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Preface

The first, Russian, version of this book was written in 1983-1986 by
B. D. Chebotarevsky and myself and published in 1988 by “Vyshei-
shaya Shkola” (Minsk) under the title “From ornaments to differential
equations”. The pictures were drawn by Vladimir Tsesler.

Years went by, and I kept receiving positive opinions about the
book from both acquaintances and strangers. In 1996 I decided to
translate the book into English. In the course of doing so, I tried to
make the book more consistent and self-contained. I deleted some
unimportant fragments and added several new sections. Also, I cor-
rected many mistakes (I can only hope I did not introduce new ones).

The translation was finished by the year 2000, and in that year
the English text was further translated into Japanese and published
by Springer Verlag Tokyo under the title “Henkangun Nyimon” (“In-
troduction to Transformation Groups”).

The book is intended for college and graduate students. Its aim
is to introduce the concept of a transformation group, using examples
from different areas of mathematics. In particular, the book includes
an elementary exposition of the basic ideas of Sophus Lie related
to symmetry analysis of differential equations, which have not yet
appeared in the popular literature.

X



X Preface

The book contains many exercises with hints and solutions, which
will help a diligent reader to master the material.

The present version, updated in 2002, incorporates some new
changes, including the correction of errors and misprints kindly indi-
cated by the Japanese translators S. Yukita (Hosei University, Tokyo)
and M. Nagura (Yokohama National University).

S. Duzhin
St. Petersburg
September 1, 2002



Introduction

Probably, the one most famous book in the whole history of mathe-
matics is Euclid’s “Elements”. In Europe it was used as a standard
textbook of geometry in all schools for about 2000 years.

One of the first theorems in the “Elements” is the following
Proposition 1.5, of which we quote only the first half.

Theorem 1 (Euclid). In isosceles triangles the angles at the base
are equal to one another.

Proof. Every high school student knows the standard modern proof
of this proposition. It is very short.

A

B C

Figure 1. An isosceles triangle

STANDARD PROOF. Let ABC be the given isosceles triangle (Fig-
ure 1). Since AB = AC, there exists a plane movement (reflection)
that takes A to A, B to C and C to B. Under this movement, ZABC
goes into ZAC B; therefore, these two angles are equal. a

1



2 Introduction

It seems that there is nothing interesting about this theorem.
However, wait a little and look at Euclid’s original proof (Figure 2).

Figure 2. Euclid’s proof

EUCLID’S ORIGINAL PROOF. On the prolongations AD and AE
of the sides AB and AC, choose points F' and G such that AF = AG.
Then AABG = AACF; hence ZABG = ZACF. Also ACBG =
ABCF; hence ZCBG = /BCF. Therefore ZABC = ZABG —
/CBG = /ACF — /BCF = /ACB. O

In mediaeval England, Proposition 1.5 was known under the name
of pons asinorum (asses’ bridge). In fact, the part of Figure 2 formed
by the points F, B, C, G and the segments that join them really
resembles a bridge. Poor students who could not master Euclid’s
proof were compared to asses that could not surmount this bridge.

From a modern viewpoint Euclid’s argument looks cumbersome
and weird. Indeed, why did he ever need these auxiliary triangles
ABG and ACF? Why was he not happy just with the triangle ABC
itself? The reason is that Euclid just could not use movements in
geometry: this was forbidden by his philosophy, stating that “math-
ematical objects are alien to motion”.

This example shows that the use of movements can elucidate ge-
ometrical facts and greatly facilitate their proof. But movements are
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Figure 3. Asses’s Bridge

important not only when they are studied separately. It is very inter-
esting to study the social behaviour of movements, i.e. the structure
of sets of interrelated movements (or more general transformations).
In this area, the most important notion is that of a transformation
group.

The theory of groups, as a mathematical theory, appeared not
so long ago, only in the nineteenth century. However, examples of
objects that are directly related to transformation groups had been
created back in ancient civilizations, both oriental and occidental.
This refers to the art of ornament, called “the oldest aspect of higher
mathematics expressed in an implicit form” by the famous twentieth
century mathematician Hermann Weyl.

Figure 4 shows two examples of ornaments found on the walls of
the mediaeval Alhambra Palace in Spain.

Both patterns are highly symmetric in the sense that they are
preserved by many plane movements. In fact, the symmetry proper-
ties of Figure 4a are very close to those of Figure 4b: each ornament
has an infinite number of translations, rotations by 90° and 180°, re-
flections and glide reflections. However, they are not identical. The
difference between them is in the way these movements are related to
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Figure 4. Two ornaments from Alhambra

each other for each of the two patterns. The exact meaning of these
words can only be explained in terms of group theory, which says that
the symmetry groups of Figures 4a and 4b are not isomorphic (this
is the contents of Exercise 129, at the end of Chaper 5).

The problem of determining and classifying all the possible types
of wall pattern symmetry was solved in the late nineteenth century
independently by the Russian scientist E. S. Fedorov and the German
scientist A.Schoenflies. It turned out that there are exactly 17 differ-
ent types of plane crystallographic groups (see the table at the end
of Chapter 5).

Of course, the significance of group theory goes far beyond the
classification of plane ornaments. In fact, it is one of the key notions in
the whole of mathematics, widely used in algebra, geometry, topology,
calculus, mechanics, etc.

This book provides an elementary introduction into the theory
of groups. We begin with some examples from elementary Euclidean
geometry, where plane movements play an important role and the
ideas of group theory naturally arise. Then we explicitly introduce
the notion of a transformation group and the more general notion of
an abstract group, and discuss the algebraic aspects of group theory
and its applications in number theory. After that we pass to group
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actions, orbits, invariants, and some classification problems, and fi-
nally go as far as the application of continuous groups to the solution
of differential equations. Our primary aim is to show how the notion
of group works in different areas of mathematics, thus demonstrating
that mathematics is a unified science.

The book is intended for people with the beginning of a basic col-
lege mathematical education, including the knowledge of elementary
algebra, geometry and calculus.

You will find many problems given with detailed solutions, and
many exercises, supplied with hints and answers at the end of the
book. It goes without saying that the reader who wants to really
understand what’s going on must try to solve as many problems as
possible.



Chapter 1

Algebra of Points

In this chapter we will introduce algebraic operations, addition and
multiplication, in the set of points in the plane. This will allow us to
apply algebra to geometry and geometry to algebra.

1. Checkered plane

Consider a plane with a regular square grid, i.e. two sets of parallel
equal-distanced lines, perpendicular to each other. We will be inter-
ested in the polygons with all vertices at nodes of the grid, like the
isosceles triangle or the square shown in Figure 1.

I
N
\

\‘
N
\NEAN

-

Figure 1. Polygons in the checkered plane

Problem 1. Prove that a regular polygon different from a square
cannot have all its vertices at nodes of a square grid.

7



1. Algebra of Points

Solution. Suppose, on the contrary, that such a poly-
gon A1As... A, exists. Let O be its centre. For every
triple of consecutive vertices Agx_1AxAk+1 find a point
By which is the fourth vertex of the parallelogram
Ag—1AAk+1Br. The whole construction of Figure 2
goes into itself under the reflection with axis O Ax and un-
der the rotation through 360/n degrees around the point
O. Therefore every point By lies on the corresponding
line OAg, and By B, ... By is a regular polygon. If n > 6,
then this polygon is smaller than the initial one. Indeed,
in this case the angle a = "7_21800 is greater than the
angle § = %360"; hence the point By belongs to the seg-
ment OAg. It is a crucial observation that all the points
B;, Bs,..., B, lie again at nodes of the square grid.

Figure 2. Regular polygon

Repeating the same procedure for the polygon
B1B,...B, instead of A1A,...A,, we will arrive at a
third polygon C;C;...C,, whose vertices have the fol-
lowing properties:

e they coincide with nodes of the grid, and
e (i belongs to the segment O A and lies closer to O
than Bk.
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Since there are only finitely many integer points on
the segment O Ay, after several iterations of this proce-
dure we will arrive at a contradiction.

The same argument remains valid also in the case of
a regular pentagon, the only difference being that now
the point By lies on the line passing through O and Ag
outside of the segment O Ay.

Figure 3. Is there such an equilateral triangle?

If n = 3 or 6, the argument fails (why?), and we
will give a different proof of our assertion. Note first
of all that three vertices of a regular hexagon form an
equilateral triangle; thus it is sufficient only to consider
the case n = 3. Suppose that an equilateral triangle has
all its vertices at nodes of the checkered plane (Figure
3). Then, by Pythagoras’ theorem, the square of the side
of this triangle must be an integer (we assume that the
grid is 1 by 1); hence its area S = a®+/3/4 is an irrational
number. On the other hand, the triangle A; A; A3 can be
obtained from a rectangle with integer sides by removing
three right triangles as shown in Figure 3; thus its area
must be rational — in fact, either m or m + %, where m
is a whole number.
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Exercise 1. Suppose that the sides of the squares making the grid
are 1. Is there a right triangle with all vertices at nodes such that
all its sides have integer lengths and no side is parallel to the lines
of the grid?

2. Point addition

Our solution of Problem 1 was based on the following nice property of
the integer grid: if three vertices of a parallelogram are at nodes, so
is the fourth. The usual mathematical wording for this phenomenon
is: the set of all nodes is closed with respect to the operation under
study. We will now give an exact definition of this operation.

Given three points in the plane, say M, N and P, there are
three different ways to add one more point so that the triangle M N P
becomes a parallelogram. One way is to connect P with the midpoint
K of M N and choose the point L on the line PK which is symmetric
to P with respect to K (Figure 4).

N

P M

Figure 4. Point addition

Definition 1. We will call the point L thus constructed the sum of
the points M and N over the pole P, and we will write L = M + N,
P

which should be read aloud as “M plus N over P”. When the pole is
fixed, we may omit it from the notation and simply write L = M + N.

This definition holds for an arbitrary triple of points in the plane.
If M, N and P belong to one straight line, then the parallelogram
M PN L degenerates into a line segment. If all of them coincide, then
it degenerates even more and becomes a point.
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Now we can give an exact statement for the property of the integer
grid that was used in Problem 1: the sum of any two nodes of the
grid over any other node is always a node.

Let

us now forget about the grid and study the properties of

addition for arbitrary points.

Exercise 2. Given two triangles ABC and DEF and a point P, de-

note by ® the set of all points M + N where M is an interior point
P
of AABC and N an interior point of ADEF.

a) Prove that ® is a polygon. How many sides may it have?

b) Prove that its perimeter is the sum of the perimeters of the two

given triangles.

Point addition is closely related to vector addition: L = M + N
P

. . —_ = = . . . .
is equivalent to PL = PM + PN, and enjoys similar properties:

10

30

40

The associative law
(A+B)+C=A+ (B+C)
p P P P
holds for any arbitrary points A, B, C over any pole P.
We always have
P+A=A,
P

i.e., the point P behaves as a neutral element with respect
to the operation +.
P

Over a given pole P, every point A has an opposite point,
i.e., a point A’ such that

A+A =P
P

In fact, one can simply take the point A’ which is symmetric
to A with respect to P.

The commutative law
A+B=B+A
P P

holds for any three arbitrary points.
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The order in which these 4 items appear in our list is not acciden-
tal — in fact, more fundamental rules come first. You will understand
this better when you get to Chapter 4.

Rules 2° —4° are obvious and do not require any proof. To check
rule 1°, we first construct the points M = A+ B and N = B + C (see
P P

Figure 5). The segments AM and CN are both equal and parallel
to the segment PB. Hence the midpoints of MC and AN coincide,
which, by the definition of point addition, ensures that M j;(] =

A+ N.
P

Figure 5. Associativity of point addition

Using property 3°, we can define the difference of two points
over & given pole: B—A = B+ A’, where A’ = — A is the point
P P P

opposite to A. The point B — A is the unique solution to the equation
P
A+ X =B.
P

If all operations are carried out over the same pole, then addition
and subtraction of points satisfies the same rules as the usual opera-
tions on numbers, for example, A— (B—-C+D)=A—-B+C - D.
Problem 2. Find the sum A+ B+ C, where M is the intersection

M M

point of the medians in a triangle ABC.
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Figure 6. Sum of vertices of a triangle

Solution. Recall that each median is divided by their
common intersection point M in the ratio 2 : 1; therefore,
in Figure 6, we have CM = 2M K. The point D = A+ B

M
lies on the prolongation of the median CK, and DK =
KM = %MC’. Therefore, DM = MC and D$C’ =M.

It is interesting to observe that the intersection point of the me-
dians is the only point which satisfies A + B + C = M. To prove this,
M M

let us first derive the rules for passing from one pole to another in the
formulas involving point addition:

(1) A+B = A+B-Q,
Q P P

2) A-B = A-B+Q.
Q P P

The first equality can be rewritten as (A g B) j; Q=A —; B, and

its validity is easily seen from Figure 7. To prove the second one,
we will check that the point A — B + @ is a solution to the equation
P P

B+ X = A. Indeed, using the formula we have just proved, we get
Q

B+ (A-B+Q)=B+ (A-B+Q)-Q=A.
Q P P P P P P
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A P

Figure 7. Change of base point

Note that the point P does not appear in the left-hand sides of
(1) and (2); hence the right-hand sides do not depend on its choice.
This observation is generalized in the following exercise.

Exercise 3. Investigate the conditions under which the expression
Ar+As+---+Ar—~Bi—Bs—---— B
p P P P P P P
does not depend on the choice of the pole P.

Continuing the discussion of Problem 2, suppose that a point
N has the same property as the median intersection point M, i.e.
A+B +C = N. We can subtract the pole without violating the
equatlon hence A+B +C—N—-N = N. A reader who has done

N N N
Exercise 3 knows that the left-hand side of this relation does not

depend on the choice of N. In particular, substituting M in place
of N, wegetA+B+C’ N — N N; therefore M — N N N,

N + N + N = N and ﬁnally N M. This means that the median

mtersectlon point M is the unique point with the property proved in
Problem 2.

Exercise 4. Prove that A+ B +C H, where O is the centre of
the circle cucumscrlbed around the triangle ABC and H is the

intersection point of its three altitudes.
3. Multiplying points by numbers

Over a given pole P, a point A can be multiplied by a real number «
yielding a new point B = apA.
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Definition 2. The product of a point A by a real number o over the
pole P is the point B that lies on the line PA at the distance |a||PA]|
from the pole P and on the same side of P as A, if @ > 0, or on the
other side, if a < 0.

A 4 & @-
P A OépA

Figure 8. Multiplication of points by numbers

N In other words, this operation means that you stre@) the Ycef)tor
PA, keeping its initial point P fixed, as if with a pin: PB = aPA.
In particular,
(1) any point multiplied by zero over P gives P, and
(2) P multiplied by any real number gives P.
It is easy to see that multiplication of points by numbers has
these properties:
5° 1pA = A.
6° ap(BpA) = (af)pA.
7 (a+pB)pA= apA—ItﬁpA.

8° ap(A+B) =apA+apB.
P P

To multiply a point by a natural number n is the same thing as to

add up n equal points: npA = A+ A+...+ A (A repeated n times).
P P P

Using this fact, you can check that the point 3 pA is the (unique)
solution to the equation X + X = A.
P

Consider a linear combination over the pole P, i.e. the sum of
several points with arbitrary coefficients

(3) apA+PBpB+...+wpZ =S.
P P

In general, the resulting point S depends on the choice of the pole P.
When a, 3, . ..,w are integer numbers, we have seen in Exercise 3 that
there are some occasions when the result does not depend on P. This
may also happen in the more general situation when the coefficients
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are not integer. For example, the point M = %A + %B is always the
middle point of the segment AB, wherever you put the pole.

Exercise 5 (A generalization of Exercise 3). Find a necessary and
sufficient condition on the coefficients a, 3, ..., w which guaran-
tees that the linear combination S of (3) does not depend on the
choice of the point P.

A B C

Figure 9. Point of a segment expressed in terms of endpoints

Using point addition and multiplication by numbers, it is possible
to express any point of the segment AB in terms of its endpoints.
Indeed, suppose that the point C divides the segment AB in the
ratio k : [ (by definition, this means that { - AC = k- CB) Choose
an arbitrary point P outside of the line AB; we will use it as the pole
in all subsequent operations on points. Through the point C we draw
two lines, parallel to PB and PA, which meet PA and PB at points
A’ and B’, respectively (see Figure 9). Then

PA’ BC l
PA ~ BA k+0
PB’ AC
PB ~ AB  k+1
Put k+l =a, kLH = . Then C = A’ + B’ = aA + 3B, and the sum

of the two coeflicients o and g is 1.

The converse is also true: if @ and § are arbitrary nonnegative
numbers such that @ + 8 = 1, then the point C = aA + 8B belongs
to the segment AB. Moreover, if one of the numbers o and 8 in
the formula for C' is negative, but the sum of the two is still 1, then
the point C lies on the straight line AB, but outside of the segment
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AB. By changing Figure 9 appropriately, you can verify that the
relations o = kLH, 6= kiﬂ remain valid, although the ratio k : [ is
now negative.

Thus, the straight line AB is the set of all points ¢A + (1 — a)B,
where « is an arbitrary real number, while the segment AB is its
subset specified by the restriction 0 < a < 1. Note again that this
description does not depend on the choice of the base point (pole).

Exercise 6. Find a similar description of the set of all interior points
of a convex polygon with vertices A, A, ..., Ap.

After doing Exercise 6, you can go back and tackle Exercise 2
once again, using the new technique.

Exercise 7. A middle line of a quadrilateral is the line joining the
midpoints of two opposite sides. Any quadrilateral has two middle
lines. Prove that these two lines, as well as the segment joining
the midpoints of the two diagonals, meet in one point, and this
point divides each of them in half (see Figure 10).

Figure 10. Quadrilateral of exercise 7

4. Centre of gravity

In Problem 2, the median intersection point M of a triangle ABC

was described implicitly as the (unique!) solution to the equation

A+ B+ C = M. We can now express M explicitly in terms of A, B
M M
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and C. Indeed, multiplying both sides of the equation by %, we get
%M(A$B &C) = M. According to the answer of Exercise 5, the

left-hand side of this equality does not depend on the choice of the
pole; hence we can write

M:%M+B+@.

In a similar way, the point referred to in Exercise 7 can be ex-
pressed in terms of the vertices of the quadrilateral as

M:£M+B+C+D)

In general, the arithmetic mean of several points is called the
centre of gravity (or centre of mass) of the system consisting of these
points: M = 1(A; + Ay + -+ + A,) (over an arbitrary pole). Thus,
the centre of gravity of a triangle (or, more exactly, of the set of its
vertices) is the median intersection point, while the centre of gravity
of the set of vertices of a quadrilateral is the intersection of its two
middle lines.

We proceed to some examples where geometric problems related
to the centre of gravity are solved using operations on points.

Problem 3. Suppose that A, B and C are three collinear points,
while E and F' are arbitrary points in the plane. Prove that the median
intersection points of the triangles AEF, BEF, CEF are collinear.

Solution. Median intersection points are arithmetic
means of the vertices:

%M+E+F): K,
%B+E+F): L
1

SCHE+F) = M.

By assumption, point C lies on the line AB, thus
C=aA+ (1-a)B. Hence
aK+(1-a)L = %(A—i—E—i—F)
l-«a

1
=3 (B+E+F):§(C+E+F):M,
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which implies that the point M belongs to the line K L.

Exercise 8. Let A, B, C, D, E, F be the middle points of the con-
secutive edges of a hexagon. Prove that the centres of gravity of
the triangles ACE and BDF coincide.

Exercise 9. In a quadrilateral ABCD, the point E is the midpoint
of the side AB and K the midpoint of the side CD. Prove that
the midpoints of the four segments AK, CE, BK and ED form
a parallelogram.

Problem 4. Prove that the middle line of a quadrilateral (see Ez-
ercise 7) passes through the intersection point of its diagonals if and
only if this quadrilateral is a trapezoid, i.e. has two parallel sides.

T

Figure 11. Trapezoid

Solution. We choose the intersection point O of the
diagonals as the pole (see Figure 11). Then C = aA,
D = (B for appropriate numbers « and 3, and for the
middle points K and L we can write K = (A4 + B),
L = 3(aA+B).

If AB || CD, then the triangles OBA and ODC are
similar, hence @ = 8, L = aK and the points K, L, O
are collinear.

Suppose, on the other hand, that we do not know
whether AB is parallel to CD, but we do know that K,
L and O lie on the same line. Then, using the point
operations over the pole O, for a suitable real number ~
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we have L = vK. Substituting the previous expressions
for K and L, we get A+ 3B =~vyA+~B,or (a—v)A=
(v - B)B. But the points (@ — y)A and (v — 8)B lie
on different lines OA and OB, and if they coincide, this
must mean that they coincide at O. Thus, a — v =
v — B =0, a =/, triangles OAB and ODC are similar,
and AB || CD.

Exercise 10. Using point addition and multiplication by numbers,
find an independent proof of the fact that the medians of a triangle
are divided in proportion 2 : 1 by their intersection point (note
that we have used this fact before, in Problem 2).

Exercise 11. A line cuts 1/3 of one side of a parallelogram and 1/4
of the adjacent side in such a way that the smaller parts have a
common vertex (Figure 12). In what ratio does this line divide
the diagonal of the parallelogram?

Figure 12. Cutting the diagonal

5. Coordinates

In the discussion of Problem 4, we have used the following important
fact: if two points M, N are not collinear with the pole, then the
equality aM + BN = vM + §N is possible only if « = 8 and v = 4.
In fact, the given equality can be rewritten as (o —v)M = (y— )N,
which implies & = and 3 = 6.

Choose a pole P and two points M, N that are not collinear with
P. Then any point Z of the plane can be expressed as Z = xM +yN
for suitable real numbers z and y (Figure 13).

Definition 3. A system of affine coordinates in the plane is an or-
dered set of three non-collinear points {P, M, N}. The first point P is
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Figure 13. Affine coordinates

referred to as the pole, or the origin, while the set {M, N} is referred
to as the basis of the given coordinate system. The coordinates of a
point Z in the coordinate system {P, M, N'} are the coefficients {z, y}
in the expansion Z =zpM + ypN.

The above argument shows that the coordinates x and y are
uniquely determined by the point Z. Thus we obtain a one-to-one
correspondence between the points of a plane and pairs of real num-
bers.

If ZM NP is a right angle and both PM and PN are unit seg-
ments, then what we get is the usual Cartesian coordinate system. In
general, such coordinates are referred to as affine coordinates.

When two points are added, their coordinates add up:

(aM + bN) + (cM + dN) = (a+ b)M + (c+ d)N.

When a point is multiplied by a number, its coordinates get mul-
tiplied by the same number:

c(aM + bN) = (ca)M + (cb)N.

The correspondence between points of the plane and pairs of real
numbers can be used as a dictionary which serves to translate geo-
metric propositions into the language of algebra and vice versa. Any
geometric figure is the set of all points whose coordinates satisfy a
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certain relation. For example, we know that a point belongs to the
line M N if and only if has the expression M + yN with z +y = 1.
In this sense, z + y = 1 is the equation of the straight line M N.

Problem 5. Find the equation of the straight line which is parallel
to MN and passes through the given point K with coordinates a,b.

Solution. Let M’ and N’ be the intersection points of
this line with PM and PN, respectively. Since M'N’ ||
MN, we have M’ = tM, N' = tN for an appropriate
number ¢ (see Figure 13). Any point Z of the line M’ N’
is equal to aM’ + BN’, where a + 8 = 1, ie., Z =
atM + (tN and at + Bt = t. Thus, the coordinates
T = at, y = [t of an arbitrary point Z € M N satisfy the
relation x + y = t, where the value of ¢ is yet unknown.
To find it, note that the point K lies on the line under
study; hence its coordinates a, b satisfy the equation of
this line: a+b =t is true. We have found that ¢t = a+b,
and the answer to the exercise is ¢ +y = a + b.

Exercise 12. Write the equation of the straight line that contains a
given point K(a,b) and
(a) is parallel to PM,
(b) is parallel to PN,
(c¢) passes through P.

Problem 6. Suppose that in a certain triangular region of the plane
the laws of optics are such that a ray of light which goes parallel to one
side of the triangle and hits the second side, after reflection assumes
the direction of the third side of the triangle. Prove that a person
standing inside this triangle and directing the beam of his flashlight
parallel to one of the sides of the triangle, is in fact shining the light
onto his own back.

Solution. Let one vertex of the triangle, P, be the pole
and two others, M and N, be the two basic points of a
coordinate system (Figure 14).

Suppose that the person with the flashlight stands
at the point K(a,b) and the beam of his flashlight goes
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Figure 14. Zigzag inside a triangle

parallel to PN and meets the side PM at the point A.
The coordinates of A are (a,0), because, on one hand,
KA || PN and hence the first coordinate of A is equal
to the first coordinate of K (see Exercise 12), while on
the other hand, point A lies on PM and hence its second
coordinate is 0.

The next segment of the beam, AB, is parallel to
MN. According to Problem 5, the equation of the line
AB is z +y = a, because a is the sum of the coordinates
of the point A. Since the point B lies on PN, it has
z = 0; therefore its second coordinate must be equal to
a.

Proceeding in the same way, we successively find the
coordinates of all points where the beam meets the sides
of the triangle: C(1 - a,a), D(1 — a,0), E(0,1 — a),
F(a,1—a). The line FK is parallel to PN, which is why
the beam does return to the initial point K — from the
opposite direction.

A vigilant reader may have noticed a flaw in the previous argu-
ment: in fact, it may happen that the beam returns to the point
K before it makes the complete tour of ABCDEF — and hits the
flashlighter in a side, not in the back.
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Exercise 13. Describe the set of all points K in the triangle MNP
for which the trajectory of the flashlight beam consists of only
three segments, not six.

Exercise 14. A point K lies inside the triangle ABC. Straight lines
AK, BK, CK meet the sides BC, CA, AB at the points D, E,
F, respectively (Figure 15). Prove that KD/AD + KE/BE +
KF/CF = 1.

Figure 15. Lines in a triangle meeting at one point

Exercise 15. Given three points D, E, F on the sides of the triangle
ABC (Figure 15), prove that the lines AD, BE, C'F pass through
one point if and only if AF - BD-CE = FB - DC - EA (theorem
of Ceva).

6. Point multiplication

We have learned how to multiply a point in the plane by a real num-
ber. Now recall that real numbers can be represented as points lying
on a line. Let us insert this line into the plane so that its origin (zero
point) coincides with the pole P used to define the point addition and
multiplication of points by numbers. The unit point of the real line
will be E (see Figure 16a).

Our definition of point addition agrees with the usual addition of
real numbers in the sense that if the points A and B correspond to
numbers a and b, then the sum A + B (over the pole P) corresponds
to the number a + b (Figure 16b).
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Figure 16. Algebraic operations in the line

Moreover, our multiplication of points by numbers, restricted to
the real line, also agrees with the usual product of numbers in the
sense that if A < a, B < b, then both points apB and bpA corre-
spond to the number ab. It is natural to call this point the product
of the two points A and B and denote it by AB.

The next step we want to make is to extend this definition to
the entire plane. We want to find a rule to assign a new point AB
to any pair of arbitrary points A, B in such a way that this point
multiplication satisfies the usual rules of multiplication:

9° Associativity
(AB)C = A(BC).
10° Commutativity
AB = BA.

11° Distributive law with respect to point addition with the
same pole

A(B +C) = AB + AC.

We also require that the new operation agree with the previously
defined multiplication of points by numbers, i.e., that for any point Z
in the plane and any point A on the real line that corresponds to the
number a we should have AZ = apZ. In particular, this means that
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the unit point E of the real line must play the role of the number 1
for all points Z of the plane in the sense that £Z = 1pZ = Z.

It is not immediately clear whether it is possible to introduce such
an operation for the points of the plane. We will see, however, that in
fact there are many ways to do so, and they come in three essentially
different types. But let us first do some exercises.

Problem 7. Let EABCDK be a regular hexagon with centre at P
(recall that E is the unit point), and suppose that A2 = B for a
certain choice of point multiplication. Find all pairwise products of
the vertices of the given hexagon.

Figure 17. Multiplication of the vertices of a hexagon

Solution. Expand all the vertices over the basis F, A
taking P for the pole (Figure 17): B=A—-E,C = —FE,
D =-A, K =F—A. We know the products of all pairs
consisting of basic points: E? = E, EA = A, A?> = B.
Using the distributive law, we can find, for example, that
BK =(A-E)(E—A)=-A*+2AE—-FE* = -B+2A—
E = A. Other products can be found in similar fashion,
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yielding the multiplication table:

XIO|Q|Wm|x~X

X|Io|Q|w|»|=|H
I IR|IO|IQ|m|>|>
»E IR |ID|Q|w|W
D3 R|IT|Q|Q
Q|w|» = |X|T|T
giQ|w|is|= | XX

Note that the set of 6 vertices of the hexagon turns out to be
closed under the chosen rule of multiplication, i.e., the product of
any two vertices is also a vertex.

Exercise 16. Is the set of vertices of the same hexagon closed under
multiplication, if (a) A% = A; (b) A2 = P? Fill out the corre-
sponding multiplication tables.

Exercise 17. Find the multiplication table for the set of vertices of a
regular pentagon EABCD centred at the pole P, if A% is known
to be equal to B.

After these examples, we can investigate the general case. Sup-
pose that we are given a point multiplication rule that satisfies all the
requirements stated above.

Besides the two already chosen points P = 0 and E = 1, pick
an arbitrary point F' not on the line PE. Then the pair (E,F) is a
basis over P, and, as we saw in the discussion of Problem 7, point
multiplication is completely defined, if we only know the square of F'.

We have F? = o.E+ (3F for suitable real numbers o and 3. Let us
try to find another point G such that the pair (E, G) is also a basis in
the plane, but the square G? has a simpler expansion over this basis.
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Let G = F — %E‘ Then the lines F'G and PFE are parallel, so
that £ and G constitute a basis, and

. 8.\
@ - (r-25)

2
= F?_BEF+ %EZ

= <a+%2>E‘.

If you look closely at this relation, you will see that multiplication

in the basis (E,G) looks simpler than in the initial basis (E,F),

because the square of the second basic point is now just E with a

certain coefficient — and not the combination of the two points, as

before. To further simplify the multiplication rule, we will change G
once again, depending on the sign of this coefficient.

2
(1) a+ % =0 (cf. Exercise 16b). In this case the product is
given by the formulas

E*=E, EG=G, G*?=0;

(aFE + bG)(cE + dG) = acE + (ad + be)G.
(2)a+[32>0 Denoti 1
— > 0. noting ————
4 & Va+32/4
(E, H) we will have the following rules of multiplication:
E’=E, EH=H, H?=F;

(aE + bH)(cE + dH) = (ac + bd)E + (ad + bc)H.

G by H, in the basis

(Try to find such a point H among the vertices of the hexa-
gon in Exercise 16b.)
B 1
(3) a+ — <0. Set | = ——-=G. Then
4 o+ 52/4]

E?’=FE, EI=I I*=-E;
(aE 4+ bI)(cE +dI) = (ac— bd)E + (ad + bc)H.

It is easily verified that in each of the three cases our operation
satisfies all the laws imposed on multiplication. The next question
that naturally appears is whether this multiplication has an inverse
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operation of division, i.e., whether the equation AZ = B can always
be solved for Z, provided that A # 0.

In the first case let us try to divide E by G, i.e., find a point
Z = zFE + yG such that GZ = E. According to the definition,
G(zE+yG) = zG, which never equals E. Thus, division is in general
impossible.

The same is true in the second case, where, as you can check, H
is not divisible by E + H.

We claim, however, that in the third case division by a non-zero
point is always possible. Indeed, let M = aFE + bl, N = cFE + dI,
where the coefficients ¢ and d do not vanish simultaneously. We want
to find the quotient M/N, that is, a point Z = zFE + yI such that
NZ =M, or (cE +dI)(zE + yI) = aFE + bl. When expanded, this
equality becomes equivalent to the system of equations

cx—dy = a,
dr+cy = b,

ac+bd  bc—ad
Cz+d2’y_ c2+d2’

which has a unique solution x =
2 +d*#0.

The result of our investigation can be stated as follows.

provided that

Theorem 2. Multiplication of points in the plane can be introduced
in three essentially different ways, depending on the existence of an
element X with the property

1) X2 =0,
(2) X2 =1,
(3) X% = 1.

Only in case (3) is division by non-zero elements always possible.

Speaking more formally, there exist three different two-dimen-
sional algebras over the field of real numbers, and only one of them
(case 8) is an algebra with division.

Note that the actual geometric meaning of multiplication, say,
in case (3), depends on the mutual position of points E and I with
respect to the origin P. For example, let PEAB be a square drawn
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on the segment PE. Where is the point A%2? This depends on the
choice of I. If I coincides with A, then A2 = —E. If I coincides with
B, then

A’>=(B+E)?=B>4+2BE+FE*=-E+2B+E=2B.
Of course, other choices are also possible, giving other answers.

Among all these possibilities we now choose the one where I = A,
i.e., I is obtained from E by a rotation through 90° in the positive
direction (counterclockwise), and we study it in more detail in the
next section.

7. Complex numbers

The points of the line PE are identified with real numbers. Now that
we have introduced algebraic operations for the points of the plane,
we can view the set of all points as a number system which is wider
than real numbers. These numbers are called compler numbers. In
the conventional notation for complex numbers, our pole P is denoted
by 0, point E by 1, point I by i or v/—1, and a+bi is written instead of
aFE +bI. Here are, once again, the definitions for algebraic operations
on complex numbers in this standard notation:

(a+b)+(c+di) = (a+c)+(b+d)i,
(a+b)—(c+di) = (a—c)+(b—d)i,
(a+b)(c+di) = (ac—bd)+ (ad+ be)i,
a—+ bi ac+bd bc—ad,
c+di 02—|—d2+c2+d2z'
To put it shortly, the operations are performed as if on polynomi-
als in the “variable” i with the rule i> = —1 applied whenever possible.

To derive the formula for the quotient from this rule, both numerator
and denominator should be multiplied by the same number, ¢ — d:.

The two basic complex numbers 1 and i are referred to as the real

unit and the imaginary unit, respectively.
Exercise 18. Perform the operations on complex numbers:

7

(@) 52

(b) V3 —4i,

. . 1
_7/(3+Z)+;>
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() (% - ‘/7§z> -

Let z = a + bi. The distance between the points z and 0 is
called the modulus, or absolute value, of the complex number z, and
is denoted by |z|. Since a and b are Cartesian coordinates of the

point z, we have |z| = va? + b?. For example, the modulus of both
2t 1—1¢2

() + mz is 1 for any value of the real number

cost+isint and
t.

The distance between the two points represented by complex
numbers 2z and w is |z — w|, because the four points 0, w, z, z —w
form a parallelogram (see Figure 18).

JEN

Figure 18. A complex parallelogram

Exercise 19. Find the set of all points z in the complex plane which
satisfy:
(a) |2 +3] =5,
(b) |2 +4] = |2 — 2il,
(¢) the sum of the squares of the distances from z to two fixed points

is a given number.

The fact that Va2 + b? is the distance between two points pro-
vides a means to visualize certain purely algebraic problems.

Problem 8. Prove the inequality

\/a§+b§+ a3 4+ b5 + -+ /a2 + b2

> (a1 +ag 4+ an)2+ (by + by + -+ by)2.
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Solution. Put 2z, = a1 + b4, ..., z, = a, + byt and
consider the broken line with vertices at 0, 21, 21 + 22,
<oy 21+22+ - -+ 2,. The left-hand side of the inequality
is the total length of this line, while the right-hand side
is the distance between its endpoints.

Exercise 20. Prove the inequality

\/z%+(1—z2)2+\/z§+(1~x3)2+---+ 3+ (1 —z1)2>7

for any real numbers z1, ..., Z10-

The angle by which the half line 01 should be rotated counter-
clockwise in order for it to pass through the point z is called the
argument of the complex number z; it is denoted by argz. Here 0
and 1 are the points that correspond to the numbers 0 and 1.

Exercise 21. Find the arguments of the following complex numbers:
2,4, =3, —2i, 1 +4, V3 —i.

Figure 19. Polar coordinates

A complex number is completely defined if one knows its modulus
7 and argument . Indeed, as you can see in Figure 19, z = z + yi,
where x = rcosy, y = rsinp; thus

z =r(cosp + isinp).

This expression is called the trigonometric form of the complex num-
ber.

The correspondence z «> (r,) between complex numbers and
pairs of real numbers is not one-to-one. For one thing, the argument
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of the number 0 is undefined. On the other hand, the argument of
any non-zero complex number is only defined up to a whole number
of complete rotations. Thus, one is free to choose 0, 2w, —2m, 4,

. as the argument of the number 1. Nevertheless, the pair (r, ¢) is
usually viewed as a pair of coordinates for the point z, called polar
coordinates.

These coordinates are widely used in practice, e.g., in airport
control centres: to determine the location of an aircraft, you first find
the direction and then measure the distance.

The equations of some figures look much simpler when written in
polar coordinates.

Exercise 22. (a) Plot the line given in polar coordinates by the equa-
tion 7 = |cos3¢p|. (b) Find a polar equation which describes a
flower with six petals similar to the one shown in Figure 20. Try
to rewrite it in Cartesian coordinates.

