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Introduction 
A complete understanding of what something is must include an understanding of what it 
is not. In his paper, “Paradoxist Mathematics” [19], Florentin Smarandache proposed a 
number of ways in which we could explore “new math concepts and theories, especially 
if they run counter to the classical ones.” In a manner consistent with his unique point of 
view, he defined several types of geometry that are purposefully not Euclidean and that 
focus on structures that the rest of us can use to enhance our understanding of geometry 
in general. 
 
To most of us, Euclidean geometry seems self-evident and natural. This feeling is so 
strong that it took thousands of years for anyone to even consider an alternative to 
Euclid’s teachings. These non-Euclidean ideas started, for the most part, with Gauss, 
Bolyai, and Lobachevski, and continued with Riemann, when they found 
counterexamples to the notion that geometry is precisely Euclidean geometry. This 
opened a whole universe of possibilities for what geometry could be, and many years 
later, Smarandache’s imagination has wandered off into this universe. 
 
The geometry associated with Gauss, Bolyai, and Lobachevski is now generally called 
hyperbolic geometry. Compared to Euclidean geometry, the lines in hyperbolic geometry 
are less prone to intersecting one another. Whereas even the slightest change upsets the 
delicate balance of parallelism for Euclidean lines, parallelism of hyperbolic lines is 
distinctly more robust. On the other hand, it is impossible for lines to be parallel in 
Riemann’s geometry. It is not clear which Riemann had in mind (see [3]), but today we 
would call it either elliptic or spherical geometry. All of these geometries (Euclidean, 
hyperbolic, elliptic, and spherical) are homogeneous and isotropic. This is to say that 
each of these geometries looks the same at any point and in any direction within the 
space. Most of the study of geometry at the undergraduate level concerns these “modern” 
geometries (see [3, 12, 10]). 
 
Although the term Riemannian geometry sometimes refers specifically to one of the 
geometries just mentioned (elliptic or spherical), it is now most likely to be associated 
with a class of differential geometric spaces called Riemannian manifolds. Here, 
geometry is studied through curvature, and the basic Euclidean, hyperbolic, elliptic, and 
spherical geometries are particular constant curvature examples. Riemannian geometry 
eventually evolved into the geometry of general relativity, and it is currently a very active 
area of mathematical research (see [21, 16, 4, 8]). 
 
Riemannian manifolds could be described as those possible universes that inhabitants 
might mistake as being Euclidean, elliptic, or hyperbolic. Great insight comes from the 
realization that the geometries of Euclid, Gauss, Bolyai, et al, are particular examples of 
one kind of space, and extending attention to non-uniform spaces brings much generality, 
applicability (e.g. general relativity), and much more to understand. 
 
Smarandache continues in the spirit of Riemann by wanting to explore non-uniformity, 
but he does this from another, and perhaps more classical, point of view. While much of 
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the current study of geometry continues the work of Riemann and the transformational 
approach of Klein (see [13]), Smarandache challenges the axiomatic approach inspired by 
Euclid, and now closely associated with Hilbert. This axiomatic approach is generally 
referred to as synthetic geometry (see [9, 14, 12]). 
 
By its nature, the axiomatic approach promotes uniformity. If we require that through any 
two points there is exactly one line, for example, then all points share this property. Each 
axiom of a geometry, therefore, tends to force the space to be more uniform. If an axiom 
holding true in a geometry creates uniformity, then Smarandache asks, what if it is false? 
Simply being false, however, does not necessarily counter uniformity. With Hilbert’s 
axioms, for example, replacing the Euclidean parallel axiom with its negation, the 
hyperbolic parallel axiom, only results in transforming Euclidean uniformity into 
hyperbolic uniformity. 
 
In Smarandache geometry, the intent is to study non-uniformity, so we require it in a very 
general way. A Smarandache geometry (1969) is a geometric space (i.e., one with 
points and lines) such that some “axiom” is false in at least two different ways, or is false 
and also sometimes true. Such an axiom is said to be Smarandachely denied (or S-
denied for short). 
  
As first mentioned, Smarandache defined several specific types of Smarandache 
geometries: paradoxist geometry, non-geometry, counter-projective geometry, and anti-
geometry (see [19]). For the paradoxist geometry, he gives an example and poses the 
question, “Now, the problem is to find a nice model (on manifolds) for this Paradoxist 
Geometry, and study some of its characteristics.”  This particular study of Smarandache 
manifolds began with an attempt to find a solution to this problem.  
 
A paradoxist geometry focuses attention on the parallel postulate, the same postulate of 
Euclid that Gauss, Bolyai, Lobachevski, and Riemann sought to contradict. In fact, 
Riemann began the study of geometric spaces that are non-uniform with respect to the 
parallel postulate, since in a Riemannian manifold, the curvature may change from point 
to point. This corresponds roughly with what we will call semi-paradoxist. It would seem, 
therefore, that a study of Smarandache geometry should start with Riemannian manifolds, 
and inadvertently, it has. Unfortunately, describing and manipulating Riemannian 
manifolds is far from trivial, and many Smarandache-type structures probably cannot 
exist in a Riemannian manifold. 
 
In discussions within the Smarandache Geometry Club [2], a special type of manifold, 
similar in many ways to a Riemannian manifold, showed promise as a tool to easily 
construct paradoxist geometries. This led to the paper, “Partially paradoxist geometries” 
[15]. It quickly became apparent that almost all of the properties that Smarandache 
proposed in [19] could be found in manifolds of this type. 
 
These s-manifolds, which is what we will call them, follow a long tradition of piecewise 
linear approaches to, and avoidances of, the problems of the differential and the 
continuous. As we will define them, s-manifolds are a very restricted subclass of the 
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polyhedral surfaces. The relationship between polyhedral surfaces and Riemannian 
manifolds is as old as Riemannian geometry itself, and the all-important notion of 
curvature can be viewed as an extension of the angle defect in a polyhedral surface due to 
Descartes (see [17, 11]). In addition, some concept of a line, or a geodesic, is a natural 
part of the study of polyhedral surfaces, but we will use a particular definition of a line 
that may have appeared as recently as 1998 in [18]. So while the basic ideas studied in 
this book are not new, the particular formulations and the focus on plane figures seems to 
be unique, and therefore, the potential exists for original research at all levels.  
 
The purpose of this book is to lay out basic definitions and terminology, rephrase the 
most obvious applicable results from existing areas of geometry and topology, and to 
show that s-manifolds can be a useful tool in studying Smarandache geometry. 
 
In Chapter 1, we define what an s-manifold is. Smarandache geometry is quite general, so 
it is difficult to see any basic structures that exist widely. Our definition for an s-
manifold, therefore, is purposefully restrictive, so that we may have a reasonable 
opportunity to find general results. We will probably have to focus attention even more 
tightly before making significant progress. 
 
In Chapter 2, we analyze the axioms of Hilbert in an s-manifold context. These cover 
most of the basic concepts of 2-dimensional geometry, and of course, all of the theorems 
of Euclidean geometry are based on them. 
 
Some s-manifold examples of Smarandache geometries are presented in Chapter 3, and 
some of the basic issues surrounding closed s-manifolds, in particular the topology of 2-
manifolds, are discussed in Chapter 4. The book ends with some notes on continued 
study.  
 
Throughout this book, questions and conjectures are posed. You are invited to post 
answers to these questions to the Smarandache Geometry Club [2]. You may also pose 
questions of your own and participate in discussions about Smarandache geometry here. 
The publisher of this book is interested in publishing papers generated out of these 
explorations as a collection of papers or in the Smarandache Notions Journal. 
 
Members of the Smarandache Geometry Club [2] were involved in the discussions that 
generated the basic idea of an s-manifold and many of the concepts explored in this book. 
These include mikeantholy (Mike Antholy), m_l_perez (Minh Perez), noneuclid (M. 
Downly), johnkamla2000 (Kamla), dacosta_teresinha (Dacosta), jeanmariecharrier (Jean 
Marie), marcelleparis (Marcelle), ken5prasad (Ken Prasad), zimolson (Zim Olson), 
duncan4320001 (Joan), charlestle (Charlie), ghniculescu, bsaucer (Ben Saucer), and 
klaus1997de. Most of these discussions can be viewed at the club website. 
 
I would like to thank the reviewers Joel Hass, Marcus Marsh, and Catherine D’Ortona. 
Prof. Marsh was the teacher most responsible for my turning to mathematics, and Prof. 
Hass, my thesis advisor, introduced me to the real world of geometry and topology. 
Virtually all of my thinking in mathematics can be traced back in some way to these two 
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mathematicians. Prof. D’Ortona, a valued colleague, and my wife Linda are currently the 
most active forces on my professional ideas. I am, of course, responsible for the 
correctness of the material presented here and how I chose to implement the suggestions 
of the reviewers. 
 
This book is dedicated to my two huns, Linda and Zoe. 
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Chapter 1. Smarandache Manifolds 
We present here a definition for a special type of Smarandache manifold, which we will 
call an s-manifold. Since at present, these s-manifolds are the only manifolds presented 
in the context of Smarandache geometry, we will leave a more general definition to the 
future. We will see that an s-manifold is general enough to display almost all of the 
properties of a Smarandache geometry, but is restrictive enough so that we can start to 
make general statements about them.  
 
For the purposes of this book, an uppercase “S,” as in “S-denial”, will be short for 
“Smarandache.” A lowercase “s,” as in “s-manifold”, will refer to the special type of 
Smarandache manifold that is the focus here. 
 

s-Manifolds 
The idea of an s-manifold was based on the hyperbolic paper described in [21] and 
credited to W. Thurston. Essentially the same idea in a more general setting can be found 
in the straightest geodesics of [18] (see also [1]). In [21], the structure of the hyperbolic 
plane is visualized by taping together equilateral triangles made of paper so that each 
vertex is surrounded by seven triangles. Squeezing seven equilateral triangles around a 
single vertex, as opposed to the six triangles we would see in a tiling of the plane, forces 
the paper into a kind of saddle shape (see Figure 1). 
 

 
Figure 1. A paper model with seven equilateral triangles around one vertex. 
 
We will extend this idea to elliptic geometry by putting five triangles around a vertex, 
and of course, to Euclidean geometry by using six (see Figures 2 and 3). The basic 
concept of an s-manifold is contained in these paper models made of equilateral triangles 
taped together edge to edge with five, six, or seven triangles around any particular vertex. 
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In these paper models, the paper will bend, but will not be stretched. Because of this, and 
the fact that paper is inherently Euclidean, we can assume that the geometry within any 
single triangle is Euclidean. Since two triangles taped together can lie flat, the geometry 
within any pair of adjacent triangles must also be Euclidean. Any non-Euclidean 
geometry comes from the curvature that is concentrated in the vertices. 
 

 
Figure 2. A paper model with five equilateral triangles around one vertex. 
 

 
Figure 3. A paper model with six equilateral triangles around one vertex. 
 
Instead of paper triangles, an s-manifold is constructed from triangular disks. These disks 
are subspaces of the Euclidean plane formed by equilateral triangles with sides of length 
one and consisting of the vertices, the edges, and the interiors of the triangles. The 
geometry within a single triangular disk is Euclidean, and concepts such as line segments, 
length, and angle measure will remain intact. 
 
We will join pairs of triangles by identifying edges. For example, if edge AB of triangle 
ABC is to be identified with edge EF of triangle DEF (see Figure 4), then we will 
consider A and E to be the same point, and any point P on AB a distance x from A will be 
identified with the point Q on EF that is a distance x from E. In particular, B is identified 
with F. We will say that these disks share the edge AB (or EF). 
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After an identification of this type, we will assume that the two adjacent triangles lie next 
to each other, and that they lie in a plane. The geometry, therefore, within any pair of 
adjacent triangular disks is Euclidean. We will not be able to think of all pairs of adjacent 
triangular disks as lying in a plane simultaneously, but we will always assume this for 
any particular pair. 
 

 
Figure 4. Triangles ABC and DEF share the edge AB. 
 
An s-manifold will be any collection of these (equilateral) triangular disks joined 
together such that each edge is the identification of one edge each from two distinct disks 
and each vertex is the identification of one vertex from each of five, six, or seven distinct 
disks. 
 
There is no requirement that an s-manifold must “exist” in R3 or any other Euclidean 
space. For example, a Klein bottle can have an s-manifold structure. 
 

 
Figure 5. Segments inside a disk are extended to the boundaries of the disk. 
 

 
Figure 6. Extending s-lines across edges forms two segments that make congruent 
vertical angles with the edge. 
 
A geodesic in a manifold is a curve that is as straight as possible. Lines in an s-manifold 
will be the natural geodesics, and we will call them s-lines to differentiate them from the 
lines in the Euclidean plane. An s-line will be any piecewise linear curve that can be 
constructed from a line segment lying within one of the triangular disks and extended as 
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follows. Since the triangular disks are subspaces of the Euclidean plane, any segment in a 
disk can be extended to the boundaries along a straight line in the Euclidean sense, as in 
Figure 5. Here, both segment AB and segment CD are extended to the boundaries of the 
disk.   
 
From an endpoint that lies on the interior of an edge, the s-line extends across the 
adjacent triangle as a straight line segment in the Euclidean sense, so that vertical angles 
formed by the edge and the s-line are congruent, as in Figure 6. Here, ∠ABV is 
congruent to ∠CBU. If we think of these two adjacent triangular disks as lying in the 
plane, then s-lines are straight in the Euclidean sense as they cross edges. 
 
From an endpoint that is a vertex, the s-line extends across a triangular disk sharing that 
vertex as a straight line segment in the Euclidean sense so that these two segments form 
two equal angles. An s-line passing through a vertex will sometimes be referred to as 
singular. The measure of the two equal angles depends on the number of triangular disks 
around that vertex. 
 

 
 

Figure 7. A deformed hyperbolic star: both angles ∠AOB have measure 210º. 
 
A vertex with seven (equilateral) triangular disks around it will be called a hyperbolic 
vertex. The seven disks together will be called a hyperbolic star. There are seven 60º 
angles around a hyperbolic vertex for a total of 420º, and an s-line will form two 210º 
angles, as in Figure 7. Here, both angles designated as ∠AOB have measure 210º. This is 
how we will extend the concept of a straight angle to hyperbolic stars. 
 
Around a Euclidean vertex, there are six (equilateral) triangular disks, which together 
we will call a Euclidean star. There is a total of 360º around a Euclidean vertex, so an s-
line will form two 180º angles, as in Figure 8. Since a Euclidean star can lie flat in the 
plane, s-lines are straight in the Euclidean sense across a Euclidean vertex. The geometry 
within a Euclidean star is clearly Euclidean. 
 
Around an elliptic vertex, there are five (equilateral) triangular disks, which form an 
elliptic star. There is a total of 300º around an elliptic vertex, so an s-line will form two 
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150º angles, as in Figure 9, and so both angles ∠AOB have measure 150º. As in 
hyperbolic stars, this is how we extend the concept of straight angles to elliptic stars. 
 
In any s-manifold, s-lines extend indefinitely in this way. By this we mean that we can 
follow an s-line for any distance in either direction. It is possible that an s-line could be 
closed (like a circle) in an s-manifold, and in extending indefinitely, we may be 
traversing the same closed curve an infinite number of times. In addition, we will see that 
s-lines may have multiple self-intersections. 

 

 
Figure 8. A Euclidean star: both angles ∠AOB have measure 180º. 
 

 
Figure 9. A deformed elliptic star: both angles ∠AOB have measure 150º. 
 

Geometry in an s-manifold 
Two things determine the geometric structure in a particular s-manifold, the configuration 
of the non-Euclidean vertices, and the global topology. The non-Euclidean vertices 
introduce a sort of curvature, and this affects the relationships between s-lines. The 
topology of an s-manifold can allow lines to wrap around the space, for example, and this 
allows for various types of interactions between s-lines beyond that caused by curvature. 
We will look first at the effects of the non-Euclidean vertices, and the effects of the 
topology of an s-manifold will be addressed throughout the book. 
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Geometry in elliptic stars 
Instead of deforming an elliptic star, we can lay it flat by making a cut. In Figure 10, a cut 
has been made along the edge OA. Alternatively, we can think of Figure 10 as an 
identification scheme, and the two edges marked OA should be identified or glued. We 
will present most of the examples of s-manifolds in this book this way. 
 
