, A, is a closed symmetric
extension of A.

The statement about deficiency indices follows by looking at the ranges
ofi+ A, and i — A, on D(A4,). |
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Corollary  Let A be a closed symmetric operator with deficiency indices
n, and n_. Then,

(a) A is self-adjoint if and only if n, =0 =n_.

(b) A has self-adjoint extensions if and only if n, = n_ . There is a one-one
correspondence between self-adjoint extension of A and unitary maps
from ¢, onto X _.

(c) If either n, =0#n. or n_. =0#n,, then A has no nontrivial
symmetric extensions (such operators are called maximal symmetric).

Example1 We will consider the example introduced in Section VII1.2
from several points of view. Let T be the operator i d/dx on I?(0, 1} with the
domain D(T) = {¢ | ¢ € AC[0, 1], ¢(0) = 0 = ¢(1)}. We showed in Section
VIIL.2 that T* is the operator i d/dx with domain D(T*) = ACI[0, 1}.

Since the operator T is so simple and since we know the domain of
its adjoint explicitly, we can determine the self-adjoint extensions of T
without using the machinery developed in this section. It is instructive to
do that first. Suppose S is a symmetric extension of T. Since D(S*) = D(T™*),
we know that the functions in D(S*) are absolutely continuous and
S*@ = idp/dx. Thus for ¢ € D(S) and Y € D(S*), integration by parts
shows that

(Se, ¥) = (¢, S*¥) = o(1Y(1) — p(0)(0) = 0 (X.7)

In the case S= T we can see why T is not self-adjoint. The boundary
conditions on the functions in D(T) are so strong that no boundary
conditions on the functions in D(T*) are necessary in order to ensure that
the right-hand side of (X.7) equals zero. What is necessary is to extend
the set of functions in D(S) by allowing more general boundary conditions
so that the equality (X.7) requires the same boundary conditions on the
functions in D(S*). We now do this. Let S be a self-adjoint extension of
T and suppose that ¢ € D(S)\D(T). Then (X.7) requires that |¢(1) > = |¢(0)]?
and since ¢ ¢ D(T), ¢(0)# 0, so there is an « with |a| =1 so that
o(1) — ap(0) = 0. If  is any other function in D(S), then (X.7) requires
that Y(1) = ay(0) with the same a. Thus, S = T, where T, = i d/dx on

D(T.) = {p| @ € AC[O, 1], (1) = ap(0)}

Since T, is symmetric and S is self-adjoint, S = T, for some a.
Next, we determine which T, are self-adjoint. Choose ¢ € D(T;) and
Y € D(T?). Then (X.7) requires that

20 (1) — @(0)(0) =0
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so that Y(1) = a(0). Thus ¥ € D(T,), so D(T}) = D(T,), i.e. T, is self-adjoint
for each a. Thus, the set of self-adjoint extensions of T consists of the
collection of operators {T,|a € C, |a| = 1}.

We now show how the machinery of this section leads to the same
result. To determine ¥, , we must find the solutions of T*y =iy. If
Y € D(T*), then ¢ € AC[0, 1], and the equality i dy/dx = iy shows that '
is also absolutely continuous. Repeating this argument shows that any
solution of T*y = iy is in fact infinitely differentiable and satisfies /' = .
Thus ", = {ce*|c € C}, and similarly o' _ = {ce”*|c e C}. Therefore, the
deficiency indices of T are {1, 1). Let

V2e .
—~——c

J?
=—=——¢F and Q. =
ST et NGES
be normalized vectors from ¢, . Then the only partial isometries of 2",

into & _ are the maps ¢, — y@_ where |y| = 1. By Theorem X.2, the only
symmetric extensions of T are the operators A, = i d/dx with domain

D(A,) = {¢ + Bo, + yBo_- |p € D(T), Be C}

By the last statement of Theorem X.2, each A4, has zero deficiency indices
and is therefore self-adjoint. To see that these are the same operators we got
before, notice that if Y € D(A4,), then

B(1 + ye)/2 V2B +e)
W) = "N and g1y =Y EEEY
Jet -1 Je& —1
SO
W=7 :y V() =ay(0)  where |a| = ‘ ﬁ—j =

Conversely, if (1) = as(0), then ¢ can be written y = ¢ + B, + yfo- for
some f§ where y = (¢ — e)/(1 — «e). Thus, 4, = T,.

We now examine the same problem from a “physical” point of view.
Suppose that we have a smooth wave packet ¢(x) on [0, 1] which is zero
near the end points and which is being translated to the right (Figure X.1).
For small enough y (so that the packet does not get to the end), the
translations are given by the family of operators U(y): ¢(x) = ¢(x — y). In
quantum mechanics, translation should be represented by a unitary group
whose generator is the momentum operator. For the wave packet ¢(x),
this is the case:

lim Y00 =@ _ o=y —elx) ;4 o
y=0 y y=0 iy dx
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FIGURE X.1 The wave packet o(x).

So, the generator of translation acts like i d/dx on the functions with support
away from the end points. In fact, i d/dx is symmetric on C§(0, 1), the C!
functions of compact support on (0, 1), and its closure is just our operator T.
But T is not self-adjoint and the reason is clear: We have specified the
translation U(y) only for functions whose support does not contain zero or
one and then only for sufficiently small y (depending on the support).
We must specify what happens when the wave packet gets to the end! If we
want translation to be represented by a unitary group, then what goes out
at one end must come in at the other (as though the interval [0, 1] were bent
into a circle). That is, unitarity requires

I lotox = F s = | Jota ds

where x — y means translation mod 1. However, we still have the freedom
of choosing the phase of the wave packet as it comes in at zero. By the
superposition principle all functions must change by the same phase when
they come back in. Thus the different “translations” are just given by
specifying a, |a| =1 and by requiring that all reasonable wave packets
¥, = o(- + y) satisfy (1) = oaf(0) for all times y. This motion is just
given by €”7- where T, is the operator described above. Thus, even in this
physically trivial situation we see that different self-adjoint extensions
correspond to different physics.

A simple and useful criterion for a symmetric operator to have self-adjoint
extensions is given by the following theorem.

Definition An antilinear map C: o# — # (C(ap + B¥) = aCo + BCY)
is called a conjugation if it is norm-preserving and C* = I.

Theorem X.3(von Neumann’s theorem) Let A be a symmetric operator
and suppose that there exists a conjugation C with C: D(A) - D(A4) and
AC = CA. Then A has equal deficiency indices and therefore has self-
adjoint extensions,
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Proof Since C* =1 and CD(A) < D(A), we have CD(A) = D(A). Suppose
that ¢, € ¥, and Y € D(4). Then

0="{,.(A+ W)= (Co..ClA4+ i)
= (Cos, (4~ )CY)

Since C takes D(4) onto D(A), Co, e A _,s0 C: A, = A _. A similar
proof shows that C: # . — X, . Since C preserves norms,

dim[>¢" ] =dim[>¢ _] |

Example 2 (Schrodinger particle on a half-line) Let A be the operator
—d?/dx* on I?(0, o) with domain Cg(0, o). Since complex conjugation
commutes with 4, we immediately know from Theorem X.3 that the
deficiency indices of 4 are equal. We want to find the solutions of
A*@ = tip. Since I}(0, 0) = D}, o, We are just looking for weak solutions
(see Section V.4) of —d?@/dx* = +ip. It follows from the regularity
theorem (Theorem IX.25) that these solutions are infinitely differentiable
and thus strong solutions. By elementary ordinary differential equations the
strong solutions of —¢”(x) = +ip(x) are

exp((—1 + 0)x//2),  exp((l — i)x/n/2)

and the strong solutions of —¢"(x)= —ip(x) are exp((l + i)x/\/2),
exp((— 1 — i)x/\/2). Since only exp((—1 + i)x/ﬁ) and exp((— 1 — i)x/\/2)
are in I}(0, o), we see that the deficiency indices are (1, 1. Using
Theorem X.2 and an analysis similar to the second part of Example 1,
the reader can easily show (Problem 5) that the self-adjoint extensions of
A can be parametrized by R U {co} with

D(A4,) = {y|¥ € AC0, 0], '(0) + ay(0) = 0}

ifae R and

D(Ax) = { |¥ € AC0, 0], Y(0) = 0}

The extensions all act on their respective domains by —d*/dx?. AC?[0, 1]
is just the set of functions in [0, 1] whose weak derivatives are in AC[0, 1],
in particular, they are continuously differentiable.

The physical interpretation of these boundary conditions is as follows.
Since the momentum operator is i~! d/dx and i~ ! (d/dx)e”** = —ke™™*~,
the function e ™** is a plane wave moving to the left with momentum
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k>0, ie. an incoming wave of momentum k. e** is an outgoing wave
of momentum k. Let a < oo be fixed. The functions e™** and e~ ** are not
in I2(0, o) because of their behavior at co, but we ignore that since we
are interested in behavior around the origin. Neither e** or e”** is in
D(A,) near zero since they do not satisfy the boundary conditions. But if
a = (ik — a)/(ik + a), then e~ ** 4 ge™* satisfies the boundary conditions
¥'(0) + ay(0) and is in D(4,) (ignoring the behavior at o). Thus the
operator A, generates the dynamics in which a plane wave of momentum k
is reflected at the origin with the change of phase a(k) = (ik — a)/(ik + a).
The case a= oo corresponds to a hard wall potential where the phase
change for all momenta is « = — 1. Notice that the phase change for various
plane waves is different for the different self-adjoint extensions. Thus, the
different self-adjoint extensions correspond to different physics.

A less trivial application of Theorem X.3 is used in the following example
in which only the existence of some self-adjoint extension is needed. The
reader should compare this example to the similar proof of Bochner’s
theorem (Theorem IX.9) where the corresponding existence statement was
derived from Stone’s theorem.

Example 3 (the Hamburger moment problem) Let p be a positive
measure on R and define

[+ 9]

a, =j x" dp(x) (X.8)
-
The numbers a, are called the moments of the measure p. The Hamburger
moment problem is to determine conditions on a sequence of real number
{a,}2 0, so that there exists a measure satisfying (X.8). There is a very
elegant solution.

Theorem X.4 A sequence of real numbers {a,} are the moments of a
positive measure on R if and only if for all N and all ,, ..., Sy €C,

Y. BButon 0 (X9)

n (V]

Proof Suppose first that p is a positive measure and (X.8) holds. Then

@© 2

2 Bux"

n=0

i Bnﬁmani-m:I dp >0

n,m=0 - ™
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Conversely, suppose that (X.9) holds. Let P denote the set of polynomials
on R with complex coefficients and define a sesquilinear form on P by

N M N M
I B R
n=0 m=0 n=0 m=0
By (X.9) the form is nonnegative. Let Q = {y/|y € P, (¢, ¥) = 0} and let #
be the Hilbert space obtained by completing P/Q in the inner product (-, -).
Consider the map A: P — P defined by

N N
A Y B X" Y Byx"t!
n=0 n=0

It is not hard to see that A is symmetric and A: Q — Q since the Schwarz
inequality implies that

(A, AY) = [(A%, Y)| < (470, A29)' 2 (0, ¥)'"?

Thus, A lifts to a symmetric operator 4 on # with domain P/Q. If C
denotes the usual complex conjugation on P, then C also lifts to a map
C: P/Q - P/Q. Tt is easily checked that C extends to a conjugation on
# and AC = CA. By Theorem X.3, A has some self-adjoint extension, call
it A. Let p be the spectral measure for the vector 1 in P. Then

jx" dp(x) = (L, A1) = (1, x") = a, §

In Chapter XVI we will see that the Hahn-Banach theorem can be used
to provide another proof of Theorem X.4. In Section X.6, we discuss the
uniqueness aspects of the Hamburger moment problem.

Appendix to X.1{ Motion on a half-line,
limit point-limit circle methods

Any blockhead can cite generalities, but the mastermind discerns the particular cases they
represent. George Eliot in Daniel Deronda

In this appendix, we discuss both the classical motion and the quantum-
mechanical motion of a particle in a potential on a half-line. Comparing
these two cases brings out nicely both the analogies and the differences
between classical and quantum mechanics and provides an opportunity to
apply the theorems on deficiency indices to derive the limit point-limit
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circle theory of ordinary differential equations. Furthermore, information
about quantum-mechanical problems on a half-line can be used to analyze
spherically symmetric multidimensional problems (see Example 4).

We begin with the classical case. Let x(t) and v(t) be the position and
velocity of a particle moving on the half-line (0, o) in a potential V(x)
which we assume has a continuous derivative ¥’(x) which is Lipschitz
uniformly on every compact subset of (0, o0). The Hamiltonian for the
system is H(x, v) = $mv? + V(x) and the equations of motion are

)=o) o) = ‘71 V(x(t) (X.10)

For each given x, > 0, v,, t, > 0, the standard contraction mapping argu-
ment (see Section V.6) gives the existence of a unique solution pair {x(t), v(t))
for t near i, satisfying x(t,) = x,, v(t,) = v,. The following proposition
shows that the only case where a local solution does not extend to a
global solution is when the particle runs into zero or off to infinity in
finite time.

Proposition1 Suppose that a global solution of (X.10) satisfying
x(t,) = x, > 0, v(t,) = v, does not exist, that is, the maximal interval on
which the solution with the initial conditions exists is [¢,, ) where T < co.
Then either

limx(t)=0 or limx()=co

tte tfe
Proof By the construction of local solutions in Section V.6, and the
assumptions made above on V(x), for any compact subset K of (0, o) x R,
there is a Ty so that (X.10) has a unique solution for ¢t € (t; — Ty, t; + Ty)
with specified values {x,, v;> € K at t = t,. From this we see that if the
solution cannot be extended past t =, then it cannot lie in K for any
t >t — Tg. To complete the proof we must strengthen this statement that
the point {x(t), v(t)>) must eventually leave any compact subset of the
phase space (0, o) x R to the statement that x(t) eventually leaves any
compact subset C of (0, o). It is here that conservation of energy enters
critically. Since H(x(t), v(t)) = H(x,, v,) = E., if x(t) lies in some compact
subset C, then {x(t), v(t)> is contained in the compact set

s e

Thus for each n there is a ¢, so that x(t) ¢ (1/n, n) for ¢ > t, which by the
continuity of x(t) proves the proposition. i

C x
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The above argument shows how conservation of energy may be used to
prove global existence for a classical system of one degree of freedom.
In Section X.13 we will use the same energy conservation method to prove
global existence for a classical system with an infinite number of degrees
of freedom.

Definition = We say that the classical motion generated by V is complete
at 0 (respectively at co) if there is no {x,, v,» € (0. ©) x R so that the
solution x(t) runs off to O (respectively to co) in a finite time.

Thus if V is complete at both 0 and oo, global solutions exist for all
initial conditions {x,, v,». The following theorem settles the question of
when V is compiete.

Theorem X.5 Let V(x) have a continuous derivative which is uniformly
Lipschitz on each compact subset of (0, c0). Then the classical motion
generated by V(x):

(a) is not complete at 0 if and only if V(x) is bounded above near zero;
(b) is not complete at oo if and only if ¥ is bounded above for x > 1 and

® dx
—————< ® for some K > sup V(x
-[1 VK- V(x) x21 )
Proof V is not bounded above at zero if and only if there is a sequence
x, = 0 so that V(x,) = co. Suppose V is not bounded above at zero. By
conservation of energy

Imu(t)? + V(x(t)) = dmvl + V(x,)

so V(x(t)) < 4mv? + V(x,). Thus x(t) can never equal x, for n sufficiently
large and so x(t) can never get near zero. Thus V is complete at zero.
Conversely, suppose V(x) < M on (0, 1). Let x(0) = x, = 1 and choose v,
negative and so that mv? + V(1) = 1 + M. Then 4mu(t)? > 1 for all ¢ so the
particle gets to zero in a finite time. This proves (a). '
If V(x) is not bounded above on (1, c©), then the same argument as
above shows that V is complete at oo. So, suppose that V(x) < M for
x €[1, c0), and that for some initial conditions (x,, v,> and a 1 < oo,
7€ R we have lim,,; x(t) = c0. Let K = max{M + 1, mv? + V(x,)}. Then,
for all t € (0, 7),
dx
dt

< /r% JK = V(x(1))
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Once the motion starts going to the right, x(t) must be strictly increasing
because if it were not, conservation of energy and the uniqueness of
solutions of (X.10) imply that it would never get to co. Thus there is a
t; <1 so that t € (¢,, t) implies dx/dt > 0 and x(t) > 1. Therefore

m® dx - dt
—J ——_<_J —dx=1~—1, <00
251y /K = V() x(1,) 4%

Conversely, if

@ dx
—_—— < © for some K > sup V(x
J JK=V() sup Vi)

we choose initial conditions x, = 1, v, > 0, so that E = mv? + V(x,) = K.
Then dx/dt > 0 for all t > 0 and

® (dt) /;1 ® dx
j “dx= —J P <
o \dx 20y JK-V(x)
so the travel time to oo is finite. |

We turn now to the quantum-mechanical case where we need only assume
that V(x) is a real-valued, continuous function on (0, cc). The quantum
analogue of the classical Hamiltonian H(x, v) is the formal operator
—(2m)~ ! d*/dx* + V(x). We will denote by H the operator —d*/dx* + V(x)
on I?(0, o) with domain D(H) = Cg(0, o), the C* functions with support
away from 0 and oo (we drop the inessential 1/2m). Using the fact that
V(x) is real-valued and a simple integration by parts, we see that H is a
symmetric operator. Suppose that € D(H*), then

dz
(—d—x2<p + Vo, ll/) = (o, H*Y)
or

(_ j_ 0. w) = (0. H*) - (0, VY)

for all ¢ € C3(0, o). Thus the second weak derivative of  is locally I?
since V(x)y(x)is locally I?. By Sobolev’s lemma, ¢/ is absolutely continuous
and —y” — Vi € I2(0, o) (although each of the separate terms may not
be in IZ near zero or infinity). Therefore, the functions in D(H*) are quite
nice and the action of H* is just what we expect. Finally, we note that H
commutes with complex conjugation so its deficiency indices are equal. We
summarize in a proposition.
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Proposition 2 Suppose ¥(x) is a real valued continuous function on
(0, o) and let H be the operator —d?/dx? + V(x) with domain C¥(0, o).
Then

(a) H is symmetric.
(b) If € D(H*), then  is continuously diflerentiable, ' is absolutely
continuous, Y is locally I, —y" + Vi € I}(0, o0), and

H* = —y" + Vy
(c) H has equal deficiency indices.

The importance of Proposition 2 is that it shows that questions about the
deficiency indices of H reduce to questions about the classical ordinary
differential equations — " + Vi = +iy. We prepare for our analysis with:

Proposition3 Let Q(x) be a continuous complex-valued function on
(0, c0). Then the set of solutions of ¢"(x) = Q(x)e(x) on (0, co) is a two-
dimensional vector space of twice continuously differentiable functions. For
any two solutions ¢ and y, the Wronskian W(x) = ¢'(x)y(x) — @(x)¢'(x) is
constant and equals zero if and only if ¢ and y are linearly dependent as
functions.

Proof We will prove the existence of a global solution with arbitrarily
specified data {¢(1), ¢’(1)) € C? at x = 1. By the discussion in Section V.6,
local solutions exist, so as in the proof of Proposition 1, a global solution
can fail to exist only if a(x)= {@(x), @'(x)> goes to infinity at some
finite x, different from zero. We will show that this cannot happen for any
X, > 1, the proof for x, < 1 is similar. Define

a(x.) = sup{|Q(x)| + 1|1 < x < x,}
Then, from the differential equation we have
«(x) = {@'(x), Q(x)o(x)>
for 1< x<x,,so
lor(x)]| < q(x,)|alx)]

and

X

Jatx)] < [a(1)] + alxo) [ [a(y) | dy (X.11)
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Thus, by iterating (X.11),
) < (1) etee- )

for 1 < x < x,. This proves the existence of at least two independent global
solutions. Furthermore, by local uniqueness there are at most two, so there
are exactly two.

The statements about W(x) follow immediately by differentiation and by
observing that W(x) is the determinant of

v oo
! 7 l
' e
We now investigate the deficiency indices of H by studying the solutions
of

—"(x) + V(x)o(x) = Ap(x) (X.12)

Theorem X.6  Let V(x) be a continuous real-valued function on (0, o).

(a) IfIm A # 0, then at least one nonzero solution of (X.12) is in I near
zero and at least one solution is in I? near co.

(b) If for one AeC, both solutions of (X.12) are in I? near infinity
(respectively near zero) then, for all A € C, both solutions of (X.12) are
in I? near infinity (respectively near zero).

Proof Consider first the operator B on I?(1, 2) with domain D(B) =
{ue AC?(1, 21| u(1) = u(2) = w(1) = w'(2) = O} and with Bu= —u" + Vu.
By mimicking the arguments used in Examples 1 and 2 of Section X.1
and by using Proposition 3, one finds that B has deficiency indices {2, 2).
In particular, if Im 4 # 0, Ran(B — 4) is not dense in [*(1, 2). We can thus
find v € Cg(1, 2) with v ¢ Ran(B — 1).

Now, let H be a self-adjoint extension of the operator H on I*(0, o).
Since Im 4 # 0, we can find u € D(H) ¢ D(H*) satisfying (A — AJu = v. It is
impossible that u vanish identically on both (0, 1) and (2, ), for if it did, its
restriction to (1, 2] would lie in D(B) thereby contradicting the condition
that v ¢ Ran(B — 1).

Suppose that u does not vanish identically on (0, 1). Then the restriction
i of u to (0, 1) satisfies (X.12) on (0, 1) and is square integrable near 0.
Let D(A)={fe D(A)| f=0 in [1, )}, viewed as a (dense) subset of
I3(0, 1). The operatord — A = (H — A) [ D(A) does not have dense range
since #, the complex conjugate of i, obeys: ii € D(4*) and (4* — )i = 0.
As a result, we can find we CP(0, 1) with w¢ Ran(4 — A). Since H is
self-adjoint, we can find fe D(H) with (H — 1)f= w. Since w ¢ Ran(4 — 1),
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f cannot vanish identically in [1, c0) and we thereby obtain a nonzero
solution of (X.12) square integrable near oo. If u does not vanish
identically on (2, c0), a similar argument can be used. This proves (a).

To prove (b), let us suppose that ¢, and ¢, are two independent solutions
of (X.12) for some i,eC and that both ¢, and ¢, are I? near oo,
and are normalized so that ¢} (x)@,(x) — @,(x)@3(x) = 1. Let u be a solution
of (X.12) for 2 = 4, # 4,. Choose c € (0, o0). Then an explicit computation
shows that

x

u(x) = (4 = 4o) | (01(x)02(&) = @1(E)px(x))u(£) &
satisfies (X.12) with 4 = 4,, so
u(x) = €110 + €00) + (1 = Jo) [ (02(x)0(8) = @1(hpaleuld) a2

for some constants ¢, and c,. Define | f|{. ., = [ | f(x)|> dx and choose
M so that @] o <M and [@,]|;. o <M. Then, by the Schwarz
inequality,

lu(x)] < |ey | |@i(x)] + [e2} l@a(x)] + |4 = Zo| (|01 (x)| + | @20} )M | tllc.
S0
[ulle, sy < fex [ M + [ea| M+ 2M? |2y = Ao ||ullp..

Thus if |4, — 40| < 1/4M?, §||ulle, < (ley| + |c2| )M for all x, so u is in I?
near 00. Since we can choose M as small as we like by choosing ¢ large,
we have proven (b) for the case at infinity. The case at zero is proved
similarly. |

We will say that V(x) is in the limit circle case at infinity (respectively
at zero) if for some, and therefore all, 4, all solutions of

- @"(x) + V(x)o(x) = 1¢(x)

are square integrable at infinity (respectively at zero). If V(x) is not in the
limit circle case at infinity (respectively at zero), it is said to be in the
limit point case. For the origin of this terminology, see the Notes. We can
now prove:

Theorem X.7 (Wey!’s limit point-limit circle criterion)  Let V(x) be a
continuous real-valued function (0, o). Then H = —d%/dx?+ V(x) is
essentially self-adjoint on C§(0, o0) if and only if ¥(x) is in the limit point
case at both zero and infinity.
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Proof 1If V(x) is in the limit circle case at both zero and infinity, then the
deficiency indices of H are <2, 2). If ¥(x) is limit circle at one end and
limit point at the other, then H has deficiency indices <1, 1). So if
V(x) is not limit point at both ends, then H is not essentially seif-adjoint.

Now, suppose that V(x) is limit point at both ends. For f, ge D(H*), we
set W(f, g) =f(x)g’ (x) = f'(x)g(x). W, is continuous and

W(1s9) = Wil g) = | [TETIGIg(x) ~ THHg)(x)] dx

by integration by parts. Since the integrand on the right-hand side is in
L}(0, o), the limits W, (f, g) = lim,.., Wy(/. g)and Wo(f,g) = lim,_.o W.(/.g)
exist and

W (S, 9) — Wolf, g) = (H*/, g) — (1, H*g)

If we can show that the left-hand side is zero, then H* is symmetric and
therefore H is essentially self-adjoint.

Choose ¢ € (0, ). Let B be the restriction of H to Cg(0, ¢) = I*(0, ¢)
and let 4 be —d?/dx? + V(x) on

D(4) = {¢ | ¢ € C*(0, c), ¢ = 0 near zero, ¢(c) = 0}

Since B<c A, we have B< 4. But there are functions in D(A) with
¢'(c) # 0and no such functions are in D(B)so 4 is a proper closed symmetric
extension of B. Since both solutions of —¢” + Vo = +ip are I? near c,
but only one is I? near zero, the deficiency indices of B are (1, 1). Therefore,
the deficiency indices of 4 are (0, 0), so 4 is self-adjoint.

Now, let f, g€ D(H*) and choose f;, g, € C&(0, o) be such that

J(c) +£i(c) =0, g(c) + g,(c) = 0. Set f =f+ f1, g2 = g + g,- Then

- Wolf, 9) = W12, 92) — Wolf2. 92)
= (Af2,92) — (fz:zgz)= 0

since fy, g, € D(4*) = D(A). Thus, W,(f; g) = 0 and a similar proof shows
that W,(/, g) = 0. I

We now want to investigate when V(x) is in the limit point case at both
ends. The discussion in Examples 1 and 2 of Section 1 suggests that H will
be essentialily seif-adjoint if and only if in the classical motion generated by
V(x) the particle stays away from 0 and oo so that we need not specify
boundary conditions at zero or infinity (we will see presently to what
extent this classical-quantum analogy holds). We define:
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Definition The potential ¥(x) is called quantum-mechanically complete
if H= —d?/dx* + V(x) is essentially self-adjoint on Cg(0, 00). ¥(x) is said
to be complete at oo (respectively at 0) if at least one solution of
@"(x) = V(x)o(x) is not in I? near oo (respectively near 0).

In Example 2 of Section 1 we showed that the potential ¥(x) =0 is not
complete. This is not surprising since a classical particle in a zero
potential which starts out moving to the left will get to zero in finite time.

First we discuss the case at c0. The standard sufficient condition is:

Theorem X.8 Let V(x) be a continuous real-valued function on (0, )
and suppose that there exists a positive differentiable function M(x} so that

(i) V(x)= —M(x)
(ii) jm(M(x))-”2 dx =
(iii) J\r:I’(x)/(M(x))”2 is bounded near oo.
Then V(x) is in the limit point case (complete) at co.

Proof We will show that both solutions of —¢" + V¢ = 0 cannot be in
I2 near 0. If 0 < ¢; <c¢ < o0 and u is a real solution in I? near oo, then

¢ V(x)
e, M(x)

<} c

—J‘ u(x) dx < —J‘
_ J»‘ u”(x)u(x)

-K, u?(x) dx

u?(x) dx SJ‘

€y

=l M)

An integration by parts then proves that u satisfies

u'(x)u(x) | © (W(x))? < (x)u(x)M'(x) dx
M(x) } I M(x) dx‘Ll M)y =K (X.13)

for all c. Using hypothesis (iii) we can find K, so that

(X)) WO N e )
[ e[ ][

Suppose that |2 ((u'(x)>/M(x)) dx = co. Then by the last inequality, the
hypothesis on u, and (X.13), «'(x)u(x) is positive near co. But, this would
imply that u'(x) and u(x) always have the same sign, which is impossible
because since u is in I? near infinity. Thus, [& ((«/(x)?*/M(x)) dx < .
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Now suppose that ¢ and ¢ are independent solutions of —¢” + Vg =0
which are in I? near infinity. We may assume that ¢ and y are real-valued
and that they are normalized so that @(x){/'(x) — ¢'(x)y¥(x) = 1. Then,

( 1 )w: (W' (x) @ (xW(x)
M(x) (M(x))"? (M(x))!'2

would be in L' near infinity which contradicts hypothesis (ii). |

Corollary  Let V(x) be differentiable on (0, c0) and bounded above by
K on [1, oc ). Suppose that

0
1 VK =V(x) '
(i) V'(x)|V(x)|”*? is bounded near infinity.

Then V(x) is in the limit point case at cc.

Thus if V(x) is classically complete at co (condition (i)) and in addition
satisfies condition (ii), then V(x) is quantum-mechanically complete.
Condition (ii) says essentially that the derivative of V' should not be too
large compared to V. The following two examples show that on physical as
well as mathematical grounds the classical and quantum problems will not
be equivalent if the derivative of ¥V is too large.

Example1 (V' is quantum-mechanically complete but classically in-
complete at o) The potential V(x) will be a series of steps smoothly
connected on very short intervals (a;, B;) (see Figure X.2). It is clear that
{8 (1/3/ = V(x)) dx < w0, so the classical motion is incomplete at co. We
will show that if the steps are sharp enough, the quantum motion is complete
at infinity. The physical reason for this behavior is that part of the quantum-
mechanical wave is reflected at each of the sharp steps and the steps are
arranged so that the reflected waves are coherent. To see the idea of the
proof, consider the case of infinitely sharp steps when a;, = k = f,. Let
@(x) = —cos(n*nx —4n(n — 1)) for n — 1 < x < n. Then ¢ € D(H*), ¢" =
Vo, and ¢ ¢ I? near infinity. We now show that we can smooth out this
infinitely sharp step potential so that one solution of

@"(x) = V(x)o(x) (X.14)

remains not in I?(0, o).



156 X: SELF-ADJOINTNESS

1 2 3 4
g2l B By a3 B3 o, B
-24yw23
-3%p2)

FiGure X.2 The graph of V.

On the short intervals (&, f;), ¥ will be monotone decreasing in such
a way that V is twice continuously differentiable. We take a; = 1 and let
¢(x) = —cos(nx) on (0, 1]. At x =1, ¢(1) =1 and ¢'(1) = 0. We want to
pick B, so that the solution has not descended much at 8,. Since V(x) <0,
the solution will be concave downward until the next zero of ¢(x), call it
ry. On the interval I, = (1, min{r,, a,}), o(x) satisfies

o(x)—1= j , ( j Vitdole) dt) ds (X.15)

1

which implies that
x — 1)?
ot = 1 = S5 (swplvio) ) (suplot)

S(x—zl)z

(24n?)

We choose B, so that |¢(B,) — 1| < 4. Now we can put in the potential on
the interval (o, B,): the point is that whichever smooth connection we
choose, the above a priori estimate guarantees that ¢(8,)>1—4. On
(B1» «,), @(x) has the form ¢@,(x) = A, cos(2*nx — y,) where |4,]| > 1 — 4.
Now, choose o, to be the closest point to x = 2 where ¢, has a maximum.

We choose B, (using the same idea as above) so that @(B,)>1—4 — 4.
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We proceed in this way to construct a solution ¢(x) which is
A, cos(n’*nx - v,)

on (B,-y, a,) with |4,| = §. Thus ¢ ¢ (0, o0) so by Theorem X.6, V is in
the limit point case at co.

Example 2(V is classically complete but quantum-mechanically incomplete
at o)  Our potential will be of the form

V(x)= 'xl—z - x* +§:lak(x)

where the g, are very narrow smooth spikes of increasing height so that
V(k) = k (see Figure X.3). Since V is not bounded from above at oo, the
motion is classically complete. It follows from Theorem X.9 (below) that
the potential V;(x) = x~2 — x* is not quantum-mechanically complete at co,
s0 that the corresponding Hamiltonian H, is not essentially self-adjoint on
C§(0, o0). We will use a perturbation method from Section X.2 to show
that H = H, + Y a,(x) is similarly not essentially self-adjoint on C§(0, o)
if the spikes o, are narrow enough. Since the potential ¥V =V, + 3 ¢, is
limit point at zero by Theorem X.10 (below), it must be limit circle at
infinity. The physical reason for this behavior is that if the spikes are
narrow enough, the quantum particle can tunnel through them even though
the classical particle is turned back.

|
\

FiGURe X.3 The graph of V.
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To prove that H is not essentially self-adjoint, we will show that, in the
language of Section X.2, ). g, is (—d?/dx* + V;)-bounded with bound less
than one on CZ(0, o). That is, for some a < 1,

IX ael® < @ —o" + Vio|* + b*|o]* (X.16)

for all ¢ € C3(0, o). By the symmetric form of the Kato-Rellich theorem
(Theorem X.13), this implies that —d?/dx* + V; and —d*/dx* + V, + ) q,
are either both essentially self-adjoint or both not essentially self-adjoint on
C3(0, o).

To prove (X.16) we use the following Sobolev-type estimate which the
reader is asked to prove in Problem 10. Let x5 € R, ¢ € CP(R), and let
B={x||x—y|<4and I} = {x||x — y| < }}. Then there is a constant C,
independent of ¢ and y, so that

sup lo* < Cl¢"[ By + ol Bay) (X.17)
xel}

Let a,(x) € C3(I%) be such that V,(x) + a,(x) reaches its maximum in I¥ at k
and the value at the maximum is k. Let (k) denote the diameter of the
support of g,(x). Then for ¢ € C3(R),

lowol® < 4e(k)k® Sll{p\wiz

< de(k)ké(llo” |12 + Nl B
< 8e(kkB[|| — 0" + Vio| By + [ Violhay + ol Bay)

since 12 < I + 19 + 20517 = 20, + Yl + 2[usf%. Now,
choose (k) so small that 8e(k)k® <4 and sup,. | 16e(k)k®¥;(x})| < 1. Then

-] 2 ]
Z"k(l’ = Z loweo|?
k=1 k=1

R
Skz Gl =¢" + Vielbawy + 2|ol k)
=1

<il-oi + Viol? + 20|
This completes the proof of (X.16).

The following theorem shows that if the derivatives of V are not too
large compared to V itself, then V is classically complete at oo if and only
if it is quantum-mechanically complete at oo (for the proof, see the references
in the Notes).
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Theorem X.9 Let V be a twice continuously differentiable real-valued
function on (0, co) and suppose that V(x) — — co as x — co. Suppose further

that
e

for some ¢. Then V is in the limit point case at oo if and only if
[2(=V(x))"' dx = o0, i.e,, if and only if V is classically complete at oo.

Example3 Let ¢> 0. One easily concludes from this theorem that
—d?/dx* — cx* is in the limit point case at oo if and only if « < 2. For
further discussion of this example, see Section X.5.

We turn now to the question of completeness at zero. There is a wide
variety of theorems which guarantee either the limit point or limit circle case
at zero. The following theorem gives conditions for positive potentials.

Theorem X.10  Let V be continuous and positive near zero. If V(x) >
2x~2 near zero then —d?/dx? + V(x) is in the limit point case at zero.
If for some ¢ > 0, V(x) < (2 — ¢)x~2 near zero, then —d?/dx? + V(x) is in
the limit circle case.

Proof We deal first with the case where V(x)=c¢/x%, ¢>0. Two
independent solutions of the equation —¢”(x) + (c¢/x2)@(x) = 0 are x*' and
x® where ay = (1 + /1 + 4c)2and a, = (1 — /1 + 4c¢)/2. x* is always in
I? near zero but x* is in I? near zero if and only if , > —3, i, if and
only if ¢ < 2. Thus —¢"(x) + (c/x?)p(x) = 0 has two independent solutions
in I? near zero if and only if ¢ < 3.

We now prove the theorem by a comparison argument. Suppose that V
and ¥ are both positive on an interval (0, b) and V(x) > ¥(x). Suppose
A> 0 and let u, be a solution of u”(x) = V(x)u(x) satisfying u(b/2) =2,
u'(b/2)= —A, and let i, be a solution of u"(x)= V(x)u(x) satisfying
(b/2) = 1, i'(b/2) = — A/2. A short argument shows that u ,(x) > i ,(x) for
all x € (0, b/2). Choosing A to be two different positive numbers we get two
independent solutions of the two equations respectively. This shows that if
i#"(x) = V(x)ii(x) has a solution which is not I? near zero, then so does
u"(x) = V(x)u(x). Thus, if —d?/dx> + V(x) is limit point near zero, then so
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is —d*/dx* + V(x), and if —d*/dx*+ V(x) is limit circle, then so is
—d?/dx? + V(x). Combining these statements with the results when
V(x) = ex~ 2 proves the theorem. |

Another useful condition is that —d?/dx? + V(x) is limit circle at zero if
V(x) is decreasing as x goes to zero. The proof is outlined in Problem 7.
As in the case at oo (Example 2), it is possible to construct a potential
V so that V is classically incomplete at zero but quantum-mechanically
complete.

The following example shows that information about problems on a half-
line can be used in certain multidimensional problems.

Example 4 (spherically symmetric potentials) A potential on R" which
only depends on r = ()=, x7?)"/?, the distance from the origin, is called
spherically symmetric. Let D = C3(R"\{0}), the C® functions with compact
support away from the origin. We will investigate —A + V(r) on D. We
may regard each ¢ € I?(R") as a function of r and n — 1 variables § on the
sphere §"~ !, In terms of these variables

1= ([ s P ) ar

where dQ is the usual area measure on the sphere. Let D be the set of
functions in D which are finite linear combinations of products f(r)g(§).
D is also dense in I?(R") by Theorem I1.10 since I2(R") = X(R*, "~ ' dr)®
IZ(S""!, dQ). On functions of the form f(r)g(E), —A + V(r) acts by

—2) 1000 - & 103800

r r?

(=84 VNS 00) = ~ 57+ V) ="

where B is the Laplace-Beltrami operator on I*(S"~!). It turns out (see the
Notes) that B is essentially self-adjoint and negative on C®(S""!), has
only point spectrum of finite multiplicity, and that the corresponding
eigenfunctions are C*. We will denote by K, the eigenspace corresponding
to the /th eigenvalue k, (we list the eigenvalues in decreasing order starting
with ko = 0). Then

R, dr)@ [A(S" 1, dQ0) =D L,
=0

where

L,=DBR*, " 'dr)®K,
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Define D, = D n L,, then

By Theorem VIIL.33 and Problem la, to conclude that —A + V(r) is
essentially self-adjoint on D and therefore on D, we need only prove that for

each ¢,
dz n—-1\d Ky
O
is essentially self-adjoint on CJ(R*) < 2(R*, r"~! dr).
Let U: IZ(R*, r"~ ' dr) - I}(R", dr) be the unitary operator U: ¢(r)—>
r"=D2p(r). U takes CR(R™) into itself and

d> n-1d ke\ . _,
d? (n—1)n-3) 1
—-p-f- V(r)+ (f—’c/)r—z (X.18a)

Each «, is less than or equal to zero, so by Theorem X.10, each of these
operators will be essentially self-adjoint on CF(R*) if

n—1)n-3)1_ 3

V(r)+ ——4——— 5> e (X.18Db)
On the other hand, if
(n—1)n-3)1 £ 3
0< V(r)+ 3 3<3 <y (X.18c)

then one or more of the operators in (X.18a) will not be essentially self-
adjoint on Cy(R*). Thus, we have proven the following theorem:

Theorem X.11  Let V(r) be a continuous symmetric potential on R"\{0}.
If V(r) satisfies (X.18b), then —A + V(r) is essentially self-adjoint on
C&(R™{0}). If V(r) satisfies (X.18¢c), then —A + V(r) is not essentially self-
adjoint on Cg(R"\{0}).

We remark that this theorem shows in particular that —A is essentially
self-adjoint on Cg(R"{0}) if and only if n > 4. This fact is somewhat
subtle if n =4 but can be more easily proven if n > S (Problem 9). The
first half of Theorem X.11 has a generalization to the noncentral case;
see Section X.4.
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X.2 Perturbations of self-adjoint operators

In this section we will prove several theorems which say that if A is self-
adjoint and B is not too large compared to A4, then A + B is self-adjoint.
These theorems have fundamental applications in quantum mechanics.
First we define what we mean by a “small” perturbation.

Definition Let A and B be densely defined linear operators on a Hilbert
space . Suppose that:

() D(B) > D(4)
(1) For some a and b in R and all ¢ € D(A),

IBe|l < a|A¢| + blo| (X.19a)

Then B is said to be A-bounded. The infimum of such a is called the
relative bound of B with respect to 4. If the relative bound is zero, we say
that B is infinitesimally small with respect to A and write B< < 4. We
remark that usually b must be chosen larger as a is chosen smaller.

Sometimes, it is convenient to replace (ii) in the above definition by
(ii) For some @, b e R and all ¢ € D(4),
|Bo|? < a*| dg|* + 5% o] (X.19b)

If (iii) holds, then (i) holds with a = &, b= b. And if (ii) holds, we can
conclude that (iii) holds with 42 = (1 + ¢)a?, b% = (1 + ¢~ )b? for each & > 0.
Thus, the infimum over all a in (ii) is equal to the infimum over all d in
(iii). Note that to prove estimates of the form (ii) or (iii) it is sufficient to
prove them on a core for A.

A fundamental perturbation result is:

Theorem X.12 (the Kato-Rellich theorem) Suppose that A4 is self-
adjoint, B is symmetric, and B is A-bounded with relative bound a < 1.
Then A + B is self-adjoint on D(A) and essentially self-adjoint on any core
of A. Further, if A is bounded below by M, then 4 + B is bounded below
by M — max{b/(1 — a), a|M| + b} where a and b are given by (X.19a).

Proof We will show that Ran(4 + B + iu,) = o for some p, > 0. For
@ € D(A4), we have

I(4 + iw)el|* = |40]* + 1*e]?
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Letting ¢ = (A + ip)~ 'y, we conclude from this that |A(A + ix)~ || <1
and ||(A + ip)™!| < p~*. Therefore, applying (X.192) with ¢ = (4 + ix)~ 'y,
we find that

|B(A + in)™ Y| < al|A(4 + i) "] + bI(A + i)™ Y|

<(a+ 3]

Thus, for u, large, C = B(A + iu,)” ' has norm less than one, since a < 1.
This implies that —1 ¢ ¢(C), so Ran(I + C) = 4. Since 4 is self-adjoint,
Ran(A4 + ip,) = s also. Thus the equation

I+ C)YA+iu)p=(A+B+in)p for @eD(A)

implies that Ran(4 + B + iu,) = 5. The proof that Ran(4 + B — iy,) = #
is the same. Thus, by the fundamental criterion (Theorem VIIL3), 4 + B
is self-adjoint on D(A).

It is a direct consequence of (X.19) that D((A + B) [ Do) > D(A [ Dy), so
A + B is essentially self-adjoint on any core of A.

Finally we prove the semiboundedness statement. Suppose that t € R and
—t < M. Then Ran(4 + t) = s# and the same estimates as before show
that |B(4 + 1) ! < L if

—t<M—max{1b—a,a|M| +b

Thus for such ¢, Ran(A + B+ t)=2 and (A+B+1t)"'=(A+1¢) ! x
(I + C)~! which implies that —r € p(4 + B). |

The following symmetric form of the Kato-Rellich theorem is sometimes
useful. For an application, see Example 3 in the Appendix to Section X.1.

Theorem X.13  Let A and C be symmetric operators. Suppose that D is
a linear subspace satisfying D < D(4), D < D(C), and that

(4 = Clell < all 40| + [ICeol) + bllo|
for all ¢ € D, where a < 1. Then,

(a) A is essentially self-adjoint on D if and only if C is essentially self-
adjoint on D.

(b) D(ATD)=D(CTD)
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Proof Let B=A — C with D(B)=D and define F(¢)=C+ aB for
0<a< 1.ThenF(0) = C,F(1) = Aand Cp = F(x)p — aBp, Ap = F(a)p +
(1 — &)Bo for all ¢ € D. Thus, the inequality in the hypothesis implies that
IBel < a(|4¢] + [Col) + blol
< 2a|F(a)e| + al|Bo| + bllo|
or

IBoll < 22 [Fdol + 2 ol (x.20)

Let 0 <o’ < 1. If 2a0//(1 - a) < 1, (X.20) and Theorem X.12 imply that
F(x + o') = F(«x) + o B is essentially self-adjoint on D if and only if F(«) is.
Thus, starting with « = 0 and applying this result finitely many times, we
conclude (a). The reader is asked (Problem 13) to follow similar steps to

prove (b). I

The following theorem extends Theorem X.12 to the case of relative bound
one, but it has a slightly weaker conclusion.

Theorem X.14 (Wiist’s theorem) Let 4 be self-adjoint and B be
symmetric with D(B) = D(A). Suppose that for some b and all ¢ € D(A4),

IBo| < o] + b|o| (X.21a)
Then A + B is essentially self-adjoint on D(A) or any core for 4.

Proof By asimple argument, it is enough to show that A + B is essentially
self-adjoint on D(A). Suppose that (4 + B+ i)*h =0. For each t < |,
A + tBis self-adjoint on D(A) by Theorem X.12. Thus, there exXists ¢, € D(A)
with |@,| < ||h|, so that (A + tB + i)p, = h. Define ¢, = h — (t — 1)Bg,.
Then a short calculation shows that (,, h) = 0. By (X.21a),
4@l < [I(4 + tB)o,|| + [ltBe|
< (4 +tB)p + tl g + tblo,]

SO
(=0l 4e] < |I(4 + tB)e,|| + tb] o]

Since [[(4 + tB)gy||* = |h]|* — @], this implies that (1 —1)]4q| is
bounded as t T 1. It follows by using (X.21a) again that (1 — t)| Bg,| and
therefore also |,|| are bounded as ¢ 1 1. Now let € D(4). Then

lim(y, — h, n) = lim(t — 1)(e:, Bn) =
t11 tt1
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Since the |{,| are uniformly bounded, we conclude that h = w—1lim ¢,.
But then (h, h) = lim(h, ,) = 0 so h = 0. We conclude that Ker(4 + B + i)*
= {0}. The proof that Ker(4 + B — i)* = {0} is similar. ||

Choosing 4 = — Bshowsthat “essentially self-adjoint” cannot be replaced
by “self-adjoint™ in the statement of Theorem X.14. We also note that
there are counterexamples which show that the conclusion of the theorem
may be false if the relative bound is larger than one. (See Example 4 at
the end of this section.) We also note that according to our discussion
of (X.19a) and (X.19b), the condition (X.21a) needed to apply Theorem X.14
is itself implied by the condition

1Boll? < 40| + b*[o|? (X.21b)
which is equivalent to the operator inequality
B*< 4% + b? (X.21¢)

We come now to Kato’s basic application of the Kato-Rellich theorem
to atomic Hamiltonians. First, we define some new classes of functions.

Definition Let (M, u) be a measure space. The set of measurable
functions f on M which can be written f= f, + f, where f, € E(M, du) and
f2 € E(M, du) will be denoted by (M, du) + E(M, dp).

Theorem X.15 Let Ve I*(R’)+ L[°(R’) be real-valued. Then
—A + V(x) s essentially self-adjoint on C3(R?) and self-adjoint on D(—A).

Proof Since V is real-valued, the operator of multiplication by V is self-
adjoint on

D(V) = o]0 e BR), Vo e BRY))
Let V =V, + V, with ¥, e I}(R*) and V, € L*(R?). Then
IVel, < Vil ol + [Vallo el (X22)

so D(V) o CP(R3?). By Theorem 1X.28, given any a > 0, there isa b > 0 so
that

lell, < alAel, + blel, (X.23)
for all ¢ € C3(R?). This inequality and (X.22) give
[Vel, < alWl. -4l + &+ V] )lel,
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for all € CF(R?). Thus V is —A-bounded with arbitrarily small bound on
CE(R?3). Since —A is essentially self-adjoint on C3(R?), the Kato-Rellich
theorem implies that —A + V is also essentially self-adjoint on CZ(R?). |

Example1 LetV(r) = —e?/rwherer = /x? + y* + 2. Then —A — &*/r
is essentially self-adjoint on C§(R?).

Theorem X.16 (Kato’s theorem) Let {V,}i., be a collection of real-
valued measurable functions each of which is in I?(R?) 4+ L°(R?). Let
V,(y,) be the multiplication operator on I*(R*") obtained by choosing y,
to be three coordinates of R>". Then —A + Y7, Vi(y,) is essentially self-
adjoint on CF(R>"), where A denotes the Laplacian on R*".

Proof First we consider one of the functions V, separately. By a rotation
of variables we may assume the variables in V,(-) are x,, x5, x3. (This is
because || |5 || o, and —A are invariant under rotations of coordinates.)
Let A, denote the Laplacian with respect to x;, x,, x3. By the estimate
(X.23), together with the “equivalence” of the bounds (X.19a) and (X.19b),
we have for all ¢ € CJ(R?"),

” Vk(Ple?([R"') S aZJ‘ ] —A,(p(xl, coey x3,,)|2 dxl o dx3"
+ sz [@(xys --.s X3,)|? dxy -+ dxy,

o

Sazj

2
dp, *+ dps, + b*| 0|

3
‘ZlPIZ‘Z’(Pn c+e> P3n)

2
dpy - dps, + b*||e]?

Y. pio(pys - -s Pan)
i=1
=a’|-Ae|? + b*|o|?

Thus, using the Schwarz inequality, one easily concludes that

2
< m’a?| - Ap|* + m*b?|o|?

ACAT

for all p € CP(R3"). Since a may be chosen as small as we like, we conclude
that )., V(y,) is infinitesimally small with respect to ~A. Thus, by the
Kato-Rellich theorem, —A + 7., V(y,) is essentially self-adjoint on
C3(R). 1
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Example 2 (atomic Hamiltonians) Let x,, ..., X, in R* be orthogonal
coordinates for R3". Then

“La-L i

is essentially self-adjoint on CZ(R>").

n eZ
+
,:Z‘j |x; = x|

For an application of the Kato-Rellich theorem to ordinary differential
operators, see Problem 7.

There is a form analogue of the Kato-Rellich theorem which can be
used when the form (Be, ¢) is “small” with respect to the form (4e, ¢)
even though B may not be A-bounded. Although the statement of the
theorem below is similar to Theorem X.12, the proof is very different.

Theorem X.17 (the KLMN theorem) Let A be a positive self-adjoint
operator and suppose that (¢, ¥) is a symmetric quadratic form on Q(A4)
such that

|B(@, ©)| < ale, 40) + ble. )  all p e D(A) (X.24)

for some a < 1 and b e R. Then there exists a unique self-adjoint operator
C with Q(C) = Q(A4) and

(0, C¥) = (@, AY) + Blo, ¥)  allg, Y eQ(C)

C is bounded below by —b and any domain of essential self-adjointness for
A is a form core for C.

Proof Define a form y(¢, ¥) = (¢, AY) + B(e, ¥) on Q(A4). By (X.24),
(@ @) 2 (1 = a)(e, 49) - b(e, ¢)

since A is positive. Thus y is bounded from below by —b. Furthermore

(1 = a)(e, Ap) + (@, ) < ¥(0, @) + (b + 1)(0, @)
< (1 + a)(e, 49) + (2b + 1)(@. @)

Thus the ||| +,, , and ||+, ,norms are equivalent on Q(A). Since Q(4)
is closed under |-| 4y, ,, it is closed under |-||4+;,,. Thus y is a semi-
bounded, closed quadratic form on Q(A). The theorem now follows from
the statement and proof of Theorem VIIL.15. ||
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This theorem suggests that we define:

Definition Let 4 be a positive self-adjoint operator. Suppose that B is
a self-adjoint operator which satisfies:

(i) Q(B)> Q(A)
(ii) |(@, Bo)| < a(e. Ap) + b(e. @), ¢ € Q(A)

for some a > 0 and be R. Then B is said to be relatively form-bounded
with respect to A. If a can be chosen arbitrarily small, B is said to be
infinitesimally form-bounded with respect to A (written B << A4).

If B is self-adjoint and relatively form-bounded (a < 1J with respect to a
positive self-adjoint operator A, then the KLMN theorem gives meaning to
A + B. We emphasize that this definition of “4 + B” may differ from the
operator sum. There are examples where B is relatively form-bounded with
respect to A even though D(4) n D(B) ={0]. In fact, as the following
example shows, the form £ in the KLMN theorem need not be a form
arising from an operator or even a closable form.

Example3 Let A= —d?/dx? on R and define (e, ¥) = (0)y(0) for
@, Y € CF(R). By Sobolev’s lemma, for any a > 0, there is a b so that

lellz < ale, —¢") + bl|o]

Thus we can apply the KLMN theorem to define —d?/dx? + 8! A function
Y € Q(—d?/dx?) c C(R) is in the domain of —d?/dx? + § if and only if
—y"(x) + 8(x)y(0) € I*(R) where the derivative is taken in the sense of dis-
tributions. For example, if y(x) looks like 1 + §|x| near zero and is C*
away from zero with compact support, then € D(—d?/dx? + 5(x)), since
the &(x)y(0) will just cancel the term —3(x)y/(x) which appears in —y"(x).
Thus, D(A + B) can contain vectors which are neither in D(A4) nor in D(B)
but for which there are cancellations in “Ay + By.”

2

The following theorem shows that if B is 4-bounded, then B is form-
bounded with respect to A.

Theorem X.18 Let 4 be a positive self-adjoint operator and suppose
that B is sell-adjoint. Then

(a) If B is A-bounded with relative bound a, then B is form-bounded
with respect to A with relative bound .
(b) B< < A implies B<<A.
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Proof Let C*(4)={\%, D(A"), u > 0,and let o#, be the closure of C<(A4)
under the norm |¢|, = [(4 + I)"?¢|,n=0, £ 1, +2,.... Then a map C
from C*(A) to # extends to be a bounded operator from J#,, to #_,
if and only if (4 + I)™™2C(A + I)"™? is bounded on C*(A4) in the usual
operator norm.

If B is A-bounded with relative bound a, then B(A +ul)~' and
(A + uI)”'B are bounded by (a + b/u). The interpolation argument in
Example 3 of the Appendix to Section IX.4 proves that

(A + ul)""?B(A + pl)~ 2
is also bounded by a + (b/u) and it follows immediately that

(0, Bo) < (a " z) (@0 (A + ul)o)

for ¢ € D (A). Since u > 0 is arbitrary, parts (a) and (b) follow. |

The KLMN theorem can sometimes be used to define Hamiltonians
when Rellich’s theorem does not apply. To see that the I? + I* class of
potentials does not include all “reasonable™ potentials, we remark that it
is venerable physical folklore that potentials of the form V,(r)= —r*
produce reasonable quantum dynamics as long as « < 2. But V,e > + [
only if & < 3! Thus we cannot use Rellich’s theorem if $ <a <2 (see
Problem 14). However, we can use the KLMN theorem. Fxrst we prove
an estimate:

Lemma (the uncertainty principle lemma) Let ¢ € CF(R?). Then

1
J.RJ Z}j |¢(r),2 dr = J.ﬂh'vw(r)lz dl'
Proof We may suppose that ¥ is real-valued. Then,

V() = PPV 4+ by
Thus, if r #£ 0,

lvlplz _ lr— lle(rl/zlp) _ ir— znp |2

—3/2¢ ( 1/2¢ . —lelz

IV

_ié PN BT TI
2r26r(r|¢|)+zr 12
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So,
I|v¢|2dr2f w2 dr - 2jo gj r|¢|2dgdr

1
='|Am|¢/|2dr|

Proposition Ifa <2,then —r << —A,

Proof Let @oeC? and let a>0 be given. Choose ¢>0 so that
1/ < a/4r? for all r < e. Then

-1
.Iwr_‘;lq’(r)|2 dr = .[| [

r<¢

1, 1
— |eo(r)? dr + — |o(r)[? dr
aloOFdr+ ] Clow)
1
< aJ |Vo(r)|? dr + - J. l(r)|? ar
|r]<e lr|>e

<af (-8l dr+3 [ o) dr I

This proposition shows that for 3 <« <2, we can use the KLMN
theorem to define —A —r~™% I? + L* is the natural class of potentials
associated with the Kato-Rellich theorem (see Problem 14). There is no
completely natural class associated with the KLMN theorem.

Definition A measurable function ¥ on R3 is called a Rollnik potential if

V(x)||V(y)
”V”fgsj sil fxl|y|(2 |¢13>cd3y<oo

We denote the set of Rollnik potentials by R.

R turns out to be a vector space which is complete under the Rollnik
norm |-||z. Moreover, by Sobolev’s inequality (IX.19), [¥*(R*) < R; in
particular r"* € R + L* if « < 2. The analogue of the Kato theorem is:

Theorem X.19

(@) fVeR+ LR, thenV <<-A
(b) 1If ¥(r) and V(r) are all in R + L* and
N

V= Z Vi(r qu(rt -1
i j=
on R3M then V< < —A.
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For the proof, see the references in the Notes or Problem 17. We remind
the reader again that the meaning given to —A + V'by the KLMN Theorem
may differ from the operator sum defined on D(—A) n D(V).

