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Preface

During the last two decades the following volumes containing the proceedings
of the Israel Seminar in Geometric Aspects of Functional Analysis appeared

1983-1984 Published privately by Tel Aviv University

1985-1986 Springer Lecture Notes, Vol. 1267

1986-1987 Springer Lecture Notes, Vol. 1317

1987-1988 Springer Lecture Notes, Vol. 1376

1989-1990 Springer Lecture Notes, Vol. 1469

1992-1994 Operator Theory: Advances and Applications, Vol. 77, Birkhauser
1994-1996 MSRI Publications, Vol. 34, Cambridge University Press
1996-2000 Springer Lecture Notes, Vol. 1745.

Of these, the first six were edited by Lindenstrauss and Milman, the sev-
enth by Ball and Milman and the last by the two of us.

As in the previous volumes, the current one reflects general trends of
the Theory. The connection between Probability and Convexity continues to
broaden and deepen and a number of papers of this collection reflect this fact.
There is a renewed interest (and hope for solution) in the old and fascinating
slicing problem (also known as the hyperplane conjecture). Several papers in
this volume revolve around this conjecture as well as around some related
topics as the distribution of functionals, regarded as random variables on
a convex set equipped with its normalized Lebesgue measure. Some other
papers deal with more traditional aspects of the Theory like the concentration
phenomenon. Finally, the volume contains a long paper on approximating
convex sets by randomly chosen polytopes which also contains a deep study
of floating bodies, an important subject in Classical Convexity Theory.

All the papers here are original research papers and were subject to the
usual standards of refereeing.

As in previous proceedings of the GAFA Seminar, we also list here all
the talks given in the seminar as well as talks in related workshops and
conferences. We believe this gives a sense of the main directions of research
in our area.

We are grateful to Ms. Diana Yellin for taking excellent care of the type-
setting aspects of this volume.

Vitali Milman
Gideon Schechtman






Table of Contents

A Note on Simultaneous Polar and Cartesian
Decomposition
F. Barthe, M. Csornyei and A. NGO .......c.coooiiiiiiiiiii ..

Approximating a Norm by a Polynomial
A, Barvinok . ...

Concentration of Distributions of the Weighted
Sums with Bernoullian Coefficients
S.G. Bobkou .. ..o

Spectral Gap and Concentration for Some
Spherically Symmetric Probability Measures
S.G. Bobkou . ..o

On the Central Limit Property of Convex Bodies
S.G. Bobkov and A. Koldobsky ...,

On Convex Bodies and Log-Concave Probability
Measures with Unconditional Basis
S.G. Bobkov and F.L. NGzZarov ............couueiiiiniiiiiieniienn..

Random Lattice Schrédinger Operators with Decaying
Potential: Some Higher Dimensional Phenomena
JoBOUTGQIT . o oo

On Long-Time Behaviour of Solutions of Linear

Schrédinger Equations with Smooth Time-Dependent
Potential

Jo BOUTGAITL . . oo oot e e

On the Isotropy-Constant Problem for “PSI-2”-Bodies
Jo BOUTGAITL . o o oo e

On the Sum of Intervals
E.D. GUuskin . ... ... ... o

Note on the Geometric-Arithmetic Mean Inequality
E. Gluskin and V. Milmam. ....... ..o e,



Supremum of a Process in Terms of Trees
0. Guédon and A. Zvavitch. ...... ... 136

Point Preimages under Ball Non-Collapsing Mappings

Some Remarks on a Lemma of Ran Raz
V. Milman and R. Wagner........ ..o i 158

On the Maximal Perimeter of a Convex Set in R™
with Respect to a Gaussian Measure
F.oNQZATOU . ..o 169

On p-Pseudostable Random Variables, Rosenthal
Spaces and I} Ball Slicing

K. OleSzRiCWICZ o o oo oo e 188
W,-Estimates for Linear Functionals on Zonoids

G. PAOUTIS . ..o e e e e e e e e e e e 211
Maximal E;‘-Structures in Spaces with Extremal

Parameters

G. Schechtman, N. Tomczak-Jaegermann and R. Vershynin .......... 223

Polytopes with Vertices Chosen Randomly from
the Boundary of a Convex Body
C. Schiitt and E. Werner....... ..o 241

Seminar Talks
(with Related Workshop and Conference Talks) ............... 423



A Note on Simultaneous Polar and Cartesian
Decomposition

F. Barthe'*, M. Csornyei?** and A. Naor3* **

1 CNRS-Université de Marne-la-Vallée, Equipe d’analyse et de Mathématiques

appliquées, Cité Descartes, Champs-sur-Marne, 77454, Marne-la-Vallée,

Cedex 2, France barthe@math.univ-mlv. fr

Department of Mathematics, University College London, Gower Street, London,
WCI1E 6BT, United Kingdom mari@math.ucl.ac.uk

Institute of Mathematics, Hebrew University, Jerusalem 91904, Israel
naor@math.hugi.ac.il

Summary. We study measures on R" which are product measures for the usual
Cartesian product structure of R™ as well as for the polar decomposition of R™
induced by a convex body. For finite atomic measures and for absolutely continuous
measures with density du/dx = V@ where V is locally integrable, a complete
characterization is presented.

1 Introduction

A subset K C R™ is called a star-shaped body if it is star-shaped with respect
to the origin, compact, has non-empty interior, and for every x # 0 there is
a unique r > 0 such that x/r € K. We denote this r by ||z|x (|| - ||k is
the Minkowski functional of K). Note that ||z| x is automatically continuous
(if z,, tends to = # 0, then for every subsequence z,, such that ||z, | x
converges to r, the compactness ensures that z/r € 9K, so that r = ||z||x by
the uniqueness assumption). Any star-shaped body K C R"™ induces a polar
product structure on R™ \ {0} through the identification

T
T ”IHK’W .

In this note we study the measures on R™, n > 2 which are product measures
with respect to the Cartesian coordinates, and the above polar decomposition.

In measure theoretic formulation, we will be interested in the measures
@ on R™ which are product measures with respect to the product structures

* Partially supported by EPSRC grant 64 GR/R37210.
** Supported by the Hungarian National Foundation for Scientific Research, grant
# F029768.

*** Supported in part by the Binational Science Foundation Israel-USA, the Clore
Foundation and the EU grant HPMT-CT-2000-00037. This work is part of a
Ph.D. thesis being prepared under the supervision of Professor Joram Linden-
strauss.

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 1-19, 2003.
© Springer-Verlag Berlin Heidelberg 2003



2 F. Barthe et al.

R* =R x ---x R =R".0K. Here x is the usual Cartesian product and
for R C RT, 2 € 9K, the polar product is by definition R- 2 = {rw; r €
R and w € 2}. We adopt similar notation for product measures: ® will be
used for Cartesian-product measures and ® for polar-product measures. With
this notation, we say that p has a simultaneous product decomposition with
respect to K if there are measures u1, ... i, on R such that g = 1 ®- - - ® iy,
and there is a measure 7 on RT and a measure v on K such that y=7ov
(in what follows, all measures are Borel). Notation like A* or [, 4; always
refers to the Cartesian product.

For probability measures one can formulate the notion of simultaneous
product decomposition as follows. A measure p on R™ has a simultane-
ous product decomposition with respect to K if and only if there are in-
dependent real valued random variables Xi,...,X,, such that if we denote
X = (Xy1,...,Xn) then p(A) = P(X € A) and X/|| X ||k is independent of
1 X

The standard Gaussian measure on R" is obviously a Cartesian product.
A consequence of its rotation invariance is that it is also a polar-product
measure for the usual polar structure induced by the Euclidean ball. Many
characterizations of the Gaussian distribution have been obtained so far. The
motivations for such characterizations arise from several directions. Maxwell
proved that the Gaussian measure is the only rotation invariant product
probability measure on R?, and deduced that this is the distribution of the
velocities of gas particles. The classical Cramer and Bernstein characteriza-
tions of the Gaussian measure, as well as the numerous related results that
appeared in the literature arose from various probabilistic and statistical mo-
tivations. We refer to the book [Br] and the references therein for a detailed
account. The more modern characterization due to Carlen [C] arose from the
need to characterize the equality case in a certain functional inequality.

To explain the motivation for the present paper, we begin by noting that
the Gaussian density is in fact one member of a wider family of measures
with simultaneous product decomposition, involving bodies other than the
Euclidean ball. They will be easily introduced after setting notation. The
cone measure on the boundary of K, denoted by px is defined as:

pic (A) = vol([0,1] - A).

This measure is natural when studying the polar decomposition of the
Lebesgue measure with respect to K, i.e. for every integrable f : R™ — R,
one has

“+o0
flx)de = / nr 1 flrw) dpg (w)dr.
Rr 0 oK

(30, |#4]P)Y/P, a fundamental result of Schechtman and Zinn [SZ1] (see also
Rachev and Riischendorff [RR]), gives a concrete representation of jux:

For the particular case K = B} = {z € R"; |[z[|, < 1}, where |z][, =
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Theorem 1. Let g be a random variable with density e~ " /(2I°(1 + 1/p)),
teR. If g1,...,9, are i.i.d. copies of g, set:

n 1/p
S = (Z gi|p> 5
=1

and consider the random vector:

7= (%1 %") € R".

Then the random vector Z is independent of S. Moreover, for every measur-
able A C OB} we have:

HB;(A)
WBS) =P(ZeA).

The independence of Z and S, that is the simultaneous product decom-
position, turns out to be very useful for probabilistic as well as geometric
purposes ([SZ2],[NR],[N],[BN]). One might hope that such a statement holds
true for other norms and other densities. The aim of this note is to show
that the £} norm is in fact characterized by this property, although we will
show that such an independence result holds for other measures. Section 2 is
devoted to absolutely continuous measures. Section 3 presents a classification
for finite atomic measures, when K is convex. As the reader will see there are
more examples. Some of them, however, are not interesting and we will dis-
card them by suitable assumptions. For example: a constant random variable
is independent of any other. This observation allows us to produce several
measures with simultaneous product decomposition. Any random variable X
with values in the half-line {z; z1 > 0} works. Its law is clearly a Cartesian
product measure, and X/||X|| k is constant regardless of K, so it is indepen-
dent of || X||x. Similarly, if X has independent components and takes values
in only one sphere r0K it has a simultaneous product decomposition.

Let X and A\g denote the Lebesgue measure and the counting measure on
R™, respectively. For any (not necessarily finite) measure p on R™ with a
simultaneous product decomposition with respect to a star-shaped body K,
p=p Q- ®u, =70Ov and a function f : R” — R, we say that f has
a simultaneous product decomposition with respect to p and K, if there are
some functions f; € L1(u;), g € Li1(v) and h € Li(7) such that

fw) = if[lfxxi) —o () sl

[l

1 almost everywhere. It is immediate to see that for any countable set S C R"
an atomic measure flgd)\y has a simultaneous product decomposition with
respect to K if and only if f has a simultaneous product decomposition with
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respect to A9 and K. Analogously (see Lemma 2 below), an absolutely con-
tinuous measure fdA has a simultaneous product decomposition with respect
to K if and only if its density function f has a simultaneous product decom-
position with respect to A and K. From this it is immediate to see that if
fidX and fadA (resp. fidAo and fodXg) have simultaneous product decom-
positions with respect to K and fifo € L1(\) then fyfad\ (resp. fifad)o)
has a simultaneous product decomposition with respect to K. Similarly, if
fdX (resp. fd\g) has a simultaneous product decomposition with respect
to K and f® € Lyi(\) (resp. f® € Li(\o)) then fdX (resp. f*d)g) has a
simultaneous product decomposition with respect to K.

If K is not assumed to be convex, many different examples may be pro-
duced: take two sets of positive numbers {x1,...,zx} and {y1,...,yn} and
consider p; =Y 0, and pg = > J,,. If one assumes that the numbers y;/z;
are all different then the measure p1q ® po is supported on points (z;,y;) all
having different directions. So there are several origin-star-shaped bodies K
such that g1 ® peo is supported on the boundary of K. For such K’s, p1 ® po
admits a polar decomposition.

Finally, if x4 has simultaneous product decomposition, and €1,...,€, €
{=1,1} then the restriction of p to {x; x;e; > 0} still has this property.
This remark allows us to restrict the study to the positive orthant (0, +00)™
(and one has to glue pieces together at the end). For some positive numbers
ai, a9, ... an let T = Ty 4 ¢ (0,400)" — (0,400)" denote the linear
bijection (z1,...,2,) — (21/a1,...,2,/ay). If 1 is supported in the positive
orthant and it has a simultaneous product decomposition with respect to K,
then g oT has a simultaneous product decomposition with respect to T'(K).
We will show that if p is an absolutely continuous measure with density of
the form e~V (®) where V is locally integrable, and if 4 has a simultaneous
product decomposition with respect to a star-shaped body K, then there
are some positive numbers aq,...,a, and there is a p > 0 such that K N
(0,00)" = T(By N (0,00)"). We will also show that if an atomic measure
has a simultaneous product decomposition with respect to a convex body
K, and it is not supported on a sphere rK for some r > 0, then for some
ai,as, . ..,a, we have K N (0,00)" = T(B% N (0,00)™).

2 Absolutely Continuous Measures

As in the classical characterizations of the Gaussian measure, the assumption
that the measure is absolutely continuous reduces the characterization prob-
lem to a solution of a functional equation which holds almost everywhere
(with respect to the Lebesgue measure). Unless we add some smoothness
assumptions on the densities, the next step is to apply a smoothing proce-
dure. Of course, after “guessing” the family of solutions of the equations, we
must come up with a smoothing procedure which sends each member of this
family to another member of the family. The classical Cramer and Bernstein
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characterizations use Fourier transform techniques (see [Br]), while Carlen
[C] applies the heat semi-group. The particular form of the equation we will
derive will force us to use yet another smoothing procedure.

When p is absolutely continuous the following (easy) characterization
holds:

Lemma 2. Assume that j is an absolutely continuous measure on R™. Then
it has a simultaneous product decomposition with respect to K if and only if
there are locally integrable non-negative functions fi1,..., fn defined on R, g
defined on OK (locally integrable with respect to pr ) and h on (0,00) such

that
Hfl s =g (5 ) - wllal)

1s Lebesgue almost everywhere.

Proof. Assume that p has a simultaneous product decomposition with respect
to K. In the above notation, write g = 1 ® - ® u, = 7 ® v. For every
measurable B C 0K:

v(B) = p(R* - B) = /R ., W)

:/B</Ooon-r"—1;l’;(m)dr) dprc(w).

Similarly, for every measurable A C R

) = pa-08) = [ - ( | it >) dr.

This shows that both 7 and v are absolutely continuous. Similarly w1, ...,
are absolutely continuous.
Now, for every measurable A ¢ Rt, B Cc 0K, Cy,...C, CR:

WA B) =7 / /@ ) @)
- /A,B PR |iuK Gt dfl (77 ) =

WO % .. % Cy) = /C 11 Wi da

1% X Clhy 3] dx;

and

Since the product Borel o-algebras on R - 9K and R x ... x R (n times)
coincide, this shows that:

du n%x 1 .d v ( x
20 =11 = e el (7).

duxk \ ||zl x

is Lebesgue almost everywhere. The reverse implication is even simpler. O
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Fix some p > 0, by,...b, > —1 and ay,...a, > 0. Let X;,...,X,, be
independent random variables, such that the density of X; is:

(bi+1)/p

ba; |t|bi€—a,;|t|”.
2r (b2
p
Note that:
n

i=1

n %Z?:l bi n

= Za'|$'|p Ce” Ximt ai|$i|p]:[ ||
i o , n 1/p
=1 i=1 (Zj:l aﬂx]—‘?)

Hence, if we denote X = (Xi, ..., X,,) then by Lemma 2, X/ (>""", ai| X;|P) "
and (3, ai|Xi|p)1/p are independent. Moreover, if by = ... = b, = 0 and
a; = ... = a, =1 then it follows from the proof of Lemma 2 that X/||X]||,
generates the cone measure on the sphere of ;. We have therefore obtained
a generalization of Theorem 1.

The main goal of this section is to prove that the above densities are the
only way to obtain a measure with a simultaneous product decomposition
with respect to a star-shaped body K C R"™ (and that K must then be
a weighted £ ball). In solving the functional equation of Lemma 2 we will
require a smoothing procedure. Clearly, we require a way to smooth a function
such that a function of the form c[t|’e%*" is transformed to a function
of the same form. Let ¢ : R — R be locally integrable. For any infinitely
differentiable p : (0,00) — [0,00) which is compactly supported in (0, 00)

define:
i) = [ mp(tw(f)dt — [ antsays (1) s

Tt is easy to verify that pxt is infinitely differentiable on (—oo, 0)U(0, 00). Fix
some € < 1/2 and let p. : (0,00) — [0,1/(2€)] be any infinitely differentiable
function such that p.(t) = 1/(2¢) when |t — 1| < € and p.(t) = 0 when
[t — 1| > € + €2. Now, for x > 0 (and similarly when z < 0):

b;

(o 0)(o) - 5 T
pe * ) (x f—/ P(u)du
2xe z/(14e+e€2)
1/26/(1662) 1 2 T ‘

- 2= (5) o (5) | twlan <
xr I/(1+6+62) ( ) (u)
1 z/(1—€) 1
S

2e U
x /(1+¢€) 2ex

z/(14¢€) z/(1—e—e?)
/ () du + / w(u)du] ,

/(14e+e€2) z/(1—€)
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which, by the Lebesgue density theorem, implies that lim._,o px1 = 1 almost
everywhere. Since, lim,_, fooo pe(t)dt = 1, the same holds for 8. = p./ fooo Pe.

Since for every function of the form f(t) = c|t|e~%", the function
exp(pe * (log f)) has the same form, and the above smoothing procedure
allows us to prove our main result. In what follows ¢(x) € {—1,1} denotes
the sign of  (any convention for the sign of zero will do).

Theorem 3. Let K C R"™ be a star-shaped body. Assume that u is an abso-
lutely continuous probability measure on R™ which has a simultaneous product
decomposition with respect to K. Assume in addition that 1og(§—g) is locally
integrable. Then there is some p > 0 and there are by,...,b, > —1 and
r,a1(1),a1(—=1),¢c1(1),c1(=1) ..., an(1),an(—1),cn(1), cn(—=1) > 0 such that:

K= {x e R™; Zai(€(xi))|$¢\p < T} ;

i=1
and

n
d’u(;y) = H Ci(&“(l‘i))‘xi‘bie_ai(s(xi))lxilp dz;.
i=1
Conversely, for K and p as above, p has a simultaneous product decomposi-
tion with respect to K.

We will require the following elementary lemma:

Lemma 4. Fiz a,o/ > 0. Let f: (0,00) = R be a continuous function such
that for every x > 0,

flax)=2f(x) and  fla's) = f(a).

Then for every x > 0, f(x) = f(1) gloga (ifa=1, f(x) =0 for all ).

Proof. We may assume that f is not identically zero. Then o # o' and
a, o’ # 1. Consider the set

P= {ﬂ >0; there is ¢35 >0 st f(Bz)=csf(z), for all z > 0}.

It is a multiplicative subgroup of (0,00). By classical results, P is either
dense in (0,00) or discrete. Assume first that it is dense. Fix some zy such
that f(xzo) # 0. For any 8 € P, cg = f(fzo)/f(xo). By continuity of f and
by the density of P it follows that for every x, 3 > 0 one has

f(Bxo)
f(zo)

So, if for some 8, f(Bxo) = 0 then f is identically zero. Therefore, f does not
vanish. We can choose zg = 1 and setting g = f/f(1), we have that for every

f(Bz) = f(@).
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x,y >0, g(xy) = g(x)g(y). It is well known that the continuity of g ensures
that it is a power function.

To finish, let us note that P cannot be discrete. Indeed, if P is discrete,
since it contains o and o # «, it is of the form {T"; h € Z} for some positive
T # 1. So there are k, k' € 7\ {0} such that « = T% and o/ = T*. Our
hypothesis is that for all z > 0

2f(r) = flow) = f(T*2) = b f(a),
(@) = flo'a) = (V') = & fo).

For an z such that f(z) # 0 we get 2 = ¢} and 3 = = & Tt follows that
3k = 2k+* This is impossible because k # 0. O

Proof of Theorem 3. Using the notation and the result of Lemma 2,

L@ =L =a (15 ) - el

i=1

Fori=1,...,n denote F; = log f;. Denote also G = log g and H = log h. Let
@ : R™ — R be a compactly supported continuous function. For every t > 0:

i/ p(tx) Fy(z;)de = / p(te)G <“ x}{) das+/ p(tz)H (||z]| ) dz

Changing variables this translates to

Z/ dy = /Rn e(y)G (IIyK) dy+/n o(y)H (”ytK) dy.

Fix some e > 0. Multiplying by (3. and integrating, we get,
Z / ) (B x Fi) i)y

= [ et (=)ot [ e )l

Denote ¢; = B x F; and n = (. x H. By the above identity for almost every

y e R™
> oiu) =G <| — )+n<||y||K>

Since ¢; and n are continuous on R \ {0}, we can change G on a set of
measure zero such that the latter identity holds for every y € R™ with non-
zero coordinates.
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Fix some y € R™ with non-zero coordinates. For every A > 0, one has

> 60w =G (| - )+n<A|y||K>

Since both sides of the equation are differentiable in A, taking derivatives at
A =1 yields:

le vo) = C(lllx), (1)

where for simplicity, we write x;(t) = t¢}(t) and {(t) = tn/(t). From this, we
shall deduce that (, x; are power functions. This can be proved by differentia-
tion along the boundary of K, under smoothness assumptions. Since we want
to deal with general star shaped bodies, we present now another reasoning.

Note that lim;_,¢ x;(t) exists. Indeed since 7 is smooth on (0, c0) and ||-||
is continuous, the above equation for y* = > i€t te; gives

i =<(| o) - S

Similarly, ¢ may be extended by continuity at 0. Hence, (1) holds on R™.
Applying (1) to Ae;, gives

xi(A) = COAL- le(MVeill ) + i

for some constant ;. Plugging this into (1) for y; > 0 we obtain an equation
in ¢ only:
n
S Cilledl) + 7 = C(lyllx).
i=1

Choosing y = Ay1e1/|le1llx + Ayzez/|le2l|x, with A, y1,y2 > 0, we get

GO+ 0w+ 3+ =260 = ¢ (A T+,

P |e2]| kNl

Differentiating in A at A = 1 and setting f(¢) = t¢'(¢), ¢ >0,

f(y) + f(y2) = (Hyl e +y2| - HK> (2)

lea|| x

For y1 = yo =t > 0, we obtain 2f(¢) = f(at), with a = || Terte T Tealee |-
Combining this relation with (2) gives

;f<y1a>+f(y2>=f(Hy1”;1”K+y2 = HK).

lleallx
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For y; = t/o and y, =t > 0 we get 3 f(t) = f(ta/), with o/ = || Tede +
= f(1)t? with p =log2/loga # 0, and
1 (in this case f(1) = 0). It follows

Teate l#c- Lemma 4 ensures that f(t)
with the convention that p = 0 if a =

that

() =¢' (WP /p+¢(0)
if p # 0 and {(t) = ¢(0) otherwise. Integrating again, we get an expression for
n = Bexlog h. Letting € tend to zero shows that there are constants a,b,c € R

such that for a.e. t > 0, h(t) = ct’e=*" (this is valid even if p = 0).
Next we find an expression of the functions f;. We start with the relation

te'(t) = xi(t) = ¢(|t] - le()eill ) + 75 = ai(e(®)) [t + bs,

for some constants a;(1), a;(—1),b;. Thus for t # 0, ¢'(t) = a;(e(t))[t[P~ e(t)+
b;/t. Integrating (with different constants on (—o0,0) and on (0,00)) and
taking the limit € — 0 as before we arrive at f;(t) = c;(e(t))[t|’ e~ */*" for
almost every ¢ and for some constants ¢;(1),¢;(—1). For f; to have a finite
integral, p has to be non-zero. Our initial equation reads as: for a.e. x,

n
il _ X

I |Ci(6($1)) T ble ailzi|? _ CHle;(e ¢1H$||Z;<g (”x”) .

=1 K

By continuity this holds on R™ \ {z; []}_, #; = 0}. For such an z and A > 0,
the equation becomes

Hcl )\Ez 1bip= AP 27y ai(e(@)) il Hci‘milbi

i=1

_ c)\blleI;(e—a)\PHxH%g <|| |K) )

This clearly implies that al|z|} = >0, a;(e(x;))|z;|P. Since p is a prob-
ability measure, necessarily a,a;(1),a;(—1) > 0 and b; > —1. Thus K is
determined. The boundedness of K forces p > 0. The proof is complete. O

We now pass to the case of p being an infinite measure. In this case,
every star-shaped body gives rise to a measure with a simultaneous product
decomposition. Indeed, for every by,...,b, > —1 in R, and every star-shaped
body K, the measure du(z) = [}, |2;|" dz admits such a decomposition,

due to the identity:
= H( S )bi el
]| K

i=1

We can however prove that the above example is the only additional case.
For simplicity we work with measures on (0, 00)™.
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Theorem 5. Let K C R™ be a star-shaped body. Assume that p is an ab-
solutely continuous measure on (0,00)" which has a simultaneous product
decomposition with respect to K. Assume in addition that 1og(%) is locally
integrable. Then one of the following assertions holds:

1) There are p,r >0, by,...,b, €R, ¢ >0 and ay,...,a, # 0 all having the
same sign such that:

K000 = {€ 0,00 3 fal-fal < v,
=1

and

d,u = CH (m?ie_aiwf]_{rt>0}dxi> .
i=1

2) K is arbitrary and there are by, ..., b, € R and ¢ > 0 such that

dp = cﬁ (xff‘l{xi>0}dxi) .

=1

Conversely if K and p satisfy 1) or 2) then u has a simultaneous product
decomposition with respect to K.

Proof. This result follows from the proof of Theorem 3. The writing is simpler
since we work on (0,00)™. We present the modifications. If in the argument
p =0, then f;(t) = ¢;t* and we are done. If p # 0 then the argument provides
a,ai,...,ay such that whenever x; > 0

n
allell = > aiat.
i=1

If @ =0 then a; = 0 for all i’s, f;(t) = ¢;t% and there is no constraint on K.
If @ # 0 then the previous relation gives a; = ale;||%, so the a;’s are not zero

and have same sign. Since ||z||x = (37, %|z;[P) 1/p, the set K N (0,00)™ is

a weighted /}-ball. By boundedness p > 0. As before f;(t) = citbie= %" This
ends the proof. 0O

3 Atomic Measures

In this section we focus on finite atomic measures » pes @ pdp, where 0p is
the Dirac measure at P and S C R" is countable. For convenience, we write
w(P) for p({P}). We also restrict ourselves to convex sets K. The following
result deals with measures which are not supported on a sphere. Measures
which concentrate on a sphere, when K is convex are much easier to classify
and we leave this to the reader (one of the p;’s has to be a Dirac mass).
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Theorem 6. Assume that K C R™ is convex, symmetric and contains the
origin in its interior, and that p is a finite (and non-zero) atomic measure
on (0,00)", which admits a simultaneous polar and Cartesian decomposition
with respect to K: p =11 @ -+ ® pi, = 7 © v. Assume in addition that T is
not a Dirac measure. Then the following assertions hold:

a) There are M1, ..., A\, > 0 such that K N[0,00)™ = [];—,[0, \i].

b) There are ¢,r,0q,...a, > 0,0 < g <1 and D =T[", {T)\iqk; ke N}

such that : I i
eIl 2t ifzeD
nlz) = {0 ifv ¢ D

Conversely, if K and p satisfy a) and b) then u has a simultaneous product
decomposition with respect to K.

As a matter of illustration, we check that conditions a) and b) ensure
simultaneous Cartesian and polar product decompositions. Let x € (0, 00)™.
Since the set D is a Cartesian product, it is clear that p defined in b) is a
Cartesian-product measure. Next, write z = pw with p > 0 and w € 0K;
then

n
() = plpw) = ¢ pizr [ wi*op (pw),

i=1
so we just need to check that D is a polar product set in order to show that
the latter is the product of a quantity depending only on p times a quantity
depending on w. But this is easy: if z € D then for each i, one has x; = r\;q":.
By a), ||z]|x = r¢™®™* € T = {r¢*; k € N} and

€T k;—min; k;\™ h; . _
W:(Aiq min ])i_legz{()\iq )?:1, h; >0 andHhi—O}.
i

This shows that D C T - £2. The converse inclusion is easily checked. Hence
1 has a simultaneous product decomposition.

The rest of this section is devoted to the proof of the necessary condition
in Theorem 6. From now on we assume that p and K satisfy the assumption of
the theorem. We begin with some notation. If A is a measure on a measurable
space (2, 2), let My = {x € 2; A(z) = sup,,c A(w)}. Clearly, if X is a finite
measure then |My| < oo. We also put

M3 = {x € 2;\(z) = sup )\(w)}.

wEN\ My
When ) is countably supported we define supp(\) = {w € 2; A\(w) > 0}.

Returning to the setting of Theorem 6, we clearly have that supp(p) =
supp (1) X - -+ X supp(pn) = supp(7) -supp(v) and M, = My, X+ X M, =
M- M,.

The next lemma will be used for a measure other than g of the main
theorem. This is why the fact that 7 in the product decomposition is not
Dirac is specifically stated as an hypothesis there.
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Lemma 7. Define the slope function si(x) = I If T is not a Dirac

1
T2,ezn) 2
measure, then s1 does not attain its minimum on supp(p).

Proof. Assume that p(xz) > 0. Then pq1(x1),... pn(x,) > 0, v(z/||z||x) > 0
and 7(||z||x) > 0. Since 7 is not a Dirac measure, there is r > 0, r # ||z| x
such that 7(r) > 0. Let y = TaTe @~ Then w(y) = 7(r)v(z/||x||x) > 0, so that

foreveryi=1,...,n, ui(mxi) > 0. Therefore for
(% )
= | 7T 21,22,...,Tp |,
]| <
( r r r )
V= \21, 722 L3y s Tn )
el [l x [l x
p(u) > 0and p(v) > 0. But s1(u) = qu\ﬂlxsl(x)’ s1(v) = %sl(x) and either
llz|l
HxTHK <lor =% <1. O

Corollary 8. Under the assumptions of Theorem 6, |supp(u)| = oo and
M| =1.

Proof. The first assertion is obvious, and the second assertion follows since
tt|m, has a simultaneous product decomposition. Indeed pfaq, also has a
finite support, and therefore s attains its minimum on it. It follows that the
radial measure 7|5, has to be a Dirac measure. O

Put M, = {r}.
Lemma 9. supp(p) C {z; ||z||x <7}

Proof. Tf supp(u) ¢ {z;||z||x < r} then since 7 is a finite measure there is
R > r such that 7(R) > 0 is maximal on (r,00). For every ¢ = 1,...,n,
let M; = maxM,, > 0. Now, x = (My,Ms,...,M,) € M,, so that
|z|xk = r. Put y = L. Clearly u(y) = 7(R)v(z/||z|/x) is maximal on
the set {x; ||z||x > r}. For every i = 1,...,n define

R
= (Mla"'aMi—la
r

MuMz‘+1’-~-,Mn>-

Note that for every j = 1,...,n, M; = maxM,, < %Mj = y; so that
y; ¢ My, It follows that for every i = 1,...,n, p(z’) > p(y), so that
|lz¢||x < 7. Now, using the convexity of K we have

n

r = llelx = H 3

r o 3=1

I /\

zt 7<r,
E Ll s

T oi=1

which is a contradiction. O
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Since 7 isn’t Dirac, there is some 7’ € M2. By Lemma 9, 7’ < r.
Lemma 10. For every i =1,...,n, inf supp(i;) = 0.
Proof. As in Lemma 7, we will study the function:

Lq

| Zj;&i zjejll2’

Since Lemma 9 implies in particular that supp(u) is bounded, our claim will
follow once we show that inf,coupp(n) si(2) = 0. Let 0y = infcqupp(n) 5i(2)
and assume that o; > 0. For every € > 0 there is € supp(u) such that
si(z) < (1 + €)o;. From the proof of Lemma 7 it follows that for every

p € supp(r) there are u,v € supp(r) such that s;(u) = msz(m) and
si(v) = —‘“g’(si(x). Hence, min{ Hmlﬂx’ ”w))lK} > 1%;-5 If ||| = 7 take p = 1.

Otherwise, ||z]|x < 7/, in which case take p = r. In both cases we get that
r < (14 €)r’, which is a contradiction when e is small enough. 0O

In what follows we will continue to use the notation M; = max M,,,, and
we will also put m; = min M,,,. Let © = (My,...,M,), 2’ = (m1,...,my).

Corollary 11. For every J C {1,...,n}:

Z Miei

icJ

<r.

K

Proof. By Lemma 10 for every € > 0 and i = 1,...,n there is z; € supp(u;)
with z; < e. Now:

Z Me; + Z zie; € supp(p),

i€J igJ
so that by Lemma 9 we get:

Z Miei + Z Z;€;

ieJ i¢J

<r.
K

The result follows by taking e — 0. O
Corollary 12. [ ,[0,M;] C rK.
Lemma 13. Let J be a non-empty subset of {1,...,n}. Then:

Z Miei + Z T?,miei

icJ i¢J

=7
K
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Proof. Denote y = Z1'. Since z' € M, ||2'||x = r. Now, u(y) = 7(r")v(z'/
2’| k), and because r' € M2 and z'/||2'||x € M, we deduce that pu(y) is
maximal on the set {z;||z||x # r}. But since v’ < r, for any j = 1,...,n
one Iéas Y = %lmj < mj; =min M,,,, so that y; ¢ M, . It follows that since
J#0,

/J(ZMieH—Z Zmz-ei> = (H ,Ui(Mi)> (HM(%)) > f[lm(yi) = u(y)

icJ i¢J ieJ ig¢J

=r. 0O

so that HZiGJ M;e; + Zigj Tmge; p
We can now prove the first part of Theorem 6:

Proposition 14. K N[0,00)" =[], [0 Mi]

’or

Proof. We set (Q = H?zl[(),Mi]. Let 1 < i < n. Since 0 < m;r'/r < M; the
point

/
Pi = Miei + Lmjej
lies in the interior of the facet @ N {x; x; = M;} of Q. It is also a boundary
point of rK by Lemma 13. As guaranteed by Corollary 12, Q C rK, so that
any supporting hyperplane of rK at P; is a supporting hyperplane of @ at
this point. Therefore at P; the convex set rK admits {z; x; = M;} as a
(unique) supporting hyperplane. It follows that rK C {z; x; < M;}. This is
true for every 1 < ¢ < n and the proof is complete. O

We now pass to the proof of the final assertion of Theorem 6. We have
proved that there are real numbers ¢; = r/M; > 0, ¢ = 1...n such that for
every = € [0,00)", ||z]|x = maxi<i<n t;;. Moreover for every x € supp(u),
|zl x < rand u(r/ti,...,r/t,) > 0. By replacing K with r K we may assume
that » = 1. Moreover, as we remarked in Section 1, for any aq,...,a, >0, p
admits a simultaneous product decomposition if and only if o7y, .. 4, admits
a simultaneous product decomposition. Therefore, by composing p with a

suitable T, .. q4,, we can assume that M} = --- =M, =land t; =--- =
t, = 1. In addltlon by replacing the measures u, pu;, v, 7 by p/p(l,...,1),
wi/pi(1), v/v(l,...,1), 7/7(1) we can assume that p(1,...,1) = ,ul(l) =

v(l,...,1)=7(1)=1.
Lemma 15. If p,q € supp(7) and g > p then %,pq € supp(7).

Proof. By the product property

0<7(p)=plp,....p) = _Hm(p)
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so that for every i = 1,...,n, p € supp(;). Similarly, ¢ € supp(y;). Hence,
since p < ¢:

p
0<,u(p7q,...,q):T(q)Z/(q,L...,l),

so that 1/(%, 1,...,1) > 0. Now, using again the fact that p < ¢ we have:

M1 <p) :u<p,1,...,1> :z/(p,l,-.-,l) > 0.
q q q

This shows that g € supp(p1). Similarly, for every 4, % € supp(p;). Hence,
T (P p P P
eIl (2) -u (2 ) o (2).
17 \g ¢y q

This shows that & € supp(r). Now, since the remark preceding Lemma 15
implies that p < 1,

n

p1(pa) [ mila) = nlpa.a. .- .q) = 7(@)v(p.1,....1)
=2

=7(@Qup,1,....1) =7(q)u(p) > 0.

Hence, pg € supp(u1). Similarly, for every i, pg € supp(u;), so that:

0 < u(pg, - ..,pq) = 7(pq),
which shows that pg € supp(r). O
Lemma 16. For everyi=1,...,n, supp(y;) = supp(7).

Proof. In the proof of Lemma 15 we have seen that supp(7) C supp(u;). We
show the other inclusion. First, note that inf supp(r) = 0. Indeed for every
e > 0, Lemma 10 ensures the existence of x; € supp(p;) such that z; < e.

Now,
L T
0< i(x; :T( max xl)u(>
Lt = o= (G

So inf supp(7) < e.
Take any p € supp(p;). There is some ¢ € supp(7) such that ¢ < p. By
the proof of Lemma 15, for every j, g € supp(y;); therefore:

0 < ui(p)};[iﬂj (q) = p(pei + ;Qe]) = T(p)l/<€i + ; Z@'),

so that p € supp(7). O
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Lemma 17. For every i =1,...,n and for every p,q € supp(u;),

i (pq) = pi(p)pi(q)-

Proof. Note that since p € supp(7), p < 1. Hence, using the fact that ¢ €
supp(p;) we have:

0 < pi(pg) [J i) = N(pqei + qu) = T(W(pez‘ + Zea)

i i i
= 7(@)pi(p) = pP)ui(q. - - .. @) = mi()pa@) [ ] 1 (@)-
J#i
O
Lemma 18. Assume that A C (0,1], A # {1}, A # 0, has the property that

xy and x/y are in A whenever z,y € A and x < y. Let f : A — (0,00) be a
function such that if z,y € A then f(zy) = f(x)f(y) and:

Zf(a) < 0.

acA
Then there are o > 0 and 0 < ¢ < 1 such that f(a) = a® and A = {¢"}5%,.
Proof. For any a € A\ {1} and n € N, a” € A and f(a™) = f(a)". Since
S0 f(a™) < oo, f(a) < 1. Now, if a,b € A\ {1} and g—; < 1, g—,z € A,
so that 1 > f (g,%) = f((;z));. We have shown that for every n,m € N and
a,be A\ {1}:

~

logb log f(b
n _ log n>0gf()

m =~ loga m "~ log fla)

Hence, llggz > llgg){((zg for every a,b € A\ {1}. By symmetry, there is o« € R
log f(a)

such that for every a € A, Toza — @ This proves the first assertion (a > 0
since f(a) < 1).
Put B = {—loga;a € A}. Clearly:

a,b€ B= a+b,|a—b| €B.

Since f(a) = a® and ), 4 f(a) < oo, for every x > 0 there are only
finitely many @ € A with a > x. In other words, for every = > 0 there are
only finitely many b € B with b < z. In particular, if we let p = inf B\ {0}
then p > 0 and p € B. Now, for every n =0,1,2,..., np € B. We claim that
B = {0,p,2p,3p,...}. Indeed, if x € B\ {0,p,2p,3p,...} then there is an
integer n such that 0 < | — np| < p. But, |z — np| € B, and this contradicts
the definition of p. Finally, for ¢ = e ?, A= {1,q,¢%,...}. O
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Remark. All the assumptions in Lemma 18 are necessary. Apart from the
trivial examples such as A = (0, 1] and A = (0,1] N Q we would like to point
out the more interesting example A = {2"3™;m,n € Z and 2"3™ < 1},
f(273m) = 29m3P™ where o and 8 are distinct real numbers (of course in
this case the condition }_ ., f(a) < oo is not satisfied).

Proof of Theorem 6. Assertion a) is given by Proposition 14. To prove b)
fix some 1 < ¢ < n and define: A = supp(u;). By Lemma 16 and Lemma
9, A = supp(r) C (0,1]. Additionally, Lemma 15 implies that if z,y € A,
x <y then ay, # =€ A. Clearly for every z € A4, wi(z) > 0 and since y; is
a finite measure, ) ., pi(a) < co. An application of Lemma 17 gives that
for every x,y € A, pi(zy) = pi(x)p;(y). Now, Lemma 18 implies that there
are o; > 0 and 0 < ¢ < 1 such that p;(a) = a* and A = {¢"}7%,. So,
supp(7) = {¢*; k € N} and by Lemma 16, one gets supp(y;) = {¢*; k € N}.
Moreover, p;(q") = ¢"*:. This concludes the proof of the theorem. O

4 Concluding Remarks

In this section we list some remarks and open problems that arise from the
results of the previous two sections.

1) There are examples when K is allowed to be unbounded (of course in this
case it is no longer a body). Indeed the “unit ball” of £} for non-positive p
gives such a decomposition with f;(t) = [t|* exp(—|t|?).

2) Theorem 3 does not cover the case of the uniform measure on B =
[—1, 1], which clearly has simultaneously the Cartesian and the polar decom-
position with respect to K = B . It is the natural limit case of the examples
with the densities exp(—|t|?). Under strong conditions on the density and its
support, results can be obtained which encompass measures supported on
the cube. It would be very nice to get rid of the conditions. It seems that
one of the necessary steps would be to understand the structure of sets in R™
which are products with respect to the Cartesian structure and for the polar
structure generated by a convex set K. This is a problem of independent
interest.

3) The classification of simultaneous product measures, without additional
hypothesis, is a very challenging problem. Note that our results may be used.
Indeed if 4 has simultaneous product decomposition, then its absolutely con-
tinuous part has it too. Similarly, if a singular measure has the property, then
its atomic part has it too, so Theorem 6 applies. The main obstacle seems to
be dealing with singular continuous measures.

Acknowledgement. Part of this work was carried out while the first and last-named
authors were visiting University College London. They are grateful to their UCL
hosts, Professors K. Ball and D. Preiss, for their invitation.
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Approximating a Norm by a Polynomial*

Alexander Barvinok

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109,
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Summary. We prove that for any norm || - || in the d-dimensional real vector space
V and for any odd n > 0 there is a non-negative polynomial p(z), x € V of degree
2n such that

1

1 n+d—1 ™
p? (z) <|lz| < ( ) p? ().

n

Corollaries and polynomial approximations of the Minkowski functional of a convex
body are discussed.

1 Introduction and the Main Result

Our main motivation is the following general question. Let us fix a norm || - ||
in a finite-dimensional real vector space V' (or, more generally, the Minkowski
functional of a convex body in V). Given a point € V, how fast can one
compute or approximate ||z||? For example, various optimization problems
can be posed this way. As is well known (see, for example, Lecture 3 of [B]),
any norm in V can be approximated by an /5 norm in V within a factor of
v dim V. From the computational complexity point of view, an 5 norm of x
is just the square root of a positive definite quadratic form p in x and hence
can be computed “quickly”, that is, in time polynomial in dimV for any
x € V given by its coordinates in some basis of V. Note that we do not count
the time required for “preprocessing” the norm to obtain the quadratic form
p, as we consider the norm fixed and not a part of the input. It turns out
that by employing higher degree forms p, we can improve the approximation:
for any ¢ > 0, given an x € V| one can approximate ||z|| within a factor of
cvdim V in time polynomial in dim V. This, and some other approximation
results follow easily from our main theorem.

Theorem 1.1. LetV be a d-dimensional real vector space and let ||| : V —
R be a norm in V. For any odd integer n > 0 there exists a homogeneous
polynomial p : V. — R of degree 2n such that p(xz) > 0 (in fact, p is the sum
of squares of homogeneous polynomials of degree n) and

P (2) < |a] s( ) P (z)

n

forallz e V.
* This research was partially supported by NSF Grant DMS 9734138.
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We observe that the approximation factor (”t‘f*l)l/% approaches 1 as long
as n/d — oo, see also Section 2.2.

We prove Theorem 1.1 in Section 3. In Section 2, we discuss some corol-
laries of Theorem 1.1. In Section 4, we show how to extend Theorem 1.1 to

Minkowski functionals of arbitrary convex bodies.

1.1 Best Approximating Polynomials

Let us fix a norm || - || in a finite-dimensional vector space V' and a positive
integer n. One can ask what is the smallest possible constant C' = C(]| - ||, n)
for which there exists a polynomial p of degree 2n such that

pi(z) < ||z < Cp2(z) forall zeV. (1.1.1)
Moreover, what is the value of

C(d,n) = sup c(ll- 1, n).
[I]l is @ norm in V
and dim V=d

Theorem 1.1 asserts that C(d,n) < (”J“Z*l) Y2 for odd n. Tt is not known
whether the equality holds except in the case of n = 1 when indeed C(d, 1) =
Vd (see, for example, Lecture 3 of [B]). The following simple observation can
be useful to determine what a best approximating polynomial may look like.

Suppose that there is a set of finitely many non-negative polynomials p;
with deg p; = 2n which satisfy (1.1.1). Thus we have

pi(z) < ||lz|*" < C*'ps(x) forall z €V and for every p;. (1.1.2)

Then any convex combination p of polynomials p; satisfies (1.1.2) and hence
(1.1.1). Suppose now that the normed space V' possesses a compact group G
of linear isometries. If a polynomial p satisfies (1.1.1) then, for any g € G,
the polynomial py(x) = p(gx) satisfies (1.1.1) with the same constant C' and
hence, by averaging over GG, we can choose a G-invariant polynomial p which
satisfies (1.1.1). Hence if a norm ||-|| is invariant under the action of a compact
group, we can always choose an invariant best approximating polynomial.

2 Corollaries and Remarks

2.1 Approximation by Polynomials of a Fixed Degree

Let us fix an n in Theorem 1.1. Then, as d grows, the value of pl/Q"(x)
. . e \/‘ - nN—1/2n ~
approximates || - || within a factor of ¢,vd, where ¢, ~ (n!) ~ \/e/n.
Since for any fixed n, computation of p(x) takes a d°™) time, for any ¢ > 0
we obtain a polynomial time algorithm to approximate ||z| within a factor
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of ev/d (again, we do not count the time required for preprocessing, that is,
to find the polynomial p).

One may wonder whether a significantly better approximation factor, for
example C(d,n) = O(d'/?"), can be achieved in Theorem 1.1 (that would
also agree with the v/d bound in the classical case of n = 1). This, however,
does not seem to be the case as the following example shows. Let || - || be the
¢ norm in R%, that is

d
]| = > 1&l for x=(&,..., ).
i=1
The norm || - || is invariant under signed permutations of the coordinates

(gla'“agd) — (:l:glmigzd)

and hence, as discussed in Section 1.1, we can choose an invariant best ap-
proximating polynomial p. Hence p is a symmetric polynomial in £7,...,&2.
In particular, for n = 3, we have

d
pa)=aad &+B8s >, &+ Y. &4

i=1 1<ij<d 1<i<j<k<d

for some real ag, B4 and 74. Since we must have 0 < p(z) < ||z||% by
substituting =z = (1,0,...,0), = (1,1,0,...,0) and = = (1,1,1,0,...,0)
we get

0<ag<1, 0<2aq+284<64 and 0<3ag+608;+vq <729,
which implies that ag <1, (;<32 and -~4 <735.

Substituting z = (1,...,1), we observe that ||z|| = d and that p(z) = O(d®).
Therefore, we must have C(d,3) > C(£1,3) > ¢v/d for some absolute constant
c>0.

2.2 Linear Growth of the Degree

If we allow n to grow linearly with d, we can get a constant factor approxi-
mation. Indeed, if we choose n = yd for some v > 0 in Theorem 1.1, for large
d we have

1
+d—-1\2" 1 +1 1
Co(7) = (n n ) %exp{2ln77 +2Py1n(’7+1)}- (2.2.1)

Thus p'/?"(z) approximates || - || within a factor of Cy(7) depending on v
alone. In particular, if v — o0, the approximation factor approaches 1. Since
for any fixed v > 0, computation of p(z) takes 209 time, for any constant
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¢ > 1 we can get an algorithm of 2°(%) complexity approximating the value
of ||z|| within a factor of c.

The anonymous referee noticed that a different constant factor approxi-
mation can be achieved via the following construction. Let V* be the dual
space and let

B*:{fEV*: f(z) <1 forall x€V such that ||a:\|§1}

be the unit ball of the dual norm in V*. As is known, (see, for example, Lemma
4.10 of [P]), for any 0 < § < 1 one can choose a set N of |[N| < (1 +2/§)?
points in B* which form a d-net (in the dual norm). Given an integer n, let
us define the polynomial p by

1 an
P(x)—mfezjvf (@).

Let us fix a v > 0. It is not hard to show that if 6 = d(y) is chosen in
the optimal way, as long as n = ~d, the value of p!/?"(x) approximates |z||
within a constant factor C1(7). Interestingly, for v — oo, the asymptotics
of (2.2.1) and C;(y) coincide:

1
00(7),01(7):1+121—J(1+0(1)) as 7y — 00.

However, for small 7, the bound Cy(7y) of (2.2.1) is substantially better than
the one obtained for Cy(7y) using this construction. We have

Co(v) =+ve/v(1+0(1)) for v—0 asopposed to
Ci(vy) = 3%(1+0(1)) for v —0.

2.3 Approximating by Other Computable Functions

It is possible that one can achieve a better approximation by employing a
wider class of computable functions. For example, the 1 norm which appears
to be resistant to polynomial approximations (cf. Section 2.1) is very easy
to compute. A natural candidate would be the class of functions which are

sums of pi 2" for different polynomials p;. In particular, the £; norm itself is
a function of this type.
3 Proof of Theorem 1.1

Let B be the unit ball of || - ||, so

B={zeV:|z] <1}.



24 A. Barvinok

Hence B is a convex compact set containing the origin in its interior and
symmetric about the origin.

Let V* be the dual space of all linear functions f : V. — R and let
B* C V* be the polar of B:

B*:{fev*:f(x)g1 for all zGB}.

Hence B* is a convex compact set symmetric about the origin. Using the
standard duality argument, we can write

= . 3.1
|zl max f(x) (3.1)
Let
W=vV®"=Vg®..oV and W'=(V®)' =V"'®..0V"
———— —————
n times n times

be the n-th tensor powers of V' and V* respectively.
For vectors x € V and f € V* let

®"=2®..®c and f"=f®...0f
—_———— —_—
n times n times

denote the n-th tensor power ™ € W and f®" € W* respectively.
By (3.1), we can write

)™ = J{gfgg(f(m))" = max f"(2%"). (3.2)

Let D be the convex hull of f®" for f € B*:
D = conv{f®": f € B*}.

Then D is a convex compact subset of W*, symmetric about the origin (we
use that n is odd). From (3.2) we can write
z||" = max f€"(x®") = max g(z®"). 3.3
" = max " (@) = max g(a"") (33)

Let us estimate the dimension of D. There is a natural action of the symmetric
group S, in W* which permutes the factors V*, so that

o(fi®...®fn) =forr() ® .. ® fo-i(n)-

Let Sym(W*) C W* be the symmetric part of W*, that is, the invariant
subspace of that action. As is known, the dimension of Sym(W*) is that of
the space of homogeneous polynomials of degree n in d real variables (cf., for
example, Lecture 6 of [FH]). Next, we observe that f®" € Sym(W*) for all
f € V* and, therefore,
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n—|—d—1>

dim D < dim Sym(W™) = ( "

(3.4)

Let E be the John ellipsoid of D in the affine hull of D, that is the (unique)
ellipsoid of the maximum volume inscribed in D. As is known, (see, for ex-
ample, Lecture 3 of [B])

EcDc (VdimD)E.

Combining this with (3.3), we write
mal%cg(x(g”) < lzl™ < (\/M) max g(x®")
9€ €

geE
and, by (3.4),
1
Fd-1\?
ey < el < (" @y, 3.5
maxga®) < ol < ("0 gt (e5)
Let
o(z) = max g(°").

geE

We claim that p(z) = ¢*(z) is a homogeneous polynomial in x of degree 2n.
Indeed, let us choose a basis eq,...,eq in V. Then W acquires the basis

€y, =€, Q...0¢, for 1<iy,... i, <d.

Geometrically, V and V* are identified with R? and W and W* are identified
with R?". Let K C W* be the Euclidean unit ball defined by the inequality

K= {h ew*: Z h%(ei,..q,) < 1}~
1<i1,yin<d

Since F is an ellipsoid, there is a linear transformation 7 : W* — W* such
that T(K) = E. Let T* : W — W be the conjugate linear transformation
and let y =T* (:r®”). Hence the coordinates y;, . ;, of y with respect to the
basis {eilmin} are polynomials in x of degree n. Then

q(z) = rgﬂeagg(w@”) = max T (h) («®") = max h(T" ("))

= max h(y) = Z Y

heK . )
1<it,..,in<d

Hence we conclude that p(x) = ¢?(z) is a homogeneous polynomial in = of
degree 2n, which is non-negative for all x € V' (moreover, p(z) is a sum of
squares). From (3.5), we conclude that

1
1 n+d—1\?" 1
v <loll < ("0 oA,

as claimed.
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4 An Extension to Minkowski Functionals

There is a version of Theorem 1.1 for Minkowski functionals of convex bodies
which are not necessarily symmetric about the origin.

Theorem 4.1. Let V' be a d-dimensional real vector space, let B C'V be a
convex compact set containing the origin in its interior and let ||z|| = inf{\ >
0:2 € )\B} be its Minkowski functional. For any odd integer n > 0 there
exist a homogeneous polynomial p : V. — R of degree 2n and a homogeneous
polynomial v : V. — R of degree n such that p(x) > 0 and

(e i) < (4 )

forallz e V.

Proof. The proof follows the proof of Theorem 1.1 with some modifications.
Up to (3.4) no essential changes are needed (note, however, that now we
have to use that n is odd in (3.2)). Then, since the set D is not necessarily
symmetric about the origin, we can only find an ellipsoid E (centered at the
origin) of W* and a point w € D, such that

EcCcD—-wcC (dmD)E,
see, for example, Lecture 3 of [B]. Then (3.5) transforms into

+d-1
Yy < [l — ®ny « (T @ny
max g(z=") < flaf” —w(@™") < < " )fqneagg(fﬂ )

Denoting

p(@) = (maxg(e™) " and r(e) = w(@®)

we proceed as in the proof of Theorem 1.1. O

Acknowledgement. The author is grateful to the anonymous referee for useful com-
ments and interesting questions.
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Concentration of Distributions of the
Weighted Sums with Bernoullian Coefficients*

S.G. Bobkov

School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church St.
S.E., Minneapolis, MN 55455, USA bobkov@math.umn.edu

Summary. For non-correlated random variables, we study a concentration prop-
erty of the distributions of the weighted sums with Bernoullian coefficients. The
obtained result is used to derive an “almost surely version” of the central limit
theorem.

Let X = (X1, ..., X,) be a vector of n random variables with finite second
moments such that, for all &, j,

E X X, = 0y, (1)

where dy; is Kronecker’s symbol. It is known that, for growing n, the distri-
bution functions

Fy(z) =P {Zekxk < x} ., z€R,
k=1

of the weighted sums of (X}), with coefficients 6 = (64,...,6,) satisfying
0? + ...+ 62 =1, form a family possessing a certain concentration property
with respect to the uniform measure o,,_; on the unit sphere S”~!. Namely,
most of Fy’s are close to the average distribution

Plz) = /S () dona(6)

in the sense that, for each § > 0, there is an integer ns such that if n > ns
one can select a set of coefficients © C S"~1 of measure 0, 1(0) > 1§
such that d(Fy, F') < 4, for all # € 6. This property was first observed by
V.N. Sudakov [S] who stated it for the Kantorovich-Rubinshtein distance
d(Fyp, F) = f+oc |Fo(z) — F(z)|dx, with a proof essentially relying on the

isoperimetric tfloeorem on the sphere. A different approach to this result was
suggested by H. von Weizsécker [W] (cf. also [D-F]). V.N. Sudakov also con-
sidered “Gaussian coefficients” in which case, as shown in [W], there is a
rather general infinite dimensional formulation. An important special situ-
ation where the random vector X is uniformly distributed over a centrally

symmetric convex body in R™ was recently studied, for the uniform distance
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sup,, |Fy(x) — F(z)|, by M. Antilla, K. Ball, and I. Perissinaki [A-B-P], see
also [B] for refinements and extensions to log-concave distributions. One can
find there quantitative versions of Sudakov’s theorem, while in the general
case, the following statement proven in [B] holds true: under (1), for all 6 > 0,

O 1 {L(Fy, F) > 6} < 4n®/3¢779"/8, (2)

Here L(Fy, F) stands for the Lévy distance defined as the minimum over all
0 > 0 such that F(z—9§)—d < Fp(z) < F(x+0)+0, for all z € R. As well as
the Kantorovich—-Rubinshtein distance d, the metric L is responsible for the
weak convergence, and there is a simple relation d(Fy, F) < 6L(Fy, F)*/? (so
one can give an appropriate estimate for d on the basis of (2)).

The aim of this note is to show that a property similar to (2) still holds
with respect to very small pieces of the sphere. As a basic example, we con-
sider coefficients of the special form § = ﬁ e where € = (e1,...,e,) is an

arbitrary sequence of signs 1. Thus, consider the weighted sums
1 n
Se=— X
€ \/ﬁ ; kK

together with their distribution functions F.(z) = P{S. < z} and the corre-
sponding average distribution

F(z) = /{—1,1}n Fo(z) dpn(e) = 2% S P {Ele +'ﬁ+ EnXn 33}

Ek::tl
3)
Here and throughout, u,, stands for the normalized counting measure on the
discrete cube {—1,1}"™. We prove:

Theorem 1. Under (1), for all § > 0,

pin{e : L(F., F) > 6} < Cnt/4emend® (4)

where C' and c are certain positive numerical constants.

Note that the condition (1) is invariant under rotations, i.e., it is fulfilled
for random vectors U(X) with an arbitrary linear unitary operator U in R™.
Being applied to such vectors, the inequality (4) will involve the average
F = FU which of course depends on U. However, under mild integrability
assumptions on the distribution of X, all these FU (not just most of them)
turn out to be close to the one appearing in Sudakov’s theorem as the typical
distribution for the uniformly distributed (on the sphere) or suitably squeezed
Gaussian coefficients. In particular, one can give an analogue of (4) with a
certain distribution F' not depending on the choice of the basis in R™. On
the other hand, some additional natural assumptions lead to the following
version of the central limit theorem. We will denote by p, the canonical
infinite product measure p1 ® 1 ® ... on the product space {—1,1}°.
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Theorem 2. Let {X, 1}, _, be an array of random variables satisfying (1)
for all n and such that in probability, as n — oo,

max{|Xn,1| | Xnnl}
a) -

— 0,

X12,1+"'+X72L,n
n

b)

Then, for piso-almost all sequences {ex}x>1 of signs,

— 1.

1 n
% ngX”’k‘ — N(0,1), as n — oc.
k=1

If we consider the sum ﬁ 22:1 exXn,; With € regarded as independent
Bernoullian random variables which are independent of all X, ;, then the
above statement will become much weaker and will express just the prop-
erty that the average distribution F' defined by (3) for the random vector
(X1,1,---,X5.n) is close to N(0,1) (here is actually a step referring to the
assumptions a) and b)). In addition to this property, we need to have a suf-
ficiently good closeness (in spaces of finite dimension) of most of F.’s to F'
and thus to the normal law.

Both the assumption a) and b) are important for the conclusion of The-
orem 2. Under a), the property b) is necessary. To see that a) cannot be
omitted, assume that the underlying probability space ({2, P) is non-atomic

and take a partition A, 1,..., A, , of {2 consisting of the sets of P-measure
1/n. Then, the array X, x = /nla,,, 1 <k < n, satisfies (1), and
max{| X, 1|,..., | Xnnl} _ Xf71—|—...—|—X72L,n 9

vn ’ n ’
so, the property b) is fulfilled, while a) is not. On the other hand, for any
sign sequence (e1,...,&y,), the random variable ﬁ 22:1 exXn,k takes only
the two values +1, so it cannot be approximated by the standard normal
distribution. Note, however, that Theorem 1 still holds in this degenerate
case, with the p,-typical distribution F' having two equal atoms at +1.

It might be worthwhile also noting that in general it is not possible to
state Theorem 2 for any prescribed coefficients, say, for €, = 1 — similarly to
the case of independent variables, even if, for each n, {X, ;} are bounded,
symmetrically distributed and pairwise independent. For example, start from
a sequence of independent Bernoullian random variables &;,...,&; (with
P{¢ = £1} = 1) and construct a double index sequence X, (5 ;) = &k,
1 <k < j < d. The collection {Xn,(k,j)}, of cardinality n = d(d — 1)/2,
satisfies the basic correlation condition (1), and since |X,, 1 ;)| = 1, both the
assumption a) and b) are fulfilled. Nevertheless, in probability, as d — oo,

d 2
1 1 d ¢?-1
—_— E X N = — E &G ——— —
n,(k,j) k)
vn <hTi<d 2y/n (k_l 2y/n V2
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where ¢ € N(0,1).

We turn to the proof of Theorem 1. To this task, we first study the
concentration property of the family {F.} on the level of their characteristic
functions

f-(t) =Ee*S:, teR.

Concentration of {f.} around its p,-mean

+oo
ft) = /fg(t) dun(e) = / eite dF(x)

— 00

can be then converted, with the help of standard facts from Fourier analysis,
into the concentration of distributions in the form (4). This route somewhat
different than that of [A-B-P] or [B] has apparently to be chosen in view of
a specific form of concentration on the discrete cube.

With every complex-valued function f on {—1,1}", we connect the length
of the discrete gradient |V f| defined by

f(e) = f(sk(e))
2

n

VP =)

k=1

2
, ee{-1,1}",

where s (¢) is the neighbour of € along kth coordinate, i.e., (s(g)); = ¢; for
Jj#k,and (sg(e))r = —¢ek. Set |V f|loo = max. |V f(e)].

Lemma 1. For every f such that ||V f]e < o,

Mn{‘f/fdun

This Gaussian bound is standard. It can be obtained using the so-called
modified logarithmic Sobolev inequalities, see e.g. [B-G], [L]. In fact, for real-
valued f, a sharper estimate holds true,

un{’f—/fdun

while in general the latter can be applied separately to the real and the
imaginary part of f to yield the inequality of Lemma 1.

> h} <de P/ s,

> h} < 2e M/

Lemma 2. Under (1), for every t € R,

[t| + ¢

NG

Vel <

Proof. Using the equality f.(t) — fs,(o)(t) = EeiS(1 — e72itexXe/vVin) we
may write
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ztS Z
ak:
672’” stk/\/ﬁ

n 1—
a

|V fo(t)] = sup |E

<sup E

where the supremum runs over all complex numbers ai,...,a, such that
la1|? + ... + |an|?> = 1. Using the estimate [¢’® — 1 —ia| < 1 a® (o € R) and
the assumption EX,? = 1, we can continue to get

t
| | ZakEka

IVf(t)] < Nk E
ZakEka
k=1

+ — sup E Z|ak|Xk
k=1

t2

NG

1

=—sup E

o +

It remains to note that, by Schwarz’ inequality and (1), (E | >"7_; arer Xy [)? <
n 2
E |Zk:1 akEka | =1.
We also need the following observation due to H. Bohman [Bo].

Lemma 3. Given characteristic functions @1 and po of the distribution func-
tions F1 and Fy, respectively, if |p1(t) — p2(t)] < Alt], for allt € R, then, for
allr € R and a > 0,

2\ 2\
F1(x—a)—;§F2( )<F1($+a)+;

The particular case a = v/2\ gives an important relation

1
— L(Fy, F,)? < sup
2 >0

P1(t) ~ ()
t‘ | ©

Proof of Theorem 1. Fix a number h > 0. For 0 < ¢t < %, by Lemma 2,

IV ()|l < tj}’f < f (14 2), so that, by Lemma 1 applied to the function
e — fo(t), we get

,un{sz

In the case t > %, this inequality is immediate, since |f(t)— f(t)| < 2 < th, for
all €. Thus, we have the estimate (6) for all ¢ separately, but in order to apply
Lemma 3, we need a similar bound holding true for the supremum over all
t > 0. To this end, apply (6) to the points t,, = rh?, r =1,2,...,N = [%] +1,
to get

f(t)_f“)’ > h} < g /4042, (6)
- >hp <
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fe(ty) — f(t)
t

—nh*/4(h+2)?
u”{5:11<11~a<XN 2h}§4N€ /4(h+2)7, (7)
Since ES. = 0, ES? = 1, we have |f.(t)] <
and similarly for f. Therefore, |f-(t) — f(t)]
as 0 < ¢t < h.Incase h <t < %,SincetN
r=1,...,N —1such that t, <t < t,4;. Assuming that [Z2(==I)] < p
and recalling that ¢, — ¢, = h2, we may write

[fe(@) = f@O] < [f(t) = fe(to)| + [fe(tr) = F(E) [ + [ f(Er) — F(2)]
<2/t —t,| +t.h < 2h% +t.h < 3th.

fL0) =0, [fZ()] < 1,
< th, for all €, as soon
one can pick an index

1,
<
>

S

Consequently, (7) implies

t

i {Sup fe(t) — f(t)‘ > Sh} < 4Ne—nht/a(h+2)?
>0

B

Therefore, by (5),

fin {; L(F.,F)* > 3h} <4 (i + 1) e~ /A(2)"
Replacing 6h with 42 and noticing that only 0 < § < 1 should be taken
into consideration, one easily arrives at the estimate u,{L(F.,F) > 0} <
5%6_6”68 with some positive numerical constants C' and c¢. On the other
hand, in the latter inequality, we may restrict ourselves to values § > ¢;n~1/8
which make the bound 5% e="0" less than 1, and then we arrive at the desired
inequality (4).

Theorem 1 has been proved, and we may state its immediate consequence:

Corollary 1. Under (1), for at least 2"~ sequences ¢ = (e1,...,&,) of signs,
L(F.,F) < C’(lo%)l/% where C is a universal constant.

Let us now turn to the second task: approximation of the p,,-typical F' by

more canonical distributions. Namely, denote by G the distribution function
of the random variable ¢ % where ( is a standard normal random variable

independent of the Euclidean norm |X| = (X? + ... + X2)'/2. Clearly, G
represents a mixture of a family of centered Gaussian measures on the line
and has characteristic function

g(t) = Be IXI/@m 4 ¢ R, (8)

while F' has characteristic function
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n
t X
t)=E cos | — | . 9
=B eos () )

In order to bound the Lévy distance L(F, G), the following general elementary
observation, not using the condition (1), can be applied.

Lemma 4. Assume E|X|?> <n. For all a > 0 and |t| < 5,

max{|X1|,...,|Xn|} o a
vn '

1 244
|f(t) —g(t)] < 5ot +2P{

Proof. By Taylor’s expansion, in the interval |s| < 3, we have cos(s) =
52 . . .
e~ 7 ~u(®) with u satisfying 0 < u(s) < &-. Therefore, provided that | Ll <a

for all k < n, and alt| <

nm{zm}

with 0 < ZZ:l u(%) < % maxy |th 2 Zk . |th 12 < a \);\ . So,

_2x? 2 tXp S _ X2 4244 x|
e 2n > H cos | — > e 2n 9 no
P v

Taking the expectations and using | []}_, cos(2Xk) — e*t2|X|2/(2”)| < 2 for

2
max{ Xl Xall S o) we thus get
n b

A

V

the complementary event

X X 2 2 w244 2
F(t)—g(t)] s2p{m{ il n'}>a}+Ee—t;§ (1m0,

Vn
a2t4 | \2 o2t E|X|?

The last term is bounded by E(1 — e~ "9 J<1l—e"3 ~= 5
where we applied Jensen’s inequality together w1th the assumption E|X |2<n
Lemma 4 follows.

2t4

(6]

Via the inequality of Lemma 4, with mild integrability assumptions on
the distribution of X, one can study a rate of closeness of F' and thus of F.
to the distribution function GG. One can start, for instance, with the moment
assumption

E[Xy*<p, 1<k<n, (10)

max{lXi/l%”’lx’L‘} >at < aTBn’ so that, by Lemma 4,

1 2 1
|f(t) —g(t)] < §a2t4 + ?i, as soon as |t < 5

implying P{

Minimizing the right-hand side over all & > 0, we obtain that
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B1/3|¢]16/3 nl/4

If(t) —g(t)] < VI provided that [¢| < Ve

Now apply Zolotarev’s estimate, [Z], [P], to get

1T f) —g(t) log T

LFG) < - [ [T 90 0,280 (7513

roy< s [F D a2 751
ﬁ1/3T16/3 logT n1/4
Tomnils e T if 1.3<T< 24ﬁ1/2.

Taking T' = - ° and using 0 > 1, we will arrive at the estimate of the form

[31/1
BY19 4 logn

37/15

L(F,G)<C
up to some numerical constant C. Higher moments or exponential integra-
bility assumption improve this rate of convergence, but it seems, with the
above argument, the rate of Corollary 1 cannot be reached.

On the other hand, the closeness of G to the normal distribution func-
tion @ requires some additional information concerning the rate of conver-
gence of Xi+4X5 45 1. For example, the property Var(|X|?) < O(n) guar-
antees a rate of the form L(G,®) = O(n™°) with a certain power ¢ > 0.
Thus, together with the moment assumption (10), one arrives at the bound
L(F,®) = O(n™°).

Finally, let us note that G is determined via the distribution of the Eu-
clidean norm |X|, so it is stable under the choice of the basis in R™. The
condition (10) is stated for the canonical basis in R™, and the appropriate
basis free assumption may read as

sup E|(0,X)]P <5,, p>2. (11)
fesn—1

Then, at the expense of the rate of closeness, one may formulate an analogue
of Theorem 1 for the distribution G in the place of ' and with respect to an
arbitrary basis in R”. The inequality (11) includes many interesting classes
of distributions such as log-concave probability measures satisfying (1), for
example.

Proof of Theorem 2. Denote by f, and g, the characteristic functions defined
for the random vectors (X, 1,..., Xyn) according to formulas (9) and (8),
respectively. Also, according to (3), denote by F' (") the corresponding average
distribution functions.

In view of the assumption a), one can select a sequence a,, | 0 such that

P{max{lxl’ll"”’lx"’"l} > an} — 0, as n — oo. Then, by Lemma 4, for all

n

te R, |[fn(t)— gn(t)] = 0, as n — co. On the other hand, the condition b)
readily implies g, (£) — e~ /2, so fn(t) — e=*"/2. Thus, L(F(™ &) — 0.
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Now, given an infinite sequence € € {—1,1}°°, denote by T}, (¢) its projec-
tion (e1,...,&x). It remains to show that L(Fr, (), F()) = 0, for jis-almost
all €. Fix any small number p > 0, and take a sequence §,, — 07 such that

o0
8
Z Cn1/4 e—cnén <p,

n=1
where C' and ¢ are numerical constants from Theorem 1 (,, may depend

on p). Then the application of (4) yields

uoo{s : L(FTH(E),F(”)) > §,, for some n > 1}

< ZNOO{L(FTn(a)aF(n)) > 5n}
n=1

= pn{e=(e1,. . en): L(F, F™) > 6, } < p.
n=1

Therefore, L(Fr, (.), F(M) <4, for all n > 1 and for all € except for a set of
loo-measure at most p. That is,

oo {6 : sup (L(FTH(E),F(")) - én) < 0} >1-p. (12)

n>1

But since §,, — 0,

sup (L(FTH(E), F)y 5n) > lim sup (L(FT"(E), F)y 5n)

n>1 n—oo

= limsup L(Fy, (o), F™).

n—oo

Consequently, (12) implies oo { limsup,_, o L(Fp, (o), F™) =0} > 1 —p.
The probability on the left does not depend on p, and letting p — 0 finishes
the proof.
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Spectral Gap and Concentration for Some
Spherically Symmetric Probability Measures*

S.G. Bobkov

School of Mathematics, University of Minnesota, 127 Vincent Hall, 206 Church St.
S.E., Minneapolis, MN 55455, USA bobkov@math.umn.edu

Summary. We study the spectral gap and a related concentration property for a
family of spherically symmetric probability measures.

This note appeared in an attempt to answer the following question raised
by V. Bogachev: How do we effectively estimate the spectral gap for the
exponential measures p on the Euclidean space R™ with densities of the
form &) _ ge-blzl 9

dz :

By the spectral gap, we mean here the best constant A\; = A1(u) in the

Poincaré-type inequality

Al/” [u()[? dps(x) S/n Vu(z)[? du(x) W

with u being an arbitrary smooth (or, more generally, locally Lipschitz) func-
tion on R™ such that [wu(z)du(z) = 0. Although it is often known that
A1 > 0, in many problems of analysis and probability, one needs to know how
the dimension n reflects on this constant. One important case, the canonical
Gaussian measure y = v,,, with density (2)~"/2e~12I*/2 provides an exam-
ple with a dimension-free spectral gap Ay = 1. This fact can already be used
to recover a dimension-free concentration phenomenon in Gauss space.

To unite both the Gaussian and the exponential cases, we consider a
spherically symmetric probability measure i on R™ with density

dp(z)
dx

=p(|z]), = e€R",

assuming that p = p(¢) is an arbitrary log-concave function on (0, +00), that
is, the function log p(t) is concave on its support interval. In order that u be
log-concave itself (cf. [Bor2] for a general theory of log-concave measures), p
has also to be non-increasing in ¢t > 0. However, this will not be required.

It is a matter of normalization, if we assume that p satisfies

/ (@, 0)2 du(z) = |02, forall §€R™ @)

* Supported in part by an NSF grant.
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As usual, (-,-) and | - | denote the scalar product and the Euclidean norm,
respectively. Since p is symmetrically invariant, this normalization condition
may also be written as [27 du(z) =1, or [ |z]* du(xz) = n. We prove:

Theorem 1. Under (2), the optimal value of Ay in (1) satisfies 5 < Ay < 1.

Returning to the exponential measure du(x) = ae t1*ldz, b > 0, we thus
obtain that \; is of order b%/n.

Using Theorem 1 and applying Gromov—Milmans’s theorem on concen-
tration under Poincaré-type inequalities, one may conclude that all the con-
sidered measures share a dimension-free concentration phenomenon:

Theorem 2. Under (2), given a measurable set A in R™ of measure p(A) >
%, for all h >0,

1—p(A") <27, (3)
where ¢ is a certain positive universal constant.

Here, we use A" = {z € R"™ : dist(4,7) < h} to denote an h-
neighborhood of A with respect to the Euclidean distance.

Note that, in polar coordinates, every spherically symmetric measure pu
with density p(|z|) represents a product measure, i.e., it may be viewed as the
distribution of £, where 6 is a random vector uniformly distributed over the
unit sphere S"~!, and where ¢ > 0 is an independent of § random variable
with distribution function

t
pllol < 8} = [ S Npls)ds £0 (4)
0

(wp, is the volume of the unit ball in R™). For example, one can take (R™, 1)
for the underlying probability space and put &(x) = |z|, 0(x) = a7 1t ds
a classical fact that A\1(S""!) = n — 1. To reach Theorems 1-2, our task
will be therefore to estimate A;(§) from below and to see in particular that
the values of £ are strongly concentrated around its mean E£ which is of
order /n. When p is log-concave, the density q(t) = nw, t" tp(t) of £ is
log-concave, as well. Of course, this observation is not yet enough to reach
the desired statements, since it “forgets” about an important factor t"~!. As
a first step, we will need the following one-dimensional:

Lemma 1. Given a positive integer n, if a random variable & > 0 has density
q(t) such that the function q(t)/t" ! is log-concave on (0,+0c0), then

Var(¢) < — (E€)%. ()

SRS

As usual, Var(¢) = E£? — (E€)? and E¢ denote the variance and the
expectation of a random variable .
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For ¢(x) = |x| as above, with distribution given by (4), in view of the
normalization condition (2), we have E£? = n, so the bound (5) yields a
dimension-free inequality

Var(¢) < 1. (6)

Lemma 1 represents a particular case of a theorem due to R.E. Barlow,
A.W. Marshall, and F. Proshan (cf. [B-M-P], p. 384, and [Bor1]) which states
the following: If a random variable 7 > 0 has a distribution with increasing
hazard rate (in particular if n has a log-concave density), then its normalized
moments \, = F(a =y En® satisfy a reverse Lyapunov’s inequality

/\Z*C)\Z*b <A a>b>c>1, cinteger. (7

Indeed, puttinga=n+1,b=n,c=n—1 (n > 2), we get
1
Ep"t Ep" ! < (1 + n) (En")?. (8)

If the random variable £ has density q(t) = t"~1p(t) with p log-concave on
(0, 4+00), and 7 has density p(t)/ f t) dt, the above inequality becomes
E&? < (14 1) (E¢)? which is exactly (5)

When n = 1, the latter is equivalent to the well-known Khinchine-type
inequality En? < 2 (En)2. More generally, one has

En* <I'(a+1)(En)*, a>1,

which is known to hold true in the class of all random variables n > 0 with
log-concave densities. This fact cannot formally be deduced from (7) because
of the assumption ¢ > 1. It was obtained in 1961 by S. Karlin, F. Proshan,
and R.E. Barlow [K-P-B] as an application of their study of the so-called
totally positive functions (similar to [B-M-P] — with techniques and ideas
going back to the work of I.J. Schoenberg [S]).

To make the proof of Theorem 1 more self-contained, we would like to
include a different argument leading to the inequality (7) for a related func-
tion:

Lemma 2. Given a log-concave random wvariable n > 0, the function A\, =
a% En® is log-concave in a > 0. Equivalently, it satisfies (7), for all a > b >
c>0.

Again putting a = n+1, b =n, c = n — 1, we obtain Ep?»*1 Eg"~! <
C,(En™)? with constant C,, M which is a little worbe than
that of (8). On the other hand, one can easily see that C,, <1 + + n37
we get, for example, the constant 21 in Lemma 1 (and this leads to the lower
bound 5z in Theorem 1).

Finally, it might also be worthwhile to mention here the following inter-
esting immediate consequence of Lemmas 1-2. Given an integer d > 1 and
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an arbitrary sequence of probability measures (pn,)n>q4 on R™ (from the class
we are considering), their projections to the coordinate subspace R¢ must
converge, as n — 00, to the standard Gaussian measure on R,

A second step to prove Theorem 1 is based on the following statement
([B1], Corollary 4.3):

Lemma 3. If a random variable £ has distribution v with log-concave density
on the real line, then

1 1
<

12 Var(§) — M) < Var(€)

Together with (6) for £(z) = |z|, we thus get

Proof of Theorem 1. We may assume that n > 2. As before, denote by v
the distribution of the Euclidean norm &(z) = |z| under u, and by 0,1
the normalized Lebesgue measure on the unit sphere S™~!. To prove the
Poincaré-type inequality (1), take a smooth bounded function v on R™ and
consider another smooth bounded function v(r,8) = u(rf) on the product
space (0,400) x R™. Under the product measure v X o,_1, v has the same
distribution as w has under pu.
By (9), the measure v satisfies the Poincaré-type inequality on the line,

+oo
Var, (g) < 12 / 19/ (r) v (r),

where g = g(r) is an arbitrary absolutely continuous function on (0, 400). In
particular, for g(r) = v(r,0) with fixed 6 € S"~!, we get

2

/0+°° v(r,0)* dv(r) < (/;’00 o(r,0) dz/(r)) 419 /0+oo %

Now, 2 = (Vu(rf),6), so ’%’ < |Vu(r6)|. Integrating the above inequality

over o,_1, we get

2

dv(r).

| u@Rdn@ < [ w@Rdo@)+12 [ V@ Pdu). (o)

n

where w(0) = f0+o° v(r,0) dv(r). For this function, which is well-defined and

smooth on the whole space R™, the average over o,,_1 is exactly the average
of u over u. Hence, by the Poincaré inequality on the unit sphere,

[ wordn @< ([ wwa) <1 [ wwori. o,
(1)
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(The classical Riemannian version of the Poincaré inequality is formulated
for the “inner” gradient V gn-1w(6) on the unit sphere which is the projection
of the usual gradient Vw(f) onto the subspace orthogonal to §. In this case
the constant L in (11) should be replaced with —1+.)

Since Vw(6)= 0+°<5" Vu(r) dv(r), we have \Vw )< f T |Vu(ré)|dv(r).
Hence, by the Cauchy—Bunyakovski inequality,

+oo +oo +oo
|Vw(0))? < /0 r? dl/(?")/o |Vu(ro)|? dv(r) = n/o |Vu(ro)|? dv(r),

where we used the normalization condition E¢? = n. Together with (10) and
(11), this estimate yields

[ e duta) < ( [ ) du(:v)>2 +13 [ |Vul@) du(a),

that is, the Poincaré-type inequality (1) with the lower bound A; > 1/13.
The upper bound is trivial and follows by testing (1) on linear functions.
This finishes the proof.

As already mentioned, the fact that (1) implies a concentration inequality,
namely,

— (A" < Cem VM b0, p(A) > (12)

1
2’
where C' and c are certain positive universal constants, was proved by M. Gro-
mov and V.D. Milman, see [G-M]. They formulated it in the setting of a
compact Riemannian manifold, but the assertion remains to hold in many
other settings, e.g., for an arbitrary metric space (see e.g. [A-S], [B-L], [L]).
The best possible constant in the exponent in (12) is ¢ = 2 ([B2]), but this
is not important for the present formulation of Theorem 1.

Remark. We do not know how to adapt the argument in order to prove, for
all smooth u with y-mean zero, a stronger inequality in comparison with (1),

o[ u@ldut) < [ V(@) duto) (13)

called sometimes a Cheeger-type inequality. On the shifted indicator functions
u=14—p(A), (13) turns into an equivalent isoperimetric inequality for the -
perimeter, p(A) > 2¢ pu(A)(1—p(A)). One deep conjecture ([K-L-S]) asserts
that, for some universal ¢ > 0, this isoperimetric inequality holds true under
the isotropic condition (2) in the class of all log-concave measures u. However,
the hypothesis remains open even in the weaker forms such as Poincaré and
concentration inequalities. And as we saw, already the particular case of
a symmetrically log-concave measure leads to a rather sophisticated one-
dimensional property such as Lemma 1.
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Proof of Lemma 2. Let p be the probability density of 5 on (0, +00). We apply
the one-dimensional Prékopa-Leindler theorem (see [Prl-2], [Le], or [Pi] for
a short proof): given t,s > 0 with ¢ + s = 1 and non-negative measurable
functions u, v, w on (0, +00) satisfying w(tz + sy) > u'(z)v*(y), for all z,y >
0, we have

/O T () dz > ( /0 ) dm) 9

+o0 ¢
([ ewa) .
0
Let a > b>c> 0 and b = ta + sc. Since

P ta+sc
sup Iayc — atacsc ,
te+sy=z ta + sc

t

the inequality (14) applies to u(z) = (£)%p(x), v(y) = (£)°p(y), and w(z) =
(£)’p(z). This is exactly what we need.

Remark. The multidimensional Prékopa—Leindler theorem yields a similar

statement: For any random vector (71,...,7,) in R} with log-concave dis-
tribution, the function ¢(as,...,a,) = E ()% ... (=) is log-concave on
Ri. 1 n
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On the Central Limit Property of Convex
Bodies
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Summary. For isotropic convex bodies K in R"™ with isotropic constant Lg, we
study the rate of convergence, as n goes to infinity, of the average volume of sections
of K to the Gaussian density on the line with variance L%.

Let K be an isotropic convex body in R™, n > 2, with volume one. By
the isotropy assumption we mean that the baricenter of K is at the origin,
and there exists a positive constant L so that, for every unit vector 6,

/ (2,0)* dow = L%.
K
Introduce the function
Fie(t) = / volu_1 (K N Hy(8)) do(0), € R,
Snfl

expressing the average (n — 1)-dimensional volume of sections of K by hyper-
planes Hy(t) = {x € R": (z,0) = t} perpendicular to § € S"~! at distance
[t| from the origin (and where o is the normalized uniform measure on the
unit sphere).

When the dimension n is large, the function fx is known to be very close
to the Gaussian density on the line with mean zero and variance L3.. Being
general and informal, this hypothesis needs to be formalized and verified,
and precise statements may depend on certain additional properties of con-
vex bodies. For some special bodies K, several types of closeness of fx to
Gaussian densities were recently studied in [B-V], cf. also [K-L]. To treat the
general case, the following characteristic 0% associated with K turns out to
be crucial:

Var(| X ]?)

2
g =
K nL‘}(

Here X is a random vector uniformly distributed over K, and Var(|X|?)
denotes the variance of |X|2. In particular, we have the following statement
which is proved in this note.
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Theorem 1. For all 0 < [t| < ¢/,

1 2 2 oxL 1
t—tW%W<C{KK+}, 1
fK() mLKe = tz\/ﬁ n ( )

where ¢ and C are positive numerical constants.

Using Bourgain’s estimate L < clog(n)n'/* ([Bou], cf. also [D], [P]) the
right-hand side of (1) can be bounded, up to a numerical constant, by

oxlogn 1

2ttt
which is small for large n up to the factor o. Let us look at the behavior of
this quantity in some canonical cases.

For the n-cube K = [f%, %}", by the independence of coordinates, 0% =

(ST

For K’s the normalized ¢7 balls,

2(n+1)
2
o =1———+—"—"—-—1, as n— oo.
K (n+3)(n+4)
Normalization condition refers to vol,,(K) =1, but a slightly more general
2
definition 0% = % makes this quantity invariant under homotheties

and simplifies computations.
For K’s the normalized Euclidean balls,

4
n+4

o = —0, as n—oo.
Thus, 0% can be small and moreover, in the space of any fixed dimension,
the Euclidean balls provide the minimum (cf. Theorem 2 below).

The property that 0% is bounded by an absolute constant for all ¢y balls
simultaneously was recently observed by K. Ball and I. Perissinaki [B-P]
who showed for these bodies that the covariances cov(X?, X7) = EX? X7 —
EX7EX? are non-positive. Since in general Var(|X|?) = 3", Var(X7?) +
D it cov(X7, X7), the above property together with the Khinchine-type in-
equality implies

Var(|X[?) <) Var(X7) < ) EX;' < CnLi.
i=1 i=1

The result was used in [A-B-P] to study the closeness of random distribu-
tion functions Fyp(t) = P{(X,0) < t}, for most of 6 on the sphere, to the
normal distribution function with variance L%. This randomized version of
the central limit theorem originates in the paper by V. N. Sudakov [S], cf.
also [D-F], [W]. The reader may find recent related results in [K-L], [Bob],
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[N-R], [B-H-V-V]. It has become clear since the work [S] that, in order to
get closeness to normality, the convexity assumption does not play a crucial
role, and one rather needs a dimension-free concentration of | X| around its
mean. Clearly, the strength of concentration can be measured in terms of the
variance of | X|?, for example.

Nevertheless, the question on whether or not the quantity o2 can be
bounded by a universal constant in the general convex isotropic case is
still open, although it represents a rather weak form of Kannan-Lovasz-
Simonovits’ conjecture about Cheeger-type isoperimetric constants for con-
vex bodies [K-L-S]. For isotropic K, the latter may equivalently be expressed
as the property that, for any smooth function g on R", for some absolute

constant C,
/ ’ (x) dz

By Cheeger’s theorem, the above implies a Poincaré-type inequality

[l [ st

which for g(z) = |z|? becomes Var(|X|?) < 16nC%L%, that is, 0% < 16C2.
To bound an optimal C in (2), R. Kannan, L. Lovdsz, and M. Simonovits
considered in particular the geometric characteristic

dx<CLK/ [Vg(z)|dz. (2)

2

dr < 4(CLk) /|vg )|? dx

X(K) = /K Xk (2) dx

where x i () denotes the length of the longest interval lying in K with center
at . By applying the localization lemma of [L-S], they proved that (2) holds
true with CLg = 2x(K). Therefore, ox Lx < 8x(K), and thus the right-
hand side of (1) can also be bounded, up to a constant, by

X(K) 1
t2\/n '

To prove Theorem 1, we need the following formula which also appears
in [B-V, Lemma 1.2].

Lemma 1. For allt,

(3 1( N >
Jiet) = Val(%5h) /Kn{z|>|t} I\ )

For completeness, we prove it below (with a somewhat different argu-
ment).
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Proof. We may assume ¢t > 0. Denote by A\g,; the Lebesgue measure on Hy(t).

Then
)\t = / >\0,t da(ﬂ)
Sn—l

is a positive measure on R™ such that fx(¢) = A (K). This measure has
density that is invariant with respect to rotations, i.e.,

dr = pe(|z]),

where p; is a function on [t,00). To find the function p;, note first that, for
every r > t,

A (B(0,7)) = /

B(0,r)

pe(J2]) de =:mS"—1|j/ pe(s)s" ds
t

where B(0,r) is the Euclidean ball with center at the origin and radius r,

and |S"7!| = % is the surface area of the sphere S™~!. On the other

hand, since the section of B(0,r) by the hyperplane Hpy(t) is the Euclidean
ball in R*~! of radius (r2 — t2)'/2, we have

n—1)/2
)/ (7‘2 _ t2)(n—1)/2.

o
M (B(0,r)) = /S L 0a(BO) do(®) = T

Taking the derivatives by r, we see that for every r > ¢,
-1
_ 2 PL(ng)
r(3)

n—1

pe(r)r" 7,

n ; 1 (7"2 . t2)(n—1)/2 9

which implies
I (z r2 _ 42)(n—3)/2
Dy (T) — (2n)_1 ( )_2 )
VT (251 rn

Since fk(t) = A(K), the result follows.

Proof of Theorem 1. Let t > 0. By the Cauchy-Schwarz inequality,

1/2
/ ||z]* = nL¥| do < </ |lz* = nL¥ ’ dx) = VnogL%
S0

o —nL
—vnLg| dx = ’7d< L. 3
Jolit =it e = [ LR e < ok @

By Stirling’s formula,

Lo V2T I(n/2)

N N (CESO
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_ I'(n/2) no i
so that the constants ¢, = JRT((n1)72)) @Ppearing in Lemma 1 are O(y/n).
Now, on the interval [t,c0) consider the function

NG
gn(z) = — (1 — ) )

Its derivative
t2 n — 3 t2 (7175)/2 1 t2 (n73)/2
i = D (BT (e

represents the difference of two non-negative terms. Both of them are equal
to zero at t, tend to zero at infinity and each has one critical point, the first

at z = ty/n — 1/2, and the second at z = t\/n — 1/4/2. Therefore,

max [g)()] < o
z€[t,00) In - tz(n — 1) '

This implies that, for every © € K, || > t, if y/nLg > t, then

() = 90 (VL) € s Nl = VL.
and by (3), -
[ lanla) = gu (Vi) o < K (1

where K; = K N{|z| > t}.
Now, writing

Fr(t) = e /K gn () da
= eogn (VAL )vola (K7) + / (gn(2]) — gn(VALK)) da

K
and applying (4), we see that, for all ¢ < \/nLg,

CoglL
| fx(8) = engn(VLi)vol, (K¢)| < ;Lﬁff

where C' is a numerical constant. This gives

OO’KLK

2/n
Recall that Lx > ¢, for some universal ¢ > 0 (the worst situation is attained
at Euclidean balls, cf. eg. [Ba]). Therefore (5) is fulfilled under ¢ < ¢y/n.

