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1

Basic Signal Parameters

1.1. INTRODUCTION

The roots of optical signal processing date back to the work of Fresnel and
Fraunhofer nearly 200 years ago. But the connection between optics and
information theory did not take shape until the 1950’s. In 1953, Norbert
Wiener published a paper in the Journal of the Optical Society of America
entitled “Optics and the Theory of Stochastic Processes” (1). That same
issue contained articles by Elias on “Optics and Communication Theory”
(2), and by Fellgett on “Concerning Photographic Grain, Signal-to-Noise
Ratio, and Information” (3). Other interesting papers of that decade
include those written by Linfoot on “Information Theory and Optical
Imagery” (4), by Toraldo on “The Capacity of Optical Channels in the
Presence of Noise” (5), and the seminal paper by O’Neill on “Spatial
Filtering in Optics” (6). These papers represent the early infusion of
information theory into classical optics.

A powerful feature of a coherently illuminated optical system is that the
Fourier transform of a signal exists in space. As a result, we can imple-
ment filtering operations directly in the Fourier domain. This feature was
anticipated in papers by Fresnel, Fraunhofer, and Kirchhoff, and had been
demonstrated, before the turn of this century, by Abbe in connection with
his work on images produced by microscopes.

It is one thing, of course, to recognize that images can be changed by
modifying their spectral content; it is another matter to implement the
change. In their image-processing work, Marechal (7) and O’Neill (6) used
elementary spatial filters to illustrate the principles of optical spatial
filtering and to perform mathematical operations such as differentiation
and integration. Such was the status of optical signal processing in the
early 1960’s.

A major impetus to optical signal processing was the need to process
data generated by synthetic aperture radar systems. These radar systems
were a significant departure from conventional ones because they proved
that a small antenna, when used appropriately, provides better resolution

1



2 BASIC SIGNAL PARAMETERS

than that achieved by a large one. This result, at first glance, is surprising.
No physical principles are violated, however, because the small antenna
samples and stores the radar returns as a means to synthesize a large
antenna. To display the radar maps, we need to process the two dimen-
sionally formatted radar returns; because digital computers could not
handle the computational load, powerful new signal-processing tools were
required.

Photographic film stored the extensive information collected by the
radar system. Range information was stored across the film and azimuth
information was stored along the film. When the film was illuminated with
coherent light, the desired radar map was created by the propagation of
light through free space, coupled with the use of some special lenses (see
Chapter 5, Section 5.6, for more details). Generating radar maps was the
first routine use of optical processing and was the first application for
which the matched spatial filter included complicated phase functions such
as lenses. It is hard to overestimate the influence that radar processing
had on optical signal processing and holography. The classic paper by
Cutrona, Leith, Palermo, and Porcello on “Optical Data Processing and
Filtering Systems” (8) is important because it presented the basic concepts
in a remarkably complete way.

To expand the capabilities of optical filtering to more general opera-
tions, such as matched filtering for pattern recognition, we needed to
construct filters for which amplitude and phase responses were arbitrary.
A solution to the difficult problem of recording the phase information was
developed in the early 1960’s (9). Because every sample of an input object
contributes light to every sample in the matched filter, these two planes
are globally interconnected. The computational power of such systems is
high because many complex multiplications and additions are performed
in parallel. The performance of pattern-recognition systems from that
decade has yet to be exceeded.

1.2. CHARACTERIZATION OF A GENERAL SIGNAL

Optical signal processing is based on the same fundamental principles
used with other signal-processing technologies. In the remainder of this
chapter, we briefly review these fundamentals, primarily to establish the
linkage in terminology between spatial and temporal signal processing. We
do so without rigor; the reader is invited to consult communication and
signal-processing texts for more details. For many readers, the descriptions
given here are reminders of what they already know, but possibly never
connected with spatial signals. A signal is a signal is a signal. ..
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Figure 1.1. Signal spectra: (a) baseband spectrum and (b) bandpass spectrum.

1.2.1. By Bandwidth

One way to characterize a signal f(¢) is by its bandwidth. Suppose that all
the signal energy is contained in a temporal frequency band W. That is,
the signal contains no frequencies higher than f_, = W, where f,, is the
cutoff frequency and W is the bandwidth of the signal. If the two-sided
spectrum of a signal occupies the frequency range from —W to W, as
illustrated in Figure 1.1(a), it is a baseband signal. If the signal has energy
only in a band of frequencies W = f, — f,, it is a bandpass signal, as
shown in Figure 1.1(b).

1.2.2. By Time

Signals are generally bounded in time, either because they are generated
with a finite time duration, or because we restrict the time duration while
processing the signal. For example, we sometimes segment a long-duration
signal into shorter segments of duration T for spectrum analysis or
correlation. This time duration T, as shown in Figure 1.2, is an important
signal-processing parameter.

Sample f@ Sampling
values function

—>{n [«
|

|‘ T

Figure 1.2. Sampling of an analog signal.
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1.2.3. By Sample Interval

The sampling theorem states that a signal bandlimited to a frequency
range |f| < W can be accurately represented by its sample values if the
signal is sampled at time intervals T, where

Ty=——==——. (1.1)

The signal must be sampled at the Nyquist sampling rate R = 1/T, so that
each period of the highest frequency in the signal is sampled twice.
Clearly, the sampling rate is just twice the signal bandwidth: R = 2W. In
Figure 1.2 we show the signal f(¢) and a few of the sampling positions
spaced at intervals of T,.

1.2.4. By Number of Samples

If the signal is bounded in time T and in bandwidth W, the total number
of samples needed to accurately represent the signal is

T
N=— =2TW. (1.2)

The product TW is generally called the time bandwidth product of a signal
and is a standard measure of its complexity. For example, a signal with low
frequencies and a short time duration contains less information than one
with high frequencies and a long time duration. The time bandwidth
product is therefore a strong indicator of the computational intensity of a
processing operation.

It is not possible, in theory, for a signal to be bounded in both the time
and frequency domains. Nevertheless, the assumption is reasonably accu-
rate, in practice, for the purpose of characterizing signals by these two
parameters.

1.2.5. By Number of Amplitude Levels or Signal Features

Binary signals have just two amplitude or phase states. We require n = 2"
levels, however, to represent analog signals with an adequate degree of
accuracy. For example, we may quantize each sample of an audio signal to
at least r = 16 bits in amplitude to achieve a sufficient number of signal
levels. Two-dimensional signals, such as images, may require n amplitude
levels, generally referred to as the gray scale. Furthermore, we may
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require ¢ colors, & hues, s saturation levels, and p polarizations to fully
represent the image. We therefore require g = nchsp values to character-
ize each sample.

1.2.6. By Degrees of Freedom

Because each sample may require g values to determine its state, a signal
has gN degrees of freedom.

1.3. THE SAMPLE FUNCTION

Although optical signals are generally handled in analog form throughout
the system, we introduce the sampling theorem for a variety of reasons.
First, the sampling theorem provides a convenient way to characterize the
complexity of an analog signal, such as an image, in terms of the required
number of samples, generally called pixels. Optical images, in contrast to
time signals, do not have a fixed underlying metric. For example, images
can be magnified or demagnified, thereby changing their areas and their
spatial frequency bandwidths, but the number of samples remains the
same. Second, the Fourier transform of an optical signal exists in space
and is often detected directly by a photodetector array. Because the
elements of the array sample the spectrum, we need to understand how
the sampling process affects the accuracy with which the spectrum is
measured. Third, some images are originally sampled by collection de-
vices, such as solid-state cameras, which contain two-dimensional photode-
tector arrays. In these cases, the input signals to the optical system have
already been sampled and we must account for the impact of sampling on
subsequent processing operations. Fourth, we frequently use point sources
in optical systems. Throughout this book, we treat a point source as a
bandlimited signal containing exactly one sample. Finally, the sampling
theorem, when associated with bandlimited signals whose duration in time
or space is finite, leads to the optical invariant that is important for the
analysis and design of optical systems.

Consider a signal f(t), whose spectrum is F(f), bandlimited to the
range |f| < W. This signal, when sampled by an infinite train of delta
functions, is represented by

> 1
f(1)y =f() X —Tgﬁ(f—nTo), (1.3)

n=—w
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F(f)

™\
CTIHE I AT
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Figure 1.3. Spectrum of the sampled analog signal.

so that the spectrum of the sampled signal becomes

E(f)=F(f) * 3 8(f 2nfo), (1.4)

n=—o

where * indicates convolution, and the factor 1/T, in Equation (1.3)
ensures conservation of the integrated area between the function F(f)
and its sampled representation F,(f). The spectrum F,(f) is shown in
Figure 1.3 with the baseband spectrum F(f) centered at f = 0; replicas of
F(f) are centered at f = +2f,, + 4f,., and other even multiples of the
cutoff frequency.

The signal f(#) can be recovered from the sampled signal f,(z) by
passing f,(¢t) through a low-pass filter whose frequency response
rect(f/2W) is equal to one for |f| < W and equal to zero elsewhere, as
shown in Figure 1.4. The filter, whose impulse response is A(t), admits
only the central spectral components F(f) from the sampled signal

fs@) I10)
— | Hp @
H(f) = rect(f /2W) F(f)

N\ wa«w

f—>

Figure 1.4. Filtering operation and spectrum of a bandlimited signal.
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spectrum F,(f). The impulse response of the filter is
n(t) = [~ H(f)e™™ df
= [ rect(f/2w)e ™ df

= /W eIt gf
-w
= (2W)sinc(2Wt) = (1/T,) sinc(t/T,), (1.5)

where 2W = 1/T, is a scaling factor similar to that used in Equation (1.3),
and where

sinc(x) = M

(1.6)

mX

The sinc function, as defined by Equation (1.6) and shown in Figure 1.5, is
generally called the interpolation function because it allows an interpola-
tion between the sample intervals T, to recover f(¢) for all time.

As we noted before, concepts associated with the sampling theorem
help in understanding optical signal processing, even if the signals are in
an analog form. To cover the wide range of uses discussed at the
beginning of this section, we refer to the interpolation function as the
sample function. We therefore distinguish among the sampling function
which is the train of delta functions shown in Figure 1.2, the sample
function which is the sinc function wrapped around each delta function as
shown in Figure 1.5, and the sampled values which are the values of the
sampled signal f,().

Sample

Samp le value f( t)

function

AVAVAUAYZN 2L VA4
—>{T |-

Figure 1.5. Sample function as an interpolator.
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14. EXAMPLES OF SIGNALS

The bandwidths of commonly encountered signals vary over a considerable
range:

» Underwater sound 4 Hz
« Speech (phone quality) 3,000 Hz
« Audio range 20,000 Hz
» Color television 6,000,000 Hz
« Wideband communication system 100,000,000 Hz
« Color motion picture 5,000,000,000 Hz
« Visible spectrum (blue to red) 10,000,000,000,000 Hz

The bandwidth of the visible spectrum is extremely wide relative to that of
any of the listed signals, implying enormous signal-processing potential.
This wide bandwidth is, in part, why optics is useful for performing
communication and signal-processing functions.

The complexity of an analog signal-processing operation is typically
proportional to N = 2TW. For example, if we compute the Fourier
transform of each of the listed signals for a one-second interval, the
complexity becomes significantly higher as we progress down the list. For
example, the audio signal requires a 40,000-point FFT to determine the
frequency content of the signal to a resolution of 1 Hz or a 4,000-point
FFT to resolve frequencies to 10 Hz. For real-time operation the computa-
tional complexity is generally very high. Correlation, for example, requires
that we perform 2TW multiplications and additions in the time interval T
so that the computational rate, in operations per second, is

2TW
R=
0

= 4TW?, (1.7)

which increases as the square of the bandwidth. Hence, it is difficult to
process wideband signals in real time without using the power of optical
processing.

1.5. SPATIAL SIGNALS

The signals cited above are all one-dimensional time signals. Pictorial
signals, however, generally originate as three-dimensional signals; for
example, a motion picture is a function of two space variables and a time
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/L/‘ f j (x) Sample

function

I T =
—>{4 <

flxy

Figure 1.6. Raster-scanned image.

variable. For transmitting such images, we convert the three-dimensional
signal f(x,y,t) to a one-dimensional time signal r(¢) through a raster-
scanning operation, which is easily visualized as a sampling operation in
both spatial coordinates. A television receiver converts r(¢) to the same
format as the original signal f(x,y,?). A holographic or stereographic
movie is an example of a four-dimensional signal f(x, y, z, t).

We use spatial frequencies to describe spatial signals such as images,
similar to our use of temporal frequencies for describing time signals. We
encounter spatial frequencies every day, but may not recognize them as
such. For example, the regular pattern of lines in a screen, a checker-
board, a piece of cloth, or a cornfield form spatial frequencies in different
spatial directions. Irregular spatial frequencies are evident in water sur-
face waves and most street patterns.

Figure 1.6 shows a raster-scanned signal f(x,y,t) such as that pro-
duced by a single frame of a television signal. The signal has length L,
height H, and exists for a time duration 7. To illustrate the fundamental
concepts, we select the jth line and display it as fj(x). This signal, whose
highest spatial frequency is a,, requires a sampling interval d,, where

1
dy= —. (1.8)

In general, we use @ and B to indicate spatial frequencies, expressed in
cycles/millimeter, in the x and y directions; they are the optical equiva-
lents of a temporal frequency f. In turn, the sample interval d is
equivalent to the temporal sample interval Tj,.
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The number of samples in the x direction is N, = L/d, = 2aL.

The length bandwidth product of the spatial signal in the x direction
is the product of the length of the spatial signal and the cutoff spatial
frequency: LBP = a. L. The number of samples in the y direction is
N,=H/d,=2B.H, where HBP = B H is the height bandwidth product
of the spatial signal in the y direction. We therefore need a total of
N = N, N, samples, sometimes called pixels, to accurately represent the
image. The product of the length and height bandwidth products gives the
overall space bandwidth product: SBP = (LBPXHBP) = a B, LH.

If f(x, y) is a bandlimited signal, the appropriate sample function is the
product sinc(x/d,)sinc(y/d,), in the same sense that sinc(t/T,) is the
appropriate sample function for time signals. We can therefore represent
the signal on the jth scan line as

fi(x) = Z a smc[ dnd ]rcct(%), (1.9)

n=—o

where the real-valued a,, are the sampled values, sinc(x/d,) is the sample
function, and the rect function defines the region occupied by the signal.
An alternative and completely equivalent way to represent fj(x) is by
using exponential functions:

fi(x) = X be?™ " rect(nay/2ay,), (1.10)

n=—w

where the b, are complex-valued weights for the exponential functions,
ay = 1/L is the lowest, or fundamental spatial frequency contained in the
signal, and the rect function shows that the signal is bandlimited by the
cutoff frequency a.,. Either Equation (1.9) or Equation (1.10) is an
appropriate way to represent the signal; which is most useful depends on
the particular signal or signal-processing application.

PROBLEMS

1.1. A baseband time signal has a bandwidth of 6 MHz. What is the
proper sampling interval T,? If each sample is characterized by one
of 32 voltage levels, calculate the degrees of freedom if the signal
duration is 100 ms.
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1.2

13.

14.

We record a 6-MHz bandwidth baseband video signal onto photo-
graphic film using a raster-scanned format. If the film resolution is
2 u X 2 u (equivalent to the spatial sampling interval), calculate the
area required to store 30 minutes of information. Assume a square
recording format and that the film can support the required
32 information levels at each sample position.

For the parameters given in Problem 1.2, what is the highest spatial
frequency required of the film? Calculate the two-dimensional space
bandwidth product of the stored signal and the time bandwidth
product of the time signal.

Find the required sample interval and the optimum sampling func-
tion in the frequency domain if the signal is limited to a time
duration from |t| < T. The bandwidth of the signal is not con-
strained in any way. Hint: This problem is the dual of the sampling
theorem in the space or time domains.
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Geometrical Optics

2.1. INTRODUCTION

The main emphasis in this book is on physical optics, which describes how
light interacts to produce diffraction effects useful in optical signal pro-
cessing. Although most of the results in this chapter can be obtained from
physical optics, we first provide a working knowledge of geometrical optics
because it often provides the same results through more straightforward
calculations. Geometrical optics is the characterization of optical systems
based on an assumption that the wavelength of light is zero and that light
travels only along ray paths.

As it turns out, we cannot isolate a single ray. If we attempt to do so,
we find that the harder we try, the more difficult it becomes. In both
Figure 2.1(a) and Figure 2.1(b) we successfully introduce apertures that
reduce the spatial extent of the incident light beam. Figure 2.1(c), how-
ever, shows that a further reduction in the size of the aperture does not
isolate a ray; in fact, light actually diverges after the aperture. The finite
wavelength of light causes this spreading action or diffraction, as discussed
extensively in Chapter 3, and is the foundation on which much of optical
signal processing is built. In this chapter we proceed as though we can
actually isolate a ray.

2.2. REFRACTIVE INDEX AND OPTICAL PATH

The velocity ¢ of light in vacuum is approximately 3(10%) m/sec. The
velocity v of light in any other medium, however, is lower than c. The
inverse relative velocity n = ¢ /v is the refractive index of the medium for
monochromatic light of wavelength A. Frequency, wavelength, and velocity
are connected by the relationship v = Af. Because the frequency of light
remains unchanged in passing from a medium whose refractive index is 7,

12
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Transmitted Transmitted Diffracted
light light light
e —
— ——]
Incident | Aperture Incident | Aperture Incident Aperture
light light light
(a) () (©)

Figure 2.1. Effect of an aperture on a bundle of rays of light: (a) large aperture, (b) small
aperture, (c) pinhole aperture.

into a medium of index n,, we find that

v, = A,
UZ = Azf, (2.1)
from which we conclude that
mA; = nyd,, (22)

so that the wavelength shortens when light passes into a medium with a
higher refractive index, often called a more dense medium.

The index of refraction is generally a function of the wavelength of
light. The dispersive power of a medium is defined as (n, — n,)/(n, — 1),
where n, is the refractive index for blue light, n, is the refractive index for
red light, and n, is the refractive index for yellow light. This second-order
property of the index of refraction is generally not important for us
because we mostly study optical signal-processing systems for which light is
monochromatic. We therefore use A and n, without color-referenced
subscripts, to indicate wavelength and refractive index.

A distance, multiplied by the appropriate refractive index, is defined as
the optical path. By convention, we use brackets to indicate an optical path
[OP] or an optical path difference [OPD). In a time interval ¢, a light
disturbance always traverses the same optical path length. For example,
consider light entering media of refractive indices n, and n,. The dis-
tances traveled in time ¢, are D, = v ¢, and D, = v,t,, from which we
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conclude that n,D, = n, D, = [OP] so that the optical paths are equal. In
a similar way we can show that if light arrives at a point via two paths, the
phase difference between them is simply the optical path difference ex-
pressed in wavelengths of light, multiplied by 2# radians:

A = ZA—"[OPD], (2.3)

where [OPD] = [OP, — OP,] is the optical path difference and A is the
wavelength in the medium.

A surface on which all light rays have the same phase is called a
wavefront. At each point on an arbitrary wavefront we construct wave
normals as suggested in Figure 2.2. As an example, if the medium is
isotropic, which means that the index of refraction is the same in all
directions, a point source emits light into expanding spherical wavefronts.
In this case, the times of flight from the source to every point on the
wavefront surface are equal. Furthermore, all the wavefront normals are
rays that have the point source as their common origin. The use of rays is
most convenient for the study of geometrical optics, whereas we use
wavefronts to develop the theories of interference, diffraction, and lens
aberrations.

Energy is transported along ray paths; the rays, in an isotropic medium,
are normal to the wavefront. In an anisotropic medium, for which the
indices of refraction are not the same in all directions, the rays still define
the directions in which energy propagates; they are not, however, generally
normal to the wavefront.

Wavefront
// V
Rays
P — y

Figure 2.2. Rays are surface normals to wavefronts.
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2.3. BASIC LAWS OF GEOMETRICAL OPTICS

The basic laws of geometrical optics are the laws of reflection and
refraction, Snell’s law, and Fermat’s principle. These laws provide the
basic tools for tracing rays through a system consisting of optical elements
such as mirrors, prisms, and lenses.

2.3.1. Law of Reflection

We first examine how a wavefront changes when it is reflected at a surface.
Consider a plane wave AB, incident on the reflective surface S shown in
Figure 2.3. The refractive index of the medium is n,. An incident ray,
associated with the wavefront at A, arrives at the angle of incidence I,
with respect to the surface normal. Note, too, that the incident wavefront
AB forms an angle I, with respect to the surface S. At some time ¢, the
wavefront has advanced so that it has just arrived at point C. The time of

flight is

BC BC  n,BC optical path 24
= — = = = . .
o, c/n, c velocity of light in vacuum (24)

When ¢, seconds have elapsed, we know that the energy arriving at point
A has been reflected, but we do not know the direction. To find the
direction, we construct a circle of radius n, AD = n, BC, with center at A4,

Surface
Incident normal Reflected
ray ray
'l‘ ) 9 12 ::
. Reflected Incident '.\
f wavefront wavefront ]
... E " B " "'
NG ! SurfaceS

////////////?/ ///J// 7 /////

Figure 2.3. Law of Reflection.
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where n, = n, refers to the index of refraction after the wavefront is
reflected. Because the reflected wavefront must be tangent to this circle,
the angle that EC makes with respect to the surface is the angle of
reflection I,, and the optical path [4E] is equal to n,AD = n,BC. As the

incident and reflected rays are in the same medium, we use the fact that
n, = n, to obtain the result that

”1' = IIzl

(2.5)

The absolute value signs used in Equation (2.5) allow for the possibility
that I, is equal to —I;; we address the sign conventions for angles in
Section 2.5.1. The law of reflection states that the magnitude of the angle
of reflection is equal to that of the angle of incidence. The incident and
reflected rays are therefore equally inclined relative to the normal of the
reflecting surface. They are also in the same plane; that is, the reflected

ray is in the plane defined by the incident ray and the surface normal.

2.3.2. Law of Refraction

When light passes through a surface separating media of different refrac-
tive indices, rays are refracted so that they change directions. The develop-
ment of the law of refraction is similar to that for the law of reflection. A
wavefront AB arrives at a surface S shown in Figure 2.4. The refractive

Incident
Surface ray
normal
s
B Incident
wavefront
D A L ¢ C Surface §
A L e =
Refracted : v
wavefront .
\ -2 ‘
—> 1, &« \ Refracted
. \ oy

Figure 2.4. Law of Refraction.
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indices of the two media are n, and n,. At time t, = BC/v,, the
wavefront has just arrived at point C. During this same time interval, the
wavefront element entering at A4, with incidence angle I, to the surface
normal, has traveled an optical path n, AD = n,BC. The new wavefront
must be tangent to the circle of radius n, 4D. From the diagram we find
that

T BC 4 sinl AD 5
sinfy = —= and sinl, = —=, (2.6)
or that
AD sin I, = BCsin I,. 2.7

Because equal optical paths are traveled in equal time, we find that
n,BC = n, AD and that

n;sin I, = n,sin I, (2.8)

which relates the angle of incidence to the angle of refraction. When
n, > n, we find that I, < I,. Thus, in passing into a denser medium, a ray
is bent toward the surface normal. The law of refraction, as given in
Equation (2.8), is also known as Snell’s law and is the foundation on which
geometrical optics is based.

2.3.3. Fermat’s Principle

The laws governing the behavior of rays are combined in Fermat’s princi-
ple. Fermat’s principle states that the time of flight for a light packet
traveling from one point to another along a ray is, to a first approximation,
equal to the time of flight experienced by light packets on nearby rays; that
is, the time of flight has a stationary value. Fermat originally stated that the
time of flight, and therefore the optical path, is a minimum; however, the
actual time of flight may be a maximum, a minimum, or neither, as we
show shortly.

Consider the path of a ray in Figure 2.5 from point P, in a medium of
index n, to the point P, in a medium of index n,, where n, < n,. The
intersection point at the surface is found when the path length, or time of
flight, has a stationary value. The total time to travel from P, to P, is
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Figure 2.5. Fermat’s principle.

r ry
t12=t1+t2=;-+u—
1 2
h? + x? h%:+ (D - x)?
=‘/1 +‘/2 ( ). (2.9)
Uy P

When ¢,, is at a stationary value, the partial derivative dt,,/dx is zero:

at r2x 1(=2(D -«
o 309 HDD-0
x  vwhi+x® o2+ (D -x)
from which we conclude that
mr _m(D-x) (2.11)
8T Ty ’ '
which implies that
nysin I; = n,sin I,. (2.12)

Snell’s law, as shown by Equation (2.12), is therefore implicitly contained
in Fermat’s principle.

Figure 2.6 shows several examples in which the ray paths are at their
stationary values, not necessarily at their minimum or maximum values. In
each case, we consider light traveling from point P, to point P,. The true
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XA

© @

Figure 2.6. Ray Paths: (a) maximum length path, (b) mi imum length path, (c) inflection
length path, and (d) equal length path.

ray paths are shown as solid lines, and candidate ray paths are shown as
dotted lines. Aside from the obvious fact that the direct path from P,
to P, is a minimum in all cases, we are concerned with the paths of rays
that reflect from the surfaces. The reflected path is a maximum in
Figure 2.6(a); the path is a minimum in Figure 2.6(b); the path is at an
inflection point in Figure 2.6(c); the paths are all equal in Figure 2.6(d),
because P, and P, are the foci of an ellipsoid.

2.3.4. The Critical Angle

When a ray passes from a less dense medium into one that is more dense,
the ray is bent toward the normal. When the ray propagates in the
opposite direction, the ray bends away from the normal. Figure 2.7 shows
that ray AB, in a medium of index n,, has an angle of incidence I, with
respect to the surface normal. When I, reaches 90°, Snell’s law shows that
ray AB cannot enter the less dense medium and is completely reflected at
the surface. The angle at which rotal internal reflection occurs is called the
critical angle I_:

I = sin-l(ﬁ). (2.13)

ny

As an example, suppose that n, = 1.5 and n, = 1.0; the critical angle I,
for which total internal reflection occurs is then I, = sin™'(1/1.5) = 41.8°
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Figure 2.7. Critical angle.

Although Equation (2.13) shows that rays whose incidence angles are
beyond the critical angle I, cannot penetrate into the less dense medium,
Snell’s law shows that rays can always penetrate into a more dense
material. Total internal reflection is found in many common optical
systems, such as in the prisms used in cameras and binoculars.

2.4. REFRACTION BY PRISMS

Prisms are sometimes used in optical signal-processing systems to bend a
set of parallel rays, perhaps for folding the system to make it more
compact. Sometimes the magnification of a prism is used to change the
size of a light beam, such as that produced by an injection laser diode, in
only one dimension.

2.4.1. Minimum Deviation Angle

A symmetric prism, shown in Figure 2.8, is constructed from a material
whose index of refraction is n,; the medium on either side of the prism is
air, with index n; = n; = 1. The entrance ray forms the angle I, with
respect to the normal. We apply Snell’s law to the incident and refracted
rays at each surface of the prism:

nysin I, = n,sin I,

n,sin Iy = nysin I,. (2.14)
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\ Deviation
6 angle

Incident

Refracted

Figure 2.8. Refraction of a ray by a prism.

From Figure 2.8 we see that I, + I; = y, where v is the apex angle of the
prism.

The deviation angle & is the amount by which the entrance ray is bent in
passing through the prism. From the diagram, we find that the deviation
angle is

b=¢p +e¢
=L-L+I,-1
=L-L+1L,-(y- 1)
=L +1I,-y. (2.15)

The deviation angle is therefore not a direct function of the internal
angles I, and I,. We use Equation (2.14) in Equation (2.15) to find that

8=1I—1v+sin [ n,sin ;]
=1, —y +sin™[nysin(y — I,)]

sin |
=L -v+ sin“[nz sin{y - sin"( - )}l (2.16)

n,

The result given by Equation (2.16) is valid for all angles of incidence,
provided that the ray striking the second surface is not at, or beyond, the
critical angle. The condition for avoiding total internal reflection is that

sin I
n, sin{y - sin“( - )} <1 (2.17)

n,
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A plot of the deviation angle 8, as a function of I;, reveals that the
minimum deviation angle occurs when I, = I, so that the entrance and exit
rays make equal angles with the surfaces of the prism. Under this condi-
tion 8, = 2I; — v, as can be seen from Equation (2.15), and the aberra-
tions introduced by the prism are minimized, as we show in
Section 2.9.

When the apex angle is small, the prism is called a thin prism. Further-
more, if the angle of incidence is small, we replace the sines of the angles
by the angles themselves in Equation (2.16). The expression for the
deviation angle is therefore simplified considerably:

8§ =(ny,— 1)y, (2.18)

and we see that the deviation angle is not a function of the angle of
incidence.

We sometimes refer to the power of a prism defined as the deflection
of a ray, in millimeters, at a distance of one meter; the unit of measure-
ment is a prism diopter. A prism whose power is one prism diopter deflects
a ray 10 mm at a distance of 1 m from the prism.

2.4.2. Dispersion by a Prism

The refractive index of an optically transparent material is dependent on
the wavelength of light. As the index is typically higher for blue than for
red wavelengths, blue wavelengths are bent more toward the normal
within the prism and are bent even further away from the normal when
they exit the prism, a phenomenon called dispersion. Dispersion explains
why white light separates into its color spectrum, as reported by Newton.
Also, since the dispersion is generally not linear (32n/3A% # 0), the spec-
trum is typically spread more in the blue region than in the red region.

2.4.3. Beam Magnification by a Prism

Prisms can be configured so that the magnification is different in orthogo-
nal directions; this condition is called anamorphic magnification. Consider
the prism shown in Figure 2.9, for which light is incident normal to the
entrance face. As there is no ray deviation at the first surface, we apply
Snell’s law immediately to the second surface:

n,sin I, = nysin I. (2.19)
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n

u1=0

Figure 2.9. Beam magnification by a prism.

As n; =1 and I, = y, we find that sin I; = n, sin y. Thus, we find that
Iy = sin™![n, sin y],
=5+y, (2.20)

from which we conclude that the deviation angle is
8 =sin™![n,siny] — y. (2.21)

The result given by Equation (2.21) is valid only when n, sin y < 1 so that
internal reflection at the second surface is avoided.

The beam magnification of the prism is M = h,/h,. From Figure 2.9
we see that

h, = ABcosy
h, = ABsin ¢, (2.22)

so that the beam magnification is M = sin ¢/cos y. Because
¢ =90° — y — §, we find that

_ cos[sin~(n, sin )]

2.23
cos y (2.23)

After using some trigonometric substitutions and algebraic manipulations,
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we find an alternative form for the magnification:

V1 = njsin?
M=y _7 (2.24)

V1 —sin?y

valid for n,siny <1 so that total internal reflection is avoided. The
magnification is always less than 1 when light travels from left to right, as
shown in Figure 2.9.

We solve Equation (2.24) to find the required apex angle y in terms of
M and n,:

. 1 - M?
smy = 'n%_—w (2.25)

Large changes in the beam size are obtained with prisms of modest
parameters, as shown in the following table. We calculate the exit angle /,
with respect to the surface normal, as a function of increasing the apex
angle of the prism; in all cases the refractive index is n, = 1.70:

30 582 0.61
35 712 027
36 877 0.05

Because the magnification changes rapidly as y — 36°, it is a sensitive
function of manufacturing errors in the apex angle or of errors in the
refractive index of the prism. Because the exit angle is close to grazing at
the exit face when the magnification is small, we risk total internal
reflection; we reduce this risk by rotating the prism slightly toward the
minimum deviation angle. In general it is better to use two or more prisms
in series when a large change in the beam size is needed to avoid the most
sensitive operating configuration for any one prism.

Magnifications greater than 1 are most easily handled by initially
assuming that the magnification is less than 1. We use the relationships
developed here and then reverse the prism configuration relative to the
direction in which light travels. Although the relationships developed in
this section are valid only when light enters normal to the entrance face of
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the prism, similar relationships can be developed for arbitrary incidence
angles.

2.4.4. Counter-Rotating Prisms

An equivalent prism having a variable deviation angle is implemented by
using two prisms, each with an apex angle y, as shown in Figure 2.10.
When the prisms are rotated so that their powers add, as shown in
Figure 2.10(a), the equivalent deviation angle is 286. When the prisms are
counter rotated so that their powers subtract, as shown in Figure 2.10(b),
the equivalent deviation angle is zero. A pair of such prisms is therefore
useful to bend light through an arbitrary angle ranging from zero to 24.
The prisms are generally mounted so that the second prism is rotated
relative to the first to obtain the desired deviation angle. The entire prism
assembly is then rotated so that the deviation occurs in the desired plane.

2.4.5. The Wobble Plate

A parallel plate of glass can be used to slightly displace a beam of light.
Figure 2.11 shows a glass plate of thickness z,, and index of refraction n,.
By straightforward calculations (see Problem 2.5), the displacement for
small angles of incidence is

z,1 -1
LG N (2.26)
n,

Fine control over ray displacements is obtained by such a wobble plate,
without deviating the angles of the incident rays.

b

Figure 2.10. Counter-rotating prisms: (a) prism powers adding and (b) prism powers
subtracting.
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Figure 2.11. Displacement of a ray by a plane parallel plate.

2.5. THE LENS FORMULAS

Snell’s law is the basic method for tracing rays through optical elements
with curved surfaces. To obtain the key relationships we must first estab-
lish a sign convention. Unfortunately, no sign convention is used uniformly
in all optics texts. The sign convention can be chosen freely, however,
provided that it is used consistently throughout all calculations.

We want our sign convention to be consistent with our notion of
positive and negative temporal frequencies, as well as with our notion of
positive and negative spatial frequencies. The sign convention also influ-
ences the sign of the kernel function in the temporal and spatial Fourier-
transform relationships. As a result of these requirements, we establish a
sign convention that unifies the results from geometrical optics, physical
optics, and Fourier-transform theory.

2.5.1. The Sign Convention

To illustrate the sign convention, consider the simple situation shown in
Figure 2.12, in which a ray passes through plane P, at a height 4, and at
an angle u, with respect to the optical axis. We focus our attention at the
first origin, the point O at plane P,, and use the sign conventions of
coordinate geometry. The basic sign conventions are

- Heights above the optical axis are positive; those below the axis are
negative.

« Distances to the right of the current origin .are positive; distances to
the left of the current origin are negative.
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Figure 2.12. Sign convention for rays and distances.

« The acute angle that a ray makes with the axis, as measured from the
axis to the ray, is positive if the rotation is counterclockwise; acute
angles are negative if the rotation is clockwise. As shown, u, u,, and
u, are each positive. All angles are measured in radians.

Much of geometrical optics deals with rays that are nearly parallel to the
optical axis; these rays are called paraxial rays and the approximations
sinu = tanu = u are valid. In the following development, we use the
angles themselves as a substitute for the sines or the tangents of the
angles; we use the trigonometric functions of finite angles, whenever
necessary, for computational accuracy.

We illustrate how the sign convention works by starting with plane P,
as our current origin and find that

hy=hy+ ugzg, (2.27)

where u, is the paraxial angle of the ray between P, and P, and z, is the
distance from P to P;. From the diagram we note that h, = 0 so that

ho = _u0201. (2.28)

Because z, is positive and A, is negative, u, must be positive, as claimed,

to satisfy our sign convention. Similarly, by shifting our current origin to
plane P;, we find that

h,=h, +uz,,, (2.29)

and, since #; = 0, we conclude that

hy =u,z.,. (2.30)
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Again, as both z,, and u, are positive, &, is positive as required by the
sign convention.

The transfer equation that allows us to trace the ray heights through a
system has the general form

hn+l =hn +unzn,n+l’ (231)

which is used to calculate the ray intersection heights at successive planes
in an optical system. The current origin for which Equation (2.31) applies
is at plane P,.

2.5.2. Refraction at a Curved Surface

Consider the refraction of a ray at a curved surface of radius R, that
delineates regions of refractive indices n, and #n,, as shown in Figure 2.13.
The curvature of the surface is ¢; = 1/R,. An auxiliary sign convention is
that the curvature of a convex surface, as viewed from the direction that
the ray travels, is positive; the curvature of a concave surface is negative.
For the moment, we assume that the refractive index is n, everywhere to
the right of the spherical surface intersecting the points O and P; the
vertex of the sphere defines the position of plane P,. Based on our sign

~N
—
~

Plane P, Plane P, Plane P,

Figure 2.13. Refraction at a curved surface.
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convention, we see that u, is positive, u, is negative, and h, is positive.
The angle G, of the normal to the surface is given by the angle OCP.
Because we use the same sign convention for wavefront normals as for
rays, G, is negative.

We begin by setting our current origin at the vertex of the surface and
applying Snell’s law to the ray as it intersects the surface S:

ny I, = n,1I,, (2.32)

where we use the paraxial ray approximation. Although all the angles are
small in practice, we exaggerate them in our figures for clarity. From the
sketch we see that the angle of incidence is equal to the sum of the angles
u, and G,. Because G, is negative, we find that

I =u, -G, (2.33)

The sign of the angle of incidence is dictated by the ray and normal angles

so that relationship (2.33) is not overspecified. As shown, I, is positive

because u, is positive and G, is negative. In a similar fashion, we find that

I, =u, -G, (2.34)

The sign of I, is also positive because, although both u, and G, are

negative, |G,| > |u,|. We use these values for the angles of incidence and
refraction in Equation (2.32) to find that

ny(uy, — Gy) = ny(u; — Gy). (235)

As G, = —h;/R, = —h,c,, we find that

nyuy, = nuy — hicy(n, — ny), (2.36)

which is the refraction equation for a surface in its generalized form. The
quantity c,(n, — n,) is the power of the surface and is denoted by K,. The
power of a surface is expressed in diopters when the curvature is
expressed in reciprocal meters. From Equation (2.36) we see that
when ¢, =0 the curved surface degenerates into a flat surface and
Equation (2.36) reduces to Snell’s law, as expected, because the power of
the surface is then zero. Also, if n, = n,, the power of the surface is zero
for all values of c,. This trivial situation simply shows that an optical
surface cannot be defined when 7, = n,.
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2.5.3. The Refraction Equation for Combined Surfaces

The refraction equation for a surface can be applied repeatedly to succes-
sive surfaces to develop the refraction equation for a lens. Suppose that
the ray encounters a second surface of curvature c¢, separating a region of
index n, from a region of index n,, as shown in Figure 2.14. We apply the
transfer equation (2.31) to find the height at which the ray penetrates the
second surface of the lens:

hy=hy +u,zq,, (2.37)

where z,, is the distance between the vertices of the two surfaces of the
lens. In Section 2.5.6 we define the principal planes of a thin lens, whose
parameters allow us to set &, equal to h;. With h, = h; = h, we apply the
refraction equation directly at the second surface of the lens to find that

naly = nyu, — hey(ny — ny). (2.38)

We substitute the value of n,u, from Equation (2.36) into Equation (2.38)
to find that

nyus = nyuy — h[cy(ny — ny) + cy(ny — ny)). (2.39)

The result given by Equation (2.39) is the most general statement of the
refraction equation for lenses and can be used in all situations. It is valid
for glass lenses in air or, as sometimes used in medical instruments, for air
lenses in glass.

uy )

ny _
"l =1 n3-l
cy Cy

Figure 2.14. Ray trace for a thin lens.
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The power of the lens is the sum of the powers of the two surfaces:
K=K, + K, =cn;, —n)) +cy(n; — ny). (2.40)

For the special situation of a glass lens in air, as sketched in Figure 2.14,
n; =ny = 1 is the refractive index for the two air spaces and n, is the
refractive index of the lens. We find that Equation (2.39) then yields

uy=u, —h(c, —c;)(ny, — 1), (2.41)

which is the refraction equation for a thin lens in terms of the construc-
tional parameters of the lens.

The power of a thin lens of index n,, embedded in air, and with surface
curvatures ¢, and c,, is given by

K= (c;—cy)(n,—1). (2.42)

As c, is negative and n, > 1, the power of the lens is positive. The
deviation of the ray is given by & = u; — u;, which is equal to 4K,
the product of the power of the lens and the ray height. The ray at the
maximum height, called the marginal ray, is bent the most, whereas
the axial ray is not deviated because h = 0.

2.5.4. The Condenser Lens Configuration

A condenser lens configuration occurs when all incident rays are parallel,
as shown in Figure 2.15(a). The refraction equation, using the lens as our
current origin, states that

us; =u, —hK, (2.43)
so that, for u, = 0, we find that
u; = —hK. (2.44)

As uy = —h/z,; for small angles, we find that z,; = 1/K = F, which is
the focal length of the lens. Thus, a thin lens condenses a bundle of
parallel rays at a distance equal to its focal length. This plane is called the
back focal plane of the lens.

Parallel rays entering the lens at an off-axis angle also focus at the back
focal plane of the lens. Consider the upper entrance ray in Figure 2.16,
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Figure 2.15. Thin lenses: (a) condenser and (b) collimator.

which makes an angle u; with respect to the optical axis. By the refraction
equation we find that

us; =u, — h,K, (2.45)

where h, is the height of the ray at the lens. By the transfer equation, we
find that

h3 = hz + U3Zy, (2.46)

K

Figure 2.16. Imaging of an off-axis bundle of rays.
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where the distance from the lens to the image plane is undetermined for
the moment. The focal plane is found by tracing a second ray through the
lens. The ray passing through the center of the lens is a convenient one to
trace; for it, we find that

hy= 1,25, (2.47)

The parallel rays entering the lens are due, in effect, to an object sample
at infinity. Because the image of a sample requires that all rays intersect,
we require that the values of 45 from Equation (2.46) and Equation (2.47)
must be equal so that

UyZy3 = hy + Uuzzy
=h, + (u; —hK)zy
= u1223 + h2 - h2KZz3, (2.48)

which, in turn, shows that z,; must be equal to F. This argument is easily
extended to show that all parallel rays focus to a single point at the back
focal plane of the lens.

2.5.5. The Collimating Lens Configuration

Suppose that we want to create parallel rays for which u; = 0, as shown in
Figure 2.15(b). The refraction equation, as applied at the plane of the lens,
becomes u, = hK. In a fashion similar to that shown in Section 2.5.4, we
find that z;, = 1/K = F so that the lens collimates a point source of light
located at the front focal plane of the lens. Also, by using equations
similar to those developed above, we find that light from any off-axis
object sample, at the front focal plane, produces a parallel beam of light
that propagates at an off-axis angle. A lens system is therefore bilateral so
that its operation on rays traveling in one direction is the same as its
operation on rays traveling in the opposite direction.

2.5.6. Principal Planes

In our derivation of the refraction formula, we assumed that h, = h; at
the surfaces of the lens. In the case of thick lenses, where the assumption
does not hold, we can still retain the formalism that 4, = h; by introduc-
ing the concept of the principal planes of a lens. The first principal plane
is found by tracing a ray from the front focal point O,, as shown in
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Figure 2.17. Principal planes for a thin lens.

Figure 2.17, to the lens surface. This ray exits the lens, parallel to the axis,
at some point on the second surface of the lens, which establishes its
height from the axis. We extend these two rays to their intersection point
to define the position of plane H,, called the first principal plane of the
lens.

We follow a similar procedure for an entrance ray parallel to the axis,
which passes through the back focal point O, after refraction. The
intersection of these two rays defines the positions of plane H, and
establishes the second principal plane of the lens. The principal planes
provide the following properties for simplifying the representation of a
lens:

» The front and back focal lengths of the lens are measured from the
principal planes H, and H,, respectively. For some lenses, principal
plane H, may occur before principal plane H,, generally referred to
as a crossover of the principal planes.

» The principal planes are unit magnification planes because the magni-
fication between them is M = +1. Thus, any ray that intersects plane
H, at some height h, is transferred to plane H, at the same height
h,, where the entire bending action of the refraction equation is
applied.

- Based on unit magnification, we collapse the space between H, and
H, to represent the lens as a true thin lens with a single plane where
all of the power of the lens is concentrated.

Principal planes may become curved surfaces for lenses with high relative
apertures or for special lenses such as wide-angle lenses. The principal
planes are generally flat for the types of lenses encountered in optical
signal processing.
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2.5.7. Thin-Lens Systems

We now generalize the refraction equation for a two-lens system, as shown
in Figure 2.18(a), to find the equivalent power of a lens pair. Suppose that
a parallel ray, for which u; = 0, enters the first lens at height k,. This ray
is bent by the first lens of power K, and intercepts the second lens at
height h,. The second lens bends the ray to its final value u; and the ray
intercepts the axis at plane P;. Suppose that we want to replace these two
lenses with one having the equivalent power necessary to bend the
incoming ray to the same final angle u;, as shown in Figure 2.18(b). The
first principal plane of the equivalent lens lies in the same plane as
the first principal plane of the first lens of the pair. Although the
equivalent lens must produce the same angle u; as the two-lens system,
we do not require that the distances from the first principal planes to the
focal planes be the same.
We begin by noting, from Figure 2.18(a), that

u, =u; — h K, (2.49)
by virtue of the refraction equation, that

h,=h, +u,z,, (2.50)
by virtue of the transfer equation, and that

Uy =u, — h,K, (2.51)

by virtue of a second application of the refraction equation. We substitute

u=0 |(_le —)l

Figure 2.18. Ray traces: (a) two-lens system and (b) single-lens equivalent.
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Equations (2.50) and (2.49) into Equation (2.51) to obtain
uy = (uy — hK)) = [hy + (u; — K )) 2] K,. (2.52)
Because u;, = 0, we find that
uy=—n[K, +K, - z,K,K,]. (2.53)
For the equivalent lens shown in Figure 2.18(b), we see that
us = —h K. (2.54)

By comparing Equation (2.53) with Equation (2.54) we see that the
equivalent power of the two-lens system is

Ko =K, + K, — 2,K,K,, (2.55)

where K, and K, are the powers of the individual lenses and z,, is the
distance between the two lenses. In this development, the sign of z,, is
positive. The result given in Equation (2.55) is extremely useful for finding
the proper geometric arrangement for two lenses to obtain a lens whose
equivalent power is different from that of either lens.

To illustrate the use of the equivalent lens concept, consider the
situation for two positive lenses. The maximum power is obtained when
z,, is zero so that the two thin lenses are in contact and the equivalent
focal power is

K=K, +K,, (2.56)

in a fashion analogous to how the powers of the surfaces of the lenses add.
A special case is obtained when z,, = F; so that the second lens is
positioned at the back focal plane of the first lens. We then find that
K., = K,, which means that the lens with power K, has no contribution
to the overall power; this lens is in a “no power plane.” Such lenses are
sometimes used as field lenses to help contain ray bundles, without
contributing to image quality.

Because the power varies from K . = K; + K, to K_;, = K, each
lens must have a focal length longer than the one we wish to synthesize.
Also, given two lenses of powers K, and K,, we obtain the largest range
of powers when the lower-power lens is the first lens of the pair. This
arrangement also tends to minimize the aberrations of the combination
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because the relative apertures, defined as the ratio of the lens aperture to
its focal length, are more nearly equal for the two lenses.

There are no restrictions on the value of z,, or on the signs of the
powers of the lenses provided that uy has the proper numerical value and
sign at the output of the equivalent lens. For example, if the separation
between the lenses is so large that the equivalent power is negative, we
find that the ray angle u;, for a parallel entrance ray a distance h; above
the axis, must be negative, violating the constraint. Note that the equiva-
lent power for a pair of negative lenses is always negative, independent of
the value of z,,. If one lens is positive and one is negative, the constrained
value of z,, is a function of the values of K, and K,. Finally, we note that
the total power of the two-lens system is zero when z,, = F; + F,, a case
that we now consider in more detail.

2.5.8. Afocal or Telescopic Configurations

In optical signal-processing systems we often consider signals that are in
either the front or the back focal plane of the lens. Using these planes
considerably simplifies the mathematical analysis of the system, with little
loss of generality, and offers opportunities to reduce aberrations in a
laboratory system (see Section 2.9). Furthermore, the plane under consid-
eration may be simultaneously the back focal plane of one lens and the
front focal plane of the next lens in cascaded systems.

For example, plane P, as shown in Figure 2.19(a), is the back focal
plane of the lens whose power is K, and is simultaneously the front focal
plane of the lens whose power is K,. When arranged as shown, these two
lenses are in an afocal or telescopic configuration. Such a configuration
causes no net bending of the incident and exit rays, as shown by the fact
that, for an arbitrary entrance ray at an angle u,, we have

Uy =u; — hey Ko (2.57)

Because K., = K, + K, — z;,K, K, is the equivalent power of the lens
pair and because z,, = F, + F, is the distance between the lenses, we find
that

Us — Uy = —h[K, + K, = (F, + F,) KK, ]

11
—heq[Kl + K, — {F + ?}KIKZ]
1 2
K, +K
K, +K,— {—;{I—KZZ}KIKZ] =0, (2.58)

_heq
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Figure 2.19. Cascaded lenses in afocal arrangements: (a) positive lenses and (b)
negative /positive lenses.

so that u; = u;. The name telescopic derives from the property of a
telescope, which accepts parallel light at a given angle and produces
parallel light, generally with some beam magnification, at the same angle.

The telescopic condition arises whenever z,, = F; + F,. The net power
of the system is therefore zero, and rays are not bent in traversing the
system. There are two generic telescopic configurations that result accord-
ing to the signs associated with the focal lengths of the two lenses. In the
first configuration, shown in Figure 2.19(a), it is clear that the two lenses
are separated by the sum of their focal lengths. In the second configura-
tion, shown in Figure 2.19(b), the first lens has a negative power, but the
two lenses are still separated by the sum of their focal lengths and plane
P, is a common focal plane for both lenses. There are two other telescopic
configurations that provide magnifications less than one; these configura-
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tions are simply those of Figure 2.19(a) and Figure 2.19(b) with the lenses
interchanged. The total length of the system and the sign of the magnifi-
cation depend on the signs of the focal lengths of the two lenses.

2.6. THE GENERAL IMAGING CONDITION

So far we have considered some special conditions in which either the
object or the image is at infinity; these are called infinite conjugate imaging
conditions. A more general condition arises when an object at plane P, is
imaged at plane P;, as shown in Figure 2.20. Both planes are at finite
distances from the lens, resulting in a finite conjugate imaging condition.
With the lens as the current origin, z, and z; indicate the distances of
these planes from the lens. A sample in the object plane, a height 4,
above the axis, generates a family of rays that produces a wavefront W,
normal to all the rays. In a well-corrected system, Fermat’s principle states
that the optical paths traveled by all rays are equal. Therefore wavefront
W, is also normal to the ray family on the image side; the image occurs at
plane P, a height h; below the optical axis. For all conjugate-ray pairs the
refraction equation states that

u; =u, — hKk, (2.59)

where A is the height at which the ray intercepts the lens. When we divide
all terms in Equation (2.59) by 4, we find that

us U

—=— —K. 2.60
h h ( )
Lens with power K
and focal length F
P W,
. W,
h Image
1 /& plane
Object \7 N

plane 3

L "
Z, ;l: 23‘>l

Figure 2.20. General imaging condition.



40 GEOMETRICAL OPTICS

For the sample located on the optical axis at plane P;, we find that
u; = —h/zy and u; = —h/z,, so that

1 1 1

21 + 5w F (2.61)
which is commonly referred to as the lens equation. Thus, if we know the
value of F and the value of either z;, or z;, we can determine the
remaining unknown distance. Remember that Equation (2.61) is valid only
for a thin lens in air. The more general result, as given by Equation (2.39),
is always valid.

2.6.1. Ray Tracing

To analyze the image quality produced by an optical system, we trace
many rays from an object sample through the system and require that they
all fall within a specified distance from the true image sample position.
However, only a few rays are required to determine the positions of the
object and image planes relative to the lens. The trick is to select the most
useful ones.

Throughout this section, we treat axial distances as having positive
magnitudes and account for their negative values by compensating for the
signs in the equations. We do this because we need to shift the current
origin several times to derive general results. The sign of an axial distance
may therefore be both positive and negative, depending on the position of
the current origin, and ambiguities could arise when making the final
calculations. This procedure is not necessary, of course, when we numeri-
cally calculate ray positions because the calculations are completed at each
surface before we proceed to the next surface.

We begin by selecting a ray parallel to the optical axis, as shown in
Figure 2.21(a), for which u; = 0. This ray starts from an object sample at
plane P, located a height h; above the axis. We use the transfer equation
to find the ray height at the lens plane P;:

hy=hy+ (22 + 25)u;
= h,. (2.62)

The refraction equation for a lens in air states that

us =u; — h3K
= —h;K = —-hK, (2.63)



2.6 GENERAL IMAGING CONDITION 41

Py Py
ul=
hl
(@) 0
<—z12—><—z23=p—J
<€ Z13
A Py Py P, P,
hy
(b) ul .
Uz } h5
U3
«—Z 12—><'—223=F—>L—134=F—>|(—z 45—

<——z12——>|<—z 23=p—><—z34=p~>l<—-z45-—>

< Z13 < Z135

Figure 2.21. Three convenient rays for finding the position of the image plane and the object
magnification: (a) input parallel ray, (b) output parallel ray, and (c) principal pupil ray.



42 GEOMETRICAL OPTICS

where K is the power of the thin lens. This parallel input ray crosses the
axis at plane P,, located a distance z,, from the lens. The position of
plane P, is found by solving the equation

h4 = h3 + UzZqy = 0, (2.64)

from which we deduce that
Z34=__=_=F, (2.65)

where F is the focal length of the lens. Plane P, is therefore the back
focal plane of the lens; all parallel rays entering the lens focus at this
plane, as we showed in Section 2.5.4. At this stage of the analysis, we do
not know the position of the image plane Ps, nor the image height h;. We
therefore temporarily extend the ray from P, through plane P, for an
arbitrary distance to the right of plane P,.

A second ray uniquely determines the position of image plane P; and
the image height hs. The bilateral nature of the lens suggests that we
select a ray, passing from the sample A, in P, through the front focal
point of the lens, as shown in Figure 2.21(b). Tracing this ray forward
through the system is the same as tracing the previous ray backwards.
Because this ray passes through the front focal plane of the lens, &, = 0,
and we apply the transfer equation to find u,:

hy,=h;+uz,=0, (2.66)
so that u; = —h,/z,,. This ray intercepts plane P; at a height
h3 = hz + u2223, (2.67)

where z,; = F is the focal length of the lens. But the intersection height
h, = 0so that u, = u;, = —h,/z,, and

—h,z -h,F
hy= —2 - 1 (2.68)
212 Z12
We apply the refraction equation at plane P, to find that
Uy =u, — h3K

h, -h,F

= - — K=0, (2.69)
212 212
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so that the second ray is rendered parallel to the optical axis by the
collimating action of the lens.

The intersection of the second ray with the extension of the first ray
defines the position of the image plane Ps. For the second ray, we find
that

hs=h,=hy= , (2.70)
which gives the height of the image sample.
The distance z,5 can now be found from the transfer equation

hs=hy + u3zes = U325

= —h,Kz,s. (2.71)

We use Equation (2.70) in Equation (2.71) to find that

h,F
- —— = —h,Kz,s, (2.72)
Z12
which is rearranged as
213245 = F, (2.73)

to obtain Newton’s formula for relating the distances of the object and
image plane from the focal planes of the lens.

2.6.2. Lateral Magnification

The lateral magnification M is given by the ratio of the image height to the
object height, as shown in Figure 2.21(b). From similar triangles, we find
that

Ry

s __F

M= (2.74)

hy Z12 ’
which is the ratio of the focal length of the lens to the distance from the
front focal plane to the object plane. We can also express the magnifica-

tion in terms of the object to lens distance z5:

Zi3=2Zpt2pn=2z,+F (2.75)
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so that

M= . (2.76)

Three special cases are of interest. In the first case, z,3 = F, which means
that the object plane approaches the front focal plane of the lens. In this
case, M - —o so that the lateral magnification is infinite and the lens
acts as the collimator shown in Figure 2.15(b). In the second case,
z,35=2F so that M = —1 and the object and the image planes are
symmetrically located two focal lengths from the lens. The modulus of the
magnification is unity, with the negative sign implying a reversal of the
image coordinate system in passing from plane P, to plane Ps. The image
is therefore rotated 180° with respect to the object. In the third case,
z;3 = © so that M - —1/0 =0, and the lens acts as the condenser
shown in Figure 2.15(a). The rays on the object side of the lens are
therefore parallel and the image is formed at the back focal plane of the
lens.

We also express the magnification in terms of the parameters on the
image side of the lens. From similar triangles, we find that

M=2==_2_-__"% (2.77)

Arguments similar to those given in the previous paragraph are applied to
Equation (2.77) to determine the position of the image plane for various
values of the magnification.

2.6.3. The Principal Pupil Ray

Another easy ray to trace is the principal pupil ray, which is midway
between the two marginal rays and passes through the center of the lens
as shown in Figure 2.21(c). The angles and intersection heights of principal
pupil rays are usually indicated by an overbar; they obey, of course, the
same laws of propagation as do other rays. For the principal pupil ray we
have

= ——— =10,. (2.78)
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At plane P; we have

iy =i, — hyK. (2.79)
But k; = 0 by construction so that &; = &, = &,, which shows that the ray

is not bent as it passes through the center of the lens. It therefore arrives
at plane Py at a height

hs=hs=hs + (234 + 245)5

2yt 2
=0+ [_hl_u
2yt 2y
—h,z
= (2.80)
213
The magnification is M = hs/h, = —z55/2,3, which is an alternative, and

perhaps the easiest, way to obtain the magnification. The magnification is
simply the ratio of image to object distance. If z;5 > z,;, the magnitude of
the magnification is greater than 1; if 235 < z,; the corresponding magni-
tude is less than 1.

These three rays are useful for determining the image position and
magnification when the object position and the lens focal length are
known. Any two of the three rays are sufficient; we generally choose
whichever pair is most convenient for a particular system. These rays do
not, however, reveal anything about the detailed structure of the image in
terms of the required sampling distance for the object or about the spatial
resolution of the lens. We now show how we can trace some rays that are
associated with object and image resolution and combine them with those
traced so far to develop an important result: the optical invariant.

2.7. THE OPTICAL INVARIANT

Suppose that the object has a sampling interval d,, the distance between
the delta functions of the sampling function, for a signal bandlimited to
a,,, as discussed in Chapter 1. Further, each sample in the object between
—h, to hy, shown in Figure 2.22, diffracts light rays over a range of angles
bounded by +u,. For the moment we concern ourselves with only those
rays produced by the sample located at O, at plane P, and use the
refraction equation to establish the position of the image plane Ps. We
begin by finding a relationship between u, and us. From plane P,, the
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Figure 2.22. Rays necessary to determine the optical invariant.

front focal plane of the lens, we construct a parallel ray with the same
angle u, = u, as the marginal ray from sample O,. As s, = 0 at plane P,
for this ray, we find that

hy=h, +uzy

= UyZo3. (2.81)

The refraction equation requires that

us;=u, — hK
hy
=— —h;K=0. (2.82)
Z3

This ray is therefore parallel to the optical axis and it intercepts plane P,
at a height h, = h;; as before, we extend this ray to infinity on the image
side of the lens. Because parallel rays on the object side of the lens focus
at plane P,, the ray originating from the sample O, also intersects plane
P, at height h,. From the shaded triangle we see that

hy = usz,s. (2.83)
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But because h, = h; = z,u,, we further find that

U Zy3 = —UsZys, (2.84)
which relates the image ray bundle angle us to the object ray bundle angle
urWe now find a relationship between h,; and hs. By tracing the dotted

ray through the lens, we see by inspection that

hs 245

. 2.85
hy Z34 ( )

We solve Equation (2.85) for z,5 and use this value in Equation (2.84) to
find that

ﬁszﬁ] (2.86)

UiZys=U
1223 5[ Iy
As z,3 =12z, =F is the focal length of the lens, we further simplify
Equation (2.86) to show that h,u, = hsus. We developed this result on the
assumption that n, = n,. The more general and complete result, for
arbitrary indices of refraction on either side of the lens, is that

nhu, = nshgus. (2.87)

This relationship is variously known as Helmholtz’s equation, Lagrange’s
equation, or Smith’s equation; it is becoming more universally known as
the optical invariant.

For a given system, the value of the optical invariant is the same for all
image planes, provided that no information is lost due to aperture stops
and that the system is free from aberrations. For example, a periscope has
many intermediate image planes between the object plane and the final
image plane; the optical invariant has the same value at each of these
planes, even though the image sizes may be different.

The optical invariant is valuable for quickly sketching the geometry of
an optical system, for double-checking mathematical calculations, and for
showing why the brightness at any set of conjugate planes is fixed. The
optical invariant is an important and quick way to check whether an
optical system is feasible and how difficult it is to design. Some examples
of how the optical invariant is used are given in the following sections.
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2.7.1. Magnification Revisited

The optical invariant provides a useful alternative method for calculating
the magnification of a system. Because the lateral magnification is defined
as M = hy/h,, we use Equation (2.87) to show that

nyu,

(2.88)

nsus

is an alternative expression for the lateral magnification. As h; is negative
and h, is positive, the magnification is negative for the system shown
in Figure 2.22, as confirmed by the fact that u, is positive and u; is nega-
tive. We see that |ngus| > |nu,| when |M| < 1. For the typical case of
ns = n; = 1, Equation (2.88) states that the angle u; is inversely propor-
tional to the magnification. Because an image that is smaller than the
object has smaller sample spacings, the maximum value of the included
angle defining the image bundle must increase.

2.7.2. Spatial Resolution

Consider the telescope, shown in Figure 2.23, that focuses an incoming
parallel ray bundle at its back focal plane. The plane-wavefront W, is
focused by the lens to a point on the optical axis at plane P,. The ray
bundle on the image side of the lens does not, of course, form an
infinitesimally small spot at plane P, because of diffraction phenomena. In
Chapter 3 we show that the intensity of the diffraction pattern for a
uniformly illuminated one-dimensional aperture is sinc?(¢L /AF), where £
is the coordinate in the image plane as shown in Figure 2.24(a). The sinc?

Figure 2.23. Resolution limit of a telescope.
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Figure 2.24. Rayleigh resolution criterion.

function is also the impulse response of the system, the impulse in this
case being the infinitesimally small star at infinity.

Two samples from an object at infinity are resolved if the wavefront W,
from the second sample is tilted with respect to W, by one wavelength of
light over the aperture L of the lens. The angular resolution of the
telescope is therefore

o= (2.89)

as shown in Figure 2.23. Thus, the minimum resolvable distance at plane
P,, equivalent to the sampling interval, is

d A F A 2.90
- (2= o aso

as shown in Figure 2.24(b), where we use 6., to indicate the maximum
value of u, as produced by the marginal ray with respect to the central
ray. The relationship given by Equation (2.90) establishes the connection
between 6., and the interval d, between the samples at the image plane, a
result that we used in Chapter 1 to describe the optimum sampling
interval for a bandlimited analog optical signal.

