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Preface

This book arcse from the desire to give a compact and, in a somewhat
restricted sense, complete treatment of the subject of separation of
variables. The only bock already available on the specific topic of
separation of variables is that of Miller. This earlier work gives an
excellent treatment of the relationships hetween the classical special
functions of mathematical physics and Lie group theory,

The aim of the present work is to show how all the actual inequivalent
separable coordinate systems can be computed for the Hamilton-Jacobi
and Helmholtz eguations on real positive definite Riemannian spaces of
congtant curvature. The results necessary for the solution of this problem
are developed in the text. This allows the reader to obtain a feel for the
gubject without the necessity to read widely in the literature, It is in this
gspirit that the book has been written. Proofs that are central to the
computation of all the inegquivalent coordinate systems mentioned ahove are
given in full; the more general results of the theory are often quoted,
suitable references being given, We also, on occasion, appeal to the
reader's intuition.

In Chapter 1 we give some introductory comments on the subject of
separation of variables. Included here are the basic notions of additive and
multiplicative separation of variables as well as an intuitive discussion of
the basic problems of the associated theory of separation of variables,

Chapter 2 sketches the historical developmentof the theory of separation
of variables, providing a useful summary and extracting, from the many
contributions, the most significant results, It also provides an indication

of the degrees of freedom available in the specification of a separable



coordinate system,

In Chapters 3, 4 and 5 we give a solution of the central problem of this
work, that is, we classify the gseparable coordinate systems on the real
n-sphere Sn’ on the real Euclidean n-space Er1 and on the upper sheet of
the double-sheeted hyperboleid Hn for the Hamilton-Jacobi and Helmholtz
equations. The interplay between group theory and the constraints of
gseparation of variables theory enables an elegant solution to be ohtained.
The resulting graphical calculus neatly summarizes the complete solution.

In Chapter 6 these methods are extended to the classification of all
inequivalent separable coordinate systems for Laplace's equation and the
null Hamilton-Jacobi equation on En. In Chapter 7, these ideas are
further extended to the classification of all "R-separable’ coordinate
systems for the heat equation on En.

In Chapter 8 other aspects of the theory of separation of variables are
mentioned:

(a) the generalization of the classification of 'inequivalent' coordinate
systems fo complex Riemannian manifolds;

{b} the relationship between the special functions of mathematical physics
and Lie group theory;

{ ¢} the intrinsic characterization of separation of variables;

(d) the development of a mathematical theory for separation of variahle
techniques applied to the nonscalar valued equations of mathematical
physics (e.g. Dirac equation, Maxwell's equations).

Much of this work is a consequence of a long-standing collaboration with
my colleague Willard Miller Jr. Indeed chapters 3, 4, 5 and 6 are hased on
the following research reports co-authored with W, Miller Jr:

Separation of variables on n dimensicnal manifolds

1, The n gphere Sn and Euclidean n space Rn
2, The n dimensional hyperboloid Hn
3. Conformally Euclidean spaces

The first of these is to be published in the Journal of Mathematical Physics,



I would also like to acknowledge the influence and collaboration of
Charles Boyer, Greg Reid and Pavel Winternitz, Finally, I thank my wife

for her persistence in urging me to write this hook.

Hamilton, New Zealand E.G. K,
July 1985



1 Introduction

The method of separation of variables has its roots in the solution of many
of the problems of classical physics [1]. In particular, we focus in this

book on the solution of the Hamilton-Jacobi eguation

i n A
H{pl, ve ey pn; X, s0a, X} =E, pi=——i, i=1,...,n, (1. 1)

X

by means of this technigque. As Is known from standard texts in classical
mechanics [ 2], once 2 complete integral has been obtained the solution of the

corresponding mechanical system can be achieved. A complete integral of
1
(1.1) is any solution W=W(x , ..., X 3 Cyy +-+y € ) Such that

X ¥ 0,

Most examples of the solution of the Hamilton-Jacobi eguation are

A = det{ W/ Bxiacj}n

obtained by looking for solutions W which are additively separabhle, i.e,
the solution has the form

I )
1
W—iZ_IWi(x,cl, cn). (1.2)

Thig is the separation ansatz for an additive separaticn of variables. If H

is a quadratic form in the canonical momenta P, such that
f1 i ij .
H= 3 g'pp+V(x=E g =g ;iFL.oon (L3
i,j=1 )
then associated with this Hamiltonian is the Riemannian manifold having

. 1] ‘o .
contravariant metric g , Asan example of additive separation of variables,

consider the two-dimensgional harmonic oscillater, The Hamiltonian is

1 2 2
H=>—(pi +p2) + m(w



where pi = mf‘_{i {i=1, 2) are the momenta conjugate to Lhe coordinates

q.. The Hamilton-Jacobi eqguation is
i

L, W 8w .
s lgg )t + 5 ) * |+ tm(wia] +widh < B (1. 5)

Now, putting W=W,{d,) + W(Jds , the separation eguations are

1 W, .

"2'1:['1(3-&?13""%“1@%[1%:&1 s {1.6)
1 W .

En(ﬁ]f}z +imwiq = E - o .

The corresponding solution is

. oy - m
W= 3 (2moy - wigl) + - sinTH(V (G S wiqp) (1.7)
o1y 201
. ({E-0sy . - m
+ 3 2m(E-ay) m'wig)) + = sin” (Y (G ) @) -
The solution to the dynamical system is then obtained by solving
oW 2w
s = Lt = 1.8

bi=%3a,> "% " 5w (1.8)
or equivalently

£ =i iV (B e - — sy E—w,qn) (L9

Py 2ay M T, Vig2(E~q,) 7t :
S T P | S
et = o sinT (Vg @ity

which vields the solution

1= 2 V(& sin(w, (o) + 2L (1.10)

Wy m m '
1 2{E-g :
= x/(—(—i)}sm{wg(t—tn)) .
2

For a satisfactory theory of separation of variables of {1.1), three
important problems are fundamental:
{(I) Given a Riemannian manifold (e.g. Euclidean three space), how many

ineguivalent! coordinate systems does it permit which give a complete



integral of (1. 1} having the form {1.2) ?

{II) How is it possible to characterize intrinsically (i.e. in a coordinate-
free geometric way) the occurrence of additive separation of variables,
given a Riemannian manifold M?

(III) What are the 'inequivalent' types of additive separation of variables
that can ocecur on a Riemannian manifold of dimension n?

The main purpose ¢f this book is to present a complete sclution, for a
class of Riemannian manifolds, to problem (). This class of manifolds
consists of the real positive definite Riemannian manifolds of constant
curvature, These manifolds are most easily thought of as the n-dimen-
sional real sphere Sn, real Euclidean n-space En and the upper
sheet of the double sheeted n-dimensional hyperboloid H . More specifically,

these manifolds can be defined as follows:

(a) S : the set of real vectors (s,, ..., 8 .} which satisfy
n 1 n+i
s +.,. +s° _ =1 and have infinitesimal distance ds&* =ds® +,.. +ds° ..
1 n+l 1 n+l

(D) En: the set of real vectors {zl, “ees zn) with infinitesimal

distance ds® = dzi +... + dz;.

{c) H : the set of real vectors {vo, Vis sees vn) which satisfy

?
0

v -
ds’ =

vio,..-¥ = i, Yo > 1, and have infinitesimal distance

n
2
1 n
2 2 gl
dvD - dvl ‘oo dvn.

In restricting ourselves to this problem we can give a complete
treatment of a well defined mathematical problem for a class of manifelds
that exhibit a lot of structure. It also serves as an introduction to the
esgential ingredients required in setfting up a theory of separation of
variables and, more specifically, in the solution of problem (I) in general,

In addition to the notion of additive separation, there is also the notion

of product separation, This occurs for a Riemannian manifold when one is

looking for solutions of the Helmholtz equation with a potential V:

n
i 1 il gy
AV V= T oo —@e S5 v =,
i,j=1 &) ax ax’

g =det(g ) o (1.11)



of the form { = Hi_lw (x Ly eees Cbe
As an example of product separation, consider the two-dimensional
(quantum mechanical) harmonic oscillator, The Schrddinger eguation is

'—‘QL(L +"‘[w1:’< +wiyt |y = By, (1. 12)

2m sz

Putting ¥ =t (X) {2 (y), the functions !,!/i (i=1, 2) satisfy the

separation equations

B 82

zm_?_kf;z‘_i_,{_(%mw%xz ~A) Y, =0, (1.13)
W 2ty

Tom ayzz (3mwiy” - X;y) Y, =0,

where A; +X = E, A normalized set of solutions of these equations can be

expressed in terms of the Hermite polynomials
m , mw W
w==NeXM}E€{w1x2+w2yw]H V(5 1x)H (giﬁy) (1.14)

where

Wiy
Iy iy

bl

N = [
2 14 !1'12 !
and hi = wi'h(ni +3), i=1, 2, The energy E is thus quantized according

to
E=h[w;(n +3 +w,(n; +3 ] (1.15)

for suitable integers ny, n,, The crucial cbservation, of course, is that
{ L. 12) admits a solution via the product separation of variables ansatz
Yo=Y (Y.

The same three problems apply to product separation, i.e,
(I Given a Riemannian manifold, how many 'inequivalent' coordinate
systems does (1.11), with V = 0, permit that provide a seolution by means of
Cpr wnns cn) ?

(II'Y How i=s it possible to characterize intrinsically the cccurrence of

the geparation of variables ansatz § = H?_lybi{x



product separation, given a Riemannian manifold M?
(III"Y  What are the 'inequivalent’ types of product separation of variables

that can occur on 4 Riemannian manifold of dimension n?



2 Historical outline of the
separation of variables
(principal results)

The history of variable separation dates back to the werk of Liouville [4],
who considered a dynamical system with kinetic energy 2T=x[(k!)2+()?]

and potential vix!', x*) and showed that if the Hamilton-Jacobi equation

AL

oW
T g eV, 5 = E (2.1)

-2_-}: (axl

admits a complete integral of the form
W= Wi (x's e, c) +Wa(x's e, &) (2.2)

then

D)+ (58
oi(x) + 0y (x%)

A=0(xY) r o (xh), V

Dynamical systems of this type are said to be in Licuville form, These
cocrdinate systems readily generalize to n-dimensional Liouville systems
in which the kinetic energy is given by

n .o
2T={3 o (x)][Z (3)?] (2. 8
i=1 j=1

and the potential is

n . n .
1
v=[2 u ) 1/[ 2 ox)]. (2. 3)
. i . it
j=1 i=1
The associated Hamilton-Jacobi equation has the form
n
1 aw '
o b 1= v (x) | = E (2.4)
j=1 ax’ J

where o= E?—l cri (Xl}. The complete integral of this equation can be



LM
obtained by looking for a separable selulion W = Zi—l

Wi(xi}; then
WAx) = [V(2(-p(x) + B0 (x) +a))ax (2.5)

n
where Ei—l a; = 0. The motion can then be solved from the equations

dW oW _ . B
aa‘-aa "'_6]. (J—l, "l:nl) (2-6:}
j n
aw aW -
t_tﬂ-'—ﬁ’ '—'i—=pi fi=1, ..., n}.
ox

Writing Fi(xl} - V’(Z(—ui(}:l) 4 EUi(xl) F@)), i=1, ..., n-L, the

solution is obtained from

. R A —;
W (xhyy T T N m )y TR T e T n-1_~ n-1
VIO &)
n
- - (2.7
VIF (x))

I n

t-t, = (alxhax’ r—ﬂgn(x '

I\X(Fl(xl}) iyfl(].‘_'nl:xn:l

Consequently, if the dynamical system is in Liouville form, the
solution for the motion can be obfzined by the 'method of separation of
variables' and reduced to quadratures.

The complete solution of the separation of variables problem {III)

{ Chapter 1} in two dimensions for the Hamilton-Jacohi equation has been
ohtained by Stickel [5] . This is, of course, a special case of the general
problem for arbitrary n, Stickel obtained z classification which listed

three types of possible Riemannian metrics:

I ( Liouville forms)

ds® = (o (x') + 0y (x*)) [ (ax)? + (dx*)?]

Vo= (X)) +pa(xh)) /(o (xh) + oy (x). (2.8)
1 ds® =gy (%) (dx') P+ 2g5, (M) dx"dx 4+ gyo (%) (dXF)?

Vo= V(xl}.



111 ds® = (dx')? -2 cos(o,(x!) + 0, (x%))dx'dx® + (dx%)?

v =0,

Some crucial observations greatly simplify this list. The reader will
probahly already have realized that if the Hamilton-Jacobi equation admits

a solution via the separation of variables ansatz

;¢, e=(c cn) (2.9

-I-l L

in some set of variables x ) then we can just as well choose a sel: of
coordinates y where y =f. (x) (i=1, ..., n) and fi(x )are a
suitable set of real analytic functmns and all considerations are of course
local {i.e,, we are working on & coordinate patch), Any such coordinate
systems which are related in this way will be considered to be eguivalent,
in the sense of problem (III) of Chapter 1, Metrics of type (2, 8) 1I

® which corresponds to an ignorable variable. (Recall

confain g variable x
that in classical mechanics [2 | a variable is ignorahble if it does not appear
explicitly in the metric components gij.) It is then possible to find a

soluticn of the Hamilton-Jacobi equation

11, 1,,0W 4 12,.1, W oW 22 2 _ g

g (x5 1) +2g 7 (%) axl 3 T8 {x ”ax ) {2,10)
by looking for a solution of the form

W=W|(xl;ci, Cy ) + cpx* (2,11)

If we now define new variahles yl ii=1, 2} by

vi= [(Vedgnds', v =%+ [(gyy /82 dx! {2.12)
where g =g 18, - g%z, then the metric I assumes the form
ds’ =g(y'y [(dy")? + (dyH)?]. (2.13)

This change of variables does not affect variable separation, as the original

solution would have the form



W= Wily's ¢, ep) + oy . (2. 14)

For this reason we can regard variables which are related in the manner
(2.12) as 'equivalent' (in the sense of problem (III) ), in that they give
rise to variable separation for the Hamilton-Jacobi equation which gives
basically the same solutions, The metrics for type {2. 8} 1II correspond to

locally flat spaces for which cartesian coordinates can be chosen as

s
|

= [cos agiixtiax! - [cos g, (x%)ydx? {2,15)

[sin oy (x)dx' + [sin oy (x7)dx° .

et
Il

The separable solutions of the corresponding Hamilton-Jacobi equation are
W=¢ x+aoCy, (c“; + c% = E), These coordinates are a canonical form
for separable systems which can be obtained from cartesian coordinates

via the transformation
x=F(x') + Gy, y=H(x) +I(x%), (2, 16)

Again, we do not regard cocordinate systems related in this way as being
essentially different and we extend cur notion of 'equivalence' to include
coordinate systems related via equations of type (2.16), Given this
equivalence of coordinate systems, we see that for n =2 any coordinate
gystem for which the Hamilton-Jacobi equation admits solution via
gseparation of variables is 'equivalent' to 2 coordinate system in which the
Riemannian metric is in Liouville form.

The most significant development due to Stickel [BJ was to give the
general solution to the separation of variabhles problem for the Hamilton-

Jacobi equation for an orthogonal coordinate system,

Stickel's Theorem: The necessary and sufficient conditions that the

Hamilton-Jacobi equation

- oW
H=2 H?(—=)?

i=1 1 axl

+V(x) = E (E # 0) (2.17)



admits a complete integral via separation of variables (i, e, a solution

_'EO C—vl: 1!--1 Ic ))

Xn n

W= I;l Wi(xil.g) for which A = det{8? W/ axiacj)

are:

(i) that there exist Stickel matrix §= (8, {x )) 5, Such that
Hi'2 st/ (i=1, ..., n where S= dets and S is the (i, 1)
cofactor of S, The elements of the Stickel matrix are such that
asij/axj =0 if j#i;

{ii} that there are functions vi(xl) guch that

N R

YV =

g B
08

[
1l

i

Proof: Let W= ZJI,~l Wix, ¢ - cn} be a complete integral of (2. 17

1 1
and choosge ¢ = E. 1 If wle substitute this form of W into the Hamilton-
Jacobl equation and differentiate with respect to ck then
§ L i(awi)2~6 k=1 2,18
Flﬁf de, i KD Shremey (2. 18)

# 0; consequently,

As W is a complete integral, A = det( EEW/Bxlacj) e

if we write

we see that 8 = det( Sij(xlj) = 2“1‘1 SW /ax ) AFED and the system {2.18)
can be solved for H.'z, (i=1, ..., n) togwe H, -3 /s with the

StAckel matrix S = ({S.)) Substituting this form for the coefficients

X"
back into the original equat:::-n, we see that
n il
) ;S__S_ Vi(xi)
i=1
where v = Sil(xi) - aWi/axi) *, To complete the proof we need only
establish sufficiency. If there exist a StAckel matrix & and functions v
such that conditions (i) and (ii) hold then the Hamilton-Jacobi equation ecan

be written



i1 _
5 _ [(ﬁ‘_’;’)z + vi(xl)] - E. (2.20)

1 0x

[ =

[
il

The separation equations are

dw, i e i
(— P evix) =3 eSS (x), i=1, ..., (2.21)
dx j=1 LI
which have the solution
- i i 1% i
W, = [[2 chijl:x) -vi(x)] 2dx (2.22)

=1
The sufficiency of conditions (i) and {ii) hag been proved by Stickel {6}
It was also observed by Stickel [7] that a Riemannian space which satisfies
condition (i) (i.e, is in Stickel form) admits n-quadratic first integrals

of the gendesics
n
A =3 —/p: i=1, ..., n (2.23)

where of course A; = H, the Hamiltonian, and p:_l = 3w/ 8x’ is the
canonical momentum. Furthermore these first integrals are independent

and in invelution
[Ar Aj]zo i, =1, ..., 0 i#i (2.24)

(Here [, | is the Poisson bracket [2].) In other articles [ 8]-[9] Sticke!
studies the solutions to the Hamilton~Jacobi equation when the kinetic energy
is in StAckel form, Stickel's theorem is a basic resuit in the study of
variable separation. Stickel matrices are a recurring phenomenon,

Stickel [10] obtained an extension of his first theorem which we now

give without proof.

Sticke!'s ( second) theorem: Let P = [Pl, Pys eor) PN} be a partition

of the integers {1, ... , nl into mutually exclusive non empty sets.

Further, let § = (SIJ(XI)} be a Stdckel matrix, i.e. xI= {xl; i EPI ];

NXN’
then if the Hamilton-Jacobi equation has the form



N st 1 N st
H=2 2 = A (x)pp,+2 Blix) = (2.25)
- 3] I i'i I 5
=1 1,1'EPI I=1

then there exist N - 1 orthogonal quadratic first integrals of the motion

N s R N [ ¥
A =2 % /A (x)p.p,+2 Bix) Y/, (2.26)
o .. o I i7i I 5

[=1 i,i'€ PI =1

J=2, ..., N, Furthermore this form of the Hamilton-Jacobi equation

permits a partial separation of variables, If we look for a solution of the

form

N

I
= Cy s, 2,27
W IZ_IWI(X :Cy Cy ( )

then each WI satisfies the 'partial separability’ equations

i1 BWI 'S'WI I N
¥ A (x) — T+ BUx) = 2
i,i'EPI ax ox J=1

CJSIJ . (2,28)
The problem of central interest for Stickel (and other authors) was to try
to find all foree free dynamical systems which admit first integrals of the
motion that are homogeneous guadratic forms in the canonical mementa of
a given dynamical system [10] .

With the appearance of the clags of Hamiltonians in Stickel form it was
natural to ask: what are the necegsary and sufficient conditions that the
Hamilton-Jacobi equation admits a complete integral W = E?:lwi(xi, c)
in 2 given set of coordinates xi (i=1, ,.., n) {(notnecessarily
orthogenal) ? Recall that a complete integral is a solution W(Xx, ¢) of (1.1)

auch that

2
det |- W +0.
axlac_
J X

Levi Civita [11] provided the answer to this gquestion with the following

Theorem.

12



Theorem ({Levi Civita}: The necessary and sufficient condition for the

Hamilton-Jacobi equation

1 W
HiX | ouoy X5 Pp---s P) =E, p =" i=1, ..., 0. (2.29)
to admit a complete integral of the form
" i
W= 2 W(X, ¢
. 1 -
i=1

is that H satisfy the 3ni{n - 1) equations

9H 2H  8*du _ 34 3H e H
I, 9Py gulpyd 0P

- ; (2. 30)
ox’ ox apj

OH oH a%°H oH O0H &°H
i op i T 1. apap
ax japiax dx 8x i 7]

i#j, i,j=1,...,n

Proof: For a solution in this form it is necessary and sufficient that

{ilpi,/'lcibgj =0, (i+#]j) where each pi is considered a function of

1 n . .. ] i .
X, +e., X . Differentiating H=E with respect to x, we obtain

op,
a?*SH ==0  i=1,..,n (2, 31)
ax' P ax
and consequently
api dH/ axi
— = - (31-1 3 ) {2, 32)
ax’ / By

The condition for separation of variables is then

d  9H/¥x .
| )y =0 (i+ 3§} (2,33}
de EN’H’/ﬁpi
where
d 0 ap1 g
j~J " =+

dxj BXJ e XJ Hpj

13



These are just the conditions of the theorem. If the Hamiltonian can be

1 n 1 n
written in the form HtQ(pl, sveer P X, vea, X)) +Vi(x, oL, X)),
these conditions become
2 2
0°Q a0 o0q _ R 0Q 0°Q (2.34)

axiaxj api ﬁ‘p1 E'pi ax) Bxlapj

_2Q 3Q _?'Q  3Q @ ¥Q_ _,
i j i 4]
ox ap], apiax ox 0Ox Bpiapj

éQ 2Q Fv  @8q _2'qg 9V
Bpi Bpj ax ax’ api E}xlapi %’

'12 1 ~2 b “\i.
7R C.Q oT.J+ a°Q ( 3? a*\H E’Q c‘bi’):ﬂ
apj E‘:»(Jé‘pi oxt E'piapj ax ax)  ax! ax

22 v 3V _

- - 0 i#j, L,ji=1, ..., n,
¥, 2D, ax ax

from which we note that if the Hamilton-Tacebi equation is separable for a

Hamiltonian of the form H = %g”pipj + llpi +V then the same holds for the

'geodesic’ Hamiltonian H = gljpipj. The solution of the separation of

variables problem for the 'geodesic' Hamilton-Jacobi equation

H=igpp = E (2. 35)
then becemes the crucial problem,
i
In order to analyse geparable solutions of (1. 3) where (g J) nXn is

positive definite, Levi Civita distinguishes two types of coordinates, He

does this as follows; putling

A 2 ..
g --cH H L ioH (2. 36)

i o, apiaxj %)

then conditions (2. 30) become (for i fixed)

2 2
BH( JdH aiH__ BH a_H HaHi —— (2. 37)
api Bpi 0x a:-:J ax} axlapj ox Y

14



Here BH/Fin is a linear form in the P, and 9H/3x and Uij are
dquadratic forms, In order that (2, 37) be an identity, one of the two
latter expressions must he divisible by 8H/ api. ¥ dH/ 9x' is divisible

by dH/ Bpi then

g,
—Jf—=o, i, L #i. (2. 38)
ax
f gij is divisible by BH/api then
.. og
g —=8 —q, (2. 39)
53(3
o il agrl L j Bgr]_ -0
1=1 % ax’
n ., 0g _dg.
Egll _g.]‘i_l 1]_gl.]'_..0.
l=1 ax’ ax’

The two possibilities for divisibility by dH/ Bpi form the basis.of Levi-
Civita's clasgification of types of coordinate. The coordinate x  is called

a first class coordinate if 3H/d xi is divisible by dH/ Bpi, otherwise

it is said to he a second class coordinate. We adopt the convention of
denoting first class variables by Greek indices (o, 5, ...) and second
class variables by (a, b, ...). Levi-Civita dealf with two cases:

(i) n =2, in which he showed that one obtained the list due to Stickel;

(ii) the case in which all coordinates are first class. In this case the space

can be shown fo be Euclidean.

Proof: If each coordinate is of first kind then

g,
=0, j, 1 #1i, (2.40)
axl
and we have
ii u 3r
{71=2% ¢ [ o (2. 41)
r=1

15



which relates Christoffel symbols of the first kind [ij, r] to symbols of

the second kind, As

- al
(1j, 1‘]=%[—a.gir+——a‘.gjr ——gij , {2, 42)
j i L T
dx Cx £x
we see from (2. 41) that {151} =0 if i+ j. Using (2,31,
i dp, =n .
_(9H/3x) _ ;_q_ > i151}ps (2. 43)
(8H/3p) dx  s=l
in addition to o:l;:'ifdxJ = 0, If we differentiate, we deduce that
& ii iiqg7d1] -
=—{ )+ J =0 (2. 45)

igij axj s j 8
Here Risij is the only component of the Riemannian curvature tensor

which is not already zero, Conseguently Ri'kl has all components zero
J

and the underlying space is Euclidean, Cartesian coordinates
i 4

¥ X, oouy xn) can be obtained by sclving the equations

82 (r) n P 2} (r}
yf.:)=—-iLi— -2 {183}—Y—S“=0 i#j3;r=1, ..., n. (2,45
1 ax ox g=1 o
These equations are clearly equivalent to

2 (1)
g—f—.‘ = (2.46)
ox axJ
and consequently

r

Sz x®

x5k, (2.47)
1 b

s

{x)
L n
corresponding infinitesimal distance is ds’ =2 r_l(dyr} Z,

where each of the X functions depends on the x' coordinate only. The
We see from our earlier discussions that this type of coordinate
system is the natural generalization of systems of type (2.8 III in
Stickel's list for n =2, Again, if we were to extend the notion of
'equivalence' of separable systems we would not really wish to

distinguish this system from cartesian cocrdinates. Dall'Acqua [12]
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extended the application of Levi Civita's integrahility conditions to three
dimensions, If we distinguish coordinate types by the indices {(n;, n-n;),
where n, is the number of first class coordinates, then the Dall'Acqua
solution produced a list of four metric types:

3
9 r. s
= 2. 4
I (3,00, ds ] g;l(aras+brbs+crcs)dx ax (2, 48)

aai/ax’=o; i#i; i, =1, 2, 3.

This is the maximal {or geodesic) case treated by Levi Civita and is

accordingly 'equivalent' to the choice of cartesian coordinates

) 3 .
1
= 3 [dx
. 1
i=1

where A=ga, b, ¢ when j=1, 2, 3 respectively, The corresponding metric is

3 i
ds? = % (dy)*° .
j=1
i (2,1)  ds® = (a; +4e; +13by) {dx!)® (2., 49)

+ (miag +2myey +by) (dx*)? + (dx°)°
+ 2{11'123.3 +IIb3 + (1+z,1m2)93)dX1dX2

+ 2(cy+my sgjdxzdxa +2{l ca +85)dx"dx?,

In this expression the subscripts on the functions denote variable dependence,
e.g, 0a, /3x) = 0 unless j=1 etc.
This metric €an be put into a much more transparent form, If we

change variables according to

vy =x! + [myda?, yo =x% 4+ [ldx!, P =x®
then

ds? = ag(dy')? + by (dy?)? + 2e,dy'dy’ + 2c;dyF + 2s;dy’dy’ .

This change of variableg relates fo two 'equivalent' coordinate systems

as it did in the two-dimensional case for type 11 coordinates in Stdckel's list,

17



This can be seen from the observation that solutions of the Hamilton-Jacobi
i .
equation in the coordinates y are of the form W=c,y' + Cy y‘a +W3(y3) .

Consequently any new set of coordinates given by

3
vy =2 X;”tle, (i=1,2), y¥=F(x)
j=1

would give rise to essentially the same separable sclutions of the Hamilton-
Jacobi equation. We shall therefore regard coordinate systems related in
this way as 'equivalent’, We observe here that first class coordinates relate
fo the existence of an equivalent set of ignorable variables, (Recall thata

' ig ignorable if p; is a linear first integral of the geodesic

variahle x
equations, i.e. [H, Py ] = U,) In Chapter 3, this relationship is made
precise in a theorem due to Benenti, who showed that the first class
coordinates are always equivalent to a choice of equivalent ignorable

variables,

II% (1,2) d52 =ﬂ—_b?. [(l% +c - dZ) l:d}{1:]2 (2. 503
¢y -dy

+(mf o -dy)(axt)? + (dx"y?

+ 22 mydxtdx® +2m, dx® dx® + 20 dxtdx® ],

subscripts on the functions having the same significance as in type II
coordinates.