The problem of determining conditions on a potential on R* so that
—A + Visessentially self-adjoint has been extensively studied using Rellich’s
theorem and the KLMN theorem. The proofs of the necessary inequalities
often use the IP-estimates of Section IX.4 and the interpolation theorems
and therefore the results are usually dependent on the dimension s. We
present two examples below. For other theorems, see Section X.4 and the
references in the Notes.

Theorem X.20 Lets > 4.1fV € I’(R*)forsome p > 5/2,then V < < —A.
Proof By Theorem 1X.27, we know that if ue D(—A) then
(1 + k?)a(k) e L2(R?)

Further, since p > s/2, (1 + k?)~! e I?(R*), so by the Holder inequality
e 4 and

lal, < 1+ K2)7 1, (1 + K*)a

2

where g~ ' =p~!' +4. Therefore, by the Hansdorff-Young inequality
ue L(R*) where r™! =4 — p~!. Since Ve I, it follows from the Holder
inequality that Vue I2. Thus, D(V) o D(—A) and

Vule < VI, el < IV, lal,
= VI, (1 + k) (1 + kPl
S VI I+ )1 (T + k)]
S V1100 + &2 M) (jull 2 + el = Aull,)

Since p > s/2. this estimate shows that V < < —A. |

The above theorem can be extended to the borderline case p = 5/2 when
s = 5, but in fact a stronger result is true.

Theorem X.21 (Strichartz’s theorem) Let s > 5 and suppose V e Ly
Then V is A-bounded with bound less than or equal to C| V|2 w Where
C depends only on s.

Proof It is sufficient to show that |V(I + A)™'o|, < C|V||s2 wle], for
all p € I2(R*). Since (I + A)"'¢ = G * ¢ where G is the Fourier transform
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of (1 + p?)~! on R, we need the properties of G established in Problems 49
or 50 of Chapter IX. Since G(x) is exponentially decreasing at oo and
limy)_.o |x[*"2|G(x)}| < oo, we easily find that u{x||G(x)| = t} is bounded
by ¢, t*~? for some ¢, >0, where u is Lebesgue measure. Thus, using
the inequality in Problem 39 of Chapter IX, with p =5/2 and g = 2, we
conclude that :

IV(G = o)z < Ca|[ VisawllGllys-2wlel2 B

Corollary Let u denote Lebesgue measure on R, s> S. If V(x) is a
real-valued measurable function and

lim t%p{x || V(x)] > 1} =0
[ amd- ]

then V < < —A. In particular, if V e I/2(R®), then V < < —A.

Exampled4 Let s=35. From Theorems X.10 and X.11, it follows that
—A + a/r? is essentially self-adjoint on CF(R®\{0}) if and only if & > —1.25.
Further, — A is essentially self-adjoint on C§(R?\{0}). The reader can easily
check that 1/r? € LY%(R®), so by Strichartz' theorem, «/r? is —A-bounded.
Thus, the closure of —A + o/r? [ C§(R3\{0}) contains

(=A +a/r?) I C3(RY)
Therefore, in the case « < —1.25, —A + a/r? is not even essentially self-
adjoint on CZ(R3).

Form bounded from below

Neither

Essentially self-adjoint an C:(Rs\O)

-2.25 -1.25 0 ¢ axis
FIGURE X.4 The operator —A + (¢/r?) whenn=5.

In Problem 15, the reader is asked to show that —d?/dx® + ¢/x? is
form-bounded from below on CZ(R*) if and only if ¢ > —1. Thus, using
the method of Example 4 of the Appendix to Section X.1, we conclude
that —A + a/r? is form-bounded from below on CZ(R*\{0}) if and only if
o > —2.25. Therefore, if o is in the range —2.25 < o < —1.25, we can use
the quadratic form techniques of Theorem VIIL15 to define —A + a/r?,

even though —A + a/r? is not essentially self-adjoint on CZ(R3). See
Figure X.4.
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Example 5 (Schrodinger operators for systems with magnetic fields)
According to the Lagrangian-Hamiltonian theory of classical mechanics,
the energy operator written in terms of the coordinate q and the canonically
conjugate momentum p = mq + eA/c is

1
=5-(p- eA/e)? + V(q)

where A is the magnetic vector potential, related to B, the magnetic field by
B=VxA (X.25)

Using the correspondence between classical energy functions and
quantum-mechanical Hamiltonian operators (Section VIIIL.11), we see that
the Hamiltonian for an n-particle system in the presence of a magnetic
field is

Z (2m;) 1(—,-\7,. -2 A), V(%) (X26)

The case
A(x) =4x x B, (X.27)

with B, constant is especially important for this leads to B = B,. This
constant field situation is called the Zeeman effect, and its treatment requires
special methods (see Section 4) since 4 grows at infinity. For the present,
we note that perturbation methods do allow the treatment of some kinds
of magnetic vector potentials. We give a detailed version of the operator
perturbation theory result and leave the form result to the reader
(Problem 36):

Theorem X.22  Suppose that each component of A is a real-valued
function in L}R?) + L°(R3), that V + A € I*(R*®) + L°(R?) (in the sense of
distributions), and that V is a real-valued function in I? + L*. For
@ € C?(R3), define

Hp=—Ap + —2iA-Vo —i(V-A)p + Vo + A%
Then H is essentially self-adjoint on Cg(R?).

Proof Integration by parts shows that H is symmetric on CZ(R?) and
the hypotheses on V¥, 42, and V + A were chosen so that, by Theorem X.15,
we have V < < —Aand V- A < < —A. We will show that A -V < < ~A,
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which implies by Theorem X.12 that H is essentially self-adjoint on C3(R?).
Let ¢ € CZ(R?). Suppose that 4 € I*(R?). By the Holder and Hausdorff-
Young inequalities, we have

D . )
(i) _ < (i) R
A a_xi"’H“”A ““Hw,""

< “Am“4 |lPi¢(P)“4/3
< [A90a (1 + [pD) 74X + [p{)YPi@(p)

where we have chosen « to be any fixed number in (3, 1). For any a > 0,
there is a b so that

(1 + |p|rp: @)z < (b + alp[*)e®)l2
< a|Apl; + blle],

by the Plancherel theorem. Thus A® /dx; < < —A. A separate proof works
for the [ part of A. ||

Perturbation theorems are simple and elegant and are applicable in so
many cases that the test of the usefulness of any other self-adjointness
method is its applicability to situations that cannot be directly handled
by Theorems X.12, X.14, or X.17. One of the simplest physically interesting
examples of such a situation is the anharmonic oscillator Hamiltonian
~d/dx? + x* + x%, its analogues on R*, and more generally the operators
—d?*dx? + x* + x*™ (m=2,3,...). Both Hy= —d?*/dx* + x* and V = x*
are essentially self-adjoint on C§(R), but neither is a small perturbation of
the other. We will use —d?/dx? + x* + x* as a test case for many of the self-
adjointness methods which we discuss later; in fact, we present five distinct
proofs that —d?/dx? + x? + x* is essentially self-adjoint on C2(R)! All these
proofs extend to prove that

n ( d2 n
2,2
Zai - 2 +wixl) + bi-ktx“x.lxk X,
i=1 dx; Lj, k.zl=l ’

is essentially self-adjoint on C§(R") if a4, ..., a, > 0 and if

Z b,'jk[x‘x‘i.xkxg‘ Z 0
ij k¢
for all x. All but two of them can be extended to treat the x>™ operators
and their higher dimensional analogues. We note that the limit point-limit
circle techniques discussed in the Appendix to Section X.l can also be
used to discuss the one-dimensional anharmonic osciilator.



X.2 Perturbations of self-adjoint operators 175

There is one method of using Theorems X.12 and X.14 (the Kato-Rellich
and Wiist theorems) in tandem to treat operators which are not directly
amenable to perturbation theorems. The method, known as Konrady’s
trick, will provide our first proof that the anharmonic oscillator Hamiltonian
is essentially self-adjoint on C§(R). Konrady’s trick proves that X + Y is
essentially self-adjoint on some set D by a three-step process which is
schematically of the following form:

(a) One finds some Z so that X + Z is essentially self-adjoint on
D < D(X) n D(Z). Z is not a small perturbation of X. A typical example
is to take Z to be a power of X and D = C*(X).

(b) One proves X + Z + Y is essentially self-adjoint on D. Typically,
this is done by proving Y is (X + Z)-bounded with bound less than one,
so that the Kato-Rellich theorem is applicable. Notice that since Z is not
a small perturbation of X, Y can be (X + Z)-bounded even if it is not
X-bounded.

(c) One proves an estimate |Zy| < |[(X + Y + ZW| + b||y| for some
band ally € D. By Wiist’s theorem, X + Y = X + Y + Z — Z is essentially
self-adjoint on D. Typically one proves this estimate (which is of the form
(X.21a)) by proving the stronger estimate on operators (of the form of
(X21e): Z < (X + Y + Z)* + b2,

Of course, to apply Konrady’s trick, one must choose Z cleverly.

Example 6 (essential self-adjointness of —d?/dx? + x? + x* on CZ(R);
first proof) Let X = —d?/dx? + x? and Y = x* Let Z = cX? where c is
a positive constant which we will choose later in the proof. Let D = C*(X) =
&(R). We will prove essential self-adjointness of X + Y on D; the simple
argument that allows one to conclude essential self-adjointness on C3(R)
from this is left to the reader. We know that the Hermite functions (see
the Appendix to Section V.3) are a complete orthonormal set for I*(~ oo, c0)
(Chapter IX, Problems 6 and 7), and that Xy, = (2n + 1)y,. It follows
from the Appendix to Section V.3, that Ran(X + 1) = #(R), so we conclude
that X is essentially self-adjoint on &. By the spectral theorem, X + Z
is essentially self-adjoint on D = C*®(X). This completes step (a) in Konrady’s
trick. In terms of the operators 4, A' introduced in Section V.3,
X =244 + 1,and Y = §(A4 + A')* Using the inequality

|4t - AXY] < el X2 (X.28)

(where each AF is an A or an A'), one proves that | Yy| < d||X?*y| <
de™ (X + Z)y|. We thus pick ¢ = 2d and conclude that X + Y + Z is
essentially self-adjoint on & (R) by employing the Kato-Rellich theorem.
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This completes step (b) of Konrady's trick. Finally, let us prove that for
some constant e,

Z2<(X+Y+2ZP+e (X.29)

We compute

X+Y+ZP=X+YP+Z?+ZX + V)+ (X + Y)Z
= (X + Y+ Z2+2eX? + 2eXYX + 2¢[X, [X, Y]]
>Z% + 2eX? + 2¢[X,[X, Y]]

where we have used Y >0, and [X, [X, Y]]= X?Y + YX? -2XYX
together with the fact that all the manipulations we perform are legitimate
when applied to vectors in #(R). Finally we note that [X, [X, Y]] can be
written as the sum of 16 monomials of the form A¥ A¥ A$ A%. Thus, using
Theorem X.18, (X.28), and the fact that [X, [X, Y]] is symmetric, we
conclude

XX, YNN<fX?<X3+(f+1)

This proves (X.29), and thereby, applying Wiist’s theorem, we conclude
that X + Y =X + Y + Z — Z is essentially self-adjoint on D.

We will use Konrady’s trick again in Example 3 of Section X.9. (See
also Problem 22.)

X.3 Positivity and self-adjointness I:
Quadratic forms

We have already proven several results about positive or semibounded
operators; see, for example, Theorems X.12 and X.17. In this section and
the next, we exploit two different notions of positivity to prove a variety of
self-adjointness theorems. In this section we use the concept of positive
operator and quadratic form techniques. In the next, we use the fact that
if a Hilbert space is of the form I*(M, du), which is usual in applications,
then it contains the distinguished cone of functions that are nonnegative a.e.
Further applications of positivity conditions appear throughout this chapter,
for example in Theorem X.5S5, and in later chapters, for example, in
Section XIII.11.

It follows from the first corollary to Theorem X.I that a semibounded
symmetric operator A has equal deficiency indices, and therefore by von
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Neumann'’s theorem, such an operator always has self-adjoint extensions.
There is a distinguished extension, called the Friedrichs extension, which
is obtained from the quadratic form associated to A.

Theorem X.23 (the Friedrichs extension)  Let 4 be a positive symmetric
operator and let g(¢, ¥) = (¢, AY) for ¢, Y € D(A). Then q is a closable
quadratic form and its closure § is the quadratic form of a unique self-
adjoint operator A. 4 is a positive extension of A, and the lower bound
of its spectrum is the lower bound of q. Further, 4 is the only self-adjoint
extension of A whose domain is contained in the form domain of 4.

Proof Let (¢, ¥)sy = q(p, ¥) + (o, ¥). Then (-, *),, is an inner product
on D(A), so we can complete D(A4) under (-, -),, to obtain a Hilbert space
A, . q clearly extends to a closed form § on J#,,, but to show that ¢
is a closed form on J#, we must show that #,, is a subset of 5. Let
i: D(A)— 3 be the identity map. Since || < |l¢],,, i is bounded and
thus extends by the B.L.T. theorem to a bounded map i: J#,, —» ¥ of
norm less than or equal to one. To show that # ,, < s, we proceed to
show that i is injective. Suppose that i(p) = 0. Then, there exist ¢, € D(4) so
that | @ — 9, ., =0 and so that [i(@,)] = || 0. Thus

"q’"+l = hm (q’m q)m)+l

n, m— o

=lim lim {((Pm, A(pn) + ((pm’ (pn)}

n—o0 m-+a

=0

since P, € D(A) and ||@,|| = 0. Thus i is injective. Notice that the proof
that i is well-defined uses only the positivity of g, but the proof that i is one
to one uses the hypothesis that g arises from an operator.

Since g is closed and symmetric, by Theorem VIIL.15 there is a unique
self-adjoint operator 4 so that D(4) = Q(4) and (g, ¥) = (@, AY) if p € Q(3)
and y € D(A). Now, suppose also that ¢ € D(4). Then by the continuity of g,

(A0, ¥) = G(p, ¥) = (9, AY)

Since, this holds for all y € D(A4), we conclude that ¢ € D(4*) = D(A4) and
A*p = /‘i(p = Agp. Thus A extends A. The same proof shows that if A, is any
symmetric extension of A4 with D(4,) = Q(§), then 4 extends A,. Thus if
A, is self-adjoint 4 = 4,.

The easy proof of the statement about the spectrum of A is left to the
reader. ||
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In Section VIIL6 we proved that the quadratic form g(¢, ¥) = @(0)y ) (0)
on CF(R) is not closable. In the terminology of the above proof, the
reason is that 3., = {K¥, a) |y € I}(R), ae R} where a is the “value” of
Y at zero. Thus the map i: {y, a) = is not 1-1.

Two nice features of the Friedrichs extensions are the preservation of the
lower bound and the fact that the domain of A4 is contained in the form
domain of 4. In certain cases one can say more about the domain of A;
see the Notes and Theorem X.32.

Example1 Let A = —d?/dx? on C®(0, 1). Then

I3y = ldy/dx]® + v

If y,— rie Y, then y has an I? derivative. It easily follows that

|¥ala) ~ Y(a)| >0

for each a € [0, 1]. Thus for all ¢ € D(A), ¢(0) = 0 = (1), i.e., the Friedrichs
extension 4 of —d?/dx? is the self-adjoint extension with boundary condi-
tions @(0) = 0 = ¢(1). The spectrum of this extension is {(n7) n=12 ..}
with corresponding eigenfunctions {sin(nnx)}. Since 4 is bounded below
by =, the same must be true of the original quadratic form arising from A.
Thus, by an integration by parts we conclude the classical inequality

1 1
[ loePdxza? | |o(x)? dx
0 0

for functions ¢ € CP(0, 1). We remark that this can also be computed
directly by using Fourier series. Notice that another self-adjoint extension
of A may have a smaller lower bound than 4. For example, the self-adjoint
extension with boundary conditions ¢’(0) = 0 = ¢’(1) has lower bound zero.
On the other hand, it is possible for a self-adjoint extension other than
the Friedrichs extension to have the same lower bound as the Friedrichs
extension. For example, the self-adjoint extension A with boundary
conditions ¢(0) = —¢(1), ¢'(0) = —¢’(1) has eigenvalues (nn)’,n= 1,3, ...,
each of multiplicity 2.

Let A, be the extension of 4 with boundary conditions ¢(0) = 0 = ¢(1),
¢’'(0) = —¢'(1). The reader can easily check that 4, has deficiency indices
<1, 1). Clearly, both A and 4 extend A,. So, even in the case of deficiency
indices {1, 1), another self-adjoint extension may have the same lower
bound as the Friedrichs extension.
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Example 2 (weak solutions of partial differential equations) Let Q be
an open region in R" and let A be the operator —A + I with domain
C2(Q) = B(Q). A is symmetric and bounded below by one. If A4 is the
Friedrichs extension of A, then 4 > I also, so Ran(4) = I2(Q). Thus, for
any g € I2(Q), there is an f e D(A4) so that Ag = f. So, if ¢ € CF(Q),

(0. 9) = (0 Af) = (Ao, f) = (=& + 1o, f)
That is, for each g e I2(Q), the equation

(-A+D)f =g

has a weak solution f € I>(Q). Since Af = f — g € [2(Q), we can use Sobolev’s
lemma (Section IX.6) to show a certain amount (depending on n) of
regularity for f. If ge C§(Q), then applying A repeatedly to the equation
Af = f— g proves that f€ ()e=; W,(Q), so in this case Sobolev’s lemma
implies that fis a C® function.

For another application of the Friedrichs extension, see Problem 25
where the reader is asked to prove the Stieltjes moment condition, the
analogue of the Hamburger condition when [0, co) replaces (— oo, o). In
this application, as in the above example, it is crucial that the Friedrichs
extension of A has the same lower bound as A. This suggests the problem
of investigating the lower bounds of the other self-adjoint extensions.

Proposition Let A be a semibounded symmetric operator with finite
deficiency indices. Then any self-adjoint extension of A is bounded below
(possibly with a smaller lower bound).

Proof Let A be a self-adjoint extension of A with corresponding projection-
valued measure Pg. Suppose that the deficiency indices of 4 equal n.
Then by Theorem X.2, D(4) = D(A) + S where S is an n-dimensional vector
space. Let K be less than M, the lower bound of A. Then we must have
dim Py, u, < n. Otherwise we could find a vector in D(4) » Ran Py y,,
which would contradict the fact that 4 is bounded below by M. Thus,
dim P_ o uy < 1, 80 A is bounded below. |

In the case of infinite deficiency indices, a semibounded symmetric
operator can have self-adjoint extensions that are not bounded below
(Problem 26). But even in this case there will always be many self-adjoint
extensions that are bounded below. In fact, unless A4 is already essentially
self-adjoint, there will be other extensions besides the Friedrichs extension
which are bounded from below.
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Theorem X.24  Let A be a symmetric operator that is bounded from
below. If the Friedrichs extension A4 is the only self-adjoint extension of A4
that is bounded from below, then 4 is essentially self-adjoint.

Proof By the proposition, we need only consider the case where the
deficiency indices of A equal infinity. Suppose A is the Friedrichs extension of
A and let 4 be a symmetric extension of A contained in A which has
deficiency indices equal to one (to see how to construct such an A, consult
Theorem X.2). Then A4 is bounded from below, so by the proposition all its
self-adjoint extensions will be bounded from below. Hence 4 has more than
one semibounded self-adjoint extension unless its deficiency indices are equal
to zero. ||

Another application of positivity and quadratic form techniques is the
following theorem of von Neumann. His original operator-theoretic proof
does not use quadratic forms.

Theorem X.25 Let A be a closed densely defined operator and let
D(A*A) = {y € D(A)| Ay € D(A*)}

Define A*4 on D(A*A) by (A*AW = A*(AY). Then 4*A is self-adjoint.
Proof Define the form b(p, ) on D(4) x D(A) by b(e, ¥) = (A, AY).
b is nonnegative and since A is closed as an operator, b is closed as a
quadratic form. Let B be the associated self-adjoint operator given by
Theorem VIII.15. We will show that B = A*A. Notice that, a priori, it is not
evident that there are any vectors besides the zero vector in D(A*A).

Let #',, = # < # _ be the scale of spaces defined by b as in the proof
of Theorem VIIL15. Define A*: o — #°_, by.(4*¢)(y) = (¢, AY). By the
definition of adjoint D(A*) = <p|A*<p € 9?} and A* = 4* | D(A*). Let
B: o#,,— # _, be the natural map given by (By, ¥) = b(e, ¥). From the

proof of Theorem VIIL15, we have that D(B) = {pe #,, |B<p € ¥} and
B = B | D(B). Now, suppose ¢, Y € # ,,. Then

[A*(40))¥) = (4o, AY) = (Bo)(¥)
s0 B= A*A. Thus
D(B)={pe #.,|Bpec #}
={pe A, |A*(4p) e #}
= {¢€f+l|A¢E D(A*)}
= D(A*A)
and B= B! D(B) = A*A. |
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The proof has the following corollary.

Corollary Let A be a closed operator. Then any core for A4 is a form
core for A*A.

Corollary If A is symmetric and A2 is densely defined, then A*A4 is
the Friedrichs extension of 42

Example3 Let A = id/dx with domain
D(A) = {p|p € AC[0, 1], ¢(0) = (1) =0}
We have already computed that
D(4*) ={p|p € AC[O, 1]}

and A*@ = i dp/dx. 1t follows immediately from the definitions of D(4A4*)
and D(A*A) and the above theorem that A*A is the self-adjoint extension
of —d?/dx?* with boundary conditions ¢(0) = 0 = ¢(1), and AA* is the self-
adjoint extension of —d?/dx? with boundary conditions ¢'(0) = 0 = ¢'(1).

Example 4 (Schrodinger operators with magnetic fields) One can use
quadratic form methods to define self-adjoint Hamiltonians of the form of
(X.26) although not with explicit control over operator domains. Consider
first the case V = 0. Suppose that A € I>(R3),. Let T; denote the closure
of the symmetric operator —i™' 9/0x; + eA;/c on C§(R®). A simple exten-
sion of Theorem X.25 shows that H = Y 7., T*T; can be defined as a self-
adjoint operator on

Ty € D(T?)

Negmm

The same method works if ¥ > 0 with ¥V € L} _. In either case one has

loc *

3
o) = ( o(m)  0v)
i=1
In the next section we will describe D(—A + V) when V > 0 and V € Li..

We conclude this section by summarizing in one place some of the facts
which we have proven about strictly positive symmetric operators. Of course
every semibounded symmetric operator becomes strictly positive after
translation by a constant.
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Theorem X.26 Let A be a strictly positive symmetric operator, i.e.
(Ao, @) = c(¢p, @) for all ¢ € D(A) and some ¢ > 0. Then the following are
equivalent:

(a) A is essentially self-adjoint.

(b) Ran(A) is dense.

(c) Ker(4*) = {0}.

(d) A has only one semibounded self-adjoint extension.

X.4 Positivity and self-adjointness Ii:
Pointwise positivity

The results of the previous section depended on exploiting the notion of
positive operator, something which makes sense on any Hilbert space #.
In this section, we exploit a different type of positivity associated with
I? spaces—that of a vector being positive. This is not a notion intrinsic
to J# alone but to its realization as an I? space. This notion will appear
again from time to time and will play a major role in Section XIIL.11.
Since the Hilbert space of quantum mechanics is typically given as an I?
space, there is present in such cases the structure associated with positive
vectors. Given the positive vectors, there is an associated notion of positive
multiplication operator, ie., a multiplication operator Y(x)— V(x)¥(x)
which takes the positive vectors into themselves. The major results in this
section concern the essential self-adjointness of —A + V if V > 0 under
very weak additional assumptions, and of magnetic field Schrédinger
Hamiltomans in a general situation.

First, we extend the notion of positivity to distributions:

Definition Let T e 2'(R"). We say that T is positive and write T > 0
if and only if T(f) > 0 whenever fe 9 is pointwise nonnegative. If T, Se 2
and T — § >0, we write T > §.

We immediately note two facts about positive distributions. First, if
T(f) = | F(x)f(x) d"x where F is a continuous function on R", then T > 0
if and only if F(x) > 0 for all x. Secondly, if T, is a sequence of positive
distributions and T, —» T weakly, then T is positive.

Our self-adjointness result depends on the following elegant distributional
inequality:
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Theorem X.27 (Kato’s inequality) Let u be a locally L' function on R”
whose distributional Laplacian Au is also a locally L' function. Define

o it u(x)=0
B W)= 1 ju(x)| i ux)# 0

so that sgnu is I and (sgnu) Au is a locally L' function and hence a
distribution. Then the distributional Laplacian A |u| of |u| obeys the follow-
ing distributional inequality:

Alu| = Re[(sgn u) Auj (X.30)

Example 1  To help understand this result, consider the case n = | where
u € C*(R) is strictly positive if x > 0 and strictly negative if x < 0. Then
|u| is C* on R\{0}, but at x = 0 its first derivative has a discontinuity of
magnitude 2u'(0). Thus

d? d?

e |u| = (sgn u) 2t 2u'(0) &(x)

so we can see (X.30) explicitly since w’(0) > 0.

Proof of Theorem X.27 Suppose first that u is C* and let u, be given by

ux) = /Tu(x)[* + ¢ (X.31)
so that u, is C*. Differentiating the square of (X.31),
2u,(x)[grad u,(x)] = 2 Re[u(x)(grad u(x))] (X.32)

Since (X.31) implies that |u,| > |u|, (X.32) implies that
|grad u,| < |u(x)||u,(x)]"!|grad u(x)| < |grad u(x)| = (X.33)
Taking the divergence of (X.32) we see that
u, Au, + |grad u,|*> = Re(@ Au) + |grad u)?
so on account of (X.33)
u, Au, > Re(it Au)

pointwise and thus in distributional sense.
As a result,
Au, > Re(sgn,(u) Au) (X.34)
where

sgn,(u(x)) = u(x)/u(x)
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Now let u be an arbitrary locally L' function with Aue L} and let j;
be an approximate identity, i.e., let j;(x) = j(x/8)6™" where j > 0, je C3(R")
and [ j(x) d"x = 1. Let u® = u x j,. Since u? is C*,

A(w®), > Re(sgn, (1) Au?) (X.35)

for each ¢ 6 > 0. Fix ¢ > 0 and take 6 » 0. Then 4® - u in local L' norm
and thus also in @', In particular, by passing to a subsequence, we can
suppose that u?(x) — u(x) pointwise a.e. Thus sgn,(u®) - sgn,(u) pointwise
a.e. Since Au® = (Au)® and Au is also in L], Au’> > Au in L} . It is now
easy to see that sgn,(u®) Au’ — sgn,(u) Au in 2, so taking 6 — 0 in (X.35)
we conclude that (X.34) holds for u. Now take ¢ = 0. Then sgn,(u) — sgn(u)
pointwise with a uniform bound (|sgn, u| < 1), so that the two sides of
(X.34) converge in 2’ to the two sides of (X.30). |

Typical of the applications of Theorem X.27 is

Theorem X.28  Let V e I(R"),,. with ¥ > 0 pointwise. Then —A + V
is essentially self-adjoint on C§(R").

Proof By Theorem X.26, we need only show that
(—A+V+1)*u=0 (X.36)
implies that u =0. But by the fact that —A + V is given with domain
CZ, (X.36) is equivalent to
(-A+V+Du=0, ue B(R" (X.37)

where the derivative in question is a distributional derivative. (X.35) implies
that Au=Vu+u is in L since u and V + 1 are in L} .. Thus, by
Theorem X.27

Alu| > Re(sgn u Au) = Re(sgn u (Vu + u)) = (V + 1)|u]  (X.38)

In particular, A|u| > 0.

Let j, be an approximate identity, as in the previous theorem, and let
w=|u|, w =wxj’. Then Aw? = w  Aj; € I, so w® is in D(A) and thus
(W, Aw?) <0 with equality only if w® =0. But Aw’ =A|u| *j;>0 in
distributional sense and so Aw, > 0 pointwise. Thus, (w?, Aw?) > 0sow’ = 0.
Since w? > w as 6 -0, w = 0 and therefore u = 0. |

Example 2 (essential self-adjointness of —d?/dx? + x* + x* on Cg(R);
second proof)  Since x? + x* is positive, and locally I? Theorem X.28
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implies that —d?/dx* + x* + x* is essentially self-adjoint on C§(R). More
generally, —A + P(x,, ..., x,) is essentially self-adjoint on C§(R") for any
polynomial bounded from below.

Example3 Let V(x)=2|x| 2 on I}(R%). Then —A + V is essentially
self-adjoint on CP(R3) by Theorem X.28 (or by Theorem X.11). On the
other hand, Ve L2_ and —A — V is bounded below but not essentially
self-adjoint on C§(R®) (see Theorem X.11 and Example 4 in Section X.2).
Thus the condition ¥ > 0 in Theorem X.28 cannot be completely eliminated.

Theorem X.28 can be extended in a variety of ways.

Theorem X.29 Let V = V, + V, where V, > 0, V, € [*(R"),,. and where
V, is a —A-bounded multiplication operator with relative bound a < 1.
Then —A + V is essentially self-adjoint on C§(R"). In particular, if V is a
multiplication operator with ¥, = max(¥, 0)e L%, and V. = min(¥, 0)¢

PP+ I® where p=2ifn<3 p>2ifn=4and p=n/2 if n> 35, then
—A + V is essentially self-adjoint on C3(R").

Proof By following the arguments in Theorem X.28, we need only show
that (—A + V + b)u = 0 (distributional sense) and u € [*(R") implies that
u = 0, where b is some large constant to be chosen below. Since CF(R")
D(—A) = D(V,), V, is in L_; so by using Kato’s inequality, we obtain the
analogue of (X.38)

Alu| 2 (V + b)[u| 2 (V; + b)|ul
Thus
(—A + b)|u| £ = V,|u| - (X39)
Now, by the explicit form of its kernel (Problem 50 of Chapter IX),
(—A + b)™! takes positive elements of £(R") into other positive elements;

and so, since it is self-adjoint, positive elements of &'(R") into other
positive tempered distributions. Moreover, since V, is —A-bounded

[ Va)ux)] £ (x) dx | < (const)ull (~A + 1)S |

s0 V,|u| is a tempered distribution. Thus by (X.39),
[u] < (=4 + ) V3 u (x.40)
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Since ¥, has —A bound a < 1, we can choose b so that |[(—=A + b)™'1,| <
$(a + 1) < 1. Then by (X.40)

lull < I(=A + )™ ' Va |jul
so ul = 0. I

We state without proof the following theorem which generalizes part of
Theorem X.11 to the noncentral case:

Theorem X.30 (Kalf~Walter-Schmincke-Simon theorem) Let V =
V, + V, with V; € [*(R") and V; € }(R"\{0}),,. obeying

Vi(r) = —n(n — 4)/4r?
Then —A + V is essentially self-adjoint on CZ(R"\{0}).

References to the proof which exploits Kato's inequality can be found
in the Notes.

There is another proof of Theorem X.29 which is of interest because it
exploits the following very beautiful result about positivity in I? spaces:

Definition A bounded operator A on [*(X, du) is called positivity
preserving if (A¢@)(x) > 0 a.e. whenever @(x) >0 a.e. A semigroup T(t) is
called positivity preserving if it is positivity preserving for each t > 0.

Theorem X.31 (the Davies-Faris theorem) Let H, be a positive self-
adjoint operator on I*(X, du) such that e~ is positively preserving. Let
V be a multiplication operator with V > 0. Suppose that H=Hy + V is
essentially self-adjoint on D{H,) n D(V). Let W be an Hy-bounded multi-
plication operator. Then W is H-bounded. In fact, if

IW¢| <al(Ho + b)y|  all yeD(H,)
then

IWy| <all(H + b}y  all ¢ eD(H)
Proof Suppose that |W(H, + b)™ | < a. We will show that

IW(H +b)" ' <a
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Since e~'Ho is positivity preserving, so is (Ho + b)™ ' = [§ e~ Me~ o dr.
Also, by the Trotter product formula, e='*# = 5 — lim,_, , (e ~*Ho/me=tV/ny is
positivity preserving, and, so by the same argument, (H + b)™ ! is positivity
preserving. We will prove later (see Theorem X.55) that if A is bounded and
positivity preserving, then |Ay| < A|y| pointwise for all . Thus we need
only prove that

IW(H +b)~ [y ]| < ol

for all y. If we can show that (pointwise)

O0<(H+b) '¢<(Ho+b) o (X.41a)
for all ¢ > 0, it follows that (pointwise)
0< |W|(H+b) ‘o< |W|(Ho+b) e (X.41b)
and
IW(H +8)~ [yl < ally|
for all .

So suppose that ¢ > 0. Then, since |e~*"| < 1 and e~* is positivity
preserving,

esHo(l —e=V)p 20
)
0 < (e sHoe=sV)p < eHog (X.42)
Iterating (X.42), we get
0 < (e ¥/mHog =tV < o= tHoy
So by the Trotter product formula
0< e tHp < e=tHop O (X43)

(X.41b) follows from (X.43) by the Laplace transform formula for (H + b)™*
in terms of e~*¥. |

As a corollary of the Davies~Faris theorem we have:

Second Proof of Theorem X.29 By Theorem X.28, —A + V, is essentially
self-adjoint on D(A) n D(V,). Moreover, ¢'® is positivity preserving on
account of its explicit kernel (IX.31). Thus, by hypothesis, and Theorem X.31,
V, is —A+ V; bounded with bound less than 1, so —A+ V; +V, is
essentially self-adjoint on any core for —A + V; by the Kato-Rellich
theorem. ||
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Kato's inequality can also be used to study D(—A + V) when —A + V
is defined as a sum of quadratic forms:

Theorem X.32 Let V>0bein L, (R"). Let H= —A + V defined as a
sum of quadratic forms. Then D(H) equals

{pe B(R")|Vpe Ll : (—A@ + Vo)uis € I} (X.44)

where (—A@ + V)as, means the distribution f—»j(p Af)+ [ (Vo) f
Moreover, Hp = (—A¢ + V@laia -

Proof Let T be the operator with domain (X.44) and Tp = —Ag + Vo.
We first claim that T extends H. For let ¢ € D(H) < Q(H) = Q(—A)n Q(V).
Since ¢ € Q(V) we have |V|'2p e I? and since |V |2 e L} , we conclude
that Vpe L).. Moreover H: 3¢ ., » # _, is —A + V defined in the dis-
tributional sense, so by the construction of D(H) in Theorem VIIL1S,
Hp = —Ap + Vpel? ie,oeD(T)and Hp = To.

Suppose now that n € D(T). Since H is self-adjoint and positive, we can
find ¢ € D(H) with (T + 1)p = (H + 1)¢. Let Yy =5 — ¢. Then, since T
extends H, (T + 1)y = 0. Since Y € D(T) we have that —Ay = Ty — Vy =
-y — W e Ll , so Kato’s inequality is applicable and assures us that

Aly| 2 (sgn ¥)( + V¥) = (V+ 1)|y[ >0
As in the proof of Theorem X.28, this implies that y = 0. Thus n = ¢ € D(H),
ie, D(T)c D(H).So T=H. |

Next, we turn to the application of Kato’s inequality to Schrédinger
operators with magnetic fields. We first need a more general version of
the inequality:

Theorem X.33 Let g, (k= 1, ..., n) be real-valued functions in C*(R").
Let D, be the operator on 2’

DT=-——qaT
k i 0xy %

and let D = ) D?. Then, for any u with ue L., and D*ue L2,
Alu| = —Re[(sgn u)D?u] (X.45)

The main additional idea needed to prove Theorem X.33, given the proof
of Theorem X.27, is:
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Lemma Under the hypotheses of Theorem X.33, Au and Vu are in
LIIOC -
Proof We need only show that Au, Vu are locally I! near x = 0. Let f be
a function in Cg, identically 1 near 0. Then by explicit computation
(=A+ 1)(fu)y=h, +V-h, (X.46)

with

hy = fD%u + (Af)u+ if (V- a)u—2i(Vf) - au+ (a®> + 1) fu

h, = 2ifau — 2(Vf)u
What is important is that by hypothesis, h, € L', h, € I?, and fu e . Thus,
all the functions in (X.46) lie in &’(R"). Since (—A + 1) is invertible on &,
it is invertible on %, so that

fu=(=A+1)"'hy + (=A+1)"'V-h,
and
V(fu)=V(=A+1)"'hy + V(~A + 1)"'V -h,

Now, since h, € I2, its Fourier transform is in I? so that
Vl("‘A + 1)—1V . hz = f_l(pl'(pz + 1)_1 ij' i;j)
j

is in I? since p,;pi(p* + 1)"' e [*. Let Gi(x) be the distribution with
Gi(p) = (2n)""2p(p* + 1)~1. By following the methods of Problem 50 of
Chapter IX, G{(x) is continuous away from x = 0, falling exponentially at
infinity and |Gy(x)| < C|x|™"*! (In |x| if n=1). Thus G, I? for some
p > 1 and therefore G, * h, € I’ by Young'’s inequality. We conclude that
V(fu) lies in L, . and so Vu is L, . near 0. Now, since Vu e L), we conclude

loc

that V- h, e L), so by (X.46), —Aue L. §

loc

Proof of Theorem X.33 Suppose first that u e C*(R") and let u, be given

by (X.31). Then since Im(u(x)a;(x)u(x)) = 0, (X.32) implies that
u, grad, u, = Re[u(x)(iD, u)(x)] (X.47)
so that
|grad u,| < |Du| (X.48)
Taking the divergence of (X.47) and using
Ou[A(iDy u)] = (8, u)(iDy u) + #(D(iDy u))
= [0, — ia)u](iDyu) + (9, — ia,)(iD, u)
= |Dyu|* — uDu
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we see that
Au, > —Re[sgn,(u)D?u] (X.49)

We have used (X.48) as in the proof of Theorem X.27. As in that proof,
we now approximate a given ue L2, with D*u e LL_ by u®s. Since, by the
lemma, ue L2, and D*>ue L}, imply that Au and Vue L., we conclude
that Du® — D*uin L} . Thus (X.49) holds for any u obeying the hypothesis
of the theorem. (X.45) follows from (X.49) by letting ¢ approach 0. ||

Theorem X.34 Letag,e C'(R").Let V =V, + V, with V;, V, obeying the
hypotheses of Theorem X.29. Then

n 1 )
H = "Z 2—mj(6j—laj)2 + |4
is essentially self-adjoint on Cg(R").

Proof One just follows the proof of Theorem X.29 using (X.45) in place

of (X.30), noting that the u to which we want to apply (X.45) is in L2,
and not merely in L. . |

Example 4 (the Zeeman effect)  Let a(x) = 4x x B, where B, is constant.
The Hamiltonian of an N-electron atom in a constant external magnetic
field is

1 N
= 2M(a b — iNea(x,)/c)? :; (9, + iea(x,)/c)?
e? 1 e2
ngl IX '—xOI n#zm Ixn—xml

By Theorem X.34, H is essentially self-adjoint of C¥(R3¥*+3),

One can considerably weaken the smoothness hypotheses on a if one
imposes the Coulomb gauge condition, diva =0 (distributional sense).
Notice in that case

D= —Au —2ia-Vu + a%u
so that one can define D? on CY without any smoothness hypothesis on

a;only ae L}_is needed. The extra condition diva = 0 is quite common
in the physics literature. To explain why, let us proceed formally. Given
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A(x), let a =a + grad A. Notice that tpis does not change the magnetic
field B = curl a, i.e., curl a = curl 4. If D = (ig — &), then

~

D = e—iADe+iA
so that
e (=D*+ V)e*? = —-D*+ V

Thus —D? + V and —D? + V are formally unitarily equivalent and the
gauge transformation a — & does not change the magnetic field. If A is not
C®, —D? + V may have CP(R?) for a core, while it is not a core for
—D? + V (rather e***(Cg) will be a core). Thus as regards essential
self-adjointness on C®(R3), one must be prepared to change to a convenient
gauge. By solving the partial differential equation —AA = diva, we can
always find a with diva =0 so that a and & are related by a gauge
transformation.

The following theorem is proven in a reference to be found in the Notes.

Theorem X.35 Let V obey the conditions of Theorem X.29. Suppose
that a e L{ _(R") with ¢ > 4, ¢ > n, and with div & = 0 (distributional sense).
Then

j=1

is essentially self-adjoint on Cg(R").

X.5 The commutator theorem

Many of the self-adjointness techniques that we have discussed so far
apply only to semibounded operators or forms. Further, the Kato-Rellich
and KLMN theorems have the feature that perturbations of positive
operators are semibounded. In this section we prove several theorems which
are useful for proving the self-adjointness of nonsemibounded operators.
At the end of the section we apply the theorem to the Stark effect
Hamiltonian, i.e.,, the Hamiltonian of an atom in a constant electric field.

Although the operator A whose self-adjointness we wish to establish
will not be semibounded, we will assume that 4 can be estimated in
various ways by an auxiliary self-adjoint operator N that is semibounded.
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Throughout this section we will assume that N > I. We will denote by o#,,,
n=0, +1, £2,..., the completion of D(N"?) in the norm

1¥ll. = [N"2y] (X.50)

We thus have the scale of spaces - #,> #,,, - discussed in the
Appendix to Section IX.4 and introduced for the cases n=0, *1 in
Section VIIL6. Recall that for n > 0, #, = D(N™?) and that »# _, can be
identified with J#F.

Suppose that a(-, -) is a quadratic form on Q(a) = D(N™?) which satisfies

la(o, )| < cllolla ¥l (X.51)

Thus for each ¢ € #,, there is a ¢ € #_, so that a(e, ¥) = ¢(y) for all

¥ € #,. The map ¢+ § is linear and bounded so 4 € £(#,, #_,). Con-
versely, any A e L(#,, #_,) gives rise to a quadratic form a(:, ) on
Q(a) = D(N™?)satisfying (X.51). For such an 4, the adjoint A* is a bounded
operator from s#* , to 5#*. But since #°* , and 5} are naturally isomorphic
to s, and #_,, A* is in a natural way also a bounded operator from
H#,to H#_,. 1f A= A* then we say that A e &L (#,, #_,) is symmetric.
Clearly, this is equivalent to saying that the corresponding form a(-, -) is
symmetric. :

Given an A e &(#,, # _,) we can define [N, A] as an operator from
Hyrrto H_,_, by

[N, AW = N(4y) — A(NY), Y€ H#,,, (X.52)

Since N is bounded from #,,, to 5, and from 5 _, to #_,_,, [N, 4]
is a bounded operator from 3#,,, to #_,_,. If for each y € 5#,,,, we
have that [N, Ay € # ., and

I[N, A - < c[lw ]l (X.53)

then [N, A] extends by the B.L.T. theorem to a bounded operator from
#, to #_,. In this case, we denote the extension by [N, A] also.

Finally, given a quadratic form a(:, -) on D(N"?), or what amounts to
the samé thing, an A € L(#,, # _,), we define an associated operator 4
on J by

D(A)={y € # n #,| AY € #)}
Ay =AYy, YeD(A)
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In general, D(A) need not be dense. In fact, in Problem 34, the domain of
A consists of just the zero vector.

We can now state the main theorem of this section. Later on (Theorem
X.37) we will prove a related theorem with “operator™ hypotheses rather
than “form” hypotheses.

Theorem X.36 (the commutator theorem) Let N be a self-adjoint
operator with N > 1. Suppose that A is a symmetric operator in
L(H# .y, H_,) where H#, is the scale associated with N. Suppose that,
in addition, [N, A] is in L(# ,,, # _,). Then:

(a) The associated operator 4 is densely defined.
(b) D(N)< D(A) and for all ¥ € D(N),

l4v]l < c|Nyl (X.54)
(c) A is essentially self-adjoint on any core for N.

For clarity, we restate Theorem X.36 without mention of the scale J#,:

Theorem X.36" Let N be a self-adjoint operator with N > I. Suppose
that a(-, -) is a quadratic form with Q(a) = Q(N) so that:

() |aly, 0)] < c,[NY2g| |N"2y] for all , y € D(N'2);
(i) |a(Ny, @) — a(y, No)| < c,|N2p|| | N*2y| for all , Y € D(N>'?).

Then
(a,b’) For any y € D(N) and all ¢ € D(N'/?),

lale, ¥)| < clloll [Ny

soy € D(A)and a(e, ) = (¢, AY)for all ¢ € D(N'/?) and Ay satisfies (X.54).

(c) A is essentidlly self-adjoint on any core for N.

We begin the proof with two general lemmas about scales of spaces.
We denote the norm in L(#,, #,,) by || .. m-

Lemmail If Ae ¥(#,, #,)and [N, A]le L(¥,, #,) then

Aeg(”:wzv-#nnz)
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Proof Let Yyes#,,,. A priori NAYy€ #,.,, but ANy e #, since
Ae L (H,,Hm)and NAY — ANY € #,,since [N, A] € L(H#,, # ). Thus
NAY € ¢, and
| A¥)ms 2 = [ NAY |

<IN, AWln + ANV

< N> Al m 1 lln + ALl ml Nl

< (IINs Allln,m + Al m)[¥ ]2
soAe —g(‘#nn’ ‘;fm+2) and

140+ 2. me2 < ([N Allnm + [ Al 0

Lemma2 If Ae.Sf(Jf“,Jf 1) and [N, A]e L(#,,, H#-,) then
Ae L(H .y, H), ie, D(A) D D(N) and (X.54) holds.

Proof By Lemma 1|, Ae P(H#,,, .,). Interpolating between
L(H .y, H,,) and L(H,,, H#_,) (see the Appendix to Section 1X.4),
we conclude that 4 € L(# ,,, #). 1

Proof of Theorem X.36 By Lemma 2, (a) and (b) hold. Suppose we prove
that 4 Iis essentially self-adjoint on D(N). Let C be a core for N. By
(X.54),A1 C> Al D(N)so Ais essennally self-adjoint on C and (c) follows.
Thus, we need only show that A | D(N) is essentially self-adjoint. Let us
denote A | D(N) by B and suppose § € D(B*). Then ¢ = N~ 'y e D(N) <
D(B). We compute

|im(p, B*y)| =

|i(e B*Y) — i(B*Y, )|

Il

p— RN b DI e

li(A@, No) — i(No, Ap)|
5 "[N A|“+1 -1 “‘P"

c c
<£lol2s =S o)
where ¢ > |[N, A]| +,, -1 Thus, since (¢, ¥) is real and nonnegative,
Im(@, (+£B* + ic)¥) 2 5 (0, ¥)

Therefore, if (B* F ic)y =0, then (o, ¥)= (Y, N"'¢) <0. Since N~!
positive with zero kernel, §y = 0. We have thus proven that Ker(B* + ic) =
so B is essentially self-adjoint by the fundamental criterion. |
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An important application of Theorem X.36 appears at the end of this
section. We begin here with several examples showing that certain of the
hypotheses cannot be weakened.

Example1 Let N = p? + g on I*(R, dx) where p=i""'d/dx and let
A =p*+ g* — g*. By application of the methods of the Appendix to
Section X.1, A is not essentially self-adjoint on C§(R) which is a core for N.
But A and [N, 4] lie in £(#,,, #_,). Thus the 1 in L(#,,, #_,)is
crucial for Theorem X.36. In fact, if we take N = (p? + ¢%)* we see that
Ae L(H 4y, #_,)il k=2 while [N, Ale L(#,, #_,) witha =1+ k™!
(using the natural object for 5#, when « is nonintegral). Thus the +1 in the
condition on [N, 4] cannot be changed even a little.

Example 2 Let H = p? + g* + g* and define g(t) = e#'ge™'#". Since q is
essentially self-adjoint on &(R) and ¢* < cH?, D(q) > D(H) > #(R) and
q is essentially self-adjoint on D(H). Since ¢'*': D(H) — D(H), each g(t) is
essentially self-adjoint on D(H) also. But what about g(t,) + g(t,)? This
is not so easy by the methods preceding Theorem X.36. But +g< H + 1
so g and q(t,) + q(t,) are in L(#,,, #_,) if N=H. Furthermore,
+i[H, q] = +2p < 2H + 2s0[H, q(t,) + q(t;)] lies in L(#,,, # _,) also.
Thus, by Theorem X.36, g(t,) + g(t,) is essentially self-adjoint on any core
" for H.

Example 3 Let h(p, ¥) = (o, (p? + q* + 6(q))¥) on L(R) x Z(R). Since
8(q) is p?-form small, the KLMN theorem guarantees a self-adjoint operator
H corresponding to the form h. Let p(t) = ¢'#'pe™*#". Since [p, H] is badly
behaved, we cannot control p(t,) + p(t;) by the method of Example 2.
However, for each real-valued f e C§(R), define

afo, )= [ f()o. W) dt, o, %€ O(H)
Then a; is symmetric and

lafe. @)l < [ 11 (1)]1(e™ g, pe= )| dt
<[ 110" ™o, cHe™™g)| e

< chig, @) [ 1 /()] ds

= clH" 20?11,
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for all ¢ € Q(H). Further, for ¢ € D(H?)

ar(Ho, 0) - a (o, Ho) = | [(}(Ho. p(1)0) — (o P()H)} di

[ £0) 2 (0, b))

~[ £/ p(t)o) dt

Thus,
la;(Ho, ¢) — ag(o, Ho)| < ch(o, o) f']s
< c|H"2o|?| 1|
So, by Theorem X.36, there is a self-adjoint operator A4, associated to the
quadratic form a, and A, is self-adjoint on any core for H. Formally, A,
is just [ f(¢)p(t) dt. Of course, the particular operator we have considered

is not very important. What we have illustrated is that if we only know
that + B < cH, then we can prove essential self-adjointness for

B, = j f(t)e'™ Be™ ¢ dy

for real-valued fe C§(R). Such a situation arises in quantum field theory
(see the references in the Notes).

Example 4 Thereisa connection between Theorem X.36 and a technique
in the theory of ordinary differential equations. We will illustrate the
technique in a case which is also easy to handle by other means. Suppose
that we want to solve

4(t) = F(q(1) (X.55)
for a real-valued function g(t) where F is some Lipschitz function obeying
|F(x)| < |x] (X.56)

It is easy to prove local solvability of (X.55) given initial conditions (see
Section V.6). To prove global solvability, we let p = 4 so that (X.55) becomes
4(t) = p(t) (X.57a)
51) = Fla(t)) (X.57b)
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Let N(p, q) = p> + ¢* and let N(t) = N(p(t), q(t)). Suppose that we can show
that for any solution on [0, t,), N(t) stays bounded as t —»t,. Then by a
maximum interval argument similar to that used in the proof of Proposition 1
in the Appendix to X.1, we can extend the solution to ¢ty + & In this way one
proves that global solutions exist. To prove that N(t) is bounded, we
show that
N(t) < 2N(t) (X.58)
For
N(1) = 2pF(q) + 2pq
<4|pg| <2N(1)

by (X.57) and (X.56). By integrating (X.58) we see that
N(t) < N(0)e*

Let us consider a formal proof of a part of Theorem X.36 based on
these classical ideas. Suppose that 4, N obey the hypotheses of the
theorem and let A be a self-adjoint extension, if such exists. Let ¢ € Q(N)
and let

N(t) = (b, é*NeHy)
Then formally
N(t) = (e~ i A, N]e~"Aty)
< cN(t)
by the bound on i[4, N]. This suggests that e~ leaves Q(N) invariant
which is the beginning of the self-adjointness proof of Theorem VIILIO.

These formal ideas can be turned into a proof of a slightly weakened
form of Theorem X.36 (see the reference in the Notes).

For our discussion of the Stark effect we need an alternative version
of Theorem X.36. As it stands we need information about D(N3/2) or D(N¥)
for k> 3. If N is not a simple operator, it may even be very difficult to
determine a core for D(N*) if k> 1. In such a situation the following
theorem with “operator” hypotheses is useful.

Theorem X.37 Let N be a seif-adjoint operator with N > 1. Let 4 be
a symmetric operator with domain D which is a core for N. Suppose that:

(i) For some c and all ¢ € D,
|4l < c[Ne| (X.59)
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(i) For some d and all ¢ € D,
|(Ap, No) = (No, Ag)| < d|N' 0| (X.60)

Then A is essentially self-adjoint on D and its closure is essentially self-
adjoint on any other core for N.

Proof By (i), the closure of A has a domain containing D(N) and
(i1) extends to all ¢ € D(N). By mimicking the proof of Theorem X.36 one
shows that Ker(4* + id) = {0} and thus 4 is essentially self-adjoint. |I

We remark on one vaguely annoying feature of Theorem X.37. Namely,
we need to suppose that 4 is an N-bounded operator and not merely an
N-bounded form as in Theorem X.36. At first sight this is surprising since
Lemma 2 above seems to imply that condition (ii) of Theorem X.37 and the
weaker:

(') For some ¢ and all p € D,

(¢, 40)| < c(o, No)

should imply (i). The fallacy in this is that (ii) is slightly different from
condition (ii) of Theorem X.36". To have the latter we would need (X.60)
for a set of @ which includes a core for N2, A priori, D might be disjoint
from D(N3/?). To tantalize us, (i) implies that (ii) extends to all ¢ in
D(N) and so to D(N*?), but (i’) does not; so it seems impossible to use
(') and (ii). In any event, we will need a separate argument to prove
(X.59) in the following application:

Theorem X.38 (the Faris-Lavine theorem) Let V and W be real-valued
measurable functions on R" with

V(ix)= —cx*—d
V e L% (R") and suppose that:

(i) There exists a dense set D < D(—A) n D(V) n D(W) which is left
invariantby x;and i ! /0x;so that —A + V + W + 2cx? is essentially
self-adjoint on D.

(ii) For some a <1, —aA + W is bounded from below on D.

Then —A + V + W is essentially self-adjoint on D.

Proof By (ii) and the hypotheses on V, we can choose b so that
N=—-A+V+W+2x*+b>1
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Let A= —A + V + W, We will verily (X.59) and (X.60) on D. As quadratic
forms on D:

N2 = (A + b+ 2cx?)? = (4 + b)? + 4c*x* + 2¢(Ax? + x*A) + 4bex?

= (A + b +4c3x* + 4c Y x)(4 + b)x; + 2¢ ¥ [x,, [x, 4]]
J=1 J

=(A+b)*+4cY x{(A+b+cx*)x; —4en
j=1

By changing b if necessary, we can be sure that A + b + cx? > 0 so that
(A4 + bYW ]* < [[Ny]* + den|ly|?

proving (X.59).
Similarly, in the sense of (X.60):

+i[A, N] = £i{A — N, N] = +i[-2cx?, A]
= Fide(x -V + V-x)<de(—A + x?)
<dN
where we have used
“-A+x*Fix-V+V-x)=(iVFx)*>0
and the fact that
N=(—aA+ W)+ (V +cx?) + (1 — a)(—A) + cx?
>e(-A+x¥)—-f

Thus by Theorem X.37, A4 is essentially self-adjoint on D. |

Corollary  Letreal-valued measurable functions V; and ¥, be given which
satisfy:

() V,eP(R")withp22ifn<3, p>2ifn=4andp>n2ifnzs5.
(i) V; = —cx? —d for some ¢ and d; V, € (i), -

Then —A + V; + 1, is essentially self-adjoint on Cg(R").

Proof LetV = —cx*—dand W =V, + V, + cx? + d. Then by Theorem
X.29, —A + W + V + 2cx? is essentially self-adjoint on C3(R") since V; is
—A-bounded and V, + 2¢x? + d is positive. Further, —aA + W is bounded
below for any a > 0. Thus, by Theorem X.38, —A + V + W is essentially
self-adjoint on CF(R"). |}
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Similarly, combining Theorem X.30, Theorem X.38, and the uncertainty
principle lemma we have:

Corollary  If V() > $n(4 — n)r™2 — cr* — d, then —A + V is essentially
self-adjoint on C§(R™\{0}).

Example 5 (the Stark effect) The Hamiltonian of an atom in a constant
electric field E, is

N N Nez 1 82
= T m) A, — M) A, =Y Loy &
ngl( ) ( ) 0 n=Zl ,xn—xol 2n¢m ,xn_xm

N
+ ¢E, (xo - ZX")
n=1
By the first corollary, H is essentially self-adjoint on CP(R3¥*3).

By the above method one can also treat simultaneous electric and
magnetic fields (see Problem 38).

X.6 Analytic vectors

Stone’s theorem says that there is a one-to-one correspondence between
self-adjoint operators and continuous one-parameter unitary groups. This
suggests that if a symmetric operator 4 “determines” a unique group,
then 4 should be essentially self-adjoint. In fact, Theorem VIII.10 says that
if U(t) is a continuous one-parameter unitary group, U(t): D(4) — D(A) and
U'(t)p = iAU(t)p for ¢ € D(A), then A is essentially self-adjoint and generates
U(t). We are looking for conditions on a symmetric operator that guarantee
that such a group can be constructed. The most natural way to construct
U(t) is to try to make sense of the power series ) =%, (it4)"/n! on a dense
set of vectors. Notice that this can certainly be done if A is self-adjoint.
For let E, be the family of spectral projections for 4. Then on each
of the spaces E;_ ., 4 is a bounded operator and ) 2., (it4)"/n! converges
to ¢"# in norm. In particular, for any @ € {Juz0 Ef-m. my>

it A

N (itA)
Z —n!——qo—»e @

n=0
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Since | a0 E-u, ag is dense in &, we see that the group generated by a
self-adjoint operator A is completely determined by the well-defined action
of the series Y %4 (itA)'/n! on a dense set. We will prove the converse:
namely, if A is symmetric and has a dense set of vectors to which

=0 (itA)"/n! can be applied, then A is essentially self-adjoint. We need

several definitions.