Consider the spatial resolution of the telescope shown in Figure 2.23.
For a lens aperture of L = 100 mm and focal length of F = 1000 mm,
the relative aperture of the telescope is L/F = 0.1. A more commonly
used measure is the f/#, which is the ratio of the focal length to the
aperture; the f/# for this set of parameters is f/10. For A = 0.5 u, we
use Equation (2.90) to find that the spatial resolution of the telescope is
dy = 0.5(1000)/100 = 5 . From Figure 2.23, we see that the largest angle
6., is equal to L /2F so that 8,, = 0.5 u/2(5 u) = 0.05 = 2.87° Thisisa
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surprisingly small angle for a fairly high spatial resolution and supports the
notion that most optical systems are accurately analyzed by using paraxial
rays.

If we set u, to its maximum value of 6., we have a special case of the
optical invariant that we indicate by the symbol J,. From the optical
invariant we find that J, = n3h,0,, or that J, = n;h4A /2d,. We recognize
that the height of the image, 245, divided by the minimum resolvable
distance d, is a measure of the number of resolvable samples N, in the
image in the x direction. For n; = 1, we find that

NA
4 b

I = (2.91)

so that the optical invariant is equal to the product of the number of
samples and a quarter wavelength. Similar comments apply to the optical
invariant J, and the number of samples N, in the y direction.

2.7.3. Space Bandwidth Product

In Chapter 1 we showed that we need N = 2TW samples to accurately
represent a signal that has duration T and highest frequency W. A similar
concept applies to optical signals. The length bandwidth product of a
spatial signal is the product of the object length L and the highest spatial
frequency a.,: LBP = a L. Thus, N, = 2a L is the number of samples
necessary to accurately represent the object in the horizontal direction.

To describe a two-dimensional image, we define the height bandwidth
product as HBP = B H. Generally B, = a_,, but sometimes the cutoff
frequency is different in the two directions. In a corresponding way,
N, = 2B.,H is the number of samples necessary to accurately represent
the object in the vertical direction. The space bandwidth product is simply
the product of the length and height bandwidth products with the result
that SBP = (LBPXHBP), and we need N = N, N, samples to accurately
represent a two-dimensional image.

Finally, as J, is measured in units of distance, we note that the
dimensionless quantities N, TW, LBP, HBP, and SBP are proportional to
the optical invariant normalized by the wavelength of light. A typical value
of J, for optical processing systems is of the order of 0.25 mm. As a
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general rule, lens design starts to get difficult when J, exceeds 1 mm or so,
corresponding to a length bandwidth product of 4000 for green light.

2.7.4. Matching the Information Capacity of System Components

As we showed in Section 2.7.2, the angular resolution of the telescope is
dependent only on the aperture of the lens and the wavelength of light.
The angular resolution of the telescope, whose parameters are given in
Section 2.7.2, is ¢y =A/L = 0.5 n/100(10%) p = 5 urad. The angular
resolution of the eye is only about 500 urad; we therefore need an
eyepiece which, in combination with the objective lens, provides a 100 X
magnification to fully appreciate the resolving capability of the telescope.
This magnification is more or less consistent with the idea that the
magnification of a telescope is equal to the ratio of the entrance-beam
diameter to that of the exit beam, as discussed in Section 2.5.8. The pupil
of the eye establishes the exit-beam diameter at 3-5 mm, depending on
the illumination level; the overall useful magnification of a small-diameter
telescope (80-100 mm) is therefore approximately 20-30 X , although
magnifications of about 2-3 X these values seem to produce “sharper”
images.

Using a significantly more powerful eyepiece does not provide more
resolution. Why not? A principle of system design is that we match the
bandwidths of all components of a system. All real-time electronic systems
have a fixed metric for the time base. In optical systems, however, the
spatial bandwidths may not be equal because the image may have a
different size than the object. For optical systems, the optical invariant
plays the same role as does bandwidth in a real-time system, and it ensures
that the number of samples required to represent a signal does not change
as the signal progresses through the system. An equivalent statement is
that the optical invariant ensures that no signal information is lost.

Increasing the bandwidth of the last component of the system, which is
equivalent to using a higher-power eyepiece, does not increase the infor-
mation content of a signal. The angular resolution has already been set by
the primary aperture of the telescope, which is why we generally rate the
angular resolution of a telescope by citing its aperture size. Other factors,
such as atmospheric turbulence, affect resolution, of course, but the
aperture sets the theoretical resolution. The use of a higher-power eye-
piece than necessary results in an image that has empty magnification.

We further illustrate these points by considering the resolving power
of an f/4 camera lens, shown in Figure 2.25, whose focal length is
F = 100 mm and whose diameter is L = 25 mm. Suppose that the image
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Figure 2.25. Camera with f/4 lens.

height is 2h; = 25 mm. At the image plane, we have

6 = L B0 05 rad = 7.18°
o= 3F = 00mm = 125 red = 718,
J, = nyfohy = 1(0.125)(12.5 mm) = 1.56 mm,
A 0S5
d=5g- =925 ~ ¥
N o= s B0 500 sampl 2.92
= Z = 75 = 12,500 samples. (2.92)

We see that a fairly simple camera lens produces an image of high quality,
as shown by the large value of the optical invariant J, and the large
number of samples as shown by N,.

If the image length is L = 35 mm, the number of samples required is
N, = 17,500 in that direction and the total number of samples produced is
N=NN, = 2.28(10%). At f/2, the image has four times the number of
resolvable elements because the sample interval is halved in each direc-
tion; at f/1.4 the image has two times even more samples. Hence, a
high-quality image contains a considerable amount of information.

Suppose that we record the image on photographic film. As the sam-
pling theorem requires two samples per cycle of the highest spatial
frequency to accurately represent a signal, the highest spatial frequency
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that the lens produces is

1
co_z_do’

a

(2.93)

which is called the cutoff frequency of the lens system. The units of the
spatial frequency «, are cycles/mm when d,, is expressed in millimeters.

The optics community does not have an equivalent designator, such as
Hertz (one cycle per second), to indicate spatial frequencies. We suggest
the use of the designator Abbe, in honor of Earnst Abbe who did
pioneering work in describing the relationship of spatial frequency content
to image quality, to mean one cycle per millimeter and to abbreviate it as
Ab. The reader is cautioned to note that spatial frequencies are often
expressed as lines per millimeter in the literature and that the television
industry tends to describe their systems in terms of scan lines per inch.
This terminology is potentially confusing because a line sometimes refers
to a cycle, but in other instances it may refer to a sample. The use of Ab to
represent the spatial frequency of an optical signal may help to eliminate
this potentially confusing situation.

We connect the cutoff spatial frequency a, to the scattering angle 6,
associated with sample size d, through the use of Equations (2.90) and
(2.93):

(2.94)

We find that a , = 250 Ab for the given parameters of the f/4 camera
lens. The length bandwidth product of the image is therefore
LBP = 2h;a ., = 6250. Consistent with normal design rules, photographic
film must have a frequency response equal to a. to avoid loss of
information in the recording process. As the eye can resolve about 4 Ab at
normal viewing distances and pupil sizes, we can magnify the resulting
image approximately M = a,,/a., = 62.5X Additional magnification
causes more pronounced film grain noise; less magnification results in loss
of detail. Matching the optical invariant J at all image planes and for all
components in an optical system therefore provides the maximum infor-
mation content at the output.

It is important to realize that the cutoff angle 6, in any given situation,
may be determined either by the optical system or by the object itself. For
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example, in the camera system just analyzed, we assumed that the cutoff
angle was limited by the relative aperture of the lens. But in some
applications the intrinsic resolution available from the object may be the
limit; in this case, the object cannot produce a ray bundle that fills the lens
aperture. In other applications the recording film or a CCD photodetector
array may set the minimum sampling interval. Ideally, then, we first
determine which part of a system imposes the limiting cutoff parameter
and then match all the components of the system in terms of the optical
invariant. In low-light-level television cameras a lens with an excessive
f/# may be used simply to collect more photons—similar to the use of a
larger antenna in a microwave system.

2.8. CLASSIFICATION OF LENSES AND SYSTEMS
Recall that the refraction equation for a lens in air is
us =u, — hk, (2.95)

where K = (n, — 1)(¢; — ¢,) is the power of the lens. Because the refrac-
tive index of the lens is greater than one, the sign of the power of the lens
is determined by the signs and magnitudes of ¢, and c,. If ¢, is positive
and numerically larger than c,, or if ¢, is positive and ¢, is negative, the
power of the lens is positive.

2.8.1. The Coddington Shape Factor

The shape of the lens is also determined by the magnitudes of ¢, and c,.
The Coddington shape factor o is defined as

¢, tc,
o= ——:,.

p—s (2.96)

If we add an incremental curvature Ac to both ¢, and c,, their difference
is constant so that the power of the lens is unchanged. Lens shapes for
various values of o are shown in Figure 2.26. We start with Ac = 0 and
with ¢, = ¢, so that the Coddington shape factor is o = 0 and the lens is
called a biconvex lens. If we add an incremental curvature Ac = —|c,| to
each surface, we find that o = —1; and the lens is called a plano convex
lens. If Ac > —|c,|, we find that o < —1; and the lens is called a positive
meniscus lens. Adding amounts Ac = |¢,| and Ac > |c,] results in plano
convex and meniscus lenses, as shown in Figure 2.26. The following points
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Ac<-|cll Ac=-lcll Ac=0 Ac=lczl Ac>lczl
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o=-2 o=-1 o=0 o=l o=2
Meniscus Plano- Biconvex Plano- Meniscus
convex convex

Figure 2.26. Types of positive lenses.

are noted:

« All the lenses have the same power.
« All the lenses are positive lenses.

» Although not shown in the figure, the principal planes of the lenses
are in different places relative to the vertices of the lens surfaces.

» The process of adding a given value to both curvatures of the lens is
called bending the lens. Bending is easily visualized by keeping the
center of the lens fixed and pushing on the rim of the lens in either
direction.

A similar set of lens shapes is obtained for lenses with negative power, a
condition that arises when ¢, is negative and c, is positive, or if ¢, is
negative and numerically larger than c,. These lens shapes, shown in
Figure 2.27, are called biconcave, plano concave, and negative meniscus

Ac<cq] Ac= ey Ac=0 Ac= - o, Ac> - [c,|

o=2 o=-1 o=0 o=1 o=2

Meniscus Plano- Biconcave Plano- Meniscus
concave concave

Figure 2.27. Types of negative lenses.
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lenses. Comments similar to those made previously apply to these lens
shapes.

2.8.2. The Coddington Position Factor

The Coddington position factor 1 is defined as

us +u,;

- (2.97)

U —uy

The various imaging geometries are shown in Figure 2.28. The condensing
lens configuration shown in Figure 2.28(a) has 7 = +1, the unity magni-
fication arrangement shown in Figure 2.28(b) has 7 = 0, and the collimat-
ing lens configuration shown in Figure 2.28(c) has m = ~1. As M = u, /u,,

@

(®)

©

Figure 2.28. Imaging geometries: (a) condensing, 7 = +1; (b) unity magnification, = = 0;
and (c) collimating, m = —1.
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we relate the Coddington position factor to the magnification by

1+M

G pyve

(2.98)

so that we easily find the position factor required for any magnification.

2.9. ABERRATIONS

Aberrations result from the imperfect way in which rays are bent as they
pass through an optical system. One way to characterize aberrations is to
trace rays from selected object samples and to determine where they
intersect the image plane. The resulting ray pattern is called the point
spread function, equivalent to the impulse response in linear system theory.
Ray tracing is at the heart of geometrical optics design. With present-day
computers and lens-design programs, it is relatively easy to arrive at such a
well-designed lens that all the rays pass through a region smaller than the
diffraction limited resolution of the lens. The ray-tracing program then no
longer accurately describes the light distribution near focus because
diffraction effects, as we discuss in Chapter 3, dominate.

As an alternative to ray tracing, we calculate the wavefront that is
normal to the ray bundle and express the aberrations in terms of a
polynomial function. From the wavefront surface, the nature of the aber-
rations is easier to visualize, and, in conjunction with diffraction theory,
the exact form of the light distribution near the focal point is obtained.
The aberration polynomial function is equivalent to the system response
H(f) in linear system theory, except that the system response changes as a
function of the position of a sample in the object. The optical system is
therefore space variant so that a unique system response does not gener-
ally exist. Aberration theory recognizes the space-variant property of the
system response and accurately predicts the system response to all samples
in the object. The intent of this brief discussion of aberrations is to
familiarize the reader with the nature of the aberrations, how to recognize
them, and how to select a lens shape or the proper system configuration to
minimize them in laboratory setups. More extensive treatments of aberra-
tions and methods for correcting them are found in various texts and
monographs (10-13). Photographs of the effects of lens aberrations are
found in the first three of these references and in a more recent text (14).

Consider the generalized imaging system shown in Figure 2.29, where
the curved surface S images an object sample from O, at the focal point
O,. Fermat’s principle requires that all rays from O, to O, have the same
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Figure 2.29. Surface to provide aberration-free performance for a single axial point.

optical path length so that the ideal wavefront is the ovoidal surface
represented by

0,5, + 8,0, = 0,8, + §,0, = constant. (2.99)

In general we cannot fabricate such surfaces and, even if we could, the
imagery is perfect only at one object sample. The lens designer’s task,
then, is to control aberrations over an extended region, while using surface
shapes that are easily manufactured.

We use the coordinate system, shown in Figure 2.30, that defines a
sample in the image plane by the distance p; the coordinates at the lens
plane are r and ¢. The monochromatic wavefront aberration polynomial

Image
plane

Figure 2.30. Coordinate system for characterizing aberrations.
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for third-order aberrations is given by

W(p,r,$) =ar* + a,pr’cos ¢ + a;pr?cos® ¢ + a,p?r? + asp’r cos b,

(2.100)

where the coefficients determine the magnitude of the aberration. The
wavefront aberration W(p, r, ¢) is the optical path difference between the
actual wavefront and a reference wavefront that is a perfect sphere, with
the paraxial focal point as its center. Each of the five primary aberration
terms are in the fourth power of combinations of the variables p and r.

Because the lateral displacements of the rays at the focal plane are
proportional to the derivatives of W(p,r, ), the aberrations given by
Equation (2.100) are called third-order aberrations. We have ignored
first-order aberrations, such as a defect of focus or a lateral focal shift,
which do not affect image quality. We compensate for these “aberrations”
by adjusting the axial position of the focal plane or the lateral position of
the optical axis. Fifth- and higher-order aberrations are generally not
important unless the relative apertures of the lenses are high. This
situation does not normally arise in optical signal-processing systems
because the optical invariant is held to a reasonably low value by currently
available input/output devices. Chromatic aberrations are ignored be-
cause the illumination is monochromatic.

2.9.1. Spherical Aberration

In Figure 2.31(a), we show the reference wavefront W, whose curvature is
proportional to r2 that would produce a perfect image of an object sample
located at infinity. The first term of the aberration polynomial is spherical
aberration, for which the actual wavefront is given by a,r*. When spherical
aberration is present, the wavefront is curved too much if a, is positive, or
too little if a, is negative. For the case shown, a, is positive and we see
that the marginal rays are too highly bent so that they cross the optical axis
on the object side of the point where the paraxial rays cross. The clue for
correcting spherical aberration is to recall that the deviation angle for a
prism is a function of the incident ray angle. We consider a lens as a set of
prisms, each with a different angle, as shown in Figure 2.31(b); and we
attempt to equalize the angles of incidence and refraction by bending the
lens.
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Figure 2.31. Spherical aberration: (a) wavefront representation, (b) equivalent Fresnel lens,
and (c) plot of spherical aberration and coma.

A measure of the spherical aberration as a function of the lens shape
factor o is shown in Figure 2.31(c). The proper shape factor to correct
spherical aberration is dependent on the object /lens geometry. For a glass
lens in air, the optimum shape factor o for minimizing spherical aberra-
tion as a function of the position factor 7 is (13)

2(n2 - 1)
—F .
n,+2

(2.101)

We find that o = 0.7 for a typical lens of refractive index n, = 1.5.
When 7 = 1, the minimum spherical aberration occurs at o = 0.7 as
shown in Figure 2.31(c). This o value is close to that of a plano convex
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lens, oriented so that its curved surface is toward the plane wavefront
produced by the object. With this lens orientation we see that the angle of
incidence with respect to the first surface and the angle of refraction with
respect to the second surface are nearly equal. When the magnification is
unity, the shape factor is zero, independent of n,; in this case, a biconvex
lens minimizes the spherical aberration because the angles of incidence
and refraction are then equal. Although spherical aberration is partially
corrected by selecting the proper lens shape, it is better controlled by
using a cemented doublet. The primary reason for using cemented dou-
blets is to correct chromatic aberrations, but spherical aberration is also
significantly reduced.

The Hartman test is a simple laboratory test to quickly estimate the
amount of spherical aberration and to determine if a lens is overcorrected
or undercorrected. As illustrated in Figure 2.32, we construct a mask
containing two small apertures, one near the edge of the lens and the
second at the center of the lens. We place this mask at the lens plane, and
begin by allowing light to pass only through the central aperture to
establish the paraxial focal position. This aperture is small enough to
produce a well-formed diffraction pattern, sometimes called the Airy disc,
but large enough to accurately determine the paraxial focus position.

We then cover the central aperture, allow light to pass through the edge
aperture, and determine if the second bundle of rays crosses the axis
before or after the paraxial focal plane. For example, if the spherical
aberration is positive and the edge aperture is above the central aperture,
the bundle crosses the axis before the paraxial focal plane and the second
Airy disc is below the first Airy disc at the focal plane. Spherical aberra-
tion is negative if the relative positions are reversed.

Aperture of
the lens

Small
apertures for
the Hartman

test

Image
plane

Diffraction pattern

Figure 2.32. Hartman test for spherical aberration.
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29.2. Coma

From Equation (2.100), we note that spherical aberration is not a function
of the position of a sample in the object plane; that is, it is not a function
of p. It is, therefore, the only primary aberration that produces a space-
invariant response. The first aberration that is a function of p is coma,
given by a,pr® cos ¢. Coma arises when the principal planes are curved
surfaces, a condition that occurs only in high-performance systems. As a
result, the magnification of the system is greater, or less, for marginal rays
than for paraxial rays, even in the absence of spherical aberration. When
coma is present, the image of a sample has a shape like a comet. Lens
designers minimize coma by making the magnification equal for all rays.
From the optical invariant, with the sines of the angles retained, we find
that njh;sin uy = n h,sin u,. For n; = ny; = 1 we have

sin u,

) 2.102
sin u, ( )

known as the sine condition, which must hold for all finite angles u, and u,
to ensure that coma is zero.

Coma is also a function of the lens shape and is minimized for a glass
lens in air when (13)

o= (2n, + D)y ~ 1) T (2.103)
n,+1

In Figure 2.31(c) we plot the relative value of coma as a function of o.
Coma is minimized when o = 0.87 for n, = 1.5. For m = +1, both coma
and spherical aberration are therefore minimized at nearly the same shape
factor. Because the minimum value for spherical aberration is a fairly
broad function of o, we control both aberrations fairly well when we
minimize coma.

A simple laboratory test for coma is to construct a set of masks, as
illustrated in Figure 2.33, containing two small apertures with various
distances between them. We place a mask in the plane of the lens so that
the two apertures are at opposite edges of the lens. As the mask is rotated
clockwise, the light distribution at the focal plane rotates counterclock-
wise, tracing out the locus of the extreme tail of the coma which passes
through the paraxial focal point. Although the magnification is roughly the
same for all rays from either small aperture, it is quite different for the
two apertures taken together. As other masks with smaller distances
between the apertures are inserted into the system, the light distribution
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Figure 2.33. Test for coma.

at the focal plane becomes more compact; when only one aperture is
present, the head of the comet is produced.

2.9.3. Astigmatism

Astigmatism, the third term in the aberration polynomial (2.100), is given
by a;p?r? cos? ¢. Astigmatism results when rays in the tangential plane do
not focus at the same point as those from the orthogonal plane, called the
sagittal plane. Astigmatism is illustrated in Figure 2.34, where we see that
the curvature of the wavefront is not the same in the two orthogonal

a302r2 cos’ ¢

Sagittal
focus

Figure 2.34. Sagittal and tangential focus lines due to astigmatism.
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planes, leading to the two focal planes. As astigmatism is not a function of
the lens shape, we control it by keeping p and r within bounds relative to
the lens focal length. A simple laboratory test for astigmatism is to image a
test target that looks like a spoked wheel. The rim is in focus at the
tangential focal plane, and the spokes are in focus at the sagittal focal
plane.

2.9.4. Curvature of Field

A simple lens works best when it focuses an object from a curved surface
onto a curved image surface. When a lens is forced to work with flat object
and image planes, an aberration called curvature of field appears, as
illustrated in Figure 2.35. Curvature of field, given by a,p?r?, is indepen-
dent of all other aberrations. The coefficient a, depends on the ratios of
the powers of the lens elements to their refractive indices, summed over
all the elements in the system. This value is called the Petzval sum:

K,
7y = (2.104)
i

where J is the optical invariant, and K; and n; are the powers and the
refractive indices of the lens elements. Because a system containing only
positive lenses has a large positive Petzval sum, we control curvature of
field by introducing negative lenses where they have little effect on image
quality. One possibility is to use negative lenses near the object or image
planes; in the latter case the lens is called a field flattener.

Flat object

Curved focal
plane

Figure 2.35. Curvature of field.



2.9 ABERRATIONS 65

Pincushion distortion Barrel distortion
Figure 2.36. Distortion.

2.9.5. Distortion

The fifth primary aberration is distortion, described by asp’r cos ¢. Dis-
tortion affects the shape of an image, not its sharpness. Distortion is due
to a variation in the magnification for off-axis object samples. Distortion
causes a regular grid of squares to take on a pincushion or barrel shape, as
shown in Figure 2.36, according to the sign of as. Distortion is zero for
longitudinally symmetric systems, whose aperture is in the middle of the
system. As optical signal-processing systems are often configured symmet-
rically, distortion is generally not a problem.

2.9.6. Splitting the Lens

Using more than one lens is a simple method for reducing aberrations in a
laboratory setup. Consider the unity magnification imaging system, shown
in Figure 2.37(a), in which a lens of power K is placed a distance 2 F from
the object plane. As M = —1, we find that = =0 and we might be
tempted to use a biconvex lens. Suppose, however, that we split the lens
into two lenses, each with power K/2 as shown in Figure 2.37(b). The
object and image planes are still a distance 2F from the two lenses, but
the position factors are now = —1 and = = +1 for the two lenses.

The major benefit of lens splitting is that the relative apertures of the
lenses have been reduced by a factor of 2 so that aberrations such as
spherical aberration, coma, astigmatism, and curvature of field are re-
duced, some rather dramatically. Distortion is identically equal to zero
due to symmetry for the special case of unity magnification. Spherical
aberration and coma are minimized by using suitable lens shapes, such as
a plano convex lens, configured so that the curved surfaces face each
other.
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(a)
M=-1
n=-1 n=+1
P, L)
u, Ly
(b)
| K/2 K/2

Figure 2.37. Splitting an imaging lens to control aberrations: (a) original system and (b)
equivalent system.

Almost any imaging setup benefits from splitting the lens, but the
advantages are greatest when the magnification is near unity. To illustrate
the more general case, suppose that M > —1. The immediate question is
how to split the lens of power K into two others. As we would like each of
the resulting lenses to operate with || = 1, we find that

K, = 2.105
M- (2.105)
and
K, = 2.106
2 M-1 (2.106)

As a sanity check, we note that K., = K, + K, = K. We can therefore
split the lens for any system configuration.

For large M, we find that the relative aperture of the first lens is not
reduced significantly because the object is already near its front focal
plane. The aberrations of the second lens are, however, significantly
reduced relative to those of either the original lens or to those of the first
lens. Finally, the focal lengths of available lenses in a laboratory may not
be what we need to achieve a given magnification. We can then depart
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slightly from the = = +1 condition to fine-tune the final magnification
without seriously changing the aberrations.

Some final thoughts about aberrations. Be aware of these
aberrations—know how to identify them and what causes them. Based on
this knowledge, make laboratory setups for preliminary experiments by
proper choice of the lens types and the geometric arrangements (the
values of o and 7). Consult with a lens designer when you are about to
build a system. Learn to specify, but not to overspecify, the operational
requirements, and let the lens designer do the rest.

PROBLEMS

2.1. You have a prism for which n, = 1.6 and y = 30°
(a) For an incidence angle of I, = 20° (on the base side of the
normal of the prism), calculate the deviation angle. Provide a
sketch.
(b) What value of I; produces total internal reflection? Provide a
sketch of the situation.

2.2. A ray is incident at an angle of 10° relative to the normal of a
prism whose index of refraction is 1.6. Calculate the apex angle for
which the ray is internally reflected by the prism (the critical angle).
Plot the angle as a function of the index of refraction of the prism
for n, ranging from 1.4 to 2.0.

2.3. A parallel beam of light 20 mm high enters a prism normal to its
first surface. The prism has an index of refraction of 1.8 and an
apex angle of 27 degrees. Calculate:

(a) the magnification of the prism (state clearly the direction in
which the light is traveling),

(b) the deviation angle (show clearly by a sketch), and
(c) the smallest apex angle that produces total internal reflection.

2.4. You have a prism whose apex angle is 30° and whose index of
refraction is 1.7. Design a second prism (i.e., find its apex angle and
index of refraction) if the magnification of the pair must be equal to
0.3. If we were to use two identical prisms whose index of refraction
is 1.5, calculate the apex angle needed to produce a magnification
of 0.3.

2.5. Derive a general solution for the displacement & of a ray passing
through a wobble plate of index n, and thickness z,, as a function
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of the angle of incidence I;. Show that your result reduces to

zy,I(n; — 1)
n, ’

for small I;. What is the maximum possible displacement? Find the
approximate angle at which the exact and approximate solutions
differ by 1%.

Is it possible to image a point object (for simplicity, assume that the
object is a star at infinity) on the back surface of a glass sphere
whose radius is R? If so, what is the required index of refraction?
Hint: Use the refraction equation and remember that it represents
the paraxial approximation, i.e., the entering rays should be ones
near the optical axis.

We want to expand and collimate a beam of light from an ideal
laser whose beam divergence is zero, using a pair of telescopic
lenses whose powers are K; = 0.05 mm™! and K, = 0.005 mm ™.
The light fills the first lens whose diameter is 5 mm. Upon measure-
ment, we find that we made an error in the spacing between the
lenses so that the beam has a convergence angle of 10 mrad. How
far, and in what direction, should we move the second lens?
Remember that the magnification is negative, i.e., that an entrance
ray above the optical axis crosses over and becomes an exit ray
below the optical axis. Having found the correct position of the
lenses, sketch the system and calculate the magnification.

Consider a spherical surface that separates media of refractive
indices n, and n,. In terms of the power K of the surface, calculate
the positions of the front and back focal planes.

We have an optical system that contains a single lens whose focal
length is 100 mm. We want to change its effective focal length to
200 mm by using a second lens. Because of mechanical constraints,
we must place the second lens 40 mm beyond the first lens. Find
the focal length of the second lens and provide a sketch for the
final system.

You need to image an object with a magnification of M = —4. You
have been given a blob of glass, whose refractive index is n = 1.62,
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2.11.

2.12.

2.13.

2.14.

that is just enough to make a single lens element. You want the
image to be 100 mm from the lens. Provide a sketch of the general
geometry. You melt this glass and give it to a lens maker as a blank
circular piece from which he must grind the lens. Calculate (1) the
Coddington position factor 7, (2) the optimum Coddington shape
factor o that will minimize the spherical aberration, (3) the curva-
tures ¢; and c¢, necessary to achieve this shape, and (4) the
optimum shape factor and the curvatures ¢; and ¢, needed to
minimize coma. Hint: Use the refraction equation and the formula
for M involving the angles, along with the relationship for = and o.
Please watch the signs and be numerically accurate.

You have just bought a Camcorder for making home videos. The
manufacturer states that the sensor in the camera has 400 resolu-
tion elements (equivalent to 400 samples) in the vertical direction,
which is 10 mm high. Assume that the wavelength of light is 0.5 .
Calculate (a) the optical invariant (remember that the optical
invariant applies to image planes—use the version involving N),
(b) the maximum spatial frequency that can be resolved at the
sensor, and (c) the f/# necessary to match the resolution of the
lens to that of the sensor (assume an infinite conjugate imaging
condition).

You want to make a logo for your newest video production, using
the Camcorder from Problem 2.11. You identify a useful picture in
a magazine that has been printed with a 100 sample /mm halftone
screen. If you set the system magnification to record a 250-mm-high
logo onto the sensor, what will be the maximum resolvable fre-
quency in cycles/mm (referenced to the plane of the logo) that can
be preserved? If you wish to preserve all of the detail (or resolu-
tion) available in the logo, how much of its height can you capture?

You have a TV set with 330 scan lines distributed uniformly over
15 inches in the vertical direction. If the angular resolution of the
eye is 500 wrad, at what distance from the set must you be to just
resolve the scan lines according to the Rayleigh-resolution crite-
rion? (Consider each scan line to be equivalent to a sample or a
smallest resolvable detail.)

Suppose that we have a CCD detector array with 400 photodetector
elements along a 10-mm line. We have an LED array with
250 elements in an 8-mm length that we use as the object. Find the
focal lengths of a two-lens system, with each lens operating at
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infinite conjugates (the 7 factors are +1) such that the resolution
is matched, given that the diameter of the lenses must be 5 mm.

You want to use an injection laser diode having dimensions of
10 £ X 50 p as a light source. You need a collimated beam of
30 mm in each direction and decide to use a spherical lens,
followed by a beam-expanding prism. Calculate the aperture and
focal length of the lens, as well as the apex angle for a prism whose
index of refraction is 1.55. Do a sketch of the top and side views.
Hint: Think of the laser dimensions as the size of a single sample of
a generalized signal.
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Physical Optics

3.1. INTRODUCTION

The basic theory of geometrical optics as given in Chapter 2 describes how
optical elements such as lenses, mirrors, and prisms modify the direction
of light rays. Physical optics extends the theoretical treatment of optical
systems by incorporating the wave nature of light. We take a direct
approach and refer the reader to various texts that provide the details of
the development from Maxwell’s equation (10, 15-18).

We begin with the basic assumption that light waves propagate in an
isotropic media with simple harmonic motion and satisfy the scalar wave
equation
1 %¢(z,t)

V2¢(Z,t) = 02 atz , (3.1)

where ¢ is time and z is distance in the direction that the wave travels.
The representation for free-space electromagnetic radiation is a real-val-
ued function of the form cos(wt — kz), where k = 27/A and w is the
radian frequency of light.

The transfer functions for lenses, prisms, and other optical elements
are usually represented by complex-valued functions. As an example,
Figure 3.1 shows an arbitrary optical element, illuminated by monochro-
matic light at wavelength A that propagates parallel to the z axis. The light
wave at plane z,, represented by V2 cos(wt — kz,), is spatially modulated
by the optical element whose magnitude transmittance is |a(x)| and whose
phase is ¢(x). The phase difference between planes z, and z, is the
product of the optical path difference and k:

2m
o(x) = T[nld(x) +{Az —d(x)}]

2}\—"[(,,1 - 1)d(x) + Az], (32)

n
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V2 cos(ax —kzp) element
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Figure 3.1. A general optical element.

where Az = z; — z,. Light at plane z, is therefore represented by
V2|a(x)|cos[wt ~ kzg — &(x)], (3.3)

which shows that light is modulated in both magnitude and phase.

It is often more convenient to use the phasor notation explj(wt — kz)]
as a solution of the wave equation. In this sign convention, the wave
propagates in the positive spatial z direction and temporal frequencies are
positive if, when represented by a phasor diagram, they rotate in a
counterclockwise fashion. This time/space sign convention is consistent
with those of geometrical optics, physical optics, and electrical engineer-
ing. Using this notation, we represent light at plane z, of Figure 3.1 as

|a(x) |e.i[wt—kZo—¢~(x)]. (3.9)

We generally suppress the temporal part of the electromagnetic wave,
because no detector has sufficient bandwidth to respond directly to the
amplitude fluctuations at light frequencies, and we also generally ignore
the relative phase kz, at plane z,. With these conventions, we represent
the complex transmittance of the optical element by

a(x) =|a(x)]e ™, (3.5)

The complex transmittances of several optical elements in series multiply,
as we expect. For example, three cascaded elements have an effective
transmittance a,(x):

ay(x) = ay(x)ay(x)as(x)

= Ial(x)l Iaz(x)l |a3(x) Ie'j[""(“‘)“‘t'z(")*"”(")], (3.6)
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and the associated real-valued representation of the light is

ﬁl”l(")' lay(x)l |a3(x)|cos[wt —kzg = ¢y(x) — dy(x) — ¢3(x)],
3.7

which illustrates that the magnitude transmittances are multiplicative and
the phases are additive. Throughout this book we describe optical ele-
ments by complex-valued functions of the form given by Equation (3.6),
with the understanding that the real-valued representations of propagating
light are given by functions represented by Equation (3.7).

Any physical detector senses the intensity of light, defined as

I(xy}),z)Ea(x7Y7zyt)a*(x7y:Z’t)7 (3'8)

where * indicates complex conjugate. To illustrate that dropping the time
dependence of the wave is valid when the postdetection bandwidth does
not extend to the frequency of light, we obtain the intensity of the light at
plane z,; by two different methods. First, we use the real-valued version of
the plane wave from Equation (3.3) and find that the intensity at plane z,
becomes

I(x,t) = 2|a(x)[* cos’[wt — kzy ~ ¢(x)]
=2la(x) {4 + L cos[2wt — 2kzy — 26(x)]}.  (3.9)

A photodetector responds to the time average of I(x,t) to produce a
current g(x) that is a function of only the space variable:

g(x) =(I(x,1)) =|a(x)[* (3.10)

The second method is to calculate the current in a direct fashion, as
though the temporal component is not present, from Equation (3.5):

g(x) =(a(x)a*(x))
=la(x)[, (3.11)

which confirms that the time average notation is not needed explicitly and
that we can ignore the temporal frequency of light in our basic phasor
notation.

As an example of phasor notation, consider the complex-valued repre-
sentation of a plane wave, propagating upward and to the right at an angle
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Figure 3.2. Plane-wave representation.

9, as shown in Figure 3.2. The wave has magnitude |a(x)| and phase
expl —j¢(x)]. We measure the phase at any value of the variable x relative
to the phase at x = 0. As the index of refraction in air is unity, the phase
is given by the linear function

27
P(x) = Tt)x. (3.12)

We use the relationship established in Chapter 2 between ray angles and
spatial frequencies, namely, that a = /A, to find that the plane-wave
representation becomes

a(x) = e™itmax (3.13)

We see then that we associate a spatial frequency a with a plane wave
that propagates at a ray angle 6 with respect to the optical axis. The signs
of both « and 6 are reversed if the wave travels downward and to the
right.

The linear phase representation given by Equation (3.13) is also used to
represent the complex transmittance of a prism. Recall from Chapter 2
that a prism operates on a plane wave, described there in terms of a set of
rays normal to the wavefront, and deflects the wave so that it travels in a
new direction. Thus, if 8, is the incidence angle of a ray with respect to
the optical axis and if 6, is the corresponding angle of the refracted ray,
the deviation angle is 8, = 8, — 8,. The prism is therefore represented by
expl —j2ma;x], where a; = +65/A, and the + sign indicates whether the
wave has an upward or downward component.

From Equations (3.10) and (3.11) we see that the intensity reveals no
information regarding either the temporal or the spatial frequency of a
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plane wave. To strengthen the idea that a plane wave traveling with a ray
angle with respect to the optical axis has an associated spatial frequency,
we render that frequency visible. Suppose that we add a plane wave r(x),
traveling parallel to the optical axis, to the inclined wavefront shown in
Figure 3.2. The total amplitude at plane z, is then the sum of the two
plane waves; the intensity, for |r(x)| = la(x)l = 1, is
. 2
I(x) =[r(x) + a(x)e ™|

= |1 + g~J2max |2

=2[1 + cos(2max)]. (3.19)

From Equation (3.14) it is clear that « is the spatial frequency associated
with the light distribution at plane z,. As the angle 8 between the two
waves increases, the spatial frequency increases correspondingly. A firm
link between spatial frequencies and the angle between two wavefronts is
therefore established.

3.2. THE FRESNEL TRANSFORM

Fresnel transforms relate the complex-valued light distributions located at
two planes separated by free space. In holography, for example, it is the
Fresnel transform of an object that is recorded for subsequent reconstruc-
tion. Fresnel transforms are used in synthetic aperture radar processing to
determine the appropriate range and azimuth processing operations. In
this chapter, we use the Fresnel transform to illustrate interference and
diffraction phenomena and to develop the more familiar Fourier trans-
form.

Fresnel extended Young’s principle of interference to cases where the
light is polarized. His work did much to confirm the transverse nature of
light waves. In a key development, Fresnel modified Huygens’ principle for
relating the complex-valued light distribution at two separated planes in
an optical system. Suppose, for example, that we know the light distribu-
tion f(x, y) at plane P,, as shown in Figure 3.3. We want to calculate the
light distribution g(¢, n) at plane P,, a distance D from plane P,.

Fresnel’s idea, stated here in a somewhat revised form, is that the
elemental contribution 8g at a point (£,n) in the observation plane, due
to an elemental region dxdy near a point (x, y) in the input plane, is
proportional to several factors. First, we find that f(x, y) represents the
complex-valued amplitude in the neighborhood of a point (x, y) at plane
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Figure 3.3. Fresnel diffraction.

P,. Second, the exponential factor exp[j(wt — kr)] represents the phase
change in the light as it propagates between planes P, and P,, where r is
the length of the ray connecting the points (x, y) and (£, ). Third, two
factors determine how the magnitude changes as light propagates from
plane P, to plane P,. The first factor is 1/r, which accounts for the fact
that intensity is reciprocally related to the square of the propagation
distance; the magnitude is therefore inversely proportional to r. The
second factor is the obliguity factor (1 + cos 8) /2, where 6 is the ray angle
with respect to the optical axis. Finally, a fixed phase factor j is needed to
obtain the correct results in Fresnel diffraction calculations, as we show in
Section 3.2.4, and A is a scaling factor to account for the wavelength of
light. We combine all these factors to find the total contribution at (&, 7):

. jot

g(&m) = Jir _ff

We begin the solution of Equation (3.15) by considering the obliquity
factor (1 + cos 8) /2. In Chapter 2 we showed that the maximum ray angle
0., = A/(2d,), where d, is the sample interval required to support a
signal bandlimited to the cutoff frequency a_,. The distance d, is no less
than a few wavelengths, even for rather wideband signals. For example, if
the sample interval is d, > 3A, all ray angles are such that 6 <%
and the minimum value of (1 + cos 8)/2 is therefore always greater
than 0.993. This result, based on a wide-bandwidth signal for

1+ cosé@
2

]f(xd')e"”"dxdy. (3.15)
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which a, = 6,,/A = 333.3 Ab, allows us to ignore the obliquity factor and
to calculate the Fresnel diffraction integral for arbitrary values of the
propagation distance D, including D — 0.

The next step in the solution of Equation (3.15) is to consider the value
of r:

r2=D + (x~ &)+ (y—-n) (3.16)

By use of the binomial expansion, we find that

r=D|1+ (x— 6)2 + &= .,,)2 + higher-order terms|. (3.17)
- 2D? 2D? & -

We neglect the higher-order terms because their effects are dominated by
the first-order terms for all practical signal-processing applications. Fur-
thermore, we replace r by D in the denominator of Equation (3.15), with
an error in the magnitude that is generally less than 1%; in fact, replacing
r by D partially compensates for ignoring the obliquity factor and in-
creases the accuracy of the results. In any event, magnitude weighting has
relatively little effect on diffraction; the phase is much more important.

With these factors accounted for, the diffraction integral of
Equation (3.15) becomes

i, —jkD *®

jeAD J[ £(x, yyeiem/ADX=0" 01" e dy - (3.18)

g(é,m) =

We ignore the time exponential factor e“' because we are mostly
concerned with the spatial relationship between g(£,7n) and f(x, y). To
further explore the Fresnel transform, we also ignore the exponential
phase factor ¢ *P_ which simply represents the phase accumulation as the
light travels from plane P, to P,.

We now switch to a one-dimensional notation and find that free space
behaves as an operator that produces a Fresnel transform defined by

8(6) =\ 15 [ e o @)

where the exponential function represents the free-space response to an
impulse. The scaling factor in the one-dimensional case is the square root
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of that for the two-dimensional case because the wave is diverging cylindri-
cally instead of spherically. Because the magnitude does not change in the
y direction the magnitude decreases only as /1/D

The formulation of the Fresnel transform as given by Equation (3.19)
has the following features.

« Shows the convolutional process between the free-space operator and
the input signal.

« Explicitly displays the impulse response of free space as the function
Vi/AD expl—j(r/AD)x?].

» Produces a continuous transition from the Fresnel, or near-field,
diffraction pattern, to the Fraunhofer, or far-field, diffraction pattern
as a function of the distance D.

« Retains the necessary phase factors to facilitate the analysis of optical
systems, using additional lenses and free-space intervals to achieve
other processing operations, as discussed in Section 3.6.

3.2.1. Convolution and Impulse Response

To further illustrate the nature of the Fresnel transform, we define a
function

¥(x;d) = em=*/AD, (3.20)

where d = 1/D is a reciprocal distance. From Equations (3.19) and (3.20),
we see that g(£) is the convolution of f(x) with the free-space impulse
response Vd y*(x; d), where * indicates complex conjugate. We therefore
describe the output g(£) in terms of the input signal f(x) that has passed
through a black box whose impulse response is vd ¢*(x; d), as shown in
Figure 3.4. The output of the black box is

8(&) = VA [ f(x)u (€ - x;d) d, (321)

fx) 8(8)

wH(xsd) =d e HADR

Figure 3.4. Equivalent block diagram for propagation of light through free space.
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which is similar to Equation (3.19) in its form. In general, we drop scaling
constants when developing major concepts; we restore them when needed
to calculate actual light intensities.

To illustrate these concepts, we represent one sample of the input
signal by an impulse function so that f(x) = §(x). The output of the
system, by the sifting property of the delta function, is

1 2
g(€) = Vdy*(¢:;d) = e (3.22)

so that g(¢) is a cylindrically diverging wave of radius D, as shown in
Figure 3.5. Light from the point source is therefore dispersed spatially as it
propagates through free space. The magnitude of the wave at plane P, is
uniform, whereas the phase is quadratic in £ The phase is proportional to
the optical path difference between the wavefront and plane P,, as a
function of the coordinate £. As D — «, the magnitude of g(¢) tends to
zero while its phase approximates that of a plane wave.

As another example, suppose that the sample is centered at x = x; so
that f(x) = 8(x — x,). We again use the sifting property of the delta
function to find that

1 )
g(¢) = ﬁe—/(ar/J\D)(é-xO)z (3.23)
This result represents a diverging cylindrical wave of radius D, translated

Optical path difference
between wavefront and plane P,

Wavefront

&(x)

l<

D
[ ¥4

N oI ADIE?
-

Figure 3.5. Spherical waves propagating from a point source.
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Figure 3.6. One-dimensional representation of the two-source geometry.

a distance x, in the x direction throughout the space from P; to P,.
Therefore, if an arbitrary signal f(x) is displaced a distance x, in plane P,
of Figure 3.5, so too is its Fresnel transform g(¢) displaced a distance x,
in plane P,.

3.2.2. Diffraction by Two Sources

Figure 3.6 shows two light sources at plane P,, separated by a distance x,.
The light amplitude at plane P,, due to the two sources when they are in
phase, is given by Equations (3.22) and (3.23):

g(£) = Coe~im/ADIE? 4 | g=ilm/ADXE=50) (3.24)

where C, and C, are the magnitudes of the waves at plane P, due to the
two sources. The observable quantity at plane P, is the intensity of light:

1(¢) = g(£)8*(€) =lg(&)

= C2 + C} + 2Re[CyC e ~Hm/ADI g it /1DXE=x7

5 5 27 T,
=C§ + C{ + 2C,C, cos Exog - E—xo . (3.25)

The first two terms of I(£) are intensities produced by the individual
sources; their sum is a spatially uniform intensity called the bias. The third
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term, a spatially varying cosine distribution called the fringe pattern, has a
spatial frequency a given by the partial derivative of the phase with respect
to the spatial variable ¢:

1 0 (27 Xg 326
“—za—g(mf)-ﬁ- (3.26)

The spatial frequency of the fringe pattern therefore increases as the
separation x, between the sources increases and as the observation
distance D decreases. Note that the ratio x,/D is simply the angular size
of the entire source as seen from the receiving screen.

The phase of the fringe pattern is also given by Equation (3.25):

w3

-5 (3.27)

‘P=

The physical interpretation of the phase is that it specifies the position of
the maximum intensity in the observation plane. The principal maximum
occurs where the argument of the cosine is equal to zero, i.e., where
2méxy/AD — wx3/AD = 0. The principal maximum therefore occurs at
&0 = xo/2, which is directly opposite the midpoint between the two
sources, as shown in Figure 3.6. Other intensity maxima occur where the
phase is an integer multiple of 2. If the light from the two sources have
arbitrary phases ¢, and ¢,, the entire fringe pattern at plane P, is shifted
according to the phase difference, ¢, — ¢, and the principal maximum
moves to

Xo ) — ¢

Y= T Zmx D

(3.28)

The variation of the fringe intensity is measured by the fringe visibility:

Imax - Imin 2C0C1

I min=cg+clz.

V=
max+I

(3.29)

We see that visibility is not a function of the phase difference between the
two sources and that maximum fringe visibility is achieved when the two
sources have equal magnitudes.
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3.2.3. Fresnel Zones, Chirp Functions, and Holography

Suppose that we add a plane-wave reference beam to a unit magnitude
wave produced by a sample function as shown in Figure 3.7(a). The plane
wave, which may be thought of as the limiting form of exp(—jm£¢2/AD) as
D — =, is also assigned unit magnitude. The intensity at plane P, due to
the sum of the reference and signal waves is

1(¢)=|g(¢) lz =1 + e~ImE*/AD2
S egeanl G2

This fringe pattern is generally called a Fresnel zone pattern, as shown in
Figure 3.7(b). The first intensity maximum occurs at & = 0, a point at
plane P, directly opposite the source at plane P,. The first minimum
occurs where w£2/AD = or at £, = VAD . Successive nulls occur when

Cylindrically
expanding wave (&)
A |e=+L/2
sinc(x/dy) £=0 (@
V. 5 ==L / 2
P

Unit amplitude
reference wave

o First minimum
L E=0 at/aD
)
Ring spacing

proportional to
/n forlargen
<

Intensity ® ©

Figure 3.7. Fresnel zone pattern: (a) plane wave and spherical wave, (b) intensity along a
radial line, and (c) two-dimensional fringes.
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w&2/AD = Q2n + 1w or at £ =+/(2n + 1)AD, where n =0,1,2,...
For large values of n, the nulls are spaced according to Vn so that the
areas of the rings approach a constant as shown in Figure 3.7(c) for the
two-dimensional case.

The spatial frequency is low at the center of the pattern, as shown in
Figure 3.7(b), and increases at increasing distances from the center. The
spatial frequency of the Fresnel zone pattern along a horizontal line is

1 d[me? 2mé I3
a=——[ﬁ]——[— = —= (331)

from which we see that the spatial frequency is a linear function of the
position variable ¢ at plane P,. Because the spatial frequency increases
linearly as the distance increases from the origin, the Fresnel zone pattern
is called a chirp function in signal processing. From Equation (3.31), we
see that the slope of the chirp function is 1/A D, so that a small value of D
implies a more rapid change in spatial frequency as a function of spatial
position. The slope is called the chirp rate and is expressed in Ab/mm.

From Equation (3.31), we see that the highest spatial frequency occurs
at the point &, = L/2. The maximum spatial frequency is therefore
a, =L/2AD, where L is the total length of the chirp at plane P,. In
Chapter 2 we defined the length bandwidth product as LBP = La,,, so
that the length bandwidth product of the chirp is

fm L
" 2AD°

LBP = La,, = (3.32)

From the Nyquist sampling theorem, we know that the number of samples
needed to accurately represent the chirp function is equal to twice the
length bandwidth product:

L2

= 2LBP = —. 333
N=2L = (333)

This important relationship relates the values of LBP and N to the purely
geometrical properties of the chirp; we use this result frequently in
subsequent developments.

We also relate the chirp function to 6, the maximum ray angle
produced by diffraction from the sample function whose form is sinc(x /d,).
Again, we use the important fact that a spatial frequency is associated with
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every ray angle; in particular, the highest spatial frequency a, associated
with the cutoff ray angle 6., does not change as the wave propagates.
From Equation (3.31), we find that a, = L /2AD and, from Figure 3.7(a),
that 6., = L/2D, so that

BCO
o= %= o (3.34)

as we established in Chapter 2 by appealing to purely geometric argu-
ments. This curious result shows that the maximum spatial frequency of a
chirp at all planes from P, to P, is a. As a direct consequence, the
sample spacing d, is also constant for all planes.

The number of samples needed to describe the chirp is N = L /d,,
where L is the length of the chirp waveform at an arbitrary plane. The
value of N is therefore a function of the propagation distance D, a result
that is easily seen by noting that L = 26, D. Only one sample is needed
to characterize the chirp at plane P;, whereas many samples are required
when D is large. This result seems to conflict, at first, with the notion that
the value of N and the optical invariant are connected by N = 4J/A. But
the optical invariant applies only to conjugate image planes, a condition
not satisfied here.

The Fresnel zone pattern is fundamental to holography in which the
magnitudes of diverging wavefronts caused by secondary scattering sam-
ples from a signal are added together and combined with a reference
beam. Gabor originally conceived holography as a way to correct the
aberrations of an electron beam microscope (19). He recognized that a
two-dimensional interference pattern represented by the Fresnel zone, as
shown in Figure 3.7(c), contains information about the position of the
object sample in three-dimensional space. Because an arbitrary signal
consists of many such samples, it should be possible to record the informa-
tion on film so that the image could be reconstructed at visible wave-
lengths after the aberrations were corrected. The basic problem with the
Gabor hologram, however, is that using a reference beam colinear with the
signal beam does not allow the signal beam to be cleanly reconstructed
because the desired information spatially overlaps other terms, such as the
bias.

In the early 1960’s, Leith and Upatnieks demonstrated the benefits of
using an off-axis reference wavefront (20). Figure 3.8 shows an arrange-
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Figure 3.8. Setup for constructing an off-axis hologram.

ment for recording the simplest possible off-axis hologram, a one-dimen-
sional sample of the form sinc(x/d,). This arrangement is similar to that
shown in Figure 3.7, except that the reference wave, represented by
r(¢) = a, exp(—j2my,£), now propagates upward and to the right. The
signal waveform is represented by g(¢) = a, exp[ —jm£2/AD] so that the
intensity at plane P, is

1(£) =|a,e ™ + g e~im A |*

—_ . 2
= a;" + af + Za’as Re[e 121l'yc§e+,(,,-/)‘p)§ ]

v
=a’+a’+2a,a, cos[27ryc§ - Egz]. (3.35)

The hologram is recorded by illuminating a photosensitive medium,
such as photographic film, for a time ¢y; the exposure is defined as
E(&) = tyI(¢).

The hologram is reconstructed by illuminating it with a replica of the
reference beam; this beam is now called the reconstruction beam, as shown
in Figure 3.9. If the hologram is recorded so that its amplitude transmit-
tance is linearly proportional to E(£), the total amplitude to the right of
the hologram is A(¢) = t,r(£)I(€). The nature of the three wavefronts
released from the hologram becomes evident when we expand the cosine
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Figure 3.9. Setup for reconstructing an off-axis hologram.

in Equation (3.35) using the Euler formula:
h(&) = toare-iz‘ﬂ")'cf[arz + a? + a,a /2Tl HT /ADI?
+a,a, e—i2‘n'nfe+i(ﬂ//\D)§2]
.
. _ 2
= tya,(a? + a2)e™?™E + toala eI /DN

+ toata e Hmrcg itn /ADX? (3.36)

The first term of Equation (3.36) is simply the reconstruction beam which
continues to propagate upward and to the right, with some attenuation as
introduced by the hologram. The second term of Equation (3.36) has the
same form as the original signal beam and it propagates to the right of the
hologram as though it had never been intercepted. This wavefront pro-
duces a virtual image whose apparent position, as seen from the right of
the hologram, is that of the original signal; the rays associated with this
image are shown dashed in Figure 3.9. The last term of Equation (3.36)
represents a wave, propagating toward the right at twice the reconstruc-
tion beam angle, whose spherical phase factor has a positive sign produced
by the conjugation operation. This conjugate wavefront represents a
convergent wave that forms a real image of the original signal as shown by
the solid rays. At some distance to the right of the hologram, the three
beams no longer overlap, thus producing a clean reconstruction of the
signal.
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Figure 3.10. Spatial frequencies of (a) a Gabor hologram and (b) a Leith-Upatnieks hologram.

An off-axis hologram requires more spatial frequency response from the
recorded hologram. In Figure 3.10(a), we see that the frequency response
of a Gabor hologram ranges from zero to a. In a Leith-Upatnieks
hologram, the off-axis reference beam shifts the frequency range from
baseband to a bandpass region, as shown in Figure 3.10(b), with vy, as the
center frequency. The frequency range is therefore from y, — a, to
Y. + a,. If the signal subtends a large angle, the center frequency
required of the hologram is correspondingly large because y, must be
proportional to the angle subtended by the object.

From Equation (3.35) we see that all the information about the point
signal is encoded in the hologram by using a combination of magnitude,
frequency, and phase modulation. If the signal contains several samples,
each sample produces its own Fresnel zone pattern at the hologram plane.
The amplitude responses of each sample are added at the plane of the
hologram by the principle of superposition. The hologram reconstruction
distinguishes each sample position because its associated spatial frequency
shifts upward or downward, within the passband, according to whether
the sample produces a larger or smaller angle with respect to the refer-
ence beam. Three-dimensional signals are recorded by encoding the
distance of the samples from the hologram through phase modulation of
the type shown in Equation (3.35). Finally, we do not require a planar
reference wave; holograms can be recorded under a wide range of geomet-
rical conditions. The interested reader can consult one of several books on
holography for more details (21-23).

The values of the spatial frequencies associated with the exact Fresnel
transform, when the higher-order terms in the expansion of the radius
vector r are retained, differ somewhat with the approximate result ob-
tained so far. The difference arises because of the approximations in the
expansion for the ray length r as given by Equation (3.17); the approxi-
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mate form is

(x—¢)°

+
! 2D?

, (3.37)

but the exact form is

r=yD*+ (x - £)* (3.38)

As the value of the spatial frequency is dependent only on the ray angle
and is independent of x, we set x equal to zero for convenience. The
exact frequency is therefore

]

1 27 ¢
-~ |ty = ==
“'2wa§[A D+§] AD

¢ ~-1/2

1+ (3.39)

DZ

so that the approximate spatial frequency value a = £/AD must be
divided by a correction factor (1 + £2/D?)'/2 to obtain the exact spatial
frequency value. Recall that a,, = 1/(2d,) = 1/(6A) for the case where
dy = 3A. In this event, the maximum error in frequency is 1.4% at a . In
most signal-processing systems we find that d, = 10A, for which the
maximum frequency error is of the order of 0.5%. The difference between
the approximate and the exact solution therefore is often of little conse-
quence in most signal processing applications.

In holography, however, the ray angles between the signal and refer-
ence beams can sometimes approach 90°. From the exact solution, we find
that the maximum spatial frequency, as £ — o, is bounded by @ = 1/A. In
contrast, the approximate solution for r leads to a spatial frequency that
goes to infinity as ¢ — . This difference between the exact and approxi-
mate spatial frequency is important when calculating Fresnel trans-
forms on a digital computer, because the Fresnel kernel as given by
Equation (3.20) will produce alias frequencies if the approximate solution
is used, no matter how small the sample interval at the input. When using
the exact solution, the Fresnel kernel will not alias, provided that the input
signal is sampled with dy < A /2.

3.2.4. The Fresnel Transform of a Slit

Consider the Fresnel transform of a slit of length L, shown in Figure 3.11,
and represented by f(x) = rect(x/L). The Fresnel transform at plane



3.2 FRESNEL TRANSFORM 89

P

1 .
Incident Slit Py
light / 2(&)

.§=0

D .

Figure 3.11. Fresnel diffraction by a slit.

_J i —jm /ADXx =€)
s(6) =\ 1p [ f(e dx
= ]/ﬂ f" rect i)e—ﬂw/wx:c-f)’dx
- L

JIo fL/Z —im /ADXx =€) g (3.40)
-L/2

where I is the intensity at x = 0 at plane P,. By a change of variables in
which x — ¢ = AD/2z, the differential becomes dx = /AD/2 dz and
the upper and lower limits become

z;=y2/AD(L/2 - §),
= V2/AD (-L/2 - £). (3.41)

With this change of variables, Equation (3.40) becomes

g(¢) = \/ﬁf -imz/2 gy (3.42)

which is, aside from the scale factor, in the standard form of a Fresnel
integral.

P, is
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To examine the Fresnel integral in more detail, we apply the Euler
relationship to the exponential to find that

8() = \/m[f cos m —szzsm( )dz] (3.43)

which are related to the cosine and sine Fresnel integrals. The definitions
of the Fresnel cosine and sine integrals are that

C(z) = jo * cos(mu?/2) du, (3.44)
and
S(z) = j:sin(‘n'uz/2) du. (3.45)

Neither C(z) nor S(z) can be solved in closed form. For numerical
calculations, the Fresnel sine and cosine integrals are approximated by the
relationships that

C(z)=1% +f(z)sin(%zz) - g(z)cos(%zz) (3.46)
and
S(z) =13 —f(z)cos(%zz) - g(z)sin(%zz), (3.47)

where we use the rational approximations that (24)

1+ 0.9262
f(2) = 577792, 7 31047

+e(z);  |e(z)| <2(1073) (3.48)

and

1
+ .
3+ a1d2z 134922 166100 T o7
le(2)| <2(107%). (3.49)

g(z) =

The error £(z) in these approximations is small and the rational approxi-
mations are much easier and faster to compute than the integrals given by
Equation (3.44) or Equation (3.45). The rational approximations are valid
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Figure 3.12. Fresnel sine and cosine integrals: C(z) and S(z).

only for positive values of z; and the symmetry relationships for C(z) and
S(z) provide the values for all z. The Fresnel sine and cosine integrals are
plotted in Figure 3.12. The oscillatory behavior of both functions is
obvlious and, for large values of z, both functions are asymptotically equal
to 5.

One way to better understand the Fresnel integral is through the use of
the Cornu spiral, as shown in Figure 3.13. The Cornu spiral is a plot of the

S(z)

Positive z

Figure 3.13. Cornu spiral.
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real part of the Fresnel integral from Equation (3.43) on the horizontal
axis and the imaginary part on the vertical axis; this is equivalent to the
parametric plotting of S(z) as a function of C(z). Because the exponential
factor in Equation (3.42) is negative as a result of our fundamental sign
convention, the Cornu spiral must lie in the second and fourth quadrants,
The parameters z, and z, represent points on the spiral and z,, = z, — z,
is a measure along the arc of the spiral.
A tangent to the Cornu spiral has zero slope when

] | .z (mu? (mz2?
a—z-S(z) ~ % j; sm(TJ dul| = sm(T) =0, (3.50)

from which we conclude that wz%/2 = n so that z = 0, v2,V4,... are
the horizontal tangent points. In a similar fashion, the tangent has infinite
slope when

2

] 3| .z mU wz?
EC(Z) b j;) cos(T) dul = cos(T) =0, (3.51)

so that the vertical tangent points occur when z = y1,v3,v5,... Thus,
we see that the quarter turning points on the Cornu spiral occur when the
values of the parameter z are the square roots of successive integers.

The parameters z, and z; represent normalized distances at plane P,
from a perpendicular line that intersects plane P, at the point of observa-
tion to the edges of the slit, as shown in Figure 3.14. When the observation
point is at a large value of £, both z;, and z, are large in magnitude.
Depending on the sign of &, the line length z,, shown in Figure 3.13 is
tightly wrapped into one end or the other of the spiral; and the intensity of
the Fresnel transform is low.

Suppose that the observation point is initially at £ = +o, where the
intensity is low. As the observation point moves toward ¢ = 0, a point is
reached when z; = 0 and z, = — y2/AD L. The intensity in this region
increases rapidly because it is the transition region from the geometric
shadow to the clear aperture region. As the observation point moves to
where z, = 0, we transition back into the shadow region at the side of the
slit where £ = —L /2.

Suppose that the slit is infinitely long so that L — . In this case,
z; = o and z, = —o and the ends of the vector are located at the centers
of each end of the spiral. From the Cornu spiral, we find that the
magnitudes of Equations (3.44) and (3.45) are equal to v2 /2, and the
phase of the vector is given by exp[—jm/4]. The complex amplitude at
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Figure 3.14. Intensity pattern produced by diffraction from a slit.

& = 0 is therefore
J71 )
g(6) =y 5 [VZe7/]

- \/TEOeﬁw/‘t[,[‘je-iv/‘*] = I, (3.52)

so that the magnitude is exactly the same at plane P, as it is at plane P,
and intensity is equal to I, as expected. From Equation (3.52) we see that
the exp[ —jm /4] phase factor from the calculation of the Fresnel integral
exactly cancels the ﬁ factor from Equation (3.19) that Fresnel included at
the onset; the Fresnel transform therefore predicts accurately both the
magnitude and the phase of the propagating diffraction pattern.

The key information regarding the behavior of the Fresnel integral is in
the limits of integration, because they characterize the transitions into and
out of the shadow regions. When |z,| is large, the contributions to the
Fresnel integral from the two edges do not interfere and the distance
between the half-magnitude points in the Fresnel transform is nearly the
same as the slit length. But if |z,| is small so that the slit is narrow,
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contributions from the two edges interfere with each other. The result is a
diffraction pattern that spreads over larger distances at plane P,.

As an example of using the Cornu spiral to calculate the intensity at a
given point in the Fresnel pattern, suppose that z, is at +o. At plane P,
the intensity is

Ii

IO 2 IO 2
1(§)=—2‘|8(§)| 7|C(§) +JS(¢)|

1,
= Zllc@r +Is@r. (3.53)

The maximum intensity occurs when the vector connecting two points on
the Cornu spiral has its largest magnitude. This condition occurs when z,
is about halfway between the first horizontal and vertical turning points,
say at z, = [V1 + vV21/2 = 1.22. From tables of the Fresnel transforms
(24) we find that C(1.22) = —0.7021 and S$(1.22) = 0.6383. Also, for

z; = », we have C(») = —0.5 and S(«) = 0.5. The maximum intensity is
1 2.741,
Lo = 5”[(—0.5 ~0.7021)° + (0.5 + 0.6383)°] = 1371,
(3.54)

The intensity at this point is therefore 37% larger than if the slit were not
present. To find the physical coordinate at which the intensity is a
maximum, recall that z, is measured in units of y2/AD[L/2 — £].
For the example at hand, the distance from the edge of the half-plane

Maximum
intensity is at

A& =+0.75AD

H Intensity is 1/4 at
geometric shadow

Figure 3.15. Diffraction produced by a half-plane aperture.
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slit to the intensity maximum is A¢ =[-L/2 — ¢] =2z,/AD/2. For
z, = 1.22, the maximum intensity is located about v0.75AD units away
from the geometric shadow of the edge. The resulting intensity pattern is
sketched in Figure 3.15.

