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Preface

THE PURPOSE of this book is to gather together the widely scattered material
concerning some exactly solvable models of statistical-mechanical systems with
an infinite number of degrees of freedom. By a process of selection and arrange-
ment we hope that we have presented this material in a coherent and uniform
setting.

It is assumed, but it is not necessary, that the reader is acquainted with the
physical motivation behind the models discussed, for our analysis of such matters
is necessarily brief (Boltzmann [1, 2] ; Born [1]; Ehrenfest and Ehrenfest [1];
Gibbs [1]; Guggenheim [1]; Huang [1]; Landau and Lifschitz [1]; London [1];
Mattis [1]; Schrodinger [1]).

We have also assumed a concurrent—or prior—knowledge of the pertinent
material in the textbooks of Emch [1] and Ruelle [1]. Another good reference
is the text of Eckmann and Guenin [1]. Any supplementary mathematics required
of the reader will be found in the various textbooks referred to in the body of this
text.

The readers we had in mind during the writing were, primarily, graduate
students embarking on research projects in statistical mechanics. In addition, it is
hoped that this book will be of use to the general community of research workers
in statistical mechanics and applied mathematics.

With this in mind, in spite of the rather technical nature of the material, very
few detailed proofs are presented. Most statements and theorems are proven ‘by
reference’, generally to a journal article. For it is not expected that the reader we
had in mind will wish to know all such details, particularly at first reading. If we
have managed to convey the general flavour of the subject and enough background
to enable the reader to find his way through the literature, then we shall have
achieved our aim.

A book such as this is almost surely plagued with errors; but I am not the first
author to be faced with this problem. Concerning his dictionary (Johnson, S.
(1755). A dictionary of the English language), Samuel Johnson defended his
authorship thus: ‘. . . a few wild blunders and risible absurdities, from which no
work of such multiplicity was ever free, may for a time furnish folly with laughter
... What is obvious is not always known, and what is known is not
always present. In this work, when it shall be found that much is omitted, let it
not be forgotten that much is likewise performed.’

Thornborough, D.A.D.
April, 1973
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1

The algebraic formulation
of statistical mechanics

‘What is lofty can be said in any language;
what is mean should be said in none.’
MIAMONIDES

1.1. Background orientation

SINCE the pioneering work of Boltzmann [1,2] and Gibbs [1] over seventy years
ago, the generally agreed goal of statistical mechanics has been to derive the macro-
scopic properties of matter from a knowledge of the mechanics of the underlying
microscopic entities (Ehrenfest and Ehrenfest [1]).

The guiding principle in such a derivation is to seek less detailed information at
each stage in the transition from the microscopic to the macroscopic description. For
it is only certain collective qualities of large systems which obey regular macroscopic
laws; and then only if the total number of degrees of freedom AV is large enough.

This principle would remain cardinal even if complete analytic solutions of the
microscopic dynamical equations were available. As Gibbs pointed out (Gibbs [1],
preface):

The laws of thermodynamics, as empirically determined, express the approximate
and probable behaviour of systems of a great number of particles, or more precisely,
they express the laws of mechanics for such systems as they appear to beings who
have not the fineness of perception to enable them to appreciate quantities of the
order of magnitude of those which relate to single particles, and who cannot repeat
their experiments often enough to obtain any but most probable results.

The ‘great number of particles’ mentioned by Gibbs requires one to choose
between constructing a theory with a large but finite number of degrees of free-
dom N contained within a finite volume V, or constructing one with both ;V and
V actually infinite.

Infinite systems are an idealization, of course. But such systems allow precise
descriptions of certain important properties, such as pure thermal equilibrium
states, unaffected by any surface effects. By the principle of quid pro quo we
must expect some resulting difficulty. These are technical mathematical problems
associated with the infinite number of degrees of freedom. As they are analysed
with the help of the theory of operator algebras, one speaks of algebraic statist-
ical mechanics.
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Infinite systems of interest in statistical mechanics are equipped with the dual
notions of spatial localizability and strict local commutativity in the non-
relativistic sense. This remark furnishes us with one way of constructing such
systems. We start with well-defined quantities associated with finite N and ¥ and
take the infinite volume limit smoothly and in such a way as to preserve the
intensive thermodynamic parameters. In particular, we must be careful to keep
the temperature and density fixed. Historically, this limit is known as the
thermodynamic limit. In this way one ends up with both local quantities, which
can be associated with a finite volume, and quasilocal quantities, which pertain
to the system as a whole and cannot be strictly localized.

Having come this far, one is tempted to seek a formulation of such quasilocal
systems which is less dependent upon the finite volume subsystems than the
formulation used in this book. Such matters are an open question, but there is
reason to believe that thermal equilibrium states can be found directly by using
the KMS condition, which we shall explain in §1.9 below (Moya (1); Sewell (2)).

Several of the models discussed in this book have sharp phase transitions
which are each associated with a sudden change of symmetry. This phenomenon
is known as a spontaneous breakdawn of symmetry. The natural and explicit
treatment of systemic symmetries, especially to characterize phase transitions,
is one of the main contributions of the algebraic formulation.

Another contribution by the algebraic formulation is the clarification of
certain puzzling features of the dynamics of infinite systems. In the BCS model,
for example, it was expected that a certain approximation to the true Hamiltonian
would become exact in the limit, as it differed from the Hamiltonian by terms
of the order of N! and smaller. Although obvious, this expectation is not true.
This is one of the phenomena associated with the existence of inequivalent
representations of operator algebras, and is peculiar to infinite systems.

That no fully satisfactory treatment of non-equilibrium phenomena exists so
far is a great deficiency of all microscopic statistical mechanical theories. This
deficiency is shared by the algebraic theory. One aspect of this problem is the
question of the ergodicity of a system, which is known to be extraordinarily
difficult to prove for realistic models. In the algebraic theory a conceptually
precise framework for non-equilibrium phenomena exists, and a generalized
master equation can be rigourously derived (Presutti, Scacciatelli, Sewell, and
Wanderlingh (1)), although quantitative results on the decay to equilibrium
are scarce (Davies (1,2); Emch and Radin (1); Lima and Verbeure (1,2);

Radin (1,3,5,6)).

The following remarks about our notation may be helpful. For conceptual
clarity, the distinction between a function and its images is maintained. We shall
employ the mapping notation f : 4 - B to mean that the function f maps its
domain 4 into its codomain B. The defining formula will be written either as
f@=0b,orf:at> b, whichever seems clearer. Certain standard symbols such
as union, intersection, containment, etc. are used without our defining them.
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In addition, certain less familiar concepts will be used without definitions. In
particular we have in mind tensor products, direct products, direct sums and direct
integrals, and inductive limits. These are defined and analyzed at various levels of
abstraction in the following books: Auslander [1], Choquet [1], Dixmier [1,2],
Gel’fand and Vilenkin [1], Grothendieck [1], Guichardet [1,2], Robertson and
Robertson [1], Sakai [1], Segal and Kunze [1], and Sternberg [1].

1.2. The algebras

We shall now present an outline of the algebraic formulation of statistical
mechanics.

Some general references are: Araki (1-3), Araki and Woods (1), Araki and
Wyss (1), Dell’Antonio (1), Dubin and Sewell (1), Eckmann and Guenin [1],
Emch [1], Haag and Kastler (1), Haag and Schroer (1), Haag, Hugenholtz, and
Winnink (1), Robinson (2,3), Ruelle (1,2) [1], and Segal |1], (1,2,4). These are
concerned mainly with the physical aspect. The mathematics used in this section
may be found in Choquet [1], Dixmier [1,2], Guichardet [1,2], Robertson and
Robertson [1], and Sakai [1].

One begins by declaring some finite-dimensional Euclidean space T to be the
physical space of the model, i.e. the coordinate space within which the particles
move or the lattice on which the spins vibrate.

Spatial localizability, a characteristic feature of statistical-mechanical systems,
is associated with what are known as local regions. These are the bounded open
subsets of I', sometimes required to satisfy certain additional regularity conditions,
e.g. smooth boundaries. The set of local regions % = {V}is assumed to contain a
countable subfamily.t 4= {V}, : n € N}which is ordered by inclusion and
covers I. It follows that . is absorbing for & : for any V € & there is a least
integer N such that ¥V C ¥, for every n = N. Particular choices for . will be made
at appropriate places in the succeeding chapters.

We next construct an underlying Hilbert space 5 appropriate for the model,
on which the respective algebras can be concretely defined. For each V€ £,
moreover, we construct a Hilbert subspace S#(V) of 5 such that (V) C H(W)
when ¥V C W. Upon abbreviating S#(V,) for V,, € A by 5, these local Hilbert
spaces are such that 5 is the Hilbert space inductive limit} of the {3, : n € N};

we write # =lim (£, nEN) (1.1)
—

for this process (Choquet [1]; Guichardet [1,2]).
There are local subalgebras & (V) associated with each V € £, appropriately
chosen C*- or W *-subalgebras of B [ (V)] , the W *-algebra of all bounded

+ Our convention is to write N ={1,2,3,...},Z={0,+1,+2,..},R = real numbers and
C = complex numbers, R* ={x €R: x > 0}.

% It is possible to write J# as the closure of the union of the J#_ as we shall do for the
algebras in eqn (1.4). n
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operators on J#(V).t The self-adjoint elements of & (V) are those observables
of the system which can be localized within V. This clearly constrains the choice
for &7(V), and it can happen that there is not a best choice, e.g. for the Bose gas
(cf. Kastler (1); Manuceau, Sirugue, Testard, and Verbeure (1); Manuceau (1);
Wieringa (1), § 2.3; Slawney (1)).

In view of their construction, these subalgebras are mutually isotonic, meaning
that (V) C L (W)when VC W, and [ LZ(V), HL(U)]—=0OwhenVNU=
@1.With the abbreviation &, = &(V,) for all V,, € A, the family{ &,,: n EN}
is inductive and so has a C*-algebra as its C*-inductive limit (Dixmier [1,2];
Guichardet |1,2]; Sakai [1]; Takeda (1)). This limiting algebra & is called the
quasilocal algebra for the system:

o =lim {/,:nEN}. (12)

It is also appropriate to define the systemic local algebra by
A=V, FO) (1.3)

This algebra is a norm-dense subalgebra of &7, i.e. there is a theorem (Sakai [1],
proposition 1.23.2) to the effect that §

&Z=un. cl. (). (1.4)

The physical significance of these two algebras is that the self-adjoint elements
of & (resp. ML) are the systemic observables (resp. localizable systemic observ-
ables). See Emch [1], Haag and Schroer (1), Haag and Kastler (1), and Segal [1]
for a discussion of the physical significance of the axioms.

1.3. States of the system

In the algebraic formulation the concept of the states of the system has the
following precise meaning: positive normalized linear functionals on the quasilocal
algebra; states of the local subsystems are similarly defined on the local subalgebras.
As regards notation, the set of states of any C*- or W*-algebra Awill be written
S () and the value of any element 4 € U in the state Y € S (A) as Y (4) which
is a complex number; the notation <y/; A> is also found in the literature and
emphasizes the duality between W and S(A). (Dixmier [1,2]; Emch [1]; Ruelle
(1,2), [1]; Sakai [1]).

+ For any Hilbert space J¢, B( X is our symbol for the W*-algebra of all bounded
operators on it.

+ @ is the empty set [ , |_is the commutator.

§ It is possible to define the C'*-inductive limit by (1.3) and (1.4); our definition is that
in the Sakai text, namely constructing the free algebra on the topological product X, K-"4 n
and imposing isotony relations.
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Most texts on quantum theory refer to vectors v € 5 in the Hilbert space for
the problem as states, which seemingly differs from our above definition. The
connection between the two terminologies is that a vector v € 5# determines a
particular sort of state w, € & (B (J)) known as a vector state (Sakai [1], 2.7.7)
through the formula

W, (A) =, Av)g, (VAEB(K)). (1.5a)

But our definition is far more general; we include density matrices as states,
for example. Recall that a density matrix & is properly defined as a positive trace-
class operator on %, normalized in trace: tr(§) = 1. The state ¢ € S (B (5#¥)) in
question is defined by

p()=tr, (64) (YVAEB(H)), (1.5b)

and is known as a normal state (Sakai [1], 1.15.3 - 1.15.6).

Note, in this regard, that for any density matrix & there is an orthonormal
basis {e,, : n €N} of 3 with associated projection operators {P, = ¢, ® e*, :
n € N}and a family of eigenvalues, i.e. real numbers {\, € [0,1]; n €N},
satisfying Z, = A, = 1, for which

5= Z M B (1.6)

in the strong sense. That is, for any v € S, || § (v) — Z Nu B, ) | >0as
M — = (Sakai [1], 1.15.4).

By convention, all Hilbert spaces shall be assumed to be separable and all
algebras have an identity element 1€ U: 14 = A1 = A for every 4 €. Any
exceptions will be noted explicitly.

The above definitions of vector state and normal state will hold for any
concrete C*-algebra of operators on a Hilbert space, the only case we need. In any
event, equivalent definitions, valid for any abstract C*-algebra, are known.

There are, moreover, many states which are neither vector nor normal. One
class of states of great importance to our work is the class of locally normal states.
A state V¥ is locally normal if its restrictions ¥ [V to the local algebras &7 (V) are
given through density matrices on the Fock-Cook spaces S#(V) (Robinson (5)).
In cases where the &7 (V) are W#*-algebras, this is equivalent to these restrictions
of the state to each local subalgebra being normal, i.e. ultraweakly continuous
(Sakai [1], 1.15.5). Such states are relevant for statistical mechanics because
they roughly correspond to finite mean particle densities for every finite (i.e. local)
region; however, the densities are not necessarily uniformly bounded with respect
to volume. Zero densities correspond to normal statest (Chaiken (1,2);

1 Not all locally normal states correspond to finite mean densities as the following counter-
example shows. Assume the V-region number operator for bosons Ny, is unbounded; this
will be shown in Chapter 3. Consider the vector state wy, where the vector y is not in the
domain of Ny. Then the state wy is normal but wy (Ny/v) is not defined.
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Dell’Antonio and Doplicher (1); Dell’Antonio, Doplicher, and Ruelle (1);
Hugenholtz and Wieringa (1); Moya (1)).

Elementary computation shows that the normalization condition for states
Y (1) = 1 implies that S (A) is a convex set. Furthermore, it is compact in the
weak *-topology . Because S() is convex, an important role is played by the
extremal states, i.e. the non-trivially indecomposable states. For extremal elements
of convex sets are the convex analogue of basis vectors in a vector space. For
historical reasons, extremal elements of S(U) are also known as pure states.
The set of extremal states on U shall be denoted €(A). (Choquet [1], §12;
Dixmier [1,2]; Phelps [1]; Sakai [1], Chap. 3).

1.4. Symmetry groups

In addition to states and observables, the algebraic scheme encompasses
symmetries in an intrinsic fashion. To say that a locally compact group G ={g}
is a symmetry group of the system means that G will act as a group of auto-
morphisms both of the C*-algebra U and of the states S(A). (Dixmier [1,2];
Emch [1]; Ruelle [1]; Sakai [1]; Varadarajan [1]). For each group element g €G
there is a mapping o, taking every algebra element A into another algebra element
a, (4). Both the group and the algebraic structures are preserved (continuously
in case of interest to us):

o - o )= Qen) A4);0,(4)=4, (1.7a)
where e € G is the group identity element. One also has

0 (A4+B) = [ )+ a, (B); [ 4B) = o A). a, (B)

o (A%) = [a, (A)]*. (i.7b)
Our notation for such an automorphism group shal! be
a: G~ Aut (A), i..7¢)

with images written either o, (4) or 0 A o, (A4) when an explicit expression
for a, (A) is available.

As far as the states are concerned, the symmetries act on-them dually
(synonyms: transposed, adjoint, contragrediently). The precise symmetry action
is given by the definition

a*: G~ Aut [S(WU)],
[o,* ¥] (4) =V [ag~l (4)] (1.8)
foreveryg€G,4 €U, and ¢ € S (A). For notational brevity we shal; . »metimes

write a(G) (resp. a* (G)) or even « (resp. a*). When considering the qu: local
algebra & and its subalgebras, typical notations for automorphisms wiil be
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a € Aut [], a, € Aut [ & (V)], and &, € Aut (&,); the problem of whether
or not—or in what sense—a formula such as lim «, = o holds will often be con-
sidered in succeeding chapters. e

A state ¢ € G (W) will be said to be a (G)-invariant or sometimes simply G-

invariant if a* W)=y (1.9)

for every g € G. The set of G-invariant states will be written S(U ; G) or some
abbreviation of this.

Just as S(A) is weak*-compact convex, S(U ; G) being a closed subspace of
a compact space is compact in that topology, i.e. is weak*-compact (Choquet [1],
Vol. I, p.23). Following Segal (2), the extremal G-invariant states are known as
G-ergodic states. The set of G-ergodic states is written E(U ; G).

1.5. The GNS construction

In order to analyse & (), we must now see how any state Y € & (U) can be
canonically associated with a representation 7y, : U > B (5,,) on a certain Hilbert
space J£ , cyclic with respect to a distinguished vector Q, € 5. Having done
so, we shall write ¢ ~ [, , my,, Qy] and refer to [, 7y, 2y] as the GNS
triple associated with y» (Dixmier [1]; Emch [1]; Gel’fand and Naimark (1),
Ruelle [1]; Sakai [1], 1.16, 1.21; Segal (1)).

The crux of the matter is that for any ¥ € G (), it can be checked that
Y (B*A) is a Hermitian form on U; i.e. a sesquilinear positive semi-definite mapping
AXA — C. Consequently the pair (U, Y) is a pre-Hilbert space, which can be
made into a Hilbert space in a standard way. Let By, ={4 €U : Y (4*4) =0}
denote the indicated closed ieft ideal (Dixmier [1,2] ; Sakai [1]) of U, and
A/ B, the corresponding quotient space (Choquet [1]). Then the canonical
Hilbert space 5% is defined to be the closure of this quotient space in the induced
norm, and we write: 3, = n.cL.(A/By).

For every 4 € U, let [A4] be its equivalence class in 5#,. Then the inner
product in S, is related to the original state through the formula

v (C*D) = <[4], [B]>, (1.10)
where C € [4],D € [B] are any members of the respective equivalence classes.
The formula
my (A) [B] = [4B] (1.11)

defines the required representation of % on 5, . To see that it is cyclic, define
the distinguished vector as the equivalence class of the A-identity

Qy = [1] (1.12)

and note that A/B is dense in 7, by definition. But it then follows that the
following set equality holds:
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{ry (A)Qy :AEAL = {[4] 1 A€W}
= A/B,.

This is just the definition of cyclicity, so my is a cyclic representation and £, a
cyclic vector.
Out of this we may extract the important formula

V() = <Qy,my (4) Qy>, (1.13)

which we shall often use.

The spaces J#;, generally have little or no relation to the space J# on which
& is defined, for states Y € S (&). In fact, Herman and Takesaki (1) and
Takesaki (1) have shown that up to a technical condition of factor type, different
temperatures and fugacities correspond to unitarily inequivalent Hilbert spaces
associated with the respective thermal equilibrium states on &7. So, far from
there being but one Hilbert space in the theory, it is the other extreme which
presents itself.

Finally, let us note here that Hugenholtz and Wieringa (1) have shown that if
Y € G () is locally normal, £ is a priori separable.

1.6. Ergodicity and global decomposition

With the following brief remarks we shall sketch the relation between symmetry
groups and ergodic theory. The following references furnish more extensive dis-
cussions of this topic: Dixmier [1,2], Doplicher, Kadison, Kastler, and Robinson
(1), Doplicher and Kastler (1), Doplicher, Kastler, and St¢rmer (1), Emch [1],
Kastler, Haag, and Michel (1), Kastler, Mebkhout, Loupias, and Michel (1),
Kastler and Robinson (1), Lanford and Ruelle (1), Radin (2,4,5); Robinson and
Ruelle (1), Ruelle [1], (3), Sakai [1], Chap.3, Segal (1), Sewell (1), and Van
Dongen and Verboven (1).

As we have already noted, extremal G-invariant states are also known as
G-ergodic states. The reason for this name is that a certain non-commutative
generalization of the classical ergodic theorem holdst for 7y, (&) on 5, every
¥ € €(; G) (Arnold and Avez [1]).

First though, we note that if @ : G - Aut (&) is an automorphism group, and
¥ € G (& ; G) a G-invariant state, the formula

lag (] = T, (™) [4] (VgEG,AE ) (1.14)
serves to define an isometry group {Uy (§) EB (¥} ) : gEGyonmy (#) 2y =
{BQy:VBEm,(H)}.

It follows from this that Uy is extendable to a unitary group on 5 . And if
a is strongly continuous, then Uy is strongly continuous:

+ In a standard notation, my ()= {my B) :Be &} is the image of &7 under the
mapping my.
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hm WUy @v—vl = (1.15)

for every vector v € J . Startmg from eqn (1.14), the corresponding action of
G on the operators in 7, (&) is given by the Uy, - similarity transformation

my (ag4) = Uy (g) my (4) Uy &™) (1.16)
Recall that Q € 5, is the vector corresponding to the equivalence class of
1€ 7. But then U, (5) 2y [ag_l ]
= [1]
=y (VgEG);

I

id est, the canonical cyclic vector is Uy, (G)-invariant (or simply G-invariant):
Uy (g)Q.p = Qy (Vg EG). (1.17)

But there may be other G-invariant vectors in S, . In order to allow for this
possibility, let Ey, be the closed subspace of 3, which consists of all G-
invariant vectors:

={veH:U, ©v =v(VgEG)}) (1.18)

An analogue of Von Neumann’s ergodic theorem (Greenleaf [1] ; Riesz and
Sz-Nagy [1]) may be proven: if the subspace E is spanned by £, alone, then
¥ € €(;G) must be G-ergodic. Said otherwise, if P, € B (5, ) is the Ey-
projection operator: Py (3#y ) = Ey, then in this case Py is of one-dimensional
range, and hence Py = Qy ® Qy*. The proof may be found, e.g. in Sakai [1],
proposition 3.1.10, cf. Emch [1]; Ruelle [1].

Lanford and Ruelle (1) have found the condition for the converse; they have
termed it the G-abelian property. The algebra & is said to be a(G)-abelian if

{Pq, Ty (A) Py : Ae o}

is an abelian family of operators for every ergodic state ¥ € €(& ; G).

If & is a (G)-abelian, they showed that ¢ € € (& ;G) iff E is one-dimensional.
See either Emch [1] or Ruelle [1] for a proof.

Other forms of G-abelianess can be defined. Suppose, for instance, that there
exists a sequence of group elements {g, € G : n € N}, not necessarily convergent,

such that the limit . _
Jim I o, (4).B]- 1| = 0 (1.19)

exists for every 4, B € & ; then & is said to be asymptotically abelian (with
respect to a(G)). The connection with the ergodic theorem is that if & is
asymptotically abelian, then it is G-abelian (proof: Sakai [1], 3.1.16).

We do not have the space to discuss any global decomposition theory. Suffice
it to say that a typical theorem in this theory, of the sort of interest to us, is to
prove that some G-invariant state Y € & (& ; G) can be uniquely (or not)
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decomposed into G-ergodic states:
®

v = j’ ¢ dm(p), (1.20)

where m is a Radon probabilit}‘f (r;‘ez’iscl;l)re Baire-concentrated on the ergodic states
(Choquet [1]; Phelps [1]). This expression implies that in the cases of interest to
us, the GNS triple ¢ ~ [, 7, Q,] decomposes analogously, e.g. 5,

® J?‘p dm (¢). The constructlon of direct integrals is discussed in many texts
e.g. Gel’fand and Vilenken [1]. But note the following technical point. The
decomposition of 3¢, does not generally follow from (1.20); the trivial group

G = {e} furnishes a counterexample. For if ¢ (4) = tr(4) on the space C?,
o, is four-dimensional, % ~ C* But the right-hand side of (1.20) is / il =1
<Av,v>and is a direct integral over an infinite number of spaces, i.e.

f G")v | = 1 9, is infinite-dimensional. When the decomposition (1.20) is also the
central decomposition, the GNS decomposition will follow.T Other cases, such as
KMS decompositions (see § 1.9 below), which we use are usually favourable
cases (Van Dongen and Verboven (1)).

Now suppose that eqn (1.20) holds, and that in addition there is another
automorphism y € Aut (&) of & (or automorphism group v : G' > Aut (&)).
It can happen that Y € S (&7; v) is y-invariant, but the G-ergodic components
are not: o & & (& ;7).

Even more to the point, suppose that y in (1.20) is a thermal equilibrium state.
It sometimes is the case that for temperatures above some critical one, 7> T,
both ¥, and the {¢ 1} are y-invariant; but that for T< T, Y is, yet the {¢y}
are not y-invariant. We say that ¥, undergoes a spontaneous breakdown of
y-symmetry associated with its G-ergodic decomposition.

The physical interpretation of this is the following. There is reason to believe
that ergodic states represent pure thermodynamic phases of the system provided
they are thermal equilibrium states. But then the symmetry breakdown
described above signals a phase transition; even more, it gives information
concerning the contrasting symmetry properties of the phases.

1.7. Space translations

An important example of a systemic symmetry is the additive group I of
physical space, with vector addition as the abelian group operation: (£,7) b
£+ n, with £, n € T'. As we shall show, the localizability property of the system
enables I" to give rise to a group of automorphisms ¢ : T' = Aut (&) of the
quasilocal algebra.

First, however, we must go back and be somewhat more pedantic about a

point already discussed, namely isotony. When we actually come to construct
the underlying Hilbert spaces {5# (V) : V € £} (resp. algebras { (V) : VE £})

+ This example is due to W. Wils and communicated privately by E. B. Davies.
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for the models, they will be constructed as separate spaces (resp. algebras) in
their own right, one for each V € &, rather than as subspaces of # (resp. 7).
This being so, when we say, for example, that S#(V) is a subspace of (W) for
V C W, we mean that there is a mapping of 3#(V) into S (W), which identifies
¥ (V) with a subspace of (W), etc. We shall use the following notation in this
regard. For the local subsystems, we write

iV, W) : W) P> F#£W) (1.21a)
(for VCW;V,WEZP).
J,W) . LV) b LW (1.222)
For the injection of the subsystems into the quasilocal system, we write
iV . W) >H (1.21b)
iV LWL (VEZL). (1.212)

It proves convenient to abbreviate i (V,, V) (resp.j (V;,, V;,,)) by i, (resp.j,,,.)
for V,, V,, € A, and i(V,) (resp.j (V,)) by i, (resp. j,). The various i and
mappings are known as injective mappings, or simply injections (Choquet [1],
Vol. I, p.8; Robertson and Robertson [1], p.88).

Returning to the problem of space transiations, we assume—and this assumption
will be true for all our models—that every local Hilbert space S#(V) is naturally
identifiable with every local Hilbert space J#(V + &), where £ € T and the set
V + £ is the local region {§ + n : n € V}.

By natural we mean unitarily equivalent, i.e. there exists a unitary operator

S, () : HFW)> HV+E (VVEL EET) (1.23a)

effecting the identification. One cannot say that {S, () : £ € I'}is a unitary
group on J#(V) even though an additive law of composition holds:
Sy 4+ ¢ n) Sy ¢ = Sy, (¢ + ), because Sy 4 gactson SV + £), whereas Sy
acts on J%, as we shall see.