Definition Let A be an operator on a Hilbert space s#. The set
C®(A) = [\, D(A") is called the C=-vectors for 4. A vector ¢ € C*(A)
is called an analytic vector for A if

for some t > 0.

If A is self-adjoint, then C®(A) will be dense in D(4). However, in
general, a symmetric operator may have no C*® vectors at all even if 4 is
essentially self-adjoint. We caution the reader to remember that analytic
vectors and vectors of uniqueness (defined below) must be C® vectors for A.
A vector Y € D(A) can be an analytic vector for an extension of A but fail
to be an analytic vector for A because it is not in C®(A).

Definition  Suppose that A is symmetric. For each ¢ € C*(A), define

N
D,= ‘ Z a, A"p

n=0

N=12,..., <ay,...,ay) arbitrary

Lets#, = D, anddefine A, : D, — D, by A, o 2, A"0) = YN o, A" 0.
o is called a vector of uniqueuess if and only if A, is essentially self-
adjoint on D, (as an operator on ).

Finally, a subset S of 3¢ is called total if the set of finite linear combina-
tions of elements of S is dense in .

Lemma (Nussbaum) Let 4 be a symmetric operator and suppose that
D(A) contains a total set of vectors of uniqueness. Then A4 is essentially
self-adjoint.

Proof We will show that Ran(A4 + i) are dense in 3. By the fundamental
criterion this will show that A is essentially self-adjoint. Suppose ¥ € 3¢
and >0 are given and let S denote the set of vectors of uniqueness.
Since S is total we can find (a,, ..., ay> and {y,, ..., Yy> with ¥, € S so
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that |y — YN_, a,¥.| < &/2. Since y, is a vector of uniqueness, there is a
¢n € Dy, so that

o= G+ ol < 5 (£ )

Setting ¢ = Y ¥, «,¢,, we have g € D(A4) and |y — (4 + i)¢|| <& Thus
Ran(A + i) is dense. The proof for (A — i) is the same. I

Theorem X.39 (Nelson’s analytic vector theorem)  Let 4 be a symmetric
operator on a Hilbert space 5. If D(A) contains a total set of analytic
vectors, then A is essentially self-adjoint.

Proof By Nussbaum’s lemma, it is enough to show that each analytic
vector  is a vector of uniqueness. First notice that by Theorem X.3, 4,
always has self-adjoint extensions, since the operator

N N
C: Y o, A > ) a,A
n=0 n=0

extends to a conjugation on #, which commutes with A4,. Suppose that
B is a self-adjoint extension of 4, on #, and let u be the spectral
measure for B associated to . Since ¥ is an analytic vector for A4,
Yoo (A" ||/n1)e" < oo for some t > 0. Let 0 < s < t. Then

i :_:J‘fmlxlndﬂsi %_(jm xznd#)l/z(fiMd#)l/z

n=0
= [y] E IIA"lI/II <
Thus, by Fubini’s theorem,
J. Yy = |x| dy = J. e dy < o
-on=0"n -

As a result, the function (i, e""nl/) = [®,, """ dy has an analytic continuation
{=, €% du to the region |Im z| < t. Since

H%Yfme“d4 =Jj3mﬁhu=wwmrm

- z2=0
we have

o) = 3 B g, )

for |s| < t. Thus, for |s| < ¢ (and therefore for all s), the function (¥, e*%y)
is completely determined by the numbers (y, A"), n=0, 1, 2, .... A
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similar proof shows that (y,, e*2,)is determined by the numbers (,, A" ,),
n=0,1,2 ..., forany y,, ¥, € D,. Since D, is dense in »#, and "* is
unitary, €% is completely determined by the numbers (y,, A™,) for
Vi, Y2€D, and n=0, 1, 2, .... Thus, all self-adjoint extensions of A4,
generate the same unitary group, so by Stone’s theorem A4, has at most
one self-adjoint extension. As we have already remarked, A, has at least
one self-adjoint extension. Thus A, is essentially self-adjoint and y is a
vector of uniqueness. ||

Corollary 1 A closed symmetric operator 4 is self-adjoint if and only if
D(A) contains a dense set of analytic vectors.

The statement of Corollary 1 is not true if “self-adjoint™ is replaced by
“essentially self-adjoint.” A self-adjoint operator 4 may be essentially self-
adjoint on a domain D « D(4)and D may not even contain any C™ vectors.
The reader is asked to construct an example in Problem 39.

Corollary 2 Suppose that A4 is a symmetric operator and let D be a dense
linear set contained in D(A). Then, if D contains a dense set of analytic
vectors and if D is invariant under A, then A is essentially self-adjoint on D.

Proof Since D is invariant under A, each analytic vector for 4 in D is
also an analytic vector for A | D. Thus, by Theorem X.39 4 | D is essentially
self-adjoint. |

The reason that one needs the invariance condition in Corollary 2 is
that for a vector y € D to be analytic for A | D, it must first be C™ for
A I D. This requires that A) € D for all n. The following is a simple example
which shows why one must be very careful of this invariance condition.

Example1 Lets# =/, and let A be the self-adjoint operator which has
the vectors 6, = €0,0,...,1,0,0, ...> as eigenfunctions with A5, = nd,. By
Proposition 1 of Section VIIL3, D(A)={{a,}|{na,}e ¢;}. Now, Iet
D={3"_, 6,|Y « =0, N arbitrary but finite}. First, it is clear that each
vector in D is an analytic vector for A, since [4* YN, a,6,)%<
N Y% |aa|* Secondly, D is dense in ¢,. For, suppose that {a,} is a
sequence in ¢, which is zero after the Mth place. Then the vector

“Zﬁl a; —Zuyﬂ a 0
3 sy . ,0,...

¢=<al,...,au,

k places
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is in D and satisfies

N
Yoa | k2

i=1

e} — el <

Thus {a,} can be approximated by elements of D. Since the set of such
{a,} are dense, so is D.

Thus, D is a dense set of analytic vectors for A, But, A[ D is not
essentially self-adjoint. For, let = {1/n}>.,. Then,forall o € D, (A, ¥) = 0.
So,yy e D((A | D)*)and (A | D)*y = 0. This shows that D((N [ D)*) strictly
contains D(A), so A is not essentially self-adjoint on D. Notice, that A
does not take D into itself.

The following examples illustrate in a simple way how analytic vectors
can be used. Some applications of analytic vectors in quantum field theory
are described in the next section.

Example2 Let A4 and A" be the maps of &#(R) into itself given by
1 d 1 d

- — A* I —_—
= Galrih A= Gl
and define N = A'A. Let ¢ = n~2e~*"2 and ¢, = (n!)"1/%(4")"$,. The
¢, are just the Hermite functions which form an orthonormal basis for

I2(R) (see Problems 6 and 7 of Chapter IX). The operator N satisfies
N¢, = n¢, and A4 and A" satisfy the commutation relation (on #(R)):

AAY - ATa=1

It follows easily that A'¢, = /n+ 1¢,,, and Ad, = /n¢,_, if n> 1,
and A¢, = 0. Therefore

[A*A% - A*@ ] < (n+ V2 (n+ K)2 < [(n + B2 (X61)

k times

where each A* can represent either 4 or A'. Since x* =27%%(4 + A},
(X.61) implies

%" all < 292[(n + k)12

and therefore

"< oo

5 Hx*qb | @ 2°0n+ RO,

k=0 k=0 k!
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for all ¢ so each ¢, is an analytic vector for x. Since the set of finite
linear combinations of the Hermite functions is a dense set invariant under
x, we conclude that x is essentially self-adjoint on any linear subspace of
I*(R) contained in {¢||| x|, < oo} which contains the Hermite functions.
A similar statement holds for i d/dx.

Example3d Let A, be a self-adjoint operator on 3#,,n=1,2,..., N, and
suppose that P(x,, ..., xy) is a polynomial with real coefficients of degree
n, in x,. Let D§ be a domain of essential self-adjointness for A,. Under
these hypotheses, we proved in Theorem VIIL.33 that the operator
P(A,, ..., Ay) on 3#; ® - ® 'y is essentially self-adjoint on

N
D= Q@D

n=1
The proof given in Theorem VIIL33 depended on the spectral theorem.
Here we will give another proof which uses analytic vectors. P(4,, ..., Ay)
is clearly symmetric on D® = ®/., Df. Further, since 4, | D¢ = 4,, the
closure of P(A,, ..., Ay) on D¢ is the same as the closure of P(A,, ..., Ay)
on D = @X_, D(A4,). Therefore, it suffices to prove that P(A,,..., Ay) is
essentially self-adjoint on D. Let E}, be the projection-valued measure of
A, and suppose that M,, n=1, ..., N, are nonnegative numbers. Let
@n € El-m, m)#,;then |4, 0, < M, |, andif o = ¢, ® - ® @y a short
calculation shows that

IP(4y. ..., Aol < (P(M,, ..., My) ol

where the P is the same polynomial as P except that each coefficient has
been replaced by its absolute value. This implies that

2 [|P(Ay,---, An)e|
g‘o i *<ow

for all t so ¢ is an analytic vector for P(A4,, ..., Ay). The set of finite
linear combinations of such vectors is invariant under P(A4,, ..., Ay) and
is a dense subset of D. Thus, by Nelson’s theorem, P(4,, ..., Ay) is essentially
self-adjoint on D and therefore also on D (as remarked above).

Example 4 (Hamburger moment problem—uniqueness) In Example 3
of Section X.1 we proved a theorem giving necessary and sufficient conditions
on a sequence of real numbers so that a, = | x* dp(x) for some positive
measure p. We will use the notation of that example. Suppose that there
exist constants C and D so that |a,| < CD™n! for all n. Since 4: P/Q — P/Q,
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each vector in P/Q is a C® vector for A. The bounds on {a af_thus
immediately imply that P/Q is a dense set of analytic vectors for A. By
Theorem X.39, A is essentially self-adjoint on P/Q and thus 4 = 4.

Therefore A and thus the measure p are uniquely determined by the
sequence {a,}. Thus in the case where |a,| < CD"n!, we have proven that
the Hamburger moment problem has a unique solution.

Various extensions of Nelson’s theorem are discussed in the Notes. The
reader can prove (Problem 42) the following extension in the semibounded
case by using methods similar to those used above.

Definition Let A be an operator on a Hilbert space . A vector
@ € C™(A) is called a semianalytic vector for A4 if

for some t > 0.

Theorem X.40 Let A be a semibounded symmetric operator. If D(A)
contains a total set of semianalytic vectors, then A is essentially self-adjoint.

Theorem X.40 has two corollaries analogous to the corollaries of
Theorem X.39.

Example 5 (essential self-adjointness of H = }(—d?/dx? + x?) + x*/4,
third proof) In terms of the notation introduced in Example 2,
H = A'A + (A* + A)*. Let ¢, be the nth Hermite function. H* has 17
terms each of them a product of less than or equal to 4k operators A!
or A. Thus, using (X.61) we have

[H Gl < 174n + 1)72 - (n + 4k)"2
< 17%22%(2k)%*e,
Thus, the Hermite functions are a total set of semianalytic vectors for H

with domain &(R). Therefore, by Theorem X.40, H is essentially self-adjoint
on ¥(R), since H is clearly nonnegative.

Example 6 Using Theorem X.40 one can prove, similarly to Example 4,
that the Stieltjes moment problem has a unique solution if |a,| < CD"(2n)!
for some constants C and D. See Problem 25.
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X.7 Free quantum fields
First quantization is a mystery, but second quantization is a functor. E. Nelson

In Section IX.8, we described the Wightman axioms for a single scalar
quantum field. In this section, we continue our discussion of quantum
field theory. First, we introduce the abstract free field and use it to construct
explicitly a family of examples satisfying the Wightman axioms: for each
m > 0, we construct the free scalar field of mass m. These theories are
inequivalent in the sense that there does not exist a unitary map from one
Hilbert space to the other which preserves all the field theory structures
(vacuum, fields, etc.). A stronger sense in which these theories are inequivalent
is that the time-zero fields give different representations of the canonical
commutation relations (see the Appendix to this section). In addition to
proving that the axioms are satisfied, we will show that the fields are self-
adjoint. The main tool in this self-adjointness proof is the analytic vector
theorem.

As the name suggests, the free scalar field theories describe noninteracting
particles. Nevertheless, they are important since they show that the
Wightman axioms are consistent and because the most natural way to
construct “interacting” theories is to make perturbations of the free theories.
In the second part of this section we begin our discussion of the simplest
interacting theory, the ¢* self-interaction in two-dimensional space-time.
We introduce the spatially cut-off Hamiltonian H(g) and show that it is
a symmetric operator. Finally, we introduce Q-space, a reformulation of
the Fock space structures, which we use in Section X.9 where we
prove that H(g) is self-adjoint. We will not conclude the construction
of these interacting field theories to the point of removing the spatial cut-off
and proving the Wightman axioms. This has been done for a class of
models; see the references in the Notes.

Let o# be a complex Hilbert space and let #(#) = @ 2o H#™ (where
H#" = @i, #) be the Fock space over J# defined in Section I1.4. Our
goal is to define the abstract free field on #,(#°), the Boson subspace of
F(A#); to do this we need to introduce several other families of operators
and some terminology. Let e ) be fixed. For vectors in J#™ of the form
n=y, ® @y, we define a map b~ (f): #™ - #*"" D by

(= (S¥:)Y2® - @)

b~(f) extends by linearity to finite linear combinations of such #, the
extension is well defined, and [[b™(f)n|| < || £l |n]. Thus b~(f) extends to
a bounded map (of norm | f|) of #™ into #*"~ V. Since this is true
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for each n (except for n =0 in which case we define b™(f): # - 0),
b~ (f) is in a natural way a bounded operator of norm || f| from & () to
F(#). It is easy to check that b*(f)= (b~ (f))* takes each H#™ into
H#®* D with the action

P*(f) Y1 ®  ®Y,)= @Y, ® - ®Y,

on product vectors. Notice that the map fr—b* (f) is linear, but fisb~(f)
is antilinear.

Let S, be the symmetrization operators introduced in Section I1.4. Then
S=®%,S, is the projection onto the symmetric Fock space & (#) =
®=,S, .}f‘"’. We will write S, #™ = " and call #™ the n-particle
subSpace of # (). Notice that b~ (f) takes F(#) into itself, but that
b*(f) does not. A vector Y = {y™}=, € F,(#) for which Y™ = 0 for all
but finitely many n is called a finite particle vector. We will denote the set
of finite particle vectors by F,. The vector Q4 =(l1, 0, O, ...> plays a
special role; it is called the vacuum.

Let A be any self-adjoint operator on s with domain of essential self-
adjointness D. Let D, = {y € F,|y™ e ®}-, D for each n} and define dI'(4)
onD,n H#™as

ARI® - ®@I+I®A® @I+ +I® -®I®A

In Section VIII.10, we proved that dI'(A4) is essentially self-adjoint on D ;
dI'(A) is called the second quantization of A. For example, let A =I. Then
its second quantization N = dI'(I) is essentially self-adjoint on F, and for
Ye " Ny =np Nis called the number operator. If U is a unitary
operator on J, we define T'(U) to be the unitary operator on % ()
which equals ®j., U when restricted to #™ for n > 0, and which equals
the identity -on #Q. If "4 is a continuous unitary group on J#, then
I'(¢""4) is the group generated by dI'(A), i.e., [(e*4) = "4,

We now define the annihilation operator a™ (/) on () with domain
F4 by

a (f) =N+ 1b(f) (X.62)

a” (f)iscalled an annihilation operator because it takes each (n + 1)-particle
subspace into the n-particle subspace. For each y and # in F,,

(/N +1b7(fW,n) = (¥, Sb*(SN\/N + 1n)
This implies that

(@ (N)*! Fo=Sb*(f)\/N +1 (X.63)
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The operator (a™(f))* is called a creation operator. Both a™(f) and
a™(f)* | F, are closable; we denote their closures by a™(f) and a™(f)*
also.

Example 1 If o = [*(M, du), we have seen in Section I1.4 that

® (M, du) = B(M x - x M, dp ® "+ ® d)
j=1

and that
S® B(M,dy)= L}M x - x M, du® - ® dp)
J=1

where L2 is the set of functions in I? which are invariant under permuta-
tions of the coordinates. The operators a™(f) and a™(f)* are given by

(@ ()N ey m) = /W T[Ty Dim, s ., my) d(m)

(@™ (f)*¢)"(my, ... \/—— Zf (mW" my, ..., 0y, ... m,)

Hi=1l

where ri1; means that m, is omitted. If 4 operates on I?(M, dy) by muitiplica-
tion by the real-valued function w(m), then

(dr(A)p) N m,, ..., m,) = ( iw(mi)) YO (my, ... m,)

i=1

(X.63) implies that the Segal field operator ®g(f) on F, defined by
1
®5(f) = NG @ (f)+a (f)*)

is symmetric. In fact, we will shortly see that ®g(f') is essentially self-adjoint.
The mapping from s to the self-adjoint operators on & (#) given by

S 04(f)

is called the Segal quantization over #. Notice that the Segal quantization
is a real (but not complex) linear map since fi»a~(f) is antilinear and
f>(a"(f))* is linear. The following theorem gives the fundamental
properties of the Segal quantization.
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Theorem X.41  Let 5 beacomplex Hilbert space; ®s(-) the correspond-
ing Segal quantization. Then:

(a) (self-adjointness) For each fe o, ®4(f) is essentially self-adjoint on
F,, the finite particle vectors.
(b) (cyclicity of the vacuum) Q, is in the domain of all finite products

O(f,) - Os(f,) and the set {®s(f;) - Ps(f2)0| f; and n arbitrary} is
total in F ().

(c) (commutation relations) For each € Fy and f, g € 5,
s(f)0s(gl — Ds(g)Ps( /W = i Im(f, g)oe ¥y (X.64)
Further, if W(f) denotes the unitary operator ¢'®/), then
W(f+ g) = e "W (f)W (g) (X.65)
(d) (continuity) If f, - fin 3#, then

W - W(f)y  forally e F(K#)
Og(ful = Os(f W forally e Fy

(¢) For every unitary operator U on #, T'(U): D(®s(f)) = D(®s(US))
and for Y € D(®g(US)),

T(U)05(f)T(U) 'y = O5(Uf W

for all fe H#.

Proof Let y € #. Since Og(f): Fo— Fo, ¥ is in C®(®s(f)). Further,
it follows from (X.62), (X.63), and the fact that |[b~(f)|| = || f||, that

la*(f) - a* (Sl < /n+ 1+ k| 14V

k times

where a*( f) represents either a™(f) or (a” (f))*. Therefore,

[@s( el < 2%((n + K)) 2| £

Since Y% o #292%((n + k)1)'?| f|*/k! < co for all ¢, y is an analytic vector
for O(f). Smce F, is dense in #((#) and is left invariant by ®g, O(f)
is essentially self-adjoint on F, by Nelson’s analytic vector theorem
(Theorem X.39).

The proof of (b) is left as Problem 43.
To prove (c) one first computes that if € Fy, then

a”(fla” (gl —a”(gf*a” (f W = (£, gl (X.66)
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(X.64) follows immediately. Although (X.64) and (X.65) are formally
equivalent, (X.64) by itself does not imply (X.65) (for an example of how
misleading such formal calculations can be, see Section VIILS5). We sketch
a proof of (X.65) which uses special properties of the vectors in Fy.

Let y € . Then

|@s(f Y @slgYyll < 27" ™2 /p + 1= o+ n+m f|"|g|"[¥]

which implies that ), , (|®s(f)'"®s(g)™y|/n! m!)e"t™ converges for all t.
Since y is an analytic vector for ®s(g), Y. (({Ds(g))™/m!)y = e'®loly,

Further, for each n, /@)y is in the domain of (®s(f))" since

3 (@s(g)
I v
is in it and ®g(f)" Y = ((iPs(g))"/m!)Y converges as M — co. Thus the

estimate
Z I(@s(£))"(@s(g))l

— """ < o0
nim!

shows that ¢'®sW)y is an analytic vector for ®@(f) and therefore e/®sl/) can
be computed by the power series. Thus

€05 )i®s(@hy = Z (i®s(f r).)'",(:'bs(g))m "
Similarly,

—u’ Im(/, g)/2,it®s(f+4 3
)'l, n, mz [¢] m' n'

[(_ ﬁlm( fg ) (it®s(f + g))"]l/f

converges absolutely. Direct computations using (X.64) now show that
(X.65) holds by a term-by-term comparison of the convergent power series.

To prove (d) let Y € #® and suppose that f, = f. Then

|@s(f)0 = Os(N W < 2k + 115 = 11 vl
so Og(f ) — Os(f . Thus, Dg(f,) converges strongly to Os(f) on F,.
Since F, is a core for all ®g(f,) and Pg(f), Theorems VIII.21 and VIIL.25
imply that e*®s(ky — e/} for all Y € F(H#).
To prove (e), let ne #™ be of the formn =y, ® - ® ¥, Then
LU (NTU) 'p=TU®h " (SNU Y.@ - ®U™'Y,)
=TU)A U W)U Y. @ @ U™'Y,)
=(UL 1)@ @ Y,)
=b"(Ufm
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Since finite linear combinations of such n are dense in #*™ and b~ (g) has
norm |g|, we conclude that T(U)b~(f)I(U)"'= b~ (Uf). But N and S
commute with I(U), so this immediately implies that [(U)a~ (f)[(U)™ ! =
a~(Uf) on F,. Taking adjoints and restricting to F, we also have
C(U)a (f)*T(U)™" = (a™(Uf))*. Thus, for y € Fo, T(U)®(f)T(U) "'y =
@ (Uf . Since the operators on both the right- and left-hand sides of this
equality are essentially self-adjoint on Fy, we conclude that

L(U)Rs(f)T(U)™! = o5(Uf) 1

Henceforth we use ®g(f) to denote the closure of ®g( f).

We can now use the Segal quantization to define the free Hermitian
scalar field of mass m. We take 5¢ = I?(H,,, dQ,,), where H,,, m > 0, is the
mass hyperboloid in R* consisting of those p € R* satisfying p-p —m? =0
and p, > 0, and Q,, is the Lorentz invariant measure (defined in Section
1X.8). For each fe #(R*) we define Ef in # by Ef=./2xf | H,, where
(for this section only) the Fourier transform

7(6) = 7553 | € 51 4) d

is defined in terms of the Lorentz invariant inner product p - X. The reason
for the extra \/ﬁ in our definition of E and the plus sign in the definition
of Fourier transform is that if f is the distribution f(x) = g(x)é(t), then
\/ﬁ f is the ordinary three-dimensional Fourier transform of g. If dg(-)
is the Segal quantization over I?*(H,,, dQ,,), we define for each real-valued
fe FRY)

@,(f) = Os(Ef) (X.67a)
For arbitrary fe & (R*), we define
®,(f)=®,(Re f)+ i®,(Im f) (X.67b)

The mapping fi— @,,(f) is called the free Hermitian scalar field of mass m.
On I*(H,,, dQ,) we define the following unitary representation of the
restricted Poincaré group:

(Unla, AW)p) = P %y(A"p) (X.68)

where we are using A to denote both an element of the abstract restricted
Lorentz group and the corresponding element in the standard representa-
tion on R*. As before F, will denote the finite particle vectors.
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Theorem X.42 The quadruple
<fl(L2(Hms de))l r(Um(! ’ ))’ (bm(.)’ F0>
satisfies the Wightman axioms. Further, for each fe #(R*),

o,(0% + m*)f)=0
where (% = 9%/0t* — A.

Proof Since Q,(-) is invariant under £, , U, (-, -) is a continuous unitary
representation of 2% on I*(H,,, dQ,,). By definition, I'(U) is the strongly
continuous unitary group ®p-; U,(-, ) on #™ for each n. Thus ['(U,,)
is a unitary group on #,(*(H,,dQ,)) and since T'(U) is strongly
continuous on Fy, it is strongly continuous on %,. This verifies that
Property 1 holds.

To verify Property 2, we must show that the four-parameter unitary
group I'(U,(a, I')) has spectrum with support in the forward light cone.
First notice that I*(H,,, dQ,,) is already a spectral representation for U,,(a, I)
since (1, Un(a, 1)n) = (1 €® 3[n(p)|* dRu(p). Since T(Up(a, 1))} # =
®r-y Unla, I), if ne #™, and n > 0, then

0 Tules )= [ [ exo(i{ ) -a) 1o, ... )1 [] )

i=1
= j et dy,(2)
R4

where p(S)= (- fspes [nP1 .- P)] [I1=1 dQu(p;)- Since Q,, has
support in V, and V, is a cone, y, also has support in V. Now, if
Y = {y™}2, is a general vector in & (I}(H,,dQ,)) and yu, the spectral
measure so that

(V. T(Un(a, D) = [ "3 duy(p)

then p, = Y324 uyw, since T(U,,): P — .

The vector Qy= {1, 0, 0, ...} is invariant under [(U,(", -)) since by
definition T'(U,,) acts like the identity on H® = C. Since no nonzero vector
in I?(H,,, dQ,,) is invariant under U ,(a, I) for all a € R*, there is no nonzero
vector in ™ which is invariant under ®j%_, U,(-, I). Since I'(U,):
H" - #™ this implies that the only nonzero invariant vector in
F (}(H,,, dQ,,)) is (all scalar multiples of) Q,. This verifies Property 3.
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Property 4 follows immediately from the definition of ®,,: ®,,(f) =®(Ef)
for real fand ®@,(f) = ®,(Ref) + i®,(Im f) for complex-valued f, and the
fact that @g(f): Fo— F,.

Suppose that y,, Y, € Fq and f, — fe & (R") with f, real-valued. Then

=V f, | H, 22, o 71 H,, = Ef

Thus from Theorem X.41d we conclude that

(1, Oul( L J2) = (1, Oul(f)¥2)

By treating the real and imaginary parts of f separately we therefore obtain
(Y1, D,( W2) € &' (R™) verifying Property 5.

To prove the Poincaré invariance of the field, notice that I'(U,,): Fo — F,
and that if Y € Fy and fis a real-valued function in &(R*), then

F(Un(a, A))@u( f)T(Unla, A)™ 'Y = T(U)®s(Ef )T (U,) " '¢
= (DS(Um Ef )l»l/

by Theorem X.4le. A change of variables shows that U,(a, A)Ef=
E(Ka, A)f), so T(Un(a, A)®n(f)T(Unla, A)) ' =®,(a, Adf). Since
both sides of this expression are linear in fand I'(U,,) is a linear operator,
the formula is valid for complex-valued f also.

To prove microscopic causality, we must show that for all f, g € #(R*)
with spacelike separated supports and all € F,

D, (/)Pu(gl¥ — P,(9)®, (W =0 (X.69)

Since ®,(-) is linear, it is sufficient to prove (X.69) in the case where f and
g are real-valued. Then, by (X.64)

[®.(f), (@)Y = [DS(ES), Os(Eg)l¥
= (i Im(Ef, Eg)2(n,, s ¥

(31, T0H0) - 70t a2}

I

( mwwwmmnﬂ

where

Ba(x) = mﬁﬂf”—ﬂﬁ&@)

Now, A,(x) = A, (x; m*) — A (—x; m?), so since A, (x; m?) = fy(x?) for x
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spacelike (Theorem IX.48), we conclude that supp A, = V, U (=¥, ). Thus

” An(x = y)f(x)g(x)dxdy =0

which implies (X.69).

The cyclicity of the vacuum for ®@,,(-) follows immediately from Theorem
X.41 (parts (b) and (d)) and the fact that the range of the map E on
& a( R*) is dense in I*(H,,, dQ,,) (Problem 44).

Finally, if fe &(R?), then (—E]T\-i-mz)f(p) = —(p-f—m*)Jj(p)so
E(® +m?)f) =0
Thus @,((012 + m?)f) = 0 for all fe L(R*). |

Notice that by the computation above the spectral weight p of the
Killen-Lehman representation for @, is the point mass at m.

Classical mechanics has provided such a successful framework in physics
that it is natural to rephrase physical systems in terms of certain “fixed-
time degrees of freedom ” which evolve in time. We do this now for the free
field by introducing the time-zero field and the canonical conjugate
momentum. We emphasize that this choice of a fixed time is not relativisti-
cally invariant. As a result, in constructing an interacting field theory by
perturbing the free theory using the time-zero fields, it is difficult to
recover Lorentz invariance. There is no direct connection between the
canonically conjugate momentum and the physical momentum operator P,

We begin in the abstract setting. Recall that a conjugation on a
Hilbert space S is an antilinear isometry C so that C? = I.

Definition Let o be a complex Hilbert space, ®s(+) the associated
Segal quantization. Let C be a conjugation on ¥ and define . =
{fe # | Cf = f}.Foreachfe # . we define ¢(f) = ®s(f) and n(f) = ds(if ).
The map fi— ¢(f) is called the canonical free field over (5, C) and the
map fi—n(f) is called the canonical conjugate momentum. We often drop
the (o, C> and just write ¢ if the intended conjugation is clear.
Notice that the set of elements of »# for which the maps fi— ¢(f) and
fi—n(f) are defined depends on the conjugation C.

Theorem X.43  Let # be a complex Hilbert space with conjugation C.
Let ¢(-) and =(-) be the corresponding canonical fields. Then:

(a) (i) For each fe 5., ¢(f) is essentially self-adjoint on F.
(i) {@(f)]| fe #¢} is a commuting family of self-adjoint operators.
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(iii) Qo is a cyclic vector for the family {o(f)| fe #}.
(iv) Iff, 5 f then

o(fW—o(fW forallyeF,

eolhy — giolf )y for all y € F(5¢)

(b) Properties (i}-(iv) hold with ¢(*) replaced by =n(-).
(c) Iff,ge ., then

o(f)n(gW — n(gle(f W =i(f,g  forallyeF, (X.70)
' )einla) = o =il 9)pin(g)pie(f) (X.71)

and

Proof Parts (a)(i) and (a)(iv) follow immediately from the corresponding
properties of ®g(-) proven in Theorem X.41. Part (a)(iii) is left to the
reader (Problem 43). To see that {o(f)| fe #¢} is a commuting family,
notice that (X.65) implies

elitef)eisolg) = o—its Im(f, g)piso(g)ite(f)

where we have used the fact that ¢(+) is real linear. If f, g € #¢, then it
follows from polarization that (f, g) = (Cf, Cg) = (9, f), so Im(f, g) =0.
Thus e'¢l/)eisol9) = ¢is?(0)¢it@(S) for all s and t. Therefore, by Theorem VIIL. 13,
®(f) and @(g) commute.

The proof of (b) is similar to the proof of (a). (X.70) and (X.71) follow
immediately from (X.64), (X.65), and the fact that if f, g€ S, then

Im(f ig) =Re(£, 9)= (£ 9) 1

We now define the conjugation which we will use for the free scalar field
of mass m. We write fe I>(H,,, dQ,,) as f(po, p) and define (Cf)(po, p) =
f(po, —p)- Notice that C is well-defined on I*(H,,, dQ,,) since {p,, p) € H,,
if and only if (py, —p) € H,,. C is clearly a conjugation. We denote the
canonical fields corresponding to C by ¢(-) and =n(-) and define

@m(f) = @(Ef)

Tl f) = n(uEf),  p=/p*+m
for real-valued fe &(R?%), extending to all of &(R*) by linearity. In terms
ofa”,

L o imme o
w...(f)=ﬁ{(a (Ef))* + a” (CEf)}

Tnlf) = ﬁ {(a~ (uEf)* — a™ (CuEf)}
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We warn the reader that the a’s in these last formulas differ from those
most often used in discussing the free field and that the correct space-time
free field is ®,, and not ¢,; as we will discuss below, ¢, and =, are
useful for discussing the time-zero field. The maps fi— ¢,(f) and fio (/)
are complex linear and ¢,(f), n.(f) are self-adjoint if and only if Efe 5.

Because of the projection E we can extend the class of functions on
which ¢,(-) and =,(-) are defined to include distributions of the form
3(t — to)g(xy, x5, X3) where g e L(R*). In particular, if t, =0, g is real-
valued, and § is the usual Fourier transform on R3, then

(CE39)(po, B) = Edg(po, —p) = (27)™ ¥2§(—p) = (2r)™ V24(p) = ESg

Thus E(dg) and uE(dg) are in H#. Therefore ¢,(dg) and =, (8g) are self-
adjoint if g e #(R?) is real. For obvious reasons, the maps g+ ¢,,(59),
g+ 7,(g) are called the time-zero fields. From now on we will only use
test functions of the form dg in ¢,(-) and =,(-) and write ¢,(g) and =,(g)
if g€ #(R®) instead of ¢,(6g) and =,(3g). If f and g are real-valued
functions in &(R?), then (X.70) implies that for Y € F,,,

(o) A0l =i | FDlPI(p I 4 () (x.72)

For convenience and also so that our notation coincides with the standard
terminology, we now transfer the fields we have constructed from the Fock
space built up from I*(H,, dQ,) to the Fock space built up from
I?(R3). For notational simplicity, we define for f¢ I*(H,,, dQ,,)

a(f)=(@(N)* alf)=a (Cf)

First notice that each function f(p)e I?(H,,, dQ,) is in a natural way a
function f(p)=f(u(p), p) on R®. For each fe I*(H,, dQ,) we define
(1)) =1 (u(p). p)//u(p). J is a unitary map of I*(H,,, dQ,,) onto I*(R?), so
[(J)is a unitary map of & ,(I*(H,,, dQ,,)) onto & ,(I>(R*)). The annihilation
and creation operators on & (I*(R%)), d(-), 4'(-), are related to a(-) and
a'(+) by the formulas

S®) ) - rya( r)-!
(m) Val/TY)

~ f(p) =TI + -1
a ( J——“—@) (et (1))
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We use the unitary map I'(J) to carry the Wightman fields over to
Z (I}(R*)) by defining

®,(f) = T, (/)T )"
- )12

Pn(f) = TU)eu( L)
)

where C = JCJ! acts by (Cg)(p) = g(—p). Having established this cor-
respondence, we now drop the ~ and the bold face letters; from now on
we will only deal with the fields on % (I?(R*)) and three-dimensional
momenta. Further, we recall that the restriction of the four-dimensional
Fourier transform that we have been using in this section to functions of the
form &(x,)g(x,, x,, x3) is the usual three-dimensional Fourier transform.
Notice that

for real-valued fe &(R*)

))} for real-valued fe £(R?)

At
J=(cf)
so Cf = fif and only if fis real-valued.
For fand g real-valued, (X.72) becomes

[on(f). Tnlg)] = i | f(x)g(x) d (X.73)

(X.73) is the Schwartz space form of the canonical commutation relations
(CCR). In the Appendix to this section we prove that for each m > 0,
this representation of the CCR is irreducible and for different m, the
representations are inequivalent. Thus, the time-zero fields in the free scalar
field theories give rise to different representation of the CCR.

As a final topic before turning to interacting fields we will show how the
structures which we have developed are related to the “fields” and
“annihilation and creation operators” introduced in physics texts. First
we let

Dy = {y |y € Fo, Y™ € #(R*") for all n}

and for each p € R* we define an operator a(p) on Z(I?(R?)) with domain
Dy by

(alpW)P(kyy ... k)= /n+ 1" V(p, ky, ..., k,) (X.74)
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The adjoint of the operator a(p) is not a densely defined operator since
it is given formally by
1 & -
(a'(pW)"(ky, .. ., k) =—\/—; Y 6(p — kW O(kyy s ke ns kpins iy k)

= (X.75)

However, a'(p) is a well-defined quadratic form on D, x Dy . For example,
if y, ={0, ¢y, 0,...}and ¥, ={0, 0, y?, 0, ...}, then

(2, a'(p) = \% [ @ er, P Olkr) + P kW (k) dky
The reader can easily check that the formulas

alg) = | a(pla(—p) dp (X.76a)

a'(g) = fwa'(p)g(p) dp (X.76b)

hold for all g€ &(R?) if the equalities are understood in the sense of
quadratic forms. That is, (X.76a) means that for ,, ¥, € D, we have

o alghba) = [ (s alelda(~p) dp

and similarly for (X.76b). Since a(p): D, — D, the powers of a(p) are
well-defined operators on D, . As before we can write down a formal
expression for (a'(p))", but it does not make sense as an operator, only as a
quadratic form on D, x D, . Notice that

W1, @ (P)Y2) = (@(P)"¥ 1, ¥2) (X.77)

so for each n, (a'(p))" and a(p)" are “adjoints” in the sense of quadratic
forms. We could of course have defined the quadratic form a'(p)" by
(X.77) and then calculated that it arises by taking the nth power of the
formal object given by (X.75). Since a(p, ): Dy — Dy, (¥4, a'(p;)a(p, W,) is a
well-defined quadratic form for all {p,, p,> € R® x R3. Notice, however,
that (Y, a(p,)a’(py)¥;) does not make sense since a'(p,) is only a
quadratic form. In general any product [ [z, a(p,) is a well-defined operator
from Dy to D, and [y ,, a'(p;) is a well-defined quadratic form on
Dy x Dy . Thus

(wl,( i a'(p,))(IN]'a(po)wz)

i=N, +1 i=1
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is also well-defined quadratic form on D, x D, . One can check directly
that if f; e #(R3), then as quadratic forms

(11 atn)(Hatn)

i=N;+1

fR( Il o' )(l_la( p.)(ﬁlf(p,-)) dp, - dpn, (X.78)

=N,;+1
and

N=[ a'(plalp) dp (X.79)
RJ

The generator of time translations in the free scalar field theory of mass
m is given by

H,= f u(p)at(p)a(p) dp (X.80)
R3

H, is called the free Hamiltonian of mass m. (X.78), (X.79), and (X.80)
involve no formal manipulations, but are mathematical statements about
quadratic forms.

Theorem X.44  Let n; and n, be nonnegative imegers and suppose that
W e (R3m +"2)) Then there is a unique operator Ty, on Z, (I*(R%)) so that
Dy < D(Ty) is a core for T, and

Wky,....kn, Pys--os P,.,)(f[la'(ki)) ( ﬁa(p,)) dk dp

(a) TW=J- 1l
(X.81)

Ra(n, +n3)

as quadratic forms on D, x D, .
Furthermore,

(b) If m; and m, are nonnegative integers so that m; + m, = n; + n,,
then (1 + N)~™”2T,(1 + N)~™/% is a bounded operator with

[(1 + N)=™ 2Ty (1 + N)=™2]| < Clmy, my)|W] 2
In particular, if m; = n, and m, = n,, then

I(L+ NY="2T(1 + N)="2| < | W]

(©) T = ijMW(k,, covs K P1s s p"z)(ifjlaf(pi)) (il:—[lla(k,-)) dk dp

as quadratic forms on Dy, x D, .
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(d) If W,—» W in (R3m+m)) then Ty, — Ty strongly on D, .

(¢) F, is contained in D(Ty,) and D(T}¥), and on vectors in Fy, T
and T} are given by the explicit formulas

(Tw Y)¢m*m) = K(¢, ny, ny)S

x “ Wiky, ..., kn,’ Dis e pn,)W")(pu «eos Pny» kn,+l’ kn,+l—n1) dP]
(X.82a)
(Twy¥)™=0 ifn<ng—n,
(T Y)e=—m+m) = K(£, ny, ny)S

X l:f W(kl, ey kn,a Dis -+ Pn,)ll/(kh ceey k,,l, Dng+1sc-es p’lz+""h) dk]
(X.82b)

(TyY)" =0 ifn<n,—n
where S is the symmetrization operator and
V(¢ + ny — my)1]12
(¢ — na)1)? ]

Proof For vectors in D, we define T, by the formula (X.82a). By
the Schwarz inequality and the fact that S is a projection,

N(Ty ) =mrml? < K (4, my, | W)2 Y92

If we now define an operator T} on D by using the formula in (X.82b),
then for all ¢ and  in D, one easily verifies that

(0. Twy) = (Th 0. ¥)

Thus, Ty is closable and T}, is the restriction of the adjoint of Ty, to D, .
From now on we will use T}, to denote T, and T}, to denote the adjoint
of Ty,. By the definition of Ty, D, is a core and further, since Ty, is
bounded on the /-particle vectors in D, we have F, = D(Ty). Since the
right-hand side of (X.82a) is also bounded on the /-particle vectors, (X.82a)
represents Ty, on all /-particle vectors. The proof of the statements in (e)
about T}, are the same.
To prove (b), let € D, . Then by the above computation

(1 + N)=™2T, (1 + N)=m/2)¢=ra+n)|2
< ( K({, ny, nz) )2”W||2"'l/¢)”2

K(¢, ny, ny) = [

(1 + ¢ ~ny + nym(1 + ¢ymf?
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so that
I(1 + N)~™AT (1 + N)=m2y)
K(/ Ny, n2)
= (fgg (1+ ¢ = ny + ny)"2(1 + £)m2 I%hivi
< C(my, mp)|W| ¥
where

K(Z, ny, ny)
(14 ¢ = ny + ny)"/3(1 + £)ym/?

C(my, my) = sup <
Z

since m; + my = n; + n,. In all the sup’s only £ so that £ —n, +n, >0
occur since the other terms are annihilated by the action of T,,. Thus,
(1 + N)™™~2T,(1 + N)~™/? extends to a bounded operator on % (#)
with norm less than or equal to C(m,, m,). If m; = n; and m, = n,, then
C(mb m2) =L

To prove (d) we need only note that if ¢ ={0, ..., ¥, 0, ...} € Dy, and
W, 5 W, then

| Tw b — Tyl = | Tw,-w|
< K(4, i, mo)|W, — W ||y
-0 as n— oo
Since D, consists of finite linear combinations of such vectors, we have

shown that Ty, converges strongly on D, to Ty, if W, Sw

To prove (a) let ¥, ¥, € D, with y, = { Y- "2‘*"-), 0, ...} and
Y, =10,...,¥$,0,..}. Then, if W = ([, f; ]‘[, 1 9(p;)), the definition
of the form (]_["' 1 a'(k‘))(]_[?;, a(p;)) shows that

(W1 T ¥ha) = [ Wlkss oo K Py P,)
x(w,, (Ma' ,))(]j p,)wz) dkdp  (X83)

Since both sides of (X.83) are linear in W, the relationship continues to hold
for W’s that are finite linear combinations of such products. Since

(v ({1 (T ') (it alp)|s) e LR )

and since (d) holds, both the right- and left-hand sides of (X.83) are
continuous linear functionals on I#(R3("+m)), Since they agree on a dense

:|_

1
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set, they agree everywhere. Finally, (X.83) extends by linearity to all of
Dy x Dy . This proves (a); the proof of (c) is similar. |

Finally, we note that as quadratic forms on D, we can express the
free scalar field and the time zero fields in terms of a'(k) and a(k):

1 i(u(pyt—p - x —i(u(pyt—p- x d3p
®,(x, t) = W-[R’e( (P)—p-x)gt(p) 4 e~ilulpl=p" X)g(p) oS (X.84)
3
Pmlx) = )mj (e~ *a'(p) + €” *a(p)) \/—— (X.85)
Tom(X) =(2n;)3,2f (e77"*a"(p) — ?"*a(p)) / )d3 (X.86)

Before introducing the Hamiltonian approach for constructing a self-
interacting scalar boson field in two-dimensional space-time, it is appropriate
to make a few general remarks about interacting quantum field theories.
At the present time, most of these theories are premathematical in the
following sense. Hamiltonians and fields are written down, but no Hilbert
space is given on which they are well-defined operators. The matrix elements
of the S-operator are then calculated from the fields and Hamiltonian by
formal manipulation. These matrix elements are expressed as power series
whose coefficients depend on the vacuum expectation values of a related
free field theory. Typically, each coefficient of this power series is given by a
divergent integral. One formally cancels these infinities by making various
input parameters in the theory infinite and then follows a set of prescriptions
for extracting the “principal parts” of the resulting difference of divergent
integrals; this is called “renormalization.” In quantum electrodynamics,
these procedures have produced predictions very close to experimental
values. However, only slow progress has been made on the mathematical
problem of putting these models on a sound foundation. Substantial
mathematical results exist in only a few cases and only in space-time
dimensions smaller than 4. In only one model (the theory we discuss below
is a special case of this model) have all the Wightman axioms been
verified (as of 1974). If these cases are a guide, the mathematical resolution
of these problems will require advances in diverse areas of functional
analysis: self-adjointness questions, perturbation theory, scattering theory,
probability theory, spectral analysis, and C*-algebras.

An “interacting field theory” is a field theory satisfying the Wightman
axioms which has a nontrivial scattering theory (see Section XIL.15). A
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natural way to construct such fields is to try to make a perturbation of
one of the free theories which we have constructed. In classical Lagrangian
field theory the simplest Hamiltonians are of the form

H=Hgy+ f _Flo() d*x

where F is some function, say a polynomial (see Section X.13). Since we
want the Hamiltonian to be bounded below, we expect that the polynomial
should be of even order and the coefficient of the highest term positive.
The case F(x) = ax? turns out to have a trivial scattering theory; in fact,
the resulting theory is just the free field of mass m + 2. The next simplest
case is F(x) = Ax*. Thus, we are led to considering the formal Hamiltonian

H=Hy+ A j (On())* Bx,  A>0 (X.87)
R!

where H, is the Hamiltonian of the free scalar boson field theory of mass m
and ¢,(x) is the free field at time zero. One’s first naive hope would be
to show that H is self-adjoint and then define the interacting field on Fock
space by

O(x, t) = e, (x)e™ ! (X.88)
We will not be able to make sense of (X.87) and (X.88) without serious
modifications, but using the commutation relations between ¢, =, a, and a’,
we can formally compute the differential equation which ®(x, t) satisfies (this

is just the kind of formal manipulation which we warned the reader against
in Section VIILS5):

62
a?
[H’ (P,,,(X)] = [HO’ (pm(x)]

D(x, t) = ™(i)[H, [H, pp(x)]]e” "

)
B '” (27:)3/2% { [at(k)a(k), a(¢)]
+ e‘iLx[af(k)a(k), at(/)]} dk d¢
()
(2n)**/2u(¢)

+ e *a\(k)o(k — £)} dk d¢

{e** (—a(k)d(k - ¢))

-] (2:,/)5/(:)[ e** %a(k) + e”* *a'(k)) dk = — iny(x)
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[(H, [H, ¢u(x)1 = [Ho, [H, ou(e)]] + [y, [H, 0u(x)]]
_ (#(k))z e+ik-xa e—l'k-xa
[Ho, [H, @ulo)]] = [ T @y € o) + € ) d
= (=A + m?)o,

~ik-(x—y)

(a9} [H. 0no)] = [ = s P = 8(x = )

[H,. [H, on(x)]] = 4 [ [oa0)*. [H. ou(x)1 dy

= 44 [ ou(y)8(x = y) dy

= dlp,(x)*
Thus,
2

:t O(x, t) = (A — m?)g,,(x)e” H — 44eHip, (x)3e ™ H!

= (& — m)e Mg, (x)e™ " = 43(e M, x)e )P
= (A — m?)®(x, t) — 4AD(x, t)?
Thus, formally the field ®(x, t) satisfies
(32 + m*)®(x, t) = —4A(D(x, t))? (X.89)

Another way of looking at our problem is that we are trying to find an
operator-valued distribution ®(x, t) which satisfies (X.89) and also satisfies
the Wightman axioms. Henceforth, we write ¢(x) instead of ¢,,(x).

We now return to the consideration of (X.87). Although ¢(x) is a well-
defined quadratic form on Dy, x Dy, it is not an operator, so we must
say what we mean by the fourth power (p(x))*. Suppose that we take the
expression for ¢(x) given by (X.85) and formally take the fourth power as
if ¢p(x) were an operator. We get a sum of sixteen terms of the form

4 4 4
j m exp( -iy k_,x) ( I (2n)‘3/2(2u(kj))"/2) ('1'[ a*(k_,)) dk, - dk,
R3---R? i=1 j=1 =1
(X.90)
where a* (k;) stands for either a(—k;) or a'(k;). As we have already learned,
expressions of the form (X.90) do not in general make sense even as quadratic
forms unless all the a' terms are to the left of all the a terms. However,
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if all the a' terms are to the left, then for each x, (X.90) is a well-defined
quadratic form on Dy, x D, . We therefore define the nth Wick power of
@(x) to be the quadratic form on D, x D, obtained by formally taking
the nth power of ¢(x) and moving all the a' terms to the left of the a terms.
The nth Wick power of ¢(x) will be denoted by :¢(x)". We note that the
nth Wick power should really be called the nth Wick power with respect to
Q, (see Problem 48). The reader can check that formally

1p(x)*: = @(x)* - cop(x)* +d
where ¢ and d are appropriately chosen infinite constants. By putting in
cut-offs we will later make precise mathematical sense out of this statement.
If we now replace (¢p(x))* by :¢(x)* in (X.87), then H is a well-defined
quadratic form on Dg x Dg. For example, if y; = {0, 0, 0, y!*, 0, ...},
i =1, 2, then the term in (Y, Hy,) with two a'’s and two a’s is

(_‘ (k1 kz—k —'kA))
100 (e Gty )
8 (” YI(py, ky, kW5 (02, ks, k) dp, dpz) dk, "'dk4) dx (X.91)

This is a well-defined finite integral since y{*’ € &(R?). Unfortunately, this
quadratic form does not arise from an operator. To see this, consider the
formal expression for HQ,. This is a vector (0, 0, 0, 0, y'¥, 0, ...) with
(formally)

“@ _ exp(—ix Yioy ki)
Yk, ka\ ks, ky) Jn’ M-, = Y2 2p(k) dx
O(Xfo s ki)
T @I 2# D)2

This expression is certainly not in I?(R®X*); first, of course, it is singular
because of the delta function, but even if we restrict the x integration by
letting g € CP(R?) and consider

J g(x)exp(—ix Z.=1 k;) dx = é(Z?=1 k
f=1 (27)*(2p(k ))”2 (2n)°2 [Ty (k)

we still do not get an I? function because u(k;) grows too slowly at co.
Thus, there are two kinds of infinities involved here: the infinite volume
(x space) divergence and the ultraviolet (large k) divergence.

In order to obtain an operator, we restrict ourselves to one space dimension
(i.e., each of the k;, p;, and x are now one dimensional) and replace the
quadratic form [g :¢(x)*: dx by & g(x):(x)*: dx where g(x) is a real-valued
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function in I?(R). Then, each of the terms in the quadratic form
H, +J g(x):@(x)*: dx
R

has a kernel of the form g(}'4-, k;)/[[{=1 (2u(k;))*/%. Since this function is
in I?(R*) (Problem 47), we are guaranteed by Theorem X.44 that the
quadratic form arises from an operator on D, which is symmetric since g
is real-valued. We denote by H; (g) the operator {g g(x):¢(x)*: dx and define
on D,

H(g) = Ho + Hy(g) = Ho + [ g(x)ip(x)*: dx

We will often choose for g a smooth function of compact support which
equals one on a very large interval. Occasionally, one takes the characteristic
function of a large interval for g. In either case, the effect of g is to turn
off the interaction for large values of x. Therefore, g is called a space cut-off
and H(g) is called the spatially cut-off Hamiltonian for the (¢*), field theory
(the 2 refers to the fact that we are using only one space dimension, so
space-time is two dimensional). We summarize in a proposition.

Proposition Let ¢ be the free scalar boson field of mass m at t =0
in two-dimensional space-time. Let g be a real-valued function in I*(R). Then

Hlg) = Ho + Hi(g) = [ p(k)a'(Kafk) dk + | glx)o(x)*: dx
is a well-defined symmetric operator on D,.

In Section 9 we will show that H(g) is essentially self-adjoint on
C*®(Hy) n D(H/(g)). In Chapter XIX we will show how von Neumann
algebras can be used to remove the spatial cut-off by choosing a new
representation of the canonical commutation relations.

The procedure that we have just indicated for controlling the infinite
volume infinity by putting in a spatial cut-off which is then removed by
C*-algebra techniques is generally believed to be the correct method for
handling this infinity in more general quantum field theories. It is thought
that the ultraviolet divergences in (@*); and (p*), can be removed by a
procedure known as renormalization together with a change of representa-
tion of the commutation relations. To describe renormalization very briefly
recall that we have seen that the Wick ordering of powers of the
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field can be interpreted as subtracting a lower order polynomial with infinite
coefficients. In (@*), it is known, and in (@*), it is expected, that a similar
procedure of subtracting terms with infinite constants will work except that
the constants will no longer be linear in 4 as they are for Wick ordering
For further discussion and references to the (¢*); results, see the Notes.

Our final topic is the construction of Q-space and I?(Q, du), another repre-
sentation of the Fock space structures which we have presented. In analogy
with the one degree of freedom case where & (R) is isomorphic to I*(R, dx)
in such a way that ®g(1) becomes multiplication by x, we will construct a
measure space {Q, u), with u(Q)=1, and a unitary map S: F(#)—
I2(Q, du) so that for each f'e H#¢, So(f)S™* acts on I*(Q, du) by multiplica-
tion by a measurable function. We can then show that in the case of the
free scalar field of mass m in two-dimensional space-time, V = SH;(g)S ™!
is just multiplication by a function V(gq) which is in I?(Q, du) for each
p < . In Section X.9, we will use this property of V in a proof that
H = H, + H,(g) is essentially self-adjoint on C*(H,) n D(H,(g)).

Let {f,}%; be an orthonormal basis for # so that each f, € # and let
{9u}¥=1 be a finite collection of the f,. Let # be the closure of the set

{P(e(g;) ---» @(gn))% | P a polynomial}
in #,(5#) and define F{" = #, n F,. From Theorem X.43 (and its proof)
it follows that ¢(g,) and n(g,) are essentially self-adjoint on F§" and that
eit(o(ﬂh)eim(gl) = e—.‘-“éueim(gl)ei‘(’(gh)
Thus we have a representation of the Weyl relations in which the vector Q,
satisfies (¢(gi)? + n(gx)* — 1)Q, = Oand is cyclic for the operators {¢(g:)}= ;.-
Therefore by the construction in Problem 30 (or we could appeal directly
to Theorem VIIL.14), there is a unitary map S : &, — (R") so that
$™Mo(gi)(S™) ! = x
o 14d
™) ony-1 - - 4
§™n(g)E™) 7 dx
and

_ N 2
SMQy = n~N exp(— 3 —")

=1 2

It is convenient to use the Hilbert space I}(RY, n~¥/2 exp(— Y. x2) d"x)
instead of I*(RM) so let dy,=n"'2e"*dx, and define (Tf)(x)=
"4 exp(Y ¥, x2/2)f(x). Then T is a unitary map of I*(RY) onto
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RN, T]¥-, dw) and if we let S™ = T§™, we have

N
SN Fy - Lz(lRN, Il du,,)
k=1

SMp(a)(S™) T = x,

10
SMig(g ) (st = X 2 9
n(gk)( ) i + i axk
SMQ, =1  (the function identically one)

Notice that each u, has mass one, which implies that

(Qo, Py(0(g1)) - Pylo(gn))) = .[R..P’(x‘) PN(XN)klf[ldﬂk
J Py(x) dps
R

N
=TI

k=1

N
=ka (Qo, Pile(g:))0) (X.92)
where Py, ..., Py are polynomials. This formula can also be proven, of
course, by direct computations on F,(#).

Now it is easy to see how to construct {Q, du). We define Q = X%, R.
Take the o-algebra generated by countable products of measurable sets in R
and set u= ®=, - We denote the points of Q by g =<q,, 43, --.»-
Then {Q, p) is a measure space and the set of functions of the form
P(qy, ..., g,), where P is a polynomial and n is arbitrary, is dense in
I2(Q,du). For a discussion of the measure-theoretic details, see the references
in the Notes. Let P be a polynomial in N variables

Plxp, ..o X, )= % Crpooy Xkl e, Xf2
LTy

and define
S: Po(fi,) > 0(fi, )% = Pqry ---» Guy,)
Then

1P (fi)s - ()0l =,Z ¢ Cal@0s @S Y1 1™ @ fi)n ™ Qo)
- N
= chf..f gist™ e gfetm™ [1dm,
l,m R¥ i=1

= J.QIP(qkl, ey qk")|2 dﬂ
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by (X.92) and the fact that each p, has mass one. Since Q, is cyclic for
polynomials in the fields (Theorem X.42), S extends to a unitary map of
F () onto I3(Q, du). Clearly So(f,)S™! = g, and SQ, = 1.

Theorem X.45 Let ¢, be the free scalar field of mass m (in two-
dimensional space-time) at time zero. Let g € I!(R) n I?(R) and define

H(g) = Jng(X)iw...(X)‘i dx

Let S denote the unitary map of & ,(I?(R)) onto I*(Q, du) constructed above.
Then V = SH,(g)S™! is multiplication by a function V(g) which satisfies:

(@) Ve IXQ,dy)forallp < co.
(b) e " e L'(Q,du)forallte[0, ).

