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Introduction

A complete understanding of what something is must include an understanding of what it
Is not. In his paper, “Paradoxist Mathematics’ [19], Florentin Smarandache proposed a
number of ways in which we could explore “new math concepts and theories, especially
If they run counter to the classical ones.” In a manner consistent with his unigue point of
view, he defined several types of geometry that are purposefully not Euclidean and that
focus on structures that the rest of us can use to enhance our understanding of geometry
in general.

To most of us, Euclidean geometry seems self-evident and natural. Thisfeeling is so
strong that it took thousands of years for anyone to even consider an alternative to
Euclid’ s teachings. These non-Euclidean ideas started, for the most part, with Gauss,
Bolyai, and Lobachevski, and continued with Riemann, when they found
counterexamples to the notion that geometry is precisely Euclidean geometry. This
opened awhole universe of possibilities for what geometry could be, and many years
later, Smarandache’ s imagination has wandered off into this universe.

The geometry associated with Gauss, Bolyal, and Lobachevski is now generally called
hyperbolic geometry. Compared to Euclidean geometry, the lines in hyperbolic geometry
are less prone to intersecting one another. Whereas even the slightest change upsets the
delicate balance of parallelism for Euclidean lines, parallelism of hyperbolic linesis
distinctly more robust. On the other hand, it isimpossible for linesto be paralle in
Riemann’s geometry. It is not clear which Riemann had in mind (see [3]), but today we
would call it either elliptic or spherical geometry. All of these geometries (Euclidean,
hyperbolic, elliptic, and spherical) are homogeneous and isotropic. Thisisto say that
each of these geometries |ooks the same at any point and in any direction within the
space. Most of the study of geometry at the undergraduate level concerns these “modern”
geometries (see [3, 12, 10]).

Although the term Riemannian geometry sometimes refers specifically to one of the
geometries just mentioned (elliptic or spherical), it is now most likely to be associated
with aclass of differential geometric spaces called Riemannian manifolds. Here,
geometry is studied through curvature, and the basic Euclidean, hyperbolic, €lliptic, and
spherical geometries are particular constant curvature examples. Riemannian geometry
eventually evolved into the geometry of general relativity, and it is currently avery active
area of mathematical research (see[21, 16, 4, §]).

Riemannian manifolds could be described as those possible universes that inhabitants
might mistake as being Euclidean, elliptic, or hyperbolic. Great insight comes from the
realization that the geometries of Euclid, Gauss, Bolyai, et al, are particular examples of
one kind of space, and extending attention to non-uniform spaces brings much generality,
applicability (e.g. genera relativity), and much more to understand.

Smarandache continues in the spirit of Riemann by wanting to explore non-uniformity,
but he does this from another, and perhaps more classical, point of view. While much of



the current study of geometry continues the work of Riemann and the transformational
approach of Klein (see[13]), Smarandache challenges the axiomatic approach inspired by
Euclid, and now closely associated with Hilbert. This axiomatic approach is generally
referred to as synthetic geometry (see[9, 14, 12]).

By its nature, the axiomatic approach promotes uniformity. If we require that through any
two points there is exactly one line, for example, then all points share this property. Each
axiom of a geometry, therefore, tends to force the space to be more uniform. If an axiom
holding true in a geometry creates uniformity, then Smarandache asks, what if it is false?
Simply being false, however, does not necessarily counter uniformity. With Hilbert’s
axioms, for example, replacing the Euclidean parallel axiom with its negation, the
hyperbolic parallel axiom, only results in transforming Euclidean uniformity into
hyperbolic uniformity.

In Smarandache geometry, the intent isto study non-uniformity, so werequireit in avery
general way. A Smarandache geometry (1969) is a geometric space (i.e., one with
points and lines) such that some “axiom” isfalsein at least two different ways, or isfalse
and also sometimes true. Such an axiom is said to be Smarandachely denied (or S
denied for short).

As first mentioned, Smarandache defined severa specific types of Smarandache
geometries. paradoxist geometry, non-geometry, counter-projective geometry, and anti-
geometry (see[19]). For the paradoxist geometry, he gives an example and poses the
guestion, “Now, the problem isto find a nice model (on manifolds) for this Paradoxist
Geometry, and study some of its characteristics.” This particular study of Smarandache
manifolds began with an attempt to find a solution to this problem.

A paradoxist geometry focuses attention on the parallel postulate, the same postul ate of
Euclid that Gauss, Bolyai, Lobachevski, and Riemann sought to contradict. In fact,
Riemann began the study of geometric spaces that are non-uniform with respect to the
parallel postulate, since in a Riemannian manifold, the curvature may change from point
to point. This corresponds roughly with what we will call semi-paradoxist. It would seem,
therefore, that a study of Smarandache geometry should start with Riemannian manifolds,
and inadvertently, it has. Unfortunately, describing and manipulating Riemannian
manifoldsisfar from trivial, and many Smarandache-type structures probably cannot
exist in a Riemannian manifold.

In discussions within the Smarandache Geometry Club [2], a special type of manifold,
similar in many ways to a Riemannian manifold, showed promise as atool to easily
construct paradoxist geometries. Thisled to the paper, “Partially paradoxist geometries’
[15]. It quickly became apparent that almost all of the properties that Smarandache
proposed in [19] could be found in manifolds of this type.

These ssmanifolds, which iswhat we will call them, follow along tradition of piecewise
linear approaches to, and avoidances of, the problems of the differential and the
continuous. As we will define them, ss-manifolds are a very restricted subclass of the



polyhedral surfaces. The relationship between polyhedral surfaces and Riemannian
manifoldsis as old as Riemannian geometry itself, and the all-important notion of
curvature can be viewed as an extension of the angle defect in apolyhedral surface dueto
Descartes (see[17, 11]). In addition, some concept of aline, or ageodesic, is a natural
part of the study of polyhedral surfaces, but we will use a particular definition of aline
that may have appeared as recently as 1998 in [18]. So while the basic ideas studied in
this book are not new, the particular formulations and the focus on plane figures seems to
be unique, and therefore, the potential exists for original research at all levels.

The purpose of this book isto lay out basic definitions and terminology, rephrase the
most obvious applicable results from existing areas of geometry and topology, and to
show that s-manifolds can be a useful tool in studying Smarandache geometry.

In Chapter 1, we define what an s-manifold is. Smarandache geometry is quite general, so
it isdifficult to see any basic structures that exist widely. Our definition for an s-
manifold, therefore, is purposefully restrictive, so that we may have areasonable
opportunity to find general results. We will probably have to focus attention even more
tightly before making significant progress.

In Chapter 2, we analyze the axioms of Hilbert in an ssmanifold context. These cover
most of the basic concepts of 2-dimensional geometry, and of course, al of the theorems
of Euclidean geometry are based on them.

Some s-manifold examples of Smarandache geometries are presented in Chapter 3, and
some of the basi ¢ issues surrounding closed s-manifolds, in particular the topology of 2-
manifolds, are discussed in Chapter 4. The book ends with some notes on continued
study.

Throughout this book, questions and conjectures are posed. You are invited to post
answers to these questions to the Smarandache Geometry Club [2]. Y ou may also pose
guestions of your own and participate in discussions about Smarandache geometry here.
The publisher of this book isinterested in publishing papers generated out of these
explorations as a collection of papers or in the Smarandache Notions Journal.

Members of the Smarandache Geometry Club [2] were involved in the discussions that
generated the basic idea of an ss-manifold and many of the concepts explored in this book.
These include mikeantholy (Mike Antholy), m | perez (Minh Perez), noneuclid (M.
Downly), johnkamla2000 (Kamla), dacosta teresinha (Dacosta), jeanmariecharrier (Jean
Marie), marcelleparis (Marcelle), kenSprasad (Ken Prasad), zimolson (Zim Olson),
duncan4320001 (Joan), charlestle (Charlie), ghniculescu, bsaucer (Ben Saucer), and
klaus1997de. Most of these discussions can be viewed at the club website.

| would like to thank the reviewers Joel Hass, Marcus Marsh, and Catherine D’ Ortona.
Prof. Marsh was the teacher most responsible for my turning to mathematics, and Prof.
Hass, my thesis advisor, introduced me to the real world of geometry and topology.
Virtually all of my thinking in mathematics can be traced back in some way to these two



mathematicians. Prof. D’ Ortona, a valued colleague, and my wife Linda are currently the
most active forces on my professional ideas. | am, of course, responsible for the
correctness of the material presented here and how I chose to implement the suggestions
of the reviewers.

This book is dedicated to my two huns, Linda and Zoe.



Chapter 1. Smarandache Manifolds

We present here adefinition for a special type of Smarandache manifold, which we will
call an ssmanifold. Since at present, these s-manifolds are the only manifolds presented
In the context of Smarandache geometry, we will leave a more general definition to the
future. We will see that an s-manifold is general enough to display amost all of the
properties of a Smarandache geometry, but is restrictive enough so that we can start to
make general statements about them.

For the purposes of this book, an uppercase“S,” asin“S-denia”, will be short for
“*Smarandache.” A lowercase“s,” asin “s-manifold”, will refer to the special type of
Smarandache manifold that is the focus here.

s-Manifolds

The idea of an s-manifold was based on the hyperbolic paper described in [21] and
credited to W. Thurston. Essentially the same ideain amore general setting can be found
in the straightest geodesics of [18] (see also [1]). In[21], the structure of the hyperbolic
plane is visualized by taping together equilateral triangles made of paper so that each
vertex is surrounded by seven triangles. Squeezing seven equilateral triangles around a
single vertex, as opposed to the six triangles we would see in atiling of the plane, forces
the paper into a kind of saddle shape (see Figure 1).

Figure 1. A paper model with seven equilateral triangles around one vertex.

We will extend thisideato elliptic geometry by putting five triangles around a vertex,
and of course, to Euclidean geometry by using six (see Figures 2 and 3). The basic
concept of an ssmanifold is contained in these paper models made of equilateral triangles
taped together edge to edge with five, six, or seven triangles around any particular vertex.



In these paper models, the paper will bend, but will not be stretched. Because of this, and
the fact that paper is inherently Euclidean, we can assume that the geometry within any
single triangle is Euclidean. Since two triangles taped together can lie flat, the geometry
within any pair of adjacent triangles must also be Euclidean. Any non-Euclidean
geometry comes from the curvature that is concentrated in the vertices.

Figure 2. A paper model with five equilateral triangles around one vertex.

Figure 3. A paper model with six equilateral triangles around one vertex.

Instead of paper triangles, an ss-manifold is constructed from triangular disks. These disks
are subspaces of the Euclidean plane formed by equilateral triangles with sides of length
one and consisting of the vertices, the edges, and the interiors of the triangles. The
geometry within asingle triangular disk is Euclidean, and concepts such as line segments,
length, and angle measure will remain intact.

We will join pairs of triangles by identifying edges. For example, if edge AB of triangle
ABC isto be identified with edge EF of triangle DEF (see Figure 4), then we will
consider A and E to be the same point, and any point P on AB adistance x from A will be
identified with the point Q on EF that is adistance x from E. In particular, B isidentified
with F. We will say that these disks share the edge AB (or EF).
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After an identification of thistype, we will assume that the two adjacent triangles lie next
to each other, and that they lie in a plane. The geometry, therefore, within any pair of
adjacent triangular disksis Euclidean. We will not be able to think of all pairs of adjacent
triangular disks as lying in a plane simultaneously, but we will always assume this for
any particular pair.

B E
—
C A F D C

Figure 4. Triangles ABC and DEF share the edge AB.

An ssmanifold will be any collection of these (equilateral) triangular disks joined
together such that each edge is the identification of one edge each from two distinct disks
and each vertex is the identification of one vertex from each of five, six, or seven distinct
disks.

Thereis no requirement that an s-manifold must “exist” in R* or any other Euclidean
space. For example, aKlein bottle can have an ss-manifold structure.

—— B
A
C D

Figure 5. Segments inside a disk are extended to the boundaries of the disk.

C

A V
Figure 6. Extending s-lines across edges forms two segments that make congruent
vertical angles with the edge.

A geodesic in amanifold isacurvethat is as straight as possible. Linesin an ss-manifold
will be the natural geodesics, and we will call them s-lines to differentiate them from the
lines in the Euclidean plane. An s-line will be any piecewise linear curve that can be

constructed from a line segment lying within one of the triangular disks and extended as
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follows. Since the triangular disks are subspaces of the Euclidean plane, any segment in a
disk can be extended to the boundaries along a straight line in the Euclidean sense, asin
Figure 5. Here, both segment AB and segment CD are extended to the boundaries of the
disk.

From an endpoint that lies on the interior of an edge, the s-line extends across the
adjacent triangle as a straight line segment in the Euclidean sense, so that vertical angles
formed by the edge and the s-line are congruent, asin Figure 6. Here, ZABV is
congruent to ZCBU. If we think of these two adjacent triangular disks as lying in the
plane, then s-lines are straight in the Euclidean sense as they cross edges.

From an endpoint that is a vertex, the s-line extends across a triangular disk sharing that
vertex as a straight line segment in the Euclidean sense so that these two segments form
two equal angles. An s-line passing through a vertex will sometimes be referred to as
singular. The measure of the two equal angles depends on the number of triangular disks
around that vertex.

Figure 7. A deformed hyperbolic star: both angles ZAOB have measure 210°.

A vertex with seven (equilateral) triangular disks around it will be called a hyperbolic
vertex. The seven disks together will be called a hyperbolic star. There are seven 60°
angles around a hyperbolic vertex for atotal of 420°, and an s-line will form two 210°
angles, asin Figure 7. Here, both angles designated as Z/AOB have measure 210°. Thisis
how we will extend the concept of a straight angle to hyperbolic stars.

Around a Euclidean vertex, there are six (equilateral) triangular disks, which together
we will call aEuclidean star. Thereis atota of 360° around a Euclidean vertex, so an s-
line will form two 180° angles, asin Figure 8. Since a Euclidean star can lieflat in the
plane, s-lines are straight in the Euclidean sense across a Euclidean vertex. The geometry
within a Euclidean star is clearly Euclidean.

Around an elliptic vertex, there are five (equilateral) triangular disks, which form an
eliptic star. Thereisatotal of 300° around an elliptic vertex, so an s-line will form two

12



150° angles, asin Figure 9, and so both angles ZAOB have measure 150°. Asin
hyperbolic stars, thisis how we extend the concept of straight angles to eliptic stars.

In any ssmanifold, s-lines extend indefinitely in this way. By this we mean that we can
follow an s-line for any distance in either direction. It is possible that an s-line could be
closed (like acircle) in an ssmanifold, and in extending indefinitely, we may be
traversing the same closed curve an infinite number of times. In addition, we will see that
s-lines may have multiple self-intersections.

A
Figure 8. A Euclidean star: both angles ZAOB have measure 180°.

Figure 9. A deformed elliptic star: both angles ZAOB have measure 150°.

Geometry in an ssmanifold

Two things determine the geometric structure in a particular ssmanifold, the configuration
of the non-Euclidean vertices, and the global topology. The non-Euclidean vertices
Introduce a sort of curvature, and this affects the rel ationshi ps between s-lines. The
topology of an ss-manifold can allow lines to wrap around the space, for example, and this
allows for various types of interactions between s-lines beyond that caused by curvature.
We will look first at the effects of the non-Euclidean vertices, and the effects of the
topology of an ss-manifold will be addressed throughout the book.

13



Geometry in elliptic stars

Instead of deforming an elliptic star, we can lay it flat by making a cut. In Figure 10, a cut
has been made along the edge OA. Alternatively, we can think of Figure 10 as an
identification scheme, and the two edges marked OA should be identified or glued. We
will present most of the examples of s-manifoldsin this book this way.