3.3. THE FOURIER TRANSFORM

The Fourier transform is a widely used tool in the physical sciences for
signal analysis. Its principal value is that it generates a function that
displays the frequency content of a signal. As a result, certain signal
features are more easily analyzed or detected in the frequency domain
than in the spatial domain. For example, the presence of a weak sinusoidal
signal may be masked by noise in the spatial domain. In the frequency
domain, however, this signal component may be easily detected because
all the signal energy is concentrated at one frequency, but the noise energy
remains spread over the bandwidth of the total signal. In other applica-
tions, signals are characterized by a combination of spectral components
—they have a “signature” or a “fingerprint” that is more easily detected
in the frequency domain than in the time or space domains.

3.3.1. The Fourier Transform of a Periodic Function

The Fourier transform has its roots in a method used by Fourier to
represent a periodic signal by a set of weighted sinusoidal components.
The basic idea is that if f(x) is a periodic signal so that f(x + L) = f(x),
where L is the period of the signal, the frequency content is revealed if we
expand f(x) into a series of the form

f(x) =a,+ i [a, cos(2mnx/L) + b, sin(2wrnx/L)], (3.55)

n=1

which is known as a Fourier series. The coefficients a, and b, are obtained
by multiplying both sides of Equation (3.55) by cos2wnx/L) or
sin(2mrnx /L) and integrating the products over one period of the signal
f(x). This method leads directly to expressions for the coefficients because
the cosine and sine functions are orthogonal. We find that

a, = %f‘*Lf(x)cos(ZTx ) dx (3.56)
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and

b, = %fcc+Lf(x)sin( 27;"" ) d, (3.57)

where ¢ is an arbitrary starting point for the integration. The value of g,
is given by Equation (3.56) with n = 0, but the coefficient is halved. From
Equation (3.56), it is clear that a, gives the average value of f(x). We
identify @y = 1/L as the fundamental spatial frequency whose dimensions
are reciprocal to those of L. As n increases, we obtain the coefficients a,
and b, associated with the harmonics of a.

3.3.2. The Fourier Transform for Nonperiodic Signals

If the period of the signal f(x) becomes large or if f(x) is not periodic, we
must develop alternatives to the Fourier-series representation of a signal.
One alternative is to induce periodicity by replicating f(x) at regular
intervals and to proceed with the frequency decomposition as described
above. The other alternative is to extend the basic interval L to infinity so
that @y — 0 and the discrete coefficients become a continuous function of
the spatial variable a. In this case, the summation becomes an integral and
the discrete frequency components become the Fourier transform of the
nonperiodic signal:

Fa) = [ f(x)erm=a, (3.58)
and the corresponding inverse Fourier transform is
f(x) = [ F(@)e ™ da. (3.59)

The integral relationships of Equations (3.58) and (3.59) are called
Fourier-transform pairs. We treat the value of the continuous transform
F(a) as the limiting form of the weights a, and b, at discrete frequencies
2mn/L. That is, if we integrate |F(a)|* over a small interval da centered
at one of the discrete frequencies 27n /L, its value is equal to (a2 + b?).

We do not venture into the mathematical subtleties of the Fourier
transform nor the conditions for which it exists. As we always consider
only those signals that have finite total energy, we can safely say that the
Fourier transform F(a) of any spatial signal exists.
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3.3.3. The Fourier Transform in Optics

We develop the Fourier transform in optics using the basic system shown
in Figure 3.16. To simplify the mathematics, we use a one-dimensional
notation to find the light distribution F(¢) at the back focal plane of the
lens. To further simplify the mathematics, we place f(x) at the front focal
plane of the lens; the more general conditions under which the Fourier
transform exists are treated in Section 3.6. We begin by recognizing that
the light distribution g(u) just before the lens is the Fresnel transform of

flx):

g(w) = ;—F [ fxyeim s gy, (3.60)

Next, we find the amplitude A(u) at plane P, on the other side of the lens.
In Chapter 2 we showed that a lens collimates light from a point source
located at its front focal plane. Because collimated light is represented as
a plane wave of unit magnitude, the lens must render a cylindrically
diverging wavefront, of the form exp(—jmu?/AF), into a wave of the form
exp(jO) = 1:

(lens function) X e~/ /A = ¢i0 = 1, (3.61)
from which we conclude that the lens function must be y(u; K), as given

by Equation (3.20), where K = 1/F is the power of the lens. The light
distribution at plane P;, just beyond the lens, is therefore

h(u) = g(u)e™ /M, (3.62)

which is the product of g(u) and the lens function. The light distribution

Pl P4

£

F()

Figure 3.16. Basic Fourier-transform system.
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F(¢) at plane P, is obtained by a second application of the Fresnel
transform:

F(£) = \/ A’—F fP h(u)e~fm/AFXE=w? gy (3.63)

We use Equations (3.62) and (3.60) in Equation (3.63) to find that

X gimu? /AEg=im /AFXE=w)? g, (3.64)

We collect all the exponential terms and evaluate the resulting kernel
function:

~i(m/AF)| (= x) =+ (- w)’]

~~
first lens second
free space free space

= —j(m/AF)[u? = 2u(x + £) +x? + £2]. (3.65)
We complete the square in the variable u, and arrange the integral in the
form

F(¢) = _[ f(x){f —j(w /AFXu—x—§)? du}eﬂ”’f/"’ dx. (3.66)

We almost have the desired Fourier-transform relationship. The final step
is to show that the integral in braces is not a function of x or £ The
integral in question is a Fresnel integral:

Q(x,¢) = [ eTm/APXu=x=0% gy, (3.67)

Py

which is put into the standard form, similar to Equation (3.42), by a
change of variables to produce

Q(x, E)-v f"” 1 dz, (3.68)
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where z; = V2/AF[-A/2 —x — £], z, = y2/AF[A/2 —x — ¢] and A4
is the aperture of the lens. From the results of Section 3.2, we know that
the most rapid change in Q(x, £) occurs when either z; or z, approaches
zero. Recall from the discussion associated with Equation (3.52) that
QO(x, £) is approximately equal to /AF/j when the magnitude of either z,
or z, is greater than zero; the value of the integral settles exactly to
VYAF/j as the magnitudes of z, and z, become large.

To satisfy the constraint that the integral is constant, we require
that |A4/2| > (x + £)p.,. The signal f(x) is limited in space to the
region |x|max < L/2. To find the maximum value of &, we note that
light from f(x) is spread over a region equal to 6., F at plane P; so that
€max = 0.oF = AFa, because the light is then collimated. Because the
sample interval must be d, throughout f(x), the condition under which
O(x, &) is constant is

A L

> > > + AFa|. (3.69)
The required lens aperture is therefore a function of both the object size
and its frequency content. In Sections 3.6 and 3.7 we more fully explore
how finite lens apertures affect system performance. For now, we assume

that Equation (3.69) is satisfied so that we can set Q(x, £) = yAF/j in
Equation (3.66) to express F(¢) as

F(&) = = [ f(x)ermsen as, (3.70)

which is a Fourier transform of the signal f(x) in terms of the physical
coordinate ¢ of the Fourier plane. To satisfy the scalar wave equation, the
sign of the kernel in the spatial Fourier transform must be opposite to the
kernel of the temporal Fourier transform. Note that the kernel function
has a positive sign, a direct result of the sign convention we have used
throughout.

If we want to emphasize that the Fourier transform is a function of the
spatial frequency variable a, we express the result as

F(a) = [:f(x)efzm dx, (3.71)

where ¢ = AFa, and we generally drop the scaling constant when we use
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this form of the transform. The two-dimensional version of the Fourier
transform, in terms of the orthogonal spatial frequencies a and B, is

F(a,B) = [[f(x,y)e?mx+8" dxdy, (3.72)

where B is the spatial frequency in the vertical direction and the vertical
coordinate at the frequency plane is n = AFB. The two-dimensional
Fourier transform is obtained by a similar line of analysis and is useful in
the image-processing applications treated in the following chapters.

3.4. EXAMPLES OF FOURIER TRANSFORMS

In this section we calculate the Fourier transforms of a few functions that
illustrate some of the basic principles. Gaskill’s book (18) is a thorough
and readable discussion of the Fourier transforms of many other functions
and their application in optics.

3.4.1. Fourier Transforms of Aperture Functions

Fourier transforms of aperture functions are important in applications
such as spectrum analysis, which we discuss in Chapter 4. We use the
aperture function a(x) to describe the amplitude weighting due to the laser
illumination and the truncation effects due to lenses or other elements in
an optical system. The effective signal is then the product a(x)f(x) which,
by the convolution theorem, produces a Fourier transform that is the
convolution of A(a) and F(a).

In the mathematical developments associated with optical signal pro-
cessing, we can usually calculate integral equations in closed form if we
use a uniform aperture function. We therefore examine the form of A(«a)
when a(x) = rect(x /L), which represents a clear aperture of length L,
centered on the optical axis. From the Fourier transform we find that

o X .
A(a) = f wrect(-]:)e’z’””dx

= fL/z ejZaraxdx
-L/2
sin(7ral) .
= L———— = Lsinc(al). (3.73)

Tal
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We see that A(a) attains its maximum value when a = 0, and that zeros
of A(a) occur when the argument of the sinc function is a nonzero
integer. The first zeros are at the spatial frequencies ay = +1/L, or at
the physical distances
AF

&=+ I (3.74)
From Equation (3.74) we see that the scale of the transform is inversely
related to the scale of the aperture; that is, when the aperture length L is
large, A(a) is compact because the first zero occurs at a small value of £.
Conversely, when L is small, A(a) is spread over a large region in the
Fourier domain. This relationship satisfies our intuitive notion that a
signal with coarse or fine sample intervals has a Fourier transform that
contains low or high frequencies as evidenced by the spectral spread in
Ala).

In Chapter 1 we showed that the inverse Fourier transform of a
rect(a/a.,) function in the spatial frequency plane produced a sample
function sinc(x/d,) in the space plane. Here we note the dual relation-
ship: a rect(x/L) function in the space domain produces a sample func-
tion of the form sinc(aL) in the frequency plane. We use this sample
function in Chapter 4 to characterize the Fourier transforms of arbitrary
signals.

A Gaussian-weighted illumination beam is intrinsically produced by gas
lasers and injection laser diodes. For our purposes, we define the Gaussian
beam as a(x) = exp[—2A4(x/L)?] so that the intensity response at
x= +L/2is 1/e~“. We find that the Fourier transform of a Gaussian
beam remains Gaussian:

® ) [
f e~ 2AG /LY pi2max gp — |, o e~ (1/24XmaLy (3.75)

The Gaussian function is therefore one of several that retain their func-
tional identity under Fourier transformation. The Fourier transforms of
truncated Gaussian beams cannot be calculated in closed form; several
computer solutions are given in Chapter 4.

3.4.2. A Partitioned Aperture Function
Suppose that we have a partitioned aperture function of the form

1;, -25L<xs< -15L
f(x)={1; +15L<x< +25L (3.76)
0; elsewhere,
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as shown in Figure 3.17(a). This function represents an optical system that
has a clear aperture with a central occlusion. We can calculate the Fourier
transform directly, if we so choose, but a useful trick is to note that f(x) is
equal to rect(x /L) convolved with [6(x + 2L) + 8(x — 2L)), as suggested
in Figure 3.17(b). By the convolution theorem, we find that A(«) is equal
to the product of the individual Fourier transforms of the rect function
and of the delta functions. We find that

fm rect(x/L)e/?™** dx = L sinc(alL), (3.77)
and that
[ [8(x +2L) + 8(x - 2L)]e”"** dx = 2cos(dmaL). (3.78)

The Fourier transform of f(x) is then F(a) = 2L[sinc(aL)]cos(4mal),
the product of a cosine function established by the delta functions and a
sinc function established by the rect function. There are exactly four cycles
of the cosine function under the main lobe of the sinc function, as shown
in Figure 3.17(c). As the distance between the two apertures increases, the

fx) rect(x/L) 8(x +2L) 8(x-2L)
— e hel
250 -15L 15 25L T .
® ®)
2 cos(4mL)

2/L 0 2/L

Figure 3.17. Fourier transform of a partitioned aperture: (a) the partitioned aperture, (b) an
equivalent representation of the aperture, and (c) the Fourier transform.
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frequency of the cosine increases so that more cycles of the cosine appear
under the central lobe of the sinc function.

3.4.3. A Periodic Signal

The convolution theorem also helps to calculate Fourier transforms of a
train of short pulses represented by

f(x) =rect(x/L) * i 8(x — nxy), (3.79)

n=-—»

where x, is the separation between the pulses. The impulse train in
Equation (3.79) is called a comb function. The Fourier transform of the
comb function is

fw Z 3(x _ nxo)ejz-n-axdx - E ei21rcmx0

~®p=-—w n=—o

=2a, Y, 8(a-2na,), (3.80)

Nne= —o

where «, =1/2x,. We note that the Fourier transform of the comb
function produces many plane waves in the Fourier domain whose phases
are arranged so that the spectral distribution is also a comb function. The
final result, then, is that

F(a) = 2a,Lsinc(aL) Y 5(a — 2na,), (3.81)

n=—x

which shows that the comb function is weighted by a sinc function which is
the Fourier transform of a single short pulse. In this fashion, we see that
the Fourier transforms of seemingly complicated signals are found by a
combination of the Fourier transforms of their component parts.

3.5. THE INVERSE FOURIER TRANSFORM

Suppose that we cascade two Fourier-transform systems of the type shown
in Figure 3.16, with the second following the first, as shown in Figure 3.18.
The second system generates the Fourier transform from the output of the
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Py Py P,
—>
—_> —
A —
—> —
— /
f(x) F(a)
Filtered output
8w) = f(-x)

Figure 3.18. Inverse Fourier-transform system.

first system:
g(u) = [ F(a)e™ ™ da. (3.82)
P,

Note that the second spatial Fourier transform also has an exponential
whose sign is positive, similar to that of the forward-going transform. We
use Equation (3.71) and substitute for F(a):

g(u) = f,, [ f:f(x)eﬂw dx]eﬂw da. (3.83)

If the aperture at plane P, does not stop any light rays, we can extend the
aperture limits to infinity and perform the integration on « to find that

f‘” 2T+ 4oy = §(x + u). (3.84)

—o0

We now use the sifting property of the delta function:

g(w) = [ F(x)8(x +u) dx
= f(-u), (3.85)

and we see that g(u) is identical to f(x) but with a reversed coordinate, as
indicated by the negative sign associated with the space variable.

Space, as contrasted to time, does not have a preferred sense of
direction; and geometrical optics requires two forward-going transforms to
produce the required spatial inversion of the signal. A true “inverse
transform” can, in fact, be created by using a negative focal length lens in
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the second of the two systems shown in Figure 3.18, but the image does
not then exist anywhere in the space to the right of the lens. The true
inverse transform leads to “virtual” images instead of to “real” images.

3.5.1. Bandlimited Signals

Suppose that f(x) is bandlimited to spatial frequencies less than or equal
to a,. Furthermore, suppose that we have a frequency plane weighting
function A(a) = rect{a/2a,,], where «,, > a.,. The light leaving the
Fourier plane is then F(a)A(a); and the Fourier transform of this
product, by use of the convolution theorem, is

g(x) = fm F(a)A(a)e’*™ ™ da
- 2a,,[ f(u)sinc[2a,(x + u)] du (3.86)

=f(-x).

The transition from the second to the third step is made without appeal to
complicated mathematical arguments because the function 4(a) does not
affect, or in any way further limit, the already bandlimited signal f(x) if
a,, > a.,. The general rule is this: if we encounter a convolution between
any signal f(x) whose maximum frequency is equal to a , and a function of
the form sinc(a,,x), we replace the sinc function by a delta function if
a,, > . The sifting theorem is then used with confidence that the spatial
frequency content of f(x) has not been altered.

A function of the form 2a,,sinc(2a,, x) is, of course, a suitable form of
a delta function, in the limit as «,, — o. This development shows that the
conditions defining a suitable delta function are relaxed significantly when
dealing with signals or systems that are bandlimited. The property of
bandlimited functions as given by Equation (3.86) is used frequently in
analytical developments throughout this book.

3.5.2. Rayleigh-Resolution Criterion

In our development of the Fresnel transform we ignored the obliquity
factor, based on the argument that the angular spreading of light pro-
duced by a signal sample is small. We now support this conclusion and
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Figure 3.19. Rayleigh-resolution criterion for a sinc?impulse response.

return to the Rayleigh-resolution criterion for a telescope as stated ini-
tially in Chapter 2. Suppose, for example, that f(x) =1 so that the
product a(x)f(x) is simply a(x). This situation might arise when light
from a distant scene, such as an isolated star, enters a lens whose aperture
function is a(x) = rect(x/L). The image of the star appears at the back
focal plane of the lens; thus the image is identical to the Fourier transform
A(a) of the aperture function a(x) as just derived. The equivalence of
A(a) to the image of a star implies that the light distribution at plane P,
of Figure 3.16 is a plane wave of infinite extent that is rendered to a finite
extent by the action of a(x).

The Rayleigh-resolution requirement, based on visually detecting a dip
between the peaks of the two stars, is that the peak of the response due to
the second star, A(a — ag), falls at the first zero of A(a), as shown in
Figure 3.19. The physical distance between the peaks is ¢y = dy = AF /L,
and the angular resolution is therefore ¢, = A /L, which is just equal to
the difference in the angle that the wavefront has as it enters the lens.

3.5.3. Abbe’s Resolution Criterion

Abbe showed that, under certain illumination conditions, false details in
the image are generated if the frequency components of the signals are
altered (25). He showed, by a somewhat different line of analysis from
Rayleigh’s, that coherently illuminated systems have a resolution limit d,
which is related to the cutoff spatial frequency: d, = 1/Qa,). For
example, consider the coherently illuminated optical system shown in
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Figure 3.20. Coherently illuminated system to illustrate sharp cutoff: (a) optical system,
(b) Fourier transform of a biased cosine, and (c) alternative representation of the Fourier

transform.
Figure 3.20(a), in which a sinusoidal function

f(x) = 05rect(x/L)[1 + cos(2ma,x)]

is the input signal. The Fourier transform of f(x) is
@ . 2 )

Fla) = [ fx)e = dr = [ 1[1 + cos(2mayx)] 27 dx
- -L/2

- fL/Z 1[1 + ejZ—rakx + %e—jzvakx]ejzmxdx
L2

= fL/Z 1[ 1211'ax+ e/21r(a+ak)x + ejZ-rr(a ak)x]dx
—-L/2

[

L . 1. 1.
-5{smc(aL) + Lsinc[(a + a,)L] + §sinc[(a — a;) L]}, (3.87)
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where L is the length of the signal at plane P;. As shown in
Figure 3.20(b), F(a) consists of three sinc functions whose first zeros are
at ap = +1/L; one sinc function is centered at a = 0, one is centered at
a = a,, and one is centered at @ = —a,. The sinc functions are typically
so much narrower than those shown in the figure that we sometimes
represent them by & functions as shown in Figure 3.20(c).

We place an aperture at plane P, whose extent is +a,,. If the spatial
frequency is low so that |a,| < a,, all the energy in F(a) passes through
the aperture and the amplitude at image plane P; is

g(u) = fij(a)ejz"““ da

L a
= rect
f—m [ 2aco

L L .
]{—2— sinc(al) + y sinc[(a + a;) L]
+ % Sil’lC[(a _ ak)L]}eJ'Zvau da, (388)

where rect{a/2a_,] represents the frequency response of the system. The
output therefore consists of three terms, a typical one being

© a L .
gi(u) = [ wrect[ ]3sinc(aL)e12m da. (3.89)

2a

The easiest way to evaluate Equation (3.89) is to recognize that if we
express sinc{a L) in terms of its Fourier transform, we have

o 1 a ® x1 . .
gl(u) = f—mz{l‘ect[m]f_wmﬂ[z]eﬂﬂa: dx}elz‘ﬁ'au da. (3'90)

We interchange the order of integration to find that

© 1 x © a
gi(u) = "’—mi rect[—L—]{f-mrect[ rar ]e’z”‘“"*“) da} dx

w 1 x
= f 3 rect[—i]2awsinc[2aw(x + u)] dx. (3.91)

Because |a,| < a,, the sinc function in the integral on the second line of
Equation (3.91) is sufficiently narrow that it behaves as a delta function, as
we show in Section 3.5.1. The convolution is therefore easily performed by
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using the sifting property of the delta function to provide

1 —-u
&(uw) = 3 rect[T , (3.92)

which is simply the image of the average value of the original signal f(x).
Each of the other terms of Equation (3.88) is evaluated in a similar fashion
and we find that the entire output is

g(u) = 0.5rect(—u/L)[1 + cos( —2ma,u)] = f(—x),

so that the image has exactly the same form as the signal, but with a
coordinate reversal.

When we increase a, so that |a,| = a,, the sinc functions centered at
a = ta, are just at the edges of the aperture in the Fourier plane, but
the image is still accurately related to the object. A further increase
in the frequency, so that |a,| > a,, results in a sudden change in the
structure of the image. Instead of being a sinusoidal function
g(u) = 0.5rect(—u /L)1 + cos(—2ma,u)], the image becomes a constant
g(u) = 0.5rect(—u /L), because all information about the magnitude and
frequency of the sinusoid is lost.

As the spatial frequency response is constant for all frequencies below
the cutoff frequency and zero thereafter, we represent the normalized
coherent modulation transfer function of the system as

H(a) = rect( 2:) (3.93)

as shown in Figure 3.21(a). Because the image intensity is the magnitude
squared of the image amplitude, the incoherent modulation transfer func-

H(e) H(a)*H *(-a)

-0, 0 TG -20,, 0 +20,

@) ®)

Figure 3.21. Normalized modulation transfer functions: (a) coherently illuminated system
and (b) incoherently illuminated system.
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tion of an optical system is the normalized autocorrelation of the coherent
modulation transfer function:

H(a) = fij(-y)H*(y +a)dy= tri( 2: ) (3.94)

co

where tri(a/2a,) =1 — |al/2a., for |la|l <2a, and is equal to zero
elsewhere, as shown in Figure 3.21(b). The incoherent and coherent
modulation transfer functions are therefore related by the autocorrelation
function. As a result, the image contrast in an incoherently illuminated
system changes gradually as |a]| increases, falling to zero when |al = 2a,.
Although an incoherently illuminated system can resolve spatial frequen-
cies twice as high as its coherently illuminated counterpart, the contrast
ratio for the sinusoid is uniformly better, over its bandpass region, for the
coherently illuminated system.

Abbe also noticed that the image of a coherently illuminated signal
changed its appearance when the angle of the illumination was off axis.
We now consider the more general case of oblique illumination as shown
in Figure 3.22(a). Light leaving plane P, is now expressed as

X

7 )e'ﬂ”“""[l + cos(2ma, x)], (3.95)

f(x) = -;-rect(

where 8, = Aa; is the oblique illumination angle. The Fourier transform of
this signal is found by a procedure similar to that used to derive the result
given by Equation (3.87):

L
F(a) = E{sinc[(a +a;)L] + 3sinc[(a + a; + o) L]
+3sinc[(a + a; - ak)L]]. (3.96)

As shown in Figure 3.22(b), F(a) has the same form as before, except that
the entire spectrum is shifted in the negative a direction by an amount «;.
We note that oblique illumination provides a nice physical illustration of
the shift theorem from Fourier-transform theory.

As a; increases, we see that eventually some of the spectrum is cut off
by the finite aperture at plane P,. This event occurs when

sinc[(a + a; + ;) L]rect(a/2a,) = 0. (3.97)
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Figure 3.22. Oblique illumination: (a) optical system and (b) shifted spectrum.

From Equation (3.97), we see that the center of the sinc function is within
the passband aperture whenever 0 < «; < (a, — a,). For larger values of
the angle of illumination the sinc function is cut off, and the output of the
system becomes

] a 1L .
g(u) = f_wrect —Za—w E{smc[(a +a;)L)
+3sinc[(a + a; — a;)L]}e/*™ da, (3.98)
so that the complex amplitude at plane P, is
g(u) = te72men{1 + Jei2ma|rect(u/L). (3.99)

This filtering operation generates false information as is seen by examining
the intensity of the output signal for these two cases. When a; = 0 and
le | < a,, the intensity is I(u) = lg(wl%:

Io(u) = 1[2 + 2cos(2ma,u) + % cos(4ma,u)|rect(u/L), (3.100)
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whereas when one of the diffracted orders is cut off, the intensity is the
squared magnitude of Equation (3.99):

I(u) = §[3 + cos(2ma,u)]rect(u/L). (3.101)

By comparing Equation (3.101) with Equation (3.100), we conclude that
the intensity of the fundamental frequency component has been reduced
by a factor of 2 because of the loss of half the energy in the fundamental,
and that the harmonic of the fundamental is missing. The output therefore
contains false information about the input signal because of filtering the
spatial frequencies.

Oblique illumination has the advantage, however, that it increases the
bandwidth of a spectrum analyzer. If the input signal is real valued so that
the spectrum has polar symmetry, negative spatial frequencies have the
same magnitude as positive ones and measuring the spectrum from zero
frequency to «, is sufficient to extract all the information. Oblique
illumination displays the spatial frequencies from the signal that fall into
the range from zero to a., in the interval (—a,,, 0) at the Fourier plane,
thus making the interval (0, a,) at the Fourier plane available for display-
ing spatial frequencies ranging from a ., to 2a.,. The frequency analysis
range is therefore doubled. Oblique illumination is also useful in certain
special cases of correlation. It is not, however, generally used when
accurate imaging is required.

We see that Equation (3.100) reveals a spatial frequency 2a, that was
not displayed at the Fourier plane P, of the coherent optical system. This
apparent discrepancy is explained by noting that the harmonic 2, arises
only when we observe, measure, or record the intensity of an amplitude
signal that is a pure sinusoidal waveform. In the example given, the
harmonic was, in fact, already present in the intensity stored on the spatial
light modulator at the input of the system. The coherently illuminated
system produced the Fourier transform of the amplitude of the light at
plane P,, and, because the intensity of the input signal was, in fact,
I(x) = |f(x)I%, the system properly calculates the Fourier transform of

f(x) = yI(x).

3.5.4. The Sample Function, Sampling Theorem, and Decomposition

Both Rayleigh and Abbe studied resolution for optical systems, but from
different viewpoints. We now summarize their results and relate them to
the sampling theorem and to methods for representing signals. If we
follow Rayleigh’s resolution criterion, we represent a signal f(x), bandlim-
ited to the frequency range |al < a,, by a set of weighted sample
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Figure 3.23. The sample (interpolation) function for a sampled bandlimited signal.

functions:
x @
fx) = rect( z) Y a,e’® sinc2a.(x — ndy)), (3.102)
n=—aw
sets limit weights in sample function
on signal magnitude
length and phase

where the a, are the sample magnitudes and the ¢, are the sample phases
at the midpoints of the sinc functions. In general, ¢, takes on the value
+7 for a real-valued signal, but we also allow for the fact that the signal
may become complex-valued after some filtering operations. The sample
function sinc(2a ,x) is wrapped around each element of the sampling
function as shown in Figure 3.23. The rect function in Equation (3.102)
shows that the number of samples in f(x) is limited to N = L /d,,.

The signal representation given by Equation (3.102) is equivalent to the
Nyquist criterion for representing a bandlimited signal by a sequence of
weighted sample functions. This criterion states that the highest spatial
frequency must be sampled at least twice per cycle of the highest fre-
quency to accurately represent the signal; the relationship a., = 1/(2d,)
fulfills this requirement. By applying the shift theorem to the Fourier
transform, we find that all light produced by all samples of f(x) pass
through an aperture in the Fourier plane P, bounded by |al| < a_,; the
entire signal, as well as each sample, is therefore strictly bandlimited.

If N degrees of freedom completely specify f(x), so too will N degrees
of freedom completely specify F(a). As a result of Equation (3.102), we
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find that the Fourier transform of f(x) is

®©

){sinc(aL)* Y a,e/®n gi2mndony (3.103)

[43

F(a) = rect( 3

co n= —oo
due to the due to weights in  due to
sample aperture magnitude sample
function function and phase positions

where * indicates convolution. The spectrum therefore consists of a set of
weighted plane waves, each wave due to a sample contained in f(x), that
interfere to produce the spectrum F(z). The rect function shows that the
signal is bandlimited to |z| < &_,. The convolution of the spectrum with
sinc(e L) is included for completeness; it does not alter the shape of the
spectrum by an argument similar to that developed in Section 3.5.1.

Alternatively, we might follow Abbe’s approach and represent f(x)
as a sequence of weighed sinusoids whose frequencies are separated by
e, =1/ L. A more convenient representation is to replace the cosines by
exponentials, using the Euler expansion, to find that

X it . .
flx) = rect(—i-) (a0 Y beitn emax)  (3.104)
n=-—w
aperture due to the band weights in exponential
function limit in the magnitude function
Fourier plane and phase

where the b, are the magnitudes and the ¢, are the phases of the
exponential functions at the signal plane. The sinc function reveals that
2a./ay=2La_ = N complex exponentials completely describe f(x). In
turn, we express F(a) as

a i .
F(a) = rect( —————) Y. b,e sincd(a — nay)L], (3.105)
200 ) polw
—— ———
frequency weights in samples in the
plane cutoff magnitude Fourier plane
and phase

where a, = 1/L is the minimum resolvable spatial frequency, and the b,
and the ¢, provide the weights of the sinc functions in the Fourier plane.

This exercise shows that, since f(x) and F(a) are both functions of
space coordinates, we can represent them in either of the two forms listed
above. An observer of a sinusoidal spatial signal is hard pressed to know
whether they are looking at a space signal, a spatial frequency function, or
neither (they may be looking at a Fresnel transform). We can therefore
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interchange our notions of space and frequency planes as we please, useful
for helping to visualize the operation of some signal-processing systems.

Again, we remind the reader that signals cannot, in theory, be both
space limited and bandlimited, as we have assumed here. In practice,
however, the impact of such an assumption is usually small because the
limits of observation are set by noise levels at both the space and spatial
frequency planes. In any event, Equations (3.102)-(3.105) are useful to
help visualize the general nature of the signals and are accurate, except
possibly near the edges of the signals.

3.6. EXTENDED FOURIER-TRANSFORM ANALYSIS

The Fourier-transform result was developed in Section 3.3, under some
mild restrictions that simplified the analysis considerably. We assumed
that the signal was illuminated by a plane wave of light and was at the
front focal plane of the lens. The Fourier-transform relationship exists,
however, for a wide range of geometries. To explore these possibilities
further, we introduce an operational method of analysis that reveals the
richness of the conditions under which the transform exists. In the process,
we show that the fundamental results from geometrical optics are ob-
tained from analyses involving only the principles of physical optics. As
examples, we generate two key results: the fundamental lens equation and
the Fourier-transform relationship.

To facilitate the analysis and to draw analogies to linear system theory,
we represent each optical system by a block diagram. By using an opera-
tional notation, a basic set of optical elements is synthesized into a system
for either imaging or Fourier transforming a signal. Once the basic systems
are synthesized, we cascade them to produce more complex ones.

3.6.1. The Basic Elements of an Optical System

Figure 3.24 illustrates that light from the source is represented by
a(x, y) = la(x, y)lexpljp(x, y)], where la(x, y)| is the magnitude and
¢(x, y) is the phase of the light. The amplitude transmittance of the
spatial light modulator is f(x, y) = |f(x, y)lexp[j8(x, y)] so that the mod-
ulated light wave is given by

g(x,y) =la(x, y)lf(x, y)le/toex- o, (3.106)

The block diagram element for a spatial light modulator is therefore a
multiplier, as shown in Figure 3.24(b).
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Figure 3.24. Effect of a spatial light modulator: (a) optical system and (b) block diagram.

Lenses are important elements in optical signal-processing systems. In
Section 3.3.3 we showed that a spherical lens is represented by the phase
function exp[j(m/AFXx2 + y?)], where F is the focal length of the lens.
Cylindrical lenses are represented as functions of only one variable:
expl jmx?/AF] or expl jwy*/AF], depending on the direction of the power
of the lens. The focal length of cylindrical lenses in the orthogonal
direction is infinite. The operation of a lens and its block diagram is shown
in Figure 3.25.

The next important step is to represent how light propagates through
free space. We showed in Section 3.2 that, if f(x, y) is a light distribution
in a given plane, the propagation of light through a distance D produces
the Fresnel transform

C 7 ,
g(6,m) = 3 [[ F(x,y)e i/ ADIC=0M 0= gedy, - (3.107)

where &, n are coordinates in the new plane and C is a complex-valued
constant that is independent of all the variables.

J(m/ADX X2 +y*)
I (x.y)e o J(71ADXx?+y)
fxy) . 2
fly) F(x,y)e/ ®ADKx +)
>
oI (I ADXx?+y?)
(@) (b)

Figure 3.25. Effect of a lens: (a) optical system and (b) block diagram.
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3.6.2. Operational Notation

As the lens function and the free-space impulse response have similar
forms, we represent both by a  function (27):

Because the distance between two planes occurs in the denominator of the
argument of the exponential function, we use a lower-case letter to
represent the reciprocal of the propagation distance as indicated by an
upper-case letter. With this notation, we describe the propagation of light
through a distance D, shown in Figure 3.26, as though it passed through a
black box whose impulse response is dy*(x, y;d), where * indicates
complex conjugate and d = 1/D. A lens of focal length F is represented
by ¢¥(x, y; K), where K is the power of the lens. A cylindrical lens is
represented by ¢(x; K) or ¢(y; K), according to which axis of the
cylinder has the focal power.
Some of the more useful properties of the ¢ function are

P1 Y(x,y;d) =¢*(x,y; -d),

P2 ¥(—x,-y;d) = ¢(x,y;d),

P3 (x,y;d)Y(x,y;d,) =¢(x,y;d, +d,),

P4 ¥(x,y;d) = ¢¥(x;d)d(y;d),

P5 Y(ex,cy;d) = ¢(x,y;cd),

P6 U(x —u,y —v;d) =(x,y;d)P(u,v;d)e kdux+on,
pP7 limg_o(x,y;K) =1.

l;‘ fxy) dej%‘(xz*yz) g(u,v)

f(xy) 8(u,v)
(a) (®)

Figure 3.26. Propagation through free space: (a) optical system and (b) block diagram.
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Property P1 shows asymmetry along the optical axis; that is, a spherical
wave appears to diverge or converge according to the direction of observa-
tion. Property P2 shows symmetry normal to the optical axis; an example is
that the power of a spherical lens has polar symmetry. Property P3 gives
the rule for multiplication and property P4 shows the separability of the
function. Property P5 gives the effect of a scale change, which is useful
when we solve certain integral equations; and property P6 is useful in
expanding convolution integrals involving the ¢ function. Property P7
states that a lens of infinite focal length has no effect on a light distribu-
tion.

Another useful property of the ¢ function is that the Fourier transform
of the function y(x, y;d;) with respect to a parameter d, is also a ¢
function:

@ ) c
P8 j’f (x, y; d)ei@m/Nasux+o gy gy = d_l,/, *(u,v;d2/d), (3.109)

where ¢ is a complex-valued constant that is generally neglected.
Property P7 shows that the argument of the integral becomes a constant
when d, — 0 and P8, in turn, shows that

1
P9 lim —y¢*(x, y;d%/d,) = 8(x, y) (3.110)
d.-»O dl

for any value of d,. Property P9 is independent of d,, in the limit, because
the Fourier transform of a constant over an infinite interval is a &
function. In Section 3.5.1, we showed that the finite aperture of a lens
leads to a sample function in the image plane that is, in an operational
sense, equivalent to a 8 function, provided that the signal is bandlimited
and that the aperture limit does not remove information.

3.6.3. A Basic Optical System

A fundamental combination of the elements described in Section 3.6.1
consists of a spatial light modulator, free space, a spherical lens, and more
free space, as shown in Figure 3.27. The spatial light modulator is
illuminated by a unit magnitude monochromatic light wave with an arbi-
trary spherical phase factor. The illumination is represented by ¢*(x, y; d,)
if the spherical wave is divergent, or by ¢(x, y; d,) if the wave is conver-
gent; the radius of curvature is D, = 1/d,. According to P1 we could also
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Gy = Y, v.K) 8(r.5)
— -_; } ®
/ P P, P,
v *(xyid) .«—Dz——>|<—og——>|
f(x,) W, viK)
* ’ 'd (r’s)
vrerL) dyy* (x,y:dy) 3y *(x,y;d3) # ()

Figure 3.27. General Fourier-transform module: (a) optical system and (b) block diagram.

use Y(x, y; —d,) to represent a diverging spherical wave; this notation is
consistent with the sign convention adopted in geometrical optics, where
we consider D; negative when plane P, is the origin of the current
coordinate system.

From the block diagram we express the output of the system, after
using P6, as

g(r,s) = dads [[ [[9*(x. 3 d)) f(x, y)u*(x, y; ;)
Py P
X y*(u, 05 dy) XTI DEEET DY (4, 0; K) g (u, 05 ds)
X ¥ (r, 55 d5) e’ @/ Va0 gy dy dy d, (3.111)

where d, and d, are the reciprocals of the distances D, and D,. Using P3
to collect terms, we have

g(r, ) = dydy*(r,5:d5) [f j;ftﬁ*(x, yidy +dy)f(x,y)
Py P

X g*(u,v;d, — K + dy)

X ej(21r/;\)[u(d;x+d3r)+v(d2,v +d39)] dx dydudy. (3.112)
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We first carry out the (u, v) integration, with the aid of P8, to obtain

d,d,
8(rn0) = Ty g V(i) [[ 0 (royidy + ) y)

dyr dss d;

et y+d_2;d2—K+d3

dxdy.

(3.113)

Equation (3.113) is the central result in this operational notation. It relates
the complex-valued light distribution in the output plane of a basic optical
system to the input distribution in terms of the parameters d,, d,, d,,
and K.

3.6.3.1. The Imaging Condition. Suppose we wish to synthesize the basic
elements shown in Figure 3.27 into an imaging system. First, we note that
Equation (3.113) is a convolution operation so that if we find the relation-
ship among d,, d;, and K necessary to convert the ¢ function into a delta
function, the output will be an image of the input. By property P9, we find
that

d: dyr dys d;
| oyt
d, — K +d, d, d, d,— K+ d,
5l x + dsr + ds 3.114
=0|x dz,y a (3.114)

when d, — K + d, = 0. We neglect the multiplicative constants and use
the sifting property of the delta function so that Equation (3.113) becomes

g(r,s) =y*(r,s; al4)f(——2 ——), (3.115)

where d, = d, + (d, + d,)d%/d?. Equation (3.115) shows that, aside from
a spherical phase factor, g(r, s) is an inverted and scaled image of f(x, y);
the scaling factor —d,/d, = —D,/D; accurately represents the lateral
magnification M of the system. As the imaging condition is valid
only when d, +d; =K, we find that 1/D, + 1/D5 = 1/F. This
condition is recogmzcd as the fundamental lens equation or, by suitable
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modification, as the refraction equation, whose general form is given by
nyu, = nu; — hK.

The phase factor that modifies f(r,s) in Equation (3.115) is not
important if g(r,s) is recorded or otherwise detected because physical
detectors are insensitive to phase. Therefore the intensity |g(r,s)? is
independent of d,; i.e., the phase curvature of the illuminating wave
does not affect recording of the image. The phase factor provides the
information needed to determine where the next image plane occurs if
further operations are performed on g(r,s). Thus, all the important
features of an imaging system are readily obtained from Equation (3.113).

3.6.3.2. The Fourier-Transform Condition. Suppose that we wish to syn-
thesize the elements of the basic optical system to provide a Fourier-
transform relationship between g(r,s) and f(x, y). By using P6 and
collecting terms, we rewrite Equation (3.113) as

d‘.’
g(r,S)=~lf*(r,szds)[[¢*(x,y;d1+dz- 7 : f(x,y)

2= K + d3
X ef@m/Mdadsy /(dy=f+d3)Kxr+ys) gy gy (3.116)
where ds =d, — d?/(d, — K + d,). This relationship is almost in the

form of a Fourier transform. We apply P7 so that the ¢ function in the
integral is equal to unity. This condition implies that

d3

_—=0
ditd - i

(3.117)

must be satisfied. First, suppose that d; = 0 so that the input signal is
illuminated by a plane wave. If Equation (3.117) is satisfied for any value
of d,, it is satisfied for every value of d, so that the distance from the
input plane to the lens is of no consequence, aside from ensuring that all
the rays pass through the lens. Finally, we find that d; = K, which implies
that the Fourier transform of f(x, y) occurs in the back focal plane of the
lens. Under these conditions Equation (3.116) becomes

K? .
g(r,s) = «ﬁ*(r,s; K- d_) fff(x,y)e’(z"/”'x"*"‘)dxdy. (3.118)
2 ) B,

The Fourier-transform relation is made “exact” by setting the ¢ function
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in Equation (3.118) equal to one. To do so, we set K — K?/d, = 0 which
requires that d, = K; thus, we place f(x, y) in the front focal plane of the
lens. This is the usual result, derived in many texts and papers in
the literature. The operational notation used here makes it easy to see
what other values of the parameters lead to a useful Fourier-transform
relationship—something not easy to do by conventional techniques.

The physical meaning of Equation (3.117) is that the Fourier transform
always occurs at the image plane of the source. This result is useful in
helping us visualize where, for example, the Fourier plane occurs relative
to the image plane. The steps necessary to prove this assertion are to
observe that Equation (3.117) is rewritten in a sequence of equations as

(d, +dy)(d, — K + d5) = dj,

dy(d, — K +d;) +dy(d; — K) =0,
dyd, +dy(dy — K) + dy(d; — K) = 0,

44z +d, =K
d+d, ° 7
! L 3.119
—_— + _= =, .
D,+D, D, F (3.119)

which is the condition necessary for imaging the source at plane P;.

The physical meaning of ds in Equation (3.116) is that it represents the
phase curvature associated with the Fourier transform. This claim is
supported by noting that, if f(x, y) = 8(x, y) in Equation (3.116),

g(r,s) = v*(r,s;ds), (3-120)

which is either a convergent or a divergent spherical wave depending on
the sign of ds. Note that d; = 0 whenever d, = K; that is, the Fourier
transform has no residual phase curvature whenever the signal is in the
front focal plane of the lens, independently of the curvature of the illuminat-
ing wave. We therefore create an “exact” Fourier transform under a wide
range of conditions, contrary to the popular belief that such a transform
occurs only when d, = K and the illumination is a plane wave.

It is not necessary for the Fourier transform to be “exact” in optical
signal-processing systems, a point often misunderstood. A residual phase
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factor in no way affects the spatial filtering operations, to be fully dis-
cussed in Chapter 5, other than to determine the position of the output
plane.

In a similar fashion, the ¢ function associated with the image as given
by Equation (3.115) represents a converging or diverging spherical phase
function according to the sign of d,; this result is most easily seen if we set
f(x,y) = 1. Setting f(x, y) to unity or to 8(x, y) often provides a quick
assessment of how an optical system works. These two functions are a dual
pair in the sense that the Fourier transform of a delta function is a
constant, and vice versa, as we showed in Section 3.4. These two functions
are especially useful for the analysis of anamorphic systems containing
cylindrical lenses; often the system is constructed to produce a delta
function in one direction while it produces a constant value (in the
absence of a signal) in the orthogonal direction.

3.6.3.3. A Variable-Scale Fourier Transform. Equation (3.116) shows that
the scale of the Fourier transform is a function of d, when d, # 0 and
that the transform does not appear in the back focal plane of the lens.
Frem this result we learn that the scale of the Fourier transform is a
function of the axial position of the signal if the input signal is placed in
nonparallel light. We use this fact to synthesize a variable-scale Fourier
transform system, shown in Figure 3.28. From the block diagram we

_)I D.
__h
v *(x,y.0)

\ |<—- D,—>
B
8(r.s)

fu,v)

v *(x, %K)

f(u,y)
VIRl gy (ryidy éﬁ dyravd) 0 ®

Figure 3.28. Variable-scale Fourier-transform system: (a) optical system and (b) block
diagram.




124 PHYSICAL OPTICS

express

8(r,5) = dsdy*(r, s5d,) [[ JIw% e, vs K™ (x, 3 da)i*(u, 03 d3)
1 Py

e f(u, v)ej(21r/A)d3(ux+vy)‘ll*(u, v; d4)ej(21-r/)‘)d‘(ur+vs) dxdy dudy.
(3.121)

Applying the same methods as before, we find that

g(r,s) =y*(r,s;d,) ffc/f(r, s3ds) f(u,v)e@m/NVddur+es) gy dy
P2

(3.122)

where ds = —d, —d, + d?/(d, — K). Again, g(r,s) and f(u,v) are
Fourier-transform pairs if the ¢ function in the integrand is equal to one.
From P7, we find that d5 must be set equal to zero, which results in the
requirement that d?/(d; — K) = d, + d, or that

dyd,
m = (3.123)

This equation is satisfied for all values of d, and d, because D; + D, = F
by the initial constraints imposed on the optical system. Hence,
Equation (3.122) becomes

g(r,s) =y¢*(r,s;d,) fff(u,v)ej(z"/")d4(“’+”’) dudv.| (3.124)
P,

The Fourier transform is now carried out using the variable d, rather than
the parameter K; by varying d,, we vary the scale of the transform of
f(u,v). The presence of the ¢ function serves to indicate where the
inverse transform occurs, as discussed in the next section.

We close this section by noting that the basic optical system shown in
Figure 3.27 can either image or Fourier transform a signal, depending on
the configuration. We ask whether this system performs both simultane-
ously. The reader can show, as an exercise, that a Fourier transform must
be created somewhere in the system, not necessarily to the right of the
lens, if the system produces an image of the input signal f(x, y). The
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existence of a Fourier transform in an optical system does not, however,
guarantee the existence of an image of the signal.

3.6.4. Cascaded Optical Systems

An optical filtering system is most conveniently analyzed by repeated
application of the Fourier-transform relationship or, in some cases, by
repeated use of the imaging relationship. Hence, the detailed discussion of
a basic optical system simplifies the analysis of cascaded optical systems.
We often want to perform an operation described by the general linear
integral operator

g(r,s) = [[ f(u,0)h(r —u,s - v) dudv, (3.125)

which can also be expressed in the frequency domain as

G(a,B) =F(a,B)H(a,B). (3.126)

The advantages of being able to perform this operation by realizing the
spatial filter H(a, B) in the frequency plane, where H(a, B) is the Fourier
transform of A(x, y), will become apparent in Chapter 5.

A typical filtering system consists of a Fourier-transform operation, a
mask that introduces H(a, B), and a second Fourier-transform operation.
Such a system, with a scale searching capability, is shown in Figure 3.29.

P,
VH(x,y.0)
&(r,s)
f(y) F(u,v)H(u,v)
Lens of focal
length F /
Lens of focal Mechanical
length F5 coupling

Figure 3.29. Variable-scale correlator.
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The input function is illuminated by a converging wave, as before. From
the block diagram, we replace the system up to plane P, by the equivalent
diagram shown in Figure 3.28. Therefore, the distribution at plane P, in
Figure 3.29 is

F(u,v) = .p*(u,u;dz)fff(x,y)ef<2"/”"2<“*+“”dxdy. (3.127)
Py

The light distribution emerging from P; is F(u, v)H(u,v). A second lens,
with focal length F,, takes the Fourier transform of this product
and images the filtered signal at the output image plane P,. This
Fourier transform is obtained by applying the general result given in
Equation (3.116):

d3

,§) =¥*(r,s;d *lu,vidy +dy ~ ———
8(r,s) =" (r.s 5)[{«0 wvidy +dy = o

X F(u,v)H(u,v)e/@™/Mdsda/ds=Korda)ur+vs) gy gy (3.128)

where ds =d, — d2/(d; — K, + d,). The condition for making g(r,s)
the Fourier transform of F(u, v)H(u,v) is that

d2+d3—d§/(d3_Kz+d4) =0
or that

! ! L 3.129
_— = = —. .
D,+D, D, F, ( )
Equation (3.129) is the condition for imaging plane P, into plane P,,
which satisfies our concept about how the system operates. The variable-
scale correlator is implemented by connecting the input plane, the second
lens, and the output plane together so that they move as a unit. Hence,
D, + Dy is constant and Equation (3.129) shows that the output at plane
P, always represents a focused image of the filtered data.

3.6.5. The Scale of the Fourier Transform

In Section 3.6.3.3, we developed the variable-scale Fourier transform
under the condition that the signal f(x, y) is illuminated with convergent
light. The scale of the Fourier transform is governed simply by the
distance between the signal and the Fourier plane. The signal might,
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Figure 3.30. Scale of the Fourier transform.

however, by placed in the divergent beam as shown in Figure 3.30, in
which case the scaling factor for the Fourier transform seems to be more
difficult to find. In this section, we give a simple method for finding this
scaling factor. Instead of using the operational notation, we appeal to
simple geometrical optics tools and thereby strengthen the relationships
between geometrical and physical optics.

The simplest way to find the scale of the Fourier transform of f(x, y) is
to temporarily reverse the direction in which the light travels. With light
traveling from right to left, we find that the signal is now in convergent
light. We can therefore calculate the Fourier transform referenced to the
source plane, using the distance D,, as the scaling parameter. The final
step is to use the magnification, M = —D,;/D,;, between the source and
Fourier planes to get the final scale of the transform.

An alternative technique is to project the signal to the lens plane, using
the axial point in either the source plane or the Fourier plane as the
central projection point. By simple geometrical arguments, we see that the
scale of the signal, when projected to the plane of the lens, is f(Qx, Qy),
where

0- 2.

(3.130)
D12

This scaling procedure is equivalent to determining the scale of a signal
that would produce the Fourier transform if the signal were illuminated by
collimated light and the lens were assigned the focal length D There-
fore, after the scaling of f(x, y) is done, we can replace the optical system
of Figure 3.30 with one in which the signal is illuminated by collimated
light at the front focal plane of a lens whose focal length is D5. The usual
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Fourier-transform relationships are then applied to find the scale of the
transform. A similar procedure can be used when the signal is placed in
the convergent beam, replacing D, by D,s and D,; by Ds,.

3.7. MAXIMUM INFORMATION CAPACITY AND OPTIMUM
PACKING DENSITY

The wide range of configurations, given in Section 3.6, under which a lens
produces an image or a Fourier transform, suggests that we seek addi-
tional criterion for determining the best configuration of an optical system.
A common criterion in communication systems is to maximize the infor-
mation capacity in terms of bits per unit time. An equivalent criterion in
optics is to maximize the packing density in terms of samples per unit
length or per unit area. In turn, the size of the optical system determines
the total information capacity. We now consider these issues for a coher-
ently illuminated optical system.

Recall that N = 4(LBPXHBP) is a measure of the number of indepen-
dent samples required to form a two-dimensional image. The amount of
information, on a per-sample basis, is equal to the number of resolvable
states, such as magnitudes, polarizations, or wavelengths. The minimum
detectable increment in any of these quantities is a function of noise; the
noise characteristics therefore set the ultimate rate at which information is
transmitted. At this point, we are interested only in the relationship
between the geometry of the optical system and the number of samples
that is transmitted in a noise-free system. Our results are based on an
assumed zero/one state for each sample; we multiply the results by the
number of independent states to get the total information capacity.

3.7.1. Maximum Information Capacity

Consider a one-dimensional signal f(x) whose highest frequencyis a,,
located at the front focal plane of the lens shown in Figure 3.31. The
signal has length L and the number of samples necessary to describe the
signal is N=2LBP =2La,. A sample function sinc(x/d,) in f(x)
diffracts light within the angle 6., = Aa,. If the illumination is collimated,
the marginal ray from a sample located at x = 0 intercepts the lens plane
at h, = AaF. The lens must also capture all the rays from samples
located at the extreme edges of the signals.

The relative aperture R of the lens is the ratio of the clear aperture A4 to
the focal length F of the lens: R = A/F. For the conditions shown in
Figure 3.31, the aperture is the sum of the aperture 24, needed to capture
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Figure 3.31. Ray diagram for finding the capacity of a lens system.

all the light from an on-axis sample and the aperture L needed to capture
all the light diffracted by extreme off-axis samples. The relative aperture
therefore is

LI+ 24y
B F
IL| + 2Aa ,F|

7 (3.131)

Because L and &, have the same sign at the lens plane, whether we deal
with the upper or the lower half of the aperture, we remove the absolute-
value signs to obtain

L+ 2\a F
R=———"— =Ry +R,, (3.132)

where R, is the relative aperture of the signal and R, is the relative
aperture of the Fourier-transform plane. This relationship suggests that,
for a lens of given relative aperture, we could use a small signal with high
resolution or a large signal with low resolution. Which is best? The answer
is provided by multiplying R by L /A and solving for N = 2LBP = 2 La_:

N=— - —. (3.133)

We now find the signal length that maximizes the system capacity by
differentiating N with respect to the signal length L. We find that

w_oR_2 0 3.134
PSPV (3134
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from which we conclude that L = RF/2 maximizes the number of
samples that the system can transmit. We substitute this value of L into
Equation (3.132) and conclude that R = 2R, = R, + R,, which implies
that R, = R,,. Thus, the signal and Fourier planes must have the same size
to maximize the system capacity. The optimum condition is therefore one
that strikes a compromise between signal size and signal cutoff frequency
so that the number of samples, which is the product of the two quantities,
is maximized.

The maximum capacity is found by substituting the value of L into
Equation (3.133) to find that

R’F RA
N e

Noax = 30

(3.135)

This result shows a lens with a high relative aperture R and a large clear
aperture A4 yields a system with a high capacity. As N = 2Le,,, we also
see that

R

@ =57 (3.136)

is the maximum frequency that passes through a lens of relative aperture
R. These results show that a, is not dependent on the focal length of the
lens. Since A = 0.5 u, a rule of thumb is that a., = 1000R so that an f/2
lens, which has a relative aperture of 0.5, has a coherent cutoff frequency
of 500 Ab.

The maximum information capacity was derived under the condition
that the lens is operating at infinite conjugates. An image of the signal is
easily created by using a second lens, also working at infinite conjugates. If
we use finite conjugates, the distance from the signal to the lens is greater
than F and the lens aperture would have to increase somewhat to
accommodate the diffracted light, thereby lowering the capacity of the
system. The results given in this section have application to the design of
holographic memories (28) and show that the system capacity is generally
set by the optical invariant, not by the capacity of the recording material.

3.7.2. Optimum Packing Density
In applications such as optical storage and retrieval of information, we

want to maximize the packing density, defined as (29)

N
p= 6 samples/mm, (3.137)
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Figure 3.32. Ray diagram for finding the maximum packing density.

where Q is the length of the aperture. We examine all planes in the
system shown in Figure 3.32 to find the smallest one through which all
information passes. For collimated illumination, the smallest aperture to
the left of the lens must be Q = L because no additional aperture is
needed to accept diffraction caused by the signal. On the signal side of the
lens, we therefore find that the packing density is

1
p=—=——"=2a,= I (3.138)

This result shows that the maximum packing density p is independent of
the size of the signal when we are on the signal side of the lens.

Consider the rays to the right of the lens, in which the distance from
the lens to a candidate plane is s. The smallest aperture that contains all
rays occurs where the marginal ray from a sample at the upper edge of the
signal and the parallel ray from the lower edge of f(x) intersect. Because
these parallel rays intersect at the back focal plane of the lens, s = F.
Note that the same result is obtained by summing the heights of these two
rays at an arbitrary plane to form a relative aperture; we then calculate the
partial derivative of p with respect to s, following the same procedure as
in handling Equation (3.131).

The minimum value of Q on the image side of the lens occurs at the
Fourier plane, or when s = F (29). The highest packing density on the
image side of the lens is therefore at the Fourier plane. As 0., = Aa,, we
find that Q = 2AFa_, so that the packing density at the Fourier plane is

po e 2 0 (3.139)

which is independent of the frequency content of the signal.
N
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The gain in packing density is given by the ratio of the maximum
density on the image side of the lens to that on the signal side:

1/dy = A Zhan (3.140)

As an example, suppose that the lens has a relative aperture R, = 0.5 and
that A = 0.5 u so that G = 500/a,,. If a,, =5 Ab, which is typical for
textual material at normal reading distances, G = 100. Thus, we store
information in an area 10* smaller than that occupied by the signal itself;
that is, we store an 8 X 11-in page in an area of about 0.1 X 0.1-in. When
a., is greater than 500 Ab, the gain is less than unity; there is no
advantage to storing information at the Fourier plane when the spatial
frequencies of the signal are higher than 500 Ab.

3.7.3. Convergent Illumination

We briefly show how to improve the results from Section 3.7.2 by using
convergent illumination and a two-lens solution as shown in Figure 3.33.
The first lens serves as a field lens and focuses parallel bundles of rays
through an aperture of length L that contains the signal f(x). The signal
is placed just to the right of the first lens whose aperture is just large
enough to fully illuminate the signal with a convergent wave. The aperture
of this lens is clearly independent of the frequency content of the signal and
is dependent only on the signal length.

The aperture required of the second lens is independent of the length of
the signal and is dependent only on the frequency content of the signal.
Each of these lens apertures are therefore smaller than those of lenses
operating at infinite conjugates. If G is fairly large, the aperture of the
second lens is much smaller than that of the first lens; for example, if

Py

%
Fourier
Signal plane

Image

Figure 3.33. Two-lens solution for maximizing the system capacity.
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G = 100, the aperture of the second lens is 100 times smaller than that of
the first lens. Note that the aberrations of the first lens do not affect the
imagery; because the second lens has a low relative aperture, it produces
high-quality imagery because its aberrations tend to be small.

3.7.4. The Chirp-Z Transform

The configuration shown in Figure 3.33 is suggestive of the configuration
needed to create the chirp-Z transform. This transform is sometimes used
in electronic systems to convert a time coordinate to a frequency coordi-
nate. Recall that the one-dimensional Fourier transform is

F(£) = [ f(x)el@m/ % g (3.141)
The basic idea of the chirp-Z transform is that

2méx/AF = (Zw/AF)[(f +x)" - (£ - x)7]

so that we can also express the Fourier transform as
F(§) = ej(wgz/).F)fm [f(x)ej(n-xz/AF)]e—j(rr/AF)(f—x)zdx. (3.142)

This result shows that we obtain the Fourier transform if we premultiply
the signal f(x) by a chirp function, perform a Fresnel transform on the
resultant product, and postmultiply the integral by a chirp. The optical
equivalent of these operations is shown in Figure 3.34. The first lens

P, P,

f(x) F&
. . .
LedtrIAPE ) | [ eI FIAP
[ -
Premultiplication Free space Postmultiplication
by a chirp propagation by a chirp

Figure 3.34. Chirp-Z transform in optics.
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provides the premultiplication by illuminating f(x) with a converging
spherical wave, equivalent to a chirp function. Propagation through free
space provides the required Fresnel transform between the signals at
planes P, and P,. The second lens provides the postmultiplication of the
Fourier transform F(£) by a chirp. The similarity of the optical layout in
Figure 3.34 to that of Figure 3.33 is obvious and we see that the chirp-Z
configuration is useful for minimizing the apertures of the lenses and their
aberrations.

3.8. SYSTEM COHERENCE

Coherence theory, which deals with the statistical fluctuations of light, is
important in physical optics. For our purposes, we want to establish a few
working rules that help us understand some of the phenomena we observe
and to settle some issues relating to system linearity.

Any system with transfer function 7 is linear if

T[af(x) + bfy(x)] = agy(x) + bgy(x), (3.143)

where g,(x) = T[f(x)] and g,(x) = T[f,(x)]. In optical systems we are
faced with some choices that tend to blur the usual concepts of linearity.
Optical systems may be linear in terms of amplitude (equivalent to
voltage), in terms of intensity (equivalent to power), or in terms of neither.
The subject of linearity cannot be resolved until we assess the role of
coherence in optics.

Coherence is a measure of how well light from a source is correlated
over space and time. If light is nearly monochromatic, which represents
the situation of greatest interest to us, we visualize that wave trains of light
arrive at an observation screen with the same average frequency but with
slowly varying magnitudes and phases. When the source is strictly
monochromatic, the amplitude modulation disappears and the fringes are
stable in time. In general, an optical system has both spatial and temporal
coherence properties.

3.8.1. Spatial Coherence

We quantify spatial coherence by considering the intensity pattern created
at plane P; from two elemental apertures Q, and Q, located at plane P,,
as shown in Figure 3.35. At the secondary source plane P, the intensities
are proportional to the elemental source area do so that the magnitude is
proportional to the square root of the primary source area at plane P,.
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Primary source

Aperture (secondary source)

ayJdo

Figure 3.35. Geometry for calculating the spatial coherence function.

Thus, the complex amplitudes a,Vdo and a,/do define the secondary
sources. If unit value sources at Q, and Q, produce complex amplitudes
u, and u, at an observation point P at plane P, the elemental intensity at
P is

81, = lau,Vdo + ayu,/do|’ (3.144)

The total intensity at P due to the entire primary source is given by the
integral of 81, over the primary source. We define the integral of Ialull2 do
as I, and that of |a,u,|* do as I, to obtain

I = f la,u,)* do + f layu,l® do + 2Re{f auasu} do-}

\
=L +1L+1,, (3.145)
where
I, = 2Rc{ [ auatus da-} (3.146)

is the mutual intensity due to the two sources at plane P,. As the first
integral of Equation (3.145) is proportional to I, and the second integral is
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proportional to /,, we can express the mutual intensity as
I, =2y, y,,, (3.147)

where the function vy, is called the complex degree of coherence. Note that
v, is a function of the primary source geometry, the secondary source
geometry, and the paths traversed by the light from P, to P,. We express

Y12 a8

Vg = |.ylz|ef(¢1‘¢2+4'lz), (3148)

where ¢, and ¢, are the phases associated with the path lengths from the
sources at O, and Q, to the point P and ¢,, is the phase difference
between points O, and Q,.

Finally, we find that the intensity at P is

L=1 + I+ 2T L lylcos(¢, — &, + by,). | (3.149)

Generally the argument of the cosine function is unimportant because it
simply establishes the principal maximum of the interference fringes. Of
greater importance is the factor |y,,|, which is called the degree of spatial
coherence. The degree of coherence is bounded to the interval between
zero and one because the mutual intensity has been normalized according
to Equation (3.147). We see that when |y ,| = 0, the intensity I, = I, + I,
is simply the sum of the individual intensities of the two sources. As a
result, the optical system is incoherent and is linear in intensity.

We connect the fringe visibility from Equation (3.29) with the degree of
coherence by using Equation (3.149) in Equation (3.29):

_ Ima.x - Imin
Imax + Imin

I+ L+ 2{IiL vyl = [ + I, = 2/ G va]]
I + L + 2L Lyl + [ + I, = 2/, L1y,

_ 2V1112|712|

I +1,

(3.150)

When I, = I,, we find that V' = |vy,,| so that the visibility of the fringes is a
direct measure of the degree of coherence. When I, # I,, of course, we
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must measure I, and I, independently and use Equation (3.150) to
calculate |y,l.