If this scheme is to be consistent, the translations must be compatible with the
injections, which is where localizability and isotony enter. They are compatible,
and the compatibility condition for Hilbert spaces is the mapping identity

iV+EWHE) oS (§) = S5, @) i(V, W), (1.24)

which is easily understood from the corresponding commutative diagram (Spanier

in Fie. 1. .
[1]) seen in Fig. 1 HW) i(vV,w HW)

S(9) $(9)

H(V+E) H(W+Q)

i(V+EW+QE)

FIG. 1
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Knowing that the scheme is consistent, we may use the {SV : VE P} to define
a translation unitary group on . As # = lim ( 5£,) is an inductive limit, the
required unitary group is the inductive limit of the corresponding mappings

(Choquet [1]): S(E) = li_“_l{SV (®} (VEET). (1.23b)

We shall write S (T") for the set of images; the group property is represented by
the composition law S (£) S (n) = S (& + n). Although we shall not make use of
the fact, S is strongly continuous on 3#: || S(§)v—v | = 0,as£~>0inT, for
every vector v € 3. Consequently Stone’s theorem applies: there is a self-adjoint
momentum operator [T on 5, defined through S (§) = exp (i £ IT) (Kato [1]).

This transformation scheme for the Hilbert spaces induces a corresponding
one for the algebras. For the local subalgebras we define

o, : IV)> LV +E) (1.242)

by the formula
0,8 : A=>S,(HAS,(-f) AeL(V),(€D). (1.24b)

And upon defining the quasilocal algebra automorphism group

o : '~ Aut () (1.24¢)
as the inductive limit mapping
o= 112 {oVn}, (1.244d)
the explicit formula
o()) [B] = S(OBS(—%) (BEA,EET) (1.24¢)

for o0 as a similarity transform follows.
It is a characteristic property of the models we shall consider that they are
o (I)-asymptotically abelian:

lim || [0(§)4,B]_Il =0 (VA,BEW), (1.25)
|£|->oo

where |£| is the Euclidean norm of £ €. For a proof see Emch [1] and Ruelle [1].
Physically, this result says that one can always reduce the effect of any observable
within one’s laboratory to any required accuracy by translating the laboratory

far enough. Mathematically it implies, amongst other things, that for any I'-invariant
state Y € G (& ; ) there is a unique (maximal) measure M,, depending upon V,
concentrated on the I™ergodic states, My, [S(Z; T\E(;T)] = 0, up to
exceptional Baire subsets, and we write@

v = [ eamy (. (1.26)
G (4;T)
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References to this decomposition are in the previous section. Sakai ([1],
Chap. 3) gives the general theory, Emch [1] and Ruelle [1] relate it to the case
at hand, and Sewell (2) relates it to the dynamics.

1.8. Local dynamics

In the previous section we showed how space translations could be accommo-
dated in the algebraic theory as a group of automorphisms of the quasilocal
algebra. We would like to do the same for the dynamics of the system, but
because of certain technical difficulties this is not always possible (Dubin and
Sewell (1); Hugenholtz and Weiringa (1); Ruskai (1); Sirugue and Winnink (2)).

There would seem to be three cases to consider.f The most favourable, which
is pertinent to the ideal Fermi gas and certain lattice spin models, can be treated
in direct analogy with the space translations. The dynamical evolution of the
system is given by a one-parameter group of automorphisms 7 : R - Aut (&)
of the quasilocal algebra; the parameter r € R is physically interpreted as the
time (cf. Haag, Hugenholtz, and Winnink (1)).

The least favourable case considered in this book is that of the ideal Bose gas
model. If ¢; denotes the thermal equilibrium state on the pertinent quasilocal
algebra & at inverse temperature 8 = (k7)”" and 0~ [ Hp M5, Q] 5 and if
my ()" = ;" is the bicommutant { and hence the weak closure (Sakai [1],
1.20) of the representing algebra g ()= o, the dynamics associated with
thermal equilibrium are given by an automorphism group 75 : R~ Aut (.,efﬁ").
States not associated with the {Jfﬁ : BE€ R*} must be examined in individual
cases by considering the convergence properties of the local time automorphisms
7, : R~ Aut [ &/ (V)] which exist in all cases: we consider only mechanistic
systems.

The median situation, which shall be described here, will, it is hoped, prove
to be the proper formulation of the dynamical problem for equilibrium cases.
This situation is represented in this book by the BCS model. The conclusions
are much as for the least favourable cases, i.e. an automorphism of .o/ g results
for thermal equilibrium situations. But we require the technical assumption that
the local subalgebras be W*-algebras, i.e. weakly closed: &/ (V)" = (V) for
every V € £, In view of the fact that the situation is sometimes more and
sometimes less favourable in particular models, our remarks here are to be
understood mutatis mutandis.

The systems under consideration are mechanistic, as we said, which means
that for each V, € .# the systemic dynamics is governed by a strongly continuous
one-parameter unitary group U(") generated by a Hamiltonian A, (Helmberg [1];

+ This is optimistic; physically interesting non-equilibrium states, such as those repre-
senting turbulence, could well be less favourable than the cases treated here.

t If AC B(& ), then the commutant is defined to be the set ' ={BEB(# ): [4,B].
=0,vAE€ ¥}and A" = (¥").
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Hille and Phillips [1]; Kato [1]; Riesz and Sz-Nagy [1]). Thus

UM : R~ B (),
UM (1) = exp(itH). 1.27)

It is worth noting that H_ is the reduced Hamiltonian, implying that we shall be
working within the grand canonical scheme. If u,, denotes the chemical potential
for V, and N, the corresponding particle number operator, then in models for
which it is relevant, there is a true Hamiltonian H,, which is related to the reduced
Hamiltonian through the formula

Hn = Hn —/Jnjvn'

As the I are open sets, it is assumed that some self-adjoint extension has been
chosen for the Hamiltonian: (4,)* = (f,), and that A, is lower bounded (this
on physical grounds) (Kato [1]).

The time-translation automorphism for the local region ¥, written 7, = (1),
is implemented by the unitary group U (R) defined in (1.27); the defining
formula is

™ : R~ Aut (&),

1™ AP UMAUM™W (1ER,AE ), €1.29)

i.e. UM acts by similarity transformation. We assume, furthermore, that

U™ (r) € o, for every t € R; one says that (") is inner in such cases (Dixmier
[1,3]; Sakai [1]). Before proceeding with the study of the limit of the 7(?) (n —>co),
we examine the characteristic property of thermal equilibrium states, and define
the local Gibbs states.

1.9. The KMS condition

It turns out that it is not time-translation invariance which characterizes
thermal equilibrium. As Haag, Hugenholtz, and Winnink (1) (cf. Dubin and
Sewell (1); Kastler, Pool, and Poulson (1); Takesaki [1]) first pointed out, it
is states which satisfy the so-called KMS (Kubo (1); Martin and Schwinger (1))
condition which are to be interpreted as thermal equilibrium states.

Our definition of the KMS condition is more general than we shall actually
need for time translations, but is no more complicated. Let ¢ € & (¥), where A
is any C*-algebra with identity, let 3 € R be a real number, and a : R = Aut (U)
be a strongly continuous group of automorphisms.

For every two elements P and Q of U, form the two complex-valued functions

f,g : R—>C defined by @) = v @0l
g() = ¥ [Qa@)]. (1.30)
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We say that  satisfies the KMS condition with respect to [8, a (R)] if there
exist two complex functions F, G : € > C respectively

(1) analytic in the strips Im (z) € (—8,0) and Im (z) € (0, + f);

(2) continuous on their boundaries;

(3) having limits, in the usual topology on &’ (R):

I R)— Eliino_ F(t+ie) = f(t)
F' (R)— li_r)no*G(t +ie) = g(b); (1.31)
(4) and whose Fourier transfoerms satisfy
f(w) = #§(w) (1.32)

in &' (R).
In a heuristic sense, (1.31) and (1.32) are sometimes written as
Vle,®0] = ¥[Qa,,@).

Here &' (R) is the Schwartz space of tempered distributions over R (Gel’fand
and Shilov [1,2]; Streater and Wightman [1]; Treves [1]).

For further discussion pertaining to the KMS condition, see: Araki (4), Araki and
Miyata (1), Emch and Knops (1), Emch, Knops, and Verboven (1-3), Hugenholtz
(1), Rocca, Sirugue, and Testard (1,2), and Sirugue and Winnink (1).

1.10. The local Gibbs state

Assume that the reduced Hamiltonian ﬁn is such that the semi-group
(Helmberg [1]; Hille and Phillips [1]; Kato [1]) (8 = 1/kT is the inverse

temperature) _
’ 0 = exp(—pH,) (FER)) (1.33)

is of trace-class on an; we shall have to prove this for each of the models, of
course. Then the grand partition function for &, is well defined, and given by

the formula
Zgm = tr, g5, (1.34)

where tr, denotes the unique trace on 5¢,.
The Gibbs state or grand canonical state ¢, € S () for the region ],

is defined to be
@M (A) = EM(A)/EMT) (A€ ), (1.35)

TR ={xeR:x >0}
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where EM™ (4) = tr, (g™ 4); (1.36)
of course, B (1) = Z" must be non-zero. Another way of writing this is to

define the operator
5a(n) = gﬁ(n)/ZB(n); (1.37)

our assumption that ") is trace-class implies that 8,") is a density matrix.
Since ¢ (4) = tr, (8, A), ¢V is by definition a normal state.

We shall not give a proof that ¢ () is [B, 7(] -KMS; one may find that in
several places; the original proof is due to Haag, Hugenholtz, and Winnink (1).
An expository account is in Winnink (1). It is easy to show that ¢,(™ [7,(") (A) B]
is equal to g™ [B 7(%)_; 5 (A4)] formally, with certain assumptions, e.g. 707,
is well defined for complex arguments, and H has a simple discrete spectrum
with the eigenvectors forming a basis of J,,. That is, {e : p € Z}is an ortho-
normal basis for %, with

Hye, =N, (pED) (1.38)

as the eigenvalue equations. As these assumptions will be true for the models in
this book, let us continue with them. Then

¢‘(3n) [Tr(n) (A)B] =

d = [Zg")]'1 p.quZ (ey, Ae,) (e, Be,) exp [ird,—A,) —BA, ] (1.3%)
an

(n (n) =

¢4V [Br(™) (4)] (1.39b)
= [Z<">]“ Z (0 Ben) (6 A6) exp [it Qv =N = BN + B0V — X)),

from WhJCh the equahty is obvious. Of course, this is no proof, but it contains
the essence of the matter; we shall assume that the technically minded reader will
go to the references cited, and to Kastler, Pool, and Poulsen (1) as well.

1.11. The global Gibbs state and global dynamics

This section concerns the limit, as n approaches infinity, of ¢¢» and 7("); in
the case of ¢f}”) the constraint that the particle density ¢{" [N,/ |V, |] = p(")
associated with the region ¥, € # (of volume |V, |) be prescribed must be
levied. For all the models that we shall consider, the prescription shall be for
uniform density: p("= 5 €R*, independent of temperature and volume. This is
an essential ingredient of the grand canonical formalism we propose to employ.

It sometimes happens that the 7(") converge; for the ideal Fermi gas we shall
show that there exists an automorphism group

7:R~-> Aut (&) (1.40a)
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of the quasilocal algebra which is the uniform limit of the local automorphisms,

namely,
I7MWA—7,41>0 (VAE ). (1.40b)

The automorphism group 7(R) defined in this formula is continuous in ¢ and
extends continuously from the local algebra & to its uniform closure 7. In
such an instance, one would separately prove the existence of a quasilocal Gibbs
state ¢, € S ():
165(4) = 640 (4) | >0 (VAE ), (1.41)
again extending from &/ to & by continuity. This is the most favourable case.

But sometimes eqn (1.40) is demonstrably untrue, as for the ideal Bose gas
and the BCS model. Although there is some indication that the Bose gas can be
treated as a median case, in this book we use the median case, which will be
described now, as an example, and prove the necessary theorems for the Bose
gas directly.

For the median case (BCS model), the convergence of the ¢[(i”) and the 7"
can be combined to prove an existence theorem associated with ¢. In order to
do so, we must assume that the following two convergence criteria are satisfied:

lim ¢)(")

n—>e

k
A0 @)

exists forall 4,,...,4, € .sziL,

Vit ER K< (1.42)
k d

lim lim ¢(") { _lrgf’) (Ai) 1 (m)(A )J exists and is
=17

m—>ow p > =k+1
equal to

lim ¢>(")

n—o

“1 Tg;') (A/')} forall4,,...,4,€ & ;
Vi,....tL,€Rkd <~ (1.43)
We shall refer to these two crucial assumptions as DS I and II respectively
(Dubin and Sewell (1)).
On the basis of these assumptions one may prove that a limiting global Gibbs

state ¢, € & () exists
g () = lim g (A) (VAE ). (1.44)

If g is associated with (o, g, ‘QB) by the GNS construction, it will be very
convenient to write, asin §1.8,

= [y (1" (1.45)

for the weak closure of the representmg algebra; and &5 € S "ﬁ) for the unique
continuous extension of pgto 7" 8 defined by

%(0) = (2,09 (VQEH"). (1.46)
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Hence <I>B is normal on the W*-algebra &7 ”B’ an observation which enables one to
apply a number of theorems arising from the KMS condition.
From the above convergence conditions it then follows that

lim my (74M A4) = U (2) 13 (4) Uy (—2), (1.47)

where the strongly continuous one-parameter global unitary group UB defines the
one-parameter global time-translation automorphism group

75 - R > Aut (")) (1.482)
on .o/ ”B in the familiar manner:

75 [Q] = Up(1) QUy(—0) (1.48b)

for every Q € &/"5 and ¢ €R. Note that this is not an automorphism group of the
quasilocal algebra & but of the weak closure of its Gibbs-state representative

"5 Moreover, Uy (0 = 9, (1.49)

so that ®j is @8, TB)-invariant. Even more, ®; is (@8, TB)-KMS, and all that that
implies.

It sometimes happens that ®; is the only @, 75)-KMS ergodic state, as in the
ideal Fermi gas, for instance. In fact, this is so for all inverse temperatures in
that model. As previously mentioned, we interpret this as associating a unique
pure thermodynamic equilibrium phase with ;.

We might note that the Gibbs states for different temperatures lead to disjoint
GNS representations, provided only that that at least one of the representations
leads to a Type-Ill factor (Dixmier [1,2]; Emch [1]; Sakai [1]; Takesaki (1)),
and hence to unitarily inequivalent Hilbert spaces (cf. §1.5).

Another satisfactory consequence of all this is that any KMS state must
necessarily be locally normal, i.e. have the local finite mean density property
(Takesaki and Winnink (1)).

A model, in our terms, consists of a quasilocal algebra acting on an under-
lying Hilbert space built over a configuration space. An explicit expression for
the local Hamiltonians must be given. The model is solvable, in the minimal
sense we employ in this book, if the explicit time evolution T8 and the Gibbs
state ¢ are known. Further, one must be able to give the KMS-ergodic
decomposition for ®; and the GNS construction in explicit form, both for &
and its ergodic components. We shall not examine the fine points of the overlap
between the extremal KMS decomposition and extremal decompositions with
respect to the amenable subgroups of the space translation group. Nor can we
characterize any large class of non-equilibrium states for which a satisfactory
dynamical framework can be given.

This ends our discussion of the general structure of the theory; our next task
is to apply it to the models, starting with the ideal Fermi gas.
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In summary, we have a physical space I" and its local regions .# ; an underlying
Hilbert space 5# with local subspaces { (V) : V € £}; local C*-subalgebras
&/ (V) CB [5#(V)] and quasilocal algebra &7 = lim (7).

For each V,, € # there is a reduced Hamiltonian H which generates the
local time translatlons by similarity transformation with the unitary group U(")
= exp (itH ) and the local Gibbs states through the semi-group a(“) =
= exp (—BH,).

Our main task is to evaluate the local Gibbs states and consider the thermo-
dynamic limit of 7(") and ¢{?). Once these limits are found, we analyse them for
spontaneous symmetry breakdowns, which would signal the onset of a phase
transition.

As a final remark in this connection, let us point out that these systems are
infinite and so it would be more satisfactory to define certain properties, e.g. the
thermal equilibrium state, globally, rather than as the limit of local quantities.
For the equilibrium state, the KMS condition is a state-valued integral equation
and furnishes a global principle; using it, ¢; can be computed directly (Moya (1);
Sewell (2)). There is every reason to prepare the way for global techniques by a
blend of global and local ideas; this text is written in this way.



2

The i1deal Fermi gas

2.1. Introduction

THE IDEAL Fermi gas is the exemplar for systems of large numbers of particles
whose spins are odd half-integers. It is an oversimplified model in that the
constituent particles of this model do not interact with one another, which is
indicated by the word ‘ideal’ in the name of the model. In conjunction with the
Pauli exclusion principle, this results in the absence of collective phenomena and
only one pure thermodynamic equilibrium phase is present at all temperatures
and densities (Fermi (1); Pauli (1 - 3)).

Typical real fermion systems are the conduction electrons in a metal, nuclear
matter, superconductors, and liquid helium III. One sees immediately that inter-
particle interactions and strong collective phenomena are the rule and not the
exception. Why then do we study the model? Even were the ideal Fermi gas
devoid of immediate physical significance—and this is not the case—its study
would be a preparation for the subsequent study of interacting systems. Every-
thing is as mathematically favourable here as it can be, which is always a good
starting point. It is not facetious to say that a theory which could not analyse
this model could hardly be a useful one.

It is now well established that, in the normal state of metals, certain electrons,
known as conduction electrons, move relatively freely throughout the metal as
a whole. These conduction electrons are responsible for the following features
of metals: electrical and thermal conductivities, specific heats, Hall effects, and
the Richardson effect (Born [1]).

The particles in the ideal Fermi gas model correspond to the conduction
electrons in a metal and give good agreement with the observed behaviour of
metals. This aspect of the model is considered in great detail in many texts
emphasizing the physical aspects of statistical mechanics, e.g. Born [1], Huang
[1], Landau and Lifschitz [1], and Schrodinger [1].

The reader will notice the absence of any discussion of ‘most probable values’
in the text, in contrast to what occurs in most statistical mechanics texts (cf.
Schrédinger [1]; Ehrenfest and Ehrenfest [1]). The reason is that such a
discussion relates to the physical applicability of the grand canonical Gibbs
states {¢("} and their limit, the global Gibbs state #; € & (). We assume here
that the ?(I)g’)} are indeed the proper states to compute. Given this assumption,
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the only question which arises is whether or not they have been computed
correctly; the familiar form of the result gives us confidence that we have done so.

As far as we know, the first paper on the ideal Fermi gas putting it into
perspective vis-g-vis the representations of the canonical anticommutation relations
is due to Araki and Wyss (1). Later work relating to this model in its algebraic
framework as such concerns its relation to factorial W*-algebras (cf. Sakai [1],
§4.4 for a discussion and references pertaining to this) and to quasi-free states
(Manuceau, Rocca, and Testard (1); Manuceau and Verbeure (2); Powers (1,2);
Powers and Stgrmer (1); Rocca, Sirugue, and Testard (1)).

2.2. Configuration space

This model consists of spinless fermions (‘electrons’) which move in R®, hence
I' = R>. The local regions are taken to be those bounded open subsets of R>
which are of piecewise smooth boundary. Certain pathologies are prevented by the
further restriction that each local region is star-shaped with respect to at least one
interior point (Choquet [1], Vol.1, p.346).

For this family of local regions we shall customarily write % = {V'}as in the
introduction; the convenient notation &' = % U{R3} will also be adopted.

Whenever we write ¥, € & it is to indicate the cube of edge nL centered at
the origin:

V, = {x€ER®: —nL2<x;<+nL[2;L>0;i = 1,2,3}; (2.1)

the family of such cubes is denoted A, = {Vn : n € N}. Note that given any

V € & there is an integer n, such that V C ¥, for allm = n,. Accordingly

is seen to be absorbing (for .£). Rather more general absorbing sets can be
considered, but .#,; will prove sufficient for our purposes. Two further properties
of A, to note are that it is ordered by set-theoretical inclusion, and it covers R3,
Thus 4 fulfils the general requirements set forth in Chapter 1. As L is fixed

and more or less unimportant until §2.8, we shall abbreviate .#; = .# in what
follows.

Were we to compute the thermodynamic Gibbs state for general sequences of
volumes, matters would be technically more difficult than we shall find. What we
intend to do is to compute the local Gibbs states only for the cubes V;, and
only with periodjc boundary conditions; and then to take the thermodynamic
limit for this case. Araki and Wyss (1) have done the more general fermion case,
and Lewis and Pulé (1) (Lewis (1)) the more general boson case. Our feeling is
that the global equilibrium state ought to be found by strictly global methods,
such as the KMS condition, translation invariance, gauge invariance, and prescribed
global density. (This may be enough to specify a state as already mentioned; cf.
Moya (1) and Sewell (2)). One may disagree with our point of view and wish to

+ See §3.1 for a discussion of spin.
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see a computation of the thermodynamic limit of a more general family of local

states. For this the reader will have to consult the above references for the Fermi
and Bose gases. For this reason—in addition to the ease of computation—we shall
restrict our attention to cubes and periodic boundary conditions in what follows.

2.3. Fock-Cook space

One-electron wave functions are the elements of the Hilbert space L? (V) of square
integrable functions from ¥ to C for each V€ £’ . More precisely, we identify
functions which are equal almost everywhere; here and hereafter this abuse of termi-
nology will be assumed (Choquet [1]; Riesz and Sz-Nagy [1]).

By IL: (V") we mean the Hilbert space of square integrable antisymmetric
functions (classes of functions actually, see above) of n variables, from V" to C;
the square of the norm of any " € L% (V') is given by the integral

LA = [ 10 (1, %) P dx, - dx, (2.2)
Vn
Elements of ILX(V") are the n-electron wave functions. The space of wave

functions for any number of electrons is known as Fock-Cook space (Cook (1);
Fock (1)). It is the completed Hilbert direct sum

A (V) = &L (V"), (2.32)

for every V€ #’. By convention, the n=0 term is taken to be C. See Gel'fand
and Vilenken {1] and Guichardet [1 -3] for more about this concept.t The
symbol 5#} here is the 5# of Chapter 1 with the F subscript standing for
fermion.

The notation for a typical vector ® € H#p (V) is® = @ ¢, where & is
an eiement of L; (V™) and the infinite series defining the square of the norm is
assumed to converge:

HOl? = 2 1e@P? <o (2.3b)
n=0
Going the other way, the operator projecting Lf\ (V™) out of 5#,, (V) shall be
(n)
denoted P}/"). Thus PI(/n) : fF(V) R L,i )
PI(,") : ® > P, 2.4)

The Fock-Cook spaces for different V € &£ are isotonic, by which we mean
that 57, (V) is identifiable with a subspace of every 57, (W) for which
VCwWe L. Infact,if U, VE L are disjoint: UNV = @, then (Emch [1];
Guichardet [1-3]; Ruelle [1])

+ Analogous structures occur in differential geometry, cf. Auslander [1] and Sternberg [1].
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H(UUV) = K, (U) © H, (V). 25)

If we wish to identify ¢} (U) with a subspace of 3%, (U U V) as in Chapter 1,
we must distinguish a neutral unit vector in % (V) in eqn (2.5). Conventionally,
this vector is the so-called Fock-Cook vacuum vector, and is studied in detail in
§2.5(p. 28). Itsuffices here to know that there is some chosen unit vector
Q, € H# (V) so that € H#7, (U) is indentified with & ® £, in accordance with
(2.5). For U and V € _# this will define the requisite injective mapping leading
to eqn (2.9) below.

Because Fermi field operators satisfy canonical anticommutation relations
(CAR), it will prove very convenient to define the even part of H#% (V), VE Z’,
namely,

He) = QLA™ 2.6)

In view of eqns (2.4) and (2.6), the operator projecting out this subspace is the
direct sum of the P{ for even n:

o0

— 2
PL = © P,C", 2.7)
so that we may write
y PS[#(N)] = HD). (2.8)

The family {.%”;:(V) : VE £} of Hilbert spaces are also isotonic, eqns (2.5)-
(2.8) leading to the analogue of eqn (2.5),

HL(UUY) = HLU) @ HL(V) (2.52)

for arbitrary disjoint local regions.

Hereafter, we shall let %”If stand for either J#} or L indifferently. Then the
absorbing property of the family .# = {V,} of cubes (eqn (2.1)) implies that
. (R3) is the Hilbert space inductive limit of the . (V,). For eqns (2.5) and
(2.5a) imply the existence of a basis-independent injective mapping (cf. eqn (1.21))
it of HEW) into #F (V) for all m = n (by using the Fock-Cook vacuum,
cf. §2.5 (p.28). Then

XF([R3) = li_g{inm [ (V)lsm=nin,mEN) (2.9a)
or simply A, (R) = lim £, (V) (2.9b)
—_—

when no confusion is likely; this proves eqn (1.1) for this model. Hereafter,
Hp (V) will be written as J,, 5 (V) as H(V), and H# (R?) as 5. These
label omissions are not likely to cause any confusions within this chapter
(Guichardet [1-3] discusses such structures).



24 THE IDEAL FERMI GAS
2.4. The algebras

2.4.1. The quantum fields

The fermion annihilation and creation operators are defined everywhere on
H(V) for V€ L' through the formulaet (cf. eqn (2.4))

P%ln) [aV(f) (I)] (Yl, o ’yn)

=+ 1)% J f(x)pV (n+1) (@] (x, Y- -»Y,) dx (2.10a)
12

Pgl) [a;/l"(f)q)] (y1,9yn)
= () * ,>=:I (1Y P, =D [8] (3,5, 3,) F(y)  (2.10D)

for every f €IL? (V). The V-subscript on these field operators can usually be
omitted, it being deducible from the context. Another notational convenience
is to write a# (f) for either a () or a*(f) indifferently (Emch [1]; Guichardet [4];
Ruelle [1]; Streater and Wightman [1]).
These fermion field operators obey the CAR:
(@*(.a@)} = (1), 1 (2.112)
(a(f),a(@} = 0. (2.11b)
The braces denote the anticommutator, and (., .) is the inner product for
L* (V).
a*(f) is complex-linear from L*(¥) into 3#(V):
a*(f+g) =a*(f) + a*(g), a* (zf) = za*(f), and a* (f) = [a(F)]*; z is any element
of C, and £ is the complex conjugate of f, with f, gEL?(V), VE L.
Let us now show that the field operators are bounded by finding their norms.
To do this, we form the ‘f-mode number operator’

N, () = a} () a, (). (2.12)
Using the CAR, it is clear that N}, (f) is a projection operator on S#(V), and
using the property || 4*4 || = |4 12 satisfied by the C*-norm, it is trivial to

verify that || N, (f)II*> = [I£1I*. By the same property of the norm, the definition
of Ny, (f) then leads to the norm of a(f), namely,

la#* O = IfIl FELX (V). (2.13)
2.4.2. The local algebras

The local Fermi field algebra for the region V, written Z(V), is taken to be
the C#-algebra of bounded operators on Fock-Cook space 95 (V) = (V)
generated by the fermion fields defined above. In an obvious notation, with the

+ Ineqn (2.10b), )71 means that the variable Vi is omitted.
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angular braces indicating the algebraic span, i.e. polynomials in the indicated
variables, this means that
(V) = un.cl.- <a,(f) : VFEL*(V)>. (2.14)

We shall also refer to (V) as the CAR algebra for the region V.

Because of the anticommutation relations, the family of C*-algebras { (V) }
is precluded from consideration as candidate for the family of local observable
algebras. For [ &Z(V), &/ (W)]_# 0 for disjoint local regions: VNW = @.
These CAR algebras will be seen to be most useful none the less.

As the local observable algebras we shall choose the C*-algebra of bounded
operators on the even Fock-Cook space generated by the fermion fields:

(V) = LWV) ¢ V). (2.15)
Hereafter, we shall write o7 # (V) for &Z(V) or &¢ (V) indifferently.
2.4.3. Local gauge transformations
It is clearly of interest to relate &/(V) and & ¢ (V) for some fixed V € 2.
Using the even projector Pf, defined in eqns (2.7) and (2.8), we have the simple
relation de(V) = Pf, L (V) Pf,
={P,AP}, : A€ A(V)}. (2.16)
Equivalently, one may employ the number operator on Fock-Cook space to

relate these algebras to each other. The number operator /N, is an unbounded self-
adjoint operator whose domain is

e =[ec 0 T arewics) @i
n=0
which latter subset is dense in S (V). (See Kato [1] for general matters pertain-

ing to.unbounded operators.) The formula for the operator is

N, = @ nPm. (2.17b)

The number operator NV, generates the unitary group

U, (0) = exp(i0N,)

oo

= © 0PI (—n<o<+m). (2.18)

Noting that Uy, (0) is the unit operator, the even projection operator is related to
the number operator by the formula P; =3 (1, + U, —m].