This metric is 'equivalent', via the change of variables yi = xi
(i=1,2), y>=x3+ [mydx* + [7,dx', to the orthogonal metric

dst = (ay - by) [(dy")? +(dy?)? + (dy’y? ]

{cy-dy}

which is seen to be in Stdckel form with Stickel matrix

18



1.2 242 3,2
gt | qad)? | (ax)

(2. 51)
(a2 g3}  (d3-q¢) {9 —Y2)

v (0,3 as’ =
where @ = ry(Qy-0s) + ry{dy-qy) + ry(g;-q;). 7This metric is orthogonal
and already in Stickel form with Stdckel matrix
ry 1 oqy
8= r, 1 q
ry 1 ds

For product separation of the Helmholtz equation

S T
(B +WYy = 2 — — (Jige ,
1 i, j=1 Ve ox" 3x’

ij @
— W VY =g,
Robertson {13] obtained the first definitive result concerning the conditions
under which this equation admits a separation of variables by means of a
solution of the form ¥ = H?_lzpi(xl, Q.
Theorem (Robertson condition).  The Helmholtz equation L\.n;b' + V= Ey
is separable in an orthegonal coordinate system % if and only if the
components gu and potential V satisfy the requirements of Stackel's
theorem and the additional 'Robertson condition'
il
nt s

i=1

==

fi(xi) . (2.52)

2
o 1

8 i

Proof: To achieve separation, the quotient of the coefficients of (¢/ le} :

I

and B/Bxl should be a function of x alone, i, e.

2 ii i . -

— log(V{mg ) = F (x), i=1, ..., 10, (2.53)
ox

These conditions are equivalent to the Robertson condition, The remainder

of the argument is directly analogous to that used to prove Stickel's theorem,

as the equation can now be written

n . s .
D g“Hi W, x'i¢g) =E-V (2,54)
i=1
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where
i 7, 0 .9 i, © "
H(Y., x;0 =9 (= +F(x) — ]y, . (2. 55)
il i i i i i
ax dx
In one of the key papers on the subject Eisenhart {14] took up the

question of orthogonal cocordinates for which the Hamilton-Jacobi equation
separates and investigated the geometric significance of the Kobertson

condition. We summarize and discuss his resulis below, The proofs are
given in detail in the appendix,
Theorem (Eisenhart)., Let H= ZI? j=1g1]pipj be the fundamental

quadratic form on a Riemannian manifold M. The necessary and sufficient

conditions that there exists a local coordinate system {y | such that H is

n sil,
in Stickel form H= X . . —p' are:
i=1 § 7i
(i) The equationg of the geodesics admit n - 1 independent {linearly)

quadratic first integrals Aa = &;Ja) pipj’ a=1, ..., n-1, which together

with H form a complete involutive set satisfying

[Aa,A]=0, [Aa, H] =0, a,b=1,..,, n {2, 56)

b

(ii) The roots p;, i=L 2, ..., n a=2, ..., n, of the characteristic

equations

dfzt((il{ja —pbgij} =0, a=2, ..., n, {2,587

)

of these first integrals are simple and satisfy
o 0
det|pi —,c:j | + 0 (2.58)

where i isfixedand o=2..n;j=1, ..., mn, j+ 1.

(iii} The vector fields X h=1, ..., n, determined from these first

{(hyi’
integrals via

ij j
g )

{@(3)

h(b”=0 (2.39)

should be normal and be the same vector fields for the first integrals
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Aa. Furthermore, the hypersurfaces defined by these vector fields may he

taken as parametric, The coordinate system thus defined is such that the
ij

nXn’ (a{a))nxn

What Eisenhart's theorem gives is a geometric characterization of

matrices (gij) can all be taken to be diagonal,

Stdckel form. Given a suitable involutive family {H, Aj, ..., A_ ],
from purely algebraic criteria one can determine whether there are
separable coordinates, Implicit in this result is the determination of a
suitable set of separable coordinates {yi }. The condition of normality is
crucial, for this is a2 requirement that each of the quadratic forms

Aa = &tja) P pj, a=1, ..., n-1, can be simultanecusly diagonalized in
the given coordinate system. This result and its subsequent development
provided the successful development of the solution of problem II of

Chapter 1. As a useful corollary to this theorem, Eisenhart showed:

Corollary 1 {Eisenhart): The necessary and sufficient conditions that

Ny s u
H=2% Hizp’; ig in Sticke! form are

i=1
2
__L_ log H® - 2 ~ log H’ 3 log H? {2,60)
k. i 1 ] i k i
X oOx o0x ax

+ a—.log H? a—klog H + a—k log H* a—.ic-g Hi{ =0,
o) ' ax b oax o

k’jii; i" j!kzlg .-.,n.

An additional corollary enabled Eisenhart to characterize geometrically the

Robertson condition:

Corollary 2 (Eisenhart) : The necessary and sufficient conditions that the
Robertson condition (2, 49 holds for a given orthogonal coordinate system
{x'] for which H = i Hp? is in Stfickel form are that R =0, 1%},
i.e,, the Rieci tensor Rij is diagonal.
In addition to these results, Eisenhart was able to give a complete

classification of all inequivalent orthogonal separable coordinates on Ej
and 8;. These coordinate systems can be found in many standard reference
works [1]
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We note that, because of Corollary 2, any orthogonal separable system
which provides an additive separation of variables in a space of constant
curvature for the Hamilton-Jacohi eguation also allows a product
separation of variables for the corresponding Helmholtz equation.

Two good reviews on the subject of separation of variables from a

historical point of view are those of Prange {15] and Haux [16],
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3 Separation of variables on
the n—sphere Sp

1. MATHEMATICAL PRELIMINARIES

In Chapter 1 we gave a suitable definition of the n sphere Sn. As we have
seen in Chapter 2, coordinates that occur in the separation of variahles for
Riemannian manifolds which are positive definite are of two types. Renenti
[17] has made a complete analysis of problem III of Chapter 1 for such

manifolds and proved the following theorem,

Theorem 3,1 (Benenti): Let M be a positive definite Riemannian manifold

of dimension n for which the Hamilton-Jacobi eguation

n
H= glJ—i E}_ =K I
i, =1 ax" 8x
admits an additive separation of variabies in a system of coordinates |y J.
Then there exists a system of coordinates {xl} ‘equivalent’ to {yl ! such

that the contravariant metric tensor has the form
M- e My —

Tnl lﬁabﬂ‘2 @,
i VN
() xn = % (3. 1)
® ' a8
e g
where the functions H;z and gaﬁ can be expressed as
al bi
-9 3 a3 af, b 8
= — = _— a 2
H® =", 8 L AT (3.2)

b
b

a a‘o(x ”nlxni
the variables {x ] such that the H: are in Stackel form, Here

i, e,, there exists a Sticke! matrix S = (8 depending only on
ny =dim {x°] is the number of second class coordinates, in the nomenclature

of Levi Civita.
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The variables xal are such that Bgl‘}/ E}xa =0 for all i, j, and they
correspond to first class coordinates.
A few comments on this theorem are in order:

(i) The coordinates {y )} and {x ] are in general related by equations of
the type

a a

x =f(y)

o o, £ &%, b

xo =L X ly) +2 8 (y). (3. 3)

£
{ b

(i) Clearly, the coordinates {x ] are not chosen to be unique, in order

that the contravariant components of the metric tensor may have the form

T
(3.1). If {x ] isanother such system then, in general,

= hixh
223 2% det(a) 20, (3. 4)

Coordinate systems related in this way will of course be regarded as
‘equivalent’,

(iii) The Hamilton-Jacobi equation I admits a separable sclution of the form
03

W= gwa(xa) + 2 e, X
a )

with the separation equations

d a of
__ &2 v -

a) " 2 ,Aa C&'cﬁ_ 2 hbsab
dx o,

(3. 9)

with A; = E.

(iv) The variables x? are the ignorable variables one encounters in classical
mechanics [2], [18]. In fact, [pa,, H|=0, Each p, corresponds toa
linear first integra! { Lie symmetry) of the geodesics, Furthermore,

[poz’ pB ] ={. This i8 2n important observation. Ior the general form of
contravariant metric tengor {3.1), this implies that the underlying
Riemannian manifold Mn admits an abelian algebra {under the Poisson

bracket) of first order Lie symmetries of dimension at least
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n, = dim {Xa}, n; +n, =n, In the case of the n-gphere Sn’ the algebra of

Lie symmetries has dimension #n(n + 1) and basis

= § ~ 8 , a>b, a, b=1, ..., n+l, 3.6
Iab apsb bpsa P n { :

which satisfy the commuiation relations

[Iab’ ch} bc ad adIh bdlca * ﬁacldb ' (3.7

The Lie algebra of the Lie symmetries described by the commutation rela-
tions (3.7} isthatof SG{n + 1), the orthogonal group in n dimensions, The
global action of these symmetries is via real orthogonal (n+l) X (n+l1)

8 ) via

matrices 0 acting on the projective coordinates (sl, cies 8

5=+ 08,

In our discussions of the notion of equivalence thus far, we have
observed several ways in which this can occur, However, if the manifeld
in question admits a group of first order Lie symmetries then an additicnal
concept of 'equivalence' must be introduced. This is essentially the notion
that two coordinate systems {xl} and {yi} that are related by a group
motion are not essentially different., To make this more precise, in the
case of S consider that we have a system of coordinates {xl] such that
the defmmg pro;ectwe coordinates s, are well defined functions of the
{x }, i.e., 8= s(x y., If we rotate the vector § via an orthogonal matrix

0 then s'=03 and
d52 = (lS' * {lﬁ' = (iﬁ . (lS = gijdxldxj. (3.8)

Therefore both the choices of vectors § in terms of the coordinates {xi]
are indistinguishable when it comes to a discussion of their separability
properties,

Chosen cecordinates which are related in this way are then regarded as
heing 'equivalent'. This is equivalence between the specification of the
projective coordinates Si (i=1, ..., ntl} in terms of the separable

coordinates {x }, there being no essential distinction made between
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i i i
coordinates specified hy the vectors §(x1) and O_S_(xl) =s5'(x) with 0 an
orthogonal matrix,

From the form of the contravariant metric components (3, 1) and the

separation equations we see that we can write

g2c op 8¢ 2 ik
AC=E "S—pz + 2 {EAb'G 5 )PP = z @}[CJpjpk=Ac,
a .5 b i, k=1
C:]., i--snls (3‘9)
kj

ik
where &°, =03 ° ,

(i) {1}
ignorable momenta pﬂ form a complete involutive set of constants of the

These quadratic functions Ac together with the

motion. There is consequently no relation of the form

c af _
E}u X+ Ty v papﬁ—ﬂ (3. 10)

o, 5

ﬂ!
2 1 P, =0
Oy
c Of oy
for non-zero coefficients u , v '(, N .
We also have the relations

[» ,

o Mpl=0 [ p J=0. [p . Pyl =0, (3.11)

with X; = H. The quadralic forms i o are quadratic first integrals of the
geodesic equations, {The coefficients @{lz) are also referred to as
Killing tensors [18].} We note that as the metric tensor is not orthogonal
in this case, the complete integral which this coordinate system specifies
has associated with it n, gquadratic first integrals Ac and n -n; linear
first integrals of the geodesics (first crder Lie symmetries) P, Only when
n; =n -1 can all the constants of the motion be characterized by guadratic
first integrals { since then the metric tensor is necessarily orthogonal),

As we wish to deal also with product separable solutions of the
Helmholtz equation II, we can ask the question: how are the separation

constants appearing in the separation equations to be characterized? The

relevant concept here is that of symmetry operators of the Laplace
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operator A . Firstorder Lie symmetry operators are defined as partial
n

differential operators of the form L = Z}i al( o/ E*xl) , for which
= - =0
{1, an}w LA @) - A (Ly)

for all suitably differentiable functions y/; consequently {L, f_\.n} -0 is
an operator identity. The {, ! bracket is the operator commutator

bracket.

On Sn the first order Lie symmetry operators form a vector space

having a basis

-~ a p;
= - r— i, =1, ..., n+l 3,12
L Siasj 5 3s. L1=5h n (3.12)

Second order symmetry operators of the Helmholtz equation are corres-—

pondingly defined as operators
‘s 2
m=y, al ?— +2 b
i,] ax k

k2
axk

for which
{ m, An}=0 (3.13)

i
is an operator identity, If the coordinate system {x"] is alsc a separable
coordinate system for the Helmholtz equation, then further restrictions

must be placed on the metric ceoefficients,

Theorem 3.2: Lét M be a positive definite Riemannian manifold of

dimension n, for which the Helmholtz equation II admits a separation of
variables in a coordinate system |y ]. Then there exists a system of
coordinates {x | ‘equivalent' to {yl} such that the centravariant
metric tensor has the form (3. 1) given in Benenti's theorem and
: 3.14
Rab 0 va, b % { )

i
in the coordinate system {x J.
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This theorem follows from Renenti's theorem and the Robertson
condition, We make a few pertinent comments on this result.
(i} The condition Ra = {} is the analogue of the Robertson conditien, It

b
is readily proved from the conditions

L log((me™ = F (), va. (3.15)
ox

{ii} The use of 'equivalent' is meant in the same sense as it is for the

Hamilton-Jacobi equation. This can readily be seen as follows. In the
i . o .

coordinate system {x } the coordinates x are ignorable and the

Helmhoitz eguation can be written as

n + s 2 It .
T it v + 3 B ﬁ-*d?ﬂw ( 3. 16)
i,j=1 ax e j=1 o]

Consequently we can always choose separable solutions of the form

v =Ty (exp(D v x7) . (3.17)
a o

We thus see that if a coordinate system {xi} is separable for both the
Hamilton-Jacobhi and Helmholtz equations then the same notion of
equivalence applies to both thege equations,

(iii} The product separable solutions of the Helmholtz equation satisfy the

separation equations

d a d a3
[(—) 2 +F () —W +(2 A v v -ZX8 ¥ =0, Va
dxa a dxa a a,ﬁa aﬁbbaba
(3.18)
where A, = E and
dy
o
o~ Ya¥a (3. 19)
dx
wh W = v «
ere Y = exp( oF -

From these equations we see that product separable solutions of the

Helmholtz equation are characterized by n; second order symmetry
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operators

b

a
S g a B o
Abtz ?[{—an +F (x H_a”
a ox ox
cbh
o 8 3*
+ 2 (2 Acf ) T a. B (3,20)
o, 5 e dx ox
and n - n; first order Lie symmetry operators
_c
L, =" (3.21)
ox

in that the product seolutions are simultaneous eigenfunctions of these
operators with eigenvalues hb and vV o respectively.

For each theorem relating to separability of the Hamilton-Jacobi
equation there is a corresponding result concerning the separability of the
Helmholtz equation, For the Riemannian manifolds Sn’ Hn and En, every
separable coordinate system will provide a separation of variables for both
the Hamilton-Jacobi equation and the corresponding Helmhoeltz equation.
This follows from the condition
g, .8} (3.22)

Rpijie = 588y ~ BniBik

where £ =1, -1 or 0 according to whether the manifold is Sn, Hn or E ,

n
From (3.22) and (3. 1) it follows that Rab =0 for a#h,

2, SEPARATION OF VARIABLES ON Sn

The complete solution of problem I for Sn depends in a critical way on the
underlying Lie algebra of SO(n + 1}.
The following is a crucial result in the classification of separable

cocrdinate systemson S :
n

Theorem 3. 3: Let {xl} be a coordinate system on Sn for which the

Hamilton-Jacobi equation admits a separation of variables. Then, by

passing to an 'equivalent' system of coordinates if necessary, we have
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=

glJ =08 UHTQ , i.e., separation of variables occurs only in orthogonal
3
coordinates, Furthermore in terms of the standard coordinates on the

sphere s the ignorahle variables can be chosen such that

Lo S

(3,23)

where the number of ignorable variables is q.

Proof: This is based on the general block diagonal form (3.1) of the

contravariant metric tensor for a separable coordinate system, Any

Lie symmetry of Sn is conjugate, under the action of SO(n + 1), to a Lie

symmetry element of the form [19]

L=Ilz+b2134+... +va2U—1,2U' {3.24)

Qy

If this element corresponds to the ignorable variable x “ ' i.e., L = Py
1

then by local Lie theory the standard coordinates on the n-sphere can be

taken as
s s ) =(p, cosl ﬂ'1+w} o sin(x%! + w.)
10 ceer Sy TPy = pfe Py osindx Wit
pcsbx02+w) ﬁ's'nbxa‘2+w} £ cosi(b Ol+
0 0(2 gl 5 1{2 PUCRERR yos( X Wb')’
. ay -
,Cb_sm(bvx + Wv)’ 82V+1’ ey 3n+1) {3,253
2 2 2 I P .
where pl + .. + py + 82u+1 + 0. + SIH-l = 1, The infinitesimal distance

then has the form

T 4t ? 2 L] 2 2 & 2
ds -dp1 I +d£y +}31(dx +dw1) e +Pu(bvdx +dwv)
2 2 .

+ d32y+1 L +-dsIH_1 . {3,28)

If there is only one ignorable variable then the coordinate system must be

orthogonal and this i i i = ,ee = =0, i, e, = .
g0 I is is only possible if bz by , loe., pﬂ!1 112

Indeed, the requirement that the contravariant metric have the form (3. 1)

{orthogonal in this case) is that
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~dwy = Y bdw, . (3.27)

Since the differentials dp , dwj {j = 2}, must be independent and the only
Vo

condition on ,Ozl is Eizlp + s =1, the condition d’w; =0

y
i T %avar T TR
implies b]_ =0, j=2, ..., V, and dwy; =0, We can then take the constant
w; =0 by suitably redefining «;, The theorem is proved in this case,

Now suppose there are ¢ >>1 ignorable variables. The Lie

symmetries pa , i=1, ..., g, mustform an involutive set. it follows
i
from the spectral theorem [20] for commuting skew adjoint mairices that,

for each i, pa has a repregentation of the form
i

i i i
pa. =b1112 +lc-.2134 + ... +bv 12:; 1,2, {3.28)
i i i i
for i=2, ..., q. Infact we can assume
N i
p_ =1 + 3 bl i=1, ..., 9 (3.29)
o, 2i-1,2i l21-1,21" ’ P
i {=q+1

for some N =q + 1, The projective coordinates on the sphere then have the

form

&y

L5
+wy), P sin(x 1+w1}, { 3. 30)

[Sl, ..as Sn ) = (,Glcc-s(x

+1 1)

£ { Cq )y, P sin( QA
cos{x Y +w), in(x W
q a’"q q’

q
cos( 2 b

i=1

o
X 1+

L )

i
g+l g+l Wq+1

q .
i Chs
s i
pq+131n(2 b+x 4+ W ),

o 9+t L
q .
. 1 (l‘i
DN sin{ i%lex + WN} . 82N+l’ caey Sn+1) .

G.
We now make the crucial requirement that the ignorable variables x !,
i=1, ..., q, are part of a separable coordinate system. If we compute the
covariant metric, it should be in hiock diagonal form with respect to the two

classes of variableg., Just as in the case g =1, this is only possible if
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b;=0, i=1, ..., q, {=qg+l, ..., N, and dwi=0, 1 =i=gq, We can
therefore agssume that L1 = 112, Lg = 134, . Lfl = Izq-l, 2-:1; the ignorable

ceordinates ¢ can then always be chosen such that W, = 0, 1=i=q,

and the system is orthogonal,

This theorem enahkles us to bring to bear Eisenhart's results on
orthogonal systems of Stickel type. Our problem reduces to the enumeration
of all orthogonal separable coordinate systems. We use an inductive
procedure such that, given all separable systems for Sj‘ j < n, we can give
the rules for construction of all systems on Sn'

If {xi} is an orthogonal coordinate system with infinitesimal distance
ds® = Z?zlﬂi [dxi}2 then the conditions necessary and sufficient that the

space be Sn are,
(iy R, =-H'H®, i# ], {3, 31)
(ii) Ri‘ =Q, i#h=#k

n

i=1
Stickel form as is proved in the Appendix. Eisenhart [14| has shown that the

Furthermore, the corresponding Hamiltonian H = Z Hi’2 pg must be in

conditions ({3, 31) {ii) and the requirement of Stickel form are equivalent to

the eguation (A, 43), i.e.

_a'T log H? —aElc-g B - -a— log H* _812 log H*
ox] ' o o b ax J

a

- — log H? —Q.—log Hf{= 0,

gx ! ij

i, j, k pairwise distinct, The metric for a separable system can be written
in the form (A, 48)

=H: =X I +0), i=1, ...
g ~H 7R Loty ! :
j#i

where Xi, Uij are functions of x= at most,

There are various possibilities for the functions Uij' If all the functions



)
coefficients have the form (A, 57)

¢¢__ are such that O'i' # 0 then Eisenhart has shown that the mefric
1]

2
g, =H =X 1II (0. -0}
11 L 1 ]?'-'i 1
where 0, = cri(x‘) and 0! #0. This metric will be the basic building block

on which we can formulate cur inductive construction. Without loss of

i
generality we can redefine variables {x } in such a way that r::ri = xl,

i.e.,

B =x I (x -%) . (3.32)
i i.,.
jFi
The conditions (3, 31) (i) then amount to
i I -2 1 -1 1
[B - I g () + }
L# (x=x)? T (x=x) 7
i -2 1 -1
R e ol
I£i {x -x") i (x"-x} i

(3. 33)

U SN I I kO
L#i, ] XE(X ~xyix -x) I {x"-x)

k#L

These equations have the solution

(n+1)

(X—_)
1

+4n+11 =0, i=1,...,n, (3. 34)

1. e.,

. n , .
oo™ 3 e, ) e .
X, l
i f =0
The function f(x} can alse be written

n+l

fix) =411 (x-e). {3.35)

j=1 .

There are two requirements to determine which metrics of this type ocecur
on Sn: {i) the metric must be pogitive definite; {ii) the variables xl

should vary in such a way that they correspond to a coordinate patch which

33



is compact, There is a unique solution to these requirements: the x*, ei
should satisfy
e. < xl<e <...<e <x"<e
1 2 1 n

1 ( 3. 36)

These are ellipscidal coordinates on the n-sphere Sn. They can be related to

the coordinates {sj ] via a standardized choice

g = ., 1 =1, ..., ntl, (3,37
-
Hjaﬁi(ei ;)

These systems are the basgic building blocks for separahle coordinate
systems on real spheres, To complete the analysis of possible orthogonal
separable systems we need o consider the case when some of the D’i_

functions are constants, If Uij = aij {const) there are four possibilities:

oy
=
o
H
o
g
Il
.DJ
Q
1]
£
Q
G
[
w
=]

(3.38)

ivi¢,,=a,, O =a , 0. =4, 0, 0, =a, J.
( ij ij Kj  ki' i i ik ik

4.4 . -4 a, =

1%k Aty <O

where {)'j is a function of x only and i, j, k are pairwise distinct, If
we fix { and j then for k wvalues corresponding to cases (i) -{iii),

Uik = aik' To examine how the inductive process works, let us take

0- = = ' j= " 1--
1 all for I =k+1, ..., n and Olj?ﬁ{) for j=2, ..., k. Then we

have

g = 43 = o o =
i 5 T % YT
aElaquaZjall =0 for L =k+1, ..., n, =2, ..., k

Assuming that alj #0 for { =k+1, ..., n, =2, ..., k, we find the
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metric coefficients have the form

n
B =[x Il (o, +c )] 0O
1 Y UMk
1<i=k

(a,, +a£iol}], i=1,...,k {339

B =X o0 (o
l I el
m=k+1

lm+cr ) I =k+l, ..

mil o B

Let us assume that no further functions cri_, F

Im are constants, Then we
can take the metric coefficients as
H: = [xi Ox -xh]( I ;) H§=[X£ 1 (XZ -xy ],
' i 1=k+1 m#l
( 3, 40)

s 2 Y . .

= - 3. 33, . 34 t
The conditions Rkllk HkHz are equwilent to ( 3y, (3.34) with
., n and n-k=n' Putting H’i =
conditions R, =-H:H

_ i
i=k+l, ., [Xiﬂjii(x x) |, the

o 12 el .
i i 1 and Rilli Hi HI are equivalent to
N - n n 1 G'i
HZHZR,  +( T o = (—)2 +1] =0 3, 41

I Rt Z)[Z'Ekﬂ au, (cri) | (3. 41)

O—Tl 'Ull D-I'

! Z g 1
2t -5y o h [T ogE any 3 ]

Z ! I 9% m#l B (x -x )

m
- ATl
4H)

(3.42)

where ﬁijj1 iz the Riemann curvature tensgor for the Riemannian manifold

with infinitesimal distance ds® =% i‘_lﬁi (dx) %, These equations are
satisfied if and only if

1 n-k+1 !
—=-4 11 (x -f), I=k+1,...,n (3. 43)
X m
I m=1
and
l
(x _fn—k+1}
917k )
-k "n-k+l
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where we take fl{fzi’... < f

—

ijii

1
X,
i

-4 I (Xi

n—k+1"

- -H2H? so that
i]

k+1

-e) .

j=1 :

The coordinates on Sn can he taken as

, n+1) (ulvl, ees UyV
7 _ n~-k+1 2 _
Vi—l, E.?,:l Uy 1 and
i
11 =1(x -f)
Hj;&i(fi _fj)
Lo e )
~ I=k+1 m
m&m(en - em)

k+1’ 120

The infinitesimal distance has the form

dsﬁ =

where

dsf

ds;

]

n {

o T ™ ) )
dS1 TI {f Y } +{152
m¥n-k+l'"'m n-k+1
i

1 kI (-6 i
R I O
i=1 | II (xl—e)
‘ j=1 j
FA
G0 (B %) I,
4 D n+k+1, 1 (ax )
I=k+1 (x - f )
m=1 m
m=k+1, .,,, n, j=1, , K.

* Mokl

)

The remaining condition then is

(3. 44)

(3. 43)

(3. 46)

(3., 47)

(3. 48)

(3.49)

{3.50)

The choice of embedding of the sphere Sk in the n-sphere Sn given by

{ 3. 45) is not, of course, unique,

taking this choice of imbedding {other choices would correspond to

applying an orthogonal matrix to the vector s).

Now suppose one of the constants a, |

36
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=0 for some fixed { and j.



Then from the relations

aﬂajz— aljaH: 0 {3.51)
we have aa1 = 0 and consequently ali =0 for i=1, ,.,, k. This implies
that Cl'z does not appear in Hi i=1, ..., k.

Referring to the curvature equation R, = —Hi}li , we see that it
cannot be satisfied if ¢, =2, .0, =0 as this would imply —4H§ = 0.
Thus a, # 0 for each &, j. Recall here that we have assumed that none

£j
of the functions crij(i, i=1, ..., k;ji#j), Uzm{l, m=k+1, ..,, n; {#¥m)
is a constant. Let us now push this process one step further: let
= = ' #£0 f
Uk+1,s ak+l,s for s=p+l, ..., n and Gk+1,s or
s = k+1, ..., p. Then applying the same arguments as previously, we

see that the metric coefficients H:, I =k+1, ..., n, can be brought to

Zr
the form |
n
2 = I o II + 3, 52
HZ Xl[ ( Zm+gm£)” (ais HLS';.:’,Ors)J (3.52)
m#] s=p+1
k+i=l=p
A I1 I
H: xt[ (q8t+ots)]. (3.53)
¥t
s=p+l
Here the indices run over the ranges
i, iy wee =1, ..., ky &, m, ... =k+1, ..., D; { 3. 54)

g, t, 0, ... =p+l, ..., N,

We follow this convention unless otherwise stated, 1f none of the remaining
Gab's are constants there are two cases to consider:
als a's
Case (1), — =22 for s=p+d, ..., n, i=1, ..., k,
—_— aSZ a

s I =ktl, ..., p.