When |y,,| = 1, the intensity at the observation point ranges from
(I)pax = Iy + I, + 29/111, to (L) =1, + I, = 2y/I1,. When I, = I,,
the fringe visibility in a region about the point I, is unity. When I, # I,
there is an intensity bias and the fringe visibility is not unity. In either
case, if |y,,| = 1, the system is coherent and is linear in amplitude.

When 0 < |y,,| < 1, the source is partially coherent. There is some
evidence of fringes over small areas but the fringe visibility is never unity,
even if I, = I,. Such systems are linear in neither amplitude nor intensity.
Although they can be analyzed using linear systems theory, the analysis is
complex and rarely offers much physical insight into the performance of
the system. We avoid them like the plague.

3.8.2. Temporal Coherence

In an interferometer, light from a single source is divided into two beams
and recombined after traversing different paths. If the light is monochro-
matic, a wave train has an infinitely long duration so that the coherence
distance AD and the coherence time At = AD/c are infinite. As the
source becomes increasingly polychromatic, the average length of the wave
train shortens, as do coherence time and distance.

Temporal coherence is the property of light that allows interference
between a wave train from a source and a delayed wave train from the
same source. Consider the Michelson interferometer shown in Figure 3.36,
in which we represent the signal from the light source by s(z) at some

M,
R, Beamsplitter
Lens Pl plo ? /
, M,
Source / 3
(1-p)y
/ R,
Io= Is@)P?
P, Observation or

detection plane

Figure 3.36. Geometry for calculating the temporal coherence function.
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arbitrary plane P; before the beamsplitter. The intensity at this plane is
I,= |s(£)|%. Suppose that a fraction p of the light intensity is reflected by
the beamsplitter and directed toward mirror M,. If the reflectivity of the
mirror is R;, the light intensity reflected back toward the beamsplitter is
pR,. If the beamsplitter is nonabsorbing, a fraction (1 — p) of the intensity
reflected from mirror M, reaches the observation plane. The total light
intensity reaching plane P, due to the first branch of the interferometer is
therefore I, = p(1 — p)R,I,.

A similar argument is applied to the second branch of the interferome-
ter, in which light is transmitted by the beamsplitter, reflected by mirror
M,, and then reflected by the beamsplitter to reach plane P,. The total
light intensity reaching plane P, due to the second branch of the interfer-
ometer is therefore I, = p(1 — p)R,I,. At the observation plane P,, the
signal is

£(1) = V(T = YRy s(t = 2,/¢) + o(l = p)Rys(t — 2,/¢), (3.151)

where z,/2 and z,/2 are the distances measured along the optical axis
from plane P, to plane P,. The bandwidths of all physical detectors are
too low to detect the frequency of light directly. Such detectors have
low-pass characteristics, equivalent to integrating the intensity over a time
period T. The effective intensity, aside from a scaling factor, is therefore
given by the time average of the square of the resultant amplitude signal:

Iy = {f()f*(2))
- (Veer=rmes(s - 2)[ ) + (Vo =mrmas(s - 2)[)
+ 2Re{<p(1 —P)S(t - %)S*(t - icz)>}
=1+ L+ 2p(1 - p)yR\R,

XRe{ li i g (t—i) *(t—ﬁ)dt 3.152
ej lim —— | s s p . (3.152)

Too -T c

We now change variables so that ¢t — z,/c = q and find that the third
term of Equation (3.152) becomes

r::(f) = 2P(1 - p)VRlRZ

1 z, z
XRe{ lim — *( + — - —) . (3.153
e{r'-r,“m T GO Ui dq} (3.13)
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If s(¢) is a stationary process, the integral is a function only of the time
difference (z, — z,)/c = v so that the time origin is immaterial. We
therefore write the integral as

1
r(7) = 2p(1 — p)y/R,R, Re{ lim 1 57 ) s(q)s*(q + 1) dq}
(3.154)

which we recognize as the autocorrelation function of s(z).

In the optics literature, r(r) is normally indicated by I,,(7) and is
called the rmutual intensity. If we normalize I';,(r) by I',,(0), we find that
the intensity at plane P, is

L=1+1+2yT L y,(7), (3.155)

where y,,(7) is called the temporal coherence function. As s(t) must be
real valued, y,,(r) is also real valued and we normally speak of the
magnitude |y,,(7)| as the degree of temporal coherence.

The source is completely incoherent when we use white light and
v12(7) = 8(7). In this case we see that, for = # 0, the intensity at plane P,
is I, =1, + I,, which is the ordinary splitting case which would result
from two independent sources. When the two paths of the interferometer
are exactly balanced so that + = 0, the intensity at the output increases to
IL=1+1L+2/LI,

To further illustrate the concept of temporal coherence and to relate it
to communication theory, suppose that s(¢) = a(t)cos(2f,;t), where a(t)
is a baseband modulation signal and f; is the frequency of an assumed
monochromatic light source. Equation (3.154) then becomes

r(t) = 2p(1 = p)RyR,
1
xRe{ tim 5 /" a(a)cos2mfia)a*(q + Deosi2mfi(a + 7] dq}
(3.156)

We expand the cosine product to form sum and difference frequencies.
The sum frequency, when integrated over a long period of time, does not
contribute to the integral so that we have

= 2T
=2\/I,Lr,,(7)cos(2mfiT), (3.157)

r(t) =2p(1 — p)R|R, COS(Z‘H’f,T)RC{ lim — a(q)a*(q + 1) dq}
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where we have noted that the integral is the autocorrelation function of
the modulation function a(z). The total intensity at plane P, for this
example is

Iy=1 + I, + 2yI,L,r,(7)cos(2mf;T), (3.158)
and the temporal degree of coherence is

Y12(7) = ral(7)cos(27fi7), (3-159)

so that, although the light is monochromatic, the degree of temporal
coherence is determined by the baseband signal a(r). When r,(7) = 1,
Equation (3.158) shows that I, = I, + I, + 2y/I,I, when the cosine func-
tion is at its maximum value. When the cosine term has its minimum value,
we have that I, = I, + I, — 2y/I,1,. In general, Equation (3.158) shows
that the output of the interferometer, as one of the mirrors is moved to
change the value of 7, follows the shape of the autocorrelation function of
the baseband signal a(z), but with rapid fluctuations due to the cosine
function of 7. The autocorrelation function r,(7) is the envelope of the
cosine because it is a slowly varying function.

3.8.3. Spatial and Temporal Coherence

In some systems the temporal coherence may further modify spatial
coherence. For example, in Figure 3.35 any point on the observation plane
that is equally distant from the two sources will show fringes, even in white
light, because 7 = 0 and y,(r) = 8(7) = 1. As we move to a position
away from the bisector, the degree of temporal coherence decreases
because the path lengths become unequal. The fringe visibility in the
observation plane is, to the first order, the product of the degree of spatial
coherence and the temporal coherence function. ’

The coherence length AL =z, — z, is the physical path difference
corresponding to the coherence time duration of the source. The coher-
ence length indicates how accurately the two path lengths in an interfer-
ometer must be balanced. The coherence length is related to the
frequency spread in the source in the following way:

Cc
f= x’
cAA  fAA
M=% =5
Af  AA
VR (3.160)



PROBLEMS 141

so that the wavelength spread is proportional to the frequency spread.
Furthermore, since AL = cAt, we have

c
AL =cAt = K}: = A_)t. (3161)

PROBLEMS

3.1. Calculate the observed spatial frequency of the fringe pattern
generated in a plane P, by applying the Fresnel transform to two
sample functions of the form sinc(x/d,), spaced 4 mm apart in
plane P,. Let the distance D between the planes be 1000 mm.
Assume completely coherent light and a wavelength of 0.5 w. If the
sources each have dimensions of d;, = 0.05 mm, what is the approx-
imate extent of the fringe pattern? Hint: First calculate the diffrac-
tion angle produced by each source; then calculate the width (or
extent) of the beam in plane P,; then calculate the extent of the
overlap. Recall that interference fringes can occur only when two
or more beams of light overlap.

3.2. Suppose that the signal now consists of three sample functions of
the form sinc(x/d) in the (x, y) plane: one at (0,0), one at (4,0),
and one at (0, 3). Sketch the input signal as it would appear if you
looked at the x-y plane from the positive z direction. If the other
parameters are as in Problem 3.1, provide a two-dimensional sketch
of the spatial frequency fringe pattern in the Fresnel plane, calcu-
late the values of the spatial frequencies, and show the regions of
overlap. Hint: Treat the sample functions in a pairwise fashion and
use the principle of superposition.

3.3. You observe a Fresnel zone present on a viewing screen. You
measure the diameter of the first dark ring as 2 mm. If the
wavelength is 0.5 u how far away from the screen is the point
source? Assume that the reference beam is collimated and that the
intensity of the zone is a maximum in the center. What is the
diameter of the seventh dark ring?

34. Calculate the observed spatial frequency of the fringe pattern at
the Fourier-transform plane when the input is the set of two
sources given in Problem 3.1; the focal length of the lens is
1000 mm. Is the value of the spatial frequency different from that
of Problem 3.1? How about the extent of the fringes; i.e., is the
amount of overlap in the Fourier plane less than, the same as, or
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3.5.

3.6.

3.7.

3.8.

3.9.
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greater than that of the Fresnel plane? Support your answer with
calculations and sketches.

A source of the form sinc(x/d;), where d, =5 pu, is located a
distance of 700 mm from a screen. Another source is located
900 mm from the screen and displaced laterally from the first
source by 20 mm. Calculate the size that the second source must
have so that it completely overlaps light from the first source at the
screen and calculate the highest spatial frequency in the interfer-
ence pattern.

A plane-wave reference beam is added to the wave produced by a
point source of the form sinc(x/d,). The maximum frequency
measured in the interference pattern is 25 Ab. The source is
275 mm from the observation screen. Calculate (a) the chirp rate,
(b) the length of the chirp, (c) the number of samples needed to
accurately represent the chirp function, and (d) the source size d,,.

A one-dimensional Fresnel zone is recorded on a strip of film
220 mm long. The spatial frequency at one end is zero and the
spatial frequency at the other end is 430 Ab. The strip of film is
illuminated by collimated light and is moved through an aperture
that is 30 mm long. Calculate where the light is focused when the
lowest-frequency portion of the strip is in the aperture. Repeat the
calculation for when the highest-frequency portion is in the aper-
ture. Describe what happens to the size and location of the focused
spot when the film is moved through the aperture at a constant
velocity vg. Illustrate your results with a sketch. Assume the wave-
length to be 500 nm.

You have a prism whose index of refraction is 1.55 and whose apex
angle is 24° The prism is 14 mm high and is illuminated, normal to
one of its faces, by a plane wave of collimated light whose extent is
infinite in the plane of the prism. Calculate the distance from this
plane to the plane where the refracted light completely overlaps the
undisturbed light. Calculate the form of the resultant intensity
pattern if the prism absorbs a fraction 0.4 of the light (do not forget
to calculate the effect of the prism magnification on the amplitude
of the transmitted light). Calculate the spatial frequency. Assume
the wavelength to be 500 nm. Do a sketch.

Calculate the two-dimensional Fourier transform of a rectangular
aperture that is 4 mm long in the x direction and 6 mm high in the
y direction; the focal length of the lens is 200 mm and the
wavelength of light is 0.5 w. Provide labeled sketches of both
the object and transform plane light distributions. If the object
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3.10.

3.11.

3.12.

3.13.

plane were stretched by a factor of 2 in the x direction, how would
the transform change in shape and amplitude?

The amplitude of a simple one-dimensional signal is given by
f(x) =[1 + cos(2ma,x)lrect(x/L). Suppose that the magnitude
response of a spatial filter in the region of +a; in the Fourier
plane is 0.4, and that its phase response is e’#; let the transmittance
be 1.0 in the region where the undiffracted light is located (a = 0).
Sketch the magnitude and phase of the filter. Calculate the inten-
sity |¢§>’(u)|2 at the output of the filtering system and compare it with
the intensity of the object |f(x)|>. Hint: It may be useful to let
L — = to solve for the inverse transform. Comment on the effect
that the phase B has on the intensity of the output. Make a similar
comparison if the magnitudes are as given but the phase response is
e’ at +a, and e at —a,?

A function f(x) =1 + cosQ2ma,x) + cos(Qmwa,x) is placed in a
Fourier-transforming system for which A = 0.5 u, the focal length
is F =200 mm, and the input aperture is L = 50 mm. Assume
normal incidence illumination and let a; = 10 Ab and a, = 15 Ab.
Suppose that the function is moving with velocity v = 2 mm /sec in
the positive x direction. Part (a): Write the general form of f(x,t)
that incorporates f(x) and the velocity v. Part (b): Derive the
Fourier transform F(a,t) of f(x,t) in terms of the general vari-
ables and parameters. Part (c): Using the specified values of a;, a,,
A, F, and v, calculate the locations and the temporal frequencies in
the Fourier plane associated with each spectral component of the
input signal.

Consider the convolution in the space domain:
g(u) = f sinc(ax)sinc[b(u — x)] dx.

Find g(u) for (1) a > b, (2) a = b, and (3) a < b. Hint: There is no
need to solve the convolution directly; the solution is apparent
when you consider what happens in the Fourier domain.

You place a lens whose focal length is 100 mm a distance of
400 mm from a source of the form sinc(x/d,), where dy =5 p.
You place an aperture whose diameter is 36 mm a distance of
300 mm from the source; the signal is f(x) =1+ cosQma;x),
where a, = 50 Ab. Calculate (a) the position of the Fourier-trans-
form plane, (b) the function F(£&), (c) the function F(¢) if the signal
and aperture are placed in the plane of the lens, and (d) the
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distance between the undiffracted light and the diffracted light in
the Fourier domain if the signal is placed 10 mm away from the
lens on the Fourier-transform side of the lens.

We enter a laboratory and discover that someone has set up an
interferometric system that causes a time delay between two beams
of light derived from a common source. We block one of the beams
and find that a power meter reads 3 mW/mm? at the output plane.
We block the other beam and find that the meter reads 1 mW /mm?.
With both beams falling on the power meter, we read 6 mW /mm?.
What is the magnitude of the degree of coherence for this particu-
lar set up? Hint: This problem deals with temporal coherence.

In an adjacent laboratory, we notice a different interferometric
arrangement in which two small apertures in a plane appear to be
illuminated by a common light source. We notice that a set of
spatial fringes exists at an output plane. When we block one of the
apertures, we measure the intensity as 2 mW/mm?. When we block
the other aperture, we measure the intensity as 9 mW /mm? When
both apertures are open, we note that the maximum intensity in
the fringes is 12.7 mW/mm?. Calculate (1) the magnitude of the
complex degree of coherence, (2) the minimum intensity in the
fringe pattern, and (3) the fringe visibility. Hint: This problem deals
with spatial coherence.

We observe fringes from two apertures located at x = +4 mm
in plane P, at a screen located 100 mm away from plane P,.
The intensities of the two sources are I, = 10 mW/mm? and
I, =5 mW/mm? The visibility of the fringes is measured as
V = (.72 at the observation screen opposite the midpoint between
the two sources. For this setup, the visibility drops linearly, being
zero at +20 mm from the center: (a) Calculate the degree of
spatial coherence |y,| and (b) the degree of temporal coherence
v12(7) at = 2 picoseconds (i.e., for a path difference of 0.6 mm).

Part (a): In a spatial interferometer the intensity due to one beam
is 16 times that due to the other (when each is measured sepa-
rately). In terms of one of the unknown intensities, calculate I,,,
I.n» and the fringe visibility when (1) y,, = 0.4 and (2) when
v12 = 0. Part (b): Under what general conditions could you adjust
the path-length difference of a temporal interferometer and find
that the maximum and minimum intensities are periodic? Give at
least one specific example to support your claim.
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Spectrum Analysis

4.1. INTRODUCTION

Spectrum analysis is the most widely used signal-processing technique in
the physical sciences for gaining information about unknown signals. It is
used in applications such as pattern recognition, cloud-cover analysis,
inspection of manufactured items, particle-size analysis, measurements of
turbulence, sea state analysis, characterization of the electromagnetic
spectrum, determining direction of arrival of emitters, and structural
analysis. The Fourier transform, as developed in Chapter 3, plays a central
role in optical spectrum analysis. Signal features, such as periodic struc-
tures, are more easily detected in the Fourier domain than in the space
domain because the energy from each frequency in the signal is concen-
trated at a particular point in the Fourier plane.

In the optical system shown in Figure 4.1, a signal stored on a spatial
light modulator at plane P, is illuminated by coherent light. In Chapter 3
we discussed the range of geometrical conditions for which the Fourier
transform occurs; for convenience, we use a system in which the signal and
Fourier planes are at the front and back focal planes of the lens. The
complex-valued light at plane P,, the image plane of the primary source, is
the Fourier transform of the light at plane P;:

S(a,B) = [[ a(x,y)s(x,y)e @8 dxdy, (4.1)

where s(x, y) is the amplitude of the signal, a(x,y) is an aperture
function, x and y are the spatial coordinates of plane P,, and « and B are
spatial frequencies. The spatial coordinates ¢ and n at plane P, are
related to the spatial frequencies @ and B by

¢=AFa,
n = AFB, (42)
145
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Figure 4.1. The Fourier transform is basic to spectrum analysis.

where F is the focal length of the lens and A is the wavelength of light. A
photodetector array, placed in the Fourier plane, measures the spectral
content of the signal.

In this chapter we discuss the key active elements of a typical spectrum
analyzer: the light source, the spatial light modulator, and the photodetec-
tor array. We then discuss the key performance parameters and develop
some design guidelines for maximizing the dynamic range of the analyzer.
We conclude this chapter with a discussion of a two-dimensional spectrum
analyzer that provides excellent frequency resolution over an extremely
wide signal bandwidth.

4.2. LIGHT SOURCES

The usual source of coherent light in optical signal processing is a laser.
Water-cooled argon-ion lasers have strong spectral lines at 488.0 and
514.5 nm and power outputs in the 0.2-20-W range. Helium-neon lasers,
emitting light at 632.8 nm, are more often used because they are air
cooled, compact, and reliable. They are generally less powerful, however,
with outputs in the 1-50 mW range.

Semiconductor lasers are the most useful lasers for signal-processing
applications because they provide high optical power levels, help to
significantly reduce the size of the processing system, and efficiently
convert electrical power into optical power. Laser diodes provide output
powers comparable to those of much bulkier gas lasers; single-element
lasers have been developed, with both spatial and temporal single-mode
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operation, at powers of greater than 50 mW at 830 nm (using GaAlAs
layers of various fractional compositions) and at 1300 nm (using InGaAsP
layers). Large arrays of laser diodes have been developed that produce
watts of cw optical power (30).

4.3. SPATIAL LIGHT MODULATORS

To create the spectrum of a signal, we structure the input data in an
optical format. Spatial light modulators are devices that format electronic
or incoherent optical information so that it can be processed using
coherent light. Historically, the most common spatial light modulator was
photographic film as used in pattern recognition and radar processing
applications. Photographic film has the attractive feature that its space
bandwidth product most nearly matches that of both optical sensors and
optical processing systems. In an interesting study, Kardar has shown that
film also has a high information channel capacity, even when we account
for the relatively long exposure times (31).

For modern signal-processing applications, we need spatial light modu-
lators that have several distinctive features.

« A large space band-width product to provide a high level of perfor-
mance.

« Adequate bandwidth and response time for use in computationally
intensive applications.

« Wide dynamic range for applications such as spectrum analysis and
radar processing.

« Good linearity so that intermodulation products are controlled.

« Good efficiency so that optical sources with high power outputs are
not required.

» Good phase control so that aberrations do not limit system perfor-
mance.

» Good geometric fidelity so that the processed signals are not distorted
spatially.

We briefly review the current state of two-dimensional spatial light modu-
lators and assess which are most useful for real-time signal processing
(32-34). One-dimensional acousto-optic spatial light modulators needed
for real-time signal processing, as discussed in the later chapters of this
book, are treated separately in Chapter 7.
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4.3.1. Light Valve Spatial Light Modulators

An early real-time modulator was a modified light valve developed for
theater projection television. An electron beam gun is used to deposit
charge onto a viscous fluid supported on a rotating disc substrate as shown
in Figure 4.2(a). Electrostatic forces deform the fluid to produce a path-
length variation that phase modulates light passing through the fluid film.
The thickness variation is represented by f(x, y, t) = s(x, y, t)cosQmra,_x),
where s(x,y,t) is the TV baseband signal and a, is a spatial carrier
frequency introduced in the x direction so that we can separate diffracted
light, containing the information, from undiffracted light.

The complex-valued amplitude transmittance is a pure phase function
expl jmf(x, y, t)], where m is a scaling constant, that can be expanded into
a power series. If the argument of the exponential is small, we retain just
the first two terms and express the transmittance as 1 + jmf(x, y, ). To
use the light valve in a coherently illuminated system, we want the
amplitude transmittance of the device to be proportional to the amplitude
of the applied signal. We use the Schlieren imaging technique shown in
Figure 4.2(b) in which we coherently illuminate the light valve to produce

Light valve
Illumination Processing
optics optics
Mirror ®>-‘ .
Fourier
(2 plane
Mirror Laser Fluid on
rotating disc
Read .
£ window Diffracted

/ light

Coherent
Scanning “-=---..____ ; -
elecron  ___..23f YL:R%?S?g dc stop

Write Image
film window plane

Figure 4.2. Light valve as a spatial light modulator: (a) optical system and (b) details of the
recording and reading functions.
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the Fourier transform of the input signal and use a stop in the Fourier
plane to remove the undiffracted light and one diffracted order. The
effective amplitude of the transmitted light is therefore proportional to
jmf(x, y, t) so that the light amplitude is now proportional to the applied
signal voltage.

The light valve operates at TV frame rates, has a bandwidth in the
30-MHz range, and has a space bandwidth product of approximately 10°.
The maximum diffraction efficiency is 33.8% as dictated by the diffraction
theory associated with thin phase modulating media. The light valve is a
good real-time display for raster-scanning spectrum analysis, which we
discuss in Section 4.7. Its major disadvantages are its large size and the use
of high-voltage electron beam tubes.

4.3.2. Optically Addressed Electro-Optic Spatial Light Modulators

One of the first electro-optic spatial light modulators was the Pockels
effect Readout Optical Modulator (PROM). The basic concept is that a
voltage, applied across a sandwich device as shown in Figure 4.3, produces
an electrostatic charge pattern that changes the transmittance of the
electro-optic crystal. Incoherent light, striking the device from the left,
activates a bismuth silicon oxide photosensitive layer to produce a spatially
varying charge pattern that controls the transmittance. Readout light, at a
different wavelength from the readin light, reflects from the dichroic
mirror and makes two passes through the electro-optic material. By
changing the voltage across the device, we can perform useful operations
such as contrast reversal or subtraction of two successive images. The

Transparent electrodes

e <«
> <«——— Coherent readout
Incoherent readin with red light
with blue light <
_—>
. . NS
Dichroic . i
reflector : Light-sensitive
- electro-optic
Electrode / Electrode crystal

Insulating layer

Figure 4.3. Bismuth silicon oxide spatial light modulator.
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Figure 4.4. A microchannel plate signal light modulator.

space bandwidth products of these devices are of the order of 107, with
a., = 150-500 Ab and contrast ratios of 5000 : 1 or so. The major problem
is the uniformity of response across the aperture of the device.

A microchannel plate is similar to the PROM. The key difference is that
the electro-optic material is replaced by one consisting of several small
hollow cylinders, as shown in Figure 4.4. The surfaces of the cylinders are
coated with a material that has an electron secondary emission coefficient
greater than one. Light strikes a photocathode, which releases electrons
into the microchannel tubes. The electrons are amplified and strike an
electro-optic plate, as with the electron beam addressed devices, or they
strike a fluorescent screen to provide a brighter optical image. These
devices have 40-200-Hz frame rates and about 10-Ab resolution. They are
sometimes used in nighttime spotting scopes and binoculars; extremely low
light level scenes are readily observed with these devices. They can also be
addressed by a scanning laser beam to process real-time one-dimensional
signals.

4.3.3. Liquid-Crystal Spatial Light Modulators

Liquid-crystal display devices come in many versions. In one version the
active material is a nematic liquid crystal that changes the polarization of
the transmitted light according to the applied voltage. The field is applied
by means of a matrix of electrodes or by light falling onto a photoconduc-
tive surface. Readout is by means of a single or a double pass, as shown in
Figure 4.5. Another version operates in the variable grating modulation



4.3 SPATIAL LIGHT MODULATORS 151

Dielectric  Photoconductive

Insulating mirror layer
layers Transparent
Glass \ electrode
> b ] | B <
—> < <
. > - <
Readin _3 -<—
light > < <«— Readout
—>» < <« light
> -« <
—> < [ o
—> < | -
Modulated Glass
light
Transparent  Nematic  Light-blocking
electrode liquid crystal layer

Figure 4.5. Nematic liquid crystal display spatial light modulator.

mode, wherein the application of a dc voltage causes the liquid-crystal
display to assume a grating structure. Light is thereby diffracted according
to the amplitude of the applied voltage. Typical liquid-crystal displays have
frame rates of 10-20 frames per second, contrast ratios of 10: 1, resolu-
tions in the 8-12-Ab range, and fairly poor throughput efficiencies. Their
performance parameters are improving rapidly and they are finding in-
creasing use as flat panel television and computer displays.

4.3.4. Magneto-Optic Spatial Light Modulators

Magneto-optic devices are based on an epitaxial garnet film grown on a
nonmagnetic substrate and are addressed by a matrix conductor array. The
Faraday effect causes a rotation of the plane of polarization. The time
required to switch one element is about 10 usec so that frame rates range
from 3 msec for 48 X 48-element arrays to 20 ms for 128 X 128-element
arrays. Efficiency is poor, of the order of 0.1%. Other magneto-optic
phenomena include optically writing on a magnetic medium and then
heating it to the Curie point at which the magnetic flux rotates apprecia-
bly. After cooling, the magnetic domains are rotated such that the ampli-
tude from an analyzer changes according to the exposure; again, the
amount of rotation is small, yielding low diffraction efficiencies.
Two-dimensional spatial light modulators have been under develop-
ment for many years but progress has been relatively slow. The issue is
finding a magic material that records analog signals and can be repeatedly
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erased and recorded without memory of past activity. The material must
also have high resolution and a high dynamic range. As materials with
these properties are also useful for optical memories to implement a
read/write capability, that field may develop alterable materials also
suitable for optical processing. A review of two-dimensional light modula-
tors, including deformable mirror technology, has recently been given (34).

44. THE DETECTION PROCESS IN THE FOURIER DOMAIN

The outputs of optical processing systems were initially detected, recorded,
and displayed using photographic film; we might say that the first two-
dimensional “photodetector array” was photographic film. In common
with other photodetector devices, film requires a certain number of
photons per unit time, is sensitive to light in certain spectral ranges, and
has a dynamic transfer function, a modulation transfer function, and a
noise floor (often expressed in terms of granularity, grain size, or Selwyn’s
number). Although the terminology is different, the concepts are similar to
those associated with modern photodetector arrays.

A key advantage of photographic film is that its high spatial resolution
matches that of the optical system. The major disadvantage is the time
delay in developing the film; as a result, it cannot support real-time
operations. Electron beam tubes, such as vidicons or image orthicons, have
limitations such as inadequate dynamic range and geometric fidelity. One-
and two-dimensional photodetector arrays, based on photosensitive
charge-coupled device (CCD) structures, provide a new flexibility of oper-
ation and have many desirable features.

4.4.1. A Special Photodetector Array

If a signal s(x, y) contains regular features, such as the street pattern of a
city, the spacing and width of the sidelobe structure in the spectrum
S(a, B) indicate the period of the street spacings. In contrast, the spec-
trum associated with natural terrain is generally more uniformly dis-
tributed over all spatial frequencies with no predominant peaks. As an
illustration of two-dimensional spectrum analysis, we show, in Figure 4.6, a
photograph that contains a variety of ground textures. From the spectra
shown in the inserts, we note that strong diffraction occurs in directions
normal to the ground texture; this is most notable in the spectra of the
bridge and of the streets. Images of the surface of the ocean produce
spectra that give information about wave direction and ocean depth.
Regions containing clouds and natural terrain have more uniform angular
spectra but still show variations in the spatial frequency distribution. If we
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TREES

Figure 4.6. Examples of two-dimensional spectrum analyses (courtesy of Robert Leighty,
U.S. Army Engineering Topographic Laboratory).

sequentially scan small portions of the input, the spectra of these subre-
gions can be detected in the Fourier plane to give an indication of texture
and its variation from one region to another.

To properly characterize the spectral information in a signal, we gener-
ally need to illuminate a subregion of the signal with a light beam that is
the right size. If the light beam is too large, the spectral characteristics of
the region are not well defined; if the light beam is too small, there is
insufficient information on which to form a spectral estimate. A typical
illumination subsystem is shown in Figure 4.7, in which the laser beam of
diameter A4, is expanded to a diameter A, by means of the beam-

Az L,y Fourier
plane

Figure 4.7. Telecentric scanning system.
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Figure 4.8. Special ring/wedge photodetector.

expanding telescope. The beam size ratio 4,/A, is the same as the focal
length ratio F,/F,. At the common focal plane, we place a rotating mirror
to provide the beam-scanning action at the signal plane.

It is important that the light strike the signal normal to its surface so
that the Fourier transform, as produced by lens L, is always centered on
the optical axis in the Fourier plane. At each position of the telecentric
illuminating beam, the photodetector array is read out to produce the
spectral content of the region being illuminated. Scanning in the orthogo-
nal direction can be provided by a second scanning stage, similar to the
one described. Sometimes the first stage is a fast scanning subsystem, using
an acousto-optic scanner (see Chapter 7), combined with a slow scanning
stage provided by a galvanometer mirror. Multifaceted rotating mirrors
may also be used when the scanning velocity is high.

A useful array for detecting these spectral features consists of a set of
wedge and annular photosensitive areas (35, 36), as shown in Figure 4.8. In
this device, called a ring/wedge detector, one half of the area contains N
photoconductive surfaces in the shape of wedges. The output signals
Q,Q,,...,Q, are proportional to the amount of light that falls on each
of the wedge-shaped photodetector elements to indicate the degree to
which the signal s(x, y) has spectral content at specific angles. The other
half of the detector consists of N photodetector areas in the shape of
narrow annular rings. The ring output signals R, R,, ..., Ry indicate the
relative energy present in s(x,y) at various spatial frequencies. The
output from R,, due to the circular photodetector element located in
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the center of the array, is proportional to the integrated amplitude of
the signal and is used to normalize the spectrum.

As the spectrum S(a, B) is symmetric about the origin when the signal
s(x, y) is real valued, no information is lost in the detection process other
than that which falls between the active areas. The signal is classified by
postprocessing the (}; and R; values according to algorithms developed
for specific applications. Details of the postprocessing are not important
here; requirements on the photodetector are. We now consider some of
these requirements.

4.4.2. Spectral Responsivity and Typical Power Levels

The operating wavelength is dictated by factors such as the diffraction
efficiency of the spatial light modulator, scattering in the optical system,
and the availability of compact, efficient sources. We need photodetector
elements whose spectral responsivity is in the 450-850-nm range to operate
effectively with commonly available light sources. The photodetector must
have a high responsivity at the wavelength generated by the laser but need
not have a broad spectral response.

Photometry is a science whose terminology is strange. In the photome-
try literature we find quantities such as lumens, lux, phots, stilbs, apostilbs,
and candelas, which are divided by feet, square feet, steradians, centime-
ters, and the like, to get even stranger quantities such as a nit (a candela
per square meter). Because we deal largely with systems that use
monochromatic light, photometry is considerably simplified. We use watts
as the measure of optical power and millimeters as the unit of distance.
The responsivity S of a discrete photodetector element is the ratio of the
photocurrent to the incident light power, expressed in units of amps /watt.

The amount of optical power at the output of a spectrum analyzer is
dependent on the efficiency of various components in the system and the
collection efficiency of the photodetector. In Section 4.6, we discuss the
optical power budget in detail; here we summarize just the main points. In
a spectrum analyzer, we generally operate the spatial light modulator at a
diffraction efficiency of no more than 1% per frequency to contain inter-
modulation products at an acceptable level. The rest of the system is
typically about 10% efficient, primarily due to beam-shaping losses. The
photodetector element collects about 30% of the light power associated
with any given frequency because we generally use three detectors per
frequency to achieve the required system performance. The maximum
power that a photodetector intercepts for a laser with output power in the
10-30-mW range is of the order of 3-9 uW. The weakest signal is often
60-70 dB below this level.
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4.4.3. The Number of Photodetector Elements

The ring /wedge photodetector, while useful for feature analysis, does not
preserve all the information available in the Fourier plane because it does
not have enough elements. The space bandwidth product of the input
signal establishes the number of elements required of the photodetector
array. The sampling theorem, as stated in Chapter 1, requires that we have
N > 4SBP elements in a two-dimensional photodetector array to avoid
loss of information.

The number of photodetector elements required is large when process-
ing high-quality signals. For example, if the highest frequency in a two-
dimensional signal is 100 Ab and if the signal is 100 mm on a side, we
require a 20,000 X 20,000-element array; this is at least an order of
magnitude larger, in each dimension, than existing photodetector arrays.
Therefore either bandwidth or frequency resolution must be sacrificed
until larger photodetector arrays become available.

The situation is more favorable when processing two-dimensional sig-
nals with low information content, such as those produced by two-dimen-
sional collection systems that also use CCD technology. Low-resolution
video cameras may produce images in a 300 X 400-sample array, requiring
a fairly simple photodetector array. The photodetector-array requirements
are also more easily achieved in some one-dimensional signal-processing
applications. For example, we often use acousto-optic cells to convert a
wideband time signal to one that is a function of both space and time. (See
Chapter 7 for more details.) Typical values for the time bandwidth product
of acousto-optic cells are of the order of TW = 1000, which is almost
independent of the interaction material used. Linear photodetector arrays,
with up to 4096 elements on a single chip and coupled to a CCD readout
structure, are available to satisfy these sampling requirements.

4.4.4. Array Geometry

The appropriate photodetector array for a one-dimensional spectrum
analyzer is a linear array as shown in Figure 4.9. The array consists of M
active elements shown shaded, each of width d' and height A. Each

" —>|d'|<— > d e
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Figure 4.9. One-dimensional linear photodetector array.
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element behaves as a photocapacitor on which electric charge accumulates
in proportion to the incident light intensity and to the integration time.
The array is read out serially by transferring the charge to a CCD
structure and shifting the information onto multiple video lines, whose
readout rates are each in the 1-10-MHz range.

The center-to-center spacing between photodetector elements is d and
¢ =d'/d is the spatial duty cycle of the array elements. The angular
separation between adjacent frequencies and the focal length of the
transform lens must be related to the dimensions of the array. For a
uniformly illuminated signal of length L, the angular separation &6
between minimum resolvable frequencies da is simply 80 = A /L so that
the frequencies are separated by a distance AF/L, at plane P,.

We need at least two detector elements per frequency to satisfy the
sampling theorem in the Fourier domain; we therefore conclude that

AF
2d < —L— (4.3)

In Section 4.5, we refine these calculations to account for signals that have
weighted illumination to control sidelobe levels in spectral analysis appli-
cations.

Aberrations in an optical system are most easily kept under control if
the relative aperture, which is approximately equal to 2L /F, is less than %.
Thus, an ideal center-to-center spacing for the photodetector elements is
d = 10A, which is of the order of 6-8 . The center-to-center spacing on
currently available linear arrays is typically 12 x or more; as a result, the
focal length of the Fourier-transform lens and, therefore, the overall
length of the optical system is somewhat greater than the optimum length.
The size of the optical system is not a concern for ground-based systems
because the volume of the optical system is generally a small fraction of
that of the electronics. In airborne systems, however, the electronics are
often packaged using very large scale integration (VLSI) techniques so
that the volume and weight of the optical spectrum analyzer becomes
relatively more important.

For one-dimensional applications, the height 4 of the photodetector is
set by the signal height H in a fashion similar to Equation 4.3. If H # L,
we use cylindrical lenses to match the vertical height of the spectrum to
that of the array. For a two-dimensional application the photodetector
center spacing and duty cycle are generally the same in both directions.

The required geometric accuracy for most spectrum analysis and corre-
lation applications is that center spacings are within + 1% of their nomi-
nal positions, with a cumulative error of less than +d /10 at any position
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in the array. Semiconductor fabrication precision is usually better than the
optical distortion in the system.

4.4.5. Readout Rate

In two-dimensional applications, the frame rate is a function of how
rapidly the signal information changes. The spatial light modulator frame
rate, in turn, determines how rapidly the spectrum changes; the photode-
tector array is typically read out once per frame. Integration on the array
may range from a few milliseconds to a few seconds, provided that the
detector does not saturate so that a linear response is maintained. The
contents of the array are read out just before saturation, digitized, stored,
and accumulated in postdetection memory. The accumulated values repre-
sent the desired spectrum and are available for further postprocessing
operations.

In other applications, such as those involving real-time processing of
one-dimensional signals as discussed more fully in Chapters 8 and 10, the
spectrum may change rapidly so that we must read the array once every T
seconds, where T is of the order of several microseconds. Unfortunately,
the resultant temporal sampling rates are often not sustained by CCD
transfer rates or by the digital postprocessing system, even when multiple
video lines are used.

In both one-dimensional and two-dimensional spectrum analysis, we
would benefit from the development of smart arrays, in which some
postprocessing functions are included on the photodetector chip. Imple-
menting logic functions at the array element level reduces the transfer
data rates and the complexity of the subsequent electronics drastically. For
example, suppose that we transfer information only if a photodetector
element exceeds some preselected threshold. Or, suppose that we transfer
information only if the instantaneous intensity exceeds some preset value.
These operations require built-in circuitry for each element or groups of
elements in the array. The implications of developing such a capability are
enormous because the transfer rates associated with processing a wide-
band received signal may then be reduced by factors of 102-10% or more.

4.4.6. Blooming and Electrical Crosstalk

When we use long integration times to detect weak signals, we must
ensure that the excess charge produced by strong signals is properly
drained away so that spillover into adjacent elements does not mask weak
signals. The spillover is sometimes optical in origin, with photons migrat-
ing from one photodetector element to another through the substrate of
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the array; this spillover is called blooming. Blooming is a more severe
problem at longer wavelengths because of increased penetration distances
in the substrate.

If the spillover is electrical in origin it is called crosstalk. We typically
want the effects of crosstalk and blooming to decrease at a rate of at least
10 dB per element, referenced to the saturated element, to a level of at
least —70 dB for all elements farther away than the seventh element.

4.4.7. Linearity and Uniformity of Response

At low intensity levels, most discrete photodetector elements have a linear
response. At higher intensities the response of the element becomes
nonlinear and saturation eventually sets in. Because the dynamic range at
the output of a spectrum analyzer is large, we often introduce a compres-
sion scheme to facilitate the readout and display of the information. If the
response of the photodetector is monotonic, a high degree of linearity is
not required, provided that we can establish an inverse mapping that
allows us to measure the spectrum to the required accuracy.

The saturation phenomenon is abrupt for some CCD arrays. The
charge accumulates until the well is full; additional charge does not
accumulate so that there is a discontinuity in the derivative of the transfer
curve. As a unique inverse mapping of the signal intensities is not
available for this case, we must avoid saturating these CCD arrays. Other
CCD arrays offer a more gradual approach to saturation in an effort to
gain more dynamic range. Again, an inverse mapping can be used to
determine the true magnitude of the spectrum.

The uniformity of response of an array is defined as the variation in the
output voltage or current due to manufacturing imperfections. A uniform-
ity of response of +10% is generally adequate; this degree of uniformity is
easily met with current technology or can be corrected by using lookup
tables. Differences in odd /even channel output levels may be corrected by
postdetection gain compensation.

4.5. SYSTEM PERFORMANCE PARAMETERS

The key parameters that affect performance of spectrum analyzers at the
system level are summarized as

- Total spatial frequency bandwidth (Section 4.5.1)
« Sidelobe levels/crosstalk (Section 4.5.2)
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« Frequency resolution /dip between photodetector elements
(Section 4.5.3)

 Array spacing and number of photodetector elements (Section 4.5.4)
- Dynamic range (Section 4.6)

- Intermodulation products (Section 4.6.1)

- Signal-to-noise /minimum signal level (Section 4.6.2)

» Integration time /bandwidth (Section 4.6.3)

We discuss the relationships among these performance parameters in the
following paragraphs. Because the relationships are coupled in some
cases, an iterative procedure may be needed to satisfy all the specifications
simultaneously.

4.5.1. Total Spatial Frequency Bandwidth

The spatial frequency bandwidth for a baseband signal is simply equal to
the highest spatial frequency «, contained in the signal. If the signal is
real valued, the spectrum is redundant about zero frequency and the
photodetector need cover only half the Fourier plane, from 0 to a,, as
explained in Section 4.4.1. For a bandpass signal, centered on a carrier
frequency a., the bandwidth extends from «, — a,, to a, + a.,. The
spectrum is redundant about e, if the signal represents a baseband signal
modulating a carrier frequency. In the more general case, the spectrum is
nonredundant and the total spectral range is 2a,.

4.5.2. Sidelobe Control and Crosstalk

In Section 4.4.2, we calculated the photodetector element spacing on the
assumption that the signal is uniformly illuminated. We now consider the
more typical situation in which an aperture weighting function is used to
control the sidelobe levels of a cw frequency response in the Fourier
plane. Aperture functions, a subset of the general class of apodization
functions used in optics, are also used in digital signal processing, where
they are generally called window functions. Candidate aperture functions
are the rectangular, Bartlett, Hamming, Hanning, Chebyshev, Dolph-
Chebyshev, Gaussian, Kaiser-Bessel, and Blackman window functions.
Figure 4.10 shows four representative aperture functions defined over an
aperture of length L. We indicate aperture functions by a(x); the specific
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Figure 4.10. Four aperture functions.

functions we consider are
1. Rectangular

a(x) =rect(x/L) = {(1): Ie)ilfvvll;e/rz.
2. Bartlett
a(x) = rect(i)[l - 2_|x_|
L L |
3. Gaussian

a(x) = rect(x/L)e~A/D2x/LY
4. Hamming

a(x) = rect(x/L)[0.54 + 0.46 cos(2mx/L)].

161

Rectangular
Bartlett
Gaussian A= 4
Hamming

(4.4)

(4.5)

(4.6)

(4.7)

The response in the Fourier plane to an aperture function is

A() = [ a(x)el@m /AP gy,

(4.8)

Figure 4.10 shows that, aside from the rect function, which has a uniform
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Figure 4.11. Frequency response (in decibels) of aperture functions.

magnitude over the entire aperture, the aperture functions have remark-
ably similar magnitude responses. Figure 4.11, however, shows that the
sidelobe response levels in the Fourier plane are distinctly different for
these four aperture functions; all responses have been normalized to unity
at zero spatial frequency.

The first aperture function is the rect function for which

© X .
A(§) = f_w rect(z)e’(z”/"”)f" dx

= Lsinc(%). (4.9)

The sinc function provides good frequency resolution because its mainlobe
is narrow, but it has high sidelobes that decrease slowly as a function of
distance from the mainlobe. The first sidelobe of |A(§)I2 is only 13 dB
down from the mainlobe, and the sidelobe intensity falls off as 1/£2. High
sidelobe levels may obscure weak signals that we want to detect and
contribute energy to adjacent photodetector elements as optical crosstalk.
Because the sidelobes originate from large, sharp discontinuities in the
signal, we can reduce them by using other aperture functions.
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The Bartlett aperture function is a triangular function that we can view
as the autocorrelation of two rect functions whose widths are just half that
of the full aperture. As the Fourier transform of the convolution of two
functions is the product of the Fourier transforms of the individual
functions, the magnitude response in the Fourier plane is a sinc? function
whose nulls are spaced twice as far apart as those in the sinc function
produced by rect{x/L]. The first sidelobe due to the Bartlett aperture
function is therefore located at about the same spatial frequency as the
second sidelobe due to the rect function. Although the magnitude of the
sidelobes falls off at twice the rate of those due to the rect function, they
are still too high for most applications. Note that the rect function has a
discontinuity in its magnitude and in all its derivatives; the Bartlett
aperture function does not have a discontinuity in its magnitude, but it
does have discontinuities in its derivatives.

The Gaussian aperture function produces lower sidelobe levels than
either the rect or the Bartlett aperture functions; its sidelobe level is
controlled by selecting the value of the parameter 4, which determines
the magnitude of the illumination at the aperture edges. The rate at which
the sidelobe magnitudes decrease depends on the value of A.

The Hamming aperture function has the interesting property that all its
sidelobes are about 45 dB down relative to the mainlobe, even though it
has discontinuities in both its magnitude and its derivatives.

A typical specification for a spectrum analyzer is that the sidelobe levels
are no higher than — 50 dB relative to the peak mainlobe level at a
position equivalent to five resolvable frequencies away from the centroid
of the mainlobe. The measurement is always made to the envelope of the
sidelobes, shown in Figure 4.11, to avoid any pathological cases where
the required measurement position might fall in a null between two
sidelobes. The trick is to determine what is meant by “five resolvable
frequencies away.” To do so, we discuss frequency resolution in greater
detail.

4.5.3. Frequency Resolution / Photodetector Spacing

The price to pay for using an aperture function that produces lower
sidelobes is a wider mainlobe width, as measured at the —3-dB intensity
response point, which leads to a lower frequency resolution. Figure 4.12
shows, on a linear scale, the mainlobes of |A(£))? for the four aperture
functions under consideration. We see that the rect function provides the
most narrow mainlobe and that the Hamming function produces
the widest mainlobe. The Gaussian aperture function has the
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Figure 4.12. Mainlobes plotted on a linear scale.

second-narrowest mainlobe of this set of aperture functions, representing
a reasonable compromise between sidelobe control and frequency resolu-
tion.

In Figure 4.13 we capture these two key features of the aperture
response function by plotting the mainlobe width, relative to that provided
by the rect function, on the vertical axis and the highest sidelobe level on
the horizontal axis. The performance of the rectangular, Bartlett, and
Hamming functions are represented by single points, but the performance
of the Gaussian function is given for several values of the parameter A.
We also include three other aperture functions for comparison: the
Hanning, the Kaiser, and the Chebyshev. These functions are defined as

5. Hanning

a(x) = rect(x/L)[0.5 + 0.5cos(2mx/L)] (4.10)

and
6. Kaiser

x )IO[BL\/I - (2|x|/L)2]

a(x) = rect(— 1,(BL) )

- (4.11)
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Figure 4.13. Mainlobe width vs. highest sidelobe level.

where I(-) is a modified Bessel function and B is a scaling parameter that
determines the sidelobe levels.

The last aperture weighting function, the Chebyshev function, is de-
scribed in terms of integrals of the product of polynomials and orthogonal
functions. As both the Kaiser and Chebyshev aperture functions are
difficult to generate optically, we do not seriously consider them for use in
signal-processing systems. Their responses are included here for compari-
son.

The main conclusion drawn from the data in Figure 4.13 is that the
Gaussian aperture function, while not providing the ultimate in perfor-
mance in terms of sidelobe levels, is the aperture function of choice
because it occurs naturally as the intensity profile of illumination from
lasers. Attempts to improve on its performance, using additional masks or
apertures, generally add noise to the system. We therefore use the
Gaussian aperture function as our baseline for optical spectrum analyzers.

Having settled on the Gaussian aperture function as the most practical,
we use the parameter A to control the truncation points needed to get the
desired sidelobe suppression. Figure 4.14 shows the response in the
Fourier plane for 4 = 2, 4, 6, and 8; the Gaussian function degenerates to
the rectangular function when A = 0. By referring to Equation (4.6), we
see that the illumination is truncated at the 1/e~ intensity points at the
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edges of the signal, where |x|= L/2. Figure 4.15 gives the relative
mainlobe widths of these aperture functions; we use Figures 4.14 and 4.15
to balance the loss of resolution due to the increased mainlobe width, as a
function of a given sidelobe reduction level.

The amount of available laser power used is also a function of the
parameter 4. The collected power is obtained by integrating the intensity
of the light over the input plane:

L/Ze-A(Zx/L)z dx

fraction of power collected = ~2— =erf(V4), (4.12)
f e~ AQx/LY gy
0

where erf(-) is the error function. For 4 > 3, at least 98.5% of the laser
power is used. The Gaussian aperture function, in addition to providing
reasonable frequency resolution and sidelobe control, is efficient in terms
of the amount of optical power used.

With the sidelobe level under control, we turn our attention to a more
complete discussion of frequency resolution. Frequency resolution is gener-
ally defined in terms of the dip in the intensity response in the Fourier
plane produced by two cw signals; the measurement is taken midway
between the peak response of the frequencies. A typical specification is
that the dip must be 2-3 dB down from the peak response. Figure 4.16(a)
shows the response in the Fourier-transform plane to a frequency at ¢,
and to a frequency spaced 8¢ away; these frequencies produce the
intensity responses |A(¢ — £o)I* and |A(¢ — £, — 6¢£)]* We sum the in-
tensities from these two functions and find the dip between them relative
to the peak response, as shown in Figure 4.16(a).

We cannot, however, simply read the dip value from Figure 4.16(a)
because the width of the photodetector element affects the intensity
measurements at the Fourier plane. If the photodetector elements were
infinitesimally small and the spacing between them were nearly zero, the
measured dip would be accurately measured. A photodetector element of
finite size d’, however, tends to smooth the detected spectrum somewhat,
thereby reducing the dip between frequencies.

A few of the elements from the photodetector array are shown in
Figure 4.16(a). One way to account for the finite size of the photodetector
elements is to integrate the light intensity over the photodetector elements
and to then measure the dip relative to the maximum value. Unfortu-
nately, we would need to do this for all possible input frequencies because
we do not know a priori where the frequencies occur relative to the
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Figure 4.16. Frequency resolution and number of photodetectors: (a) sum of intensity of two
frequencies after convolution with a photodetector element and (b) method for determining
the dip response.

photodetector elements. An easier way to determine the effect of finite
photodetector elements is to start by convolving [A(£)]* with a photo-
detector element of size d’. The question is “what value do 1 initially
assign to d'?”. We now describe an iterative procedure that produces a
photodetector-element separation that satisfies all the constraints.

4.5.4. Array Spacing and Number of Photodetector Elements

The first issue in determining the array spacing is to find the required
number of photodetector elements per frequency. One might argue, of
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course, for using as many photodetector elements as possible to provide
for the best possible frequency resolution under all conditions. But an
unnecessarily large number of photodetector elements leads to excessive
output data rates from the array, as discussed in Section 4.4.5. The trick is
to use the smallest number of elements in the photodetector array that
meets the frequency-resolution specification for an aperture function that
meets, in turn, the sidelobe level specification. An iterative calculation
may be needed in which we increase the value of 8¢ until all the
specifications are met simultaneously. When this process is finished, we
must ensure that the length L of signal history is sufficient to provide the
frequency resolution and that the sidelobe level still meets specification
for that condition.

In Section 3.5.4, we argued that the number of samples in the spatial
and Fourier domains are equal. It might appear, therefore, that one
detector per resolvable frequency satisfies the sampling theorem. In a
spectrum analyzer application, however, we generally need to resolve
closely spaced frequencies. To handle the worst-case frequency-resolution
specification, we need about three photodetector elements per frequency,
as we show shortly.

A starting point is to use the specification for da and the selected
|A(§)I2 to provide the required sidelobe control to make an estimate of
the photodetector size d'. Here is where some judgment is exercised;
experience helps, too. As the physical distance in the Fourier plane
between resolvable frequencies is 8¢ = daAF, a reasonable starting point
is to require three photodetectors per frequency so that d’ = (§¢£)/3. We
then convolve the photodetector element, represented by rect(¢/d’), with
|A(£)*> to get the responses for the two frequencies as shown in
Figure 4.16(b). As we have now accounted for the finite photodetector
size, we can replace the rect(¢/d') photodetectors by delta functions as
shown in the lower part of Figure 4.16(b). The advantage of this method is
that we can now simply slide the delta-function representation of the
photodetector array along the spatial frequency axis and read the relative
detected values from the dotted function representing the sum of the two
intensities. This can be done for any position of the frequencies relative to
the photodetector array to find the worst-case response.

The danger of using only two photodetector elements per frequency is
illustrated in Figure 4.16(b) in which the delta functions sample the sum of
the two intensity responses from the two frequencies. In the best-case
condition, one of the photodetector elements is located exactly on the
minimum value between frequencies and the dip specification is met. But
if the two frequencies shift, relative to the photodetector array, as shown
for the worst-case condition, the dip may completely disappear so that the
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frequencies are not resolved at all. Using three photodetector elements
per frequency corrects this situation because at least one photodetector
element is always near the maximum dip position.

To illustrate this iterative process, suppose that we use three photo-
detector elements per frequency and initially estimate that a spacing of
18 units between the frequencies will provide a dip of 3 dB. The spacing
between photodetector elements is therefore 6 units. We assign the
photodetectors a length of 5 units so that the duty cycle is ¢ = 2. The next
step is to convolve the photodetector, represented by rect(£/5), with the
response | A(£)[%; the result is shown in Figure 4.17(a). We then shift the
convolved response 18 units and add it to itself to simulate two frequen-
cies, spaced by 18 units, detected by a photodetector array in which the
elements are 5 units wide on 6 unit spacings. The sum of the two
responses is shown in Figure 4.17(b).
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Figure 4.17. Effect of detector width on frequency resolution: (a) convolution of detector
with Gaussian response (4 = 4) and (b) sum of intensities from two frequencies.
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We are interested primarily in the region between the two peaks. The
worst-case condition for resolving two frequencies occurs when two ele-
ments of the photodetector array straddle the null between the frequen-
cies. For this case, the photodetector elements are at the points —9, —3,
3, and 9. We see that the responses at —9 and 9 are equal to one and the
responses at —3 and 3 are equal to 0.15. The dip is therefore about 8 dB,
which is too high because of our overly conservative decision to space the
two frequencies by 18 units.

The next iteration is to space the frequencies by 12 units; the photo-
detector elements are then chosen as 3 units wide, on 4 unit spacings for a
duty cycle of ¢ = 3/4. The result of summing the responses from two
frequencies is also shown in Figure 4.17(b) for this case. Note that the
photodetector elements are located at —6, —2, 2, and 6 for the worst-case
situation. The responses at —6 and 6 are equal to one and the responses
at —2 and 2 are equal to 0.4, which yields a dip of about 4 dB. This
spacing is still slightly too large, but convergence to the desired dip of 3 dB
will probably take only one more iteration.

All these calculations are performed without regard to the actual
physical size of the photodetector element or the focal length of the
Fourier-transform lens. The final step is to calculate the focal length of the
lens so that the interval between two resolvable frequencies is equal to
three photodetector intervals on the chosen array.

At first glance, it seems that the source size affects the mainlobe width
and, therefore, the frequency resolution. Since a(x) is the Fourier trans-
form of the source, the required aperture function a(x) is provided only if
the source has the correct size at the onset. Spectral purity of the source
may also spread the mainlobe, thereby reducing the frequency resolution.
This spreading is rarely a problem with gas lasers where the fractional
spectral spread is on the order of AA/A = 10~7. A high-pressure source
hasa AA/A = 1073, and a typical injection laser diode has AA /A = 1072,
In all cases, the increased spreading of the mainlobe due to the source
wavelength spread is smail. Spectral spreading in the source also causes
the sidelobes to smear somewhat, filling in the nulls, but this does not
significantly change the calculations because we always use the envelope of
the sidelobes to determine the required aperture function.

4.6. DYNAMIC RANGE

Dynamic range is the most important performance parameter of a spec-
trum analyzer. We may require a dynamic range of 60-80 dB in many
applications. Dynamic range is defined as the ratio of the largest to the
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smallest signal supported by the system, referenced to the input of the
system. The smallest signal is generally determined when the signal-to-noise
ratio is unity, although some users prefer to establish a signal-to-noise
ratio of 3-6 dB as the minimum signal level that is meaningful. The
maximum signal level is set by intermodulation products, caused by nonlin-
earities in the response of the spatial light modulator.

4.6.1. Intermodulation Products

All spatial light modulators have nonlinearities that distort the amplitude
of the input signal. The input/output curve is generally linear at small
input signal levels; at higher signal levels all spatial light modulators
eventually saturate and distort the signal amplitudes. This distortion
results in intermodulation products that produce false signals in the
Fourier plane. For example, suppose that the input/output relationship,
shown in Figure 4.18(a), is a sinusoidal function, defined between 0 and
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Figure 4.18. Effects of nonlinearities: (a) dynamic transfer curve and (b) spurious frequenciés.
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/2, so that the two leading terms of the power-series expansion are
O(x,y) =I(x,y) + :*(x,y), (4.13)

where I(x, y) is the input signal and O(x, y) is the output signal from the
spatial light modulator. Suppose that the input is the sum of a bias and
two cosine waves of the form

I(x,y) = 3[1 + cos(2ma,x) + cos(2ma,x)]. (4.14)

After substituting Equation (4.14) into Equation (4.13), we find frequency
components at a; and a,, due to the linear part of the input/output
curve, and several new frequency components, including those at 2a;, — a,
and at 2a, — a,, generated by the cubic nonlinearity term in the expan-
sion of the input/output curve.

The new frequencies are spurious signals, generally shortened to spurs.
A sketch of the frequency components in the Fourier plane is shown in
Figure 4.18(b). We cannot, in general, distinguish the spurs from true
signal frequencies. An important system specification, therefore, is one
that requires a certain spur-free dynamic range so that weak signals can be
distinguished from the spurs produced by strong signals. The spur-free
dynamic range is defined as the ratio of the signal power at a; or a, to
that at 2a; — @, or 2a, — a,. It is met only by keeping the amplitudes of
the sine waves below some maximum value by controlling the efficiency ¢,,
of the spatial light modulator; this efficiency level is stated as the diffrac-
tion efficiency per frequency.

Another factor in the detection of small signals is the amount of light
scattered by various optical elements in the system. Multiple reflections
before the spatial light modulator are particularly bad because they
produce replicas of the spectrum, displaced from the primary spectrum
according to the angles of reflection. Scratches and digs in optical ele-
ments, particularly those near the Fourier plane, may also cause scattered
light to mask weak signals. Finally, regular structures such as the sample
interval in a liquid-crystal display produce spurious noise patterns in the
Fourier plane that may obscure signals. The solution to these problems is
to ensure that the optical design does not contain flat surfaces which
produce multiple reflections and to use antireflecting coatings on all
surfaces. Specify minimum scratch and dig tolerances on all optical com-
ponents and keep the components clean to reduce scattering.

4.6.2. Signal-to-Noise Ratio and the Minimum Signal Level

The minimum detectable signal level is determined by the signal-to-noise
ratio available at the output of the system. In a well-designed spectrum
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analyzer, the principal source of noise at the output is from the photo-
detector and its associated circuitry. A photodetector is modeled by the
circuit shown in Figure 4.19(a), in which light falls on a semiconductor.
junction to generate electrons. The responsivity of the detector is a
function of the nature of the material (e.g., silicon or gallium arsenide)
and of the wavelength of light. The output current i, from the kth
frequency is the product of the responsivity of the photodetector and the
incident optical power: i, = SP,, where § is the responsivity and P, is the
optical power collected by the photodetector element. In terms of the light
intensity I, we find that P, = I, d4, where dA is the area of the
photodetector. Thus the photocurrent is

i, = SI dA. (4.15)
The signal-to-noise ratio is calculated as

signal power

SNR = . 4.1
sum of the noise sources (4.16)
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For the kth photodetector in the array, the signal-to-noise ratio is

(¥R
SNR = kL , (4.17)
2eB(iy + iy )R, + 4kTB

where i, is the signal current, ¢ = 1.6(10)~!° Coulomb is the charge on an
electron, B is the postdetection bandwidth, i, is the dark current of the
photodetector, i, is the average signal current, k& = 1.38(10)~2 J/K is
Boltzmann’s constant, and T is the temperature in degrees Kelvin. The
first term in the denominator of Equation (4.17) is the shot noise, some-
times called quantum noise, and the second term is the thermal noise,
sometimes called Johnson noise.

Equation (4.17) shows that we can increase the signal-to-noise ratio
arbitrarily by increasing the load resistance until we are shot-noise limited.
This procedure, however, may lead to an insufficient photodetector band-
width. The relationship between the load resistance, capacitance, and
cutoff frequency f, is obtained from basic circuit theory as

1

- 4.18

We solve Equation (4.18) for R, and use it in Equation (4.17) to generate
a more useful form of the signal-to-noise ratio equation:

i)
SNR = & . (4.19)

In subsequent discussions we still refer to the terms in the denominator of
Equation (4.19) as “shot” and “thermal” noise even though they represent
the square of the noise current instead of the noise power, as they
normally do.

The signals we detect may be either baseband signals, whose frequency
content ranges from 0 to f,, or a bandpass signal whose frequencies range
from f.,— B to f.. In either case, the maximum frequency response
required of the photodetector circuit is f,,. For bandpass signals, we can
improve the postdetection signal-to-noise ratio by using a bandpass filter
of width B < f.,, as shown in Figure 4.19(b).
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To find the signal-to-noise ratio we relate the current to the input signal
amplitudes. Consider a cw input signal s(x) = 0.5[1 + ¢, cosQma,x)].
The Fourier transform of the positive diffracted order is

S(E) = v AFL / -a(x)[ 3C€ I(ZW/AF)ka]eJ(Zﬂr/AF)Exdx
Pyee @
=1V 9 m j@m /AFXE—E)x
4 AFL Ckf_ma(x)ef O dx
=0.25 Poe A 4.20
V FL A~ &), (4.20)

where A(¢) is the Fourier transform of the aperture function a(x). For
the spectrum analyzer shown in Figure 4.1, P, is the laser power, L is the
length of the line illumination of the signal, ¢, is the efficiency of the
spatial light modulator on a per-frequency basis, and ¢ is the efficiency of
the remainder of the optical system, including the effects of the aperture
function as discussed in Section 4.5.3. Recall from Chapter 3 that the
Fourier transform has a scaling factor of y/j/AF for the one-dimensional
transform; this term appears in the scaling factor of Equation (4.20) but
we ignore the y/j factor.

A photodetector element in the Fourier plane integrates the intensity
I(£) = |S(&)? of the light over the area of the photodetector element. The
total optical power collected is therefore

CRA(E - &) d¢. (4.21)

Although we use a Gaussian function to control the sidelobe levels, a
rectangular aperture function provides closed-form solutions that illustrate
details of the integration process. We therefore consider the case where
a(x) = rect(x/L), for which |A(¢ — £,)I* = L?sinc?[(¢ — £,)L/AF], so
that Equation (4.21) becomes

L (E-&)L £~ &
fmsm&[_ﬁ__] rect| — ]dg, (4.22)

P,

AFL

where rect[(£ — £,)/d’) represents the size of the photodetector element
centered at &,. Figure 4.20(a) shows the geometry in the Fourier plane for
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a sinc? function produced by the signal. To relate the arbitrary horizontal
scale to £, we note that the first zero of the sinc? function occurs at
&= AF/L = 15 units. When we use three photodetector elements per
frequency, the photodetectors are spaced A¢ = AF/3L = 5 units apart.
The question is how much power the photodetector collects.