3t

7] 2

Figure 20. A flower in the complex plane

Multiplication of complex numbers looks simpler when written in
terms of modulus and argument. In fact, the following two relations
hold:

(4) lzw| = |z[Jwl,
(5) arg(zw) = argz+argw.
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The first one is a consequence of the remarkable identity
(ac —bd)? + (ad + bc)? = (a® + b%)(c* + d?).
To prove the second one, let
z = r(cos ¢ + isin @), w = s(cos ) + isiny).
Then
2w = rs(cos @ + isin @) (cosy + isin )
= r5((cos ¢ cos Y — sinpsiny) + i(sin ¢ cos ¥ + cos Y sinY)),

which simplifies to

zw = rs(cos(p + P) + isin(p + ¥)).

This proof is based on the well-known trigonometric formulas for
the sine and cosine of the sum of two numbers. We will give an-
other, more elegant, proof which only relies on elementary Euclidean
geometry and, by the way, implies the trigonometric rules used above.

ZW

Figure 21. Product of complex numbers

Consider two triangles with vertices 0, 1, z and 0, w, zw (Figure
21). Since |w| : 1 = |zw| : |2| = |z2w — w| : |z — 1|, these two
triangles are similar, so that their respective angles are equal. The
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equality of the two angles which are marked in Figure 21 proves that
arg(zw) = arg z + argw.

OK. Multiplication of complex numbers means that their moduli
get multiplied, while their arguments are added. Iterated as appro-
priate, this observation yields the formula for powers of a complex
number in trigonometric notation:

[r(cosp + isin)]™ = r*(cosny + isinngp).

Exercise 23. Prove that, if z is a complex number and « is a real
number such that z 4+ 1/z = 2 cos o, then 2™ 4 1/2" = 2 cos na.

The trigonometric power formula is very convenient in problems
such as Exercise 18c, which you might have already tried. Let us do it

7

1 3
together now. Denote 3~ —2—2 by ¢. Then |¢| =1 and arg{ = —7/6;

hence [(19%8| = 11998 =1 and arg ¢'9%® = 1998 - (—7/6) = —333 - 27.
This implies that (1998 = 1.

Figure 22. Complex roots of 1

Note that an integer power of the number { can occupy only
one of the six positions in the plane — the vertices of the regular
hexagon shown in Figure 22. Any of these six complex numbers is a
power of ¢ and plays the role of a sixth root of the number 1, because
(¢*)® = (¢5)% = 1F = 1. In general, for any natural n, there are
exactly n complex n-th roots of unity, arranged as the vertices of a
n-gon.
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Problem 9. Find the product of all diagonals and both sides that
issue from one vertex of the regular n-gon inscribed into the circle of
radius 1.

Figure 23. Sides and diagonals of a regular polygon

Solution. Put the pole (number 0) at the centre of the
polygon and the real unity (number 1) at the given vertex
Aj. All the vertices are the roots of the equation 2" —
1 = 0; therefore all the vertices but A; also satisfy the
equation 2" "1 42""24. .. 4241 = 0 obtained by dividing
2"—1 by z—1. Now compare the two polynomials 2"~ +
2" 244 z4+1=0and (z - A2)(z— A43) ... (2 — Ap).
They are identically equal, because they have the same
roots and equal leading coefficients. Hence, their values
at z = A, are equal:

(A — AQ)(Ay — A3) ... (A1 —A,) = AT 4+ AT 2 4o 4 A+ 1.

Recalling that A; = 1 by our choice, we obtain the an-
swer:

|A; — As||Ay — As|...|A1 — Ay =n.

Exercise 24. A regular polygon A1 A, ... Ay is inscribed in the circle
of unit radius, and A is an arbitrary point of this circle. Find
the sum of squares of distances from A to all the vertices of the
polygon.
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Since division is an operation inverse to multiplication, it satisfies
the formulas inverse to (4):

;-

wl  |w|’

arg — = argz—argw.
w

Figure 24. Angle expressed through complex numbers

The latter equality is interesting from the point of view of ele-
mentary geometry: it allows us to express the magnitude of an angle
in terms of its vertex and two points belonging to its sides:

21 — 23

= arg
14 22 — 23

(Figure 24). Here are two examples where this observation is applied:
in the first one, we solve a geometric problem using the algebra of
complex numbers, and in the second one, conversely, we solve an
algebraic problem by a geometric method.

Problem 10. Three squares are placed side by side as shown in Fig-
ure 25. Prove that the sum of /KAH, /KDH and ZKFH is a right
angle.

Solution. Evidently, /ZKFH = w/4, so we have to
prove that /KAH + /ZKDH = =/4, too. Assuming
that A=0, D =1and B =1, we have F = 2, K = 3,
H = 3 +i. Therefore, /DAH = arg g:ﬁ = arg(3 + 1),
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Figure 25. Sum of three angles

/FDH = arg#=5 = arg(2 + i), whence ZDAH +
ZFDH = arg(3+1)(2+1) = arg(5 + 5i) = 7 /4, which is

just what was required.

Problem 11. Prove that if z1, 2o, 23, 24 are different complex num-
bers with equal absolute values, then

21 —R3 21— 24

29 — 23 ’ 29 — 24

is a real number.

Solution. The four given points lie on the same circle
centred at 0. Points z; and z; split this circle into two
arcs. The other two points 23, 24 can belong either to
the same arc, or to different arcs. In the first case the
angles z; 2329 and 232429 are equal, because they subtend
2] — 23 21 — R4

= arg —— and
29 — 23 9 — 24

the same arc. Therefore, arg

21 —R3 k1 24 . . .
arg : =0, i.e. the number in question
2 T 23 R2 T 24
is real and positive. In the second case the two angles

212324 and 222421 have the same orientation and together
make 180°. Therefore, the number in question is real and
negative.

The assertion of Problem 11 evidently generalizes to any set of
four complex numbers that belong to an arbitrary circle or straight
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line in the plane. The converse is also true: if the given expression is
real, then the four numbers must belong either to the same circle or
to the same straight line.
Exercise 25. Let c1, ca, ..., cn be the vertices of a convex polygon.
Prove that all complex roots of the equation
1 1 1
z—c  z—co toot Z—~Cn
are interior points of this polygon.

=0




Chapter 2

Plane Movements

Plane movements are transformations of the plane that do not change
the lengths of segments and, as a consequence, preserve all parameters
of geometric figures, such as areas, angles, etc.

We begin this chapter with the discussion of some well-known
problems of elementary geometry that allow a short solution using
plane movements. All these problems share the same underlying idea:
change the position of certain parts of the given geometric configu-
ration in such a way that the hidden relations between the elements
become transparent.

We then proceed to a detailed discussion of the composition of
movements, which will provide experimental material for the intro-
duction of transformation groups in the next chapter.

1. Parallel translations

Definition 4. A parallel translation (or simply a translation) is a
transformation of the plane that sends every point A into the point
A’ such that H is equal to a given constant vector v. This trans-
formation is denoted by T5,.

Problem 12. Two villages A and B are located across the river from
each other. The sides of the river are rectilinear and parallel to each
other. Where should one build the bridge MN so that the distance

41
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AMNB be as small as possible? The bridge must be perpendicular to
the sides of the river.

A \ )
B

8

Figure 1. Bridge over a river

Solution. If there were no river, the shortest path join-
ing A and B would be a straight line. Let us try to get
rid of the river by moving one of its sides towards the
other perpendicularly until both sides coincide (Figure
1). Let B’ be the new position of the point B. The
lengths of AM B’B and AM N B are equal. The position
of point B’ does not depend on the choice of the place for
the bridge. Hence we only have to minimize the distance
AM B’ which is can be done simply by making AMB’ a
straight line.

Exercise 26. Construct the shortest path that connects two points

A and B separated by two rivers (Figure 2). Both bridges must
be perpendicular to the sides of the rivers.

Problem 13. Inscribe a given vector in a given circle (i.e., construct
a chord of a given circle which is equal and parallel to a given seg-

ment).

Solution. Let AB be the given vector and C the given
circle with centre O and radius r (Figure 3). We have
to move AB, keeping it parallel to itself, towards C so
that it gets inscribed into the circle. In fact, it is much
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A

8

Figure 2. Two bridges over two rivers

Figure 3. Inscribing a vector into a circle

easier to perform the reverse operation: move the circle
in the opposite direction so that in the new position it
will pass through both endpoints of the vector, A and
B. To do so, we construct the triangle ABD such that
AD = BD = r. The point D is the centre of the moved
circle. EW if we translate the points A and B by the
vector DO, we will obtained the segment inscribed into
the initial circle.

Here are two more problems which can be solved using parallel
translation.

Exercise 27. Inscribe a given vector in a given triangle, i.e., find a
segment whose endpoints lie on the sides of the given triangle and
which is equal and parallel to a given segment.
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Exercise 28. Construct a trapezoid if the lengths of its parallel sides
and diagonals are known.

2. Reflections

Definition 5. Let [ be a line in the plane. The reflection with respect
to | is a transformation of the plane that sends every point A into
the point A’ such that [ is the perpendicular bisector of the segment
AA’. This transformation is denoted by S;. and is also called azial
symmetry with azis .

Problem 14. Two points A and B are on one side of the straight
line . Find the point M € | such that the length of the broken line
AM B is minimal. If you prefer ‘real life’ problems, you may imagine
a person with an empty bucket at point A, a fire at point B and a
straightline river [.

O o=

Figure 4. Shortest path

Solution. If both points A and B were situated on dif-
ferent sides of the line [, the solution would be a straight
line AB. Let us try to reduce our problem to this case by
reflecting the given point B in the line ! (see Figure 4).
If B’ is the image of B, then the lines AM B and AM B’
have equal lengths for any arbitrary position of the point
M € [. To minimize this distance, we draw the straight
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line AB’ and set M to be the intersection point of this
line with /. Note that in this case the angles formed by
either of the two lines AM and BM with [ are the same,
which agrees with the well-known law of optics.

Exercise 29. Inside an angle XOY, two points, 4 and B, are given.
Among all broken lines AMNB where M € XO, N € YO, find
the line of minimal length®.

Figure 5. Two rivers of Exercise 29

We proceed with one more problem related to shortest paths.

Problem 15. Into a given acute triangle inscribe a triangle of min-
imal perimeter.

Solution. Let UVW be an arbitrary triangle inscribed
in the given triangle ABC. Let K and L be the symmet-
ric images of the point U with respect to the lines AB and

1Figure 5 refers to a Russian folk tale where a raven has to bring two kinds of
water, the ‘dead’ water and the ‘live’ water, to revive the prince.
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C

Figure 6. Inscribed triangle of minimal perimeter

BC (see Figure 6). The paths UVWU and KVW L have
equal lengths. To minimize this length among all trian-
gles UVW with a fixed vertex U, we have to choose V
and W so that KVW L becomes a straight line, i.e. to set
V =M and W = N. Now among all triangles AUMN
that correspond to different positions of the point U, we
will choose the one with the minimal perimeter, and it
will give the solution to the problem. We have to find
the position of U for which the segment KL is shortest.

Note that ABK L is an isosceles triangle with BK =
BU = BL. Its angle at vertex B does not depend on the
position of the point U: ZKBL = 2/ABC. Therefore,
to minimize the length of the side KL we have to make
sure that the side BK is as small as possible. Since
BK = BU, this minimum is attained when U is the
base point of the altitude drawn in the triangle ABC
from the vertex B: BU 1L AC.

Because of the symmetry between the three points
U, V and W, we conclude that V and W in the minimal
triangle UVW are also basepoints of the corresponding
altitudes of the triangle ABC.

Exercise 30. Construct a triangle, if one of its vertices and the three
lines that contain its bisectors are given.
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Exercise 31. A ray of light enters an angle of 45° formed by two
mirrors. Prove that after several reflections the ray will exit the
angle moving along a line parallel to its initial trajectory. Are
there other values of the angle with the same property?

3. Rotations

Definition 6. Let O be a point in the plane and ¢ a real number,
understood as an angle. The rotation around O through angle ¢ is a
transformation of the plane that sends every point A into the point A’
such that |OA| = |OA’| and ZAOA’ = ¢, where the angle is counted
with sign, the counterclockwise direction being considered as positive.
This transformation is denoted by R.

Look at Figure 7. It is evident that the sum of all vertices of a
regular polygon with an even number of vertices over its centre P is
equal to P (see p. 10 for the definition of point addition). Indeed, the
set of vertices splits into pairs of mutually opposite points. It is not
So easy to prove the same property for a polygon with an odd number
of vertices. If you try to directly compute the coordinates of all the
vectors, you will have to deal with rather complicated trigonometric
expressions. However, the problem looks difficult only as long as the
plane does not move.

Problem 16. Prove that the sum of vertices of a regular polygon over
its centre P coincides with P.

Figure 7. Sum of vertices of a polygon
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Solution. Let n be the number of vertices. Under a ro-
tation through 360/n degrees around P the given poly-
gon goes into itself. Therefore, the sum of vertices re-
mains unchanged. But in the plane there is only one
point that goes into itself under a rotation: it is the cen-
tre of the rotation.

Exercise 32. A point M lies inside a convex polygon. Perpendiculars
are drawn from M to all sides of the polygon, and on each of these
half-lines, a point A; is taken whose distance from M equals the
length of the corresponding side. Prove that the sum of all these
points over M is zero.

Problem 17. Construct an equilateral triangle, if the distances of its
vertices from a given point D are a, b and c.

¢ D
A

[y

|
|
I
|
l
|
{
|
|
{

Figure 8. Constructing an equilateral triangle

Solution. Everyone knows how to construct a triangle
when given the lengths of its sides. Unfortunately, the
three segments a, b, ¢ in Figure 8 do not form a triangle.
Let us rotate the plane by 60° around the point C. The
point B goes into A and D goes into D’. A rotation pre-
serves distances; therefore the lengths of the sides of the
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triangle AADD’ are a, b and ¢. We will construct this
triangle first, then find the point C (ACDD’ is equilat-
eral), and finally find the point B.

Exercise 33. Construct an equilateral triangle whose vertices lie on
three given parallel lines, one on each.

Problem 18. Inside a given triangle, find the point the sum of whose
distances from the vertices is minimal.

Figure 9. Minimize the sum of distances

Solution. Let K be an arbitrary point inside the trian-
gle ABC. Rotate the points C and K around A counter-
clockwise through 60° and denote their new positions by
C’ and K’ (see Figure 9). The sum of the three distances
in question, AK + BK + CK, equals the length of the
broken line C'K'K B. Tt is minimal if K and K’ lie on
the straight line BC’. Thus, the optimal position for K
is the point Ky on BC’ such that the angle AKyC’ is
60° or, in other words, ZAKyB = 120°. By symmetry,
we also have /BKyC = ZCKpA = 120°.

Note that our analysis, as well as the answer, holds
only for triangles whose angles are smaller than 120°. We
leave it to the reader to guess the answer in the opposite
case.
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Exercise 34. M is an arbitrary point inside a square ABCD. Draw
four lines which pass through A, B, C and D and are perpendic-
ular to BM, CM, DM and AM, respectively. Prove that these
four lines pass through a common point.

The rotation through 180° is also referred to as half turn, or
central symmetry. Speaking about central symmetries, we will often
leave 180° out of the notation, writing R4 instead of R}foo. Here are
two problems where this kind of movements is used.

Exercise 35. Through the intersection point of two circles, draw a
line on which these circles cut equal chords.

Exercise 36. There is a round table and an unlimited number of
equal round coins. Two players take turns at placing the coins on
the table in such a way that they do not touch each other. What
is the winning strategy for the first player?

4. Functions of a complex variable

We return once again to Problem 16 (see page 47). Apart from the
geometric solution given above, this problem also has an algebraic so-
lution. To explain it, we introduce a complex structure in the plane.
More precisely, we choose a one-to-one correspondence between com-
plex numbers and points in the plane in such a way that 0 corre-
sponds to the centre of the polygon and 1 corresponds to one of its
vertices. If ¢ is the vertex adjacent to 1 (in the counterclockwise
direction), then the remaining vertices are (2, ..., ("~1. We are
interested in z = 14+ ¢+ ¢%+ .-+ (™! Since (" = 1, we have
z{=C+¢%+ -+ ("' +1 =z, which implies that = = 0, because
(#1.

Note that this algebraic proof is essentially the same as the geo-
metric proof given above. More exactly, it is nothing but the transla-
tion of the geometric argument into algebraic language. Indeed, the
new proof is based on the fact that the only number which satisfies
the equation (z = z is ¢ = 0. But what happens with a complex
number when it is multiplied by ¢? According to the general rule,
its modulus remains the same, because |{| = 1, and its argument
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2

¢

Cn-l

Figure 10. Regular polygon with complex vertices

increases by 360°/n. In geometric terms, this means that the corre-
sponding point rotates through 360/n degrees around the centre of
the polygon.

In general, if points are viewed as complex numbers, then trans-
formations of the plane, and in particular, plane movements, should
be understood as functions of a complex variable w = f(z), where 2z
denotes an arbitrary point and w its image. For example, a rotation
around 0 is represented by the function w = az, where || = 1 (we
have in this case @ = cos ¢ + i sin ¢, where ¢ is the angle of rotation).
It is likewise evident that the formula for a parallel translation is

(6) w=2z+a,

where a is a certain complex number.

Now let us derive the formula for the rotation of the complex
plane around an arbitrary point p. Figure 11 shows that the rotation
of the point z around p through an angle ¢ can be split into three
steps:

(1) translation z — z — p;
(2) rotation around the origin z — p — a(z — p);

b

(3) inverse translation a(z — p) — a(z — p) + p.
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a(z-p)p

Figure 11. Plane movement in complex coordinates

The rotation around p through the angle ¢ is thus described by the
function

(7) w=az+(1-a)p,
where a = cosp + isin .

Parallel translations and rotations are referred to as proper move-
ments. This expression is accounted for by the fact that one does not
have to leave the plane in order to physically effectuate one of these
transformations, whereas a reflection in a line requires a rotation (flip-
ping) of the plane in the surrounding three-space.

Theorem 3. The set of proper movements of the plane coincides with
the set of all transformations described by the functions of a complex
variable

(8) w=az+m,

where a and m are complex numbers and || = 1.

Proof. Formulas (6) and (7) imply that any proper movement of the
plane is described by a linear functions of type (8).

We will prove that the converse also holds, i.e. that every function
(8) defines a proper movement. Indeed, if @ = 1, then (8) becomes
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(6) and we deal with a parallel translation. If o # 1, then (8) can be
rewritten as

m m
w=az+m=alz—- + )
( l—a) l1-a

which is the expression of the rotation around p = m/(1 — &) through
the angle ¢ such that cosp + isinp = a. O

—o
all

Figure 12. Complex conjugation

To find a similar description for the improper movements, for ex-
ample reflections, apart from addition and multiplication of complex
numbers, we need one more operation: complex conjugation. The
conjugate of the number z = x + ¢y is defined as Z = x — iy. Geomet-
rically, conjugation corresponds to reflection in the real axis (Figure
12). Recall that we have already used conjugation to derive the for-
mula for the quotient of two complex numbers (see p. 30).

Exercise 37. Prove the following formulas for reflection in the line

y=kr+b:
(9) w = Z42b, if k=0,
1—k*4+2ki,_ b, b .

(note that (1 — k2 4+ 2ki)/(1+ k?) = o?, where a = cosp +isingp
and ¢ is the angle between the given line and the z-axis).

In the following example we use the algebra of complex numbers
to solve a geometric problem.

Problem 19. A pirate is hunting for a hidden treasure. According
to a letter he has got, he has to go to the Treasure Island, find two
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trees A and B, a rock C (Figure 14) and dig for the buried treasure
at the point K which is the middle point of the segment DE, where D
is obtained by rotating C around A clockwise through 90°, and E is
obtained by rotating C around B counterclockwise through 90°. When
the pirate arrived at this place, he found that the trees A and B are
there, but the rock C disappeared. Is it still possible to recover the
position of point K ?

Figure 13. A pirate

Solution. Let us introduce a complex structure in the
plane, i.e., associate the points with complex numbers,
in such a way that A corresponds to 0, while B and C
correspond to numbers b and ¢ (see Figure 14).

Then, by formula (7), points D and E are repre-

sented by the numbers —ic and i(c — b) + b; therefore,
1—4

point K is b. As this expression does not involve c,
we see that the position of the hiding place does not de-
pend on the choice of the point C. We also see that K is
the vertex of the isosceles right triangle with hypotenuse

AB, and as such can be found by our treasure hunter.
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Figure 14. Where is the treasure?

Exercise 38. Two sides of a triangle are rotated through 90° around
their common vertex in opposite directions. Prove that the line
joining the new endpoints is perpendicular to the median of the
triangle.

5. Composition of movements

Given two movements of the plane, f and g, one can construct a third
movement g o f, the composition, or the product of the given two, by
performing first f, then g.

Definition 7. The composition f o g of two movements f and g is
defined by the relation

(fog)(z) = fg(z))

for any point z.

The transformation f o g thus defined is really a movement, be-
cause it evidently preserves the distances between the points. In this
section, we will study the composition of special types of movements:
translations, reflections and rotations.

Problem 20. Find the composition of two reflections.

Solution. Let S; denote the reflection in the line I. Sup-
pose that two lines, | and m, are given, and we have to
find the composition S,, o S;. Let A’ be the image of an
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(11)

(12)

arbitrary point A under the movement S;, and A" the
image of A’ under S,,.

~
N

:(>°"“§:'" Y

(@) (b)

Figure 15. Product of two reflections

We first consider the case when the two lines [ and m
are parallel to each other (Figure 14a). Then all the three
points A, A’, A” lie on one line, perpendicular to | and
m, and the distance between the points A and A” is twice
the distance between the lines | and m, independent of
the position of A. Therefore, the composition of the two
reflections S; and S,,, has the same effect as translation
by the vector 2u, where u is the vector perpendicular to
I and m, of length equal to the distance between the two
lines and directed from [ to m:

Sm o Sl = TQU.

Now suppose that the lines | and m meet at a certain
point C (Figure 14b). If ¢ is the angle between ! and
m, then, as you can see from the figure, ZACA" = 2.
Note also that all the three points A, A’ and A” are at
the same distance from C. It follows that

SmoS; = R¥,

where R2Y denotes rotation around C through the angle
2¢ (clockwise if ¢ < 0 and counterclockwise if ¢ > 0).
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The reader may wish to consider other locations for the point A
in the plane, different from that of Figure 15b, and make sure that
formulas (11) and (12) are always true. Bear in mind that the angle
 should be measured from line I to line m, i.e., for example, ¢ = 7/4
means that m can be obtained from [ by a positive (counterclockwise)
rotation through 45°.

Formula (12) implies, by the way, that the composition of two
movements in general depends on the order in which they are taken:
thus, S; 0 S,, is the movement inverse to S,, o S;.

Exercise 39. Let I, m and n be three lines meeting at one point.
Find the movement (S, 0 Sy 0 81)? = S 05m 05,085, 08m 0 5.
We suggest that the reader first experiment by applying the given

composition to an arbitrary point of the plane, and then prove
the result using the formulas we have established.

Formulas (11) and (12), read from right to left, show how to
decompose a translation or a rotation into a product of reflections.
This decomposition is not unique, and the freedom we have in the
choice of the axes of reflection may prove quite useful for the solution
of a specific problem.

Problem 21. Find the composition of two rotations.

Solution. If the centres of both rotations coincide, then
the answer is obvious:

(13) R% o RY = Ry,

Figure 16. Product of two rotations

Now consider two rotations R and R}é with differ-
ent centres. To find their composition, we will repre-
sent each rotation as the product of two reflections and
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(14)

(15)

then use the formulas that we already know. We have
Rﬁ = S,, 0 .5;, where the lines | and m form an angle
/2 at the point A, and R’{; = Sp 0 Sy, where the lines
n and p form an angle /2 at the point B (see Figure
16a). Then R% 0 RY = S,,08,0S5,0S,. This expression
simplifies to S, 0 S, when the two lines [ and p coincide,
because in this case S; 0 S, = id is the identity transfor-
mation, i.e., the transformation which takes every point
into itself.

After this analysis, we start anew from Figure 16b.
We denote by ¢ the line joining A and B; then, rotating ¢
around A through the angle ¢/2 and around B through
—1)/2, we obtain the lines b and a. If the lines b and
¢ have a common point, we denote it by C, and in this
case we can write

R%oR% =5,085.08.08, =S,08, = RETY,
or, setting a = ¢/2,8=9/2,y =71 —a - (3,
Ria ° RzBﬁ _ R527’

where C' is the third vertex of the triangle with two ver-
tices A and B and angles at these vertices equal to @ and
B; «v is the angle of this triangle at C.

After both sides of (14) are multiplied by R% on the
right, it takes a more symmetric form:

R o R¥ o RY =id.

The converse is also true: if the three points A, B,
C and three angles «, (3, v between 0 and 180° satisfy
equation (15), then «, § and « are equal to the angles of
the triangle ABC.

Equality (15) can be checked directly. Since 2a +
208 + 2y = 360°, the composition R%* o R2Bﬁ o Rg’ is
a parallel translation. To prove that it is the identity,
we just need to check that it has one fixed point. But
Figure 17 shows that the point A remains fixed under
the successive mappings R%', R%, R%*.
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Figure 17. Composition of three rotations

Should the lines a and b be parallel (this happens
when ¢ + 1 is a multiple of 27), then

(16) R%¥ o RY¥ = Ty,
where u is defined in Figure 16c¢.
Using complex numbers, one can derive an algebraic
formula for the composition of two rotations. We take
a complex number z and apply successively first the ro-

tation RY, then the rotation R%. According to formula
(7), we can write

R4(2) = q(z—b)+b,
R4(w) = p(w-a)+a,

where p = cosp + isiny, ¢ = cosy + isiny. Now we
substitute RY(z) instead of w and try to rewrite the
result in a similar form:

(RGoRp)(z) = plalz—b)+b-a)+a
_ pq(z_a—pa+pb—qu)+a—pa+pb—qu
1-pq 1-pg

Note that pg = cos(p + ¢) +isin(yp + ). Therefore, the
result obtained means that

R% o RY, = RS,
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where the point C corresponds to the complex number

- b — pgb
(17) o a—patpb—pgh
1-pgq
We see that geometric and algebraic arguments lead to two dif-
ferent formulas for the composition of rotations. We can benefit from
this fact by deriving the following corollary:

If two vertices A and B of a triangle ABC correspond to complex
numbers a and b, and the angles at these vertices are v/2 and /2,
then the third vertex, as a complex number, is determined by formula
(17).

We pass to examples where the composition of movements and
the formulas we have found are used.

Problem 22. Three equilateral triangles are built on the sides of an
arbitrary triangle ABC (Figure 18). Prove that their centres M, N,
P form an equilateral triangle.?

Figure 18. Problem of Napoléon

Solution. Triangles AM B, BNC and CPA are isosce-
les with obtuse angles of 120°. Consider the composition
of three rotations F = RE%" o Ri?% o R12°°. Formulas

2This problem is known as the problem of Napoléon, although the famous French
general is not its author.
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(14) and (15) show that F is either a rotation or a par-
allel translation. Since the sum of the three angles of
rotation is 360°, F' must be a parallel translation. Let
us trace how the point A is moved by F. It is clear that
Ri2°(A) = B, R2> (B) = C, RE”(C) = A, and thus
F(A) = A. It follows that F is a translation by zero
vector, i.e.,

o (e} o .
REY o RR” o Rp® =id.

Comparing this to (15), we conclude that M is the third
vertex of the triangle having two vertices at N and P and
angles 60° and 60° at these vertices, i.e. an equilateral
triangle.

Exercise 40. Find a solution of the previous problem based on com-
putations with complex numbers.

Exercise 41. On the sides of an arbitrary quadrangle four squares
are built. Prove that their centres form a quadrangle whose diag-
onals are mutually perpendicular and have equal length.

Exercise 42. Find the composition of
1. two central symmetries,
2. a central symmetry and a reflection.

Exercise 43. Construct a pentagon, given the midpoints of all its
sides.

6. Glide reflections

We have studied three types of plane movements: translations, rota-
tions and reflections. However, these three types do not cover all plane
movements. For example, in Exercise 42, the product of a reflection
and a central symmetry does not belong to any of these types.

Definition 8. A glide reflection with axis | and vector v is a move-
ment that consists in a reflection with respect to a line [ and a trans-
lation by the vector v, which is assumed to be parallel to the line [
(see Figure 19).
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Figure 19. Glide reflection

Denoting the glide reflection by U, we can write the definition

as U’ =T, 05 = S5;0T,. The movements S; and T, commute, i.e.,
the two products taken in different order are indeed equal, because
the figure AA; A’ A; is always a rectangle.

Glide reflections, like all other types of plane movements, can be

successfully used for solving geometric problems.

Problem 23. Construct a line parallel to the side AC of a given
triangle ABC' and intersecting its sides AB and BC at points D and
E such that AD = BE.

Solution. The solution relies on the following two prop-
erties of glide reflections, which immediately follow from
Figure 19:

(1) the midpoint of a segment joining an arbitrary point
with its image under a glide reflection always lies on
the axis;

(2) the axis of the glide reflection is preserved.

There is a glide reflection U which takes the half-line
AB into the half-line BC. Its axis is the line N K, where
N is the midpoint of the segment AB while K belongs to
BC and BK = NB. By the premises, AD = BE; hence
U(D) = E and the midpoint of DE must belong to the
line NK. But, since DE || AC, the midpoint of DFE lies
on the median BM. Therefore the three segments DFE,
BM and NK have a point in common, and the required
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construction can be effectuated in the following order.
First we find the points NV and K as mentioned above.
Then we draw the median BM. Finally, we draw the line
parallel to AC through the intersection point of BM and
NK. This is the desired line.

Exercise 44. A point and three straight lines are given. Draw a line
| passing through the given point in such a way that its image
under the three reflections with respect to the three given lines
(in a prescribed order) is parallel to I.

Exercise 45. Using complex numbers, find an algebraic formula for
glide reflection.

7. Classification of movements

In the previous section, we have gotten acquainted with a new kind
of plane movement. So far, we have encountered four types of plane
movements: translations, rotations, reflections and glide reflections.
A natural question arises: are there any plane movements that do
not belong to any of these four types? The answer is given by the
following theorem.

Theorem 4. Any plane movement is either a translation, a rotation,
a reflection, or a glide reflection.

Proof. First of all, we note that a plane movement is completely
defined by the images of three non-collinear points A, B, C. In fact,
if A’, B, C' are the images of these points, then for any point D
there exists exactly one point D’ whose distances from A’, B’, C’ are
equal to the distances of D from A, B, C.

The second useful observation is that for any two different points
M and M’ there is a reflection that carries M over to M’. In fact, this
reflection is uniquely defined: its axis is the perpendicular bisector of
the segment MM’

Using these two observations, we are going to decompose any
plane movement as the product of several reflections. Note that we
have already used this trick earlier: see the discussion of Problem 21.
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Figure 20. Decomposition of a plane movement into reflections

Let f be an arbitrary movement of the plane. Choose three non-
collinear points A, B and C. Denote f(A) = A, f(B) = B, f(C) =
C’. Suppose that A’ is different from A, denote by S; the reflection
that takes A to A’, and set By = Si(B), C1 = S;(C) (see Figure 20).
If B; is different from B’, then we denote by S,, the reflection that
takes By to B’ while preserving A’, and set Cy = S,,,(C1). Finally, if
Cy # C', we find a third reflection, S, which takes Cy into C’. We
thus see that in the worst case, when all the steps of this procedure
are necessary, f can be represented as the composition S, o S, o S].
If some steps turn out to be unnecessary, we can represent f as one
reflection or a composition of two reflections.

Now we will prove that the product of no more than three reflec-
tions is a movement belonging to one of the four types that we know.
Indeed, one reflection is a reflection, and that’s it. Two reflections
make either a rotation or a translation. The only nontrivial case is to
analyze the product of three reflections S, o S, © 5.

Three lines in a plane can be arranged in one of the four essentially
different patterns depicted in Figure 21. We will show that in cases
(a) and (b), the product is a reflection, and in cases (c) and (d), a
glide reflection.

In case (a), the composition S, 05 of the last two reflections is a
rotation through an angle equal to twice the angle between the lines
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Figure 21. Three lines in the plane

m and [. We can choose another line I’ passing through the same
point, so that S,, o S; = S, o S;». Then

SnoSmOSlenoSnoSyle/.

In case (b), a similar argument holds.

Figure 22. Adjusting two rotations

Now consider case (c). In the initial product of three reflections,
we will make two changes. First we replace the product S,, oS by an
equal product S,,,-0S),, where the line m’ is chosen to be perpendicular
to n (Figure 22). We have S, 0.S,,, 0.S; = Sy, 0 Spr 0 Sy, Next we
replace the product S, 0 S, by Sy 0 Sy, where n' is perpendicular
to I’. We obtain

fZSnOSmOSl:SnOSm/OSlI:Sn/OSm//OSl/.
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Note that the lines I’ and m” are parallel; therefore the composition
S 0 Sy is a parallel translation in the direction of line n'/, and the
whole movement is a glide reflection.

Finally, case (d) is reduced to case (c), because the composition
Sp © Sy, 0 S) remains the same if two of the three lines (n and m or
m and /) get rotated by the same angle. O

Plane movements have a simple description in terms of complex
functions. Theorem 3, proved above, says that translations and rota-
tions correspond to functions az +m with |a| = 1.

Theorem 5. The set of reflections and glide reflections of the plane
coincides with the set of all transformations described by complex for-
mulas

(18) w=aZ+m,

where o and m are complex numbers and |a| = 1.

Proof. The fact that reflections and glide reflections are indeed de-
scribed by such formulas follows directly from the result of Exercises
37 and 45.

To prove the second half of the theorem, note that the compo-
sition of transformation (18) with the standard reflection z — Z is
given by the formula z — az + m, which, by Theorem 3, is either a
translation or a rotation. O

8. Orientation

We have learned that there are four types of plane movements: trans-
lations, rotations, reflections, and glide reflections. Movements of the
first two types can be represented as the product of an even number
(two) of reflections; they are referred to as proper movements. The
remaining two types are products of an odd number (one or three)
of reflections; they are referred to as improper movements, because
one has to exit the plane in order to physically implement such a
movement.

The distinction between the two kinds of plane movements can
be best understood using the notion of orientation.



8. Orientation 67

We say that the ordered triple of non-collinear points A, B, C
is positively oriented, if this ordering agrees with a counterclockwise
walk around the triangle ABC, or, in other words, if in the sequence
—_— = — K K
AB, BC, CA every next vector is a turn to the left with respect to
the previous one. If the order is clockwise, the triple is said to be
negatively oriented.

Figure 23. Three pucks

Exercise 46. Three pucks form a triangle in the plane. A hockey-
player chooses a puck and sends it along a straight line so that it
passes between the two remaining pucks. Is it possible that after
25 shots each of the three pucks returns to its initial position?

It is remarkable that any movement f of the plane either pre-
serves or reverses the orientation of all triples: the orientation of
f(A), f(B), f(C) either coincides with that of A, B, C for all triples,
or differs from it for all triples. More specifically, it is easy to see
that proper movements (translations and rotations) preserve the ori-
entation, while improper movements (reflections and glide reflections)
reverse it.

As a consequence of this observation, we obtain the following
fact: the composition of an odd number of reflections can never be
an identity transformation.

The notion of orientation has a simple interpretation in terms of
complex numbers.
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Exercise 47. Prove that the triple (21, 22, 23) is positively oriented if
and only if the argument of the complex number (23 —2z1)/(z2 —21)
is between 0 and 180°.

9. Calculus of involutions

Definition 9. A transformation f is called an involution, if it is not
the identity, but its square is the identity: f # id, f2 = fo f = id.
This is the same as to say that f is inverse to itself: f = f~!, that
is, f(A) = B if and only if f(B) = A.

There are two types of involutive movements of the plane:

e R4 — half turn around point A (see Section 3).

e S — reflection in a line | (see Section 2),

We see that involutive movements correspond to geometric elements
of two kinds: points and lines. This correspondence is in fact one-
to-one, because different points and different lines produce different
involutions. Therefore, the passage from geometric objects to involu-
tions preserves all information, and every fact about points and lines
can be reformulated in terms of the corresponding involutions.

Problem 24. Find the property of a pair of reflections Sy, S,, which
is equivalent to the fact that the lines | and m are mutually perpen-
dicular.

Solution. The composition S,, o S; is a translation if
m || {, or a rotation through 2¢ if m and [ intersect at
an angle . Unless m = [, this composition can never be
the identity. Its square (S,, o0 S;)? is either a translation
(in the first case) or a rotation through 4¢ (in the second
case). Hence the lines m and [ are perpendicular if and
only if

(19) (Sm o S1)? = id,

i.e., the product S,, o .5; is an involution. Note that this
involution is a half turn around the intersection point of
the two given lines.
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If we multiply (19) by S,, on the left and by S; on
the right, then it becomes

(20) Sm oS =85;08n,

i.e., the two involutions S,,, and S; commute. This is the
required condition for the two lines to be perpendicular.

This is an appropriate moment to discuss the notions of commu-
tativity and associativity. Multiplication of movements is in general
non-commutative. As we have just seen, two different reflections com-
mute if and only if the corresponding lines are perpendicular. But the
composition of movements, like that of any arbitrary transformations,
always has the property of associativity.

