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PREFACE

The title of this book is no surprise for people working in the field of Analytical
Mechanics. However, the geometric concepts of Lagrange space and Hamilton space
are completely new.

The geometry of Lagrange spaces, introduced and studied in [76],[96], was exten-
sively examined in the last two decades by geometers and physicists from Canada,
Germany, Hungary, Italy, Japan, Romania, Russia and U.S.A. Many international
conferences were devoted to debate this subject, proceedings and monographs were
published [10], [18], [112], [113],.. A large area of applicability of this geometry is
suggested by the connections to Biology, Mechanics, and Physics and also by its
general setting as a generalization of Finsler and Riemannian geometries.

The concept of Hamilton space, introduced in [105], [101] was intensively studied
in [63], [66], [97],... and it has been successful, as a geometric theory of the Hamil-
tonian function the fundamental entity in Mechanics and Physics. The classical
Legendre’s duality makes possible a natural connection between Lagrange and Ha
milton spaces. It reveals new concepts and geometrical objects of Hamilton spaces
that are dual to those which are similar in Lagrange spaces. Following this duality
Cartan spaces introduced and studied in [98], [99],..., are, roughly speaking, the
Legendre duals of certain Finsler spaces [98], [66], [67]. The above arguments make
this monograph a continuation of [106], [113], emphasizing the Hamilton geometry.

*

* *

The first chapter is an overview of the geometriy of the tangent bundle. Due to its
special geometrical structure, TM, furnishes basic tools that play an important role
in our study: the Liouville vector field C, the almost tangent structure J, the concept
of semispray. In the text, new geometrical structures and notions will be introduced.
By far, the concept of nonlinear connection is central in our investigations.

Chapter 2 is a brief review of some background material on Finsler spaces, in-
cluded not only because we need them later to explain some extensions of the subject,
but aso using them as duals of Cartan spaces.

Some generalizations of Finsler geometry have been proposed in the last three
decades by relaxing requirements in the definition of Finsler metric. In the Lagran-

IX



X The Geometry of Hamilton & Lagrange Spaces

ge geometry, discussed in Chapter 3, the metric tensor is obtained by taking the
Hessian with respect to the tangential coordinates of a smooth function L defined
on the tangent bundle. This function is called a regular Lagrangian provided the
Hessian is nondegenerate, and no other conditions are envisaged.

Many aspects of the theory of Finsler manifolds apply equally well to Lagran-
ge spaces. However, a lot of problems may be totally different, especialy those
concerning the geometry of the base space M. For instance, because of lack of the
homogeneity condition, the length of a curve on M, if defined as usua for Fin-
sler manifolds, will depend on the parametrization of the curve, which may not be
satisfactory.

In spite of this a Lagrange space has been certified as an excellent model for
some important problems in Relativity, Gauge Theory, and Electromagnetism. The
geometry of Lagrange spaces gives a model for both the gravitational and electro-
magnetic field in a very natural blending of the geometrical structures of the space
with the characteristic properties of these physical fields.

A Lagrange space is a pair L™ = (M, L(z,y)) where L = L(z,y) is a regular
Lagrangian.

For every smooth parametrized curve ¢ : [0,1] — M the action integral may be

considered: ) p
o=[1 (x(t), Zf)) dt.

A geodesic of the Lagrange Space (M, L) is an extremal curve of the action integral.

This is, in fact, a solution of the Euler—Lagrange system of equations

i 8_L — B_L_ =0, i dz’

dt \ 0z° oxi

where (z*(t)) is alocal coordinate expression of c.
This system is equivalent to

2 .0
d—“’+2Gi< d””>=0,

dt’

dt? r
where 21 oL
. 1 .
i — 247 k_ 2
Gla,y) = 19 (8yjax,cy aﬂ.)
and
1 9L
%= 5 Oyidyi

Here Gt are the components of a semispray that generates a notable nonlinear con-
nection, caled canonical, whose coefficients are given by
oG*

Y=oy
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This nonlinear connection plays a fundamenta role in the study of the geometry of
TM. It generates a splitting of the double tangent bundle

TTM =HM®VM

which makes possible the investigation of the geometry of TM in an elegant way, by
using tools of Finsler Spaces. We mention that when L is the square of a function
on TM, positively 1-homogeneous in the tangential coordinates (L is generated by
a Finsler metric), this nonlinear connection is just the classica Cartan nonlinear
connection of a Finsler space.

An other canonical linear connection, called distinguished, may be considered.
This connection preserves the above decomposition of the double tangent bundle and
moreover, it is metrical with respect to the metric tensor g;;. When L is generated
by a Finsler metric, this linear connection is just the famous Cartan’s metrical linear
connection of a Finsler space.

Starting with these geometrical objects, the entire geometry of TM can be ob-
tained by studying the curvature and torsion tensors, structure equations, geodesics,
etc. Also, a regular Lagrangian makes TM, in a natural way, a hermitian pseudo-
riemannian symplectic manifold with an aimost symplectic structure.

Many results on the tangent bundle do not depend on a particular fundamental
function L, but on a metric tensor field. For instance, if v;,(z)is a Riemannian
metric on M and o is a function depending explicitly on z*as well as directional
variables y* then, for example,

gii(z,y) = eV y;(x)

do
oyt
encountered in the relativistic optics. These considerations motivate our investiga-
tion made on the geometry of apair (M, g;;(z,y)),where g,;(z, y) isanondegenerate,
symmetric, constant signature d—tensor field on TM (i.e. g;;(z,y)transform as a
tensor field on M). These spaces, called generalized Lagrange spaces [96], [113], are
in some situations more flexible than that of Finsler or Lagrange space because of
the variety of possible selection for g,;(z,y). The geometric model of a generalized
Lagrange space is an almost Hermitian space which, generally, is not reducible to
an almost Kahlerian space. These spaces, are briefly discussed in section 3.10.
Chapter 4 is devoted to the geometry of the cotangent bundle T*M, which fol-
lows the same outline as TM. However, the geometry of T*M is from one point
of view different from that of the tangent bundle. We do not have here a natural
tangent structure and a semispray cannot be introduced as usua for the tangent
bundle. Two geometrical ingredients are of great importance on T*M: the canonical
1-form w = p;dz* and its exterior derivative 8 = dp,Adz* (the canonical symplectic

cannot be derived from a Lagrangian, provided # 0. Such situations are often
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strucutre of T*M). They are systematically used to define new useful tools for our
next investigations.

Chapter 5 introduces the concept of Hamilton space [101], [105]. A regular Ha-
miltonian on T*M, is a smoothfunction H : T*M — IR, such that the Hessian
matrix with entries
1 0*H(x,p)

2 OpiOp;
is everywhere nondegenerate on T*M (or a domain of T*M).

A Hamilton space is a pair H* = (M, H(z,p)), where H (x, p) is a regular Ha-
miltonian. As for Lagrange spaces, a canonical nonlinear connection can be derived
from a regular Hamiltonian but in a totally different way, using the Legendre trans-
formation. It defines a splitting of the tangent space of the cotangent bundle

TT"M =HT'M & VT*M,

9"(z,p) =

which is crucial for the description of the geometry of T*M.

The case when H isthe square of afunction on T*M, positively 1-homogeneous
with respect to the momentum Pi, provides an important class of Hamilton spaces,
called Cartan spaces [98], [99]. The geometry of these spaces is developed in Chapter
6.

Chapter 7 deds with the relationship between Lagrange and Hamilton spaces.
Using the classical Legendre transformation different geometrical objects on TM are
nicely related to similar ones on T*M. The geometry of a Hamilton space can be
obtained from that of certain Lagrange space and vice versa. As a particular case,
we can associate to a given Finsler space its dual, which is a Cartan space. Here,
asurprising result is obtained: the L-dua of a Kropina space (a Finsler space) is a
Randers space (a Cartan space). In some conditions the L-dua of a Randers space
is a Kropinaspace. This result allows us to obtain interesting properties of Kropina
spaces by taking the dual of those already obtained in Randers spaces. These spaces
are used in severd applications in Physics.

In Chapter 8 we study how the geometry of cotangent bundle changes under
symplectic transformations. As a specia case we consider the homogeneous contact
transformations known in the classical literature. Here we investigate the so—called
"homogeneous contact geometry” in a more general setting and using a modern
approach. It is clear that the geometry of T*M is essentialy simplified if it is
related to a given nonlinear connection. If f € Dif f(T*M), the push forward of a
nonlinear connection by f isno longer a nonlinear connection and the geometry of
T*M is completely changed by f. The main difficulty arises from the fact that the
vertical distribution is not generally preserved by f. However, under appropriate
conditions a new distribution, called oblique results. We introduce the notion of
connection pair (more general than a nonlinear connection), which is the keystone
of the entire construction.
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The last two decades many mathematical models from Lagrangian Mechanics,
Theoretical Physics and Variational Calculus systematically used multivariate La-

. . . dz 1 d*z
grangians of higher order acceleration, L z,a(t),...,ﬁ W(m) , [108].
The variational principle applied to the action integral

1 ko
10=1 (x(t),-‘;—f(t), % ‘i?(t)) dt

leads to Euler—Lagrange system of equations

oL d OL el d¢ oL
Ei(L)._éTIJ_i_—d—ta_y(m+”.+(_l)k—!ﬁm—o’
1 k i
g2 8w L4
dt k! dx’

which is fundamental for higher order Lagrangian Mechanics. The energy function
of order k is conservative along the integral curves of the above system.

From here one can see the motivation of the Lagrange geometry for higher order
Lagrangians to the bundle of acclerations of order k, (or the osculator bundle of
order k) denoted by T*M, and dso the L-dual of this theory.

These subjects are developed in the next five chapters.

A higher order Lagrange space is a pair L®® = (M, L(z,y", ..., y™)), where
M is a smooth differentiate manifold and L : T*M — RRis a regular Lagrangian
or order k, [106]. The geometry of these spaces may be developed as a natural
extension of that of a Lagrange space. The metric tensor,

g 1) -
gt](xvy yeer Y - 2 ay(k)’a(k”

has to be nondegenerate on T*M. A centra problem, about existence of regular
Lagrangians of order k, arisesin this case. The bundle of prolongations of order k,
at T* M, of a Riemannian space on M is an example for the Lagrange space of order
k, [206].

We mention that the Euler—Lagrange equations given above are generated by
the Craig—Synge covector

byl

oL d oL
(L) := Ay®=13i ~ gt dylki

that is used in the construction of the canonical semispray of L*)*, This is essential
in defining the entire geometric mechanism of L),

The geometric model of L), is obtaining by lifting the whole construction to
TEM.
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As a particular case, a Finsler space of order k is obtained if L is the square of
a positive k-homogeneous function on the bundle of accelerations of order k. Also
the class of generalized Lagrange spaces of order k may be considered.

Before starting to define the dual of L*) we should consider the geometri-
cal entity T**M, having enough properties to deserve the name of dual of T*M.
The space T**M should have the same dimension as T*M, should carry a natural
presymplectic structure and at least one Poisson structure. Although the subject
was discussed in literature (see [85]) the above conditions are not full verified for
the chosen duals.

Defining [110]:

T*M =TF'M x T* M,

then al the above conditions are satisfied. The two-form 6 = dg,»/\da:i defiges a
. . o} 0
presymplectic structure and the Poisson brackets {f,g} = —f —3 -9 of a
Poisson structure.
The Legendre transformation is

Leg : (z, ym, ey y(k"), y(k)) eT*M — (z,y(l), . y(k"l),p) e T**M

1 0L
where p; = 5 W

Now, the geometry of a higher order regular Hamiltonians may be developed as
we did for k£ = 2.

The book ends with a description of C®", the Cartem spaces of order 2, and
GH®" the Generalized Hamilton space or order 2.

For the general case the extension seems to be more difficult since the L—duality
process cannot be developed unless a nonlinear connection on T*~*is given in ad-
vance.

We should add that this book naturally prolongates the main topics presented in
the monographs: The Geometry of Lagrange Spaces. Theory and Applications (R.
Miron and M. Anastasiei), Kluwer, FTPH no.59; The Geometry of Higher Order La-
grange Spaces. Applications to Mechanics and Physics (R. Miron), Kluwer, FTPH,
nr.82.

This monograph was written as follows:

It is alocall diffeomorphism.

e Ch. 1,2,3 — H. Shimadaand V.S. Sabdu
¢« Ch. 4,5,6 — H. Shimadaand R. Miron
e Ch. 7,8 — D. Hrimiuc

+ Ch. 910,11,12,13 — R. Miron
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The book is divided in two parts: Hamilton and Lagrange spaces and Hamilton
space of higher order.

The readers can go in the heart of subject by studying the first part (Ch. 1-8).
Prom this reason, the book is accessible for readers ranging from graduate students
to researchers in Mathematics, Mechanics, Physics, Biology, Informatics etc.

Acknowledgements. We would like to express our gratitude to P.L. Antonelli,
M. Anastasiei, M. Matsumoto for their continuous support, encouragement and
numerous valuable suggestions. We owe special thanks to R.G. Beil, S.S. Chern,
M. Crampin, R.S. Ingarten, D. Krupka, S. Kobayashi, R.M. Santilli, L. Tamassy,
I. Vaisman for useful discussions and suggestions on the content of this book, to
I. Bucdtaru and M. Roman who gave the manuscript a meticulous reading. We
are pleased to thank to Mrs. Elena Mocanu and Mrs. V. Spak who typeset our
manuscript into its final excellent form.

Finally, we would like to thank the publishers for their co-operation and courtesy.



Chapter 1

The geometry of tangent bundle

The geometry of tangent bundle (7'M, w, M)over asmooth, real, finite dimensional
manifold M is one of the most important fields of the modern differential geometry.
The tangent bundle TM carries some natural object fields, as. Liouville vector field
C, tangent structure J, the vertical distribution V. They alow to introduce the
notion of semispray S, which is a tangent vector field of TM, having the property
J(S) = C. We will see that the geometry of the manifold TM can be constructed
using only the notion of semispray.

The entire construction is basic for the introduction of the notion of Finsler
space or Lagrange space [112], [113]. In the last twenty years this point of view
was adopted by the authors of the present monograph in the development of the
geometrical theory of the spaces which can be defined on the total space TM of
tangent bundle. There exists a rich literature concerning this subject.

In this chapter al geometrical object fields and all mappings are considered of
the class C'*, expressed by the words "differentiate” or ”"smooth”.

1.1 The manifold TM

Let M be area differentiable manifold of dimension n. A point of M will be denoted
by x and its local coordinate system by (U, ), ¢(z) = (z*). The indices i, j, ... run
over set {1, ..., n} and Einstein convention of summarizing is adopted al over this
book.

The tangent bundle (T'M,, M) of the manifold M can be identified with the
1-osculator bundle (Osc' M, 7, M), see the definition below.

Indeed, let us consider two curves p,o : I — M, having images in a domain of
local chart U ¢ M. We say that p and ¢ have a "contact of order 1" or the "same
tangent line” in the point z, € U if: p(0) = o(0) = zo, (0 € I), and for any function

1



2 The Geometry of Hamilton & Lagrange Spaces
feFU):

d d
(L1) gV enl| = g(fea|
The relation "contact of order 1' is an equivalence on the set of smooth curves in
M, which pass through the point zo. Let [p],, be a class of equivalence. It will be
called a " 1-osculator space’ in the point z, € M. The set of 1-osculator spaces in
the point zo € M will be denoted by Osc; , and we put

Osc'M = | J Osc,,.

ToEM

One considers the mapping 7 : Osc' M — M defined by 7([p]s,) = zo. Clearly, m is
a surjection.

The set Osc'M is endowed with a natural differentiable structure, induced by
that of the manifold M, so0 that = is a differentiable mapping. It will be described
below.

Thecurve p: I —» M, (Imp C U) is analyticaly represented in the local chart
(U, @) by ot = zi(t), t € I, 2o = (2 = z*(0)), taking the function f from (1.1),
succesively equal to the coordinatefunctions z*, then a representative of the class
[pls, is given by A
dz’
dt
The previous polynomials are determined by the coefficients

" =2(0) + t—(0), t € (—¢,¢) C I.

i ? ;_ dot
(1.2) g = '(0), v = - (0)

Hence, the pair (r='(U),¢), with ¢([pls,) = (25, 45) € B>, Vpolao € 77/(U) is a
local chart on Osc! M. Thus a differentiable atlas A of the differentiable structure
on the manifold M determines a differentiable atlas Agg.1,, 0n Osc! M and therefore
the triple (Osc' M, =, M) is a differentiable bundle.

Based on the equations (1.2) we can identify the point [p],, € Osc'M with the
tangent vector yi € T,,M. Consequently, we can indeed identify the 1-osculator
bundle with the tangent bundle (TM, 7, M).

By (1.2) atransformation of local coordinates (z%,4%) — (%, %) on the manifold
TM is given by

(1.3)
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One can see that TM is of dimension 2n and is orientable.

Moreover, if M is a paracompact manifold, then TM is paracompact, too.

Let us present here some notations. A point v € TM, whose projection by = is
X, i.e. m(u) = z, will be denoted by (x,y), its local coordinates being (z*,3"). We
put TM = TM \ {0}, where {0} means the null section of .

The coordinate transformation (1.3) determines the transformation of the natural
basis (é,ai) (i = T,n), of the tangent spaceT,, TM at the pointu € TM the

1 yl

following:

o _oF & 0F 8. 8 o o

(14) 2 = or 97 T 95 87 By 9y O

By means of (1.3) we obtain

oy _ox op _ o

(1.4) Byl Bzl Oni | BzidLh v

Looking at the formula (1.4) we remark the existence of some natural object fields
on E.
First of all, the tangent space V, to thefibrex~!(z) in the pointu € TM islocally

spanned by {Biyl’ . ’ain} . Therefore, the mappingV:u € TM — V, C T,TM

0
provides a regular distribution which is generated by the adapted basis {E)_y_z}’

(i = 1, ..., n). Consequently, V is an integrable distribution on TM. V is caled the
vertical distribution on TM.
Taking into account (1.3), (1.4), it follows that

; 0
(1.5) C=y o7

is a vertical vector field on TM, which does not vanish on the manifold TM. It is
called the Liouville vector field. The existence of the Liouville vector field is very
important in the study of the geometry of the manifold TM.

Let us consider the F(TM)-linear mapping J : X(TM) — X(TM),

0 8 3 .

Theorem 1.1.1. The following properties hold:
1° J is globally defined on TM.
2° JoJ =0, ImJ=KerJ =V, rank||J|| = n.
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3 J is an integrable structure on E.
4 JC=0.
The proof can be found in [113)].

We say that J is the tangent structure on E.
The previous geometrical notions are useful in the next sections of this book.

1.2 Homogeneity

The notion of homogeneity of functions f € F(T'M) with respect to the variables
y* is necessary in our considerations because some fundamental object fields on E
have the homogeneous components.

In the osculator manifold Osc' M = T M, a point [p],, has a geometrical meaning,
i.e. changing of parametrization of the curve p : I — M does not change the space
[p]z,- Taking into account the affine transformations of parameter

(2.1) t=at+b tel, ac R
we obtain the transformation of coordinates of [p],, in the form
(2.2) =1 7 =ay’.

Therefore, the transformations of coordinates (1.3) on the manifold E preserve
the transformations (2.2).
Let us consider
H={h,:R—> R|a€R"},

the group of homoteties of real numbers field R.
H acts as an uniparameter group of transformations on E as follows

HXTM — TM, (he,u) = ho(u),

where @ = h,(u), a € R, is the point (z,%) = (z,ay), a € R*. Consequently, H
acts as a group of transformations on TM, with the preserving of the fibres.
The orbit of a point uy = (zg,y0) € E is given by

z' = xp,
y' =ayp, a € R.

The tangent vector to orbit in the point uy = h;(uo) is given by

(0
Cus = Y5 (6_yl> '
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This is the Liouville vector field € in the point up.
Now we can formulate:

Definition 1.2.1. A function f : TM — Rdifferentiableon TM and continuous
on the null section 0: M — TM is caled homogeneous of degree r, (r € Z) on the
fibres of TM, (briefly: r—homogeneous with respect to ) if:

(2.3) foh,=df, Va€ R".
The following Euler theorem holds [90], [106]:

Theorem 1.2.1. A function f € F(TM) differentiableon TM and continuous on
the null sections is homogeneous of degree r on the fibres of TM if and only if we
have

(2.4) Lef=rf,
L¢ being the Lie derivative with respect to the Liouville vector field C.

Remark. If we preserve Definition 1.2.1 and ask for f : TM — R to bedifferentia-
ble on TM (inclusive on the null section), then the property of 1-homogeneity of f
impliesthat f is alinear function in variables .

The equality (2.4) is equivalent to

, Of
(2.4) yéﬁ—rf.

The following properties hold:

1° fi, fo-r-homogeneous=-A; fi + A2 f2, A1, A2 € R is r-homogeneous,
2° fi-r-homogeneous, f, s-homogeneous=f) - f, is (r + s)-homogeneous,

3° f; r-homogeneous, f, #0 s-homogeneous=>% (r — s) homogeneous.
2

Definition 1.2.2. A vector field X € X(E) is r-homogeneous if
Xoh,=0a"'hioX, Ya € R".
It follows:

Theorem 1.2.2. A vector field X € X(TM) is r-homogeneous if and only if we
have

(2.5) LeX=(r-1)X.
Of course, L¢X = [C, X]is the Lie derivative of X with respect toC.

Consequently, we can prove:
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. 0 .
1° The vector fields %b? are 1 and O-homogeneous, respectively.
2° If f € F(TM) is shomogeneous and X € X(TM)is r-homogeneous then X
is s + r-homogeneous.

3 A vector field on TM:
9 9
X =x0— 4 xWi —
ozt * ayt
is r-homogeneous if and only if X are functions (r - 1)-homogeneous and
XM are functions r-homogeneous.

4 X € X(TM) is r-homogeneous and f € F(TM) is shomogeneous, then
XfeF(TM)isa(r+s — 1)-homogeneous function.

5° The Liouville vector field € is1-homogeneous.

6° If f € F(TM) is an arbitrary s-homogeneous function, then %’f; isa(s - 1)-
2
homogeneous function and 65" (';tyi is (s — 2)-homogeneous function.

In the case of g-form we can give:
Definition 1.2.3. A g-form w € AY(T'M) is shomogeneous if
woh! =a'w,Va e R".
It follows [106]:
Theorem 1.2.3. Ag-form we Aq(m) is sshomogeneous if and only if
(2.6) Low = sw.

Corollary 1.2.1. We have, [106]:
1° w e AYTM) s-homogeneous and w' € AY (TM) is s'-homogeneous =>wAw’
(s + s')-homogeneous.
2° w e AYTM) s-homogeneous, )1(, ..., X -r-homogeneous—>
q

w()l(, w0 X) 18 7+ (s — 1)-homogeneous.
q

3 dz (i =1,...,n) are 0-homogeneous 1-forms.
dy* (i =1,...,n) are 1-homogeneous 1-forms.
The applications of those properties in the geometry of Finsler space are num-
berless.
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1.3 Semisprays on the manifold TM

One of the most important notions in the geometry of tangent bundle is given in
the following definition:

Definition 1.3.1. A semispray S on TM is a vector field S € X(ﬁ/f) with the
property:

(3.1) JS =C.

If S is homogeneous, then S will be caled a spray. )
_ Of course, the notion of alocal semispray can be formulated taking S € X(U),
U being an open set in the manifold T'M.
Theorem 1.3.1.

1° A semispray S can be uniquely written in the form

; 0 ; d
(32) S = Y Oz -2G (x7 y)c')—yl
2° The set of functions G*(z,y), (i = 1, ..., n) are changed with respect to (1.3) as
follows:
. a oy .
i J
(3.3) G =2-G - =y

3 Ifthe set of functions G* are a priori given on every domain of a local chart
inTM, so that (3.3) holds, then Sfrom (3.2) is a semispray.

Proof. 1° If a vector field S = a*(z,y) 881 + b'(2,y) % is a semispray S, then
JS = Cimplies ¢* = ¢* and b(z,y) = —2G(z,y).
So that Gt are uniquely determined and (3.2) holds.

2° The formula (3.3) followsfrom (1.3), (1.4) and the fact that Sis a vector field

— ;0 ; o 0 iie o O
onTM,|.e.S_y%—ZG(ac,y)ayi—ya~ 2G(, )6~' |

3 Using the rule of transformation (3.3) of the set of functions G* it follows that

i 1 a o~ 6 (= o~ 6 i i 1ofi
S=y i 2G*(z, y)a =V am 2GH(Z, y)6~ is a vector field which satisfies
JS§=C. g.ed.

From the previous theorem, it results that Sis uniquely determined by G*(z,y)
and conversely. Because of this reason, G* are called the coefficients of the semispray
S
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Theorem 1.3.2. A semispmy S is a spray if and only if its coefficients G* are
2-homogeneous functions with respect to yt.

Proof. By means of 1° and 3° from the consequences of Theorem 2.2 it follows
that yi% is 2-homogeneous and 8%! is 0~homogeneous vector fields. Hence, Sis

2-homogeneous if and only if G* are 2-homogeneous functions with respect to .
The integral curves of the semispray S from (3.2) are given by
dz* _ . dyt

A = -
(34) a Y ar

= —2G'(z,y).
It follows that, on M, these curves are expressed as solutions of the following diffe-
rential equations

d*zt S dex

Thecurvesc: t € I — (2%(t)) C U C M, solutions of (3.5), are caled the paths of
the semispray S. The differential equation (3.5) has geometrical meaning. Con-
versaly, if the differential equation (3.5) is given on a domain of a loca chart U

of the manifold M, and this equation is preserved by the transformations of local

coordinates on M, thencoefficients G*(z,y), (y" = %ﬁ—) obey the transformations

(8.3). Hence G*(z,y) are the coefficients of a semispray. Consequently:

Theorem 1.3.3. A semispray S on TM, with the coefficients G*(x, y) is characte-
rized by a system of differential equations (3.5), which has a geometrical meaning.

Now, we are able to prove

Theorem 1.3.4. If the base manifold M is paracompact, then on 7'M there exist
semisprays.

Proof. M being paracompact, there is a Riemannian metric g on M. Consider
v';k(x) the Christoffel symbols of g. Then the s&t of functions

) -1 )
(%) G'(z,y) = 2 72jk(z)y]yk

is transformed, by means of a transformation (1.3), like in formula (3.3). Theorem
131 may be applied. It follows that the set of functions G* are the coefficients of a
semispray S. g.ed.
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Remarks.
8= y’g% - QG"%imray, where G'(z,y) = % 7' je(z)y’y*, whose differen-
tial equations (3.5) are
d*rt dr’ dz*
oz T a@) g — =0

dt?

So the paths of S in the canonical parametrization are the geodesies of the
Riemann space (M, g).

2 %g]_ = v';x(2)y* is a remarkable geometrical object field on 7M (caled non-
linear connection).

Finally, in this section, taking into account the previous remark, we consider the
functions determined by a semispray S

. G

Using the rule of transformation (3.3) of the coefficients G* we can prove, without
difficulties:

Theorem 1.3.5. If Gi(z,y) are the coefficients of a semispray S then the set of
functions N*;(z,y) from (3.6) has the following rule of transformationwith respect
to (1.3):

(3.7) N ym 0T 05

o5 =N o

In the next section we shall prove that N*; are the coefficients of a nonlinear
connection on the manifold E = TM.

1.4 Nonlinear connections

The notion of nonlinear connection on the manifold E = TM is essentially for study
the geometry of TM. It is fundamental in the geometry of Finder and Lagrange
spaces [113].

Our approach will be two folded:

1° Asasplitting in the exact sequence (4.1).

2° As aderivate notion from that of semispray.
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Let us consider as previous the tangent bundle (TM, 7,M) of the manifold M.
It will be written in the form (E, =, M) with E = TM. The tangent bundle of the
manifold E is (TE, =", E), where «' is the tangent mapping of the projection =.
As we know the kernel of 7' is the vertical subbundle (VE, 7wy, E). lts fibres are
the linear vertical spaces V,F, u € E.

A tangent vector vector field on E can be represented in the local natural frame

o 0
(517’61;1') on E by

. 0 : 0
X = Xz(z"y)é;; + Yl(x’y)b?

It can be written in the form X = (z%, 4, X*,Y?) or, shorter, X = (z,y, X,Y). The
mapping 7" : TE — E has the local form
7rT(x, v, X, Y)=(z,¥)

The points of submanifold VE are of the form (X, y, O, Y). Hence, the fibres V,E of
the vertical bundle are isomorphic to the real vector space R™.
Let us consider the pullback bundle

' E = E Xy E={(u,v) € ExE | m(u) = w(v)}.

The fibres of #*E, i.e., 7 F are isomorphic to T,,gu)M. We can vdefine the following
morphism of vector bundles #! : TE — w*E, w!(X,) = (u, 7] (X,). It follows that

Ker7! = Kern' = VE.

By means of these considerations one proves without difficulties that the following
sequence is exact:

(4.1) 0—VE 5TE 2 1*E — 0
Now, we can give:

Definition 1.4.1. A nonlinear connection on the manifold E = TM is a left
splitting of the exact sequence (4.1).

Therefore, a nonlinear connection on E is a vector bundle morphism C : TE —
VE, with the property C oi = 1yg.

The kernel of the morphism C is a vector subbundle of the tangent bundle
(TE, ", E), denoted by (HE,myg, E) and caled the horizontal subbundle. Its
fibres H,E determine a distributionw € £ - H,E C T,E, supplementary to the
vertical distribution v € £ — V,E C T,E. Therefore, a nonlinear connection N
induces the following Whitney sum:

(4.2) TE=HE®VE.
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The reciprocal property holds [112]. So we can formulate:

Theorem 1.4.1. A nonlinear connection N on E = TM is characterized by the
existence of a subbundle (HE, 7y g, E) of tangent bundle of E such that the Whitney
sum (4.2) holds.

Consequences.

1° A nonlinear connection N on E is a distribution H : v € ¥ - H,F C T,E
with the property

(4.2) T.E=HE®V,E, Yu€E,
and conversdly.

2° The restriction of the morphism =!:TFE — #*E to the HE is an isomorphism
of vector bundles.

3° The component =" : HE — E of the mapping 7! is a morphism of vector bun-
dles whose restrictions to fibres are isomorphisms. Hence for any vector field X
on M there exists an horizontal vector field X# on E such that #7(Xf) = X
is caled the horizontal lift of the vector field X on M.

Using the inverse of the isomorphism =|,,, we can define the morphism of vector
bundles D : 7*E — TE, such that 7! o D = id|,.,. In other words, D is aright
splitting of the exact sequence (4.1). One can easy see that the bundle Im D coincides
with the horizontal subbundle HE. The tangent bundle TE will decompose as
Whitney sum of horizontal and vertical subbundle. We can define now the mor-
phism C : TE — V'E on fibres as being the identity on vertical vectors and zero
on the horizontal vectors. It follows that C is a left splitting of the exact sequence
(4.1). Moreover, the mapping C and D satisfy the relation:

ioC+ Dor! =lidrg.
S0, we have

Theorem 1.4.2. A nonlinear connection on the tangent bundle £ = (T M, n, M) is
characterized by a right splitting of the exact sequence (4.1), D : n*E — TE, such
that 7! o D =id|,.

The st of isomorphisms r,, : V,E — T, E, u € E defines acanonica isomorphism
r between the vertical subbundle and the vector bundle 7n*E.

Definition 1.4.2. The map K : TE — E, givenby K = p,or o C is caled the
connection map associated to the nonlinear connection C, where p, is the projection
on the second factor of 7*E.
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It follows that the connection map K is a morphism of vector bundles, whose
kernel is the horizontal bundle HE. In genera, the map K is not linear on the fibres

of (E m, M).
The local representation of the mapping K is
(4.3) K(z,y,X,Y) = (z, Y7 + N (2,9) X")

Let us consider a nonlinear connection determined by C and K the connection map
associated to C, with the local expression given by (4.3). Taking into account (4.3)
and the definition of C, we get the local expression of the nonlinear connection:

(4.3) C(z,y,X,Y) = (z,y,0, Y7 + Nf(x,y)Xi).

The differential functions (N/(z,y)), i,7 € {1,2,..,n} defined on the domain of
local charts on E are called the coefficients of the nonlinear connection. These
functions characterize a nonlinear connection in the tangent bundle.

Proposition 1.4.1. To give a nonlinear connection in the tangent bundle (TM, 7, M)
is equivalent to give a set of real functions (N}(z,y)), 4,7 €{1,2,..,n}, on every coor-
dinate neighbourhood of TM, which on the intersection of coordinate neighbourhoods
satisfies the following transformation rule:

=08 oz . 0%%

.4 V = - z — =~ i.
(4.4) ! tozk O ¢ orkor y

Proof. The formulae (4.4) are equivalent with the second components Y7 +N (z, y) X
of the connection map K from (4.3) under the overlap charts are changed as follows

. . 7 .
V4 M, 0)X = S5 (v + NE ) X).
Applying Theorem 1.3.5 we get:

Theorem 1.4.3. A semispray S on TM, with the coefficients Gi(z,y) determines
Oy
Conversely, if N} are the coefficients of a nonlinear connection N, then

(4.5) Gi(z,y) = Nj(z,y)y’

are the coefficients of a semispray on TM.

The nonlinear connection N, determined by the morphism C is called homoge-
neousand linear if the connection map K associated to C has this property, respec-
tively.

a nonlinear connection N with the coefficients N} =
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Taking into account (4.3) and the local expression of the mapping = ' it follows
that N is homogeneous iff its coefficients V}(x,y) are homogeneous.
Exactly as in Theorem 1.3.4, we can prove:

Theorem 1.4.4. If the manifold M is pracompact, then there exists nonlinear
connectionson T' M.

1.5 The structures P, IF

Now, let i, : T,M — TM be the inclusion and for v € T, M consider the usual
identification k, : w € T,M — u € T,,(T,M). We obtain a natural isomorphism

& =iy 0 ku : TeyM = V,TM

called the vertical lift

i -0 .
In local coordinates, for any z = Zlé; € TrwM it follows

0(z) = zig%-
The canonical isomorphism = : VTM — #*TM is the inverse of the isomorphism
j: ™TM — VTM defined by j(z1,22) = £ (), 21,22 € TM, n(21) = 7(2).
Explicitely, we have

T(X") = (ur (EZ)—l(Xu)), ueTM, X, e V,TM.

Consequently, we candefine F(TM)-linear mappingJ : X(TM) - X(TM) by

(5.1) Ju = 1y 0 ju o Tl (u).

Proposition 1.5.1.
1° The mapping (5.1) is the tangent structure J investigated in §1.

2° In the natural basis J is given by

9 i
J= B_y’ ® dxt.

In the same manner we can introduce the notion of almost product structure IP
on TM.

Based on the fact that direct decomposition (4.2)' holds when a nonlinear con-
nection N is given, we consider the vertical projector v : X(TM) — X(TM) defined
by

v(X)=C(X), VX e X(VTM), V(X)=0,VX € X(HTM).
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Of course, we have v? = v. The projector v coincides with the mapping C considered
as morphism between modules of sections. So, N is characterized by a vertical
projector v.

On the same way, a nonlinear connection on TM is characterized by a F(TM)-
linear mapping h : X{TM — X (T M) for which:

h* = h, Kerh= X(VTM).

The mapping h is called the horizontal projector determined by a nonlinear connec-
tion N.

We have h+ v = 1.

Finaly, any vector field X € X(TM) can be uniquely written as follows X =
hX + vX. In the following we adopt the notations

RX = X" X =XV

and we say X ¥ is a horizontal component of vector field X, but XV is the vertical
component.
So, any X € X(T M) can be uniquely written in the form

(5.2) X=Xx"+x"

Theorem 1.5.1. A nonlinear connection N in the vector bundle (TM, 7, M) is
characterized by an almost product structure IP on the manifold TM whose distri-
bution of eigenspaces corresponding to the eigenvalue —1 coincides to the vertical
distribution on TM.

Proof. Given a nonlinear connection N, we consider the vertical projector v deter-
mined by N and set IP = I — 2v. Itfollows IP? = I. Hence IP is an almost product
structure on TM. We have

(%) P(X)=-X, VX € X(VTM).

Conversely, if an almost product structure IP on TM is given, and IP has the pro-

perty (*), weset v := %(I—IP). It results that v is a vertical projector and therefore

it determines anonlinear connection N.
The following relations hold:

(5.3) P=2h-], P=h—v, P=1-2v

Taking into account the properties of the tangent structure J and amost product
structure IP we obtain

(5.4) JP =J, PJ=-J.
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Let us consider the horizontal lift determined by a nonlinear connection aN
with the local coefficients Ni(z,y). Denote the horizontal lift of vector fields a5

. or
(i=1,.,n), by

& _ (2"

szt~ \ozt)

Remark that «! : HTM — #n*TM is an isomorphism of vector bundle. Then
the horizontal lift induced by N isjust the inverse map of =! restricted to HTM.
According to (4.3)' we have

6 0
6z' Ozt

; g
(5.5) - N(z, y)m’

where N*; are the coefficients of the nonlinear connection N.

Locdly, if X = Xi(x)a—i—i, then X# = X (8(11' —NZ(x,y)a%j). Moreover,

<3;> » (i =1,..,n), is alocal basis in the horizontal distribution HTM.

6 9
8zt Qyi
to the horizontal distribution HTM and vertical distri(ts)ution VTM.

Let (dz*, 8y') the dual basis of the adapted basis ( ) . Itfollows

Conseguently, it follows that » (i=1,..,n), is alocal basis adapted

ozt 0yt
(5.6) Syt = dy' + N}(x,y)dxj.

Proposition 1.5.2. The local adapted basis (561 61) and its dual (dzt, 63*) trans-

form, under a transformation of coordinate (1.3) on TM, by
~J‘ ~a . vt }
d o & 4 oW a,dﬂ:g_x_d] ﬂzaiéy

67 T oy e P ow e

Indeed, the second formula is known from (1.4). The first one is a consequence

§ a\"
of the formula — i (%) .

For the operators h, v,IP we get:

) 1) a 0
h(@)*ﬁsh( > 0“( ) <y>—£

) ) )
“’(rxz)—a—;’“’(ay)*a—

(5.8)
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Now, let us consider the F(TM)-inear mapping F : X(TM) — X(TM), defined
by

] 0 0 d
(59) ¥ (E) = _Eﬁ’ F (5;) = ‘6}—1,7 (?. = 1, ...,n).

Theorem 1.5.2. The mapping I hasthe properties:

1° ¥ is globally defined on the manifold TM.
2° IF is a tensor field of (1,1) type on TM. Locally it is given by

o) ;6 ;
(5.10) IF_~a—yi®dz +E®(5y.

3 T is an almost complex structure on TM:

(5.11) FoF = -1

Proof. Since (5.9) and (5.10) are equivalent, it follows from (5.10) that It isglobally
defined on TM. From (5.9) we deduce (5.11). g.ed.

By a straightforward calculation we deduce:

Lemma 1.5.1. Lie brackets of the vector fields from adapted basis (5%1, 8.) are

oyt
given by
5§ 4 ;0 § 9] ONy 0 o 0|

(5-12) [E’@}—R’ka*yi’ [a_ﬁ’ayk]‘ ay* ay* [ayj’ayk]”o’
where

i ONY; AN
(5.13) R = s 507

Let us consider the quantities

; _ ON'; 0N

(6.14) ik = 5 oy

Also, by adirect calculation, we obtain:
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Lemma 1.5.2. Under a transformation of coordinates (1.3) on TM, we obtain

07t 90z° Ox*
Or" 0% Ok

i 0F Or* OzF
t]k(z y) azr 8.'!:] a~k tsp(mv y)

R}k(~ 17) Rrsp(x y)

(5.15)

Consequently, the tensorial equations R'j, = 0, t';; = 0 have geometrical mean-
ing.
Therefore, we get:

Lemma 1.5.3. The horizontal distribution HTM is integrable if and only if we
have on TM:

Rijk(x; y) =0.

Indeed, from (5.12), the Lie brackets ldéf 56kJ give an horizontal vector fields

if and only if R, = 0.

The previous property alows to say that R‘j is the curvature tensor field of
the nonlinear connection N. We will say that ¢';, from (5.14) is the torsion of the
nonlinear connection N.

Now, we can prove:

Theorem 1.5.3. The almost complex structure IF is integrable if and only if we
have

(5.16) R, =0, thy =0.

Proof. Applying Lemma 151, and taking into account the Nijenhuis tensor field
of the structure IF [113]:

Ne(X,Y) = —[X,Y] + [FX,FY| - F[FX,Y] - F[X,FY],

putting X = 5 ,X éa—] etc., we deduce

5 6 - P
Ne (515x’°> Bib gy — ik 5
5 0 .6 G
o (e = P i O o
g o0 0 ]
N (6y1 ay ) RJk 0 i t]k E
Now it follows that Mp = 0 <= {R'jx = t'jx = 0}. g.ed.
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1.6 d-tensor Algebra

Let N be a nonlinear connection on the manifold E=TM. We have the direct
decomposition (4.2)'. We can write, uniquely a vector field X € X(TM) in the form

(6.1) X=Xx"4+XxV
where X belongs to the horizontal distribution HTM.

Taking the adapted basis ( 6.9 ) to the direct decomposition (4.2)' we can

ozt Ayt
write:
é . 0
' H _ vy -, V _ yi -

With respect to (1.3) the components X’(z,y) and X*(z,y) of X¥ and X" respec-
tively obey the rules of transformation

ozt . . 01
= 5 X‘], Xt = -
oz’ oz’

Also, a 1-form field w € X*(E) can be aways s&t as follows

X0,

(6.1)" X

(6.2) w=w4+u",

where w#(X) = w(X¥), wV(X) = w(XVY), VX € X(E).
Therefore in the adapted cobasis (dz*, dy*)wehave :

| %

6.2)" wh = wj(z,y)dr?, w¥ = @iz, y)oy’.

The changes of local coordinate on TM transform the components w; (X, ), w;(X,Y)
of the 1-form w as the components of 1-forms on the base manifold M, i.e.:

ozt ozt ~
" . _ AT Y . = —— AT
(62) w](:v,y) - 8.’1,‘j w,(z,y), wj(z,y) - B.’I)J wl(xvy)‘
: . d o

Acurve c:t € I — (2'(t),y'(t)) € E, has the tangent vector d—: = ¢ given in the
form (6.1), hence:
. dz* § oyt 0
. H \"4 _ Y 2y~
(6.3) E=THe = et oy
This is a horizontal curve if 0 _ 0, Vt € I. So, ifthefunctions z¢ = zi(t), t € I

are given, then the curves y* = y'(t), t € I, solutions of the system of differential

i . J
equations % + N’,-(azc,y)di = (0, determine a horizontal curve c in E = TM.

dt
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. . . dxt . .
A horizontal curve ¢ with the property y* = d—i is said to be an autoparallel
curve of the nonlinear connection N.

Proposition 1.6.1. An autoparallel curve of the nonlinear connection N, with the
coefficients N';(z,y), is characterized by the system of differential equations
dz? drt

dy )
4 — + N? — =0, — =1
(64) dt + N(2,v) dt 0, dt y

Now we study shortly the algebra of the distinguished tensor fields on the ma-
nifold TM =E.

Definition 1.6.1. A tensor field T of type (r, s) on the manifold E is called distin-
guished tensor field (briefly, a d-tensor) if it has the property

T(w, ...,cf;,)l(, o X) =TWH, ...,ZDV,)1<H, W XY,

.9
(6.5) V‘&J € X*(E), V)b( e X(E), (a=1,..,m; b=1,..,8).

For instance, the components X# and XV from (6.1) of a vector field X are
d-tensor fields. Also the components w? and w" of an 1-form w, from (6.2) are
d-I-form fields.

Clearly, the set 7, (E) of the d-tensor fields of type (r, s) is a F{F)-module and
the module 7(E) = @7, is a tensor algebra. It is not difficult to see that any

T,8

tensor field on E can be written as a sum of d-tensor fields.

We express a d-tensor field T from (6.5) in the adapted basis (—66—1 561> and

adapted cobasis (dz?, dy*). From (6.5) we get the components of T:

g i in 4] J . L e
(65)/ 7"‘;11 i (x’y) =T (dx 1, ,(Sy s m, . ,5y7> ) (ll, N TN 1,n)
So, Tis expressed by
6 T = Thoie (3, )= O odsh @ @ 5y
(6.6) T T,y V5 ® B 5 ® dz - ® Sy

Taking into account the formulae (5.7) and (6.5)', we obtain:

Proposition 1.6.2. With respect to (1.5) the components T}, ;; (z,y) of a d-tensor
fidd T of type (r, s) are transformed by the rules:

oz 9zt 8zk  ozb o,

FETRN o - P

(6.7) TinEg =

Tt s
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But (6.7) is just the classical law of transformation of the local coefficients of a
tensor field on the base manifold M.

Of course, (6.7) characterizes the d-tensor fields of type (r, s) on the manifold
E = TM (up to the choice of the basis from (6.6)). Using the local expression (6.6)
§ 0
algebra 7 over the ring of functions F(E) Taking into account Lemma 1.5.2 it
follows:

of a d-tensor field it follows that {1, i =1, ..., n), generate the d-tensor

Proposition 1.6.3.
1° R and ', from (5.12), (5.13) are d-tensor fields of type (1,2).

2° The Liouwville vector field C = y’a%i is a d-vector field.

1.7 N4dinear connections

Let N be an apriori given nonlinear connection on the manifold E = TM.

The adapted basisto N and Vis (5%’6%) and adapted cobasis is its dual
(dz*, 6y*).

Definition 1.7.1. A linear connection D (i.e. a Kozul connection or covariant
derivative) on the manifold E = TM is called an N-inear connection if:
1° D preserves by parallelism the horizontal distribution N.

2° The tangent structure Jis absolute parallel with respect to D, that isDJ = 0.

Conseguently, the following properties hold:

(7.1) (DxYH)V =0, (DxYV)# =0,
(71)’ Dx(JYH) = J(DxYH)', Dx(JYV) = J(DxYV),
(7.1)" Dxh =0, Dxv =0.

We will denote
(7.2) DY = DynY, DY = DyvY.
Thus, we obtain the following expression of D:

(7.3) Dx =D¥ +DY%, VX € X(E).
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The operators D¥ and DY are specia derivations in the algebra 7 of d-tensor fields
on E. Ofcourse, D, DV are not covariant derivations, because DEf = X#f # X f,
DYf = XVf # Xf. However the operators D¥ and DY have similar properties
to D. For instance, D¥ and DV satisfy the Leibniz rule with respect of tensorial
product of d-tensor fields. It is important to remark that D¥ and DY applied to
d-tensor fields give us the d-tensor fields, too. We can see these important properties

on the local representtion of D¥ and DV in the adapted basis (3%’8%1) . D¥ and
DY will be called the h-covariant derivation and v-covariant derivation, respectively.
Remarkingthat D = = D% %,De = = DV, Ys_, Weobtain:

bzt BV' 8y'

Proposition 1.7.1. In the adapted basis ( 9.9

75 1), an N-linear connection D

can be uniquely represented in the form:

) ] o}
H L2 pr 9 _ ’
(7.4) 52k 027 L’k(z’y)dxi Dﬁr Oyl L’k(z’y)a i
’ ) - ) 0 I3}
V. (", , \4 — =, .
Dﬁré C'ir(z,y) 5 D# B9 Clixlz,y) o7

The system of functions DT'(N) = (L*jx(z, y), C*jx(z, y)) gives us the coefficients
of the h-covariant derivative D¥ and of the v-covariant derivative DV, respectively.

Proposition 1.7.2. With respect to the changes of local coordinates on TM, the

coefficients L*jx(z,y), Cijx(z,y) of an NHinear connection D are transformed as
follows:

Bz ozt 0z Oz" 0% 0%a”
(7.5) #(®9) = 5 55 a7 Vot ow s
' % (- OF Oz* Oz
@ 9) = 55 55 5 C

Indeed, the formulae (7.4) and (5.7) imply the rules transformation (7.5).

Remarks.
1° C'(z,y) are the coordinates of a d-tensor field.
2° A reciprocal property of that expressed in the last proposition aso holds.

Let us now consider a d-tensor field T in local adapted basis, given for simplicity
by

; 0
— Jms
=T ozt Oy®
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) Y
Its covariant derivative with respect to X = X¥ + XV = X — o= +Y? e is given
by
7.6 DxT = [ X" yeris ) 2 9 dz’ ® 6y
(7.6) x1 = e + shle) § ®a—ys®x®y,
H T Y a ] h
where we have the h—covariant derivative, DxT = X JMTa ® 55 ® dz’ ® éy".
i ys
Its coefficients are
: 8T . )
(7.7) e = 5t LT + LT — L5 T3 — i, T3
Therefore, " is the operator of h-covariant derivative. Of course, TJ’;"LIT is ad-tensor
field with one more index of a covariance. 5 5
The v-covariant derivative of T is D¥7T = Y‘T”le 3 ® 3 ® dr’ ® dy", and
xl 8
the coefficients T;f;} ,ae s follows:
18 a ;'sl ls il { is 74
(7.8) Tjh|, = B +CyTih + C Ty, — €1, Th = C Ty

Herewe denoted by ”|” the operator of v-covariant derivative and remark that T;'er

is a d-tensor field with one more index of a covariance.
The operators ”y* and ”|” have the known properties of a general covariant

derivatives, applied to any d-tensor field T, taking into account the facts: % = fii,
a .
—f; = f]i for any function f € F(E).

An important application can be done for the Liouville vector field C = y'— Ew -
The following d-tensor fields

(7.9) DY =Y, &' = y'l;

are called the h- and v-deflection tensor fields of the N-linear connection D.
Proposition 1.7.3. The deflection tensor fields are given by

(7.9y Dl =y'Liy; — NYj, &5 =8 +y°C';.

Indeed, applying the formulae (7.7), (7.8) we get the equalities (7.9)'".
The d-tensor of deflections are important in the geometry of tangent bundle.
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A N-inear connection D is caled of Cartan type if its tensor of deflection have
the property: . ' ‘
Dzj = 0, dtj = 61j.

From the last proposition, it follows

Proposition 1.7.4 The N-inear connection DI'(N) = (L%, C%j) is of Cartan
type if and only if we have

(710) Nij = ysLisjv yscisj =0.

We will see that the canonical metrical connection in a Fingler space is of Cartan

type.
We can prove [113]:

Theorem 1.7.1. If M is a paracompact manifold then there exist N-linear connec-
tions on TM.

1.8 Tordon and curvature
The torsion of a N-inear connection d is given by
(8.1) T(X,Y)=DxY — DyX - [X,Y], X,Y € X(TM).

Using the projectors, h, and v associated to the horizontal distribution N and to
the vertical distribution V, we find

TX,Y)=TX?,vH) + T(X7 VYY) + T(XY, vH) + T(XV, YY)

Taking into account the property of skew-symmetry of T and thefact that [XV,YV|# =
0 we find

Theorem 1.8.1. The torsion T of an NHinear connection is completely determined
by the following d-tensor fields:

WI(XH,YH) = DEYH — DEXH _ (XH yH]H
UT(XHa YH) = —[XH7 YH]V’
(8.2) RTT(XH YV)=-DYXH — [XH YV]|H

VIN(XH YY) = DEYV — [XH YY)V,
vT(XY, YY) = DYYY - DYXV — [XV, YY), XY € X(TM).
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Corollary 1.8.1. The following properties hold:

a) vIN(XH#,YH)=0<«<= HTM is an integrable distribution.

b) KTT(XH, YY) =0 <= vDEY" = [ X", YY)V, X,Y € X(TM).

Weshall say that hT'(X#, Y #) ish(hh)-torsion of D, thatvT(X#, Y #) isv(hh)—
torsion, etc.

Since the Lie brackets of the vector field from the adapted basis are given by the
formula (5.12), we obtain

Theorem 1.8.2. The local components, in the adapted bass{ d —2}, of the

szt Oy
torsionT of an N-inear connection are as follows:
Tijn = L'y — L'y, Rijn, Clip,

(8.3) N’

Pijp = E Liny S'n = C'jp — C'rj

Proof. These local coefficients are provided by the five formulae (8.2) if we consider
instead of X and Y the components of the adapted basis ( 661 3(?/ )
The curvature of a N-linear connection D is given by

(8.4) R(X,Y)Z = DxDyZ — DyDxZ ~ Dixv)Z, VX,Y,Z € X(TM).
It is not difficult to prove the following theorems:

Theorem 1.8.3. The curvature tensor IR of the N-inear connection D has the
properties:
55) vIR(X,Y)ZH =0, hIR(X,Y)ZV =0,

) R(X,Y)Z = hR(X,Y)Z" + vIR(X,Y)ZY, VX,Y,Z € X(TM).

Theorem 1.8.4. The curvature of an N-linear connection D on TM is completely
determined by the following three d-tensor fields:
R(XH",YH)Z" = DYDY Z" — DYDY ZY — Dlyu yn)Z" — Dl ymZ7,
(8.6) R(XV,YH)zH = DYD#zH - DEDYZH — [’,’{V ,,H]Z” ~ D[‘;(v,yH]ZH,
R(XY,YV)ZH = DYDY z" - DYDYz — Dlyv yv,2".
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Remark. Thecurvature IR hassix components. But the property J(R(X,Y)ZH) =
R(X,Y)ZV shows that only three components, namely the one in (8.6) are essential.
In the adapted basis, the local coefficients of the d-tensors of curvature are given

S 0N _pi 6
gk 827 | bgh — TR Ik gL
0 ¢ 4] ; O
(87) R <8_’yk,$) m = Ph jk(s—.’;‘:,
o0 0 é ; 0
s (%a—y') b M
Now, using Proposition 1.7.1, we obtain:

Theorem 1.8.5. In the adapted basis the d-tensors of curvature R'jc, Py'jx and
Skik of an N-inear connection DT(N) = (Lf;;, C%;) are asfollows:

0Ly, 6Ly,

Bi'ye = 52 = 28 + L Lok = Lo + ChmB 7k,
oLy .
(8.8) Pyl = a—y’il = Chaij + CamP™ i,

aC;; oLk,

*T ok oyd
where | denotes, as usual, the h-covariant derivative with respect to the N-linear
connection DT'(N) = (L%, C*jx).

m Vi m i
+ Cr;Cmi — CikCrj»

The expressions (8.6) of the d-tensors of curvatureR(X®, YH)Z® R(XV,YH)zZH
and R(XY,YV)Z¥ in the adapted basis lead to the Ricci identities satisfied by an
N-linear connection D.

Propostion 1.8.1. The Ricci identities of the N-inear connection
DT(N) = (L, Clyx) are

Xiiuin = X'tk = X" Bn'en = XimT™en ~ X'\ R,
(8.9) X = X = X™Pr'en = XimC™en — X*| P,
Xilklh - Xi]hlk = X"Sm'en — Xilmsmkh,
where X* is an arbitrary d-vector field.