Figure 4.20(b) shows the integrated intensity for the sinc? function and
we note that the integral is nearly a linear function of the photodetector
width, for small widths. For a photodetector whose width is 5 units, we
find that the value of the integral in Equation (4.22) is equal to AF/3L.
The total collected power is therefore

Pyee,,
AFL

P, = 0.0625

czL? AF = 0.02P,e¢,,c} (4.23)
k 37 . 0°“m%k> -



178 SPECTRUM ANALYSIS
and the photocurrent is
i, = SP, = 0.02SP,e¢,,c?. (4.24)

This result is interesting from three viewpoints: (1) it gives the connection
between the electrical current and the optical signal power, (2) it shows
that the detected optical power is not a function of parameters such as A,
L, and F, and (3) it shows that the photocurrent i, is proportional to the
power c? of the input signal.

Having found the optical power collected by the photodetector, we
substitute Equation (4.24) into Equation (4.19) and set the signal-to-noise
ratio equal to unity (or some other agreed upon value). We then solve for
the minimum value of ¢, which determines the dynamic range of the
spectrum analyzer. The dynamic range, for a single tone, given in decibels
is

(4.25)

2
Ck max
DR = IOlog[ ],

2
€ min

where c? .. =1, by definition, is the maximum signal power that, to-
gether with the diffraction efficiency per frequency, establishes the maxi-
mum intermodulation product level; ¢? ., is the minimum signal power
obtained from the signal-to-noise ratio calculation.

From Equations (4.19) and (4.24), we find that

(0.025P6,,CE min)’
- ZeB(id + ik) + SWkTchocd .

(4.26)

As all the parameters except ¢, are specified, we can solve Equation (4.26)
for ¢ pin:

o V2eB(iy +iy) + 8mkTBf oc,
ke min 0.028P,¢¢,, ‘

(4.27)

It seems, at first, that we need to solve a quadratic equation in c7 .;,
because i, is also dependent on c7 ;.. We find, however, that as cj
becomes small, the value of i, becomes much less than i, so that we
replace (i, + i,) by iy,
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From Equations (4.25) and (4.27) we find that

0.028P,¢e,,
V2eBi, + 8wkTBf ¢, |

DR = 101og (4.28)

From Equation (4.28) we see that the dynamic range increases according
to the available laser power and decreases according to the square root of
the signal bandwidth.

4.6.3. Integration Time / Bandwidth

Equation (4.19) shows that the signal-to-noise ratio and, therefore, the
dynamic range is maximized when the bandwidth B is minimized. The
bandwidth is the reciprocal of the integration time of light on the photode-
tector array. The integration time, in turn, is determined primarily by how
often the photodetector array must be read to avoid missing important
information.

In some applications, the integration time is the same as the frame
cycle time of the input spatial light modulator because each frame may
contain a completely new signal. In other applications, such as those
where photographic film is moving through the aperture, the integration
time is on the order of the amount of time that any given sample stays
within the aperture. In yet other applications, the integration time is
determined by the rate at which the underlying information content is
expected to change. As noted above, the cutoff frequency f, is always
dictated by the highest frequency that is passed by the system; the
bandwidth B is dependent on whether the input is a baseband or a
bandpass signal.

4.6.4. Example

Suppose that a spectrum analyzer has these parameters: P, = 10 mW,
i;=10nA, c; =4 pF, § =04 A/W, and T = 300 K. Suppose that the
maximum diffraction efficiency per frequency to meet a —40-dB intermod-
ulation product specification requires that ¢, = 0.05 and that the rest of
the system efficiency is & = 0.25. If the spectrum analyzer processes
information at a frame rate of 1000 frames per second, we have the
baseband case for which the cutoff frequency and the bandwidth are
feo = B = 1000 Hz.
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The first step is to find the minimum value of ¢ when the signal-to-noise
ratio is equal to unity. The solution for ¢}, is therefore found from
Equation (4.27):

2 =

V2(1.6)(10~19)1000(10~8) + 8(1.38)(10~2)300(1000)1000(3)(10~12)

Ckmin = 0.02(0.4)(10-2)0.25(0.05)
(4.29)
We carry out the calculations to find that
V3.2(107%) + 3.12(10~%) _
Ci min = TR =2(10"%),  (4.30)

and because c?,.,, =1, the dynamic range is easily calculated from
Equation (4.25) as 57 dB.

4.6.5. Quantum Noise Limit

In the example of Section 4.6.4, the dominant noise source is shot noise so
that the system is quantum noise limited. For low-bandwidth applications
where shot noise dominates thermal noise, we can simplify the signal-to-
noise ratio expression to

SNR = -L 4.31
T 2B, 5 (431)

The minimum noise occurs when i, = i,.

As the required bandwidth increases, we reach a point at which thermal
noise dominates shot noise. By comparing the two noise terms in the
denominator of Equation (4.19), we find that the system remains shot-noise
limited provided that

ei,

_Zd 432
feo = e, (4.32)

which is dependent only on the key parameters of the photodetector.
Note, in particular, that Equation (4.32) does not contain the bandwidth
explicitly so that it is valid for both baseband and passband applications.
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Many photodetector manufacturers quote the performance of their
products in terms of noise equivalent power, which gives an indication of
the amount of optical power needed to just overcome the noise in the
detector. The quoted noise equivalent power is usually normalized and
expressed as W/ VHz so that we simply multiply noise equivalent power
by the square root of the predetection bandwidth (f_, in this case) to get
the required optical power at the photodetector. But this procedure is
valid only when the photodetector is shot-noise limited. The noise equiva-
lent power has no provision to include the effects of thermal noise, so be
careful when using noise equivalent power in performance calculations.

4.6.5.1. Avalanche Photodiode. When the system is thermal-noise lim-
ited, we can improve the system performance by using an avalanche
photodiode to provide internal gain. An avalanche photodiode is a normal
photodetector element that is operated near its breakdown voltage. When
light is collected and current begins to flow, breakdown action is initiated
so that additional electrons are generated. This results in amplification, or
gain, within the device. The signal is increased by the gain factor G, while
the modified shot-noise term becomes (37)

SN = 2eB(i  + i, )G™, (4.33)

where G™ is a gain factor characteristic of avalanche photodiodes. Typical
values for m are 2.3-2.5 for silicon devices and 2.7-3.0 for III-V alloy
devices. The thermal noise is not affected by operating the photodiode in
the avalanche mode. The signal-to-noise ratio then becomes

(ip)G?
SNR= — , (4.34)
2eB(iy + i, )G™ + 8wkTBf .,

and we note that the signal power is increased by the factor G2.

We want to select the photodetector gain that maximizes dynamic
range, using the minimum laser power. As noted before, this maximization
occurs when shot noise and thermal noise are approximately equal so that
the optimum gain is

4wkTf

- e(iy + fk) ’

m

(4.35)

which reveals that avalanche diodes are most useful when the detection
bandwidth is large. As the value of m must be greater than 2, any gain
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larger than that governed by Equation (4.35) results in a deterioration of
the dynamic range, although the loss in performance is not a rapid
function of the excess gain. The chief disadvantage of using avalanche
photodiodes is that breakdown voltage and gain are sensitive functions of
temperature so that they are more difficult and costly to regulate than
conventional detectors.

4.6.5.2. Relationship between Signal-to-Noise Ratio and Dynamic Range.
The relationship between signal-to-noise ratio and dynamic range is illus-
trated in Figure 4.21, in which we plot the shot noise, thermal noise, and
output signal power as a function of input signal power. The maximum
input signal power is c,ﬁ = 1, which yields a signal level of 0 dB, as shown
on the horizontal axis. The signal part of the output, as given by the
numerator of Equation (4.19), is then at its maximum value. As the input
level decreases, the signal part of the output also decreases with a slope of
—2 because the output signal power is proportional to cj.

As thermal noise is not a function of the input signal level, it is shown
as a constant in Figure 4.21. Shot noise, on the other hand, is determined
mainly by the value of the dark current when i, <i As c, increases, we
reach the point where i, > i,, after which the shot noise increases linearly
with a slope of —1. The dynamic range is determined by the point where
the straight line representing the output signal power intercepts the sum
of the shot and thermal-noise powers. Note that the dynamic range is

1301 ___ Signal power
= Shot noise
% -1503 Thermal noise
2 ] Total noise
g ] Signal-to-
5 -1703 noise ratio
& ]
= p
(@] 4
-190
] Dynamic range
-210]
]
-2303 . . :
-75 -60 -45 -30 -15 0
Input signal power (dB)

Figure 4.21. Relationship between signal-to-noise ratio and dynamic range.
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referenced to the input of the system and is read form the horizontal scale
in Figure 4.21. The signal-to-noise ratio, on the other hand, is referenced
to the output of the system and is read from the vertical scale.

4.7. RASTER-FORMAT SPECTRUM ANALYZER

We close this chapter by discussing an important application of two-
dimensional optical spectrum analysis, as applied to obtaining high fre-
quency resolution for a wideband one-dimensional time signal. If we want
to spectrum analyze a 20-MHz bandwidth signal to a frequency resolution
of 20 Hz, we must resolve 10° frequencies. The high frequency resolution
is obtained only by using a long time history of the signal (at least 50 ms
for this example). Given the available resolution capabilities of one-dimen-
sional spatial light modulators, however, we may not be able to process the
required signal history.

To overcome this difficulty, we use the full two-dimensional nature of
the optical system to process a one-dimensional time signal. The basic
idea, according to Thomas (38), is to record a wideband signal of band-
width W onto photographic film in a raster-scanned format. The raster
format is similar to that used for television, in which a wideband time
signal of long duration is written onto a cathode-ray tube. Raster-scanning
methods are also used in the transmission of images in facsimile systems
and in laser printers used as computer peripherals. In all applications, we
segment long-duration signals into many shorter ones and record them as
a serial set of data lines in the vertical dimension.

4.7.1. The Recording Format

In the raster-scanning format, the wideband time signal modulates a laser
beam in magnitude according to the magnitude of the signal f(¢), while
the laser beam is scanned horizontally across the film by an acousto-
optical device as shown in Figure 4.22; these devices are discussed in
Chapter 7. For a signal of bandwidth W, the cutoff frequency is f., = W
and the sampling rate R, expressed in samples/sec, is

R, =2f.. (4.36)

Suppose that the required frequency resolution is f, so that we need to
resolve a total of M = f, /f, frequencies in a two-dimensional format.
Based on the discussion in Chapter 1, we recognize M, as the length
bandwidth product and M, as the height bandwidth product for the
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Figure 4.22. Optical wideband recorder.

system, so that M = M, M, is the total number of resolvable frequencies.
Suitable window functions, needed to control sidelobe levels as discussed
in Section 4.5.2, can be introduced later as a refinement to this analysis.

Suppose that the film supports a sample interval of d,, which means
that the cutoff spatial frequency in the horizontal direction is
a,, =1/(2dy) so that the sampling rate at the film is R, = 1/d,. To

record the signal in real time, the laser-beam scanning velocity ¥, must be

=—=——=2d .
The time duration of a scan line is therefore
L
Tx = 7 . (438)

The minimum resolvable spatial frequency a, in the horizontal direction
corresponds to a temporal frequency

1

fx=?x=

Xl

: (4.39)

which is generally called the coarse frequency resolution.
The film is continuously moving through the scanner, resulting in the
scanned line format shown in Figure 4.23. We record the next scan line a
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Figure 4.23. Recorded raster format: (a) fine frequencies and (b) full display format.

distance kd, from the previous line, where k > 1 is a parameter whose
importance becomes apparent later. The film velocity, based on a zero
flyback time for the scanning beam, is

kd kd,V,
v, = o _ o=
T, L

(4.40)

The height of the processing aperture is given by the product of the film
velocity and the recording time T required to provide the frequency
resolution f,,. Hence, we find that

H=V,T (441)

is the height of the processing aperture.

It is tempting to assume that the length and height of the processing
aperture should be equal, but this assumption can lead to incompatibilities
among other system parameters. We therefore set L = cH, where ¢ is a
parameter whose value is to be found after other important relationships
are developed. From Equations (4.40) and (4.41) we find that

kd oV,
L= = cH = cV,T, (4.42)
Y
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from which we deduce that

kdy,
K' =
cT

(4.43)
We now use Equation (4.37) in Equation (4.43) to yield

| 2d5kfeo
v, = (4.44)

We use Equation (4.44) in Equation (4.41) to find the size of the process-
ing aperture:

‘/ 2d2kf.,, \[2d§kfcoT [2d2kf.,  [2d2kM
H = T = = = y
cT c cfo c

L = cH = /2d2keM (4.45)

We use the values of H and L in Equations (4.38) and (4.39) to find that
the coarse frequency f, is

1V fa »
f*_’i_f_‘/ch/z' (4.46)

We are now in a position to calculate the number of frequencies in the
horizontal and vertical directions:

fo  V2dikeM
M="2=—" = /keM/2;
fx 2dO
(4.47)
= fe o 2M Mk
= e— = = C
* fo 2d2kecM

From Equation (4.47) we see that the number of frequencies in the two
directions are not equal, in general, but that the product M, M, is always
equal to M, independent of the values of the parameters k and c.

From the relationships developed so far, we deduce some interesting
features about the system that are not intuitively obvious. For example,
suppose that we set k = 1 to make the most efficient use of the capacity of
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the film. We might then expect that a square processing aperture, for
which L = H, leads to an equal number of frequencies in the two
directions so that M, = M, which, in turn, leads to a square format in the
frequency plane. This condition cannot be obtained for k = 1, however, as
we note by setting M, = M, and using the result from Equation (4.47):

M, = \keM)2 = M, = \2M ke , (4.48)

which implies that kc = 2. Therefore, to obtain a consistent solution, we
find that ¢ = 2 when k = 1 so that the length of the processing aperture is
exactly twice that of the height: L = 2H. Furthermore, the minimum
resolvable spatial frequency B, in the vertical direction, which corresponds
to the temporal frequency f;, and the minimum resolvable spatial fre-
quency a, in the horizontal direction, which corresponds to the temporal
frequency f,, are given by

b0 1
O AF L’
Mo 1 2
Bo=F~ HE-IL° (4.49)

The spot spacings ¢, and m, in the frequency plane therefore have a
two-to-one relationship, as noted in Equation (4.49). The format in the
Fourier plane is therefore such that

M AF
Emax = M, 6o = L
2M,AF
Mmax = Mymo = ——» (4.50)

so that the required photodetector array format is rectangular, being twice
as high as it is wide. Furthermore, Equation (4.49) reveals that the
resolution requirements of the photodetector array are different in the two
directions.

Most photodetector arrays are made with equal sampling in the two
directions. If we use such a detector, we waste half of its intrinsic
bandwidth. Suppose, then, that we set ¢ = 1 so that the photodetector
array is square. From Equation (4.47) we then find, again with k = 1, that
M, = 2M,. In this case we find that £, = 7,, which is desirable; but £,
is still equal to 27m,,, because M, =2M,. The requirements on the
overall size of the photodetector array are therefore the same as before.
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To avoid wasting photodetector-array capabilities, we remove the con-
straint that k = 1. We want to find a condition, if possible, for which
L =H and M, =M, so that the photodetector-array format is square.
We return to Equation (4.48) and find that M, = M, under the general
condition that kc = 2. As we want to set ¢ = 1 so that L = H, we find
that we must set k = 2. This means that successive scan lines are recorded
twice as far apart in the vertical direction. Although this procedure wastes
half of the film’s recording capacity, it is typically a good tradeoff relative
to the other options.

A by-product of setting k = 2 is that the aperture of the Fourier-
transform lens is V2 larger than the suboptimum case when k = 1 and the
film velocity is doubled. Some judgment is therefore needed to find a
solution that can be implemented using current technology in the various
areas. In the discussions to follow, we assume that the k =2 and ¢ =1
solution is used; appropriate compensations can be made for other condi-
tions as needed.

4.7.2. The Two-Dimensional Spectrum Analyzer

After the recording is finished and the film is developed, it is placed at
plane P, of the spectrum analyzer as shown in Figure 4.24. One way to
understand the spatial frequency display is to follow the locus of the
spectrum while we imagine the input temporal frequency to start at zero
and finish at f_,. First, suppose that the only frequency component
present is zero frequency. The recording will therefore consist of N, = 2M,
scan lines, spaced a distance 2d, apart, with no amplitude modulation.
The Fourier transform of the scan lines consists of functions of the form

Wideband data recorded
in raster format on film

Spatial
spectrum

Py

L,

Figure 4.24. Optical spectrum analyzer for raster-scanning applications.
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Figure 4.25. Fourier plane.

sinc(éL /AF)sinc(nH /AF), located at m = +nAF/2d,, as shown in
Figure 4.25(a), where F is the focal length of the Fourier-transform lens
and n is a positive integer. The spectral components of the scanning
pattern do not lie exactly on the ¢ = 0 axis; instead they lie along a line
that is tilted at an angle ¢, = 2d,/L. This angle is of the order of 2/N,,
which is generally small.

The lowest resolvable temporal frequency produces exactly one spatial
cycle over the aperture of height H in the vertical direction, as depicted in
Figure 4.26. A sinusoidal spatial frequency that has just one full cycle over
the aperture produces sinc(£L /AF)sinc(nH/AF) functions, located at
1o = +AF/H relative to the sampling spectral points at n = +nAF/2d,,
as shown in Figure 4.25(a). Replicas of the spectrum of the lowest spatial
frequency are therefore formed around each of the spectral components,
because of the scanning function. We refer to this resolution as the fine
frequency resolution of the system. The next highest frequency has exactly
two cycles over the aperture in the vertical direction, which causes the sinc
functions to move a distance +2AF/H with respect to each of the
sampling spectral points. This process continues, as the temporal fre-
quency increases, with the spectral components in the Fourier plane
moving along the line making an angle ¢, with respect to the vertical axis.

The highest frequency displayed on the first locus is one half the
sampling frequency in the vertical direction; the spectrum of this fre-
quency is located at n = +AF/4d,, as shown in Figure 4.25(b). At this
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Figure 4.26. Lowest spatial frequency corresponding to lowest temporal frequency.

temporal frequency there is exactly one spatial cycle over the aperture
length L in the horizontal direction, in addition to the M, cycles in the
vertical direction. Hence, the spectrum of this frequency has moved a
distance ¢ = AF/L in the horizontal direction shown in Figure 4.25(b).
This coarse frequency resolution, from Equation (4.39), is equal to the
cutoff frequency in the vertical direction. As the temporal frequency
increases still further, the horizontal spatial frequency remains at one
cycle over the aperture, while the vertical spatial frequencies vary from
one to M, cycles; this process forms the second raster scan line in the
Fourier plane. At this point, there are two complete spatial cycles in the
horizontal direction and this raster movement of the frequency component
continues as the temporal frequency increases until we reach f_. This
spectral component is located at the upper right-hand corner of the
Fourier plane display.

The spectrum at plane P, of the optical spectrum analyzer has symme-
try about both the ¢ and 7 axes. We generally mask all but one quadrant
because the remainder of the information in the Fourier plane is redun-
dant. To completely avoid aliasing, we would like the raster-scanning
function on the film to have a sinc-function distribution in the vertical
direction so that the spectrum can be cleanly masked. As the film cannot
record negative values, we generally shape the raster lines to minimize the
overlapping of the spectrum due to aliasing.

To illustrate the performance of a raster-scanning spectrum analyzer,
we consider a wideband signal for which f,, = 15 MHz and want to obtain
frequency resolution to 15 Hz. For this example we find that we need
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M = (15 MHz) /15 Hz = (10°) resolvable frequencies. Suppose that we set
M =M, = VM = 1000, and use a film for which dy =5 p. We begin by
using Equation (4.37) to find that the scanning velocity is

V, = 2dyf., = 2(5 p)15(10%) Hz = 150 m/sec. (4.51)

The coarse frequency resolution in the horizontal direction is obtained
from Equation (4.39):

15010°%) Hz = 15kH 4.52
x W z= z, ( . )
and the scan time in the horizontal direction is T, = 1/f, = 66.7 msec.
The film velocity is given by Equation (4.44):

[2dikf, \/2(0.005)"2(15)(106) ~
V,= i 15 = 150 mm/sec, (4.53)

which is reasonable. The aperture size is L = H = 2dVM = 10 mm.

Suppose that we want to find the location of a cw signal whose
frequency is 9,873,705 Hz. We begin by dividing this frequency by 15 kHz
to determine the coarse frequency position of the signal, we find that
9,873,705 /15,000 = 658.247. The integer part of this result shows that the
frequency response for this signal falls on the 658th coarse frequency
locus. We then multiply the fractional part of the result by 15 kHz to find
the residual frequency and to find its position on the stated coarse loci:
0.247 % 15,000/15 = 247. Hence the frequency response occurs at the
247th fine frequency position on the 658th coarse frequency line.

It is interesting to note that the input recording process maps a
long-duration, one-dimensional time signal into a raster format. In a
similar fashion, the output raster format can be mapped into a continuous
one-dimensional spectrum of the input time signal. This process is illus-
trated in Figure 4.27. A time signal of duration T is subdivided into
segments of duration T,, recorded in the raster format and spectrum
analyzed to produce a raster-format spectrum. The spectrum of the signal
is reconstructed by taking the spectral segments of bandwidth W, and
assembling them into the one-dimensional spectrum of bandwidth W.

This spectrum analyzer produces a result equivalent to implementing
10% narrowband filters, each with a bandwidth of 15 Hz, with their center
frequencies ranging from 0 to 15 MHz. Designing and implementing that
many filters using discrete electronic elements or by using digital signal
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Figure 4.27. Conversion from one-dimensional /two-dimensional functions.

processing is difficult. Furthermore, depending on the beam apodization
used, the equivalent optical filters have steep transitions from the pass-
band to the stopband, small inband ripple, and small inband phase
variations. None of the performance parameters given here are difficult to
achieve optically, even with a relatively modest optical system. It is
possible to increase the input signal bandwidth to as high as 1 GHz and to
obtain a frequency resolution of about 100 Hz over the entire band.

4.73. Illustration of Raster-Format Spectra

In Figure 4.28 we show experimental results for the spectra of several
signals displayed in different formats (39). One display format is a two-
dimensional format obtained by directly viewing the spectra or by record-
ing the spectra on photographic film. The other display format is a
three-dimensional format obtained by plotting the magnitude of the spec-
trum as a function of the scanned coordinates ¢ and m in the Fourier
plane. The signal characteristics are given in Table 4.1. The first signal is a
sine wave whose time bandwidth product, by definition, is TW = 1. The
parameter f./B gives the ratio of the carrier frequency to the bandwidth
of the signal. The number of repeats shows how many times a given signal
waveform is repeated within the time interval covered by the Fourier
transform; for the sine wave, the value shows that 100 cycles are analyzed.



Figure 4.28. Experimental results of raster-scanned data (courtesy G. Lebreton) (39). Top
row: two-diinensional spectra of s, s, and s3; second row: analog three-dimensional display
of spectra s,, s, and s5; third row: two-dimensional spectra of s4 and ss; three-dimensional
display for ss; fourth row: two-dimensional spectra of s¢ and s;; three-dimensional display
for s4; fifth row: two-dimensional spectra of sg, 59 and sy,.
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Table 4.1
Signal Modulation ™ f./B Number of repeats
5 Sine wave 1 — 100
S, Random 1000 1 9
53 Random 1000 1 3
A Linear FM 1000 3/2 9
S5 Linear FM 1000 3/2 6
e Linear FM 288 17 68
8§, Linear FM 288 17 34
Sg V-FM 2 X 500 1 2x2
So Linear FM 1000 1 6
10 Linear FM 1000 1 9

The two-dimensional display of this spectrum is shown on the left panel in
the top row of Figure 4.28. The other two panels in the top row are for the
random signals for which TW = 1000; we see that the fine detail in the
spectrum is more visible as the number of repeats increases. The second
row shows the same information in the three-dimensional format. The
remaining signals are linear FM or chirp signals with various combinations
of parameters as shown in Table 4.1. The V-FM signal consists of a
downchirp FM followed by an upchirp FM, giving the characteristic V
shape to the waveform in frequency space. The effects of different time
bandwidth products, number of repeats, and carrier-to-bandwidth ratios
are apparent.

4.8. SUMMARY OF THE MAIN DESIGN CONCEPTS

The major steps in the design of a spectrum analyzer are summarized in
the following notes, using a one-dimensional notation:

1. From the required frequency resolution da and total bandwidth
a, to be covered, calculate the required space bandwidth product
M = a/8a = La,. This number gives a quick assessment of the
difficulty of the design task and a preliminary estimate of the
required length L of the input signal.

2. From the specification on the sidelobe level needed to detect weak
signals in the presence of strong ones, determine the required value
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of A for the Gaussian illumination and calculate the Fourier
transform A(a) for the chosen truncated Gaussian function.

3. For the chosen Gaussian aperture weighting, calculate the relative
loss in resolution and increase the required time bandwidth product
by this factor. Since the bandwidth is fixed, we must increase the
length of the signal that is processed.

4. From the required dynamic range considerations, determine what
type of photodetector subsystem is needed (discrete detectors, a
photodetector array, etc).

5. Based on the criterion of using three photodetector elements per
resolved frequency, calculate the convolution of the aperture re-
sponse A(a) and a single detector width.

6. Using the convolved aperture response, determine the value of da
needed to satisfy the dip criterion for frequency resolution. Several
iterations may be required to achieve the desired result for the
worst-case conditions.

7. From the value of da and the photodetector array spacing, calcu-
late the focal length of the Fourier transform lens so that the scale
of the displayed spectrum matches that of the detector array.

8. From the required dynamic range, determine the required laser
power, select the appropriate laser, and find its Gaussian-beam
illumination parameter.

9. Design an illumination subsystem to magnify the laser beam to the
plane of the signal so that the required truncation takes place at the
edges of the revised signal length.

10. From the spur-free dynamic range specification, determine the
maximum value of the input signal level.

PROBLEMS

4.1. The lowest spatial frequency component expected of a signal is
10 Ab and the highest is 200 Ab. Provide an optical layout for a
spectrum analyzing system to display the highest and lowest spec-
tral components with a separation of 80 mm in the frequency plane,
under the constraint that you have no lenses available whose focal
lengths are longer than 100 mm. As an added challenge, see if you
can solve this problem using a single 100-mm lens. Sketch and
dimension your resulting system.
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4.2.

4.3.

44.

4.5.
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Suppose that you have a collection of aerial images. Given a
coherently illuminated optical system and a ring/wedge detector,
how would you propose to use the outputs of these photodetector
elements to classify

(a) wheatfields,

(b) cornfields (or any crop planted in rows),
(¢) urban areas, and

(d) an oil tank field (lots of circular objects)?

Provide a rough algorithm for using the outputs to separate
these four classes of objects.

In your laboratory you demonstrate the Fourier transform, using a
system similar to the variable-scale correlator shown in Figure 3.29
of the text. You use a 4-u source that is placed 55 mm in front of a
50-mm focal length lens. You then place a second lens whose focal
length is 80 mm a distance of 500 mm behind the first lens. A signal
f(x) =1 + cos(2ma,x) is located in contact with the first lens. Part
(a): where is the Fourier transform plane located relative to the
first and second lenses? Part (b): where is the image of the signal
located relative to the second lens? Part (c): if a; = 60 Ab, how far
from the optical axis are the centroids of the diffracted light located
in the Fourier plane? Solve this problem purely by using ray-tracing
methods from geometrical optics, along with the basic connections
between physical angles and spatial frequencies.

Suppose that the aperture of the first lens in Problem 4.3 is 25 mm.
We want to create a variable-scale Fourier transform by moving the
signal axially, closer to or farther from the first lens. If we need a
20% change in the scale of the transform, over what axial distance
must the signal be moved? Can this range of scales be achieved if
the object has a diameter of 20 mm? If not, what is the maximum
object size that can be illuminated at the extreme end of the scaling
range?

Suppose that the illumination beam in a spectrum analyzer has a
Gaussian form exp[—(A4/2)2x/L)?]. Also, suppose that we want
to truncate the beam so that the highest sidelobe is about 30 dB
down relative to the peak of the main lobe. Find, from the curves in
the text, the value of A4 required to achieve this performance. What
is the penalty in loss of resolution as compared to uniform illumina-
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4.6.

4.7.

4.8.

4.9.

tion (use the linear curves for accuracy). Calculate the fraction of
laser power available for use.

From the data in the figures, calculate the relative loss in mainlobe
resolution when using a Gaussian illumination beam for which
A = 6 with that for which 4 = 2. Use the response at the —3-dB
level as the criterion for resolution. If the half-width of the main-
lobe is r, at the —3-dB point, what are the corresponding sidelobe
levels at 7r, for each of the same two Gaussian beams?

Suppose that you have a light source containing a spectral line at
500 nm and a line of equal strength at 550 nm. Sketch the Fourier
transform of an aperture function a(x) = rect(x/L) when using
this source. Will you observe any complete nulls? If so, where? If
not, why not? Do not forget about the cos(2wf,t) and cosQQwf,t)
terms that denote the frequency of light for these two spectral lines.

Compare the mainlobe half-power widths and the sidelobe levels
when the aperture weighting function a(x) is

a(x) = rect(x/L)
with that when
a(x) = tri(x/L)
where

tri(x/L) =1 —Rx/Ll, |x|<L/2

=0, otherwise.

Quantify how rapidly the intensity envelope of the sidelobes falls
off in each case. Compute the frequency resolution based on the
half-power point for the two cases. Hint: the second weighting
function can be obtained from the first through the use of the
convolution theorem. But be careful with the scaling! A sketch for
both a(x) and | 4(a)|? in each case should keep you out of trouble.
Label the half-power points of | 4(a)|® and the positions of the first
few nulls of |A(a)|? in each case.

We design a power spectrum analyzer using direct detection of
the light in the Fourier domain. Assume a signal of the form
f(x) = 0.5[1 + ¢, cos(2ma, x)]. Assume that the optical system
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produces a current i, = 0.02¢¢,,SP,c2. The photodetector parame-
ters are

i;=10nA,

c; = 3 pF,
e=0.J35,

£, =02,
S=04A/W

T = 300K, and
f. =B =12kHz.

Calculate the amount of laser power that will make the system
shot-noise limited when the signal is such that ¢, = 0.002. Calcu-
late the minimum signal level. Calculate the dynamic range on the
assumption that ¢, = 1 is the maximum value of the input signal.

(Double credit) We design a power spectrum analyzer using direct
detection of the light in the Fourier domain. To make a first cut, we
assume a signal of the form f(x) = 0.5[1 + ¢, cosQma,x)]. We
want the dynamic range to be 40 dB (i.e., we have a SNR = 1 when
¢z = 10™*). Assume that the optical system produces a current
i, = 0.02e¢,,SPyc?. The photodetector parameters are

i; = 12nA,

¢, = 5pF,
e=0.5,

£, =02,
S=04A/W,
T = 300 K, and
B = 500 kHz.

If you follow the questions in the order in which they are posed,

you should have no trouble getting some reasonable answers.

Calculate:

(a) The cutoff frequency (f,,) that makes the shot-noise and ther-
mal-noise terms equal when the signal current i, < i,.

(b) Calculate the required load resistor (assume f_, = 500 kHz).

(c) Is the system as it stands shot-noise or thermal-noise limited?
(Assume that dark current dominates the signal current when
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4.12.

the signal is small.) Calculate both 2eBi, and 8wkTBf_c, to
support your answer and for use later on.

(d) Calculate the laser power P, required to achieve the necessary
dynamic range.

(e) For this amount of laser power, calculate the minimum signal
current and compare it to the dark current as a sanity check.
Does this change your mind about whether dark current really
does dominate when the signal is at its minimum value?

(f) Calculate the amount of laser power required to make the
system shot-noise limited at the minimum signal level. This will
be a fairly large value relative to the value calculated in (e).

(g) As an alternative to using lots of laser power, calculate the gain
required of an avalanche photodetector (APD) to make the
system shot-noise limited. Assume that m = 2.3 when you use
G,, in the calculation.

(h) Recalculate the laser power required to achieve the necessary
dynamic range when using the APD. Compare this value to that
obtained in part (d), which uses a PIN detector (an APD whose
gain is 1), and to that obtained in part (f), which achieves
shot-noise performance by brute force. Of the three, which do
you think is the best engineering solution?

We want to spectrum analyze a 200-MHz bandwidth signal using a

falling raster recording format. We have available a spectrum

analyzer for which L = 2H. The film has a cutoff frequency of

a,, = 200 Ab, and the width of the film is 20 mm. Calculate:

(a) the horizontal velocity V,

(b) the number of samples in the horizontal direction N,,

(c) the minimum resolvable frequency in the horizontal direction
(the coarse frequency resolution) f,,

(d) the film velocity ¥V}, and

(e) the minimum frequency resolution of the system (the fine
frequency resolution) f,.

For the spectrum analyzer of Problem 4.11, find the position of a
cw signal at 126,290 Hz.
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Acousto-Optic Devices

7.1. INTRODUCTION

Spatial light modulators form the interfaces between electrical and optical
systems. In Chapter 4 we described several two-dimensional spatial light
modulators whose inputs are either incoherently illuminated objects or
raster-scanned electrical signals. None of those modulators, however, are
able to accept signals with hundreds-of-megahertz bandwidths. We there-
fore concentrate in this chapter on acousto-optic spatial light modulators
that help to implement a wide range of processing operations on wide-
bandwidth signals. These devices are key to the signal-processing architec-
tures discussed in the remainder of this book.

7.2. ACOUSTO-OPTIC CELL SPATIAL LIGHT MODULATORS

The advantages of optical systems, based on the use of acousto-optic cells
for processing either analog or digital signals, may be summarized as a
combination of high throughput, a small volume relative to competing rf
systems, and low power consumption. Optical systems offer the potential
for a large number of parallel channels with complete connectivity, and
the high carrier frequencies (= 10'* Hz) allow very high channel band-
widths with little crosstalk of the type present in electronic processors.
Also, optical channels have comparatively smaller power requirements, as
the dissipative losses associated with electrical transmission are not pre-
sent; the losses in typical optical transmission media, such as air and glass,
are low.

Brillouin (75) predicted in 1922 how light and sound would interact,
and early experimental results were obtained by Debye and Sears (76) and
Lucas and Biquard (77). Raman and Nath (78) put the interaction phe-
nomena on a solid mathematical foundation in 1935. It was not until the
1960’s, however, that devices with large bandwidths and good optical
quality were developed. Acousto-optic cells have bandwidths up to 2 GHz,

288
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Figure 7.1. Acousto-optic cell spatial light modulator.

frame times of about 1 usec, diffraction efficiencies of up to 90%, time
bandwidth products of 1000-3000, good phase responses, and reasonable
dynamic ranges.

An acousto-optic cell consists of an interaction material, such as water,
glass, or an exotic crystal, to which a piezoelectric fransducer is bonded, as
shown in Figure 7.1. These one-dimensional devices are driven by an
electrical signal connected to the transducer. The transducer launches
either a compression or a shear acoustic wave into the x direction of the
material which, in turn, creates strain waves. The strain waves lead to
density changes in the interaction medium and, consequently, to index of
refraction changes. The net result is that light passing through the
acousto-optic cell in the z direction is modulated in phase according to
changes in the optical path. The end of the acousto-optic cell is generally
angled so that the reflected acoustic wave does not interact with ‘the
incident illumination.

As most signal-processing operations require many acoustic cycles in
the cell to support sophisticated signals, the signal to be processed is
translated to a center frequency f,. Suppose that s(¢) is a baseband signal
with highest frequency W /2. We mix this signal with cos(2f,t), as shown
in Figure 7.2(a), to produce a double sideband modulated signal f(¢)
whose spectral bandwidth is W = f, — f,, centered at +f., as shown in
Figure 7.2(b). In those applications where the rf signal spectrum falls
naturally between f, and f,, the signal can be fed directly into the
acousto-optic cell without further preprocessing.
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Figure 7.2. Acousto-optic cell: (a) electrical connection and (b) spectrum of drive signal.

When the interaction width Z of the acousto-optic cell is short relative
to an acoustic wavelength, the device behaves as a thin diffracting mate-
rial, as studied extensively by Raman and Nath in their 1935 papers (78).
At the other extreme, the axial width of the cell may be large relative to
the acoustic wavelength. We then speak of the device as operating in the
Bragg mode, resulting in effects similar to those produced by x-ray diffrac-
tion in three-dimensional crystals.

7.2.1. Raman-Nath Mode

In Chapter 3, Section 3.1 we showed that a light wave is phase and
amplitude modulated as it passes through an element whose response is
la(x)lexpl j¢(x)]; the wave then has the form |a(x)lcos[27f,t + ¢(x)],
where f;, is the frequency of light. In a similar fashion, light passing
through the acousto-optic cell, when driven by a pure sinusoidal frequency
fj» is phase modulated so that

A(x,t) =A, cos[27rf,t + #{no + An cos[27rfj(t - ; - i)]}],
(7.1)

where A(x,t) is the amplitude of the output wave in space and time, 4,
is the amplitude of the incident light wave, and An is the change in the
index of refraction within the interaction medium induced by the traveling
strain wave. In Equation (7.1), the argument ¢t — T/2 — x /v shows that
A(x,t) is a wave traveling in the positive x direction with velocity v and
that the cell has a transit time of T = L /v, where L is the length of the
acousto-optic cell and v is the velocity of sound in the interaction medium.

The strain wave within the cell is proportional to the amplitude of the
acoustic wave. As the modulated optical wave given by Equation (7.1) is a
function of both space and time, a sinusoidal input signal causes the cell to
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Figure 7.3. Diffracted orders in the Raman-Nath mode.

behave as a phase diffraction grating traveling in the x direction. Light is
diffracted by the phase grating to produce several positive and negative
diffracted orders. Figure 7.3 shows the rays associated with the incident
illumination on the acousto-optic cell, as well as the first two of many
diffracted waves. A rigorous analysis of the operation of an acousto-optic
cell yields the Raman-Nath equation for the amplitude of the ith diffracted
order (79):

IAil =|AoJi(Y)

, (7.2)

where A, is the amplitude of the incident light, J; is the ith-order Bessel
function, and y is the phase shift of the light induced by the refractive
index change. The normalized diffracted amplitude of the ith wave is
indicated by m; (79):

A, ;
m;=—— = (-J) Ji[

Ao

2w ZAn
—], (7.3)

A

where J,(-) is an ith-order Bessel function of the first kind. We define m;
as the modulation index for the ith order; it is defined as the ratio of the
diffracted light amplitude to the incident light amplitude. The amplitude
of the diffracted light, as a function of the phase shift of the Bessel
function, is shown in Figure 7.4 for the undiffracted light and for the first
two diffracted orders. The phase of each order, relative to its neighbors, is
shifted by 90° as indicated by the (—j) factor in Equation (7.3). For
example, we find that the positive and negative orders are 180° out of
phase. This result is also found from the fact that J_,(x) = (=1)"J,(x)
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Figure 7.4. Bessel functions of order 0, 1, and 2.

and that

(7.4)

Jy(x) = (ix)[ = + (=)’ (%x2)3

21 213! 314!

As J(x) is odd, the sign reversal between the two orders is apparent.

7.2.2. The Bragg Mode

From Equation (7.3) we see that large values of An and Z lead to high
diffraction efficiencies. As light is wasted when multiple orders are gener-
ated, we generally increase the interaction width Z until the Bragg mode
of operation is reached. We characterize the transition from the Raman-
Nath mode to the Bragg mode by defining a Q factor:

211 A

Q = no Az ’ (75)

where n, is the index of refraction of the interaction material and A is the
acoustic wavelength. The acoustic wavelength is related to the applied
drive frequency f by A = uv/f, where v is the velocity of the acoustic
wave. A Q = 27 establishes a boundary between the two modes. If
Q < 2, the acousto-optic cell is operating in the Raman-Nath mode; if
Q > 27, it is operating in the Bragg mode. In optical signal processing,
the acousto-optic cell is primarily used in the Bragg mode because more of



7.2 ACOUSTO-OPTIC CELL SPATIAL LIGHT MODULATORS 293

klight out o kligh( n E
' K acoustic : ! Kacoustic
O . 0s : :

K

g

ol
o
w

e .

o

&

o

f o
w

(@) (b)
Figure 7.5. Bragg diffraction: (a) upshift mode and (b) downshift mode.

the optical power is coupled into a single diffracted order. In the strong
Bragg region, only two diffracted orders are present, either the zero and
one positive diffracted order or the zero and one negative diffracted order.

The essential properties of acousto-optic diffraction are explained with
the aid of a model showing the collision between photons and phonons.
The momenta of the interacting particles are given by 7k and #K, where #
is Planck’s constant and k and K are the wave vectors of light and sound.
From Figure 7.5(a), we see that the optimum illumination angle for wave
matching occurs when k,,, = k;, + K so that

K|

sin 03 = m

(7.6)

The magnitude of the wave vectors are inversely proportional to the
wavelengths (e.g., [k| = 27 /A), so that

A

sinBB = EX’

(1.7)

where A is the wavelength of the acoustic signal in the medium. In
general, A > A, so that

A

T (7.8)

6; = sinfg =

The optimum illumination for the Bragg mode is therefore at the off-axis
Bragg angle 05, whereas the illumination is normal to the surface of the
acousto-optic cell in the Raman-Nath mode.
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In addition to the geometrical matching of the wave directions, conser-
vation of energy requires that the frequency of light is shifted when it
interacts with the traveling acoustic wave. We therefore find that

w,=w+Q
}, (7.9

o_=w-—0

where w, and w_ refer to the radian frequency of the diffracted light in
the positive and negative orders and where w and Q refer to the
frequencies of the incident light and the sound wave. These relationships
predict a frequency shift in the light, visualized by considering the motion
of the sound wave. If the sound wave is moving toward the incident light,
as shown in Figure 7.5(a), it shortens the wavelength of the diffracted
light; the diffracted light is Doppler shifted upward by an amount equal to
the frequency of the sound wave, as shown by w, in Equation (7.9). The
frequency w, refers to the upshifted condition associated with the positive
diffracted order. If we reverse the angle of the incident light on the
acousto-optic cell, as shown in Figure 7.5(b), we see that k., and k
exchange positions to produce the negative diffracted order; the frequency
of light is then downshifted. In this case, w_ refers to the downshifted
condition associated with the negative diffracted order.

Although we almost always use the Bragg mode in practice to produce
the highest diffraction efficiency, there are compelling reasons to use the
Raman-Nath mode in explaining basic optical signal-processing technol-
ogy. In the Raman-Nath mode there is a nice degree of symmetry in the
results and having the choice of which diffracted order to use is often
convenient for developing the proper processing architectures, as we see
in subsequent chapters. We generally confine our attention to the un-
diffracted light and the first positive and negative diffracted orders. The
physical angles between the diffracted orders are typically of the order of
milliradians; we exaggerate them in our diagrams for clarity.

7.2.3. Diffraction Angles, Spatial Frequencies, and Temporal Frequencies

Figure 7.6 shows the connections among diffraction angles, spatial fre-
quencies, temporal frequencies, and acoustic wavelengths. For a given
drive frequency f, we find that the acoustic wavelength is A = v/f. By
definition, the spatial frequency is therefore a = 1/A, which gives an
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Figure 7.6. Relationships among wavelength, spatial frequency, and diffraction angle.

important relationship between spatial frequencies and temporal frequen-
cies:

R
n

(7.10)

|-
< |~

Thus, there is a unique spatial frequency associated with every temporal
frequency present in the acousto-optic cell. Furthermore, the diffracted ray
angle is connected to the spatial and temporal frequencies by

9 =Aa=—, (7.11)

which nicely ties together all the important parameters.

When the drive signal is an arbitrary sum of cw components, light is
diffracted over a large set of angles simultaneously, with angles and
amplitudes determined by the frequencies and amplitudes of the cw
components. In particular, suppose that the drive signal is

f(r) = i anejz""f"‘rect[ﬁo—u:ﬂ], (7.12)

n=—ow

where f, is the smallest resolvable frequency. The rect function shows
that the spectrum of f(¢) is centered at f, and that it has bandwidth
W =f, — fi = K,fy — K, f,- This signal contains M = K, — K, + 1 dis-
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crete frequency components, each a multiple of f;,, beginning at frequency
f; and ending at f,. The signal f(¢) may be generated directly by an rf
signal or by a baseband signal

s(t) = Y a,cos(2mnf,t)rect
n=0

nf,
W], (7.13)

that is multiplied by cos(2wf,t), where f, = (f, + f,)/2, to put its spec-
trum at the center of the passband of the acousto-optic cell. Thus, the
signal within the acousto-optic cell can be represented by M discrete
temporal /spatial frequencies, leading to M discrete diffraction angles.

7.2.4. The Time Bandwidth Product

An important parameter in signal processing is the time bandwidth prod-
uct, which is the product of the bandwidth and the time duration of
the processed signal. The time bandwidth product tells us, in general,
the degree of complexity of the signal or of an optical system. We
begin the derivation of the time bandwidth product for an acousto-optic
cell by relating the total angular deflection range A@ to the bandwidth Af:

A
A8 = ;Af, (7.14)

so that the deflection angle is linear in applied frequency. The number M
of resolvable angles produced by the cell is

M angular range Af 15
" angular resolution  A/L’ (7.15)

where L is the length of the acousto-optic cell and A /L is the intrinsic
angular resolution of any physical system, as discussed in Chapter 3,
Section 3.5.2. We use Equation (7.14) in Equation (7.15) to find that

M= AAf/ v _ L B 3 p
= V73 ——;Af—-TAf-—TW, (7.16)

where we made use of the fact that L = vT and that the total bandwidth
of the cell is Af = W. Depending on the application, T is called the
transit time of the cell, the time delay of the cell, the access time of the
cell, or the time duration of the signal within the cell.
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Equation (7.16) shows that the number of resolvable angles M is equal
to the time bandwidth product of the cell. The angular resolution A /L is
predicated on illuminating the cell with a uniform-magnitude plane wave
of light. If the incident wave is amplitude weighted in the x direction, as in
most spectrum analysis applications, the angular resolution decreases; the
value of M is therefore reduced accordingly. Time bandwidth products for
acousto-optic cells are generally in the 1000-3000 range. The time band-
width product is limited by the basic tradeoff between time and bandwidth
and involves the physical limitations of important material properties such
as attenuation and available crystal sizes. The reader is referred to the
literature for more detailed discussions of the design relationships that
govern acousto-optic cells (80, 81).

7.3. DYNAMIC TRANSFER RELATIONSHIPS

In Chapter 3, Section 3.8, we noted that the input/output relationship for
an optical system is linear in amplitude when the system is coherently
illuminated, is linear in intensity when the system is incoherently illumi-
nated, or is linear in neither amplitude nor intensity when the system is
partially coherently illuminated. Acousto-optic systems also provide linear-
ity in any of these quantities depending on how they are illuminated and
on the nature of the drive signal.

7.3.1. Diffraction Efficiency

A key performance parameter associated with acousto-optic cells is the
amount of light diffracted into the first order. Suppose that the input
electrical signal has voltage V; and that the incident light has intensity I;,.
The diffraction efficiency of the acousto-optic cell is defined as (80)

172
i,  [=P Z
ns m2 = — = Slnz[ZTzs FMZ] (717)

where I, is the intensity of the diffracted light, [, is the intensity of the
incident light, P, is the acoustic power within the material, Z and H are
the transducer dimensions as shown in Figure 7.3, and M, is a figure of
merit used to evaluate acousto-optic configurations. The figure of merit is
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defined as

My = >, (7.18)

where n, is the refractive index of the material, p is a strain-optic
coefficient, p is the density of the material, and v is the sound velocity.
From Equation (7.17) we note that the diffraction efficiency increases for
large values of M,; from Equation (7.18) we see that the diffraction
efficiency, in turn, increases for high indices of refraction and low
acoustic-wave velocities. Equation (7.17) shows that a large value for the
interaction width Z and a small transducer height help to achieve high
diffraction efficiencies.

A high diffraction efficiency must be balanced against increased attenu-
ation as the sound propagates through the cell and against a reduction in
the cell bandwidth. As the drive frequency f; changes, a mismatch of the
wave vectors occurs within the acousto-optic cell and the diffraction
efficiency suffers. We express the 3 dB bandwidth Af as (80)

202

Moz

(7.19)

where f, is the center frequency of the cell. From Equations (7.17) and
(7.19) we note a conflict among bandwidth, velocity, and interaction width.
For example, acousto-optic cells that have low acoustic velocities have
high diffraction efficiencies, as we see from Equation (7.17), but also tend
to have narrow bandwidths, as we see from Equation (7.19).

An important parameter of acoustic devices is the attenuation of the
acoustic wave as it propagates in the acousto-optic cell. Attenuation
reduces the effective diffraction efficiency, reduces the effective time
aperture of the cell, and reduces the frequency response. High attenuation
also results in heating of the acoustic material, which can lead to effects
such as a change in the acoustic velocity and defocusing of the optical
beam. Some work has been done to obtain higher frequency responses and
better time bandwidth products by cooling the acoustic material (82),
taking advantage of the decrease in attenuation with temperature below
30 K (83).

The material must also have a high homogeneous optical transmission
and low defect levels to minimize optical loss and scatter. Relatively few
materials are sufficiently developed to provide high quality routinely.
Single-crystal LINDO; and TeQ, are popular largely due to their availabil-
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ity, in spite of their less than optimum values for M, and attenuation; GaP
is particularly well suited for operation at the wavelengths available from
injection laser diodes.

7.3.2. Input/Output Relationships

From Equation (7.17) we see that the diffraction efficiency of the acousto-
optic cell is given by

n = sin’(yBP,), (720)

where the input acoustic power P, is proportional to the square of the
input signal voltage V; and B is a constant that accounts for the parame-
ters associated with the interaction medium. The value of B is

5=" 2y 7.21
T2 H P (7.21)
where Z is the interaction width and H is the height of the transducer.
The ratio of the amplitude of the diffracted light to the amplitude of the
incident light is the modulation index as given by Equation (7.3) so that

m=n = sin(‘/B s). (7.22)
For /BP; < /2, we can replace the sine function by its argument so that
m = +/BP, = B'V,, (7.23)

where B’ is a new constant. As the modulation index is linearly propor-
tional to the input voltage, we find that the amplitude of the diffracted light
is linearly proportional to the input voltage. Figure 7.7(a) shows the operat-
ing condition for achieving linearity in amplitude; the signal is double-
sideband modulated with a low modulation level so that the signal
envelope stays on the linear part of the sine function.

We sometimes make the diffraction efficiency m proportional to the
signal voltage V, to operate the system so that it is linear in intensity. We
first add a bias voltage V, to V;, so that the new drive signal V, + V| is
nonnegative. The diffraction efficiency is then

n =sin?{B"[V, + V;1}, (7.24)
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Figure 7.7. Operating conditions: (a) linearity in amplitude or (b) linearity in intensity.

where B” is a constant. We use the fact that sin? x = (1 — cos2x)/2 and
that cos(x + y) = [cos x cos y — sin x sin y] to find that

= 3[1 — cos(2B"V,)cos(2B"V,) + sin(2B"V,)sin(2B"V;)]. (7.25)

When we choose the bias so that B"V, = mw/4, the second term of
Equation (7.25) vanishes and we achieve the highest degree of linearity.
The diffraction efficiency then becomes

n = 3{1 +sin[2B"V,]}. (7.26)
If the value of the input voltage is small, we find that
n=3{1+2B"V}. (7.27)

From Equation (7.27) we see that, for biased signals, the intensity of
the diffracted light is linearly proportional to the input signal voltage.
Figure 7.7(b) shows the operating conditions required for achieving linear-
ity in intensity. Here we arrange for the signal envelope to be centered on
the most linear region of the square of the sine function.
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Figure 7.8. Traveling wave geometry.

Finally, the input voltage generally varies as a function of time. To
represent the time dependence, we let V, — f(¢) represent the input
signal, we let m — A(x, t) represent the output amplitude signal, and we
let n — I(x, t) represent the output intensity signal.

74. TIME DELAYS AND NOTATION

We regard the acousto-optic cell as a delay line that is tapped optically, or
as a device that stores a certain time history of the signal. The time signal
propagates through the cell with velocity v so that it has characteristics of
a traveling wave of the form f(¢+ — x/v), as shown in Figure 7.8, where x
is a coordinate along the acousto-optic cell. As x = 0 represents the
midpoint of the acousto-optic cell, we introduce a delay T/2 so that the
signal becomes f(¢t — T/2 — x/v). We use this notation so that when we
evaluate the space/time function at the transducer, for which x = —L /2,
we obtain f(¢) as expected. At the midpoint of the acousto-optic cell
where x = 0, we obtain f(t+ — T/2), which is the input signal delayed T /2
seconds. Finally, at the far end of the cell, where x = L /2, we obtain
f(¢t — T), which represents the eldest signal value and the maximum time
delay.

7.5. PHASE-MODULATION NOTATION

For mathematical convenience, we want to represent complex-valued
functions in phasor form instead of in trigonometric form. The transition
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from Equation (7.1) to the phasor form is not obvious unless the interme-
diate steps are spelled out. We begin with the assumption that A#n is small
so that the cosine terms involving An are set equal to one and the sine of
terms involving An are replaced by their arguments. With these conven-
tions in place, Equation (7.1) becomes

2wZn, ) 2wZAn

A(x,t) =A0{cos(27rf,t + Ay 3

X cos

217f(t I f) sin(Zfrft + Z"Z"") (7.28)
¢ 2 v ! A T

where 27wZn,/A is the phase associated with the optical path through the
acousto-optic cell and f, is the carrier frequency of the baseband signal
that produces the index variations An. By some straightforward expan-
sions using the relationships that sin y = cos(y — m/2) and that
j = exp(jm/2), we find

A(x,1) =A0Re[ef(z"f"””z"o/"){l +jms(t - ; - i)

Xcos[Z‘rrfc(t -7- %)]}] (7.29)

where we have replaced the change in refractive index An by the corre-
sponding time signal ms(t — T/2 — x/v).

In earlier chapters we generally ignored the frequency of light in
deriving the results because the light distributions with which we dealt
were generally functions of space only. When we treat optical signal-
processing systems using acousto-optic cells, the light distributions are
functions of both space and time. It is therefore important to recog-
nize that the light amplitude leaving the acousto-optic cell is given by
Equation (7.29). For mathematical convenience, however, we often ignore
the exponential terms in derivations and express the light distribution
leaving the acousto-optic cell as

A(x, 1) =A0[1 +jms(t -1- %)ws{wac(t -2- ;)}] (7.30)

with the understanding that Equation (7.29) provides the complete result.
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7.6. SIGN NOTATION

In optical signal-processing applications we generally use only one of the
diffracted orders. We therefore further refine our description of the
transmitted signal as just the positive or just the negative diffracted order.
When we propagate the acoustic wave in the positive x direction, the light
leaving the acousto-optic cell in the first positive diffracted order is
expressed in phasor form by the equivalent function

Fo(x,0) =jma(x)s(t -7- %)eﬂ’fc“-f/z-*/"). (731)

In this expression, f, (x,t) indicates the amplitude of the light for the
positive order just outside the acousto-optic cell. The amplitude weighting
function a(x) includes the illumination function, attenuation factors, the
laser power level, and truncation effects due to the acousto-optic cell itself
or other optical elements. The next term is the real-valued baseband signal
s(¢), traveling in the positive x direction and time delayed by T/2. The
final term implies that s(¢) has been multiplied by cos(2wf¢) to translate
it to the center frequency f, of the acousto-optic cell. The positive sign
associated with the overall argument of the exponential shows that the
positive diffracted order is selected.

There are other combinations of illumination direction, acoustic-wave
direction, and choice of diffracted order. The most general way to express
the equivalent amplitude function of the acousto-optic cell at its exit
face is

fe(x,1) =jma(x)s(t - ; + %)etiz"fc("r/z*—"/”). (7.32)

In Equation (7.32) the + signs combine to produce four possibilities. We
first determine which diffracted order we need to use; this decision
determines the f,(x,t) or f_(x,t) notation for the positive and negative
orders, respectively. The sign of the exponential is the same as that of the
diffracted order when the acoustic wave is propagating in the positive x
direction. The frequency of light is therefore upshifted in the positive
order and downshifted in the negative order. If the acoustic wave is
propagating in the negative x direction, the sign associated with the
exponential is opposite to that of the diffracted order; the sign associated
with x/v in the argument of the signal envelope is then positive.
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Recall that a basic assumption in the development of diffraction theory
was that exp[j(wt — kr)] is a satisfactory eigenfunction for the wave
equation. As the term that led to a positive kernel function for the spatial
Fourier transform is exp(—jkr), we associate a positive exponential
exp(j2 f;t) with the temporal frequency of light. The last term in f,(x, 1)
is of the form exp(j27f,t) which shows that, relative to exp(j2f;t), the
frequency of light is upshifted or downshifted because f. is added to or
subtracted from f,.

The four possible configurations of the acousto-optic cell are shown
schematically in Figure 7.9. These schematics are easy to construct and
remember, plus they tell us pictorially the spatial direction of the diffracted
light as well as its temporal shift. Note that both of these characteristics
come from the last term of f,(x, )

e +2wf(t-T/2+x/v) e j-.ijf,(t-T/2)e j;jZfrfcx/v- (733)

After the direction of the acoustic wave is chosen, we know whether the +
or — sign is used for the x/v term; we then choose the + or — sign in
the temporal frequency exponential to shift the frequency in the correct
direction.

Positive Upsl'ufled Positive Downshifted

B

T Negative ¢ Positive
®)

% A Negative y Positive

e 0
87 g \:B
Negative Downshifted Negative Upshifted
@

Figure 7.9. Various combinations of illumination and propagation directions.
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7.7. CONJUGATE RELATIONSHIPS

The conjugate relationships between the positive and negative orders are
obtained if we begin with the representation of the real-valued drive
signal:

Drive signal =|s(t) [cos[27f.t + ¢(t)]
= |s(t)|Re[ e2met +6], (7.34)

where ¢(¢) is the phase of the complex-valued signal s(¢z). From
Equation (7.33) we see that the terms in x /v have the same sign, as they
are due solely to the direction of acoustic-wave propagation. Suppose that
we propagate the acoustic wave into the positive x direction so that this
sign is negative. If we arrange the illumination direction so that the light is
downshifted in frequency, the signal becomes

e JRwflt=T/2=x/0)=d(t=T/2~x /v)]

. T x
jma(x)ls(t -5 ;)
- * T X\ _jwf=T/2-x/0)

= jma(x)s*|t — 5~ -Je ¢ . (7.35)

Thus we see that the downshifted signal is the conjugate of the upshifted
signal. When we want to obtain a “true” signal spectrum, we use the
upshift mode of operation; when we want to obtain the conjugate of the
spectrum of a signal, we simply use the downshifted mode of operation.
Nice, and useful, too.

7.8. VISUALIZATION OF THE ACOUSTO-OPTIC INTERACTION

The observed light intensity leaving an acousto-optic cell operating in the
Raman-Nath mode is the same as the illuminating beam because the effect
of the acoustic interaction is pure phase modulation. In Figure 7.10(a) we
use a Schlieren method (see Chapter 4, Section 4.3.1) to help visualize the
interaction of light and sound for a single-channel acousto-optic cell
driven by a pure rf signal at 400 MHz (84). The acoustic waves spread in
the vertical direction as they propagate away from the transducer, which is
at the left end of the cell. In the region near the transducer, we see some
detailed structure caused by acoustic interference; this structure is equiva-
lent to the near-field diffraction pattern or the Fresnel diffraction of a slit,
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as we showed in Chapter 3, Section 3.2.5. In fact, the acoustic diffraction
pattern is a scaled version of the diffraction patterns that occur at light
wavelengths; the scaling factor is A/A.

Figure 7.10(b) shows a Schlieren image of an eight-channel acousto-optic
cell, wherein the center frequency f, is modulated by eight different
pseudorandom sequences (85). The acoustic spreading is not as pro-
nounced in this example because the time bandwidth product of the cell is
lower. Multichannel acousto-optic cells with up to 128 active channels
have been built, although 32 channel cells are more commonly available.

7.9. APPLICATIONS OF ACOUSTO-OPTIC DEVICES

Acousto-optic cells are configured in different ways, such as with single-
channel or multichannel transducers. They perform different functions,
such as modulating light temporally, deflecting light, or serving as a delay
line. In this section we review some of these functions.

7.9.1. Acousto-Optic Modulation

For optical signal processing we are primarily interested in using acousto-
optic cells as delay lines or as short-term memories. They are sometimes
useful, however, as modulators to impart a temporal variation onto the
entire optical beam. In our model of these applications, we reduce the
length of acousto-optic cell by letting L — 0 so that the space /time signal
f(t = T/2 — x/v) degenerates to the purely temporal signal f(¢), as
illustrated in Figure 7.11. The illumination must be a focused beam
because the rise time associated with the modulation bandwidth is propor-
tional to the time 7 required for the acoustic beam to travel across the
optical beam. As the acoustic transit time decreases, the rise time de-
creases so that the corresponding bandwidth increases.

: Output
Acousto-optic beam

Input cell

beam \

0

Un;iiffracted
light

Figure 7.11. Acousto-optic temporal modulator.
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As the bandwidth of the acousto-optic cell increases, however, the
output cone of light becomes elliptical because the optical and acoustic
waves do not match over the full range of input ray angles (80). The
momentum-conservation law is given by k., = k;,, + K, as shown in
Section 7.2.2. In a modulator, the incident light beam has a range of k,,
vectors of constant magnitude, distributed over an angular range 686,
because the light beam is convergent. To satisfy the vector relationship,
the acoustic wave must have a corresponding range of angular directions
50. When 86 < 86,, momentum cannot be conserved for all optical wave
components; this loss of momentum produces an elliptical output beam
cross section. If 36 > 86,, the bandwidth is reduced.

The 10-90% rise time ¢, for an acousto-optic modulator is a function of
the transit time T. For a Gaussian input beam profile, truncated at the
1/€? points in intensity, we find that ¢, = T/1.5 and that the frequency
response rolloff B, defined in decibels, is (80)

B = 10log[e~™1'T" /8], (7.36)

where f is the frequency. We solve for the cutoff frequency f., at which
the response has rolled off to the value B:

Lol

foo = T’

(1.37)

where ¢ = v0.81n 10 = 1.4. The relationship between rise time and modu-
lation bandwidth is, therefore, that

_ 0298
—

r

Af (7.38)

Note that Af is the modulation bandwidth of a baseband signal; the rf
bandwidth is twice Af because we retain both the upper and lower
sidebands of the signal about the carrier frequency.