 

 
Figure 10. Some s-lines near an elliptic vertex. 
 

   
Figure 11. Paper model corresponding to Figure 10. 
 
Three sample s-lines are indicated in Figures 10 and 11. These s-lines are drawn parallel 
to the edges for convenience, but s-lines can point in any direction. The two s-lines 
shown that do not pass through the vertex cross edges and makes congruent vertical 
angles with the edges. The singular s-line passing through the vertex makes two 150º 
angles (or two-and-a-half triangles). Note that these s-lines are straight within any pair of 
adjacent triangular disks and that the s-lines appear to bend at the vertex and across the 
cut. This is only because we have made a cut and flattened the surface. In the paper 
model shown in Figure 11, these s-lines curve, but only in a direction perpendicular to the 
surface. In other words, the s-lines are straight within the surface, and they bend only as 
the surface bends. An essential property of an elliptic star is that s-lines passing on 
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opposite sides of the elliptic vertex turn towards each other. This is similar to the 
behavior of geodesics in a Riemannian manifold with positive curvature. A sphere, for 
example, has positive curvature, and its geodesics, the great circles, all turn towards each 
other. 
 

 
Figure 12. Some s-lines near a hyperbolic vertex. 
 

   
Figures 13. Paper model corresponding to Figure 12. 
 

Geometry in hyperbolic stars 
We can lay a hyperbolic star flat by making a cut, as indicated in Figure 12. Here the 
segments OA are to be identified, as are the segments OB. The singular s-line shown 
passing through the vertex makes two 210º angles (or three-and-a-half triangles). In a 
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hyperbolic star, s-lines turn away from each other. This is similar to the behavior of 
geodesics in a Riemannian manifold with negative curvature. Saddle shaped surfaces 
have negative curvature, and the paper model shown in Figure 13 exhibits a similar 
saddle-type shape. 
 

Distance 
Since the Euclidean geometry within the triangular disks is preserved, there is a natural 
notion of distance, and we will take the unit distance as the length of the edges of the 
triangular disks. This length concept extends to s-lines easily, but we will see that a pair 
of points may have no s-line joining them, or that the s-line joining them is not unique, so 
we must be a little careful about defining the distance between two points. A length can 
be associated naturally with any sequence of line segments joining two points, so the 
distance between the two points will be defined to be the infimum (i.e. the greatest lower 
bound) of all such lengths. If there is no such sequence, the distance will be ∞. This will 
occur if an s-manifold is not connected. 
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Basic Theorems 
Many of the concepts related to Riemannian manifolds can be adapted to s-manifolds. 
The curvature in a Riemannian manifold, for example, can be replaced by something that 
we will call an impulse curvature that is concentrated at the vertices. Some of these basic 
concepts are discussed here. 
 

 
Figure 14. The angle sum of a triangle is 180º, and the sum of turning angles is 360º. 
 

 
Figure 15. The angle sum of a quadrilateral is 360º, and the sum of the turning angles is 
360º. 
 

Impulse curvature on curves 
The angle sum of a triangle is an invariant for triangles in Euclidean geometry, as is the 
angle sum of a quadrilateral. It is not an invariant for polygons in general, however, since 
the angle sum for polygons with different numbers of sides is different. A closely related 
quantity, the sum of the turning angles, is an invariant for polygons. In Figures 14 and 15, 
the turning angles are indicated outside of the triangle and quadrilateral as we traverse 
them in a counter-clockwise direction. Walking along the perimeter of these polygons, 
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the turning angle is the angle required to change from one edge to start the next. The 
sum of the turning angles is 360º for any polygon in Euclidean geometry. 

 
The turning angle can be interpreted in terms of a curvature singularity. The curvature for 
a smooth curve is a measure of how quickly the tangent vector changes direction with 
respect to arclength. Integrating this curvature along an arc, therefore, results in the net 
change in direction of the tangent vector as an angle measured in radians. For example, 
the curvature for the arc AC, shown in Figure 16, is κ = 1/r, since the radius of the circle 
is r. Integrating the curvature over this arc gives 

 
∫ к ds = к ∫ ds = к θ r = (1/r) θ r = θ, 

 
and θ is exactly the angle between the tangent vector at A and the tangent vector at C.  
 

 
Figure 16. The change in direction of the tangent vector is the same for the arc AC and 
the path ABC. 
 
The tangent vector on the path formed by the segments AB and BC has the same total 
change in direction θ, but all of this change occurs at the point B. In this case, we have a 
curve with zero curvature everywhere except at B, where the curvature, in some sense, is 
infinite. It would be convenient, however, to think of this “curvature singularity” in the 
same way as we do with smooth curves. This would require that the integral of the 
curvature over any part of the path containing B must always be θ, and over any part not 
containing B, the integral must be zero. These are the properties of an impulse function 
(see [5]), so we will call the measure of the turning angle the impulse curvature. Since 
we can substitute a sharp angle with a closely approximating smooth curve with the same 
curvature integral, we will assume that results from differential geometry regarding the 
integral of curvature extend to these impulse curvatures. 
 



 19 

The Gauss-Bonnet theorem 
There is a wonderful theorem from differential geometry that states that if a closed curve 
C bounds a region S on a surface, then the Gauss curvature K for the surface is related to 
the geodesic curvature κ for the curve by the following formula (see [11, 16, 18]).  
 

2π − ∫S K dA = ∫ κ ds. 
 
For example, the Gauss curvature for a sphere of radius r is K = 1/r2. A spherical triangle 
formed by taking one quarter of the equator and connecting the endpoints of this segment 
with the north pole, like the spherical triangle ABN in Figure 17, has three right angles. 
The three turning angles are also right angles, so integrating these impulse curvatures is 
equivalent to adding them together, and this results in a total impulse curvature of 3π/2. 
This triangle covers one eighth of the sphere, so integrating the constant K over the 
interior of this spherical triangle results in (K)(4πr2)/8 =(1/r2)(4πr2)/8 = π/2. We have 
then, 2π – π/2 = 3π/2. 
 

 
Figure 17. A spherical triangle with three right angles. 
 
For a sphere of radius 1, and a triangle with area A, this generalizes to saying that the 
sum of the turning angles is 2π − A. Since the sum of the turning angles plus the sum of 
the angles for the triangle is 3π/2, we have that the angle sum of a spherical triangle is 
always π/2 + A. In particular, the angle sum of a spherical triangle is always greater than 
180°. 
 
Instead of having a smooth Gauss curvature like the sphere, the curvature on an s-
manifold is concentrated at the elliptic and hyperbolic vertices. These curvature 
singularities can also be interpreted as impulse Gauss curvatures. Historically, we could 
even say that the Gauss curvature is a smooth version of this polyhedral curvature, which 
was originally developed by Descartes (see [11, 18]). Assuming that integrals of Gauss 
curvature can be extended to these impulse curvatures, we can compute what these 
should be. 
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Consider a small polygonal curve ABCDEA bounding a region consisting of five 
equilateral triangles around the elliptic vertex O, as in Figure 18. The turning angles at A, 
B, C, D, and E are all 60°, so the sum of the turning angles is 300°. For a larger polygonal 
path, such as the one through F, G H, I, and J in Figure 18, the contained region can be 
subdivided into the pentagon ABCDE and the region bounded by the polygonal curve 
FGHIJLKEDCBAKLF. This second region is Euclidean in its interior, so the sum of the 
turning angles is 360°. Taking angles measured in a counter-clockwise direction as being 
positive, the turning angles at E, D, C, B, and A are negative, but equal in magnitude to 
the corresponding turning angles on the pentagon. The two angles at L are positive and 
add up to 180°, as do the two angles at K. We have then 
 
360° = (turning angle sum of FGHIJF) + (∠L1 + ∠L2 + ∠K1 + ∠K2) + (∠A + ∠B + ∠C 
+ ∠D + ∠E) =  (turning angle sum of FGHIJF) + 360° − 300°. 
  
Therefore, (turning angle sum of FGHIJF) = 300°. A similar argument reveals that the 
turning angles will sum to 420°, if the polygonal path contains a hyperbolic vertex. This 
further extends to the following. 
 

 
Figure 18. A curve around an elliptic vertex. 
 
Theorem (s-manifold Gauss-Bonnet theorem). For any non-singular polygon (i.e., non-
Euclidean vertices do not lie on the perimeter) in an s-manifold bounding a region that is 
simply connected and containing a total of h hyperbolic vertices and e elliptic vertices, 
the sum of the turning angles is 360º + 60º (h – e). 
 
Angle sums of polygons can easily be computed from this theorem. For example, 
consider a regular pentagon with an elliptic vertex in its interior. We have a turning angle 
sum of 360º + 60º (0 – 1) = 300º. If x is the measure of each of the angles of this regular 
pentagon, then 5(180º - x) = 300º, and x = 120º. This compares to 108º for the angles of a 
regular Euclidean pentagon.  
 

Relative angles 
It will be convenient for us to talk, in a local sense, about s-lines being parallel or not 
parallel at different points along them, since this relationship between s-lines changes as 
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we move from point to point along the s-line. In Figure 19, in the direction from right to 
left (from point B to point C), we will say that the angle of the line b, at the point B, 
relative to the line a is ∠∠∠∠3. At point C, the relative angle is ∠4. The relative angle is not 
always well-defined, but there should be little confusion in the contexts in which it will 
be used. If the relative angle is 90º at some point P of b, we will say that b is parallel to a 
at P. This is a term that we will use for convenience and does not imply that the s-lines 
are parallel. 
 
For quadrilateral ABCD in Figure 19, we know that the sum of the turning angles 
depends on the number of elliptic and hyperbolic vertices inside of it. If there is one 
elliptic vertex, then the sum of the turning angles is 360º – 60º = 300º.  In this case, ∠2 + 
∠4 = 120º, and ∠2 + ∠3 = 180º, so ∠4 = ∠3 – 60º.  A similar computation yields the fact 
that if there is a hyperbolic vertex in the interior of the quadrilateral, then ∠4 = ∠3 + 60º. 
 
Fundamental principle. When an elliptic vertex lies between the two s-lines a and b, the 
angle of b relative to a decreases by 60º. When there is a hyperbolic vertex between the s-
lines, the relative angle increases by 60º. 
 

 
Figure 19. The angles ∠3 and ∠4 are the angles of the s-line b relative to s-line a at 
points B and C. 
 

 
Figure 20. Relative angles around an elliptic vertex decrease by 60º. 
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Relative angles around elliptic and hyperbolic vertices 
Around an elliptic vertex, the relative angle decreases by 60º. In Figure 20, from right to 
left, ∠4 is 60º less than ∠1. From left to right, ∠2 is 60º less than ∠3. The relative angle 
decreases by 60º in either direction. 
 
Around a hyperbolic vertex, the relative angle increases by 60º in either direction. In 
Figure 21, from right to left, ∠2 is 60º greater than ∠1, and from left to right, ∠4 is 60º 
greater than ∠3. 
 
The effects are additive. In Figure 22, we see the relative angle decreasing by 60º twice 
for a total of 120º. As drawn, the relative angle ∠1 is 150º, relative angle ∠2 is 90º, and 
relative angle ∠3 is 30º. In the other direction, the relative angles ∠4, ∠5, and ∠6 change 
in the same way. 
 

 
Figure 21. Relative angles around a hyperbolic vertex increase by 60º. 
 

 
Figure 22. The relative angle after passing two elliptic vertices decreases by 120º. 
 
In Figure 23, the relative angle increases by 60º and decreases by 60º after passing a 
hyperbolic vertex and an elliptic vertex. As drawn, the relative angle ∠1 is 90º, the 
relative angle ∠2 is 150º, and the relative angle ∠3 is back to 90º. The change in relative 
angle from an elliptic and a hyperbolic vertex cancel out. 
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Lambert and Saccheri quadrilaterals 
J. H. Lambert and G. Saccheri were prominent figures in the study of the parallel 
postulate. Special quadrilaterals, which were named after them, are natural objects to 
consider in this context. A Saccheri quadrilateral is a quadrilateral whose base angles 
are right angles and whose base adjacent sides are congruent. Clearly, in Euclidean 
geometry, a Saccheri quadrilateral must be a rectangle. In hyperbolic and elliptic 
geometry, a Saccheri quadrilateral is not a rectangle, but the summit angles must be 
congruent. In Figure 20, quadrilateral ABCD is a Saccheri quadrilateral. The upper 
angles are both 120º. In Figure 23, quadrilateral EGHJ has four right angles, but it is not a 
Saccheri quadrilateral, since the two base-adjacent sides are not congruent. This raises the 
following question. 
 
Question. In an s-manifold, must the summit angles of a Saccheri quadrilateral be 
congruent? 
 
A Lambert quadrilateral has three right angles. Here also, a Lambert quadrilateral in 
Euclidean geometry must be a rectangle. In Figure 23, the quadrilaterals EFIJ and EGHJ 
are Lambert quadrilaterals. The fourth angle of Lambert quadrilateral EFIJ is 150º. 
Lambert quadrilateral EGHJ actually has four right angles, but it is not a rectangle, since 
side GH is shorter than side EJ. On the other hand, an argument could be made that 
Lambert quadrilateral EGHJ is a rectangle, since opposite sides are parallel. 
 

 
Figure 23. The relative angle after passing an elliptic and a hyperbolic vertex is the same. 
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Other Objects in an s-Manifold 

Segments 
Our s-lines correspond naturally to the real line, since they extend indefinitely and are 
continuous. Given a point P on an s-line l and a direction along l, we can define a 
mapping from R to l that satisfies the following conditions. The origin maps to P. For 
each x > 0, we can look a distance x along l in the given direction to find a point Q, and x 
maps to this point Q. The image for each x < 0 is found by traveling in the other 
direction. In terms of this distance function, the real numbers cover the s-line. In the 
case of a closed s-line, R covers the s-line an infinite number of times. We could, if we 
wanted, define an s-segment to be any part of an s-line that corresponds to a closed 
interval on the real line. If we were to choose this definition, a closed s-line, like a great 
circle on the sphere, could be covered by an s-segment more than once. This would be 
interesting from a Smarandache point of view, but we will use a more conservative 
concept by adding the requirement that an s-segment will never completely cover an s-
line (self-intersections are OK). We should expect that this definition will provide us with 
s-segments that have properties we might not expect, but we should never have doubts 
that any of these should be called an s-segment. 
 

 
Figure 24. An s-proto-circle around an elliptic vertex. 
 

Circles 
We will do little with circles here, beyond considering whether they exist or not. In order 
to do that, we will need to define what will qualify as a circle. It is fairly standard to 
define a circle as the set of points a fixed distance from a given point. We could do this, 
but then existence would not be an issue, and we might have some odd things being 
called circles. Using Euclid as a standard, we will define circles as follows. An s-proto-
circle with center C and radius r is the set of points P that have an s-segment CP with 
length r. Euclid defined a circle to be, “a plane figure contained by one line such that all 
the straight lines falling upon it from one point among those lying with the figure are 
equal to one another; and the point is called the centre of the circle” [9]. With this in 
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mind, we will say that an s-proto-circle is an s-circle, if it is a simple closed curve. Given 
a point C and a radius r, if the s-proto-circle is an s-circle, we will say that the s-circle 
exists. 
 
In Figure 24, we have an s-proto-circle around an elliptic vertex. Since there are three 
ways for an s-line through C to get into the upper-right triangular disk, there are three 
parts to the s-proto-circle in the region. For those s-segments (s-radii) that pass to the 
right of the elliptic vertex, their endpoints lie on the continuation of the s-proto-circle 
from below. For those s-segments that pass to the left of the elliptic vertex, their 
endpoints lie on the continuation of the s-proto-circle through the point A. The point P is 
the endpoint of the s-segment that passes through the elliptic vertex, and it lies just inside 
of the two arcs. Since this s-proto-circle is not a simple closed curve, the s-circle with 
center C and this radius does not exist. 
 