A A

A

/7
\/

Figure 10. Some s-lines near an elliptic vertex.

Figure 11. Paper model corresponding to Figure 10.

Three sample s-lines areindicated in Figures 10 and 11. These s-lines are drawn parallel
to the edges for convenience, but s-lines can point in any direction. The two s-lines
shown that do not pass through the vertex cross edges and makes congruent vertical
angles with the edges. The singular s-line passing through the vertex makes two 150°
angles (or two-and-a-half triangles). Note that these s-lines are straight within any pair of
adjacent triangular disks and that the s-lines appear to bend at the vertex and across the
cut. Thisis only because we have made a cut and flattened the surface. In the paper
model shown in Figure 11, these s-lines curve, but only in a direction perpendicular to the
surface. In other words, the s-lines are straight within the surface, and they bend only as
the surface bends. An essential property of an elliptic star is that s-lines passing on

14



opposite sides of the elliptic vertex turn towards each other. Thisis similar to the
behavior of geodesicsin a Riemannian manifold with positive curvature. A sphere, for
example, has positive curvature, and its geodesics, the great circles, all turn towards each
other.

Figure 12. Some s-lines near a hyperbolic vertex.

Figures 13. Paper model corresponding to Figure 12.

Geometry in hyperbolic stars

We can lay ahyperbolic star flat by making a cut, asindicated in Figure 12. Here the
segments OA are to be identified, as are the segments OB. The singular s-line shown
passing through the vertex makes two 210° angles (or three-and-a-half triangles). In a

15



hyperbolic star, s-lines turn away from each other. Thisis similar to the behavior of
geodesics in a Riemannian manifold with negative curvature. Saddle shaped surfaces
have negative curvature, and the paper model shown in Figure 13 exhibits asimilar
saddle-type shape.

Distance

Since the Euclidean geometry within the triangular disksis preserved, thereis a natural
notion of distance, and we will take the unit distance as the length of the edges of the
triangular disks. This length concept extends to s-lines easily, but we will see that a pair
of points may have no s-line joining them, or that the s-line joining them is not unique, so
we must be alittle careful about defining the distance between two points. A length can
be associated naturally with any sequence of line segments joining two points, so the
distance between the two points will be defined to be the infimum (i.e. the greatest |lower
bound) of all such lengths. If there is no such sequence, the distance will be oo. This will
occur if an ssmanifold is not connected.

16



Basic Theorems

Many of the concepts related to Riemannian manifolds can be adapted to s-manifolds.
The curvature in a Riemannian manifold, for example, can be replaced by something that
we will call an impulse curvature that is concentrated at the vertices. Some of these basic

concepts are discussed here.

Figure 14. The angle sum of atriangle is 180°, and the sum of turning anglesis 360°.

Figure 15. The angle sum of a quadrilateral is 360°, and the sum of the turning anglesis
360°.

| mpulse curvature on curves

The angle sum of atriangle is an invariant for triangles in Euclidean geometry, asis the
angle sum of aquadrilateral. It is not an invariant for polygons in general, however, since
the angle sum for polygons with different numbers of sides is different. A closely related
guantity, the sum of the turning angles, is an invariant for polygons. In Figures 14 and 15,
the turning angles are indicated outside of the triangle and quadrilateral aswe traverse
them in a counter-clockwise direction. Walking along the perimeter of these polygons,
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the turning angleis the angle required to change from one edge to start the next. The
sum of the turning angles is 360° for any polygon in Euclidean geometry.

The turning angle can be interpreted in terms of a curvature singularity. The curvature for
a smooth curve is a measure of how quickly the tangent vector changes direction with
respect to arclength. Integrating this curvature along an arc, therefore, results in the net
change in direction of the tangent vector as an angle measured in radians. For example,
the curvature for the arc AC, shown in Figure 16, is k = 1/r, since the radius of the circle
ISsr. Integrating the curvature over thisarc gives

Jxds=x]ds=x0r=(l/r)0r=0,

and 0 is exactly the angle between the tangent vector at A and the tangent vector at C.

Figure 16. The change in direction of the tangent vector is the same for the arc AC and
the path ABC.

The tangent vector on the path formed by the segments AB and BC has the same totdl
change in direction 0, but all of this change occurs at the point B. In this case, we have a
curve with zero curvature everywhere except at B, where the curvature, in some sense, is
Infinite. It would be convenient, however, to think of this“curvature singularity” in the
same way as we do with smooth curves. This would require that the integral of the
curvature over any part of the path containing B must always be 0, and over any part not
containing B, the integral must be zero. These are the properties of an impulse function
(see[9]), so we will call the measure of the turning angle the impulse curvature. Since
we can substitute a sharp angle with a closedly approximating smooth curve with the same
curvature integral, we will assume that results from differential geometry regarding the
integral of curvature extend to these impulse curvatures.

18



The Gauss-Bonnet theorem

There is awonderful theorem from differential geometry that states that if a closed curve
C bounds aregion S on a surface, then the Gauss curvature K for the surface isrelated to

the geodesic curvature k for the curve by the following formula (see [11, 16, 18]).
2n - JsK dA =] x ds.

For example, the Gauss curvature for a sphere of radiusr is K = 1/r°. A spherical triangle
formed by taking one quarter of the equator and connecting the endpoints of this segment
with the north pole, like the spherical triangle ABN in Figure 17, has three right angles.
The three turning angles are also right angles, so integrating these impulse curvaturesis
equivalent to adding them together, and this results in a total impulse curvature of 3n/2.
Thistriangle covers one eighth of the sphere, so integrating the constant K over the
interior of this spherical triangle results in (K)(4nr®)/8 =(1/r*)(4nr’)/8 = 1/2. We have
then, 2n — /2 = 3n/2.

Figure 17. A spherical triangle with three right angles.

For a sphere of radius 1, and atriangle with area A, this generalizes to saying that the
sum of the turning anglesis 2 — A. Since the sum of the turning angles plus the sum of
the angles for the triangle is 3n/2, we have that the angle sum of a spherical triangleis
awaysm/2 + A. In particular, the angle sum of a spherical triangle is always greater than
180°.

Instead of having a smooth Gauss curvature like the sphere, the curvature on an s-
manifold is concentrated at the elliptic and hyperbolic vertices. These curvature
singularities can also be interpreted as impulse Gauss cur vatur es. Historically, we could
even say that the Gauss curvature is a smooth version of this polyhedral curvature, which
was originally developed by Descartes (see[11, 18]). Assuming that integrals of Gauss
curvature can be extended to these impul se curvatures, we can compute what these
should be.

19



Consider a small polygonal curve ABCDEA bounding aregion consisting of five
equilateral triangles around the elliptic vertex O, asin Figure 18. The turning angles at A,
B, C, D, and E are all 60°, so the sum of the turning anglesis 300°. For alarger polygonal
path, such as the one through F, G H, |, and Jin Figure 18, the contained region can be
subdivided into the pentagon ABCDE and the region bounded by the polygonal curve
FGHIJLKEDCBAKLF. This second region is Euclidean in itsinterior, so the sum of the
turning angles is 360°. Taking angles measured in a counter-clockwise direction as being
positive, the turning angles at E, D, C, B, and A are negative, but equal in magnitude to
the corresponding turning angles on the pentagon. The two angles at L are positive and
add up to 180°, as do the two angles at K. We have then

360° = (turning angle sum of FGHIJF) + (LL; + ZL, + ZK1 + LK) + (LA + LB + £C
+ /D + ZE) = (turning angle sum of FGHIJF) + 360° — 300°.

Therefore, (turning angle sum of FGHIJF) = 300°. A similar argument reveals that the
turning angles will sum to 420°, if the polygonal path contains a hyperbolic vertex. This
further extends to the following.

Figure 18. A curve around an dliptic vertex.

Theorem (s-manifold Gauss-Bonnet theorem). For any non-singular polygon (i.e., non-
Euclidean vertices do not lie on the perimeter) in an ss-manifold bounding aregion that is
simply connected and containing atotal of h hyperbolic vertices and e elliptic vertices,
the sum of the turning anglesis 360° + 60° (h —e).

Angle sums of polygons can easily be computed from this theorem. For example,
consider aregular pentagon with an elliptic vertex initsinterior. We have aturning angle
sum of 360° + 60° (0 — 1) = 300°. If x isthe measure of each of the angles of this regular
pentagon, then 5(180° - x) = 300°, and x = 120°. This compares to 108° for the angles of a
regular Euclidean pentagon.

Relative angles

It will be convenient for usto talk, in alocal sense, about s-lines being parallel or not
parallel at different points along them, since this relationship between s-lines changes as

20



we move from point to point along the s-line. In Figure 19, in the direction from right to
left (from point B to point C), we will say that the angle of thelineb, at the point B,
relativetothelineais Z3. At point C, therelative angleis Z4. Therelative angleis not
aways well-defined, but there should be little confusion in the contexts in which it will
be used. If therelative angle is 90° at some point P of b, wewill say that bisparallel to a
at P. Thisisaterm that we will use for convenience and does not imply that the s-lines
are parallel.

For quadrilateral ABCD in Figure 19, we know that the sum of the turning angles
depends on the number of elliptic and hyperbolic verticesinside of it. If thereis one
elliptic vertex, then the sum of the turning angles is 360° — 60° = 300°. Inthiscase, L2 +
£4=120° and £2 + £3 =180°, s0 L4 = £3—-60° A similar computation yields the fact
that if there is a hyperbolic vertex in the interior of the quadrilateral, then £4 = £3 + 60°.

Fundamental principle. When an dlliptic vertex lies between the two s-lines a and b, the
angle of b relative to a decreases by 60°. When there is a hyperbolic vertex between the s-
lines, the relative angle increases by 60°.

DIF5
Figure 19. The angles £3 and £4 are the angles of the s-line b relativeto s-linea at
points B and C.

Figure 20. Relative angles around an elliptic vertex decrease by 60°.

21



Relative angles around elliptic and hyperbolic vertices

Around an dlliptic vertex, the relative angle decreases by 60°. In Figure 20, from right to

left, £4 i1s60° lessthan £1. From left to right, £2 is60° lessthan £3. The relative angle
decreases by 60° in either direction.

Around a hyperbolic vertex, the relative angle increases by 60° in either direction. In
Figure 21, fromright to left, £2 is 60° greater than £1, and from left to right, £4 is 60°
greater than £3.

The effects are additive. In Figure 22, we see the relative angle decreasing by 60° twice
for atotal of 120°. Asdrawn, therelative angle £1 is 150°, relative angle £2 is 90°, and
relative angle £3 1s 30°. In the other direction, the relative angles £4, /5, and £6 change
In the same way.

ININANR AN

b \/

Figure 22. The relative angle after passing two elliptic vertices decreases by 120°.

In Figure 23, the relative angle increases by 60° and decreases by 60° after passing a
hyperbolic vertex and an elliptic vertex. As drawn, therelative angle £1 is 90°, the
relative angle £2 is 150°, and the relative angle £3 is back to 90°. The changein relative
angle from an elliptic and a hyperbolic vertex cancel out.
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Lambert and Saccheri quadrilaterals

J. H. Lambert and G. Saccheri were prominent figures in the study of the parallel
postulate. Special quadrilaterals, which were named after them, are natural objects to
consider in this context. A Saccheri quadrilateral isaquadrilateral whose base angles
are right angles and whose base adjacent sides are congruent. Clearly, in Euclidean
geometry, a Saccheri quadrilateral must be arectangle. In hyperbolic and elliptic
geometry, a Saccheri quadrilateral is not arectangle, but the summit angles must be
congruent. In Figure 20, quadrilateral ABCD is a Saccheri quadrilateral. The upper
angles are both 120°. In Figure 23, quadrilateral EGHJ has four right angles, but it isnot a
Saccheri quadrilateral, since the two base-adjacent sides are not congruent. Thisraisesthe
following question.

Question. In an ssmanifold, must the summit angles of a Saccheri quadrilateral be
congruent?

A Lambert quadrilateral hasthreeright angles. Here also, a Lambert quadrilateral in
Euclidean geometry must be arectangle. In Figure 23, the quadrilaterals EFIJ and EGHJ
are Lambert quadrilaterals. The fourth angle of Lambert quadrilateral EFIJis 150°.
Lambert quadrilateral EGHJ actually has four right angles, but it is not arectangle, since
side GH is shorter than side EJ. On the other hand, an argument could be made that
Lambert quadrilateral EGHJ is arectangle, since opposite sides are parallel.

3

/\ .

\
> //\ /&BAAB
\VARVARR V.

Figure 23. The relative angle after passing an elliptic and a hyperbolic vertex is the same.
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Other Objects in an s-Manifold

Segments

Our s-lines correspond naturally to the real line, since they extend indefinitely and are
continuous. Given apoint P on an s-linel and adirection along |, we can define a
mapping from R to | that satisfies the following conditions. The origin mapsto P. For
each x > 0, we can look a distance x along | in the given direction to find a point Q, and X
maps to this point Q. The image for each x < 0 isfound by traveling in the other
direction. In terms of this distance function, the real numbers cover the s-line. In the
case of aclosed s-line, R covers the s-line an infinite number of times. We could, if we
wanted, define an s-segment to be any part of an s-line that corresponds to a closed
interval on thereal line. If we were to choose this definition, aclosed s-line, like agreat
circle on the sphere, could be covered by an s-segment more than once. This would be
Interesting from a Smarandache point of view, but we will use amore conservative
concept by adding the requirement that an s-segment will never completely cover an s-
line (self-intersections are OK). We should expect that this definition will provide uswith
s-segments that have properties we might not expect, but we should never have doubts
that any of these should be called an s-segment.

Figure 24. An s-proto-circle around an elliptic vertex.

Circles

We will do little with circles here, beyond considering whether they exist or not. In order
to do that, we will need to define what will qualify asacircle. It isfairly standard to
define acircle as the set of points a fixed distance from a given point. We could do this,
but then existence would not be an issue, and we might have some odd things being
called circles. Using Euclid as a standard, we will define circles as follows. An s-proto-
circlewith center C and radiusr isthe set of points P that have an s-segment CP with
length r. Euclid defined a circle to be, “a plane figure contained by one line such that all
the straight lines falling upon it from one point among those lying with the figure are
equal to one another; and the point is called the centre of the circle” [9]. With thisin
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mind, we will say that an s-proto-circleisan s-circle, if it isasimple closed curve. Given
apoint C and aradiusr, if the s-proto-circleis an s-circle, we will say that the s-circle
exists.

In Figure 24, we have an s-proto-circle around an elliptic vertex. Since there are three
ways for an s-line through C to get into the upper-right triangular disk, there are three
parts to the s-proto-circle in the region. For those s-segments (s-radii) that pass to the
right of the elliptic vertex, their endpoints lie on the continuation of the s-proto-circle
from below. For those s-segments that pass to the left of the elliptic vertex, their
endpoints lie on the continuation of the s-proto-circle through the point A. The point Pis
the endpoint of the s-segment that passes through the elliptic vertex, and it liesjust inside
of the two arcs. Since this s-proto-circle is not a simple closed curve, the s-circle with
center C and this radius does not exist.

Around a hyperbolic vertex, s-proto-circles will have an open region instead of
overlapping (an example is shown in the non-geometry section of Chapter 3), and away
from non-Euclidean vertices, s-proto-circles will ook like Euclidean circlesin the
Euclidean plane. Clearly then, s-circles exist away from the non-Euclidean vertices, and
medium sized s-circles do not exist near non-Euclidean vertices. If the center of an s
circlelies on avertex, then the s-circle al so exists (although its circumference may be a

bit larger or smaller than 2rr).