In eqn (2.17) we have a subsystem number operator V,,, related to the structure
of Fock-Cook space through the { P{") : n € N}; in eqn (2.12) we have a mode-
number operator N, (f) related to the quantum fields. Note that it follows from
(2.12) that N, () € (), as it is a second-degree polynomial in the fields.
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The familiar connection between ,, and NV(f) has been rigorously demonstrated
by Chaiken (1,2), Dell’Antonio and Doplicher (1), and Dell’Antonio, Doplicher,
and Ruelle (1) for any orthonormal basis {e : pEN}of L*!(V)for VEZL'

(i.e. including ¥ = R?)

p
= (gn.str. # (V) - lim i;NV (). (2.19a)

Generalized strong (gn. str.) limits are strong limits on the pertinent operator
domains. Kato [1] discusses this, emphasizing the resolvent operator convergence.

Abbreviating the generalized strong limit indicator by a superscripted s on the
summation symbol, this can be written in the more usual form

N, = Z(S) at(e) e, @). (2.19b)

But then it is clear that U, (0) 6 .sz/ #(V)", and generates a symmetry of the
system by similarity transform If we write T = {—71 <60 <+ 7} for the
additive group of angles, then

T, : T > Aut [##(V)],

T,(0)4 = U,(0)AU,(—9) (2.20)

is the corresponding group of automorphisms.

In elementary one-particle quantum mechanics, gauge transformations of
the first kind transform electron wave functions in accordance with the rule
¥ (x) — exp (ieM) Y (x) with space-independent A € R. By analogy, we interpret
I, as the automorphism group of gauge transformations of the first kind for the
{sub)system associated with ¥ € &', In this connection, cf. Dell’Antonio (2),
Gille and Manuceau (1), Manuceau (1), and Rocca and Sirugue (1).

The following additional remarks might be of interest.

(1) The subalgebra of gauge-invariant elements of &Z(¥V), those for which
r (G)A = A for every 0 € T, is a proper subalgebra of &€ (V).

) The number operator N (R?) for R3 exists and is self-adjoint on the sub-
space €(R®) C . (R).

(3) The number operator ‘/YV;, for V € #is the operator which appears in the
reduced Hamiltonian H "= H —u N, of (1 .28).

2.4.4. Local space translations
We now consider space translations. We must give an explicit definition for
the S, (§) (€ R3) and check that the formulae of §1.7 hold.
For every ® € S (V) and every vector ¢ € R3, the requisite isometry is
defined to be
" S, ()« (V) > AW+
POS, ()] (x,---,x) = [PP D] (x, —&,....x,—E). (2.21)
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The propriety of this choice depends in the final analysis upon the translational
invariance of Lebesgue measure on R? (Choquet [1]) and on the formula

lra—prac= [1rra 2.22)
v ViE

for, say, functions f € S (R3) (cf. Gel’fand and Shilov [1,2], Gel’fand and
Vilenkin [1], and Tréves [1] concerning spaces of distributions). It follows that
S,/ (§) is an isometry of (V) onto HL(V+§), a8 IL?> (V") has polynomials in
n-fold product tensors (such asf® g ® ... @ k) as a dense set.

The corresponding formula for the local subalgebras has already been given in

L7 0, () : LEWV) > LEWV + ),
0, ()4 = S,()4S,(—b). (2.23)
2.4.5. The quasilocal algebras

We shall now form the quasilocal algebras in the manner described in Chapter 1.
As in eqn (1.22) we write j#(V, W) for the injection of &## (V) into &7 # (W) when
VCWE Z;andj# asan abbreviation for j#(V , ¥ ) (m > n). Then the quasilocal
algebras are the C*-inductive limits (cf. (1.2))

* = lim{j_ (L#);n,mEN;m=>n}. (2.29)
—_—

The systemic local algebras are the unions of the local subalgebras as in eqn (1.3):
HE = U, J*0) [LFD)]. (2:25)

The map j#(V) injects % (V) into &7 #, making the necessary identifications
explicit. By the theorem quoted in §1.2, eqn (1.4) holds for this model (cf. eqn

(1.4)); accordingly o = un.cl.- (L¥). (2.26)
The first point to note is that the {&Z¢(V) : V€ #}do, but the {L(V) :
¥V € 2} do not obey the local commutativity constraints
[Ze(V), Le(W)]_ = 0, VNW = Q. 2.27)

The second point to note concerns the fields generating &%, From (2.25) and
(2.26) it follows that a¥ (f) € & for every f € L? (R®) of compact support. But
even more is true; because f > a¥ (f) is bounded, a¥# (f) € & for every f €EL* (R%)
with no restrictions.} (This last property is not true for the boson fields.) In view
of this, let us write

&= un.cl- <a*(f) : V fEL* (R? >, (2.242)
where, recall, < . > stands for the algebraic span.

+ There is an implicit extension by continuity here.
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2.5. The Fock-Cook state

There is a certain vector Q, in (V) (for VE L ") which is especially
useful and important. Known as the Fock-Cook vacuum vector, it is defined by

Q,=1e0e00®... (V&) (2.28)

Its associated vector state w(®) € & [#(V)] is known as the Fock-Cook state
(Cook (1); Fock (1)):

GO = AR 0 oy  AELFD)). (2.29)

Note that we shall not distinguish between the Fock-Cook state on &Z(¥) and its
restriction to 2Z¢ (V).

If we apply the defining action eqn (2.10a) of ;, to the vacuum vector 2,
(eqn (2.28)), we find that a, annihilates Q,:

a,Q, =0 (VfEL*(V)); (2.30)

this equation shall be called the Fock-Cook condition.
In the same way we can compute w{®) explicitly, since it is sufficient to
consider monomial arguments of the form

Z, =a,()...q,()alie) . ats,): (2:31)

there is no loss of generality in having taken the operators ordered in this way,
for, by using the CAR and the Fock-Cook condition, any unordered monomial
can be cast into the canonical order.

Then an inductive computation yields

Wi Z,,) = 5, det 1, )1, (2.32a)
i w® [a,(F)ap@®)] = (.8, (2.32b)

where (., .),, is the L2(V) inner product.
Upon combining (2.32a) and (2.32b), w(®) takes the interesting form of being
a determinant of its own two-point functions:

wgfo) (ﬂ”nm) =6, det Iw%,o) la,, (}7) a;‘;(gk)] [ (2.32¢)

This form is characteristic of a class of states on &% (V) known as quasi-free
states: ¢ € G [ #(V)] is quasi free iff Y is of the form:

V() = 5, det Y[z, (T)ap ]I

The terminology is quite apt, as such states have certain very characteristic
properties in common with «X9); quasi-free states for .&# (V') have been exten-
sively analysed in a series of papers; the list of references given here includes the
analogous analysis for bosons and the KMS condition: Manuceau (1), Manuceau,
Rocca, and Sirugue (1), Manuceau and Verbeure (1), Powers (1,2), Powers and
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Stgrmer (1), and Rocca, Sirugue, and Testard (1,2).

We now wish to make the following observation. Recall that &/ ‘: is identified
with a subalgebra of &/# under the mapping A" P> AW @ 1 , where 1 _is the
identity operator on fF (R3\ V). To do the same for states, we must have a
distinguished neutral state on .J #(R3\ V. ),just as I is a neutral operator. The
canonical candidate is clearly the Fock-Cook state w(®)(R®\ V). That is, for any
state y € S (2/#), the mapping

v~ ¥, @ ORNY) =T, (233)

identifies t[/n with a state ?}/Jn on &Z#. Of course, one could choose a different
product state to be the neutral state. One would then modify eqn (2.33) accord-
ingly, but we have no need to do so in this work.

The use of this device is that a sequence of states {wn € S(H ’:) : n€EN}
can be examined for eonvergence (or no) to a state on &% by examining the
{% € S (&#) : n€ N} which are all states on the same algebra.

In this sense the Fock-Cook states themselves converge in the weak*-topology
to the Fock-Cook state on & ¥, For it follows from eqns (2.32) and (2.33) that

lim |6 (4) —w® )| = 0 (VAELH). (2.34a)
n—ro
This limit is written in the abbreviated form
weak*-lim @(© = (), (2.34b)

n—>
since the convergence extends from & ¥ to /%, We have set

w(o) = w§l{03) and wfzo) = Q)(_V(;)1) for brevity-

Some last remarks about «w(®.

(1) From its determinantal form, it follows that w(®(B) = 0 for every
B € .o/ \of ¢; we say that w(©) is an even state.

(2) The GNS construction associated with w(®) leads to w(®) ~ [ S, id, Q
where id(4) = A is the identity mapping.

(3) w( is space translationally invariant, as || S (§)f|I> = ||f1* for every § ER3,
fEL*[R3).

R3] ’

2.6. The spin algebra

It has been known for a long time that there is a close connection between
fermion fields and spin-% operators (Jordan and Wigner (1)). One may even reduce
the study of the CAR algebras to a study of spin algebras, as has been done by
Guichardet [4] (cf. Emch [1], and references there). Our primary interest in this
connection is computational; we shall use this connection to compute the grand
partition function for the ideal Fermi gas. In addition we shall establish notation
which will prove useful in our discussion of spin lattices.
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First we shall construct the spin algebra, and then connect it to the CAR
algebras. Let €2 be the Hilbert space of complex pairs and B(C?) the W*-algebra
of all bounded operators on it.

For each whole number p €N let %p be a copy of B(C?). That is, there exists

*_{ i
a C*-isomorphism 7, - B(C?) > gp‘ (2.35)

It is well known that in general there is no unique topological tensor product
of two C*-algebras; but there is in all cases a minimal cross norm, and it is
canonical to choose the completion in this topology as the C*-tensor product.

If U, and A, are arbitrary C*-algebras, we shall write U; ® A, for this completion.
No confusion is likely, as no other C*-tensor product is ever used in this text. See
Grothendieck [1]; Guichardet [1-3], and Sakai [1] for further references; note
that the symbol ¥q; ®, U, is used by Sakai for this completion.

All this is very gener%l, but often certain special results can be used. This is
the case here. For $p is finite-dimensional: it is generated by four linearly-
independent 2 X 2 matrices. As such, the algebraic tensor product B O%q is
already complete and no problem arises. Hence it is the algebraic tensor product
which appears for the spin algebras (Auslander [1]; Sternberg [1]).

With this notation we shall write

Bn] = pélzBp (nEN). (2.36)

for the C*-tensor product (which is here the algebraic tensor product). If m > n,
there is a canonical injection of B[n] into B[m], namely,

G ¢ Blnl > B[m];
@) = A® llm\n (m > n). 2.37)

It is clear from this that these C*-algebras form an inductive family; letting B
denote the inductive limit C*-algebra, we write

B = l;_u_rl{‘pmn(%[n]) : m,nEN;m>n}. (2.38)

Note that B is not a finite-dimensional algebra although it enjoys many of their
properties.

There are a number of identification and injection mappings which we shall
make explicit here: in into B[n], B[n] into B, etc. All of these are formed the
same way: one places an identity operator in the neutral modes. Thus in an
obvious notation

¢, Bn] >B
g ) =48 ]N\n (4 € Bin)), (2.39)
v B, > Bl p<n)

p—1 n
) ="® 104 @1 (UEB). (2.40)
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Of course, ¢ * YP : ‘23 - B maps B_ continuously into B; andg = Y- %
B(C? — B maps B(CZ) continuously into B with only the pth mode ngn-neutral
i.e. here the n is a ‘dummy variable’.

The algebra B(C?) is generated by the Pauli spin matrices {¢(® : o« = 1,...,4},
with( 0)(4) written for the 2 X 2 identity matrix; we shall also set o{1) * io{2) equal
to o(%),

As these spin operators generate B(C?), and the algebras B[n], B are formed
from B(C?), there are generating spin operators for these latter algebras, formed
from the Pauli matrices. We shall write

J@ (m) = ym - «,n[g(“)]e B[m] (Mm=>n) (2.41)

and simply @ @
J@ =g [/ (m)] €B (2.42)

for any m = n. Thus {J(r‘:‘)(m) tn=1,...,moa= 1,...,4}(resp.{J(r‘l") : nEN;
a=1,...,4}) form a generating set for B[m] (resp. B). These generating sets
satisfy relations, which follow from 3
0@ o® =8 +i El €y 0 (@B =1,2,3).
These are 3
(@ JB] = 2i ™) =
e, O = 2i8 7; TP (@B =1,23), (243)

and similar ones for the B[n] generators.

The relation between the Fermi local subalgebra &/(V) and B is not natural: it
depends upon the choice of an orthonormal basis for L?(¥). It will be sufficient to
consider V. € #, the cube of edge nL as defined in eqn (2.1). We shall also use
the particular basis of Lz(Vn) adapted to toroidal boundary conditions

le, 1 k€ z;ek(i) = (nLy¥?exp(ix - £)}, (2.44a)
where £ € V/ and where 'I\/; is the ‘toroidal dual’ of |4
T — 21 73
V.= L A (2.44b)

As we shall see, this set is very important in our computations.

It is very useful to order the vectors in V in some way, so as to be able to label
the e, by a strictly posmve integer. As the cardmahty of Z and Z3 are the same,
this 1s possible; so let 0, V - N be some bijection, and write¥

2O = gt (¢), (,() = p) (2.45)
for the Fermi fields in .sz/n .

+ The Cantor process (Gamow [1]) will do. One proceeds inductively, ordering all triples
(,m,n), whose sum I+m+n=MN is fixed; there are ;- W+2) (V+1) of them. This ordering is
(Lm,n) < (bmin)ifl <U';if I = I/, then m < m’; if m = m’, then n < n’. Then those for
which l+m+n=N+1, etc.
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So defined, the set {af(") : p €N} forms a family of independent Fermi
oscillators in .Mn ; they satisfy the CAR in the form

{a*l(;'), a(;)} =8, (2.46)

other anticommutators vanishing. (This is why they are called independent.)
Corresponding to this choice of orthonormal basis and choice of bijection n,
we define the following connection between .,Wn and B:

o, -8B,
—1
w(m) =P 3).
Trn[a 14 ] q'I.—!lJ(q JE’ ’

p—1
) = (3). ), ,
7, ()] qgqu J¢ (2.47)

There is no label indicating V on these spin operators, but we trust that, as
V' remains fixed for the time being, no confusion will result.

Let us note that eqn (2.47) will define a C*-isomorphism n : &, > Bif it
exists. This point is cleared up by noting that m, is bounded, as Il m [a#(")] I] = 1.
Further,m (0) = Oandm (4) = Oimplies4 = O from the very "natute of 4
and B. For example, 7, [a*(”) a*M] = J(‘)J(—) = 0, as it should, etc.
Consequently, (2.47) is s well defined.

An algebra is simple if it has no proper closed two-sided ideals. If a C*-algebra
A is the C*-inductive limit of a family of simple C*-algebras (U),, <y say, then
A is simple (Sakai [1], proposition 1.23.8). The even CAR is simple, as was
shown by Doplicher and Powers (1).

2.7. Time translations

2.7.1. Local time translations

An ideal gas is one for which the systemic dynamics follows from the one-
particle evolution corresponding to the Laplacian. Having defined the ortho-
normal basis eqn (2.44) adapted to toroidal boundary conditions, it is trivial to
define the corresponding self-adjoint one-particle Hamiltonian extended from
the Laplacian by means of this basis, namely,
h= D€ - (K)e ® e* (2.48)

n KE;
defining h through its spectral decomposmonT, where its eigenvalues are

20,02
en(K)”' h IKI Bl s

~

recall that V. = E’TZ is the toroidal dual of ¥ (eqn (2.44)).

n

+ The expression e, @ ef acts onany fEL*(V)ase, ® ef(f) = [ef(]e, = <f e> ey,
and so corresponds to Duac s symbol |k ><k]|. The vector e* is the dual basns vector to
e, butas L2 (V) is self-dual through the inner product, the mdlcated result occurs.
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The domain of 7zn can be seen directly from its spectral resolution eqn (2.48):

[D(ﬁn)={f= Y Lyfe X |fK’|2en(K)2<oo}, (2.49)

KEV, kED,
where the Fourier components are defined by
fo = [ F(&) exp (ik - ) d& (in the mean)
Vn
= (L)**<f,e>. (2.50)

The connectlon with the Laplacian is this: let izn be the formal elliptic differ-
ential operator —2—- A -uonb Ifg€ ID(hn) is twice continuously differentiable
and satisfies g(§ + a) = g(’g‘) forevery ¢ €V a€ nLZ3, then h 8= h (g) (Kato
[1h.

In our usual notation, ﬁn generates the one-parameter unitary group (resp.
semi-group) (1) = exp(ith) (t€R) 2.512)
resp. o) = exp(-ph ) (BERY); (2.51b)

the superscripted unity signifies that these are one-particle operators on [LZ(V;I)
and not operators on 5, the Fock-Cook Hilbert space. For the local time trans-
lations for the subsystem we proceed as follows. The pertinent automorphism

group 1s 7™ . R - Aut (F#);

@ 2% (] = o WP (VFEL'())), (2.52)
where af: is the Fermi field in d That this defines an automorphism of d
follows from the fact that u(!) (t)f € L’(V ) when f is. That this leads to an auto-

morphism of &/ ¢ follows because r(")(R) commutes with the gauge automorphism
group I (T) and hence with P¢ ” the even projection operator.

Th
e expreSSIOn ﬁ[u(rlz) Of] = U(,n)aﬁ ) U(_f_’z (2.53)

serves to define the strongly-continuous one-parameter unitary group UM (R)
which implements 7¢?)(R). The full Hamiltonian H, generates this group:

U(t") = exp (itﬁn), (2.54)

and it is a standard calculation to verify that, in terms of the quantum fields, I-_In
is given by

Y9 (0 ax(e)a, (@), (2.55)
KEW,

where the sum is meant as a limit of the partial sums in the generalized strong
sense. Furthermore, each of these partial sums is a polynomial in the fields so, as
the sum converges, U(") is even and in (&/¢)" for every t € R: 7(")(R) is an auto-
morphism group of .sfe Although misleading in a literal sense, the term ‘biquanti-
zation’ is convenient here U(") is the biquantization of u(‘)(t) etc. A similar
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consideration leads to the semi-group
of) = exp(-p) (BER) (2:56)

as the biquantization of O(’? (B). The chain of reasoning leading from eqn (2.53)
to eqn (2.55) is typical of Fock-Cook space computation. Details may be found
in Cook (1) and Emch [1].

2.7.2. Global time translations

For the whole space R3 the corresponding situation is as follows. The one-
particle Hamiltonian # is the unique self-adjoint extension associated with the
Laplacian on R3, Its domain is defined to be

D) = {fGTL’([R3) [ 1TOre@az<el, (2.572)
R3

where €(§) = Lz!mlg__’ - u is the energy function and?is the Fourier transform
on L?(R?) (this integral is meant in the mean sense):

F® = e [ rmexpCig - m) dn. (2.58)
RS
For all functions in its domain the formula defining 7 is
<fhg>= | F®I*T®e® d, (2.57b)
R3

where the star indicates complex conjugation. This formula is sufficient to define
the operator & because of standard theorems on bilinear forms on Hilbert space;
in finite-dimensional cases, they correspond to the equivalence of a linear trans-
formation on a vector space with its matrix element with respect to some basis.
The reader is referred to Kato [1] for details.

With this definition of & we can write down formulae corresponding to those
for u, UM, and 7(M; we shall not consider the analogues of o{) and 0(5'). Then

we have u® = exp(ich) (t€R) (2.59a)
for the one particle unitary evolution group on L*(R®);
7:R - Aut(&¥)
7[a* ()] = #uP(] (YFEL’RY) (2.60a)

for the automorphism group on the quasilocal algebras. The unitary evolution
group on Fock-Cook space which implements 7(R) appears through the formula

#ud@)] = Ua* (U, (VfE L2(R?) (2.60b)

and is given by U = exp(i tH). (2.59b)

The Fock-Cook space Hamiltonian, is explicitly,
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A= YOt g)a(ht 3). 2.61)
neN

In this last equation, {g, : n €N} is any orthonormal basis of L*(R®) in the
domain of 42 and the generalized strong sum is meant. That 7(R) is an auto-
morphism of & # follows from eqn (2.60). For this equation shows that 7(R)
maps fields to fields, and hence polynomials in the fields to polynomials. As the
polynomials are norm-dense in & and li7, [¢* (D]l = D)l = lIfIl, 7,
extends continuously to all of &7#.

2.7.3. Convergence of the local time translations

In this subsection it is our intention to quote some standard theorems of
analysis and show that the automorphisms {TM®R) : n €N} converge in the
sense hat o 11700 (4) — 79| = (AEL* (ER). (2.62a)

n—re
We choose to write

(uniform ##) — lim 70 = 7 (VER) (2.62b)
n—se
for this mode of convergencé.

Now the proof. For each f € 2 (R®) (the space of infinitely differentiable
functions from R® to € of compact support, and equipped with its usual LF-
topologyt (Choquet [1]; Gel’fand and Shilov [1,2]; Robertson and Robertson
|1]; Tréves [1])) there is some integer N such that support of f C V. for all
n>N. And as 2(R3 N M.,2(V) is dense in IL? (V) (any text, e.g. Tréves [1D,
u(;)(t)f is well defined for p large enough and f €9 R3).

Following Gel’fand (Gel’fand and Shilov [1,2]), we shall write Z(R>) for the
Fourier image of 2 (R?); it is the space of entire analytic functions such that
lg(x + iy) | < Kexp(-a|y|) (¢ > 0). Upon noting that Z(R%) C L (R?) and
that the function exp[iz € (£)] is not a multiplier for Z°(R®) but is one for
& (R (Gel’fand and Shilov [1], p.159), it follows that for £ # 0 and omiting

the zero function, ”(rl) . 2R3~ LR\ DR (2.63)

The difficulty is with the support of the functions; this result is due to the wave-
packet dispersion associated with this free Schrodinger equation. This important
observation, eqn (2.63), leads to a difference between this model and the Bose
model, where the fields are not bounded. For if a#(f) is unbounded, it cannot be
continuously extended from 2 (R®) to & (R®) with its extension in the quasilocal

T =D (R?) is the countable strict inductive limit of the Frechet space J?J(V ) of infinitely
differentiable functions with support within V. Each .@(V )isa metnzable Montel space
under the topology defined by the semi-norms P (f) = sup IDmf ®1.

tEV,
The topology on 2 (R?) is the finest convex topology under Wthh the injection mappings
D (V) » 50 (R®) are continuous.
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algebra. For the Fermi case this does not occur and f may even be in IL? (R3); this
is why 7(R) € Aut(7). But in the boson case, there will not be a 7(R) automor-
phism group of the quasilocal algebra, and more care in considering time evolution
will be necessary there.

Upon comparing the definitions of ufl‘)(t) and u(, it is clear that

Gtr. L2 ®R¥) - lim D (1) f = uD(f) (Vfe 2([R?). (2.64a)

As D (R®) is dense in IL*(R?), this extends to L?(R®) by continuity. Thus
Gt L2 ®Y) - lim WD (0)f = uD(f) (VFEL*RY), (2.64b)
n—>o

where we have identified L?( 1{1) with a subspace of L*(R>).
This result combines with the definitions (2.52), (2.53), (2.59), and (2.60) to
give a convergence formula for the quantum fields (recall that j¥ injects /¥

into A#):
17% <7 a# ()] — 7 [a* O] I = IUD @) f — UD () II>0. (2.65)

But then—and in view of the fact that 7(R) is an automorphism group of &7 #—the
uniform convergence result eqn (2.62) quoted above must hold; for the fields form
a norm generating set for the algebras. This proves our assertion.

2.8. Computation of the local Gibbs states

Combining eqns (1.35) and (1.36) defining E(‘;‘) and (I)(g) with the particular
semi-group (™ for this model (eqn (2.56)) we construct the local Gibbs state
¢(m. Recall that when we computed the Fock-Cook state w () it sufficed to
consider the monomial argument .%"pq (eqn (2.31)). What we wish to do is switch
over to the spin formalism of § 2.5; in particular, eqns (2.45) and (2.47) show
that to do so it is necessary to take elements of the [[,2(1{1) orthonormal basis of
eqn (2.44): _ ~

e, (® = ()Y exp(ik - §) 1k €V}
as the functionsf,,..., g, in .%'pq. This will lead to considering the argument
= q(n) (n) ox(n) #(n)

@pq al.l ...ajp akl -ay s (2.66)
wherej,..., kq € N. Note that to get from @pq to more general arguments one
can use, €.g. -3/2 ~
ax() = a0y ¥ T arom, 2.67)

KEW,
where 1, *) = p.

Turning now to the computation with % g Ve introduce the following

notation. Two 2 X 2 projections which we need are

o= % s =} 9] (2.69)
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Let us also define

FM @) = exp{-fe, [n'@NQ}, (2.69a)

where 1 (p) = kK € ’17,; and p € N. For then the spin operator image of the semi-
group 0?5") is (cf. eqn (2.47))

77,,[0(5')] = ,,SN F(;')(ﬁ)'
Upon expanding the exponential in F (I;’)(ﬁ) we find that
F(")(B) = {exp[-Be ()]} 0+ 0. (2.69b)

There are four sorts of trace calculations to do in order to compute E(")( )
namely,

J = tuEQ) =1+ e“}\' (2.69¢)
K = t(en@Q) = (2.694)
L® = tr(e AQg(t)) = 0; (2.6%¢)
IO = tr(eM2e®) = 1—¢ (2.69f)

Now E() ( ¥ ) will be a product of such quantities, but with mode subscripts
attached, e.g. K, = exp[—f € (1.} ())]. A check will reveal that every L(” which
appears will be multlphed by at least one L&) = 0, and hence the L® can safely
be ignored. In fact a little more is easily seen: £ (")( % ) will vanish unless

(s - -»7,) is some cyclic permutation of (i, ..., i ). The easiest case is p=q=0,
a .. . .

by Whlcfl we mean @00 1; this is the grand partition function and consists
entirely of the Js: E() = L {1+ 570

D) = Mo {1+ exp(-Be, (0]}, (2.70)
which is a more-or-less familiar result. What we must first 2show is that this
product actually exists (converges). But using €, (k) = ;,'7 L 1>~ u > it is a simple
estimate that

Z log {1 +exp[—Be (k)]} <eo, 2.71)

KEV

and this ensures that £ (")(1) < oo, In turn this finally proves that o(") is trace-
class.

For p = g > 0 the non-zero contributions to £ (g')( % ) come when L
=(.. -1 ) = g0 ,]p) where g is some element of the permutatlon group
onp letters If | g | denotes the parity of the permutation,

(n) =
E(Y,) = lgl ("ngKj) (kell\ll‘\lpjk)’

whence

05 (9, = el I, 1+ expife, ln, (1) 272)

Going back to Q'pq yields
oL, = 5, det 160D [a, (Dax(g)] |, (273)
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with two-point function

oW e, Par@] = (Ly® L () *200) (1 +exp[Be, (Ol (2.74)
KEKL
= <f,00(@) g>. (2.75)

We have introduced p(n‘) (8), the Fermi-Dirac density operator on L2 (R?) defined
by

D@ = L, (1+explBe, (] e, @ (2.76)
KE h
= [1+cD@E)] (2.77)

The local Gibbs state is quasi-free, being a determinant of its two-point
functions; we shall not distinguish between ¢(é') eS( .ﬂn ) and its restriction to
/¢ just as for the Fock-Cook state, since it vanishes on the set 2/\/¢.