Around a hyperbolic vertex, s-proto-circles will have an open region instead of 
overlapping (an example is shown in the non-geometry section of Chapter 3), and away 
from non-Euclidean vertices, s-proto-circles will look like Euclidean circles in the 
Euclidean plane. Clearly then, s-circles exist away from the non-Euclidean vertices, and 
medium sized s-circles do not exist near non-Euclidean vertices. If the center of an s-
circle lies on a vertex, then the s-circle also exists (although its circumference may be a 
bit larger or smaller than 2πr).  
 
Question. Are there s-circles other than these? In particular, are there s-circles that 
contain non-Euclidean vertices? Also, how wild can an s-proto-circle be? For example, 
can an s-proto-circle be shaped like a figure-8? 
 

Angles 
When two lines meet, there will always be at least a short (and straight) line segment 
corresponding to each side, so no great leap is needed to define what an angle is. The 
only thing that is unusual is that angles around an elliptic vertex or hyperbolic vertex will 
sum to 300º or 420º. It should be clear why this is the case. 
 

Parallel lines 
In the study of manifolds, the notion of parallel lines is of secondary interest. It is of 
primary interest in the study of synthetic (axiomatic) geometry. Here, the concept of 
parallel lines defines the differences between Euclidean, elliptic, and hyperbolic 
geometry, and whether two lines intersect, or not, determines if they are parallel (at least 
in two dimensions, which is where our interests lie). On a manifold, it is curvature that 
differentiates Euclidean, elliptic, and hyperbolic geometry, and the important phenomena, 
the local ones, are determined by curvature, and whether lines intersect, or not, 
somewhere else in the space has little bearing. So while it is normal in a differentiable, or 
a Riemannian, manifold for the curvature, and therefore, the geometry, to change from 
region to region, this does not necessarily carry over to the relationships between lines, or 
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geodesics. This is, in fact, one of the major issues that is before us here. We will take the 
synthetic definition of parallel, that is, two s-lines are parallel, if they do not intersect. 
We will look to see how this definition plays out in the world of manifolds. 
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Chapter 2. Hilbert’s Axioms 
In a Smarandache geometry, we want to look at how the Euclidean or non-Euclidean 
structure changes from place to place. Since Hilbert’s axioms cover Euclidean geometry 
at an axiomatic level, this seems to be a reasonable place to start. Several of Hilbert’s 
axioms will hold in any s-manifold, but most will be S-deniable in an s-manifold. The 
continuity of s-manifolds will make it impossible to S-deny all of Hilbert’s axioms, and 
our choice to have congruence to be an equivalence relation further reduces our ability to 
S-deny Hilbert’s axioms. Most of Hilbert’s axioms will be S-deniable, however, and we 
will see a wide variety of geometric structures in intuitively manageable spaces. 
 
Hilbert separated his set of axioms into groups, and we will break them up the same way. 

Incidence 
Hilbert’s axioms of incidence for plane geometry are as follows [14].  
 
I-1. For every two points A and B, there exists a line a that contains each of the points A 
and B. 
 
I-2. For every two points A and B, there exists no more than one line that contains each 
of the points A and B. 
 
I-3. There are at least two points on a line. There are at least three points not on a line. 
 
In Euclidean geometry, and in the elliptic geometry of Riemann and the hyperbolic 
geometry of Bolyai, Lobachevski, and Gauss, there is exactly one line through a pair of 
points, as is required in axioms I-1 and I-2. This is not quite the case in spherical 
geometry. Pairs of antipodal points, the north and south poles, for example, have an 
infinite number of lines (great circles) through them. There is, however, a unique line 
through any pair of non-antipodal points. On the sphere, therefore, the axiom requiring 
that pairs of points determine a unique line is S-denied (it is true for some pairs and false 
for others), and the sphere is a Smarandache geometry with respect to this axiom. 
 
In an s-manifold, there are a number of ways in which a pair of points does not determine 
a unique s-line. We will say that if a pair of points has exactly n s-lines passing through 
them, then they are n-aligned. In Euclidean geometry, all pairs of points are 1-aligned. 
We will say that pairs of points with infinitely many s-lines through them, like antipodal 
points on the sphere, are ∞-aligned. Occasionally, we will also call pairs of points that are 
0-aligned remote, n-aligned points with n ≥ 2 multiply aligned, and pairs of 1-aligned 
points uniquely aligned. 
 
Since s-lines in an s-manifold are extensions of line segments, every s-line will have at 
least two points. There will also be three points not on any given s-line. The only 
conceivable exception would be an s-line that completely covered an s-manifold. In this 
case, all the points of the s-manifold would be on the s-line, and none off of it. This 
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cannot happen, however. If we had such an s-line, then each triangular disk would be 
covered by a countable number of segments. This could not happen for an s-line that 
followed an edge of a triangular disk, since such an s-line would only run along the edges 
of or bisect any particular disk. Therefore, each segment in any particular disk must 
intersect the boundary of the triangular disk at most twice. The s-line, therefore, could 
only cover a countable number of points on the perimeter of the disk. It follows that this 
s-line could not cover the entire s-manifold. 
 
We see then that Hilbert’s third incidence axiom will hold for every s-manifold, and 
cannot be S-denied. 
 

 
Figure 1. The elliptic cone-space. 
 

Incidence around an elliptic vertex 
The s-manifold shown in Figure 1 has a single elliptic vertex O. Here, the edges 
containing the points O, E, and C are identified, and the space extends to infinity with 
only Euclidean vertices. We will call this the elliptic cone-space, since a paper model of 
this s-manifold is cone-shaped (see the posts of Joan Duncan and Ken Prasad at [2]). The 
s-lines a and b illustrate that the points A and B are at least 2-aligned. Further 
consideration makes it clear that the s-line b is the only s-line that passes to the right of 
the point O and through A and B, and that the s-line a is the only s-line that passes to the 
left of O. Therefore, the points A and B are, in fact, 2-aligned. There are three s-lines 
passing through the pair of points A and E, one to the left of O, one to the right, and the 
singular s-line through O. The points A and E are therefore 3-aligned. The points A and 
O satisfy a third category of alignment. They are uniquely aligned. Hilbert’s axiom I-2, 
therefore, is S-denied, and the elliptic cone-space is a Smarandache geometry relative to 
this axiom. 
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Two-sided polygons 
If two points are multiply aligned there is a 2-sided figure with these points as vertices. 
These are called 2-gons. It is interesting to note that 2-gons in the elliptic cone-space 
have an angle sum that is almost always 60º. If the two sides of a 2-gon do not pass 
through the elliptic vertex (a singularity), we will call it a non-singular 2-gon. We then 
have the following elliptic cone-space theorem. 
 
Theorem. The angle sum of a non-singular 2-gon in the elliptic cone-space is 60º. 
(Singular 2-gons have an angle sum of 30º.) 
 
Consider the 2-gon AB in Figures 1 and 2. The triangles AOC and AOE are Euclidean 
triangles (singular 2-gons), and the angles ∠AOC and ∠AOE both measure 150º. 
Therefore, ∠OAE + ∠OEA = 30º and ∠OAC + ∠OCA = 30º. The angles ∠OEA and 
∠BEC are equal, since they are vertical angles. Since the triangle BCE is a Euclidean 
triangle, it has an angle sum of 180º, and ∠BCE + ∠BEC = ∠EBA (an exterior angle). 
The angle sum of the 2-gon AB is ∠EAB + ∠EBA = (∠OAE + ∠OAB) + (∠BCE + 
∠BEC) = (∠OAE + ∠BEC) + (∠OAB + ∠BCE) = (∠OAE + ∠OEA) + (∠OAC + 
∠OCA) = 30º + 30º = 60º. This is not completely general, but a trivial general proof can 
be obtained from the s-manifold Gauss-Bonnet theorem. 
 

 
Figure 2. Paper model corresponding to Figure 1. 
 
This result can be extended easily to other polygons. For example, a triangle with the 
elliptic vertex O in its interior will have an angle sum of 240º. If one of the sides of the 
triangles passes through O, then the angle sum is 210º. Otherwise, the angle sum is the 
Euclidean 180º. 
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Alignment regions 
With respect to the point A in Figure 3, all of the points in the interior of the shaded 
region are 2-aligned, except for the points on the ray OC (which are in the interior), 
which are 3-aligned (not including O) (see the posts of Mike Antholy [2]). The s-lines 
just missing the elliptic vertex O, like the line a in Figure 3, will approach the lower 
boundary of the shaded region, but the singular line through O will continue through C. 
The region including the boundaries and below consists entirely of points that are 
uniquely aligned with A. 
 

 
Figure 3. Regions that are 1-, 2-, and 3-aligned with A. 
 

 
Figure 4. The hyperbolic cone-space. 
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Alignment around a hyperbolic vertex 
The hyperbolic cone-space is an s-manifold that has a single hyperbolic vertex, as 
indicated in Figure 4. A paper model of this cone-space would not be cone shaped in the 
usual sense, but it is common to call the object formed by joining all of the points on a 
curve to a single point with line segments a cone. In Figure 4, it appears that the left and 
right regions will overlap if the picture is extended upwards, but these regions are meant 
to be disjoint except for the boundaries, which are identified. In particular, the s-lines a 
and c only intersect at A. 
 
 

 
Figure 5. Paper model corresponding to Figure 4. 
 

Alignment regions 
The only s-line through A that enters the shaded region of Figure 4 is the singular s-line 
c. Therefore, all of the points in this region, except for the points on the ray OB, are 0-
aligned with A. Except for the vertex O, the boundaries are included in the 0-aligned 
region. All other points are uniquely aligned, so Hilbert’s axiom I-1 requiring that any 
pair of points determine at most one line is Smarandachely denied, and the hyperbolic 
cone-space is a Smarandache geometry relative to this axiom. 
 

Higher Order Alignment 
It is certainly possible in an s-manifold to get higher orders of alignment. For example, in 
Figure 6, we have a pair of points that are 5-aligned. From P, there is an s-line that goes 
directly to Q, one that goes around the elliptic vertex B, one that passes through both 
elliptic vertices, one that goes around the elliptic vertex A, and one that goes around both 
elliptic vertices. Using more non-Euclidean vertices opens the possibility of even more s-
lines through a pair of points. 
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Figure 6. The points P and Q are 5-aligned. 
 

 
Figure 7. The points P and Q are ∞-aligned. 
 
We can also get multiple alignments as a result of topology. In Figure 7, we have a 
cylindrical s-manifold. The points on the top and bottom are identified, and the figure 
extends indefinitely to the right and left. The s-line a runs along the cylinder and passes 
through both P and Q. The s-line b wraps around the cylinder once, while s-lines c and d 
wrap around twice and three times. Instead of passing through P in a downward direction, 
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there are also s-lines passing through upwards that wrap around the cylinder one, two, 
and three times. In fact, for every positive integer n, there are two s-lines that pass 
through both P and Q and wrap around n times. The points P and Q are therefore ∞-
aligned. All pairs of points on the cylinder are ∞-aligned, except for points that are lined 
up vertically. These are uniquely aligned. 
 

 
Figure 8. Paper model corresponding to Figure 7. 
 

Angle sums of triangles 
There are no 2-gons in the hyperbolic cone-space, but we can determine the angle sum of 
a triangle in this space (see the posts beginning with those of Dacosta Teresinha and Joan 
Duncan [2]). A triangle will have an angle sum of 120º, 150º, or 180º depending on 
whether the hyperbolic vertex O is inside the triangle, on the interior of one of its sides, 
or otherwise. In Figure 9, triangle ABC has angle sum 120º, and triangle DEF, which 
contains no non-Euclidean vertices, has angle sum 180º 
 
For triangle ABC in Figure 9, we can compute its angle sum as follows. The non-convex 
pentagon ABGOH is a Euclidean figure, so 540º = ∠HAB + ∠ABG + ∠BGO + ∠GOH 
+ ∠OHA, and ∠GOH = 240º. Therefore, ∠HAB + ∠ABG + ∠BGO + ∠BGO + ∠OHA 
= 300º. The triangle CGH is also a Euclidean figure, so 180º = ∠CGH + ∠GHC + 
∠HCG. The vertical angles across the cut at G and H are congruent, so ∠BGO + ∠CGH 
= 180º, and ∠OHA + ∠GHC = 180º. Adding the angles of the pentagon ABGOH to the 
angles of the triangle CGH, and subtracting the straight angles at G and H, we have that 
∠HAB + ∠ABG + ∠HCG = 120º. 
 
This angle sum analysis can, of course, be extended to polygons with four or more sides. 
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Questions about alignment 
Is it possible to have pairs of points of all possible varieties of alignment in a single s-
manifold? 
 
Given a point A in an s-manifold, is it possible that there are points of all possible 
varieties of alignment with A? 
 
The 2-aligned region in the elliptic cone-space is open (does not contain boundary 
points), and the 0-aligned region in the hyperbolic cone-space is closed (contains all 
boundary points). Is there some underlying principle being manifested here? 
 

 
Figure 9. These are triangles around and near a hyperbolic vertex. 
 

 
Figure 10. Paper model corresponding to Figure 9. 
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Betweenness 
Hilbert’s axioms of betweenness are as follows [14]. 
 
II-1. If a point B lies between points A and C, then the points A, B, and C are distinct 
points of a line, and B also lies between C and A. 
 
II-2. For two points A and C, there always exists at least one point B on the line AC such 
that C lies between A and B. 
 
II-3. Of any three points on a line, there exists no more than one that lies between the 
other two. 
 
II-4. Let A, B, and C be three points that do not lie on a line, and let a be a line which 
does not meet any of the points A, B, and C. If the line a passes through a point of the 
segment AB, it also passes through a point of the segment AC, or through a point of the 
segment BC. 
 
Probably the most intuitive notion of a point C lying between two other points A and B 
corresponds to C lying in the interior of the line segment AB. This works perfectly well 
in the Euclidean plane, but it introduces some ambiguity when pairs of points are not 1-
aligned, and we have seen that we have points that are not 1-aligned in s-manifolds. We 
would expect a variety of structures, therefore, regarding betweenness in an s-manifold. 
 
We will say that C lies completely between, or simply between, A and B, if it lies in the 
interior of every possible s-segment AB. We will also say that C lies partially between 
A and B, if it lies in the interior of at least one of the s-segments AB, but not all of them. 
Otherwise, C is not between A and B.  
 
If a point C is partially between A and B, we may describe the situation more explicitly 
by saying that C is x%-between A and B, where x is the percentage of s-segments that C 
lies on out of all that are possible. For example, on the sphere, if A and B are two non-
antipodal points, they are joined by two segments, the short and long arcs of the unique 
great circle through A and B. If C lies on one of these segments, it will not lie on the 
other, so C would be 50%-between A and B. We will only use this description for points 
that are partially between, so 100%-between is distinct from completely between, and 
0%-between is distinct from not between. For example, every point on the sphere, other 
than the north and south poles, is partially between the two poles. Each of these points 
lies on exactly one segment joining the poles out of infinitely many that are possible. 
Each of these points, therefore, would lie 0%-between the north and south poles. It may 
be difficult or impossible to determine a well-defined percentage in the case that there are 
infinitely many possible segments when 0%- and 100%-between do not apply. 
 
We have defined (completely) between with the idea that there may be multiply aligned 
pairs of points, A and B, with a point C that lies on all of the s-segments AB. Figure 11 
shows that this can occur in an s-manifold. 
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Figure 11. The point R lies completely between P and Q. 
 

 
Figure 12. The s-line AE has a self-intersection at G. 
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In Figure 11, the two elliptic vertices A and B allow three paths from P to Q. The two 
hyperbolic vertices C and D prevent any s-lines through P and Q from passing on the 
same side of the two elliptic vertices, so these three s-lines are the only ones that pass 
through P and Q. The point R, therefore, lies completely between P and Q. 
 
In the following, reference is made to s-lines with self-intersections. Figure 12 indicates 
one way that this can happen. Here, we have a cylinder capped off with six elliptic 
vertices. The s-line shown actually has infinitely many self-intersections, since each end 
is essentially a helix. We could prevent further self-intersections by inserting five 
hyperbolic vertices at the left edge, which will open the cylinder out into a sort of cone. 
 
 

 
Figure 13. Paper model corresponding to Figure 13. 
 
Axiom II-1. If a point B lies between points A and C, then the points A, B, and C are 
distinct points of a line, and B also lies between C and A. 
 