Question. Are there s-circles other than these? In particular, are there s-circles that
contain non-Euclidean vertices? Also, how wild can an s-proto-circle be? For example,
can an s-proto-circle be shaped like afigure-87?

Angles

When two lines meet, there will always be at |east a short (and straight) line segment
corresponding to each side, so no great |eap is needed to define what an angleis. The
only thing that isunusual isthat angles around an elliptic vertex or hyperbolic vertex will
sum to 300° or 420°. It should be clear why thisisthe case.

Parallel lines

In the study of manifolds, the notion of parallel linesis of secondary interest. It is of
primary interest in the study of synthetic (axiomatic) geometry. Here, the concept of
parallel lines defines the differences between Euclidean, elliptic, and hyperbolic
geometry, and whether two lines intersect, or not, determines if they are parallel (at least
In two dimensions, which iswhere our interests lie). On amanifold, it is curvature that
differentiates Euclidean, €lliptic, and hyperbolic geometry, and the important phenomena,
the local ones, are determined by curvature, and whether lines intersect, or not,
somewhere else in the space has little bearing. So whileit isnormal in adifferentiable, or
a Riemannian, manifold for the curvature, and therefore, the geometry, to change from
region to region, this does not necessarily carry over to the relationships between lines, or
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geodesics. Thisis, in fact, one of the major issues that is before us here. We will take the
synthetic definition of parallel, that is, two s-lines are parallél, if they do not intersect.
We will ook to see how this definition plays out in the world of manifolds.
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Chapter 2. Hilbert’s Axioms

In a Smarandache geometry, we want to look at how the Euclidean or non-Euclidean
structure changes from place to place. Since Hilbert’s axioms cover Euclidean geometry
at an axiomatic level, this seems to be a reasonable place to start. Several of Hilbert's
axioms will hold in any s-manifold, but most will be S-deniable in an ss-manifold. The
continuity of ssmanifoldswill make it impossible to S-deny all of Hilbert’s axioms, and
our choice to have congruence to be an equivalence relation further reduces our ability to
S-deny Hilbert’s axioms. Most of Hilbert’s axioms will be S-deniable, however, and we
will see awide variety of geometric structures in intuitively manageabl e spaces.

Hilbert separated his set of axioms into groups, and we will break them up the same way.

Incidence
Hilbert’s axioms of incidence for plane geometry are as follows [14].

|-1. For every two points A and B, there exists aline a that contains each of the points A
and B.

|-2. For every two points A and B, there exists no more than one line that contains each
of the points A and B.

|-3. There are at |east two points on aline. There are at |east three points not on aline.

In Euclidean geometry, and in the elliptic geometry of Riemann and the hyperbolic
geometry of Bolyai, Lobachevski, and Gauss, there is exactly one line through a pair of
points, asisrequired in axiomsI-1 and I-2. Thisis not quite the case in spherical
geometry. Pairs of antipodal points, the north and south poles, for example, have an
infinite number of lines (great circles) through them. Thereis, however, aunigue line
through any pair of non-antipodal points. On the sphere, therefore, the axiom requiring
that pairs of points determine aunique lineis S-denied (it is true for some pairs and false
for others), and the sphere is a Smarandache geometry with respect to this axiom.

In an ssmanifold, there are a number of waysin which apair of points does not determine
aunique s-line. We will say that if apair of points has exactly n s-lines passing through
them, then they are n-aligned. In Euclidean geometry, all pairs of points are 1-aligned.
We will say that pairs of points with infinitely many s-lines through them, like antipodal
points on the sphere, are «o-aligned. Occasionally, we will also call pairs of pointsthat are
O-aligned remote, n-aligned points with n > 2 multiply aligned, and pairs of 1-aligned
points uniquely aligned.

Since s-linesin an ssmanifold are extensions of line segments, every s-line will have at
least two points. There will also be three points not on any given s-line. The only
conceivable exception would be an s-line that completely covered an ss-manifold. In this
case, all the points of the s-manifold would be on the s-line, and none off of it. This
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cannot happen, however. If we had such an s-line, then each triangular disk would be
covered by a countable number of segments. This could not happen for an s-line that
followed an edge of atriangular disk, since such an s-line would only run along the edges
of or bisect any particular disk. Therefore, each segment in any particular disk must
intersect the boundary of the triangular disk at most twice. The s-line, therefore, could
only cover a countable number of points on the perimeter of the disk. It follows that this
s-line could not cover the entire s-manifold.

We see then that Hilbert’ s third incidence axiom will hold for every s-manifold, and
cannot be S-denied.

A

oW Vs

Figure 1. The elliptic cone-space.

Incidence around an elliptic vertex

The ssmanifold shown in Figure 1 has asingle dliptic vertex O. Here, the edges
containing the points O, E, and C are identified, and the space extends to infinity with
only Euclidean vertices. We will call this the elliptic cone-space, since a paper model of
this ssmanifold is cone-shaped (see the posts of Joan Duncan and Ken Prasad at [2]). The
s-linesa and b illustrate that the points A and B are at |east 2-aligned. Further
consideration makes it clear that the s-line b isthe only s-line that passes to the right of
the point O and through A and B, and that the s-line a isthe only s-line that passesto the
left of O. Therefore, the points A and B are, in fact, 2-aligned. There are three s-lines
passing through the pair of points A and E, one to the left of O, oneto the right, and the
singular s-line through O. The points A and E are therefore 3-aligned. The points A and
O satisfy athird category of alignment. They are uniquely aligned. Hilbert’s axiom |-2,
therefore, is S-denied, and the elliptic cone-space is a Smarandache geometry relative to
this axiom.

28



Two-sided polygons

If two points are multiply aligned there is a 2-sided figure with these points as vertices.
These are called 2-gons. It isinteresting to note that 2-gons in the elliptic cone-space
have an angle sum that is almost always 60°. If the two sides of a 2-gon do not pass
through the elliptic vertex (asingularity), we will call it anon-singular 2-gon. We then
have the following elliptic cone-space theorem.

Theorem. The angle sum of a non-singular 2-gon in the elliptic cone-space is 60°.
(Singular 2-gons have an angle sum of 30°.)

Consider the 2-gon AB in Figures 1 and 2. The triangles AOC and AOE are Euclidean
triangles (singular 2-gons), and the angles ZAOC and ZAOE both measure 150°.
Therefore, ZOAE + ZOEA = 30° and LOAC + ZOCA = 30°. The angles ZOEA and
ZBEC are equdl, since they are vertical angles. Since the triangle BCE is a Euclidean
triangle, it has an angle sum of 180°, and ZBCE + ZBEC = ZEBA (an exterior angle).
The angle sum of the 2-gon AB is ZEAB + ZEBA = (LOAE + ZOAB) + (£BCE +
/BEC) = (£LOAE + «ZBEC) + (£OAB + ZBCE) = (LOAE + ZOEA) + (£OAC +
Z0OCA) =30°+ 30° = 60°. Thisis not completely general, but atrivial general proof can
be obtained from the s-manifold Gauss-Bonnet theorem.

Figure 2. Paper model corresponding to Figure 1.

Thisresult can be extended easily to other polygons. For example, atriangle with the
elliptic vertex O initsinterior will have an angle sum of 240°. If one of the sides of the
triangles passes through O, then the angle sum is 210°. Otherwise, the angle sumisthe
Euclidean 180°.
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Alignment regions

With respect to the point A in Figure 3, al of the pointsin the interior of the shaded
region are 2-aligned, except for the points on the ray OC (which arein the interior),
which are 3-aligned (not including O) (see the posts of Mike Antholy [2]). The s-lines
just missing the elliptic vertex O, liketheline ain Figure 3, will approach the lower
boundary of the shaded region, but the singular line through O will continue through C.
The region including the boundaries and below consists entirely of points that are
uniquely aligned with A.

Y

Figure 3. Regions that are 1-, 2-, and 3-aligned with A.

JVA

C
Figure 4. The hyperbolic cone-space.
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Alignment around a hyperbolic vertex

The hyperbolic cone-space is an ssmanifold that has a single hyperbolic vertex, as
indicated in Figure 4. A paper model of this cone-space would not be cone shaped in the
usual sense, but it iscommon to call the object formed by joining all of the points on a
curve to asingle point with line segments a cone. In Figure 4, it appears that the | eft and
right regions will overlap if the picture is extended upwards, but these regions are meant
to be digoint except for the boundaries, which are identified. In particular, the s-linesa
and c only intersect at A.

Figure 5. Paper model corresponding to Figure 4.

Alignment regions

The only s-line through A that enters the shaded region of Figure 4 isthe singular s-line
c. Therefore, all of the pointsin this region, except for the points on the ray OB, are O-
aligned with A. Except for the vertex O, the boundaries are included in the 0-aligned
region. All other points are uniquely aligned, so Hilbert’s axiom I-1 requiring that any
pair of points determine at most one line is Smarandachely denied, and the hyperbolic
cone-space is a Smarandache geometry relative to this axiom.

Higher Order Alignment

It is certainly possible in an s-manifold to get higher orders of alignment. For example, in
Figure 6, we have a pair of points that are 5-aligned. From P, there is an s-line that goes
directly to Q, one that goes around the elliptic vertex B, one that passes through both
elliptic vertices, one that goes around the elliptic vertex A, and one that goes around both
elliptic vertices. Using more non-Euclidean vertices opens the possibility of even more s-
lines through a pair of points.
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Figure 6. The points P and Q are 5-aligned.

A B - C D E
Figure 7. The points P and Q are «-aligned.

We can also get multiple alignments as a result of topology. In Figure 7, we have a
cylindrical ss-manifold. The points on the top and bottom are identified, and the figure
extends indefinitely to the right and left. The s-line a runs along the cylinder and passes
through both P and Q. The s-line b wraps around the cylinder once, while s-lines c and d
wrap around twice and three times. Instead of passing through P in a downward direction,
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there are also s-lines passing through upwards that wrap around the cylinder one, two,
and three times. In fact, for every positive integer n, there are two s-lines that pass
through both P and Q and wrap around n times. The points P and Q are therefore -

aligned. All pairs of points on the cylinder are «-aligned, except for points that are lined
up vertically. These are uniquely aligned.

Figure 8. Paper model corresponding to Figure 7.

Angle sumsof triangles

There are no 2-gons in the hyperbolic cone-space, but we can determine the angle sum of
atriangle in this space (see the posts beginning with those of Dacosta Teresinha and Joan
Duncan [2]). A triangle will have an angle sum of 120°, 150°, or 180° depending on
whether the hyperbolic vertex O isinside the triangle, on the interior of one of its sides,
or otherwise. In Figure 9, triangle ABC has angle sum 120°, and triangle DEF, which
contains no non-Euclidean vertices, has angle sum 180°

For triangle ABC in Figure 9, we can compute its angle sum as follows. The non-convex
pentagon ABGOH is a Euclidean figure, so 540° = Z/HAB + ZABG + £/BGO + ZGOH
+ ZOHA, and ZGOH = 240°. Therefore, ZHAB + ZABG + ZBGO + ZBGO + ZOHA
= 300°. Thetriangle CGH is also a Euclidean figure, so 180° = ZCGH + ZGHC +
ZHCG. The vertical angles acrossthe cut at G and H are congruent, so Z/BGO + ZCGH
= 180°, and LOHA + ZGHC = 180°. Adding the angles of the pentagon ABGOH to the
angles of the triangle CGH, and subtracting the straight angles at G and H, we have that
ZHAB + ZABG + ZHCG = 120°.

This angle sum analysis can, of course, be extended to polygons with four or more sides.
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Questions about alignment

Isit possible to have pairs of points of al possible varieties of alignment in asingle s-
manifold?

Given apoint A inan ssmanifold, isit possible that there are points of all possible
varieties of alignment with A?

The 2-aligned region in the elliptic cone-space is open (does not contain boundary
points), and the O-aligned region in the hyperbolic cone-space is closed (contains all
boundary points). Is there some underlying principle being manifested here?

A

Figure 10. Paper model corresponding to Figure 9.
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Betweenness
Hilbert’s axioms of betweenness are as follows [14].

[1-1. If apoint B lies between points A and C, then the points A, B, and C are distinct
points of aline, and B also lies between C and A.

[1-2. For two points A and C, there always exists at least one point B on the line AC such
that C lies between A and B.

[1-3. Of any three points on aline, there exists no more than one that lies between the
other two.

I1-4. Let A, B, and C be three points that do not lieon aline, and let a be aline which
does not meet any of the points A, B, and C. If the line a passes through a point of the
segment AB, it aso passes through a point of the segment AC, or through a point of the
segment BC.

Probably the most intuitive notion of a point C lying between two other points A and B
corresponds to C lying in the interior of the line segment AB. This works perfectly well
In the Euclidean plane, but it introduces some ambiguity when pairs of points are not 1-
aligned, and we have seen that we have points that are not 1-aligned in ssmanifolds. We
would expect avariety of structures, therefore, regarding betweenness in an s-manifold.

We will say that C lies completely between, or smply between, A and B, if it liesin the
interior of every possible s-segment AB. We will also say that C lies partially between
A and B, if it liesin theinterior of at least one of the s-segments AB, but not all of them.
Otherwise, C is not between A and B.

If apoint Cis partialy between A and B, we may describe the situation more explicitly
by saying that C is x% -between A and B, where x is the percentage of s-segmentsthat C
lies on out of all that are possible. For example, on the sphere, if A and B are two non-
antipodal points, they are joined by two segments, the short and long arcs of the unique
great circle through A and B. If C lies on one of these segments, it will not lie on the
other, so C would be 50%-between A and B. We will only use this description for points
that are partially between, so 100%-between is distinct from completely between, and
0%-between is distinct from not between. For example, every point on the sphere, other
than the north and south poles, is partially between the two poles. Each of these points
lies on exactly one segment joining the poles out of infinitely many that are possible.
Each of these points, therefore, would lie 0%-between the north and south poles. It may
be difficult or impossible to determine a well-defined percentage in the case that there are
infinitely many possible segments when 0%- and 100%-between do not apply.

We have defined (completely) between with the idea that there may be multiply aligned

pairs of points, A and B, with apoint C that lies on all of the s-segments AB. Figure 11
shows that this can occur in an ss-manifold.
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Figure 11. The point R lies completely between P and Q.
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Figure 12. The s-line AE has a self-intersection at G.
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In Figure 11, the two elliptic vertices A and B allow three paths from P to Q. The two
hyperbolic vertices C and D prevent any s-lines through P and Q from passing on the
same side of the two elliptic vertices, so these three s-lines are the only ones that pass
through P and Q. The point R, therefore, lies completely between P and Q.

In the following, reference is made to s-lines with self-intersections. Figure 12 indicates
one way that this can happen. Here, we have a cylinder capped off with six elliptic
vertices. The s-line shown actually has infinitely many self-intersections, since each end
Is essentially ahelix. We could prevent further self-intersections by inserting five
hyperbolic vertices at the |eft edge, which will open the cylinder out into a sort of cone.

Figure 13. Paper model corresponding to Figure 13.

Axiom |1-1. If apoint B lies between points A and C, then the points A, B, and C are
distinct points of aline, and B also lies between C and A.

This axiom holds, for the most part, in any ss-manifold, since our definition of between
states that the point must lie on an s-segment. The one exception is that the points A, B,
and C need not be distinct. Since an s-line can have a self-intersection, apoint A could lie
in the interior of an s-segment AC according to our definition. Figure 14 illustrates how
this could happen. The s-segment GFGA in Figure 12 is an example of such an s-
segment. Therefore, S-denials of axiom I1-1 occur in ss-manifolds, but only in regards to
the distinctness of the three points.