Then the infinitesimal distance has the form

a7



n el

ds? =( I o)dw’®+ 2 Xt[ I (crutdrcrtu)hdxt}z (3. 55)
t=p+1 t=p+1 u#t

where
p k i

dw? =( I o)) T X[I (o +0)](ax)? (3. 56)
I=k+1 © =1 "y N
+ E X[ T (o, +0 )](dxg)ﬁ

im mi :

I=k+1 m#l

The form dw? corresponds to the choice of metric coefficients with

{=k+l, ..., p< n., If we impose the conditions Rabba = —H;HE

see that for a, b=1, ..., k, k+1, ..., p the conditions are identical

then we

with (3. 33). Hence

1 k+1 .
—=-4Tl (x -e), i=1,...,k, (3. 57
X, ) ]
i j=1
1 p-k+1 7
— =-4 I (x -f y, I=k+l, ..., p, {3.58)
X m
) m=1
and
{
(x - f )
-k+1
0 =3 _—EL‘J’ - l=kel (3. 59
{-k p-k+l
_— ‘e _ iyl = -1y =
The remaining conditions Rtuut HtHu and Rtaat HaHt {a=1, ,.., D
also imply
1 n-p+1 5
-}_{_:-4 H (X _gt): S"—'F-'H‘l: e, I (3-60)
8 t=1
and
t
(x =g )
(}'t::( _n‘pi]') , t=p+l,...,n.
gt—p gn—p+1

These coordinates on Sr1 can then be constructed in a standard way:

(8 ) ={u,v.w

11 e MY Vi Ve oo
) {3.61)

1t e

ulvp—k+1’ Uy aevs un—p+1
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where

k+1 p-k+1 n-p+1
yowk =1, > v§=l, > o oul=1
i=1 ! 1 =1 =1
and on each of the spheres defined by the b vj and Wk coordinates,
elliptic coordinates are chosen, i.e.,
k
-I1 i—l(xl ~-e)
v = —= L5 i=1, ..., k+l, (3. 62)
O~ k+1 (e —e)
j#i i
'Hp~k+1”‘]m &)
wi: Hm‘ TR m, I =1, ..., p-k+l, (3.63)
m#l "m i
" (x" -g)
=n+1
w = HSFT - }t , 8, t=1, ..., n-p+l, (3.64)
s#t' Bg T By
a, 2
Cage {ii}y, — # 1S
a a
sl si

In this case UZ = a‘Z for £ =k+1, ..., p as follows from Eisenhart's

cases (3, 38) (i) -(iv). The infinitesimal distance has the form

I n
dg® = ( 11 o)dwi +( I (o + on)dws (3, 65)
t
t=p+1 t=p+1
- t
2
+ 2 Xi[ IT (crut+atu)]{dx) E X
t=p+1 uzt
u=p+l1
where
€ i
dwi=2 X[ (o +a )]dx)?, (3.66)
=1 Ty MM
i<k
£ ;
dawi = ¥ x,[ 1 (0, +0 z}]{:dx}z. (3.67)
! =k+1 m#l m m
k+1=m=p
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The conditions that this metric correspond to Sn require that we have the

same functions Xa ag in the previous case and now

t
_ -
g =S8 — o+ a="—E— (3.68)

Here we have adopted the convention

= 1=4{ =np.
gn—p+1+£ g, for ktl=l =p {3,69)
Consgequently the infinitesimal distance has the form
n t n t
| (x -g) I (x -g2)
= 1 =
ds? = “t p: 0 dw? + l'[t pti e dwd  (3.70)
u#t gu gl u;ft( g1.1 &2
r t u
. i Hu%{t (x" -x) .
i prl=u=n 2
4 Z n+1 t (dx 7,

t=p+]. l'lu:p+1(x - gu}

A standard choice of coordinates on Sn for this infinitesimal distance

can be taken as

er Sg) TRV e BV G Wy e

(81’ : n+l

uzwp+1, u3, un—p—k—l) {371

with u, vj and W, ccordinates as in (3.61). This procedure can be

iterated without difficulty to find al! separable coordinate systems on § .
n

If we do this we obtain an infinitesimal distance of the form

p .
ds? = > | ¥ (Hil)?(dxl;.?][ I (cr£+o-l)]
I=1 ieN leN
I p+l
+ % mP e, @ # o if T# 3, (3. 72)
€N )
p+l

Here {Nl’ .ve, N 1 | is apartitionoftheintegers 1,,..,n intononempty
mutually exclusive gets NI, i.e., N] y NJ = @. It follows from Eisenhart's

. . I .
types (3. 38) {i) -{iv) that | aj }Hi =0 if j f{NI. The curvature conditions
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can now he written down. The conditions Rijji = -H: H; (i# ]} are

equivalent to the equations

(p+l) _  p+l o P+l . .
Rijji = -(H)HHT) Y, 1,]€Np+1, (3.73)
@) 2RD [ oo +apll T m P2
i j ijji ke N k I e N A
o2 p+i >l
{ ..
XW +1] =0, i, § € Np, (3. 74)
i - i )2—(—%——3
(O'E+G'I) r;rl+ aI (Ul+a1)
(p+1) 5 {p+l), » 1
X [ log(H,” ) + (m," )E I )
?sz l l ] {HLF:H))z (xz—xm}
mENp+1
st B -
= 4“{3 ), l € le, (3. 75)
0«12
1 1 4
1Ly = -1, (3. 76)
4ZeN (H(p+1})2 (UZ ”“1””: +an
pt+l A

Here we have used the notation Rt{;i[;k to refer to the curvature tensor of the

Riemannian manifold with infinitesimal distance

ciu.sI2 = 3 {H;H]ﬁ(dxi)z .
IeN

These equations have the scluticns

!
[0 qoy+apl=[ T (x ~e)l/[ T (e_-ejl, (3.78

l eNp+1 i ENp+1 me Np+ 1

_ " ; -

HmEN (x7-%)
p+l
p+l , _ 11 _(m#l) .
{Hl 1Y = y n 11 . ) €Np+1 (3,79
p+l ( i e )
_ n=1 n i
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R(I)t_(H(I})Z(H(I:I)z I‘T‘l,.-o’p-'_l; isjEN

3. 80
ijji i j I ( )

where n 1T dim N + The infinitesimal distance can always be written
p

p+1°
in the form

ny L]
p I (%, -e) n, | I {x-x") .
1=1""1 1 # .
gs? = Y dwi{n v mé)}—EE {—J——n T :{(dxl}‘! (3.81)
1 m I i=1 !

j=1 (x _ej)

where each dwi is the infinitesimal distance ofa 8§ . The coordinates
a
on each S are again separable, Clearly we must have the constraint
P pa
Z +n; =n,
=P T ™

Using this infinitesimal distance we can construct all separable co-
ordinate systems inductively. The basic building blocks of separable
coordinate systems are the elliptic coordinates on spheres of various
dimensions. We will prescribe a graphical procedure for obtaining
admissible coordinate systems, essentially giving the embeddings of
spheres inside spheres which are admissible so as to correspond to

separable coordinates,

3, THE CONSTRUCTION OF SEPARABLE COORDINATE SYSTEMS ON Sn

As we have seen in Section 2, the basic building hlocks of separable

coordinate systems on Sn are the p-sphere elliptic coordinates

P i
1_-[1=1{X e_]) p:l’.."n {3 82)
s, = * _ * - -
P j Hj%i(ei Bj) j=1, «.., n+l
p+1
z 8 =1
j=1 P
Two important examples of these coordinates are
1 1
. X -e X -e

(e - e;) {e; - &)
where (s + .8l =1, e, < x! < g, .
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1 2 1 Z
. A, 3 (X -e)(xf —e) p _ X —e) (X" - ey)
(i p =2 231_(92 -ed{e; —e)’ 252 ey —eyt{ey - e}

1

1 2
2 (%X -ex) (X" - eq)
- 3., 84
253 {ey -~ erlieg - ey) ( /

where ,57 +,88 +,85=1, e < x' < g, < x* < e,
We will develop a graphical calculus for calculating admissible
coordinate systems. We represent elliptical cocrdinates on Sn by the

irreducible’ block,

1 ez *F & R F LR S e {3'85}

n+l

Each separable coordinate system will be associated with a directed tree

graph, Consider for example the sphere S;., There are two possibilities:

{i} the irreduciblie block I ey ] egl €y I . Most treatments of elliptic

coordinates on S; correspond fo the choice €/ =0, e; =1, e; =a > 1,
This is just a reflection of the fact that for Jacobi elliptic coordinates the

variables x and e, can always be subjected to the transformation

it i .
¥ =ax +b, ej’=ae_+b; i
J

Il
e

T = ® nr j=1} ooogn+1- {3-86}

Thus we can always choose e; =0 and e; =1, (Note in particular that
1

= cos’ ¢ we

lei e, can always be replaced by 011 |, Putting x

recever ;s8; =eos5 9, (S =sing (0=¢ =2m).)

{il) The second system is the usual choice of spherical coordinates,
sy =s8in B cos ¢, sy =sinf singp, s; =cosf, {3, 87)

This system can be considered as the result of attaching a circle to a circle

and is the prototype for the construction of more complicated systems. The

graph

ey {es (3. 88)
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is taken to correspond to the choice of coordinates

t 1 2
2 _ 0 _ (X -e) y o2 2, (X ~ep) (X -1f)
51 = 1 Ui “le, —ey) g = (jup} (1v]) (61 — ) (£ ~ 1)

(3. 89)

(x' —ep) (x* - 1))
(e, ~ey) (f -1

s = (1ud) (1vi) =
61<X1<eg, fI<X2<f24

Clearly, choosing angle variables on the Si 's, the choice of spherical

coordinates corresponds to the graph

ol 1
\\ (3, 20)
01

Only the square of origin of the arrow is of importance for a given arrow
connecting two irreducible blocks, not the target square. The general
branching law for an arrow connecting two irreducible blocks is readily

given: ,/

e .| e e e
1| 2 i n+1

I/ {3. 91

£ &, | |f

Y

We should also note here that, because of the availability of transfermations

p+l

of the type { 3. 86), some graphs that look different do in fact correspond to

the same coordinate system. Indeed, consider graphs of type

'R IR 2 | 2 3] 3
{a) (e | e |e;g (b) | ef |es | ej (c} | ef | e |e;3

/ \ , (3, 92)
0 ﬂ 0|1 01

These graphs correspond to Lamé rotational coordinates on the sphere Ss.

There are, however, only two distinet such coordinate systems, In fact, if
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the coordinates x" and e]f (i=1,2, j=1, 2, 3) are subjected to the

transformation

(3,93

we see that the graphs { 3. 92) (a) and (¢) correspond to the same fype of

coordinates. Graphs that are related in this way can be recognized by Lhe

feature that, if the branch below a given irreducible block €y [ aenn ep
is obtained from that of another graph by reflection about a vertical at the

centre of the corresponding e‘l | . ..} | block, then the two graphs are

equivalent, (Weare of course assuming that all other features of the graphs
are identical,) Graphs that are essentially the same can be related by
several transformations of the type (3. 86) and the situation gets more

complicated, e, g.,

el el |el|ell el el el | e [ef | ef| & | &
1| e 1 1| .1 2 2 | |2 |
£ 16 |13 (% |ei|e |es||etf!el| el ff | f5 | £5 [ £
o1 0|1 ( 3. 94)

If the two irreducible blocks of Sn and Sp oceur as indicated in (3, 91} as

part of some larger graph, this means that the elliptic coordinates

By, eany, U and v, ..., V of these blocks must oceur in the
nt n n+l pl p p+l
cocmbinations
Wy E gty e Wl = (nui)(pvl)’

= u- = U- [ ]
Wi+p+l (n i) p p+tl’’ wi+p+2 n i+l
Wp+n+2 - nun+1 '

Arrows may emanate from different squares (ei's) of the same block but
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cannot be directed at the same block., With these rules we may construct
graphs corresponding tc all separable coordinate systems on Sn.

For n =3 we have the following possibilities [20] -

{1y |0|lla b Jacobi elliptic coordinates (3. 986)
(2) (a) (01]a (b) [0 1]a] Lamé rotational (3.97)
5L coordinates
o[ LI
(3 |01 1 Lamé subgroup reduction (3.98)
0|1]a|
(4 |o]1] Spherical coordinates (3. 99)
0 Q
0|1 |
{5) 0|1 Cylindrical coordinates (3,100}
611 I 0 1

The formation of more complicated graphs is now c¢lear., Thus,

er | e | 93] (3. 101)
NRE
AEARAN?

is a coordinate system on S with coordinates

si = (up)®, 8 = (au)? (v, 83 = Guy) v ? (3.102)

Z
5

= () (5v3)?, s =(2U2)2(3V4)2, S%E(zua)zhwﬁz

2
1
s
o

ly

st = (yug) ((wy)? .
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Vilenkin [21] has studied polyspherical coordinates on Sn and developed

a graphical technigue for constructing them. For example, he considers the

coordinates on & :

Xg = COS 3 cOS Py COS P 4
Xy3 = sin ¢y

Xpz = COS Py sin ¢y cos ¢ 4y

H

Xgp =CoS Q3 cos Py sin P { cos ¢y cOS O ¢4
Xgz1 = COS $3 8in ¢ 5 sin Py,

XKoo =CDS¢3 COS‘J)Q sin ¢ 4 Sin@lz

1]

Koty = COS Pz cos ¢, siny cos ¢ (5 8in 9 4,

and represents these coordinates by the graph

X

X1 Xo12 Xnz1

For him, spherical coordinates on S,

Xy = COS (P
Xpy =8in ¢y cos ¢y
Xypq = sin ¢y sin ¢y,

correspond to the graph

X

4

¢ 11

Xp11

(3.103)

{3.104)
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Vilenkin denates coordinates of rank r by x and in the example

0i. ... i
11 1r

of {3.103) arranges coordinates in the order
Ko1is Xpizs Xp21s Xpi1» Xgzs, Xpzs Xg» {3, 105)

i.e., coordinates of higher rank precede those of lower rank while
coordinates of equal rank are ordered lexicographically, Coordinates of the

form XDi ; ; i are called subordinate to the coordinate
l.l.s... S.+_l...

X . . . Further, the coordinate x_. . essentially precedes the
011"'15 Djl...]m

coordinate inl'--iS if m= s, and jk: ik

The coordinate xDi . essentially follows x

for 1=k=s8-1 and j <i.
5 8

. To extract

ERER OJI"'Jm

coordinates on Sn from this notation let in i be a vertex of nonzero
1. - & m

rank. A rotation g{¢) by the angle ¢ = ¢, ‘ in the (XO‘ ]
11-00 m lliullm_lg

xﬂi ; ) plane is then associated with this vertex.
1' r e

In this way Vilenkin constructs graphs representing the various possible

polyspherical coordinates on Sn' In our notation his coordinate system

(3. 103} is represented by the graph

0|1 ¢
Y
ol 1] ¢,
A
@21 0] 1 L0 1] ¢y
N
O 1| ¢y

o] 1] e

From these considerations we see that Vilenkin's polyspherical coordinates

are the special case of separable coordinates on Sn consisting of those
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graphs which contain only the irreducible blocks of type .

4, PROPERTIES OF SEPARABLE SYSTEMS IN Sn

Here we make more precise our graphical techniques by means of a
prescription for writing down the standard coordinates 8, i=1, ..., ntl,
on Sn in terms of the separable coordinates., A given standard coordinate
coming from a given graph consists of a product of r factors which we

denote

This is obfained by tracing the complete length of a branch of a given tree

graph, i.e.
I 1 t
e LI ) e_ L N B e
1 I P1
g
et .., e | ... |é&
1 12 Pz
r r r
El e s e_ [ ] e
Jr pr
jl...jr
We can then set up an ordering < for the products Xp p - We say
that 1 T
Joeua] ...
1 T i 8
b < x
Pl .IPr Ql"'Qs
if
= 1 =1 . = N i ‘:: 1 ;é aR i i a
PrmQp iy =iy s B=Qp S iy B F Qe I PG

Then if we arrange the products in increasing order, say X1r anes Xn+1’ we

can identify this ordered n-tuple with s 5 For the example

" 570 Tttt
{3.102) given above, the choice of coordinates corresponds to this ordering.
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Having settled on a prescription for writing down the coordinates
corresponding to a given coordinate system on Sn, we can now diacuss the
separation equations for both the Hamilton-Jacohi and Helmholtz equations.

Let us first consider the coordinates corresponding fo the irreducible block

The Hamilton-Jacobi equation in these coordinates

- AP e- L ]
€1 ©a n+1\

is
o 1
H= ), T p':i=E (3. 106)
i=1 [Hjii(x —x}]
where
n+l .
P=v[1l (x -e}] —-@}"’
TS | P

The separation equations are

ntlo dw in-1 2 i n-y
[T (x -e)] (—Ii)2+[E(x) + 2 a0 =0 (3.10m
j=1 ) dx j=2

If we set E = X4 then the guadratic first integrals associated with the

geparation parameters A P A n are
Iri = Z I?_ (second order Casimir invariant) (3, 108)
> M
I; -3 s/ r
> J
=% g X
i a=s i
ij I
where 83 =— 51 €. ...2. and the summation extends over

T i a a1 & i %
FA A i, 1, i i
il, . iz #1i, j and iZ # im for £ +#+ m., TFor the associated Helmholtz
equation the eigenvalues of .&n have the form ¢{¢ +n - 1) and the

Helmholtz equation becomes

n
1 2 o
2 T HP) = (V@) —))
1=1[Hj¢i(x -x }] ax 0x
=-g(0+n-1V¥ (3,109
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where (P_l = Hljl_l[xl - ej] . The separation equations are

d¥

d N x —
V@) (@) —) +leo+n-p )" ( (3.110
dx dx
nay . .
+ 2 i‘(xl)n_J]iIf_ =0,
=2 ! '

The identification Ay = 0(¢ +n - 1) enables us to further identify the
symmetry operators whose eigenvalues are ij with the expressgions
(3.108) where I . is replaced by the corresponding symmetry operator

~ 1]
I ..
1]
For an irreducible block appearing in an admissible graph the
generalizations of these equations can readily be computed. Consider the

block shown as part of a given graph:

£

PN

6, LA I e

e J »

L~
[ v

Then define di (i=1, ..., ptl) as follows:

c:li = 0 if there is no arrow emanating downward from the

block e!_L ;

otherwise di is a constant on the sphere attached to ei.

From the form of the metric we see the variahles xl, cres xP coming
from this hlock satisfy an eguation of the form
p I . (e-e)

p “
) li = Pl + L ~J:—~;~—3— 4 =E_ . (3.111)
i=1 [Hjii(x -xh | i=1 szl(x —ei}

Using the relation

L = L Ep) ——-—TE (3.112)
P (¥-e 0 (X% 1-1 {xl e )
=11 78 P> ) k
where
P.=v[ Il (x -e))
i . 1
j=1 0x
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= (- 1}3 (xi—xj) with i, j#1,

1>3

we see that the separation equations have the form

ptl aw. p+l II . (e -e,}d
(0 -e)l (s 3 L (3.113)

j=1 dx k=l (x -e)

+[E{xi] +Eh(x]pl]*0
P 1 =2

For the corresponding Helmholtz equation the situation is somewhat more
complicated. With each puj {(j=1, ..., ptl}) we associate an index kj
which is calculated as follows: if the irreducible block occurs as the

rth step down from the trunk of the graph and if we write out the Si in

terms of our coordinaies, then kj is the number of coordinates for which

(rth column) occurs., The Helmholtz equation assumes the
P1r«eP.us P
q
form
P 1 o7,
> V@ /ey mlrag ) (3.114)
i=1 [Hj;&i -X) Yoax ox
p |II .(e -e.}
+ 2 Jp 1] . t¥=-0(c+p-1¥
i=1 nj=1(X el)
where
. p+l p+l k-1
=% (x-e), Q=2 (x-e)
j=1 ) j=1 :

ti =0 if ki =1 and ti = ji(ji + ki -1y if ki # 1, The separation equations

become
. q . d ‘I’i
'\f‘{(pi/Qi) _i( \(((PiQi) _i") (3.115)
dx dx
p Il (e -e) .
Sy Rk Ty [o(o+p-1) (x3 7 L, E ¥ (xh P Z] F,=0
i k {
k=1 (X —ek) 1=2
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If we take the coordinates (3, 102) and choose

e (x - e)

2 ] : :
zu_ = ~ . J= ]-, 2, 3, 1 = 1, 2, (3. 116)
! nj;ei{ei ¢
e x -
vé = =g " %) 1-1,2 3 4 i=3, 4,5
3 0 LU -
(x* ~g)
2 .= t, s=1, 2, t#s,

W T
1 s (gt—gs)

then the separation equations for the Hamilton-Jacobi equation are

3 . dwi
() [T(x-ep] (—p* L "1'33”‘92 “€u) g, (3.117)
j=1 b ax (x - ey)
o L8 —iEE)(ES ") g4, + BEx 42, =0, i=1, 2,
(x -e;3)
S W ; !
(i) [ T (x —fm}](—g)2 +dg(x )2+ nx" +23=0, I =3, 4, 5,
m=1 dx
2
dw
iy [ (=° ~g) ] Gzt +dg=0,
s=1

and for the Helmholtz eqnation the corresponding separation equations are

n ?zltxi - e} d ; g ; dir,
(i) : - T (UL (x-e) (x —e5) *(x -eg)) — )
(X‘EE)S(X -e3) | dx ] ] dx
N [(92 ‘133]{32 - e} § Gy +2) _I_(eg -_ez)(es - €1) 2
(X - e) (x -ej)
+j{j+5)xi+?«1}{f1=0, i=1, 2, (3.118)
dw
g 1 l d 1 l _ 1
(i) V(I (x7 - )) " (VL _(x -1 ) i )
shiGe )2+ +ag ¥, =0, 1 =3, 4,5
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2 & _ d 2 8 _ d¥, S T
(i VI (- )) g (VUL (7 g ) o)) + 3w =0,

Having computed the separation equations for the Hamilton-Jacobi
equation in (3. 117}, we can now compute the five quadratic first integrals for
the separation constants. We do this as follows: in (3,113} we put
Ay = ED. Given S two coordinates 8., 5, _ are said to be connected if
they hoth contain P-uj' The corresponding quadratic first integrals are then
calenlated from the formulas (3, 108) with I;_] replaced by Er}‘sIz e
where the sum extends over all indices r connected to 1 and s connected
to j. The guadratic first integrals correspond to I{n type operators of the
next irreducibie block of dimension m connected farther up the branch in

guestion, For example, consider the cocordinates (3, 102), The

corresponding quadratic first integrals are

L, =§ 121_ : {3.119)
1]
5 5
L, = 2 412y 4+ 2 2 2
2 el{é Tos * 17y 62{116+117)+63(.2{U')
i=2 j=2
Ly = E:'ﬁ;z , k, 1 =2, 3, 4, 5,
k>

L4 = {fi +f2]1¢215 + [fj +f3)1%5 + (fi +f4)12;34

+{f2 +f3:lI%5 +{f2 +f4)I%‘1 +(f3 +f¢}1§3 ,

Ly =f£; 0 + §£,03; + £,£,15, + 5515,

+ o fy By + 6,18, ,
2
Lg =Ly .

For the Hamilton-Jacobi equation these quadratic first integrals have

the congstant values

Ly ~Ey, Ly~ Ay, Ly~dy, Ly~d, L~ 2N, Lg~dj

54



and for the Helmholtz equation with Iij - iij the resulting opera

L (i=1, ..., 6 have the eigenvalues L, ~ j(j +5), 1, ~ 3,

Ly ~j1dj; +2), Ly~ Ay, Lg~ A3, Lg~ 3.



4 Separation of variables in
Euclidean n—space Ep

1. MATHEMATICAL PRELIMINARIES

The same methods as used in Chapter 3 enable us fo find all separable
coordinate systems for En. The linear first integrals ( Lie symmetries)

of En form a 2n{n+1) -dimensicnal Lie algebra E{n) with basis

1

Z - ] ->':| "-=]‘I.l.10 4—'.
Thlals 2,94 i) L, ] n (4. 1)

P = .
i~ B

This basizs satisfies the commutation relations

M Toa) = Ol * Oadle * Phalea * Sacla (4.2)
[Iab’ Pc] B _aacpb * ﬁbcpa ’
[Pa, Pb] =0.

Just as was observed for Sn, two coordinate systems ixi]
and {yj} that are related by a group motion are regarded
a8 being essentially the same. In this case, if we are given the cartesian
]
)

. . . i
coordinates zi(x in terms of a separable set of coordinates {x | then

z'=0z+2 (4.3)

defines 2 new vector z' related to z by means of a Euclidean group
motion specified by the orthogonal matrix 0 and constant vector a. Then,
clearly,

ds? =dz'- dz' - dz-dz = g, dx ax’ (4. 4)
2’ da' ~dz-dz = g,



Chosen coordinates z and z' related in this way are then regarded as

being 'equivalent’,

2, SEPARATION OF VARIABLES ON E11

As was the case for Sn' all separable coordinates systems in En can be

chosen to be orthogonal.

Theorem 4, 1: Ilet {xi} be a coordinate system on En for which the
Hamilton-Jacobi equation admits separation of variables and let g be the
number of ignorable variables, Then it is always possible to choose an
equivalent coordinate system [xi ! such that gij = 6ini“2 , i.e., the
coordinates are orthogonal, Furthermore the ignorable variahles

can always be taken such that

Pa, T UREEE pcvpz IZp—l,zp’

P =P » eees P P
v Z2p+l ¥ +
pr1 P g P

Proof: We use methods similar to those used in Chapter 3. Any element

of the algebra E(n) is conjugate to one of the two forms {19]

= "
L 112+b2134+'” +bV12u-1,zv+BP2v+1 {4, 5a)

where Ff=0 if n=2p
L'=P . {4, 5b}

Let {xi‘r be a separable system with ¢ =1, It follows from the block
diagonal form (3.1} that this system must be orthogonal, Furthermeore,
without loss of generality we can assume that pﬂr’: =L or 1:)@1 =LY For
the first case we can always choose the ignorable variable oy such that it

z } by

is related to the cartesian coordinates (Zl‘ caa,
n
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ai . ai
(2 . Zn) = (Picos®E "+wy), [ysinX "+wi),... (4, 8)

1’ L)

Oy
W) Pt Fx 0,

h &y, : bxal
pucos( I'}x Wr;)’ pvsm[ y

y2y+21 ey }"n) "

The infinitesimal metric then has the form

ds® =de} +... +dpi,+,ﬂ?(dxal+dw112 (4.7)

+... +pi[bydxai+dwp)2 +{dp 1+ﬁdx&1}2

U+

2 2
+dy21}+2+"' +dynl

If there is only one ignorable variable the coordinate system must be

orthogonal and ceonsequently

15
2 2 _
prdw, + Ez bjpjdwj +Bdp, | = 0. (4. 8)
This is possible only if b2 =..=b = £ =0 and dwy =0, (By redefining

&; we can then take w; = 0,) Therefore, if we have only one ignorable
variable, P, = I12 or Pn.
Now suppcse we have q Lie symmetries P i=1, ..., d. Then

they must be of the form !

=) n
Ly =1+ 2 bl + 2 yiP (4. 9)
12 1 >p i28-1,21 meggs] oM
g Il
Ly, =1_ + 2 bl + 2 ¥ P
20 -1
34 {>p ¢ 21 m=2s+l
] P fn p
L =1 + 2 bl + 2 v P
p 2p-1,2p 1>p {2i-1,21 gl
< p+l
L = 2 "m “m
Pt m=2g+1
‘ n
L= 2 vy P .
! m=2s+1
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The cendition [Li, LZ[ =0 implies

S S (4.10)
ik 2k-1 " P2k T -

b
for i=1, ..., p3 {=1, ..., q k=p+l, ..., 8. We are assuming that
i
there is always one b, non-zero for each k and some i, Then

k
l {
yzk—lz}’zkzo for k=p+l, .,., s and { =1, .,., 9. The cartesian

coordinates are

arl r:rl o
(yl, vy yn) = {fycos(x +wy), Pysin(X  +wy),... ,ppcos(x p+wp},
P Z Q‘Z
ppsw(x +wp} . pp"'lms{gi bp+1x +wp+1} e,
p o q o
. I 1 i {
Jﬁsam{ 2 bsx +W&J’ 2 }/25+1x +w2s+l’ e
{=1 =1
q [
i
2 v x g+wn). (4.11)

i=1

This set of candidate ignorable variables can take the necessary block
i
k
k=p+1, ..., 8. Also dwl =0 for I{=2s+l, ..., n. We can thus assume

diagonal form only if {iwi =0, b =0 for i=1, ..., p and

that Wy e =wp=0, w28+1=

i
i=1, ..., g m=2s8+q - p+l, ..., n and we can alsgo assume 'ym=0

i
LN ] = = 0‘ i i i = O f
Wn This implies '}fm ' or

for i=1, ..., p and m = 2s+l, ..., 25+ - p+l, Consequently we can

take

Ll L =1 L =P

“hee o by T hhp ap prl - Fasi’ 7 TqT Pagugop

(4,12)

o oy,

'), 1 =i< j=q in the metric.

and there are no non-zero elements g
By a suitable relabelling of coordinates we can always choose s =p. All
separable coordinates in En are orthogonal.