This axiom holds, for the most part, in any s-manifold, since our definition of between 
states that the point must lie on an s-segment. The one exception is that the points A, B, 
and C need not be distinct. Since an s-line can have a self-intersection, a point A could lie 
in the interior of an s-segment AC according to our definition. Figure 14 illustrates how 
this could happen. The s-segment GFGA in Figure 12 is an example of such an s-
segment. Therefore, S-denials of axiom II-1 occur in s-manifolds, but only in regards to 
the distinctness of the three points. 
 
Axiom II-2. For two points A and C, there always exists at least one point B on the line 
AC such that C lies between A and B. 
 
If the s-line AC exists, then there clearly must be a continuum of points B such that C lies 
at least partially between A and B. This axiom may fail in several ways. The s-line AC 
may not exist. We have seen examples of pairs of points that are remote. We have also 
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seen pairs of points A and B that are 2-aligned forming two segments AC with disjoint 
interiors. In this case, as in Figure 15, C lies partially between A and B, but not 
completely between A and B. S-denials of this axiom are, therefore, quite common 
around non-Euclidean vertices. 
 

 
Figure 14. The point A lies in the interior of the segment AC. 
 

 
Figure 15. The point C lies only partially between A and B. 
 

 
Figure 16. The s-line a enters triangle ABC through side AB, but never leaves. 
 
Axiom II-3. Of any three points on a line, there is no more than one that lies between the 
other two. 
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There are closed s-lines (closed like a circle), so each of three points on a closed s-line is 
partially between the other two.  
 
Conjecture. This axiom holds in every s-manifold when completely between is used for 
between. 
 

 
Figure 17. The s-line a enters and leaves the triangle ABC through the side AB. 
 

 
Figure 18. Paper model corresponding to Figure 17. 
 
Axiom II-4. Let A, B, and C be three points that do not lie on a line, and let a be a line 
which does not meet any of the points A, B, and C. If the line a passes through a point of 
the segment AB, it also passes through a point of the segment AC, or through a point of 
the segment BC. 
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This is Pasch’s axiom, and it states roughly that an s-line that enters a triangle through 
one of its sides must exit through one of the others. This axiom can fail in an s-manifold 
in several ways.  
 
One would be that the s-line enters, but never leaves. This can happen if the inside of the 
triangle is connected to the outside or is infinite in extent, and would be an indication that 
the topology is non-trivial. In Figure 16, triangle ABC wraps around a cylindrical s-
manifold. The s-line a intersects side AB, but it does not intersect either of the other two 
sides. 
 
This axiom also fails if an s-line were to exit through the same side. This occurs in the 
case that two points on one side are multiply aligned, as shown in Figure 17. Here the s-
lines a and AEB pass on either side of an elliptic vertex. 
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Congruence 
Hilbert’s axioms of congruence are as follows [14]. 
 
III-1. If A and B are two points on a line a, and A′ is a point on a line a′ then it is always 
possible to find a point B′ on a given side of the line a′ through A′ such that the segment 
AB is congruent to the segment A′B′. 
 
III-2. If a segment A′B′ and a segment A′′B′′ are congruent to the segment AB, then the 
segment A′B′ is also congruent to the segment A′′B′′. 
 
III-3. On the line a, let AB and BC be two segments which except for B have no point in 
common. Furthermore, on the same or on another line a′, let A′B′ and B′C′ be two 
segments, which except for B′ also have no point in common. In that case, if AB is 
congruent to A′B′ and BC is congruent to B′C′, then AC is congruent to A′C′. 
 
III-4. Every angle can be copied on a given side of a given ray in a uniquely determined 
way. 
 
III-5. If for two triangles ABC and A′B′C′, AB is congruent to A′B′, AC is congruent to 
A′C′, and ∠BAC is congruent to ∠B′A′C′, then ∠ABC is congruent to ∠A′B′C′. 
 
Given two points A and B, the s-segment AB is not necessarily well-defined, if it is exists 
at all, since A and B may not be uniquely aligned. We can talk about some s-segment AB, 
however, with the understanding that we are talking about a particular s-segment AB and 
that we will make it clear if we wish to consider a different s-segment with the same 
endpoints. We will assume that an s-segment AB has a direction associated with it and 
that A is the starting point and B is the ending point. Given two s-segments AB and CD, 
we will define the distance map from AB to CD as follows. The point A maps to the 
point C, and each point P on AB is mapped to the point Q on CD such that the distance 
from A to P along the s-segment AB is the same as the distance from C to Q along the s-
segment CD. We will say that the s-segments AB and CD are s-congruent, if the 
distance map exists and is a one-to-one correspondence. If two s-segments have no self-
intersections, they are s-congruent if they have the same length, so this definition agrees 
with the notion of congruence of segments in Euclidean geometry. 
 

 
Figure 19. The s-segment AB (the longer one) is not s-congruent to the s-segment BA. 
 
With s-congruence defined this way, an s-segment AB is always s-congruent to itself, but 
not necessarily to the inverse s-segment BA. If B lies in the interior of AB, as in Figure 
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19, the distance map from AB to BA would have A and some interior point mapping to 
B, and so it could not be one-to-one, and since B would have to map to two points, the 
distance map would not even be well-defined. 
 
Axiom III-1. If A and B are two points on a line a, and A′ is a point on a line a′ then it is 
always possible to find a point B′ on a given side of the line a′ through A′ such that the 
segment AB is congruent to the segment A′B′. 
 
In an s-manifold, it is always possible to find a point on an s-line any distance from a 
point in either direction. There may not be an s-segment with this length between the two 
points, however, since we require that an s-segment cannot completely cover an s-line. 
For example, if the s-line is closed like a circle and has length 2, then starting from some 
point A, we may travel a distance 3 in one direction and there will be a point on the s-line 
at this position, but since s-segments cannot cover an s-line completely, there is no 
associated s-segment. If the s-segment exists, then s-congruence is not guaranteed if there 
are self-intersections. For example, in Figure 20, even if AB and CD are the same length, 
they could not be s-congruent. We have seen examples of closed s-lines and s-lines with 
self-intersections, so this axiom is S-deniable in an s-manifold. 
 

 
Figure 20. The s-segments AB and CD are not s-congruent. 
 
Axiom III-2. If a segment A′B′ and a segment A′′B′′ are congruent to the segment AB, 
then the segment A′B′ is also congruent to the segment A′′B′′. 
 
We have chosen a relatively conservative definition for s-congruence, so we cannot S-
deny this axiom in an s-manifold. Clearly, since one-to-one correspondence is preserved 
under composition, s-congruence of s-segments is transitive. In fact, our definition of s-
congruence satisfies the properties of an equivalence relation, i.e., it is reflexive, 
symmetric, and transitive. Using a notion of congruence that was not an equivalence 
relation would complicate the study of all related issues immensely. As it is, this axiom 
always holds in an s-manifolds. 
 
One alternative to s-congruence that has greater “S-deniability” is the following. We only 
mention this, and we will not pursue this further in this book. We could define the q-
segment AB to be the collection of all s-segments with endpoints A and B. The “q” 
refers to quantum physics, which inspires this definition, although fuzzy logic would be a 
more appropriate reference. In any case, each particular mention of the q-segment AB 
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refers to a particular s-segment with probability determined by the total number of s-
segments. Two q-segments AB and CD are x%-q-congruent, if x% is the probability 
that the particular s-segments AB and CD have the same length. For example, let A and B 
be two non-antipodal points on the sphere. Then the q-segment AB consists of the two 
arcs of the great circle through A and B. Since there are two segments AB, each one 
occurs with probability 50%. Comparing AB with itself, there are four possibilities all 
occurring with equal probability, short-short, short-long, long-short, and long-long. The 
short-short and long-long possibilities compare segments of the same length, so the q-
segment AB is 50%-q-congruent with itself. 
 
Axiom III-3. On the line a, let AB and BC be two segments which except for B have no 
point in common. Furthermore, on the same or on another line a′, let A′B′ and B′C′ be 
two segments, which except for B′ also have no point in common. In that case, if AB is 
congruent to A′B′ and BC is congruent to B′C′, then AC is congruent to A′C′. 
 
We have additivity of length for s-segments in an s-manifold, but this does not 
necessarily extend to s-congruence. In Figure 21, the s-segments AB and DE could be s-
congruent, as could s-segments BC and EF, but the s-segments AC and DF, while being 
the same length, would not be s-congruent. Of course, the s-segments DE and EF have 
more than the point E in common, but it seems that they satisfy the basic intent of the 
axiom. Therefore, this axiom is S-deniable in the sense that s-congruence is not additive, 
but as stated, it holds in all s-manifolds, as long as the s-segments AC and A′C′ exist. 
 

 
Figure 21. The s-segments AC and DF could not be congruent. 
 
The measure of an angle carries over reasonably from Euclidean geometry. By the 
measure of a given angle, we will mean the smallest non-negative one. For example, in 
the plane, we can say that an angle that measures 90° also measures 270°, but we will 
think of these as being equivalent. We will say that two angles are congruent if their 
measures are the same. 
 
Axiom III-4. Every angle can be copied on a given side of a given ray in a uniquely 
determined way. 
 
An angle that emanates from an elliptic vertex can measure at most 150°, and one that 
emanates from a hyperbolic vertex can measure up to 210°. There are limitations, 
therefore, in copying an angle emanating from a hyperbolic vertex and in copying an 
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angle to an elliptic vertex. For any s-manifold that has a hyperbolic vertex and an elliptic 
vertex, any angle measuring more than 150° cannot be copied to a ray emanating from an 
elliptic vertex, so this axiom would be S-denied. A similar statement can be made for any 
s-manifold with a non-Euclidean vertex. 
 
Axiom III-5. If for two triangles ABC and A′B′C′, AB is congruent to A′B′, AC is 
congruent to A′C′, and ∠BAC is congruent to ∠B′A′C′, then ∠ABC is congruent to 
∠A′B′C′. 
 
In Euclidean geometry, this axiom extends to the SAS theorem for congruence of 
triangles. In an s-manifold, however, the angle sums can vary, so this axiom will 
generally be false if the angle sums of the two triangles are different. In Figure 22, we 
have three points A, B, and C near an elliptic vertex, and the points B and C are 2-
aligned. Therefore, there are two possible sides BC, even though the angle ∠BAC and 
sides AB and AC are the same for both triangles. This axiom is S-denied in any s-
manifold with an elliptic vertex. 
 

 
Figure 22. The SAS criteria are satisfied for two different triangles near this elliptic 
vertex. 
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Parallels  
Euclid’s fifth postulate states, “If two lines are cut by a transversal so that the interior 
angles on one side are less than two right angles, then the two lines will intersect on that 
side,” [9]. Implicit here is that if the angles are greater than or equal to two right angles, 
then the lines will not intersect on that side. Clearly then, the two lines will be parallel, if, 
and only if, the angles equal two right angles. In other words, given a line a and a point P 
not on a, there is exactly one line through P that is parallel to a. This is essentially 
Playfair’s postulate, although Hilbert was able to weaken this to, “there is at most one 
line through P that is parallel to a,” since the existence of parallels can be established 
from other axioms or postulates. 
 
Non-Euclidean geometry started, for the most part, with Bolyai, Lobachevski, and Gauss, 
and their hyperbolic geometry can be obtained from Hilbert’s axioms by replacing the 
parallel axiom with a statement like, “Given a line a and a point P not on a, there are at 
least two lines through P that are parallel to a” (see [3]). Hilbert’s other axioms establish 
that all of the lines “in between” these two parallels must also be parallel. In hyperbolic 
geometry, therefore, there are always infinitely many parallels. 
 
The elliptic geometry of Riemann requires that there be no parallel lines (and clearly 
Hilbert’s other axioms are not consistent with this requirement, so other axioms will 
differ).  
 
In a Smarandache geometry in which the parallel postulate is S-denied, the number of 
parallels will change throughout the space, and this will depend on the point P and the 
line a. We will define our notions of Euclidean, elliptic, and hyperbolic, therefore, as a 
relationship between a point and an s-line. We will say that a point P is Euclidean 
relative to an s-line a, if there is exactly one s-line through P that is parallel to a. We 
will define the other terms similarly. Let P be a point not on an s-line a. The point P is 
elliptic relative to a, if there are no parallels through P, and P is hyperbolic relative to 
a, if there are at least two parallels through P. 
 
If a point P is hyperbolic relative to an s-line a, Smarandache recognized a variety of 
ways in which this could happen [19]. There could be a finite number of parallels, and 
there could be infinitely many parallels. It could also be that all or almost all of the s-lines 
through P are parallel. We will expand the definition of hyperbolic as follows. If there are 
only finitely many parallels through P (but at least two), P is finitely hyperbolic relative 
to a. In the case that there are infinitely many parallels through P, we will say that P is 
regularly hyperbolic if there are infinitely many non-parallels through P, extremely 
hyperbolic if there are only finitely many non-parallels (but at least one), and completely 
hyperbolic if there are no non-parallels. We can make the finitely hyperbolic definition 
more explicit by saying that P is n-hyperbolic when there are exactly n parallels through 
P. 
 
In the Euclidean plane, all points are Euclidean relative to every line. We will shorten this 
to all points are Euclidean. Similarly, all points are hyperbolic in the hyperbolic geometry 
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of Bolyai, Lobachevski, and Gauss, and all points are elliptic in the elliptic geometry of 
Riemann. All points are elliptic in spherical geometry, as well. 
 

Elliptic points 
There are elliptic points in the elliptic cone-space. Roughly, a point will be elliptic 
relative to an s-line, if the elliptic vertex lies between them. More precisely, given an s-
line a that does not pass through the elliptic vertex, there is a continuum of s-lines that are 
parallel to a in the Euclidean sense that approach the elliptic vertex. All points beyond 
these s-lines are elliptic relative to a. This is illustrated in Figure 23. 
 

 
Figure 23. The point P is elliptic relative to the s-line a. 
 

 
Figure 24. Paper model corresponding to Figure 23. 
 
Towards the right, the angle for c at P relative to a is 90º (recall the definition of a 
relative angle), so c is parallel at P. Since the rest of the space is Euclidean, c is parallel to 
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a everywhere to the left. Clearly, any s-line through P with an angle greater than 90º 
(towards the right) will intersect a on the left. Since the angle decreases by 60º as we 
move to the right, any s-line through P with an angle less than 150º will intersect a on the 
right. It follows that all s-lines through P will intersect a at least once, and those lines 
with angles strictly between 90º and 150º will intersect a twice. P is, therefore, elliptic 
relative to the s-line a. 
 

Regularly hyperbolic points 
We can find hyperbolic points in the hyperbolic cone-space. In general, if there is a 
hyperbolic vertex between a point P and an s-line a, then the point P will be regularly 
hyperbolic relative to a. 
 

 
Figure 25. The point P is regularly hyperbolic relative to the s-line a. 
 

 
Figure 26. Paper model corresponding to Figure 25. 
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In Figure 25, towards the left, the line c is parallel to a at P. The angle for c increases by 
60º to the left of O, so c is parallel. Since the angles increase by 60º as we move to the 
left of O, all of the s-lines with angles between 30º and 90º (inclusive) are parallel to a. 
All other s-lines will intersect a. There are a continuum of s-lines through P that are 
parallel and a continuum of s-lines that are not parallel. P is, therefore, regularly 
hyperbolic relative to a.  
 

Finitely hyperbolic points 
In the hyperbolic geometry of Bolyai, Lobachevski, and Gauss, where all of the points 
are regularly hyperbolic, it is sufficient to require that there exist at least two lines 
through a given point and parallel to a given line, since it can be proven that the in 
between lines are also parallel. This is generally the case in an s-manifold, as can be seen 
in the previous section, but not always. 
 

 
Figure 27. The point P is finitely hyperbolic relative to the s-line through C. 
 
In Figure 27, the vertex B is a hyperbolic vertex, and the point P is hyperbolic relative to 
the line a. Towards the left, the s-lines b and c have angles 30º and 90º at P relative to a. 
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The space is Euclidean to the right of P, so the s-lines b and c will not intersect a to the 
right of P. 
 

 
Figure 28. Paper model corresponding to Figure 27. 
 