Proof We will prove (a). See the Notes for a reference for the proof of (b).
Let x,(x) be the characteristic function of (—n, n) and define

_L o ik x ek xgt Xa(k)
Pm(x, n)—\/GJ( a(k) + e* *a (k))_—m dk

Then ¢,(x, n) is a well-defined operator-valued function of x. We define
:@m(x, n)*: by moving all the as to the left in the formal expression for
Om(X, n)*. t@u(x, n)*: is also a well-defined operator for each x and
:o(x, n)*: takes F, into itself. Now define

Hy(g, ) = | g(x):on(x, n)*: dx
and set ¥, = SH,(g, n)S™*. For each x,

QX 1)*: = (. n)* + dy(n)pn(x, n)? + do(n)

where the coefficients d, and d, are independent of x but dependent on n
(Problem 48). For each x, S¢,,(x, n)S™! is just the operator on I*(Q, du)
which operates by multiplying by Y =, ¢,(x, n)g, where ¢,(x, n) = (2r)™ /2 x
(f» 2.1~ '2e™). Furthermore, %‘f’:, feulx, n)> = (27)" Yaup™ 2|3, so
S@.(x, n)*S™! and S,,(x, n)?S™! are in I*(Q, du) and the I*(Q, du) norms
are uniformly bounded in x. Therefore, since g € L'(R), SH, (g, n)S™ ! operates
on I(Q, du) by multiplication by an I?(Q, du) function which we denote
by Vi(q)-

For each n, H,(g, n) differs from H,(g) only in that the kernel in each
ofthe terms is g(} k;) [ [i= 1 p(ki)™ */*xu(k:). As n — o0, these kernels converge
tog(}. k) [T¢=1 p(k;)™ /2 in I*(R*). Therefore, by Theorem X.44, H, (g, n)y —
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H, (g for y € F,. In particular H,(g, n)Q, — H,;(g)Q, . But, since SQ, = 1,
|H1(g. n)%| = |SH, (g, 1)~ | 20, duy = IVall 2. ay- Thus, the sequence of
functions ¥, is Cauchy in I*(Q, du) and so converges to a function
V € [2(Q, du). The reader can now easily complete the proof by showing
that each P(q,, ..., g,) is in the domain of V and SH,(g)S™! = V on that
domain. Since Q, is in the domain of H,(g)" for all n, 1 is in the domain of
V" for all n. Thus, for all n, V € I2"(Q, du). Since u(Q) < co, V € I?(Q, du)
forallp<co. |

Appendix to X.7 The Weyl relations for the free field

In this appendix, we study the natural generalizations of the Weyl relations
(VIIL8) to the case of infinitely many degrees of freedom. Let #g(R’) denote
the Schwarz space of real-valued functions on R’. Suppose that fi— U(f)
andf — V(f)are maps of & g( R’)into the bounded operators on a separable
Hilbert space s# which satisfy:

(i) for each fe LR(R’), V(f) and U(f) are unitary;
(i) for all f, g e FR(R’), V(f) and U(f) satisfy

V+a)= VW) Uf+a)=UNUG  (X93)
VW) = VeV (Do =i [ fats) ) (x94)
S®)

(iii) if f,—— £, then U(f,) = U(f) and V() -» V(f) strongly on .

The pair of maps {U(-), ¥(-)} is called a representation of the Weyl relations
over #(R). Two such representations, {U,(:), V,(-)} on s, and
{U,(-), V5(*)} on #,, are called equivalent if there is a unitary operator
T: o#, — H#,, so that U,(f)= TU,(f)T"! and Vy(f) = TV,(f)T"! for
allfe &(R?). The relation (X.71) shows that for each m, the pair {eix.("), eiea(-)},
where n,,, ¢,, are the time-zero field and conjugate momentum of the free
scalar field of mass m, is a representation of the Weyl relations on & ,(I}(R?)).
We will see below that these representations are inequivalent.

Let {U(-), V(*)} be a representation of the Weyl relations over &(R’)
and let {h,}, be the orthonormal basis for I>(R’) made up of products
of Hermite functions. If U ,(t) = U(th,) and V,(t) = V(th,), then (X.93), (X.94),
and (iii) imply that for each n, U,(t) and V,(t) are strongly continuous
unitary groups on J¢ that satisfy

V(OUWS) = Unls)Vlt),  m#n

V() U () = e U (s) Vut) (X.95)
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for all 5, te R. Thus, for all n, {U,(t), V,(s)} satisfy the Weyl relations
(VIIL8), and for different n the corresponding unitary operators commute.
Von Neumann’s theorem (Theorem VIII.14, see Problem 30 and Chapter
XIV) states that up to multiplicity, there is only one representation (the
Schrodinger representation) of the relations (X.95) if n ranges over a finite
set of integers. It was thought for a long time that von Neumann’s theorem
held for the case of infinitely many n, but examples of inequivalent repre-
sentations occurred in the work of Friedrichs in the late 1940’s and were
emphasized in the later work of Segal and Garding-Wightman. As we have
already mentioned, Theorem X.46 below shows that the free scalar fields of
different masses give rise to inequivalent representations.

By (X.93) and (iii), V(¢) and U(tf) are continuous unitary groups on ¢ ;
we denote their generators by ¢(f) and n(f) respectively. It can be shown
that there is a domain D in 3 which is invariant under all of the operators
o(f)n(f).f € La(R)and on which ¢(f)and n(f)areessentially self-adjoint.
For y € D, (X.94) implies that

[o(/), nlgy =i [ 1(la(x) dxy (X.96)

for all f, ge #(R’). A pair of operator-valued distributions over &(R’)
which satisfy (X.96) are said to be a representation of the canenical
commutation relations. In the case of the time-zero free scalar field of mass m,
we have already seen that D can be chosen to be D, and that (X.96) can
be verified directly. As in the case of finitely many p; and g; discussed in
Section VIILS, (X.96) does not necessarily imply (X.94) although they are
formally equivalent.

We now prove that the representations of the canonical commutation
relations arising from free scalar fields of different masses m > 0 are
inequivalent. A family of bounded operators on a Hilbert space is called
irreducible if the only operators that commute with all members of the family
are scalar multiples of the identity.

Lemma1 Let ®g(+), be the Segal quantization over a separable Hilbert
space #. Then the family of operators {/(/)| f € #} is irreducible.

Proof Let{e®®\/)| fe #} denote the set of operators which commute with
all %), fe . Since {e’®)|fe #}' is a norm closed algebra of operators
closed under taking adjoints, the same proof as in the lemma after
Theorem VI.19 shows that each operator in {'®{/)| fe #} may be written
as a linear combination of four unitaries in {e!®)| fe #}. It is therefore
sufficient to prove that every unitary T € {'®/)| fe #} is a scalar multiple
of the identity.
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For each fe # and all t, T commutes with e#®{/) so by Theorem VIII.13,
T commutes with the spectral projections of ®@g(f). Thus, T: D(®s(f)) —
D(®s(f)) and TOs(f )W = Os(f)Ty for all Y € D(®s(f)). Now, let C be a
conjugation on # and for fe # define N(f)=4(Ds(f)* + Ds(if)* — 1).
Then N(f) = 0, since N(f) =dI'((f; -)f) and T: D(N(f)) = D(N(f)) with
TN(f W = N(f)Ty fory € D(N(f)). Let { £}{%, be an orthonormal basis for
# with f;e #; for each i. The reader can check directly that for each
¥ € D(N)

Ny = lim Z N
Thus, € Q(N), the form domain of N, if and only if y € ()2, Q(N(f)))
and Y 2, (¥, N(f;)¥) < o, and if the sum is finite,

. ) = 3 (9. NUW)

Since Q, € D(N(f})), TQ2o € D(N(f;)). Thus, since N(f;)Q, = 0 for alli we have

iz:l(TQo, N(f)TQ,) = _ZI(T*TQO, N(f)Q) =
Therefore, TQq € Q(N) and (TQ,, NTQ,) = 0. Since N is strictly positive
on {Qo}', there exists a constant ¢ so that TQ,=cQ,. Let 2 be a
polynomial in ®g(g, ),.. ., Ps(g,) for some g; € #°. Then T(PQ,) = P(TQ,) =
cP9, . The set of such vectors 2Q, is dense in F () by Theorem X.41.
Therefore T =cl. |

Lemma2 Let ¢,(:), m,(') be the time-zero ficld and conjugate
momentum of the free scalar field of mass m. Then the set

{eionl), eimnl)| fe Pu(RP))

is irreducible.

Proof The reader can easily deduce Lemma 2 from Lemma 1 by using
the fact that (R’ is dense in L3(R®) and the continuity properties of the
fields (Theorem X.41d). |

Theorem X.46 Let ¢,(-), m,(') be the time-zero field and conjugate
momentum of the free scalar field of mass m. Then, if m, # m,, the

representations {exp(iy, (*)), exp(i@m,(*))} and {exp(i7tm,(-)), exp(i@m,(*))} of
the Weyl relations are inequivalent.
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Proof Suppose that there exists a unitary map T on & ([*(R*)) which
satisfies T exp(i@m,(f))T ' = exp(ipm,(f)) and T exp(in. ()T~ '=
exp(in,, (1)) for all fe #(R3). Let G (-, -) and G (-, *) denote the restric-
tions of the representations I'(U,, (°, -)) and ['(U,,(-, -)) to the Euclidean
group, which is the subgroup of 2! which leaves the time-zero plane
fixed (the semidirect product of the rotation group and the translation
group on R3). For any element R, a) of the Euclidean group, the Poincaré
invariance of the fields implies that

Gm,(R, @)Pum,(f)Gm,(R, a)"" = @m,({R, @} )
Gmy(R, 8)Pm,(f)Gm,(R, a)"! = @m,({R, @) f)

and also the corresponding statements for n,,, and =,,,. From the functional
calculus 1t follows that

Gnm,(R, a)exp(i@m,(f))Gm,(R, @)™ ' = exp(ign, (R, a> f))

G my(R, @)eXP(i@m,(f))Gm,(R, @) " = exp(im,(<R, @) f))
and similar statements for =, and 7, . From these relations and the
properties of T the reader can quickly check that for each (R, a) and each
f€ #(R?), TG (R, a)T G, (CR, ad ') commutes with both exp(in,(f))
and exp(i@m,(f)). By Lemma 2 this implies that

TGm,(R, a)T~ G (KR, 8>~ ') = C(R, a)
or equivalently
TG (R, 8)T ™} = C(R, a)Gnm,(R, a)

where C(R, a) is a constant which a priori might depend on R and a.
It follows from the above relations that C(-, -) is a one-dimensional repre-
sentation of the Euclidean group. It is not hard to show (Problem 41)
that the identity representation is the only such representation. Thus

TG, (R, a)T™ ' = G, (R, a)

for all (R, a) in the Euclidean group. And from this it follows that TQ, = «Q,
since Q, is the unique vector invariant under both G, and G,,. Thus
(0, (Pm,(f)(Pm.(g)Qo) = (Qo, T(Pml(f)T_ ! T‘Pm,(ﬂ)T_ 190)
= (Qo’ (Pm,(f)(Pm,(g)Qo)

which implies that (Qg, @m,(X)Pm,(V)Q) 2nd (Qp, @ m,(X)@m,(¥)Qp) are equal
as tempered distributions on ¥(R?) x £(R?). But

(Qo, (Pm,(x)(Pm,(.V)Qo) = A+(X =¥ Mf)
and

(QO! (Pm;(x)(om;()))go) = A+(x - y! m%)
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and these distributions are not equal if m; # m,. Thus no such T having
the indicated properties can exist. Therefore the representations of the Weyl
relations are inequivalent. |

X.8 Semigroups and their generators

A family of bounded operators {T(t)|0 < t < co} on a Banach space X
is called a strongly continuous semigroup if:

(a) TO)=1
(b) T(s)T(t)=T(s + t)foralls, te R*
(c) Foreach ¢ € X, t+— T(t)p is continuous.

Such semigroups arise naturally in the theory of partial differential
equations and in quantum theory; this section is devoted to studying their
fundamental properties. We will see that strongly continuous semigroups
are the “exponentials,” T(t) = e™'*, of a certain class of operators. Thus,
they provide a generalization of the relationship between unitary groups
and self-adjoint operators. In particular, Stone’s theorem, the fundamental
criterion, the core theorem (Theorem VIIL.11), and the Kato-Rellich
theorem, all have generalizations to strongly continuous semigroups and
their generators. The only important property of self-adjoint operators
that does not generalize is the spectral theorem. There is a different class
of operators called “spectral operators” for which there is an analogue of
the spectral theorem. We give references in the Notes. The theory of semi-
groups has applications to the study of parabolic and hyperbolic partial
differential equations. Throughout this section we use the heat equation to
illustrate these applications. More general differential equations are discussed
in the Notes.
We begin by studying a special class of semigroups:

Definition A family {T()|0 < t < o0} of bounded operators on a Banach
space X is called a contraction semigroup if it is a strongly continuous
semigroup and moreover || T(¢)|| < 1 for all ¢ € [0, o).

As the reader will see, theorems about general strongly continuous semi-
groups are easy generalizations of the corresponding theorems for contrac-
tion semigroups. Thus, we study the special case first. We then briefly
discuss the general theory and conclude the section by studying another
special class, holomorphic semigroups.
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Let T(t) be a contraction semigroup on a Banach space X. As in the case
of unitary groups on Hilbert spaces we obtain the generator of T(t) by
differentiation. Set 4, = t~ (I — T(t)) and define

D(A) = {q) lim 4, ¢ exists}
t]l 0

For ¢ € D(A), we define Ap = lim, | ; A, ¢. Our first goal is to show that
D(A) is dense. We use an idea similar to the technique used in the proof
of Stone’s theorem. For ¢ € X, we set

@, =I T(t)p dt
0

Since T'(¢) is strongly continuous, we need only use the Riemann integral.
For any r > 0, T(r)e, = |5 T(t + r)e dt; thus

1 s

Ao = = | (T(t+ 1o = T(e)p) de
. H'”T(z)go dt + %JJT(t)qo dt

1o TG +o

Therefore, for each ¢ € X and s > 0, ¢, € D(A). Since s™'p,— ¢ as s >0,
A is densely defined. Furthermore, if ¢ € D(A4), then A4, T(t)p = T(t)A4, ¢,
so T(t): D(A)— D(A) and

d

5 T = —AT()p = ~T())de (X.97)

A is also closed, for if ¢, € D(A4), ¢, — ¢, and Ap, — y, then

: o 1
lim 4, ¢ = lim lim — - (T(r)e, — ¢,)
r—0 r—+0 n-w r

r

~ tim lim © [ T()Ag, di  (by (X97)
ro0ns0’ 0

= lim © JJT(t):// dt

r—oT’0
=y
so ¢ € D(A) and Ap = . We have thus proven:
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Proposition Let T(z) be a strongly continuous semigroup on a Banach
space X and set Ap = lim,_, A, ¢ where D(A) ={p|lim, o 4, ¢ exists}.
Then A is closed and densely defined. A is called the infinitesimal generator
of T(t). We will also say that A generates T'(t) and write T(t) = e™'“.

It is natural to ask what additional properties the generator of a con-
traction semigroup possesses. The formal Laplace transform
1

o = - P i -1a
1+ A Joe e ' dt

suggests that all u with Re y <0 are in p(A4). This is in fact true and
the formula holds in the strong sense. For suppose that Re 4 > 0. Then, since
fe=t4] < 1,

Ro = Jo e Me~Mp) dt

defines a bounded linear operator of norm less than or equal to (Re 1)~ .
Moreover, for r > 0,

I -4
A, Rp = — ;-[o e (e t*NA _ oty gt

— 1—e¥) (® —At,—tA et r—).: —t4
_( - )Joe e (pdt-i-—;—_l.oe e o dt

soasr =0, 4, Rp = ¢ — AR@. Thus Rg € D(4) and AR = ¢ — AR¢p which
implies (4 + A)Rp = ¢. In addition, for ¢ € D(A) we have ARp = RA¢
since
A J e Me M dt = J e MAe o dt =J e Me A dt
0 ) )

The first equality follows by approximation with Riemann sums from the
facts that e™ e '4p and Ae™*e~'4p are integrable, A is closed. Thus, for
@ € D(A), R(A + A)p = ¢ = (A + A)R¢p which implies that

R=(A+4)"

The properties of A which we have derived are also sufficient to guarantee
that A generates a contraction semigroup. In fact, we only need information
about real positive 1. This theorem (which we generalize later) is the
analogue of Stone’s theorem for self-adjoint operators.
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Theorem X.47a (Hille-Yosida) A necessary and sufficient condition
that a closed linear operator 4 on a Banach space X generate a contraction
semigroup is that

(i) (—o0,0)< p(4)
(ii) |A+A4)" <A 'foralli>0.

Furthermore, if A satisfies (i) and (ii), then the entire open left half-plane is
contained in p(4) and

A+ A4)yle= —J e Me™Mp dt (X.98)
0

for all ¢ € X and A with Re 4 > 0. Finally, if T,(t) and Ty(t) are contraction
semigroups generated by A, and A, respectively, then T;(t) # T,(t) for some
t implies that A, # 4,.

Proof Since we showed above that conditions (i) and (ii) are necessary and
that (X.98) holds, we need only show sufficiency. So, suppose that 4 is a
closed operator on X satisfying (i) and (ii). For 4> 0, define A% =
A— 2*(A + A)~'. We will show that as 1 — co, A — 4 strongly on D(A4)
and then construct e~ # as the strong limit of the semigroups e~ '4",

For ¢ € D(A), A% = A(A + A)™'A¢. Moreover, by (ii),

By condition (ii) the family {4(2 + 4)~'| A > 0} is uniformly bounded in
norm, so since D(A) is dense, A(A + A)" 'Y =y for all Yy e X. Thus
AP — Agp for all ¢ € D(A).

Since A® is bounded, the semigroups e~'4“ can be defined by power
series. Since

”e—lA“’" = “e—).leﬂ).z(l+A)"”
< — At t";lz" pl A -1||n
et ) la+ a7
<1

they are contraction semigroups. For all y, 4, t > 0, and all ¢ € D(4), we
have

1AW LA™ d sAY (' ;) G
SO,

t
=40 = e~t4p] < [ e 4"~=1"] | 4% — AW ds
0

< t”A""(p — A()-)(p“
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We have used the fact that e=(=94* and =4 commute since {4¥},,,
is a commuting family. Since we have proven above that A%¥W¢ — Ag,
{e~'4"p} is Cauchy as A — oo for each t > 0 and ¢ € D(A4). Since D(A) is
dense and the e~*4" are uniformly bounded, the same statement holds for
all ¢ € X. Now, define T(t)p = lim,_, , e~'4“o. T(t) is a semigroup of con-
traction operators since these properties are preserved under strong limits.
The above inequality shows that the convergence e='"“¢ — T(r)p is
uniform for ¢ restricted to a finite interval, so T(t) is strongly continuous
since e~'4" is. Thus, T(t) is a contraction semigroup.

It remains to show that the infinitesimal generator of T(z), call it 4, is
equal to 4. For all t and ¢ € D(4),

e__‘A(A)(p _ (p - _ JJe—S"wAU')(p dS
0

s0, since A%¢p — Ap, we have

Tty —@=— J;T(s)mp ds

Thus, 4,¢ —» Ag as t —» 0. Therefore D(4) > D(A) and Al D(4) = A. For
A> 0, (4 + A)™! exists by hypothesis and (1 + 4)™! exists by the necessity
part of the theorem. Thus (A + 4)D(4) = X = (A + A)D(A4), which implies
that D(4) = D(A).

Finally, suppose that Ty(t) and T5(t) are contraction semigroups so that
Ty(to) # Ty(to) for some t, > 0. Then thereis an# e X* and a ¢ € X so that
¢(Ty(to)p) # £(Ta(to)p). Since (X.98) holds for both Ty(t) and Ty(t), we
conclude that £(( + 4,)" '¢) # £((A + 4,)” ') for some A with Re 1 >0
because the ordinary Laplace transform is injective on the bounded
functions. Thus, the resolvents of 4, and A, differ, so 4, # 4,. ||

It is possible to construct e™* in the sufficiency part of Theorem X.47a
by using the formula e™*4 = lim, ., , (1 + (t/n)4)™" (see Problem 49).

The difficulty in applying Theorem X.47a directly is that it is necessary to
construct the resolvent of the closed operator A in order to verify conditions
() and (ii). It is therefore convenient to have conditions on the operator A
itself, that is, we seek an analogue of the symmetry condition and the
fundamental criterion condition for self-adjoint operators. To see what these
conditions should be, consider the Hilbert space case. If ¢ € D(4), then the
fact that [[e 4|2 < ||@|? for all £ > O implies that (d/dt)|e™*p|?|,=0 < O.
On the other hand,

dt

le™ 0l = —(40.¢) = (0. 4¢)



240 X: SELF-ADJOINTNESS

so we conclude that Re (Ap, ¢)>0. Thus, we need to generalize the
condition Re (A, ¢) = 0 to the Banach space case.

Definition Let X be a Banach space, ¢ € X. An element /€ X* that
satisfies [|Z]| = ||l@|l, and ¢(¢)= |@|? is called a normalized tangent
functional to ¢. By the Hahn-Banach theorem, each ¢ € X has at least
one normalized tangent functional.

Definition A densely defined operator 4 on a Banach space X is called
accretive if for each ¢ € D(A), Re(£(A¢)) = 0 for some normalized tangent
functional to ¢. A is called maximal accretive (or m-accretive) if A is
accretive and 4 has no proper accretive extension.

We remark that an accretive operator is closable (Problem 52). The closure
of an accretive operator is again accretive, so every accretive operator has a
smallest closed accretive extension. We can now state the fundamental
criterion.

Theorem X.48 A closed operator A on a Banach space X is the
generator of a contraction semigroup if and only if A is accretive and
Ran(4o + A) = X for some 4, > 0.

Proof Let e”'4 be a contraction semigroup and suppose that Z is any
normalized tangent functional to ¢ € D(A). Then Z(e~*4p) is differentiable
and

£ Re(tle )| = ~Re £(4p)

1=

On the other hand
(e 40| < Il e~ 4ol < o] = (o)
for all £ > 0, so Re t™!(¢(e”"1p) — Z(¢)) < O for all t > 0. Thus,
—Re(Z(Ag)) < 0

for all normalized tangent functionals to ¢, so A4 is accretive. The fact that
Ran(l + A) = X is a consequence of (i) in Theorem X.47a. This proves
necessity.

To show sufficiency, suppose 1 > 0 and A4 is a closed accretive operator
satisfying Ran(1y + 4) = X, for some 44 > 0. Let £ be a normalized tangent



X.8 Semigroups and their generators 241

functional to ¢ € D(A4) so that Re(¢(4¢)) = 0. Then

Ale)? < A2(@) + Re £(Ap)
=Re/((A + A)p)

< el (2 + 4)e|

Thus, Ran(A + A) is closed and A+ 4 has a bounded inverse from
Ran(4 + A) to D(A) of norm less than or equal to A~'. To complete the
proof we need only show that Ran(i + A) is dense. But Ran(d + A4) is
dense for A = Ay, so the usual perturbation argument (see the proof of
Theorem X.1) shows that Ran(A + A) is dense for all 1> 0. ||

Corollary Let A be a closed operator on a Banach space X. Then, if
both A and its adjoint A are accretive, 4 generates a contraction semigroup.

Proof Suppose that Ran(I + A4) is not dense. Then by the Hahn-Banach
theorem there is an £ € X* so that ((I + A)p) = 0 for all ¢ € D(A4). Thus,
/e D(A’) and (I + A')¢ =0. So, if u is any normalized tangent functional
to £ in X**, u(A’¢)= —|¢||%, which contradicts the assumption that A’
is accretive unless £ = 0. Thus, Ran(I + A) is dense. ||

Before giving some examples, we make several remarks. First, to prove
sufficiency in Theorem X.48, we used only the assumption that there exists
at least one normalized tangent functional ¢ for each ¢ e D(A) with
Re #(Ap) > 0. From this it followed that (A + 4)~! was bounded for each
4> 0. Using the further assumption that Ran(d, + A) = X we then con-
cluded the proof of sufficiency. However, the necessity part of the argument
showed that if A generates a contraction semigroup, then Re ¢(4¢) > 0 for
all tangent functionals. Thus, in the presence of the assumption
Ran(I + A) = X, the condition that Re ¢(A¢) > 0 for one tangent func-
tional (for each ¢ € D(A4)) implies Re ¢(4¢) > O for all tangent functionals.
Secondly, the generators of contraction semigroups are clearly maximal
accretive since the condition Ran(l + A4) = X implies that A has no proper
accretive extensions. The converse statement, i.e., if 4 is maximal accretive,
then A generates a contraction semigroup, holds in the Hilbert space case
but not in the Banach space case (see the Notes and Problem 50). Finally,
as in the case of self-adjoint operators, there is a core theorem for the
generators of contraction semigroups:

Theorem X.49  Let A4 be the generator of a contraction semigroup on a
Banach space X. Let D be a dense set, D < D(A), so that e™'4: D— D.
Then D is a core for 4 (i, A[ D= A).



242 X: SELF-ADJOINTNESS

Proof Let A>0. We need only show that Ran(d+ 4 [ D) is dense.
Suppose not. Then there is a £ € X*, £ # 0, so that Z((1 + A)gp) = 0 for all
@oeD.But,if pe D,

d

(€7 0) = {(—AeTH ) = af(e™ o)

since e"'“p e D. Thus /(e”"“¢) = £(¢p)e* which for large enough ¢ con-
tradicts the fact that e™'4 is a contraction unless #(¢)=0. Since D is
dense, /() cannot equal zero for all pe D, so we conclude that
Ran(A + A | D) is dense. |

Example1 Let B be a self-adjoint operator on a Hilbert space .
Then ||(x — B)™!| < |Im |~ %, so the operators A, =iB and 4, = —iB
both satisfy the hypotheses of the Hille-Yosida theorem. The contraction
semigroups e ~'%, and e~'4: are equal to the unitary groups e"® for t <0
and ¢ > O respectively.

If B > 0, then B itself satisfies the hypotheses of the Hille-Yosida theorem
since ||(u+ B)™'| < u~! for u>0 by the functional calculus. Thus, B
generates a contraction semigroup e~ #. Of course, these semigroups can be
constructed directly from the functional calculus.

Example 2 (the heat equation on I?(R"))  The operator —A is essentially
self-adjoint on (R") and positive so its closure (which we also denote by
—A) generates a semigroup e on I2(R"). For fe I2(R"), we define
u(x, t) = e2Y4. Then for all pe CF(R" x (0, 0)),

J-R.‘. (( = g‘t - A)QD(X, t)) u(x, t) dx dt
IR (L, ((_ % - A) olx, t))eAT(x) dx) dt
[ 1, (- 7 2ot ) rras)
[

o gt[(e—“co—)(x,t)f(x)] dx dt

so u(x, t) is a weak solution of the heat equation du(x, t)/ot = Au(x, t). If
f€ D(A), then for each t > 0, u(x, t) e D(A) as a function of x, so in this
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case u(x, t) is a classical solution in the sense that u(x, t) is an
I2(R")-valued differentiable function of t and du(x, t)/dt = Au(x, t). In either
case u(x, t) satisﬁcs the initial condition u(x, 0) = f(x) in the sense that
||u x, t) = f(x)|z@w>— 0 as t = 0. We will see later that for ¢ >0, u(x, 1)
is in fact mﬁmtely differentiable in x and ¢ for all fe LZ(R") We remark that
since e is a contraction semigroup |u(x, t)||zw is a nonincreasing
function of .

Example 3 (the heat equation on C(R")) We denote by C(R") the
continuous functions on R" with f(x) - 0 as |x| = c0. C,(R") is a Banach
space under the sup norm. We define —A as the closure of the operator
@ > —Ap on F(R"). We will show that —A satisfies the hypotheses of
Theorem X.48. Let ¢ € £(R"). Then there is a point x, so that |@(x,)| =
SUPy ¢ R ( )| Let ¢, = ¢(x0)d,. Then £, € C(R")*, |£,] = |o(xo)| =
= |@(xo)[* = ||| so ¢ is a normalized tangent functional

to (p Furthcr

Re(Z,(—Ag)) = Re ¢(x0)(—Ap(x,))
= |Vo(xo) > — 3A| @(x0)|?
>0

because A|@(x,)[* < 0 since |@(x)|* has its maximum at x,. This shows
that —A [ #(R") is accretive, and thus its closure is accretive. Moreover,

— —_——
ifge PR, (1 + k*) 'ge P(R") = D(—A)and (I - A)(1 + k*) ' =g so
Ran(I — A) contains ,EP(IR") which is dense in C,(R"). Since Ran(l — A) is
closed, we conclude that Ran(I — A) = C,(R"). Thus, —A is accretive and
satisfies Ran(I — A) = C(R"), so by Theorem X.48, —A generates a con-
traction semigroup e® on C,(R"). As in Example 2, it may be shown that
for fe C(R"), u(x, t) = e*f is a weak solution of the heat equation. We
will see later that u(x, ) is in fact a strict solution. u(x, t) satisfies the initial
condition u(x, 0) = f(x) in the sense that

sup |u(x, t) — f(x)] >0 as t-0
xeR"
Since e is a contraction semigroup, max, g |u(x, t)| is a nonincreasing

function of t. This reflects the intuitive notion that the maximum temperature
should decrease as the heat diffuses.

Since €™ has an explicit kernel, we could have analyzed Examples 2 and 3
by “direct” methods. The advantage of the abstract theory is in cases where
there is no explicit solution available. See, for instance, Example 4, p. 245.
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There is also a perturbation theorem for generators of contraction semi-
groups analogous to the Kato-Rellich theorem. We first prove a lemma
which we later strengthen.

Lemma Let 4 be the generator of a contraction semigroup on a Banach
space X. Suppose that B is an accretive operator, with D(B) > D(A), and
|1Be| < al4e| + blo|

for some b, some a <4, and all p € D(4). Then A + B (defined on D(4))
is a closed accretive operator and generates a contraction semigroup.

Proof The idea of the proof is the same as the proof of Theorem X.12.
Let 2> 0. Then [|A(A + A)™!| = JAA + A)~! — 1| < 2. Thus for ¢ € D(A4),

IB(A + 4)~ o] < a|A(X + A) ol + bl(A + 4) "o

b
<|2a+-
< (2a+3)1el
Thus, for A sufficiently large, |B(A + 4)™'| < 1. Therefore, since
Ran(A + A)=X

and
(A+A+B)=(I+B@A+ A) ')A+ 4)

we conclude that Ran(A + 4 + B) = X. Since A4 generates a contraction
semigroup, we know that Re(£(4¢@)) > 0 for every normalized tangent
functional to @. Thus A + B is accretive and generates a contraction
semigroup. ||

Theorem X.50 Let 4 and C be accretive operators on a Banach space
X. Suppose that there is a dense set D, D « D(4), D < D(C), and an
ae [0, 1) so that

I(4 = C)oll < al| 4¢] + [IColl) + bl
for some b and all ¢ € D. Then

(a) A generates a contraction semigroup if and only if C does.
(b) D(AT D)= D(CI D).

Proof To prove (a), one need only show that Ran(io + A) is dense for
some 4o > 0 if and only if Ran(u, + C) is dense for some yo > 0. The proof
is exactly the same as the proof of Theorem X.13 except that we choose
o so that 2ax’/(1 — a) <4 so we can use the lemma. As before, part (b) is
left to the reader. |
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Corollary Let A and B satisfy all the hypotheses of the lemma except
that the condition a < 4 is replaced by a < 1. Then the conclusion of the
lemma holds.

As in the case of self-adjoint operators we have a product formula:

Theorem X.51 (the Trotter product formula) Let A and B be the
generators of contraction semigroups on a Banach space X. Suppose that
the closure of (4 + B) [ D(A) n D(B) generates a contraction semigroup on
X. Then, for all p e X,

e—l(A+ B)(D - hm (e—l/l/ue—ll/u)u(o

n—*a

In the case where D = D(A) n D(B) and (A + B) | D is closed, the proof
of Theorem X.41 is exactly the same as the proof given in Theorem
VIIL.30. For the general case, see the references in the Notes.

- Example 4 (the heat equation with sources and sinks proportional to the
temperature)  Let g(x) be a bounded (|g(x)| < M), real-valued continuous
function on R". The differential equation

g u(x, t) — Au(x, t) = —q(x)u(x, t) (X.99)

corresponds to the physical situation where a source adds (if g(x) < 0)
or subtracts (if g(x) > 0) heat at the point x proportionally to the local
temperature at x at time t. Our previous discussion suggests that we
consider the operator

A= —A+q(x)

on I?(R") and C_(R"). Since g(x) is bounded by M as an operator on
I}(R"), the Kato-Rellich theorem immediately implies that A is self-
adjoint on D(—A) and bounded below by —M. Thus, e~ ' can be defined
by using the functional calculus and if fe D(—A), then u(x, t)=e"*f
satisfies (X.99) with initial conditions u(x, 0) = f(x).

In the case of C(R") we use the corollary to Theorem X.50, the Banach
space analogue of the Kato-Rellich theorem. Suppose first that g(x) > 0.
Then multiplication by g(x) is a bounded accretive operator on
D(—A) < C(R") for we can use the same normalized tangent functionals,
¢, as in Example 3, and find that £,(qp) = q(x,)|@(xo)|* > 0. Thus, by the
corollary to Theorem X.50, A is a closed accretive operator on D(—A).
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As before, u(x, t) = e” “f satisfies (X.99) weakly and |ju(x, t) — f(x)] o, —0
as t — oo.

If g is negative at any point, then multiplication by g is not accretive
on C,(R"). This is natural since we would only expect e™'# to be a
contraction semigroup if g(x) >0 (i.e, if heat is only absorbed but not
added). But, we can easily surmount this difficulty by defining A, =
—A + g(x) + M on D(—A). Since q(x) + M >0, g(x) + M is a bounded
accretive operator, and we can apply the corollary to construct the
contraction semigroup e ~*4». We now set T(t) = e'Me~*4n, Then T(t) is a
strongly continuous semigroup and for each fe D(—A), u(x, t) = T(t)f
satisfies (X.99) weakly.

Intuitively, the solution of the heat equation should be positivity
preserving, ie., if u(x, 0) = 0 ae., then u(x, t) > 0 a.e. [x] for each ¢t > 0.
In Problem 53, the reader is asked to show that e is positivity preserving
on I*(R"). Since e " >0 for all x, (e*"e~"™"y'f>0 if f>0. By the
Trotter product formula

(eAr/ne— lq(x)/nylf c e t(-a+ q)f

n—x

so we must have e " 4*9(>0 ae. A similar use of Trotter’s formula
shows that T(t) = eMe""4%9*M s positivity preserving on C(R")
(Problem 54).

The construction of e”"4*9" in Example 4, in the case where ¢ <0,
shows that strongly continuous semigroups which are not contraction
semigroups arise naturally. So we will now show how the results for
contraction semigroups can be easily generalized. Let T(t) be a strongly
continuous semigroup and let « > 0. Since t+— T(t)p is continuous and
[0, «] is compact, the set {|| T(t)¢||, 0 < t < a} is bounded. Thus, the uniform
boundedness principle (Theorem II1.9) implies that there is an M so that
[T()]| <M for all te[0, «]. Now let te (0, o). Then we can write
t = na + 1, where 7 € [0, «]. Thus, by the semigroup property

IT@)] = [T\ T@E)| < M < M

where @ = a™ ! log M. Therefore, all strongly continuous semigroups are
exponentially bounded. The inf of the numbers w so that there is an M
with ||T(¢)|| < Me*' is denoted by w, and called the type of the semi-
group (see Problem 51). We define the generator A of T(t) in exactly the
same way as for contraction semigroups. As before A is closed and an
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argument almost identical to that given before Theorem X.47a shows that
if 1> wgy, then —A€ p(A) and

(A +A4) o= j e “T(t)p dt
0
for all ¢ € X. Thus, if o > wy and 1 > w,

(= f)"( (}.+A) (p”

- n,— At wl
sn!(joze Me dz)||¢||

_ M|
(- oy

Conversely, a few minor changes in the proof of Theorem X.47a show
that these conditions are also sufficient for A to generate a strongly
continuous semigroup (Problem 55). Thus, we have:

1A + 4) "] =

Theorem X.47b (the Hille-Yosida-Phillips theorem) A necessary and
sufficient condition for a closed operator 4 on a Banach space X to
generate a strongly continuous semigroup is that

(i) There is an w > 0 so that each 1 > w is in p(A4).
(i) There is an M so that

14+ 4)™") <

(- w)"
for all 1 > w and all positive integers n.
In this case we have [le”'/|| < Me* for all ¢t > 0 and

M

12+ 47 Sm

for all 1 so that Re(d — w) > 0.

Our last topic in this section is the theory of bounded holomorphic
semigroups. To see what we are after, consider first the case of a positive
self-adjoint operator A in a Hilbert space . The vector-valued function
e '“p can be analytically continued to the right-half plane by using the
functional calculus. This suggests:
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Definition Let 6 ¢ (0, n/2]. A strongly continuous bounded semigroup
T(t), t > 0 on a Banach space X is called a bounded holomorphic semi-
group of angle 0 if:

(i) T(t) is the restriction to the positive real axis of an analytic family
of operators T(z) in the open sector S, = {z| |arg z| < 6} which obeys
T(z+2)=T(@)T(Z') for all z, 2’ € S,.

(i) For each 6, <6, T(z) is uniformly bounded in the sector Sp and
T(z)p » @ if z— 0 in Sy, for all p € X.

If A is the infinitesimal generator of T(t), we write T(z) = e™*".

We can easily derive several properties of the generator A of a bounded
holomorphic semigroup of angle 6. For each 0 <n <@, e~ js a
bounded strongly continuous semigroup (as a function of r). It is clear
that its generator is ¢4, so the spectrum of "4 must be contained in
the right half-plane. Since this is true for all 5 satisfying 0 < || <6, we
conclude that

0(4)cS,,-s= {z

|arg z| 51—21—9, (X.100)

Furthermore, for each 8, <8, e~¢")4 is uniformly bounded (say by M,)
for all r > 0 and all  with |n| < 6,. Thus, by Theorem X.47b,

; M
in gA\=1| < 1
6+ enay ] <
for all A with Re 4 > 0. It follows that, given 8, <0,
M
lz+ A) Y < : (X.101)

dist(z, 5,;-4,)

for all ze C\S,;—p, where M, depends on 6,.
In fact, these conditions are also sufficient:

Theorem X.52 A closed operator A on a Banach space X is the
generator of a bounded holomorphic semigroup of angle 8 < #n/2 if and
only if A satisfies conditions (X.100) and (X.101).

Proof We have already proven necessity. We remark that we could prove
sufficiency by the same method as in the Hille-Yosida theorem if we had
the stronger hypothesis
Iz + A" < - n=1,2 (X.101a)
= (dist(z, Sxp-0,)"’ T )
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instead of (X.101). In most applications, one can verify (X.101a), but the
proof of the general case is instructive. The idea of the proof is to use a
generalization of the Dunford functional calculus (see Problem 1 and the
notes in Chapter VII) to define a semigroup which we then show has the
right properties. Let 0 < 6, <8, <6 and let I' be the path indicated in
Figure X.5. We define

1 -2 -1
L R X.1
T(e)= o jre (A—A)"'da (X.102)

r‘S

1 %—8 %_6’ 5"92
rZ
Pi
r=T,uT,uT;

FiGuURe X.5 The curve I

for all ze Sy, = {z||arg z| < 6,}. Since o(4) = §,,,_4, (A — A)"" is well
defined on I'. Moreover, for A€ I'; U '3, Re(z4) = c(z)|4| where ¢(z) =
|z|cos(arg z + n/2 — 8,), so for z € Sy, the integral converges and | T(z)|
is uniformly bounded in the region

R ;= {z’ |z| =9, |argz| < 8, — &}
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for each ¢, § > 0. On the other hand if 0 < |z| < and |argz| <6, —¢,
then making the change of variables { = |z|4, we find

T(z) = J.r'e_mz'(%_ A)—l dr

z 2|

=f e—cz/lzl(i_ A)_l LS
r 2] 2|

(by the Cauchy integral formula and (X.101)).

(see Figure X.6)

FIGURE X.6 The curve I
Since for { € T, dist({/|z], Sp2-6,) = |2|™! dist({, Sap2-0,):
[ Sf e~ |tli—costz2~eNpg gt 4 C
rurl,
<C, (independently of z)

so T(z) is uniformly bounded in the sector R, o= 3‘92_8. Furthermore,
T(z) is an analytic operator-valued function in Sy, since we may differentiate
under the integral sign.
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To prove that T(z) is a semigroup, we proceed as follows. Let I be
the curve I' shifted to the left by two units. Then by Cauchy’s theorem
and (X.101), the definition of T'(z) is independent of whether we use I' or
I to define T(z). Let z, 2’ € Sy,. Then, using Fubini’s theorem, the first
resolvent formula, and the Cauchy integral formula, we find

1

2
T(2)T(z') = (Zz;) JrJr.e"‘““"(ﬂ. —A)" Y (u—A)"'dpdi

1)? A
= | — = Az—pz’ - -1 - ~1 __ _ -1
(2m') L.fr.e (=2 HA—A)" = (u—A)")dudi
—_ L ~Az+z) ] _ -1
2mi J.re (A—A)""d
= T(z + 2).
Now, suppose that z — 0 in the sector Sg,_, and ¢ € D(A). Then

Tlelo =0 = = 5[ - 4)7 =2 g di

1

_ - -2z71~1 _ ~1
oo Ire ATYA— A) 1A dA
— - 2Lm A"Y A — A) tAp di (by the dominated con-
r

vergence Theorem and
(X.101))

=0  (by Cauchy’s theorem, (X.100), and (X.101))

Since the T'(z) are uniformly bounded. T(z)¢ — ¢ for all ¢ € X. Thus, T(z)
is a strongly continuous semigroup in Sy, _,, in particular T(t) is strongly
continuous for ¢ > 0.

Let ¢ € X. Then as remarked above, we may differentiate under the
integral sign to obtain

d — 1 —Azf _ -1
7 TEe= -] e (-20- Ao dd
1 -2 -1
=—_ (o — A(d — d
2m.fre (o —A(dA— A) "9)di
=L J- e (—A(A— A) p)di (Cauchy’s theorem)
2mi r
= — - _1_ —Aazfy -1 : .
= A[ i Ire (A— Ay lpdl (since A is closed)

= —AT(z)e
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Thus, T(z): X — D(A) and — AT(2)p = T'(z)p. Further, if ¢ € D(A4), the

same calculation shows that T'(z)¢ = — T(z)A¢. Thus, the vector-valued
function T(t)p has a uniformly bounded derivative for ¢t > 0 so
T(te —o _

1 t
il d
. . -[oT (s)p ds
1 t
== '[O—AT(S)(p ds

10 _A(p

Thus, the generator of T(r) extends A, but since T(z): D(A)— D(A),
Theorem X.49 implies that A itself generates T'(t).

Since 6, may be taken as close to 6, as we like and ¢>0 was
arbitrary, we have proven the theorem. |

Corollary 1 Let g be a strictly m-accretive form on a Hilbert space
# so that ¢ € Q(q) implies |arg[g(p, @)]| < 6 where 8 < n/2. Then. the
associated strictly m-accretive operator (given in Theorem VIIL16)
generates a bounded holomorphic semigroup of angle n/2 — 6.

Proof The corollary follows immediately from Theorem VIIL.17 and the
theorem above. |

Corollary2 Let A be the generator of a bounded holomorphic semi-
group of angle 6, 8 > 0. Then for each integer m> 0 and each g€ X,
e '*p e D(A™) and ||A™e” 9| < C|lo]||/|t|" for all t > 0 (C depends on A
and m but not on ¢).

The proof of this corollary just uses the representation (X.102), the
formula T'(z) = — AT(z), and manipulations similar to those in the theorem.
The details are left as Problem 58.

The notion of bounded holomorphic semigroup can be generalized in the
same way that we generalized the notion of contraction semigroup. A
strongly continuous semigroup T(t) on a Banach space X is called a
holomorphic semigroup of angle @ if T'(z) satisfies all the properties of a
bounded holomorphic semigroup of angle @ except that it is not required
to be uniformly bounded in sectors Sp,, 8, < 6. If T(t) is a holomorphic
semigroup of angle 6, then for each 6, < 6, and ¢ € X, | T(z)p| is bounded in

Rio = {z’ larg z| < 6y, |z| < 1}
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so by the uniform boundedness principle, || T(z)|| is bounded in R, 5. By
using the semigroup property as above, one concludes from this that there
are constants M, w > 0 so that

IT@)] < Me®

for all z € S . Therefore, e"®*T(z) is a bounded holomorphic semigroup of
angle 6,. Notice that this is true for all 8, < 6 but w will in general
depend on 6,. This characterization, Theorem X.52, and Corollary 2 above
immediately yield:

Theorem X.53 A closed operator A onaBanachspace X is the generator
of a holomorphic semigroup of angle 6 if and only if for all 8, <0
there exist constants M, w > 0 so that A ¢ S,,,_p, implies that A — w € p(A)
and

M

I64 - ¢ - ) < s

Furthermore, there exist constants My, wy > 0, so that for all p € X,

M, e o]

epe (| D(A™ and  |A"e 'p| < -
m=1

for alt t > 0.

The proof of the following theorem closely parallels the proofs of
Theorems X.12 and X.50 and is left to the reader (Problem 56).

Theorem X.54 Suppose that A is the generator of a holomorphic semi-
group of angle 6 on a Banach space X. Let B be a linear operator on X
so that:

(i) D(B) > D(A4)
(1) For all a> 0, there is a b > 0 so that for all ¢ in D(A)
I1Be|l < al4¢| + bll¢|
Then A + B on D(A) is the generator of a holomorphic semigroup of
angle 6.

To illustrate some of the concepts we have introduced and to show the
use of holomorphic semigroups we discuss an example.
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Example 5 (smoothness of solutions of the heat equation) We have
previously shown (in Section IX.7) that the semigroup e on I*(R") may
be represented by the formula

(€)x) = (e} ™2 [ e=l=oPiep(y) dy

By explicit computation, this formula also defines a strongly continuous
semigroup on C,(R) whose infinitesimal generator on & (R) is —A. Thus
this is a representation for the semigroup e on C,(R) which we
constructed in Example 3.

For any z € C with Re z > 0, we define ¢ on C,(R") by

(e M) = (dm2) ™2 [ e =P f(y) dy

where we take the 1/2 root with the smallest argument. The reader can
check by explicit computation (Problem 57) that z—¢*# is an analytic
operator-valued function for Re z > 0, that the semigroup property holds,
and that if z—0in §,, |0| < n/2, then e*%f > f. Furthermore,

2N — (42}~ M2 x4z =ﬂ
e = Jana) e e, = 2L

so e** is a bounded holomorphic semigroup of angle n/2. Notice that if
z =te® 0 < |6] < /2, then ¢'** provides an example of a bounded semi-
group that is not a contraction semigroup.

Suppose that g(x) is a bounded continuous function. Then, by
Theorem X.54, —A + g, with domain D(—A), generates a holomorphic
semigroup of angle n/2 on C_(R"). Further, for any fe C,(R"),
¢~ 9% e N2_, D((—A + q)"). If we suppose in addition that g is infinitely
differentiable with bounded derivatives, then we can show that '~ 9fisa C®
function of x for each t > 0. For let ¢ = ¢~ 9f Then ¢ € D((—A + q)) =
D(A). Further, ¢ € D((~A + q)*), so —A@ + gp € D(A). Since ¢ € D(A),
Vo is in C,(R") by Problem 57b, and thus q¢ € D(A). 1t follows that
Ag € D(A). Continuing in this way we prove that A™p e D(A) for all m.
In particular, A" is continuous for all m, so by Sobolev’s lemma
(Theorem IX.24) ¢ is a C* function of x.

A similar proof shows that for fe I?, ¢“~9fis C® in x for each t > 0.
In this case we can conclude that &“~9fe (., D((—A + q)") directly
from the spectral theorem, so we do not need Theorem X.53.
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By a simple argument using Sobolev’s lemma and Theorem X.53, one can
see that under the same hypotheses, the solutions,

u(x, t) = (&479f)(x)
are C® jointly in x and ¢t for t > 0.

As a final example of the theory of holomorphic semigroups, we will
investigate a class of operators which arise in the next section and later.
Let (M, u) be a measure space with u(M)=1 and let 4 be a positive
self-adjoint operator on I*(M, dyu). Since ? = I¥ for all 1 <p <2, the
contraction semigroup e~ '“ is a densely defined map of I into I, 1 < p < 2.
The question naturally arises: Under what conditions can e ~'4 be extended
to a contraction semigroup on I?.

Definition Let (M, u) be a o-finite measure space and let A be a positive
self-adjoint operator on I?(M, du). We will call e™*4 an LP-contractive
semigroup if e~ *‘p|, < |l¢| ,forallp e I> A I?,allpe[1, 0], and all t > 0.
If the map t+— e~ is strongly continuous for all p < oo we will call ¢~/
a continuous [?-contractive semigroup.

Theorem X.55  Let (M, p)> be a measure space with y(M) =1and 4 a
positive self-adjoint operator on I?(M, du). Then

(a) If e™** is positivity preserving and e”'41 =1, then ¢ '* is an
If-contractive semigroup.

(b) Every IP-contractive semigroup is automatically continuous. Moreover,
Ker(e™*4 | I) = {0} for all p > 1 and Ran(e™** [ %) is dense in I for
all g < 0.

() Under the hypotheses of (a), for 1 <p< oo, e™** is a bounded
holomorphic semigroup in the sector

n
|arg z| < 3 (1 )}

Proof We begin by showing that e™*“ is a contraction on all the I? spaces.
First, suppose fe I? and f > 0. Then

el = (14} = (e *1.0) = (L.1) = I /1

If fe I? is real-valued, then we write f= f, — f_ where f, = max{0, f(x)}
and f_ = max{0, —f(x)}. Then

le™* Sl < lle™Sully + le™Y-lls = Ifclls + 1S- 1

S(”)={z g_l
p

/15
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Finally, suppose f(x) € I? is complex-valued. Then

(e 4)6)| = sup (Refe™ (e 47 )(x))

n rational

= sup {Re[(e™"(e”"f))(x)]}

n rational

= sup {(e™"“(Ree”"f))(x)}

n rational

for almost all x, where we have used the fact that e™*4 takes real functions
into real functions since e™'4 is positivity preserving. Also, for each real
ge 2,

e g)(x)| = le™*g, —e™g_|

<e 'g, +e 'g_
= e "|g(x)|
almost everywhere. Thus
e )] < e IS ()] ae (X.103)
which implies that |e™*4f|; < [e™"4| f(x)||l = | f]l;. Thus, for all fe 2,

le=*f 1l < |11
If fe I® < I?, then

le™*¥f || = sup (e™*, g)

gl =1
gelL’

= sup (f,e™"g)
lglhi=1
gel?

< 111 sop e~ als) = 1.

s0 e~ is a contraction on L® also. Thus by the Riesz-Thorin theorem,

e~ is a contraction on all the I7 spaces. To prove the analyticity state-
ment, we need the Stein interpolation theorem (Theorem IX.21). Because
A is positive and self-adjoint, e 4 is analytic for Re { > 0, and continuous
and bounded by one in the closed right half-plane as an operator on I,
First, we interpolate between p = 1and p = 2. Let n > 0 and 6 € (— /2, 7/2)
be fixed. Then for all z satisfying 0 <Rez < 1, e=""4 is an analytic
operator-valued function on I! ~ I? = I2. Further, e~""4 is bounded and
continuous on the closed strip 0 < Re z < 1. For Rez = I, |e=""4f||, <
| f|l2 and for Re z = 0, [|e="€*4f||, < || f||;- Thus, by the Stein interpolation
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theorem, for te (0, 1), |e=*"4f||, < || f|, where t =2 — 2/p. Since >0
and 6 e (—n/2, n/2) were arbitrary, we conclude that

-c4 2\ _rf,_|2_
le4l, < I/, whenever larg?| < (z—;) 2(1 ‘,, 1‘)

The proof for 2 < p < co is similar. Now, if f; and g, are simple functions,

[m (e7**£)g, dy is analytic in the right half-plane. If f; Zrand g, 3 g, where
p '+ g ' =1, then

J (€ g du~ [ (g du

uniformly in §% = {¢||arg | < (n/2)(1 — |(2/p) — 1|)} so fu (e™*4f)g dp is
analytic in this sector. Since weakly analytic functions are strongly analytic
(Theorem VL4), { - p~¢4is analytic on S® as a function whose values are
operators on If.

It remains to show that e'“fﬂf as z—0 in S for each feI?,
I<p<co.lfze§”and 1<p<2,then |7~ f|,< |7 —f]; for
fe€ 2. Since I? is dense in L%, strong continuity follows since {e~*4} are
uniformly bounded on I? and e~?4 is strongly continuous on I2. Now,
suppose2 < p < oo and let g satisfy p~*' + g~ ! = 1. Suppose that e~%4y =0
for some € I!. Then e *4) =0 for all s >t, and thus by analyticity
e 'Y =0 for all t> 0. Since ¢~'4 is strongly continuous on [, ¥ =0.
Thus Ker(e™'4) = {0} on I for each t > 0. The reader can easily check that
the adjoint of e™*4 on I is e™'4 on I’. So we conclude that Ran(e™'4)
is dense in I?, Let y = e~'4¢p, @ € I?. Then

le= 4 — |, < [le~te+toMp — e=ndp| -0

as z—0 by the analyticity in the interior of S'” proved above. Since
Ran(e~%*) is dense and the {e~*4} are uniformly bounded on S, we
conclude that e™*4 is strongly continuous on I?. ||

There are examples where all the hypotheses of Theorem X.55 hold but
where e~ 4 is not strongly continuous on L®. In fact, the one-dimensional
Hermite operator (Example 1 in Section X.7) provides such an example.
For, in that case, e '*y(x) is a continuous function of x for any t >0
if Yy e L, so e "% cannot converge in the [®-norm to ¢ if ¥ is not
continuous.
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X.9 Hypercontractive semigroups

In the previous section we discussed IP-contractive semigroups. In this
section we will prove a self-adjointness theorem for operators of the form
A + V where V isa multiplication operator and A4 generates an I-contractive
semigroup that satisfies a strong additional property.

Definition Let (M, u)> be a measure space with (M) =1 and suppose
that 4 is a positive self-adjoint operator on I*(M, du). We say that e™** is
a hypercontractive semigroup if:

(i) e™'4is I-contractive;
(1) for some b>2 and some constant C,, there is a T >0 so that
e~ T4o]l, < Cyll@|, for all p € I2(M, dp).

By Theorem X.55, condition (i) implies that e~*# is a strongly continuous
contraction semigroup for all p < co. Holder’s inequality shows that

Ilal-l, if p2gq (X.104)

Thus the If-spaces are a nested family of spaces which get smaller as p
gets larger; this suggests that (ii) is a very strong condition. The following
proposition shows that b plays no special role.

Proposition Let e”'4 be a hypercontractive semigroup on I*(M, du).
Then for all p, ge (1, o0), there is a constant C,, and a t,, >0 so that
ift > t,q then

le™*oll, < Cpqllel,

for all p e I4.

Proof The case where p < g follows immediately from (i) and (X.104). So
supposethatp > g.Sincee™ 74: [? - [>and e~ T4 [* — L™, the Riesz-Thorin
theorem implies that there is a constant C so that for all r > 2, |e~ "], <
C||@|ler2- We now consider two cases. First, if g > 2 we choose n large
enoughso that 2(b/2)" > p. Then |le™""*p||s2y2 < C"||@]|2, S0 the conclusion
followsif2 < g, p > 2(b/2)", by using (X.104), and hypothesis (i). If 1 < g < 2,
then we choose n large enough so that 2(b/2)">p and q>c where
™1+ (2(b/2)")" = 1. Since A is self-adjoint and e """ 4 is a bounded map
from I? to O/, (e~ "T4)* = ¢~"T4 js a bounded map from L to I?. Thus
e ?"T4 is a bounded map from L to IX*2). Since ¢ < q < p < 2(b/2),
(X.104) implies the proposition. |
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Before proving the self-adjointness theorem, we present an example of a
hypercontractive semigroup.

Example1 We will use the terminology mtroduccd in Example 2 of
Section X.6. Let U: I}(R)— }(R, n~2e~% dx) be the unitary map
U: f(x) = n'/*ex/?f(x), and define B= UNU ™. Then

1 42 d
ad T ix

Since B is unitarily equivalent to N, B is essentially self-adjoint on the set
of finite linear combinations of Hermite polynomials, p,(x)= U¢,, B is
positive, and Bp, = np,. Thus B generates a contraction semigroup e~ ‘% on
I}(R, ™ 2~ dx). We will show that ¢~'? is a hypercontractive semigroup.

Since —d/dx?, x? — 1, and —d?/dx? + (x* — 1) are all essentially self-
adjoint on &#(R), the Trotter product formula (Theorem X.51) implies that

ol oo

for all fe I2(R, dx). Since exp(—(t/n)(3x% — 1)) and exp((t/2n) d*/dx?)
(Problem 53) are positivity preserving, we conclude that e™*" is positivity
preserving. Since U is also positivity preserving, we havc shown that ¢~ 8
is positivity preserving. Further, po(x)=1 and e~'®py = py. Thus, by
Theorem X.55, e~*# is a semigroup of contractions on I(R, n’ V2g-x* gx)
for each p e [1, 0].

To prove hypercontractivity, we will show that e~ "¢, < C|¢|, for ¢
large enough. We begin by noticing that

B=-

®© 1/4
”pn” IR, n~ 12 *2 gx) = (Tl_ 12 J (pn(x))4e-x’ dx)
-®

= "pn(x)¢n" H(zR, dx)
Now, since A¢o =0,

8u(3) = (1) V(A pg = ()22 (A:}A kL
where the Wick power :((4 + A')/,/2)": is defined by expanding and then

moving all the A" to the left in each term. Since (A + A')/\/2 = x, the
argument outlined in Problem 48 shows that the operator :((4 + A')/\/i)":
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is just multiplication by a polynomial. But ¢,(x) = p,(x)¢,, so for any
Y € (R, dx),
t\n
(X = 2"/2(n!)"’2:(—A;; ) Y

Thus, using the estimate (X.61) we find that
A+ AN
(5o
NG

52_”2«" + )12 (n 4 n)'?)