It is clearly gauge invariant, but it is not translationally invariant. However,
whilst we must logically distinguish ¢(V) from ¢(n+8, they are numerically equal,
by which we mean that the snnultaneous replacement 7(«) - exp (ik - £) F'(x) and
2 (k) > exp (ik-£) & (k) cancel each other out.

Sirugue and Testard (1) have shown that for all functions in the set

¥ = { | aer@uP (0 e): f€ Z®), g€ m.z(lg)}, (2.782)
R
the expressions

Wl ()] = aFuDE+ip ]} FEY ™) (2.78b)

make good sense; and that ¥'(?) is dense in L*(V). This being so, we can prove
that gb(é’) is (8, 7(M)-KMS as follows: for fEL*(V), g € ¥"™), one has

o (a, [P () gl a¥ (1)
<f,uDDg> — ¢ (a* () a, [P (1) g])
ng 7 (0)*F (k) exp[-ir e ()] (1- {1 +exp[Be, (k)]}Y)

8 (a* () @, WOt +i6) [g]})
It can be seen that the derivation of eqns (2.73)42.75) pertaining to ¢{ is
exact: any approximation in the theory is in the choice of the Hamiltonian and
in the use of ¢(é’) Eqn (2.76) shows the famous Fermi-Dirac factor [1 + exp(8¢ )[ ™"
The operator o( )(B) is a particle density qperator, as (2.74)-(2.75) show that
the mean dens'ty in the state ¢ is 5 = tr[p()(B)], since the number operator
is a sum over orthonormal modes (eqn (2.19)). That is, and this will be amplified
in the next section,
5= (> T_{1+explfe, (0}

KEI,

]
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There is no divergence associated with the fact that in the thermodynamic
limit ‘e (k) = € (k) with (k) taking the value zero at k = 0 for zero chemical
potential. But this is not the case for bosons, where the minus sign occurs; the
consequent divergence associated with the particle density is known as the
Bose-Einstein condensation, and we shall show in Chapter 3 that it is indicative
of a phase transition. Thus the different signs (%) in the density operator leads to
the presence or absence of a phase transition. One may say that the exclusion
principle prevents free electrons from joining together in a collective state to
cause a phase transition; for the exclusion principle implies the Fock-Cook space
antisymmetry which in turn leads to anticommutation relations; and the
anticommutation relations are at the source of the + sign in p(;) (B) as the
following well-known heuristic argument shows. Using the KMS condition for

the pth mode:
SO, @)a] = 6Wla7,, @)
this may be rewritten as
explit € (k)] <NK>B = expli(z+iB) €,(x)] <aKaK*>B,

so that .
<Nx>ﬂ = exp[-f en(x)] <1 ——1\{‘>ﬁ,

or finally N>, = {1+exp[+Be (k)]} L

We see from this how each Fermi-Dirac oscillator, so-called, contributes to the
density; here <V, > d)(") [a* 1 | for brevity. Even at this point, disregarding all
questions of rlgour the correspondmg boson calculation is possible; the difference
is that <1-~ >_would be replaced by <1+ N >ﬁ from the CCR (see eqns (3.92)
and (3.9b)); ami3 consequently <N, > would equal {1—exp[Be (k)]} .

2.9. The global Gibbs state

Having just computed the local Gibbs states ¢(5’) (eqns (2.73)-(2.77)) we now
wish to find the limit ()= ¢__ subject to the constraint ¢>g') [N/(L)*] = p
appropriate to our grand canonical formalism. Two initial remarks: our limiting
state corresponds to uniform prescribed density p; our limiting state corresponds
to the particular choices of a net of cubes .# and cyclic boundary conditions.
These restrictions can be relaxed if one is willing to do extra work: see Lewis
and Pulé (1). Historically, the method employed here is due to Kac by way of
Lewis and Pulé and Cannon (1). The first result on such a limit state is due to
Araki and Wyss (1), as mentioned before. If it were only the Fermi gas that we
wished to consider, our method would be too involved. But we shall consider the
Bose gas as well, and have chosen to use the same approach for both. It is instruc-
tive to see the prescribed density constraint made explicit, even in this Fermi gas
model where it is not as important as for the Bose gas.
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By z, = exp(Bu ) (2.79)
we shall mean the fugacity—sometimes known as the (chemical) activity —for the
local region V. The eigenvalues of the one-particle non-reduced Hamﬂtoman

Le. without the subtraction of the chemical potential, are wn(x) = ﬂ—z'"%—

(ke V) In eqn (2.82), the activity z, will be related to the prescribed density

D, SO 1t will be advantageous to separate out the fugacity contributions.

For real £ €ER let us define the Fourier transform of the Kac density:
RO, 5) = ¢4 [expCigN,/ 1 V,D], (2.802)

ie. the Fourier inverse of K K©), written KO, will be called the Kac density
(Lewis (1); Lewis and Pulé (1) Cannon (l)) The reader will notice the density
symbol appended to the Gibbs state. This density function can be calculated by
means of the spin formalism. As the calculation is quite similar to the one for
the grand partition function we omit it; the result is that

KO &.p)
= 1 {1+z,exp[-Be, ()]} {1+2,exp[-Bw, (k) +(&/1V,)]}(2.80b)

KEW,

As d)(ﬁ'g is quasi-free it suffices to consider the correlation function
00 [exp GEN/ 1V D) 2 (f) 2, (D))
= (LY*RO (£,0) Y 2 F(OFK)* X
KEW,

X{z, +exp[Bu, (k) + (iE/ 1V, D]} (2.81)

The relation between density and activity—which we shall refer to as the
intensive equation of state—is now evident;

(")[N/IVI]

YS YS—) (E’ 5)
£=0’
or
b= (nLy> Y 7 {z +exp[fw ()]} (2.82)
= ntn n
The crux of the proof of the convergence of the relevant quantities in the
thermodynamic limit is contained in the following lemma.

LEMMA 2.1
Let Gé") : R* >R be the function defined by

GO = @ | xix+ ewplBer (Ol dk
R3
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=)

= (2n%! j xk? {x+ exp[fw (K)]} ! dk, (2.83)
0
where w(k) = R*|k|*/2m. Then
lim (L) 2 x{x +exp[few, (K)]} 1 = GO (x) (2.84)
n—e K<,

uniformly in x ER*.

Proof. Cannon (1) shows that the terms ink € Z for which any component
k.(j = 1,2,3) vanishes will vanish uniformly in the limit. The other terms are
shown to be step functions which approximate the integrand of G and vanish
uniformly outside some neighbourhood of the origin in the R X V' plane, ie.
(x,k) = (0,0). This completes the proof.

We shall suppose that the fugacity z approaches a limit: z >z withz € R*
as n approaches infinity. The left-hand side of eqn (2.84) is just the expression
eqn (2.82) which we have found for the mean density; the choice of x = z_is
possible since the convergence is uniform in the fugacity. Thus we have as a
corollary to Lemma 2.1 the equation

p =GO, (2.85)

which is the thermodynamical intensive equation of state, as it relates the temp-
erature, density, and fugacity. Moreover, as G{) is uniquely invertible to find
z_(B,p), the fugacity is uniquely determined by the density for all temperatures.
Thus, either (8,5) or (8,z_) can be used as independent thermodynamic variables
in their entire ranges. In the Bose gas model matters are not so simple as we shall
see. Let us separate the lowest k = O term for the density explicitly:

p=(L)3z(1+2)1+(L)3 X _z{z+explB (]} (2.86)
K#0,kEN,

We see that the first term converges to zero and the modes k € V., k# 0 give the
total density. In the Bose case, the corresponding first term is (nL)3z /(1-z,)
which looks as though it might diverge for z > 1. The dependence of z, on n
is determined by the requirement that the density be fixed and this first term
will be seen to converge to the superfluid density equation (3.45) (p. 60).

In order to examine the limit ¢(é’ﬁ) ~ @ We must find the limit of I?;&‘). The
pertinent lemma is due to Kac:

LEMMA 2.2

lim KO (,5) = expli£GH ()]
= exp (i£p) (2.87)

for each £ € R uniformly on bounded sets.
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Proof. We start from the expression
1?(;)(5,,3) = exp |- 2 log({1+zn exp[-Bu (k)- G/ 1V, D]} X

«eW,

X {142z exp [—Bwn(x)]}’l)].
In the numerator of the argument of the logarithm we expand exp [-i¢/ 1V 1]
= 1—i%/1V | and higher orders (h.0.) in nlCalll+ z, exp (-fw,) the symbol
a,, for brevity; then the argument of the logarithm becomes z{an + [i&/1V 1]
Xz, exp (-Bw,)}/a,, or upon dividing through by 4, and exp (-fw,)
1 —it(nL)3 z [z, + exp (Bw )]t + h.o. (nh).

The logarithm of this is expanded in accordance with log (1 + v) ~vy —37*
+ h.o.(y) to give
KO (£,p) = exp ( Z~ i£(nL)3z,{z, +exp[Bw, (k)]}1+ h.o. (n'1)>.
KET,

From the continuity of the exponential and the uniform convergence of the
limit in eqn (2.84) we may use (2.84) and this above expression to immediately
infer eqn (2.87). This completes the proof.

Just as mentioned above for g, the k = 0 term converges simply for this

model: ~
KO ,0) » 7= exp[iE G ()]

= explit G (2],

but must be analysed more carefully for the Bose gas.
Putting these facts together leads to the main theorem.

THEOREM 2.1
Forany B, and every f, g € 2 (R?),

8 {exp (HIEN,/ 1T D a* (g, @)}~ exp(-ip) 6, [a*(Da @] (288)
uniformly in bounded sets in £ €ER*, where (cf. eqn (2.75))

5 [a* () a(@)] = <f,P(6_)g>, (2.89)
where p%‘) is defined by
G970 = (14 @tess (2 1) 1 700

i

P9 (k,2) f (k). (2.90)
Proof. From eqn (2.81) the limit
oy [expCiEN,/1V D @} () 4, @)]
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> lim KO (€,9) lim (nL)® 2 2, 7 (8 () X
X {zn +exp[Boy, (k) + i(E/1V 1)}
= exp (i) lim (L) Y2, TF()* {z,+exp Beo, (k) +i(e/ 11, DI}

KEW, -
is a matter of the definition of the Lebesgue integral. For the quantity in braces
converges to the integral <f, o) g >, using (2.90). The restriction of f and g to
2 (R®) ensures the vanishing o? the summands outside some compact interval in
R3, and so outside some neighbourhood of the R* X R origin (£,k) = (0, 0).
The uniformity follows from this. This completes the proof.

As ¢, corresponds to the density g it is locally normal. From the explicit
form given in (2.89) and (2.90), it is evident that ¢I3/3 is gauge invariant and space-
translationally invariant. The GNS representation associated with ¢, . will show
that the representations are factorial and later we see that they are the unique
KMS states. This enables us to conclude that there is no phase transition and no
symmetry breakdown.

2.10. The thermodynamic representations

By the thermodynamic representations we mean the canonical triple
[.9? 5 Q ] The best course would seem to be just to write the
tnple down tﬁe mterested reader can then verify their validity. We do this
because we do not know a derivation of them in the form we give them.
Recalling then that S# is the Fock-Cook Hilbert space % ([R ) constructed over
L*(R®) from antisymmetric tensors, .9f 5 is given by

.}%ﬁ = éf ® K, (291a)
with canonical cyclic vector ‘Qﬁ[) - q 69 (2.91b)
constructed out of the Fock-Cook vacuum QO = .QR3 € H#.

The representation itself follows from the following formula, where a# and a?
are either @ or a* constrained so that #+ b,

nopla® N1 = a#([1-p1F/) @ 1—exp[IFNR)] ® P ([6P1E), (291c)
where N(R?) is the number operator on J# The representation algebra is a proper
subalgebra _
Ay = T (H)
C ZQ 4, (2.914d)

of the C*-tensor product of the quasilocal algebra with itself. The restriction from
&7 to &€ is obvious.
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Dell’Antonio (1) has shown that Moo is equivalent to 7., if and only if 8 = '
and 5 = p’ and that each algebra &#" _ is a Type-III factor.

A result akin to this was obtameg by Powers (1,2), whose work is easiest to
describe in the spin formalism. The algebra in question is therefore B ; and let
¢ € S(B) be the product state p = S ¢,, where ¢ is defined by

g [al +bID + D+ aJI] = pa+d)+(1—p) (@—a). (2.92)

If p, = 0 for every n, 1 (‘B) is a Type-_ factor. Forp =\0<A<3, qp(%)" is
a Type-III factor. It is customary to denote 7 (B % and call it the X Power’s
factor. The importance of this is that each M, is not *-isomorphic to M_for

A # 0. It is because each M, is a representation of the CAR that we mention this

here.

Although we have not directly computed the convergence—or no—of the
canonical states, there is reason to believe that they do converge, by analogy
with the Bose gas. These canonical states are defined as follows.

Let P : 5 (V) ~ L% (V™) be the Fock-Cook space projection operator
indicated in eqn (2.4). For fixed n and V, let p = n/| V'|. Let Z(V,f) be the semi-
group exp[~BH(V)] formed with the non-reduced Hamiltonian on 3¢, (DT
Then the canonical state lﬁ(m € S[ (V)] is given by

tr, [E(V,8) PV A]
tr, [E(.0) PEV]

w(ﬂ‘;) “ = (2.93a)

Such states are defined for densities at the points p = n/|V]| only. For densities
o" between p = n/Vand p' = (n+ 1)/|V| w(ﬁ‘? is defined by interpolation,

YO, = M+ (I-NED  O0<A = A<D, (2.93b)
Consider the expression (V=1V))
A) = l// Y A) 85 (P(’))
= u[E(V,0) PPA] (= (VP NP
= PPIEG (D)]
Proceeding formally, N(V) = ZjP), and for any B € &/ #,

tr(B 2N PD) = Ztr {B klii [szg’;)+(1-P<{;))]P({?}
= 7 tr(BPY)
whence Zr( V)’
A(A) = 2t [Z(V,6) P A)/EG (1),

te[Z(V,0) 2N PP 4] /E%a) 1.

+ This is defined as H(V) for zero chemical potential (cf. eqns (1.28) and (2.55)).
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Upon summing over j to a finite limit, say J, the trace and sum may be inter-
changed. The limit J—>o0 then converges to give

tr {E(V,B) N (jglp@)A}/Eg)(])
(n)(A)

Il

lim Z A
J—e j=1

This then relates the canonical and grand canonical states:
i (4) = EN ARV (2.94)
The role of the Kac density becomes clear upon noting that
exp [ﬂi I—én—an = ;ZN exp P(IZ’
for then the definition of K can be rewritten in the form
KO, p) = o0 lexpiEN, /17D
L e Citi/ 1) o (P,

e L
i

I

from which we recognize that

N ;
which gives the explicit form of K{-). Upon combining (2.94) and (2.95) we can
write ) _ Z ¢
¢ﬂﬁ (A) K \lVl’p)d/ﬁ[/lVl ) (296)

Let us assume that the canomcal states converge; no one has shown this for
the ideal Fermi gas but as Cannon (1) has shown it for the ideal Bose gas one can
presumably adapt his proof here. The limit will be written x,lzﬁ RY)= ll/B
then (2.96) together with Lemma 2.2 gives

8 = [ a0k (0.0 4y, (4), (297)
R+

where K(-) is the Kac density. For this model, K(-) in the limit may be explicitly
computed; it is _ r L~ _
KO(p,p) = | expl-itp] KOUE, ) dg/2m

R‘l'
= 5(p-p). (2.98)
But this means that, modulo convergence,
%p = yl/ﬁﬁ. (2.99)

It would be worthwhile to compute independently the microcanonical state
and show that it is equal to the canonical state. Such a proof does not yet exist
and constitutes a definite gap in the analysis of this model.
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2.11. The Liouville equation

We have already found that the global dynamics for the algebra is given through
the automorphism group 7 : R = Aut (/). We now use 7(R) to examine the

dynamics on .. Writin
Y oo VR gt (1) = 1 [a* ()],
we define the representation automorphism group
UPE R —> Aut(.ﬂﬁﬁ)
ORY AOL AVRIDE (2.100)

702 > U (00U (0 (QE ). 2.10)
The formal generator of Uﬁp is the Liouville operator

= Y a* 65€) %5 (he) (formal),  (2.102a)

which acts by derlvatlon ie. through commutations. Here {e } is some ortho-
normal basis of IL(R®) and 7 is the one-particle Hamiltonian. The spectrum of

Lﬁ[) is the whole real line: spec( Lﬁﬁ) - R (2.102b)

and

Thus we have a quantum Liouville equation:
= il i i .
Ly 01 = sirdim S[r,00] @€ o), (2103)
sometimes abbreviated _
[Lﬁﬁ’ Q]— -
2.12. The KMS condition

Our final task for this Fermi gas is to show that ¢ 5 is (8, %p) KMS. It is
sufficient to consider two point functions. Define then

= [F@-i8) 4y a* (1) alu@)]} t (2.1040)
R
and
Y = [F() 4, alld@]a* () dr (2.104b)
R
for arbitrary F € Z'(R). The explicit form of ¢y leads to
I = [F(t-ip) <[, 05 ud (g) > dt (2.1052)
R
and
¥ = [Foy<f.(- §D) U (@) > dr; (2.105b)
R

the CAR have been used here.
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Granting a proof of the requisite continuity so as to invoke Fubini’s theorem,
we write out the inner product and interchange the R and R? integrations in &

= r0g00* 2% (a0 F(e- ip) exp(-ie BIEL P 0 (,2),  (2.106)
R} R
where pG) (k, z..) is the kernel of p(‘) (cf. eqn (2.90)).
The definition of Z°(R) implies that the Payley-Wiener theorem applies here,
allowing the variable shift - i3 = s. But then Z =% and so ¢, is (ﬁ,%ﬁ) -KMS.
From Tomita’s theory of modular Hilbert algebras (Takasaki [1]), it follows
that if &;5" isa factor, as it s, then @y is the unique (B, 735)-KMS state; the set of
extremal KMS states reduces to the Gibbs state:

€ (" 7, RIKMS) = (4, (2.107)

the left-hand side indicates the set of extremal (8, a5 -)-KMS states.
As ¢g; vanishes on the set &7\ .Z®, these results carry over readily to &7¢. This
leads to the conclusion stated above: there is no phase transition in this model.



3
The 1deal Bose gas

3.1. Introduction

It 15 a striking feature of quantum theory that systems consisting of one species
of particle obey either boson (symmetric) of fermion (antisymmetric) statistics
(Pauli (1)). As there is no compelling experimental evidence to do so, we shall
not consider systems obeying parastatistics which may arise, e.g. from trilinear
relations amongst the fields.

For relativistic systems, spin and space variables are inextricably combined, as
in the Dirac equation. For such systems the natural group of space-time motions
is the Poincaré group, the semi-direct product of the Lorentz group and the
space-time translation group. All the finite-dimensional irreducible faithful unitary
representations are labelled by two parameters, the mass and the spin [m, s]. In
this context, fermion systems have odd half-integral spins s €{3, + $,...}and
boson systems have integral spins s € {0, 1,2, ...}; we shall only consider non-
zero masses m > 0. A deep result of field theory, known as ‘the connection
between spin and statistics’ (see Pauli (4); Streater and Wightman [1]) relates
fermion systems to anticommuting fields and boson systems to commuting fields
(for spacelike separations). This in turn relates to anticymmetric (resp. symmetric)
Fock-Cook spaces on which the fields operate.

In the non-relativistic approximation, the spin and space motions separate.
The Dirac equation, for example, goes over into a set of Schrodinger equations
whose components are connected by the 2 X 2 Pauli matrices (Pauli (3)). In
general, the one-particle space for a system of spin s particles in the non-
relativistic approximation is L2(R3, C***!), whose elements are functions with
values in the (2s + 1)-dimensional Euclidean space C2***. For non-relativistic
models, it is possible to build artifically either a symmetric or an antisymmetric
Fock-Cook space over L*(R3®, €?**?) for any spin. Artifical since one ought to
use antisymmetry (resp. symmetry) for s € {4,3,...} (resp. {0, 1,...}).

In the previous chapter we used the antisymmetric Fock-Cook space for spin
zero s =0, primarily for convenience; it is not difficult to fill in the additional
details necessary to redo the ideal Fermi gas when s=1%. In this chapter we shall
consider s = 0 again, but symmetrizing the Fock-Cook space this time. We will
thus be considering spinless bosons.
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The ideal Bose gas is due in the first instance to Bose (1) and Einstein (1), who
applied statistics to an assemblage of Planck oscillators. Einstein pointed out that
it was possible for an arbitrarily large number of oscillator particles (bosons) to all
have zero momentum. This, he said, would resemble a condensation process as in
thermodynamics, but would take place in momentum space.

In 1938, F. London, who was very much concerned with long-range quantum
correlations in matter, proposed that this model described the strange properties
of liquid helium IV. This isotope undergoes a phase transition to liquid helium II,
so-called, when its temperature decreases below 2-2 K. As London says (London
[1], p-4), the hypothesis that a gas model describes such an exotic liquid is
strange. Its validity rests in the agreement between model and experiment. Such
agreement as there is is more qualitative than quantitative. One does have confi-
dence that the A-point transition of helium IV at 2-2 K is of the same nature as
the phase transition in the Bose gas model, though. When convenient, we shall use
the intuitively appealing London-Tisza [Tisza (1)] language of the two-fluid model.
One interprets the properties of helium II, in this language, as due to the existence
of two liquids, normal helium and super helium. This latter component moves
without friction with either the vessel container or the normal liquid. The density
P, (B) of the super component increases monotonically from zero at the transition
temperature §=§, to the whole prescribed density at zero temperature: p, (2)=p.

The algebraic formulation is seen to give a very much better understanding of
this phase transition than was possible before its advent. We shall find that above
the transition, the grand canonical state, i.e. the global Gibbs state, is the unique
KMS state and equals the canonical state at the temperature and density. Below
the transition, however, the Gibbs state is no longer pure; neither are the canon-
ical states. Each canonical state yj5, decomposes into a one-parameter family of
pure states (¢ﬁp0)0€T associated with the gauge angles (phases), {-7 <0 <n}=T.
The Gibbs state is then a further superposition of canonical states, weighted with
Kac’s density function, wii:ch we shall derive.

In view of the fact that the phase 6 is canonically conjugate to the number
operator (Dell’Antonio (2); Gille and Manuceau (1); Rocca and Sirugue (1)), this
(extremal) decomposition is related to numbers of bosons, in the old language.
What really happens is that, below the transition, the gauge transformations are
not unitarily implemented; there is no number operator. And one may trace this
phenomenon back to the minus sign in {1 —z, exp[Bew, ()]}, the oscillator
factor.

Another system which is partially represented by this model is the simple
vibrational modes of an infinite crystal. Such crystal vibrations are known as
phonons and have the dispersion law w (k) = ck for small k €ER*, with character-
istic velocity ¢. The simple acoustical branch corresponds to the normal compon-
ent. It is natural to inquire whether the condensation is seen in crystals; this
would correspond to a super sound mode known as second sound. This question
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has been pursued by Landau and his school (Landau and Lifschitz [1];
Abrikosov, A. A., Gor’kov, L. P., and Dzyaloghinskii, I. Ye [1]). An algebraic
formulation of an Einstein crystal (countably many linearly interacting oscill-
ators) more closely related to the physical system of a simple crystal, is found in
Verbeure and Verboven (1 -3) and Verboven (1,2).

The first algebraic treatment of the ideal Bose gas was that of Arakiand
Woods (1). There is an incorrect identification of the canonical and grand canon-
ical state in this paper. This was pointed out and corrected by Lewis and Pulé (1),
who gave a detailed analysis of this model, employing both general local regions
and general boundary conditions for the Hamiltonians (Lewis (1)). Cannon (1)
subsequently published a further analysis of this model making explicit the
convergence of the canonical states. He considered only cubical regions and
cyclic boundary conditions, which we consider sufficient for this book, and so
we shall follow his account. Klauder and Streit (1) have analysed a class of CCR
representations, including their GNS constructions, which contain the ones for
this model (cf. Robinson (1)).

3.2. Configuation space and Fock-Cook space

In this second model we consider a gas of massive spinless bosons moving
freely in R>. As the configuation space R is the same as for the Fermi gas, so is
the family of local regions . and the distinguished absorbing subfamily
M= Vi.n€& N} of cubes of edges nL centred at the origin (cf. eqn (2.1)).

The boson Fock-Cook space is constructed in analogy with, but is not identical
to, the fermion Fock-Cook space. For each V € %" the one-particle space is the
same L?(V), but the n-particle space [L;(V”) is now the Hilbert space of symmetric
square-integrable functions from ¥ to €. Formally, the norm on L% (V") is the
same as that on ILf\(V") and we do not distinguish them notationally, namely,

IFEN? = | 1fM . g )P g, dE,. G-

v

But for those particular elements of L} (V") (resp. Lg (V")) which are anti-
symmetric (resp. symmetric) tensor products of one-particle vectors in IL*(V),
the above norm leads to a determinant (resp. permanent) for inner products;
so they are actually quite different spaces.t

Accordinsly, the Fock-Cook space for this boson model is

H,(V) = o Li(v") (Ve (3.2)
n=0
the B subscript referring to the boson nature of the system. Concurrently, much
of the previous notation can be carried over from the Fermi gas, namely,

+ A permanent is like a determinant, but there is no sign change between successive
cofactors in the Laplace expansion.
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O = @M |2 = ) |[oM]P< oo for ® € Hy(V);

and
PO Ay (V) > LE(V)
PO [@] = @™ (3.3)
for the n-particle projection operator within V.
As it will turn out that the boson fields are unbounded, we must construct a

manifold to serve as the domain for these fields. So for ¥ € &’ we define the non-
closed weak direct sum

HOW) = ng’[m’g(w)m DR (VEL (3.4)

with the relative topology from H#5(V). Hereafter, 3¢ g(V) shall denote either
H (V) or fg’)(V) indifferently. Note that .#g))(V) is dense in HR(V).
The isotony relations hold; there exist injection mappings

FV W) HEWV) > HEW) (VCWED) (3.5)

of the local spaces into those associated with containing volumes. Corresponding
to eqn (2.5), the local spaces admit a tensor product structure. With the injections
made explicit, one has the relation

HFEUUY) = i#(U,UVY) [HEW)] @ i#¥(V, UV V) [#E(V)]
(U, VEPL). (3.6)

We shall use the abbreviationst H#5 (V) = #%; A5 (R} =%, i#(V,, V)
=i¥ ;and if i¥(V): HE (V)= § (R is the indicated injection, i% (V) = i%.
Then 5# is a Hilbert space inductive limit over the cubical regions:

#H = limii,, (#,) : nmEN;m>n}; (3.7D
—_
but as SO is not closed, we have instead that

HO = nLEJN i [#0), (3.7b)

and note that we do_not complete this subset.

3.3. The algebras

3.3.1. The boson fields

The boson annihilation and creation operators are defined formally just as the
fermion fields are, for every f€ 2 (V), V€ L' and ® € # D we set

PO, F2]®) = @+ DF [[HPEO@IDd  EEV™, (G50
14

+ No confusion with #¢ (¥, etc. will result from this notation.

+ By f we mean complex conjugation.
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n

POa%(N @] (5) = (n) j;P(;-D [@1(¢,,. .8 E)F(E).  (3.8b)

The restriction f € 2 (V) ensures that the domain of the fields is stable under
their action af; (f) : 52 Q(V) > H#Q (V); hence polynomials in the fields have
HQ (V) as their domain. The test function space, written as 2 (¥), is the sub-
set of 2 (R®) containing functions whose support is within ¥ and equipped with
its own LF-topology (Choquet [1]; Robertson and Robertson [1]; Tréves [1]).1
Note that we could define fields from L?(¥), but that would not solve the
domain problem as the fields are unbounded. And even if we so extended our
definition, in order to have localizability we would have to restrict these fields
to test functions f € £ (V) when defining the algebras in any event.