There are three other non-Euclidean vertices in this space, one additional hyperbolic 
vertex, A, and two elliptic vertices, G and H. One effect of these vertices is that they 
cause all of the s-lines between b and c to turn towards a while leaving b and c parallel. 
 
The s-line b has an angle 30º relative to a at P. The hyperbolic vertex B increases this to 
90º. The s-line a passes through the hyperbolic vertex A and the elliptic vertex G. This 
increases the angle by 30º, and then decreases it by 30º back to 90º. Therefore, b remains 
parallel to a to the left. 
 
The s-line c has both hyperbolic and both elliptic vertices between it and a. The angle for 
c is 90º relative to a at A, and the changes towards the left are +60º, +60º, −60º, and −60º. 
Therefore, c is also parallel to a on the left. 
 
The four non-Euclidean vertices also lie between a and those s-lines with angles strictly 
between 30º and 90º. Therefore, all of these s-lines will have an angle strictly between 
30º and 90º to the left of B, A, G, and H. They must, therefore, intersect a. The s-line d 
shown in Figure 27 is typical of these intermediate s-lines.  
 
All of the other s-lines through P are clearly not parallel, so there are exactly two s-lines 
through P that are parallel to a, and therefore, P is finitely hyperbolic relative to a. 
 
Question. It seems reasonable to expect that more extensive configurations would yield 
points with exactly there or exactly four parallels to a given s-line. Do these exist? 
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Extremely hyperbolic points 
A basic assumption in geometry is that there is a line through any two points. In this case, 
for a point P not on a line a, there are infinitely many lines through P that intersect a, one 
passing through each point of a. 
 
In an s-manifold, we have seen that there can be pairs of points that are remote, or 0-
aligned. This means that there are pairs of points that do not lie on the same s-line. This 
opens up the possibility of extremely hyperbolic and completely hyperbolic points, which 
do not have an infinite number of non-parallels relative to some s-line. 
 
We know that each hyperbolic vertex that lies between two s-lines increases the relative 
angle by 60º. Three hyperbolic vertices, therefore, could take two s-lines that are ± εº 
relative to a third s-line to ± (90 + ε)º. This could force all, or almost all, of the s-lines 
through some point to be parallel to some s-line. 
 

 
Figure 29. The point P is extremely hyperbolic relative to the s-line a. 
 
This is illustrated in Figure 29. The vertices A, B, and C are hyperbolic (D is also 
hyperbolic, but will be discussed later), and these lie in between the point P and the s-line 
a. The s-line b runs through the points D, P, and A, and it intersects the s-line a. In the 
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downward direction, the s-line c has an angle larger than 90º near P, relative to b. Since 
the s-line b passes through the hyperbolic vertex A, this angle is increased by 30º (when 
the hyperbolic vertex lies on one of the s-lines, the effect is half of what it would be if the 
vertex were strictly between the s-lines). The angle is increased further by 60º, since the 
hyperbolic vertex B lies between the s-lines. Therefore, the angle of c is eventually more 
than 180º relative to b. It follows that the angle of c is greater than 90º relative to a, and a 
and c are parallel. This would be true of any s-line through P that passed to the right of A. 
It would be equally true of any s-line through P that passed to the left of A. Therefore, 
only one s-line through P intersects the s-line a, and P is extremely hyperbolic relative to 
a.  
 

 
Figure 30. The point Q is completely hyperbolic relative to the s-line a. 
 

Completely hyperbolic points 
A completely hyperbolic point would have no non-parallels relative to some s-line a. The 
space shown in Figure 29 contains completely hyperbolic points relative to the s-line a. 
One of these is shown in Figure 30. 
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In Figure 30, the point Q has four hyperbolic vertices between it and the s-line a. It is also 
off the s-line b from Figure 29. The s-line d passes through the hyperbolic vertex D, and 
then passes to the right of A. The s-line d is clearly parallel to a, as is any line through Q 
to the right of d. Any s-line through Q that passes to the left of the hyperbolic vertex D 
and also the vertex A is also parallel to the s-line a. Therefore, every s-line through P is 
parallel to the s-line a, and P is completely hyperbolic relative to a. 
 
Question. We have an example here of an extremely hyperbolic point with exactly one 
non-parallel. It seems reasonable to expect that some configuration like that used in the 
finitely hyperbolic example could yield exactly two or exactly three non-parallels. Does 
such a configuration exist? 
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Chapter 3. Smarandache Geometries 
The reasons for investigating s-manifolds grew out of the search for examples of several 
particular types of Smarandache geometries proposed by Smarandache [19]. This chapter 
presents examples and partial examples of s-manifold Smarandache geometries in these 
categories. 
 

Paradoxist Geometries 
Smarandache called a geometry paradoxist if there are points that are elliptic, Euclidean, 
finitely hyperbolic, regularly hyperbolic, and completely hyperbolic [19]. We will add 
extremely hyperbolic to Smarandache’s definition of a paradoxist geometry. We will also 
say that a geometry is semi-paradoxist, if it has Euclidean, elliptic, and regularly 
hyperbolic points. 
 
Smarandache asked (see question 21 of [19]), “Let’s have the case of Euclid + 
Lobachevsky + Riemann geometric spaces (with corresponding structures) into one 
single space. What is the angles sum of a triangle with a vertex in each of these spaces 
equal to? And is it the same anytimes?” He perhaps envisioned a space that has elliptic 
regions and hyperbolic regions. We will see, and we have seen, that in our s-manifolds, 
there really are not regions where certain properties hold, but properties are determined 
by the relationships between objects. For example, a point is elliptic relative to an s-line, 
if there is an elliptic vertex in between. Smarandache might view this as a pleasant 
surprise. 
 

Paradoxist s-manifolds 
A paradoxist geometry will have points that are Euclidean, elliptic, and finitely, regularly, 
extremely, and completely hyperbolic. We have seen that all of these occur in s-
manifolds. It is also clear that these phenomena result from non-Euclidean vertices lying 
between the points and s-lines in question. There generally will be Euclidean points in an 
s-manifold, and it will be typical for elliptic and regularly hyperbolic points to exist 
around elliptic and hyperbolic vertices. The idea used to construct an s-manifold with a 
finitely hyperbolic point used two elliptic and two hyperbolic vertices. One hyperbolic 
vertex was used to create a 60° continuum of parallels, and the other was used to split one 
of the boundary parallels away from the other. One elliptic vertex essentially cancelled 
out the effect of the splitting hyperbolic vertex, and the other turned all but one of the 
parallels 60° towards the base s-line. This left both boundary parallels at the same angle, 
and all the in-between parallels at an angle headed towards the base s-line. 
 
The idea used to construct an s-manifold with an extremely and completely hyperbolic 
point used four hyperbolic vertices. One hyperbolic vertex was used to split the s-lines 
through the hyperbolic point so that there was one isolated s-line in the middle of a 60° 
gap. Two more hyperbolic vertices in the gap increased the angle to 180°. A base s-line, 
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therefore, could be found that intersected only the isolated s-line. To increase one of the 
30° gaps on either side of the isolated s-line to 180° or more, three hyperbolic vertices 
were needed. This idea of spreading the gap to 180° or more, therefore, seems to need 
four hyperbolic vertices to get a completely hyperbolic point. 
 
Question. Is it possible to have finitely hyperbolic points in an s-manifold with fewer 
than two elliptic and two hyperbolic vertices? Is it possible to have a completely 
hyperbolic point in an s-manifold with fewer than four hyperbolic vertices? 
 

 
Figure 1. The point S is extremely hyperbolic relative to b and completely hyperbolic 
relative to a. 
 
From what is known, we can construct an s-manifold with finitely hyperbolic points 
using two elliptic and two hyperbolic vertices, and one with completely hyperbolic points 
using four hyperbolic vertices. It may, therefore, be the best we can do to construct a 
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paradoxist s-manifold with two elliptic and four hyperbolic vertices. It could be the case, 
of course, that the answers to both of the questions just posed is no, but that there is still a 
paradoxist s-manifold with fewer than two elliptic and four hyperbolic vertices. 
 
In any case, it is possible to construct a paradoxist s-manifold with two elliptic and four 
hyperbolic vertices. One is shown in Figures 1, 2 and 3. 
 

 
Figure 2. The point T is finitely hyperbolic relative to the s-line a. 
 
In Figure 1, the point S is completely hyperbolic relative to the s-line a. It is necessary 
here that the s-line a lies between the four hyperbolic and the two elliptic vertices. 
Otherwise, the elliptic vertices could cancel the effect of the hyperbolic vertices. It is also 
necessary that the hyperbolic vertices A, B, and C lie inside the gap formed at vertex D 
between the isolated s-line c and the s-lines like e that pass to the right of D. Towards the 
left, the s-line c has an angle of 120° relative to the s-line a, and since the region between 
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them is Euclidean outside of the diagram, this angle will be preserved and the s-lines will 
not intersect. All of the s-lines through S that pass to the left of D, like the s-line d, will 
have even greater relative angles, so these will not intersect a either. Towards the right, 
all of the s-lines through S that pass to the right of D will have an angle that is greater 
than 90° relative to a, and these will not intersect a. 
 

 
Figure 3. The point P is Euclidean and Q is elliptic relative to a. R is regularly hyperbolic 
relative to e. 
 
Also in Figure 1, the s-line b lies below the elliptic vertex F. This cancels the effect of 
one of the hyperbolic vertices, and the isolated s-line c intersects b, so S is only extremely 
hyperbolic relative to b. 
 
In Figure 2, the s-line a lies between the two hyperbolic vertices C and D and the other 
non-Euclidean vertices. This allows the two elliptic and two hyperbolic vertices to act as 
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they would alone, and here the point T is finitely hyperbolic relative to a. If only the 
hyperbolic vertex A were present, the s-lines b and c would be the “last” parallels through 
T. Towards the top of the diagram, both a and c are vertical in the Euclidean region, and 
these will not intersect. Clearly any s-line through T and between c and the vertex B will 
intersect a. Due to the effects of the two elliptic vertices E and F, the angles of both b and 
c are 90° relative to a towards the bottom of the diagram. Any of the s-lines between b 
and c, like the s-line d, will have relative angles less than 90° and will intersect a. 
Therefore, only b and c are parallel to a, and T is finitely hyperbolic relative to a. 
 
Figure 3 shows how Euclidean points, like P, arise naturally within bands of adjacent 
triangular disks. If the angle of an s-line through P is less than 90° to the right relative to 
a, it will intersect a on the right within this band that extends infinitely in either direction. 
If this relative angle is greater than 90°, the s-line will intersect on the left.  
 
On the other hand, elliptic points, like Q, and regularly hyperbolic points, like R, are 
common around elliptic and hyperbolic vertices. The band of triangles just above the one 
mentioned is Euclidean everywhere, except for the triangular disk that is missing at the 
vertex E. The effect here is that any s-line through Q will have its relative angle reduced 
by 60° as it passes E. Therefore, any s-line through Q will have an angle less than 90° 
relative to a on at least one side of E. Having all of the other non-Euclidean vertices 
outside of these two bands makes them irrelevant to whether Q is elliptic or not. A 
similar case can be made for the hyperbolic point R relative to the s-line e. 
 
Question. The paradoxist s-manifold just described has two elliptic vertices and four 
hyperbolic vertices. What is the minimum possible number of non-Euclidean vertices in a 
paradoxist s-manifold? 
 

 
Figure 4. A semi-paradoxist s-manifold. 
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Semi-paradoxist s-manifolds 
A semi-paradoxist geometry will have points that are Euclidean, elliptic, and regularly 
hyperbolic. The paradoxist s-manifold just presented is, of course, also semi-paradoxist, 
as can be seen in Figure 3. The ideas in obtaining the finitely, extremely, and completely 
hyperbolic points, however, seem to be peculiar to s-manifolds, since they consider lines 
that pass through non-Euclidean vertices.  
 
We can illustrate a simpler semi-paradoxist s-manifold whose properties can be 
reproduced in a smooth manifold. As seen in Figure 3, the presence of Euclidean points is 
almost automatic, and hyperbolic and elliptic points come along with elliptic and 
hyperbolic vertices. It seems that the simplest semi-paradoxist s-manifold would have a 
single elliptic and a single hyperbolic vertex. In particular, an s-manifold that is 
topologically equivalent to the plane will be semi-paradoxist if all vertices are Euclidean 
except for exactly one elliptic and one hyperbolic vertex. An example of an s-manifold of 
this type is shown in Figure 4. 
 
In Figure 4, the point P is Euclidean relative to the s-line a. The one parallel through P is 
the line e. The point Q is elliptic relative to a. The point R is regularly hyperbolic relative 
to a. The s-lines c and d are the “last” parallels, and all the s-lines between c and d are 
also parallel. 
 
Question. Is the presence of both an elliptic and a hyperbolic vertex sufficient to 
guarantee that an s-manifold is at least semi-paradoxist? If not, are there additional 
conditions that would? Are there semi-paradoxist s-manifolds with fewer than two non-
Euclidean vertices? 
 
A planar s-manifold with one elliptic and one hyperbolic vertex is semi-paradoxist. This 
is achieved by referring only to s-lines and points away from the non-Euclidean vertices. 
These spaces, therefore, remain semi-paradoxist even after smoothing the two non-
Euclidean vertices. It follows from this that there are semi-paradoxist geometries among 
the class of smooth surfaces. This, of course, is not surprising, since the curvature, and 
therefore the geometry, can vary on a smooth surface. This is not a completely trivial 
observation, however, since defining Euclidean and non-Euclidean geometry in terms of 
parallel lines does not correspond exactly to definitions in terms of curvature. 
 

Euclidean theorems 
It would be most interesting to find general theorems for s-manifolds that are peculiar to 
s-manifolds and that somehow capture the essence of an s-manifold. This should always 
be a goal, but if this is possible, we should expect it to come as a result of having a deeper 
understanding. One obvious possibility for exploration lies in comparing the geometry of 
s-manifolds to Euclidean geometry, and this should offer opportunities to understand both 
kinds of geometry better. Along these lines of thought, each theorem of Euclidean 
geometry is an object ready for an s-manifold analysis. Here, we will consider one 
example. 



 59 

 
The alternate interior angles theorem is an important one, so we will look at it. Note that 
there are actually two alternate interior angle theorems. One has congruent angles 
implying parallel lines, and the other has parallel lines implying congruent angles. We 
consider the first, which is independent of Hilbert’s parallel axiom and can be used to 
establish the existence of parallels. 
 
(Euclidean) alternate interior angles theorem. If two lines a and b are cut by a 
transversal c such that alternate interior angles are congruent, then a and b are parallel. 
 
Even in the statement of this theorem, there is an s-manifold configuration that does not 
exist in Euclidean geometry. It is possible that, of the two possible, one pair of alternate 
interior angles is congruent and the other is not. For example, if a meets c at a hyperbolic 
vertex, the two interior angles there will sum to 210°. Since the other pair of interior 
angles may sum to 180°, we can have one pair of congruent alternate interior angles 
measuring 80° each and one pair of non-congruent alternate interior angles measuring 
130° and 100°.  
 

 
Figure 5. Alternate interior angles are congruent. 
 
A typical proof of this theorem might go as follows (see [12]). We have lines a and b cut 
by a transversal c, as in Figure 5. Suppose angles ∠CBE and ∠DEB (alternate interior 
angles) are congruent, and suppose that the lines a and b are not parallel. The lines a and 
b must therefore intersect in some point X. There must also be a point Y on b such that Y 
is on the opposite side of c from X and the segment EY is congruent to the segment BX. 
By the SAS axiom, angles ∠EBY and ∠BEX must be congruent. Since the alternate 
interior angles ∠BEX and ∠EBA must be congruent, we have that ∠EBA and ∠EBY are 
congruent. It follows that the rays BY and BA must be the same, and therefore, the lines 
a and b also intersect at the point Y. Since the lines a and b cannot intersect in two 
distinct points, we must have that they are parallel (or coincident). 
 