Axiom |1-2. For two points A and C, there always exists at |east one point B on the line
AC such that C lies between A and B.

If the s-line AC exists, then there clearly must be a continuum of points B such that Clies

at least partially between A and B. This axiom may fail in several ways. The s-line AC
may not exist. We have seen examples of pairs of points that are remote. We have also

37



seen pairs of points A and B that are 2-aligned forming two segments AC with digoint
Interiors. In this case, asin Figure 15, C lies partially between A and B, but not
completely between A and B. S-denials of this axiom are, therefore, quite common
around non-Euclidean vertices.

C
Figure 14. The point A liesin the interior of the segment AC.

>
Figure 15. The point C lies only partially between A and B.
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Figure 16. The s-line a enters triangle ABC through side AB, but never leaves.

Axiom |1-3. Of any three points on aline, there is no more than one that lies between the
other two.
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There are closed s-lines (closed like acircle), so each of three points on aclosed s-lineis
partially between the other two.

Conjecture. Thisaxiom holds in every ss-manifold when completely between is used for
between.

Figure 17. The s-line a enters and leaves the triangle ABC through the side AB.

Figure 18. Paper model corresponding to Figure 17.

Axiom |1-4. Let A, B, and C be three points that do not lieon aline, and let abealine
which does not meet any of the points A, B, and C. If the line a passes through a point of
the segment AB, it also passes through a point of the segment AC, or through a point of
the segment BC.
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Thisis Pasch’s axiom, and it states roughly that an s-line that enters a triangle through
one of its sides must exit through one of the others. This axiom can fail in an ss-manifold
In several ways.

One would be that the s-line enters, but never leaves. This can happen if the inside of the
triangle is connected to the outside or isinfinite in extent, and would be an indication that
the topology is non-trivial. In Figure 16, triangle ABC wraps around acylindrical s-
manifold. The s-line a intersects side AB, but it does not intersect either of the other two
sides.

Thisaxiom also failsif an s-line were to exit through the same side. This occursin the

case that two points on one side are multiply aligned, as shown in Figure 17. Herethe s-
lines a and AEB pass on either side of an elliptic vertex.

40



Congruence
Hilbert’s axioms of congruence are as follows[14].

I11-1. If A and B aretwo pointson alinea, and A’ isapoint on alinea’ then it isalways
possible to find apoint B” on a given side of the line a” through A’ such that the segment
AB is congruent to the segment A’B’.

[11-2. If asegment A’B” and a segment A”B” are congruent to the segment AB, then the
segment A’B’ is also congruent to the segment A”B”.

[11-3. On theline a, let AB and BC be two segments which except for B have no point in
common. Furthermore, on the same or on another line a’, let A’B” and B’C’ be two
segments, which except for B” also have no point in common. In that case, if AB is
congruent to A’B” and BC is congruent to B’C’, then AC is congruent to A’C".

[11-4. Every angle can be copied on agiven side of agiven ray in auniquely determined
way.

[11-5. If for two triangles ABC and A’B’C’, AB is congruent to A’B’, AC is congruent to
A’C’, and £ZBAC is congruent to £ZB’A’C’, then ZABC is congruent to LZA’'B’C.

Given two points A and B, the s-segment AB is not necessarily well-defined, if it isexists
at all, since A and B may not be uniquely aligned. We can talk about some s-segment AB,
however, with the understanding that we are talking about a particular s-segment AB and
that we will make it clear if we wish to consider a different s-segment with the same
endpoints. We will assume that an s-segment AB has a direction associated with it and
that A isthe starting point and B is the ending point. Given two s-segments AB and CD,
we will define the distance map from AB to CD asfollows. The point A mapsto the
point C, and each point P on AB is mapped to the point Q on CD such that the distance
from A to P aong the s-segment AB is the same as the distance from C to Q along the s-
segment CD. We will say that the s-segments AB and CD are s-congruent, if the
distance map exists and is a one-to-one correspondence. If two s-segments have no self-
Intersections, they are s-congruent if they have the same length, so this definition agrees
with the notion of congruence of segments in Euclidean geometry.

B

8
A

Figure 19. The s-segment AB (the longer one) is not s-congruent to the s-segment BA.

With s-congruence defined this way, an s-segment AB is always s-congruent to itself, but
not necessarily to the inverse s-segment BA. If B liesin the interior of AB, asin Figure
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19, the distance map from AB to BA would have A and some interior point mapping to
B, and so it could not be one-to-one, and since B would have to map to two points, the
distance map would not even be well-defined.

Axiom I11-1. If A and B aretwo pointson alinea, and A" isapoint onalinea’ thenitis
always possible to find a point B’ on agiven side of the line a’ through A’ such that the
segment AB is congruent to the segment A’B’.

In an ssmanifold, it is always possible to find a point on an s-line any distance from a
point in either direction. There may not be an s-segment with this length between the two
points, however, since we require that an s-segment cannot completely cover an s-line.
For example, if the s-lineis closed like acircle and has length 2, then starting from some
point A, we may travel adistance 3 in one direction and there will be apoint on the s-line
at this position, but since s-segments cannot cover an s-line completely, thereisno
associated s-segment. If the s-segment exists, then s-congruence is not guaranteed if there
are self-intersections. For example, in Figure 20, even if AB and CD are the same length,
they could not be s-congruent. We have seen examples of closed s-lines and s-lines with
self-intersections, so this axiom is S-deniable in an ss-manifold.
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Figure 20. The s-segments AB and CD are not s-congruent.

Axiom I11-2. If asegment A’B” and a segment A”’B”’ are congruent to the segment AB,
then the segment A’B’ is also congruent to the segment A”B”.

We have chosen arelatively conservative definition for s-congruence, so we cannot S-
deny this axiom in an ss-manifold. Clearly, since one-to-one correspondence is preserved
under composition, s-congruence of s-segments istransitive. In fact, our definition of s-
congruence satisfies the properties of an equivalence relation, i.e., it isreflexive,
symmetric, and transitive. Using a notion of congruence that was not an equivalence
relation would complicate the study of all related issues immensely. Asit is, this axiom
aways holds in an ssmanifolds.

One alternative to s-congruence that has greater “ S-deniability” isthe following. We only
mention this, and we will not pursue this further in this book. We could define the g-
segment AB to be the collection of all s-segments with endpoints A and B. The “q”
refers to quantum physics, which inspires this definition, although fuzzy logic would be a
more appropriate reference. In any case, each particular mention of the g-segment AB
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refers to a particular s-segment with probability determined by the total number of s-
segments. Two g-segments AB and CD are x% -g-congruent, if X% is the probability
that the particular s-segments AB and CD have the same length. For example, let A and B
be two non-antipodal points on the sphere. Then the g-segment AB consists of the two
arcs of the great circle through A and B. Since there are two segments AB, each one
occurs with probability 50%. Comparing AB with itself, there are four possibilities all
occurring with equal probability, short-short, short-long, long-short, and long-long. The
short-short and long-long possibilities compare segments of the same length, so the g-
segment AB is 50%-q-congruent with itself.

Axiom |11-3. Onthelinea, let AB and BC be two segments which except for B have no
point in common. Furthermore, on the same or on ancther line @', let A’'B” and B’C’ be
two segments, which except for B” also have no point in common. In that case, if AB is
congruent to A’'B” and BC is congruent to B’C’, then AC is congruent to A’C".

We have additivity of length for s-segments in an s-manifold, but this does not
necessarily extend to s-congruence. In Figure 21, the s-segments AB and DE could be s-
congruent, as could s-segments BC and EF, but the s-segments AC and DF, while being
the same length, would not be s-congruent. Of course, the s-segments DE and EF have
more than the point E in common, but it seems that they satisfy the basic intent of the
axiom. Therefore, this axiom is S-deniable in the sense that s-congruence is not additive,

but as stated, it holds in all ss-manifolds, aslong as the s-segments AC and A’C’ exist.
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Figure 21. The s-segments AC and DF could not be congruent.

The measure of an angle carries over reasonably from Euclidean geometry. By the
measure of a given angle, we will mean the smallest non-negative one. For example, in

the plane, we can say that an angle that measures 90° also measures 270°, but we will
think of these as being equivalent. We will say that two angles are congruent if their
measures are the same.

Axiom I11-4. Every angle can be copied on a given side of agiven ray in auniquely
determined way.

An angle that emanates from an elliptic vertex can measure at most 150°, and one that

emanates from a hyperbolic vertex can measure up to 210°. There are limitations,
therefore, in copying an angle emanating from a hyperbolic vertex and in copying an
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angle to an elliptic vertex. For any ss-manifold that has a hyperbolic vertex and an elliptic
vertex, any angle measuring more than 150° cannot be copied to a ray emanating from an
elliptic vertex, so this axiom would be S-denied. A similar statement can be made for any
s-manifold with a non-Euclidean vertex.

Axiom I11-5. If for two triangles ABC and A’B’C’, AB iscongruent to A’'B’, AC is
congruent to A’C’, and ZBAC is congruent to ZB’A’C’, then ZABC is congruent to
ZA'B’C.

In Euclidean geometry, this axiom extends to the SAS theorem for congruence of
triangles. In an ssmanifold, however, the angle sums can vary, so this axiom will
generally befalse if the angle sums of the two triangles are different. In Figure 22, we
have three points A, B, and C near an dliptic vertex, and the points B and C are 2-
aligned. Therefore, there are two possible sides BC, even though the angle Z/BAC and
sides AB and AC are the same for both triangles. Thisaxiomis S-denied in any s-
manifold with an elliptic vertex.

Figure 22. The SAS criteria are satisfied for two different triangles near this elliptic
vertex.



Parallels

Euclid’ sfifth postulate states, “If two lines are cut by atransversal so that the interior
angles on one side are less than two right angles, then the two lines will intersect on that
side,” [9]. Implicit hereisthat if the angles are greater than or equal to two right angles,
then the lines will not intersect on that side. Clearly then, the two lines will be paralldl, if,
and only if, the angles equal two right angles. In other words, given aline a and a point P
not on a, there is exactly one line through P that is parallel to a. Thisis essentially
Playfair’'s postulate, although Hilbert was able to weaken this to, “thereis at most one
line through P that is parallel to a,” since the existence of parallels can be established
from other axioms or postul ates.

Non-Euclidean geometry started, for the most part, with Bolyai, L obachevski, and Gauss,
and their hyperbolic geometry can be obtained from Hilbert’s axioms by replacing the
parallel axiom with a statement like, “Given aline a and apoint P not on a, there are at
least two lines through P that are parallel to a” (see[3]). Hilbert’s other axioms establish
that all of the lines “in between” these two parallels must also be paralléel. In hyperbolic
geometry, therefore, there are always infinitely many paralléels.

The elliptic geometry of Riemann requires that there be no parallel lines (and clearly
Hilbert’ s other axioms are not consistent with this requirement, so other axioms will
differ).

In a Smarandache geometry in which the parallel postulate is S-denied, the number of
parallels will change throughout the space, and this will depend on the point P and the
line a. We will define our notions of Euclidean, eliptic, and hyperbolic, therefore, as a
rel ationship between a point and an s-line. We will say that apoint Pis Euclidean
relativeto an s-linea, if there is exactly one s-line through P that is parallel to a. We
will define the other terms similarly. Let P be a point not on an s-linea. The point Pis
elipticrelativeto a, if there are no parallels through P, and Pis hyperbolic relativeto
a, If there are at |east two parallels through P.

If apoint Pis hyperbolic relative to an s-line a, Smarandache recognized a variety of
ways in which this could happen [19]. There could be afinite number of parallels, and
there could be infinitely many parallels. It could also bethat al or amost all of the s-lines
through P are parallel. We will expand the definition of hyperbolic as follows. If there are
only finitely many parallels through P (but at least two), P isfinitely hyperbolic relative
to a. In the case that there are infinitely many parallels through P, we will say that Pis
regularly hyperbolicif there are infinitely many non-parallels through P, extremely
hyperbolic if there are only finitely many non-parallels (but at least one), and completely
hyperbolic if there are no non-parallels. We can make the finitely hyperbolic definition
more explicit by saying that P is n-hyper bolic when there are exactly n parallels through
P.

In the Euclidean plane, all points are Euclidean relativeto every line. We will shorten this
to all points are Euclidean. Similarly, all points are hyperbolic in the hyperbolic geometry
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of Bolyai, Lobachevski, and Gauss, and all points are elliptic in the elliptic geometry of
Riemann. All points are elliptic in spherical geometry, as well.

Elliptic points

There are élliptic points in the elliptic cone-space. Roughly, apoint will be eliptic
relative to an s-line, if the elliptic vertex lies between them. More precisely, given an s-
line a that does not pass through the elliptic vertex, thereis acontinuum of s-linesthat are
parallel to ain the Euclidean sense that approach the elliptic vertex. All points beyond
these s-lines are elliptic relative to a. Thisisillustrated in Figure 23.

NA 5

Figure 23. The point P is elliptic relative to the s-line a.

Figure 24. Paper model corresponding to Figure 23.

Towards the right, the angle for c at P relativeto a is 90° (recall the definition of a
relative angle), so cisparallel at P. Since the rest of the spaceis Euclidean, cis parallel to
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a everywhere to the left. Clearly, any s-line through P with an angle greater than 90°
(towards the right) will intersect a on the left. Since the angle decreases by 60° as we
move to the right, any s-line through P with an angle less than 150° will intersect a on the
right. It follows that all s-lines through P will intersect a at least once, and those lines
with angles strictly between 90° and 150° will intersect a twice. P is, therefore, elliptic
relative to the s-line a.

Regularly hyperbolic points

We can find hyperbolic points in the hyperbolic cone-space. In generd, if thereisa
hyperbolic vertex between a point P and an s-line a, then the point P will be regularly
hyperbolic relative to a.

AN

Figure 25. The point Pisregularly hyperbolic relative to the s-line a.

Figure 26. Paper model corresponding to Figure 25.
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In Figure 25, towards the left, the line c is parallel to a at P. The angle for c increases by
60° to the left of O, so cisparallel. Since the angles increase by 60° as we move to the
left of O, all of the s-lines with angles between 30° and 90° (inclusive) are parallel to a.
All other s-lines will intersect a. There are a continuum of s-lines through P that are
parallel and a continuum of s-lines that are not parallel. Pis, therefore, regularly
hyperbolic relative to a.

Finitely hyperbolic points

In the hyperbolic geometry of Bolyai, Lobachevski, and Gauss, where all of the points
areregularly hyperbolic, it is sufficient to require that there exist at least two lines
through a given point and parallel to agiven line, since it can be proven that thein
between lines are also parallel. Thisis generally the case in an ssmanifold, as can be seen
In the previous section, but not always.
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Figure 27. The point P isfinitely hyperbolic relative to the s-line through C.

In Figure 27, the vertex B is ahyperbolic vertex, and the point P is hyperbolic relative to
the line a. Towards the left, the s-lines b and ¢ have angles 30° and 90° at P relative to a.
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The space is Euclidean to the right of P, so the s-lines b and ¢ will not intersect a to the
right of P.

Figure 28. Paper model corresponding to Figure 27.

There are three other non-Euclidean vertices in this space, one additional hyperbolic
vertex, A, and two dlliptic vertices, G and H. One effect of these vertices is that they
cause al of the s-lines between b and c to turn towards a while leaving b and ¢ parall€l.

The s-line b has an angle 30° relative to a at P. The hyperbolic vertex B increases this to
90°. The s-line a passes through the hyperbolic vertex A and the lliptic vertex G. This
Increases the angle by 30°, and then decreases it by 30° back to 90°. Therefore, b remains
parallel to ato theleft.