To further bound the first term on the right-hand side of (5), note that
gn(2) < 1/z, 80 crgn(v/nLi) < Cp, for some numerical Cy. Also, if t < ¢y/n,

| fK(t) = cngn(VnLK)| < cngn(VnLi) (1 = vola (Ky)) + ()
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1 — vol,, (K;) < vol,, (B(0,1)) = wyt" < (\C/%)n (ev/n)" <27,

where w,, denotes the volume of the unit ball in R"™, and where cyc can be
made less than 1/2 by choosing a proper c¢. This also shows that the first
term in (5) will be dominated by the second one. Indeed, the inequality
Co2™ " < Cf;f}"‘ immediately follows from ¢ < ¢y/n and the lower bound on
ok given in Theorem 2.
Thus,

CO’K LK

t2y/n ’
and we are left with the task of comparing ¢, g, (v/nLk) with the Gaussian
density on the line. This is done in the following elementary

|fK(t) - Cngn(\/ﬁLK” §

Lemma 2. If0 <t <./nLg, for some absolute C,

NI (nT—l> TLL%( VnLg 2n Lk ~n

Proof. Using the fact that L is bounded from below, multiplying the above
inequality by v27 Ly and replacing u = t?/(2L%), we are reduced to esti-
mating

S (-2

o V2I(3)
SN

VET(3) | (2T

Wﬁr(”gl)| (1 n)

In order to estimate the first summand, use the asymptotic formula for the
I-function, I'(z) = 2 e *V27x (1 + 3= + O(3)), as ¢ — +o0, to get

= I (3) ()" ez mm (14 L+ O(L))

g
r(=h (nT_l)(n—s)m e=(=1/2 /(0 — 1) (1 + soep + O(%))

- (i) (0o 6)

Since, by Taylor, ( ﬁl)%_l = =5+ log(1—3) — (1/2 (1 + 0 (%)), the first

n

summand is O(2) uniformly over u > 0.
To estimate the second summand, recall that 0 < u < n/2. The function

n—3
Up(u) = e — (1 — 24) % satisfies ©,,(0) = 0, ¥ (n/2) = e™™/2, and the



50 S.G. Bobkov and A. Koldobsky

n—>5
point ug € [0,n/2] where ¥, (ug) = 0 (if it exists) satisfies (1 — 22) 2 =
e~ (when n > 4). Hence, 1, (ug) = 293 ¢~v = O(1), and thus

n—3 n—3 n

sup,, ¥, (u) = O(L). This proves Lemma 2.

Remark. Returning to the inequality (1) of Theorem 1, it might be worthwhile
to note that, in the range [t| > c¢y/n, the function fx satisfies, for some
absolute C' > 0, the estimate

C 2 2 C
1) < =t/ (Cnly) « 2
fr(®) < It] ~evn’
and in this sense it does not need to be compared with the Gaussian dis-

tribution in this range. Indeed, it follows immediately from the equality in
Lemma 1 that

fr(t) <CyVn gﬁgn@)P{\Xl > [t[},

where X denotes a random vector uniformly distributed over K. When n > 3,
2

in the interval z > [¢], the function g,(2) = 1 (1 — 5)("=3)/2 attains its

maximum at the point zp = |t|v/n — 2 where it takes the value g,(zp) <

1
V=" Hence,

c’ c’
c W(2) < — < ——.
Ve e i s
On the other hand, the probability P{|X| > |t|} can be estimated with the
help of Alesker’s 1s-estimate, [A],

EelX12/(C"nLi) < o,

We finish this note with a simple remark on the extremal property of the
Euclidean balls in the minimization problem for o2 .

4

2
Theorem 2. o3 > 7.

Proof. The distribution function F(r) = vol,({x € K : |z| < r}) of the
random vector X uniformly distributed in K has density

F'(r)y ="t

st 1K’ = |s" 1 r”10(1K> , r>0.
T T

We only use the property that g(r) = |[S""!|o(1K) is non-increasing in
r > 0. Clearly, this function can also be assumed to be absolutely continuous
so that we can write

STL

—+o00
q(r) = n/ p(s) ds, r >0,
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for some non-negative measurable function p on (0, +00).
We have

lzfooodF(r):/Ooor"1q(r)dr:n//0<r<sr"1ps(:)d7‘ds=/ooop(s)ds.

Hence, p represents a probability density of a positive random variable, say,
£. Similarly, for every a > —n,

Elx[e = [ oty dr = /ooa ds = 0 e,
i = [T = 2 [T s - e
Therefore,
n n 2
X2 :7E4_ 7E2
Var(xX ) = 2 Bet - (et
4n n
- = E22 B V7 2
mrDm 2z BE) g V()
4n
> - 00000 E22,
Z mrdmrze B
One can conclude that
4in 2\2
g2 Var(XP) nm(EE) 4
K (E|X|2>2 o (LESQ)Z 7’L+4
n+2

Theorem 2 follows.

Acknowledgement. We would like to thank V.D.Milman for stimulating discus-
sions.
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1 Introduction

We consider here two asymptotic properties of finite dimensional convex bod-
ies which generate a norm with an unconditional basis. For definiteness, such
a basis is taken to be the canonical basis in R". Thus, assume we are given
a convex set K C R™ of volume vol,(K) = 1 which, together with every
point « = (x1,...,2y), contains the parallepiped with the sides [—|z;]|, |z;]],
1 < 5 < n. In addition, K is supposed to be in isotropic position, which is
equivalent to the property that the integrals

/a:?dx:L%(, 1<j<n, (1.1)
K

do not depend on j.

The isotropic constant Ly is known to satisfy ¢; < Li < cg, for some
universal ¢y, co > 0. Hence, for the Euclidean norm |z| = (23 + ... + 22)'/?
we have

cn < / |z|? dz < can
K

and similarly, the average value of |z| over K is about /n.
Consider the linear functional

By (1.1), its Lo-norm over K is exactly ||f|l2 = Lx. As in the case of any
other linear functional, L,-norms satisty || f||, < Cp||f]|2 for every p > 1 and
some absolute C. Up to a universal constant, this property can equivalently
be expressed as one inequality || f|ly, < C|f|l2 for the Orlicz norm corre-
sponding to the Young function v (t) = el —1,t € R. For the concrete
functional f introduced above, this can be sharpened in terms of the Young
function y(t) = eltl” — 1.

* Supported in part by NSF grants.

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 53-69, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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Theorem 1.1. ||f|4, < C, for some universal C.

The proof might require some information on the distribution of the Eu-
clidean norm of a point  over K. Indeed, if we observe z = (x1,...,2,) as a
random vector uniformly distributed in K, and if (e1,...,&,) is an arbitrary
collection of signs, then (e121,...,e,xy,) has the same uniform distribution
(by the assumption that the canonical basis is unconditional). In particular,

. E1TL + ... T ERTn

f(x,g)— \/ﬁ

has the same distribution as f(x). But with respect to the symmetric
Bernoulli measure P, on the discrete cube {—1,1}", there is a subgaussian
inequality

P{|f(z,e)| >t} <2e /@D ¢ >0,

Taking the expectation over K, we arrive at
vol, {z € K : |f(z)| >t} < 2/ e/l gy (1.2)
K

This is how the distribution of the norm |z| can be involved in the study of
the distribution of f(z). The statement of Theorem 1.1 is equivalent to the
assertion that the tails of f admit a subgaussian bound

vol,{z € K : |f(z)| >t} < Ceet’.

Hence, it suffices to prove such a bound for the integral in (1.2) taken over a
sufficiently big part of K. The function e~t*/lel”) ynder the integral sign has
the desired subgaussian behaviour on the part of K where |z|/y/n < const.
To control large deviations of |z|/+/n, we prove:

Theorem 1.2. There exist universal tg > 0 and ¢ > 0 such that, for all
t> t07
vol,, {:C cK: % > t} < e ctvn, (1.3)
For the “normalized” ¢7-ball, this inequality was proved by G. Schechtman
and J. Zinn in [S-Z1], see also [S-Z2] for related results on deviations of the
Euclidean norm and other Lipschitz functions on the £7-balls.
Note that too large t may be ignored in (1.3), since we always have |z| <
Cn, for all z € K (V.D. Milman, A. Pajor, [M-P]). Therefore, for ¢ > C/n,
the left hand side is zero. For ¢t < C'y/n, the inequality implies

T .
vol,, {9: € K: u > t} < e*”z/c,
n

NG

which means that the Ly, (K)-norm of the Euclidean norm is bounded by its
Ls-norm, up to a universal constant. Thus, Theorem 1.2 can also be viewed as
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a sharpening, for isotropic convex sets with an unconditional basis, of a result
of S. Alesker [A]. We do not know whether the unconditionality assumption
is important for the conclusion such as (1.3). On the other hand, Theorem
1.2 as well as Theorem 1.1 (under an extra condition on the support) can be
extended to all isotropic log-concave probability measures which are invariant
under transformations (z1,...,2,) — (£z1,...,%x,), cf. Propositions 5.1
and 6.1 below.
Using Theorem 1.2, one may estimate the integral in (1.2) as follows:

/ e_m‘z/(zw)dx:/ +/ < IR | gctoVE
K el<tovi  JJal>tovm

< 9t/

provided that ¢ < const n'/4. Hence, we obtain the desired subgaussian bound
for relatively “small” ¢. To treat the values ¢t > const nt/ 4. one needs to involve
some other arguments which are discussed in section 6.

2 Preliminaries (the case of bodies)
Here we collect some useful, although basically known, facts about the sets

K with the canonical unconditional basis as in section 1. It is reasonable to
associate with K its normalized part in the positive octant R = [0, +00)™,

Kt =2KNR}.
Thus, if = (z1,...,x,) is viewed as a random vector uniformly distributed
in K, then the vector (2|x1|,...,2|x,|) is uniformly distributed in K.

The set K+ has the properties:

a) vol,(KT) =1;

b) for all z € Kt and y € R} with y; <z, 1 <j <n, wehavey e KT;
¢) [rsaidr =4L%, forall 1 <j<n.

Proposition 2.1. L3 < 1.

Proof. With every point & = (1,...,2,), the set KT contains the par-
allepiped []}_,[0,2;]. So [[j_,z; < 1, for every z € K. Since both the
sets K+ and V = {z € RY : [[j_, ; > 1} are convex and do not intersect
each other (excluding the points on the boundaries), there exists a separating
hyperplane. But any hyperplane touching the boundary of V' has equation
Ay + ...+ Ay, = n with some A; > 0 such that [[7_; A; = 1. Therefore,
KT C {1‘ eRY: w < 1}, and so, by the geometric-arithmetic
inequality,
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K+ n

By a Khinchine-type inequality,

/K+ s da > 7 (/ 7 dx)w:\/iLK, (2.1)

according to the property c). Thus, 1 > v/2 L.

Remark 2.1. It is a well-known fact that, in the class of all measurable sets K
in R™ of volume one, the integral [, |z|? dz is minimized for the normalized
Euclidean ball B,, with center at the origin. Therefore, for isotropic K, we
always have Lx > Lp, which leads to the optimal dimension-free lower

bound
1

V2me'

More generally, in the class of all probability densities ¢ on R" attaining
maximum at the origin, the quantity ¢*(0) [ |z|?¢(z) dz is minimized for the
indicator function of B,,. This property was observed by D. Hensley [H] who
assumed additionally that ¢ is log-concave and symmetric, and later K. Ball
[Ba] gave a shorter argument not using log-concavity and symmetry. In the
one-dimensional case, the property reads as

q(0) (/R t2q(t) dt>1/2 > % (2.3)

Remark 2.2. The inequality (2.1) is a particular case of the following theorem
due to S. Karlin, F. Proschan, and R.E. Barlow [K-P-B]: Given a positive
random variable £ with a log-concave density on (0, 4+00), for all real s > 1

Lk >

(2.2)

E¢ <I'(s+1)(ES)".

Equality is achieved if and only if £ has an exponential distribution, that is,
when Prob{¢ >t} = e ¢ > 0, for some parameter A > 0.

Proposition 2.2. For every hyperspace H in R™,

1
vol,_1(KNH) >

= %
Moreover, if K is invariant under permutations of coordinates, then every
section K; = K N{x; =0}, 1 < j <mn, satisfies vol,,_1(K;) > 1.
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Proof. It H ={x € R™: (§,z) = 0}, |6] = 1, apply (2.3) to the density ¢(t)
of the linear function  — (#, ) over K: then we get

1
vol, 1(KNH)Lg > ——.
i N

This inequality holds true for any symmetric isotropic convex set K of volume
one. In our specific case, it remains to apply Proposition 2.1.

For the second statement, given a non-empty set = C {1,...,n}, denote
by K the section of K by the (n — |r|)-dimensional subspace {z : z; =
0, for all j € w}. Write the Steiner decomposition

vol, (K* +7[0,1]") =Y ap(KT)r*, r>0,
k=0

where a, = 37 _; vol,_i(K7) with the convention that ag = vol,(K™) = 1.
By the Brunn-Minkowski inequality, vol,, (K+ +r[0,1]") > (1 + 7)™, so the
coefficient a; (K™) in front of r should satisfy a; > n. That is,

Zvoln_l(K;) > n,
j=1

where K = K* n{x; = 0}. Since all these (n — 1)-dimensional volumes are
equal to each other, and vol,, 1 (K;) = vol,_1 (K j ), the conclusion follows.

Proposition 2.3. For all ay,...,a, >0,
vol,{z € KT 12y > ay,...,2, > a,} < e—clart.tan)

with c=1/+/6. If K is invariant under permutations of coordinates, one may
take c=1.

Proof. The function u(aq,...,an)=vol,{r € KT : 21 >aq,...,0p > ap} is
log-concave on R, u(0) = 1, and

du(a)
6aj

= —VOlnfl(Kj) S —C,
a=0
according to Proposition 2.2. These properties easily imply the desired in-
equality.

Actually, Proposition 2.3 can be sharpened by applying the Brunn-
Minkowski inequality in its full volume. The latter implies that the func-
tion u'/" is concave on K+ which is a slightly stronger property than just
log-concavity. Hence, with the same argument, we have the inequality

clog + ...+ ap)

Voli/"{meK"’:mlzal,...,ngQH}gl— -
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holding true for all (v, ..., a,) € K+ with ¢=1/4/6. Since the right hand
side of this inequality must be non-negative, an immediate consequence of
such a refinement is:

Proposition 2.4. For all (z1,...,2,) € KT,
x4+ ...+ x, S\/én.
Equivalently, for oll (x1,...,2,) € K, 21|+ ... + |zs] < ? n.

Thus, the normalized ¢!-ball in R" is the largest set within the class of all
K’s which we consider (up to a universal enlarging factor). One may wonder
therefore whether or not it is true that the cube would be the smallest one.
The question turns out simple as one can see from the proof of the following:

Proposition 2.5. The set K contains the cube [f% Lk, % Lk]™ which in

turn contains [_2%/57 2%/%]"

Proof. The baricenter v = bar(K ™) must belong to K, so Kt contains
parallepiped H;;l[o, v;] with v; = [}, x; dz. Hence the first statement im-
mediately follows from the Khinchine-type inequality (2.1). The second one
is based on the lower bound (2.2).

3 Log-Concave Measures

Here we extend Propositions 2.1-2.3 to log-concave measures. Let p be a
probability measure on R™ with a log-concave density p(x), z € R", such
that

a) p(0) = 1;

b) p(£x1,...,+x,) does not depend on the choice of signs;

¢) [aFdu(x) = [ 23 p(x)de = L, does not depend on j =1,...,n.

The case of the indicator density p(x) = 1k (z) reduces to the previous

section. As in the body case, we associate with yu its squeezed restriction pu™
to the positive octant R’} : this measure has density

1
pT(z)=p <2x> , re€RY.

If © = (x1,...,2,) is distributed according to p, then the vector (2|z1], ...,
2|z,]) is distributed according to pu+. The function pT is log-concave, is non-
increasing in each coordinate, and satisfies

[ sat@=atz 1<i<n
R

n
+
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Proposition 3.1. L, < C, for some absolute C.

Proof. Since p™ is non-increasing, for every z € R?,

1>/ / y)dy > p( / /dyp 1_1

Hence,
n
u(z) = —logp*(z) > log H zj; =v(x)
Note that u is convex, while v is a concave function. Therefore, there must
exist an affine function ¢ such that u(xz) > £(x) > v(zx), for all x € R’}. This

function can be chosen to be tangent to v at some point a = (a1,...,a,)
with positive coordinates. That is, we may take

He) = o(a) + (Vela) =) = log [ oy + 32 H1 22

Setting A; = --, the inequality u(z) > ¢(x) becomes
J

n
H JIJ z € RY.

In particular, since p*(0) = 1, we have HJ 1Aj > e ™. Hence,

n

I | z; pt(z)dx < I I z;ile” |n| Xie N ) dy = e” |n| L < e,
J J J )\
=1 j

+J1 +]1

On the other hand, with respect to u*,

n n
= [T llzillo = e I T llzjll2 = (2¢)"
0 =1 j=1

where we have used a Khinchine-type inequality |gllo = lim, o+ |gll, >
¢||gll2 for linear functions g with respect to log-concave measures (which is
actually valid for any norm, cf. [L]). Proposition 3.1 follows with C' = €2/(2c).

Proposition 3.2. For every hyperspace H in R,

/HP()x>F

If p is invariant under permutations of coordinates, then f{m~*0} p(z)dr > 1
]
for every 1 < j <n.
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There is a way to prove this statement without appealing to Proposition
3.1. In turn, starting from Proposition 3.2, one can easily obtain Proposition
3.1 with C' = e/3. Indeed, the reverse one-dimensional Hensley inequality
(for the class of all symmetric log-concave probability densities ¢ on the line,
cf. [H], Lemma 4) asserts that

q(0) </R t2 dx)1/2 < \% (3.1)

(equality is achieved at q(t) = e~2/*!). If we take any hyperspace H = {z €
" :(0,x) =0}, |§| = 1, and apply this inequality to the density ¢(t) of the
distribution of the linear function (f, x) under the measure u, then we arrive

exactly at
1
x)de L, < —.
/Hp( ) B — \/i

Hence, the lower bound fH p(z) dz > 1/(6\/6) would lead to L, < ev/3, while
in the case where p is invariant under permutations of coordinates we would
similarly obtain the estimate L, < e/\@.

Proposition 3.2 will be derived from a more general:

Lemma 3.1. For any log-concave probability density p on R™ such that
p(0) =1 and p(£x1,...,%x,) does not depend on the choice of signs,

n

H/{ . p(z)dx > e ". (3.2)

It is interesting that the constant 1/e appearing on the right is asymp-
totically optimal. Indeed, for the density

p(z) = exp{ — 2n!Y/" max |alcj|}7
i<n

. 1/ 1
for every j < n, we have f{m,:o} p(x)de =2 — £, as n — o0.

n

As in this example, when a density p is invariant under permutations of
coordinates, all (n — 1)-dimensional integrals f{%:o} p(z) dz coincide, so, by
(3.2), these integrals must be greater or equal to 1/e. In the general case,
we may only conclude that max; f{szo} p(z)dx > 1/e. On the other hand,

the combination of the two Hensley’s inequalities (2.3) and (3.1) immediately
implies that, for any symmetric log-concave isotropic density p on R” and for
any two hyperspaces Hq, Hz, we have [, p , P(x) d < V6 [, p 1, P() d. Hence,

1
min | p(z)dx > max p(z)dx > —=.
" /H \[ {z;=0} ( eV/6

Thus, Lemma 3.1 implies Proposition 3.2.
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Proof of Lemma 3.1. Given a measurable set A in R"™, an inequality due to
L. H. Loomis and H. Whitney asserts ([L-W], [B-Z]) that

Hvoln 1(A;) > vol, (A)" 1,

where A; is the projection of A to the hyperspace z; = 0. As a matter of fact,
being applied to A = K, the above yields yet another proof of the second
part of Proposition 2.2.

Loomis-Whitney’s inequality admits a certain functional formulation.
Namely, given a measurable function ¢ > 0 on R™, not identically zero,
consider the family A(t) = {z : g(z) > t}, t > 0. Define on R"~! the func-
tions

9j($17-~-,$j717$j+17--~733n) = sup gj(xl,---79€j71,3€j,$j+1,-~-796n)
zj

together with A;(t) = {x : gj(x) > t}, t > 0. Then A;(t) are projections of

A(t), so
vol,, H vol,,— 1 )

Put ¢;(t) = vol,,_1(A4;(t)), ¢(t) = VOln(A(t)). Raising the above to the power
1/n, integrating over ¢t > 0 and applying Holder’s inequality, we get

+00 oo M n 400 1/n
| eeras [ w0 a< ] ( Jae dt)
0 0 G =1 \Jo

_ ( f[l/Rnlgj(x) dx)l/n.

In order to bound from below the first integral, we use the property that (t)
is non-increasing in ¢ > 0. For such functions, for all @ € (0, 1], there is a
simple inequality (cf. [B-Z])

(/Om o) dt) > /;OO St dt.

But the right hand side is exactly [g. g(x)"/* dz, and for a = 2=1 we thus

get
n—1
H/ x)dx > </ g(z)™/ (=1 dx) .
Rn—1 n

This is the desired functional form yielding the original inequality on indicator
functions g = 14. For g = p, the supremum in the definition of g; is attained
at ; = 0, and the functional inequality becomes

1/«
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n—1
H/ x)dr > (/ p(m)”/("_l)dx) .
xﬁo} R

The right hand side can further be estimated using the log-concavity of p.
Namely, since p(0) = 1, for every ¢t € (0,1) and = € R™, we have p(tx)'/t >
p(x). Integrating over z, we get g, p(x)"/* dz > " which for ¢ = =1 gives

/ p(x)n/(n—l)dxz (’I’L;l) , n>2.

It remains to note that ( )"(n D > e ",

Lemma 3.1 follows. As a consequence, we get an analogue of Proposition
2.3:

Proposition 3.3. For all ay,...,a, >0,
pHz e R" 1z >a1,...,2, > ap} < e—clont.tam)

with ¢ = ﬁ. If u is invariant under permutations of coordinates, one may
take c = 1/e.

4 Decreasing Rearrangement

For any vector x = (1, ...,,) in R™, its coordinates can be written in the
decreasing order,
Xi>Xo>...>X,.

In particular, X; = max; x;, X,, = min; ;. When z is observed as a random
vector with uniform distribution in K+ or more generally with distribution
p™T, the distribution of the random vector (Xi,...,X,) can be studied on
the basis of Propositions 2.3 and 3.3, respectively. In particular, we have:

Proposition 4.1. For anya >0, 1<k <n,
pt{z € R} : Xy, > a} < CFe ke,
where ¢ > 0 is a numerical constant.

One may always take ¢ = 1/(ev/6) but the constant can be improved for
special situations. For example, ¢ = 1/e, when p* is invariant under permu-
tations of coordinates, and moreover ¢ = 1 when p™ is uniform distribution
on KT which is invariant under permutations of coordinates.

We denote by C¥ the usual combinatorial coefficients ﬁlk),



Convex Bodies and Log-Concave Probability Measures 63

Proof. Since
{zeR} : X 2o} =Up>ji>. s>z € RY 125 > a,..0 25, > af,
we get
+ Xp > < + > S < Ck —cka
/’L{ ;.3_04} = M{xh—aa"'vxjk—a}— n€ )
n>ji1>...>jp>1

where we applied Proposition 3.3 (or, respectively, Proposition 2.3) on the
last step.

The combinatorial argument easily extends to yield a more general:
Proposition 4.2. For any collection of indices 1 < k1 < ... < k. <mn, and
forall ay,...,a. >0,

n' efc (k1a1+(k27k1)a2...+(krfkr_1)o¢r)

<
- k‘ll(kg — kl)' R (kr — kr,l)!(n - kr)!,

where ¢ > 0 is a numerical constant.

:u+{Xk1 > ag, ... 7Xkr > ar}

Let us now illustrate one of the possible applications to large deviations,
say, for ¢*-norm ||z||; = >} _, |zx| under the measure y. For all numbers
A1,...,0n 207

M{||3?|1 > Zak} =ut {Zxk > 220%} = put {ZXk > 220%}
k=1 k=1 k=1 k=1 k=1

< Z;ﬁ{Xk >2a}t < ZC,’,? g2k ok
k=1 k=1

where we applied Proposition 4.1 on the last step. Using C¥ < (%)k, we

thus get
n n
1% {C @]y > Z Oék} < Z e~h (20 —log 52) |
k=1 k=1

Now, take ap = %log T+ tm which is almost an optimal choice.
Then, Y;_; o < n(l+t), and we arrive at:

Proposition 4.3. For anyt >0,

¢l n
——>1+t, < —2t ———— 5.
M{ no +}_nexp{ logn—i—l}

The right hand side converges to zero for any fixed ¢ > 0. In particular, for
large n, we have ||z||; < 2n/c with pu-probability almost one. In probabilistic
language, this means that the random variables ||z||;/n are stochastically
bounded as n — oo. Since L!(p)-norm of ||z||;/n is about 1, this property
cannot be deduced from the usual exponential bound for norms under log-
concave measures (cf. [Bo]).
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5 Euclidean Norm. Proof of Theorem 1.2

As in the proof of Proposition 4.3, for all aq, ..., a, > 0, we similarly obtain
that

R SRV R i)
k=1 k=1 k=1
<> pH{Xe =20} <) CRe R
k=1 k=1

where again we applied Proposition 4.1 on the last step. Using C* < (%)k,

we thus get
n
M{62 |22 > ai} < Ze‘k(m’rlog%).
1 k=1

Now, take ajp = %log Tt k". Then, 22:1 a% < 4nt?, for all t > 2, so

o {C\l}j > Zt} < ne 2tVn,

NE

S 7

In a more compact form:

Proposition 5.1. For anyt > 4,

n C|£L’| 7lt\/ﬁ
M{xER 'fzt} Se 2 .
n

As in Proposition 4.1, we may take ¢ = 1/(ey/6 ) in general, and ¢ = 1/v/6
in the body case. As explained in section 1, the above inequality implies:

Proposition 5.2. For every number C' > 56, in the interval 0 < t < Cn'/4,

t2

Indeed, applying Proposition 5.1 with ¢ = % < 51%, we get,
1 n
> t} = u@Pe{ > ey 2 t}
Vil

< / eI dp(a) = / +/
a|<tovi  Jla|>tovm

—t2/(2t2 — Lt
Se /( 0)—|—6 14 0ﬁ7

u{:z:ER”:

n

>

j=1

otz

for every ty provided that ctg > 4,2that izs, to > 28. By the assumption on ¢,
the last term is bounded by e~**/(14C%) Tt remains to take (the optimal)
to = (TC%)1/3.
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6 Theorem 1.1 for Log-Concave Measures

In order to involve the region t > C'n'/* in Proposition 5.2, an extra condition
on the measure p is required. One important property distinguishing the case
where p is the uniform distribution on K from the general measure case is
indicated in Proposition 2.4: for all z € K,

|z1] + ...+ |zn] < An (6.1)

with A = v/6/2. Tt is therefore natural to assume that the measure u is
supported on a convex set satisfying (6.1) for some A = A(p). In this case
Theorem 1.1 admits a corresponding extension:

Proposition 6.1. | f[|,, ) < C\/A(p), where C is a numerical constant.

Note that in terms of the linear functional

f(x):ler...ern

vn

the quantity A(u) is described as 1/v/n || f|l 1 (u)- Thus, Proposition 6.1 re-
lates Ly,-norm to Lec-norm of f via ||fllr,, ) < C/vn /| fllL.(- This
inequality is not linear in f which is due to the basic assumption p(0) = 1 on
the density p of u. Without this condition, Proposition 6.1 can be formulated
as follows:

Corollary 6.1. Let p be a probability measure on R™ with a log-concave
density p such that, for all x € R™, p(xz1,...,%x,) does not depend on the
choice of signs, and fR" x? p(x) dx does not depend on j = 1,...,n. Then,
for some universal C,
C
111, 0 < 7 AN 2 ) 1N 2o (i)

Let us return to the original assumption p(0) = 1. Then A(u) is always
separated from zero. Indeed, since the density p(z) is bounded by 1, we have

1:/ p(z)dx <vol,{x € R" : |x1| + ... + |zn| < An}
|1 4ot [ | < An

~ (24n)"
- oonl
1L/ 1
Hence, A > 5. — > 4.

While the first applications are based upon Proposition 4.1, the proof of
Proposition 6.1 uses a more general Proposition 4.2. The estimate given in it
can be simplified as follows: using a general bound m! > (%)m and the fact
that the function x — (%)T increases in 0 < x < n, we get
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_ _ r kj—kj—1 r k;
nn—1)...(n —k.+1) SH( ne > < H<ne>
Bl (s — k) — )~ LA\ = L%

with the convention that ky = 0 on the middle step. Hence, for all a1, ..., o, >
0,

Xy, >ag,.. ., X, >} <
H(”e) ¢ (kyar+(kz—k1)az ..+ (kr—kr—1)ar)

From now on, the indices k; will be assumed to be the powers of 2. Thus
let £ = [logyn] (the integer part), and let S be any non-empty subset of

{0,1,...,¢}. From the previous inequality, for any collection oy > 0 indexed
by k € S,
+ ney?* k—1
p{Xor > g, forall k € S} < H(Q—k) exp —022 Qg p-
kes kes

The choice ay, = B + 2 = log 5f leads to:

Lemma 6.1. For any non-empty subset S of {0,1,...,£} and any collection
B = (Bk)kes of non-negative numbers,

{sz >ﬁk+ log ok for allkeS} < exp{—CZleﬂk}-

kes

As before, one may take ¢ = 1/(ev/6). In view of the assumption (6.1),
the measure p* is supported by

1+ ... +x, <24n

so, only O, < 2An can be of interest in Lemma 6.1. Assume moreover that
each () also represents a power of 2. The couples (5, 3) with these properties
will be called blocks, and we say that a vector x € R is controlled by a
block (S, 3) if

X2k>/6k+ log ok forall k € S.

Lemma 6.2. The total number of blocks does not exceed, e? 1082 108(2log4An)

Indeed, given a non-empty S C {0,1,...,¢}, the number of admissible
functions 3 on S is equal to [logy 24n]!S!. Hence, the number of all blocks is
equal to

0+1
Z[log2 24n]% = Z Ciy1llogs 24n]" = (1 + [log, 2An])[log2 My
S r=1
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from which the desired bound easily follows.
Combining Lemma 6.1 with Lemma 6.2 and using ¢ = 1/(ev/6) > 1/7, we
thus obtain that

1
u+{x € R’} : z is controlled by a block (S, 8) with » 2573, > 3 t\/ﬁ}
keS

< 62 log 2n log(2log 4An) €7ﬁ t\/ﬁ. (62)

Lemma 6.3. Given t > 0, assume that a vector x € R} is not controlled
by any block (S, 3) with ), g 2k=13 > %t\/ﬁ. Then, with some absolute
E1X1 + ...+ EnTy

constant B > 0,
P

Proof. Tt is also possible that z is not controlled by any block (S, 3) at all:
by the very definition, this holds if and only if

> t} < 92e /B,

X2k<1+%10g%, for all 0 < k < /.
But then
2 S 2 : 2 ok - 2 ne\? k
2| :E&g%@ﬂ <§)<1+Clog2,€) 2k < Bn,

for some absolute constant B. Therefore, for all t > 0,
121+ ...+ eEnxy

S {—

and the statement follows.
In the other case, there is a maximal block controlling the given vector x.
Namely, introduce (the canonical) set

> t} < 26—nt2/2|9c|2 < 2€_t2/23,

P
S=dk=0,1,....0: Xor >1+ = log 2\
c 2k

and for each k € S, denote by () the maximal power of 2 not exceeding
Xok — % log 5. In particular,

2 ne
Br < Xor — P log ok < 20k, (6.3)
and, by the assumption of the lemma,

> 2 lg < %t\/ﬁ. (6.4)

keS
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Define a new vector (Y;)i<;j<, approximating (X;)i<j<n in a certain sense.
First put
) +
ap = (sz.— (1+7 logn:)> C0<k<{,
c 2
so that aj = 0 outside S and 0 < a < 20k —1 < 20k, for all k € S, according

to (6.3). Let Yj = (X; — o)™, for 28 < j < 2841 (0 < k < £). Then, clearly
0<Y; <X; <Y;+ ag, and by (6.4),

n 14

DX Yy Pap =) e <y Mg < %t\/ﬁ.

7j=1 k=0 kes kesS
1 n

Zt} - PE{‘Zstj Zt}
Vil

1 1w t
Pg{‘zsjyj‘ 2}.
Vil 2 2

It remains to observe that, for 28 < j < 2*1 we have Y; < Yor < 1+
2 log 2%, so > VP < Zi:o (14 2 log %)2 2% < Bn. Lemma 6.3 follows.

1 n
PE{‘ Z&jl‘j
Vil

IN

Proof of Proposition 6.1. We need to get a subgaussian bound of the form
w{lfl >t} < ¢ 67C2t2/A, for some absolute cy,co > 0. By the assumption
(6.1) on the support of p, we may assume t < Ay/n.

Put C = (0A)?/* with a positive universal constant o to be determined
later on. Since necessarily A > 1/(2¢), we assume (2%)3/4 > 56 so that to
apply Proposition 5.2 in the interval 0 < ¢t < Cn!/*: it then gives

p{z e R": [f(z)| > t} < 2e~1"/(804),

The right hand side is of the desired order both in ¢t and A in that interval.

Now, let t > Cn'/%. Define £2(t) to be the collection of all vectors z €
R’ which are controlled by a block (S, 3) with >, .23, > & ty/n. Let
2:1(t) =R\ 20(t). In terms of f(x,e) = %, we may write

Il >t} = it @ P{(w,0) : [f(w.2)| > 2t}
= [ Pl > 2bdt @)+ [ PIf@ )] > 2} du (o)
0 1
The second integral does not exceed 2¢=t"/B with some numerical B (Lemma
6.3). The first integral can be bounded, according to (6.2), by

uF (Bo(1)) < e VAN,
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where A, (A) = 2log(2n)log(2log(4An)). Thus, for the values Cn'/* < ¢ <
Ay/n, it suffices to show that

e~ 55 tVntAn(A) < e—tQ/(112 A)

(note that if A\/n < Cn'/*, we are done). Equivalently,
1 1
— 2 —t A, (A4) <0.
1124 56 Vit An(4) <
Since t < Ay/n, the above is implied by A, (A4) < 35 ty/n. In view of t >
Cn'/* = (0 A)3/*n!/4, the latter is equivalent to

1 3/4, 1/4
< — .
A, (A) < 115 (cA)**n

Clearly, if o is sufficiently large, the above inequality holds true for all A > i
and n > 1. Summarizing, we may write the following estimate for all ¢ > 0:

p{|f| >t} < max {2642/(8‘”‘), 9e—*/B 4 ~1?/(112 A,

This gives the desired result.
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Random Lattice Schrodinger Operators with
Decaying Potential: Some Higher Dimensional
Phenomena

J. Bourgain
Institute for Advanced Study, Princeton, NJ 08540, USA bourgain@math.ias.edu

Summary. We consider lattice Schrodinger operators on Z¢ of the form H, = A+
V., where A denotes the usual lattice Laplacian on 7% and V,, is a random potential
Vo (n) = wnvn. Here {wy|n € Z%} are independent Bernoulli or normalized Gaussian
variables and (vn), cza is a sequence of weights satisfying a certain decay condition.
In what follows, we will focus on some results related to absolutely continuous
(ac)-spectra and proper extended states that, roughly speaking, distinguish d > 1
from d =1 (but are unfortunately also far from satisfactory in this respect). There
will be two parts. The first part is a continuation of [Bo], thus d = 2. We show
that the results on ac spectrum and wave operators from [Bo], where we assumed
|vn| < C|n|~*,a > %, remain valid if (vn|n|®) belongs to ¢*(Z*), for some & > 0.
This fact is well-known to be false if d = 1.

The second part of the paper is closely related to [S]. We prove for d > 5 and
letting Vi, (n) = Kwn|n| *(a > 3) existence of (proper) extended states for H,, =
A+ V,,, where V,, is a suitable renormalization of V,, (involving only deterministic
diagonal operators with decay at least [n| >*). Since in 1D for o < 1, w a.s. all
extended states are in £2 (Z), this is again a higher dimensional phenomenon. It is
likely that the method may be made to work for all & > 0. But even so, this is
again far from the complete picture since it is conjectured that H, = A 4+ wnd,n/
has a component of ac spectrum if d > 3.

I On Random Schrodinger Operators on 72

1 Introduction

The present paper is a continuation of [Bo].
In [Bo] we considered spectral issues for lattice Schrédinger operators on
Z? of the form
H,=A+YV, (1.1)

where A is the lattice Laplacian on Z2, i.e.

A(n,n') =1 if |ng —nf| +|n2 —nb| =1

= 0 otherwise
and V,, is a random potential
Vo(n) = wpuy, (1.2)

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 70-98, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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with {v,|n € Z?} C R, satisfying a certain decay condition and where
{wn|n € Z%} are independent Bernoulli or normalized Gaussians (this re-
strictive distribution hypothesis for the random variables - more specifically
the L¥2-tail distribution - is of importance here).

The results obtained in [Bo] are the following

Theorem 1. Fiz 7 > 0 and denote I = {E € [—4,4]|7r < |E| <4 —T7}.
Fiz p > % and assume

sup |vp| |n|? < & = &(T, p). (1.3)

Let H,, be defined by (1.1), (1.2).
For k sufficiently small and w outside a set of small measure

(1) H, has only a.c. spectrum on I

(2) Denoting Eo(I) and E(I) the spectral projections for A and H = H,
resp., the wave operators Wi (H, A)Eo(I), Wy (A, H)E(I) exist and es-
tablish unitary eigenvalue of AEy(I) and HE(I).

Theorem 2. Assume again p > % and instead of (1.3)

sup |vy| |n]f < 0.
n

Then, for almost all w

(1) a.c. spectrum H, D [—4,4]
(2) The wave operators Wy (H, A)Ey([—4,4]) and generalized wave operators
Wi (A, H)E(]—4,4]) exist.

As shown in [Bo], Theorem 2 follows from Theorem 1 and the existence
of generalized wave operators Wy (H, H + P), whenever P is a finite rank
perturbation of the self-adjoint operator H (cf. [Kal).

As mentioned, our aim in this paper is to focus on results that distinguish
the one-dimensional and higher dimensional setting. For d = 1, the spectral
theory of random Schriédinger operators has been extensively studied over the
past decades (relying heavily on the transfer matrix formalism - a method
not available in higher dimension). In particular, if we let for instance

Vo =wn|n|™®

with {w,|n € Z} i.i.d. variables, uniformly distributed in [—1, 1], it is known
that, almost surely, H,, has pure point spectrum for 0 < a < % and a.c. spec-
trum for 3 < a (cf [Si], [K-L-S]). Also, Theorems 1 and 2 stated above hold
for d = 1 (replacing the interval [—4, 4] by [—2, 2] of course) with analogous
(slightly simpler) proofs and the crucial decay exponent % for the potential
remains the same. Our purpose here is to impose conditions on the poten-
tial that does depend on dimension. We consider again only the case d = 2.
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Compared with [Bo], the geometric properties (in particular curvature) of
the level sets of A will play a more important role (if d > 2, there are ad-
ditional difficulties related to vanishing curvature in this respect which we
don’t intend to explore here).

Theorem 3. Assume
Vo(n) = wp|n|™fv, (1.4)

where {wy|n € Z?} are as in Theorems 1 and 2, € > 0 is fized and
HU”Z?’(Z?) <K (1.5)

with k = k(7,€) > 0 small enough.
Then the statement of Theorem 1 holds.

Theorem 4. Replacing in Theorem 3 condition (1.5) by
[v]l¢3(z2) < 00 (1.6)

the conclusion of Theorem 2 holds.

2 Preliminaries

Recall that for f € ¢2(Z?)
Af(n) = / 2(cos 2y + cos 27y f(€)e 2T dg
T2

where

FO=FNE€ =Y f)emne.

nez?

Hence the free resolvent Rg(z) = (A — 2)~! is obtained by applying the
Fourier multiplier

_ b

MGEE
with

m(&) = 2(cos 2m&y + cos 27Ey). (2.1)
Thus .
o
Ro(Z)—j: m(f)fz}—

Fixing 7 > 0 and 7 < |A\| < 4 — 7, the equation

m(§) = A

represents a smooth curve Iy with non-vanishing curvature. As in [Bo], de-
note o) the arclength-measure of I'y. Thus
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|6a(n)] < C(1+ |n|)~%. (2.2)
From the theory of Fourier transforms of measures supported by smooth
hyper-surfaces with non-vanishing curvature, we obtain therefore
Lemma 2.3 Let p be a measure supported by I'\ such that p < oy and
Ju € L2(I'y,doy). Then

An

i (2.4)

s 2oy < cH

2

Remark. Lemma 2.3 is a standard fact from harmonic analysis (see [St]). Es-
timates (2.2), (2.4) are obviously dimension dependent and were not involved
in [Bo).

For the proof of Theorems 3 and 4, we proceed exactly as in [Bo]. Thus
the proof of Theorem 3 is perturbative and the main issue is to control the
Born-series expansion

R(z) = (H - 2)7' =Y (=1)*[Ro(2)V]" Ro(2). (2.5)

To achieve this, we rely on the basic estimates stated as Lemmas 3.18 and
3.48 of [Bo]. Let us recall them.
Denote
VO = V()X{O} and Vk = VX[Qk—1§|n|<2k]

the dyadic restrictions of V.
By C® we denote a function in &-space satisfying a bound

—1/2

1ICO(©)] < [Im(€) — A + 4] (0<d<1) (2.6)

(here and in the sequel, A always assumed to satisfy 7 < |A\| <4 — 7).
Lemma 3.18 from [Bo] is the following statement

Lemma 2.7 One has the operator norm estimate on £*(Z?)
1 1\*
e FVFoP|| < (KQ_Z)C<10g =+ 1og5) (2.8)
1 2
except for w in a set of measure at most

exp{ — (;~;124)C<log§11 + log 512)} (2.9)

(¢, A > 0 are constants independent of 61, d2,1).

Denoting py the restriction operator to I'y, Lemma 3.48 in [Bo] states
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Lemma 2.10
A
—1(8 —L
loxFVeF Ct )HL§~>L2(F>\,da'>\) < (K2 )C(log 5) (2.11)
except for w in a set of measure at most
—1of\c 1
expq — (k772 1og5 . (2.12)

Summarizing in [Bo], Theorems 1 and 2 are derived from the estimates
(2.8)—(2.12) in Lemmas 2.7, 2.10. To prove Theorems 3 and 4, it will suffice
to establish these lemmas replacing the assumption (1.3) on V by (1.4), (1.5).

From assumption (2.6) on C'®) and representation as average on the level
sets of m(&), the left side of (2.8), (2.11) is clearly captured by an estimate
on

00 FVeF Ml 2(r, dos, ) L2 (g dony) (2.13)

(With % < |)‘1|a |>\2‘ <4- %)a
and it suffices to prove that for fixed A1, Ao

E.,[(2.13)] < (k279" (2.14)

Finally, also recall the entropy bound (1.13), (1.14) in [Bo|, known as the
‘dual Sudakov inequality’ (due to [P-T]). As in [Bo], the following particular
setting is the one we need. Consider a linear operator S : R? — £°° and
denote for fixed ¢ > 0 by A/(¢) the minimal number of balls in £5° of radius ¢
needed to cover the set {Sz|z € R?, |lz|2 < 1}. Then the following inequality
holds

og A'(t) < C(logm)t~2/S |2 (2.15)

where C is a universal constant, (see inequality (4.2) in [Bo]).

3 Proof of Theorems 3 and 4

Again, from the stability of the a.c. spectrum under finite rank perturbations,
it suffices to prove Theorem 3. From the discussion in the previous section,
the result will follow from (2.14). This inequality will be derived by combining
the argument from [Bo] (section 4) with Lemma 2.3.

We start by applying (2.15) considering the operator

St L*(Ix,doy) = £2°(Z7) « v i jpjmae- (3.1)

Thus in (2.15), m ~ 4°. The domain may clearly be replaced by a finite
dimensional Hilbert space (notice that the estimate (2.15) does not depend
on d). Obviously
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(1Sl L2(dor) e z2) < C (3.2)
and in fact, from (2.4)
1511 22 (dory )08 (z2) < C. (3.3)
From (2.15), (3.2)
log N(t) < Clt—2. (3.4)

Recalling the definition of NV (¢) and taking also (3.3) into account, this means
that for each t > 0, there is a set & C E\O:L)|~2Z of vectors & with the following
properties

log |&| < O3 (3.5)
max min max |g(n) —&,| <t (3.6)
peL?(Iy) €€€¢ |n|~2z| ()
ll g ll2<1
<C. 3.7
max ¢]le (3.7)

Next, taking ¢ of the form 27" r € Z,, we may then obtain sets F,. C
52—7«—1 — 52—1« s.t

[€]le < 27" and ||€]l¢ < C for &€ € F, (3.8)

and for each p € L2(I)), ||(;7—‘1|| < 1, there is a representation

Sp = Zf(’“) for some ¢ € F,. (3.9)

We use here (3.6), (3.7).
Proceeding further as in [Bo], (2.13) equals

Z WnUn i1 (n)ﬂ2 (n)

|n|~2¢

=sup2~ (3.10)

S Va(n)ji(n)jia(n)

|n|~2¢

sup

where the sup is taken over all pairs (1, po) € L2(I'x,)xL3(Ix,), || dpss l2<1.

dox,;
Introducing the families fr(i)(r € Zy) for I'y,(i = 1,2), decomposition
(3.9) and convexity reduces (3.10) to the following expression

Z wpopfir(n)fie(n)] < Z max Z Wnn&hEN . (3.11)
|n|~2¢ rimaezy & €FS | niae
5//6]_—7(;)

Take w-expectation of each of the terms. Since {w,|n € Z?} are independent
Bernoulli or Gaussians, Dudley’s L¥2-estimate applies. Thus
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|

"
B ﬁgla;((z) |222wnvn£§
1/2 /2
O (tog |F| + log | F2) {fmx | X i fﬂ }
1 r2 ‘TL|N2£
(3.12)
By (3.5) and construction, |F,| < |Ey-r-1| |E3-+], hence
log | F,| < Cl47". (3.13)

By (3.8) and Holder’s inequality, we get for ¢’ € ﬁgll),f” € .7-"7§22)
1/2
( > Un|2|62|2|§${|2) < lls 1€'-€" 6 < Cllvlls min(27™,277). (3.14)
|n|~2¢
Substitution of (3.13), (3.14) in (3.12) gives
CVI(2™™ +277)min(27",2772)|jul|s < CVI|vls. (3.15)

Invoking also the obvious bound

> wavnll

|n|~2¢

<027 N w| |onl (3.16)

|n|~2¢

fu) f<2>

we obtain that

E,[(31D] <C Y min (V627728 ulls < COolls. (3.17)

r1,72€%

Recalling (1.5), it follows from (3.17) that indeed
E.,[(3.10)] < C2 %k (3.18)

which is the desired inequality (2.14).
This proves Theorem 3.

Remarks. (1) From deterministic point of view, the preceding shows that if
we fix ,7 > 0 and consider a (non-random) potential V' s.t.

[{In*Valn € 22}, < w(7.€) (3.19)

then H = A+ V has a.c. spectrum in {E € [-4,4]|7 < |E| <4 —7}.
Thus, also, if
[{In|*Valn € ZZ}H?)/2 < 00 (3.20)

then [—4,4] C ac — SpecH.
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Indeed, following the approach described above, it suffices to verify the
inequality

(213) = o3 FVeF M L2 (s, iy ) L2 (D dorsy) < Cr27%

which immediately follows from Lemma 2.3 and Holder’s inequality.
Thus if p; € L2(I,), || 224y < 1(i = 1,2), we have

da')\i

Y Wal i)l az ()l < Vel llials llR2lls < Cr27"

[n|~2¢
(2) In view of the Carleson-Sjolin theorem

for p >4 and pu € LP(S") (3.21)
P

. dp
12l < Cp|| ==

(S1=unit circle), one may wonder if (2.13), (2.14) may not be obtained under
weaker assumption on V. Clearly, the condition

{7 vn }H]es(z2) < o0 (3.22)

would be natural and optimal.

The validity of (2.13), (2.14) seems to require the stronger condition (1.4),
(1.6) however. This may easily be seen as follows. Clearly
I0FVeF 2 2(50) = 12050
lpFVEF L2~ r2sn)

= sup > V2ia(n)fiz(n))|. (3.23)
i €L2(S1), | G (2 <1 | e
At this point, the randomness in the potential disappeared.
Denote N = 2¢ and let
dur _ dpo 1/4
oPL P2 Nl/Ay 3.24
do do K ( )

where v denotes an arc in S* of size 1073 N~1/2 say, centered at (1,0)

Thus (3.24) gives the proper normalization in L?(S1).
Clearly

fis(n) ~ N"Y/4 for n € R = [N, N] x [-N'/2 N1/

(3.23) 2 N2y V2
neRr

forcing an ¢3(Z?)-bound on V.
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Sl

In order to proceed under the weaker assumption (3.22), one would need
to eliminate the self-energy loops by a renormalization of V, as V,, = V,+ W,
with W the (non-random) potential

W, = Ro(E + io). / Vi, (n)?dw.

IT Construction of Extended States for Lattice
Schrodinger Operators on Z<¢ (d > 5) with Slowly
Decaying Random Potential

In what follows, we will construct for d > 5 proper extended states for the
random lattice Schrodinger operator on Z¢

Hw =A + (nwn\nra + 0(H2|n|72a))5nn’

for « > %. The term 0(k2|n|=2%)8,,, refers to a deterministic potential arising
from suitable renormalizations. Perturbation of the free Laplacian is done at
a specific energy, much in the spirit of [S].

The interest of the result lies in the fact that it exhibits a higher dimen-
sional phenomenon, since in 1D, for o < %, there are a.s. no proper extended
states. It is also likely that with additional work, the argument may be carried
through for all « > 0.

Note. The subsequent numbering only refers to Chapter II.

1 Green’s Function Estimate for Certain Deterministic
Perturbations

Redefine the Laplacian by subtracting 2d from the lattice Laplacian, i.e.
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d
—A(¢) =2d — 2(Zcos 2775]-) = +E2 +0(j¢). (1.1)

j=1
We first prove the following

Lemma 1.2. Let
H=A+cMd-+dMc

where

(i) M is a convolution operator on Z with smooth Fourier-multiplier M (€)
s.t. M(&) is an even function of &1,...,€4 and

M(€) = €1 +0(l¢|*) (1.3)
ii) ¢ and d are diagonal operators given by real sequences (Cn)nezds (An)nezd
€ €
lenl, [dn| < &[n|™* (1.4)
|Cn+5j —cnl S H|n|_a_1

|dnte;, — dn| < o
(j=1,...,d) (1.5)

where a > 0 and k small (e; = j™ unit vector of Z4).

Then
|(H 4 i0)"*(n,n")| < C|n —n/| 742, (1.6)

Proof. From (1.1), (1.3), we may write
M = AM;
where M is a convolution operator with

’ o(lel)

MO = 1% ey oiem (1)

hence
O, (€) € Lf for |a| < d +2. (1.8)

Thus
M, (n, )| < cm. (1.9)

We are replacing next cMd+dMc by cd M + M cd and evaluate the difference.
It follows from (1.5)

|[cMd + dMc — (cdM + Mcd))(m, n)|
= |emdp + dmcn — Cmdm — cndy| | M(m,n)|
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= |Cn _Cm| ‘dn - dm| ‘Mm,n|

n —ml|?

< CK? | M (m, n)|
(Inf + m[)*(In| A [m][)>*
1
< K2 : (1.10)
(In] + [m])2(Inf A m|)?*[n — m|4+1
Thus
H=A+cdM + Mecd + Py
= (1+CdM1)A(1+Mlcd) —CdMlAM10d+P1 (111)

where P; satisfies (1.10).
The operator My AM; = M Mj is again a convolution operator and clearly

MM, (€) = M(&)M;(€)

_ ey . ouE®)
= M(§) + GEETIGE0R (1.12)
Therefore 1
(M M) (n,n")| < T (1.13)

Repeating the preceding with M replaced by MM; and c,d replaced by \%
(hence « by 2a) we have again

1 1
cdM Mjcd — 5c2d?MM1 - 5J\4M1c2d2

1
< Kt (1.14)
(Inl+ [mD?(In| A [m])**|n — m|**
and
1 1
(1.11) = (1 + cdM; — 2c2d2M12>A<1 + Mycd — 2M12c2d2)
1 1
—ECdeMfAMlcd — ichlAMfczdz
1
+Zc2d2M12AM12c2d2 + P, (1.15)

with P, satisfying (1.10).

Each of the operators MZAM;, MZAME will still satisfy (1.13) (in fact
an even stronger property) and we may repeat the construction.

After s steps, one obtains clearly an operator of the form

1 1
(1 + cdM; — 5c%ﬁMl2 +--->A<1 + Myed — §M12c2d2 +>
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+ 3" [(ed)* M (cd)* + (cd)¥ M(cd)¥] + P (1.16)
where
E+k >s (1.17)
M are convolution operators satisfying
~ 1
and
/ w 1.19
P . .
P S G el A e = (19
Thus, from (1.9)
- , 1
k k 2s
|[(Cd) M (cd) }(”’ ”/)| Sk n|Zke|n/|2F an — /|48
2s
r (1.20)

< .
~ (Inl Afn/])2e¢|n — n/|d+3
Letting s = s(a) be large enough, we may therefore get H in the form
L ooy L)oo /
H = 1+ch1—§c dM;i+---|A 1+Mlcd—§Mlc &+ |+P
(1.21)

where taking (1.19), (1.20) into account the matrix P’ satisfies (assuming
1
a < 5)

2
P'(n,n)| < i . 1.22
< G e .
Also, by (1.9)
1
Q = cdM; — §c2d2M12 I
satisfies in particular
2
, K
|Q(n,n)| < m (1.23)
and 14 @ is invertible by a Neumann series.
Thus
H=(1+Q)A1+Q)+P =(1+Q)(A+P")(1+Q") (1.24)
where
P =01+Q) 'P1+Q") " (1.25)

Hence, from (1.22), (1.23)



82 J. Bourgain

|P"(n,n')|
1 1 1
< Ck?
nlnz2:€Zd [ = na 8 g = ng| ™ (Jna] + [naf)2He |ng — /|43
1
2
< . 1.26
" = R e
Replacing A by A + o, (1.24) implies
(H+io) ' =(14+Q")  (A+io+P")'1+Q)! (1.27)
where we expand further
(A+io+P")y ' =(1+(A+ z‘o)‘lP”)_l(A +i0) !
=) [(A+io) 'P"]*(A+i0)~ . (1.28)
s>0
Estimate in (1.28)
‘ [((A +1i0) L P")* (A + z‘o)fl} (n,n’)
1 1
< CS P// P//
a nl,nzz,..:.,nzg ‘n_n1|d72‘ (nl’n2)‘ |TL2 _n3‘d72| (n3’n4)|
1
PR (1.29)

Write

1 <CZ 1
[m — m/ ]2 — |m — n[d=T[n — p/|d-1

and, from (1.26)

1 1
I — - -
Z |m—nl|d*1| (nl’n2)||n2 —m/|d-1

ni,n2
1
<o’ Y T PTE TR
s I = [ [T 2 g — | TR na 1R Ing — m/[41
1
CK .
[m —m/ |22 (|lm| A [m/[) 1+

<

(1.30)

Observe also that

1
Z _ pld—1 1+ _ d—1 1+
— fm =[] A n) e = [ (A ) e
c

<
m = m/ 4= (fm| A [m/[) e
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which shows that the estimate (1.30) is preserved under multiplication.
Returning to (1.29), it follows from (1.30) and the preceding that

1 1
1.29) < C%k% ( )
(1.29) 2 T\ Sl (A

M1y ;Ms41

1 1
<|ms — Mg | (Img| A |ms+1|)1+a) Mgy —n/|471
1 1

< O°K*
B L TP L (M PN T
1
v — T
1
2\s
Consequently, summing over s, it follows from (1.28) that
. _ 2
[(A+io+ P") (n,n')| < ] (1.32)
and from (1.27), (1.23), that
1 1 1
H+io) Y(n,n)| < C
I(H o)™ m, )] Z In—nq|4t10 |01 —n2|42 |ny — n/|4t 10
ni,n2
< C
|n _ n/|d72 :

This proves inequality (1.6).
Remarks.
(1) Smoothness condition on M may be weakened to
WM (€) € L for |af < d+4. (1.33)

(2) The proof of Lemma 1.2 shows that

|(H +i0) "' (n,n")| < C|n — n/|~(d=2) (1.34)

whenever H has the form
H=A+A+P

where A is a convex combination of operators cMd + dMc as described
in Lemma 1.2 and
K

P(n,n)| <
|P(n,n')]| |n—n’|d+5(|n|+\n’\)2+5

(1.35)

for some ¢ > 0 and x = £(J).
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2 A Probabilistic Estimate

Let for simplicity the random variables (wy,),cz¢ be Bernoulli.
Considering a s-tuple (nq,...,ns), we say that there is ‘cancellation’ if

Wny * wn, = 1. (2.1)
Say that (n1,...,ns) is ‘admissible’ if for any segment 1 < s1 < so < s, the

sub-complex (ng,, ns, +1,---,MNs,) does not cancel.

Use the notation 251*1) ...n, to indicate summation restricted to admissible
s-tuples.
The interest of this notion is clear from the following

Lemma 2.2. For s > 2

Z Wpy ot wnsagzozu gzll)ng" 'Ei),n’
L
1/2
gc{ S (a0, d? P (23)
N1,y

Proof. We may clearly assume a(J ) > 0.

Since in the Y. summation no (ny,...,n,) cancels, there is some index
ng which is not repeated or repeated an odd number of times.

Specifying a subset I of {1,...,s} of odd size (at most 2° possibilities),
we consider now s-tuples of the form

WD, @ 3 )

where m € Z¢ appears on the I-places and vV, () .. are admissible com-
plexes indexed by sub-intervals of {1,...,s} determined by I

Thus, enlarging the Z(*)-sum, (which we may by the positivity assump-
tion), it follows that

(O C)
E R SN R N

ni,.. L,
()
2 § § 0 s
< W, Wpy vt wnSI a’EL,Z‘Ll N GJ?(’L,;ll),m
mezd (D

(nla-“wnsl)

(*)

E . (s14+1) . g(s2) |,

w’ﬂsl+2 wnn a’mlnbl+2 n;,m
»(2)

(nsl+27---an52)

L,
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where, for fixed m,

M N1, Mgy Mgy 425+ vy Mgy s Mo 2y« -+ }e

We used here that if (nq,...,ns) is admissible, then so is (1s,, Nsy 41, - - Msy)
forall 1 <s; <s9<s.

Enlargement of the original sum Z(*) enables thus to get the product
structure in (2.4). The number of factors is at least 2.

Thus the preceding and a standard decoupling argument implies

M;[z SIS es

mezd "L, d L@ L2

Next, by Holder’s inequality and moment-equivalence, we get

1/2
> [ ] . (2.6)
mezZe

I

v 1 ‘ v(2)

Preceding by induction on s, we obtain thus

S5 [5 wnn]

I mezZd "ni,...,ngy

1/2
Y il | <@
Msy 42,7 5MNsg

This proves Lemma 2.2.
Expressions considered in Lemma 2.1 appear when writing out matrix
elements of products

(A(O)VWA(UVW . A(S)) (n,n’)
where the A" are matrices and V,, a random potential
Vo (n) = wpvp.

We use the notation
(A(O)VwA(l)Vw e A(S))(*) (2.7)

to indicate that, when writing out the matrix product as a sum over multi-
indices, we do restrict the sum to the admissible multi indices.
Lemma 2.2 then implies that

E., [|(A(0)VWA(1)VW e A(s))(*)(n, n’)”
1/2
<Cs[ Yo o P on P IAQ ()P JAD (g, )P (2.8)

Ny, Ms
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3 Green’s Function Estimate

Returning to (1.1), let d > 5 and denote G = (—A)~71, i.e.

e—27ri(n—n').§
Go(n,n') :/7d§

~A©)
—2mi(n—n’)¢
- [ 2 7 9€
€17 +0(I¢]*)
hence 1
Let
Vo (n) = wyvy (wpassumed Bernoulli) (3.2)
vp = K|n| ™% (3.2)
where we assume 5 1
5 <a< 5 (33)
(the argument will be developed further in §5 to cover « > %)
Clearly
W2 = /VwGodew (34)
is the diagonal operator
Wa(n) = Go(0,0)v;, (3.4)
(observe that Go(0,0) is real).
Denote by W, the operator
2 2/G AY:] f /
Wa(n,n') = Unn 0(71, )" forn#n (3.5)
0 otherwise
hence from (3.1), (3.2')
A
[Wa(n,n')| < (3.6)

|n|2a|n/|2a|n _ n/‘S(d72) :
This operator arises from the 4-tuples

n n' n n'

NN
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Notice that

Wi =cMc+ (K(0) — K(0))c? (3.7)
where
K2 9
Cp = W =v, (38)

and M is the convolution operator with symbol

K- K(0), K==Gy+Gox*Gy (3.9)
which is an even and symmetric function in &3, ..., &z and satisfying

9K e Lt for ol <3(d-2).

In order to meet the condition (1.33), we require thus 3(d — 2) > d + 4,
i.e.d>5.
Since from the preceding

K(¢) — K(0) = [¢]> + 0(¢[*) (3.10)

the operator W = cMc clearly satisfies the conditions of Lemma 1.2.
Thus from (1.6)

(=A+ W +i0)"(n,n")| < Cln —n/|~@=2, (3.11)
‘We renormalize V, as R
V, =V, + Wy — pv? (3.12)
denoting )
o= Gp(0,0) and p = 20° — K(0).
Thus from (3.7)
Wy =W + (0 — p)o’.
Consider )
H=-A+V, (3.13)

with Green’s function G = G(z).
For notational simplicity, we also denote G(i0) by G.
From the resolvent identity, we get

G =Go—GVGy =Gy — GVGy — GW2Go + pGutGy

and iterating (using the (*)-notation for admissible complexes - cf. (2.7)) we
obtain

= Gy — GoVGy + GVG VG — GWLGo + pGv*Gy

= Go — GoVGo + GVGoVG + pGutGy + GWiGoV Go — pGu*GoV Gy

NI
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= Go — GoVGo + GoVGoVG) — GV (GoVGoVGo)*
+ GWQGUVGO + va4G0 —pG’U4G0VG0

NN

= Go — GoVGo + GoVGoVG) — (GVGoVGoVGo)* + eGWLV Gy
— GWa(GoVGoVGo)* + pGuiGy — pGuviGoV Gy + pGu* (GoV GV Go)*

NI

i~

=Gy — GyVGy+ GQVGOVG(()*) — (GQVGOVGOVGO)*
+ GV (GoVGoVGoVGo)* + 0GoWaV Gy — oGV GoWaV Gy
— GWa(GoVGoVGo)* + pGuiGy — pGuviGoV Gy + pGut(GoV GV Go)*

NI

= GO — G()VGO + GOVGOVG(()*) - (GOVGOVGOVGO)* + O'G()WQVGO
+ (GVG()VG()VGQVG())* - JGWQ(VG()VG())* - U(GVGOWQVGO)*
- U3GU4G0 + GW,Go — O'G(WQ — pU4)G0W2VG0

AN~

i~

+ G(Wy — pv?)(GoVGo VGV Go)* + pGolGy

i~

— va4G0VG0 + va4(G0VG0VG0)*

NI

N

G = G() — G()VG() + (GOVGUVGO)(*) - (GUVG()VG()VG())* + O'G()WQVGO
+ (GoVG()VG()VGoVGQ)* - UGOWQ(VGOVGO)* - U(GOVGOWQVGO)*

i~

3.14
— GV (GoVGoVGoVGoVGo)* 4+ oGV GoWa(VGoV Go)* .
+ oGV (GoVGoWaVGo)* (3.15)
cowe, (3.16)
— 0G(Wy — ppY)GoWaV Gy + G(Wy — pv!)(GoVGoV GV Gy)*
— pGvrGoV Gy + pGut(GoV GV Go)*. (3.15)

(We use here the notation ~~ for contributions at least of order 5 in V —
these terms are not expanded further.)

The next step is to move (3.16) to the left member. We get G(1 — WGy).
Multiply then both sides on the right by (1 — WGo)~! and observe that
Go(1 —WGo) L= (—A—-W)~! =G}, where, by (3.11)

|G (n,n")| < Cln —n'|72, (3.17)

This gives
G=A+GB (3.18)

with

A =Gl — GoVG)+ (GoVGoVGL)* — (GoVGoVGeVG))*
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+ 0’G()W2VG6 + (GQVG()VG()VG()VGE))* — O’(GOW2VGOVG6)*
- O'(GOVGOWQVGE))* (319)

and

B =-V((GoVGoVGoVGVGY)* + a(GoWaVGoVGy)*

+ U(GoVGoWQVG6)*)
+ (WQ - pU4) [ - JGOW2V06 + (GOVGOVGOVG6)*]
+ pv![ = GoVG) + (GoV GV GY)*]. (3.19')

Apply inequality (2.8) to estimate the matrix elements of the (random) ma-
trices A, B given by (3.19), (3.19). Clearly, with large probability

|A(n,n)| < Cln —n'|7@=2), (3.20)

We have indeed

E. [[(GoVGoV GoV GV Gh)*(n,n') 2]
< { > 1 K2 1 K’ 1
~ ni,n2,n3,n4 |n — n1|2(d_2) |n1|2d Ing — n2‘2(d_2) |n1‘2a In2 — n3|2(d_2)
K2 1 K2 1 12
[n3]? [ng — nal24=2) g2 |y — n/[24=2)
— ot 1 1 (3.21)

min([n[3, [n/[4) Jn — n/[d-2°
Estimate (3.21) also holds for the matrices
(GoWQVGOVG6)* and (GoVGoVWQGa)*

Similarly
1

min(|nf>*, [n/[>*)|n —n

1
E, [[(GoVGoVGoVGo)* (n.n')[] <

~ min(‘nliia’ |n/|30¢)|n _ n/ld—Q '

E, [[(GoW2VGh)(n,n')]] <

/|d—2

Consequently

5

K

Inin(|n|5cz7 |n’\5")|n _ n/|d—2 :

E,[|B(n,n')[] < C (3.22)

Write from (3.18)
G=A(1-B)! (3.23)

where, from (3.22) and the assumption
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0¢>§
2

1 — B may be inverted by a Neumann series
(1-B)'=1-F

with B’ satisfying (3.22).
Thus
G=A-AB

with A satisfying (3.20) and

1
AB’ NI <
I( )(n,n')| %: In — nq|4=2 min(|n/ [, [ny [P [ny — 0|42

1 n 1
~n'Peln — /|4t T n —n/|d-2"

Thus
1 1

<
‘ ~ |n/‘5a|n_n/|d—4 + |

|G(n,n')

n — n/|d—2

and by self-adjointness considerations, also

BS ! + —
~ |n|5a‘n_n/|d—4 |n_n/|d—2

|G(n,n)

Therefore we get in conclusion the estimate

Gln, )| < m_iw (3.24)
for the Green’s function G(0 4 io) of H = —A+ V.
4 Construction of an Extended State
Denote dy € £>°(Z%) the vector with 1-coordinates thus
do(n) =1 for all n € Z7. (4.1)
Thus .
Adp =0 (4.2)

and 50 is an extended state for the free Laplacian A.

In order to construct a (proper) extended state for H = —A + V,, we will
proceed in 2 steps.

First we construct an extended state for the operator —A —W = H|, with
W introduced in (3.11).
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We use the construction described in §1, in particular (1.24), which does
apply to H| (see the discussion in §3)).

Thus
—Hy=(1+Q)(-A+P")(1+Q") (4.3)
where
/ < HQ
|Q(n,n")| < m (4.4)
and )
P (n,n')| S al 45
[P (n, )] < |n_n/|d+%‘n|l+%‘n/‘l+% (4.5)
(in fact « replaced by 2«, which will be irrelevant); see (1.23), (1.26).
Writing formally
C=(1+Q) ™ (1+GoP") o (4.6)

it follows from (4.2), (4.3) that
H}C = 0.

We justify (4.6). We claim that ¢ is a perturbation of & in £°°(Z9). To see
this, it will suffice to show that

Qe (z2)—s 0 (z4) < & (4.7)
and
1GoP" [|eoe (z)—seo0 2y < K (4.8)
or equivalently
1@l 24y er(zay < & (4.7
[(P")*Gollaser < 5. (4.8)

Assertion (4.7') is obvious from (4.4).
To verify (4.8'), estimate for fixed ng

Y ((P")*Go) (nno)|

n
1 1

S CK;Z o a
nznj [n = na |42 S |y [H43 (1 — ol 47

<oy — L o
2 T Ty — g ? < O

using (4.5).
Therefore

¢ =do+o(1) (in £(2%)). (4.9)
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Next, we construct an extended state for
H=-A+V=H+W+V

by defining ~
n=¢(-—GW+V). (4.10)

Again, we show that 7 is a perturbation of ¢ in £°°(Z?) (with large probability
in w).
Denoting as in §3 by Gf = (H{)™!, the resolvent identity implies that

G=G)—GW+V)G) (4.11)

hence, recalling (3.18).

—G(W +V)=(G-GjH)
= (A - G{)H| + GBHj. (4.12)
Recalling the definition (3.19), (3.19') of A, B, it follows from (4.12) that

—~GW +V) =
— G()VC + (G()VG()V)*C — (G()VG()VG()V)*C + UGQWQVC+

(G()VG()VG()VG()V)*C - U(GOWQVGOV)*C - U(GOVGOWQV)*C
(4.13)
+ GO (4.14)
with

0=06,=

—V((GoVGoVGoVGoV)*¢ + a(GoWaVGoV)*¢ + a(GoV GoWaV)*()
(4.15)

+ (Wo — aW2)[~aGoWoV( 4 (GoVGoVGoV)*¢] — prGoV ¢

+ pv*(GoVGoV)*C. (4.16)

The bounds on (4.13), (4.15), (4.16) are probabilistic in w.
It is important here that ¢ does not depend on w. Thus

[(GoV()(n)| =

Z C:0 (na n/)vn’wn’
n/

has expectation

1 e 1/2 Y

n’
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The other terms in (4.13) satisfy similar (stronger) estimates. Again we ex-
ploit the ()*-restriction here. Thus with large probability,

(4.13) = o(1) in £>°(Z%)
(this is immediate from (4.17)).
Consider next (4.15). Here the estimates need to be done more carefully.

We have
Eu|((GoVGoV GV GoV)*¢) (n))|

1 1/2
< Crt
< < Z In — 11|22 [ 2%, n2|2(d2)|n2|2a,,,|n4|2a>

n1,Mn2,n3,MN4

< Ck*n| ™4 (4.18)

and similarly for (GoWaVGoV)*(, (GoVGoW2V)*¢. Thus, with large proba-
bility, we may ensure that the n-coordinate of (4.15) is bounded by

C.k°|n|%|n| > (4.19)

(for any € > 0).
Similarly, the n-coordinate of (4.16) is bounded by

Cer®|n|® [In] 72 |n| 7% + |n|~*|n|~*]. (4.20)
Thus, from (4.19), (4.20) with large probability

|0, < K|n| 75T for all n € Z. (4.21)

Recalling that oo > % and the bound (3.24) on the Green’s function G, we

conclude that (4.14) satisfies

1 1
[(GO).| < Cm( > - n1|“|n1|5a> < Ok fgas=

hence
GO = o(1) in £°(Z%).

From the preceding, (4.13), (4.14) = o(1) in £>°(Z?) which proves our claim
about 7). This completes the proof of existence of a (proper) extended state for
H=—A+V, = —A+kwp|n|~® + £20|n|2 + (K (0) — 203)|n| 4, a > 2
and k small enough (with high probability in w).

5 Relaxing the Condition on

The purpose of previous analysis was to obtain (proper) extended states for
H, = —A+V, with random potential V;, = |n|”%w,,, for some a < % This
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exhibits thus a higher dimensional phenomenon, in the sense that for d = 1,
a.s., any extended state of H, = —A + |n|™%w,,a < %, is in (3(Z). The
previous assumption a > % may be weakened by continuation of the pertur-
bative expansion (3.14)—(3.16) of the Green’s function G in higher powers of
V. It is reasonable to expect this type of argument to succeed for any fixed
a > 0 (with a number of resolvent iterations dependent on «). To achieve
this requires further renormalizations (cf. [S], §3) and taking care of certain
additional difficulties due to the presence of a potential. Notice that, from
the technical side, our approach differs from that in [S] in the sense that we
do not rely on the Feynman diagram machinery (but use the estimate from
§2 instead).

The technology developed here allows us easily to deal with smaller val-
ues of v by carrying out a few more steps. Again, only renormalization by
diagonal operators is required. There is one additional idea that will appear
in the next iteration. We assume now

1< <1
ca< =
3 2

for which we establish the estimate (3.24) on the Green’s function and the
existence of a proper extended state for H,,.

Consider the expansion (3.14)—(3.16) for G. The terms in (3.15) needs to
be developed up to order 6, which we mark again as ~~~ .

Thus

— GV (GoVGoVGoV GV Go)*
= — GV(G()VG(]VGQVG()VG(])* + G(W2 — p’U4)(G0VG()VG(]VG0VG())*

NI

= — G(VGoVGoVGoVGVGo)* — GWo(GoVGoVGoVGo)*
+ oGWo(VGoV GV Go)* + oGVW,Gy
— GW4G\V Gy + cGW,V G + GV DGy
+ G(Wy — pv?)(GoVGo VGV GV Gy)* (5.1)

i~

where D, denotes the diagonal operator

Dn = (W4G0)(n,n) = Vn2 [ZU%;GO(TL - TL,)4:| (52)
hence
K}4 ,
Next
UGVGOWQ(VGQVGO)*

= JGVG()WQ(VG()VG())* — JG(W2 — p’l)4)G()W2(VG0VG0)*

i~




Random Lattice Schrédinger Operators 95

= O'G(VG()WQVG()VG())* + U?’GU4G()VGO — 0’4G’U4VG()
— JG(WQ — pU4)G0W2(VG0VG0)* (53)

i~

and

JGV(G()VGoI/VQVGo)*
= oGV (GoVGoWaVGo)* — aG(Wa — pv")(GoV GoVIWaGo)*

i~

= JG(VGOVGOWQVGO)* + oGWoGoWoV Gy — 0'4G'U4VG0
- O'G(W2 - p’U4)(G0VG0VW2G0)*. (54)

Substituting (5.1)—(5.4) in (3.14)—(3.16), it follows

G = Go—GoVGy + (GoVGoVGo)* — (GoVGoVGoVGo)* + oGoWaV Gy
+ (GoVGoVGoVGVGo)* — aGoWa(VGoVGo)*—a(GoVGoWaVGo)*
— G(VGoVGoVGoV GV Go)* + aGWa(VGoV GV Go)*
+ 0G(VGoWoVGoVGo)* + 0G(VGVGoWaVGo)* + cGVIW,LGy
+ oGWLV Gy — G(Wy + pv? — 020GV Gy — 20 Gv*V Gy
+ GVDGy + G(Wy — pv*)(GoVGoV GV GV Go)*

— 0G(Wy — pv Y GoWa(VGoVGo)* — oG(Wa — pv)(GoVGoWaVGo)*

i~

i~

+ GWGO + O'/JG’U4G0W2VG0 + va4(G0VG0VG0)*

NI AV VNV VWV NV VWV VWV V]

- pGU4 (Go VGO VGO VG())*

i~

=A+GB+GWGy— GWGHVGy (55)
where

A=Gy—GoVGo+ (GoVGoVGo)* — (GoVGoVGoVGo)* + oGoWaV Gy
+ (GoVGoVGoVGoVG)* — aGoWa(VGoVGo)*—a(GoVGoWaVGp)*
— Go(VGoVGoVGoVGoVGo)* + 0GoWa(VGoVGoVGo)*
+ 0Go(VGoVWLGoV Go)* 4+ 0Go(VGoVGoWaV Go)* — 20*Gov*V Gy
+ 0Go(VWy + W4V)Go + GoV DGy (5.6)

and

B =VGo(VGoVG VG VGV G — aVGoWa(VGoVGoVGo)*
— oV(GoVGoVIWLGoV Go)* — aVGo(VGoV GV WaGo)*
— oVGo(VWy 4+ W4V)Gy + 204 VGV Gy — VGoV DGy
+ (Wa — po")[(GoV GV GoVGoVGo)* — 0GoWa(V GV Go)*
—0Go(VGoVW2Go)*]
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+ p’l)4 [O’G()WQVGQ + (G()VG()VG())* — (G()VG()VG()VGQ)*} . (57)

Recall from §3 that
W = v? Mv?

where M is a convolution operator satisfying
|M(n,n')| < Cln —n/|~3(d=2)
and .
M(€) = -[e]* + 0(l€[).

Hence, we may factorize
M= M A

with
|My(n,n')| < Cln —n'|~@+2),

Write then

W =v2M(n—n/ W2 =viM(n —n') +v2M(n —n')(v2, —v

hence
W = ’U4M1A + P
with
K* 1 1 1
Pn,n)| < C -
|P(n,n')| Wga ‘n_n/|3(d—2) |n/|2a |n|2a

< Cﬁ4|n\_4a_1|n _ n/|—2(d—2).
From (5.9), (5.10), (5.11)
WGy = v* M, + PGy

satisfies

)

(5.10)

(5.11)

(5.12)

|(WGo)(n,n')| < Ck*(n|=*n—n'|~(FD) 4|~ (F1) |5 —p/|7(=2)) * (5.13)

Write
WGoVGo = v*MVGy + PGoV Gy

GWG,VGy = Guv*MVGy + GPGyV Gy

= G0’04M1VG0 — GVG0U4M1VGO + GPGyVGy. (514)

Rewrite (5.5) using (5.12), (5.14) as
G=A+GB

with

(5.15)
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A= A— G M VG (5.15")

and
B' = B +v'M; + PGo + VGov* MV Gy — PGoV Gy, (5.15")
We have
E, [|GoVuGo(n,n')|] < Ck(|n|™ + [n/|*)|n — /| 7472
and from (5.11)

E, [|PGoVGo(n,n)[] < CK® Z |04 — g |72 |y — |

< CRP[n|~ 04| — /| =002,

Also
E., [|(G0U4M1VWG0)(TL,TL/)H
< CK(Z [(Gov* My) (n, ny) 2| 2%y — n’|_2(d_2)> ’
" 1
<Ok (X = | D0y — |0 )
ny
< CRS(Jnl5% + /| — |42
hence

E, [|(VGov* M1V Go)(n,n)|] < CkS(|n|=% + |n/|70%)|n — n/| (@72,
Consequently
E,[|A'(n,n")|] < Cln —n/|74=2 (5.16)

and

E,[|B'(n,n')|] < C&(|n|~% + |n/|70%)|n — n/|7(4=2)
+ ”4|n|*4°“|n — n’|*(d+2) + K5|n|*(1+4a)|n o n’|*(d*2)
< Ckln — /|74 4 k(|n| =5 + /|~ |n — n| =2,

(5.17)

Thus (5.16), (5.17) correspond to the bounds (3.20), (3.22), except for the
first form in (5.17) which is harmless.
Rewriting (5.15) as
G=A01-B)"

the assumption o > % and estimates (5.16), (5.17) permit then again to

3
establish the bound
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|G(n,n")| < Cln —n/|~(@=2) (5.18)

(as in §3). .
To construct the extended state n of H = —A+V | proceed as in §4. Thus,
recalling the notation

Hy=-A+W, Gy=H)*
we rewrite (5.5) as

G=A1-WGy) ' +GB(1-WGy) ' —GWGVGo(1 —WG)™*
= A(-A)G) + GB(—A)G) — GW GV G|,
(

A(=A)Gy + GB(—=A)Gfy — Gv*MVGly — GPG\V G
= A(=A)G)—Gov* M1V Gy+G[B(—A)Gy+V Gov* M1V Gy —PGoV Gy .
(5.19)

From (4.10), (4.11), the extended state n of H is given by
n=C+ (G =Gy HiC =do+o(1) + (G — Go)HiC in £2°(Z%).
By (5.19)

(G — Go)HiC = (A = Go)(—A) — Gov* My V¢
+ G[B(~A) + VGov* M,V — PGoV ¢
=o(1) in ¢>=(z%).
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On Long-Time Behaviour of Solutions of
Linear Schrodinger Equations with Smooth
Time-Dependent Potential

J. Bourgain*

Institute for Advanced Study, Princeton, NJ 08540, USA bourgain@math.ias.edu

In what follows, the spatial dimension d is assumed d > 3. We consider
equations of the form
iug + Au+ V(z,t)u =0 (0.1)
where V' is bounded and sup, |V (¢)| compactly supported (or with rapid decay
for || = o00).
Further, appropriate smoothness assumptions on V' will be made.
The issues considered here are

(i) Decay estimates for t — oo
(i) Given u(0) € H*(R?), s > 0, the behaviour of
lw(@)||s for t — oo.

The first part of the paper deals with small potentials (in fact, (i) is only
addressed in this context). Results in a similar spirit may have been obtained
earlier.

The second and main part of the paper addresses (ii) for large potentials.
It turns out that the situation is roughly analogous as in the case of periodic
boundary conditions (see [B1], [B2]).

More precisely, assuming V' smooth (but, unlike in the case of periodic
be, only smoothness in the a-variable is involved). Then

lu()|l s < Celt] ||u(0)||zrs for alle >0 (0.2)

and the |t|*-factor cannot be removed.

1 Small Potentials

We prove the following

Proposition 1. Consider the equation
tuy + Au+ V(z,t)u =0 (d>3) (1.0)

where V is a complex potential (we do not use self-adjointness here) satisfying

* This note is mainly motivated from discussions with I. Rodnianski and W. Schlag
and their forthcoming paper [R-S].

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 99-113, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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(1.1) sup |V (t)| is compactly supported or with rapid decay for |z| — oo
t

(1.2) sup ||V (¥)|l2 < v small (depending on assumption (1.1) and (1.3))
t

(13) sup [V < 1.

Then

(1.4) Assuming moreover sup, ||V (-,t)||g= < 7 for some s > % — 1, the usual
L' — L™ decay estimate holds

u(t)l|oe < Clt| % | (0)]14 (1.5)

(1.6) sup [Ju(t)l|2 < Cllu(0)l2
(1.7) Assume V' smooth (with uniform bounds in time). Then, for all s >0

sup [fu(t) |1+ < Csl[u(0)]] -

A. Denote ¢ = u(0).
It follows from (1.0) and Duhamel’s formula that

u(t) = 2o + z/ gltt-mA [u(T)V(T)]dT

where
itA

_4d
e lloo < CIE[™ 2 [lepl1-

Performing a Fourier decomposition in the z-variable, write

V=Vo+ >V (18)
j>1
where _ _
supp 7, V; C B(0,27%)\B(0,27)™). (1.9)

Estimate for ¢ > 0

H /Ot DA [u(r)V (7)) dr ’/Ot DAy (1) V()] dr

<
o

oo

Fix j and denote

| [ ete=2tutrvsmien

() F. denotes ‘Fourier transform’ in the z-variable.

(Sj =277,
Write

oo
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(" +/56 ' /5 I3 (0

= (1.10) 4+ (1.11) + (1.12)

From the assumption (1.4)

1V (®)ll2 < 2775V (#)]| e < Cy277°
17 V)], < C272(|V;(1)]]2 < Cy27 (5.

Recall also that

|[44(e<79)] ()] = |(4 ) (@ + 2¢8)].

€4 (e €4) oo = 4]

e Wi)lloo < [10]11 [le™20|oc-

From (1.14), (1.15)

(1.10) < 6; sup || A [u(r)V; ()]

0<7<I; At

<C’72j(%7571) sup ||ei(t*T)Au(T)||
OSTS(s]‘/\t

oo

o0

t—éj "
(1.11) < c/ 1t — 7~ 4 |u(r)V; ()| dr-
d;

Since (1.1), we may ensure that V; satisfies also

Vi (Tl < Cy277%.

. t—(Sj
(117) < Cy2—3 / 6 =72 ffu(r) | odr
9
_iscl—2 _d d
<Cy277%6; 272 sup (72 [|u(7)lloo)
0<r<t

< Cy277CH=DE 5 sup (75 |[u(1)]|oo)-
0<r<t

Again from (1.14), (1.15)

(L12)<4; sup [ [umV;]|

t—8; <7<t

<C72j(g_s_1) sup Hei(t_T)Au(T)H
t75j<‘r§t

oo

oo’

101

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)
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Collecting estimates (1.16), (1.19), (1.20), it follows
t72|lu(t)]|o < Cllglh + Csy sup (2] (7))
o<t<t
d
+ Csy sup (77 [Ju(7)s)- (1.21)
0<7<t
Consider the second term in (1.21). From Duhamel’s formula, we get also
‘6i(t7'r)Au(7_)| < |eitA<p| + ‘/ ei(tfq—/)A[u(T/)V(T/)}dT/
0
t
< |eitA<p| +/ |ei(t7~r’)A [U,(T/)V(T/)] |d7‘l
0
and the last term may be estimated as before.

Therefore, also

sup [t92]|e Ay ()]0 < (1.21)
0<r<t

implying for v small enough

sup tﬂl/Q||ei<t*T>Au(T)||oo < Cl¢|:. (1.22)
0<r<t

In particular (1.5) holds.

B. We will need the following
Lemma 2.1. For d > 2
H it

Allpzzs < Cligla (22

Proof. From the local smoothing inequality

HDi/2eltA@HLf2LE loc S C”QOHQ (23)
Thus it suffices to prove (2.2) for supp ¢ C B(0, 1).
Write
1
eitAgO(l‘) _ /@(g)ei(m.ﬁﬂ\&\ )df N/ |:/ @(T.C)eirmcjrdfldc e dr.
0 Sd—1

(2.4)
Make change of variable s = 2. We obtain

/01 [/Sdl .-~:|eits\}§d5-
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Take L?-norm and apply Parseval. We get the bound

[/01|...|2id8r/2 = {/01| |2idrr/2. (2.5)

Estimate pointwise in x

/ @(r@ei%“dc’ < [ / ¢<r<>d<]
Sd—1 gd—1

1/2
<| [, weopa]

1 1/2
5) < { /0 /S . |g5(7"§)|2.r2d3d§dr}

< { /0 1 /S |¢<r<>|2rd—1dpd<] Pz

= [1§ll2-

Hence

This proves Lemma 2.1.
We now prove (1.6) of Proposition 1.
Assume ¢ € L2, From Duhamel’s formula and (2.2)

”uHLfLi(IDC)
4 t 24 1/2
< ||eztAQ0||L%L21 . —‘y—{/dt‘ H/ ez(t—T)A[u(T)V(T)}dT }
s 0 Li(loc)
t—0 ) t
<o+ | [ et v x| [ e
0 L2Lg t—6  llr2rz
Second term in (2.6) is bounded by
t—9o
H/ 6= | fu(r)V ()] ndr
LZ
t—o
< H [t e, | ey a2)
_d
<o [T6 = ol ar
0 ‘ L?
< C(s’yHuHLsz (d>3). (2.7)

x,loc

Third term in (2.6) is bounded by
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H/ |l (r HdeT

From (2.6), (2.7), (2.8), it follows that

<V||OOH / ()l o dr
L? L?

< Cidllullzrz - (2.8)

lullzzrz, . < Cliell: (2.9)

x,loc

Next, estimate

lu(®ll2 < el + H / D () (r)ar

2

and second term using duality by

/;/"ZMWU(T)I |V (7)|dzdr

<o / Il u(ollgz, dr  (where [[g]l2 = 1)
0

< OO lallells (by (2:2) and (2.9))

< Cllgll..

This proves (1.6).

C. Assume V smooth (a more restricted assumption is easily derived from
what follows).

We prove (1.7) of Proposition 1.

Take s =1 (the general case is similar).

Thus
g+ Au+Vu=0
implying
i(Dyu)y + A(Dyu) + VDyu+ (D, V)u = 0. (3.1)
Hence

() (B e

Since the proof of (1.6) extends to the vector valued case (and does not use
self-adjointness), (3.2) implies

[u(®)ll2 + [ Deu(t)]l2 < C([u(0)l2 + | Dru(0)]2)

thus
[u@) ||z < Cllu(0)]| g

This proves Proposition 1.
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2 Large Smooth Potentials

We still assume d > 3. The following statement establishes a growth estimate
for higher Sobolev norms.

Proposition 2. Consider the equation
iug + Au+ V(z, t)u=0

where V' is real, bounded, and sup |V (t)| compactly supported (or with rapid
decay for |x| = o00). (No smallness assumption).

Assume /
sup | DSV (#)]| . < Cy for all s (4.1)
t

Then
lu(®)]|gs < Celt)® [[u(0)]|m- for all e > 0. (4.2)

Remark. No smoothness assumption in ¢ is made; similar statement under
less restrictive assumptions than (4.1) result from the argument below.

Proof. Define
1A = infr=r, v po (1f2ll2 + [l f2lloo)- (4.3)
Assume ¢ = u(0) € H'.
We first make an estimate on || Dyu(t)]|.
From Duhamel’s formula

t—A
IDsu(t)] < ¢4 Dyglla + H IAD, u(r)V ()]

oo

H/ DAD, [u(r)V ()l

< el + (4.4) +

2

t—A
_4d
(4.4) < / [t — =% [| Dou(r)V (D)1 + lfu(r) - DV (7)) dr
t—A B
< [ b= A OID ) g, +Clutr) o]
< A S sup | Dou(n)l] + Cllele. (4.6)
To estimate (4.5), take ¢ € L2, ||1)]|2 = 1 and write

/t . / |DY2[e™8y)| |DY? [u(r)V ()] |dedr

< AP ez, s, 1P VO,
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1/2
< CAV ()3 (Ju(®) 2 + sup 1D,u(r)l) (4.7)

(using (2.3) and interpolation).
Thus from (4.6), (4.7)

_d
IDsu()ll < llells +CAYVZ o)l + CA' sup [|Dzu(7)]

1/2
+ CAY2 ]y [sup Do) ] . (48)

This implies by appropriate choice of A that

sup | Dau(t)] < Cllllz- (4.9)

Similarly, one establishes that

sup IDE u()l < Cslipl s (4.10)

Next, estimate

()l < ol + / V)] |,y dr
< el + tsup lu(r)V (D)l

< lellms +tCs(V) Sup IDS u(r)]
s'<s
< Cs(V)tlellae (4.11)
by (4.10).
Thus the linear flow map S; : H® — H* has a norm bounded by C(V).t.

For s =0, S; is unitary.
By interpolation, we get for given s > 0 and s; > s large

s

||St||H5—>H5 < [Csl (V)t] o1,
Hence, since V' is assumed smooth
lu(@) |l < Co(V)t||@||m= for all € > 0.

This proves Proposition 2.

3 An Example

The factor T¢ in (4.2) is necessary. To exhibit such growth phenomenon, we
need presence of bound states. Thus first consider —A + v(z) = Hp with a
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bound state ¢ and next certain time dependent perturbations Hy + eV (z, t).
Rather than defining Hy as above, let

Hy=-A-P (5.0)
where P is a real and smooth Fourier multiplier s.t.
supp P C B(0,2) and P(€) = |¢|? for |¢] < 1. (5.1)

Let then 0 < ¢ < 1 be a rapidly decaying function such that supp ¢ C B(0,1).
Thus from (5.0), (5.1)
Hyp =0. (5.2)

This alternative construction will avoid certain technical difficulties, since the
spectral projections related to Hy are now simply Fourier multipliers.
Let d = 3.

(ii) Fix large time T'. Let N be a large number and &, = Ne; € R3.

Let V = V(x,t) be real and satisfying supp F,V C B(&y, 1) U B(—&p,1)
(to be specified later).