To find all possible separable coordinate systems on En we proceed by
analogy with what we have done in Chapter 3. If we choose orthogonal

coordinates in which none of the Gij is a constant function then



o= x [ x -xh], =1, (4.13)

j#i
where, as usual,
g i
ds? = 2 H";(dx)z .
i=1

The conditions Rijji = (0 are equivalent to (3. 33) in which the right-hand

side is zero., These conditions have the solution

(= ™Y 2o, =1, L, (4.14)
X,
1
n i n-Z i . .
and I/Xi = El:OaE(X ) =g(x ). Again we look for cheoices of g(x) that
are compatible with a positive definite metric, There are only two
posgibilities:
31
(i) g(x) = T {x - ei] Elliptic coordinates (4.15)
i=1

e < x! < e "-"...(xn_lt’:e < %P
1 2 n

n-1
(i) g(x) = T (x-e) Parabelic coordinates {4, 18)
i=1 !
x1<el<x2<92<...<xnﬂl<e (xn.
n-1

These metrics give coordinates in n dimensions that are the analogue of
elliptic and parabolic coordinates, familiar in Euclidean spaces of
dimension n=2, 3, [1], [22]. To these systems we may asgociate cartesian

coordinates by

Milx -e)
(i ¥ =2 L y=1,...,n, =xe¢R, (4.17)
n (e -e)
1#j i j
(i) y, =§{x1 .. A X e+, +en_1)
-1
2 3 I.l'—l(x1 "ei 1)
. = —C ~ = .=2', . ow oy n., 4.18
7 (e - e ) ’ (%19
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These two systems are fundamental for generating all separable systems on
En' Ag an example of the relevance of these systems we consider the

case when some of the G’jj functions are constants., We first treat, as we

did for Sn’ the case in which the metric coefficients have the form {3, 39).

Then, as was shown in Chapter 3, these coefficients reduce to

i n I m
Hi:{xi m(x'-xy|( I o), H, XEI:H (x -x )], (419

j#i h=k+1 m#{
. {
The conditions R ;; =0 imply that the quadratic form ds? = Z ZH% (dx )2
is that of a flat space, The remaining non-zero conditions are
n n 1 ot
H2HCR. +( 10 o[ I — (5=, (4.20)
o) [=k+1 m=k+1 4Hm Grm
UFT O‘T G‘I
I a .
2—Z—(—)2—(—Z}'—10gH2+H£ ) L = 0,
o o o { i l 9 m
{ Z I Cx m#L H® (x -x ) *
m
(4.21)
with ﬁijji as in { 3. 41). These equations are satisfied provided that
= - g g S = (e g.) are given by:
Rijji H Hj and the function X, and (et Z) g
1 N m
< - I (x - &), L =k+l, ..., n, (4.22)
{  m=k+l
l1[?]=Icr.+1(;*; " Cr)
2= 5 (o -em) for some m fixed, (4.23)
{#m' ¢ “m
where N =n, n-1. The functions I/Xi are given by
k+1 \
1 i
—=-4 I (x -eh ., (4.24)
X, . i
i =1
The systems are related to cartesian coordinates on En according to
.;yl, v ey yn) = (wlsl, k W18k+1’W2’ ey Wn—k) {4, 25}
T1 i o
k+1 I Al
where 2 8" =1 and s% = ' ,
i=1 i I (e -e)
jFL A j
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m=1
(1w , i=1, ..., n-k, (4.26)
i Hm:é?.(em_e{)
n-k m
s 7 +Hm=1{x _el)
(i) w =1 (e _-e,)° {i=1, ..., n-k-1,
m#l " m L
n-k m
wn_k=%( 2K He ... +en*k) .

m=1
There exists an additional posgibility that could be discounted for Sn viz

o { =k+1, ..., n. This corresponds to the case in which the

A A
infinitegimal distance can be written

ds® = ds? + ds} (4,27

where ds% is the infinitesimal distance for elliptic or paraholic coordinates
in Ek and dsf isa similar infinitesimal distance on En—k' We can
mimic the procedure adopted for Sn' The only essential difference is that
the infinitesimal distance can in general be expressed as a sum of distances
that can be identified with Euclidean subspaces., This reflects the fact that
if {Zi}’ i=1, ..., ny, and {wj Y, i=1, ..., n,, are separable
coordinate systems in Fuclidean spaces Enl and Eﬂz with respective
infinitesimal distances ds?, dsi, then the coordinates 20 Wi

i=1, ..., n, j=1, ..., ny, can be regarded as a separable coordinate
system on En1+n2 with corresponding infinitesimal distance ds® =dsi +dsi.
This is, of course, not possible for Sn. This property of Euclidean space
coordinates naturally extends to separable coordinate systems

{x;} i=1, ..., np1 p=1, ..., Q@ on Ep in such a way that

2

ds® =ds® +... +dst ,
Q

2
1
In general the infinitesimal distance can be written as a sum of basic forms

Q
dg® = 2 dsi (4.28)
=1
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where

N
A
nI [ H3=I1{X - eI)
ds = ¥ - dw? + do? (4.29)
I i 1 L i (eI _ eI} i I

j#i
Here the dcrr‘i is the infinitesimal distance corresponding to elliptic or
parabolic coordinates for a flat space of dimension NI. Also nI = NI for

elliptic coordinates with a strict inequality for parabolic coordinates,
The dwi is the infinitesimal distance of some separable coordinate

system on the sphere Sp and n = y. To esiablish a graphical
I

procedure for construction of separable coordinates we need only analyse

I
(N, +p

I=1 1

one of the basic forms dsi . We should also mention here that if NI =1

then the basic form is wriiten

ds’i = widw? + dw’ . ( 4. 30)

A basic form could in fact correspond to elliptic or parabolic coordinates

on EN and no dwi term. We associate this with nI=D in (4,30,
I

3. THE CONSTRUCTION OF SEPARABLE COORDINATES ON En

For our construction we need only invent graphical repregentations for
elliptic and parabolic coordinates in En’ the analogues of the irreducible

blocks on Sn' We adopt the following notation:

(1) Elliptic coordinates < T RELEE en> , n=1,

{2y Parabolic coordinates Qel en_:) , n= 2,

It is clear that only elliptic coordinates exist in one dimension. The
graphical representation of a hasic form corresponding te the infinitesimal

distance dsi in (4.28) is

(1) e te,l...]e |...]e (4. 31)
<1‘ 2 nI NI>
5

N dé
P

3
1 2
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(i) (e |.... e . e
-1
( nIi NI >

SRk
[ 2]

Attached to each leg descending from the top block is the appropriate graph
of the coordinate gystem on the Sp giving rise to the form dwi . The

i
general graph corresponding to a separable system can then be constructed
as 2 sum of disconnected graphs of type (4. 31) (i) or (ii). We first
illustrate this technique for the separable systems of E,; (Table 4, 1),

As an additional non-standard example consgider the graph:

e| e

b6 6| | o] 1)

which defines a coordinate system in E;. The coordinates can be chosen as

-

1 2
g o=t |AX TS lX o) ] Gu)?, i=1,2,3,

i L (e; ~eq)
2 — CE [ {XI - 32) {XZ - e'&) } C052X5 [4_ 32)
}rfl (el -82} ] -

1 2
X -e)(x" -e 2.5
2 _ o2 | & 2l ( 2) i[ sin?x® |

L (e - ey}

where

3 4
(x* - L (x" -1)

2 = - A . .
(2"11} B (fj _fi)(f ~ 1) " i, j, k distinct,

ki
We can set up a natural ordering for separahle systems in En' For a
given basic form we ¢an impose the natural ordering of the ei's in the

leading irreducible block on the ordering of the Sp hranches and then

write down coordinates in a standard way.,
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Table 4,1

Separable coordinates of E

3

(1)

- 9
I

a

(3)

(4)

(7

(8)

Ao

W

D20,

() <

ot

Cartesian

Cylindriecal

Elliptic eylindrical

Parabolic eylindrical

Spherical

Frolate spheroidal

Oblate sphercidal

Parzholic

Paraholoidal

Ellipscidal

Conical




The ordering of the disconnected parts of the graph is presumed already
given, There are equivalences relating graphs of various coordinate
gystems that we have already discussed for the n-sphere and, of course,
there is an additional equivalence corresponding to the permutation of
disconnected parts of a given graph, The separation equations can also be

readily computed. Tor the elliptic and parabolic coordinate blocks

(0 (eqf .- en>

{2) (el en_1> ,

the Hamilton-Jacobi equation has the form

n
H= 3 11 j P =E, (4. 33)
i=1 [njii(x - x|

il

where
N

k.
P;\f[ I (x' -e)]
j=1 :

2w
ax'
with N, =n ({elliptic coordinates) and N, = n-1 {parabolic coordinates).

The separation equations are

Nk i dw, ’ i n-1 g i n—j
[ (x -e)] il + [E(x) + 2 aixhy )=, (4. 34)
j=1 ' lax j=2

If we identify E = A;, the quadratic first integrals associated with the

separation parameters PtL, vee, A are

n
() (L =P +,., +F 4. 35
141 1 e n ] ( - )
n .
L= 7 I§_+cz > S P,
i>j =1
n ij 2 5 2
lIn" 2 SnIi' + 2 Sn—]_ i
i ) i=1
1
where SZ =772 =, . e, ... e and the sum is over i;,...,i,#i.
i 11 4--;13 __‘é ].1 13 z—
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(2) 21?=p§+...+1afl, {4, 36)

It n .
I =c X {Ilk, 131(}++czslpﬂ1 + 2 SiP,

li=2 j=2

n k n .
2Iy= 2es il , Pl + 2 B +cdgF +d s,

=2 I N == )

n . . n .
o= Zesiin, pl+ I S8 +08P 4+ 2 sP

k=2 ] i>j=2 J i=2

P+ 2 st B +ets P,

n z k
2l1 Le Sh-2 {Ilk’ n-3ij n-1

k=2 i>j=2

where Sil isasin(4.35, 1 , ]+ is the antl commutator bracket and

B TR P 1 {

For the corresponding Helmholtz equation the eigenvalues of an are

A and the Helmholtz equation reads

p
n
) S J(O.)—g.—w{@.}—@gJL=ﬁ‘l’, (4. 37)
i=1 [H (Xl—xJ}J . ax’ Uoaxt
11 L
where
k i
Biz.z {(x —ej) .
j=1
The separation equations are
d L in "5 ino
V(0) — (Vi0) — ) +[(-=nh + Z ax) ¥ =0,
i 1 1 1 . 1 1
dx dx j=2

(4. 38)
For a basic form such as dsi the separation equations for the

Hamilton-Jacobi equation have the form
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N n

I ) dw, I II ,  (e,-¢e)

k .
[T (o) f—2 4 3y 2k & | k, 2.39
j=1 b oax i=1 (xl—ez) (4.39)

N
: ka-l o ka-z
+ [E.(x) + 2 A (x) |=o,
1 1o i

where kl is the constant value of the Hamiltonian on the sphere whose
infinitesimal distance is dwi . For the Helmheolitz equation the

corresponding contribution of this basic form is the equation
N
I

k G
. 1 i ¢ o
) T {ﬂal) —TV10Q) =) (4. 40)
i=1 {Hjii(x ﬁx}] i Ox ax
n
I Il te -2)
iFi i j . .
+i=,l { HI }]iiji+pi-1}'l‘—- kI‘I',
ko J
n -
=1 (¥ &)
where © —HNIk {xi~e) Q —HNIk 1 }dkml’
i k=l K% T Ve %
) pk+1if !:«:=1,...,III
dk—
1 if k=HI+1""’NI .
k
The separation equations are
P ¥, I H'#k(ek'e')
G =7 (YRR —i)+[E [ = : ]j.(j.+p.—1)
i dx dx k=l & (x -e) o
N
B A T
s ik i, 'k
+ 1 (x) + 2 A (x) }qszg_ (4, 41)

=2
In the example on E; the separation equations for the Hamilton-

Jacobi equation are

2 . dwi
[ 1I !L:n:l—e.)l(—i)2 +(e§ ~ 1) g, +(e; o)y,
=1 . Voo (X -&) (x -ey)

x4+ A =0, i=1, 2, ( 4. 42)
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and for the Helmholtz equation they are

)

2 i
I _(x -e) 2 . . dw.
J =1 1 d_ j:l'l (xl—ej}{xl—ei)z(xl—ez} —:J

(x1—31 ) e (xl—egl dxl i=1 dx

+ [{ei#e” poaleime oy _}in_‘_-;-\l}q‘izo.
{(x -ey) (X -e;)

For the elliptic case the only new prescription required is that Pi be

replaced by Eerr where the sum extends over all indices r connected to

i. Similar comments apply to expressions of the form {II{E . PE }. For
our example with coordinates { 4. 32), the quadratic first integrals that

describe separation are
L, =05, +§g + 1y, (4, 43)

2 2 2
Ly =f1I5; + £, Ij 5 + f515, ,

L =Iis »
5
Ly= 2 Pi ’
i=1
3
Ly = 2 (B, +T.) + ¢ {eg (PF + P +P%) + e (PE+0 ],
j=1

The operator L; corresponds to the separation constant Ay,
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5 Separation of variables on
Hn

1, MATHEMATICAL PRELIMINARIES

Using the same methods as in Chapters 3 and 4, we can find all separable
coordinate systems for Hn' The linear first integrals (Lie symmetries)

of H form a sn(n+1l) -dimensional Lie algebra SO{Ll, n} with basis
n

= - '>. i i=1 s 5‘]‘
I, vipj vjpi. i-4, 1,1 ’ , I, (5.1}

This hasis satisfies the commuiation relations

[Iab' ch] B 6bcIad * aadlbc * ﬁdeca * ﬁaclbb’ (5.2)
[Ia.b’ I{lcl - r5l:mI:su['J - GachG’
[Iﬂa, IObl= L., a,b,c,d=1, ..., n.

As we have discussed previously, two coordinate systems related by a group
motion are regarded as being essentially the same. In the case of Hn the

group SO{1, n} [22] consists of matrices L such that

ds? = dv's Jdy' = dv* Jdv (5.3)
where J =diag (1, -1, ..., -1) and

v'=Lv, (9. 4)

For n =3 there are just the well known Lorentz transformations that
occur frequently in relativistic physics [2 I If we are given the components
of the vector ¥ in terms of a separable coordinate system {xl | then a new
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vector v'=Ly expressed in terms of these same coordinates is
regarded as specifying an equivalent coordinate system,
For H , however, there are more cases toc consider and the problem
n

is more complicated,

2, SEPARATION OF VARIABLES ON Hn

The ciasgification of separable coordinate systems on Hn is greatly
facilitated by the fact that all such coordinate systems can he taken as

orthogonal, Indeed we have:

Theorem 5.1: Let {x | bea coordinate system on HI1 for which the

Hamilton-Jacobi equation (I} admits a separation of variabhles. Then, by
passing to an equivalent system of coordinates if necessary, we have

U 5ini_2’ i.e., we have only orthogonal separation, In terms of the
standard coordinates on the hyperboloid Vs Vis saes Vn the ignorable
variables xa' can be chosen such that the corresponding n - n; Lie
symmetries pa (i=1,...,4) are of one of the following three types [23 l:

(D Py =lg1r Pg, =hge +- aq=I2q—2,2q—l’ (5-9)

(i) Py =l Pg, “Tag +--» pa»q: Tg-1,2q
(LHp Pa, =lgg Iy e pas " Toge1 " l1eer

Po " laiz gy tirr Po T

atl q+l, g+2

Proof: This is based on the general block diagonal form (3. 1) of the
contravariant metric tensor for a separable coordinate system. Any
element of the symmetry algebra SO(1, n) is conjugate to an element of

one of the types

(i) _I b2I23 LA ] +bv12v’2v+l, ._\ (5.6)

12 ¥ Polggere 01 5 5y
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faf
If one of these elements corresponds to the ignorable variable x !, i.e.,

L= P then by local Lie theory the standard coordinates on Hn can be
1
taken in each case as
X ¥y . oy
(1} (VO} Vl,-..’vn} :'(pICOSh(X +wl:|! pISInh(X +w1):l (5'7)
¥ . Gy
By cos(b,X +Wy), Py sin(by,X +W,),,,,

D cos{b xﬂ’1+w 1, O sinb I'iﬂ1+u1
(2 v 7 % V]’

- * » v
Vou 40 ; n},

2 _ _ ot ol _ - vl =
pl LI N py v2v+2 a a8 vn ]_.’
o &
(1) (Vg V.eve, ¥ ) = (v, Proosix 4wy), Pysin(x Hw), ...

b x e in(h x4

Dvcos( s v)' pysm( X +wu),
v, y eaes V),

241 n
2 _ % _ a2 2 _ vl _
Vo TPy T TPy Yorrl Tt T Yy b

- 1 ¢ p,

(111) (v, vyoeen, v = (Blog L vy 1) 40l
o ix™ sy - 1) 4 v]
sP 1{x TH+Wyyt - 11 +vy,
ﬂ] ﬂl

,D]_(x +w1)| ,DzCDS(ng +&J2)’

] &
Fpsin(byx @), ...,

. L a,
pyeeslb x +w ), 0 sin(b X +ul),

V2u+2' .eas vn) ,
_nt om0 _ R
Plv 102 ,DV VZV+2 Vn 1.

The infinitesimal distances corresponding to these three possibilities are
; 7 2 2 2 3, .. 5
(i) ds* =dp§ -dps -... ~dpl + Ay (ax T+ dwy) (5. 8}
2 ! 2 ¥y 2
=05 (bpdX Fdwy)t -, 0 (bydx +dwu)

2
J',)
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2 2
- S aaas T dv »
dVZ v+2 n

(i) ds’ = dv} -def -... - do?, - pf (M s dwy)?
o
2 1 2 2 Al
a
(iifyds? = dpdv - pidx ‘+dw)}? - dof -~ ... - dd?
—pz{bdxaiﬁlw y e - - g4 (b dxa"-;-dw )t
2 2 2 .- y i v

2 _ a2
dvy i T T OV

QI
If there is only one ignorable variable, x ! then the coordinate system must
ke orthogonal, which is only possgible if b1 = b2 T L. = by =0, i.e., we

have the three cases

(1) pa,1=1a1 (5.9}
{ii) Po, = Li s
{iii)li’a,1 =Ly -1 .

Indeed, the requirements that the contravariant metric have the form (3, 1)

{orthogonal in this case) imply

vl
) dw, = —yp qw 5. 10
(i) dw, jEZ('O%)bj ;0 (5. 10)
v I
(if), (iii) dw, ==% (=5 }bdw .
j=2 pl } ]

Since the differentials d,GJ_, dwj, {j =2) are independent and the only
conditions on ,G% are the requirements given in (5. 7) {1) -(iii), d? W, =0
implies that bj =0, j=2, ,.., v, and dw,; = 0, PRy suitably redefining
¢y, we can put w; =0, Hence the result we want to prove follows for one
ignorable variable,

Suppose now that we have n - n; Lie symmetries pw‘, i=1, ..., 9,
in involution. Then they must have one of the forms: :
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N

Poy ~To1* 2 Bl 074

Z—q 1
p. =1+ Z b%1 :
a, .123 Jegey 20,2042
_ q
Pg 7 12q—2,2q—1 * 3*{% o 12£,22+1’
() Py =l ¥ Z By Ta 1,20
Z—q 1
p. =1+ E b1 :
52‘34 a_ql:ZZleZ
: N .
p, =1I + 2 b L, o,
o " 2q-1,2q z:qu L 2l-1,21
(ihpg, = Lo # Z bZ 2l -g+2, 28-5+3’
N
pc}rg =g Ly # qu bi 2l-s+2,20 -g+3’
’ N
pt:l-f3 - I:I{J'S+1 15+1} * Z-E- bl 2l-g42,28 —s+3
N s+1
Po =Is+2,s+3+ z bZ 23—5+2,2£-s+3’
a+1 =
N
pﬂ'q N IBq—s,Zq—s+1 + Z§: b 12?,—5+2,2£—s+3 *

{5, 11)

Of these three possibilities we see that case (ii) involves only elements of

of the SO(n) subalgebra and so is equivalent to the problem of the

corresponding case already treated on the n-sphere S .

cages give rise to the coordinates

T4

{1)

(vﬂ} vl'.l"-!

vn)

at . 0-1
(P coshX "+W ), A sinh(X "+Ww,},

o, R
Dreos(X "+W,y), Lysin(x +Wy),

The two other

(5, 12)



“q
pvsm{ X +wq) .
45 9
cos( 2 b X +W 1).---,

o
i=1 g+l g+

g+l
q . ﬁli
vk
i +!
pNsm( i§1 bNx N) ,

V2N+2’ caey vn) ,

=3 O,
(i) (¥, vpsee-n v ) = (3lE {iz‘l(x gt 1)+, (5.13)
s
o 42 @ "vw it -1} o],

i=1 ‘
0y

Li(x +@4), ...
43 o

8 s5+1
& w
vens PS(X + S), ﬁ5+1005£x + B+1},
o q , @
0 sinx q+w y, O cos( 2 blx 1+£.-.' )
LI q q 1 q+1 1=1 q q+1 1
a9 ;9
i w - -
cees pNsm(EI B WYy Vo arees V)

i=1

If the ignorable variables xﬂ‘i correspond to part of a separable coordinate
system, the associated covariant metric should be in block diagonal form
(3.1}, Justas in the case g = 1, this is only possible if b% =0 for

L =qg+l, ,.., N, j=1, ..., a. We can therefore assume that the

ignorable variables can be chosen such that

(W Py =To1» Py, “Iaz «»es paq=12q_2,2q_1, (5.1%)
(11) poi = :[12_! -mey paq =12q_1’2q ?
(i Pg =dg ~ha o+ Po “logar "higr Po Tlsiz se
g s+1
Po = IZq—s,Eq—sH )
q
In each case the functions wy, ..., wq can be chosen {0 be zero by

guitable redefinitions of the & 's. Thus each such coordinate system is
i
orthogonal,
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As with the n-sphere and Euclidean n-space, we can directly apply
Eisenhart's [14] methods to enumerate the various possible separable

coordinate systems on Hn. We proceed in analogy with the treatment in

Chapter 3.

We first consider the separahle coordinate system {xl} corresponding

to the infinitesimal distance

n . _ .
ds? = 2 X[ (x -y | (ah? . (5.15)
i=1 ' og#i

The curvature conditions for HI1 are

2 o2 . )
= 3. .1
it HiHj , i#*j {5, 16)

These are equivalent to the equations

[ In {xj -xz) ]_1 + (;:—) +% )1{_}- (5. 17)
L#j (x - xh? j (x - x) j
i { - -2 1 -1 1 T
+{ 0 (x-x] ) T ()
{ #i (x ~XJ}2 i (x - x) i
+ 2 - L 7 = +4,

L#i,j Xf, (;!{'Z —Xl] {xz- x}}l_[

These equations have the solution

1 1
(g)(n” =4(n+ 1)1, (5.18)
i
ie.,
: n - .
Loaeh™ s Ta e o)
i 1=0
We normally write
n+1
fix) =4 II (x-e) . {5.1%
i=1

To determine which metrics of this type occur on Hn we must require that

the corresponding infinitesimal distance be that of a positive definite
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Riemannian space. There are four classes of sclution to this requirement:
Class (A). e iej for i#3, i, §=1, 2, ..., n+l,

If n=2p+ 1 thereare p+ 1 distinct possibilities given by the

inequalities

{1} el< 82< x1{63< x2<,,,<92p+2<x2p+1, {5.20)

2p+l
1 2 <
(2) x <el<ez<e3<x <"'<82p+2 X ,

(i) x! <e <x2<,_,<x1-1<e, <e <e _<x<
L i-1 i i+l

ee Ne, < .. %e {xzwl
i+2

< g, <x Poe <o <e _<xPtt<. . <e,  <x P
(p+l) x el<x . <x <ep ew1 ep+2 X 62p+2 X .

J

In fact, with convention ej, X =0 for j a nen-positive integer, these

inequalities can he summarized in the form

i-2 i-1 i
i < <
(i} ...x <ei_2<x <ei—1<ei<ei+1 X <ei+2 (5.21)

2p+l
< < i = .
82p+2 X , i=0, ,.., p

To express the coordinates for these systems in a compact way we introduce

the symbols Eg‘]} defined by

[j:l . - — 22
Ei —ej 1 1: 1 11 LI BN B | a J ]‘l [ B | 1! (DI )

and use the definition
ermes if r=s{modn+1), {5.23)
r, s positive integers., Then the standard coordinates on Hr1 can always

be chosen to be
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i 5 n i ()
) 1“’c - B , Mo x - Ey) i
vi = TS N 0L (5.24)
k;ﬁl{ B -E) k2l 41 B T E+1}

These ideas work equally well when n=2p+2, i,e,, n is even. In this

case the xl, e:l gatisfy the inequalities

<l <xT<e, <e <e,  <x1<...<e <P (5.25)
i-2 i-1 i i+l 2p+1

where i=10, ,,., p. If we use the Ei's as defined in {5.22) then the

standard coordinates for Hn are given by equations {5.24),

Class (B). e1=a'+ut, e2=a—1£a, o, £ €R, e3=f1,...,e =f

. . . . 1
There is only one possihle choice for the coordinates x, i.e,,
n-1

xl<f1<x2<fz<...<xn_l<f <

A suitahle choice of standard coordinates on Hn is

oo (x k-ﬂ’—ib]

(vg +ivy) ¢ = i’ k= 1 o (5.26)
(f - iF
n k
2 0 (x _f‘L-l) (-2 .
. = " > _ " =~ Ly sawy .
i lee R I )

Class {C), e, = e, =a, ej = gj_z, j=3,....,n+l with gk #* g if
k+{ and 8 # a for any k. 7This case divides into two families of
coordinate systems. With the same conventions as for type (A)

coordinates, the ranges of variation of the coordinates xl can be given as
i-1 i i+l n
Ces < Cx g <g< < <. < 5
{a) X giﬂl X g_l 4% X ng . gn—l x , {0.27)
i-1 i i+l : n
. < Iy <g < <a< <., < <
(B) cow gy SXSESE S NANE ) S Ny X
f n=2p+1 {i.e,, n isodd), then i=0, ..., p and if n=2p (i.e,,

n is even} then i=20, .,,, p, so that in either case there are p+1
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distinguishable cases to consider, In fact if we define symbols

Vg

__'1 LI Ty i = . xn ¥
; 37D n-1, 1i=190, y P

where gr = gS if r=s5 (medn-1), r, s positive integers, then we can

write down a suitable set of standard coordinates for Hn as

1-[11 (xi -a)

i=1
(vp —vi)? =8 — . : (5.28)
" et -a
j=1 j
, o [N (x - @
(vi - vy === : :
fa Hn-liG“) _a)
=17
n i (i)
Vg - _ Hl—_-l( ] Gi—l]
i RPN LD Ly
(a -G (G -Gy

i=2, ..., n. Here €=41 if we have case {a) and €= -1 if we have
case (b),

j=4, ..., n+l with h_+#h

Class {DD), e; =e; =e5 =h, ej=h_ K ]

-3
if k#¢ and hk # a for any k. This case divides into a family of

solutions with coordinates varying in the ranges

- i i+1 i+2 n-1 n
L ln, <x<h<x o <b<x o <h, ...<x <h . <x (5.29)
i-1 i i+1 n-2

where, as usual, hi =0 if i =0, .Justas in the previous case there are
p + 1 distinct cases to consider where p= 3(n - 1) if n is odd and

p=3n if n is even. Defining symbols

H;l) =hs 1= L, w2, 120, P

with hr = hS if r=s8 (modn-2), r, s positive integers, we find that a

suitable set of standard coordinates for Hn is
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i=1
(vo - v)? = ——— : (5. 30)
nf}_f(ﬂ(” b
= ] _
5 (I (x -b)
2\?2 (VD ¥y ) a_h [ n-2 (1) } 1
I H -h
jzlt i }
fi 1
v - v - v 32 {H'Fl{x -0 }
0 ~ Vi TVy T -3 g7 ~ . s
It Lyn-2 (i,
_ _ =17
mh (xl _ H.l)}
VJ? - i=1 ]—2 : j= 3’ . n.
n {iy (i) (i}, 3
szj_z(ﬂz —Hj_z)(b—Hj_z)

Clearly the variety of separable systems for Hn is much richer than that
for Sn and En. There are four classes of separable coordinate systems
and in clagsses A, C, D the number of distinct types of coordinates increase:
with the dimension.