Let us be given four sets and three mappings between them, ar-
ranged according to the scheme

viwsxhy
Then one can form the following compositions: go f : V — X,
hog:W —Y,ho(gof):V Y, (hog)of:V — Y. Associativity

means that the two double compositions ho (go f) and (hog)o f
coincide.

To find a formal proof of this almost evident property, it is enough
to understand the meaning of composition. Thus, the mapping go f is
defined by the equation (go f)(v) = g(f(v)) for an arbitrary element
v € V. In the following chain of equations this definition is used
several times:

(ho(go f))(v) = h((go f)(v)) = h(g(f(v)))

= (hog)(f(v)) = ((hog)o f)(v).
Since the values of ho(go f) and (hog)o f on any element are the
same, these two mappings coincide.

(21)

The following analogy might be useful to better understand the
meaning of associativity. Imagine that f, g and h are the actions of
putting on your socks, boots and overshoes, respectively. Then the
composition (h o g) o f means that one first puts on the socks, then
puts the boots inside the overshoes, and puts this object on the feet
in socks. The other composition ko (g o f) means that one first puts
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the socks inside of the boots, puts on this combination and then puts
the overshoes on top. Evidently, the result in both cases is the same!

Figure 24. Associativity

The same analogy shows that the composition of operations in
question is not commutative: to put on the socks, then the boots is
not the same thing as to put on the boots, then the socks! However,
commuting operations do exist, for example, putting a sock on one
foot and putting a sock on another foot.

Using this analogy, it is easy to understand the formula for the
operation inverse to a composition of several operations. For example,
if you put on the socks, then the boots, then the overshoes, then the
inverse operation means that you take off first the overshoes, then the
boots, then the socks:

(hogof) t=fltogton™
Now we return to the calculus of involutions in the plane.

Problem 25. Ezpress in terms of involutions the property of four
points A, B, C, D forming a parallelogram.

Solution. According to Exercise 42, the composition
R4 o Rp is translation by the vector 2 BA, while the
composition Rp o R¢ is translation by the vector 2 CD.
The figure ABC'D (with this order of vertices!) is a par-
allelogram if and only if BA = C—li which is equivalent
to the following condition for the four involutions:

RAORBZRDORc.
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Multiplying both sides of this relation by appropriate in-
volutions, we can rewrite it in two more equivalent forms:
RAORBORcoRD = id and

(22) RAORBORC ZRD.

The last equation may be viewed as a formula that ex-
presses the fourth vertex of a parallelogram in terms of
the three given ones.

Exercise 48. Express the following geometric facts as algebraic rela-
tions between the corresponding involutions: (a) point A belongs
to the line [; (b) point A is the midpoint of the segment BC.

Exercise 49. Find the geometric meaning of the following relations:
(a) RaoS; =S,0Rp; (b) (Sn oS, o0 Sl)2 =id.

You can see that the algebra of involutions often provides a short

and convenient way to write down facts about points and lines in the

plane. Here is a more complicated example where this technique is
essential.

Problem 26. Let M, N, P, Q be the centres of the four squares built
on the sides of a quadrangle ABCD (Figure 25). What conditions
should be imposed on ABCD in order that M N PQ be a square?

Figure 25. Squares on the sides of a quadrilateral
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(23)

(24)

Solution. We know that the diagonals of M N P(Q) are
always equal and mutually perpendicular (see Exercise
41). Therefore, M N PQ) is a square if and only if it is a
parallelogram. Using the result of Problem 25, we can
write this as the following condition on the four involu-
tions:
RM ORNORPORQ =id.
By formula (14) we have
Ry = RjoR},
Ry = R%4oRY,
Rp = RLoRY,
Ry = R%LoRY,
where d = 90°, and we recall that if the angle of ro-
tation is not specified, it is assumed to be 180°. Upon
substitution into (23), this gives
R%YoRpoRcoRpoRY =id,
or, after multiplication by de on both sides,
RBORcORD ZRA.

According to formula (22), this means that ABCD is a
parallelogram. Hence, the necessary and sufficient con-
dition for M NPQ to form a square is that the initial
quadrangle ABCD be a parallelogram.



Chapter 3

Transformation Groups

The notion of a group unifies two different ideas: a geometric one and
an algebraic one.

On the geometric side, the notion of a transformation group gives
a mathematical expression of the general principle of symmetry: the
more transformations preserve a given object, the more symmetric it
is.

On the algebraic side, the notion of an abstract group contains the
common features of operations that most often appear in mathemat-
ics. Examples of such operations — addition and multiplication of
numbers and points, addition of vectors, composition of movements
— were considered in the previous chapters.

1. A rolling triangle

We begin with an introductory problem where a transformation group
comes up in a natural way.

Problem 27. An equilateral triangle ABC lies on the plane. One
can roll it over the plane by turning it through 180° around any of its
sides. Show that if after a certain number of such steps the triangle
returns to the initial place, then each of its three vertices will return
to its initial position.

Solution. Let a, b and ¢ be the lines containing the
sides of the given triangle in its initial position. After
any number of turnovers the sides of the triangle will lie

73
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Figure 1. Ornament of the rolling triangle

on the lines of the triangular network shown in Figure
la.

The allowed transformations are compositions of re-
flections in these lines.

Let G be the set of all such
transformations. This set contains, for example, rota-
tions through 120° around the vertices, and glide reflec-

tions whose axes coincide with the middle lines of our
triangle.

The problem will be solved if we prove that the only
plane movement that belongs to G and leaves the triangle
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in its place is the identity transformation. Apart from the
identity, there are five movements that take the triangle
into itself: two nontrivial rotations around its centre and
three reflections in its altitudes. We have to show that
none of these belongs to the set G.

The reader has probably encountered problems that
are solved by constructing an appropriate example (or
counterexample). We will use the same trick here - but
the example we are going to construct is unusual: it is an
ornament possessing the following two properties. First,
it is symmetric with respect to any of the lines shown
in Figure la. Second, it is not symmetric with respect
to the altitudes of the triangle ABC, and its centre is
not the centre of rotational symmetry for the ornament.
The first property implies that the ornament is preserved
by any movement that belongs to the set G, while the
second means that G contains none of the five nontrivial
movements of the triangle. Thus we prove the required
result.

It remains to construct an ornament with all the
specified properties. An appropriate example is provided
by an ancient Chinese ornament (a grating) shown in
Figure 1b. Of course, this example is not unique. The
general recipe to build such an example can be stated as
follows. Choose a completely asymmetric pattern inside
the triangle ABC, i.e. a figure which is not preserved by
any non-identity movement of the triangle. Then take
the union of all figures that are obtained from this pat-
tern by successive reflections in the sides of the triangle.
One may imagine that the pattern inside the triangle is
dyed with paint, leaving a colour trace on the plane when
the triangle rolls over.

Exercise 50. Introduce a coordinate system in the plane (see defini-
tion 3 on page 20) such that the point A has coordinates (0,0),
point B has coordinates (6,0), while point C has coordinates (0, 6)
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(triangle ABC is still supposed to be equilateral!). Take the pat-
tern consisting of one point K (3,1). Draw the ornament resulting
from this pattern, and describe the coordinates of all its points.

Exercise 51. Will the assertion of Problem 27 still hold if the equi-
lateral triangle is replaced by a triangle with angles (a) 45°, 45°,
90°7 (b) 30°, 60°, 90°7 (c) 30°, 30°, 120°7

2. Transformation groups

Definition 10. A transformation group is a set G of transformations
of a certain set which has the following two properties:

(1) If two transformations f and g belong to G, so does their
composition fog.

(2) Together with every transformation f, the set G also con-
tains the inverse transformation f~1.

These two properties mean that the elements of the set G are
interrelated and form a whole which is closed under composition and
taking the inverse. The notion of a set closed with respect to a cer-
tain operation has appeared several times in this book, starting from
Problem 1.

Example 1. The set of transformations G considered in the
discussion of Problem 27 is a transformation group. Property (1)
is crucial for the solution of Problem 27. It holds by construction.
Property (2) is also valid because the inverse to a series of reflections
is the series of the same reflections performed in the inverse order.

Example 2. The set of all transformations of a given set M
forms a transformation group, denoted by Tr(M).

Exercise 52. Prove that every transformation group contains the
identity transformation.

Apart from the group G, in the discussion of Problem 27 we have
dealt with two more groups: the group M of all movements of the
plane and the symmetry group D3 of symmetries of an equilateral
triangle.

The groups G and D3 are contained in M; this fact is usually
expressed by saying that they are subgroups of M. In general, given
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an arbitrary plane figure ®, one can consider the set of all plane
movements that take ® into itself. This set is denoted by Sym(®)
and called the symmetry group or group of movements of the figure
®. Every element of this group is called a symmetry of the figure ®.
Thus, Dj is the symmetry group of an equilateral triangle: Sym(A) =
D3. The group G in Problem 27 is also a symmetry group of a certain
figure, namely, of the ornament depicted in Figure 1b. To verify
this fact, we only have to check that any movement preserving the
ornament is a composition of several reflections in the lines of the
triangular grid.

Exercise 53. Make sure this is indeed true.

The notion of a symmetry group is a source of numerous inter-
esting examples of transformation groups. Let us consider some of
them.

Problem 28. Figure 2 shows ancient Japanese family insignias (ka-
mon). Find the symmetry group of each kamon. Which symmetry
groups are the same and which are different?

N

AN

Y

a b c d

Figure 2. First set of kamon

Solution. Figure ®; is axially symmetric with respect to
the four axes at angles of 45° from each other; it also does
not change under rotations through 90°, 180° and 270°.
The group Sym(®, ), like any transformation group, also
contains the identity transformation; therefore, the to-
tal number of its elements is 8. The group Sym(®;) also
contains eight elements, but it is different from Sym(®,),
because all its elements are rotations. Figure ®3 has the
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same symmetry as ®1: four reflections and four rotations,
including the identity. Finally, figure &, has no nontriv-
ial transformations, and its symmetry group consists of
only one element, the identity transformation.

Exercise 54. Find the symmetry groups of Figures 3, a—d. Com-
pare them with each other, and also with the groups of Problem

slolele

a b c d

Figure 3. Second set of kamon

3. Classification of finite groups of movements

The symmetry groups of all the kamon displayed in Figures 2 and 3
consist either of several rotations or of several rotations and an equal
number of reflections (including the identity). This observation can
be generalized as a theorem. To state it, we need some terminology.

A transformation group is said to be finite if it consists of a finite
number of elements. The symmetry groups of all the kamon in Figures
2 and 3 are finite. A group which which consists of an infinite number
of elements is called an infinite group. The group M of all plane
movements and the group G (Problem 27) are infinite.

The order of a group is the number of elements it contains. A
finite group is a group of finite order.

The group that consists of rotations around a common centre
through multiples of 360°/n is called the cyclic group of order n and
denoted by C,,. The group that contains the same rotations and n
reflections in the lines passing through the same centre and such that
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the angle between any two neighbouring lines is 180°/n is called the
dihedral group of order 2n and denoted by D,.

For example, the symmetry groups of the eight figures that we
considered (Figures 2 and 3) are Dy, Cs, D4, C1, C3, D3, Dy, Cs.

Theorem 6. Any finite group of plane movements is either a C,, or
a D,.

Proof. To prove the theorem, we first note that a finite group cannot
contain parallel translations, because, if it contains a translation by
vector a, it must also contain an infinite number of translations by
multiple vectors na.

If the group contains a glide reflection, it also contains its square,
which is a parallel translation, and therefore cannot be finite. We
conclude that any finite group of plane movements consists entirely
of rotations and reflections.

All rotations belonging to the group must have a common cen-
tre, because the following exercise shows that a group containing two
rotations with different centres also contains a parallel translation.

Exercise 55. Prove that if A and B are two different points of the
plane and the angles ¢ and v are not multiples of 360°, then the
product R;¥ o R,# o R} o R% is a nontrivial translation.

Denote all rotations that belong to a given finite group by RY,
R%, ..., R4, where the angles ¢, ..., w are chosen to be positive and
not exceeding 360°. Suppose that 1 is the smallest of these angles.
Then all the remaining angles must be multiples of ¢. Indeed, suppose
that ¢ is not divisible by 1. Then it can be written as ¢ = ki 4 £,
where k is an integer and 0 < £ < 1. The rotation through £ must
also belong to the group under study, and we arrive at a contradiction.

Note that ¢ must be equal to 360°/n for some integer n —other-
wise a certain power of the rotation Rﬁ would represent a rotation by
an angle smaller than 1. We have thus proved that all the rotations
present in any finite group of plane movements are R]Xb, where k =
0,1,...,n -1 and ¢ = 360°/n. If the group contains no reflections,
then it is the group C,.
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Now suppose that the group contains n rotations and at least one
reflection. We are going to prove that the number of reflections in
the group is exactly n.

Indeed, if Ry, Ry, ..., R, are n different rotations and S a re-
flection, then the n compositions So Ry, So Rs, ..., So R, represent
n different reflections that belong to the group. Thus, the number of
reflections is no smaller than n. Similarly, the number of rotations
in the group is no smaller than the number of reflections, because, if
S1, S2, ..., Sy are m different reflections, then S; 087, S;105, ...,
S 0 S, are m different rotations (including the identity).

We have thus proved that any finite group of plane movements
either is a C,, or it consists of n rotations with a common centre and an
equal number of reflections. If n = 1, what we get is the group D; of
order 2, which contains one reflection and the identity transformation.
If n > 2, we have to show that the axes of all reflections pass through
the centre of rotations. First, observe that a finite group may not
contain two reflections whose axes are parallel, because their product
would produce a translation by a non-zero vector. Thus any two axes
must have a common point. The product of the two reflections whose
axes intersect at a point P making the angle ¢ belongs to the group
and is a rotation around P through the angle 2. Hence the point P
coincides with the common centre A of all rotations, while the angle
@ is a multiple of 180°/n. The group under study is thus D,. This
completes the proof. O

Exercise 56. Can a plane figure have
(1) exactly two symmetry axes?
(2) exactly two centres of symmetry?

Exercise 57. Which is the most symmetrical (i.e., having the biggest
symmetry group) bounded plane figure?

4. Conjugate transformations

In the discussion of Problem 28 above we said that the symmetry
groups of figures ®; and ®3 are the same: Sym(®;) = Sym(®j3).
What is the precise meaning of this equality? In a more general
setting: what is the precise meaning of the classification theorem we
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proved in the previous section? Let us think a little about these
questions.

Equality of two symmetry groups like Sym(®;) and Sym(®3) has
the verbal meaning, i.e., the two sets of plane movements coincide
only if the two figure are placed in the plane in such a way that their
centres and symmetry axes coincide. Otherwise the sets G = Sym(®;)
and H = Sym(®3) would be different, although closely related to each
other. We will now elucidate this relation.

Figure 4. Conjugate symmetry groups

Denote the centre of rotations and the symmetry axes for the
group G by A and aq, ..., as. Denote the same objects for the group
H by B and by, ..., by, respectively (see Figure 4). Let f be a plane
movement that carries B into A and each b; into a;. The transforma-
tions of the group G can be obtained from the transformations that
belong to the group H in the following way. Consider, for example,
the reflection in the line b3. First move the figure ®; with the help
of the movement f~!, then apply reflection in b3 to it, then move it
back with the help of f. It is easy to see that after all these actions
the figure has undergone a reflection in the line as.

In general, for any element h of the group H the composition
foho f~!is an element of G. More precisely, if h is a reflection in
b;, then f o ho f~! is a reflection in a;; if h is a rotation around B,
then foho f~1is a rotation around A through the same angle.

Definition 11. Two transformations h € H and g = foho f~' €
G are said to be conjugate. The transition from h to ¢ is called
conjugation by f.
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We have encountered conjugate transformations before, when we
derived the complex number formula for a rotation with an arbitrary
centre, and in Exercise 37 (Chapter 2).

Two groups of movements are said to be conjugate, if the list
of elements of one group becomes the list of elements of the other
upon conjugation by a certain (one and the same) movement. The
symmetry groups of two copies of one and the same figure, placed
arbitrarily in the plane, are always conjugate. The conjugation is
effectuated by a movement that carries one of the copies into the
other.

In general, conjugation should be understood as looking at an ob-
ject from a different viewpoint. The conjugating movement is the one
which relates the two viewpoints (or systems of reference, in physical
terminology).

The most important property of conjugate subgroups is that they
have the same internal structure. Let us explain the exact mathe-
matical meaning of this phrase. Let G and H be two groups of plane
movements that are conjugated by a movement f. If g = foho f71,
then we will say that g and h correspond to each other, and write
g < h. This correspondence is one-to-one, because h can be uniquely
expressed in terms of g as f~togo f.

Then the following two facts hold:

(1) If g1 < hl and go2 < h2, then g1 0g2 < hl [¢] hg.
(2) If g <> h, then g7 < h™1.

Both facts are verified in a straightforward way:

(1) groga=(fohiof  )o(fohyofl)=fo(hiohg)of
(2) (fohof )yt =foh toft

Thus, both group operations (composition and taking the inverse)
in one group correspond to their respective counterparts in another
group under the correspondence under study. This phenomenon is
called isomorphism, and we will study it in detail later in this chapter.

Now we will derive formulas for conjugation in the group of plane
movements.
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Problem 29. Find the movement which is conjugate to the rotation
RS by means of the reflection S;.

Solution. By virtue of the general remark that we made
above, to get the conjugate movement one has to look
at the given rotation ‘from under the plane’, displacing
one’s viewpoint by means of the reflection Sj. It is fairly
evident that the result is the rotation through —a around
the point A’ which is symmetric to A with respect to .
We will perform a rigorous check of this result, i.e. prove
that S;o0 RS oS! = R,%.

AI

Figure 5. Conjugation of a rotation by a reflection

Indeed, let M be an arbitrary point in the plane (see
Figure 5). Let M; be its image under the movement S, !
(which, in fact, is the same thing as S;). Suppose that M
goes into My under RS and M, goes into M3 under S;.
Then AM A'M3 = AM;AM,, whence M3 = R,/ (M).

Exercise 58. Compile a complete table of all conjugations in the
group of plane movements, i.e., find fogo f~! for every g =

Ta, RS, S,, U and every f = Ty, RS, S,,, UE.
To acquire freedom in manipulations with plane movements, we
suggest that the reader make and practice using a simple tool that
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we call a ‘dihedral instrument’. It consists of a regular polygon cut
from cardboard and of the same polygon drawn on a piece of paper.
The vertices of each polygon should be consecutively numbered by 1,
2, ....

o

6

Figure 6. Instrument for studying the dihedral group

With the help of this instrument, one can study the dihedral
group D,,. To find the product of two elements of D,,, one must first
place the cardboard polygon on the paper one in its initial position,
so that the vertices with the same numbers coincide, then perform
the given movements one after another and, comparing the numbers
of vertices, try to figure out what is the composed movement. In the
same way one can also compute the table of conjugations.

Exercise 59. Using appropriate dihedral instruments, fill in the mul-
tiplication and conjugation tables for the groups D3 and Djy.

Looking at the table of conjugate movements (the answer to Ex-
ercise 58), one can see that a translation T, does not change when
conjugated by another translation Ty:

ThoTnoTy' =T

This equation is equivalent to Ty, o T, = Ty © Ty, which means that
any two translations commute; in other words, they are interchange-
able with respect to composition. (We recall that we have already
mentioned commutativity in the discussion of Problem 24.)

A transformation group where any two elements commute is
called commutative.
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Problem 30. Find all finite commutative groups of plane move-
ments.

Solution. We know the list of all finite groups of plane
movements: it is made up of C, and D, for all n =
1,2,3,....

Every cyclic group C, is commutative. This follows
from the fact that the group of all rotations with a com-
mon centre is commutative, because the product of rota-
tions through angles o and 3 is a rotation through a+ g,
no matter which order the composition is taken in.

The group D; is commutative, because it consists
of only two elements, one of which is the identity. It is
easy to see that the group Dy is commutative, too. In
fact, it consists of two reflections S; and S, whose axes
are mutually perpendicular, a half-turn rotation R and
an identity transformation. According to the rules we
have derived earlier, the composition Sj 0S5 is a rotation
through 180° in one direction, while Sy 0 S is a rotation
through 180° in the opposite direction. Hence, S; 055 =
Sy 0 51. Therefore, S;o R = S108,08; = Ro 5.
Similarly, So 0 R = R o Ss.

Now consider the group D,, for n > 3. Choose two
reflections that belong to this group and whose axes are
adjacent, i.e. make an angle of 180°/n. Their products
are rotations through the angle 360° /n, in the positive or
negative direction, depending on the order in which the
product is taken. Since n > 3, these two products are
different. Therefore, the group D, is non-commutative.

The complete list of finite commutative groups of
plane movements thus includes D;, D, and all groups

Ch.

The property of commutativity of a group can be easily read off
its multiplication table: a group is commutative if and only if its
multiplication table is symmetric with respect to the main diagonal.
Readers who did Exercise 59 have visual evidence of the fact that the
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groups D3 and D, are not commutative. However, even if the table is
not symmetric as a whole, it always contains pairs of equal elements
that occupy symmetric positions. Such pairs correspond to the pairs
of commuting elements of the group.

Exercise 60. Indicate all pairs of commuting elements in the groups
D3 and Dy.

5. Cyclic groups

There is another way to explain why the cyclic group C,, is commu-
tative. Let R denote the rotation through 360°/n. Then all the ele-
ments of the group can be represented as powers of R, i.e. R? = RoR,
R>=RoRoR, ..., R* =id, and it is clear that we always have
RkoRl :Rk+l :RZORk.

A transformation f whose powers exhaust the set of all elements
of a group is called a generator, or a generating element of the group.
To better understand the meaning of this notion, let us imagine that
we have no group, but only one transformation f of a certain set
M. The question is whether there exists a transformation group that
contains this transformation f. The answer to this question is always
positive. The smallest group containing a given transformation f can
be constructed in the following way.

If a group contains an element f, then, according to the first defin-
ing property of a group, it must contain all its powers f2, f3, etc. By
the second property, it also must contain the inverse transformation
f~! and therefore all its powers (f~1)2, (f71)3, etc.

Exercise 61. Prove that (f~')* = (%)%

The transformation (f~1)*, where k is a natural number, is called
a negative power of f and is also denoted by f~*. The zeroth power of
any transformation is by definition the identity transformation. Now
observe that the set of all integer powers of a given transformation,
L 72 L O fY f2, L., always forms a group, because of the
identities f* o f! = f**! and (f¥)~! = f~*, which hold not only
for natural, but also for all integer values of k and [. This set of all
powers of f is called the group generated by f.

Two possibilities may arise.



5. Cyclic groups 87

(1) All the powers f* are different. In this case the group gen-
erated by f is infinite and is called an infinite cyclic group.

(2) Among the powers of f there are some that coincide. Then
there is a positive power of f which is equal to the identity
transformation. Indeed, if f* and f! is any pair of coincid-
ing powers with & > I, then f*~! = id. Denote by n the
smallest positive exponent satisfying f™ = id. The num-
ber n is called the order of the transformation f. In this
case the group generated by f consists of exactly n different
transformations f, f2, ..., f*. (All of these are different
indeed, because if we had f*¥ = f! with 0 <! < k < n, then
we would get f*~! = id, contrary to the choice of n.)

In this case the group generated by f is a finite cyclic
group of order m. In particular, this notion includes the
cyclic groups of rotations C,, considered above.

When the transformation f generates an infinite group, we can
also say that f has infinite order. The order of the identical trans-
formation is 1 by definition, and the group it generates consists of
only one element and is called the trivial group. An involutive trans-
formation generates a group of order 2, consisting of itself and the
identity.

Problem 31. Which elements of the group C12 are generators of this
group? What are the subgroups generated by other elements?

Solution. (5 consists of 12 rotations through angles
which are multiples of 30°. All these rotations are pow-
ers of the rotation through 30°, which is therefore a gen-
erator of the group. The inverse rotation (by 330°) is
obviously a generator, too. To facilitate the study of the
other elements, we use Figure 7, where every element of
the group is represented by a vertex of the regular 12-
gon: Ap corresponds to the identity, A; is the rotation
through 30°, etc. Consider the elements of the group one
by one and, for every element, mark all the vertices of the
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Figure 7. Cyclic group Ci2 and its subgroup

polygon that correspond to the powers of this element.
We will see that:

There are two more rotations — through 150 and
210 degrees — that generate the whole group.
Rotations through 60 and 300 degrees have order 6
and generate the group Cg visualized as a hexagon
AOA2A4A6A8A10 in Figure 7.

Rotations through 90 and 270 degrees generate the
group of order 4 (the square AgA3AsAy).
Rotations through 120 and 240 degrees generate the
group of order 3 (the triangle AgA4As).

The rotation through 180°, which is an involution,
generates the group Cy depicted as the line segment
AgAg.

This result can be summarized in a table where the
upper line is for the values of k, while the lower line
shows the order of the rotation R* (R being the rotation
through 30°):
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Exercise 62. Using the notion of the greatest common divisor (GCD)
of two numbers, find a general formula for the order of the element
f* in a cyclic group of order n generated by f.

A transformation belonging to a finite group is a generator of this
group if and only if its order is equal to the order of the group. The
number of generating elements in the cyclic group C,, is denoted by
(n), and the function ¢ is called the Euler function. For example,
the table above shows that ¢(12) = 4.

Exercise 63. (a) Compile the table of values of the function ¢(n) for
n=23,...,15. (b) Find a general formula for ¢©(n) in terms of
the prime decomposition of the number 7.

Now let us see what are the orders of different plane movements
according to their type. It is clear that non-identical translations and
glide reflections have an infinite order, because under the repeated
action of such a transformation any point occupies infinitely many
new positions (Figure 8, a and b).

/]

Figure 8. Order of translation, reflection and glide reflection

Exercise 64. Is it possible for a plane figure to remain unmoved un-
der a non-trivial translation or a glide symmetry?

Any reflection has order 2 (Figure 8c).
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Rotations may have different orders. If the angle of rotation is
measured by a rational number of degrees 360° - m/n where m/n is
an irreducible fraction, then the rotation has a finite order n (Figure
8d). For an irrational number of degrees the order is infinite.

Exercise 65. Verify the previous assertion for the rotations of Prob-
lem 31. Prove the general fact.

6. Generators and relations

Cyclic groups, i.e., groups generated by one element, constitute the
simplest class of groups. Now we will consider the groups that cannot
be generated by one element.

To begin with, let us prove that the group D,,, where n > 2, is
not cyclic. In fact, we have already seen that if n > 2, then D, is not
commutative and hence is not cyclic. In the case n = 2, note that
every non-identity element of the group D is of order 2, and thus the
group does not contain any element of order 4.

A natural question arises: what is the smallest set of elements
of the group D,, which generates the whole group, i.e., allows us to
express any element of the group using multiplications and taking
the inverse? It turns out that two elements are enough, and {R, S},
where R is the rotation through 360°/n and S an arbitrary reflection,
is an example of such a set. In fact, every rotation belonging to D,
can be represented as R, and every reflection as RF o S.

The first of these two assertions is evident. To prove the other,
note that all the movements R¥0S for k =0, 1,...,n—1 are different.
Indeed, an equality R* o S = R' o S, when multiplied by S on the
right, would imply R* = R!, which is a contradiction. Now observe
that all these movements are improper, i.e. reflections, not rotations.
Since the total number of reflections in the group D, is n, we deduce
that each of them must appear in the list S, Ro S, ..., R* 1o S.

We have thus proved that the pair {R, S} is a set of generators
of the group

D, ={id,R,...,R*"1,S,R0S,...,RF"* 0 S}.
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Figure 9. The group Dy

Let us describe the multiplication rule of the group D,, in terms of
these expressions through R and S.

e The composition of R*¥ and R' is RFt!. If k41 > n, this can
be replaced by R*¥t'~™ to coincide literally with an element
of the above list.

e In the same way, R* o (R' 0 S) = R**'0 S, or, if k+1 > n,
it is better to write R¥ o (R 0 S) = RFtI"" 06 S.

e Let us find the composition (R* 0 S) o R!. Recall (Problem
29) that S o R 0 § = R™*. Multiplying this equality by S
on the right, we get S o R¥ = R™% 0 S. Therefore,

(R*oS)oR' =RFo(SoR)=R*o(R'0S)=R""os.
e A similar argument shows that (Rk 08)o (Rl 0S) = RE1.

In terms of the generators R and S, the multiplication table for
the group D,, can be represented as follows:

R R'oS
Rk Rk+l Rk+l S
Rk oS Rk—l oS Rk—l
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where, when necessary, the exponent of R can be increased or de-
creased by n, using the fact that R™ = id.

For specific values of n, this short table can be expanded to its
full form. For example, if n = 3, we get the following full table:

id| R |R*|Sa| S| Se
id |id| R|R*| S, | Sy | S
R| R|R|id | Sy | S.| Sa
R\ R*|id | R |S.|S.| S
Se | Sa| Se|Sy|id |R*| R
Sy | Sy | Se| S.| R|id | R?
Se | S| Sp|Sa | R RY|id

An important observation is that the complete multiplication ta-
ble of the group D, follows from just three relations between the
generating elements R and S:

(25) S?=id; (SoR)’=id; R"=id.

All other relations between R and S can be formally deduced from
these three using the definition of a group. As an example, let us
check this for the relation S o RF o § = R™* that we have used when
working on the multiplication table.

The second relation in (25) can be expanded as
SoRoSoR=1id

or, equivalently, as
SoRoS=R1L

Taking into account that S? = id, the n-th power of the last equality
gives
SoRFoS=R"F

It turns out that relations (25) constitute a complete set of defin-
ing relations for the group D, in the following sense: if a group is
generated by two elements S and R which satisfy the relations (25)
and no other relation except for those that are formal consequences
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of these three, then the order of this group is 2n and its structure is
the same as the structure of the group D,,.

We will now try to give a general definition of generators and
defining relations of a transformation group. Let S = {s1,...,s,} be
a finite subset of a group G By a monomial over S we understand a
product of the form M = s; sk2 e sf;", where i1, ..., i,, are numbers
between 1 and n and the exponents ki, ..., kn are arbitrary integers.
A relation between sy, ..., s, is a monomial r over S which is equal to
id in the group G. Relations can also be written in the form r; = 7o,

which is equivalent to riry b —id.

Definition 12. Let G be a transformation group, S C G a subset
and R a certain set of relations between the elements of S

We say that the set S is a set of generators and R a set of defining
relations for the group G, if

1. any element of G can be represented as a monomial over S,
and

2. any relation between the elements of S is a formal consequence
of the relations belonging to the set R.

By a formal consequence of relations r; = id, ..., r,, = id, where
every r; is a monomial over the set .S, we mean a new monomial r=id
which can be deduced from the given set using the group operations
(multiplication and taking the inverse) and their properties, such as
associativity, the simplification rules s¥s! = s¥*! s = id, and the
fact that the equalities ab = id and ba = id are equivalent. For
example, the relations ab® = id and ba? = id imply that b = a=2 and
hence a® = id.

Let us note that in a certain sense, the nature of the elements
81, .., 8n is here irrelevant: later (page 136 in Chapter 5) we will give
a definition of an abstract group with a prescribed set of generators
and relations.

We pass to some exercises where the notion of defining relations
is crucial.
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Problem 32. Suppose that A and B are two transformations that
satisfy the relations

(26) A®=id; B°=id; AB=B%A

and do not satisfy any relations that do not follow from these three by
group axioms. Prove that the group generated by A and B is a cyclic
group of order 3.

Solution. To simplify the formulas, both in the state-
ment and the discussion of Problem 32 we omit the sym-
bol of composition (small circle) and correspondingly use
the word ‘multiplication’ instead of ‘composition’.

An arbitrary element of the group G generated by A
and B can be written as

BFi A Bk2 glz | BEm glm

where, in virtue of (26), we can assume that 0 < k; < 4
and 0 < I; < 2. Let us transform this ‘word’ using the
following rule: each time that an A appears next to a
B on the left, replace AB by B*A. Applying this rule
sufficiently many times, we will sooner or later push all
B’s to the left and arrive at a word of the type B*A!,
where, as before, we are in a position to assume that

Since the integer k may take 5 different values and
the integer [ three different values, we see that the total
number of products B*¥ A! is no greater than 15. It turns
out, however, that not all of these elements are different.
Indeed, we can deduce the following chain of equalities
from the defining relations (26):

BZASB:A2B4A=AB16A2ZBG4A3:B4,

where we have used the above described rule and the
observation that the letter A, when going through a B
from left to right, multiplies its exponent by 4. Therefore,
B? = id, which, together with the known identity B® =
id, implies that B = id.
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The group G is thus in fact generated by only one
element A satisfying A® = id. It remains to note that
this generator A cannot be trivial, because the relation
A = id is not a consequence of the relations (26). Indeed,
if we take a 120 degree rotation for A and the identity
transformation for B, then all the three relations (26)
are true, while the relation A = id is false.

Exercise 66. Let A and B be two nontrivial movements of the plane
such that ABA? = id and B%A = id. What is the order of the
group generated by A and B? What kind of movements are A
and B?

Similar arguments can be used in the following exercise, which
at first glance looks totally unrelated to the theory of transformation
groups.

Exercise 67. The language of the tribe Aiue has only 4 letters: A, I,
U and E. The letter E is special. When used by itself, it means a
certain word, but when added to any word in the beginning, the
middle or the end, it does not change its meaning. Furthermore,
each of the letters A, U, I, pronounced seven times in a row, makes
a synonym of the word E. The following word fragments are also
considered as synonyms: UUUI and IU, AAI and IA, UUUA and
AU. The total number of people in the tribe is 400. Is it possible
that all of them have different names?

Exercise 68. Find all pairs of generators in the group D,. For each
pair, indicate the defining relations.

The notion of defining relations can be used for groups that have
any number of generators. For example, the cyclic group of order n
is the group with one generator R and one defining relation R™ = id.
An infinite cyclic group is the group with one generator T' which is
not subject to any relations. We should like to emphasize once again
the meaning of the last phrase. What we mean here is that there are
no non-trivial relations for T, i.e., no relations that involve T and id
and do not follow from the general properties of groups. Here is an
example of a trivial relation: T-1T*T—3% = id.

We shall now give an example of the group with three generators.
Consider the group of plane movements which was denoted by G
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in Problem 27 and which we will now denote by p3ml, its official
crystallographic symbol (see Chapter 4 for a detailed discussion of
crystallographic groups). By definition, the group p3ml is generated
by an infinite number of reflections, namely, the reflections in all the
lines shown in Figure 1la.

It turns out, however, that this group is also generated by only
three reflections S,, Sy, S., where a, b and c are the sides of an
equilateral triangle which forms the unit of the lattice shown in Figure
la. To prove this fact, we have to show that the reflection S, in
any line z that belongs to the triangular lattice under study can be
expressed in terms of S,, Sy, Se.

Consider, for example, the reflection S; (notation of Figure 1a).
Since the line I is symmetric to a with respect to ¢, we see that the
movement S; can be obtained from S, using conjugation by S, i.e.,
Sp=8.08,08.. Also, since S;(b) = m, we have S,,, = S;0 S, 0S5, =
S.08,085.08,085,085,08,.

A similar argument allows us to express any reflection S, through

Sa, Sb, S¢, because any line z belonging to the lattice can be obtained
from the lines a, b, ¢ by an appropriate series of reflections S,, Sy, Se.

We now observe that the three generators satisfy the following
relations:

(27) §2=62=82 = id,
(28) (Sa08p)%=(Sp08:)°=(S.08,)° = id.
Exercise 69. Let Fy, F,, F; be three plane movements that generate
an infinite group and satisfy the relations
F=F=F=FoR)®=(Fok)’=(FoF)®=id.
Show that Fi, F», F3 are reflections in the sides of an equilateral
triangle.

This exercise shows that relations (27) and (28), supplied with the
additional requirement of infiniteness, determine the group uniquely
as the group of plane movements. Actually, it can be proved that
these relations are the defining relations for the group p3ml in the
sense explained above.



Chapter 4

Arbitrary Groups

In this chapter we will introduce the general notion of a group, which
includes transformation groups as a particular case. We will discuss
the basic properties of groups in this general setting and consider
some applications of groups in arithmetic.

1. The general notion of a group

In our study of transformation groups, it often did not matter that we
dealt with movements or transformations. What mattered was the
properties of the group G expressed as the following four requirements
imposed on the composition defined for any pair of elements of G:

(1) the composition of two movements belonging to G also be-
longs to G;
(2) the composition of movements is associative;

(3) the group contains the identity transformation, which is
characterized by the property that its composition with any
movement, f is equal to f;

(4) together with every movement, the group contains the in-
verse movement.
We arrive at the general notion of a group, if we consider an ar-

bitrary set, supplied with an operation which associates an element

97
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of this set with any pair of its elements and which enjoys a similar
set of properties. For example, the set of all real numbers with the
operation of addition (R, +) possesses all the listed properties and in
this sense constitutes a group. We should like to draw the reader’s at-
tention to the fact that already in Chapter 1 (Problems 1, 7, etc.) we
have used these properties for elements of various natures (numbers,
points, vectors) and different operations (addition, multiplication).
The analogy between Problem 32 and Exercise 67 is also noteworthy.
All these facts testify that the notion of a group ought to be stated
in a general setting. So here we go.