Let 0 <1 <1 be a bumpfunction with rapid decay for || — oo such that

supp# C B(0,1) (5.3)
V1 decays rapidly for |z| — oo. (5.4)

Consider the linear Schrodinger equation

ug — (A+Plu+eVnu=0for 0 <t <T (5.5)
with datum
u(0) = .
Write
u=p+U

with U satisfying, by (5.2)

iUy — (A+ P)U+eVnp+eVnU =0 (5.6)
U(0) =0. ’
Denote @ a smooth Fourier multiplier such that
. . N A N
QO =0if ¢ < 5 and Q) =1 for |¢] > (5.7)
10°Q| < CN~lel, (5.8)

(iii) From Duhamel’s formula and (5.6)
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T .
U = ie/ e (T=7)Ho [V(T)ngp + V(T)nU(T)]dT. (5.9)
0
From the local smoothing inequality and (5.1), (5.4), (5.7)

T
£ /O T Qv (1)U (1)] dr

L2

3

T
/Oei(TfT)AQ[V(T)nU(T)]dT

L2

€N_1/2

IN

[ e manye i)
0

CeN~YV2TV2 sup |U(7)| 12 -
T<T

L2

IN

(5.10)

loc

We estimate sup, . [|U(7)| 22 -
From (5.9)

T .
QU =e / e T=DAQV (7)u(r)) dr

2
loc

T-1
gs{/ [’ T=AQ[V ()nu(r)] || L dr

0

T
+/ Hei(T_T)AQ[V(T)nu(T)] ||2d7}

T-1

T-1
<cef [0 = vl + sup )l |
0 TS

< Cesup ||u(1)]]2 < Ce. (5.11)
<T
Also, since V(m)ne = Q[V (T)n¢]

(1= QU =ie [ T - Q)V(rn(@QU(r)]dr

0
(I = QU(T)|]2 < eT'sup [V(r)n(QU (™)),

< CeT sup [|[QU(T)| 12,
<<T i
< Ce*T (5.12)
by (5.11).
Estimating [[U(7)|[2 < [[QU(T)|lrz_ + (I = QU(7)|2, (5.11), (5.12)

imply
sup [U(7)[|z2 < Cle +£°T). (5.13)
T<T o



Long-Time Behaviour of Solutions of Linear Schrodinger Equations 109

Substitution in (5.10) gives therefore

< CEANTV2TV2(14eT).  (5.14)
2

3

T
/0 e (T—7)Ho Q [V (T)?]U(T)] dr

Consider next

T T
‘ / e (T=7)Ho [V(T)mp] dr|| = H / eiTA [V(T)ng@] dr (5.15)
0 2 0 2
Define
p1(x) = e"p(x) (5.16)
v=go= > we T4y
JEL
LNT<j<NT
where {w;}jez are independent Bernoulli variables. (5.17)
Write
—is ix —i 25 4
(o2 na)| =| [emersocone g
. 27
— ‘/ eil(@—2580)&—s[¢] ]Sﬁ(f)df'- (5.18)
l€l<1
Since for [¢] < 1
|06 [(z — 25€0)€ — sI€[*]| > |z — 2s&o| — 2[s]
it follows that (for a large constant C')
|(67iSA<p1)(x)| <z — 25807 if |z — 2s&| > 10|s]. (5.19)
Define ‘ ‘
V(x,t) = Re(e"24) or V(z,t) = Im (e"44)). (5.20)
Tt follows from (5.17) that
Eu[[9wllz] ~ (NT)Y? |12
and we may thus assume
1]l < C(NT)Y2. (5:21)
Next 4 ' _
e (@) < Y0 (TR A ()] (5.22)

JEZ
j~NT
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If |z| < 3|t — & |N, (5.19) implies that
|(ei(t7%)A<p1)($)| < |Nt—j\7c,
If x| > 3t — %|N, then
In(z)| < [Nt —j]7¢.

Hence )
i(t— L S\ — —
(/2| < (1+ [Nt =)~ (1 + |2) =€, (5.23)

Thus from (5.20), (5.22), (5.23)

V(, tyn(x)] <Y (14 INt=j)~C(1+ 2" <O +]a))~C (5.24)
JEL

Returning to (5.15), we get by (5.21) and appropriate choice in (5.20)

(5.15) H/ —TAV (T)npldr

o(NT)~1/? / / |e”%\ ne (5.25)

—c(NT)_l/Q/O /

Averaging over w, we get a lower bound

i i(T—%)AQDl

J+1
(NT)=H2 / dT/dx|e” )05 2. (5.26)
YA
NTJ<]<NT

It follows from (5.18) that for |7 — 4| < 1555

2] o2 - L)) el =

Therefore clearly

1/2
(5.15), (5.25) > ¢(NT)~ 1/2NT100N/W < ) . (5.27)

Collecting estimates (5.14), (5.27) it follows from (5.9) that

1QU(T)||2 > ce<f,> v — C¢? (ﬁ) 1/2(1 + 7). (5.28)
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Choosing T ~ £72, (5.28) implies
1Qu(T) |2 = |QU(T)||2 > CN~/2. (5.29)

Let s1 be an arbitrary large (fixed) exponent.
In order for eVn to satisfy a bound

eV (r)nllgs: ~eN <1 (5.30)
take ¢ = N 7%, hence we have
T ~ N281
and, from (5.29), for s > 3
u(T) || g > T or . (5.31)

The construction described above provides thus arbitrary smooth time-

dependent potentials eV (7)n for which (5.5) admits a solution u, supp u(0) C
B(0,1) and satisfying (5.31) for some (fixed) large time T'.

(iv) To obtain a “full counter-example”, we will glue constructions as per-
formed above on disjoint time intervals.
Thus define a potential

W(‘Tat) = Z&"Xr(t)vr(x’t)n(z) (532)

where y, are localizing to disjoint time intervals [Z=, T;] (take x, smooth),

1
T, increases rapidly, €, = Tfl/ 2, N, =Ty and V, introduced as above.
Thus (letting s; = r in the preceding), we may insure

105 (e Vo[ + (1057 (e V)| < 27 for [, B < 7.
Therefore, we get clearly Vo, 8

sup 08 W| < Cup. (5.33)

Moreover sup, |W (x,t)| decreases rapidly for |z| — oo, cf. (5.24).
Fix r and consider the initial value problem on [2T;._1, T

iug — (A+Plu+Wu=0
u(t=2T,_1) =

or, equivalently
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iug — (A4+ Plu+e.Vinu=0
u(t=3T,) =¢

Then we have by (5.31)

(T e > T (5.34)

(Choose s > + a fixed exponent.)
Denote S(t,t') the flow map associated to i0; — (A + P) + W.
Reformulating the preceding

2s5—1

15(0,T;)S(0, 2T 1) " ol s = ||ISTv—1, Ty @l s > T . (5.35)
Define
=Y o1, 50,270 1) Ly (5.36)
r>2

where 0, = £1 to be specified.
By crude estimate, we obtain for any s’ > 0 that

_2s—1 _2s—1
11 e <D T 2 [[S(0,2T,1) 'l ygor <D T > B(T,1,8') < Co,

for T chosen sufficiently rapidly increasing.
Also

2s5—1
> o, e 5(0,T,)5(0,2T—1) "L

r'<r

150, )@l s >

2s5—1
+0,.T. > S(0,T,)5(0, 2T,._1)—1<pH
HS

2s5—1 1

=Y T, B(Ty_1,5). (5.37)

r’'>r

We may, assuming o, 1" < r, obtained, choose o, s.t. the first term in (5.37)
2s—1
is at least T, e (5.35) > T, . Hence

2s5—1

1500, )@l e > T — 1.

The conclusion is therefore

Proposition 3. Let d = 3 and denote v(t) any increasing function s.t.

log(t) _
m =
r—oo  logt

There is a linear Schrodinger equation IVP
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iug — (A+ Plu+ W(z,t)u =0,u(0) =@ € mHS/

with P as above, W real and

sup \85(60‘)8,5(@W| < Cap Vo,
x,t

sup |W (t)| with fast decay for |z| — oo
¢
and such that for s > %

i M@l _
oo A(t)
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On the Isotropy-Constant Problem for
“PSI-2”-Bodies

J. Bourgain

Institute for Advanced Study, Princeton, NJ 08540, USA bourgain@math.ias.edu

1 Introduction and Statement of the Result

Assume K is a convex symmetric body in R", Vol, K = V,,(K) = 1. Assume
further that K is in an isotropic position, i.e.

/ ximjdx = LKéij (1 S i,j S 77,)
K

It is known that Ly is bounded from below by a universal constant and, at
this point, still an open problem whether Lk admits a universal upperbound
(thus independent of K and the dimension n). This problem has several
geometric reformulations. To mention one (the “high-dimensional” version
of the Busemann—Petty problem): Does every convex symmetric body in
R™, V,(K) = 1, admit a co-dimension-one section K N H (H-hyperplane)
satisfying
anl(K N H) >c

with ¢ > 0 a universal constant?
Presently, the best (general) upperbound for Ly is

Ly < Cn*/*(logn) (1.1)

obtained in [Bo]. The present note is a direct outgrowth of the argument in
[Bo]. A key ingredient in the proof of (1.1) is indeed inequalities of the form

{2, )Ml vz (i) < Al )Ml L2 (k) (1.2)

valid for all linear forms (-, £) considered as functions on K, V,,(K) = 1. Here
L¥a(K),v,(t) = " — 1, refers to the usual Orlicz-spaces on K,dx. Recall
that in general, there is the weaker inequality

1€z, )M Lor (1) < Cll{@, E) 22 (k) (1.3)

with ¢ an absolute constant (see [Bo], which contains also similar results for
polynomials of bounded degree).

Definition. We say that K is a “by-body” if the linear forms restricted to
K satisfy (1.2) for some constant A.

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 114-121, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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Theorem.
Lg < C(A) (14)

More precisely

Lk < C.Alog(l+ A). (1.5)

Remark. According to a recent result of Barthe and Koldobsky [B-K], the
04-balls (2 < g < 00), normalized in measure, are ¥o-bodies.

In the next section, we prove the Theorem. We will first prove (1.4) and
then, with some extra care, (1.5). The argument relies on probabilistic results,
such as Talagrand’s majorizing measure and its consequences for subgaussian
processes and also “standard” facts and methods from the “Geometry of
Banach Spaces” for which the reader is referred to [Pi].

Acknowledgement. The author is grateful to V. Milman and especially A. Gi-
annopoulos for comments.

2 Proof of the Theorem

Assume K,V (K) = 1, in an isomorphic position and satisfying (1.2) (invari-
ant under affine transformation). Denote L by L and let C stand for various
constants.

(i) Assumption (1.2) implies the following fact.
Let || || be any norm on R™ and {g¢;|i = 1,...,n} independent normalized
Gaussians. Let {v;|i = 1,...,n} be arbitrary vectors in R™. Then

ﬁ/ iazivi deC/ igi(w)vi
L Jk i i=1

Some comments about this inequality. Denote T' = {t € R"|||¢||. < 1}, where
Il |« is the norm dual to || ||. Consider the process

dw. (2.1)

n

Xolw) = Y = (vit)

i=1

satisfying, by (4.3) and the fact that K is in an isotropic position,

p = (zn: |(vi, t — t’>|2>1/25 d(t,t").

K i=1
(2.2)
Thus (2.2) means that (X;) is subgaussian wrt the pseudo-metric d on 7. We
then combine the majorizing measure theorems of Preston [Prl],[Pr2] (see
also [Fe]) and Talagrand [T] to get

n

3 %(vi,t —t)

i=1

| Xt — Xerll wa (i) <
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/ sup | X;| < C / sup Y| (2.3)
K teT teT

with Y; the Gaussian process
Yiw) =Y gi(w)(vi, 1)
i=1

(see [L-T], Theorem 12.16). Clearly (2.1) is equivalent to (2.3).
(if) We replace K by
Ki=Kn[z] < CoLy/n] (2.4)

where Cy is a sufficiently large constant (see also the remarks in the next
section).
In particular

Vol K; ~ 1
and for || =1

/K (2, €)Pdx > /K [, )P — ([, )2y V (K1) Y2
> L2 — CL*V(K\K,)Y? > %LQ (2.5)

(we do use here the equivalence of all moments for linear functionals on K —a
consequence of (1.3)).

Denote by || || the norm induced on R™ by K; and || ||« its dual. Thus
from (2.4)

1
>
Il > gl
Izl < CoLv/m|zl. (2.6)

(iii) With the above notations, we prove the following fact

Lemma. Let E be a subspace of R, dim E > 5 such that
ol > pLy/mla| for z € E. (2.7)

Then, for 0 <§ < %, there is a subspace F' of E satisfying
dimF > (1 —-¢§)dim FE (2.8)

and

1\ 'L
|z« > 052(10g p> Z\/ﬁ|w| for x € F. (2.9)
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Proof. Tt follows from (2.6), (2.7) that the Euclidean distance
dp, ). < Cap™".

Thus, considering the ¢-ellipsoid of E, || ||, we obtain (cf. [Pi] for instance)

/ i:;/\igi(w)ei
/ évmw)ei

Here m = dim F, (e;)1<i<m is an appropriate 0B in E and Ay < Ay < -+ <
Am

S (1og i)m (2.10)

<cC. (2.11)

(B 1)

We first exploit (2.11). Fix 0 < € < 1. From the M,-lower bound, there
is a subspace Fp of F,
dimE; > (1 —e)m (2.12)

such that

1/2
|||« > 651/2\/%<Z/\;2x3) for x € Fj. (2.13)

Thus we use here the “M,-result” (see again [Pi]) to a subspace of R™, || ||..
Next, we use (2.10) together with (2.1) (which remains obviously true
with K replaced by K3). Thus, letting in (2.1) || || = || ||« and v; = ey, it
X
Ai—-€;
D Ne

follows that
/Ir(l i=1
L x? C
— ; ; = < (log — | A 2.14
e S R

where we also use (2.5).
From (2.14), (2.13)

m

dr < <log C)Am
* p

A c
)\(175)m S =L (log p>
1/2

-1
|z > c£53/2<10g g) \/E(Zig(l—e)m :1722) for z € .

Restrict further x to the space E2 = E1 Ne;|i < (1 —e)m)]. Then
dim By > (1 —2¢)m

and for x € Fy

1
1 L
|z > 063/2<10g p) Z\/ﬁ|x| (2.15)
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Thus let € ~ §, F = E5 and (2.15) gives (2.9). This proves the Lemma.
(iii) Notice that (2.5) implies in particular that for |{] =1

L
\[

so that for Ey = R", (2.7) holds with p = pg ~ ﬁ We then perform the

[1€ll+ >

“usual” flag construction
EoDElDEQD"‘DESDEs_HD"'

of subspaces E,, dim Ey = mg > %n, using the Lemma.

Assume
llz||« > psLy/n|z| for z € E,. (2.16)

Take 6,41 = (log pi)_z, so that by (2.8)

. 1
dim Es-‘,—l = Ms41 > <1 - (10g1)2>m9 (217)
and, by (2.9)
1\ _,
Ps+1 ™~ log ; AT (218)

It follows from (2.17), (2.18) that then, assuming p,_; < A2

dim E, > {H (1 - (logll)Q)]n

s'<s Pgr
2
> (1-— )n
< (log 1 )?
hence
> (1-C(Aps)'®)n. (2.19)

Regarding volume, we get (cf. [Pi])

( ) (by reverse Santalo inequality) (2.20)
V(KYNE,) <V(KYNE.)- V(Pgs, g, (K{ N Ey)). (2.21)

Since by (2.16)
K{NnE,C psLl\/ﬁB (2.22)

(B= Euclidean ball),
we get
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c s—Msq1
P L (KN E, . 2.2
V(Pp,npz, (KT N >><<psLﬁm) 22

By iteration of (2.21) and (2.22), (2.23)

V(KD) < V(K)NE) [[ V(Ps, ey (KY N Eo 1))

s'<s

ms Mgr_1—Mgr
< C H C
~ \ psLn e ps—1L\/my/Mg—_1 — My

my n n(logp,t )72
<G) ) IG=)
Ps Ln s \Ps'=1

mo_ g —my

{5 > 2
§'<s Mg —1 — My

L\N™/C\"
— — 2.24
() (@) o2
where we also used (2.17),(2.18).

We have chosen s such that p ~ ¢(A), ms > 5 (cf. (2.19)).
Finally, from (2.20), (2.24)

L<Cps ™ <C(A)
proving part (1.4) of the Theorem.

(iv) Finally, we prove the Theorem in the more precise form (1.5). The con-
struction in (iii) terminates at s such that p, > A~2. Inequalities (2.20),
(2.24) clearly imply

C n 1 n—mesg
bl KenENC™[ —
<n> <V(K{NE)C (Ln)
V(KY N Es) > c"n~ M L™, (2.25)

Take then in the lemma E = E,,m = mg, p = ps > A2
It follows from (2.11) and Sudakov’s inequality that

V(B,.) U m

and from (2.25), (2.26)
< e I

hence



120 J. Bourgain

1 nem
— A >cL m .
n
Substituting this last inequality in (2.14) then indeed gives
L<Lw < Alog(l+ A).

This proves the Theorem.

3 Remarks

(1) A. Giannopoulos [G] kindly pointed out to the author that if K is a -
body, then K is in fact already contained in a ball of radius CAL\/n and
hence, by the Theorem, in a ball of radius CA%log A\/n (in particular, K°
has finite volume ratio). We repeat his argument.

As a consequence of the log-concavity of the section function, we have

1€l e < [z, )l (x)-
Hence, if K satisfies (1.2)
1€l e < CV/RALIE]. (3.1)

Thus, if we don’t care about the final estimate C(A) in (1.4), replacement of
K by K; in the proof of the Theorem is unnecessary.

(2) Observe also that we only used the bound
1z; )Ml Loz (16,) < ALIE] (3-2)

with K defined as above. Writing for |§| < 1 and = € K,

[z, &)l <CvnL  (by (1.4))

[ {58 i [ ot

(3.2) therefore holds with A ~ n'/* (without further assumptions).
The general bound (1.1) is then implied by (1.5).
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To mark the 70th birthday of my
dear teacher M.Z. Solomyak

Let ug,us,...,uy € S""! be a sequence of N unit vectors. A body V =
V(u,...,uy) is defined as follows:
V= {)\1U1+)\2’U,2+"'+>\N’LLN : |>\z‘ §17i:1,...,N} . (1)

In geometric language the body V is the Minkowski sum of N intervals with
endpoints +u; correspondingly. The main purpose of this note is to investigate
the order of the aspherical constant d(V') of the body V (uq,...,uy) for an
optimal choice of vectors uq, ..., uy. Let us recall that the aspherical constant
d(V) of a central symmetric body V is defined as follows

cl(‘/):inf{]j:rDCVCRD}7

where D C R" is the unit Euclidean ball. The optimal value of d(V (u,...,
un)), which will be denoted by d,, n, describes the rate of approximation of
the Euclidean ball by zonotopes. The quantity d, n was studied by many
authors, especially for the case N/n — oo (see [FLM], [BeMc]|, [BLM]). The
problem of the precise bounds of d,, i for all IV, n was in particular discussed
by Milman [M]. To answer his question, we prove the following result.

Proposition 1. Let n, N be some integers with n < N. Then for some
universal constant C > 0, the following inequality holds:

1 . N N
Cmm{\/ﬁ,lJr\/N_nlogN_n}
inf d(V(ui,... un))

<
(u1,..,un)€(Sm=HN

N N
< i 1 1 .
_C’mln{\/ﬁ, —I—\/NnogNn}

It is not surprising that the order of d, n coincides with one of vV N
times (N — n)-Kolmogorov width of an N-dimensional Euclidean ball with
respect to an £, metric provided N < 2n. The close connection between these

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 122-130, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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problems is rather well known, but we do not know any explicit treatment
of the relation between both problems. The main part of the paper presents
some improvement of the [GG] arguments, which immediately leads to the
proof of Theorem 1. Incidentally, a new bound of the Kolmogorov numbers is
obtained for some class of linear operators. For the convenience of the reader
who isn’t familiar with the widths, we mostly avoid using the width theory
terminology.

At the end of the paper, we consider the sums of the intervals of the
different lengths. It turns out that the same bounds as in Proposition 1 hold
true in this general situation (see Proposition 4 and the Remark following
it).

We use the following notation: [a] is an integral part of number a, (7)) =
n,(#ln), is a binomial coefficient, [1 : N] stands for the set of all integers
between 1 and N.

The standard basis of RV will be denoted by (e;). As usual, we do not
notate the dimension of the space but use the same symbol (e;) to denote the
bases of the different Euclidean spaces. The coordinates of a vector z € RY
will be denoted by z; or by x(i). SN¥~! is the unit sphere of R, while y is a
normalized Lebesgue measure on it.

For z € RN, we define as usual ||z||, = (Zi\; |l2:[P)V/P, for 1 < p < oo
and ||z]loc = maxY, |z;]. £) stands for RY occupied with the norm || - ||,.
The unit ball of a Banach space X is denoted by Bx. Let B be a subset of
finite dimensional normed space X and L C X be some linear subspace of
X. The deviation of B from L is defined as follows:

px(B,L) =sup inf ||z -yl .
zeB YEL

Using the Hahn-Banach theorem, it is not difficult to see that!

px(B,L) = sup | fllso, (2)
fELLNBxx

where L+ = {f € X* : f|; = 0} is the annihilator of L and the seminorm
Il - lgo is defined by

[ fllgo = sup | f(x)] .
zeB

For a linear operator T : R" — R we denote by a(T) and 3(T) the following
quantities:

1
o(T)= swp |[TEl, BT)= swp oo
gesn—t gesn—t || 5”1
Certainly «(T) is the norm of the operator T from (% to /. Note that by
duality, one can compute the aspheric constant of a body V', symmetric with
respect to the origin, as follows:

3)

! This duality relation is a very important tool in width theory (see e.g. [I],[ST]).
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SUP¢egn—1 SUPg ey |(x,8)]
infeegn-1sup ey (7, 6)

(V) =

So, if V' is given by (1) and linear operator T is defined by T*e; = u;, then
d(V) = a(T)B(T) . (4)
Therefore, Proposition 1 follows immediately from the next three statements.

Lemma 1. For any integer n and N and for any linear operator T : R™ —
RY, the following inequality holds

N
1
T > —— T*¢lls .
)2 3= YTl

Lemma 2. For any integer n and N s.t. n < N < gn and for any linear

operator T : R® — RN s.t. [|[T*e;lla = 1 fori = 1,..., N, the following
inequality holds

B(T) > C) {min{l,\/Nl_nlog (N]in) +1}} :

where C1 1s a universal constant.

Proposition 2. For any integer n and N, n < N < 4n/3, there exists a
linear operator T : R™ — RN s.t. |T*e;l|la =1 fori=1,...,N and

a(p(r) < min { Vi oy 2 tog

where Cqy is a universal constant.

Remark. Lemma 1 as well as Proposition 2 are well known to experts. For
the convenience of the reader, we present their proofs below.

Proof of Proposition 1. Due to equality (4) and Lemmas 1 and 2, the left-
hand inequality holds for N < 6n/5. But for N > 6n/5 it is reduced to the
inequality d(V)) > 1, which holds for any V. By (4) and Proposition 2, the
right-hand inequality holds for N < 4n/3. To complete the proof, it is enough
to observe that d, ; < 2d, n for any £ > N. Indeed this inequality follows
immediately from the definitions for £ < 2N and we conclude by applying
the inequality d,, on < din, N O

Proof of Lemma 1. Recall that for any vector v € R™ one has (see e.g. (2.15)
of [FLM])

_ s D3 [l

T Vm D) T 2y

/ | <€ > [du(€)
Sn—1
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It follows that

ofr) = sw |17eh > [ ITehdn(o

gesn-1

N
s Jterelaue) Z 17 el -

i= 13"
O

For the proof of Lemma 2, we need the following elementary and fairly
well-known fact (see e.g. [GG], Lemma 1). For the reader’s convenience, we
reproduce here its proof.

Lemma 3. Let K be a subset of some Banach space X. Suppose that for
some positive € > 0, k > 0 and some integer k, the set K contains M > (24
k)E points x1,...,xm € K, s.t. ||z — xj|| > 4e, for anyi#j, 1 <i,j <M,
and ||z;|| < ke for any i, 1 <1i < M. Then for any k-dimensional subspace
L C X one has

px(K,L)>¢.

Proof. On the contrary, suppose that there exists a subspace L with

log | M|

dimL =k < ———
H < log(2 + k)

st. px(K,L)<e¢

Then for i = 1,..., M there exists y; € L s.t. ||y; — x;|| < e. We have
lyill < llyi — @l + [zl < A+ K)e
On the other hand, for i # j
lyi = yill = @i = @5l = [z — il — [l — g1l > 2¢

So the union of balls y; + e(Bx N L) is disjoint and is contained in the set
(24 k)e(Bx NL). A comparison of volumes leads to the following inequality

M

Mt = uBimL)1<U v+ e(Bx 1))

L ol(2 4 r)e(Bx N L)) = (2 + m)Feh

< - -
= vol(Bx N L)

which contradicts the condition M > (2 + &)*. O

Remark. Certainly the last part of the proof is a well-known Kolmogorov
volumetric bound for e-entropy of the ball ([KT], see also [N]).
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Proof of Lemma 2. Let us observe that by (2), one has

I e PR
5(T) = sup - pé& (Vv( mT) ) ) (5)
zelmT ||LU||1
where V = {f : |T* f||2 < 1} and (ImT)" is the orthogonal complement of
the image of operator T'. By the parallelogram law, for any set A of integers
A C[1:N] one has

1 *
M Z H Z{:‘iT €;
g,i=x1 €A

(the outer sum here is taken over all 214l possible choices of the signs). There-
fore, for any A C [1: N] there exists a vector z4 € RV, s.t.

2
= Yo IT s = |A]
i€A

lza(i)|=1fori € A, |xa(i)|=0fori¢ Aand [T zal2 < V|4] .

The last inequality means that |A|~'/?24 € V. Set k = N —n and let £ be a
minimal integer satisfying
gk < (ﬁ)z
— 3k )
that is, £ = 1 + [3klog2/log(N/3k)]. The condition N < 6n/5 implies an
inequality k < N/6. Therefore, £ < 3k < N/2. Hence the following inequality

holds ,
es ()< ()

It follows that the family of the vectors |A|~/2x 4, where A runs over all
subsets of [1 : N] with ¢ elements, satisfies all conditions of Lemma 3 with

X=0, e=1/4Vl, k=4, k=N-n
and M = (4). Consequently for any subspace, L C (N of dimension k, one
has 12
1 1/ 13klog2 B
V,D)> —— = - [ } + 1) :
pavnz = ([

In particular, the last inequality holds for L = (ImT)* and we conclude by
Eq. (5). O

In fact the proof of Lemma 2 leads to some result on the Kolmogorov
width. To formulate it, let us recall that for a given normed space X, a
natural number n and 1 < p < 2, the constant T},(X,n) is the smallest T

such that (see e.g. [MS], n. 9)
2\ 1/2 n 1/p
)= le)
i=1

1 n
(7 X [

Ei:il
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for all z1,...,2, € X (the first sum here is taken over all 2" possible choices
of signs).

Recall that for a given subset K of a normed space Y, the n-Kolmogorov
width d,,(K,Y) is defined as follows:

dn(K,Y) = inf px(K L),
dim L<n

where the inf is taken over a collection of all linear supspaces L C Y of
dimension dim L < n. Next for a linear operator S from R? to some normed
space X we denote by Kg C R? the following set

Kg = {xERd:HS;UHX <1}.

Proposition 3. Let S be a linear operator from R? to some normed space
X such that for at least N (N < d) indices i one has ||Se;||x < 1. Then for
any k < N/6 and any p, 1 < p <2, the following inequality holds

log X\ 1/p
dy s < . g &
dk(KS’KOO)*iTp(X,n) mln{l,( . ) },

log 2 }
log(35) "

where ¢ is some universal constant and n = 1+ [3k

We omit the proof of this proposition, which repeats that of Lemma 2.

Proof of Proposition 2. 1t is fairly well known that for ¥ < N/4 with some
universal constant c3, the following inequality holds:?

k
,u{m SRR Z |lz]? > 1/2} <e N

i=1

Next, as usual, O(N) stands for the group of all orthogonal operators in RY,
while vy (or just v) stands for a normalized Haar measure on O(N). For
W € O(N) we denote by w; € RV the jth column of the matrix W and by
(w;j) its entries. Note that when W runs on O(N), any of its rows runs on
SN=1 and the measure v on O(N) thus induces the measure 1 on SN ~1. Tt
follows that v{W € O(N): for any i, i = 1,...,N Z;-V:nﬂ lw;;|? < 1/2} >
1 — Ne~N_ For N large enough the last quantity is bigger than 1/2. Now,
it is known® that for some universal constant Cy, the v-measure W € O(N)
such that

2 This fact follows easily from the concentration measure phenomenon for the
sphere SN™! (see (2.6) of [FLM)]). Certainly it can be proven by direct compu-
tation (see e.g. [A])

3 This fact is proven in [G] [GG]. See also [Mk] for a simple proof and [GM] for
a general discussion of the problem. We also wish to mention here that [G] was
greatly influenced by Kashin’s work [K] and its dual exposition to Mityagin [Mit].
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n
15 sl
sup ];7 <min ¢ 1,Cy
60 | 2 g,
=

logNJXn 6
Non [ ©)

is exponentially close to 1 and in particular is bigger than 1/2 for N large
enough. So for N large enough there exists an operator W € O(N) satisfying
(6) and s.t. for any i, i =1,..., N,

n N 1
SlwglP=1- > \wz‘j|2>§~ (7)
j=1 j=nt1

Tt is quite easy to construct for any N an operator W € O(N), satistying (7)
only. For example, if N = 2k is even, one can use the operator given by the

matrix

1 (I, -1

Ala)
where I}, is the k x k unit matrix. It is clear that for bounded N any operator
W € O(N) satisfies (6), probably with a bigger constant. Thus, through a
correction of the constant Cy, one gets for any n and N < 4n/3 operators,
W € O(N), satisfying both (6) and (7). Now let S : R — RY be defined by
Se; = w;,i = 1,...,n, where W satisfies (6) and (7). Since the vectors w;
are orthonormal, we have a(S) < v/N. On the other hand, the inequality (6)
is equivalent to

1 N
<
ﬁ(S)_mln{l,C4\/N_nlogN_n}

while (7) means that

1 N .

Therefore operator T defined by

1

Trej=——
T 1S*ejllep

*
Sej,

gives the desired example. a

Proposition 4. Let T be a linear operator from R™ to RN with o(T) < 1.
Then

B(T) > cmin{\/ﬁ,l—l— \/N]inlog NN } ;

—-—n

where ¢ > 0 is some universal constant.
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Proof. Let us denote by v,(T) the Hilbert—Schmidt norm of the operator T"

N 1/2
2a(T) = (Z T) -
=1

It is well known that v2(T") < «(T). Indeed, by the parallelogram law,

1o(T) = <;V 3 T*(éeiei) z>1/2.

e;=+1

Then by duality
[T7z]l2 < (T) |2l

for all z € R and the inequality 72(T) < a(T) follows. So for T satisfying
a(T) < 1 there exists at least [N/2]+ 1 indices 4 such that ||T*¢;||2 < 1/2/N.
Applying Proposition 3 to the operator S = /N/2 T*, with d = N and
[N/2] 4+ 1 instead of N, one gets

log(%)
dy—n({f | T flla <1}, £Y) > ¢/N/2 min{ 1, % ,
-n
provided that N —n < N/12. Due to (5), the last inequality implies the
desired estimate for n > %N . Now it is enough to use the elementary bound

a(T) - B(T) > 1 to complete the proof for n < L N. O

Remarks. 1. By (4), Proposition 4 gives the desired bound for the aspherical
constant of the sum of N arbitrary length intervals.

2. Using the factorization theorem [Mau] instead of the inequality «(T) >
~2(T) permits the proof of Proposition 4 to be reduced to [GG]| directly.

Acknowledgement. 1 would like to take this opportunity to express my gratitude to
Vitali Milman for stimulating this work. I would also like to thank the referee for
his valuable remarks.
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Note on the Geometric-Arithmetic Mean
Inequality
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In this note, we put together a few observations in the reverse direction in
the classical geometric-arithmetic mean inequality which we will study in the
form:

n n 1/n
iZA?z(HAZ—) ;o Ai>0. (1)
1 1

We show that this inequality is, in fact, asymptotic equivalence with very high
probability and also in some other sense connected with the linear structure
of the vectors A = (A;) € R™. These observations are “standard” from the
point of view of the Asymptotic Theory of Normed Spaces but may be useful
for purely analytical purposes.

1. Let @ = (z;)7 € S"71, ie. Y7 27 = 1. Then (1) states

[Til) <L

P SV
We equip S"~! with the probability rotation invariant measure o(x).
Proposition 1. Prob{z € "' | (] |z:|)"/" < 6//n} < (CVO)™ for some
absolute constant C > 0. Say C = 1,6 suffices. (And therefore, the re-

verse geometric-arithmetic mean inequality holds for x € S~ (I] |zs))*/™ >
0/v/n =10 (137 22)1/2 with the probability above 1 — (CV0)".)

Proof. Let ¢ be a positive homogeneous degree « function on R™, i.e. p(tx) =
t%p(x), t > 0. Then for any continuous positive function f : R — R™, one
has

oo

[e@iahia= [remtpwyir [ plado.
R 0 resSn—1
Apply this formula to the functions p(z) = ([[} |=:|)? and f(r) = e /2,

Then a = np and we have

5 2|2 dx
/H|a:i|p6 Llel /2y = / H|x¢\p0n71
Sn—1

R™

o)
2
. O,n_l/rnJrnpflefr /er ,
0

2)
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where 0,,_1 denotes the Lebesgue measure of S7~1.
The last integral in (2) as well as the left hand one are easily expressed
in terms of I'-functions. So, we see that

p 2 F(ﬂ)”
z;| ) do(x) = =2
J (i) aoto) = 2
Sn—1
In particular, taking p = —1/2 and recalling that o,_; = % we obtain
2
g rE-"
=172 = |—1/2 _ 2/ . 4 1/4
Bgves ([Tt /%) = [ Tl /2doto) = 755 - 2 < (On¥/2y”
Snfl

for some absolute constant C' > 0 (one may take C' = \/1;(3134 ~ 1,593).

Therefore, probability

n—1 (12 (VP2 _ n—1 RV
P{xeS ‘ H\xl\ >< 7 ) PqzeS ‘ H|xl| < NG
< (cVor,
by the Chebyshev inequality.

2. Since the first investigations on Dvorezky’s Theorem (see [M] and the no-
tion of spectrum there), it has become a common fact in Asymptotic Theory
(see [FLM], [MS], [K]) that if some given functional on R™ has a sharp con-
centration then there also exists a subspace of proportional dimension 6n,
0 < 6 < 1, such that the restriction of this functional on its unit sphere is
almost a constant.

However, interestingly and obviously, it is not so for the geometric mean.
Indeed, if a subspace L C R™ has dimension dim L > 2 then there is = €
LN S™ ! such that at least one of its coordinates z; is zero and [} |z;| = 0.

To avoid this obstacle one can consider a slightly different functional

o) = o VE(TT0) Q

where as usual (z})!; is a non-increasing rearrangement of the sequence
(Jxi)Pq, i.e., say, 7 = max |z;|. Note that inequality (1) means that

(@) < lzlle, = /D laal?

and we are studying its reverse.
The functional ¢ is known to be equivalent to weak ¢5-norm
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1 k
Il 3= g —= 3 St
=1

=

and more precisely
o) < llzlley o < 20(2) - (4)
Indeed, the left side follows by the geometric-arithmetic mean inequality.

Also z, < % for k =1,...n, and therefore

which implies the right side.

Certainly £3 o norm is very close to £ norm. Particularly, for any vector
for which ¢; and ¢ norms are equivalent the norms /5 o, and ¢y are also
equivalent. The well known Kashin [K] theorem claims that also for some
On-dimensional subspaces £} and ¢5 norms are equivalent (for an almost iso-
metric corresponding fact, see [FLM] and for the right behavior of parameters
when 0 approaches 1, see [GG]). More precisely:
for any 0, 0 < 6 < 1, there exists a subspace L C R"™ of dimension k = [fn]
such that o
< ey < SO aley )

1
%”95 [leg NG
for any « € L. The function C(#) above depends only on 6 and it is known
([GG)) that C(0) ~ /115 log 125 when 6 approaches 1. Also, (5) is satisfied

for an exponentially close to 1 measure of k-dimensional subspaces (with
probability above 1 — e~°* for a universal number ¢ > 0).
From (4) it follows that for such subspaces L and any z € L also

p(@) < [lzfley < 2C(0)p(x) -

In fact, the functional ¢ in the last inequalities may be changed to a smaller
one which is more useful. Introduce for m = [n/4C(6)?]

m 1/m
oo = van( 1) -
1
Then for any = € R™ one has
[zlley < (n —m)as, + Vmlz|ley -
Now, whenever (5) is satisfied the following inequality also holds

lzlley < CO)nay, + 5llzlley

and consequently
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P(x) < flzlley < 20(0)v/nay, < 4C*(0)3(x) -
Summarizing the information we collected above we have

Proposition 2. Let f(z) = —%logx. For some universal constant ¢ > 0,
any integer n and any 0, 0 < 0 < 1, k = [An], a random k-dimensional
subspace L C R™ with high probability satisfies: for any x € L

m 1/m c
vin(Ile) = gyl

where m = [en/f(1 — 6)].
Kashin also proved that for a random orthogonal matrix v € O(n) with

probability above 1 — e™“" the following inequality holds:

C
zlley < —=(llzlley + lluzller) -

Vn
Exactly as before one gets a similar corollary in our case.

Corollary. There are universal constants ¢; > 0, i = 1,2,3 such that for
k = [cin] for a random operator w € O(n) with probability above 1 — e~ "
and any x € R™ either

k 1/k
Vi(Iat) = ealele
1

or this inequality is satisfied for the vector y = uzx.

3. Note also that for any C > 1 the set of positive vectors

G1on(C) = {”“’ ®)" | ix = O(Hx)l/}

is a convex cone. (It is a trivial consequence of the geometric-arithmetic mean
inequality.) Convex sets

G1.n(C)N {x | ixl = 1}

are interesting objects to study.

There are other related convex sets. Let {z; > 0} and E; = 1/(?)
Zlgz‘1<...<i,§n Ty Ty, - Ty, 1 < j < n, be the normalized elementary sym-
metric functions. Then the classical inequalities of Maclaurin’s state, for j > i,

are
gt s gili
? — J :
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Then, for ¢ =1 and any C' > 1, sets
{Te R | BE1 < CE}"} = G;n(0)

are convex cones, and again, it means that convex sets

Gin(C)N {a: | zj:a: = 1}

describe reverse Maclaurin’s inequalities.
To prove this fact one should use the Lopez-Marcus [LM] inequalities: for
any T and 5 € (R")* and any j, 1 <j <n,

T\ _ E;(@)Y + E;(g)'
EJ( 2 ) - 2
Indeed, let 7,5 C Gj;,(C). Then

LLE@+E@ _ 1
2 - C 2 C

=1 B4 B ()
Ej(x—i—y) JZEJ(l') + E;(7)

; (7).
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Summary. In this paper we study the quantity Esup,c; X:, where X; is some
random process. In the case of the Gaussian process, there is a natural sub-metric
d defined on T. We find an upper bound in terms of labelled-covering trees of
(T,d) and a lower bound in terms of packing trees (this uses the knowledge of
packing numbers of subsets of T'). The two quantities are proved to be equivalent
via a general result concerning packing trees and labelled-covering trees of a metric
space. Instead of using the majorizing measure theory, all the results involve the
language of entropy numbers. Part of the results can be extended to some more
general processes which satisfy some concentration inequality.

1 Introduction

Let (T, d) be a compact metric space and for all t € T, X; be a collection of
random variables such that EX; = 0. The aim of this paper is to present a
different approach to the theory of majorizing measures. To avoid the problem
of measurability of sup,c X;, we take, as usual, the following definition:

E sup X; = sup {]E sup X¢, Ty finite subset of T}. (+)
teT teTy

It allows us to assume without loss of generality that (T, d) is in fact a finite
metric space, which will make the presentation of the statements clearer. It
means that in a general compact metric space (T, d), we take a very fine net
on the set 1" to approach the quantity E sup,.r X;. We want to present a new
way to provide an estimate of this quantity where (X;);cr is in particular
a Gaussian process. In this case, there is a natural sub-metric d defined on
T by d(s,t)> = E|Xs — X;|? and of course, by taking a quotient, we can
assume that d is a metric on 7. We recall a result of Talagrand in terms of
the majorizing measure

Theorem [T1]. If T is a finite set, (X¢)ier is a Gaussian process with the
natural sub-metric d associated, then, up to universal constants, Esup;cr X;
s similar to the quantity

o 1
inf sup/ log —————de,
teT Jo n(B(t,e))
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where the infimum is taken over all probability measures on T, and B(t,e) =
{s € T,d(s,t) <e}.

One of the biggest problems is to provide a uniform approach for con-
struction of a “good” measure.

The main tools of this paper are “packing” and “labelled-covering” trees.
The idea to use these objects comes from works of Talagrand [T3], [T5]. In
[T3] he defined the notion of an s-tree and he shows, using the majorizing
measures technique, that an s-tree provides an estimate for £ sup, ., X;. This
point of view has been very fruitful in the study of embeddings of subspace
of L, into £ for 0 < p <1 [Z]. Here we would like to present a geometrical
method for providing bounds for the supremum of a process which satisfies
a concentration type inequality, where instead of measures, we will consider
special families of sets of our metric space T. The main idea is to present
a straightforward technique which like the theorems of Dudley and Sudakov
involves the language of entropy numbers.

There are two different sections in this paper. First, we present the notions
of packing and labelled-covering trees and define how to measure the size of
such trees. The main result of this part is a general comparison of these
two quantities. The second part is devoted to the study of upper and lower
bounds of (x) when the process satisfies a concentration type inequality. We
obtain an improvement of Dudley’s result which gives directly, iterating this
result, an upper bound in function of the size of labelled-covering trees of the
compact metric space (7, d). For the lower bound, an additional hypothesis is
a Sudakov type minoration of Esup(X;,,..., X, ) for well separated points
in T'. In this part, we consider for simplicity a particular case of the Gaussian
process but the spirit of this idea allows generalization when the process
satisfies other types of concentrations and other Sudakov type minorations
[L], [T2]. We obtain an expression in terms of the size of packing trees and
combining this with the result of the first part, it shows that in the Gaussian
(or Euclidean) case, all these quantities are similar up to universal constants.

2 Trees of Sets

Consider a finite metric space (T, d).

Recall that a tree of subsets of T is a finite collection F of subsets of T’
with the property that for all A,B € F, either ANB =0, or A C B, or
B C A. We say that B is a son of Aif BC A, B# A and

CeF, BCcCCA = (C=Bor(C=A.

We assume that A; consists of one single set (this is the root of F) and that
for each k € N*, A4, is a finite collection of subsets of T' such that each of
them is a son of a set in Ag. A branch of F is a sequence A; D Ay D ...
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such that Ay, is a son of Ag. A branch is mazimal if it is not contained in a
longer branch. To each A € F we denote by N(A) the number of sons of A.
Let By, ..., Bn(a) be sons of A. We denote by £4 a one-to-one map

la: {Blwu,BN(A)}_) {1,,N(A)}

Consider some fixed number r» > 120. A tree F is called a packing tree if
to each A € F, we can associate an integer n(A) € Z such that

1) for all sons B of A, diam(B) < 2r—m(A4)
2) if B and B’ are two distinct sons of A then d(B, B") > 30r—"(4),

We define the size v,(F,d) of a packing tree F to be the infimum over all
possible maximal branches of

S ), flog (N (4y)).

E>1
A tree F is called a labelled-covering tree if

1) for any ¢t € T there is a maximal branch A; D Ay D ... such that
t= m Ak7

2) to each A € F is associated a labelled function £4 (which numerates each
son of A) and an integer n(A) € Z such that radius(4) < r—" (we
allow n(A) = 400 when the set A is a single point).

Finally we define the size v.(F,d) of a labelled-covering tree F as the supre-
mum over all possible maximal branches of

Z p—(Ak) \/log (eﬂA,c (Ak+1))'

k>1

We denote by Cov(T,d) (respectively, Pac(T,d)) the set of all labelled-
covering (respectively, packing) trees in T". The first theorem shows a connec-
tion between the definitions of size of packing trees and of labelled-covering
trees.

Theorem 1. There exists a constant C > 1 such that for any finite metric
space (T, d)
inf  4(F,d)<C sup 7,(F,d).
FeCovu(T,d) ( ) FePac(T,d) 2 )
To prove it, we will use the following theorem due to Talagrand.

Theorem [T5]. Consider a finite metric space (T,d) and the largest i € Z

such that radius(T") < r~*. Assume that for j > i there are functions ¢; :
T — RT with the following property:
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For any point s of T, any integer j > i and N > 1, if t1,...ty are N
points in B(s,r™7) such that

d(ty,t)) > r=371 for any 1,1 < N, 1 #1,

then we have

¢;(s) > ar~7/log N + min ¢;.2(t). (1)

Assume also that (¢;);>i is a decreasing sequence of functions. Then

o(Frd) < 2 sup 6 (t).

1
FeCov(T,d) Q teT

For completeness of the paper, we reproduce here a proof of this result
which is almost the proof of Proposition 4.3 of [T5].

Proof. Our goal is to construct a labelled-covering tree F such that

5= 0o Al < Compit)

o1 teT

for any branch {A; D ... D A D ...} in F.
We will inductively construct our covering tree.
First step: k = 1.
The first step consists of taking Ay = T, n(A;) = n(T) = i and we define
a1(A1) € Ay such that
A C B(al(Al), r_i>.

Iterative step: from k to k + 1.
Assume that we have constructed the k' level Ay, of the tree F (which is a
covering of the set T) such that

1) T=ALU...UAf,

2) for each set Ay of this covering, either Ay is a single point or there
exists ay(Ay) € Ay such that A, C B(ax(Ag),r“*)) with the biggest
possible integer n(Ay).

If all the sets of this covering consist of single points then the construction
is finished (and this situation will appear because T is a finite set). Now we
show how to partition any given element Ay of this covering. If Ay is a single
point then n(Ag) = 400 and A; D ... D Ay is a maximal branch so we have
nothing to do. Assume now that A is not a single point.

We pick t; € Ag such that

Gr(ap)+2(t1) = max { Gy a,)+2(t);t € Ar}.

Then the first son of Ay, is
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B = AN B(th’l“_n(Ak)_l)

and ap41(B1) = t;. We define n(B;) as the biggest integer such that B; C
B(tl,r_"(Bl)). To construct By we repeat this procedure, replacing Ax by
A\ By. This set is not empty because r > 2, Ay, is not a single point and by
the maximum condition on n(Ayg).

Finally we have constructed points t1, ..., ¢ty (N > 2) and sons By, ..., By
such that for any m € {1,..., N},

tm € Ak\ U B(tl,r_n(Ak)_l)

I<m

and

Pn(an)+2(tm) = max {¢"(Ak)+2(t);t eA\ Y B(tz,r_"(“‘k)_l)}.

I<m

It is clear (by construction) that By, ..., By are sons of Ay, form a covering of
Ay, and that n(B,,) > n(Ay) + 1. Also by construction d(t;,t;) > r~(Ax) =1
d(ap(Ag), ty) < r~™A%) and taking j = n(A), we obtain by definition of
our functions ¢, that for any m € {1,..., N},

Oniap) (an(A)) = arA)/logm + min Pra)+2(tr)-
We labelled the sons by setting £4(B,,) = m so
On(an) (a5(A)) = ar™" ) \/log (4 (Byn) + min dn(a 2(h)-
By construction of the points {¢;}, if I <1,

In(ap)+2(tt) > dna)+2(tr),

so we get

{2172 Pn(an)+2(t1) = Pniay)+2(tm)-

At this stage, for each set Ay of our starting covering of 7', we have con-
structed a labelled function ¢4, , sons who form a covering of Ay such that
for all sons Agy1 of Ak, n(Ags+1) > n(Ax) + 1, and point agy1(Ag41) such
that

On(ap (ar(Ar)) > ar ) flog b, (Ars1) + dniap)r2 (@t (Ars1))-

Next we observe that of course, for all sons Ag o of Agi1, api2(Ari2) € At
so by construction of agi1(Akt1),

Dr(ap)+2(@rs1(Ars1)) > Gniap)+2 (ars2(Ars2)).
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But n(Akt2) > n(Ag+1) +1 > n(Ag) + 2 (by construction) and as (¢;);>, is
a decreasing sequence of functions,
Dn(an)+2 (arr2(Art2)) = Oniap,s) (arr2(Ars2)),

and finally, for all branches Ar D Agi1 D Agio,

Oniap) (an(Ar)) = ar™ ™M) /log la, (Art1) + dnap, o) (@hs2(Ani2)).

Conclusion.
If we sum up the last inequality for k > 1, we get

n(an) (@1(A1)) + bn(ay) (a2(A2)) = @Y r "4 Jlog L4, (Agp1)

k>1

which gives (because the sequence (¢;);>; is decreasing), for all branches
Ay D...D Ag D ... of the labelled-covering tree F

a) A flog a, (Akyr) < 2sup ¢y (t).
teT

k>1

Now call

—n(Ak)

S1 = sup Z r log £, (Ak+1)

maximal branch ;>

SQ = sup Z’I’in(Ak)\/ IOg GEAk (Ak+1).

maximal branch ;>

and

It is clear that S > r*”(Al)\/log 2. By construction, for all sons Ag41 of Ag,
n(Ag+1) > n(Ag) + 1 then for all maximal branch Ay D ... D A D ... of
the labelled-covering tree F,

Zr‘"(A’“) logela, (Apy1) < Z"_H(Ak)(l + vlog La, (Ak+1) )

k>1 k>1
-
<S5+

— ]. Tﬁn(Al) g gsl

because r is large enough. It proves that for this tree F,

Sy < 551/2 < 5sup ¢;(t)/a.
teT

g

Proof (of Theorem 1). Let i be the largest integer such that radius(7T) < r—%.
For a set A C T, let v,(A) = Suprcpac(a,a) Vp(F,d), and for all integers
j > i, define the function ¢; : T'— R by

Vs €T, ¢;(s) =p(B(s,2r™7)).
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The sequence (¢;);>; is decreasing and, by definition of i € Z,

sup ¢;(t) = 7p(T).
teT

To prove Theorem 1, we need to check assumption (1) of the previous the-
orem. Fix some j >4 and s € T. Let t1,...,ty be points in B(s,r /) with
d(t;,ty) > =971 then

bji2(t) = v (B(t,2r7772)) and B(t;,2r=7%) C B(s,2r™7)
and

, . , , 1 .
d(B(t;,2r 772, B(ty,2r 772)) > r /7 —4p 2 > Zrﬂfl.

Consider in B(s,2r~7) a two level packing tree whose first level is B(s, 2r=7)
and whose second level consists of

{Bl = B(tl’2r_j_2)}l§N'
Take n(B(s,2r™7)) = j+2 then for each son B, B’ of B(s,2r~7), diam(B) <
2,,,.—”(3(8,27‘7].)) and

d(B,B) > iw‘fl > 30p-n(Be2r) _ 30
T

because r is large enough (r = 120). By definition of the size of packing trees,

Yp (B(3,2r7j)) >r772\/log N + %%vp(B(tl,2r7j72)),

or
1 . .
qu(s) > o} r~7+/log N + %I<11]51¢j+2(tl),
so we can apply the previous theorem with a = 1/72. a

3 Application to Random Processes

Let (T,d) be a finite metric space, and for all ¢ € T, X; be a collection of
random variables such that EX; = 0. In this part, we show how the quantities
defined in the above sections are related to the study of Esup,cr X;.

We will say that the process (X;):er satisfies a concentration inequality
(H) if there exists ¢ > 0 such that

for all subsets A C T, for all ty € T,
if Ya 1, = sup(Xy — Xy,) and o = sup d(¢,to) then
teA teA

Yu > O,]P’(|YA¢0 —EYa,,| > u) < 2exp ( — 0(5)2).
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Remark. This hypothesis (H) implies a deviation inequality: for all (s,t) € T,

2

P(|Xs — Xi| > u) < 2exp (— C(ﬁ) >
Indeed, choose s =ty and A = {t} then o = d(s,t) and Y4, = X; — Xy,
which gives the result. Maurey and Pisier ([P] Theorem 4.7) have proved that
(H) is satisfied for the Gaussian process (with ¢ = 2/72) and Talagrand [T4]
proved it for the Bernoulli process. We don’t know if it is true for a general
subgaussian process, i.e. a process which satisfies only a deviation inequality
as above.

3.1 Relation with the Size of Covering Trees

When the process (X;):er satisfies such a concentration inequality, we obtain
an upper bound of Esup,.r X; in terms of the size of labelled-covering trees
of T" with respect to the metric d. The next result is an improvement of
Lemma 3.4.4 in [Fe] which was the usual Dudley’s upper bound.

Theorem 2. If the process (Xi)ieT satisfies a concentration inequality (H),
there exists a constant C; > 0 (depending only on the constant ¢ in (H)) such
that for all N € N*, for all subsets Ay,...,Ax of T, and A= A1 U...UApN,
we have

Esup X; < sup (CldiamA\/log el + E sup Xt>.

teA 1<¢<N teA,
Proof. Let ty € A then Esup X; = Esup(X; — Xy,). For all £ € {1,...,N},
teA teA
let Y, = sup (X; — Xy,) then

teAy

Esup X; =E sup Y,.
teA 1<(<N

Let S be defined by

S = sup (cldiam(A)\/log el + I sup Xt> ,
1<e<N teA,

where ¢; will be defined later in accordance with the constant ¢ > 0 in the
hypothesis (H).
As sup; < < Yr is a non-negative random variable,

+oo
E sup Yg:/ P(er{l...,N},Yg>u)du
0

1<¢<N

+oo
< K+/ P(30e{1...,N},Y; > u)du.
K

By definition of S, for all £ € {1,..., N},
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S > (cldiam(A)\/@ + EY@)»

so by choosing K = S, we obtain

+oo
E sup Yg<S—|—/ (EIZ Y, — IEY@>u—S—|—cldiam(A)\/logef)du

1<e<N
<S5+ Z/ —EY; > u + cpdiam(A)+/log e@)du.

To conclude, we know that for all t € Ay, d(t,tp) < diam(A) and by the
concentration inequality (H), we have

2
E sup Yg<S+2Z/ exp( <ﬁ(1‘1) +01\/10ge€> )du

1<e<N
—+oo
<SS+ [diam(A) Zexp (= ccilog(el))
c
=1

=
§S+62\/:dlam(A) ; 72

choosing ¢; such that cc? = 2. Because log e/ > 1, we have proved the theorem

with
G <f+ />

Now, it is very easy to deduce the following result.

Corollary 3. If the process (Xi)ier satisfies a concentration inequality (H)
then there exists a constant C > 1 (depending only on the constant ¢ in (H))
such that
Esup X; < C inf (F,d).
t€¥ b= fGCOv(T,d)’Y ( )
Proof. Let F be a labelled-covering tree of T" with respect to the metric d.
Then by Theorem 2, we deduce that

Esup X; < sup (01 diamT +/log el (A;) + E sup Xt).

teT A; sons of T teA,;

Now iterating this procedure over a particular son that realizes this maximum
(it is finite because T is finite and note also that by the hypothesis on a
labelled-covering tree, the last term of the sum will be EX;, = 0 because the
last sons must be a single point), we deduce that

Esup X; < C} sup 2y~ (Ak) logela, (Akt1)-
teT maximal branch ;>

This is true for all labelled-covering trees so it gives exactly the stated result.
O
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3.2 Relation with the Size of Packing Trees

To study a lower bound of Esup,cr X;, we would like to start with the
following theorem due to Talagrand [T5], which will lead us to the idea of how
to bound Esup,cp X¢, where (Xi)icr is a Gaussian process, using packing
trees.

Theorem [T5]. Consider a Gaussian process (Xi)ier, d the natural sub-
metric associated and sets {Bj}i<n with N > 2. Assume that d(By, By) >
15u for all integers 1,I! < N,l # I and diam(B;) < u. Consider A =
U<y Bi, then

Esup X; > Cu\/logN—l—mmE sup X,
teA teB,

where C = 7r/\/§ > 2.

Proof. The proof of this theorem is based on the following two classical lem-
mas.

Lemma. Under the assumptions of the previous theorem, let t; € By and

Yy = sup (X — X3,) then
teBy

E sup |[Y;— IEY@|<u7\/10geN

Le{1,...,N}

Remark. This result was also used to obtain the classical Dudley upper
bound in terms of entropy numbers [Fe] but is weaker than Theorem 2. As
sup; <y<y Yo — EY;] is a non-negative random variable,

+oo
E sup m—Em:/ P(3¢e{l...,N}[Y: —EY| > t)dt
0

1<U<N
<K+Z/ P(|Y; — EY| > t)dt

<K+2Z/ exp( (i>2>dt7

by the concentration inequality (H) and because diamB; < w. The result
follows choosing K = u/+/cy/log N (and recall that in this case, we could
take ¢ = 2/m?). O

The next result is a Sudakov type inequality. There are many methods
to obtain this kind of inequality. For the Gaussian case, we could see it as
an application of Slepian’s lemma but there is another method which can
be generalized to other processes in the paper of Talagrand [T2] and in the
paper of Latala [L].
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Lemma. If ty,...,ty (N > 2) are well separated points in T, i.e. assume
that there exists u > 0 such that for all 1 £ 1, d(t;,ty) > 15u, then

E sup X >umy/2logeN.

ie{l,...,N}
Proof. Let ¢1,...,gn be ii.d. random normal Gaussian variables and define
the process Y7,..., Yy by Y; = % u g;. Then it is clear that for all [ # ',

E|X;, — Xy, | = d(t;, tv)? > E[Y; — Yo [*.

log N logeN
E e > >
SUP(91; -+, 9n) 2 \/7T log2 — \/Wlog 2¢

for N > 2 (see for example formula 1.7.1 in [Fe]), the result follows easily by
an application of Slepian’s comparison property. O

Combining these two lemmas, it is very easy to finish the proof of the
previous theorem.

Esup X, = Esup(Yi — EY) + EY + X,,
teA I<N
> Hlln]E)/l —|—]ESUp(Xt1, s 7XtN) - Esup |}/l - IE)/l|
I<N I<N

T
> —wu+/log N + minE sup X;.
VBRI < v

O
Using this theorem we deduce the following corollary.

Corollary 4. There is a universal constant C' > 0 such that, if (X;)ier is a
Gaussian process and d the natural sub-metric associated, then

C sup 7(F,d) <EsupX,.
FeEPac(T,d) teT

Proof. Let F be a packing tree of T with respect to the metric d. For any
element A of this packing tree, let By, ..., By(a) be the sons of A € F. Then

we use the previous lemma with u = 2r="(4) (because d(B;, By) > 15u and
diam(B;) < 2r—™4) <) to get

Esup X; > Cr~ " /log N(A) + min E sup X;.
teg b= & () I<N(A) teg !

Now iterate this formula over a particular son which realizes this minimum
to deduce that

Esup X; > C inf Zr*”(‘é"“)\/log (N(Ak))

teT maximal branch k>1

This is true for all packing trees and it finishes the proof. O
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To conclude this part, we just want to state the result we can deduce from
Theorem 1, Corollary 3 and Corollary 4 in the case of the Gaussian process.

Theorem 5. Let T be a finite set, (Xy)ier a Gaussian process with EX; =0
and d the natural sub-metric associated, then, up to universal constants, the
three quantities

Esup X4, inf F,d) and sup F,d
teT ! fGCOU(T,d)%( ) }‘ePac(T,d)vp( )

are similar.

References

[D] Dudley, R.M. (1967): The sizes of compact subsets of Hilbert space and con-
tinuity of Gaussian processes. J. Funct. Anal., 1, 290-330

[Fe] Fernique, X. (1997): Fonctions aléatoires gaussiennes, vecteurs aléatoires
gaussiens. Publications du Centre de Recherches Mathématiques, Montréal

[L] Latala, R. (1997): Sudakov minoration principle and supremum of some pro-
cesses. Geom. Funct. Anal., 7, 936-953

[P] Pisier, G. (1989): The Volume of Convex Bodies and Banach Space Geometry.
Cambridge Tracts in Math., 94, Cambridge University Press, Cambridge

[T1] Talagrand, M. (1987): Regularity of Gaussian processes. Acta Math., 159,
99-149

[T2] Talagrand, M. (1994): The supremum of some canonical processes. American
Journal of Mathematics, 116, 283-325

[T3] Talagrand, M. (1995): Embedding subspaces of L, in L} . Geometric Aspects
of Functional Analysis (Israel, 1992-1994), Oper. Theory Adv. Appl., 77,
Birkhatiser, Basel, 311-325

[T4] Talagrand, M. (1995): Concentration of measure and isoperimetric inequali-
ties in product spaces. Publications Mathématiques de 'l.LH.E.S., 81, 73—205

[T5] Talagrand, M. (1996): Majorizing measures: the generic chaining. Annals of
Probability, 24(3), 1049-1103

[Z]  Zvavitch, A. (2000): More on embedding subspaces of L, into £, 0 < p < 1.
GAFA Seminar 1996-2000, Lecture Notes in Math., 1745, 269-281



Point Preimages under Ball Non-Collapsing
Mappings*

Olga Maleva
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Summary. We study three classes of Lipschitz mappings of the plane: Lipschitz
quotient mappings, ball non-collapsing mappings and locally ball non-collapsing
mappings. For each class, we estimate the maximum cardinality of point preimage
in terms of the ratio of two characteristic constants of the mapping. For Lipschitz
quotients and for Lipschitz locally BNC mappings, we provide a complete scale of
such estimates, while for the intermediate class of BNC mappings the answer is not
complete yet.

1. Let X and Y be metric spaces. The class of Lipschitz mappings f: X — Y
is defined by the condition: f(B,(x)) C Br,(f(z)) for all points z of X and
all positive r (by B,(x) we denote an open ball of radius r, centered at x).
Here L is a constant depending on the mapping f but not on the point x;
the infimum of all possible such L is called the Lipschitz constant of f.

In a similar way, co-Lipschitz mappings f: X — Y are defined by the
condition f(B;(x)) D Ber(f(x)), where the positive constant ¢ is indepen-
dent of x and r; the supremum of all such ¢ is called the co-Lipschitz con-
stant of the mapping f. (In some fundamental papers, e.g. [JLPS], the co-
Lipschitz constant of the mapping is defined as infimum over all ¢/, such that
F(Bu(2)) > By (f(2)).)

By definition, a Lipschitz quotient mapping is a mapping that satisfies
both of the above conditions, i.e. is L-Lipschitz and c-co-Lipschitz for some
constants 0 < ¢ < L < oo.

The recently developed theory of Lipschitz quotient mappings between
Banach spaces raised many interesting questions about the properties of these
mappings. Here we are interested in the case when X and Y are finite di-
mensional Banach spaces.

The paper [JLPS] contains far-reaching results for Lipschitz quotient map-
pings f: R? — R2. In particular, it is proved there that the preimage of each
point under such an f is finite. The question whether the same is true for
Lipschitz quotients f: R™ — R™ for n > 3 is still open, although the following
result concerning this was obtained in [M]: There is a p, < 1 such that if
the ratio of co-Lipschitz and Lipschitz constants of such a mapping is greater
than p,, then the mapping is one-to-one. It was also proved in [M] that the
cardinality of the preimage of a point under a Lipschitz quotient mapping
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V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 148-157, 2003.
© Springer-Verlag Berlin Heidelberg 2003



Point Preimages under Ball Non-Collapsing Mappings 149

of the plane does not exceed the ratio between its Lipschitz constant L and
co-Lipschitz constant ¢ with respect to the Euclidean norm.

In section 2 of the present paper, we generalize this result to the case
of arbitrary norm. One important situation is when the ratio ¢/L is greater
than 1/2; then the mapping is a homeomorphism. In section 3, we discuss
the question whether the bound ¢/L < 1/ max, #f~*(z) is tight.

In section 4, we study so-called ball non-collapsing (BNC) mappings. We
say that a mapping f: X — Y is C-ball non-collapsing, if for any = € X and
r > 0 one has

F(B.(x)) > Bex(y) ()

for some y € Y. This property generalizes co-Lipschitzness. We will say that
a mapping is C' locally BNC, if for any « € X there exists ¢ = e(z) > 0 such
that (x) holds for all r < e.

Note that ball non-collapsing mappings can be very far from being co-
Lipschitz: e.g., the mapping F(x,y) = (z,|y|) from R? to itself is 1/2 BNC,
but is not co-Lipschitz (its image is not the whole plane).

The local ball non-collapsing property does not imply in general the global
property, as demonstrated by another plane-folding example: Fj(z,y) =
(z,ly — [y + 3]|), where [t] stands for the integer part of ¢. This mapping
is locally 1/2 ball non-collapsing, but is not globally ball non-collapsing for
any constant.

However, it turns out that in particular cases, the local BNC property may
even imply co-Lipschitzness, though with smaller constant: it is easy to show
(see Lemma 4, section 4 that if the Lipschitz constant of a Lipschitz, locally
BNC mapping f is less than twice the BNC constant, then f is a Lipschitz
quotient mapping. For the mappings of the plane this immediately yields
finiteness of point preimages. But we obtain a stronger result. In Theorem 2
we show that such a mapping f is a bi-Lipschitz homeomorphism, that is, the
preimage of each point consists of one point. On the other hand, the above
example of locally BNC mapping F(z,y) shows that as soon as the ratio of
constants is less than or equal to one half, the locally BNC mapping may
have infinite point preimages.

The idea of folding the plane infinitely many times has to be modified
in order to construct an example of a Lipschitz globally BNC mapping of
the plane with infinite point preimage. In section 5 we discuss the modified
construction, but it yields the BNC constant less than (and arbitrarily close
to) one third of the Lipschitz constant. Thus, we do not know exactly how
large the point preimages in the global BNC case can be, when the ratio of
constants is in the interval [1/3,1/2].

2. This section is devoted to Lipschitz quotient mappings. We would like to
prove the following theorem, which is a generalization of a similar result in
[M] to the case of arbitrary norm.
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Theorem 1. If f: (R? ||-]|) — (R2, ||-||) is an L-Lipschitz and c-co-Lipschitz

mapping with respect to any norm | - || and
-1
a. = y
max #f " (z) =n

then ¢/L < 1/n.

Proof. The proof will follow the same scheme as the proof of [M, Theorem 2].
We will only explain the details needed for the argument to work in case of
arbitrary norm. We consider the decomposition f = Poh, where h: R? — R?
is a homeomorphism and P(z) is a polynomial of one complex variable (see
[JLPS]). Clearly, deg P = max,cgz #f 1 (x) = n. We may also assume that
f(0)=0and L =Lip(f) =1.

Assume ¢ > 1/n, then there exists ¢ > 0 such that ¢; =¢(1 —¢) > 1/n.

We omit the proof of the following lemma, since it would in fact repeat
the proof of [M, Lemma 1]:

Lemma 1. There exists an R such that for any x with ||z|| > R one has
If @) = el O

Let us show that for large enough r the index of the image f(@B‘Tl'”(O))
around zero is equal to n.

Lemma 2. There ezists d > 1 such that for any p > d
Indy £(0BI(0)) = IndoP(h(aB/\)l~\|(0))) .

Proof. Denote the Euclidean norm of x € R? by |z|. By [M, Lemma 3] there
exists such o that Indg f (83},“ (0)) = n, and all preimages of zero under f lie
in BL'(O). Take d such that ||z| > d implies |z| > o, and let p > d. Since the
set Bﬂ'” (0)\ BL'(O) does not contain preimages of zero, one has

Indy f(9B!'1(0)) = Ind, (9B} (0)) = n.
O

The last lemma in the proof of Theorem 1 is rather obvious in the Eu-
clidean case, but needs some technical work in the case of arbitrary norm
and the corresponding Hausdorff measure. By the k-dimensional Hausdorff
measure of a Borel set A we mean

Hi(A) = supinf { > (diam Cj)* | Ac | ¢;, diam C; < 5}

5>0 = =1
(cf. [F, 2.8.15]). The diameter in this definition is with respect to the metric
given by the norm || - ||. Note that Hy, is so normalized that the 1-Hausdorff

measure of a segment [z, y] is equal to ||z — y||.
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Lemma 3. If I': [0,1] — R? is a closed curve with ||['(t)|| > r for all t €
[0,1] and Indg I = n, then the length of I' in the sense of the 1-dimensional
Hausdorff measure Hi is at least nH1 (0B, (0)).

Proof. In order to prove Lemma 3, it suffices to prove it in the case n = 1,
since a closed curve of index n can be split into n closed curves of index 1.

Note first that there exist convex polygons inscribed in the sphere 0B,.(0)
with perimeter arbitrarily close to H1(9B,-(0)).

Indeed, fix positive ¢ and take § > 0 such that for any covering of
0B,-(0) by balls of diameters less than §, the sum of the diameters is at least
H1(0B,-(0)) — e. Consider the family of all balls with centers on 9B,.(0) and
diameters less than ¢. By the Besicovitch Covering Theorem (see [F, 2.8.15])
there exists a countable subfamily of disjoint balls {B;}, which covers almost
all of 0B, (0). Since the remaining part of 9B, (0) is of H; measure zero, it
can be covered by a collection of balls with diameters less than § and sum of
diameters less than e. Therefore, ), diam(B;) > H1(9B,(0)) — 2¢.

Choose m such that ), diam(B;) > H;(0B,(0)) — 3e. The perimeter
of the convex polygon whose vertices are the centers of By,..., B, is then
at least H1(0B,(0)) — 3¢, since the balls are disjoint.

Thus it is enough to consider a convex polygon v inside the ball B,.(0),
and to prove that Hq(I") > Hi(7).

Let us note that the #H;-length of a planar curve is at least the || - ||-
distance between its endpoints. This can be shown by replacing the curve
by a broken line of nearly the same H;-length (which may be achieved by a
procedure similar to inscribing a polygon in a sphere as above) and using the
triangle inequality. Therefore, if we replace an arc of a curve by a straight
line segment, we do not make the curve longer (this is similar to the case of
Euclidean norm, except that in some norms a curve may have length equal
to the distance between its endpoints even if it is not a straight line).

Successively replacing arcs of the curve I' by straight line segments con-
taining sides of the polygon 7, we do not increase the H;-length, and in a
finite number of steps will replace I" by v. O

To conclude the proof of Theorem 1, note that 1-Lipschitz mappings
do not increase the Hausdorff measure. Therefore the #i-length of I" =
f(0B,(0)) cannot exceed H1(0B,(0)). On the other hand, if p is sufficiently
large, then by Lemma 2, Indg I" = n, and by Lemma 1, ||y|| > c1p for any
y € I'. So by Lemma 3 the H;-length of I" is at least nc1H1(0B,(0)). Since
ncy > 1, this is a contradiction which finishes the proof of the theorem. 0O

3. Having proved such a theorem, one would like to know if the 1/n bounds
are precise. In the case of Euclidean norm the mappings ¢, (re?’) = rem?
have the ratio of constants equal to 1/n and maximum cardinality of a point
preimage equal to n. Unfortunately, this does not immediately generalize to
the case of arbitrary norm.
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We are able to construct examples of such mappings in the situation when
the unit ball is a regular polygon (or, of course, its affine equivalent). The £,
norm is then a particular case of this. The idea of construction is as follows.
Let Vp be a vertex of the unit sphere S = {z: ||z|| = 1}. If = is a point on S,
let arg.(z) be the length of the arc of S between Vy and z in the counter-
clockwise direction, measured by the Hausdorff measure H; corresponding to
the metric defined by the norm || - ||. We define v, (rz) = ry, where r > 0,
and y is such a point on S that arg.(y) = narg.(x). One easily checks
that the Lipschitz constant of ¢, is equal to n. To check that the co-Lipschitz
constant is equal to 1, one may consider a local inverse of v, (see Lemma 5
below) and satisfy oneself that this inverse does not increase the || - ||-distance.

We do not know of such examples for other norms, so despite the feeling
that the converse of the theorem holds for any norm (that is, there exist
mappings with maximum of n point preimages and the ratio of constants
equal to 1/n), this question remains open.

4. Now we would like to switch from Lipschitz quotient mappings to more
general locally BNC mappings of R? with the distance defined by an arbitrary
norm || - [|. Our next goal will be to obtain a result which links the maximum
cardinality of a point preimage to the ratio of the BNC constant C' and
the Lipschitz constant L of the mapping. This result, which is Theorem 2
below, deals only with the case C'/L > 1/2. Recall that if C'/L < 1/2, point
preimages can be infinite (an example is given in Section 1). However, we
know this only for Lipschitz, locally BNC mappings of the plane. See the
next section for a discussion of the case C/L < 1/2 for Lipschitz, globally
BNC mappings of R2.

We start with a simple lemma for BNC mappings between metric spaces.

Lemma 4. If a mapping [ between two mormed spaces X and Y is L-
Lipschitz and is locally C-BNC with C/L > 1/2 then [ is ¢ = (2C — L)
co-Lipschitz.

Proof. Consider any point « and radius R < ¢(z), where e(x) is from the defi-
nition (*) of local BNC property of the mapping f. There exists a point y such
that Ber(y) C fBr(z) C Brr(f(x)). Then the distance dist(y, f(x)) does
not exceed (L —C)R < CR. Now since B¢ g—dist(y, f(x)) (f()) is contained in
Ber(y), we conclude that the mapping f is locally C' — (L — C) = (2C — L)
co-Lipschitz. This implies that f is globally (2C' — L) co-Lipschitz. For a proof
that local co-Lipschitzness at every point implies global co-Lipschitzness see,
for example, [C, Section 4]. O

We proved in Theorem 1 that for an L-Lipschitz and c-co-Lipschitz mapping
from the plane to itself, the cardinality of a point preimage is not greater
than L/c. We thus have a

Corollary. If f: R? — R? is L-Lipschitz and C locally BNC with C/L > 1/2
then
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-1 L
?6%§#f (2) < 5oz

The bound on the right blows up when C/L is larger than but close to
1/2. Our aim now is to improve the bound to the best possible one, that is,
to prove that a C locally BNC and L-Lipschitz mapping with C/L > 1/2 is
in fact a homeomorphism, i.e. the preimage of each point is a single point.

We will need several lemmas.

Lemma 5 (Local invertibility of a Lipschitz quotient mapping). Let f: R? —
R2? be a Lipschitz quotient mapping. There exists a finite subset A of R? such
that if 2 is a connected simply connected open domain which does not in-
tersect with A, then for any point x such that y = f(x) € (2 there exists a
mapping ¢ = ¢py: 2 — R? which satisfies ¢(y) = x and f o ¢ = Idg. This
mapping ¢ is open and is locally 1/c-Lipschitz, where ¢ is the co-Lipschitz
constant of f.

Proof. By [JLPS] any such f is a composition P o h of a polynomial P with
a homeomorphism h. Let A be the finite set {P(z) | P'(z) = 0}. If 2 is a
connected simply connected open domain which does not intersect with A,
then the polynomial P has a unique inverse, which is an analytic function
p defined on (2 such that p(y) = h(z). Define ¢ = h= o p. It is clear that
o(y) =z and f o ¢ =1Idg.

Since ¢ is a composition of a homeomorphism A~! and an analytic func-
tion p, whose derivative p'(w) = m is nonzero, we conclude that ¢ is
open.

Suppose w € §2 and r > 0 is so small that B, (w) C 2 and B, (¢(w)) C
@(£2). Then co-Lipschitzness of f implies that ¢B..(w) C B,.(¢(w)) , so ¢ is
locally ¢~!-Lipschitz, where c is the co-Lipschitz constant of f. O

Lemma 6. Assume that a mapping f between two finite dimensional normed
spaces X and Y is C locally BNC and is differentiable at a point a. Then
for any e > 0 there exists v = r(€,a) such that fB,(a) D Bic—e),(f(a)) for
p<r.

Proof. Let d, f be the differential of f at a, so that f(a+h) = f(a)+(dof)h+
o(h). We will show now that (d,f)B1(0) D Bc(0). Then for every € > 0 one
can find r such that |o(h)| < €||h|| for |h]] < r. It follows that for p < r the
image fB,(a) contains the ball centered at f(a) of radius Cp—ep = p(C —¢).

Assume C = minjg =1 ||dof(2)|| < C. Then (dof)B1(0) 2 Be,(14¢)(0)
for every € > 0 (thus, in particular, (d,f)B1(0) 7 Bc(0)).

It follows that (dof)B1(0) B Be,(14¢) () for any x € (d,f)B1(0) and € >
0. Indeed, assuming (d, f)B1(0) D Bgr(z) one gets (d,f)B1(0) D —Bgr(x) =
Bgr(—x) and thus

(daf)B1(0) D conv(Bg(x), Br(—z)) D Bg(0).
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Take r such that [[o(h)|| < <5E4||h|| for ||A| < r. Then for any p < r one
has
£By(a) € T = (@) + p(daf) B1(0) + B, cc. (0).

The latter does not contain a ball of radius greater than the proof of
this uses that (d,f)B1(0) is convex), and in particular we conclude that X
(and therefore fB,(a)) does not contain a ball of radius Cp, in contradiction
to the local C-BNC property of f. O

C+C
S (

In what follows we will assume that f(0) = 0.

The next key lemma is an analogue of Lemma 1 for Lipschitz quotient
mappings, but in the case of BNC mappings the proof becomes technically
more complicated.

Lemma 7. If a mapping f : R2 — R? is L-Lipschitz and is locally C-BNC
with C/L > 1/2 and f(0) = 0, then for any C' < C there exists R > 0 such
that || f(z)]] > C'||z|| for any ||z|| > R. Consequently, fB.(0) D Becr,-(0) for
all > R.

Proof. Assume L = 1, set M = 1+maxy(.)—¢ ||z|| and consider R = 4M /(C —
C"). Assume that there exists a point xo such that ||zo] = r > R and
| f(zo)|| < C'r. There exists € > 0 such that for all y € U(zo,e) = {y: |ly|| =
[[zo|| and ||y — wol| < e} one has |[f(y)[| < C"r.
Note that there exists 1 € U(xgp,e) and & > 0 such that U(zq,e’) C
U(xp, ) and
2= UyEU(JJl,E') (07 2f(y))

is such a domain as was described in Lemma 5 (i.e., {2 does not contain
P(z) such that P'(z) = 0). Here (0, a) is the straight line interval between
0 and a in R?. Let ¢ = Gy f(zr) * 12— R? be the mapping from Lemma 5.
Note that ¢(2), being open, contains an open neighbourhood of x1, so there
exists €1 : 0 < g1 < €', such that U(z1,e1) C ¢(£2). Then ¢f(y) = y for any
y € U(z1,e1), since ¢|p is a 1-1 mapping.

Since ¢ is locally Lipschitz, and is defined in an open cone, ¢(0) is also
well-defined.

In what follows, we are going to use both the Lebesgue measure £ and
the Hausdorff measure H;, for k£ = 1,2. Recall that in R* the measure £y,
coincides with H; on Borel sets. But the measure H}, is defined also in spaces
of dimension different from k; if ¢ is a Lipschitz mapping and A is such a set
that Hy(A) = 0, then Hy,((A)) = 0. In particular, if A is a Borel set in R*
such that L£;(A) =0, and +: R¥ — R¥ is Lipschitz, then Ly (z(A)) = 0.

We know that f is Lo-almost everywhere differentiable on ¢(f2). Let
D = {t € ¢(£2) | f is differentiable at ¢t}. Since Ha(4(2) \ D) = 0 and f
is Lipschitz, we conclude that the set 2\ f(D) is also of L5 measure zero.
Then by Fubini’s theorem there exists a point y in U(x1,£1), such that al-
most every point of the interval (0,2f(y)) with respect to £; measure is
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in f(D). Now consider the restriction of ¢ onto the segment [0, f(y)]. This
restriction is a Lipschitz mapping from [0, f(y)] to R?; therefore H;-almost
every point of the curve v = ¢([0, f(y)]) is in D, that is f is H;-almost ev-
erywhere differentiable on . Let B = D N~ be the set of points on v where
f is differentiable.

Since Cgc, < C, by Lemma 6 for each differentiability point z € B there
exists ., > 0 such that fB,(z) D B,ctcry/2(f(2)) for any p < r..

Let H1(y) be the 1-Hausdorff measure of . There exists 7 > 0 such that
if almost all of v is covered by balls of diameter at most 7, then the sum of
diameters of the balls is at least Hq(7y) — % (we defined M in the beginning
of the proof). Without loss of generality we may assume that 7 < M/2.

Consider F = {B,(z) | z € B, p < min{r,,7/2}}. By the Besicovitch
Covering Theorem (see [F, 2.8.15]) there exists a countable disjoint subcol-
lection Fy of F, which covers almost all of B, therefore almost all of v, with
respect to the measure Hi. Then

M
Z diam B > Hy(y) — >
BeFo

On the other hand the f-image of each ball B € F; contains a ball with
center on [0, f(y)] and of radius r(B) CEC/ . Note that F1={B,c+c)/2(f(2)) |
B,(z) € Fo} is a family of nonintersecting balls with centers on the interval
[0, f(y)], therefore

/ !
LS Gam B= Y diam B< 1) + 7
BeFo BeF,
Thus
MN\C+C' c+cC c+cC
5l = (26 - 3 ) 55 =7 E5E > e - a5

Note also that Hi(y) > |lyl|—|¢(0)|| > r—M (see the explanation in the proof
of Lemma 3), so || f(y)]| > (r—2M)C+TC/. But we assumed that || f(y)|| < C'r,
So one gets

c+cC

C'r > r—2M,
or, equivalently, 2M > C_Qc/r, which contradicts r > R = 2%, O
Theorem 2. Let R? be equipped with an arbitrary norm ||-||. If f: R? — R?

is an L-Lipschitz and C locally ball non-collapsing mapping with C/L > 1/2,
then

#f M (x) =1

for any point x € R2.
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Proof. By Lemma 4, such a mapping f is a Lipschitz quotient mapping. Let
n = max,cge #f1(z). We may assume f(0) = 0.

Fix any C’, such that L/2 < C' < C. Then by Lemma 7 there exists R
such that || f(x)|| > C'||z| for all ||z|| > R. By Lemma 2, there exists r > R
such that |Indg f(0B,(0))| = n.

Then by Lemma 4 the Hi-length of f(0B,(0)) is at least nC'H; (0B, (0)),
which is strictly greater than %27, (9B, (0)). But since f is L-Lipschitz, the
length of f(9B,(0)) is at most LH1 (8B, (0)). Hence & < L, therefore n = 1.
This finishes the proof of the theorem. 0O

5. The last question we would like to discuss here is what happens when a
globally BNC mapping has a ratio of constants less than or equal to 1/2. The
plane folding example, F(z,y) = (x, |y|), where C'/L = 1/2, shows that such
a mapping neither has to be co-Lipschitz, nor is necessarily 1-1. However, the
mapping in this example has point preimages of finite maximum cardinality 2.

On the other hand a mapping with ratio C'/L less than 1/3 may have
infinite point preimages. An example to this end is the following. For an
interval I = [a,b] in R' define the “hat function” h;(z) by 25% — |z — 2£2|.
Now let the mapping (4 : R' — R!, where A > 1, be defined by

x, if z <0,
Ca(@) =  (=1)*hpg-r pg-rrr)(2), if A™F <z < A7FF1 | a positive integer,
r—1, if x > 1.

Obviously, (4 is a 1-Lipschitz function. One can check that (4 is BNC with
constant C' = ;’:ﬁ:z. Then the function f(z,y) = (x,{a(y)) is a Lipschitz
and BNC mapping of the plane, with infinite point preimages, and the ratio
of constants less than but arbitrarily close to 1/3 (at least with respect to a
norm || - | for which | (z,y) | = ||z, —)])).

Note that a point preimage under a Lipschitz BNC mapping may even be

uncountable. For example, if

E-p.1\ | (3k+1 3k+2>

3n 7 3n
k,n>0

is a Cantor set on [0,1], the mapping g(z) = dist(x, E) is 1-Lipschitz and is
globally BNC, whose zeros set is E.

We also have a proof that in 1-dimensional space the bound of 1/3 cannot
be improved (that is, if a Lipschitz and BNC mapping has infinite point
preimages, then the ratio of constants C'/L is strictly less than 1/3). Thus, we
have no definite results concerning point preimages under Lipschitz globally
BNC mappings of the plane whose ratio of constants is between 1/3 and 1/2.

Let us summarize the results concerning the estimates of the maximum
cardinality of the preimage of a point under the three classes of Lipschitz
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mappings of the plane. Let L be the Lipschitz constant of a mapping. If a
mapping is Lipschitz quotient with co-Lipschitz constant ¢, the preimage of a
point consists of at most L /¢ points. If a mapping is (globally) BNC with BNC
constant C, then in the case C'/L > 1/2 a point preimage is a single point, in
the case C'/L < 1/3 it can be infinite, and in the case 1/3 < C/L < 1/2 we
have no definite answer. And if a mapping is locally BNC with BNC constant
C, the complete answer is as follows. If C/L > 1/2, a point preimage is a
single point, and in the case C/L < 1/2 a point preimage can be infinite.
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References

[C] Csornyei, M. (2001): Can one squash the space into the plane without
squashing? Geom. Funct. Anal., 11(5), 933-952

[JLPS] Johnson, W.B., Lindenstrauss, J., Preiss, D., Schechtman, G. (2000): Uni-
form quotient mappings of the plane. Michigan Math. J., 47, 15-31

[M] Maleva, O. Lipschitz quotient mappings with good ratio of constants.
Mathematika, to appear

[F] Federer, H. (1996): Geometric Measure Theory. Springer



Some Remarks on a Lemma of Ran Raz

Vitali Milman and Roy Wagner

School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel
milman@post.tau.ac.il, pasolini@post.tau.ac.il

In this note we will review a Lemma published by Ran Raz in [R], and suggest
improvements and extensions. Raz’ Lemma compares the measure of a set on
the sphere to the measure of its section with a random subspace. Essentially,
it is a sampling argument. It shows that, in some sense, we can simultaneously
sample a function on the entire sphere and in a random subspace.

In the first section we will discuss some preliminary ideas, which un-
derlie the lemma and our interest in it. We will view a random subspace
as the span of random points, without discussing the sampling inside the
subspace. We will demonstrate how substantial results follow from this ele-
mentary approach. In the second section we will review the original proof of
Raz’ Lemma, analyse it, and improve the result. In the final section we will
extend the Lemma to other settings.

1 Random Points Span a Random Subspace, and What
It Has to Do with Medians, Spectra and Concentration

1.1 An Appetiser

The starting point of our discussion, and an important ingredient in Raz’
Lemma, is the following simple observation regarding random subspaces: to
choose a random k-dimensional subspace in R™ is nothing more than to scat-
ter k random points on the sphere.

Indeed, the Lebesgue measure on the sphere is the unique normalised
Haar measure invariant under rotations. In other words, fix U € O(n); if
Y1, - .., Yn are independent and uniform, then so are U(y1),...,U(yn). There-
fore span{yi, ..., yn} has the same distribution as span{U(y1),...,U(yn)} =
U(spanf{y1,...,yn}). So the distribution of the span of k random points on
the sphere is the unique rotation invariant distribution on the Grassmanian
G k-

This observation alone has surprising strength. Take a continuous function
f on S"~! with median M (namely both pu(f(z) > M) and u(f(z) < M) do
not exceed 1/2). The probability that k& independent uniformly distributed
points be on the same side of the median is at most 27**!. The probability
that their span is on one side of the median is even smaller. Since their span
is uniform in the Grassmanian, we find that those elements of G/, ;, which
do not intersect the median, measure less than 2-%+1.

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 158-168, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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Playing with parameters, one can see that in a random orthogonal de-
composition of R"™ into logn-dimensional subspaces, each component will
intersect the median, and thus produce n/logn orthogonal points on the me-
dian. Using the additional information from Raz’ Lemma (to be introduced
below), we can obtain the same result for an orthogonal decomposition into
130-dimensional subspaces, yielding n/130 orthogonal points on the median.
These facts are brought only to illustrate possible application avenues for
the ideas we promote. We omit the details, because the above results are
not optimal for this specific instance. Indeed, as G. Schechtmann observed,
if we orthogonally decompose the space into 2-dimensional subspaces, each
component is 50% likely to intersect the median. In expectation, therefore,
half of the components intersect the median, and yield n/4 orthogonal points
on the median.

There is a small notable advantage to the non-optimal arguments over the
final argument sketched in the last paragraph — the first arguments are “high
probability” arguments, and can therefore be used in conjunction with other
“high probability” restrictions. Finally, in [YY] topological considerations
provide any real continuous function on S”~! with n orthogonal equivalued
points. In our discussion we secure less points, but prescribe them on the
median.

1.2 From Spectrum to Concentration

It has by now become a standard turn of narrative to begin with concentration
of measure and culminate with existence of spectrum. One proves first, using
an isoperimetric inequality, that a Lipschitz function is close to its median
everywhere but for a small-measure exceptional set. Then one deduces that
the function can have only small oscillations on random subspaces, which
makes it close to a constant. In our jargon we will say it has spectrum (cf.
M)).

The ideas of the previous section allow to reverse the plot. We will first
invoke some 20-year-old unpublished discussions between M. Gromov and
the first named author in order to obtain spectrum. We will then go from
there to prove concentration. One protagonist finds itself missing from our
new storyline; isoperimetry will play no role. Instead, we will only require the
classical cap volume estimate:

T o _1le(n—
psn (1 > €) < \/;e 3’ (n-2) (1)

A large portion of our account will take place on the Stieffel manifold W, o =
{(z,u) | x € S" 1 ue S"2(T,)} equipped with the local product topology.
An element of this manifold is a pair of normalised orthogonal vectors (T, is
the tangent plane at x).

Note that the action of O(n) on S"~! naturally extends to a transitive
action on W), 2, inducing the measure
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pw, o (A) = pom) ({T| T(e;,e5) € A})

where e; and e, are two orthogonal unit vectors used as reference. As the

Stiefel manifold is metrically equivalent to joining two copies of D" 1 x §"~2,

it carries a d-net of cardinality at no more than (£)?".

Let F be a 1-Lipschitz function on the sphere. We will view VF, the
gradient of F, as a function on W, » with the action VF(z,u) = V,F - u.
Since we want F' to have a gradient, and since we want to induce from the
behaviour of the gradient on a net to its behaviour on the entire space, we
must replace F for a while with a smoother look-alike. We will introduce

flx) = AVeyeBn(x)mSn—lF(y) )

where B, (z) is the ball of radius n around = (n will be selected later). Since
F is 1-Lipschitz, this new function is differentiable with

1. |Vf(z,u)| <1forall (z,u) € W, 2,
2. the Lipschitz constant of V f(-,u) is smaller than %, and
3. |f(z) — F(x)| <nforall z € S" 1.

Let us now agree that C' and C’ represent universal constants, which do
not retain the same value throughout the text, and commence arguing.

Step 1. The action of Vf on W, o is small everywhere but for a small-
measure exceptional set.

Proof. Fix * € S™~!. The linear functional Vf(z,-) on the tangent space
T, has a 1—codimensional kernel. If v € S(T},) is e-approximated by a v €
ker(Vf(z,)), then

VI, w) < [VF(z,u—o)|+ V(@) <lu—vf <e.

According to (1), the measure of directions v with the above property is at
least 1 — e~C€"". As this holds for every x € S"~!, we conclude

s, { (@ )] |VF(z,u)| < e} >1—e 0 (2)
O

The informatiog gathered in the first step above allows us to simultane-
ously map any e““ ™ elements of W,, o to elements with small Vf using a
single orthogonal transformation. Indeed,

>1-— e—Cezn

and therefore

HO(n) ({T | }Vf(T(xZ,uZ)ﬂ <egl<i< 6062"}) >0.
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As usual, if we take eC'e’n elements, with C’ < C, only an exponentially
small measure of operators in O(n) will fail to do the job.

Step 2. F' has small oscillations on random subspaces.

Proof. As we observed, (%)2’“ points suffice for a §-net on Wy, »(R¥). Assume
that (%/)2’“ < eCen, By the above, this net can be orthogonally mapped to
points where Vf is bounded by € (as a function on W, ). The new points
still form a d-net in Wkg(V’“) for some Vi, € G,, .. We can now establish that
V£ is small on the entire Wy, 2(V*).