We now proceed to examine the possible metrics in which some of the
gij are constant functions, The simplest such case occurs when the
components of the contravariant metric have the form

. . n
B =[x O -1 T o), 4, 5=1 ..k (5. 31)
! ey I=k+1

g -x, 0 <-x™], I, m=ki, ..., o
{ l
m#i

ki

The conditions R, ,;, = H2H? are the same as for (5.15), i.e. (5.17) but
with n ?n - k=n'. With ﬁi = [Xi nj#ifxl - xJ) ' , the conditions

=H'H® and R,”. = H¢ Hi are equivalent to
i ] itél i

ijji
- o r— n n l UT!
o — 2_ = 3
H?H?R, . +( I o[ 2 = (T 1] =9, (5. 32)

L3R g ek 0 I

U” O"I' Crl
! L, l [a . 1 .
2(—) - (—)? - (=) |—5 log HE+ H. 2 ————— |=4H?,
9 71 T Loyt S Hin(xz X ¢
(5. 33)
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where ﬁijj' ig the Riemann curvature tensor for the Riemannian manifold
i ,
k =~ i
with infinitesimal distance ds§ =7 i=1 Hi (dx)*, For the functions XZ
we have

1  (n-k+l) _

(}—(—) 4n-k+ 1! (9. 34)
i
but for the metric coefficients ﬁf there are several possibilities as
follows:
Case (A).
n-k+1
Z -
1—=4 It (x -E“}}, { =k+l, ..., n, { 5. 35)
X m
{ m=1

with E #E if m+n andall E real. Then
m n p

n no b og)
{ = N
I=k+1 m#*J  m J
where R... = ﬁi H: if =1
- HEH? if g #1,
]-.e"
1 k+1
=~ =41 (x-EY, i=1, ...,k J=1, (5.37)
X, . ]
i =1
1 k+l
_:“41—1 (Xl"ev), i=1"!l]k] J:',Elﬁ (5'38-]
%5 j=1 ]

The coordinates in these two cases can be taken as:
(a) (V ) Vls ey Vn) :{UUWU’ uﬂw]_’ - sy uﬂwkl u].’ LI un_k)s
where
k
w-2 u=1, w-21w=1 (5. 39)

and
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W =& ==t Ci=0,1, ...,k (5. 40)
i il . (E-E! _}
jFI+LT ] i+l
I I
L ix =By )
& =€, Hm‘k”E - “)1 . 1=0,1,..., nk, (5, 41)
m#l o 7 B

where SE =+1 if { =0 and -1 otherwise. This ¢ase corresponds to

J = 1.
(b) {Vﬁi V‘L‘l P svn:' = (U‘O’ul" oy uJ—lwl" ve au_I_l‘vk_f_liuJ: ... ,un—k) ]
{ 5. 42)
where
n-k ka1
w - 2 o =1, Zwi=1.
i=1 ! =1
The u, coordinates are given as in (5, 41} and
k =
I (x -e)
wl = L= i =1, ..., k+l . (5. 43)

i Hjii(ei_ ej)

In this latter case the w® are given in terms of elliptic coordinates on the
i

k-sphere Sk and consequently

e1<x1<e2<...<xk< e 01 - (5. 44)
Cage (B}.

1 Z n-k-l z

;§—=4[(x ~ayt e T (x -1 ) (5. 45)

{ m=1

with f all real and different, @, £ real, Then
m

l
n ny . (x -f)
{ II ”z) = H‘Z"“k'”(f _f'I] (5. 46)

The standard coordinates on Hn are



(Vgsvli"'svn} = [u{]!ul)'-- ’UJ--]_WI’... !-uJ_l“lk_'_l:ul]J'O'?un_k)
{3, 47)
where
n-k+1 k+1
-.15- 2 u? =1, ) wi=1.
i=1 ! 1=1
The wi are given as in (5, 43}. The uj coordinates are
> {(x - &-1if)
(ug +iuy)? = (%'J Ifj:fll , (5.48)
HE=1 {fl - a-if)
n l
2 Lot " i) s Lk
- 2 2 ] I + et
mo Lot T )
Case ().
n-k-1
Loyt cwr n i ia . (5. 49)
Xl m
m=1
There are two possibilities:
n I
n II (X -G}
I =k+1 J
(a) ( I 0y) = 5 Ry {5. 50)
w1 b Mpzg(Gpy =Gy (2-Gy)
and R =-HH*, i,3§=1,..., & i#].
ijii 177
1 H?—kﬂ(xz -2
() ( Il o) =¢ n"_kd . {5.51)
L=k+1 I1 (G, - a)
m=1 i
and R,.. =0, i, i=1, ..., ki {#].

ijji B
The coordinates in each of these cases may be taken as

(8) (VgaUpyeena V) = (gulys e ensly g Wyoe e By Wy e e o Uy
(5, 52)
with Uy W satisfying the same conditions as those coordinates in {5, 46),
The w? are given as in (5.43). The u, coordinates are
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(X - a)
I=k41' "
(4 —u)? =€ n_kfl (5, 53)
l_rm"cl (Gm_a:I
n l
o2 (HZ=k+1{X ~ 8
L . lem
da nn_l{' l{G _a)
n=1 m
?=k+1(x -Gy
u ‘:a.“‘G }EH (G G ] ) j=2, “aay n-Ik,
] -1’ T l#§-1' T Tyl

_ 2 2
ul) (w1+. - +wk+l) + (u0+u1} (5. 54)

tug-u) (W swl -1y + (ugy) [, wyug-up,

vy Wk(u[}_ul)’ uzs--- 'un—k)'

The u, are given ag in {a} and the Wi are one of the two possible elliptic

coordinate systems on EL{ {1] , i.e.,

Hi{_l(xl - e}
(i) Eliptic: w;?=czn_( —EJ) L i=1, ... k (5. 55)
: i#3° 1]
(il) Parabolic: w, =3e(X +... +X +e; +... +e ), ( 5, 56)
moix' -e. )
Wom ool S, =2, L,k
Hiij(e - e
1 Z n-k-2
Case (D), (—)=4(x - 1 (x -G ). (5.57)
XZ _ m
m=1
There are two possibilities:
n {
n I (x ~-H_ _}
{=k+1 J-2
L =k+1 L#J 1 -2 J-2
al'!d R;..=‘ﬁ2.i‘:[2-,- 1,]=1,.,,k,i’:éj;
ijji i3
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n H].ﬂ_ltxé~b}
by ( Do =

) = _
legar T2 (H -1
=17

The coordinates in each of these cases may be taken as
{aJ (Vﬂivlsl L ’Vn) = (uﬂ}uli"' )u']—_z"‘vls--- ,uJ—ZWk"'I"..uﬂ""k]
( 5. 60}

with Uy, W, satisfying the same conditions as in (5,42). The wi are

given as in (5, 43}. The U, coordinates are

A
" (x -n
=k+1 ,
(ug -ug}? =- n-k+—2 {0.61)
Iy H, = b)
n i
Yy (4 - ) = 2 (H£=k+1(x - b) )
2 I __é"b_ n-k-2
M, (H, -b)
n A
st Mt oD
o - f b -
szl (H, - h)
n l
e T Y ~
u; = - A-H ) (b-H ) i=3, «v.y n=Kk
N A A L
(0) (Vs ¥yseensv ) = (Bl(ngmupy (Wi swi s Hupry |, (5.62)

vy -uy) (Wi o ) wagrug)) wugug)
. wk[uu—ul), Ug e ,un_k} '

The -.11j are given as in (3, 60) and the Wi correspond to the two possible
nondegenerate systems on Ek: elliptic or parabolic coordinates. This
completes the treatment of the case {5, 31).

We recall that in general the infinitesimal distance can be written in

the form



1y @ radi[n o
1 €N t 1 eN

¥ v

dgs? = + aIM (5.63)

Z
I

p+l

s 3 (EPh 2 gy
jeN
p+1

where Ny, ..., Np+1} iz a partition of the integers 1, ..., n into

mutually exclusive sets NI; NI n NJ =g (I1#T1. Inaddition, BjH;S b 0

if j £ N, The curvative conditions Rijji = Hi Hi (i #§) are equivalent to
the relations

(p+l) _ P+l o D+l o s i e 5,64
Rijji (Hi ) (Hj [ i, ] Np+1, {5.64)
1 1
@My 2N 2Rl o n [0 s )3 T )T
i j ijji KEN k ! en
p+l Pl
U’éz
X - = i i 5
W 1] = o, 1, ] € N, (5. 853)
U'H 0’! O-!'
I 1y l { 2 .
- - leg H {5, 66)
(crl+al) (c£+af1 (Uz+ch) axl i
+H 2 : }=4Hi,
m#l H: (x -x )
meEN
P+l
UIE
1 1 {
= 3 o =1, (5,67
4ZEN HZ {UZ +GIHUE+ GJJ}
ptl

(D

where, as in Chapter 3, we dencte R as the Riemannian curvature tensor

ijki
of the Riemannian manifold with infinitesimal distance
dsi= ? (Hi(I})E(dxl]z . (5.68)
ieN
1
We recall that the metric coefficients {Hi( p+l) )% have the form
(H(p+1))?=x[ﬂ (x-hl, 1en (5.69)
i i ? pt+l’ '

i#i
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np+l

where (l/’Xi) = 4 np+1 + 1} ! There are then various possibilities
which we list in abbreviated form:
] n+l i
— - 4 H - T."E ] #" 3 i E - r i
bl gy =4Il (x -E), B #E, j2k 1€N (5,70
i =1
Then i
Il -
€N +1(X‘ Ep
[ I (UZ+{II)]=E T P(E - (5,71)
{EN JFEL I I
pti
where EI =+1 if I=1, and € 1= -1 otherwise, In addition,
(1) (D, 2, (D 2
= = H
1 i n-2
(! (=) =4[(x'-0)24B2 |0 (x'£), £ #f if i#j, i €N .. (5.73)
X, . j i p+l
1 i=1
Then .
§i b
: | iENp+l(K fp
I (c,+ayl =- (5. 74)
l o-f3) ¢+ |1 - o
leN ! Lo—gp et [T, (£ =)
p+l
and
(D _ (I e, AT} 2 = me
ijji 'fHi ) (Hj ) {2.75)
. n-1
] = =4x-a)2 11 (x'-G), G. #G, j#k i€N .. (5.76)
X, ) A Kk’ ’ p+l .
i j=1
There are then two possibilities:
0 1
€N l(x a)
I (0, +0) =€ n1p+ , (5,77)
le | -
Np+l j=1{Gj a)
I i
ey (X -G (5.78)
le a- (G.-G)
Np+1 U 7J#I 7T

and
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g o R - omyrg!?yr gor 121 (5.79)

ijji ijii i J
1 T
—) = -b) ? II - +* j # i € .
[1v] () =40 I H), H# G Ek, EEN L (580
1 i=1
There are again two possibilities:
i
i€N +1(x - D
[ O (o, +aq)l=- n_gp . (5. 81)
n"- -
ZEND+1 j:1(Hj b)
T 1_
| iENp+1(x 1y
[ O (o,+0)]=- 3 [ 5. 82)
len l I Hgﬂ( H -H ) (b-H)
p+l

and B =0, ®UY - ! Pyru Pyt por 121,
ijji 1 H J

These results give us the branching laws for the construction of graphs
representing the various possible coordinate systems on Hn' In each case

the infinitesimal distance has the general form

5 HE&"N l(x - BI) 1 o _—,&'(xl _xl) .
ds® = ) ds? s += 2 — (dxl}z
=1 1 UI 4°EN Hn+1( i &) '
B =l ]
{5, 83}

where dsi is the infinitesimal distance of 2 Riemannian manifold of
constant (possibly zero) curvature and UI is a fixed number related to the

choice of coordinates xl, i€ Np+1. If SI is a douhle or triple root of
+1
H?_l (x - Ej} then dsi is the infinitesimal distance of a flat space, This

can of course only occur once,

d. THE CONSTRUCTION OF SEPARABLE COORDINATE SYSTEMS ON Hn

We have shown that the basic building blocks for separable coordinate
systems on H][1 are the four types of general coordinates (types A, B, C,
D} and the systems we have already developed for the n-sphere Sn and

real Euclidean n-space En' For n =1 the coordinates are given hy
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1 |
2 . (X - Fy) 2 _ _{x - Ey) -
Ao i E, By 0 T (R B (.89

where E; < E, < x'.

B.(vg+w”2=(%Hxl-a—ﬁﬂ, o, B real, (5. 85)
or
2 2 Lot .
Vo — Vi =1, 2VOV1 =B{X - o)
and x' any real number.
C. (vp —vyl=e(x! —a, vi-vi=1 { 3. 86)

and we distinguish two cases

(1) €=+1, x! >a,

(i) €= -1, x! < a,

In fact we need not make this distinction, since we can always define

the standard coordinates in this system as
‘:VU‘VI)2=XIs Vg'V%zl, x! > o, { 5. 87)

It may seem somewhat superfluous to be discussing various coordinate
systems on H; when there is only one variable. However, as we shall see
subsequently, the coordinates (5, 84) and (5, 86} are intimately related to
the polyspherical and horospherical ccordinates for which Vilenkin [21] has
developed graphical techniques, This relationship will be made more explicit
later in this section. There ig for n =1 no system of lype D,

The main problem remaining in developing graphical methods for
describing all such coordinate systems is to devise a suitable notation for
the 'irreducible' coordinate types A, B, C. D. We do this as follows:

{I} For tvpe A we use the notation

't 2 "EE] EIH‘I
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to denote the coordinate system (5.24).
(I) For type B we use the notation

(oa+iﬁhl f1 f2 . fn—l

to denote the coordinate system {5.26).

(1I) For type C we use the notation

ot | g

(1)
1 5 | eese| G

n-1

to denote the coordinate system (35.28).
{iv) For type D we use the notation
.

(i) (1)
| Hy H,

I
(i)
Hn-2

to denote the coordinate system (5, 30), For the case when the metric
coefficients have the form (5. 31) the various possible graphical
representations of coordinates are shown in Table 5,1, In the case n=1,

for type A we can make the transformation

xl’:axi+b, Ei'=:1Ei+b, i=1, 2, (5, 38)
and take E; = 0, E, = 1, Putting x' = cosh®t, we get

vy = cosht, v; = sinht,

the natural hyperbolic coordinates on the hyperbola vi - vi =1, This is
the analogue of Vilenkin's [2 1] polyspherical coordinates which oceur when

' Q 1|. mIndeed,

graphs are composed of the irreducible blocks | 0] 1

consider the graph

I
L =21 ey

i



Table 5,1

A} (i ()
(A (0 n-k+1J
~{ i}
Ek+1
. () (&) () (1)
{ii) El E2 EJ En_k+1
N
el ‘ ‘32 .......... ek+l
{B) (ﬂ*+ o I fj £
\!/
E el ez ......... . ek+1£
; (L) (L) (1) (1)
(e <E * 5 2 Yy Gn—k-l‘f
e]_ 82 ............... ek+1

---------

(D) (i)

(L) | (&) (4)
z a G ] G2 Gn_,k__l
% =y
(i) (i) (1)
b I_Hl Hy H k2
)
el 82 .......... r ek+1
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Table 5,1 (continued)

{i) (i)
(ii) [— Hn—k-Z

ﬁx\

Ie L] a

(1} {1)
H1 coee |H T,
1] %2

LI ) ek—l)

Ce

This graph corresponds to the choice of coordinates

2_(XI—E1) 2=_[X1—E2) [(Xz—ej)] -
o " (E, -Ep Vi (Ey - E;) | (e —-ey) |~ (5, 89)
vl = - (x! - E,) ‘jfxz ~ ) }
’ (Ey - Eg) (e ~e)

where E; < E, < x!, e, < x? <e,.

If we now make transformations of the type (5. 88) and put x! =cosh®a,

2

and x* =cos’¢, E; =e, =0, E, =e, =1, we see that the graph

represents 'spherical' coordinates on H, given by
vy =cosha, v; =sinhacos¢, v, =sinhasing. {5, 90)

The rules for drawing arrows in & given graph are now evident. We adopt

an obvious shorthand to indicate this { Table 5.2), Here the notation Sp
J

refers to separable coordinates on the Py

coordinates in Euclidean p space and Hp to separable coordinates on the
!

L
p; dimensional hyperboloid. We also here introduce the notation Vs to

sphere, Ep to separable
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Table 5.2

{(A) El
H
P
{ B} (a + if

{ D} (

i

denote coordinates corresponding to one of the four irreducible blocks., In

this notation, L = A, B, C or I according to whether we have type A, B,

Cor D, The indices i run from 0 to n, where n is the dimension of

the hyperboloid. One crucial ohservation that we can make from the rules

for drawing arrows between irreducible blocks is that irreducible blocks of

type B, C, D can only occur once in any given graph. Vilenkin's

graphical techniques are valid for polyspherical analogues on H
those graphs composed of
gives a treatment of horespherical coordinates.

composed of the irreducible blocks e .

,

0

1

n’ i.e.,

irreducible blocks. He also

These coordinates are

1 1 and @ ({For
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n =1 graphs, @ are not distinguished by € and we merely use the
symboll 0 ).} For polyspherical coordinates the notation of Vilenkin is
defined in the same way as on the n-sphere. The only difference is that
with the root of the tree we associate the coordinate x = X and with each
, X we associate a hyperbolic

01" "t ok

r I
om’ xﬂ) plane hy the 'angle qﬁm

of the vertices of first rank x

rotation in the (x
t = : -

Xy = X, cosh qu + X sinh Q‘Jm . {5, 91)

x!' =x_sinh¢ +x

Om 0 m om cosh gbm )

Apart from this modification, the scheme adhered to is the same as for the

sphere, The graph

a; [ o1
l:i\
a L O 1] [ 8] 1] 99y
a, | 01
=
%2@_1

corresponds to the choice of coordinates

Xy = cosh a; cosh a, cosh a, | {5, 92)

Kygy = sinh ay,

X2 cosh 43 sinh a, cos ¢' 91 3

Xg1 = cosh a; cosh a, sinh a; cos ¢,, cos ¢, ,

1l

Xy21 = cosh ay sinh a, sin ¢, ,

il

Xy12 = cosh a; cosh a, sinh a; sin ¢,

X311 = cosh a; cosh a, sinh a; cos ¢y, sin ¢4, .

In our netation this coordinate system would be represented by the graph
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Xp

Xy ay
Xp2
X1
D1 Do
Xp111 Znyqp

Vilenkin goes further and discusses a graphical method for dealing
with horospherical coordinates as follows: if we consider a tree containing

a vertex X;;; butnot x;(; as shown below

Xo1t
Xpat
then with all vertices except the vertex x;;; we associate the same
transformation as for polyspherical graphs., With the vertex x;y; we

associate a birational transformalion hf{t} which Vilenkin ealls a horo-
spherical rotation in the subspace (x;, Xg3, Xp11) by an angle t.

Specifically, the action of h{t} is given by the formulas

o Xy qq + tF

XX R (5. 93)
2tryy, + t

1 — "

Xor = %o 2(xg +X51) °

Xg11 =Xg11 +ta

He then introduces a parameter ¢;; by putting
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2h

t=¢ ;e coshd, ... cosh¢k,

where k is the number of vertices of the first rank, According to this

scheme, the coordinates corresponding to the graph above can be written

Xy = ¢osh az[coshfpl + 34 Ile[‘ﬁl] , (5. 94)
Xga = ginh iy
X1 = cosh a, [sinh ¢ - %q‘sheq}i l ,

%
Xp11 T E 1ff‘li cos ¢34 cos §;, cosha, ,

o&e(’b1 $;; 8in Py, cosh a,,

Xp110

o i
Xpygld =e'1¢‘il sin 9, cos ¢;;; cosh ay .

In our notation this corresponds to a graph of the form

011 a,
0 o]
1 Py

011 Diq2

0|1 $i1y

=

For n=2 there are nine pessible graphs, shown in Table 5. 3. These
graphs simply represent all the coordinate systems which permit variable
separation on H,. The notation for these coordinates originates in [24 L

see also [25],

4, PROPERTIES OF SEPARABLE SYSTEMS ON Hn

We can now discuss the separation equations for both the Hamilton-Tacobi
eéquation and the Helmholtz equation, We first consider the irreducible
blocks A, B, C, D. In each case the Hamilton-Jacobi equation has the

form
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{(7)

{ 8)

(9)

E; Ej
Eéz) E§2) Egz)
@+ i | 0
a Gy

0|1
0|1
0|1
N
0
0]1]

eiliplic

hyperbolic

semihyperbolic

hyperbolic paraholic

elliptic parabolic

semicircular parabolic

equidistant

spherical

horicyelic
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1 -
p:=E, (5,95

s
]
=

. ]
ll[njii(x X}]

where Pj = VI @i} { oW/ axi} and @i = -’-Hxi} o+l + an( Xi) g ve. +8;. The

separation eguations are

9V i n+l & i n—j

1 -
O.(xh (—)? +[EH™ + T axh =0
i t o )
dx j=2

With the identification E = A,, the constants of motion associated with the
separation parameters )”1’ cens ﬁn are given below., Corresponding to

each of block type we give the corresponding polynomial ©(x),

ol ., D
L Ox =1 (x-%), YV 28V tor i # & (5, 96)

. i i k
i=1

Po3esl B petn (5.9

= ] ]
where we define the symbol

ij...n 1 . _
. -w oy E = - LI - -

Sp (B n+1) p! . 2 . En El ’ (5. 95)

Iyeaesdy £

,noand i #F1 (k#m), kK, m=1,,,., !, and it
k m
0

iy vnes e =iy Jy wae
is understood that S;J =1 and Si_jp =

{ we need this for the next few types)

and 8_226_ _'10
] jo

n-1
I O =[(x-a?+82 0 (x-1). (5. 99)
i=1 !
M= _§ B+ 20 [ee? +ﬁ2)81]_3 +2-:an”_2 (5.100)
P p i>i>1 p p
ij [ n+i ;
+8 2o+ 2 I8 (ale -1t |
p-1""ij 1 p-2 1j 0j
_ ] ?
& hlj, Iy, e 810 1oy [,
i,j.,.k i’j’..lﬂ:k
where 8 =8 fo,ooee, 1 .
e p p ( ll 1 ﬂ_l)
n-1
L O(x) =(x-a)° I (x—Gj). (5,101}
=1
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'=-=8 I + 2 (a’87 _+2a8) _+8° I (5. 102)

_ _: -2 "¥po1
p - p-1 o>y PR p-2 p-1’
. j j
+ 2 (8 +as 2 2y -8 (1. +1.)?],
j:Z[( p-1 13--2)(113 OJ:I p-2"115 " toj

irja“-: _ irj:---k
where Sp = Sp {Gl, P Gn_l).
n-2
IV, O(x) =(x-b° I (x-H}. (5.103)
j=1 :
S SCHES LNNEC PN P £Y (5.104)

+25p_2 {Iui, Iy - Iy s ]+
+ 2 (s
i>i>e P

j ] ¢ J 2 2 2
& + 2h 8 + -1 + 17+
" j§>2 ( p-1 b p-2 b Sp—S) ( it 1j IEj)

i, aes spisil e
+ 308, + VS +bIS ] T

L+bs ol - LT

]
+
z (5 p-3 03 13’ ji2 "+

p-2

The agsociated Helmholiz equation in these various coordinates becomes

n

' o

2 1i . wfi@j)—i(xf{@i)ilp—;) = O O+n-1) .

i=1 [T Ax - xj)] ox £x

j#i -
{ 3. 105)
The separation equations are
g dy/, i n-1 .
VIO == (v (0) —) +[oom-1yxh" + 2 & x) "y =0,
bk Poax' j=2 ] !

(5. 1086)

O{T +n - 1) enables us to further identify the

n . .
whose eigenvalues are ?tj with the expressions

The identification A; =
symmetry operators 1
In = m mn . )

, where Iij i Iij and [Ij . Ik] = 0, For graphs congisting entirely of
irreducibie blocks of type A the same generalizations apply directly as

were developed for Sn. In particular, we can set up a natural ordering of
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coordinates as we did for Sn, e g,

Eq Ey | E5| Eq | Es

Dy D,

Dy ey | &

A standard choice of coordinates is

A A A A A _
(Vo,Visear,Va) = {{aVe){aVod, (aVo) (2¥1), (4¥p) {2V2}, (5. 107}
A A A A A A
AVi, 4Ve, 4V3, (aVe) (sug)s (4vad (sup), {4Vy) (sig ),
r i
o (x -E_ )
A i=1 j+1
(V)i =8 - € =26 -1, (5. 108)
4] j _“k?e].H(Ek E 1) j io
g i, 1
A [Hi=5(x Ej+1]l
(EV,) =E, ]_'_[ (Er—E' } L]
] ] L k=j+1" Tk i+l
Imé i—e
(-3“-}2 =Hi=?(x j)
3] k:"éj(ek_e])

We see that for graphs involving only irreducible blocks of type A for H

q

and the single type for Sp, there is a natural ordering induced by the

ordering already adopted for the n-sphere.

Recall that this is done as

follows: a standard coordinate coming from a given graph consists of a

product of r factors
jl...jkl...k r
X r S v,
pl- LY prqln L) qs - p- ].

These factors come from a typical branch
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Ey E, Elpi
Ey E;» E2p2
E E E
1 2 ] pd
r r ri P,
W
Sy e a
1':{1 ].ql
¥
e, esqs

j LI ] j k [ k
1 1
We can set up an ordering < for preducts x * S . We say that

1}1...[:)1_17@21...G:,is

j ..-j k i.ik jT...jlkt|..kT
1 1 1 1
< r S o : rT . sT (5.109)
pl"'prql"*qs plcocprqloncqs
if Pt =PY%, P =ph, Jo =1]h,
=p', j <! #p! TR # Q! # k'

Thig has an obvious extension when t > r. The coordinates given in the
example (5,107) have this ordering, This basic ordering can readily be
extended to the case in which a graph contains one irreducible block of type
B, C, D. We note from the rules for drawing graphs for Hn that in any
given graph there can be at most one irreducible block of type B, C, or D.
In fact, the branch of an admissible graph containing one of these types must

look like

iy Eiq Elm
Eyt Ez» E2n2
N

and
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=(C&+if | , Jaa, bi,
R
e.g., £, E, | E3| E4 Es‘
b H, | H,

A standard choice of coordinates is

A D A
(Vorenar¥s) = LT G, o9 G2 G G, (5. 110)
A D A D A D A
{4Vt (4Va)y (avo) (avg) {ang), (4vgd (4Vo) (), 4 vy

A A A
(4V2)1 (4"’3)9 (dvd))‘

D
Here the coordinates v, are given according to the standard formulas

4]
ne ¢x -
D D, j=5'X =0 )
(4V0 —4¥1)" = -2 (H - (5.111)
=1
g i
, D D_D__a_nimf;“‘ ©)
Vo leVo ~4¥i) = = Fp T (B -m)
=1
Ine {Xi—b)
D D D a? i=5
()2 - () - (V) =33 —

db® | II? (H -b
J=1( j )4-

i
IT?_(x" - Hy)

2—_.
(4¥3)" =~ TR, -H,) (b-Hy) *
D 3 H?=5(Xi_H2)
(1¥4) "~ T (H;-H;) (b-H,)

A
The coordinates v, are the same as in (5, 24) and we may take

Ho W=

]
oy = cos ¢, ;u; = sin ¢, If we consider a graph of the form
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b |H, |H,

€2

ﬂ

then the coordinates on Hn can be written

A . . — -
Vj“(qvﬂ:}(evj}i 1—'0‘, 1,...,{], Vk‘-‘lvk_ﬁ, k"?,  mmy ].U,
{5,112)
where
D b D D - )
& Vo _%[(4\?0 - AV (W Ewh L) 4 (4 4 V) i, (5.113)
D D . D D
0 Vi z%[(ﬂ'o — AV (W W~ L)+ (g + V) |,
D D
Ve = Wi {gVyp ~ V1),
I I
§Vy = WolyVy —4Vy)
D
AT 1=4, 5, G

These observations enable us fo set up a natural ordering for any coordinate
system on Hn' In dealing with graphs that contain blocks of type B, C, D
we need consider only a standardized choice of coordinates for the
irreducible block components given by (5.26), (5.28) and (5. 30}, This
enables us to write down any coordinate system, given its graph, We can
now discuss the form of the separation equations for a given graph, Consider

a block as shown:

i Q Q Q |. =(n,@/\_@,<u>

We define a symbol cEIi (i=0,1,.,., n) as follows:

di = 0 if there is no arrow emanating down and from the ith

block or symbol,
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otherwise d. is a non-zero parameter. From the form of the metric we
1

n
see that the variables x', ..., x L coming from this block satisfy an
equation of the form
I1L n k.
1 7 . 1 . ~
) ——— P + ) d =E (5, 114)
=1 [0 (x -l ' oi=0 ML o
j#i M Yx -Q)
: =1 1
= 1, L = A,
where nL n
=n+l, L=0C,
=n+2, L. = D, & .
n
=11 - =11 - -
and the symbol E:L =1, L =A,
=2, L=¢,
=3, L=D,

and P, = y( @i‘] (dW/dxl) . The corresponding separation equations have
1

the form
n
dw, 0 k.d, .n_ -1 L o n. =L
O I ——+E () T+ D) b <o,
b odx =0 (x -Q.) 5 1=2
! (5.115)
i=1, s I
L

For the associated Helmholtz equation the situatfion is more complica-
ted, With each block we associate an index k. which is calculated as
]

follows: ky; =1, ki (i=1, ..., ) is the number of different coordinates

vl_ (i=90, ..., n} in which the coordinate n 11?_1 occurs in our choice of
L
standard cocrdinales. The Helmholtz equation assumes the form
n L
L v,
- 1 i d L G
2 —— {vigh 5 wefey )
i=1 [njii(x —x)] i 0x dx
n k,
+ 2 - Y =-0(0+n_ -1y,
=0 "L j L
I, _(x-Q)
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n ; k.-1 )
whereQzﬂ_l(x _Qj)l , timDif kizL and t, = A°,
J:

t, =j.(3. + k, -1y if k # 1, The separation equations become
i Tii i

ok ; ay
J{—J—(v‘(@ Q}—J (5. 116)
1 dx dx
n k. n_-1 nL Y
+4 3 —2—1+ +otoen. -1 Ly iz(xl) L |} ¢ =0,
k=0 (x -Q) K L 1=2 !