From this definition it follows that a,’f is (conjugate) linear from & (V) :
af(f +8) = af () +a} (g); @ (c) = c g2 (f) for c € C; @ () = [, (F)]*.
Further, they obey the canonical commutation relations (CCR) on s#£79(V),

namely. (). af @] = 0 (392)
lay (F). a5 @)]. = <f,g>y 1y, (3.9b)

where I, is viewed as an Jf(g)(V) operator. Because of the CCR, these operator-
valued distributions are not bounded and one way to proceed is to exponentiate
them. This idea, due to Weyl in the finite-dimensional case and to Segal [1] in
the field setting is the method we employ. First we define the field (our notation
is not universal)

o () = QT [ap(N +a, AT (FE D), (3.10)

which is self-adjoint on SQ(V). The sum e (f) + a,, (F) has S#Q(V) for its
domain; as 3¢ (g)(V) is not closed, neither is this operator. But it is essentially
self-adjoint and so has self-adjoint extensions which are closed. Any one of them
could be chosen, but we mean the one corresponding to cyclic boundary condit-
ions for the Hamiltonian, which is quadratic in the fields. We shall only need to
be explicit about the Hamiltonian, and so content ourselves with writing a tilde
in eqn (3.10) to indicate the extension. The Weyl field for the region V € ¥’ is

then defined to be Wv(f) = exp [KbV(f)] fe 2)), (3.11)

which also can be extended to all € L2(¥); but we shall not do so. The CCR
imply that W,, obeys the so-called Weyl form of the commutation relations
(which we shall also denote by CCR):

W, (f) W, (g) = W, (f+g) exp[-3Im<f,g>,]. (3.12)

The expression 1
6(fyg) = "2 [m<f7g>l/

is a symplectic form onIL*(V); and so W,,: 2 (V) ~ B[#(V)] is a projective
+ This topology is strictly finer than the relative topology on (V) inherited from $9(R?).
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representation of the additive abelian group of 2 (V) with multiplier exp[-4% Im
<f,&>y]. A symplectic form on a complex vector space is a real antisymmetric
non-degenerate bilinear form. If G is a locally compact group and U is a repre-
sentation of G by unitary operators on some Hilbert space, then U is said to be
a projective representation if the group property takes the form U(gh)
= M(g, h) U(g) U(h). Here the function M : G X G - C is said to be a C-multiplier
and must satisfy certain identities for consistency. In our case, M(*) = exp i6 (*)
with 8 the symplectic form -4 Im<,>. The reader is referred to Varadarajan [1]
for a full account of the theory of multiplier representations and other references.
In calculations it is useful to know the restricted BCH formula, which is only
formal unless convergence and existence is discussed, namely,

exp(4) exp(B) = exp(4 + B+3cl), (3.13)

when [A4, B]_ = cl. Applied to the Weyl field, it enables us to rewrite W,, in terms
of aff in a sort of ‘normal-ordered’ (Streater and Wightman [1]) form

W, (f) = exp(-}IIfI13) expiaf ()T ifl} expiay [T if]}. (3.14)
Now let e, € L2(V,), k € ¥/, be the tunction

e(§) = (LY Texp(in-§) (€W, (2.44a)

so that {¢, : k € V;l }is the orthonormal basis of ILz(V) adapted to toroidal
boundary conditions. Using the bijection n, : V - N of §2.5, we define

o = af (e)  (,() = p), (3.15)

which is formally similar to (2.45); but we now have a family of independent
boson (as opposed to fermion) oscillators, and (2.46) is replaced by

[a}m,a]_ = §,, (3.16)

other commutators vanishing.

3.3.2. Thealgebras

It seems as though there is no canonical choice of boson algebras (Wieringa
(1)). Our choice for the local subalgebras are the C*-algebras on H#5(V)
consisting of polynomials in the Weyl fields and their uniform limits; we write

L (V) = uncl-<W,(f) : fe (N> (VP 3.17)

the reader will recall that <-> means algebraic span in this context: all finite-
order polynomials in the indicated variables modulo the CCR. A typical poly-
nomial is of the form Zz]- Wy (f) where the sum is finite and z; €C, £, € 2 (V) for
j=1,2,...,(order of polynomial).

Our notation for the relevant injective mappings of the local subalgebras into
containing ones is our usual one:

VW LV)> (W) (VCWEZD). (3.18)
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We also use our usual abbreviations adapted to cubic regions, namely /(¥},)
=, a0d j(Vy V) = -
The local subalgebras are isotonic and locally commutative; if UN V=@

then (L V), LWV = 0 (3.19)

up to an imbedding into any (W) with WD UU V.
The quasilocal C*-algebra is the inductive limiting algebra

& = lim{jnm(&(n) :n,mEN;m>n}; (3.20)
N
the systemic local algebra is the union
A = U LW, (3.21)
veg

where j(V) : &/ (V) —> & is the injection into the quasilocal algebra. Then, in
accordance with the general scheme, /] is norm-dense in &7:

& = un.cl-& . (3.22)
It now follows that &7 may be directly defined in terms of Weyl fields:
o = un.cl-<W(f) : f€ Z (R®>>, (3.23)

where Wgs(f) is written W(f) for brevity. Thus we have constructed the kine-
matics for this model in accordance with our general scheme.

3.4. Symmetries

The pertinent symmetries of this model are space translations and gauge
transformations. Although the defining formulae for these symmetries are
formally similar to the corresponding Fermi gas definitions, the spectra of the
operators in question are rather different.

For space translations, the isometric translation groups are

Sy : AV > AV +E (VELEER),
SE : AL, (3.24)
with defining formulae
POIS, () @] (x1,- . xn) = P[] (x1%, .., x5)
EER)xEV, VESL, (3.24a)

provided we write Sgs =S.
The corresponding algebraic transformations are

oy (&) : L) > L (V+E),
o)) : H> A

o ®MA] = S, AS, (-8 A€ AV)orA), (3.25)
with ops = 0.
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The fact that o(R?) is an automorphism group of & follows since finite space
translations preserve differentiability and compact support, so that e.g. (up to an
imbedding) 2(V) C 2 (R*) and 2(V + £) C 2(R3).

Gauge transformations for this model follow the general scheme. The (non-
closed) number operator N, for V' € £ has domain #Q (1) and is given by the
generalized strong sum (here we consider only V)

— "6) * )
N% = pEEN up(”) a(g (3.26a)
and
Nps = 2 a* a(o), 3.26b
R3? SN (¢p) (90,,) ( )

where {y, }is an orthonormal basis for L*(R).
The Fock-Cook space decomposition is (here all ¥V € £’ are considered)

N, = @ nP (VEZL"; (3.26¢)

the domain of NV, is -
{cp EH,(V): L n*amP< oo}.
n=0

Eqns (3.26a) and (3.26b) define an essentially self-adjoint operator. (S Q(V) is
not closed). Eqn (3.26¢) is the minimal self-adjoint extension of these, and we
abuse notation, calling them all number operators and using the same symbol.
The crucial distinction between bosons and fermions is that the spectrum of
a;’;(") a(I;’) isZ* for bosons and {0, 1} for fermions. An examination of this aspect
of the matter is found in Dell’Antonio (2) and Gille and Manuceau (1).
As for the general scheme, the automorphism group

I, : T~ Aut[Z(V)] (Ve€Z),
,0)[A] = U,(0) A U, (-9), (3.27)
together with the implementing unitary group
U, (0) = exp(i0Vy),

this gives the algebraic form of the gauge transformations.

3.5. The Fock-Cook state

The symmetric nature of the boson Fock-Cook space does not affect the
existence of a Fock-Cook vacuum vector

Q,=1000.... (V€L
nor a frock-Cook condition

a,(HQ, =0 (VFELX(V)).
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The corresponding vector state w(g)e S [ (V)] (VEL), the Fock-Cook
state for this model, can be explicitly computed. A computation analogous to
that for the Fermi gas gives

Qe F) .. .a, ) a (@) .. .ak )]
= §,,, perm I<];,gl.>Vl , (3.28a)

where a permanent is like a determinant, but without any sign changes between
succeeding cofactors. There is another form for w([‘)), in terms of the Weyl field
rather than the a, namely,

SOW, (O] = exp-RIfIE); (3.28b)

this follows from eqn (3.14) for W,, in terms of aV, and from using the CCR and
exp [a, (N1, = Sy, which fo]lows from the Fock-Cook condition. Note the
Gaussian quadratic form this takes. This expression is an expectation generating
functional for the state in the sense of abstract probability theory. See Choquet
[1], Vol. III and Gel’fand and Vilenkin [1] for measures on topological spaces;
and Parthasarathy and Schmidt [1] for the pertinent probability theory.

Viewed as states on &7, the w(o) converge to wgg = O in the weak*-topology
(cf. eqn (2.34)). As w(O) isnota  state on & per se, we extend it to & ()
precisely as we did in eqn (2.34) for the Fermi Fock-Cook state.

3.6. Local dynamics

There is absolutely no difference in the definition of the local Hamiltonians
for this boson model as opposed to the Fermi model; nor even of the R® one-
particle dynamical operators. But the consequences for the algebras are different.

Th - _
® o, D7), oD(B), U, H, 0%, and 70 (R)

are as in §2.6, eqns (2.48)-(2.56). Furthermore, the definitions of 4 and u(D for

R3 are the same. But although u()(?) leads to an automorphism group

TO(R) € Aut (7)), the one-partlcle unitary group #() does not lead to an

automorphism group of &. Let us now examine this problem Recall that u(l)

converges in the strong IL*(R®)-topology to ™ on Z(R3) (cf. eqn (2.64a)).
For the Weyl fields W, = W), the action of 7( is given by

W) = WO FE 20))). (3.292)
Combining this with (2.64a) gives
(str. H#p)-lim j,» 7@, (O] = WD ()] F€ 2 (RY).(3.29b)
n—>e
But (2.63) tells us that uD(f) € 2 (R), so that W[uD(f)] €= Thus we do not

have an automorphism group of .2 (although the mapping W(f) > W[ (/)]
leads to a one-parameter group of automorphisms of B( 5#3)). We shall come
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back to this problem after we have computed the global Gibbs state.

7. The local Gibbs states

Recall that our notation is 0¢)) = exp (-BH) with H, = H, — u, N, for the
reduced Hamiltonian, and we shall write Z09) = exp(-§ H,) when the full Hamil-
tonian is meant. Then

Eg;s)(A) = tr, [0@) 4]
= t,[E® )" A] (UE o), (3.30a)
with the fugacity z, separated out explicitly. The local Gibbs state ¢(é’g € 6(H)
is defined to be ) — (1

The following calculation will sketch the derivation of the formula

o0 lexp iEN,/ 11,1) W, ()]
= OMWMRYE D exp2(L)® 2 2,IF K1 X

~

KEV,
X {z,— exp[Bw, () + iE/ 1D} T (331)

In including the number operator in the argument, ¢("p) must be viewed as a state
on all of B[ #5(¥,)]; the requisite extension follows = by choosing A € B [5#5(¥,)]
in eqn (3.30); we shall not notationally distinguish between the full state and its
restriction.

The first factor in this formula is the ¥,-Fock-Cook state:

O] = exp(-3 I£12); (3.28¢)
the function w, (k) = h?|k |>/2m (k € 17;,) is the energy; and I?(;'I) is the Fourier
transform of the boson Kac density, which is defined by

RO, 5) = o0 [exp-iEN,/17,D]; (3.32)
we shall show that this may be written as

RO, p) = IL, {12, exp[-Bes, (k)]} X

KEW,
X {1-z,exp[-Bw, (k) + i(&/1V,]}7L. (3.33)

Just as for the Fermi gas, the Kac density relates the canonical states y(*) to
the grand canonical state. Eqns (2.93)-(2.96) are valid for this model:

960(4) = ,~§N HOED) Y, (4)

= EN KOG/ W), (4), (3.34)
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where P(J) H, > L [(V,)]; note the constraint j = (nL)*p.

In the calculatlon which follows we use the fields ¥ defined in eqn (3.15)
with 0, (k) = p as fixed notation. These fields have #°{ ) as domain, and so the
equalities in the calculation refer to this manifold. With these conventions, the
operator inside the trace in eqn (3.31) can be written

PexpCIEN/ITD W, () = 1L AcexpCRISI). (339

with A = exp {[B en(k) + i(¢/1V, D] 2™ aD} X

X expli2I 75 F () @] x
X exp[-i(21)7FT (k)* a®], (3.36)

which reduces the argument of E® to a product. The following formulae refer
to each mode (sp € C and at this point the expressions are formal):

exp(s,d) Q@) = Q@, (3.37a)

with Q@) the ¥ -Fock-Cook vacuum vector;

it (3.37b)
exp (-5, al) @@ exp (s, &) = a3 + 5 ; (3.37¢)
exp(-5, X a®) (a3 Q@) = exp(-js,) [a3™) QP.  (3.37d)

In view of (3.37d), we may find an orthonormal basis of J#, whose elements
are the eigenfunctions of the number operator. The trace in E (") then is over the
modes and leads to

tr, A, = 2 () expi- [Be, (k) + i(E/IF, DI} X
jEN

Il[a (D)7 QD)2

501 . exp(-5,0%) exp s, dN GEOV 29>, (380

with s, now taken to be s, = - i/[2 (nL)3]5 7 (k)*; the asterisk is used for the
complex conjugate of f here so as not to interfere with the tilde for the Fourier
transform. Multiplying Q) by exp([s, &) exp[-s, @] = 1, and using (3.37¢)

gives . ] ‘ -
<[a;‘(")]1 Q%’), exp (— sp a;)k(n)) [a;(n) _sp]] Q((’)’)/
= |l [a;‘(")—sp]f Q|2
J e
= i ! — 1A A
Z, 0 L1
for the matrix element. But then tr, 4, can be written as

tr, 4, = {1-exp[-Be, (k) -i(¢/I1V,D]} 7! X
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X exp {Isplz{l—exp [Be, (k) + i(¢/] I{,I)]}‘l}. (3.38b)

The result (3.31) follows immediately from this.
A more familiar form for this result is in terms of the Bose-Einstein operator

o) (6) € BIL*(7,)]:

W) = -4 ¥ z,(z,-explbes, )]} e, @ € (339)
KEY,

for then (3.31) leads to
o) W] = O W] exp 1-3<7. 00 (6) £>}. (3.40)

Note the all-important minus sign in eqn (3.39).

3.8. The global Gibbs state

We are now in a position to consider the limit for large n of ¢)(':_,). The operator
convergence problem following from, say, (3.40) just above, is iﬁ-posed. One needs
a regularization; this is furnished uniquely by the constraint of constant ‘prescribed
density’.T Note that the consistency of this regularization involves the distinguished
family 4 , i.e. the choice of the cubes ¥, and cyclic boundary conditions. We
shall return to this point at the end. Let us proceed with the case in hand; and we
do this just as we did for the Fermi gas. To this end we define the function

GP: [0,1]-R,

GOE) = @ | {—t+exp[B2IKkP/Cm)l Mk, (3.41)
R3

which can be seen to be increasing in ¢.

In contrast to the Fermi case, the lowest eigenvalue mode in all the sums must
be isolated and treated separately, for it can be singular in the limit. The conver-
gence behaviour of all these series must then be expected to be different from
the Fermi case. The first change has already appeared; the fugacity range, repre-
sented by ¢ in Gé({), is restricted to [0,1]. Note that Gﬁ(*)(l) exists. The values of
fugacity z(p) are, of course, temperature-dependent. We shall see that z(8) = 1
for all B> @, a critical temperature value, and it is this value { = 1 which is the
singular point of the lowest eigenvalue contributions. We shall place a prime on
sums which omit the lowest eigenvalue contribution.

LEMMA 3.1

The limit B '
lim (nL)™3 ZNs‘{-H exp[Bw, (K]}t = Gé*)(f) (3.42)
n=e KEV,

exists uniformly in ¢ € [0,1].

+ That is, there is a unique limit for constant density; other densities are, of course, possible
and correspond to different regularizations. For regularizations, see Gel’fand and Shilov [1].
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Proof. The prime on the sum refers to the omission of the term k = 0. Just as
in the Fermi-gas case, only terms for which all the k;# 0 (i = 1,2, 3) contribute
in the limit. The contributory summands approximate the G{") integrand mono-
tonically from below by step functions; the approximation is uniform in (¢, x)
outside some neighbourhood of the [0,1] X R® origin. More details concerning
the proof of this lemma may be found in the paper by Cannon (1).

The prescribed mean density appears through the expression

p = (nL)y3z,(1—2z,) '+ (nL)™3 ZN' z, {exp[Buw,(k)]—z,} 7, (3.43a)
KEV,

which we rewrite in the form

(L) 3z,(1—=2,) = f—(nL)3 Y. z,{exp[Bus, (k)] —z,} L (3.43b)

i~

KEV,

Now z,~z, with n; and if z, <'1 the left-hand side of this equality vanishes
(for fixed B). The corresponding equation of state is

p=G@E) (0<z <. (3.442)

As GB(*) is increasing with z_, ¢ increases with z, until z, reaches unity. The value
of p at this point will be written p_; it is a critical-point value, namely,

pe® = GO (V). (3.44b)

The dependence of p, upon temperature follows from the definition of Gﬂ(*), from
which we see that there is a triple-relation amongst the intensive parameters
p,z.,and . It is only if § is large enough that z_ can reach unity and p reach

p. (). For large temperatures (small §), G{") can be inverted so that there is a
unique relation between g and z,, and the pair (2., ) may be used as independent
variables.

But for low temperatures (8= () the fugacity z, - 1 converges to unity and
eqn (3.44) cannot be uniquely inverted. As we are considering the grand canon-
ical state it is the density which is prescribed, so that (o, 8) must be used as
independent thermodynamic variables. And in this region the otherwise unde-
fined limit of the left-hand side of eqn (3.43b) (undefined so far since we do
not know the asymptotic behaviour of z, with n) will be defined as the well-
defined limit of the right-hand side, namely, 5 —g.(6). From the two-fluid
picture sketched in the introduction to this model, there is a superfluid
component with some density pg(8) such that o = pg(8) + p.(8). Consequently
the limit of the left-hand side will be interpreted as the density pg(f) of the
superfluid condensate. Let [V] (resp. [S]) refer to the regions in parameter
space where only a normal component exists (resp. a normal and superfluid
component coexist). Then first of all, in the [S] region we have

lim (nL)3z,(1—2z,)"' = pg(B) (z.= D). (3.45)

n—>rew
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Actually, pg(B) is better written as p —o,(8), with p,(8) the normal component
density at §; the fixed critical density is then p(8,) with B, the inverse critical

temperature. ThuS 0 o1 5= G (z.), when 5<p,(8) and 2.<1; [N]
lim (nL) 3z, (12,1 =

n—e

p—p(B), whenp=p (B)andz.=1; [S] (3.46)

with p(8) defined by (3.44b).
This result can now be used to examine the limit of eqn (3.33). First of all
we can consider the contribution of the lowest eigenvalue separately

(1=z,) {1—z, exp[i(&/1 ¥, D]} *
= 1—[(nL)3z,(1—z, ) {it+ ...+ (& [m! (LY 31+ ...}

- { ! (V]
IR X O [S1 (347

uniformly in £ in compacta, i.e. for relatively compact neighbourhoods of &.
Next we consider the expression

I {1—z,exp[—Bw, ()]} {1—z,exp[—Buw,(k) + i(¢/1V,D]} !
KEV,,k#0

= exp {— % log [{1—2, exp[—Bes, () + i(z/ 1V, D]} {1—z,exp [—ﬁw,,(K)]}”‘]}

KET,

exp [+ 2. [(1=2,exp[—80,(0) + 1/ )1} {15, expl—5o, (1 ]

KEV,
n + second order }

exp {Kgl; [i(¢/1V,1) z,{exp[Bew, (K)]—2,} " + second order]}

> explitG{(z,)]. (3:48)

This proves Kac’s lemma, which we call Lemma 3.2.

LEMMA 32 RO .5~ RO .0,
5 exp(i£p) p<p,(8) (V]
KO, p) =

{1—i&[o—p. (B} " explitn ()] 5 =>n.(B) [S]
where the convergence is uniform in £ in compacta.

The Fourier transform of K® is the Kac density proper, which can now be
computed directly.

t Replacing —z, by +z, gives the Fermi case; the corresponding limit is unambiguously
equal to unity.
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5(0—5) for 5 < p6) [V]
K®(p, ) = 0 if p<p,(B)]and 5=>p(B) [S]
1[[»6 =B exp {[o—p.(B)] [ (B)—21"} if p=>0.(B) (3.50)

The normal density in the hyperussiastic region can be written in terms of
Riemann’s zeta function {(w) = Z n~W(Re w > 0). In particular, {(3) = 2:62
and we have (cf. eqn (3.44)) "'

pB) = QuM/E2B)E¢(3), (3.51)

which is the well-known formula for the critical density (cf. Landau and
Liftschitz [1]).

Unfortunately, there is still more to compute in order to find the Gibbs state,
namely, the limit of the last term in eqn (3.31).

Now the exponent of this last term can be written as

— QUGN g exp(=it/ 1)1z, exp(—ig/IV,D] IFO) —
=@ L L @) 1760 Pexp (r(e,() + i1, D]
The first term may be further expanded in powers of (nL)™3:
—3[(nL)3z,(1—2,) ' —is(nL) 0z, (1—z) 1+ ...] X
X [1+i&(nL)3z,(1=z) '+ .. ] UFO)P,

and seen to converge to
B 0 (V]

{—% B—o.@1{1 +it[p—p@BIFOP  [S]

In the second term, only the lowest term in a £-expansion survives the limit of
large n; keeping only this term and resumming over ¢ gives (2|¥,|)7! ZN z,{2,
—exp [Bw,(k)]}7! | (k)| And just as in Lemma 3.1, this approaches K
an integral in the limit, uniformly in £ in compacta. ThlS proves the main
theorem, which is:

THEOREM 3.1
Forany 8, >0 and f € 2 (R®), the limit

¢1(3’2 [expGEN,/ IV, 1) W, ()]

~

- KO(E, 5) exp(—3 11 £11?) exp {(167r3)_1 Jsz‘,, z.—explBw ()] F (k)12 dk
y { 1 ¥ [N]
exp 4 [0.(8)—A1{1 +it[p—p BN FO)  [S] (3.52)

converges uniformly in & in compacta, where w (k) = * |k|?/2m.
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When we introduced the Kac density function K¢ we used it to relate the
grand canonical Gibbs state to the canonical states for local regions. Now we
have shown that the local region Gibbs state converges to a global Gibbs state,
and we also know various properties of the density function K. If we can show
that the canonical states converge in the thermodynamic limit, we can then find
a global relation between the canonical and grand canonical states. For the Fermi
gas, we assumed the convergence of the canonical states, and because K& (p, 5)
= & (p—p) the two states were the same: ¢gz = Y5, Which is eqn (2.99). As we
already known (cf. eqn (3.50)) that K®) is not simply a delta function, the canon-
ical states can be expected to be distinct from ¢g; in this model. Cannon (1) has
proved the following theorem in this regard.

THEOREM 3.2 (Cannon)
Forany 8,p>0and f€ 2 (R,

VIR > v, (W] (3.53)

uniformly in compacta with respect to the density p € (0,%°). The limiting canon-
ical state is given by the expression (Araki and Woods (1))

exp [(167°)7 | 2 (a.mexplBeo091) ! 700 o]
R for p <o, (8);

exp [(16713)"1 | 1—exp B 11700 dk} X
R3

Ysa [W(F)] = exp (=411 1P)

X Jop {20=20,®F ITO)1} forp=>p(R), (3.54)
with p = Gﬁ(*) (z.) when p < p (B), where J is the zero-order Bessel function of the
first kind.

The proof is long and involves some combinatorics; the reader is referred to
Cannon’s paper.

Using the connection between the canonical and grand canonical state eqn
(3.34), it is clear that the following result is true.

COROLLARY 3.1

&)
U5 = | Ve, KO0, 5) dp). (3.55)
R

The direct integral is with respect to the GNS triples associated with the states.
In terms of images, e.g. ¢g5(4), which are numbers, a complex-valued integral of
the usual sort results.t We make this point precise by writing ¢g5~ [5#55, g5,
Qgp] and Yo~ [HS: ﬂgfo), Q{(fg] for the GNS triples, where the superscriped ¢
refers to canonical. Then, because ﬂ(cp) is not equivalent to ﬂé‘;)) for p #p', the
Hilbert space J%; decomposes, an(f we have

+ R} stands for {0 < x < =},
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2]

Mg = iHéﬁ,)K(*)(p,ﬁ) do, (3.564)
(3]

n = | 19K (o, 5) do, (3.56b)
R:
(53]

Q, = | AIKOG, 5) do. (3.56¢)
R:

Note that for p > p_(B) this is a non-trivial decomposition, as seen from eqn (3.50);
for p < p(B) there is no decomposition.
The question is: does ) decompose further in some natural way?—and the
answer is yes; there is a spontaneous breakdown of gauge symmetry.
From the integral representation
2w
5 = j (2m)"1 d0 exp[—izcos(0)], (3.57)
0

for the Bessel function one can see that it might be possible to decompose each
H#© with respect to angle. We therefore consider the Hilbert space L*(T') of
square-integrable functions from the circle 7= {0< 6 < 27} to C, equipped
with the norm 27

1718 = | @mia sy, (3.58)

0

Note the shift by 7 in our convention for 7.

By convention we shall write e € L%(T) for the identity constant function
e(9) = 1; note that |le||®= 1.

In what follows we decompose the function f€ 2 (R®) into real and imaginary
parts writing f (k) F (k) +iG k), where F and G are real-valued elements of

2 (R®; note that f(k)* = F (k) — iG (k).

It is clear that there is a boson density operator p$), analogous to o™ for the
Fermi model, appearing in the formulae. We take o) to be the integral
operator on L2(R®) whose multiplier, i.e. the Fourier image of its kernel, is

g9 k,z) = z{expBe®)]-z)" (3.59)

The operators [p(*)]“ and [1 + p(")]2 whose multipliers are [p(*)(k,zm)]f and
[1+ p(*) (k, z)]7, respectively, are perfectly well defined; they w111 appear in the
decomposmon of mg5.

First though we decompose the Bessel function

2 Jo {[20— 2pc(ﬁ)]2 I70) 1}

(2m)™1 d0 exp{i[20 —2p,(B)]* [F (0) cos(0) —G (0) sin(6)]}. (3.60)
0
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In accordance with our guess about using IL?(T') we define the sine and cosine
operators on it. S and C € B[L?(T)] are defined by the formulae

() (6) = sinf f(0),
(@) (©) = cosd f(0). (YfEL*(T)). 3.61)

But to get to the irreducible representations we decompose L% (7)) into one-
dimensional subspaces, each one a copy of C:
2'776)
LX(T) = j (2m)"1do Ly; (3.62)
0
this decomposition is discussed in Vilenkin [1].