Definition 13. A group is a set G with the following properties:

(1) there is a rule (a (binary) operation), according to which
for any ordered pair (a,b) of elements of the set G a certain
element a x b € G is defined;

(2) the operation * is associative, i.e. for any three elements
a, b, ¢ € G the following equality holds: (axb)*c = ax(bxc);

(3) in G, there is a neutral element, i.e., an element e such that
axe=exa=a for any a € G,

(4) for every element a € G there is a symmetric element o’ € G
which satisfies axa’ =o' *a =e.

The four properties 1-4 are also called the group azioms. Note
that any transformation group is a group in this general sense, al-
though the definition of a transformation group (p. 76) consists of
only two out of the four group axioms: number 1 and number 4. The
reason is that axiom 2 always holds for the composition of transfor-
mations (p. 69), and axiom 3 follows from axioms 1 and 4, because
the neutral element with respect to the composition of transforma-
tions is the identity transformation, and the question is only whether
it belongs to the given set G.

Exercise 70. Prove that for a finite set G consisting of transforma-
tions axiom 4 follows from axioms 1-3.

Instead of the symbols * (asterisk), ' (prime) and the terms ‘neu-
tral’ and ‘symmetric’, whose meaning is explained in the definition of
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a group, other symbols and words are used in various specific circum-
stances:

e In case of transformation groups the group operation (com-

position) is denoted by a small circle (o), the neutral element
is denoted by id (identity transformation), and the role of a
symmetric element f’ is played by ‘the inverse transforma-
tion f~1.

For the group of numbers (integer, rational, real or com-
plex) with the operation of addition the neutral element is
0 (zero), and the element symmetric to a given number a
is the opposite number —a. (When we considered complex
numbers as points in the plane, we called the neutral ele-
ment the pole and denoted it by P.)

For numeric groups with the operation of multiplication (for
example, the set of all positive real numbers), the symbol of
the operation is usually omitted, i.e. one writes ab instead
of a*b, the neutral element is 1, and the symmetric element

is the inverse number a~1.

Groups that consist of numbers, vectors, etc., with the operation
of addition, are referred to as additive groups. If the group operation
is multiplication, then the group is called multiplicative.

The system of notation adopted for the multiplication of numbers
is the most convenient, so it is often used for arbitrary groups. We
shall also use it by default. The only thing that has to be kept in
mind is that group multiplication, unlike numeric multiplication, is
not in general commutative; hence ab and ba need not be the same
element of the group.

Problem 33. For each of the following sets with binary operations,
determine whether it is a group:

(1) all even integers with the operation of addition;

(
(
(
(

2)
3)
4)
5)

all odd integers with the operation of addition;
all real numbers with the operation of subtraction,
all natural numbers with the operation of addition;

all non-negative integers with the operation of addition;
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(6) all real numbers with the operation zxy =z +y — 1.

(zxy)xz
T * (y*2)

Solution. In example 1 all the group axioms are obvi-
ously satisfied.

In example 2 the first axiom fails: the sum of two
odd numbers is not an odd number.

In the third example the first axiom holds, but the
second fails, because subtraction is not associative:

(6—5)—3#6—(5—3).

In the next example the first two axioms are fulfilled,
but the operation does not have a neutral element: the
only number that could play the role of the neutral el-
ement with respect to addition is zero, but it does not
belong to the given set.

Example 5 differs from the previous one only in that
the number 0 is added to the set, so that now the neutral
element exists. But axiom 4 is not valid, because positive
numbers do not have inverses in this set.

The last example requires more attention, because
the operation is unusual. Let us check all group axioms
one by one. It is clear that for an arbitrary pair (z,y) of
real numbers z +y — 1 is also a real number, so that the
first axiom holds. To verify the associativity, we have to
calculate the two expressions (z x y) * z and z  (y * z),
using the definition of *. We have

= (z+y—1*z=z+y—14+2z—-1=zc+y+2—2
= zx(y+z-1)=z+y+z-1-1=z+y+2-2.

We pass to the third axiom. The neutral element e must
satisfy the identity z + e — 1 = z for any z. This is
true if and only if e = 1. Finally, since the operation *
is commutative, to determine the number symmetric to
the given number x with respect to x, we have only one
equation instead of two: zxz' =1,ie. z+2' —1=1,
whence ' = 2—z. All the four axioms are thus satisfied,
and the given set (R, %) is a group.
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Exercise 71. Check whether the following sets with binary opera-
tions are groups. In case of a negative answer, indicate which of
the four axioms fails.

(1) The set of all irrational numbers with the operation of
addition.

(2) The set of all real numbers x > 2 with the operation
TkY=TY—T—Y+ 2.

(3) The set of all binary rational numbers (i.e. fractions whose
denominator is a power of 2) with the operation of addition.

(4) The set of all non-zero binary rational numbers with the
operation of multiplication.

(5) Can you find a set of real numbers which forms a group
with respect to the operation z xy = (z + y)/(1 — zy)?

We will indicate several simple but important corollaries of group
axioms.

(1) The neutral element in a group is unique, i.e. there is only
one element e that satisfies the requirements of the group
axiom 3. Indeed, suppose that we have two elements e; and
ez such that the following relation holds for every a € G:

ae; — €14 = aeg = €9a — a.

Setting successively a = e; and a = ey, we derive that e; =
€169 = €9.

(2) Any equation ax = b is uniquely solvable in a group. This
means that for any a,b € G there is a unique element z € G
such that ax = b. Indeed, using group axioms 2 and 4, we
can multiply the given equation by a~! on the left and get
x=a"lh

Exercise 72. Find a solution of the equation za = b and
prove that it is unique.

(3) The previous assertions imply that:
e The inverse element for a given a € G, defined by axiom
4, is unique.
e In every row and every column of the multiplication ta-
ble of a group each element of the group appears exactly
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once. One of these facts follows from the unique solv-
ability of equations ax = b, the other from the unique
solvability of equations za = b.

(4) Group elements imply that the element (a=!)" is inverse to
a™. Therefore, as in the case of transformation groups, we
can define zeroth and negative powers of the given element
by setting a® = e, a™™ = (a=!)" for n > 0. Then, for
arbitrary integer values of £ and [ we will have

(29) akal = o*t!,

(5) The last relation implies that the set of all integer powers of
an element a forms a group. Such a group is called cyclic,
and the element a is its generator. The order of the element
a is defined as the smallest positive integer n such that a™ =
e. If a = e, the order is 1 by definition; if a™ is different from
e for every n > 0, we say that the order of a is infinite. In the
latter case the subgroup generated by a is an infinite cyclic
group. Note that the order (the number of elements) of the
group generated by a is equal to the order of the element a.

(6) The axiom of associativity means that the product of three
elements of a group, which involves two multiplications,
does not depend on the order in which these multiplica-
tions are computed. Using induction, one can prove that
this property is also true for any number of multiplications:
any bracketing of the product ajas...a, gives one and the
same result. For example, (a;(aza3))as = ((a1a2)as)as =
(alag)(a3a4) = al(a2(a3a4)) = al((agag)a4).

So far, we have dealt with groups consisting of either transforma-
tions (transformation groups) or numbers (numeric groups). Now we
will give an example of a group whose elements have quite a different
nature.

Problem 34. A 3-switch is an electric circuit with three inputs and
three outputs connected by wires in such a way that every input corre-
sponds to a certain output. The total number of 3-switches is siz, and
they are all displayed in Figure 1. The problem is to define a natural
operation on the set of 3-switches which turns this set into a group.
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m, m, m, I, m,

Figure 1. 3-switches

Solution. A natural operation on the set of switches
is concatenation. To concatenate two switches means
to connect the inputs of one of them to the outputs of
another. For example, if we concatenate the switches I1;
and Iy, input number 1 of I, will go through the input
number 3 of I14 to the output number 2, so that in the
result we have that input 1 is connected to output 2.
Similarly, input 2 goes into output 1 and input 3 goes
into output 3. This is the same pattern that we have for
the switch Ilg. In this sense we can write that IIoII, =
IIs. Note that this operation is not commutative; for
example, 1411, = II5.

The complete multiplication (or, more exactly, con-
catenation) table for the set of 3-switches looks as fol-
lows:

O, |11, | O | 11, | s | Ig
I, |10 |0, | T3 | I, | Hs | g
My | Iy | I3 | 10y | TMg | TI4 | II5
My | My | I | TIp | 5 | T | TO4
M, | Iy | 105 | IIg | IT; | I, | IIg
M | IIs | IIg | II4 | II3 | II; | IO,
Mg | IMg | I, | 115 | 11, | I3 | II4

It turns out that the set of switches with this mul-
tiplication table forms a group. But how can one prove
this? Using the direct procedure of verifying all the group



104 4. Arbitrary Groups

axioms, just for axiom number 2 (associativity) one has
to check 6% = 216 equalities IT;(II;II;) = (IL;II;)IIx. For-
tunately, there is a less tedious way to do all these checks.
Note that if you replace the letters II;, Ilo, I3, II4, Ils,
II¢ in the multiplication table of the switches by id, R,
R?, S,, S., Sy respectively and swap the two last rows
and the two last columns of the table obtained, then you
will get the multiplication table for the group D3 (see
p. 92). This means that the concatenation of 3-switches
and the composition of the movements in the group D3
establish exactly the same relations between the elements
of the respective sets. Therefore, the operation of con-
catenation in the set of switches has all the properties
that the composition of transformations has: it is asso-
ciative, there is a neutral element (the switch II;), and
every switch has an inverse. This implies that the set of
3-switches forms a group with respect to concatenation.

The mathematical content of the previous example consists in the
description of all possible one-to-one mappings of the set {1, 2, 3} into
itself, or, in another terminology, all transformations of this set.

A transformation of the set {1,2,...,n} is called a permutation
of n elements, or a permutation of degree n. A permutation that takes
1 into 71, 2 into i9, ..., n into ¢, is denoted as

1 2 ... n

i1 Gy ... in)
There are n! permutations of degree n in all, and they form a group,
denoted by S,.

There are even two different natural ways to define the group
structure in the set of all permutations of a given degree. The first one
is to treat permutations exactly like transformations and define the
product o109 of the two permutations o; and oy as the composition
01 0 0y of the two mappings. We recall that the composition o o g9
is obtained by performing first the transformation sy and then the
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transformation s;. According to this definition, we will have

1 2 3 R 12 3y (1 2 3
1 3 2 3 2 1) \2 3 1)°
Another way to define the product of the two permutations oy

and o3 is to first perform o; and then oo — exactly as we defined the
concatenation of switches in Problem 34.

There are two schools of mathematicians: one maintains that
the product of permutations should be defined as o1 o 05, the other,
that it should be defined as o3 o ;. Multiplication tables for S,
adopted by the two schools differ by a reflection in the main diagonal.
Actually, the two viewpoints are not so far apart: after studying the
next section, you will be able to prove that the two permutation
groups resulting from the two definitions are in fact isomorphic.

Here are some more problems where different groups appear, im-
plicitly or explicitly.
Exercise 73. On a blackboard, several circles, squares and triangles

are drawn. You are allowed to erase any two figures and replace
them by a new figure following the rule:

— two circles make a circle;

— two squares make a triangle;

— two triangles make a square;

— a circle and a square make a square;
— a circle and a triangle make a triangle;
— a square and a triangle make a circle;

Prove that the shape of the last figure that will remain does
not depend on the order in which the replacements are made.

Exercise 74. Consider the rational algebraic expressions in one vari-
able, i.e., quotients of two polynomials in = with real coefficients.
If A and B are two such expressions, then we can form the super-
position A * B by substituting B instead of x into A. Prove that
the set @ of all expressions that can be obtained by substitutions
from A; =1 —z and Az = 1/x forms a group, and find its order,
its list of elements and its multiplication table.

Exercise 75. Find a rational expression B, different from a constant,
such that B* A; = Bx Ay = B, where Ay =1— 1z, Ay = 1/z.
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2. Isomorphism

When working on Problem 34, we deduced all the properties of the
concatenation from the similar properties of the composition of trans-
formations, using the fact that both operations have the same inner
structure. The precise notion suited to characterize such situations is
isomorphism.

Definition 14. Two groups G and H are said to be isomorphic, if
there is a one-to-one correspondence, denoted by ‘«—’, between the
elements of G and the elements of H, such that g; < h; and go < hg
always imply g1 g2 < hihs. One can also say that this correspondence
respects, or agrees with, the group operations in both groups.

A more exact way to state the definition of an isomorphism is: the
groups G and H are isomorphic, if there exists a one-to-one mapping
¢ : G — H such that

(30) ©(9192) = ©(g1)p(g2)

for any elements g; and g, of G. One can also say that ¢ is an
isomorphism of the group G onto the group H.

At first sight it seems that the second version of the definition is
different from the first, because the two groups do not enter symmetri-
cally. In reality, however, the two groups have equal rights, because, if
¢ is an isomorphism of G onto H, then ¢!
H onto G. Indeed, denoting hy = ¢(g1), he = ¢(g2) and applying ¢~
to both sides of equation (30), we get o~ (h1)p~t(he) = ¢~ (hih2).

will be an isomorphism of
1
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The most direct way to establish the isomorphism, especially for
finite groups, is to explicitly indicate all pairs of corresponding el-
ements and then check that, when all elements of one group in its
multiplication table are replaced by their counterparts from the other
group, we obtain the multiplication table of the second group. (Of
course, it might be necessary to change the order of columns and rows
in the table obtained to make it literally coincide with the multiplica-
tion table of the second group as it was given.) Note that we followed
this procedure in Problem 34.

Exercise 76. Check whether the following correspondence is an iso-
morphism between the group of 3-switches and the symmetry
group of the equilateral triangle Dj: id < II, R? & IIs, R « I3,
Sb Ad H4, Sc — H5, Sa Ad Hﬁ.

This exercise leads to an important observation: if two groups.G
and H are isomorphic, the isomorphism ¢ : G — H is not in general
unique. In particular, there might exist isomorphisms of a group onto
itself, different from the identity transformation.

Exercise 77. Find all isomorphisms of the group D3 onto itself.

The notion of an isomorphism illuminates the meaning of some
analogies that an observant reader might have noticed in the mate-
rial of the previous chapters. We can now state them as clear-cut
problems.

Exercise 78. Prove that the set of all points of the plane with the
operation of addition over a fixed pole (see p. 10) forms a group
isomorphic to the additive group of plane vectors. Also prove that
assigning to a point (or a vector) the pair of its coordinates in a
certain basis establishes an isomorphism of the respective group
and the group of pairs of real numbers with the operation defined
by the rule

(a1,b1) + (a2, b2) = (a1 + a2, b1 + ba).

Exercise 79. Prove that the set of vertices of a regular hexagon with
the multiplication described in Problem 7 (p. 26) forms a cyclic
group isomorphic to the group Cs of rotations with a common
centre through angles which are multiples of 60°.

Exercise 80. Prove that the set {circle, triangle, square} with the
operation defined in Exercise 73, is a group isomorphic to the
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cyclic group C3. How many different isomorphisms between these
groups are there?

Exercise 81. Prove that the group of rational algebraic expressions
defined in Exercise 74 is isomorphic to the dihedral group Ds.

The results of Exercises 79 and 80 are generalized by the following
assertion: any two cyclic groups of the same order are isomorphic.
Indeed, let g be the generator of the first group G, and h the generator
of the second group H. Define the mapping ¢ : G — H by the rule
©(gF) = hk. The law of multiplication of powers (29) holds in either
group and implies that ¢ is an isomorphism:

0(9°9") = (") = K" = h*R' = (g")e(g").
It is likewise clear that a group isomorphic to a cyclic group is itself

cyclic, because the image of a generator under an isomorphism will
also be a generator.

If we are interested in the inner structure of a group, we can
forget about the nature of elements it consists of, keeping track only
of the properties of the group operation.

Definition 15. An abstract group is a class of all groups which are
isomorphic between themselves.

For example, all cyclic groups of order n, such as the group of
rotations C,, or the group of complex n-th roots of unity, are repre-
sentatives or, in Buddhist terminology, incarnations, of one and the
same abstract cyclic group of order n. In the same way, the dihedral
group D3, the permutation group Ss, the group of switches (Problem
34) and the group of rational expressions (Exercise 74) are all repre-
sentatives of one and the same abstract group. Later (page 136) we
will explain how to define an abstract group with a given structure
(set of relations between generators).

We now pass to the following general problem: given two groups,
decide whether they are isomorphic or not. Usually, it takes more
efforts to establish isomorphism than to establish non-isomorphism,
because, in the first case, one normally has to construct the isomor-
phism, while in the second case, it is often enough to find some prop-
erty which must be preserved by an isomorphism, but which distin-
guishes the groups under study. Here is a short list of some simple
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properties whose coincidence for two groups is a necessary condition
for their isomorphism:

(1) The order of the group. Groups that have a different number
of elements cannot be isomorphic.
Exercise 82. Is the group of all integers with addition iso-
morphic to the group of all even numbers with addition?
(2) Commutativity. A commutative group cannot be isomorphic
to a non-commutative group.

(3) Cyclicity. A cyclic group cannot be isomorphic to a non-
cyclic group.
Exercise 83. Are there any pairs of isomorphic groups in
the list C1, D1, Cs, Dy, Cs, D3, ... 7
(4) The orders of elements. The number of elements of order
n in one group must be equal to the number of elements
of order n in the other group, because the orders of corre-
sponding elements are the same.

We will only prove the last item, because it is somewhat more
complicated than the others.

To begin with, note that under an isomorphism, the unit elements
of the groups correspond to each other. In fact, if e is the unit of the
group G and ¢ : G — H is an isomorphism, then ee = e implies
o(e)p(e) = p(e), which, upon multiplication by the element of H
inverse to @(e), leads to the equality p(e) = €', where €’ is the unit of
H. Now let g be an element of G that has order n in G. By definition,
g™ = e, whence ¢(g)™ = €, i.e., the order of h = p(g) does not exceed
n. An inverse argument shows that the order of g cannot exceed the
order of h. Therefore, the two orders are equal.

For example, to distinguish between the groups Cgs and Dj, it
is enough to use any of the three criteria 2-4. First of all, Cg is
commutative, but D3 is not. Also, Cg is cyclic, but D3 is not. Finally,
Cs has one element of order 1, one element of order 2, two elements
of order 3 and two elements of order 6, while D3 has one element of
order 1, three elements of order 2 and two elements of order 3.

The list of properties that are necessary for two groups to be
isomorphic is virtually infinite, because it contains any property of
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the group which can be formulated in terms of the group operation
without referring to the specific nature of the elements of the group.
We will, however, pass to the second half of the isomorphism problem.
Suppose that we are given two groups G and H and we cannot find
any intrinsic property that distinguishes them from each other. Then
the conjecture arises that the groups are isomorphic. To prove this,
one must construct an isomorphism f : G — H between G and H.
How can this be done?

First we recall that, if e and €’ are the unit elements in G and H
respectively, then we have p(e) = €’. Further, if f(g) = h for a certain
pair of elements g € G and h € H, then by repeated application of
(30) we can derive that ¢(g*) = h* for any natural k.

Exercise 84. Prove the equality ¢(g*) = h* for negative values of k.

We thus see that, if the mapping ¢ is defined on a certain element
g of G, then it is also uniquely defined on the whole subgroup gener-
ated by g. Quite similarly, if the images of several elements g1, ..., gn
of the group G are known, then one can uniquely determine the image
of any element expressible in terms of gi, ..., g,. If these elements
are generators of G, then the values ¢(g1) = hi1, ..., ©(gn) = hn
completely determine the mapping ¢. In the case of two generators
we can write the corresponding formula as follows:

(31) o(ghrgy ... gt gh) = K hy .. hehy.

Thus, if the group G is generated by two elements g; and g,
then, to construct an isomorphism ¢ : G — H, we must define its
values ¢(g1) = hi, ©(g2) = ha and then extend the mapping to all of
G according to relation (31). But how should the elements hi, hy be
chosen? It is clear that they ought to be a set of generators of the
group H, they must have the same respective orders as g; and g2, and
they must satisfy all the relations that g, and g, satisfy. For example,
if g2g3 = e, then we must have h?h3 = e’. These observations allow
us to guess a ‘candidate’ for the isomorphism . After the mapping
is constructed, one has to verify that it is really an isomorphism.

1 3
Problem 35. Let € be the complex number ~3 + %z (note that

€2 = 1). Consider two functions of a complex variable Fi(z) = ez,
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F5(2) = Z. Prove that the set of all functions that can be obtained
from F1 and Fy by superposition forms a group isomorphic to the
dihedral group Ds.

Solution. We successively find that

F3(z) = Fi(Fa(z)) = F1(Z) = €7,

Fi(z) = F(FR()=F(E) =4,

Fs(z) = Fi(Fi(2)) = Fi(e2) = €%z,
Fs(z) = F(Fi(2)) = Fy(ez) =22 =¢"2

A straightforward check shows that further application of
Fy and F3 to these expressions does not lead to any new
functions. Thus, the set of six functions Fi, ..., Fg is
closed under superposition. The inverse of every function
belonging to this list also belongs to this list. This proves
that what we have is a group. The neutral element is the
identity function Fj, the functions F», F3, Fg have order
2, and the functions F}, F5 have order 3. The group is
not commutative since, for example, Fy(F2(2)) = F3(z),
while Fy(Fi(2)) = Fs(2). These observations suggest
that our group G is likely to be isomorphic to Dj.

To construct an isomorphism ¢ : G — D3, note that
G by definition has two generators F; and Fh, whose
orders are 3 and 2. In D3 we can also find a system of
two generators with orders 3 and 2: a rotation and a
reflection. For example, set

R FeS,
(in the notation of p. 92). Then
F3—S., Fyeid, Fse R’ Fgo S,
Replacing every element of Ds by the corresponding el-

ement of G in the multiplication table of D3 (p. 92), we
will obtain the following table:
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Fo|Fy | F5 | Fy | Fg | |3
Fy | Fy | By | F5 | Fy | Fs | F3
F\ |Fy |Fs | Fy | Fs | F5 | Fy
Fs | Fs |Fy | Fy | F3 | Fy | Fg
F | Fo | F5 | Fg | Fy | F5 | Fi
Fo | Fo | Fy | F3 | F1 | Fy | F5
Fs |F3 | Fg | Fo | F5 | Fy | Fy

which, as one can easily check, is the correct multiplica-
tion table for G.

The isomorphism is thus established. There is, how-
ever, a more natural way to find an isomorphism be-
tween the two groups in question. Indeed, let us re-
call that a function of a complex variable can be viewed
as an analytical representation of plane transformations.
In particular, the function Fj(z) = ez corresponds to
the rotations around 0 through 120°, while the function
F3(z) = Z, to a reflection in the real axis (axis a in Figure
2).

If we assign to every function obtained from F} and
F;, by superpositions the corresponding plane transfor-
mation, we will obtain a group isomorphism.!

The isomorphism constructed by the second method is called nat-
ural. A natural isomorphism reveals the reason why the two groups
are isomorphic.

Exercise 85. Indicate a natural isomorphism
(1) between the group of 3-switches (see Problem 34) and the
group Dsg;
(2) between the group of rational algebraic expressions of Ex-
ercise 76 and the group Ds.

INote that the terms ‘superposition’ and ‘composition’ actually have the same
meaning, only the first one is used in analysis for functions, while the second one is
used in geometry for transformations.
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Figure 2. Equilateral triangle in the complex plane

We have to admit that the naturality we are talking about is by
no means a strict mathematical notion, it rather bears a heuristic
character. In a certain sense, any isomorphism is natural, but, in
order to understand why is it natural, people often have to develop a
special mathematical theory. A quest for natural isomorphisms that
explain the reason why similar objects appear in different areas of
mathematics is a powerful impetus that fosters the development of
knowledge.

Here, we have used the general word ‘knowledge’ on purpose,
to emphasize the fact that the notion of isomorphism is important
not only in mathematics, but in any area of thinking. To get an
idea of this general meaning of ‘isomorphism’, we invite the reader to
contemplate over the following historical example.

In 1970, one of the problems of the entrance examination set
for the Gelfand Correspondence Mathematical School in Moscow was
published by two major journals in different formulations.

One of the journals stated the problem like this:

One of three gangsters, known in city M under the
names of Archie, Boss and Wesley, has stolen a bag
of money. Each of them made three declarations:



114 4. Arbitrary Groups

e Archie:
— I did not steal the bag.
— On the day of the theft I was not in the
city.
— Wesley stole the bag.
e Boss:
— Wesley stole the bag.
— Even if I stole it, I would not confess.
— I have lots of money.
o Wesley:
— I did not steal the bag.
— I’ve been long looking for a good bag.
— Archie told the truth that he was not in
the city.

During the investigation it was found that two dec-
larations of each gangster were true and one false.
Who stole the bag?

Another journal proposed the following problem (names men-
tioned belong to protagonists of Russian folk tales):

The King learned that somebody has killed the ruth-
less Dragon. He knew that this could only be done
by one of the three famous warriors: Ilya Muromets,
Dobrynia Nikitich or Alyosha Popovich. They were
summoned to the King and each of them spoke three
times. Here is what they said.
o I. M.:
— I did not kill the dragon.

— On that day I was travelling abroad.
A. P. did that.

— A. P. did that.
Even if I killed him, I would not confess.
There are many evil spirits still alive.

I did not kill the dragon.
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— I've been long looking for a nice feat to
do.
—~ It is true that I. M. was abroad.
The King found out that each of the three warriors
twice told the truth and once lied. Who killed the
dragon?

It is easy to see that, although the two problems are about quite
different things, their logical structure is the same. Here is a glossary
of names, things and actions that correspond to each other in the two
problerms:

Archie Ilya Muromets
Boss Dobrynia Nikitich
Wesley Alyosha Popovich
bag dragon

to steal to kill

to leave the city to go abroad

If, in the statement of the first problem, all the significant words
are replaced by their counterparts from the right-hand column, the
result almost coincides with the statement of the second problem
— with the exception of Boss’s third statement, which is actually
irrelevant for the solution of the problem. In this sense, the two
problems are isomorphic.

This isomorphism can be used as follows. If you solve the first
problem and find that the answer is ‘Boss’, then you do not have to
solve the second problem: the correct answer is given by the word
that corresponds to Boss in our glossary, namely ‘Dobrynia Nikitich’.

Figure 3. Isomorphism
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In the same way one can use the isomorphism of groups: if G is
isomorphic to H, then every assertion about G that can be stated in
terms of the group operation will also hold for the group H, after an
appropriate translation.

Another, more simple and direct, application of the group isomor-
phism is the computation of the product of elements in one group,
using the product in another, provided that the second multiplica-
tion is less difficult and time-consuming. More exactly, if p : G — H
is an isomorphism between the groups (G, *) and (H,o), then the
x-product can be computed by the formula

(32) g1x92=¢ (p(91) ° p(g2)).

A classical example of this kind of computations is provided by
logarithms, invented by J. Napier? (early seventeenth century), who
sought to replace the multiplication of numbers by a simpler operation
— addition. Denoting the decimal logarithm of z by lgxz, we have
the identity

(33) T1zy = 1087111822

which is a particular case of the general relation (32). The isomor-
phism that makes it possible to compute by using logarithms is the
isomorphism lg : (Ry,-) — (R, +) of the group of positive real num-
bers with multiplication onto the group of all real numbers with ad-
dition. The two basic properties of the logarithmic function, namely

(1) it is on-to-one on the sets specified, and

(2) it satisfies the identity
lg(z122) =lgz1 + g 22,
mean precisely that it establishes an isomorphism between the two
groups.
Exercise 86.

(1) Find the analog of (33), if the decimal logarithm y = lgz is
replaced by the Napier function y = Algz + B.

2Act‘,ually, logarithms in the contemporary sense of the word were introduced and
tabulated by his disciple G. Briggs; Napier himself used a function y = Algz + B with
some constants A and B.
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(2) Find a group operation * on the set of all real numbers such that
the Napier function gives an isomorphism of (R4, -) onto (R, *).

The second half of the last exercise is a particular case of the
so-called transition of structure. Here is what we mean by that.

Let G be a group with operation A and H a set with no operation.
Suppose that a one-to-one mapping ¢ : H — G is given. Then it is
possible to carry the group operation from G to H along ¢ by the
formula

h1 V7 ha = ¢ (@(h1) A p(h2)).
We have actually used this method:

e to derive the addition of points from the addition of vectors
(Chapter 1);

e to define the unusual group operation over the real numbers
z+y=2x+y—1 (Problem 33). This operation is obtained
from the ordinary addition, which is carried over from one
copy of R into another along the mapping p(z) = = — 1.
Indeed, 2y = o~} ((2) +(y)) = ((z 1)+ (y—1) +1=
z+y-—1

ty

—zy

the same origin. We have tried to perform the transition of the group

structure (R, +) along the mapping ¢(z) = tanz, but we were not
quite successful, because this mapping is not one-to-one. However,
for any set M C R which is an additive group and has the property
that the values of the tangent in the points of M are all different, the
set of these values forms a group with respect to the operation .

The operation z x y = that appeared in Exercise 71 has

Exercise 87. Prove that:

(1) As such a set M one can take the set of all multiples of a real
number a that is incommensurable with 7.

(2) A set M with the required properties cannot contain any open
interval of the real axis.

Exercise 88.

(1) What operation on real numbers is the result of transition of
addition along the mapping = — 37
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(2) How was the operation z *y = zy — z — y + 2 (Exercise 71)
obtained?

In terms of the transition of structure, the notion of isomorphism
can be formulated as follows: the mapping ¢ : G — H is an isomor-
phism of groups, if the group operation of H carried over to G along
@ coincides with the group operation of G.

3. The Lagrange theorem

In this section we will state and prove the very first theorem of group
theory, which was found by the French mathematician Lagrange in the
late eighteenth century, even before the notion of group was explicitly
introduced in mathematics in the nineteenth century by E. Galois.

Theorem 7 (Lagrange). The order of a subgroup of a finite group
is always a divisor of the order of the whole group.

Since every element of a group generates a cyclic subgroup whose
order is equal to the order of this element, we obtain, in particular,
that the order of a finite group is divisible by the order of each element.
The reader might have noticed this law in the examples considered
above (groups Ci2, D3, etc.).

To prove the theorem of Lagrange in the general setting, we shall
use the important construction of the coset decomposition of a group
over a subgroup.

Let G be a group of order n, and H a subgroup of G of order
m: H = {h1,hs,...,hm}. Since every subgroup contains the unit
element of the group, we can assume that h; = e. Choose an arbitrary
element g of G that does not belong to H, and consider the set

gH = {ghlvgh27 e ,ghm}

obtained by multiplying all the elements of H by one and the same
element g on the left. The set gH is called a left coset of G over H.
It has two important properties:

(1) |gH| = |H|, i.e., gH has the same number of elements as H;

(2) gHNH =10, i.e., the sets gH and H do not have common
elements.
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To prove property (1), we have to show that all the elements of
the list ghi, gho,..., gh., are distinct. Indeed, if we had gh; = ghg,
then, after multiplying this equation by g~! on the left, we would
obtain h; = hy.

To prove (2), suppose that h; = ghg. This implies that g can be
expressed as hih,zl and must, therefore, belong to the subgroup H,
contrary to the supposition.

The second property has the following generalization: if g1 H s a
coset and gy € G an element of the group that does not belong to g1 H,
then the two cosets g1 H and goH do not have common elements, or,
in other words, two cosets either coincide or are disjoint. In fact, if
there were a common element, we would have g1h; = gohg, hence
92 =q1 hihgl and, since hihgl € H, this would imply that g» € g1 H
and therefore goH = g1 H.

Now, the process of decomposing the group G into left cosets
over the subgroup H can be described as follows. If the subgroup
H coincides with the entire group G, then the coset decomposition
consists of only one set, H. Otherwise, choose an element ¢g; ¢ H and
consider the coset g1 H. If H U g1 H = G, the process terminates. If
not, we choose a g, € G which belongs neither to H nor to g; H and
thus obtain three pairwise disjoint cosets H, g1 H and g2 H.

Since the group is finite, this process eventually terminates, and
we obtain the required decomposition

G=HUg HU---UgiH,

where each of the listed subsets has m elements and they are all
pairwise disjoint.

Therefore, the number n of elements in the group is divisible by
the number m of elements in the subgroup. The theorem is proved.

Let us remark that, similarly to the left coset decomposition, one
can also consider the right coset decomposition. In general, these two
decompositions do not coincide, and we will discuss this question in
the next chapter.

Figures 4 and 5 show the left coset decompositions of the group
D3 over a subgroup of order 3 and a subgroup of order 2.
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oSa oSb .Sc

Figure 4. First coset decomposition of the group D3

oSb

Figure 5. Second coset decomposition of the group D3

Exercise 89. Find all subgroups of Ds.

The Lagrange theorem implies the following important fact.

Problem 36. Prove that every finite group whose order is a prime
number is cyclic.

Solution. Let G be a group of prime order p and g an
arbitrary element of G different from the unit element
e. Denote by H the subgroup of G generated by g. The
order of H is at least 2, since it contains e and g. The
only divisor of the prime number p which is greater than
1 is p itself. Therefore, the order of H is p and H = G.
The group G is thus generated by one element g.

As a direct consequence of the assertion just proved we obtain

the following fact: any group of prime order is commutative.
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We shall now discuss some applications of group theory, in par-
ticular, Lagrange’s theorem, to arithmetic.

The simplest group that we come across in arithmetic is the group
Z of all integers under addition. Since the group operation is addi-
tion, instead of powers of a certain element we will speak about its
multiples, i.e., elements that are obtained by successively adding the
given element to itself. The group Z is cyclic with generator 1, since
every integer is a multiple of 1: n=mn-1.

Exercise 90. Is there another generator in the group Z?

As in any group, every element n of Z generates a subgroup. This
subgroup consists of all multiples of n, and we denote it by nZ.

Exercise 91. Prove that every subgroup of Z has the form nZ for a
suitable n.

This simple result already provides a basis for useful applications
in number theory. As an example, we will give a short proof of the
following well-known fact: if a and b are mutually prime numbers,
then there exist two integers x and y such that ax + by = 1.

Indeed, let H be the subgroup in Z generated by the two given
numbers a and b. By definition, H = {az + by |z,y € Z} (let us note
that in multiplicative notation this expression would be written as
a®b¥). According to Exercise 91, we can find a natural n such that
H = nZ. Since the subgroup H contains the elements a and b, both
of them are divisible by n. But, since they are mutually prime, n
must be equal to 1. Therefore, the number 1 belongs to H and hence
can be written as az + by.

Lagrange’s theorem does not directly apply to the pair consisting
of the group Z and the subgroup nZ, because these groups are infinite.
However, the construction of the coset decomposition of the group
over the subgroup does make sense and leads to the important notions
of residue classes and modular arithmetic.

Take, for example, n = 3. If we add 1 to all the elements of the
subgroup 3Z (i.e., multiples of 3), we get the set of all whole numbers
that have remainder 1 in division by 3. Likewise, adding 2 to all the
elements of the subgroup, we get the set of all numbers that have
remainder 2 in division by 3. Since there are no other remainders
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in division by 3, we see that the set of all integers splits into the 3
classes that we obtained. This is the coset decomposition of Z over
37Z. A visual representation of this decomposition is shown in Figure
6. Since the sets 3Z, 3Z+1 and 3Z+2 are infinite, only a few elements
of each coset are listed.

(..,—6, -3, 0,36, ... > 3z
C..,—5, 2,1, 4,7, ... ) 37 +1
C..,—4, ~1,2,5, 8, ... ) 37 +2

Figure 6. Coset decomposition of the group Z over 3Z

The cosets of Z over mZ are called residue classes over m. The
class of all integers with remainder k in division by m, is convention-
ally denoted by k. There are m residue classes in all; 0, 1,..., m — 1.
For example, there are 3 classes modulo 3: 0, 1, 2 (see Figure 6).

Looking at the figure, one can see that the sum of two num-
bers always belongs to one and the same class, which is determined
only by the classes of the two numbers under study and is indepen-
dent of the particular choice of the representatives within the classes.
For example, taking the representatives 1, —2, 7 of the class 1 and
representatives —4, 5, 8 of the class 2, we see that the three sums
14+ (—4)= -3, (—-2)+5 =23, 7+ 8 = 15 belong to one and the same
class 0.

In general, the identity
(mz+k)+(my+l)=m(z+y)+ (k+1)

allows us to define the operation of addition of residue classes over m:
the sum of the classes k and [ is the class that contains all the sums
k+1, where k is a representative of the class k and [ is a representative
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of the class I. For example, if m = 3, we obtain the following addition
table in the set of residues modulo 3:

+0|1]2
0012
1(1]2|0
22|01

One can see from this table that the residue classes modulo 3
form a cyclic group of order 3.

Exercise 92. Prove that the residue classes over an arbitrary number
m form a cyclic group of order m.

Can we also define the multiplication of residue classes in a similar
way? Yes. Indeed, consider two classes k, I. The product of two
arbitrary representatives mx + k and my + [ of these two classes,
equal to m(mzy + zl + ky) + kl, has the same remainder in division
by m as the number kl. This remainder does not depend on the choice
of the representatives. Therefore, the operation is correctly defined
in the set of residue classes.