The Ricci identities for an arbitrary d-tensor field hold aso.
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For instance if gij(x,y) is a d-tensor field, then the following formulae of the
commutation of second h- and v-covariant derivative hold:

Gizikih — Gijinlk = —9si Bi’kn — 9isRi"kn — Gijs TP kn — 9,-]-|3R’kh,
(8.10) istkln ~ Tiglne = —95iFi’kn — GisF3°kn — 9ijisCkn — 9ij|s ¥ kens
Gisleln ~ Jijlnle = —9s55:"kh — GisSj kh — gij|353kh-
Applying the Ricci identities(8.9) to the Liouville vector field C = ylgy—l. we

deduce some fundamental identities in the theory of N-inear connections. Taking
into account the h- and v-deflection tensors Dt; = ' ;, d*; = yi‘j we have from (8.9):

Theorem 1.8.6. For any N-linear connection DT'(N) = (L', C'j) the following
identities hold:

Diklh - Dihlk = ysRsikh - DisTskh — d'sRkp,
(8.11) Dy, = dine = Y*Pilkn = D'sCokn — d's Py,
diklh - dih|k = yssalkh - dissskh'

Corollary 1.8.2. If DI'(N)is an N-inear connection of Cartan type, then the
following relations hold:

(8.12) YV Ri'vh = Rk, V' Pien = Pirn, ¥°Se'kn = S'kne

“The d-torsions and d-curvature tensors of an N-inear connection DI'(N) =
(L*;x, Ct) are not independent. They satisfy the Bianchi identities[113], obtained
by writting in the adapted basis the following Bianchi identities, verified by the
linear connection D:

ZIDXT(Y, Z2) - R(X,Y)Z + T(T(X,Y), Z)] =0,

(8.13) T(DxR)(U,Y, Z) + R(T(X,Y), Z)U] =0,

where ¥ means the cyclic sum over X, Y, Z

1.9 Parallelism. Structure equations

Consider an N-linear connection D with the coefficients DI'(N) = (L'}, Cij) in

. § 9
the adapted basis (J—:ﬂ’ay'> .
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If cis a parametrized curve in the manifold TM, c:iteI—c(t) = (z(t), ¥'(t)) €T M,

with the property Ime C #~1(U) € TM,then its tangent vector field ¢ = d—: can

be written in the form (6.3), i.e.
fdii ) syt 0

dt o7 | dt oy

(9.1) é=cl ¢ =

. . . Oy - :
The curve c is horizontal if fiyt_ = 0 and it is an autoparallel curve of the nonlinear

connection N if o _ 0,y = @
dt dt
We denote
DX X

DX . . . . . .
Here e is the covariant differential along with the curve c of the N-inear con-
nection D.

Setting X = X# + XV, XH = X*i, XV =X iWehave

ozt oyt

DX DXx¥ DXV , dzf A )
o @ T Ta {X"‘WJ"X“ }6$’+
(9.3) k k
+ Xi éz_ + X1| (5i i
kg K dt [ By
Let us consider
(94) (.Uij = Lijkdl‘k + Ci]-kéyk.
The objects w'; are called the " 1-forms connection” of D.
Then the equation (9.3) takes the form:
DX _[dX' _,u'n) 6, fdX* | L,w'ta) @
9:9) dt _{WJrX —}6a;i+{dt +X }ay

The vector X on TM is said to be parallel along with the curve ¢, with respect to

N-inear connection D if —D&t{ = 0. A glance a (9.3) shows that the last equation

DX® DXV
dt dt

is equivalent to
result:

= 0. Using the formula (9.5) we find the following

Proposition 1.9.1. The vector field X = X‘ +X‘5ay—l from X (T M) is parallel

along the parametrized curve c in TM, Wlth respect to the N-linear connection
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DU(N) = (L, C*) if and only if its coefficients X#(x(t), y(t)) and X*(z(t), y(t))
are solutions of the linear system of differential equations
dz*

L+ 2na(),y) i) _

A theorem of existence and uniqueness for the paralld vector fields aong with a
curve ¢ on the manifold TM can be formulated.

A horizontal path of an N-linear connection D on TM is a horizontal parametrized
curve c: I — TM with the property D¢ = 0. 4

Using (9.1) and (9.5), with X* = %, Xt = (Sdit = 0 we obtain the following
theorem:

Theorem 1.9.1. The horizontal paths of an N-linear connection DT'(N) = (L*jx, C* )
are characterized by the system of differential equations:

o'
dt

d’zt dz? dz* dy*
(9.6) — +L jk(ﬂ?,y)‘d—t— T 0, o

=0.
dt?

+ N'j(z,y)

Now we can consider a curve c2, in thefibre T, M = 7~ !(zq). It can be repre-
sented by the equations
o =ab, ¥ =yi(t), tel
The above ¢} is called a vertical curve of TM in the point zo € M.
A vertical curve ¢y is called a vertical path with respect to the N-linear connec-
tion D if Dc'goégo =0.
Again the formulae (9.1), (9.5) lead to:

Theorem 1.9.2. The vertical paths in the point o € M, with respect to the N-inear
connection DI(N) = (L%, C;) are characterized by the system of differential e-
quations

d2yi

(97) .’L'i = iEi + C’ijk(flio,y)

dy? dy*
O g2

dt dt

Obvioudy, the locd existence and uniqueness of horizontal paths are assured if
the initial conditions for (9.6) are given. The same consideration can be made for
vertical paths, (9.7).

Considering the 1-form of connection w*; from (9.4) and the exterior differential
of the 1-forms from the adapted dual basis (dz*, dy*) we can determine the structure
equations of a NHinear connection D on the manifold TM.
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Lemma 1.9.1. Theexterior differentialsof 1-forms &y’ = dy* + Ni;dz? are given
by

(9.8) déyt = §R’jmd:r"‘/\d.'t] + B';mdy™ Ada?
where
: ON‘;
9.8)" B, = 9V
( ) J 6ym

Indeed, a straightforward calculus on the exterior differential ddy* leads to (9.8).

Remark. Bt;,, from (9.8)" are the h-coefficients of an N-inear connection, caled
the Berwald connection.

Lemma 1.9.2. With respect to a changing of local coordinate on TM, the following

2-forms . A
d(dz*) — dz™Aw'y,

d(by’) — dy™Aw'r,
are transformed like a d-vector field and the 2-forms
dw'; ~ W™ Aw'n
are transformed like a d-tensor field of type (1,1).
Indeed, taking into account Lemma 1.9.1 and the expression of 1-forms of con-

nection w*; the previous lemma can be proved.
Now, we can formulate the result:

Theorem 1.9.3. The structure equations of an N-linear connection DI'(N) =
(L*jx, C%) on the manifold TM are given by

. ) {0)
d{dz*) — dx™ Aty = — Q°

. . (1)
(9.9) d(dy*) — dy™Awr, = =

i, am, i _ (O
dw'; — W™ iAWy, = —{V;

(0) . (1), .
where ©* and Q* are the 2-forms of torsion

S S T i dAask
0= iTjkd.Z‘ Adz" + C jkd.’ll /\(Sy

(1)

(9.10)
1 ) . . 1 ;
Qf = 2 Rijda? Ada® + Pluda? Aoy* + 5 §'56y’ Ady*
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and the 2-forms of curvature 2; are expressed by

) 1. ) 1.
(9.11) 2= S epdz Adz? + Pjigpdat AGY™ + 55;,6,,53,’%53,".

Proof. By means of Lemma 1.9.2, the general structure equations of a linear con-
nection on TM are particularized for an N-linear connection D in the form (9.9).
Using 1-forms connection w'; from (9.4) and the formula (9.8), we can calculate,

Q 1
without difficulties, the 2-forms of torsion (Q)", (Q)i and the 2-forms of curvature Q'
obtaining the expressions (9.10) and (9.11).
The geometrical theory on the manifold TM of tangent bundle will be used in
next chapters for studying the geometries of Finder and Lagrange spaces.



Chapter 2

Finsler gpaces

The notion of general metric space appeared for the first time in the disertation of
B. Riemann in 1854. After sixty five years, P. Finder in his Ph.D. thesis introduced
the concept of general metric function, which can be studied by means of variational
calculus. Later, L. Berwald, JL. Synge and E. Cartan precisely gave the correct
definition of a Finsler space.

During eighty years, famous geometers studied the Finder geometry in connec-
tion with variational problem, geometrical theory of tangent bundle and for its
applications in Mechanics, Physics or Biology. In the last 40 years, some remarkable
books on Finsler geometry were published by H. Rund, M. Matsumoto, R. Miron
and M. Anastasiei, A. Bgjancu, Abate-Patrizio, D. Bao, S.S. Chern and Z.Shen, P.
Antonelli, R.Ingarden and M. Matsumoto.

In the present chapter we made a brief introduction in the geometry of Finsler
gpaces in order to study the relationships between these spaces and the dual notion
of Cartan spaces.

In the following we will study: Finsler metrics, Cartan nonlinear connection,
canonical metrical connections and their structure equations.

Some specia classes of Finsler manifolds as («, 3)—metrics, Berwald spaces will
be pointed out. We underline the important role which the Sasaki lift plays for
amost Kahlerian model of a Finsler manifold, as well as the new notion of homoge-
neous lift of the Finder metrics in the framework of this theory.

2.1 Finder metrics

At the begining we define the notion of Finder metric and Finder manifold.
Definition 2.1.1. A Finsler manifold (or Finder space) is a pair F* = (M, F(z,y))
where M is area n-dimensiona differentiable manifold and F : TM — IR a scdar

function which satisfy the following axioms:

31
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° F is a differentiable function on the manifold TM = TM\{0} and F is con-
tinuous on the null section of the projection 7 : TM — M.

2° F is a positive function.
3 F is podtively 1-homogeneous on the fibres of tangent bundle TM.
4° The Hessan of F? with elements

1 6%F?

(11) gij(xay) = 5 ayiayj

is positively defined on TM.

Proposition 2.1.1. The set of functions g;;(z,y) from (1.1) is transformed, with
respect to (1.3) in Chl, by the rule

- e . Ox" O1°
(1.2) Gi;(Z,7) = 5% 55 9re(T, Y).

Indeed, in virtue of (1.4) in Ch.l we have:

OF? 91" OF? 1 8*F? 017 0z° 1 O*F?
b7 67 oy 2 o0p0y  0x o 2 bydy
Conseguently (1.2) holds.
Because of (1.2) we say that g;; is a distinguished tensor field (briefly d-tensor
field). Of course, g;; is a covariant symmetric of order 2 d-tensor field defined on
the manifold TM.

The function F(x, y) is caled fundamental function and the d-tensor field g; is
caled fundamental (or metric) tensor of the Finder space F™ = (M, F(z,y)).

Examples.

1° A Riemannian manifold (M, ~;;(z)) determines a Finder manifold
F" = (M, F(z,y)), where

(L3) F(z,y) = /7;(@)y'y.

The fundamental tensor of this Finsler space is coincident to the metric tensor
v;;(z) of the Riemann space (M, v;;(z)).

2° Let us consider the function

(14) F(.’E,y) = \V(yl)‘! + .-+ (yn)4
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defined in a preferential local system of coordinate on 7.

The pair F™* = (M, F(z,y)), with F defined in (1.4) satisfies the axioms 1-4 from
Definition 211 So, F" is a Finder space. The fundamental tensor field g;; can be
easy calculated.

Remark. This was the first example of Finder space from the literature of the
subject. It was given by B. Riemann in 1854.

3° Antonelli-Shimada’s ecological metric is given, in a preferential local system
of coordinate on T M, by

F(z,y) = L, ¢ = a;2* (a; are positive constants),
where L = {(y)™ + (*)™ + - -+ + (y™)™}/™, m > 3, m being even.

4° Randers metric. Let us consider the function of a Finder space F™ :

F(z,y) = Oz(.'t, y) + ﬁ(.’l), y);

where o := a;;(z)y'y’ is a Riemannian metric and B(z,y) := bi(z)y* is adif-
ferential linear functionin y*. This metric is caled a Randers metric and was

introduced by the paper [135]. The fundamental tensor of the Randers space
is given by [89]:

0 0 640 g 0
at ﬂ hij +didj, hij:= a;;— E,-Zj, d; .= bi+ é,-, £i2= a—a
ayt
and one can prove that the fundamental tensor field g;; is positive definite
under the condition ¥* = a”b;b; < 1 (see the book [24]).

9i; =
if o

The first example motivates the following theorem:

Theorem 2.1.1. If the base manifold M is paracompact, then there exist functions
F:TM — R which are fundamental functions for Finsler manifolds.

Regarding the axioms 1-4 formulated in Definition 2.1.1, we can prove without
difficulties.

Theorem 2.1.2. The system of axioms of a Fingler space is minimal.
However, the axiom 4° of this system is sometimes too strong in applications of

Finder geometry in construction of geometrical models in other scientific disciplines,
for instance in theoretical physics.
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Let us consider the fibre T,,M in a point z, € M of the tangent bundle
(TM,=,M). Itis known that T,,M is a real n-dimensional vector space. The
st of points

(1.5) Hzo)={ueT,,M|Flu) <1} C T,,M

is caled the indicatrix of Finder space £ in the point z, € M.

The restriction F(zg,y) of the fundamental function F to the fibre T, M de-
termines a Riemann metric g;;(zo,y) in the submanifold 7,,M immersed in the
manifold TM. Since g,;(zo, y) is positively defined, the following property holds,
[139]:

Theorem 2.1.3. If a Finder manifold F* = (M, F(z,y)) has the property: in every
point zo € M, the indicatrix I(z) is strictly convex, then the axiom 4° is satisfied.

If one retains the axioms 1°, 2°, 3° from the Definition 2.1.1 of a Finsler manifold
and add the following axiom 4:

4 a rankllg;;(z,y)|| =n on TM.
b. signature of d-tensor field g;;(z,y) is constant,

it results the notion of Finsler manifold with semidefinite metric. If the axioms 1°,
2°, 3°, 4 are satisfied on an open set n~1(U) ¢ TM we will say that we have a
Finder space with the semidefinite metric on the open st =~1(U).

In general, Randers metric o + 8 (without the condition ||b| < 1) give rise to
Finder gpaces with semi—definite Finder metrics.

In the following sections of chapters of the present monograph we refer to the
Finder spaces with the definite or semidefinite metric without mention the difference
between them.

2.2 Geometric objects of the space F”

The property of 1-homogeneity of the fundamental function F(x, y) of the Finder
space F™ induces properties of homogeneity of the geometrical objects derived from
it.
Theorem 2.2.1. On a Finder manifold F™ the following properties hold:

1° The components of the fundamental tensor field g;; are O-homogeneous, i.e.,

i 09k _

(2.1) =

2° The functions
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22 i = = T
(2.2) pi=3
are 1-homogeneous.

3® The functions

1 PF?
(23) Cok = 1 syayio
are (—l)-homogeneous.

In the same time we have some natural object fields:

Proposition 2.2.1.
1° The quantity P; from (2.2) is a d—covector field.

2° The set of functions Cyjx from (2.3) is a covariant of order 3 symmetric d—
tensor field.

P IX)? = gii(z,9) X X7 is a scalar field, if X*is a d-vector field.

& (X,Y) = gi(z,y)X'Y7 is a scalar field, X*,Y* being d-vector fields.

The proof of previous properties is elementary. ||.X||?is called the square of norm
of vector field X and (X,Y) is the scalar product (calculated in a point « € TM).

Assuming || X]|, # 0, |[Y|l, # 0the angle ¢ = }(X,Y),in apoint u = (z,y) €
TM, between vectors X, = (Xi(u)), Y, = (Yi(u)) are given by the solution ¢ of
the trigonometric equation

<X,)Y > (u)

2.4 oS = ————-—-
24 IXILTYT.

The number ¢ is uniquely determined, because in a Finder space with the definite
metric cos¢y from (2.4) satisfy the condition —1 < cosp < 1.
Other properties are given by

Proposition 2.2.2. In a Finder manifold F* = (M, F) the following identities
hold:

r piy' = F?

A TRES gijyj =D

3 Cojn =yCijn =0, Cjop =Cino =0
& F(z,y) = gij(z, y)y'y’
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Some natural object fields are introduced in the following:

Theorem 2.2.2. In a Finder manifold F* = (M, F') we have the following natural
object fidds:
1° The Liouwville vector field

(2.5) C=y 5%.
2° The Hamilton 1-form
(2.6) w = pdx’.
3 The symplectic structure
(2.7 6 = dw = dp;Adz’.

Proof. 1° The Liouville vector field € exists on the manifold TM independently of
the metrical function F of the space F™ (cf. §1, Ch.l).

2° By means of Proposition 2.2.1 and on the fact that with respect to (1.1) it
follows that w does not depend on the changing of local coordinates.

3 §is adosed 2-form on TM and
rank||§]| = 2n = dim of TM.

g.ed.

Definition 2.2.2. A Finder space F™ = (M, F(z,y))is cdled reducible to a Rie-
mannian space if its fundamental tensor field does not depend on the directional
variables 3.

The previous definition has a geometrical meaning, since the equation

% = 2C;jx = 0 does not depend on the changing of loca coordinates.

Theorem 2.2.3. A Finsler space F™ is reducible to a Riemannian space iff the
tensor C;j is vanishing on the manifold TM.
Proof. If g;; does not depend on ¢, thus from the identity

ags;
(2.8) ‘5975 = 2Cij
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the condition (397’; = 0 implies C;;; = 0. Conversely, Cy;x = 0 on TM and (2.8)
implies gg’; =0onTM.

Let us consider another geometrical notion: the arc length of a smooth curve in
a Finder manifold F™ = (M, F(z,v)).
Let ¢ be a parametrized curve in the manifold M:

(2.9) c:te0,]] —ct)eUCM

U being a domain of a local chart in M.
The curve ¢ has an analytical expression of form:

(2.7) zt = z'(t), t € [0,1].
The extension ¢ of ¢ to TM is defined by the equations

dz

(2.7)" B =2'(t), v = —

(t), t €[0,1].

Thus the restriction of the fundamental function F(x,y) to ¢ is

F <z(t),‘;—f(t)) L te01].

We define the "length” of curve ¢ with extremities c(0), c(l) by the number

(2.10) L(e) = / (x(t), = (t)) d.

The number L(c) does not depend by the changing of coordinates on TM and,
by means of 1-homogeneity of the fundamental function F, L(c) does not depend
on the parametrization of the curve c. So L(c) depends on c, only.

We can fix a canonical parameter on the curve c, given by the arclength of c.

Indeed, the function s = s(t), t € [0,1], given by

s(t) =/t:F (z(‘r), %‘tﬁ (T)) dr, to,t € [0,1]

is derivable, having the derivative:

%; _F (x(f), ‘;—f (T)) >0, te (0,1).
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So the function s = s(t), ¢ € [0,1), is invertible. Let ¢t = t(s) be its inverse. The
change of parameter ¢t — s, givenby s = s(t), has the property

(2.11) F (m(s),% (s)) _1
So, we have:

Theorem 2.2.4. In a Finder space F"=(M, F'), for any smooth curve c:t€{0, 1]—
c(t)eUCM exists a canonical parameter s with the property (2.11).

2.3 Geodedes

Let us consider a smooth parametrized curve ¢: ¢t € [0,1] — ¢(t) € U C M having
the ending points ¢(0) and c(l). Its length is given by the formula (2.10). We will
formulate the variational problem for the functional L(c). Consider a vector field
V*(z(t)) along the curve c with the properties V*(c(0)) = V*(¢(1)) = 0. Let c.be a
set of smooth curve given by the mappings

ce:tef0,1] o elt) €U,
such that the analytical expression of ¢, (t) being
c.(t) : 2i(t) + eVi(z(t))

with |e] small, ¢ being real number. So, the curves c.(t) have the same end points
¢(0), c(l) and same tangent vectors in this points with curve c. The length of the
curve c. is given by

L(c.) = /0 'F (z(t) eV (), ‘fi-f + a%) dt.

The necessary condition for L(c) to be extremal vaue of L{c.)is asfollows

dL(c.)

de =0

e=0

This equality is equivaent to

{(OF . OF dv'
_— ¢ el d= .
/()(axzv+avz dt)t 0

Integrating by parts the second term one obtains

v [oF  d (eF\] , . . _da'
/ov[a?‘a(@)]dt—o*y—dt
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Since V' is an arbitrary d-vector field we get from the previous equation the following
Euler—Lagrange eguations

OF d [OF : :
(3.1) e <_) =0, y* = da’,

Ort oyt dt

Definition 2.3.1. The curves ¢ = {(z*(t)), t € [0,1]} solutions of the Euler-La-
grange equations (3.1) are caled geodesies of theFinsler space F™.

Since F(z,y) = \/g:;(x, y)y'y? the equations (3.1) are equivalent to the system
of equations

1) d (9F\ OF* _ dF OF . do*
' or' " dt dy dt

£
Substituting F?2 = g;;y'y’ we get the following form of the previous Euler—Lagrange
equations

d*zt dz dF 3F o dxt
: 2G! =2
(32 " G( dt) @ oy Y T @
where
. 1 . .
(3.3) G'=3 7o, y)y' ¥,

the functions ~+*;; being the Christoffel symbols of the fundamental tensor field g;;.
Thisis

; 1 (09 | Ogir Ogsk
(34) 'YJk(z!y) - 2 g (81/“7 + axk 8.'1:T

Changing now to the canonical parameter s, we have F (z, j—i) = 1. The equations
(3.2) become

s o) o) dat
ds ds ~

(35) d 2 + ’)’ ]k (1‘ ds

Theorem 2.3.1. Geodesics in a Finsler space F™ in the canonical parametrization
are given by the differential eguations (3.5).

A theorem of existence and uniqueness of the solutions of differential equations
(3.5) can be formulated.



40 The Geometry of Hamilton & Lagrange Spaces

2.4 Canonical spray. Cartan nonlinear connec-
tion
For a Finder space F™ = (M, F), we can define a canonical spray S and an impor-

tant nonlinear connection. Noticing that the function F? is a regular Lagrangian,
we introduce its energy by:

oyt

L=y - F?=F2

Thus, integral action of the Lagrangian L(x, y) along with smooth parametrized
curve ¢: [0,1] » U C M is given by the functional

_[Tp2f, d®
(4.1) e(c) —-/0 F? |z, 7 dt.
The Euler—Lagrange equations are given by:
by .= OF2 _d(OF o 5 dz
4.2 B (F7) = or*  dt \dyi ) V="

Remark. Starting from the property that L{z,y) = F2(x,y) is energy function
of the regular Lagrangian F2, we will prove in the next chapter the following two
properties.

Theorem A. Along with the integral curves of the Euler—Lagrange equations

0 . dx?
E (FH) =0,y = d_a; we have:
dF?

o Y

Theorem B. (Noether) For any infinitesimal symmetry z'* = 2* + eVi(x, t), t' =
=t+er(z,t) (6 = const.) of the regular Lagrangian F*(z,y) and for any C*°-func-
tion ¢(z) the following function

2 4. iOF? o
F(F* ¢):=V 3y TF% — ¢(x)

is conserved along with the integral curves of the Euler-Lagrange equations
9 . dxt
X F2 — 1 7,
E; (F) =0y =
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Proposition 2.4.1. The Euler—Lagrange equations (4.1) can be expressed in the
form

d2z’ o dz
(4.3) Ty +2G <.’L‘, E) =0,
where G is given by
1 1 1 T,k
(4.4) G =35 7'l y)y'y".

2

Proof. The same calculus as in the previous section, taking F? = ¢,;(z, y)y'y’
shows us that the equations (4.2) are equivalent to (4.3).
Remarking that the equations (4.3), (4.4) give the integral curve of the spray

i i a
(4.5) S=y'55 26" (z,9) o

The vector field S is caled canonical spray of the space.

Proposition 2.4.2. The spray S of (4.5) is determined only by the fundamental
function F(X,y). Its integral curve are given by the equation (4.3), (4.4).

Consequently, we have:

Proposition 2.4.3. In a Finder space F* = (M, F) the integral curves of the
canonical spray are the geodesies in canonical parametrization.

Indeed, the equations (3.5) of geodesics in the canonical parametrization are
coincident with the equations (4.3), (4.4).

Now, applying the theory from the section 4, ch.l, one can derive from the canoni-
cal spray Sthe notion of the nonlinear connection for the Finder space F*=(M, F).

Definition 2.4.1. The nonlinear connection determined by the canonical spray 5
of the Finder space F™ is caled Cartan nonlinear connection of the Finder space
F"=(M,F).

Theorem 2.4.1. The Cartan nonlinear connection N has the coefficients
) 1 B i r,s
(4.5) Ni=35 55 (Vralz, 0)y"v") -

It is globally defined on the manifold 74 and depends only on the fundamental
function F(xy).
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szt Byt
N and V, determined only by the Cartan nonlinear connection.
~ The coefficients of N*; from (4.5)" are 1-homogeneous functions with respect to
y* and have the properties

From now on we will use only the adapted basis (—6—,—8—> to the distributions

1 ] aGt 7
(46) Nij ay = QG = Y 00,
where v := v ey Y.
We have
Theorem 2.4.2.

1) The horizontal curves ~ : I — T M with respect to Cartan nonlinear connection
are characterized by the following system of differential equations:

oyt dyt . dz?
dt_dt+N((t) ()dt
2) The autoparallel curves of the Cartan nonlinear connection are characterized

by the system of differential equations:

(4.7) o =gi(t), tel, =0.

dazt . oyt dy i dz? _
8) R R L

2.5 Metrical Cartan connection

The famous metrical Cartan connection in a Finsler space F* = (M, F) can be
defined as an N-linear connection metrical with respect to the fundamental tensor
fieldg,; and with h- and v-torsions vanish, N being Cartan nonlinear connection.
Indeed, we have:

Theorem 2.5.1. Thefollowing properties hold:

1) There exists a unique N-linear connection D on TM with coefficients DI'(N) =
= (L'x, C';) satisfying the following axioms:
Al D ish-metrical, i.e. g;;j, = 0.
A2 D isv-metrical, i.e. g, ik =0.
A3 D is h-torsion free, i.e. T]k -=L,k—L’k]—0
A4 D isv-torsion free, i.e. Sijp:=Cij — Cy; = 0.
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2) The coefficients DE(N) = (L%, C'ji) are given by the generalized Christoffel
symbols:

1

29 éxd ézh  bz™

1 i (Ogmn | Ogim  Og;n

29 (c’)yj T o T aym

3) D depends only on the fundamental function F of the Finder space F™.

1 im 5gmh 6gjm dgjh
I it - AL O ML= L TN
(5.1)

Ci]'h =

The proof of the theorem is made by using the known techniques. It was initiated
by M. Matsumoto [88].

The connection CT(N) from the previous theorem will be called the canonical
metrical Cartan connection.

Taking into account this theorem one can demonstrate without difficultiesthe fol-
lowing properties of the Finsler spaces endowed with the canonical Cartan nonlinear
connection and the canonical metrical Cartan connection.

Proposition 2.5.1. The deflection tensor field of the Cartan metrical connection
CT(N) satisfies the following equations:

(52) Dij = yi}j = 0, di]‘ = ’yi’j = 6ij.

Remark. If we consider the following Matsumoto's system of axioms A1-A4 and
the axiom
A5 Dij =0

we obtain the system of axioms which uniquely determined the Cartan metrical
connection CT'(N). Miron, Aikou, Hashiguchi proved the following result:

The Matsumoto’s axioms A1-A5 of the Cartan metrical connection CT'(N) are
independent.

Proposition 2.5.2. The following properties hold with respect to Cartan metrical
connection:

1
1 F]k =0, Flk = F—;yk,

3 Yk =0, ¥ = -
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Proposition 2.5.3. The Ricci identities of the metrical Cartan connection CT(N)
are:

Xk — X¥ne = X" Refen — Xi],R’kh,
(5.3) Xiueln - Xi|h|k = X"Pign = X')Ci"y — Xil,PTkhy
Xillclh - Xilhlk = X"S: kn.
where the torsion tensors are:

SN, 6N ON,

e = 2k i, pro = i_ i
(5.4) Ry = 5k oa Ci'x, Pljx = By Ftyj,
and the curvature d-tensors are;
A §Fi.  §F¢ . , ,
Rp'yk = Epﬁk]— - &;k + FPhiF o — FPpp 5 + Ol R i,
. BF,, o
(5.5) Ppljx = hio_ Clhku + Gyt P k>

Ay
o OCh'; B 0C}

T Oyk oy’

+ Chsjcsi/c - Ch"‘kC,ij.

Hereafter we denote the metrical Cartan connection DT'(N) by CT(N) or by
CT.
Let us consider the covariant d-tensors of curvature

. — —_ 8
Rijkn = gisRi*kny Pijkn = 9isPi’kny Sijen = 9555 kn-

Proposition 2.5.4. The covariant d-tensors of curvature satisfy the following i-
dentities:
Rijkn + Rjixn = 0, Pijen + Pjikn =0, Sijen + Sjien =0,

(5.5)
Rijkn + Rijnk = 0, Sijen + Sijnx = 0.

Indeed, the last two identities are evident.
Applying the Ricci identities to the fundamental tensor g;; and taking into ac-
count Theorem 2.5.1, we get the first three identities.

Proposition 2.5.5. The Cartan connection CI" has the following properties:
Ro'nk = R'uky  Po'nk = Py, So'he =0,

(5.6) Pk = Ciyrjo,  (Pyk = 8isP%j1)
(g;)(Rdjk) =0, (Rij:= gimBR"jr)
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where (QI'C) means the cyclic sum in the indices i ,j,K..
ij

Indeed, by applying the Ricci identities to the Liouville d-vector field y*and
looking at the tensor of deflection D*; = y); = 0 and di; = &*;, we get the first iden-
tity (5.6). For the other identities, we will write the symplectic structure # = dp;Adz?
in theform 8 = dp;Adz* and write that its exterior differential vanishes, df = 0.

2.6 Paralleism. Structure equations

Let CT be a metrical Cartan connection of the Finder space F™. The coefficients
(L', Cijx) of CT are given by the formula (5.1). As usualy, the adapted basis

(%,a—i;> of Cartan nonlinear connection N and vertical connection V and the
dual adapted basis (dz?, 8y') we can study the notion of parallelism of the vector
fields in Finder geometry.

Lety:[0,1] = TM, t— ~(t) be a parametrized curve of the manifold TM and

%} be the tangent vector field along with the curve ~. Then, we can write

dy dr* & &y 0O
(61) prilrll il e

As we know ~ is horizontal curve with respect to the nonlinear connection N if

8yt . . . . Oy
Y . Also, «y is autoparallel curve of the nonlinear connection N if d—yt = 0,

dt ,
Yt = @, We denote the tangent vector field along with v by 4 = fg

into account (6.1), we can set for the vector field X aong with ~:

and taking

(6.2) % _ DX, DX = %j—( .dt, VX € X(TM).

%t{ is called the covariant differential along with the curve .

. .6 .. 0
— YH \% H _ yi__~ V_ yi 7
Setting X = X7 + XV, X —XMZ., X Xayi,weget

DX DXH DXV { . dz* 15y’°} 5
_— = Xlk

FTEr T 3 T e (57

(6.3) X ]

PTERS LPTH O
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Let us consider
(64) wl]' = Lijkdl‘k + Cijkéyk.

where w*; are the 1-forms connection of D. Then the equation (6.3) can be written
in the form:

6.5 el i Y i 2.
(6.5) & T * +X oy

DX' _ [dX' nw'n) 6 dXi . wia) 0
dit ozt dt dt

Definition 2.6.1. We say that the vector field X on TM is said to be parallel along

with the curve v with respect to Cartan mectrical connection CT, if %t_ =0.
H

By means of (6.3), the equation %{ = 0 isequivalent with equations DX =0,

DXV
prai 0.
From the formula (6.5), one obtains the following result:
, .4 0. .

Theorem 2.6.1. The vector field X = X’E + X’a—yi is parallel along with the

parametrized curve v with respect to the metrical Cartan connection if and only if
its coefficients X#(z,y), Xi(z,y) are solutions of the linear system of the differential
equations

dzt wim(‘r(t)v y(t))

=+ 2w (t), () T

=0.

A theorem of the existence and uniqueness for the parallel vector field along with
a given curve on TM can be formulated.

A horizontal path of the metrical Cartan connection D on TM is a horizontal
parametrized curve vy with the property D;y = 0.

Using (6.5) for X* = % and taking into account the previous theorem, we get:
Theorem 2.6.2. The horizontal paths of Cartan metrical connection in Finsler
space F™ are characterized by the system of differential equations

da?
dt

a2z ) dz? dz* dy’ ;
(6.6) T Lz, =0, L+ N(z,y)

pr o a =0

If we describe the initial conditions of the previous system, we obtain the exis-
tence and uniqueness of the horizontal paths in the Finsler space F™.
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Now let us consider acurve v, in thefibre #=!(z,) of TM. It can be represented
the equations:
=1,y =yi(t), tel
The curve v, is called a vertical curve in the point zp € M.
A vertical curve 7 is called a vertical path with respect to metrical Cartan
connection CT' if Dy 4z, = 0. Now, applying equation (6.5), we have

Theorem 2.6.3. In the Finder space F™ the vertical paths in the point 2y € M
with respect to metrical Cartan connection CT' are characterized by the system of
differential equations

d2yi

dy’ dy*
dt?

(67) T =Xy, _c?t— dt =0.

+ C*jk(z0, y)

Now, taking into account the theory of structure equations of N-inear connec-
tion given in the section of chapter 1, we can apply it to the case of metrical Cartan
connection CT'. We get the following result:

Theorem 2.6.4. The structure equations of the Cartan metrical connection CT'(N)
are given by

) . (0).

d(dz?) — dz™ AW, = — O,

| Y

(6.8) d(8y') — Sy Awi, = — 1,

i ,moAE — _OF,
dw'; — WA, = =,

© Q). )
where the 2-forms of torsion 2!, Q* and 2-form of curvature €2*; are as follows:

o
Qf = Ctjdat Y™,

m, 1 . ) X .
(6.9) Qi = §R1jhdm’/\dm" + Ppdz? Aoyh,
) 1 . X 1.
Ql]' = 5 jlhmd.’Eh/\dl’m + F'jlhmd.’llh/\(sym + §Sj1hm5yh/\5ym.
Now, the Bianchi identities of the metrical Cartan connection CT(N) can be

obtained from the system of exterior equations (6.8) by calculating the exterior dif-
ferential of (6.8), modulo of the same system (6.8) and using the exterior differential

(0), (1), .
of 2-forms ¢, ©* and of 2-form of curvature ;.
We obtain:
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Theorem 2.6.5. The Bianchi identities of the Cartan metrical connection CT'(V)
of Finder spaces F* are as follows:

T {Rj'xe — R*Chis} =0,

(7k€)
(6.10) 0 {Rjikll — RM Py} = 0,
Ok;) {Rs' ke — R e Pien} = 0,
O {Si'ke} =0,
(6.11) (k)
(Ok; {Sh'jkle} =0,

M {Ciiyj + CiinPhy — Piike} = 0,

(6.12) M {R'nCits + P'jnPPpe + Plrg;} = Relye — Rijk'g,
-{J\g {R:*inCi"e + PiljnP ke + Pioxjy = —SsenR"jk — Ri'jilps

ac.i;
-ék/)l{a’y +Cs]Chk}_ leh

(6'13) M {Pjigk + chnghk — Plékl]} =0,

-{}k/[ {Paihjcéhk — Syijn Pt ~ Pshuclj} = =S k1e,
where M means the interchange of the indicesj, k and subtraction and 0' w0 means
the cyclic permutation of indices j,k| and summation.

Remark. The structure equations given in Theorem 2.6.4 are extremely useful in
the theory of submanifolds of the Finder manifold F™.

2.7 Remarkable connections of Finder spaces

Let us consider an N-linear connection D with thecoefficients DT'(N) = (L*;x, Cjk)-
To these coefficients we add the coefficients N*; of the nonlinear connection and we
write D with the coefficients DF(N’,, ,k,C’,k) For metrical Cartan connection
CT'(N) we have the coefficients CT(N?;, L, C*;«) given by the formulae (4.5)" and
(5.2).

To the metrical Cartan connection CT(N*;, L' i, C* ;) we associate the following
N-linear connections:
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1° Berwald connection BT (N‘,, %Nk ,0)
2° Chern-Rund connection RT (N%;, L'}, 0).

3® Hashiguchi connection HT (N’,, 66 k’,Cl )

These remarkable connections satisfy a commutative diagram:

/\
\/’

BT

obtained by means of connection transformations [113].
The properties of metrizability of those connections can be expressed by the
following table:

CT(N) [ h — metrical v — metrical
BL(N) g w = —2053':40 9w = 20:‘;‘1:
Wik ij |k

RT(N) | h — metrical 9 v = 204

ij |k
HT'(N) | g wy = —2Cijjrjo | v — metrical
ij| k

Remark. It is shown that the Chern connection (introduced in [25], [42]) can be
identified with the Rund connection (cf. M. Anastasiei [7]).

2.8 Special Finder manifolds

Berwald space is a class of Finsler spaces with geometrical properties similar to
those Riemann spaces. Based on the holonomy group of Berwald connection Z.
Szabo made a first classification of Berwald spaces. Other important classes of
special Finder spaces are Landsberg paces and locally Minkowski Finsler spaces.
In this section we briefly describe some of the main properties of these spaces.
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Definition 2.8.1. A Finsler space is caled Berwald space if the connection coef-

ficientsG'j = a—yki of the Berwald connectionBT" are function of position alone,
i.e 3G
Ik _
3 =

We denote by B™ = (M, F(z,y)) a Bewald space.
The space B™ can be characterized by the following tensor equation.

Theorem 2.8.1. A Finder space is Berwald space if and only if
(81) C,‘jku = 0

Proof. It is not difficult to prove that the Cartan connection CT = (N*;, L*jx, C'jk)
and Berwald connection BT = (G';, G"j«, 0) are related by the formulae:

Gijk = Lijk + Cijk|0

(82) S NG
G 7= Nj = G 40+
From here we obtain: ac
. i hjlo
GthZthk—l- aykﬂ’
where 5cH oL
i ih i jh
Gh 7k = —ay—z;Fh 7k = ayz
From the second expression of (5.5), we have
(8.3) Fi'jk = Pu'je + Ch'jj — Car P ji
. 0GY . ,
It follows that the condition oy = 0 is equivaent to
; 9C;'nio
(84) Fh ik = _Tyk_

Eliminating the term Fy*j, from (8.3) and (8.4), we find

OP.. )

(8.5) Pigjr + Ci£k|j —Cir Py + WI‘? — 2Cu, PTi; = 0,
OP"; 0Py

where we used ggy —2 = — — 2Cps PP

oy oy*
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Permutating now the indices (ilj) in (8.5) and taking into account the identity

(g;.) {Pyji} = 0, one obtain:

OP;;
Y 4 T {Ciewj — Citr P35 — 2Cus P"35} = 0.

3
Ayk i)

Contracting this by y¢, weobtain

8Pi£j ¢

(8.6) 3 ByF y" + Cjixo = —3Pixj + Cjiggo = —2Cjinp = 0,

which means P, = 0. So the eguation (8.5) reduces to
(8.7) Puik + Cienjj = 0.

On the other hand, in general, the hv—curvature tensor Phgj; of CT' can be written
as,[88]:

(8.8) Priji + Crijin — Chijie + Crje PTki — Cijr P hi.
Taking into account of Py; = 0, from (8.8) we obtain:
(8.9) Prkji = Crijin — Chijix-

Hence, from (8.7), (8.9) we have Cijjke = 0.
Conversdy, from Cijxe = 0 we obtain Py = 0, Pari; = 0. Therefore, (8.3) gives
Fhi]'k =0, and then Ghijk =0, i.e Gikj = Gihj(él?). qed

Corollary 2.8.1. A Findler space is Berwald space if and only if the hv—curvature

OG* i : I
Gy ) of BI' vanishes identically.

tensor Ga'jx (:=

Another important class of Finsler space is given by the Landsberg spaces [88]:

Definition 2.8.2. A Finder spaceis called Landsberg spaceif its Berwald connection
BI' is h-metrical, i.e.

(8.10) g & = —2Cikp0 =0,
ij |k

where the index 0 means contraction by y*.

Theorem 2.8.2. A Finder space is Landsberg space if and only if the hv—curvature
tensor Py, Of Cartan connection CT'(V) vanishes identically.
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Proof. From Proposition 2.5.6, a Landsberg space is characterized by P;; = 0.1n
general, from the equation P;jx = C;xjo We obtain

Pz’jklh - Phjlcli = (Cijk(rln - Ch.jlc‘rh’) Y™+ Cijrie = Chirie

= (Cijklh - Chjkli) r ¥+ Cijkin = Chjiia
= Cijkln — Chjlc[ia
where we used the Ricci identity (5.3) and Cijk’h - Chjk|i =0.
Taking into account equation (8.8) and the above equation we obtain:

OFjr  OPpjk .
(8.11) Prije = —ay—fl - 3—;3 + ClPrrj — ChyPrij.
From (8.11), if P,;x = 0 hold good, then we obtain P,;;x = 0.

Conversely, from the relation Pyin, = Pin (cf. (5.6)), we can conclude the
assertion. g.ed.

The following result is now immediate.
Corollary 2.8.2. If a Finder space is Berwald space, then it is a Landsberg space.
The locally Minkowski Finsler space are introduced by the following definition.

Definition 2.8.3. A Finder space £ = (M, F(z,y)) iscaled locally Minkowski if in
every point x € M there is a coordinate system (z, U) such that on =~}(U) c TM
its fundamental function F(x,y) depends only on directiona variable 3*. Such a
coordinate system (z*,U) is caled adapted to alocally Minkowski space.

Theorem 2.8.3. A Finder space is locally Minkowski if and only if the covariant
tensor of curvature R;j;s; Of the Cartan connection CT vanishes and the tensorial
equation C, ki, = 0 holds.

Proof. In an adapted coordinate system, first two coefficients of the Cartan con-
nection CT are given by Ni; = 0, L*j, = 0. Hence from the definitions of R?;zand
Ry, taking into account of (5.4), (5.5), respectively, we obtain Rp,; = 0.

Next, we see easily that under the adapted coordinate system

Cre = iy _ 1 0 (Ogu) _
Milk = "oz T 2 9yl \0zh )
Conversdly, if Ryijx=0 and Cjyre=0, from (5.6) and (8.8) we obtain P;jx = Ppijr =0.

Hence from (8.8) we obtain F,i;x = (:: —Bg—k’") = 0. Hence, L%y; = Li;(z). So,
Y
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the first equation of (5.5) reduces to

ALty
jJ\k/)l { 65ng + L, rk} =0.

This implies Riemannian flatness. Hence there exists a coordinate system (z*) such
that Z;, = 0, fromwhich N, = 0.
Consequently, from the axiom of h-metrizability, we obtain

O0Gap  OGap ~
62: 6!_1]/: N + Lase + Loac = 0, Lase = GsaLae,
from which we obtain ges = g4s(7)- g.ed.

Since we have an example given by Antonelli of a locally Minkowski space [11],
that means:

On the paracompact manifolds there exists locally Minkowski Finsler spaces.

S0, we obtain the following sequences of inclusions of specia Finder spaces

LOBDODMDODMNR,

where L isthe class of Landsberg spaces, B the class of the Berwald spaces, M the
class of the locally Minkowski spaces, and R the class of Riemannian spaces.

We remark that M N R is the class of flat Riemannian spaces.

In 1978, Y. Ichijyo has shown the geometrical meaning of the vanishing hv—
curvature tensor using the holonomy mapping as follows:

Theorem 2.8.4. (Ichijyo) Let us assume that (M, F) is a connected Finder space
with the Cartan connection CT. Let p and g be two arbitrary points of M, and let
¢ be any piecewise differentiable curve joining p and g. In order that the holonomy
mapping from7,M to T, M along with ¢, with respect to the nonlinear connection N,
be always a C-affine mapping, it is necessary and sufficient that the hv—curvature
tensor P,¢;. vanishes identically.

It still remain an open problem: If there exists Landsberg space with vanishing
hv—curvature tensor.

In [68], Y. Ichijyo introduced the following interesting fundamental function
(8.12) F(z,dz) = F(a®), a® = a?(z)dz’,
where F is afundamental Finsler function, the function F(a®)is 1-positively homo-
geneous in a%, (a = 1,2, ...,n) and a%(z)dz* are linearly independent differentiable
1-forms.

Definition 2.84. The Finsler metric (8.12) is caled 1-form Finsler metric and the
space (M, F) is called 1-form Finsler space.

There are some specia 1-form metrics:
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1. Berwald-Moor metric; F = (y'y?...y™)» which is atypica Minkowski metric
in a loca coorginat system. G.S.Asanov introduced a more general form:
F = (a'a®...a™)=, where a® (a = 1,2, ...,n) are linearly independent 1-forms.

2. m-th root metric: F = {(a’)™ + (a®)™ + - - - + (a®)™}= which was studied by
Shimada [152] and Antonelli and Shimada [19] for the case n = 2.

3. A specid Randers metric: F = {(a!)? + (a?)2 + - - - + (a®)2}2 + ka!, wherek
is a constant. This example was given by Y. Ichijyo.

Using the Cartan connection, Matsumoto and Shimada proved the following
result for a 2-dimensional 1-form Finsler space [91]:

Theorem 2.8.5. If a 2-dimensional 1-form Finsler space is a Landsberg space, then
it is a Berwald space.

In order to introduce the notion of Douglas space, let us observe first that the
geodesies of a Finsler space £ can be written in the form:

(8.13) #al — 3+ 2DY(z, &) = 0,
where D¥(z, 1) := G'i? — G713,

Definition 2.8.5. A Finder space F™ is cdled Douglas space if the functions
D (z,z) are homogeneous polynomialsin i of degree three.

This is equivalent to the fact that the Douglas tensors of F™ vanishes. M.
Matsumoto and S. Bacso [23] proved:

Theorem 2.8.6. If a Landsberg space is a Douglas space, then it is a Berwald space.

Theorem 2.8.7. A Randers space F™ = (M, F = o+ f) is a Douglas space if and
only if the differential 1-form Bis a closed form.

We will describe in the sequel the Finder spaces with constant curvature.
Definition 2.8.6. The quantity K(x,y, X) given by

Hpiey" X'y X*
(9higik — Gnigij )y X1y XF

K(z,y,X) = VX €T, M, X+#0, ¥(z,y) € TM,

is caled the scalar curvature at (X, y) with respect to X, where Hy, i is the h-curva-
ture tensor of the Berwald connection BT [88].
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One can remark that the h-curvature tensor of the Berwald connection BI'is

([88][p.118]) _ ' _ ‘
Hy'je = Ky + -{}g {Ci* ok + Cr*+10C5 hio }-

From Definition 2.8.6 it can be said that the scaar curvature K(x,y,X) is defined
as the sectional curvature of a 2-section spanned by y and X, with g,; = gi;(z,y)
and Hpijx = Hpie(z,y), in general.

Definition 2.8.7. If the scalar curvature K for a Finsler space of scalar curvature
is a constant, the Finsler space is called a space of constant curvature K.

The following theorem is known ([88]):
Theorem 2.8.8. A Finder space is of scalar curvature if and only if
(8.14) Rior = KF?hy,
where R;j is the torsion tensor of the Cartan connection CT.

The left hand of (8.14) is dso cdled flag curvature:

. [6Nt; 6N
Rkﬁjy"y’=y’{ S s }

The flag curvature is one of the important humerical invariants because it lies in
the second variation formula of arc length and takes the place of sectional curvature
from the Riemannian case.

In 1975 the following interesting result concerning scalar curvature was obtained:

Theorem 2.8.9. (Numata [129]) Let F*, n > 3, be a Berwald space of scalar
curvature K.  Then F™ is a Riemannian space of constant curvature or a locally
Minkowski space, according K # 0 or K = 0, respectively.

Lastly in this chapter we remark that Finsler spaces with («, 8)-metric were
studied in the paper [89]. And using the invariants of a Finsler space, was made
a classification of some Finsler spaces with («, 8)-metric, namely Randers class,
Kropina class, Matsumoto cdlass, etc. The classes are providing new concrete exam-
ples of (e, B}-metrics.

2.9 Almost Kahlerian mode of a Finder mani-
fold

A Finder space F™ = (M, F) can be thought as an almost Kahler space on the
manifold TM = TM\{0}, caled the geometrical model of the Findler space F™.
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In this section we present the Sasaki-Matsumoto lift of the metric tensor g;; of
the space F™ and a new lift, given by R. Miron [109], which is homogeneous and
alows us to study problems concerning the global properties of the Finder spaces.

In this way the theory of Finder spaces gets more geometrical consistence.

If we consider the Cartan nonlinear connection N*; of the Finsler space F" =
= (M, F), then we can define an dmost complex structure IF on TM by:

) a 0 3
1 2y, B
(©.1) ¥ (69:') oyt ¥ (By') ozt

It is easy to see that IF is well defined on TM, F? = —I and it is determined only
by the fundamental function F of the Finder space F™.

Theorem 2.9.1. The almost complex structure IF is integrable if and only if the
h-coefficients R?, of the torsion of CT vanishes.

Let (dz?,dy') be the dual basis of the adapted basis %,6—(} . Then, the
Sasaki-Matsumoto lift of the fundamental tensor g;; can be introduced as follows:

(9.2) G = g;;d7r'®dz’ + g;;6y' @6y’

Consequently, G is a Riemannian metric on TM determined only by the fundamen-
tal function F of the Finder space £ and the horizontal and vertical distributions
are orthogonal with respect to it.

The following results can be proved without difficulties, [113:

Theorem?2.9.2.
(i) The pair (G, IF) is an almost Hermitian structure onT'M.
(ii) The almost symplectic 2-form associated to the almost Hermitian structure
(G, IF) is
(9.3) 8 = gij(z, y)oy'®dz’.
(iii) The space H™ = (TM;G,TF) is an almost Kahlerian space, constructed only
by means of the fundamental function F of the Finder space F™.
The space H** = (TM; G, TF) is caled the almost Kahlerian model of the Finder
pace Fm.
Theorem2.9.3. The N-linear connection D with the coefficients CT(N) = (F*,Cjx)
of the Cartan connection is an almost Kéhlerian connection, i.e.:

(9.4) DxG =0, DxIF =0, VX € X(TM).
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Hence, the geometry of the almost K ahlerian model %" can be studied by means
of Cartan connection of the Findler space F*. For instance, the Einstein equations
in F™ are given by the Einstein equations in the previous model H?". One can find

it in [113).
Remarking that the Sasaki-Matsumoto lift (9.2) is not homogeneous with re-
spect to ¥, a homogeneous lift to TM of the fundamental tensor field gij(z,y) wes

introduced by R. Miron in the paper [109].
We describe here this new lift for its theoretical and applicative interest.

Definition 2.9.1. We cdl the following tensor field on TM:

(9.5) G (z,y) = gi(z,y)dz’'®da? + —— gi;(z,y)0y'®Y’, V (z,9) € TM,

lly II

the homogeneous lift to TM of the fundamental tensor field gi; of a Finder space
F* where a > 0 is a constant, imposed by applications (in order to preserve the

physica dimensions of the components of &) and where |ly||* is the square of the
norm of the Liouville vector field:
(9-6) Ily112 = gij(xay)yiyj =y = F2(:E,y),

1 0F?
2 Byt
We obtain, without difficulties:

with Yyi = guy]

Theorem 2.9.4.
— 0
1° The pair (TM,G) is a Riemannian space.
Q
2° G is 0-homogeneous on the fibers of TM.

Ky & depends only on the fundamental function F (x, y) of the Finder space F".

0
4° The distributions N and V are orthogonal with respect to G.

0
We shal write G in the form
0 0 0 0 R .0 . .
(9.7 G=G¥+ GY, G¥ = g;;(z,y)dz'®d, GV = hyj(z,y)6y' @y’

where
(9.8) hij = W 9i(2,y)-
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Consequently, we can apply the theory of the (h, v)—-Riemannian metric on TM
investigated by R. Miron and M. Anastasiel in the book [113)].

Theequation F(zq,y) = a determines the so called indicatrix of the Finder space
F™ in the point z4 € M.

Therefore, we have:

0
Theorem 2.9.5. The homogeneous lift G of the metric tensor g;;(z,y) coincides
with the Sasaki-Matsumoto liftof g;,(z,y) on the indicatrixF(zo,y) = a, for every
point zo € M.

A linear connection D on T M is called a metrical N-connection, with respect

0 0
to G, if D G=0 and D preserves by paralelism the horizontal distribution N.
As we know,[113] there exist the metrical N—connection on 7M.
We represent a linear connection D, in the adapted basis, in the following form:

k) H. § ~. 0 o _ ¥ é v, d

09) Disegm = Lagg t L gy Pitegy = Ponga + Ui
. D i—g’f ) +C 9 D o =, ) + i 9
aEdz e Tk By Uk kG * oy’

H ~ V. H, ox. V. .
where (L, L*j, L*jk, L* i, C*5, C* 5, Ct 5, C* ) are the coefficients of D.

Theorem 2.9.6. There exist the metrical N—connections D on 7'M, with respect

to (0}, which depend only on the fundamental function F(x, y) of the Finsler space
F™ One of them has the following coefficients

s ~ i

L Ck=C‘jk=O,

Li
7, Voo (09sk | 8955 69k
(9.10) L' ="Fu 29( 5ok

Vi _1 is Ohk ahjs 6th y: i
C]k——ih (6y1+6y’°_6y C]Ic‘_Cjk;

where CT(N) = (Fij,C) is the Cartan connection of the Finder space F™,
BT(N) = (B}, 0) isthe Berwald connection and | means the h—covariant derivation
with respect to BI'(N).
Of course, the structure equations of the previous connection can be written as
in the books [112], [113].
0

In order to study the Riemannian space (TAJVI, G) it is important to express the
coefficients

dxd  dzF Izt

v, i 14
; ij=Bjk+§h hsjiks

~ X \

H. ; . H, ~ ~ V.
(LljkaszkvLijk,szk,C C C C )
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To this aim, expressing in the adapted basis the conditions:

0 0 0
XG(Y,2)- G(DxY,2)~ G (Y,DxZ) =0,
DxY - DyX — [X,Y] =0, VX,Y,Z € X(TM)

and using the torsions Rt and C*, of the Cartan connection CT'(N), we get by a
direct calculus:

0
Theorem 2.9.7. The Levi—Civita connection of the Riemannian metric G havein
an adapted basis the following coefficients

H U i (09m; | 09mk  Ogjk

Lie 29 (6z’°+6zi ©bzm

v, 1,. [(0Ohg,; Ohme Ohj

i = _ pm mj m _ J s

Ce =3 ( Bk | By ay'")

Hi zz’ 3 1 is m
(9.11) C'yj = L'y =Cjk+§g P B™ sk,

v, i b

ij = B/c]' + Eh hsj”k

~ ) 1 .