Corresponding to this, one has the decompositions
2m

®
e = j @m)"1df e,
0
2w
®
and S = J (2m)71do S,
0
2m
®
C = j @ny1doC, (3.63)
0
where eg = 1, S (resp. Cp) € B(ILg), and Sy fy = sin(0) fy (resp. Gy fo = cos(8) fp)
for every fy € Lg.
The full decomposition for the Gibbs state can now be written, and is given by
)
>, f (3, ® H, ®Ly),, 2r)1 0 X KO (o, 5) dp, (3.64a)
TXR}
)
( (s @ Qs ® €), 2m)71d0 X KO (p, 5) dp,  (3.64b)
TXR?
Q
Tos = JR (M5p5) (21)1d6 X KO (p, 5) dp, (3.64¢)
TXR}

Q55

where the representation is
Moo (W +1G)] = W[(1 + pé"));_ F+ie)® W[(pg));' F-iG)]®
® exp {ixg [20—20,(8))% [F (0)G,~ G (0)Sy ]} (3.64d)
We have introduced the characteristic function for the superfluid region:
0 p<p. (B
1 o = p,(B). (3.64¢)

Xs —
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Before analysing this result, let us go back to the relation between the Gibbs
state and the canonical states. To complete this aspect of the matter, the
corollary (eqn (3.55)) must be supplemented by the decomposition

2
v D

HE) = (J) (H#,® H#5® L) (21)1 0, (3.653)
2‘1r@

) =J (s ® Qs ® ) (2m)71 d6, (3.65b)

2m
wgp)[W(FHG)]: { rD(21r)"d0 w[1 +pé+))%(F+iG)]® W[(pg>)4‘ (F—iG)®
* @exp{ixg[20—20.(BFF [F(0)C—G(0)S]}  (3.65¢)

associated with the canonical state.

It is obvious from eqn (3.64) that a phase transition occurs, since there is no
decomposition for p < p.(B). This phase transition is accompanied by the spon-
taneous breakdown of gauge symmetry. Let « € T and consider the gauge trans-
formations (by ) of the states. Recall that the R® number operator on Hy
generates a unitary group U(T) and thence an automorphism group I'(T) of &7,
which is implemented by U(T). The states transform in accordance with
o[C(@)A] = [T*(a) ](4), where A € o7, 0 € S(H),a € T.

In particular, the action of I'* (a) on 55 comes to the replacement

[F(0) G;—G (0) Sy] > 4 [F (0)—iG ()] exp i + 0)] +
+3[F (0)+iG (0)] exp [i(a—0)] (3.66)
in eqn (3.64d).
For notational convenience, let us define the state ¢;,5 € S (&) by means of

eqn (3.64), so that we may write
)

b5 = f 9500 (27)71d0 X KO (p, 5) dp. (3.641)
TXR:

Then the action of I'*(7) given above shows that

I () (85,0) 7 B> (3.67a)
Le. @5, # S(Z; I'(T)). But upon integrating over gauge angles, it is clear that
'™ () (¢p,§) = ¢ﬁp~ (3.67b)

That is, the global Gibbs state, ¢;; € S [H;T(T)], is T-invariant. Thus we have

a decomposition of a T-invariant state (¢ﬂ ﬁ) into T-non-invariant components

(qb‘3 00)> as we shall see, the P50 aTC extremal KMS states. Hence this is a spontan-
eous breakdown of T-symmetry associated with the extremal KMS decomposition.
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On the other hand, since |exp(ik-£) [F(k) * iG (k)] | equals |F'(k) £ iG (k)|
and exp(ik-£) f (k) | —, equals 7(0), there is no spatial symmetry breakdown.
As we shall see below, the M0 decomposition is the central decomposition

and so the algebra decomposes:
®

ns (@Y = [ 1y o() @n)1 40 X K (5, 0) do.
TXR}

We shall write m5 (&) = 7 and m; ()" = &5 for either 8 = (B, p, 0) or (B, p).

3.9. Global dynamics

The great difficulty in setting up a dynamical scheme for this model is that
for t# 0 and f# 0 with f € 2 R?), ulV) () € LR\ 2 (R?). In general, any
CCR representation associated with a state having the finite mean density
property—e.g. mg; and ¢, —can be extended continuously from 2R3 to L(R?):
this was shown by Lanford and Robinson (2). Then Wj; N= Tgs [W(f)] makes
sense for all f€ & (R?). We shall prove this extension theorem directly for W5
having done so, W;; (@M(f)) is then well defined and leads to an automorphism
group of &;" on H#;.

It is standard that the usual S(R) topology is given through the countable
family of semi-norms

Pyt () = max sup |(1+ [k|)¥2DY(p) (), (3.68)
s+|tl keR®

where s €N, t € (Z*)®. In particular, a sequence ¢ € & (R®) converges to zero in
this topology iff py¢(9;) > O for alls EN, t €(Z*)* (Choquet [1]; Gel'fand and
Shilov [1], Vol. 2; Robertson and Robertson [1]; Tréves [1]).

Now if @ : &~ C is a quadratic form on S (R?), it is continuous iff ¢; > Oas
above implies that Q(y;) = 0.

The argument of the exponential in ¢5;[W(f)] is a quadratic form over 2 (R3);
let us formally extend it to f € S (R3) and see if it is continuous. For if it is, it
extends to a well-defined continuous form on %, which extension has the same
formula.

First consider the part common to both the [NV] and [S] regions, namely,

(N = (167H7! j z.{z.—exp [Bw ()]} 1T K) ? dk (v f€ LRP). (3.69)
R3
Now let {cp,. € 2 (R®)} be a sequence converging to zero in the & (R®) topology.t
As & (R®) is stable under Fourier transformation,g; € F(R®) and §; -0 in
& (R®). Then

+ The topology induced on @ (R?) by the & (R?) topology is coarser than the LF-topology
(Choquet [1]; Robertson and Robertson [1]; Tréves [1]).
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1061 < @M py, o @) | 4P0,2) (14 Ik di
<Py o @0 ®. ©

And as g; -~ 0 implies Py, o (#;) = 0, we have Q (¢;) > 0. Thus this form extends
continuously to Z(R3).

The condensate appears through the contact term, proportional to l?(O) 2.
But ¢; > 0 implies that I'v.b;-(O)l2 - 0, so this quadratic form also extends. Finally,
the boundedness and continuity of the exponential exp : R = R means that
g5 is  (R)-continuous, i.e. we may simply choose f € & (R?). However, the
CCR extension so obtained does not lead to an automerphism of &g; proper;

a consideration of the topologies, which we shall not supply here—the interested
reader is referred back to Lanford and Robinson—shows that it is an automor-
phism of the weak closure &/ ;},—,. Thus we define

75 - R > Aut[/g5];
15D [Wss(N] = Wes [ (] (VfE D RY). (3.70)
By the same proof we gave for the S (R®)-continuity of the forms, Tgp 18
weakly continuous in time. And because ¢35 has the finite mean density property,
M is separable (Hugenholtz and Wieringa (1)). Standard semi-group (Hille and

Phillips [1]) theory then implies that 75 is unitarily implemented by a strongly
continuous unitary group U(R),

7:(D[A] = Up;(DAUg;(—1) (A€ yp). 3.71)

The generator of Ugz—which exists by virtue of Stone’s theorem—is ‘the Liouville
operator’ for this state: .

P Uss(2) = exp(ir Lgp). 3.72)

Taking the first derivative in the strong topology gives the pertinent ‘Liouville
equation’ (cf. eqn (2.100)):

[Lg;,0) = it str.-l’_xrg 2150001 QA (3.73)
Let @55 € & (& 35) be the unique continuous extension of the Gibbs state
#p5 € S(H) to & g it is defined by
q’pp(Q) = (QﬁprQﬁﬁ)‘#p (¥ E&[gp)- (3.74)
A calculation similar to, but longer than, the one we did for the Fermi gas

shows that
| Fe=16) @y (350 Wy D @1
R

= J F(0) g (W5 D ©)] Wy (1)} dt (3.95)
R

for all F € Z (R) and suitable f and g. But this is the KMS integral equation, so
that q)ﬁp is (B, Tﬁﬁ)-KMS.
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Dell’Antonio (1) has analysed the types of & s;. His results classify the types
by means of the density multiplier function p{g‘”) (k, z.), and are as follows.

Normal region. In the [N] region, & 5 is unitarily equivalent to & g5 iff

Pg)(k, z,) = Pg)(k, z.) (VKER?). (3.96)
The algebras . 55 are Type-III, unless
Pg')(k,lw) fk) =0 (YfE ZRY), (397)

whence it is Type-I.

Using the theory of modular Hilbert algebras, the same theorem of Takesaki
(1) as was quoted for the Fermi gas is applicable: & 4 is extremal KMS when it
is a factor. And as the & Eﬁ are all factors in the [NV] region, they are all the unique
(8, 755)-extremal KMS state (each 8, p).

Hyperussiastic region. In the [S] region, the & oo are factors, in fact, Type-III
factors. Each corresponding state @5, € & (& ,0) is (B, T5,06)-KMS, where
73,0 is defined by .
bo Tapo R - Aut(. ﬁpo)’
7506 () [Wgpo D] = Wppo [l (f)]. (3.98)

The proof that it is KMS is very nearly identical to the proof that &g is KMS.
And then the theorem of Takesaki implies that the dg,q are extremal (8, 7g09)-
KMS.

But this says that the integral decomposition (eqn (3.64f)) is the extremal—or
ergodic—KMS decomposition of ¢g;. It is also the case that the corresponding
algebraic decomposition ®

A = J oy, (2nY 8 XKD (o, 5) dp (3.99)
XR:
is the central decomposition.

Let us note what would happen if more general regions and boundary condit-
ions were chosen. Lewis and Pulé (1) considered regions which were dilations of
some distinguished one which was star-shaped w.r.t. an interior point (the origin)
and had piecewise smooth boundary. Their boundary conditions on the
Hamiltonian required ¢; F(8V) + ¢, 8F/8n(0V) = 0 if F was in the domain of
H(V), where c; and ¢, are constants and 8V is the boundary of V. This results in
the replacement pg (8) > Aog (B) in the Gibbs state, where A depends upon ¢, and
¢2.1fc; =0, ¢, =1 then A = 1, just as for cyclic boundary conditions. The other
extreme, c; = 1, ¢, = 0 gives A = &, (0), where e, is the eigenfunction of the one-
particle Hamiltonian corresponding to the lowest eigenvalue. Although the
dependence is not very sensitive, we have here a counterexample to the ‘folk
theorem’ that the effect of the boundary conditions disappears in the limit.
Alternatively, one might feel that the local boundary conditions really are irrele-
vant to the global equilibrium state which ought to be found by global methods.
For the ideal Bose gas at least, such a method is available using the CCR and the
KMS condition (Moya (1); Sewell (2)).



4
The BCS model

4.1. Introduction

IN 1911, Kamerlingh-Onnes (1) found that if mercury is cooled below a definite
critical value it loses its electrical resistance. This would seem to be the first
known example of a hyperussiastic effect, in this case superconductivity. All
hyperussiastic phenomena known are thermodynamically stable; they are des-
cribed by impure thermal equilibrium states. That this should be so for super-
conductivity may be deduced from the Meissner effect, which we now describe.

If a superconducting sample, T < T, is placed in a magnetic field, it is found
experimentally that the field is excluded from the interior of the sample (neglec-
ting a small penetration length). On the other hand, if T > T, the sample and the
magnetic field come to thermal equilibrium with a non-zero field present inside
the sample. Upon lowering the temperature of the sample, the field is suddenly
expelled from the interior when the critical temperature T = T is reached; and
remains excluded for all T < T;.. Thus we may conclude that superconductivity
is independent of the past history of the sample and is therefore a purely thermo-
dynamical phenomenon.

At present, a complete microscopic theory of superconductivity does not
exist, but the derivation of the generalized BCS Hamiltonian (Bardeen, Cooper,
and Schrieffer (1)) from the Fralich Hamiltonian (Frolich (1, 2)) by Bogoliubov
(1) and coworkers (Bogoliubov, Tolmachev, and Shirkov [1]) is a great step
forward. Moreover, the theory of Bardeen, Cooper, and Schrieffer predicts the
correct kind of phase transition, quasi-particle spectrum, and the Meissner effect
(Meissner and Ochsenfeld (1)).

We intend to start from the BCS model Hamiltonian in the strong coupling
limit and its accompanying approximation of considering only Cooper pair states
(Cooper (1)). Using the quasi-spin formalism of Thirring and coworkers
(Baumann, Eder, Sexl, and Thirring (1)), we shall then derive the explicit express-
ion for the thermodynamic Gibbs state and the dynamical evolution in the island
around it. In common with the ideal Bose gas, the onset of the hyperussiastic
state is signalled by the spontaneous breakdown of gauge symmetry, and the
time translations do not describe an automorphism of the quasilocal algebra, but
of the weak closure of its thermodynamic representations.
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For an excellent review of the historical and physical background of super-
conductivity and the various theories proposed to describe it, we strongly recom-
mend the article of Schafroth (1) which also contains an extensive bibliography.
London’s book on superconductivity (London [1]) is recommended for an account
of the early semi-macroscopic theories.

4.2. The model kinematics

In the BCS model, superconductivity is due to the collective behaviour of the
metallic conduction electrons. These elctrons find it energetically favourable to
form pairs whose total momentum relative to the Fermi surface (Landau and
Lifschitz [1]) is zero. As these ‘Cooper pairs’ (Cooper (1)) are formed from pairs
of electron raising operators, they will have complicated commutation relations
on the electron Fock-Cook space. But it is not the electron Fock-Cook space which
is relevant. Rather, it is the subspace formed from Cooper pair operators acting
on the vacuum which is the underlying Hilbert space J# for this model.

As operators on the Cooper pair space J# the fields we must deal with can be
described completely with the same spin formalism we used in Chapter 2. This is
particularly advantageous to us since we wish to use the ‘strong coupling limit’

BCS Hamiltonian, and this Hamiltonian takes an especially simple form in terms
of spin operators.

We shall refer to the number of Cooper pairs as the mode number, and this
must be a positive integer. For m modes, m €N, the Hilbert subspace £, of the
full space S is the tensor product of m copies of €%; hence 5%, is 2".dimensional.
Let us write m
H,, = ® C. 4.D

We distinguish the vector e = (1,0) in €2, and use it to identify £, with a
subspace of %, for n >m in the obvious way: the injection

b+ Ko >, (m<n) (4.22)
is defined by . _ é 4.2b
lmn(v) =V m+1 & ( ‘ )

The full Hilbert space 5# is the inductive limit of these local Hilbert spaces:
H= lim{i,,,[5,] : m,nEN;m <n}. (4.3)
—

This construction depends upon the choice of neutral vector e € C? at each mode.
This choice distinguishes the unit product vector
Q = Qye 4.9

in #; S is sometimes known as the incomplete direct product space of € with
itself, with respect to £,. Note, however, that S# is a complete Hilbert space.
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Any vector in S is a linear combination of product vectors each differing from
2, at only a finite number of modes.

With the notation of §2.6 we write B [m] for the local algebra on £,,; our
choice for B [m] is obvious, since 5, is finite-dimensional,

Blm] = B(#,)
= §B(c2). (4.5)

The tensor product is merely algebraic here as B [m] is finite-dimensional. These
local algebras form an inductive chain of algebras upon using the unit operator
as a neutral operator:

Gn = B[m] > Bn];
Gum(A) = A® ln\m m<n). (4.6)
Then the C*-inductive limit of this chain is a C*-algebra B, the quasilocal algebra
for the model:
B = 1;“3{‘Pmn($[m]) :m,nE€N;m<nj}. @7

Suppose we label the modes sequentially, i.e. the spin operators generating
B[m], for example, will be labelled { J@[m] : p=1,2,. =1,2,3}.
For the quasilocal algebra we have the generatmg set {J("‘) P E N a=1,2,3}.
These operators are Pauli matrices 0(® at one mode and unit operators

elsewhere, e.g.
e J@m] = 0@ ® 1, (4.82)

and
I = 0@ ® Iy, (4.8b)

This notation is the same as used in §2.6, eqns (2.39)-(2.43).
It will prove convenient to consider the total spin operators for the B [m];
these are defined by the formula

L =2 Z J@[m], (4.9)

witha = 1,2, or 3 and m € N. We use these operators to generate one parameter
groups by exponentiation; the product of these three groups._is

3 »
w,,(a) = 'Hl exp(ia]-Lf’n)), (4.10)
l=

with a = (a1, @5, 25) € R3. With the thermodynamic limit in mind we shall need
to consider w,, (b/n), where b €R3 is independent of the mode number n. This
completes our formulation of the kinematics for this model.

4.3. The local Hamiltonian

The BCS model Hamiltonian is non-local; an interaction-term quadratic in
the underlying electron fields has a non-local kernel. This is somewhat obscured
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by the spin formalism. For in this notation, the BCS Hamiltonian for B[n] is

n

H,(BCS) = X 0 {1—-2JO) [n]} —
p=
Z «//(n) J(+) [n}JO[n]. (4.11)
p.g=1
Our treatment of this model will be concerned exclusively with the strong

coupling limit. We define this limit by taking €{™ = € and ¥"¢) = 8g/n, with ¢ and
g independent of n. The result of substituting these values into J#,(BCS) is our
model Hamiltonian:
H, = en—eL®—(2g/mLYOLY. (4.12)

n

In accordance with our general scheme, the Hamiltonian H,, generates the
Gibbs semi-group OB(") = exp(—BH,) and the unitary time translation group U
= exp(itH,). The former semi-group is used to construct the local Gibbs state

(1) :
% € S(Bn]): H(A) = 15, (0 )/ tr, (@, (4.13)

and the latter group is used to generate the time translation local automorphism
®(R) C Aut(B[n]):
roup 7 u n]):
group T R) € AUEBID: 4y = g4 (4.14)
Before computing the local Gibbs state ¢, we should like to use the permu-
tation symmetry of the Hamiltonian H,, to simplify matters. Since the spin
operators generate the local algebras, if one knowns the thermal average ¢ (p)
for any polynomial p in the spin operators, one knows the state ¢{. At first
sight, this seems to imply that we must compute the 3n-parameter generating
function

#Plexp(i Lo, /0 [n]) exp( L 57 [n]) exp(i L S [n])], (4.152)

but this is not so.
To see this, let m, be the permutation group on n letters and let g € m, be a
permutation. The group m, acts as an automorphism group ¥ : m, > Aut(B[n])

when we set
g, : JIS"‘) [n] *.(;2) [n], (4.16a)

i.e. we permute indices. Clearly it follows that Lg") and hence H, are m,-invariant:

gL =2 Z e [n]
pP=
=2 Z J(a) (]
g71()=1
= L©® (4.16b)
G, = ¢,—¢ GILO1—Ce/n) GO 9, (L0
=H,. (4.16¢)
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Note that because &, is an automorphism of B([n], G [4B] = ¥, [A] ¥,[B]
for any 4,B € B[n].

Now the local Gibbs state ¢? is a normal state formed from 0(") = exp(—(H,).
It follows that ¢>(") is a symmetric state. That is, if we write

=2 9,

g£Em,
for the symmetrizing operator, we find that
s(L1A]) = ¢ (4) (4.16d)

for every A € B[n]. This means that a knowledge of q)(") (SL[A]) for every
A € B[n] is sufficient to define ¢{. If we apply this observatlon to the generating
function (4.15), we see that (cf. eqn (4.10))

B[, (b/n)] = E,(b) (4.15b)

is a generating function for ¢{. In the next section we shall compute this three-
parameter function explicitly.

4.4. The local Gibbs state

Having used some group theory to reduce the necessary computation for ¢(")
from a 3n- to a three-parameter function, we intend to use a bit more group
theory to actually find £, (b).

Because H,, can be written entirely in terms of spin operators, the represen-
tation theory of SU(2) will enable F,(b) to be found. All the representation
theory we shall use will be taken from the book of Vilenkin [1], to which the
reader is referred for details. By, for example, V.3.1(2) we mean Chapter 3, §1,
eqn (2) of Vilenkin [1].

The generic SU(2) element can be written in terms of a set of Euler angles
@, 0, ¥ with ranges 0 < ¢ <27, 0<0 <m,and —27 < ¥ <27, namely,

cos(0/2) exp[i(p+¥)/2] 1isin(8/2) expli(p+¥)/2]
g(p,0,%) =| . _ (3.17)
i sin(@/2)exp[i(¥—y)/2] cos(0/2) exp[—i(p+¥)/2]
The parameters b/n in w,, (b/n) are related to certain Euler angles, denoted
B1, B2, and B3, through the equation (both sides € SU(2))

Wy (b/n) = g(B1, Bz, B3)- (4.18a)
The solution to this equation is
cos (B,) = cos(by/n) cos(b,y/n), (4.18b)

exp (if) = [sin(B)] ! [sin(b1/n) cos(ba/n) + isin(by/n)], (4.18¢)
exp[i(B; + B3)/2] = exp(ibs/2n)[cosp2/2)]™" X
X [cos(by/2n) cos(b,/2n) + isin(by/2n) sin(by/2n)] (4.18d)
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which follows from eqns V.3.2 (1)-V.3.3.(3). The point of this parameterization
is that the hypergeometric functions associated with SU(2) take their most con-
venient form in terms of Euler angles.

The irreducible unitary representations 7; (/= 0,3, 1, . . .), of SU(2) act on
(21 + 1)-dimensional Hilbert spaces V; of 2/-degree polynomials in one variable.
The inner product is chosen so that

(W (s) = [I—m)!(I+m)]"Ts-m 2 |m| <1} (4.192)
is an orthonormal basis for V;: (‘I'rln’ W) = 6m/" (4.19b)

Let g € SU(2); its matrix element with respect to this basis for V; is written
thi@® = (F(g) Vi, ). (4.202)

Vilenkin [1] gives a computation of the matrix elements for g(p, 0, ¥), e.g.
V.3.3.1(4-7),V.3.3.3(6), and V.3.3.3(4). Abbreviating t},;[g(8,, B2, 83)] by
t},i(B1, B2, B3), the cited equations lead to

1l (Brs B2, B3) = (2m) lexp[—im(By + B3)] X
2
X | [cos(Bx/2) + i sin(By/2)e77]1-m X
0
X [cos(Ba/2) + i sin(Bo/2)e"17]1"m dy; (4.20b)

we shall only need this special case, where m =j.
We shall also need the formula reducing tensor products into irreducible com-
ponents. The basic formula is (V.3.8.1(6))

LOenLW= S T, (4219
from which one may deduce that
7,0 = & M, 76 (421b)
The multiplicity function is
M,; = ntQ2j+ D![(w/2 =)' (w2 +j+ DI (4.21c)

The representation % T., reduced in eqn (4.21b), is the pertinent representation
for B[n]. It acts on * 3, which also reduces:

n/2
H, = jg)o M, V. (4.22a)
Correspondingly, the trace reduces as well. In fact let 4; be an operator on V; for
j=0,...,n/2. Thenif n/2
A= @ M A (4.22b)
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it follows from the definition of orthogonal direct sums that
n/2
tr(4) = X M, tr,(4). (4.22¢)
=0

This result is applicable to the Hamiltonian which is ‘diagonalized’ by this
decomposition. For the trace on V; can be computed with respect to the ortho-
normal basis {¥}, : |m|<j}defined in eqn (4.19a):

+J
tr 4; = ;_. (L, 4; 8, (4.22d)
and we note that O Wi .
T (@Y = m ¥ (4.232)
and . ... i
];.(a.o) W=+ 1), (4.23b)

the well-known quantum-mechanical angular momentum rules. Combining this
with the definition of the Hamiltonian gives

'm'm>
where [H,]; is the component of H, which acts on V; and E is the energy function
En,j,m) = Qm—n)e+ Qg/m)[jG+1)—m@m+ 1)]. (4.24b)

Upon settin
P & N(1,j,m) = exp[—BE (n,], m)], (4.240)

we can write down the generating function £, (b/n) in terms of the hypergeometric
function ¢/, of eqn (4.20b),

E,(b/n) = ¢ [, (b/n)]
n/2 +j
X My 3 N1, 1)ty (81, B2, B3) X
I—On/2 = +j -1
X _ZOM,,,. X ANmj,m)| . (4.25)
=

m=-j

4.5. The global Gibbs state

Our task in this section is to show that the ¢ converge in a suitable sense to
a state ¢ on the quasilocal algebra. This limit state is the global Gibbs state for
the model.

We shall start by assuring ourselves that the pointwise limit of the generating
functions F;, (&) determines a state on B. In order for this to be so, all the para-
metric derivatives of the F}, (b) must converge to the parametric derivatives of the
limit function. We shall prove this by applying a theorem from the theory of
complex functions.
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THEOREM 4.1

If a sequence{ f,, } of functions holomorphic on an open subset U of CP
converges pointwise on every compact subset of U to a limit function holomorphic
on U, and if the family of functions is uniformly bounded on compacta, i.e. for
every compact subset K C U, |f,(z)| < M (every z € K) independent of n, then all
the derivatives converge pointwise on U:

I of al f @) = ot al . 426

nlinw o az;,. L (2) = az'i"'azlf) nnjmfn(z). (4.26)
This theorem is the confluence of Vitali’s theorem and Weierstrass’ theorem
(Narasimhan [1], Propositions 5 and 7).

Let usnote that #], . (81, B2, B3) is holomorphic for all compact subsets of C.
For the Euler angles are holomorphic functions of the original parameters b/n
on such sets; and the integral representation (4.20b) shows that #} is holomor-
phic on € compacta in the Euler angles. From eqn (4.25) we see that £, (b) is a
sum of (2j + 1) n/2 holomorphic functions, and so it, too, is holomorphic.

We next consider a uniform bound for the F,,. For b in €3, w,,(b/n) has the
norm

llw, (b/n)l| < exp{|Im(by)| + [Im(by) | + [Im(b3)1}.
Let b € K, where K is the polydisc
K = {lzI<ilnM):i = 1,2,3;0<In(M) <o};
then in this region we have the bound
llew, (b/n)I| < M.

Using the inequality

Itr(od) < |tr(0)| . Al
valid for trace-class operators ¢ and bounded operators 4 on any separable Hilbert
space, we set 0 = o‘g")[ tr aé") and A = w,(b/n) to find

|E (b)|<M (bEK).

Since it will turn out that lim £, (b) = F(b) is holomorphic in compact subsets
of €3, the above theorem "7~  applies. Thus F (b) is the generating function
for a state ¢g € S(B), with e.g.

i~

3b,3b,

Note that the mode indices (p and q) are arbitrary provided only that we do
not fall foul of a commutation relation such asJ{ J{) = 0. This reflects the per-
mutation symmetry of the ¢; we shall check this symmetry for breaking after
computing F.

Let us first find the limit of £%,,(81, B2, 83) with large n. Actually we must take
into account the fact that there is a sum over representations in F;; this implies

F)(©0) = g;00J0). 27)
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that the n-limit must be taken in such a way that
20/n = y,2m/n = w (4.28a)
are constant and take values in the triangular range
s ={dER* 0<d,<1;|d,|< dy}). (4.28b)

Granting this, we proceed as follows. First we find the leading terms in the
Euler angles from eqns (4.18b)-(4.18d):

Bo ~ (b1 + bY/n;
exp[i(B; + B3)] =~ exp(ibs/n). (4.18¢)
Then the limit of the hypergeometric function is lim #},,(81, B2, 83)
-
2w
exp(—iwbs) s. exp [i(b% + b2y (veosy + iwsiny)] dy/2m
0
1 1
exp(—iwbs)J, [(> — w7 (b3 + b3)7]; (4.29)
Jo is the Bessel function of the first kind, zeroth index. This result shows that this
limit is related to the group contraction SU(2) to M(2), the Euclidean motions
on the plane (cf. Inonii and Wigner (1), and Wilenkin [1], V.4.7, especially
eqn (1)).
At this point, though, we must find the limit of the generating function F,.

Thirring (1) has done this, and the following are his results. Rewrite £, (b) in
terms of y and w; this will give

£ (b) = ftr’,m(b)du,,(y, w), (4.30)

I

where the measure y,, has its support in A. Now as £}, converges uniformly in
compacta in € to a Bessel function (which is holomorphic), it is sufficient to
consider the limit of the measures yy,. The critical inverse temperature

B, = € larctanh(e/g) 4.31)
for this model is determined by this limit. Thirring (1) and Jelinek (1) find that
6(y —y)6(w—w)dydw <B
lim dg, () = 0 —»)s( ) dydw - B<B,
n—re SO —y)bw—w)dydw g=4, (4.322)
where the critical points in A are

y, = w, = tanh(fe), (4.32b)

and
»- = (Bz) larctanh(y); w. = e/g. (4.32¢)
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The equation determining y. is a transcendental equation typical of the BCS
model and is known as the gap equation—more precisely, a variant of it is so
known (Bardeen, Cooper, and Schrieffer (1)).