Having given the coordinates and computed the associated separation
equations for (I) and (II), we can also compute the quadratic first integrals
corresponding to the separation constants, Given px]?, , twe coordinates

]

v_ and VI on H]f1 are said to be connected if they both contain the factor
1 19

pvj' The corresponding quadratic first integrals can be calculated from the
corresponding expressions for the quadratic first integrals of given

irreducible blocks as follows:

{i) If the factor ‘IJ occurs in a branch of one of the forms

e S0
2 - n b mF sy n[ +1
gl e
s 2 ng +1
QFI 2
81 epl +1
T
b
=3] eps 41

where

)@l @
then the quadratic first integrals can he obtained by replacing the
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expressions for the quadratic first integrals of the lowest irreducible block

by the expressions obtzined by summing over connected indices,

(ii) ¥ the corresponding hranch contains a2 components of either of the forms

(e | a| 1y .... Tpl, (a T Tl

a Eq

the situation is somewhat different, The operators corresponding to these

branches can be obhtained from those of the irreducible blocks

€FT1 Tp_‘_(;‘, b [Ty TP_I_QJ

by placing T =,.. =T =a, b, respectively, and supplementing the
y P g p+1 pH+Q s P ¥ pp g
operatorg thus obtained by the corresponding cperators of EQ' Indeed if

these considerations are pursued it can be shown that all Killing tensors

can he ohtained in this way, We conclude with an example, The graph

N
0

is defined on H;. The guadratic first integrals that describe this graph are

=0, +By+0, - ~I, -%;,

3 _ _ _

I =214, 1y, Inz}++{103 I, 5, 132}+,
I§ =(Lyy - Lz,
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6 Separation of variables on
conformally Euclidean
spaces

1, MATHEMATICAL PRELIMINARIES

Thus far we have addressed the problem of the solution by means of the
additive separation of variables ansatz {1.2) of the Hamilton-Jacobi
equation (1.3}, A natural extension of this technigque can be used to find

solutions of the 'mull' Hamilton-Jaccbi equation

¢
H(D,, veer pixl, vors ¥ =0, p =% 021, ..., 0 (6.1)
1 n 1 i
ox
of the form
- i
W = W : e .
iHZl HESN o)) (6.2)

where rank [( 82 W/ 3 xlaej] |=n - 1. We will again be interested in the case
. . i

in which H = E? j—lg Jpjpj + V{x). One immediate observation ig that if W
is 2 solution of {6, 1) then it is also a solution of QH = H' =0 where

QzQ(p‘l! LI | p ;ij CRL R | xn}d
n

In this chapter we consider the problem of classification of all

inequivalent separahle coordinate systems {xl} for the null Hamilton-

Jacobhi equation

oW S ij dw oW
H= 2 ()7 = X ,c.;:J—i - =0 (6.3
=1 % i,j=1 ox ax
that can be solved by the separation of variables ansatz (6., 2),
In addition, we are interested in product separable solutions of the

corresponding Laplace equation
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f_\nlifr:,é E — H’(g)gij:—j) =0 {6. 4
i,j=1 ©ox X
of the form
n .
We=RI gixsc, cne ) (6. 5)

i=1

with R a known function, This is a variant of pure separation which is
known as R-geparation. It has long been known that this type of solution
cccurs for Laplace's equation in three dimengions [1 L [26 I

The separation conglanis appearing in the solution of Laplace's
equation (6, 4) are a generalization of the first and second order symmetry
operators defined in Chapter 3. The appropriate concept is that of a con-
formal Lie symmetry operator, A first order partial differential operator
L= Eiai( E?/axi) +a is a conformal Lie symmetry operator for {6, 4) if and
only if {L, ﬂ-.n} = Q&n for some function @ = Q{xi] . Similarly, a second
order partial differential operator

m= 2 ﬂ-ij_?'z_f‘ D IR S
i exex  k oxt

is a second order conformal symmetry for (6, 4) if and only if {1?1, &n} =
Sf_‘\n for some first order operator S-= Ziri( a/ axi) + T,

For the additive separation of variables of (6,2} a theorem analogous to

that of Benenti (i.e. Theocrem 3. 1) can be formulated {27].

Theorem 6,1: Let M be a positive definite Riemannian manifold of

dimension n for which the Hamilton-Jacobi equation

n
ij W w
H= 2 g — Wy
L=l dy &y
admits an additive separation of variables in a system of coordinates {yl L
Then there exists a system of coordinates {le '‘equivalent' to {yl} such

that the contravariant metric tensor has the form
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(6.6)

~ ¥
where the functions H; and g A have the same form as in Benenti's

theorem, i.e.

al
2 _ 5 ~0f3 _ op b 8
Hﬂ. = S * g _'g Ab {X)

The comments {i) -{iii) that followed Benenti's theorem remain unchanged
with the exception that Ay = 0, The variables xa are no longer simply
ignorable variables satisfying [po' . H] = asg EGQ need not be zero.
However, we do have that

lp, HI= (8 In@H. (6.7)

Linear forms in pi's that satisfy a2 relation of this type will be referred to
as conformal Lie symmetries. For Laplace's equation (6, 4) the space of
first order conformal Lie symmetries has dimension Z({n+l)(n+2) and a

basis

P=p-; i:lg olign, (6.8)
1 1

v

K

M_ = 1 = — s i= <k5n,
ik i yjpk .pr.] ]
D ~—Zyjpj,

j y , ;
K =0y - 2(yhp.+2y 2 Pgs  i=l...,n
) %] i 1#] y

This algebra can be identified with the Lie algebra SCin+1, 1) via the

equations

P =I jz]-’qlo,n (6-9}

j 1,541 F 1o, j41

M ™ Nar, ke 1=j< k=n-1
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i = = sy -1
Mz = La1,nn1 L=1, o
D =l

- - =1
B =15 7o, 541 1= 5 eeen

where the Ijk’ I . satisfy the SO{n+1, 1} commutation relations

0j
{1, ,1

11

. =0 I -6 I -0 & .1
jk rs} rk js sk rj erks+ jsIkr (6.10)

=d -8
ik’ i j ki 10]' it Lok

{1, IOk} =1jk.

In fact this correspondence can he made explicit by passing to penta-

spherical coordinates [26]

. n R n s
Yo=(2 (M +uY, v, =(2 (gH? -H (6. 11)
j=1 j=1

where the Cartesian coordinates yl are given by

v =u/u= Y, /Y - ) (6. 12)

i=1, ..., n.

These coordinates satisfy

n+l
-YE o+ 2 Yi = 0 (6. 13}
i=1

and in terms of the Yi (i=0, ..., ntl) variables the conformal lie

symmetries Iij’ I{lk have the more familiar form

j=1, vu., n4l; 123 (6. 14)

Iﬂk= YOka + YkaD k=1, ..., n+l,

The conformal Lie symmetry operators for (6.4) form a 3{n+1) (n+2) -

dimensional Lie algebra which is isomorphic to SO(n+1, 1), A convenient
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basis is

0, =a—.; i=1, ..., n {8.15)
1 1
oy
‘mk-yl%— kij; 1=j< k=n
) gy dy

A
I

j { 0 j i 9 j
(M7 - 2 () —=+2y Jy “r+(n-2)y
] 1% oy’ 1+ 2y

This basis can be related to the standard SO(n+l, 1) basis by taking

% =t Tg e I eeenm (6. 16)
om"jk=gj4-1,k+1’ 1=j< k=n-
mnl B gl+1,n+1 =1 ..., 071
D =591
jcj T, T g e 1T e B
In pentaspherical coordinates we have
Sij =Y, aaY - Y]_ aay, 5 i, j=l, 000, Nl 12 (6,17)
1
50k=Yn Bi’k+Yk_Eix’_[} , k=1, ..., n+l .

The infinitesimal distance corresponding to the contravariant metric

tensor given as in {6, 6) is

A1

o
a8 = Q[ Hi(dxM2+ I g .dx dx (6.18)
a af
a ¢, B
The Riemannian space with infinitesimal distance

Py o 3 3 a!

ds? =g dx'dd = SH (A} + 2 g _,dx ax’ (6.19)
ij . 2 aof

o, B
is such that the metric coefficients g have the form (6,6) with Q = 1,

This Riemannian space is also conformally Fuclidean, A necessary and
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sufficient condition for this is that the conformal curvature tensor Ciijk
vanish identically, i.e., [3]
C,.. =R +—L—”R-”R+”R)+ (6,20
ijie = Rijie T o2y (852 Pk T B B ik - &%)
R

—_—— (g, ' =0,
(n-1) (n-2) B2k g-‘hg }
Here R R,. and R are the Riemann tensor, Ricei tensor and scalar

Lijk’ "ij
carvature, respectively, of the Riemannian space with infinitesimal

27
distance ds?, The function Q = e satisfies the equations

1 ) ~ rki
A
YT 2 BB TRy T g;{g oy !

I:\'.‘In--I

(6,21)

where A, =2,  -A, A,, A, = 3?\/9:{1 and A, . is the second covariant
1] 11 yol L 1]
derivative of A with respect to 8,7 -

2. BEPARABLE COORDINATE SYSTEMS ON CONFORMALLY
FUCLIDEAN SPACES

Ag withthe real n-sphere, Sn, real Euclideann-space En and the hyperholoid
Hn’ a crucial step in finding all separable coordinate systems for con-
formally Euclidean spaces is to show that all such coordinate systems can

be taken as orthogonal,

Theorem 6,2: Let {XJ } be a coordinate system on En for which the

Hamilton-Jacobi equation (6. 3) admits a separation of variahles, Then,
by passing to an equivalent system of coordinates if necessary, we have
glJ O ]H , i.e., there is only orthogonal separation. In terms of the
choice of ”standard” pentaspherical coordinates in (6. 9) the variables
xal , £ =1,,.., 9, can be chosen such that the associated first order

Lie symmetries take one of the forms

(0 pcn " I(]Il‘ pa'z 23 """ Pa-q N I2q—2,2q—1’ (6.22)

() py =l Pg, “lap «-e Po, " lag-1,2¢°
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i) ppy, =l ~lype vees pas = Ler1r " ligsr

o _Is+2,s+3’ Tt ljttlr‘q:It:;-f-l,'21+2 )

Proof: This is based on the general block diagonal form (6. 6) of the
contravariant metric tensor in a separable coordinate system and is closely
related te the corresponding theorem for Hn+l' This is because in penta-
spherical coordinates Yj the correspending choices of coordinates are
virtually identical, What we have to show is that the conformal Lie sym-

metry vectors p o C20 always be chosen such that the resulting separable
X
coordinate system is orthogonal, Any element L of the symmetry algebra

of SO(n+1, 1} can be chosen fo be one of the types [23| :

+hb I {6,23)

(i) L=I byl vay 2+l ’

01 + 223+...
(1i) L =Lip +byly, +... "'bylzvﬁl,zu’

()L = (Igp ~Typ) +bplyg +oee +B, Ly ) oy

4]
If these elements correspond to a coordinate x , i.e., L = P, > then by
1

local Lie theory the cartesian coordinates can be chosen to be

a,
W) (v, ees ¥ =™ Y0 cosmyx® e wy) (6.24)
O o

Py sin(bx +w;),..., 0 cos(b x +w ),
. £

,OVSI.HI:I}VX +WV}, V2V+29 ey v]ﬂ_} ’

. 2 2 2 2 _
VI-’lth p1 +n|| +JOV+V2V+2+-|0 +Vn_1?

n O _ . (3
(if) (y', ...y ¥ ) = (1-Picosix 4w)) T (£rsing W) ...,
pvcns(hyxaLWD) , pysin(buxouwv ),

Vousrr T vn) ’

with p§+...+pi+v2 ...+v§1=l,

+
2V 41

h (43 o
() (y', ..., ¥ ) =(x "+wy, 0; cos(byx +w),

. v 4}
f9 9in{byx 1+w1} seaa ,Dycos(bux 1+wy) .

Vo).

. oy
ﬁysmfbux +wp), v2y+2,.... "
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Case (iii) need not be considered further as L = ]?’1 + bZIZS 4+ ... +

b which has already been considered in Chapter 4,

L'I?,u, 2v+l

The metrics for cases (i) and (ii) are

2(XGI+W:I Iy 7 e
¢ Pids t+dw) ? + def + 05 (bydx 4dwy) ? {6,25)

g y (24 2
+ ... +dpp+py(bpdx +dwu) + dv

(i) dg? =
2
2042
Fa.. +dvE)

I%

& (1}
(1-pyeos(x ‘+wi)) "2 det+p3(dx Hdw,)?

2 z 23 2 2
S M +d£ry +,Oy(hpdx -H:lwy) +dv2v+1 +

(i) ds®
. A
n

If there is only one ignorable coordinate &, then it must be orthogonal,
which is only possible if b‘2 = = by = 0, Indeed, the requirements that

the confravariant metric have the form (G.6) imply

L
iy dwy = -  bdw,, 6,26
(1) dw, jiﬁrijﬂ (6. 26)
v o
if) dwy = -2 (=) b.dw, .
{ii) 1 jzz(p1) JWJ

Since the differentials d,ﬁj, dwj {j = 2) must be independent and the only
conditions on ¢ are those given in (2.3), then d’*w; = 0 implies that
bj =0, =2, ..., V and dw; = 0. By suitably redefining @& we can put

wy = 0, Thus for one ignorable variable the conformal Lie symmetry P,
f

can he chosen as one of the three possibilities

() py =D, (6.27)

(ii] P =P1 +K1 or M]’_z .
0y
{111)[::»0’] =P .

Similarly, if we have g conformal Lie symmetries Py i=1, ..., 4, we
i

can repeat the arguments used in Chapter 5 with suitable meodifications and

show that these q ignorable variables must correspond to ene of the three

choices

114



(1] pG'I = D, I:,]-a!2 = T\'I-Lz’ pﬂg’:l = M34, 4wy pa = MZCI“B, 2q-2’

q
ii = = 0 ' = 1\"
{ii) (a) p&1 P, + Ky, pﬂr]g Mo, , paq IZq—B,zq-z’
= A L] =1 -2
(0) p,, =My, .poq Mog-1,2q " (6.28)
(iiyp . =P, .v., P, =P, p
1 = 1 +
%1 as S as+1 Tws+1,s+2’ ! paq

- qu-s+3, 2q-s+4 '

The choices of coordinates for (6,28} (ii) {b) and (iil) correspond to cases
already treated for the n-sphere Sn and Euclidean n-space, respectively.

The other casges give rise to the coordinates
Xﬂ‘1
- n 0. .o
(i) (yl, L., ¥y =e (fcosxX ¢, fysinx 2, ..., (6.29)
ag .«
ﬁqcosx , f-‘qb‘ll’lx q, Vogi2® Tt v

ve V=1,
n

. 2 2 2
with pl+... +pq+v2q+z + .

a Lo Op
ds? = &% [ (ax™ 2+dp%+p%(dx”2)*+...+d,rfq+p§1(dx Ay

+ dv?

2
v2q+2 +l!! +dvn] ¥

.- n ky, - . k ¥ . ¥
(if) (y!, ..., ¥} ={l-pyeosx 1) "l(pisinx !, Pycosx 2, Lysinx 2

. ﬁqcosx@q. ﬁqsinxﬂq. v s aeey V]

2q+1 n

with 921+...+p2+v +vi =1,
q n

z

2g+1 R
i ) {1:3

ds? = (1-preosx ) 2 [do? + pd(ax"Y R R AL AL

2 2
+dv2q+l . +dvn| .

Thus all possible coordinate systems are orthogonal,

To solve our problem we have to find all coordinate systems {x' ) such

that the Riemannian space with infinitesimal distance,

n
g .
de’ = 2 —(dxH?, n=z 4, (6. 30)
. il
i=1 8
is conformally Euclidean, i, e, the conformal curvature tensor Clijk
vanishes. Here, as in Chapter 3, 8 = det( Sij(xl))nxn and Sl is the il
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cofactor of the Stackel matrix (Sij(xlj ) X" Thig problem has been solved
for n=4 [2 8] and by different methods for n= 3 [ZBJ . The solution to
the problem for n =4 wag non-trivial, Central to this was the result that

it was always possible fo find a function @ and Stickel matrix (§ij{x1))

44
such that
ds® = Qds’ (6, 31
where
4 S i i i
das* = -T(dx)z =g, dx'dx’
i<t § &

i~

with Ricei tenser Rij =0, i#j.

This means that any four-dimensional Riemannian space that is in
Stackel form with respect to the coordinates {xi J, and is conformally
Euclidean, is itself conformal to a Riemannian space that is in Sticke!l form
and also satisfies the condition of product variable separation for the

Helmholtz equation
iy =2y, (6.32)

i.e., ﬁij =0, i # j, We ghow here that this result extends to n dimensiocns,
To establish this result we note the following,due to Eisenhart [14J.

A Riemannian space with infinitesimal distance ds® = Z?leE (dxi) 2
for which the metric components are in Stickel form is such that the

for i, j, k distinct can

components of the Riemann curvature tensor Rjiik
be writien
3 ., & )
R =—H - 1 ! . . n
ik~ 471 5 J k o8 Hy (8.33)

The off-diagonal part of the Ricci fensor has components

log[II 'H] ER (6. 34)

- 3
R - -2 - =
ik ZHE R, 1Tk

where the preoduct I ™ of the H% extends over all { # j, k. Ancther useful
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result we need is Lemma 5 of reference [2 8]:

Lemma: Let ds® = E?:l Hj {de) > be in Stickel form. Then

ds? = ez¢ ds? is in Stickel form with respect to the coordinates {x |

if and only if for j #k,

2 -~
TY_ 0000 090 e D00
ax’ dax ox ox. ax ax )

dx E'XJ
(6. 35)

2 L]
Any function e ¢ that satisfies these requirements is called a Stackel
multiplier. As a corollary to this resuit we make the observation that

2 - -
e 0 = Hj * is a Stickel multiplier,

Theorem 6, 3: Let ds® = 2 Hi (dx)? be a conformally flat metric in
Stéickel form. Then there exists a non-zero function ¢ such that
ds® = qds? = Ej qﬁj? (dx")? where the metric d5? is in Stickel form and

such that f{‘
i

Proof: We prove this by explicit construction of the various possibilities.

The econditions Cji' =0 (j#Fi1+k imply

ik

1
- 6. 36
Rk~ (n-2) TPk (6. 36)

for the given metric ds* = E;Ll
dg = E?ﬂ]_h;(dxj}gp where h21 =1, h? B H;H1—2’ i=2, ..., 0, isin
Stickel form. TFor this we have

H;{dxj)z. If we take q = H7? then

1 2

(n-2) Djk

W= 1Ca

: log h’, 1+#j#k (6.37)
a3 x° i

This implies that R, =0, j #k, j, k=2, ..., n, as we can always put

ik

i=1 in (6,37). We can now apply Eisenhart's results { see Appendix) to
\ n .

the metric (ds*)? = h%(c;‘:b-;g)2 + .., +h:1[dx )2 for fixed x!. The

conditions R

gk:(}' i*k, j, k=2, ..., n, imply that

e =x [ I (o! + ot —2. ... 8. 37
: ljlka&j{ Kt jk)], k=2, ..., n, (6. 37)



K .
where ol = ol _(x1 . X ), le = }{lj(xl, xj} . The varicus degenerate forms

ki Kkj
of this metric have been given by Eisenhart; we work through the various
possibilities, For the most general metric the coefficients h; assume the
form

L Il I _ gl i = g o! + 0,
b’ Xli[kﬁwk ol a2 80 vk, (6.38)

From Lemma 4 of reference [EBL

=X [ " 6, 39
; 1J[kﬁ{wikw”abjk1| (6. 39)
- k 2 o rod _
where tﬁ/kz— l#kz {(x, x), le —leix , X} and ljxkl = —l,ffzk. Con-

gsequently we can take

1 ol _
0‘z Uj l.ffli‘ifljlﬁle {6, 40)

The form of the functions Ui can be easily obtained. Putting x' = y!

(fixed) in (6. 40) we have, in obvious notation,

wzjzwzﬁbj(ﬂ'z—ﬂj) (6. 41)

P/

where q&zz[wli(y , X )]_‘, Ué ZUZ(YI’ xzj. Absorbing the ¢Z

functions into the wll functions, we have

~—

I 1 _ of _ :
G'Z - orj nwlzwljmz Uj) . {6, 42)

Thig equation has only two solutions:

}
(a) of oA +g(xhy, 1=2,,..,n

- k] (6- 43)
i {Ul_gl)
{ b} Uitf(xlpﬂ'z +gixly, I=2, ..., n.
For case {a) the metric coefficients h? have the form
-2
nf =% [0 o, —op [/I4T (o -0y do -o)" 7] 51,
Yk ) 1#j )

Now from the Stickel conditions {2, 52} for i=j, k=1, we have
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82
——— log h* =0, (6. 44)
ox! 9% J
i, e. Xl_({fl - G__)Z—n =X g (x!), From the same conditions with k=1 we
] ]
can deduce that qj(xij = q{x'), i.e. the functions q_(xij are independent

of j, Multiplying the metrie ds’ hy [q(xl) ]_1 Hh&l( o; - o'z }, we
obtain 2 metric d§? = Z?_lﬁj (dxj) 2 whose coefficients have the form
ﬁ?=X.[H(Gk-UJ.)J, i=1L1 ..., n. {8, 45)

This metric satisfies Rij =0 forall i#ij,1, j=1, ..., n

For case (b) the metric coefficients can be reduced to

2 _ -
b’ _le[karélj (0 -0 l. (6. 46)

The Stdckel conditions (2, 52) with k=1 imply that the metric coefficients
have the form

-0} . (6. 47)

h21=1, hJ? =qu(x1) (o

After multiplication by [qix!) |™! to obtain the metric ds? = E?:]_h; (dx’y 2,

the coefficients take the form

h?=x,, h2=x%x 1 (¢

_U-)? j!k=2j LELELES | n. {6.48)
Voo ke

k

We next consider the possibility that some of the functions U:{j do not

depend on xk. Proceeding as we did for the n-sphere, we find that the

metric coefficients can assume one of the following forms:

B
o
b
I

1, W=[x_ I ¢ol-ohy|( I (o!+g), (6, 49)
1 ) Uyay K 0 en, 2 72
W =x. I (o! - oy,

a labia h a

where i, j, ..., €Ny, a, b, ..., €N, and g, =g (x'), and the functions
ol =o' (x!, x™) are suchthat (2 )o! #0. N;, N, are mutually
m m m

n
exolusive subsets of {2, eess N }.
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(b hi=1, W=x _THyo! gl p=x I o!
1]k%j k0 j a “la L ' b

For case (a) we can take g = 0 by suitably redefining the functions O’E ,

—ﬂ;). ( 6. 50)

. € N,. From the conditions (4. 34) we see that

82
*—.loghzcﬂ, j € Ny . {6, 51)
ox! x) 4

le =

W= oo

Lol j - a
Therefore the metric (d§)% = (dx1)2+Ej ex hi{dx‘ljz for fixed x , a € N,,
1
is in Stickel form and satisfies the conditions Rijjk =0, for i, j, kK € Ny

and distinct
=[x T (o -oylcl o), (8. 52)
) s Fooaen, ®
Using Lemma 4 as we did for (6, 37), we see that the functions -:7; have the

forms

£ i
(a) ol=—%) aEN, , (6. 53)

Using the Sticke! conditions just as we did for the metric (6, 37), we can
readily see that each metric of this type is conformal to a metric

as%= Z?_l n? (dx')? where

. I _ -
() by =X, I (o _-0,), L, meN, U f1}, (6., 54)
m¥*i
n'=[x I (o -0)l( T o),
Ty BT zenoutn) ©
(i) h? =%, hi=[x I (o, -0yl 0., (6. 55)

=X I (o -0},
a a b#a b a
These metrics bhoth satisfy the conditions
R.=0, i#]j. (6, 58)
1)

For case {(b) it is easy to see that Rip =0 forall m. This follows from
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(6, 36). Consequently this metric already satisfies the conditions {6, 56)

and the metric coefficients can he taken as
¢iff) hi =%y, h2=%X I (o _-0), k=X I (6 -0, (6,57
oo Ty kO a ‘a .. b a

We can now treat the general case, The infinitesimal distance can be written

ds® = (ax!)? + FE)) {2 (h;l)z(dxi)z {1 {Ué +0,.) J (6. 58)
I=1 iENi EENPH
s T Phad)?
j€Np+1 J
where {NI, e Np+1 } isa pattern of the integers 2, ..., n into
mutuzlly exclusive sets. We also have that 0, hil =0 if j & NI,
and the coefficients (hffl) 2 have the form J
{h?:‘l)z zxij iilj (cr; _cr]{), jENp+1. {6.59)
iENpﬂ'—l

From this form and the relations (6. 36) we see that Rij = 0, provided that
j g Np+1. As a consequence of this and the Stickel conditions (2, 52), the

metric can be written

P i
ds? = (dx)? + 3 qxh ¥ (BhFcaxh?) (6. 60)
I ; i
=1 i€N
I
x{ I (U§+ @) b+ 2 x. I (ol -olya)?,
LN jEN 1” 25 1)
b FPe jen
ptl
where { 31) Ef =0, ail = a’il(xi] . Applying the results of previous

special cases, we can readily show that O'; , € Np+1 have the solutions

£ x! )
(2) a%:a%% o jeEN_ (6. 61)
i -9 D
(b) crjf=f(xl)oj, jENp+1. (6,62}

The Sticke! conditions with j=1, i ENI and k € N . imply that

p+1
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g2

log (0] + @) (6, 63)
oxt axk K I
g i d 1
ZENp+ ox

+—a~klog(0' o D T 3 log[Xk I (O‘E—UL}FG.
dx l#k

l
Differentiating this expression with respect to x , we obtain

ol _ ol
3 2 I "k
1
& log( Uk + aIl} 7 log[w J =0, {6. 64}
ax ax! ax l 11
These conditions imply
a2 ol - O‘I
— 7 h}g[m | = 0, (6. 65)
dx! 9x l Il
as akoi{ # 0, For the first possible choice (86, 61) of the functions
o, jEN we choose
j p+l
A - O
Il l
ol v  =a | ———
! %n 11[01~crz ).
The conditions (6, 65) imply (8?2 /8x! 8xl }log[AH - 0, | =0, nence
A 1(X1} = 0, 1i.e., Aﬂ is a constant. Similarly, the second choice
(6, 62) requires that G.'Il is a constant, These conditions, when fed back

into the Stickel form conditions (2, 52), imply

qfx') =q(x'), I=1, ..., p+l (6.66)
and
{a} x H(o-cr)/ﬂ (0y -0,), J€EN ., (6,67
b) k= hx I (o -0) ., 6,68
(b) hi=q . (x)X I (o -0 (6. 68)

By multiplying by suitable functions we can always reduce these metrics:
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. i
(i) dg® = 2 x,[ m (0 -0y lax)? (6. 69)

len UA11} m#l
p+l

P
+ > [ @I (ol +ay|dw?
) I
=1 leN  uf1}
p+l

Z
(i) ds® =qdxH)Z+ 2 X, [ M (o -o,)](ax )? (6. 70)
l m {
L €N 1 m#{
P P
D Y I (UE +031)dei,
I=1 {€eN
p+i
where each infinitesimal distance dwEI corresponds to a Riemannian space
- I
which has a metric in Stackel form and satisfies the condition Rij =0,
ih,1j#, i, ] € NI. We note here that the form is not the most general.