Indeed, any (z,u) € W 2(V¥) has a §-neighbour (z’,u’) in the net, so we
get

|Vf(l‘,u)| S |Vf(£E,U) - Vf(a:,u/)| + |Vf(x,u') - Vf(x’,u/)| + |Vf(:z:’,u')\
<5+ Clite.
n

The combination of f’s small directional derivatives with the sphere’s bounded
diameter secures small oscillations for f. These small oscillations easily trans-
fer to the original F.

Take x1, 29 € V¥, and n < 1. We get

F —F < Vf(z,u)|- — + 2
[Fleo) = Pyl < max (9 ()| lleo = anl] + 21

C
< —-d+e+2n.
n

We now set € < 1, =¢, § = €2, and k = [Ce?n/log eizj, and obtain the
following:

Statement. With probability at least 1 — 6_062”, the 1-Lipschitz function F
oscillates by no more than € on random |Ce?n/ log & ]-dimensional subspaces.
O

Step 3. 2The measure of points, where F' is e-close to its median, is at least
1—e 9" (as long as € > C”IO%).
Proof. From the previous section we know that a k-dimensional subspace
intersects the median of F' with probability at least 1 — 27**1, Combining
this information with the even greater odds of k-dimensional spectrum, we
find that only an e~¢* proportion of k-dimensional subspaces allow F to
diverge more than ¢ from its median (note that this argument requires k > 2,
but this is supported by the restriction on €).

This estimate readily carries over to at most e~“* proportion of points
on the sphere, where F' can diverge by € from its median; we are close to our
goal, but not quite there.
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In order to get an improved estimate to the proportion of points where
F diverges by at least e from its median, let’s recycle again the idea that a
random k-dimensional subspace is the span of k random points.

Pycg, . (F is e-far from its median on all points of V)

= Ppayr e(sn-1yr (F'is e-far from its median on span{zy,... 2x})
< Ppaye e(sn-1yr (I is efar from its median on {z1,...,2x}) < (e= M)k

We again confront this estimate with the estimate for k-dimensional spectrum
in the Statement above. Since k2 > Ce?n for the stated values of € and k, we
conclude that at least 1 —e=C€n proportion of k-dimensional subspaces, and
hence at least such a proportion of points of the sphere, are sent by F' e-close
to the median. By repeating the above argument, we can improve slightly
the restriction on €, and bring the enumerator towards y/log(n). O

While we demonstrated this line of thought only for the sphere, it can be
easily imagined in other contexts. Complementing the well-known “concen-
tration implies spectrum” principle, we should encourage a general “spectrum
implies concentration” ideology. Raz’ Lemma, as discussed below, is one of
the components of this ideology.

2 Raz’ Lemma

2.1 Raz’ Original Argument

Up to this point we only used the simple fact that independent random points
sample random subspaces. We will now see that the same random points, even
though they needn’t be independent with respect to the subspace they span,
are still tame enough to provide useful information regarding their span.

Raz’ Lemma, introduced in [R], is a special deviation inequality on the
Grassmanian. Let p be the normalised Haar measure on the unit sphere, and
v be the Haar probability measure on G, . If we restrict p to subspaces
according to the formula p|y (A4) = py (AN V), where py is the normalised
Haar measure on V, we’ll find that

pa) = [ e

We may now ask how well p]y(A4) is concentrated as a function of V on Gy, .
It turns out, that even though u|y(A) needn’t even be continuous, we still
get a concentration inequality similar to that of Lipschitz functions.

Theorem 1 (Raz’ Lemma). Let C C S"~1 and denote u(C) = c. Then:

o2
2
v(|ulv(C)—¢| > ¢e) < 65 :

where v and ply are as above.
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Remark 1. In the following text we will use P for the product of k& Haar
probability measures on k copies of S?~!. Recall that we have established
that a sequence uniform in P spans a subspace uniform in v. Therefore,
where an event in (S"!)* depends only on the span of the sequence of
vectors, the probability P becomes synonymous with v. In fact, where no
harm is expected, we intend to generally confuse subspaces and their spanning
sequences.

Proof. Let y1,...,yr be independent p-uniform variables. We already es-
tablished that span{yi,...,yr} is a uniform element of the unique rotation
invariant measure on Gy, ;. The behaviour of the y;’s inside their span is
more delicate. If yq, ...,y were independent inside their span, they would
simultaneously sample both A and A NV quite well, and thus secure an
easy proof of Raz’ Lemma. However, restricting a measure to a zero measure
subset depends on further desired properties, and our needs preclude inde-
pendence inside the span. We will motivate our choice of restricted measure
and justify its properties in the next section. For now, just assume that y; is
Haar-uniform in span{y, ..., yx}, and nothing more.
Let’s start with the upper tail estimate. We will study the event

B = {(yi)lle | ,u|§pan{y7}f=1(c) >c+ 26}
We use the elementary inequality:

P(4)

PB) < piam) -

into which we substitute

a=fo | Shatets) ),

P(A) is estimated from above by 2% (computer scientists call this

sampling estimate a Chernoff-type bound, but it goes back to Kolmogorov,
see [L], section 18.1). In order to estimate P(A|B), let’s take a subspace V/
where B holds, and consider first

P(A | span{yi}le = V) .
Chebyshev’s inequality bounds this from below by:
(ZlC(yl) | spanf{y;}r_, = V) —(c+e)

max (ZlC(y’) | span{y;}t_, = V) —(c+¢) .

Since each y; is uniform in span{y;}¥_,, and regardless of their conditional
dependence, this equals
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ulv(C) = (c+e)
1—(c+e)

Since V was chosen such that u|y (C) > ¢+ 2¢, we get

P(A | span{yi}le = V) >e,

and deduce
P(A|B) > e. (3)

This last transition is, from the point of view of measure theory, the most
delicate point of the proof. It would follow, if, for example, the global measure
were the average of the restricted measures. This property is the key to our
choice of restriction of the measure to a subspace. We will defer the details
to the next section, so that we can now directly conclude

P(A) 67252k

PB) = 5oy = =

If we rescale ¢, and consider the symmetric lower tail estimate, we find the
theorem proved. O

We would like to point out that Raz’ Lemma is not optimal in the case
of fixed ¢ and k, and ¢ tending to 0 (or, symmetrically, to 1). Obviously
Py (Julyv (C) — ¢| > ¢) should tend to zero as ¢ tends to zero. Nevertheless,
the bound we have does not emulate this property.

The reason for this lies in the sampling estimate we quote. While
P(M —c > 6) tends to zero with ¢, the bound e2"F does not.
To adapt Raz’ Lemma to such a marginal situation, one must replace the
sampling estimate in the proof. Fortunately, one of the advantages of the
proof is its remarkable modularity and resilience to variations.

2.2 Conditional (In)dependence

The restriction of a measure to a zero measure subset requires additional
structure in order to make sense. For example, while volume in R™ is uniquely
determined, the definition of surface area depends on Euclidean structure.

For the definition of the restricted measure P(A | span{y;}}¥_;, = V) in
the proof (to which we will refer in short as P(A|V)) we shall take

/ / / XA(T(SL‘l),,T(QSk)) 5
x5 zpeSn—1 JTeO(n,span{xy,...,xr }—V)

where the integral is calculated with respect to normalised Haar measures,
and O(n, U — V) stands for the collection of unitary operators in O(n), which
map the subspace U to the subspace V. The definition aims at validating the
deduction of (3), which would follow from the equality
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/ P(A|V)dv = P(A) . (4)
VeGnuk

Indeed,

/ / / XA(T(acl),...,T(xk))
VEGhk J (m:)k_€(S"—1)F JT€O(n,span{zy,...,xx }=V)

,,,,,

— / / XA(T(Scl),...,T(xk))
(mi)h_ e(Sm—1)k JT€O(n)
= / / xa(T(z1),...,T(xx))
TeO(n) J(z;)k_ €(Sn—1)k
/ / A(x1,...7xk)
TeO(n) J(x; )k LE(Sn—1)k

—/ xa(x1,...,xx) = P(A) .
(zi)f_, €(Sm—1)k

The transition between the second and third lines follows from the uniqueness
of the normalised Haar measure on O(n).

Our definition also conforms to our earlier statement that the marginal
distribution of a single coordinate with respect to P(:|V) is simply the Haar
probability measure on the sphere. Indeed, substitute into the definition a
set of the form A x S"~! x ... S"~1 follow a reasoning similar to the above,
and you will simply get p|y (A).

Finally, the restricted measure P(-|V') is no longer the product of k Haar
measures on S(V'). Indeed, let A be the set of all closely clustered k-tuples in
(S~ 1)k, The global measure P(A) will be strictly smaller than the product
measure of A in (S(V))* for all subspaces V (by well-known concentration of
measure estimates). Therefore, if P(-|V') were the product of k Haar measures,
we would be in violation of the just-proven equality (4).

The loss of independence when restricting to a subspace is responsible for
the ‘bad’ denominator in Raz’ estimate. In the next section we will present
a trick, which allows one to erase the denominator altogether.

2.3 Getting Rid of the Denominator

We will use here the ‘tensorisability’ of the exponential estimate of P(A) to
suppress the linear factor arising from the estimate of P(A|B).

Fix £k < n and arbitrary m. Consider yi,...Ymk 1ndependent Haar-
uniform variables in S"~!. Now the sequence {span{yl}l Go1)k 1l is
Haar-uniform and independent in G, k, and for every 1 < ¢ < k the vari-
able y(;_1)p4¢ is Haar-uniform in spam{yl}z (—1)k+1 (we make no claim as
to their conditional independence here).
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We will consider the event:

Ao {(yimkl Sl }

mk
and
B=BiNBnN---NB,,
where
B; = {(yz)yikl | H|Span{yi}giuil)k+l(c) >c+ 26} .

Just as before P(A) < e=2"mk Furthermore, by Chebyshev

P(A|Vj: span{yi}gi(jil)kJrl =V)
E(% } Vj: Span{yi}g:(jfl)de = V}) — (C—I-E)
max (% | W span{yi}gi(j_l)ml = V}) —(c+e)

L A (©) —(e+e)
- 1—(c+e)

As before, we conclude that P(A|B) > e.
Since the original y;’s are independent, so are the events B;, And we get
P(B) = P(Bi)-...- P(By) = P(B;)™. It follows that

P(A) < 6—252km
PAB) = =

P(B)™ <

Letting m go to infinity, we find:
P(By) < e 2k
Again, rescaling and repeating for the lower tail, we conclude with

Theorem 2 (Improved Raz’ Lemma). In the same setting as Theorem 1,

2k

v(|plv(C) —c| > ) <2e7

3 Extensions

3.1 From S™! to G,,m

In this section we will transport the result from S™~! (which, for the purpose
of this discussion, works like G, 1) to Gy, . The same can be repeated for
various related homogeneous manifolds.
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Theorem 3. Let C C Gy, and u(C) = ¢ (where p is the normalised Haar-
measure on Gy ). Choose k such that km < n, then

2k

PVEG”L,)C’NL <|M(C | ka,’rn(v)) - C| > E) < 2e” 2

Proof. Let Vi,...,V; be independent Haar-uniform variables in G, .. The
span{Vi}f:l is uniform in G,, ;i and each V; is uniform in Gmk’m(span{vi}f:l).

Let N
A= {(%)?—1‘21_120(‘4) —c> 6}

and
B ={(V)ilile,.,. . spanviyi(C) Z e+ 26} .

The remainder of the argument works just as before. By a sampling esti-
mate

P(A) < e 2k

By Chebyshev’s inequality

i CY—(ec+
P(A] span{V;}}_, = V) > Bl '1(?((6—?—6)( g

9

and so P(A|B) > e. The same trick as in section 2.3 can write off P(A|B),
and we obtain the desired result. O

3.2 From Indicators to General Functions

The purpose of this section is to replace the function 1¢ in the previous
sections by any other function. For this we require the following inequality
by Kolmogorov (as quoted in [L], section 18.1).

Theorem 4 (Kolmogorov’s Inequality). Let f be a function on a probability
space with Ef = M, ||f — M|z = s and ||f — M|| = b. Let (y:)%_, be
independent random variables on the domain of f.

1. Ife < % then:

2. If e > % then:

k
P(’W —M’ > g) <2e"1(Dk

Kolmogorov’s inequality allows to extend Raz’ technique to general func-
tions.
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Theorem 5. Let f:8" 1 3R, and M,s, and b as in the previous theorem.
1. If e < % then:

Prec,, (Elv(f) — M| >¢) <2-e (%,
2. Ife > % > then:
Pyea, , (‘E|V(f) -M|>¢e)<2- e~ 8Bk

Note that if we substitute characteristic functions into f, we reproduce
the original statement for sets (up to constants).

Proof. Substitute into Raz’ argument the events:

A= {yzz 1’721 LS () M>5} and

B = {(u)ia[Elv(f) = M+ 25} .

Estimate P(A) by Kolmogorov’s bound, and use Chebyshev’s inequality as

above:
_ Elv(f) — (M +¢)
P(A | span{y;}; = V) > G+ M) = (Mt2)’
and so c
P(A|B) > 5

Using the trick from section 2.3 to write off P(A|B), we obtain the promised
result. O
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On the Maximal Perimeter of a Convex Set in
R™ with Respect to a Gaussian Measure
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Introduction

Let A be an n x n positive definite symmetric matrix and let

(Az

dya(y) = pa(z)de = (27) 2 Vdet Ae™ alt

be the corresponding Gaussian measure. Let

74(Qn\ Q)

Ir'A) = sup{ Y : @ C R" is convex, h > 0}
where @}, denotes the set of all points in R™ whose distance from () does not
exceed h.

Since, for convex @, one has Qp/4n \ Q = [(Qn)nr \ Qn ] U [Qr \ Q], the

definition of I'(A) can be rewritten as

I'(A) = sup { lim sup M :Q CR"is convex}
h—0+ h

= sup { /OQ valy)do(y) : Q@ CR™is convex}

where do(y) is the standard surface measure in R™.
Making the change of variable © — Bz where B is the (positive definite)
square root of A, the last expression can be rewritten as

sup {/ ©(y)|Bry|do(y) : @ CR™is Convex}
oQ

2
where ¢(y) = (277)’%6*% is the density of the standard Gaussian measure

dv in R™ and v, is the unit normal vector to the boundary 9@ of the body
Q@ at the point y € 0Q.

Recall that the Hilbert-Schmidt norm || A|g.s of a positive definite sym-
metric matrix A is defined as the square root of the sum of squares of all
entries of A or, which is the same, as the square root of the sum of squares
of the eigenvalues of A. The aim of this paper is to prove the following

Theorem. There exist absolute constants 0 < ¢ < C' < +oo such that

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 169-187, 2003.
(© Springer-Verlag Berlin Heidelberg 2003
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e /T ATs < I(4) < O/ ws.

A few words should, probably, be said about the history of the question.
To the best of my knowledge, it was S. Kwapien who first pointed out that
it would be desirable to have good estimates for I'(l,,) (i.e., for the maximal
perimeter of a convex body with respect to the standard Gaussian measure).
The only progress that has been made was due to K. Ball who in 1993 proved
the inequality I'(1,) < 4n7 for all n > 1 and observed that a cube in R”
may have its Gaussian perimeter as large as y/logn (see [B]). Many people
seemed to believe that the logarithmic order of growth must be the correct
one and that it is the upper bound that needs to be improved. If it were the
case, it would open a road to essentially improving some constants in various
“convex probability” theorems (see [Bel],[Be2] for a nice example). Alas, as
it turned out, K. Ball’s estimate is sharp.

As to the proof of the theorem, I cannot shake the feeling that there should
exist some simple and elegant way leading to the result. Unfortunately, what
I can present is a pretty boring and technical computation. So I encourage
the reader to stop reading the paper here and to (try to) prove the theorem
by himself.

The Case A =1,

We shall be primarily interested in the behavior of I'(I,,) for large n. Our
first goal will be to prove the asymptotic upper bound

lim sup LI <771 <0.76,

1
n— oo na4

which, with some extra twist, can be improved to

r, ,
lim sup (In) < (2m)771 < 0.64.

1
n—00 n4

While this result is essentially equivalent to that of K. Ball, our proof will
use different ideas and yield more information about the possible shapes of
convex bodies with large Gaussian perimeter.
As to the estimates from below, we shall show that
I
lim inf (1”> >e i > 0.28.

n—00 ni

First of all, note that in the definition of I'(I,,) we may restrict ourselves
to convex bodies @ containing the origin. One of the most natural ways to
estimate the integral | 20 ©(y)do(y) is to introduce some “polar coordinate
system” x = X (y,t) in R with y € 0Q, t > 0. Then we can write
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= [ et [ | [T oo il dm= [ owem o)
n aQ LJo 9Q
(%)
where D(y,t) stands for the determinant of the differential 32((% D) of the
mapping 0Q x (0,+00) 3 (y,t) — X(y,t) € R™ and

) = oy~ /OOO ¢(X(y,1)) D(y,1) dt.

This yields the estimate

/ o(y) doly) < — :
90 min

2Q

There are two natural polar coordinate systems associated with a convex
body @ containing the origin. The first one is given by the mapping X (y,t) =
ty. Then

Di(y,t) =" yla(y)

where a(y) is the cosine of the angle between the “radial vector” y and the
unit outer normal vector v, to the surface 9Q at the point y. So, in this case,

we have
&(y) =% [/OOO ly[t"~ ]a(y)

S I -2
= |y| e t" e tla(y).
0

2
It is not hard to see that the function f(t) := ¢ ‘e~ is nice enough for the
application of the Laplace asymptotic formula. Since it attains its maximum

at to = v/n — 1 and since % log f(to) = —2, we get

/ F(t)dt = [V + o(1)] f(to).

21y|2
2

Observing that j—; log f(to) < —1 for all ¢ > 0, we get

(t—tg)?
2

f(t) < f(to)e™ for all t > 0.

Bringing these estimates together, we conclude that

(yl=vn=1)% \/T)

Gily) = e [V +o(D)]a(y).

Unfortunately, as one can easily see, a(y) can be very close to 0 at some
points, so we cannot get an estimate for the Gaussian perimeter of an arbi-
trary convex body @ using &; alone. Nevertheless, let us mention here that if
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we know in advance that Q contains a ball of radius R > 0 centered at the
origin, we may use the elementary inequality a(y) > % and conclude (after

some not very hard computations) that

JTR
ya

Thus, if R is much greater than ni, the Gaussian perimeter of @) is much less
than ni. It is interesting to compare this observation with the construction
of the convex body @ with large perimeter below: the body we shall construct
will have the ball of radius n7 as its inscribed ball!

Let us now consider the second natural “polar coordinate system” as-
sociated with @, which is given by the mapping X»(y,t) = y + tv,. The
reader may object that it is a coordinate system in R™ \ @, not in R”,
but this makes things only better because now we can write 1 — (Q)
instead of 1 on the left hand side of the inequality (x) (it is this im-
provement that, exploited carefully, yields the extra factor of 2’%). It is
not hard to check that Xa(y,t) is an expanding map in the sense that
| Xo(y/ ) — Xo(y", t") 2 = |y —y"|> + (¢ —t")? and, therefore, Dy(y,t) > 1
for all y € 9Q, t > 0. This results in the inequality

Délglfl > [1+o0(1)]

This expression can also be small, but only if «(y) is large. Thus, it seems to
be a good idea to bring these two estimates together and to write

/ ey) =(y)do(y) <2
0Q

where

E(y) = &) + &) = 1 +o(1)] - {e“yéﬁ”\/;a(y) n W}

It is a simple exercise in elementary analysis now to show that the minimum
of the right hand side over all possible values of |y| and a(y) is [24+0(1)]rin "4
attained at |y| ~ v — 1, a(y) ~ (7n) 1.

Note that if |y| or a(y) deviate much from these values (|y| on the additive
and a(y) on the multiplicative scale), the corresponding value of = (y) is much
greater than n=i. Thus, if a convex body @ with the Gaussian perimeter
comparable to ni exists at all, a noticeable part of its boundary (in the
sense of angular measure) should lie in the constant size neighborhood of the
sphere S of radius \/n centered of the origin, a(y) being comparable to noi
on that part of the boundary. At first glance, this seems unfeasible because
what it means is that the boundary of @ should simultaneously be very close
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to the sphere S and very transversal (almost orthogonal!) to it. Actually, it
leaves one with essentially one possible choice of the body @ for which it is
impossible to “do something” to essentially improve the upper bound: the
regular polyhedron with inscribed radius of n1 and circumscribed radius of
V/n (there is no such deterministic thing, to be exact, but there is a good
random substitute).

The fastest way to get the estimate I'(1,) > const ni seems to be the
following. Observe, first of all, that the polar coordinate system X (y,t) can
be used to obtain the inequality

/ o(y)do(y) 2/ o(y) do(y) > const niy(Kq)
2Q 0Q)’

where
00) = {y0Q : |yl - va—T| <1, fnt <a(p) <21}

and Kg = {ty : y € (0Q)’,t > 0} is the cone generated by (9Q)’. Let now H
be a hyperplane tangent to the ball of radius ni centered at the origin. Let S
be the (smaller) spherical cap cut off from the sphere S of radius /n centered
at the origin by the hyperplane H, let H = {lye H : /n—1< |yl < /n},
and let S be the radial projection of H to the sphere S. Now, instead of one
hyperplane H, take N independent random hyperplanes H; and consider
the convex body @ that is the intersection of the corresponding half-spaces.
A point y € H; belongs to (0Q)" unless it is cut off by one of the other
hyperplanes Hj. Note that if a point y € H ;j is cut off by a hyperplane Hy,
then its radial projection to the sphere S belongs to Si. Thus,

V(Kq) = i)\(@\ U Sj)

kik#j

where d) is the normalized (by the condition A(S) = 1) angular measure on S.
Since the random hyperplanes H; are chosen independently, the expectation

of the right hand side equals N (1 — A(S))V~1A(S). Observing that, for large
n, A(S) is small compared to 1 and choosing N ~ A(S)~!, we get the estimate

A(S)

~v(K) > const NS

A routine computation shows that the ratio % stays bounded away from

0 as n — oo, finishing the proof. While this (sketch of a) proof is missing a
few technical details, I included it in the hope that it might give the reader
a clearer picture of how the example was constructed than the completely
formal reasoning below aimed at obtaining the largest possible coefficient in
front of n1 rather than at making the geometry transparent.
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The formal construction runs as follows. Consider N (a large integer to be
chosen later) independent random vectors x; equidistributed over the unit
sphere in R"™1 (this 1 is added just to avoid indexing () and define the
(random) polyhedron

Q= {x e R*H . (x,z;) < p}.

In other words, @ is the intersection of N random half-spaces bounded by
hyperplanes H; whose distance from the origin is p. The expectation of the
Gaussian perimeter of @) equals

1 p? N—-1
ez 1—p d
T . o) (1 —p(yD)" " dy
where p(r) is the probability that a fixed point whose distance from the origin
equals /72 4 p? is separated from the origin by one random hyperplane H;.
It is easy to compute p(r) explicitly: it equals

Ve 2 N ] e PN
AN / 2ty

This is quite a cumbersome expression so let us try to find a good asymptotics
1
for it when p = e?Mni and r = v/n — 1 +w, |w| < O(1). The first integral
then becomes a typical exercise example for the Laplace asymptotic formula
a2
and we get it equal to v/2m + o(1). Using the inequality (1 —a) < e ze ®
(a > 0), we can estimate the second integral by

/Ooexp{— n—1 t4}exp{— n—1 tz}dt
p 4(r? + p?)? r2+p? 2
gexp{—n1 p4}/ooexp{—n1 t2}dt.
4(r? + p?)? p 724 p* 2

4
The first factor is asymptotically equivalent to e~ % in the ranges of p and
r we are interested in. To estimate the second factor, let us observe that, for
every a > 0,

N

o0 o0
/ e‘“édt < / e‘“ge_ap(t_p)dt = ie‘aé.
P p ap

Observe also that under our restrictions for r» and p, we have

n—1 2w p?

1
L e R -3,
r2 4 p? vn n+0(n )

Bringing all the estimates together, we arrive at the inequality
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p(r) < [1 +0(1)]\/12?[1)exp{i}exp{w\/’;}ef =: L(n, p) exp{u\)/’;}

(the reader should treat o(1) in the definition of L(n,p) as some hard to
compute but definite quantity that depends on n only and tends to 0 as n —
00). Since we expect the main part of the integral [5. ¢(y)(1—p(|y])) ~dy
to come from the points y with |y| &~ v/n — 1, which correspond to the values
of w close to 0, let us look at what happens if we replace the last factor in our
estimate for p(r) by its value at w = 0, which is just 1. Then p(r) would not
depend on r at all and, taking into account that flR" e(y)dy = 1, we would

get the quantity
1

Vor

to maximize. Optimizing first with respect to N (note that L(n,p) — 0
as n — 00), we see that we should take N satisfying the inequality N <
L(n,p)~! < N + 1, which results in the value of the maximum being

eféN[l — L(n,p)]Nﬁ1

[1+o0(1)]e "pexp { - i’;}.

Optimizing with respect to p, we see that the best choice would be p = ni
which would yield the desired asymptotic lower bound e~ ini for Ii,).
Now let us use these values of IV and p and make an accurate estimate of the
integral

2

/n o) (1—p(y)) " 'y = C/V:Vf(m“%)(l_“”’ P) eXp{l\U/%})Nl

where f(t) = "~le=% as before, ¢ = (JS f(t) dt)il, and W is some big posi-
tive number. Note again that the product ¢ f(v/n — 1+w) = [1+0(1)] L —w?

Nz
for fixed w and n — oo. Also, for fixed w and n — oo, the second factor in

the integral is asymptotically equivalent to exp{—e®} (recall that p = ni
2
and, therefore, % = 1). Thus, we obtain the estimate

TN 2
I, > {140()|e"1nt / exp{—e“}e™" dw.
[ ] ﬁ —w

The integral on the right looks scary, but, since everything except the factor
exp{—e®} is symmetric, we can replace it by

/W exp{—e"} + exp{—e "} R
w 2 '

Using the elementary inequality
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exp{-a} + exp{-1} 1
&

5 > for all a > 0,

we conclude that

wslon
=

I [1+o)]e tnt— /W —wd
n = 0 e in N 7We w.

It remains to note that ﬁ fl/VW e~%" dw can be made arbitrarily close to 1
by choosing W large enough.

The General Case

Let us start with two simple reductions. First of all, observe that the estimate
we want to prove is homogeneous with respect to A, so, without loss of
generality, we may assume that Tr A = 1.

Since the problem is rotation invariant, we may assume that both A and
B are diagonal matrices. We shall primarily deal with B, so let us denote
the diagonal entries of B by b1, ..., b, (our normalization condition Tr A = 1

means that -, b2 = 1). Denote
D:=. /Zb? .
J

Note that 0 < D < 1, so D? < D and so forth.

Proof of the Estimate I'(A) < C/||A||u-s

We shall follow the idea of K. Ball and use the Cauchy integral formula. Let
us recall how it works. Suppose you have two functions F, G : R" — [0, +00),
a nonnegative homogeneous of degree 1 function ¥ in R™, and a random unit
vector z,, € R™. Suppose that you can show that for every point y € R™ and
for every vector v € R™,

&bl [ G- ezt = e v

with some constant x > 0, where &, denotes the expectation with respect to
zw. Then for any convex body @ C R",

/ F(y)¥(v,)do(y) <2k " G(z)dx.
aQ R™

To make this general formula applicable to our special case, we have to choose
F(y) = ¢(y) and ¥(v) = | Br|. Unfortunately, there is no clearly forced choice



On the Maximal Perimeter of a Convex Set 177

of z,, and G. To choose z,, let us observe that our task is to make the “typical
value” of |(v, z,,)| approximately equal to |Bv|. The standard way to achieve
this is to take z, = BZ,, with Z, =}, ¢j(w)e; where e; is the orthonormal
basis in R™ in which B is diagonal and ¢j(w) (w € {2) are independent
random variables taking values +1 with probability % each. Note that our
normalization condition ) ; b? = 1 guarantees that z, is always a unit vector
in R™. The hardest part is finding an appropriate function G. We shall search
for G(z) in the form
G(z) = p(z)=(x)

where Z(x) is some relatively tame function: after all, the integral of a func-
tion over a random line containing a fixed point is equal to the value at the
point times something “not-so-important” (at least, I do not know a better
way to evaluate it with no a priori information). If Z(z) changes slower than
©(z), then we may expect the main part of the integral fR G(y — tz,)dt to
come from the points ¢ that lie in a small neighbourhood of ¢ty = (y, z.),
which is the point where the function ¢ — ¢(y — tz,) attains its maximum.
To make this statement precise, let us observe that

¢y — (to +7)z) = exp {—T;} exp {W} e(y)

> \}Eexp{W}w(y)

when |7| < 1. If our function =(x) satisfies the condition
max {Z(z — 72,),Z(x + T2,)} > ==(z) forallz €eR", we 2, 7] 1

(which we shall call “weak convexity” condition), then we may estimate the
integral from below by 2%/5 o(y) E(y — (y, 20)20) exp{(y, 2,)%/2}. Then our
“only” task will be to prove the inequality

Eu [l 2)| - Z(y = () 20)20) .exp{WH > k[By|.  (%%)

Let us make a second “natural leap of faith” and assume that = changes so
slowly that =(y — (y, 2u)2w) & Z(y). Then we can just compute the expecta-
tion of the product of other two factors and define Z(y) to be the factor that
makes the desired inequality almost an identity (we should pray that after
that the loop will close and we shall not have to make a second iteration).
Thus, our first task will be to compute the quantity

e flot-o {028V - [ 2 { P2EPY]

Since Br and By are just two arbitrary vectors in R™, let us introduce some
one-letter notation for them. Let, say, Bv = v and By = u. As usual, we shall
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write v; and u; for the coordinates of v and u in the basis e;. The unpleasant
thing we shall have to face on this way is that even &, [exp{(u, Z,)?/2}]
(forget about the factor [(v,Z,)|!) is not easy to compute when |u| > 1.
Fortunately, if we assume in addition that =(8z) > =Z(z) for all x € R™,
B = 1, then the left hand side of (xx) will satisfy a similar inequality with
respect to y and, thereby, (xx) will hold for all points y with |By| > 1 as soon
as it holds for all y with |By| = 1.
We shall use the formula

exp { {u, §w>2 } = \/12? /_O; e exp{t(u, Z,) } dt

and write

e, {exp{w’ §w>2H \/ﬂ/ £ [exp{t(u, 2.)}] dt
- \/ﬂ/meé j <etuj;emj) dt |

Using the elementary inequality 673;_65 <ez [1 + 5—]_1, we can estimate
the last integral from above by

L[ ap{ SBRRY L ],

where [|lulls := 1/37;uj. If [u| < 1, we can say that, from the L' point of

view, the integrand is hardly distinguishable from the characteristic function
of the interval |t| < A(u) where A(u) = 1/ max{+/1 — |u|?, ||ul|4}, so the last
integral should be, roughly speaking, A(u). A reasonably accurate computa-
tion yields the upper bound min{1/+/1 — |u|?,3/||u|l4} < 3A(u). To estimate
Eulexp{(u, Z,,)%/2}] from below, we shall use another elementary inequality
6_% > 5 /2¢=5 /8 Tt yields the lower bound

ol e )

W/ e dt>%A(u).

Let us now turn to the estimates for the expectation &,[[(v,Z,)]
exp{(u, Z,)%/2}]. To this end, we shall first estimate &,[exp{is(v,Z,)}
exp{(u, Z,,)?/2}] where, as usual, i = /—1. Again, write
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£ {exp{is@v Zes) } exp {W H

/ _28 exp{%st>+t<UZ>Hd

. —(tuj+isv;) (tu;+isvj)
:7/ e_2H<e ’ ke ])dt.
V2T J oo j 2

Now note that for all o, 3 € R, one has

e_(a"l‘lﬁ) + e(a+tﬁ) e_a + ea
2 = 2

and this trivial estimate (the triangle inequality) can be improved to

ef(a“’iﬁ) + 6(0‘+iﬁ) s ﬁ2 e + e™
2 se 2

with some absolute ¢ € (0,1) for |af, |8 < 1. Therefore,
e~ (tugFisvy) 4 o(tu;+isvy)

—tu_j_|_ tu
H 9 S H <626)

J J

for all £,s € R and

II

J

e~ (tuj+isvy) 4 e(tuj +isvy)
2

—tu; tu;
EPINE e "t 4 et
<e | | —

J

if |t < ||ul|=! and |s| < |jv]|zt. Since [|ul 2t = [ullyt = A(u), we can write

e oo B2 e T e {20
> (1) \/12?/1(: . 1:[ (€“‘2+€“‘> dt

> (1 — 6_682‘1}'2) \/ﬂ/ S dt > % (1 — e—és2|v\2) Au) .

On the other hand, the trivial inequality |a — ae®”?| < 2amin{|3|,1} (o > 0,
0 € R) yields

£ [oor {8 2I1Y] ¢ [expfase 21 {22221
< 28, {min{s(v,ZwH, 1} exp {WH :
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Bringing these estimates together and taking s = |v|~!, we obtain

u, Z,)? -
&, [min{|(v, Z,)|, [v|} exp {<’§>H > i(l — e ) A(u)|v] = 2nA(u)|v]

where ) := %(1 —e7%) > 0 is an absolute constant. Obviously, the expectation
Eul[{v, Z,) exp{(u, Z,)?/2}] can be only greater.

This brings us to the idea to take Z(y) = A(By)~! = max{| By,
/1 —|By|?}. This formula makes little sense for |By| > 1, so, to be for-
mally correct, we shall distinguish two cases: |By|> > 1 — ||By|? and
|By|? < 1 — ||By||3. We shall separate them completely and even construct
two different functions =7 and =5 serving the first and the second case cor-
respondingly. Note that all points y for which |By| > 1 are covered by the
first case, so we need the condition that = be non-decreasing along each ray

starting at the origin only for =;. Let us start with

Case 1: 1 — ||By||7 < |By|* < 1.

In this case the natural candidate for =) is =i(y) = ||Byl|ls- We have no
problem with the “weak convexity” condition because =7 is even strongly
convex. Also, it obviously satisfies =1 (8y) = =1(y) for every G > 1. The only
thing we should take care about is the assumption = (y — (y, zw)2w) &~ Z1(y).
What we would formally need here is =1 (y — (y, 20 )2.) = ¢ E1(y) with some
absolute 0 < ¢ < 1. Unfortunately, it is futile to hope for such an estimate
for all y € R™ and w € {2 because it can easily happen that y is collinear
with some z,, and then we shall get = (y — (v, 2u)2.) = 0. To exclude this
trivial problem, let us bound = from below by some constant. Since our
aim is to control the integral of =7 with respect to the Gaussian measure
in R, we may just take the maximum of = and its average value with
respect to the Gaussian measure dy(z) = ¢(z) dx, which is almost the same

as ||Z1llarn,ay) = \/ > bj = V/3D. This leads to the revised definition
Z1(y) = max{[|Byll1, D}

(note that this revised function =7 is still convex and non-decreasing along
each ray starting at the origin). The condition =1 (y — (¥, 2w)%w) = ¢ Z1(y)
is then trivially satisfied with ¢ = 1 if ||By||l4 < D. Assume that || By|l4 > D.
Then

E1(y = (¥, 2w)2w) = 1By = (y, 20) Bzolly = | Bylla — [(By, Zu)| - |B*Zo |14

Z1(y) — [(By, Z.)| 4 Zb — D*|(By, Z)|.

Uniting this estimate with the trivial lower bound =1 (y — (y, 2w )2,) = D, we
can write

1 =
>|_1(y)

Sy — ¥ 2 Z =m0
1(y <y7z >ZUJ) 1+D|<By,Zw
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(we used here the elementary estimate max{a — D, D} > 17 ﬁ) Therefore
we shall be able to prove (xx*) if we demonstrate that under the conditions
V1= |ul? < ||u|ls and ||ull4 = D (where, as before, u = By), the main part
of the expectation &,[min{|(v, Z,)|, |v|} exp{(u, Z,)?/2}] comes from those
w € 2 for which |[(v, Z,)| is not much greater than D~!. To this end, we
shall have to prove some “tail estimate” for &, [exp{(u, Z,)?/2}]. Using the
inequality

(u, Z,,)2 exp { fu, g }

we get

e [ 2 { 0221 H

t2e” 2exp{tuZ }dt

ﬁ\sv

.
/ 5 €&, [expltlu, Z.)Y] dt
=/
=/

—tu, tu
2_7 e " et
— | dt
()
-1
tIIUH4)
— t? |1 dt
<y e
2 1o63
=372 67 fJull;® < 16]ull;?

This results in the tail estimate
(u, Z,)?
€ X{<u¢zw>>ﬁ|u|41}eXP{2
_ u, Z,)? _ _
<572 ulies | Zexn { 2| <052l

Choosing f§ := % and recalling that ||ull4 > D, we finally get (u = By,
v = Bv)

£ {|<v, Zo)| - E1(y — (Y, 20) 20) - exp { = ?))2 H
> &, {min{@,z Mo lvl} - Z1(y = <y’ZW>Z“’)'eXp{<%§w>2H

: i y Z)?
> 15510 € [xqzigan-sy - minfl{o Zu)| ol e { 521
1 —_ . <U7Zw>2
> T 6:1@) &, [X{|<u,zu>|<,3|u|4_1} .rmn{|<11,Zw>|7 |v|} -exp{ . H
51) mi ) (W, Zu)?
> 115 (Ew[ in{|{v, Z,)|, |v|} exp{ 2 H
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<u,Zw>2
—|v] - & {x{|<uz>|>suun;1}exp{ 2 }D
n

Z1(y) 1 -2 -1 = -1 n
> 2 16 > ——5 = ——|vl.
7 @nllulT ol = 16872l o)) > TS S @)l el = 751

This finishes Case 1.

Case 2: |By|*> <1 —||By|3.
To make the long story short, the function =5 that we shall use for this case

) 2,(s) = max{ VT BYP)-. D).

It is easy to see that

|22l ey <D+ [ (1= |Baf ) (o) = 3D
To prove “weak convexity”, let us observe that
1—|B(z+72,)*=1—|Bz|? — 2r(Bz, Bz,) — 7?|Bz,|* > 1 — |Bz|* — D*
if |7] <1 and the sign of 7 is opposite to that of (Bx, Bz,). Therefore,

VA = |Bx+712,2)+ = /(1 - |Bz|?)y —D?>>+/(1—|Bz2), — D

for such 7, which is enough to establish the weak convexity property for =5.
Now let us turn to the inequality Z5(y — (y, 20)2,) = ¢ Z2(y). Again, it is
trivial if 1/1 — |By|? < D. For other y, write

1—[B(y - <y7zw>zw)\2 =1- ‘By‘Q + 2(y, 2,)(By, Bzw,) — <y,zw>2|Bzw|2.

It will suffice to show that the main contribution to the mathematical ex-
pectation &, [min{|(v, Z,,)]|, |v|} exp{(u, Z,)?/2}] is made by those w € 2 for
which

2(y, 20) (By, Bzw) — (4, 20)?| Bzo|? > —K*D?

where K is some absolute constant (for such w, one has Z5(y — (y, 2, )20) =

fi(ly{)). Since |Bz,|? = D*, we can use the tail estimate

Eu

ex (u, Zo)”
Miwza=p 2} P12

<A1 = [uP)E, {<u7 Zu)* exp {WH S ﬁz\/liw

(which is proved in exactly the same way as the tail estimate in Case 1) to
restrict ourselves to w € 2 satisfying |(y, z,,)| < #D~!. This allows to bound
the subtrahend in the difference 2(y, z,,)(By, Bz.) — (y, 2,)%| Bz, |* by 3°D2.
To bound the minuend from below, we shall use the following
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Correlation Inequality
Let u, w € R™ satisfy |u| < 1, (u,w) > 0. Then

& e { 2
w X
X{w,zwm,ax%%} P 2

< e =
V3 1 [u]?

Let us first show that this correlation inequality implies the desired bound
for the minuend 2(y, z,,)(By, Bz,). Indeed, write

<y,zw><By,Bzw> = <By’Zw><BSy’ Zw> = <ua Zw><32ua Zw)

where, as always, u = By. Observe that (u, B?u) = |Bu|?> > 0. Therefore,

according to the correlation inequality, we may restrict ourselves to w € (2

satisfying (u, Z,,)(B%u, Z,) > —f3 1| E | B2u| where 3 > 0 is chosen so large
u

VST

that 872 + %e‘ﬁ < 1. Now observe that

2
[BPul = [y blu2< | D00 > ul < D*ufs
J J J
Thus
2<U7Zw><B2uaZw> 2 _26 ||U||4 D2 2 _25D2

V1= ul?
due to our assumption |u|? < 1 — |lu||3. To prove the correlation inequality,
just take
~ V1—ul?
Ui=u— ~———w
2Jwl

and observe that [@]? < |ul?+ (1 — [u[?), so /1 = [a]? > %2/1 — [u]?. Now
we have

. o W Z0)?
¢ X{<u,zw><uazw><—ﬁ¢%}e ’ 2

because

(0,20 > {2 - 2 2 w0, 2) > (2 + 5

|w]
1—[ul?’

c {e {<a,zw>2H o1 2 1
w X ~X ~X .
L VI VBT P

The upper bound for I'(A) is now completely proved.

under the condition (u, Z,){w, Z,) < =0 It remains to recall that
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Proof of the Estimate I'(A) > ¢\/||Allg-s
Let o > 0. Consider the family of random polyhedrons

Q(o, N;w) := {xeR” : |<x,x[k]>| <o for allk:l,...,N}

where zl*l = BZLk] and ZLk] (k > 1) is a sequence of independent random

vectors equidistributed with Z, = 37, e;j(w)e;. Let us observe that [Bu,|

identically equals />~ b5 = D? on dQ(g;w). Thus, the inequality I'(A) >

cy/||Alla.s = ¢D will be proved if we show that at least one polyhedron
Q(o, N;w) has the Gaussian perimeter of cD~! or greater.

I tried to use as few non-trivial statements about Bernoulli random vari-
ables in this note as possible but I still had to employ the following

Pinnelis Tail Lemma. Let u € R™, 3 > 0. Then

1 82

1 o t2
Poilu, Z,) = Blu éK—/ e Tdt< K e 7

where K is some universal constant. Informally speaking, this means that
Bernoulli tails do not exceed Gaussian tails.

The simplest and most elegant proof of the Pinnelis Tail Lemma belongs
to Sergei Bobkov, who observed that the function

1 o0 2

satisfies the inequality

() ro(42) oo

for all 3 > /3,0 < a < 1 (to prove it, just differentiate the left hand side with
respect to a and check that the derivative is never positive), which allows to
1

prove the lemma by induction with K = 2%(/3) < 13.

We shall show that the “average perimeter” of Q (o, N;w) is large. To for-
malize this, choose some nice continuous non-negative decreasing L'-function
p:[0,400) — R (which will serve as the weight with which we shall average
with respect to p) and some small & > 0.

Note that for each o >0, N > 1, and w € {2,

Y(Q(e+ h,N;w)) —v(Q(o, N;w)) < hT

where 7" is the supremum of all perimeters of our polyhedra with respect to
the standard Gaussian measure. Therefore
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Es[1(Qo+ h,N;w))| — €, [7(Q(o, N;w))] < AT.

On the other hand,

efrQew)] = [ (1=Pu{liB. 21> 0})" o).

Now take oo = ¢h (¢ =1,2,...), choose some integer-valued positive increas-
ing function N(p), and consider the sumtegral

Zp o / {1_7) {I(Bx, Z)| > 0011})N

— (1= P Al(B2, Z0)] > o)V ] dy(a).

On one hand, this sumtegral does not exceed _,= p(0¢)hY < Tfooo p(0) do.
On the other hand, since

1
lT—a)-—1-p" ze'M(B-a) whenever a < 3 < I

we can change the order of summation and integration (the sumtegrand is
nonnegative) and estimate our sumtegral from below by

/{ZP (0¢)N (0¢ [77 {{Bx, Z,)| > o0¢}

P82, 21> )] fr (o)

where S C R™ is the set of all points « for which P, {|(Bz, Z,,)| > o} <
N(o)~! for all p > 0. For each fixed x € S, the integrand converges to
the mathematical expectation &, [p(|(Bz, Z,)|) N(|(Bz, Z,)|)] as h — 0*.
Therefore, the lower limit of the sumtegral is at least

e (S)E [p((Br, 20)1) N ((Bx, 2.)]) |

as h — 0. Comparing the upper and the lower bound, we get the inequality

T/OOOP(Q) do > 6717(5)‘2} {p(\(Bx, Zw>‘) N(|<B177Zw>|)} .

Our aim will be to choose the function N(p) sufficiently small to make the set
S large on one hand and sufficiently large to make the right hand side much
larger than [~ p(o) do on the other hand. Note that the demand that N (o)
assume only mteger values can be dropped because, given any non-negative
function N (o), we can always replace it by the function N(p) that takes value
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1if0< N(o) <2and value k if k < N(o) < k+1, k=2,3,... . This will
not reduce the set S and will reduce the mathematical expectation on the
right not more than twice.

Now recall that

/ | Bzx||3 dvy(z) = 3D* and / (1- |BJ:|2)2 dvy(z) = 2D

Therefore, for at least one quarter (with respect to dv) of the points = € R™,
one has both

|Bz|s <2D  and |1 —|Bz|?*| < 2D?
(the measures of the exceptional sets do not exceed 1% and % correspond-
ingly).
Now we can use Pinnelis Tail Lemma and observe that for such points =z,

0 I o
{(Bz, Z, <ok (14 ——2 s
PAlBr. 2.1 > o} < +\/1+2D2) eXp{ 1+2D? 2}

This leads to the choice

1 0 1 ¢
N =— 1+ ——— - O
(0) QK( +\/1+2D2>6Xp{1+2p2 2}

Let us now choose the weight p. Since the only mathematical expectations we
can easily compute are those of slight perturbations of exponential functions,
it seems reasonable to try

With such a choice, we have

Eup({Br, 2,)]) N(|(Bx. Z)])] > Le, {(1 + |(u, Z)]) exp {WH

2K
where
1 D2
=4/——— — Bx.
11202 3 °
Note that
1 D?
||U,H4 < ||BI||4 < 2D and |’UJ‘2 = <1+22)2 - 3> (1 — 2D2) >1-— 5D? .

Using the inequality

u, Z,)? -
(1—|—|<u,Zw>)exp{< el }> \/12?/_ te™F exp{t(u, Z,) } dt,
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we conclude that

2 oo 2 .
Eu [(1 + |{u, Z,)|) exp {Wf@}} >D 2. \/% [m |t\ef%672t dt.

Since fooo p(0)do = \/37“ D1, the desired bound T > ¢ D! follows.
The theorem is thus completely proved.
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On p-Pseudostable Random Variables,
Rosenthal Spaces and l; Ball Slicing*

Krzysztof Oleszkiewicz

Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa,
Poland koles@mimuw. edu.pl

Summary. We introduce the class of p-pseudostable random variables and inves-
tigate some of their properties. Short notes concerning embedding Rosenthal-type
spaces into L4(0,1) and hyperplane sections of the unit ball of [}, are added.

Notation. Throughout this paper the symbol ~ denotes equality of distribu-
tions; X, G, X1,G1, X2, Go, . .. are independent symmetric random variables
with X,, ~ X and G,, ~ G ~ N(0,1) for n = 1,2,... A Fourier transform
of an integrable function f : R — R is defined by f(t) = [ e f(x)dx, so

that if f is even and continuous, and also f is integrable then (f)/\ =27 f(x).

Introduction. A characteristic function of a symmetric p-stable distribution
(0 < p < 2) is of the form p(t) = e=¢/*I" for some ¢ > 0. It is well known that
no random variable has a characteristic function of the form ¢(t) = e~¢l*”
for p > 2,¢ > 0. Indeed, assume that p > 2 and p(t) = Fe®™X = e~°I!I" for
all real t. Then ¢”(0) = 0 and therefore EX? = 0 implying that X = 0 a.s.

Also if we turn to the standard characterization of symmetric p-stable
distributions by

aX1+bXy ~ (|l + [b|P)V/PX

we see that aX; + bXy would have a greater second moment than (|a|P 4+
|b|P)/PX for p > 2 and ab # 0 if EX? < oco. And we would like to have
EX? < 0o because the classical p-stable has an absolute g-th moment finite
for all ¢ € (0,p).

However, one can hope that the “overdose” of variance could be extracted
in some easy to control way, for example, in the form of the independent
Gaussian summand.

Definition 1. For p > 2 we call X a symmetric p-pseudostable random
variable (a p-pseudostable) if X is not Gaussian (meaning also that X is not
identically zero) and if for any real a and b there exists some real number
v(a,b) such that

aX) +bXs ~ (|a|” + |b|P)YPX + v(a, b)G.

We will say that a p-pseudostable X is pure if X is Gaussian-free (i.e. it
cannot be expressed as the sum of two independent random variables one of
which is a nondegenerate Gaussian).

* Research partially supported by KBN Grant 2 PO3A 043 15.

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 188-210, 2003.
(© Springer-Verlag Berlin Heidelberg 2003
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The following theorem is the main result of this note.

Theorem 1. All p-pseudostables have finite second moments. If X is a p-
pseudostable then it has a characteristic function

plt) = ecltr=t®

for some positive constants ¢ and a. Conversely, if a random variable X has
a characteristic function of the above form then X is p-pseudostable. For p €
(2, 4]UUR—,[4k —2, 4K] there are no p-pseudostables. For p € |-, (4k, 4k+2)
there exist pure p-pseudostables and any p-pseudostable is either pure or it
can be expressed as a sum of a pure p-pseudostable and an independent Gaus-
sian summand. Moreover, for fized p all pure p-pseudostables are dilations of
the pure p-pseudostable X with EX? = 1, whose distribution is uniquely de-
termined. If X is a p-pseudostable then it has a continuous density g (with
respect to the Lebesgue measure on R) and the limit lim;_, o tPT1g(t) exists
and it is finite and strictly positive. Moreover, g has a zero point if and only
if X is pure.

Proof. Assume that X is a p-pseudostable. Let () = Ee®X be the char-
acteristic function of X. Certainly ¢ is an even and real-valued function on
R since X is symmetric. As lim;_,o @ (t) = 1 there is some ¢y > 0 such that
p(t) > 0 for t € [0, tg]. Let

A= inf o)t

te[2—1/Ptg,to]
A € (0,1] because ¢ is continuous. There exists some real v such that
27 P x, 4 271P X, ~ X 4 0G.

Therefore
P(277t) = () 2em A

for any ¢ € [0, tg]. By iteration we arrive at

P27 = ol "o (- e 3 @F))
k=1

s (plt) ) o (25 )

for any positive integer n. For any s € (0, to] there exists t € [2*1/”150, to] and
a positive integer n such that s = 2="/Pt, so that we have

S0(8) > Aspesti
where B = 0% - (2%2 —1)71. Hence lim supsﬁolfsﬁ(s) < oo and therefore

EX? < co. Comparing second moments of aX; +bXy and (|a|? + [b|P)/PX +
v(a,b)G we arrive at
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[v(a,b)| = \/a2 + 02 — (|a|p + |bP)2/PVEX?2.
From the equality
p(at)p(bt) = o((|a]? + [bP)/Pt) e (@b /2

which holds for any real a,b and ¢ we deduce that the continuous function
b(t) = @(t1/P)eEX""/2 gatisfies 1 (2)(y) = (x +y) for any 2,y > 0 and
1(0) = 1. Therefore 1(t) = e~ for some constant ¢ and all ¢ > 0. Hence

plt) = e~ B el

for t € R. We know that ¢ > 0 because ¢ is bounded and the case ¢ = 0
is excluded since we assume X is not Gaussian. Of course, if some random
variable X has a characteristic function of the form ¢(t) = e~ =<ll” then
it satisfies the functional equation which is equivalent to the fact that X is a
p-pseudostable with EX? = 2a. Assume now that p € (4k — 2,4k) for some
integer k > 1. The function ¢(t) = e~ =!I’ is 4k — 2 times differentiable
and therefore EX**~2 < 0o and ¢**=2)(t) = —~EX* 21X Hence

S0(4k72) (t) > 7EX4k72 _ S0(4k72) (0)

We know that

flx) =a" % (e_m -> _”

is an analytic function. Now, as
t2 P l
o) = 3 (-0 LAY e g st + e,

differentiating each summand separately 4k — 2 times, we see that growth of
p(4k=2) (t) at the neighbourhood of zero is determined by the second summand
(I =1). In the (4k — 2)-th derivatives of all other summands there appear
either constant summands or the summands with powers of || higher than
|t|P~4*+2. Therefore

P =2(0) =D (1) = ep(p—1) (p—2) . .. (p— 4k +3)[t|P~HF T2 4o ([t|P~*+2)

which contradicts the fact that ¢(**~2) has the global minimum at ¢ = 0. We
have proved that there are no p-pseudostables for p € (Jr, (4k — 2, 4k).

For even p > 4 we use another argument — Marcinkiewicz’ theorem (Th.
2bis of [M]) stating that if o(t) = ¢V ® is a characteristic function of some
probability distribution and W is a polynomial then deg W < 2. In the case
of p divisible by 4 we can give a straightforward argument. Since ¢(t) =
e’ =t helongs to C°°(R) all moments of X are finite and p2)(0) =
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(~1)'EX? for | = 0,1,2,... We know that o(z) = e~ =" is an entire
analytic function and therefore

@(20 220

Hence

0 ( l) %) EXQ[
at2—ctp _ 20 21
e lg t = E @) .

=0

For real t we can use the Fubini theorem because X2?'t? is nonnegative,
arriving at
ot X + e—tX

_Ctp

EetX = F

On the other hand
EeX > P(tX >0)>1/2,

so that for ¢ large enough we obtain a contradiction. The case p = 412 + 2
(p > 2) is a bit harder. Since the characteristic function ¢(t) = e~ —¢*"
extends to an entire analytic function we have

limsup {/EX2/(20)! = limsup }/|p2D(0)]/(20)! = 0,
[—o0

l—o0

2X | —2X . .
so that z — Fe*X = E% =3 ]%2)1(), z=" is an entire function, too.

By the identity principle we get Fe*X = p(—iz) = 2= +ez" for all complex

z. Therefore for z, = cos 2—” + i sin %’r and t > 0 we have

2 2 27 P p 27
Eet(Rezp)X — eat cos® = +ct? cos >

and ) -
™ P .
E ReetX = Re Eet#rX = 21" €08 5 Het¥ ¢og (at2 sin *).
p

2mn

Hence for ¢,, = d
« sin %

and integer n great enough there would be

Eetn(Re zp) X < ERe 6t"sz

in contradiction to the fact that ef** = |e%| > Re e for all complex wu.

Assume now that p € (4k, 4k-+2) for some natural k > 1. Let f,(t) = e~ [t
and F), = fp. We will need several lemmas. The first of them is well known
(cf. [PS], Part Three, Chapter 4, Problem 154) and covers a wider range of
the parameter p. We give its proof for the sake of completeness — later we
will use a more refined version of this argument.
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Lemma 1. Ifp > 2 then F, : R — R is a continuous even function inte-
grable with respect to the Lebesgue measure and such that fR Fy(z)dx = 2w
and

1
lim a”*1Fy(z) = 21 (p+ 1) cos (2 =7) =27 (p+ 1)sin (2.

T—r00

Proof. Only the last assertion of the lemma needs proof as it implies the
integrability of F}, and therefore F), = (f,)" = 27 f,; in particular

R
Let 1
By () = e e[t 4 el = 1 = S 4

The function h, is at least [p] + 1 times differentiable (to see it expand
the exponential terms into power series and note that due to fast enough
convergence one can differentiate the series term by term) and all derivatives
of h, up to order [p] + 1 are integrable (use the Leibniz rule). Hence by the
Riemann-Lebesgue theorem

lim |z/P1 72 h,(2)] = lim [(A{PTHD) (@) =0,

T—r 00 Tr—r 00

so that ﬁp(z) = o(z7P71) for z — oo. Note now that
Folt) = hylt) — [tfPe1 — g1l

and therefore
Fp(z) = ilp(:c) 7/ e”ﬂt\pefltldt—/ eitz|t‘p+lef‘t|dt.
R R

Hence our assertion immediately follows from the following lemma. O

Lemma 2. For p > 0 we have

Tr—r00

) 1
lim xp'H/ e®|tPe~Itldt = 2 (p + 1) cos (]%77)
R

Proof. We will prove a little more, namely that

2I'(p+1) o <p+1

7 — (p+ 1)arcsin
(1—&-962)?2i 2 P+1)

. 1
I = | e tre!tldr = )
i /R i Vita?

which follows from I; = 2Re I, where

o 1 1 r 1
[2:/0 e rtPe dt = (cos (p-;- 7T>+isin (p-;- 7T>> : (x(j_);)—er)r
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Here values of (x + 4)P*! are taken from the main branch of zP*!. This
is a simple transformation of the formula for the characteristic function of
the gamma distribution which can be found, for example, in [F]. A simple
argument goes as follows: I5 is an analytic function of z (Ima > —1) and the
formula for I can be easily checked for x being a purely imaginary complex
number; therefore by the identity principle the formula must be valid for all
real z. O

Lemma 3. Let p € (4k,4k + 2) for some natural k > 1. For o > 0 let
H,(xz) = EF,(z+ 0G). Then

lim P H,(2) = 2'(p + 1) sin (p;)

T—0o0

and there exists o > 0 such that Hy(z) > 0 for all x € R. Moreover, there
exists y, > 0 such that Hy(x) > 0 for all x >y, and o > 0.

Proof. Let u(x) = 2PT'F,(z). By Lemma 1 u is continuous and

lim u(x) = -2 (p+ 1) cos (1%170

T—00

Therefore w and F), are bounded on R. Let us recall the well known estimate:
P(G>zx)< e~ BetC = /2
for > 0. Splitting

T
z+ oG

p+1 p+l p+1
x Hg(l') :E< ) u(m+0G)1|G|S§ +x EFp(.’E+0G)1‘G|>i
we obtain the first assertion of the lemma by the Lebesgue theorem on ma-
jorized convergence — the first term tends to 2I"(p+1) sin(&") and the second

2
one converges to zero as x — 0o because its absolute value is bounded by
2

2P| Fy||soe” 377 . The second assertion is more delicate. From Lemma 1 it fol-
lows that there exist some z;, > 1000 and €, > 0 such that [*? F,(z)dz >
P

and Fp(z) > —27 if |2] > x,. Because of the symmetry we can restrict our
considerations to the case # > 0. Let F.f = max(F},0), F,” = max(—F},,0)

and let A, = ff;p Ef(x)dx, B, = ff;p F; (x)dx; therefore A, > B, > 0.
Choose y, > 2z, and such that the following two facts hold simultaneously:

1,.1/2 p+l
EpES > 4B,axPT1

for all z > y, and
Ap > B - €2zpy;1/2+zf)y;3/2.

First we will prove that H,(z) > 0 for all x > yp and o > 0. Let us consider
two cases.
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Case 1: ¢ > 2%/4.
Then

ZTp = 2
Va2roH,( / Fe S ar> [ F e S5 dr
.

2\ _—
o / E,(t)el®t=2)7 “dt.

P

For |t| < z, we have

) s o\ 32 12 1 3/2
‘xt— 5‘0‘ < (xpx—i—?p)x_ / =Tpr /2 4 prx_ /

< a2+ Gy

From the way in which we chose y,, it follows that

Tp

Fp(t)em—*)“ dt

—xp

_ —1/2_ 1.2, -3/2 1/2, 1 2 73/2
> Ape”"rp 2TYp " — Betre T2 >0

which ends the proof of Case 1.

Case 2: o < 23/4.
Then (recall that z > y, > 2z, > 2000)

_@=t)? z €p (=12 _(xfzp)Q
V2roH,(z) = RFp(t)e 202 dt > ——e 22 dt — Bpe 202

22 p+1

z (@—t)? 2
—p—1 — _ @
> e / e 202 dt — Bpe 87
x/2
—p— 2 —¢2 _ 22
=epx P 10/ et /2dt — Bye 5?
0
L1/4
—p— 2 —t2 _ =2
> epr? 10/ et /2dt — Bye” 5o
0

3 2

—p— _42 _zZ

> epx P 10/ et/2dt—Bpe 802
0

‘2
> epr P J—Be 802,

2_1/2

Define the function ¥, (w) = eyes® " — BywaPTi. Note that ¥,(1) =

€p es®

1/2

—BpfrpH/ 4 > 0 because of the way in which we chose yp and similarly

WL(1) = 1/4epx/2eM /857 _ B aptl/4 > 1o o1/82% g apt1/4 5 0, Since
W, is convex on [1,00) it means that ¥, (w) > 0 for all w > 1. Hence putting
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22
w = x3/4/c > 1 we arrive at eye3.? > B,xP*! /o which ends the proof of
Case 2.
To finish the proof of Lemma 3 we show that for ¢ = {/(2z,y,)/(In g—z)
there is H,(x) > 0 for z € [0,y,] and therefore for all real x. Indeed,
Tp  (@—t)2

V2roH,(z) > / Fy(t)e™ 22 dt

—zp

_ (ztzp)?  (m—zp)?

> Ape” 207 — Bpe 207

_ (wtap)?

=e 2 (A, — Bye?¥r/77) = .
This completes the proof. O

PR
e 202,

Note that EF,(z + 0G) = (F, * v,)(x) where v,(z) = \/%U
Lemma 1 and Lemma 3 imply that F}, and F), * 7, are integrable functions
and therefore

242 o242

(Fp #90)"(8) = Fp(t) - Ao (8) = (f)" (1) - e "5 = 2me” 1"

Hence if H, > 0 then g = 1/(27)H, is the density of a symmetric probability

measure on R with a characteristic function ¢(t) = e~ ItP=5  This proves
that p-pseudostables do exist for p € (Jp;(4k, 4k + 2). Note that the argu-
ments used can be easily adapted to prove that there are no p-pseudostables
for p € Upe, (4k — 2,4k). For ¢’ > o we have

H, (z) = EF, (m +0G1+ Vo2 — 02G2) =FH, (x + Vo2 — 0'2G).

Therefore H, > 0 implies H,» > 0 for 0’ > 0. Let 0, = inf{c > 0: H, >
0} Ast e~ 11"=29°# is a continuous function and it is a pointwise limit of a
sequence of characteristic functions e~ 111" =2 (e»+%)*** we deduce that it is also
a characteristic function and therefore H,, > 0. We know that iH(,p is the
density of a symmetric random variable X. We will prove that X is Gaussian-
free. Indeed, assume that X can be expressed as a sum of two independent
random variables one of which is a non-degenerate Gaussian. Without loss of
generality we can assume that the Gaussian summand is symmetric (transfer-
ring its mean to the other summand). Then the other summand would have
a characteristic function of the form e~ !"=27"*" for some o < op yielding
H, > 0 which contradicts the minimality of o,. Hence X is a pure pseu-
dostable and any p-pseudostable with the characteristic function of the form
eIt =3" for 5 > op can be expressed as a sum of a pure p-pseudostable

2

having the same distribution as X and an independent N(0, /0% — 02) sum-

mand. After obvious rescalin§ the same holds for a random variable with char-
acteristic function e=<lt"=2" _ it is a pure p-pseudostable if v/2ac™ /P = op
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and it is a non-pure p-pseudostable if v/2ac= /P > op. Note that o, > 0 since
there are no p-stables for p > 2. The above considerations imply that densi-
ties of all non-pure p-pseudostables are strictly positive. Now we will prove
that the continuous density of a pure p-pseudostable has some zero point. In-
deed, we know that functions HHL% have some zero points for n =1,2,...
because they are continuous. Denote by z, some zero point of H o, (the
choice is arbitrary). From Lemma 3 it follows that |z,| <y, forn =1,2,...
and therefore we can choose a subsequence z,, convergent to some point z.
Note that F}, is a Lipschitz function as

F ()] = ‘/ eI dy g/ et
R R

2
F(1+)§ sup I'(u) =L < oo.
p u€([1,2]

Therefore all functions H, (¢ > 0) are also Lipschitz with a Lipschitz constant
L. Hence

H 20 ()| = [H 20 () = Hy Ly ()| < Lz = 2] = 0.

n+19p n+19p

We also know that for o/ > o there is

sup |Hy/(z) — Hy(2)| = sup |EH, (z + V0’2 — 02G) — Hg(m)‘

TER TER
< L-E|G|-o?—02

(2) = Hy,(2) as [ — oo. Hence H,, (z) = 0 and the
proof is finished. We have proved Theorem 1. O

and therefore H _n,
n+19p

Proposition 1. The function p — o, (where o, = inf{o > 0: H, > 0}) is
continuous on | Jr_, (4k, 4k + 2) with

lim o, = lim o, =oc.
p—4kt p—(4k+2)—

Proof. Recall that f,(t) = e 1t1” and F, = fp.
We will need the following lemmas.

Lemma 4. Let [p1,p2] C (4k,4k + 2) for some integer k > 1. Then there
exist vo and ¢ (depending on py and py only) such that Fy(x) > —5r for
any x > xg and p € [p1, pa).

Proof (sketch). We will follow the approach used in the proof of Lemma 1.
However, now we need more precision. For p € [p1, p2] let

3
1

wp(t) = e 1 7 e,
=0
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In the neighbourhood of zero wy(t) = 1 — L [t[P™ + o([t[P**) since p > 4.
Hence w, € C**4(R). Using the Leibniz rule for [t| > 1 and differ-
entiating the series expansion term by term for |t| < 1 we prove that

SUPpepy ,ps] ||wp k+4)H1 < oo and therefore

sup sup |z|* i, ()] < 0.
p€[p1,p2] TER

Hence there exists some positive constant C' depending on p; and ps only such
that |1, (z)| < -5 for all z > 1 and p € [p1, p2]. According to Lemma 2

4
o) = iy(o)-3_

I'(p+1) COS(pH
23]
= (=11 +a2)2

2

1
m—(p+1) arcsin ——— |.
B+ m)

Let D=1+ tan’l(g;):ﬁgw). One easily checks that

1
inf  inf —cos (p i 7w — (p+ 1) arcsin

p€[p1,p2] x>D

1
—— | >0
m>

Therefore by some elementary estimates we prove that there exists some
positive constant M such that for all z > D and all p € [p1,p2] there is

F,(z) > M5 — 575+=. The assertion of the lemma easily follows. We omit
long but elementary calculations. O

Lemma 5. Let [p1,p2] C (4k,4k + 2) for some integer k > 1. Then there
exists some number y > 0 (depending on py and pa only) such that for all
x>y, o>0 andp € [p1,p2] there is Hy(z) = EF,(x 4+ 0G) > 0.

Proof. The proof follows closely the proof of Lemma 3. Note that in view
of Lemma 4 the main problem remaining is how to deal uniformly (for p €
[p1,p2]) with z,, A, and By, First one needs to prove that there exists some
s > 0 such that for all p € [p1,p2] and all z > s there is

/ Fy(x)dx > 7.

Then for yo = max(zo,s,2000), being the “uniform version” of z,, put
A, = ffzg Ff(z)dr and B, = ffzo FE; (x)dz. One needs to show that
infpe(p, po) (Ap/Bp) > 1 and sup,e,, ) Bp < o0 to complete the proof. The
last two assertions are equivalent since A, — B, € [7,27] and they are equiv-
alent to the fact that

Yo
sup / |Fp(z)|dz < oo.
]

p€[p1,p2] Y —yo
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Step 1: We prove that such s exists.

By the approach used in the proof of Lemma 4 one proves also that there
exists D > 0 (depending on p; and py only) such that Fj(z) < xT’jJrl for
any z > D and p € [p1,p2]. The proof of this fact is simpler than the proof
of Lemma 4 so that we leave it to the reader. Recall that for any p there is

[ Fp(x)dz = 27 and therefore for z > D we have

z

> dx 2D
Fp(x)dx > 27T_2D‘/Z W :27T_plzp1.

—z

Hence there exists s > 0 such that for any z > s and p € [p1,p2] there is
[7. Fp(x)dx > m.

Step 2: We prove that sup,cp,, ] ffzo |Fp(z)|dz < oo.
Note that by the Holder inequality and the Plancherel identity we have

Yo Yo 1/2
Fp(w)lde < /2 Fy(w)*d > < V2 ( (@) |d )
1/2 0 1/2
= v 2Yo (QF/ fp(t)th> = \/%(/ e—Qtht)
R 0

and the last expression is uniformly bounded for p € [p1,p2]. The proof of
Lemma 5 is finished. (]

1/2

Let ¢,(t) = e I1"=393""  Lemma 5 immediately implies that for z >
y there is p,(x) > 0. Note also that the family (P,)peip, p,] is uniformly
Lipschitz. Indeed,

o0
(80 (2)] < /R eI =373 g < o / —

2
:F(l—i—)ﬁ sup I'(u) < oo.
p u€(1,2]

Now we are in a position to prove Proposition 1.
Let p,q1,q2,-.. € (p1,p2) with lim,_,. g, = p. Choose a subsequence
(gn,) such that

lim o, = liminfo, = ojus.
oo M nooo Im inf

Then Y .
Oinel

Li _pp_1
Pgn, — € " = Pint(t)

l—o0

by the Lebesgue majorized convergence theorem. Therefore @qnl tends uni-
formly to Qins as I — oco. Hence @iys > 0. Assume that oins < 0p,. Then

¢p(@) = Eding (w + \/HG) >0
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in contradiction to the fact that %gﬁp as the continuous density of a pure
p-pseudostable must have some zero point. Hence oins > 0. Now choose a
subsequence (g, ) such that

llirgo Ogn, = lirrlri s01<1)p Ogn = Osup

(a priori it is possible that g, = 00). Then, again by the Lebesgue majorized
convergence theorem we have

L _|¢P—1g52 42

Pan, (£) =5 €270t = o (8)
=00

(with @gup = 0 if ogyp = 00) and therefore P, tends uniformly to @g,p as
I — o0. Note that %gﬁqnl as the continuous density of a pure g,,-pseudostable
must have some zero point in [—y, y] (since by Lemma 5 it has no zero points
outside this interval). As ¢g, are uniformly Lipschitz we deduce (the same
argument appeared at the very end of the proof of Theorem 1) that ¢gyp also
has some zero point. But oy, > 0, would imply

Psup(T) = E@p(x + /0% — 5 G) >0

since ﬁ@,, is the density of a pure p-pseudostable. The obtained contradiction
proves that og,, < 0,. We have proved that

liminf o4, > 0, > limsup oy,

n—00 n— 00
and therefore o,, — 0, as n — 0o, so that p — o, is continuous on (p1, p2).
Choosing p; and po arbitrarily close to 4k and 4k + 2 respectively we prove
that p — o, is continuous on (4k,4k + 2). It remains to investigate the
boundary behavior. Assume that there exists a sequence (p,) C (4k, 4k + 2)
convergent to 4k and such that the sequence o, is bounded from above.
Then there would exist a subsequence (pn,) such that o), — o as | — oo
7t4k7 1 02t2

for some o > 0 and therefore ¢, (t) would tend pointwise to e 2

Hence e=*""=37°%" as a continuous function being the pointwise limit of the
sequence of the characteristic functions would also be a characteristic func-
tion in contradiction to the fact that there are no 4k-pseudostables. Hence
lim,_, 4+ 0p = oo. In a similar way one proves that lim,_,4;_2)- 0p = o0.
The proof of Proposition 1 is finished. O

Remark 1. Let X be a p-pseudostable with a characteristic function ¢(t) =
e=clt"=3t" Then for all positive integers | < p we have EX! = EG!.

Proof. Tt suffices to prove that ¢ (0) does not depend on ¢ for positive
integers | < p and this is an easy consequence of the Leibniz rule and the fact
that #(e_dt'p) = 0 for t = 0 and positive integer m < p. O
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K. M. Ball pointed out that by the so-called “moment method” (in his
review article [D] Diaconis traces it back to Chebyshev’s proof of the Central
Limit Theorem and presents some of its applications) Remark 1 immediately
yields the following corollary.

Corollary 1. If X is a p-pseudostable then

s

sup P(X <t\/m) —P(G<t)‘ < =1

teER

Proof. X/v/EX? has a characteristic function of the form o(t) = e~¢ltl"=3¢*,
Now it suffices to apply Theorem 2 of [D] and Remark 1 to X/v EX?2. O

Corollary 2. Under the notation of Proposition 1

lim ( inf Jp) = 00.
k—s00 \ pe(4k,4k+2)

Proof. Assume that there exists a sequence (p,) tending to infinity with p,, €
Ure (4k, 4k+2) and sup,, 0, < c0. Let Z,, be the pure p,,-pseudostable with
EZ? = 1, therefore it has the characteristic function 1, (t) = e~ % " L 1
Corollary 1 implies that Z,, tends in distribution to G as n — oo and therefore
U (t) — e~t/2 pointwise, meaning that o, 7" [t|[P" — 0 as n — oo for any real
t. Taking ¢t = 2sup,, 0, we obtain the contradiction which ends the proof.
O

Remark 2. If X is a pure p-pseudostable then

lim (p — )71 XIlg = w1 X]|2,
q—p

where k), = (2I'(p + 1) sin(5F)) /7o, 1.

Proof. By Lemma 3 we can precisely describe the limit behavior of the density
of X. The assertion follows by some elementary calculation. (]

One of the classical applications of p-stable random variables is the linear
isometric embedding of I} space into L,(0,1) for 0 < ¢ < p < 2. The main
idea (a so-called representation theorem, cf. [L]) comes from P. Levy, at least
for finite n although the application to Banach spaces appeared much later.
For embedding /3° some more effort is needed (see [K] and [BDCK]). Of course
there is no linear isomorphic embedding of /;° into L,0,1)for2<g<p<oo
since L4(0, 1) has cotype ¢ and lp° does not have cotype g. However, using
p-pseudostables instead of p-stables we can transfer the ideas to obtain some
other results.

We will need the following simple lemma.
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Lemma 6. Let X, X1, Xo,... be i.i.d. p-pseudostables with EX? = 1. Then
for any a = (a1,az,...) €13° the series Y -, anX, is convergent a.s. and

Y anXn ~llallpX +/llal3 — lal2G.

n=1

Proof. By the Kolmogorov three series theorem one easily checks that

E;o:l an X, converges a.s.; therefore the series converges also in distribution
to the same limit. To finish the proof it suffices to show that the characteris-
tic functions of Zgzl a, X, tend pointwise to the characteristic function of

lall,X 4+ \/llall3 — lla]|2 G as N — oo, which is trivial. O

Before we pass to embedding results let us transfer the cotype argument
to the pseudostable setting to obtain some bounds on &, and o.

Lemma 7. For q > 2 and any real a,b there is

el g L a /2] p21a/2]
q—2lb2l - q—2[q/2 b2 q/2
2 (21)"” Ty (mm)'a'

=0
< |a + b + |a — bJ?
= 2
La/2] q
—21321
< ; <2l>|a|q b2+ [b4.

Proof. Treat the three expressions, which we compare as functions of the
parameter b and note that their derivatives up to order 2| /2] agree at b = 0,
so that it suffices to prove the inequalities for 2|¢q/2]-th derivatives, i.e.

w< la+b® +|a —bJ?

< lal® + |bl°
2 — 2 7|a‘ +|‘7

where 8 = ¢ — 2|¢q/2] € [0,2], which are elementary and well-known to be
true. |

Lemma 8. Let X be a p-pseudostable with EX? = 1. Then
(2 —28)E|X|? < 23T E|G)¢

for any q € [2,p).

Proof. Recall that X; and X5 denote independent copies of X. From an
q —pla
elementary inequality M > |a|? 4 |b]? holding for ¢ > 2 and any

real a,b we deduce that

E|X1 + Xo|? + | X1 — Xo|?

E‘Xl +X2|q: B

> E|X1]9 + E|Xo|? = 2B|X|7.



202 K. Oleszkiewicz
On the other hand there is X7 + Xo ~ 2/PX + /2 — 22/ G so that

E|X1+ Xo|? = E|2Y/PX + V2 - 22/r G

_ VG 2V | |VE B G - 9 ]!

2
La/2] ol
<> (2ql>E|\/2—22/PG|q E@2YPX)? 1+ B2V X
=0
La/2]

= Z (2ql>E|\/mGl|q21E21/pG2|2l+E21/pX|q
=0
< E(\MGl + 21/PG2“1 n ‘MGl _ 21/pG2‘Q>

+2q/pE|X|q
= 2E|vV2G|" + 297 E| X
= 2311 E|G|Y 4 27 B| X |7,

where we used Lemma 7, Remark 1 and again Lemma 7. Putting both in-
equalities together we finish the proof. O

Proposition 2. For any p € J,—,(4k, 4k + 2) there is

(e /P
Kp<2<p ( D) ))
Vrin2

and for any 0 € (0,1) there is

lim inf

( in p_l/QUp) > 0.
k— o0 p€(4k+60,4k+2—6)

Proof. The first assertion follows from Lemma 8 and Remark 2 as

fy 22U <21n2>1/”
a—p- (p—q)t/P p

1G], = \/§<F(p§1))1/p.

and

NS
The second assertion follows immediately from the first one — note that

infy inf e (apto,461+2-0) sin(5-) > 0 for any 6 € (0,1) and use the fact that

limy,—s oo F("j/" = 1/e. This ends the proof. O

Lemma 9. If X is a p-pseudostable and EX? = 1 then 4||X ||, > |G|, for
any q € [1,p).
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Proof. As X1 + Xo ~ 27X 4+ /2 —22/P G we have
2||XHq = ”XlHq + HXQHq > || X4 +X2||q

= [2VPX + v2-22/p G| = V2227 |G, 2 |G||,,

since p > 4. O

Remark 3. In the above we have used the well known fact — if Y and Z are
independent mean-zero random variables then

max([[Yllg, [ Z]lq) < Y + Zllg < Ylq + [121lq
for any ¢ > 1. The first inequality follows by the Jensen inequality:
1Y +Z|5 = Ev(Ez|Y + Z2|*) = Ey|Y + EZ|* = E|Y|* = |[Y[|]
and by the same argument [|Y + Z||, > || Z]|,-
Proposition 3. Under the assumptions of Lemma 6 there is

1 oo
=5 (IXllallall, + 1Gllgllall2) < 11> anXallg < X lallally + [Glllal:

n=1
for any q € [1,p).

Proof. From Lemma 6 and Remark 3 we deduce that

1
5 (lallpI1X11g + y/llall3 = lall2 1G1,) < | Zanx lq

< lallp[| XTlq + y/llal3 = llall3 1Gllo-

The second inequality of Proposition 3 follows immediately. To prove the first
one we consider two cases.

Case 1: |a|? < $llall3

Then 4 /|lall3 — ||| > 1|lall2 and therefore || >-07 | anXp|lq > 3%(”@Hp||X||q+
lall2[Gllq)-

Case 2: ||a]2 > §[lal|3

Then |all, > |lal|2 and by Lemma 9 we get

1 1
lallpllXllg = 5 llall2lX e = S lall2llGllq
and therefore
1 1
lallp 1 X Nlq +4/llallz = llallZ1Gllq > llall, |1 X]lq > 16 lallo[1Xllg + g5 lall2[1G g,

yielding || Y07 anXyllq = 55 ([lallp| Xlq + llall2]|G]lg) Which ends the proof.
U
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It is well known that any sequence of independent random variables can be
realized on the probability space (0,1) equipped with the Lebesgue measure
and the o-field of Borel sets (an easy way to see it is to produce the i.i.d. se-
quence of random variables uniformly distributed on [0, 1] out of Rademacher
functions and then to express given probability distributions as images of the
uniform ones).

Corollary 3. Letp € | Jp—,(4k,4k+2) and q € [1,p). On a (Rosenthal type)
linear space of square summable sequences equipped with the norm

lall = 1 X lgllall, + 1Gqllall2

let a linear Lq(0,1)-valued operator T' be given by

Ta = i anXnp,
n=1

where X1, Xs,... are i.i.d. p-pseudostables defined on the probability space
((0,1),A\1,B(0,1)) and such that EX2 = 1. Then

1
33 llall < [ITallg < la]

for any a € 15°.

Proof. 1t is an immediate consequence of Proposition 3. Note that X7, X, ...
indeed belong to L, since E|X|? < oo for g € (0,p) — it can be deduced from
Theorem 1 or directly from Definition 1, by a simple modification of Step 1
of [KPS]. O

The main disadvantage of Corollary 3 is that we do not have precise
information on the possible values of HG‘II\TZ(% for X being a p-pseudostable
(note that Corollary 3 holds true also for p-pseudostables which are not pure).
In fact it seems most interesting when g is close to p. Note that for any even
natural number ¢ < p we have

v
ITally = 1Gllqllall2 = ((g = 1)1) " lall:

as a simple consequence of Remark 1, so that in this case we get an embed-
ding similar to the classical isometric embedding of I5° into L, using Gaussian
random variables. If X is a pure p-pseudostable then Remark 2 and Proposi-
tion 2 yield that lim,_,,- HGHIC(%
some universal constant (not depending on p.) However some lower bound
would be much more useful since we are interested in the situation when the
lp-norm summand is as little perturbed by the ly-summand as possible. We
will see in a moment that the range of ¢’s covered by Corollary 3 is far from
the best possible for isomorphic embeddings of [;° into L,. Finally, also the

(p — q)*/? can be bounded from above by
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condition p € Jg—, (4k, 4k + 2) seems restrictive. To obtain better results on
embedding Rosenthal spaces into L, we will use the following fact due to
Hitczenko, Montgomery-Smith and the present author.

Theorem 2. ([HMSO]) There exist universal positive constants A and B
such that for any p > 2, any natural n and independent symmetric ran-
dom variables Y1,Ys, ..., Y, having logarithmically convex tails (i.e. such that
t = InP(|Y;| > t) is a convex function on Ry) and finite p-th moment, the
imequalities

A((Sem) " - a(500) )
<13 vl < B((Smmr)"” + va( 3 pre) ")

hold true.

Corollary 4. Let p > 2. If Y,Y1,Ys,... are i.i.d. symmetric random vari-
ables with logarithmically convez tails defined on the probability space ((0,1),
A1, B(0,1)) and such that EY? =1 and E|Y|P < oo then the linear operator
S defined on a linear space of square summable sequences equipped with the
norm

lall = 1Y llpllall, + v/Pllall2
by the formula Ta = 5.7, a,Y, satisfies

n=1

Allall < [|Tall, < Bl|al],
where A and B are some universal positive constants.

Proof. The proof follows closely the proof of Lemma 6. To prove that the
series >~ | a, X, is convergent also in L, note that the Cauchy condition is
satisfied (it follows easily by Theorem 2 or by some general theory). O

The above corollary gives a good embedding into L, (0, 1). Before we turn
to the embeddings into L,(0,1) for ¢ € [2,p) let us determine the possible
VPIY |2

values of the parameter s = T (of course we are not interested in the
P
case s > 1 since then the Banach-Mazur distance from || - || to the Euclidean

norm is not greater than 2).

Lemma 10. Let p > 2. If s € (0,/2pI'(p +1)~Y/?) then there exists a sym-
metric random variable Y with logarithmically convex tails and all moments
finite such that % =s

Proof. Let Y be a symmetric random variable with P(|Y] > t) = et for
all ¢ > 0, where § > 1 is some constant. Y has then the so-called Weibull
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distribution and it has logarithmically convex tails and all moments finite.

Let
Y
h(9) = \/|1|5}|/|”||2 = \/p['(20 + 1) (0p + 1)~/
p

Since h(f) — 0 as # — oo and h is continuous it takes on all values from the
interval (0, h(1)) which ends the proof. O

Remark 4. The estimate of Lemma 10 cannot be improved since for any
symmetric random variable Y with logarithmically convex tails there is

Yl I+ DY
1Yz — V2
for p > 2 (see [HMSO] for the proof).

It seems that there is a gap in our method of isomorphic embedding
Rosenthal spaces into L, for s € (¢~*/2,1) but in a while we will see that
this gap can be easily filled.

1\ 4e=2)

Lemma 11. Let p > q¢ > 2 and let s > (ﬁ) r=a . Then for any a € I

there is
lallp + sllallz < llallg + sllall2 < 3(][all, + sllall2)-

Proof. The first inequality is trivial. To prove the second one it suffices to
show that ||all; < 2(]|a||, + s|la||2). Note that by the Holder inequality

lally < llally~? a5,

where § = zgg:gg € (0,1). Let t = |lallp/llallz € (0,1] (the case a = 0 is

trivial). We are to prove that
0 <2t + s)
so it suffices to show that

1
inf ¢7 +stP71 > 2
t€(0,1] 2

The infimum is attained at t = %s or at t = 1. The second case is trivial

and the first one leads to checking whether 3=5(1 — 3)~(1=#s# > 1 Note
that inf,c 1) u™ = 1; therefore it suffices to prove that

a(p—2)

1 P—q
> 9l/8 — ()
°e V2

which was our assumption. O
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Corollary 5. Let p > 2 and s € (0,1). If ¢ € (2,p) is such that s >
a(p=2)

(1/v/2)"»=<  then the Rosenthal space with a norm |la|| = |all, + s|lal|2 is
i the Banach-Mazur distance not greater than a certain universal constant
(not depending on p,s and q) from some linear subspace of Lq(0,1).

Proof. 1f s € (0,/2pI'(p 4+ 1)~'/P then the corollary is a direct consequence
of Corollary 4, Lemma 10 and Lemma 11. If s > /2pI'(p + 1)~'/? then
in Corollary 4 replace Y,Y1,Ys,... by an i.i.d. sequence Z, 7y, Zs,... with
Z ~ E+cG, where € and G are independent, £ is the Weibull distribution with
0 =1 (i.e. a symmetric exponential distribution) and ¢ > 0. Note that then,
in view of Remark 3, || 37| anZ,||, is up to some universal multiplicative

constant equal to
o0 o0
H Zané’n —|—CH ZanGn
n=1 p n=1

P

or
1€]lpllall, + (e + €I G-

Choosing appropriately large ¢ we can represent any value from the interval
(v2pT(p+1)~17.1) as % up to a universal multiplicative constant
since v/2pI'(p + 1)7'/?||€||,/ |G|l is uniformly bounded away from zero for
p > 2. Now use Lemma 11 to finish the proof. O

Remark 5. Of course the constant 1/4/2 in Corollary 5 can be replaced by
some other constant 1/C with an appropriate change of the bound on the
Banach-Mazur distance (the bound on the Banach-Mazur distance grows ap-
proximately like C? and in a moment we will see that it cannot be essentially
improved).

Remark 6. The estimate of Corollary 5 is close to optimal. Let s € (0, 1) and

p > 2. If the Rosenthal space with a norm |la| = |la|, + s|lal|2 is in the
Banach-Mazur distance less than C' from some linear subspace of L,(0, 1) for
a(p—2

)
q € (2,p) then s > (1/C") »=a , where C’ > 1 is some constant depending
on C only.

Proof. 1If s( i ig:g; then s > zgg:gg since p(q — 2) < q(p — 2). Therefore

)

s> (1/2) »=< because 27* < 2/u for u > 0. Hence we can restrict ourselves
2

to the case s < 22=0 Pyt n = [(22=9)772 | > 1. By a standard cotype

p(q—2)" p(q—2)s
argument we get

n q n
OqEH E ’I“ﬂ)lH 2 E ||1}1Hq7
=1 =1
where r1,79,...,7, are independent symmetric Bernoulli random variables

(P(rp=1)=P(r; =-1) =1/2) and vy, va, ..., v, are vectors of the Rosen-
thal space. Taking v; = ¢; (the [-th versor) we arrive at
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C(n'? 4 snt/?) > (1 + s)n'/? > nt/a.

Therefore 1
c>

-

ny~a + sn?a

By some elementary calculation one checks that the supremum of the expres-
2(p—q)

p(g—2)s

equal to 3%(1—3)'"Ps=P where § = 2(0=9) Note that ngay > 1 = [Pmax | >

sion

over n > 0 is attained at nymax = ( )p 2 and is

1
nl/p—1/a4gnl/2-1/q

q(p—2)"
Mwex | since we assumed that s < QEP g% Therefore
1 1 1
C=>2v éﬁ > §ﬁ’6(1 - B) s

Niax + Snmax

and hence
a(p—2)

>( 1 ) P—q

- \/@ )

since u¥ > e~ e > 1/\/?: for u € (0,1). Taking C' = v/6C we finish the
proof. O

Proposition 4. There exist universal positive constants A and B such that
for anyp > q > 2 and s € (0,1) the Rosenthal space with the norm given
by |lall = llallp + sllall2 is in the Banach-Mazur distance not greater than

)
As™ f= from some linear subspace of Ly(0,1) spanned by independent ran-

2(p—q)
dom variables and it is in the Banach-Mazur distance greater than Bs™ a»=2)
from all linear subspaces of Ly(0,1).

Proof. 1t is a simple consequence of Remark 5 and Remark 6. O

Remark 7. Despite the similarities between Corollary 3 and Corollary 4 for
any p € Up—, (4k, 4k + 2) there exists a non-pure p-pseudostable which does
not have logarithmically convex tails. Also pure p-pseudostables do not have
logarithmically convex tails. The author does not know whether there exists
any p-pseudostable with logarithmically convex tail.

Proof. Note that for any p € U;il(llk, 4k 4 2) one can choose a sequence of
non-pure p-pseudostables tending in distribution to some Gaussian random
variable. If all of them had logarithmically convex tails then the limit dis-
tribution would also have logarithmically convex tails which is not the case.
The contradiction ends the proof. Pure p-pseudostables cannot have logarith-
mically convex tails since by Theorem 1 their continuous densities have zero
points. O

In the end of the paper let us turn to the sections of the unit ball of [}.
There are many interesting results concerning this subject due to Ball, Had-
wiger, Hensley, Koldobsky, Meyer, Pajor, Vaaler and others (see [BN] for
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more references and related results on projections). The result of Ball ([B])
states that among hyperplane sections of the unit cube in R™ the central
section orthogonal to (1,1,0,0,0,...,0) has the greatest (n — 1)-dimensional
Lebesgue measure. It was of interest whether the same direction of a hyper-
plane maximizes the (n — 1)-dimensional Lebesgue measure of the section of
the unit ball of I}. The answer is negative, at least for small enough values of
p. Perhaps it is positive for p large enough — this problem remains open. In
the recent paper of Barthe and Naor ([BN]) a similar observation was made
for the projections of the unit ball of ) for p € (1,2) which in some sense is a
dual problem (although there cannot be any formal duality since the “phase
transition” in [BN] appears for p = 4/3 whereas in our considerations there
is no “phase transition” for p = 4).

Proposition 5. Let A(p,n) denote the (n—1)-dimensional Lebesgue measure
of the central section of the unit ball of I}y with the hyperplane orthogonal to
(1,1,...,1) and let B(p,n) denote the (n— 1)-dimensional Lebesque measure
of the central section of the unit ball of I}y with the hyperplane orthogonal to
(1,1,0,0,...,0). Then

lim
n—oo

(A(n n)>2 _ I(1/p)*2?/
B(p,n) m*1'(3/p)

which is greater than 1, for example, for p = 24.

Proof. Some computer calculation suggests that the limit is greater than 1
for p € (2,po) and it is less than 1 for p € (pg, 00), where pg is some number
close to 26. It is clear that the limit is less than 1 for p large enough since it
tends to 3/m as p — oc.

Let Z1,Z3,...,2Z, be iid. random variables with the density g,) =

cpe_mp, where ¢, = To prove the formula for the limit recall the

m’
well known fact that the (n— 1)-dimensional Lebesgue measure of the section
of the unit ball of [}; with the hyperplane orthogonal to the unit vector a € R"
is proportional to the value of continuous density g of a1 Z1+a2Zs+. . .+a, Z,
at zero and the proportionality constant depends on p and n only (and it does

not depend on the choice of a). Therefore

= 0921+%Z0+4...42Zn (0)/gzl+22 (O)
vn V2

Note that

911 (0) = /R (V2g,(vV2))*dt = 2%i/r<1 + 1).