Keeping eqn (4.27) in mind, the generating function for the Gibbs state can
be written down explicitly; it is

exp [ib5 tanh (Be)] B<B,
exp(iebs/e) o [(2 — /8?)F (b3 + B3] =B, (4.33)

By differentiating ' we can determine the thermal expectation values of the
spin operators. It is convenient to treat the normal [V] and superconducting [S]
states separately.

For the normal state it is useful to write n = (0, 0, 1) €R? for the unit vector
in the third direction, because we then have the concise formula

Bl . T] = [tanh Be)] . .1, (B<BY), (4.34)

o

F(b) =

which follows from differentiating F (b) and may easily be verified.
From the obvious permutation symmetry of F' we could have anticipated that
in (4.34) the mode numbers (sites) py, . . . , p, would not appear in the result.
For later use, when we come to the GNS representation, we shall need to
know that the normalized solution vector in €2 to the eigenvalue equation

(n.0)E = & (4.35a)

‘S £ =(1,0), (4.35b)
which we write as f,.
Now consider the superconducting phase. Using the integral representation of
the Bessel function, for 82 3, we may write (cf. eqn (4.29))
2w
F(b) = f dy/2mexp{i[y? —w2)F (bycosy + bysiny) + baw]}  (B=4) (4.36a)
0

Just as it was useful to introduce the vector n = (0, 0, 1) €R3 in order to write
down the normal thermal averages of the spins, eqn (4.34), we also introduce the
vectorf ! 1
ng, = ([1=w?/y2z cosy, [1—w2/y*Esiny, w_fy)  (4.37)
in R3 to describe the superconducting thermal averages. For upon substituting
ng., into eqn (4.36a) we find

2w

F(b) = [ dy/2mexpliv-bong)] (635, (4.36b)
0

1 We shall write ng~ or n(g,~) for this vector, whichever is most convenient ty pographically.
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Differentiating this now gives an expression for the thermal averages:

2w
U T = [ av2m (e, (BY) . na (7). B>)  (438)
0

Note the angular integral; it indicates a spontaneous breakdown of gauge symm-
etry. We can also see that the permutation symmetry is preserved in the limit

¢ﬁ(yA) = ¢B(A) (4.39)
for every §8 and every A € B (cf. Emch and Guenin (1)).

4.6. The Haag-Bogoliubov Hamiltonian

An important observation concerning dgin the superconducting state (8= )
is the angular integration as seen in eqn (4.38). We pose the following question,
suggested by analogy with the Bose-Einstein condensation: Are there states
{11/;37} on the quasilocal algebra B whose angular composition is qbﬁ? In other
words, the Y, must satisfy am

o =] dvamy,, (4.40)
0

These states Y, would have generating functions £, such that
2m

F(b) = | ay2nE®b); (beERY); (4.41a)
0

eqn (4.36b) gives the affirmative result
E (b) = exp[iy_b-ng, ]. (4.41b)

A more difficult question is to relate this to local states ngr)e &(B[n]) which
are related somehow to the local Gibbs states. An important such set of states
are the normal states whose density matrices are generated by the gauge-
dependent Haag-Bogoliubov Hamiltonians:

H, = —(2/p) arctanh(y)) L,-ng, . (4.42)

An explicit computation of d/é’? is possible, and up to order n”2 one finds

YO [, (b/m)] = t, [exp(—BH,,) w, (b/m)}/tr, [exp(—BH,,)]

= 1+ /) bemg 7 + OGO (4.3
Obviously lim Y& [0, (b/n)] = E, (b). (4.44)

Historically, there were two reasons for considering H,,. The first was that
H,—H,., is of order n™1. It was felt that H, ought to converge to the limit of H;
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this is clearly untenable, and obscures the gauge symmetry breakdown. Another
reason was that up to higher orders one has the implicit relation

By, = en—el®— Qe/m ) (L] IO+ (0] 10}, (4.45)

In this form it is clear that this model is solvable because it is a mean field model
(in the limit). That is, we replace certain of the fields L{) by their means \1/(") (o1,
so as to reduce the Hamiltonian to a linear form in the flelds

We mentioned above that the thermodynamic limit was related to the group
contraction SU(2) ~>M(2), where M(2) is the group of Euclidean motions in the
plane. That is, if x €R? is a point in the plane, the generic M(2) element takes
X to the point X, + ¢, where ¢ = (rcos8,rsin§) € R? is a translation and x,, is the
vector obtained from x by a rotation through the angle a. The contractions leads
to the convergence of the SU(2) matrix element z},,(p, 6, ¥) to a matrix element
of M(2):

Hm 4y, (8, 1/1,0—8) = £, ,(r,8,0). (4.462)

1

The function t"’ (r, 6, o) is the M(2) matrix element for the irreducible unitary
representation [lp] where p ER4 = R\{0}; the parameters r, 8, a were described
just above. Vilenkin [1] gives the result (V.4.3.1(10"))

10 (r,8,0) = i9Pexp {—ilqa + (p—q) 81} J,_, (o7). (4.46b)

Of course, the sum over representations in the thermodynamic limit complicates
matters for us. The point we wish to make here is that the corresponding Lie
algebras contract and, as the Hamiltonian H,, is formed from su(2) elements,
perhaps its contraction is interesting.
This algebraic contraction can be described by setting
@D = ;g0
o ]di’
o® = j4@
i i
aC? = d(j.), (4.47)
and taking the limit j > o°. The symbol ¢©) stands for the representation of @
corresponding to the representation 7; of SU(2); the d(]‘?‘) have a similar meaning
for M(2) with the d© generating its Lie algebra. With this identification it
follows that n/2
N = ; 1
L) = '® M, d,

/2
@ - & 2
L = /@o]M"idf( ),
/2
0 = ;g__aoM,,,. a0, (4.48)

If one substitutes this decomposition into Hy,, there is now a non-trivial scale
factorj to separate the part which survives contraction from the part which
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does not. When the intensive variable parameters y, and w, are accounted for, one
may conjecture that it is H,, which is the part of H, which survives the
(generalized) contraction. It would be interesting for this conjecture to be exam-
ined, for if it is true it might be immediately applicable to the various maser
models (Davies (3); Hepp and Lieb (1,2); Lieb (1)). In all these cases there is the
familiar complication that a sum over representations occurs, and so one has to
perform a generalized contraction. And finally, in this regard one may conjecture
that this phenomenon of group contraction is present because these are mean
field models. For example, the quantity

M) = 60UOM] IO 1) + 90O M) O UOM])  (4.49a)

may serve as a measure of the polarizability of the state ¢, and it is non-zero.

But in the limit it approaches zero, showing clearly that there are fewer ‘degrees

of freedom’ in the limit. In terms of Y@, the polarizability dispersion of eqn
. By

(4.49a) can be computed, and it is

M) = (¢ [ B,7) + ina(B,7)]/n; (4.49b)

this leads to the interesting result that M (1[/&’3) approaches zero as n~ 1 in the
thermodynamic limit.

4.7. The thermodynamic representation

In this section we shall exhibit the GNS representations associated with the
states ¢g ~ [, 75, S2g], and for § > [ those associated with Yg, ~ [%7, gy
£,]. Let us start with the normal states ¢g (for § < ).

In eqn (4.35) we introduced vectors n = (0,0, 1) ER® and i, = (0, 1) € C*
which are related through (o.n) i, = i, . We shall also need the vector fi- = (0, 1)
€ €% this vector satisfies the eigenvalue equation (0.n) fi- = —_.

Now we construct the normalized fiducial vector §g€ c?®c?,

g = [(1+2)20F 0, ®h, + [(1—2)/2Fa_®i_. (4.50)

We use this vector to construct an infinite tensor product Hilbert space as
follows.
Let 5# (é’) be the n-fold tensor product of € ® €2 with itself,

HO = é (€8 ), (4.51a)
and identify ¥ g’) with a subspace of ¢ (‘;") for n < m by means of the mapping
m
Gy - WO WO n§1 (%) (4.51b)
The Hilbert space inductive limit of this family is the GNS representation space

Hy = I'En_){anm [.9?(5’)] cn,mEN;n<m}. (4.52a)
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The distinguished unit product vector Qg is B<8.)

Qg = % &; (4.53)
one sometimes writes o
Hy = F(CCH (4.52b)
N
in place of (4.52a).
Omitting subscripts on unit operators which show what spaces they act on,
the representation
P M. BB (H# »
is (the algebraic morphism) determined by
_1 o
@] =7 @
g [ ] ® 18091 8 1. (4.54)

Let us do a simple computation which is typical of the way in which eqns
(4.52)-(4.54) can be verified. First we note that

@D = [(1—p)2Fa- @+ [(1-2)2)Fh © i,

so that

(EloW®@ 115 = 0.
Similarly,
e (& [0@® 1]%) = 0,
but as

@@ 1) = [(1+2)/2Fh @ i — [(1 —»)2]Fh-® i,

we find that
(Sps [0(3)® ]]]E;;) = Vs

These results can be subsummed under the formula
(0@ @ 1]5) = yun, (4.55)

since n, = 83.
Now let p; <p,<...<p,be mode indices. Then

g [J;‘”l) .. .Jl(,“r)J =
p—-1 p1
® 1808 1] ® 181

®... @1 & 1 (4.562)
pyt1

follows directly from (4.54). Next we operate with this on £, and then take
the inner product of the result with £23:

i)
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@ e
(Q, g [19...T&] )

]

N g lo@® 1]z

=0 n---n, (4.56b)

which is the known result (4.34). We leave the details of the analogous calcul-
ation when there are coincident mode numbers (sites) to the reader.

Even though there is an angular integration in the formula for the thermal
averages in the superconducting state, the analysis for Y, is analogous to the
one above.

In eqn (4.37) we introduced the vector n (8, ) € R3. The two normalized C*

eigenvectors .
[o-n(8, M] A,(8,7) = +0,(5,7) (4.57a)

e 8,67 = [(AFD2F EP[£L/AFOE 1) (4.57)

where I.= w_/y_. The fiducial vector &g, for this state is formally similar to & for
the normal state (4.50), as indeed are the subsequent formulae. Then

gy = [(1+ )21 2 (8,7) ® i (B,7) +

+ (1 —3)/2F 5.3, 7) ® -5, 7). (4.582)
Defining the distinguished normalized product vector
Q. = % (7] (4.58b)
the representation Hilbert space is
#, = @M ). (4.59)
T N

The representation is
Mgy - g B('#ﬂ’y)

=1 o
@] = ” )
Mgy [Jp ] 1219 1(09We1) p§1 1. (4.60)
The nature of the constructions are such that the same computation which
verified the representation [, 75, §5] for ¢ when 8 < § will suffice to verify

these [ #5,, Ty, Q4] ~ Vg, when = f.
The full Gibbs state representations follow by direct integration:

2"@

9 =] W,
0
21r® ‘Q'ﬂ’)‘

H=] @ @eoy,
0
2

mg (4) =j dy/2m g (4) (4 €B). (4.61)

0
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Actually, the zero temperature case is singular, so these above formulae hold
only for f, < <eo. Asy./w._ is well behaved in the limit, we can define . (=, v).
Using this, we construct the normalized product vector

Q.. = ® i, (o, 4.62a
y = @i(=) (4.62a)
and use this to construct the Hilbert space
#,, = &% (c?). (4.632)
N
The representation is given by
p—_1 g
©] = ©@
L. [Jp ] ? 1®¢ p?lll. (4.64a)
The Gibbs state at zero temperature is again a direct integral:
27
® g .
o= & ® i (=,7), (4.62b)
0
21rG9
dy
# = 3 ® v (€, (4.63b)
0
and on
® gy
=] 9n ) B (4.63¢)
0

From standard results on the factor types of tensor products of C*-algebras
(Sakai [1], §4.4, especially proposition 4.4.7), Jelinek (1) has shown that the
types associated with the global Gibbs states are:

m5(B)" is (a) a Type-1, factor for § = 0;

(b) a Type-III factor for 0 < < B
(c) a direct integral of Type-III factors for < § < oo;
(d) a direct integral of irreducible representations for § = 0.

4.8. Time translations

The local time translations formed from the BCS Hamiltonian form automor-
phism groups 7® (R) of the B [n]. But there is no hope of the limit lim 7¢)
forming an automorphism group of B. To see this it suffices to nee
consider e.g.

URMnL B = —4g/n(IOn] L) — LY IO[n)) P<n). (464

The trouble is that the operators L&/n do not converge uniformly as n > . As it
follows from this commutator that L&/n will appear in ft("){.];:» [1]}, the limit
cannot be an element of B. However, as ¢g(L,/n) >y, n_for <P and Yg,(L,/n)
- y_ng, for § > B, we can expect relatively decent behaviour in the thermodynamic
representations, and this is what does occur.
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For the normal region, DS I and II hold for ¢g; for the superconducting region
they hold for Y, . Direct integration of the latter limits show that they hold for
g, 8= fc. We shall not prove this as such; the proofs are implicit in Thirring (1)
and Jelinek (1). What we shall do is examine the time-dependence in the thermo-
dynamic representations.

Let us start with the more interesting region § = .. The Haag-Bogoliubov
Hamiltonian H,,., generates a unitary group Ut("'Y) = exp (it H,,) which imple-
ments an automorphism group on B[n]:

707 : R > Aut(B[n]);
M [A] = UM AU, (4.65)

Things will be easier if we work with the operator exp(b.L,,/n) rather than
wy, (b/n). Using the known properties of angular momentum operators, one may

verify that
70 [exp(b-L,/n)]

= exp {[b + 266 'arctanh(y-) ng, X b] .L,/n}, (4.66)
which we write as exp (b,-IL,,/n). Using eqn (4.60) which gives g, [Jp("‘)] explicitly,
we find

3 {7 [exp (b-IL,,/n)]}

n w
= pgl exp (b, J,/n) n?} 1. (4.67)
This formula is explicit enough so that one may find the limit of the 7¢7):
(str. 5,) - lim mp, [ (4)] = 76 T (4) (A€ B))
n—>e

with

76V : R ~> Aut(%M").
Similarly implemented on .9?}37 by the unitary group (cf. Jelinek (1), eqn (8)),

Ut(ﬁ’)‘) = % [explitgy-(1 — J.nﬁ,y)} ®

® exp{—irgy-(1 —J.ng.)}]. (4.682)

For the superconducting Gibbs state, DS I and II hold in a representation-

dependent way: lim ¢ [ (4)) . .. 70 (4)]
n—re ! !

2m
= | w2y (7O [ (A)] - 78D [ (A,
0

lim lim ¢ [Tg') A)... Tfjf’) “) Ts(:") B ... TS(I"‘)(B,)]

M —> pp—>o0
2w

= [ v/2m By, 9 [ (D] 7OV [, (4)) 767 [, (By) .
0
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.. Tﬁf‘ﬂ [m, (B)I}, (4.69)
where 4y, ..., 4;€ B[n], B,,...,B € B[m] and Y., is the unique continuous
extension of Y., to a state on B, :

¥, Q) = (2,09,) (QEBL). (4.70)
It then follows from the full DS theory that (Dubin and Sewell (1))
27
© gy
6) = j & e (4.71)
0

defines an automorphism group
76 R~ Aut(B)

which is unitarily implemented by the unitary group

U@—% I ey 4.68b
t —J 2r Tt ° ( )
0

At this point we can clear up in just what way lim H, and lim H,, coincide,

namely, n=e nwe
Y (str. )~ lim . [7D(A)] = 160 [, (4)] 4.72)
n—re

for evi vy A € B. So we see that the limits coincide on 232;,,. Since H,,. is v-
indep: 1dent, whereas H,, is not, these results explain the difficulties people
found 1n attempting to compare the limits on the quasilocal algebra B rather
thar. on Bg., (Thirring and Wehrl (1)).

For the normal region, DS I and II hold without any angular integration. The
time-translation automorphism group

s R~ Aut(ﬁg) B<B)
is unitarily implemented by the unitary group (cf. eqn (4.68)
U®) = % {exp[izgy,(1—3,-n)] @ exp[—irgy, (1 = T,-m)]}.  (4.73)

For the normal region, 0 < § < f, B is a Type-III factor, and By is a Type-
II; factor. From the general Tomita-Takesaki theory of modular Hilbert algebras
(Takesaki [1]), one knows that ¢ is the unique extremal KMS state.

Now the ll/(") (resp. ¢) are (8, 7®M)-KMS (resp. (8, 7®)-KMS). The quoted
convergence results nnpfy that the limiting states g, (resp. ¢g) are (8, 76M)-KMS
(resp. (8, 7®)-KMS). Moreover, as the B, are Type-II factors for f, << e,
in this region they must be the extremal KMS states, and the integral decompos-
ition 2 iy 474

o =] 3V (4.74)
0
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must be both the extremal KMS and the central decomposition simultaneously.
It remains to give a meaning to the angular decomposition. We may take

Lff) as the dynamic variable corresponding to the number of Cooper pairs. The

automorphism group relating to this is (recall that T is the additive group of

angles) T,: T -~ Aut(B[n]),

L,0)[4] = exp(iGLS?))A exp(—i@Lf’)). 4.75)
Some calculations using o-matrices lead to
Fn (0) [Hn] = Hn’ (4.763)
L.(0) [H,,] = — [2 arctanh(-)/8] ng, -L,,, (4.76b)
and ,
ng, = ng + 20) ng, X, (4.76¢)

where n = (0, 0, 1) € R as usual.

It is clear that if the automorphism converges in the representations—and it
does—then ®; will be '@ (T)- invariant but ¥;., will not be I'¢"(7)- invariant.
Thus it is this ['(T) gauge symmetry which is spontaneously broken, and signals
the presence of a superconducting component. Just as for the superfluid phase
in the Bose gas it is the number operator which misbehaves. One finds the state-
ment that the vacuum for these models is continuously degenerate; this is another
aspect of these hyperussiastic states being ‘macroscopic’. Finally let us note that
if L;’/n is considered as a density operation for Cooper pairs, in the normal region
the Cooper pair density is tanh(8€) and in the superconducting region it is €/g.
Remarkably, this latter density is temperature-independent.
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Lattice gases

5.1. Introduction

IN THE previous chapter we described the Cooper electron pairs by means of
spin operators. The fact that electrons possess an intrinsic spin was proposed by
Uhlenbeck and Goudsmit as early as 1925 in order to account for certain features
of atomic spectra (line splitting) (Born [1]; Uhlenbeck and Goudsmit (1,2);
Pauli (2,3)). As such line splittings are affected by magnetic fields, there must be
a spin-magnetic-field interaction. There is also a smaller spin-spin interaction,
having no classical analogy; this so-called ‘exchange force’ is an important constit-
uent of chemical binding (Heisenberg (1,2)).

These effects depend on the intrinsic electron spin (Dirac (1,2); Uhlenbeck and
Goudsmit (1,2)). It was Heisenberg (2) who pointed out that clusters of atoms
of certain metallic elements behaved collectively so as to give rise to an effective
spin variable. The age-old mystery of the origins of magnetism was seen to be a
quantum-mechanical effect. For these clusters of atoms, known as magnetic
domains, can account for many features of magnetism in metals. Although a full
account of the magnetic properties of matter requires the solution of a compli-
cated many-body problem, certain idealized models are known which have the
correct qualitative behaviour, at least to the extent that their study is worthwhile
(Mattis [1]).

All of these models have the following similar features. The magnetic domains
of the real material are mathematically described by a discrete countable set
(lattice) of Hilbert spaces, one for each lattice site. The vectors of these Hilbert
spaces correspond to states of quantized spin vibration, and so the spaces are
often called ‘spin spaces’.

Although one can construct a mathematical model corresponding to any half-
integral spin s €4 N, it is the case s = 4 which is most important. For spin s, each
lattice-site Hilbert space is a copy of (isomorphic to) the (2s + 1)-dimensional
space €2°*1; therefore we shall mostly consider structures associated with the
space €% As regards physical interpretation, the vectors (1, 0) and (0, 1) of C?
are taken to correspond to a spin aligned up and down respectively.

The spin operators are the Pauli matrices in this formalism: the matrices o(*)
= o + i ¢ are then spin-flip operators; o) flipping a spin from down to up,
for example.
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Heisenberg (2) proposed a certain quadratic form in the spin operators as a
model magnetic Hamiltonian. This Heisenberg Hamiltonian can be derived from
a certain approximation to the effective spin part of the full many-body
Hamiltonain (Mattis [1]; Van Vleck [1]), but we shall take the Heisenberg and
other spin Hamiltonians as given inputs here.

There have been some deep results proven for the Heisenberg model (cf. e.g.
Mattis [1]; Robinson (3); Streater (1)), but an exact solution seems beyond
reach by at least an order of magnitude. In an attempt to find exact results,
various simpler approximations to the Heisenberg Hamiltonian have been exam-
ined. The Ising model (Brush [1]) follows from the Heisenberg model by con-
sidering only o terms in both the Hamiltonian and the operator algebra of
spins; the generalized Ising model keeps the full su(2) spin algebra, but only (3
terms in the Hamiltonian. The XY-model, on the other hand, retains only the
o and o terms from the full Heisenberg model.

Even these truncated models are not exactly solvable in fullest generality; one
must restrict the number of lattice dimensions and the range of the interactions.
In this chapter our main concern will be to examine the algebraic aspects of the
two-dimensional Ising model, first solved by Onsager (1). At all crucial comput-
ational points we shall refer to the literature for details and simply quote the
results, for the calculations are formidably long and to a large extent are known
from the non-algebraic analysis of the model (Huang [1]; Mattis [1]; Schultz,
Mattis, and Lieb (1)). There are some new computations, particular to the
algebraic analysis (Marinaro and Sewell (1)); the details of these are analogous to
the non-algebraic ones, and are also left to the references.

As the reader will see, our treatment of the Ising model ends with the demon-
stration of the spontaneous breakdown of spin-reversal symmetry for the global
Gibbs state. The two-dimensional Ising model is known to have a non-zero
spontaneous magnetization and a logrithmic singularity in its specific heat capacity.
As these are the most important physical aspects of the model, we must justify
their omission here.

The usual computation of these thermodynamic quantiti~s proceeds by
calculating their finite volume counterparts, usually through the B[n] grand
partition function E® (1,) (cf. eqn (5.43) below). Having found the free energy
density, say, the limit n—>¢ is taken, and the quasilocal free energy density corres-
ponding to the limiting regions is found. The limit function could depend upon
the manner in which the limit is taken; on boundary conditions, for instance.
But in any event, such a computation is not algebraic, and the methods described
in this book do not add anything to it.

If one knew the global Gibbs state explicitly, one could use that knowledge
to derive independently such thermodynamic quantities. As the Gibbs state is
locally normal, its restriction to any local subalgebra, say ¢, on B[n], is given
through a density matrix:

Ppn(4) = tr(gg,4) (VA E B[n)).
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There is a vexing question of precisely how this restriction ought to be taken;
in particular, what boundary conditions to choose for the generator of o,
= exp(— B Dgy). For Dg, generally will not be the same operator as the local
Hamiltonian for B [n]. After the choice of Dg, has been made, the quantities

Sgn = —(k/n) tr[oﬁn In(0p,,)]
and

ug, = (1/n) tr[og, Dy,
are the entropy density and internal energy density corresponding to ¢ restricted
to the first #» modes of the lattice. In the same way the restriction to arbitrary
modes can be derived. Similarly, one can also analyse the Gibbs state for the other
models in this book. We do not do this for the Ising model because ¢ is not
known explicitly enough. We have not done this for the previous three models
because we do not know enough about the restriction process.

The Ising model is still the object of research and there is an extensive modern
literature on the subject. Two recent papers (Abraham, Gallavotti, and Martin-L6f
(1), and Martin-Lof (1)) will serve the reader as a starting point for further
material on the Ising model. There are also many papers on the general theory of
quantum-lattice gases from an algebraic point of view. Some references are Araki
(5), Brascamp (1), Dubin (1), Dubin and Streater (1), Ginibre, Grossmann, and
Ruelle (1), and Lanford and Robinson (1, 2).

5.2. Spin-lattice kinematics

A lattice, for us, is some discrete set of the form Z X T whose elements are
known as sites. Before describing the spaces and operators at the sites we shall
consider the lattice itself in some detail. For simplicity we shall always choose
T = 2"~ 50 that the lattice is Z”, but the reader can easily supply the details for
amore general oblique lattice. Moreover, that Ising model which we shall examine
is constructed over Z2,i.e. v = 2.

Local regions are finite subsets of Z¥, and the set of them is denoted by
Z={A}; we shall keep our usual abbreviation of &' = LU{Z"}. A lattice site,

then, is a v-tuple of integers n = (ny, . . . , n,) with coordinatewise vector operations.
As distinguished local regions we choose
Ap={n€Z”:|nil<p,i= 1,2,...,v} (» EN); (5.1)

the family .# ={A, : p €N}is our distinguished countable absorbing subfamily
of &, covering Z¥:
pEN

Now the number of elements of (sites in) A, is 2p + 1. We shall write |A| for
the cardinality of A € %, and so |A,| = 2p + 1; obviously |A| corresponds to
the volume of a local region in our R®-based models.
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It is convenient to have a symbol for the family of those local regions with
the same cardinality, so we write

&, ={A€EZL:|Al = p} (PEN). (5.2)

This completes our notation for the lattice itself. We next consider the spin
spaces at the lattice sites.

For a spin-s system,s €3N ={}, 1,3, .. .}, one associates a Hilbert space
b = €25+1 1o each site n € Z¥. And to each local region A € % one associates
the (2s + 1) | Al-dimensional Hilbert space

b(a) = 2 5H®, (5.3)

where, of course, the Hilbert tensor product is intended. (As h(A) is finite-
dimensional, no completion is necessary.)

In the previous chapter we had a similar construction to consider, but special-
ized to s = 4. We saw there that in order to construct a systemic Hilbert space
one had to choose a distinguished normalized vector e, € h® for each n to act as
a neutral vector. Once this family is chosen, one uses it to inject h(A) into any

B(Z) with A € Z, namely, i(A, D) : BA) - B(E):;

iAZ) :va>v® (Z?A e, (5.4)
Writin
& Q= 8, (5.5)

for the unit vector distinguishing the incomplete direct product space, the now
familiar inductive limit process gives the underlying Hilbert space for the lattice:

H(Q) = lim{i, [ (A)); (p,a) EN*,p<q}

Q
= (n)
ngl" H®. (5.6)

The construction of the spin algebras is also familiar. To each site n € Z¥ we

associate the algebra
’ B, = B[5] 5.7)

(which is vector space isomorphic to C*tD%). For each local region A € & we

choose

B(A) = ngA B, (5.8)
as the associated subalgebra; in particular, we write B(A,) = B|[p]. The finite-
dimensionality of B, implies that B(A) is given by the algebraic tensor product;
no completion is necessary. Some topology is necessary for the quasilocal algebra,
however. This is given through the C*-inductive limit, or the norm closure of the
unions of the local subalgebras. Eqns (2.37) and (2.38) give
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Gum - Bln] > B[m] (n<m), (2.37a)
tAPA®L,, (A€ B[] (2.37b)

‘pnm

for the requisite injective mappings, and so we may construct the quasilocal
spin-} algebra

B = l'ln){«pnm(ﬁ[n];(m,n)ENz,m >n}. (2.38)
Eqn (2.39), specialized to this lattice,
, - B [n]—>B,
g,4) =40 Ip , (2.39a)

gives the injection of B[n] into B. With it we can define what we shall call the
local algebra for this lattice system:

B, = UL %iBRI, (5.99)

and then

B = un.cl.(B)). (5.9b)

Lattice translations turn out to be important for the Ising model, and it is
probably worth writing down the relevant formulae in this context. The operator

SM(a) : pW - h0+3a) (yvaezv) (5.10)
is a one-one isometry, as each h@ = €25+1, The relations amongst these operators
are

S® (a+b) = SO+ (2) S® (b) (a,bEZY),
S® (0) = 1. (5.11)
For any local region A € ¥ we define the translation operators
= (n)

S, (a) ngA SM(a) (Vae?), (5.12a)

whence
Sy@ :h(A) > h(A+a) (vaED) (5.12b)

univocally and isometrically.
Focusing our attention on the operators S® (a) = S (a) each such operator
can be viewed as an element of B if we identify it W1th b @R(® 1). The
N\
inductive limit structure of implies the existence of a 11m1t operator
as p > o which we write as S (a). The family {S(a) : a € 2"} is the lattice-
translation unitary group. One has that

S(@) : H(Q) > H(Q)

S (a) ;%Vn_) %}v (a2, (5.13)

n+a

up to a rearrangement of the order of factors; one extends this to all of J#°(£2)
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by linearity and continuity. The group property follows from this:

S@)S() = S(a+b) (a,be?),
S@0) = 1; (5.132)

in the discrete topology on 2, S (2Z) is strongly continuous and unitary on
().
The unitary group S (resp. the isometric endomorphisms Sy) implements the
automorphism group
o:2Z° ~ Aut(B),

o(@)[4] = S(@A4S(—a) (5.14)
(resp. the endormorphism family
oy : Z¥ > End[B(A), B(A+2a)];
o, (a)[4] = S, (a) 4 Sy 4, (—2)). (5.15)

It is possible to prove that the system is asymptotically abelian with respect
to space translations:

|I{m [o(@I[ALB]_-Il =0 (4,BED), (5.16)

la| = (Zjaiz)%

is the Euclidean norm on Z¥ (Robinson (2, 3)).