There are several parts of this proof that may not be valid for s-lines in an s-manifold. 
First of all, since the other pair of alternate interior angles need not be congruent, the 
point X needs to lie on the ray BC. Next, having X and Y on opposite sides of an s-line c 
might not make sense in a closed or non-orientable s-manifold (see the next chapter). If X 
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lies on the ray BC, however, we can require that Y lie on the ray ED. We have also seen 
that the SAS axiom need not hold in an s-manifold. The existence of multiply aligned 
points allowed a counter-example, but there might be other ways that this axiom fails. 
That angles ∠EBA and ∠EBY are congruent assumed that both pairs of alternate interior 
angles are congruent, and this might not be true in an s-manifold. Finally, two distinct s-
lines can share two or more points, so we would not necessarily have a contradiction. 
 
Let us look at the semi-paradoxist s-manifold presented in the previous section to see 
how this proof holds up there, and to see how this theorem might be rephrased to make it 
true in this particular s-manifold. From a mathematician’s point of view, it would seem 
natural to try to make a statement that is sometimes true into a theorem by imposing 
additional conditions. 
 
A fairly obvious sufficient condition (i.e., a condition strong enough to make the 
statement true, but perhaps stronger than necessary) is a requirement that there be no non-
Euclidean vertices between the s-lines a and b. This would make the region around the 
pair of lines essentially Euclidean. It is not clear how best to define what it means to be 
between two s-lines, but since all s-lines separate this s-manifold, we can use the 
following. 
 
Theorem. (In the s-manifold of Figure 4) Suppose two s-lines a and b are cut by a 
transversal c such that alternate interior angles are congruent and the point B of Figure 5 
is on the opposite side of b from both non-Euclidean vertices, then a and b are parallel. 
 
The added condition guarantees that neither non-Euclidean vertex lies on either a or b. 
Therefore, both pairs of alternate interior angles must be congruent. If we suppose that 
the s-lines a and b are not parallel, then there is at least one point X common to both. 
Choose X so that its distance from B along a or its distance from E along b is a minimum, 
and without loss of generality, suppose that it lies as in Figure 5. We can then choose Y 
as in the proof given above. Our added condition and choice of the closest X guarantees 
that the triangles EBX and BEY have Euclidean interiors, and the SAS theorem must 
hold for these triangles. It follows that ∠EBY and ∠EBA are congruent, and that Y must 
lie on a. We now have that X and Y are vertices of a non-degenerate 2-gon with 
Euclidean interior, which is a contradiction. 
 
The theorem can be improved by weakening the added condition. Some insight into this 
might come with the following observations. If two s-lines a and b are parallel in the s-
manifold of Figure 4, then it is intuitively obvious that the two s-lines divide this s-
manifold into three regions and exactly one of these lies between the two s-lines. One of 
the following must be true. The elliptic vertex does not lie on or between a and b, the 
elliptic vertex lies on a or b and the hyperbolic vertex lies on a or b or between, or both 
non-Euclidean vertices lie between a and b. 
 
Problem. Find a necessary and sufficient added condition for the alternate interior angles 
theorem in the s-manifold of Figure 4. Is there one that works for any s-manifold?
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Smarandache Non-Geometries 
Smarandache defined a non-geometry to be one that Smarandachely denies each of the 
five postulates of Euclid [19]. These are [9]: 
 

1. To draw a straight line from any point to any point. 
2. To produce a finite straight line continuously in a straight line. 
3. To describe a circle with any centre and distance. 
4. That all right angles are equal to one another. 
5. That, if a straight line falling on two straight lines make the interior angles on 

the same side less than two right angles, the two straight lines, if produced 
indefinitely, meet on that side on which are the angles less than the two right 
angles. 

 
We would like to find an s-manifold that is a Smarandache non-geometry, and we will 
start the search by looking at the postulates one by one. 
 

Postulate I 
It is quite normal to expect that given two points in an s-manifold, there is an s-line 
through them. We have seen, however, that there are pairs of points that do not lie on a 
single s-line. We called these points 0-aligned or remote, and we have seen these around 
the hyperbolic vertex of the hyperbolic cone-space. It is also generally assumed in this 
context that the straight line postulated is unique. This would be false around an elliptic 
vertex, where we have 2- and 3-aligned pairs of points. We can be quite sure, therefore, 
that any s-manifold with non-Euclidean vertices will S-deny postulate I. 
 

Postulate II 
In regards to this postulate, Smarandache asks that, “It is not always possible to extend by 
continuity a finite line to an infinite line.” This postulate has been interpreted to mean 
that any line segment can be extended indefinitely, and in the context of manifolds in 
particular, this does not imply that the line must be infinite. For example, an arc of a 
circle can be extended indefinitely, while tracing the circle an infinite number of times. 
The circle, however, is not itself infinite. 
 
Depending on our interpretation, two ways of S-denying this postulate come to mind. 
One is to find an s-manifold that has s-lines that are closed like a circle. Another is to 
introduce the concept of a boundary to an s-manifold. Here, an s-line may extend up to 
this boundary, but since the space does not continue, the s-line cannot either. We will 
consider both. 
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Postulate III 
In order it violate this postulate, we would need a center and radius that does not 
correspond to a circle, or in our s-manifold terminology, that the s-circle corresponding to 
this center and radius does not exist. The definitions of an s-proto-circle and s-circle were 
formulated with this postulate in mind. Let us look at Euclid’s definition. In [9] we see, 
“A circle is a plane figure contained by one line such that all the straight lines falling 
upon it from one point among those lying with the figure are equal to one another; and 
the point is called the centre of the circle.” Here, Euclid uses the word line in the sense 
that we would use curve. We defined the set of points that have an s-segment between it 
and the center of a fixed length to be an s-proto-circle, and this corresponds roughly with 
the “straight lines falling upon it from one point.” We then want that “A circle is a plane 
figure contained by one line,” so we defined that an s-proto-circle is an s-circle, if it also 
is a simple closed curve. It seems natural, therefore, to say that if an s-proto-circle is in 
fact an s-circle, then the s-circle exists. 
 
Two ways that an s-circle can fail to exist are as follows. If the center is near a boundary 
of an s-manifold with boundary and a radius is larger than the distance from the point to 
the boundary, then a section of the s-proto-circle will be missing, and it will not be 
closed. 
 
Another way arises for a center near a non-Euclidean vertex. Around an elliptic vertex, an 
s-proto-circle can have a self-intersection, endpoints, and an isolated point as shown in 
Figure 24 of Chapter 1. Around a hyperbolic vertex, as shown in Figure 6, an s-proto-
circle can have gaps and an isolated point, since there is a region of 0-aligned points on 
the other side of the hyperbolic vertex from the center, and only one radial s-segment can 
enter this region. Again in this case, the s-proto-circle will not be closed, and the s-circle 
does not exist. 
 

 
Figure 6. An s-proto-circle can have gaps near a hyperbolic vertex. 
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Postulate IV 
Smarandache mentions a fairly standard definition for right angles, “a right angle is an 
angle congruent to its supplementary angle” [19]. We will use this definition as well. 
Therefore, an s-right angle is congruent (has the same angle measure) to its 
supplementary angles (two supplementary angles make a straight angle). Since there are 
300° around an elliptic vertex and 420° around a hyperbolic vertex, congruent 
supplementary angles at an elliptic vertex will measure 75°, and at a hyperbolic vertex 
they will measure 105°. Since congruence has been defined to coincide with angle 
measure, not all s-right angles are congruent, since some are 75°, some are 90°, and some 
are 105°. 
 

Postulate V 
Here, we need in some instances pairs of s-lines cut by a transversal so that interior 
angles on one side of the transversal add up to less than two s-right angles and also do not 
intersect on that side. Of course, since not all right angles are congruent, it is not 
completely clear what “less than two s-right angles” means. Whether a single angle is 
less than an s-right angle or not is well-defined, so two angles less than an s-right angle or 
one s-right angle and one angle less than an s-right angle will clearly satisfy the 
conditions of the postulate. Also, if both angles emanate from points other than non-
Euclidean vertices, it is easy to determine if the conditions are met. 
 

A non-geometry s-manifold with boundary 
Most of the required properties of a non-geometry can come as a result of a boundary. 
The example here is similar to that given by Smarandache [19]. Our definition of an s-
manifold does not allow for a boundary. We can define an s-manifold with boundary by 
allowing in the definition of an s-manifold that some edges of triangular disks need not 
be identified. We will require that vertices of non-identified edges share at most four 
triangular disks and exactly two non-identified edges. We will also require that two non-
identified edges share at most one vertex. The space will end at these boundary edges and 
vertices.  
 
In Figure 7, we have an example of an s-manifold with boundary that is a non-geometry. 
The space stops at the boundary marked with heavy dots, but continues with Euclidean 
vertices around the rest of the diagram. 
 
Postulate I is S-denied, since the points C and D cannot be joined by an s-line, but other 
pairs of points like I and J can be. 
 
Postulate II is S-denied, since the segment EF cannot be continued further, while there 
are s-lines that can be extended to infinity. Any s-line parallel to the segment JK and 
between segment JK and the boundary can be extended to infinity. 
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Postulate III is S-denied, since the s-proto-circle shown with center G cannot be 
completed. A smaller s-circle centered at G or larger s-circles centered at points 
elsewhere in this space clearly do exist. 
 
Postulate IV is S-denied, since angles JBI and angles HBI are supplementary and 
congruent. They are therefore s-right angles even though they measure 75º. The s-right 
angles at points other than B measure 90º. 
 
Finally, Postulate V is S-denied, since the s-line LI and EF are cut by a transversal JK so 
that the sum of the angles LJK and JKE is less than 180º, but the s-lines LI and EF do not 
intersect. Clearly, there are s-lines meeting these conditions that do intersect on the side 
of the transversal with the angles summing to less than two s-right angles. 
 

 
Figure 7. A non-geometry s-manifold with boundary. 
 

A non-geometry s-manifold without boundary 
We can construct an s-manifold without using a boundary by using the interpretation that 
an s-line that is closed like a circle is not continuously extendable. It is certainly not 
extendable to infinity, as required by Smarandache, since a circle has a finite length. 
 
An example of a non-geometry s-manifold without boundary is shown in Figures 8 and 9. 
Figure 8 shows what is essentially the Euclidean plane with a triangle cut out. Attached to 
this triangular hole is the ring shown in the bottom of Figure 9. The ring shown in the top 
of Figure 9 sits on top of this. Similar rings are stacked indefinitely on top of this. All 
vertices are Euclidean except for the six hyperbolic vertices A, B, C, D, E, and F joining 
the planer base to the vertical cylinder, which we will call the tube. The band of 
triangular disks between the hyperbolic vertices will be called the collar. 
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Postulate I is S-denied, since there are 0-aligned points around the hyperbolic vertices, 
like the points H and I. Most other pairs of points are at least 1-aligned. There are also 2-
aligned points, like H and J, and ∞-aligned points on the tube. 
 
Postulate II is S-denied, since s-lines like LT around the cylindrical part of the space 
cannot be extended “to infinity.” These are essentially circles, which have no endpoints, 
but have finite length. Except for those s-lines on the tube that are horizontal, all other s-
lines can be extended to infinity. 
 
Postulate III is S-denied, since some s-proto-circles, like the one shown centered at M, 
have gaps in them, and do not exist as s-circles. Recall that an s-circle is an s-proto-circle 
that is a simple closed curve. 
 

 
Figure 8. This is the base of the non-geometry s-manifold without boundary. 
 
Postulate IV is S-denied, since some s-right angles do not measure 90°. For example, at 
the hyperbolic vertex A, the congruent supplementary angles (the definition of a right 
angle) ∠OAP and ∠NAP, measure 105°. The s-right angles at all points that are not non-
Euclidean vertices measure 90°. 
 
Postulate V is S-denied, since there are pairs of s-lines that satisfy the conditions of 
postulate V, but do not intersect. For example, the s-lines LT and US are cut by the 
transversal UT such that ∠LTU on the right and ∠TUS sum up to less than two right 
angles, but do not intersect to the right (or to the left). This is clear, since the line US 
never enters the tube. Except for the triangular cutout, the base is essentially the 
Euclidean plane, so there are many examples of lines that satisfy this postulate. 
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Figure 9. This is the collar and tube for the non-geometry s-manifold without boundary. 
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Other Smarandache Geometries 

Anti-geometries 
Smarandache defines an anti-geometry to be one that S-denies all of Hilbert’s axioms for 
Euclidean geometry [19]. These axioms apply to three-dimensional spaces, so we would 
be interested here in only the two-dimensional axioms. These were discussed in the 
previous chapter. There we saw that axioms I-3, II-3, and III-2 hold in every s-manifold, 
so there can be no s-manifold anti-geometry. Combining the examples given, it should be 
easy to construct an s-manifold that S-denies the remaining axioms. This would be a 
repetition of what has already been discussed. We can, of course, go a bit further by using 
q-congruence. Also by using s-manifolds with boundary and extending the definition of 
an s-line, it is quite plausible that an anti-geometry could be constructed. See the counter-
projective s-manifold below, and the post of Mike Antholy at [2]. 

Counter-projective geometries 
Smarandache’s definition for a counter-projective geometry requires that the following 
axioms be S-denied [19]. 
 

I. Given two distinct points, there is a unique line through them. 
II. Given three non-collinear points P, Q, and R, and two distinct points S and 

T such that S lies between P and Q, and T lies between P and R, then the 
line QR intersects the line ST. 

III. Every line contains at least three distinct points. 
 
Axiom III is always true in an s-manifold, since all lines have infinitely many points. 
Axiom I is S-denied in virtually every s-manifold, but there are examples of s-manifolds, 
like the s-sphere to be defined later, where every pair of points is multiply aligned. 
Axiom II is generally false in an s-manifold. It can hold in certain circumstances, 
however.  
 
In order to S-deny Axiom III, we will use a boundary in the example given here. It may 
seem appropriate that a counter-projective geometry have a boundary, since projective 
geometries are closed (in the sense described in the next chapter). We will also introduce 
enough structure so that each of the axioms is true in some cases and false in different 
ways. We also define s-lines differently from before. Here, s-lines are constructed as if 
the space were extended beyond the boundaries with Euclidean vertices. This will allow 
s-lines with only finitely many points. 
 
The presence of both elliptic and hyperbolic vertices will force the existence of remote, 
uniquely aligned, and multiply aligned pairs of points. Therefore, Axiom I will be 
satisfied in some cases and denied in other cases, both by the non-existence and the non-
uniqueness of the line. 
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In Euclidean geometry, the lines QR and ST of Axiom II will sometimes intersect and 
sometimes not intersect. This will occur for most triples P, Q, and R in this model, but 
there will also be triples where all possible lines ST intersect QR and triples where all of 
the lines ST do not intersect QR. 
 
As for Axiom III, this model will have lines that contain exactly one, two, and three 
points, as well as lines that have infinitely many points. 
 
In Figure 10, as we have seen before, there are pairs of points around the elliptic vertices 
W and X that are multiply aligned. For example, D and Y are 3-aligned, since there is an 
s-line to the left of W, to the right of W, and through W that pass through both D and Y. 
This pair of points, therefore, violates the uniqueness condition of Axiom I. We have also 
seen before that there are remote points around hyperbolic vertices. For example, the 
points U and L have no s-line through them. Here the existence condition of Axiom I is 
violated. 
 

 
Figure 10. A counter-projective s-manifold. 
 
Consider the non-collinear triple of points D, U, and V. The vertices U and V are 
hyperbolic, and the angles ∠DUV and ∠DVU both measure 30°. For any point E on 
segment DU and point F on segment DV, therefore, the angle of the s-line d through E 
and F relative to the s-line c (between U and V) must be greater than 60°. Since the s-line 
d must pass above the hyperbolic vertices U and V, the relative angles must increase by 
30° to more than 90°. It follows that the s-lines d and c will never intersect. 
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For the non-collinear triple G, H, and I, a similar analysis shows that the s-lines e and f 
must always intersect. It is easy to find triples where the s-lines under consideration will 
sometimes intersect and sometimes not. 
 
Finally, Axiom III is violated by s-lines like a and b. Here, the s-line a lies mostly outside 
of the boundary of this s-manifold, and so a contains only the points A, Y, and B. The s-
line b contains only the points B and C. Clearly, there is an s-line that contains only B. 
All of the other s-lines shown, c, d, e, and f, contain infinitely many points 
 
Having considered projective geometry (in terms of a counter-projective geometry), the 
concept of a dual geometry, where the ideas of points and lines are switched, presents 
itself (See J.M. Charrier’s post at [2].) It is doubtful that such a thing could be an s-
manifold, but the dual of an s-manifold might be an interesting topic for further study.  
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Chapter 4. Closed s-Manifolds 
The peculiar geometry of an s-manifold results in a variety of Smarandache structures. 
Being a manifold, we can also generate Smarandache structure using topology. Here we 
will look at some of the basic topological structures obtainable by closed s-manifolds.  