The s-line ¢ has both hyperbolic and both elliptic vertices between it and a. The angle for
cis90°relativeto aat A, and the changes towards the | eft are +60°, +60°, —60°, and —60°.
Therefore, c isalso parale to a on the left.

The four non-Euclidean vertices also lie between a and those s-lines with angles strictly
between 30° and 90°. Therefore, all of these s-lines will have an angle strictly between
30° and 90° to the left of B, A, G, and H. They must, therefore, intersect a. The s-lined
shown in Figure 27 istypical of these intermediate s-lines.

All of the other s-lines through P are clearly not parallel, so there are exactly two s-lines
through P that are parallel to a, and therefore, P isfinitely hyperbolic relative to a.

Question. It seems reasonable to expect that more extensive configurations would yield
points with exactly there or exactly four parallelsto agiven s-line. Do these exist?
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Extremely hyperbolic points

A basic assumption in geometry isthat thereisaline through any two points. In this case,
for apoint P not on aline a, there are infinitely many lines through P that intersect a, one

passing through each point of a.

In an ssmanifold, we have seen that there can be pairs of points that are remote, or O-
aligned. This means that there are pairs of points that do not lie on the same s-line. This
opens up the possibility of extremely hyperbolic and completely hyperbolic points, which
do not have an infinite number of non-parallels relative to some s-line.

We know that each hyperbolic vertex that lies between two s-lines increases the relative
angle by 60°. Three hyperbolic vertices, therefore, could take two s-lines that are + €°
relative to athird s-line to + (90 + €)°. This could force all, or amost all, of the s-lines
through some point to be parallel to some s-line.

Figure 29. The point P is extremely hyperbolic relative to the s-line a.

Thisisillustrated in Figure 29. The vertices A, B, and C are hyperbolic (D isalso
hyperbolic, but will be discussed later), and these lie in between the point P and the s-line
a. The s-line b runs through the points D, P, and A, and it intersectsthe s-line a. In the



downward direction, the s-line ¢ has an angle larger than 90° near P, relative to b. Since
the s-line b passes through the hyperbolic vertex A, thisangleisincreased by 30° (when
the hyperbolic vertex lies on one of the s-lines, the effect is half of what it would be if the
vertex were strictly between the s-lines). The angle isincreased further by 60°, since the
hyperbolic vertex B lies between the s-lines. Therefore, the angle of ¢ is eventually more
than 180° relative to b. It follows that the angle of ¢ is greater than 90° relativeto a, and a
and c are parallel. Thiswould be true of any s-line through P that passed to the right of A.
It would be equally true of any s-line through P that passed to the left of A. Therefore,
only one s-line through P intersects the s-line a, and P is extremely hyperbolic relative to
a.

Figure 30. The point Q is completely hyperbolic relative to the s-line a.

Completely hyperbolic points

A completely hyperbolic point would have no non-parallels relativeto some s-linea. The
space shown in Figure 29 contains completely hyperbolic points relative to the s-line a.
One of theseis shown in Figure 30.
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In Figure 30, the point Q has four hyperbolic vertices between it and the s-linea. It isalso
off the s-line b from Figure 29. The s-line d passes through the hyperbolic vertex D, and
then passesto theright of A. Thes-linedisclearly parale to a, asisany line through Q
to the right of d. Any s-line through Q that passes to the left of the hyperbolic vertex D
and also the vertex A isaso parallel to the s-line a. Therefore, every s-linethrough Pis
parallel to the s-linea, and P is completely hyperbolic relative to a.

Question. We have an example here of an extremely hyperbolic point with exactly one

non-parallel. It seems reasonabl e to expect that some configuration like that used in the

finitely hyperbolic example could yield exactly two or exactly three non-parallels. Does
such a configuration exist?
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Chapter 3. Smarandache Geometries

The reasons for investigating s-manifolds grew out of the search for examples of severa
particular types of Smarandache geometries proposed by Smarandache [19]. This chapter
presents examples and partial examples of s-manifold Smarandache geometriesin these
categories.

Paradoxist Geometries

Smarandache called a geometry paradoxist if there are points that are elliptic, Euclidean,
finitely hyperbolic, regularly hyperbolic, and completely hyperbolic [19]. We will add
extremely hyperbolic to Smarandache’ s definition of a paradoxist geometry. We will also
say that a geometry is semi-paradoxist, if it has Euclidean, elliptic, and regularly
hyperbolic points.

Smarandache asked (see question 21 of [19]), “Let’s have the case of Euclid +

L obachevsky + Riemann geometric spaces (with corresponding structures) into one
single space. What is the angles sum of atriangle with avertex in each of these spaces
equal to? And isit the same anytimes?’ He perhaps envisioned a space that has elliptic
regions and hyperbolic regions. We will see, and we have seen, that in our s-manifolds,
there really are not regions where certain properties hold, but properties are determined
by the rel ationships between objects. For example, apoint is eliptic relative to an s-line,
if thereis an dliptic vertex in between. Smarandache might view this as a pleasant
surprise.

Par adoxist smanifolds

A paradoxist geometry will have pointsthat are Euclidean, €liptic, and finitely, regularly,
extremely, and completely hyperbolic. We have seen that all of these occur in s
manifolds. It is also clear that these phenomena result from non-Euclidean vertices lying
between the points and s-lines in question. There generally will be Euclidean pointsin an
s-manifold, and it will be typical for elliptic and regularly hyperbolic points to exist
around € liptic and hyperbolic vertices. The idea used to construct an ss-manifold with a
finitely hyperbolic point used two elliptic and two hyperbolic vertices. One hyperbolic
vertex was used to create a 60° continuum of parallels, and the other was used to split one
of the boundary parallels away from the other. One lliptic vertex essentially cancelled
out the effect of the splitting hyperbolic vertex, and the other turned all but one of the
parallels 60° towards the base s-line. This left both boundary parallels at the same angle,
and all the in-between parallels at an angle headed towards the base s-line.

The idea used to construct an ss-manifold with an extremely and completely hyperbolic
point used four hyperbolic vertices. One hyperbolic vertex was used to split the s-lines

through the hyperbolic point so that there was one isolated s-line in the middle of a 60°
gap. Two more hyperbolic vertices in the gap increased the angle to 180°. A base s-line,
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therefore, could be found that intersected only the isolated s-line. To increase one of the
30° gaps on either side of the isolated s-line to 180° or more, three hyperbolic vertices

were needed. Thisidea of spreading the gap to 180° or more, therefore, seems to need
four hyperbolic vertices to get a completely hyperbolic point.

Question. Isit possible to have finitely hyperbolic pointsin an ss-manifold with fewer
than two elliptic and two hyperbolic vertices? Is it possible to have a completely
hyperbolic point in an ss-manifold with fewer than four hyperbolic vertices?

a

Figure 1. The point Sis extremely hyperbolic relative to b and completely hyperbolic
relative to a.

From what is known, we can construct an ss-manifold with finitely hyperbolic points

using two €lliptic and two hyperbolic vertices, and one with completely hyperbolic points
using four hyperbolic vertices. It may, therefore, be the best we can do to construct a
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paradoxist ss-manifold with two eliptic and four hyperbolic vertices. It could be the case,
of course, that the answers to both of the questions just posed is no, but that thereis still a
paradoxist s-manifold with fewer than two elliptic and four hyperbolic vertices.

In any case, it is possible to construct a paradoxist s-manifold with two elliptic and four
hyperbolic vertices. Oneisshown in Figures 1, 2 and 3.

Y Az

Figure 2. The point T isfinitely hyperbolic relative to the s-line a.

In Figure 1, the point Sis completely hyperbolic relative to the s-line a. It is necessary
here that the s-line a lies between the four hyperbolic and the two elliptic vertices.
Otherwise, the elliptic vertices could cancel the effect of the hyperbolic vertices. It isalso
necessary that the hyperbolic vertices A, B, and C lieinside the gap formed at vertex D
between the isolated s-line ¢ and the s-lines like e that pass to the right of D. Towardsthe

|eft, the s-line ¢ has an angle of 120° relative to the s-line a, and since the region between
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them is Euclidean outside of the diagram, this angle will be preserved and the s-lines will
not intersect. All of the s-lines through S that pass to the left of D, like the s-line d, will
have even greater relative angles, so these will not intersect a either. Towards the right,
al of the s-lines through S that passto the right of D will have an angle that is greater

than 90° relative to a, and these will not intersect a.
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Figure 3. The point Pis Euclidean and Q is dlliptic relativeto a. R isregularly hyperbolic
relativeto e.

Also in Figure 1, the s-line b lies below the elliptic vertex F. This cancels the effect of
one of the hyperbolic vertices, and theisolated s-line c intersectsb, so Sisonly extremely
hyperbolic relative to b.

In Figure 2, the s-line a lies between the two hyperbolic vertices C and D and the other
non-Euclidean vertices. This allows the two elliptic and two hyperbolic vertices to act as
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they would alone, and here the point T isfinitely hyperbolic relative to a. If only the
hyperbolic vertex A were present, the s-lines b and c would be the “last” parallels through
T. Towards the top of the diagram, both a and c are vertical in the Euclidean region, and
these will not intersect. Clearly any s-line through T and between ¢ and the vertex B will
intersect a. Due to the effects of the two elliptic vertices E and F, the angles of both b and
c are 90° relative to a towards the bottom of the diagram. Any of the s-lines between b
and c, likethe s-line d, will have relative angles less than 90° and will intersect a.
Therefore, only b and c are parallel to a, and T isfinitely hyperbolic relative to a.

Figure 3 shows how Euclidean points, like P, arise naturally within bands of adjacent
triangular disks. If the angle of an s-line through P isless than 90° to the right relative to
a, It will intersect a on the right within this band that extends infinitely in either direction.
If thisrelative angle is greater than 90°, the s-line will intersect on the | ft.

On the other hand, elliptic points, like Q, and regularly hyperbolic points, like R, are
common around elliptic and hyperbolic vertices. The band of triangles just above the one
mentioned is Euclidean everywhere, except for the triangular disk that ismissing at the
vertex E. The effect here isthat any s-line through Q will have its relative angle reduced
by 60° asit passes E. Therefore, any s-line through Q will have an angle less than 90°
relativeto a on at least one side of E. Having all of the other non-Euclidean vertices
outside of these two bands makes them irrelevant to whether Q is eliptic or not. A
similar case can be made for the hyperbolic point R relative to the s-line e.

Question. The paradoxist s-manifold just described has two elliptic vertices and four
hyperbolic vertices. What is the minimum possible number of non-Euclidean verticesin a
paradoxist ss-manifold?

Figure 4. A semi-paradoxist s-manifold.
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Semi-paradoxist smanifolds

A semi-paradoxist geometry will have points that are Euclidean, elliptic, and regularly
hyperbolic. The paradoxist s-manifold just presented is, of course, also semi-paradoxist,
as can be seen in Figure 3. The ideas in obtaining the finitely, extremely, and completely
hyperbolic points, however, seem to be peculiar to ssmanifolds, since they consider lines
that pass through non-Euclidean vertices.

We can illustrate a simpler semi-paradoxist s-manifold whose properties can be
reproduced in a smooth manifold. As seen in Figure 3, the presence of Euclidean pointsis
almost automatic, and hyperbolic and €lliptic points come along with elliptic and
hyperbolic vertices. It seems that the simplest semi-paradoxist s-manifold would have a
single elliptic and a single hyperbolic vertex. In particular, an ssmanifold that is
topologically equivaent to the plane will be semi-paradoxist if all vertices are Euclidean
except for exactly one elliptic and one hyperbolic vertex. An example of an ss-manifold of
this type is shown in Figure 4.

In Figure 4, the point P is Euclidean relative to the s-line a. The one parallel through Pis
thelinee. The point Q iséelliptic relativeto a. The point R isregularly hyperbolic relative
toa. Thes-linesc and d arethe “last” parallels, and al the s-lines between c and d are
also paralld.

Question. Isthe presence of both an elliptic and a hyperbolic vertex sufficient to
guarantee that an ssmanifold is at |east semi-paradoxist? If not, are there additional
conditions that would? Are there semi-paradoxist s-manifolds with fewer than two non-
Euclidean vertices?

A planar ssmanifold with one elliptic and one hyperbolic vertex is semi-paradoxist. This
Is achieved by referring only to s-lines and points away from the non-Euclidean vertices.
These spaces, therefore, remain semi-paradoxist even after smoothing the two non-
Euclidean vertices. It follows from this that there are semi-paradoxist geometries among
the class of smooth surfaces. This, of course, is not surprising, since the curvature, and
therefore the geometry, can vary on a smooth surface. Thisis not acompletely trivial
observation, however, since defining Euclidean and non-Euclidean geometry in terms of
parallel lines does not correspond exactly to definitions in terms of curvature.

Euclidean theorems

It would be most interesting to find general theorems for s-manifolds that are peculiar to
s-manifolds and that somehow capture the essence of an ss-manifold. This should always
beagoal, but if thisis possible, we should expect it to come as aresult of having a deeper
understanding. One obvious possibility for exploration lies in comparing the geometry of
s-manifoldsto Euclidean geometry, and this should offer opportunities to understand both
kinds of geometry better. Along these lines of thought, each theorem of Euclidean
geometry is an object ready for an ssmanifold analysis. Here, we will consider one
example.
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The alternate interior angles theorem is an important one, so we will ook at it. Note that
there are actually two alternate interior angle theorems. One has congruent angles
implying parallel lines, and the other has parallel lines implying congruent angles. We
consider the first, which is independent of Hilbert’s parallel axiom and can be used to
establish the existence of parallels.

(Euclidean) alternateinterior anglestheorem. If two linesa and b are cut by a
transversal ¢ such that alternate interior angles are congruent, then a and b are parall€l.

Even in the statement of this theorem, there is an ss-manifold configuration that does not
exist in Euclidean geometry. It is possible that, of the two possible, one pair of alternate
interior anglesis congruent and the other is not. For example, if a meets ¢ at a hyperbolic
vertex, the two interior angles there will sum to 210°. Since the other pair of interior
angles may sum to 180°, we can have one pair of congruent alternate interior angles
measuring 80° each and one pair of non-congruent alternate interior angles measuring
130° and 100°.

Figure 5. Alternate interior angles are congruent.

A typical proof of thistheorem might go asfollows (see[12]). We have lines a and b cut
by atransversal c, asin Figure 5. Suppose angles ZCBE and ZDEB (aternate interior
angles) are congruent, and suppose that the lines a and b are not parallel. The lines a and
b must therefore intersect in some point X. There must also be apoint Y on b such that Y
IS on the opposite side of ¢ from X and the segment EY is congruent to the segment BX.
By the SAS axiom, angles ZEBY and £BEX must be congruent. Since the alternate
interior angles ZBEX and ZEBA must be congruent, we have that Z/EBA and ZEBY are
congruent. It follows that the rays BY and BA must be the same, and therefore, the lines
a and b also intersect at the point Y. Since the lines a and b cannot intersect in two
distinct points, we must have that they are parallel (or coincident).

There are several parts of this proof that may not be valid for s-lines in an ss-manifold.
First of all, since the other pair of alternate interior angles need not be congruent, the
point X needsto lie on the ray BC. Next, having X and Y on opposite sides of an s-linec
might not make sense in a closed or non-orientable s-manifold (see the next chapter). If X
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lies on the ray BC, however, we can requirethat Y lie on theray ED. We have also seen
that the SAS axiom need not hold in an ssmanifold. The existence of multiply aligned
points allowed a counter-example, but there might be other ways that this axiom fails.
That angles ZEBA and ZEBY are congruent assumed that both pairs of alternate interior
angles are congruent, and this might not be true in an s-manifold. Finally, two distinct s-
lines can share two or more points, so we would not necessarily have a contradiction.