Before going on to consider the lattice dynamics we wish to make the following
technical remarks concerning B, more or less as an aside. The algebra B is very
regular. As each B, is simple (no closed two-sided ideals), it follows (Sakai [1],
proposition 1.23.8) that B is simple; hence every non-trivial state is faithful
(Emch [1], p.80).

Moreover B is a UHF (uniformly hyperfinite) algebra (Sakai [1], definition
1.23.6 et seq.) and is a forteriori norm-separable. A UHF algebra is the
C*-inductive limit of Type-Ipn factors with p, <° and lim p, = c°. This is true
for B with p, =(2s + 1) 2n + 1)*. noe

As for any C*-algebra, the states S(B) on B are normalized positive linear
functionals. Note that, although B is a tensor product of the algebras B, there
are states on B which are not simply tensor product states ¢ = ® ¢y, with
¢n € S(By). For such a product state, note that if each ¢ is L factorial
(Sakai [1], definition 3.1.7), i.e. 5 (Bp)" is a factor, then ¢ is factorial (Sakai
[1], remark, p.75). Moreover, as each B, is finite-dimensional, each ¢, is primary,
as is the product state ¢.

5.3. Spinattice dynamics

Certain results are known for fairly general lattice systems; in this section we
intend to point out some of them. As we are considering mechanistic systems, we
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assume some Hamiltonian H(A) associated with each local region A € Z¥ to be
given. We further assume it to be a self-adjoint (bounded) operator on h(A) and
to be translationally covariant:

Sy (@) H(A) Sy, 4(—a) = H(A+a); (5.17)

when convenient we shall identify H(A) with its image H(A) ® le\ A Without
further notation.

The general dynamical scheme was outlined in Chapter 1: H(A) generates both
the time-translation unitary group Uy (¢), t €R; and the Gibbs-state semi-group
o (B), BER". Thus

Up(t) = explitH(A)] (t ER), (5.18a)

o\(B) = exp[-BH(N)] (BER), (5.192)
which leads to the time-translation automorphism group for the local subalgebras:
7, R = Aut[B(A)] (AE D), (5.18b)

,([A4] = U,( AU (— 1), (5.18¢)

and to the local Gibbs states

¢1(\ﬂ)e S[B(N)] (AEZP); (5.19b)

¢1§ﬁ) “ = E/(xﬁ) (4)/E® (1), (5.19¢)

with EP () = tagy, 0,0 4] (A€ B(A).  (5.194)

The existence of a time-translation automorphism group of B generated
locally by the 75 depends critically upon the growth of [|H(A)|| with site number
|Al. We now consider this problem. Let us extend the definition eqn (2.37) of
Gum to general local regions: p(A, Z) : B(A) > B(T), injecting B(A) into B(T)
when A C Z by tensoring 4 € B(A) with the unit operator 1zw\ 4. In this way
Onm is identified with o(A,,, A,,). In addition we shall write o(A) : B(A) B
for the identification of the local B(A) with subalgebras of B. This injection is
also effected by tensoring with the pertinent unit operator. We shall feel free to
omit ¢ from formulae where the context makes it clear. |

Considering the family (H (A) : A € #) of Hamiltonians as a whole, it is
possible to replace it by a set theoretic function ® : & — B in its stead. This
potential function has the merit of being more closely related to the number of
lattice sites which interact with one another than are the Hamiltonians. Indeed,
the restriction of @ to the family .#, of local regions containing p sites is known
as the p-body potential for the model. The potential function ® is defined
recursively by the formula

HA = 2 &), (5.20)
AEP (A)

starting from ®(¢) = 0. Here & (A) is the power set of A, of cardinality 2!Al.
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For instance, ®({n}) = H ({n}), ({n,m}) = H({n,m}) —H ({n}) —H ({m}),
and so on.

The range of ® is a set p €.%" defined to be (recall the translation covariance
eqn (5.17))
p={n€Z: thereexistsaAE.L suchthatn€A,0E A, and ®(A) #0}. (5.21)

® is of finite range if the range has a finite number of sites: [p| <ee. It is custo-
mary to consider general classes of lattice models by starting from the set &y of
all finite range potentials and equipping it with some growth condition in the
form of a norm, and then completing the resulting pre-Banach space.

Note: Py is a vector space if we set (P + ¥) (A) =P (A) + ¥ (A) and
(c®) (A) = c® (A) as operators in B. We shall consider two norms on Py, |I.I;
and ||.|l,, in what follows, writing £, and &, for the resulting Banach spaces.
We define then

el = 2 IB(A) exp(IAl— 1), (5.22a)
VA B

1ell = LIS, | (5.22b)
z

where |||l is the B-norm, i.e. the operator norm on H#(A).
One may prove that if ® € &, matters are extremely favourable. Robinson
(1,2) has proved the main result.

THEOREM 5.1.

Let ® € P, and give rise to a Hamiltonian family (H (A) : A € ) which in
turn generates the families (Up(t) = exp[itH(A)] : A€ £, t ER) and (15 : R
- Aut[B(N)] : A€ ZL). Then there exists a quasilocal automorphism group
7 : R > Aut(B) defined by

(norm B) —r})i"xl UAn(t)A Uy, =0 =14 AeB;) (5.23)
and extended from By, to B by continuity. Moreover, the automorphism group
is strongly continuous, i.e.

m lI5(4) ~5 ()l = 0 (4EB).
For a proof, see Emch [1], theorem IV.2.2, Ruelle (1), §7.6, or Robinson (2, 3).

For potentials in &, things are more awkward. Ruskai (1) has proved the
following theorem.

THEOREM 5.2.
Let ® € P,, other notation as above, and let ¢r(f) = ¢1(\ﬁ) be the A, -region Gibbs
state (eqn (5.19¢)). Then "

lim 90 (A - - - 7, [Ad)

exists forall ty, ... ,t, ERandall 4y, ..., 4 EDB;.
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This being recognized as DS I, the general theory (Dubin and Sewell (1))
implies the following.
(1) A Gibbs state ¢5€ S (B) exists and is defined by extension from

¢(4) = lim ¢® (4) (A€ B)).

(2) The reconstruction by Wightman’s method can be carried out. The
resulting Hilbert space 7% contains a cyclic and separating vector Qg,
whence there exists a modular automorphism group 75 : R >
Aut [nﬁ(%)"] unitarily implemented by a unitary group Us(R) gener-
ated by the modular operator (Takesaki [1]; Winnink (1)),

(str. ) lim e[, () A] = 74(2) my(A4)
= Ug(f) "p(A) Uﬁ(— 1),
Uﬁ(t) Qg = Qp

(3) Writing ®; for the extension of ¢g to Bg = mg(B)", the vector state Bg
is (8, 75-KMS, whence it is locally normal (Takesaki and Winnink (1));
whence 7} is separable, implying that Ug is strongly continuous.

As DS 1II has not been proved, one does not know whether or not the GNS
reconstruction space is a proper subspace of .

For 2, class potentials, DS I and IT hold because of the norm convergence
(5.22) of the automorphisms, so 1-3 holds a forteriori with the GNS reconstruc-
tion space equal to 5.

5.4. Spin-4 model dynamics

All the models we wish to discuss in this section are special cases or the
Heisenberg magnet model. Using the symbol J,§°‘) (m) for the ath spin operator at
the point n € A,,;, the model Hamiltonian is

3
Hp)= 2 X e@m,a)JO@)J@@) +
n,mEAp a=1
+ 2 b@JIO(). (5.24)
nEAp

Of course, we could generalize this formula to arbitrary A € %; and €(n, m, o)
ought to indicate a A, dependence. One might have the analogue of cyclic
boundary conditions in mind, whence e(n+ n’, m, a) = e(n", m, &), where
n+ n' = n" modulo A,, for instance.

One varies the model by choosing an energy function e: A, X A, X {1,2,3}
- R; and an external magnetic field b : Ap~> R. If b is zero and € is a-independent,
the model is completely isotropic; if the values of € are negative, the model
exhibits ferromagnetism and conversely, positive € implies antiferromagnetism.
The translational covariance postulated for H (p) in eqn (5.17) requires that the
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support of € be the diagonal of A, X Ap, which is a technical way of saying that
we shall take

e€(n,m,a) = e(n—m, ) (5.25)
hereafter. A special case much favoured for simplicity in computations is the
nearest-neighbour Hamiltonian, for which e(q, o) vanishes unless q is in the set

{+ (1,0,0,...,0), £ (0,1,0,...,0),..., * (0,0,..., D},

where the elements are v-tuples.

If e(n, m, a) = 0 for « = 3 and b = O, the result is the XY-model, which is
trivially solvable in the following sense. Proceeding heuristically, we can write the
resulting X'Y-Hamiltonian in terms of fermion operators, and up to details it is
quadratic and hence diagonalizable.

The other extreme is e(n,m,a) = e(n —m) §, 3, whence

H(p) n,mZEAp e(n—m)JO (p) JO (p); (5.26)
this defines the Ising Hamiltonian.

If we similarly restrict ourselves to the subalgebra of B generated only by the
{J,ﬁ’) : m € 2%} we have the usual Ising model; considering all of B leads to the
generalized Ising model. In spite of the fact that the Ising model is completely
abelian, it is a very difficult problem to find the Gibbs state and the thermo-
dynamic functions. For two dimensions, the thermodynamic functions were
found by Onsager in 1939, although a full account was not published until
several years later (Onsager (1)); the model for » 2 3 remains unsolved.

Radin (1) has given an interesting computation for the time evolution in the
generalized Ising model; we propose to state his results here. The particular
Hamiltonian question has b = 0, €(|n —m|) depending only upon the Euclidean
distance |p|= [(p)* + ...+ (p, 217, and in addition satisfying

€0 =0
2 ellpl) < ee. (5.27)
¥
These conditions ensure that there is a quasilocal automorphism 7 : R

- Aut(®B) which is the norm limit of the local 7, : R = Aut(B[n]) generated by
the U, (¢) = exp[itH(n)]:

lim |7, (r)A —7(r) All = 0 Ae€By), (5.28)
n—»ow
and extend to B by continuity. The interest in this topic stems from the fact that
Radin could find 7(¢) 4 fairly explicitly. For two sets A, B with A C B, B\A

={b EB: b & A}is the relative compliment. In particular, to each A, € A we
associate a set &, C Z¥ X 2" by the rule

B, = (X P\ [(Z°X A)X (ZX A (5.29)
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With this notation, 7(R) is determined by the following action on By, extend-
ing to B by continuity. Since for every A® € B, there is an integer n such that
A® € B[m] for m > n (up to identification) it suffices to consider 7 on B[n] for
arbitrary n. Then

7(t) AW = VO (£) AW Y (—1) (vAm e B[n]), (5.30a)
with V®(R) the strongly continuous unitary group
V™ () = exp {it 2 elp—ql Jl?) .19(3) . (5.30b)

®,9<P,

We now apply this formula to the generators. Let wp, € B be the ‘frequency’
operator

wp = 2 e(lp—qh)JO, (5.31)
qE?V 1
then
7(t) Jé3) = Jé3), (5.32a)
N = ja —J@) g
7(2) Jlg ) = JIS Y cos(wp #) Jé )sm(wp 1), (5.32b)
2 = JMgj ?)
T(t)Jp Jp sin(wp, 1) +Jp cos(wp 1), (5.32¢)
or
7(2) Jé“) = Jé“) exp(+ itwp). (5.32d)

Before going on to consider the Ising model in detail, we mention a result of
Robinson, who proved the existence of a phase transition in the isotropic
Heisenberg model. In this case one considers only nearest-neighbour interactions:
e(p,a)=Ounlessp=¢;=(8;;:j=1,...,»),fori=1,...,v;and b(n) = b
independent of n. Writing v
A, = 4 .Zl le(e;, @)1, (5.33)

i=

Robinson (3) showed that a phase transition occurs for large enough 8 and small
enough A;/A3 and \,/A3; it is assumed that €(e;, 3) # 0. There are two phases and
a non-zero spontaneous magnetization. The method used to prove this result,
which we will not do, is a direct descendant of Peierl’s early work on the Ising
model. The reader is referred to Robinson’s paper and to more recent papers on
the Ising model for a description of these graph-theoretic techniques used to
obtain estimates of pertinent operator bounds; cf. Emch [1] for references.

5.5. Ising model kinematics

The Ising model is justly famous for being the only exactly solvable model
(v = 2) showing a phase transition supporting a spontaneous magnetization. In
order to solve the model, the v-dimensional abelian model is mapped onto a
(v — 1)-dimensional full spin-3 model, i.e. a system B as above, for for (v —1).
Clearly this is an advantage only for » = 2. One also see that it is as difficult to
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solve the v-dimensional Ising model problem as the (v — 1)-dimensional Heisenberg
model problem.

As a peripheral matter, let us mention a connection with quantum field theory.
The conjecture of Schwinger (1) and Symanzik (1) that a Euclidean invariant
quantum field theory ought to be equivalent to a relativistic theory has now
been shown to be true under certain reasonable restrictions (e.g. Osterwalder
and Schrader (1)). Restriction of the attention to self-interacting bosons, a tech-
nique much like the transfer matrix method used to solve the Ising model, proves
the equivalence of a four-dimensional self-interacting boson field theory, say a
(p)2 theory, with a five-dimensional Ising-type theory but continuous (i.e. over
RS rather than Z°). If one could prove an approximation theorem for the exist-
ence of the limit Ising (R®) < Ising (Z°), one could then have a proof of the
existence of (¢)4, which would be an important result (Nelson (1, 2); Guerra,
Rosen, and Simon (1)).

Our purpose in examining this model (v = 2) essentially is to discover its
general algebraic structure, but unfortunately the computations are quite long
and involved. The two standard textbook references for the necessary calculat-
ions are Huang [1] (after Kaufmann (1)) and the approach of Schultz, Mattis,
and Lieb (1) described in Mattis [1]. We shall follow a simplified version of the
work of Marinaro and Sewell (1). The main simplification arises in failing to
provide both detail and proof.

Our first task is to consider the restricted algebra associated with the {J 3}
only. Hereafter, we shall write %, and £, for Land &L’ constructed over
Z?=7ZX Zand %, (resp. &, for the construction over Z).

Let us write [V] for the (2V + 1)-point set

[N] ={0,%1,...,£N}CZ, (5.34)

such sets constitute the absorbing cover A = {[N] : N € N} of Z which we shall
use. And making use of the rectangularity of Z? = Z X Z we shall choose
M= NX N = {[N]X [P]} for the Z cover.
The Ising model algebras are subalgebras of the full lattice algebras, and we
write, for every A€ Z,,
FN) = <1(A),J'§3) (A):n€A>, (5.35)

which is finite-dimensional and so is a forteriori closed: JF(A) C B(A; v =2).
The abbreviation £, = JF([n] X [m]) is convenient, for up to obvious identi-
fications, the quasilocal Z Ising model algebra is the C*-inductive limit algebra

S = lim {£,, : (n,m)EN?}. (5.36)

Clearly S C B (v =2)isa C*-subalgebra of B(r = 2).

+ Recall that <-> means the algebraic span in the indicated variables.
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For any A € %, the nth+row algebra is defined to be

Z,0) = F(@n}X D), (5.37a)
for A = Z we mean the partial C*-inductive limit
2,0 = X,
= ,}]fl {F({n} X [pD} (5.37b)

We may observe here that the C*-inductive limit lim %, = . These row algebras
will be used later. noe

A general structure theorem for C*-algebras relates abelian C*-algebras to
function spaces of the form € (&) for certain spaces & which depend upon the
algebra in question. We shall now construct such a relation for the Ising algebras
F(A) and &, (N).

Let J be the two-point set

T ={—1,+1} (5.38)

By € () we mean the Banach space of continuous functions{f: J — C}
equipped with the sup-norm:

1Al = sup{lf/ (= DLIf(+ DI}

By t we shall mean the 2 X 2 matrix algebra {[‘(’) g] ra,be C}. It is easy to
check that the mapping

[3 o = ) = af=1) =)

defines a C*-isomorphism between tr and % (7). This is a special case of a general
structure theorem which we shall now apply to the Ising model (Gel’fand, Raikov,
and Shilov [1]).

Equipping J with the discrete topology (every subset of J is open), it
becomes a compact Hausdorff space. For any A€ % (j either 1 or 2), let TA
be the topological product X yep J (Choquet [1]); by Tychonov’s theorem
(Choquet [1]), I A is compact. A standard result in analysis is the tensor product
result Ag\ [€(I)]\ = € (T™D); no problem of completion arises since | A| < o.

This result gives the required C*-isomorphisms upon specializing the choice of
A and using r = €(J), namely,
FN) = (TN (AE &) (5.39)

and

R, (L) = G(TWXL) (A€ L) (5.40a)

It is convenient to write
%(FA),, = @(J WXL, (5.40b)

We can be even more explicit. The correspondence between JH(A) and € (T )
is defined by the formula
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JOWN) > 6, : b1, (5.39a)

where 1, is the nth projection of £ = (f,)pep € (T ).
For Z,,(b) = €(J %), we have a similar formula: specializing eqn (5.39a) to

A={n}X A, we have
JO QmyX By > (6@ 1 b, (5.40¢)

The C*-isomorphism to the nth row algebra arises from identifying this generating

element with
J’(j’)["] L) - (63:): t t(nm)) (meoh). (5.40d)

5.6. Ising model dynamics and the transfer matrix

Let us restrict our attention to the simplified Hamiltonian H,,, = H ([n] X [m])
given by +n

+m
H =— 3y 13 —
nm = &1 j:z_,, kzgm B Gern

+n +m
_ JO Ji 541
&2 j=;n k'—‘-‘;m Gk) G+1 k) ( )
with cyclic boundary conditionsn + 1 = —n,m + 1 = —m. Breaking up the sums
this way, we have separated the energy of interaction along each row (first term)
from that between neighbouring rows (second term).
Going over to function-space notation, we have the Hamiltonian function
H,,, € €(J "I XIml) corresponding to the Hamiltonian operator H,y,:
+n +m

A
Hop(t) = —& jzz—n k:ém Wiy U k) —
+n +m
82 z Z t(jk) t(i-Fl k) (5.42)

j=—n k=—m

withn+ 1=—n,m+1=m,and t =(1;,)) € T InlXm],
Once we have H,,,, we can write the formal expression for the (n, m)-Gibbs
A
state ¢® in function space form. For every function 4 € € (7 Xl we set

EOA) = %A@ exp[-BH. ()], (5.432)
um gl X Im) nm

and then 60 (4) = ED (4)/ED (1), (5.43b)
Our notation is intended to correlate 4 € £ (A) with Aeg (T™N).

It will suffice to consider row-product operators as arguments of ¢(rf')1. Writing
A® for a typical operator in %, ([m]), a row-product operator in £, is an
element of the form +n

4= _@® . A W e Z; (Im))), (5.442)

+
since Sy, =j_@i‘ . Z; ([m)). To find the corresponding function 4 € €(J 1 * Iml)
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we decompose ¢ € TIXImlby rows: for eachj € [n], tD=(¢ kepmy s in J 0 XMland
then (+0), in is in J "XIm] That is, tOis the jth-row component of 7. If AV E€ &
(ge x["") is the function image of ANE &, ([m]), the image of 4 of (5.44a) is

Aw = T AD 0)). (5.44b)

j=—n

After a calculation which can be found carefully set out in Huang [1], one

finds that R Z n A A
©®) = ! G, 1G+D] 4@ ) (40
E® (4) gl X ] j:n_nl{n[t , tUH D] 4B (p1) X
7 [D), (D] A (1) X . X
j=n,
A +n A . .
X A® (1) ,~=IE,,€ v, [t®, 1G+D]. (5.45)
In this complicated formula, the indices ny, n,, . . . , i € [n] correspond to just

thosej in the product in eqn (5.44a) for which A(J) is not a unit operator 1. The
function V € €(J mIXIml) is the ‘transfer matrix’ function, where t0) € F 4/} XIm]
is 1dent1f1ed with an element of "l by an abuse of notation. The actual formula
defining V is

+m
I{n[t(’), tU+D] = exp[ % Y t(f)t(f)l-‘ X

K+

T
X exp [—fg—’ Y0 t,g+1>] X
k=—m
Bg +m
X exp|— 3, tUtD G+D|, (5.46)
2 =" k k
with cyclic boundary conditions: n + 1=—n, m + 1 =—m.

The key to the solution of evaluating Er(,f'z —and this evaluation is not as explicit
in this model as has been the case for the previous models—lies in replacing this
two-dimensional abelian problem by a one-dimensional non-commutative problem.
Recalling eqns (5.39)-(5.40) we relate B([m]) to (T ™ X T ml) (for each
fixed row j) as follows:

— 1 j j
JO b 6((1,")") (1] = 3¢9 +£U+D),
2 2 = 1) — 4G+

IO b 6D (1] = 1Y — ),

JO b 6((1.3,11) (] = 7(1 — 1) 1U+D), (5.47
Using this correspondence we can rewrite V in terms of these Jrg") operators; the
resulting expression may be viewed as an operator in B([m]). And by viewing
the row algebras (%;[m]);epy as subalgebras of B([m]), eqn (5.45) for ES) (4)

can be rewritten in these terms. Let us write ¥, € B([m]) for the rewrltten
transfer matrix. Then (cf. Marinaro and Sewell (1))
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E®(A) = tr[Am) (1, ) A (V)50 A0 X
X ([{n)Zn+n,—nk+1] (5.48)
+
with the trace over the Hilbert space énm (@©); =p([m).

==

5.7. The global Gibbs state

We now consider the thermodynamic limit for this model. The operator V,, is
a positive bounded self-adjoint invertible operator on the finite-dimensional
space h([m]). By the Perron-Frobenius theorem (Gantmacher [1]) it follows that
the largest eigenvalue A, of ¥, is non-degenerate; we write £2,,, for the unique
normalized principal eigenvector: ¥, 2, = N, 2, [1€2,,,11 = 1. The form of
Er(fr)z (A4) in eqn (5.48) shows that the combination ¥, B¥, ! for BE€ B([m]) is
clearly important, so we define the automorphism

w,, € Aut{B([m])};
w,(B) = V,BV L (5.49)
One might call this the transfer automorphism. We also write w,, € S {B([m])}
for the vector state associated with the principal eigenvector:
w,B) =<Q,,BQ,>. (5.50)
Marinaro and Sewell (1) show that

r}l—{]«: q%?l A = w, {A("l)wr(";Z‘"l) [4]¢D) | W) [4]m0}, (5.51)

where wr(,{) [B]= VI B(V ") is thej-fold composition of w, with itself.
Assuming this result, it remains to take the limit m—>°. Since B([m]}) is finite,

the limit lim w,, = w exists as a state on B=lim B([m]), but the Perron-
m—>o L

Frobenius theorem does not apply to it. We write
lim w,, (B) = w(B)

e = (1B Q) [BEB), (5.52)
where w ~ [, m, 2] is the GNS association. Note that «w may well depend upon
the particular Z* cover 4= A"X A chosen.

Marinaro and Sewell (1) also show that the automorphisms {wy, } converge in
the sense that there exists a positive self-adjoint contraction operator V € B(3f),
VI < 1, defined by

lim 7[w,,(B)I2 = Va(B)Q (BEB)), (5.53a)

mee v = Q. (5.53b)

The final quadrature for the Ising model quasilocal Gibbs state is
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05(4) = (@, a()m Vs n(d)m Vs a(A)EQ).  (5.54)

5.8. Interlude: one dimension

In one dimension, v = 1, the corresponding calculation is trivial, but no phase
transition occurs. Taking g, = g, = g and noting that there is only one row, the

transfer matrix is (82) _
V; _ exp(fg exp(—Bg) ‘ (5.55)
exp(—Bg) exp(Bg)

Its eigenvalues are A, = cosh(8g) and A_= sinh(8g); we introduce the ratio
£=N_/\ =tanh(Bg),so that 0 < ¢ < 1.
For p; <p,...<p,, and all these p; € [P], we have the [P]-region Gibbs
state:
) (Jl(’3) O = I+ N [EPitpe o) X +
1 2n
+ (EPr P2 Pan) )\I_)_] (5.56a)

Its limit is easily found:

¢ﬂ(J(3) . J®) = gpite - P, (5.56b)

P, Pan

We note that ¢ is a product state and has no associated phase transition.

5.9. Spontaneous breakdown of spin-reversal symmetry

Returning to the two-dimensional problem we shall describe some properties
of the quasilocal Gibbs state ¢g. The phase transition is mathematically due to
the bifurcation of the principal eigenvalue in the limit; and this bifurcation is
associated with the spontaneous breakdown of spin-reversal symmetry. This
symmetry is given by the automorphism p € Aut(#) defined by its action on

enerators:
8 o: 1P 1,

p IO b =IO (neZ?). (5.57)
We shall also need the row-translation symmetry group

o : Z~ Aut(Sf),

o,[1] =1
31 =JO
On [J(mp)] J(m +np) (5.58)

With this notation, the basic structural theorem for the Z>-Ising model under
consideration here is as follows.
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THEOREM 5.3.
There exists a state ¢z € S(F), defined by extension from

Jim g8 ) = g() (A€ S, (5.59)
which is 0(Z)-invariant and p-invariant. There exists a critical temperature (3 such
that for B < B;, ¢gis ¢(Z)-ergodic. For = B;, ¢ undergoes a p-symmetry break-
down associated with its unique o(Z)-ergodic decomposition

®
= |y, (5.60)
€[ 7,0(2)]

Y& S( S, p) (valmost all).

For a proof see Marinaro and Sewell (1). In one way and another this theorem
is due to the work of many people, certain of who have already been mentioned.
Further bibliography will be found in the cited references.

Emch, Knops, and Verboven (2) have shown how the two-fold degeneracy
appears in this context. If one considers the truncated problem of only observ-
ables from one row algebra, say Z,,, the corresponding Gibbs state is the
restriction ¢, of our limit state ¢g. One finds that ¢g,, = $(w, + wy), where
wy, are vector states which are p-extremal and satisfy p* (w;) = * wj,.
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