Closed s-Manifolds 
A manifold is closed, if it is compact and has no boundary. For an s-manifold, 
compactness is equivalent to an s-manifold consisting of a finite number of triangular 
disks. No boundary means that each edge is shared by exactly two triangular disks and 
each vertex is completely surrounded by triangular disks. Here the term closed is an 
extension to surfaces of the notion of a closed curve. For example, a surface would have 
to be closed in order for it to enclose a volume. A sphere or torus would be closed, but a 
flat disk or a hemisphere would not, since they have boundaries. For an s-manifold, being 
closed and being compact are equivalent, since s-manifolds have no boundary (although 
an s-manifold with boundary does have a boundary). 
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Figure 1. Non-singular s-lines parallel to edges in the s-sphere. 
 



 72 

The s-sphere 
An icosahedron has equilateral triangular faces with five triangles around every vertex. It 
is, therefore, an s-manifold, and we will call it the s-sphere. This s-manifold consists of 
20 triangular faces, and has 12 vertices, all of them elliptic. It is a closed surface, and it is 
topologically equivalent to the unit sphere (or any sphere). Of all s-manifolds that are 
topological spheres, this is the most regular, and the one most closely aligned with the 
standard spherical geometry. Some of the s-lines in this s-manifold are very similar to the 
lines (great circles) in spherical geometry, but the behavior of s-lines in this space can be 
quite complicated.  
 
Those s-lines running parallel to the edges of the triangular disks are simple circles, but 
unlike the great circles on a sphere, they may be parallel, like the s-lines through C and D 
shown in Figure 1. If two s-lines of this type intersect, they will intersect in two points, as 
do the s-lines through C and E shown in Figure 1. Note that the s-line through E can be 
shown in one piece, like the s-lines through C and D, by cutting the space differently. 
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Figure 2. Two s-lines that run along an edge. 
 
The s-lines that run along an edge also behave somewhat like great circles, as shown in 
Figure 2. The s-lines shown are typical of this type. 
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Other s-lines are more complicated and wrap around the s-sphere many times. In fact, in 
trying to follow an s-line different from the types shown in Figures 1 and 2, the process 
will typically seem to continue indefinitely. The question arises, therefore, whether some 
or all of these other s-lines are closed. An s-line that is not closed would necessarily have 
infinite length. While exploring this question, we will briefly examine a tool that may be 
of use in studying s-manifolds. 
 

 
Figure 3. The projection of s-lines from Figures 1 and 2. 
 

Locally linear projections 
To help visualize situations where s-lines may or may not be closed, we will introduce a 
mapping of an s-line into the Euclidean plane. We will assume a tiling of the plane with 
equilateral triangles that have sides of length one so that one of the edges has (0,0) and 
(1,0) as endpoints. Given an s-line, we will start with a segment of the s-line that spans 
one of the triangular disks of the s-sphere. We will identify this triangular disk with the 
one in the plane that lies above the edge with endpoints (0,0) and (1,0), so that this 
segment has one endpoint on the x-axis and otherwise lies above the x-axis. If the other 
endpoint lies on the interior of an edge, then we will continue the projection into the 
corresponding adjacent triangle in the same way that the s-line extends into the adjacent 
triangle on the s-sphere. If the other endpoint lies on a vertex, we will continue it so that 
it makes a 150˚ angle measured counter-clockwise. We can continue this process 
indefinitely. In particular, if the original s-line contains no vertices, then its projection 



 74 

will be an infinite ray. In Figure 3, the s-line from Figure 2 starting at A at the bottom is 
projected, as is the s-line from Figure 1 that starts at G. 
 
The s-lines in the s-sphere that do not pass through vertices will project to straight lines in 
the plane. If the projection of such an s-line has slope √3, then it will be parallel to the 
edges of the triangles, and it must be the projection of the simple circles first mentioned. 
In particular, the projection will intersect each horizontal edge at the same distance from 
the left endpoint and at the same angle. Without prior knowledge of the nature of this s-
line on the s-sphere, we could see from this that the s-line is closed. This is because the 
projection hits an infinite number of edges in exactly the same way. Each of these 
corresponds to the s-line on the s-sphere intersecting an edge in exactly the same way. 
Since there are only a finite number of edges on the s-sphere, this s-line must hit one of 
these edges twice in exactly the same way. The s-line must, therefore, be closed. 
 
If the projection of an s-line on the s-sphere does not pass through a vertex and has a 
slope that is a rational multiple of √3, then it must be closed. We can see this as follows. 
This projection passes through the segment from (0, 0) to (1, 0) at a point (x, 0) and at an 
angle θ. If the slope is a√3/b, then this projection will intersect the segment from (b, a√3) 
to (b + 1, a√3) at (b + x, a√3) and at the same angle θ. In other words, the projection 
intersects this segment in exactly the same way that it intersects the edge (0,0) (1,0). In 
fact, for every positive integer n, this projection will intersect the segment (bn, an√3) to 
(bn + 1, an√3) at (bn + x, an√3) and at the angle θ. Each of these corresponds to the s-line 
on the s-sphere intersecting an edge. Since there are only a finite number of ways that this 
can happen on the s-sphere, we can conclude that this is a repeating cycle, and the s-line 
is closed. Furthermore, any line in the plane that does not pass through a vertex must be a 
projection of some s-line on the s-sphere, so we see there must be many kinds of closed s-
lines on the s-sphere. 
 
On the other hand, if a line in the plane has a slope that is an irrational multiple of √3, 
then the corresponding s-line on the s-sphere cannot be closed. There are certainly lines 
in the plane of this type, so the s-sphere contains s-lines that are not closed, and these 
wrap around the s-sphere an infinite number of times and must have infinite length. 
 

Alignment 
The points C and D in Figure 1 are ∞-aligned. Those triangular disks that contain parts of 
the two s-lines shown through these two points form a cylinder. An s-line running along 
the edge containing C and D joins these two points, as does an s-line joining C at the top 
and D at the bottom that wraps around the s-sphere once between these two points. An s-
line that wraps around twice, passing through the midpoint between C and D on the edge 
also joins these two points. There are also s-lines that start at C and wrap around the 
space any number of times before passing through D. There are an infinite number of s-
lines, therefore, that join C and D. 
 
Since any of the triangular disks in the s-sphere lie in three cylinders of the type just 
mentioned, ∞-alignment is quite common.  
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Euclidean bands and band spaces 
As mentioned, the structure of the s-lines on the s-sphere is quite complex. We may 
perhaps gain some insight into this structure by considering a simpler situation. One 
possibility comes from the observation just made that there are cylindrical bands around 
the s-sphere. The s-lines through C and D in Figure 1 lie in one of these. The s-line 
through E lies in another. Each band is the set of triangular disks that an s-line parallel to 
one of the edges passes through.  
 
We may consider a finite geometry based on the bands of the s-sphere. The b-lines in this 
geometry are the bands and the points are the triangular disks. Since the s-sphere consists 
of 20 triangles, there are 20 points in this geometry. Each band consists of 10 triangular 
disks, and each triangular disk is associated with three bands. Therefore, there are 20· 3/10 
= 6 b-lines in this geometry.  
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Figure 4. Each of the six bands in the s-sphere is indicated by an s-line running through 
it. 
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Interior band spaces 
We can also consider a simpler space than the s-sphere by restricting attention to a 
special class of s-lines. The easiest s-lines are those that run along or are parallel to the 
edges. We will call any geometry formed by designating as i-lines, those s-lines in an s-
manifold that have at least one segment that is parallel to an edge an interior band 
space. The underlying set of points is the same, and only the set of curves that are called 
lines is different. We will stop here saying only that this is another kind of geometry that 
can be studied. 
 

The s-projective plane 
A model for the standard elliptic geometry is called the projective plane, and can be 
obtained from the sphere by identifying antipodal points. It can also be obtained from a 
hemisphere or disk by identifying antipodal points on the boundary. 
 

 
Figure 5. The s-projective plane. 
 
The configuration of triangular disks in Figure 5 is essentially half of the configuration 
for the s-sphere, so this is topologically a hemisphere. The points A, B, and C are on the 
boundary, and identifying the segments AC, CB, and BA as marked is topologically 
equivalent to identifying antipodal points. This meets the requirements of an s-manifold, 
since each of the vertices is shared by five triangular disks. We will call this the s-
projective plane. It clearly is not embeddable in Euclidean 3-space (i.e., it cannot be 
presented as a subspace without self-intersections or stretching or bending of the 
individual triangular disks), but it can be embedded in 4-space topologically (with 
stretching and bending). It is highly questionable as to whether the s-projective plane can 
be embedded in 4-space without bending or stretching the triangular disks. It is an 
important concept for s-manifolds, and in the study of manifolds in general, that we do 
not restrict attention to those spaces that can be visualized as a subspace of a Euclidean 
space. It can be an interesting problem, however, to determine whether or not a manifold 
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can be embedded in a Euclidean space, and if so, to determine the minimum possible 
dimension. 
 
The s-projective plane is non-orientable. This means, roughly, that it is impossible to 
impose a notion of orientation, such as clockwise/counter-clockwise or left/right, that is 
consistent over the entire manifold. For example, the s-line through D in Figure 5 has a 
designation of a left and right side marked by an L and an R. At the bottom, it seems 
clear that the vertex A is on the right side of this s-line, but at the top, it appears that A is 
on the left. The non-orientability of the s-projective plane is also manifested around the s-
line through E and F. This s-line is a simple closed curve that bounds a Möbius band 

The s-torus 
The s-torus is a torus topologically, and has only Euclidean vertices. We will use the 
configuration shown in Figure 6. Here we have three rows and columns of Euclidean 
bands to avoid a triangular disk having a self-intersection, which would be a violation of 
the definition of an s-manifold. In Figure 6, two s-lines are shown, both passing through 
F. Both s-lines are closed, one wraps around the space once in the vertical direction, the 
other wraps around three times vertically and once horizontally. We can associate with 
these s-lines the ordered pairs (1,0) and (3,1). This extends to a notion of slope that 
applies to all of the s-lines in the s-torus. There is an s-line through F corresponding to 
any ordered pair of integers (v,h), and the relatively prime pairs are distinct. In fact, 
infinitely many of these s-lines also pass through G, so F and G are ∞-aligned. This 
extends to any pair of points, and any point in the s-torus is ∞-aligned with any other 
point. 
 

 
Figure 6. The s-torus. 
 
Since a Euclidean vertex is essentially the same geometrically as any non-vertex point, 
the s-torus is a perfectly uniform space, and is essentially the flat torus of differential 
geometry. Each point has precisely the same properties as any other. The s-torus is finite, 
however, so there is a difference in the properties of large and small objects. For 
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example, the large triangle GHI in Figure 7 has no interior. The s-torus is a Smarandache 
geometry in this way, and others. 
 

Pasch’s axiom 
Pasch’s axiom can be formulated to say that a line entering a triangle through a vertex 
will intersect the opposite side. This is equivalent to the formulation given earlier. 
Pasch’s axiom does not hold in the s-torus due to the topology of the s-torus, and in 
Figure 7, we show an example of a triangle whose inside is connected to its outside. 
 

 
Figure 7. Pasch’s axiom is Smarandachely denied in the s-torus. 
 
In Figure 7, the smaller triangle JKL has the s-line through F entering the triangle at the 
vertex J and intersecting the opposite side KL. Any s-line entering the triangle at J, K, or 
L will pass through the opposite side of the triangle JKL satisfying Pasch’s axiom. The 
larger triangle GHI, which wraps around the s-torus in the horizontal direction, violates 
Pasch’s axiom. Here we see that the s-line shown passes through the vertex I, but does 
not intersect the opposite side GH. In fact, while it crosses the boundary formed by the 
triangle, it intersects the triangle in only this one point. It does not really even make sense 
to say that the s-line through F enters the triangle GHI, since this triangle does not have 
an inside or outside. This example also illustrates the property that there are pairs of 
simple closed curves on the torus that cross at only one point. 
 

The s-Klein bottle 
The Klein bottle, like the torus, is commonly constructed out of a square disk by 
identifying edges. This is not possible for us, since our basic building block is an 
equilateral triangle. There is no essential difference with the s-torus, using a 
parallelogram, as we did in Figure 7. Identifying the left and right edges on a 
parallelogram with a twist, as in Figure 9, still yields a Klein bottle topologically, but 
gives a geometry that differs from a flat Klein bottle in differential geometry.  
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There are two s-lines shown in Figure 8. The one through F is similar to the s-line 
through F in Figure 6 for the torus. Horizontally, the orientation is reversed, and the other 
s-line passes through G, H, and I. This second s-line has a single self-intersection (or 
singularity). Both s-lines are closed. 
 

 
Figure 8. The s-Klein bottle. 
 
The s-line in Figure 8 through G, H, and I wraps around the space in two directions, so it 
may seem that it would be difficult to find an s-line that does not intersect it. This is in 
fact the case. We can see this easily by considering what a topologist would call a lift. 
The parallelogram enclosing Figure 8 along with an infinite number of copies can tile the 
plane as in Figure 9. Instead of viewing the identifications as joining the top and bottom 
edges, or the left and right edges, each edge of the parallelogram is identified with an 
edge of an adjacent parallelogram. The s-line through G, H, and I in Figure 8 is shown as 
a dotted line in one of the parallelograms in Figure 9. This s-line is also shown extended 
as if it were a line in the plane. This is a lift of the line GHI. The parallelograms that are 
shaded have orientations that are the reverse of the non-shaded ones. If we start at the 
point G at the left of Figure 8, the s-line runs across the parallelogram to the point H on 
the right. It continues from H on the left down to the point I. In the lift, the line continues 
to the right to a copy of the point I. Note that this segment of the lift corresponds exactly 
to the segment HI in Figure 8. The same can be said of the segment from I to G. 
 
Clearly, if the lifts of two s-lines intersect, then the corresponding s-lines in the s-Klein 
bottle must also intersect. It is also clear that if two s-lines in the s-Klein bottle intersect, 
then there are lifts of the two s-lines that intersect (although not any two lifts will 
intersect). Therefore, if an s-line m in the s-Klein bottle is to be parallel to the line GHI, it 
must have a lift that is parallel to the one shown in Figure 9. A lift based on the segment 
HI in Figure 8 will intersect this lift of the line m, however, so m cannot be parallel to 
GHI. 
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In the s-Klein bottle, every point is elliptic relative to the s-line through G, H, and I. This 
shows that we can have a point that is elliptic relative to some s-line without there being 
an elliptic vertex. Every point is Euclidean relative to the s-line through F. Euclid’s 
parallel postulate, which would require that every point be Euclidean relative to every s-
line, is therefore S-denied, and the s-Klein bottle is a Smarandache geometry in this way. 
 

 
Figure 9. A covering of the s-Klein bottle by the plane. 



Topological 2-Manifolds 

Topological considerations 
For the s-projective plane in Figure 5, the five triangular disks containing the s-lines 
through E and F form a Möbius band. The remaining five triangular disks form a 
topological disk. The s-projective plane is obtained from these by identifying the 
boundary of the Möbius band with the boundary of the disk. Both boundaries are circles 
topologically (five adjacent edges). 
 
In the study of the topology of closed 2-dimensional manifolds, or 2-manifolds (all of our 
s-manifolds are 2-manifolds), it is convenient to view the projective plane as being 
obtained from the sphere by removing a disk (leaving a disk) and gluing in a Möbius 
band as we have just described. Removing two disks and gluing in two Möbius bands 
results in a Klein bottle. All non-orientable closed 2-manifolds are obtainable in this way, 
and they are classified by the number of Möbius bands (see [20,21]). We will discuss this 
later in the chapter. 
 