Acousto-optic cells also have application as Q switches, mode lockers,
cavity dumpers, and other devices associated with lasers for controlling
light (79-81). Table 7.1 gives the properties of selected interaction materi-
als as used in specific acousto-optic configurations (80). The attenuation of
these devices is indicated by I' and is stated as the number of decibels of
attenuation per usec of cell length per GHz? of the applied frequency.
For example, a 3-usec cell made from LiNbO; and operating at a fre-
quency of 750 MHz has an attenuation of 0.098 X 3 X (0.75)*> = 0.17 dB
at the end of the cell.
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Table 7.1 Properties of Selected Acousto-Optic Interactions

Velocity v Attenuation I’ Figure of Merit M,
Material (10>m/s) Index n dB/(usec- Ghz?) (10~ sec/kg)
LiTaO, 6.19 2.18 0.062 1.37
LiNbO, 6.57 2.20 0.098 7.00
TiO, 8.03 2.584 0.566 3.93
Sto2sBagsNb,Og  5.50 2.299 2.20 38.6
GaP 6.32 331 3.80 44.6
TeO, (longitudinal) 4.20 2.26 6.30 34.6
TeO, (slow shear) 0.617 2.26 17.6 1200

The data given in Table 7.1 is representative of the interaction parameters. The specific values are
dependent on factors such as the strain mode (longitudinal or shear), the polarization and
direction of the incident light, and the acoustic K vector direction with respect to the crystal axes.
Furthermore, the acoustic attenuation dependence on frequency is sometimes proportional to the
1.5 power instead of the square of the frequency. In a similar fashion, the figure of merit M, is
not a pure material constant but is dependent on the factors cited above.

7.9.2. Acousto-Optic Beam Deflectors

The acousto-optic cell, when driven by a cw frequency, behaves as a
random access beam deflector which addresses a specific position at the
focal plane of a lens. Figure 7.12 shows an acousto-optic cell at plane P,
with an acoustic velocity v and a length L = »T. We drive the cell with a
signal f(¢) = cos(2mf,t) to access the kth spot position in the scan line.
This signal produces a positive diffracted order whose Fourier transform is

Wavefront tilt ekis

proportional to fi
LR P 1 / PZ

8k

f(2) =cos(2nfyt)

Figure 7.12. Acousto-optic scanner.
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generated by a lens with focal length F:
F(£,8) = [ fu(x,0)e/@m /AP gy, (7.39)

where f,(x,t) = rect(x/L)explj2wf,(t — T/2 — x/v)]. The Fourier
transform of f,(x,¢) is

F.(60) = [ L72 giamfue-T/2-x/v3gin /AFIER gy
-L/2
fx

; 3
= p27fr(t=T/2) ¢} — - —|L , 7.40
e SIHC[(/\ p ) ] ( )

when we ignore amplitude scaling factors. From Equation (7.40), we find
that the lens focuses light at the spatial position

AF
fk = _U—fk (7.41)

at plane P,. This result shows that the spot position is linearly pro-
portional to the applied frequency. The first zero of the sinc function
occurs at

AF

&0 = I = dgy, (7.42)

in accordance with basic Fourier-transform theory. We use d, both as a
measure of the spot size as well as the Nyquist sampling interval at plane
Pz.

In addition to the random-access mode, we can use cw frequencies to
scan a light beam along a line in a stepwise fashion. However, a continu-
ous scanning action provided by a chirp drive signal provides higher line
scan rates. Figure 7.13 shows an acousto-optic cell driven by a signal
whose frequency increases linearly from f, to f, in a time duration T,.
Such a frequency-modulation signal is called a chirp signal as character-
ized by

c(t) = cos(2mfyt + wat®); 0<t<T, (7.43)

where a is the chirp rate, expressed in Hz/sec and T, is the chirp
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Figure 7.13. Linear scanning with chirp waveform.

duration. From Equation (7.43), we see that the instantaneous frequency f;
is

1
" 2marl
=fitat; 0=<t<T. (7.44)

fi

2wfit + 1-rat2)

The instantaneous frequency of the chirp sweeps over the bandwidth
W = f, — f, of the acousto-optic cell in the chirp duration 7, so that the
chirp rate a is

SE

(7.45)

Because the instantaneous frequency at the end of the acousto-optic cell is
f., the frequency at the beginning of the cell must be

fo=f.+aT=f+ (7.46)

T
In the example shown, the chirp frequency is increasing in time, generally
called the upchirp condition; the chirp frequency may also decrease in
time, called the downchirp condition.
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The behavior of the scanning action produced by the cell can be
explained by using elementary diffraction theory and geometrical ray
tracing or by using a diffraction integral. Each method provides useful
insights into the scanning phenomena; we begin with the ray tracing
approach.

7.9.2.1. Linear Scanning with Chirp Waveforms: The Ray-Tracing Ap-
proach. Consider a ray trace for a stationary chirp segment that has just
filled the acousto-optic cell, as shown in Figure 7.13. Basic diffraction
theory shows that the instantaneous frequency in the small region near the
end of the cell produces an undiffracted waveform, indicated by a ray
traveling parallel to the optical axis, along with positive and negative
diffracted waveforms, indicated by rays that each make an angle 6, with
respect to the undiffracted light. The diffraction angle is related to the
spatial frequency a, and the temporal frequency f, by

A
0,=Aa, = Uf <. (7.47)

A similar relationship holds for the region near the beginning of the cell:

A(f. + WT/T,)

Afy
v v

When we trace the rays associated with the positive diffracted orders of
each subregion within the cell, we find that they intersect a distance D
from the cell to form a spot whose size is d,. For the small diffraction
angles produced by the acousto-optic cell, the included angle between the
extreme rays is

AG=0,—-6 AT 7.49)
—Yp e UTC > ( .
so that the distance to the plane of focus is
L uLT, 7T,
D= —=—°= . (7.50)

From Equation (7.50) we find a useful relationship between the chirp rate
a and the radius ~f curvature D of the chirp wavefront within the cell. By
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rearranging the factors, we find that

w
—_ = Fc =a. (751)

The key geometrical parameters of the acoustic signal, such as v, A, and
D, are on the left of this relationship while the key drive signal parame-
ters, such as W and T, are on the right.

The spot size, following the Rayleigh criterion as given in Chapter 3,
Section 3.5.2, is d; = A /A6, where A#@ is the angle between the two rays.
For the configuration of Figure 7.13, we find that

dy= — = —<. (7.52)

For a given chirp duration, the spot size is inversely proportional to the
time bandwidth product of the cell.

The scanning velocity is most easily calculated by noting that the spot
position, as a function of time, is

L
£(1) -3 + D,(¢)

L + D——)‘(f ¢ +UWt/ 1) , (7.53)

where we used the general form of Equation (7.48) to produce
Equation (7.53). The scanning velocity v, is then

| @

AW
£(t) =D— (7.54)

v, = .
ot vT,

Y

We now use the value of D from Equation (7.50) in Equation (7.54) to
find that

viT, AW
v, = — =
TAW T,

(7.55)

The scanning velocity is therefore always equal to the acoustic velocity and
cannot be controlled by any of the system parameters.
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The length of the scan line is equal to the product of the scan velocity
and the active scanning time. Scanning begins at t = T and continues
until £ = T, so that the active scan time interval is (7, — T). The length of
the scan line is therefore

L,=v(T.-T)=uv(T.-T) = [% - I]L, (7.56)

so that the scan line is longer than the length of the acousto-optic cell. The
number of samples in a scan line is

—]TW, (7.57)

so that the number of samples in a scan line approaches the time
bandwidth product of the cell, if T, > T.

7.9.2.2. Linear Scanning with Chirp Waveforms: The Diffraction Ap-
proach. To control the scanning velocity, we must introduce a lens to the
right of the acousto-optic cell. To analyze this condition, we use the
diffraction method exclusively; in the process, we develop some new
analytical tools and provide other useful insights. Furthermore, we can
now more fully address the effects produced by the temporal characteris-
tics of the chirp waveform.

Figure 7.14 shows a condition for which the acousto-optic cell aperture
is small compared to the chirp duration. The chirp duration 7, is the time
between the lowest and highest frequencies of the chirp, the difference

Chirp train

Figure 7.14. "requency/time relationship for a chirp trai
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being W = f, — f,. The repetition period T, is the time interval between a
given point on one chirp segment and a similar point on the next chirp
segment, for example, the time between the highest frequencies of two
adjacent segments. The repetitive nature of the chirp train between the
highest frequencies of two adjacent segments. The repetitive nature of the
chirp train, shown in Figure 7.14, is expressed by a time convolution of
the chirp signal with an impulse train:

f(ty=c(t)s ¥ 8(t—nT)

n=-w

= cos(2mfyt + mat?)* i 8(t — nT,), (7.58)

n=-—w

where T, is the repetition period of the chirp train.

We consider the general case in which T, may be larger than, compara-
ble to, or even less than, the aperture time T of the acousto-optic cell. We
classify scanners according to two criteria: the active aperture time and the
active scan time. If T, > T, the active aperture time is governed by the
length of the acousto-optic cell; we refer to this condition as the long-chirp
scanner. If T, < T, the active aperture time is governed by the length of
the chirp, we refer to this condition as the short-chirp scanner. For the
long-chirp scanner, the active scan time is T, =7, — T, as noted in
Section 7.9.2.1. For the short-chirp scanner, the active scan time is
T, = T — T,. These two scan times can be combined to give a single active
scan time of T, = |T — T.l.

When we use a voltage-controlled oscillator to generate the chirp
signal, T, must be greater than T, because the signal does not return
instantaneously from f, to f;. A part of the chirp train is therefore not
available for active scanning. We can, however, arrange for the chirp
waveforms to overlap to an arbitrary extent by impulsing a surface acoustic
wave device that produces a chirp waveform at arbitrary repetition inter-
vals. The active scan time is then either T, or 7,, whichever is shorter.
When the active scan time is T}, the system is aperture limited. When the
active scan time is 7,, the system is repetition rate limited.

7.9.2.2.1. A Long-Chirp, Aperture-Limited Scanner. There are four basic
scanner configurations: a long or short chirp scanner; each is either
aperture or repetition rate limited. We begin our diffraction analysis for a
long-chirp scanner that is aperture limited. The optical arrangement is
essentially the same as that shown in Figure 7.12, except that the acousto-
optic cell is now driven by a chirp signal represented by Equation (7.58).
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For this exercise, we select the negative diffracted order, whose amplitude
just to the right of the acousto-optic cell is

fo(x,1) = rect(x/L)e—j[Z‘u'fl(t—T/Z—x/u)+1ra(t—T/2—x/u)2]; T<t<T,
(7.59)

where we have dropped scaling factors and used uniform illumination. The
scan time starts at ¢ = T and finishes when the end of the chirp segment
arrives at the transducer. For the moment we assume that the lens is in
contact with the acousto-optic cell; we show how to handle a finite
separation later in this section. A positive lens is represented by the phase
response

h(x) = eim/APx, (7.60)
so that the light distribution to the right of the lens is
f_(x, t) - rect( x/L)e—j[Z-rrfl(t-—T/2—x/u)+1ra(t—T/2—x/u)2]ej(1r/AF)x2;
T<t=<T,. (7.61)

The light distribution at any plane a distance D; to the right of the lens is
given by the Fresnel transform of r_(x, t):

F(en) = [ f(rnemiopeiae (16)
We substitute Equation (7.61) into Equation (7.62), to find that
F(g, t) = jm l'CCt( x/L)e—j[Z‘frfl(t-T/2—x/u)+1ra(l—T/2—x/u)z]

IR i ADXE=R s T <t <T,. (7.63)

We use Equation (7.51) in Equation (7.63) to find that
F(&,t) = e 2mit=T/2) f ” rect(x/L)e/2™f1x/vg=iltmo? /ADXI=T/2=x/v)"]

% I /AF)x? g =jm /ADXE=x)
= ol® j’ Lr2 jims?/a01/F-1/D-1/Dy)
—-L/2
xej(Z‘xrx/z\)[v(t—T/2)/D+§/Df+z\f|/u] dx; T<t< (Tc — T),
(7.64)
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where we collect all phase factors that are not functions of x into the term
¢. Note that the chirp rate a = W/T, is positive when we use the upchirp
mode, as we do here, and negative when we use the downchirp mode of
modulation.

The focal position occurs when the integral has its maximum value so
that the light intensity is highest. The integral in Equation (7.64) has its
maximum value when the integrand is set equal to one. Let us begin,
however, by setting just the value of the exponential that is quadratic in x
equal to one. The first condition necessary to obtain focus is therefore that

! L L 0 7.65
F D D (765)
or that
D DF 7.66
f  D-F" ( )

When Equation (7.66) is satisfied, Equation (7.64) produces the spatial
light distribution at the focal point:

L2
F(£,1) = f :/2e1(2wx/AXu(t-T/2)/D+§/Df+)\f,/u]dx

w(t-T/9L  &D-F)L AL

; T<t=<T.
AD AFD p =L

=L sinc[

(7.67)

The position of the scanning spot at any instant in time is found by setting
the argument of the sinc function equal to zero, equivalent to setting the
value of the exponential in Equation (7.64) that is linear in x equal to 1:

_ ADF uo(t=T/2)F

= - - T
v(D - F) D-F

<t<T. (7.68)

The spot position at the beginning of scan when ¢ = T is

A,DF  u(T/2)F
"wWD-F) D-F’

£ = (7.69)
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and the spot position at the end of scan when ¢t = T, is

ADF  o(T,— T/2)F

Y= "ww-n_ D-F (7.70)
so that the length of scan is
v(T, - T)F
Ls = |f¢ - fbl = —DT' . (7.71)
The scanning velocity is readily obtained from Equation (7.68) as
¢ vF 77
U: - a_t = - D _ F ( * )

The scanning velocity v, has the same or opposite direction as v depend-
ing on the value D of the wavefront radius of curvature. When we use a
configuration in which the acoustic wave is traveling in the positive x
direction, the rules are that:

1. When D is positive and greater than F, as for the case analyzed
here, v, is negative so that the spot moves in the negative x
direction. In this case, the chirp signal in the acousto-optic cell is
equivalent to a negative lens whose focal length is longer than that of
the positive lens. The light therefore focuses at some plane to the
right of the lens because the distance D is positive, as we see from
Equation (7.66).

2. When D is negative, the scanning spot moves in the positive x
direction. In this case, the focal length of the chirp is equivalent to a
positive lens and the net result, as confirmed by Equation (7.66), is
that of two positive lenses working together.

3. When D is positive and less than F, the scanning velocity is positive
so that the spot moves in the same direction as v, but the light does
not focus anywhere to the right of the lens. In this case, the focal
length of the chirp is equivalent to a negative lens whose focal length
is shorter than that of the positive lens, and Equation (7.66) confirms
that D is negative.

These rules are illustrated in Figare 7.15. The negative diffracted order
satisfies the first rule. The value of D is positive, equivalent to stating that
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Figure 7.15. Scanning action diagram.

f(t) =cos2nfit + nar®)

the focal power of the chirp is negative so that the scan plane lies to the
right of the plane at which the undiffracted light is focused. As the chirp
signal flows through the acousto-optic cell, the ray angles increase in the
negative direction, leading to a negative scan velocity. The start-of-scan
position, as seen from Equation (7.69), is negative as is the end-of-scan
position, as we see from Equation (7.70).

The positive diffracted order satisfies the second rule. The value of D is
negative, equivalent to stating that the focal power of the chirp is positive,
so that the scan plane lies to the left of the plane at which the undiffracted
light is focused. As the chirp signal flows through the acousto-optic cell,
the ray angles increase in the positive direction, leading to a positive scan
velocity. The start-of-scan position, as seen from Equation (7.69), is
positive; the end-of-scan position, as we see from Equation (7.70), is also
positive. The positive diffracted order exists for all values of D because
the equivalent focal length of two lenses with positive powers must be
positive.

Rule three applies to a special case for the negative diffracted order
and states that the light may not focus at any plane to the right of the lens
for certain values of D. For example, as the value of D approaches F, the
negative power due to the chirp signal subtracts from the positive power of
the lens; the focal plane for the negative diffracted order therefore
recedes to infinity. When D = F, the two focal powers exactly cancel and
the focal plane is at infinity. As stated in the third rule, the negative
diffracted order does not focus at any plane to the right of the lens if D is
positive and less than F; it generates a virtual scan plane.
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When we drive the acousto-optic cell with a downchirp signal of the
form

f(t) = cos(2mf,t — wat?), (7.73)

instead of with the upchirp signal, the same general results apply except
that we interchange f, and f, to account for the different starting
frequency and replace D by —D to account for the negative chirp rate.
The roles of the two scan planes shown in Figure 7.16 are then inter-
changed so that the negative diffracted order focuses to the left of the
positive diffracted order. As expected, the scan velocities also have oppo-
site signs so that the spots scan toward the optical axis instead of away
from the optical axis.

Equation (7.72) shows how to control the scanning velocity by selecting
the value of the focal length of the lens. For a desired scan velocity, the
required focal length of the lens is

D

F = _]_—--T/Us. (7.74)

The signs of D and v, can combine, according to the rules, only to cause
the focal length of the lens to be positive.

The size of the scanning spot is obtained from Equations (7.52) and
(7.66):

A ADF
"~ L/D;, (D-F)L’

d, (7.75)

As the chirp radius of curvature D — o, the spot size tends to a value of
dy, = AF /L, as expected, because then the chirp waveform contributes no
power to the system; the lens alone acts on the diffracted light.

The number of samples in the scan line is

M=k U(T‘_T)Li 7.76)
“dy | aDp T @
We use Equation (7.51) in Equation (7.76) to find that
T
M= [1 - ?ITW, (7.77)

just as we found from the geometrical analysis.
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The scan duty cycle is defined as the ratio of the active scan time
divided by the repetition period:

min(7T,,T,) T.-T

T, T,

r

(7.78)

The sample rate at which samples are recorded is given by the ratio of the
scan velocity to the spot size:

R,=— = —w. (7.79)

The throughput rate is the average number of samples recorded per unit
time and is the product of the sample rate and the scan duty cycle;

R,=UR 1 d TW 7.80
[ s TC 7; ’ (' )

where we have used Equations (7.78) and (7.79) to produce
Equation (7.80).

If the acousto-optic cell and the lens are not in contact, as shown in
Figure 7.15, we can use the thin-lens formula to find the equivalent
position of the plane at which the light is focused. If the separation
between two thin lenses with powers K, =1/F, and K, =1/F, is
Z,,, the equivalent power of the combination, as given in Chapter 2,
Section 2.5.8, is

Ko =K, + K, — 2,K,K,. (7.81)

We associate the power of the chirp signal in the acousto-optic cell with
K, so that K, = —1/D and associate the lens power with K,. The net
power of the combination gives the distance to the scan plane from the
acousto-optic cell: D; = 1/K,.

7.9.2.2.2. A Short-Chirp, Aperture-Limited Scanner. In the short-chirp
scanner, the active aperture time is limited by the chirp duration T_..
Suppose that one of the chirp segments from the chirp train is completely
within the acousto-optic cell, as shown in Figure 7.16. The relationships
given from Equation (7.67) onward are modified for application to the
short-chirp, aperture-limited scanner. For example, the start-of-scan time
is T, and the end-of-scan time is T — T, and the integrations are over a
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Figure 7.16. Short-chirp scanner.

spatial range L, = vT,. We study the diffraction phenomenon as the chirp
transitions into and out of the cell at the end of this section.
The new form of Equation (7.67) becomes

(L-L)/2 ; -
F(&,t) = f o /2, i@mx /Mo =T/2)/D+£/Dp+M1 /0] gy

v(t—T/2)L D —-F)L L
=Lcsinc ( /) c +§( ) c +fl c :
AD AFD v
T.<t<(T-T,), (7.82)

where we ignore unessential magnitude and phase factors. As before, the
position of the scanning spot at any instant in time is found by setting the
argument of the sinc function equal to zero, from which we find that

Af{DF  v(t-T/2)F
= Twp-FP D-fF @ L=t=(T-L). (78)

The spot position of the beginning of scan when ¢t = T is

Af\DF u(T./2)F

= — - , 7.84
& v(D - F) D-F (7.84)
and the spot position at the end of scan when t =T — T, is
Af,DF T/2-T)F
_ fi w1/ ) (7.85)

C=~"up-F ~ D-F



7.9 APPLICATIONS OF ACOUSTO-OPTIC DEVICES 323

so that the length of scan is

L,=1¢ - &l= (7.86)

v(T—Tc)F’
D-F

The scanning velocity is still given by Equation (7.72), but the spot size is
slightly different:

A ~ ADF
" L/D, (D-F)L.’

d, (7.87)

which is similar to Equation (7.75), except that L is replaced by L,
because the spot size is now determined by the length of the chirp, not by
the length of the acousto-optic cell. The number of samples in the scan
line is

vF(T—T.)
(D -F)

(D-F)L,
ADF

v(T-T)L,
AD

M=&=
do

. (788)

We now use Equation (7.51) in Equation (7.88) to find that the number of
samples in the scan line is

TC
M= [1 - F]TW. (7.89)

Because the chirp duration is less than the cell duration, the time
bandwidth product of the acousto-optic cell is not fully utilized.
The scan duty cycle for this configuration is

T-T.
U= (7.90)

and the sample rate is

R == —w, (7.91)
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which is the maximum achievable sample rate. The throughput rate is

(7.92)

obtained in a fashion similar to that used to produce Equation (7.79).

Figure 7.16 shows the situation when at least one period of a chirp
signal is fully in the acousto-optic cell and the scanning spots are therefore
well formed. We now examine the scanning spot shape and position as the
chirp segments enter and leave the cell. The light from these transition
times is located in regions just before and just after the scan line. To
account for the spot-forming condition, we modify the limits of integration
in Equation (7.64):

‘L/2+“’ej(1rx2 /M1/F-1/D~1/Df]

F(&0) = [

-L/2

xej(Zfrx/).)[v(l—T/Z)/D+§/Df+4\f1/v]dx; 0<t< Tc’ (793)

which is applicable for a chirp waveform as it just enters the cell. The
limits of integration show that the integral is over a small spatial region
when ¢ is small and that the region of integration increases linearly for
0 <t < T,. As before, we set the value of Df so that the quadratic term in
x is equal to unity, leaving the integral

/ TL/2HU j@mx /N0 =T 12/ D+E/DprAfi /0] gy
-L/2

. v(t - T/2) £ Afy )
vt smc[{T + B; + T}ut/)t], 0<t=<T,

F(§,1)

]

(7.94)

where we ignore unimportant scale factors.

The behavior of this sinc function, whose argument is quadratic in the
time variable, has some interesting features that are exhibited in the
dotted line region of Figure 7.16 where the spot is first formed:

1. The magnitude of the sinc is small fc. small values of ¢, as we expect
from a consideration of the region of in.egration, and reaches a limit
that is proportional to vT, when the chirp in the cell is fully
illuminated.
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2. The centroid of the spot as a function of time is located at

AfiDF  v(t—T/2)F
"oW(D-F)  D-F

, 0<t<T, (79)

just as in Equation (7.83) but with a slightly different time interval of
validity. The spot position when the chirp just enters the cell is

Af,DF  v(=T/2)F

%= TL,D-F)  D-F (7.96)
and its position when it is fully in the cell is
Af,DF v(T/2)F
oM (1/2) (797

"u(D-F) D-F

By comparing Equations (7.96) and (7.97) with Equations (7.84) and
(7.85), we see that the end positions of the scanning spot produced
by the chirp as it enters the cell are displaced a distance L, below
that of the active scan line.

3. The most interesting feature of the sinc function is that the spot
changes its size continuously as the chirp enters the cell. The spot
size is determined by finding the position of the first zero of the sinc
function relative to its centroid. This distance is

AD
A§=d0=7; 0<t<T,. (7.98)

From Equation (7.94) we see that the sinc function is infinitely broad
when ¢t = 0, but its magnitude is zero. As time increases, the spot moves
towards the active scanning region and its size decreases while its magni-
tude increases. The rate at which the spot size decreases, as the centroid
moves closer to the beginning of the active scan position, is just sufficient
to keep the light from spilling into the active scanning region prematurely.
When the chirp has fully entered the cell at ¢ = T_, the spot has full
resolution and the active scanning begins as the chirp travels through the
remainder of the acousto-optic cell.

As the chirp segment leaves the cell, the spot dissolves in an order that
is a reversal of its evolution. The spot gradually loses intensity as it
broadens, until it reaches the end of the spot dissolving scan line shown in
Figure 7.16.
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7.9.2.2.3. A Long-Chirp, Repetition-Rate-Limited Scanner. To achieve a
high throughput rate, we need a high scan duty cycle; Equation (7.78)
shows that we want the active scan time to equal the repetition period of
the chirp train. Suppose that we use a surface acoustic device to generate
a chirp segment whenever it is driven by an impulse function. By control-
ling the timing of the impulses, we produce chirp segments with any
desired repetition period 7,. Depending on the ratio of the repetition
period to the chirp duration, one or more overlapping chirp segments may
be in the cell at the same time. If the response of the cell is linear, the
chirp signals do not interfere and the only effect of the overlapping chirps
is to lower the diffraction efficiency. As the chirp signal is on a carrier
frequency, a nonlinear response from the cell produces higher-order terms
that are easily eliminated by spatial filters.

In this section, we assume that the chirp segments overlap so that
T, < T,, and that T, > T. The system parameters that are changed are the
scan length which, through a line of analysis similar to that given in
Section 7.9.2.2.1, is now

L,=| I |UT’F‘ 7.99
:_fe §b_D_F' (')

The spot size is still determined by the cell aperture because T, > T:

d ADF 7.100
0 ( D — F) L H ( . )
so that the number of samples in a scan line is
T,
M= —TW. (7.101)
T
The scan duty cycle for this scanner configuration is
min(T,, T, T,
= # = =1, (7.102)

T,

. T,
as expected. The sample rate and the throughput rate are equal in this
configuration at

R, = UR ol _ T
T dy T,

w (7.103)
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As before, we see that the throughput rate is maximized only when
T. = T. To achieve this condition, we consider the final of the four basic
configurations.

7.9.2.2.4. A Short-Chirp, Repetition-Rate-Limited Scanner. In this configu-
ration, the chirp segments also overlap so that T, < T,, and we assume
that T, < T. The scan length, found through a line of analysis similar to
that given in Section 7.9.2.2.1, is

Li=16 = &l= (7.104)

vT,F'
D-F/|

The spot size is now determined by the active scan aperture because
L, = vT, so that

d ADF 7.105
" @-PL ()

and the number of samples in a scan line is
M=TW, (7.106)

which achieves its maximum value when 7, = 7. The scan duty cycle for
this configuration is

U min(7, 1) _ I 1 7.107
R A (7.107)

as expected. The sample rate and the throughput rate are equal in this
configuration at

R,=UR,= -~ =W (7.108)

In this configuration, the throughput rate is maximized independently of
the values of 7, or T., provided that the constraints necessary to imple-
ment the short-chirp, repetition-rate-limited scanner are observed.

7.9.2.3. Summary of Scanner Performance Criteria. Table 7.2 gives a
summary of the important performance parameters of the four basic
scanning configurations and serves as a useful aid in beginning a design.
For example, some applications require a high throughput rate R,. The
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maximum rate of W samples per second can be achieved with a short-chirp
scanner that is repetition-rate limited. The number of samples per line,
however, is always less than TW because the highest useful ratio for 7,/T
is 3. On the other hand, we can achieve nearly TW spots per scan line
with either of the long-chirp scanners, but only with a reduction in the
throughput rate.

To more fully appreciate the relationships among the design parame-
ters, we use two key graphic representations. The first graphic, shown in
Figure 7.17(a), illustrates the number of samples M per scan line, normal-
ized to its maximum value of TW, as a function of the ratios 7/7, and
T,/T,. The vertical line passing through 7/7T, =1 is the dividing line
between the long- and short-chirp configurations. The horizontal line for
which T, = T, is the boundary between those configurations in which the
chirp segments do or do not overlap. The diagonal lines passing through
the points (0, 1), (1, 0), and (2, 1) represent the boundaries between the full
scan duty cycle configurations (below the diagonal lines) and the partial
scan duty cycles conditions (above the diagonal lines). The loci of constant
number of samples per scan line are shown for each of the four basic
configurations. We note that the largest number is obtained by using a
long-chirp scanner for which the ratio T/T, is small; the scanner may be
either aperture- or repetition-rate limited. When 7/T, = 1, the number of
samples reaches its minimum value because the active scan time is at its
minimum value so that only one spot can be formed in each scan line. For
aperture-limited short-chirp scanners, the number of samples per scan line
is reciprocally related to the ratio T/T,, while the lines for repetition-
rate-limited short-chirp scanners have slopes whose values are equal to the
normalized values themselves.

The second graphic, shown in Figure 7.17(b), illustrates the throughput
rate R,, normalized to its maximum value of W samples per second, as a
function of the ratios T/T, and T,/T,.. The normalized throughput rate
follows parabolic curves when the scanner is aperture limited. Aperture-
limited short-chirp scanners have throughput rates that follow straight-line
segments, and the normalized throughput rate is fixed at unity for all
repetition-rate limited short-chirp scanners. The throughput rate is not a
function of the ratio T/T, for repetition-rate-limited long-chirp scanners.

7.9.2.4. Examples of an Acousto-Optic Recording System. In this section,
we provide some brief design guidelines for using the results summarized
in Table 7.2 and in Figure 7.17.

Example 1. Suppose that we design a relatively low-performance system,
such as a facsimile scanner or recorder. In this case, a large number of
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samples per scan line is typically more important than a high throughput
rate. We therefore select an acousto-optic cell, such as one made from
slow shear-wave tellurium dioxide material with a large time bandwidth
product (for example, T = 50 us and W = 40 MHz so that TW = 2000).
Because the required throughput rate for a typical facsimile is well under
1 MHz, the normalized throughput rate is much less than 0.025; as the
repetition period is nearly equal to the chirp length (7, = T_), only a small
data buffer is needed. This scanner /recorder configuration is represented
by the point P, in the graphics of Figure 7.17.

Example 2. Suppose that the requirements are the same as in the first
example, but we need to operate at a much higher throughput rate of
30(10°) samples per second. If we use the same acousto-optic cell as
before, the normalized throughput rate is 0.75. For a long-chirp scanner,
Figure 7.17(b) shows that the operating point is at P,. Unfortunately,
Figure 7.17(a) shows that the normalized number of samples per scan line
is only 0.25 for this arrangement and a significant amount of high-speed
buffering is needed because the scan duty cycle is low [(T, — T)/T, < 1].
To achieve better performance, we might consider using an 8.3 us,
120 MHz acousto-optic cell, operating as an aperture-limited, long-chirp
scanner with a normalized throughput rate of 0.25 to provide
a normalized number of samples per scan line of 0.5, operating at point
P;. Although the actual number of samples per line are the same
in the two alternatives [(0.25X50 us)40 MHz) = 500 as compared to
(0.5X8.3 usX120 MHz) = 500], the requirements on the data buffer are
not as severe in the second instance. An even better solution for these
requirements may be to use just 30 MHz of the 40 MHz bandwidth of the
slow shear-wave cell and to operate a short-chirp scanner at point P,,
where the scan duty cycle is 100% and where the normalized number of
samples is 0.48, to provide (0.48X50 wsX30 MHz) = 720 samples per scan
line.

The graphs of Figure 7.17, coupled with the data from Table 7.2,
provide the information needed to quickly sort through the possible
scanner solutions for a particular problem. For example, the two scanner
configurations shown by P; and P in Figure 7.17 provide the same
number of samples per scan line, but the solution at P; has a normalized
throughput rate of only 0.8, as compared to a normalized rate of one for
the solution at P.

7.9.2.5. Other Considerations. In the analyses given so far, we have
assumed uniform illumination of the acousto-optic cell so that the design
relationships can be clearly stated in closed form. In practice, the
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acousto-optic cell is usually illuminated by a laser beam with a Gaussian
intensity weighting so that the spot size, for a given aperture, is greater
than that for a uniform illuminating beam. Figure 7.18 shows the spot sizes
for a uniform illumination and for Gaussian illuminations in which the
intensity at the edges of the cell drops to 1/e?, 1/e* and 1/e® of the
central value. If we use the half-power response of the spot distribution as
a convenient measure of the spot size, the spot sizes for these Gaussian
illuminations have increased by a factor G, where G is equal to 1.15 for
the 1/¢? illumination, to 1.36 for the 1/e* illumination, and to 1.58 for
the 1/e% illumination. All the relationships developed in previous sections
are still valid, except that the spot size d, must be multiplied by G, while
the number of samples per scan line M, the sample rate R, and the
throughput rate R, must all be divided by G.

PROBLEMS

7.1. A spatial signal contains a maximum frequency a,, = 150 Ab. What
is the required sample spacing d, to satisfy the Nyquist criterion? If
the signal is illuminated with light of wavelength A = 0.5 u, calcu-
late the maximum physical angle 6., that the geometric rays can
have as the wavefront diverges from any sample point of the signal.
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7.2

7.3.

7.4.

1.5.

We have an acousto-optic cell constructed from gallium phosphide
material. The index of refraction is 3.31 and the velocity of sound is
v = 6320 m/sec. The crystal is L = 12 mm long and we use light of
wavelength A = 0.5 p. For a center frequency f,. = 500 MHz and a
total bandwidth of W = 200 MHz, calculate

(a) the acoustic wavelength at the center frequency

(b) the Bragg angle needed for optimum illumination, and

(c) the time bandwidth product.

For the parameters given in Problem 7.2, calculate

(a) the angular spread A8, the maximum diffracted angle, and the
minimum diffracted angle, and

(b) the distance occupied by the spectrum of the signal in the
Fourier plane if we use a 100-mm focal length lens. Sketch and
label the regions where the spectrum lies if we operate in the
Raman-Nath mode.

Suppose that you have a scanner of the long-chirp, aperture-limited

type, using an acousto-optic cell made of TeO, operated in

the longitudinal mode. Further, suppose that W = 1000 MHz,

T =1 psec, T, = 10 usec, A = 0.5 u, f; = 900 MHz, and you use a

lens having a 50-mm focal length. Calculate

(a) the distance from the lens to the scan plane,

(b) the position for the beginning of scan,

(c) the position of the end of scan,

(d) the length of the scan line,

(e) the spot size,

(f) the scan velocity, and

(g) the number of spots in the scan line.
Be sure to include a sketch of the system that clearly shows
where the scan interval lies relative to the focal plane of the lens.
Hint: Use a consistent set of relationships to solve this problem
and then use an independent set, where possible, as a sanity
check.

A periodic chirp signal has a chirp rate CR = 100(10'?) Hz/sec,
with a chirp length of T, = 1 usec. Suppose that exactly two periods
of the chirp can fit within an acousto-optic cell made of GaP
material.

(a) What is the scanner type?

(b) What is the required cell bandwidth?
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(c) Calculate the distance from the acousto-optic cell to the plane
where the chirp is focused.

(d) What is the scanning spot size d,? Note that T, sets the time
bandwidth product of the signal in this example.

(e) What is the scanning spot velocity?

We want to scan a focused beam over a distance L, = 200 mm
at a rate of 100,000 scans per second. We want a spot size of
dy, = 0.4 mm at the plane of focus and we need a 100% duty cycle so
that no data buffers are needed. Design an acousto-optic scanning
system to achieve these goals. What is the best type of scanner to
use? Select a suitable interaction material and determine values for
T, W, L, v, chirp rate, center frequency, focal lengths, magnifica-
tions, etc. Sketch and label the drive signal with time and frequency.
Provide a sketch of all the basic optical elements needed to make
the scanner work (use a top and side view sketch). Note: Your
design rational should lead you to use a TeO, slow shear-wave
acousto-optic cell (be sure to support this conclusion).

From a crumpled and torn spec sheet, you note that a manufacturer
has an acousto-optic scanner made of TeO,, operating in the slow
shear mode, with a line scan rate of 40,000 scans/second. They
claim that, when used with a 1000-mm focal length lens, the scan-
ning spot velocity is 5,000 m/sec, in a direction opposite to that of
the acoustic velocity. Furthermore, they claim that the system has a
100% duty cycle and that the sample rate is equal to the bandwidth
when the time duration of the chirp segment is just equal to the
repetition period. Unfortunately, the information about the band-
width of the cell cannot be read from the spec sheet. Calculate it
from the data given. Also, calculate the required time bandwidth
product. Be careful with the signs!
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Acousto-Optic Power
Spectrum Analyzers

8.1. INTRODUCTION

In Chapters 3 and 4, we showed how coherently illuminated optical
systems naturally display the Fourier transform of a signal and how to use
this information in spectrum-analysis applications. Optical spectrum ana-
lyzers are divided into several major architectural classes based on the
variable of integration for the Fourier-transform operation. One architec-
ture, described as space integrating, performs a Fourier transform with
respect to a space variable. This is the natural mode of operation because
lenses collect or integrate light over a given area. The second architecture,
described as time integrating, performs a Fourier transform with respect to
a time variable. The integration is achieved by collecting light on a
photodetector array for a given time period. In some cases the two types
are combined to form hybrid architectures. Both one- and two-dimen-
sional Fourier transforms exist for all types of architectures.

In this chapter we concentrate our attention on one-dimensional power
spectrum analyzers of the space integrating type. These systems are often
called instantaneous power spectrum analyzers because the Fourier trans-
form is computed for the signal history resident in the cell at every instant
in time. Because the calculations are completed as soon as light has
propagated to the Fourier-transform plane, generally in a few nanosec-
onds, the computation is essentially instantaneous. A photodetector array
in the Fourier-transform plane measures the intensity of the light, which is
directly proportional to the rf power of the temporal frequencies con-
tained in the input signal.

It was not until the mid-1950’s that the connection between spectrum
analysis and diffraction in a coherently illuminated optical system was fully
appreciated. The application of acousto-optic cells in spectrum analysis
began with the work of Rosenthal (86), Wilmotte (87), and Lambert (88).
The interaction medium, in these early systems, was often a liquid such as
water. As liquids support only low-frequency signals, the cells were gener-
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of the spherical lens between the acousto-optic cell and the detector.
Assume that A = 0.5 p. If you use all the elements in the array,
calculate the length L of the cell and the total bandwidth W of the
system.

The Rayleigh-resolution criterion requires a dip between adjacent
frequencies of 0.8 (=1 dB). A more frequently specified dip in
spectrum analyzers is 2-3 dB. The corresponding intensity dips are
0.631 and 0.50, and the corresponding increases in separation at the
Fourier plane are factors of 1.13 and 1.19 over that established by
the Rayleigh limit for a rectangular aperture function. Show, by
analysis, that these separation factors are correct.

For GaP the sound velocity is given as v = 6.32 km/sec
and T = 3.8 dB/usec/GHz? (from Table 7.1 of Chapter 7). For
f. =750 MHz, T = 2 usec, and A = 4, calculate the attenuation of
the center frequency at the end of the cell and calculate the amount
and direction of the shift. Also calculate the ratio of the peak
intensity of the effective illumination to that of the original illumina-
tion. Be careful regarding amplitudes vs intensities.

If five cw signals of different frequencies are injected into
an acousto-optic cell at a power level of 100 mW each, what is
the diffraction efficiency per frequency if the parameter
B = 0.01567r/mW? Calculate the compression.

A radar warning system requires that a spectrum analyzer have
a SFDR of 45 dB and that the dynamic range be no less than
10 dB greater than the SFDR. Calculate the minimum laser
power required to implement the system for the parameters given in
Problem 8.2.
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Heterodyne Systems

9.1. INTRODUCTION

In Chapter 8 we discussed acousto-optic power spectrum analyzers in
which we use direct detection of the intensity of the light at the Fourier-
transform plane. Detecting light intensities is sometimes restrictive be-
cause both the phase and the temporal frequency of the signal are lost. In
this chapter we show how the range of signal processing operations can be
expanded considerably by using heterodyne detection in which we add a
reference wave, sometimes called the local oscillator, to the light distribu-
tion to be detected. The interference between the signal and reference
waves produces an output signal that is linearly proportional to the input
signal voltage so that magnitude, frequency, and phase information are
preserved. More sophisticated signal-processing operations, based on het-
erodyne detection, are discussed in subsequent chapters.

Heterodyne detection is also used in holography, matched filtering, and
synthetic aperture radar processing. In the first two instances the signals
are functions of two or three spatial dimensions while, in the last instance,
we perform heterodyne detection on the temporal radar returns, which are
then recorded on film as a raster-scanned, two-dimensional spatial func-
tion. Leith and Upatnieks recognized that the angle between the interfer-
ing waves in the holographic process must be large enough to separate the
desired terms from all others upon reconstruction. They applied the
principles of communication theory to the problem and recognized that
the holographic fringe structure is similar to a temporal carrier frequency
that is modulated in both magnitude and phase (93). If the carrier
frequency is at least twice the signal bandwidth, the information can be
completely recovered. In Chapter 5, we showed how these ideas, suitably
modified, are used for constructing matched filters.

Heterodyne detection in either the spatial or frequency domain dates to
the early work on spectrum analysis (94) based on even earlier work on
correlation (86, 95). The basic ideas were brought together in an interest-
ing series of papers related to probing coherent light fields by means of
heterodyne techniques (96-98). In the study of heterodyne systems we
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sometimes encounter surprising results that do not, at first, seem consis-
tent with our intuition. Further exploration of these concepts, however,
reveals a satisfying richness of information and new arrangements for
visualizing the fundamentals of optical signal processing.

9.2. THE INTERFERENCE BETWEEN TWO WAVES

As the basic heterodyne process is caused by the interference between two
waves of light, we begin with a summary of the key results from Chapter 3
associated with spatially modulated signals. We then introduce a temporal
modulation on one of the signals to illustrate the results of both spatial
and temporal interference.

9.2.1. Spatial Interference

Consider the spatial interference caused by two plane waves traveling in
directions 8, and 8, with respect to the optical axis and with magnitudes
A, and A, as shown in Figure 9.1. Recall that the relationship between
the angles and the spatial frequencies is @ = 6 /A so that the amplitude at
plane P, is

A(x) = Aje 2max 4 4, ICmarx+d0), (9.1)

where ¢, is the relative phase between the two waves and where we have
suppressed the time-dependent factor due to the frequency of light. The
physical meaning of the phase is that one wave has advanced, at some
instant in time, a distance A¢,/27 relative to the other wave.

1€ 0 l| x
| z

Optical axis

Age' J(2rayx-¢g)

Figure 9.1. Interference between two plane waves.
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Figure 9.2. Interference between plane and curved wavefronts.

The intensity is the product of the amplitude and its complex conjugate:

I(X) =|Ale—j2‘rralx +Aze-—j(2-rrazx+¢o)|2

From Equation (9.2) we learn that the spatial frequency of the resultant
intensity is proportional to the angle between the two waves; that is,
a; —a, = (0, — 8,)/\. Because the phase accumulates more rapidly as
the included angle increases, the greater the included angle, the higher the
spatial frequency. The fringe pattern produced by two plane waves is
called a linear, one-dimensional fringe pattern because the fringes are
equally spaced in the x direction and do not vary in the y direction.

Spatial fringes are also produced by the interference of a plane
wave and a cylindrically diverging wave from a point source, as shown in
Figure 9.2. The plane wave has amplitude A, which is the limiting form of
A, exp(—jwrx?/AD) as D — «. The intensity of the Fresnel zone pattern
at plane P, is

2

L2 2 mX
I(x) =| 4, + Aeim=*/AD) =A%+A§+2A1A2cos(ﬂ)—). (9.3)
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The spatial frequency of the interference pattern, at plane P,, is

‘E&[ ] (9.4)

so that the spatial frequency is a linear function of the position variable x
at plane P,. We associate the instantaneous spatial frequency of the fringe
pattern at any value of x to an associated ray angle; in particular, the
cutoff spatial frequency a, is associated with the highest ray angle 6_,.
Once again, we see that the spatial frequency at any point in plane P, is
proportional to the angle between the interfering waves at that point. The
fringe frequency is quadratic in the x direction and is called a chirp signal.

As the interference phenomena reviewed so far are due to waves that
have the same temporal frequency, we have suppressed the temporal
frequency for mathematical simplicity. When we deal with heterodyne
detection in acousto-optic signal-processing systems, however, we gener-
ally encounter the interference between waves with different temporal
frequencies.

9.2.2. Temporal and Spatial Interference

Figure 9.3 shows a Mach-Zehnder interferometer in which the upper
branch contains no spatial or temporal modulators, whereas the lower
branch contains an acousto-optic cell driven by a cw signal at a frequency
fi- Suppose that the light amplitude at plane P, from the upper branch is

A2e J 2 (1=T/2~ufv)

e

Beam-
combiner P,
s(t) = ¢ cos(27it)

Figure 9.3. Interference between wave of different temporal and spatial frequencies.
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represented by A, exp(j0), that is, a plane wave traveling parallel to the
optical axis. For the moment, consider only the positive diffracted order
from the acousto-optic cell. The intensity at plane P,, due to these two
plane waves, is

I(u,t) =| A, + A,el?fut=T/2=u/v) ?, (9.5)

where u is the coordinate at plane P,. As usual, we have dropped the
explicit dependence of these two waves on the frequency f; of light. The
intensity from Equation (9.5) is

I(u,t) =A%+ 42 + 24, A, cos[2nf,(t — T/2 —u/v)],| (9.6)

and we see that the linear interference pattern is now a function of both
space and time. If we freeze the pattern at some time ¢, the intensity is

I(u,ty) = A% + A% + 24, A, cos[2ma, — &), (9.7)

where a, = f,/v and ¢, = 2w f,(t, — T/2) is a fixed phase that is inde-
pendent of the space variable. This intensity pattern is similar to that given
by Equation (9.2) due to two plane waves with the same temporal fre-
quency. On the other hand, if we focus our attention at the point u,, we
find that the intensity, as a function of time, is

I(ug,t) = A3 + A% + 24, A, cos[2mft — ¢,], (9.8)

where ¢, = 2w f (T/2 + uy/v) is a fixed phase. Here we note that the
intensity pattern oscillates in time according to the temporal frequency f,,
which confirms our notion that the temporal frequency content of an
applied signal is retained when we invoke heterodyne detection.

We visualize Equation (9.6) as a spatial fringe pattern that is traveling
in the positive u direction with velocity v. The connection between the
spatial and temporal frequencies then becomes clear: a photodetector,
placed at some point u,, senses a moving fringe structure whose spatial
frequency is «, and generates a temporal frequency f, = va,. The
contrast, visibility, or modulation of the detected signal is, however, a
function of the photodetector size; we now turn our attention to this
question of the optimum photodetector size.
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9.3. OVERLAPPING WAVES AND PHOTODETECTOR SIZE

In Chapters 4 and 8 we developed the design guidelines for determining
the photodetector size required to achieve a specified dip between fre-
quencies in a spectrum analyzer. A similar issue arises with heterodyne
detection, but calculating the required photodetector size is more subtle.
In a direct detection system, it is more or less a matter of “what you see is
what you get.” Light falling on the photodetector surface contributes to
the induced photocurrent, more or less independently of its direction
of arrival or temporal frequency. Light also contributes to the photo-
current in heterodyne detection, but not necessarily to the cross-product
term, which is the third term of the intensity given, for example, by
Equation (9.8). The cross-product term is separated from the bias terms by
a bandpass filter centered at f,. We therefore retain only the temporally
oscillating part from Equation (9.8), the bias A2 + A% being rejected by
the filter.

Both the signal and reference beams must overlap to achieve hetero-
dyne detection. In heterodyne detection we often call the reference beam
the probe that allows us to detect both the magnitude and phase of a light
distribution at some position in the optical system; in this sense, its
purpose is similar to that of an oscilloscope probe used to determine the
voltage waveform at a particular point in an electronic circuit.

Consider the plane-wave signal beam, represented in Figure 9.4 by solid
rays and by a solid plane wavefront, and the reference beam, represented
by dotted rays and by a dotted curved wavefront. These waves can be
created by the interferometer shown in Figure 9.3 by placing a lens in the
upper branch of the system. A photodetector placed anywhere between
planes 4 and C will provide the same total current because the two

Wavefront due to

signal beam
~ .
\\\ | ,’).“T/
7 !
-7 S~ 1 z
- ~ ’

Wavefront due to
reference beam

Figure 9.4. Reference- and signal-beam geometries.
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beams overlap completely in this region. What is the situation at plane D?
Here the reference beam extends beyond the signal beam, and we might
expect that the amplitude of the cross-product signal will be reduced
because the two beams do not completely overlap. As we show in the next
section, a surprising result is that the cross-product output has the same
value at all the planes shown in Figure 9.4. This nonintuitive result is due
to a second key principle of heterodyne detection; namely, wavefronts
must both overlap and be nearly parallel. How parallel need they be?

9.3.1. Optimum Photodetector Size for Plane-Wave Interference

To determine the required degree of parallelism, consider the simple case
of a photodetector, a plane-wave signal beam, and a plane-wave reference
probe as shown in Figure 9.5. The angle between the signal and reference
beams is @,. The reference beam is represented by a plane wave of
magnitude A, with zero spatial and temporal frequencies. The signal
beam is represented as a plane wave with magnitude 4, and temporal
frequency f, so that it is a function of both space and time. The
photodetector current is the integral over the photodetector surface of the
intensity of the sum of the reference and signal beam amplitudes:

g(t) = Sf_m I(x)rect(x/h) dx

= Sf | A, + A,eiCm et +2mas) |2rect(x/h) dx

h/2
—h/2

=S["7 [ A2+ A% + 24,4, Re[eCle= 210} | dx, (9.9)

where a, = 0,/A, S is the responsivity of the photodetector, and the rect
function shows that the photodetector has a total width A. When we
expand the integrand, we find three contributions to the photodetector
current. We see by inspection that g,(t) = A?hS and g,(t) = A3hS are
signal components that are not functions of time; their temporal spectra
are therefore centered at zero frequency. The third, or cross-product term,
is a bandpass signal centered at f:

h/2
e

g5(t) =2 Re[SAlAzefz”fk‘
Y

J2mayx dx]

= 2hSA, A, sinc(a,h)cos(2mfit). (9.10)
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Signal beam
Ay @M t-2nayx)

Photodetector

Reference beam
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Figure 9.5. Plane-wave and photodetector geometry.

As expected, we find that g,(¢) is proportional to the magnitudes of the
signal and reference beams. This result also reveals, however, a new key
factor. The magnitude of the output signal is controlled by a sinc function
whose argument is a function of a, = 6,/A, where 6, is the angle
between the signal and reference beams; the argument is also a function
of h, the photodetector size. This sinc function is, in effect, a modulation
transfer function that determines the magnitude of the cross-product
temporal signal.

The condition for maximizing the output is found by expanding the sinc
function:

85(t) =2hSA, A, sinc(a h)cos(2mf.t)

sin(wa,h)
= 2hSA, Ay————— cos(2m ft) 011
(ma,h) (9.11)

284,4, . " 5
pl— sin(wa,h)cos(2mft).

From Equation (9.11) we see that the output is small when the photode-
tector size A is small, as expected. The output increases as A4 increases,
according to the sine function, until it reaches its maximum value when
the argument of the sine function is 7/2. This result shows that the
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optimum photodetector size is
h=—. (9.12)

From Equation (9.12) we discover that the optimum photodetector size is
the same as the optimum sample spacing d, for a spatial frequency a,. As
a; = fi/A, we find that the maximum allowable angle between the two
waves for a photodetector of size A is

A

0k=ﬁ.

(9.13)

If the photodetector size increases, the heterodyned signal is reduced, as
shown by Equation (9.10), and reaches zero when 6, h = A. This means
that, over the physical aperture h of the photodetector, the phase change
between the two waves is equal to exactly one-half wavelength of light.
One way to visualize this result is to note that if 8, > A/h, there
are several spatial interference fringes over the aperture, as shown in
Figure 9.6(a). The spatial integral of the oscillating part of the interference
determines the magnitude of the sinc function, and the value of the
cross-product term is small in this case. As 8, decreases, so too does the
spatial frequency produced by the cross-product term until 8, = A /2h so
that we have one-half cycle over the aperture, as shown in Figure 9.6(b).
From Equation (9.10) we also see that if 8, is large, we need a small
photodetector to keep the modulation transfer function at a high level. To
keep the signal level within at least 3 dB of the maximum, we require that
sinc(a, k), as contained in Equation (9.10), has a value of 0.5 or greater.

: ; Low spatial
High spatial
frequency Ok frequency

Oy
\
h \ :
M
\ Photodetector
(@

Figure 9.6. Interference fringe period and photodetector geometry. (a) high spatial frequency
and (b) low spatial frequency.

Photodetector
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This occurs whenever the argument of the sinc function is greater than 0.6
so that we require 6, < 0.6A/h. We have, therefore, established a crite-
rion for how parallel plane waves must be to produce a contribution to the
cross-product term at the output of the system.

9.3.2. Optimum Photodetector Size for a Two-Dimensional Chirp

Consider the spatial/temporal interference produced by a spherically
diverging wave at frequency f, and a plane wave. The plane-wave refer-
ence beam is represented by 4, and the spherically diverging signal beam
is represented by

s(p,t) = A,e/Cmfit=mo?/AD) (9.14)

where p is a polar coordinate at plane P,. The intensity is the square of
the sum of the reference and signal light distributions:

I(p, 1) =| 4, + Azefemiis=ns*/AD) [}
= A} + A} + 2Re[ A4, A,e/@mIe-m 4D} (9.15)

The general form of the output after ignoring unessential constants is

g(1) = foz”[o"z(p,t)pdp 4o,
=g1(t) +8,(t) +85(1), (9.16)

where R is the radius of the photodetector. The first two terms are simply
the constants g,(t) = mA3R? and g,(t) = mwA%R> The cross-product t rm
is

2 R .
gs(t) = fo i [o 2Re{A, A,/ Iet =m0 /AD) g 4 d,
=47A, A, Re{e"‘z”f"‘)fRe"'(”"’z /ADy, dp} . (9.17)
0

To integrate this function, we let mp2/AD = z2 and supply the factors
needed for a perfect differential to produce

AD ) .
8s() = 4""'A|Az[ ]Re{e’(z"fk‘)[e—J(wRI/AD) - 1]> (9.18)
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The condition for maximizing the output is found by rearranging the terms
in Equation (9.18) to produce

—j(mwR? /2AD j(wrR? /2AD
g5(t) = 2mA, A, R? Re{ e/@fitlg=imR? /2AD) eTHTRIAD — D
3 2 —j(wR*/AD)

27w A, A,R? s R? 2 mR?
=2mAA,R*"sinc 2D cos "f"t_ZAD .

(9.19)

We see that, once again, the magnitude of the output is determined by a
sinc function that plays the role of a modulation transfer function with R
as a parameter. We maximize Equation (9.19) with respect to the photode-
tector radius R by noting that

wR?sinc[ R?/2AD] = 2AD sin(wR?/2AD), (920
which reaches its maximum value, for a given value of D, when

R=VAD (9.21)

The optimum photodetector size, for this case, is therefore simply a
function of its distance from the source and of the wavelength of light.

An unanticipated and interesting result from Equation (9.19) is that the
phase of the cosine carrier is a function of both R and D when the output
is maximized. What does this mean physically? The phase reveals the
shape of the spatial chirp pattern at that moment in time when g,(¢) is at
its maximum value. If we include the phase term from Equation (9.19) in
Equation (9.15), we find that the spatial intensity pattern for the maximum
output condition becomes

I(p, 1) =|A1 +Azej(z‘:rfkl—ﬂpz/AD—fRz/ZAD)Iz

mp? wR?

. (9.22)

We can associate the phase with either the spatial or the temporal part of
Equation (9.22). If we select the spatial part, the chirp function changes
from the cophasal function, shown in Figure 9.7, to the one shifted by 90°.
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Figure 9.7. Two-dimensional Fresnel zones with different initial phases.
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It is clear that there is significantly more positive contribution to the
integral from the phase-shifted chirp than from the cophasal chirp for a
photodetector radius of VAD. The key to this difference is that the
integrand in Equation (9.16) contains a term linear in p that multiplies the
intensity I(p, t) before the integration is carried out; this linear term is
shown in Figure 9.7 as two straight dotted lines. In effect, the phase ter n
serves to push more of the energy toward the larger values of p so that the
integral is maximized. Also note that when R = VAD the phase-shifted
chirp is just crossing the bias level so that any larger photodetector will
produce a smaller output for the cross-product term.

9.3.3. Optimum Photodetector Size for a One-Dimensional Chirp

The optimum photodetector size for the one-dimensional chirp case is
obtained by an analysis similar to that used in Section 9.3.2. We use the
same general definitions for the reference and signal beams to find the
intensity

I(x,t) = A2 + A3 + 2Re{A, A,e/CmTu=m/AD) (9 23)
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where x is the spatial variable at the detector plane. The cross-product
output is

gy(t) = 24,4, Re{efz"fk' j‘:jze-mz/w dx}, (9.24)

where h is the photodetector width. In this case the integral plays the
role of the modulation transfer function. We recognize the integral
as a Fresnel integral, which we cannot evaluate in closed form. We
put the integral into its standard form by a change of variables in which
wx2/AD = 7wz%/2

‘ V2/XDhs/2
g5(1) = VZAD 4,4, Re{ e/t [ e ™24z} (9.25)
~V2/ADh/2

As we showed in Chapter 3, Section 3.2.5, the maximum value of the
Fresnel integral occurs when

‘/2" 121 9.26
AD 2 7 (9:26)

so that the optimum value of % is 1.72VAD . At this value of A, the integral
is equal to 1.8 exp(j¢), where ¢ = 42.3° so that the maximum value of
84(¢) becomes

g5(1) = 1.8/2AD A, A, cos(2mfit + ¢). (9.27)

As before, we relate the optimum photodetector size to the spatial
interference patterns as shown in Figure 9.8. The phase shift of 42.3°
maximizes the integral of the function from zero to 1.72VAD . If the phase
shift were greater, the dip near x = 0 would become deeper and would
more than offset any gain from an increased photodetector size.

9.3.4. Optimum Photodetector Size for a General Signal

Would the optimum detector size change if, in Figure 9.4, we were to
place at plane B a signal with length L and high spatial frequency
content? From the sketch in Figure 9.9 we have two ways to proceed; each
provides additional insights into the detection process.
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Figure 9.8. One-dimensional Fresnel zones with different initial phases.

The first method is to represent the signal by M plane waves whose
incremental angles change by 8, = A /L, where L is the total length of the
signal at plane B. To capture the undiffracted light from the signal, we
must have some photodetector surface available at position x = 0, as we
just explained. To capture the highest positive frequency, we need some
photodetector surface at +M#6,D, where D is the distance from plane B
to plane D. Note that the latter position is where the Mth plane wave
from the signal is tangent to the diverging wavefront produced by th:
probe. It is only near this point that the signal and probe wavefronts a:

A
Reference / ~ -
probe =
- Signal of
length L
Reference
probe wavefront

Figure 9.9. Heterodyne action with plane-wave signal decomposition.



9.3 OVERLAPPING WAVES AND PHOTODETECTOR SIZE 383

B D
Reference / A =
probe T ~ - y
20 :
o 200 j
-7 -/

A
/

Reference-probe
wavefront

Figure 9.10. Heterodyne action with sinc function signal decomposition.

sufficiently parallel so that photons contribute to the cross-product term.
Similarly, we need some photodetector surface at —M8,D to capture the
negative spatial frequencies produced by the signal. A different part of the
photodetector therefore collects photons from different spatial frequencies
produced by the signal to form the cross-product term. From these
considerations, we see that the photodetector must be sufficiently large to
capture the overlapping light from both beams, up to the required size of
the divergent wavefront representing the probe.

The required size of the probe is clearly determined by the maximum
frequency content of the signal. To further explore this relationship,
consider a second method for representing the signal, namely, as a set of
sinc functions of the form sinc(x/d,). In Figure 9.10, we show the
reference-beam probe just before the signal at plane B, as a convergent
bundle of rays, with 26, as its included angle. The signal, with cutoff
frequency a,,, is represented by a sequence of sinc functions that propa-
gate as divergent waveforms into the region to the right of plane B, with
the marginal rays forming a cone of angle 26_,. The meaning of “nearly
parallel beams” is now at its simplest and clearest form; we require that
0, = 0, so that the reference probe contains a ray that is parallel to every
ray that is diffracted by the signal.

From Figure 9.10 we also conclude that only one sample of the signal
plane contributes to the output: the one that coincides with the probe!
The size of the photodetector at an arbitrary plane is simply 4 = 26, D; as
D — 0, the value of # tends toward its minimum value of d, as set by the
diffraction limit. The photodetector size at plane B is therefore also equal
to d,. All the other light, at least from a heterodyne detection viewpoint,
is irrelevant. Once again, these results emphasize that light contributes to
the cross-product term only if the beams overlap and are collinear.
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Figure 9.11. Frequency allocation in the FM band.

9.4. THE OPTICAL RADIO

We describe an optical radio to illustrate various techniques for using
heterodyne detection in recovering both the magnitude and phase of a
time signal. This simple system forms the basis for a discussion of hetero-
dyne spectrum analysis in Chapter 10 because a frequency spectrum
analyzer that resolves M frequencies is equivalent to operating M optical
radios in parallel. Each radio detects the signal power in an assigned
channel.

Consider the FM band of radio frequencies shown in Figure 9.11. In a
20-MHz frequency band, centered at 97.9 MHz, we have 100 possible FM
channels, spaced at 200-kHz intervals. We represent the composite signal
due to all channels by

f(e) = % a,cos[2mf.t + ¢,(1)], (9.28)
n=1

where a, is the magnitude of the nth signal and ¢,(t) is the FM
modulation that contains the message signal m,(¢):

d
mn(t) = E[‘bn(t)] (929)

If f(¢) drives the acousto-optic cell in the interferometer of Figure 9.12,
the light distribution at plane P, due to the lower branch resembles that
shown in Figure 9.11, where the temporal frequencies have been con-
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Figure 9.12. An optical radio.

verted to spatial frequencies through the relationship that a = f/v. We
arrive at this conclusion based on the Fourier-transform properties
of coherently illuminated optical systems as described in Chapter 8. In
Figure 9.11, we have shown the idealized situation where there are guard
bands between the channels and no crosstalk between adjacent channels.

We now consider several potential detection arrangements. Our objec-
tive is to produce a signal corresponding to one of the selected channels in
the system at the output of a photodetector. Ideally, the signal should
occur at an IF frequency so that it can be fed directly to an FM
discriminator circuit. The system shown in Figure 9.12 is therefore equiva-
lent to the front end of an FM receiver.

94.1. Direct Detection

If we block the reference beam, the lower branch of the interferometer of
Figure 9.12 is equivalent to the power spectrum analyzer discussed in
Chapter 8. Suppose that a small photodetector element is positioned so
that it collects light at the nth channel. The output of the photodetector is
then proportional to a2, as suggested by Equation (8.9), because all phase
information is lost when light is detected directly. We clearly need hetero-
dyne detection to recover the phase modulation of the input signal; we
now consider several possibilities.
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9.4.2. Heterodyne Detection

If we unblock the reference beam, interference between the signal and
reference beams is restored. At the nth channel the intensity is

I(a,t) =|R(a) + S,(a, )|, (9.30)
where R(a) is the response at plane P, due to the reference function
r(x), and S,(a,t) is the response due to the signal in the nth channel.
When the phase modulation is slowly varying with respect to the cell

duration T, we modify Equation (8.9) to find that the positive diffracted
order becomes

S (a,t) = jma,ePT/=T/D+éOlY (o - a,), (9.31)

so that the resultant intensity produced by the nth channel is represented
by

I(a,t) =|R(a) + jma,e@2™-T/2+6.014(a — &), (9.32)

which becomes

I(a,t) =|R(a)* +|ma,A(a — a,) | + 2ma,|R(a)|
X|A(a -a,) |cos[2‘rrf,,(t -T/2) +¢,(t) + 17'/2].