Here is the multiplication table of residue classes modulo 3:

x|0]1|2
0(0|0|0
1(0|1]2
21021

It is evident that this multiplication does not satisfy all the group
axioms, because it has one row and one column that entirely consist of
zeroes, whereas in the multiplication table of a group no two elements
may coincide. However, the smaller table that remains after the zero
row and column are deleted,

X
=
]

=
=
]

ol
|
=
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does obey all the group laws — it represents a cyclic group of order
2.

Exercise 93. Do all the nonzero residues modulo 6 form a multi-
plicative group?

This exercise suggests the following conclusion: to form a multi-
plicative group out of residues over m it is reasonable to choose only
numbers mutually prime with m. For example, if m = 6, then the ele-
ment 4, which has a common multiple 2 with the number 6, becomes
0 after multiplication by 3. But 0 cannot belong to a group, because
it makes a whole row of zeroes in the multiplication table!

We shall now prove the following important fact: the set of all
residue classes k modulo m, such that the number k is mutually prime
with m, forms a multiplicative group.

Indeed, if two numbers are mutually prime with m, then their
product is mutually prime, too; this means that the operation is closed
on the given set. The associativity follows from the associativity of
ordinary multiplication of numbers. The class 1 is mutually prime
with m and plays the role of the unity. The only non-evident property
that we must check is that every residue class in the set under study
has an inverse. In other words, for every a, mutually prime with m,
there must exist a number z, mutually prime with m and such that
ax =1 (modm). The last formula is read aloud as ‘the numbers az
and 1 are congruent modulo m’, which means, by definition, that ax
has remainder 1 in division by m. This can be rephrased as follows:
there exists an integer y such that ax + my = 1. Now recall that we
have already proved this fact, stated in this form (as a corollary from
Exercise 91). We did not mention that z will be mutually prime with
m, but this is evident.

Exercise 94. Consider the set of two residue classes {2,4} modulo
6. Does it make a group with respect to multiplication?

For any given m, we shall denote by Z}, the multiplicative group
constituted by all residue classes modulo m which are mutually prime
with m. The order of this group, i.e. the number of all such residue
classes, is equal to ¢(m), the Euler function of m. We have encoun-
tered this function when we discussed the number of generators of a
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cyclic group (see page 89). We are now ready to apply the Lagrange
theorem.

m

Note that in any group the following identity holds: ¢™ = e,
where m is the order of the group, g an arbitrary element and e
the unity. Indeed, if k is the order of g, then by Lagrange’s theorem
k)l !

m = kl for an appropriate integer [, and we have g™ = (¢g*)' = ¢' = e.

In the case of the group Z;, this implies the following theorem.

Theorem 8 (Euler). If a is a number mutually prime with m, then
a®™ =1 (modm),

where o(m) is the Euler function of m, i.e. the number of integers
between 1 and m mutually prime with m.

In the case when m = p is a prime number, we have p(p) = p—1,
and the Euler theorem takes the shape of the following fact, known
as Fermat’s little theorem.

Theorem 9. If p is a prime number, then
(34) a?~! =1 (modp)

for any integer a not divisible by p.

Historical remark. Neither Fermat nor Euler used group theoretic
considerations explicitly to prove their theorems. It was only in the
early nineteenth century that group theory came into being in the
work of E. Galois. However, both Fermat and Euler ¢implicitly did use
such notions as, for example, coset decomposition of residue classes.
These investigations became one of the sources from which group
theory was born. The explicit application of group theory notions
and theorems makes the arithmetical facts clearer and let us devise
far-reaching generalizations.

To conclude this chapter, we propose two problems in elementary
number theory that can be solved using residues and Euler’s theorem.

Exercise 95. Prove that the equation 22 = 3y? + 8 has no integer
solutions.

Exercise 96. What are the two last digits of the number 20032°°4?



Chapter 5

Orbits and Ornaments

Topics that will be touched upon in this chapter include group actions,
orbits, invariants, and ornaments.

Transformation groups, by their definition, act on certain sets.
Thus, the group of movements of the plane acts on (the set of all points
of) the plane. The permutation group S3 acts on the set {1,2,3}. The
ability to transform the sets is so inherent in the notion of a group
that it is also preserved for arbitrary abstract groups. To give the
exact definition of the group action, we shall need the notion of a
homomorphism.

1. Homomorphism

The notion of a homomorphism generalizes that of an isomorphism. A
homomorphism is defined by the same operation-preserving property,
only without the requirement that it must be a one-to-one correspon-
dence.

Definition 16. A homomorphism from a group G into a group H is
a mapping ¢ : G — H such that

(35) p(ab) = p(a)p(b)

for all a,b € G (the group operation is here written as multiplication,
but of course, it may have an arbitrary nature).

127
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An isomorphism is thus a one-to-one homomorphism. Some prop-
erties of isomorphisms generalize to arbitrary homomorphisms. Thus,
the image of the unit e € G under a homomorphism is always the unit
e € H. Also, for any element g € G we always have

(36) p(g™") =wlg) "
Both of these equalities easily follow from (35).

Note that for any two groups G and H the mapping that takes
all the elements of G into the unit of H is a homomorphism, called
the trivial homomorphism.

If o : G — G’ is an isomorphism and G’ is a subgroup of a bigger
group H, then we can view ¢ as a mapping from G into H which is,
of course, a homomorphism. Such homomorphisms are referred to as
injective, or monomorphic homomorphisms. They are characterized
by the property that no two different elements of G' go into the same
element of H under ¢.

The image of G by the trivial homomorphism is the trivial sub-
group (consisting of only one element). Note that the image of G
by any homomorphism ¢ : G — H is a subgroup of H. The most
interesting class of homomorphisms, in a certain sense dual to the
class of monomorphisms, consists of epimorphic, or surjective homo-
morphisms. A homomorphism ¢ : G — H is surjective, if its image
coincides with the whole of H, or, which is the same, if every element
of H is the image of some element of G.

We will consider several examples of surjective homomorphisms.

Problem 37. Construct a surjective homomorphism of the group of
integers 7. with the operation of addition onto the group of residue
classes Ly, .

Solution. The solution is very simple: the mapping p
that takes every number a into @, the class of a modulo
m, is the required epimorphism. It preserves the addi-
tion, because by definition of the group Z,, (see p. 122)
we have

pla+b)=a+b=a+b=npla)+pb).

Also, the mapping p is obviously surjective.
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Note in passing that p also preserves the product:
p(ab) = p(a)p(b), so it is a homomorphism with respect
to multiplication — and you probably used both of these
properties while solving Exercise 95.

Exercise 97. For what values of m and n does there exist a homo-
morphism of Z,, onto Z,?

Problem 38. Find a homomorphism of Sy onto S3.

Solution. Recall (1) that S, denotes the permutation
group of n elements. Thus, Sy consists of 24 permuta-
tions of the set of cardinality 4, while S; is made up of
6 permutations of the set of cardinality 3. We have seen
earlier (Exercise 74) that S3 is isomorphic to the group
of functions ® generated by 1/z and 1 — z. Therefore,
it is enough to construct a homomorphism of Sy onto ®.
This can be done as follows.
Consider the expression in four variables

a—c a—d

b—c b—d’

which is called the double ratio of a, b, c and d. If the four
letters a, b, ¢, d in this expression are permuted, the value
of the double ratio is changed. It is remarkable that the
new value can always be expressed in terms of z alone.

b ¢ d a
when a — b, b— ¢, ¢ — d, d — a) we obtain

b—d b—a T

b dy .
For example, after the permutation (a ¢ ) (ie.,

c—d c—a z-1
Exercise 98. For each of the 24 permutations of the
letters a, b, ¢, d, find the expression of the double ra-
tio after the permutation in terms of its initial value
Z.

A diligent reader who has solved this exercise will
recall that the set of 6 functions obtained is exactly the
group of functions that we know as ®. Denote the ra-
tional function that corresponds to the permutation o
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by f,(z). To show that the mapping f : 0 — f,(z) is
a homomorphism, we have to check that f., = f. o f,.

Indeed, if
2) — o(a) —o(c) o(a)—o(d)
0= 56 —0@ o) @ ¥
then evidently

To(a) —1o(c) T0o(a) —To(d)

f‘ro(a:) = TO'(b) _ TO'(C) ’ TO'(b) — TO'(d)
and thus f.,(z) = f-(f5()).

= f‘r(y)y

Now we would like to draw your attention to the following inter-
esting observation. The fact that f is a homomorphism, i.e. satisfies
the relation f., = f7 o fo, greatly simplifies the solution of Problem
38. In fact, to prove that the image of f coincides with the set @,
we do not have to check all the 24 permutations of the four letters as
suggested in the exercise above. It is sufficient to check 3 transposi-
tions, a < b, b < ¢ and ¢ < d, which generate the group Ss. These
transpositions correspond to the functions 1/z, 1 -z and 1/z, respec-
tively, and we know that the two functions 1/z and 1 — x generate
the group ®.

Exercise 99. Assign +1 to every movement that preserves orienta-
tion and —1 to every movement that changes orientation. Check
that this assignment is a homomorphism of the group of all plane

movements onto the group of 2 elements {+1, —1} with the oper-
ation of multiplication.

Problem 39. Construct a homomorphism of the group G of all
proper plane movements onto the group T of complex numbers whose
modulus is 1.

Solution. Recall (8) that any proper plane movement
can be written analytically as a complex function f(z) =
pz + a, where |p| = 1. We define the mapping ¢ : G —
T by ¢(f) = p. Let us check that this mapping is a
group homomorphism. Indeed, the composition of two
movements, f and g defined by g(z) = gz + b, is

9(f(2)) = q(pz + a) + b = qpz + (aq + b),
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where the coefficient of z is gp. Therefore, ¢(gf) =
e(g9)e(f)-

Geometrically, the assertion just proved implies that when two
rotations, even with different centres, are multiplied, the angles of
rotation are added together. In particular, the movement R o R5”
is always a parallel translation.

To solve the next exercise, you will find the following fact useful:
the angle between the lines | and m is equal to the angle between R% (1)
and R%(m). Indeed, rotations preserve the angles; hence the angle
between ! and m equals the angle between R%(l) and R%(m) — and
the two lines R%(m) and R%(m) are parallel.

Exercise 100. Let BE and CF be the altitudes of the triangle ABC,
and O the centre of the circumscribed circle. Prove that AO L
EF.

Exercise 101. The determinant of a matrix (‘cl b) is the number

d
ad —bc. The product of two matrices (a b) and (m n) is the
c d p q

am +bp an+ bg
en+dp cn+dg
with non-zero determinant forms a group, and the determinant is a
homomorphism of this group onto the group of non-zero numbers
with multiplication.

matrix ( > Prove that the set of all matrices

2. Quotient group

Let us look at the group of residue classes Z,, and the homomorphism
Z — Zoy from a more general viewpoint. The group Z,, consists of
the cosets of the group Z modulo the subgroup mZ. This fact can
also be stated as Z,, is the quotient group of Z modulo mZ, which is
written as Z,, = Z/mZ.

Now let G be an arbitrary group and H a subgroup of G. Consider
the set of cosets in G modulo H and try to make it into a group, using
the construction of Z,, as an example. The first question that arises
is: what cosets should we use, left cosets eH, g1 H, g2H, ...or right
cosets He, Hgy, Hgs, ...?7 This question does not arise for the group
Z, since it is commutative.
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Recall that the left coset gH is made up of all products gh where
g € G is fixed and h ranges over H, whereas the right coset Hg
consists of all products hg. If the group is not commutative, then
in general gH # Hg. For example, take the group of plane move-
ments Ds as the whole group G, and the subset H = {id, S, } as the
subgroup. Then, using the multiplication table (p. 92), we find that

RH = {Roid,RoS,}={R,S,},
HR = {idoR,S,0R}={R,S.}.

However, for the subgroup Cs = {id, R, R?} both the left and the right
coset decompositions consist of the same two classes: the subgroup
Cjs itself and its complement Dj \ Cs.

Definition 17. A subgroup H of a group G is called normal, if for
any element g € G the two cosets gH and Hg coincide.

If H C G is normal, then the following train of equalities is true:

(91H)(92H) = g1(Hg2)H = g1 (92 H)H = g1g2H,

meaning that if you choose any element of the coset g; H and any
element of the coset go H, then their product will belong to one and
the same coset (g1g2)H. Therefore, in the set of cosets over a normal
subgroup there is a well-defined multiplication: §i1g» = g1g2, where
the bar over a letter denotes the coset of an element over the given
normal subgroup: § = gH = Hg. It is evident that this operation is
associative; the role of unit element is played by the coset H = eH,
and the element inverse to gH is g 'H. The set of cosets H, g1 H,
goH, ...thus acquires the structure of a group.

Definition 18. Let G be a group with a normal subgroup H. The
quotient group of G over H, denoted by G/H, is the set of all cosets
over H with the product of two cosets given by the rule 1G> = g1g3.

The structure of the quotient group G/H can be read off the
multiplication table of G, if the elements in the first row and and the
first column of the table are arranged by cosets. Look, for example,
at the multiplication table of the group D3 (p. 92). You can clearly
see that the table is split into 4 blocks of the size 3 x 3 each. Denot-
ing the block that corresponds to rotations by R and the block that
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corresponds to reflections by S, we can represent the block structure
of the whole table as

R|S
R|R|R
S|S|R

This table defines a cyclic group of order 2 isomorphic to Zs.
Thus, we can write D3/Cs = Z,, where the sign = stands for isomor-
phism.

Problem 40. Let G be the group of proper movements of the plane,
consisting of all rotations and all translations. Denote by N the sub-
group of rotations around a fized point A and by K the subgroup of
all translations. Determine whether these subgroups are normal and,
if appropriate, find the structure of the quotient groups.

Solution. The condition of normality gH = Hg can be

! = H, which means that a subgroup

rewritten as gHg™
H is normal if and only if, together with every element
of it, it contains all the conjugate elements. Since con-
jugation is looking at things from a different viewpoint
(see p. 82), a subgroup is normal whenever it looks the
same from any standpoint. It is clear that, for a person
living in the plane, the set of all translations looks the
same, whatever his position may be. However, the set
of rotations with a fixed centre A looks different for a
person placed at A and for a person placed somewhere
else. Therefore, the subgroup K is normal, but N is not.

A more rigorous proof of this fact can be obtained
using the result of Exercise 58 (p. 234). The movement
conjugate to a translation is always a translation; there-
fore K is normal. The movement conjugate to a rotation
around A by a movement f is a rotation around f(A4);
therefore N is not normal.

Since K C G is normal, the quotient group G/K is
defined. To understand its structure, consider the ho-
momorphism ¢ : G — T studied above in Problem 39.
We claim that two elements of G have the same image
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under ¢ if and only if they belong to the same coset of
G with respect to K. Indeed, let o(f) = p(g)=peT.
If p =1, then both f and g are translations and belong
to K. If p = cosa +isina # 1, then both f and g are
rotations through the angle o, say, f = RS and g = R%.
In this case f = R% = R% o (Rg* o R%) € gH, because
R;% o RS is a translation. Conversely, if f and g belong
to one coset over K, then f = goh and o(f) = ¢(g).

The property that we have just proved implies that
@ establishes a one-to-one correspondence between the
sets G/K and T, which we can denote by @. The map-
ping ¢ obviously agrees with the group operations and
thus yields an isomorphism ¢ : G/K — T. The quo-
tient group G/K is thus the same thing as the group of
complex numbers with unit modulus, or the group of all
rotations with a common centre.

Note that the coset decomposition of G over K has
a simple geometric meaning: every coset consists of rota-
tions through the same angle around an arbitrary centre.
The subgroup K itself (the set of all translations) is the
unit coset — it corresponds to the unit of the group T
under .

Generalizing this argument, we arrive at the following assertion,
called the first homomorphism theorem.

Theorem 10. If ¢ is a homomorphism of a group G onto a group
H and K C G is its kernel, i.e., the set of all elements of G that go
into the unit of H under ¢, then G/K = H.

Note that the kernel K of any homomorphism ¢ is always a nor-
mal subgroup in G, so that the quotient G/K is correctly defined. In-
deed, if k € K, then ¢(k) = e; hence ¢(gkg™!) = w(g)p(k)p(g~?) =
o(g9)ep(g™1) = e, which means that gkg~! € K.

The first homomorphism theorem implies that the orders of the
three groups G, H and K are related by the simple equality |G| =
|H|-|K]|. In particular, we have the following corollary: if there exists
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a homomorphism of finite groups G — H, then the order of H is a
divisor of the order of G.

Exercise 102. Is there a homomorphism (a) of D3 onto Z2? (b) of
D3 onto Z3?

Problem 41. Find the kernel of the homomorphism ¢ : Sy — @
discussed in Problem 38.

Solution. Let K C S; be the kernel of ¢. Since ¢
is a surjective homomorphism (i.e., its image coincides
with the entire group @), the groups S4/K and & are
isomorphic and hence |K| = 24 : 6 = 4. It is easy to
check that the four permutations

b ¢ d a b ¢ d

b ¢ d)’ b a d c)’
a b ¢ d a b ¢ d
c d a b)’ d ¢ b a

leave invariant the expression

SIS

a—c a—d
b—c b—d’

The multiplication table for these four elements co-
incides, up to the choice of notation, with the multipli-
cation table of the group Ds. Thus K = D, and the
homomorphism theorem in our example can be written
as S4 / D2 = D3.

Exercise 103. Find the image and the kernel of the homomorphism
of the additive group of functions f : R — R into itself given by
the formula f(z) — f(z) + f(~z).

Exercise 104. Let S be the group of rotations of the plane with a

fixed centre, and C, its cyclic subgroup of order n. Prove that
S/Cn = S.

Exercise 105. Using the first homomorphism theorem, represent the
group S of the previous exercise as a quotient group of (R, +).
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3. Groups presented by generators and relations

We are now in a position to explain the construction of an abstract
group with a given set of generators and defining relations. Before
(page 93 in Chapter 3) we have already talked about generators and
relations in a given, already defined group. The current problem is
the inverse: now we want to define a group, starting from an arbitrary
set of generators and relations between them.

This definition relies on the notion of the quotient group that we
have just studied and the notion of a free group that we will now
define.

Definition 19. Let S be an arbitrary set, consisting of letters in a
certain alphabet. The free group over S, denoted by F(.S), consists of
all monomials over S (see page 93), the group operation being given
by writing two monomials side by side and using the simplification
rules sks' = s**! and 59 = 1.

For example, if S consists of one element, then F'(S) is the infinite
cyclic group.

Definition 20. Let R be a set of monomials over S (each mono-
mial r is understood as a relation 7 = 1 between the elements of .S).
The group with generators and defining relations R is defined as the
quotient group F(S)/H(R), where F(S) is the free group over S and
H(R) is the minimal normal subgroup of F(S) containing all rela-
tions belonging to R (in other words, H(R) is the subgroup of F(S)
generated by all elements conjugate to the elements of R).

An abstract group with generators s1,.. ., s, and relations ry, . ..,
Tm is denoted by

(81,3 8n |71y ey Tm )

(The relations on the right are sometimes written simply as monomi-
als over S, each monomial r meaning the equality r = 1).

For example, it is easy to see that
(a]a™=1)

is the cyclic group of order n.
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Problem 42. Prove that the group
(a,blab=1)

is the infinite cyclic group, isomorphic to the additive group of all
integers Z.

Solution. The free group F(a,b) consists of all words
akiblr .. gFnbln of arbitrary length and with arbitrary
integer exponents. To obtain the quotient group, such
words should be considered modulo the elements of the
subgroup H(R): if z = yh or x = hy, where h € H(R),
then z and y belong to one and the same coset. Now,
a = (ab)b™1; therefore, a is equivalent to b=, and hence
every word in a and b is equivalent to some word in b
only. We see that every element of the quotient group
F(S)/H(R) is a power of b, so that this group is cyclic.

Note that in every element of the subgroup H(R)
the sum of all exponents of a is equal to the sum of all
exponents of b; therefore b” with n # 0 cannot belong
to H(R), which means that all powers of b are different.
The group F(S)/H(R) is thus infinite.

Remark. In the above argument, the generators a and b play
symmetrical roles, because the product ba is conjugate to ab: ba =
a~!(ab)a and therefore belongs to the subgroup H(R) — this is one
of the reasons why in Definition 20 the subgroup H(R) is set to be
the normal subgroup generated by R.

Exercise 106. What is the group presented by
(a,b]a®> =1,b"=1,aba=b"")7?
Exercise 107. Prove that

(a,b|aba = bab) = (z,y|z* =y°).

4. Group actions and orbits

Group actions can be defined in terms of homomorphisms as follows.
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Definition 21. Let G be a group and X a set. An action of G on X
is a homomorphism of G into the group of transformations of X (see
p. 76):

T:G — Tr(X).

The image of a point x € X under the action of the transforma-
tion Ty is Ty(x), which is often denoted by gz for short.

We should like to stress from the beginning that a given group
G can act on a given set X in a variety of different ways, because in
general there may exist many different homomorphisms G — Tr(X).
For example, the symmetry group of an equilateral triangle D3 acts
on the plane by definition. However, the action depends on the choice
of the equilateral triangle in question, or more exactly, on the choice
of its centre and three symmetry axes.

Figure 1 shows an equilateral triangle with centre O and symme-
try axes a, b, c.

Figure 1. Action of the group D3 on the plane

Under the action of any element of D3, the origin (point O) goes
into itself. A point lying on one of the lines a, b, ¢ and different from
O gives three different points (including itself). Any other point of
the plane gives six different points under the action of the group.

Definition 22. The set of all points obtained from a given point z
under the action of a group is called the orbit of this point:

O(z) = {Ty(z)|g € G}.
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The cardinality of the set O(z) is called the length of the orbit.

In the previous example we had orbits of three different kinds: of
lengths 1, 3 and 6.

It is clear that any point always belongs to its own orbit, because
it goes into itself under the action of the neutral element of the group.
A point whose orbit consists of only one point is called a fized point
of the action. In our example the only fixed point was the point O.

Look at Figure 1. The orbit of the point A = A; consists of three
points A;, Ag, As. If you take As or Ag as the initial point, you will
get the same orbit. This is a manifestation of the general property:
the orbit of any point belonging to the orbit of a point x coincides with
O(z). Indeed, if y € O(z), then y = hz for a certain group element
h € G. Then O(y) = {gylg € G} = {ghz|g € G}, but the axioms
of the group imply that, for any fixed element h € G, the set of all
products gh, where g ranges through G, coincides with the set G.

This observation implies the following important fact: any two
orbits either coincide or do not have common elements. In fact, if
two orbits O(z) and O(y) have a common element z, then O(z) =
0(z) = O(y).

The meaning of the word orbit and the splitting of the set into
orbits can be very clearly seen for the action of the circle S, under-
stood as the multiplicative group of complex numbers with modulus
1, on the complex plane by means of multiplication (Figure 2). This
action has one fixed point (the number 0), while the rest of the plane
splits into concentric circles which are the orbits.

Exercise 108. Let D3 be the symmetry sroup of an equilateral tri-
angle in the complex plane, whose centre is at the origin and one
of whose symmetry axes is the z-axis. Consider the action of
this group on the finite set {0,1,—1,2, —2,iv/3, —iv/3,4, —4,2 +
2i/3,2 — 2iv/3, -2 + 2iv/3, -2 — 2iv/3}. Find the orbits of this
action.

Probiem 43. Define a natural action of the group of rational expres-
sions & (Exercise 74) on a suitable set.

Solution. A rational expression in one variable can be
considered as a function, i.e. as a mapping of the real line



140

5. Orbits and Ornaments

Figure 2. Orbits of the group S

into itself. Unfortunately, these mappings are not defined
at all points of the real line R, because the denominators
sometimes become zero. There are two natural ways to
mend this situation. One is to exclude the two points
0 and 1 from R (note that these are the only values of
x where the denominators may vanish). The other is to
add one extra point co to R and extend the functions to
this point according to the rule

F|F |F | F, | F5 | Fs
0loo| 1|01 o]0
1/1]0]1]c|0]o

ool 0 |low|loo| 0|11

This table defines a genuine action of the group ®
on the set R U oco. It shows, in particular, that the three
points 0, 1 and oo form one orbit, and that the action
of ® on this orbit defines the isomorphism of ® with the
permutation group on three symbols Ss.

Exercise 109. Find one more 3-element orbit of this action, and

prove that all the remaining orbits consist of 6 elements.

Exercise 110. Functions F; € ® can also be considered as functions

of a complexr variable. Therefore, the action of the group ® can be
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prolonged to the set C U co. Find a 2-element orbit of this action
and prove that all the other orbits, except this one and the two
3-element orbits indicated above, consist of 6 elements.

5. Enumeration of orbits
Consider one more example of a group action.

Problem 44. Let QQ be a cube in space and G the group of all space
rotations that take Q into itself (i.e., the proper symmetry group of
Q). Make up the list of all elements of Q and describe the action of
this group on the set of faces of the cube.

Solution. Apart from the identity, the group G con-
tains:

e 6 rotations through 180° around the lines that go
through the midpoints of two parallel edges (like
AA’ in Figure 3),

e 3 rotations through 180° around the lines connect-
ing the midpoints of two opposite faces (like BB'),

e 6 rotations through 90° around the same lines, and

e 8 rotations through 120° around the lines that con-
tain a pair of opposite vertices of the cube (like
ca’y.

The group G thus consists of 24 elements.

The natural action of the group G on the set F' of
faces of the cube is transitive, i.e., any face can be taken
into any other by a suitable element of the group. In
other words, the set F', which consists of 6 points, makes
one orbit of the group action. For any face f € F' there
are exactly 4 rotations that preserve it: the identity and
the three rotations around the line passing through the
midpoint of this face. Note that 6 - 4 gives 24, the order
of the group.

Exercise 111. Describe the action of G on the set E of edges and
on the set V of vertices.
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Figure 3. Rotations of the cube

So far, we have found transitive actions of the group G on the
sets of order 6, 8 and 12. Note that all these numbers are divisors of
24, the order of the group. The number 24 has some more divisors,
and it turns out that for every divisor one can construct a set of
corresponding cardinality that consists of certain geometric elements
of the cube and on which our group acts transitively. Figure 4 shows
the sets of 4, 3 and 2 elements endowed with a natural transitive
action of our group: these are the set D of big diagonals, the set M
of middle lines and the set T of regular tetrahedra inscribed in the
cube.

Definition 23. A set with a transitive action of a group is called a
homogeneous space of this group.

In each of these cases we have a homomorphism of the group G
into the group of transformations of the corresponding set.

Exercise 112. For which of the sets F, E, V, D, M, T is this ho-
momorphism (a) an epimorphism? (b) an isomorphism?

We can also consider the action of the group G on more compli-
cated objects that consist of several elements of the above sets.
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Figure 4. Homogeneous spaces of the symmetry group of the cube

Problem 45. Describe the orbits of the action of our group G on the
set of all pairs (f,e), where f € F is an arbitrary face and e € E is
an arbitrary edge of the cube Q.

Solution. The set in question can be denoted as F' x
(the Cartesian product of the sets F' and FE). It consists
in all of 6-12 = 72 elements which come in three different
categories: the edge e can either belong to the face f (as
in Figure 5a), have one common vertex with f (as in
Figure 5b) or, finally, have no common points with f
(Figure 5c¢).

Vmmmmm ot -

Figure 5. Different face—edge pairs

It is clear that an edge—face pair belonging to one
of these types cannot go into a pair of another type un-
der any movement. Let us prove that any two pairs of
the same type can be transformed one into another by a
suitable movement. Suppose that we are given two pairs
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(f1,e1), (fa2,€2) of the first type (edge lies in the face).
First we find a rotation which takes f; into fo. Then,
using the 4 rotations that preserve this face, we can move
e; to the position of ey, and that’s all. The two other
cases are treated similarly.

We have thus proved that the set F' x E with the
action of the group G consists of three orbits, typical
representatives of which are shown in Figure 5.

Exercise 113. Find the number of orbits and indicate their repre-
sentatives for the action of G on the following sets: (a) V x F
(vertex—face pairs), (b) D x F (diagonal-face pairs), (c¢) E x E
(ordered pairs of edges).

Let us now generalize the observations that we have made in the
previous discussion. To do so, we will need the notion of the stabilizer,
or stable subgroup, of a point.

Definition 24. Given an action of a group G on the set X, the
stabilizer of a point z € X is the set of all elements of G that preserve
the point x:

St(z) = {9 € G| T4(z) =z}.

The stabilizer is a subgroup in G. Indeed, if both g and h are in
St(x), then we have Ty (z) = Ty(Th(z)) = Ty(z) = z and Ty-1(z) =
Ty (z) =2

The stabilizer of a fixed point coincides with the whole group
G. For example, look at Figure 1. The stabilizer of O is the whole
group, the stabilizer of the point A consists of two elements (identity
and reflection), while the stabilizer of the point B is trivial (contains

only the identity).

You can here notice the same rule that we saw in Problem 44:
the order of the stable subgroup multiplied by the length of the cor-
responding orbit always gives the order of the whole group:

(37) [O(@)| - [St(z)] = |G|,
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To prove this fact, consider the left coset decomposition of the group
G with respect to the subgroup H = St(z):

G=¢gpHUgHU---UgH.

All the elements of the same coset act on x in the same way: if
h € H, then Tyx(z) = Tg(Th(z)) = T,4(z), which does not depend on
the specific choice of h. Conversely, if two elements ¢, k € G move the
point z to the same position, then they belong to one and the same
coset. Indeed, there is an element h € G such that k = gh. Then

Th(z) = Ty-1x(z) = T, 'Ti(z) =z,

which means that h € St(z). Therefore, the number of different
points in the orbit of z is the same as the number of cosets in the
decomposition G/ St(z), and the assertion follows.

Formula (37) shows, in particular, that the stabilizers of all the
points that belong to the same orbit have the same number of ele-
ments. In fact, these subgroups are always conjugate to each other in
the group G, and hence isomorphic.

To prove this fact, take two arbitrary points  and y that belong
to one and the same orbit. Then there is a group element g such
that y = Ty(x). We claim that the subgroups St(z) and St(y) are
conjugate by the element g. Indeed, if h € St(z), then

Tyhg-1(y) = Ty(Th(Ty () = To(Th(@)) = Ty(z) =,

which means that ghg™! € St(y); and, since h is arbitrary, this implies
that gSt(z)g~! C St(y). Interchanging the roles of z and y in the
previous argument proves the inverse inclusion. Thus gSt(z)g~! =

St(y), and the two subgroups are indeed conjugate.

Problem 46. How many different ways are there to paint the disk
divided into p equal parts using n colours? The number p is assumed
to be prime. Two colourings are considered to be the same, if one of
them goes into another by a rotation of the disk.

Solution. We deal with the action of the cyclic group
Cp on the set of all possible nP colourings of the disk,
and we are asked to find the number of orbits of this
action. The length of the orbit, which is always a divisor
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of the order of the group, in this example can take only
two values: 1 and p, because p is prime. An orbit of
length 1 corresponds to a colouring which is invariant
under all rotations, i.e. a colouring where the whole disk
is coloured with one colour. The total number of such
colourings is n. The remaining colourings, whose total
number is n? — n, split into orbits of cardinality p, and
the number of the orbits is (n? —n)/p. The total number
of orbits, i.e., the number of different ways to colour the
disk, is thus (n? —n)/p + n.

Note that we have proved, as a byproduct, that the number n? —n
is always divisible by p, if p is prime. This is yet another proof of
Fermat’s little theorem (34).

Exercise 114. Try to solve the same problem in the case when p is
not necessarily prime.

It is rather difficult to solve this exercise by a direct argument,
like the one we used in the previous problem. However, there exists
a general formula that computes the number of orbits for any group
action — the so-called Burnside formula, which we shall now state
and prove.

If g € G is an element of the group acting on a set X, then
we denote by N(g) the number of fixed points of the corresponding
transformation Ty, i.e. the number of points z € M such that Ty(z) =
x.

Theorem 11 (Burnside’s formula). The number of orbits r is “the
arithmetic mean of the number of fized points for all elements of the
group”:

1

"=1a Z N(g),

Gl =2
or, in other words, the sum of numbers N(g) for all the elements of
the group is |G| times the number of orbits.

Proof. To prove the formula, let us think for a while about the follow-
ing question: how many times does a given point x € M participate in
the total sum 3_ . N(g)? Evidently, it comes up every time when
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an element g preserves z. The answer to the question is thus | St(z)|.
Other points belonging to the orbit O(z) appear in the total sum the
same number of times, because all the stabilizers have the same car-
dinality. Therefore, the contribution of this orbit is |St(z)| - |O(z)],
which, as we know, is equal to |G|, the order of the group. Since every
orbit gives the same contribution |G|, the whole sum is |G| times the
number of the orbits, and this is exactly what we wanted to prove. [

Let us use Burnside’s formula to solve Problem 46 once again.
Here the identity transformation has n? fixed points, while every non-
identity transformation has n fixed points. Therefore, the number of
orbits is r = (n? + (p — 1)n)/p. It is easy to see that this result does
not differ from the one obtained before.

Problem 47. Find the number of different necklaces made of 7 white
and 3 black beads.

Solution. It is natural to treat two necklaces as equal, if
they differ only by a rotation or a reflection of the circle.
Therefore, we have to consider the set X whose elements
are all possible dispositions of 7 white and 3 black beads
in the vertices of a fixed regular 10-gon and the action
of the dihedral group D19 on X. The problem is to find
the number of orbits of this action.

Having Burnside’s formula in mind, let us calculate
the number of fixed points in X for every element of the
group Djg. For the identity transformation, all () =
120 points of the set X are fixed.

A nontrivial rotation cannot leave any necklace in-
variant. The same is true for the reflections of type (a)
(see Figure 6), because the number of beads of each
colour is odd. But the reflections of type (b) do have
invariant necklaces. For every such reflection there are
2 -4 = 8 such necklaces: first, one of the beads on the
symmetry axes must be white and another one black,
second, one of the four symmetrical pairs of beads must
be black. The number of reflections of type (b) is 5, and
by Burnside’s formula we get » = (120 +5 - 8)/20 = 8.
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Figure 6. A necklace of type 3-7

Exercise 115. Under the central symmetry (rotation through 180°)
digits 0, 1 and 8 are preserved, digits 6 and 9 change places, while
all the remaining digits lose their meaning. How many 5-digit
numbers are centrally symmetric?

Exercise 116. Solve the last problem in the case of 6 white and 4
black beads.

Exercise 117. A dice is a cube marked on each side with numbers
1 through 6. How many different dice are there? (Two dice are
regarded as the same, if they can be so rotated in space that the
numbers on corresponding sides become equal.)

Exercise 118. How many different ways are there to paint (a) the
vertices, (b) the edges of a cube by two colours (i.e. using no more
than two given colours)? (Here, as in the previous exercise, only
proper rotations should be considered.)

Exercise 119. How many different hexagons can be inscribed into a
regular 15-gon? (Two figures are equal, if they coincide after a
plane movement, not necessarily proper.)

6. Invariants

The problem about necklaces can be solved by a simple direct argu-
ment, without referring to group theory and Burnside’s formula. The
most natural solution can be stated as follows.
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The three black beads break the circle into three parts, which
contain m, n and k white beads. The integers m, n and k are between
0 and 7, inclusive, and satisfy m + n + k = 7. Note that the order in
which these three numbers appear is in our case irrelevant, because
rotations and reflections produce any of the 6 possible permutations.
(For the case of 4 black beads this observation would no longer be
true!) Therefore, we can assume that m < n < k, and the problem
is reduced to the enumeration of all triples of integers that satisfy all
the stated restrictions. All such triples can be found directly. Here
they are, in lexicographic order: (0,0,7), (0,1,6), (0,2,5), (0,3,4),
(1,1,5), (1,2,4), (1,3,3), (2,2,3).

Figure 7. Invariant of a necklace

Why is it that the triple (m, n, k) can serve for the enumeration
of orbits? Because it satisfies the following two properties:

e first, if two necklaces are the same (belong to the same or-
bit), then the corresponding triples are equal,

e second, if the triples of two necklaces are equal, then the
necklaces themselves are equivalent.

The first property can also be expressed in the following way: the
values of m, n and k are constant on the orbits of the action.

Consider the general situation. Suppose that the group G acts
on the set X.

Definition 25. A mapping ¢ from X into a certain set N is called
an invariant of the action, if the values it takes on the elements of
the same orbit are always equal.
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Invariants may take values in arbitrary sets. In the previous
example, the set N consisted of unordered triples of integers. The
least of these three numbers (denoted above by m) is also an invariant
of the group action under study. However, this invariant does not
possess the second property: for example, the two necklaces shown
in Figure 7 are different, but the values of m for them are the same.
Such an invariant cannot be used to distinguish different orbits.

Definition 26. An invariant ¢ : X — N is said to be complete, if it
takes different values on different orbits.

Exercise 120. Construct a complete invariant for necklaces with 4
black and 6 white beads.

Let M be the group of all plane movements. This group acts on
the plane in a natural way. This action is transitive; thus the plane
is a homogeneous space of the group M. Invariants of this action
present no interest: these are only constant mappings.

The group G also acts on the set of all straight-line segments
in the plane. This action is not trivial. Two segments belong to one
orbit, if and only if their lengths are equal. The length of the segment
is thus a complete invariant of this action.

Exercise 121. Indicate some complete invariants for the action of
the group G of plane movements on the set of (a) all triangles,
(b) all quadrangles.