The orientable closed 2-manifolds are obtained in a similar way. A torus with a disk 
removed is called a handle. A sphere is an orientable closed 2-manifold. Removing a disk 
and gluing in a handle gives the torus. Removing two disks and gluing in two handles 
results in a 2-holed torus. All orientable closed 2-manifolds can be obtained in this way, 
and these are classified by the number of handles (see [20,21]). This will also be 
discussed later. 
 
One question for us is whether there is an s-manifold with a topology corresponding to 
each of the closed 2-manifolds. It is known that each of these topological 2-manifolds has 
a Riemannian manifold structure with constant curvature. The projective plane and 
sphere can have constant positive curvature, the torus and Klein bottle can have constant 
zero curvature, and every other closed 2-manifold can have constant negative curvature. 
We have already seen that the sphere and projective plane can manifest themselves as s-
manifolds with only elliptic vertices, which have positive impulse curvature, and the 
torus and Klein bottle exist as s-manifolds with only Euclidean vertices, which have zero 
impulse curvature.  
 
Question. Do the other closed 2-manifolds correspond to s-manifolds with only 
hyperbolic vertices? 

Euler characteristic 
Preliminary to this investigation, we will introduce the Euler characteristic (see [1, 11, 
17, 18, 20, 21]). Our s-manifolds are a special case of a class of 2-manifolds called 
piecewise linear 2-manifolds. These correspond to the triangulations of 2-manifolds, 
which are the decompositions of 2-manifolds into triangular disks (not necessarily flat or 
with straight edges) such that the triangular disks meet edge to edge. The Euler 
characteristic is a topological invariant of these triangulations. That is, the Euler 
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characteristics for any triangulations of two 2-manifolds that are topologically equivalent 
are the same. The Euler characteristic is defined as follows. Let f be the number of 
triangular disks or faces, let e be the number of edges, and let v be the number of vertices. 
Then the Euler characteristic is χ = f – e + v. 
 
For the s-sphere, there are 20 faces, 30 edges, and 12 vertices, so χ = 20 – 30 + 12 = 2. 
Topologically, any triangulation of a sphere will give χ = 2. For example, a tetrahedron is 
a topological sphere, and χ = 4 – 6 + 4 = 2 (although a tetrahedron is not an s-manifold, 
since there are only three triangular disks around each vertex). 
 
For the s-projective plane, there are 10 faces, 15 edges, and 6 vertices, so χ = 10 – 15 + 6 
= 1. Again, χ = 1 for any triangulation of a projective plane.  
 
In general, the Euler characteristic for any non-orientable 2-manifold is χ = 2 – m, where 
m is the number of Möbius bands. The Euler characteristic for any orientable 2-manifold 
is χ = 2 – 2h, where h is the number of handles. We should get, therefore, χ = 0 for both 
the torus and Klein bottle, and χ is negative for all remaining closed 2-manifolds. Note 
that the sign of the Euler characteristic corresponds inversely with the constant curvature 
geometries. Checking χ for the s-torus and s-Klein bottle, we get χ = 18 − 27 + 9 = 0 for 
both. 
 

The s-Euler characteristic 
The Euler characteristic can be formulated nicely in terms of the number of elliptic and 
hyperbolic vertices. In an s-manifold, there are five triangular disks around each elliptic 
vertex, six around each Euclidean vertex, and seven around each hyperbolic vertex. Let ve 
be the number of elliptic vertices, vE the number Euclidean vertices, and vh the number of 
hyperbolic vertices. Then v = ve + vE + vh. Each triangular disk has three edges, and each 
edge is shared by two triangular disks, so 3f = 2e. Each triangular disk has three vertices, 
and these are shared by five, six, or seven triangular disks, so 3f = 5ve + 6vE + 7vh. 
 
The Euler characteristic is then χ = f – e + v = (5ve + 6vE + 7vh)/3 – (5ve + 6vE + 7vh)/2 + 
(ve + vE + vh) = [(10–15+6)ve + (12–18+6)vE + (14–21+6)vh]/6 = [ve – vh]/6. This can be 
rewritten as 6 χ = ve – vh. 
 
Theorem. For a closed s-manifold, the number of elliptic vertices minus the number of 
hyperbolic vertices is equal to six times the Euler characteristic. 
 
The Euler characteristic for a torus is χ = 0, so any s-manifold torus must have an equal 
number of elliptic and hyperbolic vertices. The s-torus has zero elliptic and zero 
hyperbolic vertices, for example. Another s-manifold torus is shown in Figure 10. This 
model is made out of Polydron® blocks, but does not represent a true embedding, since 
the model needed to be bent slightly to close a 7º gap.  
 
Of course, an s-manifold does not need to be embeddable in 3-space, so this does 
represent an actual s-manifold torus. A close inspection of the picture in Figure 10 shows 
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that the model consists of five identical sections around the points of the inside star. 
These contain 14 triangular disks with two elliptic vertices on the outer edge and two 
hyperbolic vertices, one in front and one behind. At the junction between adjacent 
sections are three Euclidean vertices. All total, there are 10 elliptic vertices and 10 
hyperbolic vertices, an equal number of each, as expected. There are also 15 Euclidean 
vertices, and there are 70 faces and 105 edges. This agrees with the Euler characteristic χ 
= 0 = 70 – 105 + 35. 
 

 
Figure 10. A Polydron® model of an s-manifold torus. 
 
If an s-manifold is topologically equivalent to a 2-holed torus, which has χ = −2, then 
there must be 12 more hyperbolic vertices than elliptic vertices. In particular, if there is a 
2-holed closed s-manifold with only hyperbolic vertices, then it would have 12 vertices. 
Since 3f = 7vh, there must be 28 faces or triangular disks. 
 
Question. Is it possible to construct a 2-holed torus s-manifold with twelve hyperbolic 
vertices? 
 

Closed topological 2-manifolds 
The class of closed 2-manifolds is nicely classified from a topological point of view. By 
this we mean that this classification is up to homeomorphism, or roughly, without regard 
to continuous deformations (see [20, 21]). This classification comes in two main 
categories, the orientable and the non-orientable, as was mentioned earlier. 
 
The orientable closed 2-manifolds are the sphere, the torus, the 2-holed torus, the 3-holed 
torus, etc. Representations of these are shown in Figure 11. 
 
These 2-manifolds are conveniently described in terms of a topological operation called 
the connect sum. Here two 2-manifolds are joined by a tube. Using T for the torus, and # 
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for the connect sum, we would write T# T for the connect sum of two tori. This can be 
represented as a picture like Figure 12. 
 
The class of orientable closed 2-manifolds is countable and can be listed out as S (for 
sphere), T (for torus), T#T, T#T#T, etc.  
 
The non-orientable closed 2-manifolds can be arranged similarly. If P is the projective 
plane, then P#P is the Klein bottle, and the rest of this class can be listed out as P#P#P, 
P#P#P#P, etc. We could think of the projective plane as having a non-orientable hole (a 
Möbius band glued in), and the Klein bottle would then have two of these. The genus of 
a closed 2-manifold corresponds to the number of holes, so we would have one orientable 
and one non-orientable closed 2-manifold of every possible positive genus and one, the 
sphere, which has genus 0. 
 

          

 
Figure 11. Representations of the sphere, the torus, and the 2-holed torus. 
 

 
Figure 12. A representation of the connect sum of two tori, which yields a 2-holed torus. 
 
It should be noted that other closed 2-manifolds might arise from a connect sum like P#T. 
This 2-manifold is topologically equivalent to P#P#P, however, and in general, the 
connect sum of a torus with a non-orientable 2-manifold is equivalent to the connect sum 
with a Klein bottle (see [20,21]). 
 

Existence of closed s-manifolds 
The idea of a connect sum can be extended to s-manifolds. Using this idea we will show 
that there is a closed s-manifold of every possible topological type. It will remain to be 
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seen, however, whether this can be done more simply or with a more uniform structure. 
The main difficulty in applying the connect sum to s-manifolds is in ensuring that the s-
manifold structure is maintained. In particular, we need to make sure that every vertex 
has 5, 6, or 7 triangular disks around it. 
 
Three basic structures are required, a projective plane, a torus, and a tube needed to 
perform the connect sum. The s-projective plane and s-torus that we have already are too 
small for the process we will illustrate here, so we will introduce a big s-projective 
plane, which we will denote by P, and a big s-torus, which we will denote by T. Each of 
the triangular disks in the s-projective plane and the s-torus will be replaced by four 
triangular disks increasing the area and the number of triangles by a factor of four. The 
big s-projective plane is shown in Figure 13, and the big s-torus is shown in Figure 14. 
 

 
Figure 13. The big s-projective plane, P. 
 
The connect sum will be performed by removing one of the quartets of shaded triangles 
in Figure 13 or 14 and replacing it with a half-tube, which is shown in Figure 15. The 
triangle UVW attaches to P or T, and the triangle XYZ will attach to the same triangle 
from another copy of the half-tube. 
 
At the vertices U, V, and W in Figure 15, there are two triangular disks. After removing 
the shaded triangles in either Figure 13 or 14, there are five triangular disks around the 
corners of the holes. After attaching a half-tube, U, V, and W will have seven triangular 
disks around them, and so they will be hyperbolic. Around the midpoints of triangle 
UVW, three triangular disks are replaced by three, so these vertices will be elliptic or 
Euclidean, as they were originally in P and T. In particular, the vertices A and B in 
Figure 13 are elliptic, and they will remain elliptic after attaching a half-tube. The 
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vertices R, S, and T in Figure 15 are hyperbolic, so attaching a half-tube adds six 
hyperbolic vertices. Each connect sum, therefore, will add twelve hyperbolic vertices. 
 

 
Figure 14. The big s-torus, T. 
 

 
Figure 15. The half-tube. 
 
The big s-torus has only Euclidean vertices, so T#T has 12 hyperbolic vertices, and the 
rest are Euclidean. Each additional connect sum of a big s-torus adds 12 more hyperbolic 
vertices, so each genus n orientable closed 2-manifold obtained this way will have 12(n – 
1) hyperbolic vertices. The big s-projective plane has six elliptic vertices, so P#P will 
have 12 hyperbolic vertices and 12 elliptic vertices. Each additional connect sum of a big 
s-projective plane adds 12 hyperbolic and 6 elliptic vertices, so the genus n non-
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orientable 2-manifold obtained this way has 12(n – 1) hyperbolic and 6n elliptic vertices. 
There are, therefore, 6n – 12 more hyperbolic vertices than elliptic. This corresponds with 
the s-Euler characteristic, which is 6χ = 6(2n – 2) in the orientable case and 6χ = 6(n – 2) 
in the non-orientable case. 
 
In particular, we now have at least one s-manifold corresponding to every possible closed 
2-manifold topology. We have the orientable closed s-manifolds: the s-sphere, the s-torus 
T, T#T, T#T#T, etc., and the non-orientable closed s-manifolds: the s-projective plane P, 
the s-Klein bottle P#P, P#P#P, etc. Of course there are many more possible. It would be 
especially interesting to know if there are any closed s-manifolds that have only 
hyperbolic vertices.  
 
Question. Are there any closed s-manifolds with only hyperbolic vertices? 
 

Embeddings 
Especially with closed s-manifolds, a natural question is whether they exist in R3 or R4. 
We will consider several levels of interpretation of what this can mean. We will say that a 
topological embedding of an s-manifold M in Rn is a surface S in Rn without self-
intersections such that there is a function f: M → S that is one-to-one, onto, continuous, 
and has a continuous inverse (i.e., f is a homeomorphism). We may refer to both the 
surface S and the function f as the embedding. It is relatively easy to imagine that the s-
torus can be mapped onto the middle object in Figure 11 as a topological embedding, 
since any sort of stretching and bending is consistent with a continuous function. All of 
the orientable closed s-manifolds can be embedded topologically in R3, and all of the 
non-orientable closed s-manifolds can be embedded topologically in R4.  
 
A topological embedding will be called a flexible embedding, if distances and angles are 
preserved. Intuitively, this means that we allow bending, but not stretching. For example, 
the s-cylinder can be flexibly embedded. This corresponds to taking a piece of paper and 
rolling it into a cylinder. The paper is bent, but distances and angles remain the same on 
the surface. 
 
A topological embedding will be called a rigid embedding, if each triangular disk in the 
s-manifold is mapped to an equilateral triangular disk with sides of length 1. In other 
words, a flexible embedding is rigid if the bending takes place only along the edges and 
vertices. This would correspond roughly to a Polydron® model, such as the one shown in 
Figure 10. Again, this model does not really represent a rigid embedding, since the model 
had to be forced into place. 
 
Among the closed s-manifolds we have considered, only the s-sphere has an obvious 
rigid embedding, since it is essentially an icosahedron. Paper models of the s-torus can be 
made with considerable crumpling, so it seems that the s-torus and any of the orientable 
connect sum s-manifolds have flexible embeddings. They clearly do not have rigid 
embeddings, however.  
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Question. Are there other s-manifold structures on the torus that have rigid embeddings? 
If this is the case, then all of the orientable closed 2-manifolds should also have rigid 
embeddings using some sort of connect sum. Can any of the non-orientable closed s-
manifolds be rigidly embedded in R4? 
 
There is clearly much that is not known about closed s-manifolds. The structure of the s-
lines is very complicated as is the structure of the hyperbolic closed s-manifolds. 
Advances in either of these areas would be very interesting. It would seem that the most 
important kind of result for closed s-manifolds, and s-manifolds in general, would be a 
strong positive connection between the structure of s-lines and some structure outside of 
Smarandache geometry. For example, a nice relationship between s-lines and the 
elements of the fundamental group would be an indication of the importance of s-
manifolds in general. 
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Suggestions For Future Study 
We have touched on many concepts basic to the current study of geometry and topology 
of manifolds. Seeing these in the context of an s-manifold can be viewed as an 
introduction to further study of manifolds in general. A good place to start would be [21, 
20]. 
 
The study of polyhedral surfaces is well developed (see [1]), and its study today is 
probably most active in the area of computational geometry. There is a lot of information 
available on the internet, and a good place to start a search is with [18]. 
 
A relatively new, and very important, concept is that of an orbifold. Orbifolds share with 
s-manifolds a focus on singularities. The Geometry Center has information on orbifolds 
at the websites [7, 6]. 
 
The focus of this book, of course, is Smarandache geometry, so let us finish with a 
discussion of future research in this area. 
 
There is much analysis that can be done on the theorems of Euclidean, hyperbolic, and 
elliptic geometry. Pairing any proposition or theorem from [12], for example, and an s-
manifold, or group of s-manifolds, presents a problem to be explored. Something along 
these lines might make a good undergraduate research project. 
 
Any theorem of Riemannian geometry should have an s-manifold analog. The same 
should be true for any theorem involving polyhedral surfaces or orbifolds. 
Generalizations of s-manifolds to higher dimensions and alternate configurations are also 
possible. These would likely be research projects at the level of this book. 
 
Most interesting, of course, would be results peculiar to s-manifolds or Smarandache 
geometries in general. These might include properties that induce a non-trivial 
categorization of s-manifolds (non-trivial in the sense of there not being too few or too 
many categories). Perhaps there are interesting consequences of certain combinations of 
S-denials. 
 
There might also be certain s-manifold structures that correspond to more mainstream 
areas of geometry and topology. A strong connection between s-lines and the elements of 
the fundamental group might provide insight into the topology of manifolds, for example. 
Anything along these lines would be very exciting. 
 
Thank you for reading my book. Good luck in your studies, and I would be very happy to 
hear about your findings.
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A Smarandache geometry (1969) is a geometric space (i.e., one with points, lines) such 
that some “axiom” is false in at least two different ways, or is false and also sometimes 
true. Such an axiom is said to be Smarandachely denied (or S-denied for short). 
In Smarandache geometry, the intent is to study non-uniformity, so we require it in a very 
general way.  
 
A manifold that supports a such geometry is called Smarandache manifold (or  
s-manifold).  As a special case, in this book Dr. Howard Iseri studies the s-manifold 
formed by any collection of (equilateral) triangular disks joined together such that each 
edge is the identification of one edge each from two distinct disks and each vertex is the 
identification of one vertex from each of five, six, or seven distinct disks. 
 

Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian 
geometries may be united altogether, in the same space, by certain Smarandache 
geometries. These last geometries can be partially Euclidean and partially Non-
Euclidean.  
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