Let uslook at the semi-paradoxist s-manifold presented in the previous section to see
how this proof holds up there, and to see how this theorem might be rephrased to make it
true in this particular ssmanifold. From a mathematician’s point of view, it would seem
natural to try to make a statement that is sometimes true into atheorem by imposing
additional conditions.

A fairly obvious sufficient condition (i.e., a condition strong enough to make the
statement true, but perhaps stronger than necessary) is arequirement that there be no non-
Euclidean vertices between the s-lines a and b. This would make the region around the
pair of lines essentially Euclidean. It is not clear how best to define what it means to be
between two s-lines, but since all s-lines separate this ss-manifold, we can use the
following.

Theorem. (In the ssmanifold of Figure 4) Suppose two s-linesa and b are cut by a
transversal ¢ such that alternate interior angles are congruent and the point B of Figure 5
IS on the opposite side of b from both non-Euclidean vertices, then a and b are paralldl.

The added condition guarantees that neither non-Euclidean vertex lies on either a or b.
Therefore, both pairs of alternate interior angles must be congruent. If we suppose that
the s-linesa and b are not parallel, then thereis at least one point X common to both.
Choose X so that its distance from B along a or its distance from E along b isaminimum,
and without loss of generality, suppose that it lies asin Figure 5. We can then choose Y
as in the proof given above. Our added condition and choice of the closest X guarantees
that the triangles EBX and BEY have Euclidean interiors, and the SAS theorem must
hold for these triangles. It followsthat ZEBY and ZEBA are congruent, and that Y must
lieon a. We now havethat X and Y are vertices of a non-degenerate 2-gon with
Euclidean interior, which is a contradiction.

The theorem can be improved by weakening the added condition. Some insight into this
might come with the following observations. If two s-linesa and b are parallel inthe s-
manifold of Figure 4, then it isintuitively obvious that the two s-lines divide this s-
manifold into three regions and exactly one of these lies between the two s-lines. One of
the following must be true. The dlliptic vertex does not lie on or between a and b, the
elliptic vertex lies on a or b and the hyperbolic vertex lies on a or b or between, or both
non-Euclidean vertices lie between a and b.

Problem. Find a necessary and sufficient added condition for the alternate interior angles
theorem in the ssmanifold of Figure 4. |s there one that works for any s-manifold?
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Smarandache Non-Geometries

Smarandache defined a non-geometry to be one that Smarandachely denies each of the
five postulates of Euclid [19]. These are [9]:

To draw astraight line from any point to any point.

To produce afinite straight line continuously in a straight line.

To describe a circle with any centre and distance.

That al right angles are equal to one another.

That, if astraight line falling on two straight lines make the interior angles on
the same side less than two right angles, the two straight lines, if produced
Indefinitely, meet on that side on which are the angles | ess than the two right
angles.

arODNE

We would like to find an ss-manifold that is a Smarandache non-geometry, and we will
start the search by looking at the postul ates one by one.

Postulate |

It is quite normal to expect that given two pointsin an ssmanifold, thereisan s-line
through them. We have seen, however, that there are pairs of points that do not lieon a
single s-line. We called these points 0-aligned or remote, and we have seen these around
the hyperbolic vertex of the hyperbolic cone-space. It is also generally assumed in this
context that the straight line postulated is unique. Thiswould be false around an elliptic
vertex, where we have 2- and 3-aligned pairs of points. We can be quite sure, therefore,
that any s-manifold with non-Euclidean vertices will S-deny postulatel.

Postulate | |

In regards to this postul ate, Smarandache asks that, “It is not always possible to extend by
continuity afinitelineto an infinite line.” This postul ate has been interpreted to mean
that any line segment can be extended indefinitely, and in the context of manifoldsin
particular, this does not imply that the line must be infinite. For example, an arc of a
circle can be extended indefinitely, while tracing the circle an infinite number of times.
The circle, however, is not itself infinite.

Depending on our interpretation, two ways of S-denying this postulate come to mind.
Oneisto find an ss-manifold that has s-lines that are closed like acircle. Another isto
Introduce the concept of a boundary to an ssmanifold. Here, an s-line may extend up to
this boundary, but since the space does not continue, the s-line cannot either. We will
consider both.

61



Postulate ]

In order it violate this postul ate, we would need a center and radius that does not
correspond to acircle, or in our ssmanifold terminology, that the s-circle corresponding to
this center and radius does not exist. The definitions of an s-proto-circle and s-circle were
formulated with this postulate in mind. Let uslook at Euclid’' s definition. In [9] we see,
“A circleis aplane figure contained by one line such that all the straight lines falling
upon it from one point among those lying with the figure are equal to one another; and
the point is called the centre of the circle.” Here, Euclid uses the word line in the sense
that we would use curve. We defined the set of points that have an s-segment between it
and the center of afixed length to be an s-proto-circle, and this corresponds roughly with
the “straight lines falling upon it from one point.” We then want that “A circleis aplane
figure contained by oneline,” so we defined that an s-proto-circleis an s-circle, if it also
Isasimple closed curve. It seems natural, therefore, to say that if an s-proto-circleisin
fact an s-circle, then the s-circle exists.

Two ways that an s-circle can fail to exist are asfollows. If the center is near a boundary
of an ssmanifold with boundary and aradius is larger than the distance from the point to
the boundary, then a section of the s-proto-circle will be missing, and it will not be
closed.

Another way arises for a center near anon-Euclidean vertex. Around an €lliptic vertex, an
s-proto-circle can have a self-intersection, endpoints, and an isolated point as shown in
Figure 24 of Chapter 1. Around a hyperbolic vertex, as shown in Figure 6, an s-proto-
circle can have gaps and an isolated point, since there is aregion of O-aligned points on
the other side of the hyperbolic vertex from the center, and only one radial s-segment can
enter thisregion. Again in this case, the s-proto-circle will not be closed, and the s-circle
does not exist.

Figure 6. An s-proto-circle can have gaps near a hyperbolic vertex.
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Postulate |V

Smarandache mentions afairly standard definition for right angles, “aright angleis an
angle congruent to its supplementary angle” [19]. We will use this definition as well.
Therefore, an s-right angle is congruent (has the same angle measure) to its
supplementary angles (two supplementary angles make a straight angle). Since there are
300° around an dliptic vertex and 420° around a hyperbolic vertex, congruent
supplementary angles at an elliptic vertex will measure 75°, and at a hyperbolic vertex
they will measure 105°. Since congruence has been defined to coincide with angle
measure, not all s-right angles are congruent, since some are 75°, some are 90°, and some
are 105°.

Postulate V

Here, we need in some instances pairs of s-lines cut by atransversal so that interior
angles on one side of the transversal add up to less than two s-right angles and also do not
Intersect on that side. Of course, since not all right angles are congruent, it is not
completely clear what “less than two s-right angles” means. Whether asingle angleis
less than an s-right angle or not iswell-defined, so two angles less than an s-right angle or
one s-right angle and one angle less than an s-right angle will clearly satisfy the
conditions of the postulate. Also, if both angles emanate from points other than non-
Euclidean vertices, it is easy to determine if the conditions are met.

A non-geometry ss-manifold with boundary

Most of the required properties of a non-geometry can come as aresult of a boundary.
The example hereis similar to that given by Smarandache [19]. Our definition of an s-
manifold does not allow for aboundary. We can define an ssmanifold with boundary by
allowing in the definition of an ss-manifold that some edges of triangular disks need not
be identified. We will require that vertices of non-identified edges share at most four
triangular disks and exactly two non-identified edges. We will also require that two non-
identified edges share at most one vertex. The space will end at these boundary edges and
vertices.

In Figure 7, we have an example of an s-manifold with boundary that is a non-geometry.
The space stops at the boundary marked with heavy dots, but continues with Euclidean
vertices around the rest of the diagram.

Postulate | is S-denied, since the points C and D cannot be joined by an s-line, but other
pairs of pointslike | and J can be.

Postulate Il is S-denied, since the segment EF cannot be continued further, while there

are s-lines that can be extended to infinity. Any s-line parallel to the segment JK and
between segment JK and the boundary can be extended to infinity.
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Postulate |11 is S-denied, since the s-proto-circle shown with center G cannot be
completed. A smaller s-circle centered at G or larger s-circles centered at points
elsewhere in this space clearly do exist.

Postulate IV is S-denied, since angles JBI and angles HBI are supplementary and
congruent. They are therefore s-right angles even though they measure 75°. The s-right
angles at points other than B measure 90°.

Finally, Postulate V is S-denied, since the s-line LI and EF are cut by atransversal JK so
that the sum of the angles LIK and JKE isless than 180°, but the s-lines L1 and EF do not
intersect. Clearly, there are s-lines meeting these conditions that do intersect on the side
of the transversal with the angles summing to less than two s-right angles.

Boundary

L X®

Figure 7. A non-geometry s-manifold with boundary.

A non-geometry ss-manifold without boundary

We can construct an ss-manifold without using a boundary by using the interpretation that
an s-linethat is closed like acircle is not continuoudly extendable. It is certainly not
extendable to infinity, as required by Smarandache, since a circle has afinite length.

An example of a non-geometry s-manifold without boundary is shown in Figures 8 and 9.
Figure 8 shows what is essentially the Euclidean plane with atriangle cut out. Attached to
this triangular hole is the ring shown in the bottom of Figure 9. The ring shown in the top
of Figure 9 sits on top of this. Similar rings are stacked indefinitely on top of this. All
vertices are Euclidean except for the six hyperbolic vertices A, B, C, D, E, and F joining
the planer base to the vertical cylinder, which we will call the tube. The band of
triangular disks between the hyperbolic vertices will be called the collar.
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Postulate | is S-denied, since there are 0-aligned points around the hyperbolic vertices,
like the points H and |. Most other pairs of points are at least 1-aligned. There are also 2-
aligned points, like H and J, and «-aligned points on the tube.

Postulate Il is S-denied, since s-lineslike LT around the cylindrical part of the space
cannot be extended “to infinity.” These are essentially circles, which have no endpoints,
but have finite length. Except for those s-lines on the tube that are horizontal, all other s-
lines can be extended to infinity.

Postulate |11 is S-denied, since some s-proto-circles, like the one shown centered at M,
have gaps in them, and do not exist as s-circles. Recall that an s-circleis an s-proto-circle
that is a simple closed curve.

VAN
Vidlav
Vi

Figure 8. Thisisthe base of the non-geometry s-manifold without boundary.

Postulate IV is S-denied, since some s-right angles do not measure 90°. For example, at
the hyperbolic vertex A, the congruent supplementary angles (the definition of aright

angle) ZOAP and £ZNAP, measure 105°. The s-right angles at all points that are not non-
Euclidean vertices measure 90°.

Postulate V is S-denied, since there are pairs of s-lines that satisfy the conditions of
postulate V, but do not intersect. For example, the s-linesLT and US are cut by the
transversal UT such that ZLTU on theright and £TUS sum up to less than two right
angles, but do not intersect to the right (or to theleft). Thisis clear, sincetheline US
never enters the tube. Except for the triangular cutout, the base is essentially the
Euclidean plane, so there are many examples of lines that satisfy this postul ate.
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| NEVAN

A K B
Figure 9. Thisisthe collar and tube for the non-geometry s-manifold without boundary.
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Other Smarandache Geometries

Anti-geometries

Smarandache defines an anti-geometry to be one that S-denies all of Hilbert’s axioms for
Euclidean geometry [19]. These axioms apply to three-dimensional spaces, so we would
be interested here in only the two-dimensional axioms. These were discussed in the
previous chapter. There we saw that axioms I-3, 11-3, and |11-2 hold in every s-manifold,
so there can be no ss-manifold anti-geometry. Combining the examples given, it should be
easy to construct an ssmanifold that S-denies the remaining axioms. Thiswould be a
repetition of what has already been discussed. We can, of course, go abit further by using
g-congruence. Also by using s-manifolds with boundary and extending the definition of
an s-line, it is quite plausible that an anti-geometry could be constructed. See the counter-
projective ss-manifold below, and the post of Mike Antholy at [2].

Counter -projective geometries

Smarandache’ s definition for a counter-projective geometry requires that the following
axioms be S-denied [19].

. Given two distinct points, there is a unique line through them.

1. Given three non-collinear points P, Q, and R, and two distinct points S and
T such that Sliesbetween Pand Q, and T lies between P and R, then the
line QR intersectsthe line ST.

1. Every line contains at |east three distinct points.

Axiom Il is always true in an ssmanifold, since al lines have infinitely many points.
Axiom | is S-denied in virtually every s-manifold, but there are examples of s-manifolds,
like the s-sphere to be defined |ater, where every pair of pointsis multiply aligned.
Axiom Il isgenerally false in an ssmanifold. It can hold in certain circumstances,
however.

In order to S-deny Axiom |11, we will use aboundary in the example given here. It may
seem appropriate that a counter-projective geometry have a boundary, since projective
geometries are closed (in the sense described in the next chapter). We will also introduce
enough structure so that each of the axioms is true in some cases and false in different
ways. We aso define s-lines differently from before. Here, s-lines are constructed as if
the space were extended beyond the boundaries with Euclidean vertices. Thiswill allow
s-lines with only finitely many points.

The presence of both eliptic and hyperbolic vertices will force the existence of remote,
uniquely aligned, and multiply aligned pairs of points. Therefore, Axiom | will be
satisfied in some cases and denied in other cases, both by the non-existence and the non-
uniqueness of the line.
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In Euclidean geometry, the lines QR and ST of Axiom Il will sometimes intersect and
sometimes not intersect. Thiswill occur for most triples P, Q, and R in this model, but
there will also be triples where all possible lines ST intersect QR and triples where al of
the lines ST do not intersect OR.

Asfor Axiom I11, this model will have lines that contain exactly one, two, and three
points, aswell as lines that have infinitely many points.

In Figure 10, as we have seen before, there are pairs of points around the elliptic vertices
W and X that are multiply aligned. For example, D and Y are 3-aligned, since thereis an
s-lineto the left of W, to the right of W, and through W that pass through both D and Y.
This pair of points, therefore, violates the uniqueness condition of Axiom |. We have also
seen before that there are remote points around hyperbolic vertices. For example, the
points U and L have no s-line through them. Here the existence condition of Axiom 1 is
violated.

Boundary

Figure 10. A counter-projective s-manifold.

Consider the non-collinear triple of points D, U, and V. The verticesU and V are
hyperbolic, and the angles DUV and ZDV U both measure 30°. For any point E on
segment DU and point F on segment DV, therefore, the angle of the s-line d through E
and F relative to the s-line ¢ (between U and V) must be greater than 60°. Since the s-line
d must pass above the hyperbolic vertices U and V, the relative angles must increase by
30° to more than 90°. It follows that the s-lines d and c will never intersect.
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For the non-collinear triple G, H, and |, asimilar analysis shows that the s-linese and f
must always intersect. It is easy to find triples where the s-lines under consideration will
sometimes intersect and sometimes not.

Finally, AxiomIIl isviolated by s-lineslikea and b. Here, the s-linea lies mostly outside
of the boundary of this s-manifold, and so a contains only the points A, Y, and B. The s-
line b contains only the points B and C. Clearly, thereis an s-line that contains only B.
All of the other s-lines shown, ¢, d, e, and f, contain infinitely many points

Having considered projective geometry (in terms of a counter-projective geometry), the
concept of adual geometry, where the ideas of points and lines are switched, presents
itself (See J.M. Charrier’spost at [2].) It is doubtful that such athing could be an s-
manifold, but the dual of an s-manifold might be an interesting topic for further study.
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Chapter 4. Closed s-Manifolds

The peculiar geometry of an ssmanifold resultsin avariety of Smarandache structures.
Being a manifold, we can also generate Smarandache structure using topology. Here we
will look at some of the basic topological structures obtainable by closed s-manifolds.