If H C G is a subgroup, then it also acts on the plane. If H is
small enough, then its orbits cannot be big, and therefore the action
might have nontrivial invariants. For example, if H is the group
of rotations around a point A, then its orbits are circles centred at
A. The distance of a point from A is the complete invariant of this
action. In the polar system of coordinates with centre A (see p. 33),
the distance is the polar coordinate r, and every invariant has the
form f(r), i.e., is a function of the complete invariant.

Consider the action of the dihedral group D3 on the plane (see
Figure 1). Let O be the polar centre and OM the polar axis. The
polar distance r is an invariant of this action. But it is not a complete
invariant. To make it complete, we will add one more function to
r. Note that the function cosy is an invariant of the group Dj.
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Indeed, the group is generated by the reflection ¢ — —¢ and the
rotation ¢ +— ¢ + 120°, and the expression cos 3¢ does not change
under these transformations. The pair of numbers (r, cos 3¢) makes
a complete invariant of the action. Indeed, it is easy to check that
the simultaneous equations

cos 3p = b,

r=c

for any real ¢ > 0 and |b|] < 1 may have 3 or 6 solutions that corre-
spond to the points of one orbit.

7. Crystallographic groups

‘We now have all the techniques necessary to revisit the question about
the symmetry of ornaments posed in the introduction (see page 4).
The symmetry of ornaments — plane patterns infinitely repeated in
two or more different directions — is described by the so-called plane
crystallographic groups. An example of such a group is the rolling
group of the equilateral triangle studied in Problem 27 — it describes
the symmetry of the ornament shown in Figure 4b in the Introduction.
Crystallographic groups are also referred to as wallpaper groups.

The exact definition reads as follows.

Definition 27. A crystallographic group is a discrete group of plane
movements that has a bounded fundamental domain.

We will explain the two terms that appear in this definition.

Definition 28. A group of plane movements G is said to be discrete,
if every orbit is a discrete set in the plane, i.e., for every point A there
is a disk centred at A and containing no other point of the same orbit.

A simple example of a discrete group is provided by the cyclic
group generated by one translation. On the contrary, the group con-
taining two translations with collinear vectors of incommensurable
lengths is not discrete, because the orbit of every point A is a dense
subset of the line passing through A in the direction of the transla-
tions.
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Exercise 122. Prove that the group generated by a rotation through
a degrees is discrete if and only if the number « is rational.

Exercise 123. Prove that the stabilizer of any point with respect to
a discrete group of plane movements is finite.

The second notion that needs explanation is that of a fundamental
domain.

Definition 29. A domain' F is said to be fundamental for the group
G, if

e any point in the plane belongs to the orbit of some point
z € F (which can also be a boundary point), and

e no two different inner points of F' belong to the same orbit.

These two properties mean that the images of the domain F' un-
der the group transformations are all distinct (with the exception of
boundary points) and fill the plane without overlapping. Another
wording is that we have a tiling, or tessellation, of the plane by copies
of the figure F'. For example, the rolling group of the equilateral tri-
angle (Problem 27) is crystallographic, and the initial triangle can be
chosen as its fundamental domain. The assertion claimed in the state-
ment of this problem is exactly the second property in the definition
of a fundamental domain.

Exercise 124. Find the fundamental domains for the groups C, and
D,,.

The term “crystallographic” has its origin in the fact that discrete
groups of space movements are used to describe the symmetry of
natural crystals. There exists a special universal system of notation
for the crystallographic groups, both plane and spatial. For example,
the rolling group of the equilateral triangle is traditionally denoted by
p3ml. We will give some more examples of crystallographic groups
and corresponding ornaments.

The simplest such group, denoted by pl, is the group generated
by two translations by non-collinear vectors a and b. Figure 8a shows
the generators of the group and the orbit of a point.

11t would take some effort to give an exact meaning of the notion of domain.

However, it is safe to replace the word “domain” by “polygon” everywhere in this
section.
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Figure 8. The simplest crystallographic group

As a fundamental domain, one can take the parallelogram with
sides a and b. The fundamental domain can be chosen in a variety of
ways. Figure 8b shows several different fundamental domains for the
same group pl. Two of these domains are parallelograms, while the
third one is a hexagon. The sides of the parallelogram are b - a, b
and b, 2b — a, respectively.

Exercise 125. Prove that the parallelogram with sides ka + (b and

ma + nb, where k, I, m, n are integers, is a fundamental domain
if and only if |kn — Im| = 1.

The group pl, simplest among all ornamental groups, describes
the purely translational symmetry of an ornament. An ornament has
symmetry pl, if it has no symmetries other than translations. It is
very easy to invent such an ornament. All you have to do is draw
an arbitrary figure with a trivial symmetry group, lying inside the
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fundamental parallelogram, and consider the union of all the copies
of this figure obtained by parallel translations of the given group
(Figure 8c).

If the chosen figure lies strictly inside the parallelogram, then the
ornament obtained has symmetry group exactly equal to p1. However,
if you allow the figure to touch the border, then the ornament may
have a wider symmetry group. An example of this phenomenon is
shown in Figure 8d.

The group pl is important not only because it is the simplest
crystallographic group in the plane, but also because of the following
fact.

Lemma 1. FEvery plane crystallographic group contains a sub-
group of type pl, i.e., generated by two non-collinear translations.

Proof. A crystallographic group must contain at least one transla-
tion, as otherwise it will reduce to a finite group.

Suppose that G is a discrete group of plane movements such that
all the translations belonging to G have the same direction (say, paral-
lel to the line [). We are going to prove that the fundamental domain
of the group G cannot be bounded in this case.

Let us first consider what movements, other than rotations, can
belong to the group G. Note first that the axes of all glide symmetries
that belong to G must also be parallel to the line | — because the
square of a glide symmetry is a translation. The rotations that belong
to the group can only be rotations through 180°, because, if R, € G
and @ # 180°, then, together with every translation T, € G the group
also contains the translation R¥ oT, o R~¥, non-collinear with T}, (see
the answer to Exercise 58). The composition of two rotations by 180°
is a translation along the line that connects their centres. Therefore,
the centres of all rotations that belong to G must lie on one line
parallel to [. Without loss of generality, we can assume that [ is the
line that passes through the centres of all rotations. Finally, we leave
it to the reader as an exercise to find out what kind of reflections our
group may contain.
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Exercise 126. Prove that the group G may contain only reflections
whose axes are perpendicular to ! or coincide with [.

From all the observations made, we can conclude that two points
can belong to one orbit only if their distances from the line | are equal.
The fundamental domain must contain one point of each orbit; there-
fore it cannot be bounded, and the group G is non-crystallographic.

O

We have thus proved that every ornamental group G contains two
non-collinear translations, and hence a subgroup of type pl that they
generate. In fact, a stronger assertion holds.

Lemma 2. The set of all translations belonging to G is a group
of type pl.

This lemma is an immediate consequence of the following exercise.

Exercise 127. Prove that every ornamental group that consists only
of translations is generated by two non-collinear translations.

In a certain sense, any ornamental group is reduced to the group
pl and a finite group of plane movements. We will explain how. Let
G be an arbitrary ornamental group. Denote by H its subgroup of
translations (we already know that it is of type pl). The subgroup
H is normal in G, because the conjugate of a translation by any
movement is always a translation (see page 234).

Lemma 3. For any crystallographic group G, the quotient group
G/H is finite and may only belong to one of the ten types C,,, D,
wheren =1,2,3,4,6.

We are not going to prove this fact now. The reader will verify it
later, using the table of plane crystallographic groups (Exercise 130).
The type of the group G/H is referred to as the ornamental class of
G.

Let us now discuss the relation between the groups G and H and
their fundamental domains in more detail.
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If ® is a fundamental domain of G and gi, ..., gx is the complete
set of representatives of the coset decomposition G/H, then the union
k
m=]Jg®
i=1

forms a fundamental domain for H. The domain & is called the motif
of the ornament, and the domain II, its elementary cell. In principle,
® and g; can always be chosen in such a way that II becomes a
parallelogram, but sometimes it is more convenient to use polygons
of another shape, notably, regular hexagons, as the elementary cell.

The ratio of the area of II to the area of ® is equal to the index
of H in G, i.e., the number of cosets in G/H. The bigger G/H, the
smaller the fundamental domain & in II.

Problem 48. Find the motif and the elementary cell of the ornament
that has symmetry group of type p3ml. Describe the cosets of G with
respect to its subgroup of translations H.

Solution.

Figure 9. An ornament with symmetry group p3ml
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Look at Figure 9a, which shows an ornament with
symmetry group p3ml, i.e., the group generated by three
reflections in the sides of an equilateral triangle. (Instead
of Figure 9a, we could as well use Figure 4b from the In-
troduction.) The ornament is obtained by rolling over
the triangle M NB (the motif) on the plane. You can
see from the picture that the ornament admits transla-
tions by vectors that connect the points A, B and D.
As the elementary cell we can choose, for example, the
parallelogram ABC D, whose sides AB and AD gener-
ate the subgroup of translations H. It is easy to see that
Sapcp : Syng = 6 : 1. It is impossible to divide the
parallelogram ABC D into six equilateral triangles which
are the fundamental domains of the ornament (although
it is possible to divide it into six fundamental domains
of another type — try to do this!). In this case, it is
more convenient to choose the fundamental domain for H
having the shape of a hexagon, for example BQCLDM,
which is naturally divided into six fundamental triangles.

To find the number of cosets in G/H, let us note
that the elements of the subgroup H do not change the
relative position of the motif in the plane (the direction
and the orientation of the “leg”). Different movements
that belong to the same coset, say g o h; and g o hg,
hy, hy € H, change the relative position of the motif in
the same way, because h; and hy do not change it at all.
In the picture, you can see six different positions of the
motif; hence the number of the cosets in G/H is six. We
can number them from 1 to 6, as in Figure 9b. Then, for
example, all the movements belonging to the coset gH,
where g € G is the reflection in a vertical line, induce the
following permutation of these numbers: 1 « 6, 2 < 5,
3 4.

We have thus arrived at the following conclusion: the
quotient group G/H acts on the set of motifs contained
in the elementary cell in the same way as the group D3
acts on the set of vertices of an equilateral triangle: there
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are three rotations, including the identity, and three re-
flections. We can write the result as follows: G/H = Ds.
In the terminology introduced above, this fact can also
be stated as follows: the ornamental class of G is Ds.

Note, finally, that writing p3m1/pl = D3 is not cor-
rect, because there are many subgroups of type pl con-
tained in the group of type p3m1l.

Exercise 128. What is the order of the quotient group G/K, where
G is the group just studied, and K C H is the subgroup of trans-
lations generated by AC and AR (see Figure 9a). Describe the
structure of this group; in particular, find whether it is isomorphic
to one of the groups C,, D,.

How many different subgroups of types pl are there in the group
of plane movements M? Of course, an infinite number: the choice of a
specific group is determined by two basic vectors a and b. However,
any two such groups are isomorphic. In fact, a stronger assertion
holds: any two such groups are conjugate to each other via a suitable
linear transformation (see page 168) of the plane: if H is generated
by translations T, and T}, and K by translations Te and Ty, then
LHL™! = K, where L is a linear transformation such that L(a) = ¢
and L(b) =d.

Definition 30. Two groups of plane movements are said to be equiv-
alent, if they are conjugate to each other by a suitable linear trans-
formation.

We can now state the theorem that gives the exact meaning to
the statement that there are 17 types of wallpaper symmetry.

Theorem 12 (Fedorov—Schoenflies). Up to the equivalence for-
mulated above, any plane crystallographic group is equivalent to one
of the 17 groups given in the table below. These 17 groups are not
isomorphic to each other.

Outline of the proof. The proof is not very difficult, but rather
lengthy. We are only giving an outline, leaving the details to the
industrious reader.
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(1) Prove that the only possible rotations in a crystallographic
group are of order 2, 3, 4 or 6.

(2) Let G C G be the subgroup of all proper (orientation pre-
serving) movements in the group G. Then G7 is a normal
subgroup of index 1 or 2.

(3) If Gt = G, i.e. the group consists only of translations and
rotations, then it is equivalent to one of the groups pl, p2,
p3, p4, p6, depending on the biggest order of a rotation it
contains.

(4) If G* # G, then G is generated by the subgroup G*, which
belongs to one of the five types listed above, and one move-
ment f from G\ GT. Considering the various possibilities
that may arise (f is either a reflection or a glide reflection,
its axis may pass or not pass through the centres of rotations
etc.), we establish that

(a) If GT = pl, then G = pm, pg or cm.

(b) If Gt = p2, then G = pmm, pmg, pgg or cmm.
(c) If Gt = p3, then G = p31m or p3ml.

(d) If Gt = p4, then G = pdm or pdg.

(e) If GT = pb, then G = pbm.

O

Now, the table. For every group, the table of plane crystallo-
graphic groups includes (left to right):

e Smbl: The canonical crystallographic notation of the group.

o Symmetries: An elementary cell (either a square or a regu-
lar hexagon) with the symbols for the movements contained
in the group (a solid line means the axis of a reflection, a
dashed line means the axis of a glide symmetry, and the
symbols O, A, O, @ designate the centres of rotation of
orders 2, 3, 4 and 6).

e Sample: A sample ornament with this symmetry group. The
sample shows only one cell of the ornament. The ornament
is obtained from the elementary cell by translations in two



160 5. Orbits and Ornaments

non-collinear directions. Inside the elementary cell, a fun-
damental domain is hatched.

e (Generators and relations: A set of generators and defining
relations of the group.

In the table, for groups number 1-12, we give a representative
with an elementary cell in the form of a square, and for groups 13—
17, in the form of a regular hexagon. Note that the cell can be an
arbitrary parallelogram for groups pl and p2, an arbitrary rectangle
for groups pm, pg, pmm, pmg, and pgg, and an arbitrary rhombus
for groups em, cmm.

Using this table, the reader can determine the symmetry type of
any ornament, starting from the wallpaper design on the walls of his
or her room.

Table of plane crystallographic groups

Smbl | Symmetries Sample Generators and relations
Non-collinear

pl L i | translations 71, Ty
: i VT, =TT
[RETERRTTINS [ o

‘ Half turns R;, R3, R3
P2 le o o R} =R} = R} =id,

| (RyRyR3)? = id

Reflections Sy, S, and
| translation 7T°

e ST =TSy, SoT =TS,
I S2 =82 =id

pm
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Smbl | Symmetries Sample Generators and relations

Parallel glide

pg reflections Uy, Us

Uz =

U U2
. : /o Reflection S
cm - ‘ y ! A and glide reflection U

S? =id, SU% = U?2S

Reflections in the sides

‘ — — of a rectangle Sq, Sa, Ss,
Sy

P R -

[ | id, (5152)% = (9293)% =

(5354)2 - (8481)2 = ld

pmm .

— Reflection S and central
1 symmetries Ri, Ra
pmg S2 2 R2

. ! 1 = = =
| : aE R1SR; — R2532

S— Perpendicular glide
reflections Uy, Us

| ()? = (U0, =
id

L

pgg

-

Reflections Sy, S; and
central symmetry R

—‘ S2=52=R?=

(8182)? = (S1RS2R)? =
id

cmm | < -4 L
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Smbl | Symmetries Sample Generators and relations

O o O

Central symmetry R and
90° rotation R,

R*=Rt= (RiR)}*=1id

Reflections Sy, Sz, Ss
in the sides of an isosce-
les right triangle

S? =52 = 82 =id,
(5152)? = (5283)* =
(839:)* = id

Reflection S
and 90° rotation R

S2=R‘=(R~1SRS)?=id

Three rotations R;, Ra,
R3 through 120°
R}=R3=

R3 = RiRyR3 =id

Reflection S and rota-
tion R through 120°

R3 — S2 —
(R~'SRS)® = id

Reflections Sy, S2, S3
in the sides of an equilat-
eral triangle S? = S% =
S2 = id,

(8152)° = (S2853)
(5381)% = id
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Smbl

Symmetries

Sample

Generators and relations

T

A

Half turn R and
120° rotation R;

R? =R} = (RiR)® =id

Reflections S;, S,
S3 in the sides of a
(30°,60°,90°) triangle
8?2 =52 =52 =id,
(5152)2 = (85253)% =
(S351)¢ =id

Exercise 129. Find the symmetry groups of the ornaments shown

in Figure 4 (page 4) and Figure 8d.

Exercise 130. Determine the ornamental class of every group in the
table, and thus prove Lemma 3 (p. 155).

Exercise 131. Try to guess the meaning of the letters and numbers
used in the notation of crystallographic groups.



Chapter 6

Other Types of
Transformations

The main protagonists of the book — transformation groups — have
so far appeared in the particular case of groups of plane movements.
In the present chapter, we are going to discuss other types of plane
transformations: affine and projective transformations, similitudes
and inversions. All these transformations can be described by frac-
tional linear functions of either two real or one complex argument.

1. Affine transformations

Affine transformations constitute an important class of plane trans-
formations which is a natural generalization of movements. In fact,
the group of plane movements M is a subgroup of the affine group
Aff(2,R). The transition from movements to affine transformations
is easily achieved in coordinates.

Problem 49. Find a description of plane movements in Cartesian
coordinates.

Solution. If Ozy is a system of Cartesian coordinates
in the plane (which we will call the ‘old’ system), then
its image under a movement f is another Cartesian co-
ordinate system O;z;1y;, called the ‘new’ system.

165
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If a point A has coordinates (p, ¢) in the old coordi-
nate system, then its image A’ has the same coordinates
(p, q) in the new system.

Y
q’
AN
q
A
qp-mmeeeanss .
qy ' 0,
0 P P, D "x

Figure 1. Movement in coordinates

For an orientation-preserving movement (translation
or rotation), it is easy to find the coordinates (p',¢’) of
point A’ in the old system, using Figure 1:

(38) p’ = pcosa— gsina + po,
¢ = psina+qcosa+ qq,
where « is the angle between the rays Oz and O;z;.
For an orientation-reversing transformation we get
similar formulas with ¢ changed to —q:
(39) p’ = pcosa+gsina + po,
¢ = psina—qcosa+ qq.

Affine transformations are given by a formula similar to (38) and
(39), where the coefficients may be arbitrary numbers, not necessarily
sines and cosines.



1. Affine transformations 167

Definition 31. An affine transformation of the plane is a transfor-
mation that takes a point (x,y) to the point (¢'.y’) according to the
equations

(40) { = ax-+by+ag.

y = crt+dy+yo.

Formulas (40) make sense for any values of the coefficients a, b, ¢,
d. However, if we want to obtain a genuine (one-to-one) transforma-
tion of the plane, we must suppose that ad — be (the determinant of
the matrix (%)) is different from zero. Indeed, basic vectors (1.0)
and (0,1) are taken, by the transformation (40). into vectors (a,c)
and (b.d). and the area of the parallelogram constructed on these
two vectors is equal to ad — be.

Under an affine transformation, parallel lines go into parallel lines,
but the angles are not preserved: a square may become an arbitrary
parallclogram. Figure 2 shows an example of an affine transformation

. . fa b 1 1/2
with the matrix (C d) equal to (0 1 )

Figure 2. An affine transformation

Definition 32. The group of affine transformations of the plane,
denoted by Aff(2,R). consists of all affine transformations (40) with
ad — be # 0.

The group of affine transformations acts transitively on the plane.
The stable subgroup of the origin O is the group of linear transfor-
mations GL(2,R).
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Definition 33. A linear transformation of the plane is a transfor-
mation given in Cartesian coordinates by the equations

' = azx+by,
(a1) (o -

y = czx+dy.
The group GL(2,R) consists of all such transformations with ad—bc #
0.

Exercise 132. Let R? denote the group of plane translations. Prove
the isomorphism Aff(2,R)/R? = GL(2,R).

The fundamental property of affine transformations is that they
preserve the ratio of points on straight lines (see page 16): if a point C
divides a segment AB in the ratio k : [, then its image C’ will divide
the corresponding segment A’B’ in the same ratio k : . In fact, one
can prove that Aff(2,R) coincides with the set of all transformations
of the plane that take straight lines into straight lines and preserve
the ratio of points on every line.

Affine transformations are useful for the solution of geometric
problems where the statement is invariant under affine transforma-
tions, but the solution is easier for some special case of the construc-
tion.

To take a simple example, consider the property of the medians
that we talked about in Chapter 1: the three medians in any triangle
meet in one point and this point divides each of them in the ratio 2 : 1
(see Exercise 10). By an affine transformation, the given triangle can
be reduced to an equilateral one, for which the assertion is evident.

Exercise 133. Find another solution of Problem 4 (page 19), using
affine transformations.

The notions of linear and affine transformations make sense in the
one-dimensional case, too. Linear transformations of the line have the
form z +— az, while affine transformations are described by the for-
mula z — az +b. The corresponding groups are distinguished by the
condition a # 0 and denoted by GL(1,R) and Aff(1,R), respectively.
Instead of real numbers R we can consider residues over a prime num-
ber, thus arriving at finite groups. One can also use complex numbers
instead of real: the corresponding groups will come up later in this
chapter (see section 3).
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Exercise 134. (a) How many elements are there in the group G =
GL(2,Z2)? Among the groups that we considered earlier, find a
group isomorphic to G. (b) The same questions for the group
Aff(1,Z3).

2. Projective transformations

The notion of projective transformations comes from daily life.

Figure 3. Photography as projection

From the mathematical point of view, photography, as well as still
life drawing, is a perspective transformation, or a central projection.
Photography takes every point A of the given object into the point A’
where the line AO (O being the optical centre of the camera) meets
the plane of the film (Figure 3). To make a drawing of nature, the
artist does essentially the same thing, with the difference that the
plane of the canvass is placed between the object and the eye.

It is clear that under such transformations straight lines go into
straight lines. Hence it is possible to study the perspective transfor-
mations of a line, too.

Definition 34. Suppose that | and !’ are two lines in the plane,
and S is a fixed point in the same plane (Figure 4a). A perspective
transformation is a mapping p : | — I’ that takes every point A € [
into the intersection point A’ of the lines SA and I’. Given two
planes II;, Il and a point S in space, one can define a perspective
transformation p : II; — Il in a similar way (see Figure 4b).

Definition 35. A projective transformation of a line or a plane into
itself is a composition of several perspective transformations where
auxiliary lines or planes are used.
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Figure 4. Perspective transformation of lines (a) and planes (b)

We begin the discussion of the properties of projective transfor-
mations with the following question. Suppose that we take a picture
of a series of equidistant objects arranged along a line (e.g., trees
along a road). It is clear that the images of these points on the pic-
ture do not need to be equidistant. It is also clear that they cannot be
arbitrary and there must exist a certain invariant which is preserved
by the projective transformations. Such an invariant must depend on
more than three points, because the distance between two points can
change and also the mutual relation of the three points can change
arbitrarily: for example, in Figure 4a the point B lies between A and
C, but its image B’ is no longer between the respective images A’

and C'.
The remarkable fact is that a certain function of four points,

called their cross ratio, or anharmonic ratio, does not change under
projective transformations of the line.

Definition 36. The cross ratio of points A, B, C and D is defined
as follows:

AC AD

BC ' BD’

where the lengths of the lines, AC, BC, AD, BD are considered as
signed numbers, positive or negative depending on the orientation of
the given pair of points.

(A,B;C,D) =
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Theorem 13. The cross ratio of four points is preserved under pro-
jective transformations.

Proof. It is enough to prove the invariance under perspective trans-
formations.

To do so, let us express the areas of the triangles that you can
see in Figure 5, using two different formulas:

1 1
SA,S’AC =—h-AC = §SA - SC'sin éASC,

2
1 1

SAasBe = §h -BC = §SB - SCsin ZBSC,
1 1

SA,S’AD = Eh AD = ESA . SDSinéASD,

1 1
SASBD = ih -BD = ESB -SDsin/BSD.

Figure 5. Derivation of the cross ratio

Now,
AC AD _ Sasac  Sasap
BC " BD Saspc  Sasep

SA-SCsin ZASC-SB-SDsin/BSD

SB.SCsin/BSC-SA-SDsin/ASD
sin ZASC _sin LASD

sin/BSC "~ sin/BSD’
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We see that the cross ratio of four points is expressed through
the angles at which the corresponding segments are viewed from the
centre S. These angles do not change under the perspective transfor-
mation, and the theorem is proved. O

Problem 50. Let A, B, C, D be four sequential equidistant trees
along a straight-line road, and let A’, B, C', D' be their images in a
photo. Suppose that the distance A’B’ is 6 cm and the distance B'C’
is 2 cm. What is the distance C'D’?

Solution. We have
AC AD
BC BD
Denoting C'D’ by z, we have
A'Ct AD 8 z+38
BC' BD 2 1+2
and from the equation

8(x+2) 4

2(x+8) 3
we find that £ = 1.

2.3 _4
1°2 3

A similar argument can be used to derive the general formula
that expresses projective transformations in coordinates. Suppose
that z is the coordinate of a variable point M on the line [ and z’
the coordinate of its image M’ € I’. Fix three different points A, B,
C on I, denote by a, b, ¢ their coordinates and let a’, b, ¢’ be the
coordinates of their images A’, B/, C’. Then the relation

(4,B;C,M) = (A", B;C", M)
can be rewritten as

c—a z—-a c—-d z'-d
c—-b z—-b =¥ -V

From this equation we can express z’ in terms of z. The result
looks like

(42) o = mT+n
pr+q’
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where m, n, p, q are certain constants depending on a, b, c, a’, b, c’.

Functions of this kind are called fractional linear functions.

Note that in this formula the expression mq — np (determinant
of the matrix (p §)) must be different from 0. Otherwise the pair
(m,n) would be proportional to the pair (p,q), and the fraction will

give one and the same value for all z.

Now suppose that m, n, p, ¢ are four real numbers such that
mq — np # 0. Is it true that the formula

mz+n

1T
d pT +q

defines a one-to-one mapping of the real line R onto itself? The
answer is negative: in fact, the point z = —q/p (if p # 0) has no
image under f.

Exercise 135. Indicate the real number that has no inverse image
under this mapping.

We have already encountered these difficulties in one particular
case (see page 140). The way out is to introduce one more point 0o
(infinity) and extend the action of the projective transformation to
the set R = R U oo using the rules:

° %:ooforanya;éﬂ,
m-oco+n %, if p#£0,
e —— —
p-©0+4q oo, ifp=0.

Fractional linear functions with mq — np # 0 define one-to-one
transformations of the extended line R.

Exercise 136. Check that the set of all transformations given by
formula (42) with mq — np # 0 forms a group.

This group is called the group of projective transformations of the
(extended) real line and denoted by PGL(1,R).

Exercise 137. Check directly, using formula (42), that the cross ra-
tio is an invariant of the projective group acting on the set of
quadruples of points.
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The argument that led us to formula (42) shows that any triple
of distinct points can be taken into any other such triple by a suit-
able projective transformation. This means that the action of the
projective group on the set of triples has no nontrivial invariants.

We have already several times considered the group generated by
two projective transformations z — 1/z and z — 1 — z (see Exercise
74, Problem 43, etc.). This is not the only finite subgroup in the
group of projective transformations.

Exercise 138. Prove that the two transformations z — 1/z and = —
(z — 1)/(z + 1) generate a group of eight elements, isomorphic to
Dy.

Exercise 139. Find all projective transformations of the line that
have finite order.

That’s all about projective transformations of the line. Now a
few words about the plane.

The set of all projective transformations of the plane is a group
denoted by PGL(2,R). It contains the set of all affine transformations
Aff(2,R) as a subgroup.

Exercise 140. Is Aff(2,R) a normal subgroup of PGL(2,R)?

Arguments similar to those that we used for projective transfor-
mations of the line imply the following theorems.

Theorem 14. Projective transformations of the plane are those and
only those transformations which are described by formulas

L o mETt biy+a
 aoz +boy+co’
(43) v = a2 + by + 2

aoT + boy + co

in a Cartesian (or affine) coordinate system.

Theorem 15. The group PGL(2,R) acts transitively on the set con-
sisting of all quadruples of points no three of which are collinear.

The last theorem may turn out to be quite useful for solving some
problems in elementary geometry. If a problem involves nothing but
the incidence between points and lines, then we can make a projective
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transformation that takes any given quadrangle into another quad-
rangle, for which the solution might be easier. Remember, however,
that projective transformations change not only the angles, distances
and areas, but also ratios of segments on a line and ratios of areas of
different figures. They only preserve straight lines and cross ratio.

Here is an example of such an application.

D

Figure 6. Pappus’s theorem

Exercise 141. Prove the theorem of Pappus (see Figure 6): if the
three points A, B, C are collinear and the three points D, E, F
are collinear, then the intersection points AE N BD, AFNCD
and BFNCE are also collinear.

3. Similitudes

Definition 37. A similitude is a plane transformation that changes
all distances by one and the same positive factor.

Like affine transformations, similitudes constitute a class of plane
transformations which is wider than the class of movements. It is clear
from Definition 37 that the set of all similitudes is a transformation
group.

The simplest type of similitudes, different from movements, is
provided by homotheties.
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Definition 38. A homothety H% with centre A and coefficient k # 0

is the transformation that takes every point M into the point M’ such
— —

that AM' =k - AM (see Figure 7).

Figure 7. Homothety

The set of all homotheties of the plane does not constitute a
group, but the set of all homotheties with a fixed centre does. Using
a complex coordinate z, such transformations can be described by
the formula z — kz, where k is a non-zero real number. This group
is thus isomorphic to R*, the multiplicative group of non-zero real
numbers.

Exercise 142. Prove the isomorphism GL(2,R)/R* = PGL(1,R).

Below are some examples showing the use of homotheties in ele-
mentary geometry.

Problem 51. In a given triangle ABC, inscribe a square in such a
way that two of its vertices belong to one side of the triangle and the
remaining two vertices lie on the other two sides.

Solution. It is very easy to construct a square with
three vertices satisfying the requirements of the problem
(square KLM N in Figure 8).

Any homothety centred at vertex A preserves these
properties, and it remains to find the coefficient k so that
H fl maps the point NV into a point E belonging to the
side BC. The whole construction is clear from the figure.
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Figure 8. Inscribing a square into a triangle

Exercise 143. Into a given triangle, inscribe a triangle whose sides
are parallel to the three given lines.

One more useful property of homotheties is that they preserve
the direction of straight lines: the image of a line [ is always a line
parallel to . We will use this fact in the following problem.

Problem 52. Several circles are inscribed into one circular segment
(Figure 9).

’

Figure 9. Circles inscribed into a circular segment

Let A; and B; be the tangency points of the i-th inscribed circle
with the arc and the chord, respectively. Prove that all lines A;B;
pass through a common point.
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Solution. We will prove that every line A;B; passes
through the point C' which is the tangency point of the
line [ parallel to the chord M N and tangent to the big
circle. Consider the homothety h; with centre A; and
coefficient K = OA; : O1A;. It transforms the small
circle Sy (centred at O,) into the big circle S. Therefore,
the image of the line M N tangent to S; is the line [,
tangent to S and parallel to M N. The point B;, which
is the common point of M N and Sj, goes under h; into
the point C, common to [ and S. The same argument
can be repeated for each small circle S;. This completes
the proof.

Exercise 144. Given two concentric circles, construct a line which
intersects them in the four consecutive points A, B, C, D so that
the following relation holds for the lengths of the segments that
are cut by the circles: AB =2BC = CD.

Exercise 145. Given a triangle, prove that the three lines, each of
which passes through the midpoint of a side parallel to the bisector
of the opposite angle, meet in one point.

Exercise 146. Prove that for any triangle ABC there exists a circle
that contains the midpoints of the sides, the feet of altitudes and
the midpoints of the segments KA, KB, KC, where K is the
intersection point of the altitudes. (This circle is called the circle
of 9 points, or Euler’s circle.)

The group of plane similitudes is not exhausted by the set of all
homotheties.

Definition 39. A spiral similarity is defined as the composition of a
homothety and a rotation with the same centre (see Figure 10).

In this book, we have already encountered such transformations
when studying complex numbers: we saw that multiplication by a
number a is equivalent to a homothety with coefficient |a| and sub-
sequent rotation through the angle arga around the origin (see (4)).
Let us consider some geometric applications of spiral similarities.
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Figure 10. Spiral similarity

Problem 53. Given an arbitrary triangle ABC, draw two triangles
ABP and BQC, lying outside of ANABC, having right angles at ver-
tices P, Q and equal angles 3 at the vertex B (see Figure 11).

Figure 11. Right triangles built on the sides of triangle ABC

Find the angles of APQK, where K is the middle point of the
side AC.

Solution. Consider two spiral similarities: Fp = H ’;, o
R%, Fo = Hy*oR%, where d = 90° and k = PB : PA =
QB : QC. It is clear that Fp(A) = B and Fg(B) = C,
hence (Fg o Fp)(A) = C. When two spiral similari-
ties are performed one after another their coefficients get
multiplied, and their rotation angles are added (we will
explain this a little later). Therefore, the composition
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F = Fp o Fp must be a rotation through 180°. Since
F(A) = C, the centre of rotation is the point K and
thus F(K) = K. Let Fp(K) = Ki; then Fo(K;) = K.
Both right triangles KPK; and QK K; have the same
angle 3 at the vertex Kj; hence they are equal (Figure
12).

K

Figure 12. Product of two spiral similarities

It follows that PQ 1 KK; and ZKPQ = /ZKQP =
s.

In the previous argument, we have used the fact that the compo-
sition of two spiral similarities is a spiral similarity whose coefficient
is the product of the two coefficients, while the angle of rotation is
the sum of the two rotation angles. This fact is evident if the two
transformations have a common centre. To prove it in full generality,
we will use calculations with complex numbers, based on the following
theorem.

Theorem 16. A plane transformation is a similitude if and only if,
in the complex coordinate z, it can be written as either

(44) z—pz+a
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or
(45) z— pZ+a,

where p and a are arbitrary complexr numbers, p # 0. The two cases
(44) and (45) correspond to proper (i.e., orientation-preserving) and
improper (i.e., orientation-reversing) transformations.

Proof. Indeed, recall that we have already proved in (8) that proper
movements of the plane correspond to the linear functions w = pz+a
with |p| = 1. Now, suppose that F is a proper similitude of the plane,
i.e., a transformation that stretches all distances by a certain factor
k and preserves the orientation. Let H be the homothety with coefli-
cient k and centre 0. The composition H~!oF preserves the distances
and the orientation; hence it is a proper movement and corresponds
to a function w = pz + a with [p| = 1. Then the transformation
F = Ho(H™' 0o F) can be written as w = k(pz + a), which is an
arbitrary linear function.

Conversely, given a complex function pz + a with arbitrary coef-

ficients, we can verify that it stretches the distances between points
by the factor k = |p|:

|(pz1 + a) — (pz2 + a)| = |p| - |21 — 22|

The case of improper transformations is reduced to the case of
proper transformations by the simple observation that the function
(45) is the composition of (44) and the standard reflection z — z. O

In the terminology and notation of section 1, Theorem 16 means
that the group of proper similitudes is Aff(1, C), where C is the group
of complex numbers.

Using the description of similitudes in terms of complex numbers,
we can easily prove two important facts, related to each other:
e Any transformation of similitude pz +a which is not a trans-
lation (i.e., p # 1) has a unique fixed point.

e Any transformation of similitude pz+a which is not a trans-
lation is a spiral similarity (in particular, a homothety).
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Indeed, a fixed point is a number zg such that pzg + a = 29. If
p # 1, this equation has a unique solution 2y = a/(1—p). The formula

- o\, _ o
= Zz —
p a=p 1-p 1-p

shows that this transformation is in fact a spiral similarity with centre
a/(1 — p), stretching coefficient |p| and rotation angle argp.

Now we can prove the fact used in Problem 53 above. The compo-
sition of two spiral similarities w = pz+a and u = qw+b corresponds
to the function

u=q(pz +a)+b=pgz+ (ag+b).

This is a spiral similarity with coefficient |pg| = |p||q| and angle of
rotation arg(pq) = argp + arggq.

Exercise 147. Two maps of the same country, drawn to different

scales on transparent paper, are put on the table in such a way

that one of the maps completely covers the other. Prove that one

can pierce both maps with a pin in a point that corresponds to
the same place on both maps.

Exercise 148. Given four points A, B, C, D in the plane, such that

AB # C—’B, prove that there exists a point E for which the two
triangles ABE and CDE are similar.

Exercise 149. Points M, N and P are centres of the squares con-
structed on the sides AB, BC, C A of an arbitrary triangle ABC
outside of it. Prove that the segments NP and CM are perpen-
dicular and have equal lengths.

4. Inversions

Problem 54. A circle S touches two circles Sy and So at the points A
and B. Prove that the line AB passes through the centre of similitude
of the circles Sy and Ss.

Solution. Let K be the intersection point of the lines
AB and 0;0; (see Figure 13). We want to prove that K
is the centre of similitude of the circles S; and S;. We
will construct the required similitude in a rather indirect
manner.
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Figure 13. Three tangent circles

Let f be the transformation of the plane which, with
every point M, associates the point M’ belonging to the
half-line KM at a distance from K that satisfies K M -
KM' = KA - KB = const. Obviously, f(A) = B and
f(B) = A.

We claim that the circle S goes into itself under f.
This follows from a well-known theorem of elementary
geometry (if you don’t know it, try to prove it yourself):
for a fized circle S, a fized point K and an arbitrary line
[ that passes through K and meets S at the two points L
and L', the product of lengths of the two segments KL
and KL' does not depend on the choice of the line l.