(n!)

-(y)
<4

Thus, if ¢ = Y% ¢ a,p.(x) € Z(R, n~12¢=*" dx), then

”pn(x)(b,,ulj(pn) = 2"/2("!)_ 1/2

2R

@
S Z |a"|e_'""p"(x)||L4(R‘ n—l/ze-xldx)

IR, n" e~ **dx) np=0

© , 12, © an 12
S| Zlaf] [Xem™4
n=0

n=0

e”'® Zoa.. Pa(X)

< Cllo| 2, x- 12652 ax)

for t > 1 log 4. Therefore e™*# is hypercontractive. We state the result as
a theorem:

Theorem X.56  Theoperator —% d*/dx? + x d/dxon 2(R,n~'2e~* dx)
is positive and essentially self-adjoint on the set of finite linear combina-
tions of Hermite polynomials, and generates a hypercontractive semigroup.

As a preparation for our main theorem, we prove the following result.
For generalizations, see the Notes.

Theorem X.57 (Segal’s lemma) Let A and B be semibounded self-

adjoint operators so that A + B is essentially self-adjoint on D(4) n D(B).
Then

s B
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Proof Let C = |e”*2e™Be™ #2|. Let ¢ € Q(e*). Then certainly
peQe )=

and

B ~By— A4]2,4)2

o) = (e"p, e™ ?)

< Clp, e*op)
so we conclude that [e” #%¢||? < C|le**¢|>. It follows from Theorem X.18
that (@, e™ #2¢) < (@, C}'%e™ @) or | e B*¢|* < C'/*|e**¢|. By induc-
tion we have [e=2 "Bp||2 < C?'"||e?"g|. Thus

(p, =2 " =2 Be =2 " Mg) < (g, @)

for all @ € Q(e*). Since e=2"""4¢=27"Bg=2""""4 i35 3 bounded self-adjoint
operator,

(o, e

||e_2_(.*“Ae_z—nBe_z—(n#I)A” < Cz‘n

SO

”(e_z—(.u)Ae_z-nBe_z—(uuA)z.” < C

But by the Trotter product formula,

_ N4 _ -+ 1)
(e 2(+A ZB 2(*44)2 .e =(4A+B)

strongly so |le”“*®|| < C also. |

We are now ready to state our main theorem.

Theorem X.58 Let (M, u) be a measure space with u(M) =1 and let
H, be the generator of a hypercontractive semigroup on I*(M, dyu). Let V
be a real-valued measurable function on <M, u) such that V e ’(M, du)
for all pe[l, ) and e ¥ e I}(M, dy) for all t>0. Then Ho+ V is
essentially self-adjoint on C*(H,) n D(V) and is bounded below.

Proof The proof of the theorem is fairly long, so we will break it up into
several steps. The idea is the following: First define

V(x) if |V(x)|<n
V(x) =
%) 0 otherwise
Then H, = H, + V, is self-adjoint on D(H,) by the Kato-Rellich theorem.

We will first derive various uniform bounds on e~ as a map from I?
to I9. We then use these bounds to prove that e—**» converges strongly to
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a one-parameter self-adjoint semigroup T(t) on I>(M, dp), so that T(t) is
generated by a semibounded self-adjoint operator H. Finally, we show that
H is essentially self-adjoint on C*(H,) n D(V) and equals H, + V there.

Step 1 For any t > 0, sup, |le="™|, < co and is uniformly bounded in t in
any compact subinterval of [0, ).

To prove this statement, notice that if V(x) <0, then ¥,(x)> V(x) so
e~ thx) < ¢~¥(x) On the other hand, if V(x) >0, then ¥,(x) >0 so that
e~ %) < 1. Thus, e~ < e=V) + 1forall x, so [e~™), < [le="], + L
If

V(x), V(x)=0

V.(x) =
+() 0, otherwise

and V. =V — V, ,then |e~*"||, < 1 and |e~""-|, is monotone increasing;
the uniformity statement follows easily.

Step 2 Let p<q be given. Then for each t, there is a constant C,
(depending on g, p, and t but independent of n) so that for all ¢ € ¥,

le=*o|, < Clell,

For fixed p and q, C, is uniformly bounded for t in a compact subinterval
of [0, o).

Notice that this is a fairly weak result since p < g, but the conditions
on V are so strong that it will be sufficient when we need it in Step 4.
Let 4,, = (e~"Wme=tHomm We will first show that |4, ¢, < C|e|, and
then use the Trotter product formula. Let r satisfy r~! 4+ g~! = p~!. Then
we can write the map A,, as

H o~ Wiy H

- v,

L(q-x“"-:r-l)-x e~ ity ‘+m"r“)"

L@

o mV,

L(q—l+2m— Ir-l)-l
—_—

r
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Each of the maps e~ (/"o js a contraction since e~*He is a hypercontractive
semigroup. And by Holder’s inequality, each of the maps e~®mV. has
norm less than or equal to [|e~¢/m%| . Thus

14nol, < le~@muA0 ol

= [(JM""”” dﬂ) ”"']"'= e

l4nel, < le=*|l.lel,

By the Trotter product formula A, ¢ — e~ for all ¢ in I2. But, by the
weak-+ compactness of the unit ball in I#, A, ¢ also has a weak-* limit
point Y in IZ with |y, < [le=*¥|,|e|,- A little measure theory now shows
that we must have Y = e~ 'Hxp. This proves the bound. The uniformity
follows similarly to the uniformity in Step 1.

Furthermore,

e~ t/m¥

lr

so we conclude that

Step 3 There is a constant E, independent of n, so that

|2 < ¥l

We first show that e~ THoe=2TV.e~THs is 3 bounded map from I? to [?
with bound D independent of n. Since H, is hypercontractive, e~ T is a
bounded map (with bound D,) from I? to L. By Hélder’s inequality,
e~2TV% is a bounded map from ! to I? with bound |e~2T%|,
le=8T%||1/* < (le~8TV||, + 1)'/* by Step 1. Finally, e~THo is a contraction
on I? so ||le~THee=2TVe~THs| < D. Thus, by Segal’s lemma,

"e-ZT(Ho“' V.)I < D

le=t"-p

or

—log D
—E= zﬁ <Hy+V,

Step 4 Let ¢ € (M, dy). Then T(t)p = lim, ., e~*Hrp exists and T(t) is
a strongly continuous semigroup of self-adjoint operators satisfying | T(t)| <
eE. Further, there is a unique self-adjoint operator H satisfying H > —E so
that T(t) = e M.

We begin by expressing e ~*Hap for ¢ € I} by Duhamel’s formula:

t
e"”~(p —_ e—rH,,,(p +J e—(r-u)H,,(Vm - V,.)e_"""'(p du
[\
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This formula holds because both sides applied to a vector in D(H,) solve
the same first order differential equation. Since H, is self-adjoint on
D(H,), the semigroups are equal. Now suppose ¢ € I* and let ¢ be fixed.
Then by Step 2 we can find a constant K, so that |e=“H~p|s < K,|¢] -
for all m and all u € [0, t]. We can also find K, so that

le= =1y, < K[|yl

for all n and all ue [0, ¢]. Finally, by Holder’s inequality, V,, — V, has
norm ||V, — V,| s as a map from I® to L. Thus by Duhamel’s formula,

lle=Hep — e=Hug; < K K3 1|V — Villa] ¥l

Since V, Ly, e '=p is Cauchy in I?; so we can define T(t)p =
lim,., e~*f-p. By Step 3, {¢~'#-} are uniformly bounded for t in compact
subintervals of [0, o) so an &/3 argument shows that e~*Hp converges for
all ¢ € I2. Similarly, since the convergence for ¢ € [ is uniform on compact
t intervals, T'(t) is a strongly continuous semigroup. We now define H to be
the infinitesimal generator of T'(t). Since each e~ is self-adjoint, H is
symmetric. But e~*# is a semigroup bounded by % so — E — 1 € p(H). By
the fundamental criterion, H is self-adjoint. The bounds follow immediately
from Step 3.

Step5 Let 2 ={p| @ =e "y for some y € L°}. Then, D < I! n D(H,),
H is essentially self-adjoint on 2, and if pe 9, Hp = Hyp + V.

I® is dense in I2, so by the spectral theorem, we know that 2 is dense
in I2. Also, by the spectral theorem, it is fairly easy to see that the set
(H + i)[2] is I*-dense, so H is essentially self-adjoint on 2. Now, suppose
that ¢ = e~ *Hy € 9. By Step 2, e ~"H=f e L* and by using Duhamel’s formula
similarly to the above, one can show that {e~ "=y}, is Cauchy in L. Since
@, =e "y 5 ¢ we conclude that ¢ € I* = D(V). Further, since V, 5V, we
have V, ¢, L Vo.

Now, let f,(t) = e~ and f(t) = e~ . Then f,(t) and f(t) are analytic in
the open right half-plane and by Step 3, | £,(t)| < e£®¢? uniformly in n.
Since f,(t) - f(t) on the real axis, we conclude by the Vitali convergence
theorem (Problem 33 of Chapter I) that f,(t) — f(¢) strongly, uniformly on
compact subsets of the open right half-plane. It follows by the Cauchy
integral theorem that f,(¢t) — f'(t) strongly, i.e.,

H,p,— Hop
Therefore,
HO(Pn = (Hn - Vn)‘Pn_> (H - V)(P

Thus, ¢ e D(Hy) and Hp = Ho 0 + V.
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Step 6 Hq + V is essentially self-adjoint on C*(Hy) n D(V).

By Step 5, Hy+ V is essentially self-adjoint on D(H)n L. Let
Y € D(Hg) n L' and define ¢, = e /. Then by the spectral theorem
¥, € C*(Ho)and Hqoy, — Ho . But, since e~ is hypercontractive, y, € L'

and ¢, 5 y. Thus, Vy, A V. Therefore
D(Hy)n L' = D((Hq + V) [ C*(Hy) n L)

Since L' = D(V), Hy + V is essentially self-adjoint on C*(H,) n D(V).
This concludes the proof of Theorem X.58. i

We remark that if ¥ > 0, then Step 1 and Step 3 (which uses Theorem
X.57) are trivial. We have proven the more difficult theorem since in the
main application that we have in mind (Example 4), V is not positive.
Theorem X.58 has the following extension:

Theorem X.59  Let (M, u) be a finite measure space with y(M) = 1 and
let H, be the self-adjoint generator of a hypercontractive semigroup on
I*(M, du). Assume that V is a real-valued measurable function on M which
satisfies either:

(i) Vel forsomep>2and|e |, <o forallt>0
or
(i) Ve’and V 20.

Then H, + V is essentially self-adjoint on C*(H,) n D(V) and bounded
below.

Finally, we state a continuity theorem which can be proven by the
methods in the proof of Theorem X.58.

Theorem X.60 Let (M, u) bea finite measure space with y(M) = 1 and
suppose that the self-adjoint operator H, generates a hypercontractive
semigroup on I*(M, dyu). Let {V,}%., and V be real-valued functions on M
which satisfy:

() Vi Ve pew LM, dp)

({l) e " e Ve(),<o (M, du)
(iii) There is a g € (2, co] so that

V,>V and  suple%|, <o
n

Then Hy + V, - Hy + V in norm-resolvent sense.
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Example 2(the anharmonic oscillator, fourth proof) Let V(x) be a non-
negative measurable function on R which satisfies {2, | V(x)[Pe~*" dx < o0
for all pe [1, o). Consider the operator —d?/dx* + 2x d/dx + (V(x) - 1)
on the set U[¥] where U: I}(R) » I2(R, n~'/2¢~*’ dx) is the map defined
in Example 1. In Example 1 we showed that —d?/dx? + 2x d/dx generates a
hypercontractive semigroup. Thus, since V(x) — 1 satisfies the conditions
of Theorem X.58, —d?/dx* + 2x d/dx + V(x) — 1 is essentially self-adjoint
on U[%] Therefore —d*/dx® + x* + V(x) is essentially self-adjoint on
&(R). In particular, if we take V(x) = x*, we have another proof of the
essential self-adjointness of the anharmonic oscillator on #(R).

Example3 Let Ve }(R", n "2~ 4d"x) and V >0. Theorem X.59
provides a proof that —A + V is essentially self-adjoint on Cg(R") as
follows: By generalizing Example 1, one shows that —A + 2x - V generates
a hypercontractive semigroup on I*(R", n~"2¢~ I’ g"x) so by Theorem
X.59 and the method of Example 2, —A + x? + V is essentially self-adjoint
on C*(—A + x%)n D(V)= &(R") n D(V). By a simple argument, it is
essentially self-adjoint on C3(R"). Finally, as in Example 6 of Section X.2,
one uses

[xi’ [xj’ —A]] = 5ij
to prove that
Ix*[? < [(=A + V + x*W|? + 2n]y|?

so by Konrady’s trick, —A + V is essentially self-adjoint on Cg(R"). We
have already proven this result in Section X.4 by using Kato’s inequality.

Example 4 (application to quantum field theory) We will use the
notation introduced in Section X.7.

Theorem X.61 Let 5 be a separable Hilbert space with complex con-
jugation C. Let A be a self-adjoint operator on # which commutes with C.
Then

(@) If A >0, then T'(e~*4) is an IP-contractive semigroup on Q-space.
(b) IfA=>cl >0, thenI'(e”**)is a hypercontractive semigroup.

Proof We will prove (a). The proof of (b) is essentially an infinite-
dimensional version of the corresponding proof in Example 1 (see the Notes
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for a reference). Let 4, be a sequence of bounded self-adjoint operators
whose spectra consist of finitely many eigenvalues of finite multiplicity so
that e~'4» — ¢~'4 strongly as n — co. Fix n, and let {a,}}'-; denote the non-
zero eigenvalues of A, with corresponding eigenfunctions {y,})-,. Let
{,}% ~+ 1 be an orthonormal basis for the kernel of 4,. Let S be the unitary
map of & () onto the Q space *(Q, du) constructed by using the basis
{ )%, for #. We will show that S4,S™ ! is positivity preserving. If ¢(-)
and 7(-) are the canonical field and conjugate momentum corresponding
to C, then on the subspace {P(p(y,))Q | P a polynomial} of &#,(#) the
operator dT'(A,) equals $(@(¥,)* + n(y,)* — 1). Thus

N d
SAr(4,)57 = Y Sa +2— )

L

Therefore,

d ta, d? d
ST(e=")S™ ' = [Jexp|——=" [ =55 + 2 —))
erms= 1l p( 2( dg " d

4q:

By Example 1, each exp(—(ta,/2)(—d?/dg? + 2q, d/dg,)) is positivity pre-
X p p
serving and

ta, d? d _
exp( 2( dqlz+2q,dql 1=1

Thus, ST'(e~*4)S™! is positivity preserving and ST'(e~*4)S™!1 = 1. Since
e~ converges strongly to e™'* on J#, I'(e~*4) converges strongly to
I'(e™'*) on #,(#). We conclude that ST(e™'4)S™! is positivity preserving
and satisfies ST'(e™'4)S™!1 = 1. Therefore, by Theorem X.55, ST'(e™*4)S™!
is IP-contractive. |

Corollary  The free Hamiltonian dI'(u) of the free scalar field theory of
mass m > 0 generates a hypercontractive semigroup I'(e~**) on £, ().

Theorem X.62 The spatially cut-off Hamiltonian H, + H,(g) (defined
in Section X.7) for a (¢*), self-interacting scalar field theory is essentially
self-adjoint on C*(H,) n D(H,(g)).

Proof Theorem X.45 and the above corollary show that SH,S™! and
SH,(g)S™ ! satisfy the hypotheses of Theorem X.58. |
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X.10 Graph limits

In this section we continue the discussion of graph limits begun in Section
VIIL7, using without comment the notation introduced there. In Theorem
VIIL.26 we showed that if {4,};%, and A are self-adjoint operators then
A, — A in the strong resolvent sense if and only if 4 is the strong graph
limit of {4,};% ;. Although Theorem VIII.26 is interesting, it is not too useful
since the proof depends heavily on the assumed existence of the self-adjoint
limit A. In applications, it is often the self-adjointness of this limit which
one is trying to establish. If we only assume that (4, + i)~ " and (4, — i)™!
converge strongly to operators R, and R_, then the strong resolvent limit
A exists if and only if either R, or R_ has dense range (Theorem VIIL.22),
a property which can be difficult to prove. On the other hand, the
strong graph limit of a sequence of self-adjoint operators {4,} may exist
but may not be self-adjoint, though it is automatically closed and symmetric
(Theorem VIII.27). The point of the following theorem is that if both
types of limit exist, then the limiting operator is self-adjoint. In fact, one
need only use weak graph limits.

Theorem X.63 (graph limit theorem) Let {4,}.; be a sequence of
self-adjoint operators on a Hilbert space 5. Suppose that:

(i) (4,%i)" ' >R, strongly
and
(i) The weak graph limit 4 of {4,}%, is densely defined.

Then A is self-adjoint, (4 + i)' = R, , and A, converges to A in strong
resolvent sense.

Proof We first show that Ker(R,)={0}. Let y € Ker(R,) and ¢ € D(A4).
Then there exists {¢,}%; with ¢, € D(4,), ¢, = ¢, and A4, ¢, > Ap. Thus

(t. @) = lim (x, @,)

= lim (4, +0)7"x (4, = )o,)
= (R, x, Ap — ip)
=0

Since D(A) is dense, y = 0. Thus Ker(R,) = {0}. Since R_ = R%,Ran R_ =
(Ker R, )" = o#. Therefore, by Theorem VIII.22, there is a self-adjoint
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operator A’ so that 4, - A’ in strong resolvent sense. Finally, Theorem
VIIL.26 implies that A’ is the strong graph limit of {4,} so A’ A. But
by Theorem VIII.28, A is symmetric, so A’ = A. |}

This theorem is important because it reduces the self-adjointness question
to convergence questions, and these problems can sometimes be handled
directly by estimates on the operators A4,. We will illustrate this with
condition (i) first. Later we give a sufficient condition for (ii). How can one
prove (1)? If ¢ € 5, then formally

(Ap+ )70 = (Am+ )70 = (An+ i) YAy — An)(Am + 1) 0 (X.105)

This expression makes sense if (4, + i) !¢ is both in D(4,) and D(A4,,).
Thus, if m and n are fixed and we want (X.105) to hold for a dense set, we
must require that D, ,, = (4,, + i)[D(4,) n D(A4,,)] be dense. Further if we
want to take the limit of (X.105) for a fixed ¢, we must require
@ € () D, - Thus we cannot hope to use (X.105) unless () D, ,, is dense.
Once we have this regularity condition, then we can prove that the
resolvents converge if both A, — A4, and (4, +i)"' can be estimated
uniformly in terms of an auxiliary self-adjoint operator:

Theorem X.64  Let {4,} be a sequence of self-adjoint operators with a
common core D,. Let N be a strictly positive self-adjoint operator so that
for some a > 0, f > 0O:

(i) 2* =().(Ran(4, + i) | D,) are dense and 9* < D(N®).
(i) |N*(4,+ i) 'N~*| < M for all n.
(iii) NP is essentially self-adjoint on D, and
IN“%(4,— A )N"?| -0 as nm-o
Then, for each ¢ € #, {(4, £ i)" '} is a Cauchy sequence in #.
Proof Let x€ 2" and define ¢, = (A, + i)”'x. Then

00 = @ml? = (@0 = O, Pu — @)
= Im(@, — @O (An + )P0 — @)
< (@n = @ms (An + i)(@n — 0m))|
= (@n = Pm» (Am — A,)0w)|
= |(N*(@n — @mh N7%(Am — A,)N"2NPo,)]|
< (2sup|[ (4, + DTINTENYIN A (A — A)INTF

< 2MP|NY|* [N~ H(Ap — AN

-0 as n,m-— o
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Thus, (4, + i)~ ! is strongly Cauchy on 2*. Since 2* is dense and the
(A, + i)"! are uniformly bounded, (4, + i) '¢ converges for all p e .
The proof for (4, — i)~ ! is the same. ||

Example (the anharmonic oscillator, fifth proof)  Let

1 &,
”0-5(‘2?”)

on & = [}(R) and V = x*. In the notation of Example 2 of Section X.6,
Ho=A'A+41and V =(A4 + 4")%. Let E, be the spectral projection of
H, corresponding to the interval [0, n]. The range of E, is finite
dimensiona! and consists of the first n Hermite functions. We take D, to be
the set of finite linear combinations of Hermite functions, set A, = Hy + V,
where V, = E,VE,, and N= H,. We will show that A,, N, and D,
satisfy the hypotheses of Theorem X.64 with =2 and a = 1. D is a core
for Hy, so since each E,VE, is bounded, D, is a common core for
{4,}2. . To prove (i) notice that Ran[(4, + i) [ (E,#)} = E,s# since A4,
leaves E,3¥ invariant, 4, [ E,5¥ is self-adjoint, and E,3¢ is finite di-
mensional. On the other hand, the spectral theorem shows that
Ran[(4, + i) (Do~ (I — E,)#)]=Do (I — E,)5¥ since A,=H, on
(I - E,)#. Thus Ran(A, + i) Dy > Dy. The converse inclusion holds
trivially so we have 2* =(", Ran(4, + i) | Dy = Do. Further, by the
spectral theorem all powers of N = H, are essentially self-adjoint on D,.
The estimate in (iii) follows immediately from the fact that V = (4" + 4)*
and the estimates (X.61). It remains to prove the estimate in (ii), ie., that
for ¢ € Dy,

IN*(4, + )" N 1] < M]o| (X.106)
This is equivalent to showing that
N*< M, (A, Fi)N*(A, £ i)+ M, (X.107)
as quadratic forms on D,. To prove (X.107) we expand:
(A, Fi)N* (A4, £ )= (N+ V,Fi)N} (N + V, + )
=N*+ V,N*+ N3V, + (V, Fi)N*(V, + i)
= N*+ N3/2VnN3/2 + [Nalz’ [Na/z, V1l
+ (V. FON*(V, £ 1)
> N* + [N¥2 [N*2, V]] (X.108)
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since V, and N are positive operators. Using the estimate (X.61) and the
commutation properties of A' and A4, one can prove (Problem 62) that for
any & > 0, there is a b so that

IIN272, [N, Vlle|| < e N*ol| + blle]

for all ¢ € Dy and all n. Choosing ¢ small enough so that 2e < | we can
conclude by Theorem X.18 that

[N*2, [N32, V] < 2:N* + M, (X.109)

as quadratic forms on D,. Combining (X.108) and (X.109) we have
(X.107), which proves the estimate in (ii).

We have thus verified that the hypotheses of Theorem X.64 hold for the
sequence H, + V. Therefore, (H + V, £ i)”! converge strongly on .
Furthermore, to apply Theorem X.63 we only need to show that
D%, = {y | <y, ) € T, for some ¢} is dense. In our case this is trivial since
for all y € D, we have (H, + V,)E,y = Ho ¥ + x*y. Therefore by Theorem
X.63, Hy + V, converges in the strong resolvent sense to a self-adjoint
operator C whose domain contains Dyand C | Dy = $(—d?/dx? + x?) + x*.

This existence result is not particularly interesting since we could have
immediately concluded from Theorem X.3 that 4(—d?/dx? + x* + 2x*) | D,
has a self-adjoint extension. But, the following argument using the resolvent
convergence allows us to prove self-adjointness on D(H,) N D(x*). First
we expand (H, + V,)? finding that (as quadratic forms on D)

(Ho+ V. =Hi+ Vi+HoV,+ V,Hy
= Hj + Vi + 2H?V, Hy/* + [Hy%, [HY?, V]
> HY + Vi + [Hy? [Ho, V]l

since ¥, > 0. A similar technique to the one outlined in Problem 62 to
prove (X.109) can be used to prove that for any £ > 0 there is a constant
b (independent of n) so that

O0<eH?+[HY:L[HYL V] +b (X.110)
Thus, there are constants ¢, and c, so that for ¢ € Dy and all n,
1Hool? + 1V0l? < cl(Ho + Vol + cillol?  (x111)

Now, let y € D(C). Then = (C + i)™ 'y for some x in #. If we set
Y= (Hg + V, + i)" 'y, then y, = . Thus, for each 6 € D,

|(V0, YY) < VO I = dull + (V= V2)BI [¥all + 166, Vodbu)|  (X.112)
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But from (X.111) it follows that

"Vn'ﬁn" < dl"(HO +Vn)¢n" + d2”¢n"
S (d+ d)(Ho + V, + i) = (d) + &)1

Since the first two terms in (X.112) go to zero as n — oo, we conclude that
[(V6, )| < (dy + d,)||6] ||x|| for all @ € Dy. Thus ¥ € D((V | Do)*) = D(V),
so D(C)< D(V). A similar proof shows that D(C)< D(H,). Therefore,
C = §(—d?*/dx* + x?) + x* is self-adjoint on D(—d?/dx* + x?) n D(x*).

This example gives the main ideas of the first self-adjointness proof for
the spatially cut-off (¢*), Hamiltonian in quantum field theory. In the field
theory case, the proofs of the estimates (X.109) and (X.110) are more
difficult but use many of the same ideas (Problem 62).

We turn now to the problem of proving the condition (ii) of Theorem
X.63. Since (ii) is sometimes difficult to verify directly, it is useful to have
the following consequence of Theorem X.63. First, we make a definition.

Definition A sequence {4,};%, of positive self-adjoint operators is called
densely bounded if there is a dense set D, = ) so that for any y € Dy,
there is a sequence {i,}%, so that

@) ¥ >y
(i) ¥, € O(4,)
(iii) sup, (Y, A, ¥n) < ©

Theorem X.65 Let 4, be a sequence of positive self-adjoint operators
on a Hilbert space #. Suppose:

(i) (A, + 1)~! converges to R strongly.
(i) {A,}2, is densely bounded.

Then there is a self-adjoint operator A with R = (4 + 1)™! so that 4, > A4
in strong resolvent sense.

Proof Let B, = (A, + 1)"/2. Then B; ? - R strongly and since the B, * are
uniformly bounded positive operators, the continuity of the functional
calculus for the square root (Theorem VIIL20 or Problem VI.14) implies
that B, ! — R'? strongly. If we can show that there is a subsequence
{B,} of {B,} so that the weak graph limit of {B,} is densely defined, then
by a slight modification of Theorem X.63, we can conclude that R'/? = B!
for some positive self-adjoint B. If we then set 4 = B2 — 1, we have
R = (A + 1)”! which proves the theorem.
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We construct the subsequence of {B,} as follows. Let {y¥}5., be a total
set of vectors in Dy . Since {4,}%, is densely bounded, for each k we can
find a sequence {Yy®)=., so that y® e Q(A4,) = D(B,), V¥ —¢y®, and
sup, | B,y¥| < co. Now, consider the sequence B, y!". Since all the B, y"
are contained in a fixed ball in J#, we can find a weakly convergent
subsequence B, ¥4l (because the balls are weakly sequentially
compact). Similarly we choose a sequence ¥z} , —¢'® and extract a
subsequence of B, j, call it B, ,, so that B,, ¥ , is weakly con-
vergent. We continue in this way and then (using the diagonalization
trick) extract the subsequence {B,; ;}i>, which has the property that for
each k, there is a sequence y&%) ; so that Y% ; € D(B,g ») ¥, — ¥,
and B,; ; Wf,(j' j converges weakly. Thus each Y™ is in DY for the sequence
B, j)- Since D, is dense and {y}2., is total in D,, DY is dense, which
shows (by Theorem XII1.28) that the weak graph limit of the sequence
{Bog. phiz1 exists. |}

This theorem has been applied to prove the existence of the spatially
cut-off Hamiltonian in the Yukawa field theory in two dimensions. The
details of the proof require the development of the free fermion field and
several different sets of difficult estimates. Given the estimates, the idea is
as follows: First, the interaction Hamiltonian H(g, ) = H, + H,(g, ) with
both spatial and ultraviolet cut-offs is introduced. The spatial cut-off is
similar to the spatial cut-off for the (¢*), field theory introduced in
Section X.7. The ultraviolet cut-off means that the momentum space integral
expressing H, in terms of creation and annihilation operators is restricted
to the region |k| < x. Although H(g, x) makes sense on Fock space, H(g, x)
“diverges” as x — oo. A formal perturbation theory argument suggests
that H(g, k) should diverge (') because we have introduced the free field
theory mass as an input parameter instead of the physically measurable
interacting mass m and further because the free ground state should differ
from the interacting ground state by an infinite amount of energy. The
perturbation theory argument suggests that the “correct” Hamiltonian
should be

H=Hy+H -M—E (X.113)

where E is given by a divergent integral and M is a well-defined operator
multiplied by another divergent integral. Although H;, M, and E are
infinite on Fock space, H should be well defined because of cancellations.
If we introduce spatial and momentum cut-off as described above, then
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H,, H\(g, ), M(g, ), and E(x) are all finite and well defined on Fock
space and

Hienlg, ) = Ho + H,(g, ) — M(g, ) — E(x)

is self-adjoint for each k. Furthermore, it can be proven that H,..(g, k) is
bounded below uniformly in « (say by C), that (Heq(g, k) — C + 1)~ ! con-
verges strongly, and that {H,.(g, x)}i= is densely bounded. Thus by
Theorem X.65, H .n(g, k) converges in norm resolvent sense to a self-adjoint
operator H(g). H(g) is the “correct” spatially cut-off Hamiltonian. The
spatial cut-off must be removed by other methods (see Chapter XIX).

X.11 The Feynman-Kac formula

Let H, be the free quantum mechanical Hamiltonian —A and let V be a
potential so that —A + V is essentially self-adjoint on D(—A) n D(V). Then
the Trotter product formula tells us how to express e~ Ho*+¥) a5 3 limit of
products of e~ (/MHo and e~(/"MV a5 pn— 0. Since we have an explicit
expression for efo as an integral operator (see (IX.31)),

—itH : 1\ = 3/2 ilx = y|?
(e~ "Hof )(x) = Li.m.(4nit)™* j exp(T) fndy (X.114)
Rl

we can express e~ (Ho+V) a5 a limit of integral operators.

Theorem X.66 Let V e I}(R*) + L°(R%). Then

—iHe sV . (4mit\ 32 .
(e~ MHo+VIf)(x,) = lim | — I I exXp(iS,(Xg, -+ -5 Xns t))
n R IR

X f(xy) dx, -+ dx, (X.115)
where
c 1 i~ -1 2
S0 np )= § L (=Dl =

(All integrals taken in the sense {g» = lim,, ., {|»<w and all limits taken in
the I? sense.)

Proof Since Ve I}(R%*) + L*(R®), Hyo+ V is self-adjoint on D(H,)
(Theorem X.15) and thus the Trotter product formula (Theorem VIII.30)

e~ it(Ho+ V)f= lim (e—(it/n)Hoe—(it/n]V)nf

n—-x
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is applicable. The theorem follows by substituting the explicit expressions
for e~ t/MHo and e~ i/mV

Formula (X.115) was stated by Feynman in 1948 on the basis of a
physical interpretation. If a classical particle of mass m moves in a potential
¥, the smooth path w(s), 0 < s < ¢, is said to have action equal to

S(w) = J: (% |a(s)|* — V(a)(s))) ds (X.116)

The principle of least action of Lagrange says that the classical particle
will travel the path of least action; i.e., the classical path will satisfy the
Euler-Lagrange equation

ma(t) = — VV(w(t))
corresponding to (X.116).

To see how to interpret (X.115) in terms of the action, take m =4 so
that Hy = —(2m)~'A = —A. Given x,, X, ..., X,, consider a classical
particle of mass 3 moving along the polygonal path in Figure X.7 with
constant velocity along each segment. The classical action of this path is

n t\ 1 - _ 2 [
S(w)= Y (—)Z (lx_‘ii__li) _j V{w(t)) dt
1}

is1\n t/n

which approximately equals

SulXos Xty evr X £) = 3 (‘;) [% ('—"—‘7/"—”)2 - V(x,-)J

i=1 n
J (xn, 1)
nsy \
N
7’
' g
(xy, 2¢/n) LA
Velocity = 77
(x, t/m)
[PASA
Velacity =
(%0, 0) t/n
R3

FiGURE X.7 A polygonal path between x, and x, .
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if V is continuous and the points x,, ..., x, are close enough together. Thus
(4nit/n)~ 32 J J eiSl¥o X f (3 ) dx, A, q -+~ dX,

can be interpreted as an integral over all polygonal paths where S,
approximates the action of a classical particle moving along the path as
indicated in Figure X.7. As n— oo, the set of polygonal paths becomes
intuitively the set of all paths and given a path w, S,(x,, ..., x,, t) approaches
S(w) if w(0) = x,, w(t) = x,, and the x, lie on w. Thus, intuitively, one can
hope to find a formula for (e~ "He+V)f)(x,) of the form

(e~ Ho+V))(x,) = j S@Y (w(t)) do (X.117)
qQ,
where Q, is the set of all paths with w(0)= x,, S(w) is the classical
action of the path w, and dw is a measure on Q, . In a natural way, the
classical limit can be realized using this formula. If we put Planck’s
constant back in the Hamiltonian, then the formula reads

(e=#MHa+Vf)(xo) = [ €SIty (wft)) deo (X.118)
Q,
As we take the classical limit by letting # go to zero, the oscillating phases
in eS@/* tend to cancel except around paths where S(w) is stationary.
That is, most of the contribution to the dynamics comes from paths nearer
and nearer to the classical paths as # — 0.

The above discussion shows why (X.117) is a beautiful heuristic formula.
There is a mathematical notion of integration over paths introduced by
Wiener, but unfortunately this notion cannot be used to make sense out of
the right-hand side of (X.118). However, it can be used to derive an
analogous formula for (e ~*Ho*V)f)(x,) called the Feynman-Kac formula.
Before proving this formula, we first need to discuss Wiener measure.
Our construction of Wiener measure (using only our bare hands) is the
most direct. We emphasize that there is an alternative approach using
Gaussian random variables and the theory of Markov processes. This more
natural approach provides an intuition which is invaluable for further
developments, but introducing the necessary probabilistic machinery would
take us too far afield. However, we feel that a discussion of the existence
of dynamics would be incomplete without presenting the Feynman-Kac
formula.

To motivate out construction of Wiener measure on R” notice that the
Trotter product formula implies that for suitable ¥,

e~ lHo+ V)f= lim (e—(t/m)HOe—(:/m)V)mf

m-—-wo
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with

t
—(t/m)Ho,—(t/m)Vyne _ | ... Xg, Xy} e—(l/m)V(x,) e
(e e )f = [ JP( 0> X1 )

X p(Xm— 1, Xm ; é)e“""""("-y(x",) dx, -+ dx, (X.119)

where
p(x, y; t) = (4mt)""2e=Ix-yFae

There are two problems in trying to take m to infinity in the right-hand
side of (X.119). The first is that the infinite product of Lebesgue measures
does not yield a reasonable measure. Secondly, the product of the kernels
p intuitively approaches

exp( -j (1) dt) (X.120)

and for arbitrary paths @(t) is very singular. Fortunately, these two
difficulties cancel so long as we lump the two terms together. Thus, our plan
is to try to construct a measure y, on a space of paths starting at x, so
that the right-hand side of (X.119) is just equal to

J' [] e~ tmviabrm) 4y () (X.121)
aj=1
Since the “zero” of (X.120) will be used to cancel the “infinity” of the
infinite product of Lebesgue measures, one should not be surprised that this
procedure does not work if (X.120) is replaced by exp(—i | @(t)? dt). This
is in fact the case (Problem 64). With this motivation, we begin our
construction.

Let R" be the one point compactification of R” and let Q = X o, R",
the product of uncountably many copies of R”. Then Q is just the set of
all paths in R" for ¢ > 0; these are just the paths in R" except that they
may pass through infinity. We will always consider Q with the product
topology under which it is a compact Hausdorff space by the Tychonoff
theorem. This space is so big that the Borel and Baire sets differ. We will
always consider regular Borel measures. Now, let F(x,,...,x,) be a
continuous function on X myR" and fix t, < - <t,. Then, p(w)=
F(w(ty), ..., w(t,)) is a continuous function on Q. We denote the set of such
continuous functions on Q, for arbitrary m, by Cg,(Q) and for such ¢ we
define

La@) = [ o[ Ftis oo xa)p(xo, a5 0)plx1s X23 82 = 1)
X P(Xmm 15 X b — L= 1) dXy *** dX,, (X.122)
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L,, is a well-defined linear functional on Cg,(Q) because if F does not
depend on x;, we can use the semigroup property of the heat equation:

J‘R-P(xk- 1 X b= B )P(Xes Xiew 15 ey — 1) dxy

= p(Xp=1s Xpw 15 ks — te—1)

to integrate out the variable x,. Thus L, (¢) is independent of the repre-
sentation of ¢. Further, L, (1) = 1and L, (¢) = 0if ¢ 2 Osince p is positive.
Therefore, by the proposition before Theorem 1V.14,

|Le (@) < sup|o(w)]
wenN

So L,, is a positive linear functional of norm one on Cg,(Q2). But, by the
Stone-Weierstrass theorem, Cgqo(Q) is dense in C(Q), so L, has a unique
extension (which we also denote by L, ) to a positive linear functional of
norm one on C(Q). Finally, by the Riesz-Markov theorem there is a unique
regular Borel measure p,, on Q with pu, (Q) = 1 so that

L. (0)= [ @ du,, forall peC(Q)

For each x,, pu,, is called a Wiener measure on Q and sometimes the
whole family of measures {u, | x € R"} is called Wiener measure.

The measure that we have constructed is a Borel measure. Many interesting
sets of paths are Borel subsets of Q, for example:

Lemma For0 <« < 1, the set Q, of Hélder continuous paths of order
a is a Borel subset of Q.

Proof A path wisin Q, if and only if for all m < oo there is an M so that

|o(s) — o)) <M|s—t], 0<st<sm
Therefore,

=N U N {o|lob)-o@)|<ns-:f
m=1n=1 0<s, t<m )
Since {w||w(s) — w(t)| < n|s — t'} is closed and arbitrary intersections of
closed sets are closed, Q, is Borel because the last two operations are
countable. |

The following theorem assures us that the measure p,, constructed on
the unreasonably large space Q has support on a set of continuous paths
although not on the set of continuously differentiable paths. For a reference,
see the Notes.
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Theorem X.67 1If 0 <a <4, then u,(Q,)=1 for all x,eR" If {<
a < 1, then y, (Q,) = 0 for all x, e R™.

We have stated Theorem X.67 because it is used in the proof of the
following lemma outlined in Problem 65:

Lemma Let S be a Borel set of Lebesgue measure zero in R" and let
Qg be the set of paths in Q, so that {t|w(t) € S} has Lebesgue measure zero.
Then, for each x in R", 41 {Q} = 1.

We now return to our discussion of the semigroups e~"*o and e ~'(Ho+V),
By our construction of u, we know that for each continuous function f on
R", we have, for fixed o € (0, }),

| S@@) dudw) = | f(plx 1) dy (X.123)
If f is any measurable function on R" so that f(-)p(x, -, t) is integrable,
we can approximate f by continuous functions. Then, an application of the
dominated convergence theorem shows that (X.123) holds for such f. In
particular, (X.123) holds for all fe I2(R"). But by (IX.31), the right-hand
side of (X.123) is just (e ~"Hof)(x), so we have

(e~ )x) = | f(o()duw)  forall f € B(RY)

This is the path space integral which gives the free semigroup. We state our
interacting path space formulae on R3. By changing I? to I? with p > n/2, it
is easy to obtain Feynman-Kac formulae on R".

Theorem X.68 (the Feynman-Kac formula) Let V be a real-valued
function in I2(R?) + [*(R?) and let H = Hy + V where Hy = —A. Then
for all fe I*(R3),

(e *Hf)(x) = IQ. S (w(t))exp( —L:V(a)(s)) ds) du, (@) (X.124)

Proof We prove the theorem in four steps: first for continuous V of
compact support, second for V in I®(R3), third for V e I*(R?) + L*(R?)
with V <0, and finally for V in the general case. So suppose V is continuous
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with compact support. Using (X.119) and (X.122), we have
[(e——(r/m)HOe—(r/m)V)mf](x)

t t
—JRS JRJP(X, xm,;) P (xz,xl’—r;l)

nm

xf(x,)exp(— Y iV(xj)) dx, - dx,,

=
=] a, e"p( “m j;"( (Jm)))f (1) dus(w)  (X.125)

By the hypotheses on ¥, H, + V is self-adjoint on D(H,) = D(Hy) n D(V),
so by the Trotter product formula, (e ~(¢/™Hee=t/MVY"f converges to e *Af
in I?(R?). Therefore, there is a subsequence {m} so that (e~ t/mHog = (t/m)V)myf
converges to e~ "Hf almost everywhere. On the other hand, if w is a continuous
path, then V(w(t)) is continuous in t so

£ Sl e

as m— co. Since for each x, almost all (with respect to p,) paths are
continuous,

s exe( = £ v(aff))) ~remnen(- [ o) a)

pointwise almost everywhere on Q, as m — co. Furthermore,

[y o= 2v(()

du(w) < e[ | fleo(t)] duw)

= ¢ max[Vl(e—fﬂolf])(x)
< O

for almost all x. Therefore, by the dominated convergence theorem, the
right-hand side of (X.125) converges to

J.nf (a(2)) exp( —I;V(w(s)) ds) dyu. (o)

for almost all x. This proves (X.124) under the special hypotheses that
V is continuous with compact support.

Now, suppose that V € [°(R?) and let V, be a sequence of continuous
functions of compact support so that |V,(x)| < |V|, for all x and
V,(x) = V(x) pointwise a.e. Then (H, + V,) converges to Hy + V in strong
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resolvent sense, so by Theorem VIIL.20, e~!(#o+Y%) converges strongly to
e~'Ho+V) for each t > 0. By step one,

(e=He+ 2 )x) = [ f(wle)) exp ( - Vi(wls)) ds) du (@) (X.126)
Q, o

for almost all x and all n. Since ¥, - V pointwise a.e., the lemma implies
that for almost all w € Q,, V,(w(t)) = V(w(t)) pointwise a.e. in t. Therefore,
smce the V, and V are uniformly bounded, we have [; V,(w(s))ds—
6 V( )ds pointwise a.e. on €, . Thus

t t
o) exp [ Viols) ds) - ftwto) exo( [ Viwte) as)
pointwise a.e. on Q,, and now the same dominated convergence theorem
argument as in step one shows that the right-hand side of (X.126) converges
to the right-hand side of (X.124). On the other hand, as before, a subsequence
of the left-hand side of (X.126) converges pointwise a.e. to e~"Ho+V)f
because of the strong convergence. Thus, (X.124) holds in the second case.
Now, suppose that Ve IZ(R®)+ L°(R*) with ¥V <0. Let V(x)=

max{V(x), —n}. Then V, is a sequence of decreasing L functions so that

v, £+ p and V, = V pointwise a.e. For each n, the formula (X.124) holds

and as n— oo, Io V,(w(s)) ds — [ V(w(s)) ds a.e. on Q, by the lemma and
the monotone convergence theorem. The proof is completed by appealing
to the argument in the second case and the monotone convergence theorem.

By obvious modification, the third case holds for ¥ bounded from above
and so, appealing again to the monotone convergence theorem, we conclude
the proof in the general case. ||

If Ve I2 + (L), then the Feynman-Kac formula implies that

t

J_exp( ~[ V(w(s) ds) £(w) disfo) < o
for almost all x € R". Therefore
~[ V() ds < 0
0

for almost all w, for almost all x. Since we can write an arbitrary
Ve I? + (L*) as a linear combination of its positive and negative parts,
we conclude that

I;|V(w(s))| ds <0

for almost all w, for almost all x, if V € I + (L®).
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X.12 Time-dependent Hamiltonians

In this section we prove two existence theorems for the time-dependent
Schrodinger equation

‘ﬁ”di—’) = —iH(t)p(t) (X.127)

The investigation of time-dependent problems is important because one
sometimes wants to calculate the change in a quantum system in a variety
of situations, for example, when an external potential is turned on and
then switched off after a short time or when a periodic potential is turned
on. We first introduce the analogue of unitary one-parameter groups.

Definition A two-parameter family of unitary operators U(s, t), s, t € R
which satisfies:

(@) U(r,s)U(s, t) = U(r, 1)
(®) U, r)=1
(c) U(s, t) is jointly strongly continuous in s and ¢

is called a unitary propagator.

Theorem X.69 (the Dyson expansion) Let t— H(t) be a strongly
continuous map of R into the bounded self-adjoint operators on a Hilbert
space . Then there is a unitary propagator on J# so that, for all y € 5#,

os(t) = U(t, sy
satisfies
4 o= ~iHo), o= (x.128)
Proof We define

Ult, s = 1+ i(-i)ﬂj' [ [T H) - o dt, -ty (X129)

s

By the uniform boundedness principle, H(z) is uniformly bounded on [s, ],
so the nth term on the right is bounded by

=2 sup 1) o

tels 1
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so the series on the right converges in the uniform operator topology to
U(t, s). Thus U(z, s) is jointly strongly continuous in s and ¢ since this is
true of each term on the right. It is trivial to check that U(t,t) =1 and
that U(t, s)* = U(s, t); the formula U(r, s)U(s, t) = U(r, t) is proven by
multiplying out the series as in the case of unitary groups generated by
bounded operators. Thus,

Us, )U(s, t)* = I = U(s, t)*U(s, t)

so U(t, s) is unitary. The first statement in (X.128) follows by differentiating
the series for U(t, s) term by term and noting that the resulting series
converges uniformly. [I

We remark that the self-adjointness of the H(t) was used only in proving
that U(z, s) is unitary; without self-adjointness we can still define U(t, s) as
before and use it to construct strong solutions ¢,(t).

Although the Dyson expansion requires that H(t) be bounded, by passing
to the “interaction representation” we can use it to handle certain cases
of the form

H(t)=H, + V(1)

where H, is a (possibly unbounded) self-adjoint operator and t — V(¢)
satisfies the hypotheses of Theorem X.69. Define

17([) = eiH.,tV(t)e— iHot

Then ¢ = V(1) also satisfies the hypotheses of Theorem X.69; we denote
the corresponding propagator by U(t, s). If we now set

Ul(t, s) = e~ tHo{J (1, 5)eisHo

then, at least formally, U(t, s) satisfies
_:Iit U(t, s) = —iHy e~ "Ho{ (1, s)e*Ho 4 e~ itHo (— P (1))T(t, s)eisHo
= (—iHy — iV(t))U(t, 5)
s0 ¢,(t) = U(t, s)y should be a strong solution of

Lol = —ilHo + VOloldh o) =¥

The difficulty is that Ho U(t, sy = Hye~tHoJ(t, s)esHoy may not make
sense since U(t, sjy may not be in the domain of H, even if y is. It can
be shown (Problem 66) that if t —» [Hg, V(t)] is strongly continuous, then
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@,(t) is in fact a strong solution. This hypothesis is a special case of the
more general hypotheses in Theorem X.70 (below); these give rise to strong
solutions, so we will not pursue this problem further here. However, we
note that for any y € #, Y (t) = e~ Hot(t, s)eHoy is always a “weak”
solution in the sense that for any n e D(H,), (1, ¥.(¢)) is differentiable and

£ 0090 = = iHom () = i(V (. ¥u(0)

Example1 The Dyson expansion is important for practical calculations
also. Suppose that H is the Hamiltonian of a quantum system and that ,
and y, are eigenfunctions of H, with corresponding eigenvalues 4, and 4,.
If the system starts out in state i, it will stay in i, in the absence of any
external potential since ey, = ey, . However, if an external potential
V(t) is turned on for a while the dynamics is given by e ~He{J(t, O)y, , and if
we look at the system at time ¢ the probability that the system will be
observed in state ¥, is |(,, e~"*Ho{(z, 0)y,)|% the transition probability
from ¢, to y,. Using the Dyson expansion we have

(b, e~ "H(, 0)i) = (W, e™Hoy,) — iJ.;(Wh e Ho' V(1)) dty + -+

= =i e e Ry, V()W) diy + O()

The constant in the term of order t* can be easily bounded by estimating
the tail of the Dyson expansion, so for small t the above expression allows
one to compute upper and lower bounds on the transition probabilities. The
reader is asked to compute a specific example in Problem 67.

We come now to the main theorem in this section. Since the proof is the
same in the case where A(r) generates a contraction semigroup on a
Banach space X, we give the proof in this more general setting. The idea
of the proof is very simple and direct. For each positive integer k, we define
an approximate propagator U,(s,t)on0<s<t<1 by

U,‘(t,s)=exp(—(t——s)A(l_Tl)) if l—lssstsl

and

Ut, r) = Uy(t, s)Uy(s, 1) if 0<r<s<t<l (X.130b)
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That is, U,(t, s) is defined by the constant generator A((i — 1)/k) for s and ¢
in the small intervals [(i — 1)/k, i/k] and by the product formula when s and ¢
are not both in the same small interval. We will show that under suitable
hypotheses, U,(t, s) converges to a propagator U(t, s) so that ¢ (t)=
U(t, s) solves do,(t)/dt = — A(t)p,(t). To see what these hypotheses should
be we compute formally

(Uilt, 0) — U, (1, 0)A(0) ' = [U,(t, s)U,(s, 0)4(0)" '35

t

= | 4 (Ut )5, 01A0) " 9)
0

A5) (%)

x A(@) i 1A.(¥) Uy(s, 0)4(0) 1o ds
(X.131)

where [r] always denotes the largest integer less than or equal to r. The
fact that A([ns]/n) can be written to the right of U,(t, s) follows by writing
U,(t, s) as a product if ¢t and s are not in the same small interval. Thus
to show that the left-hand side of (X.131) is small, it suffices that
A(t)A(s)™ ' — I be small when |t — s| is small and that A(t)U,(t, 0)A(s)”* be
bounded. We thus define

Ct,s)= A(DA(s)" ' -1

= ;U"(t, 5)

and state:

Theorem X.70  Let X be a Banach space and let I be an open interval
in R. For each t € I, let A(t) be the generator of a contraction semigroup
on X so that 0 € p(A(t)) and

(a) The A(r) have a common domain D (from which it follows by the
closed graph theorem that A(t)A(s)™" is bounded).

(b) For each p e X, (t —s)”'C(t, s)p is uniformly strongly continuous
and uniformly bounded in s and ¢ for ¢ # s lying in any fixed compact
subinterval of I.

(c) Foreach g€ X, C(t)p = lim,,, (t — 5)"'C(t, s)p exists uniformly for ¢
in each compact subinterval and C(t) is bounded and strongly
continuous in t.

Then for all s <t in any compact subinterval of I and any ¢ € X,

Ut, s)p = lim U,(¢, s)p

k=0
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exists uniformly in s and t. Further, if € D, then ¢ (t) = U(t, sh is in D
for all ¢ and satisfies

Lol = ~ AW, os)=
and [lo,(r)] < |¥| for all ¢ > s.

We make two remarks. First, the hypothesis that 0 € p(A(t)) is usually not
a strong restriction. If we can find a z, € p(A(?)) for all t and if the operators
B(t) = A(t) — z, satisfy the hypothesis, then T(t, s)= U(t, s)els~"% is a
propagator for A(z) if U(t, s) is the propagator for B(t). In particular, when
A(t) is i times a self-adjoint operator, we can use this trick. Secondly, it is
sufficient to prove the existence of the propagator for s, t€[0, 1] since
we can then use the same procedure to extend to [1, 2] and so forth. We
begin by showing that the hypotheses imply the boundedness of
A()U(t, s)A(s)~?

Lemma For s, t€[0, 1] define W(t, s)= A(t)U,(t, s)A(s)"'. Then
[ Wi(r. s)| < M, independent of s, ¢, and k.

Proof Fix s, t, and k. Since U,(t, s): D = D, W[z, s) is well defined on X.
Letting y € X, we write W(t, s) as

Wit ) = (1) uk( ['“1) Uk(['“] Lkﬂ_—l) . U,,([ksl ¥ I,S)A(s)_, .

k k k

= A(t)A([k—kt]) i 1U,‘(t, @)A(—[i—tl)A([m]k—_l) o
A

(I+C( [l;:]))luk(t, s) + [:V_:‘] U,(t, u)C(u,u—%)Uk(u,s)

ku=ks] + 1

k) 1\ G
+ Y U, v)C(v,z_J——E) Y, Ui u)

ko=[ks)+1 ku=[ks)+ 1

xC(u,u—%)Uk(u,s)+ }(1+C([,;:] ))./,

= (1 + C( [tk])){u,‘(t s) + Wilt, s) + Wilt, s) + -}

(e
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where
k) 1
Wit s)= Y U, s)C(u, u-— —) U,(u, s)
ku={ks}+1 k
and
fki) 1
wrtis)= Y UL s)C(u, u-— E) Wi(u, s) (X.132)
ku=[ks}+1
Let
M, = sup|(t — 5)7'C(t, )|
t#s
Then

1 M
(= )o]| < %2
so from (X.132) we have

Wi sl < (t— Moy and (Wi s <

W sl < (1+ B 1+ £ L mar)v)

We have repeatedly used the fact that ” Uk 1 rz)x//“ < ||l¢| since each
A(t) generates a contraction semigroup. |}

Proof of Theorem X.70 Let ¢ € D. Since U,(r, s)p € D for r > s and

Therefore

T
Uk (t, S)(p = o~ (t— Lkl A(tkel/k) Uk (%I , 3) )

we see that U,(t, s) is strongly differentiable in ¢ except when ¢ = j/k, and
letting A(O)p = ¥,

2 U sho A([—’jj—] ULt s)o

]

—A ([_"Ztl A()™ A(EYUL(1, s)A(s) " A(s)4(0) !

_ —A(["T’] A) W, S)A(S)A) Y

Thus, since ||W(t, s)| is uniformly bounded and C{(z, s) is strongly con-
tinuous, we see that dU,(t, s)p/dt is bounded and strongly continuous
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except at t = j/k. A similar proof shows that the same conclusion holds for
d [ks]
ds Ui(t, s)p = —U,(t, S)A(k)(P

when s # j/k. Thus if k > n,

(Uit s) - (t s))A( )Y
= [Un(t. UL )22 40)7 1
j'dir A1, YU, 5)4(0) 'y} dr (X.133)

() A A

e e B e oI, ) b sy + cts o ar

o250 <

and U1, r), C([rn}/n, r), C(s, 0), and W(r, s) (by the lemma) are all
umformly bounded independent of r, s, t, n, and k, we see that the strong
limit of U,(t, s) exists uniformly in t and s. Since U,(t, s) is uniformly
bounded

-,
-],

sup|t — 5|7 C(z, 5)|
s#t

[rk] [rn]
1% T n

U(t, s)p = lim U,(t, s)p
k-0
exists for all ¢ € X and U(t, s) is a bounded-operator-valued function and
is uniformly strongly jointly continuous. We remark that the integral
(X.133) is really a sum of integrals over the intervals where the derivative
exists.
A similar proof shows that

W(t, sy = lim W (t, s)p
k- @
exists boundedly and uniformly in ¢ and s and that W(t, s) is a bounded-
operator-valued function which is jojntly strongly continuous. Thus, if
(S D9 Uk(t’ S)(p - U(t, S)(p and
AU, s)o = Wi(t, s)Als)e

—
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Since A(t) is closed, this implies that U(t, s)pe D and A(t)U(t, s)p =
W(t, s)A(s)p. Furthermore

U(t, sl — o = lim (U, (1, s)p — o)

= lim L'dir U,lr, s)p dr
= lim — J‘A(l%k]) Uilr, s)p dr
= —klln; J.:A ([—;(k—]) A(r)" L A(r)Ux(r, s)A(s)~ *A(s)e dr

= — J‘W(r, s)A(s)p dr

s

Since W(r, s) is strongly continuous,

diz U, s)p = —W(t, s)A(s)p = = A(t)U(t, s)p

which concludes the proof of Theorem X.70. [

Example2 We can easily apply this result to the heat equation with
time-dependent sources and sinks proportional to the temperature. Let
g(x, t) be a bounded real-valued continuously differentiable function on
R"*! so that dq(x, t)/dt is bounded. Let M be the bound of ¢ and set
At)= —A +gq(x, 1)+ (M + 1)

on C,(R"). From Examples 3 and 4 in Section X.8 we know that A(t) is
the generator of a contraction semigroup on C,(R”) and that D(A(t)) =
D(—A4) for all t. The reader can easily check (Problem 68) that the
hypotheses on ¢ + M + 1 imply that the conditions of Theorem X.70 are
satisfied. Thus for each € D(—A) there is a function @(x, t) so that for
each ¢, §(x, t) e D(—A) and

& (s 1) = AG(x, 1) — alx, 0606, 1) = (M + 1)3(x 1
3% 0) = ¥(x)

If we now define ¢(x, t) = e™ ¢

@(x, t), then ¢(x, 1) satisfies
d
7 P 1) =Bolx, 1) — q(x, t)o(x, 1)

o(x, 0) = ¥(x)
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Notice that U,(t, s) is positivity preserving for each k since it is the
product of positivity-preserving transformations (see Example 4 in Section
X.8). Thus U(, s) is positivity preserving since it is the strong limit of the
U,(t, s). Therefore, given any nonnegative initial data € C(R), the
solution @(x, t) = e™*V1U(t, s)y will remain nonnegative corresponding to
our intuition about heat flow.