L'k = —h*Cok = 5 R'js,

~ ~

) 1. ) 1 .
Clix = 3 Rl Clik = -3 Gish** Rjjs-

The structure equations of the Levi—Civita connection (9.11) can be written in
the usual way.

Let us prove that the ailmost complex structure IF, defined by (9.1) does not
preserve the property of homogeneity of the vector fields. Indeed, it applies the
1-homogeneous vector fields o (: =1,...,n)onto the 0-homogeneous vector fields
aiyiy ('l = 1, ...,n).

We can eliminate this incovenient by defining a new kind of ailmost complex

0 o~ —~—
structure IF: X(TM) — X(TM), setting:

(9.12) F (%) = —”—Zﬂ 6%, i3 (a%.) = “Z—” 6—%, (i=1,..,n).

Taking into account that the norm of the Liouville vector field ||y||and the Cartan
nonlinear connection N are defined on T'M, it is not difficult to prove
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Theorem 2.9.8. The following properties hold:

© T is a tensor field of type (L1) on 7M.

2° IOF ° IOF= —1.

3 I%‘ depends only on the fundamental function F of the Finsler space F™.

4 The F(TM) -linear mapping F: X(TM) — X(TM) preserves the property of
homogeneity of the vector fields form X (TM).

0
It is important to know when IF is a complex structure.

Theorem 2.9.9. I(l)? is a complex structure on TM if and only if the Finder space
F™ has the following property:

1
a?

(913) Rh,']' = (y,-é"j - y,-éh,') .

Proof. The Nijenhuis tensor NI% :

4] Q g g 0 0 0 P
NIOF(X, V)=F)X, Y|+ [FX,FY]-F[F X,Y]- F [X,FY], X,)YeX(TM),
vanishes if and only if the previous equations hold.

Remark. If F* isaRiemann space, the equation (9.13) is a necessary and sufficient
condition that it to be of constant sectiona curvature.

The pair (&, l%‘) has remarkabl e properties:
Theorem 2.9.10. We have

0 0 —
1’ (G,F) is an almost Hermitian structure on TM and depend only on the fun-
damental function F of the Finder space F”™.

1]
2° The associated almost symplectic structure € has the expression

0

where 6 is the symplectic structure (9.3).
3 The following formula holds:

(9.15) d6=d-" A
. = d—— A0l.
llll
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G 0
4° Consequently, (G, IF} is a conformal almost Kahlerian structure and we have

0 0
d 0= 0 (modulo 8).

Remarks.

0 0
1° The previous theorem shows that (G, IF) is a special amost Hermitian struc-
ture.
2° There exist the linear connection compatible with the conformal amost Kéa-

0 0
hlerian structure (G, IF).

— 0 0
The conformal almost K&hlerian space (T'M, G, IF) is another geometrical model

of the Finsler space F™. It is based on the homogeneous lift &, (9.5).

The previous considerations are important for study the Finslerian gauge theory,
[22], [177], and in genera in the Geometry of Finder space F™. The importance of
such kind of lift was emphasized by G.S. Asanov [22]. Namely he proved that some
(h,v) metrics on T'M satisfy the principle of the Post Newtonian calculus. The

0
metric G belongs to this category, while Sasaki—-Matsumoto lift has not this proper-

" The theory of subspaces of Finsler spaces can be found in the books [112], [113].



Chapter 3
L agrange spaces

The notion of Lagrange space was introduced and studied by J. Kern [76] and R.
Miron [96]. It was widely developed by the first author of the present monograph
[106], Since thisnotion includesthat of Finder space it is expected that the geometry
of these spaces to be more rich and applications in Mechanics or Physics to be more
important.

We will develop the geometry of Lagrange spaces, using the fundamental notions
from Analytical Mechanics as. integral of action, Euler—Lagrange equations, the law
of conservation of energy, Noether symmetries, etc. Remarking that the Euler—La-
grange equations determine the canonical spray of the space, we can construct al
geometry of Lagrange space by means of its canonical spray, following the methods
given in the Chapter 1 So the geometry of Lagrange space is a direct and natural
extension of the geometry of Finsler space.

At the end of this chapter, we emphasize the notion of generalized Lagrange
spaces, useful in the geometrical models for the Relativistic Optics.

3.1 The notion of Lagrange space

At the begining we define the notions of differentiable Lagrangian using the mani-
folds TM and T M, where M is a differentiable real manifold of dimension n.

Definition 3.1.1. A differentiable Lagrangian is a mapping L : (z,y) € TM —
L(z,y) € R, of class C* on manifold 77 and continuous on the null section
0: M — TM of the projection = : TM — M.

The Hessian of a differentiable Lagrangian L, with respect to y¢, has the de-
ments:

1 8 L(z,y) —
(11) gi](.’L',y) = 5 W’ on TM.

63
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Exactly asin the Finder case we prove that g;;(z,y) is ad-tensor field, covariant of
order 2, symmetric.

Definition 3.1.2. A differentiable Lagrangian L(x, y) is called regular if the fol-
lowing condition holds:

(1.2) rank||gi;(z,y)|| = n, on TM.

Now we can give:

Definition 3.1.3. A Lagrange space is a par L* = (M, L(z,y)) formed by a
smooth real n-dimensional manifold M and a regular Lagrangian L(x, y) for which
d-tensor g;; has a constant signature over the manifold 71.

For the Lagrange space L™ = (M, L{z,y)) we say that L(x,y) is fundamental
function and g¢;;(z, ) is fundamental (or metric) tensor. We will denote, as usually,
by g% the contravariant of the tensor g;;.

Examples.
1° The following Lagrangian from eectrodynamics [112], [113]

(1.3) Lz, y) = mevy(z)y'y’ + % Aoy + U(z)

where #;;(z) is a pseudo—Riemannian metric, A;(x) a covector field and U(x) a
smooth function, m, ¢, e being the known constants from Physics, determine a La
grange space L".

More general:

2° The Lagrangian
(1.4) L(z,y) = F*(z,y) + Ailz)y’ + Ulz)

where F(x,y) is the fundamental function of a Finder space F™ = (M, F(z,y)),
A;(z) is a covector field and U(X) a smooth function gives rise to a remarkable
Lagrange space, called the Almost Finsler—Lagrange space (shortly AFL—space).

In particular, (A;(z) = 0, U(z) = 0) the pair L™ = (M, F%(z,y))is a Lagrange
space.

In other words,

Proposition 3.1.1. Any Finder space F* = (M, F(z,y)) isalagrangespace L* =

= (M, F?). Conversely, any Lagrange space L* = (M, L(z,y)) for which fundamen-
2

tal function L(x, y) is positive and 2-homogeneous with respect to #* and L &Ly

2 Oyidy
is positive definite determine a Finder space £ = (M, /L(z,y)).
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The previous example proves that:

Theorem 3.1.1. If the base manifold M is paracompat then there exist regular
Lagrangians L(x, y) such that the pair L™ = (M, L(z,y)) is a Lagrange space.

3.2 Variational problem Euler—Lagrange egua-
tions

The variational problem can be formulated for differentiable Lagrangians and can
be solved in the case when we consider the parametrized curves, even if the integral
of action depends on the parametrization of the considered curve.

Let L : TM — R be a differentiable Lagrangian and ¢ : t € [0,1] — (z%(t)) €
U c M acurve (with afixed parametrization) having the image in the domain of a
chart U on the manifold M. The curve c can be extended to ~(1/) TM &

c¢t:tef0,1] — (zi(t), %ﬁ— (t)) e (V).
Since the vector field dd—a; (t), t € [0,1], vanishes nowhere, the image of the mapping

¢+ belongsto TM.
The integral of action of the Lagrangian L on the curve c is given by the func-
tional

@2.1) 1) = /1 ( Cf;)dt

Consider the curves
(2.2) ce:t€[0,1] — (z'(t) +eVi(t) e M

which have the same end points z*(0), z(x) as the curve ¢, Vi(t) = Vi(z(t)) being
aregular vector field on the curve c, with the property V#(0) = V¥(1) =0 ande a
real number, sufficiently small in absolute value, so that Ime, C U.

The extension of curves ¢, to TM is given by

) . d t
c::te[(],l]——)(x’(t)-}-eV‘() i +e d;;

) e n HU).

The integral of action of the Lagrangian L on the curve ¢, is given by

1
(2.2) fe)=[1 (x +en 2 dz ‘?:) dt.
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A necessary condition for I(c) to be an extremal vdue of I{c.) is

dl(c.)

de =0

e=0

(2.3)

Under our condition of differentiability, the operator di is permuting with operator

of integration.
From (2.2)' we obtain

dI(e) o d av
(2.4) == / —1L (m + V + sﬁ) dt.
A straightforward calculus leads to:
d dr dV oL _, 0L 4Vt
e L <.’E + V + 6%) 0 5—'— ay i =

_ ?ﬁ-f’_é’i vig 4oL il . ar

“ 8z dt 9y oy [°Y T @
Substituting in (2.4) and taking into account the fact that V*(z(t)) is arbitrary, we
obtain the following.

Theorem 3.2.1. In order that the functional I(c) be an extremal value of I(c) it
is necessary that ¢ be the solution of the Euler—Lagrange equations:

oL _d 3L _. . _do

1

(2.5) E(L):= o dt Ey‘, =0,y = 7

Some important properties of the Euler—Lagrange equations can be done.
Introducing the notion of energy of the Lagrangian L(x, y), by:

(2.6) EL =y —~-L
we can prove the so called theorem of conservation of energy:

Theorem 3.2.2. The energy E; of the Lagrangian L is conserved along to every
clx’

integral curve c of the Euler—Lagrange equation E;(L) =0, ¥ = ==
dz

T odt

Indeed, along to the integral curve of the equations E;(L) = 0 =y, we

have; ]
d dy JL ii (E)L) ;0L dy* OL

dat t T dt oy oy %‘E%

_ _if9L 4oLy _
=Y \ar dt oy')
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Consequently, we have % = 0. g.ed.

Remark. A theorem of Noether type for the Lagrangian L(x, y) can be found in
the book [106].

3.3 Canonical semispray. Nonlinear connection

A Lagrange space L™ = (M, L(z,y)) determines an important nonlinear connection
which depends only on the fundamental function L(x, y). Remarking that E;(L),
from (2.5) is a d—covector and that the fundamental tensor of the space, gi;, is
nondegenerate we can establish:

Theorem 3.3.1. If L™ = (M, L) is a Lagrange space then the system of differential
equations

3 . dit
lJ - = ] = —_—
(3.1) PE(L) =0, ¥ ==
can be written in the form:
a2zt . dx
1] B t — | =
(3.1) e +2G <a:, dt) 0
where
. 1 .. 8L oL
i — 2,4 k_ .

Indeed, the formula

0L d 8L oL o*L dy*| dof
EW*%‘E@-%‘%WEW+WE’E—

holds. Hence (3.1) is equivalent to (31)', G* being expressed in (3.2).

Theorem 3.3.2. The differential equation (3.1)' gives the integral curves of the
semi—spray

N SN

where Gi(z,y) are expressed in (3.2).
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Indeed, the differential equations (3.1)' do have ageometrica meaning and there-
fore it follows that G* are the coefficients of a semispray S from (3.3). The integral
curves of S are given by
dyt

dxt . )
kil e A, -9 1)
el iy G'(z,y),

hence the differential equations (3.1)' are satisfied. g.ed.

The previous semispray is determined only by the fundamental function L(x, y)
of the space L™. It will be called canonical semispray of Lagrange space L™.

Corollary 3.3.1. The integral curves of the Euler—Lagrange equations E;(L) = 0,

1

% =y are the integral curves of the canonical semispray S from (3.3).

Indeed, we can apply Theorems 3.3.1 and 3.3.2 to get the announced property.
Asweknow, (Ch.1), asemispray S determinesanonlinear connection. Applying
Theorem 1.4.3, we obtain:

Theorem 3.3.3. In a Lagrange space L™ = (M, L) there exists the nonlinear con-
nections which depend on the fundamental function L. One of them has the coeffi-
cients

; _0G' 1 0 [ 4f 8L , oL
(34) ”f*é?wa—yf{g (‘—aykaxhy ‘5‘)}

Proposition 3.3.1. The nonlinear connection N with coefficients N*; (3.4) isin-
variant with respect to the Carathéodory transformations

dp(z) o

(3.5) L'(z,y) = L(z,y) + “or

where ¢(z) is an arbitrary smooth function.

Indeed, we have E;(L'(z,y))=FE; (L(z,y) + Z—f—) =E;(L(z,y)). S0, Ei(L'(x,y))=0

determine the same canonical spray with E;(L(z,y)) = 0. Thus, the previous theo-
rem showsthat the Carathéodory transformation (3.5) does not change the nonlinear
connection N.

Because the coefficients of N are expressed by means of the fundamental func-
tion L, we say that N is a canonical nonlinear connection of the Lagrange space
L
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Example. The Lagrange space of electrodynamics, L" = (M, L(z,y)), L(z,y)
being given by (1.3), with U(z) = 0, has the coefficients G*(z,y) of the canonical
semispray S, of the form:

, 1 . . .,
(3.6) Gi(z,y) = 57‘3'::(:6)1/’:1/‘ — g7 Fj(z)yF,

where v%;,(z) are the Christoffel symbols of the metric tensor g;;(z) = mcy;;(z) of
the space L™ and F}; is the electromagnetic tensor

C 6Ak GA
87 P = 55, (5~ o)

Therefore, the integral curves of the Euler—Lagrange equation are given by solution
curves of the Lorentz equations:

d*zt dr? dr* dz*
—— = ¢"(2) Fji(2) =~ T

(3.8) az T ()dt di

The canonical nonlinear connection of L™ has the coefficients (3.4) of the form
(3.9) N'j(z,y) = vV'u(z)y* — g% (2) Fi;(2).

It is remarkable that the coefficients N*; of the canonical nonlinear connection N of
the Lagrange spaces of electrodynamics are linear with respect to y*. This fact has
Some Consequences:

1° The Berwald connection of the space, BI'(V), has the coefficients v (z).

2° The solution curves of the Euler—L agrange equation and the autoparallel curves
of the canonical nonlinear connection N are given by the Lorentz equation
(3.8).

In the end part of this section, we underline the following theorem:

Theorem 3.3.4. The autoparallel curves of the canonical nonlinear connection N
are given by the following system of differential equations:

a2zt . dz\ dz’
1 —_— T, — 0
(3.10) 7 + N (x, dt) 2 =0

where N*; is expressed in (3.4).
This results from Section 3, Ch.1.
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3.4 Hamilton—Jacobi equations

Let us consider a Lagrange space L™ = (M, L(z,y)) and N(N*;) its canonical non-
linear connection. The adapted basis ( ¢ 9 to the horizontal distribution N

4z 8 L
and the vertica distribution V has the vector fields Xi_z :
) 15 ;|
4.1 — = — — NI, —
(41) Szt Oxt N oy?
Its dud is (dz?, §yt), with
(4.1 6y' = dy' + N*; dz?.

The momenta p; of the space L™ can be defined by

(4.2) i = % %.

Thus p; is a d—covector field. We can consider the following forms
(4.3) w = p; dx’,

(4.4) 8 = gi;(z, y)dy*Adal.

Proposition 3.4.1. Theforms w and 8 areglobally defined on 7M, and we have

(4.5) 0 = dw.

Proof. 1° Indeed, p;dz*, and # from (4.4) do not depend on the transformation of
local coordinates on TM.

2
2° dw = dpAdzt = —d—/\ = ! (——6— a—Ldz’" oL

oy’ dzm Oyt +6"‘3
1(6 8L § AL

- 6y’") Adz' =

—_— — —_— m m — m
5am By or ay dz™AdT" + gimOyYTAdZ' = gdy™AdE.

Because of adirect calculus shows that
§ OL § oL

szm E_an’"zo'

Theorem 3.4.1. The 2-form 8, from (4.4), determines on TM a symplectic struc-
ture, which depends only on the fundamental function L(X,y) of the space L".
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Proof. Using the previous proposition results that ¢ isintegrable, i.e.df# = 0, and
rank||d|| = dimTM. g.ed.

Corollary 3.4.1. The triple (T'M, 6, L) is a Lagrangian system.

The energy E, of the space L™ is given by (2.6), Ch.3. Denoting H = %EL,
1
L= §L, we get from (2.6), Ch.3:

(4.6) H =py’ ~ L(z,7).
But, along the integral curve of the Euler—Lagrange equations we have
on oL d 0L  dp;

ri = " or  dt oy dt
And from (4.6), we have aso
on _ ;  dr
ap,‘ =V = dt

So, we obtain:

Theorem 3.4.2. Along to the integral curves of Euler—Lagrange eguations we have
the Hamilton—Jacobi equations

dr' OH dpi O

(4.7) I - om

Corollary 3.4.2. The energy Ey is conserved along to every integral curve of the
Hamilton-Jacobi equations.

3.5 ThestructuresIP and IF of the L agrange space
Ln
The canonical nonlinear connection N determines some global structures on the

manifold TM. One of them is the almost product structure IP. It is given by the
difference of the projectors h and v

(5.1) P=h-—v
It follows

(5.2) P2 =].
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Theorem 3.5.1. The canonical nonlinear connection N of the Lagrange spaceL® =
= (M, L(z,y)) determines an almost product structures P, which depends only on
the Lagrangian L(X, y). The eigensubspace of IP corresponding to the eigenvalue —1
is the vertical distribution V and eigensubspace of IP corresponding to the eigenvalue
+1 isthe horizontal distribution N.

Conform to a general result, we get from Ch.1.

Theorem 3.5.2. The almost product structure IP determined by the canonical non-
linear connection N is integrable if and only if the horizontal distribution N is
integrable.

This condition is expressed by the equations

(5.3) Riji(z,y) =0on ™,
where

P 6N, ONY
4 Rk =58 =55

Proof. It is not difficult to see that the Nijenhuis tensor of the structure IP vanishes
if and only if [XH#,Y#¥ = 0. Teking X¥#,Y# in the adapted basis we have that
N e ph . .
[Mi’é—a?] =R i = 0 hold iff R*;; = 0. But R";; is a d-tensor field, 0 the
condition B*,; = 0 is verified on the manifold 7M. g.ed.

On the manifold TM there exists another important structure defined by the
canonical nonlinear connection N: It is the dmost complex structure, given by the
F(TM)-linear mapping IF : X(TM) — X(TM)

) 0 0 6 .
or by tensor field

i) .4 .
.5Y = —— ! - :
(5.5) F ay1®d:x: + 6z‘®6y

It follows:

Theorem 3.5.3. We have:

1° F is an amost complex srudure globally defined on thermenifold 7M.

2° IF is determined only by the fundamental function L(x, y) of the Lagrange space
L.
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__Indeed, I° The form (5.5)" of IF shows that the IF is a tensor field defined on
TM. From (5.5) we prove that TF is an almost complex structure. This is that we
have

(5.6) FolF =-1I.

. . _ & 0
This can be proved by means of (5.5), using the adapted basis 570y )

2° Clearly, IF is determined only by the canonical nonlinear connection, which
depends only on L(X, y). g.ed.

Theorem 3.5.4. The almost complex structure I is a complex structure(i.e. IF is
integrable) if and only if the canonical nonlinear connection N is integrable.

Indeed, the Nijenhuis tensor Ny vanishes if and only if
1° the distribution N is integrable, i.e., R'jx = 0;

o ;. _ ONY ON _
‘ oG? . ;
But N*; = B_yf So, itfollows ¢, = 0. g.ed.

3.6 The aimost Kahlerian model of the space L™

Following the construction of the almost Kahlerian model from geometry of Fin-
der space, we extend for Lagrange spaces the dmost Hermitian structure (G, IF)
determined by the lift of Sasaki type G of the fundamental tensor field g;; and by
the almost complex structure IF.

The metric tensor g;;(z,y) of the space L™ = (M, L(z,y)) and its canonical
nonlinear connection N(N?) alows to introduce a pseudo-Riemannian structure G

on the manifold TM, given by the following lift of Sasaki type:
(6.1) G(z,y) = g;5(z, y)da'®dz’ + gij(z,y) 0y’ @y’
We have:

Theorem 3.6.1.

1° @ is a pseudo-Riemannian structure on the manifold 7'M determined only by
the fundamental function L(x, y).

2° The distributions N and V are orthogonal with respect to G.
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Indeed,

1° The tensorial character of g;,, dz* and dy* shows that G does not depend on
the transformations of local coordinates on T'M.

AN
2° G (6_1,'_’,8—1/.7) = 0, (Z,J = 1,‘..,71,).

For the pair (G, F) weget:

g.ed.

Theorem 3.6.2.

1° The pair (G, ) is an almost Hermitian structure on TM, determined only by
the fundamental function L(X, Y).

2° The almost symplectic structure associated to the pair (G, IF) isgiven by (4.4),
i.e

(6.2) 0 = gi;j6y*Ada’.
3 The space (TM,G,TF) is almost Kahlerian.

Proof. 1° isevident. G from (6.1) and IF from (5.5) depend only on L(xy) and
we have, G(FX,FY) = G(X,Y),VX,Y € X(TM) hold.

2° Calculating in the adapted basis 8(X,Y) = G(IFX,Y) we obtain (6.2).

3 Taking into account Theorem 3.4.1, it follows that 8 is a symplectic structure.
g.ed.

The space K2 = (TM, G, F) is caled amost Kahlerian model of the Lagrange
space L™ = (M, L(z,v)).

We can use it to study the geometry of Lagrange space L*. For instance, the
Einstein eguations of the Riemannian space (T'M, G) can be considered as "the
Einstein equations’ of the space L™.

G.S. Asanov showed [22] that the metric G given by the lift (6.1) does not satisfy
the principle of the Post—Newtonian calculus. This fact is because the two terms of
G has not the same phyisical dimensions. This is the reason to introduce a new lift
[109] which can be used in a gauge theory.

Let us consider the scalar field:

(6.2) lyll® = gi(z, w)y'y’.

It is determined only by L(x,y). We assume [|y||* > 0. As in the case of Finsler
geometry (cf. Ch.2), the following lift of the fundamental tensor field g,;(z,y) :

(6.3) G (z,y) = gij{z,y)dz' ®dz? + v Hzgu(x ,Y)0y'®by’
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where a > 0 is a constant, imposed by applications in theoretical Physics. This is

[
to preserve the physical dimensions of the both members of G .
Let us consider dso the tensor field on T'M :

oyl o . ,oa & ;
6.4 F=-"2" Z @dr’ + — —@dy’,
(64 a Oy Tyl 8
and 2-form
0 a
6.5 0= —40,
(6:5) ol

where & is given by (6.2).
As in the Finslerian case we can prove:

Theorem 3.6.3. We have

g o0 —
1° The pair (G, F) is an almost Hermitian structure on T M, depending only on
the fundamental function L(x, y).

V]
2° The almost symplectic structure ¢ associated to the structure (G, TF)is given
by the formula (6.5).

¢ g 0
3 6 being conformal to symplectic structure 6, the pair (G, IF)is conformal almost
Kahlerian structure.

0 — 0 0
We can remark now that the conformal almost Kahlerian space K **=(TM, G, IF)
can be used for applications in gauge theories which implies the notion of the regular
Lagrangian.

3.7 Metrical NHinear connections

Now applying the methods exposed in the first chapter, we will determine some
metrical connections compatible with the Riemannian metric G determined by the
formula (6.1). Such kind of metrical connection will give the metrical N-inear
connections for the Lagrange space L. These connections depend only on the fun-
damental function L(x, y) and this is the reason for the N-metrical connection to
be caled canonical.

Applying the theory of N-linear connection from Chapter 1, one proves without
difficulties the following theorem:

Theorem 3.7.1. On the manifold 747 there exists the linear connection D which
satisfy the axioms:
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1° D is metrical connection with respect to G i.e.

(7.1) DG =0.
2° D preserves by parallelism the horizontal distribution of the canonical
nonlinear connection N.
3 The almost tangent structure J is absolute parallel with respect to D, i.e,
DJ=0.

From this theorem it follows that we have D = D¥ + DY and the h-component
DH and v—component DV have the properties

(7.2) DEG =0, DYG =0, VX € X(TM).
Moreover,

(DFYH)Y =0, (DFYV)* =0,
(7.3) (DYYHYW =0, (DYYV)H =0, VX € X(TM).
DiJ =0, DYJ=0.

Consequently, D is an N-linear connection and has two coefficients DI'(N) =
(L'jx, Ctji) which verify the following tensorial equations:
(74) gijIk = Oa gij}k =0
where | (]) isthe h (v)—covariant derivative with respect to DT(N) respectively. And
conversely, if an N-linear connection with the coefficients DG = (Lt;, C*ji) verifies
the properties (7.3), at (7.4) then it is metrical with respect to G, i.e. the equations
(7.2) are verified.

But if (7.2) are verified then the eguation DG = 0 is verified aso. So we can

refer the (7.4). We shall determine the general solution (L;x, C*;x) of the tensorial
equations (7.4). First of al we prove

Theorem 3.7.2.

1° There exists only one N-inear connection DI'(N) = (L%}, C*;;) which verifies
the following axioms:

A, N is canonical nonlinear connection of the space L™.
A, gijie = 0 (it is h-metrical).

Az il = 0 (it is v-metrical).

A4 Ty, =0 (it is h-torsion free),

As S, =0 (it is v-torsion free).
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2° The coefficients L, and C*;; are expressed by the following generalized Chris-
toffel symbols:

Lig=1tgr (59rk L 09 _ 5gjk)

1

29 \6z7 "ok Bar

i | s 0grk agrj agjlc

CJk_Qg <By1+8y’° oy"

3 This connection depends only on the fundamental function L(x, y) if the La-
grange space L™.

This theorem can be provided in the usual way (see [113]). And this metrical
N-linear connection will be called canonical and will be denoted by CT'(N).

Similar asin the case of Finsler spaces one can determine all N-linear connections
which satisfy only the axioms A;, A,, A; from the previous theorem.

Now we can study the geometry of Lagrange space L™ by means of canonical
metrical connection or by the general metrical connections which satisfy the axioms
Ay, A,, As. Inthisrespect we can determine asin the Finsler geometry, the structure
equations of the metrical N-inear connection DI'(N). Moreover, Ricci identitiesand
Bianchi identities can be written in the usual manner.

Therefore, by means of §.9, Ch. 1, the connection 1-forms w*; of the canonical
metrical N—connection CT'(N) are

(76) wij = Lijk d.Tk + Ci]'k (Syk,
where L;;, Ct; are given in (7.5).

Theorem 3.7.3. The connection 1-formsw?; of the canonical metrical N-connection
CT(N) satisfy the following structure equations

. ) (0).
d(dz*) — dr*frwiy = — Q°

(7.7) "
d(8y') ~ dyFnwy, = —Q°

and

(78) dwi] - wijwik = —Qij

0y, (1),
where the 2-forms of torsion 2%, Q* are as follows
) _ .
Q! = Cljk d:c’/\éyk
(7.9) W o1 o
0 = 5 lekdil?]/\dl‘k + Pljde]Aéyk
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and the 2-forms of curvature Q*; are
, 1. . 1.
(710) sz = -2- jlkhd.’Bk/\diL‘h + Pj'khdzk/\éyh + §Sj’kh6yk/\(5yh
the d—tensors of curvatureRj"kh, Py, Sjilch, and d-tensor of torsion Rijk, P“J-,c having

the known expression (see Ch.1, §5).

We notice that starting from the canonica metrical connection CT(N) = (L'j, C'jk),
other remarkable connections like the connection of Berwald BI'(N), Chern-Rund
RU(N) and Hashiguchi HT'(N) have the coefficients

ON*; . N, .
BI'(N) = ( ay’“J ,0), RT(N) = (Lj4,0), HT(N) = (Fy;l,c jk),
respectively. The following commutative diagram holds.
RT(N)
CP(N/ BI(N)

\;mg/

The corresponding transformations of connections from this diagram may be
easly deduced from the Finderian case
Some properties of the canonical metrical connection CT are given by

Proposition 3.7.1. We have:
1° > Rijx =0, Py = gisP*y is totally symmetric.
(ijk)
1 &L
4 Gyidyioyt
3® The covariant curvature d-tensors Rijkn, Pijkh, Sijen (With Rijkn = 9560’ s
etc.) are skew-symmetric in the first two indices.
4° Sijkn = CiesC%jn — CinsCP k-

These properties can be proved using the property d@ = 0, where 8 is the sym-
plectic structure (6.2), the Ricci identities applied to the fundamental tensor g;; of
the space and the equations g;;x = 0, Iiile = 0.

By the same methods we can study the metrical N-linear connections DIr(N) =
= (Z"jk,C"‘jk) which satisfy the axioms A, As, A3 and have a priori given d-tensors
of torsion 7", and 5.

2’ Cijx = = 9sC’ k.
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Theorem 3.7.4.

1° There exists only one N-linear DT(N) = (L4, C";x) connection which satis-
fies the following axioms:

A’} N is canonical nonlinear connection of the space L".
Ay giye =0 (D is h-metrical).

Ay 9l =0(D |sv-metr|cal)v.

A}y The h-tensor of torsion T'j is apriori given.

AL The v-tensor of torsion S’ is apriori given.

2° The coefficients fjk and Fijk of the previous connection are as follows

. ) 1 .
711) ?]k =Ly + 2 9" (gerTkh + gkrTrjh - gherj)
7.11
) ] 1 .
C'iw= Cly + 2 g (gjrgrkh 1 GkrS jn — ghr?m‘)

(L%, C;x) being the coefficients of canonical metrical N-connection CT(N).
The proof is similar with that of Theorem 3.7.2.

From now on T j, S will be denoted simply by T%jx, Sjx.

Proposition 3.7.2. The Ricci identities of the metrical N—connection DT'(N) are
given by:

Xk = Xpetj = X" Bnye = X T ™6 — X¥| R,
(7.12) lejlk - Xi|,c|J = X"Ppljx — X mC™jx — Xi|umjk,
Xlljlk - Xl]lclj = X"‘Sm’jk - Xl‘msm],k_
Indeed, we can apply Proposition 1.8.1.
Of course, the previous identities can be extended to a d-tensor field of type (r, )

on the ordinary way.
Denoting

(713) Di]' = yi|j, dij = yi|j

we have the h-deflection tensor field pi. and v-deflection tensor field d;.
The tensors D*; and d*; have the known expressions:

(7.13) DY =y'Lisj - N'j; &5 =8, +y°Cy';.

Applying the Ricci identities (7.12) to the Liouville vector field ¥ we obtain:
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Theorem 3.7.5. If DI'(N) is a metrical NHinear connection then the following
identities hold

D - Diklj =y Rptix — D' T™jx — d' R™ i,
(7.14) D' — &'y = Y Ptk — D'mCRR — &' P,
&5l = &yl; = Y™ Sm'ie — EmS.

3

We will apply the previous theory in next section, taking into account the ca-
nonical metrical N—connection CT'(N) and taking T%x = 0, S*; = 0. Of course, a
theory of parallelism of vector field with respect to the connection DT'(N) can be
done taking into account the considerations from §9, Ch.1.

3.8 Gravitational and eectromagnetic fields

Let us consider a Lagrange space L™ = (M, L(z,y)) endowed with the canonical
metrical N—connection CT(N) = (L'jk, C'jx).
The covariant deflection tensors D;; and d;; can be introduced by
(8.1) Di; = gisD*;, dij = gisd’;.
Obviously we have
Dy = GisD%jixy Gijik = Gis?’ jik

and analogous for the v-covariant derivation. Then, Theorem 3.7.5 implies:
Theorem 3.8.1. The covariant deflection tensor fields D;; and d;; of the canonical
metrical N—connection DT'(N) satisfy the identities:

Dijix — Dixj; = y° Roijr — dis R ji,
(8.2) Dulk — dig)j = ¥° Poiji — D;isC%jx — dis Py,

dijlk - dik!j = ¥*Saijk-

Some considerations from the Lagrange theory of electrodynamics, lead us to
introduce:

Definition 3.8.1. The tensor fields
1 1
§(D1j - Dj), fij = i(dij - dj)

are caled h- and v-electromagnetic tensor field of the Lagrange spaces L™, respec-
tively.

(8.3) Fy=
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Proposition 3.8.1. With respect to the canonical metrical N-connection CT'(N),
the v-€electromagnetic tensor f;; vanishes.

The Bianchi identities of CT(NV) and the identities (8.2) lead the following im-
portant resullt.

Theorem 3.8.2. The following generalized Maxwell equations hold:

Fijik + Figji + Frijy = =Y _ Cios R,
(8.4) (ijk)
Fij\k + ij]i + Fkilj =0,

where C,'oj = ySCisj.
Remarks.
1° If Lagrange space L" is a Finder space F" then C;,; = 0 and eguations (8.4)
simplifies.
2° If the canonical nonlinear connection N is flat, i.e. the distribution N is
integrable, R";; = 0 and the previous equations have a simple form.

If we put
(8.5) F7 = g*g""F,,
and
(8.6) hJ' = F9;, vJi = FY r

then we can prove:

Theorem 3.8.3. The following laws of conservation hold

i,_l ] L . ] T
(8.7 { hl = U Ry = Ry + B2 B g,

vJi. =0
="
where R;; is the Ricci tensor of the curvature tensor R;* .

Remark. The electromagnetic tensor field F;;, f;; and the Maxwell equations were
introduced by R. Miron and M. Radivoiovici, [113]. Important contributions have
M. Anastasiei, K. Buchner, R. Rosca (see Ref. from the book [113]).

The curvature d-tensors of the connection CT'(N), Ri"j«, P;*jx, Si"jx have the
following Ricci and scalar curvatures
{ Rij = R, Sij = Sifjn, 'Pyj = Pljn, "Py = Py,

8.8 g g
(88) R=g"R;;, S=g"85i;.
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)
Let us denote by T,],T,,,T,], ;; the components in the adapted basis (6 a6 )

of the energy momentum tensor. .

Using the almost K&hlerian model X" = (TM, G, IF) of the Lagrange space and
taking into account the canonical metrical connection CT'(N) (see Theorem 3.7.2)
we obtain[113]:

Theorem 3.8.4.
1° The Einstein equations of the almost Kahlerian space K**,(n > 2), endowed
with the canonical metrical connection CT'(V) are the following

L
]{ij 2 Rgl] = K'Tuy Pij = ”'ZTija
(8.9)

1 2
‘L] 2 Sgu = K,T”, "Pij = —K,T,'j,

where Kk is a real constant.

H |4
2° The energy momentum tensors T';; and Ty; satisfy the following laws of con-
servation

[ Ht 1 ih s S i v
(8.9) &T i = —5 (P st ni+ 2R ijP s) y KTj'i =0

The physical background of the previous theory was discussed by S. Ikeda in the
last chapter of the book [112]. All this theory is very simple if the Lagrange spaces
L™ have the property Pjix, = 0.

Corollary 3.8.1. If the canonical metrical connection CT'(N)has the property
P ;=0 then we have

1° For n > 2, the Einstein equations of the Lagrange space L™ have the form:

1 H
Ri; - 3 Rgij = kT;

(8.10) ; v
Sij - 5 Sgij = I‘&Tij.

H. V.
2° The following laws of conservation hold: T%j; = 0, T’].|i =0.

In the next section, we apply this theory for the Lagrangian of Electrodynamics.
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3.9 The Lagrange space of electrodynamics

The Lagrange spaces L§ = (M, Lo(z, y)), with the Lagrangian from Electrodynamics

. 2e .
(9.1) Lo(z,y) = meyy(z)y'y’ + pooy Ai(z)y'

which is obtained from the Lagrangian L(x, y), (1.3) for U = 0 is a very good
example in our theory. It was studied in the book [113]. We emphasized here only
the main results. The space Lj with the fundamental function (9.1) is called the
Lagrange space of electrodynamics.

The fundamental tensor of the space Ly is

(9.2) 9ij(z,y) = mey;(x)

and its contravariant is g¥(z,y) = %'yi"(z).
The canonical spray of the space L7 is given by the differential equations

d?z o dz
where
(9.3) Gi(@,4) = 27 (@)WY + = Py (2)y
' k 2’7 me J
and
(9.3)" Fip (2) = —— (8, Ax — BuA;).
. ik am 7 J

Let us denote
1] 0 i 18 0
(9.3)" Fli(z) = ¢"(z) Fy; (2).

The canonical nonlinear connection N has the coefficients

i X 0 .
(9.4) N =y u(z)y*~ F iy

As we remarked aready we have:

Theorem 3.9.1. The autoparallel curve of the canonical nonlinear connection (9.4)
are the solutions of the Lorentz equations

d*zt (@) dz? dz* 0 i dz?
gz TV g o =g
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The canonical metrical connection CT'(IV) has the coefficients
L' je(z,9) = 7'5(z), C'je = 0.
It follows that the curvature d-tensors are
Ritkn(z,y) = ' (@), Pin =0, Sj'kn =0,

where 7;%(z) is the curvature tensor of the Levi-Civita connection v;:(z).
The covariant deflection tensors are

Dy;(z,y) =1L)’ij (z), dij(z,y) = gi5(z)-

Proposition 3.9.1. The h- and v-electromagnetic tensor field of the Lagrange space

of electrodynamics are
0
Fij =Fy, [;; =0.

Consequently, the v-covariant derivative of the tensor Fj; vanishes. We obtain

Theorem 3.9.2. The generalized Maxwell equations (8.4) of the Lagrange space of
electrodynamics reduce to the classical ones.

Since Pj*kn = 0 implies‘P;; =" P,; = 0 and C*jx = 0 implies S;; =0, S = 0, we
get from Corollary 38.1.

Theorem 3.9.3. The Einstein equations (8.10) in L} reduce to the classical Ein-
stein equations associated to the Levi—Civita connection.

3.10 Genealized Lagrange spaces

The generalized Lagrange spaces were introduced by the first author, [95], and then
was studied by many collaborators (see [113]). The applications in the general
Relativity or in the relativistic optics was treated too [115)].

A detailed study of these spaces one finds in the books [113].

In this section we give a short introduction in the geometrical theory of gene-
ralized Lagrange spaces, since they will be considered in the geometry of Hamilton

Spaces.

Definition 3.10.1. A generalized Lagrange space is a pair GL™ = (M, gij(z,v)),
where g;,(z,y) is a d-tensor field on the manifold 7'M, covariant, symmetric, of rank
n and of constant signature onTM.



Ch.3. Lagrange spaces 85

gi; is caled fundamental tensor or metric tensor of the space GL".
Evidently, any Lagrange space L™ = (M, L(a: y)) isageneralized Lagrange space,

whose fundamental tensor field is g;; = -But not any generalized Lagrange

1 9

2 dy'dy’
goace GL™ = (M, g;;(z,y)) isaLagrangeqoace
Definition 3.10.2. We say that GL™ with fundamental tensor field gi;(z,y) is
reducible to a Lagrange space if the system of partial differential equations

1 &L

(10.1) 3 Byidy 9ij(z, )

has solutions with respect to L(X, y).
In order to aspace GL™ be reducible to a Lagrange space is necessary that the

d-tensor field g” be totally symmetric. So we have

Proposition 3.10.1. A generalized Lagrange space GL™ = (M, gi;(z,y)) for which

the tensor field g_g_,z_ is not totally symmetric is not reducible to a Lagrange space.

Example 1. The space GL" = (M, g;;(z,y)) with

(10.2) 9ii(,y) = €2 y;(2)

with nonvanishing d-covector field % and -;;(z) a Riemannian metric is not re-
ducible to a Lagrange space.

This example is strongly related to the axioms of Ehlers—Pirani—Schield and
theory Tavakol-Miron, from General Relativity [121]. This example was also studied
by Watanabe S, Ikeda, S. and Ikeda, F. [171].

Example 2. The space GL" = (M, gi;(z,y)) with the fundamental tensor field

(10.3) gis(z,y) = vi;(z) + (1 - ;zg(—i’—y)> Yilj

where 7;;(x) is a Riemann or Lorentz metric tensor, y; = vi;(z)y? and n(z,y) > 1 is
a refractive index, is not reducible to a Lagrange space.

This metric was introduced in Relativistic Optics by J.L. Synge [156]. It was
intensively studied by R. Miron and his collaborators [113], [115].
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These two examples show that the nonlinear connection with the coefficients
N'; = 7' (z)y”

v';x(z) being Christoffel symbols of the metric tensor ~,;(z), can be associated to
the fundamental tensor g;; of the space GL". But, generaly, we cannot derive a
nonlinear connection N from the fundamental tensor g;;.

So, we adopt the following postulate:

The generalized Lagrange space GL™ = (M, g;;(z,y)) isendowed with an apriori
given nonlinear connection N.

In this situation, we can develop the geometry of the pair (GL", N} by using the
same methods as in the case of Lagrange space L".

For instance, considering the adapted basis (61,56—) to N and V, respectively,
.’L"' 2

we can prove: Y

Theorem 3.10.1.

1° For a generalized Lagrange space endowed with a nonlinear connection N,
there exists a unique N-linear connection DT(N) = (L, Ct;x) satisfying the
following axioms:

A’ll gijlk = 0; A’zl gijlk = 0; Ag Tijk = 0; AZ Si]‘k =0.

2° DT(N) has the coefficients given by the generalized Christoffel symbols:

i Lo is Ogsk | 0G5 095k
Lok =39 (6a:j+5zk_:5? !

1

2
c = lg“ (agak 6gjs agjlc)
ML 9 :

(10.4)

oyl Oyt Oy

For more details we send the reader to the books [113].

Let us end this chapter with the following important remark. The class of Rie-
mannian spaces R™ is a subclass of the Finder gpaces £ and this is a subclass of
the class of the Lagrange spaces L™. Moreover, the class of Lagrange spaces L" is
a subclass of the generalized Lagrange spaces GL™. Hence, we have the following
inclusions:

{R*} c {F"} c {L"} Cc {GL"}.

This sequence of inclusions is important in applications to the geometric models in
Mechanics, Physics, Biology, etc., [18].



Chapter 4

The geometry of cotangent
bundle

The geometrical theory of cotangent bundle (T*M, n*, M) of a real, finite dimen-
sional manifold M isimportant in the differential geometry. Correlated with that of
tangent bundle (TM, 7, M) we get aframework for construction of geometrical mod-
els for Lagrangian and Hamiltonian Mechanics, as well as, for the duality between
them — viaLegendre transformation.

The total space T*M can be studied by the same methods as the total space
of tangent bundle TM. But there exist some specific geometric objects on T*M.
For instance the Liouville-Hamilton vector C*, Liouville 1-form w, the canonical
symplectic structure and the canonical Poisson structure. These properties are fun-
damental for introducing the notions of Hamilton space or Cartan space.

In this chapter we study some fundamental object fields on T*M: nonlinear
connections, N-linear connections, structure equations and their properties. We
preserve the convention that all geometrical objects on T*M or mappings defined
on T*M are of C*®—class.

4.1 Thebundle(T*M, 7*, M)

Let M be area n-dimensional differentiable manifold and let (T*M, 7*, M) be its
cotangent bundle [175]. If (z*) is alocal coordinate system on a domain U of a chart
on M, the induced system of coordinateson #*~1(U) are (z*, p;), (¢, J, k, ... = 1, ..., m).
The coordinates py, ..., p, are caled " momentum variables’.

87
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A change of coordinate on T*M is given by

: A o7
Mo il n —
= z(z!, ..., z"), rank (axj) =n,

. Ox
i = gi—ipj

(1.1)

Therefore the natural frame ( 36 66 ) are transformed by (1.1) in the form

0 _o¥ 9 4p 9
dri ~ 9zt 0¥ Ozt 9p;

1.2
" o _ow o
c’ip,- - 6.’L'i 651
Looking at the second formula (1.2) the following notation can be adopted
;.
(1.3) J= o
Indeed (1.2) gives us.
l i — @
(1.3) o= azjaf
The natural coframe (dz*,dp;) is changed by (1.1) by the rule:
, 0T 0z’ 3z’
(1.2) dz* = o ]d:c dp; = 55 A= 0p; + PEFr “=as Pt
The Jacobian matrix of change of coordinate (1.1) is
7
=
Jw=| 7"
o; 0w
Bzi oz u
It follows
det J(u) =1
We get:

Theorem 4.1.1. The manifold T*M is orientable.

Like in the case of tangent bundle, we can prove:
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Theorem 4.1.2. Ifthe base manifold M is paracompact, then the manifold T*M
is paracompact, too.

The kernel of thedifferential dr* : TT*M — TM of the natural projection
m* : T*"M — M is the vertical subbundle VT*M of the tangent bundle TT*M.
Associgting to each point w € T*M thefibre V, of VT*M we obtain the vertical
distribution:
ViueT"™M — V, CcT,T*M

This distribution is locally generated by the tangent vector field (8%, ...,8"). Soiit is
an integrable distribution, of local dimension n.

Noticing the formulae (1.2) and (1.2)' we can introduce the following geometrical
object fields:

(14) C* = piéi
(1.5) w = p;dxt
(1.6) 0 = dw = dp;AdT

Theorem 4.1.3. The following properties hold:

1° C"is a vertical vector field globally defined on T*M.
2° The formsw and @ are globally defined on T*M.
3 Ois a symplectic structure on T*M.

Proof. 1°. By meansof (1.1) and (1.3)"it follows that C* belongs to the distribution
V and it has the property C* = p,& = ;0"

2°. w and @ do not depend on the changes of coordinates on T*M.

3. #isacosd 2-form on T*M and rank||6|| = 2n = dim T* M.

C* will be called the Liouville-Hamilton vector field onT*M, w is caled the
Liouville 1-form and @ is the canonical symplectic structure on T*M.

The pair (T*M, 6) is a symplectic manifold.

4.2 The Poisson brackets. The Hamiltonian sys
tems

Let us consider the Poisson bracket { , } on T*M, defined by

_9f 99 09 9f .
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Proposition 4.2.1. We have

{f,g} e FT'M), ¥ f,g € F(T"M).

Proof. By means of (1.1), (1.2), f(z,) = f(z,p) and

of _ox of o of of _9v of
ori _ o 0@ ' ox* Op, Op, 0x Op;

Therefore we deduce
0f 09 _ OF 9w (0" 85  Opm 03
dp; 0zt op; 077 \ 0zt 0™  0z' Opm
_0f 95 0f 05 %bm _OF 05

~ 9p; 9% ' Op; Opm 037  Op; 0T

because % = 0. Consequently, {f, g} = {::Ej}. g.ed.

Theorem 4.2.1. The Poisson bracket { , } has the properties
r{fgt=-{9f}

2° {f,g} isRlinear in every argument
3 {{fighh}+{{g,h}, f1+ {{h. f} g} =0
& {gh} ={9}h+{, h}g.

By a straightforward calculus, using (2.1), 1°-4° can be proved. Therefore { , }
is called the canonical Poisson structure on T*M. The pair (F(T*M),{ , }) isa
Lie algebra, called Poisson-Lie algebra.

The relation between the structures 6 and { , } can be given by means of the
notion of Hamiltonian system.

Definition 4.2.1. A di[]‘grentiable Hamiltonian is a function H:T*M—R

which is of class C* on T*M = T*M\{0} and continuous on the zero section
of the projection 7* : T*M — M.

Definition 4.2.2. A Hamiltonian system is a triple (T*M, 6,H) formed by the

manifold T*M, canonical symplectic structure 8 and a differentiable Hamiltonian
H.
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Let us consider the F(T*M)-modules: X(T*M) and X*(T*M) — of tangent
vectors and covectors fields on T*M, respectively.
Thus, thefollowing F(T*M)-linear mapping:
Sp: X(T*M) — X*(T*"M)
can be defined by:

(2.2) Se(X) =ix8, ¥X € X(T*M).

Proposition 4.2.2. Sy isan isomorphism.
Indeed, Sy is a F(T*M)-linear mapping and bijective, because

rank||f| = 2n.

But we can remark that the local base of X (T*M), (
local base (dz*,dp;) of X*(T*M) by the rule

We get dso

0 9\ . .
557’6—;)1-)"5 sent by Sp inthe

(2.3) S5(C*) = w.
We can apply this property to prove:

Theorem 4.2.2. The following properties of the Hamiltonian system(T* M, 8, H)
hold:

1° There exists a unique vector field Xy € X(T*M) having the property

(2.4) ix,0 =—dH
2° The integral curves of the vector field Xy are given by the Hamilton—Jacobi
equations:
(2.5) de* _OH dp;  OH

dt  op; dt ot
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Proof. 1°. The existence and uniqueness of the vector field Xy is assured by
Proposition 4.2.2. It is given by

(2.6) Xy = S;'(—dH)
Using (2.3), Xy is expressed in the natural basis by

(26)' Xyz-f—.——f—f

2°. Theintegral curves of Xy from (2.6)' are given by the equations (2.5).g.e.d.
Xy is caled the Hamilton vector field.

Cordllary 4.2.1. Thefunction H(x, p) is constant along the integral curves of the
Hamilton vector field Xg.

Indeed, %é{ ={H,H}=0.
The structures § and { , } have a fundamental property given by the theorem:
Theorem 4.2.3. The following formula holds:

(2.7) {f,9} =0(Xs, X,), V(f,9) € F(T*M), VX € X(T'M).

Proof. From (2.6)' we deduce
{f,9} = Xpg = =X, f = —df(X,) = (ix,0)(X,) = 0(Xy, X).
g.ed.
Coradllary 4.2.2. The Hamilton—Jacobi equations can be written in the form
(28) = (H,2), = (Hp).
One knows, [167], the Jacobi method of integration of Hamilton-Jacobi equations

(2.5). Namely, we look for a solution curve #(¢) in T*M, of the form

(2.9) v =20, pi= oo (a(0)

where S € F(M).
Substituting in (2.5), we have

dr* _ 8H dpi S OH _ OH
(+) E—apim) > ety = Gu5aT 55y = "B
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It follows

3 = . =

JH 05\ (0H 0H OH oH
v ~ \ozt 8p; Op; O

Consequently, H (x,g—i:) = const., which is called the Hamilton—Jacobi equation

(of Mechanics). If integrated, it defines S and «(t) is obtained by the integration of
the first equation (*).

Remarks.

1° In the next chapter we will define the notion of Hamilton space H™ = (M, H(z, p)),
H being a differentiable regular Hamiltonian and we shall see that the Legen-
dre mapping between the Hamilton space H™ and a Lagrange spce L™ =
(M, L(x,y)) sent the Euler-Lagrange equations into the Hamilton-Jacobi e-
guations. This idea is basic for considering the notion of £-duality [66],[67],

[105].

2° The Poisson bracket { , } is also basic for quantization. The quantization of
a Mechanical system is a process which associates operators on some Hilbert
space with the rea functions on the manifold T™*M (phase space), such as
the commutator of two such operators is associated with Poisson bracket of
functions (Abraham and Marsden [3], [167]).

4.3 Homogeneity

The notion of homogeneity, with respect to the momentum variables p;, of a func-
tion f € F(T*M) can be studied by the same way as the homogeneity of functions
defined on the manifold TM (see Ch.l, 82).

Let H, be the group of homotheties on the fibres of T*M:

H,={h,: (z,p) € T'M — (z,ap) € T*M | a € R"}
The orbit of a point uy = (o, po) by H, is given by
' =z}, p; = ap}, Ya € R*
TfJe tangent vector at the point w, = hy(u) is the Liouville-Hamilton vector field
© (ZO)f'unction f € F(T*(M), differentiable on 7*M and continuous on the zero

section is called homogeneous of degreer, (r € Z), with respect to the variables p;
(or on the fibres of T*M), if

(3.1) foh,=d f, Va€R"
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Thisis
(3.1) f(z,ap) = d" f(z,p), Va € R*

Exactly as in the case of the homogeneity of the function f : TM — R, one can
prove:

Theorem 4.3.1. A function f: T*M — R, differentiableon 7*M and continuous
on the zero section of 7* : T*M — M is r-homogeneous with respect to p; if and
only if we have

(32) EC‘f = Tf»
where L¢- is the Lie derivation with respect to the Liouville-Hamilton vector field
C.

But (3.2) can be written in the form

of _

(3.2) Di op; =

rf.

A vector field X € X(T*M) is r-homogeneous with respect to p; if
Xoh,=a"'hioX, Vae R"

It follows :

Theorem 4.3.2. A vector field X € X(T*M) is r-homogeneous if and only if we
have:

Evidently, Le- X = [C, X].
Consequently:

° —?—,—Q— are 1-and 0-homogeneous with respect to p;.
ozt Op;

2° If f € F(T*M)is shomogeneous and X € X(T*M) is r-homogeneous then
fX is s + r homogeneous.

3 A vector field X given in the natural frame by

©. 8 @9
(3.4) X =X'55+Xig-
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0
is r-homogeneous with respect to p;, if and only if X * are r — 1 homogeneous

)
and X; are r-homogeneous with respect to p;.
g
4° C* =p, =— is 1-homogeneous.
P Bp; g
5° If X is r-homogeneous vector field on T*M and f is afunction, s-homogeneous,
then Xf is r + s — I-homogeneous function.

of *f
6° —— are s — 1 homogeneous and
g Bp:dp;

Pi
mogeneous.

are s — 2 homogeneous, if f is sho-

A g-form w € AY(T*M) is caled s-homogeneous with respect to p; (or on the
fibres of T*M) if:

(3.5) woh!=dw, VYac€R"

All properties given in Ch. 1, 82, for g-forms defined on the tangent manifold
TM, concerning their homogeneity are valid in the case of g-forms from AY(7T*M).
Weget:

Theorem 4.3.3. A g-formw on T*M is s-homogeneous on the fibres of T*M if
and only if

(3.6) Low = sw.

Consequences.

1° we ANT*M), ' € A7(T*M), s respectively s-homogeneous, imply wAw',
s + s'-homogeneous.

2° w € AYT*M), shomogeneous and (X), ey (X) r-homogeneous vector fields de-
1 q

termine the function w(X), ...,X)) r + s — 1 homogeneous.
(1 (g

3 dr?,dp; are O- respectively 1-homogeneous.
4° The Liouville 1-form w is 1-homogeneous.
5° The canonical symplectic structure @ is 1-homogeneous.

The previous consideratiosn will be applied especidly, in the study of Cartan spaces.
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4.4 Nonlinear connections

On the manifold T*M there exists a remarkable distribution V: v € T*M — V,, C
T.T*M. As we know V is integrable, having the adapted basis (8!, ...,8") and it is
of local dimension n.

Definition 4.4.1. A nonlinear connection on T*M is a differentiable distribution
N:ueT*M —:N, C T,T*M which is supplementary to the vertical distribution
V,i.e.:

(4.1) T.T'"M =N,®V,, Vue T"M

Consequently, the local dimension of the distribution N isn = dim M.

N will be called aso the horizontal distribution.

If N is given, there are uniquely determined a system of functions Nj;(z,p) in
every domain of alocal chart =*~!(U), such that the adapted basis to the distribution
N hastheform

é 0 0

(4.2) — = =—+N;

i =1,2,..,n).
5z oz 2 )

i5p; (z
The functions N;;(x, p) are caled the coefficients of the nonlinear connection N.