In fact the general infinitesimal distance can be written

ds® = (dx)? + 2 h?.(dxj}2 (6,71)

je ¥

P I i

+ 5 {2 (hil)z(dsz}{ Il (cé+a11)]

I=1 €N LEN
I p+1

+ 2 (h:?”)?(dxhz ,

‘]E-Np+1

where akh;l = 0 unless j €Q &L 11}, Here Q, Ny, oens Np+l

form a pariition of {2, eees n} into mutually exclusive sets. The
remainder of the metric has the same significance as in (6. 60), i.e.,

I
E?]_ hil = 0 unless j € NI. However, we notice that for a metric of

this type Ri =0 for 1+ k forall i, k=1, ..., n. This is easy to see

k
from {6, 37), ag it is always possible to find an i # j, k such that

i~ k
(02 /8:{]8:{ y log hi = {0, Conseguently, a metric of this type trivially

gatisfies the reguirements of the theorem,
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3, CONSTRUCTION OF SEPARABLE COORDINATES FOR CONFORMALLY

EUCLIDEAN SPACES

To computie all the possible coordinate systems that are in Stickel form and

conformally flat we need lo Lmpose the conditions C. i5ji =0, i#i. Here

1
- 2 2 2 _
Cijji F“ijjl (n-2 [H 11 H R ] {n-1) {n-2} H H R=0.
(6, T2)
=7 -3 . )
Now Rii k%in Rikki. and if we define
=HH*R {6.73)

I 1 ] 11]1
we can write (6, 72) in the form

1
) | * (n-1) (0-2) R =0, (6, T4)

(2

+
B~ (n—2) ” Bk ¥ P
If i, j, k, £ are four distinct indices, then from these conditions we

observe that

B +B =B + B =B + . 6,7
ijji kil k Tikki T jil; illi Bjkkj (6. 75)
It ig these relations that help us to find all possible metrics ithat we need.

For the most general metric (6, 45) we can take Ui = xl, i=1, ..., n, and

the metric coefficients as

h§=Xj[H (< -xh] 1, j=1,..., n (6. 76)
i#

In terms of these coordinates, the quantities Bijji have the form

Smed xR (A oLy
1]_]1 1] {Xl_x])g Xj (xl_xj) Xj
- z _
+[ H(XI'X}I'I{—ig.——(}lT) - .1 0 ('}'jé_)‘}
L #i (x-xh? M1 ()
1
+ 2 . . T % (6.77)

o L i 1
1+, X, {x =x) (% —x)Hkﬂ(x -X )
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and, if we substitute these expressions back into conditions (6, 75}, the

n+2 im
a (x , If
m=0 m( )

# 0 then it is always possible to choose a; = (0 and change

resulting equations have the general solution 1/Xi =2

®ne2 i i
coordinates according to x * (x ) !. We see that the metrics of this

type are conformal to a metric of the form

I, (x —xi)
j#i i s
T (dx) " . {6, 78}

11—[&1 (x _EZ}

ds? =

Nt S

L)
4
This form can be recognized as that of elliptic coordinates on the n-sphere

Sn or type A coordinates on the hyperboloid Hn' In fact, if we had not

performed this transformation, the metric would have assumed the form

n 1_[‘?5_(1'{J ~x1} N

ds’ = 2 —I=— (dx)? (6.79)
. n+2 i
i=1 szl{x —el}

which is the form for general cyclidic coordinates [26J . Bdcher has given an
extensive account of such systems. We need to determine how many
coordinate systems of this type occur, Note that any set of coordinates is
conformally eguivalent to one in which the coordinates and ei's have been

changed according to the birational transformation

O’ei+ﬁ

eizw‘ i=1, ..., n+z, (6. 8Q)
ox. +f

Xi'=;}?i1+—5', i=1, ..., n @b -5y #0.

The corresponding conformally related metric then assumes the form (6. 79)
in the primed indices, Using such transformations it is not difficult to find
all inequivalent conformally flat metrics of this type. We recall that our
spaces are positive definite, i.e,, the coordinates (x'] must stay in
ranges so that the metric is positive definite. We see that the metric of the
form (6. 78) corresponds to the most general cyclidic type of Bbcher but
with en+2 = % TIf we take these degrees of freedom into consideration,

there are only two elliptic types of coordinategs, They are
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(i) e <e <xl<e << .., <e l‘ixu‘(en =

n+ +2 !
(i =< <<, < <x <f =% (6. 81)
n-1 n n
where e, = @+ iff, e, = @-if | ey =1, ..., € .o =fn. As we saw in

Chapter 5, the remaining metrics of type (6. 78) that ariseon H occur

2 h
when there is one double or triple root in the polynomial H?:l(xl - ez ¥

Upon transformation of this double or triple root to * via a birational

transformation of type (6. 80}, the metric assumes the form

n {H1¢i{J—xl)} i
(dx)* (8. 82)

dg® =

Ha |
=

=1 I, (Xi ) )

where p=n or n - 1. This says that all such coordinate systems are
conformally equivalent to the two nondegenerate coordinate systems on En’
i. e., elliptic and parabolic coordinates., For the remaining conformally

flat metrics we can now make a crucial ohservation. Each conformally

flat metric can be written in the form

P
dst = 2 dw’ (6. 83)
=1 1

where P = 2 and each form dw‘i {s the metric of a Riemannian space.
We assume that the integers i1, ..., n} are subdivided into mutually
exclugive subsets NI, I=1, ..., p, N_N NI = ¢ and

. I
dwi =2, Hf;(dxlﬁ, BjH? =0 ounless i, j €N, If dimN =2

NI I

and p .~ 2 then the relations {6, 75) become

+ =0, i, j € i €
Bijji Bkﬁ,k , 1, ] NI, k, NJ, {6, 84)
PP € i s . _
as Bikki 0 if {€ NI’ i NJ, I # J. These conditions imply Bijji 0,
i, j€ NI, since if m, n € Nk then

iiii T Ponnm ™ % Btk T Brnnm — ™ (6. 89)

The corresponding coordinates in this case can be identified with those on

En, j.e., B....=0 for i, j €N,, I=1, ..., p. If we still require

ijji I
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dim NI = 2 but p=2, then the only restriciion we have is

B 0’ i’jENll k9Z€N2s (6086)

ijin " PRilk T

which implies B.... =1, B = -1 with suitable renormalizations, The
ijji kilk

metric dw’ corresponds to that of a separable coordinate system on H

P
and dsj to a coordinate system on Sp where p. =dim N, i=1, 2,

2
Finally we mention the case when dim N; =1, If p > 2 then we can reason
as before that Bijji =0 forall i, j, i.e., the metricig flat. If p=2 the
only conditions we obtain are
= i, j, kK € . G, 87
These eonditions imply that Bijji =1 for all i, j. We can now summarize

these results,

Theorem 6. 4: The Hamilton-Jacobi equation (6. 3) admits a separation of

variables in orthogonal coordinates only. The metric associated with each
such coordinate system 1xj } can be written as ds® = Qds° =
Q{ E?:l h; (dxi} 2) where d$° admits a true separation for the Heimholtz
equation f_".nu'/ = EY/ on one of the manifolds

() E,

(1i) prHq, p+q=n, p,g=1,

{iii) Hn { this case includes Sn).

All separable systems on these manifolds permit R-separation of the Laplace
equation (6, 4).

The last statement in Theorem (6. 3) has not as yet been proved, To do
this we discuss the various types of coordinate system and show that we do

obtain the correct result. For the two coordinate systems (6. 81) (i} and
{ii}, a suitable choice of pentaspherical coordinates is Y, = %ﬂ s Yi =I€'i

(i=1, ..., n, Y =1, where L = A, B and we are using the notation of

n+l
Chapter 5. The operators that describe this system are obtained from those

we already know for Hn with the Casimir invariant excluded via the
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correspendences {6, 10) and (6, 11}, The metric has the form

ast = —— [-d¥} ... -V’ Vi), (6. 88)
{I{-ﬂ + 1y 2
From the general theory of confocal cyclides and their relation to orthogonal
separable coordinate systems, Bocher [2d has shown that general cyclidic
coordinates can always be chosen such that the Laplace equation (6, 4) admits

an R-separation of variables with

3 (n-2) /2
R(x} -{y0+yn+1) . (6. 89)
The function ¢ =R 'Y satisfies the equation
n
1 i, o i 4
[ 24 —) 00) (00 =) (6. 90)
i=1 Hj#l(x - X)) exX ox
z n . n+2
sy i liem 3 oeyle =0
4 4 . i
i=1 i=1

+2 1
where O(x) = z[Hf:_l (x-e) 2, 1 particular, if e _ = © these equations

n+2
have the form

n , .
[2 « L T Q(x) %(Q(xl) —a—i~)} —in(n—2)1¢'=0
i=1 H'il(x - x}) ax dx
] (6. 91)
where

n+l 1 .
Qi) =2[ 1 (x-ey P, ®=(5 + 1" P72,

i=1

which can be recognized as the Helmholtz equation on Hn with eigenvalue
1
En( n-2} for the corresponding Laplacian, For the remaining coordinate

systems of type {ii} the metric has the form

=1 \ .

2 2 2 2 a 2

= - - .. - Tea s = [] 2

ds P—g("'u T v [dVg dvyi -, dvp duj duq_H] {6, 92)
P 1

where v - Zi_l vi =1, ;ljl u; =1, p+q=n and the separation

equations have the form
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1
(.&H +&S]lp=gn{n—2)d/ (6. 93)
P q

where ﬂ.H , é.s are the respective Laplace cperators on Hp and Sq and

P q 1.,
the R functionis R = (v, +v1)§(n 2].

We see from these results that
there is no need to develop further graphical technigues for solutions of
(6.3) and {6, 4 and that the last statement of the theorem readily follows

from these congiderations.
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7 Separation of variables for
the heat equation

In this chapter we use the results of Chapters 3 and 4 and extend them to
give a complete treatmenl of the problem of classifying all separahle

coordinate systems for the heat equatlion in Fuclidean n-space
s

A K =0
I‘lw+ wt

and the corresponding Hamilton-Tacohbi equation

I . .
AW 8w AW
3 ”"T"_{+“ = = 0 I
i 0x ©Xx
- 0.

i,j=1
ikl

where &n is the Laplacian operator on En and, of course, Ri'

We note that III' can also be thought of as a2 form of Schrodinger’s
This, of courge, does not affect any

equation if we write & =ik (Kk real),
of the separability properties, The solution to the classification problem of
INT is due principally to Reid [30 l, [.‘31].

The trick in dealing with III is t¢ consider instead the {n+2) -dimensional

Minkowski space Hamilton-Jacobi equation

H=p: + +p?  -p . =E p=aw (7. 1)
1 " n+l  n+2 ’ i 821'
If we then look for solutions of H=E for which W=W + &(= +z Y,
n+l n+2
then W' satisfies the Hamilton-Jacobi equation
(7.2)

i
=n'= dW' "= ! = - i
where P, =P W' /ox, P dW1'/ 6t and t Z el Bpaa” Thus solutions of
+ ) are solutions of the 'heat type' Hamilton-

the form W=W'+€(z Z
n+l n+2
In exactly an analogous way, if we consider solutions ¥

Jacobi equation III1.
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of the Laplace equation in { n+2) -dimensional Minkowski space

g . d bl
[(m— P +...+( 12— Vg = By (7, 3)
le azn+1 azn+2

then we can look for solutions of the form

N +
(Zn+1 zn+2)

Y o=e Y
where Y ' satisfies the associated heat equation

¢ o
((_1)2+...+{—n)2+88t)t'b1=].31‘[/1. (7.4
dx ox

In dealing with these equations for which E # 0 we are alsc effectively
dealing with the cagse E =0, The relationship between solutions of {7, 4)

and (7. 83) are summarized in the following result [30] .

Theorem 7.1 (Reid): To every separable solution of (7,3) there

corresponds an R-separable solution of (7, 4} and vice versa, This state-

ment also holds in the case of the corresponding Hamilton-Jacobi equations,

To construct a mapping from (7.4 to (7.3), suppose that {yJ ! is an

R-separable coordinate system for (7.4}, i,e.

i i n+l
X =x(y', ceu, ¥y ). (7.5)

n+l

Then there are functions l,I/j(x]), i=1, ..., n+l, R, such that a solution
of {7, 4) has the form

n+1 i
Iy (). (7. 6)
=1

V=e

Consider now the coordinate system {§J }e

i~ ~1 .

zjzx-l(yiﬁ'--’y:'i le!l"‘!n! (7'?}
—_— = vl it

Zn+l Zn+2 Zt(y 7 % = oa .5"' )’
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~H+2
+ = -R/E .
zn+1 Zr1+2 y /

This is a coordinate system in Minkowski space with an ignorable variable
~n+2
yn corresponding to the symmetry operator

d N é d
L=""w =23,  *3z ) (7. 8)
SY n+l n+2
whose eigenvalue we shall specify as €. Let
n+1
- ~n+l) R s
¥ =expley e I V(5 -
=1

As v satisfies (7. 4), J is easily shown to satisfy (7.3). In other words,
i;J } isa separable coordinate system for the Helmholtz equation {7, 3).

it 13;3 l isa gseparable coordinate system for (7.4) with symmetry operator

(7.3, then
i ol r-n+1
2 =X, LT, (7. 9)
B = ~ ~N+1
2041 Zne2 28y, ..o Y ),
2 4z _ ~n+2 e ~n+1}
n+1 n+2 _y (-y [ I B B ] -y L]

which, if we let f = -R/&, is the image of (7.7) and the theorem is proved.
If we define E = e_Et’/?El,i/ then, on substituting, lEf is an R-separable
solution of (7,4) with E =0 iff ¥ is an R-separable solution of {7, 4),
Hence we may as well consider separable coordinate systems for which
E#0,
If is found that the additive variable separation ansatz is insufficient to

deal with all the relevant solutions of {7.2), In fact, we need the additive

analogue of R-separation, i.e., solutions of the form

WER+ZW1(Xl;cIr""Cn)' (7.10)
i

However, if we look for solutions of (7.1} then the usual additive ansatz
ig sufficient. The classification problem that needs fo be solved is then the

finding of all separable sclutions of (7. 1) of the form
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n+l

i
W=
'21 Wi{x ) +€ (ZIH-]. + Zn+2} ,
1:

i.e,, in which =z + 2z _ is an ignorable variable. The following result
’ n+l n+2

derivable from a theorem due to Benenti [17 | is crucial to this classification.

Theorem 7.2 (Reid): All Hamilton-Jacobi separable coordinate systems
1 .
- En'l‘ 2 _ 2 = - , & +
for H (=1 pi P .o E of the form W=W'+ (Zn+l zn+2) are
equivalent to a coordinate sysiem associated with the Hamilton-Jacobi
equation
. ij n+2, n+2
1] 1 2
2 = _
RE PPy 2P 1 Ppy2 T 8 Pha = & (7. 11)
i,j=1
where
=Ny — |1y —=
_2
3 H 6ab ]
i)
g =
o
0 G
with
al
H'2 = S_
a s
al
af 5 Ac}'ﬁ (x3) 5
g a S ¥
a
and
al
n+1,n+1 '—'Z v (Xa.} S
, A s °

al "
Here S and S are the determinant and (a, 1) -cofacior of a Stickel
i
atrix 8= (5, .(x
matrix 8= (S.(x)) s

in terms of the x' by means of the equations

. The cartegian coordinates 2z, can be expressed
1

n
zi=zi(x‘,...,x,t}, i=1, ..., n, (7.12)
n+l
- = 9f =
Zne1 T Pnan b= ax ’
_ n+2 i n
zn+1+zn+2—x +f{x, ..., x, th,
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Using thig resulf and the associated group theory, a complete solution can
be ohtained, We first need to observe that the Lie algebra of Lie

symmetries of {7.1) is E(n+l, 1}, consisting of a basis

= + : i=1, ..., n+l, .13
In+2 v ) 42 pj z jpn+2 ) o ( )
= Z - , i, k=1, ..., n+l,
Ijk jpk kaj J n
P =p, i=1, ..., n+2,
i~ h

The non-zero commutation relations for this bhasis are

= 6 6 b
[I"' IkZ ] ijiE * il Ijk + Eink N ikIZj’ (7. 140

[ k} ijlmzl - bikIn+2j’
[n+2] 1'1+2l{J Ijk’

(®, r 8. F - 8P,

[ i’ n+z] 6in+2Pj * 51an+2 :

Ag we are seeking solutions of the form

a : (44
W=, W
E a(x ) +Ea € X +8(zn+1 + zn+2} .

i
any of the ignorable variables x  that occur in a separable coordinate
system of this type must correspond to the Lie symmetries Py such
that [pa, P + pn+2] = 0, This defines a subalgebra of E(n+l, 1} for

which a suitable basis is

E = -%{ p +p ), ( 7. 15}
Z z
n+l n+2
P ] M SEZ p - Z p ]
u uv uz, v Z,
= E: = i - = l [ -
Bu Zu ZIZ1:1+l Zn+2}p ! Uy ¥ ' » 1

This is the Galilean algebra whose non-zero commutation relations are
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M , M J=6 M +86 M +06 M +8 M , (7.18)
uy s v us ug vr SV ur ur sv

P, M | =6 P -6 P,
u rs uUr B sl I
(p,B] =8 &g,

11 v

M ,8 | =86 B -6 B .
uy W YW 1 v

The key to the computation of all the inequivalent coordinate systems for

(7, 1) is the following result.

Theorem 7. 3 (Reid} : All Hamilton-Tacohi separabie coordinate systems
1
for H 1P " Pls E of the form
i=1 ;
W= ' X
E_ Wi[x 3 Cps ey € £} + E.(zn+1 + zn+2)

1

are equivalent to a coordinate system associated with the Hamilton-Jacohi

equation

ii 2 ['1+2, n+2 3

2 =
1 g pi + I:.'1'1-1-1pzr1+2 te pn+2 E. (7.17)

Ui

Hl

i
The metric tensor has only one non-diagonal term, Furthermore, there
exists a partition i1, ..., ni= UIE_lBz s where BE = {1 Is sves lng j,

B, N Bm =% and n, = 1, such that the metric coefficients have the form

FA 2
i ~d
g =;— gz, EEBZ, {7.18)
A
g11+2,n+2= % E
i=1 {
~l Il m m _ n+l
where g =g (x },VZ—VZ{X ), mEBz,and crm—Um(x y.

Proof: The proof proceeds in twe parts. First we use group theory, If
the coordinate system {xil has q + 1 ignorable coordinates xal then the
standard cartesian coordinates are obtained by means of the usual methods
of local Lie theory [32].

For each ignorable the corresponding Lie symmetry Py has the form
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+5L;B, o #n+l, (7.19)

=" P +mo'M
pE}' & o uv [

(Note: we cannot have a term K{}'Kz , as this would imply that there are

two orthogonal vectors which are both null.) To deduce the forms that

1 2

the P, must have, we preceed as follows., Let x = ¢ and xn+ = k.,
The corresponding Hamilton-Jacohi equation is then

2 PEL =E. (7,20

u
Thus the choice of coordinates

- ! n : -

2, =Z (X, ..., X, O}, i=1, ..., n {7.21)

on this reduced Hamilton-Tacobi equation can be solved by means of

separation of variables in En' This system of coordinates is equivalent to

a coordinate system {:-":1} o1 En for which

= Tx; e) (7.22)
and the corresponding Lie symimetries are
pallezj ~a ey pa =12p_1’2p, [T.za‘}
p
_5 = E ] * Ay _E = E L]
[0 2p+1 a
P+l ot T prr
Now consider
-u -n-1 -1 -
X =Tu[xvg c={) , xn =xn . xn=xn,
which is an equivalent separable system for (7,1). Setting xn_ = xn =0,
then
= i o :’é - . F.
pc_r p&PqumS Muv’ n-1, n (7.24)

Comparing coefficients EL; and mzv with (7,23}, we see that, with the

- fi n
restriction x =x =0 removed,
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u 11
- " aoa = ] '? 2!
pﬂrl M12 +’31Bus ’ pﬂp NIZp—l,zp-'-ﬁpBU’ ( . 5}

u u
=P, +3° B,....,p. =P +{ B
ap+1 Zp+l p+tl u Dr pt+r ru

P

for Q‘S ¥ n-1, n,

We can agsume that B:= 0, s=p+l, ..., q, and ,8: # 0 for some
v, s=qg+l, ,.,, r, and we show Lhat 6; =0, 8=1, ..., p. Consider
first the Lie symmetry p o M, + P ‘f‘Eu . Using the adjoint action of
the Bu's it is possible to choose 8! =f%1=0, Now, using rotations
independent of z; and z,, we can take pﬁ't = My + 5 Bs, Again setting
Ao g and x =k, P, ™My - 8. P;, which must be a Lie symmetzy
for a separable system s:an1 En. This is possible only if 8 =0, We can
now show that : =0, u¥ s+p, g+l =s =7, Using rotations

independent of =z ,
s+p
B + 5B (7.26)

for some v ¥ g+p where
Wog 3
p=l 2 )",
u#s+p

Uging a further rotation about zs+p’ zv axes, we obtain

11, s4p
- =
P, K[BS P

-BP | +«B (7.27)
g v S+D

P

where

1
=8+ (B 2] 20,

Applying the adjeint action of K_,,

-+ - 7,28
P Bs+p ﬁPV (7.28)

by suitably redefining x = and taking B=8 /k%. The corresponding

cartesian coordinates for this as a Lie symmetry are calculated from



ax 8 S4p v W n+l — n+2
= 1 = = — = = T = rl s
2% zn+1j -5 0 22 a4 zzs+p
w F v, S+p. {7.29)

This implies coordinates that can be written as

A = —xn+1x A ' (7, 30)
s+p 8+p
z =-fx T+A ,
v v
_on+2 oo+l %, @s

“ne1” Tne2 T X - ) As+px + D,

n+1

- =2
n+l Zn+2 x *
ﬂ's n+l
where the AI’ ey An and D do not depend on x and x ., If

= 1
8+0 and xn+ = ¢ then, from the arguments we usged in the proof of
+1
Theorem 7, 3, As+p and Av are functions of x" alone, This is clearly
not posgible, as z , %, Z -2 would then be linearly dependent.

_ S4p v n+l n+2
Therefore = 0. Consequently, the ignorable variables can always be

chosen as

p'ﬂi =115, p(}2 =[34’ e pt}pzlzp—l,Zp’ (7.30)

= P = P
paml 2p+1,o|- ,paq p+q
_pp+q+1P =B —pp+r13

:B | ]
p&qﬂ pHg+l p+q+1,.-.,p&'r pr p+r

Indeed, if these are the Lie symmetries that correspond to & given

separable coordinate system then the coordinates zi can be chosen as

('I‘S
Zogl = Az E_lcos(x + AZS} . {7.32)
o
5
= { + l=s=
z25 Azsﬁlsm(x &25}, s =p,
¥ . a 1 =5 =<
= -+ - =
Zp+s X g’ D+ s =q,
o
n-1 8
= - + 4 =858 =r,
Zp+s [pp+s X Jx Ap+s g+l =8 T
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s S
r

n+2 s n-1 ¥ Oy
z +z =X + 2 {':15[!5‘ - X I({x )2+A x Ty+D,
n+l1 n+32 p+s p+s

s=qg+1
n+1
- _— 2

Zn+1 zn+.'2'r % i

where Al, cens An, D are functions of the non~ignorable variables xa
including xn. If we take xn+1 to be a constant then the resulting
coordinate system is separable on En and conseguently Azs, 1 =35 =p+l,
Ap+s’ p+l =s = r, are not functions of the non-ignorable variables xa,

a # n+l and are consequently a function of xn+1 only.

Using the transformations

(43 &

x “4+A. =x °  1=s=p, (7,33
2s
o o
s s
+ A - . +1 =8 =q,
x phe X p q
A
o o
XB—P}(E— pfs , q+15.s“—:r,
[L _ I"H‘]_I
s
we ¢can assume that
= =g =
AZS 0, 1=s P, (7, 34)
= +] =g =
AP+S 0, p s =q.

With this choice of ignorable variables we see that it is always possible to

take

gll :gllﬁij! i’ .] =1l LR In. (7. 35}
To establish the second part of the thecrem we proceed as follows,
It follows from the necessary and sufficient conditions for Stickel form
(2, 52) that
d = ¢ d
Vn+1log guu Vng g:u.u n+110g guu (7. 36}
- d 0
Vlog g"uu n+110g gw !
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We ¢an also invoke the curvature condition

1

28

log g (7. 30

d
v n+l ua vn+l uu

+-

1
el . B
4guu{avlog( guu) n+110g( guu)

I | g 1 = {J,
v °8 guu n+l 08 gw

Combining these results, we obtain that

= 7,04
E}V t‘n+1lcig Suu v (758
1. €.
] -0 n+1 -
Buu = u(x )Euu’

where an+1guu = 0, From the conditions (7. 36) and (7. 37} we deduce that

Hvlog(guu) 8n+llog( cru/crv) =0, { 7. 39)

We can now group together coordinates whose € functions are proportional.
Reordering the indices if necessary, we see that we can write the portion

n ii .
Z p

i=1g in the form

L
1 ~L L
2 (2 & %)
i=1 1 ZEBE
If we now substitute the particular form (7. 38) of the separable solution into

the Hamilton-Jacobi equation, we obtain

L dW oW
a ] . ?‘
Lo &% §>2>+2 Tevelgd™ ™o ()
l=1 "l lep, dx ax"
) ) n+2 n+2
From this equation we see that g has the form
L VvV
2 n+2 FA
n+2 n+Z _ ¥ 5 + h(an') ) (7. 41)
i=1 I

—1+2
By choosing an equivalent ignorable coordinate x by means of a trans-

formation of the form
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n+1 n+l =i j

x  =x -%fh(x dx T, x =x (j=1, ..., n+l},
then
L Vv
Zo2 w2 s L v v, (), men,.
11 UE { l l

This completes the proof of the theorem,

For the completion of our classification we need te impose the curvature

conditions R.

ikl =0 to find the possible forms of the functions Ug , Vt’. .
~L1
It follows from Theorem 7.2 that the functions g, L € Bm’ must be in

Stickel form, i.e., there exists a StAckel matrix

~{m} _ n
B _{Sln(x ”n Xn
m m

~L1 i1
such that g = gtm /'S(m) in obvious notation. The curvature conditions

=0 impl R
Riij imply that Rijki
Furthermore, from the requirement that the underiying Riemannian manifold

=0 for i, j, k, £ € B and some m fixed.
m

have the signature + ... +, the corresponding quadratic form
— - &

H(m) = EE cp & p% must correspond to a separable coordinate system on
m

En of the type classified in Chapter 4.

m
Further, we note from (7. 40) that each VE function has the form

{{)yml
m 3
Vv, = ) v (X)) Ty

( (7. 42)
mEB, S

The remaining question fo answer is: given a choice of coordinate system

{
x ,1¢ BE , what possible choice of functions VZ and UZ can be made so
as to correspond to Minkowski space of dimensions n+ 27 A useful result

to determine the functions VE is the following,

Theorem 7.4 (Reid): If {x ] is a separable coordinate system on E o

for which the Hamilton-Jacobi equation has the form (7, 17), then the

functions VZ must satisfy
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amanvl =0, m # n, {7.43)

Proof: This result is readily proved by noting that a function VZ of the

form (7. 42} must satisfy the conditions
33V, (2 V) (21oga-(3.V,)(2 log 8% =0 (7. 44)
e d i e d d i ¢ ’

These conditions can readily be derived from the Eisenhart conditions of

Stickel form {2, 52) applied to the Hamiltonian

~ o~ll
H= 2 & pp+Viel, -
lEB '
{
Further, we can compute the curvature condition R = 0 and obtain
cn+ln+ld

ady o, (7. 45)

5 3 3 5 %%) 4 (8 3 log g
28 9V, + (8 Vp(elogg ™) +(8,V,)(0 logg
The result then follows, i.e. ac advl = 0, TFurthermore, this result is
actually independent of the choice of coordinates x , ¢ € PZ' We could, in

fact, find suitable cartesian coordinates zl, i€ BZ , such that
n
i
= 2 2
H= E B +Vl Prel
i=1
and deduce similarly that
(7. 48)

¢.d vV, =0
i j &
we have the curvature conditions

For the determination of the functions Ul

R = 0 which are equivalent to
n+ilcen+l

%, % ZeVm
iop -z -8 L =0 (7.47)
i m=1 m
where Ué = an+1 x’.'z . These conditions together with {7, 46) imply that
1 l {
Vo= 2 (78 (21 4z ) +0 (7. 48)
LeB m
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and 2(}'?’ U‘Z' - U'f = CE .0 > 0, {E , & real. There are four distinct

solutions of this last equation which represent inequivalent coordinate

systems, These are summarized as follows,

Posgible valueg for the functions U{xn+1)
Type o £ v
q a |
1 1 0 arbitrary
1
I (xn+ + vq) 2 0 arbitrary
1
I (X v ) -1 0
q
v ™ by j2 gt ] r4wl, w # 0 0
q q 49 q

A knowledge of how the lower-dimensional coordinate systems are
constructed provides the clue az to the general solution, If we consider the

c¢lass of Hamiltonians

~ 1
Hy =5-(0f +V;p5) +2pypy, I=L IL I, IV %, (7.49)
l

then we can chooge cartesian coordinates z,, i =1, 2, 3, such that
i

1
2y = X' 0% + 3y o372, (7. 50)

1 2 ]
2+ oy - - o -y xtot[oni L eIy,
ZZ _ZB =2X ,

where [f(y) = j'x f(y)dy. If we now define
0

¥=¥

u n+l W% 3/
F (x , X =y o+ iy [Jo~ 7.51
uq{ ) =¥ q z'}’u | q ( )

and
u  n+l i us 3 u_3 ~3/2 1. 3 -3/2, 2
==0" +3 o |o = a

G X+ ZOy Xy oL JoT ey [(Jo 8

(7.52)

then the cartesian coordinates for the Hamiltonian
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L
N 1 . ,
H=2 —i( 2 p® +V,pl )y +2p  p (7.53)
1 2
-1 t‘.:'z mEBzm { ¥ n+l n+1% n+

can be obtained by means of the formulas

z =F |, (7. 54)
u uq
n+2 L
2ot TP T8 -2 2 Gmi ’
=1 mEBI
n+l
- =3
Zrwl zn+2 x '

It can readily be verified that this choice of coordinates dees correspond to
a Hamiltonian of the form (7.53), The remaining probiem is to find the
forms of the flimctit.:nns VZ compatible with a given choice of separable
coordinates ' = zltxj) , 1, J € BZ'

To find all possible coordinate systems we can generalize the graphical
calculus developed for En separable coordinate systems. Quite generally

such coordinate systems can he represented by sums of two types of graph:

(A) e, e | e, ) Eiliptic
{
RN
Py P b
r lﬂz

({B) <el e ‘ e ) Parabolic
r 1.1

We will say that En splits into subspaces En . Cartesian coordinates on

En for case (A) are given by *
T
ig _ - = P (7. 55)
y (NzwiniSq). 1=i=N;, 1=q=p+l,
Ny
where m, = %Ei-l pi(pi + 1}, and for case (B} by
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1 iq _

Y =% YT iy

w)(p.5)
; g“l i 149

N,-1
. ~ 13
We say that the sphere Sp is aitached to the ej in particular if pj =0,
A
Sp is the zero-dimensional or trivial sphere and we define 48, =1 ({(i.e.,
j
no coordinate is attached),

Each separable coordinate system on En can be represented as a sum
of graphs of type {A) or {B). If we now permit some of the UE functions
to be equal we may assume that each set of coordinates zl, i€ BZ , ¢an be
chosen to correspond to 2 connected graph of one of these forms, From the
explicit forms of the coordinates and the criterion (7. 43) we can determine
the v, for m, > 1.