Now take a point M € Sy. Its image M’ lies on the
half-line KM and satisfies
_KA-KB
- KM
Let M; be the second intersection point of K M with Ss.
By the theorem that we quoted, K M- K M; = C = const.
Therefore,

KM’

KA KB
KMI = TKM]"

which means that M’ is obtained from M; by a homo-
thety centred at K! Therefore, the image of S, under
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f is a circle, say S5. Since Sy passes through B and is
tangent to the circle S, the circle S% passes through the
point A and is tangent in that point to S; thus S5 = S;.

We have proved that the two circles S; and Ss can
be transformed into one another by a homothety with
centre K.

The transformation f that we used in the previous problem is an
example of inversion.

Definition 40. The inversion with respect to the circle T' with centre
O and radius r is the transformation that maps every point M into the
point M’ that belongs to the half-line OM and satisfies the equality
OM -OM' =r2.

The inversion map takes the inside of the circle outside and the
outside inside. It preserves the circle itself. A well-known joke of
H. Pétard (“A contribution to the mathematical theory of big game
hunting”) suggests the following method to catch a lion. The hunter
gets into a cage and waits. When the lion appears, he performs an
inversion. Now the lion is inside the cage.

Inversion is an almost one-to-one transformation of the plane:
it is defined and one-to-one everywhere except at the centre of the
circle O. When the point M moves towards O, its image M’ moves
infinitely far from O. This is why it is natural to add the point
oo (“infinity”) to the plane, similarly to what we did for projective
transformations of the line on page 173, and consider inversion as a
one-to-one transformation of the extended plane.

Suppose that our plane is the plane of complex numbers. We
know that every complex number z and its conjugate Zz satisfy the
relation 2z = |z|2. Therefore, the algebraic formula for an inversion
of radius r with centre 0 is z — 72/z.

Exercise 150. What transformation group is generated by the set of
all inversions with a fixed centre 07

During the discussion of Problem 54, we found that an arbitrary
circle that does not pass through the centre of the inversion f maps
under f into a certain circle.
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Figure 14. Use of inversion to catch a lion (after H. Pétard)

Exercise 151. What is the image, under an inversion, of a circle that
passes through the centre of inversion?

Exercise 152. What is the image, under an inversion, of a straight
line?

All these facts, put together, mean that the inversion preserves
the set of all lines and circles. Viewing a straight line as a circle
passing through infinity, we can say that inversions are circular trans-
formations, i.e. transformations that preserve the class of all (gen-
eralized) circles. A little later we will see that the set of circular
transformations is not exhausted by inversions.

Now we give some more applications of inversions in elementary
geometry.

Problem 55. Each of four circles touches two of its neighbours (Fig-
ure 15a). Prove that the points of contact lie on one circle.

Solution. Let us apply an inversion with centre A (one
of the contact points) and an arbitrary radius. We will
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J

M

Figure 15. Four circles touching each other

see that the problem becomes simpler after this transfor-
mation.

Denote by S! the image of S;. It follows from our
previous considerations that 57 and S} are straight lines,
and S3 and S) are circles. The relations of tangency
between S] are the same as between S;, i.e., 57 is tangent
to S5, S5 to S5, S5 to Sy, and S to S7. Note also that the
lines S7 and S} must be parallel, because S; and S, have
only one common point A, which goes to infinity under
the inversion. We arrive at the configuration shown in
Figure 15b. The problem is to prove that the three points
of contact B’, C’, D' belong to one straight line — this
will imply that the inverse images of these points B, C,
D belong to a circle that passes through the centre of
the inversion A.

To prove that B’C'D’ is a straight line, let us draw
the common tangent of the circles S and S} until the
intersection with the lines S| and S5 in the points M
and N. Consider the two triangles MC'D’ and NC'B’.
They are equilateral and have equal angles /M = ZN.
Therefore their angles at the vertex C’ are also equal to
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each other. Hence B’C’'D’ is a straight line. The proof
is complete.

In problems 54 and 55 we used the evident property that if two
lines are tangent to each other, then their images under the inversion
are also tangent. The next exercise is a generalization of this fact.

Exercise 153. Define the angle between the two circles at a point
of intersection to be the angle made by their tangent lines drawn

through that point. Prove that inversion with respect to any circle
preserves angles between circles.

5. Circular transformations

The set of all inversions in the plane is not a transformation group. In
this section, we shall study the group generated by all inversions. This
group is called the group of circular transformations. It consists of two
halves: the subgroup of orientation-preserving transformations, which
coincides with the complex projective group PGL(1, C) (see page 173),
and a coset consisting of orientation-reversing transformations.

We start with an illustrative problem.

Problem 56. Fizr a circle C with centre O. Let A be the midpoint of
its radius OB. Suppose that we are allowed to perform two transfor-
mations: inversion with respect to the circle C and half turn around
point A. What is the mazimal number of different points that can be
obtained from a given point by successive applications of these trans-
formations?

Solution. Let us write both transformations as func-
tions of a complex variable, assuming that the point O
has complex coordinate 0 and point B complex coordi-
nate 1.

The point A corresponds to the number 1/2, and the
symmetry at this point is described by the function

f 1(2) =1-2z.
To find the formula for the second allowed transfor-

mation, note that points z and w that correspond to
each other under the inversion satisfy the two relations
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|z]|w| = 1 and argz = argw. It follows that w = 1/Z,
and thus
fa(2) =1/

Each of the two allowed transformations is involu-
tive, and so the only way to obtain different compositions
of the two functions is to apply them by turns. Starting
from z and applying first f1, then fo, then again fi, etc.,
we obtain the following list: z, 1—2z, 1/(1—%2), z/(z—1),
1—1/2,1/2, 2,1 —z, 1/(1 — 2), z/(z — 1), 1 — 1/Z,
1/z. After this we obtain z once again, and the sequence
begins looping. Therefore, the inversion and the central
symmetry generate a group G of 12 elements, and its
orbit cannot contain more than 12 points. An example
where the orbit contains exactly 12 points is given below.

Exercise 154. Find all the possibilities for the number of points in
the orbits of the group G. Draw pictures of different types of
orbits.

Now let us find the fundamental domain of the group G, i.e.,
the part of the plane whose images under the group action cover
the plane without overlapping. The image of the circle C' under the
transformation f; is the circle C” (see Figure 16).

The image of C’ under f, is the line M M’. One more important
line is the straight line OB which separates the two regions corre-
sponding to each other under the complex conjugation z — z (a
mapping belonging to our group). These lines divide the plane into
12 domains that go into one another under the group action. Each
of these domains has the property that it does not contain interior
points equivalent under G.

Any of the 12 domains (e.g., domain 1) can be taken as the funda-
mental domain of the group action under study. The reader is invited
to check what are the images of domain 1 under different transforma-
tions of the group.

The union of the four lines drawn in Figure 16 is the set of all
points on the plane left invariant by some nontrivial element of the
group. The orbit of any interior point consists of exactly 12 points.
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Figure 16. Group of complex functions generated by z
l1—zand z+— 1/Z.

The orbits of the points of the lines different from their intersection
points have cardinality 6. The intersection points split into three
orbits: two of length 3 (1/2,2,—1 and 0,1, 00) and one of length 2
(points M and M’, corresponding to the numbers 1/2 4 41/3/2).

The four lines shown in Figure 16 are divided into 18 segments
by the intersection points. These segments go into one another by the
group action and split into 3 orbits of length 6, shown in the figure
as normal, bold and dotted lines.

Now we shall study the geometric meaning of plane transforma-
tions described by fractional linear functions with arbitrary complex
coefficients, i.e., elements of the group PGL(1, C), as well as similar
functions with z replaced by the conjugate variable z.

Theorem 17. Let a, b, ¢, d be any complex numbers such that ad —
bc #0. Then:

(1) The transformation defined by the function
az+b
czZ+d
(an improper fractional linear transformation) is a compo-
sition of an inversion and a spiral similarity.
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(2) The transformation defined by the function
_az+b

cz+d

(a proper fractional linear transformation) is a composition

of an inversion, a spiral similarity and a reflection.

Proof. If ¢ = 0, then the second formula gives a linear function a;z+
b1, which, as we know, corresponds to a similitude transformation.
The first formula gives a1z + by, a linear function in 2, which is the
composition of the reflection z — Z and a similitude.

Suppose now that ¢ # 0. Then the fraction 2z

az+b 1 n n
= 2 T,
ci+d P\z—z 7%

where zg = —d /¢, p = (bc —ad)/c? and r = a/c — pzy. The expression
inside the parentheses is the conjugation of the standard inversion
(with centre 0 and radius 1) by the translation z — z + zo; therefore,
it represents the inversion of radius 1 centred at the point 2zy. To the
result of the inversion, the similitude transformation z — pz + r is
applied, and we get the required composition.

b
+ pi can be written

The proper fraction (az + b)/(cz + d) is reduced to the improper
one by the change z — Z, and we obtain the second part of the the-
orem. It is funny that in this case improper transformations, those
that change orientation, are easier to handle than the proper trans-
formations. This observation is accounted for by the importance of
inversions in this context — and inversions are improper transforma-
tions. O

Exercise 155. Check that all (proper and improper) fractional linear
transformations form a group, and the set of proper transforma-
tions is a normal subgroup of it. Find the quotient group.

Theorem 17 implies that both classes of fractional linear transfor-
mations are circular, i.e., they preserve the set of generalized circles
(circles and straight lines) in the plane. It is also true that any cir-
cular transformation is described by either a proper or an improper
fractional linear function. This is why the group of all such transfor-
mations is called the circular group. Another noteworthy property of
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these transformations is that they are conformal, i.e., they preserve
angles between curves. However, the class of all conformal mappings
is much wider than that of circular transformations — for example, it
includes complex functions P(z)/Q(z), where P and @ are arbitrary
polynomials.

Exercise 156. Prove that all transformations of the complex plane
given by formulas

(46) “’:Z—IS’ abc,d€R, ad—be>0,
and
(47) w:af:::s, a,b,c,d €R, ad—bc<0,
cz

form a group.

6. Hyperbolic geometry

Let us check that transformations (46) and (47) map the upper half-
plane y > 0 into itself. If z = x + iy, w = u + ¢v, then a simple
calculation shows that the complex formula (46) is equivalent to the
pair of real formulas

(azx + b)(cx + d) + acy?
(cz +d)? + y?
(ad — be)y
(cz +d)? +y?’
and we see that v has the same sign as y. The formula (47) is con-
sidered in a similar way.

K

Let L be the group of all transformations (46) and (47) acting on
the upper half-plane H = {(z,y)|y > 0}. The half-plane H is called
the hyperbolic plane, or the Lobachevsky plane, and the group L is
called the group of hyperbolic movements of H. This terminology has
the following meaning.

As we know, the transformations in L take any circle into a circle
(or a line, which we view as a particular case of the circle). In the
plane H, there is a distinguished set of circles which is preserved by
the group L. These are the (half)-circles and (half)-lines perpendic-
ular to the line Oz (see Figure 17). We will call these circles the
L-lines, because through any two points of H there passes one and
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only one L-line — a property owned also by the set of all usual lines
in the usual plane.

Figure 17. L-lines in hyperbolic plane

The group L of hyperbolic movements, or L-movements, has
properties similar to those of the group of plane movements acting
on the usual plane. In particular, any point can be taken into any
other by a hyperbolic movement, but the action of L on the set of
L-segments (arcs of L-lines) is not transitive. The main geometric
difference between the hyperbolic and the usual planes appears when
we think about parallel lines.

In ordinary Euclidean geometry, two lines are called parallel if
they do not have common points, and the main property of parallel
lines is that for any line a and any point A outside of a there is exactly
one line passing through A and parallel to a. Now look at Figure 18,
which shows an L-line [ and an L-point A. Among the four lines
drawn through A, there is one (I) that intersects the line a, and there
are three (k, n, m) that have no common points with a (we recall
that the points of the boundary horizontal line do not belong to H).
We thus see that in Lobachevsky geometry one can draw many lines
passing through the given point and not intersecting the given line.

Let us do a computational exercise in Lobachevsky geometry.
The angle between two L-lines is by definition measured as the usual



6. Hyperbolic geometry 193

Figure 18. Mutual position of two L-lines

Euclidean angle between the tangent lines (note that with this defi-
nition of the angle we have the property that L-movements preserve
L-angles).

Problem 57. Find the sum of angles of the Lobachevsky triangle with
vertices A(0,7), B(4,3), K(0,5).

Solution. The given triangle ABK is the hatched region
in Figure 19.

Figure 19. A triangle in the hyperbolic plane

The side AK lies on the axis Oy. The side K B is an
arc of a circle with centre at O. The side AB is an arc
of the circle with centre at the point M.

Exercise 157. Find the coordinates of the point M.
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The angle K of our triangle is a right angle, because
it is formed by a circle and its radius:

ZK =90°.

The angle B between the two circles is equal to the
angle between the tangents and hence to the angle be-
tween the radii:

4B =/Z0OBM.

Similarly,
LA=/0OMA.

If you have found the coordinates of M, then you
can find that

tan /OMA = g,
9
tanZOBM = tan(£/BOBy — ZBMB;) = 37
7,9
I+2 143
_ 3737 _
tan(ZA+ £ZB) = 1_%'% 51"

Since the tangent is positive, we infer that ZA +
ZB < 90°. Therefore, the sum of the three angles of the
triangle ABK is less than 180°.

It is interesting to note that the bigger the Lobachevsky triangle
(in a certain sense), the smaller its sum of angles. For example, you
can check that the isosceles triangle ABC, which is twice the triangle
ABK, has a smaller sum of angles.

Finally, we will give one example of a crystallographic group in
the hyperbolic plane — the so-called modular group U that consists of
all proper fractional linear transformations with integer coeflicients:

az+b
U—{mla,b,c,dGZ}.

This group is generated by the two elements

S:z——-1/z and T:z— 142z
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Exercise 158. Check the relations S? = (ST)? = id.
Figure 20 shows the fundamental domain of the group U
d={z=a+yills]>1,|z[ < 3}
and its images under T, S, T, T'S, ST, etc.

Figure 20. Fundamental domain of the modular group

The domain @ is in fact an L-triangle, and it has a finite area (we
have not defined area in Lobachevsky geometry, so you cannot check
that!). Copies of ® cover all the upper half-plane without overlapping.
Thus U is really a crystallographic group. The reader is invited to
draw a motif and repeat it throughout the Lobachevsky plane using
the action of the group U, and thus obtain a hyperbolic ornament.



Chapter 7

Symmetries of
Differential Equations

In this chapter we will apply the machinery of transformation groups
to the solution of differential equations. We assume that the reader is
acquainted with the notions of derivative and of definite and indefinite
integral.

1. Ordinary differential equations

In this book we will only study the simplest class of differential equa-
tions: ordinary differential equations of first order resolved with re-
spect to the derivative.

Definition 41. A differential equation is an equation of the form

(48) Y = f(z,y),

where y is a variable depending on z, the prime means the derivative
with respect to z, and f(z,y) is a given function of two variables,
z and y, which is supposed to be “good enough” (continuous and
differentiable).

Definition 42. A solution to equation (48) is a function y = ¢(z)
which, upon substitution into the equation, makes it a true identity,
so that

¢'(z) = f(z, ¢(z))

197
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for any value of z.

Since we are interested in the way y depends on z, we call z the
independent and y the dependent variable. Equation (48) can also
be written as dy/dx = f(z,y), where dy and dx are differentials, i.e.
infinitesimal (“infinitely small”) increments of y and z whose ratio is
by definition equal to the derivative . !

Here is an example of a differential equation:

(49) y=y-=
As you can check by a direct substitution, either of the functions
y=xz+1and y =e* +z + 1 is a solution of this equation.

The main theorem of the theory of ordinary differential equations
implies that every differential equation has a one-parameter family of
solutions that can be described by a formula y = ¢(z,c) containing
a constant ¢ whose value may be arbitrary. Such a function ¥(z, c)
is called the general solution of the given equation. For example,
equation (49) has the general solution y = ce® +x + 1 which gives the
two particular solutions quoted above, when ¢ =0 and ¢ = 1.

Note that the family of solutions of a differential equation ¥(z, c)
cannot be an arbitrary one-parameter family of functions.

Exercise 159. Is there a (first order) differential equation that has
the following pair of particular solutions: (a) y = 0 and y = 1
(constant functions)? (b) y =1 and y = z?

The function f(z,y) in the right-hand side of the differential equa-
tion (48) can be free of z, of y, or of both. For example, we can
consider the following equations:

(50) y =2,
(51) y =cosz,
(52) Y =9

Exercise 160. Find the general solution of (50) and (51). Try to
guess a particular solution of (52).

1From the modern viewpoint, the notion of differential is formalized using dif-
ferential forms, but, as we cannot touch upon that in this book, we are going to
treat the differentials in the above intuitive sense, following the mathematicians of the
seventeenth and eighteenth centuries.
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Equations (50) and (51) belong to the class of equations whose
right-hand sides depend only on z:

(53) y = f(z).
The reader knows that the general solution to such an equation is
obtained by indefinite integration:

(54) y= / f(z)dz,

where the right-hand side is defined “up to an additive constant”.
More exactly, if F(z) is a certain primitive of f(zx), i.e., a function
such that F'(z) = f(z), then the general solution to (53) can be
written as

(55) y=F(z) + C.

This formula, for arbitrary values of the constant C, gives all the
solutions of (53). The graphs of all functions (55) do not intersect
and fill all the plane (z,y). For example, for (51) we obtain the picture
shown in Figure la.
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Figure 1. Graphs of solutions and field of directions of a
differential equation

Not only the set of solutions, but the differential equation itself
can be represented as a geometric object. The equality y' = f(z,y)
means that the slope (more exactly, the tangent of the slope angle) of
the graph of the unknown solution at the point (z,y) should be equal
to the known number f(z,y). Therefore, at every point of the plane
(z,y) we know the direction in which the integral curve (the graph
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of a solution) should pass. We arrive at the following conclusion:
the geometric object associated with the differential equation (48) is a
field of directions in the plane. A field of directions is fixed whenever,
for every point of the plane, one defines a line passing through that
point.

Geometrically, the problem of integrating a differential equation
is formulated as follows: given a field of directions in the plane, find all
the curves that are everywhere tangent to the given field. Such curves
are referred to as integral curves of the field of directions. Figures
1 and 2 show the direction fields and the families of integral curves
corresponding to equations (51) and (49), respectively.
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Figure 2. Field of directions and solutions of another differ-
ential equation

Exercise 161. Draw the direction fields and the families of integral
curves for equations (50) and (52).

Exercise 162. What are the integral curves of the field of directions
shown in Figure 3? Does this field correspond to any differential
equation?

Using only indefinite integration, one can solve not only equations
of class (53) (independent of y), but also equations of the form

(56) y' = f(z)9(y),

This can be done by the following classical trick. Write 3’ as the ratio
of two differentials dy/dx and then rewrite (56) as

d—y = X T
(57) 9(y) () de.

As you see, the variables are separated: on the left, we have only y,
on the right, only z. This is why equations of type (56) are called
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Figure 3. A field of directions in the plane

equations with separating variables. Integrating both sides of (57), we

obtain

(58)

(it is understood that one side of this equality contains an arbitrary
additive constant C). This is an implicit formula for the general
solution of (41). If y is expressed in terms of z, we will get an explicit
general solution.

Problem 58. Find the general solution of the differential equation

(59)

Y = (22 +1)/(3y%).

Solution. Rewrite the equation in terms of differentials:
3y? dy = (2z+1) dr. Finding the indefinite integral gives
y3 =22+ 2+ C, whence y = V22 + z + C. This is the
general solution of Equation 59.

Special cases of equations with separating variables consist of

equations whose right-hand sides depend on only one variable, x or

Y.

Exercise 163. Find the general solution of equation (52).
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2. Change of variables

We now discuss of the relation between the differential equations and
the main theme of the book — transformations of the plane.

It turns out that in various methods of finding solutions of dif-
ferential equations a crucial role is played by changes of variables. If
we pass from variables z, y to new variables u, v according to some
formulas

u = w(x,y),
(60) {v = P(z,y),

then the equation y' = f(z,y) transforms to another equation
(61) v = g(u,)

where the prime means the derivative with respect to u, not z. If it
turns out that in this equation variables separate, then we can solve
it and then, using (60), return to the initial variables z, y and obtain
the solution of the initial equation.

What we have described is a very simple, but very effective meth-
od of integration: make a change of variables that leads to an equation
with separating variables.

Problem 59. Solve the equation y' = y—=x (49) by reducing it to an
equation with separating variables.

Solution. Let us make the following change of variables:

u =
v = y—z—1

Since u = z, the derivative with respect to u is the same
thing as the derivative with respect to z; therefore no
confusion arises if we denote both of them by a prime.
Next we have y' = v’ + 1 and, substituting this into the
given equation, we obtain the equation v’ = v. This is
an equation with separating variables, it has the general
solution v = Ce¥. Coming back to the variables z, y,
we get the general solution of the initial equation in the
form y=Ce®*+x+1.
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Exercise 164. Find the change of variables that transforms the equa-
tion y' = y?42xy+z? -1 to an equation with separating variables.

The formulas of the change of variables (60) have a double geo-
metric meaning.

First, regarding z, y as Cartesian coordinates of a point in the
plane, we can view u, v as the coordinates of the same point in another
curvilinear coordinate system. For example, the formulas

{zm
v

= arctan y
x

or the equivalent formulas

T = wucoswv,

Yy = usinv
introduce the system of polar coordinates (u,v).

Second, we can think that we deal with a transformation of the
plane, which takes a point with coordinates (z,y) into the point with
coordinates (u,v) where u = ¢(z,y), v = ¥ (u,v). All the coordinates
are in this case calculated in one and the same coordinate system.
To visualize the transformation in this case, it is useful to draw the
images of the coordinate lines x = const and y = const.

3. The Bernoulli equation

Historically, the first person who successfully applied transformations
of variables to differential equations was probably Johann Bernoulli,
who solved the equation (now bearing his name)

(62) y = Ay + By",

where A and B are given functions of z. He managed to reduce this
equation to a simpler (linear) equation

(63) y =Py+Q,

where P and @ are again functions of z.

Let us first explain how the linear equation is solved. Write the
unknown function y as a product y = uv, where u and v are unknown
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functions of z. Substituting this into (63), we get
w'v+uv’ = Puv+ Q.

This equation is satisfied, if the following two relations hold: u’ = Pu,
v = @Q/u. The first is an equation with separating variables, from
which we can find the function u(xz). Feeding it into the second one,
we can find v(z) by simple integration. We thus get the solution of
the initial equation y = u(z)v(z).
Exercise 165. Find the general solution of the equation
' _ oY _ .3
Yy = 23: z° 4 x.

Problem 60. Find a transformation that reduces Bernoulli’s equa-
tion (62) to the linear equation (63).

Solution. Equations (62) and (63) differ only in the
exponents of the dependent variable y. Therefore, it is
natural to try a transformation of the form y = v* (pre-
serving the independent variable x). Let us substitute
this expression into the equation and see what happens:

kvt~ = Av* + BoF™,

or

If £k = 1/(1 —n), the second exponent kn — k + 1 be-
comes 0 and we arrive at a linear equation! Therefore,
the required transformation is y = v/(1=7),

Exercise 166. Find the general solution of the equation
y_zy’+1
2y

A reader who has solved this exercise (or looked at the answer
in the back of the book) might be perplexed by the fact that the
solution is not given by a conventional formula, as a closed expression
in elementary functions. We must therefore say a few words about
integration in closed form. The function

/e_zz/Qd:c,
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although it is not an elementary function (it cannot be written as a
combination of polynomials, trigonometric functions, logarithms and
exponents), is in fact almost as good as any elementary function. Its
numeric values can be found by computer to any degree of precision
and its properties are well known, because this function is widely
used in probability theory and statistics. The same refers also to the
integral of any elementary function. This lays the groundwork for the
following important notion.

A differential equation is said to be integrable in closed form, if
its general solution can be written by a formula involving elementary
functions, indefinite integrals and inverse functions.

The simplest example of an equation which is not integrable in
closed form is the equation

Y =y'+=z

(this fact was proved by J. Liouville in 1841). This equation is a
particular case of the so-called Riccati equation

(64) Y =a(y’ +z").

Exercise 167. Find the general solution of the Riccati equation (64)
for n = 0.

In the year 1742, D. Bernoulli and J. Riccati discovered a discrete
series of values of the parameter n for which the equation (64) can
be integrated in closed form. This was done by a very elegant trick,
actually by means of a cyclic group of transformations. The idea was
to find a change of variables which takes (64) into an equation of the
same form, but with a different value of the exponent n, and then try
to reduce the equation to the case n = 0 (which is integrable, as you
know from Exercise 167).

Let us first make the change of the dependent variable according

to the formula
1 1

T ax’
Feeding this into (64), after some simplifications we obtain an equa-
tion for v:

1
(65) v =a (——2 - x"+2v2> ,

T
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where the prime, as before, means the derivative with respect to x.

This is not yet a Riccati equation, but we will get one if we
change the independent variable according to the rule? u = z"*+3 (or
x = u!/("+3). Indeed, by the chain rule we have

dv dvdu dv nt2 dU
p_ 7 _ 777 _ 2= n+2 — n -z
dr dudx du(n+3)x (n + 3Junss du’

A simple calculation shows that after this change equation (65) be-
comes p
v a 2 _Eir_‘é)
_— = — n+3 ) .,
du n+3 (U tu

This is again a Riccati equation, but with the exponent n changed
to —(n+4)/(n+3).

If, for example, we had an equation with n = —4, after this
transformation we would obtain the equation with n = 0 — which is
integrable. Therefore, Riccati’s equation with n = —4 is integrable,

too.
Exercise 168. Find the general solution of the equation y' = y* +
-4
z %

Exercise 169. Find one more value of n for which the Riccati equa-
tion is integrable in closed form.

Now let us make our observations into a general theory. We know
that, if the Riccati equation is integrable for a certain exponent m, it
is also integrable for the exponent n such that —(n+4)/(n+3) = m,
ie. n=—3Bm+4)/(m+1).

Consider the fractional linear function

g(m) = — 3m + 4'
m+1
By the previous argument, if the Riccati equation (64) is integrable
for some exponent m, then it is also integrable for the value g(m).
Repeating the transformation, we deduce that it is also integrable
for the exponents q(q(m)), q(q(g(m))) and in general for any ¢*(m),
where ¢* means the k-th power of the transformation g.

Exercise 170. Find an explicit formula for ¢*(m).

2We only quote the transformations invented by Bernoulli and Riccati. Nobody
knows how they found them!
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Note that the inverse transformation ¢~! has the same property:
it takes an “integrable” exponent into an “integrable” exponent. We
obtain an infinite cyclic group generated by the fractional linear trans-
formation ¢q. This group acts on the set of all real numbers (expo-
nents of the Riccati equation). The property of the equation to be
integrable in closed form is an invariant of this action. Therefore,
each orbit either consists entirely of exponents for which the equation
is integrable, or contains only such exponents for which the equation
is not integrable.

In particular, the orbit of the number O furnishes an infinite se-
ries of Riccati equations that are integrable in closed form. Their

exponents are
4k

k
0)=——,
¢ (0)= 75
where k € Z is an arbitrary integer. Note that ¢*(0) tends to the
value —2, when k goes to infinity.

Exercise 171. Prove that the Riccati equation (64) is also integrable
for the exponent n = —2.

We must, however, warn the reader that, starting from the “inte-
grable” value n = —2 and using the transformation g, it is impossible
to find any new integrable cases, because the number —2 is a fixed
point of ¢ and its orbit consists of only one point.

We have thus found two integrable orbits in the set of Riccati ex-
ponents. J. Liouville proved that for all the remaining values Riccati’s
equation cannot be solved in closed form.

4. Point transformations

So far, we have only encountered changes of variables of the form

v = elu),
66
( ) { Yy = 1/)(% 'U)a
i.e., where the independent variable z is expressed in terms of the
new independent variable only. In this case it is easy to express the
derivative dy/dz in terms of u, v and dv/du using the chain rule
dy/dx = dy/du - du/dz.
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One can, however, use arbitrary transformations of the indepen-
dent and dependent variables z = p(u,v), y = ¥(u,v) (point trans-
formations). To derive the transformation formula for the derivative
dy/dzx in this case, we will need the notion of partial derivatives.

Definition 43. Let z = h(z,y) be a function of two variables. If
the value of y is fixed, y = yg, we obtain a function of one variable
z = h(z,yo). The derivative of this function at the point zg is called
the partial derivative of the function h(z,y) with respect to the variable
x at the point (zo,yo). The partial derivative is denoted by g—};(l‘o, Yo)-
Symbolically,

oh dh(z, yo)

h(zg + ¢, — h(zq,
%(xﬂayO): ( 0 yO) ( 0 yO)

= lim .
dz |z=z0 e—0 €

Problem 61. Compute the partial derivative over x of the function
z2=1+/9 — 22 — y2 at the point (2,1).

Solution. Assigning y = 1, we get a function of one
variable z = v/8 — z2. Its derivative is —z/v/8 — 2. For
T = 2 we obtain

0z
721 =1

When the point (zg,y¢) varies, the value g—;(]]a, yo) becomes a
function of the variables zy and yo. Using the normal notations (z, y)
instead of (zo, yo), one gets a function of the variables z and y denoted
by 8z/8z or simply z,. Thus, for the function z = /9 — 22 — y2 we

obtain
0z T

oz 9 —z2 42

Once again, to compute the partial derivative z,, one has to dif-
ferentiate z(z,y) with respect to z, treating the variable y as an
arbitrary constant. The partial derivative with respect to y is de-
fined in the similar way, treating z as a parameter. For the function

z=+/9 — 22 — y2 we have

0z y

dy VI—a2—y?
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We also explain the geometric meaning of partial derivatives.
Consider the surface in 3-space consisting of all points (z, y, z(z,y))

— the graph of the given function of two variables. Figure 4 depicts
the graph of our favourite function /9 — z2 — 32.

0

"n‘nl...

i\‘.

Figure 4. Partial derivatives

Given a point (zg,yo), at which the function z(z,y) is defined,
draw the plane y = yq. It cuts the surface along a certain plane curve.
The slope of the tangent line to this curve at the point (zg, yo) gives
the value of the partial derivative z,(zq, yo)-

Another partial derivative zy(zo,yo) is the slope of the tangent
line to the section of the surface by the plane z = zy. Figure 4 shows

both sections and their tangent lines for the function /9 — z2 — y2
at the point (2,1).

The plane passing through the two tangent lines is the tangent
plane to the graph of the function at the given point. Its equation is

(67) z— 20 = p(z — z0) + q(¥ — Yo),

where 20 = h(z0,%0), p = $(z0,%) and ¢ = ‘g—;‘(xo,yo). Indeed,
substituting = ¢ into (67), we get the equation of the tangent line
to the graph of h(zg,y) viewed as a function of y, and substituting

Yy = Yo, the similar equation for h(z,yp).
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The point of the surface and the point of the tangent plane, both
corresponding to one and the same point (z, y) of the horizontal plane,
are very close to each other, if the point (z,y) is close enough to
(z0,y0). Therefore, the difference z — 2z, computed by formula (67),
can be viewed as an increment of the function h(z,y), when its ar-
gument moves from (zg,¥o) to (z,y), provided that this shift is “in-
finitely small”. Denoting the infinitesimal increments of the three
variables by dz, dy and dz, we can write

(68) dz = zzdz + zydy
(the formula of the differential of a function of two variables).

With the help of this formula, we will now obtain the transforma-
tion rule for the derivative dy/dx when the variables z and y undergo
an arbitrary point transformation

z = ¢(u,v),
% {y = ¥(u,0).

Using the notation y' = dy/dz, v' = dv/du (note that the prime has
different meaning in either case), by formula (68) we can write

= yudutyodv _ Yu+Yole _ Yu+yt

70 =% _ - ,
(70) dz  zydu+z,dv oz, + xvg—z Ty + TV

We see that the derivative 3’ is expressed as a fractional linear
function of v with coefficients depending on u and v, i.e., as a projec-
tive transformation of v’ (see (2)). This remarkable fact, by the way,
leads to a deep connection between projective geometry and ordinary
differential equations, but we will not discuss that in this book.

As we noticed before, (69) can be viewed either as the passage
from one coordinate system in the plane to another, or as a mapping
of the plane into itself according to the rule (u,v) — (z,y). In the
latter case (70) describes how the slope of the plane curves changes
under this mapping (see Figure 5): ¢’ is the tangent of the angle to
the horizontal line for a given curve, while 3’ is the tangent of the
similar angle for the image of this curve.

Let us call a point of the plane together with a direction (a
straight line) attached to this point a contact element. A contact
element is described by three numbers (z,y, p), where (z,y) are the



4. Point transformations 211

r

Figure 5. Point transformation

coordinates of the given point and p is the slope of the line (the tan-
gent of the angle it makes with the horizontal axis). The set of all
contact elements thus forms a three-dimensional space — the space
of contact elements. Some of its elements are shown in Figure 6.

Figure 6. Contact elements

Formula (70), taken together with (69), defines a certain trans-
formation of the space of contact elements, which corresponds to the
plane transformation given by formula (69) alone.

Problem 62. Find the transformation of the space of contact el-
ements that corresponds to the inversion with respect to the circle
22 4+ 9% =1.
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Solution. Under the inversion, the coordinates of a
point transform as follows:

_ T
YT ey y2
- _Y
z2 4 y?’
The partial derivatives of these functions are
y? —x? —2zy
U = —_— Uy = ————— s
z (a:2 + y2)2’ Y (:52 + y2)2
—2zy z? —y?
Vz = 2 L 2 T TR A
(=% +12) (=% +9°)

By (70) we obtain

vetoyy (22 —yt)y - 23y
Ug + uyy, —2zyy’ +y? — z?’

(71) v =

As a corollary of this result, we can prove the following theorem,
which generalizes the assertion of Exercise 153 (see page 187).

Theorem 18. A plane inversion preserves the angles between curves.

Proof. The angle between two curves is, by definition, the angle
between their tangent lines. If we have two curves in the (z, y)-plane
such that the tangents of the slope angles are p; and p,, then the
angle o between the curves satisfies

Let ¢; and g2 be the corresponding tangents for the images of
the two curves after inversion, and let 8 be the angle between them.
Then

91 — Q2
72 tang = ————.
(72) g 1+qiq2
According to (71), we have
ap1 +b
q = ’
bpy —a
aps + b
Q@ =

bpg——a’
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where a and b are certain constants depending on the point (z,y).
Feeding this into (72), we get

ap1+b_ap2+b

bpy—a bpa—a P1— P2
tanf = = - = —tano
p 1+ap1+bap2+b 1+ pips ’
bpr —abp; —a
which means that the inversion preserves the angles, but changes the
orientation of the plane. O

We now give an example where a generic point transformation is
used to solve a differential equation.

Problem 63. Solve the differential equation
(y* — 2?) (x2 + (x? +y2)2) + 22y (y2 + (=% + y2)2)
2zy (:U2 + (22 + y2)2) + (22 — y?) (y2 + (22 + y2)2)

Solution. Let us make the change of variables

u
TS ar
v
Y 7 2y
J = (u? — v?)v' — 2uv

—2uvv’ + 12 —u?’
Substituting these expressions in the given equation, we
obtain, after simplifications,
, ui+1
B
Here the variables separate: (v? —1)dv = (u?+1)du,
and the general solution is given by the following implicit

function: s s
v u
—=—+C.
3 3
Going back to the variables (z, y), we obtain the an-
swer:

' - =3 +y) e+ + C” + %),

C being an arbitrary constant.



214 7. Symmetries of Differential Equations

Exercise 172. (a) Find the expression of dr/dy in terms of dy/dz,
if (z,y) are Cartesian coordinates and (r, ) are polar coordinates
in the plane. (b) Using the formulas obtained in (a), solve the
differential equation yy' + z = (x> + y*)(zy’ — y) by passing to
polar coordinates.

5. One-parameter groups

Definition 44. A one-parameter group of plane transformations is
an action of the additive group R on the plane.

This means that for every real number ¢ a transformation g; is
defined in such a way that the equality g: o gs = gs++ holds for every
pair s,t € R. In other words, we deal with a homomorphism from the
group R into the group of plane transformations. In this case we say
that {g:} is a one-parameter group of transformations of the plane.
Let us stress that a one-parameter group is not simply the set {g;},
but this set together with the parametrization ¢ — g;.

The simplest example of a non-trivial one-parameter group is the
group of parallel translations, say, in the direction of the axis Ozx: ¢,
is the translation by te;, where e; is the horizontal unit vector.

Exercise 173. Prove that any two transformations belonging to a
one-parameter group commute.

A one-parameter group can be written in coordinates as a pair of
functions of three variables:

(73) { Ty = <p(il7, Y, t)a

B = w(ﬂ? »Ys t) .
Here (z,y) are the coordinates of an arbitrary point in the plane, and
(zt,yt) are the coordinates of its image under the transformation g;.
For any fixed value of ¢t we obtain a pair of functions of two variables
that define a concrete transformation.