2 p

Since EX? = %53/1))7 by the Central Limit Theorem we get
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. I'(1/p)
1 ot Zn = —.
A gz,+251 2. (0) 27 T(3/p)

Here we used a version of the CLT for i.i.d. random variables stating that the
integrability of the characteristic function (pz is integrable due to Lemma
1) implies the uniform convergence of the densities to the normal density, cf.
[F] for details. This ends the proof. O
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Y,-Estimates for Linear Functionals on Zonoids
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Summary. Let K be a convex body in R™ with centre of mass at the origin and
volume |K| = 1. We prove that if K C ay/nB3 where By is the Euclidean unit
ball, then there exists # € S"~! such that

€5 Ol ) < call (- 0Ly ), (%)

where ¢ > 0 is an absolute constant. In other words, “every body with small diame-
ter has 2-directions”. This criterion applies to the class of zonoids. In the opposite
direction, we show that if an isotropic convex body K of volume 1 satisfies () for
every direction 8 € S"7!, then K C Ca?y/nlognBY, where C > 0 is an absolute
constant.

1 Introduction

We shall work in R™ which is equipped with a Euclidean structure (-, ). The
Euclidean norm (z, 2)'/2 is denoted by |-|. We write B} for the Euclidean unit
ball, S™~! for the unit sphere, and o for the rotationally invariant probability
measure on S 1.

Throughout this note we assume that K is a convex body in R™ with
volume |K| =1 and centre of mass at the origin. Given « € [1,2], the Orlicz
norm || f||, of a bounded measurable function f : K — R is defined by

11l = inf {t >0 /Kexp ((ﬂtx)')a> do < 2}. (1.1)

It is not hard to check that

T sup{ 1Al 1}. 12)

pl/oc :

Let y # 0 in R™. We say that K satisfies a 1,-estimate with constant b, in
the direction of y if

¢ 9 e < Dall( 9l (1.3)

We say that K is a v4-body with constant b, if (1.3) holds for every y # 0.

It is easy to see that if K satisfies a 1,-estimate in the direction of y and
if T'e€ SL(n), then T(K) satisfies a 1,-estimate (with the same constant)
in the direction of T™(y). It follows that T'(K) is a 1,-body if K is a 1,-
body. By Borell’s lemma (see [MiS], Appendix III), every convex body K is
a ¥1-body with constant by = ¢, where ¢ > 0 is an absolute constant.

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 211-222, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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Estimates of this form are related to the hyperplane problem for convex
bodies. Recall that a convex body K of volume 1 with centre of mass at the
origin is called isotropic if there exists a constant Lx > 0 such that

/ (z,0)%dx = L% (1.4)
K

for all § € S"~!. Every convex body K with centre of mass at the origin
has an isotropic image under GL(n) which is uniquely determined up to
orthogonal transformations (for more information on the isotropic position,
see [MiP]). It follows that the isotropic constant Lk is an invariant for the
class {T'(K) : T € GL(n)}. The hyperplane problem asks if every convex body
of volume 1 has a hyperplane section through its centre of mass with “area”
greater than an absolute constant. An affirmative answer to this question
is equivalent to the following statement: there exists an absolute constant
C > 0 such that L < C for every isotropic convex body K.

Bourgain [Bou] has proved that Lx < c¥/nlogn for every origin sym-
metric isotropic convex body K in R™ (the same estimate holds true for
non-symmetric convex bodies as well; see [D2] and [P]). Bourgain’s argument
shows that if K is a 1o-body with constant by, then Lx < cbs logn where
¢ > 0 is an absolute constant. Examples of i9-bodies are given by the ball
and the cube in R”.

Alesker [A] has proved that the Euclidean norm satisfies a 1-estimate:
there exists an absolute constant C' > 0 such that

/ o) ar <2 (1.5)
Kexp 02122 x < .

for every isotropic convex body K in R”, where I2 = fK |z|%da.

It is not clear if every isotropic convex body satisfies a good s-estimate
for most directions § € S™~!; for a related conjecture, see [AnBP]. On the
other hand, to the best of our knowledge, even the existence of some good
1o-direction has not been verified in full generality. This would correspond
to a sharpening of Alesker’s result.

Bobkov and Nazarov [BoN] have recently proved that every l-uncondi-
tional and isotropic convex body satisfies a ¥s-estimate with constant ¢ in the
direction y = (1,1,...,1), where ¢ > 0 is an absolute constant. The purpose
of this note is to establish an analogous fact for zonoids.

Theorem 1.1. There exists an absolute constant C' > 0 with the following
property: For every zonoid Z in R™ with volume |Z| = 1, there exists § € S"~!

such that y
p
(/ <x,9>|pdac> < C\/;E/ |{x,0)|dx
z z

for every p > 1.
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The proof of Theorem 1.1 is presented in Section 2. The argument shows
that the same is true for every convex body in R™ which has a linear image of
volume 1 with diameter of the order of \/n (we call these “bodies with small
diameter”). In Section 3 we show that zonoids belong to this class.

In the opposite direction, we show that every ws-isotropic convex body
has small diameter. More precisely, in Section 4 we prove the following.

Theorem 1.2. Let K be an isotropic convex body in R™. Assume that K is
a Yo-body with constant by. Then,

K C Cbi\/nlognBy,
where C > 0 is an absolute constant.

The letters ¢, c1, co, ¢’ ete. denote absolute positive constants, which may
change from line to line. Wherever we write a ~ b, this means that there exist
absolute constants ¢y, co > 0 such that cja < b < coa. We refer the reader to
the books [MiS], [Pi] and [S] for standard facts that we use in the sequel. We
thank the referee for suggestions that improved the presentation and some
estimates.

2 Bodies with Small Diameter

We say that a convex body K in R™ with centre of mass at the origin has
“small diameter” if |[K| = 1 and K C ay/nBj, where « is “well bounded”.
Note that a convex body has a linear image with small diameter if and only if
its polar body has bounded volume ratio. Our purpose is to show that bodies
with small diameter have “good” i-directions.

Our first lemma follows by a simple computation.

Lemma 2.1. For every p > 1 and every x € R",

([SH |<x,9>|po(d9))1/p = \/I%m. (2.1)

Proof. Observe that

n
x,y)|[Pd :Bni/ x,0)|Po(dh).
| Vaaray =531 [ iw.0ratas)

2

On the other hand,

[ Nwwray=1ar [ ey

n n
2 B 2

1
=2|Br 1. |x|p/0 tP(1 — ) (=244

e I
= 1B57 - Jal?
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Since |B§| = n*/2/I'(E£2), we get

1 (et p(nt2
/ (@, 0)Po(df) = =" ( 2p)+n£22 )lx\”-
Sn—1 ﬁ n F( 2 )
The result follows from Stirling’s formula. O

Lemma 2.2. Let K be a convex body in R™ with volume |K| =1 and centre
of mass at the origin. Then,

U(&GS”IZ/ |<x,9>|dx201) >1-27",
K

where ¢; > 0 is an absolute constant.

Proof. The Binet ellipsoid E of K is defined by
161 = [ (o.6)%ds = (Mx0.6),
K

where My = ( [} @sxjdx) is the matrix of inertia of K (see [MiP]). It is easily
checked that det Mg = det Mpk for every T' € SL(n), and this implies that

E
/ 16]| 5" o (df) = | n| = (det MK)_l/2 =L "
- B3]

Then, Markov’s inequality shows that

o 1
0’(965 1||9||EZLK/2)21—27
Since Li > c and |[(-,8)]]1 = ||(-,0)|]2 (see [MiP]), the result follows. O

Lemma 2.3. Let K be a convex body in R™ with volume |K| =1 and centre
of mass at the origin. Assume that K C a/nBY. Then,

foo fyo (2) aaoam <2

where cg > 0 is an absolute constant.

Proof. For every s > 0 we have

(.6’ Nt 2
-/Sn_l-/KeXp (8 d:co(d&)—l—k;m ; Sn_l|<x,9>| o(df)dz.
From Lemma 2.1 we see that this is bounded by
=1 ¢ 2k \* > /a2
1 — | =— de < 1 —
Y (5r) Jla =i+ ()

where ¢, ¢’ > 0 are absolute constants. We conclude the proof taking s = coa
where ¢ = 2¢'. O
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An application of Markov’s inequality gives the following.

Corollary 2.1. Let K be a convex body in R™ with volume |K| = 1 and
centre of mass at the origin. Assume that K C av/nBY. Then, for every
A > 2 we have

2
U(QES”_lr/eXp(M) dar:<A>>1—27
K Cotx A

where co > 0 is the constant from Lemma 2.3. d

Theorem 2.1. Let K be a convex body in R™ with volume |K| = 1 and centre
of mass at the origin. Assume that K C an/nBY. There exists § € S™! such

that .
(/K|<x,9>|pdx> < Ca\/ﬁ/K|<x,0>|dx

for every p > 1, where C > 0 is an absolute constant.

Proof. Choose A = 4. Using the inequality e* > z¥/k! (z > 0), Lemma 2.2
and Corollary 2.1 we see that with probability greater than % — 2% a direction
0 € S"~! satisfies

2
/ [{(x,0)|dx > ¢1 and / exp [, 6)] dx < 4.
K K Co¥

It follows that
/ |(z,0)|**de < 4k!(co)?
K

for every k£ > 1, and hence

(/K|<CU,9>|2kdx>21k < cav2k < éa\/ﬁ/K \(z,6)|da.

This is the statement of the theorem for p = 2k. The general case follows
easily. a

Remarks. (a) Bourgain’s argument in [Bou] shows that Ly is bounded by
a power of logn for every convex body K in R" if the following statement
holds true: If an isotropic convex body W in R" is contained in the centered
Euclidean ball of radius an/nLyy, then W is a 19-body with constant O(a®).
Lemma 2.3 shows that, under the same assumptions, “half” of the directions
are 1o-directions for W, with constant ca.

(b) It can be also easily proved that convex bodies with small diameter
have large hyperplane sections (this can be verified in several other ways, but
the argument below gives some estimate on the distribution of the volume of
their (n — 1)-dimensional sections).
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Proposition 2.1. Let K be a convex body in R™ with volume |K| =1 and
centre of mass at the origin. Assume that K C ay/nBY. Then, for every
t > 0 we have

C:
o (9 €S K Not| > i) >1-2e7t,
ta
where ¢z > 0 is an absolute constant.

Proof. Applying Jensen’s inequality to Lemma 2.3, we get

/SH exp <(W9>|d$)2) o(df) < 2.

Cox

Markov’s inequality shows that

o (9 csm . / [(x,0)| dz > 62at> <2t
K

for every t > 0. On the other hand, it is a well-known fact (see [MiP] for the
symmetric case) that if K has volume 1 and centre of mass at the origin,

then )
~ 2.2
/ |(z,0)| dx KoL (2.2)

for every 6 € S"~!. This completes the proof. a

3 Positions of Zonoids

We first introduce some notation and recall basic facts about zonoids. The
support function of a convex body K is defined by hik(y) = maxzecx(z,y)
for all y # 0. The mean width of K is given by

w(K) = 2/S hc (w)or(du).

We say that K has minimal mean width if w(K) < w(TK) for every T €
SL(n).

Recall also the definition of the area measure ok of a convex body K: for
every Borel V C S"~! we have

ox(V) = y({:c € bd(K) : the outer normal to K at x is in V}),

where v is the (n — 1)-dimensional surface measure on K. It is clear that
ox(S"1) = A(K), the surface area of K. We say that K has minimal surface
area if A(K) < A(TK) for every T € SL(n).

A zonoid is a limit of Minkowski sums of line segments in the Hausdorff
metric. Equivalently, a symmetric convex body Z is a zonoid if and only if its
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polar body is the unit ball of an n-dimensional subspace of an L, space; i.e.
if there exists a positive measure u (the supporting measure of Z) on S"~!
such that

lellze =5 [ lewlutan) (31)

The class of zonoids coincides with the class of projection bodies. Recall that
the projection body ITK of a convex body K is the symmetric convex body
whose support function is defined by

hHK((g) = ‘Pg(K)l, 0 e Sn_l, (32)

where Py(K) is the orthogonal projection of K onto #+. From the integral

representation
1
RO =5 [ )] doica) (33

which is easily verified in the case of a polytope and extends to any con-
vex body K by approximation, it follows that the projection body of K is
a zonoid whose supporting measure is ox. Moreover, if we denote by C,, the
class of symmetric convex bodies and by Z the class of zonoids, Aleksan-
drov’s uniqueness theorem shows that the Minkowski map II : C,, — Z with
K — ITK, is injective. Note also that Z is invariant under invertible linear
transformations (in fact, II(TK) = (T~1)*(IIK) for every T € SL(n)) and
closed in the Hausdorff metric. For more information on zonoids, see [S] and
[Boull].

We shall see that three natural positions of a zonoid have small diameter
in the sense of Section 2. The proof makes use of the isotropic description of
such positions which allows the use of the Brascamp-Lieb inequality.

1. Lewis position: A result of Lewis [L] (see also [B]) shows that every
zonotope Z has a linear image Z; (the “Lewis position” of Z) with the fol-
lowing property: there exist unit vectors uy, ..., u,, and positive real numbers
C1,...,Cnp such that

hz, (@) =Y e;l(z,u)|
j=1
and

m
I: E CjUj@Uj,
j=1

where I denotes the identity operator in R”. Using the Brascamp-Lieb in-
equality, Ball proved in [B] that, under these conditions,

271
Z <= and By CVAZP

The reverse Santal$ inequality for zonoids (see [R] and [GoMR]) implies that
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|Z1\ >2" and Z; C \/ﬁBS (3.4)

This shows that
diam(Z,) < v/n|Z1 V™. (A)

2. Lowner position: Assume that BY is the ellipsoid of minimal volume
containing a zonoid Z5. Let Z; be the Lewis position of Z5. Then,

[Bz| _ |vnBs|
< ) 3.5
|Z2| = 4] (35)
Now, (3.5) and (3.4) show that
diam(Z,) < 2 < |Z,|Y™ < /n| Zo|™. (B)

3. Minimal mean width position: Assume that Z3 = I K is a zonoid of
volume 1 which has minimal mean width. The results of [GM1] and [GMR]
show that the area measure ok is isotropic, i.e.

/S (w0 dorc(u) = AX) (3.6)

n

for every § € S"~!, where A(K) is the surface area of K. Moreover, a result
of Petty [Pe] shows that K has minimal surface area. Now, an application of
the Cauchy-Schwarz inequality and (3.6) show that

1

h®) =5 [ Il < 57

2/

for every 6§ € S"~!. We will use the following fact from [GP]:

Lemma 3.1. If K has minimal surface area, then
A(K) < n|ITK|M™.
It follows that hz,(0) < /n/2 for every § € S"~1. In other words,
diam(Zs) < v/l Zs| /7. (©)

The preceding discussion shows that zonoids have positions with small
diameter. More precisely, we have the following statement.

Theorem 3.1. Let Z be a zonotd in Lewis or Lowner or minimal mean width
position. Then,
diam(Z) < vn|Z|Y". O

It follows that the results of Section 2 apply to the class of zonoids: every
zonoid has v¥s-directions in the sense of Theorem 1.1.

Remark. We do not know if isotropic zonoids have small diameter. One can
check that their mean width is bounded by ¢y/n (it is of the smallest possible
order).
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4 Isotropic 1;-Bodies have Small Diameter

The purpose of this last section is to show that a convex body is a 1s-body
only if its isotropic position has small diameter. More precisely, we prove the
following.

Theorem 4.1. Let K be an isotropic convex body in R™. Assume that K is
a Yo-body with constant by. Then,

K C Cb3\/nlognBy,
where C > 0 is an absolute constant.

The proof will follow from two simple lemmas. The idea for the first one
comes from [GM2].

Lemma 4.1. Let K be a convex body in R™ with volume 1 and centre of
mass at the origin. Then, for every § € S"~1,

e s TOEDI@
[ Ve > SR TE s {0 (0) i (<0)).

Proof. Consider the function fy(t) = |[KN(6++t6)|. Brunn’s principle implies
that fel/(nfl) is concave. It follows that

n n—1
fo(t) > (1—}”(@) f@(o)

for all ¢ € [0, hx (0)]. Therefore,

hi(6) hi (—0)
N Pdx = P d pf d
/K|<x, ) Pda / 2 fa(t) t+/0 2 F_o(t)dt

hi(0) ) ¢ n—1
Z/0 ! <1hK<9>> Jo(0)dt

hi(—0) , n n—1
+/0 t (1 — hK(—e)) fo(0)dt

= fo(0) (R5(0) + W (-0)) /0131)(1 — 5" tds

I'lp+1)I'(n) p+1 p+1
= Tt O (B0 + 1 -0)
I'(p+1)I(n)
> mn(@)(h;{(f)) +hi(=0))
-max{hﬁ((ﬁ)?h%(—e)}

Since K has its centre of mass at the origin, we have ||fo|loc < efp(0) (see
[MM]), and hence
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hi (0)
=K = [ g0 < e(hac(0) + hac(~) fo(0)
—hK(=0)
This completes the proof. O

Lemma 4.2. Let K be a convex body in R™ with volume 1 and centre of
mass at the origin. For every 6 € S"~1,

cmax{hg(0), hx(—0)}
Tn )

16 Oy, =

where ¢ > 0 is an absolute constant.

Proof. Let § € S~ and define

no)= ([ |<x,e>|f’dx)1/p

for every p > 1. Then, (1.2) shows that

cl,(0)

vn o
From Lemma 4.1 we easily see that I,,(0) ~ max{hg(6),hx(—6)} and the
result follows. ad

1< O)llpr >

Proof of Theorem 4.1. Since K is a 13-body with constant bs, Lemma 4.2

shows that
chk (0)

Jn

for every 6 € S"~!. Since K is isotropic, we have

SIC O llw, < b2ll( 0) 1

10l < L

for every 6 € S"~L. Bourgain’s argument in [Bou| (see also [D1]) together
with the 1s-assumption show that

Ly < dbylogn.

This implies that
K C Cb3y/nlognBy. O

Theorem 4.1 shows that 2-bodies belong to a rather restricted class
(their polars have at most logarithmic volume ratio). It would be interesting
to decide if zonoids are -bodies or not.
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Summary. We prove that every n-dimensional normed space with a type p < 2,
cotype 2, and (asymptotically) extremal Euclidean distance has a quotient of a sub-
space, which is well isomorphic to é'; and with the dimension k£ almost proportional
to n. A structural result of a similar nature is also proved for a sequence of vectors
with extremal Rademacher average inside a space of type p. The proofs are based
on new results on restricted invertibility of operators from ¢;! into a normed space
X with either type r or cotype r.

1 Introduction

The initial motivation of this paper was the following problem from [J-S]:
Let 1 <p <2 and let X be an n-dimensional subspace of L, whose distance
from Euclidean space satisfies the inequality d(X,¢3) > an'/P=1/2, Does X
contain a subspace of proportional dimension, which is well isomorphic to
ﬂ;? For p = 1, the answer is positive [J-S], while for 1 < p < 2 the question
is still open. The paper [B-T] contains related results and solutions to other
problems from [J-S], but left this particular problem open as well. Although
the present paper leaves this problem open as well, we do show here that
X has an almost proportional quotient of a subspace which is almost well
isomorphic to K’;. The term “almost” above refers to factors of order a power
of log n. We actually get the same conclusion for a wider class of spaces. This
clearly is implied by Theorem 13.

Not surprisingly our approach involves restricted invertibility methods.
We have two kinds of such results. The first is for operators from £ into
spaces with cotype ¢. This is the content of Corollary 6. Section 2 in which it
is contained is heavily based on a method developed by Gowers in [G1] and
[G2]. The second restricted invertibility result is for operators from either
¢y or £ into spaces with type p. This is contained in Section 3. Section 4
contains the proof of the structural Theorem 13. Finally, Section 5 contains
a related result: Under the same conditions as in Theorem 13 one can get a

V.D. Milman and G. Schechtman (Eds.): LNM 1807, pp. 223-240, 2003.
© Springer-Verlag Berlin Heidelberg 2003
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subspace, rather than quotient of a subspace, almost well isomorphic to E’;.
However, its dimension k is a certain power of n rather than being close to a
proportion of n.

Most of the undefined notions here can be found in [TJ]. We only recall
here the definition of the Lorentz spaces L 4.

Let (£2,X, 1) be a measure space, 1 < p < oo, and 1 < ¢ < co. The
Lorentz space L, 4(p) consists of all equivalent classes of p-measurable func-
tions f such that

00 1/q
1 Fllpa = ( [ @ or dt/t) coo ifl<g<oo
0
||f||p,oo = Slip tl/pf* (t) < 00,

where f* is the decreasing rearrangement of |f|, i.e. f*(t) = inf (a : p{|f] >
a}gt)70<t<oo.

If p=q then L, ,(u) is Ly(u). In general ||f|l,q is a quasi-norm, which
for p > 1 is equivalent to a norm, the equivalence constant depending on p
and ¢ only. So we consider Ly, ,(x) under this norm.

For a positive integer n, one defines the finite dimensional spaces £} , to
be L, ,(u), where p is the uniform measure on the interval I = {1,...,n},
u({i}) = 1.

It can be easily checked for 1 < p < o0, 1 < g < oo that ||z, <
(logn)/P||z||p.00 for all z € £7 . and that |31, eillp.g ~ n'/P, where e;

P,
are the coordinate vectors in E;’ o
,

Our estimates often involve “constants” that depend on various parame-
ters. So we write, for example, ¢ = ¢(p, M) to denote a constant depending
on p and M only.

Acknowledgement. The first named author was supported in part by the ISF, and
the second named author holds the Canada Research Chair in Mathematics.

2 Restricted Invertibility: Spaces with Cotype

Let us start with a general theorem about finite symmetric block bases which
is of independent interest. This theorem (and its proof) is a variant of Gowers’
results on the subject and in a sense lies in-between [G1] and [G2].

Theorem 1. Let 1 < g < oo, and let B > 1. Let X be a Banach space, let
n>1 and (x;)i<n be a sequence of n vectors in X satisfying

H Zaixi

for all a = (a;) € R™. Then for any € > 0 there exists a block basis (Y;)i<m
of permutation of (x;), which is (1 + €)-symmetric and has cardinality

< Blla|y and EHZeiaixi

> |lallq
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m > (ce/B)*2n/logn,
where ¢ > 0 is an absolute constant.

First recall the definition of a symmetric basis in its natural “localized”
form used in the proof. Let m > 1 and consider the group

W ={~1,1}" X Spm

acting on R™ as follows: for a € R™ and (n,0) € ¥, we define a,, =
21 MiCo(i)-

Definition 2. Let C > 1. A set of vectors (yi)i<m n X is said to be C-
symmetric at a € R™ if for every (n,0) € ¥ we have

H Zi:(an,o)iyi . < C’H Zi:aiyi

A set (Yi)i<m s C-symmetric if for every a € R™, (y;)i<m s C-symmetric
at a.

X.

Proof of Theorem 1. Fix an integer m of the form m = 2+(c’e/B)%*¥™2n/logn
where ¢/ > 0 is an absolute constant to be defined later. As in [G1], we
divide the interval of natural numbers [1, n| into m blocks of length i (where
h ~ logn), and relabel the indices in [1,n] as follows: the pair (4,7) will be
the j-th element in the i-th block, i = 1,...,m, j = 1,..., h. This identifies
[1,n] with the product [1,m] x [1, h]. Consider the group

2 ={-1,1}" x S,.

Here we think of S, as the group of permutations of the product [1,m]x[1, h].
We write 7;; = 7((4,7)) for m € S, and 6;; = 6, ;) for 6 € {—1,1}". Define
the random operator ¢g . : R™ — X by setting

h
Po,x(€i) = Zeijzmj, i=1,...,m.
=1

We shall show that with high probability the vectors y; = ¢g - (e;) for i =
1,...,m are (1 4 ¢)-symmetric.

The first ingredient in the proof is a lemma from [G2], which says that in
any normed space the symmetry of a sequence can be verified on a set of a
polynomial, not exponential, cardinality.

Lemma 3. [G2]. Lete > 0, let (R™, ||-||) be a normed space and set N = mP,
where D = e~ 11og(3c71). There exists a set N of cardinality N in R™ such
that if the standard basis of R™ is (1 + €)-symmetric at each element from
N, then it is (1 + ¢)(1 — 6¢)~L-symmetric.
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The next lemma is central. For a real valued random variable Z, by M (Z)
we denote its median, that is, the number satisfying P{Z < M(Z)} > 1/2
and P{Z > M(Z)} > 1/2.

Lemma 4. Let1 < g < oo and B > 1. Let (x;);<n be a sequence of vectors
satisfying || > ajx;]| < Bllallq for all a € R™. Fiz a € R™ and 0 < § < 1/2.
Then with the notation above we have

Po( mavs (60,0 (an.0)ll =3 ([60.5(@)])] > Bllalh!/*) < m e/ oster),

where M denotes the expectation if ¢ = 1, or the median if ¢ > 1, and
provided that
m < (¢8/B)***n logn,

where ¢ > 0 is an absolute constant.

This deviation inequality was proved in [G1] (page 195, (iii)) and the form
of M follows from the proof. Moreover, the inequality is stated in [G1] for a
particular value of m although it is clear from the proof that it is valid for
all smaller values of m as well.

To successfully apply this lemma we require the estimate

M([[¢o.x(a)ll) > (1/6)llal|yh/7. W

For M being the expectation, an estimate follows readily from our lower
bound assumption in Theorem 1, even with the constant 1 replacing 1/6.
This settles the case ¢ = 1. For ¢ > 1, we will use the following lemma, a
version of which will also be needed in Section 5.

Lemma 5. Let (x;) be a finite sequence of vectors in a Banach space, and
(a;) be scalars. Then
-4

]P’Q{ “ Z 0;0;7 ()
where 6 > 0 is an absolute constant.
Proof. Define the random variable Z = ||} 6;a;2.;)|, and let ||Z]], =
(E|Z|P)*/P. By Kahane’s inequality for any 0 < p,7 < oo we have ||Z]|, <
A||Z||p, where A = A(p,r) (see [M-S] 9.2). Then

> (1/2)E H Zeiaixw(i)

PolZ > 277)|2)|,) > (247y /=) @
This estimate follows from the standard argument (see e.g., [Le-Ta], Lemma
4.2) based on Holder’s inequality. For ¢ > 0 we have
EZP < tP +/ ZPdPg < 1P + || Z|[PPo{Z > t}1P/",
Z>t

Setting t = 271/7||Z||, we get (2). Now the conclusion of the lemma follows
from (2) with p =1, r =1/2.
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We return to the proof of Theorem 1. First, to complete the proof of (1),
let Z = ||¢g,(a)]|. It is easy to check that our lower bound assumption implies
that EZ > ||al|,h'/9. Let & be as in Lemma 5 and let ¢ > 0 be a constant
from Lemma 4. Fix 0 < 8; < 1/3 such that 2= (¢/Bu)lee(¢/B1) < 5 We shall
ensure later that m satisfies the upper bound assumption of Lemma 4. Using
Lemma 4 together with the above lower bound for EZ we get, since m > 2,

Po{|Z - M(Z)| > (1/3)EZ}
<P{|Z — M(Z)| > fEZ} < 27 (/Dlos(e/B) <,

On the other hand, by Lemma 5 we have Pp{Z > (1/2)EZ} > §. An easy
calculation shows M(Z) > (1/6)EZ > (1/6)||al|,h'/9, which is (1).

Finally, we can now finish the proof of Theorem 1. Fix any 0 < & < 1/6,
let D be as in the Lemma 3, given by D = e~ ! log(3¢~!) and let A be the set
in the conclusion of this lemma. Let ¢ > 0 be the constant from Lemma 4.
Set [z = ce/3. Then (¢/f2)log(c/B2) > D. We may additionally assume that
B2 < &/2. By a suitable choice of the constant ¢’ fixed at the beginning of
the proof we may ensure that m satisfies the upper bound assumption in
Lemma 4 for § = min(f,32). By Lemma 4 together with (1) we observe
that the vectors (v;)i<m = (¢o,x(€:))i<m are (1 + ¢)-symmetric at any fixed
a € N with probability at least 1 —m~P". It follows that there is a choice of
(yi)i<m which is (1+¢)-symmetric at each a € N. Then Lemma 3 yields that
(yi)i<m is (1+¢€)(1 — 6¢) " l-symmetric. This completes the proof of Theorem
1.

As an immediate corollary we get a restricted invertibility result for op-
erators £; — X where X is a Banach space of cotype g.

Corollary 6. Let q > 2 and K, M > 1. Let X be a Banach space with cotype
q constant Cy(X) < K. Let u : £y — X be an operator with |[ul| < M and
satisfying the non-degeneracy condition |lue;|| > 1 for ¢ = 1,...,n. Then
there exists a subspace E in R™ spanned by disjointly supported vectors such
that

Juz| > (1/2K)|je]| for @€ E,

and
dimFE > (¢/MK)?*2n/logn,

where ¢ > 0 is an absolute constant.

3 Restricted Invertibility: Spaces with Type

In this section we prove some restricted invertibility results for operators
with values in spaces of type p. The conclusion is slightly weaker than the
known results for the more special case of operators between £ spaces ([B-T],



228 G. Schechtman et al.

Theorem 5.7). In that case the conclusion holds with the £,- rather than £, -
norm. As we will see later such a stronger conclusion does not hold in general
under our assumptions (see Remark 2 after Corollary 12).

Theorem 7. Let 1 < p <2 and K,M > 1. Let X be a Banach space with
type p constant T,(X) < K. Let u : £§ — X be an operator with ||u|| < M
and satisfying the non-degeneracy condition £(u) > v/n. Then there exists a
subset o C {1,...,n} of cardinality |o| > cn such that

luz||x > (¢/K)n** " V?||z|,0 for xR,
where ¢ = ¢(p, M) > 0.

Remark. Let p = 2, let X be a space with dual of cotype 2, Co(X™*) < K and
let u satisfy all the assumptions of Theorem 7. Then the resulting estimate
can be improved to the lower ¢y estimate ||uz|x > c|z|2 for all x € R,
where ¢ = ¢(K, M) > 0.

The proof of the theorem is based on the following two lemmas. The

first one is a reformulation of the generalization of Elton’s theorem in [B-T],
Theorem 5.2.

Lemma 8. Let 1 < r < oo and M > 1. Let (z;)} be a set of vectors in a
Banach space satisfying

(L) 122, il < M|n|"" for any subset n C {1,...,n};

(2) Bl Y eazi]| = n'/".

Then there exists a subset o C {1,...,n} of cardinality |o| > cn such that

|

where ¢ = ¢(r, M) > 0.

>cen V" |al|; for a€R7,

The second lemma is a factorization result of Pisier [P] for (¢, 1)-summing
operators. We do not need here the definition of such operators and their
norms 7, 1, and the interested reader can find them e.g., in [TJ]. Let us only
recall that it is easy to see (e.g., [TJ], the proof of Theorem 21.4) that if Y is a
Banach space of cotype ¢ > 2 and K is a compact Hausdorff space then every
bounded operator T': C'(K) — Y is (g, 1)-summing and 7y 1 (T") < Co(Y)||T|.
We shall combine this fact with Pisier’s factorization theorem which states
[P] (see also [TJ] Theorem 21.2 and (21.6))

Lemma 9. Let 1 < g < 0o, let Y be a Banach space and let T : C(K) =Y
be a (q,1)-summing operator. There exists a probability measure X on K such
that T factors as T =T},

T: C(K) % L. Sy,

where j is the natural inclusion map and ||T| < emy1(T), where ¢ is an
absolute constant.
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Corollary 10. Letq> 2 and K > 1. Let Y be a Banach space with Cy(Y') <
K. Let T : £%, — Y. Then there exists a subset o C {1,...,n} of cardinality
lo| > n/2 such that

ITR, : 671 — Y| < cKn~'9||T|,

where R, denotes the coordinate projection in R™ onto R? and c is an absolute
constant.

Proof. Observe that 7, 1(T) < K||T||. Consider Pisier’s factorization
T: 0 5L, 5y,

where \ is a probability measure on {1,...,n} and | T|| < ey 1(T). Then the
set 0 = {j: A(j) < 2/n} has cardinality at least n/2. Moreover

1Ry 451 = Lea (NI < (2/n)"/1.
This immediately completes the proof.
In the dual setting, this gives

Corollary 11. Let 1 < p < 2 and let T,(X) < K. Consider vectors (y;)7
in X such that || > a;yil] > |lallx for all a € R™. Then there exists a subset
o C{1,...,n} of cardinality |o| > n/2 such that

|

where ¢ > 0 is an absolute constant.

Proof. Let X be the span of (y;)7, and define T': Xg — £} by Ty; = e; for
j=1,...,n. Then ||T|| < 1, so ||T* : &% — X§| < 1. Apply Corollary 10
with Y = X and ¢ = p’. We get a subset o of cardinality at least n/2 such
that

> (¢/K)n'" |lal|poe  for aeR7,

1T Ry : €2y — X5 < cKn~W/7

Thus
|ReT : Xo = €0 || < cKn= /7,

Note that R,T'y; = e; for j € 0. From this the desired estimate follows.

Now, Theorem 7 is a combination of Lemma 8 (for » = 2) and Corollary
11. One needs only to recall that X has cotype ¢, where ¢ < oo and Cy(X)
both depend only on p and T,(X) (see [K-T] for quantitative estimates), and
that {(u) < CE|| Y e;ue;|| where C depends on ¢ and Cy(X) only. If p = 2,
the remark following the theorem is proved by a similar argument, with use
of Pisier’s factorization in Lemma 9 replaced by Maurey’s strengthening of
Grothendieck’s theorem ([TJ], Theorem 10.4) and Pietsch’s factorization for
2-summing operators ([TJ], Theorem 9.2).

As a corollary we have a further invertibility result.
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Corollary 12. Let 1 < p <2, K,M > 1 and o > 0. Let X be a Banach
space with type p constant T,,(X) < K. Let u : t5 — X be an operator with
|ul| < M and satisfying the non-degeneracy condition £(u : £ — X) > n'/P.
Then there exists a subset o C {1,...,n} of cardinality |o| > cn such that

[uz]x = (¢/K)||z[lpoc for zeR,
where ¢ = ¢(p, M) > 0.

The proof is an easy application of Theorem 7 for the operator w =
nl /2= Py 0y — X

Remarks. 1. The proof above shows that Theorem 7 remains valid with the
same estimates if the norm [[u : £3 — X| is replaced by M = |lu : £5; — X]||.
An analogous fact is true also for Corollary 12. If p = 1, both Theorem 7 and
Corollary 12 are true (and follow directly from Lemma 8) if the space X is
assumed to have cotype g, for some ¢ < occ.

2. The space £, , (with 1 < p < 2 and 1 < ¢ < o0) has type p. This
known fact follows for example from the easy fact that £, , has an upper
p-estimate for disjoint vectors, together with Theorems 1.e.16 and 1.f.10 in
[L-T]. It follows that one cannot improve the conclusions of Theorem 7 and
Corollary 12 by replacing || - ||p,00 by || - |Ip-

4 Spaces with Extremal Euclidean Distance

In this section we concentrate on the structure of finite-dimensional normed
spaces which, while satisfying geometric type-cotype conditions, have the
distance to a Euclidean space of maximal order. The maximality of the dis-
tance is expressed in terms of the lower estimate which for some 1 < p < 2
(depending on of the properties of X) has the form

dx = d(X,£3) > ant/P~1/2 (3)

for some constant a > 0.
The main result of this section is

Theorem 13. Let 1 < p < 2, K > 1 and o« > 0. Let X be an n-
dimensional normed space with cotype 2 constant Ca(X) < K and type p
constant T,(X) < K, and whose Euclidean distance satisfies (3). Then there
exists Y, a quotient of a subspace of X, of dimension k > en(logn)=° such
that d(Y,Z’;) < C(logn)"?, where ¢ = ¢(p,K,a) > 0, C = C(p,K, ) and
b=>b(p) > 0.

We do not know whether the log-factor can be removed in either the
distance or the dimension estimates. We also do not know whether “quotient
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of a subspace” can be replaced by “subspace” without an essential change to
the estimates.

The proof of this theorem depends on two successive steps: the first is the
lower estimate result for spaces satisfying our assumptions, and the second
is a lower estimate for dual spaces. The latter step is based on Corollary 6,
while the former one is contained in the following lower ¢, .-estimate for
spaces with maximal Euclidean distance.

Theorem 14. Let 1 <p <2, K >1 and a > 0. Let X be an n-dimensional
normed space with cotype 2 constant Co(X) < K and type p constant T,(X) <
K, and whose Buclidean distance satisfies d(X,€5) > an'/P~1/2. Then there
exist k > cn norm one vectors yi,...,yr in X such that

[

where ¢ = ¢(p, K, a)) > 0.

poo  for a € RF,

> cf|al
X

Remark. As often happens in such cases, the proof has the unsatisfactory
feature that it yields constants tending to 0 as p — 2. Of course, by Kwapien’s
theorem (see e.g., [TJ] Theorem 13.15) an even stronger statement holds for
p=2.

To prove Theorem 14 we require some preliminaries. First recall the def-
inition which has often been used in a similar context (see [TJ], §27). The
relative Fuclidean factorization constant ex(X) (k = 1,2,...) of a Banach
space X is the smallest C' such that for every subspace F of X of dimen-
sion k there exists a projection P in X onto E with the /5 factorable norm
satisfying vo(P) < C.

Note that the Euclidean distance satisfies

We will work with a relaxation of the parameter e;(X) which will be
shown to be comparable to e;(X) (up to a logarithm of the dimension).

Definition 15. For k = 1,2,..., we denote by €},(X) the smallest C such
that for every subspace E of X of dimension k there exists a projection P in

X such that P(X) C E, rankP > k/2, and v(P) < C.

Lemma 16. Let X be a Banach space and n be a natural number. Then
€ (X) < en(X) £ 3l o (X).
k=0

Proof. Assume for simplicity that n is a power of 2; the general case easily
follows. It is well known in the theory of 2-factorable operators (see e.g., [TJ],
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Theorem 27.1) that the right hand side inequality will follow once we prove
that for every v : £5 — X such that mo(v*) = 1 we have

ma(0) < 3 €l (X)),
k=0

To this end fix v as above and without loss of generality assume that v is one-
to-one. Let Py be a projection on X such that Py(X) C v(¢3), rankPy > n/2
and y2(Pp) < el (X). Let Hy = v=(PyX). By passing to a smaller subspace
if necessary we may assume that dimHy = n/2.

By induction construct kg = logy n mutually orthogonal subspaces Hy, C
3 with dimHy = n/2"*! and projections P, from X onto v(Hy) such that
Y2(Pr) < e;/2k(X) for k=0,...,ky— 1.

For k =0,...,ky — 1, denote by Qy, : /5 — Hj the orthogonal projection
onto Hy. Then

T2 (VQg) = T2 (PrvQy) < ma(Pyv) < o Py)ma(v*) < 6;/2;6()().

Since {5 = Hy & ... ® Hy,_1, then

ko—1 ko—1
mo(v) = 7T2< Z UQk) < Z €2t (X),
k=0

k=0
as required.

Let us recall a standard set-up for finite-dimensional normed spaces. The
Euclidean unit ball on R™ is denoted by B (and it corresponds to the Eu-
clidean norm || -||2). Let ||-||x be a norm on R™, and X be the corresponding
normed space. Let @ be an orthogonal projection in R™. Then by QX we de-
note the quotient of X with the canonical norm |y|lox = inf{||z||x : Qz =
y}. This way we view QX as the vector space Q(R™) with the norm || - ||gx-
In particular, QX carries the Euclidean structure inherited from R™ with the
unit ball Q(BY) = BY N Q(R™).

Lemma 17. Let X be a normed space, dimX = n, and assume that mo(id :
X = £5) < Ay/n. Let Q be an orthogonal projection in R™. Let Y C Q(R™) be
an m-dimensional subspace on which we consider two norms: the Fuclidean
norm || - |2 and the norm || - ||ox. Then

C(id : (V]| ll2) = (V- llox)) = (1/AT2(X7)*)m/v/n.

Proof. To shorten the notation, denote the operator id : (Y, | - |2) — (Y, || -
lox) by u. We first estimate m2(u~!). Recall that for any operator w: Z —
71, the norm my(w) is equal to the supremum of (3 |wwve;||?)}/? where the
supremum runs over all operators v : /5 — Z with ||v|| < 1 and all k (see
[TJ] Proposition 9.7).
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Thus fix v : £5 — (Y, - [[ox) with |[v|| < 1. Consider v as an operator
into @X. Using Maurey’s extension theorem for the dual operator (see [TJ]
Theorem 13.13), there exists a lifting v’ : £5 — X, Qv' = v, with || <
T5(X™*) (note that (QX)* is a subspace of X*). Therefore

k 1/2 k 1/2 k 1/2
(Zm-lvm%) _ (chzv'ein%) < (va'ein%)
=1 =1

i=1

Thus m(u™t) < AT (X*)/n.

It is now sufficient to use two well known and easy facts (see [TJ], Propo-
sition 9.10 and Theorem 12.2 (ii)) that m < ma(u)ma(u™1) and ma(u) <
Co(Y)l(u), to get L(u) > m/ACH(Y)To(X*)y/n. Since Ca(Y) < To(Y*) <
T>(X™*), this completes the proof.

Proof of Theorem 14. It is well known and easy to see from Maurey’s exten-
sion theorem (see [TJ], Prop. 27.4) that for every k =1,2,... we have

ef(X) < cCo(X)Tp(X)kM P12 < cK2kMP=1/2, (4)

where c is an absolute constant.
Assume again that n is a power of 2, let A, = 1 — 21/P=1/2 and let ko
be the smallest &k such that en/Qk( ) > (Apa/2)(n/2F)1/P=1/2 If no such k

exists let kg = co. By the maximality of distance, Lemma 16 and (4) we get

an'/P=12 < e, Z ;L o
k=0
<n1/p1/2<AZ RU/p-1/2) | o2 Z o—k(1/p— 1/2))

k=0 k=ko
< nl/p—l/Q((a/2) +CK2 _ko(l/p_l/Z)Agl).

This shows that kg is finite and kg < C, where C = C(p, K, a).
Set m = n/2% and d = (Apa/2)m*/P~1/2. Then m > fn and d > Bdx,
where 8 = ((p, K, a) > 0. Moreover,
em(X) = d. (5)

Let | - |2 be a Euclidean norm on X given by a combination of a distance
ellipsoid and the maximal volume ellipsoid (see [TJ], Prop. 17.2). Denote the
n-dimensional Hilbert space (X, |- |2) by H and write || - | x for the norm in
X. Then we have

(V2dx) Yals < ||z)x < V2/aly, for z € X,
ma(id : X — H) < v2n.

Using (5), we will prove
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Lemma 18. Under the notation above there exist vectors x1,...,Tgm m X
with ||z;||x < d=1 and an orthogonal projection R on H with rankR > m /2
and such that

B |lall2 < ’ ZaiRl’i

< Blall; for aeR™,
2

where ' = §'(p, K,a) > 0 and B = B(p, K, o).

Proof. Estimate (5) implies that there exists a subspace F in X with dimF =
m such that for every projection P in X with P(X) C E, rankP > m/2 we
have |[P: X — H|| >d/|id: H — X|| > d/V/2.

Our vectors x; will be chosen among a sequence of vectors constructed by
induction as follows. Assume that 1 < k < m/2 and that vectors x1, ..., Tx_1
have already been constructed. Let P be the orthogonal projection in H
onto [z1,...,75_1]" N E. Then P satisfies the assumptions above, so there
exists an x;, € X such that |lzgx||lx = 1/d and |Pzg|s > 1/v/2. Let also
fr = Pxy/|Payls.

This procedure gives us vectors x1,..., 2y, /2 With |lz;||x = 1/d and or-
thonormal vectors f1,..., fy,/2 such that

(@4, fi) > 1/\& for 1<i<m/2.

Let 8 = B(p, K,a) be the constant appearing before (5), and we may
clearly assume that 8 < 1.
Note that
|zile < V2dx/d <V2/B for i<m/2. (6)
A known and easy argument shows that for every 0 < § < 1/2 there exists

an orthogonal projection R in [2;];<p /2 with corankR < ém and such that

m/2

‘ Z CLiRl‘i
1

Indeed, denote by H; the space ([z;],] - |2) and consider the operator T :
0" — Hy defined by Te; = a; for i =1,...,m/2. Let Ay > Ay > ... > 0 be
the s-numbers of T" so that T'f; = \; f/ for some orthonormal bases {f;} and
{#/} in £2/% and Hy, respectively. We have, by (6),

<1/(6%)|alls for aeR™/2 (7)
2

m/2 m/2

YN =TlEs =Y lail3 < m/B%.
i=1

i=1

This implies that for ig = dm we have \;, < 1/(%5), and then the projection
R onto [fi, 11, -, fm/2] satisfies (7).

Set § = (3?/32 and let R satisfy (7). Extend R to all of H by setting
Rx =z for z € [z;]*. Then for R’ = id — R we have rank R’ < §m. Therefore
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m/2 m/2 m/2 m/2
Z |Rxilo > Z<Rl‘i,f1‘> = Z(%‘,fi) - Z(R/wi,fD
=1 =1 =1 =1
m/2 m/2

>2782m = (wi, R fi) > 27 m — (V2/8) D IR fil
i=1

— i=1
> 2732m — (V2/8)\/m/2 ||R|lus
> 973/2y, _ (\/E/ﬂ)m —975/2,

From this inequality and (6) it easily follows that the set o = {i : |Rx;|2 >
1/4+/2} has cardinality |o| > 3m/16. Applying Theorem 1.2 from [B-T] for
the operator T': ¢5 — H defined by Te; = Rx; for ¢ € o, we get, by (7) and
the definition of o that there exists a subset ¢’ C o such that

‘ Z aini )

i€o’

> 3|lally for a€R7.

Moreover, |o’| > 'm, where ' = §'(p, K,a) > 0. This together with (7)
completes the proof by relabeling the vectors from o”.

Returning to the proof of Theorem 14, identify X with R™ in such a way
that | - |2 coincides with the usual £§-norm || - ||2. Let @1, ..., 2g, be vectors
constructed in Lemma 18. If (RX, | - ||[rx) denotes the quotient of X given
by R then first note that

H Zaini RX < \/5‘ Zaszz )

Consider the subspace ¥ = [sz]f!l” of RX, (i.e., with the norm || - ||gx
inherited from RX), and consider also the norm ||-||2 on Y inherited from ¢3.
To apply Lemma 17 note that since X has control of the cotype 2 constant and
the K-convexity constant (having non-trivial type) then T5(X™*) is bounded
above by a function of K. Thus by the lemma, the -norm of the identity
operator satisfies £(id : (Y, || - |2) = Y) > ¢y/n, where ¢ = ¢(p, K,a) > 0.
On the other hand, since the set of vectors (Rx;) admits a lower />-estimate,
then by the ideal property of the ¢-norm £(id) can be estimated using that
set, namely,

<V2Blally for aeR""

e(id: (V.|| -1l2) = Y) < (1/8)E Re;

RX

Thus

B'n
E||[> " g:Rax; > eiv/n,
i=1 RX
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where ¢; = ¢1(p, K, @) > 0. Then by Theorem 7 there exists a subset 7 of
{1,...,8'm} of cardinality |n| > can and such that

H Zaini
n

where ¢3 = co(p, K,a) > 0. Recall that ||z;||x = d~!. Then for i € 7 let
y; = dx;. Clearly, y;’s are unit vectors in X and for a € R7 we have

where ¢35 = ¢3(p, K, «) > 0. This completes the proof of Theorem 14.

> cont/? VP alp0o, for a€RY,
RX

> co(dn'/?71/P >
ay 2 C2ldn Mallpco 2 csllal

p,00

Now we are ready to prove Theorem 13, as a combination of Theorem 14
and Corollary 6.

Proof of Theorem 13. We can clearly assume that 1 < p < 2, because for
p = 2 the whole space X is K?2-isomorphic to ¢§ by Kwapien’s Theorem (see
[TJ] Theorem 13.15).

We apply Theorem 14, and let (y;)i<x be the vectors from its conclusion,
k > cn with ¢ = ¢(p, K, ). Consider the space X1 = [y;]i<x as a subspace of
X. Since the vectors y; are necessarily linearly independent, we may define
the operator v : X7 — €’; by

vy; = €;, fori<k.
Then by the conclusion of Theorem 14
[oll < o X1 = G o llllid : £, o — 6] < Cr(logn) 77,

where C7 = C1(p, K, «). Consider the adjoint operator v* : 6’; — X7, where
1/¢+1/p =1. Then
lo*]| < C1(logn)'/? (®)

and for all ¢ < k,
v eil] > (v*es, yi) = (es,e5) = 1.

Applying Corollary 6 we get norm one vectors (h;);<m, in ﬂ’; with disjoint
supports satisfying for all a € R,

v*(iath) iazhl
i=1 i=1

Moreover, m > ¢1(logn)~2@+1)/Pn /log n, where ¢; = ¢1(p, K, a) > 0.
Also from (8),

Ll
= —|lallg-
q 2K

’ 1
Z -
x: 2K

o (Laini)| < catorn) ol
i=1 Xt
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Thus the sequence of vectors z; = v*h;, i < m, spans in X; a subspace Z,
which is C(logn)'/P-isomorphic to £, with C = C(p, K, ). Since Z is a
subspace of a quotient X7 of X™, the space Z* is a quotient of a subspace of
X and is C(log n)l/ P-isomorphic to £;'. This completes the proof of Theorem

13.

5 EZ Subspaces in Spaces with Extremal Type p

We show another interesting application of methods discussed here to the
structure of subspaces of spaces which attain their best type. More precisely,
if a Banach space of type p contains a sequence of vectors with extremal
Rademacher average, then it contains a relatively large subspace close to ég.

Proposition 19. Let1 <p <2, K > 1 and a > 0. Let X be a Banach space
with type p constant T,,(X) < K. Assume that there exist norm one vectors
T1y... Ty in X such that E|| Y7 e;xi|| > an'/P. Then there is a block basis
of permutation of (z;)i<n of cardinality m which is C(log n)Y/P-equivalent to
the unit vector basis in £}, and m > c(log n)"'n?P=1 where C = C(p, K, )
and ¢ = ¢(p, K,a) > 0.

The proof combines the main result of [G2] and Corollary 12.

Proof. Fix an ¢ > 0. By [G2], our assumption on the Rademacher average
of (x;) implies that there exists a block basis (y;)7* of permutation of (z;)7,
with blocks of random +1 coefficients and equal lengths, which is 2-symmetric
with probability larger than 1 — e. Moreover m > ¢(log n)’an/pfl, where
¢ = ¢(p,a,e) and we may assume that m is an even number. The precise
definition of the random vectors (y;) is given in the proof of Theorem 1, the
underlying probability space being denoted by Pg;.

Then with probability larger than 1 — ¢ the following holds for all subsets
o of {1,...,m} of cardinality |o| = m/2:

2HZ% > szz +%H2yz Z;HZ%
i€o i€o 1€0° i=1

On the other hand, by Lemma 5 we have, with probability larger than 6 > 0,

m n n
Zyi Z&l’w(i) Z&%(i)
i=1 i=1 i=1

= 1
Z gixil| > 504711/”
i=1

(where 7 denotes a random permutation of {1,...,n}, and E is the expecta-
tion over random signs ¢;). Therefore with probability larger than § — ¢

1
> —-E
= 5o

1
-E
2
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i€o

Let n = mh and we can assume that h is integer. By the type assumption
and the definition of y;, for every i < m we have Eg|y;|| < Kh'/P. Then
Eo(Yr, llyill) < Kmh!'/P. So, with probability larger than 1 — e we have
(X [lwall) < (1/e)Kmh!/P. This clearly implies that

1
> ganl/p holds for all subsets o, |o] =m/2. 9)

2
3 a subset o, |o| = m/2, such that ||y;|| < gKhl/p for i€o. (10)

With probability at least 6 — 2¢, events (9) and (10) hold simultaneously. For
€ = 0/3 this probability is positive, so we can consider a realization of (y;)
for which both events occur. Let z; = h™*/Py;, i € o. Then ||z < (6/6)K
so by the type p and symmetry

H 2 i <

Next, by (9) and symmetry

HZElzz Zy‘ >—o¢m

Corollary 12 yields then that there exists a subset o7 C o with cardinality
|o1] > em and such that

|

10’1

(12/8)K2||all, for all (a;)ico-

> hl/p

>0Ha||1700 fOI‘ all (a’z)zeoa

where ¢ = ¢(p, K, @) > 0. This completes the proof.

Remark. It is not clear whether the exponent 2/p — 1 in Proposition 19 is
optimal. However, for p = 2 the optimal exponent must be 0, because the
identical vectors z; = 1 in X = R! satisfy the assumptions of Proposition 19.

As a corollary we get a variant of Theorem 13 where the conclusion is
improved by getting a subspace rather than quotient of a subspace, at the
price of a worse estimate on the dimension.

Proposition 20. Under the assumptions of Theorem 13, there exists a sub-
space Y of X of dimension k > c(logn)~™n?/P=1 with d(Y, é’;) < C(logn)/?,
where C' = C(p, K, «) and ¢ = c(p, K, ) > 0.

Proof. By (3) and Kwapien’s theorem we get To(X) > ¢, K lan!/P=1/2,
where ¢; > 0 is an absolute constant. By Tomczak-Jaegermann’s result (cf.
[TJ], Theorems 25.6 and 25.1), the type 2 constant can be essentially com-
puted on n vectors, i.e. there exist vectors (z;);<, in X such that
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n n 1/2
Zsixi > CQK_lanl/p_l/2(Z|xi||2> (11)
i=1 1=1

for some absolute ¢ > 0.

Now we employ a known argument to show that the vectors z; can be
essentially chosen of norm one. We can assume that > ., [|z;]|*> = n, so
that the right side in (11) is co K ~'an!/P. Fix a positive number M and
let o = {i € [1,n] : |lz;]] < M}. Then |o¢| < (30, ||lzil|?)/M? = M ~*n.
Therefore, using the type p of X we see that

B 3 e < k(X lellr) " < lo 2 (X )
i€0°

i€oc i€0°

< KM=2/ppl/p.

E

1/2

Define the vectors y; = x;/||z;||, ¢ € 0. By the standard comparison principle
it follows that

EHZEzyl ZM_IEHZEZ‘JJZ' > Mt (E’Z&% —IEH Z&'ﬂ?i )
1€0 i€0 =1 i€0°
> M_l(CQK_lanl/p - KMl_Q/pnl/p). (12)

Choosing M so that KM'~2/P = (cy/2) K ~'a, we make the right hand side
in (12) bounded below by ((coa/2)K?*P)2=P. This clearly implies that there
exist norm one vectors (z;);<p in X for which

n
E €iZi

i=1

E > (K, a)n'/P.

An application of Proposition 19 for the vectors (z;) finishes the proof.
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Summary. Let K be a convex body in R" and let f: 9K — R4 be a continuous,
positive function with [, f(z)dusx (x) = 1 where pax is the surface measure on
OK. Let Py be the probability measure on 0K given by dPf(z) = f(x)dpsr (x). Let
% be the (generalized) Gau3-Kronecker curvature and E(f, N) the expected volume
of the convex hull of N points chosen randomly on 0K with respect to Py. Then,
under some regularity conditions on the boundary of K

lim vol, (K) — iE(fa N) —c, @duak(ﬂf),

K f@)

where ¢, is a constant depending on the dimension n only.
The minimum at the right-hand side is attained for the normalized affine surface
area measure with density

fus(z) = )™
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1 Introduction

1.1 Notation and Background. The Main Theorem

How well can a convex body be approximated by a polytope?

This is a central question in the theory of convex bodies, not only because
it is a natural question and interesting in itself but also because it is rele-
vant in many applications, for instance in computervision ([SaT1], [SaT2]),
tomography [Ga], geometric algorithms [E].

We recall that a convex body K in R" is a compact, convex subset of R"
with non-empty interior and a polytope P in R™ is the convex hull of finitely
many points in R”.

As formulated above, the question is vague and we need to make it more
precise.

Firstly, we need to clarify what we mean by “approximated”. There are
many metrics which can and have been considered. For a detailed account
concerning these metrics we refer to the articles by Gruber [Grl],[Gr3]. We
will concentrate here on the symmetric difference metric ds; which measures
the distance between two convex bodies C' and K through the volume of the
difference set

ds(C, K) = vol,,(CAK) = vol,,(C'\ K) U (K \ O)).

Secondly, various assumptions can be made and have been made on the ap-
proximating polytopes P. For instance, one considers only polytopes con-
tained in K or only polytopes containing K, polytopes with a fixed number
of verices, polytopes with a fixed number of facets, etc. Again we refer to the
articles [Grl],[Gr3] for details.
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We will concentrate here on the question of approximating a convex body
K in R™ by inscribed polytopes Py with a fixed number of vertices N in the
ds metric. As we deal with inscribed polytopes the ds; metric reduces to the
volume difference
vol, (K) — vol, (Py)

and we ask how the (optimal) dependence is in this metric on the various
paramenters involved like the dimension n, the number of vertices N and so
on.

As a first result in this direction we want to mention a result by Bron-
shteyn and Ivanov [Brl].
There is a numerical constant ¢ > 0 such that for every conver body K in
R™ which is contained in the Euclidean unit ball and for every N € N there
ezists a polytope Py C K with N wvertices such that

n vol, (K)

vol, (K) — vol,,(Py) < ¢ 5
NmeT

The dependence on N and n in this result is optimal. This can be seen
from the next two results. The first is due to Macbeath and says that the
Euclidean unit ball B is worst approximated in the ds metric by polytopes
or more precisely [Mal:

For every convex body K in R™ with vol,,(K) = vol,(BY) we have

inf {ds(K, Py) : Py C K and Py has at most N vertices} <

inf {ds(B5,Pn) : Py C By and Py has at most N vertices}.

Notice that inf {ds(K, Py): Py € K and Py has at most N vertices} is
the ds-distance of the best approximating inscribed polytope with NV vertices
to K. By a compactness argument such a best approximating polytope exists
always.

Hence to get an estimate from below for the Bronshteyn Ivanov result,
it is enough to check the Euclidean unit ball which was done by Gordon,
Reisner and Schiitt [GRS1], [GRS2].

There are two positive constants a and b such that for all n > 2, every
N > (bn)n%l, every polytope Py C B with at most N vertices one has

n vol,, (BY)
Nzt

vol,,(By) —vol,(Pn) > a

Thus the optimal dependence on the dimension is n and on N it is N =3
The next result is about best approximation for large V.

Let K be a convex body in R™ with C?-boundary 0K and everywhere
strictly positive curvature k. Then
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lim inf{ds(K, Pn)|Py C K and Py has at most N vertices}

N (4™

n+1

n—1

= Ldel,_; (/M m(m)ﬁdMaK(l’))

This theorem was proved by McClure and Vitale [McV] in dimension 2 and
by Gruber [Gr2] for general n. On the right hand side of the above equation
we find the expression [, H(m)ﬁdua[{(.’ﬂ) which is an affine invariant, the
so called affine surface area of K which “measures” the boundary behaviour of
K. Tt is natural that such a term should appear in questions of approximation
of convex bodies by polytopes. Intuitively we expect that more vertices of
the approximating polytope should be put where the boundary of K is very
curved and fewer points should be put where the boundary of K is flat to
get a good approximation in the ds-metric. In Section 1.3 we will discuss the
affine surface in more detail.

del,—1, which also appears on the right hand side of the above formula,
is a constant that depends on n only. The value of this constant is known
for for n = 2, 3. Putting for K the Euclidean unit ball in the last mentioned
theorem, it follows from the result above by Gordon, Reisner and Schiitt
[GRS1], [GRS2] that del,,—; is of the order n. del,,—; was determined more
precisely by Mankiewicz and Schiitt [MaS1], [MaS2]. We refer to Section 1.4.
for the exact statements.

Now we want to come to approximation of convex bodies by random
polytopes.

A random polytope is the convex hull of finitely many points that are
chosen from K with respect to a probability measure P on K. The expected
volume of a random polytope of N points is

IE(]RN):/K---/Kvoln([ml,...,xN])dIP’(ml)...dIF’(xN)

where [z1,...,2n] is the convex hull of the points z1,...,zx. Thus the
expression vol, (K) — E(P, N) measures how close a random polytope and
the convex body are in the symmetric difference metric. Rényi and Sulanke
[ReS1], [ReS2] have investigated this expression for large numbers N of cho-
sen points. They restricted themselves to dimension 2 and the case that the
probability measure is the normalized Lebesgue measure on K.

Their results were extended to higher dimensions in case that the prob-
ability measure is the normalized Lebesgue measure. Wieacker [Wie] settled
the case of the Euclidean ball in dimenision n. Barany proved the result for
convex bodies with C3-boundary and everywhere positive curvature [Bal].
This result was generalized to arbitrary convex bodies in [Schl] (see also Sec-
tion 1.4):

Let K be a convex body in R™. Then
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lim vol, (K) — E(P,,, N)

N—oo vol,, (k) T
N

=) [ @)™ (@),

where ¢1(n) is a constant that depends on n.

We can use this result to obtain an approximation of a convex body by a
polytope with at most N vertices. Notice that this does not give the optimal
dependence on N. One of the reasons is that not all the points chosen at
random from K appear as vertices of the approximating random polytope.
We will get back to this point in Section 1.4.

One avoids this problem that not all points chosen appear as vertices
of the random polytope by choosing the points at random directly on the
boundary of the convex body K.

This is what we do in this paper. We consider convex bodies in dimension
n and probability measures that are concentrated on the boundary of the
convex body. It is with respect to such probability measures that we choose
the points at random on the boundary of K and all those points will then be
vertices of the random polytope. This had been done before only in the case
of the Euclidean ball by Miiller [Mii] who proved the asymptotic formula
for the Euclidean ball with the normalized surface measure as probability
measure.

Here we treat much more general measures Py defined on the boundary of
K where we only assume that the measure has a continuous density f with
respect to the surface measure pgx on K. Under some additional technical
assumptions we prove an asymptotic formula. This is the content of Theorem
1.1.

In the remainder of Section 1.1 we will introduce further notation used
throughout the paper. We conclude Section 1.1 by stating the Theorem 1.1.
The whole paper is devoted to prove this main theorem. In doing that, we
develop tools that should be helpful in further investigations.

In Section 1.2 we compute which is the optimal f to give the least value
in the volume difference

vol,(K) —E(Py, N).

It will turn out that the affine surface area density gives the optimal mea-
sure: Choosing points according to this measure gives random polytopes of
greatest possible volume. Again, this is intuitively clear: An optimal measure
should put more weight on points with higher curvature. Moreover, and this
is a crucial observation, if the optimal measure is unique then it must be
affine invariant. There are not too many such measures and the affine sur-
face measure is the first that comes to ones mind. This measure satisfies two
necessary properties: It is affine invariant and it puts more weight on points
with greater curvature.

In Section 1.5 we compare random approximation with best approxima-
tion and observe a remarkable fact. Namely, it turns out that -up to a nu-
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merical constant- random approximation with the points chosen P ¢-randomly
from the boundary of K with the optimal f is as good as best approximation.

In Section 1.3 we propose an extension of the p-affine surface area which
was introduced by Lutwak [Lu] and Hug [Hu]. We also give a geometric
interpretation of the p-affine surface area in terms of random polytopes.

It was a crucial step in the proof of Theorem 1.1 to relate the random
polytope to a geometric object. The appropriate geometric object turned out
to be the surface body which we introduce in Chapter 2.

In Chapter 3 we review J. Miiller’s proof for the case of the Euclidean
ball. We use his result in our proof.

Chapter 4 is devoted to prove probabilistic inequalities needed for the
proof of Theorem 1.1 and finally Chapter 5 gives the proof of Theorem 1.1.

Now we introduce further notations used throughout the paper.

By (x,r) is the Euclidean ball in R™ centered at  with radius r. We denote
BY = B7(0,1). S"~! is the boundary Bj of the Euclidean unit ball. The
norm || - || is the Euclidean norm.

The distance d(A, B) of two sets in R" is

d(A, B) = inf{||z — y|||lx € A,y € B}.

For a convex body K the metric projection p : R™ — K maps = onto the
unique point p(z) € K with

- = inf ||z — y].
lz = p(@)ll = inf |lz —y]

The uniqueness of the point p(z) follows from the convexity of K. If x € K
then p(z) = z.

For z,¢ in R", £ # 0, H(z,§) denotes the hyperplane through z and
orthogonal to £. The two closed halfspaces determined by this hyperplane
are denoted by H™ (z,£) and HT(z,&). H (x,€) is usually the halfspace
that contains x + £. Sometimes we write H, H™ and H~, if it is clear which
are the vectors z and & involved.

For points z1,...zx € R™ we denote by

N
OS/\igl,lgigN,Z/\izl}

[xl,...xN] = {)\1331 + -+ Anxn
=1

the convex hull of these points. In particular, the closed line segment between
two points x and y is

[z,9] = {dz+ (1 - Nyl 0< A< 1}
The open line segment is denoted by

(,y) ={ x4+ 1 -Nyl 0< A< 1}
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torx is the surface area measure on 0K. It equals the restriction of the n — 1-
dimensional Hausdorff measure to 0K . We write in short p if it is clear which
is the body K involved. Let f : 9K — R be a integrable, nonnegative function

with
/ f(@)dp = 1.
0K

Then we denote by Py the probability measure with dP; = fdusx and
E(f,N) = E(Ps, N). If f is the constant function (vol,_1(90K))~! then we
write E(OK,N) = E(P;, N). For a measurable subset A of 0K we write
vol,—1(A) for pox (A).

Let K be a convex body in R"™ with boundary K. For z € 0K we
denote the outer unit normal by Ny (x). We write in short N (x) if it is clear
which is the body K involved. The normal N(z) may not be unique. kg ()
is the (generalized) Gaufl curvature at x (see also Section 1.5 for the precise
definition). By a result of Aleksandrov [Al] it exists almost everywhere. Again,
we write in short x(x) if it is clear which is the body K involved. The centroid
or center of mass cen of K is

We conclude Section 1.1 with the main theorem.

Theorem 1.1. Let K be a convex body in R™ such that there are v and R in
R with 0 < r < R < 0o so that we have for all x € 0K

By (x —rNyk(z),r) € K C BY(x — RNyk(z), R)

and let f : 0K — Ry be a continuous, positive function with [, f(x)dpox (x) =
1. Let Py be the probability measure on OK given by dPs(x) = f(x)dpok ().
Then we have

1

. vol,(K) —E(f,N) k()1
A}gnoo (%)% = Cn AK f(x) nil d/laK(l")

where K is the (generalized) Gauf-Kronecker curvature and

(n—l)z—if(n—l—l—kﬁ)
n - P .

2(n + 1)!(vol,,_o(dBy 1)) =1

The minimum at the right-hand side is attained for the normalized affine
surface area measure with density

fas(x) =
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Fig. 1.1.1

The condition: There are » and R in R with 0 < r < R < oo so that we
have for all x € 0K

BY(x — rNyk(x),r) C K C BY(z — RNgk (z), R)

is satisfied if K has a C?-boundary with everywhere positive curvature. This
follows from Blaschke’s rolling theorem ([Bla2] , p.118) and a generalization
of it ([Lei], Remark 2.3). Indeed, we can choose
r= min min 7;(z) R = max max r;(x)
2€dK 1<i<n—1 w€IK 1<i<n—1
where 7;(z) denotes the i-th principal curvature radius.
By a result of Aleksandrov [Al] the generalized curvature x exists a.e. on

every convex body. It was shown in [SW1] that KT is an integrable function.
Therefore the density

fas(z)

exists provided that [, m(m)ﬁdum{(x) > 0. This is certainly assured by
the assumption on the boundary of K.

1.2 Discussion of Some Measures Py and the Optimality of the
Affine Surface Area Measure

We want to discuss some measures that are of interest.

1. The most interesting measure is the normalized affine surface area
measure as given in the theorem. This measure is affine invariant, i.e. for an
affine, volume preserving map 7" and all measurable subsets A of 0K
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1 1
[ mi @anonte) = [ gt (@)dnor @)
A T(A)
Please note that if the optimal measure is unique it should be affine invariant
since the image measure induced by T must also be optimal.

We show that the measure is affine invariant. To do so we introduce the
convex floating body. For ¢t € R, ¢t > 0 sufficiently small, the convex floating
body Cpy of a convex body C' [SW1] is the intersection of all halfspaces whose
defining hyperplanes cut off a set of n-dimensional volume ¢ from C. By [SW1]
we have for all convex bodies C

ol, (C) — vol, (C
L volu ); n(Cly)) —dy [ rpc(e) T dusc (),
=0 tr+t e
here d,, = i VYO g fine, vol i
where d,, = 3 (m) . For an affine, volume preserving map
T we have
vol, (C) = vol,(T'(C)) and  vol,(Cp)) = vol,(T(Cly))- (1)
Thus the expression
/ Koo ()™ dpoc (x)
ac

is affine invariant. For a closed subset A of 0K where K is a convex body, we
define the convex body C' as the convex hull of A. For a point x € dC with
x ¢ A we have that the curvature must be 0 if it exists. Thus we get by the
affine invariance (1) for all closed sets A

/ Koo () T dpac(z) = / Kar(c)(y) T diarc) (v)-
A T (A)
This formula extends to all measurable sets. For the affine surface measure

we get

ntl

im YO ZEAN) </8Km(:v)n+rldu3;<(x)) B

e (®)

We show now that the expression for any other measure given by a density
f is greater than or equal to (2). Since [, f(z)dpuax () = 1, we have

d
(Volnl(ﬁK) /aK MaK(JE))

| w(@) N7 [
- m/ém (f($)2>

(% /M‘f(x)ﬁ e dug,\K(:c)>n . (Voln,l(aK))ﬁ.

VOln_ 1

_1_
n+1

dpsk () X
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We have - +1 + n22—1 = ﬁ and we apply Holder inequality to get
sy
1 k(z) [*T "
d
(m TR e Ta| ot )>

> ! d ™ (vl OK))7

n+1 n<—1
> (v AT k() ) (vola 0K 7

_1_
n—1 n—1

which gives us
k()

L oo = ([ st duonta))

2. The second measure of interest is the surface measure given by the
constant density

1
1@) = e

This measure is not affine invariant and we get

i YOO —B(AN) / k(2) ™ dpok (x).

N

3. The third measure is obtained in the following way. Let K be a convex
body, cen its centroid and A a subset of 0K . Let

vol,, ([cen, A])

P(4) = vol, (K)

If the centroid is the origin, then the density is given by

<z, Nok(x) >

J(@) = Jor <z, Nok () > dpox ()

and the measure is invariant under linear, volume preserving maps. We have
L [ <@, N(x) > dpsk (x) = vol,(K) and thus

We get
1
. vol,(K)—E(f,N Kk(x)n—1
lim (K) (fi) :cn/ (z) ——duox ().
N—oo (n voln(K)) n—1 oK < x, Nog (x) >7-1
N

We recall that for p > 0 the p-affine surface area O, (K) [Lu], [Hu] of a convex
body K is defined as (see 1.3 below for more details)
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K(z)7is
o) = [ o (2).
0K < x, Nog(x) > nFp

Note that then for n > 2 the right hand expression above is a p-affine surface
area with p =n/(n — 2).

4. More generally, let K be a convex body in R™ with centroid at the
origin and satisfying the assumptions of Theorem 1.1. Let o and (3 be real
numbers. Let the density be given by

fa,p(x) =

< x, Nog (z) > r(x)?
f{)K <z, Nog (z) > k(z)Pdpok (x)’

Then by Theorem 1.1

lim VOIn( ) ]E(foz,ﬁa )
N—o0 ( )'n. 1

" </6K :(j’)gﬁgaiii)l) (/BK <@, Nox(z) >* ”(x)ﬁduaf((x)> - )

The second expression on the right hand side of this equation is a p-affine
surface area iff

a:,m and (= p )
n-+p n-—+p
Then
lim vol,,(K) —E(f,N)

N—o0 O, (K) %
N
2n(p—1)

= Cn/ /1(3;) (7177)7(fz+p) < Jj’N(:)K( )>(n 1)(n+p) dHBK( )
oK

Note that the right hand side of this equality is a g-affine surface area with
9= nipp2

5. Another measure of interest is the measure induced by the Gaufl map.
The Gaufl map Ngk : 0K — OBY maps a point z to its normal Nyg (). As
a measure we define

]P)(A) = U{N@K(J?)lx S A}
where o is the normalized surface measure on dB%. This can also be written
as
P( ) _ fA dMaK )
VOln_ 1 (aB")

This measure is not invariant under linear transformations with determinant
1. This can easily be seen by considering the circle with radius 1 in R2. An



252 C. Schiitt and E. Werner

affine transformation changes the circle into an ellipse. We consider a small
neighborhood of an apex with small curvature. This is the affine image of a
small set whose image under the Gaufl map is larger. We get

lim vol,(K) —E(f,N)

_2
N—o0 voln_l(aBg) n—1
N

= cn/ ﬁ(x)fﬁduaK(x).
oK

1.3 Extensions of the p-Affine Surface Area

The p-affine surface area O, (K') was introduced by Lutwak [Lu], see also Hug
[Hu]. For p = 1 we get the affine surface area which is related to curve evo-
lution and computer vision [SaT1, SaT2]. Meyer and Werner [MW1, MW2]
gave a geometric interpretation of the p-affine surface area in terms of the
Santalé bodies. They also observed that -provided the integrals exist- the
definition of Lutwak for the p-affine surface area makes sense for —n < p <0
and their geometric interpretation in terms of the Santalé bodies also holds
for this range of p. They also gave a definition of the p-affine surface area for
p = —n together with its geometric interpretation.

In view of 1.2.4 we propose here to extend the p-range even further,
namely to —oo < p < 00. Theorem 1.1 then provides a geometric inter-
pretation of the p-affine surface area for this whole p-range. See also [SW2]
for another geometric interpretation.

Let K be a convex body in R™ with the origin in its interior. For p with
p# —n and —oo < p < oo we put

_ K(x)
0t = [ R 5 o)

and

_p
n+p
OP(K) = / I{(I) n(p—1) dﬂaK(l‘)a
0K < x,NaK(x) > ntp
provided the integrals exist.
If 0 is an interior point of K then there are strictly positive constants a and
b such that
a <<z, Ngg(z) ><b.

Assume now that K is such that the assumptions of Theorem 1.1 hold. Then
the above integrals are finite. We consider the densities

1 K(x)

Foo(w) = O10(K) < 2, Nog (z) >n

and for —co < p < o0, p# —n
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1 K (z) 7T

Op(K) <uw, NBK(-T) >n£zp+7p1) .

fo(x) =

As a corollary to Theorem 1.1 we get the following geometric interpretation
of the p-affine surface area.
I (K) — E(fioo, N
i YO ~ E(fs )
N—oo (Oioc (K) ) nT

N

cn/ ,‘43(95)_ﬁ < x, Nog () > dpak (x) = O_1(K)
OK

and
ol () = E(f,. V) _
N—>oo ( )n 1
2n(p—1)
/ (w e <z NaK( )>(n—1><n+p> dluaK(x) = Oq(K)
where g = ni;f 5
Thus each density f, gives us a g-affine surface area O, with ¢ = ni;f 5

as the expected difference volume. Note that for the density f_, 4o we get
O4o0(K). Conversely, for each g-affine surface area Oy, —oc0 < ¢ < o0,
g # —n, there is a density f, with p = %‘Zf% such that
1, (K) —E(fp, N
lim 2 (K) (U N) = ¢, 04(K).

N—o00 0, (K) %
N

1.4 Random Polytopes of Points Chosen from the Convex Body

Whereas random polytopes of points chosen from the boundary of a convex
body have up to now only been considered in the case of the Euclidean ball
[Mii], random polytopes of points chosen from the convex body and not only
from the boundary have been investigated in great detail. This has been done
by Rényi and Sulanke [ReS1, ReS2] in dimension 2. Wieacker [Wie] computed
the expected difference volume for the Euclidean ball in R™. Bédrany [Bal]
showed for convex bodies K in R™ with C3-boundary and everywhere positive
curvature that

l,(K)—E(P,N
i Y0E) ~EE)
N —oo (VOX/.(K))TH

= e1(n) /8 ) ok )

where P is the normalized Lebesgue measure on K, x(z) is the Gauf-
Kronecker curvature, and
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(n+1)7T (n? + 1+ 2)(n® + 1)1 (2D

2(n + 3)(n + 1)vol,_y (B}~ )=t

ci1(n) =

Schiitt [Schl] verified that this formula holds for all convex bodies, where
k(z) is the generalized GauB-Kronecker curvature.

The order of best approximation of convex bodies by polytopes with a
given number of vertices N is N = (see above). The above formula for
random polytopes chosen from the body gives N ™ 741, Thus random approx-
imation by choosing the points from K does not give the optimal order. But
one has to take into account that not all points chosen from the convex body
turn out to be vertices of a random polytope. Substituting N by the num-
ber of expected vertices we get the optimal order [Ba2] for the exponent of
N in the case of a convex body with C3-boundary and everywhere positive
curvature. Indeed, for all convex bodies with a C®-boundary and everywhere
positive curvature the expected number of i-dimensional faces is of the order
N1 [Ba2).

1.5 Comparison between Best and Random Approximation

Now we want to compare random approximation with best approximation in
more detail. We will not only consider the exponent of N but also the other
factors. It turns out that random approximation and best approximation with
the optimal density are very close.

McClure and Vitale [McV] obtained an asymptotic formula for best ap-
proximation in the case n = 2. Gruber [Gr2| generalized this to higher di-
mensions. The metric used in these results is the symmetric difference metric
ds. Then these asymptotic best approximation results are (see above for the
precise formulation):

If a convex body K in R™ has a C?-boundary with everywhere positive
curvature, then

inf{ds(K, Px)|Py C K and Py is a polytope with at most N vertices}

is asymptotically the same as

n+1 2
1 n—1 1 n—1
%deln_l (/ k() " duaK(x)) (N) .
OK

where del,,_; is a constant that is related to the Delone triangulations and
depends only on the dimension n. Equivalently, the result states that if we
divide one expression by the other and take the limit for N to co we obtain
1. It was shown by Gordon, Reisner and Schiitt in [GRS1, GRS2] that the
constant del,,_1 is of the order of n, which means that there are numerical
constants a and b such that we have for all n € N



Random Polytopes 255
an < del,,_1 < bn.

It is clear from Theorem 1.1 that we get the best random approximation if
we choose the affine surface area measure. Then the order of magnitude for
random approximation is

(=1 (n+ 14 22) N 2N w2
([ @ @) ()
oK

2(n + 1)!(vol,_»(dBy 1)) 77

Since

_2

(voly_2(@B} )71 ~ = and r(n+1+%)~r(n+1)(n+1)%

1
n
random approximation (with randomly choosing the points from the bound-
ary of K) is of the same order as

n (/aK H(x)#lduaK(x)) = (%) - ,

which is the same order as best approximation.
In two papers by Mankiewicz and Schiitt the constant del,,_; has been
better estimated [MaS1, MaS2]. It was shown there
_ 2

110l (By 1) 7T < del,oy < (14 lnyn—lyel, o (By~Y) T,

where ¢ is a numerical constant. In particular, lim,, . del;fl = ﬁ =
0.0585498.... Thus

<1 _Cln_n) lim VOln(K) _Ez(fa87N)
/e (&)™

< lim N#=27 inf{dg(K, Py)|Py C K and Py

is a polytope with at most N vertices}.

In order to verify this we have to estimate the quotient

(n—l)z_ﬂf(n—kl-&-%)
P (%deln,l)_l.
2(n + 1)!(vol,_o(dBy 1)) 7=

Since ”—’}voln_l(Bg_l)_% < del,_1 the quotient is less than 5 I'(n 41+

n+
%) Now we use Stirlings formula to get
Fn+1+-% 1
Pntl+ss) o, Jon
n! n
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1.6 Subdifferentials and Indicatrix of Dupin

Let U be a convex, open subset of R™ and let f : i/ — R be a convex function.
df(z) € R™ is called subdifferential at the point xo € U, if we have for all
rel

fzo)+ < df(xg),z — zo >< f(x).

A convex function has a subdifferential at every point and it is differentiable
at a point if and only if the subdifferential is unique. Let U be an open,
convex subset in R™ and f : U4 — R a convex function. f is said to be twice
differentiable in a generalized sense in xg € U, if there is a linear map d? f(zo)
and a neighborhood U(xo) C U such that we have for all x € U(zo) and for
all subdifferentials d f(x)

ldf () — df (z0) — d* f(wo) (2 — @o)|| < O(llz = oll) & — @,

where © is a monotone function with lim; .o ©(t) = 0. d?f(xq) is called
generalized Hesse-matrix. If f(0) = 0 and df(0) = 0 then we call the set

{z € R"2'd*f(0)z = 1}

the indicatrix of Dupin at 0. Since f is convex this set is an ellipsoid or a
cylinder with a base that is an ellipsoid of lower dimension. The eigenval-
ues of d2f(0) are called principal curvatures and their product is called the
GaufB-Kronecker curvature x. Geometrically the eigenvalues of d?f(0) that
are different from O are the lengths of the principal axes of the indicatrix
raised to the power —2.

The following lemma can be found in e.g. [SW1].

Lemma 1.1. Let U be an open, convex subset of R™ and 0 € U. Suppose

that f : U — R is twice differentiable in the generalized sense at 0 and that

f(0) =0 and df(0) = 0.

(i) Suppose that the indicatriz of Dupin at 0 is an ellipsoid. Then there is a

monotone, increasing function 1 : [0,1] — [1,00) with lims_0 ¥ (s) = 1 such
' d?f(0)x < 2—83 }

that
{e )

CH{@ 9)lf (@) < s} S {(z,9)[2"d*f(0)x < 2s9(s)}.

(ii) Suppose that the indicatriz of Dupin is an elliptic cylinder. Then for
every € > 0 there is so > 0 such that we have for all s with s < sg

{(z,9)[2'd®f(0)z +ellz|* < 25} C {(2,5)|f(2) < s}
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Lemma 1.2. Let K be a convezr body in R™ with 0 € 0K and N(0) = —e,,.
Suppose that the indicatriz of Dupin at 0 is an ellipsoid. Suppose that the
principal azes bie; of the indicatriz are multiples of the unit vectors e;, i =
1,...,n—1. Let £ be the n-dimensional ellipsoid

2 \ 2
1,2 (xn - (st e) ) N

E= reR") ot ; < IIb

v z:: 12 (Hn71 bi)”71 (H >

i=1 i=1

Then there is an increasing, continuous function ¢ : [0,00) — [1,00) with
@(0) =1 such that we have for all t

{ G )
C KN H((0,...,0,t), N(0))
C (@)1, .., S()Tn_1, )]z € E, 20 = 1} .

meg,xnzt}

We call £ the standard approximating ellipsoid .

Proof. Lemma 1.2 follows from Lemma 1.1. Let f be a function whose graph
is locally the boundary of the convex body. Consider (x, s) with

2'd?f(0)z = 2s

which is the same as

i=1 ° =1
< (Hn 1 b ) "21>2 2
s — i i n—1 n—1
=25+ n 11 2 - - 2+<Hbz>
(Hz 1 bl)n71 (H?;ll bz) n i=1

Let us denote the lengths of the principal axes of the indicatrix of Dupin
by b;, i =1,...,n— 1. Then the lengths a;, ¢ = 1,...,n of the principal axes
of the standard approximating ellipsoid £ are
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o1 N T no1 o\
—bi<Hbi> i=1,...,n—1 and an=<Hbi> .
i=1 =1

3)

This follows immediately from Lemma 1.2. For the Gau3-Kronecker curvature
we get

n—1

S

5 (4)

S

i=1

This follows as the Gauf}-Kronecker curvature equals the product of the eigen-
values of the Hesse matrix. The eigenvalues are bi_Q, i=1,...,n—1. Thus

n—1 n—1 2n—1 n—1 ﬁ - -
[ - () T (w (%) ) -T0%
i=1 i=1 i=1 k=1 o1 Y

In particular, if the indicatrix of Dupin is a sphere of radius ,/p then the
standard approximating ellipsoid is a Euclidean ball of radius p.
We consider the transform 7T : R* — R"™

() - i(m) = <Hb> S

anl

This transforms the standard approximating ellipsoid £ into a Euclidean ball
T(E) with radius r = (H::ll b;)?/("=1)_ This is obvious since the principal
axes of the standard approximating ellipsoid are given by (3). The map T is
volume preserving.

E= {x e R

and let H = H((an—A)en, ). Then for all A with A < %an the intersection
ENH is an ellipsoid whose principal azes have lengths

Lemma 1.3. Let

W=
.
I
—_

L (20,4 — A2)

Qn
Moreover,

VOln_l(g N H) S voln_l(&‘) N Hi)

m1n1<7,<n 1 a

2Aa}
<4/l 1 H
_\/ +(an—A)2 svol,_1(ENH)
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and

vol,_1(ENH) =vol,,_1(By 1) (H?:ll ai) (ZA —

where K is the Gauf$-Kronecker curvature.

Proof. The left hand inequality is trivial. We show the right hand inequality.

Let pe, be the orthogonal projection onto the subspace orthogonal to e,,. We
have

1
l,—1(OENH™ =/ ——d 6
voly, 1 ( ) e < Noe @ S (6)

where §;, = y;, 1 =1,...,n—1, and

Therefore we get

_ V01n71(gﬂH)
l,—1(OENHT) < — '
voly,—1( ) < mingcpenm- < en’Nag(I) >

We have

Therefore we get

1
T 4 n—=1 o\ 2
2
< en, Nog (1) > = ——=2o— = ( _“; Z f”_4>
Zi:l |25]2 Tn =g

(14
Ty NN <;<n—1 Q;

1
2 2 -2
a a
1+ —n2 —;L -1 .
ming <;<n—1 @; Ty,
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The last expression is smallest for z,, = a,, — A. We get

=

2 a2 -
< en, Nog(r) > > <1 + a,(24a, — A®) )

(an - A)2 minlgign_l a?

2Aa3 3
> (1 n .
N ( * (an — A)?minj<icn1 a?)

The equalities are proved using

n—1

k(anen) = H —.

i=1

SRS

Lemma 1.4. Let K be a convex body in R™ and xog € 0K . Suppose that the
indicatriz of Dupin at xo exists and is an ellipsoid. Let £ be the standard
approzimating ellipsoid at xo. Then for all € > 0 there is Ag such that for all
A< Ay

VOln_l(K N H(JZO — AN@K(l‘o),NaK(xo))) <

vol,—1 (0K N H™ (g — ANgk (z0), Nok (x0))) <

2Aa3
(1+€)\/1+ (a 7A)2H1inrll<'< . a2VOlnfl(KﬂH(aio—ANaK(xo),NaK(wo)))7

i

where ay,...,a, are the lengths of the principal azes of £.

Proof. We can assume that K is in such a position that Nyx(x¢) coincides
with the n-th unit vector e, and that the equation of the approximating

ellipsoid is
2
&= {x eR" <1 } .

Then the proof follows from Lemma 1.2 and Lemma 1.3. O

n
Ly

a;

i=1

Lemma 1.5. Let H be a hyperplane with distance p from the origin and s
the area of the cap cut off by H from B%. r denotes the radius of the n — 1-
dimensional Euclidean ball H N B3 . We have

@ = _ (rnfgvoln_Q(aBg_l))il

n— -1
- = S ((1 —pz)Tsvoln_g(aB;_l)> .
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Proof. Using (6) and polar coordinates, we get for the surface area s of a cap
of the Euclidean ball of radius 1

2 tn72

T tn72 1-p
s = vol,, (B! / — _dt=vol, (8B} / — 4t
2(0B37) ) (1—t2)% 2(0By ) ) (1—t2)%

This gives

n—2

ds _Voln—2(aBgil)(1 -p) 7 p

dp D 1—p?

= —r""3vol,,_o(0By ).

a

Lemma 1.6. (Aleksandrov [Al]) Let K be a conver body in R™. Then its
boundary is almost everywhere twice differentiable in the generalized sense.

For a proof of this result see [Ban], [EvG], [BCP].

At each point where 0K is twice differentiable in the generalized sense
the indicatrix of Dupin exists. Therefore the indicatrix of Dupin exists almost
everywhere.

Lemma 1.7. (John [J]) Let K be a convex body in R™ that is centrally sym-
metric with respect to the origin. Then there exists an ellipsoid €& with center
0 such that

ECKC+né&.

Lemma 1.8. Let K and C be convex bodies in R™ such that C C K and 0
s an interior point of C. Then we have for all integrable functions f

e el <y Nw) >
/6  F@)nic() /3 el LA SIS )

where {z(y)} = [0,y] N OC.

2 The Surface Body

2.1 Definitions and Properties of the Surface Body

Let 0 < s and let f : 0K — R be a nonnegative, integrable function with
Jor fdu=1.
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The surface body K7y 4 is the intersection of all the closed half-spaces H+
whose defining hyperplanes H cut off a set of Py-measure less than or equal
to s from OK. More precisely,

Kfo= ﬂ HT.
Py (KNH—)<s

We write usually K, for K  if it is clear which function f we are considering.
It follows from the Hahn-Banach theorem that Ky C K. If in addition f is
almost everywhere nonzero, then Ky = K. This is shown in Lemma 2.1.(iv).

Fig. 2.1.1

We say that a sequence of hyperplanes H;, ¢ € N, in R™ converges to a
hyperplane H if we have for all x € H that
lim d(x, H;) =0,
where d(z, H) = inf{||x —y|| : y € H}. This is equivalent to: The sequence of
the normals of H; converges to the normal of H and there is a point x € H
such that
lim d(x, H;) = 0.

11— 00

Lemma 2.1. Let K be a convex body in R™ and let f : 0K — R be a a.e.
positive, integrable function with faK fdu=1. Let £ € S™ 1.
(i) Let xy € OK. Then
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Pr(OK N H™ (zo —18,£))

18 a continuous function of t on

0,max < xg — ¥y, & >> .
yeK

(ii) Let x € R™. Then the function
Pr(OK N H™ (x —1£,£))

1s strictly increasing on

min <z —y, &> max <z —y,&>|.
yeK yeK

(iii) Let H;, i € N, be a sequence of hyperplanes that converge to the hyper-
plane Hy. Assume that the hyperplane Hy intersects the interior of K. Then

we have
lim P;(OKNH;)=P;(0KNHy;).

(iv)
K< | K.
0<s

In particular, K = K.

Proof. (i)
volp_1 (8K N H™ (20 — t&,€))

is a continuous function on
0,max < xg —y,& > | .
yeK

Then (i) follows as f is an integrable function.
(ii) Since H™ (z,£) is the half space containing = + £ we have for t; < o

H_(JZ —t1§7£) -,C«- H_('T _t2€7§)'

If
Pr(OK NH (z—t€,8) =Pr(0K N H™ (z — t2€,€))

then fis a.e. 0 on 0K N H ™ (z — t2€,€) N HY (z — t1&,€). This is not true.
(iii) Let H; = H;(x;,&;), 1 =0,1,.... We have that

lim T = Xo lim fz = go,
i—00 i—00
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where zq is an interior point of K. Therefore

Ve>03igVi>ig:
aKﬂHi(Io —|—€§0,€0) - 8KQH7(.T¢,&) - aKﬂHi(:Eo — E€O7£O)~
This implies
Py (0K NH™ (xo + o, &0)) <Py (K NH™ (2:,&))
<P; (0K NH (0 — €0,&0)) -

Since xq is an interior point of K, for € small enough o — €€y and zg + €
are interior points of K. Therefore,

H(xo — €£0,&) and  H(xo + €&o,&0)

intersect the interior of K. The claim now follows from (i).

(iv) Suppose the inclusion is not true. Then there is z € K with z ¢
Uo<s Ks- Therefore, for every s > 0 there is a hyperplane H, with » € H,
and

P;(0OKNH;) <s.