Finally, we apply Theorem X.70 to the quantum mechanical case.

Theorem X.71  Let H, = —A on I?(R?) and suppose that t — V,(t) and
t - V,(t) are continuously differentiable I*(R*)-valued and L*(R*)-valued
functions respectively. Let V(t) = V| (t) + V,(t) and set H(t) = H, + V(t).
Then there is a unitary propagator U(t, s) on I*(R%) so that for each
Y € D(H,), 4(t) = U(t, s)y is strongly differentiable and satisfies

dﬁr"”(‘) = —iH@e,t), o) =¥ (X.134)

Proof We will construct a unitary propagator for each finite interval
[—T, T]. By Theorem X.15, H, + V(t) is self-adjoint on D(—A) for each t.
Further, since V(t) and V,(t) are uniformly bounded in I? and L° norm
respectively, we can find a constant D > 0 so that Hy + V(t) + D > § for
all te[—T, T) Thus i(H, + V(t) + D) and —i(H, + V(t) + D) generate
contraction semigroups for each ¢t and (+i(H, + V(t) + D))™' exists for
te[—T, T] Further, the hypotheses on ¢t — V,(t) and t — V,(t) imply that
i(Ho + V(t) + D)and —i(H, + V(t) + D) satisfy the hypotheses (b) and (c)
of Theorem X.70. Let U*(t, s) and U~(t, s) be the corresponding
propagators. Since U/ and U, are unitary for each k, U* and U~ are
unitary. Now define

~ U*(t,s), s<t
uft, s) =
(t.5) U(s,t), t<s
and -
U(t, s) = e2t=9U(t, s) B

We conclude this section with a brief outline of a method due to
J. Howland for turning time-dependent problems into time-independent
problems. In classical mechanics, Hamilton’s equations for a system with
Hamiltonian function H(p,, ..., P,, 41, ---» 4a> t) ar€

dq;, OH dp; O0H

—_— = e _——_—= .=1..., x~135
i~ &g Tl (X.135)



X.12 Time-dependent Hamiitonians 291

If H depends on t, energy is not conserved by such a system, but we
can set up a corresponding energy conserving system by introducing t as
a coordinate and the energy E of the external source as its conjugate
momentum. The new Hamiltonian is

h(p,q,t, EyY=E + H(p, q, t)

so if we denote by o the new time variable, Hamilton’s equations read

dg_6H  _dp,_O0H . _,
do ~ p;’ do ~ dq;’ T
X.13
@_oh_,  _dE_om (%130
de 0E do ot

This set of equations is equivalent to (X.135).

We can reformulate the quantum-mechanical problem similarly. Let H(t)
be a family of self-adjoint operators on a Hilbert space # and set
#, = }(R; o), the Hilbert space of strongly measurable s#-valued
functions f(-) on R such that [2_ || f(1)]|% dt < co. If we now define h on
>, by

()0 = ~i 100 + HOS ()

there should be (according to the classical analogy) a correspondence
between the solutions of

2 (o) = ~ihplo)

on #, and the solutions of the time-dependent problem (X.134) on .
Suppose that Uf(t, s) is a unitary propagator on #. Then

(O@)f)(t) = U(t, t — o)f(t — o) (X.137)

is a strongly continuous unitary group on ¥, (Problem 69). Notice that
this means that if T, is the group on ¥, which acts by (T, f)(t) =
f(t + o), then U(6)T, acts on #, by multiplication by an operator-valued
function. Conversely, one can prove that to each strongly continuous
unitary group U(a) on &, so that U(c)T, is multiplication by an operator-
valued function, there corresponds a unique unitary propagator U(t, s) on
J so that (X.137) holds. Thus, we have a correspondence between unitary
propagators on ¥ and certain strongly continuous one-parameter unitary
groups on . Notice that U(c) will always be strongly differentiable on a
dense set in J#; by Stone’s theorem, but that U(t, s) need not be strongly
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differentiable on . Thus, we have a method of proving the existence of
propagators in situations where we might not expect strong differentiability,
i.e., situations where we cannot use Theorem X.70. This propagator formally
solves

pn U(t, sy = —iH(t)U (¢, s)y

Example 3 We will consider again the case H(t) = H, + V(t) where H,
is a self-adjoint operator on J# and t — V(t) is a strongly continuous map
from R to the bounded operators on . To make things easier, we will
assume that ||V (t)| is uniformly bounded on all of R. As before we let

V(t) = eiflo'V(t)e~Het, Let V be the operator on I?(R; ) which acts by
(PF)(t) = P(t)f(t) and let CA(R; #) denote the continuously differentiable

M -valued functions on R with compact support. Then it is not hard to
check that i~! d/dt is essentxally self-adjoint on C(R; ). Since Visa

bounded operator, i~ ! d/dt + V is also essentially self-adjoint on C)(R; )

and it is possible to show that exp(—is(i! d/dt + V))T, operates by
multiplication by an operator-valued function. Thus by the correspondence
theorem mentioned above, there is a strongly continuous propagator U(t, s)
on # so that

ld = ~
(exp(—ia(;a + V))f)(t) =U(t,t — o)f(t - o)
One can easily check that this U is _just the propagator arising from

applying the Dyson expansion to t — V(). Now, let W act on I(R; )
by (Wr)(t) = e~ He'f (t). Then W is unitary so

W exp(—ia(%% + 13)) w1
is again a strongly continuous unitary group on I*(R; 5#) and clearly
(W exp(—io(% dit + ﬁ))W"f) (t) = e~ "Hol(1, t — o)elt~OMHof (1 — g)
So U(t, s) = e~ #Ho [ (t, s)e’Ho is the propagator on # which formally solves
zdt UL, s) = —i(Ho + V(1))U(1, 5)

since the generator of W exp(—io(i™*! d/dt + I:/))W'l is i7'd/dt + Ho + V.
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X.13 Ciassical nonlinear wave equations

A thorough discussion of nonlinear partial differential equations is
outside the scope of this book. However, we want to describe some of the
functional analytic techniques which are useful in studying these classical
problems. We will use the nonlinear Klein-Gordon equation as a motivat-
ing example. Suppose that m, 4 > 0, and let two functions f and g on R?
be given. The problem is to prove the existence and study the behavior of a
function u(x, t) satisfying

% — Au+ mu= —2|ul’u
u(x, 0) = f(x) (X.138)
% (x,0) = glx)

In this section we treat the existence, uniqueness, and smoothness of
solutions of (X.138). In Section XII.13, we develop a scattering theory for
(X.138). We are treating the Klein-Gordon problem for complex-valued
functions u. If the initial data f and g are real valued, then u will be
real valued for all ¢t (Problem 71) and thus satisfies

u, — Au + m*u= —u? (X.139)

This equation is the classical analogue of the ¢* quantum field theory
equation discussed in Section X.7.

Classical field theories like those described by (X.139) are formally in the
form of Hamiltonian systems. If we let

H(u, v) = %J (v(x)2 + (Vu(x))? + m*u(x)? + g— u(x)‘) d*x
then (X.139) is formally equivalent to
oH
u(x) = 5o00) v(x)

oH _

iy~ (A~ W) = Al

where we have integrated by parts to obtain
quﬁﬁﬁx=—meAdﬁfx

vl(x) ==
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This suggests that, as in classical Hamiltonian systems with a finite number
of degrees of freedom, the total energy should be conserved. That is, if u
is a sufficiently smooth solution of (X.139) which falls off fast enough at
infinity to justify integrations by parts and differentiation under the integral
sign, then H(u, u,} should be time independent. Such a conservation law
will be crucial for the global existence theory of (X.138) and (X.139) and
will distinguish between the cases 4 > 0 and 4 < 0. If A > 0, then as time
develops both u and Vu are prevented from getting large, since neither can
get large without H(u, u,) getting large. On the other hand if 2 < 0, then both
u and Vu can get large in such a way that their contributions to H(u, u,)
cancel. Thus, one expects global solutions to exist if A > 0 and we prove
this by exploiting conservation of energy. If 1 < 0, we expect that for some
initial data global solutions will not exist. This situation is analogous to
the situation with the ordinary differential equation

m(t) = 2g°(t)

Since the energy 3mg® + 1Aq* is conserved, the solution cannot get to
infinity in finite time if 1 > 0, so global solutions exist; but if A <0, the
solution does get to infinity in finite time.

Since the techniques which we have developed in this chapter so far
apply to differential equations of first order in ¢, we rewrite (X.138) as a
first-order system:

ov 2, _ N
E—Au+m u= —21|ul*u
ou
5‘; =0
u(x, 0) = f(x)
o(x, 0) = g(x)
or
ORI FORECTD
(X.140)
N
?60) (g(X))
where
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From now on we write column vectors as row vectors. Our plan is to
formulate (X.140) as a Hilbert space problem and then prove a general
Hilbert space theorem guaranteeing existence and uniqueness. Let B > mI
be the positive square root of a strictly positive self-adjoint operator B?
on a Hilbert space #. (In our case # = [}(R>) and B> = —A + m?)
Since B? is closed, the domain of B, D(B), is a Hilbert space under the
inner product (Bu, Bu). We will denote by #, the direct sum #,=
D(B) ® s with the inner product

(Ku, v, <u, v))p = (Bu, Bu) + (v, v)

A=i( 0 ’) (X.141)

Let

-B* 0
Then it is easy to check that A is a symmetric operator on J# , with domain

D = D(B*)® D(B) and that A is closed since B and B* are closed. Now,
defining cos(tB) and sin(tB) by the functional calculus, we set

Wit) = ( CO-S(IB) B! sin(tB))

— B sin(tB) cos(tB)
Then W(t) is a strongly continuous unitary group on # ;. Furthermore, if
u € D, the strong derivative of W(t)u exists at zero and equals —iA4 and
W(t) takes D into itself. Thus, by Theorem VIIL11, the generator of
W (t) is essentially self-adjoint on D. Since 4 is closed, 4 is self-adjoint on
D and is the infinitesimal generator of W(t). We summarize in a proposition.

Proposition Let B be a strictly positive self-adjoint operator on a
Hilbert space . Then W(t) is a strongly continuous one-parameter
unitary group on J , whose infinitesimal generator

(0 1
A='(-BZ 0)

is self-adjoint on D = D(B?) ® D(B).

We can now formulate an abstract version of (X.140). Let 4 be a self-
adjoint operator on a Hilbert space s# (no longer necessarily of the form
(X.141)) and suppose that J is a nonlinear mapping from D(A4) to s#. The
problem is to find conditions on J guaranteeing that for each ¢, € D(A),
there is a unique s -valued function ¢(t) on [0, o) satisfying

do

i —idAp + J(op)

(0) = 0, (X.142)
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The technique of proof is to reformulate (X.142) as an integral equation
t
o(t) = e gy + [ e =45(g(s)) ds (X.143)
(4]

and prove the existence of unique local solutions of (X.143) by the con-
traction mapping principle. Our conditions on J will be strong enough to
guarantee that any solution of (X.143) is automatically a solution of
(X.142). It is possible to weaken the conditions on J so that one obtains
solutions of (X.143) but not of (X.142) because the solution is not
necessarily strongly differentiable.

Theorem X.72 (local existence) Let A4 be a self-adjoint operator on a
Hilbert space »# and J a mapping from D(A4) to D(A4) which satisfies:
(Ho) (el < Clelel

(Hy)  4J0) < Clol, 40l 40|

(Hs)  |J(e) = JW)I < Clliol, [¥)lle - ¥

(HY)  [AU(e) = JW)I < Clol, [4el, (¥, |4¥])] 4p — Ay

for all ¢, Y € D(A) where each constant C is a monotone increasing
(everywhere finite) function of the norms indicated. Then, for each ¢, € D(A4)
there is a T > 0 so that (X.142) has a unique continuously differentiable

solution for t € [0, T). For each set of the form {¢ | |¢| < a, |4¢| < b},
T can be chosen uniformly for all ¢, in the set.

Proof Let Xy be the set of D(A)-valued functions on [0, T) for which
o(t) and Ae(t) are continuous and

loC)llr= sup Jlo()] + sup |Ae()] < oo
tefo, 1) 1ef0, T)

Since A is a closed operator, X with the norm |¢(-)||r is a Banach
space. Choose some fixed ¢ > 0. Let ¢, € D(A) be given and let X7, o,
consist of those ¢(-) in X5 with ¢(0) = @, and ||e(*) — "¢, < & We
will show that the map

1]

(So)r) = e *'po + [ e 4= (p(s)) ds (X.144)

is a contraction on X7 . o, if T is small enough. We denote by C; any of
the constants in the hypotheses with arguments [¢,| + ¢ and | Ag,| + &
Suppose that ¢(-)€ Xt ,,; then

e~ 4=+ (s + ) — e~ 42 ()]
< [J(o(s + h)) — J(o(s))] + [[(e™ 4 = 1) (e(s))]
< Cillo(s + h) — o) + (e = DJ(e(s))
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so e Mt=9J(p(s)) is a continuous -valued function of s. A similar
proof shows that Ae™ ‘4t~ J(p(s)) is also continuous. Thus, the right-hand
side of (X.144) can be defined using the Riemann integral, and if

o1 _, m
)= it~ (mMmyA o
0= 5 et emlof )

t

)= [ e (p(s)) ds

then #n,(t)—>n(t) as n—oco. Now, by the hypotheses on J, each
n.(t) € D(A), so

and:

Ane)= Y % e‘""‘""”""‘AJ((p(%l t))

m=1
t Iy
- I e =4 J(o(s)) ds
4]
Therefore, n(t) € D(4) and

t

A fle“'“")‘J((p(s)) ds = .[ e~ 9044 J(p(s)) ds (X.145)

Further,
t+h .
j e~ 1At=sg=i4h 4 J((s)) ds

t

Ane + k) — An(0)] < ]

+ j'(e“"" — Ie~"4t=9 4 J(p(s)) ds

< HClJol + [ I = DA ds

The integrand in the second term converges to zero as h— 0 for each s
and by the hypotheses on J, the integrand is uniformly bounded. Thus, by
the dominated convergence theorem the right-hand side converges to zero
as h =0, so An(t) is continuous and similarly, n(z) is continuous. Further,
exactly the same kind of estimates as above show that for any ¢(-),
V(-)€ X1, ¢ 0,» WE have

[(Se)(z) — e g, || < C, T Es;pnll(p(t)ll
|A(Se)(t) — Ae~"*q,| < C, T Es;pT)IIA(p(t)II
[(Se)(t) = (S¥)e)| < C. T, Es;pnllw(t) - y(r)

A1)~ (WO < €. sup | 4es) ~ Av()]
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Thus, for T small enough, S is a contraction on Xt ., so, by Theorem
V.18, S has a unique fixed point ¢(*) in X7, ,, which satisfies (X.143).

Now, suppose that ¢ is a continuously differentiable D(A)-valued solution
of (X.142) on the interval [0, T') with @(0) = ¢, . By the differential equation,
A@(t) is continuous, so @(t)€ X1, ,, for t in some interval [0, Tg). Since
@ obeys (X.143), o(t) = @(r) for t < Ty. Let T, be the sup of such T;. Then
since Xr,,,, is closed, §(T,)€ X1, ,,- Now, if T, <T, then since
@(T;) = ¢(T,) the same argument as above shows that @(t) = ¢(t) for some
small interval of T} <t < T, < T which contradicts the maximality of T,.
Thus T, > T, so ¢(t) = ¢(t) for t€ [0, T). That is, any strong solution of
(X.142) on [0, T') equals of(t).

To prove the strong differentiability of ¢(t) we write

o(t + h) — o(t)
h

3 R AN +1 rh —iAl=5),=ihA] )) d.
= ; e "o hj, ¢ ¢ (ols)) s

h

Since ¢, € D(A) the first term converges to —ide” ‘#¢, as h — 0 and since
the integrand of the second term is continuous, it converges to J(¢(t)). The
integrand of the third term converges to e ~4¢ s} —i4J(¢(s))) for each s and
e-ihA -]

——Jlels)

so the integrand is uniformly bounded. Thus, by the dominated convergence
theorem the third term converges as h — 0 to [4 e=#0=9) (—iAJ(¢(s))) ds
which by (X.145) equals —iA [}, e~ !4~ 9J(¢(s)) ds. Therefore ¢(t) is strongly
differentiable for ¢ € [0, T') and satisfies (X.142). I

+ j ;e‘““_"(&l)J((p(s)) ds (X.146)

< 4T < CllAgo| + &

Uniqueness in the above theorem actually holds in a considerably
stronger sense (Problem 72). We remark that the hypotheses H; in the above
and the following theorem follow from the hypotheses H};. We state them
separately for easy comparison with the hypotheses of Theorem X.74.

Theorem X.73 (local smoothness)

(a) Let A be a self-adjoint operator on a Hilbert space »# and J a
mapping which takes D(A4’) into D(A’) for all 1 < j < n and which satisfies
(forj=0,1,...,n)

H)  [4J(e) < C(lo]
(HY)  14°U(e) = JW)I
< C(llol. ¥, .-, | 4], 4% )| Ale — A

|40} 40|

y ey
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for all ¢, Y € D(A’) where each constant C is a monotone increasing
(everywhere finite) function of all its variables. Then for each ¢, € D(A4"),
n>1, there is a T, so that (X.142) has a unique solution ¢(t) for
te [0, T,) with ¢(t)e D(A") for all te[0, T,). For each set of the form
{o||4%| < a;,j=0,...,n}, T can be chosen uniformly for @ in the set.

(b) In addition to the hypotheses in (a) assume that for each j <n, J
has the following property: If a solution ¢ is j times strongly con-
tinuously differentiable with ¢®*)(t) e D(A""*) and A"~*¢%)(t) is continuous
for all k < j, then J(¢(t)) is j times differentiable, d’J(¢(t))/dt’ € D(A" /1),
and A"/~ dJJ(¢(t))/dt’ is continuous. Then the solution given in part (a) is
n times strongly differentiable in t and d/o(t)/dt! € D(A™"Y).

Proof The proof of part (a) is essentially the same as the proof of
Theorem X.72 except that we take X¥, , to be the set of functions ¢(-)
on [0, T,) so that ¢(t), ..., A"p(t) are strongly continuous and

2 sup [Alp(t) — em ' Algo| <&
j=01t€e[0.T) .
Then one proves that S is a contraction as before.
Part (b) is proven by induction. We know from part (a) that ¢(t) is
strongly continuously differentiable and ¢’(t) = —id¢(t) + J(¢(t)). By the
same arguments as in Theorem X.72,

t
Ag(t) = Ae @y + AJ. e~ 14179 J((s)) ds
0

t

=e A, + '[ e~ =94 (o(s)) ds
0

and from this it follows (using another argument in Theorem X.72; see
(X.146)) that A¢(t) is strongly continuously differentiable. Therefore by the
hypotheses on J, J(¢(t)) is strongly continuously differentiable, dJ(p(t))/dt €
D(A"" %), and A""%dJ(e(t))/dt is continuous. Thus, ¢'(t) is strongly
differentiable,

#(0) = — A0 (1) + 2 J(o(0)

= (=id)p(0) - AT (1) + £ J(o)

@"(t)e D(A""?), and A" 2¢"(t) is continuous. We now repeat the argument
again (dJ(op(t))/dt is differentiable by hypothesis since we now know that
o(t) is twice continuously differentiable) to conclude that ¢(t) is three times
strongly differentiable and so forth. |
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Notice that the solution ¢(t) guaranteed by Theorem X.73 will generally
exist on a smaller interval than the solution in Theorem X.72 since T, < T.
But by uniqueness these solutions must coincide on [0, T,). We now come
to the question of whether the solution exists for all ¢t > 0. In general this
will depend on detailed properties of the nonlinear terms and not just
estimates; at the end of the section we give an example where global
existence does not hold. Below, we prove that if [¢(t)| is a priori bounded
and if we have slightly stronger estimates, then global solutions exist.
Later, we will see that the conserved energy for the nonlinear Klein-Gordon
equation is 3] @(t)|2 + %4 [ |u(t, x)|* d°x so that ||@(t)|| is a priori bounded.

Lemma1 Let A and J satisfy the hypotheses of part (a) of Theorem X.73
except that the hypotheses (H;) are replaced by the slightly strongly
hypotheses:

(H)  |4T@)] < Cllel - 147 o) 40|

for 1< j < n (i.e, the constant does not depend on || A/p||). Let [0, T,) be a
finite interval on which a solution ¢ of (X.142) exists with A/e(t) strongly
continuous on [0, T,) for each 0 <j < n. Then, if |¢(t)| is bounded on
[0, T;) so is || A/g(t)| for each 0 < j < n.

Proof Since ¢(t) satisfies the differential equation on [0, T;) we have for
te[0, T;):

t

00)= & g0 + [ 74 (p(s)) ds

As before we can take A inside the integral to conclude that

Ap(t)=e " A, + J.;e““"”AJ((p(s)) ds
50,

40001 < [Aool + ] Cllo))IAots)] d
By hypothesis, | ¢(s)| is bounded on [0, T;) so there is a constant K, so that

| 40(0)] < gl + K [ | dols)]
for all t € [0, T;). Thus by iteration we conclude that
l4g()]| < [[Agolle®
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for all t € [0, T;) so [|A¢(t)| is bounded on [0, T;). Now that we know that
lo(t)]| and || Ag(t)|| are bounded, we can use (H3) and the same argument to
conclude that ||4%¢(¢)|| is bounded and so forth. |

Let T, be the sup of the numbers T, so that a solution ¢(t) of (X.142)
exists on [0, T;) with 4/y(t) continuous for each j=0, 1, ..., n. By local
uniqueness, each of these solutions coincide wherever their intervals of
existence overlap, so the solution given by part (a) of Theorem X.73 may
be extended to [0, T,) which is called the 4"-maximal interval of existence of
the solution.

Theorem X.74 (global existence and smoothness) Let 4 be a self-
adjoint operator on a Hilbert space 5# and n a positive integer. Let J be
a mapping which takes D(4’) into D(4’) for all 1 <j<n and which
satisfies (for all 0 < j < n)

(Ho) @) < Clelel

H) AT < Cllel, ... 147 o)A, =1, ...n

(Hy) 14U () - JW))

< Cllel 1l .- |40l |4 Ao — A, j=0,....n

for all ¢, Y € D(A’) where each constant C is a monotone increasing
(everywhere finite) function of all its variables. Let ¢o € D(4") and suppose
that on any finite interval of existence the solution ¢(t) guaranteed by
part (a) of Theorem X.73 has the property that |o(t)|| is bounded from

above. Then there is a strongly differentiable D(4")-valued function ¢(t) on
[0, o0) that satisfies

@'() = —ido(t) + J(o(t))
®(0) = 9o
Further, if J satisfies the hypotheses of part (b) of Theorem X.73, then
() is n-times strongly differentiable and d’o(t)/dt! € D(A"~9).

(X.142)

Proof Let [0, T,) be the A™maximal interval of existence of the solution
() and suppose T, < co. By hypothesis, we know that ||¢(t)] is bounded
on [0, T,). This implies by Lemma 1 that ||4/¢(t)| is bounded on [0, T,)
for all 0 < j < 7. Now, the length of the interval T, over which one can use
the contraction mapping principle depends only on the constants
C(ll@oll + & ---, [|A"po| + £)- Since they are bounded on [0, 7,), we can
extend the solution ¢(t) across T, if we choose as initial point a ¢, close
enough to T,. Since this violates the maximality of T, we conclude that
T, = co. The rest of the statements of the theorem follow immediately from
Theorem X.73. |}



302 X: SELF-ADJOINTNESS

Corollary Let A and J satisfy the hypotheses of the above theorem for
each n=0, 1, ... and suppose that J satisfies the hypotheses of part (b) of
Theorem X.73. Then for each € ()%, D(A’), (X.142) has a unique
solution ¢(t) so that ¢(t) is infinitely often strongly differentiable and each
derivative is in ()2, D(4/).

We make several remarks. First, since e is a group and all our
estimates are independent of the sign of ¢, Theorem X.74 shows the existence
of a solution for negative t as long as ||(t)| is a priori bounded on finite
negative intervals also. Suppose that we have the hypothesis

s V) —JW) < Cllel. [¥Dle =¥l o.yexr

and the a priori boundedness condition of Theorem X.47. Then by the ideas
above, we can construct global solutions of the integral equation (X.143).
Let M, be the mapping

M, : ¢(0) - o(t)

where g(t) is the solution of (X.143). Then {M}, ¢ (- o, «o) is @ One-parameter
group of everywhere deﬁned nonlinear mappings on . M, is strongly
continuous since H(p (0)| =0 as t — 0. It is often important to know
that for each t, M, is a contmuous operator on J since in applications,
this says that the solutlons of differential equations depend continuously on
the initial data. Notice that since M, is in general nonlinear, it is not
sufficient to prove that M, is bounded on bounded sets.

Theorem X.75 Let A be a self-adjoint operator on a Hilbert space J#
and J a nonlinear mapping on J# satisfying (#5). Suppose that for all k,T,
solutions of (X.143) are a priori bounded, uniformly for all |¢(0)| < k,
0 <t < T. Then each M, is uniformly continuous on balls in 3.

Proof Letk,T be given and let by(k) be the corresponding uniform bound.
Suppose that [¢,(0)] <k, [¢2(0)] <k and let @,() @a(t) be the
corresponding solutions of (X.143). Then, for t < T,

lo1(8) = @2(2)]| < [19:(0) - @2(0)] + J;HJ(%(S)) = J(@a(s))] ds

< 1(0) = @2(0)] + C(b(k), b(k) jnm — ¢a(s)] ds

SO,

le1(2) = @2(2)]| < l@1(0) — @2(0)]| exp(C(b(k), b(k))) I
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With stronger hypothesis on J one can obtain a stronger conclusion; see
Problem 80.

* %k ok

We now return to our motivating example, the nonlinear Klein-Gordon
equation on R3. In that case, B=(—A + m?)"? on }(R?), ¥ = D(B)

@ I?(R?), and
. 0 I
A= l(—Bz 0)

In the following, the symbol |- | will always denote the norm
I<u, v>[* = [ Bullz + [[o]3

on # and |||, will denote the ordinary I# norm on R*. We reformulated
the Klein-Gordon equation (X.138) as

@'(t) = —ide(t) + J(e(t))
®(0) = o

where () = Cuft), o(t)), 9o = (S (x) 9(x), J(0(2)) = <0, —A|u(t)Pu(2)>,
and we showed in the proposition that 4 is self-adjoint on D(B?) @ D(B). In
order to apply the abstract theory to this case we must verify that J has the
right properties. No new techniques are required but just an appropriate
use of Holder’s inequality, the Plancherel theorem, and a Sobolev estimate.
We proceed by a series of lemmas. In all the following calculations, various
universal constants will be denoted by K.

(X.147)

Lemma2 Letue C3(R?). Then |u|¢ < K||By|.-
Proof Denote du(x)/dx; by u,. Then by the fundamental theorem of
calculus,

()| < 4 [ Jus | dx,

where the integral is taken over the line where x, is held fixed for j # i.
Thus

1/2

|u(x)|® < K(Ilu u?| dx )IIZ(I |, u*| dx )llz(f |, u?| dx )
- Xy 1 X3 2 X3 3
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so by integrating both sides (by iterating the integrals) and using the
Schwarz inequality, one obtains

1/2 1/2
[ |ul®dx < K(J |y | dx) (J luy, u?| dx) (J lu,, u?| dx)
JR3 R3 RrR3 R}
4

6 3/4 2 1/
<K ul®dx u, |*dx
(1 Jute ) (] ]
1/4
x Uy, |? dx Uy, 2dx)
(J-Ral ’| ) (J.RJ “l

From this one easily obtains

1/2
1/4

1/6
(] Julo ) Ko+ s + P2

= K(|[k,a] 5 + [[kaai]; + [k
< K|} K + m?) 24,
= K|Bul|, §

2)

Lemma3 Suppose that u,, u,, u; € D(B). Then
luyuz 4|2 < K||Bu,[| 5] Bus ||| Bus |, (X.148)

Proof Let ue D(B). Since B is essentially self-adjoint on CF(R?), we can

find a sequence of CP(R?) functions u, so that u, - u and Bu, > By, and by
passing to a subsequence if necessary, we may assume u, converges
pointwise to u also. But

I = unlls = [ = ) (17 + 0, 8 + )2
< Klun — thll6]l (47 + st + uz )15
< Kty = nlls([4all3 + letall6llumlls + [4nll5)
< K| Buy = Bup|| (|| Bunl|3 + || Bl 2]| Bl 2 + | Bitm | 2)
3

so {u7} is Cauchy in I? and since it converges pointwise to u
u® € I?. Taking the limit in the inequality we obtain

3 we have

luld = |4*]. < K|[Bu|2

The statement of the lemma now follows by applying Hoélder’s inequality
twice. |
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Lemma4 For all ¢,, ¢, € 5#, J satisfies

V(e < Ko, |*
I(@1) = J(@2)ll < Clllo:ll- llo2D)ll01 = @all
Proof Let @; = {u;, v;). Then, by Lemma 3,
V(@) = l|Auid, |2 < K||Bu, |13 < Ko, *
and (by the calculation in Lemma 3)
IV (@1) = J(@2)l = | Aluii, - uj )|
< K||B(uy — ua)[2(Bus |13 + | Bus]l2]| Buzll2 + | Busl3)

< Klos = oall(l0:l? + ol o]l + [@2]%)
which proves the lemma. J

Lemma$5 Let ¢, ¢, € D(A), then

|45l < Kllosl2 404
14(J(e,) - J((Pz))” < C(lloalls ”‘Pz”* ”A(Px“: ”A‘Pzn)"A‘Pl — Ag,||
Proof Let ¢; = (u;, v;y where u; € D(B?), v; € D(B). We compute
IBux /13 = 12 & + m?)! k|3 < |3 & + m?)i)3 = [|B*u|)}
so, by Lemma 3,
28) ) = |2t + w28 | < K] Bu) 3Bl < K| Bul3| B3
Thus,

3
4 (@I* = A%||Buia, |13 = l’; I li3 + A%m? fluia, |13

< K(||Buy||3|| B*uy |3 + m?||Bu,||3)
< K||Bu, [|3]|B*u, 3
< K"‘P1||4“A‘P1"2

which proves the first inequality. To prove the second, we compute by
Lemma 3 and the above,
iy — u3iy)y |3 < fluf @ — 82) )3 + [0 — ud)(@a)s 13
120 e 1 1 = [u2 PN + 1200y — uz)s |42 P13
< K(|[Buy |13 |B*(uy — uz)|I3
+ | B2uz 13 | Buy + u)|13 1B (4, — us)[3)
< K(los1*1 (@1 = @2)II?
+ 40217 (losll + ozl Aler — @2)I1%)
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Therefore
”A(J(‘Pl) - J(‘Pz))”2 = '12"3(“}‘_‘1 - u% Hz)”%

3
= 2 Y |(winy — 3o ud)x I3 + m?A uity — uia|3
i=1

< Clloyls ezl 402D Ales — @2)]12

+ Clle:l, leahlAle; — @1)|?

which proves the lemma. We have several times used the inequality
1Bu|, < K[| B2u|l,. I

The last two lemmas and Theorem X.72 guarantee the local existence of a
solution to (X.138). To get global existence we need:

Lemma6 Let u(x, t) be the solution of (X.138) on an interval [0, T)
where u(x, 0) = f(x) € D(B?) and u,(x, 0) = g(x) € D(B). Then

E(t)= %J {|Bu(x, O + lufx, ) + % [u(x, t)|*} d*x
is independent of ¢.
Proof Let @(t) = (u(x, t), u(x, t)). Since ¢(t) € D(A) for each te [0, T),
we have u(-, t) € D(B?) and u,(x, t) € D(B) for each t € [0, T). Further, since

@(t) is strongly differentiable, u and u, are strongly differentiable as
[2(R3)-valued functions and

u(t + h) — u(f)
|t n=sd ) |
h 2
ult+h) = w(®) _, ol Lo (X.149)
h 2

ash — 0. From this it follows that the first two terms in E(t) are differentiable.
To see that the third term is differentiable we use Lemma 2 and
Hélder’s inequality to conclude that

=0

B(g(t +h)—u(t) u,(t))

< [ufl3 ) Bul 3

=

2
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From this and (X.149) above, it follows that u(t, x)? is strongly differentiable.
Therefore

[ ufe, x)[* dx = (2(2) (1))
is differentiable. Thus, E(t) is differentiable and

Et) =

1 A
(utn ul) +3 (uun u2)

(Bu, Bu) + 3 3

NI»—

1 1 A
+ 3 (Bu, Bu,) + 2 (4, Uy) + 3 (42, uu,)

1 1
i(u,,B U+ u, + A|ulu) 5(32u+u,,+l|u|2u, u,)
=0

on account of the differential equation for u. |

Theorem X.76a Let A >0, m > 0 and suppose
feD(=A+m?),  geD((—A+m?)?)
Then there exists a unique function u(x, t), te R, xe R3 so that
t+u(-, t) is a twice strongly differentiable I>(R*)-valued function of ¢,
u(-, ) e D(—A + m?) for all ¢, u(x, 0) = f(x), u,(x, 0) = g{x), and
u, — Au+ m*u= —;|ul’u (X.138)
Moreover, for each t, the map {f, g>+ {u(-, t), u(-, t)) is continuous.

Proof Lemmas 4 and 5 show that J satisfies the hypotheses (Hg), (H}),
(Hg), and (HY) of Theorem X.72. Thus, a unique local solution ¢(t) =
Cu(x, t), u,(x, t)) exists on an interval [0, T). By Lemma 6, E(t) is constant,
so for all te [0, T),

1 2 2 A 4 13
3 10017 <3l +5[_Jutx. 0 d*

= E(r) = E(0)
Thus | ¢(t)| is bounded on [0, T), so by Theorem X.74 the solution exists
for all : > 0. By solving the equation with initial data (f, —g) we
obtain a solution for t < 0. The other statements also follow immediately
from part (a) of Theorem X.73 and Theorem X.75. In verifying the
hypotheses of Theorem X.75, it is necessary to note that the nonlinear term
in the energy can be bounded by the square of the free energy. |
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From a classical point of view, Theorem X.75 is not completely
satisfactory. We would like to know that if we start out with initial data
with a certain degree of smoothness the solution will remain that smooth.
It is for this reason that one needs Theorem X.73. We will sketch the
proof of the C* result.

Theorem X.76b  Suppose that the initial data fand g in Theorem X.76a
are both in CP(R). Then the solution u(x, t) of (X.138) is in C*(R*).

Proof First one proves the higher order estimates (H,) and (HL) for all
n > 1. The proofs are straightforward and use exactly the same ideas that we
used in proving the cases n =0 and n =1 in Lemmas 5 and 6. Then one
verifies for each n the hypotheses on J given in part (b) of Theorem X.73.
To show what is involved we will do the case n = 2. Suppose that ¢(t)
solves (X.147), ¢(t) € D(A?), ¢'(t) € D(A), and Ag'(t) is continuous in t. We
must show that J((t)) is strongly differentiable. Now, ¢(t) = (u(t), v'(t))
and by the hypotheses on ¢, u(t) € D(B®) and u'(t) € D(B?). We can write

u(t + h)|2u(t + h) — |u(t)|*u( >
h

3 Ulolc+ 1) = J(o(o) = =4(0, 1

as the sum of three terms one of which is

—/1<0, (t)|2(u(t + hh) - u(t))>

and the other two are similar. By Lemma 4,

o [£24=) a|

B[u(t + hl— u(t) u’(t)]

< K||Bu(?)|3

2

But, since ¢(t) is strongly differentiable, the right-hand side converges to
zero. The same argument works for the other two terms so we conclude
that J(¢e(t)) is strongly differentiable,

(@)Y = =40, 2uiaw’ + u@)

(J(o(t))y e D(A*~ '~ ') = # by Lemma 4 again, and J(¢p(t)) is continuous.
By exactly such arguments as these one verifies the hypotheses of part (b)
of Theorem X.73.
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Now, since f, ge CF(R?), ¢, =<f;, g) is contained in (2, D(4").
Therefore, by the Corollary to Theorem X.73, we see that ¢(t) is infinitely
often strongly differentiable and for each j, the jth derivative ¢Y(t) is in
(&, D(A") for all . All that remains is to prove that there is a function,
u, C* in the classical sense, so that if we view u(-, t) as a vector-valued
function of 1, then ¢(r) = {u(x, 1), u(x, t)>. Now u(t), the first component
of ¢(t) is locally an element of I>(R, I*(R?)) = *(R*) (see Section IL4).
The I? derivatives of u in the time direction are clearly the distributional
derivatives (since C¥ < I?), and since 8*u/dt* € (., D(B") by the above
argument, the distributional derivatives of u are I? for all orders. By
Sobolev’s lemma (Theorem IX.24), u is C* in the classical sense. I

Finally, to complete our analysis of the nonlinear Klein-Gordon equation
we show that the solution propagates at speed one. In particular, the
solution u of the last theorem has the property that u(-, t) € CF(R") for all .

Theorem X.77 Let fe D(—A +m?) and ge D((—A + m?)'?) and
suppose that f and g are supported by a compact set £ < R? (i.e, fand g
are zero ae. outside of Z). Then the solution of (X.138) given by
Theorem X.76a has the property that u(-, ) is supported by

€(Z, 1) = {x e R| dist(x; Z) < t}
Proof First we prove the statement of the theorem for the linear equation
Uy — Au + m?u =0
u(x, 0) = f(x) (X.150)
u(x, 0) = g(x)

Suppose first that f and g have support in S2, the ball of radius R about
zero. Then the solution of (X.150) is given by

u(t) = cos(tB) f + B~ ! sin(tB)g
or, taking Fourier transforms,
ii(k, t) = cos(t,/ k2 + m2)f(k) + (k* + m?)~ V2 sin(t,/k* + m*)g(k)

By the Paley-Wiener theorem (for distributions), fand § are entire analytic
functions and there are constants C; and integers N; so that

| F(K)] < Cy(1 + |k|?)Nreltm kiR
Ié(k)l < C2(1 + |k|2)Nze““‘ kiR
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Further, since the roots drop out in the power series, cos(t,/k* + m?) and
(k* + m?)~ 2 sin(t,/k? + m?) are also entire and satisfy

|cos(t,/k? + m?)| < C,elmklr
l(kz + mZ)—llz sin(t /kz + m2)| <C, elm kit
Thus #u(k, t) is entire in k and there is a constant C and an integer N
so that
lik, £)| < C(1 + |k[?)¥eltmki(R+1)

By the converse part of the Paley-Wiener theorem u(x, t) therefore has
support in S3,, = 4(S%, t). From the translation invariance of the equation
it follows immediately that if f and g have their support in any sphere S,
then u(x, t) is supported by %(S, t). Finally, if f and g are supported by X,
we can, given any ¢ > 0, find a finite number of spheres S, ..., Sy so
that S< (JX, S; and |JIL, S; < 4(Z, ¢). Using again the fact that the
solution depends lmearly on the initial data, we easily conclude that the
support of u(x,t) is contained in (J}L, €(S;,t) which is contained in
(%, t + ¢). Since € was arbitrary, u(x, t) is supported by €(Z, 1).

We turn now to the nonlinear problem. Suppose that in the proof of
Theorem X.72, we had chosen X1 . ,, = {0(-) € X ... o, |5uPP 0(t) = 4(Z, 1)}
instead of X7, ,,. Then all the estimates work as before so we need only
check that

(Se)1) = e gy + [ &4 (p(5) ds

takes X 7., o, into itself (as far as the support property is concerned). By the
result for the linear equation proven above, e ‘4'¢p, has support in ¢(Z, t).
Further, if supp ¢(s) = ¢(Z, s), then

supp J(¢(s)) = supp0, —A|u(s)[*u(s)>
< supp ¢(s) < €(Z, s)
so by the linear result

supple” 4" (p(s))} = €(Z, s + (t — 5)) = €(Z, 1)

Thus [t ™4~ J(p(s)) ds is the integral of an I}(¢(Z, t))-valued function
and so it too has support in 4(Z, t). Thus, S takes X1, ,, into itself so
the unique fixed point ¢(t) = {u(x, 1), u,(x, t)> which is our solution also
has support in ¢(Z, t) for each . I

We conclude the section by showing that global existence does not hold
in a large class of examples.
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Example By applying the theorems of this section, one can easily prove
local existence, uniqueness, and smoothness of solutions of the equation
on R%:
Uy — Uyx = u"

u(x, 0) = uy(x) (X.151)

(X, 0) = vo(x)
where x € R and n > 1. Further, if u, and v, are real-valued, then u is
real-valued and, by the same argument as above, if u, and v, have compact
support, then so will u for each t. So let u be a local solution of (X.151)

where uy and v, are in C§(R). We will show that if u, and v, are chosen
correctly, then

F(t) Ej u(x, t)? dx
R
goes to infinity in finite time. Suppose that we can find an o >0 and
initial data u, and v, so that

(A)  (F@t)"*y'<0 forallt>0

(B - (F()™*y <O att=0
Then F(t)™* will go to zero in finite time; see Figure X.8. Condition (B)
is automatically satisfied by choosing u, and v, to have the same sign on
(— 00, 00) since

(F(0)™*) = —aF(0)"!~*F'(0) = —2xF(0)"!~* J U vg dx

Slope = j‘; N

1:0

FIGURE X.8 The graph of F(t)~°.
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so it remains to arrange for (A) to hold. Since F(t) > O this is the same
as showing that Q(t) > 0 where

0(1) = (—a) P HFY = F'F ~ (a + 1(FY’

But,
F(t)=2 f uu, dx
F'(t)=2 f (uu,, + u?) dx
=4(x + 1) | u? dx + 2[ (uu, —  + 1)u?) dx
$0,

Q(t) = 4(x + 1)

(j u? dx)(j u? dx) - (j U, dx)2

J‘ uu,, dx — f (2 + 1)u? dx

+ 2F(t)

The first term on the right is positive by the Schwarz inequality, so we
need only arrange that H(t) > 0 where

H(t) = j uu, dx — (2o + 1)_[ u? dx
= l utldx + l uu,, dx — (20 + 1)[ u? dx
=fu"“dx—ju§ dx — (2o + I)J‘u,zdx
The conserved energy for (X.151) is
E(z):%j(ug + u,z)dx—nj_—lfu"“ dx

That is, E(t) is independent of ¢. Thus, if we choose a so that 2(2x + 1) =
n+ 1, we have

H()

—(n+ DE(t) + 2aj u? dx

—(n+ 1)E(0) + 2« j u? dx (X.152)
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Thus, if E(0) <0, then H is always strictly positive since a@ = 4(n — 1) > 0.

Now, choosing uy =0, v, = 0 so that (B) is satisfied, we scale u, by

multiplying by a positive constant until E(0) < 0 (this will eventually happen

since n + 1 > 2). For any such initial data, F(t) goes to infinity in finite time.
If we consider instead the differential equation

— __an
Uy — Ugx = u

then H(r) again satisfies (X.152), but now the conserved energy is

1 1
E(t) = -2-J (2 + u?) dx + mjum dx
If n is even then by choosing u,(x) < 0, vo(x) < 0 (thus satisfying (B)) with
u, sufficiently large we can obtain E(0) < 0 and thus the solution blows
up in finite time. If, on the other hand, n is odd, then E(t) is always
greater than or equal to zero so the above argument does not work. This
is not surprising since the —u> case is just the one-dimensional mass zero
analogue of (X.138) where we have proven global existence.

X.14 The Hilbert space approach to
classical mechanics

In this final section on the existence of dynamics, we want to briefly
describe the I? approach to classical mechanics, its comparison with quantum
theory and its limitations. Throughout, we will deal with systems whose
phase space is R®Y (or RS with some singularity sets removed) and leave
the discussion of more general symplectic manifolds to the Notes.

Let us begin with the formal elements of the theory. R®¥ has a
distinguished coordinate system p;, g, (i=1, ..., 3N) and a point in this
phase space moves according to the equations of motion

. OH . _O0H

= oq,’ “= op;
where H is the energy function. In particular, a conservative Newtonian
system

(X.153)

m;Gi(t) = F4qy ... qsn)
with
ov
Flq)= — >
(q) 20,

is of the form (X.153)if H = Y2, (2m,)™'p? + V.
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(X.153) is, in general, a nonlinear ordinary differential equation in a
finite-dimensional vector space. There is a standard method for rewriting
such a system as a linear equation on an infinite-dimensional space. Namely,
we transfer the action from points to functions. Let w(gq, po. t) = {q(t), p(t))
where {g(t), p(t)> is the solution of (X.153) with initial data ¢(0) = qq,
p(0) = po. w is a map from R®**! to RV, Let

(U f)4. p) = f(@(4, p; 1)) (X.154)

where f'is a complex valued function on R¥. Then U, U, = U,,,. We can
formally compute the infinitesimal generator i dU,/dt by

aw,. | X, L,
dt r=0—-i=l 0q; 4 op; Pi
={f, H} (X.155)

by (X.153) where

(0} = X 30, p: ~ 3p: 00

i=1

3w (af dg of ag)

is the Poisson bracket. Obviously,

{fgt=—{o 1} (X.156)
and an integration by parts proves that
[h{f, 9} dp™ dg™ = [ {h, f}g d*p d*q (X.157)
if f, g, he CF(RSY).

These formal preliminaries suggest the following definition:

Definition Given any locally L' function H(p, q) on RS, we define the

Liouville form, a quadratic form on I?(R®", 2**p d°¥g), with form domain
0(¢) = C(R®") by

2f,9) =[] g}H d*p d™q (X.158)

If H is a C! function, we define the Liouville operator on CF(R®") by
Lf={f H} (X.159)
Using (X.156) and (X.157), it is easy (Problem 78) to prove:



X.14 The Hilbert space approach to classical mechanics 35

Proposition

(a) The Liouville form is skew-symmetric, i.e.,

£(f,9)= -2 f) (X.160)
(b) If His C' and f, ge D(L), then

(f, Lg) = ¢/ 9)

(c) =—iL is a symmetric operator.

If we know global existence and uniqueness of solutions of the classical
ordinary differential equation (X.153), we can say more:

Theorem X.78 Let H be a C! function. Suppose that for each g4, po,
there is a unique C' function w(qo, po ; t) from R to RN obeying (X.153)
with initial condition w(gq , po ; 0) = {go, Po). Suppose that w: RS¥ +1 — RSN
is a C' function. Then U, is a unitary one-parameter group whose
inﬁnitfsimal generator is —iL. Moreover, —iL is essentially self-adjoint on
C3(R®M).

That U, is unitary is known as Liouville’s theorem.

Proof Let D = C§(R®¥), the C' functions of compact support. By an
approximation of the identity argument (see the discussion in Section VIIL1),
it is easy to see that D < D(L) and that Lf = {f, H} for any fe D. Thus L
is skew-symmetric on D. Now, since w is C! by hypothesis, U, fis C! for each
fixed t. Since w(, -;t) is a one-parameter group of maps of R® to RS,
{Kp, |o(p, g; t) e supp f} = {w(p, q; —1)|<p, g) € supp f} is compact if
Jf€ D as the continuous image of a compact set. Thus U, defined as a map
on D is a one-parameter group of operators from D to D. Moreover, for
any fin D,

d

SUf| =(H =T (X.161)
t 0

t=

To see this note that

¢ '[U, f(q. p) - f(g. p)] = {/, H}{(g, P)
_S(pg:0) =~ (0. 4:0) _ 5- (ifa_H_ _3[?_‘3)
t T \0q; 0p; 0p, 0q,

goes to zero pointwise by the chain rule. Moreover, since f has compact
support and both f and w are uniformly Lipschitz on compact sets, we can
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dominate t~*(U, f — f) by an I? function. Thus, by the dominated con-
vergence theorem,

le= (U= ) —{£ H}|~0

so we have (X.161).

It follows by the skew symmetry of L that (d/dt)| U, f||* = 0 so that U,
is bounded on D and ||U, f|| = | f|. Thus U, extends to a unitary operator
on # = I*(RS"). Since it is given by (X.154) on D and any fe J# can be
approximated by f, € D with f, - f pointwise a.e.,, U, is given by (X.154) on
all of #. Since U, f is continuous for fe C}, it is continuous on #.
Finally, by the invariance of D under U,, (X.161), and Theorem VIII.11,
—iL is essentially self-adjoint on D and —iL is the infinitesimal generator
of U,. 1

Unfortunately, it is usually not easy to prove that the classical equations
of motion have global solutions, although if V' is smooth and goes to plus
infinity as |x| — oo, it is clear that solution curves stay bounded so that
global solutions exist. We will presently see how to prove global existence
for smooth V’s which do not behave too badly at infinity. However, for
many V’s of interest, there are singularities at finite g, and, in fact, the
equations of motion break down at “collisions.” The natural thing to
demand in such a situation is global existence for almost all initial
conditions but even this has not been done for purely Coulomb forces if
N > 4. Failing this, the next thing one might try is to prove that —iL is
essentially self-adjoint on some suitable set, like C3(M) where M is a dense
set obtained by removing singular points from R®. This also remains open!

It is interesting to ask why self-adjointness results are so much easier in
quantum mechanics than in classical mechanics. The reasons are several;
we begin with the principal one.

(1) In the usual case, where H = p*> + V(q), —iL is never bounded from
below (or above). For let

@rye.q)=1(-pq)

Then

6L '= —L
which is just an expression of the fact that w(—p, q; t) = w(p, g; —t) (“time
reversal invariance™), or 8(iL)d~ ! = —iL. Thus since —iL is not bounded,

it cannot be semibounded. If we define C by

Cf=6f
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then C is a complex conjugation with C(—iL)C~! = —iL,so —iL does have
self-adjoint extensions by von Neumann’s theorem (Theorem X.3).

This situation should be compared with quantum mechanics where Cf = f
and CHC™! = H, but where there is no real linear § with 6H0 ' = — H
forcing H to be unbounded both above and below.

Note that in both cases: CqC~! = ¢q; CpC™ ' = —p.

(2) There is no dependence of p and ¢q. Thus, if V is unbounded below,
sois H(p, g} while the quantum-mechanical energy operator may be bounded
below on account of the uncertainty principle.

(3) Only V enters in the energy operator —A + V while derivatives of
V enter in L. Thus singularities are made worse in L, so that, e.g. in the
Coulomb case, C§ < D(Hguanum) but C§ ¢ D(L).

We close with an elementary existence theorem for (X.153) which will
imply the skew-adjointness of L in some cases; the basic idea has already
been used quite often (see the Appendix to Section X.1 and Section X.13)
and is a classical analogue of Nelson’s commutator theorem (see Example 4
in Section X.5).

Theorem X.79 Let V be a C? function on R3¥ with |grad V(q)| <
C(g* + 1)/? for a suitable constant C. Let H(p, q) = Y%, a,;p,p, + V(q)

. where a is a strictly positive definite matrix. Then for any {p,, go) € RV,
there is a unique C! function from R to R®¥, w(p,, g, ; t), satisfying (X.153)
with initial conditions {p,, o). Moreover, w(py, qo, t) is a C' map of
R6N+l to RSN.

Proof Since V is C?, the functions on the left-hand side of (X.153) are
uniformly Lipschitz and uniformly bounded on compact subsets of RSV,
Thus for any A, there is a t(4) > 0, so that p3 + g3 + 1 < A implies that we
can solve (X.153) for |t| < t(A); see Section V.6. Now fix (po, go). Let
(=T, T;) be the maximum interval on which we can solve (X.153) with
initial condition {py, o). We will show that T, is co. For suppose not.
ForO0<t < T, let

N(t) = p(t)* + q(t)* + 1
Then
N(t) = 2pp + 244
< 2|p(t)||grad V(g(t))| + 2|a]l |p(e)| |q(c)|
< 2(C + |al)(g* @) + 1)!7?|p(t)|
< (C+ |a|)N(2)
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Thus N(r) < N(0) exp[(C + ||a|))t] for all t>0. Let ty, be the t(A) for
A = N(0) exp[(C + ||a|)T,)- Choose te (T, —to, T;). Then we can solve
(X.153) with initial condition {p(t), g(t)). By piecing this solution onto the
supposed maximal solution, we obtain a solution in (—Tg,t + t,) con-
tradicting maximality. Thus 7; = oo and similarly Ty = 0.

By the method of Section X.13, @ is C! in the region obtained by one
application of the contraction mapping principle. By the above argument,
any t can be reached by finitely many applications of the contraction
mapping principle (with successively larger starting times). ||

Corollary  Under the hypotheses of Theorem X.79, the Liouville operator
L is essentially skew adjoint on CF(RS), ie. [** = —I*.

NOTES

Section X.1 The main theorem of this section (Theorem X.2) was proven by J. von
Neumann in “Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren,” Math. Ann.
102 (1929-1930) 49-13L. The proof that we give is due to N. Dunford and J. Schwartz,
Linear Operators, Vol. 11, Wiley (Interscience), New York, 1963, who remark that their
proof has many elements in common with the approach in J. Calkin, *Abstract symmetric
boundary conditions,” Trans. Amer. Math. Soc. 45 (1939) 369-442. The original approach of
von Neumann makes extensive use of the Cayley transform of a symmetric operator A4; this
is formally defined by V = (4 — i)(4 + i)~ . Some aspects of the proof hecome more transparent
in the Cayley transform language, but the connection with boundary value problems is then
not so clear. The main elements of the Cayley transform proof are: (i) V is defined as a map
from Ran{A + i) to Ran(A — i) and can be shown to be a partial isometry, (ii) the deficiency
indices of A are precisely the codimensions of the initial and final subspaces for ¥, (iii) closed
symmetric extensions of A are in a one-to-one correspondence with extensions of ¥ which
are partial isometries. The self-adjoint extensions are in a one-one correspondence with
unitary extensions of V. Unitary extensions of V are clearly characterized by an arbitrary
unitary map from D(V)* to Ran(V)*. One thereby obtains the fact that self-adjoint extensions
of A exist only if D(V) = Ran(A + i) and Ran(V) = Ran(A - i) have equal codimension n,
and the fact that the extensions are naturally parametrized by unitary maps from one
n-dimensional space to another. For additional discussion of the extension theory from this
Cayley transform point of view, see N. Akhiezer and I. Glazman, Theory of Linear Operators
in Hilbert Space, Vol. 11, Ungar, New York, 1963. There is further discussion of the “physical
importance” of self-adjointness in A. S. Wightman, “Introduction to some aspects of the
relativistic dynamics of quantized fields,” High Energy Electromagnetic Interactions and Field
Theory (M. Levy, ed.), Gordon and Breach, New York, 1967. For references for the moment
problem, see the notes to Section X.6.

There is an alternative proof of Theorem X.3 which is essentially due to A. Galindo, “On the
existence of J-self-adjoint extensions of J-symmetric operators with adjoint,” Comm. Pure Appl.
Math. 15 (1962), 423-425. We will sketch the proof which avoids the theory of self-adjoint
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extensions {at the cost of using Zorn's lemma). Let A satisfy the hypotheses of Theorem X.3.
Then, by Zorn's lemma, A4 has an extension B which satisfies the following three properties:

(i) CB=BC
(i) B< B*
(iit) B is maximal with respect to conditions (i) and (ii).

Suppose that B ## B* Then we can find a nonzero {¢, V) € # @ ¥, so that
(iv) <o, ¢>eT(B*)n I'(B)*

Since C® C leaves both I'(B) and I'(B*) invariant (by (i)), <(! + C)¢, (I + CW¥> and
Ci{l — C)p, i(I ~ C)Y) are both in T'(B*) N I'(B)* and at least one of them is nonzero. We
can thus suppose that

(v) (Co,CY> =<0, ¥

Let I = I'(B) ® {o(®, ¥) | @ € C}. Since I' = T'(B*), T" is the graph of an operator B. Because
C® C leaves I" pointwise invariant, B obeys (i). Moreover, since <@, ¢> € T(B)', we have
that for any 5 € D(B)

(0 +n Blo + n) = (o. ¥) + (n. Bn)

By (v), (@, V) is real and, by (ii), (n, Bn) is real so B is symmetric. Since this contradicts (iii),
we conclude that B = B* and A has self-adjoint extensions.

Incidentally, the above proof shows that under the hypotheses of Theorem X.3, A has self-
adjoint extensions commuting with C, a fact which also follows from a detailed analysis of the
extensions of 4. The existence of such extensions is important because it implies that on a real
Hilbert space every symmetric operator has self-adjoint extensions. For o# = #q@® H#y can
be viewed as a complex Hilbert space with i{g, ¥) = (—¥, ¢). Letting C{o, ¥) = (o, —¥),
we see that every complex linear operator on J# commuting with C is of the form A® A
where A: W - H#y. This fact, together with the strong form of Theorem X.3 yields the
claimed fact about symmetric operators on real Hilbert spaces. For a further discussion, see
Problem 81.

The discussion in the Appendix follows the general outline of unpublished lectures of
E. Nelson. Further discussion of the self-adjointness of ordinary differential operators may
be found in E. Coddington and N. Levinson, Theory of Ordinary Differential Equations,
McGraw-Hill, New York, 1955 and in Chapter XIII of the book of Dunford and Schwartz
mentioned above.