Theorem 4.4.1. A change of coordinate (1.2) on T*M transforms the coefficients
Nij(z,y) of a nonlinear connection N by the rule:

P VI

WP = oz oz Prozion

Conversely, a system of functions N;;(x,y) defined on each domain of local chart
from T*M, which verifies (4.3) with respect to (1.1), determines a nonlinear con-
nection.

2

(4.3)

Proof. By means of (1.1), (1.2), it follows from (4.2) the formula (4.3). Therefore,

{%,% generate a distribution N, which is supplementary to the vertical
distribution V, V being generated by 6i g.ed.

1

The sat of vector fields (é;%) give us an adapted basis to the distributions

N and V. The changes of coordinates (1.1) has the effect:

5 o & 0 o5 B

4.4 _— = T TS T = TS T
(44) dzt  Or' 637 Op; 0% 0Op;
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The dual basis of (55 ai) isgiven by (dz*, ép;), (i = 1,...,n) with

(45) 520: = dp,‘ - Nj,' d.’l)j

and the transformations of coordinates (1.1) transform the "adapted” dual basis,
(dz*, ép;) in the form
o1 s

i — 22 g = - .
(4.9) di* = e sz 8p; =55 op;

Theorem 4.4.2. If the base manifold M is paracompact, then on the manifold T* M
there exist the nonlinear connections.

Proof. M being paracompact, Theorem 4.1.2 affirms that T* M is paracompact,
too. Let G be a Riemannian structure on T*M and N the orthogonal distribution,
to the vetical distribution V with respect to G. Thus, the eguality (4.1) holds.
g.ed.

Consider a nonlinear connection N with the coefficients Nj;(z, p) and define the
st of functions

(4.6) (Nij — Njs)

(\.'Jfl—‘

Proposition 4.4.1. With respect to (1.1), 7; is transformed by the rule

Oz" 0x’
o7 oz "
Indeed, the formulae (4.3) and (4.6) lead to (4.7).

Consequently, 7;; is a distinguished tensor field, covariant of order two, skew-
symmetric. 7;; is caled the tensor of torsion of the nonlinear connection N. The
equation 7;; = 0 has a geometrical meaning. In this case the nonlinear connection
N is caled symmetric.

(4.7 Ty =

Theorem 4.4.3. With respect to a symmetric nonlinear connection N, the canonical
symplectic structure 6 and the canonical Poisson structure { , }, can be written in
the following invariant form

(4.8) 6 = dp;Adz*
_0f %9 9g of
(4.9) et = dp; é6* Op; oz
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Proof. Using (4.2), (4.5) and (4.6) we have

0= 6p,~/\dzi + 7ij dz*ndz?
(4.10) _of 59 g 6f of 89

ot =g, 55~ 5y 50~ T8y, B

But these formulae, for 7,; = 0, give us the announced formulae (4.8) and (4.9).
Now, by means of (4.4) and (4.4)' it follows the invariant form of #and { , }.g.ed.

Of course, we can define the curvature tensor field of a nonlinear connection N.
Indeed, df = 0 imply d(ép;)Adz* = 0. But d(dp;) is given by

Proposition 4.4.2. The exterior differential of dp; are given by

(4.11) d(opi) = — (%mjmdzm + 3"'N,»japm) Ada?
where
_ (5Nji 6Nm‘
(4.12) R;‘jh = —é.x—h - 7
Indeed, d(dp;) = —dN;Adz? and dN;; = ‘;N”d + %]:jiépm which determine

together (4.11) and (4.12).
It follows, without difficulties:

Proposition 4.4.3. By means of (1.1) we obtain:

= 01" 0z® OxP
(4.13) = o5 ow oar |
F N = o1' dz° Az" 02" sy ot 9%’
e A E AL el T

So, we can sy that R is a d-tensor field caled the d-tensor of curvature of N
and & N, is a d- connection determined by N called the Berwald connection.
Anaogoudy, we can study the Lie brackets of the vector fields from adapted

basis [ 2-,-2
5zt dp; |

Proposition 4.4.4. The Lie brackets of the vector fields
6§ 5 0
((5,‘ = E;; 3 = a—p;)
are as follows

(414) [5j76h] = Rijhéi [6j,6h] = —3"er3’.
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Now we can give a necessary and sufficient condition for the integrability of the
distribution N called the integrability of the nonlinear connection N.

Theorem 4.4.4. The horizontal distribution N is integrable if and only if the d-
tensor of curvature R, vanishes.

Indeed the Lie brackets of the vector fields from adapted basis é; of N belongs to N
if and only if R;;n, =0 (cf. (4.14)).

4.5 Distinguished vector and covector fields

Let N be a nonlinear connection on T*M. It gives rise to the direct decomposition
(4.1). Let h and v be the projectors defined by supplementary distributions N and
V. They have the following properties

(5.1) h+v=1I h*=h, v*=v, hov=voh=0.
If X € X(T*M) we denote

(5.2) X% =hX, X¥ =vX.

Therefore we have the unique decomposition

(5.3) X=Xx"4Xx"

Every component X# and XV is called a distinguished vector field. Shortly a d-
vector field. )
In the adapted basis (5, &) weget

(5.3) X" = Xi(z,p);, XV = X,(z,p)d".
With respect to (1.1), we have, using (4.4),

" Ty x0T
(5.3) X' = aij , Xi= aEiXJ.
But, these are the classical rules of transformations of the local coordinates of vector
and covector fields on the base manifold M. Therefore X'(x, p) is caled a d-vector
field, too and X;(z,p) is caled a d-covector field on T* M.

For instance C* = p;&* is a d-vector field and p; is a d-covector field on T* M.
Wehave C*H =0, C*Y = C*.
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A similar theory can be done for digtinguished 1-forms. With respect to the
direct decomposition (4.1) an 1-form w € X*(T*M) can be uniquely written in the
form

(5.4) w=wl +u"

where

(5.4) wl=woh, wW =wou.

In the adapted cobasis (dz?, dp;), weget

(5.5) Wi = wi(z,p)dz’, WY = wi(z,p)ip;

wH and w"are called, every one, d-1 form. The coefficients w;(x, p) and wi(z, p) are
d-covector and d-vector fields, respectively.

Now, let us consider afunction f € F(T*M). The 1-form df can be written in
the form (5.4)

(5.6) df = (df) + (df)¥, where
5f . of
' H_ “J 4.1 Vi 24 8.
Acurvey: I C R — T*M, having Im v C #*(U) has the analytical representation:
(5.7 Tt =zt), pi =pilt), t€ L

dy . . .
The tangent vector d_Z’ in a point of curve v can be sat in the form

d H v di ;
(5.8) —1~(d—7) +(ﬂ) LA A

dt ~ \at dt)  dt 6z ' dt Op;
where
Op; _ dp; dz’
! —_— = — S —_
(5.8) = o~ Nale(),p®)—

dt

Theorem 4.5.1. An horizontal curve« is characterized by the system of differential
equations

H
The curve v is caled horizontal if % = <d1) ,Vtel.

op;

(5.9) Tt = z'(¢), o

=0.

Clearly, if the functions z'(t) are given the previous system of differential equa-
tions has local solutions, when a point zi = z'(t), p?, to € I isgiven.
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4.6 The amost product structure IP. The metri-
cal structure G.
The almost complex structure IF

A nonlinear connection N on T* M can be characterized by some amost product
structure IP.
Let us consider the F(T*M)-linear mapping

P: X(T*M) — X(T*M)
defined by
(6.1) P(XH)=X" P(XV)=-X", VX € X(T*M).
Thus P hasthe properties:

PolP=171
(6.2) P=I-2v=2h-1
rankIP = 2n.

Theorem 4.6.1. A nonlinear connection N on T* M is characterized by the ex-
istence of an almost product structure IP on the manifold T* M whose eigenspaces
corresponding to the eigenvalue —1 coincide with the linear spaces of the vertical
distribution V on T* M.

Proof. If N isanonlinear connection, then we have the direct sum (4.1). Denoting h
and v the projectors determined by (41) we ge P =
= I—2v. Then IP has the property (6.1). 1P isan ailmost product structure, for which

P(XV) = -XV. Conversdy, if P2 =7 and P(X") = —XV, thenv = %(I—IP) and
h= l(I + IP) satisfy (5.1). Therefore, N = Kerv and it follows N @V =TT*M.
g.ed.

Proposition 4.6.1. The almost product structure IP is integrable if and only if the
nonlinear connection N is integrable.

Indeed, the Nijenhuis tensor of the structure IP, given by

(6.3) Np(X,Y) = PX,Y] + [PX,PY] - P[PX,Y] - P[X,PY]
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vanishes if and only if [X#,YH#]Y =0, VX,Y € X(T*M), because
Np(XH YY) = o[ X ¥ Y], Np(XH, XV) = Np(XV, YY) =0.

Remark. Of course we can consider ageneral amost product structure on T* M. It
will determine a general concept of connection on T* M. This idea was developed by
P. Antondli and D. Hrimiuc in the paper [14] and will be sudied in a next chapter
of this book.

Let us consider a Riemannian (or metrical) structure G on the manifold T* M.

The following property isevident: G uniquely determines an orthogonal distribu-
tion N to the vertical distribution V on T* M. Therefore N is anonlinear connection.
Let N;;(z, p) be the coefficients of N and h, v the supplementary projectors defined
by N and V. Then G can be written in the form

64) G=6+6Y, 6¥(X,Y) = G(X",YH), 6V(X,Y) = G(X".X"),
Or, in the adapted basis,
(6.5) G = gi;(z,p)dz’ @ da? + h¥(z, p)bp; ® bp;

where g;; is a covariant nonsingular, symmetric tensor field and A% is a contravariant
nonsingular, symmetric tensor field. Of course, the matrix ||g;;(z, p)||, ||* (z, p)|| are
positively defined.

The Riemannian manifold (T* M, G) can be studied by means of the methods
given by the geometry of the manifold T M.

If a tensor g;;(x,p) covariant, symmetric and positively defined on T*M and a
nonlinear connection N with coefficients Ny;(z,p) are given, then we can consider
the following Riemannian structure on T* M:

(66) G(l‘sp) = gij(xa p)dzi ® d.’L'] + g”(.’.l},p)(spl ® Jp:'

The tensor G is caled the N-lift to T* M of the d-tensor metric g;;(z, p).

Assuming that the d-tensor metric g;;(z, p) and the symmetric nonlinear con-
nection N(N;;) are given let us consder the following F(T*M)-linear mapping
IF: X(T*M) — X(T*M)

(6-7) ]F(fsi) = —51', ]F( i) =4
where
(6.7) 5= 2 8 = gy

. i = 5 0= 959

It is not difficult to prove, by a straightforward calculus:
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Theorem 4.6.2.
1 I¢ is globally defined on T* M.

2° T is the tensor field

(6.8) F = —g,;,0" ® dz’ + ¢"6; ® dp;
3 T is an almost complex structure:

(6.9) FolF=-1.

We have, too

Theorem 4.6.3. In order to the almost complex structure IF beintegrable is neces-
sary that the nonlinear connection N be integrable.

Proof. The Nijenhuis tensor Ny (6;,8;) = 0, imply, firstly Rijx = 0. It implies also
some conditions for g;; and N. g.e.d.

The relations between the structures G and IF are as follows

Theorem 4.6.4.

1° Thepair (G, ), G given by (6.6) and IF given by (6.7), is an almost hermitian
structure.

2° The associated almost symplectic structure to (G, IF) is the canonical symplec-
tic structure 8 = §p;Adz*.

Proof. 1°. We get from (6.6), (6.7), in the adapted basis (6;, &), G(FX,FY) =
G(X,Y).
2°. 8(X,Y)=G(FX,Y). g.ed.

4.7 d-tensor algebra. N-linear connections

As we know, a nonlinear connection N determines a direct decomposition (4.1)
with respect to which any vector field X on T* M can be written in the form X =
XH + XV. And any 1-form w on T* M is uniquely decomposed: w = w® +w". The
components X#, XV are distinguished vector fields and w,w" are distinguished
1-form field. Briefly, d-vector field, d-I-form field.
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Definition 4.7.1. A distinguished field on T*M (briefly d-tensor field) is a tensor
field T of type (r, s) on T* M with the property:

(7.1) T(J;,...,d;,)l(, o X) = TWH, .., 0V, x" ., xY)

1 ]

for any o, ...,w € X*(T*M) and for any X, X € X(T*M).

X=X X =X" ow=uw! w=w"ae exanples of d-vector fields or
d-I-form fields. _

In the adapted basis (;,9") and adapted cobasis (dz?,dp;) T can be written,
uniquely, in the form
(7.2) T=T; 520,08 0 ®d"® - ®dp,.
It follows that the addition of d-tensors and tensor product of them lead to the
d-tensor fields. So, the set (1, d;, 8% generates the algebra of d-tensors over the ring
of functions F(T*M).

Other examples é; f, &' f are d-covector and d-vector fields, respectively.

Clearly, with respect to (11) the coefficients T} (z, p) of a d-tensor fields are
transformed by the dasscd rule:

~. . 0oF 93 9zt Oz
118, __ e . hy..hr
(7.3) T = Ozhr  Qrhr 9Fn Qe kiokes

the notion of N-linear connection can be defined in the known manner (see Ch.l).
In the following we assume N is a symmetric nonlinear connection.

Definition 4.7.2. A linear connection D on T* M is called an N-linear connection
if:

1° D preserves by paralelism every distribution N and V.

2° The canonical symplectic structure 8§ = ép;Adz® has the associate tensor 6
absolute paralel with respect to D:

(7.4) Df = 0.
The following properties of an N-linear connection D are immediate:
(7.5) Dxh=Dxv=0; DyP =0
Indeed, (Dxh)(Y) = Dx(Y#) — (DxY)!. For Y = Y¥ we gea

(Dxh)(YH) = 0 and for Y = YV we get (Dxh)YY = 0. Similarly, Dxv = 0
and DxIP = Dx(] - 21)) =0.
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For an amost Hermitian structure (G, TF) given in the previous section, any
N-linear connection D, with the property DG = 0, has the property DIF = 0, too.
If X =X+ XY, then
(7.6) DXY = DxHY+DXvY
We find new operators of derivation in the algebra of d-tensors defined by:
(7.7) D% = Dxu, D% = Dxv

These operators are not the covariant derivatives in the d-tensor algebra, since
DEf=X"f#Xf Dxf=X"f#Xf.

Theorem 4.7.1. The operators D, D¥% have the following properties:
1°DEf=XxHf, DYf=X"f.

. [ DR(fY)=X"f-Y + fDYY
{ DX(fY)=XVf{ Y +fD}Y

) { DE(Y +Z)=DiY + Dz
DY(Y + Z)=DY%Y + D%\ Z

4 DY ., =D%+Df DY, =D¥+DyY

5 Dfx = fD¥, Dfx = fD%

6° DE§=0, D¥X0=0

7° The operators D, DY have the property of localization.

The proof of the previous theorem can be done by the classical methods [113].

The operator D will be called the operator of h-covariant derivation and DY%
will be caled the operator of v-covariant derivation.

D¥ DY act on the 1-form w on T* M by the rules

(DEw)(Y) = XTw(Y) ~ w(DXY)

(7.8) (DYw)(Y) = XYw(Y) — w(DYY)

Consequently, the actions of D# and D¥ on atensor field T of type (r, s) on T*M
are well determined.
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4.8 Tordon and curvature
The torsion T of an N-linear connection D is expressed as usually by
(8.1) T(X,Y)=DxY — Dy X — [X,Y].
It can be characterized by the following vector fields
TXA Y, (X" YY), (X", YY)
Taking the h- and v- components of these vectors we obtain the d-tensors of torsion:

T(XH,YH) = hT(XH, YH) + vTT(XH, YH),
(8.2) T(XH, YY) = hT(XH" YY) + vTF(XH, YY),
TXV, YY) =hrT(XY, YY) +oT(XV,YV).

Since V is an integrable distribution (8.1) implies

(8.3) RT(XV, YY) =0

Taking into account the definition (4.8.1) of the torsion T we obtain:
Proposition 4.8.1. The d-tensors of torsion of an N-linear connection D are:

KT(XH YH) = DHYH _ DHXH _ [xH yHH

RT(XH YY) = —~(DYXH + [XH, YV]H)
(8.4) V(X H YH) = ~[XH YHY
vIN(XH, YY) = DEYY — [XH YV]V

vIT(XY.YV)=DYYY - DY XV — [XV,YV]V.
The curvature IR of an N-linear connection D is given by
(8.5) R(X,Y)Z =(DxDy — DyDx)Z — Dixy)Z

Remarking that the vector field R(X,Y)Z¥ is horizonta one and
R(X,Y)ZY isvertica one, we have

(8.6) v(R(X,Y)Z%) =0, h(R(X,Y)ZY) =0
We will see that the d-tensors of curvature of the v-linear connection D are
(8.7) R(X?, Y")ZH, R(X¥,YV)z¥, R(XV,YV)zZH

Therefore, by means of (8.5)
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Proposition 4.8.2.
1° The Ricci identities of an N-linear connection Dare
(8.8) [Dx,Dy]Z =R(X,Y)Z + D[x,y]Z

2° The Bianchi identities are given by

S A{(DxT)IY,2) - R(X,Y)Z + T(T(X,Y),Z)} =0

(XY2Z)

Y {(DxR)(U,Y, Z) - R(T(X,Y), Z)U} = 0
(XY Z)

(8.9)

where Z means the cyclic sum.
(XY 2Z)

4.9 The coefficients of an N-linear connection

Let D be an N-linear connection and §; = %, b = 82 the adapted basis to N

and V. Then Dx = D¥ + D%. In order to determine the coefficients of D in the
adapted basis, we take into account the properties:

(9.1) Dy, = Dj!, Dy = D,

Theorem 4.9.1.
1° An N-linear connection D on T* M can be uniquely represented in the adapted

basis (§;,4") in the following form
Ds,6, = HA6y, Dy,0* = —Hj,;0"
Dy, 8; = C16y, Dy 0 = —C,10"

2° With respect to a change of coordinate (1.1) on T* M, the coefficients H3,(z, p)
transform by the rule:

(9.2)

. 81 8 0% ., O
(9:3) g 5 = e 1h ~ gpige’

while Ci*(z, p) is a d-tensor field of type (2, 1).

3* Conversely, if N is an apriori given nonlinear connection and a set of function
(Hy, C;7"), verifying 2° is given, then there exist a unique N-linear connection
D with the properties (9.2).
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Proof. 1°. Setting

Dy,0; = HAby, Dy 0 = —H};0"
and taking into account that D8 = 0 wheretensor 8 of the2-form 6 = dp;Adz* have
the components
8(6:,6;) =0, 6(8;,&) = ~&1, 6(&,8:) =&, §(&, %) =0
it follows that Dx8 = 0, imply H: = H!. Analogously, setting
Djy;6; = CM6y, Dy = —CPa",

from Dx8 = 0, it follows C¥ = ¢,

2°. By a straightforward calculus, taking into account the formulae (4.4), it
~..0z" 0T 0%
iy 2 7 ST
follows (9.3) and Ct 35 = Bp 5arCh -
3°. One demonstrates by the usually methods.

The pair DT'(N)=( }h,C{") is called the system of coefficients of D.

Proposition 4.9.1. The following formula holds:

(9 4) Da]d:l:i = ——H,‘ﬁdx", D5j(5p,‘ = H{'jdph
) Dy,dxt = — };jdmh, Dy, 0p; = C,-hjéph

Let us consider a d-tensor T, of type (r, s) expressed in the adapted basis in the
form (7.2), and a horizontal vector fidd X = X# = X§;. Applying Theorems 4.7.1
and 4.9.1 we obtain the h-covariant derivation D¥ of T in the form:

(9.5) DYT = X"T}! 56, ® - @ @ds" ® -~ @ op;,
where
0.5 T = STt 5 4 TG Hi b+ T
- ﬁ};.'.’.},Hj'im - T]lll ;IHJhm
The operator "[° is cadled h-covariant derivative with respect to

DI(N) = (H,,Ci").
Now, taking X = XV = X;&, D%T has the following form

(9.6) DYT = X, T30 |"5,® - @ ®de" ® - @ dp;,.,

J1--7s
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where
1130 TR A 21 dp his...ipr ,¥ir T 11...Eh ¥ErTR
(9.6) Togl™ =0y + T O™ 4+ T O™ =
) _mutr Yhm _ . _ Phdrthm
Th5,.5,C5, ok G

The operator "[" will be called the v-covariant derivative with respect to DT'(N) =
( ;:h’cijh)'

Proposition 4.9.2. The following properties hold:

1 TH-% s a d-tensor of type (r, s + 1).

Jregslm

° Tj|™ is a d-tensor of type (7 + 1,9).

Proposition 4.9.3. The operators ”|" and "|

P .
U fpm= o fim =87y

satisfy the properties:

©7) { Xim = 6 X + XM Hp; XP|™ = O™ + XPCy™

— h m_ A h
Wim = Omwi — whH,  wil™ = 0™ w;i — wp G

2° 7" and "|" are distributive with respect to the addition of the d-tensors of the
same type.

3 "I" and " commutewith the operation of contraction.

4 "" and |’ verify the Leibniz rule with respect to the tensor product of d-
tensors.

As an application let us consider the deflection tensors
(9.8) Aij = paj, 8 =pil’
Using (9.7) we get

(9.9) Aij = Nij = pnH™;j, 8 = 6] — pmC¥

In the particular case, A;; = 0, & = 8!, DT(N)is caled an N-linear connection of
Cartan type. It is characterized by

(9.10) Nij = poH™j, pnCT¥ = 0.

We have:
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Proposition 4.9.4. If thepair (H';x(z,p),C{*(z,p)) isgiven and H';(z,p) satis-
fy (9.3), then N;; = p,H[} are the coefficients of a nonlinear connection N, and
(H%;x(z,p), C{*(x,p)) are the coefficients of an N-linear connection D.

The proof is not difficult if we apply the point 3° from Theorem 4.9.1.
Based on the previous property we can prove:

Theorem 4.9.2. If the base manifold M is paracompact then on T* M there exist
the N-linear connections.

Proof. Let g(x) be a Riemannian metric on M and +;,(z) its coefficients of Levi-
Civita connection. Then N;, = PmYj, are the coefficients of a nonlinear connection
N on T* M. So, the pair (v},(z), 0) gives us the coefficients of an N-linear connection
DI'(N) on T* M.

4.10 The local expressions of d-tensors of torsion
and curvature

In the adapted basis (;, &) the Ricci identities (8.8), using the operators "’ and
"I", lead to the local expressions of the d-tensors of torsion and curvature.

Theorem 4.10.1. For any N-linear connection DI'(N) = (H"jk,CZh) the following
Ricci identities hold:
X — Xty = X" R’ jn = X T ™50 = X" R
(10.1) Xiut = Xt = X Pyl - X O — X4 PR
X1|J\ X’l |J XmS ijh _ Xi‘msmjh‘
where the coefficients T%;4, Rjn, C;™, P*,; and S,,7" are the d-tensors of torsion:
(10.2) Tijh = Hijh - Hihja St =t — oM, Pijh = Hi;h - 5iNuj
and Ri'jn, Pit;", Sy*" are the d-tensors of curvature:
Ri'jn = 8pH'y; — 6;Hgp + H™ i H' o — _
-H™ IchH mj + Ck1mijh1
_ (r')hHik‘ _ Ckihlj + Ckimph .
th 3th:g _ 3]Ck'h + CkaC h Ckmhcmij'

(10.3)
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Proof. By adirect calculus, using (9.7) we get

Xigin — Xowy =
= [6n, 6] X" + X™(0nH}; — 65 Hyy, + Hyp i Hiyy — Hyp Hii) — X T

Taking into account theformula 6y, §;]X* = R,,,,,]-a'"‘X", the previous equality leads
to the first Ricci formula, with the coefficients T%;x, Rx*;, from (10.2) and (10.3).
Etc.

Proposition 4.10.1. The following formule hold:

(10.4)

R(6;,0)0% = Ri'i6i, R(S;,0M)8 = Pt }i6;
R(D7, "8, = Syihis;

and . . " N
{ R(8;,81)0% = —Ri*;0, R(8;,0M)0" = —Pk Ao

R(&,0")9* = Sk

The proof can be given by a direct calculus, using the formula (8.5) and the
equations (8.6).
As usually, we extend the Ricci identities for any d-tensor field, given by (7.2).
For instance, if g¥/(z, p) is a d-tensor field, the Ricci identitiesfor gi/, with respect
to N-linear connection DI'(N) are
97 kin = 97 ik = 9™ Ry'kn + ¢ Ron? ki~
=39 mT™en — 991" Rnen,
gil* = " = .
- gmjpmikh + giumJ h__
— g4 C™ — g PRy

gijlklh _ gij|h|k — gmjsmikh + gimsmjkh _ gij|mSmkh.

(10.5)

In particular, if the N-linear connection DT'(N) satisfy the supplementary condi-
tions:

(10.6) gk =0, g7F =0
then (10.5) lead to the equations

9™ R'kn + ¢ Ryndin, = 0
(10.5)1 gmjpmikh + giumJ»kh =0
gijmikh + gimsmjkh =0
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Such kind of equations will be used for the N-linear connections compatible with a
metric structure G of the form (6.6). .

The Ricci identities applied to the Liouville-Hamilton vector field C* = p;6*
give us some important identities. To this aim, we take into account the deflection
tensors Ai]‘ = Dilj» 5ij = pi‘J-

Theorem 4.10.2. Any N-linear connection D satisfies the following identities
Aijik — Dixj = —PmBi™ ik — AimT™ ik — 6™ Ry

(10.7) Ayl" = 85 = —pmP™ — AinCy™ — 5Pty
§31F — 84 = —pmS* — Sk,

In particular, if the N-liner connection D is of Cartan type, i.e
A;; =0, 8; = &}, then we have

Proposition 4.10.2. Any N-linear connection of Cartan type satisfies the following
identities

(10.8) PmBi™k + Rije = 0, pnP™* + P*; = 0, pnS™* + S7* = 0.
Finaly, we remark that we can explicitly write the Bianchi identities, of an TV-

linear connection DI(N) = (H;, CI*) if we express in the adapted basis (4, 8*)
the Bianchi identities (8.9).

4.11 Paralldism. Horizontal and vertical paths

Le¢ D be an TV-linear connection, having the coefficients DI'(N) =
= (Hij;,C#*) in adapted basis (6, 0").

Consider a smooth parametrized curve v : I — T*M, having the image in a
domain of a chart of T* M. Thus « has the analytical expression of the form:

(11.1) o =2(t), p=pi(t), tel
. d . ) .
The tangent vector field 4 = d—z can be written in the frame (4;, ') (see 85, (5.8)),
as follows
c_dzt o Opi gy

(11.2) §= b+ 20
where

opi _ dp; dz?
(11.9) Be = B Nulalt), ) S

dt dt dt
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We denote
DX DX
(11.4) Di;X = ——, DX = =—dt, VX € X(T*M)
dt dt
. . . . . DX . .
DX is caled the covariant differential of the vector field X and —— is the covariant

dt
differential along the curve g.
If the vector field X is written in the form

X = X"+ XV = X6, + X,&, and 4 = ¥ +4Y,

then we can write ;
Dy =D+ Dy = —Ds, +

ar Dt g P
A straightforward calculus leads to
(11.5) DX = (dX' 4+ X™w! )0 + (dX; — Xpw™)&'
where
(11.6) w'; = H'jdz® + CiFépy.
w'; are called 1-forms of connection of D.
Setting

/ Wy _ i 45 w0k

(11.6) it =H' T +Cj at

the covariant differential % can be written:

DX _ [(dX'  _.wn)\. | (dX Wi\
(11.7) _Jt__<dt + X dt)6,+(}7 Xm dt)a
. . .. DX
The vector field X is called parallel along the curve v : I — T*M, if = 0,

VvVt e I. Weobtain

Theorem 4.11.1. The vector field X = Xi4;+X;d" isparallel along the parametrized
curve -, with respect to the N-linear connection D, if and only if its coordinates
X*, X; are solutions of the differential equations

dXi wim Xm w’"i

. — 4+ X" =0, — — Xp— =
(11.8) P dt 0 dt X dt 0
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The proof is immediate means of (11.7).

A theorem of existence and uniqueness for the parallel vector fields aong a given
parametrized curvey in the manifold T* M can be formulate in the classicad manner.

Let us consder the case of vector field X and N-connection D, for which DX = 0,
for any curve v. Remark that DX = 0 is equivalent to

(x) dX' + X™w'y = 0, dX; — Xpw™; = 0.

But dX* = §; X*dz’ + 0’ X'dp;, together with (11.6) lead to the system of differential
equations, equivalent to (*)

Xiljd.’l,‘j + Xi|j6pj = 0, Xil]‘dl'j + X,‘ljdpj =0
Since dz*, 6p; are arbitrary, it follows

oo fxu=0 w0

X,‘|]‘ = 0, Xilj =0

Using the Ricci identities (10.1), and taking into account (11.9) we obtain the nec-
essary conditions for a vector field X = X*é; + X, be absolute parallel:

Xthijk e 0, XhPhijk = 0, thhijk == 0

11.10 .
( ) XpRhj =0, XpPh*=0, XS =0

The h-connection D is called with "absolute paralelism of vectors if, (11.10) is
verified for any vector X. It follows:

Theorem 4.11.2. The N-linear connection D is with the absolute parallelism of
vectors, if and only if the curvature of D vanishes, i.e, we have

(1111) Rhijk = O, Phijk = 0’ Shijk = 0

Definition 4.11.1. The curve v : I — T*M s caled autoparald curve with
respect to the N-linear connection D if Dy = 0.

Using (11.2) it follows

Dy (d%'  dr® o, d dp;  Ops Wi\ 4
(11.12) dt—(w*“‘d?a‘)‘“(dta‘z; i )7

The previous formula leads to the property:
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Theorem 4.11.3. The curve+, (11.1) is autoparallel with respect to the N-connection
D if and only if the functions zt(t),p;(t), t € I, are the solutions of the following
system of differential eguations:

d*ct  dz* Wi d ép; Ops Wi
(11.13) il il

Starting from (11.13) we can ennounce a theorem of existence and unigueness
for the autoparallel curve can be formulated as in the classca manner.

d
In Section 5, we introduced the notion of horizontal curve, the condition dd

dt
H
(%) - Theorem 4.5.1 gives us a characterization of the horizontal curves by means
of the system of differential equation (5.9), i.e. z* = z*(t), % =0.

Definition 4.11.2. An horizontal path of an N-linear connection D is a horizontal
autoparallel curve with respect to D.

Theorem 4.11.4. The horizontal paths of an N-linear connection D are characte-
rized by the system of differential equations:

d*z , dz’ dz* op;
PRN— T _ = _——= 0
gz tH R =0

Indeed, the equations (11.13) and (;—z;’ =0lead to (11.14).

A parametrized curve v : I — T*M is caled vertical in the point z, € M, if its
tangent vector field 4 belongs to the vertical distribution V. That means v belongs
to the fibre of T* M in the point o € M.

Evidently, ~ is avertical curve in the pointz, € M, has the egquations (11.1) of

the form
(11.15) o =1, pi=pit), tel

(11.14)

Definition 4.11.2. A vertical path in the point g € M isavertical curve v in the
point £y which is autoparallel with respect to the N-linear connection D.

Theorem 4.11.3 implies:

Theorem 4.11.5. The vertical paths in the point z, € M with respect to the N-
linear connection D are characterized by the system of differential equations:

; . d°pi ik dp; dpx
11.1 i g i _ ol @p; OGPk _
(11.16) TT T g V (0,) dt dt 0

Of course, it is not difficult to formulate a theorem of existence and uniqueness for
the vertical pathsin T* M at the point z, € M.
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4.12 Structure equations of an N-linear connec-
tion. Bianchi identities

Let us consider an N-linear connection D with the coefficients DI'(N) =
= (H';x, Ci7%). 1ts 1-form of connection w?; are given by (11.6).

Proposition 4.12.1. With respect to a change of coordinate (1.1) on the manifold
T*M we have
Y A Oz’
Ft— 27 drd 8T = Sm.
dz e dz’, 6p; P 0p;
g 0o o FE
1= 90 9" * " 8% 0x*0xT

Indeed, the expression of w*; from (11.6) and the rules of transformations of dz*, ép;
and H'j, C7* leads to (12.1).
Now, it is not difficult to prove:

(12.1)

Lemma 4.12.1. The following geometrical object fields
d(dz’) — dz™Aw'y,, dép; + SpmAW™; and dwij — w’"]-Aw"m
are a d-vector field, a d-covector field and a d-tensor field of type (1, 1), respectively.
Using this lemma, we can prove by adirect calculus a fundamental result.

Theorem 4.12.1. For any N-linear connection D with the coefficients DT'(N) =
(H';, C7*%) the following structure equations hold:

d(dz’) — dz™Aw'y, = =0
(122) d(dpl) + 5pm/\w"',~ = -—Qi
dwij - w"'j/\wim = —Qij
where O, ; are the 2-forms of torsion:
1 ) ) )
Q= §T']-kdzj/\dzk + C,-’kdz’/\épk
(12.3) . ]
Q, = iRijkd:Ej/\d.’L'k + P"ijdszépk + 5S¢jk(5pj/\(5pk

and where €' is the 2-form of curvature:

) 1 . 1 .
(12.3) Q) = 5 Byimds Ada™ + Py da* Aopm + 54" 6pknSpm.
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Proof. @ = dz™Awi, and (11.6) imply the first equation (12.2); Q; =
= —(d(dp;) + dpmAw™;) and (4.11) lead to the second equation (12.2). Finaly,
the formulae (11.6), (4.11)

dw'; = dH;mAdzm + dC; "™ N8pm + C}md(dpm), and
dH'}m = 6,H}, dz* + 0°H!,.0p,, dCI™ = 6,Cimdz?® + *Cimbp,

give us the last equation (12.2), with @, from (12.3)'. g.ed.

Remark. The previous theorem is extremely important in the geometry of the
manifold T* M and, especidly in atheory of submanifolds embedded in T* M.

Now we remark that the exterior differential of the system (12.2), modulo the
same systkem determines the Bianchi identities of an N-linear connection DI'(N) =
(H'je, CF).

Theorem 4.12.2. The Bianchi identities of an N-linear connection DI'(N) are as
follows:

(hS ){Tihrla + T'pmT™ss — Rp'rs + RiprnCs™™} = 0
(12.4) AR Cl Skhm 8™ + Shre} = 0

(hé’s) {Rjrhla + Tmherms + ijsRmrh} =0

(hS ){Rjihﬂs + lehmera + Pjihmemar} =0

(125) o
S {szhrla + szhmsmsr} =0
(h,r,3)
(’.:4){Phisr + ChmrTism + Chir|s - Chimprms} - Tihsr + Tmhscmir =0
g, s _ A a'sC ir +C ermis =0
126) 7 1O+ G J

Rkhrs + Rksrlh + SkmhRmsr - Phkamrs + (A) {Rksmcrmh_
;Phkr|s - therks} =0
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(hA){thsr - Phksr - Phkmcsmr + SkhmPrms}‘}’

+PmksSmrh - Skrhls = 01

Rjirslk - Ijjikamrs + Sj‘tkml'zrnsr'ff
+(A){Rj¢nscrmk + leaklr + lermPkms} =0,
.8

(12.7)

(12.8) Sjwklr + Pjirmsmks + (;‘}C){Pjirsr: + Pjimscrmk + SjismPkmr} =0.
In the applications we will consider the cases

a Ti]'k = 0, Sijk =0

_ (r) .
b. lek = 0, Cijk = 0.

etc.
Of course, § is the symbol of cyclic sum and (A) is the symbol of alternate

(h,r,8)
sum.



Chapter 5

Hamilton spaces

Based of the conception of classical mechanics, the notion of Hamilton space was
defined and investigated by R. Miron in the papers [97], [101], [105]. It was studied
by D. Hrimiuc and H.Shimada [63], [66] €t .

The geometry of Hamilton spaces can be studied using the geometrical method
of that of cotangent bundle. On the other hand, it can be derived from the geometry
of Lagrange spaces via Legendre transformation, using the notion of £—duality.

In this chapter, we study the geometry of Hamilton spaces, combining these two
methods and systematically using the geometrical theory of cotangent bundle.

We start with the notion of generdized Hamilton space. And then we detect
from its geometry the theory of Hamilton spaces.

5.1 The spaces GH”

Definition 5.1.1. A generalized Hamilton space is a pair GH" = (M, ¢"(z,p)),
where M is a real n—dimensional manifold and ¢”(z,p) is a d-tensor field of type
(2,0) symmetric, nondegenerate and of constant signature on 7*M.

The tensor g% is called as usual the fundamental (or metric) tensor of the space
GH™,

In the case when the manifold M is paracompact, then there exist metric tensors
g"(x, p) positively defined such that (M, g¥/) is a generalized Hamilton space.

Definition 5.1.2. A generalized Hamilton space GH™ = (M, g"(z,p)) is caled
reducible to a Hamilton one if there exists a Hamilton function H(x,p) on T'M
such that

(1.1) g9 = %8“37'11

119
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Let us condder the d-tensor field
(1.2) CHk = —%3"5}”.
In asimilar manner in the case of generalized Lagrange spaces (cf. Ch.3) we can

prove:

Proposition 5.1.1. A necessary condition that a generalized Hamilton space be
reducible to a Hamilton one is that the d-tensor C*7* be totally symmetric.

Theorem 5.1.1. Let g¥(z,p) be the fundamental tensor of a space GH™, 0-ho-
mogeneous. Thus a necessary and sufficient condition that GH™ be reducible to a
Hamilton space is that the d-tensor field C* be totally symmetric.

Indeed, in this case the Hamilton function H(z,p) = ¢¥(z, p)p;p; Satisfies the
conditions imposed by Definition 5.1.2.

Remarks.
1 The definition of Hamilton spaces is given in a next section of this chapter.

2. Let ;(z) be a Riemann metric tensor. It is not difficult to prove that the
space GH™ with the fundamental tensor

9°(z,p) = e P (z), 0 € F(T*M)
is not reducible to a Hamilton space.

The covariant tensor g;; determined by g* is obtained from the equations
(1.3) gikg™ = 67.

Let us consider the following tensor field:
(1.4) c*k = —§gis(61g5k + 9%g7* — 9°g7%).
Proposition 5.1.2. The d-tensor Ci#* gives the v-coefficients of a v-covariant
derivation with the property:
(1.5 gt = 997 + Clg¥ + Ol = 0

The proof can be obtained easily.

We use the coefficients (1.4) in the theory of metrical connections with respect
to the fundamental tensor g¥.
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5.2 N-metrical connections in GH"

In general, we cannot determine a nonlinear connection from the fundamental tensor
g% of the space GH™. Therefore we study the N-linear connections compatible with
g, N being a priori given (cf. Ch.4).

If the nonlinear connection N has the coefficients N;;(x, p)then an adapted basis
to the horizontal distribution N and vertical distribution V on T*M is of the form

(2.1) {8k = Bk + Ni,; &, 5.
And an N-linear connection D has the coefficients DU(N) = (H' i, Ci7F).

Definition 5.2.1. An N-linear connection DT(N)is caled metrical with respect
to the fundamental tensor g* of the space GH™if:

(2.2) g9n =0, = 0.

In the case when g% is positively defined we obtain the geometrical meaning of
the conditions (2.2). In this respect we can consider "the length” of a d-covector
w;(z,p), given by ||w|| as follows

Hw”2 = ¢ (2, p)wiw;, Y (z,p) € TM.
We can prove without difficulties the followings:

Theorem 5.2.1. An N-linear connection DI'(N) is metrical with respect to the
fundamental tensor g* of the space GH™ if, and only if, along any smooth curve

v+ I — T°M and for any parallel d-covector field ws, i.e, D% _ 0, We have
dfjw]|
— =0.
dt
Using the condition (1.3), the tensorial equations (2.2) are equivalent to:
(2.2) gijie = 0, gisf* = 0.

Now, by the same methods as in Ch.3 we can prove a very important theorem.
We have:

Theorem 5.2.2. 1) There exist an unique N-linear connection DI'(N) = (Hijx, Ci7*%)
having the properties:

1° The nonlinear connection N is a priori given.

2° DI'(N) is metrical with respect to the fundamental tensor g% of the space GH™.
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3 Thetorisons T, and S,2* vanish.
2) The previous connection has the v-coefficients Ci7* from (1.4) and the h-coef-
ficients H'; expressed by

(2.3) Hy = 59'3(5]'931; + Okgjs — 0sgjk)-

For a generalized Hamilton space GH™ = (M, g*), Obata's operators [113] can

be defined:
I U B 3

(2.4) O = 5(5';‘% — gneg”), Ui = 5(5;;‘% + gng”).
We can prove:
Theorem 5.2.3. The set of all metrical N-inear connections DT(N) = (H' j, Ci*)
with respect to the fundamental tensor g% is given by
Hjg = Hije + Q5 X3,
Cik =C* + Q;;Z;",

where DT(N) = (H*j, Ci7%) isfrom (1.4), (2.3) and X*jx, Z* are arbitrary d-tensor
fields.

(2.5)

It is important to remark that the mappings DI'(N) — DI'(N) determined by
(2.5) and the compsotion of these mappings is an Abelian group.
From the previous theorem, we deduce:

Theorem 5.2.4. There exist an unique metrical N-linear connection DTY(N) =
(H jx, C:7%) with respect to the fundamental tensor ¢* having a priori given torsion
d-tensor fields Tk (= —T%;), Si#* (= ~Si*?). The coefficientsof DT'(V) have the
following expressions:

_ 1
ij=§
ey B T R T TR B A T
Ci]k — _é_gis(ajgsk + akggs _ aag]k) _ E!]ia(gmsh]k _ g]hShsk +g hSh]s)

97 (895 + 6k Gjs — 0s9jk) + 59”(gahThjk — ginT sk + gen T 5s)

Moreover, if we denote R™j, = g™ R,', etc. and apply to fundamental tensor
g" the Ricci identities taking into account the equations (2.2) we obtain:

Proposition 5.2.1. For any metrical N-inear connections DI'(N} with respect to
the fundamental tensor g* of the space GH™ the following identities hold:
R4 + Riy = 0, PUy% 4 Piyk = 0, Sihk 4 giikk —

2.7 ) ) ) )
27 Ri‘nk + Ry = 0, Sk 4 §7kk = Q.
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The expressions of the curvature tensors are given in the formulae (10.3), Ch.4.

The notions of parallelism, horizontal or vertical paths, as well as the structure e-
quations for an metrical N-linear connection with respect to the fundamental tensor
g can be studied, using the results obtained in the last section of Chapter 4.

5.3 The Ndift of GH™

Let GH™ = (M, g¥) be a generalized Hamilton space and N (IV;;) an apriori given
non-linear connection on the manifold T*M. Thus (6;, 8') from (2.1) is an adapted
basis to the distributions N and V. Its dual (dz?,dp;) basis is expressed by the
1-forms dz* and by

(3.1) op; = dp; — Njida?

Definition 5.3.1. The N-lift of the fundamental tensor g¥is

(3.2) G = gij(z,p)dz’ ® dz’ + ¢ (z, p)dp; ® bp;.

Theorem 5.3.1. We have:

1° The N-ift G is a tensor field of type (0,2) on T*M, symmetric, nonsingular
depending only on ¢* and on the nonlinear connection N.

2° The pair (T*M, G) is a pseudo—Riemannian space.
3 The distributions N and V are orthogonal with respect to G.

Indeed, every term from (3.2) is defined on T*M and is a tensor field. In the
adapted bass (2.1) the tensor field G has the components

(3'3) G(dbaéj) = gij) G((S,,B’) = 01 G(al?a’) = gij'

It follows that G is symmetric, nondegenerate of type (0,2) tensor field. Obviously

wehave G(XH,YV)=0, v XH# YV, g.ed.
Now, assuming that the nonlinear connection N (N;;) is symmetric, i.e. N;; =

= N, we consider the F(T*M) inear mapping IF : X (T*M) — X(T*M)defined
in (6.7), Ch.4

(3-4) IF(5i) = —51', F(éz’) =4, 5z' = gijaj-
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Theorem 5.3.2.
I Fis globaly defined on T*M.
2° I is the tensor field
F = —g,;0' ® do? + g6, @ Sp;.
3 IF is an almost complex structure determined by the fundamental tensor g
and by the nonlinear connection N.

4° The pair (G,IF) is an almost Hermitian structure determined only by g% and
N.

5° The associated almost symplectic structure to (G, IF) is the canonical symplec-
tic structure 8 = dp;Adzt = dp;Adzt.

It follows that the space (T*M, (G,IF)) is dmost Kahlerian. It is cdled the
amost Kéhlerian model of the generalized Hamilton space GH™.

5.4 Hamilton spaces

A Hamilton space H™ = (M, H(z, p)) is a particular case of a generalized Hamil-
ton space GH™ = (M, g¥?) in the sense that the fundamental tensor derived from a
regular Hamilton function H : T*M — R.

Sincethetriple (T* M, 8, H) forms a Hamiltonian system, we can apply the theory
from Chapter 4.

Definition 5.4.1. A Hamilton space is apair H® = (M, H(z,p)) where M isarea
n-dimensional manifold and H is a function on T*M having the properties.

1 H:(z,p) € T*M — H(z,p) € R is differentiable on the manifold 7*M and
it is continuous on the null section of 7* : T*M — M.

2° The Hessan of H (with respect to the momenta p;), given by the matrix
lg"(z, y)|| is nondegenerate:

(4.1) gz, y) = %éiéjH, rank”g“(z, p) " =non T*M.

3 The d-tensor field g% (z, p) has constant signature on T*M.
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Of course, g% from (4.1) is a d-tensor field, cf. §5,Ch.4. It is cdled the fun-
damental tensor, or metric tensor of the space H* = (M, H) and the Hamilton
function H is caled the fundamental function for H™.

From the previous definition we obtain:

Theorem 5.4.1. Every Hamilton space H™ = (M, H) is a generalized Hamilton
space.

Indeed, GH™ = (M, g¥), where ¢ is given by (4.1), is a generalized Hamilton
space.
The converse is not true (see Proposition 5.1.1).

Theorem 5.4.2. If the base manifold is paracompact, then there exists a Hamilton
function H on T*M, such that H™ = (M, H) is a Hamilton space.

Indeed, M being a paracompact manifold, let g¥(z) be a Riemannian metric
tensor on M. Then we can consider the Hamilton function on T*M:
H(z,p) = g (),
D) = mCQ Dibj,
where m # 0, and c is speed light. The properties [°-3° from the last definition can
be proved directly. g.ed.

Let us consider the canonical symplectic structure  on T*M:
(4.2) 6 = dp;Adz

By means of Definition 4.2.2, we obtain that the triple (T*M, 8, H), where H is
the fundamental function of a Hamilton space H", form a Hamilton system. Thus
the mapping Sp : X(T*M) ~— X*(T*M) defined by (2.2), Ch.4, Se(X) =ixfis an
isomorphism. Applying the Theorem 4.2.2 we obtain:

Theorem 5.4.3. For any Hamilton space H* = (M, H(z, p}) the following proper-
ties hold:

1° There exists a unique vector field Xz € X(T*M) with the property:

(4.3) ix,0 = —dH.

2° The integral curves of the vector field Xy are given by the Hamilton-Jacobi
equations:
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di* OH dp, _ OH

Indeed, from (2.6)", the Hamilton vector field X5z can be written as
(4.5) Xy=— —— - == —.

Also, we have:

Corollary 5.4.1. The fundamental function H(x, p) of the space H™ is constant
along the integral curve of the Hamilton vector field Xpg.
Now it is easy to observe that the following formula holds:

(4.6) {f,9} =0(X;, X,), VX € X(T"M).

Therefore, by means of Poisson brackets, the Hamilton-Jacobi eguations can be
written in the form:
dzt o dpi
E = {H,:I) }7 E = {H;pl}-
We remark that the Jacobi method of integration of Hamilton—Jacobi equations,
mentioned in §2, Ch.4, works in the present case as well.

One of the important d-tensor field derived from the fundamental function H of
the Hamilton space H" is.

(4.4)

(4.7) Ot = T BEH = 0.

Proposition 5.4.1. We have:
1° The d-tensor field C%* is totally symmetric.

2° CY* vanishes, if and only if the fundamental tensor field ¢“(z,p) does not
depend on the momenta p;.

Let us consider the coefficients C;7* from (1.4) of the v-covariant derivation.
From (4.7) it follows

(4.8) Gt = —%gisa’gjk; CY* = g“C it
Of course, these coefficients have the properties
(49) gijrl = 0, S,'jh = 0

In the next section we will use the functions C;?* as the v-coefficients of the
canonical metrical connection of the space H™.
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5.5 Canonical nonlinear connection of the space
HTL

An important problem is to determine a nonlinear connection N (V;;) for aHamilton
space H™ = (M, H(z, p)) depending on the fundamental function H, only.

A method for finding a nonlinear connection with the mentioned property was
given by R. Miron in the paper [97]. This consists in the transformation of the
canonical nonlinear connection N of a Lagrange space L™ = (M, L(z,y)), viaLe
gendre transformation: Leg: L™ — H™, into the canonical nonlinear connection of
the Hamilton space H™. This method will be developed in the Chapter 7, using the
notion of £-duality between the spaces L™ and H".

Here, we give the following result of R. Miron, without demonstration, which
can be found in §2 of Chapter 7.

We have:

Theorem 5.5.1.
1° The following set of functions

1 1 &’H ?H
(5.1) N;; = Z{gij: H} - 1 (gikapkaxj + gjkapkax,)
determines the coefficients of a nonlinear connection N of the Hamilton space
H™

2° The nonlinear connection with the coefficients NV;;, depends only on the fun-
damental function H of the Hamilton space H™.

The brackets { } from (5.1) are the Poisson brackets (2.1), Ch.4.

Indeed, by a straightforward computation, it follows that, under a coordinate
change on the total space of cotangent bundle T M, N;; from (5.1) obeysthe rule of
transformation (4.3), Ch.4. Hence, the point 1° of Theorem 5.5.1 is verified. Taking
into account the expressions of thecoefficients NV;;, given in (5.1), the property 2°
is dso evident.

The previous nonlinear connection will be caled canonical.

Remark. If the fundamental function H(x, p) of the space H™isglobaly defined
on T*M, then the canonical nonlinear connection has the same property.

Proposition 5.5.1. The canonical nonlinear connection N of the Hamilton space
H" = (M, H(z,p)) hasthe following properties

1
(5.2) Tij = i(Nij - N;;)=0
(5.3) szk + Rjk,‘ + Rlcij =0
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where R;; is given by (4.12), Ch.4.

Proof. 1° The proof follows directly by (5.1); 2° is a consequence of the formula
(4.12),Ch.4. g.ed.

Taking into account the fact that the canonical nonlinear connection N is a
regular distribution on T*M with the property:

(5.4) T,T*M =N, ®V,, Vue T*M,

it follows that (d;, &) is an adapted basis to the direct decomposition (5.4), where
(5.5) 8; = 8; + N; .

The dual basis of (6;,8") is (dz*, 6p;), where

(5.5)' 6p; = dp; — Njida’.

Therefore, we can apply the theory of N-metrical connection expounded in §2 of the
present chapter for study the canonical case.

5.6 The canonical metrical connection of Hamil-
ton space H"

Let us consider the N-linear connections DT(N) = (H';;, C#*) with the property
that N is the canonical nonlinear connection with the coefficients (5.1). It can be
studied by means of theory presented in §5.2.

Consequently, we have:

Theorem 5.6.1. 1) In a Hamilton space H™ = (M, H(z,p)) there exists a unique
N-linear connection DI'(N) = (H';i, Ci*) verifying the axioms:

1° N is the canonical nonlinear connection.

2° The fundamental tensor g% is h-covariant constant

(6.1) 97k =0.
3° The tensor g% is v-covariant constant, i.e.
(6.2) giF = 0.

4° DT(N) is h-torsion free, i.e.
Tijk = Hijk b Hikj = 0
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5° DI'(N) is v-torsion free, i.e.

S,‘jk = C,'jk - Cikj =0.

2) The connection DT'(N) has its coefficients(NV;, H'jx, Ci*) given by (5.1) and
by the following generalized Christoffel symbols:

. 1 .
Hljk = igls(éjgsk + 5kgjs - 6sgjk)a
(6.3) , 1 . Co 1 .
C* = —2is(@ g™ + 0'¢" - 8'¢") = —5gi, ™.

3) This connection depends only on the fundamental function H of the Hamilton
space H™.

The proof of this theorem follows the ordinary way.

A such kind of connection, determined only by the fundamental function H is
called canonical and isdenoted by CT(N) = (H'jx, Ci#*) orby CT = (N,;, H' jx,, Ci?%).

Now we can repeat Theorems 5.2.3 and 5.2.4, using the canonical metrical con-
nection CT.

Proposition 5.6.1. The Ricci identities, with respect to the canonical connection
CT aregiven by

X = X'l = X™ R’ j ~ X*I" Rmjin,
(6.4) Xl — Xy = X7 Pl — X4yt — X PR
X~ XOPP = X7 S,
where the d-tensors of torsion are T%j = 0, Si* = 0, C/% and
(6.5) Rijn = 6, Nji — 0;Nyi, Pt = H"; — "Ny,
respectively, and the d-tensors of curvature of CT are given by (10.3), Ch.4.

The Ricci identities can be extended as usual to any d-tensor field.
For instance, in the case of a d-tensor field ¢¥(z, p) we have

ki — 9\ = t™ Ryl + ™ Rindkn — £ [" R
(6.4)' tijucth - tij,h“‘; = tijmi/ch + tiumjkh - tij[mckmh - tij,'"'thk
tzjrc'h _ tz],h'lc — tijmzkh + tijmjkh.

Applying the identities (6.4)' to the fundamental tensor g* of the Hamilton space
H™ weobtain
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Propostion 5.6.2. The canonical connection CT' has the properties (2.7), i.e.
(6.6) Rijhk + Rjihk =0, Pijhk + Pjihk =0, Sishk | giikk —

The Ricci identities applied to the Liouville-Hamilton vector field C* = p;&* lead
to some important identities.

Proposition 5.6.3. The canonical metrical connection CT' of the Hamilton space
H" = (M, H) satisfies the following identities

Ajjik — Dikj = —PmRi™jk — 6" Ronjix

(6.7) Ayl = 8% = —pm P * — AimCy™ — §™ P,
§F — 865 = —pn Sk

where A;; and §,* are the deflections tensors of CT(N):

(6.7) A5 = pyss 5; = p;l’

are given by (9.9), Ch.4.

The canonical metrical connection CT is of Cartan type if 4;; =0, 8, = 8:. From
(6.7) we obtain the following

Proposition 5.6.4. If the canonical metrical connection of thespace H" is of
Cartan type, then the identities (10.8), Ch. 4, hold good.