Closed s-Manifolds

A manifoldis closed, if it is compact and has no boundary. For an s-manifold,
compactness is equivalent to an s-manifold consisting of afinite number of triangular
disks. No boundary means that each edge is shared by exactly two triangular disks and
each vertex is completely surrounded by triangular disks. Here the term closed is an
extension to surfaces of the notion of a closed curve. For example, a surface would have
to be closed in order for it to enclose avolume. A sphere or torus would be closed, but a
flat disk or a hemisphere would not, since they have boundaries. For an ss-manifold, being
closed and being compact are equivalent, since s-manifolds have no boundary (although
an ss-manifold with boundary does have a boundary).

\ N
H
H E
S »
A C D B

Figure 1. Non-singular s-lines parallel to edges in the s-sphere.
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The s-sphere

An icosahedron has equilateral triangular faces with five triangles around every vertex. It
IS, therefore, an ss-manifold, and we will call it the s-sphere. This ssmanifold consists of
20 triangular faces, and has 12 vertices, all of them elliptic. It isaclosed surface, and it is
topologically equivaent to the unit sphere (or any sphere). Of all ss-manifolds that are
topological spheres, thisisthe most regular, and the one most closely aligned with the
standard spherical geometry. Some of the s-linesin this s-manifold are very similar to the
lines (great circles) in spherical geometry, but the behavior of s-lines in this space can be
guite complicated.

Those s-lines running parallel to the edges of the triangular disks are simple circles, but
unlike the great circles on a sphere, they may be paralléel, like the s-lines through C and D
shown in Figure 1. If two s-lines of thistype intersect, they will intersect in two points, as
do the s-lines through C and E shown in Figure 1. Note that the s-line through E can be
shown in one piece, like the s-lines through C and D, by cutting the space differently.

A B

S

Figure 2. Two s-lines that run along an edge.

The s-lines that run along an edge also behave somewhat like great circles, as shownin
Figure 2. The s-lines shown are typical of thistype.
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Other s-lines are more complicated and wrap around the s-sphere many times. In fact, in
trying to follow an s-line different from the types shown in Figures 1 and 2, the process
will typically seem to continue indefinitely. The question arises, therefore, whether some
or all of these other s-lines are closed. An s-line that is not closed would necessarily have
infinite length. While exploring this question, we will briefly examine atool that may be
of use in studying s-manifolds.

Figure 3. The projection of s-lines from Figures 1 and 2.

Locally linear projections

To help visualize situations where s-lines may or may not be closed, we will introduce a
mapping of an s-line into the Euclidean plane. We will assume atiling of the plane with
equilateral triangles that have sides of length one so that one of the edges has (0,0) and
(1,0) as endpoints. Given an s-line, we will start with a segment of the s-line that spans
one of the triangular disks of the s-sphere. We will identify this triangular disk with the
one in the plane that lies above the edge with endpoints (0,0) and (1,0), so that this
segment has one endpoint on the x-axis and otherwise lies above the x-axis. If the other
endpoint lies on the interior of an edge, then we will continue the projection into the
corresponding adjacent triangle in the same way that the s-line extends into the adjacent
triangle on the s-sphere. If the other endpoint lies on avertex, we will continue it so that
It makes a 150° angle measured counter-clockwise. We can continue this process
indefinitely. In particular, if the original s-line contains no vertices, then its projection
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will be an infiniteray. In Figure 3, the s-line from Figure 2 starting at A at the bottom is
projected, asisthe s-line from Figure 1 that starts at G.

The s-linesin the s-sphere that do not pass through verticeswill project to straight linesin
the plane. If the projection of such an s-line has slope V3, then it will be parallel to the
edges of the triangles, and it must be the projection of the ssimple circles first mentioned.
In particular, the projection will intersect each horizontal edge at the same distance from
the left endpoint and at the same angle. Without prior knowledge of the nature of this s-
line on the s-sphere, we could see from this that the s-lineis closed. Thisis because the
projection hits an infinite number of edges in exactly the same way. Each of these
corresponds to the s-line on the s-sphere intersecting an edge in exactly the same way.
Since there are only afinite number of edges on the s-sphere, this s-line must hit one of
these edges twice in exactly the same way. The s-line must, therefore, be closed.

If the projection of an s-line on the s-sphere does not pass through a vertex and has a
slope that is arational multiple of V3, then it must be closed. We can see this as follows.
This projection passes through the segment from (0, 0) to (1, 0) at a point (X, 0) and at an
angle 0. If the slope is aV3/b, then this projection will intersect the segment from (b, aV3)
to (b + 1, aV3) at (b + x, aV3) and at the same angle 0. In other words, the projection
Intersects this segment in exactly the same way that it intersects the edge (0,0) (1,0). In
fact, for every positive integer n, this projection will intersect the segment (bn, anV3) to
(bn + 1, anV3) at (bn + x, anV3) and at the angle 0. Each of these corresponds to the s-line
on the s-sphere intersecting an edge. Since there are only afinite number of ways that this
can happen on the s-sphere, we can conclude that thisis a repeating cycle, and the s-line
Is closed. Furthermore, any line in the plane that does not pass through avertex must be a
projection of some s-line on the s-sphere, so we see there must be many kinds of closed s-
lines on the s-sphere.

On the other hand, if aline in the plane has aslope that is an irrational multiple of 3,
then the corresponding s-line on the s-sphere cannot be closed. There are certainly lines
In the plane of thistype, so the s-sphere contains s-lines that are not closed, and these
wrap around the s-sphere an infinite number of times and must have infinite length.

Alignment

The points C and D in Figure 1 are «o-aligned. Those triangular disks that contain parts of
the two s-lines shown through these two points form acylinder. An s-line running along
the edge containing C and D joins these two points, as does an s-line joining C at the top
and D at the bottom that wraps around the s-sphere once between these two points. An s-
line that wraps around twice, passing through the midpoint between C and D on the edge
also joins these two points. There are also s-lines that start at C and wrap around the
space any number of times before passing through D. There are an infinite number of s-
lines, therefore, that join C and D.

Since any of the triangular disks in the s-sphere lie in three cylinders of the type just
mentioned, «o-alignment is quite common.

74



Euclidean bands and band spaces

As mentioned, the structure of the s-lines on the s-sphere is quite complex. We may
perhaps gain some insight into this structure by considering asimpler situation. One
possibility comes from the observation just made that there are cylindrical bands around
the s-sphere. The s-linesthrough C and D in Figure 1 liein one of these. The s-line
through E liesin another. Each band is the set of triangular disks that an s-line parallel to
one of the edges passes through.

We may consider afinite geometry based on the bands of the s-sphere. The b-linesin this
geometry are the bands and the points are the triangular disks. Since the s-sphere consists
of 20 triangles, there are 20 points in this geometry. Each band consists of 10 triangular

disks, and each triangular disk is associated with three bands. Therefore, thereare 20- 3/10
= 6 b-linesin this geometry.

X *\/ .
X

\ .
A\ A’A
\Vl VVV

\

S
/ N/ \
Figure 4. Each of the six bands in the s-sphere isindicated by an s-line running through
it
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I nterior band spaces

We can also consider asimpler space than the s-sphere by restricting attention to a
special class of s-lines. The easiest s-lines are those that run along or are parallel to the
edges. We will call any geometry formed by designating asi-lines, those s-linesin an s-
manifold that have at least one segment that is parallel to an edge an interior band
space. The underlying set of pointsisthe same, and only the set of curvesthat are called
linesis different. We will stop here saying only that thisis another kind of geometry that
can be studied.

The s-projective plane

A model for the standard elliptic geometry is called the projective plane, and can be
obtained from the sphere by identifying antipodal points. It can also be obtained from a
hemisphere or disk by identifying antipodal points on the boundary.

Figure 5. The s-projective plane.

The configuration of triangular disksin Figure 5 is essentially half of the configuration
for the s-sphere, so thisistopologically a hemisphere. The points A, B, and C are on the
boundary, and identifying the segments AC, CB, and BA as marked is topologically
equivalent to identifying antipodal points. This meets the requirements of an s-manifold,
since each of the verticesis shared by five triangular disks. We will call thisthe s-
projective plane. It clearly is not embeddable in Euclidean 3-space (i.e., it cannot be
presented as a subspace without self-intersections or stretching or bending of the
individual triangular disks), but it can be embedded in 4-space topologically (with
stretching and bending). It is highly questionable as to whether the s-projective plane can
be embedded in 4-space without bending or stretching the triangular disks. It isan
important concept for ssmanifolds, and in the study of manifoldsin general, that we do
not restrict attention to those spaces that can be visualized as a subspace of a Euclidean
space. It can be an interesting problem, however, to determine whether or not a manifold
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can be embedded in a Euclidean space, and if so, to determine the minimum possible
dimension.

The s-projective plane is non-orientable. This means, roughly, that it isimpossible to
Impose a notion of orientation, such as clockwise/counter-clockwise or left/right, that is
consistent over the entire manifold. For example, the s-line through D in Figure 5 has a
designation of aleft and right side marked by an L and an R. At the bottom, it seems
clear that the vertex A ison theright side of this s-line, but at the top, it appearsthat A is
on the left. The non-orientability of the s-projective planeis also manifested around the s-
line through E and F. Thiss-lineisasimple closed curve that bounds a Mdbius band

The storus

The s-torusis atorus topologically, and has only Euclidean vertices. We will use the
configuration shown in Figure 6. Here we have three rows and columns of Euclidean
bands to avoid a triangular disk having a self-intersection, which would be a violation of
the definition of an ss-manifold. In Figure 6, two s-lines are shown, both passing through
F. Both s-lines are closed, one wraps around the space once in the vertical direction, the
other wraps around three times vertically and once horizontally. We can associate with
these s-lines the ordered pairs (1,0) and (3,1). This extends to a notion of slope that
appliesto all of the s-linesin the s-torus. There is an s-line through F corresponding to
any ordered pair of integers (v,h), and the relatively prime pairs are distinct. In fact,
infinitely many of these s-lines also pass through G, so F and G are «o-aligned. This
extends to any pair of points, and any point in the s-torus is co-aligned with any other
point.

A H B G C F A
Figure 6. The s-torus.

Since a Euclidean vertex is essentially the same geometrically as any non-vertex point,
the s-torus is a perfectly uniform space, and is essentially the flat torus of differential
geometry. Each point has precisely the same properties as any other. The s-torus s finite,
however, so there is adifference in the properties of large and small objects. For
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example, the large triangle GHI in Figure 7 has no interior. The s-torus is a Smarandache
geometry in this way, and others.

Pasch’s axiom

Pasch’ s axiom can be formulated to say that aline entering a triangle through a vertex
will intersect the opposite side. Thisis equivalent to the formulation given earlier.
Pasch’ s axiom does not hold in the s-torus due to the topology of the s-torus, and in
Figure 7, we show an example of atriangle whose inside is connected to its outside.

A B C F A

A B e F A
Figure 7. Pasch’s axiom is Smarandachely denied in the s-torus.

In Figure 7, the smaller triangle JKL has the s-line through F entering the triangle at the
vertex J and intersecting the opposite side KL. Any s-line entering the triangle at J, K, or
L will pass through the opposite side of the triangle JKL satisfying Pasch’s axiom. The
larger triangle GHI, which wraps around the s-torus in the horizontal direction, violates
Pasch’s axiom. Here we see that the s-line shown passes through the vertex |, but does
not intersect the opposite side GH. In fact, while it crosses the boundary formed by the
triangle, it intersects the triangle in only this one point. It does not really even make sense
to say that the s-line through F enters the triangle GHI, since this triangle does not have
an inside or outside. This example also illustrates the property that there are pairs of
simple closed curves on the torus that cross at only one point.

The s-Klein bottle

The Klein bottle, like the torus, is commonly constructed out of a square disk by
identifying edges. Thisis not possible for us, since our basic building block is an
equilateral triangle. Thereis no essential difference with the s-torus, using a
parallelogram, aswe did in Figure 7. Identifying the left and right edgeson a
parallelogram with atwist, asin Figure 9, still yields a Klein bottle topologically, but
gives ageometry that differs from aflat Klein bottle in differential geometry.
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There are two s-lines shown in Figure 8. The one through F is similar to the s-line
through F in Figure 6 for the torus. Horizontally, the orientation is reversed, and the other
s-line passes through G, H, and I. This second s-line has a single self-intersection (or
singularity). Both s-lines are closed.

A B I C F A
E D
] /\ i
y V4 V4 H
D E
A B - F A

Figure 8. The s-Klein bottle.

The s-linein Figure 8 through G, H, and | wraps around the space in two directions, so it
may seem that it would be difficult to find an s-line that does not intersect it. Thisisin
fact the case. We can see this easily by considering what a topologist would call alift.
The parallelogram enclosing Figure 8 along with an infinite number of copies can tile the
plane asin Figure 9. Instead of viewing the identifications as joining the top and bottom
edges, or the left and right edges, each edge of the parallelogram isidentified with an
edge of an adjacent parallelogram. The s-line through G, H, and | in Figure 8 is shown as
adotted line in one of the parallelograms in Figure 9. This s-line is aso shown extended
asif it werealinein the plane. Thisis alift of the line GHI. The parallelograms that are
shaded have orientations that are the reverse of the non-shaded ones. If we start at the
point G at the left of Figure 8, the s-line runs across the parallelogram to the point H on
the right. It continues from H on the left down to the point I. In the lift, the line continues
to the right to a copy of the point I. Note that this segment of the lift corresponds exactly
to the segment HI in Figure 8. The same can be said of the segment from | to G.

Clearly, if the lifts of two s-lines intersect, then the corresponding s-lines in the s-Klein
bottle must also intersect. It isalso clear that if two s-linesin the s-Klein bottle intersect,
then there are lifts of the two s-lines that intersect (although not any two lifts will
intersect). Therefore, if an s-line min the s-Klein bottleisto be paralle to theline GHI, it
must have alift that is parallel to the one shown in Figure 9. A lift based on the segment
HI in Figure 8 will intersect thislift of the line m, however, so m cannot be parall€l to
GHI.
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In the s-Klein bottle, every point is elliptic relative to the s-line through G, H, and |. This
shows that we can have apoint that is elliptic relative to some s-line without there being
an elliptic vertex. Every point is Euclidean relative to the s-line through F. Euclid’'s
parallel postulate, which would require that every point be Euclidean relative to every s-
line, is therefore S-denied, and the s-Klein bottle is a Smarandache geometry in this way.

[N/
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Figure 9. A covering of the s-Klein bottle by the plane.
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Topological 2-Manifolds

Topological considerations

For the s-projective plane in Figure 5, the five triangular disks containing the s-lines
through E and F form a M@bius band. The remaining five triangular disksform a
topological disk. The s-projective plane is obtained from these by identifying the
boundary of the MObius band with the boundary of the disk. Both boundaries are circles
topologically (five adjacent edges).

In the study of the topology of closed 2-dimensional manifolds, or 2-manifolds (all of our
s-manifolds are 2-manifolds), it is convenient to view the projective plane as being
obtained from the sphere by removing a disk (leaving a disk) and gluing in a Mobius
band as we have just described. Removing two disks and gluing in two M&bius bands
resultsin aKlein bottle. All non-orientable closed 2-manifolds are obtainable in thisway,
and they are classified by the number of Mdbius bands (see [20,21]). We will discuss this
later in the chapter.