Extensive historical notes nn the development of this self-adjointness theory may be found
in Volume II of Dunford and Schwartz; we limit ourselves to mentioning that the limit
point-limit circle theory (Theorems X.6 and X.7) is due to H. Weyl who introduced many
of the ideas critical to the theory of extensions of unbounded operators many years before the
development of the general theory of von Neumann. See H. Weyl, “Uber gewohnliche lineare
Differentialgleichungen mit singuliren Stellen und ihre Eigenfunktionen,” Nachr. Akad. Wiss.
Géttingen Math.-Phys. KI. I (1909), 37-63, and (1910), 442-467; “Uber gewohnliche
Differentialgleichungen mit Singularititen und die zugehorigen Entwicklungen willkiirlicher
Funktionen,” Math. Ann. 68 (1910), 220-269. These papers can also be found in Gesammelte
Abhandlungen, Vol. 1, Springer-Verlag, Berlin, 1968.

The limit point-limit circle terminology arose from the idea of considering the self-
adjointness problem for —d3/dx® + V(x) on (a, ) as a limit of problems on the interval
(a, b) as b— 0. Let ¢ and ¢ be the solutions of —¢"(x) + V(x)o(x) = ip(x) on (a, o)
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obeying @(a) = ¥'(a) = 0, —¢'(a) = Y(a) = 1. For fixed b, the set of z € C for which n = ¢ + zy
obeys (cos a)y(b) + (sin a)y’'(b) = O for some a € [0, 2x) form a circle C,. As b — co, this circle
either converges to a limiting circle or shrinks to a limiting point. In the former case, both
solutions of —@"(x) + V(x)p(x) = ip(x) are I? near oo; in the latter case, only one. This
approach is further discussed in Coddington and Levinson.

Theorem X.8 appeared in N. Levinson, “Criteria for the limit-point case for second order
linear differential operators,” Casopsis Pést. Math. Fys. 74 (1949) 17-20. We note that
Theorem X.7 has an analogue for more general intervals than [0, o0); namely, if ¥(x) is
continuous on (a, b) with —o0 € a < b < o, then —d*/dx* + V(x) is in the limit point case
at both a and b if and only if —d?/dx? + V(x) is essentially self-adjoint on Cg(a, b). In
particular, one can use Theorem X.8 to provide another proof of Problem 24 in the one-
dimensional case. Theorem X.9 is due to A. Wintner in “On the Normalization of Characteristic
Differentials in Continuous Spectra,” Phys. Rev. 72 (1947) 516-517, and “The Schwartzian
derivative and the approximation method of Brillouin,” Quart. Appl. Math. 16 (1958), 82-86.
A proof of Wintner's criterion and a variety of alternative criteria can be found in Dunford
and Schwartz, Vol. 1. The limit point case of Theorem X.10 is due to K. Friedrichs,
“Uber die ausgezeichnete Randbedingung in der Spektraltheorie der halbbeschrinkten
gewohnlichen Differentialoperatoren zweiter ordnung,” Math. Ann. 112 (1935/36), 1-23, and
the limit circle part is due to D. Sears, “On the solutions of a linear second order differential
equation which are of integrable square,” J. London Math. Soc. 24 (1949), 207-215. Our
proof is related to a general method of H. Kurss, “A limit-point criterion for non-oscillatory
Sturm-Liouville differential operators,” Proc. Amer. Math, Soc. 18 (1967), 445-449 (see
Problem 8).

The first examples of potentials which are classically incomplete but quantum-mechanically
complete were given in the 1949 Sears paper quoted above. The examples which we use are
taken from J. Rauch and M. Reed, “Two examples illustrating the differences between
classical and quantum mechanics,” Comm. Math. Phys. 29 (1973), 105-111, and are based on
suggestions of E. Nelson. H. Kalf has kindly sent to the authors his detailed analysis of
Sears’ example. Let V,, be the potential on (0, o) given by

V(%) = % —~ 9x*(a — 2b cos(2x?))

where a and b are in (0, o). Then —¢" + ¥, =0 is the Mathieu equation whose general
solution is

l —ux
; (cle‘u’q’ab(x!) +cze “ )qoab( _xl))

where the exponent u depends on a and b and @,(x) is a C* function of period n unless
{a, b) corresponds to a point on one of the curves in Figure X.9. The exponent u is purely
imaginary for {a, b) in the white regions of the figure and real for {a, b) in the shaded
regions. ¥,, is clearly both quantum-mechanically and classically complete at zero. At infinity,
V,, is quantum-mechanically complete if {a, b) falls in the shaded region since in that case
 is real so one solution is not in I? near infinity. However, if {a, b} is in the white region,
then both solntions are in I* near infinity so V,, is quantum-mechanically incomplete.
Classically, if 2b < a, then V(x) < —dx* near infinity so a classical particle can escape
to infinity in finite time, that is, V,, is classically incomplete. On the other hand, if 2b > g,
then the peaks in the potential grow higher and higher so V is classically complete. For
information about Mathieu functions, consult N. McLachlan, Theory and Applications of
Mathieu functions, Oxford Univ. Press, London and New York, 1947, pp. 40, 98, or
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a4 Incomplete

Incomplete

! b

FiGURE X.9 Quantum-mechanical completeness for V,,.

J. Meixner and F. Schifke, Mathieusche Funktionen und Sphdroidfunktionen, Springer-Verlag,
Berlin, 1954, p. 132.

Many of the criteria of essential self-adjointness of ordinary differential operators which
can be derived from the Weyl theory can be generalized to partial differential operators.
There is an analogue of Proposition 2 which plays an important role in these generalizations;
this analogue is a theorem of E. Weinholtz, “Bemerkungen iiber elliptische Differential-
operatoren,” Arch. der Math. 10 (1959), 126-133, and N. Nilsson, “Essential-self-adjointness
and the spectral resolution of Hamiltonian operators,” Kungl. Fys. Sallsk. i Lund Forh 29,
(1959). These techniques played a role in various multidimensional extensions of Theorem X.8
(see the Notes to Section X.5).

Incomplete

b
FiGUre X.10 Classical completeness for V,,.
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In many cases, the results obtainable by using the Weyl limit point-limit circle methods
can be obtained more easily and in more generality by using the techniques of Sections X.4
and X.5.

The examples we discussed, where the classical and quantum mechanical conditions {or
completeness agree, required global conditions, i.e. conditions everywhere. But one would
expect that a particle could be quantum mechanically trapped by a set of wide enough
barriers, independent of what happens in between. A typical example in the one-dimensional
case is the following theorem of R. S. Ismagilov, “Conditions for self-adjointness of
differential operators of higher order,” Soviet Math. 3 (1962), 279-283.

Theorem  Let V(x) be a continuous function [0, o) and suppose there is a sequence of
intervals {a,, b,), b, < a,,, so that

(a) V()2 ~(b,~a)? forxe(a,b,)
() L. (b, —a) =0

Then —(d?/dx?) + V(x) is in the limit point case at infinity independent of the behavior of
V outside of the intervals (a,, b,).

Notice that conditions (a) and (b) imply that the classical travel time across the union of the
intervals (a,, b,) is infinite.

The first results of this general type requiring bounds only on intervals are due to
P. Hartman, “The number of [?-solutions of x" + g(t)x =0," Amer. J. Math. 43 (1951),
635-645. Other one-dimensional results can be found in M. S. P. Eastham, “On a limit-point
method of Hartman,” Bull. London Math. Soc. 4 (1972), 340-344, and N. P. Kupeov,
“Conditions for non-self adjointness of a second order linear differential operator,” Soviet
Math. 2 (1961), 710-713. Theorems of this type applicable to noncentral potentials in many
dimensions can be found in M. S. P. Eastham, W. D. Evans, and J. B. McLeod, “The
Essential Self-Adjointness of Schrédinger-Type Operators,” Arch. Rational Mech. Anal., to
appear. These authors also present examples of conditions in V in a tube Q x [0, ©) = R"
(Q bounded and open in R"™') so that if V obeys these conditions, then —A + V is not
essentially self-adjoint on C§ independent of the behavior of V outside the tube. Intuitively in
this case, the particle travels to infinity in the tube in finite time.

For a discussion of the Laplace-Beltrami operator used in Example 6, consult C. Miiller,
*“Spherical Harmonics,” Springer-Verlag Lecture Notes in Mathematics 17 (1966). In two
dimensions, B = d%/d6?, k, = —¢?, and there are two eigenfunctions corresponding to each
¢ > 0, namely e*¥® and just the constant function corresponding to # = 0. The self-adjointness
statement follows from the fact that {¢“*}% _ _ form a basis for I*(0, 2=). In three dimensions,

o . dg 0 ,. og

Bg)(8, ¢) = (sin 8)™'|— (sin 8) == + — (sin8)™* =

(Bo)(0.4) = (sin )" | 5 (sin 6) 35 + 2 (in )" 2
where 6 and ¢ are the usual angular variables in spherical coordinates. In this case
k, = —¢(¢ + 1) and the corresponding eigenspace has dimension 2¢ + 1. In s dimensions,
k, = —¢(¢ + s — 2). There is a close connection between B and the representation theory of

the group SO(s). In particular, there is a connection between the completeness of the eigen-
functions of B and the Peter-Weyl theorem (see Chapter XIV).

Section X.2 Theorem X.12 is due to F. Rellich: “Stérungstheorie der Spektralzerlegung,
IL” Math. Ann. 116 (1939) 555-570. A wide variety of applications and extensions of the
Kato-Rellich theorem can be found in the book, T. Kato, Perturbation Theory for Linear
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Operators, Springer, New York, 1966. In particular, Theorem X.13 and the special case of
Theorem X.14 where (X.21a) is replaced with the stronger condition (X.21b) (equivalently
(X-21c)) appear in Kato's book. Theorem X.14 is due to R. Wist, “Generalizations of
Rellich’s theorem on perturbations of (essentially) self-adjoint operators,” Math. Z. 119 (1971)
276-280; for additional discussion, see R. Wiist, “Holomorphic operator families and stability
of self-adjointness,” Math. Z, 128 (1972), 349-358.

Kato's application of Rellich’s theorem to atomic Hamiltonians appeared in T. Kato,
“Fundamental properties of Hamiltonian operators of Schradinger type,” Trans. Amer. Math.
Soc. 70 (1951), 195-211. This paper was a turning point in mathematical physics for two
reasons. Firstly, the proof of self-adjointness was a necessary preliminary to the problems of
spectral analysis and scattering theory for these operators, problems which have occupied
mathematical physicists ever since. Secondly, the paper focused attention on specific systems
rather than foundational questions.

The KLMN theorem in various forms is due to T. Kato, “Quadratic forms in Hilbert space
and asymptotic perturbation series,” Technical report No. 7, Univ. of Calif. (1955): J. Lions,
Equations Differentielles Operatianelles et Problémes aux Limites, Springer-Verlag, Berlin, 1961,
Chapter II, Section 1; and P. Lax and A. Milgram, “ Parabolic equations,” in Cantributians
to the theory of partial differential equations, Ann. Math. Study 33, Princeton, New Jersey,
1954. The interpretation of the theorem in terms of scales of spaces was first emphasized by
E. Nelson, “Interaction of nonrelativistic particles with a quantized scalar field,” J. Math.
Phys. § (1964) 1190-1197.

Written in terms of operator inequalities, Theorem X.18 is slightly weaker than the
statement “If 0 < A? < B2, then 0 < 4 < B” which is known as the monotonicity of the
square root. This is a special case of the following theorem of K. Léwner, “Uber monotone
Matrixfunktionen,” Math. Z. 38 (1934), 177-216:

Theorem A necessary and sufficient condition for a continuous real-valued function f on
(0, c0) to have the property that f (4) < f(B) for all pairs of self-adjoint operators, A, B with
0 < A < B is that f be the restriction to (0, co) of a function f analytic in C\(~ oo, 0] with the
property (Im f) > 0 for all z with Im z > 0.

The “physical” argument behind the expectation that quantum mechanics can be developed
for potentials with r™* singularities 0 < @ < 2 is based on the following heuristics: First, the
basic property required for a nonpathological physics is the semiboundedness of H, + V;
secondly, if a wave function is concentrated in a region of size Ar about a negative r~*
singularity, then by the uncertainty principle, the expectation value of H, is on the order of
(const)(Ap)? ~ (const)(Ar)~ 2 while the expectation value of V is on the order of (const)(Ar)™".
Since cx™2 — dx™* (¢, d > 0) is semibounded only if 0 < a < 2, we expect reasonable physics
to break down at a = 2.

The inequality that we have dubbed the uncertainty principal lemma is classical; see for
example H. Kalf and J. Walter, *Strongly singular potentials and essential self-adjointness of
singular elliptic operators in CF(R™{0}),” J. Functional Analysis 10 {(1972), 114-130, where
historical remarks are given. That r~2 < —cA for some constant is a special case of a theorem
of the same type as Theorem X.21: If s> 3 and V € L¥?, then V is A-form bounded with
bound less than or equal to ¢}V, ..

The development of much of the operator theory needed for the quantum mechanics of
Hamiltonians with Rollnik potentials and in particular the proof of Theorem X.19 may be
found in B. Simon, Quantum Mechanics for Hamiltonians Defined as Quadratic Forms,
Princeton Univ. Press, Princeton, New Jersey, 1971. The reader can also find there a summary
of the discovery and rediscovery of the Rollnik condition by various authors.
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The extension of Kato's theorem to n dimensions has been discussed by a variety of
authors. Theorem X.20 appeared in F. Brownell, “A note on Kato's uniqueness criterion for
Schrodinger operator selfadjoint extensions,” Pacific J. Math. 9 (1959), 953-973; our proof of it
is borrowed from an appendix of E. Nelson, “Feynman integrals and the Schrodinger
equation,” J. Math. Phys. § (1964) 332-343. A closely related discussion of n-dimensional
potentials already appeared in F. Stummel, “Singulare elliptische Differentialoperatoren in
Hilbertschenriumen,” Math. Ann. 132 (1956) 150-176. Stummel's results were not stated in
terms of I? spaces but in terms of conditions of the form:

j |x = y|" 4 e V(y)[Pdy< C  forallx
Ix=yls1
for some « > 0. In much of the literature on Schrodinger operators, these “Stummel
conditions” and the related *“ Stummel spaces™ Q, are used.

A direct proof of the extension of Theorem X.20 to the boundary case p = 5/2 (s 2 5) was
given in W. Faris, “The product formula for semi-groups defined by Friedrichs extensions,”
Pacific J. Math. 22 (1967) 47-70. His proof uses the Sobolev embedding theorem which is im
turn based on the classical Sobolev inequality discussed in Section 1X.4. Strichartz’ theorem
in a slightly different form appears in R. Strichartz, “ Multipliers on Fractional Sobolev spaces,”
J. Math. Mech. 16 (1967), 1031-1060. The applicability of this theorem to Schrédinger
operators is an unpublished remark of Nelson.

That r~2 is a A-bounded perturbation on R* if s > 5 follows from an explicit operator
estimate of classical form: if u € C3(R*\{0}) and if @ > —4s(s — 4), then

Vul? s—4 2

j|Au|’d'xz —aj ||x|l dix 4§ 16) (s +4a)j: ||‘

This inequality of Rellich’s is proven in F. Rellich, Perturbation theory of eigenvalue problems,
Gordon and Breach, New York, 1969; see also the paper of Schmincke quoted below.

Konrady's trick and its application to the field theory generalization of the anharmonic

oscillator appear in J. Konrady, “Almost positive perturbations of positive self-adjoint

operators,” Comm. Math. Phys. 22 (1971), 295-299. At about the same time, the same method

was independently discovered in U.-W. Schmincke, “Essential sell-adjointness of a Schrédinger

operator with strongly singular potential,” Math. Z. 124 (1972), 47-50.

Section X .3 In his original paper on self-adjoint extensions (see the Notes to Section X.1),
von Neumann proved that a semibounded operator has semibounded extensions whose lower
bound is arbitrarily close to the bound of the original operator. He conjectured that extensions
exist with the same lower bound. This fact, i.e. Theorem X.23, was proven by K. Friedrichs
in “Spektraltheorie halbbeschrinkter Operatoren,” Math. Ann. 109 (1934), 465-487, and by
M. Stone in Linear Transformations in Hilbert Spaces and their Applications in Analysis,
Amer. Math. Soc. Colloquium Publication 15, Providence, Rhode Island, 1932. For further
discussion of when the Friedrichs extension is the unique extension with the same lower bound
(Example 1), see E. T. Poulsen, “The minimax principle and uniqueness of the Friedrichs
extension,” Proc. Amer. Math. Soc. 21 (1969), 508-509. Theorem X.24 and the proposition
preceding it are due to M. Krein, “The theory of self-adjoint extensions of semibounded
Hermitean operators and its applications, 1" Mat. Sb. 20 (1947), 431-495, and is further
discussed in B. Simon, “The theory of semi-analytic vectors: a new prool of a theorem of
Masson and McClary,” Indiana Univ. Math. J. 20 (1971), 145-151.

Theorem X.25 was first proven in J. von Neumann, “Uber adjungierte Funktional-
operatoren,” Ann. Math. 33 (1932), 249-310.
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Section X 4 Kato’s inequality is due to T. Kato, “Schrédinger Operators with Singular
Potentials,” Israei J. Math. 13 (1973), 135-148, Theorem X.28 and X.29 also appear there.
Kato was motivated in part by B. Simon, *Essential self-adjointness of Schrodinger operators
with positive potentials,” Math. Ann. 201 (1973), 211-220. Simon had proven Theorem X.28
under the stronger hypothesis V 2 0, V € I*(R", exp(—ax?) d"x) for some a. Previous to Simon's
work, it was a folk belief that V had to be in a local Stummel space (essentially that V be
in Lf,. for some p > n/2 if n > 4) if —A + V was to be essentially self-adjoint on CF(R").

Weaker versions of Theorem X.28 are quite old. In particular, that —A + V is essentially
self-adjoint if ¥ > 0 and V € CF(R") is a result of T. Carleman, “Sur la théorie mathématique
de I'équation de Schrddinger,” Ark. Mat., Ast., Fys. 24B, No. 11 (1934). His result was
independently rediscovered by A. Jaffe, “A A¢* Cutoff Field Theory,” Princeton Univ. thesis,
Princeton, New Jersey, 1965. The extension to some classes of singular positive V was first
accomplished by F. Stummel (see the Notes to Section X.2). Perhaps the strongest version
of the result preceding Kato's paper appeared in H. Stetkaer-Hansen, “A generalization of a
theorem of Wienholtz concerning essential self-adjointness of singular elliptic operators,”
Math. Scand. 19 (1966), 108-112 and J. Walter, “Note on a paper by Stetkaer-Hansen
concerning essential self-adjointness of Schrédinger operators,” Math. Scand. 25 (1969), 94-96,
who proved a stronger result if n < 3 and a weaker theorem if n > 4,

Theorem X.30 appears in B. Simon, “Essential Self-Adjointness of Schrodinger-Operators
with Singular Potentials: A Generalized Kali-Walter-Schmincke Theorem,” Arch. Rational
Mech. Anai. 52 (1973), 44-48. A partially alternative proof can be found in H. Kalf and
J. Walter, “Note on a paper of Simon on the essential self-adjointness of Schrodinger
operators with singular potentials,” Arch. Rationai Mech. Anal. 52 (1973), 258-260. Simon's
result generalizes results of H. Kalf and J. Walter, “ Strongly singular potentials and essential
self-adjointness of singular elliptic operators on CF(R*\{0}),” J. Functional Analysis 10 (1972),
114-130, and of U.-W. Schmincke, “ Essential self-adjointness of a Schridinger operator with
- strongly singular potential,” Math. Z. 124 (1972), 47-50. The earliest results of the genre are
due to K. Jorgens, “Wesentliche Selbstadjungiertheit singulirer elliptischer Differential-
operatoren zweiter Ordnung in CP(G),” Math. Scand. 15 (1964), 5-17.

Theorem X.31 is due to W. Faris, “ Essential self-adjointness of operators in ordered
Hilbert space,” Comm. Math. Phys. 30 (1973), 23-34. A slightly weaker theorem was proven
earlier by E. B. Davies, “ Properties of the Green’s functions of some Schrodinger operators,”
J. London Math. Soc. 7 (2) (1973), 473-491.

The first comprehensive treatment of Schrodinger operators with magnetic fields appears in
T. Ikebe and T. Kato, “ Uniqueness of the self-adjoint extension of singular elliptic differential
operators,” Arch. Rationai Mech. Anai. 9 (1962), 77-92. They proved a theorem like Theorem
X.34 but with stronger conditions on V. Theorem X.34 is from Kato's Israel Journal article.
Kato proved Theorem X.33 under the weaker condition that u € L. We have simplified the
proof by noting that ue L2, is sufficient in applications. This remark is critical for the proof
of Theorem X.35 which can be found in B. Simon, “Schrédinger operators with singular
magnetic vector potentials,” Math. Z. 131 (1973), 361-370. Simon’s paper is based on a
strengthened version of the technical lemma for Theorem X.33. Results similar to Theorem
X.35 may be found in M. Schechter, Spectra of Partial Differential Operators, North-Holland,
Amsterdam, 1971. Previous to Simon’s paper, the use of Coulomb gauge was advocated by
K. Jorgens, “Uber das wesentliche Spektrum elliptischer Differentialoperatoren vom
Schrddinger-Typ,” Tech. report, Univ. Heidelberg, 1965, and “Zur Spektraltheorie der
Schrodingeroperatoren,” Math. Z. 96 (1967), 355-372.

Theorem X.32 is due to T. Kato, “A second look at the essential self-adjointness of the
Schrodinger operators,” to appear.
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Earlier results describing the domain of the Friedrichs extension can be fonnd in
K. Friedrichs, “Spektraltheorie halbbeschrinkter Operatoren und Anwendung auf die Spektral-
zerlegung von Differentialoperatoren, 11" 109 (1933/34), 685-713 (corrections in Math. Ann.
110 (1934/35), 777-779), and “Uber die ausgezeichnete Randbedingung in der Spektraltheorie
der halbbeschriankter gewdhnlichen Differentialoperatoren zweiter Ordnung,” Math. Ann. 112
(1935/36), 1-23; H. Freudenthal, “Uber die Friedrichysche Fortsetzung halbbeschrinkter
Hermitescher Operatoren,” Nederl. Akad. Wetensch. Proc. Ser. 39 (1936), 832-833; F. Rellich,
“Halbbeschriankte gewdhnliche Differentialoperatoren zweiter Ordnung,” Math. Ann. 122
(1950/51), 343-368; H. Kalf, “On the characterization of the Friedrichs extension of ordinary
or elliptic differential operators with a strongly singular potential,” J. Functional Analysis
10 (1972), 230-250.

Section X.5 Nelson’s commutator theorem appeared in E. Nelson, “Time-ordered
operator products of sharp-time quadratic forms,” J. Functional Analysis 11 (1972), 211-219.
Earlier a similar theorem appeared in J. Glimm and A. Jaffe, “The A(p*); quantum field
theory without cutoffs, IV: Perturbation of the Hamiltonian," J. Math. Phys. 13 (1972),
1568-1584. The Glimm-Jafle theorem was weaker in that bounds on both the commutator
and double commutator were needed. Both Nelson and Glimm-Jaffe intended the theorem for
application to the self-adjointness of smeared quantum field operators by the scheme used in
Example 3. Nelson’s paper also contained Lemmas 1 and 2.

Both the Nelson paper and the Glimm-Jaffe paper have somewhat more complicated
proofs than the one we use and both use the not-quite-standard techniques of mollifiers
and graph limits respectively. The simple proof that we use, based on the fundamental criterion,
was noted by W. Faris and R. Lavine, “Commutators and self-adjointness of Hamiltonian
operators,” Comm. Math. Phys. 35 (1974), 39-48. They also give a proof based on the intuition
of Example 4 and applied the theory to Schrodinger operators (Theorem X.38 and its
corollaries) and to Dirac operators.

An alternative proof and a slightly more general result appear in O. McBryan, “Local
generators for the Lorentz group in the P(p), model,” Nuovo Cimento 18A (1973), 654-662.

In Stummels 1956 paper (see the Notes to Section X.2), the Hamiltonian of the hydrogen
" atom in an asymptotically constant electric ficld is proven essentially self-adjoint. More
general atoms in constant fields were first treated in the Ikebe-Kato paper (see the Notes to
Section X.4). Earlier, operators of the form —A + V with V continuous and V(x)> —cx? —d
were proven essentially self-adjoint on C3 by N. Nilsson (see the Notes to Section X.2).
These results were further generalized by B. Hellwig, “Ein Kriterium fiir die Selbstadjungiertheit
elliptischer Differentialoperatoren in R"” Math. Z. 86 (1964), 255-262 and “A criterion for
self-adjointness of singular elliptic differential operators,” J. Math. Anal. Appl. 26 (1969),
279-291. In particular. these papers contain a multi-dimensional version of Theorem X.8.

The second Corollary to Theorem X.38 is proven by alternative methods in H. Kalf,
“Self-adjointness for strongly singular potentials with a —|x|? fall-off at infinity,” Math. Z.
133 (1973), 249-255.

For Dirac operators, there is no restriction on how quickly V can grow at infinity.
P. Chernoff in “Essential Self-Adjointness of Powers of Generators of Hyperbolic Equations,”
J. Func. Anal. 12 (1973), 401-414, remarked that this is intuitively correct since the relativistic
bound |v| < ¢ prevents finite travel time to infinity. For strong results on the self-adjointness
of Dirac operators, the reader can consult W. D. Evans, “On the Unique Self-Adjoint
Extension of the Dirac Operator and the Existence of the Green Matrix,” Proc. London Math.
Soc. 20 (3) (1970), 537-557, and U.-W. Schmincke, “Essential Self-Adjointness of Dirac
Operators with Strongly Singular Potentials,” Math. Z. 126 (1972), 71-81.
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Section X.6 Analytic vectors first appeared in the context of group representations in
the work of Harish-Chandra, “Representations of a semi-simple Lie group on a Banach
space, L” Trans. Amer. Math. Soc. 75 (1953), 185-243, and P. Cartier and J. Dixmier,
“Vecteurs analytiques dans les représentations de groupes de Lie,” Amer. J. Math. 80 (1958),
131-145. Their use in the study of a single operator was emphasized and developed by
E. Nelson in “Analytic Vectors,” Ann. Math. 70 (1959), 572-615. Given a continuous unitary
representation U(-) of a Lie group G on a Hilbert space 5, GArding had previously shown
how to construct a common dense invariant domain for the generators of one-parameter
subgroups of U(G), .., for the representation of the Lie algebra g of G. In his paper, Nelson
showed how to construct a common, dense, invariant domain of essential self-adjointness for
all the generators by finding a domain that contained a dense set of analytic vectors for all the
generators. Nelson also proved that ifa Lie algebra is represented by symmetric operators ona
dense invariant domain, then, if the domain contains a dense set of analytic vectors, the
representation of the Lie algebra arises by differentiating a unique representation of the
corresponding Lie group. These results have been extended; see, for example, J. Simon, “On the
integrability of representations of finite-dimensjonal real Lie algebras,” Comm. Math. Phys.
28 (1972), 39-46.

The generalization of Nelson's result given in Theorem X.40 is due to A. Nussbaum, “A
note on quasi-analytic vectors,” Studia Math. 33 (1969), 305-310. The simple proof outlined
in Problem 42 originally appeared in B. Simon, “ The theory of semi-analytic vectors: a new
proof of a theorem of Masson and McClary,” Indiana Univ. Mach. J. 20 (1971) 1145-1151.

Nussbaum’s lemma appears in “Quasi-analytic vectors,” Ark. Mat. 6 (1965) 179-191.
Nussbaum also introduced a generalization of the notion of analytic vectors. A vector
¢ € C™(A) is called quasi-analytic if

L 4%| ™" = oo
n=0

An analytic vector is quasi-analytic, but the converse is not necessarily true. Nussbaum
proves that a closed symmetric operator whose domain contains a dense set of quasi-analytic
vectors is self-adjoint. Nussbaum also proves (in his Studia Math. paper) that a semibounded
closed symmetric operator with a dense set of vectors satisfying

©

T [ 40] 1 < a0

nxt
is self-adjoint. Such vectors are called Stieltjes vectors. This result was obtained independently
by D. Masson and W. McClary, “Classes of C®-vectors and essential self-adjointness,” J.
Functional Analysis 10 (1972) 19-32. Both the Nussbaum and the Masson-McClary papers
use techniques from the moment problem. Essentially, they turn around the argument in
Examples 4 and 6 and use classical results on the moment problem to prove that certain
vectors are vectors of uniqueness. A critical result linking the two notions is in Nussbaum's
Arkiv paper: ¢ € C®(A4) is a vector of uniqueness if and only if the Hamburger moment
problem for a, = (¢, A"p) has a unique solution. The relationship between self-adjointness and
the moment problem goes back at least as far as Stone’s classic Linear Transformations in
Hilbert Space and Their Applications to Analysis, Amer. Math. Soc. Colloquium Publication
XV, New York (1932). Two general references for the moment problem are: J. Shohat and
J. D. Tamarkin, The Problem of Moments, Amer. -Math. Soc., New York, 1943, and
Ya. V. Vorobyev, Method of Moments in Applied Mathematics, Gordon and Breach, New
York, 1965.
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Section X.7 Fock space was introduced by V. Fock in his paper * K onfigurationsraum
und zweite Quantelung,” Z. Phys. 75 (1932), 622-647. The first proof of the self-adjointness of
the fields on Fock space was given by J. Cook: “The mathematics of second quantization,”
Trans. Amer. Math. Soc. 74 (1953), 222-245. Cook proved directly that ¢(f)+ i and
n(f) £ i have dense ranges on F,.

The abstract structure of free fields was extensively studied in the 1950’s by K. Friedrichs,
Mathematical Aspects of the Quantum Theory of Fields, Wiley (Interscience), 1953, and by
I. Segal in a series of papers; see especially “Tensor Algebras over Hilbert spaces, I,” Trans.
Amer. Math. Soc. 81 (1956), 106~134, where Q space was introduced. This led Segal to study
the connection between the free field and probability theory and, in particular, he found a
connection between abstract Fock spaces and Wiener path integrals.

For a discussion of the Wightman axioms, see Section I1X.8 and the notes to that section.
Wick ordering was introduced in G.-C. Wick: “ The Evaluation of the Collision Matrix,"
Phys. Rev. 80 (1950), 267-272. General results on Wick ordered free fields may be found in
L. Garding and A. Wightman: “Fields as operator-valued distributions in relativistic quantum
field theory,” Ann. Phys. 16 (1961), 158-176.

Wick also emphasized the combinatorial structure of the vacuum expectation values of
the free field. In particular, one has the following formulas:

Q0. #(x1) * 9(x)Q) =0  if nisodd
(Qo, @(x1) - D(x2,)Q0) = ) Z (Qo, fP(xi.)‘P(xJ;)Qo) =+ (Qo, (p(x,_,)(p(x},)ﬂo) (X.162)

1o o distinct

This complicated expression is a sum over all distinct ways of writing {1, ..., 2N} as N pairs.
(X.162) is one of a number of formulas that usually go under the name “Wick's theorem.”
Many of these formulas are well organized in a book by E. Caianiello, Combinatorics and
Renormalization in Quantum Field Theory, Addison-Wesley, Reading, Massachusetts, 1973.
(X.162) says that for the free field one can compute the Wightman distributions knowing only
the two point function. There is a large class of models for which this is true: Let p be any
polynomiaily bounded measure on {0, ). Define

(2o, @(x)p(y)X2%) = [ A (x = y, m?) dp(m?)

and let the n-point distribution he given by (X.162). It can be shown that these distributions
are the Wightman distributions of a unique quantum field theory satisfying the Wightman
axioms. It is called the “generalized free field with spectral weight p.” Like the free field, these
theories are trivial in that the scattering matrix is the identity (when it exists). The generalized
free field was introduced by W. Greenherg in “ Generalized free fields and models of local
field theory,” Ann. Phys. 16 (1961),158-176.

Number operator estimates of the kind found in Theorem X.44 were first used systematically
by J. Glimm in “ Yukawa coupling of quantum fields in two dimensions,” Comm. Math. Phys.
5 (1967), 343-386. A thorough discussion of these estimates can be found in the lectures by
J. Glimm and A. Jaffe “Some quantum field theory models” in Statistical Mechanics and
Quantum Field Theory {Les Houches, 1970), ed. by C. deWitt and R. Stora, Gordon and
Breach, New York, 1971.

We continue the study of the (¢*), model in Section X.9 and Chapter XIX where a
detailed history will be given. [ properties of the spatially cut-off interaction were first
emphasized by E. Nelson, “A quartic interaction in two dimensions,” in Mathematical
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Theory of Elementary Particles (R. Goodman and I. Segal, eds.) MIT Press, Cambridge,
Massachusetts, 1966, who discovered the fact that e~ € L!. A detailed proof can be found in
the Glimm-Jaffe lectures quoted above. For properties of the (¢*); interaction see J. Glimm
and A. Jaffe, “ Positivity of the (¢*),-Hamiltonian,” Fortschr. Physik 21 (1973), 327-376, and
the references therein.

The idea that Euclidean invariance is deeply connected with questions of inequivalence of
representations of the CCR—an idea which is basic to our proof of Theorem X.46—is part of a
complex of ideas generally called “ Haag's theorem ™ after the discoveries of R. Haag in “On
Quantum Field Theories,” Danske Vid. Selsk. Mat.-Fys. Medd. 29 12 (1955). The use of
translation invariance suggests that the inequivalence of representations for different masses
is “at infinity.” This is true in the following sense: Given any bounded region B in R® and
free fields {@m, Ta)> {Pozs Ty} ON | and H#°,, there is a unitary map U,: #, = 5#; so
that Ug @u, (/U35 " = @uy(f) and Ugn,, (f)Us! = np,(f) if supp f = B. This “local equiva-
lence” appears again in Chapter XIX, both in our study of the [ree field algebras and in our
discussion of the “local Fock property™ of the (¢*), model.

Our construction of Q space is basis dependent in that it depended on the choice
{fu)% 1. What is independent of the choice of basis is the algebra of measurable sets (modulo
sets of measure zero) and the measure on these sets. There are many other “realizations™ of
Q space where the “points™ differ, but the algebra of measurable sets and the measure are
the same.

L. Girding and A. S. Wightman classified all the representations of the relations (X.95) in
“Representations of the canonical commutation relations,” Proc. Nat. Acad. Sci. US.A. 40
(1954), 622-626. 1t is possible that von Neumann knew of the existence of inequivalent
representations as early as 1938 since one can use his theory of infinite tensor products (“On
Infinite Tensor Products,” Compositio Math. 6 (1939), 1-77) to construct easily uncountably
many inequivalent representations: see L. Streit: “ Test function spaces for direct product

~ representations,” Comm. Math. Phys. 4 (1967), 22-31. The self-adjointness of the canonical fields
of (X.95) in arbitrary representations was proven by M. Reed, “A Garding domain for quantum
fields,” Comm. Math. Phys. 14 (1969), 336-346. Reed showed that for any representation in the
Garding-Wightman classification, there is a Banach space B of test functions (B depends on
the representation) so that ¢(f) and (/) are self-adjoint for f€ B.

A classification of representations of the CCR in continuous form (X.94) can be found in
several places; see, e.g., I. M. Gel'fand and N. Vilenkin, Generalized Functions 1V, Academic
Press, New York, 1964, p. 370. Reed’s theorem has been extended to the continuous CCR
by G. Hergerfeldt, “Garding domains and analytic vectors for quantum fields,” J. Math.
Phys. 13 (1972), 821-827. His theorem is quoted on page 232.

Section X .8 The study of semigroups of linear transformations has its origin in
M. Stone’s paper on unitary groups in Hilbert space: “Linear transformations in Hilbert
space II1,” Proc. Nat. Acad. Sci. U.S.A. 16 (1930), 172-175. The Hille-Yosida theorem for the
case of contraction semigroups (Theorem X.47a) was proven independently by E. Hille:
Functional analysis and semi-groups, Amer. Math. Soc. Colloquium Publication, 31, 1948, New
York, and “On the generation of semi-groups and the theory of conjugate functions,”
Kungl. Fys. Sdlls. 1 Lund Férhand. 21 (1952), 1-13, and by K. Yosida: “ On the differentiability
and representation of one-parameter semi-groups of linear operators,” J. Math. Soc. Japan
1 (1948), 15-21. The generalization (Theorem X.47b) appeared shortly thereafter in W. Feller,
“On the generation of unbounded semi-groups of bounded linear operators,” Ann. Math.
58(1953), 166-174, 1. Miyadera: “ Generation of a strongly continuous semi-group of operators,”
Tohoku Math. J. 4 (1952), 109-114, and R. S. Phillipé: “ Perturbation theory for semi-groups
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of linear operators,” Trans. Amer. Math. Soc. 74 (1953), 343-369. Theorem X.47b is usually
called the Hille-Yosida-Phillips theorem.

There are various other conditions besides strong coutinuity on [0, co) which can be put
on T(t). For example, one can require:

(i) T(t) is strongly measurable

(i) T(t) converges strongly to I as¢ | 0
(iia) 3 [T(0)] dit < o
(iiib) lim,., 4 [Fe ¥ T(t)p = ¢ for allp € X.

It can be shown that (i) and (i) together imply strong continuity on [0, o). Another
possible set of hypotheses is (i) and (iii). In this case || T(t)| can be unbounded as ¢ — 0. As in
the case of strong continuity, there is a theorem classifying the generators of such semi-groups.
A detailed study of various continuity conditions as ¢ — 0 and the correspondiug classification
of generators may be found in E. Hille and R. S. Phillips: Functional Analysis and Semi-groups,
Amer. Math. Soc. Colloquium Publication, 1957, New York.

The term “accretive” originally appeared in K. Friedrichs, “Symmetric positive linear
differential equations,” Comm. Pure Appl. Math. 11 (1958), 333-418. The study of such
operators was essentially initiated by R. S. Phillips in his paper quoted above. For a
semigroup e~ '4, Phillips calls —A (rather than A) the generator. Therefore in the Hilbert
space case, his generators satisfy Re(p, Ap) < O (rather than Re(p, Ap) > 0). He calls such
operators “ dissipative.” The theory of dissipative operators on Banach spaces is due to
G. Lumer and R. S. Phillips: “Dissipative operators in a Banach space,” Pacific J. Math.
11 (1961), 679-698. This paper contains a counterexample which shows that 2 maximal
accretive operator need not generate a semigroup in the Banach space case. The fact that
maximal accretive operators do generate semigroups in the Hilbert space case appeared in
R. S. Phillips, “ Dissipative operators and hyperbolic systems of partial differential equations,”
Trans. Amer. Math. Soc. 90 (1959), 193-254.

An example of 2 bounded semigroup which is not a contraction semigroup is

cosf 2siné
(—i sinf cosé

on R2. Infinite dimensional bounded semigroups which are not contractions enter in the
scattering theory associated to the linearized Boltzmann equation; see Chapter XII.

In the finite-dimensional case, every semigroup obeys lim, , , | T(¢)|| = 1. However, in the
infinite-dimensional case this need not be true (see Example 5). When this norm condition
fails there is no simple characterization of the generator directly in terms of £(A¢p).

Theorem X.50 is due to Gustafson: “A perturbation lemma,” Bull. Amer. Math. Soc. 72
(1966), 334-338. The proof we give (for a <3) is due to E. Nelson: “Feynman integrals
and the Schrodinger equation,” J. Math. Phys. § (1964), 332-343, though some of the ideas
already appeared in H. Trotter: “On the product of semi-groups of operators,” Proc. Amer.
Math. Soc. 10 (1959), 545-551. Nelson’s and Trotter’s papers also contain their proofs of the
general Trotter product formula. A simplification and generalization of Trotter’s theorem
appears in P. R. Chernoff, “Semigroup product formulas and addition of unbounded
operators,” Bull. Amer. Math. Soc. 76 (1970), 395. The corollary to Theorem X.50 has been
extended to the case where a = 1 in the case that X is a reflexive Banach space. This generalizes
Wiist’s theorem and is proven by similar methods in P. R. Chernoff, “Perturbations of
dissipative operators of relative bound one,” Proc. Amer. Math. Soc. 33 (1972), 72-74.

Theorem X.52 is due to E. Hille and R. S. Phillips (their book cited above) and K. Yosida:
“On the differentiability of semi-groups of linear operators,” Proc. Japan Acad. 34 (1958),
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337-340. The proof of holomorphicity in Theorem X.55 follows E. Stein: Topics in
Harmonic Analysis, Ann. Math, Studies, Princeton Univ. Press, Princeton, New Jersey.
Dunford-Taylor type formulas for holomorphic semigroups are very important for they allow
the computation of various quantities by the Cauchy integral formula.

A spectral mapping theorem for semigroups is discussed in Section XIIL8.

The connection between partial differential equations and semigroup theory goes back to
J. Hadamard who noticed that the solution of the Cauchy problem has the semigroup
property with respect to ¢: “Sur un probléme mixte aux dérivées partielles,” Bull. Soc. Math.
France 31 (1903), 208-224, and “Principe de Huygens et prolongement analytique,” Bull. Soc.
Math. France 52 (1924), 241-278. But semigroup theory was not applied systematically to
partial differential equations until Hille and Yosida developed the analytical tools in the late
1940’s. The examples given in the text suggest that one should be able to apply semigroup
theory to general second-order parabolic partial differential equations, i.e, equations of the
form du(x, t)/ot = Au(x, t) where

Ap = Z au ¢(X)+Z b(X)¢(X)+C(X)<P(X)

is elliptic in an appropriate sense. Thns is in fact true but the applications are not easy for
several reasons. First, in the case of nonconstant coefficients or a bounded domain, the Fourier
transform is no longer available, so one must prove that A satisfies the conditions of
Theorems X.47, X.52 by a priori estimates (like Garding’s inequality) and the Hahn-Banach
theorem (to show Ran(4 + 1) is dense). The situation is further complicated since A4
(restricted to a nice domain of functions) will have many closed extensions and one must
choose the “right one” as the generator. Finally, one uses a generalization of Weyl’s lemma
(see Section IX.6) to prove regularity. Among the fundamental papers applying semigroup
techniques to parabolic equations are: W. Feller, “ The parabolic differential equations and the
associated semigroups of transformations,” Ann. Math. 55 (1952), 468-519; P. Lax and A.
Milgram, “Parabolic equations” in Contributions to the Theory of Partial Differential
Equations, Princeton Univ. Press, Princeton, New Jersey, 1954; P. Lax and R. S. Phillips,
“Local boundary conditions of dissipative systems of linear partial differential operators,”
Comm. Pure Appl. Math. 13 (1960), 427-455; R. S. Phillips, “On the integration of the
diffusion equation with boundaries,” Trans. Amer. Math. Soc. 98 (1961), 62-84; K. Yosida,
“An abstract analyticity in time for solutions of a diffusion equation,” Proc. Japan Acad.
35 (1959), 109-113. Certain kinds of parabolic equations which are nonlinear or where A
depends on ¢ (called evolution equations) can also be handled with semigroup methods; see
A. Friedman, Partial Differential Equations, Holt, New York, 1969. There is an extensive
literature on semigroups of nonlinear operators; see Section X.13 and its notes.

It was noticed by E. Hille in Functional Analysis and Semi-groups, Amer. Math. Soc.
Colloquium Publication 31, 1949, New York, that semigroup theory could also be applied to
hyperbolic equations. For the wave equation with constant coefficients, the method is outlined
in Problem 60. In a nonlinear context, this idea is exploited in Section X.13. For the semigroup
approach to a broad class of hyperbolic problems, see R. S. Phillips, “ Dissipative operators
and hyperbolic systems of partial differential equations,” Trans. Amer. Math. Soc. 90 (1959),
193-254.

The second main area of application of semigroup techniques is in probability theory.
The connection between the heat equation and probability theory was discovered by A.
Einstein, * Uber die von der molecularkinetischen Theorie der Warme geforderte Bewegung von
in ruhenden Fliissigkeiten suspendierten Teilchen,” Ann. Physik 17 (1905), 549-560. But it was
not until 1952 that Feller initiated a systematic study of semigroups in probability theory in
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the paper quoted above. The theory was developed in G. Hunt, “Markov processes and
potentials, 1" Illinois J. Math. 1 (1957), 44-93; 11, 1 (1957), 316-369; 111, 2 (1958), 151-213;
and “Semigroups of measures on Lie groups,” Trans. Amer. Math. Soc. 81 (1956), 264-293.
For a description of these applications, see the probability theory books quoted in the notes
to Section X.11.

We mentioned at the beginning of the section that accretive operators generalize to Banach
spaces many important properties of self-adjoint operators. The main tool that does not
generalize to all accretive operators is the spectral resolution. A class of “spectral operators”
which do admit a kind of spectral resolution was introduced in N. Dunford: “Spectral
operators,” Pacific J. Math. 4 (1954), 321-354. An exhaustive study of such operators may be
found in N. Dunford and J. Schwartz, Linear Operators, 111, Spectral Operators, Wiley
(Interscience), New York, 1971.

Section X.9 The theory of hypercontractive semigroups is an abstraction of certain
developments in constructive quantum field theory. The germinal ideas appeared in E. Nelson,
“ A quartic interaction in two dimensions,” in' Mathematical Theory of Elementary Particles,
pp. 69-73, (R. Goodman and I. Segal, eds.) M.I.T. Press, Cambridge, Massachusetts, 1966.
Nelson isolated those properties of Hermite operators (Example 1) which we now call
hypercontractive and used them together with the theory of Feynman path integrals to
prove that certain field theoretic Hamiltonians are bounded below. This work was clarified and
extended by J. Glimm, “Boson fields with nonlinear self-interaction in two dimensions,”
Comm. Math. Phys. 8 (1968), 12-25. In particular, Glimm introduced the use of the
Riesz-Thorin theorem. Nelson’s ideas played a role in the first proof of self-adjointness of the
spatially cutoff (¢*), Hamiltonian Ho + H, (g) by Glimm and Jaffe, “A Ap* quantum field
theory without cutoffs,” Phys. Rev. 176 (1968), 1945-1951. Glimm and Jaffe also used
graph convergence (see Section X.10) and Feynman path integrals in their proof. The
basic ideas of hypercontractivity emerged from the independent work of L. Rosen and
I. Segal. Rosen in “A 1¢?" theory without cutoffs,” Comm. Math. Phys. 16 (1970), 157-183,
gave a proof of essential self-adjointness of P(¢), Hamiltonians which used hypercontractivity
and Feynman path integrals. While it was not fully realized at the time, Rosen’s proof
depended on little more than I? techniques and contained all the main ideas of the abstract
Hy + V theory. Segal in “ Notes towards the construction of nonlinear relativistic quantum
fields, III: Properties of the C*-dynamics for a certain class of interactions,” Bull. Amer.
Math. Soc. 75 (1969), 1390-1395, showed that it was possible to replace completely the use
of Feynman path integrals with the Trotter product formula and that hypercontractivity
could be used to provide a self-adjoint operator H which was formally Hy + V. In addition,
what we have called Segal's lemma appeared and it was used to simplify the earlier lower
boundedness proofs of Nelson and Glimm. Segal also clarified a point in the earlier proofs
concerning the question of whether the tensor product of contractions from 2 to L* is necessarily
a contraction. An alternative discussion of this fact can be found in the Les Houches lectures of
Glimm and Jaffe quoted in the notes to Section X.7. In his fuller paper, “Construction.of
nonlinear quantum processes, I,” Ann. Math. 92 (1970) 462-481, Segal supplemented this with a
proof of the essential self-adjointness of Hyo + V on D(H,) n D(V). That essential self-
adjointness holds on C*(H,) n D(V') was proven in an appendix to B. Simon, “ Essential Self-
Adjointness of Schrodinger Operators with Positive Potentials,” Math. Ann. 201 (1973),
211-220. For the special case of the (¢*), Hamiltonian, this had already been proven by
very different means in the Glimm and Jaffe paper mentioned above. For the case of the
{9*"), Hamiltonian it had been proven in L. Rosen, “The (¢>"), quantum field theory:
Higher order estimates,” Comm. Pure Appl. Math. 24 (1971), 417-457.
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The theory of hypercontractive semigroups has been extended and clarified by a variety of
authors. B. Simon and R. Hoegh-Krohn in “Hypercontractive semi-groups and two-
dimensional self-coupled Bose fields,” J. Functional Analysis 9 (1972), 121-180, reviewed the
basic theory and its use in the P(p), model, extended it in certain directions and, coined the
term *hypercontractive.” The special case of contractive semigroups was first emphasized
for its own sake and applied in R. Hoegh-Krohn, “ A general class of quantum field theories
without ‘cutoff in two space-time dimensions,” Comm. Math. Phys. 21 (1971), 244-255,
Extensions to still more abstract settings can be found in I. Segal, “ Construction of nonlinear
local quantum processes, I1,” Invent. Math. 14 (1971), 211-241, W. Faris, “ Quadratic forms
and essential self-adjointness,” Helv. Phys. Acta 45 (1972), 1074-1088 and W. Faris, “ Essential
self-adjointness of operators in ordered Hilbert space,” Comm. Math. Phys. 30 (1973), 23-34.
In his Helv. Phys. Acta paper, Faris gives an interesting “ explanation” in terms of quadratic
forms of why hypercontractivity should imply self-adjointness. Further applications of the
hypercontractivity method in constructive quantum field theory appear in the paper of
Hoegh-Krohn quoted above and in A. Klein, “ Self-adjointness of the locally correct generator
of Lorentz transformations for P(¢),,” in Mathematics of Contemporary Physics (R. Streater,
ed.), Academic Press, New York, 1973, and “Quadratic expressions in a free Boson field,”
Trans. Amer. Math. Soc. 181 (1973), 439-456. Extensions of some of the ideas to fermion
theories appear in L. Gross, “ Existence and uniqueness of physical ground states,” J. Functional
Analysis 10 (1972), 52-109.

The simple proof of the hypercontractivity of Hermite operators which we give (Example 1)
is due to E. Nelson, “The free Markov field,” J. Functional Analysis 12 (1973), 211-227.
Earlier proofs of hypercontractivity obtain Theorem X.6! in the infinite-dimensional case by a
two-step process from the case of a one-dimensional one particle space. First one shows that
knowing that e~ *# is bounded from I? to I* for some t and that Ho has a gap in its spectrum
above zero, one can conclude that e~ TH0 is actually a contraction from I to I* for T
sufficiently large. The infinite-dimensional case is then controlled by discussing tensor
products of contractions from L? to I*. The proof of Nelson in the one-dimensional case
that we give in the text generalizes to arbitrary dimensions and so avoids the two step
process. In fact, one can turn one of the steps around and prove directly that the map
e~ THo is a contraction from I? to I* for suitable T. For further discussion of these points,
the reader should consult Section L5 of Simon’s lectures referred to in the Notes to
Section X.11.

In the above paper, Nelson also proves the following best possible bounds: Let & be a
complex Hilbert space with distinguished complex conjugation. Let 4 be a bounded operator
on ) commuting with the conjugation. Let Q be the Q-space built over the Fook space on 5#
according to the construction in Section 7. Then I'{4) is a bounded operator from I£(Q) to
Q) (p < q) if and only if |A| <./(p — 1)/(g — 1) and in that case it is a contraction. An
alternative proof of this theorem appears in L. Gross, “Logarithmic Sobolev inequalities,”
Amer. J. Math. (to appear).

Segal's lemma can be viewed as a special case of a more general result. Let -], denote
the operator norm of £(5¥), then Segal's lemma says that

e Pl S fle* et o

There is an inequality of S. Golden, “Lower bounds for the Helmholtz function,” Phys. Rev.
137B (1965), 1127-1128, and C. Thompson, “Inequality with applications in statistical
mechanics,” J. Math. Phys. 6 (1965), 18121813, which says that for A and B self-adjoint

Tr(e?* %) < Tr(e’e?)
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or equivalently that

le** "], < [le#e®e 2],
It is also possible to prove that

le***l, < [e*2e%?],

for any p. The Golden-Thompson inequality is further discussed in A. Lenard, “Generalization
of the Golden-Thompson inequality,” Indiana Univ. J. Math. 21 (1971), 457-468, M. B. Ruskai,
*Inequalities for Traces on von Neumann Algebras,” Comm. Math. Phys. 26 (1972), 280-289,
and C. Thompson, “ Inequalities and partial orders on matrix spaces,” Indiana Univ. J. Math.
21 (1971), 469-480.

Section X.10  The basic ideas and theorems in Section 10 are due to J. Glimm and
A. Jaffe: “ Singular perturbations of self-adjoint operators,” Comm. Pure Appl. Math. 22 (1969),
401-414. Glimm and Jaffe used their results to give the first proof of the self-adjointness of
the spatially cut-off (¢*); Hamiltonian (see the notes to Section X.7). The existence of the
spatially cut-off Hamiltonian for the Yukawa theory was proven in two papers: Resolvent
convergence was established in J. Glimm and A. Jaffe, “ Self-adjointness for the Yukawa,
Hamiltonian,” Ann. Physics. 60 (1970), 321-383. That the sequence {H(g, n)}-, is bounded
below and densely bounded had already been proven by Glimm in “ Ynkawa coupling of
quantum fields in two dimensions, 1,” Comm. Math. Phys. 5§ (1967), 343-386. For a general
discussion see the Les Houches lectures referred to in the notes to Section X.7.

The techniques used in the example can be extended to the case of the x?" oscillator by
using ideas from L. Rosen: “The (¢*"), quantum field theory: Higher order estimates,”
Comm. Pure Appl. Math, 24 (1971), 417-457.

Section X.11 ~ The first work on Wiener measure appeared in N. Wiener's paper,
“Differential space,” J. Math. Phys. 2 (1923). Wiener introduced his measure in order to make
rigorous the work of Einstein and Smoluchowski on Brownian motion. The reader can find
a discussion of the history of the study of Brownian motion in E. Nelson, Dynamical T heories
of Brownian Motion, Princeton Univ. Press, Princeton, New Jersey, 1967. The construction of
Wiener measure which we give is due to Nelson in “Feynman Integrals and the Schrodinger
Equation,” J. Math. Phys. 5 (1964), 332-343. The argument in Problem 64 showing that it
is impossible to construct an imaginary time Feynman path (complex) measure is due to
R. Cameron, “The Ilstow and Feynman Integrals,” J. Anal. Math. 10 (1962/63), 287-361.
The reader should be wary of an erroneous construction in I, Gel'fand and A. Yaglom,
“Integration in function spaces and its applications to quantum physics,” J. Math. Phys. 1
(1960), 48-69.

There is a large textbook literature on Wiener measure from a probabilistic point of view:
J. Doob, Stochastic Processes, Wiley, New York, 1953; E. Dynkin, Markov Processes, Vol. I,
I, Springer-Verlag, Berlin, 1965; T. Hida, Stationary Stochastic Processes, Princeton Univ.
Press, Princeton, New Jersey, 1970; K. Itd and H. McKean, Diffusion Processes and their
Sample Paths, Springer-Verlag, Berlin, 1965; M. Kac, Probability and Related Topics in the
Physical Sciences, Wiley (Interscience), New York, 1959. The reader who is interested in
but ignorant of the probabilistic background might profit from M. Reed, “Functional
Analysis and Probability Theory,” in Constructive Quantum Field Theory (G. Velo and
A. Wightman, eds.), Springer Lecture Notes in Physics 25, 1973, 1-41. A wealth of detailed
information about regularity properties of Wiener measure, and in particular Theorem X.67,
can be found in the It6-McKean book.
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Some of the probability literature, especially the older literature, contains technical
complications which do not appear in our discussion. This is because some authors construct
Wiener measure in such a way that, when translated to our terminology, it is only a Baire
measure. Some nice subsets of €2, such as Q,, are Borel sets but not Baire sets. The idea of
avoiding some technical complications by realizing Q as a compact product space and using
regular Borel measures is due to E. Nelson, “Regular Probability Measures on Function
Space,” Ann. Math. 67 (1954), 630-643. Unfortunately, Nelson’s method does not remove all
measurability problems, since in further developments some non-Borel sets, such as the paths
that are continuous from the right, are important.

Feynman's idea of expressing the Schrodinger dynamics in terms of a sum over histories
appeared in his Princeton thesis (1942) and in R. Feynman, “Space-time approach to non-
relativistic quantum mechanics,” Rev. Modern Phys. 20 (1948), 367-387. The reader can find
a detailed exposition and further developments in R. Feynman and A. Hibbs, Quantum
Mechanics and Path Integrals, McGraw-Hill, New York, 1965. The idea of continuing to
imaginary time so that Wiener measure can be used and the Feynman-Kac formula appeared
in M. Kac, “On some connections between probability theory and differential and integral
equations,” Proceedings of the Second Berkeley Symposium on Mathematical Statistics and
Probability, Univ. of California Press, Berkeley, 1951, 189-215. Our proof of the Feynman-Kac
formula is taken from E. Nelson's J. Math. Phys. paper quoted above.