By compactness and by (iii) there is a hyperplane H with € H and
P;(OKNH™)=0.

On the other hand, vol,,_1 (0K N H~) > 0 which implies
P;(OKNH™)>0

since f is a.e. positive.
o
We have K = K because K is a closed set that contains K. O

Lemma 2.2. Let K be a convex body in R™ and let f : 0K — R be a a.e.
positive, integrable function with faK fdu=1.

(i) For all s such that Ks # 0, and all z € KN IO( there exists a supporting
hyperplane H to 0K, through x such that Py(OK NH~) = s.
(i1) Suppose that for all x € OK there is R(z) < oo so that

K C BY(z — R(z)Nsk (z), R(x)).

Then we have for all 0 < s that K CIO{,

Proof. (i) There is a sequence of hyperplanes H; with K, C H;™ and P; (0K N
H;) < s such that the distance between x and H; is less than % We check
this.
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Since z € DK, there is z ¢ K, with ||z — z|| < 1. There is a hyperplane
H,; separating z from K satisfying

P;(OKNH)<s and K, C Hi+.
We have
d(z, H;) < ||z — 2| < 1.

By compactness and by Lemma 2.1 .(iii) there is a subsequence that converges
to a hyperplane H with x € H and Py(0K NH~) < s.

If P;(OK N H~) < s then we choose a hyperplane H parallel to H such
that Py (0K N H~) = s. By Lemma 2.1.(i) there is such a hyperplane. Con-
sequently, x is not an element of K. This is a contradiction.

(ii) Suppose there is z € K with z € K, and 0 < s. By K C BY(x —
R(2)Nox (z), R(x)) we get

vol,—1 (0K N H(z, Npk(x))) = 0.

By Lemma 2.1.(i) we can choose a hyperplane H parallel to H(z, Nok(z))
that cuts off a set with P;(0K N H~) = s. This means that ¢ K,. O

Lemma 2.3. Let K be a convex body in R™ and let f : 0K — R be a a.e
positive, integrable function with faK fdu=1.

(i) Let s;, i € N, be a strictly increasing sequence of positive numbers with
lim; o S; = 8g. Then we have

K, = ﬁ K,,.
=1

(ii) There exists T with0 < T < L such that Kt is nonempty and vol,(Kr) =
0 and vol, (K;) > 0 for allt <T.

Proof. (i) Since we have for all ¢ € N that K, C K;,, we get
KS() g n ]:{S7
i=1

We show now that both sets are in fact equal. Let us consider x ¢ Ks,. If
¢ K, then z ¢ (2, Ks,, as

K =K

U

A
=1

If x € K and z ¢ K, then there is a hyperplane H with x €eH~, K,, C H™,
and
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Pf(K N Hi) < s9.

There is a hyperplane H; that is parallel to H and that contains x. There is
another hyperplane Hs that is parallel to both these hyperplanes and whose
distance to H equals its distance to H;. By Lemma 2.1.(ii) we get

0<P;O0KNH{)<P;(0KNH;)<Ps(OKNH") < sp.

Let s, = P;(0K N Hy ). Tt follows that

x ¢ N HY =K.
Py (H~NOK)<s,

Therefore x ¢ K, for s; > szj.
(ii) We put
T = sup{s|vol, (Ks) > 0}.

Since the sets K, are compact, convex, nonempty sets,

n

vol,, (K.)>0

is a compact, convex, nonempty set. On the other hand, by (i) we have

KT:ﬂKS: ﬂ K.

s<T vol, (K.)>0

Now we show that vol,, (Kr) = 0. Suppose that vol, (Kr) > 0. Then there is

o GIO{T. Let
to = 1Hf{Pf(8Kﬂ H_)|:100 € H}

Since we require that o € H we have that P;(0K NH ™) is only a function of
the normal of H. By Lemma 2.1.(iii), Py (0K N H ™) is a continuous function
of the normal of H. By compactness this infimum is attained and there is Hy
with zg € Hy and

P;(0K NH, ) = to.

Moreover, tg > T. If not, then Ky C HJ and xg € Hy, which means that

xg € 0K, contradicting the assumption that zo € Kr.
Now we consider K(1/2)(7+t,)- We claim that xq is an interior point of
this set and therefore
VOln(K%(T—i—to)) >0,

contradicting the fact that T is the supremum of all ¢t with

vol,, (Ky) > 0.
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We verify now that xq is an interior point of K(1,2)(14¢,)- Suppose zg is
not an interior point of this set. Then in every neighborhood of xg there is
x ¢ Ky (Ttto)" Therefore for every € > 0 there is a hyperplane H, such that
§ 0

Py(OK NH_) < 3(T +to), x € H, and [l — xo|| <e.

By Lemma 2.1.(iii) we conclude that there is a hyperplane H with zo € H
and
Py (OKNH™) < 3(T +tg).

But this contradicts the definition of 5. O

In the next lemma we need the Hausdorff distance dy which for two
convex bodies K and L in R™ is

(5, 1) = max { i o = . s o~ o}

Lemma 2.4. Let K be a convex body in R™ and let f : 0K — R be a positive,
continuous function with faK fdu=1.

(i) Suppose that K has a C'-boundary. Let s be such that K, # 0 and let
x € 8Ksﬂlo(. Let H be a supporting hyperplane of K, at x such that Py (0K N
H~) = s. Then x is the center of gravity of 0K NH with respect to the measure

fW)pnornm(y)
< Noknu(y), Nok (y) >

i.e.
yf(y)dpoxnm (y)
- OKNH <Narxnu(y),Nox (y)>

fW)duoxna (y)
OKNH <Nornu(y),Nox (y)>

)

where Nog (y) is the unit outer normal to OK aty and Noxnm (y) is the unit
outer normal to 0K N H at y in the plane H.

(ii) If K has a C*-boundary and K, C I%, then K is strictly convex.

(iii) Suppose that K has a C'-boundary and Kr C I% Then Kt consists
of one point {x} only. This holds in particular, if for every x € 0K there
are r(z) > 0 and R(z) < oo such that By (x — r(x)Nox(x),r(z)) C K C
By (z — R(z)Nok (z), R(x)).

(iv) For all s with 0 < s < T and € > 0 there is 6 > 0 such that
dH(KS,K3+5) < €.

We call the point zp of Lemma 2.4.(iii) the surface point. If K7 does not
consist of one point only, then we define x7 to be the centroid of K.
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Proof. (i) By Lemma 2.2.(i) there is a hyperplane H with s = P;(0KNH ™).
Let H be another hyperplane passing through x and e the angle between the
two hyperplanes. Then we have

s=Pr(0KNH™) <Pp(dK N H).

Let £ be one of the two vectors in H with [|{]| = 1 that are orthogonal to
H N H. Then

0<P;(OKNH")—P;(OKNH")
:/ <y—=x,&> f(y)tane
1%}

dpe + o(e).
KA < NaKﬁH(y),NSK(y) > /’LdKﬂH(y) ( )

We verify the latter equality. First observe that for y € 0K N H the “height”
is <y —z,& > tane. This follows from the following two graphics.

Fig. 2.4.1

H

<y—ux,§>tane
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A surface element at y equals, up to an error of order o(e), the product
of a volume element at y in K N H and the length of the tangential line
segment between H and H at y. The length of this tangential line segment
is, up to an error of order o(e),

<y—x,&>tane
< Noxnu(y), Nox (y) >

q

<y—x,&>tane

Nornu(y)

Fig. 2.4.3

Therefore,

OS/ <y-—uz,&> f(y)tane
P)

d + o(e).

We divide both sides by € and pass to the limit for € to 0. Thus we get for all

3
<y—=z,8> f(y)
0= /almH < Noxnnu(y), Nox (y) >d“3K”H(y)'

Since this inequality holds for £ as well as —£ we get for all £

= <y-a.8>f(y)
0= /8KnH < Noknu(y), Nox (y) >dN8KmH(y)
or
= (y—2)f(y) >
. </8Km[—] < Noxnu (), Nox (y) >dM6KmH(y),£ .
Therefore,

yf(y)duornm(y)
= OKNH <Noknu(y),Nox (y)>

- | f(y)dpornm(y)
OKNH <Narnu(y),Nox (y)>
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(ii) Suppose that K is not strictly convex. Then 0K, contains a line-segment

[u,v]. Let z € (u,v). As K CK it follows from Lemma 2.2.(i) that there exists
a support-hyperplane H = H(z, Ng,(x)) of K, such that P;(OK NH™) = s.
Moreover, we have that u,v € H.

By (i)

f yf(y)dpoxnm (y)
_ JOKNH <Nsrgnu(y),Nox (y)>

- f f(y)dpornm(y)
OKNH <Naxnu(y),Nox (y)>

(iii) By Lemma 2.3.(ii) there is T" such that Kp has volume 0. Suppose that
K1 consists of more than one point. All these points are elements of the
boundary of K since the volume of Kp is 0. Therefore OK7 contains a
line-segment [u,v] and cannot be strictly convex, contradicting (ii).

The condition: For every x € 0K there is r(z) < oo such that K D
B (xz — r(z)Nak (x),r(x)), implies that K has everywhere unique normals.
This is equivalent to differentiability of 9K. By Corollary 25.5.1 of [Ro] 0K is
continuously differentiable. The remaining assertion of (iii) now follows from
Lemma 2.2.(ii). O

r=Uu="v

aKH “‘\

0K

Fig. 2.44

We have the following remarks.
(i) The assertion of Lemma 2.2.(i) is not true if x € 0K. As an example
consider the square S with sidelength 1 in R? and f(z) = i for all z € 0S. For
s = 1—16 the midpoints of the sides of the square are elements of Sy ,15, but the
tangent hyperplanes through these points contain one side and therefore cut
off a set of P¢-volume i (compare Figure 2.4.4). The construction in higher
dimensions for the cube is done in the same way. This example also shows
that the surface body is not necessarily strictly convex and it shows that the
assertion of Lemma 2.2.(ii) does not hold without additional assumptions.

(ii) If K is a symmetric convex body and f is symmetric (i.e. f(z) = f(—=x)
if the center of symmetry is 0), then the surface point z7 coincides with the
center of symmetry.
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If K is not symmetric then T < % is possible. An example for this is a
regular triangle C' in R2. If the sidelength is 1 and f = %, then T' = % and

C% consists of the barycenter of C.

(iii) In Lemma 2.4 we have shown that under certain assumptions the
surface body reduces to a point. In general this is not the case. We give an
example. Let K be the Euclidean ball By and

= Xc +X-c
2V01n_1(0)

where C'is a cap of the Euclidean ball with surface area equal to vol,_1(0B%).
Then we get that for all s with s < % that K contains a Euclidean ball with
positive radius. On the other hand K/, = 0.

2.2 Surface Body and the Indicatrix of Dupin

The indicatrix of Dupin was introduced in section 1.5.

Lemma 2.5. Let K be a convex body in R™ and let f : 0K — R be a a.e.
positive, integrable function with faK fdp = 1. Let g € OK. Suppose that
the indicatriz of Dupin exists at xo and is an ellipsoid (and not a cylinder).
For all s such that K, # (0, let the point x4 be defined by

{zs} = [xp, 20] N OK,.

Then for every € > 0 there is s, so that for all s with 0 < s < s, the points
x5 are interior points of K and for all normals Nok,(xs) (if not unique)

< NBK(5UO)>N8KS (fs) >>1—c¢€.

If 2 is an interior point of an (n — 1)-dimensional face, then, as in the
example of the cube, there is sp > 0 such that we have for all s with 0 < s < s¢
that xg € 0K,. Thus x5 = xg.

Proof. Let us first observe that for all s with 0 < s < T where T is given
by Lemma 2.3.(ii) the point z; is an interior point of K. First we observe
that xg # xr since the indicatrix of Dupin at xg is an ellipsoid. Again (see
Figure 2.5.1), since the indicatrix of Dupin at xg is an ellipsoid, (xr,x¢) is a
subset of the convex hull of a cap contained in K and zr. Thus (z7,x0) C Io( .
Lemma 2.1. (i) assures that

P¢(OK N H(xo — tNok (z0), Nox (20)))
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‘x

T
Fig. 2.5.1

is a continuous function on [0, maxyex < o — Y, Nox (o) >).
We claim now

V§ > 03ss > 0Vs,0 < s < s5 :< Nog(x0), Nok_(xs) >>1— 0.
Suppose that is not true. Then there is a sequence s,, n € N, such that

lim s, =0 lim Nak, (vs,)=¢&
n—oo n—oo

where & # Nyk (o). By Lemma 2.1.(iv) lim,, o 5, = 2o. Thus we get

lim s, =0 lim zs, =0 lim Nog, (zs,)=¢.

n—oo n—oo n—oo

Since the normal at z( is unique and £ # Nyx (zg) the hyperplane H(xq, &)
contains an interior point of K. There is y € K and a supporting hyperplane
H(y,&) to K at y that is parallel to H(xo,&). There is ¢ > 0 and ng such
that for all n with n > nyg

By (y,e) N H (xs,, Nok,, (2s,)) = 0.

Thus we get
B (y,€) N U K, =0.

no

n>
On the other hand, by Lemma 2.1.(iv) we have

U K. 2K .
>0

This is a contradiction. 0O

Lemma 2.6. Let A : R™ — R" be a diagonal matriz with a; > 0 for all
i=1,...,n. Then we have for all x,y € R™ with ||z|| = ||y =1
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H H <maX1<z<n az) ||x—y||
[z [yl ming<;<n a;

In particular we have
A A , N 2
< - LY > <2 (71112.“%@” a1> llz -y
[ Az || Ay]l mini<;<p @;

Proof. We have
14z — Ayl < (max ai)llz —y]

and
i - vl =l - v |+ [ -
[Az]| Ayl [Az] [ Ax] [Az] [ Ayl]
(maxicicn ai)llz —yll  [llAx] - ||Ay|H”AyH
- [ Az| [ Az[|]| Ayl
(maxi<i<n @) ||z — ||
- [Az]|
Since ||z]| = 1 we have ||Az| > minj<;<p |a;]||z]]. O

By Lemma 2.5 the normal to 0K, at x differs little from the normal to
K at x¢ if s is small. Lemma 2.7 is a strengthening of this result.

Lemma 2.7. Let K be a convezr body in R" and xo € OK. Let f : 0K — R
be an integrable, a.e. positive function with fBK fdu =1 that is continuous
at xg. Suppose that the indicatriz of Dupin exists at xo and is an ellipsoid
(and not a cylinder). For all s such that Ks # 0, let x5 be defined by {xs} =
[z, x0] N OK.

(i) Then for every e > 0 there is s so that for all s with 0 < s < s, the points
x5 are interior points of K and

s <P;(OK NH (x5, Nor(x0))) < (1 + €)s.

(i) Then for every e > 0 there is s so that for all s with 0 < s < s. and all
normals Nag_ (Ts) at xs

s <P(OK NH (x5, Nok,(zs))) < (1+¢€)s.

Proof. We position K so that zg = 0 and Nyg(xg) = en. Let b;, i =
1,...,n — 1 be the lenghts of the principal axes of the indicatrix of Dupin.
Then, by Lemma 1.2 and (3) the lengths of the principal axes of the standard
approximating ellipsoid £ at x( are given by
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1 2
n—1 n—1 n—1 n—1
ai:bi<Hbi> i=1,...,n—1 and an:<Hbi> .
i=1 i

We consider the transform 7 : R — R" (5)

2 2
n—1 n—1 n—1 n—1
7Y$):: 2% (IIZH> 7”'axn71 <IIZH> y L | - (W
i=1 i=1

Qp—1

This transforms the standard approximating ellipsoid into a Euclidean
ball with radius r = (H?;ll b;)?/("=V . T is a diagonal map with diagonal
Vo Van g

elements TERRRRR T
Let € > 0 be given. Let § > 0 be such that

(1+0)3
(1-06)(1 — c2)

3 < 1+e¢,
where
bi
max {maxlgign_l Vi 1}
2 .
i i . bi . 1
min Hnnkygn_lvﬁz,

As f is continuous at z( there exists a neighborhood BZ(zg,«) of z( such
that for all x € BY (xo,a) N OK

f(@o) (1=0) < f(x) < f(zo) (1+0). (8)

By Lemma 2.5, for all p > 0 there exists s(p) such that for all s with 0 < s <
s(p)

C =

< Nok(xo), Nok,(xs) >>1—p 9)

and the points =4 are interior points of K.

Therefore, for 6 > 0 given, it is possible to choose s(d) such that for all
s with 0 < s < s(0), Nok (o) and Npk, (xs) differ so little that both of the
following hold

OK N H™ (x5, Nok.(xs)) € By (20, @) (10)
and
< Nok(z0), Nog (z5) > >1—04. (11)

Indeed, in order to obtain (11) we have to choose p smaller than §. In order
to satisfy (10) we choose s(d) so small that the distance of =, to xg is less
than one half of the height of the biggest cap of K with center zy that is
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contained in the set K N BY(x, ). Now we choose p in (9) sufficiently small
so that (10) holds.

As the points x4 are interior points of K, by Lemma 2.2.(i), for all s with
0 < s < s(d) there is Ngg, (zs) such that

s =Ps(0K N H(xzs, Nok. (25))- (12)
Please note that

T~ (Nok, (xs))
[T~ (Nox. (5))|

is the normal of the hyperplane
T(H(zs, Nok, (xs)))-

We observe next that (9) implies that for all p > 0 there exists s(p) such that
for all s < s(p)

(13)

T~ (Nok, () 9
(Vo). sy ) 2 - (14

where T~ is the transpose of the inverse of T' and ¢ the constant above.
Indeed, since
< Nok (20), Nor, (vs) > > 1—p

we have

|Nox (z0) = Nox, (z:)|| < v/2p.
Now we apply Lemma 2.6 to the map 7. Since Npx(zo) = e, =
T~ (e,) = T~ (Nyx(z0)) we obtain with

by
max{maxj<ij<p—1 T 1}
c=2

. . b,
min{min;<;<p_1 T 1}

that

_ TY(Npk, () c
‘NaK(xo) T—lt(Naxs(-Ts))HHS v

which is the same as

T~ (Nox, (x5)) >
T (Nox, (z)ll /-

By Lemma 1.4, for § given there exists ¢; such that for all ¢t with ¢ < ¢;

1-c*p< <N3K(:L'0)

vol,—1 (K N H(zg —t Nok(x0), Nor (20)))
< vol, 1(0K N H™ (20 —t Nax(20), Nox (20))) (15)

2ta3
< (146)4/1 u
- ( + )\/ + (an — t)2 minlgign,l a?

XVOlnfl(K N H(l’o -t N(l’o),N(SL’o)))
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Recall that r is the radius of the approximating Euclidean ball for T'(K) at
xo = 0. For ¢ given, we choose n = n(d) such that

1—(1—c2§)nt
7 < min r(—C(S)Q, 0. (16)
14 (1—c2)»1

Then, for such an 7, by Lemma 1.2, there is t3 > 0 so that we have for all ¢
with 0 <t <ty

By (xo — (r —n)Nox (x0),r —n) NT(H(xo —t Nok(x0), Nox(x0)))

- T(K) N T(H(LL‘() —t N(')K(LU()), NaK(LL'())>) (17)

Q BS(ZL'O — (7" + T])NQK(I'()),T + 77) n T(H(l’o —t NBK(ZL'O),NQK(ZE()))).
Let to = min{tl,tg}.

By (14) we can choose s(n) such that for all s < s(n), Nox(xo) and the
normal to T(H (zs, Nok, (zs))) differ so little that both of the following hold

t(Na s( )) 2 2
<N6K(xo) T (Nox (2 ))”>21—c7721—05 (18)
and
min{y,|y = (y1,...,yn) € T(H (x5, Nok, (25))) (19)

NBy (w0 — (r — 1) Nok (z0),m — 1)} > —to.
Then we get by (17) for all s with 0 < s < s()

By (w0 — (r —n)Nok (z0),m —n) NT(H(zs, Nox, (v5)))
CT(K)NT(H(zs, Nox, (25))) (20)
C By (zo — (r +n)Nox (z0),r +n) N T(H(zs, Nox, (2)))-

The set on the left hand side of (20) is a (n — 1)-dimensional Euclidean ball
whose radius is greater or equal

20— mhs — 2 (21)

where hg is the distance of T'(z;) to the boundary of the Euclidean ball
By (xo — (r —n)Noxr (xo),r — n). See Figure 2.7.1. The height of the cap

KNH™ (zs, Nok (x0))
is denoted by Aj,. It is also the height of the cap
KNH (T(xs), Nok (x0))

because T does not change the last coordinate. Let 6 be the angle between
xo — T(xr) and Ny (xo). Then we have by the Pythagorean theorem
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((r—n) —hs)? = ((r—n) — Ay)* + (As tan )?

and consequently

2 2
he = (r —n) 1_\/<1_ As) +<M)
r—n r—mn

By (xo = (r=n)N(zo),r—1n)

xo and T'(x) are in the plane that can be seen in Figure 2.7.1. We use
now /1 —-t<1-— %t to get that

2

1 A
he > Ay — =—— (1 + tan26) . 22
>4, -5 T (1 an®) (22)

Now we prove (i). The inequality
s <Py(OK NH (x5, Nox (x0)))

holds because H passes through zs. We show the right hand inequality. Let
€,6 and 1 be as above. We choose s5 such that

1. ss < min {s(d),s(n) }

2. A,, < min {to, %” (r—n)

azs 4c%5(r —n)
"8 minj<i<(n_1) b’ (n—1)(1+ tan?6)’

B 1+(17025)%
2<T "1<1c26>n21>}'
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We have for all s < sg4
vol,—1 (0K N H™ (x5, Nog_(x5))) > vol,—1 (K N H(zs, Nok,(zs)))-

Now note that

Voln_l(pen (K N H(msa NBKS (xs))))
< Nok(wo), Nok, (xs) >

vol,_y (K N H(zy, Nok.(x5))) = (23)

> voly—1(pe, (K N H(zs, Nok.(zs)))) (24)

where p,, is the orthogonal projection onto the first n — 1 coordinates.

Fig. 2.7.2

Since T' o0 pe, = pe,, © T and since T' is volume preserving in hyperplanes
that are orthogonal to e, we get

vol,—1(0K N H™ (x5, Nor, (25)))
Zvoln-l(pen(T( ) NT(H(zs, Nok, (25))))

T~ "(Nox, (z5)) >
={( Nk (x vol, 1 (T(K)NT(H(zs, Nox.(xs))).
(Mo an). g e o3 ) ¥obaa(T(K) N T(H e, N, ()
The last equality follows from (13) and (23). By (18) we then get that the

latter is greater than or equal to
(1 —c*8) vol,—1(T(K) NT(H(xs, Nok, (25)))),

which, in turn, by (20) and (21) is greater than or equal to

n—1

(1 —c*8)vol,—1(By™Y) (2(r — n)hs — h2) 2

n—1
By (22) and as the function (2(r —n)A — A?) 2 is increasing in A for A <
r —n, the latter is greater or equal

n—1

(1- 025)V01n,1(3371) (1 — (2(7’—77)) ) (2<7' —n)As — Ag)%
(25)
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_ (1+tan®60)A, ) n—l
2(r—mn) =

In the last inequality we have also used that (1

As < % implies that

2 ot 2\ T
1_% >(1- 2c 5 > 1 — c26.
2(r—mn) n—1

2
Ay <2 (T — n%) implies that
1—(1—c26)n—1

2r —n) —2(r +n)(1 — 25)m1 > Ay(1— (1 — c25)71)
which is equivalent to
20r=n) = A)) > (1= 26)77 (2(r +1) — A,)
and _— n1
20r—mAs—42) 7 > (1-c%0) (2(r+m)As — 42)

Hence we get for all s < s5 that (25) is greater than

(1—c?6)3vol,—1(By 1) (2(r +n)A, — A2) =
= (1 —c*8)3vol,,_1 (B (xg — (r +n)Nox (x0),r + 1)
NH(xo — AsNox (z0), Nok (x0)))
= (1 —c®0)3vol,_1(BY(zo — (r 4+ 1) Nax (x0),7 + 1)
N T(H(xg — AsNox (x0), Nok (70)))),

as T does not change the last coordinate. By (17) the latter is greater than

(1 —c?6)3vol,,_1(T(K)NT(H(zo — AsNox (20), Nax (x0)))
= (1 —c?0)3vol,_1 (K N H(zg — AsNog (20), Nax (0)))
(1 —c26)3 VOlnfl(aK NH™ (.T() — ASNaK(mo), NSK(‘TO)))

=14, 2
(1 + 2Asa3 )2
(an—As)2 miny<i<(n—1) a3
(1 —c26)?
> 73V01n 1(8[( N H (SL’() — AsNﬁK(-rO),NSK(:L‘O)))-
(1+6)2
The second last inequality follows with (15) and the last inequality follows
aié
as As < 8 minj<i<(n_1)bi’
Therefore we get altogether that

vol,—1 (0K N H™ (x5, Nok,(zs))) (26)
- ( 25)3

119 ~————vol, 1(OK N H™ (zg — AsNok (z0), Nok (x0)))-
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Hence, by (12)

s=BOK NI o Now )= [ e
By (8)
s> (1=90)f(xo)vol,—1 (0K N H™ (xs, Nok, (s)))-
By (26)

L (1-9a —3025)3
(1+4)2

By (8) and (10)

f(wo)vol,—1 (0K N H™ (v0 — AsNok (o), Nok (70))))-

(1—106)(1—c%)3 /
(1+4)3 OKNH~ (0~ A, Nox (20), Nok (20))
1—6)(1—c29)3
_ (1)1 Y ) Pr(OK N H™(x0 — AsNox (20), Nox (20))))-

5 > f(z)dp

For e given, we choose now s. = s5. By our choice of ¢, this finishes (i).
(ii) We assume that the assertion is not true. Then
Jde > OVse > 03s,0 < s < s.INog, (xs) : Pr(OKNH (x4, Nok, (x5))) > (1+€)s.

We consider y; € H(zs, Nok, (x5)) such that T(ys) is the center of the n — 1-
dimensional Euclidean ball

By (xo — (r —n)N(xo),r —n) NT(H(zs, Nok, ().

Since ys € H(xs, Nok.(zs)) we have y, ¢[O(S Consequently, by the definition
of K there is a hyperplane H such that y, € H and Py(0K N H™) <.

On the other hand, we shall show that for all hyperplanes H with ys € H
we have P;(OK N H™) > s which gives a contradiction.

We choose ¢ as in the proof of (i) and moreover so small that e > 106 and
ss small enough so that the two following estimates hold.

(1+e€)s <Pp(OK NH (z5, Nok._(25)))
< (14 8) f(zo)vol,_1 (OK N H™ (x4, Nok,(z5)))

We verify this. As f is continuous at xg, for all > 0 there exists « such that
for all z € By (zg,a) N OK

(1=06)f(wo) < f(x) < (146)f (o).

By Lemma 2.5, for all p > 0 there is s, such that for all s with 0 <s <5,
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< NGK(CCO),NGK (ng) >>1—p.

Moreover, the indicatrix at zg exists and is an ellipsoid. Therefore we can
choose s, sufficiently small so that for all s with 0 < s <s,

OK N H™ (x5, Nok.(zs)) C By (20, ).

Thus there is ss5 such that for all s with 0 < s < s5

POK N H G N e = [ )
< (1 + 5)f($0)V01n—1(aK N Hﬁ(xsa N[‘)Ks (.136)))

Thus
(I14+€)s<(1+46)f(xzo)vol,—1(O0K N H™ (x5, Nok,(xs))).

Since the indicatrix at xo exists and is an ellipsoid for all p there is s, such
that for all x € 0K N H™ (25, Nok, (5))

< Nog(x), Nok, (zs) > >1—p.
Therefore
(I14+¢€)s < (14 20)f(zg)vol,—1(K N H(xs, Nog,(x5)))
which by (23) equals

volp—1 (e, (K N H(xs, Nox,(s)))) ]

(1 +20) f(x0) < Nox (z0), Nox. (z5) >

By Lemma 2.5 for all s with 0 < s < s4
(14 €)s < (1+38)f(x0)voln_1(pe, (K N H(xs, Nok, (5))))-

Since T o pe, = pe, o1 and since T is volume preserving in hyperplanes that
are orthogonal to e, we get

(I+€)s < (1+30)f(zo)voly—1(pe, (T(K)NT(H(zs, Nok,(zs)))))-
Since

T(K)NT(H(zs, Nok, (25))))
C By (xo — (r+n)Nox (o), +n) N T(H (s, Nok, (25))))

we get

(1+¢)s
< (14 36) f(w0)vol—1(pe, (B (w0 — (r +n) N (z0), 7 + 1))
NT(H(zs, Nox,(2s))))
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and thus
(I+¢€)s

< (14 46) f (20)vol1(pe, (B (w0 — (r — n)Nok (z0), 7 — 1)
NT(H (., Nox, (25))))).

Since T'(ys) is the center of
B3 (o — (r = n)Nok (w0),r —n) N T(H(2s, Nox, (25))))
we have for all hyperplanes H with ys € H

(1+¢)s
< (1 +49) f(zo)volp—1(pe, (By (x0 — (r — n)Nok (xo),r —n) NT(H)).

Thus we get for all hyperplanes H with ys € H and
B3 (xo — (r — n)Nok (x0),r —n) NT(H) CT(K)NT(H)

that
(14+€)s<(1+55)P;(OKNH™).

Please note that € > 105. We can choose ss so small that we have for all s
with 0 < s < s5 and all hyperplanes H with y; € H and

By (xo = (r —n)Nox (zo),r —n) NT(H) £ T(K) N T(H)

that
s < Pf(aK n H_).

Thus we have s < P;(0K N H™) for all H which is a contradiction. O

Lemma 2.8. Let K be a convex body in R™ and xg € K. Suppose that the
indicatriz of Dupin at xq exists and is an ellipsoid. Let f : 0K — R be a a.e.
positive, integrable function with [ fdu =1 that is continuous at zo. Let £ be
the standard approximating ellipsoid at xy. For 0 < s < T let x4 be given by

{zs} = [zr, xo] N 0K
and T, by
{2} = H(zs, Nok. (x5)) N {zo + tNag (o)t € R}.
The map @ : 0K N H(zs, Nok.(zs)) — 0E N H(xs, Nok_(xs)) is defined by

{2(y)} = 0E N {zs +t(y — xs)t > 0}
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Then, for every € > 0 there is se such that we have for all s with 0 < s < s,
and all z € 06 N H(xs, Nog_(x5))

1 1

\/1— < Nag(Z),NaKS (Ié) >2 a \/1— < NaK(Q)_l(Z)),NaKS (l‘s) >2

< .
\/1— < Nag(Z),NaKS(CL'S) >2

Proof. During this proof several times we choose the number s, sufficiently
small in order to assure certain properties. Overall, we take the minimum of
all these numbers.

Note that Z, € K and by Lemma 2.7.(i) x, is an interior point of K for s
with 0 < s < s.. Therefore the angles between any of the normals are strictly
larger than 0 and the expressions are well-defined.

Let z5 be given by

{zs} = {zo + tNok (zo)|t € R} N H(zs, Nox (x0)).

)

Fig. 2.8.1

In Figure 2.8.1 we see the plane through zy spanned by Nyx(zg) and
Nok,(zs). The point x5 is not necessarily in this plane, but z; is. The
point z, is contained in the intersection of the planes H(xs, Nok, (xs)) and
H(xzs, Nok(z0)).

As in the proof of Lemma 2.7 let b;, i = 1,...,n — 1 be the lenghts of the
principal axes of the indicatrix of Dupin. Then, by Lemma 1.2 and by (3)
in the standard approximating ellipsoid £ at x( the lengths of the principal
axes are given by

1 2
n—1 n—1 n—1 n—1
ai:bi<Hbi> i=1,...,n—1 and an:<Hbi> )
i=1 =1
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We can assume that zo = 0 and Ngk (z¢) = e,. The standard approximating
ellipsoid £ is centered at x¢ — a, Nok (zo) and given by

n—1

D

i=1

2
Li x_”_|_1
(429

+

2
<

a;

We consider the transform 7" : R" — R"

2 2
n—1 n—1 n—1 n—1
T Tp—
T(z) = ai(Hb) Lot <Hb> T
i=1

Un—1 \j2)

See (5) and (7). This transforms the ellipsoid into a Euclidean sphere with
2
radius p = (Hf;ll bZ-) e
T(E) = BY ((0,...,0,—p),p).

Let § > 0 be given. Then there exists s5 such that for all s with 0 < s < s5
and all normals Npk_(zs) at zs (the normal may not be unique)

F(o0) volo_y(T(€) N T(H(z,, Nox. (x,))) < (1+8)s.  (27)
Indeed, by Lemma 2.7.(ii) we have
P (0K N H™ (x5, Nk, (z5))) < (14 6)s.
Now
(1+8)s > PpOK NH (v, Nox, (z2)))

f(z)dpar (x).

/¢9K0H(rs,NaKs (zs))
By continuity of f at xg

(146)%s > f(xo)vol,_1(OK N H™ (x4, Nog, (25)))
> f(xo)vol,—1 (K N H(xs, Nok,(x5))).

We have Ngk (xo) = e,. By (23) we see that the latter equals

VOln_l(pen (K N H(xs,NSKs (l‘s))))
< Nok (20), Nox, (xs) > '

f(@o)

Since < NaK(Io),NaKS (Q?s) ><1
(146)%s > f(xo)voly_1(pe, (K N H(xs, Nok,(x5)))).

Since T is volume preserving in all hyperplanes orthogonal to Nyx (z0)
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(1+48)%s > f(wo)voly—1(T(pe, (K N H(zs, Nox, (25))))).

Since T' o pe, = pe, 0T

(1+5)28Zf(wo)volnfl(pen(T( T(H(zo, Nox. (@)
o ) (Vo (@)
= f(w) <N‘“’K( D <xs>>||>

xvol,_1(T(K)NT(H (xzs, Nok,(x5))))-

The latter equality follows since e,, = Nax(xo). As in the proof of Lemma
2.7. (i) we get

(14 6)3s > f(zo)vol,_1(T(K)NT(H(zs, Nok. (5)))).

S .

7) ¢ mg— PN (o)
Fig. 2.8.2

T(E) approximates T(K) well as £ approximates K well. By Lemma 2.5
we have < Npg(x0), Nok,(xs) >> 1 — 4. This and Lemma 1.2 give

(1+8)*s > f(zo)vol,_1(T(E) NT(H(xs, Nok. (25)))).

Now we pass to a new 0 and establish (27).
Zs is the point where the plane H(xs, Nok,(xs)) and the line through zg
with direction Nyg (z0) intersect.

{#s} = H(zs, Nox, (x5)) N {zo + tNok (x0)|t € R}

In Figure 2.8.2 we see the plane through x( spanned by the vectors Nyx (xq)
and T~ (Npg.(x,)). The point z, is also contained in this plane. The line
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through zo, T'(zs), and T(zr) is not necessarily in this plane. We see only

its projection onto this plane. Also the angle # is not necessarily measured in

this plane. 6 is measured in the plane spanned by Nyk (z¢) and g — T'(z7).
« is the angle between the hyperplanes

T(H(zs, Nok(xs))) and H(zs, Nok(20))-
Please observe that T, = T(Zs), zs = T'(zs) and that the plane
T(H (x5, Nok, (x5)))

is orthogonal to T~ (Npg ., (x)).
We observe that for small enough s5 we have for s with 0 < s < s5

[xo — Zsll = (1 = 6)[lwo — 2]l (28)
which is the same as
[zo = T(Zs)ll = (1 = ) [|zo — 2]|-
We check the inequality. Figure 2.8.2 gives us that
|Zs — zs|| < tanftan al|zg — 24|

We would have equality here if the angle § would be contained in the plane
that is seen in Figure 2.8.2. The angle 6 is fixed, but we can make sure that
the angle « is arbitrarily small. By Lemma 2.5 it is enough to choose ss
sufficiently small. Thus (28) is established.

By Figure 2.8.2 the radius of the n — 1-dimensional ball

By (zo — pNox (z0), p) N T(H (x5, Nox, (v5)))

with p = <H?;11 bi) Tt equals

V2 = (p = llzo — z5])? cos? &
which by (28) is greater than or equal to

V? = (p— (1= d)llzo — z[)? cos?

- \/p2 —(p— (1= )0 — =])? <N3K<wo>

T-"(Nog, (x5)) >
T (Nowe, (z )/

By (27) we get with a new §

[pz = (p— (1= 8)llwo — 2l1)? <N3K(xo)

xvol,_1(By™1)

T~ (Np, (s)) > :
T (Nox, (zs))]]

s

< vol, 1(T(E) N H(T(xs), T~ (Nak.(5)))) <




Random Polytopes 287
On the other hand,
s <Pp(OK NH (x5, Nox(x0))) =Pr(0K NH (zs, Nox (x0)))
f(z)dp(z).

/BKﬂH(zS,NaK(xo))
Now we use the continuity of f at xg and Lemma 1.4 to estimate the latter.
s < (14 6)f(wo)vol,—1(K N H(zs, Nok (20)))

As above we use that T' is volume-preserving in hyperplanes orthogonal to
Nok (xg). Note that T(H (zs, Nox (z0))) = H(zs, Nox (x0)).

5 < (14 6) f(wo)volu—1(T(K) N H (2, Nox (0)))
Since T'(€) approximates T'(K) well (Lemma 1.2)

s < (14 6)2f(xo)vol,_1(T(E) N H(zs, Nog (x0)))-
Therefore (29) is less than

(1 +96)3vol,,_1(T(£) N H(zs, Nox (20)))
= (1+8)(p* — (p — [lzo — 2s])) "= vol,—1 (By~Y)
= (1+6)*2pllzo — 25|l — llzo — 251%)“F vol,—1 (BE™Y).

From this we get

—1t Te ?
0% — (p— (1= 8)||lzo — 2s|)? <N8K(”30)’ |§1tg2? Exjiﬂ >

_6
< (1+6)77 (2pllwo — 2]l = llzo — 2|)

which gives us

—1t x 2
(p— (1= 8120 — 2])? (1—<Naf<<xo> e 3))||>>

T (Nox, (w5))

_6
< (148)77(2p)lzo — 2l — o — 2[1%)
=2(1 = 8)pllzo — 2ol + (1 = 6)*[lzo — 2%

This is less than cdpl|zg — zs|| where ¢ is a numerical constant. Thus we have

T~ (Noxe, () \* _ s pllro = 2
1/ =

1= <N8K(m0)’ [T (Nox. () (0= llzo =z [l}*
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B3 (w0 = (p + )N, 1 (%0). p+1)

(20)

w0 = PNy

Fig. 2.8.3

If we choose sg sufficiently small we get for all s with 0 < s < s5

_ x T (Nox, () \* xo— 2
(Nor o) syl ) <dllea =l (30

This is equivalent to

T~ (Nok,(zs))
1—(N s <6 — Zs 31
< 8K(330>7 ||T71t(N8KS(5Us))|| — on Z” ( )
which is the same as
T*lt
[Norteo) - o] < Vom =l G

Now we show that for every € > 0 there is s, such that we have for all s with
0<s<s

INoxc (271(2)) — Noe (2)| < ev/llzo — z]l- (33)

By Lemma 2.6 it is enough to show
1t NBK [ 1(2;))) T*lt(Nag(Z)) H
o < eV ||To — 2s|-
HIIT E(Norc @) T (Noe(a)] || < V170~ =l

T transforms the approximating ellipsoid £ into the Euclidean ball T'(€) =
By (xo — pNok (x0), p). We have

T~ (Nok (¢71(2)))
[T~ (Nor (21(2)))l

Nork (T(®'(2))) =

and
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TN (Npe(2)
[T~ (Noe (2))]l
Therefore, the above inequality is equivalent to

INor s (T(®(2))) = Nore (T(2))]| < e/]lao — 2]

T(z) and T(®~1(z))) are elements of the hyperplane T(H (xs, Nox, (7))
that is orthogonal to T~ (Npk._ (xs)). We want to verify now this inequality.
It follows from Lemma 1.2 that for every n there is a ¢ so that

Nore(T(2))

B3 (zo — (p —n)Nox (z0),p —n) N H™ (20 — dNox (o), Nox (70))
- T(K) NH™ (xo — 6N3K($0), NaK(.Z‘())) (34)
C By(zo — (p+n)Nax (20), p+ 1) N H™ (z0 — INox (z0), Nor (20))-

For s, sufficiently small we get for all s with 0 < s <5,

T(H™ (s, Nok, (2s))) N By (x0 — (p+ 1) Nok (x0), p + 1)
C H™ (w0 — 2|z — 2s]|Nox (o), Nox (20)) (35)
NBy (ro — (p +n)Nox (wo), p + 1)

We verify this. By (30) the angle 8 between the vectors

T~ (Nok, (xs))
[T~ (Nox, ()]l

satisfies sin? § < 6||zg — 2| In case (35) does not hold we have

tan g > 1Tzl
4 p+mn

Nok (o) and

Zo

""""""""""""""""""""""""""""""" T H(wo — ||wo — 2| Nok (w0), Nok (%0))

T(H(zs, Nok, (z5))) H(xzo = 2||zo — 25| Nox (x0), Nox (20))
Fig. 2.84

This is true since T(H(xs, Nok,(xs))) intersects the two hyperplanes
H(l‘o—”l‘o—zs ||N3K(.’Eo), NaK(l‘())) and H(xo—QH.’L‘()—ZSHNaK(l‘Q), NaK(.’L‘Q)).
Compare Figure 2.8.4. This is impossible if we choose ¢ sufficiently small.

Let s, be such that (35) holds. The distance of T($7'(z))) to the bound-

4n

ary of By (o — (p — n)Nox (w0), p — 1) is less than = |lzo — 2s[|. We check
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this. T(®71(2))) is contained in BY(xg — (p + 1n)Naox (7o), p + 1) but not in
By (xo — (p —n)Naox (xo), p — n). See Figure 2.8.5.

Zo

By (zo— (p+1) (z0),p+n)

N
0K

20— (p =N 1 (%0) By (wg— (p—77)N0K(130)-,p—77)
Fig. 2.8.5

Let t,, denote the n-th coordinate of T(®~1(z))). By Figure 2.8.5 we get

[(zo — (p — n)Nox (z0)) — ylI?
=(p—n—[ta])* + Qltnl(p+n) — )
= (p—n)* + dnltn|.

Thus the distance of T(®~%(z))) to the boundary of
By (xo — (p—n)Nok (o), p — 1)

is less than

[(zo — (p = n)Nox (z0)) =yl — (p —n)
=/ (p—n)?+4nltn| — (p — 1)

o An|tn| _
= n){\/H(pn)2 1}

2nlta| _ 2nlta|
S(p_’r]) "2: n'
(p—m?* p—n

By (35) we have |t,| < 2||zg — #5||. Thus we get

Anllzo — 2|l

[(zo = (p = n)Nox (20)) —yll — (p—n) < p—

Thus the distance of T(®71(2))) to the boundary of
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By (o — (p — n)Nox (w0), p — 1)
is less than

4n
p=n

llzo — 2s]|- (36)

By (34)
By (xo — (p = n)Nok (x0), p —n) N H™ (x0 — 0Nak (x0), Nox (x0))
CT(K)NH (zo — dNak(x0), Nox (z0)).
Therefore a supporting hyperplane of 9T (K) at T($~1(z))) cannot intersect
By (xo — (p—n)Nok (x0), p —n) N H™ (20 — Nox (x0), Nox (x0))-

Therefore, if we choose s, small enough a supporting hyperplane of 0T (K)
at T(®1(2))) cannot intersect

By (w0 — (p — n)Nok (20),p — 1)

We consider now a supporting hyperplane of B (zo — (p —n)Nox (x0),p — 1)
that is parallel to T(H(®~1(z), Norx (97 1(2)))). Let w be the contact point
of this supporting hyperplane and B (xo — (p — n)Naox (x0),p — n).

H(T(® !(2)), Nox (T(®1(2))))

(o)

I,ﬂ'b‘o* (p—n)
Fig. 2.8.6

N,
0K

Thus the hyperplane is H(w, Nox (71(2)))) and
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NoBg (s0—(p=n)Nox (a0).p—n) () = Norx (T(27(2))). (37)
We introduce two points v € B (xo — (p — 1) Nax (xo), p — 1) and u.

_ T(@1(2))) — (20 — (p— 1) Nox (x0)
v=1x9— (p—n)Nox(xo) + (p— 1) IT(2-1(2))) — (932 P W)NZ§(IE))

{u} = [z0 — (p = n)Nor (20), T(@~(2))] N H(w, T~ (Nox (27(2))))
We claim that

lw = ull < ev/llzo = 2.

We check this inequality. By the Pythagorean theorem (see Figure 2.8.6)

lw —ull = Vlu — (z0 — (p — ) Nox (20)) > — (p — 0)2.

By (36) the distance ||T(®~1(z))) — v|| of T(®71(2))) to the boundary of
B2 (xo — (p — 1) Nak (zg),p — 1) is less than p{—"on — zs|. Since |Jv —u|| <

|lv —T(71(2)))| we get with e = p‘l_—"n

lw —ull < V/(p—n+elzo - 2zl)2 = (0 —m)?
<V 2epllwo — zs])) + (ellzo — 21)2

This implies
[w —ul] < ey/l[zo — 2]

and also
[w =] < ev/llzo — 2.
Since
N(w) = Nopg(wo—(p—n)Nox (w0),p—n) (W)
N(v) = Nopg (z0—(p—n)Nox (z0).p—n) (V)
we get

ool _ Tzl
pP—n pP—n
Since N(w) = Nog (T(P71(2)))) we get

IN(w) = N(v)|| =

INorx)(T(@(2)))) — N(v)|| <€

We observe that

€
o =T < p 2o — 2.

This is done as above. Both points are located between the two Euclidean
balls By (zo — (p — n)Nox (z0), p —n) and B3 (zo — (p + 1) Nox (o), p + ).
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The line passing through both points also intersects both balls and thus the

distance between both points must be smaller than £ /[|zo — 2s||.

From this we conclude in the same way as we have done for N(v) and
Nox (T(P71(2)))) that we have with a new ¢

[N (v) = Nore(T(2))|| <

Vllzo = 2.

N K

Therefore we get by triangle inequality
_ €
[Norx (T(27(2)))) — Nore(T(2))|| < p [0 — 2|l

and thus finally the claimed inequality (33) with a new e

[Now (D71 (2)) — Noe(2)[| < ey/[|lzo — 2|
Now we show
1- < NaK(@*l(z)),NaKs (zs) >2 > cllzo — 2| (38)

For all s with 0 < s < s, the distance of T'(x;) to the boundary of TE =
By (xo — pNox (x0), p) is larger than c||zg — zs||. Thus the height of the cap

TENH™ (zs, Nok,(5))

is larger than c||zg—zs||. The radius of the cap is greater than \/2cpl||zo — 2]|-
By Figure 2.8.2 there is a ¢ such that we have for all s with 0 < s <,

IT(2s) = woll < ¢llwo — zll-

By triangle inequality we get with a new ¢

|zo — T'(2)[| = ev/pllo — zs]|-
We have
Nore(T(2)) = 5 (T(2)) — (x0 — pNox (20)))-
We get
eV pllzo — 2zl < llzo — T(2)||
= [|[pNok (z0) — (T'(2) — (z0 — pNox (70)))) |l
= pl|Nox (z0) — Nore(T(2))||-

Since T'(Nox (x0))) = Nax (xo) we get by Lemma 2.6 with a new ¢

cv/ 1z — zsll < | Nok (z0) — Nog(2))]-

We have by (32) and Lemma 2.6
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INox (z0) = Nox., ()l < 6v/[lzo — zl|- (39)

Now we get by triangle inequality

eV llwo — 25| < [[Noxk, (2s) — Nog(2))]-

By (33) and triangle inequality we get

e/ llwo = 2l < [Nok., (25) = Nog (@71 (2))]|-

Therefore we get with a new constant ¢

—
—~
IS
~
N
\%

cllzo — 25|l <1— < Noxk, (2s), Nox (P~
<1- < Nak, (zs), Nox (P~

—
—~
N
~
~
vV
(V]

We have

| < Nok(7'(2)), Nok, (xs) >* — < Nog(2), Nox, (x5) >* |
= | < Nag (P 1(2)) + Nae(2), Nok. (x) > x
< Nog (®7'(2)) — Nog(2), Nok, (25) > |
< 2[ < Nok (971(2)) — Nog(2), Nox, (z5) > |
< 2| < Nox (9 1(2)) — Noe(2), Noxk, (x5) — Nog(2) > |
+2| < N(')K(@_l(z)) — Nag(Z),Nag(Z) > |
< 2||Nok (@71 (2)) — Noe(2)|| | Nok, (zs) — Noe(2)||
+2|1— < Nog (97 1(2)), Noe(2) > |.

By (33)
[Now (271(2)) = Nog(2)|| < e/[lzo — 2

which is the same as

1— < Nog (D7 1(2)), Noe(2) > < 22|z — 2]

We get
| < NaK(@_l(z)),NaKs (xs) >2 < Nos(z), Nok, (xs) >2 | (40)
< 2ev/|lo — z|| [ Nox. (25) = Nog(2)| + €*[lx0 — 2s]-
We show

[Nk, (2s) — Nog(2)]| < ev/[lzo — 2s]l- (41)

By (35) we have

INork, (Txs) = Nore (T2)|| < ev/||zo — 2.
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(41) follows now from this and Lemma 2.6. (40) and (41) give now

| < Nok(®7'(2)), Nok., (x5) >* — < Noe(2), Nok, (x5) > |
<26/ |lzo — zs )|V lwo — 2|l + € [|lwo — 2] < 3e||lawo — 2]

With this we get

1 1
'\/1— < NBE(Z),NBKS(-TS) >2 a \/1— < N@K(Qs_l(z)),NaKS(LES) >2
) \\/1— < Nox(@1(2)), Nox. () 5% — /1 < Noe (2), Nox. (@3) >2‘
/1= < Nog(2), Nok. (x5) >2/1— < Nog (@~ 1(2)), Nok, (x5) >2
|< NaK(Spfl(Z)),NaKS (l‘g) >2 - < Nag(Z),NaKS (3:8) >2|
- \/17 < Nag(2), Nok.(xs) >2 (1— < Nogg (P~1(2)), Nok. (zs) >2)

< 1 3e||lxo — zs||
/1= < Npg(2), Nok. () >2 (1= < Nox (P71(2)), Nok, (5) >2)

By (38) we have that 1— < Ny (®71(2)), Nak, (rs) >2> c||xg — 25|. There-
fore we get

1 1
\/1— < Nag(z),NaKS (.’L‘S) >2 \/1— < NaK(é_l(Z))vNaKs (xS) >2
€
S .
cy/1— < Noe(2), Nok, (z5) >2

Lemma 2.9. Let K be a convex body in R™ and xg € OK. Suppose that the
indicatriz of Dupin at xq exists and is an ellipsoid. Let f : 0K — R be a
integrable, a.e. positive function with ffdp =1 that is continuous at xg. Let
Zs and @ be as given in Lemma 2.8 and zs as given in the proof of Lemma
2.8.

(i) For every € there is s. so that we have for all s with 0 < s < s,

(1—¢) sup | < Nog(z0),y — 20 > |
YEOKNH (2., Nox, ()
<llwo — 2|
<(l+e¢) inf | < Nok(xo),y —xo > |-

yE€OKNH (zs,Nok, (Ts))

(ii) For every e there is s, so that we have for all s with 0 < s < s. and all
z € O N H(xg, Nok,(x0))
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(1—€) < Nognm (@ (2)),z — s >
< < Noenn(2),2 — x5 >
< (14€) < Nognu (P (2))), 2 — zs >

where H = H(xzs, Nok,(xs)) and the normals are taken in the plane H.
(iii) Let ¢ : OK N H — R be the real valued, positive function such that

D(y) = Ts + oY) (y — Ts).

For every e there is se such that we have for all s with 0 < s < s, and all
y € 0K N H(xs,NaKs(a:s))

l—e<o(y) <1l+e

Proof. We may suppose that o = 0 and Nyg (zg) = e,.
(i) We put

- inf <N —x0 > |.
ms yeamH(;r:’NaKS(ws))l o (20),y — o > |

We show now the right hand inequality. Let p be strictly greater than all the
lengths of the principal axes of the standard approximating ellipsoid £. Then
there isn > 0

ENH(zo —nNox (20), Nox (z0))
- Bg(xo — pNaK(xo), ,0) N H(JEO - UNBK(xO)a NBK(xO))'

Let a; denote the angle between Nyg (x0) and Nyg, (z5). Recall that in the
proof of Lemma 2.8 we put

{Zs} = {.%'0 + tNaK(Io)ﬁ S R} n H(CL‘S7 NBK(-TO))-

Then we have

tan o, > lzo — 2s]| — ms
cllzo = zsll + /02 = (p — w0 — 2])?
w0 — zs|| — ms
= cllwo = zs] + v/20llwo — 2]l — [lwo — 2]
lzo — 2s]| — ms

> .
cllwo — 2sll + v/2pllwo — 2|l

To see this consult Figure 2.9.1. In Figure 2.9.1 we see the plane through zq
that is spanned by Ngx(zo) and Nyg, (zs). The point x4 is not necessarily
in this plane.
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zo

L H(-/L'57N3K,g(x$))
By (x0—pNok (x0),p) .-

Fig. 2.0.1

On the other hand, by (39)
sin? ay = 1— < Nag (20), Nok, (xs) >2< ||z — 2|
which implies for sufficiently small e

tan ag < \/2€||zg — 25|

Altogether we get

V2|70 — 2] > o — 25l — ms
cllzo — 2|l + v/2pllz0 — 2|

and thus

(C\/2_€+4\/§)on = 2|l > [lwo — 2s]| — ms.

Finally we get with a new constant ¢

(1 —2¢v/e)|lmo — 25| < ms.
The left hand inequality is proved similarly.
(ii) By (i) we have for all s with 0 < s < s,
0K N H_(LL'S + EHJJO — stNBK(-TO)7 NaK(.%‘Q))
COKNH (x4, Nok,(xs))
COKNH (x5 —€|lwo — 2s||Nox (z0), Nox (x0))-

PNy (zo) 18 the orthogonal projection onto the subspace orthogonal to Nox (o).
From this we get

PN (wo) (K N H (74 + €l|xo — 25| Nox (20), Nox (70)))

g pN3K($0)(K ﬂ H(‘r37 N(’)Ks (xs)))
C PNos (wo) (K N H (x5 — €llzo — 25]| Nok (z0), Nok (z0)))-
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Let D be the indicatrix of Dupin at zy. By Lemma 1.1 for every € there is t.
so that for all ¢t with 0 < ¢t < ¢,

(1-¢DC \/LﬂpNak(mo)(K N H(zo — tNok (z0), Nox (20))) € (1 +¢€)D.

By choosing a proper s, we get for all s with 0 < s < s,

(1—DC !

V2w — 2|

We get the same inclusions for £ instead of K.

PNos (wo) (K N H (25, Nok, (25))) € (1 +€)D. (42)

1
(1-e)DC mp]\fas(fbo)(g NH(zs, Nok,(x5))) € (1+€)D  (43)
0= s

Consider now y € 0K N H (x5, Nok,(zs)) and @(y). Since

there is A > 0 so that

pNa;((:vo)(y) = )\pNa;((Io)(gp(y))
By (42) and (43) we get with a new s,

”NpNaK(zO)(aKﬁH)(pNax(xo)(y)) - NPNGK(IO)(afﬁH)(pNaK(xo)(@(y)))” <€

where H = H(xs, Nok,(xs)) and the normals are taken in the subspace
of the first n — 1 coordinates. The projection py,, (z,) 18 an isomorphism
between R"~! and H(x,, Nox. (s)). The norm of this isomorphism equals 1
and the norm of its inverse is less than 1+ € if we choose s, sufficiently small.
Therefore, if we choose a new s. we get for all s with 0 < s < s,

|Noxnu(y) — Noenm (P(y))| < e.

(iii) follows from (42) and (43) and from the fact that the projection py, . (z,)
is an isomorphism between R"~! and H(zs, Npg. (7)) whose norm equals
1 and the norm of its inverse is less than 1 + €. Indeed, the norm of the
inverse depends only on the angle between R™ and H(zs, Nok.(zs)). The
angle between these two planes will be as small as we wish if we choose s,
small enough. O

Lemma 2.10. (i) Let K be a convex body in R"™ and x¢ € OK. Suppose that
the indicatriz of Dupin at x¢ exists and is an ellipsoid. Let f : 0K — R be a
integrable, a.e. positive function with [ fdu = 1. Suppose that f is continuous
at xg and f(xg) > 0. Let zs and ® as given by Lemma 2.8 and let z be given
as in the proof of Lemma 2.8 by
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{zs} = {0 + tNox (z0)|t € R} N H(xs, Nok (x0))-

For every xy € 0K and every € > 0 there is s so that we have for all s with
0<s<se

/ /) dMaKmH( N( ))(Z/)
OKNH (2..Nox, (2.)) V1= < Nox (y), Nox, (z5) >2 T
@)
- dMas H(xs,N(z (Z)
/E)SOH(ZS,NBK(mO)) V1= < Nag(2), Nox (z9) >2 P we N o))
f(@71(2))

<e

< dioent (z, N (2).
/i)SmH(zé7N@K(wo)) \/17 > Nag(Z),NaK(Io) 2 NH(xs,Nak (x0))

(ii) Let BY denote the Euclidean ball and (BY)s its surface body with respect
to the constant density (vol,_1(0B%))™1. Let {xs} = d(BY)sN[0,e,] and Hy
the tangent hyperplane to (BY)s at xs. For every e > 0 there is s. so that we
have for all s with 0 < s < s

Vdn_ﬂaBg)>5ﬁ% »
1-— _— = l,,_2(0BY
0= (i) B

</ 1
o830, | [1— < No(y), (@), Nons (y) >2

dpospnm, (y)

L,_1(0By) \ "'
< (sw) vol,_2(0B3 ™).
(iti) Let ay,...,a, >0 and

vol,_1(By~ 1)
n 2
&= {x Z <1 }
i=1

Let &, 0 < s < %, be the surface bodies with respect to the constant density
(vol,,_1(9E))~L. Moreover, let \g : RT — [0, a,] be such that Ae(s)e, € OEs
and Hy the tangent hyperplane to Es at Ae(s)en. Then, for all € > 0 there is
Se such that for all s and t with 0 < s,t < %

(i)

3

1
/amHs V1= < Nog, (5), Nog (y) >2

n-3 1
<a+op)i |
! oenH, \/1— < Nog, (x1), Noe (y) >2

dpsenm. (y)

dposnm, (v).

Please note that Ngg_ (Ae(s)en) = Nag(ane,) = ey,.
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Proof. (i) In the first part of the proof H denotes H (x4, Nok, (x5)). We prove
first that for every e there is s. so that we have for all s with 0 < s < s,

/ f(y)
oxnt \/1— < Nok (), Nox, (zs) >2

- f(@71(2) .
/amH V1= < Noz(2), Nox.(@s) >2dM65nH( ) (44)

f(@71(2))
- e/agmH V1= < Nog(2), Nox, (zs) >2 duoen (2)-

Zs and @ are as given in Lemma 2.8. There is a real valued, positive function
¢ : 0K N H — R such that

P(y) = Zs + o(y)(y — Ts).
By Lemma 1.8 we have with y = &71(z)

dpoxne (y)

f(y)
/8KnH \/1— < Nok(y), Nok, (xs) >2dMaKmH(y)
- / f(@1(2)o "2 (27 (2))
oeni /1= < Nox(01(2)), Nox, (@) >2

< Nognu(2), ||Z| >
< Noknn(@1(2)), Ten >
_ / F(@71(2)p (271 (2))
oent \/1— < Nok (P~1(2)), Noxk, () >2
< Nognu(z),z >
< Nogng(P~1(2)),z >

dﬂagmH(z)

dpoenm(2)-
With this we get

/ f(y)
oxni \/1— < Nok (y), Nok, (x5) >2

— f(@71(2)) .
/‘95”’1 V1= < Noe(2), Nox, () >2 duoenn (2)

| @)
0,

= ozt V= < Noe () Now (@0) >
B F@7(2))
\/1— < NaK(Qf)fl(Z)),NaKs(l‘s) >2
A F@71(2) (1 - 672071 () eyt 55 )
9ENH V1= < Nog(P71(2)), Nok, (zs) >2

duaKmH(y)

dpognm(2)

dposnu(2)| -
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By Lemma 2.8 we have

1 1
‘ V1= < Noe(2), Nok(@2) 2 /1= < Nox (@ 1(2)), Nox, (2.) >2

€
<
o \/1— < N@g(z),NaKS(LES) >2

which gives the right estimate of the first summand.
We apply Lemma 2.9.(ii) and (iii) to the second summand. The second
summand is less than

g @)
oenu \/1— < Nog (9~1(2)), Nok, (zs) >

2dMamH(Z)-

Now we apply Lemma 2.8 and get that this is less than or equal to

f(@71(2))
3e /8an V1= < Noe(2), Nox, (z) >2dM8£ﬁH(2).

This establishes (44). Now we show

/ f(@(y)
OENH (24, Nox. () \/1— < Naeg(y), Nox, (xs) >

= dioent (e, Nox, (2.)) ()

f(@7(2))
- dposnn 2s,Nok (z (2)
/asﬂH(zs,NaK(wo)) V1= < Npe(2), Nok, (zs) >2 N (e Norc(o))

f(@27(2))
< e/ AUOENH (20, Nox (20)) (2)-
OENH (25,Nak (x0)) \/1— < Nag(z),Né)KS (fcs) >2 ni arc(0))

(45)

Since f is continuous at xg and f(zg) > 0 it is equivalent to show

/ fzo) dNaSmH(» Nox, ( ))(y)
OENH (2. Nox, (z2) V1= < Noe(y), Noxk, (z5) >2 R
f(@o)
_ dpognH (2., Nox (o)) (%)
/¢9£ﬁH(zs,N3K(:co)) \/1— < Nog(2), Nok, (zs) >2 nt arc(20))

f(xo)

< c/
OENH (2., Nox (z0)) \/1— < Nog(2), Nox, (zs) >

5 dNHEOH(zS,NaK(xo)) (Z)

which is of course the same as
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1
/OSQH(ZS,NaKS (zs)) \/1_ < Noe(y), Nox, (zs) >
/ 1
OENH (25, Nox (z0)) \/1— < Nog(2), Nok, (5) >2

1
< 6/
OENH (25, Nox (x0)) \/1— < Nog(2), Nox._ () >

= dpoent(a. Nox, (2.)) (¥)

dMaEﬂH(zs,NaK(Io))(Z)

5 nd’?SﬁH(zs,NaK(!L’o)) (2).

(46)

We put € in such a position that Nyx (x0) = en, o = rnen, and such that £

is given by the equation

n 2

il —1.

T

=1

Let £ € 0By and y = (r(&,yn)&, yn) € OE. Then

S

sy > Yo
1 Th—1

L) (7‘(f,yn)€1 (& Yn)n—1 yn
T : 2

) 2
rn

)

n
2
n

Noe(y) = (

IS

|

2 1 €2
Vi A Bty Do

with

As Ngk (zo) = e, we get

< Nog(y), Nok (z0) >=

Therefore )
1 i 37{_4
1— < Nog(y), Nox (z0) >2 st ﬁ—j
For y,z € OE we get
1— < Npg(2), Nox (xg) >2 2i1 %j Z;:ll ’%21
= < Naey), Nowc(eo) =2~ 3o 1o

For y, z € O with the same direction £ we get by (47)

1- < Nag(Z),NaK(l‘o) >2 Zi:l i
2

1= < Noe(y), Nok (o) >* s =
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We can choose s, sufficiently small so that we have for all s with 0 < s < s,
and all y € 96 N H(xs, Nok,(xs)), 2 € O N H(zs, Nok (x0))

|yn_7"n|<6 |Zn—Tn|<€
and by Lemma 2.9.(i)

Tn — Zn

Tn — Yn

1—€e<

<l+e

We pass to a new € and obtain: We can choose s, sufficiently small so that
we have for all s with 0 < s < s, and all y € 9 N H(zs, Nok,(zs)), z €
0E N H(xs, Nok (z0)) such that p., (y) and p, (z) are colinear

1— < N, N, 2
| — ¢ < 12 < Noe(2), Nox (o) Z <i+e (48)
1— < Noe(y), Nox (x0) >

By Lemma 2.5 we have
< Nog(x0), Nok,(xzs) > >1—€.
Therefore, the orthogonal projection pe, restricted to the hyperplane
H(zs, Nok. (ws))

is a linear isomorphism between this hyperplane and R*~! and moreover,
[pe. |l = 1 and [[p;!|| < tX. By this, there is s, such that for all s with
0<s<se

(1- 6)/ dpaenH (2., Nox, (x.))(Y)
OENH (2., Nox. (z2)) \/1— < Nog(y), Nox. (x5) >2
< / dip, , (9enH @, Nox, (2.)))(2)
* Jpen@enH @ Nak @)\ 1 < Noe(pe ! (2)), Nox, (ws) >2

</ dposnt (z,, Nox, (2)) (Y)
= Josnn (@, Nox, (w0)) V1= < Nog(y), Nok, (z) >2

where z = p,, (y). Let ¢., denote the orthogonal projection from

H(LES, NaK(xo))

to R"7!. g, is an isometry. Therefore

n

/ dpoenn (@, Nox, (w0)) (Y)
PENH (w2 Nox, (20)) V1= < Nog(y), Nox, () >
_ / iy, (9ENH (22 Nok (20))) (Y)
Ger (DENH (24, Nox (0))) \/1— < Noe(ge,' (y), Nok, (z5) >2
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Thus, in order to show (46) it suffices to show

/ dbtp, , (9enH (@, Nox, (2.))) ()
pen (GENH (s Norc, (1) 1 /1 < Nog (pi,} (1), Nox., () >2

B / ditg, (0ENH (2., Nox (20))) ()

e (OENH (z4,Nox (20))) \/17 < Nog(ge, (9)), Nox, (z5) >2
3 6/ ditg,, (9ENH (., Nox (20))) (Y) )
" a0 Nox@o) (/1 < Nog(ge,) (1)), Nox, () >?

Let p: e, (OENH (x5, Nok (20))) = Pe,, (0E NH (x5, Nox.(zs))) be the radial
map defined by

{p(y)} = {tylt > 0} N pe,, (O N H (x5, Nox (0)))-

We have
(1-6) / dftp.,, (2enH (@, Nox, () (¥)
Pe,, (OENH (x4, Nok. (z2))) \/1_ < Nog(pe (1)), Nok. () >2
</ ditg. , (9ENH @, Nok (20))) (¥)
" Jge, (0ENH (24, Nox (20))) \/17 < Nas(Pe_,}(P(y))),NaKs (z) >2
<(1+6 / dftpe,, @enH @, Nox, @) W)
P, (DENH (24, Nok, (2))) \/1_ < Noe(pe (1)), Nox. (xs) >2

To see this, consider the indicatrix of Dupin D of K at x9. We have by (43)

1
—€ R —— A ) Tg, T - €
(1= P € e (60 Bz Nox () € (140
(1-oDC 2||1||p (€M H(z, Noxc(4))) € (14 €)D.
o — Rs

They imply that with a new s, the surface element changes at most by a
factor (1 + ¢€). Thus, in order to verify (46), it is enough to show

/ dptq, , (9£NH (2. No (20)) (V)
e (OEOH e Norc o)) \ /1 < Noe (9} (p(1))), Nox, (w5) >2

B / dptg,,, (9£nH (@.,No (20)) (Y) (49)
e, (OECH (o Na @) (/1 < Noe (g, (1), Noxe, (w:) >2
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y / dug,, (9enH (2., Nok (20)) ()
e, (OENH (z5,Nok (70))) \/17 < Nag(qe_nl(y)),NaKS (Ig) >2

We verify this. By (48) there is s, so that we have for all s with 0 < s < s,
and ally € N H(zs, Nok,(xs)), 2 € 0ENH (x5, Nok (z0)) such that pe, (y)
and p., (z) are colinear

¢ < INoe(z) = Nox (o)l
= [[Noe(y) — Nox (o)l

By (39) for every e there is s such that for all s with 0 < s < s,
| Nox (z0) — Nox, (zs)|| < ev/||zo — zs]|

and by the formula following (2.8.13) for all y € 9 N H(xs, Nk, (xs)) and
z € 0E N H(xs, Nog (x0))

| Noe(y) — Nor, (zs)|| = cv/[|xo — 2|
[Nog(2) — Nox, (zs)|| > ev/[[zo — 2s]|-

1

<l+e

Therefore,

[Nor (20) = Nox, ()| < ev/l[xo — 25| < £l[Noe (2) — Nox., ()]

By triangle inequality
[Noe (2) = Nox, ()| < (14 £)l|Noe(2) — Nox (o) || (50)

and the same inequality for y. In the same way we get the estimates from
below. Thus there is s, so that we have for all s with 0 < s < s, and all
y € 0 N H(xs, Nok,(25)), z € OE N H(xs, Nox (20)) such that p., (y) and
De,, (2) are colinear

N. _
l—e< [Noe (2) — Nox, (xs)l <lie
[Noe (y) — Nok, (xs)]|

which is the same as

1- < N, N, 5) >2
l—e< < Npe(2), Nox, (x >>2 <l+e
1- < Nag(y),NaKs (xg) >

This establishes (49) and consequently (45). Combining the formulas (44)
and (45) gives

/ T duokna (z, N, (V)
OKNH (2., Nox. (2:)) \/1— < Nok (y), Nk, (z5) >2
_/ F(@71(2))dposn b (., N (o)) (2)
OENH (2.,Nox (w0)) /1= < Nog(2), Nox, () >2
< 6/ f(¢71(Z))dMBEOH(zS,NaK(IO))(Z).
T JoenH(zu Nox (z0)) V1= < Noe(z), Nok, () >2
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It is left to replace Npk (xs) by Nax(xo). This is done by using the formula
(50) relating the two normals.
(ii) For every € > 0 there is s. such that for all s with 0 < s <'s,

n n -
(1-e)s < vol,,—1(BY N Hy) < vol,_1(0By N H) — s
vol,_1(0BY) vol,_1(0B%)

B N H, is the boundary of a n — 1-dimensional Euclidean ball with radius
. <voln_1(Bg N HS)) =
~\ vol,_1 (BT '
Therefore

((1 95 voln_l(aBg))) w1 e (s vol,_ (0BY) ) |

vol, 1 (By~* vol, 1(By™1)

We have N(z;) = e, and \/1— < en, Naopy(y) >? is the sine of the angle
between e, and Napy (y). This equals the radius 7 of By N H,. Altogether we
get
/ dpapynm, (y)
OByNH, \/1— < N(z,), Nogy (y) >2

n-3
M) "ol —2(0B3 7).

_ .n—3 ln, aanl <<
rvel—2(9By ) < (s 0o T

(iii) EN Hy and €N Hy are homothetic, n — 1-dimensional ellipsoids. The
factor ¢g by which we have to multiply £ N Hy in order to recover £ N Hy is

vol_1(€ N H,)\ ™1
¢0 = 1 e~ 17 .
voln_l(ﬁ N Hs)

On the other hand, for all € > 0 there is s, such that for all s with 0 < s < s,

vol,—1(ENH,) _ vol,_1(0ENH)
— < < =
(U=as< =08 = o, ,08) _°

() sas ()

The volume of a volume element of 0 N H, that is mapped by the homothety
onto one in € N H; increases by ¢ 2.

Now we estimate how much the angle between Nag(y) and Nog, (z5) = ep,
changes. The normal to £ at y is

Therefore
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Yi
aZ\[> Yi
i k=1 al
i=1
Thus y
< N@g(y)7€n >= n
_i
and
2
Z i
— 2 a
1- < Nag(y),en >"= - yk
k=1 a%

Let y(s) € ENH, and y(t) € €N H; be vectors such that (y1(s), ..., yn-1(s))
and (y1(t),...,yn_1(t)) are colinear. Then

(Y1), yn—1(t)) = do(y1(s), -, Yn—1(5))

Thus
n- 1 y2(t) 2(s) (s
1— < Noe(y(t),en >? ket i k=1 al Zk e
— 2 2 .
1— < Nog(y(s)), en > Zk } y,;(t) Zn 1 yzis) Zk:l yzg)

For every ¢ > 0 there is s. such that for all s with 0 < s < s. we have
an — € < yn(s) < ap. Therefore there is an appropriate s, such that for all s
with 0 < s < s,

L yigt)
1—-e< - yi(s)gl—l—e.
k=1 af
Thus
1— < Nyge t)),en >2
(1 - o < WD en >2 (1 4 o).
\/1— < Nae(y(s)), en >2
Consequently, with a new s,
/ dpoenm, (y)
oent, \/1— < Nae, (x5), Noe (y) >2
d
< (1+e)dg (n— 3)/ poenm, (Y)
oenm, \/1— < Nog, (1), Noe (y) >2
= dpoenm, (y)

<(l+¢) (f) B
- t oent, \/1— < Nog, (1), Nog (y) >2
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Lemma 2.11. Let K be a conver body in R™ such that for all t > 0 the

inclusion K QIO{ holds and that K has everywhere a unique normal. Let
f: 0K — R a continuous, positive function with faK f(z)dpsr(z) = 1.

(1) Lett < T and e > 0 such that t+€ < T. Let x € 0K, and let H(x, Naok, ())
be a hyperplane such that

Py(0K N H™ (z, Nox,(x))) =t.
Let h(x,€) be defined by
P;(OK NH™ (z — h(z,¢)Nak, (z), Nok, (x))) =t + €.
Then we have for sufficiently small €

¢ — ofc) = / fWh(z, €)dpornm e, Nox, (2)) ()
OKNH (2, Noxc, () /1= < Nox,(x), Nox (y) >2

(it) Lett + € < T, v € 0Kyye, and H(x, Nok,, (x)) a hyperplane such that
Ps(OKNH™ (z,Nok,,.(x)) =t +e
Let k(x,¢€) be defined
Py(OK N H(x + k(x,€)Nok,, . (v), Nok,,.(x))) = t.

Then we have

ol / FW)k(x, )dpoknt(a,Nox, , (2))(y)
€ ol\€e) = .
OKNH(z,Nox,,. () /1= < Nox,, (2), Nox (y) >2

2
£ = {x < 1}
and E;, 0 < s < % surface bodies with respect to the constant density. {zs} =

[0,anen] N OE;s. Let A : (0,T) — [0,00) be such that A(s) is the height of
the cap ENH ™ (x5, Nog, (x5)). Then A is a differentiable, increasing function

and
aa, (voly_1 (D))~ -
ds =) </3an5 V1= < Nog, (25), Noe (y) >2du(y)>

where Hy = H(x5, Npg, (x5)).

(i4i) Let € be an ellipsoid

n

>

i=1

X4

a;
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Proof. (i) As K; CK we can apply Lemma 2.2 and assure that for all 0 <
t < T and all z € K, there is a normal Nyg, (v) with

t = / f(2)dpor (2)-
OKNH~ (x,Nok, (x))

Nornu(y)

Nox, ()
0K
H(z, Nog, ()
/ / T y \

/ H(x — h(z,€)Nok, (x), Nok, (x)) \

Fig. 2.11.1
‘We have

¢ = / F(2)dpox (2)
OKNH~ (z—h(z,e)Nox, (z)),Nox, (z))

- / F(2)dpox (2)
OKNH~— (w,NaKt (x))

- / F(2)dpo (2).
OKNH~ (z—h(z,e)Nox, (z)),Nok, (z))NH*(z,Nak, ())

Consider now small €. Since K has everywhere a unique normal a surface
element of

OK N H ™ (z — h(z,€)Nak,(z)), Nor,(r)) N H" (2, Nk, (z))
at y has approximately the area
h(:L’, e)d/u'{)KﬁH(:c,NaKt (x)) (y)

divided by the cosine of the angle between Nyk (y) and Noknu(z,Nox, (x)) (y)-
The latter normal is taken in the plane H(z, Ngk, (x)). The vector Nk (y) is
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contained in the plane spanned by Noxnm(z,Nox, () (y) and Npg, (). Thus
we have

Nok (y) = < Nok (y); NoxnH(z.Nox, () (¥) > NoknH (= Nox, (z)) ()
+ < Nok(y), Nox,(z) > Nok, ()
which implies
1 =< Nok (y), Noknt(z.Nox, () (%) > + < Nok (y), Nox, (z) >* .
We get for the approximate area of the surface element
h(z, €)dpoknm (e, Nox, @) (Y) W@, €)dpornm @, Nox, () ()
< Nox (y), Noxnm(z.Noxe, @) (¥) > /1— < Nok (y), Nox, (z) >2

Since f is a continuous function

¢+ ofe) = / fW)h(z, €)duornm @z, Nok, () ()
A(KNH(z.Nox, (2))) /1= < Nok, (2), Nok (y) >2

(iii) By the symmetries of the ellipsoids e, is a normal to the surface body
&,. In fact we have

P{OE N H (xs,e,)} = s.

This follows from Lemma 2.4. Moreover,

h(zs,e) < A(s+¢) — A(s) < k(xs, €).

Lemma 2.12. Let K be a convex body in R™ that has everywhere a unique
normal and let f : OK — R be a continuous, positive function with
Jor f(x)dpox (z) = 1. K, 0 < s < T, are the surface bodies of K with
respect to the density f. Suppose that for all t with 0 < t < T we have

K QI%. Let G : K — R be a continuous function. Then
G(z)dz
K

is a continuous, decreasing function of s on the interval [0,T] and a differ-
entiable function on (0,T). Its derivative is

d /K Gla)de = /B . Gla)duox. (z:)

ds i) '
S faKan T <Nors (22 Nor (057 dpornm, (y)

where Hy = H(xs5, Nok_(25)). The derivative is bounded on all intervals [a, T)
with [a,T) C (0,T) and

T
/ G(z)dz = / / Gl diore, (ze)ds .
K 0 Jok. dpornm, (y)

faKan \/1—<NaKS (zs),Nok (y)>2
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Proof. We have

/G dm—hmeﬁo—(/ Gz dx—/ G(x dx)
ds o

:—hme_,o—/ G(z)dz
K \Kste

provided that the right hand side limit exists.

Let A(zs,€) be the distance of x5 to 0Kste. By Lemma 2.4.(iv), for all
s and 6 > 0 there is € > 0 such that dy(Ks, Ksy.) < . By this and the
continuity of G we get

1
i/ G(z)dzr = —lim_,o— G(zs)A(zs, €)dpok, (x5).
dS K, € 0K,

We have to show that the right hand side limit exists. By Lemma 2.11.(i) we
have

¢ ofe) = / FW)h(x, €)dpoknH(@,Nox, (@)(w)
(KN H(z N, () /1= < Nox, (2), Nox (y) >?

Since h(zg,€) < A(xg, €) we get
liminfeﬂo1 G(zs)A(zs, €)dpok, (xs)
€ Jok,

Gz,
= / f(yg ) 1 dpox, ()
0K faKr‘]Hs V/1-<Nok, (zs),Nox (y)>2 poxnm, (Y

where Hy = H(zs, Nok, (25)). We show the inverse inequality for the Limes
Superior. This is done by using Lemma 2.11.(ii).

We show now that the function satisfies the fundamental theorem of cal-
culus.

/ f(y)dpornm, (y)
oxnH, \/1— < Nox_ (2s), Nox (y) >2

> / f(y)dporna, (y) > min f(y)vol, »(OK N Hy).
OKNH, yeIK

By the isoperimetric inequality there is a constant ¢ > 0 such that

fy)dporxnm, (y) .
/3KOHS \/1_ < Nok, (2s), Nor (y) >2 = cyEBKf( y)voln—1 (K N Hy).

By our assumption Ky CK the distance between 0K and 0Kj is strictly
larger than 0. From this we conclude that there is a constant ¢ > 0 such that
for all z4, € 0K,
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vol,_1(K N H) > c.
This implies that for all s with 0 < s < T there is a constant cs > 0

d
&/KS G(z)dx

Thus, on all intervals [a,T") C (0,7T) the derivative is bounded and therefore
the function is absolutely continuous. We get for all ¢, with 0 < tg <t <T

< cs.

t
/ i/ G(z)dx = G(x)dx — G(x)dz.
to dS K K Kto

We take the limit of ¢y — 0. By Lemma 2.3.(iii) we have (J,-, K; I_)I%. The
monotone convergence theorem implies

/otcis /K Gla)dz= | Gla)do - /K G(x)da.

Now we take the limit ¢ — T. By Lemma 2.3 we have K = ﬂt<T K;. The
monotone convergence theorem implies

/OT%/Ké G(x)dz = . G(x)dx—/KG(x)dx.

Since the volume of K equals 0 we get

/OT e /K Gla)de =~ /K G(z)da.

3 The Case of the Euclidean Ball

We present here a proof of the main theorem in case that the convex body is
the Euclidean ball. This result was proven by J. Miiller [Mii]. We include the
results of chapter 3 for the sake of completeness. Most of them are known.

Proposition 3.1. (Miiller [Mii]) We have

l,(BY) — E(OBY, N
lim voly, ( 2)_48 5, N)
N —o00 N pe—

n+1
volu—2(9B3 ) ((n - 1)voln_1<aB§>> 2
2(n+1)! vol,,_o(0By 1) (” Tt nfl)

- ) ol @By D (0t 145
(vol,_o(8By~1))wr 2(n+1)!
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We want to show first that almost all random polytopes are simplicial.

Lemma 3.1. The n2-dimensional Hausdorff measure of the real n x n-
matrices with determinant 0 equals 0.

Proof. We use induction. For n = 1 the only matrix with determinant 0 is
the zeromatrix. Let A;; be the submatrix of the matrix A that is obtained
by deleting the first row and column. We have

{A]det(A) = 0} C {A|det(A11) = 0} U{A|det(A) = 0 and det(A;;) # 0}.
Since
{A|det(Ar;) = 0} = R” ~("=1* x (B € M,_,|det(B) = 0}

we get by the induction assumption that {A|det(A;1) = 0} is a nullset. We
have

{A|det(A) = 0 and det(A11) # 0}
1 - 1+
- {A = A ;au(q) +idet(Ay)) }

Since this is the graph of a function it is a nullset. O

Lemma 3.2. The n(n—1)-dimensional Hausdor(f measure of the real n x n-
matrices whose determinant equal 0 and whose columns have Fuclidean norm
equal to 1 s 0.

Proof. Let A; ;j be the submatrix of the matrix A that is obtained by deleting
the i-th row and j-th column. We have

{A]det(A) = 0} C {A|det(Ay) = 0} U {A|det(A) = 0 and det(Ar1) # 0}

By Lemma 3.1 the set of all (n—1) x (n—1) matrices with determinant equal
to 0 has (n — 1)2-dimensional Hausdorff measure 0. Therefore, the set

{(a1,...,an—1)|det(@s,...,an-1) =0}

has (n — 1)?-dimensional Hausdorff measure 0 where @; is the vector a; with
the first coordinate deleted. From this we conclude that {A|det(A11) = 0}
has n(n — 1)-dimensional Hausdorf{f measure 0.

As in Lemma 3.1 we have
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{A| det(A) = 0 and det(Ay1) # 0}

1 & ;
= A = ————— 7 —]_ 1+7] d t A 7 .
{ an det(Aqy) ;al (=1) et(Ay ))}
By this and since the columns of the matrix have Euclidean length 1 the
above set is the graph of a differentiable function of n(n — 1) — 1 variables.
Thus the n(n — 1)-dimensional Hausdorff measure is 0. O

The next lemma says that almost all random polytopes of points chosen
from a convex body are simplicial. Intuitively this is obvious. Suppose that we
have chosen 1, ..., z, and we want to choose x,,11 so that it is an element of
the hyperplane spanned by z1, ..., z,, then we are choosing it from a nullset.

Lemma 3.3. Let K be a convex body in R™ and P the normalized Lebesgue
measure on K. Let PX the N-fold probability measure of P. Then

(1)

PR{(z1,...,an)|Fi1, .. ins13H t 24y, 2, € HY =0

where H denotes a hyperplane in R™.
(ii)

PRA{(x1, ..., xN)| Fit, ... in : @iy, ..., 24, are linearly dependent} =0

Proof. (i) It suffices to show that
P%{(.Il,...,ZCNHHHZ$17...,£L'n+1 GH} =0.
Let X = (x1,...,2,). We have that

{(z1,...,zN)|3H : 21,...,2p41 € H} ={(21,...,2n)|det(X) =0}

U{(xl,...,a:N)|det(X) #0 and Fty,...,tn_1:

n—1
Tpt1l = Tp + Zti(xi — ;En)}
i=1

The set with det(X) = 0 has measure 0 by Lemma 3.1. Now we consider the
second set. det(X) # 0 and z, 41 = x, + Z?:_ll t;(x; — xy,) imply that

n—1 n—1
Xﬁl(InJ’_l) = Xil <Z'n + Z t'l(zz - xn)) = €n + Z t1(67 - en)-
i=1 i=1

We get,
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t; :<X71(1‘n+1),61'> t=1,...,n—1.

Therefore we get

{(xl,...,a:N)

n—1
det( ) #Oand Eltlv-” n—1 "% Tnt1 —xn‘i‘zt .I‘n)}
i=1

- {(3:1,...,xn,z,xn+2,...,xN) det(X) # 0 and
n—1
Z=x,+ Z < X Yapi), e > (x5 — a:n)}.
i=1

We have that

<X~ Ti — Top).

8$n+1 Z ( ’ n)

Since all the vectors W j = 1,...,n are linear combinations of the
vectors x; — Tn, i =1,. — 1, the rank of the matrix

(i)

is at most n — 1. Therefore, the determinant of the Jacobian of the function
mapping (z1,...,2y5) onto (z1,...,%n, 2, Tpi2,...,2N) is 0. Thus the set

{(:cl,...,:rN)

has measure 0. 0O

n—1
det(X) #0 and Jtq,...,th—1 :cn+1f:cn+2t n)}
=1

Lemma 3.4. Let Pypy be the normalized surface measure on OBy . Let ]P’évB;
the N-fold probability measure of Popy. Then we have

(1)
]PévB;{(l'l,...71'N)|3i1,...,in+13H iy ey Tipyy € H} =0
where H denotes a hyperplane in R™.

(ii)

Péng{(xh. an)| Jit, .. yin  Tiy, ..., T, are linearly dependent} = 0

Proof. Lemma 3.4 is shown in the same way as Lemma 3.3. We use in addition
the Cauchy-Binet formula ([EvG], p. 89). O
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Lemma 3.5. Almost all random polytopes of points chosen from the bound-
ary of the Euclidean ball with respect to the normalized surface measure are
simplicial.

Lemma 3.5 follows from Lemma 3.4.(i).
Let F be a n — 1-dimensional face of a polytope. Then dist(F) is the
distance of the hyperplane containing F' to the origin 0. We define

¢j17~~7jk (1') = ﬁVOITL—l([mjl Y vmjk])diSt(lea oo ?xjk)
if [z;,,...,2;,] is a n — 1-dimensional face of the polytope [z1,...,zn] and
if 0 € H* where H denotes the hyperplane containing the face [z;,,...,z;,]
and H* the halfspace containing [z1,...,zx]. We define
1 .

D gn(x) = —Evoln_l([le, g ))dist(zgy ., 25,)
if [zj,,...,2;,] is a n — 1-dimensional face of the polytope [z1,...,zn] and
if 0 € H=. We put

Pjy...jx(2) = 0

if [z;,,...,2;] is not a n — 1-dimensional face of the polytope [z1,...,zn].
Lemma 3.6. Letxq,...,25 € R™ such that [z1,...,zN] is a simplicial poly-

tope. Then we have

vol,([z1,...,xN]) = > @ ().

{71,dn AL, N}

Note that the above formula holds if 0 € [z1,...,zn] and if 0 ¢
[331, SN ,a:N].

dL} is the measure on all k-dimensional affine subspaces of R and dL}(0)
is the measure on all k-dimensional subspaces of R™ [San)].

Lemma 3.7. [Blal, San]

k k
N da = (Klvoli([o, . .., zx]))"™F /\ dafdLy
=0 i=0

where dz? is the volume element in R™ and dz¥ is the volume element in LY.

The above formula can be found as formula (12.22) on page 201 in [San].
We need this formula here only in the case kK = n — 1. It can be found as
formula (12.24) on page 201 in [San]. The general formula can also be found
in [Mil]. See also [Ki] and [Pe].
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Lemma 3.8.

dL;_; = dpduapg (§)
where p is the distance of the hyperplane from the origin and & is the normal
of the hyperplane.

This lemma is formula (12.40) in [San].
Let X be a metric space. Then a sequence of probability measures P,
converges weakly to a probability measure PP if we have for all ¢ € C(X) that

lim | ¢dP, = / HdP,,.
X X

n—oo

See ([Bil], p.7). In fact, we have that two probability measures P; and Py coin-
cide on the underlying Borel o-algebra if we have for all continuous functions

¢ that
/qud]P’l:/ngSdIF’Q.

Ae = BS(O,T + 6) \ BS(O,T’)

Lemma 3.9. We put

and as probability measure P. on Ac X Ac X +++ X A

p. o XA X X Xa, (z1)dxy ... dxy
T ((r+ e — )k (vol, (By))*

Then P, converges weakly for € to 0 to the k-fold product of the normalized
surface measure on 0B (0, 1)

MaBé‘(O,r)(xl) .- MaB;(o,r)(JUk)
rk(n=1)(vol, _, (OBY))*

Proof. All the measures are being viewed as measures on R"”, otherwise it
would not make sense to talk about convergence. For the proof we consider
a continuous function ¢ on R™ and Riemann sums for the Euclidean sphere.
O

Lemma 3.10. [Mil]

dpapy (1) - - - dposy (Tn)

vol,—1(|z1,... 2

=(n—1)! a2 i ])dMaB;mH(Uﬁ) -+ dpapynm (Tn)dpduany (§)
(1-p?)> :

where £ is the normal to the plane H through 1, ...,x, and p is the distance

of the plane H to the origin.
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Proof. We put
A, =B3(0,14€)\ B3(0,1)

and as probability measure P. on A, X Ac X -+ X A,

XA, X -+ X XAE(x1>d$1...dxn
(L4 €)™ —1)*(vol,(B3))"

P, =

Then, by Lemma 3.9, P. converges for € to 0 to the n-fold product of the
normalized surface measure on 0B%

HoBy (z1) ... HoBy (75)
(vol,,—1(0BZ))™

By Lemma 3.7 we have

n

/\ dz} = (n — 1)lvol,—1([z1, ..., 2,]))dL]_4 /\ dal ™t

i=1 i=1

and by Lemma 3.8
dL,_, = deMGBg (€)-

We get
/\ dz! = (n — 1)vol,—1([z1, ..., 24]) /\ dx?fldpdﬂagg ).
i=1 i=1

Thus we get

Pe = xa, X -+ X xa.(n—1)vol,_1([z1, ..., 24))
da? ...z tdpdpssy (€)

(A +er — 1) (vol, (B

This can also be written as

P. = (n—1)vol,—1([z1, ..., x4])

Xa.ng X - X xa,ngdzy ™ dan~ dpdpasy (€)
X n n
(1 + €)™ —1)"(vol,(BY))

where H is the hyperplane with normal £ that contains the points x4, ..., z,.
p is the distance of H to 0. AcNH is the set-theoretic difference of a Euclidean
ball of dimension n — 1 with radius (1 — p? + 2e +¢2)z and a ball with radius
(1 —p?)2. By Lemma 3.9 we have that

XA.NH X -+ X XAedex?_l G P
(1= p2+ 2+ €2)"z — (1 —p2) "2 )7 (vol,_; (BE 1))
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converges weakly to the n-fold product of the normalized surface measure on
OBy NH
dpspynm - - dpaBpnu
(1—p?)"*%" (vol,o(dB3 1))

Therefore we get that

XA.nH X0 X XAede:C?_l codanTl
(L +e)m = 1) (voln(By))"

converges to

<(n — 1)voln1(Bgl)>” (1 st dposynm - - -dpospnn
n vol,, (BY) (1 — p2)""7 (vol,_o (B2 ))n
_ dpoBpna ---dpoBpnH
(1 p?)% (vol,—1(9Bg))"

O
Lemma 3.11. [Mil]

/ / vol .’131,---75Un+1]))2
B2 (0,r) 9Bz (0,7)

XduaBy (0,r) (w1) -~ 'dﬂaB;(o,r)(xnﬂ)
(,n + 1)rn2+2n71
nln”

e e 0By () =

nlnm

(vol,_1 (9B3))"**

We just want to refer to [Mil] for the proof. But we want to indicate an
alternative proof here. One can use

lim E(9BY, N) = vol, (B})
N—o0

and the computation in the proof of Proposition 3.1.