Applying again the Ricci identities to the fundamental function H of the Hamil-
ton space H", we abtain:

Proposition 5.6.5. The following identities hold:

Hyjie — Hywy; = —H[" Rpnjk
(6.8) Hy;ft — HFy; = —HinC;™ — HI™ Pk,
HPf — HfY =0.

5.7 Structure equations of CT'(N). Bianchi iden-
tities

For the canonical connection CT' = (H'j;, C#¥) the 1-form of connection w’; are

given by (11.6), Ch.4:

(71) wij = Hijkdl’k + C,jképk.
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The structure equations of CT" are given by Theorem 4.12.1. In this case, we
have:

Theorem 5.7.1. The canonial metrical connection CT of the Hamilton space H™ =
= (M, H) has the following structure equations

d(da') — dz™ AW, = -,
(7.2) d(8p;) + dpmAw™; = =S,

dw'; — wm AW, = =,
where ¢, Q; are the 2-forms of torsion:
(7.3) Q' = C;*d? Nopy, Ui = %&jkdxf Adz¥ + P*;dz? Adpy,
and where £; are the 2-forms of curvature:

. 1. ) 1.,
(7.4) sz = 3 jlkmdl‘k/\dl'm + P,-'kmdx’“/\épm + §Sj1km5pk/\(5pm.

The previous theorem is very useful in the geometry of Hamilton spaces and
especidly in the theory of subspaces of Hamilton spaces.

We can now derive the Bianchi identities of the canonical metrical connection
CT, taking the exterior differential of the system of eguations (7.2), modulo the
same system.

We obtain a particular case of Theorem 4.12.2:

Theorem 5.7.2. The canonical metrical connection CT of the Hamilton space H™
satisfies the Bianchi identities(12.4)<(12.8), Ch.4, with T%;, = 0, Si#% = 0.

5.8 Parallelism. Horizontal and vertical paths

The notion of parallelism of vector fields in the Hamilton spaces H"™ = (M, H(z, p)),
endowed with the canonical metrical connection CT = (N4, H';x, C:i#*) can be stud-
ied as an application of the theory presented in §11, Chapter 4.

Let y: I — T*M be a parametrized curve with the analytical expression

(8.1) ot = a'(t), p; = pi(t), t € 1, rank|pi(8)]] = 1.

Then it results ,
_dy _drt &p;

7()—E_E5i+ﬂa
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where

J

at  dt e
Here N;; are the coefficients (5.1) of the canonical nonlinear connection. We say

that the curve ~ is horizontal if % =0,Vtel

For a vector field X on TM, given in adapted basis by
X = X'6; + X,8,

along of the curve «y, we have the covariant differential D of CT' of the form (11.7),
Ch.4:

DX [dX' . wi dX; 1
(8:3) W’(dt +X dt)5+(dt ~ Xm dt)a

where w*; are 1-forms connection of CT.
It follows:

Theorem 5.8.1. The vector field X = X'4;+ X;&' isparallel along the parametrized
curve ~y, with respect to the canonical metrical connection CT, if and only if its
coordinates X* and X; are solutions of the differential equations (11.8), Ch.4, where
w';(z(t), p(t)) are the 1-forms connection of CT.

In particular, (see Theorem 4.11.2), we have:

Theorem 5.8.2. The Hamilton space H™ = (M, H), endowed with the canonical
metrical connection CT, is with absolute parallelism of vectors if and only if the
d-curvature tensors of CT' Ri7ky, ;'™ and S;7*" respectively vanish.

We say that thecurve 7 is autoparallel with respect to CT if —d— =0,Vtel
Taking into account Theorem 4.11.3, we have

Theorem 5.8.3. A curvewy : I — T*M isautoparallel with respect to the canonical
metrical connection CT if and only if the functions (z*(t), pi(t)), t € I are the so-
lutions of the system of differential equations (11.13), Ch. 4, in which w*; arethe
1-forms connection of CT.

By means of Definition 4.11.2, a horizontal path of the canonical metrical connec-

tion CT of Hamilton space H™, is a horizontal autoparallel curve. Theorem 4.11.4
gives us.
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Theorem 5.8.4. The horizontal paths of the Hamilton space H", endowed with
the canonial metrical connection CT' are characterized by the system of differential
equations:

4z dz’ dz* dp; dzd

B4 S+ HaGO.p0) 5 T =0, T - Nue®),p0) - = 0

We recall that v :t € I — ~(t) € T*M is avertica curve in the point o € M
dz’ . . Lo . :
if T 0. Hence, its analytical representation in local coordinates is of the form

‘Ti =‘Z‘:.)y Di :pt(t)) te I

Thus, avertical path in the point z; € M isavertical curve v in the point zo which
is autoparallel with respect to CT.
Theorem 4.11.5 leads to:

Theorem 5.8.5. The vertical paths in the point zy € M with respect to the canonical
metrical connection CT of the Hamilton space H™ = (M, H) are characterized by
the system of differential equations

dzpz dp; dpk
ik 7 —
dt — G (zo, )dt dt

i i
z' = Ty,

In next section we apply these results in some important particular cases.

5.9 The Hamilton spaces of electrodynamics
Let us consider some important examples of Hamilton spaces.
1) Gravitational field

The Lagrangian of gravitational field L = mey;;(z)y*y’ (see Ch.3) is transformed,
via Legendre transformation ,in the regular Hamiltonian

_ L .
(9.1) H= —7 (z)pip;-

Therefore the pair H™ = (M, H) is a Hamilton space. Its fundamental tensor field
is given by

(9.2) g7 = —1Y(a).
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It follows that (T*M.9, H) is a Hamiltonian system. Using Theorem 4.2.2, we
obtain

Proposition 5.9.1. The Hamilton—-Jacobi equations of the space H*, with the fun-
damental function (9.1), are:
de* i dp 0H

(93) E =g°pPj;

dt ~ 8zt

Let us denote +*x(x) the Christoffel symbols of the metric tensor +;;(z) we
obtain:

Proposition 5.9.2. The canonical nonlinear connection N of the space H" =
(M, H),(9.1) hasthe following coefficients

(9.4) Nii(z,y) = v*i5(x)pe.

Indeed, the coefficients V;; are given by the formula (5.1). Therefore (9.4) holds.

Proposition 5.9.3. The canonical metrial connection of the Hamilton space H™
has the coefficients

(9.5) Hijk = ’)’ijk, Cijk =0.

Now we can apply to this case the whole theory from the previous sections of
this chapter.

2) The Hamilton space of electrodynamics

The Lagrangian of electrodynamics (9.1), Ch.3, is transformed via Legendre
transformation in the following regular Hamiltonian

1. 2e . e .
— AU . — ———— A , — A .
(9.6) H(z,p) mc')' (z)pip; mch (z)p: + ’mCSA (z)Ai(z),
where m, ¢,y (z) have the meanings from (9.1), e is the charge of test body, A4;(x)
is the vector—potential of an electromagnetic field, and A*(z) = v"(z)A;(z).
The first thing to remark is

Proposition 5.9.4. The pair H* = (M, H), (9.6) is an Hamilton space.
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Indeed, adirect calculus leads to the d-tensor
7 U= ¥,
(9.7) g = —7

Thisisthe fundamental tensor the space H™. Its covariant is g;;(z) = mcy;;(z). The
Hamilton—Jacobi equations, (2.2), Ch.4, can be easily written.
The velocity field of this space can be written:

1. 1 .. e .

i _ _Aat — Y L At .
(9.8) P = 26H pl (x)p; 62A (z)
And the canonical nonlinear connection is given by

Proposition 5.9.5. The canonical nonlinear connection of the space H™ with the
Hamiltonian (9.6) has the following coefficients:

(9.9) Nij = 7*i5(z)pr + E(Aiuc + Agi),
(54

oA,

ok

Indeed, to prove the formula (9.9) we apply the formula (5.1) to the fundamental
function (9.6).

Now, remarking that

where A, = — AV ik

3gi; 07
S L = meg .
Proposition 5.9.6. The canonical metrical connection CT' of the Hamilton space
H™ with the fundamental function H(x, p) with the Hamiltonian (9.6), has the fol-

lowing coefficients:

H'ji = 7', C2* =0.

These geometrical object fields: H, gi;, Nij, H'jx, Ci#F alow to develop the
geometry of the Hamilton space of electrodynamic.

3) In the case when we take into account the Lagrangian

. 2e )
L(z,y) = mevyii(z)y'y’ + ;n‘Ai(z)y' + U(z),

where U(x) is a force function, applying Legendre mapping we get the following
Hamiltonian

H(z,p) =——p~7" (@)pip; - VRN — g piA(2)+
(9'10) c(m-:c—) c (m+ 2)

et ) - L T

23 (m + [—é)
¢
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It follows

Proposition 5.9.7. The pair H™ = (M, H) with the Hamiltonian (9.10) is a Ha-
milton space, having the fundamental tensor field:

g7 = ”“——U)’Y“ (2)pip;.

We can prove dso:

Proposition 5.9.8. The canonical nonlinear connection of the space H™, (9.10)
has the coefficients

Ny = 7*ijpe + {gniA™); + gngAM: — (AU; + AU}

¢
2c? (m + —Ug)
c

Proposition 5.9.9. The canonical metrical connection of the space H", (9.10), has
the coefficients CT' = (H*;, Ci7*):

Hi =7, C*=0.

Now the previous theory of this chapter can be applied to the Hamilton space
H", (9.10).

510 The amogt Kahlerian modd of an Hamil-
ton space

Let H* = (M, H(z,p)) be a Hamilton space and g*(z, p) its fundamental tensor
field.
The canonical nonlinear connection N has the coefficients (5.1). The adapted

basis to the distributions N and V is <i; =6 =0+ Mjéf,éi) and its dual basis

éx
Ss (dz*, dp; = dp; — Njdx?). N
Thus the following tensor on T*M:

(10.1) G = gij(z,p)dr’ @ da? + g% (z, p)dp; ® Op;

gives a pseudo-Riemannian structure on T*M, which depends only on the fun-
damental function H(x, p) of the Hamilton space H™. These properties are the
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consequences of Theorem 5.3.1 and of the fact that N, is the canonical nonlinear

connection.
The tensor G is called the N-lift of the fundamental tensor g¥.
The distributions N and V are orthogonal with respect to G, because the for-

mulae (3.3) hold. _ N L
Taking into account the mapping F : X(T*M — X (T*M)defined in (3.4) with
respect to the canonical nonlinear connection, we obtain the following properties:

1° IF is globally defined on 7*M.
2° TF is an almost complex structure: o I = — on T*M.

3 IF is determined only by the fundamental function H(x, p) of the Hamilton
space H™.

Finally, we obtain a particular form of Theorem 5.3.2;
Theorem 5.10.1.
1° The pair (G, IF) is an almost Hermitian structure on the manifold T*M.

2° The structure (G, TF) is determined only by the fundamental function H(x, p)
of the Hamilton space H™.

3> The associated almost symplectic structure to (G, IF) is the canonical symplec-
tic structure 6 = dp;Adz* = dp;Adz.

4 Thespace (T*M, G, IF) is almost Kahlerian.
The proof is similar with that from Lagrange spaces (cf. Ch.3).
The equality dpiAdat = (dp; — Njida?)Adat = dpiAdz® = 6 follows from the fact
that the torsion 7;; = %(Nij — Nj;) of the canonical nonlinear connection vanishes

(cf (5.1)). N
The space (7*M, G, IF) is cdled the dmost Kahlerian model of the Hamilton
space H™. This model is useful in applications.



Chapter 6

Cartan spaces

The modern formulation of the notion of Cartan spacesis due of the first author [97],
[98], [99]. Based on the studies of E. Cartan, A. Kawaguchi [75], H. Rund [139], R.
Miron [98], [99], D. Hrimiuc and H.Shimada [66], [67], P.L. Antonelli [21], etc., the
geometry of Cartan spaces is today an important chapter of differential geometry.

In the previous chapter we have presented the geometrical theory of Hamilton
spaces H® = (M, H(z,p)). In particular, if the fundamental function H(x,p) is
2-homogeneous on the fibres of the cotangent bundle (T*M, #*, M) the notion of
Cartan space is obtained. It is remarkable that these spaces appear as dual of the
Finsler spaces, via Legendre transformation. Using this duality several important
resultsin the Cartan spaces can be obtained: the canonical nonlinear connection, the
canonical metrical connection etc. Therefore, the theory of Cartan spaces has the
same symmetry and beauty like Finsler geometry. Moreover, it gives a geometrical
framework for the Hamiltonian theory of Mechanics or Physica fields.

6.1 The notion of Cartan space

As usually, we consider a real, n-dimmg;gnal smooth manifold M, the cotangent
bundle(T*M, 7*, M) and the manifold T*M = T*M\{0}.

Definition 6.1.1. A Cartan space is a pair C* = (M, K(z,p)) such that the fol-
lowing axioms hold:

1° K is ared function on T*M, differentiable on T*M and continuous on the
null section of the projection #*.

2° K is positive on T*M.
3 K is positively 1-homogeneous with respect to the momenta p;.

4° The Hessian of K2, with elements

139
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(1.1) g7 (z,p) = %3"'37'1{2
is positive-defined.

It follows that g (x, p) is @a symmetric and nonsingular d-tensor field, contravari-
ant of order 2. Hence we have

(1.2) rank”g”(z,p)” =n, on T*M.

The functions ¢ (z, p) are 0-homogeneous with respect to the momenta p;.

For a Cartan space C* = (M, K(z,p)) the function K is caled the fundamental
function and ¢¥ the fundamental or metric tensor.

At the beginning we remark:

Theorem 6.1.1 If the base manifold M is paracompact, then on the manifold T*M
there exist functions K such that the pair (M, K) is a Cartan space.

Indeed, if M is paracompact, then T*M is paracompact too. Let g¥(z,p) be a
Riemann structure on M. Considering the function

(1.3) K(z,p) = {¢7(z)pip;}'* on T*M
we obtain a fundamental function for a Cartan space C*.
Examples.
1 Let(M, vi;(z)) be a Riemannian manifold and
a* = {v(z)pp;}'/%, B° = b(z)p.

Assuming 8 > 0 on an open sat U € T*M it follows that

(1.4) K(z,p)=a* + B*
*\2
(1.4) K(z,p) = (‘/‘3 )

are the fundamental functions of Cartan spaces.
The first one, (1.4), is called Randers metric and the second one, (1.4)", is called
the Kropina metric. They will be studied in Chapter 7.

Remark. More generally, we can consider the Cartan spaces with (o, B*)—metric.
They are given by the definition 6.1.1, with K(z,p) = K(a*(z, p), 8*(z,p)), K being
a function 1-homogeneous with respect to o* and 3*.
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2. The pair ¢* = (M, K(p)), where
(1.5) K@) ={()"+ @)™+ + ()" }™, (m=2r, r > 1).
in the preferential charts of an atlas on T*M, is a Cartan space.

The function
(1.5) K(z,p) = ¢’ K(p)

and K(p) from (1.5) is the so—caled Antonelli ecological metric [11].
A genera remark is imporant:

Theorem 6.1.2. Every Cartan space C* = (M, K(z,p)) uniquely determines a
Hamilton space: H™ = (M, K*(z, y)).

Indeed, by means of the axioms 1°—4° from Definition 6.1.1 it follows that the
pair (M, K%(x,p)) is a Hamilton space.

We can apply the theory from previous chapter. So, considering the canonical
symplectic structure 8 on T*M:

(1.6) 6 = dp;Adz’

we deduce that the triple(T*M, 6, K?) is a Hamiltonian system. We can apply
Theorems 4.4.3 and 5.4.3. Therefore we can formulate:

Theorem 6.1.3. For any Cartan space C" = (M, K(z,p)), the following properties
hold:
1° There exists a unique vector field X2 € X(T*M) with the property
(1.7) ix,, 0= —dK*.
2° The integral curves of the Hamilton vector field X k. are given by the Hamil-
ton—-Jacobi equations
dr* OK? dp;  OK*?

(1.8) T

Indeed, X: is of the form

and (1.8) gives us its integral curves.

Corollary 6.1.1. The function K? is constant along the integral curves of Hamilton
vector field Xge-.

The Hamilton—Jacobi equations (1.8) of the Cartan space C™ arefundamental
for the geometry of C™. They are the dual of the Euler—Lagrange equations of the
Finder space. Therefore (1.8) are called the equations of geodesies of the Cartan
gpace C*. This theory will be developed in the next chapter.
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6.2 Propertiesof thefundamental function K of
Cartan space C"

Proposition 6.2.1. The following properties hold:
rp= %3"1{ 2 js 1-homogeneous d-vector field on 7M.

2° gl = Jipi = %6"'6'"'1( 2 is 0-homogeneous d-tensor field.

3 ik = —%3‘6\13"1{2 is (—1)-homogeneous, symmetric d-tensor field.

Indeed, if f(x,p) is r-homogeneous with respect of p;, then _aa;f =& fisr—1-
homogeneous. Therefore 1°—-3° follows. Let g; be the covariant ténsor of gi, i.e:

gijg°h = &;*.

Proposition 6.2.2. We have the following formulae:

(2.1) v = gp;, pi = gi;p’
(2.2) K?* = gp;p; = pip
(2.3) Cijkpk = Cikjpk = Ckijpk =0.

These formulae are consequences of 1°-3° from the previous proposition.

The fundamental tensor ¢g*(z, p) depends only on the point z = 7*(z,p) € M if
and only if 8¢" = 0. In this case the pair (M, g*(z)) is a Riemannian space. So
we have

Proposition 6.2.3. The Cartanspace C* = (M, K(z,p)) is Riemannian if, and
only if, the d-tensor field C*7¥(x, p) vanished.

Indeed, 8*¢¥ = —2C%" = 0 holds, if and only if g¥(z,p) = g¥(z).
Let us consider the coefficients Ci/* from (1.4), Ch.5, of the v-covariant deriva-
tion. They are given by (4.8) Ch.5 for a Cartan space, i.e.:

(24) Cijk = _%giagsgjk = giscsjk-
Naturally, these coefficients have the following properties:
(2.5) gifF=0, S7*=0

(2.6) pif = &*.

Other properties of the fundamental function K of the Cartan space €™ will be
expressed by means of the canonical nonlinear connection and canonical metrical
connection.
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6.3 Canonical nonlinear connection of a Cartan
space

Since the Cartan space C* = (M, K ) isHamilton space H™ = (M, K?), the canonical
nonlinear connection of the space €™ has the coefficients &4, from (5.1), Ch.5.
If we consider the Christoffel symbols of ¢*(z,p) given by

(3.1) Ve = ';‘gih(akghj + 0;9nk — Ongik),

then the following contractions by p; or p':

(3.2) Vor = V'ikPi Yoo = Viepip*

lead us to

Theorem 6.3.1. (Miron[98], [99]) The canonical nonlinear connection of the Car-

tan space C* = (M, K} is given by the following coefficients

1
(3.3) Ny = ¢

i 5'7203h9ij-

Proof. By means of formula (5.1), with H = K?, and K? = ¢g*p;p; we obtain
1.
Nij =7 + Za’gljasg“‘pkpn-

1 . .
But 7 = -5 ;9" prpr. The two last equations imply the formula (3.3).  g.ed.

Remark. The coefficients (3.3) can be obtained from the coefficients of the Cartan
nonlinear connection of a Finsler spaces by means of the so called C-duality (see
Ch.7).

Let us consider the adapted basis (4;,8") to the distributions N and V where
N is determined by the canonical nonlinear connection of the Cartan space C™. Its
dual basisis (dz*, ép;).

Then the d-tensor of integrability of N is (4.12), Ch.4:

(3.4) Rijn = 0aNji — 6;Np,.

By a direct calculus we have:
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Proposition 6.3.1. In a Cartan space €™ thefollowing properties hold:
1
(3.5) 7ij = 5(Nig = Nji) =0
(3.6) Rijk + Rjki + Rpi; = 0.
Proposition 6.3.2. The distribution N determined by the canonical nonlinear con-

nection of a Cartan space C™ is integrable if and only if the d-tensor field R;jn
vanishes.

Other consequence of the previous theorem is given by

Proposition 6.3.3. The canonical nonlinear connection of the Cartan space C*
depends only on the fundamental function K.

6.4 The canonical metrical connection
Let us consder the N-linear connection DTY(N) = (H*;,, C.7%) of the Cartan space

C* = (M, K(z,p)) inwhich N isthe canonica nonlinear connection, with the coeffi-
cients &;; from (3.3). The h- and v-covariant derivatives of the fundamental tensor

gl = %31'5\7'1(2 of the space C™ are expressed by

(1) { 9% = 6kg' + g HY + g HY,

gijrc — a’kgij + gsjcsilc + giscsjk
In particular, in the case of Cartan spaces, Theorem 6.6.1 implies:

Theorem 6.4.1. 1) In a Cartan space C* = (M, K(z,p)) there exists a unique
N-linear connection CT'(N) = (H';, C;*) verifying the axioms:

1° N is the canonical nonlinear connection of th espace C*,
2° The equation g* |, = 0 holds with respect to CT(N),

3° The equation g“f = 0 holds with respect to CT(N),

4° CT(N) is h-torsion free: T%;; = 0,

5° CT(N) is v-torsion free: S;7% = 0.
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2) The connection CT'(N) has the coefficients given by the generalized Christoffel
symbols:

Hiy = 59”(5jgsk + 0kgjs — 05gjx)
(4.2) A 1 o .
Cok = _§gis(('}7g3k + "¢ — 0° ") = gis,C*.

3) CT'(N) depends only on the fundamental function K of the Cartan space C™.

The connection CT'(N) from the previous theorem will be celled the canonical
metrical connection of the Cartan space C™.

The connection CT(N) is caled metrical since the conditions g%x = 0, gF =0
hold good. But these two conditions have a geometrical meaning.

Let us consider "the square of the norm” of a d-covector field A;(z,p) on T*M:

(4.3) IAI* = g7 (2, )i

and a parametrized curve c:t € 1 — T*M, given in aloca chart of T*M by
ot =1'(t), ;i =pi(t), tel.

We have the folowing

Theorem 6.4.2. An N-linear connection DI'(N) = (H%;, Ci*) on T*M has
the property %HAH? = 0, along any curve ¢, and for any parallel covector field
Ai(z(t),p(t)) on c, if and only if the following equations g, = 0, g*/F = 0 hold.

Pr oof.

d 2 D ij N Dg” ‘ i .D)\j
(*) a“)‘“ = a(g /\1)‘]) = Tat )‘1)‘3 +2g" A a
But d D) Dg¥

Ll =0 =2 =0, VA imply 29— = 0.

dtll/\H 0, — =0, imply

Or, the curve ¢ being arbitrary we get Dg¥ = 0 < {¢%) = 0, g¥F = 0}.

e y D DX; , d
Conversely, if g, = 0, g¥F = 0, then i =0,—== =0and (*) imply EH)\“Z = 0.

dt dt
g.ed.
We will denote CT(N) = (Hjx, C#%) by CT = (Ny;, H';, C7*), pointed out all

coefficients of the canonical metrical connection.
The first property of CT is as follows:
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Proposition 6.4.1. Thecoefficients (N;;, H;x, C:7*) of the canonical metrical con-
nection CT' are homogeneous with respect to momenta p;, of degree 1,0, -1, respec-
tively.

Indeed, ¢” are 0O-homogeneous imply +*;; are 0-homogeneous, ~{; are 1-homoge-
neous and, using (3.3), it results NV;; are 1-homogeneous etc.

Proposition 6.4.2. The canonical metrical connection CT of the Cartan space C"
is of Cartan type. Namely its deflection tensors have the property

(4.4) Ay = pipk = 0, & =pf =6.

Proof. First of al we remark that the h-coefficients H*;, of CT giveus
_ 1 .

(4.5) piHljk = 'Y?k - §N0r6 Gjk-

But Np; can be calculated from (3.3). We obtain No; = g, Therefore

1 . . 1 .
Ay = Nij — pmHJ} = v — 5’7203'191‘1' - (’Y?, - §N0h5hgij) =0

Similarly, 8 =6 — p.Ci™ =6} g.ed.

1

The first equality (4.4) is an important one. It can be substituted with the axiom
1° from Theorem 6.4.1. We obtain a system of axioms of Matsumoto type (cf. 2.5,
Ch.2) for the canonical metrical connection CT of the Cartan space C™.

Theorem 6.4.3. 1) For a Cartan space C* = (M, K(z,p)) there exists a unique
linear connection DT = (Ny;, H';x, Ci*) which satisfies the following axioms

Ay Ay =0 (h-deflection tensor field of DU vanishes)

Az 99 =0 (DT is h-metrical)

As ¢f =0 (DT is v-metrical)

A4 Tlij = Hijk - Hikj =0

A5 S,’jk = Cijk - Cikj = 0
2) The previous metrical connection is exactly the canonical metrical connection CT'.

Proof. Assume that the nonlinear connection N, with thecoefficients V;; satisfies
the first axiom A, then the connection DIY(N) = (H'j, Ci#*) sttifies the axioms
Aq-As given by Theorem 6.4.1.

Now, using H';; from (4.2) we obtain p,Hj, given by (4.5). So, for A;; =0, we
get Ni]‘ — p‘,Hl’j =0 and

1 -
(*) Ny = ’)’?j - §N0r8 Gij-
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Contracting by p*, wededuce Ny; = ygj. Substituting in (*) we have
0 1 0 ar
Nij = Yij — 5"/(»8 Gij-

But these are the coefficients of the canonical nonlinear connection. The uniqueness
of the connection CT' = (N;;, H;x, C*), which satisfies the axioms A;-As can be
obtained by usual way [88]. g.ed.

One can prove that the axioms A;-As are independent [88].
Finally of this section we obtain without difficulties

Proposition 6.4.3. The canonical metrical connection CT of the Cartan spaceC™ =
= (M, K(z,p)), has the properties:

10 K']'ZO, Kljz%

2 K?%;=0, K? =2p'

® pi; =0, piff =4

& ph; =0, pff = gv.
Proposition 6.4.4. The d-torsions of the canonical metrical connection CT are
given by the following:

(46) Rfijk = JkNi,- - 5jN,'k, C,‘jk, Ti]‘k = O, Sijk = O, Pi]’k = Hijk - 6.iNjk.

Of course, we have
(4.7) Rijk = —Ruj, Pl = P'yj, G/ =CM.
Propostion 6.4.5. The d-tensors of curvatures of the canonical metrical connec-
tion are given by the formula (10.3), Ch.4, where
(4.8) St = Cy™ 0 ~ Cy™C .

Indeed, by means of C¥/ = g;,,C™ and
6'h0kij _ 3jCkih — Q(Ckmhcmij _ Ckmjcmih)’

we obtain the expression (4.8) of the d-tensor of curvature Sy
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Applying the Ricci identities (10.5), Ch.4 to the fundamental tensor field g*,
and denoting as usual RY,;, = g**R,4s, €tc. we obtain:

Theorem 6.4.4. The d-tensors of curvature of the canonical metrical connection
CT have the properties:

(4.9) R4, + R, = 0, PUM 4 Piih = §ikh | giikh _ g
The Ricci identities applied to the Liouville covector field p; and taking into
account theequations: p;; =0, i’ = 5’ we get some important identities.

Theorem 6.4.5. The canonical metrical connection CT of the Cartan space C*
satisfies the identities:

(4.10) R+ Ry =0, P%* + PF; =0, §% =

We derive from (4.10):
Corollary 6.4.1. The canonical nonlinear connection CT hasthe property:

(411) ROjk = 0, Pkoj = 0.
Of course, the index "0” means the contraction by p; or p'.

6.5 Structure equations. Bianchi identities

Taking into account the general theory of structure equations and Bianchi identities
of ageneral N-inearconnection DI'(N) = (H';, C;7%), in the case of Cartan spaces
C" = (M, K(z,p)), we obtain, for the canonical metrical connection CT'(N) with
the coefficients (4.2), the following results.

The 1-form connections of CT are;

(5.1) wi]- = Hijhdith + C’J—""éph.
Taking into account the fact that the torsion tensors T%;,, and S;?* vanish, we obtain:

Theorem 6.5.1. The structure equations of the canonical metrical connection CT
of the Cartan space C* = (M, K (z,p)) are:
d(dz?) — dz™ A Wiy, = =

5.2
(5:2) d(ép,) + dpmAw™ = —Q;
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(5.3) dw'; — w]'-”/\wim = -
O, Q; being the 2-forms of torsion:
O = Cjikdszdpk

5.4 1 . )
( ) Qi = iRijkd‘TJ /\d.’L'k + Pk,‘jdl‘J/\(spk
and Q¢; is the 2-form of curvature:

. 1. . :
(5.5) 0 = 3 Ry'smde*Ads™ + Py da* Aopm + %Sj‘kmépkl\(Spm.

Applying Theorem 4.12.2, we get:

Theorem 6.5.2. The Bianchi identities of the canonical metrical connection CT' of
Cartan space C™ = (M, K(z,p)) arethefollowing:

(kS ){Rhirs - Rmrhcsim} =0,

hrs _
(5.6) g r .

(.‘i(?a} {Rjrh|a 3 ijaRﬂ'nrh} =0,

S {Rjihr|s + RjihmRﬂnsr} =0,

(h,r,s)
5.7 .
( ) S Sj:hrla = 0‘
(h,rv")
(.;4) {Phisr a5 Chirls = ChimPrms} = O:
(5.8) S irs — (A){aschir + Chmrcmis} =0,
Rkhrs + Rk.zn’rI a (A){Rksmcrmh - Phkr|a - therks} = 0:
(f){thsr - Phkmcsmr} =0,
(5.9) , . . ,
Rj‘rs|k + Sj‘kalmsr + (ﬂ) {R_-j‘ma:C'\‘fm'c + R-'."’,k[,- + Hftrmpkms} = 0’
and
(510) Sji’kk + (4;) {Rfi.rs|k af Pjimscrmk s Sj“mpkmr} = U,

where the symbol & is of cyclic sum and .4 isfor alternate sum.

(hr8) (i,3)
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6.6 Special N-linear connections of Cartan space
C’n

Let C* = (M, K) be a Cartan space, N its canonical nonlinear connection and
CT'(N) the canonical metrical connection of C™. _

The st of al N-inear connections DT(N) = (H';;, C;*¥¥) which are metrical
with respect to the fundamental tensor field g of the Cartan spce C™ is given by
Theorem 5.2.3 with some particular references.

We have

Theorem 6.6.1. In a Cartan space C* = (M, K(z,p)) the set of all N-inear
connection DT(N) = (H jx, C#*), metrical with respect to the fundamental tensor
g¥ of C™isgiven by

Hje = Hj + Q5 X7,

7
_cv”ijlc — Cijk + Qi’,Zrk

T} s

(6.1)

where (H';x, C?%) = CT(N) is the canonical metrical connection and X7, is an
arbitrary 0O-homogeneous d-tensor field and Z™* is an arbitrary (—1)-homogeneous
tensor field.

In this case we can remark that the mappings DI'(N) — DT(N) determined
by (6.1) form an Abelian group, isomorphic to the additive groups of the pairs
of d-tensor field (£%5X7},, 2 Z,7). Theorem 5.2.4 has a particular case for Cartan

Spaces.

Theorem 6.6.2. Let C" = (M, K(z,p)) be a Cartan space and N its canonical
nonlinear connection. There exists an unique metrical N-linear connection DT'(N) =
(H';, C:7%) with respect to the fundamental tensor g¥, having a priori given torsions
fields: 7% (= —Z’ikj), 0O-homogeneous and S;7* (= —S;*7), (-1)-homogeneous. The
coefficients of DT'(N) have the expressions

i C 1y
6.2 Hjp=Hiy + 39 *(gonT" ik — ginT" sk + genT" 1)
6.2

Uijk — Cijk _ _;_g”(gshshjk _ gthhsk + gkhShjs)

where (H';x, Ci7%) are the coefficients of the canonical metrical connection CT(N).

If we take in particular case from (6.2) as follows

(623) T = 830y — 8405, okis 0-homogeneous;
S7% = §lrk — §¥r3, r*is —1-homogeneous
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we get, for o, 7% arbitrary, the set of all metrical semisymmetric connections of
Cartan space C".
Let us consider the following N-linear connections of C™ :

1) CT(N) = (H%j;, C#*)—canonical metrical connection
2) BI(N) = (8°N,, 0)-Bawad connection

3) RCT(N) = (H';, 0)-Rund-Chern connection

4) HT(N) = (0°Njy, Ci*)-Hashiguchi connection

These connections are determined only by the fundamental function K of the
Cartan space C*. Every connection 1)—4) can be defined by a specific system of
independent axioms, [85].

c b
We denote by T,) or ?,l etc. the h- and v-covariant derivatives with respect to
CT, BT, ... etc.

Proposition 6.6.1. The properties of metrizability of the connection CT(N)-
HT(N) are given by the following table

cr(v) | gi. =0 gt =0

B B b B
BI(N) | g% =-20% | g7f = ~2C¥*

RCT(N) | g%, =0 gii|t = —2Ck

H
HF(N) g = —ZCkUc g+ lk =0
[k 10

The calculation of gij,], or gij’j'k is similar with Finslerian case (cf. Ch.2).
k
Let us consider a transformation of N-linear connection
t(0% s, 7%} : DT(N) = (H';1, C7%) — DT(N) = (H' 4, C¥)
defined by
(6.4) ij = Hijk + Gijk, 5,'jk = Ci]k + Tijk
where a';x, :'* are d-tensors 0-homogeneous and —1-homogeneous, respectively.
The following particular transformations are remarkable:
£1(0, —C7%) : CT(N) — RCT(N)
tg(—PiJ‘k,O) : CT'(N) — HT'(N)
tg(—PiJk, —Cljk) : CF(N) — BF(N)
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Now, it follows easily.

Proposition 6.6.2. The following diagram holds good
RCT(N)
N
) s

HT(N)

The existence of this commutative diagram shows us that the N-linear connec-
tions CT(N), BT'(N), RCT(N) and HT(N) are important in the geometry of Cartan

spaces.

CT(N BT(N)

6.7 Some special Cartan spaces

The Berwald connection BT(N) = (6* Ny, 0) of the Cartan spaces has d-tensors of
the torsion:

b . b b b
T =0, 57 =0, C% =0, Py =0, and Ry;x = 6 Nij — 6, Nix
The d-tensors of curvature of BI'(N) are:

b . . . . .
Rj'yj = 0nB'jk — 6k B'jn + B jpB'on — B*jnB'sk

b . R
(7.1) P =3B
b
Sjtkh =0
where
(7.2 Biy = 8Ny,

are the coefficients of the BI'(V)—connection.

The Bianchi identities of the Berwald connection BT'(N) are given by Theorem
4.12.2.

Now, let us give the following definition:
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Definition 6.7.1. A Cartan space C™ iscaled Berwald—Cartan space if the coeffi-
cients B"jk of Berwald connection BT are functions of position aone:

(*) B'jk(z,p) = B'jx(2).
The Berwald—Cartan spaces can be characterized by:

Theorem 6.7.1. A Cartan space is a Berwald—Cartan space if and only if the
following tensor equation holds:

ik,
(7.3) C ; 0.

The proof is similar with the one of Theorem 2.3.1.
From the formula (7.1) we obtain:

Corollary 6.7.1. A Cartan space is a Berwald—Cartan space if and only if the
b
d-tensor of curvature P;*" vanishes.

Definition 6.7.2. A Cartan spaceis called a Landsberg—Cartan spaceiif its Berwald
connection is h-metrical, i.e. 3

9 =
|k

Theorem 6.7.2. A Cartan space is a Landsberg—Cartan space if and only if the
following tensor equation holds:
(7.4) ci. =o.

o
As in the case of Landsberg—Finsler space we can prove:

Theorem 6.7.3. A Cartan space is a Landsberg-Cartan space if and only if the
d-curvature tensor P, of the canonical metrical connection CT'(V) vanishes iden-
tically.

Corollary 6.7.2. If a Cartan space is a Berwald—Cartan space, then it is a Landsberg—
Cartan space.

Remark. We will study again these spaces, in next chapter using the theory of £-
duality of Finder spaces and Cartan spaces. Also, it will be introduced the Cartan
space of scalar and constant curvature.

Definition 6.7.3. A Cartan space C" = (M, K (z,p)) iscaledlocally Minkowski—
Cartan space if in every point z € M there is a coordinate system (U, z) such that
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on m*~1(U) c T*M the fundamental function K(x,p) depends only on the momenta

(ps)-

Exactly as in the case of Finder spaces we can proof the following important
result:

Theorem 6.7.4. A Cartan space C* = (M, K(z,p)) is a locally Minkowski—Cartan
space if and only if the d-tensor of curvature R, of the canonical metrical connec-
tion CT vanishesand Ci%*, = 0.

Examples.

1° The Cartan spaces C* = (M, K), where K is given by (1.5), is a localy
Minkowski—Cartan space.

2° The Cartan spaces C* = (M, K), with the fundamental function (Berwald-
Madr)
K = {p1p2..pn}=,
is alocaly Minkowski—Cartan space.

6.8 Parallelism in Cartan space. Horizontal and

vertical paths
In a Cartan space C* = (M, K(z, p)) endowed with the canonical metrical connection
CT(N) = (H';, Ci*), the notion of paralelism of vector fields along a curve v
I — T*M can be studied using the associate Hamilton space H™ = (M, K*(z,p)),

(cf.85.8. Chb5). ~
Let v: I — T*M be a parametrized curve expressed in aloca chart of T*M

by
(81) "Ei = zi(t)1 i = Pi(t)) te Iv rank”pi(t)” =1L

The tangent vector field (2—: iS

dy dxt &p;

(8.2) s = d—t(sl + 58
where

. : j
(8.3) o _ 0pi_ 0

dt  dt dt
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dy

The curve 7 is caled horizontal if (dt

characterized by the equations:

v
) = 0. So, an horizontal curve v is

i q 5[),' _ dp,- dx?
(8.4) ' = 2'(t), dat  dt Vidr

Taking into account that N;; = p, H™;; it follows that:

=0.

Proposition 6.8.1. The horizontal curves v in the Cartan space C* are characte-
rized by the equations:

Dpi _ dp, ot

(8.5) ot ='(t), 9 di —pmH ijﬁzo-

The first consequence is follows:
Theorem 6.8.1. The geodesies of the Cartan space C* are the horizontal curves.

Proof. The geodesies of the space C™ are given by the Hamilton—Jacobi equations

d' _OF® dp;  OF>

& o Ao

Therefore, we have & d i (E)mi + N; apj) =-H;=0. ged.

Corallary 6.8.1. The geodesies of the space C* are characterized by the equations:

dzt 9F? %=0

(8.6) dt - ap; dt

For a vector field X € X(T*M), which is locally expressed by:
(8.7 X = X'(z,p)d; + Xi(=,p)d,
we have:

Theorem 6.8.2. The vector field X, given by (87) is parallel along the curve 7,
with respect to the canonical metrical connection CT' of the Cartan space C*, if and
only if its coordinate X*, X; are solutions of the differential equations (11.8), Ch.4,
where wi;(z(¢),p(t)) is the 1-forms connection of CT.

In particular, Theorem 4.11.2 can be applied:
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Theorem 6.8.3. The Cartan space C"* = (M, K), endowed with the canonical
metrical connection CT' is with the absolute parallelism of vectors, if and only if the
d-tensors of curvature R,s, P and Si7%* vanish.

Theorem 4.11.3 can be particularized, too:

Theorem 6.8.4. The curve « given by (8.1) is autoparallel with respect to the
canonical metrical connection CT' of the Cartan space C™ if, and only if, the func-
tions z*(t), pi(t), t € I are the solutions of the system of differential equations

d2 dz® Wi w's d opi  Ops |

(88) —_—t — dt dt =0, L_ﬁ: Et—— dtwi = (.

As is known, the horizontal autoparallel curves of the Cartan space C™ are the
horizontal paths.

Theorem 6.8.5. The horizontal paths of the connection CT' of a Cartan space are
characterized by the system of differential equations
d*z? dz? dz® = op;

(8.9) 22 H,

i Hep) g g =0 g =0

Now, taking into account Theorem 4.11.5, we get:

Theorem 6.8.6. The vertical paths in the point o € M with respect of a Cartan
space C" are characterized by the system of differential equations

i & dp; dp
T = Ty, dt2 C]k( Zo, )dtJ —dt—k

6.9 Theamogs Kahlerian mode of a Cartan gpace

To a Cartan space C" = (M, K (x,p)) we can associate some important geometrical
object fields on the manifold T+M . Namely, the N-lift I" of the fundamental tensor
g%, the almost complex structure IF, etc. If N is the canonical nonlinear connection
of C*, thus (G, IF') determine an dmaost Hermitian structure, which is derivated only
from the fundamental function K of the Cartan space. This structure gives us the
so-called [99] geometrical model on 73z of the Cartan space ¢™.

Let (6,,0) be the adapted basis to the distribution N and V, N being the cano-
nical nonlinear connection of the space C™. Its dual basis is (dz*, 6p;).

The N-lift of the fundamental tensor field ¢* of the space C™ is defined by

(9.1) G(z,p) = gi]-(x,p)d;l:i ®dx! + gij(:z:,p)ép,- ® 6p;.
We obtainas usual
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Theorem 6.9.1. The following properties hold:
I° G is a Riemannian structure globally defined on T*M.
2° G is determined only by the fundamental function K of the Cartan space C™.
3* The distributions N and V are orthogonal.

Now, considering the covector fields &; = g;;0/ in every point u € T*M,we can
define the F(T*M)-inear mapping IF : X(T*M) — X(T*M), defined in (6.7),
Ch.4, by
(9.2) ]F(Ji) = 0, ]F(éi) =6
By means of Theorem 4.6.2, we obtain
Theorem 6.9.2. We have the followings:

I I¥ is globally defined onT*M.

2° IF is the tensor field of type (1,1):

(9.3) F = —g;0' ® do? + g6; ® bp;.

3 I is an almost complex structure on T7*M :

(9.4) Folf =~1I.

4° T depends only on the fundamental function K of the Cartan space C™.

Theorem 4.6.4 lead to
Theorem 6.9.3.

1° The pair (G, IF) is an almost Hermitian structure on 7+M.

2° The almost Hermitian structure (G, IF') depends only on the fundamental func-
tion K of the Cartans space C”.

3 The associate almost symplectic structure to the structure (G, TF) is the cano-
nical symplectic structure 8 = ép;Adz* = dp;Adzt.
Corollary 6.9.1. Thespace (T*M, G, ) is almost K&hlerian and it is determined
only by the Cartan space C™.

Finally, we remark:
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Theorem 6.9.4. The N-linear connection D, determined by the canonical metrical
connection CT" of the Cartan space €™ is an almost Kahlerian one, i.e.

DG =0, DF =0.

Due to the last property, we call the space (T*M, G, IF) the dmost Kahlerian
model of the Cartan space C™.
It is extremely useful in the applications in mechanics, theoretical physics, etc.



Chapter 7

The duality between Lagrange
and Hamilton spaces

In this chapter we develop the concept of £ —duality between Lagrange and Hamilton
spaces (particularly between Finder and Cartan spaces) investigated in [66], [67],
[97] and a new technique in the study of the geometry of these spaces is elaborated.
We will apply this technique to study the geometry of Kropina spaces (especially the
geometric objects derived from the Cartan Connection) via the geometry of Randers
spaces.

These spaces are aready used in many applications.

7.1 The Lagrange-Hamilton £-duality
Let L be a regular Lagrangian on a domain D ¢ TM and let H be a regular

Hamiltonian on a domain D* C T*M.
Hence, the matrices with entries

(1.1) gab(l', y) = 6a3bL($, y)
and
(1.2) 9" (z,p) := o° o H(z,p)

are everywhere nondegenerate on D and respectively D*, (a,b,c,... € {1,..,n}).

Note: The metric tensors (1.1) and (1.2) used in this chapter are those of Chapter
3 and Chapter 5 multiplied by afactor 2. This notation alows us to simplify acertain
number of equations and to preserve the classical Legendre duality encounterd in
Mechanics (seg[3]).

159
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If L € F(D) is a differentiable map, we can consider the fiber derivative of L,
locally given by

(1.3) o(z,y) = (z', duL(z,Y))

which will be called the Legendre transformation.

It is easily seen that L is a regular Lagrangian if and only if ¢ is aloca diffeo-
morphism [3].

In the same manner if # € F(D*) the fiber derivative is given localy by

(1.4) ¥(z,p) = (z*, 8° H(z,p))

which is a loca diffeomorphism if and only if H is regular.

Let us consder a regular Lagrangian L. Then ¢ is a diffeomorphism between
the open sets U ¢ D and U* ¢ T*M. We can define in this case the function
H:U* > R:

(1.5) H(z,p) = pay® ~ L(z,y),
where y = (y*) is the solution of the equations
(15’) Do = 3aL($, y)

Also, if H is aregular Hamiltonian on M, % is a diffeomorphism between same
open sets U* ¢ D* and U ¢ TM and we can consider the function L: U — R :

(16) L(Z’, y) =Paya —H(.’E,p),
where p = (p,) is the solution of the equations
(1.6') y* = 0°H(z,p).

It is easily verified that H and L given by (1.5) and (1.6) are regular.

The Hamiltonian given by (1.5) will be called the Legendre transformation of the
Lagrangian L (dso L given by (1.6) will be cdled the Legendre transformation of
the Hamiltonian H.

Examples:

1 If L is m-homogeneous, m # 1, regular Lagrangian, then locally,

H(z,p) = (m — 1)L(z,y), pa = 8. L(z,y).
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1 - : . .
2. If L(z,y) = iaij(z)y’y’ + by' + c then its Legendre transformation is the
Hamiltonian )
H(z,p) = 5a" (z)pip; — b'pi +d

where b := ab; and d := b;b* — c.

In the following, we will restrict our attention to the diffeomorphisms
(1.7) p:U—U" and v:U" — U

(where % is the Legendre transformation associated to the Hamiltonian given in
(1.6)).

We remark that U and U* are open sats in TM and respectively T*M and
generally are not domains of charts.

The following relations can be checked directly

(1.8) pop=1y., Yop=1y
(1.9) 8:H(z,p) = —8;L(z,y); 8;0,L(z,y) = —8;0°H(x,p)g’p(z, D)
(110) gab(mi y)g*bc(x’ p) = 6:

where p, = 8o L(z,y), y* = 0°H(z,p).
Using the diffeomorphism ¢ (or ) we can pull-back or push-forward the geome-
tric structures from U to U* or from U* to U.

A) if f € F(U) we consider the pull-back of f by ¥ (or push-forward by ¢)

(1.11) fri=fotp=foul, fre FU").
Also, if f € F(U*), we gt f° € F(U)
(1.12) fOi=fop=foy L

We have the following properties:

(1) (Ap+ug)* = As" +ug*, (f9)*=f'g" YApuceR,Yf,ge FU),
(i) Oy +pg)° =X +pg® (f9)° = 2% Vape R,V f,g € F(U),
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(i) (f)° =1 (¢°) =9, feFU), g€ FU),

(iv) (9%)* =g, (ga)” = 2.

B) If X € X(U} the push—forward of X by ¢ (or pull-back by ¢) is
X* e X(UY)

(1.13) X =TpoXop =Ty oXo.

(T, is the tangent map of ©.)
Also, if X € X(U*) we can consider the push-forward of X by  (or pull-back
by ), X° € X(U)

(1.14) X:=TyoXoyp =Ty 'oXop

The following relations are easily checked:

0 (fX+gY)=X"+gY, Vfge FU)LVXY e X({U),
(i) (fX+gY)° = fOX°+ 40 Vfge F(U) VXY € X(U*),

X, Y] = (XY, VXY € X(U),
(iif) [X,Y]° = [X°,Y?], VX,Y € X(U*),

(iv) (X=X, (YO =Y, X € X(U),Y € X(U*).

C) If 8 € X*(U) the push-forward of # by ¢ (or pull-back by v) is
6* € X*(U*)

(1.15) 0 = (Tp) ofop™ = (Ty ) oo

and if # € X*(U*) we can consider

(1.16) 8° = (Ty)* ofoyp™ = (Tp ) ohoyp

where (T'¢)* denotes the cotangent map of .
We have similar properties as (i), (ii), (iv) above.

D) Generaly if K € 77(U) is atensor field on U we can define similar the push-
forward of K by ¢, K* € T;/(U*) and, for K € T7(U*)we get K* € T7(U) (see dso
[3]) we have

(1.17) (KT, =K'®T" (K ®T)° =K°T".
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Let V be alinear connection on U. We define a linear connection V* on U* as
follows;

(1.18) ViY = (Vxo V%), X,Y € X(U").
Also, if V isalinear connection on U* we get alinear connection V°onU
(1.19) VY = (Vx.Y*)°, X, Y € X(U).

It is easily checked, using the above examples, that V* and V°®areindeed linear
connections on U* and U.
For the torsion and curvature tensors of V* we have

(1.20) T*(X,Y) = [T(X°, V)", VX,Y € X(U*),

(1.21) R(X,Y)Z = [R(X°, Y°)Z°I", VX,Y, Z € X(U*).

Generally, if K € T7(U) and K* € T](U*) is its push—forward by ¢, then

(1.22) V*K* = (VK)*.

Definition 7.1.1. We will say that f and f* (or f and f° X and X* (or X and

X9), Kand K* (or K and K9, Vand V*(or Vand V% are dual by the Legendre
transformation or are £—dual.

In the next section we will look for geometric objects on U and U* which are
L—dual. These geometric objects will be obtained easily each one from the other.

7.2 L—dual nonlinear connections

Definition 7.2.1. Let HTU and HTU* be two nonlinear connections on the open
sets U and U*. We say that HTU and HTU* are £—dual if

(2.1) To(HTU) = HTU".

Let N = (N#) and N = (N,,) be the coefficients of two nonlinear connections
on U and U*.
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Theorem 7.2.1. The following statements are equivalent:
(i) N and N are £-dual;
(i) N&* = —Npg*® — 8,0°H or Nf, = —Nbgy, + 0,0.L;
(iii) &y = —N2*;
(iv) &p; = N
(v) & f* = (&f), Vf e FQU).

Proof. N and N are £-duak= T@(HTU) = HTU* <= Tp(8;) € HypnTU*,
Vi € 1,n. We must have

T(6;) = ald; = al(8; + N;a0°%).
On the other hand,

Tp(8) = Tp(d — N#d,) = T(8:) — NeTo(da) ‘
o0; + 3,'61,[48!’ - Ni“(’),,abLB" =0, + (3.8¢,L — N,-“gab)a”.

Il

Therefore, we get ' ) .
a,g = 53 and Nioa = _Nibgab + aiaaL

(or, equivalent, N&* = —Nypg* — 8,0°H) and we have proved that (i)<= (ii).
Now we have
S1y™ = By + Ndy™ = 8,0°H + Nyp0**H = Npg™ + 8,0°H

8p) = Bipl — N2Oyp) = 0iBaL — N2OpBuL = —NPguo + 8i0, L
5 f* = (6:f) = (Bif)" + (0uf) B0°H + Nia(0sf)*0°* H
= (B,f)“ - N,’"((?kf)*
Using these relations we get the proof.

The £—dual of the nonlinear connection N will be denoted by N*. (Similarly, the
L—dual of N will be denoted by N°.)

]

Corollary 7.2.1. If N = (N#) and N* = (N,,) aretwo L£—dual nonlinear connec-
tions we have

(8" = &3 (8y")" = 9"6'ps.
(These properties are characteristic for two £-dual nonlinear connections, too.)

Proposition 7.2.1. The following equalities hold good:

(do') =dz'; @) =gud
aaft — g*ab(abf)‘; aif"‘ = (a,f)‘ + 3,-6“H(3af)*-
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Corollary 7.2.2. Let N = (N2), N* = (N,,) betwo £ —dual nonlinear connections.
The following assertions hold:

(i) If X = Xi6; + X°8, then X* = X™6! + g%, X**8" and
(XA = (X*)H, (XV) = (X*)Y.

(i) If w = wiedz® A dy® then w* = (w;)*g*®dz’ A 5*py.

(iii) If K = K';%,6; ® 0, ® da’ ® 8y® then
K* = (Kijab)*g;cg*bdéi R Rdr’ ® 6‘pd.

Remark. We have K*;%, = (g°°goaK;%)* = g**°gua( K*;%)*. Therefore the com-
ponents of the £—dual of K in (x,p) are obtained from the components K*;%, of K
in (x,y), p2 = 8,L(z,y), unchanging the horizontal part and raising and lowering of
indices for vertical part by using gap.

Examples.

1 The L—dual of the metric tensor g4 has the components g*®.

1. 1.
2. If Cabc = §6agbc then C*abc — _iaag‘bc'
1 . 1 .
If Cabc = igadadgbc then C*abc = —§g;dadg*bc.

3. If 4 is the Kronecker delta, with components 4% then the components of its
dual é* are asfollows:

g*ia — (gab(s;')* — g*ia‘

Let c(t) = (z(t),y(t)), t € I C R be a differentiable curve on U. The tangent
vector can be written as follows:

dz’

(2.2) ét) = =

oy
é; + —dt—(’;’a.
We say that c is ahorizontal curveif oy =0.
A similar definition holds for differentiable curves on U*,

Proposition 7.2.2. (N, N) is a pair of £-dual nonlinear connections if and only
if the £—dual of every horizontal curve is also a horizontal curve.
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Proof. Let c(t) = (z(t),y(t)), c*(t) = (z(t),p(t)), t € I C Rtwo L—dua curves,
therefore yo(t) = 8*H(z(t), p(t)). We have:
dpy dzt

Jya a a (]
- =0 = aafgt—+a"aﬂdt 4(—1N1 =0
= g+ (B0H + N o
d:c

dp,
dt (gabakabH + gaka) =0.

Let suppose that N and N are £—dual nonlinear connections. Using Theorem

0" pa
7.2.1, (ii), and the above relation we get d:,:
& _
d‘t’“ = 0 we obtain easily that N and N are £—dual.

Example. For a Lagrange manifold the geodesies are extremals of the action inte-
gral of L and coincide with the integral curves of the semispray

&
0. Conversely, from % = 0,

(2.3) XL = y'8; — 2G°,,
where
(2.4) Ge = %g“b(ykébakL ~8,L).

This semispray generates a notable nonlinear connection, caled canonical, whose
coefficients are given by

(2.5) NP = B,

(see Section 3.3, Ch. 3).
Using (ii) from Theorem 7.2.1, we get thecoefficients N;, of its £—dual nonlinear
connection: ) ]
= —3,-6"’95,, + 8,0, L

and after a straightforward computation we obtain
1 . .
(2.6) Ny = 5(6’“9,,6kH Be93;0°H) ~ —(9&5‘"6]-1‘1 + 930" 8;H).