Path integrals have played a major role in constructive quantum field theory, especially
in the recent theory of Euclidean and Markov fields. Path integral methods were first advocated
in constructive quantum field theory by E. Nelson in the first paper quoted in the notes to
Section X.9 and in Euclidean quantum field theory by Nelson in “Quantum fields and
Markov fields,” in Partial Differential Equations (D. Spencer, ed.) Symp. Pure Math. 23, Amer.
Math. Soc., Providence, Rhode Island, 1973, pp. 211-219. The reader can find further
discussion of these methods and their development in Constructive Quantum Field Theory
(G. Velo and A. Wightman eds.), Springer Lecture Notes in Physics 25, 1973, and in B. Simon,
The P(¢)s Euclidean (Quantum) Field Theory, Princeton Univ. Press, Princeton, New Jersey,
1974,

Section X.12  The idea of using an expansion like the Dyson expansion to find a
propagator U(t, s) satisfying

dit Ut s)= —iH@U(L,s),  Uls,s)=1 (X.163)

is essentially the method of successive substitution developed in the nineteenth century to
solve integral equations. (X.163) is formally equivalent to the integral equation

Ut,s)=1—1i j 'H(r)U(r, s)dr

The Dyson expansion results from repeatedly substituting this expression for U(t, s) under
the integral. Dyson used the expansion to give a perturbation theoretic description of
quantum electrodynamics in “ The radiation theories of Tomonaga, Schwinger, and Feynman,”
Phys. Rev. 75 (1949), 486-502, and “The S-matrix in quantum electrodynamics,” Phys. Rev.
75 (1949), 1736-1755.

T. Kato in “Integration of the equation of evolution in a Banach space,” J. Math. Soc.
Japan § (1953), 208-234, was the first to find general conditions for the solution of the
evolution equation do(t)/dt = A(t)e(t) where A(:) is an unbounded-operator valued function.
Since one of the main applications of this theory is in partial differential equations, there were
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many special results before that. In proving Theorem X.70 we have followed closely the
proof due to K. Yosida, Functional Analysis, 2nd ed. Springer-Verlag, Berlin, 1968, pp. 224-230.
For more general results, see T. Kato, “Linear evolution equations of hyperbolic type,”
J. Fac. Sci. Univ. Tokyo Sect. I, A Math. 17 (1970), 241-258.

See B. Simon, Quantum Mechanics for Hamiltonians defined as quadratic forms, Princeton
Univ. Press, Princeton, New Jersey, 1971, for a discussion of time-dependent form results and,
in particular, extensions of Theorem X.71 to the Rollnik class.

The idea of using the Hilbert space I*(R;J ) to change time-dependent quantum
Hamiltonians to time-independent ones is due to J. Howland, “Stationary scattering theory
for time-dependent Hamiltonians,” Math. Ann. 207 (1974), 315-335. One nice application of
Howland’s idea is to scattering theory. Let U(t, s) and Uy(t, s} be two unitary propagators
on  and let [/(¢) and U, (o) be the corresponding strongly continuous one-parameter groups
on I*(R; ). Then one can show that the wave operators for the time-dependent theory
on J¥ exist if and only if the usual wave operators

W, = s — lim U4(—0)0(0)
exist on I}(R; ). Therefore one can prove the existence of wave operators in certain
theories with time-dependent Hamiltonians by reformulating as above and using the usual
methods for the case where the Hamiltonians do not depend on time. For proofs of these
results and those mentioned in the text, see Howland’s paper.

There is another method for constructing propagators which formally satisfy (X.163).
Namely, suppose that & is a Banach space whose elements are unbounded-operator valued
functions on some fixed compact subinterval of R. Suppose that # contains a dense subset &,
so that whenever fe #,, (X.163) has a strict solution with H = Hy + f(t) for some fixed
operator H,. Let U(t, s: f) denote the corresponding propagator. If U(t, s; ) is uniformly
continuous on %&,, then we can extend U{t, s; *) to & to obtain formal solutions of (X.163)
for fe 8. We will see an example of this in the appendix to Section XIIL6.

Section X .13 The original proof of the existence of global solutions of (X.138) (m > 0)
is due to K. Jorgens, “Das Anfangswertproblem im Grossen fiir eine Klasse nichtlinearer
Wellengleichungen,” Math. Z. 77 (1961), 295-308. The abstract approach to such non-linear
problems was developed in F. Browder, “On non-linear wave equations,” Math. Z. 80 (1962),
249-264, and 1. Segal, “Non-linear semi-groups,” Ann. Math. 78 (1963), 339-364. A global
existence theorem for the mass zero case was first proven in W. Strauss, “Decay and
asymptotics for (Ju = F(u),” J. Functional Analysis 2 (1968), 409-457. The mass zero case can
also be handled directly by the methods in Section X.13. The procedure is outlined in
Problem 76. Similar techniques have also been applied to the coupled Maxwell-Dirac
equations; see L. Gross, “The Cauchy problem for the coupled Maxwell and Dirac equations,”
Comm. Pure Appl. Math. 19 (1966), 1-15, and J. Chadam, “On the Cauchy problem for the
coupled Maxwell-Dirac equations,” J. Math. Phys. 13 (1972), 597-604; “Global solutions of
the Cauchy problem for the (classical) coupled Maxwell-Dirac equations in one space
dimension,” J. Functional Analysis 13 (1973), 173-184.

The nonexistence of global solutions for certain nonlinear partial differential equations
has been known for a long time; see, for example, J. Keller, “On solutions of non-linear
wave equations,” Comm. Pure Appl. Math. 10 (1957), 523-532. The example used at the end
of the section was described to the authors by H. Levine. Generalizations of the example
appear in his paper “Some non-existence and instability theorems for solutions of formally
parabolic equations of the form Pu, = — Au + F(u),” Arch. Rational Mech. Anal. 51 (1973),
371-386.
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Let o(t) = <u(x, t), u,(x, t)) be the solution of the nonlinear Klein-Gordon problem described
in the text and define M, to be the mapping M, : ¢(0) = ¢(t). Then M, is a strongly continuous
semigroup of bounded nonlinear operators. The question immediately arises whether the theory
of strongly continuous semigroups of linear operators described in Section X.8 has a counter-
part in the nonlinear case. In particular, do such nonlinear semigroups have unique
infinitesimal generators? A large literature has grown about these questions. See, for example,
T. Kato's article “Accretive operators and non-linear evolution equations in Banach spaces,”
pp. 138-161, in Proc. Symp. Pure Math. 18, Part I, Amer. Math. Soc. 1970, (F. Browder, ed.)
or M. Crandall’s article “Semi-groups of nonlinear transformations in Banach spaces,”
pp. 157-171, in Contributions to Nonlinear Functional Analysis (E. Zarantonello, ed.), Academic
Press, New York, 1971, and the references therein.

Section X.14 A fairly readable account of Hamiltonian mechanics (but with some
mathematical errors) may be found in H. Goldstein, Classical Mechanics, Addison-Wesley,
-Reading, Massachusetts, 1950. A more sophisticated presentation is contained in R. Abraham,
Foundations of Mechanics, Benjamin, New York, 1967.

The natural setting for classical mechanics is a symplectic manifold. A quadratic form ¢
on a finite-dimensional real vector space is called symplectic if: (1) g(v, w)= ~g(w, v),
(2) g is nondegenerate, i.e., g(v, w) = 0 for all w implies that v = 0. A symplectic manifold is
a differential manifold M with a distinguished 2-form we A }(M) so that (1) dw = 0, (2) for
each x, o, is a symplectic form on the tangent space T,(M). w sets up a bijective map o,
of T(M), the tangent bundle, to the cotangent bundle T*(M) by: [w, (X)(Y) = w(X, Y).
Given f, g € C*{M), their Poisson bracket is defined by {f, g} = [@; (df)](g). Given a function
H in C*(M), we define the associated Hamiltonian flow by p(t) = (Xp)(t) where X is the
vector field X = —w; '(dH). There is a natural volume form defined by w; namely
A*we A(M) if 2n = dim(M). Liouville’s theorem asserts that A"w is left invariant by any
Hamiltonian flow. The cotangent bundle of any manifold is a symplectic manifold in a natural
way.

The [ version of Liouville’s theorem is that L is skew symmetric. The idea of using
Theorem VIIL.11 to prove skew-adjointness of L can be found in W. Hunziker, “The S-matrix
in classical mechanics,” Comm. Math. Phys. 8 (1968), 282-299. The general idea of using
existence theorems for first order systems to prove essential self-adjointness of differential
operators is further exploited in P. Chernoff, “Essential self-adjointness of powers of
generators of hyperbolic equations,” J. Functional Analysis 12 (1973), 401-414. Chernoff uses
the fact that if U, = e™'# leaves a dense set D invariant and D = C®(4), then A" is essentially
self-adjoint on D for any n. By an extra trick, this can be used to handle operators which
do not appear to be squares of first order operators, eg —A on I}(R?). For let
K = (R ® (R R) @ 2(R3; R®) @ [2(R®) and let d(f; g, h, k) = (0, grad f, curl g, div h)
so that d*d(f g h, k)= (—Af,...) and d* =0. Let A =d + d* Then A? restricted to the
first summand is —A. Of course, this is a hard way to control —A on I}(R?) but the
method allows one to prove that the Laplace-Beltrami operator is essentially self-adjoint on
C*(M) for a wide class of Riemannian manifolds. Chernoff’s methods also work to prove:

Theorem 1f V is in C*(R?) and a, B are the usual Dirac matrices, then
H= -a-i0+pm+V
is essentially self-adjoint on C°(R3).
Unlike the Schrédinger operator case, there are no growth conditions on V. As Chernoff

remarks, this should not be surprising since the relativistic bound on velocities prevents
finite travel time to infinity.
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If H has singularities such as Coulomb singularities, one cannot ask that global solutions
for (X.153) exist for all initial conditions since collisions might take place. In the multiparticle
case worse horrors can be imagined. Instead, one would like to prove global solutions exist
for almost all initial conditions. This is known as almest completeness. Almost completeness
can be proven for the two-body problem using angular momentum conservation, and it can
be proven for the three-body problem by using results of K. Sundman, “Le probléme des
trois corps,” Acta Soc. Sci. Fenn. 35 (1909), and G. D. Birkhoff, Dynamical Systems, Amer.
Math. Soc. Colloq. Publ. 1, IX (1927). Partial results toward the N-body problem can be
found in H. Pollard and D. G. Saari, “Singularities of the N-Body Problem, I, II,” Arch.
Rational Mech. Anal. 30 (1968), 263-269; in Inequalities, 11, ed. O. Shisha, Academic Press,
New York, 1970, and in D. G. Saari, “Improbability of collisions in Newtonian gravitational
systems,” Trans. Amer. Math. Soc. 162 (1971), 267-271; erratum 168 (1972), 521,

Discussions of some of the more interesting mathematical problems in classical mechanics
can be found in Abraham's book and in H. Pollard, Mathematical Introduction to Celestial
Mechanics, Prentice-Hall, Englewood Cliffs, New Jersey, 1966; C. L. Siegel and J. K. Moser,
Lectures on Celestial Mechanics, Springer-Verlag, Berlin, 1971, and S. Sternberg, Celestial
Mechanics, Part I, 11, Benjamin, New York, 1969.

Finally we should mention the beautiful work of Lanford on existence of solutions of
Newton’s equations for certain systems with infinitely many particles: O. E. Lanford, 1],
“The classical mechanics of one-dimensional systems of infinitely many particles, I, IL”
Comm. Math. Phys. 9 (1968), 176-151; 11 (1969), 257-292.

PROBLEMS

1. (a) Let A, be symmetric on #, and D be the set of vectors in D=, #, of the form
¥ = (Y1, ¥1,...) where y, € D(4,) and all but finitely many , are zero. Show that
A=Y, A,issymmetric on Dand thatn, (4) = %, n,(4,), n_(4) = T2, n_(A,).

(b) Show that id/dx on C&(0, o) has deficiency indices n, =0, n_ = 1. Show that
id/dx on C3(— o0, 0) has deficiency indices n, = 1, n_ =0,
(c) Show how to construct a symmetric operator with any given pair of deficiency indices.

2. Let A be a closed symmetric operator and suppose that A has a self-adjoint extension.
Is it possible for A to have a closed symmetric extension 4 so that 4 has no self-adjoint
extensions?

3. Let p(x) be a polynomial with real coefficients and let 4 = p{i d/dx) with domain
C&(0, o) in 3(0, o0).
(a) Prove that 4 is symmetric.
(b) How are the values of p(x) related to the deficiency indices of 4?
(c) Prove (without using Theorem X.3) that if p(x) has only even powers then the
deficiency indices of 4 are equal.
(d) Prove that if the degree of p is odd, then the deficiency indices of A are unequal.

t4. Let M and N be closed subspaces of a separable Hilbert space. Prove that if
dim M > dim N, then there exists a ue M, Ju| = 1, so that ue N*.

15. Complete the analysis of Example 2 of Section X.1 by showing that the self-adjoint
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extensions of A correspond to the various boundary conditions at zero stated in the
example.

. Classify the self-adjoint extensions of —d?/dx? on CP(0, 2n) and interpret in terms of

scattering on a circle with a distinguished point.

. Prove that if V(x) decreases as x | 0 in (0, o), then —d?/dx? + V(x) is limit circle at

zero. Hint:

(a) First show that we may assume V{x) < 0 near zero without loss of generality.

(b) Approximate V(x) near zero by a decreasing step function ¥(x) (infinitely many
steps) so that |V(x) — ¥(x)| is bounded near zero and show that —d?/dx? + V(x)
is limit circle if and only if —d?/dx? + V(x) is limit circle near zero.

(c) Show that —d?/dx? + V(x) is limit circle by investigating the behavior of the
solutions of ¢"(x) = P(x)p(x) and showing they are both I? near zero.

. Let V be a continuous function on (0, o) and suppose that —d?/dx? + V is bounded

from below on CT(0, o).

(a) Let E be strictly less than the lower bound of —d%/dx? + V. Prove that no solution
of —u” + Vu = Eu has more than one zero. Hint: Prove first that any y € CZ[a, b},
0 <a < b < o0, with Y(a) = Y(b) = 0 obeys

[ IV + vewer d > & [ ut) dx

(b) Now let W > V pointwise. Prove that if —d%/dx? + V is limit point at 0, then so is
—d*fdx? + W.

Remarks (1) The above is taken from the article of Kurss quoted in the notes to

Section X.1. (2) There is a conjecture of K. Jorgens generalizing this: Let M <= R" be

an open set whose complement has measure zero. Let ¥, W be continuous on M so

that —A + V is bounded below and essentially self-adjoint on CF(M). If W > V, then

—A + W is also essentially self-adjoint on CF(M).

. Let x(x) be a function on [0, o) which is C*, which vanishes if x < 1 and which equals

3
Lif x> 2. Let y € CZ(R") and let yu(x) = Y(x)x(m|x|). If n 2 5, prove that y, 5y,
—Aw,,gv — Ay, and conclude that —A is essentially self-adjoint on CF(R"/{0}) if n > 5.
(See the last example in the Appendix to- Section X.1.)

Prove the estimate (X.17).

Construct a potential ¥ on [0, 1] so that lim,. V(r) = — o0 but with —d*/dx? + V in
limit point case at 0 (cf. Problem 7). (Hint: Take V to be piecewise constant with
steps of size —a, where a,a7 ', a3 a3 %, @303 %, ..., az,_ 83}, G2, 103, are all very small.

Fill in the details of the example of limit point-limit circle behavior for the potentials
V,s(x) = 2x 72 — 9x*(a — 2b cos{2x>)) (see the Notes to Section X.1).
Prove part (b) of Theorem X.13.

Let V be a measurable function on R® and suppose that V(r)-0 as r—oco. If
D(V)> D(—A), prove that Ve I + L” and thus < < —A. (Thus the “potentials™ for
which one can use Rellich’s theorem are precisely the class 2 + [°.)
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Show that 4 = —d?%/dx? + V is form-bounded from below on CZ(0, ) if V{x) > — 1/4x?
and is not form-bounded from below if V(x) < c¢/x* with ¢ < —%.

Let E>0. Prove directly using the kernel for (—A + E)™' that V(—A+ E)™' is
bounded il V € [}(R®) and that |V(-A+ E)"'| -0 as E - . Conclude from this
(without the Sobolev estimate) that ¥V < < —A.

Let V be in the Rollnik class. Prove that:

@I VI"*(-A+E)"'|V|"| +0as E- oo

®) [ |V|V*(~A+E)"'*| »0as E— o0

) I(-A+E)""}|V|(—A+ E)"'*| »0as E—~ o0

(d) V € R implies that V << —A.

Let A and C be essentially self-adjoint on Hilbert spaces J#, and J,. Suppose that

B < < A and that D is C-bounded. Prove that A® C + B® D is essentially self-adjoint
on D(A) ® D(C).

. Let A4 be self-adjoint and let B be symmetric. Suppose that B is A-bounded with

relative bound equal to a. Prove that

a=lim||B(4 + in)""|
Lk
Let A be self-adjoint. An operator B with D(B) > D(A) is called A-compact if B(4 — z)~!
is compact for all z € p(A).
(a) Prove that B is A-compact if B(A — z)~' is compact for one z € p(A).
(b) Suppose that B is symmetric and A4-compact. Prove that B < < A. (Hint: use
Problem 19.)

Let #,, m=1{0, £1,...} be the scale of spaces associated to a positive operator A.

(a) Prove that B is A-compact if and only if B is a compact operator from 3, , to .
(b) Let B be a symmetric quadratic form which is form bounded with respect to A.
Prove that if § defines a compact operator from #,, to #_,, then § < < A.

*(c) Let B be a self-adjoint operator which is A-compact. Prove that B defines a compact

operator from J# ,, to o# _,.

Use Konrady’s trick to prove that —d?/dx? + p(x) is essentially self-adjoint on CZ(R),
where p(x) = ax® + Y'}_, ¢;x" and a > 0 is sufficiently small.

(a) Prove that for any a > 1, there is some b, so that for all y € #(R)

I + x W1 + [x*¥l* < all(p? + x* + x*W[* + blly|*

where p = —id/fdx.
(b) Knowing that p? + x? + x* is essentially self-adjoint on #(R), conclude that it is self-

adjoint (in particular, it is closed) on D(p® + x?) N D(x*).
(c) In a similar way prove D(p? + x?) = D(p?) n D(x?) and conclude that

D(p? + x* + x*) = D(p*) n D(x*)
The purpose of this problem is to prove (without using Theorem X.28) that if V(x) is
C*, real-valued, and bounded below on R", then —A + V is essentially self-adjoint on
C(R").
(a) Observe that we may assume V(x) > 1 and prove
D(—A+ V) ={|yel, —Ay + Vye I}
where —A + V acts in the sense of distributions.
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(b) Explain why every weak solution of —Ay + Vi =0 is a C* function.
(c) Show that every weak solution of Ay = Vy satisfies

AlY(x)l* = [wix)[?

(d) If € Ker((~A + V)*), define F(r) = [i;)2=, |¥(x)|* dQ where dQ is the usual measure
on the sphere. Show by an integration by parts that F is monotone increasing.
(e) Conclude that Y = 0, so —A + V is essentially self-adjoint on Cg(R").

(Stieltjes moment condition)
(a) Prove that a sequence of real numbers {a,}%, are the moments of a measure with
support on the positive half line if and only if

N _ N _
Y BiBmay.n=0  and Y Babmlnimss 20
nm=0 n.m=0
for all N and all {f,..... x> € C*. (Hint: Mimic the proof of the Hamburger
moment condition (Section X.1) but use the Friedrichs extension.)
(b) Prove that if in addition to the positivity requirements the a, satisfy |a,| < CD"(2n)!,
then the solution of part (a) is unique. (Hint: Use Theorem X.40.)

Construct a semibounded symmetric operator which has a nonsemibounded self-adjoint
extension.

Let A be a symmetric operator with an invariant domain.

(a) Let B be the Friedrichs extension of 42 | D(A). Prove that B = A*A4.

(b) Let C = 4A4*. Prove that C is a self-adjoint extension of A2{D(4) and that one has
Q(C) = D(4*).

Let A be a symmetric operator and suppose that D{4%) is dense. Prove that if 42 is
essentially self-adjoint on D(4?), then A is essentially self-adjoint. (Hint: First prove
(A*) < (4%)™)

Let A be a self-adjoint operator on a Hilbert space #. Prove that € # is an analytic

vector for A if and only if the function f(t) = €4y is the restriction to the real axis of a
function analytic in the strip |Im | < b for some b > 0.

The purpose of this problem is to prove von Neumann's theorem (Theorem VIII.14).
Let U, V obey the Weyl relations U(1)V(s) = &V (s)U(t). Let « > 0 and let f be of the
form f (s, 1) = s"t™ exp( —a(s? + 2)). For y € #, define:

Wl f) = [ fls, DUV () ds dt

(a) Prove that {W,(f)|y € #7} is total in #. Let D be the finite linear span of {W,(/)}.
(b) Prove that U(te)W,(f) = W, (f (s, t — o)) and that

Viso)W(f) = W(f (s = 50, t)e™"*)
and use this to prove that each W, is an analytic vector for P and for Q.
(c) Prove that PW,(f) = W,(i 0, f) and that QW,(f) = W, (i3, f) + W,(—tf). Use this
to prove that D is a set of analytic vectors for N = §(P? + Q* — 1),
(d) Let 4 =4./2(Q + iP). Prove that 4 and A* are defined on C*(N) and map C*(N)

into itself. (Hint: Use the method of Section X.5.) Prove that N = 4*A4 on vectors
in C*(N).
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(e) Let y # 0 be in the range of a spectral projection E,_, , for N. Prove that
N™Ay = AN — 1)"y.
(f) Under the conditions in (e), prove that

(n = 1)(n = 21" [¥]? < (Ay, N"4y) < n(n - 1)"[y?
and conclude that Ay is in the range of the spectral projection E,_; ,.; and
that Ay # 0ifn > 1.
(g) If ¢ obeys the conditions of (e), prove that A" = ¢ # 0 but Ap = 0. Prove that
Ny = ny and that = (1/n!)(A*)e.
(h) By picking an orthonormal basis for {¢|A4p =0}, complete the proof of von
Neumann’s theorem.

Use the ideas of Problem 30 to prove that the Hermite functions are a basis for (R, dx).

Work out the details of all the statements about lower bounds and deficiency indices
in Example 1 of Section X.3.

(a) Let A,, ..., A, be an n-tuple of symmetric operators on a dense set D < &#. Call
Ay, ..., A, closed if D with the norm |[||[y]|| = Y7, |4:¥| + |¢| is a Banach space.
Prove that any such n-tuple has a smallest closed extension.

(b) Let (A,,..., A,) be an n-tuple of symmetric operators closed in the sense of (a).
Prove that Y7, A*A; defined on {y|y € D; 4,y € D(A*)} is self-adjoint.

(c) Let A(x) be an R3-vector-valued function on R*® which is locally square integrable
and let V(x) be a positive function which is locally L'. Find a “natural” definition of

1 /1 2
H=——(7V—EA)+V
2m\i c

Let g, be a counting of the rationals and let @ be a quadratic form on CJ(R) given by

aly, ¢) = iﬁ"’Wq.)w(q.)

Let N = —d?/dx* + 1 on I}(R).
(a) Prove that for all ¢, y € C3(R), and some constant D

|a(e. ¥)| < DINZo| [Ny

and conclude that there is an operator 4 on £( ., # _,) associated to a.
(b) Prove that A has D(A4) = {0}.

Let N be an operator which is self-adjoint with N > 1. Suppose that a is a symmetric
quadratic form with form domain Q(a) = D(N?) with (i) £a < c¢N?; (ii) £i[N, a] < dN
(as forms on D(N?) where we use (i) to extend a to a form on D(N)).

(a) For g, y € D(N?), prove that

a(e, ¥) = a(N~ ', Ny) - [a, NI(N "o, ¥)

and conclude that |a(g, ¥)| < (c + d)|lo|| | N*¥].

(b) Prove that there is a symmetric operator A defined on D(N?) so that AN~? is
bounded and (¢, Ay) = a(p, y) for all ¢, y € D(N?).

(c) For each A > 0, define a quadratic form 8(1) on # by

S(A) = A3(N + A) [N, a](N + 1)~ ' + A2(N + A) '[N, a](N + 4)"?
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Prove that 8(A) is an antisymmetric form which is bounded with ||6(1)| < 2d. Let
A(4) denote the skew-symmetric operator associated to 8.
(d) Prove that |A(A)N '] - 0 as A — oo and conclude that A(1) — O strongly as 4 — co.
(e) By taking matrix elements, prove that for any 6 € D(A*),

A[A(N + 2)7200 = [A3(N + 1)"7]4*0 + A(1)9

(f) Let 6(2) = A%(N + 1)~ ?0. Prove that 8(1) » 6, 46(4) - A*8 and conclude that A4 is
essentially self-adjoint.

Remark The above generalization of the Nelson commutator theorem is a special case
of a theorem of Jaffe which allows +a < ¢N? to be replaced by +a < ¢N™ for some
fixed m; see the paper of McBryan quoted in the Notes to Section X.5.

Suppose that each component of A is a real-valued function in [}(R®) + L*(R*) and
that V is in R + L*(R®) where R is the Rollnik class. For ¢, ¥ € Q(A), define

Mip. ) = (; %%, Aw) + (4] vw) + (Ap, AV)

Prove that M is a —A form bounded perturbation with relative bound zero and
conclude that there is a unique self-adjoint operator H with Q(H) = Q(A) and

(o, HY) = (0, —AY) + M(o, ¥) + (0, V)
Extend Theorem X.22 and Problem 36 to the many-body case.
Use the methods of Sections X.4 aud X.5 to prove that the [*(R3¥*?) operator

—(2M )" 1By — ieA) — (2m)~! }I_!’(B,, — ieA)? — Neziv" |% — Xo|™!

N
+%ezz|x,,—x,,,|‘1 +eE°'(xo—Zx,)
n=1

npm
is essentially self-adjoint on CP(R3¥*3) if A € C}(R?),. .

Show by example that a self-adjoint operator A may have a domain of essential self-
adjointness which is disjoint from D(42).

Let A=id/dx with domain D(A)={pe I*[0, 1]|¢ € AC[0, 1], ¢'e [*[0, 1], and
¢(0) = @(1)}. A is self-adjoint. Let D = {¢ e I}[0, 1]| ¢ has an analytic periodic extension
to all of € with x-period one and ¢(0) = 0 = ¢(1)}.

(2) Prove that D is a dense set of analytic vectors for A.

(b) Is A | D essentially self-adjoint?

Let U(a, R) be a one-dimensional representation of the three-dimensional special
Euclidean group. By showing that the spectrum of the momentum must be rotation
invariant and using the fact that SO(3) has no nontrivial one-dimensional representations,
prove that U(a, R) =1 for all a, R.

The purpose of this problem is to prove Theorem X.40.
(a) Let ¢ be a semianalytic vector for A > 0. Suppose that 4 >0 is a self-adjoint
extension of 4, on #, (for notation see Section X.6). Prove that cos(td!’?) is
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uniquely determined by the numbers (y, A} y), where y € D,. Conclude that there
is at most one positive self-adjoint extension of 4, .

(b) Prove that there is at most one semibounded extension of 4.

(c) Use Theorem X.24 to conclude that A4, is essentially self-adjoint.

(d) Prove Theorem X.40 by using Nussbaum'’s lemma.

(a) Prove part (b) of Theorem X.41. (Hint: let 2, be the polynomials of degree n in
®g(f). Prove by induction that 2,0 is dense in H#).
(b) Prove part (a) (iii) of Theorem X.43.

Prove that the map E: #o(R*) ~ [}(H,,, dQ,,) defined by Ef = ./2r f'| H,, has a dense
range.

Prove that as quadratic forms on Dy, x D,
N = a'(plalp)dp
R“
Ho=dT(y) = Hp)a' (Pla(p) dp
R

Prove (X.76), (X.78), (X.79).

Prove that if g e I?(R), 1 < p <2, then §(} k;) [[7=, p(k)™'* € IXR"). (Hint: Use the
Hausdorff-Young and Young inequalities.)

Let 5 be a Hilbert space and A4,, A4,, ... a sequence of commuting self-adjoint operators.
Suppose that D is a dense domain contained in the domain of each A, which is invariant
under each A,. Let o€ D and define - 4, --- A, o recursively by setting o 4, -+ 4,0 =
A, A, + P(Ay, ..., A,) where P(A,, ..., A4,) is a polynomial of total degree n — 1 and
individual degree 1, so that

((c Ay~ Ayolo, (0 Ay, - A4, oWo)=0

for each {i}, ..., i,} g {1,...,n} and ((c A, -~ A,  Wo, ¥o) =0.
(a) Show that o 4, :-- A4, < is uniquely defined for each n> 1.
(b) If ¢ is the canonical field on & (#) and f, € #, and Y, = Q;, show that

c@(fi) - @lfi) o= o(f)) - ol f

(c) Show that for each n, the Wick power of the canonical field is the regular power
plus a polynomial of lower degree in the regular powers and vice versa.
(d) Show that :¢,,(x, n}*: (introduced in the proof of Theorem X.45) may be written

:(Pm(x' ")41 = (Pm(x' ")‘ - Cl‘Pm(x‘ n)2 —C
where ¢, and c, depend on n but not on x.

Let A4 be the infinitesimal generator of a contraction semigroup on a Banach space X.
Show that for all p € X, lim,., (1 + (t/n)4) "¢ = e **¢. Reference: Kato’s book on
perturbation theory, pp. 478-480.

Let A be an accretive operator on a Hilbert space #.

(a) Show that J = (I — A)I + A)™' is a (not necessarily everywhere defined) closed
contraction operator.
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(b) Show that the accretive extensions of 4 are in one-to-one correspondence with the
contraction extensions of J.

(c) Use parts (a) and (b) to prove that a maximal accretive operator on a Hilbert
space generates a contraction semigroup.

Let T(r) be a strongly continuous semigroup on a Banach space X. Define

W, = inf»q 1~ log| T(1)l.

(a) Prove that wg = lim,.,, t! log| T(2)|.

(b) Show that for any w, > wg, there is a constant M so that || T(1)] < Me*"' for all
t>0.

Let 4 be an accretive operator on a Banach space X. Prove that A4 is closable.
(Hint: If 4 is not closable, there exists a sequence ¢,& D(4) such that ¢,—0 and
A, — ¥ with |y = 1. Let n € D(4) with ||n]| = 1and |lp — ¢| > 1. Let ¢, be a sequence
of normalized tangent functionals to the vectors n + co, . Use Alaoglu's theorem to derive
a contradiction for appropriate ¢ > 0.)

Prove that ¢* is a continuous [?-contractive semigroup by using Young’s inequality and
the explicit form for the kernel.

Let g(x) be a bounded, real-valued, continuous function. Prove that ¢!~ 9 is positivity
preserving on C, (R").

Fill in the details in the proof of Theorem X.47b.

Prove Theorem X.53 by using the technique of Theorems X.12 and X.50. (Hint: First show
that given 6, <6, one can choose @ >0 so that |B(A—-(1—w)) '| <4 for all
1 ‘ 31[2-01‘)

(a) Prove directly that

_ vl
(e )(x) = (4mz) "2 Iﬂ_exp(- = )f(y) dy

4z
is a bounded holomorphic semigroup of angle n/2 on C(R").
(b) Prove directly that as an operator on C,(R"),
Jaie?] < €12

Conclude that 9,(—~A + 1)~ ! is bounded on C(R") so that D{A) = D(9,) as operators
on C(R").
Prove Corollary 2 to Theorem X.52.

Let S(s)=e™*# and T(t)=e"'* be contraction semigroups on a Banach space X.
Suppose that for all s >0 and ¢t >0, e™*%e™'4 = ¢""%e~*%, Then R(t)=e %' is a
strongly continuous semigroup. Prove that the generator C of R(1) satisfies

(40" =] @+iy+A)'G—iy+ By dy

Let K,(R®) be the closure of #(R% in the norm |@||? = fa: |Vo[? dx and let
X = K,(R*) @ [}(R®) with inner product

(ot Can ) = [ (Vi Vg, + Jago) dx
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0 I
Let A be the operator (A 0) with domain consisting of all pairs (f;, f;) with

v i€ S(RY).

(a) Show that i4 is symmetric.

(b) Show that iA4 is essentially self-adjoint by showing that its deficiency indices are
<0, 0.

(c) Show that D((A)) = ({ fi. £, | Af; € B(R?), f; € Ky(RY).

{d) Let U(t) = € = ¢~ and for ¢ f,, f>) € D(A) set {uy(x, 1), ua(x, 1> = Ut} fy, f2-
Prove that

62
(Et-z - A) u(x, ) =0,  [uslx, t) = filx)| 2wy —0

and

-0 as t—-0
IX(R?)

H 2 a0~ A0

61. Let {T(t)},» o be a family of operators on a reflexive Banach space X so that
(iy T(t+s)=T()T(s)
(i) U.»>o Ran(T(t)) is dense in X
(iii) Z(T(t)p) is measurable for each fixed o€ X and Ze X*
(iv) [|T(r)]| <1 foralle.
Prove that T(t) is strongly continuous. (Hint: Mimic the proof of Theorem VIIL9.)

162. Let A' and A be the operators defined in Example 2 of Section 6 and let
Hy=A'4 +4 V=x*=((4+ 41/ /2)*
(a) Prove that

I(HG™ [H3?, V]lo| < esllH3 o]l + ezllo]

for some constants ¢; and e,. (Hint: Look at each term in V separately and for
each term prove the estimate on the nth Hermite function.)

(b) Use (a) to show that for each & > 0 there is an M, so that (X.109) holds.

(c) Use similar methods to prove (X.110).

63. (a) Prove that the weak topology on the unit ball in a separable Hilbert space is
metrizable.
(b) Conclude that the balls in a separable Hilbert space are weakly sequentially complete.

64. Let
B(x, y; 1) = (AnDe) "2 Ix—y'4Di
for some D with Re D > 0, D # 0. Suppose that there is a signed measure u on the path
space Q of Section X.11 so that | ¢ dy is given by the right-hand side of (X.122) but with
p replaced by p for ¢ € Cy,,(Q). Given ty, ..., t,, let C' " denote those functions in

Crin(2) of the form F(w(1,), ..., o(t,)).
(i) If Re D = 0, prove that

sup{lf o du| | ol = 1. o€ C*(Q)} =

and conclude that no such signed measure exists.
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(i1) If Re D > 0, prove that

sup{lf ¢ du| | llgllw = 1, p € C1- (@)} = (| D|/Re DY’

and conclude that no such signed measure exists unless Im D = 0.

Let Q, denote the Holder continuous paths of order « for some a < 4. Define functions
x and x, from Q x [0, ) to R by

(0, 1) = 'a)(t) if we-g.
0 otherwise
and let
ol ) = (w(m/n) foe Q, andmn<t<(m+ 1)/n
0 otherwise

(a) Prove that each x,(w, t) is Borel measurable.

(b) Prove that x,(w, t) = x(w, t) pointwise on Q x [0, o0) as n— oo and conclude that
x{-, -) is Borel measurable, -

(c) Let S have Lebesgue measure zero in R Let O = {¢w, 1) € Q, x [0, o0)|w(t)€ S).
Prove that Qg is measurable.

(d) For each ¢ > 0, prove that pu{w | (@, t) € Q} = 0 and conclude by Fubini's theorem
that (du, ® dt)(Qs) = 0.

(e) Complete the proof of the lemma following Theorem X.67 by showing that for almost
all we Q, {t| (w, t) € Qg} has Lebesgue measure zero.

. Let H, be a self-adjoint operator on a Hilbert space X, Let ¢t — V(t) be a strongly

continuous map from R into the bounded operators on M satisfying:

(1) For each t, ¥(t): D(H,) — D(H,) and [H,, V(t)] is a bounded operator.
(2) [[Ho, ¥ ()] is locally bounded.

(2) Using the Dyson expansion and the interaction representation prove that if Y € H,,
then o,(t) = e~ # (1, s)y is a strong solution of

d
Z ()= —i{Ho + V(t)outh  @uls) =¥

(b) Prove the conclusion of (a) by showing that Hy + V(r) satisfies the hypotheses of
Theorem X.70.

Let H, be the self-adjoint extension of —d?/dx? on I}[0, =] corresponding to the

boundary conditions ¢(0) =0 = ¢(n). Let V(x, t) = a(t)x where a(t) is a positive C*

function with support in the interval [0, t,] satisfying [ a(t) dt = 1.

(2) Using the method of Example 1 in Section X.12, find upper and lower bounds for the
transition probability at ¢, from the first excited state to the ground state.

(b) Why are these estimates valid for all ¢ > t, also?

(a) Prove that the hypotheses on g(x, t) in Example 2 of Section 12 permit the
application of Theorem X.70.

(b) Prove that the hypotheses on r— V(t) and t — V,(t) in Theorem X.71 permit the
application of Theorem X.70.
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Let U(1, s) be a strongly continuous unitary propagator on a Hilbert space 5. Prove that
(U@ f)) = Ut t~0)f(t - o)

is a strongly continuous unitary group on }(R; #°).

Under suitable hypotheses on V(x, t), prove a Feynman-Kac formula in the time-
dependent case.

Show that if f and g are real-valued, then the components of W(t)(f, g) are real-
valued for each ¢+ where W(t) is the unitary group defined in Section X.13. Use this to
show that the solution of (X.138) is real-valued if the initial data are real-valued.

Suppose that the hypotheses of Theorem X.72 hold. Extend J to a map J from # to
¥ obeying (Ho) and (HG). Suppose that ¢fs) is a continuous J’-valued function on
[0, £] obeying the integral equation (X.143) (with J replacing J). Prove that ¢ is actually
D(A)-valued and continuously differentiable and satisfies (X.142) if ¢(0) € D(A).

Prove all the higher order estimates needed in the proof of Theorem X.76.

Show that if every local solution ¢(t) of (X.142) obeys Re [} (J{@(s)), ¢{s)) ds < O, then
the solutions exist globally in ¢.

By using the theorems in Section X.12 prove global existence, uniqueness, smoothness,
continuous dependence on the initial data, and finite propagation speed for the equation
U, — Au + mlu= —hud"*!
u(0, x) = f(x)
(0, x) = g(x)
where >0, xeR? andn=0,1,2,....
In order to handle the mass zero equation in R,
u, —Au= —2ufy, i>0
u(0, x) = f(x)
10, x) = g(x)
we rewrite it with a linear term added to both sides,
uy— Au+mu= —AluPu+miy, m>0
and then formulate the problem as a first-order equation in ¢ as in Section X.13:
@'(t) + ide(t) = J((1))
o)=L 9>

where J(g(t)) = J(Cuft), v(t))) = <0, —A|ul*u + m?u).

(a) Show that the estimates of Lemmas 4 and 5 hold for this new J so by Theorem X.72
we get local existence and uniqueness.

(b) Prove that on any interval [0, T) where a solution exists the energy

1 A
B =3[ (VP + ) dx + 2 [ul* dx

1 Constant.
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(c) Prove that on any interval [0, T) where a solution exists, |u(t)], < C + t/2E.

(d} Use parts (b) and (c) to show that if T < oo, then the solution ¢(t) is norm bounded
on [0, T). Thus, by Theorem X.74, global solutions exist.

(¢) Check that the proofs of smoothness and propagation speed one go through as in
the case of positive mass.

Prove that
[ {fghdx=[{hslgdx

for any f, g. he C3(R®").
Prove the proposition before Theorem X.78.

Let C,. (R) denote the continuous functions vanishing at 0 and co. Let D = d/dx. Prove
that D and —D on the natural domain are accretive, but only one of them generates a
contraction semigroup.

Let A, J, and # satisfy the hypothesis of Theorem X.74 (except that J is not required to
satisly the hypothesis of part (b) of Theorem X.73). Suppose that for all k, the solutions
of (X.143) are a priori bounded uniformly for all |@(0)] < k. Prove that for each
j=0,1, ..., n, and each k, there is a monotone increasing {everywhere finite) function
d; x(-) on (0, ) so that

4%y (t) = Alpa(t)l < d;, {|tD)lle1(0) = @20}

for all solutions ¢, of (X.143) with [¢,(0)] < k. Hint: Use the idea of Theorem X.75
and the trick of Lemma 1.

Let C be a complex conjugation on a Hilbert space #. Let A be a symmetric operator
with C : D(4) - D(4)and AC = CA. An extension B of A is called real if C : D(B) —» D(B)
and BC = CB.

(a) Let {@,}n=, be an orthonormal basis for &, , the deficiency space for A. Define
JiXH, ~ X, byJ( a,0,) =3 8,0, If Uis a unitary operator from &, to X _,
prove that the associated sell-adjoint extension Ay, is real if and only if
JCU : o, -, has a matrix w.r.t. {p,} which is its own transpose.

(b) Prove that A4 always has real self-adjoint extensions.

(c) If A has deficiency indices 1, prove that every self-adjoint extension is real. Verify
this in the example —d4%/dx? on C2(0, o) = I?(0, ).

(d) If 4 has deficiency indices 2 or more, prove that A has self-adjoint extensions which
are not real. Verify this in the example —d?/dx? on C2(0, 1) = I(0. 1),

READER'S GUIDE

In this chapter, we develop techniques for proving the existence of solutions of the basic

dynamical equations in a wide variety of physical situations. We emphasize the applications to
quantum mechanics and quantum field theory, and in these cases the existence of dynamnics is
“equivalent” to proving that the Hamiltonian is self-adjoint. Thus, these techniques are mainly
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methods of proving that a given operator is self-adjoint. The following table lists the sections
where various physical operators are proven self-adjoint:

Sections
Atomic Hamiltonians 2
Stark effect Hamiltonians 5, 1 (Appendix) for the one-
dimensional case
Zeeman effect Hamiltonians 4
Anharmonic oscillator 2,4,6,9, 10
Quantum field Hamiltonians 7,9
Quantum field operators 5,6,7

It is not necessary for the reader to know all the material in Chapter IX before studying
Chapter X. He should, however, know the basic properties of the Fourier transform presented
in Sections IX.1 and IX.2 and the properties of the free Hamiltonian discussed in Section IX.7
since this material is used throughout Chapter X without comment. Other theorems about the
Fourier transform (for example, the Paley-Wiener theorems and the interpolation theorems)
are also used, bnt the reader can easily refer back to Chapter IX when necessary.

We give a section by section description of Chapter X below; here is a summary. The
fundamental properties of self-adjoint operators are discussed in Section VIIL.3 and Sections
X.1and X.2. The reader interested in quantum mechanics should know in addition the material
in Section VIIL.11 and Sections 1 (Appendix), 2, 3, 4, 5, 11, and 12 of Chapter X. The
basic discussions of quantum field theory are given in Section IX.8 and Section X.7. The
reader interested in quantum field theory should also know the mathematical techniques in
Sections 5, 6, 9, 10, and 11 of Chapter X. Self-adjointness techniques can be used to prove the
existence and regularity of solutions for certain types of partial differential equations. Such
applications appear in Sections 3, 8, 12, and 13 of Chapter X. The Appendix to Section 1
contains applications to ordinary differential equations.

In Section ! we describe the closed symmetric extensions of symmetric operators by using
the theory of deficiency indices. We also prove von Neumann's theorem that a symmetric
operator which commutes with a conjugation has self-adjoint extensions. In the Appendix to
Section 1 we discuss Weyl's limit point-limit circle criteria and compare the quantum and
classical motions on a half-line.

In Section 2 we prove the Kato-Rellich theorem on small perturbations of self-adjoint
operators and the KLMN theorem on small form perturbations. The Kato-Rellich theorem is
then used to prove the self-adjointness of atomic Hamiltonians.

In Sections 3 and 4 we apply two distinct notions of positivity. In Section 3 we study
positive quadratic forms and discuss properties of the Friedrichs extension. In Section 4 we
prove a distribution inequality of Kato and use it to show that —A + V is essentially self-
adjoint on CZ(R") if ¥ is locally I? and bounded below. This technique is then used to prove
the self-adjointness of the Zeeman effect Hamiltonian.

In Section 5 we show that if 4 is dominated by a strictly positive operator N and [4, N]
is suitably small, then A is essentially self-adjoint on any core for N. This result is then
applied to prove the self-adjointness of the Stark effect Hamiltonian.

In Section 6 we prove Nelson’s analytic vector criterion for self-adjointness.

In Section 7 we define the free scalar hermitian Bose field of mass m > 0 and prove that it
satisfies the Garding-Wightman axioms. This section should be read in conjunction with
Section IX.8. We also introduce Q space and the spatially cut-off Hamiltonian for the (¢*),
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field theory. In the Appendix, we prove that for different m, the free scalar Hermitian ficld gives
rise to inequivalent representations of the canonical commutation relations.

In Section 8 we discuss the natural generalization of many of these self-adjointness
techniques to Banach spaces. We characterize the generators of contraction semigroups (the
Hille-Yosida and Lumer-Phillips theorems) and introduce holomorphic semigroups. The
techniques are used to prove various properties of the solution of the heat equation.

In Section 9 we discuss a special class of semigroups, hypercontractive semigroups, and
prove the essential self-adjointness of the spatially cut-off Hamiltonian for the (¢*); quantum
field theory.

In Section 10 we continue the discussion of graph limit methods for proving self-adjointness
begun in Section VII1.7.

In Section 11 we discuss Feynman path integrals, integration on function space, and
prove the Feynman-Kac formula.

In Section 12 we prove the existence of solutions of the equation U’(t) = —A(t)U(c)
when A(t) is a suitable family of operators on a Banach space. We apply the result to
solve the Schrodinger equation with time-dependent potentials and the heat equation with
time-dependent sources and sinks.

In Section 13, we prove the existence, smoothness, and finite propagution speed for the
nonlinear equation (32 + m*Ju = —Au’.

In Section 14 we very briefly descrihe the reformulation of classical mechanics as a
Hilbert space problem.
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A-bounded, 162
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Absolutely continuous subspace, 230
Accretive operator, 240

Action, 275

Adjoint, Banach space, 185
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Adjoint, unbounded operator, 252
Almost completeness, 338

Analytic Fredholm theorem, 201
Analytic function, vector-valued, 189-190
Analytic vector, 201

Anharmonic oscillator, 175, 184, 206, 266.
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Annihilation operator, 142, 208, 217, 218,
219
Antilinear operator, 69
Approximate identity, 251, 9
Approximate symbol, 98
Ascoli’s theorem, 30
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Baire measure, 105, 110
Banach-Alaoglu theorem, 115
Bessel’s inequality, 38

B.L.T. theorem, 9

Bochner integral, 119
Bochner’s theorem, 13
Bochner-Schwariz theorem, 14
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Bounded holomorphic semigroup, 248
Bounded operator, 8
Bros-Epstein-Glaser lemma, 21

C

C*-vector, 201
Calder6n-Lions interpolation theorem,
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Canonical conjugate momentum, 215
Canonical commutation relations, 274, 218,
232
Canonical form for compact operators, 203
Canonical [ree field, 215
Cauchy principal value, 136
Closable operator, 250, 252-253
Closed graph theorem, 83
Closed operator, 250
Closed quadratic form, 277
Closure, 92
of an operator, 250
Commuting (unbounded) operators,
271-272
Compact operator, 199
Compact support
distributions, 139, 178, 17
functions, 111
Complete, classically, 148
Complete, quantum mechanically, 155
Completely continuous operator, see
Compact operator
Cone, 109, 19
dual, 19
Conjugation, 143
Consistent norms, 35
Continuous functional calculus, 222
Contraction
mapping theorem, 151
semigroup, 235
Convex cone, 109
Convex set, 109
Convolution
distributions, 7
functions, 6
Core, 256
Coulomb gauge condition, 190
Creation operator, 142, 204, 209, 217-219
Cyclic vector, 226
Cyclicity of the vacuum, 65

D

Davies-Faris theorem, 186
Deficiency indices, 138
Deficiency subspace, 138
Densely bounded, 272
Dirac operator, 326, 337

Distributions
compact support, 139, 178, 17
tempered, 134
Domain, 2
of an unbounded operator, 249
Dominated convergence theorem, 17, 24
Dual cone, 19
Dunford functional calculus, 245
Dunford-Taylor formula, 316
Dyson expansion, 282

E

Elliptic operator, 112

Elliptic regularity, 49

Energy operator, see Hamiltonian
Equivalent representations, 231
Essential range, 229

Essentially self-adjoint, 256
Extended forward tube, 68
Extension of an operator, 250

F

Faris-Lavine theorem, 199
Fermion Fock space, 54
Feynman-Kac formula, 279
Fimite particle vector, 208
Finite propagation speed, 309-310
First resolvent formula, 191
Fock space, 53
Form core, 277
Form domain, 276
of operator, 277
Forward tube, 66
Fréchet space, 132
Free field, 212, 215, 217, 223
Free Green's function, 59
Free Hamiltonian
mass m (quantum field theory), 220
nonrelativistic quantum mechanics, 15
Free propagator, 60
Friedrichs extension, 177
Fourier inversion theorem, 3
Fourier transform, 1
Functional calculus, 222, 225, 245, 263,
286-287
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Fundamental solution, 46

G

Gauge condition, 190
Garding-Wightman axioms, 61-65
Generalized convergence, see Norm
resolvent sense, Strong resolvent sense
Generalized function, 148
Generator
group, 268
semigroup, 237, 246
Graph, 83, 250
Graph limits, 293-294, 268
Green'’s functions, 59

H

Hadamard’s three line theorem, 33
Hahn-Banach theorem, 75-77, 130
Hamburger moment problem
existence, 145
uniqueness, 205
Hamiltonian, 303
free, 55, 220
time dependent, 109
Hardy-Lebesgue class, 109
Hausdorff-Young inequality, 11
Heat equation, 242, 243, 245, 254
Hermite functions, 142
completeness, 121
Hermitian operator, see Symmetric
operator
Hermitian scalar quantum field theory,
62, 212
Hilbert-Schmidt operators, 210-211
Hilbert-Schmidt theorem, 203
Hille-Yosida theorem, 238
Hille-Yosida-Phillips theorem, 247
Hélder continuous, 81
Hélder inequality, 68, 34 -
Holomorphic semigroup, 252
bounded, 248
Hypercontractive semigroup, 258
Hypersurface, 78
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Hypoelliptic, 112
Hunt's interpolation theorem, 31

Inequalities, 32
Infinitesimal generator
group, 268
semigroup, 237, 246
Infinitesimally small form, 168
Infinitesimally small operator, 162
Interaction representation, 283
Interpolation
norms, 37
spaces, 37
theorem
Calderén-Lions, 37
Hunt, 31
Marcinkiewicz, 31
Stein, 40
Inverse Fourier transform, 1
Irreducible, 232

Jost points, 68

K

Kallen-Lehmann representation, 70
Kalf-Walter-Schmincke-Simon theorem,
186
Kato’s inequality, 183
Kato's theorem, 166
Kato-Rellich theorem, 162
symmetric form, 163
Klein-Gordon equation, 293
KLMN theorem, 167
Konrady's trick, 175

L

I-contractive semigroup, 255
I? inequalities, 32
Light cone, 63
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Limit circle, 152
Limit point, 152
Liouville form, 314
Liouville operator, 314
Liouville’s theorem, 315
Lipschitz, 154
Local commutativity, 65
Local Sobolev space, 51
Lorentz group, 63
Lorentz invariant inner product, 63
measures, 74

M

m-accretive, 168, 240
Magpnetic field, 173
Magnetic vector potential, 173
Malgrange-Ehrenpreis theorem, 48
Manifold

stationary phase, 101

symplectic, 337

Marcinkiewicz interpolation theorem, 31

Mass hyperboloids, 70

Mathieu equation, 320

Maximal accretive operator, 240

Maximal interval of existence, 301

Maximal symmetric operator, 141

Microscopic causality, 65

Moments of a measure, 145

Momentum operators, 304, 65

Monotone convergence theorem, 17, 24
for nets. 106

Multiplicity free operators, 231

Multiplicity theory, 231-234

N

n-particle subspace, 208

n-point function, 66

Nelson’s analytic vector theorem, 202

Nelson’s commutator theorem, 193

Norm resolvent sense, convergence in,
284-291

Normal bundle, 120

Normal operator, 246

Normalized tangent functional, 240

Norms
consistent, 35
interpolating, 37
Nuclear theorem, 141, 144
Number operator, 142, 204, 208, 220
Nussbaum’s lemma, 201

o

One-parameter unitary group, 265
Open mapping theorem, 82, 132
Operator
positively preserving, 186
relatively bounded, 162
self-adjoint, 187, 255
symmetric, 255, 192
Oscillatory integral, 100

P

Paley-Wiener theorems, 16, 17, 18, 23, 109

Parallelogram law, 38, 63
Parseval's relation, 45, 46
Partial isometry, 197
PCT theorem, 69
Phase function, 99
Phase space, 313
Plancherel theorem, 10
Poincaré group, 63
Poincaré invariance, 65
Poisson bracket, 314
Polarization identity, 63
Positive distribution, 162
Positive linear functional, 106
Positive operator, 195
Positive quadratic form, 276
Positive type

distribution, 14

function, 12

weak, 14
Positivity preserving operator, 186

Principle of uniform boundedness, 81, 132

Product of distributions, 90
Product formula, 295-297, 245
Product topology, 94
Projection, 187

orthogonal, 187
Projection theorem, 42



Projection valued measure (p.v.m.),
234-235, 262-263

Propagator, 60, 282

Pseudo-differential operator, 119

Q

Q-space, 228
Quadratic form, 276

Quantum field, 64, see also Free field and

Canonical free field
Quantum field theory, 62
Quantum mechanics, 302-305
Quasi-analytic vector, 327

R

Radon-Nikodym theorem, 25
Reconstruction theorem, 114
Regular directed point, 92
Regular point, 88
Regularity
of the field, 64
Schrédinger’s equation, 54
tempered distributions, 139, 144
theorem (Weyl’s lemma), 53
Regularly imbedded submanifold of
codimension &, 78
Relatively bounded form, 168
Relatively bounded operator, 162
Relatively compact, 340
Relativistic invariance, 62
Resolvent, 188, 253
Resolvent set, 188, 253
Restricted Lorentz group, 63
Restricted Poincaré group, 63
Riemann-Lebesgue lemma, 10
Riesz-Fischer theorem, 18, 24, 68
Riesz lemma, 43, 41-44
Riesz-Thorin theorem, 27
Rigged Hilbert space, 44
Rollnik potential, 170

S

Scalar quantum field theory, 62, 212
Scale of spaces, 278, 44
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Schrodinger equation, 303
Schrodinger representation, 274
Schwarz inequality, 38
Schwartz space, 133
Schwinger functions, 114
Second quantization, 302, 308, 208
Segal field operator, 209
Segal quantization, 209
Self-adjoint operator
bounded, 187
unbounded, 255
Self-adjointness
basic criterion for, 256-257
quantum operators (see table, 350)
Semianalytic vector, 206
Semibounded operator, 137
Semibounded quadratic form, 276
Semigroup
contraction, 235
holomorphic, 248, 252
hypercontractive, 258
infinitesimal generator, 237, 246, 248
IP-contractive, 255
strongly continuous, 235
Singular integral operators, 119
Singular support, 88
Skew symmetric form, 315
Skew symmetric operator, 315
Smeared field, 64
Sobolev inequality, 31, 113
Sobolev lemma, 52
Sobolev space, 50
Space cut-off, 227
Spacelike separated, 65
Spectral condition in quantum field
theory, 63
Spectral mapping theorem, 222
Spectral measures, 228 '
associated with a vector, 225
Spectral projections, 234
Spectral representation, 227
Spectral theorem
functional calculus form, 225, 263
multiptication operator form, 227, 260
p.v.m. form, 235, 263-264
Spectrum, 188
absolutely continuous, 231
continuous, 231
continuous singular, 231
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discrete, 236

essential, 236

point, 188, 231

residual, 188
Spherically symmetric potentials, 160
Spinor field, 117
Stark eflect, 200
Stationary phase, manifold of, 99
Stein interpolation theorem, 40
Stieltjes moment problem

existence, 341

uniqueness, 206, 341
Stieltjes vector, 327
Stone’s formula, 237
Stone’s theorem, 266, 265-267
Strichartz’ theorem, 171
Strictly m-accretive form, 281
Strictly m-accretive operator, 281
Strictly m-sectorial form, 282
Strong graph limit, 293
Strong operator topology, 182
Strong resolvent sense, convergence in,

284, 284-291

Strongly continuous semigroup, 235
Strongly continuous unitary group, 265
Strongly elliptic, 112
Support of a distribution, 139, 17

singular, 88
Symbol

approximate, 98

asymptotic, 99

of order m, 98, 99
Symmetric operator, 255
Symmetric quadratic form, 276
Symplectic manifold, 337

T

Tangent functional, 240
Tempered distributions, 134
Tensor products
of Hilbert spaces, 49-54
of operators, 298-302
Time-zero field, 217
Total set, 201
Trace ideals, 41
Trotter-Kato theorem, 288
Trotter product formula, 295-297, 245

Trotter’s theorem, 287
Tube, 19

forward, 66
Two-point function, 66, 70
Type of a semigroup, 246

U

Uncertainty principle, 132

Uncertainty principle lemma, 169

Uniform boundedness principle, see
Principle of uniform boundedness

Uniform operator topology, 182

Unitary operator, 39

Unitary propagator, 60, 282

Vacuum, 63, 200

Vacuum expectation values, 64

Vector of uniqueness, 201

von Neumann’s theorem, 268, 143, 180
von Neumann’s uniqueness theorem, 275

w

Wave front set, 92

Weak derivative, 138

Weak graph limit, 294

Weak-I?, 30
inequalities, 32

Weak solution of a partial differential
equation, 149

Weak topology, 93, 111

Weak-+ topology, 113

Weakly measurable (vector-valued)

function, 114

Weighted L, space, 76

Weyl relations, 275, 231

Weyl's criterion, 237, 152



Weyl's lemma, 53

Wick power, 226

Wiener measure, 278
Wightman axioms, 62
Wightman distributions, 66
Wightman functions, 66
Wronskian, 150

Witst’s theorem, 164

Y

Young's inequality, 28

Zeeman effect, 190
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