Lemma 3.12. Let C be a cap of a Euclidean ball with radius 1. Let s be the
surface area of this cap and r its radius. Then we have

<ﬁ(33‘1>>_ 2(n+ )(vol jB 1)>% 1

s n—1
- (voln_uB;—l)) <voln By )

3 5

_2(n1+1) <V01n—1(B£L 1)> —I—c(m)n-l

where ¢ is a numerical constant.
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Proof. The surface area s of a cap of the Euclidean ball of radius 1 is
s= Voln_g(BBg_l)/ sin” 2 tdt
0

where « is the angle of the cap. Then o = arcsinr where r is the radius of
the cap. For all t with ¢ > 0

— 4P <sint <t — 3 4+ L0
Therefore we get for all ¢ with ¢ > 0
Sinn—Qt > (tiétB)n72 _ tn72(17%t2)n72 > tn72(1fn37_!2t2) — tn727n37_!2tn.
Now we use (1 —u)® <1 —ku+ Sk(k — 1)u? and get for all t > 0

sin "2 < nTF — mERgn 4 o2

Thus
s >vol, o(0By 1) / T - ne2gndt
0
= volu2(0B3 1) (0" - grsZiamt)
=vol, 2(0By ™) (nl - (aresin )™ " 6(n+21) (arcsin r)”“)
and
s < vol, o(dBy™1) x
(ﬁ(arcsin r)nt 6(7;;21) (arcsin 7)™t 5 (arcsin 7’)"+3> .
We have
+1r L3 3r° +1 3 57"7+
arcsinr = - =
resinr =rt oyt 67

Thus we have for all sufficiently small r that
r+ %r?’ < arcsinr <r -+ 3—1!7“3 + 7.

We get with a new constant ¢

n—1 6(n+1)

1 n—1 1,.n+1 __ n—2 n+l n+3
s A T LA S e er )

s > Voln,g(aBgfl)( L(r+ 2 T Byn=l _ n=2_(p 4 %r3+r5)"+1)

> vol,_o (8B (

1

= Voln_g(aBg_l) (n 7T+ —2(n1_~_1)7“

=vol,_1(By™1) ( 14 2("”;1)7""“ —c(n— 1)r"+3) .
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We get the inverse inequality

s < VOln_l(B;l_l) (7‘"71 + 28;_11)1""+1 +c(n — 1)r”+3)

in the same way. We put now

S
vol,_1 (B3~ 1)

1 1 3 5

un—-1 — ——qyun—-1 — cyn—1

< (Tnfl + 2(7;;_11)rn+1 + C(TL B 1)rn+3)m
1

S 2(n+1)

5
—a (r”fl + 2&111)7'”“ —c(n— 1)r"+3) n

3

(r"_l + 2&111)7”“ —c(n— 1)r"+3) m

If we choose a big enough then this can be estimated with a new constant ¢
by

r—crd <r
provided r is small enough. The opposite inequality is shown in the same
way. Altogether we have with an appropriate constant ¢

(W)M‘mm (vol 1?3 )) 1

S n—1
Y R N
(volnl(B;1)> (voln 1(By ! )

3 5

_2(”1*” (v01n1<32 )) *(W)

Proof. (Proof of Proposition 3.1) We have

_ HoBy
o VOln_l (Bg)

and

E(0By, N / / vol, ([z1, ..., 2N])dP(z1) - - - dP(z ).
aBy oBy
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By Lemma 3.5 almost all random polytopes are simplicial. Therefore we get
with Lemma 3.6

E(8B}, N

/ / B (01, an)dP(s) - dP(zy)
BB" oBn

2 {41, 7]1L}C{13 SN}

_ (n) /aB/aB By (1, ..., zxn)dP(2y) - dP(zy).

H is the hyperplane containing the points x1,

., Ty. The set of points where
H is not well defined has measure 0. H* is the halfspace containing the

polytope [z1,...,zxN]. We have

L (AT

L EN)| P (1, TN)
Lvol,_1([z1, ..., zp))dist(z1,...,20)}

_(vol,_1(dByn HT)\ V"
o VOlnfl(aBg)

and
PN_“ {(‘Tﬂr‘rl; cee 7xN>|(p1,...,n(xla s 7.’1:]\/')
=— Ivol,_1([21,...,2,])dist(z1,...,20)}
_ (vol, @By nH)\V "
N voln_l((?Bg) '
Therefore
E(0By,N) =

N\ 1 .
(n) - /833- . /833 vol,—1([x1, ..., zp])dist(xy, ..., 2p)
N-—n — N—n
" vol,_1(OBY N HT) ~ (vol,—1(9By NH™)
voln_l(ﬁBg) VOln_l(aBg)
XdP(1‘1) s dP(l‘n).

By Lemma 3.10 we get

woon  L/NY  (n-1)
E(aB27N) - E( ) (VOln 1 832 /BB" /
y vol,,_1 (0B ﬂH“') ~ (vol,—1 (0B NH™) Mo
Voln,l(aBS)

vol,—1(0By)
x/ / (vol,—1([z1,...,zn)))?
OByNH 9ByNH

xdpapynn (1) -+ dpopgnm (zn)dpdussy (§).
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We apply Lemma 3.11 for the dimension n — 1

" _1(N (n—1)! _n
E(0By, N) = n( ) (vol, _1( 8B /aBn/
o (volai (0B NHO\Y™"  (vol,_1(@BF nH)\" ™"
vol,,_1 (833) vol, 1 (835)
n?—2
X (vol,—2(9By 1)) dpduasy ().

(n—1)!(n—1)n"1
Since 7(p) = y/1 — p? we get
n—1 n 1 2
E(dBj,N) = (]Z > (vol,2(05; ) 1)n_1 / e
0

(vol,—1(0BZ))=1 (n—1
vol,_1(0By N HH\Y ™" (vol,_1(9By nH)\" ™" 1
vol,—1(0BY) vol,—1(0Bg) P

Now we introduce the surface area s of a cap with height 1 — p as a new
variable. By Lemma 1.5 we have

dp =— (r”_?’voln,g(83;’71))_1

ds
Thus we get
w o (N (vol,_2(0By1))n 1 1
s ) = () o B o

ivol,_,(8B3) )
X / (=17 /1 — p2
0

A0-wmmm) - (oemm) o

Now we introduce the variable

B s
~ vol,,_1(0B%)

and obtain

N) (vol,_2(dBy~1))n=1 1
) —

E(0By, N) = < (vol, 1 (0B5))" 2 (n—1)" T

X /E r(n=D* /1 — 2 {(1 —u)NT = uan} du.
0

By Lemma 3.12 we get

n
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E(8BY, N)

VOl,_o n=lyn—1 3 —-n —n
<<Z)(<viln_f§§;>>)3—2 <n—11>n—1/0 {a-w™r -y

X{ (u voln_l(aBg)> R (u voln_1<aBg)) =
vol, _1(By~h) 2(n+1) \ vol,_1(By™ 1)

n = (”*1)2
e <u v01n1(832)> ne1 }
vol, _1(By™1)

x{l B [(u voln_l(aB§)> AT B 1 (u voln_l(ﬁBg)) =
vol,_1 (B~ 1) 2(n+1) \ vol,_1(By™1)

1, (0B} 2112y 3
—c <—u voln -1 12)> } } du.
vol,—1(By ™)

From this we get

E(0BE,N)

N n 3 o \N-n_ N-nl, n-1
< (n>voln_1(5‘B2)/O {(1 u) u }u X
1 <u Voln_1(633)> = (u vol,_1 832
L- n—1 tc n— 1
2(n+1) \ vol,_1(B; ™) vol, 1 (B3
u vol,—1(0BY) = 1 u vol,—1(0By)\ "1
R n—1 - n—1
vol,—1(B5 ™) 2(n+1) \ vol,—1(By ™)

ny\ 7172 2
o (tna0B) Y,
vol,_1(By 1)

This implies that we get for a new constant ¢

E(0B%3,N)

N n 2 - an_ N—n n—1
<<n>voln1(832)/0 {(1 u) u }u
ey (u voln_l(aBlgl))ﬁH(M)m

2(n+1) \ vol,_i (B} 1) vol,—1(By ™)
(1 1<L@>_C<L@) du.
2 \ vol,,_ (B ) vol,—1(By ™)

This gives, again with a new constant ¢
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E(OB%Y,N) < <N)voln_1(8B§) /2 {(1 —u)N - uN_"} u"du
n 0

B <N) n?—n+2 voln_l(aBg)%
2(n+1) vol,_y(By~Y)ywT

n

1
X /2 {(1 —u)N " — uN_"} u" T dy
0

1
N 2 N—n N—n n—1+4+-—2-
+C<n>/0 {(l—u) —u }u Tdu.

From this we get

E(8BY, N) < (JD vol,_1(0BY)B(N —n+1,n)

N\ n2—n+2 vol,_1(9B)"
( >n n+ 2 vol,_1(0BY) 21 BN —n+ 10+ 2)
n) 2(n+1) vol,_,(By)at

N 1\ Ve
+c< >B(Nn+1,n+ 4 )—|—c<2) .

n n—1

This implies
E(0By, N) < vol,(By)
B <N) n? —n+2 vol,_1(8B3) i1 I'(N —n+1)I(n+ 2;)
2(n+1) vol,_,(By Y7  I'(N+1+-%)
N F(N—n+1)]“(n+n4_1) 1\ ~Ntat
+c< ) ; +e <) .
I(N+1+ -4

2
We have the asymptotic formula

n

n

. T(k+p)
LAY

Therefore we get that E(0BY, N) is asymptotically less than

=1

n?—n+2 Voln,l(aBQ)% I(n+ 27
2(n+1) vol,_y(By Y"1 nINwT

vol,, (BY) —

325

I'(n+ -+ 1 -N+:25
+07( "_1)+c< ) )

nIN =T 2

2
We apply now 2I'(z) = I'(x + 1) to 2 = n + 2.

-1 l,,— Byt I'n+1+ -2
E(9B}, N) < vol, (By) — ——L_ Yoln1 (0BT I 1)

n+1
—1
2(n+ Dlyol,_y (By~ )=t Nt

7( "_1)+c< ) )

+c 7
n!N=»—1



326 C. Schiitt and E. Werner

The other inequality is proved similarly. O

4 Probabilistic Estimates

4.1 Probabilistic Estimates for General Convex Bodies

Lemma 4.1. Let K be a convex body in R™ with O as an interior point. The
n(n — 1)-dimensional Hausdorff measure of the real n x n-matrices whose
determinant equal 0 and whose columns are elements of 0K is 0.

Proof. We deduce this lemma from Lemma 3.2. We consider the map rp :

0By — 0K
X

rp~Hz) = —
) = g

and Rp: 0B3 x --- x 0By — 0K x --- x 0K with

Rp(z1,...,2n) = (rp(z1), ..., 7p(240)).

Rp is a Lipschitz-map and the image of a nullset is a nullset. O

Lemma 4.2. Let K be a convex body in R™ and let f : OK — R be a

continuous, positive function with [ fdu = 1. Then we have for all x € I%

ijv{(xlﬂax]\]”x S 6[331,...73?[\]]} =0.

Let € = (e(7))1<i<n be a sequence of signs, that is e(i) = £1,1 < i < n.
We denote, for a given sequence € of signs, by K¢ the following subset of K

K ={z=(x(1),2(2),...,z(n) e K| Vi=1,...,n:sgn(z(:)) = €(i) }.

Lemma 4.3. (i) Let K be a convex body in R™, a, b positive constants and
E an ellipsoid with center O such that a€ C K C b€. Then we have

it et ey < (1= (2 )

(i1) Let K be a convex body in R™, 0 an interior point of K, and let f : 0K —
R be a continuous, nonnegative function with faK f(x)dp = 1. Then we have

N
chv{(xl,...,xNﬂO ¢ [z1,...,xNn]} <27 <1 fméin -~ f(x)dp) .

(Here we do not assume that the function f is strictly positive.)
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Proof. (i) A rotation puts K into such a position that

Sz{x @2§1}.

a;
n—1

a2—nvoln_1(85) < vol,_1 (OK°).

n

>

i=1

We have for all ¢

We show this. Let pg .c be the metric projection from 0K onto da€. We
have pr o (0K€) = 0a&¢. Thus we get

n—1

az—nvoln,l(ag) = a""vol,,_1(9&°) < vol,,_1(OK®).
We have
{(x1,...,zN)| Ve Ti:x; € 0K} C {(x1,...,2n)|0 € [21,...,2N]}
and therefore
{(z1,...,zn)| FeVi:a; ¢ OK} D {(z1,...,2n)|0 & [21,...,2N]}

Consequently

U{(xl,...,xN)| Vi:x; ¢ 0K} D {(x1,...,2n)|0 & [21,...,2N]}.

Therefore we get

o\ N
PY (21, on)|0 ¢ o1, o]} <3 (1_ %)

. e\ N
con(1- min, vol,,_1 (0K*€)
vol,—1(0K)

n—1 N
conf1_ 9 vol,_1(9E)
A voln,l(aK)

<r (176

(ii) As in (i)
chv{(.’lj‘l,.. .,xN)|O ¢ [J}l,. ,J,‘N]} S P;V{(xl,,x]v)BeVz LTy ¢ aKF}

<on (1 — min f(x)d,u(a:))N .

€ JoKke
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Lemma 4.4. Let K be a conver body in R™ and xg € OK. Let f: 0K — R
be a strictly positive, continuous function with f@K fdp = 1. Suppose that for

all 0 <t <T we have K, QIO( and that there are v, R > 0 with
B (xg — rNak (z9),7) € K C By (zg — RNk (x0), R)

and let Nog, (xs) be a normal such that s = Pr(OK N H™ (x5, Nok, (25)))-
Then there is sqg that depends only on v, R, and f such that we have for all
s with 0 < s < sg and for all sequences of signs €,

vol,_1((K N H(zs, Nox, (25)))°)
< O(r, R, f,0,n)vol,_1 (K N H(zs, Nox, (25)))°)

where the signed sets are taken in the plane H(xs, Nok, (xs)) with x5 as the
origin and any orthogonal coordinate system. 6 is the angle between Na (o)
and o — xT.

The important point in Lemma 4.4 is that so and the constant in the
inequality depend only on r, R, and f.

Another approach is to use that x, is the center of gravity of K N
H(xs, Nok,(xs)) with respect to the weight

f)
< Noknu(y), Nox (y) >

where H = H (x4, Nok_(25)). See Lemma 2.4.

Proof. We choose sg so small that 2o — rNyk (z9) € K,,. We show first that
there is so that depends only on r and R such that we have for all s with
0<s<sp

\/1 B 2]~22A <maXz€8K f(:c)) nt < (Nox(x0), Nox. (22)) (51)

T mingeox f(x)

where A is the distance of z¢ to the hyperplane H (x5, Nox (x0))
A=< N3K<.’170)7.’170 —Ts > .

Let « denote the angle between Nyk (z9) and Nyg,(zs). From Figure 4.4.1
and 4.4.2 we deduce that the height of the cap

By (xo — rNok (xo),r) N H™ (25, Nok, (5))
is greater than

7(1 —cosa) = r(1 — (Nax (o), Nok, (xs)))-
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Here we use that 1 € K, and xg — rNpx (zg) € Ks,. We have

P (0K N (o, Nok, (2.))) = [ f(@)dpon (2
OKNH~ (zs,Nok, (zs))

> xrgérll( f(z)vol,—1 (0K N H™ (x5, Nok (x5))).

Since BY(xo — rNax (zo),7) C K we get

Pr(OK N H™ (x5, Nox,(z5)))

> xrgél)r}l{ f(z)vol,—1(0B% (xo — rNox (x0),r) N H (xs, Nok, (xs)))

> Irgél)r}l{ f(z)vol,—1 (B3 (xo — rNok (x0),7) N H(xs, Nok_(x5))).

By (zo — rNox (o), 7)

N o — rNok (x0)

Fig. 4.4.1: We see the plane through z( that is spanned by Nyk (xg) and
Nok,(xs). The points x5 and xzp are not necessarily in this plane. Since the
height of the cap is greater than r(1 — cosa) we get

Pr(OK N H™ (s, Nok, (2)))

> : n—1 201 _ 201 2\ 2
Irgérll(f(x)voln,l(Bz ) (2r%(1 = cos @) — r*(1 — cos @) ?)

= min f(@)vola (B3 ) (r2(1 - cos® ) = (52)



330 C. Schiitt and E. Werner

Vs - B3 (x0 — rNax (0),7)

fa S

"o — rNok (z0)

Fig. 4.4.2

On the other hand
s =Pp(0K N H™ (x4, Nok, (5)))

f(@)dpor (x)

/(‘)KOH* (zs,Nok, (Ts))

/ f(@)dpox (x)
OKNH~ (zs,Nok (z0))

< max f(@)vol,,—1 (OK N H™ (zs, Nog (x0))).

Since BY(xg — rNok (z9),r) C K C BY(xo — RNsxk(x0), R) we get for suffi-
ciently small sg
Pr(OK N H™ (s, Nok, (2)))
< max f(2)voly 1 (9B3 (w0 — RN (o), R) N H ™ (s, Noxe (o))

< n—1 "T’l
< max f(x)vol,—1(By ™ ")(2RA) = .

(53)
Since

s = Pf(aK N H_(xs,NaKs (1‘5))) < Pf(aK N H_(l‘s,NaK(l‘o)))
we get by (52) and (53)

xré%rll( f(z)vol,—1(By™") (r*(1 — cos?a)) 2

< max f(x)VOln—l(B;_l)(QRA)nT_l

z€dK



Random Polytopes 331

This implies

2
cosa > \/1 B 2RA (maxzeaK f(gc)) 1.

r2 mingcox f(x)

Thus we have established (51).

The distance of 25 to 0K N H (x5, Nok,(2s)) is greater than the distance
of x5 to OBy (xo — rNok(xo),r) N H(zs, Nok,(zs)). We have |xs — (¢ —
ANyg(x0))|| = Atand. Let Zs be the image of x5 under the orthogonal
projection onto the 2-dimensional plane seen in Figures 4.4.1 and 4.4.2. Then
|Zs — zs]] < Atanf. There is a n — 1-dimensional ball with center Zs and
radius min{||Zs; — us||, ||Zs — vs||} that is contained in K N H(zs, Nok, (xs)).

We can choose sy small enough so that for all s with 0 < s < sg we have
cosa > 1.

tana =

V1 —cos?2a < 2\/2RA (maxmeaKf($)>”11 (54)

cos - r mingecox f(x)

We compute the point of intersection of the line through vs; and Zs and the
line through xy and w,. Formula (54) and the fact that the height of the cap
B2 (xo—7rNax (z0), Nox (20))VH ™ (xs, Nog (70)) is A and its radius 2rA— A?
give further

VA< min{|[Zs — us||, |Zs — vs|[}

where ¢ is a constant depending only on r, R, f,n. Thus KN H (x5, Nok, (x5))
contains a Euclidean ball with center Z, and radius greater ¢v/A. Therefore,
K N H(zs, Nok.(zs)) contains a Euclidean ball with center xz, and radius
greater ¢y/A — Atanf. On the other hand,

KN H(xzs, Nok,(x5)) C By (o — RNok (z9), R) N H(zs, Nok. (zs)).

Following arguments as above we find that KN H (x5, Ngk, (x5)) is contained
in a Euclidean ball with center z, and radius CvA where C is a constant
that depends only on r, R, f, n. Therefore, with new constants ¢, C' we get for
all sequences of signs &

cA"T < vol,_1((K N H(zs, Nok.(z)))?) < CA™T .

Lemma 4.5. Let K be a convez body in R"™ and xg € OK. Let f : 0K — R
be a strictly positive, continuous function with fé)K fdu = 1. For all t with

0<t<T we have K; QIO(. Suppose that there are r, R > 0 with

By (z¢g — rNok (x0),7) C K C BY(zo — RNpk (x0), R)
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and let Nok,(zs) be a normal such that s = Pp(OK N H™ (x5, Nok,(zs))).
Then there is sg that depends only on r, R, and f such that we have for all
s with 0 < s < s

vol,—1 (0K N H™ (x5, Nok_(x5))) < 3 vol,_1(K N H(xs, Nok_ (xs))).

Proof. Since
By (z¢g — rNok (x0),7) C K C BY(zo — RNpk(x0), R)

we can choose A sufficiently small so that we have for all y € 0K N H ™ (z¢ —
ANy (w0), Nok (x0))

< Nok (o), Nox (y) >>1— ¢ (55)

and A depends only on 7 and R. Since f is strictly positive we find sy that
depends only on 7, R, and f such that we have for all s with 0 < s < 59

Kn H(LCS,N(‘)KS (ZL‘S)) CKnN H_((EO — AN@K(LU()),NQK(LCQ)). (56)
By (55) and (56)
< Nog(x0), Nok,(xzs) >> 1 — %
Thus

< Nok, (zs), Nok (y) >
=< Nox (z0), Nox (y) > + < Nox,(xs) — Nox(x0), Nox (y) >
>1— g — [INok., (x5) = Nor (zo)]|
=1-1—1/2-2< N, (xs), Nog (z0) > >1- 3.

Altogether
< Nog, (zs), Nok (y) >>1— 2.

Let py, . (,.) be the metric projection from OKNH™ (x5, Nok,(xs)) onto the
plane H (x4, Nok (x5)). With this we get now

vol,—1 (0K N H™ (s, Nox,(25)))
/ 1

KNH (w2 Nox, (2.)) < Nox. (25), Nox (Dn, . (2 (2) >
< 3 VOln_l(K N H(J?S, NOKS (l‘s)))

dz
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Lemma 4.6. Let K be a convex body in R™ and xqg € OK. x4 is defined
by {xs} = [xo,z7] N K. Let f: 0K — R be a strictly positive, continuous

function with fé)K fdu=1. Forallt with0 <t < T we have K; QI%, Suppose
that there are v, R > 0 such that

BY(xo — rNak (x9),7) € K C By (xg — RNok (20), R)

and let Nok,(zs) be a normal such that s = Pp(0K N H™ (x5, Nok,(2s))).
Then there is so that depends only onr, R, and f such that for all s with 0 <
s < sg there are hyperplanes Hy, ..., H,_1 containing xr and xs such that
the angle between two n — 2-dimensional hyperplanes H; N H(xs, Noxk,(2s))
is 5 and such that for

n—1
0Ky = 0K NH™ (4, Nox, (25)) 0 [ Hy'
=1

and all sequences of signs € and § we have
vol,—1(0Kg,e) < ¢ vol,—1(0Ku,s)

where ¢ depends on n, r, R, f and d(zp,0K) only.

rr

Fig. 4.6.1

Proof. Since xp is an interior point of K we have d(z7,0K) > 0. We choose
Sg so small that

By (z, %d(acT, 0K)) C K. (57)
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We choose hyperplanes H;, ¢ = 1,...,n — 1, such that they contain x7 and
x5 and such that the angles between the hyperplanes H; N H(zs, Nok, (zs)),

ST -
i=1,.,n—11is 3.

By Lemma 4.4 there is sg so that we have for all s with 0 < s < sy and
for all sequences of signs € and

vol,_1 (K N H(zs, Nog. (24)))) < ¢ vol,_1 (K N H(zs, Nogk, (x5)))°)
where ¢ depends only on r, R, and n. Then we have by Lemma 4.5

vol,—1(0Kpm,) <vol,_1(0KNH (x5, Nok,(xs)))
<cvol,—1(K NH(zs, Nok, (z5))).

Therefore we get with a new constant ¢ that depends only on n, f, r and R
vol, 1(0K g ) < ¢ vol,_1((K N H(xs, Nak,(24)))°).

We consider the affine projections ¢ : R” — H(zs, Ngk,(zs)) and p : R" —
H(zs, prs=5Ey) given by q(t(zs — 1) +y) = y where y € H(zs, Nok, (7))
and p(t(xs —z7) +y) = y where y € H(zs, ﬁ) Please note that p is a
metric projection and g o p = ¢. Since p is a metric projection we have

vol,—1(p(0Km,5)) < vol,—1(0Km,s).
q is an affine, bijective map between the two hyperplanes and
qop(0Kns) = q(0Kns) 2 (K N H(zs, Nox, (25)))’.
By this (compare the proof of Lemma 2.7)

VOln_l (6KH,5)
< NZ)KS (Cﬁ's) _Ls—XT

V les—zr|l

> vol,—1(q¢(0KHns))

> vol,—1((K N H(zs, Nox,(75)))°).

By (57) the cosine of the angle between the plane H(xg, Nk, (xs)) and the
1 d(xT,BK)

3 Teasarl Therefore we get

plane orthogonal to x; — xp is greater than

vol,_1 (0K ) > 1 M

> ~—————vol, 1((K N H(xzs, Nok, (25)))°).
2 x5 — |

Lemma 4.7. Let K be a convex body in R™ and xg € OK. x4 is defined
by {zs} = [xo,x7] N K. Let f : 0K — R be a strictly positive, continuous
function with faK fdu = 1. Suppose that there are r, R > 0 such that we have
for all x € OK
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By (x — rNak(x),r) C K C BY(x — RNgk (z), R)

and let Nok,(zs) be a normal such that s = Pp(OK N H™ (x5, Nok,(2s))).
Then there are constants sg, a, and b with 0 < a,b < 1 that depend only on
r, R, and f such that we have for all s with 0 < s < sg and for all N € N
and allk=1,... N

P;V{(xl,...,xNﬂ ZTs & [x1,...,TN], T1,..., 2 € OK N H ™ (x4, Nog_(x5))
and Typi1,...,on € OK NHT (14, Nox. (25))}
< (1= s)N7Fgkan(gN—F 4 pF).

Proof. Let Hy,...,H,_1 be hyperplanes and 0K . as specified in Lemma
4.6:

n—1

OKp.=0KNH (x5, Nog, () N ﬂ HE.
=1

We have by Lemma 4.6 that for all sequences of signs € and §
vol,—1(0Kp,e) < ¢ vol,,—1(0Kpg )
where ¢ depends on n, f, r, R and d(z1,0K). As

{(z1,...,zN)|xs € [21,...,2N]}
2 {(x1,...,xN)|zT € [21, ..., 2N] and [T4, 20] N [T1, ..., 2N] # 0}
we get
{(z1,...,zN)|zs & [71,...,2N]}
C{(z1,...,zN)|xT & [21,...,2N] OT [T, 0] N [T1,...,2N] = 0}

Therefore we get

{(x1,...,2N)| s & [21,...,2N], Z1,...,25 € OK N H (x5, Nok.(zs))
and Tg11,...,2n € OK N H (x4, Nog, (75))}
C{(z1,...,zN)|er ¢ [21,...,2N], Z1,..., 2 € OK N H™ (x5, Nok.(zs))
and Tg11,...,28 € OK N H (2,5, Nog. (7))}
U{(z1,...,zn)|[Tss mo] N [21, .. .yzNn] =0, 21,...,2, €DK N
H™ (x4, Nog,(75)) and py1,...,2x € OK N HT (x4, No, (z5))}

With H, = H(zs, Nok. ()

P}V{(xl,...,acNﬂ s & [x1,...,2N], 21,..., 25 € OK N H (x5, Nok, (zs))
and Tg11,..., 2y € OK N HY (5, Nok. (7))}

<(1—s)NFk ij\fé;;mH;#{(xk+l7~'~7xN)|mT ¢ [Trt1, -, on]}

+(1 =)V PE @) [z wo] O [, @] = 0}
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where we obtain IP’f oxnpm+ from Py by restricting it to the subset OKNHS
and then normalizing it. The same for IP’f oKnH-- Ve have

P}V,e;z]?m{;{(xkﬂ, o an)|er & [Trgs - 2N]} (58)
= ]P;y_k{(xk_i_h...,w]\]”l'T ¢ [:L'k—‘rla"'?xN]}

where f: (K N H* (xs, Nok. (xs))) — R is given by

)

o R AT x € OK N H" (24, Nog, ()
z — S

0 v €K NH(xs, Nox, ().

We apply Lemma 4.3.(ii) to K N H* (24, Nok, (2s)), f, and 27 as the origin.
We get

B {(@hin, o ww)ler ¢ [ong, - on]) (59)
N—k
<2"[1-— min/ f(ff)d/i :
€ JO(KNHT)e

Bg(.ﬁo — TN@K(.’L‘()),’I“) Q K g BS(«TO — RN@K(.TO), R)

Since

we can choose sq sufficiently small so that for all s with 0 < s < s¢

€

min/ f@)dp>c>0
A(KNHH)e

where ¢ depends only on sy and sy can be chosen in such a way that it
depends only on r, R, and f. Indeed, we just have to make sure that the
surface area of the cap K N H ™ (x5, Ny, (zs)) is sufficiently small. We verify
the inequality. Since we have for all x € K

By (x —rNyk(z),r) C K C BY(x — RNyk(z), R)
the point zr is an interior point. We consider
B;(.’ET, %d(a)‘:m 8[())
Then, by considering the metric projection

Q%Voln_l(ﬁBg(zT, %d(QST, 3K)))
= vol,—1 (8B (zr, 3d(xr, 0K))) < vol,_1(dK).

‘We choose now
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So = 2n+1V01n 1(632 («IT72 (IT’aK))) mélll(f( )

Then we get

P (0K N H) / Fa)du(z)

A(KNHT)e

- / f(@)du(x)
A(KNH)e

[ @)~ [
OKe OK<NHg

Since faKemH; flz)dp = s <sg

Bk ) [ F(@)du()

A(KNHT)e

> f(@)dp(z) = so

OKe
> vol,—1(0K°) mén flz)—so

> sArvol,_1(8B3 (vr, 2d(z7,0K))) min_f(z).

T€EOK

We put

a=1- min/ f(z)dpu.
¢ Joa(knHT)e
We get by (58) and (59)

Pj‘ngr\H+{ Thtly - TN)|2T € [Trt1,.. . 2n]} < ongN k.

Moreover, since

337

{(@1,...,2p)| [zs,zo) N (21, ..., 2k A0} D {(z1,...,21)| Ve Ti:a; € OKp e}

we get

{(z1,...,zp)| [zs, o] N1, ..o 2k =0} S {(z1,...,2x)| JeVi:a; ¢ OKp .}

By Lemma 4.6 there is b with 0 < b < 1 so that

P’;aKmH,{(xl,...,xk)|[azs,x0] Nz, .. 2] =0} <2771k
Thus we get
PgK{(ml,...,xNﬂ s & [z1,...,2N], T1,...,2p € OK N H (x5, Nok, (x

and Tgy1,..., 28y € KN H+(xS,N3KS (zs))}
< (1—s)NFgkan(@NF 4 pF).

s))
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Lemma 4.8. Let K be a convex body in R™ and xqg € OK. x4 is defined
by {xs} = [xo,z7] N K. Let f: 0K — R be a strictly positive, continuous
function with fOK fdp = 1. Suppose that there are r, R > 0 such that we have
for all x € OK

By (x —rNyk(z),r) € K C BY(x — RNyk(z), R)

and let Nok,(zs) be a normal such that s = Pp(OK N H™ (x5, Nok,(2s))).
Then there are constants sg, a and b with 0 < a,b < 1 that depend only on
r, R, and f such that we have for all s with 0 < s < sg and for all N € N
and allk=1,... N

PY{(z1,....an)| @s ¢ [21,....an]} <27 (a—as+ )Y +27(1 — s+ bs)

S0, a, and b are as given in Lemma 4.7.

Proof. We have
IP’N{(xl,...,x ) xs & [z1,-..,2N]}

Z( ) M(x1,. . xN)| s & [1,...,2N], T1,..., 2% € OK N

H™ (x4, Nog. (7)) and py1,...,o58 € OK N HT (x4, Nk, (z5))}.
By Lemma 4.7 we get
chv{(xl,...,xNﬂ xs & [x1,...,2N]}

N
<2y <JZ) (1—s)N 7 sk (aN =k 4 p¥)
k=0

=2"(a—as+s)" +2"(1 — s+ bs)V

Lemma 4.9. Let K be a convex body in R™ and xg € K. x5 is defined
by {zs} = [xo, 2] N K. Let f : OK — R be a strictly positive, continuous
Sfunction with faK fdup = 1. Suppose that there are r, R > 0 such that we have
for all x € OK

By (x —rNyk(z),r) C K C BY(x — RNyk(z), R)

and let Nog, (xs) be a normal such that s = Pr(OK N H™ (x5, Nok, (25)))-
Then for all so with 0 < so <T

PN T1,...,ZN)| s & [21,...,2zN]}d (zs)ds
lim N=»—-1 1/ / { 1 )| ¢[ 1 N]} ,U/aKb( ) —0
0K,

e fw)
faKﬂH V1=<Nox, (), Nox (y)>2 dporna, (y)

where Hy = H(xs, Nok, (zs)).
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Proof. Since < Nyk, (:173) Nok(y) ><1

/ PY{(z1,...,aNn)| x5 & [21,. .., 2N]}

dpsr, (xs)ds
f(w) s
ok faKnH \/1 <N8KS(»Ls)NaK(y)>2duaKmHS(y)

PY{( xl,.. Jon)| x5 & [21,. ., 2]}
_mlnIGaKf //8,( vol, 2 (8(K N H(zs, Nox. (5))) dpox, (s)ds.

We observe that there is a constant ¢; > 0 such that
1 = d(0K,0K,,) = inf{||z — x4, |||z € OK, x5, € 0K, }. (60)
If not, there is x5, € 0K N 0K,,. This cannot be because the condition
Vo € 0K : By (x — rNaok(x),r) C K C By (x — RNgk (z), R)

implies that K, is contained in the interior of K. It follows that there is a
constant co > 0 that depends on K and f only such that for all s > sy and
all z, € 0K,

vol,—2(O(K N H(zs, Nog,(25)))) > ca. (61)
Therefore
M(x1,...,oN)| zs & [21,...,2N]}
/) 1 dpok, (zs)ds
K, AN pornm, (Y)
N2t

= comingeor f(x)

/ / Pf{ X1y, TN)| Ts & [21,. .., 2n] ok, (zs)ds.
oK,

Now we apply Lemma 4.3.(ii) to K with =, as the origin. Let
0K (zs) ={xz € OK|Vi=1,...,n:sgn(z(i) — z:(1)) = &}.

With the notation of Lemma 4.3 we get that the latter expression is less than

N
on NwT
/ / — min / flx)dp | dpok, (xs)ds
comingeor f(x) oK, ¢ Joke(z,)

2”Nn71
< - x
comingeor f(x

/ /aK (1— min f(z )meinVOIn1(3K6(xs))>NduaKS(xs)ds

z€0K
2”N"*1V01n,1(aK)(T — 80)

co mingeox f(x)

IN

N
(l—rrgérll(f(a:) SO;I;ETmlnvoln 1(0K¢ (3:3))) .
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y (60) the ball with center z, and radius ¢; is contained in K
27 mvol, 1 (OBY) = ¢ tvol,_1 (8(BY)¢) < vol,_1 (0K (xy)).
Thus we obtain

{(z1,...,x Ts & |T1,...,T
N1 1/ / - N()y‘) ¢ Lo all dpok, (zs)ds  (62)
oK, faKmH Vi <N(%)N(y)>2dMaKmHs Yy

_ 2" N w21 vol,_1 (OK)(T — so) (1
- co mingeor f()

N
— min f(z)c} 12_"Voln_1(8B§))> .

r€OK

Since f is strictly positive the latter expression tends to 0 for IV to infinity.
O

Lemma 4.10. Let K be a convex body in R™ and x¢ € OK. Let x5 € 0K
be given by the equation {xs} = [xo,xr] N OK,. Suppose that there are r, R
with 0 < r, R < 0o and

By (zg — rNok(x0),7) € K C BY (20 — RNsk (x0), R).

Let f : 0K — R be a strictly positive, continuous function with faK fdp=1.

Suppose that for all t with 0 < t < T we have K Q[%. Let the normals
Nok.(zs) be such that

s = Pf(aK N H_(CL‘S, Nox, (375)))

Let © be the angle between Nyk (xg) and g — xp and sg the minimum of

s "3 (mingeox f())° e med (1 3 oS
2 (8R) max,eox f(x) vol,—1(By ™ )r (4cos 9)

and the constant C(r, R, f,0,n) of Lemma 4.4. Then we have for all s with
0<s<sogandally e OKNH (x5, Nok,(zs))

\/1— < NaKS(xS)’NE)K(y) >2 < 30R < S MaXyzchK f(l’) )) n—1 .

2\ (mingeax f(x))° vol,_1 (By

Proof. O is the angle between Npk (xo) and 2o — x7. Let A,.(s) be the height
of the cap
By (xg — rNak (xo),7) N H (x4, Nok,(x5))

and Ag(s) the one of

BY(zo — RNak (x0), R)N H™ (x4, Nok, (x5)).
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By assumption

89 <

N[

n—1 . 2 n—1
() " o g e o) (9

7‘

Zo

Nor (y)

H(zs, Nok (20))

T

Fig. 4.10.1

First we want to make sure that for s with 0 < s < sp the number A,.(s)
is well-defined, i.e. the above cap is not the empty set. For this we have to
show that H(zs, Nok,(xs)) intersects BY (xg — rNok (zo),r). It is enough to
show that for all s with 0 < s < sy we have x; € BY (29 — rNgx (o), 7). This
follows provided that there is sg such that for all s with 0 < s < sq

|zg — z5]| < $rcos®O. (64)

See Figure 4.10.2. We are going to verify this inequality. We consider the
point z € [z7, zo] with ||zg — z|| = 47 cos®> ©. Let H be any hyperplane with
z € H. Then

Pr(OKNH™) = /

f(@)dpok (x) > (min f(m)) vol,_1 (0K N H™).
OKNH—

r€OK

The set K N H~ contains a cap of BY (zg — rNox (o), r) with height greater
than 27 cos? ©. We verify this. By Figure 4.10.3 we have
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Zo

i

20 — rNok (x0)

o

Zo

P lrcos®O

| : _
K ircos’©sin®
)

29 — 7 Nok (o)

Fig. 4.10.3

|z — (xo — rNok (z0)|| = \/|7" — 1rcos? ©2 4+ 1r2 cost Osin® O

= \/r2 —r2cos3 @ + irz cosb O + %r2 cost Osin? ©

= \/7"2 — 12 cos® O + 112 cost ©

Sm/l—%cos?’@.

Therefore the height of a cap is greater than

r— ||z — (g — *Nok (zo)|| > r <1 —4/1— 3 cos? 8) > %rcos?’ o.

By Lemma 1.3 a cap of a Euclidean ball of radius r with height h = %7’ cos® O
has surface area greater than
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. h2\ T
vol,_1 (B Hr"z <2h - —>
"

—1

2

n—1

= vol,_1(By Hr"z (37 cos® © — &rcos® O)
pnt (i cos® 9) 2

> vol,,_1(By~!

By our choice of sg (63) we get

n—1
P;(OKNH™) > <ré1g]1( f(x)) vol,_1(By~Hr* ! (Leos® @) T > s.
Therefore we have for all s with 0 < s < sg that z € K,,. By convexity we
get
OKs N [z, 20) # 0.

Thus (64) is shown.
Next we show that for all s with 0 < s < sg we have

8R < max,cok f()

——— | s -1 N, X ,N ).
3rs (minmeaKf(x))Qvoln_l(Bg—l)) < (Nox(z0), Nox, (7s))

(65)
By the same consideration for showing (64) we get for all s with 0 < s < s
An(s) < 3rcos® O
and by Lemma 1.3

s =Py(0K N H (zs, Nok, (2)))

1

> (min f(x)) vol,_1(By~Y)yr e (2AT(S) e

T€EOK
Since A,(s) < 3rcos® ©

s > (min f(x)) voln_l(Bg_l)r%1 (QAT(S) — Ar(s)g cos® 8)%1

z€0K

n—1

> (min f(w)) volo_1 (B3 1) (rAu(s)) 2.

r€OK

Thus we have

—1

5> <min f(x)) vol,,_1(By 1) (rAn(s) =

r€0K

or equivalently
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S

2

Thus

1 T
An(s) < = . 66
(5) < T <minm€8K f(x)voln_l(BS_l)) (66)
Next we show
3A(s) < Ay(s)
where A(s) is the distance of xg to the hyperplane H (x4, Nox (o))
A(s) =< Npg(xg), 0 — s > .
Lo
Al tan | H(z., Nox (x0))
- Fig. 4.10.4
By the Pythagorean Theorem, see Figure 4.10.4,
(r—A.(s))* = (r — A(s))* + (A(s) tan ©)*.
An(s) =7 —+/(r— A(s)2 + (A(s) tan )2
1

=7 (1 - \/1 - T—2(27’A(8) — A2(s) — (A(s) tan 8)2)> .
We use \/l—tgl—%t

An(s) > 2i (2rA(s) — A%(s) — (A(s) tan ©)?)

r
A,
— A(s) [ -1 T(S)(l + tan? @)} .

By (64) we get A(s) = ||xg—| cos © < 7 cos® © and thus A(s) < Frcos® O.

With this
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An(s) = A(s) [1 - %ATT(S) (1 + tan? 9)}
= A, (s) [1 — %(1 + tan® ©)1r cos® (9]

= A (s) [l — 2cos* O] > 3A,(s).

By formula (51) of the proof of Lemma 4.4 we have

\/1 Ry (maxzeaK f(x)) " < (Nar(w0), Nox (2.)).

r mingecox f(x)

By 3A(s) < Ay (s)

\/1 B S8RA,(s) (maXageé)K f(:c))nl < (Nox(z0), Nok. () .

3r? mingeox f()

By (66) we get

\J L8R <S( maxgeox f(z) > . < (Nox (z0), Nok, (2s)) -

3\ (mingeor f(2))” vol,—1(B5 )

Thus we have shown (65).
Next we show that for all y € 0BY (xo—RNaxk (x0), R)NH (x5, Nok,(xs))

Ar(s) y — (ro — RNok (20))
T lly — (xo — RNok (x0))| > . (67)

For this we show first that for all s with 0 < s < sq

1—

< <N8Ks (@s),

Ag(s) < ?Ar(s). (68)

By our choice (63) of sg and by (65)

(Nok, (25, Nox (20)) = /1 — & cos? ©

and by (64) we have ||z — zo|| < 47 cos® ©. Therefore we have for all s with
0 < s < sg that the hyperplane H(zs, Nok, (zs)) intersects the line segment

[.’130, Tro — TN@K(xo)].
Let r1 be the distance of x( to the point defined by the intersection
[0, 20 — " Nok (x0)] N H(zs, Nok, (xs)).

We get by Figure 4.10.5
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r—A(s)  r—mnr r

R—Ag(s) R—-r, — R

The right hand side inequality follows from the monotonicity of the function

(r—1t)/(R—1).

)

H(xs, Nox, (5))

B3 (xg — RNak (x0), R)

P

.- ".‘ B3 (xg — rNak (o), 1)

Y 20 — rNok (o),

* 29 — RNsk (z0)

Fig. 4.10.5

Thus
r—A.(s) <

and therefore ,
EAR(S) < A,(s).

For all y € 0BY(xo — RNsx(x0), R) N H (x5, Nok, (zs)) the cosine of the
angle between Nyg_ (z5) and y — (zo — RNpk (z9)) is greater than 1 — ART(S).
This holds since y is an element of a cap of a Euclidean ball with radius R

and with height Ag(s). Thus we have

AR(s) y— (l'O — RN@K(xO))
1— R < <N6Ks (2s), lly — (o — RNax (x0))]] > .
By (68)
AT(S) y—(:L' —RNB (:E ))
1— " < <N8Ks (zs), ly — (332 — RNai(mz))|>

and we have verified (67).
We show now that this inequality implies that for all s with 0 < s < s¢
and all Y€ aBg(fco - RNBK(xO)v R) n Hi(xsa NBKS (xs))

y — (xo — rNax (0)) >
ly — (0 — rNox (z0))|| /

R2
1= 4,0) 5 < (Mo a2)

(69)
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Let « be the angle between Ny (zs) and y — (xo — RNk (x0)) and let § be
the angle between Npg_ (zs) and y — (zo — rNak (20)).

— (IO — RN@K(I())) >
— (z0 — RNox (o)) ||
— (mo — rNok (0)) >
—( i

a=|ly — (zo — Nox (z0))] b=y — zol|-
See Figure 4.10.6.

y
lly

cosa = <N3KS (xs),

cosf3 = <N3K§(xs), y

”y SUO—TNaK(;UO

We put

s

)|

B3 (ro — RNyx (0), R)

B (xo — rNok (o), r)

1 2o — rNok (o) b
“ R
i z9 — RNy (o) «\\(y
Fig. 2.10.6

By elementary trigonometric formulas we get
b = 2R*(1 — cos ) b? = a® +r? — 2ar cos 3
and
a>=R*+(R—r)> —2R(R—r)cosa =1+ 2R(R —7)(1 — cos a).
From these equations we get

a® 412~  a®+r2 —2R*(1—cosa)

cosf = 2ar o 2ar
B 2r2 — 2Rr(1 — cos @) B r— R(1 — cosa)
212+ 2R(R—r)(1 —cosa) /r2+2R(R—r)(1 —cosa)
Thus

1—£(1-cosa)

\/1 +2R(E - L1 - cosa).

cos 3 =
r2 r

A, (s)

T

By (67) we have 1 — cosax < and therefore
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1 _ BA() 1 — BAL)
cosf3 > r2 2
N s R _ 1\A.(9)
1+ 2r(3 - Ha0 T 1+ R - DA
B A(s) R2
=1- T?}{ 1A(s)21_—3AT(5)
1+ R(:% — )=

Thus we have proved (69). From (69) it follows now easily that for all s with
0<s<spandally € 0K NH (x5, Nok, (x5))

y — (zo — rNok (20)) >
ly — (z0 — rNox (z0))|| /

R2
1= 4,0) 5 < (o a2)

(70)

This follows because the cap K N H™ (x5, Nok, (x5)) is contained in the cap
By (xo — RNgk (z0), R) N H™ (x5, Nok_(2s)). Using now (66)

2 n—1
2 ( | : _ ) (71)
rt \mingeox f(z)vol,_1(By ")

y — (o — rNok (z9))
< <N6KS (2s), lly — (z0 — *Nog (z0))|| > '

For all s with 0 < s < s¢p and all y € 0K N H™ (zs, Nok,(zs)) the angle
between y — (zg — rNak (x0)) and Ny (y) cannot be greater than the angle
between y — (2o — rNok (z9)) and Nyg (x¢). This follows from Figure 4.10.7.

Zo

B3 (xg — RNak (x9), R)
B (zg — rNok (o), 1)

@ — Nk (20)

Fig. 4.10.7

A supporting hyperplane of K through y cannot intersect BY(xg —
rNor (x0),r). Therefore the angle between y — (zg — rNaox (20)) and Ny (y)
is smaller than the angle between y — (g — rNax (20)) and the normal of a
supporting hyperplane of BY(xo — rNak (xo),r) that contains y.

Let o denote the angle between Nyk (xg) and Nyk_ (xs), ao the angle be-
tween Ny, (zs) and y— (xg — 7Nk (z0)), and a3 the angle between Ny (z0)
and y — (xo — rNaxr (x0)). Then by (65) and (71) we have
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a3 <ap+ap < Zsinag + §sinas

SR ( maxgeox f(x) ) o
(

z s
2V 3r3 ' (mingepx f(x))? vol,_1 (By 1)

IN

1

b ()
V272 \ mingepx f(z)vol,_ 1 (B 1)

1

< 1052 <s maxyeox f(2) >n1 .
2\ )

mingecgx f(m))2 vol,,—1 (B3

349

Let ay be the angle between Nyk (y) and y — (xo — rNax (x0)). By the above

consideration a4 < «3. Thus

oy < i (8( maxgeor f(2) > '

2\ (mingeox f(z))* vol,_1(BE™Y)

Let as be the angle between Ny (zs) and Ngk (y). Then

sinas < a5 < az+ oy

< 10l <S< maxzeox f () ) o

r2 mingeyx f(x))2 vol, _1(By™h)
i 8 )"
V272 \ mingegx f(x)vol,_1(By~1)
< 3052 §— maXzGBZK f(il') — )
e\ (mingeok f(@))” voln—1(B3 ™)

Lemma 4.11. Let K be a convex body in R"™ and x¢g € K. Let f : 0K — R
be a strictly positive, continuous function with faK fdu = 1. Assume that for

all t with 0 <t <T we have K; QI%. Let x4 € 0K, be given by the equation
{zs} = [x0, 7] N K. Suppose that there are r, R with 0 < r, R < oo and

By (xg — rNak (x0),7) C K C BY(xog — RNsk (x0), R).
Let the normals Npg_ (xs) be such that
s =P;(0OK N H™ (x5, Nox,(xs)))-

Let sy be as in Lemma 4.10. Then we have for all s with 0 < s < s¢
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/ : dporn, )
HOKNH Y
ornH, \/1— < Nok_(xs), Nok (y) >2
2

2 _ _2
o ™ (mingeor f(2) ™ (volu-1(By ) TT acs
- BT max,cor f ()

where ¢ is an absolute constant and Hy = H (x5, Nok, (zs)).

Proof. By Lemma 4.10 we have
/ 1
ornm, \/1— < Nok_(xs), Nok (y) >2

> 7"2 (miﬂxeaK f(l‘))Q VOln—l(B;L_l)
— 30R s maxgear f(x)

dpornm, (v)

) vol,_2 (0K N Hy)

r? ((minmeaK flx))? V01n1(331)> ey

>
— 30R s maxgeor f(x)
xv0ly,_2(0BY (xg — rNox (xo), ) N Hy). (72)

Now we estimate the radius of the n — 1-dimensional Euclidean ball B (zo —
rNor (x0),r) N Hs from below. As in Lemma 4.10 A,(s) is the height of the
cap

By (xo — rNok (xo),r) N H™ (25, Nok,. (s))

and Apg(s) the one of
By (xo — RNok (z0), R) N H™ (x4, Nox_(x5)).
By (68) we have Ag(s) < £A,(s). Moreover,
s =Py(0K NH™ (x5, Nok,(xs)))

— [ i@)duanle) < max fovol, (0K NH). (73)
OKNHS r€OK

Since K N H; C By (xo — RNgk (z0), R) N H; we have

vol, 1 (0K NH;) <wvol,_1(0(KNH))
< wvol,_1(0(Bf (xg — RNak (x0), R)yN H,))

S

S 2v01n,1(835”(330 — RNaK(.’Eo),R) N H_).

S

By Lemma 1.3 we get

n—1

%Voln_l(Bg‘l)(2RﬂR<5” T

vol,_1 (0K NH;) < 2\/1 +
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As we have seen in the proof of Lemma 4.10 we have A, (s) < 1r. Together
with Ag(s) < LA, (s) we get Agr(s) < R. This gives us

n—1

vol,_1 (0K N HT) < 2vV/5vol,_1 (BY 1) (2RAR(s)) =

and

R vol,_1 (9K N HS)> =
.

1
A, > A 2 on
(5) = R(S) — 2R <2\/5V017L—1(BS_1)

1 s n—1
> - .
~— 2R (Zﬁvolnl(Bgl)maXzeaK f(x))

By this and by A,(s) < 1r the radius of Bf (zo —rNgk (o), ) N H, is greater
than

V2rA(s) — Ap(s)2 > /1A (s)

1

r s n—T
= V2R (2\/5_>V01n1(331) maXycK f(ﬂf)) -

Therefore, by (72)

1
/aKan V1= < Nox, (5), Nox (y) >2

r2 ((minmeaK F(x))?vol,_1(ByY)

dpornm, (y)

n—1
> l,_o(0By
~ 30R s maxgzeor f(x) > voln—2(9B5™")

n—2
S

<\/;R>n_2 <2‘/5V°1"—1(Bg_1)maxxea;< f(:c)) o )

By (73) the latter expression is greater than or equal to

2. _
o r (minzeaK f(fL')) n=l (VOlnfl(B;‘ 1)) n-1 g

R max,eox f(x)

where c is an absolute constant. 0O

Lemma 4.12. Let K be a convex body in R™ and x¢g € K. Let f : 0K — R
be a strictly positive, continuous function with faK fdu = 1. Assume that for

all t with 0 <t <T we have K; QI%. Let x4 € 0K, be given by the equation
{zs} = [x0,x7] N K. Suppose that there are r, R with 0 < r, R < oo and

By (z¢g — rNok(x0),7) C K C BY (20 — RNsk (20), R).
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Let the normals Npg_(xs) be such that
s =Pr(0K N H™ (x5, Nok,(xs)))-

Let sg be as in Lemma 4.10. Let 8 be such that By (xp,8) C Ky, € K C
By (zr, %) and let Hy = H(zs, Nok.(xs)). Then there are constants a and b
with 0 < a,b < 1 that depend only on r, R, and f such that we have for all
N

Nt S0 ]PN{ 1'1,.. ,‘TN)‘LC5¢[ZE1,...,‘TN]}
fy)duaxnuy) (y)
1-<Noxk, (ms),Nax(y)>2)%
(llxs — 7 |>n < g — 27, Nor (20) >
lzo — 7l ) <xs— 27, Nok,(zs) >

fa(KmH ) {

R ' maxgeon f(z) [(1 )T 4 (1 by
<cn S|
B2 (mingepx f(x))»"

where ¢, is a constant that depends only on the dimension n. The constants
a and b are the same as in Lemma 4.8. They depend only onn, r, R and f.

Lemma 4.12 provides an uniform estimate. The constants do not depend
on the boundary point xg.

Proof. As in Lemma 4.10 © denotes the angle between the vectors Ny (o)
and xg — xp. Oy is the angle between the vectors Npk,_ (zs) and x5 — xp
which is the same as the angle between Nk, (xs) and zo — xr. Thus
< % Nok (o) >= cos© and < %,NM( (xs) >= cosO;. By
Lemma 2.3.(ii) K, has volume strictly greater than 0 if we choose s small
enough. Since K; CK the point z7 is an interior point of K. For small enough
so the set K, has nonempty interior and therefore there is a 3 > 0 such that

Bg(mT7ﬁ) g KSO g K g B;L(Z‘T, %)

Then for all s with 0 < 5 < 59

3 < <5”0 NaK(x0)> <1 and B%< <W,Naxs(xs)> <1

|0 — x|’ s — |

Thus

l|lzs — x| < 20 — 27, Nok (z0) > < 1
lzo — ar|| < s — x7, Nok, (x5) > = B*

Ty—T
Ag I | <1,

lzo—z ]
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- F(y)dpaxnmg) (v) .

Nok, (zs),Nor (y)>2)2

<||.179 — I'TH)n <xoy—2IT, NaK(ZCo) >
|lzo —z7| ) <axs— 21, Nok,(xs) >

s 1 [S0 P;V{(ml,...,xgvﬂa:sgé[ml,...,xgv]}
/

5 [0 P}V{(xh...,xNﬂxs¢[x17...,wN]}
v |

fB(KﬂHs) (1<

ds

= Nw F Dot @) ds.

SN
Nok,(xs),Nok (y)>2)

Wl

fa(KOHs) (1—<
By Lemma 4.8 and Lemma 4.11 the last expression is less than

N R maxgear f(2)
_2 _ _2
B2enrn (mingeax f(x))77 (vol,_1 (By 1)) 7

S0 .
></ [2" (a—as+s)N+2"(1—8+bs)N} s ATids.
0

(74)

We estimate now the integral

3

/ {2”(a—a5+s)N+2"(1ferbs)N] s n-1ds
0
So _ n—
- zn/ = (1—a)(1—s)Ns 53 4 [1 = (1= b)s]¥s™ 50 ds.
0

For sy < 1 (we may assume this) we have 1 — (1 —a)(1 —s) <1— (1 —a)s.
Therefore the above expression is smaller than

S0 _ n—
2n/ [1—(1—a)s]Vs 5=t +[1 — (1 —b)s|Vs =1ds
0
2 (1_0‘)(0 n—3
:2"(1—@)_ﬁ/ [1—s]Ns n=1ds
0

5 (171))50 n_3
+2”(17b)7ﬁ/ [1—s]Ns n-1ds.
0

Since sg < % and 0 < a,b < 1 the last expression is smaller than

2" [(1 —a) T 4+ (1 b)‘%} B (N +1, %)

where B denotes the Beta function. We have

I
i L@+ )

e I(z)

%=1

Thus
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. 2
ngnooB(N +1,2) (N + 1)t

I'(N+1)I'(:%)

= li N +1)71 = (-2
NEHOOF(N+1+%)( ) =)

n—1

and )
(-2

BV 41,2 <ot D),
n- N1

We get

So _3
/ [2" (a—as+s)N+2n(l—s+bs)N} sTn1ds
0

(-2
<on [(1 —a) T 4 (1 — b)’nil} 92+ 7y ("7;1)
Nt

Therefore, by (74)

F(y)dpaxnm,) (y)
—(<N(2s),N(y)>)2)2

s /50 ]P’jcv{(l‘h...,x]vﬂ xs & [x1,...,2N]}
0

fa(KnHS) (1

<|xs —xTH)” <o r Aowelto)

||130—17T|| < Ts _xTaNaKs(‘TS) >

< N R ' max,eox f(x)

= A 2 n—1\y 2

Fenrm (mingeor f(w)) 7T (vol, 1 (By )™
(-2
2" [(1— )77 4 (1 - b)~ 77| 22 Mazx)

N=»n-1

With a new constant ¢, that depends only on the dimension n the last ex-
pression is less than

Rr-1 MaXgcdK f(.’lj) {(1 — a)_% + (1 _ b)—%}
B2r™ (mingesr f(x))% )

Cn

Lemma 4.13. Let K be a convez body in R"™ and o € OK. Let f : 0K — R
be a strictly positive, continuous function with faK fdu = 1. Assume that for

all t with 0 <t < T we have Ky Q[o(. Let s € 0K be given by the equation
{zs} = [x0,x7] N OK. Suppose that there are r, R with 0 < r, R < oo and

BY(xg — rNag (x9),r) C K C BY(xg — RNpk (x0), R).

Let the normals Npk_ (zs) be such that
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s=P;(OK N H (x5, Nox,(xs))).

Let so be as in Lemma 4.10. Then there are c1,ca,c3 > 0, No, and ug such
that we have for all w > ug and N > Ny

N / PY{(z1,. ., an)| @5 & [21,. ., 2n]} ey
>~ C1 )
faKﬂH Vi- <N0Kf((;i)) NdK(y)>2dMaKﬂHs (y)

where Hy = H(xs, Nok,(xs)). The constants ug, Ny, c1, c2 and c3 depend
only onn, r, R and f.

Proof. First we estimate the integral from s to & . As in the proof of Lemma
4.12 we show

2 PY{(z1,...,an)| x5 & [21,. .., 2N}
A Jox

fy) d
NH, V1-<Nox, (2:),Nox (y)>2 N@KﬁHs(y)

R 'max,cox f(2)

620"T” (mingeon f(2))7 (vol,_y (By 1))t

2 2 so n—3
2" {(l—a)_m —|—(1—b)_m} /u [1—s]Ns™n=1ds.

ds

SN

We estimate the integral

so n—3 50 n-—3 2 soN n—3

/ [1—s]Ns n-1ds < / e *Ngmn=1ds = N~ a1 / e %s m=1ds.
u u
+ + u

N N

If we require that ug > 1 then the last expression is not greater than

) soN 0o )
N_ﬁ/ e °ds < N n- = / e °ds =N n-1e ",
u u

Thus
{(z1,...,2N)| ©s & [21,..., 2
Nn / 1 N()y\) ¢ [z1 ~l} ds
faKﬂHs \/1 <Nokg(zs),Nok (y)>? d,UBKﬂH (y)

< R lmaxweaK f(x)
iy 2
F2enrm (mingeox f(2))™ T (vol,—1(By ™))
x2™ (1 — a)fﬁ +(1- b)fﬁ e "

Now we estimate the integral from sg to T

N T PN{(ﬂcl,... aN)| xs € [x1,...,2N]} 1
so J; Lo dpornm, (y) >
° JOKNH, \/1 <Nok,(xs),Nox (y)>?2 nH.
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The same arguments that we have used in the proof of Lemma 4.9 in order
to show formula (62) give that the latter expression is less than

2" N Tvol,_1 (OK)(T — so) (

N
- 1— min f(z)c? 27 "vol,_1 (0B}
o Milgey F(I’) f( ) 1 1( 2 )))

0K

where c; is the distance between 0K and 0K,. Choosing now new constants
c1 and ¢y finishes the proof. O

Lemma 4.14. Let H be a hyperplane in R™ that contains 0. Then in both
halfspaces there is a 2™-tant i.e. there is a sequence of signs 6 such that

{z|Vi,1 <i<n:sgn(z;) =06;}.

Moreover, if HT is the halfspace that contains the above set then

HY C U{m|sgn(xz) =0;}.

i=1

The following lemma, is an extension of a localization principle introduced
by Bérany [Bal] for random polytopes whose vertices are chosen from the in-
side of the convex body. The measure in that case is the normalized Lebesgue
measure on the convex body.

For large numbers N of chosen points the probability that a point is
an element of a random polytope is almost 1 provided that this point is
not too close to the boundary. So it leaves us to compute the probability
for those points that are in the vicinity of the boundary. The localization
principle now says that in order to compute the probability that a point
close to the boundary is contained in a random polytope it is enough to
consider only those points that are in a small neighborhood of the point
under consideration. As a neighborhood we choose a cap of the convex body.

The arguments are similar to the ones used in [Schl].

Lemma 4.15. Let K be a convez body in R™ and xq € 0K . Suppose that the
indicatriz of Dupin exists at xo and is an ellipsoid (and not a cylinder with
a base that is an ellipsoid). Let f : 0K — R be a continuous, strictly positive
function with faK fduporx = 1. Assume that for all t with 0 <t < T we have

K Q[O(. We define the point xs by {xs} =[x, x0] N OKs and
A(s) =< Nag (x9), 20 — x5 >

is the distance between the planes H(xo, Nox (z0)) and H(xs, Nok (z9)). Sup-
pose that there are r, R with 0 < r, R < co and
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By (xg — rNak (x0),r) € K C BY(xog — RNsk (x0), R).

Then, there is co such that for all ¢ with ¢ > ¢y and b with b > 2 there is
Sep > 0 such that we have for all s with 0 < s < s and for all N € N with

N Z %Voln_l(aK)
that

|]P’}V{(x1,...,acN)\ Zs & [x1,...,2N]} —
Y (a1, .o ow)| @ & [0, on} 0 HO])]
< 2" Lexp(—FVe)
where H = H(zg — cA(s)Nox (x0), Nok (x0)) and ¢; = ¢1(n) is a constant
that only depends on the dimension n.

In particular, for all € > 0 and all k € N there is Ny € N such that we
have for all N > Ny and all z € [zg, zT]

|]P’}V{(x1,...,xN)| Ts & [T1,...,2zN]} —

Pi‘y+k{($1,...,$N+k)| Ts ¢ [.’L‘17...,1‘N+k]}’ <e.

The numbers s.; may depend on the boundary points .

H(zo — AN(z9), N(20))

H(zo — ¢AN(xg), N(z0))

Fig. 4.15.1

Subsequently we apply Lemma 4.15 to a situation where b is already given
and we choose ¢ sufficiently big so that

2" exp(—9/0)

is as small as we desire.
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Proof. Let ¢ and b be given. Since f is continuous for any given € > 0 we
can choose s.p so small that we have for all s with 0 < s < s.; and all
x € 0K NH™ (¢ — cA(s)Nox (x0), Nor (x0))

|f(x) = fzo)| <e

We may assume that xg = 0, Nog (x¢) = —e,,. Let
n—1 s 2 T 2
Sz{xeR” SIE + —”—1‘ gl}
- a; (079
=1
be the standard approximating ellipsoid at zy (see Lemma 1.2). Thus the
principal axes are multiples of e;, i = 1,...,n.

We define the operator 7}, : R — R"
Th(x1,. . xn) = (MT1, ..., NTp_1,Tn).
By Lemma 1.2 for any € > 0 we may choose s.; so small that we have

Ti—(ENH™ (w9 — cA(Sep) Nox (20), Nor (x0)))
C KNH (xg— cA(scp)Nor (x0), Nor (x0)) (75)
CTi+e(ENH (g — cA(Scp)Nok (20), Nok (20)))-

For s with 0 < s < s.; we denote the lengths of the principal axes of the
n — 1-dimensional ellipsoid

T14c(E) N H(xo — cA(s)Nor (20), Nox (70)))

by Ai, ¢ =1,...,n — 1, so that the principal axes are \;e;, i = 1,...,n — 1.
We may assume (for technical reasons) that for all s with 0 < s < s

2o — cA(s)Nok (o) £ Aie; ¢ K i=1,...,n—1. (76)

This is done by choosing (if necessary) a slightly bigger e.
For any sequence © = (6,)"_; of signs ©; = £1 we put

corng (0) = K N HY (x5, Nox (70)) (77)

ﬂ{ ﬁ H (25,(0; < zg,6; > —N;)en + Oi(c — l)A(s)ei)}.

i=1
We have

corng (©) C H™ (xg — cA(s)Nok (x0), Nok (z0))- (78)
We refer to these sets as corner sets (see Figure 4.15.2). The hyperplanes

H(zs,(0; < 5,6, > —Ai)en +O;(c—1)A(s)e;)
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H(zg — AN (), N(xo))

H(xo — ¢AN(z0), N(z0))

Fig. 4.15.2: The shaded area is corng (O).

O;=x1landi=1,...,n—1 are chosen in such a way that =5 and
xo + O;\ie; + cA(s)e, = O;Me; + cA(s)en

(zp = 0) are elements of the hyperplanes. We check this. By definition z; is
an element of this hyperplane. We have

< X5, (0; < s, 65 > —Nj)en + Oi(c — 1) A(s)e; >
=(0; < xs,e; > —\;) < X, > +O;(c — 1)A(S) < xg,€; > .

Since Npg(xo) = —e, we have A(s) =< xg, e, > and
< Ts, (O; < s, €, > —Nj)en + O;(c—1)A(s)e; >
=(0; <z, > —X)A(s) + Oi(c — DA(s) < x5, €; >
= A(8){(O; < xs,6; > =X\) +Oi(c—1) < x5,e; >}
= A(s){-\i + Oic < zs,e; >}

and
< O ie; + cA(s)en, (O; < x5, e, > —Aj)en + Oi(c — 1)A(s)e; >
= A(e—=1D)A(s) + cA(s)(O; < xs,€; > —)\;)
= —NA(S) + O,cA(s) < Tg,e5 > .
These two equalities show that for all ¢ withi=1,...,n—1

O;Xie; + cA(s)e, € H(xs, (0; < Ts,e; > —Nj)en + Oi(c — 1) A(s)e;).

We conclude that for all ¢ with i =1,...,n—1and all 5,0 < s < 5.5,



360 C. Schiitt and E. Werner
KN HY (20— cA(s)Npg (70), Nox (20)) (79)
NH ™ (25, (0; < x5,6; > —Ai)en + O;(c — 1) A(s)e;) = 0.
We verify this. Since
o+ O hie; + cA(s)e, € H(zs, (0; < xs,6, > —Aj)en + Oi(c — 1)A(s)e;)
we have

H(xo — cA(s)Nok (z0), Nox (x0))
NH (s, (0; < x5,6; > —\j)en + Oi(c — 1)A(s)e;)

=q xo+ O;\ie; + cA(s)e, + Z ajejla; €R
J#in
On the other hand, by (75)
KnNnH™ (1‘0 — CA(SC’b)NaK({,E()),NaK(C,Eo))
CTi+e(ENH (w0 — cA(scp)Nok (20), Nok (70)))
and by (76)
xo—CA(S)NaK($0)+/\i€i¢K t=1,....,n—1.
From this we conclude that
H(zg — cA(s)Nak (x0))
NH (zs,(0; < xs,e; > —Nj)en +Oi(c—1)A(s)e;)) N K = 0.

Using this fact and the convexity of K we deduce (78).
We want to show now that we have for all s with 0 < s < s.; and
H= H(Z‘o — CA(S)N@K(J?()), N@K(xo))
{(z1,...,zN)| s & [{z1,..., 2N} N H ]} (80)
(@1, 2| 2o & [0, 2]}
={(z1,...,aN)| ©s ¢ {z1,...,2n} N H ] and x5 € [21,...,2N]}
< H(@1,....an) 21, 2y € OK \ corng (O)}.
e

In order to do this we show first that for H = H(xg—cA(s)Nox (z0), Nox (x0))

we have

{(z1,...,zN)| s & [{z1,...,on} N H ] and x5 € [x1,...,2N]} (81)
C {(z1,...,2n)|3H,,  hyperplane : z, € Hy ,H, NKNHT #(

and {z1,...,ay}NH™ CH", }.
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We show this now. We have x4 ¢ [{z1,...,ex}NH ] and x5 € [z1,...,2N].

We observe that there is z € KN HT (zg — c¢A(s)Nak (x0), Nox (o)) such
that

[z,zs] N [{z1, ..., 2Nt NV H (xg — cA(s)Nak (x0), Nok (z0))] = 0.  (82)

We verify this. Assume that z1...,2, € H™ (xg — cA(s)Nok (x0), Nox (x0))

[e]
and Tg41...,on €EH' (zo—cA(8)Nok (7o), Nok (70)). Since s € [71,...,TN]
there are nonnegative numbers a;, i = 1,..., N, with vazl a; =1 and
N
Trs = Z a;T;.
i=1
Since x5 ¢ [{x1,...,zn} N H~] we have Zivzk_H a; > 0 and since z, €
H~(xg — A(s)Nok (x0), Nok (z0)) we have Zle a; > 0. Now we choose
k N
Zi:l aixq Zi:k-i-l a;T;
y=""— and z==x
D1 @i Zi:kJrl @;
Thus we have y € [z1,...,%k], 2 € [Tkt1,---,TN], and

zs=ay+ (1 —a)z

k
where a = )77 | a;.

Fig. 4153
We claim that [z, 25]N[z1, ..., 2] = 0. Suppose this is not the case. Then
there is v € [z,x4] with v € [21,...,2,]. We have v # z and v # x4. Thus

there is f with 0 < 8 < 1 and v = 8z + (1 — )xs. Therefore we get

v= P+ (1- By = Blisws — 12%5y) + (1 — o, = 2tely, — ody
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and thus
_ 1= af
Ts = 1—04-1(-10451) + 1—a+a6y'
Thus z; is a convex combination of y and v. Since v € [z1,...,z] and y €
[x1,...,2%] we conclude that x5 € [x1,...,2;] which is not true. Therefore

we have reached a contradiction and
[z, 2] N [21, ..., 2] = 0.

We have verified (82).
Now we conclude that

{zs +t(z —z5)| t >0} N 21, ..., 28] = 0.
We have
{zs+t(z—x5)| t >0} = [z,25) U{zs + t(z — z5)| t > 1}.
We know already that [z, 2] and [z1,. ..,z are disjoint. On the other hand
we have
{zs +t(z —xs)| t > 1} QHO+ (xo — cA(s)Nok (x0), Nok (z0))-

This is true since x 6[017 (zo — cA(8)Nok (z0), Nok (x9)) and

z EIJC)+ (l‘o — CA(S)N@K(,I()), NBK(JZQ)). (83)

Since {x1,...,2x} € H (zg—cA(s)Nox (o), Nox (o)) we conclude that the
sets
{zs +t(z —z)| t > 1} and [X1,..., 2]

are disjoint. Now we apply the theorem of Hahn-Banach to the convex, closed
set {xs +t(z — x;5)| t > 0} and the compact, convex set [z1,...,x]. There is
a hyperplane H, that separates these two sets strictly. We pass to a parallel
hyperplane that separates these two sets and is a support hyperplane of
{zs+t(z—zs)| t > 0}. Let us call this new hyperplane now H,_. We conclude
that zs € H,,. We claim that H,_ satisfies (81).

We denote the halfspace that contains z by H, . Then

[e]
[T1,...,2k] QH;; .

Thus we have zy € H,,, H,, N KN H"(xg — cA(s)Nox (20), Nox (x0)) D
{z} # 0, and

o
[xl,...,a:k] gHjs .

Therefore we have shown (81)
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{(z1,...,zN)| s & [{z1,...,2n} N H ] and x5 € [21,...,2N]}
C{(x1,...,2N)|3Hy, 1 x5 € Hy,, H NKNHY#(

and {zy1,...,ay}NH™ QH}}
where H = H(xo — cA(8)Nox (x0), Nox (z9)). Now we show that
{(#1,...,on)|3H,y, 125 € Hy , H, NKNHT £ (84)
and {z1,...,any}NH™ gffj}
< H(@r,.. an)la, ... oy € 0K \ comg(0)}
e
which together with (81) gives us (80).

We show that for every H, with 2, € H, and H; N K NH" # () there
is a sequence of signs @ so that we have

corng (©) C H,_ and corng (—0) C H . (85)

This implies that for all sequences (z1,...,2y) that are elements of the left
hand side set of (4.15.5) there is a © such that for all k =1,..., N

x) ¢ corng (O).
Indeed,
{1‘1, ey (EN} n H_({EO — CA(S)N(‘)K(I'())7 N(')K(.T())) QH;'_S
corng (©) N H* (zg — ¢A(s)Nok (z0), Nox (z0)) = 0.

This proves (84). We choose © so that (85) is fulfilled. We have for all ¢ =
1,....,n—1

H(zs, Nog (x0)) N H™ (x5, (0; < ms,€; > —N;)en + Oi(c — 1) A(s)e;)
={zeR" < x,e, >=< x5,e, > and < x — x4,60;¢; >>0}.

Indeed, Nyk (z¢) = —e,, and
H(zs, Nox (20)) = {z € R"| < z,e, >=< 4,6y, >}
and

H™ (25, (0; < x5,6; > =\j)en + Oi(c — 1)A(s)e;)
={z eR" <z —x;,(0; <xs,e; > —\;j)en + Oi(c—1)A(s)e; >> 0}.

On the intersection of the two sets we have < z — x4, e, >= 0 and thus

0 < <z—24(0; <xs,6; > —N;)en +6O;(c—1)A(s)e; >
=<z —x5,0;(c—1)A(s)e; > .



364 C. Schiitt and E. Werner
Since ¢ — 1 and A(s) are positive we can divide and get
0<<x—1x4,60;¢; >.
Therefore, the hyperplanes
H(zs,(0; < z5,6; > —Nij)en + O;(c — 1)A(s)e;) i=1,...,n—1

divide the hyperplane H (x,, Nox (o)) into 2"~ -tants, i.e. 21 sets of equal
signs. xs is considered as the origin in the hyperplane H (x4, Nok (zg)). By
Lemma 4.14 there is © such that
H(xs, Nox(20)) N H_j
2 H(zs, Nok (20))

n—1

m{ () H (2, (6i < za,e; > —Ni)en + Os(c — 1)A(s)ei)}

i=1
and

H(xs, N(x9)) NV H,
D H(xzs,N(x0))

ﬂ{ h H™ (x4, (—0; < 5,6, > —Aj)en, — Oi(c — l)A(s)ei)}.

For a given H,  we choose this © and claim that
corng (©) C H,, . (86)
Suppose this is not the case. We consider the hyperplane f{xs with
H,, N H(zs, Nog(0)) = Hy, N H(zs, Nox (20))

and
n—1

() H(zs, (0; < 5,65 > —Ai)en + Os(c — 1) A(s)e;) € Ha, .

i=1
The set on the left hand side is a 1-dimensional affine space. We obtain H,,
from H,_ by rotating H,_ around the “axis” H, N H(zs, Nox(xo)). Then
we have

H (25, Nox (v0)) N H,. € H (x5, Nox(20)) N H_.

Indeed, from the procedure by which we obtain H, from H,, it follows
that one set has to contain the other. Moreover, since corng (6) C f[;s , but
corng (@) ¢ H; we verify the above inclusion. On the other hand, by our
choice of @ and by Lemma 4.14
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n—1

H, C | H (2,(0; <x5,60 > =Ni)en + Oic — 1) A(s)e;).

Ts
=1

By (76) none of the halfspaces
H (25,(0; < zs,e; > —N)en + Oi(c — 1) A(s)e;) i=1,...,n—1
contains an element of
KN H" (zg — cA(s)Nax (w0), Nox (z0))

and therefore H also does not contain such an element. But we know that
H,_ contains such an element by (83) giving a contradiction. Altogether we
have shown (80) with H = H(xg — ¢A(s)Nox (x0), Nox (z0))

{(z1,...,zn)| s & [{z1,...,on} N H ] and x5 € [21,...,2N]}
M@, an) 21, ey € 0K \ corng (6)}.
e

This gives us

P}V{(xl,...,xNﬂ xs & [{z1,...,any} N H™] and z4 € [21,...,2N]}
< ZP}V{(xl,...,xNﬂ x1,...,xn € 0K \ corng (0)}
e

Z <1 - /CornK(@) f(x)du(x)> N

e
< (1= (f(z0) — e)vol,_1(corng (©)))" . (87)
e

Now we establish an estimate for vol,_;(corng(©)). Let p be the orthog-
onal projection onto the hyperplane H(xg, Nox(z0)) = H(0,—e,). By the
definition (77) of the set corng (©)

p<K NH'(zs, Nok (20)))

n—1

ﬂ{ () H (2, (0; < ws,65 > =Ai)en + O;(c — 1)A(S)€i)}>

i=1

= p<a (K NH" (x5, Nax (20)))

N ~ H (24,(0; < zg5,6; > —Nj)en + Oi(c— 1)A(s)e;)
{n )
C p(corng (©)) Up(K N H(zs, Nox (x0))). (88)
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This holds since u € H(xo, Nox (x0)) can only be the image of a point

w E 8(K N HY (x5, Nok (20)))

ﬁ{nﬁl H™ (z5,(0; < xg,e; > —Aj)en + Oi(c— 1)A(s)ei)}>

i=1

if < N(w),Nak(zo) >=< N(w),—e, > > 0. This holds only for w €
corng (0) or w € H(xs, Noi (z9)) N K. Indeed, the other normals are

—(0; < xg,6; > —Aj)en — Oi(c— 1)A(s)e; i=1,...,n—1
and fori=1,...,n—1
—(0; < xs,; > —Nj)en — Oi(c— 1) A(s)es, —en >= O; < T, > —\;.

By (76) we have for alli =1,...,n — 1 that | < zs,e; > | < A;. This implies
that ©; < Tg, e > —N; < 0.
Since
vol,—1(p(corng (0))) < vol,_1(corng (0))

and
vol,—1(p(K N H(zs, Nok(x0)))) = vol,—1 (K N H(xs, Nok(x0)))
we get from (88)

vol,—1(corng (O0))) (89)

> Vol <p( + (@5, Nox(20))

N m (x5, (O < 5,6, > —Nj)en, + Oi(c —1)A(s )e”}))
—VOln_l(KﬂH(ms,NaK(l‘o))).

Now we use that the indicatrix of Dupin at zg exists. Let £ be the standard
approximating ellipsoid (Lemma 1.2) whose principal axes have lengths a;,
1=1,...,n. By Lemma 1.2 and Lemma 1.3 for all ¢ > 0 there is sg such that
for all s with 0 < s < sq the set

K N H(zs, Nox (z0))

is contained in an n — 1-dimensional ellipsoid whose principal axes have
lengths less than

2A(s)

Qn

(14 ¢€)a;
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H(xg — AN(x0), N(w0))

H(xzo — ¢AN(z0), N(z0))

The shaded area is a part of the surface of the set

ne1
KN H*(zg, Nog (z0))) N { ﬂ H™(x4,(0; < xg,6; > —Ai)en + O4(c — 1)A€i)} .

Fig. 4.15.4

We choose s, to be smaller than this sg. Therefore for all s with 0 < s <
Se,b

vol,—1 (K N H(xs, Nog (x0)))
<(1+ent <2§(8)> 2 (H ai) vol,—1 (B3 ™).
n i=1

Thus we deduce from (89)

vol,_1(corng (O©))) (90)

> vol,_1 (p(K N H (25, Nox (20)))

n—1

n{(_]l H™ (24,(0; < 4,05 > —\i)en + Oi(c — 1)A(s)ei)}>>
—(1+en (%ﬁs)) = (ﬁ ai> vol,_1(By~1).

Now we get an estimate for the first summand of the right hand side. Since £
is an approximating ellipsoid we have by Lemma 1.2 that for all € > 0 there
is sg such that we have for all s with 0 < s < 59

2A
xo—A(S)NaK(l‘o)-i-(l—G)@iai (S)ei eK 1=1,....,n—1.

n
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Again, we choose s.; to be smaller than this sg.
Let 0 be the angle between Ny (z9) = —e,, and xg — zp = —xp. Then

sl = A(s) (cos 6) . o1)
Consequently,
|(xo — A(s)Nok (x0)) — x5|| = A(s) tan 6.

Therefore, for all € > 0 there is sg such that we have for all s with 0 < s < s¢

zs + (1 —€)O,a; Zi(f)eieK i1=1,...,n—1.
Moreover, fori=1,...,n—1
s+ (1— )0a;\/22C)e; € K 0 H (25, No (w0)) (92)

ﬂ{ ﬁ H (25,(0; < zg5,6; > —N;)en + Oi(c — I)A(s)ei)}.

i=1
Indeed, by the above these points are elements of K. Since Nyg (xg) = —e,,

2A(s)

An

zs + (1 — €)O;ay

e; € KﬂH(x57N8K(xO))'
For ¢ # j

<333 + (1 —€)Oja;4/ 2ﬁis)ej, (0; < ms,6; > —\j)en + O;(c— 1)A(s)ei>
= (x5, (O; < Ts,€; > —Nj)en + Oi(c — 1) A(s)e;)

and for i = j

<$s + (1 = €)O;a;y/ 23,@ €i, (0; < xg,e; > —Nj)en + 6O;(c— 1)A(8)€i>
= (x5, (0; < Ts,; > —Nj)en + Oi(c— 1)A(s)e;)
+(1 = €)(c — Dagy/ 22 As).

Since the second summand is nonnegative we get for all j with j =1,...,n—1
2A
zs + (1 —€)Oja; #63‘ €
n—1
() H (25, (6; < 24,65 > —Ai)en + Os(c — 1) A(s)e;).
i=1

There is a unique point z in H* (x5, Ngg (z0)) with
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{z} =0K N { ﬁ H(zs,(0; < z5,e; > —N;)en, + O;(c— l)A(s)ei)}. (93)

=1

This holds since the intersection of the hyperplanes is 1-dimensional. We have
that

vol,_1 ({p(z),p(zs) ((1 — €)O1a;14/ 220 )el>
p(zs) + <(1 — )On 10,11/ 25 %—1)])

= vol,_1 (p {z,xs + ((1 —€)O1a14/ %ﬁs)el) ,
Ts + ((1 - 6)@nflafnfl Zﬁis) enl)])

< vol,_1 (p (K NH™ (xy, Nok (20))

Py o< a0 o))
- (94)

The (n — 1)-dimensional volume of the simplex

(e + (- 0oy )

p(xs) + ((1 - e)@nfla/nfl 2?518) 6n1>

equals

d / s s ]
n— 1V01n,2 <|:(1 —6)&1 %61,...,(1 —G)anl %i)enl_>

where d is the distance of p(z) from the plane spanned by

2A
p(zs) + (1 —€)Osa; (S)ei i=1,...,n—1

Qn

in the space R"~!. We have

vol,,_o <[(1 —€)ayy/ %ﬁs)el, v (T —€)ap—1 /2A(s) en_ 1])
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= (1— )2 <2A(3)> a voln_s ([areq, ..., an_16n_1])

an

=~ - (1= (%@) N ﬁaz (Z Iazl‘2>

1=1

From this and (94)

-

L <2A())_ I (Z'>

i=1 i=1

<vol,—1 (p (K N H" (s, Nok (20))

m{n(j H™ (2, (0; < 75,65 > —\i)en + Oi(c — I)A(s)ei)})>.

From this inequality and (90)

vol,,—1(corng (O0)) (95)

n—

> o () H <Z WQ)

—(14e)" <2A( )>Ll nHlai vol, 1 (By~h).

a
n i=1

We claim that there is a constant ¢ that depends only on K (and not on s
and ¢) such that we have for all ¢ and s with 0 < s < s¢3

d > can/cA(s). (96)

d equals the distance of p(z) from the hyperplane that passes through 0 and
that is parallel to the one spanned by

p(zs) + (1 —€)O;a; QA(S)ei 1=1,...,n—1

An

in R™~! minus the distance of 0 to the hyperplane spanned by

p(zs) + (1= )Oiaz/ 228, i=1,...,n—1.
Clearly, the last quantity is smaller than

2A(s)
Il + 22 max a,
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which can be estimated by (91)

Ip(a)ll + QA( ! max a; < l|lzs|l + QA( ) max a;
1<i<n—1 1<i<n—1
= A(s)(cos0) ! + QA( ) max a;.

1<i<n—1

It is left to show that the distance of p(z) to the hyperplane that passes
through 0 and that is parallel to the one spanned by

() + (1= €)Biar/ 228, i=1,...,n—1

is greater than a constant times 4/cA(s). Indeed, there is ¢y such that for all
¢ with ¢ > ¢g the distance d is of the order \/cA(s).
Since z is an element of all hyperplanes

H(zs, (025(1) — Xi)en, + Oi(c — 1) A(s)e;) i=1,...,n—1
we have foralli=1,...,n—1
< z— Zs, (O5x5(1) — Nen, + Oi(c —1)A(s)e; >=0
which implies that we have forall:=1,...,n—1

£00) = 220 = (o) = () 't (o7

Instead of z we consider Z given by

n—1
(2} =0Ty _(&)N { () H (s, (Ois(i) — Ni)en + O;(c — 1)A(s)ei)}. (98)

i=1

We also have

By (75)

Tlfe(g NH™ (.’170 — CA(S)N(‘)K( ) N(“)K(CL‘())))
C KN H (xg — cA(s)Nok (7o), Nok (2q))-

Therefore we have for all ¢« = 1,...,n that |2(i)| < |2(i)|. We will show that

we have foralli=1,...,n—1 that c3y/CA(s) S |Z(4 )| (We need this estimate

for one coordinate only, but get it for all i = 1,...,n— 1. Z(n) is of the order
We have
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12; al(Zl(Z_) €) + Zi:) -1

and equivalently

~ n—1 ~. ~ 2
zZ(n) z(1) zZ(n)
2 =
an ; a;(1—c¢) + an
) — w5(7) + () 2 Z(n) — x5(n) + z5(n) 2
_l’_
ai(1—¢) an,
By triangle-inequality
(1) zg(n) g

QEC(LH)JE R

n—1| . 2
< Z(1) — x5(1) n Z(n) — zs(n)
| 4 a;(1—e¢) an
i=1
By (99)
~ n—1 . 2
Z(n) (1) zs(n)
2 _
an \J ; ai(l1—¢) an,
n—1 . 2 2
- Ai — Oxs(1) 1
< _ -
_|Z(n) xs(n)|J; (c—l)A(s)ai(l—e) an,
Since Z € HT (x4, Nox (29)) we have Z(n) > A(s). By (91) we have for all
i=1,...,nthat |z,(i)| < ||zs| < A(s)(cos@)~L. Therefore, for small enough
s
i(n) _ . — st() SN
< _ =
an < () = zs(n le c—l (s)a;(1—c¢) an

Since Z(n) > x5(n) >0

2 1)
+— .
Qn

For sufficiently small s we have |Z(n) — z,(n)| < 3 and therefore

. ) n—1 @Z < Tg, €5 > —)\1
o S ) —as(m) (Z (c— 1)A(s)ai(1 —e)

i=1

-1

1 n
< _
2a, — zs(n Z

=1

O; <x5,el> —N; 2

(c—1)A(s)a; (1 —¢€)
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and

n—1

O; <x3,ez > =\
(c—=1)A(s)a; (1 —¢)

2a,

V)
SN—
N

igﬁ(

=1

n—1

Ret

O, <a:s,el >
c—1)A(s)a;(1 —¢)

Therefore

1 Z(n) —zs(n)] | (=
20, = (e~ (1= 9AG) (Z

=1

Ai

a;

x4(1)

1
2>§
1
2)2

By (91) we have ||zs]| = A(s)(cosf)~1. From the definition of \;, i

1,...,n — 1, (following formula (75)) and Lemma 1.3 we get A; < (1 +
cA(s)

2) 2 . <nz_:1
) Gl | (S5 0F)" (Z

T (e=1)(1—=¢€)A(s) ming<j<p—1 &

Ai

Q;

=1

€)a; . Therefore we get

Var = / SOREADIR 0Dy G

C — 1)(1 — G)A(S) minlgign_l a; Qp,

Thus there is a constant ¢z such that for all ¢ with ¢ > 2 and s with 0 < s <
Se,b

|2(n) — zs(n)].
By this inequality and (99)

- . - 9i<$5,6i>—)\i
50 - 22| = 30) = (] 2SI E 2 5 6, <> -

By (91) we have ||zs|| = A(s)(cos#)~! and from the definition of \;, i =
L...,n—1,weget \; > (1 —€)as\/ =, CA( ). Therefore Z() is of the order of A;

which is in turn of the order of y/cA(s).

The orthogonal projection p maps (zl, .oy 2Zp) onto (21,...,2p-1,0). The
distance d of p(z) to the n — 2-dimensional hyperplane that passes through
0 and that is parallel to the one spanned by
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plas) + (1 — e)agy/ 22, i=1,....n—1

An

equals | < p(z),€ > | where £ is the normal to this plane. We have

n—1
1

e= | ——
(Z:‘:f ai_2> ’

and get | < p(z),€ > | > ca/cA(s). Thus we have proved (96). By (95) and
(96) there is a constant ¢y such that for all ¢ with ¢ > ¢

=1

vol,_1(corng (O0))

n—2 4

car/cA(s) o (2A)\ T (= L)\
> ECEDE (I—e) 2( a, > Eai (; |ai )
Lo

n—1

—(1+ )" vol,,_1 (By™1) (QA(3)> 2

Qp
> c5/cA(s) T
where ¢5 depends only on K. Finally, by the latter inequality and by (87)

P}V{(xl,...,xNﬂ xs & [{z1,...,ay} N H | and z5 € [71,...,2N]}

N
< Z(l — (f(xo) — e)volnl(cornK(Q))>
)

<2nt (1 = (f(@o) — 6)05\/EA(3)"21>N
< 2" Vexp (= N(f(z0) — )es/eA(s) T )

By hypothesis we have ;5vol,,—1(0K) < s. We have

s <Py (OK NH™ (x5, Nox (20)))
< (f(xo) + €)vol,—1(OK N H™ (x5, Nok (x0)))-
By Lemma 1.3 we get

n—1

s < cef(wo)A(s) =

and therefore
N

VO]n_l ((9K)

1
n—1 "

> i >
T bs T egbf(x)A(s) T

Therefore
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]P’]fv{(xl,...,xNﬂ s & {z1,...,en}NH ] and x5 € [z1,...,2N]}

< 2" lexp (wf) .

Now we derive

|P5cv{($17,1'N)| Ts % [-1;17"'71‘1\7}} -

Pi‘y+k{($1,...,$N+k)| Ts ¢ [.’L‘l,...,l‘NJrk]H <e.