We remark that Nj, is expressed here only using the Hamiltonian. This is the cano-
nical nonlinear connection of the Hamilton manifold (M, H) obtained by R.Miron
in [97].

We adso remark that the canonical nonlinear connection (2.3) is symmetrical,
that means

(27) Tij = Nij - Nj,' =0.
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Taking the £ —dual of (2.7) we get the ”symmetry” conditionfor(Ng)
(28) N}ng, - Nibgbj = aja‘L - 6,8]L

((2.8) can be aso checked directly and thus (2.7) may be obtained as a consequence
of (2.8)).
Now, let us fix the nonlinear connection given by (2.5) and (2.6) on U and
respectively U*.
The canonical two form
0 = bp, A d2°

isjust the canonical symplectic form of T*M.
The Hamilton vector field Xz can be obtained from the condition:

ixgw = —dH <> ix,(dz’ A 8*p;) = 8] Hdz' + O*HS"p;.

Consequently,

(2.9) Xy =0'HS; — 6} HE'.

The integral curves of Xy are solutions of Hamilton—Jacobi equations
d.'L‘ i J*pi _ «

(2.10) e =0'H Do S —8H

(equivalently with it_ =0'H (Z’ = -0'H).

The £—dud of Xy isjust XL, the Lagrange vector field from (2.3).
In adapted frames (2.3) one reads

Xp=y'6 + (N} - 2G*)d,
and we remark that X, ishorizontal iff G* is 2-homogeneous. An integral curve of
X verifies the EuIer—Lagrange equations:

(211) L 0, % = N, 5% age(alt), )

whichare £—dua of (2.10).
The £—dua of the canonical one form w = p;dzt is the canonical 1-form of the
Lagrange manifold

(2.12) w = &;Ldz’
and the £—dud of w is the canonical 2-form of (M, L)
(2.13) 0L = giaby® A dz*.
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Proposition 7.2.3.
(i) If Nand N are £—dual then
(Roji)’ = (Rij)° = gas R 5t
(i) 16,851 =0,
(i) (0°Nib)® = g°(8igeh — 9ba0-N?).
Pr oof.
(i) (63, 6%) = [0, k] = (R®x0h)* = Rajr0".
(ii) We use the symmetry of the tensor d;g;, in al indices.
(iii) [é?",cS;] = éb(N?a)é“. On the other hand,
(0°,8;]° = (%8s, 65] = — g™ B NEO, — 6;(g7)0,
and then we will get (iii).
Proposition 7.2.4. Let Nand N betwo £ —dual nonlinear connections. Then
(i) Nij = Nji < N¥gyi — Nkgy; = 8,61 — 8,0, L,
(ii) PNy = Ny <= Qma.kN,h — ginOe NP = b;g%, — 895k
(ili) 950" Njt — g3,0" Niw = 8,95 — Sigh, <= SN = O;NE.

Proof, (i) follows from Theorem 7.2.1, (ii), and (ii), (iii) are direct consequences of
(iii) of Proposition 7.2.3.

7.3 L-dual d—connections

Let (N, N*) be apair of £~dual nonlinear connections. Then £—dua of the aimost
product structure P = §; ® dz* — 8, ® 6y® on U is P* = §; ® dz* ~ 3° ® dp,.
Let V be alinear connection on U and V* its £—dual on U*, given by (1.18).

Definition 7.3.1. A linearconnection V (V*) on TM (T* M) is called d-connection
if VP =0 (V*P*=0).

Proposition 7.3.1. V is a d—connection if and only if V* is a d—connection..
Proof. Weuse V*P = V*P* = (VP)*.

Theorem 7.3.1. Let CT(N) = (Liy, L&, Cjc, C) be ad—connection on U, and
CT(N*) = (Hi, Ha, V*;2, V%) be ad~connection on U*. Then CT(N) and CT(N*)
are L—dual if and only if the following relations hold:
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(i) (Hj)® =Ly
(i) (H%)° = (0G0 — GaaL)
(iii) (Vija)o — gabéijb

(iv) (V) = g% g°04(gea) — 9asrC ea)-

Remark. We see that H, isobtained very simple from L, and V*;* asthe L—dual
of Cij that is L
V1.ja — C*lja'

On the other hand, )
Vabc — _C;bc _ g;dadg*bc

1. 1 .
and therefore V,b¢ = Crt¢ <= O = —§g;dadg*b° = 0%, = §g“d3dgbc.

Corollary 7.3.1.
O) V*H — VH*, V*V _ VV*.

(ii) Let K* be a d*—tensor on U*, the £-dual of the d-tensor K on U, K* Tk
and K* x¢ its h— and v—covariant derivative with respect to V*, T := K,
T':= K|°. Then

K* Tk =T K*'x=T"

A conseguence of (1.20) and (1.21) is the following result:

Proposition 7.3.2. Let V and V* betwo £-dual d—connections. Then, thetorsion
and curvature tensors of V*are £—dual of torsion and curvature tensors of V.

Remark. The proposition above states that the torsion and curvature tensors of
V* can be obtained from those of V by lowering or raising vertical indices, using

Gab-

Aswe have seen (Theorem 7.3.1), the £—dual of a N-connection generally is not
a N*-connection.

Proposition 7.33. Let CT(N) = (L, C%.) bea N-connection on U and CT*(N*) =
(Hip, Hg, V5o, V%) its £-dual. Then
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(3-1) ﬁgk = gmh((s’:g;h - gzjinizk)y

(32) Vija — gwic(a'ag;c _ g;chba)‘

Conversely, if the coefficients of V*(the £ —dual of V) verify (3.1) and (3.2) then V
is a N-connection.

Proof. Let F* = —g{aéa ® dz* + g*'%6; ® dp, be the L—dual of the almost complex
structures _ .
F=-0,®dzs"+ 6, ®dy.

Then the d-connection V is a N-connection if and only if

VF =0 V'F* =0+ (3.1) and (3.2).

On the tangent bundle we have the metrical structure
(3.3) G = g;;dr" ® dz’ + gudy® ® 0y’
The £—dual of this metric tensor is
(3.4) G* = gjdz’ @ dz’ + g***6p, ® bpy.

Therefore we are in the position to apply Theorem 3.10.1 and Theorem 7.3.1 and
so we will get the canonical d—connection of the Lagrange and Hamilton manifolds
(here restricted to U and U*).

Theorem 7.3.2. The £—dual of the canonical N-connection of a Lagrange manifold
is just the canonical N*-connection of its associated Hamilton manifold. (Only in
this case V% = Cxbe.)

Proof. Using Theorem 3.10.1 and Theorem 7.3.1, (i) we get

_ 1.
(Hy) = §g’h(5j9hk + 0kgjn — Ongjk),

and using Theorem 7.2.1 we obtain
1 1 xth/cx _* * % * _*
* =59 (07 9hk + 0k G50 — OnGik)-
Also, making use of Theorem 7.3.1, (iv) and Theorem 3.10.1, we have

1 x (A * e x d | * 1 * Ab % *
Vabc: _§gad(abg dc+6cg bd__adg bc) — _§9ad6b9 cd:C abc
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and from (ii) and (ii) of Theorem 7.3.1 we obtain
ka = H;Iw Vija = Vi
Theorem 7.3.3. Let V* bethe £L—dual of a N-connection CT(N) = (L}, C%,) on

U. Then we have:

(i) Hi, = Hi, iff V* ish-metrical (g; = 0,9% = 0);

(i) Vi =V iff v* isv-metrical (g TC =0, 9% T“ =0).

Proof. (i) The h-metrical condition for V* and (3.1) can be rewritten in the
following forms:

gniHE + o HY = 8igl (&= g = 0)
G HS + g5 Hyy, = 8590, (&= 93 Tk =0)
GraHg + g5 Hiy = 5i95n-

If I?;Ik = H;,, from the last equality we get the first two and from the last condition

and the first we get ﬁ;k = H;,. By asimilar argument we can prove (ii).

Consequently, we can conclude finally:
Theorem 7.3.4. The class of N-connections which is preserved by £—duality is only
the class of metrical N-connections.

Let g, be the canonical symplectic form of (M, L) given by (2.13). The following
result is a consequence of the above theorems:

Theorem 7.3.5.
(i) If Visa N-connectionon U/ ¢ TM, then

Vo, =0+ VG =0.

(if) If V*is a N*-connection on U* C T*M then

VF*=0«<= VG =0
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Proof. (i) Let V* bethe £ —dua of V. Then VG = 0 < V*G* <
=S V=0 Vi, =0.

(if) We use a similar argument.

Let us stand out some problems connected with the deflection tensor field.

The h—deflection tensor field of a d—connection ¥, on the tangent bundle can be
defined as follows:

D:X({U) — X(U), D(X)=ViC

where C is the Liouville vector field.

Locally we have:

C = y%9,, D= D%8, ®dz,

3.5 ~
( ) Dai — yl% — Lg,‘yb _ Nia'

The deflection tensor field of a d-connection V,on the cotangent bundle, D(X) =
VEC where C is the Liouville vector field on TM, C = p,9°, has the loca form
(3.6) D = Dyi6° ® dz', Dyi = pyji = Nig — Hoipp.

Also we can consider the v—deflection tensor field

(3.7) d(X) = V%O, d=do’8, ® 8y°, do® = o}, = 8¢ + C'eatf®
and its correspondent for cotangent bundle

(3.8) d(X)=VYC, d=d%d ® dpa, d* = ps|® = 8¢ — Vspe.

Using the £—duality we see that generally, the £L—duals of D and d are different
by D and respectively d.

We have
(3.9) D' X)=vfcr
where C* is the £—dual of the Liouville vector field,
(3.10) =y0%, vo = ooy
and localy

D* = D}3° ® do*, Dy, = g&(D%)* or
(3.11) Dy =¥, 4= 8y, = Hys.
The £—dual of d is d* = d**d" ® ép, Where

(3.12) d*% = Guneg™*(d%) = y; T“-
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The following result holds:

Proposition 7.3.4. C* = C if and only if L(z,y) = %F2(x,y) + u(z) where F is
1-homogeneous and u is a scalar field. In this case D = D*and d = d*.
Proof. C* = C <= g4y™ = po <= y°0,6,L = &L <= 9,L is1-homogeneous
= L(z,y) = %FQ(m,y) + u(z), and F 1-homogeneous.
Remark. As we have seen from the last two sections there exists many geometric
objects (nonlinear connections, linear connections, metrical structures and so on)
which can be transfered by using £-duality from U to U* and dso from U* to U.
Now let suppose we have aregular Hamiltonian defined on adomain D* C T* M.
The Legendre transformation ¢ : U* — U is a diffeomorphism between some open
subsets U*, U of D* and TM. Taking the Lagrangian L(z,y) = pay® — H(z,y),
y** = 8°H(x,p) we can construct a Lagrange geometry restricted to U and then

we pull-back by 1 the geometric objects on U, to U*. These will depend only by
Hamiltonian, therefore we will be able to extend them on the whole domain D*.

7.4 The Finder—Cartan L—duality

In this section we will give an idea for the study of the geometry of a Cartan space
using the £—duality and the geometry of its associated Finsler space.

Let H be a 2-homogeneous Hamiltonian on a domain of T*M,
1 : U* —— U the Legendre transformation and

(4.1) L(z,y) = py’ ~ H(z,p), y"* = I H(z,p)

its associate Lagrangian.
We remark, using the 2-homogeneous property of H, that

(4.2) L(z,y) = H(z,p).

Proposition 7.4.1. The Lagrangian given by (4.1) is a 2-homogenous Lagrangian.
Proof. Let us put

fi(z,p) = y* = 0'H(z,p), gi(z,y) = p} = 8;L(z,y).
We know that f* is 1-homogeneous, then

9i(z, \y) = gi(z, Af?(z,p)) = gilz, f1(z,Ap)) = Ap! = Agi(z,y)
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and thus g; is 1-homogeneous o, L is 2-homogeneous.
Therefore, using the theory made in the previous sections we may carry some
geometry of Finsler spaces on 2-homogeneous Hamilton manifolds.
Remark. For 2-homogeneous Hamiltonian we have
43) pl=yiorp=y;
(44) pio = gijp‘]). = g‘jyj = y’
(45) p'i=gp; = g*ly; = y™.
Among the nonlinear connections of a Finsler space one has the most interest.
It is the Cartan nonlinear connection
(4-6) N; = 7;0 - Cijﬂkoo
where
i 1 ih 1 1 ih 9 i i, 0.k i i,k
Yk = ‘2‘9 (8,9nk + OkGyn — Ongyr), Clje = 59 Ohgjk; Yoo = VY'Y Yo = ViKY
Theorem 7.4.1. The £-dual of the Cartan nonlinear connection (4.6) is
(4.7) Ny =77 = V*mig
where we have put

*kh(

. 1 * * * * *
WF = 59" Oigh; + 0595 — Ongl), Vi = Vi,

2
. 1.
Y= kpp)  and  VE = §3kgij-

Proof. We have (N;;)° = —NF¥g,; + 8,8, L and making use of (4.2) we get
J i 2 J

* 1 * S\*Aa _* a %
(4.8) Ny = —(vury")" + §9ha(’)’:§yry )'0%gl; — Aiga;

where A% := 8,8°H.
On the other hand,

2(%ir)* = (8igir)* + (0r9i5)* — (0i95)* = (Big} + o9 — 0595, )—

- (Ag(aang)* + A?(aagij)‘ - A;(aagir)*)'

So, we will have

* T * *7 * 1 *
2V )y = *pk“fijk +y (aigjr - §A2(3a9ij) )
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and

1,
(Yasr¥™¥°)* = —Peviby™ + y=y (059 — §A’i(0bgas) )
*5 *T

—PeYak + Yy 09k

Il

Then (4.8) becomes

1 *
Ny =i = 50°giiim’ - (Al + v dig,)

+ aagz] ( " Sgar+Asgba)

But we can write:

v 0ig;, = 9" prbig, = —prg™ 991,00
= —g;0; (9" ps) = —g;ha,a"H = —Algn

and substituting it in the above equality we get (4.7).

Among Finsler connections, the Cartan connection is without doubt very impor-
tant.

The following result is also well known [88].

Theorem 7.4.2. On a Finder space there exists only one Finder connection which
verifies the following axioms (Matsumoto’s axioms)

C1) ijix = 0 (h-metrical); Cs) 9l = 0 (v-metrical);

Cs) D}C = —-N,i + ij]ik =0; Cy) T =0 C5) Si]’k =0.
The coefficients of this Finsler connection are:

1.
(4.9) Fl = =g™(8;9nk + 6kgjn — Ongix)

2

, 1 -
(4.10) C'y = Eg'hahgjk
and the nonlinear connection is given by (4.6).

The Finsler connection given by (4.9), (4.6), (4.10) is the Cartan connection of
the Finsler space F™ = (M, F').

Using the results of the previous sections we can state the £-dual of Theorem
7.4.2 for the Cartan space C™ = (M, F).

Theorem 7.4.3. On a Cartan space (M, F) there exists only one N-connection
CT(N) = (Hi, Vi#%) which satisfies the following axioms:
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CH) g™k =0, C3)g*=0;, Cj) Dy = —Ni +p;H} = 0;
CHTiy=0; Cz) 5k =0.

It is the L—dual of the Cartan connection above. That is:

i 1 1 * _* * % * %
(4.11) jk = 59 h((sjghk + 5k9jh - 5hgjk)
) 1 . .
(4.12) Vit = =2 ghdte*

and the nonlinear connection is given by (4.7).

Proof. The connection given by (4.11), (4.12) and (4.7), verifies C})-C¢). For this
connection T = T*;, §7% = $*% and Dy = D*;, (Proposition 7.3.4).

This connection is unique. Indeed, if there exists another one, taking the £—dual
of it we will get two Finder connections (restricted to an open set) which satisfy
Matsumoto’s axioms.

The linear connection of Theorem 7.4.3 is just the Cartan connection of the
Cartanspace C™ = (M, F). We remark that conditions C})-C¢) are al the £-duas
of C1)-Cs).

Consequently, al properties of the Cartan connection from Finser spaces can be
transfered on the Cartan spaces only by using the £—duality.

Remark. When we look for a £-dua of a d-tensor field we must pay attention to
the vertical indices; in this section (and sometimes in the other sections) for the sake

of simplicity we have omitted to useindices a, b, c, d, e, f to stand out the vertical
part.

Let c*(t) = (z(t),p(t)), t € I C R adifferentiable curve on D*. c will be called
h—path (with respect to Cartan connection CT™*} if it is horizontal and

d*z - (dz dp\ dz? dz*
at? +H"‘<dt’dt> i @ =0 Vi) =0)

Theorem 7.4.4. The L-duals of h-pathsof CT*(N*) = (Hj, Vi**) are h-paths of
CT(N) = (F};, Ctjx).
Proof. It follows from Proposition 7.2.2 and Theorem 7.31, (i).

Cordllary 7.4.1. Let c*(t) = (z(t), p(t)) beanintegral curve of the Hamilton vector
field (2.9). then c*(t) is an h—path of CT™*.
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Proof. ¢*(t) = (z(t),p(t)) isan integral curve of Xy iff its dual c(z) = (z(t),y(t))
is an integral curve of X, and therefore an h—path so0 its £—dual ¢ will be dso an
h—path.

The next results will give us an interesting field where the £—dual theory can be

applied.
As we know a Randers space is a Finder space where the metric has the following

form
(4.13) Flz,29)=a+p

(Randers metric) and a Kropina space is a Finsler space with the fundamental func-
tion

(4.14) F(z,y) = o*/B

(Kropina metric) where a = {/a;;(z)yiy? is a Riemannian metric and B = b;(z)y* is
a differential 1-form.

We can adso consider Cartan spaces having the metric functions of the following
forms

(4.15) F(z,p) = \/aip;p; + b'p; or
= aijPin
1 I )

and we will again call these spaces Randers and, respectively, Kropina spaces on the
cotangent bundle T*M.

Theorem 7.4.5. Let (M, F) be a Randers space and b = (a;;b6")/2 the Riemannian
length of b;. Then

(i) If ¥* =1, the £—dual of (M, F) is a Kropina space on T*M with

_ 1 (a"pp;\’

(ii) If 8% # 1, the £—dual of (M, F) is a Kropina space on T*M with
1 — - \?
(418) H(z,p) = 5 (Vaopm; £51) |

g 1 . 1 o 1.
where ¥ = Y ¢ P = 3
a 1_b2a +(1—b2)2bb7’ b 1—b2b
(in(4.18) “—" correspondsto 4* <1 and “+" corresponds to 4 > 1).
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Proof. Weput o® = yiy', b = a”b;, § = biy?, B* = b'p;, p' = a”p;, a** = pip* =
avp;p;.
We have
1o Yi _ Yi
(419) F=a+253, p,-—§0,-F —(Of-l"ﬂ) ;-i—b, =F E+bl .

Contracting in (4.19) by p* and b we get:

(4.20) a”=F<§+ﬂj,@=F<§+R)
Therefore,

* __ E 2 _ .
(4.21) 8 ;F(a+b 1)

2

(i) If 82 =1, from (4.21) we obtain 8* = fa— and using (4.20), we get

a2 B aijpip]_

F(I,p) = 2ﬂ* - 2bipi ‘

(ii) If * # 1, from (4.20) and (4.21) we have:

1*2_F *, -u_F 2
Fa = S = P - 1)

and by substitution

2 2
* 1 *2 _ (12 _ A* ﬁ* _ 1 *2 ‘B‘
ﬁ_fa = -1)F ﬂ¢=>(F+1_b2>—1_b2a + T
From this last relation we obtain (4.18).

Theorem 7.4.6. The £-dual of a Kropina space is a Randers space on T*M with
the Hamiltonian

1 — - \2
(422) H(.’L‘,p) = 5 (\/a”pipj =+ b'p,) where
SR RN I
20— ot pi— _pt
a 4a , b 2b.

(Here “+" corresponds to 8 > 0 and "-" to 8 < 0.)
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Proof. We use the same notations as in the proof of Theorem 7.4.5. We have

(423) D= F&F = %(Q’y, - Fb,)
Contracting by p* and then by b* we get:

2
(4.24) o = QP - §7), § = T(26 - F¥)

Using these relations, after a simple computation, we obtain (4.22).
We must have b? # 0 for regularity of 9. But, the regularity condition for the
Kropina metric leads to b* # 0.

Remark. Using the Theorem 7.4.6, we can derive the geometric properties of
Kropina spaces, very simply, from those of Randers spaces, by using £—duality.
We will explain this more precisely in the next section.

7.5 Berwald connection for Cartan spaces. Lands
berg and Berwald spaces. Locally Minkowski
spaces.

Berwald connection BT = (N;;,*Ny;,0) of Cartan space (here Ny; are given by
(4.6)) is not the £—dua of Berwald connection of its associated Finsler space like
Cartan connection. There exist some important distinctions here, which are conse-
quences of the nonexistence of a spray and thus, the nonlinear connection cannot
be obtained as a partial derivative of a spray.

Theorem 7.5.1. On Cartan space (M, F) there exists only one Finsler connection
with the following properties:

B;) 6:F =0, ) B;) Dij =0,
Bj) Qhathk = 930" Nik = 6; gk — 6] G, _
B}) P, =0, B V=0

Proof. It is easily checked that the connection BT = (Ny;, 3*Nj;,0) with N;;
given by (4.6) satisfies dl Bf) — By). Indeed, let us take the loca diffeomorphism
¥:U* = U and consider N = (N}), the L—dual of N = (Ny;). N = (N}) is Cartan
nonlinear connection of the associated Finsler space (M, F). We have

Fy=6F = (6,F) = 0.
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B3) and B) are obvious and Bj) is equivaent to B',NJ’F = 0, N (see (2.8)).
Let us prove the uniqueness of the Finsler connection which satisfies B}) — Bj).
If BT = (N;;, Hj,, V7¥) is another connection, then it must have the following form:
Ef‘ = (I’Vi]'»akzvij’o)'
Taking the lift of this connection on U*, we get a N-connection (&' Ny, 8* Nyj,
0,0),and ((9* Ny)°, 8xN},0, g** dygy5),isthe L—dual of this connection, where (N})
isthe £—dual of (N;).
This d—connection provides a Finsler connection of U
BI' = (N}, 5, N, 0)
which has the following properties:
F‘(l = 0, Tle = 0, D; = O, Pijk = 0, Cijk = 0.

These conditions are sufficient to assure the uniqueness of Finder connection of U.
Now, we can easily prove the uniqueness.
Let us put _ N
szk = alek.
Berwald connection for Cartan spaces has the following, generally nonvanishing
curvature tensors:

Hije = 1 {6; Grij + Gr%iGéx} (h—curvature),
(5.1)
Gt =" Gy (hv—curvature)
and atorsion tensor Rj. = 63 Ny — 6; Nji.
Proposition 7.5.1. The following relations hold good:
(i) Hhijk = _6‘ithk7 (ii) piHhijk = _thk-

Proposition 7.5.2. Let (M, F') bea Cartanspaceand Hy'jx, Hp';x the h—curvature
tensors of BT and of Berwald connection of its (locally) associated Finsler space,
respectively. Then we have in U*

(5.2) Hyiji = —(Hinje)" — 2V’ Ryji,

where (Hin;x)* means that the value of Hij is calculated in (X, p), y' = O'H(z,p).
(Hpije = 97, Hpn' ik, Hinjre = gnsHi®ji).
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Let us denote by “*", the h—covariant derivative with respect to Berwald con-
nection N
W = (N,‘j, 61Nij, 0)

Theorem 7.5.2. Let CT and BT be the Cartan and Berwald connections of (M, F"),
respectively. Then

(5.3) (i) Gi'k = Hj, — Vid'yo, (i) g7 % = —2Vi¥)p.

Proof. (i) Let us restrict our considerations to the open sets U*, U such that
Legendre transformation ¢ : U* — U is adiffeomorphism.
If we consider the £—dual of Cartan connection CT, CT = (N},F}k,Cijk),we
havein U
stk = Csjkm ([88],page114)

Taking the £—dual of this relation, we get
Pyj* = Vig*jo <= Hyj = 0N, = V)5,

where V%10 = Vo inp", p* = ¢ p,.
(ii) We have

g*ij Tk — 5;(9*1]) + Ghikg*hj + Ghjkgtih — g*ij”k _ thillog*hj _ thjnogtih — _2sz_1”0

Definition 7.5.1. A Cartan space is called a Landsberg space if Vikj, = 0.1t is
caled a Berwald spaceif Vi, = 0 (V¥#* = g*Vpk = — 2 9ig*7k, Viik g = Viokyph).

Using the £—duality between Cartan and Finsler spaces, we can easily prove:

Proposition 7.5.3. A Cartan space is a Landsberg (Berwald) space if and only if
every associated Finder space is locally Landsberg (Berwald) space.

The following theorems characterize Cartan spaces which are Landsberg and
Berwald spaces.

Theorem 7.5.3. A Cartan space is a Landsberg space if and only if one of the
following conditions holds:

(@) Hj =G, (b) P'j* =0, (c) Bj*=0.
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Proof. Using the £—duality, we get V¥, = 0 <= (¢) < (b). Then (a) <
(b) follows from (5.3).

Theorem 7.5.4. A Carton space is a Berwald space if and only if one of the
following conditions is true:

@ Gy =0,
(b) BT is alinear connection (that is G;% are functions of position only),

c) Hi, arefunctions of position only.
J

Proof. Obviously (a) <= (b). Now let usprove
Vijk”h =0 Gjikh =0.

The associated Fingler space (U, F) is Berwald space because of Cyjxn = 0 (L~dual
of V¥, = 0), therefore the coefficients F}, of Cartan connection are functions of
position only. From

H;k(zvp) = Ip;k(xyy)) y = 3iH(x,p)

we obtain aso that H;, are functions of position only.
Now, using (5.3) and again V7 p = 0, we get (a).
Conversely, we obtain G;i" = 0, and (5.3) yields

& Hy, — O (Vik'yo) = 0.
Taking the £—dual of this equation, we obtain
3.hF;k - 3h(0ijk||0) =0 o Fi'en— Clisjon =0,

where F}*xy is the hv-curvature tensor of the Rund connection of (U, F). From this
relation we obtain C;js = 0, following the same way as in [88], page 161, and by
L—dualization we get V¥, = 0.

Finally, from the above considerations we can easily prove () <= (c).

Definition 7.5.2. A Cartan space (M, F) is called locally Minkowski space if there
exists a covering of coordinate neighborhoods inwhich ¢** depends on py. only.

Proposition 7.5.4. A Cartan space (M, F) is a locally Minkowski space if and only
if every locally associated Finder space is locally Minkowski space.

The following result characterizes the Cartan spaces which are locally Minkowski
spaces.
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Theorem 7.5.5. A Cartan space is locally Minkowski space if and only if one of
the following conditions holds:

() H'j =0, Gw*=0, (i) R’y =0, VM=o

Proof. If (M, F) islocally Minkowski space, then N;; = 0 and é; g}, = 0. Therefore
(i) and (ii) hold.

If (i) is true, using the £—duality we can easily prove that (M, F) is locally
Minkowski space (see dso [130]).

If (i) istrue, Gx';* = 0yields that (M, F) is Berwald space and thus Vi?*, = 0.

On the other hand, H';x = 0 and from (ii) and Proposition 7.5.1, it follows
thk =0.

In the same time G, = H}; holds and therefore, we get Ry';x = Hp'je = 0 from
(5.1.

Definition 7.5.3. & Cartan space (M, F) is said to be of scalar curvature if there
exigs a scalarfunction K = K(z,p) such that

(5.4) Hupp' P X" X* = K (94,95 — 9r95)0' 0 X" X

for every (z,p) € D* and X = (X*) € T, M.
b) A Cartan space (M, F) of scalar curvature is said to be of constant curvature
K if the scalar function from &) is constant

From Proposition 7.5.1, (ii) and (5.4) we easily obtain that (M, F) is of constant
curvature K if and only if R;;xp” = K F2hy, where hj, = gl — #2pipx IS the angular
metric tensor of Cartan spaces.

Theorem 7.5.6 (i) A Cartan space is of scalar curvature K(x, p) if and only if
every associated Finder space is of scalar curvature K(x, y), ¥* = 0*H(z, p).

(i) A Cartan space is of constant curvature K if and only if every associated

Finsler space is of constant curvature K.

Proof. Contracting (7.2) by p*, p’, X, X*, weget
Hm]'kpipiXth = _(Xihjk)'PiPiXth

or

(5.5) Hujip' ! XM X5 = —(Hipjy'y’ X" XF)*

(Here the £—dual of X = X*(z)d} is X° = X*(z)é;.) But a Finsler space is said to
be of scalar curvature K(X, y) if Hinxy'y? X" X* = K(gijgnk — 9ingn;)y'y’ X" X* and
if K(z,y) = const., it is sad to be of constant K (see [88], page 167).
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Now, using (5.5), we obtain the proof.

Remark. We can get some similar results as in Proposition 7.5.3, Proposition 7.5.4
and Theorem 7.5.6 for a Finsler space, considering Cartan spaces, locally associated
to it. Therefore, some nice results in Finder space can be obtained as the £—dual
of those from Cartan spaces.

7.6 Applications of the £-duality

In this section, we shall give some applications of the £—duality between Finsler
and Cartan spaces.

In terms of the Cartan connection a Landsberg space is a Finsler space such that
the hv—curvature tensor Pyl = 0 [90].

A Cartan space is cdled Landsberg if P**;¥ = 0. Usingthe £-duality it is clear
that a Finsler space is a Landsberg space iff its £—dual is a Landsberg one.

In [15]] (see dso [90], [77]) was proved that a Randers space is a Landsberg
space iff b;,; = 0 (here “;" stands for covariant derivative with respect to Levi-Civita
connection of the Riemannian manifold (M, a;))).

For Kropina spaces we have a “dud” of the above result:

Theorem 7.6.1. A Kropina space is a Landsberg space if and only if

(6.1) bie = bifi — bufi + aif7b;, f7i=dPfi.

Proof. The Randers metric

F(z,p) = \/a¥p;p; £ b'p;

is a Landsberg metric iff
(here “)|” stands for covariant derivative with respect to the Levi-Civita connection
of the Riemannian manifold (M,a;;) ).

Hence, we have the following equivalent statements:
The Kropina space isLandsherg <= its £—dual is Landsberg <=

. _ 1
= bl = 0= by =0 = (b—2 b,-)"k =0.
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But { ]Zk } = { ]Zk } - {(Skf] + 5;fk - ajka“fs}, where fr = 8k(logb) and

{ jlk A jzk } are the coefficients of the Levi-Civita connection of a;;, respectively
aij (@;; = s5a;; therefore a;; and ay; are conformal metrics).
S0 we get

(bl2 b,-)”k——-04=>6kb,-—{ L -bfi=0=

bik = bife — befi + aun fib;, f1i=dlf;
which aso was obtained in [90], [77] by adifferent argument.

We can obtain other properties of Kropina spaces from those of Randers by using
the £—duality.

Theorem 7.6.2 i) Kropina space is a Berwald space if and only if
(6.2) Vibi = bify — b fi + au f7b;.

ii) Kropina space is locally Minkowski space if and only if the condition (6.2) above
holds and also

(6.3) Ripje = I {an fij + @ij fax + f™ fmaikans },
(j'k)

where fi = 8k(logh), f*:= a*fi, fi; = Vif; + fif;. Vi standsfor the covariant
derivative with respect to Levi-Civita connection of (M, a;;) and R,h,k is the Rie-
mannian curvature tensor.

First of al we need the following

Lemma 7.6.1 Let (M, F) be Cartan space with Randers metric

F(z,p) = \/apip; + b'p;.
Then
(6.4) _ o
(i) (M,F) is aBerwald space if and only if Vib; =0,
(i) (M,F) is Minkowski space if and only if Vib; =0, R;"jx=0,

where ¥, stands for Levi-Civita connection of (M ,&;;) and ® o R is Riemannian
curvature tensor.

Proof. The proof of this Lemma follows step by step the ideas of Kikuchi [77].
For example, here, to obtain that (M, F) is Berwald space on the condition Vb; =
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0, we use Theorem 743 and prove that the Cartan connection of this space is
CT = ({ k } iy { k }, Vi), where { k } are the coefficients of the Levi-Civita

connection of a;.

Proof of the Theorem 7.6.2. We take the L£—dual of the Kropinametric (4.14)
and we get the Hamiltonian (4.18). We have

7 D= ;= log 2 b

a;; = gz-ai]—e a;j, o:=log2—logb.
Therefore, Riemannian manifolds (M, a;;) and (M, a;;) are conformal and the coef-
ficients of Levi-Civita connections are related as follows:

{]k} { ik Y (5L + 8 — agef).

The condition (6.4) is written as (6.2).
Also, for the conformal metrics, we have

- I
Rihjk =R, ik +6kUU 5 O + al (a,]agk — a,-kcgj)
(6kaz] 6 azk)a Om0n.

For our position o; = — f;, 0;; = =V, f; — fif; = — fi; and using the above equality,
we get (6.3). Finaly, we apply the results of the previous section.

Remark. (i) The results of Theorem 7.6.2 were obtained by Kikuchi [77] in a
different form and aso by Matsumoto [90] in this form, by using of totally different
ideas.

(ii) A Findler space with a Kropina metric is Berwad space if and only if (6.2) is
true. Indeed, it is easily checked that the Cartan space with Randers metric (4.15)
is aBerwald space if and only if V;b; = 0 (see [151] for Finsler spaces with Randers
metric). Therefore, we follow the same idea as in Theorem 7.6.2.

Let us now give another example of using of £—duality (see dso [63]). If (M, F)
is Finder space with

F(z,y) = {a(@) )" + ... + an(@) ()"}

(m—th root metric [11], [152]), its £—dual is Cartan space having fundamental

function
1 1

F(x ={ —F ll et nel/l,
F(z,p) = { T B e s () }

1 1
wherei—l-,—n_l.
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In particular, if a;(z) = ... = a.(x) = €™, ¢(z) = drz' + ... + Pz (¢ =
const.), we get the ecological metric of Antonelli ([11], [13], [152]):

F(z,y) = e@{(y" )™ + ...+ @)™ }/m
and its £—dual is
F(z,y) = e {(p) + ... + (p)} V%

The geodesies of (M, F), parametrized by the arclength, are just the ecologica
equations (see [11], [12], [18], [152]). The L£—duals of these equations have a simpler
form:

dt
(Hamilton-Jacobi equations), where H = 1 F. The solutions of (6.5) are h—paths
of (M, F) [66].

&'H, i _ —-8,H,

(6.5) = =



Chapter 8

Symplectic transformations of the
differential geometry of T*M

It is well-known that symplectic transformations preserve the form of the Hamilton-
Jacobi equations. However, the natural metric tensor (kinetic energy matrix) is not
generally invariant nor is its associated differential geometry. In this chapter we ad-
dress precisely the question of how the geometry of the cotangent bundle changes un-
der symplectic transformation. As a special case, we aso consider the homogeneous
contact transformations. The geometry of spaces admitting contact transformations
was initiated and developed by Eisenhart [53], Eisenhart and Knebelman [55], where
the first contact frame was introduced. Muto [122] and Doyle [52] introduced inde-
pendently, the second contact frame and the geometry of the homogeneous contact
manifolds was intensively studied by Yano and Muto [173, 174]. The chapter is
based on [14].

8.1 Connection-pairs on cotangent bundle

Let M be a n-dimensional ¢ —differentiable manifold and=* : T*M — M the
cotangent bundle. As we have seen (Chapter 4) a nonlinear connection on T*M is
a supplementary distribution HT*M of the vertical distribution VT*M = Ker 7 .
(my is the tangent map of #*). It is often more convenient to think of a nonlinear
connection as an amost product structureI" on T*M such that VT*M = Ker (I+T)
(Section 4.6).

If f € Diff (T*M) and " is a connection on T*M, the push-forward of I" by
f generally fails to be a connection. Because of this, we will now define a new
geometrical structure which nevertheless is an extension of the above definition for
connections.

Definition 8.1.1. A connection-pair ¢ on T*M is an amost product structure on

189
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T*M such that Ker (I — ¢) is supplementary to VT*M.
HT*M = Ker (I—-¢) will be called the horizontal bundle and WT*M = Ker (I +
¢) the oblique bundle.

Remark. If ¢ is a connection-pair on T*M, then a unique connection I' can be
associated to it, such that Ker (I —T') = Ker (I —¢), therefore ¢ = I on Ker (I —¢).
Conversdly, if aconnection I is given on T*M, we can get a connection-pair on T*M
by taking a complementary subbundle of Ker (I — T').

Let ¢ be a connection-pair on T*M and I' the associated connection. We will
denote by h and v the projections induced by T':

1
)

and by hP", w those induced by ¢

(1.1) h= (1 +D), v:%(I—F)

’_ 1 _

The loca expression of T is given by

(1.3) [(8) = &; + 2I';&, [(9') = —&°
and the loca vector fields:
(1.4) b= h(@) = 3 (B+T(3)) = & + Tyd
provide us with a frame for HT*M at (X, p).

We aso obtain:
(1.5) #(6:)=T(&) =6, H(&)=4é.

On the other hand,
(1.6) #(9") = - + 20174,
Indeed, from ¢(&%) = aid + b¥5; we get
6i = a;»((l‘,’ca.k + b”‘ék) + bij(Sj

and now (1.6) follows easly.
The locd vector fields

(1.7) § = w(d) = % (& — ¢(8") = &' — T1¥4,
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form a basis for WT*M at (x,p) and
(1.8) o(8') = =6
Therefore, (8;,6%) is a frame for TT*M a (x, p), adapted to the connection-pair,
> The dual of this adapted frame is (32, 5p;) Where
(1.9) 6zt = dat + [¥*6p;, Op; = dp; — Tjida’.

Using the notation above we have the following local expression of ¢and its
associated connection I :

(1.10) ¢=06R®6r -6 @dp, I'=6®ds -5 Qdp.

With respect to natural frame, ¢ has the local form
(1.11) - ‘ y »
¢(6,) = (5:: — 2Finj")6k + 2(Fik‘ - F,-]-Hj"F,,k)a", ¢(6’) = 21'[““6k + (ZHU ij - (5;)3‘9

From (1.4) and (1.7) we get:

Proposition 8.1.1. The adapted basis (4;, §) and its dual (6z¢, 8p;) transform under
a change of coordinates on T*M as follows:

(1.12) 6 = 8ya's;, & =082,

il

(1.13) 6" = 8% 6%, 6py = Byziép,.

Proposition 8.1.2. If a change of coordinates is performed on T*M, then the
coefficients of the connection-pair ¢ obey the following rules of transformation

(114) F,’l]" (x',p’) = i:xiajlmjl’,-j (x,p) + pkailajzzk,

(1.15) 7 (', p') = 82" ;29 119 (x, p).

Remarks. 1 In spite of being an object on T*M, II¥ follows the same rule of
transformation as a tensor of type (1,1) on M, therefore II¥ are the components of
a d-tensor field.
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2. If M is paracompact, there exists a connection-pair on T*M if and only if, on
the domain of each chart on T*M there exists 2n*—differentiate functions T';; and
I1¥ satisfying (1.16) and (1.17) with respect to the transformation of coordinates on
M.

3. Explicit examples of connection-pair on T*M. Let g = (g;;) a Riemannian

metricon M and { jzk } the Christoffel symbols of g. We can define on every domain

of a chart
) i
(1.16) To={ 1w M=

NET o

These are the local components of a connection pair [146].
More generdly, if (M, H) is a Hamilton manifold, we can take I';; as the coeffi-
cients of the canonical nonlinear connection and IT¥ = §'&“ H.

Proposition 8.1.3. We have the brackets:

(1.17) [51', (SJ] = R;jgﬂlkék + R;jkék,
(1.18) [67,8)) = (&T19% + TP¢ Ry I + &IT;, I17%) 6,
+(FTi + IRy ) 6,
(1.19) [6',8] = R'“ES, + (II" 8T,y — TVT6T, ) 6F,
where
(1.20) Rk = 6Tk — 6;Tu,
(1.21) R = JII* — §T1% 4 (78T, — V76T, ) I%*.
Let us put .
g [¢a¢] =R+Rla

where [¢, §] denotes the Nijenhuis bracket of ¢ and R, R are given by
R(X,Y)=wWX,hY], R(X,Y)=h{wX, wY]

We call R the curvature and R the cocurvature of the connection-pair ¢. R and R
are obstructions to the integrability of HT*M and WT* M, respectively.
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Locdly we have:
(1.22) R = Ri;é* ® 63' ® 627, R' = R'"*§; ® ép; ® p;.
HT*M and WT*M are integrableiff ¢ isintegrable, or equivalently, R = R' = 0.

Definition 8.1.2. A connection-pair ¢ on T*M is caled symmetricif I';; =T';; and
9 = 17,

Let w = p;dz* be the canonical one form of T*M and § = dw the canonical
symplectic 2-form.
The Definition 8.1.2 above is invariant because of:

Proposition 8.1.4. A connection-pair ¢ is symmetric if and only if

(1.23) $"0 = —8.

Proof. § hasthe local expression
6 = dp; A dz'.
We obviously have ¢*6(d%,8,) = —6(4*,4;). From
$*0(8,87) = —0(d*,67) <> 0(6*,87) =0,
¢*0(8:,8;) = —0(6:,05) <= 6(6;,6;) =0,

we get g g .
7 — [ 4 1T (Fsr - Frs) =0, DIy="T.

We obtain therefore, ¥ = I and T';; = T;.
Corollary 8.1.1. Thefollowing statements are equivalent
(i) ¢ is symmetric.

(i) WT*M and HT*M are Lagrangian (every subbundle is both isotropic and
coisotropic with respect to 6).

Proof. If ¢ issymmetric, using the proposition above we get 6(6;,8;) = 6, 6(d*,67) =
0 and on account of dim WT*M = dimHT*M =  dimTT*M it follows that
HT*M and VT*M are Lagrangian.

Now, if conversely HT*M and VT*M are Lagrangian, using again the proposi-
tion above, we get that ¢ issymmetric.
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Remark. A connection-pair ¢ on T*M induces two almost symplectic forms, glob-
aly defined on T*M :
(1.24) 0' = ép; Adx', 8" =6p; Az

@ issymmetriciff 8 = ¢ = 4"

Its associated connection T' issymmetric (that is I';; = I';;, or equivalently I'*8 =
~6) iffe=¢"

Let C = p:0 be the Liouwville vector field, globally defined on T*M. We denote
by T*M the dlit cotangent bundle, that is, the cotangent bundle with zero section
removed.

Definition 8.1.3. A connection-pair on T*M is caled homogeneous if the Lie
derivativeof ¢ with respect to C vanishes, that is

(1.25) Log = 0.

The following, characterize the property of homogeneity for connection-pairs in
terms of homogeneity of its connectors.

Proposition 8.1.5. A connection-pair ¢ ishomogeneousiff T';; and II*¥ are 1-homo-
geneous, respectively, —1 — homogeneous, with respect to p.

Proof. From Le¢ = 0 and (1.5) we get
[C, 6] — 4[C, 8] = 0.
BUt’ .. .
(C, k] = (—=Tkn + pi0'Tkn) 0"

and from (1.6) ' _
$(0") = —0" + 2115,

Therefore, N ) N
(=Tkp + pi0'Tip)0" + (Thn — pi0' Ty 15, = 0

and thus T';; are 1- homogeneous.

We dso must have: ] ,
[C, ok + ¢[C, 6% =0,

but using the 1 — homogeneity of I';; above, we get
[C, %] = [p:d', 8%] = (—TI** — p;6*TIF*)5, — &*
and thus .
—IT¥* — p,3'TTF* = 0,
that is, IT** is —1— homogeneous relative to p.
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8.2 Special Linear Connections on T*M
Let ¢ be a fixed symmetrical connection-pair on T*M and
TT*M = HT"M & WT* M,

the splitting generated by it. HT*M is the horizontal bundle and WT*M is the

oblique bundle.

Every vector field X € X(T* M) has two components with respect to the above
splitting
(2.1) X=X 4 x%
where X' = W (X) is the horizontal component and X% = w(X) is the oblique
component of X.

We can adso introduce some specia tensor fields, caled ¢—tensor fields as objects

in the algebra spanned by {1,4;, 4} over the ring of F(T*M) of smooth real valued
functions on T*M. For instance

(2.2) K=K}6®§ ®6z* ®dp,

isa(2,2) ¢-tensor field. For a change of coordinates given on T*M the components
of a ¢—tensor are transformed in exactly the same way as a tensor on M, in spite
of p; dependence, thus K is a d-tensor field.

Definition 8.2.1. Let V be alinear connection of T*M and ¢ a connection-pair.
We say that V isa ¢ —connection if

(2.3) Vo=0 and Vw=0.

It can easily be proved that V¢ = 0 is equivalent to Vw = 0or VA’ = 0. This
definition extends to a genera setting, the definition of so called Finder connection
for Cartan space.

A ¢—connection can be characterized locally by a pair of coefficients (Hiy, Vi¥)
such that

(24) Vb, = Hib; Vb = —Hyd Vbt = V%I, V46, = Vs,

Proposition 8.2.1. Under a change of coordinates on T*M the coefficients of a
¢ connection V change as follows:

(2.5) HYy = 8 0pa? Oy x* Hiy + Op* 003",
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(2.6) V,c’,'j' = a,-zi'a,-xf’a,c,x"v,:f + Bk:cilahzj'(;"(akka).

Remarks.

1. (2.6) isequivaent to

(2.7 VY = 9,57 8,57 8 x* Vi + 1™ 8,27 0 20,0,1" .
k 7 k

2. A ¢—connection can be characterized by a couple of coefficients (H}k,Vj’“)
which obey the transformation law of (2.5) and (2.6), if achange of coordinates
on T*M, is performed.

A ¢ -connection on T*M induces two types of covariant derivative:
(@ the h-covariant derivative

2.8) VEY .=V,wY VXY €X(T*M)
X X
(b) the w-covariant derivative

(2.9) VWY = VywY Y X,Y € X(T*M).

If K is the ¢-tensor field of (2.2), then the local expressions of its h— and w—covariant
derivative have the following form:
V K Kt."lkd ®6J®I]1®6pzl,

V K= K“ [¥6; ® & ® 627 @ dpy,

where,
(2.10) K = 0K + HiKE + Hj K, — HY K — HY K,
(2.11) Ko F = 05K + VK + VIR — VKRG - VIFKD,

Let C = p;&* the Liouwville vector field on T* M.

Definition8.2.2. A ¢—connection V on T*M is of Cartan typeif V¥C =0 and
vWe = I
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Proposition 8.2.2. A ¢—connection is of Cartan type iff

(2.12) pi;=0<= Hip, —Ty; =0
(213) pz"j = 53 — ‘/ikjpk + Hﬂrg,' =0.

Remarks. 1 If (2.12) is verified, we say that V is h-deflection free and if (2.13) is
true then V will be caled v-deflection free.

2. When TI¥ = 0, ¢ isjust the connection I" which arises as usual. We will
denote this I-connection by g-

Localy, we have

O%Jk‘sj =I?I§'k5ia %ékai = _‘o/;'kéﬂ

V,jk(éi =—;I§kéj, %61:5]‘ =‘o/;.»k(5i.

(2.14)

Theorem 8.2.1. Let ¢ beaconnection-pair and T its associated connection. Then
a ' —connection V inducesa ¢—connection V on T*M, given by:

(2.15) VxY = w(VxYW) + H(VxYH), XY € X(T*M).
The local connectors of Vare the following:
v = 99 - it

k _ k.
(2.16) HE = H!

ij?

Proof. V from (2.14) is clearly a linear connection. Let us find the loca form of
this connection.
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We have

Vi, di = H(Vs,8) = K(H8) = Hé,

}

Vb = w(Vad) = w(Vs (& - 17%,))
= w( — HL,0% — 6,(I"*)8, — " HE 8,) = —HI 6%,

V5.<5_7 = h/(V(; ) hl(v Ji— 4, )6 )
= W(V¥§, — TEsHE S, = (VE — T HY )G,

Vidl = (66)—w(V5.(8J nfkak)—n”vd (& — TI7k5,))
— (( wH]l!Hk Hze(se(ngk) H]fvfl_al(njk))ék
+(- V H”H? )am)
= (Vi ~ 5, ).

Therefore, V is a ¢—connection and aso (2.16) are verified.

Let V be a¢ -connection and
(2.17) T(X,Y)=VxY -VyX - [X,Y],

its torsion. _
Localy, with respect ot the frame (4;, 6*), we have

T(8;,8;) =Tho + Tk 6%,
(218) T(dl, 61) = P 6}5 + Plk](sk

T(87,8) = SUk§, + S, 76,

where
T+, = H,", — Hf + Rijznu‘; T = Riji,
P Iu ijz _ (Jjnzk + Hijthhk + atr\jhnhk)’
(2‘19) ij — lec} _ (airjk + HieRjek)\ gijk — _R/ijlc’
S7 = Vi =V — (W8T — TI7EIT ).
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Proposition 8.2.3. The torsion connectors of ¥V and V are related asfollows:

o

T, = T’:ij — R, Ty = Tijy,

13]- ki _ P ki (8;T1% 4 TT“Rjg, IT™ + 31'[\],81—151:)’
(2.20) A o .

Plkj = szj - HMlekr

S = g.kij + ([T#49T g, — 16Ty ).

However, V has an extra torsion tensor S¥* = R which does not occur when

I1¥ = 0. It is clear that V is h-deflection freeiff ¥ is h—deflectionfree. The following
result gives the relations between v—deflection free tensors:

Proposition 8.2.4. Assume that V is h-deflection free. Then V is v-deflection
freeiff V¥ isv-deflection free.

Pr oof.
pilf = 6F = V',
= —IMTy; Yfkpj — I H},p;
= [Ty, <= Vi*p; = 0

~ pilk = 5:‘

(here | denote the v—covariant derivative induced by 6).
The curvature tensor of a ¢ —connection V,

R(X,Y)Z =VxVvZ - VwVxZ — VixyZ

has three essential components.
We have:

R(Gn,06)0; = Rijndi,  R(6n,8)0" = —R' 8,
R(éhaék)éj = ijkéi, R(J",ék)& — _P‘thk(s_]’

(2.21) !
R(8h,6%)8; = S;ihs;,  R(8h,8%)51 = —S,*héd,
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where
(2.22) ‘ A '
Ry = (hUk) {0nH}\, + HRHp} — Rure(I1P™H,, + V),

Pih]k - 5h( ) dk(v h) ‘+' H;kvlh H;kVSh
(Jkl'I"‘ + HhmkaTHrl + B“kal'["“) (6"[‘,” + ™ ka,)V ,

Sjikh ()P {ah(vzk) + Vzhvsk} thkst (thék[\es _ Hkléhr\h)vjjs,

where (L,’lc ){- -+} indicates interchange of i and k for the terms in the brackets and
Wi

subtraction.
Let us consider the diagonal lift metric tensor on T*M

(2:23) G = g,(z,p)dz* ® 627 + ¢ (2, p)ép; ® &pj,
where g;; is a symmetric nondegenerate d-tensor field.

Theorem 8.2.2. Let ¢ be afixed connection pair on T*M. Then there exists only
one ¢—connection such that the following properties are verified:

(i) s =0, (ii) gijlk
(i) T =0, (iv) S* =o.

The coefficients of this ¢ —connection are the following:

(2'24) Hk = (6igmj + 6jgim - mgz]) a gkm(Almgs] + A;‘mgai + Agjgsm)y

l\Dl’—‘

(2.25) Vi = — 5 Gim (87 g™ 4 5k gIm — §m ik %gim(g”B;nk + ¢g**B™i 4 g™ Bki),
where

(2.26) Al = Rl BF =TIFOT,, — T84T,

Proof. (i) is written in the following from:

(2.27) 6k9ij = Higgmj + Higgim
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and by using the same technique used to find the Christoffel symbols for Riemannian
manifolds, and the first of (2.19), we get (2.24); similary for (ii), but using the last

of (2.19). In particular, the T" — connection V has the coefficients

o 1
(2:28) H;cj =3 gkm((sigmj + 8, Gim — Om8is),

o . 1 .. o . .
(2.29) VI = = 2 gin(@ g™ + 8™ — 07 g™)

and verifies (i) - (iv); this connection is metrical with respect to

0

(2.30) G= gij(x,p)dxi ®drl + gij(x,p)dpi ® 6p;.
Theorem 8.2.3. Let V bethe G — metrical connection above, and V itsinduced
¢ — connection (2.15). Then V isG — metrical.
Proof. We must show only that V is v—metrical. By virtue of (2.16) we have:
gk = 5k9ij — Vit gy — Vg
= 3k9ij - Hks(ssgij - (ka - Hksts)g[j - (ng - Hksts)gie
= 3"9;3 - kagﬂs_ Ve gip — T1*(8,9:5 — Hi,g0, — H )
=g;| —M*gyl =0.
Remark. This ¢—connection, induced by %, is the appropriate one for studing the

geometry of T*M endowed with the metric tensor (2.23). Eisenhart [53] and also
Yano-Davies [172] used a similar connection.

8.3 The homogeneous case

We specialize, here, the results of previous sections in the particular case when
g 1 - ..
(3.1) g?(z,p) = 5 9P H(z,p)

and H is a rea smooth function on a domain D* ¢ T*M , 2-homogeneousin p; and
such that the tensor (g%(z,p)) is everywhere nondegenerate on D*.

c 1.
(3.2) Lij =~ — 3 8" giiVko»
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where we have put, as usual,
vE = L g™ (Bugn; + Bigin — Ongii), VY = vk,
Yo = Epkp?, pi=gip;.

Note that T is deflection free, [97].

However, the geometry of Cartan manifolds as given, is dramatically changed
under a diffeomorphism which is not fiber-preserving. In this case, the geometrical
approach described in the previous section is the correct one to use.

Theorem 8.3.1. Let ¢ be a homogeneous connection-pair on To"fM , such that
pII¥ = 0. If Vis the ¢ —connection given by (2.24), (2.25) and g* are those of
(3.1), then

(i) V is h-deflection free iff

c 1
(3.3) Fi] = Fij + §p’"(R,~mgH“gsj + ijgngsgsi).

(i) If Vis h-deflection free, then V*p, = 0.

(ifi) If Vish-deflectionfree, then V is also v—deflection free.
Proof. (i) By definition V is h—deflection free iff I';; = HEp,. From (3.1) we see
that
(3.4) ik = &g’
is completely symmetric and because g’* is 0 — homogeneous we get

pid'g* = pd g* = p,0 g7 =,

and aso
(3.5) P'0"gi; = —P'Gugim0"g"™ = —pe0*g*" gjm = 0.

Taking into account that p;,IT¥ = 0 and using the above identities, from (2.24)
transvecting by py, we get:

1 . 1
Fij = 7?] - Epmrmsaagij - §pm(RimlHlsgsj + ijﬂnesgsi)-
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Transvecting again by p’, weobtain I';y = 4% and thus
0 1 Y] 0 1 m 173 £s
Lij =y — 2 0°9i5Y50 — 7P (RimeI1"gs; + Rimel1%gs:),

that is, (3.3) holds true.
To prove (ii) we need the following:

Lemma. If Vish-deflection free, then R;;p® = 0.