The group law, i.e., the relation g4 o g5 = gs+¢, can be written in
terms of functions ¢, ¥ as follows:
()0(()0(37? Y, S), 7.0(33, Y, S)u t) = 80(55'7 Y, s+ t)a
(74)
'l/)((p(z7 y7 s)? /(/J(x? y7 S)’ t) = w($7 y7 S + t)'

This is the definition of a one-parameter group written in coordinates.
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For example, the group of horizontal translations is represented
by the functions
{ Ty = T+t
Yt = v

for which the relations (74) are obviously fulfilled.

|

Exercise 174. Consider the set of all homotheties with a common
centre and positive coefficients. Is this a one-parameter group?

The observant reader will notice that the question of this exercise
is not correctly posed, because a one-parameter group presupposes a
fixed parametrization of the given set of transformations. If we assign,
to every number ¢ € R, the homothety with stretching coefficient ¢,
we won’t obtain a one-parameter group, because the composition of
homotheties with coefficients s and ¢ is the homothety with coefficient
st, not s + t. Fortunately, we know the trick that turns addition
into multiplication: this is the exponential function. Assigning the
homothety with coefficient e! to the number ¢, we get a genuine one-
parameter group. Placing the centre of homotheties at the origin, we
can describe the group by the functions

{ ;. = ez,
yw = ey
Relations (74) obviously hold.

A one-parameter group can be visualized through the set of its
orbits. Figure 7 shows the orbits of the two groups that we have
mentioned: translations and homotheties.

—. >
TN

Figure 7. Orbits of one-parameter groups of translations and homotheties
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We must note that the set of orbits does not uniquely define the
one-parameter group. A simple example of this is provided by the
group of translations with a double speed

{xt = 1+ 2t
Yt = Y,

which has the same orbits as the group of translations previously
discussed (shown in Figure 7a).

Exercise 175. Define a one-parameter group of rotations with a com-
mon centre, write its coordinate representation, and draw its or-

bits.
Exercise 176. Check that the relations
zy = e*(xcosbt— ysinbt),
¥y = e*(xsinbt 4 ycosbt)

define a one-parameter group. Explain its geometric meaning and
draw its orbits.

Exercise 177. Let z; and y; be the roots of the quadratic equation
for the unknown w

(w-z)(w-y)+t=0,
chosen in such a way that xz:, y: continuously depend on ¢t and
To=2T, Yo =Y.
The numbers z; and y; are functions of three variables z, y

and t. Prove that these functions define a one-parameter group
of transformations, and draw its orbits.

6. Symmetries of differential equations

A differential equation, viewed as a field of directions in the plane,
may possess some symmetry. One glance at Figure 1b is sufficient to
understand that this field of directions is preserved by any translation
along Oy as well as translations along Oz by whole multiples of 27.
Transformations of the first kind form a one-parameter group z; = z,
y; = y+t. Transformations of the second kind form an infinite cyclic
group (see p. 87).

It turns out that the knowledge of a one-parameter group of sym-
metries enables one to find the general solution of the equation under
study in closed form.
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Passing to exact definitions, suppose that we are given a differ-
ential equation

(75) ¥ = f(z,y)

and a transformation of the plane

z = ¢(u,v),
76
(7 Ly ey
By (70), we can find the corresponding expression of y' = dy/dz
through u, v and v' = dv/du.

Definition 45. Transformation (76) is called a symmetry of the dif-
ferential equation (75), if the equation for v(u) obtained after the
expressions for u, v and v’ are substituted into (75) has the same
function f in its right-hand side:

v = f(u,v).

In geometric language this means that the transformation of the
space of contact elements given by (69) and (70) preserves the surface
in this space that consists of all contact elements belonging to the
given field of directions.

Figure 8. Differential equation as a surface in 3-space

Figure 8 shows such a surface for the differential equation y’ =
cosz, and you can see that the transformations

ry = x,
Yy =y + t1
bt = P
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and
ry = x+ 27k,
Y = Y
bt = p

map this surface into itself.
There are two main problems about the interrelation of differen-
tial equations and one-parameter groups:
(1) Given a differential equation, find all (or some) groups of its
symmetries.

(2) Given a one-parameter group of plane transformations, find
all (or some) differential equations preserved by this group,
i.e., such that the group consists of their symmetries.

For practical needs (solving differential equations) the first ques-
tion is more important. But it is also more difficult. Therefore, let
us first discuss the second question.

We start with two simple examples, where the answer is obvious:
e The general equation preserved by the group of z-transla-
tions is
(77) ¥ = fy)
We have earlier considered a particular case of this, equation
(52).
e The general equation preserved by the group of y-transla-
tions is
¥ = f(a).
We have encountered equation (51), belonging to this class.

Let us now consider more interesting groups.

Problem 64. Find the general form of a differential equation pre-
served by the group of rotations of the (x,y) plane centred at (0,0).

Solution. Under the rotation through an angle « every
contact element moves together with the point of attach-
ment and turns by the same angle o (Figure 9).
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(78)

yl

Figure 9. Action of rotations on contact elements

Hence, the angle it makes with the radius-vector of
the point (z,y) does not change. Therefore, a field of
directions (= a differential equation) is invariant under
the group of rotations, if and only if the angle between
the direction of the field and the radius-vector depends
only on the distance from the origin. We can take the
tangent of the angle instead of the angle itself, and the
square of the distance instead of the distance. Using the
formula for the tangent of the difference of two angles,
we obtain the general form of the equation admitting the
group of rotations around the origin:

:ny’—y* 2 2

f being an arbitrary function of its argument. Resolving
this with respect to ¥, we can write the answer as follows:

,wf@+y) +y
S z—yf(z®+9?)’

Exercise 178. Find all differential equations that admit the one-

parameter group of homotheties.

Exercise 179. Find all differential equations that admit the one-

parameter group of spiral homotheties described in Exercise 176.



220 7. Symmetries of Differential Equations

7. Solving equations by symmetries

In this section, we will prove the following fact: if a one-parameter
group of symmetries of a differential equation is known, then it can
be reduced, by a change of variables, to an equation with separating
variables — and hence its general solution can be found in closed
form.

To find the new coordinate system in which the variables separate,
we will use invariants of one-parameter groups, so let us first mention
some of their properties and consider some examples.

We recall (see Section 6) that an invariant of a group action is a
function which is constant on the orbits. In other words, a function is
an invariant, if it has equal values at any two points that map into each
other by a transformation of the group. To give a simple example, any
function of y is an invariant of the one-parameter group of translations
along Oz. The function y itself is the universal (complete) invariant
of this group action, because its values on all orbits are different.

In the same way, the function z is the universal invariant of the
group of translations in the direction of the axis Oy.

What is the universal invariant of the group of homotheties with
centre 0 acting on the plane without the origin? One is tempted to
think that it is the polar angle . Indeed, the polar angle ¢ takes
equal values at all points of every ray (half-line) that issues from
the origin, and different rays correspond to different values of the
function. However, the polar angle ¢ is not a normal single-valued
function on the plane, for example, to the point (—1,0) one can, with
equal truth, assign the values 180° and —180° (and an infinite number
of others). Of course, one can make ¢ a single-valued function using,
for example, the convention that ¢ must always take values between
0° (including) and 360° (excluding) — but then it will become a
discontinuous function. In fact, the group of homotheties does not
have any continuous universal invariant with values in R. Of course, it
does have continuous invariants which are not universal, for example,
the function sin ¢.
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Exercise 180. Find an invariant of the group of rotations around the
origin. Does this group have a universal continuous real-valued
invariant?

There are two approaches to the problem of finding the invariants
of a given one-parameter group:

(1) The formal approach. Assuming that the group is given
in coordinates by a pair of functions (73), the problem is
to make up a combination of the expressions p(z,y,t) and
¥(z,y,t) that does not contain the variable ¢, i.e., to find a
function h(yp, ) that does not depend on t.

(2) The geometric approach. In the plane, we draw a curve K
that meets every orbit of the group in exactly one point
(see Figure 10). We choose an arbitrary function on this
curve that takes different values at different points, and then
prolong it to the whole plane, following the rule that the
value of the function at any point A is set equal to its value
at the point B where the orbit meets the chosen curve K.

u=0

u=u0
Figure 10. Invariant of a one-parameter group
Problem 65. Find an invariant of the one-parameter group

{:ct = z+t,
¥y = ey
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Solution. Formal method. Looking at the above for-
mulas for a while, one can guess that the combination
ety-e®tt = ye~® does not depend on t and thus provides
an invariant of the group.

Geometric method. The orbits of the given group are
shown in Figure 11.

,// X
Y

Figure 11. Orbits of the group studied in Problem 65

The coordinate axis Oy meets every orbit in one
point, so we can choose it as the curve K. The function
v(0,y) = y takes different values at different points of this
line, so let us find its prolongation to all the plane along
the orbits of the group. Let A(z,y) be an arbitrary point
of the plane and let B(0,v) be the intersection point of
the corresponding orbit with the y-axis. From the equa-
tions of the group we see that there is a number ¢ such
that £ = ¢, y = etv. From these equations we find that

v = ye~*. Thus, the invariant is ye™*.

Exercise 181. Find a non-trivial invariant of the group of spiral ho-
motheties (Exercise 176) by the above two methods.

We finally get to the question of integrating differential equations
with a known symmetry group. The first principle is that it is useful to
pass to new coordinates such that one of the new coordinate functions
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is an invariant of the group. After such transformation it often (but
not always) happens that the variables separate, and the equation
can be solved in closed form. Let us consider an example that comes
up quite often.

Problem 66. Find the general solution of the differential equation
(79) y = fy/x).

Solution. Such equations are called homogeneous. As
we know from Exercise 178, homogeneous equations are
invariant with respect to the one-parameter group of
homotheties with the centre (0,0). Since the function
y/z is an invariant of this group, let us take it for the
new dependent variable, leaving the independent vari-
able z unchanged. We thus set v = y/z, or y = zv;
hence y' = v + zv’. Substituting this into (79), we get
v+av' = f(v), or

This is indeed an equation with separating variables.

Exercise 182. Continuing the previous argument, find an explicit
answer in the particular case of the equation y' = 1 4 2y/=z.

Exercise 183. Do the variables in (79) separate in polar coordinates?

Exercise 184. Adapt the argument of Problem 66 to the equations

of the form
r_ az +by +c
Y _f((1193+b1y+C1>'

We must stress that taking the new dependent variables to be an
invariant of the group does not guarantee the separation of variables.
The choice of the independent variable is also very important. For ex-
ample, if, in the equation (78) that admits the group of rotations, one
goes over to polar coordinates, then the new equation has the form
udv/du = f(v), where the variables separate. However, the transfor-
mation u = z, v = 2% + y? (the second variable is a group invariant)
does not lead to an equation with separating variables (please check).
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To get a universal rule for the integration of equations with a
known one-parameter group of symmetries, we will try to find a coor-
dinate system (u, v) such that in these coordinates the group looks as
simple as possible, for example, consists of parallel translations along
the axis u. The general form of an equation that admit this group
is, as we know, dv/du = ¢(v). Here the variables separate, and the
equation is solvable in closed form. It remains to understand how we
can reduce the initial one-parameter group to this simple form by a
change of coordinates.

In the coordinates (u, v) we want the transformations of the group
to have the form u; = u + ¢, v; = v. These transformations map the
coordinate line u = 0 into the parallel lines v = ¢t. Choose a real-
valued function v(z,y) which is an invariant of the group. The orbits
are given by the equation v = const. Choose a curve K which meets
every orbit in one point, and assume that K is the v-axis of the new
coordinate system, i.e., is described by the equation v = 0. Then,
to fulfill our plane, we must assume that the image of K under the
group transformation g; should be described by the equation u = ¢.

If, instead of this function u, we take for the independent variable
another function w that has the same level lines w = const (the line
w = t should be the image of w = 0 under some transformation of
the group, but not necessarily g;), then we will also have an equation
with separating variables in the new coordinates. Indeed, in this case
w is a function of w: w = h(u), which, upon substitution into the
equation dv/du = ¢(v), gives an equation dv/dw = p(v)y(w).

We can state this result as the following variable separation the-
orem.

Theorem 19. Suppose that we know a one-parameter group G =
{gt} of symmetries of a differential equation E. Then the equation
E becomes an equation with separating variables in any coordinate
system (u,v) such that the coordinate lines v = const are the orbits
of the group G, and the lines u = const go into each other under the
transformations gz.

Problem 67. Solve the differential equation

2 -
y = g(y2 +z72).
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Solution. If z is multiplied by a constant & and y by
its inverse k!, then 3’ gets multiplied by k=2 (you can
also check that using formula (70)). All the terms of the
given equation increase by the same factor, so that the
equation actually does not change. This means that the

group
e = e iz,
{ yo o= ey
is a group of symmetries of the given equation.
This group is called the group of hyperbolic rotations.
Its orbits are branches (connected components) of the
hyperbolas zy = const (see Figure 12). The product

zy is an invariant of this group. We take it as the new
dependent variable: v = zxy.

y

/
[T

N
NS
pu
Vs

Figure 12. Orbits of hyperbolic rotations

Note that the vertical lines £ = const are mapped
one into another by hyperbolic rotations: the image of
the line = a is the line z = e~ta. Therefore, we can
set  to be the new coordinate u. The required change
of variables is thus

xr =

y =

ISEESIRS
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After this change of variables the given equation be-
comes
, 202 4+50+2
=
S5u
The variables separate, and the general integral is
v+ %
v+ 2
Expressing v and v through z and y, we obtain the an-
swer:

= Cu3/®.

3 2
2(x —C28/%) o
Remark. The same procedure solves the equation
y' = a(y?+ x~?) for an arbitrary value of a. The reason
why we only considered a special case is that the general
answer is rather cumbersome.

y:

Exercise 185. Find the general solution of y' = (z + 3%)/(zy).

As the last example, we consider an equation where it is impos-

sible to separate the variables by a change of the form z = ¢(u),

y = Y(z,y).

Problem 68. Solve the differential equation

;WP -2 -5y —z)+4

using the one-parameter group

T 2P sy o) 4
:th — e¢_+_26—¢x+ et___2€—t y’

£ -t t et
Yy = S+ Sy

Solution. These transformations are hyperbolic rota-
tions (see 7), but considered in a coordinate system ro-
tated through 45° with respect to the initial one. The
2 is a group invariant. Note that the
families of vertical or horizontal lines are not preserved
by the transformations of the group; hence it is no good
to take u = x or u = y. However, the lines y — x = const

function v = y% — z
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do have this property. Set u = y — z. Then after the
transformation the equation becomes

dv  5v— v -4

du u '
The variables separate!

Solving this equation and making the inverse change

of variables, we obtain the implicit solution to the initial
equation:

2 2
y -z -1
y2_x2__4zc(y_z)3'

Exercise 186. Solve the differential equation y' = e %y? — y + €°
with the help of the symmetry group z: =z + t, y: = e'y.

We have thus learned how to solve a differential equation, if a
one-parameter group of its symmetries is known. “This, however, by
no means implies that any differential equation Xdy — Ydz = 0 can
be solved in closed form. The difficulty consists in finding the one-
parameter group that leaves it invariant”. These words were written
by Sophus Lie, the Norwegian mathematician who created the the-
ory of continuous groups and found its applications to differential
equations, the simplest case of which was described in the previous
pages. As a last remark, let us mention that during the last 30 years
or so some algorithmic methods for finding the symmetries of differ-
ential equations have been elaborated and implemented in numerous
software systems of computer algebra.
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Solutions to Exercises

1. Example: triangle with vertices (0,0), (12,9), (24, —7).

2. The problem can be solved either by a direct construction
or using the result of exercise 6. Answer: the polygon ®
may have 3, 4, 5 or 6 vertices.

3. A necessary and sufficient condition is k — 1 = 1. To prove
this, rewrite the given expression as A; + A; — By + Az —
By +---.

4. Problem 2 shows that the given assertion is equivalent to
Euler’s theorem, which says that ]\ﬁ = 20—]\7[ , Where M is
the median intersection point, O is the outcentre (the centre
of the circumscribed circle) and H is the orthocentre (the
intersection point of the altitudes) of the triangle. To prove
this theorem, construct the triangle A; B;C; which is twice
as large as ABC and with sides parallel to those of ABC
(see Figure 1) and observe that the perpendicular bisectors
of the sides of triangle ABC coincide with the altitudes of
triangle A; B1C;.

5. The necessary and sufficient condition is a+f+-:-+w = 1.
The proof follows from the vector equality

— — —
aPA+(BPB+---+wPZ

—

=0QA+BQB+ - +wQZ + (a+ B+ +w)Pq.

229
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RS

Figure 1. Euler’s theorem

. The set of all points a1 A1 + agAs + - -+ + an, A, where all

coefficients a; are nonnegative and a; + a2 + -+ a, = 1.

Express all the points under consideration in terms of the
four vertices of the quadrangle.

8. Express these points in terms of the vertices of the hexagon.

9. Express all the points under consideration in terms of the

10.

11.

12.
13.
14.

15.

four vertices of the quadrangle.
Take the intersection point of the two medians for the pole
and use the result of Problem 2.

Answer: the diagonal is divided in the ratio 1:6. Hint: take
one vertex of the parallelogram for the pole, two others for
the basic points, and express the intersection point of the
given line and the diagonal in two different ways.

(a) y="b, (b) z =a, (c) ay = bzx.

The union of the three medians.

Let K be the pole and A, B, the basic points. Express the

coordinates of the points D, E, F in terms of the coordinates
(a,b) of the point C.

See the solution to the previous exercise.
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16.
17.

18.

19.

20.

21.
22.

23.
24.
25.

(Va2 +142 = 2)(Vz? + ¢ -2 -

To both questions the answer is negative.

Expand the point K(0,1) in terms of the basis E, A and
prove that K2 = —E. Therefore, this multiplication coin-
cides with the multiplication of complex numbers (see p. 30).
Using the trigonometric representation of complex numbers,
we obtain the following answer:

E|A|B|C|D
E|E|A|B|C|D
A|A|B|C|D|E
B|B|C|D|E|A
C|C|D|E|A|B
D|D|E|A|B|C

(a) 0, (b) £(2—1), (c) 1 (note that the cube of the given

number is —1).

(a) Circle of radius 5 centred at point —3. (b) Perpendicular
bisector of the segment [—4, 27]. (c) Circle (use the identity
Ip|®2 + 191* = (Jp + q|*> + |p — ¢/|*)/2 for complex numbers p
and q).

The sum in the left-hand side of the equality is equal to
the length of a certain broken line connecting the points 0
and 5 + 5¢ of the complex plane. To see this, observe that
the sum of the numbers z; + (1 — z2)7, (1 — z3) + 228, ...,
29+ (1 — z10)%, (1 —x1) + x10¢ i 5 + 5i.

0°, 90°, 180°, 270°, 45°, 330°.

(a) See Figure 2.

(b) For example, (r —2)(r—2—|sin 3¢|) = 0 or, in Cartesian
coordinates,

13y — |, 0
(x2 +y2)3/2) -
Prove that z = cosa + isina.

Answer: 2n. Proof: similar to Problem 9.

If the point z lies outside of the polygon, then the arguments
of all differences z —a; belong to one segment of width 180°.
Therefore, the arguments of all numbers 1/(z—a;) also lie in
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26.

27.

28.

29.
30.

31.

32.

Figure 2. The curve of Exercise 22(a)

one segment of the same width, and these numbers cannot
sum up to 0.

Use two translations.

One possible solution is to draw the lines parallel to the sides
of the given triangle, through the endpoints of the given
vector, thus circumscribing the triangle around the vector,
and then make a parallel translation to move the triangle to
its initial position.

Let the trapezoid be ABCD with parallel sides AB and
CD. Translate the point B by vector DC toa point B’ and
consider the triangle ACB’.

Use two reflections in the sides of the given angle.
The point symmetric to a vertex of the triangle with respect

to a bisector lies on the opposite side of the triangle (or its
prolongation).

Roll the angle by successive reflections four times and unfold
the reflections of the ray. The phenomenon occurs for all
angles 90° /n with integer n.

After the rotation through 90° the vectors M A; become the
consecutive sides of the given polygon.
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33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

Use rotations through 60°.

Let K be the result of rotation of the point M around the
centre of the square which takes vertex A into B. Show that
AK 1| BM,BK 1| CM,CK 1 DM, DK 1 AM.

Use the point symmetry with respect to the intersection
point of the circles.

The first player should put the first coin in the centre of the
table, then use point symmetry.

Similar to the proof of formula (7) (p. 52). Use a rotation
around the intersection point of the given line with the z-
axis.

Introduce a suitable complex structure in the plane.

Answer: the identity. Proof: use formula (12) (p. 56).

Given three numbers that correspond to the points A, B,
C, by formula (17) find the numbers that correspond to M,
N and P.

It is easy to check that R4, o R o R% o RY = id. Rewrite
this condition in terms of complex numbers.

(a) Reo Ry = T, 4% (b) S; 0 Ry is a glide reflection with
axis AK and vector 21?( , where K is the base of the per-

pendicular drawn from the point A to the line [.

Consider the composition of five point symmetries in the
centres of the consecutive sides of the pentagon. Prove that
it is a point symmetry with respect to one of the vertices of
the pentagon.

Find the axis of the glide symmetry which is the composition
of the three given reflections. Consider the line that passes
through the given point parallel to this axis.

Use the result of Exercise 37.

No, because each shot changes the orientation of the set of
three pucks.

Use the definition of the argument.
(a) RAOSl :SlORA, (b) RBORA ZRAOR(;'.
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49. (a) The line [ is the perpendicular bisector of the segment
AB, (b) The lines [, m and n meet in one point.

50. The set of all points (5—6k+12l, 34+-12k—61), (7T—6k+121,2+
12k—61), (3—6k+12l,14+12k—61), (4—6k+121, —14+12k—61),
(2 — 6k + 121,9 4+ 12k — 6l), (3 — 6k + 12,10 + 12k — 61),
where k and [ are arbitrary integers.

51. (a) yes, (b) yes, (c) no.

52. Take an arbitrary element g € G. By property (2), 7! € G.
By property (1), gog~! =id € G.

53. Use Figure 3.1b and the fact that a movement is completely
determined by the images of three non-collinear points.

54. All these groups are different.

55. Use the result of Problem 21.

56. (a) Yes, for example, a rectangle, (b) no. If R4 and Rp are
symmetries of a certain figure, then Re with C = R4(B) is
also a symmetry.

57. A circle, in particular a point, or the union of a set of con-
centric circles.

58. All possible conjugations in the group of plane movements
are displayed in the following table, which, on the intersec-
tion of a row labelled g and a column labelled f, contains
the element fogo f=1.

Tw | R; | Sm | Un

Ll Ta | Trg | Tsn@ | Tsme

R3 | BT 4y | BTya) | Bsway | Bus

S| St SRg(l) S8m(1) SU,?L(l)

RP(a) Sm(a) Sm(a)
Ul | Uy | Uy | Usmay | Yuma

59. The multiplication table for the group D3 is shown on page
92.
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60.

61.
62.
63.

The identity transformation commutes with everything. All
rotations commute between themselves. Apart from these,
in the group D,, with odd n there are no more commuting
pairs. In the group D,, with even n we also have commuting
pairs of reflections in mutually perpendicular lines.

Verify the equality (f~1)Fo f* = id.
The order of f* is equal to n/ GCD(n, k).
(a)

3(4|5|6|7(8(9]10]|11 (12|13 |14 |15

2|12|4|2|6|4/6|4 |10 4 12| 6 | 8

64.

65.

66.

67.

67.

69.

70.

71.

(b) ¢(m) =m(1—1/p1)---(1—1/px), where p1, ..., pk
are all prime divisors of m.
No. Some straight lines go into themselves under this move-
ment.

The composition of n rotations R yields an identity if and
only if the total angle of rotation, na, is equal to a multiple
of 360°.

The group generated by A and B is Cs, a cyclic group of
order 5. A is a rotation by an angle a = £72° or +144°, B
is the rotation around the same centre by the angle —2a.

No. Any word is equivalent to a word of the form ET*A'U™,
where k, [, m are integers between 0 and 6.

One can take either a suitable pair of reflections or a pair
consisting of a reflection and a suitable rotation. For ex-
ample, two reflections S; and Sy whose axes are adjacent
satisfy the defining relations S? = S = (S 0 S2)™ = id.

Start by proving that none of the movements F; can be a
rotation.

Under the assumptions of the exercise, prove the following
two facts: (1) for any given element a there are two integers
m and n such that a™ = a”, (2) the law of cancellation
holds: if zy = xz, then y = 2.

(1) no: the numbers V2 and —v/2 are irrational, but their
sum is rational. (2) yes, (3) yes, (4) no: the inverse of 3/4 is
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72.
73.
74.

not binary-rational, (5) for example, the set of all numbers
{tann|n € Z}.

z=ba"l.
Check that this operation is associative.

G={zr,1/1—2),(z—1)/z,1—2,1/z,z/(z —1)}. Compo-
sitions of these functions are given in the following table:

1 z—1
11—z x

lH
8
|
—

8

8
| s
-

z—1

T
8
-
i

8

-1

8

8
|

-

T
T
2

—
]|
8

—

T—

1—2 | = L T z=1

8
|
—
—
8
8

T
1—=z
1
x
_z_

—
‘a 8= | a‘
8

1 1—g | 2=L _1 T
T z l1—z

—
8

z—1 r—

75.

76.
7.

78.
79.

80.

81.

For example, the sum of squares of all expressions found in
Exercise 74.

Yes.

Elements S,, Sy, S can be arbitrarily permuted. The total
number of isomorphisms, including the identity, is 6.

A direct verification of the definition of the isomorphism.

Point E corresponds to the identity transformation, while
the points A, B, C, D, K correspond to rotations by 60°,
120°, 180°, 240°, 300°, respectively.

The circle corresponds to the identity transformation, while
the triangle and the square correspond to the remaining two
elements of the group C3. There are two different isomor-
phisms.

Write out the two multiplication tables. By permuting the
rows and columns in one table, make it look like the other
one, up to notation of the elements.
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82.
83.
84.

85.

86.

87.

88.

89.

90.
91.

92.

93.
94.
95.

96.

Yes. The correspondence k < 2k is an isomorphism.
The only pair of isomorphic groups is D; and Cs.

Considering the expression ((go g~1), prove that ¢(¢g~!) =
h~1. Tt follows that p(g~™) = p((g~ 1)) = (A1) = h™".

(1) Number the vertices of the equilateral triangle. (2) Con-
sider the action of this group on the extended real line and
the permutations of the set {0, 1,00} under this action.

Denoting the Napier logarithm by N, we will have N(z;z5)
= N(:Ul) + N(CIIQ) — B.

(a) A direct check of group axioms. (b) The inverse image
of this group under the mapping ¢(z) = tanz would be
an additive group of real numbers containing some open
interval. Prove that it coincides with the whole of R.

(a) zxy = /x® + 93, (b) this operation is the pullback of
multiplication along the mapping z — = — 1.

The group D3 has four proper subgroups: one of order 3
and three of order 2.

Yes, the number —1.

Prove that any subgroup of Z is generated by its smallest
positive element.

Check the group axioms. The notion of the quotient group
(section 2) provides an easier way to prove this fact.

No, because, for example, 2-3 =6 = 0.
Yes. To prove this, write out the multiplication table.

Every solution of the equation z2? = 3y?+8 is also a solution
of the equation z2 = 3y% + 8 (mod 3), which is equivalent
to 2 = 2 (mod 3). However, this last equation has no solu-
tions.

Answer: 81.

The last two digits of a positive integer is the same thing
as its residue modulo 100. The number 2003 is mutually
prime with 100, because it is not divisible by 2 and 5. Since
¢(100) = 100-(1—-1/2)-(1—1/5) = 40 and 2004 mod 40 = 4,
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97.

98.

99.

100.

101.

102.
103.

104.
105.
106.
107.

108.
109.
110.

by Fermat’s little theorem we have: 2003204 = 2003* =
3% =38l.

A homomorphism from Z,, onto Z, exists if and only if m
is divisible by n. Under this assumption, one of the possi-
ble homomorphisms is given by the correspondence @ — a,
where the bar on the left means the residue class modulo m,
while the bar on the right means the residue class modulo
n.

One can get one of the following expressions: z, 1 —z, 1/z,
1/(1 —z), 1 —1/z, x/(z — 1). Compare this with the result
of Exercise 74.

Use the classification of plane movements (Theorem 4 in
section 7).

Prove that ZOAC = ZBEF, denote this angle by « and
consider the rotation of BE around E and the rotation of
AC around A through a.

Both assertions follow from the fact that the determinant
of the product of two matrices equals the product of the
determinants of the two matrices.

(a) Yes. (b) No.

The kernel consists of all odd functions, the image of all even
functions.

Consider the homomorphism ¢(z) = 2™.

Consider the homomorphism ¢(z) = cosz + isinz.

This is the dihedral group D,.

If aba = bab, then the elements x = ab, y = aba satisfy

r? = o>

1

If 22 = y3, then the elements a = 271y, b = y~1x? satisfy

aba = bab.

The set splits into 5 orbits.
{-1,2,1/2}.

{1/2 +iv/3/2,1/2 — iv/3/2}.
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111.

112.
113.

114.

115.
116.
117.
118.
119.
120.

121.

122.
123.

In both cases the action is transitive. Every edge is pre-
served by 2 movements, and every vertex is preserved by 3
movements.

(a) D, S, T, (b) D.
(a) 2, (b) 1, (c) 7.

1 m

— ZnGCD (£:m) where GCD stands for the greatest com-
M=

mon divisor.

60.

16.

30.

(a) 23, (b) 218.

(%) +15(3) +2(3))/30 = 185.

Here is one construction of a complete invariant; it is not
tremendously elegant. but we describe it for want of a better
one. The black beads split the set of all white beads into 4
parts, some of which may be empty. Let m be the number
of white beads in the biggest part, and n, k¥ the numbers of
beads in the two adjacent parts such that n > k. Assign the
triple (m,n, k) to the given necklace. For a necklace with
several biggest parts, among all the triples (m.n.k) choose
the lexicographically biggest one. (Actually, there is only
one necklace for which we must worry about this.) Then
the triple (m,n, k) is a complete invariant of the necklace.

(a) The well-known criteria for the equality of two triangles
(angle and two adjacent sides, side and two adjacent angles,
three sides) provide examples of complete invariants.

(b) The ordered set consisting of the lengths of all sides AB,
BC, CD, DA and one angle ABC is an invariant. This
invariant is complete on the set of convex quadrilaterals.

See the discussion of finite rotation groups on page 79.

Note that an infinite set of points on a circle cannot be
discrete.
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124.

125.

126.
127.

128.

129.
130.

Angle of 360°/n for Cy, or 180°/n for D, with vertex at the
common centre of rotations.

The condition |kn — Im| = 1 means that the area of the
parallelogram is 1. Therefore, by Pick’s well-known formula,
if P is such a parallelogram with one vertex at point A, then
the points of the orbit of A that belong to P are only the
vertices of P.

Use the table of conjugations (page 234).

Let O be an arbitrary point of the plane, and S the orbit of
A under the action of the given group. Let A be an arbitrary
point of S such that the segment OA does not contain other
points of S. Let B be a point of S at tlimﬁ)mal distance
from the line OA. Prove that the pair OA, OB is a system
of generators.

Group of order 18 with generators a, b, ¢ and relations a? =
b2 = c? = (ab)® = (bc)? = (ca)? = (abc)? =e.

pdm, pdg, p2.

Cl pl

Dy | pm, pg, cm

02 p2

D, | pmm, pmg, pgg, cmm

Cg p3

D3 | p3lm, p3ml

04 p4
D4 P4m, p4g
Cﬁ p6

Dg | pbm
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131.

132.

133.

134.

135.
136.

137.

138.

139.

It is easy to see that a number, if present, stands for the
maximal order of a rotation, the symbol m (‘mirror’) is for
a reflection, g for a glide reflection. The distinction between
p and c is more subtle: the crystallographers’ implication
is primative or centred cell, but that does not seem to have
any mathematical meaning other than the groups with a c
may have a cell in the form of an arbitrary rhombus (see
page 160), which leaves a layman wondering why no similar
notation is used for rectangles or hexagons. Finally, the
order of m and 1 in the notations p3ml and p31m looks
completely enigmatic.

Define a homomorphism of Aff(2,R) onto GL(2,R) and use
the first homomorphism theorem (page 134).

There is an affine transformation that takes the given trape-
zoid to a trapezoid with equal sides.

Both groups have order 6 and are isomorphic to the dihedral
group Ds.

Point m/p, if p # 0.

Write out explicit formulas for the composition and the in-
verse transformation.

By a direct computation, check that

rh—x] Th—zx, Tz—x1 Th—Ty

zh—xh Ty —xh T3—T2 Ty—To

if 2} = (mx; +n)/(px; + q).
As in Exercise 74, the complete list of elements of this group
can be obtained directly, taking the compositions of the two
given functions until the elements begin to repeat.

To prove the isomorphism, find two generating elements
of this group that satisfy the defining relations of the group
D,, (see formula (25) on page 92).

The transformation z — (mz +n)/(pz + ¢) has finite order
if and only if
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140.

141.

142.

143.

144.

145.

146.

147.

148.

where « is an angle measured by a rational number of de-
grees.

No. Using formula (43), find an example of a translation

-1

t and a projective transformation p such that ptp~" is not

affine.

By a projective transformation, the quadrangle ACF D may
be made into a square. Then we can introduce a Carte-
sian coordinate system adapted to this square and solve the
problem by a direct computation. Remark. Of course, this
is not a very beautiful solution. It only shows how to reduce
the amount of computations needed to solve the problem by
brute force. Indeed, in the original setting we had 6 basic
points described in coordinates by a set of 12 real numbers
related by two equations. After the transformation, the con-
figuration is described by only two independent parameters.

Define a homomorphism of GL(2,R) onto PGL(1,R) and
use the first homomorphism theorem (page 134).

It is easier to construct a triangle, circumscribed around a
given triangle, with sides parallel to the three given lines.

Use a homothety with centre on the outer circle and coeffi-
cient 3/5.

Use a homothety with centre at the median intersection
point and coefficient —2.

Consider the homothety with coefficient 1/2 centred at the
intersection point of the three altitudes. Prove that the
outcircle of the given triangle goes into the desired circle
under this transformation.

We know that any similitude with coefficient different from
1 has a unique fixed point. The problem is to prove that
this point lies inside the smaller map. Suppose that it lies
outside, draw a line through this point that intersects the
smaller map, and consider its intersection points with the
boundaries of the maps.

E is the centre of homothety that takes A into B and C into
D.
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149.

150.

151,

153.
154.

155,

157.
159.
160.
161.

162.

163.
164.
165.

166.
167.

168.

169.

Find the images of segments MC and PN under the action
of the spiral homotheties F4(v/2,45°) and Fco(v/2,45°), re-
spectively.

Apart from the inversions centred at 0, this group also con-
tains all positive homotheties with the same centre, and is
isomorphic to the multiplicative group R* of non-zero real
numbers.

152. Straight lines that do not pass through the centre of
the inversion, go into circles that pass through the centre,
and vice versa.

This fact is proved in Chapter 7, Theorem 18 (see page 212).
The length of an orbit can be 2, 3, 6 or 12. See Figure 16

and the discussion below.

156. Derive explicit formulas for the composition and the
inverse transformation.

(-3,0).

(a) Yes, for example y' = 0. (b) No.
y=2z+C,y=sinz+C,y=—-1/z.

A family of straight lines for equation (36) and a family of
hyperbolas for equation (37).

Circles centred at the origin. The corresponding differential
equation is ¥’ = —z/y. It is defined everywhere except for
the line y = 0. There is no such differential equation defined
in all the plane.

y=1/(C —-z).
v=r+Y,u==x.

y=—z*/2 +2%log = + Cz?.
) 1/2
y=e® /4 (fe_zz/Qd:r—FC) .

y = tan(az + C).
1 1
T ZZtan(l/z+C) =
Find n such that —(n + 3)/(n +4) = —4.

Y
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170.

171.
172.

173.
174.

175.
176.

177.

178.
179.
180.
181.
182.

183.
184.

185.

186. y

Note that
11
gn)+2 n+2
whence L = 1 _
¢Fn)+2 n+2
See Problem 67.

(a) ar _ (yy' +2)v/2? +y?
dp zy —y ’
(b) The solution is given implicitly by

(z® +yH)(C - 2arctan%) =1

9t © 9s = Gt+s = gs+t = gs © G-

Yes. Assuming that the centre is 0, the correct parametriza-
tion is given by gi(z,y) = (e'z, ety).

zy = xcost —ysint, ys = xsint + ycost.

These formulas define the group of spiral homotheties. Its
orbits are logarithmic spirals.

The orbits are straight lines z + y = const. The group
property follows from the Vieta theorem.

!

y' = f(y/z), where f is an arbitrary function.

,_xf@)+y y b

y = —2*—= where { = arctan = — — In\/x2 + y2.
z—yf(§) z a

The function z? + y? is a universal invariant of this group

action.

The function € from the answer to Exercise 179.

y=Cz%— .
Yes.
Use the group of homotheties with centre at the intersection

point of the lines ax + by + ¢ =0 and a1z + biy +¢; = 0.
Use the group z; = €%z, y; = ely. Answer:
y =+ Cx? - 2z.
z+C—-1 ,
= ————¢".
z+C
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