(9.33)

In Equation (9.33) the reference-beam response |R(a)|* is a constant in
both space and time. The second term of Equation (9.33) is the same as
we would obtain for direct detection and shows that the phase information
is lost.

The first two terms of Equation (9.33) are at baseband and are easily
removed by a bandpass filter whose center frequency is at 97.9 MHz, the
midband frequency. The last term of Equation (9.33) has the proper form
of an FM modulated signal; it can be fed directly to a discriminator after
I(a,t) is detected by the photodetector to produce the output current.
The phase factor 7 /2 in the argument of the cosine is due to the j factor
in Equation (9.31), which reminds us that the diffracted light is in phase
quadrature with respect to the undiffracted light. This phase factor merely
shifts the phase of the carrier and has no effect on the demodulated signal.
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Figure 9.13. Channel response for a sinc aperture function.

To maintain well-formed channels that have steep slopes and low skirt
levels, as shown in Figure 9.11, the aperture function a(x) must produce a
response in the Fourier plane proportional to rect(a/a,), where a,, is the
width of the photodetector expressed in terms of a spatial frequency. This
means that the aperture weighting function must be a(x) = sinc(a,x). At
first glance, it seems that this aperture function is difficult to synthesize
because we need to generate a mask with negative magnitudes. Recall
from Chapter 3, however, that the Fourier transform occurs at an image
plane of the source. Therefore, if the primary source in Figure 9.12 is a
rect function of the proper dimension, its Fourier transform at plane P,
must generate the required sinc function and, in turn, the second trans-
form at plane P, produces the desired rect function.

The steepness of the channel slopes and the depth of the skirt levels
depend on how many sidelobes of the sinc function are passed by the
acousto-optic cell. Figure 9.13 shows a candidate aperture function
a(x) = rect(x /6)sinc(a,,x), which represents a sinc function that has been
truncated at the third null on each side of the mainlobe, and its frequency
response. The Fourier transform of this truncated function has a reason-
ably flat bandpass over the channel bandwidth, a region where the re-
sponse falls rapidly, and a sidelobe level that is at least 20 dB down at the
first sidelobe. Crosstalk is about 40 dB down in adjacent channels. Steeper
skirts and lower sidelobe levels can be obtained by illuminating the
acousto-optic cell with more sidelobes of the sinc function although the
rate of gain is not very high.

There are several arrangements of the reference beam that provide the
desired signal at the output. Some of these are impractical for various
reasons, but it is worthwhile to present them all because we learn some
interesting facts about the detection process from each.
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Arrangement 1. Given the arrangement of Figure 9.12, we can simply
place a small photodetector at the position corresponding to the channel
we want to select. The finite size of the photodetector serves to isolate the
proper channel and to prevent crosstalk due to neighboring channels.
Tuning to a new station is then a matter of moving the photodetector to
the new channel position. The disadvantages of this arrangement are the
mechanical movement of the photodetector and inefficient use of the
reference-beam power because it is spread over the entire FM band.
Furthermore, since the output of the photodetector is at the same fre-
quency as the input, we have not brought the output to an IF frequency.

Arrangement 2. We avoid the need to move the photodetector by using an
array of photodetector elements at plane P,. Selecting a channel is then
accomplished by switching to the desired photedetector element. The
other disadvantages of Arrangement 1 are still present, however.

Arrangement 3. We more efficiently use the reference-beam power
and therefore produce a higher signal-to-noise ratio, by modifying the
interferometer, as shown in Figure 9.14. Suppose that we move lens L,
outside the interferometer so that it creates the Fourier transform of
the signal and reference beams simultaneously. If we arrange for
r(x) = a(x) = sinc(a, x), we find that the reference beam is only one
channel wide at plane P,. As a result, the reference beam power s
approximately 100 times greater than in the previous two arrangements.
Tuning to a new channel is achieved by rotating the beam combiner to an
appropriate angle; for a given angle of rotation ¥, the reflected reference
beam is rotated by 2¥. The signal from the lower branch is largely
unaffected by the rotation; recall from Chapter 2 that when a plane
parallel plate is rotated, the rays passing through the plate are simply
displaced somewhat. As the angle of rotation is of the order of a few
milliradians, the spectrum is not shifted a great deal (see Problem 9.3).

L,

Py
=3

Photodetector

N
f(8) = X8, co027fyt + (1]
n=l

Figure 9.14. Optical radio with the Fourier-transform lens outside the interferometer.
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A second advantage of this arrangement is that we can use a large,
single photodetector element that covers the entire FM band, as the
reference beam is now confined to a single channel. From Section 9.2 we
learned that a heterodyne output occurs only if two signals overlap and are
collinear. In this case lens L, ensures that the beams are sufficiently
collinear at the output and the choice of r(x) restricts the region of
overlap to the selected channel. Using a single photodetector simplifies
the postdetection circuitry at the expense of a somewhat higher shot-noise
level because more signal energy than is necessary is falling on the
photodetector. As we show in Chapter 10, shot noise is generally domi-
nated by noise introduced by the reference beam so that the additional
photodetector size is not a serious drawback. The disadvantages of this
arrangement are that the output is still at rf and that we need to
mechanically rotate the beam combiner to tune the system.

Arrangement 4. We avoid the mechanical rotation of the beam combiner
by further modifying the interferometer as shown in Figure 9.15. Here we
use a second acousto-optic cell to provide electronic tuning of the radio.
In particular, we drive the second acousto-optic cell with a reference
signal r(z) = cos(2mf,t) to access the nth channel. The channel selection
process is fast, limited only by the access time of the reference-beam
acousto-optic cell. A new and unfortunate problem has arisen, however;
the output, instead of being at rf as in the other arrangements, is now at
baseband. This problem becomes apparent when we remember that the
reference-beam signal is

R(a,t) = jme/®m1A=T/DR(q — a,). (9.34)

This reference probe selects just one frequency component from the signal

r(t)= cos(2nf,t)

P L

Photodetector

N
@)=Y apcos[27f,t +0,(1)]
n=l

Figure 9.15. Use of an acousto-optic cell to provide the reference beam.
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so that the intensity becomes

I(a,t) =|jme® 4 ~T/DR(a — a,)
. i 2
+jma, e/ =T/ D460y (q — @) | (9.35)

When we carry out the expansion, we have

In(a’t) =|mR(a - an)l2 +|manA(a - an) |2

+2m?a,R(a — a,)A*(a — a,)cos[d,(t)], (9.36)

which confirms that the cross-product term has been heterodyne shifted to
baseband. The cross-product term therefore cannot be separated from the
bias terms, rendering this arrangement useless because the output is not at
a convenient intermediate frequency.

Arrangement 5. A final modification is to change the reference frequency
to f,, so that the reference beam overlaps the mth channel and to then
rotate the beam combiner to geometrically move the reference probe back
to the nth channel. This fixed rotation is performed only when the system
is calibrated. In this fashion, we find that the reference and signal beams
have slightly different frequencies so that Equation (9.35) becomes

L(a,t) =|jme® ¢ -T/0R(a - a,,)
. 2
+jma, e PTIAT/ D00y (g — @ )|, (9.37)

and the corresponding intensity becomes

I(a,t) =|mR(a - ozm)|2 +|ma,A(a — ot,,)|2 +2m?%a,R(a - a,,)
XA*(a — a,)cos[2mfyt + ¢,(t) — wf,T], (9.38)

where f, =|f,, — f,l is the offset frequency. For FM reception, it is
convenient to set f, at 10.7 MHz, the normal IF frequency. The optical
system therefore both tunes to the desired channel and simultaneously
brings the output to the desired IF. The tuning procedure is simply to add
10.7 MHz to the desired channel frequency f, to produce the required
reference drive frequency f,,.

Arrangement 6. Although Arrangement 5 provides all the desired features
of a heterodyne system, we offer a more general modification, as shown in
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Figure 9.16. A general purpose heterodyne system.

Figure 9.16, in which the lower branch contains an acousto-optic cell
driven by a signal f(¢). The upper branch contains a similar acousto-optic
cell driven by a reference signal r(¢). The upper branch may also contain a
means for purely time modulating the reference beam at plane P, with a
signal p(z). The signal p(t) is introduced by means of an acousto-optic
point modulator as described in Chapter 7, Section 7.9.1 or by other types
of temporal modulators; it is a part of the illumination of the acousto-optic
cell in the upper branch that contains r(¢).

To illustrate the features of this system, we drive the temporal modula-
tor with the desired offset frequency f, so that

p(t) = cos(2mf,t). (9.39)

Because the offset frequency is provided by the point modulator, the
frequency of the reference signal should now be set to that of the channel
we want to select. To illustrate the effects of a mistuned radio, we let the
reference frequency be f:

r(t) = cos(2wf;t). (9.40)
The signal at plane P, due to the upper branch of the interferometer is
R(a,t) = jmR(a — a;)e?™it-T/2=x/ g =i2mfa (9.41)

where we have retained the downshifted diffracted order from the point
modulator for reasons that will become apparent shortly.

The drive signal to the acousto-optic cell in the lower branch of the
interferometer is

F(t) = cos(2mfet + ¢)s (9.42)
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and its Fourier transform at plane P, is
S(a,t) = jma, A(a — a,) et =T/D+éy], (9.43)

Suppose that we use a large-area photodetector at plane P; to collect all
the light produced by the two branches of the system. The output signal is
then

g(t) = [ Ia,t)da=[ |R(a,t) +S(a,t)[ da
=g(1) + 8,(¢) +85(1). (9-44)
The cross-product term produces an output
gi(t) = 2Re{f¢° S(a,t)R*(a,t) da}
= ZRe{ f ” jma, A(a — a,)e/Bmlt=T/D+ &0
X (=j)mR*(a — a;)e /2= T/Dei2fat da}

=2 Re{mza,‘e’p"m —fiXt—=T/2)+ 27 fat + ]
xf_mA(a - a,)R*(a — a;) da}. (9.45)

Suppose that we set a(x) = r(x) = rect(x/L) so that we can evaluate the
integral on «. The integral is a function of the difference between a; and
a, as is seen by making a change of variables in which y = a — a;:

(o, —a;) = fj sinc['yL]sinc[(y +a, - aj)L] dy
= sinc[(ak - aj)L] . (9.46)

In Equation (9.46), we recognize that the convolution of two sinc functions
produces a sinc function of the delay variable. This result shows that the
output is maximized when a; = a,, as we expected; it also shows the rate
at which the output drops as the degree of mistuning increases.
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To maximize the output, we set f; = f; so that Equation (9.45) becomes
gs(t) = 2m?a, cos[2mf t + ¢, ]- (9.47)

From Equation (9.47) we see that we have recovered the magnitude and
the phase of the input signal. If either the magnitude or phase are a
function of time, the carrier frequency will be properly modulated by these
time-dependent signals. The reason for selecting the downshifted diffrac-
tion order from the point modulator is that we retain the proper sign on
the phase term. If we had used the upshifted diffracted order, the output
would be the conjugate of the desired signal. This option is useful in some
signal-processing applications, as we note in later chapters.

The desired signal is available at the output of a bandpass filter
centered at f,, provided that neither of the other two terms from Equa-
tion (9.44) have spectral energy in that band. In this example, both the
reference and signal are narrowband functions so that the frequency
content of both g,(¢) and g,(¢) is concentrated at f = 0. We leave it as an
exercise for the reader to calculate the frequency content of the two
baseband terms when the signal has a finite bandwidth (see Problem 9.2).

Through this sequence of arrangements, we have developed a practical
solution for the optical radio. Both Arrangements 5 and 6 have all the
desired features: rapid tuning, efficient use of the reference power, and a
phase competent output at IF. This study of the optical radio is useful
because it leads to an interesting generalization in Section 9.5 from which
we can develop other optical computing architectures. This study also
leads directly to the development of 4 heterodyne spectrum analyzer, as
discussed in Chapter 10.

9.5. A GENERALIZED HETERODYNE SYSTEM

The optical radio described in Arrangement 5 is the preferred implemen-
tation for recovering the magnitude and phase of an arbitrary signal at the
output of the system because it is more cost effective than the system given
in Arrangement 6. The general-purpose interferometric system shown in
Figure 9.16, however, has a higher degree of flexibility and can be
configured to perform a wide range of processing operations.

Suppose, for the moment, that the combined beams are Fourier trans-
formed by lens L,. The Fourier transform of the signal in the lower
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branch is

F.(at) = f:a(x)f+(t -2~ E)e’z"“"dx. (9.48)

Given that the reference beam contains a point modulator p(t) and a
Bragg cell driven by r(t), we express the intensity at plane P, as

I(a,t) =|F,(a,t) +p()R,(a,1)[’, (9.49)

where R, (a,t) is defined in a similar fashion to that for F_ (a,t). We
expand the intensity to obtain

I(a,t) =I(a,t) + L(a,t) + I;(a,t), (9.50)

where

I(a,t) =|F (a, )],
L(a,t)=|p(t)R.(a,1)[", (9:51)
L(a,t)=2Re[F (a,t)p*(t)R%(a,1)].

This general result suggests several processing possibilities. As one exam-
ple, suppose that the purely time modulation p(t) is given, in analytic
form, by

p(t) =e 2l (9.52)

so that the temporal modulation is a simple cw frequency at f,. Suppose,
too, that

F (a,t) =|F, (a,t)|e/=" (9.53)
and
R,(a,t) =|R,(a,t)|e5=*" (9.54)

are completely arbitrary, complex-valued functions, where we explicitly
show the magnitude and phase parts of the transforms of the two signals
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that drive the acousto-optic cells. We express the intensity at plane P, as

a,0)=|F.(a,0) +|R.(a,1)[
+2|F (a,t)||R,(a,t)|cos[27ft + (a,t) — 6(a,1)].
(9.55)

This is the central result of the analysis of the general-purpose interferom-
eter. The cross-product term of Equation (9.55) reminds us of the general
equation, given in many communication texts, that represents phase,
magnitude, or frequency-modulated signals:

v(t) = Acos[27f,t + ¢(t)] angle modulation
v(t) = A[1 + m(¢t)]cos(27f.t) amplitude modulation
v(t) = Am(t)cos(2mf.t) double-sideband modulation  (9.56)

In these representations, f. is a carrier frequency, ¢(¢) is an angle
modulation signal, m(t) is a baseband amplitude modulation signal, and A
is a constant. By comparing Equation (9.56) with Equation (9.55), we see
that the cross-product term from I(a, t) can, with suitable assignment of
the reference signals and choice of a, be put into any one of the forms
listed for v(¢). The main difference between I(a,t) and v(t) is the
presence of the two bias terms IF+(a,t)|2 and |p()R + (a, t)|>. This
difference disappears when we separate the desired cross-product term
from the first two with a bandpass filter. Therefore, a key requirement on
the reference functions is that they introduce an offset frequency f, of
suitable value to achieve the separation. In subsequent chapters we
consider several applications using this general architecture and signal
sources.

PROBLEMS
9.1. The baseband signal to an FM optical radio consists of M = 100

channels, each one narrowband, so that the input signal can be
approximated by

s(t) = ibk(‘)cos(z""fkt)a
k=1



396

9.2.

9.3.

HETERODYNE SYSTEMS

where b,(t) is a narrow-band modulation. The reference function
r(t) = cos(2m f;t) accesses the jth frequency band of interest and an
auxiliary reference function p(¢) = cos(27 f,¢) provides the required
frequency offset which is the IF frequency (see Figure 9.16). Develop
a general relationship for the output g(¢) of the system, where

g(t) = [_:lR(a,z) +S(a, 1) da

and where R(a,t) is the total reference waveform at the output.
Calculate the temporal frequency content of the two terms

£(0) = [ |R(e,0)["da

and
g:(1) = [ 1(a,1)[ da.

Calculate the minimum value of f, to prevent overlap of the
spectral terms of the three output signals g,(¢), g,(¢), and g4(¢) if
the total baseband bandwidth of s(t) is 20 MHz and TW = 1000 for
the acousto-optic cell. You are expected to chose a realistic aperture
weighting function to support your answer. Sketch the temporal
spectrum of all three terms to support your answer.

Suppose that we use a plane-wave reference probe at the Fourier
plane to heterodyne detect the signal produced by the positive
diffracted order from an acousto-optic cell. The cell is made of
LiNbO; and operates at a center frequency of f. = 1600 MHz.
Suppose that the photodetector size is 25 u. What is the input
frequency range that can be detected if the magnitude of the cross-
product term must be within 3 of its maximum value for the
following two cases:

(a) when the reference beam is parallel to the optical axis and

(b) when the reference beam is parallel to the chief ray caused by f..
Plot the frequency response of the system, when using this photode-
tector, for a full 1000-MHz bandwidth centered at f, = 1600 MHz.

Also, calculate the photodetector size needed to keep the system
response to no more than a 3-dB rolloff over the full bandwidth.

Suppose the beam combiner in the optical radio of Figure 9.12 is
rotated 10 mrad. If the combiner is 15 mm on a side and has a
refractive index of 1.5, calculate the amount that the spectrum is
shifted when it is transmitted through the prism, if the distance from
the center of the combiner to the Fourier plane is 100 mm?
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Heterodyne Spectrum Analysis

10.1. INTRODUCTION

The emphasis in this chapter is on achieving more dynamic range in
spectrum analyzers by using heterodyne-detection techniques. Other bene-
fits, such as the ability to measure both the magnitude and phase of a
signal, also accrue as a result of heterodyne detection. As we learned in
Chapter 8, the photodetector current produced by a power spectrum
analyzer is proportional to the input rf signal power. In heterodyne
detection we combine the signal spectrum with a reference beam, called a
local oscillator, the magnitude and phase of which are known, so that the
photodetector current is proportional to the signal voltage instead of to
the signal power. The result is a significant increase in the dynamic range.

King et al. (94) described heterodyne detection techniques for recover-
ing both the magnitude and phase information of a light distribution. In
their system, shown in Chapter 9, Figure 9.3, the interference of an
unmodulated reference beam with a spectrum F(a, t) produces a tempo-
ral frequency proportional to the input signal frequency f. Because the
wideband input signal is typically centered on a frequency of several
kundred megahertz, the interference term occurs at a high temporal
frequency that varies as a function of the spatial frequency. As a result,
implementing the postdetection filter design for each discrete photodetec-
tor element, each with a different center frequency, is not cost effective.

In this chapter we describe a heterodyne spectrum analyzer in which a
spatially modulated reference beam is used to reduce the temporal IF
frequency to a fixed value over the entire spectrum (99). Discrete element
photodetectors with small bandwidths and low-noise equivalent powers
are used in the Fourier domain to detect the time-varying signal in each
frequency channel. An additional benefit of discrete detectors is that the
postdetection processing operations are more flexible and can be per-
formed in parallel to reduce the output data rate. Other advantages of
heterodyne spectrum analysis are improved crosstalk rejection, scatter-
noise immunity, and uninterrupted evaluation of the spectrum to achieve a
100% probability of intercept.

397
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Self-scanned photodetector arrays cannot be used with this detection
technique because they integrate light over a time period that is large
compared to 1/W, where W is the bandwidth of the signal. As a result of
the integration, the temporal information contained in the heterodyne
output is lost. Although discrete photodetectors are not the most elegant
for use in systems whose time bandwidth products are large, arrays with
about 100 elements have been implemented; advanced photodetector
fabrication techniques may produce integrated devices with attractive
operational features (100, 101). Furthermore, there are several applica-
tions, such as radar warning receivers, where a reasonably small number of
photodetectors are adequate because the channel frequency intervals are
fairly large relative to the bandwidth covered.

We begin with a description of the basic theory of the heterodyne
spectrum analyzer and the spatial /temporal frequency content of several
signal types, including cw and short-pulse signals. We then establish the
required characteristics of the reference beam and determine the pho-
todetector geometry and postdetection bandwidth required to achieve a
given frequency resolution. We analyze and compare the performance of
various reference waveforms based on both their temporal and spatial
frequency content. Finally, we calculate the dynamic range obtained by
heterodyne detection and compare it with that of a power spectrum
analyzer.

10.2. BASIC THEORY

The basic theory of heterodyne spectrum analysis is developed in connec-
tion with the interferometric system shown in Figure 10.1. The signal
waveform f(t) is applied to the transducer of the acousto-optic cell
located in the lower branch of the interferometer at plane P,. The drive
signal may be a carrier frequency modulated by a baseband signal s(¢), or
a portion of the rf spectrum that is translated to a center frequency f..
The acousto-optic cell in the signal branch of the interferometer has
length Lg, centered at x = 0. The reference signal r(¢) is applied to the
transducer of the acousto-optic cell located in the upper branch of the
interferometer at plane P,; this acousto-optic cell has length L, centered
at x = 0. The two acousto-optic cells are illuminated by a collimated
source of monochromatic light.
The complex light amplitude f,(x, ¢) leaving the signal cell is

Fo(x,0) =jma(x)s(t - 2= g)eﬂvfc(**fs/z-xm, (10.1)
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Figure 10.1. Heterodyne spectrum analyzer.

where m is the modulation index, a(x) is the aperture function, 7, is the
time duration of the cell, and f_ is the center frequency of the applied rf
signal. The spatial Fourier transform of the positive diffracted order is

F,(a,t) = f jma(x)s(t - —123 - %)e’z”fx"rx/z“/”)e"z”“"dx. (10.2)

In a similar fashion, R, (a,t) is the Fourier transform of the positive
diffracted order r (x,t). The intensity at plane P; is the square of the
sum of F_(a,t) and R, (a,t):

Ka,t) =|F.(a,t) + R,(a,0)|"

=|F,(a,)]" +|R,(a,t)|" + 2Re{F,(a,t)R%(a,1)}. (10.3)

After removing the first two bias terms by a bandpass filter centered at f,,
as we discussed in Chapter 9, we detect the cross-product term from
Equation (10.3), which contains the desired magnitude, frequency, and
phase information.

We relate the spatial Fourier transform given by Equation (10.2) to the
temporal transform of s(t) by setting a(x) = rect(x/L,) and making a
change of variables

t—T,/2 —x/v
dx = —vdu (10.4)

[
&
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to obtain

Fo(a,t) = jmoe?m= 0T/ [1 s(y)e=ir0~foudu | (10.5)
[

We recognize the integral as the Fourier transform S(f,t) of the base-
band signal s(t), evaluated over a time window that extends 7, seconds
into the past. This spectrum is centered at f_ to reflect the fact that the
signal is on a carrier frequency. The spectrum S(f,¢) is called the
instantaneous spectrum of the signal s(t) for two main reasons. First, and
most importantly, the limits of integration include the current time vari-
able . As the signal flows through the cell, the spectrum is recomputed
continuously in time. From a sampling viewpoint, however, we preserve
information if we confine our attention to the transform computed at time
intervals of T,, where T, = T,/N. As usual, N = 2T, is the total
number of samples for the signal history in the cell. In this sense, the
instantaneous spectrum is clearly different from a batch spectrum ana-
lyzer, such as an FFT-based system which might compute the spectrum of
successive, nonoverlapping blocks of N samples. Second, the time of flight
from the signal plane to the Fourier plane is of the order of a few
nanoseconds at most. In this sense the spectrum is calculated nearl
instantaneously after the most recent N samples are available. Tlus
spectrum is also sometimes called the short-time spectrum of a signal or
the Gabor transform.

In a power spectrum analyzer, the intensity of the spatial transform of
the signal is sufficient to fully describe the behavior of the system.
Heterodyne spectrum analyzers, however, produce temporal signals that
can be processed further to extract useful information. It is important,
therefore, to examine both the spatial and temporal spectra of the signals
to accurately interpret the results and indicate how we can improve the
performance of the system.

103. SPATIAL AND TEMPORAL FREQUENCIES:
THE MIXED TRANSFORM

The temporal frequency content of a signal is an important guideline for
designing the postdetection filter that separates the cross-product term
from the bias terms in Equation (10.3). Furthermore, after the system has
been built, we must verify that its performance meets specifications, using
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test equipment such as oscilloscopes and electronic spectrum analyzers.
The temporal frequency content of the output signal significantly affects
our interpretation of the performance of the system. To find both the
spatial and temporal frequency content of a signal, we use the mixed
transform, which is defined as is the simultaneous spatial /temporal Fourier
transform of the input space /time signal (102):

Fo(a,f) = [[ fo(x,t)e?mex=F dvar. (10.6)

When displayed as a two-dimensional function, the independent variables
represent spatial and temporal frequencies. Another way to view the
mixed transform is that it reveals the temporal frequency content at any
position a of a probe in the spatial frequency plane. The term probe is
used here in exactly the same sense as in Chapter 9; it represents a
reference beam which, in combination with a photodetector, is used to
detect the magnitude, frequency, and phase of light.

We generally first calculate the spatial frequency transform of a signal,
as given by Equation (10.2), and then find the mixed transform by
completing the temporal part of the transform:

Fo(a,f)=[ F.(at)e ™/ dr, (10.7)

The spatial transform part of the mixed transform F (e, t) is most useful
for visualizing the spectrum detected at the output of the optical system,;
the mixed transform F,(a, f) provides additional information about the
temporal frequencies and is useful in interpreting the results as displayed
on test equipment such as oscilloscopes and spectrum analyzers.

We apply the mixed transform to three signals to demonstrate different
relationships between the spatial and temporal frequencies: a cw signal, a
short pulse, and a dynamic case of a long pulse that evolves into the
system.

10.3.1. The cw Signal

First, suppose that the input waveform is a pure cw signal at frequency f,
with magnitude ¢, = 1. The spatial part of the mixed transform can be
calculated from either Equation (10.2) or Equation (10.5); in this case it is
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simpler to use Equation (10.2):
F.(a,t) = jmelia=T/n [ ® a(x)erm@=anr gy

= jme?? i =T/DL, sinc[(a — ag) L], (10.8)

where we have set a(x) equal to rect(x/L,) for convenience. This result
indicates that the spatial spectrum is a sinc function, centered at «,, with
magnitude proportional to the length of the acousto-optic cell. In addition,
the entire spectrum has temporal frequency f,, as shown by the phasor in
Equation (10.8), independent of which spatial frequency @ we probe at
plane P;. An exact coupling between spatial and temporal frequencies
does not, therefore, exist, as we claimed in Chapter 7. An exact coupling
occurs only as L; —  so that L sinc[(a — a,)L,] — 8(a — «,); all the
signal energy is then concentrated at one sample position in the spatial
frequency plane. The key point is that spatial diffraction is due to integra-
tion over a finite range at the space plane. All light associated with
diffraction due to the aperture function must therefore have the same
temporal frequency as the underlying cw signal.

To complete the mixed transform for the cw input signal, the spatial
frequency transform given by Equation (10.8) is used in Equation (10.7) to
produce the mixed transform of the cw signal:

F a, =Ls sincl(a — a Ls * e—j2‘rr(f—arku)r dr
e f)=L,sine(a - a)) L] [ o0s)

=L,sinc[(a — a;)L,]8(f — ax).

This result shows that the temporal frequency consists of a delta function
centered at f, = a,v, which implies that the temporal frequency is not
dependent on the probe position. The sinc[(a — a,)L,] function shows
that the finite spatial aperture causes spectral spreading in the spatial
frequency domain, whereas 8(f — f,) shows that the temporal frequency
content of the signal is pure. The purity of the temporal frequency arises
because the detected signal is not truncated in time by the acousto-optic
cell or by any other system component. In most experimental instruments,
such as in an electronic spectrum analyzer, the temporal integration is
constrained to the time range |¢| < T,/2, so that Equation (10.9) becomes

F.(a,f) =L,sinc[(a — a,)L,] f"ﬂ e—I2mf~for gy

-T./2
= L,T, sinc[(a — a;) L,]sinc[(f = f;)T.]. (10.10)
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Figure 10.2. Short-pulse input signal.

This result shows that a conventional spectrum analyzer produces “tem-
poral diffraction” if the signal has a finite time duration, similar to
the spatial diffraction produced in the optical spectrum analyzer. When
T, = L /v, the spatial and temporal frequency spreads are equal.

10.3.2. A Short Pulse

The second signal is a short pulse of duration T, < T, and carrier
frequency f, that is completely within the acousto-optic cell. This signal,
illustrated in Figure 10.2, exists within the cell for the time period
0 <t < (T, — T,). Using Equation (10.2), we find that the amplitude
distribution at plane P; at some instant in time is

Fo(ayt) =jm [ 5200 gt T, 2o forgizmas gy
—Ly/2+ut

= jme?™L sinc[(a — a,)Lo], 0 <t<(T,—T,), (10.11)

where we again ignore unimportant phase terms. The spatial spectrum of
a short pulse is a sinc function, centered at a., whose magnitude and
width are functions of the pulse length L.

The mixed transform for a short-pulse is found by substituting the
result from Equation (10.11) into Equation (10.7) and noting that the
effective integration time is (T, — Ty) = T, seconds because the signal
exists in the cell for only this time period:

. T: —j2u(f—av
F.(a,f)=Lysinc[(a —ac)LO]j[; e di (10.12)

= L,T, sinc[(a — a.)Ly]sinc[(f — av)T,].
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The temporal frequencies for the short pulse are also distributed accord-
ing to a sinc function because the pulse also has finite time duration. This
example shows most clearly that the temporal frequencies for a pulse that
exists for a finite time duration are spread in the same way as the spatial
frequencies are spread when a signal exists over a finite space interval. For
a probe at any spatial frequency a, the mixed transform reveals that there
is a temporal frequency sinc function centered at f = av and that the
temporal frequency spread is given by sinc[(f — av)T,].

10.3.3. The Evolving Pulse

The third signal is a pulse moving into the cell as shown in Figure 10.3;
this pulse has duration T, > T, and carrier frequency f,. When ¢ is
slightly larger than zero, that part of the signal within the cell behaves as a
short pulse, concentrated near the transducer edge of the acousto-optic
cell. When ¢t = T,/2 the signal fills half the cell and when ¢ > T, the
signal completely fills the cell so that it behaves as a cw signal. We now
discuss the spatial /temporal characterization of the mixed transform as
the signal evolves from a short pulse to a cw signal.

If the time of arrival of the leading edge of the pulse is ¢t = 0, the
leading edge moves to x = (—L,/2 +vt) for 0 <t < T,. For a unit
amplitude pulse, Equation (10.2) becomes

F+(a, t) — jm[_L‘/2+U'ej21rf‘_.(t—7’,/2—x/u)ej21raxdx
-L,/2
= jme/2m@=at/ 2t sinc[ (@ — e, )ut]},  (10.13)

where we ignore unimportant phase terms. When we apply the same

Meousto.opicseti  Leadingedge
of the pulse End of the
\ / acousto-optic cell
> \
. =0 |
Pulse evolving i =
through the cell L2 Ly2
at velocity v -Ls/24wt

Figure 10.3. Evolving-pulse input signal.
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interpretation to Equation (10.13) as we did to the cw signal, we find that
the spatial spectrum is a sinc function centered at «.. However, the
magnitude of the sinc function increases linearly as ¢ increases and its
width decreases. This behavior reflects the fact that the pulse width, within
the cell, increases linearly with time.

The temporal frequency cannot be so easily deduced just from the
phasor factor in Equation (10.13), because the linear term vt introduces
additional temporal frequencies that are not accounted for by the simple
phasor notation. The interesting relationship between the temporal and
spatial frequencies can be appreciated only by completing the mixed
transform. The mixed transform for the evolving pulse is found by substi-
tuting the spatial transform as given by Equation (10.13) into the mixed
transform as given by Equation (10.7):

F(a f) = ["ot sinc[(a - a,)vt]e/m+e0e=2"5 dr, (10.14)
0

where T, is the time duration of the acousto-optic cell. The integration
time is over just that time integral during which the pulse evolves. We
express the sinc function as sin[7(e — a/)vt]/[7(a — aJuvt], cancel the
terms in vt, apply the Euler expansion, and perform the integration to
produce

F.(a,f) = % {sinc[( f - av)T,] — e/*Dsinc[(f - av)T]},

a—a,

(10.15)

where ¢(a, f) is a phase term. For a probe at @, + Aa, the result shows
two temporal frequencies: one at f=f, and one at f,, =f, + Af, as

shown in Figure 10.4.
AVAV/'\VA%‘R l & A A
fe fm

Figure 10.4. Mixed transform of the evolving pulse for a probe at Aa = Af/v away from «a..

0
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Figure 10.5. Two-dimensional representation of the mixed transform of an evolving pulse:
(a) pulse length increases as time increases; (b) the spectrum of the triangle has strong
diffraction perpendicular to .

An alternative way to find the mixed transform is to plot the two-
dimensional Fourier transform of the space/time representation of the
evolving pulse as shown in Figure 10.5(a). At ¢t = 0 the pulse length is
zero, and at ¢t = T, the pulse length is L; = vT,. The mixed transform of
the pulse is found by calculating the two-dimensional transform of the
shaded area in Figure 10.5(a) and translating the center of the Fourier
transform to the coordinate (., f,) in the (a, f) domain to account fc.
the spatial and temporal carrier frequencies. The two-dimensional Fourier
transform consists of three main ridges of high intensity, as shown in
Figure 10.5(b); each ridge is perpendicular to one of the edges of the
shaded triangle. If we place a photodetector at @, = Aa, as shown by the
dotted line in Figure 10.5(b), the distance between the horizontal ridge
and the diagonal ridge corresponds to f,, = f. + Af, exactly as predicted
by Equation (10.15).

This temporal frequency behavior also becomes apparent if we continue
the result from the spatial part of the analysis one more step to reveal the
temporal behavior of the signal as it would be displayed on an oscillo-
scope. For example, if we add a reference beam to F_(a,t), carry out the
square-law detection, and take the real part of Equation (10.13), as
required to complete the analysis of the cross-product term, we produce a
time signal

F,(a,t) =vtcos[2m(a + a. )vt/2]sinc[(a — a)vt/2], O0<t<T,.
(10.16)
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As above, we expand the sinc function to obtain

F.(a,t) = sin[27(a — a,)vt/2]cos[2m(a + a,)vt/2],

a-—a,

(10.17)

where we again ignore unimportant constants. Consider the situation
where the reference probe is located at @, + Aa. We find that

1
F.(a,t) = ia sin[2m(Aa/2)vt]cos[2m(a, + Aa/2)vt];

0<t<T, (10.18)

which clearly shows that the output has temporal frequency f, + Af/2,
modulated by a signal whose frequency is Af/2. Its temporal frequency
decomposition, by use of trigonometric identities, is exactly that of two
frequencies separated by an interval Af.

To illustrate the time waveform represented by Equation (10.18), we
place the photodetector probe outside the mainlobe of the sinc function
due to the signal and observe the amplitude modulation on an oscilloscope
(103). The acousto-optic cell has a time duration T, = 10 usec. We use a
20-usec pulse signal so that we can show (1) the output signal as the pulse
evolves into the system for the first 10-usec interval, (2) its temporal
behavior as a cw signal for the next 10 usec, and (3) its response as it
once again becomes an evolving pulse leaving the cell during the last
10-usec interval. The amplitude modulation for each portion of the output
signal is seen in Figure 10.6 for a photodetector position corresponding to
Af = 345 kHz away from f,. The frequency of the amplitude modulation
at the beginning and end of the output is measured from the oscilloscope
as 182 kHz. Because the expected value of the modulation frequency is
Af/2 = 172.5 kHz, the error of the measured value is 5.2%, which is
reasonable for such measurements. The oscilloscope trace also shows a
sharp transition to the response expected of a cw signal at 10 usec, when
the pulse fills the cell, and then back to the evolving pulse signal 10 usec
later as the trailing edge of the pulse passes through the cell. This result
graphically shows how the temporal frequencies change as the input signal
changes its form.
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Freqr 25.15638 kHz | Period® 39.7535 us
| /{aHoriz)= 182 kHz | aHoriz* 5.58 us

Figure 10.6. Amplitude of output for a 20-usec pulse (103).

104. THE DISTRIBUTED LOCAL OSCILLATOR

At the end of Chapter 9, we discussed methods for implementing an
optical radio. If the reference beam is scanned across the spectrum and if
the resulting intensity is detected by a single photodetector, the result is a
scanning spectrum analyzer. Such a system would be called a superhetero-
dyne receiver if it were implemented electronically; it suffers from the fact
that not all frequencies are monitored at all times. To implement a mo. ¢
practical heterodyne spectrum analyzer and to take full advantage of the
parallel nature of the optical system, we want to generate a reference
beam that produces a constant-output IF frequency for all spatial fre-
quency positions. If we can fix the offset temporal frequency at f, for all
detected spatial frequencies, we can use identical photodetectors and
bandpass filters to select the desired cross-product term. Because f, does
not need to be a high frequency to separate the cross-product term from
the bias terms, a substantial reduction in the photodetector bandwidth is
possible, from several hundred to about 10 MHz, or even less in some
applications.

10.4.1. The Ideal Reference Signal

The reference waveform at the Fourier plane plays an important role in
the performance of the heterodyne spectrum analyzer. The desired char-
acteristics of R, (a,t) are that (1) the magnitude should be equal at all
photodetector positions so that the magnitudes of the spatial frequencies
due to the signal are measured accurately, (2) the spatial and temporal
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frequencies should be coupled so that, with a relative geometric displace-
ment between the reference waveform and the signal spectrum, equal
temporal offset frequencies are produced at all photodetector locations to
simplify the postdetection circuitry, as shown in Chapter 9, Section 9.4.2,
Method 5, (3) the magnitude should be constant over time to avoid
measurement errors, and (4) the duty cycle of the drive signal r(¢) should
be high so that light is efficiently used.

The reference signal must contain at least N frequency components,
where N is of the order of 3M and the number of resolvable frequencies
M is of the order of T,WW. As in Chapter 9, we consider each frequency in
the reference signal at plane P; of Figure 10.1 as a probe that we use to
measure the frequency content of F,(a,t). The ideal reference signal is
generated by summing N equal magnitude frequencies (102):

N,

r(t) = Y, cos(Qmnfyt — ¢,), (10.19)

n=N,;

where f, is the fundamental frequency and where f, =N,f, and
f, = N, f, are the lowest and highest frequencies in the signal. By defini-
tion, r(¢) is composed of exactly N = N, — N, + 1 frequency components,
chosen so that there is exactly one probe for each photodetector at the
Fourier plane of the spectrum analyzer.

Because r(¢) contains N discrete frequencies, each a harmonic of the
fundamental frequency f,, it is a repetitive signal with repetition period
T, = 1/f,. The repetition period is also equal to L,/v, where L, is the
length of the acousto-optic cell in the reference beam. We can generate a
surprising variety of waveforms by specifying the phases appropriately. We
begin by finding the waveform that r(¢) assumes when the phases are all
zero; Equation (10.19) can then be written as

N, Ny-1
r(t) = Y cos(2mnfyt) — Y, cos(2wnfyt), (10.20)
n=0 n=0

which is the sum of two geometric series. The sum of the terms is given by

1 - ej21r(N2+l)f0t 1-— ejZ'rerfol
r(t) =% . - .
2 1 - e]21rf0t 1-— eJZ’Tfo‘

} +cc., (1021)

where we use Euler’s formula to expand the cosine terms and c.c.
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represents the complex conjugate of all the preceding terms. The terms in
Equation (10.21) are combined to give

/2N + Dfgt _ gi2mNy for
=1
r(t) =3 el2mfot — 1 +c.c.

e/m(N2+ Ny + Df gt [ e/ T(N2=Ny+Dfgt _ o =jm(Ny =Ny +1)fgt ]

=1
=3 ejﬂfot[ejwfot _ e—jﬂfot] + c.c.
= Loim(Ny+ N+ Dfgt sin[7(N, — N, +1)fyf]
: sin(7fof)
sinf7w(N, — N, + 1) f,t
= cos[w(N, + N; + 1) fyt] (¥ = ¥, + D ot] (10.22)

sin(mfyt)

We set N =N, — N, + 1 as the number of cosine terms in r(¢) and find
that Equation (10.22) becomes

sin(Nf,t)

r(t) = COS[TJ'(N + 2Nl)f0tlm.

(10.23)

This result describes the reference waveform as an impulse train the*
modulates a temporal carrier frequency of (N + 2N,)f,/2. As an asiue,
the impulse train is the temporal equivalent of the spatial Fourier trans-
form of an N-slit grating as derived in classical optical texts (14).

If we set the phases ¢, as a linear function of n (e.g., ¢, = n¢,), the
impulse train is simply advanced or delayed according to the sign and
magnitude of ¢,. If the phases are quadratic in #,

dir n?

¢=— (10.24)

so that r(¢) becomes a repetitive chirp function, the period of which is T,,
the duty cycle of which is d, and the frequency range of which is from f,;
to f,.

An example of the behavior of r(t), which shows the transition from an
impulse train to a chirp train as a function of the parameter d, is given in
Figure 10.7. The upper trace shows two periods of r(¢) when d = 0 so that
the phase is zero for all #. The result is an impulse train that modulates a
carrier frequency f,. The presence of the carrier changes the signal
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Figure 10.7. Chirp functions with duty cycles of 0, 0.5, and 1.

waveform somewhat from the expected impulse response, because there
are only three cycles of the carrier underneath the impulse train envelope.
Three carrier cycles per impulse arise from the fact that
we require that N, = 2N, to produce an octave bandwidth and that
the carrier frequency is (N, + N,)fo/2 = 3/2)N;f,. The traces of
Figure 10.7 are therefore accurate representations of the appearance of
the signal on a test oscilloscope.

The middle trace is that for a quadratic phase function, according to
Equation (10.24), but with d = 1/2; we note that the signal has become a
repetitive chirp function with a duty cycle of 50%. The lower trace shows
the chirp function when 4 = 1; the chirp now has a 100% duty cycle.
Thus, we find a smooth progression from an impulse train to a full duty
cycle chirp as d is changed from 0 to 1. Each of these signals is a suitable
reference signal; the preferred choice is to use a high duty cycle chirp so
that the light power is efficiently used. For example, the 100% duty cycle
chirp signal produces reference probes at the Fourier plane whose intensi-
ties are N times those produced by the impulse train because the impulses
intercept only 1/N of the input light intensity.

Other useful reference waveforms can be generated by a proper choice
of the phases of r(¢). A repetitive pseudorandom sequence of length
N = 2" — 1, where r is an integer, can be produced if the phases for the
various frequencies are suitably chosen (104). If the ¢, are random, the
resulting signal simulates a bandlimited noise source that nevertheless
retains a repetitive feature.
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10.4.2. The Mixed Transform of the Reference Signal

The amplitude profile of the illuminating beam, the acoustic attenuation,
the size limitations of the cell, and any other weighting factors combine to
form a reference-beam aperture weighting function b(x). These features
of the interaction can be incorporated with the reference beam in the
form b(x)r(¢t — x/v), where we ignore the time-delay factor T,/2 in
this section. The reference signal corresponding to the positive diffracted
order is

N,
r.(x,t) =b(x) Y, elmrfot=x/v)=¢al (10.25)
n=N,

and the mixed transform of r(x, t) is
R (a,f) = [[r(x,t)erex=dyar, (10.26)

where a is the spatial frequency and f is the temporal frequency. We
calculate the spatial transform first to find that

o N,
Ri(a,t) = [ b(x) L eflmnfat=x/0=bulgi2max gy (1027
- n=N,

By separating the time- and space-dependent terms and by performing the
integration over space, we find that

N,

R,(a,t) = Y. B(a — nfy/v)etmfot=¢al, (10.28)
n=N,

where B(a) is the Fourier transform of the aperture weighting function
b(x). We see that the Fourier transform of the reference signal consists of
a sequence of aperture functions B(a) that are centered at each of N
photodetector positions. Each probe has an associated pure frequency that
is a harmonic of f,,. Because each frequency component of the reference
signal behaves as a cw signal, the entire aperture function oscillates at the
same temporal frequency.

We complete the mixed transform by calculating the temporal fre-
quency content:

R.(a,f) = [:R+(a, t)e 2" gy (10.29)
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We substitute Equation (10.28) into Equation (10.29) to find that

NZ
Ri(a,f) = L e7*B(a - nfy/v)5(f - nfy),  (10.30)

n=N,

which can be expressed in an equivalent form as

N,
R.(a,f) =B(a—f/v) L e7*8(f - nf,). (10.31)

n=N,

We see that R, (a, f) consists of a two-dimensional function B(a — f/v)
that is sampled by a set of phase-weighted delta functions, creating N
discrete probes. There is one probe at each photodetector position, shifted
by the desired temporal frequency nf; and spatial frequency nf,/v with a
shape described by B(a). Because of the nature of the sampled function
B(a — f/v), we find that the magnitude of the mixed transform is indepen-
dent of ¢, and, therefore, the specific repetitive reference signal r(t). This
remarkable result states that the performance of the spectrum analyzer is
completely independent of the specific reference signal, provided that it
can be represented by Equation (10.19).

Figure 10.8 shows the magnitude of R (a, f) when b(x) = rect(x/L,).
For any value n, the spatial frequency response is a sinc function centered
at a = nf,/v. The mixed transform shows that the sinc function is also

Skew line X
n= N 2 \
v/?’\v
Temporal T PN
fr X
equency — Y f=nfy

n=Nj+leme &
n=N, /\

Spatial
pati
a--—-']']& frequency

Figure 10.8. Magnitude of mixed transform for an arbitrary signal.
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Figure 10.9. Reference signal envelope expressed as a function of space and time.

displayed in the second dimension at f = nf,; as n increases from N, to
N,, we find that the sinc functions are centered on a skew line in the @ ~
plane.

A similar two-dimensional frequency display would result if we were to
use the y axis of a conventional Fourier-transforming system to display the
time-shifted versions of the reference signal as it passes through the
acousto-optic cell. In Figure 10.9, we illustrate such a signal, shifted
progressively in space as time increases in the vertical direction. For any
spatial position x,, we find the temporal function by reading the values
along a vertical line positioned at x,. At any time ¢,, we find the spatial
function resident within the acousto-optic cell by reading the values along
a horizontal line through ¢,. From the two-dimensional space /time repre-
sentation of Figure 10.9, we could also obtain the mixed transform of
Figure 10.8, provided that the optical aperture of a Fourier-transform
system is limited to +L,/2 in the space dimension and is unlimited in the
time dimension.

10.5. PHOTODETECTOR GEOMETRY AND BANDWIDTH

The mixed transform provides considerable guidance about the design of
the photodetector array, the nature of the bandpass filter, and the ex-
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Figure 10.10. Frequency-resolution geometry for a spectrum analyzer.

pected performance levels of the spectrum analyzer. The major task in
spectrum analysis is to accurately and reliably detect cw frequencies. We
must be able to resolve spatial frequencies at intervals of approximately
1/L,, as shown in Figure 10.10. The resolution criterion is generally stated
in terms of a required dip between frequencies of about 3 dB. Another
consideration is that we wish to measure the signal magnitude to within a
specified degree of accuracy. The photodetectors must therefore be spaced
so that at least one of them is close to the peak value.

We now discuss how the reference acousto-optic cell length L, is
related to that of the signal cell whose length is L. Figure 10.11 shows the
light distribution in the Fourier plane caused by a set of equal-magnitude

B A o

Figure 10.11. Signal spectrum for equal-strength cw signals plus reference probes.
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Figure 10.12. Bandpass filter for photodetector output.

cw signals generated from an acousto-optic cell of time duration 7,. For
clarity, we show only the central lobes of the Fourier components, which
are represented by sinc[(f — f;)T,] in the temporal frequency domain or by
sinc[(a — aj)LS] in the spatial frequency domain. The reference beam is
represented by a set of sinc-function probes that are spaced at intervals of
fo in the temporal frequency domain or intervals of ay = f,/v in the
spatial frequency domain. The reference probes must be narrower than
the cw-signal mainlobes so that the cw signals are sampled accurately.
Furthermore, the temporal frequency of the probes is offset by an amount
f4 through a geometric displacement at the Fourier plane of the referenr-
beam relative to the signal beam. For example, in the region near poii.. 4
in Figure 10.11, the cw signal frequency is f;, whereas that of the central
probe is f; + f,. The frequencies associated with adjacent probes are
fi + fa £ nfy, where n is an integer.

We associate one photodetector with each of the reference probes. If
we have R photodetectors per resolvable frequency, the interval between
them is 1/RT,, which, by definition, is equal to f,,. For the moment, we let
the photodetectors be point elements to clarify the key principles and
identify the centers of the photodetectors by arrows. For this idealized
case, a point detector at A detects only the cross product between one
probe and the signal because all adjacent probes, as well as adjacent
frequencies, have zero crossings at 4. The output is therefore at the
offset frequency f,, which is accepted by a bandpass filter as shown in
Figure 10.12. The shape of the bandpass filter is a function of the
frequency resolution and required measurement accuracy.

10.5.1. The Bandpass Filter Shape

To find the minimum number of photodetectors per frequency to resolve
signal frequencies spaced by 1/7, and to accurately measure the signal
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Figure 10.13. Worst-case resolution: (a) position of the probes relative to the signals; (b) the
four major frequencies generated by the geometry of part (a).

magnitude is a somewhat more complicated procedure than that used in
Chapter 4 in connection with power spectrum analyzers. With heterodyne
detection, we must consider how the temporal frequencies generated by
the interference between the signal and reference beams affect the output
signal. The shape of the postdetection bandpass filter is influenced by the
need (1) to control crosstalk, (2) to achieve a given frequency resolution,
and (3) to detect the signals with a reasonable degree of accuracy.

In Figure 10.11 we show the case where R = 2.5, a value just above that
required to satisfy the Nyquist sampling rate criterion. This case conve-
niently illustrates both the best- and worst-case conditions for detection,
depending on the relative positions of the probes with respect to the
signals. For example, the worst-case condition for resolving two frequen-
cies occurs when the midpoint between the frequencies coincides with the
midpoint between two photodetectors (as near point B in Figure 10.11).
Figure 10.13(a) shows this situation with greater detail. Suppose that the
temporal frequency associated with the midpoint is f;. The two frequen-
cies to be resolved are therefore f, =f; — 1/2T, and f, =f; + 1/2T,.
The point photodetectors are identified as being at the positions B’ and
B"; the frequencies of the associated probes are f; + f, —f,/2 and
£+ fa+ fo/2

The probe /detector at B’ produces outputs from both signal frequen-
cies f; and f,. After square-law detection, we find that the associated
difference frequencies are

1
for=|fr= (fi+fa=fo/?| =fat 57 —for2  (1032)
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and

foz=|fa= (f; +fa—Fo/2)| =fa— —fo/2.  (10.33)

T,

These two frequencies are sketched in Figure 10.13(b). In a similar
fashion, the photodetector at B” produces outputs at the frequencies

1
fB"1=|f1-(fj + fa +fo/2)|=fd+ﬁ+fo/2 (10.34)

and

for=|fo= (fi+fat fo/D=fa= 57 +for2,  (1035)

1
2T,
which are also shown in Figure 10.13(b). The magnitude of these fre-
quency components are the same as those at B’. Note that both frequen-
cies fp, and fz., do not pass through the bandpass filter associated with
any one photodetector, but rather that any photodetector must be pr-~
pared to accept any frequency within the specified range. When these
requirements are met, we can use identical bandpass filters for each
photodetector.

One task for the bandpass filter is to control the frequency content of
the postdetection signal. The filter, which is identical for each photodetec-
tor circuit, must severely attenuate the unwanted frequency components
represented by fg., and fg,, while accepting the desired frequency
components represented by fz, and fgp.,. Because the maximum fre-
quency spread about f, produced by a desired signal is +1/(2T,), the
ideal filter shape is a rectangular passband, centered at f,, with total
bandwidth 1/T,, as shown in Figure 10.12.

10.5.2. Crosstalk

Crosstalk considerations for a heterodyne spectrum analyzer are much the
same as those for a power spectrum analyzer because crosstalk affects the
system dynamic range and the accuracy to which the frequency compo-
nents are measured. Recall that the design procedure in a power spectrum
analyzer is to select an aperture function a(x) so that the sidelobes of a
strong signal are sufficiently suppressed at the spatial frequency corre-
sponding to a weak signal. The sidelobes in a power spectrum analyzer are
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Figure 10.14. Geometry for cross-talk: (a) interference of local probe and strong signal and
(b) interference of local probe and reference probe.

proportional to | A(a)|?, and the mainlobe width increases as the sidelobe
levels are suppressed. As a result the frequency resolution is reduced.
One difference in the heterodyne spectrum analyzer is that the band-
pass filter helps to suppress, in effect, some of the energy due to the
sidelobes of a strong signal. The optical intensity that contributes to the
crosstalk level in a heterodyne spectrum analyzer is proportional to
the product of A(a — «;), due to the strong-signal frequency at f;, and of
B(a — a,), due to the reference probe at the weak-signal frequency f.
Suppose, for example, that A(a — a;) is a sinc function, as shown in
Figure 10.14(a), centered at f;. At position C, we wish to detect a weak cw
signal, whose frequency is fy, in the presence of the strong signal at f;.
Because the probe associated with the detector at C has frequency
fi + f4, there is no problem in extracting the desired weak-signal informa-
tion. Even though the sidelobe level from A(a — ;) is high at C, the
bandpass filter will not pass the energy because its frequency |f, + f,; — f;l
falls outside the passband. There is a special condition, however, when an
alias signal slips through the bandpass filter. This condition arises when
fx = f; = —2f, (ie., when the strong signal is at a higher frequency
relative to the weak signal). But because the signals are then spread
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farther apart, the sidelobe levels are lower so that crosstalk is less of a
problem.

The bandpass filter does not completely eliminate crosstalk, however.
Figure 10.14(b) shows the same situation as in Figure 10.14(a), but it also
shows the probe associated with the detector at D. This probe at fre-
quency f; + f, along with the signal energy at f; produces energy at f, at
all spatial frequency positions. The photodetector at C will therefore
respond to the output produced by the sidelobes of a strong signal and its
associated probe; we still need to use aperture weighting functions to help
fight crosstalk as we did in power spectrum analyzers. Fortunately, in the
heterodyne spectrum analyzer we have the advantage of being able to
independently control b(x) to reduce the sidelobe levels. Because we can
control sidelobe levels almost entirely by the aperture weighting function
of the reference beam, we do not suffer a loss in system resolution.

The bandpass filter also is effective in reducing the effects of scatter
noise, which tends to limit the performance of power spectrum analyzers.
The strongest scattered light at the photodetector plane is due to the
undiffracted light from the signal and reference acousto-optic cells. These
scattered light components do not, however, interfere to produce a signal
at the offset frequency f,. The interference occurs, instead, at baseband
where it is removed by the bandpass filter.

10.5.3. Resolution, Accuracy, and Photodetector Size

After the aperture function b(x) has been chosen to control the sidelobe
level, we determine the system resolution in much the same way as in
Chapter 4. In this case, we begin by convolving the aperture response
A(a) from the signal branch with the aperture response B(a) from the
reference branch, keeping track of the associated temporal frequencies as
a function of the spatial frequency displacement. We then modify the
resulting signal by the bandpass characteristics of a filter, accounting for
the fact that the band-edge responses of the filter are not perfectly sharp
in practice. Based on this information, we determine if the dip between
frequencies meets the specification. If not, we iterate the design process
until the dip specification is met. We find that R = 3 is generally adequate
to provide the desired frequency resolution and measurement accuracy.

10.6. TEMPORAL FREQUENCIES OF THE REFERENCE BIAS TERM

So far we have focused on how the characteristics of the cross-product
term affect the shape of the bandpass filter and the temporal frequency
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content of the resulting output signal. The bias term I,(«, t), due to the
reference function |R (e, £)|?, can also produce energy within the pass-
band of the filter under certain conditions. We now examine the origin of
this energy for the most general case.

From Equation (10.28), we find that the intensity I,(a,¢) due only to
the reference beam is

L(a,t) =|R(a,0)|*

N, N
= Z Z eJ'Z‘rf('l-m)foleJ'(%“#m)B(a - nfo/v)B*(a _ mfo/U)~
n=N, m=N,

(10.36)

The mixed transform for the bias term is readily obtained by finding the
temporal transform of Equation (10.36):

N N

IL(a,f) = / B Y Y e2mtmivtgin=ém

~®n=N, m=N,

XB(a — nfy/v)B*(a — mf,/v)e 2™ dt

N, N
= Z Z e1(¢,.—¢m)B(a - ”fo/U)
n=N; m=N,

XB*(a — mfo/v)fw e i2mlf=(n=mfok gy

N, N
= X L & *B(a - nfy/v)
n=N, m=N,

X B*(a — mfo/0)8]f — (n —=m)fo].  (1037)

The conclusion that we reach from Equation (10.37) is that the bias term,
in general, contributes energy at all integer multiples of f,. Unfortunately,
one or more integer multiples of f, must fall within the passband of the
filter because its width is of the order of 2f, to 3f, if we use two to three
probes per signal frequency.

There is a special set of conditions, however, for which I,(a, f) has
energy only at f = 0. This set of conditions is

1. That b(x) = rect(x/L,).
2. That L, is equal to an integer multiple of L,.

3. That point photodetectors are placed at integer multiples of f;/v so
that all photodetectors are at nulls of adjacent sinc functions.
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In this special case, we find that the sums in Equations (10.36) and (10.37)
have value only for n = m; the result is that the power spectrum of
r.(x,t) is constant in time and at all photodetector positions. In addition to
placing all the point detectors at the nulls of sinc-function probes, we must
have an integer number of probes for each resolvable cw signal (for
example, R = 3). As a result, there is no opportunity for the heterodyne
frequency to “walk off” from f, + nf,; this vernier effect can be seen in
Figure 10.11, where we set R = 2.5.

Because this special set of conditions is impossible to implement in
practice, we must find alternative methods to remove energy from the
reference bias term. Other practical problems are that we may not be able
to generate N = 3M reference probes to synthesize r(¢) directly if N is
large. These and other practical issues have been addressed in the litera-
ture (102).

10.7. DYNAMIC RANGE

We turn our attention to a calculation of the dynamic range of the
heterodyne spectrum analyzer. The output signal, for a simple cosine of
the form f(x,t) = 0.5[1 + jmc, cos(2mf,t)], is the same as we had i.. *he
power spectrum analyzer discussed in Chapter 8, except that we need 1u
account for the beamsplitter and beam-combiner ratios. Suppose that the
beamsplitter and beam combiner reflect a fraction y and p of the incident
light, respectively, and that the remainder is reflected. Any absorption of
light by the beamsplitter or beam combiner is included in the value of 4,
along with other factors that affect the overall system efficiency. The
Fourier transform of the signal beam is then

Amc, Lyy(l-p

L] .
F.(a,t) = v ) sinc[(g - Ek)ﬁ]e’z"f*‘, (10.38)

where A, = y/Pye,/L, is the effective amplitude of the illumination
beam, P, is the laser power, ¢, is the overall efficiency of the signal beam,
L. is the length of the acousto-optic cell, and m; is the modulation index
for the signal beam cell necessary to achieve the required spur-free
dynamic range. To facilitate the development of analytical solutions, we
set a(x) = rect(x/L,).

The appropriate reference frequency component for this signal is
r(x,t) = 0.5{1 + jm, cos2w(f, + f)t]}, where m, is the modulation in-
dex for the reference beam. We assume that all the frequencies in the



10.7 DYNAMIC RANGE 423

reference beam have the same magnitude; for convenience, we include the
offset frequency f, in the reference beam. The Fourier transform of the
reference beam is therefore

A.m,Lyp(1l -y
R, (a,t) =
4YAF
the symbols have meanings similar to those in Equation (10.38). Recall

that the intensity at the Fourier plane is I(a,t) = |F (a,?) + R (a, D
and that the cross-product term produces a current i(2):

L
) sinc[(f _ gk)A_I;,]eJ'Z‘rr(fk+fd)t; (1039)

is(1) =25 Re[F,(£.0R5(£,0)P(§) g, (10.40)

where S is the responsivity of the photodetector. The response P(£)
accounts for the width and center position of the photodetector and
determines the region of integration by the photodetector in the Fourier
plane. The integration in Equation (10.40) becomes

SAxArm:mrL:chkV‘Yp(l - 7)(1 - P)
8AF

i5(t) = cos(2wf,)

*® . LJ‘ . LS
xf_msmc[(f — &) smc[(f - &) 17 |P(6) d&. (104)

The photodetector length is equal to £,/2, where & = AF /L, is the
distance to the first zero of the reference probe so that

(f;“_L_] (1042)

P(¢) = rect[ F

To solve the integral in Equation (10.41), we must find the product of two
sinc functions. We express the sinc function in a power series:

(ax)’  (ax)*
3! * 5!

sinc(ax) =1 — + (10.43)

so that

(ax)?  (bx)>  a?b%x*
331 s
(a* +b*)x*
+——5!——+

sinc(ax)sinc(bx) = 1 —

(10.44)



424 HETERODYNE SPECTRUM ANALYSIS
The integral of the product of two sinc functions is therefore

(a* + b?)x3

T (10.45)

fsinc(a.x)sinc( bx)dx =x -

where we retain just the leading terms of the expansion. For the photode-
tector size as given by Equation (10.42), the value of the integral of the
two sinc functions given by the leading term of Equation (10.45) is equal to
AF/L,. The photocurrent is therefore

i3(t) = %SPO\/Ere:‘yp(l - ‘Y)(l - P) msmrckVLs/Lr COS(Z‘Xdet).
(10.46)

We estimate the value of m, by noting that the overall efficiency of
the reference beam is of the order of 0.5 in intensity. Each frequency
will therefore have a diffraction efficiency of 7, = 0.5/N so that
m, = y/0.5/N The final result for the cross-product term is that

(1) = SPoye,e.vp(1 —lvl)‘/% —p)Ly/L,mc, cos(2mfat). (1047)

We now calculate the photocurrent due to the bias terms; these terms
are due to the signal and reference beams acting alone. First, the current
i,(¢) due to the reference is obtained by integrating Equation (10.39) over
the photodetector area:

2
o |A.m.L 1-
i) = [ | nel (6 - g)L,/0F) | P(E) de,

(10.48)

where the symbols have the same meanings as before. Following the same
procedure as for calculating i5(¢), we find that

SPOErp(l - 7)

i(t) = PN (10.49)

Similarly, the photocurrent due to the signal beam acting alone is obtained
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by integrating Equation (10.38):

2
o | d,m e Ly (T =
i =S[" ‘m‘ck4}A_;( P Ginc[(¢ - £)L./AF]| P(£) d,

(10.50)

which becomes

SPye,my(1 - p)L,/L,
vesms¥(1 = PYLy/Er (10.51)

i(t) = 16 k

Recall that m? = 7, is the maximum diffraction efficiency per frequency
to avoid exceeding the spur-free dynamic range specification.
The signal-to-noise ratio, following the analysis given in Chapter 4, is

(5(¢))
SNR = {60 . (10.52)
2eB(iy + iy + Iy) + 8TkTBf oy

This result is similar to that obtained for the power spectrum analyzer
except that the shot noise contains the additional average current term i,
produced by the local oscillator. The minimum signal is found by using
Equation (10.47) in Equation (10.52) to find that

2eB(iy + iy + 1) + 8wkTBf o,
2
([35PoV/e,evp(T = V)(T = p)Lo/L, mm, cos(2mfyt)] ")

2eB(i, + SPye,p(1 — v) /32N) + 8mkTBf ¢,
~ S?Ple,eyp(1 - v)(1 - p)nsL,/256NL,

2 —
Cemin =

(10.53)

In passing from the first to the second line of Equation (10.53), we (1) used
the fact that i 1 is negligible relative to the other currents when c, is small,
(2) used the value of i, from Equation (10.49), and (3) distributed the
reference-beam energy over the N probes so that the diffraction efficiency

m? is equal to 0.5 /N. The dynamic range is, following the procedure
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established in Chapter 8, equal to

S?Pge,e;yp(1 = v)(1 — p)nsL,/256NL,
2eB(iy + SPoe,p(1 — v)/32N) + 87kTBf ey |

DR = 10log

(10.54)

From Equation (10.54), we see that the system is thermal-noise limited
unless the laser power is so large that the shot-noise term prevails. The
dynamic range increases as the square of the laser power until the
shot-noise limit is reached and increases linearly thereafter. The number
of resolvable frequencies plays an important role in the dynamic range
calculation, as expected.