Proof. Because V is h—metrical and h—deflection free and H = g¥p;p; weget
6xH =0, that is,

(3.6) 8;H = ~T;;H.
Therefore,
Ropep® = (6,0t — 0T a)p* = [(8sTke — OkTot) + (D Tkt — T1iT )]0 H
= 0,(Tke0?H) — Ok (To00*H) — Tp0,0°H + T 5y04 0 H
+T4i0 (D0 H) ~ T (D0 H) — Tyl H + D000 H
= —0,0cH + 040y H — T140,0H + T 4040 H — T80, H + T1i0'0,H
=0.

Let us now prove (ii). We have
peoigmE = 81 (pg™) — Hpeg™
= L81(0™H) — (8] — TF°T ) g™
= 1590mH — LT98,0mH — LT[ ,0*0™H — g™ + I17°T g™
= — }I7°9,0™H = LII7°0™(T,,0*H)
= LIV 0 H + IV°T g™,

Thus,

pk(;jgmk _ pk(;mgjk — (Hjsaml-\sl _ Hmsa'jl-wsl)pt + (Hjsgml _ Hmsgjl)rsl,

N =

and by using the above lemma we get,

pkéjgmk _ pkémgjk — _2_ (HJT(SmFrs _ nmra]r\”)ps + (Hjsgml _ Hmsgje)l-\sl_
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On the other hand, A ,
g B*p, = ghTI™T,,,
g"“ijpk — _gmlnjsrsb
and 1
peg™ By = < (I 8Ly, — IV767T,,)p"

From the last four equalities, by again using (3.5) and p;,[1¥ = 0, we finally get,
V¥ =0.
(iii) From the last of equation (2.19) we get

V7*p; = V¥p; + (IV*8*Ty; — **6'T)p; = —TIFT
and thus V is v —deflection free.

Remarks. (1) The condition p;IT¥ = 0 was used by Yano-Davies [172] and Y ano-
Muto [174] and it holds when WT*M is the image of the vertical subbundle through
al-regular homogeneous contact transformation (see the next section). In fact, in
this case the Liouville vector field C = p;d* belongs to WT*M.

(2) Equation (3.3 ) shows how to sdlect the connection I' such that (2.24), (2.24)
hold and the connection is of Cartan type.

8.4 f -related connection-pairs

Let ¢ be a connection-pair on T™*M and WT*M — T*M, HT*M — T*M, the
oblique and horizontal bundles. We denote by T its associated connection (nonlin-
ear).

Definition 8.4.1. f € Diff (T*M) iscalled I' —regular if the restriction of the
tangent map (7 f). to HT*M

(rf)e :HT"M - TM

is a diffeomorphism.

If f has the local expresson f(z,p) = (Z(z,p),B(z,p)),then it is T —regular iff
(rf)«(8;), i € 1,n are linearly independent, that is, the matrix with entries
(4.1) of .= 6;7* = 9,7 + 1,;6'T*

1

has maximal rank.

Theorem 8.4.1. Let ¢ be a connection-pair on T*M and f € Diff (T*M). The
following statements are equivalent
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(i) ¢ = f.df " is a connection-pair

(i) f isT" —regular.

Proof. ¢ is clearly an almost product structure on T*M and it is a connection-pair
iff Ker (I — ¢) is transversal to VT*M, or equivaently, «, : Ker(I —¢) - TM is
an isomorphism. But this last condition is equivalent to (ii) because

fu(Ker (I - ¢)) = Ker (I — ).

Definition 8.4.2. The connection-pair ¢ given by (i) above is called the push-
forward of ¢ by f. The connection T associated to & will aso be called the push-
forwardof I" by f.

Also we will say that ¢ and ¢ aref —related

Theorem 8.4.2. The coefficients of two f—related connection-pairs ¢ and ¢ are
connected by the following equations:

(4.3) (0D, — OFTy)T™ = 99" — &'z,

Proof. From ¢f, = f.¢ and(1.5)weget: ¢£.(d;) = f.(d) thatis £.(&;) € HT*M :=
Ker (I — ¢). On the other hand,

fu(8) = (63*)3; + (8:5,)0"
= (6.%) (65 — Thed) + (61pk)8k
=94 T’“ék + (51pk -4 .’L‘lrgk)ak
Therefore,
f.(6) € HT*M < 6,5, = 67T,
that is (4.2).
Now, let us prove (4.3). We have

Bfu(8Y) = —f.(8)) <= £.(6') € WT*M := Ker (I + ).
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But, '
(8 = (6*‘5’“ )0k + (6Py)0* o
= §74 (3, — Tio(3° + TT°°32)) + 615, (8% + TT°°3,)
= (§iTF — §TTy, T + 6, T1%)5x + (85, — 6'7°T1) 8.
Thus f.(6") € WT*M iff
§zk — 63T, T + §'p, T = 0.
By using (4.2) we get (4.3).

Corollary 8.4.1. If (85, 6%, (&,3") are the adapted frames at (x, p) and (Z, ) in-
duced by ¢ and ¢ respectively, then:

(4.4) Fo(6:) = 658y,
(4.5) f.(8) = 65,
where

(46) 5; = 6iﬁj - éifkfkj.

The regularity of 0~j~ follows from (4.5) but is aso a consequence of

Proposition 8.4.1. (i) f isT—regular iff f~* isT—regular.
If f € Diff (T*M) isT —regular, then
(i) (6:z*)(@rz?) = &, and

(iii) (8P — 02" Tni) (B*p; — P*2°T;) = .

2

Proof. We have
8 = f7H(fu(8)) = 62" 71 (8r) = (6,7°) (Br2)6;
and (i), (ii) follow.
To prove (iii) we use the following equdlities.
B = [0) = 07, - 8T 17 (?)
= (6‘@- - aif"mj)@jps — 57xkas)63.
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Generdly, if I' is a connection on T*M the push-forward of T'is not a connection.
Some consequences of Theorem 8.4.2 are the following.

Proposition 8.4.2. LetT bea connectiononT*M and f € Diff (T*M) I" —regular.
Theng = f.I'f lisa connection-pair; the coefficients of the connection T associated
to ¢ are given by (4.2) while TT” has the following form:

(4.7) Y = (Fia/ Ty — pe) .

Proposition 8.4.3. The push-forward of a connection-pair ¢ bya I' —regular dif-
feomorphism is a connection if and only if

(4.8) %9 = &z"8,27.

Corollary 8.4.2. The push-forward of a connection I" by a I' -regular diffeo-
morphism is also a connection iff f is fiber preserving (that is, locally, f (x, p) =

(Z(z), B(z, p))-

Now we will study when the push-forward of symmetric connection-pair by f is
aso symmetric.

Theorem 8.4.3. Let ¢ be a symmetric connection pair on T*M and ¢ the push-
forward of ¢ by a I'-regular diffeomorphism f. The following statements are equiv-
alent:

(i) & is symmetric
(i) HT*M and WT*M are f*# — Lagrangian.

Proof. ¢ is symmetric if and only if HT*M and WT*M are both Lagrangian
(Corollary 8.4.2.). Therefore, we must have:

25 (3:3;) =0, 8z5(5,5) =0
By using (4.4) and (4.5) these conditions are equivaent to
£*6(8:,6,) =0 and f*8(6',4%) =0,

therefore HT*M and WT*M are isotropic and thus Lagrangian with respect to f*6.
The converse statement is immediate.
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Corollary 8.4.3. ¢ isasymmetric connection pair iff

(4.9) 8kPOnT" = OnPi0k T,

(4.10) S*p, 4T = §hp, ot

Proof. We have:

£ = dp, A dz* = (8,P;0z* + 6°B.0ps) A (8xT 82 + 67T 6p,.).
By using Theorem 8.4.3 we get the equalities above.
Note: T is symmetric iff (4.9) is verified.

Theorem 8.4.4. Let f be aTI'-regular symplectomorphism. Theng is symmetric
iff ¢issymmetric.

Proof. @issymmetriciff HT*M and WT*M are f*6—Lagrangian, thatis 8—Lagrangian
which is equivalent to ¢ being symmetric.

To summarise the results above we can state the following:

Theorem 8.4.5. Let f € Diff (T*M), T-regular, such that f*6(é%,6;) = 6. Then
each pair of the next statements implies the third:

(i) f is a symplectomorphism
(ii) ¢ is symmetric
(iii) ¢ is symmetric.
Remark. 1. The condition f*8(é,4;) = 6t is equivalent to

(4.11) 8'p 8,7 — §'7%6,p, = 6

and it is obvioudly verified when f is a symplectomorphism.
2. If f isaT-regular symplectomorphism then

fHT*M @ WT*M) = f,(HT*M) ® f.(WT*M).

Proposition 8.4.4. Let f be a I'—regular symplectomorphism of T* M.
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Then

(4.12) big] =65, 6i6] = 4.

Proof. It follows from . ‘
f10(6*,6;) = &5

using (4.4) and (4.5).

Note: Under the conditions of the above result and Proposition 8.4.1 we have:
(4.13) 6; = 0,7 + D& = &'p; — [, 7'z,

and its reciprocal,

(414) 0; = 6iﬁj - fkjéi_k = 5_7'.'Ei + stgsilli.
Proposition 8.4.5. If € Diff(T*M)isa I'-regular symplectomorphism and
(87*,6p;) is the dual of (6;,48*) then

(4.15) f(07') = 6377, f.(6p:) = 6]5p;.
Pr oof.

and first equality (4.15) follows. A similar proof holds for the second.

Let us now study the connection between curvature tensors R and R’ of T and

T.

Proposition 8.4.6. Let¢ beaconnection-pairand ¢ itspush-forwardbya T -regular
symplectomorphism. If R and R are the curvature tensors of I'and T then:

(4.16) Rijlc = leséfé]mgl‘:a

(4.17) Ryl = 0778;(0%,) — 67°8,(6L,) + 0£8%6¢, Rin, TI°™.
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Proof. From (1.17) we get:
Fulbi6j] = RijefE 5™ + Rige 103,
On the other hand,

fldi 03] = [BF0w, 655,) .
= 058k(07)0m — 838,(67)8,m + 0503 [ Riomad™ + Rigell " 61)

and the relations above follow immediately.
Corollary 8.4.4. ITfif* = 0 then

(4.18) ﬁijkﬁ“ = 51"3; (67,) — 5}"31‘(95};)-

8.5 f-related ¢-connections

Let us now investigate the behaviour of geometrical objects described in Section 8.2
under symplectomor phisms.

If ¢ is a connection-pair on T*M and f : T*M — T*M is a I'-regular sym-
plectomorphism, then the symmetry of the connection-pair ¢ = f,¢f! is preserved
and also

L) =05, f(8) =0,
Loy =687,  f.(0p) =6l%p,,

where o ’ -~ .
o0 =6 and 6,65 =4

We can construct a new geometry on T*M, generated by f, by pushing forward
all geometrical objects described in Section 8.2, there by extending to a more general
setting, the results of [55], [146], [147], [175].

For instance, if K is the tensor field, locally given by (2.2), then we can consider
its push-forward: 4 _

K=K ®8 ®31° @35,

where
(5.1) Koy =66 805K o f,

In particular, the push-forward of G from (2.23) has the following loca form:

(5.2) G=7,07®7 +775p,®85;,
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where
(5.3) g7 0 f = 6;8,9"".
If V is a linear connection on T*M, we define its push-forward by f as follows:
(5.4) ViV = £(VxY), X=£(X), T=n)
V is clearly alinear connection on T*M.

Proposition 8.5.1. (i) V isa ¢ -connectioniff ¥V isa ¢ -connection.
(i) V is G-metrical iff ¥V is G—metrical.

Proof. (i)

Vé=0

On the other hand,
Vo =Vf.0=f.(V6)

because f is symplectomorphism and thus
VO =0<+=Vi=0.
(i) This follows from

VG = £.(VG).

Proposition 8.5.2. The coefficientsof V are related to those of ¥ by the following
relations:

(5.5) H =097 95 HE,, + 058,8,2%,
(5.6) Vi = 056008 Vi + 65575

Similar theorems to those of Section 8.2 (Theorems 8.2.2 and 8.2.3) hold when
V isreplaced by V and G by G.
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8.6 Thegeometry of a homogeneous contact trans-
formation

In this section we will restrict our considerations to the slit tangent bundle T M
(the cotangent bundle with zero section removed) instead of T*M.
Let w be the canonical one form of T* M, localy given by

(6.1) w = pdz’.
Definition 8.6.1. Adiffeomorphism f : T*M — T*M is called a homogeneous
contact transformation (h.c.t.) if w is invariant under f, that is

(6.2) ffw=w.

Proposition 8.6.1. Iff is a h.c.t. then £f.(C)=C

Proof. We use the property of the Liouville vector field C = p;9*, as the only one
such that icdw = w where “i"* denotes the interior product of C and dw.We have

irodw(X) = dw(f,(C),X) = dw(f.(C), f.(f 1. (X))
= (f*dw)(C, (f7H).X) = d(f*w)(C, (f 7). X)
dw(C, (f71).X) = icdw((f 1), X)

w((fX) = (f ) w(X) = w(X)

Il

for every X € X(COF*M).

Note: The sat of h.c.t. is clearly a subgroup of the group of symplectomorphisms of
™M
Corollary 8.6.1.

If f(z,p) = (z(z,p),p(z,p)) is the local expression of a h.c.t.
then Z = z(z,p) and p

= p(z,p) are homogeneous of degree 0 and 1 with respect to

Pr oof. L L. .
f(C)=C < p;8T*8) + piazma’c =P, 0°
= pdT* =0, pI'P, =D

Remarks.
(1) See dso [53] for another proof of this result.
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(2) A h.c.t. is asymplectomorphism, therefore we must have:

(63) 6,-5'“ = Ekpi, aiﬁk = —gkpi, 8"”“ = —-gkl'i, Oiﬁk = gkl’i.
If T = Z(x,p), P = B(z,p) are homogeneous of degree 0 and 1 with respect to p,
Eqg. (6.3) are dso sufficient conditionsfor f(z,p) = (Z,p) to be a h.c..
In [53] it is proved that f isah.c.t. then
8z 0;px — 0;7*0ip, =0,
&,z*0'p), — 0'T*9;5, =},
I, — TP, =0,

(6.4)

which in fact results from (6.3).
(3) If fo € Diff (M) then the cotangent map induced by f, isah.ct. In fact, if
T = Z(z) is the local form of f, then,

f(z,p) = (2(2),P(z,p)), Pi = piDsz’.

In this case f is called an extended point transformation.

It can easily proved that every fibre preserving map which is aso a h.c.t. is an
extended point transformation (see aso [146]).

(4) The reason to use the word “contact” in the name of this transformation is
given by the property of preserving the tangency of some special submanifolds of

T*M. (See [53], [146].)

Proposition 8.6.2. Let ¢ bea connection-pair, T its associate connection andf a
F—regular h.c.t.

(i) ¢ ishomogeneous <= ¢ is homogeneous
(i) If Visa ¢ - connection of Vis the ¢ — connection defined by (5.4), then V is
h(v) — deflection free iff V ish(v)-deflection free.
Proof. Straightforward consequence of Definition 8.2.2 and Proposition 8.6.1

Let H: ZOF‘M — M be a 2-homogeneous regular Hamiltonian and H the push-
forward of H by f,

(6.5) H=Hof
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H is dso 2-homogeneous Hamiltonian, but the matrix with entries

(6.6) 7 =00 H

may not be regular. Assume dso that f is r —regular,wheref‘ is given by (3.2).
Using the homogeneity property of f we get

D= Pkakf’i = pk(akﬁi - a'kjsfﬂ') = éfpk'
Therefore,
(6.7) pi=6ip and p.=6ip,

Let G be the metric tensor (5.2). The push-forward of G is given by (2.23),
where

(6.8) g7 ="' H.

We have B o
97(Z, P)p:p; = Bp;0k05.9"" (z,p) = Prpng*"(z, p).

Therefore,
(6.9) H= %g"f—;]
Of course, we dso have

H= %ﬁijﬁiﬁj,

but 7 # g% may happen.

In fact, the metric tensor induced by f is g% and not §¥,in general.

The tensor g% is 0-homogeneous with respect to p; and nondegenerate, but it
may lack the property ' )

5k§i]‘ — gigkj

which assures that following Section 8.5, the geometry, as in Section 8.3, can be
derived from it.

Therefore, it isfrom g that we can derive the geometry described in Section
8.2.

Now let us find the relationship between ¢ and g¥.

Proposition 8.6.3. (i) 9H = 0*#H o -1,
(i) §7 = §7 + (0™0.0,T — (0efl — 0L0"T 4 )0'T7 )p*.
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Proof. (i) 9H = 0,H*z* + & HO*p,.

But 6,H = 0 => 9,H = —T',0*H = —~T'4p® and by using (3.2) we get, because
of homogeneity of g;;,
(6.10) 0.H = —% = —Tup'.

Therefore, ) ' ]
FH = —ypd*z* + p9*p, .
= p'(@*pi ~ (7, = 307 9is76m) 0" 2°)
= pi(g"pi - f‘i,g"x’) = O HE*,
where we also have used (4.13).

Therefore, we get (i).
Now,

FOH = 6, (0m 8 HIpy + "0 HPz*) + 8 H (00 0°2™ + O™ 6,0 pyn).
Using equation. (6.9) we obtain
O™ H = —9"Tigp’ — Tied™0°H
and this equality transforms into (ii) after a straightforward calculation.

Note: The relation (ii) above isjust (3.19) combined with (3.20) of [%4], if we start
with a Riemannian metric g9 = v (z).

Remark. §9 = g% <= p*(8™0.0,T7 — (8,85 — 9;;6'"1“%)3%1) = 0. By using (6.3)
we see that this equality is equivalent to
p'd"0i = ALz and p*(B8 — 6 T,) = ALAT,

for some functions AL.
But from these equalities we get

AL = G840 — 6} 8Ty + Tom0™6)p°

(seeds0 [H4], (3.26)).
Also note, - -
g9 =77 holds
= (8*gY - 0'g")p; = 0
<= 7%p; =p* = §*p;.
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As a consequence of the discussion above and results of previous sections, we
have the following summary:

(@ If we start with a Cartan manifold (M, H), we get the triple (I, V, G) given
by (3.2), (2.28), (2.29) and (2.30) Visal' —connection, G —metrical, of Cartan type

and the torsion tensors Tf], Sk vanish.

(b) Taking a l"-regular h.c.t. we get anew triple (¢,V,G). Here ¢ is a homo-
geneous connection-pair those coefficients are given by (4.2) and (4.7); Vs the
¢ —connection of Theorem 8.2.2 (in (2.24) and (2.25) g;; and g" are substituted
by 3.;,97 and &;,6* by &;,6%) and G is given by (5.2). This linear connection is
G —metrical and of Cartan type. Also, the torsion tensors Tk and 5, vanish. In
fact, Tkij and ?,fj are contact transformation (as (5.1)) of T"U, and g”k” .

We get a new function H as in (6.5) which may not be a regular Hamiltonian.
Also,

(6.11) 0H=0 and HI[J =HJ] =29
where | denotes the v — covariant derivative with respect to V.

(©) If g9 = g¥, then H is a regular Hamiltonian and Theorem 83.1 is valid
(baring all the coefficients). A simple consequence, for the deflection-free case, is :

(6.12) T=T iff (Rimgﬁh?‘,j + ﬁjmgﬁhgsi)ﬁm =
Therelation (6.11) can be also written by using Proposition 8.4.6 and (5.3) in terms
of similar objects derived from H. ( Rim¢ and g,; are contact transformations of Rime

and gs;).
When (6.12) is verified, by V|rtue of Theorem 821, Proposmon 8. 2 2 and Theo-

Q

rem 8.2.3 we can pass to thetriple (F V’ ,G) when V' |saF connection, G metrlcal

h- and v-deflection free, but generally fails to have vanishing torsion tensor Tjk,S;k.
Therefore, it d_oes not coincide with the Cartan linear connection for the Hamilton
manifold (M, H) [66], [97].

If f is an extended point transformation, then T = 0, T = T and the push-
forward of the geometry of Cartan manifold (M, H) isjust the geometry of (M, H)
30 this geometry is invariant.

8.7 Examples

We now construct a connection-pair on T*IR? which is horizontally flat, but with
complicated IT¥. In fact, we construct a homogeneous contact transformation be-
tween (T*IR?, H), where IT” = 0 and T, # 0, and (T*IR%, H), where IT¥ # 0 and



Ch.8. Symplectic transformations of the differential geometry of T*M 217

I;j = 0.Here, H = L (P? + P2?) is the Euclidean Hamiltonian in T*IR?, spanned by
(@', @, Py, Py), and ¢ = 6%
Select, once and for al, a Finder metric function A = A(q', ¢% p1,p2) and the

metric §7(¢¢, p;) = 240" 4" . (947 22) and set

[y

P=)Q¢, p=-)Q¢,

where,
Qe , & Q@) = f1(d, A)Q + fald', )@ = A,
is defined in terms of C* functions fi, f; and A, some constant. Noting that
Plsz - pidqi = Oa

we have the possibility of constructing the desired contact transformation (@, P;) —
(¢*,p;) and its inverse, locally. But, two side conditions will be necessary for this.
Firstly,
det; = det (fig’) #0,

must hold in some chart (U, &). Then
pr=-Afig' Q' - Afog' @, pr= -2 0¢* @ - A fg* @
has a unique solution in (U, ),
@ = @ (p1,p2, 0 )

Of course,
I)i = ’\f’i(q11q2)a

so that the transformation is determined by f; and 9; f; .
It is also required that the transformation by T'—regular. In this case, I';; =0,
S0 this condition is merely

det (Qq’) #0.
Now, the push-forward of ¢* = §% is required to be (by results of Section 8.6)

7/ =09 (Ho¢) = % (B 22 - 720",

where,

6 =i [(0@) +(2@)]

= —3n{(f1)* + (f2)?).
We have supposed that ¢(g!, ¢%) is known and defined in a chart (T, h).
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Secondly, we must now select fi(q', ¢) 0 that the I" —regularity condition holds,
locally.

Set R =~ (py A) 01 + (p1 A) By, to denote this linear operator and assume A is
independent of ¢!, ¢2 Thus, A is a Minkowski metric function in the chart (U, h).
Note that Ql = - l/detflR(fg) and Q‘Z = - 1/dethR,(f1)

Proposition 8.7.1. Under the condition det; # 0 in (U, k) I -regularity holds for
A Minkowski <=5 9, (fn det)[(Rf2)(IRod)(f1) — (Rf:) - (Ro8,)(f2)] — Be(fn dety)
x[(Rf2)(R o 01))(f1) — (Rfi) (IR0 8:)(fo)] # [(Rod1)(f1)] - [(Ro8)(fo)] - [(Ro
()[R 0 &)(f1)] in (U, h).

Corollary 8.7.1. In addition, assume f; = c-¢* where ¢ > 0 is a sufficiently small
constant. Then T —regularity holds in (V, k) <= Hess (f;) # 0 in (V,A) (Hessian

determinant) and f; = /e?* — (c-¢?)2. Here, V. C BC U (B is interior of closed
2-disk).

Proof. A short calculation shows that the condition of the proposition reduces to
the non-zero Hessian condition. An easy continuity argument shows that f; above
is well-defined in some dlosed 2-disk in (T, h). Merely note m < ¢(q', ¢%) < M holds
in any closed disk B C (U, k) and take theradius r = L e™ s0 that ¢-¢* < e? in this,
B (radius = r). Now choose a smaller chart V in the interior of B. This completes
the proof.

Also note that by linear adjustment, we can always suppose that ¢ (center of
B) = 0in IR%. Wecan now statethe

Theorem 8.7.1. If ¢ has a non-degenerate critical point x in (U, &) of IR?, then
T'- regularity holds in some neighborhood of x.

Consequently, (T*IR?, H) is homogeneous contact equivalent to (T*IR?, H) where
H = ;g%pip; = 1 e72(0'¥ X*)pip;. Moreover, T1¥ is by (4.7) not zero generally and
is completely determined by TT¥ = 0, I';; = 0 and this transformation.

Similar results are possible even if ¢ has no nondegenerate critical points. For
example, if ¢ = w;q', w; constants, the conclusion of the theorem above holds. It
can be reformulated as

Theorem 8.7.2. Any 2-dimensional constant Wagner space is the Legendre-dual

of the homogeneous contact transformation of the flat Cartan space (T*IR?, H) with
non-trivial oblique distribution TI.

Similar reformulations can be made of the main theorem on I'-regularity, as
well, using the known result that Wagner spaces with vanishing h —curvature must
have local metric functions of the form e - A, [11]. These have been found to be
of fundamental importance in the ecology and evolution of colonial marine inverte-
brates (ibid.).



Chapter 9

The dual bundle of a k-osculator
bundle

The cotangent bundle T*M, dual of the tangent bundle carries some canonical
geometric object field as. the Liouville vector field, a symplectic structure and a
Poisson structure. They alow to construct a theory of Hamiltonian systems, and,
via Legendre transformation, to transport this theory in that of Lagrangian systems
on the tangent bundle. Therefore, the Lagrange spaces L™ = (M, L(z,y)) appear as
dual of Hamilton spaces H™ = (M, H(z, p)), (cf. Ch.7).

In the theory of Lagrange spaces of order k, where the fundamental functions are
Lagrangians which depend on point and higher order accelerations, we do not have
adual theory based on a good notion of higher order Hamiltonian, which depend on
point, higher order accelerations and momentum (of order 1, only). This is because
we have not find yet a differentiable bundle which have a canonical symplectic or
presymplectic structure and a canonical Poisson structure and which is basic for a
good theory of the higher order Hamiltonian systems.

The purpose of this chapter is to elliminate this incovenient. Starting from the
k-osculator bundle (Osc* M, 7%, M), identified with k-tangent bundle (T*M, 7%, M),
we introduce a new differentiable bundle (T**M,=**, M) caled dual bundle of k-
osculator bundle (or k-tangent bundle), where the total space T**M is the fibered
product:

T*M = T* "M x ,T*M.

We prove that on the manifold T**M there exist a canonical Liouville 1-form, a
canonical presymplectic structure and a canonical Poisson structure. Conseguently
we can develop a natural theory of Hamiltonian systems of order k, for the Hamilton
functions which depend on point, accelerations of order 1,2,...,k — 1 and momenta.
These properties are fundamental for introducing the notion of Hamilton space
of order k.
We will develop in the next chapters the geometry of second order Hamilton

219
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gpaces and we remark that this is a natural extension of the geometry of Hamilton
spaces, studied in the previous chapters.

All this theory is based on the paper [110] of the first author.

9.1 The (T*M,=*, M) bundle

Let M be a rea n—dimensional manifold and let (T*M,=*, M) be 'its kfosculatpr
bundle. The canonical local coordinates of a point u € T*M are (2f, y1%, ..., y*¥%),
7*(u) = z and the point u will be denoted by u = (z, 3, ..., ).

The changes of coordinates on T*M are given by [106]:

(2)j+...+

For every point u € T*M, the natural basis

KA 8 0
ozt

e l " By

J
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in T,(T*M) is transformed by (1.1), as follows:

ol _ow a| o 9a N
art|, 8zt 8%|, = 9t oy,
ok g
+ o N
ozt oykI |
1.2
8 337(1)1‘ b oK) 9

Gy (i = By By | teot Ay gyl |

a ................ 3 g(k)] ....... a ....................................................

ay(kY ay®r kY|
where

a'g(a)i ag(a+1)i ag(k)i ()i ;

(13) 8.'17-7 = 8y(1)] R W, (a—O,,k— l,y —,'1}).

Fora € {0,1,....k—1}wedenoteby =% : T*M — T*M the canonica submersion,
locally expressed by

7%z, 4y, .., y®) = (z,yY, .., y'¥), 7k =t
Every of these submersions determines on T*Af asimple foliation, denoted by F,.;.
The sheafs of F,,, are embedding submanifolds of T*M of dimension (k — a)n
on which (y@+9i, ... y®%) are the local coordinates and (z*,y™),...,y(*%) are the
transverse coordinates.
Every foliation F,4; determines a tangent distribution

Vat1 = TFas1 = Kerdrk (o =0,..,k - 1),

where dr* is the differential of the mapping =%.

Therefore, we have a number of k distributions V4, ..., Vi, which are integrable, of
local dimension kn, (k — 1)n,...,n, respectively, and having the propertythat Vu €
T*M, Vi(u) D Va(u) D -+ D Vi(u).

The manifold T*A£ carries some others natural geometrical object fields [106], as

1 k1
the Liouville vector fields I, ..., I". T belongs to the distribution V}, and is given by

1 . k k .
[ =y ., T belongs toV; and has the form I = ¢ + 2y +

gyWwi’ ™ By By (@)

cee e ky(k)i

Ay(w)
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Moreover, there is a tangent structure J defined on T*M. It is given by

J= ——Q®dz + 9 1.<8>dy(1)"—+- (k~1)i,

0
0 1)1, 3y(2)

ay(k)
We have the properties

k k-1

k=1 2 1 1
Jl=T,J0 =71,.,JT=T, JT =0

However, it does not exist a canonical symplectic or presymplectic structure over
the manifold T* M.
We introduce the following differentiable bundle:

Definition 9.1.1. We call the dual of the k—osculator bundle (T*M,=*M) the
differentiable bundle (T** M, =**, M) whose total space is

(1.4) THM =T 'M xy T*M

The previous fibered product has a differentiable structure given by that of the
(k — 1)—osculator bundle T*-'M and the cotangent bundle T*M. Of course, for
k=1, wehave T*'M =T*M.

We will see that over the manifold T**M there exist a natural presymplectic
structure and a natural Poisson structure. Sometime we denote (T**M, "%, M)
by T**M. A point u € T**M will be denoted by u = (z,yY,...,y*~1,p). The
canonical projection 7*¥ : T*M — M is defined by 7**(z,y™, .. y(k“) p) = z.
Of course, we take the projections on the factors of the fibered products (1.4):

mE L T*M — TF'M, 2. T"M — M

as being 7% (z,yM, .., y* Y, p) = (z,yV,...,y*¥ V) and 7*(z,p) = z.It results
the following commutative diagram:

T* M
gl T
k-1 L T*M
k- /
M

where 7 (z,yV, .., y*~Y,p) = (z, p).
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This diagram implies the existence of some natural geometrical object fields over
the manifold 7** M.

Let (zf,y", ..., y*%Yip) (i = 1,..,n), be the coordinates of a point
u=(z,yY,...,y* VY, p) € T*M in aloca chart (z*~}(U), ¢) on T**M.

The change of coordintes on the manifold T**M is:

(. 97
7 = 7*(s!, ..., 2"), det (%) #0
N
i — 7 ()]
y dxI
(1.5) L SR PSP SO PP
otk A=)
— 1)ylk-1) — (1) (k=1)i
(k—1) e +--+(k 1)8y(’°—2)1
. 0x’
[ P = ot
where the following relation holds:
6@'(0:)1‘ ag(a+1)i 6g(lc-1)i
(1.5) dxi oy T py—T-a)’

(@=0,...k—2;y0 = 1),

It follows that T**M is a rea differentiable manifold of dimension
(k + 1)n. It is the same dimension with that of the manifold T*M.

With respect to (1.4) the natural basis

9
ozt

0 ’ 0
u’ Ayi u’ " Gylk-1i

9
. Opil,
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in T,(T**M) is transformed as follows:

(0 _ o o oy 9 N
ozt |, © orow|,  or oy
. agk-i 9 ap; 9
dzt  ogk+Vi| Ozt 8|,
(1.6) P oy 9 oy~ 8
' | 3| T 3,0 ggmil By gyt-17 |
...... : ay'(k—ma
ay(k—1)1 . ay(k—l)i 3g(k—1)j "
o _
| Op, - 0% 0y,

the conditions (1.5)' being satisfied.
Consequently, the Jacobian matrix of the transformation of coordinate (1.5) is
given by

73
gii (u) 0o 0 - 0 0
oy o%i
R =) o 0
(1.6) Jr(u) = :
oytk—1J o T bofnd
g W Gy W) 0 gm0
Bﬁj 6.’L‘i
Va0 0 0 G
It follows:
, 0% k-l
(1.6)" deth(u)z[det(@(u))} .

Theorem 9.1.1. We have:

a Ifk is an odd number, the manifold 7**M is orientable.
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b. If kis an even number, the manifold T**M is orientable if and only if the
manifold M is orientable.

Following the property of the bundle (T**M,ntt,, Tk~ M) it is not difficult to
prove:

Theorem 9.1.2. If the differentiable manifold M is paracompact, then the differ-
entiable manifold T**M is paracompact, too.

Let us introduce the following differential forms:

(1.7) w = p;dzt,

(1.7) 6 = dw = dp; A dz.
Then, we have:
Theorem 9.1.3.
1° The forms w and éare global defined on the manifold 7+ 1.
2° 0 isclosed, i.e. df = 0.
3 6 is a presymplectic structure of rank 2n on the manifold T** M.
Proof. 1° Theforms w and # are invariant with respect to (1.5).

2° df = d*w = 0.
3 fisa2-form of rank 2n and 2n < (k + 1)n = dimT** M. g.ed.

Now, let us consider the system of Poisson brackets:

(1.8) { Yo:(f,9) € F(T*M) x F(T*M) — {f,g}a € F(T* M),

defined by

/ _ 9 o9 of 9 . _ 10 =
(18) {f,g}a - ay(“)" apz api ay(a)i’ (a - 0? la LS k 11 y - I)
We obtain:

Theorem 9.1.4. Every bracket { }a, (@ = 0,..,&k — 1) defines a canonical
Poisson structure on the manifold T** M.
Proof. We prove that the Poisson bracket {f,g}a, (@ = 1,...,k — 1) isinvariant
under the transformations of coordinates (1.5) on 7**M. Indeed, by means of (1.6)
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we have . -
af ag(a)m af 017(0‘“)'" 5f

ay(a)i = ay(a)i ag(a)m + ay(a)i ag(a+1)m +ooot

oge- v of . Opm OF
ay(a)i 0g(k—l)m ay(a)i 6ﬁm’

o9 _ o oy

dp; ~ 0% i
But the first formulae, by means of (1.5)', can be written as follows:

af _9im of +ag(1)m of
ay(a)i - oxt af!“/’(a)m Azt a@'(a+l)m

agk—-l—a)m af N aﬁm Qf_
oxt ytk-m = gylek 9,

And aso, taking into account the identities:

ag(a)m ort aﬂ(a)m
ozt 0%s  0%°

+

=0, fora=1,2,..., k-1,

Opm 9p,, Oz
= =1, k~1), —m = —
gy =0 (@=1.nk=1), 57 o2 =0,
we obtain: _
8f 8f _ 8f 83 ,
dyler ap;  dylel ap; (@=0,...k—1).
Consequently N
{f’g}a = {fyg}(a), (a=0,...,k— 1).
It is clear that:
{f,9}a=—1{9, f}a; {f 9}a is R-linear in every argument
{f7g}a = _{gvf}a
holds.

Finally, we prove that the Jacobi identities hold, i.e.:
{{fag}m h}a + {{g) h}m f}a + {{h, f}mg}a =0,
(1.8)"
(a=0,1,...,k—1).
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Finally, by a direct calculus, it is not difficult to prove the Jacobi identities (1.8)"
for every Poisson bracket {f, g}a- g.ed.

For more clarity, al these considerations will be applied in the case & = 2, in
order to study the geometry of Hamilton spaces of order 2.

9.2 The dual of the 2—osculator bundle

The theory from the previous section can be particularized to the cae £ = 2.
We obtain in this way the dual of the 2-tangent bundle (T?M, =2, M) given by
(T*2M,7*?, M), where T**M = T'M xp T*M can be identified with T**M =
TM xuT*M. Noticethat the last oneis exactly the Whitney sum of vector bundles
TM &T*M. We have

(2.1) TM =T*M =TM & T*M,

where (T'M,n, M) is the tangent bundle of the manifold M and (7T*M, =*, M}its
cotangent bundle. A point u € T**M can be written in the form v = (z,y,p),
having the loca coordinates (z?,,p;). The projections 7*?(u) = 7*(z,y,p) = =,
72 T*°M — TM are defined by 72(u) = 7(z,y,p) = (z,y) and 7 : T*M —
T*M is given by 7*(u) = 7 (z,y,p) = (z,p). Let us denote 7%(u) = 7(u). We get
the following commuttive diagram:

T*2M
T T
?T‘z *
™ ™M
R /
M

A change of local coordinates is given by

F o= 7'(z!,..,z"), det (33: ) #0,

0%

(22) < vy = ijy’

0
| i = %{pj-




228 The Geometry of Hamilton & Lagrange Spaces

The dimension of the manifold 7**M is 3n.
For every point u € T*2M the natural basis

o) 9] 9
ozt oyt Opi,
of the tangent space T, T*? transformes, with respect to (2.1), as follows:
(0| _ 6% 6| oF 8| 9B 9
or'| "~ Ozt 0|, Ozt O . Ozt 0P|,
0 07
9 o, ~ o o,
2| _ % o
| Opil, — 8% o,

The Jacobian matrix of the change of coordinates (2.1) is given by

oz?

o (u) 0 0
R AR
(2 4) J(U) - 8_.'1,"- U _8?(“) 0
o Oz’
w0 FFW

Theorem 9.2.1. The differentiable manifold T*2M is orientable if and only if the
base manifold M is orientable.

The nul section 0 : M — T**M of the projection =*? is defined by 0 : (z) €
M — (z,0,0) € T*2M we denoteby T*2M = T*2M \ {0}.

Let us consider the tangent bundle of the differentiable manifold T*2M. It is given
by the triade (TT**M,r*2, T*2M), where 2 is the canonica projection. Taking
into account the kernel of thedifferential dr*2of the mapping 7*2 we get the vertical
subbundle VT*2M. This leads to the vertical distribution V : uw € T*2M — V(u) C
T,T*2M. The loca dimension of the vertical distribution V is 2n and V is localy

generated by the vector fields {6%1 ’% } , Yu € T*2M. As usualy, let us
denote ‘ e

a . a . 0
(2.5) 8, = py o= o o= o9,
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It follows that the vertical distribution V is integrable. By means of the relation
(2.3), we can consider the following subdistributions of V:

(2.6) WiiueT*M — Wy(u) c T,T*M

locally generated by the vector fields {4;

bution of local dimension n
Let us consider aso the subdistribution

_, ueT?M} It is an integrable distri-

(2.6)' Wy :iu e T?M — Wy(u) C T,T**M

locally generated by the vector fields {éiiu, u € T*2M}. Of course, W is dso an
integrable distribution of local dimension n
Clearly, we have

Propodtion 9.2.1. The vertical distribution V has the property
27 V(u) = Wi(u) ® Wa(u), Yue T*’M.
Now, some important geometrical object fields can be introduced:
(i) the Liouville vector field on T*?M:
(2.8) Clu) =¢' 8 , YueT?M,
(ii) the Hamilton vector field on T*2M:
(2.9) C*(u) = p; 3i|u, YueT2M,
(iii) the scaar field
(2.10) o =py'.

Weremark that C € W, and C* € W,.
Also, let us consider the following forms

(2.11) w = pidz?, (Liouville 1-form)
(2.12) 6 = dw = dp;Adz.
Then, Theorem 9.1.3 leads to the following result:

Theorem 9.2.2.
1° The differential forms w and 6 are globally defined on the manifold 7*2M.
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2° The 2-form @ is closed and rank éis 2n.
3° # is a presymplectic structure on T*2M.
The Poisson brackets { }o, { }, can be defined on the manifold T*?M by:

(2.13)

Therefore, Theorem 9.1.4 can be particularized in:

Theorem 9.2.3. Every bracket { }¢ and { }, defines a canonical Poisson struc-
ture on the manifold 7*2M.

Now, it is not difficult to prove that the following F(7*2M)-linear mapping
J X(T*M) — X(T**M)
defined by
(2.14) J8) =6, J(&)=0, J(B) =0, ueT?*M

has geometrical meaning.
It is not difficult to prove:

Theorem 9.2.4. The following properties hold:
1°. J is a tensor field of type (1,1) on the manifold 7*2M.
2°. Jis a tangent structure on T*2M, i.e. Jo J =0.
3°. Jis an integrable structure.
4°, KerJ =W, e W,, ImJ = W,.

We are going to use these object fields to construct the geometry of the manifold
TM.
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9.3 Dual semisprays on T*’M

An important notion suggested by the geometrical theory of the Lagrange spaces of
order 2 is that of dual semisprays.

Definition 9.3.1. A dual semispray on T*2M is avector field Son T*2M with the
property:

(3.1) JS=C.

Taking into account (2.6) and (2.11) it follows:
Proposition 9.3.1. A dual semispray S on T**M can be represented locally by
(3.2) S = '8, + 26'9; + f,0'.

The system of functions (¢(x, ,p), fi(z,y,p)) is caled the coefficients of the dual

semispray S. However, they are not any arbitrary functions. In fact, {¢°} and {/f;}
are important geometrical object fields.

Theorem 9.3.1. With respect to the transformation law (2.2) on 7*?*M, the func-
tions {¢'} and {f;} transform as follows:

= 0F_ . O
. t= =280+ =y
(3.3) 2% =52+ 55y
[} ra apl
(33) =2 By

Conversely, if on every domam of local chart on T*2M are given the systems of
functions {£'} and {f;} (i = 1,...,n) such that, with respect to (2.2), the formula
(3.3) and (3.3)' hold, then S given by (3.2) is a dual semispray on T*?M.

The proof is not difficult. It is similar with the proof given by semisprays on the
osculator bundle T2 M.

Two immediate properties are the following:

Proposition 9.3.2. The integral curves of the dual semispray S, from (3.2), are
given by the solution curves of the system of differential equations:

dz* , d% i dp;
- =V = 2£'(z,9,p), E—fi(x,y,p)-

(3.4) -
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Proposition 9.3.3. Every dual semispray S on the manifold 7*?M with the coef-
ficients (¢¢, f;) determines a bundle morphism

(3.5) £:(z,y,p) €TM — (z,yV',y®) e TOM,
defined by
(3.5) ot =g,y =yl yO =€z, y,p).

Moreover, it is a local diffeomorphism if and only if rank [|§%¢7|| = .

We shall see in Chapter 10 that the bundle morphism &, defined in (3.5)', is
uniquely determined by the Legendre transformation between a Lagrange space of
order two, L@&" = (M, L(z, ¥V, y®), and a Hamilton space of order two, H®" =

(M, H(X, y, p)).
Conseguently, if the bundle morphism &, defined in (3.5)' is apriori given, the
dual spray S, denoted by

(3.2)’ SE = y’f),- + 253,’ + f,—éi

is characterized only by the coefficients fi(z,y,p).
We have, dso:

Proposition 9.3.4. The formula:

(3.6) w(Se) = o,
holds.

An important problem is the existence of the dual semisprays on T*2M.
Theorem 9.3.2. If the base manifold M is paracompact, then on T*2M there exist
dual semisprays S¢ with apriori given bundle morphismé.

Proof. Assuming that the manifold M is paracompact by means of Theorem 9.1.2,
it follows that the manifold T*?M is paracompact, too. We shall see (Ch.10) that a
bundle morphism £, defined in (35)' exists. Now, let ;;(z), z € M be a Riemannian
metric on M and 7}, (z) its Christoffel symbols.

Setting

(3.7) fi = Y@y

we can prove that the rule of transformations of the systems of functions {f;} with
respect to the transformation of local coordinates (2.2) are given by (3.3)'.
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Indeed, we have

01" 01° ,; 0% bRt
(3:8) O a1 ozt jh% " Dridzh

The contractions with y* and p; lead to

~ 0! Bp, Y
fi= o7t ozl t o1

which is exactly (3.3)".
Therefore f;, from (3.7) are the coefficients of a dua semispray.
As a conseguence, we have:

Theorem 9.3.3. The following systems of functions

(39) i< alf]» ij — a fz

are geometrical object fields on 7*2M, having the following rules of transformations,
with respect to the changing of local coordinates (2.2):

Ni 0% N 0% By

8

o = gz " Bw
(3.10)
~  01° 9z" oz"
N =55 gz Ve ¥ Priiom

These properties can be proved by a direct computation starting from the for-
mulae (3.3)".

Remarks.

1°. We will see that the system of functions (N*;, N;;) gives us the coefficients of
a nonlinear connection on 7*2M.

2°. With respect to (2.2), the system of functions
Tij = Nij - Nji

is transformed like a skew symmetric, covariant d-tensor field.
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9.4 Homogeneity

The notion of homogeneity for the functions f (x, y, p), defined on the manifold 7*2M
can be defined with respect to y#, as well as, with respect to p; respectively. Indeed,
any homothety

he : (z,y,p) — (z,ay,p), a € R

is preserved by the transformation of loca coordinates (2.2).
Let H, be the group of transformation on T*2M,

Hy = {h.: (2,y,p) — (z,ay,p) |a € R*}.
The orbit of a point uy = {zg, yo,pe) by Hy is given by
gt = 1'%, y' = ay’, pi =p%, Va € RY.
The Itangent vector in the point uy = h;(up) is the Liouville vector field C(ug) =
Y00, -

Definition 9.4.1. Afunction f : T*2M — IR differentiable on T*2M\{0} = T M
and continuous on the null section of the projection #*2 : T**M — M s caled
homogeneous of degree r € Z with respect to g, if

(4.1) fohs=d'f, VaeR".
It follows106]:

Theorem 9.4.1. A function f € F(T*2M) differentiableon T*2M and continuous
of the null section is r-homogeneous with respect to y* if and only if

4.1y Lef =rf,
where L¢ is the Lie derivation with respect to the Liouville vector field C.

We notice that (4.1) can be written in the form:

n zaf —
(4'1) Yy B_y‘ = 'I‘f.
The entire theory of homogeneity, with respect to y*, exposed in the book [106], can
be applied.
However, in our case it is important to define the notion of homogeneity with
respect to variables p;.
Let H, be the group of homotheties

H, ={h, : (z,y,p) € T*M —> (z,y,ap) € T**M {a € R"}.
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The orbit of a point uy = (o, %, po) by Hj isgiven by
:L‘i = xiO’ yi = yi07 pi = apoi) Vae R+'
Its tangent vector in the point uo = h{(u) is the Hamilton vector field C*(uq).

A function f : 7*2M — R differentiable on T*2M and continuous on the null
section is called homogeneous of degree r, (r € Z) with respect to the variables p;if

(4.2) foh,=d"f, Vae R*.

In other words;
fz,y,ap) =a" f(z,y,p).
It follows

Theorem 9.4.2. A function f € F(T*2M), differentiable on T*2M and continuous
on the null section is r—-homogeneous with respect to p; if and only if we have

(4.2) Lo f=r1f.

Of course, (4.2)' is given by

of _

4.9)" 9L
(4.2) Pig,

rf.

A vector field X € X(T*2M) is r-homogeneous with respect to p; if
Xohl,=d 'h}oX, Vae R".
We have:

Theorem 9.4.3. A vector field X € X(T*2M) is r-homogeneous with respect to p;
if and only if

(4.3) Lo X = (r—1)X.

Corollary 9.4.1. The vector fields 2.9

P

ozt 8y dp;

are 1, 1, 0-homogeneous with re-
spect to p;, respectively.
Corollary 9.4.2. A vector field

© 89 1§ @ 8
4.3) = X'— P in
(4.3) X=Xign+Xigo+ Xig
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is r—homogeneous with respect to p;, if and only if

(0).

X' isr — | homogeneous,
(1

X' isr — | homogeneous,

(2 .
X; isr homogeneous.
It results:

Proposition 9.4.1. If f € F(T2M), X € X(TWM) arer— and s-homogeneous
with respect to p;, respectively, then fX isr + s-homogeneous.
In particular:

1°. The Hamilton vector field C* is 1-homogeneous.
2°. A dual semispray

) 0 ) 0

(4.4) Se=vy s + 2¢ 3y

is 1-homogeneous with respect to p; if and only if its coefficients £ are 0-ho-
mogeneous and f; are 1-homogeneous with respect to p;.

1

)
+fia—p_

Proposition 9.4.2. If X e X(T:’TM ) isr—homogeneous and f is s-homogeneous
with respect to p;, then Xf isr + s — | — homogeneous with respect to p;.

Coroallary 9.4.3. Iffye }'(T:TM) is r—homogeneous with respect to p; and differ-
entiable on T*2M, then

1°. ﬁ are (r — 1)-homogeneous.
op;
2° 7f is (r — 2)—homogeneous
" OpiOp; '

A gformwe AY(T*2M) is caled s-homogeneous with respect to p; if
woh! =a'w, Va € R*.
Corollary 9.4.4. If thefunctions f, g € F(T*?M) arer —and s—homogeneous with

respect to p,, respectively, then the functions given by the Poisson brackets {f, g}o
and {f, g}, are (r + s — 1)-homogeneous, respectively.



Ch.9. The dual bundle of the k-osculator bundle 237

The following result holds:

Theorem 9.4.4. A gformw € Aq(T:TM) is s-homogeneous with respect to p; if
and only if

(4.5) Low = sw.

It follows:

Proposition 9.4.3. The 1-forms dz*, dy',dp; (i = 1,...,n) are0,0, 1 homogeneous
with respect to p;, respectively.

In the next section we will apply these considerations for study the notion of the
Hamilton spaces of order 2.
Finally, we remark:

Proposition 9.4.4. A dual semispray S is2—homogeneouswithrespectto y* if and
only if the coefficients &' are 2-homogeneous and f; are 1-homogeneous with respect
to y*.

A dua semispray S¢ which is 2-homogeneous with respect to y* is called a dual
spray.

9.5 Nonlinear connections

We extend the classical definition [97] of the nonlinear connection on the total space
of the dual bundle (T*2M, 7*2, M).

Definition 9.5.1. A nonlinear connection on the manifold 7*2M is a regular dis-
tribution N on T*2M supplementary to the vertical distribution V, i.e.

(5.1) T,T**M = N(u) ® V(u), Yu € T*M.

Taking into account Proposition 9.2.7 it follows that the distribution N has the
property:
(5.2) T,T**M = N(u) ® Wy (u) ® Wa(u).

Therefore, the main geometrical objects on T*2M will be reported to the direct sum
(5.2) of vector spaces.
We denote by

§ 48 0 .
(53) (rxla‘a?)%;) (2—1,,71)
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alocal adapted basis to N, Wy, W,. Clearly, we have

59 0 9
(5.4) bzt Oz N YOy + Ny Op;

The systems of functions (N?;(z,y, p), Ni;(z, y,p)) are the coefficients of the nonlin-
ear connection N. 5 8

With respect to the coordinate transformations (2.2), —.,—.,i are trans-
ozt 6y2 6p,~
formed by the rule:
6 9z" & o 0 8 D ort 8

(5.4) 5% " o5 57 By~ 0w 0 O~ 0 Op;

It is not difficult to prove the following property

Theorem 9.5.1. The coefficients (¢}, ;) of @ nonlinear connection N on M
obey the rule of transformations (3.10) with respect to a changing of local coordinates
(2.2). Conversdly, if the systems of functions (N*;, N;;) are given on the every
domain of local chart of the manifold 7*2M such that the first two equations (3.10)
hold, then (N%;, N;;) are the coefficients of a nonlinear connection on T*2M.

It is convenient then to use the basis (5.3), if thecoefficients N¢; and N;; are
determined only by the coefficients f; of the semispray Sg.
It is not difficult to prove the following theorem:

Theorem 9.5.2. If S; is a dual semispray with the coefficients f;, then the systems
of functions

, _ 0f; Of;
3. Nt =24 N =28
( 5) J 5111' i 8:1/-7

are the coefficients of a nonlinear connection.

Conversely:

Theorem 9.5.3. If (N%;, N;;) are coefficients of a nonlinear connection N, then
the following systems of functions

fi=Nyy
are the coefficients of a dual semispray S¢, where &; are apriori given.

Taking into account Theorems 9.3.2 and 9.5.2, we can affirm:
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Theorem 9.5.4. |f the base manifold M is paracompact, then there exist nonlinear
connections on the manifold T*2M.

From now on we denote the basis (5.3) by:
(5.3) (6,0, 0").
The dual basis of the adapted basis (5.3) is given by

(5.6) (8%, 69", 6p;)
where
(5.6)’ 6r' = da', §y' = dy' + N';dz?, ép; = dp; — Nyda.

With respect to (2.2), the covector fields (5.6) are transformed by the rules:

0z’
Jy 0p; = o= 0p;-

(5.6)" 55 = O 50l 5 = =

oxJ oxJ

Also, we remark that the differential of afunction f € ]-'(T:TM) can be written in
the form

5f e ot
(5.7) df = 5’ 0 a Sy + api5p1

9.6 Distinguished vector and covector fields

Let N be a nonlinear connection. Then, it gives rise to the direct decomposition
(5.2). Let h,w;, w, be the projectors defined by the distributions N, Wy, Wa. They
have the following properties:

h4+w +wy =1, h? =h, w%:wl, w%=w2,
(6.1)

how, =wjoh=0, howy=wyo0h=0, wyowy =wgow; =0.
If X e X(TWM) we denote:
(6.2) XH=pX, XM =w X, XW? = w,X.
Therefore we have the unique decomposition:
(6.3) X=X+ xW 4 X"™

Each of the components X#, X%, X%z is called a d-vector field on T+2M.
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In the adapted basis (5.3) we get
(63)' XH — X(O)i(si, XW[ — X(l)iéi, XWg — XI(Q)al
By means of (5.4) we have

0z

62 X(OJ X — oz’

mj. ¥@ _
X ¢ asz
But, these are the classical rules of the transformations of the loca coordinates of
vector and covector fields on the base manifold M [97]. Therefore X% X1 are
called d-vector fields and X is called a d—covector field.
For instance, the Liouville vector field C and Hamilton vector field C* have the
properties:

0)i __
(6.4) X =

C=C"=y4, C"=0 "=,

C'=CW:=pd, C =0, C" =0.
A dua semispray Se, from (4.4), in the adapted basis (5.2), has the decomposition

(65) S{ = Sg{ + SEWI + ngz = yid,- + 2’(2,6, + hiéi,
where:
(6~6) -_2€I+Nl yJ h; —fz le)

k* being a d-vector field and h; a d—covector field.
Assuming that the nonlinear connection N provides from a dual semispray S
with the coefficients f;, we get

(6.6)' = a'fj, i = 6 fi
It follows that the vector &* and covector h; are given by
(6.6)" 2k =26+ (8 5)y, hi = fi— (0ify)y-

A similar theory can be done for distinguished 1-forms.
With respect to the direct decomposition (5.2) a 1-form w € X*(T*2M) can be
uniquely written in the form:

(6.7) w=wl + W + ¥,
where

(6.7) wl=woh, W =wow, w"?=wows,.
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In the adapted cobasis (5.6) and (5.6)', we have

(6.8) w= w, ozt + w Oy + (uz)) dp;

The quantities w#,w":,w"? are called d-1-forms.