The orientable closed 2-manifolds are obtained in asimilar way. A torus with a disk
removed is called ahandle. A sphereisan orientable closed 2-manifold. Removing a disk
and gluing in a handle gives the torus. Removing two disks and gluing in two handles
resultsin a2-holed torus. All orientable closed 2-manifolds can be obtained in this way,
and these are classified by the number of handles (see [20,21]). Thiswill also be
discussed later.

One question for us is whether there is an ss-manifold with a topology corresponding to
each of the closed 2-manifolds. It is known that each of these topological 2-manifolds has
a Riemannian manifold structure with constant curvature. The projective plane and
sphere can have constant positive curvature, the torus and Klein bottle can have constant
zero curvature, and every other closed 2-manifold can have constant negative curvature.
We have aready seen that the sphere and projective plane can manifest themselves as s-
manifolds with only elliptic vertices, which have positive impulse curvature, and the
torus and Klein bottle exist as ssmanifolds with only Euclidean vertices, which have zero
impulse curvature.

Question. Do the other closed 2-manifolds correspond to s-manifolds with only
hyperbolic vertices?

Euler characteristic

Preliminary to thisinvestigation, we will introduce the Euler characteristic (see[1, 11,
17, 18, 20, 21]). Our s-manifolds are a specia case of a class of 2-manifolds called
piecewise linear 2-manifolds. These correspond to the triangulations of 2-manifolds,
which are the decompositions of 2-manifolds into triangular disks (not necessarily flat or
with straight edges) such that the triangular disks meet edge to edge. The Euler
characteristic isatopological invariant of these triangulations. That is, the Euler



characteristics for any triangulations of two 2-manifolds that are topologically equivalent
are the same. The Euler characteristic is defined as follows. Let f be the number of
triangular disks or faces, et e be the number of edges, and let v be the number of vertices.
Then the Euler characteristicisy=f—e+v.

For the s-sphere, there are 20 faces, 30 edges, and 12 vertices, so y =20—-30+ 12 = 2.
Topologically, any triangulation of a sphere will give y = 2. For example, a tetrahedron i1s
a topological sphere, and y =4 — 6 + 4 = 2 (although atetrahedron is not an s-manifold,
since there are only three triangular disks around each vertex).

For the s-projective plane, there are 10 faces, 15 edges, and 6 vertices, so y =10 —-15+ 6
= 1. Again, y = 1 for any triangulation of a projective plane.

In general, the Euler characteristic for any non-orientable 2-manifold is y = 2 —m, where
m is the number of MObius bands. The Euler characteristic for any orientable 2-manifold
is y = 2 — 2h, where h is the number of handles. We should get, therefore, y = 0 for both
the torus and Klein bottle, and y is negative for all remaining closed 2-manifolds. Note
that the sign of the Euler characteristic corresponds inversely with the constant curvature
geometries. Checking y for the s-torus and s-Klein bottle, we get y =18 — 27 + 9 =0 for
both.

The s-Euler characteristic

The Euler characteristic can be formulated nicely in terms of the number of elliptic and
hyperbolic vertices. In an ssmanifold, there are five triangular disks around each elliptic
vertex, six around each Euclidean vertex, and seven around each hyperbolic vertex. Let v,
be the number of elliptic vertices, ve the number Euclidean vertices, and v, the number of
hyperbolic vertices. Then v = v, + Vg + v;,. Each triangular disk has three edges, and each
edge is shared by two triangular disks, so 3f = 2e. Each triangular disk has three vertices,
and these are shared by five, six, or seven triangular disks, so 3f = 5v, + 6Vg + 7v,.

The Euler characteristic is then y = f—e+ v = (5v¢ + 6Vg + 7v)/3 — (5Ve + 6VE + 7V})/2 +
(Ve + VE + V})) = [(10-15+6)v, + (12-18+6)Ve + (14-21+6)V})/6 = [Ve — Vi)/6. This can be
rewritten as 6 Y = vg — V.

Theorem. For aclosed ss-manifold, the number of eliptic vertices minus the number of
hyperbolic vertices is equal to six times the Euler characteristic.

The Euler characteristic for a torus is y = 0, so any s-manifold torus must have an equal
number of elliptic and hyperbolic vertices. The s-torus has zero €lliptic and zero
hyperbolic vertices, for example. Another ssmanifold torus is shown in Figure 10. This
model is made out of Polydron® blocks, but does not represent a true embedding, since
the model needed to be bent slightly to close a 7° gap.

Of course, an ss-manifold does not need to be embeddable in 3-space, so this does
represent an actual ss-manifold torus. A close inspection of the picture in Figure 10 shows
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that the model consists of five identical sections around the points of the inside star.
These contain 14 triangular disks with two elliptic vertices on the outer edge and two
hyperbolic vertices, onein front and one behind. At the junction between adjacent
sections are three Euclidean vertices. All total, there are 10 elliptic vertices and 10
hyperbolic vertices, an equal number of each, as expected. There are also 15 Euclidean
vertices, and there are 70 faces and 105 edges. This agrees with the Euler characteristic
=0=70-105 + 35.

f an ss-manifold torus.

Figure 10. A Polydron™ mode

If an s-manifold is topologically equivalent to a 2-holed torus, which hasy = -2, then
there must be 12 more hyperbolic vertices than elliptic vertices. In particular, if thereisa
2-holed closed s-manifold with only hyperbolic vertices, then it would have 12 vertices.
Since 3f = 7v,, there must be 28 faces or triangular disks.

Question. Isit possible to construct a 2-holed torus s-manifold with twelve hyperbolic
vertices?

Closed topological 2-manifolds

The class of closed 2-manifoldsis nicely classified from atopological point of view. By
this we mean that this classification is up to homeomorphism, or roughly, without regard
to continuous deformations (see [20, 21]). This classification comes in two main
categories, the orientable and the non-orientable, as was mentioned earlier.

The orientable closed 2-manifolds are the sphere, the torus, the 2-holed torus, the 3-holed
torus, etc. Representations of these are shown in Figure 11.

These 2-manifolds are conveniently described in terms of atopological operation called
the connect sum. Here two 2-manifolds are joined by atube. Using T for the torus, and #
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for the connect sum, we would write T# T for the connect sum of two tori. This can be
represented as a picture like Figure 12.

The class of orientable closed 2-manifolds is countable and can be listed out as S (for
sphere), T (for torus), THT, THT#T, etc.

The non-orientable closed 2-manifolds can be arranged similarly. If Pisthe projective
plane, then P#P is the Klein bottle, and the rest of this class can be listed out as P#P#P,
P#P#P#P, etc. We could think of the projective plane as having a non-orientable hole (a
Mobius band glued in), and the Klein bottle would then have two of these. The genus of
aclosed 2-manifold corresponds to the number of holes, so we would have one orientable
and one non-orientabl e closed 2-manifold of every possible positive genus and one, the
sphere, which has genus 0.

Figure 11. Representations of the sphere, the torus, and the 2-holed torus.

« Y

Figure 12. A representation of the connect sum of two tori, which yields a 2-holed torus.

It should be noted that other closed 2-manifolds might arise from a connect sum like PAT.
This 2-manifold is topologically equivaent to P#P#P, however, and in general, the
connect sum of atorus with a non-orientable 2-manifold is equivalent to the connect sum
with aKlein bottle (see [20,21]).

Existence of closed ssmanifolds

The idea of a connect sum can be extended to ss-manifolds. Using thisidea we will show
that there is a closed s-manifold of every possible topological type. It will remain to be
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seen, however, whether this can be done more ssimply or with a more uniform structure.
The main difficulty in applying the connect sum to ss-manifoldsisin ensuring that the s-
manifold structure is maintained. In particular, we need to make sure that every vertex
has 5, 6, or 7 triangular disks around it.

Three basic structures are required, a projective plane, atorus, and a tube needed to
perform the connect sum. The s-projective plane and s-torus that we have already are too
small for the process we will illustrate here, so we will introduce a big s-projective
plane, which we will denote by P, and a big s-torus, which we will denote by T. Each of
the triangular disks in the s-projective plane and the s-torus will be replaced by four
triangular disks increasing the area and the number of triangles by afactor of four. The
big s-projective plane is shown in Figure 13, and the big s-torusis shown in Figure 14.

Figure 13. The big s-projective plane, P.

The connect sum will be performed by removing one of the quartets of shaded triangles
In Figure 13 or 14 and replacing it with a half-tube, which is shown in Figure 15. The
triangle UVW attachesto P or T, and the triangle XY Z will attach to the same triangle
from another copy of the half-tube.

At thevertices U, V, and W in Figure 15, there are two triangular disks. After removing
the shaded triangles in either Figure 13 or 14, there are five triangular disks around the
corners of the holes. After attaching a half-tube, U, V, and W will have seven triangular
disks around them, and so they will be hyperbolic. Around the midpoints of triangle
UVW, three triangular disks are replaced by three, so these vertices will be elliptic or
Euclidean, asthey were originally in P and T. In particular, the vertices A and B in
Figure 13 are dliptic, and they will remain elliptic after attaching a half-tube. The
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verticesR, S, and T in Figure 15 are hyperbolic, so attaching a half-tube adds six
hyperbolic vertices. Each connect sum, therefore, will add twelve hyperbolic vertices.

Figure 15. The half-tube.

The big s-torus has only Euclidean vertices, so T#T has 12 hyperbolic vertices, and the
rest are Euclidean. Each additional connect sum of a big s-torus adds 12 more hyperbolic
vertices, so each genus n orientable closed 2-manifold obtained this way will have 12(n —
1) hyperbolic vertices. The big s-projective plane has six dliptic vertices, so P#P will
have 12 hyperbolic vertices and 12 eliptic vertices. Each additional connect sum of abig
s-projective plane adds 12 hyperbolic and 6 elliptic vertices, so the genus n non-
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orientable 2-manifold obtained thisway has 12(n — 1) hyperbolic and 6n elliptic vertices.
There are, therefore, 6n — 12 more hyperbolic vertices than elliptic. This corresponds with
the s-Euler characteristic, which is 6y = 6(2n —2) in the orientable case and 6y = 6(n — 2)
in the non-orientabl e case.

In particular, we now have at least one s-manifold corresponding to every possible closed
2-manifold topology. We have the orientabl e closed s-manifolds: the s-sphere, the s-torus
T, THT, T#T#T, etc., and the non-orientabl e closed s-manifolds: the s-projective plane P,
the s-Klein bottle P#P, P#P#P, etc. Of course there are many more possible. It would be
especially interesting to know if there are any closed s-manifolds that have only
hyperbolic vertices.

Question. Are there any closed s-manifolds with only hyperbolic vertices?

Embeddings

Especially with closed ss-manifolds, a natural question iswhether they exist in R® or R”.
We will consider several levels of interpretation of what this can mean. We will say that a
topological embedding of an ssmanifold M in R"isasurface Sin R" without self-
intersections such that thereisafunction f: M — S that is one-to-one, onto, continuous,
and has a continuous inverse (i.e., f isa homeomorphism). We may refer to both the
surface S and the function f as the embedding. It is relatively easy to imagine that the s-
torus can be mapped onto the middle object in Figure 11 as a topological embedding,
since any sort of stretching and bending is consistent with a continuous function. All of
the orientable closed s-manifolds can be embedded topologically in R®, and all of the
non-orientable closed s-manifolds can be embedded topologicaly in R”.

A topological embedding will be called aflexible embedding, if distances and angles are
preserved. Intuitively, this means that we allow bending, but not stretching. For example,
the s-cylinder can be flexibly embedded. This corresponds to taking a piece of paper and
rolling it into a cylinder. The paper is bent, but distances and angles remain the same on
the surface.

A topological embedding will be called arigid embedding, if each triangular disk in the
s-manifold is mapped to an equilateral triangular disk with sides of length 1. In other
words, a flexible embedding isrigid if the bending takes place only along the edges and
vertices. Thiswould correspond roughly to a Polydron® model, such as the one shown in
Figure 10. Again, thismodel does not really represent arigid embedding, since the model
had to be forced into place.

Among the closed s-manifolds we have considered, only the s-sphere has an obvious
rigid embedding, sinceit is essentially an icosahedron. Paper models of the s-torus can be
made with considerable crumpling, so it seems that the s-torus and any of the orientable
connect sum s-manifolds have flexible embeddings. They clearly do not have rigid
embeddings, however.
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Question. Are there other ss-manifold structures on the torus that have rigid embeddings?
If thisisthe case, then all of the orientable closed 2-manifolds should also have rigid
embeddings using some sort of connect sum. Can any of the non-orientable closed s-
manifolds berigidly embedded in R*?

Thereis clearly much that is not known about closed s-manifolds. The structure of the s-
linesisvery complicated as is the structure of the hyperbolic closed s-manifolds.
Advancesin either of these areas would be very interesting. It would seem that the most
important kind of result for closed s-manifolds, and s-manifoldsin general, would be a
strong positive connection between the structure of s-lines and some structure outside of
Smarandache geometry. For example, a nice relationship between s-lines and the

el ements of the fundamental group would be an indication of the importance of s-
manifoldsin generdal.
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Suggestions For Future Study

We have touched on many concepts basic to the current study of geometry and topol ogy
of manifolds. Seeing these in the context of an ss-manifold can be viewed as an
introduction to further study of manifoldsin general. A good place to start would be [21,
20].

The study of polyhedral surfacesiswell developed (see[1]), and its study today is
probably most active in the area of computational geometry. Thereis alot of information
available on the internet, and a good place to start a search iswith [18].

A relatively new, and very important, concept is that of an orbifold. Orbifolds share with
s-manifolds a focus on singularities. The Geometry Center has information on orbifolds
at the websites[7, 6].

The focus of this book, of course, is Smarandache geometry, so let us finish with a
discussion of future research in this area.

There is much analysis that can be done on the theorems of Euclidean, hyperbolic, and
elliptic geometry. Pairing any proposition or theorem from [12], for example, and an s-
manifold, or group of ss-manifolds, presents a problem to be explored. Something along
these lines might make a good undergraduate research project.

Any theorem of Riemannian geometry should have an s-manifold analog. The same
should be true for any theorem involving polyhedral surfaces or orbifolds.
Generalizations of ssmanifolds to higher dimensions and alternate configurations are also
possible. These would likely be research projects at the level of this book.

Most interesting, of course, would be results peculiar to s-manifolds or Smarandache
geometriesin general. These might include properties that induce a non-trivia
categorization of s-manifolds (non-trivial in the sense of there not being too few or too
many categories). Perhaps there are interesting conseguences of certain combinations of
S-denials.

There might also be certain ssmanifold structures that correspond to more mainstream
areas of geometry and topology. A strong connection between s-lines and the elements of
the fundamental group might provide insight into the topology of manifolds, for example.
Anything along these lines would be very exciting.

Thank you for reading my book. Good luck in your studies, and | would be very happy to
hear about your findings.
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A Smarandache geometry (1969) is a geometric space (i.e., one with points, lines) such
that some “axiom” isfalsein at least two different ways, or is false and also sometimes
true. Such an axiom is said to be Smarandachely denied (or S-denied for short).

In Smarandache geometry, the intent is to study non-uniformity, so we requireit in avery
general way.

A manifold that supports a such geometry is called Smarandache manifold (or
s-manifold). Asaspecial case, in thisbook Dr. Howard Iseri studies the ssmanifold
formed by any collection of (equilateral) triangular disks joined together such that each
edge istheidentification of one edge each from two distinct disks and each vertex isthe
identification of one vertex from each of five, six, or seven distinct disks.

Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian
geometries may be united altogether, in the same space, by certain Smarandache
geometries. These last geometries can be partially Euclidean and partially Non-
Euclidean.
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