From Equation (10.54) we also see that p = y = 0.5 optimizes the
dynamic range when the system is thermal-noise limited. However, when
the laser power is increased so that the system becomes shot-noise limited,
we find that the dynamic range becomes

SZP‘}E,E;‘)’(]. - p)nfL:/256NLr

DR = 101
o8 2¢B(SP,z,/32N) ’

(10.55)

provided that the local-oscillator current dominates the dark current. In
this case we find that the factor p(1 — y) cancels, leaving just the factor
¥(1 — p) in the numerator. This result suggests that y should be made
large and p should be made small to maximize the dynamic range, a
condition that favors directing more of the laser power to the signal
branch of the interferometer. Carrying this process to an extreme, how-
ever, would return us to the condition where the local-oscillator current no
longer dominates the dark current, as can be seen from Equation (10.54).
We generally set the beamsplitting and beam-combining ratios to 0.5,
which is also the easiest to achieve with commonly available devices,
because the maximum improvement in dynamic range is only 3 dB.

As an example of calculating the dynamic range, suppose that we need
to detect 100 frequencies separated by 25 kHz. We therefore need 300
probes and discrete photodetector elements in the output array so that
N =3M =300 and L,/L, = 3. Consider a system with the following
parameters: P, =100 mW, &, =¢,=05, y=p =05, §=05 A/W,
iy =10 nA, ¢; = 1 pF, 0, = 0.01, f,, = 1 MHz, and B = 25 kHz. Substi-
tuting these values into Equation (10.52), we confirm that {; can be
ignored when calculating the dynamic range. The other values become
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i, =52 (1077) and i5(¢r) = 1.5(107%)c, cos2mf,t) so that the signal-to-
poise ratio becomes

0.5[1.5(10-%)¢,]’
SNR = [—21 ( ) k]—21 ’
42(10 %) + 2.6(10~2)

(10.56)

and we see that the shot noise is slightly more than the thermal noise. We
solve Equation (10.56) for ¢? ;. when the signal-to-noise ratio is equal to
1 and find that ¢ ,;, = 9.4(10~°) so that the dynamic range is

2
€k max

1
DR = IOIog[—z—] = 10]0g[b4—(16:9_)] = 80.2 dB. (10.57)

k min

10.8. COMPARISON OF THE HETERODYNE AND POWER
SPECTRUM ANALYZER PERFORMANCE

If we had used a power spectrum analyzer with the same frequency
parameters as given in the last section except for setting f., = B, the
system would produce a dynamic range of 55.5 dB. To compare the
performance of the heterodyne and power spectrum analyzers under a
wide range of conditions, we calculate the gain in the dynamic range, given
by Gain = DR,,, — DR ,. Recall that the dynamic range for a power
spectrum analyzer, given by Equation (8.35), is

DR, = 101 0.02Poc S, 10.58
pa = 08| DeBi, + 8wkTBf e, | (10.58)
We use Equations (10.54) and (10.58) to find that
Gain = DR,,, — DR,
SZPOZ!;‘,SS‘YP(l - Y)(l - P)"Ifo/256NLr
2eB(i; + SP 1- 32N) + 8wkTBf_c
- IOIog e, (ld 08,0( 7)/ ) fco d ) (1059)

0.2PgeSn,//2€Bi, + 8mkTBf ey
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We simplify Equation (10.59) by canceling similar factors to find that

{(SPye.esyp(1 — v)(1 — p)L,/256NL,)‘/2eBid + 87wkTBf ocq4

101
Gain = 10108~ 5 - (2eBli, + SPoz,p(1 — 7)/32N] + 8mkTBfuc,)

(10.60)

From this general result we can consider several different operating
conditions.

10.8.1. Both Systems Thermal-Noise Limited

We first consider the case where both analyzers are thermal-noise limited
so that Equation (10.60) becomes

{SPoe,evp(1 = v)(1 — p)L,/256NL,)

Gain = 101
am = e 0.02¢y/87kTBf e,

. (10.61)

The gain in performance is strongly proportional to the laser power and
the number of frequencies that must be resolved, but it is less strongly
dependent on the cutoff frequency and postdetection bandwidth.

10.8.2. Both Systems Shot-Noise Limited

Consider the situation when both systems are shot-noise limited so that
Equation (10.60) becomes

{SPoe,e,vp(1 — v)(1 — p)L,/256NL, }/2eBi,
0.02¢{2eB[i, + SPye,p(1 — v)/32N]}

Gain = 10 log[
(10.62)

This case can be further subdivided into two cases. In the first and fairly
unlikely case, we might find that the current produced by the local
oscillator is less than that produced by the dark current. In this case,
Equation (10.62) becomes

{SPye,e5vp(1 — v)(1 — p)L,/256NL,}
0.02¢y/2eBi,

Gain = 10 log[ ] (10.63)
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so that the gain in performance is most highly dependent on the laser
power and the number of frequencies that must be resolved, and the gain
is independent of the cutoff frequency f,,. The somewhat more likely case
occurs when the local-oscillator dominates the dark current in the hetero-
dyne system so that the gain in performance becomes

{SPy. .e;vo(1 — v)(1 — p)L,/256NL,}\/2¢Bi,
0.02¢{2eB[ SPye,p(1 — y) /32N]}

[ {ev(1 - p)L,/256L,}y/2¢Bi,

0.02¢(2eB/32)

Gain = 10 log[

= 10log

(10.64)

We now see that the gain in performance is completely independent of the
laser power, of the cutoff frequency, and of the number of frequencies to
be resolved. The gain in performance in this case is completely determined
by the parameters of the system and the postdetection bandwidth.

10.8.3. Power Spectrum Analyzer Thermal-Noise Limited; Heterodyne
Spectrum Analyzer Shot-Noise Limited

The most likely scenario is that the power spectrum analyzer will be
thermal-noise limited if the readout rate is fairly high, and the heterodyne
spectrum analyzer will be shot-noise limited. In this case the gain in
performance is

{SPOErS:yp(l - 7)(1 - p)Ls/256NLr} v 8WkTchocd
0.02¢(2eB[i, + SPoe,p(1 — v) /32N ]}
(10.65)

Gain = 10log

Here we see that the general nature of the gain in performance is the
same as for Equation (10.61), aside from some different constants.

10.8.4. Power Spectrum Analyzer Using a CCD Array

In all the comparisons made so far, we have assumed that the power
spectrum analyzer also uses discrete photodetectors at its output. In many
applications, however, the power spectrum analyzer uses a CCD photode-
tector array, whose characteristics limit the linear dynamic range to about
35 dB, independent of how much laser power is available. Some of the
nonlinear CCD arrays now provide dynamic ranges of about 50 dB or so.
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The gain comparisons, in these cases, should be based on the dynamic
range of a power spectrum analyzer as limited by the CCD array.

In general, we find that the performance of the heterodyne spectrum
analyzer is significantly better than that of a comparable power spectrum
analyzer. The additional performance comes at the price of needing a
discrete photodetector array with more complicated detection circuitry. In
Chapter 11, we discuss ways to partially overcome this disadvantage by
using a decimated photodetector array.

10.9. HYBRID HETERODYNE SPECTRUM ANALYZERS

Aside from the improved dynamic range that can be obtained from a
heterodyne spectrum analyzer, we find that certain postprocessing opera-
tions produce further frequency resolution. Suppose, for example, that we
want to achieve a 1-kHz frequency resolution over a 100-MHz frequency
band. We therefore need to resolve 10° frequency components, a perfor-
mance level beyond that obtainable from conventional one-dimensional
acousto-optic cells. In Chapter 4, we showed how two-dimensional falling
raster recording formats could easily generate the required frequency
resolution, but that system does not operate in real time.

Real-time spectrum analysis with the required resolution can be
achieved by using a two-dimensional acousto-optic cell configuration, as
discussed in Chapter 15. Here we briefly describe a hybrid approach that
can perform the spectrum analysis in near-real time. Suppose that we use
a heterodyne spectrum analyzer to divide the spectrum of the incoming
100-MHz signal into 100 frequency channels, each 1 MHz wide. We do so
by creating 100 reference probes/photodetectors, each with a rectangular
shape, to generate the required number of channels. The output of each
photodetector is then analog-to-digital converted at a sample rate of
2 MHz; this data is fed to a DFT module that computes the Fourier
transform of the narrowband signals. A 1024-point transform with 16-bit
magnitude response can be computed in 1 msec, consistent with the
required 1-KHz final frequency resolution. Note that the DFT computes
the spectrum on a batch processing basis, as opposed to the continuous,
sliding window processing available optically, as discussed in Chapter 15.

PROBLEMS

10.1. We design a heterodyne spectrum analyzer which requires a two-
tone spur-free dynamic range of 45 dB. Assume that we have 300



PROBLEMS 431

10.2.

10.3.

reference-beam probes. The other system parameters are

P, =30 mW,
i; = 10nA,
¢; = 4pF,
g, =¢,=05,
S=04A/W,
T = 300K,
B = 1MHz,
feo = 10.7 MHz.

(a) Calculate the local oscillator current. (b) Calculate the value of
7y. (c) Determine whether the system is shot-noise or thermal-noise
limited. (d) Calculate the dynamic range for the heterodyne spec-
trum analyzer.

We design a heterodyne spectrum analyzer which requires a two-
tone spur-free dynamic range of 55 dB and a single-tone dynamic
range of 70 dB. We require 150 reference-beam probes. The other
system parameters are

i, =10nA,
c; =2pF,
e,=¢,=035,
§=04A/W,
T = 300K,
B = 500 kHz,
feo = 3 MHz.

(a) Calculate the value of ny. (b) Calculate the required laser
power. (c) Calculate the local-oscillator current. (d) Determine
whether the system is shot-noise or thermal-noise limited.

A heterodyne spectrum analyzer, used in a radar threat warning
receiver, must resolve 30 frequencies with a resolution of 20 MHz.
In this case, two-tone intermodulation products are not important,
nor is the crosstalk between channels. You elect to use LiNbO; as
the interaction medium and set the center frequency at 1000 MHz.
The Fourier-transform lens has a focal length of 100 mm. On the
assumption that the aperture weighting functions are such that
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a(x) and b(x) are rectangular functions, calculate (a) the length of
the signal and reference-beam cells, (b) the time bandwidth product
for each cell, and (c) the complete geometry of the photodetector
array (i.e., how many detectors, their size, their spacing, their
position at the Fourier plane, and so forth).

Given the same system parameters as in Problem 10.2, (a) calculate
the laser power required to make the shot-noise level twice that of
the thermal-noise level, (b) calculate the resulting dynamic range
for the heterodyne spectrum analyzer, using the power level found
in part (a), (c) calculate the loss in dynamic range had this system
been set up as a power spectrum analyzer (i.e., compare DR, to
DR ). Is the power spectrum analyzer shot-noise or thermal-noise
limited? (d) Calculate the laser power required for the power
spectrum analyzer to produce the dynamic range obtained from the
heterodyne spectrum analyzer in part (b).
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Decimated Arrays
and Cross-Spectrum Analysis

11.1. INTRODUCTION

As we discussed in Chapter 10, heterodyne spectrum analysis is informa-
tion preserving because each photodetector is read out on an instanta-
neous basis. Heterodyne detection, however, places severe demands on
the circuitry associated with each photodetector because the rf electronics
are not easily implemented with integrated circuits. In this chapter we
describe spectrum analyzers that support the sampling rate required to
avoid missing signals and yet operate with a significantly reduced number
of photodetector elements. The basic idea is to decimate an N-element
photodetector array by retaining only every Mth element. We then time
share the remaining elements by scanning the spectrum across the deci-
mated array. Each photodetector therefore produces, as a time sequence,
the spectral content of the received signal over a small frequency range.

In this chapter we also introduce a signal-processing operation called
cross-spectrum analysis to determine the angle of arrival of a signal. For
example, if we use two antenna elements to receive a signal from a
common source, we can use a dual-channel acousto-optic cell to determine
the source direction relative to the receiver geometry through a phase-
comparison technique. The phase information, obtained by forming the
cross spectrum of the signals received, provides a measure of the angle of
arrival of cw emitters at each frequency.

11.2. BACKGROUND FOR THE HETERODYNE
SPECTRUM ANALYZER

Because the detailed operation of the heterodyne spectrum analyzer was
described in Chapter 10, we review only the major points here. The
heterodyne spectrum analyzer consists of a conventional spectrum
analyzer, modified to include a reference function at the Fourier plane.
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Index

Abbe, as spatial frequency designator, 53
Abbe’s resolution criterion, 106-110, 112,
114
Aberrations, 57-59
astigmatism, 63-64
coma, 62-63
curvature of field, 64
distortion, 65
monochromatic wavefront polynomial,
58-59
order of, 59
point spread function, 57
reduction, 65-67
spherical, 59-61
third-order, 59
Accumulators, 561
Acoustic waves:
in acousto-optic cells, 289-290, 303-304
attenuation, 298-299
attenuation by interaction materials, 309
Acousto-optic cells, 156, 288-290
acoustic wave attenuation, 298-299
acoustic wavelengths, 294-296
acousto-optic interaction visualization,
305-307
in adaptive filtering, 562-563
as beam scanners (deflectors), see
Scanners
Bragg diffraction mode, 290, 292294,
305-307
configurations, 304
crossed geometry, 540-543
in decimated-array spectrum analyzers,
437-440, 444
diffraction angles, 294-296
diffraction orders, see Diffraction orders

downshifted signals, 294, 303-305

dual-channel, 433, 437, 446

in electronic reference correlators,
526-528

in heterodyne detection, 372, 384, 387,
391, 395

in heterodyne spectrum analyzers,
398-399, 403-404, 407, 414-416, 434

and heterodyne transform, 461

input /output relationships, 299-301

interaction materials, 289, 299, 308-309

modulation index, 291, 299

multichannel, 307, 566-567

phase modulati in, 301-302

Q-factor, 292

Raman-Nath diffraction mode, 288,
290-292, 293, 294, 305

in Range /Doppler radar processing,
557-558, 560

in real-time spectrum analyzers, 430, 546

source depletion, 358-359

in space-integrating correlators, 477,
478-482, 499

spatial frequencies, 294-296

in spectrum analyzers, 335-338, 340-346,
398-400, 433-435

temporal frequencies, 294-296

as temporal modulators, 307-309

time bandwidth product, 296-298

time delay, 301

in time-integrating correlators, 517,
520-522, 526

in time-integrating spectrum analyzers,
505-506, 508-510

in two-dimensional processing, 536, 539

upshifted signals, 294, 303-304, 305
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Acousto-optic materials, see Interaction
materials
Acousto-optic modulation, 307-309
Acousto-optic power spectrum analyzers, see
Spectrum analyzers, power
Acousto-optic spatial light modulators, see
Acousto-optic cells
Active aperture time, chirp-waveform
scanners, 315, 321, 328
Active scan time, chirp-waveform scanners,
315, 327, 328
Adaptive filtering, 270-272, 560-561
continuous-time analysis, 562-564
frequency plane implementation, 564-566
sampled-time analysis, 561-562, 562-564
Adaptive linear predictors, see Adaptive
filtering
Afocal configuration, 37-39
Airy disc, 61, 250
Ambiguity function generation, 549-552
cross-, 550
cw signals, 552-553
infinite time duration chirp signals,
555-557
short-pulse signals, 553-554
Wigner-Ville distribution, 556-557
Amplitude weighting functions, 303. See also
Aperture functions
Analog signals, 4-5
detection, 273
Anamorphic magnification, 22
Angle-of-arrival, 446, 566-569
Angle-of-incidence, 15
Angular resolution, 49, 51
Anisotropic media, 14
Antenna systems:
dual, 445-446
phased array, 566-568
radar, 216-217
resolution, 216
Aperture functions, 100-101, 160-163. See
also Mainlobes; Sidelobes; Sinc function
in acousto-optic spectrum analyzers,
339-340, 347-348, 353
Bartlett, 160, 161, 163, 164-165
Blackman, 160
Chebyshev, 160, 164-165
Dolph-Chebyshev, 160
Fourier transform of, 100-103

INDEX

frequency response, 162, 163-168
Gaussian, see Gaussian aperture functions
Hamming, 160, 161, 163, 164-165
Hanning, 160, 164-165
for heterodyne spectrum analyzers,
418-419, 420
Kaiser-Bessel, 160, 164—165
and matched filtering, 485
in optical radio heterodyne detection, 387
partitioned, 101-103
rect, see Rect aperture functi
weighted, 112-115
Apertures:
half-plane, 94
relative, 37, 128-129
Aperture weighting functions, see Aperture
functions
Apodization functions, 160
Arbitrary filter functions, 472-475
Area modulation, 474-475
Aspherical lenses, 251
Associative memory, 236
Astigmatism, 63-64
Attenuation, acoustic, 298-299
of interaction materials, 309
Attenuators, 248, 249
Auto-bispectrum, 544
Autocorrelation, triple-product, 544
Autocorrelation functions, 110, 139, 140,
204-205, 478
Avalanche photodiodes, 181-182, 362

Bandlimited signals:
Fourier transforms, 105
sampling, 3-4, 112-115
Bandpass filters, 175
in heterodyne spectrum analyzers, 435
shape, in heterodyne spectrum analyzers,
414, 416-418, 419, 420
in time-integrating spectrum analyzers, 515
Bandpass signals, 3, 175-176
Bandwidth, of signals, 3
Bartlett aperture function, 160, 161, 163-165
Baseband signals, 3
Beamcombiners, 224
in heterodyne spectrum analyzers, 399, 422
Beam deflectors, see Scanners
Beam expanders, in optical signal processors,
248
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Beamsplitters, 137-138, 224, 231, 437
in heterodyne spectrum analyzers, 422
in optical signal processors, 248

Bessel functions, 291-292

Bias, 80

Biconcave lenses, 55

Biconvex lenses, 54, 55

Bilateral lens systems, 33

Binary filters, 212-214

Binoculars, 150

Bispectrum:
auto, 544
cross, 543-545

Bistatic radar systems, 568

Blackman aperture function, 160

Blooming, 159

Bragg angle, 293

Bragg cells, see Acousto-optic cells

Bragg diffraction mode, 290, 292-294,

305-307
in spectrum analyzers, 338, 344-346
Bragg illumination, 498
Butt coupling, 531, 532, 534

Camera lenses, 51-53
Capacity, information, 128-130
CCD (Charge-coupled devices), 152, 156,
158, 256
in acousto-optic power spectrum analyzers,
337, 354, 364-365, 429-430
saturation, 159
in synthetic radar signal processing, 560
in time-integrating correlators, 519
in time-integrating spectrum analyzers, 515
Channelized receivers, 435
Character recognition, 263
transposed processing in, 271-272
Charge-coupled devices (CCD), see CCD
Chebyshev aperture function, 160, 164-165
Chirp duration, 310, 311, 321
Chirp functions, see Fresnel zone patterns
Chirp rate, 83, 310-311, 317
in decimated array spectrum analyzers,
439-440
Chirp signals, 83-88, 133, 310-312, 372
generation, 315
in real-time spectrum analyzers, 545-546
repetition period, 315
in time-integrating spectrum analyzers,
505-510
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Chirp train, 315, 410-411
Chirp-z transforms, 133-134
Cloud-motion analysis, 274-276
Coarse frequency resolution, 184, 546
Coddington position factor, 56-57
Coddington shape factor, 54-56
Coherence, 134
complex degree of, 136
distance, 137
length, 140
partial, 137
spatial, 134-137, 140
temporal, 137-140
time, 137, 140
Coherent modulation transfer functions,
109-110
Collimating lens configuration, 32-33
Collimating lenses, 250-251
Coma, 62-63
Comb functions, 103
Common path interferometers, 492
Communication systems, 128
air-to-air, 550
air-to-ground, 550
narrowband interference, 465-466
satellite, 549-550
synchronization, 549-550
transmitter /receiver synchronization,
516-517
Complementary cancellation, 523-524
Complex-valued impulse response, 482-484
Condenser lens configuration, 31-33
Conjugate image planes, 84
Conservation of cross-power theorem, 465
Convergent illumination, 132-133
Convolution, 6, 78, 114, 241. See also
Appendix IT
double, 202-203
integrals, 202
theorem, 100-102, 202-203. See also
Appendix 11
Cornu spiral, 91-92, 94
Correlation, 203-205, 241, 478, 536. See also
Appendix 11
auto-, 204-205
cross-, 203-204, 478
display in space, 541
integrate-and-dump, 499-501, 542
means of performing, 501-502
by optical integrated circuits, 530
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Correlation (Continued)
physical basis, 484—486
time-integrating, S04
for transmitter /receiver synchronization,
516-517
triple-product, 537-540
two-product, 537
Correlation receivers, 209
Correlators, electronic reference, 526-529
Correlators, reference-function, see
Reference-function correlators
Correlators, space-integrating, see Space-
integrating correlators
Correlators, time-integrating, see Time-
integrating correlators
Correlators, variable-scale, 125-126
Counter-rotating prisms, 25
Critical angle, 19-20
Cross-ambiguity function, 550
Cross bispectrum, 543-545
Cross-correlation functions, 203-204, 478
Cross-coupling, 356
Crossed acousto-optic cells, 540-543
Cross-modulation, 356
Crossover, of principal planes, 34
Cross-power, conservation of, 465
Cross-product, 374-378, 381, 383, 390, 395.
See also Appendix II
in heterodyne spectrum analyzers, 399
in the heterodyne transform, 456, 457, 462
Cross-spectrum analyzers, 445-447
acousto-optic cells, 446
dynamic range, 451
fast-scan mode, 449, 452
postdetection processing, 450
slow-scan mode, 449, 452
spatial fringe structure, 448
spatial heterodyning, 446-448
staring mode, 449, 452
temporal heterodyning, 448-452
Crosstalk, 159
in heterodyne spectrum analyzers, 417-420
Curvature of field, 64
Cutoff angle, 53-54
Cutoff frequency, 3, 53
in acousto-optic spectrum analyzers, 351,
361
CW signals, 415-416
mixed transform, 401-403
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Decimated arrays, 433, 436-438
decimation ratio, 436
Deflectors, beam, see Scanners
Degrees of freedom, of signals, 5
Delay lines, 458
acousto-optic cells as, 301, 307
transversal tapped, 560-562
Delta function, 5-6, 79
Fourier transform of, 102-103, 123
sifting property, 79, 104, 105, 109, 120,
202. See also Appendix II
Detectors, see Photodetectors
Deterministic signals, 201
Deviation angle, 21
DFT modules (digital Fourier transform),
430
Diffraction, see Light, diffraction
Diffraction, temporal, 403
Diffraction efficiency, 173
of acousto-optic cells, 297-300
of acousto-optic spectrum analyzers,
357-359
Diffraction orders, 291-294, 297
conjugate relationships, 305
diffraction efficiencies, 297-300
positive /negative (upshifted /downshifted
signals), 294, 303-305
sign notation, 303-304
Diodes, laser, see Laser diodes, injection
Diopters, 29
Direction-of-arrival, 446, 566-569
Discrete element photodetectors, 397
Dispersion, 22
Dispersive power, 13
Displacement, of optical beam, 25-26
Displacement, of spatial filters, 285-286
Distortion, 65
Distributed local oscillators, 505506, 509,
514
Dolph-Chebyshev aperture function, 160
Doppler processing, time-integrating, 504
Doppler radar systems, 534
signal processing, 557-560
Doppler shift, 516-517
in communication systems, 550, 552,
554-556
detection, 486, 488, 489, 496-497
Double convolution theorem, 202-203
Downchirp mode, 311, 317, 320
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Downchirp signals, in time-integrating
spectrum analyzers, 506-510
Downshifted signals, 294, 303, 304, 305
Dual frequency-plane processors, 268-270
Duty cycle, photodetector arrays, 157,
170-171
Duty cycle, scan, 321, 323, 326, 327, 328
Dynamic range:
of acousto-optic spectrum analyzers, 350,
352-354, 362-363
cross-spectrum analyzers, 451
in decimated array spectrum analyzers,
440-442, 444
heterodyne spectrum analyzers, 422-427
of spectrum analyzers, 171-172, 178-179,
182-183
spur-free, 173

Electromagnetic waves, propagation, 71-80

Electronic-reference correlators, 526-529

Electronic-reference modulation, 527

Electro-optic spatial light modulators,
149-150

Emitter sorting, 566—-568

Equalizing filters, 210

Euler expansion, 114

Evolving-pulse signals, mixed transform,
404-407

Eye, angular resolution, 51

Facsimile scanners /recorders, 329-331
Faraday effect, 151
Far-field diffraction, 78
Feedback control, of adaptive filtering,
560-561
Fermat’s principle, 17-19, 39, 57-58
Field-flattener lenses, 64
Figure of merit, 297-298
various interaction materials, 309
Film, photographic, see Photographic film
Filter function, 202
Filtering:
adaptive, 270-272, 560-566
inverse, 209-210
matched, see Matched filtering
notch, see Notch filtering; Signal excision
spatial, see Spatial filters
Filters:
bandpass, see Bandpass filters
binary, 212-214
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equalizing, 210
low-pass, 6
impulse response, 7
multiplexed, 238-240
narrowband, 206-207, 336, 337
Fine frequency resolution, 547
Finite conjugate imaging condition, 39
First principal plane, 34
FM band, 384-385. See also Radio, optical
Focal planes, 31-33
Folded spectrum, 188-191
Fourier series, 95, 96
Fourier transform lenses, 157, 171, 188,
247-248, 252-253, 266
in acousto-optic spectrum analyzers, 338
imaging lenses, 248, 254
in optical radio heterodyne detection, 388
in Raman-Nath-mode spectrum analyzers,
341
Fourier transforms, 95-96, 118, 123. See also
Appendix 11
of aperture functions, 100-103
bandlimited signals, 105
by chirp-z transform application, 133
convolution theorem, 100-101, 102, 103,
202-203
in cross-spectrum analyzers, 446-448
of delta function, 103, 123
in general optical systems, 119-120
in heterodyne spectrum analyzers,
399-400, 434
from heterodyne transform, 454-458,
460-461
inverse, 96, 103-105, 205
linear space-invariant systems, 202-203
by optical integrated circuits, 530
in optics, 97-100
Parseval’s theorem, 203, 465
periodic functions (signals), 95-96, 103
of y-function, 118, 123
of raster scan lines, 188-189
scaling factor, 126-128
shift theorem, 110-111. See also
Appendix II
in space-integrating correlators, 479-480
in spectrum analysis, 145-146, 335
triple-product correlation (cross
bispectrum), 543-545
variable-scale, 123-124
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Frame alignment, 277-278
Fraunhofer diffraction, 78
Free space, as operator on light wave=:, 77
Free-space impulse response, 78, 117
Frequency, of light, 12-13
Frequency modulation (FM) band, 384-385.
See also Radio, optical
Frequency-plane processors, dual, 268-270
Frequency resolution, 163, 167-168
coarse, 184
in real-time spectrum analyzers, 546-548
Frequency response, aperture functions, 162,
163-168
Fresnel diffraction, 76-77, 78
by slits, 89
Fresnel integrals, 89-94, 98, 381
cosine, 90-91
sine, 90-91
Fresnel kernels, 88, 98
Fresnel lenses, 60
in integrated optical circuits, 531-532
Fresnel transforms, 75-79, 97, 98, 114, 133.
See also Appendix IT
digital calculation, 88
and general optical systems, 116
in holography, 87-88
of slits, 88-95
Fresnel zone patterns, 82-88, 133
in heterodyne detection
one-dimensional, 381-382
two-dimensional, 380
intensity calculations, 94-95
in Mach-Zehnder interferometer, 229
in spatial interference, 371
and synthetic aperture radar, 217-218
Fringe patterns, 81-82. See also Fresnel zone
patterns
in heterodyne detection, 377
linear, one-dimensional, 371
in Mach-Zehnder interferometer, 373
principal maximum, 81
quadratic, 372
Fringe visibility, 81, 136, 140, 448

Gabor holograms, 84, 87

Gabor transform, 400

Gain, heterodyne versus power spectrum
analyzers, 427-430

Gain, in packing density, 132

Gain factor, 181
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Gallium phosphide:
in integrated optical circuits, 533
as interaction material, 299, 309, 340
Galvanometer mirrors, 154
Gaussian aperture functions, 101, 160, 161,
163-165, 348
frequency response, 166
mainlobes, 166
Gaussian beams, 101
in acousto-optic spectrum analyzers,
338-340
in chirp-waveform scanners, 331-332
gas lasers, 249-250
Geodesic lenses, 531, 532
Geometrical optics, see Optics, geometrical
Gray scale, 4-5

Hamming aperture function, 160, 161,
163-165
Hanning aperture function, 160, 164-165
Hard clipping, 521
Hartman test, 61
Height bandwidth product, 10, 50
Helmbholtz’s equation, 45-47
Heterodyne detection, 369-370, 393-395,
490-491
arbitrary filter functions, 473-475
carrier frequency, 497-498
disadvantages, 433
and Doppler shift, 496-497
and heterodyne transform, 462-465
in optical radio, 386-393
photodetector geometry, optimum,
374-375
for general signal, 381-383
for one-dimensional chirp, 380-381
for plane-wave interference, 374-375
for two-dimensional chirp, 378-380
reference beams (probes), 369, 374-375,
383
signal compression, 382-383
signal /reference wave overlap, 374-375
Heterodyne spectrum analyzers, see
Spectrum analyzers, heterodyne
Heterodyne transform, 454-461
arbitrary filter functions, 472-475
reference signals, 461-462
and signal excision, 466-472
and three-dimensional field probing,
461-465
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Holograms:
exposure, 85
Gabor, 84, 87
Leith-Upatnieks, 84-87
Holography, 75
Fresnel transforms, 87-88
and Fresnel zone patterns, 84-88
heterodyne detection in, 369
off-axis reference wavefront, 84-87
reconstruction beams, 85-86
virtual /real images, 86
Homodyne detection, 490-493
in Fourier domain, 493-496
Huygen’s principle, 75
Hybrid heterodyne spectrum analyzers, 430
Hybrid optical integrated circuits, 530, 531
Hybrid spectrum analyzers, 335

Illumination:
convergent, 132-133
Gaussian, 338-340
oblique, 110-112
Image alignment, 277-278
Images, 4-5
raster-scanned, 9
virtual, 86
Imaging condition, 39-40, 120-121
Imaging lenses, 248, 254
Imaging systems, 120-121
Impulse response, 6-7, 202
Impulse responses:
free-space, 78
in notch filtering, 474, 475
in reference-function correlators
complex-valued, 482-484
real-valued, 481-482
Impulse train, 410-411
Incidence, angle of, 15
Incoherence, optical systems, 136
Incoherent light, in electronic reference
correlators, 526-529
Incoherent modulation transfer functions,
109-110
Infinite conjugate imaging condition, 39
Information capacity, of optical systems,
maximization, 128-130
Information theory, and optics, 1
Injection laser diodes, see Laser diodes,
injection
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Instantaneous frequency, of chirp signals,
311-312
Instantaneous power spectrum analyzers, 335
Instantaneous spectrum, 400
Integrate-and-dump technique, 499-501, 542
Integrated circuits, optical, 530-534
Integrators, in spectrum analyzers, 337
Intensity:
in heterodyne spectrum analyzers, 399
mutual, 135, 139
Intensity modulators, 184
Interaction materials, see also specific
materials
in acousto-optic cells, 289, 298, 308-309
in acousto-optic spectrum analyzers,
335-336
table of, 309
Interference:
intensity, 371, 373
narrowband, 465-466
spatial, 370-373
temporal and spatial, 370-373
Interference patterns, 84. See also Fresnel
zone patterns
Interferometers:
common path, 492
in heterodyne spectrum analyzers, 398-399
and heterodyne transforms, 454-456,
458-461
Mach-Zehnder, see Mach-Zehnder
interferometers
Michelson, 137-138
minimum-aperture, 230-231
modified Rayleigh, 229-230
for optical radio, 384-385, 389
Intermodulation products, 172-173
two-tone, third order, 356-357
Interpolation function, see Sinc function
Inverse filtering, 209-210
Inverse Fourier transforms, 96, 103-105, 205
Isotropic media, 14

Johnson noise, see Thermal noise
Joint transform processing, 236-237

Kaiser-Bessel aperture function, 160,
164-165
Kernels, Fourier transform, 99
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Lagrange’s equation, 45-47
Laser diodes, injection, 20, 101, 146-147,
171, 249, 499
in acousto-optic spectrum analyzers, 340
in time-integrating correlators, 520-521
Lasers:
in acousto-optic spectrum analyzers,
$36-340
a1 on-ion, 146
gas, 101, 171, 249
Gaussian profile, 249-250
helium-neon, 146
injection, double heterostructure, 531
as light sources, 146
semiconductor, 146
Leith-Upatnieks holograms, 84-87
Length bandwidth product, 10, 50
and chirp function, 83
Lens equation, 39
Lenses, 33
aberrations, see Aberrations
afocal (telescopic) configuration, 37-39
aspherical, 251
back focal plane, 31
bending, 55
biconvex, 54-55
bilateral systems, 33
chirp-z transforms, 133-134
classification, 54-57
Coddington position factor, 56-57
Coddington shape factor, 54-56
collimating, 250-251
collimating lens configuration, 32-33
condenser lens configuration, 31-33
conjugate imaging condition,
finite /infinite, 39
convergent illumination, 132-133
curvature, 28
deviation of rays, 31
equivalent power, 36-37
field flatteners, 64
Fourier transform, see Fourier transform
lenses
Fresnel, 60, 531-532
front focal plane, 33
in general optical systems, 116-128
geodesic, 531, 532
imaging, 248, 254
for integrated circuits, 531-532
lateral magnification, 41, 43-44, 45
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Luneberg, 531

magnification determination, 41, 43-45

marginal rays, 31

negative, 55

Newton’s formula, 43

optical invariant, 45-47

packing density, 130-132

plano concave, 55

plano convex, 54, 55, 60

positive, 54-55

power of surface, 29

ray tracing, 26, 40-43, 44-45

refraction equation, 29, 30, 35-36

relative aperture, 128-129

in spatial filters, 211

thick, 33-34

thin, power, 31

thin-lens systems, 35-37
equivalent power, 36-37

Lens functions, 117
Lens splitting, 65-67
Light, See also Optics

coherent, 134-140
sources, 146—-147
deviation of rays, 31
diffraction, 12
in acousto-optic cells, 303-304
two sources, 80-81
diffraction orders, see Diffraction orders
dispersion by prisms, 22
frequency, 12-13
interference, see Interference
modulation in acousto-optic cells, 289,
290-291, 301-302
propagation, 116-118
ray paths, 18-19
ray tracing, 40-43
reflection, law of, 15-16
refraction, see Optics, geometrical
time of flight, 17
transmittance, 72-73
two rays, phase difference, 14
velocity, 12

Light modulators, spatial, see Spatial light

modulators

Light sources, 146-147

in optical signal processors, 247-251. See
also Lasers

Light valves (spatial light modulators),

148-149
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Light waves, propagation, 71-80
from point source, 79-80
Linear filtering, 200
Linear operators, 201
Linear space-invariant systems, 202-203, 205
Line illumination, 338
Liquid crystal displays, 150-151
as notch filters, 475
as spatial light modulators, 252-253
Lithium niobate:
in integrated optical circuits, 532-534
as interaction material, 298-299, 308
Lithium tantalum oxide, as interaction
material, 309
Local oscillators, 369, 397
distributed, 505-506, 509, 514
in Doppler radar signal processing,
557-558, 559
in real-time spectrum analyzers, 546
Luneberg lenses, in integrated optical
circuits, 531

Mach-Zehnder interferometers, 224-230,
372-373
in heterodyne spectrum analyzers, 434
in time-integrating spectrum analyzers,
505-506
Magneto-optic devices, 151-152
Magnification:
anamorphic, 22-25
empty, 51
lateral, 120
determination, 41, 43-44, 45
Magnitude spatial filters, 214-215, 222-223
Mainlobes, of optical signals, 162-164, 166
Mapping, optical signal processing in,
277-278
Mapping, radar, 2, 218, 560
Marginal rays, 31
Masks, in testing for aberrations, 61, 62-63
Matched filtering, 207-209, 219, 222-223,
477. See also Spatial filters
heterodyne detection in, 369
in optical signal processors, 261, 265-266,
268, 270
in phased array processing, 568-569
physical basis, 484-486
programmable, 488
sensitivity to displacement, 279-286
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sensitivity to signal orientation, 265-266
sensitivity to signal scale, 266-267
Media:
anisotropic, 14
dispersive power, 13
isotropic, 14
Meniscus lenses, 54, 55
Michelson interferometers, 137-138
Microchannel plates, 150
Mi imum-aperture interferometer, 230-231
Minimum deviation angle, 20-22
Mirrors:
galvanometer, 154
in optical signal processors, 248
rotating, 154
Mixed transforms, 401
of cw signals, 401-403
of evolving pulses, 404—407
of reference signals, 412-414
of short pulses, 403-404
Modulation:
acousto-optic, 307-309
electronic reference, 527
index, 291, 299
transfer functions, 109-110
variable-grating, 150-151
Modulators, intensity, 184
Modulators, light, see Spatial light
modulators
Monolithic optical integrated circuits, 530,
533
Monostatic phased array radar systems,
568-569
Montgomery time-integrating correlator,
517-520
Motion analysis, 273-276
Multiplexed filters, 238-240
Multiplexing, 271, 272
Multipliers, 115-116
Mutual intensity, 135, 139

Narrowband filters, 336, 337

Narrowband interference (jammers),
465-466

Near-field diffraction, see Fresnel diffraction

Negative meniscus lenses, 55

Nematic liquid crystals, 150, 151

Newton’s formula, 43
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Noise, 128
prewhitening, 268, 270
shot (quantum), see Shot noise
thermal (Johnson), see Thermal noise
Noise cancellation, 560
Noise equivalent power, 181
Noise spectral density, 260, 261
nonuniform, 267-272
Notch filtering, See also Signal excision
impulse response, 474, 475
liquid-crystal displays in, 475
with optical transversal processors, see
Adaptive filtering
photodetector arrays in, 472
and sidelobe control, 469
spatial light modulators in, 465, 469, 475
Nyquist sampling theorem, 4, 83, 113

Oblique illumination, 110-112
Obliquity factor, 76, 105
Operators:
free space as, 77, 116-117
lens, 117
linear, 201
space-invariant, 201
spatial light modulators, 115-116
Optical data storage /retrieval, packing
density, 130-132
Optical filtering, see Optical signal
Processors
Optical integrated circuits, 530-534
hybrid, 530, 531
monolithic, 530, 533
Optical invariant, 45-47, 84
and bandwidth products, 50-51
and optical system design, 51-54
and resolution, 50
use in calculating magnification, 48
Optical memory, 152
Optical modulators, see Spatial light
modulators
Optical path, 13-14
Optical power, 155
in acousto-optic spectrum analyzers, 353
integrated, 257
Optical radio, see Radio, optical
Optical signal processors, 200-201, 247-249.
See also Signals; Spectrum analyzers
acousto-optic modulation, 307-309
constant false alarm rate, 259-260
convergent illumination, 132-133
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dual frequency-plane processors, 268-270
Fourier transform lenses, see Fourier
transform lenses
information capacity, maximization,
128-130
inverse filtering, 209-210
joint transform processing, 236-237
light sources, 247, 248, 249-251
optical integrated circuits, 530-534
orientation search, 263-266
packing density, 130-132
phased array, 566-569
photodetector arrays, see Photodetector
arrays
reference function, 241-243
reference-to-signal beam ratio, 261-263
scale search, 266-267
scanning systems, 153-154
signal focal position, 37
with spatial carrier frequency filters, see
Spatial carrier frequency filters
spatial filter displacement effects, 279-286
spatial light modulators, 247, 248, 249,
251-252
spillover, 158-159
transposed processing, 270-272, 273, 277
Optical signals, see Signals
Optical spectrum analysis, see Spectrum
analyzers
Optical systems:
aberrations, see Aberrations
cascaded, 125-126
chirp-z transforms, 133-134
coherence, 136
component matching, 51-54
cutoff angle /frequency, 53-54
Fourier transforms in, see Fourier
transforms
general representation, 115-116
Fourier transform, 119-120
imaging condition, 120-121
imaging versus Fourier transformation,
124-125
information capacity, maximization,
128-130
linearity, 134
in amplitude, 137
in intensity, 136
resolution, 112-113
space variance, 57
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Optical transversal processors, 560-566
Optics, geometrical, 115
aberrations, see Aberrations
conjugate imaging conditions,
finite /infinite, 39
critical angle, 19-20
defined, 12
Fermat’s principle, 17-19, 39, 57-58
lens equation, 39
lenses, see Lenses
Newton’s formula, 43
optical invariant, see Optical invariant
paraxial rays, 27
prisms, see Prisms
ray tracing, 40-43
principal pupil ray, 44-45
reflection, law of, 15-16
refraction, law of (Snell’s law), 16-17, 18,
26, 35-36
general form, 29, 30
sign convention, 26—28
transfer equation, 28
Optics, physical, 115
coherence, 134-140
diffraction, two sources, 80-81
Fourier transforms in, 97-100. See also
Fourier transforms
Fresnel transforms in, 75-79. See also
Fresnel transforms
fringe patterns, 81
light wave propagation, 71-75
transmittance, 72-73
Orientation search, 263-266
Orthicons, image, 152
Oscillators, 315
local, see Local oscillators

Packing density, 130-132

Paraxial rays, 27

Parseval’s theorem, 203, 465. See also
Appendix 11

Pattern recognition, 2, 235

Petzval sum, 64

Phased array antenna systems, 566-568

Phased array processing, 566—569

Phased array radar systems, 568-569

Phased array transducers, 532

Phase difference, 14
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Phase modulation:
in acousto-optic cells, 301-302
in holography, 87
Phase objects, 219
Phase spatial filters, 216-220, 222-223
Phasor notation, 72, 73-74
Photodetector arrays, 5, 152-155
in acousto-optic spectrum analyzers, 354
avalanche photodiodes in, 181-182
decimated, see Decimated arrays
duty cycle, 157, 170-171
frequency resolution, 167-168
geometry, 156-158
in acousto-optic spectrum analyzers,
360-361
in heterodyne spectrum analyzers,
414-416
in heterodyne spectrum analyzers, 398,
434, 435
position, 421-422
linearity, 159
nonlinearities, 257
as notch filters, 472
number of elements, 156, 168-171
on-chip processing, 258-259
in optical integrated circuits, 530-533
in optical signal processors, 248, 249
nonoverlapping signals, 256-258
thresholding, 255-256
in phased array processing, 568—569
photodetector spacing, 167-171
in raster-scanning spectrum analyzers,
187-188
readout rate, 158
response uniformity, 159
ring/wedge, 154-155
saturation, 159
signal-to-noise ratio, 173-179
smart arrays, 158
in space-integrating correlators, 489
Doppler shift detection, 486-488
in space-integrating spectrum analyzers,
335, 336-337
spillover, 158-159
blooming, 159
crosstalk, 159
thresholding, 255-260
in time-integrating correlators, 518-519,
520, 523, 526
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Photodetector arrays (Continued)
in time-integrating spectrum analyzers,
505, 515
n video cameras, 533
Ph todetectors, 73
in acousto-optic spectrum analyzers,
353-354
discrete element, 397
frequency response, 174
in heterodyne detection, 374-383
optical radio, 385, 388-389, 391, 392
and heterodyne transform, 455, 457, 460,
462-464
in homodyne detection, 493-494, 495, 496
in reference-function correlators,
bandwidth, 486
shot-noise limited, 181
spectral responsivity, 155
Photodiodes, avalanche, 181-182
in acousto-optic spectrum analyzers, 362
Photoelastic effect, 357
Photographic film, 52-53
amplitude transmittance, 225
as a photodetector array, 152
and spatial filters, 212
as spatial light modulator, 147, 251-252,
253
Photographs, contrast improvement, 214-215
Photometry, 155
Piezoelectric transducers, 289
Pinholes, in optical processors, 248, 249-250
Pixels, 5
Planes:
principal, 33-34
saggital, 63
tangential, 63
unit magnification, 34
Plano concave lenses, 55
Plano convex lenses, 54, 55, 60
Pockels effect readout optical modulator
(PROM), 149-150
Point sources, 5, 79-80
Point spread function, 57
Position factor, Coddington, 56-57
Power, equivalent, 36-37
Power spectral density, 201, 204-207
Power spectrum analyzers, see Spectrum
analyzers, power
Principal maximum, of fringe pattern, 81
Principal pupil ray, 44-45
Principal planes, 33-34
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Prism diopters, 22
Prisms, 20-25
in acousto-optic spectrum analyzers, 340
and anamorphic magnification, 22-25
counter-rotating, 25
deviation angle, 21
minimum, 22
in optical signal processors, 264
power of, 22, 25
thin, 22
Probes, See also Reference signals
in heterodyne detection, 369, 374-375, 383
in heterodyne spectrum analyzers, 416, 417
PROM (Pockels effect readout optical
modulator), 149-150
Pseudorandom sequences, 484, 516, 524
synchronization, 549
y-function, 117-118, 123

Q-factor, 292
Quantum noise, see Shot noise

Radar map generation, 2, 218, 560
Radar processing, 260
by optical integrated circuits, 530
synthetic, 560
Radar systems, 550
bistatic, 568-569
Doppler, 534, 557-560
monostatic, 568-569
phased array, 568-569
synthetic aperture, 1-2, 216-218
heterodyne detection in, 369
Radar threat warning receivers, 354, 398
Radio, optical, 384-385
direct detection, 385
heterodyne detection, 386-393
reference beam arrangements, 387-391
Radiometers, 364-365
Radio receivers, dual-antenna, 445-446
Raman-Nath diffraction mode, 288, 290-293.
294, 305
in spectrum analyzers, 336, 340-344, 346
Raman-Nath equation, 291
Random processes, wide-sense stationary,
204-207
Range /Doppler radar processing, 560
Range gating, 558
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Raster-format spectrum analysis, 149,
183-194
real-time, 545-549
Raster scanning, 183-188
Rayleigh interferometer, modified, 229-230
Rayleigh resolution criterion, 49, 106,
112-113
and acousto-optic spectrum analyzers,
349, 350
Ray paths, of light, 18-19
Rays, light, see Light
Ray tracing, 40-43
aberration characterization, 57
and linear scanners, 312-314
principal pupil ray, 44-45
Real-time raster-format spectrum analysis,
545-549
Real-valued impulse response, 481-482
Real-valued spatial filters, 218-219
Receivers, superheterodyne, 336
Receivers, synchronization with transmitter,
516-517
Reconstruction beams, 85-86
Rect aperture function, 10, 160-162,
164-165, 176-177
Fourier transform, 100-101, 102, 103,
108-109
Reference beams, see Reference signals
Reference bias, 421-422
Reference-function correlators, 241-243,
478-481
and Doppler shift detection, 486-488, 489,
496-497
impulse responses, complex-valued,
482-484
impulse responses, real-valued, 481-482
multichannel, 488-490
programmable matched filtering, 488
signal-to-noise ratio, 485
time-delay factor, 482
Reference signals, 82, 224, 241, 261-263
in heterodyne detection, 369, 374-375
optical radio, 387-391
in heterodyne spectrum analyzers, 398,
401, 404, 405
generation, 408
mixed transform, 412-414
waveforms, 408-411
in optical signal processors, 248-249
waveform, 442-445
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Reflection:
angle of, 16
law of, 15-16
Refraction, law of (Snell’s law), 16-17, 18,
26, 35-36
general form, 29, 30
thin-lens systems, 35-36
Refractive index, 12-14
Relative aperture, 128-129
Repetition period, of chirp signals, 315
Resolution:
Abbe’s criterion, 106-109
angular, 49, 51
Rayleigh criterion, 49, 106, 112-113
spatial, 49-50
Revisit interval, 439
Ring/wedge photodetectors, 154-155
Root-mean-square error, 470, 472
Rotating mirrors, 154

Saggital plane, 63
Sample function, see Sinc function
Sample rate, in chirp-waveform scanners,
321, 323, 326, 327
Sampling, Nyquist rate, 4
Sampling interval, 9
Sampling theorem, 156, 157
Scale search, 266-267
Scaling factors:
for Fourier transforms, 126-128
Scan duty cycle, in chirp-waveform scanners,
321, 323, 326, 327
Scan length, 314, 318, 323, 326, 327, 328
Scan line, number of samples in, 314, 320,
323, 326, 327, 328
Scanners, 309-310
Scanners, chirp-waveform, 310-315
active aperture time, 315, 321, 328
active scan time, 315, 327, 328
aperture limited, 315
long-chirp, 315-321
short-chirp, 321-325
applications, 329-331
duty cycle, scan, 321, 323, 326, 327, 328
length, scan, 314, 318, 323, 326, 327, 328
long-chirp, 315
number of samples in scan line, 314, 320,
323, 326, 327, 328
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Scanners, chirp-waveform (Continued)
repetition rate limited, 315
long-chirp, 326-327
short-chirp, 327
sample rate, 321, 323, 326, 327, 328
short-chirp, 315
spot size, scanning, 313, 317-318, 320,
324-325, 326, 327, 328
throughput rate, 321, 324, 326, 327, 328
uniform versus Gaussian illumination,
33130
velocity, scanning, 313-314, 318, 320, 323,
328
Scanners/recorders, facsimile, 329-331
Scanning systems, 153-154
Schlieren imaging, 148
Schlieren methods, 214, 305-307
Schwartz inequality, 208
Second principal plane, 34
Shape factor, Coddington, 54-56
Shift theorem, 110-111. See also
Appendix 11
Short-pulse signals, mixed transform,
403-404
Short-time spectrum, 400
Shot (quantum) noise, 175, 180-181, 182
in acousto-optic spectrum analyzers, 351,
361
in decimated array spectrum analyzers,
444, 445
in heterodyne spectrum analyzers, 426,
428-429
Shutters, 248
Sidelobes, 160-163, 163-168
control in acousto-optic spectrum
analyzers, 347-348
control in heterodyne spectrum analyzers,
419, 420
notch filtering, 469
Signal acquisition, 499
Signal beams, 224
Signal compression, 358-359
in heterodyne detection, 382, 383
Signal distortion, 470, 472. See also Noise
Signal excision, 466—-472
Signal processing:
digital, 160
Fourier transforms in, 95-96
optical, see Optical signal processors
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Signal processing, complexity, 8
Signals, See also Optical signals
analog, 4-5, 273
bandlimited
Fourier transforms, 105
sampling, 112-115
bandpass, 3
signal-to-noise ratio, 175-176
bandwidth, 3
baseband, 3
total spatial frequency bandwidth, 160
chirp, see Chirp signals; Scanners,
chirp-waveform
cutoff frequency, 3
degrees of freedom, 5
deterministic, 201, 207
finite average power, 201
finite total power, 201
Fourier transforms, see Fourier transforms
mainlobes, 162, 163, 164, 166
mixed transforms, 401-408
Nyquist sampling rate, 4
periodic, 213
power, 155, 178
radar, 216-218
raster-scanned, 9
reference, see Reference signals
sampling, 4, 52-54, 83-84
sidelobes, see Sidelobes
spacelimited, 115
spatial, 1, 2, 3, 8-10
height bandwidth product, 10
length bandwidth product, 10
sampling interval, 9
space bandwidth product, 10
spatial frequency, 9
spectral density, 201
spectrum analysis, see Spectrum analyzers
spurious, 173
temporal, 3-8
time bandwidth product, 4
time duration, 3
wideband, narrowband interference,
465-466
Signal-to-noise ratio:
of acousto-optic spectrum analyzers,
350-352, 362-363, 364, 365
in decimated array spectrum analyzers,
440-442
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in heterodyne spectrum analyzers, 425
reference-function correlators, 485
spectrum analyzers, 173-179, 180, 181,
182-183
Sinc function, 7, 10, 101, 102, 103, 162
delta function as approximation, 108
Sine condition, 62
Smart arrays, 158
Smith’s equation, 45-47
Snell’s law, 16-17, 18, 26, 29, 35-36
Source depletion, in acousto-optic cells,
358-359
Space bandwidth product, 10, 50
Space-integrating correlators, 477-478,
500-502, 504
acousto-optic cells, 499
carrier frequency requirements, 497-498
and Doppler shift detection, 486488
four-product, 538
homodyne detection, see Homodyne
detection
illumination requirements, 498-499
reference-function correlators, see
Reference-function correlators
versus time-integrating correlators,
529-530
triple-product, 537-540
Space-integrating spectrum analyzers, 335,
341
Space-invariant operators, 201
Spatial carrier frequency filters, 223, 226
bandwidth, 237
construction by interferometric methods,
224-231
convolution, 233, 234
correlation, 233, 234
impulse response, 227-228
in information processing, 231-235
multiplexed, 238-240
phase response, 233
Spatial coherence, 134-137, 140
degree of, 136
Spatial-domain processors, 214
Spatial filter generators, 247-249
materials, 247-248
Spatial filters, 125, 211-212
binary, 212-214
computer-generated, 240
broadband, 262, 263
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carrier frequency, see Spatial carrier
frequency filters

displacement effects
lateral, 279-282
longitudinal, 283-284
random motion, 284-286

in electronic reference correlators, 527,
528

highpass, 262, 263

in image alignment, 277, 278

magnitude, 214-215, 222-223

in motion analysis, 273-276

nonnegative, 223

and nonuniform noise spectral density,
267-272

phase, 216-220, 222-223

real-valued, 218-219

in target recognition, 273

Spatial frequency, 9, 81

in spatial interference, 372

Spatial frequency bandwidth, total, 160
Spatial frequency separation, 497-498
Spatial fringe structures, 75, 80-82, 93, 102,

136, 223, 226, 448

Spatial light modulators, 115-116, 118-119,

145, 147
acousto-optic, see Acousto-optic cells
diffraction efficiency per frequency, 173
electro-optic, 149-150
frame rate, 158
light valves, 148-149
liquid crystal, 150-151, 252, 253
magneto-optic, 151-152
microchannel plate, 150
as notched filters, 465, 469, 475
in optical signal processors, 247, 248, 249,
251-252
photographic film as, 147, 251-252, 253
PROM, 149-150
response nonlinearities, 172-173
in spatial filters, 211
two-dimensional, 151-152

Spatial resolution, 49-50

Spatial signals, 1, 3, 8-10

Spectral density, 201, 204-207

Spectral responsivity, photodetectors, 155
Spectrum:

instantaneous, 400
short-time, 400
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Spectrum analyzers, heterodyne, 397-400,
433-435
advantages, 397
bandpass filter shape, 414, 416-418, 419,
420
with CCD array, 429-430
comparison with power spectrum
analyzers, 426-430
crosstalk control, 417, 418-420
decimated array, see Spectrum analyzers,
heterodyne, decimated array
dynamic range, 422-427
hybrid, 430
mixed transforms, see Mixed transforms
photodetector arrays, 434, 435
geometry, 414-416, 421-422
postdetection electronics, 436
reference bias term, 421-422
resolution, 417, 420
short-time spectrum (Gabor transform),
400
signal-to-noise ratio, 425
thermal /shot noise, 426
time-integrating, 335, 505-506, 510-513
key performance features, 513-515
reference signal requirements, 506-510
two-dimensional, 427-430
Spectrum analyzers, heterodyne, decimated
array:
chirp rate, 439-440
for cross-spectrum analysis, see Cross-
spectrum analyzers
dynamic range, 440-442, 444
fast-scan mode, 442, 444, 445
reference signals, 438-440
reference waveform, 442-445
scanning, 436, 438
shot noise, 444, 445
signal-to-noise ratio, 440-442
slow-scan mode, 441-442, 444, 445
staring mode, 441
thermal noise, 444, 445
Spectrum analyzers, power, 335-338
aperture weighting functions, 339-340,
347-348, 353
arbitrary signals, 346-347
Bragg diffraction mode, 338, 344-346
design summary, 365-366
diffraction efficiency per frequency,
357-358, 359
digital postprocessing, 365
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dynamic range, 350, 352-354, 362-363
spur-free, 355, 356-359

electronic versus acousto-optic, 336-337

frequency resolution, 348-350

harmonic distortion, 355

hybrid, 335

illumination system, 338-340

instantaneous power, 335

versus integrated optical circuit analyzers,
533

intermodulation products, 356, 357

light scattering, 359-360

nonlinearities, 356-358
elastic, 357, 358

phased array configuration, 566-568

photodetector array geometry, 360-361

radiometry, 364-365

Raman-Nath diffraction mode, 336,
340-344, 346

shot noise, 351, 361

sidelobe control, 347-348

signal compression, 358-359

signal-to-noise ratio, 350-352, 362-363,
364-365

thermal noise, 351, 361, 363

using integrated optical circuits, 530-534

Spectrum analyzers, spatial:

bandwidth, 179

cross-, see Cross-spectrum analyzers

cutoff frequency, 179

design, 194-195

dynamic range, 171-172, 178-179,
182-183

Fourier transforms in, 145-146

frequency resolution, 163, 167-168

general form, 145-146

integration time, 179

intermodulation products, 172-173

light scattering, 173

light sources, 146-147

noise equivalent power, 181

oblique illumination, 112

one-dimensional time signals, 183

optical power, 155

photodetector arrays, see Photodetector
arrays

raster-scanning, 183-194

real-time raster-format, 545-549

shot-noise limited, 180-181

sidelobe levels, 160-163



INDEX

signal-to-noise ratio, 173-179, 180, 181,
182-183
spatial light modulators, see Spatial light
modulators
spur-free dynamic range, 173
thermal-noise limited, 181-182
total spatial frequency bandwidth, 160
two-dimensional, 188-193, 545-549
using triple-product processors, 545-549
Spherical aberration, 59-61
Spillover, 158-159
Spot size, scanning, 313, 317-318, 320,
324-325, 326, 327, 328
Sprague-Koliopoulos time-integrating
correlators, 520-526, 537-538
in ambiguity function generation, 551
Spur-free dynamic range, of acousto-optic
spectrum analyzers, 355, 356-359
Spurious signals, 173
in acousto-optic spectrum analyzers, 355
Stationary value, of time of flight, 17-18
Stereo compilation, 277-278
Strain waves, in acousto-optic cells, 289,
290-291
Strontium barium niobium oxide, as
interaction material, 309
Strontium barium nitrate, in spatial filters,
247
Superheterodyne receivers, 336
Synchronization, 549-550
transmitter /receiver, 516—517
Synthetic aperture radar, 1-2, 216-218, 369
Synthetic radar processing, 560

Tangential plane, 63
Tap weights, 561, 562, 563-564, 565
Target recognition, 273
Telecentric scanning systems, 153-154
Telescopes:
eyepieces, 51
Rayleigh resolution criterion, 106
resolution, 48-50
Telescopic configuration, 37-39
Television, 9
color, bandwidth, 8
theater projection, 148
Tellurium dioxide:
in integrated optical circuits, 533
as interaction material, 298-299, 309
as interactive material, 331
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Temporal carrier frequency, in time-
integrating correlators, 520
Temporal coherence, 137-140
degree of, 139-140
Temporal coherence function, 139
Temporal diffraction, 403
Temporal frequency separation, 497-498
Temporal signals, 3-8
Thermal (Johnson) noise, 175, 180, 181-182
in acousto-optic spectrum analyzers, 351,
361, 363
in decimated array spectrum analyzers,
444, 445
in spectrum analyzers, 426, 428, 429
Thin-film waveguides, 530-534
Thin prisms, 22
Third-order aberrations, 59
Threat warning receivers, 533
Throughput rate, in chirp-waveform
scanners, 321, 324, 326, 327
Time bandwidth product, 4
of acousto-optic cells, 296—-297, 298
in time-integrating spectrum analyzers, 514
Time delay, acousto-optic cells, 296, 301
Time-delay factor, in reference-function
correlators, 482
Time duration, 3
in acousto-optic cells, 296
Time-integrating correlation, 515-517
Time-integrating correlators, 504
compared to space-integrating correlators,
529-520
due to Montgomery, 517-520
due to Sprague and Koliopoulos, 520-526,
537-538
in ambiguity function generation, 551
Time-integrating spectrum analysis, 335,
504, 505-515
Time-integrating systems, 504
Time of flight, 17
Titanium dioxide, as interaction material, 309
Total internal reflection, 19
Transducers:
interaction length, 357-358
in optical integrated circuits, 530-531, 532
phased array, 532
piezoelectric, 289
Transfer equation, 28
Transfer functions, 71-72
coherent/incoherent modulation, 109-110
Transform, mixed, see Mixed transforms
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Transit time, acousto-optic cells, 296
Transmittance, of optical elements, 72-73
Transmitters, synchronization with receivers,
516-517
Transposed processing, 270-272, 273, 277
Transversal filtering, 560-566
Triple-product correlation /processors,
537-540
in ambiguity function generation, 549-556
in real-time spectrum analysis, 545-549
Two-dimensional spectrum analyzers,
545-549
Two-product correlation, 537

Unit magnification planes, 34

Upchirp mode, 311, 317, 320

Upchirp signals, in time-integrating spectrum
analyzers, 506-510

Upshifted signals, 294, 303-304, 305

Variable-grating modulation, 150-151

Variable-scale correlators, 125-126

Variable-scale Fourier transforms, 123-124

Vector matrix multiplication, by optical
integrated circuits, 530

INDEX

Velocity, scanning, 313-314, 318, 320, 323,
328

Virtual images, in holography, 86
Visible spectrum, bandwidth, 8

Watt, as unit of optical power, 155
Wave equation, 71

Wavefront, 14

Waveguides, thin-film, 530-534
Wave normals, 14

Weiner filter, 214

Wide-sense stationary random processes,
204-207

Wigner-Ville distribution, 504, 556-557
Window functions, see Aperture functions
Wobble plates, 25-26

Word detection, 240

Young’s interference principle, 75
Zernike’s phase contrast method, 219

Zoom lenses, in optical signal processors,
266