It is enough to show

P {(z1,...,2n)| @5 € {z1, ..., an} N H |} -

]P;V+k{(x1,...,$]v+k)| Ts € [{xl,...,xN+k} ﬁH‘}}| <e

We have

{(@1,...,enen)| s € {21, .. ;2N ) NH ]}
={(z1,...,en1k)| s € [{z1,..., 2N} NH]}
U{(x1, ..., onn)| 2s € {x1, ..., en N H ] and
xs € {z1,...,xnsx NH ]}

Clearly, the above set is contained in

{(x1,.. ., xNy1)| s € [{21,..., 2N} NH™]}
U{(z1,...,enyk)| T, 1 <i<k:azyy; € H NOK}.

Therefore we have

P}V+k{($1,...,xN+k)| zs € {z1,...,onge} NH |}
gIP’}V{(xl,...,xNﬂ zs € [{z1,...,any} N H™|}
+PE{(aNn41s - angw)|Fi 1 < i <k rayy € H NOKY
:chv{(xl,...,xzvﬂ s € {z1,...,an}NH™]}

+k /azmH— fl@)duy.

We choose H so that k [, f(z)dp is sufficiently small. O

Lemma 4.16. Let K be a convexr body in R™ and xo € OK. Let £ be the
standard approximating ellipsoid at xo. Let f : 0K — R be a continuous,
strictly positive function with faK fdu =1 and K, be the surface body with
respect to the measure fdusx and Es the surface body with respect to the
measure with the constant density (vol,_1(9€))~1 on OE. Suppose that the
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indicatriz of Dupin at xo exists and is an ellipsoid (and not a cylinder with
an ellipsoid as base). We define xs, ys and zs by

{mS} = [xvaT] NOK, {Zé} = [xo,ZT] N oE,

{ys} = [0, o7] N H(2s, Nox (70))-

(i) For every € > 0 and all £ € N there are ¢co > 1 and sg > 0 so that
we have for all k € N with 1 < k < £, all s and all ¢ with 0 < ¢s < sg
and ¢y < ¢, and all hyperplanes H that are orthogonal to Nok (o) and that
satisfy vol,_1(OK N H™) =cs

P]}Z,BKHH*{(x]-V"?J)k)‘ Ts € [xla"'axk]}_
PgKﬂH*{(xlv"'vxk)l Ts € [xlv--ka]}‘ <€

where Py ggnp— is the normalized restriction of the measure Py to the set
OKNH™.

(ii) For every e > 0 and all £ € N there are co > 1 and sg > 0 so that
we have for all k € N with 1 < k < £, all s and all ¢ with 0 < ¢s < sg
and ¢y < ¢, and all hyperplanes H that are orthogonal to Nok (o) and that
satisfy vol,_1(OK N H™) =cs

|PI§KQH_{(‘I17"'7Ik)| ISE[Ih.-.,Ik]}—

Prenn-{(z1,- ., 21)| @5 € [21,..., 4]} < e

(i1i) For every ¢ > 0 and all £ € N there are ¢co > 1 and sop > 0 so that
we have for all k € N with 1 < k < £, all s and all ¢ with 0 < ¢s < sg
and ¢y < ¢, and all hyperplanes H that are orthogonal to Npk (xg) and that
satisfy vol,_1(OK N H™) =cs

|ngmH—{(Zl,.-.7Zk)| 256[21,...72k]}—

Poenm-{(z1,- o 2)| ys € [z, .z} <e.

(iv) For every e > 0 and all ¢ € N there are co > 1, so > 0, and § > 0 so that
we have for all k € N with 1 < k < {, all s,s" and all ¢ with 0 < c¢s,cs’ < sg,
(1-0)s < §" < (149)s, and ¢y < ¢, and all hyperplanes Hy that are orthogonal
to Nog(xo) and that satisfy vol,_1(0E N H; ) = cs

ngmH;{(Zlu"wzk)l Zs € [Zl,...72k]}—

ngﬂH;{(zl""’zk” Zs € [’217"'5216]} <e
(v) For every e > 0 and all £ € N there are co > 1 and Ay > 0 so that we have
forall k e Nwith 1 <k </{, all A, all v > 1 and all ¢ with 0 < cyA < Ay

and ¢y < ¢, and
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PgSmH:A{(xl,...,xk” Ty — AN@K(.%‘()) S [xl,...,xk}} —
PgemH;A{(:ﬁl,...,xkﬂ xo — YANok (x0) € [21,...,2k]}| <€

where Hop = Hea(xo — ¢ANpk (20), Nok (20))-

(vi) For every € > 0 and all £ € N there are ¢ > 1 and so > 0 so that we
have for all k € N with 1 < k < ¢, all s with 0 < ¢s < sg, all ¢ with ¢y < ¢,
and all hyperplanes H and H that are orthogonal to Nok (xo) and that satisfy

vol,_1(0ENH™)

P;(OKNH ) =cs vol,_1(0€) =cs
that
P oxnm- (@1, op)| @ € [z, 2]} -
Pgsmﬁ,{(zh...7zk)\ zs € [zh...,zk]H <e.

(The hyperplanes H and H may not be very close, depending on the value
f(zo).)

Proof. (i) This is much simpler than the other cases. We define @,_: 0K X
-+ X 0K — R by

_ 0 $S¢[$1,...,$k]
@ms(l'l,...,xk){ 1 xSE[]}L...,JEk].
Then we have
P?,aKﬁH*{(xla"'axk” Ts € [xl,...,xk]}
= (P;(OKNH))™" x
k

/mme B ./8KNH* P, (1, ) Hf(xi)dﬂak(an) - dpsr (zr).

i=1

By continuity of f for every § > 0 we find s¢ so small that we have for all s
with 0 < s < sg and all x € 0K N H ™ (x5, Nok (o))

[f (o) = f(z)] < 6.

(ii) We may suppose that o = 0 and that e, is orthogonal to K at .
Let Ts : R® — R"™ be given by

Ts(x(1),...,z(n)) = (sz(1),...,sx(n —1),x(n)). (100)

Then, by Lemma 1.2, for every § > 0 there is a hyperplane H orthogonal to
e, such that for
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& =T (€) &y =Ti15(E)

+r§

we have

ENH =T, ()NH CKNH CTis(E)NH =&NH™.

1448
Since the indicatrix of Dupin at z( is an ellipsoid and not a cylinder and
since f is continuous with f(xg) > 0 we conclude that there is so such that
Tﬁ (5) N H_(J?SO, NaK(Jfo)) CKNH™ C T1+6(g) N H_(st,NaK(xo)).
(101)

We have that

]P)gKmH*{(xlv'-kaﬂ Zs € [x1,..., 28]}
= PgKﬂH—{(xlv"-7xk)| Ts € [xl,--.7l'k]o}.

This follows from Lemma 4.2. Therefore it is enough to verify the claim for
this set. The set

{(x1,...,zK)| s € [X1,..., 28] 21, ..., 2, EOKNH "}

is an open subset of the k-fold product (0K NH ™) x---x (OKNH™). Indeed,
since x4 is in the interior of the polytope [z1,. .., z;] we may move the vertices
slightly and x is still in the interior of the polytope.

Therefore this set is an intersection of (OK N H™) x -+- x (OK N H™)
with an open subset O of R*¥”. Such a set O can be written as the countable
union of cubes whose pairwise intersections have measure 0. Cubes are sets
B™ (x0,7) = {z|max; |(i) — zo(i)| < r}. Thus there are cubes B™ (27,17),
1<i¢ <k, jeN,in R™ such that

0= UHB" 7)) (102)
Jj=1li=1
and for j #m

k
volgn <H zl ) mHB" m ’">

=1
k
= [[voln(BL (2], 7]) N B (2]",7]")) = 0.
=1

Therefore, for every pair j, m with j £ m there is 7, 1 < ¢ < k, such that

B" (xl,rz) N BL (", r™) (103)

3
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is contained in a hyperplane that is orthogonal to one of the vectors ey, ..., e,.
We put
k
w; =11 (Bl rhnok i) jeN (104)
i=1
and get

{(x1,...,zp)| s € [21,...,2%]%, 21, ..., 2k EOKNH ™} = U W;.  (105)
j=1

Then we have for j # m that
VOlk(n,l)(Wj N Wm) =

Indeed,

W OWo = {1, w)lVi i € DK 0 B (o], 7)) 0 BLL (21" N H |

There is at least one 7o such that

BL (], r)) N BY (27, rit)

is contained in a hyperplane L that is orthogonal to one of the vectors

€1,...,en. Therefore
vol,_1(0K N B (x] J

10’ 20

YN B (™, 7)) < vol,_1 (8K N L).

Zo’ ’LO

The last expression is 0 if the hyperplane is chosen sufficiently close to xg.
Indeed, 0K N L is either a face of K or 9K NL = (K NL). In the latter case
vol,—1 (0K NL) =vol,_1(0(KNH))=0.1If H is sufficiently close to z¢, then
L does not contain a n — 1-dimensional face of K. This follows from the fact
that the indicatrix exists and is an ellipsoid and consequently all normals are
close to Nyk (z9) = e, but not equal.

Let rp : 0K — OE where rp(x) is the unique point with

{rp(x)} = {xs + t(z — zs)[t > 0} NOE. (106)

For sp small enough we have for all s with 0 < s < sg that =4 € £. In this
case rp is well defined. Rp: 0K x -+- x 0K — 0& X --- x 0 is defined by

Rp(z1,...,xk) = (rp(x1),...,rp(ag)). (107)
There is a map o : 0K — (—o0, 1) such that

rp(e) = ¢ — a(2)(@ — 2,). (108)
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Since x4 is an interior point of K the map « does not attain the value 1. For
every € > 0 there is sg such that we have for all s and ¢ with 0 < ¢s < s9
and ¢ > ¢y and for all hyperplanes H that are orthogonal to NaK(mo) =e,
and that satisfy vol,—1 (0K N H~) = ¢s and all cubes BZ (2, r!) that satisfy
(104) and (105)

vol,_1 (0K N Bgo(a:f,rj)) < (1 +€)vol,—1(rp(OK N Bgo(a:j TJ))) (109)

171

Fig. 4.16.1

To show this we have to establish that there is sy such that for all z €
OK N H (zs,, Nox (x0)) and all s with 0 < s < s

[l —rp(a)|| < ellzs —rp(2)| (110)

<N3K(I)’ ﬁ>
<Nag (rp(x)), ﬁ>

Indeed, the volume of a surface element changes under the map rp by the
factor

(1—¢) < <(1+e). (111)

||l‘71's|| <N8£(rp(;p))’ﬁ>
We establish (111). We have
(Nog (x),x — xz4) - (Nog () — Nog(rp(z)), x — x5)
(Nog(rp(x)),x — x5) (Nog(rp(x)),x — x5)

| Nox (z) — Nog (rp(@)] [l — 2.
ST Nt @) e — )

We have
[Nok (z) — Noe(rp(z))[| < €llz — 20|

This can be shown in the same way as (33) (Consider the plane H(z, Nox (xo)).
The distance of this plane to zg is of the order ||z — z||?.) Thus we have
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(Nok (), x — x) ellz — zolll|lz — x| ecollz — a4 ?
(Nog(rp(z)),x —xs) = (Noe(rp(z)),x —xs) = (Noe(rp(z)),z — xs)
It is left to show

| < Nog(rp(z)),z — x4 > | > collz — 4]

If z is close to xg then this estimate reduces to ||z — x,|| > ||z — z4||* which
is obvious. If o is not close to 2o then ||z — z4||? is of the order of the height
of the cap 9 N H~ (rp(x), Nox (xo)). Therefore, it is enough to show

| < Nog(rp(x)),x — x5 > | > co| < Nok(20),rp(z) — 20 > |.

We consider the map T : R™ — R™ that transforms the standard approxi-
mating ellipsoid into a Euclidean ball (5)

2 2
n—1 n—1 n—1 n—1
T(.’ﬂ): Z% <Hbz> 7"'axn71 <Hbl> y Ln
i=1 =

Ap—1

Thus it is enough to show
| < TV Npe(rp(x)), Tz — Txy > | > co| < Nog(x0), rp(x) — 20 > |.
Since T'zg = 79 = 0 and T~ (N (79)) = Nox (x0) = e, the above inequal-
ity is equivalent to
| < T Npe(rp(x)), Tx — Txs > | > co| < Nox(xo), T(rp(x)) — 20 > |.
Allowing another constant cg, the following is equivalent to the above
‘< T~ Y Nae(rp(x))
T~ Noe (rp(z)) I

Thus we have reduced the estimate to the case of a Euclidean ball.
The hyperplane H (T (rp(z)), Nox (zo)) intersects the line

Tz — Tms>‘ > ¢o| < Nog(x0), T(rp(x)) —x0 > |.

{LI}Q + tNaK($0)|t € R}

at the point z with ||z —z|| = | < Nox (zo), T(rp(x)) —xo > |. Let the radius
of T(€) be r. See Figure 4.16.2. We may assume that < T~ Nag (rp(z)), Nox (z0) >>
3. Therefore we have by Figure 4.16.2 (h = ||z — z||)

‘< T~ Nye (rp(z))
| T Nog (rp(x)) ||’

_ <||fﬂo ot

T(rp(x)) - >‘

|20 — 2|2 ) < T~ " Nae (rp(x))
r—|lzo — 2| ) \ [T~ Noe (rp(z))]
T~ Nog (rp(x))

= HxO - ZH < HT_MNBE(TP(J?))H 7N3K(x(])>
3l < Nox (x0), T(rp(z)) — a0 > |

,NaK(fﬂo)>

V

v
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H h?
e

T (rp(x))

x9 — rNok (o)

Fig. 4.16.2

where 7 is the radius of T'(£). Since there is a constant ¢g such that

‘<|T ﬂiiﬁ Ez)gn’ﬂlj T(I“)>‘
2 0| Frmneoate BVTW(”)%N

we get

‘< T~ Nae (rp(z))
| T~ Nog(rp(z))

The left hand inequality of (111) is shown in the same way.

Now we verify (110).

Again we apply the affine transform 7" to K that transforms the indicatrix
of Dupin at z into a Euclidean sphere (5). T leaves 29 and Nyg (x¢) invariant.

An affine transform maps a line onto a line and the factor by which a
segment of a line is stretched is constant. We have

[z —rp@)Il _ |IT(x) = T(rp(z))]|
s =rp(@)| 1T (xs) = T(rp(=)II

i ,T(x) — T(xs)>‘ > Leo| < Nok (20), T(rp(z)) — 20 > |.

Thus we have

By (xg — rNok (xo),r) N H™ (T (s, ), Nox (x0))
CT(K)NH (T(xs,), Nox (x0))
C By(zo — (1 + €)rNok (w0), (1 + €)r) N H™ (T(ws,), Nox (20))-

The center of the n — 1-dimensional sphere
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By (xo — rNox (x0),r) N H(T(rp(z)), Nox (o))
is
xo— < zo — T(rp(x)), Nok (z0) > Nox (xo)
and the height of the cap
By (xo — rNok (x0),7) N H™ (T'(rp(z)), Nox (o))
is
| <@o—T(rp(x)), Nox (o) > |.
Therefore, for sufficiently small sy and all s with 0 < s < s¢p we get that the
radius of the cap ||[T'(rp(z)) — (xo— < zo — T'(rp(x)), Nox (x0) > Nox (x0))]|
satisfies
V| < zo — T(rp(z)), Nok (z0) > | (112)
< ||T(rp(z)) — (wo— < wo — T(rp(x)), Nox (z0) > Nok (w0))|-
We show that there is a constant ¢y > 0 so that we have for all s with
0<s<spandall z € 0KNH (x5, Nox(x0))
IT(rp(x)) = T(xs)|| = co/r| < wo — T(rp(x)), Nox (x0) > |. (113)

Let « be the angle between Nyg (xo) and xo — T(xr). We first consider the
case

1T (rp(x)) = (zo— < xo — T(rp(x)), Nox (z0) > Nox (wo))|l
> 2(14 (cosa)™ )| < g — T(xs), Nok (x0) > |. (114)
(This case means: xg is not too close to T'(rp(x)).) Then we have
1T (rp(2)) = T(2s)|l
2 |[T(rp(x)) — (zo— < wo — T(rp(x)), Nox (z0) > Nox (10))
—llwo = T(xs)|| = | < 2o = T(rp(x)), Nox (x0) > |
= [[T(rp(x)) = (zo— < wo — T(rp(x)), Nox (x0) > Nox (o))l
—(cos )™t < g — T(xs), Nox (o) > |
—| <@o —T(rp(x)), Nok (x0) > |

By the assumption (114)

[T (rp(x)) — T'(xs)||
> 31T (rp(x)) = (xo— < w0 — T(rp(x)), Nor (o) > Nar (z0))]|
+(1+ (cosa)™)| < zg — T(xs), Nax(x0) > |
—(cos )Y < 2o — T(z5), Nog (z0) > |
—| <zo —T(rp(x)), Nox (z0) > |
= 3T (rp(x)) — (xo— < zo — T(rp(2)), Nox (z0) > Nar (z0))||
+| <xo—T(xs), Nox (zg) > | — | < xzo — T(rp(x)), Nok (o) > |.
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By (112)

1T (rp(x)) — ()]l
> 3\/r| < zg — T(rp(x)), Nox (z0) > |
+| <xo— T(xs), Nog (z0) > | — | < w0 — T'(rp(x)), Nok (x0) > |
> 3\/r| < zg — T(rp(x)), Nox (z0) > |
—| <z = T(rp(x)), Nox (o) > |.

We get for sufficiently small sy that for all s with 0 < s < sg

IT(rp(x)) = T(xs)|| = $3/r| < 2o — T(rp(x)), Nox (o) > |-
The second case is

1T (rp(z)) — (xo— < 2o — T(rp(x)), Nox (z0) > Nox (z0))]| (115)
< 2(1+ (cosa)™Y)| < 29 — T(xs), Nox (w0) > |.

(In this case, x¢ is close to T(rp(z)).) || T(rp(x)) — T(zs)|| can be es-
timated from below by the least distance of T'(x4) to the boundary of
BY(xg — rNok (xo),r). This, in turn, can be estimated from below by

dl < xo—T(zs), Nox (zo) > |.
Thus we have
1T (rp(z)) = T(x)l| = €| < w0 = T(xs), Nox (w0) > |-
On the other hand, by our assumption (115)

1T (rp(x)) = T(zs)||
2 2(1+ (cosa)™1) %

|T(rp(x)) — (zo— < w0 — T(rp(w)), Nox (r0) > Nox(wo))l|-

By (112)

1T (rp(z)) = T(x \/7“\ <@y = T(rp(x)), Nox (o) > |-

U 2(1+ (cosa
This establishes (113).

Now we show that for sg sufficiently small we have for all s with 0 < s < s
and all x

IT(2) = T(rp(x))|| < 2¢/2¢(1 + €)r| < wo — T(rp(x)), Nox (x0) > | (116)

Instead of T'(z) we consider the points z and 2’ with
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{2} = B(wo — (1+ rNox (w0), (1 + )r) 1 {T(w,) + H(T(x) — T(w) It > 0}
{2'} = B3 (z0 — (1 — €)rNox (w0), (1 — €)r) N {T (ws) + (T () — T(ws))[t > 0}.
We have

1T (2) = T(rp(x))|| < max{||z — T(rp(x))|, [|z" = T(rp(z))II}-
We may assume that |z — z4]] > |rp(x) — x||. This implies |T(z) —
T(rp(x))]] < ||z = T(rp(x))|- ||z — T'(rp(x))]|| is smaller than the diameter
of the cap
B3 (zo — (1 + €)rNok (o), (1 + €)r)
NH™ (T(Tp($)), N@B;‘(xoeraK(mo),r) (T(rp(x))))

because z and T'(rp(z)) are elements of this cap. See Figure 4.16.3. We com-
pute the radius of this cap. The two triangles in Figure 4.16.3 are homothetic
with respect to the point xg. The factor of homothety is 1 + €. The dis-

tance between the two tangents to B (zg — (1 + €)rNax (xo), (1 + €)r) and
B (xg — rNak (xo),r) is

€| <xo—T(rp(x)), Nok (x0) > |.

Consequently the radius is less than

B (xo— (1+€)rNok (xo), (1 +€)r)

/ T(rp(x))
\\ B (zo — rNak (o), 1)

r

1+er AN
(1+e) 4 o —7Nar(20)

Fig. 4.16.3
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V2e(1 + €)r| < zo — T(rp(z)), Nog (z0) > |.
Thus we have established (116). The inequalities (113) and (116) give (110).
From the inequalities (110) and (111) we get for x € K N B2 (z,7]) and
7! sufficiently small

vol,_1(8KN B (z),17))

l’ 7

o=zl |""
S Non (@), Noe o)y Ot POK N B )
< (1+6)%V01n 1(rp(OK N B (1, 77))).

It follows that for a new sg

k
VOlk(n 1)( HVOl’ﬂ 1 8[(ﬂBn( z’ z))
=1
k
<(1+¢) kHvoln 1 rp(aKﬂB"( x], Z)))
=1

= (1 + €)*voly(n—1)(Rp(Wj)).
And again with a new sg
Vol (n—1)(W;) < (1 + €)volg(n—1)(Rp(Wj)). (117)

We also have for all x; € 0K, i=1,...,k

Rp({(x1,...,zk)| x5 €[x1,...,25]° and x; € OK}) (118)
C{(z1,..-,2K)| s € [21,..., 2] and z; € OE}.
We verify this. Let a;, i = 1, ..., k, be nonnegative numbers with Zle a; =1
and
k
= Zalxl
i=1
We choose
b; = &

(1—az)(1+ X5, )

where a(z;), ¢ = 1,...,k, are defined by (108). We claim that Zle by =1

and
Kk
Tg = Z bzrp(xl)
i=1

We have
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k k o
Db =D e ST
2 T S a1+ X,
_zk: s+ 250)
a(zjla;
1+ Zy 1 1—a(xy)
Moreover, by (108) we have rp(z;) = z; — a(x;)(x; — x5)
k k
Z birp(z;) = sz(xl —afx;)(x; — xs))
i=1 i
Z ai(r; — ofz;) (v — x5))
)1+ ), 1)
b a;T; k a;o(x;)xs
e T2 =
111+Z] 11az i:1(1_a(mz))(1+zg 1 T-a(z; )
k a;a(x;
Ts Zi:l 1—cx((r ))xS .
o(z;)aj a(z;)a; 8
]‘+Z_] 1 1—a(xy) 1+Z] 1 1—a(xy)

Thus we have established (118)

Rp({(x1, ..., |° and z; € 0K'})

zg)| s € [T1,..., Tk
z] and z; € OE}.

C{(z1,--,2)| xs € [21,-- -,
Next we verify that there is a hyperplane H that is parallel to H and such

that
vol, 1(OK NH™) < (14 €)vol, 1(OKNH™) (119)
and
Rp({(x1,...,2x)| xs € [x1,...,2%]°, 2, € OKNH ™ }) (120)
zi) and z; € OE N H™ }.

CH{(z1,..,2K)| s € [21,-- -
This is done by arguments similar to the ones above. Thus we get with a new

S0
VOlk(n—l) (U;il Wj)
VOlnfl(aK N Hi))k

Pxnn-{(@1,-. . 2n)] @5 € [21,.. 2p]} = (

voly(n—1) (U;’;l Rp(Wj))
s+ =GRk N H)E

and z; € DENH™}

(1o Vol {(21,.. ., 2)| @5 € [21,. .., 2]

- (vol,—1(OK N H~))k

<(1+9 volg(n—1){(21, .., 2)| x5 € [21,..., 2] and 2z; € 0E N H ™} ke
- (vol,—1 (K N H™))*
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vol,—1 (0K N H~) and vol,,_1 (0 N H~) differ only by a factor between 1 — ¢
and 1+ € if we choose sy small enough. Therefore, for sufficiently small sg we
have for all s with 0 < s < s¢

]P)gKﬂH—{(xlv s 7xk)| Ts € [$1, cee ,l’k]}
<1+ e)P?}SﬂH*{(Zh cey2k)| s € |21, 2k} e
(iii) We show now that for sufficiently small sq we have
Psenm-{(21,- 5 2)| ys € [21,- 0, 2]}
—Pheng-{(21,-- )| 2 € [21,.. ., 2]} < e

The arguments are very similar to those for the first inequality. We consider
the standard approximating ellipsoid £ and the map tp : 0 — IE mapping
x € O onto the unique point tp(z) with

{tp(x)} = 90 N {ys + t(x — z5)[ t = O}.

See Figure 4.16.4.

We define Tp : 9 X ---0E — OE x --- x O by Tp(z1,...,2,) =
(tp(z1),...,tp(zx)). Then we have

To({(z1,---,2k)] 2s €[71,...,2K) and z; € OE})
C{(y1,---»yx)| Ys € [y1,.-.,yx) and y; € OE}.

The calculation is the same as for the inequality (ii). The map ¢p changes the
volume of a surface-element at the point x by the factor

v — o)l \" (i Nos@))
<||ys—(x+ys—zs)|> <m’%£(tﬁ($))> (121)

- (lee=toto) (=i Noe(@)
[z — 2| <%7@)H7N65(tp( ))>

lly
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We have to show that this expression is arbitrarily close to 1 provided that
s is sufficiently small. Since we consider an ellipsoid

<”ya*tp(x)” J NB€($)>
—tp
(Temtztey, Noe(tp(a))

is sufficiently close to 1 provided that s is sufficiently small. We check this.
We have

(B Vor@) | (G Noe(tp(e) — Noc(a)
ys —tp(x o s—tp (
(=i, Nos(tp(a)) (=it Noe (tp(a)))

We show that (122) is close to 1 first for the case that £ is a Euclidean
ball. We have ||Nag(x) — Nag(tp(x))|| < collzo — 25| for some constant cq
because |[Nog (x) — Nog (tp(2))]| < llys — 2l and flys — 25]| < collro — 2.
The inequality ||ys — zs|| < collxo — 25| holds because {z5} = [0, zp] N OEs
and {ys} = [zo, 7] N H (25, Nox (20))-

On the other hand, there is a constant ¢g such that for all s

(122)

ys — tp(x)
(e Nac(tp(a)) ) = co/Tow = 2],
These two inequalities give that (122) is close to 1 in the case that £ is a
Euclidean ball. In order to obtain these inequalities for the case of an ellipsoid
we apply the diagonal map A that transforms the Euclidean ball into the
ellipsoid. A leaves e, invariant. Lemma 2.6 gives the first inequality and the
second inequality gives

(A () A Mo tp(a)) ) 2 co T = =

This gives that (122) is close to 1 for ellipsoids. Therefore, in order to show
that the expression (121) converges to 1 for s to 0 it is enough to show that

for all z
lys — tp(x)[|\" "
Ys = AT 12
( Jo =zl (123)

is arbitrarily close to 1 provided that s is small. In order to prove this we
show for all x

llys — tp(2)||
lys — (v +ys — z5)|| —

1—cyf|zs — 207 < <1+ cal|zs — mol|® (124)

or, equivalently, that there is a constant c3 such that
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t - s ~s L
Itp(@) = (@ s = 2l o — o, (125)

lys — tp(@)

We verify the equivalence. By triangle inequality
1+ 3|25 — @o|® > lys — tp(@)|| + |[tp(z) — (= + ys — 25)
lys — tp(a)]|
llys — (x +ys — 24)||
= lys —tp(2)||

which gives the left hand inequality of (124). Again, by triangle inequality
lys — tp() |l — lltp(x) — (= + ys — 25)||
lys — tp(@)||
llys — (= + ys — 25)|l
lys — tp(z)]|

IN

1
1 —e3llzs — o]|®

which gives the right hand inequality of (124).
We show (125). We begin by showing that

t - s — Zs 1

lys = tp(zo) |

See Figure 4.16.5.

Zo

Zs Ys

,” Ys — 2s +0¢&

Fig. 4.16.5

Clearly, by Figure 4.16.5

ltp(z0) = (x0 +ys — 2o)|| < [[v = (2o + ys — 25)||-
There is p such that for all s with 0 < s < sg we have ||zs—ul|| > pv/||zo — 2s]|-
Let 6 be the angle between xg — 7 and Nok (x¢). By this and ||z5 — ys|| =

(tan6)||zo — 2|
[tp(w0) — (zo +ys — 2s)| < v — (w0 +ys — 24) |
tan 6

Xo — % 3
20 = z| o — =] 2.

|
= Ze —
H S yS” ||Zs _uH —
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It follows
tan 6

lys—tp(wo)|| = llzs—wol|—Iltp(z0) — (wo+ys =2l 2 |z —ao ]| ———llwo—z]|?.
This proves (126) which is the special case x = z¢ for (125).

Now we treat the general case of (125). We consider three cases: One
case being © € H™(zy, Nox(w0)) and |lys — wi| < [z — 2|3, another
z € H (2, Nox(20)) and |ys — wi]| > |lzo — 2]|7 and the last z €
H* (25, Nok (z0)). First we consider the case that x € H™ (zs, Nox (z0)) and

2
lys — wall < flzo — 23
We observe that (see Figure 4.16.5 and 4.16.7)

lys — wa|

> |
< lwe = (@ + ys — 25) llwz — ws|.

|
[tp(2) = (2 +ys = 25

Ys w1y u .
Fig. 4.16.7
Ws — Zs + X0 oo o u_jd_ ____________ w|
tp(zo) wy
w53 o
Ys wy u
Fig. 4.16.1
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Thus we get

[tp(z) = (@ +ys = 25)|| _ [lwa —ws|| _ [[ws —wa
lys — tp(a)]| = llys —wall - [lwr —we|

(127)

Comparing the triangles (tp(zo), w4, w2) and (tp(xo), u,ys) we get

s —wall_ ltp(zo) — well
Tiples) —wall ~ Il —al
Since |[tp(zo) — wall = [lys — w1]|
t —_
s — wa = [lgs — wy | IPED =86l
v —al

By the assumption ||ys — w1 < ||lzo — 2|5, by [[tp(xo) = ys]| < |lzo — 2| and
by |lys — u|| > cor/||zo — 2s|| we get with a new constant ¢y

7
w2 — w4l < collwo — 2|
and with a new ¢g

[we —ws|| = [lwe — wal| + [|wz — w4
= [lwe — wa|| + [[tp(z0) — (ys — 2s + z0) ||

4 3
< co(llwo — 2% + ll2s — @ol|?).
From this and ||w; — ws|| = ||zs — zo|| we conclude
7
l[wi —wall = [[zs = ol — collzo — 2|7
The inequality (127) gives now

ltp(2) = (@ 4 ys = 2)|| _ [lws —wal _ cllzo — 2|8
lys — tp(@)] T lwr —wall Tz — 20| — cflzo — 2|7

The second case is that tp(z) € H™ (z5, Nox (z0)) and
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2
1ys —will = [lzo — 25|13

Compare Figure 4.16.9. Since [|lys — w1 > [[zo — 2] % we get

2
lys = tp(@)[| = [lwo — 2]

We have [[tp(x) — (v +ys —25)|| < [|ys —2s|| because x € H™ (25, Nox (z0)) (see
Figure 4.16.9). Since ||zs—ys|| < co|lzo—2s|| we deduce ||tp(z)—(x+ys—2zs)|| <
col|o — 2zs||. Thus we get

[tp(x) — (& +ys — 20l _ collzo — 2|

1
= collxog — 24| 3.
=@l = Jao—agd ol

The last case is tp(z) € H (25, Nox (20)) (See Figure 4.16.10). We have

1ys = tp(@)|| = [lys — ull = [lzs = ull = [lys — 2s]l-

There are constants ¢y and p such that

lys = tp(@) = pv/llo — 2]l = collzo — 2

[tp(2) = (2 +ys = 25)| < collwo = 2. (128)

24
Fig. 4.16.10
v U5
o0&
— |
tp(wo)
| Ys
oty | [T N (o)
oA =
_________________ AN
vy vy U3

Fig. 4.16.11 Fig. 4.16.12
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The first inequality is apparent, the second is not. We show the second
inequality. We know that the distance between vs and = + ys — 2z, is less than
llys — zs|| which is less than c¢o||zo — 25| (See Figure 4.16.11). The angles «
and 3 are given in Figure 4.16.12. We show that there is a constant ¢y such
that 3 > coar. We have

tan o = llys = vall tan(a + G) = llva = vsll U5H.
o1 — va| [[o1 = va|
We have
t
1 L e _tan(@4B) -l o s — sl

1—tanatanf8 1 —tanatanf tan a llys — val] llys — v4l|
which gives

t —

an 8 = —tanatan§ + (1 — tanatanﬁ)”ys—%”.

tan o lys — val|

It is not difficult to show that there is a constant ¢ such that for all s with
0<s<sg
llys — U5H > CHys — v
This gives
tan
tan a

> —tanatan 5 + ¢(1 — tan atan j3).

For sg sufficiently small o and 3 will be as small as we require. Therefore,
the right hand side is positive. Since the angles are small we have tana ~ «
and tan 8 ~ (. From 3 > cpa we deduce now that

[tp(x) = (x +ys — 25)[| < collvs — (@ +ys — 29[| < cllys — 2s]l.
We obtain by (128)

[tp() = (@ +ys — 25)ll _ cllys — 2|l
llys — tp(x)|| = o/ wo — 25| — collmo — 2|

There is a constant ¢ such that ||ys — zs|| < collzo — 2s|-
(iv) First we show

ngmH;{(zlv"';Zk” 256[21,...,2«%}}—

Phe A1) 20 € o1, 2l <
Here the role of the maps rp and ¢p used in (ii) and (iii) is played by the map

that maps « € O€ onto the element [zg, x + 25 — z5/] N OE. See Figure 4.16.13.
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.- ~a Zs — 2y + OE

Fig. 4.16.13
Then we show

ngmH;{(Zla-~-7zk)| 2 € |21, -5 28]} —

]Pk

agﬂH—/{(zl,~"7Zk)| Zs € [Zl,"';zk]} <e

This is easy to do. It is enough to choose § small enough so that the prob-
ability that a random point z; is chosen from 0 N H; N H:,' is very small,
e.g. 6 = {2 suffices.

(v) We assume that zo = 0, Naox(xg) = ey, and v > 1. We consider the
transform dil : 06 — 8(%5) defined by dil(z) = %x Then

dil(0ENH, 5) = 3(%5) NH_, dil(zo — YANyk (20)) = ®o — ANpk (o)

where Ha = H(xg — ANgk(20), Nox(x0)). A surface element on 9E is
mapped onto one of 8(%5) whose volume is smaller by the factor y~"*1.
Therefore we get

]Pa( ENH, {(@1,...,21)] 20 — ANpk (o) € [21,..., 28]} — (129)

ngmH* {(x1,...,2)| o — YANsKr (x) € [21,...,2k]}| < €
Now we apply the map pd : R* — R" with

pd(x) = (tz(1),...,tx(n —1),z(n)).

We choose t such that the lengths of the principal radii of curvature of
pd(@(%é’)) at xo coincide with those of 9€ at xy. Thus pd(a(%g)) approxi-
mates 0 well at xg and we can apply Lemma 1.2. See Figure 4.16.14. The
relation

o — AN@K(JZ()) S [l‘l, . ,J)k}
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Fig. 4.16.14

holds if and only if
zo — ANok (20) € [pd(21), ..., pd(zy)].
Indeed, this follows from
29 — ANpx (x0) = pd(xog — ANk (20))

and
pd([xh e ,.’JSkD = [pd(l’l), e 7pd(:1:k)].

Let z € 6(%5) and let Na(lg)mH(x) with H = H(x, Nok (o)) = H(zo —
Y

ANpk (x0), Nok (z0)) be the normal in H to 8(%5) N H. Let « be the angle

between Na(%g)(x) and Na(%g)mH(x)'

Then a n — 2-dimensional surface element in 8(%5) N H at x is mapped
onto one in de(%g) N H and the volume changes by a factor "2, A n — 1-
dimensional surface element of 8(%5 ) at 2 has the volume of a surface element
of 6(%5) N H times (cosa) 'dA. When applying the map pd the tangent
tan « changes by the factor ¢ (see Figure 4.16.15). Thus a n — 1-dimensional
surface element of O( %5) at x is mapped by pd onto one in 8pd(%8) and its

n — 1-dimensional volume changes by the factor

" 2cosav1+t2tan?a = t"_2\/0052 a + 2 sin® a.

See Figure 4.16.15. If we choose Ag sufficiently small then for all A with

0 < A < Ag the angle a will be very close to 5. Thus, for every ¢ there is
Ap such that for all x € (‘3(%5) NH™ (xg — AoNok (o), Nox (x0))
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xo — ANar (o)

ale
Y

Ipd(5€)

Fig. 4.16.15

1-ott < "=2v/cos?2 o + t2sin® a < (1+0)t" 1.

Therefore, the image measure of the surface measure on 9(2€) under the
map pd has a density that deviates only by a small number from a constant
function. More precisely, for every § there is Ay so that the density function
differs only by 0 from a constant function. By (i) of this lemma

g(%‘f)ﬁHc_A{(xh - ,a:k.)\ xro — AN@K($0) S [331, C ,Jfk]} —
k _
de(%g)ﬂH;A{(xl’ Ce ,LL‘k)| xo AN@K({E()) S [1'1, - 7.Tk]} < €.

(In fact, we need only the continuity of this density function at z.) 8pd(%€ )
and O€ have the same principal curvature radii at zy. Therefore, we can apply
(ii) of this lemma and get

Pgé’ﬁH;A{(xl" .. ,l‘k)| o — AN@K<LL‘0) S [$1, . ,.’L‘k]} —
Pg(%s)mHJA{(m"”’xh” xo — ANpx (x0) € [xl,...,xk]}‘ < e
By (129)
P’(;SOH:A{(xl""7mk)| o — AN@K(LL'Q) (S [xl,...,xk]} —

Phnr- (@1, 2] 20— YANox (w0) € [z, m}| <«
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(vi) By (i) and (ii) of this lemma

P} oknm-—{(@1, . an)| s € [z, 3]} —
Pl;gﬂH*{(zl?""zk” Ts € [Zlv"wzk]}} <e

where H satisfies vol,,_1 (0K N H~) = ¢s and H is orthogonal to Nax (o).
We choose § so that

{25} = [x0, 2r] N H(zs, Nok (x0)) {z5} = [x0, 27| N O&;.

We have (1—¢)5 < m < (1+€)3. We verify this. For sufficiently
o n—1
small so we have for all s with 0 < s < sg and Hs = H(zs, Nox (x0))

(1-es< /a  J@)ox < (149

(H and H; are generally different.) By the continuity of f at xy we get for a
new sg and all s with 0 < s < s

(I—¢€)s < f(xg)vol,—1(OENHT) < (1+¢€)s.

Since
_ vol,—1(0ENH)
S =
voln_l(&‘})
we get the estimates on s.
By (iii) of this lemma
P oxnm- 1@, )| s € fon, oz} -
ngmg—{(zla ooy zk)| 75 € 2, ,zk]}| <e.
A perturbation argument allows us to assume that § = ———=>———. By

f(zo)vOl,_1(88)"
(iv) we get for H with vol,,_1 (0K NH™) =cs
P]},OKQH—{(:CM x| xs €T, xRl —

]P’ggmH_{(zl,...,zk)\ z; € [zl,...,zk]H < e.

Let L and L be hyperplanes orthogonal to Nax (7o) with vol, 1 (0ENL™) =
¢s and vol,_1(0E N L™) = esf(xo)vol,—1(9E). By (v) of this lemma
’Pgsni,{(zl, vy 2k)| zs € (21,05 28]}
—ngﬂL_{(zl, ceszk)| 25 € 21, - zk]}| < €.

In order to verify this it is enough to check that the quotient of the height
of the cap 0 N L~ and the distance of zz to z¢ equals up to a small error
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(cf(zg)voln_l(aé'))%. Indeed, by Lemma 1.3 the height of the cap €N L~
resp. the distance of z; to x¢ equal up to a small error

1 <csf(xo)voln_1(8£)\/ﬁ)"21 1 < sv/R )

resp. -
2 vol,_1(BE ) P vol,_1 (B2~ 1)

3
|
)

2
For the height of the cap 0 N L™ and the distance of z5 to xq
1 ( csy/R > = L < sv/R )nl
| —— resp. = .
2 \vol,_, (B ) P2 \ F(wo)voly_1 (8€)vol,_1 (BE 1)

Therefore the quotients are the same.
Since vol,_1 (0K N H~) = ¢s and vol,_1(0E N L) = ¢s and & is the
standard approximating ellipsoid of K at xy we have

(1—¢€)es<vol, 1(OENHT) < (1+e€)es

and
|P§50H*{(Z17"'azk)| 25 € |71,y 2K)}
—PgsnL,{(zl,...,zkﬂ 25 € [21,...,zk]}| < €.
Therefore
’P];,aKmH—{($17~-~7xk)| Ts € [T1,...,Tk]} —
Pheni {(21,- - z)| 2s € [z1, .., 2]} < e

with vol,_1 (0K N H™) = ¢s and vol,_1(0E N L™) = esf(xo)vol,_1(9E).
Introducing the constant ¢ = ¢f(xq)

c's vol,_1(0ENL™)

voln,l(é)K N H_) = f(mo) Voln_l(ag) =('s.

Since
(1-ePf(OKNH™) < f(zo)volp1(OKNH ) < (14+€)Pr(0KNH™)

we get the result. O

Lemma 4.17. Let K be a convez body in R™ and xq € 0K . Suppose that the
indicatriz of Dupin exists at xo and is an ellipsoid (and not a cylinder with
a base that is an ellipsoid). Let € be the standard approximating ellipsoid at
xg. Let f: 0K — R be a continuous, positive function with faK fdp=1. Let
K be the surface body with respect to the density f and Es the surface body
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with respect to the measure with the constant density (vol,_1(0€))™1 on €.
Let x4 and zs be defined by

{zs} = [z, 20] N OK; and {zs} = [z1, 0] N 0.
Then for all € > 0 there is se such for all s € [0, s¢] and for all N € N

|P}V{(x1,...,xN)| s & [z1,...,2N]} —
ng{(Zl,...,ZN” zs & [zl,...,zN]}| <e.
Moreover, for all € > 0 there is a & > 0 such that we have for all s and s
with 0 < 8,8 < sc and (1 —0)s <s' < (1+40)s
‘]P’;V{(xl,...,x]vﬂ s & [x1,...,2N]} —

]ng{(zh...,zlvﬂ 2y & [zh...,zN]}’ < €.

Proof. For all @ > 1, for all s with 0 < s <7T and all N € N with

Nl

as

we have

1 > P}V{(xl,...,x;vﬂxs ¢ [z1,...,2N]}
2 ijv{(xlv"‘vl'N”xla'“axN € (Hi(xsaNaKS(xs))maK)o}

N
2(1—5)N2<1—§V> 1ot

« o
and
1> ng{(zl,...,z]vﬂzs ¢ [z1,...,2n]}
> Pjﬁvg{(zla .. '7ZN)|217 ..., 2N € (H_(stNags(zs)) ﬂag)o}
1

>(1-s)V>1-sN>1-=.
(6%

Therefore, if we choose o > % we get for all N with N < é

IPF {(x1,- . ow)les & [21,..., on]}

P (21, 2n)|2s € (21,5 2N} < e
By Lemma 4.8 for a given z there are constants a, b with 0 < a,b < 1, and
se such that we have for all s with 0 < s < s,
P;V{(xl, coosxn)| zs & [z, ... 2N]}
<2%(a—as+s)N +2"(1 — s+ bs)V
< 2"exp(N(Ina+ s(1 —1))) + 2" exp(—Ns(1 — b)).
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We choose s¢ so small that |Ina| > 2s.(% —1). Thus

]P’jcv{(xh o) zs & [21,. .., 2N]}
< 2"exp(—3sN|Inal) + 2" exp(—Ns(1 — b)).

Now we choose ( so big that
1
e A=) e and e~ 2Alnal o Te

Thus, for sufficiently small s, and all N with N > % we get

ijv{(xl,...,xNﬂ xs & [x1,..., 2N} <€
and
PY{(21, ..., 2n)] 25 & [21,- .., 2n]} < e
Please note that 3 depends only on a, b, n and €. This leaves us with the case
L <n<i

“We put ’y = «a vol,—1(0K). By Lemma 4.15 for all ¢ with ¢ > ¢ and ~v
there is s, such that for all s with 0 < s <s., and for all N € N with

that

PF{(z1,...an)| @5 & 21,0 an]} -
]P’}V{(xh...,xzv)\ zs ¢ [{a1,...,an} NH ]}

< gn—1 exp(—%\/z) — 9gn—1 exp (_ Cl\ﬁ )

avol,_1(0K)

where H = H(xg — cANgk (20), Nox (x0)) and A = A(s) as in Lemma 4.15.
We choose ¢ so big that

A exp(—%Ve) <e

Thus for all € there are ¢ and s, such that for all s with 0 < s < s,

|IP’ {(x1,...,zN)| x5 ¢ [21,...,2N]} —
BY (w1, evan)| @ # {21, oon} NHT} < o

and in the same way that

|P59V5{(x1,...7xN)| zs & [x1,...,2N]} —
Plef(er, .. o)l 2 ¢ [{zr, o oan} N H ]} < e

By Lemma 1.3 there are constants ¢; and ¢ such that
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n—1 n—1
ClﬂT < VOln_l(H_ (l‘o — CANaK(l‘()), NaK(l‘o)) N 85) < CQAT

where A is the height of the cap. Now we adjust the cap that will allow us
to apply Lemma 4.16. There is d > 0 such that for all s with 0 < s < s,
there are hyperplanes Hys and I:Ids that are orthogonal to Nk (x¢) and that
satisfy ~

VOlnfl(ag N H(;S,)

vol, 1(08) %

P;(0K NH,,)=ds
and

0K N H_({Eo — CAN@K(LL'()), N(’)K(LL'())) C oK N It[(;S
& N H™ (x9 — cANgk (o), Nox (v0)) € 0EN Hy,.

Thus we have for all s with 0 < s < s,

|P§V{(x1>-~-axN)| Ts ¢ [131,...,1‘]\7” - (130)
]pr{(xl7...)f,CN)| s & [{x1,..., 2N} ﬂH(;]}‘ <e
and
‘ng{(ml,...,xjvﬂ zs & [x1,...,xN]} — (131)

PYe{(z1,. .. an)| 25 & {z1,...,an} NHL]H <e

We choose ¢ so big that

-~ (dB)"
Z il < E.
k=t

By Lemma 4.16.(vi) we can choose s. so small that we have for all k with
1<k<?

Pl;,aKmH;s{(xl""’m’f)l Zg € [x1,... 28]} — (132)
ggﬂﬁgs{(zl,...,zkﬂ zs € [21,.. ., 2k} < e
We have
\]P}V{(ml,...,xNﬂxS%[mh...,xN]} (133)
—ng{(zl,...,zNﬂ zs & |71, 2N}
S |P}V{($1,,$N)‘ Ts ¢ [3’;1,...,,@]\[}}
—P;V{(xl,...,xNﬂ e & {x1,...,an} N H]}H
—|—|IP’]fV{(a?1,...7xN)| s & {z1,...,an} N H,]}
—PYe{(21,-- - 2n)| 2s & [{z1,. .., 2n} N H ]}
PN { (21, ...y 2n)| 25 & 215, 2n]}

_]P)évg{(21, e

can)| 2 & [z, an} NHG Y



Random Polytopes 403

By (130) and (131) the first and third summand are smaller than e. It remains
to estimate the second summand. We do this now. We have

PN {1, on)| @s & {an, - an} 0 HY

Z( )Pf{xl,...,xN)|zs¢[:c1,...,xk], Ty,...,x € Hy,

+
Thtt,--, TN € HJ }

=Z< ) (1—ds)N™ k(ds)kIP’];ﬁKnH{;{(xl,...,xk)\x5¢[x1,...,xk]}.

Moreover, since N < g we have
NN
—k k

> (k> (1—ds)N % (ds) P’famH A @)l o & o, o)
k=/¢

N k N k

k) \N
k=/{ k=¢

Thus we have

P}V{(zl,..., N)| zs & [z, .. ,an} NV H]} —
-1

( ) N k(ds)kpl;,aKer;{(xl’“"x’“)| xs ¢ [xl,...,xk]}‘ <e.
k=0

In the same way we get

ng{(zl,...7zN)\ zs & [{zl,...,zN}ﬂﬁ;S]}

B G AN—k ko
Z( ) 1—ds)N 7% (ds)* Poeni; (21 20| 2o ¢ [zl,...,zk]}‘ <e
From these two inequalities we get

‘P}v{(zl, conan)| @ € {zn, . an N H]Y

~PYA(21,- - 2n)| 25 & {21, 2n} N H
< 2¢ +

—1
3 (Z]D (1= ds)N " (dg)kP’;ﬁKan:{(xl,...,a:k)| zs & [x1,..., 7k}

k=0
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_Z( ) 1— ds)N " (ds) ]P’ggmgds{(zl,...,zkﬂzsgé[21,...,zk]}‘

= 2e+

£—1
3 (ZZ> (1—ds)™™" ()" [P = {(@r, - wn)] @ ¢ [0, ai])

k=0

_PSSHH;{(zl’”"Z’“” 2s & [zl,,zk]}]‘

By (132) the last expression is less than

{—1

2+e (JZ) (1 —ds)N " (ds)" < 3e.

k=0
Together with (133) this gives the first inequality of the lemma.
We show now that for all € > 0 there is a 6 > 0 such that we have for all
sand ¢ with 0 <s,s' <s.and (1—-9)s <s <(1+J)s
|]P}V{(x1,...,xN)| s & [x1,...,2N]} —
ng{(2:17 oy 2n)| 2z € [z, ,zN]}’ <e.

Using the first inequality we see that it is enough to show that for all € > 0
there is a § > 0 such that we have for all s and s’ with 0 < 5,5’ < s. and
(1-0)s<s <(1+9)s

|ng{(z17...721\z)\ zs & |21, 2N]} —
PYA{(21,. .., 2n)| 200 ¢ [z1,...,2n]} <€

As in the proof of the first inequality we show that we just have to consider
the case % <N < % We choose 6 = §. Thus ¢ depends on ¢, but £ depends
only on  and ¢. In particular, £ does not depend on N. As above, we write

Phe{(z1,--2n)] 26 & ({21, an ) N HJY
_Z( ) 1—ds)N 7% (ds)F Pgmﬁd_s{(zl,...,zk)|zsg[zl,...,zk]}.

We get as above

|]P(]9V5{(zl,...,zN)| zs ¢ {#z1,...,2n} ﬂﬁd_s]}
—PYe{(21, .y 2n)] 2o & {2150+ 2n ) 0 Hp Y

4
Z( ) (1 —ds)N " (ds)* Phenaz {2120l 2 € [, el
k=0

‘ N—k /k) k
Z( ) ds')" " (d) Pogng Aozl 2w & Lo, ol
k=0
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This expression is not greater than

(‘Z) [(1 —ds)N T (ds)* — (1 — ds)VT* (ds’)’“]

Pgsmfld‘s{(zl"“’zk)' zs & (21, .., 2k) }

M~

k=0

¢
+Z (Z) (1-— dsl)N—k (dS/)k ]}ngg;S,{(zl7...,zk)| zg & |21, 2]}

k=0
P A )] 2 [ ).
By Lemma 4.16.(iv) the second summand is smaller than
¢
N N—k k
€ 1—ds' ds')" <e.
S () -t <

The first summand can be estimated by (we may assume that s > s)

i (JID (1= ds)V ™ (ds)" — (1= ds)V " (a5

k=0

¢ N—k k
N N—k k 1—ds s’
= 1—-4d d 1-— — .
(k) ( s) (ds) 1—ds s
k=0
Since s > s’ we have 1 — ds’ > 1 — ds and the above expression is smaller
than

L
3 (Z) (1= ds)N " (ds) [1 = (1 — 6)*]

k=0
L
Z( > (1 —ds)N % (ds)" k6 < 06.
=0

4.2 Probabilistic Estimates for Ellipsoids

Lemma 4.18. Let zo € 0BT and let (BY)s be the surface body with respect
to the measure Py with constant density f = (vol,_1(0B%))~'. We have

ds

i N /5 Png{(xl,...,xNﬂ xs & [x1,...,2N]}

(vol, . (9Bg))~* d
NH.) (1= <Np(og), (2:):Nopg (0)>2)3 | O i (¥)

2 2
o i (@) ) Fn+14 %)
vol,_o(0By 1) 2(n+1)!

N—o0

fa(Bg
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where Hy = H(xs, No(py),(zs)) and {zs} = [0,30] N (BY)s. (Let us note
that No(py),(zs) = zo and Nopy(y) =y.)

Proof. Clearly, for all s with 0 < s < 1 the surface body (B%)s is homothetic
to By. We have

vol, (By) —E(0By,N) = / PéVBg{(xl, onxn)|x ¢ [z, ... an] e
2
We pass to polar coordinates
vol,,(By) —E(0By, N

/ / ]P’{,Bn {(z1,...,zN)|7E & [21,...,xN]}r" 1dedr
8B”L

where d¢ is the surface measure on 9B%. Since B3 is rotationally invariant

IP’éVBg{(xl, o xn)ré ¢ [z, ..., aN]}

is independent of £. We get that the last expression equals

1
vol,—1(9B3) / Py (@1, )€ ¢ [, an ]} N
0

for all ¢ € 9B%. Now we perform a change of variable. We define the function
s:[0,1] — [0, %] by

~ vol,_1(OBY N H™(r€,€))
) = e 05))

The function is continuous, strictly decreasing, and invertible. We have by
Lemma 2.11.(iii)

ds / (vol,_1(9B3)) "
ar dpasynm.)(y)-
dr d(BZNH,) (1— < NB(BE)S(J:S)aNBBg(y) >2)% (B3 )

We have r(s) = xs. Thus we get
vol,(BY) — E(OBy, N)
voln,l(aBg)
/% Py {(z1, -y an)| s & [z, an]}(r(s))" ds

(vol,,_(8Bz))-1
NH) (1-<Na(Bgp), (®s), NBB"(.U)>2)2

fa(Bn d:u’a(B NH; )( )

Now we apply Proposition 3.1 and obtain
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1

/5 Png{(l’la--wa)l Zs ¢ [;{;‘1’_,_7,’13]\7]}(7“(3))”_1(218
0

2
lim Nt
N [ (vol,.(05)) dua(spnm.) ()
OBENHL) (1= <Noqig), (v0),Nopg (1)>) 7 O(OENH)

o1t < vol,_1(9B2) )— r(n+1+32)
B vol,_o(dBI 1) 2(n+1)!

By Lemma 4.13 it follows that we have for all sg with 0 < s¢ < %

o Pipe{(2r,. - an)| s & [z, an]}(r(s))" ds
(vol,_.(9B3 )~
(1-<No(sy), (x:).Nopg (4)>2) 3

. _2
lim N»-1
N—oo 0

fB(BgnHS) dpasynm.) (Y)

it ( vol,_1(9BY) ) r(n+1+:2)
B vol, _2(0By ™) 2(n+1)!

By this and since 7(s) is a continuous function with lims_,q7(s) = 1 we get

lim N7 2 Pl {21, an)| @5 & 21, . 2] }ds
n—1
Ngnoo 0 f (VOlnfl(aBg))il d‘ua BrnH (y)
9(ByNH,) (17<N5(B§L)s(Is)’NaBé‘(y)>2)% (BN

~(n— 1) ( vol,_1(9BY) ) r (n F14 %)
vol,—2(0By ) 2(n+1)!

Lemma 4.19. Let K be a convex body in R™ and xq € 0K . Suppose that the
indicatriz of Dupin exists at xo and is an ellipsoid (and not a cylinder with
a base that is an ellipsoid). Let f,g: 0K — R be continuous, strictly positive

functions with
fdp = / gdp = 1.
oK oK

Py = fdpox and Py = gdusk.

Then for all € > 0 there is s, such that we have for all 0 < s < s¢, all x5 with
{zs} =[0,20] NOKy 5, all {ys} = [0,20] NOKy s, and all N € N

|P}V{(x1,...,x1\;)|x$ ¢ [xl,...,a:N}}—IP’g]{(xl,...,xN)|ys ¢ [x1,...,xN]} < e

Let

Proof. By Lemma 4.17

|P§V{(951,-~-,13N)| v, & [x1,...,oN]} —

Phe{(z1,- - 2n)l 25 & [21,- ., o]} <€,
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and

|Pév{($1,...,x]v)| ys¢[$1,...7$]\]]}_
Phe{(21,...,2n)| 25 & [21,. ... 2n]}| <&

The result follows by triangle-inequality. O

Lemma 4.20. Let aq, .. an >0 and let A : R™ — R™ be defined by Ax =
(aiz(1))iz,. Let & = A(B2 );

g:{x

Let f: 0 — R be given by

s { (11

—1
n
i=1

Then we have fas fduas =1 and for all x € By

IP’éVB?{(xl,...,xNﬂm ¢ [z1,...,xN]} = P?{(21’...7ZN)|A(J;) ¢ [z1,...,2N]}

Proof. We have that
x ¢ [r,...,2N] if and only if Ax ¢ [Axq, ..., Azy].
For all subsets M of O such that A=1(M) is measurable we put
V(M) = Papy (A~ (M))
and get
]P’Iang{(xl, ooz d [z, .y =N (2, 2n)| AT ¢ (2. 2w )

We want to apply the Theorem of Radon-Nikodym. v is absolutely continuous
with respect to the surface measure puge. We check this.

hn-1(A”H(M))

V(M) =Popy (A7 (M) = =5 5pm

where h,_1 is the n — 1-dimensional Hausdorff-measure. By elementary prop-
erties of the Hausdorfl-measure ([EvG], p. 75) we get

1
vol,_1(0BY)

By (M)

V(M) < (Lip(A)" ™ S e

= (Lip(A))"* poe (M)
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where Lip(A) is the Lipschitz-constant of A. Thus v(M) = 0 whenever
pog (M) = 0.

Therefore, by the Theorem of Radon-Nikodym there is a density f such
that dv = fduge. The density is given by

s ( (11

-1

n T ,
> EL vol,_1(0BY)

i=1

We show this. We may assume that z(n) > \“/E (there is at least one coordi-

nate x(i) with |z(i)| > \‘;—) Let U be a small neighborhood of z in 9. We

may assume that for all y € U we have y(n) > 2‘2/% Thus the orthogonal

projection p., onto the subspace orthogonal to e, is injective on U. Since
z € 9E we have (?)?:1 € 9By and Nppyp (A~ (z)) = (‘Tél))l 1- Then we
have up to a small error

v(U) =Papy(A~'(U))

N vol_1(pe, (A~1(U))) _ anvoly_1(pe, (A~1(U)))
< en, Nopy (A1 (x)) > vol,_1(0BY) x(n) vol,_1(0BY)

Moreover, since

we have

volp—1(pe, (U)) _
< en, Nag (1‘) >

~—

pos(U) ~

We also have that

n—1
VOlnfl(pen(U = (H az) vol,— 1(pen(A 1(U)))

i=1

Therefore we get
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Lemma 4.21. Let ay,...,a, >0 and

g:{z 21}

Let £, 0 < s < %, be the surface body with respect to the measure Py, with
constant density g = (vol,—1(0€))~ . Moreover, let A¢ : [0,3] — [0,a,] be
such that Ag(s)e, € 0. Then we have for all t with 0 <t < %

t PYe{(21,. .., 2n)| Ae(s)en & [21,. .. 2n]}

(vol,,_,(8&))-1 d
. e o)em Nos oty F SHoEnH) (9)

co (M) (e R AR PR
=1

vol, _o(0By™1) 2(n+1)!

(i)

a;

. 2
lim N=»-1
N —oo

ds

O Joenm, (1—<Np

where Hy = H(Ag(s)en, Nog, (Ae(s)en)). (Please note that Nog, (Ae(s)en) =
en-)

Proof. (B), 0 <t <1, are the surface bodies with respect to the constant
density (vol,,—1(0B%))~1. A : [0, 3] — [0,1] is the map defined by Ag(t)e, €
(By):.

By Lemma 4.18

N /% Png{(sr:l,...,xNH Ap(s)en & [x1,...,xN]} ds
N—oo 0 (vol,,_(0Bp))-1 d ;
Jotwgamt) G, v e Nog ey s H0EE 1) (U)
2 _2_
_ <V°1n—1<333> > F(n+1+”_1>(n—1)ﬁ—ﬂ
vol, (0B ™) 2(n+1)!

where A\g(s)e, € 9(BY)s and Hy; = H(Ag(s)e,,e,). By Lemma 4.13 for ¢
with ¢y < c and N with Ng < N

ds
(vol,,_1(0BZ)) 1 d )
Joga. (1= <Notog, (p(s)en) Nopg 1)>3 o5 (1)

‘N"E /% Popp{(z1,...,2n)| Ap(s)en ¢ [x1,... 2N}
0

< c1e7¢ + cge B,

_( vol,_1(0B2) ) r(n+1+:%) 0 1)
vol,_o(dBy 1) 2(n+1)!

Let A be the diagonal operator with A(x) = (a;z;)!, such that A(By) = €.
By Lemma 4.20 we have

P {1, oon)l A(@) & 21, aw]}
:]P’}V{(zl,...,zN)| x ¢ z,...,2n]}
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where f: 0€ — (0,00)

f(x) = (H ai)

For all ¢ with ¢y < ¢ and N with Ny < N

x(4)?

1
a;

VOln, 1 (83;)

n

=1

ds

‘N,fl /% PY{(z1,....2n)] AQB(s)en) & [z, 2w}
O Ja

(vol,,_(8Bz))-1 d
BEOHS) (1-<No(sy), (Ap(s)en).Nopg (1) >2)3 Hozznm.) ()

_@@zﬁﬁzy%F@H+ﬁﬂ
vol,_o(0By 1) 2(n + 1)!

nt1 . e
(n—1)n=1| < cre™ + cge N,

The functions A and A¢ are strictly decreasing, bijective, continuous func-
tions. Therefore, the function s : [0, a,] — [0,1]

s(t) = A5 (Ag(t)>

an

exists, is continuous and has t : [0, 1] — [0, a,,]
ts) = Az (anAn(s))

as its inverse function. Clearly, a,Ap(s(t)) = Ag(t) and A(Ap(s(t))en) =
Ae(t)ey,. Thus

(vol,,_;(8Bg))—! ds

n 1
BEOH:) (1-<No(py), (\p(s)en), Nopp (4)>2)2

dpasynm.) (Y)

’N— /5 PN {(21,....2n)] Ae(t(s))en & 21, 2n]}
0 fa(

(n— 1)% < 167 ¢ + cqe BN,

(anﬂwyﬂf@ﬁ+fﬂ
V01n72(aBgil) 2(n+ 1)|

Now we perform a change of variable. By Lemma 2.11.(iii) and a,Ag(s(t)) =
Ae(t)

ds 1 @)
dt - an 9GE(s(t))

f dpoBRAH( g (s(t)en,en) (V)
1 vol,—1(9&) JOBINH(Ag(s(t))en en) V/1-<en,N(y)>2
ay vol,_1(8B%)

f dpognH (g (ten en) (YY)
OENH (Mg (t)en,en) \/1—<en,N(y)>2

Therefore we get for all ¢ with ¢y < ¢ and N with Ng < N
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c

‘N% /t(N) ijv{(zl,...,zNﬂ Ae(t)en & [21,.-.,2n]}

(vol,, _(8&))-1 d
< Noe, e (e Noz (52§ HENHD (V)

dt

fa(mHt) (

2 2
—a < vol,—1(9By) > F(”*”’H)(nl):ﬁi‘
"\ vol,,_2(8B5™1) 2(n + 1)!

< i [cle_c + CQG_CSN]

where H; now denotes H (Ag(t)en, N(Ag(t)en)). Since a,Ap(s(t)) = Ae(t) we
get that for sufficiently small ¢ the quantities ¢t and s are up to a small error
directly proportional. We have

n—1

CnQn’

t(s) ~s

n—1"

k(anen) T

Therefore, with a constant o and new constants cy, c; we can substitute ()
by &

~ P}V{(zl,...,ZN)l )\g(t)en ¢ [21,...,21\[]}

‘N"zl (vol, _(8€))-1 dt
0 no1 d
Joerm, (1—<Noe, (e (Den) Noe ()>2) 3 acent) (9)
2 2
a ( vol,—1(9B3) > r(n+1+ %) (n— 1)3t
vol, _2(0By 1) 2(n+ 1)!

< e 4 cgem N

We have Ag(tf(anen)vol,—1(0E))e, € 0 with t' =t f(ane,)vol,—1(0E). By
Lemma 2.7.(i) for every 6 > 0 there is t” with Ag(t)e, € 05 and

(1 = 0)tf(anen)vol,—1(0€) <t < (14 8)tf(anen)vol,_1(9E)

ie.
(1=t <t" < (14t

Applying Lemma 4.17 gives

|P}V{(x1,...,xN)| As(t)en & [x1,...,2N]} —
Pévg{(,z17 ooy z2N)| Ae(tf (anen)vol,—1(0E))e, ¢ [21,...,21\[]}‘ <e.

Therefore
‘anl /% PYe{(21,- -, 2n)] )\g(tf(lanen)voh,l(ag))en ¢ [z1,..., ZN]}dt
0 fa(gnHt) (17<Nag((1:(;$i);%(y)>2)% dpaenm,) (v)
vol,_1(0BY) aer I (n +1+ %) ntt
<voln2(aBgl>> 2n+1)! (n—1)r=
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%
< |NwET < dt

(vol, _(8€))-1 d
(1-<Noe, (e (D)en) . Noe (1)>2) 3 Hacena (v)

Joenm,)
+cre” Y + CQGngN.

By Lemma 4.11
n—3
/ (1= < Nog,(Ae(t)en), Noe(y) >2) "2 dpacenm,)(y) > vt .
PENH,

Therefore we have

v €
/0 Joerm, (1= < Nog,(Ae(t)en), Noe (y) >2)=3dpgenm,)(y)

e [V _n-3 en—1/7c\wxx
< [Fran ey
7 Jo v 2 \N
Therefore

5 /% Pévg{(zl, ooy 2N)| Ag(tf(anen)vol,—1(0E))en ¢ [z1,. .., 2N]}
0

Nn—l
‘ (vol,,_;(9€))-1 d
fa(smHt) (1-<Nog, (Ae (t)en),Noe (y)>2) 2 HoEnH:) 2

dt

dt

n+1

(n—1)»1

—a ( vol,,_1(0BY) >— r (n +1+ %)
" \vol,,_»(0By 1) 2(n + 1)!

<

en—1/c\nx e —esN

; 5 (N) +cie + coe .

We perform another transform, u = tf(ane,)vol,—1(9E). With a new con-
stant o

Nzt N Poe{(z1, - 2n)| Ae(wen & [21,- .-, 2n])
o (vol,,_1(9€))~1

d
Joceer (1-<Noe, () (e (t(w)en), Nog (4)>2) 2 Ho(entic) (W)
2 2
y du 3 ( vol,_1(0BY) ) = (n +1+ ﬁ)
f(anen)vol, _1(9E) "\ vol, (0B~ 1) 2n+1)(n—1)~ i

<

2
%n ; ! (%) ot + eV 4 cge 8N,
By Lemma 2.10.(iii)
1
/agnHu V1= < Nog, (xu), Nog(y) >2

n—3 1
<ot [
¢ oenm, \/1— < Nog, (1), Nos(y) >2

dpoenm, (y)

dpsenm, (v)
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and the inverse inequality. Thus

‘Ng/% PYe{ (1, 2n)| Ae(wen & o1, -, 2n]}
0

(vol, _(9€))-1 d
e O (Wen) Nog()>2) 3 oend) ()

X

fa(mHu) (1—<N,

(f(anen)vol,_1(9E)) 7T vol,,_»(0By 1) =

du —a ( vol,—1(0BY) )% F<n+1—|—%)
" 2(n + 1)(n — 1) w1

-1 ="
<e+ sn 5 (%) "o 4 cpem Y

Since f(ane,) = ((H?:_ll a;)vol,_1(0By))~"

‘an»l N Ple{(z1, ..., 2n)| Ae(w)en & [21,...,2n]} du

o (vol, _(9€))-1 d
1— <Noe, (e (Wen) Noe ()>2) 3 a(ent) (9)

=1

vol, _2(0By 1) 2(n+1)!

f(’)(SﬁHU) (

2
n—1 n—1 P
vol,,—1(0BY) en—1 <C)m _ —esN

< _ T ANTTTa T . _ _ ac c3 .
(Voln_l((%’) il;[lal 6+7 2 N + cie + co2€
By choosing first ¢ sufficiently big and then e sufficiently small we get the
above expression as small as possible provided that N is sufficiently large.
By this and Lemma 4.13

e [ PRzl Ae(Ben) € [21, o)

(VOLLfl(ag))*l d
1—<Nast(Ag(t)en),Nag(y)>2)% /”La(gﬁHt)(y)

dt

N—o0 0

f@(SﬂHt) (

2

vol, _o(0By 1) 2(n +1)!

5 Proof of the Theorem

Lemma 5.1. Let K be a convex body in R™ such that the generalized Gaufs-
curvature exists at xg € OK and is not 0. Let f : 0K — R be a con-
tinuous, strictly positive function with fBK fdu = 1. Let K, be the sur-
face body with respect to the measure fdp. Let {zs} = [zr,x0] N K5 and
H, = H(xs, Nok_(x5)). Assume that there are r and R with 0 < r,R < o0
and
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By (xg — rNak (x0),r) € K C BY(xog — RNsk (x0), R).
Then for all s with 0 < sg <T

hm N% 50 P}v{(xlv e 7$N)| Zs ¢ [‘Tl? M 7:1;N]}d5 —c H(xO)m
Nooo o f fWdroxnn,) W) nf(zo)%
O(KNH:s) (1-<Nos, (w),Nox (y)>2) 2
where

+

(n—1)"10(n+1+-25)
2(n + 1)!(vol,,—2(0By ™~ 1))r

Cp =

We can recover Lemma 4.21 from Lemma 5.1 by choosing K = £ and
f = (vol,_1(9€))~!

Proof. Let £ be the standard approximating ellipsoid at xg with principal
axes having the lengths a;, i = 1,...,n — 1. Then we have (4)

oIl

Therefore, by Lemma 4.21 we get for all sp with 0 < sg < %

50 ng{(zh...,z]\/ﬂ Ae(s)en & [21,- .-, 2n]} ds
f (vol, _(8&))-1
O(ENH:) (1< Noe, (Ae (s)en),Noe (y)>2) 2

ne1 0\ wol 2 2
—q Hla, ( vol, 1 (9€) )"‘1F(n+1+"—1)(n—1)2t1
i vol, (0B} ") 2(n +1)!

= cpr T (20)(Vol,_1 (E)) T

w\:

. _2
lim N»-T
N—oo 0

rdusenm,)(y)

where -
(n—1)"1l(n+1+-25)
2(n + 1)Y(vol,,—2(0By ™~ 1))n 1

and Hy, = H(Ag(S)en, e,). Hs is a tangent hyperplane to the surface body &

with respect to the constant density (vol,_1(9€))~!
By this for all € > 0 and sufficiently big N

N M(x1,...,oN)| ©s & [21,...,2N]} B k() 7T
f FWdro(kna (@, N(=:)) (Y) flag)mT
O(KNH (ws,N(@5))) (1_<N6K3(ms)vN8K(y)>2)%

<e+

2
Nn—l
fy)dpe(knH (s, N(=s))) (Y)

fa(KﬁH(IsyN(ms))) (1*<N8K3 (Is)yNaK(’y)>2)%

/50 P;V{(ml,...,xNﬂ xs & [x1,...,2N]}
0
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2

- <f(wo)vojl\;1(05)) T

50 ng{(zl,...,ZN” Ag(5)€n¢[zl7"'aZN]}
(vol, . (9€)) 1
) (1—<N855()‘5(5)671)7N85(y)>2)%

ds|.

fa(mHs dﬂa(smHs) (v)

By Lemma 4.13 there are constants by, b, b3 such that for all sufficiently big
c the latter expression is smaller than

€+ 2(bie ¢ + bye3N)

, [N P}V{(Il,...,xNﬂmsgé[:vl,...,ch]}
+|Nn—1 S
0 FW)dpo(knH (@ Ny g, (25))) (Y)

fB(KﬁH(zs,N(ms))) (1-<Nox, (Is),Nax(y)>2)%

Nt /% PYe{(215- - 2n)] Ae(s)en & [21,- .., 2n]} 1

a ! 2 n—3 S|.
0 fzo)n—1 (Vol, ,(8€)) n—1 i

(1-<Nog, (e (s)en),Nog (y)>2) 2

fc’)(fﬂHs) dpaenm.)(y)

By triangle-inequality this is smaller than

€+ 2(()1676 —+ b267b3N)

N P;V{(xl,...,:rNﬂxsgé[xl,...,xN]}
FW)dpoxnu (s Nok, (x:))(Y)
(2))) (1—<N6KS(96.@)7N8K(ZJ)>2)%

P}V{(xh o N)| zs & [21,. .-, 2N]}
2 n_3
f(zo) =1 (vol,_1(8E))” n—1 q
—<Noe, (Ae(s)en)Nog (y)>2) 2 Haenm,) (Y)

+’Nn21 /% PI{(21, .-y 2n)] Ae(8)en & [21,- .-, 2n]}
0

2 n—3

flzo)m T (vOl, 1 (08) " n7T g
1—<Noe, (Ae(s)en), Noe (y)>2) 2 HaEnm,) (Y)
]P);V{(xl?' B ,ZL'N)l Ts ¢ [331,. .. ,IL‘N}}
f(wo)%(voln,l(ag))*%
—<Noe_ (Ne(s)en),Nog (y)>2)

+’N%
fa(KﬁH($57NaKS

ds

f@(fﬂHs) (1

fa(SHHS) (

ds|.

Joenm,) R rduaenm.)(y)

By Lemma 4.17
‘]P’}V{(xh coorN)| ms & [z, xN]} —
]P’évg{(zl, o 2n)| Aeg(s)en & [z, - zN]}| < e.
Therefore, the above quantity is less than

€ + 2(b1€_c —+ b26_b3N)

~ P?{(mh...,xjvﬂxs¢[x1,..-7$N]}

2
v
FW)dpoxnu(zs Nok, (2:))(¥)

0
T
(1-<Noxk,(zs),Nor (y)>?)2

fB(KﬂH(mS,NaKS (z5)))
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PY{(z1,...,an)| zs & [21,...,2N]}

2 n—3
fzo)n—1 (VOl,_1(9E)) n—t d
2) (1—<Nags(Xg(s)en),Nag(y)>2)% ,Uf{)(SmHs)(y)

ds

fa(gmH

c

2 N 6
+'N1L1 / 2 1 n—3 dS .
0 fzo)m—1 (VOl,_1(0€)) n—1
Joceam (1=<Noe, (/\s(S)en),Nas(y)>2)%dua(mHs)(y)

By Lemma 4.11 we have

~ 1
/ 5 ds
o Hoenm,) (Y)

Jowzom.) (1=<Nog, (Ae (s)en), Noe (y)>2) 2

Rn1 _n=38 N n—
< (voly_1(B2~1)) "7 (vol,_1(9€)) "1 / sTReTds
rmn 0
n-l _nan—17¢\n
— L1 (B 1)) "7 (vol,,_ 1 (8€)) " (—) .
o T (vol (B )77 (vol, i (06)) T (£
Therefore, the above expression is not greater than
€+ bre ¢ + bye N 4 bye e
Y. ~ Pﬁcv{(xl,...,mN)\:csgé[xl,...,mN}}
0 f FW)dpoxnn (s Nok, (@) (¥)
OKNH (@ Nores (22))) (1-<Nox, (w),Nox (4)>2) %
PY{(z1,...,zN)| zs & [21,. .., 2N]} d
s s
2T 1,,_1(0& =
Joen,y THE— COmt O = iy e, (y)

(1—<Nae, (Ae(s)en),Nog (y)>2)2

for some constant b,. Let z; be defined by
{Zs} = {xo + tNaK($0)|t S R} N H(CL‘S7 NaK(wo)).

By Lemma 2.7 there is a sufficiently small s, such that we have for all s with
0<s<s,
s <Py(0K N H™ (25, Nor (z0))) < (1 +¢€)s.

Because f is continuous at zy and because £ is the standard approximating
ellipsoid at xy we have for all s with 0 < s < s,

(1 —¢€)s < f(xo)vol,—1(0E N H™ (zs, Nox (20))) < (1 +€)s.

vol,,_,(9EnH])
vol,,_,(9€)
s with 0 < s < s,
(1-9 / dpoenn, (y)
(f(z0)vol,_1(9€)) 5=t Joenm, /1= < Nae, (o), Noe (y) >2

Since s = we get by Lemma 2.10.(iii) for a new s, that for all
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< / d/‘aé‘ﬁH—(szaK(wo))(y)
 Joent- (s Nox (w0)) V1= < Nog, (x0), Nog (y) >

(1+e) / dpoenn, (y)
T (f(wo)vol_1(0€)) 71 Joenn, /1= < Nog, (x0), Nog (y) >

n

where ¢ ~ s(f(xo)voln_l(ag))"_j. Please note that Ny (zg) = Nag,(2s).
Therefore, if we pass to another s. the above expression is not greater than

e+ble_c+b26_b3N+b4ec%
]P’;V{(xl,...,a:Nﬂ ZTs & [x1,...,2N]}

Nn-1 /
IE))
’ 0 fa(KﬁH(a:S,N(zs))) (17<N(w5)7’!N(y)>2)%dua(KmH(wS7N(ws)))(y)

B ]P’;V{(ml,...,xN)\xsgé[xl,...,:tN}} 4l

f(zo)
Jotent (oo Nos (z0)) < NOe (e Non)? rdpaEnH (20, Nox (v0)) (Y)

Now we apply Lemma 2.10.(i). Choosing another s. the above expression is

less than € 4+ bje~¢ + bye N 4 b4ec%. We choose ¢ and N sufficiently big
and e sufficiently small. O

Proof. (Proof of Theorem 1.1) We assume here that z7 = 0. For xg € 0K
the point x4 is given by {xs} = [z1, xo] N OK5.

vol, (K) —E(f,N) = /K]Pécv{(xl,...,xN)\m ¢ [z1,...,xN]}d.

By Lemma 2.1.(iv) we have that Ky = K and by Lemma 2.4.(iii) that Kr
consists of one point only. Since ]P’;V{(xl,...,xN)\xs ¢ [r1,...,zN]} Is a
continuous functions of the variable x5 we get by Lemma 2.12

vol, (K) —

F )0k (®) dpor, (x5)ds

T
Nok,(xs),Nok (y)>2)2

where H, = H(xs, Nox,(s)). By Lemma 4.9 for all sp with 0 < so < T

/ /aK PY{(z1,...,xn)|zs & [21,..., 2n]}

fa(KmH ) 1<

IP’N{ (x1,...,2N)| s & [21,...,2N] ok, (zs)ds
R N 1) =0
OO 0K fBKﬂHs \/1 <Nok,(zs),Nok (y)>2 d,“z{)KﬂH (y)
We get for all sg with 0 < s < T
lim vol, (K) —jE(f, N) _
N—oo N*ﬁ
/ / IP {(z1,...,zN)| s & [21,...,2N]}dpok, (xs)ds
lim N7t .
N—o0 0K, f(y)

faKﬂH \/l <Nok,(xs),Nok (y)>2 dMBKﬂHs (y)
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We apply now the bijection between 0K and 0K mapping an element x €
OK to zs given by {zs} = [rr,z0] N OK;. The ratio of the volumes of a
surface element in 0K and its image in 0K is

llzs||™ < 2o, Nox (o) >
lzol|™ < @s, Nok, (zs) >

Thus we get
]P’écv{(xl,...,acN)\ Zs & [x1,...,2N]}
fy) d d‘uaKs (IS)
K, f[)KﬂHS =<Moo (@) Non ()57 tornH, (Y)
]P’}V{(xl,... aN)| xs & [x1,...,2N]} y
o f(y)
fBKmH V1= <N3K3(js) Nok (y)>2 dporcnm, (y)
zs]|" < @, Nor(x) >
2" < 2o, No, () > 12K ()
We get for all s with 0 < s <T
i O=EGN)
N—oo
{(xl, coosxn)| x5 & [z, ... 2zN]}
Jim N o) X
—00
oK faKﬂH VI <Nor, (@), NOK(y)>2d,U8KﬂH (v)
zs|" <z, Nok(z) >
d oK\ T ds.
[al* < 22 Nox (z) > FoK ()
By the theorem of Tonelli
iy O-EGN)
N—oo
{(x1,...,zN)| s & [21,...,2
thN"l/ / : ]J\"[()J) - B
9K f@KﬁH \/1 <Nok,(zs), NBK(y)>2dM8KﬁHS (y)
s » N,
[2s]|" < @0, Nok (20) > dsdpog ().

[zo]|™ < x5, Nok, (z5) >
Now we want to apply the dominated convergence theorem in order to change

the limit and the integral over 0K . By Lemma 5.1 for all sg with 0 < so < T

lim N#oT

N—o0

s0 P}V{(xl,...,xN)\xsg_f[xl,...,a:N}} k(o)1
o f f(y)dpsxnw,)(y) ’
OUKOH.) (1-<Nox, (w.), Nox (y)>2) 2

Clearly, we have lims_,q ||zs|| = ||z| and by Lemma 2.5



420 C. Schiitt and E. Werner
hH(lJ < x5, Nog,(xs) >=< x, Nok (z) > .
S—

By this and since the above formula holds for all sg with 0 < sg < T

. 2
lim N»—1
N—oo

ds

/SO P}V{(mlw"axl\/)' Ts ¢ [:L'la"'axN]} ”xSHn < J),N(l‘) >
0

f fy)dpaxnms) (y) . ||xH" < xs,N(xs) >
OKNH:) (1_ <Ny, (2.),Nox (y)>2) 2

= Cp 2

By Lemma 4.12 the functions with variable zg € 0K

so PN {(zq,..., 2 Ts ¢ |x1,...,x n N
N%/ f{( 1 N)| ¢ [z1 N]}||55s|| < Zo, (x0)>ds
0

fW)duoxnn,) (y) . [|zo]|™ < xs, N(zs) >
1—=<Nox,(s),Nox (y)>?)2

fa(KmHs) (

are uniformly bounded. Thus we can apply the dominated convergence the-

orem. L

1. (K)—-E(f,N =1
lim VO n( )7L(fa ) :Cn/ H(x)idﬂaK(I)
N—oo N ==t K f(aj)nfl
O
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Israel Seminar on Geometric Aspects of
Functional Analysis (GAFA) 2000-2001

Friday, November 3, 2000

1. Mikhail Sodin (Tel Aviv): Dimension free estimates of polynomials and
analytic functions (joint with F. Nazarov and A. Volberg)

2. Boris Tsirelson (Tel Aviv): Logarithm of a Hilbert space

Friday, November 10, 2000

1. Michael Krivelevich (Tel Aviv): On the concentration of eigenvalues of
random symmetric matrices

2. Glideon Schechtman (Rehovot): MAX CUT and an isoperimetric inequal-
ity on the sphere

Friday, November 24, 2000

1. Michael Entov (Rehovot): A symplectic proof of Schaffer’s conjecture in
convex geometry (after J.C. Alvarez Paiva)

2. Jean-Michel Bismut (Orsay): Secondary invariants in real and complex
geometry

Friday, December 15, 2000

1. William B. Johnson (College Station): Non linear quotients vs. non linear
quotients (joint work with J. Lindenstrauss, D. Preiss and G. Schecht-
man)

2. Marianna Csornyei (London): The visibility of invisible sets

Friday, December 29, 2000

1. David Preiss (London): Deformation with finitely many gradients

2. Peter Sarnak (Princeton): L-functions, arithmetic, and semiclassics: LP
norms of eigenfunctions on surfaces

Friday, January 26, 2001

1. Pavel Shvartsman (Haifa): Extension of Lipschitz mappings and the K-
divisibility theorem (joint work with Yu. Brudnyi)

2. Roman Vershynin (Rehovot): Coordinate restrictions of operators
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Friday, March 9, 2001

1. Elisabeth Werner (Cleveland): An analysis of completely-positive trace-
preserving maps on My (joint work with M.B. Ruskai and S.J. Szarek)

2. Carsten Schutt (Kiel): Orlicz norms of sequences of random variables
(joint work with Y. Gordon, A. Litvak and E. Werner)

Friday, March 30, 2001

1. Noga Alon (Tel Aviv): Testing subgraphs in large graphs

2. Béla Bollobds (Memphis and Cambridge): Large subgraphs of random
graphs

Friday, May 11, 2001

1. Nicole Tomczak-Jaegermann (Edmonton): Families of random projections
of symmetric convex bodies (joint work with P. Mankiewicz)

2. Vitali Milman (Tel Aviv): Some old problems in a new presentation

Friday, November 16, 2001

1. Marcel Berger (Bures-sur-Yvette): Metric geometry from Blumenthal to
Gromov

2. Boaz Klartag (Tel Aviv): 5n Minkowski symmetrizations enough to ap-
proximate a Euclidean ball starting any convex body

Friday, December 7, 2001

1. Anatolij Plichko (Lviv): Superstrictly singular operators
2. Assaf Naor (Jerusalem): Girth and Euclidean distortion



Israel Mathematical Union — Functional
Analysis Meeting

(Organized by J. Lindenstrauss and G. Schechtman)

Friday, June 8, 2001

1.

Assaf Naor (Hebrew University): Hyperplane projections of the unit ball
in £}

Joram Lindenstrauss (Hebrew University): On the work of Yaki Sternfeld
in functional analysis

Mark Rudelson (University of Missouri): Embeddings of Levy families in
Banach spaces

David Shoikhet (Technion and Ort Braude Karmiel): A non-linear ana-
logue of the Lumer—Phillips theorem for holomorphic maps and applica-
tions to the geometry of domains in Banach spaces

Gideon Schechtman (Weizmann Institute): Block bases of the Haar sys-
tem as complemented subspaces of L,

Viadimir Fonf (Ben Gurion University): The stochastic approximation
property

Shiri Artstein (Tel Aviv University): Asymptotic behaviors of neighbor-
hoods of sections of S™ with applications to local theory

Boris Rubin (Hebrew University): Radon transforms and fractional inte-
grals on hyperbolic spaces



Workshop on Convex Geometric Analysis
Anogia Academic Village, Crete (August 2001)

(Organized by A. Giannopoulos, V. Milman, R. Schneider and S. Szarek)

Sunday, August 19

Keith Ball: The complex plank problem
Imre Bdrdny: 0-1 polytopes with many facets

Daniel Hug: Almost transversal intersections of convex surfaces and
translative integral formulae

Markus Kiderlen: Determination of a convex body from Crofton-type
averages of surface area measures

Ulrich Brehm: Moment inequalities and central limit properties of isotropic
convex bodies

Yehoram Gordon: Local theory of convex bodies between zonotopes and
polytopes
Boaz Klartag: Minkowski symmetrizations of convex bodies

Piotr Mankiewicz: Average diameters of projections of symmetric convex
bodies

Assaf Naor: The cone measure on the sphere of £

Monday, August 20

1.

Peter Gruber: Recent results on asymptotic best approximation of convex
bodies

Gideon Schechtman: A non-standard isoperimetric inequality with appli-
cations to the complexity of approximating MAX CUT

Shiri Artstein: Proportional concentration phenomena on the sphere

Roman Vershynin: Restricted invertibility of linear operators and appli-
cations

Monika Ludwig: L, floating bodies

Matthias Reitzner: Stochastical approximation of smooth convex bodies
Karoly Boroczky: Polytopal approximation if the number of edges is re-
stricted

Shlomo Reisner: Linear time approximation of three dimensional poly-
topes

Szilard Revesz: A generalized Minkowski distance function and applica-
tions in approximation theory
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Tuesday, August 21

1.

Alexander Koldobsky: Applications of the Fourier transform to sections
of convex bodies

Hermann Kénig: Sharp constants for Khintchine type inequalities

Alex Iosevich: The notion of a dimension of a convex planar set and
applications to lattice points and irregularity of distribution

Yossi Lonke: Curvature via the g-cosine transform

Mihail Kolountzakis: Orthogonal bases of exponentials for convex bodies

Wednesday, August 22

Stanislaw Szarek: Duality of metric entropy

Richard Vitale: Convex bodies in Hilbert space: some metric issues, open
problems

Marianna Csornyei: Absolutely continuous functions of several variables

Yves Martinez-Maure: Examples of analytical problems related to hedge-
hogs (differences of convex bodies)

Matthieu Fradelizi: Some inequalities about mixed volumes

Antonis Tsolomitis: Volume radius of a random polytope in a convex
body

Miguel Romance: Extremal positions for dual mixed volumes

Aljosa Volc¢i¢: Determination of convex bodies and reconstruction of poly-
topes by certain section functions

Apostolos Giannopoulos: On the volume ratio of two convex bodies

Thursday, August 23

Rolf Schneider: On the mixed convex bodies of Goodey and Weil

Olivier Guedon: Supremum of a process in terms of the geometry of the
set

Krzysatof Oleszkiewicz: On £-ball slicing and pseudo-p-stable random
variables

Boris Kashin: N-term approximation

Vitali Milman: Random cotype-2 of normed spaces



Conference on Geometric and Topological
Aspects of Functional Analysis

Haifa, Israel (May, 2002)

(In memory of Yaki Sternfeld. Organized by J. Arazy, Y. Benyamini,
Y. Gordon, V. Harnik, S. Reich and S. Reisner)

Sunday, May 19

1.

Vitali Milman (Tel Aviv, Israel): Can we recognize in a reasonable time
that a convex body in a high-dimensional space is very far from an ellip-
soid?

Marianna Csornyei (London, UK): Some periodic and non-periodic re-
cursions

Michael Levin (Beer-Sheva, Israel): The Chogoshvili-Pontrjagin conjec-
ture

Joram Lindenstrauss (Jerusalem, Israel): The work of Yaki Sternfeld in
Functional Analysis

Jim Hagler (Denver, Colorado): The structure of hereditarily indecom-
posable continua

Arkady Leiderman (Beer-Sheva, Israel): Basic families of functions and
embeddings of free locally convex spaces

Monday, May 20

1.

Nicole Tomczak-Jaegermann (Edmonton, Alberta): Families of random
sections of convex bodies

Wieslaw Kubis (Beer-Sheva, Israel): Hyperspaces of separable Banach
spaces with the Wijsman topology

Henryk Torunczyk (Warsaw, Poland): Equilibria in a class of games: ge-
ometric and topological aspects

Paolo Terenzi (Milan, Ttaly): The solution of the basis problem
Boaz Klartag (Tel Aviv, Israel): Isomorphic Steiner symmetrization

Assaf Naor (Jerusalem, Israel): Entropy production and the Brunn-
Minkowski inequality

Olga Maleva (Rehovot, Israel): On ball non-collapsing mappings of the
plane

Michael Megrelishvili (Ramat Gan, Israel): Reflexively and unitarily rep-
resentable topological groups
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Tuesday, May 21

1.

Edward W. Odell (Austin, Texas): Asymptotic structures in Banach
spaces

Mark Rudelson (Columbia, Missouri): Phase transitions for sections of
convex bodies

Haskell Rosenthal (Austin, Texas): Invariant subspaces for certain alge-
bras of operators

Alezander Litvak (Edmonton, Alberta): Projections of quasi-convex bod-
ies

David Preiss (London, UK): Measure and category do not mix or do
they?

‘Wednesday, May 22

William B. Johnson (College Station, Texas): Lipschitz quotients

Eva Matouskova (Prague, Czech Republic): Bilipschitz mappings of nets
Tadeusz Dobrowolski (Pittsburg, Kansas): The simplicial approximation
and fixed-point properties

Viadimir Fonf (Beer-Sheva, Israel): On the set of functionals that do not
attain their norms

Gideon Schechtman (Rehovot, Israel): £, 1 < p < 2, well embed in /{"
for any a > 1

Aleksander Pelczynski (Warsaw, Poland): Elliptic sections of convex bod-
ies
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