Suppose that l:z # 0, then we ecan take

n n

fA
26wyt
-1 E ni 1

[t

VZ:

I 0

1 Lo L
j= i
From the explicit form of coordinates corresponding fo types (A} and (B)
we can readily verify that for case (A)
¢, L
V, =— ¢2(2 x - 2 e). (7.57)
i 4 I, . i
i=1 i=1
For case (B} it is never possible to satisfy conditions {7.43), Now
consider when CZ = 0 and suppose that at least one of the Vs is not zero,
We can in fact {by a suitable rotation) assume that only 7, # 0, Then,
examining the explicit form of the coordinates, we can verify that type (B)
is the only compatible coordinate system. In this case
7
VZ=%ylcr(x1+.,.+x te . +.,. +e 3. (7. 38)
If '}fq = ‘:E =0 then both systems of type {A) and (B) are possible, If

NZ =1 then clearly all cases of O, and corresponding VZ are possible,

A
It remaing to develop a graphical calculus to describe all possible
separable coordinate systems, The notation chosen is to represent a given
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coordinate system by the graphical representation

where Gq represents a given separahle coordinate system on En and the

q
box indicates that there is one funetion, Gq’ associated with this graph in

the manner we have derived in equations (7. 53)and (7. 54). The symbo!
Lq is a latin number (I, II, II or IV) indicating the type of Uq function
associated with the graph, In general, we take each Gq to correspond to a

connected graph of a separahle coordinate gystem on En and allow for the

q
possibility that some (Tq functions may be identical. We note by looking at

the possibilities that in general the parameters occurring in the 0‘q funection
are needed in addition to the symbel Lq when specifying a given coordinate
system. This is necessary because a given coordinate system may have
gseveral Lq*s specifying the same type of Uq function but with different
parameters, The procedure for constructing all coordinate systems now

emerges,

{A) Construct the graphs representing a separable system on EIl as a sum

of disjoint components Gq having a typical representation

{ B} Construct all possible separahble systems associated with this graph by

considering those which have the representation

1 q

G G
L q

where the Lq correspond to those crq functions that are compatible with

the corresponding graph Gq. The complete list of possible coordinate
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sygtems for n=1 is given in Table 7. 1.

Table 7.1

I

(1) <o> 2=y +p(xP)? /4

11 (v#0) .
(2) @ 2= 0y s
11T {v#0)

> i

IV:(v#0, w?#1)

- 72 1
o [@ o

It is relatively straightforward to compute all the properties of a
separable system once its graph has been specified, Indeed, given a
general graph, the corresponding details of the coordinate system can
readily be deduced. As an example, consider the graph

111

_\\
<e1 er en/

The choice of coordinates is

Z‘L_’=02 x=1 ], (an + s, j=1, ..., n, {(7.59)
j Il (e -e)
iF i
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The Hamilton-Jacobi equation assumes the form

1 1 1 2 2 g
1 r e _ 2
ntl 72 i j 50" (,E (x Ei”pmz]
{x + vy) [, (x-x) I i=1
]?':l
* 2Ij}:1+1p1'1+2 (7.60)
aw
where p.= x/[l'] (x -e) .
=] j 3 i
X
This eguation admits the separable solution of the form
n+1 42
W= 2 W[x} + E€x (7.61)
i=1
where the separation equations are
dW, 1 in
[H{x-e}i( 12+ =clel(x) (7. 62)
4
=1 dx
. 82 o ‘ i n-1 n‘. s o s
SHE-=2( T enh "+ T axh" R0, i=1, ..., n,
4 \ i . ]
i=1 j=2
aw
— - B2e — -
(x + v} dx

Thig geparable system provides a 'separable' solution of the corresponding

heat equation using Theorem 7. 1. The corresponding Helmholtz equation
has the form

— L [ [H e S ey 2

(X #va) #l(xl-xj)] Uoax' Bx

c_ hE oty a@ _ i
+ 4 ( Z x 61} n+2 +2 n+l. n+2 Ay (7.63)
i=1 (9% ) dx = ox

This equation admits product separable solutions of the form
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EXnl+2 n-+li i
Y o=e 0y (x)
i=1

with corresponding separation equations

- d 1 1 a2 in

c {J(@i)—i(v’(@i) =) b+ [Zc el (x) (7,64)
dx dx

_ .7 2 It — n s
f oS T e ™ e ) ™y =0,
i ) j i
i=1 j=2

i=1, ..., n

We see from (7. 59 that this particular choice of coordinate system does not
lead to R-separable solutions of the corresponding heat equation or
Hamilton-Jacobi equation,

The constants of the motion that are equal to the separation constanis
are readily computed from those for the corresponding Euclidean coordinates
inside the boxes of the given representation of the coordinate system. If we
work with the corresponding heat equation the rules can be summarized as

in Table 7.2, TFor instance, returning to the ¢coordinate system (7. 59), the

Table 7.2:; Images of Fuclidean operators

L
q
I I 11 IVt
P’ Pl+y EB. (v P -B)® vy P (v P -8 )2
b b b b g b b q b | db b
7, E P, {Pb, B! Wqu
2 Y 2 2 z
Mab Mab Mab Mab Ma.h
{M B’ Pb} {qu’Pb]"' {qu,qub—BbJ_‘_ gziirnot fg:uSrnOt
v B /4 -y P'/4
'rqu/ Vqu/

corresponding operators that are in the enveloping algebra of the Galilean

algebra are obtained from those of the corresponding En graph hy replacing
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Plga in the expressions (4. 33) everywhere by ‘qu;f3 - in, Bb }+.
In particular, we notice that for a general En graph the operators
that arise from the atfached spheres of a given connected component remain
unchanged and it is only those operators that arise from the block at the
base of the given graph that are modified.
The general form of a contribution corresponding to a type III ¢-function

is a graphical component of the form

I

The same rules apply to components of this type. We should, of course,
realige that all the results that are valid for a given connected component of
a graphical representation of a coordinate system combine to give the com-
plete solution to any graph.

To complete the discussion, let us examine one example in detail:

I (v =0 (7.85)

A suitable choice of coordinates is

z; =x?i(x! - x%) i , {7,68)
4}(4

x* (x'x%) cos xP |

n

Zy
zs = X' /(x'%x%) sin x3,

1
7y +Z5 = X° - %X4z(x +X

4y — Z5 =2X4,

i
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The Hamilton-Jacobi equation in this coordinate system is

aw oW 1
4 r o) ¢ Pegr) ) —m—{—r) l (7.87)
8w ow 1 1
—NW 30t (X ) T (—r)z-E

The separation equations are

aw,

( ,1)2-l—,)n§+l(x1)282—>42x1+?t1=0, i=1, 2, {7.68)
i i 4

dx X

2€ ﬁﬁ-gf + 2, /(x"? = E,

gWw. dw
e e e T

The operators that describe this separation are

LI=B%+B§+B%+-2Z(P4—P5)P1, (7. 69)
1
L, =41, B, ]+‘E'Y P,

Li=l,, Lgj= 3Py -Ps).

The corresponding Helmholtz equation in this coordinate system is

1 1 1 d aa,b 1 d 9. 30

(x5 7 [(31_}(2){(:{1)% P ((x")*® Ix] ( 2}% 3 (%) 5{% )
1 8 1 02 0°
T o # 5 (x ax )(—’é’—ax }2l+z—#-;ax i =2y (71.70)
with corresponding separation eguations
dy .

1 d s 1 . )‘2 1 +

T T () T (TR0 P - x e d o =
(x)?% dx dx

i=1, 2, (7.71)

23"‘.&(4‘ (x)z*h)‘»‘:‘.i:ﬂ,
3_3:%'31}‘3‘#3: %ﬁ' =gy ,

If, instead, we regard this as a separable coordinate system for the



corresponding heat eguation then the corresponding solutions

separable and can be written in the form

4
R )
Y=e Hwi(xl)
i=1
where
Y4, 22 Ly o4 2 :
R= Bx {x° +x°) e (x —x)+—%—96(x)3

and the t,I/i satisfy the above separation equations.
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8 Other aspects of variable
separation

Evidently we have in this book followed a very deliberate path of develop-
ment, We have bagically given a complete solution to Problem 1 for the
Riemannian manifolds Sn, En, Hn' In addition, we have made complete
statements about Problem I when applied to Laplace’s equation on En and
the heat equation on En. A natural extension of these problems is to
consider the classifying of all 'inequivalent' separable coordinate systems
on the corresponding complex Riemannian manifolds.

(i) Sn@, the complex n-sphere consgisting of complex n + 1 vectors

(8, .ev, 8 ) that satisfy sf +... +s§1+1 = 1. Clearly, the com-

plexification of I-In is identical with Sn@' The infinitesimal distance is

ds? =ds® +... +ds®
1 n

+1
{ i) En@i‘ the complex Euclidean n-space, parametrized by the complex

vectors (z,, ..., zn) with infinitesimal distance ds® = dzi Faes * dzfl.

These probiems have not been completely solved and they involve
congiderably greater complexity than in the real positive definite case. The
major reason for this is that in general there are three types of variables
involved in a separable coordinate system. In fact, Benenti [l'?l has

proved:

Theorem ( Benenti) : For the Hamilton-Jacohi equation

3 oGl AW AW _

i
i,j=1 ax  ox
to admit a complete integral obtained via an additive separation of variables
n i
W= Ei_lwi(x 3 Cys weny cn] on a complex Riemannian manifold M the

contravariant metriec can be taken to be in the form
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H-? 0 0
ah a :
ij T
(g J) = 0 0 g
ar a3
0 g g J

o
AI‘

(x5 (5" /9 ana g%P =EiAﬂ"6

i a i il
where H-? = s, "% = (x) (S /9),
i

Here § = (8, (x ”n1+n2) X(n4ng) 152 Sticke! matrix with S = det 8
and Sal the al cofactor of S.

The variables x° are second class coordinates, the variables x"
are called first ocrder coordinates and the variabies xar are first class
coordinates, We see that if n, = 0 then we obtain the form of the contra-
variant metric given in theorem (3.1)., The main difficulty in the complex
case ig the presence of the first order variables xr.

The complete solution of the conditions Rijk
of the contravariant metric seems hopelessly difficult. Only recently the

7= 0 from the general form

complete solution has been obtained for the case n, = 0 for Sn@ and
En@' albeit hy rather indirect means [33]. The complete solution of this
problem is being actively pursued at present.

Other aspects of variable separation that we have not discussed are the
following,

1, The intimate relation between the special functions of mathematical

physics and Lie group theory [21 f, [.‘32 | The Hilbert space structure that

underlies, e, g., the Helmholtz eguation in En leads to identities hetween
the various separated solutions. A good account of this is given by Miller
[34].

2, The intringic {geometric} characterization of separation of variables.

This has been solved completely for Hamilton-Jacobi, Helmholtz and
Laplace equations. The theorems that do this characterize the symmetries
that describe a given separable coordinate system using algebraic criteria,
It is in this sense that the solution is complete, We refer the interested

reader to [35 I, [36] for details,
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3. The solution of the linear nonscalar equations of mathematical physics

using the fechniques of separation of variables [STL Only scattered results

are known for this type of equation [38], [BSI and a systematic approach to
these equations is currently being pursued. This has been stimulated to
some extent by studies of the separability of the wave equations for massless
fields of spin 3, 1 and 2 in non-flat Riemannian backgrounds [40 | mn
addition, the separability of the Dirac equation in a Kerr space-time
bhackground has recently heen established by Chandrasekhar [41 l For a
systematic theory of solutions of these equations obtainable by means of a
'separation of variables’ procedure, all these examples need to fit into a

suitable mathematical framework.
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Appendix: Crucial results due
to Eisenhart

In the first part of this appendix we give the proof of Eisenhart's theorem

and its first corollary.

f A=2 _C‘lljpipj is a guadratic first integral of a Hamiltonian

r

_ ij
H= Ei,jg pipj then
A, H] =0, (A, 1)

These conditions are equivalent to the equations

AR T PV (A.2)

where
. ij ki ij ki
s.,=2[@%8gy -g88 )], (A. 3)
ikl X j i
Furthermore, if pi are the roots of the determinant equation
&ijﬂ 1 =0 .

det( Lg )nxn (A 4)

then the equations
{Eij - 3] A =
2 FRg A (=0 {A.5)

]
determine an orthogonal enuple of covariant vectors A nli
Ordinarily it is not possible to chooge a set of local coordinates such
that @ = glal and gij = Hj"2 ﬁij, i.e., such that the matrices (@ij) Xn
(g‘ij) nXqn C20 be made simultaneously diagonal. In the case of orthogonal
separable coordinates this will turn out to be the case. If we in fact assume
that these matrices are diagenal in the given coordinate system {xi ] then
conditions (A, 2) imply
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ii 10g{{1111-!i) =0, ( A. 6)

x

ag -

L-&JJH?—.HT“H), 1%, (A. T
ax.] ] ax] 1

{ This assumpticn is equivalent to the condition of normality in the statement
of Eisenhart's theorem in Chapter 2,}

The first of these conditions implies that
@ =p H? (A. B)
11

with Bpi/axl = 0. The second set reduces to
P-4,

0
;—Jriog(—z—']';l ) =0, (A, 9
X i

These equations can bhe written
op op
i g
—;= (b, ~ 6.} 3 log H:,
0x e ox

The integrability conditions for these conditions, regarded as a system of

= =0, (A. 10)

equations for the 'Ci' are

2 -
(L.-P.) (T log H? +"a—_ log H* N log HY) =0, (A.11)
1) ey ay! oy Yo )
2
(P.-Pk) ('—?—k log H® - i.log He Fa—klog H’
L ax‘lax 1 ax] . dx !

2 3 3 , @
+—log B —plog HY +— log H} — log H)) = 0.
& ox boex 0x’

If the above system of equations admits solutions with atl the GO's different
then

2

8 d d d
5 R —— r_x 2, = z Y 2
log . ] log Hi ™ log Hi + 3 log Hi klog Hj

ijaxk dx ax dx ox
g , @ 5 ,
+—klogH, — log H* =0, j # k. {A. 12}
i ] k
dx ox

It follows that if equations (A, 12) are satisfied the system of equations (A, 10)
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is completely integrable., One solution is pi =a {const, ). We denote the
a
other solutions by £, . a=2, ..., n, (0y =1) and assume that the

determinant of the n solutions is not zero, i. e,
a a
'ﬁi—pjla*{) {A.13)

for i fixedand a=2, ,..,n; j=1, ..., n, j#1i., Inthis case the equations

of the geodesics admit n - 1 quadratic first integrals

- i _
Aa~_2_@(a} PP, 252, ..., 0 (A, 14)
1,]
where &ij =paH'2 ﬁij
(a) i '

The integrability conditions (A, 12) can now he shown to be equivalent to
Stdckel form. To achieve this, denocte by Sij’ i,j=1,...,n, n? funciions whose
determinant S # 0 and denote by 57 the (i, j) cofactor of Sij in 5, Now

D PR ,
put H! = s/8, ,o? =§°/8", where it is understood that (ai)p‘f]‘ - 0,
1

Then
a a .
) L _
a PP glde dliga
b, = ™ = 7 {A.15)
U i ag!
where (2 b?], = 0. We also have that
jl_ia il_ja _
gig® . s'd =SM 1, (A. 16)

where M. . is the algebraic complementof S .8, -8 .S in the
jlia jlia il ja

determinant S, Consequently we have that

il a
s =M

i .21 = oa gy tlg :2 LI ] L]
i i’ i, j . n, a , , 1 (A.17)

From the definition of the algebraic complement we have that

a
57=2 51150 (A.18)
i#)

consequently
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§T =32 sﬂb’?_. (A, 19)
J iz j
Differentiating with respect to x], we have
as'1 a
¢0=2 —=b., a=2...,n n=1, ..., n (A.20)
i#j axl M

a
For a given j the determinant of {h,, ) {i#j) is not zero.

i(j) 'n-1Xn-1
Therefore Sil is a function of x° at most. From (A.153) we have that

. .
g - gt (A, 21)
1} Jl

Ag a conseguence of this result and (A. 17) we have that

b b
_@ _EL _JT_‘ saq ¥ b:3: ey I !'#J' (ﬁ'zz)
Mz Py Tip " b

) and the third is independent of xl,

it follows that & .  does not depend on either xl or xJ From the

ijh

As the second term is independent of x

identities
n
azz Skanlia =0 (A.23)
we have, using {(A.22),
pul
Sz * b§3 Slcbgijb =0. (A.24)

Differentiating with respect to xl, we have

a8 n &8
K,y k.bor

axl b=3 ax

~0. 9
iib (A.25)

5 and these

same eguations are satisfied by the derivatives of these quantities with

For fixed i and k there are n -2 gquantities S

i
respect to X . Hence we have

aska Ska

= a _— = 3
- i ”iks or i (S y =0 (A, 26)
X ke




for ¢ # a, These equations hold fer i=1, ..., n; I # k. Hence we have

i
= .2
Sia e ¥ ia (A.27)

where IP,a are funections of xl at most, From (A. 17} we have
i

a a ..
bjlmllia_bilMllja’ i, i=2, ..., n (A.28)

and substituting from { A, 17) this condition becomes

/. V.
I S
e b_-‘,l“li e bilNij {A.29)

i

! and x. Differentiating with respect to x',

where Nli ig independent of x

we have
a v v =0 i i=2 v . ,3,.30
1{ i j:l = % 1, 1] » s IL ( }

From (A.17) and {A.21) we have

5

v
j a b b _
1':'jr:LNal:n te bba aj 0- (4. 31)

a
Differentiating with respect to x we have
d (¥ -v.)=0, . 32
2ty Yy (A. 32)
Combining these results, we obtain

3k(Vi-Vj)=0, i, j, k=1, ..., n, 1, ), kK# , (A, 33)

Then V. - vj = fij i8 at mosat a funetion of xl and XJ,

1
The functions Fij are also subject to the conditions

fij - fik + fjk =0, {A. 34)

Differentiating with respect to x', we obtain
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e (A. 35)
ox %
Consequently fij = U‘i - Uj where G'i is a function of x alone. Hence we

can write Ui=V+ -‘Ji and
S, =e #,, i=1,...,n, a=2,,.,,,n, (A, 38)

where Sia are functions of xi alone, But if we substitute these
expressions inte those for Hi'2 and ,G?, the function V¢ disappears and
consequently we can take ¥ =10, and the metric tensor components Hi“2 are
then in Stickel form., Eisenhart's theorem and the first corollary are now
proved.

In the remainder of this appendix we derive further results of Eisenhart
that are necessary in the classification proofs given in Chapters 3, 4 and 5.

From conditions {A.12) with k=1 we obtain

a? H,
— 1og[ﬁ‘-}= 0 {A. 37)
ox 0x j

from which it follows that

2 20 2 _ 42
Hi qbij iy’ I-[_j qui ﬂij (A, 38)

J

where ¢-ij is independent of x° and ﬁbji is independent of xl. Substituting

in (A, 12) with k=1 we find that

8. . =7, +7T., (A, 39
ij ij ii

where Tij is independent of x] and Tji is independent of xl.

The Riemann curvature tensor symhol

1 az v a
R, =-H:[2——— log B! + — log H log H? (A. 40)
jitk 471 P axk O i axl-: i
g 3 i)
- —log H® — log H: - “%{log H: — log Hf{]
ax’ b oax ) 8k x’

can in consequence of { A, 12) he written
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F4

%H? - log HY . (A. 41

R, .~
jiik i E}xkaxj

I we now restrict ourgelves to Riemannian manifolds that admit an

orthogonal coordinate system in Stackel form and satisfy Rjiik = 0, then
{A. 40) implies
: 2
H? = A 42
Tk log i 0, {A, 42)
dx’0x
log H é log H 9 log H alcu[g;H
. . logH, - — lo . .
axJ ! axk ! ax] 1 3xk J
a 2 .
-——logH ——logH, =0, j#k, {A, 43)
k i j k
6x dx

An orthogonal coordinate system on a Riemannian manifold of constant

curvature satisfies these conditions, Thus coordinate systems on Sn, En

and Hn are included,

Substituting in { A, 41) from (A, 38), we obtain

a7 o

—Lo(r 7 v (x, ), (A. 44)
'c}x] 1 i n

o7 {

—L = (T TOW (), %) .

ax 1] 11 1}

Differentiating these equations with respect to xl, we obtain

oy Y

—Liyy =0, —L+y ¥ =0 (A. 45)
3y iiij ) T j

and accordingly we have

-~

v o=—
i aXJ
and we find that o= a*i + & where Gi and &'j are functions of xl and

]
x! respectively, It fellows that

log & (A, 46)

TAT . =(@ +0)w {A, 47)
ij ji i i ij
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where wij is independent of xl and x, Consequently

Ht=x Il (o +0.), i=1, ..., n (A, 48)
U R A

where (ak) D-ij =0 for k #j.
These expressions satisfy {A.12), i =k In order that (A, 43} is
satisfied, we must have

oc'ag' {0 -~ oY (T O -o' o' (T 40 ) =0, 4
ji kl( _]k+ k]) ji l-{J( ki 1k} ki ]( i 31} (A.49)

Permuting the indices of this equation cyclically, we have

01 08 (0, +0
ki

1k i ) =0 O (O 40 ) -0 O (O +::r J=0 {A.,50)

ik kj ik" i) i ij ki' jk ki

o' o' (o a -0 o'{T a ag' o ={}, .51
a7 % T T Tt g T T Tt ) {A.50)

Equating to zero the determinant of these equations, we have

gro’ ¢! +o'g! g =10, A, b2
ij jk ki i kj ik ( )

If none of the terms in these conditions is zero then Uij/girk ig a constant.

We can therefore put
U__:a_ﬂ', (ﬂ. 53)

. } i
where aij is a constant and ¢, is a function of x at most. These
1

constants must satisfy

= -> - 4
aijajkaki + ajiakjaik 0 { A, 54)

The metric coefficients are now

H?-x II (2.0 +a_ cr:- (A. 55)
i ij 1 ji
_]%51
a = C., O.=a .a, O then, i .54
if we put i ajkaki Y akj i’ en, in consequence of (A, 54)
we have that
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U_=a‘_a‘ a (6- —ET_),
1 J

o
25571 T 105 T it

]

the constant factor being absorhed in X, - Without loss of generality we can

take a,, =-a_,) =1 and then (A, 54) becomes a_a -z a4, =90,
i ji ~ jk ki kj ik
g = - o i
If we now put aki K aik k we obtain
o o = o -0 .5
7 T Ak T A% T O (A. 56)
so without loss of generality we may take 8, = -1 = = Then
O +a 0 =a (0O -0C
%5 " i T Ay T O
and thus ajk = _akj =1 and consequently the metric coefficients have the
form
H =x Il (o, -0). (A, 57)
i 1. 1
i#1

We must now consider the case when some of the Gij functions are

congtant, Suppose that O‘ij = aij {const)y from (A.50}. It follows that

i o = o = a! i .o =
either ik aik or ki akj’ the s being constants ik aik then
(A. 31) is satisfied and (A. 49} is satisfied in the following cases.

7% T T Ay (A 58)
i Tk Py

G e o - -
(1iD) ki aki' kj akj '

() 0 =a_, 0 =
4

(ii) ©

1l

The possibility (iii} follows from (i) with j and k interchanged. If Uji
and O . are not constants we cah write (A. 49) in the form

ki
o, o
o +0 -—dig +0 3y -0 +03 =0, ]
ik " Vkj Ult;i{ ki T i ol 195+ %5 (A. 58)

From this condition we conclude that

a!t ot
jk Kj
L o + 0 = o T O - .
ik G”ji ( ij ji) © kj U'i ( ki ik} ¢ (A.60)

for some constant e, consequently
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O . +4+a_ =hi{i0c, ~¢c), G  +a =d(0

+ A,61
i ¥ 2 ik ki Pik K T (A.61)
. o' = Hwo! o' = Ag!
for constants b, d. Hence i b K’ Ki d ki so that we may put
o =a 0, 0, =13 0O O =a T o =a 0

and then from (A, 58) we have (A, 54),

There are thus three distinct cases:

! Uij B al]’ ljrji h a]l’ ik~ ik Ujk - a]k’ (A.62)

= Uij B al}’ it - it ik - A le T

1 Gij - al]' Ulk BTy Crji - a]lg]’ crjk " a}koj’ Ol ~ alucrk’
T ™ g

In the first two cases the a's are arbitrary; in the last they must satisfy

A, . Wh o = a o =
{A.54) en ki a,. nd i a_,

i we have, from (A, 49) -{ A, 51},

the case (A, 58) (iii) or

g'(0, +a -l (o =0,
Lo kj) 5 ..aij)

11 7k AT (A.63)

If Uji = aji’ Ujk = ajk then we ohtained { A, 62) (I} by interchanging

i, i. Otherwise we have the type

— a = .
T e TR

Thig completes the necesgary details for the arguments in Chapler 3 toc be
valid,
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