The coefficients (&,(J))i and & are transformed by (2.2) as follows:

@ 0% O y oL @ 0%y
W= aiw], w,—axle,w—%w.

Hence 2 and Y, are called d-covector fields and 2 will be called d-vector field,

If the nonllnear connection N is apriori given, then some remarkable d-1-forms
can be associated in a natural way. Namely, let us consider:

w = wl = pdz?,
(6.9) o = o™ = pidyt,

B =p": = y'p;.
We will use these d-forms for studying the Hamilton geometry of order 2 on T*2M.

Proposition 9.6.1. The following properties hold:
If S¢ is a dual semispray, as in (6.5), and nonlinear connection N is determined
by Se, asin (6.6)', then we have

(610) UJ(S&) = piyi, Ot(SE) = 2piki, B(SE) =

Now, let us consider afunction f on T*2M. lts differential can be written in the
form (5.7). Therefore

df = (df)? + (df)™ + (df )™
where
(6.11)

(df)¥ = 6:f dzt, (df)™ = 0;f 8y, (df)": = &' f épi.

Let us consider a smooth parametrized curve v : I ¢ R — T*2M such that
Imy C (7*2) " (U). It can be analytical represented by:

(6.12) o =1i(t), v = '(t), pi=p(t), tel
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dvy . . . .
The tangent vector —1, in a point of the curve ~y, can be written in the form:

dt

dy (dvy i dy\ ™ dy e gy oyt 6p, ;
(6.13) d—t—(E) +(E +l dt5,+ — 8 + 6
where

sy' _ dyt ;dz? Sp;  dp; dz?
(6.14) it = TN T 7 dt
dy " .

The curve in (6.3) is called horizontal |f dt T in every point of the curve 7.

Proposition 9.6.2. An horizontal curve on T*2M is characterized by the following
system of differential equations:

8ps
_o %P

.1 i:i —_— —_—
(6.15) s =20, L =0, T

=0,tel

Clearly, the system of differential equations (6.15) has loca solutions, if the
initial points i = z(t), ¥4, p on T**M aregiven,ty € I.
9.7 Lie brackets. Exterior differentials

In applications, the Lie brackets of the vector fields {6,-,6,-,6"}, from the adapted
basis to the direct decomposition (5.2), are important.

Proposition 9.7.1. The Lie brackets of the vector fields of the adapted basis are
given by

[5_77 6h] = (]1'2)1 ]ha + R z]ha

o, — i y )i
[ 3 ah] (?) ]haz+ (2B) ]ha )
(7.1)

[6,,0"] B %4+ B rLE,

(1)

(0,00 = [0,0] =[] =0,
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where
(13)“ jh = O’y — 8N, R un = 8,Nns = 8uNys,
(7.2) B’ jn = OuN';, B ijh = —OnNy;,

L 2

(lli;i jh = 6"’Nij, (?)h i = —Bth,-.

The proof of this relations can be done by a direct calculus.
Now we can establish:

Proposition 9.7.2. The exterior differentials of the 1-forms (6z*, 8¢, 8p;), which
determine the adapted cobasis (5.6)", are given by

d(éz') = 0,

1 . ) . ,
{ R’ jmdz™+ UB)’ méy"+ (}13)"" jépm} Adz?,

(7.3) d(0y’) 2 (1

1 )
d(ép;) = = R iimdz™ iimoy™ ™ 0pm » Ada?.
(p) {2(%1 $+&B)me +(§) JP} X

Indeed, from (5.6)" we deduce
d(6y') = dN*;Adz?, d(6p;) = —dNjAdz?.

Using (6.11) for dN*; and dNj;; we have the formula (7.3).
Now, the exterior differentials of the w, &, 8, from (6.9), can be easily determined.
Let us consider the following coefficients from (7. 1):

7.4 tn=0aN'; — B jh = "Ny,
( ) (?)Jh hiV 5 (12})1" hj

By means of (3.10) it follows:

Proposition 9.7.3. The coefficients B* ;», — B)i ;n have the same rule of transfor-
(1 (2

mation with respect to the local changing of coordinates on T*2M. This is

- 85 87 7 2 i
(7.5) B 01" 01° _ 0% o, 0°%

95 oz  dxr ¥ 9xidzk’
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We will see that these coefficients are the horizontal coefficients of an N-inear
connection.
We obtain dso:

Proposition 9.7.4. The coefficients.

: ih=P"NY,, Bn=—-0hNy
(76) (113)1 J’g]h On J

are d-tensor fields.

9.8 Thealmost product structure IP. The almost
contact structure F.
Assuming that a nonlinear connection N is given, we define a F(T*2M)-linear map-

ping
P: X (T?*M) — X(T*M),

by defined
P(XH) = X¥, P(X"™) = -X", P(X") = -X",
(8.1)
VX e X(T*M).

We have aso,

PolP =1,
(82) IP=I—2(w1+wg)=2h—I,

rankIP = 3n.

Theorem 9.8.1. A nonlinear connection N on T*2M s characterized by the exis-
tence of an almost product structure IP on T*2M whose eigenspaces corresponding
to the eigenvalue - coincide with the linear spaces of the vertical distribution V on
E.

Proof. If N is given, then we have the direct sum (5. 1). Denoting by h and v
the supplementary projectors determined by (5.1) we have IP = I — 2v with the
properties IP(XH) = XH P(XY) = —XV. So, the imposed condition is verified.
1
Conversely, if P* = I and P(XV) = —-XV, then let v = %(I—]P) and h = §(I+IP).
We verify easy that h+v =1.% N = Kerv. Itfollows NV =TT*?M. g.e.d.
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Proposition 9.8.1. The almost product structure IP is integrable if, and only if,
the horizontal distribution N is integrable.

Proof. The Nijenhuis tensor of the structure IP
(8.3) Np(X,Y) = P[X,Y] + [PX,PY] - P[PX,Y] - IP[X, PY]
givesusfor X = X# Yy =Y¥#

Np(XH,YH) = 2[XH YH] - 2P[XH YH) =2(I - P)[XH,YH] = 4[| XH, YH]

Np(XH, YY)

[(XH YY) - X", YH] - P[X®,YV]+P[X*,YV]=0

Np(XV, YY) = [XV,YV]+[X",Y"]+P[XV, Y]+ P[X",YV] =

2(I +P)[XV,YV] = 4[X",Y"] = 0.

hn

Therefore Np = 0 if and only if [X# YH]Y = 0. But [X#,YH]Y =0,VX,Y €
X(T:TM ) dlows to say that the horizontal distribution N isintegrable.

The nonlinear connection N being fixed we have the direct decomposition (5. 1),
(5.2) and the corresponding adapted basis (5.4).

Let us consider the F(T*2M) -linear mapping:

F: X(T?M) — X(TM),

determined by
(8.4) F(6;) = —8;, IF(8;) = 6, F(§) = 0.
Then, we deduce;
Theorem 9.8.2. The mapping IF has the following properties:

1°. It is globally defined on T*2M.

2°. IF is a tensor field of type (1, 1).

3. KerlF = W,, ImIF = N @ W;.

4°. rank||IF|| = 2n.

5. F*+IF = 0.



246 The Geometry of Hamilton & Lagrange Spaces

Pr oof.

o . 67t ) ot 8 . é
1°. Takinginto account (5.4) wehave WIF (E) = "0 3y impliesIF (@)

0 oz 0 0zt ¢ 07’ g 0
o 0

2°. F is}'(Ta/M) -linear mapping fromX(T:TM) toX(T:TM).

3. F (;) = 0implies IFy, istriviadl and F(N @ W, ® W2) = N @ W).
Di

4°. Evidently, by means of 3°.

5°. F2(XH) = F(-X") = —X#, F3(X#) = X™ and F(X¥) = -X". So
(F*+F)X? =0, vX¥ € N and (IF* + F)(X"') = 0, (F® + F)(X"2) = 0.

We can say that IF is a natural almost contact structure determined by the
nonlinear connection N.
The Nijenhuis tensor of the structure IF is given by:

Nr(X,Y)=F*X, Y]+ [FX,FY]| - F[FX,Y] - F{X,FY]

and the normality condition of IF' reads as follows:

(8.5) Ne(X,Y) + Y dép)(X,Y) =0, VX,Y € X(T*2M).

=1
Of course, in the adapted basis, using the formula (7.3) we can obtainthe explicit
form of the equation (8.5).

9.9 The Riemannian structures on T*2M

Let us consider a Riemannian structure G on the manifold T*2M.

The following problem is arises; Can the Riemannian structure G determinea
nonlinear connection N on T*2M ? Also, can G determine a dual semispray Se on
TM ¢

In order to determine a nonlinear connection on T*2M by means of Git is
sufficient to determine a distribution N orthogonal to the vertical distribution V.
The solution isimmediate. Namely, it is important to determine the coefficients V¢,
and N,’j of N.
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In the natural basis, G isgiven localy by
G= (lgl)ijdzi ® dr? + (lgz)ijdxi ® dy’ + (1g3)1jdxi ® dp;+
9.1)
33)..
+- o+ Qidp @ dp;,

where the matrix “’g"’H is positively defined.

Let {4,}, (i =1, ..., n), be the adapted basis of N:

(9.2) % = 0; — N’;0; + N;;&.
The following conditions of orthogonality between N and V:
(9.3) G(:,8) =0, G(6;,0°) =0, (i,j=1,...,n)

give us the following system of equations for determining the coefficients N*; and
N,'j:

( (32) (12)

22)

9 miN™i+ 9 7' Nim = "¢ ij,
9.4)

(?)m]Nmi + (93)"”Nz'm - (15?)1",

where, the matrix

(22) (32,

9mj 9
(9.4)

e (sga>mj
is nonsingular.

Therefore the system (9.4) has an unique solution.

Whether, take into account the rule of transformation of the coefficients (agzﬁ)ij
from G we can prove that the solution (N%;, N;;) of (9.4) has the rule of trans-
formation (3.10), by means of the transformations of local coordinates on T*2M.
Consequently, we have:

Theorem 9.9.1. A Riemannian structure G on T*2M determines unigquely a non-
linear connection N, if the distribution of N is orthogonal to the vertical distribution
V. The coefficients N*;, N;; of N are given by the system of equations (9.4).

Remarking that f; = N,;y’ are the coefficients of a dual spray Se, we have:
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Theorem 9.9.2. A Riemannian structure G on T*2M determines a dual semispray
Se with the coefficients

fi = NI]y]7
N;; being determined by the system (9.4).

Let I be the natural almost contact structure determined by the previous non-
linear connection N.

The following problem arises: When will the pair (G, IF) is a Riemannian almost
contact structure?

Of coursg, it is necessary to have:

G(FX,Y) = —-G(X,FY), VX,Y € X(TM).
Consequently, we get:

Theorem 9.9.3. The pair (G,IF) is a Riemannian almost contact structure if and
only if in the adapted basis determined by N and V the tensor G has the form

(95) G= gijd.’l,'i ® dz’ + gijéyi ® (5y’ + h”épl ® 51)]

Corollary 9.9.1. With respect to the Riemannian structure (9.5) the distributions
N, W, W, are orthogonal respectively.

Remarks.

1° Theform (9.5) will be used to define alift to T*2M of a metric structure given
only by a nonsingular and symmetric d-tensor field g;;. Namely, we have

(9.5) G = g;;d7* ® d2’ + gi;0y* ® 0y + ¢"6p; ® Op;.
These problemes will be studied in a next chapter.

2° Using themetric G on T*2M we can introduce a new almost contact structure
I, defined by

(96) IF((S,) = —gijé"j, IF‘(O,) = 0, IF(g,Jaf) = (5,‘

We will prove that (G, IF) is a Riemannian almost contact structure and its
asociated 2-form 8 is given by

é = 6}), A d.’L‘i.

The pair (G, IF) will be studied in the Chapter 11 about the generalized Hamilton
spaces of order 2.



Chapter 10

Linear connections on the
manifold 7*2n

The main topics of this chapter is to show that there are the linear connection
compatible to the direct decomposition (5.2) determined by a nonlinear connection
N, on the total space of the dual bundle (T*2M, 7*?, M).

We are going to study the distinguished Tensor Algebra (or d-Tensor Alge
bra), N-linear connections, torsions and curvatures, structure equations, autoparal-
lel curves, etc.

10.1 The d-Tensor Algebra

Let N be a nonlinear connection on 7*2M. Then N determines the direct decom-
position (5.2), Ch.9. With respect to (5.2), Ch.9, avector field X and an one form
w can be uniquely written in the form (6.3) and (6.7), Ch.9, respectively, i.e.

X =X 4 X" 4+ X",
(1.1)

w=wi + ™ 4+ w2,

Definition 10.1.1. A distinguished tensor field (briefly: d-tensor field) on T**M
of type (r, s) isatensor field T of type (r, s) on T*2M with the property:

H T
(1.2) T, cr 0, X X) = T(w e @V XH L X,

for any (&, ..., @) € X*(T*2M) and for any (X, X) € X(T*M).
For instance, every component X ¥, X% and X"2 of avectorfield X € X(T**M)
is a d-vector field.

249
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Also, every component wf,w"* and w": of the 1-form w € X*(T**M) is a
d-I-form.

In the adapted basis (6,-, o;, 6’") and cobasis (dz*, 83", 6p:) to the direct decompo-
sition (5.2), a d-tensor field T of type (r, s) can be written in the form:
(1.3) T=TH 4 (2,y,p)0;,® 0" @di" ® - ® dp;, .
It follows that the sat {1,&, 6},3"} generates the algebra of the d-tensor fields over
the ring of functions F(T**M).

For example, if f € F(T*2M), then 8f

ozt

of

i 8;f are d-1-covectors and

=&

g—g = 8'f is a d-vector field.
ICIearIy, with respect to a local transformation a coordinates on T*2M, the coef-

ficients T};;;;};(z,y,p) of a d-tensor fields are transformed by the classicd rule:

~i A k k.
(1.3) Firi - O OFT OxM QT oy o,
' Juds T gght Qghe 9Fn Jrds ke

10.2 N-linear connections
The notion of N-linear connection will be defined in the known manner [97]:

Definition 10.2.1. A linear connection D on T*2M iscalled an N-linear connection,
if:

(1) D preserves by paralelism distributionsN, W; and W,.
(2) The 2-tangent structure J is absolute parallel with respect to D.
(3) The presymplectic structure é is absolute parallel with respect to D.

Starting from this definition, any N-linear connection is characterized by the
following:

Theorem 10.2.1. A linear connection D is an N -linear connection on T*?M if
and only if:

(1) D preserves by parallelism every of distributions N, Wy, W,.

(2) Dx(JY®) = J(DxY"), Dx(JY¥e) = J(DxY¥*), (a=1,2),
VX,Y € X(TM).

3 Do=0.



Ch.10. Linear connections on the manifold 7**M 251

The proof is similar with the case given in the book [106].

We remark that Dx(JYWe) = J(DxYW=) istrivial, because JY%= =0, VY €
X(T**M) and that by means of the property (1), itfollows J(DxY%=) = 0.

We obtain aso:
Theorem 10.2.2. For any N-linear connectionD we have

(21) th = DX'U)I = Dx’w2 = 0,

(2.2) DxIP =0, DxF =0.

Indeed, from (Dxh)Y = Dx(hY)-h(DxY)ifY =Y¥ and Y = YW (o =1,2)
we obtain Dxh = 0. Similarly, weget Dxwy, =0, Dxws = 0.

Now, taking into account the expression (8.2), Ch.IX, of IP it follows DxIP = 0.
The last equality DxIF = 0 can be proved in asimilar way.

Let us consider a vector field X € X(T*2M), written in the form (L1). It follows,
from the property of an N-linear connection that

(2.3) DxY = DxrY + Dyw Y + Dyw, Y, VX, Y € X(T**M).
We can introduce new operators of derivation in the d-tensor algebra, defined by:
(2.4) D% = Dxu, D¥* = Dyw,, D%¥* = Dyw,.

These operators are not the covariant derivations in the d-tensor algebra, since
D¥f=XH"f+#Xf (etc.). However they have similar properties with the covariant
derivatives.

From (2.3) and (2.4) we deduce

(2.5) DxY = DEY + D'y + DY?Y, VX, Y € X(T**M).

By means of Theorem 10.2.2, the action of the operator D¥ on the d-vector fields
YW1 Y™2 is the same as its action on the d-vectors Y'#. This property holds for the
operators D¥* and DY¥2, too.

Theorem 10.2.3. The operators D¥, DY¥t, D¥* have the following properties:

1) Every DZ D¥',DY¥* maps a vector field belonging to one of distributions
N, W1, W in a vector field belonging to the same distribution.

2) DEf=XHf, D¥if=X"§, DY'f = Xx"f.
3) DE(fY) = XUfY + fDRY; D¥*fY = XW=fY + D¥-Y.
4) DX(Y +Z) = DY + D{Z; DY*(Y + Z) = DX"Y + DX"Z.
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5) DY,y = D¥ + D{; DXy = D¥* + Dy~
6) Dfx = fD¥; D¢ = fDx".
7) DE(JY) = JDYY; DY=(JY) = JD¥?Y, (Va=1,2).

8 Do =0, D¥*0 =0, (a = 1,2), 8 being the presymplectic structure from
Theorem 6.7.1.

9) The operators D¥, D%, D¥? have the property of localization on the manifold
T?M, i.e. (D¥Y)y = D)’("UYW etc. for any open set U C T**M.

The proof of the previous theorem can be done by the classicd methods [106].

The operators D, DY, D¥* will be called the operators of h—, w;- and we—
covariant derivation.

The actions of these operators over the 1-form fields w, on T*2M, are given by

(DHw)(Y) = XHu(Y)-w(DEY),
(2.6) (DPW)Y) = XWw(Y) - w(DPY),

(DX*w)(Y) = X"™w(Y) - w(DX?Y).

Of course, the action of the previous operators can be extended to any tensor
field, particularly to any d-tensor field on T*2M. .

Now, let us consider a parametrized smooth curve v : ¢t C I — «(t) € T*2M,
having the image in a domain of a local chart.

. d . . .
Its tangent vector field ¥ = —(% can be uniquely written in the form
27) =4 44" 44"

In the casewhen v is analytically given by the equation (6.12), Ch.9, then 4%, 4%, 42
are given by (6.13), Ch.9. And we can define the horizontal curve.
A vector field Y defined along the curve v has the covariant derivative

D;Y = Di'y + D{'Y + D3*Y.
The vector field Y (u(y)) is caled parallel aong the curve v if
DyY =0.
In particular, thecurve v is autoparallel with respect to an N-linear connection
Dif Dy =0.
In a next section we will study these notions by means of adapted basis.
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10.3 Torson and curvature
The torsion T of an N-linear connection D is expressed, as usually, by
(3.1) T(X,Y)=DxY — DyX - [X,Y].
It can be characterized by the vector fields
TXH V), T(XH, Y W), T(XW, Y™), (a,b=1,2).

Taking the h— and w,—components we obtain the torsion d-tensors

2
T(XAYH) = AT(XHYH)+ Y wT(XH YH),
a=1
2
(3.2) T(XH YY) = AT(XH YWa) 4+ wpT(XH, Y W),

b=1

2
T(XWe,Y%) = RT(X%,Y)+ Y w, T (X", v™),

c=1

Since D preserves by parallelism the distributions H, W, W, and the distribu-
tions Wy, W> are integrable it follows

Proposition 10.3.1. The following property of thetorsion T holds:
(3.3) RT(X™,YWo) =0, (a,b=1,2).

Now we can express, without difficulties, the torsion d-tensors by means of the
formula (3.1).
The curvature of D is given by

(34)  R(X,Y)Z = (DxDy — DyDx)Z — Dixv)Z, VX,Y, Z € X(T**M).

We will expressIR by means of the components (2.5), taking into account the de-
composition (1.1) for the vector fields on T*2M.

Proposition 10.3.2. For any vector fields X,Y, Z € X(T*2M) the following pro-
perties holds:

(3.5) J(R(X,Y)Z) = R(X,Y)JZ; Dx = 0.

The previous properties have an important consegquence:
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Corollary 10.3.1.
1° The essential components of the curvature tensor field R are R(X,Y)ZH,
R(X,Y)Z": and R(X,Y)Z"2.
2° The vector field R(X,Y)Z# is horizontal.
3* The vector field R(X,Y)Z%= (a =1,2) belongs to the distribution W,,.
4° The following properties hold

wo[R(X,Y)ZH) =0, A[R(X,Y)Z"] =0,
(3.6)
wp[R(X,Y)ZW=] =0, (a#b, a,b=1,2).
Of course, we can express the d-tensors of curvature by means of the operators
of h—, wy—, we—Covariant derivatives (2.5)".
From (3.4) we get the following Ricci identities
[Dx,Dy)Z¥ = R(X,Y)Z" + Dixy)Z¥
(3.7)
[Dx,Dy]ZW" = ]R,(X, Y)ZW“ -+ D[x,y]ZW“ (a = 1,2)

As a consequence, we obtain:

Theorem 10.3.1. For any N -linear connection D there are the following identities

[Dx, Dy]C = R(X, Y)C - D[X,Y]C
(3.8)
[Dx, Dy]C* = R(X,Y)C* — Dixy|C"

where C is the Liouwville vector field, and C* is the Hamilton vector field on the
manifold T*2Mf.

Using the previousconsiderationswe can expressthe Bianchi identitiesof the N—
linear connection D, by means of the operators D¥, D%, D¥? taking into account
the classical Bianchi identities

Z {(DxT)(Y,2) - R(X,Y)Z + T(T(X,Y),Z} =0,
(XY2)

Y. {((DxR)U.Y,2) - R(T(X,Y), Z)U} =0,
(XY Z)

where )~ means the cyclic sum.
(XY Z)
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10.4 The coefficients of an N-linear connection

An NHinear connection is characterized by its coefficientsin the adapted basis
=—6—16.‘=—a_‘a l_i
drt 8yi api
These coefficients obey particular rules of transformation with respect to the chang-
ing of local coordinates on the manifold 7T*2M.
Taking into account Proposition 10.3.2, we can prove the following theorem:

&

Theorem 10.4.1.
1° An N-linear connection D can be uniquely represented, in the adapted basis
(8:,8;,0%) in the following form:

D(;](Sl = H{“jék, D,sja,' = Hfj(?k, DJJBi = _Hlija.k’
(41) D()jai = ij(sk, Dé]é,' = C’fJak, Déjai — —Clicjak’

Dy = CH6y, D38, = CH,, Dsyd = —CPok.
2° With respect to the coordinate transformation (1.1), Ch.6, the coefficients
(2, y,p) obey the rule of transformation:
~, 0z" 8r* 9T *z

— T

(4.2) 35 35k — oo T Gmiash

3 The coefficients C]’fk(z, y,p) and C¥*(z,y,p) are d-tensor fidds of type (1,2)
and (2,1), respectively.

Indeed, putting

Ds.6; =H* ;:6¢, Ds.0; =H* ;:0,, D50 = — H* 1;0,
8 (I(;I) jCk % (I{I) 0k A (IZ{) kj
and taking into account Theorem 10.2.3, it follows

k _ k k

HY Y = HY, = H*..
© o Y @ "

The statements 2° and 3° can be proved by a direct calculus, taking into account
the rule of transformations (5.4)", Ch.9, for &;,8; and &".
The system of functions

(4.3) DI(N) = {Hk, Ci, CI*}
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are caled the coefficients of the N-linear connection D.
The inverse statement of the previous theorem holds aso.

Theorem 10.4.2. If the systems of functions (4.3) are apriori given over every
domain of local chart on the manifold 7*2M, having the rule of transformation
mentioned in the previous theorem, then there exists a unique N —linear connection
D whose coefficients are just the systems of given functions.

Corollary 10.4.1. The following formula hold:
Dy;dz* = —Hj} dz*, Ds by' = —H};6y*, Ds,8p; = HE6py,

(4.4) D; dz* = —Cj,dz*, Déjéy" = —C},;00%, D; 6pi = Cképx,

Dygdz' = —Cldz*, Dy éy' = —CPsy*, Dpyidp; = Cépy.

Indeed, the formula (4.1), the condition of duality between (6;, 8;, ) and (dz*, 8y, p;,
leads to the formula (4.4).

10.5 The h—, w;—, we—Covariant derivatives in lo-
cal adapted bass

Let us consider a d-tensor field T, of type (r, s) in the adapted basis (5j,3j,37) and
its dual (see (1.3)):

(5.1) T=T%"§ Q@ @ Qdt" ® - bp;,.

J1--Je

For X = X¥# = X'§;, applying (4.1), (4.4) and using the properties of the operator
D¥ wededuce:

(5.2) DYT = X™Tp-% 6, ® - @0 @dr” @~ @ ép;,
where
Tvm = STy + TR Hil - + T Hi
(5.2)
Tt Him = = i o

The operator "im” is called h—covariant derivative with respect to DI'(N).

Now, putting X = X" = X'§; we obtain for the d-tensor field T from (5.1),
the formula:
(5.3) DT = X™Ti-%| 6, ® - @0 ®@dz” ® -+ ® Ip;,,

J1.Js
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where
Beie] S Ai1edr kig...dy i . i1k vie
T3l = O T3 + T2 Ol + - + T35 Ok
(5.3)
1] ...0p k . — 11..9p k
_Tkj2«-~jacj1m le...k C],m'

The operator ”|,,” will be called "the w,—covariant derivative” with respect to
DT (N).
Finally, taking X = X" = X;&, then D¥'T has the following form

(5.4) DY*T = X, T34 ™6, © - ® 0% @ d” ® - -+ @ .
where
T = T+ IO 4 e T O™
(5.4)
T Ol = = Tk O

|mn

The operator ” will be called the wy—covariant derivative.
It is not difficult to prove:

Proposition 10.5.1. The following properties hold:
T3t Tt T ™

are d—tensor fields. The first two are of type (r,s + 1) and the last one is of type
(r+1,s).

Proposition 10.5.2. Theoperators ”m”, 7|, ”, and *I™” have the properties:
1. fim = 0mf, flop=0mf, fI" =0™f, ¥V f € F(T**M).

2°. They are distributive with respect to the addition of the d—tensor of the same
type.

3°. They commute with the operation of contraction.
4°. They verify the Leibniz rule with respect to the tensor product.
As an application let us consider "the (y)—deflection tensor fields’
(5.5) Dij — yiu’ dij - yilj’ di = yilj-

Proposition 10.5.3. The (y)-deflection tensor field have the expression

(5'5): Dij - __Nij + ymHmij, dij — éij + y'"C'mij, d7 = ymC:',J‘"
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These equalities are easy to prove, if one notice
vy =86yt + v He'y, ', = 0 + y"Cnls, oY = &Y +yC.
Now, we consider the so called " (p)-deflection tensor fields”:

(5.6) Ay =puj, 85 =pil;, 8 =pil.

Proposition 10.5.4. The (p)-deflection tensors are given by
(5.6)' Aij = Nij = pnH™;j, 8y = —pnC™yj, 87 = & — pmCi™.

A particular class of the N—connection with the coefficients DI'(V) is given by
the Berwald connectioin.
Definition 10.5.1. An N-linear connection D with the coefficients (4.3) is caled
a Berwald connection if its coefficients are:

(57) H;k = 3]'Nik, C;k = 0, Cijk = (.

This definition has a geometrical meaning if we take into account Proposition
9.74.

The existence of the Berwald connection is an interesting example of N-inear
connection.

Remarking that the Berwald connection is uniquely determined by the nonlinear
connection N and the fact that the nonlinear connection exists over a paracompact
manifold T*2M (cf. Theorem 9.3.2), we can state:

Theorem 10.5.1. If the base manifold M is paracompact, then on the manifold
T*2M there exists the N —linear connections.

Of course, the (y)—deflections and (p)—deflection tensor fields of the Berwald
connection

(5.8) BL(N) = (;N'%,0,0)
are very particular.
We get
Di]‘ = —Nij + y’"émN"j, di]' = 62‘, d¥ = 0,
(5.9)

Aij = Ny — pmOiN™;,  8;=0, & =67,

Hence, D¥; = 0 if and only if the coefficients N*; are 1-homogeneous with respect
to .
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10.6 Ricci identities. The local expressons of

curvature and torsion.
In order to determine the local expressions of d-tensors of torsion and curvature of
an N-linear connection we establish the Ricci identities applied to a d—vector field,
using the covariant derivatives (4.5)", (4.6)' and (4.7)".

Theorem 10.6.1. For any N-inear connection D the following Ricci identities
hold:

[ Xl = X'y = XPRats — XT3 — X', R = X" B b

(6.1) Xl = X'; = XPPyje — XjC — X7, (119)" =X B nik,

X"~ Xy = XPR - XCtk — X, B - xi* b

L
and
X¥;le = XPLil; = XPSh* e — X¥,SP
(6.2) Xl lE = X, = XhShi = X, Chy* — XHPCt,
Xilf‘k _ Xi|k|j — XhShijk _ Xi|hshjk,
where the following tensors

(6.3) (11?; ik = O N'; — 6;N', (12?) ik = &iNei — 6 Nji, Chix, C¥, (B i Bk

1 2
and
(6.3) T'je = H'j — H'yj, S'p=Cljp — Clyy, S7*=CF - CM
and
(6.3)" (11’)i ik = 0eN'; — H'y;, é’)i it = H'ji ~ 0Ny

are torsion d-tensors.



260 The Geometry of Hamilton & Lagrange Spaces

The d-tensors of curvature are given by

([ Rp'jx = 6kH,i,j —6;Hj, + H,’{;-H,’;Lk - H,:’,‘Canj — X T™ i+

+Ciy R® ik + Ch™ R ik
hs &S jk h & sjk

(6.4) . . , . .
Pyl = OkH'hj — Chirpj + Clps (113)s ™ (123; mjks
Phijk — a'kthj _ Chikb_ + Cish Pi s + Clhs B¢ jk,
L @) 1)
and
Sz = 0Ch; — 0;Ch + CiChy — CiiChy,
(6.4) Sp'ik = 0FC}; — 0,CF + CpiCik — Cp*CL,

Spiik = §CY — FCF + CRICik — ™k C.

Proof. By adirect calculus we have

X = (X)) + X™Hpy — X HJg =

(5k(5in + 6kaH:"j + XSJkH;j'f'
+ (§;X™+ X“H;;?)Him,c - XY H™ k.
Interchanging j and k and subtracting, we get
Xk — X'y = [0k, 61X+
+X8(5kH:j —0;Hy + H.;_",'IHrink - Hj :n]) - Xilmjwcl'

And since the Lie brackets [d, 4;] are given by (7.1), Ch.9., the previous equalities
give us the first identity (6.1), the coefficients being given by (6.3), (6.3)' and (6.4).
The identities (6.1) and (6.2) can be proved in the same manner. g.ed.

Remark. Cf. Proposition 9.7.4, the d-torsions (113) ,~“°, (B) ik are d-tensors.
2

As usually, we extend the Ricci identities for any d-tensor field, given by (1.3).
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As afirst application let us consider a Riemann d-metric g;;, which is covariant
constant, i.e.:

(6.5) gisk =0, gil, =0, gy =0.
Then we have:

Theorem 10.6.2. If the Riemann d-metric g;; verifiesthe condition (6.5), then the
following d-tensors

Rijen = 9imBi™khy Pijkh = 9imPi™kn, Pijt" = gimP™i,
(6.5)'
Siikh = gimSi™kns Sijk™ = gimSi™", Sii* = gjmSi™kh

are skew-symmetries in the first two indices (ij).

Indeed, writing the Ricci identities for d-tensor g;; and taking into account by
the equations (6.5) we deduce

9imB " kn + gim B ken = 0, ...

And using (6.5)", we get R,ixn + Rijkn = 0, €tC. .
The Ricci identities (6.1), (6.2) applied to the Liouville d-vector field %*, and to
the Hamilton d-covector field p; lead to the same fundamental identities.

Theorem 10.6.3. Any canonical N-linear connection D satisfies the following
identities:
[ D't — Dy = y" Rt — D'p T — di ({Z)h . —a* B nax

66)  { Dile—duy =¢"Puije — D'nChx — d'n (113)" & = & B e

k D;lk _ dikU — yhPhijk _ Dihcjhk _ dih (I;)k hj

and
d'jly — d'xl; = y"Sa'se — D'nS"x

(6.6)/ dz’jlk _ dik'j — thhz'jk _ Dihcjhk _ dihckhj,

dij‘k _ dilclj — thhijk _ dihShjk,
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as well as
( Aijie — Digy = —Pa R 56 — DinTh i — 8in R s — 8" Ry,

Dijly = Biks = —PaBPPjk = BinChk — Gin (llj)h ik — & (123) hiks

(6.7) ﬁ
Ayl* - 6F|; = —prPF — ApCih — & B ™ — & P* 4,
L 6 )
and
8izle = Sikl; = —PnSit ik ~ 8inS" i,
(6.7)' 5i'|k - 5ik!j = —Phts'ihjlC - 6ihcjhk - 5ithh]:

GH* — 85 = —paShiE — 55,k

In the case of Berwald connection BI'(N), the previous theory is a very simple
one.
Also, if the (y)—deflection tensors and (p)—deflection tensors have the following
particular form
Dij = 0, di]' = (5%, dij = 0,
(6.8)
A,']‘ = 0, 5,']' = 0, 31]' = 151.]',
then, the fundamental identities from (6.6), (6.6)' and (6.7), (6.7)' are very impor-
tant, especialy for applications.

Proposition 10.6.1. If the deflection tensors are given by (6.8), then the following
identities hold:

Y Ry’ e =({I)i ik Y Pk =(113)i ik V' Pik =B

1
(6.8)'
Y"Sptie = Stk yhSh'F = CWF, 'S =0
and
b P-h~ — B P,h}c: k.
( ’ th/L jk (}12)”1:1 Prti jk (113) ijky DrLi (IID) i3
6.8)"

prSifje = 0, puSit* = ~C*j; puSM*F = — Sk

By means of this analytical aparatus we will study the notion of parallelism on
the manifold 7*2M.
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10.7 Paralldism of the vector fields on the ma-
nifold T*?M

Let D be an N-inear connection with the coefficients DT'(N) = (Hjy, ]k,C’ )in
the adapted basis (é;, &, 0 ).

Let us consider a smooth parametrized curve v : I —s T*2M having the image
in adomain of a chart of T*?M.

Thus, « has an analytical expression of the form:

(7.1) ot =2'(t), ¥ = y'(t), p=pilt), tEL

The tangent vector field ¥ = dﬁ%’ by means of (6.13) and §6, Ch.9, can be written
as follows:

. dz? 8yt . 5p, ;

(7.2) ==t —0i+ a
where

oy'  dyt ;dx? bp;  dp; dz?
(73) it~ a Na w T N
Let us denote

D

(7.4) DX = %, DX = —dt{dt, VX € X(T"?M).

The quantity DX is the covariant differential of the vector X and Dx is the

dt
covariant differential along the curve .
If X is written in the form

01 1%, .
X=X+ X"+ X" =X &+ X 0, + X;0'
and we put

Dy = Dyn + Diyw, + Diyw, = D + D' + DI =

then, after a straighforward calculus, we have

)

0 11\ . .
(7.5) DX = (dX + X w;) 6 + (dX + X wf,) 95 + (dX; — X,wi) &,
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where
(7.6) W'y = Hjda® + C56y* + CiFépy..
Here, w*; are caled 1-forms of connection of D.
Putting
W ; dz* oy* 0Dk
(7.6) d—tf = Hjo— + Clugr + O =0,

the covariant differential dong the curve v is given by

ot )
08 1
DX _ dX+X whs

o p7 9 | %

(7.7)

dX  L'uwi | . dX; W'\ 4
+ —t—+X—— 6,+(E—Xsdt)8.

The theory of the parallelism of the vector fields along acurve v presented in Sect.2
of this chapter can be applied here. We obtain:

0t 1%, ..
Theorem 10.7.1. The vector field X =X §; + X §; + X;0 is paralle al'ong. the

0% 1°*
parametrized curve «, with respect to D, if, and only if, its coordinates X , X , X;
are solutions of the differential equations

X,

s _ __'_ _
(7.8) X =0, = =0, (@=0,1).

DX
The proof is immediate, by means of the expresson (7.7) for ——

A theorem of existence and uniqueness for the paralle vector fields along a given
parametrized curvein T*2M can be formulated in a classicad manner.

The vector field X € X(T*2M) is caled absolute parallel with respect to the
canonical Nlinear connection DT(N), if DX = 0 for any curve v. It is equivaent
to the fact that the following system of Pfaff equations

(7.9) dX +X wi=0,dX;— X' =0, (@=0,1)

is integrable.
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The system (7.9) is equivalent to the system

X =X |,=X =0, (@=0,1)
(7.9)' :
Xy = Xil; = X =0
which must be integrable.
Using the Ricci identities, the previous system is integrable if and only if the
coordinates (;( , X;) of the vector X satisfy the following equations

-

ah a N
X Rpijp=0, X P'y=0, X Plk_07
(7.10) {an P Y (@=0,1)
X Spik=0,X Sik=0, X S =0
and
XhRdhjk =0, XhPihjk = 0, XhPihjk =0
(7.11)

XhSihjk = 0, XhSih]'k = 0, XhS,'h'jk = 0

The manifold 7*2M is caled with absolute parallelism of vectors with respect to D,
if any vector field on T*2M is absolute parallel.

In this case the systems (7.10), (7.11) are verified for any vector field X. It
follows:

Theorem 10.7.2. The manifold 7*2M is with absolute parallelism of vectors, with
respect to the NHinear connection D if, and only if, all d—curvature tensors of D
vanish.

The curve v is autoparallel with respect to D if Ds¥ = 0.
By means of (7.2) and (7.7) we deduce

Dy d’zt  dz® Wi d 0yt y* Wi\ .
o <W+—dz‘ a)‘“(a @ tara) ot
(7.12)

d op; Op, Wi i
* <2¥E— dt dt)a'

Theorem 10.7.3. A smooth parametrized curve (7.1) is an autoparallel curve with
respect to the N-linear connection D if and only if the functionsz®(t),y*(¢), p:(t),
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tel, verify the following system of differential equations

d’zrt  dz* Wi

T a Y
d 8y dy° Wi
7.13 et T A A
(7.13) a ot Tara Y
d i dps Wi _
dt dt dt dt

Of course, the theorem of existence and uniqueness for the autoparallel curve
can be easily formulated.

We recall that -+ is an horizontal curve if 4 = 4. The horizontal curves are
characterized by

oyt . opi
PPN
Definition 10.7.1. An horizontal path of an N -inear connection D is a horizontal
autoparallel curve with respect to D.

(7.14) Tt = z'(t),

Theorem 10.7.4. The horizontal paths of an N -inear connection D are characte-
rized by the system of differential equations:

d*st , dz? da* oyt op;
: —7 +Hj = =0, = =0, =0
(7 15) dt2 + H]Ic(l" y’p) dt dt 0> dt ) dt

Indeed, the equations (7.14), (7.6)' and (7.13) imply (7.15).

A parametrized curve v : I — T*?M is w,—vertical in the point zo € M if its
tangent vector field 4 belongs to the distribution Wy, (o = 1,2).

Evidently, aw;-vertical curve v in the point =z, € M is represented by the
equations of the form

(7.16) =2l =y t), p=0,tel

and awq—vertical curve «y in the point o € M is analytically represented by the
equations of the form

(7.16) gt=x, ' =0, pi=pi(t), te€ L

We define a w,—path (o = 1,2) in the point z, € M with respect to D to be
aw,—vertical curve « in the mentioned point, which is an autoparallel curve with
respect to D.

By means of (7.16), (7.16)' and (7.12) we can prove:
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Theorem 10.7.5.

1°. Thew,—vertical paths in the point zo € M are characterized by the system of
differential  equations

P d*y’ dy’ dy* _

1 ot R 1 —

X _‘TO) Di 0 dt2 +C ( O,y’o) dt dt

2°. Thew,-vertical paths in the point z, € M are characterized by the system of
differential equations

d*p; _ Cgk( )dP] dpy, _

i:.'Ei, i_:o’ g Ak
z 0 Y a2

0.P)0%

Remark. We assume that there exists the coefficients Ci]‘k(.'.vg, y, 0).

In the case of the Berwald connection BT'(N), (5.8), the previous characteriza-
tions of w,-paths appear in a very simple form.

10.8 Structure equations of an N-linear connec-
tion

For an N -inear connection D, with the coefficients DT'(N) = (Hj,, ],c,c”‘“) in the
adapted basis (6;, 8;, 8*) we can prove:

Lemma 10.8.1.
1°. Each of the following geometrical object fields

d(dz') — dx™ AWy, d(6Y') — Sy Aw'n,, d(0pi) + EPmAW™,,

are d-vector fields. However, the last one is a d-covector field, with respect to
the index i.

2°. The geometrical object field
dw'; —~ W™ AW
is a d-tensor field, with respect to indicesi and j.

Using the previous Lemma we can prove, by a straightforward calculus, a fun-
damental result in the geometry of the Hamilton spaces of order 2.
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Theorem 10.8.1. For any N -linear connection D, with the coefficientsDI'(N) =
= { ;k,C}k,C{k), the following structure equations hold good:

A ("
d(dz') — dz™Aw'yy = — @,

(8.1) , ‘ )t
d(éy*) — by Ay = -1,
d(6p:) + dpmAw™; = =,

and

(8.2) dw'; — W™ iNw'y = -0,

©* )t
where 2,2 and Q; are the 2-forms of torsion:

0)! 1. . o L
Q = §T;kdz’/\dxk + C;kdz]/\éyk + C;ktsyj/\épk,

—~

—~
—
—
-

1 . X . . . .
= = R'jpdr/Adz*+ P jdr/ ASy*+ B *dzi Aopy+
2 @ @’

(8:3) + Cjtdy Aope + S0y’ NSy,
1 ‘ | ,
Qi = = Ripdd?Adz*+ B ijdz? ASyF+ P* ;da? Aopx+
3 gy Rer AT B anGT AU [T 0 Ao

. 1 ..
+ Ckéjéy]/\épk + iSikJ(Spj/\épk,
and where Q' is the 2-form of curvature:
: 1., 4 .
Qj = SRikmdz"Adz™ + Plemda* ASY™ + Py AT Adpm+
(8.4)

1. . 1.
+ 5 ,-'kméy"/\éy"‘ + Sj‘kméyk/\épm + §Sjlkm6pk/\(5pm.

“In the particular case of the Berwald connection we have Cij, = C* = 0,
(]13)1 jk = 0, Sijk = S,‘jk =0, Sjikm =0, Sjikm =0 and S,*jkm = 0.
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Remark. The previous theorem is extremely important in a theory of submani-
folds embedding in the total space T*2M of the dual bundle T*2M = TM x, T*M,
endowed with a regular Hamiltonian of order 2.



Chapter 11

Generalized Hamilton spaces
of order 2

One of the most important structures on the total space of the dual bundle T*2M
is the notion of generalized Hamilton metric of order two, ¢%(z,y,p), [110]. It is
suggested by the generalized Hamilton metric, described in the section 1 of Ch.
5, which has notable applications in Relativistic Optics of order two. We define
the concept of generalized Hamilton space as the pair GH®" = (M, ¢ (z,y, p))
and study a criteria of reducibility, the most general metrical connections, lift of a
GH-metric, the almost contact geometrical model. We end this section with some
example of remarkable G H®" —spaces,

11.1 The spaces GH®"

Definition 11.1.1. A generalized Hamilton space of order two is a pair GH®" =
(thu(l‘ryyp)); where

1° g% is a d—tensor field of type (2, 0), symmetric and nondegenerate on the ma-
nifold 7*2M.

2° The quadratic form ¢*X;X; has a constant signature on 7*2M.

20\)3 usually g% is called the fundamental tensor or metric tensor of the space
GH®@n,

In the case when T*2M is a paracompact manifold then on 7*2M there exist
the metric tensors g*(z,y,p) positively defined such that (M, g) is a generalized
Hamilton space.

Definition 11.1.2. A generalized Hamilton metric g% (z, y, p) of order two (on short
GH-metric) is caled reducible to an Hamilton metric (H-metric) of order two if

271
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there exists a function H(x, y, p) on 7*2M such that

(1.1) g7 = %a'ia'iH.
Let us consider the d-tensor field

(1.2) cHk = %6’@’7‘.

We can prove:

Proposition 11.1.1. A necessary condition for a generalized Hamilton metric g¥
of order two to be reducible to a Hamilton metric of order two is that the d—tensors
C¥* is totally symmetric.

Theorem 11.1.1. Let ¢“(z,y,p) be a 0-homogeneous GH—metric with respect to
pi- Then a necessary and sufficient condition that it to be reducible to an H-metric
is that the d—tensor field C%* is totally symmetric.

Proof. If there exists a GH—metric ¢g* reducible to a H—-metric, i.e. (1.1) holds,
then C¥* = 50‘°8’8’H is totally symmetric (Proposition 11.1.1)).

Conversaly, assuming that g (z, y, p) is 0-homogeneous with respect to p;, taking
into account theformula H(z,y,p) = ¢ (z, y, p)pip;, and the fact that CU* = gk g¥

is totally symmetric, it follows ¢* = EB’B’H. g.ed.
Remark. Let +;;(z) be a Riemannian metric. Then it is not difficult to prove that
the d-tensor field

9"(z,y,p) = €Wy (3), 0 € F(TM),

is a GH-metric which is not reducible to an H-metric of order two, provided bio
does not vanishes .
The covariant tensor field g;; is obtained from the equations

(1.3.) gi;g°% = oF.

Of course, g;; is a symmetric, nondegenerate and covariant of order two, d-tensor
fidd.

Theorem 11.1.2. The following d—tensor fields
A 1 . . .
Cljx = 59” (3jgsk + Okgjs — sgjk) )
(1.4)
Cijlc — "591’3 (ajgsk + 3Icgjs _ asg]k) ’
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have the properties:

(1.5) ¢k =0, ¢7)* =0,
and
(1.6) Ci,=Ci, CI*=CP.

Indeed, the d-tensors C]'ik, C{’“ have the properties (1.6). By adirect calculus we
can prove (1.5) taking into account of (1.3). g.ed.

Remarks.

1° The tensors g%, and g¥/|* are the w;, — wo—Covariant derivatives of the funda-
mental tensor field g%, respectively.

2° The tensors Cj, and C!* are the w, and w,—coefficients of a canonical metrical
N-linear connection D, respectively.

Some particular cases

1. Let g;;(z,y) be the fundamental tensor field of a Finsler space F™ = (M, F)
and let g¥(z,y) be its contravariant tensor field. Let us consider §¥(z,y, p) defined
on T*2M by §¥(z,y,p) = ¢”(a,y). ‘

The tensors C}, are given by the first formula (1.4) and by c* =o.

It follows C* = 0. The GH-metric g*(z,y) has the covariant metric g;(z,y)
reducible to a particular metric: g;; = %6',-6',~F2.

We have:

Theorem 11.1.3. The nonlinear connection N of the space GH®* = (M, g% (z, y))
has the coefficients:

N*; = 3;(v'rs(x,y)y"y*) — (Cartan nonlinear connection of F™),
(1.7

N,j = (O:N})pn,
They are determined only on the fundamental function of the Finser space F".
Proof. The tensors N;i is exactly the Cartan non-linear connection and 8,-N]’-' isits

Berwald connection. A straightforward calculus shows that the rule of transforma-
tion of NV, is exactly (3.10), Ch. 6. g.ed.

2. Let g¥(z, p) be the fundamental tensor field of a Cartan space C* = (M, H(z, p)),
[97]. It follows ¢ = %6'"8'1H2 and therefore we obtain that H is 1-homogeneous
with respect to p;.
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We consider the extension g¥(z, y, p) = ¢ (z,p) of the tensor ¢* to T*?M.

The tensor C’,c vanishes and CJ is given by the second formula (1.4), where
gthJk - 65

In this case, we can determine a nonlinear connection N depending only by the
fundamental tensor g* [see Ch.6]. Indeed, let 7}, (z,p) the Christoffel symbols of

1.
g.3(z, p) and let us put 7% = ¥ipi, 1% = 12" P = ghip; = 53"H2-
Theorem 11.1.4. The space GH®™ = (M, ¢"(z,p)), determined by the Cartan

space €™ has a nonlinear connection N with the following coefficients deduced only
fromg¥ :

= (3iNjh)Z/h
(1.8)
0 1 0 Ah
Ny =5 — ‘2‘71103 9y

To ageneralized Hamilton space of order two GH®" = (M, g) we associate the
Hamilton absolute energy

(1.9) E(z,y,p) = 97 (z,y, p)pip;

and consider the d-tensor field
(1.9) 99 = 8’618

The space GH@" is caled weakly regular if:

(1.9)" rank|lg*¥?|| = n.

We can prove the following fact:
The weakly regular G H{®™—spaces have a nonlinear connection N depending only
on the fundamental tensor field g¥.

11.2 Metrical connections in GH®" _gpaces

If a nonlinear connection N, with the coefficients (N;,N,-]-), is apriori given, let us
consider the direct decomposition (see (5.2), Ch.7):

(2.1) T.T*M = N(u) ®@ Wy(u) ® Wy(u), Yu € T M,
and the adapted basis to it, (;,d;, &), where
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The dual adapted basis is (dz?, §y?, 6p;) where
(2.3) y' = dy' + Nidz’, 6p; = dp; — Nj,da’

An N-inear connection DI'(N) = (Hj, J,C,C”“) determines the h—, wi—, wo-
covariant derivatives in the tensor algebra of d—tensor fields.

Definition 11.2.1. An N-inear connection DT'(N) is called metrical with respect
to GH-metric g% if

(24) gijlh = 01 glj|h = 0) gij|h =0.

In the case when ¢ is positively defined we can introduce the lengths of a
d-covector field X by

(25) ”X“ = {gij(x,y’p)Xin}l/z'
The following property is not difficult to prove:

Theorem 11.2.1. An N-inear connection DI'(N) is metrical with respect to GH-
metric g% if and only if along to any smooth curve v : I — T**M, and for any

parallel d-covector field X, l?i—i( =0, we have

The tensorial equations (2.4) imply:
(2.6) Gijin = 0, ijln = 0, gijlh =0.

Now, using the same technique as in the case of Ch. 5, we can prove the following
important result:
Theorem 11.2.2.
1 There exists a unique N-linear connection DT(N) = ( ],C, ],C,C’k) having
the properties:
1°. The nonlinear connection N is a priori given.
2°. DT(N) is metrical with respect to GH-metric g% i.e. (2.6) are verified.
3°. The torsion tensors T%x, S*;x and S;7* vanish.

2. The previous connection has the coefficients C*;; and C#* given by (1.4) and
H'j,, arethe generalized Christoffel symbols:
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. 1 .
(2.7) Hj, = 5!]”(5jgsk + 6k 9is — 0sGik)-
The known Obata's operators, are given by

. . i 1o g
(2.8) 0 = (5;1‘% — 9neg?), Qi = 5(5;,5% + 9neg”).

They are the supplementary projectors on the module of d-tensor fields 73 (T*?M).
Also, they are covariant constants with respect to any metrical connection DI'(N).
Exactly asin Ch.5, we can prove:

Theorem 11.2.3. The set of all N-inear connections DIL(N) = (ﬁ;k,ﬁzk,_c_fk),
which are metrical with respect to g¥, is given by

q, + QX7
(29) C]k - Cz :‘;)/‘9’}::

Clif =+ iz,

rji<s

where DT(N) = (H},, Cl, CI¥) is given by (1.4), (2.7) and X}, Y}, Z7* are arbitrary
d-tensor fields.

We obtain;

Corollary 11.2.1. The mapping DI'(N) —s DT(N) determined by (2.9) and the
composition of these mappings is an Abelian group.

Remark. It is important to determine the geometrical object fields invariant to the
previous group of transformations of metrical connections [105].

From Theorem 11.2.3 we can deduce:

Theorem 11.2.4. There exists a unique metrical connection DT(N) = ( J,C,C],C,C"k)
with respect to GH-metric ¢% having the torsion d-tensor fields
Tk, S'ik, S7% a priori given. The coefficients of DT'(V) are given by the following
formulas

) 1 ; 1 .
H, = 5913(5]'95:: + 6xgjs — Os95) + igu(gshThjk — ginT" ok + ginT"5s),

1.
=9 (950" ik — 9inS" sk + GknS"js),

— 1 is s . .
(210) Cjk = 59 (ajgak + akgjs - 6sgjlc) + 9

—ik 1 ., . . s d 1 s . . .
i = —5gis(8’gs’° + 0% g7 — 5°g7%) — 59is(9 "Suik — g Sk + gFhS,I?).
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We can introduce the notions of Rund connection, Berwald connection and Ha-
shiguchi connection as in Chapter 2, and prove the existence of a commutative
diagram from the mentioned chapter.

Finally, if we denote R, = g"*R,!;; etc., then applying the Ricci identitiesto
g*, and taking into account the equations (1.6), we get

Theorem 11.25. The curvature tensor fields g" R, g"*P.ij, etc. are skew
symmetric in the indices h, i.

11.3 The lift of a GH—metric

Let the nonlinear connection N be given, then the adapted basis (6;, 8;, &) and its
dual basis (dzt, dyt, dp;) can be determined.

Therefore, a generalized Hamilton space of order two GH®@" = (M, ¢¥) dlows
to introduce the NHift:

(3.1) G = g;;dz’ ® dz’ + g;;6y° ® 0y’ + g”/6p; ® p;
defined in every point u € T*2M.

Theorem 11.3.1.

1°. The NHift G is a nonsingular tensor field on the manifolds 7*2M, symmet-
ric, of type (0,2) depending only by the GH-metric g% and by the nonlinear
connection N.

2°. The pair (T*2M, G) is a (pseudo)—Riemannian space.
3°. The distributions N, W;, W, are orthogonal with respect to G, respectively.

Indeed, every term from (3.1) is defined on 7*2M, because g;; is a d-tensor field,
and dz?, 8y*, dp; have the rule of transformations (5.6)", Ch. 9. The determinant of
G is equa to the determinant of matrix ||g;;||. Hence det ||G|| # 0. Now it is clear
that G is a (pseudo)—Riemannian metric. And it is evident that the distributions
N, Wy, W, are orthogonal with respect to G, respectively.

The tensor G is of the form
(3.2)

G=Gf+Gg"M 4", GgH = gijdzi ®d?, GM' = gijéyi R &y, G2 = gij5p1®6pj.

Here G is the restriction of the metric G to the distribution H, G"*isits restriction
to W, and G"* is its restriction to the distribution W,. Moreover G, G"* GV
are d-tensor fields.
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It is not difficult to prove:

Theorem 11.3.2. The tensors G, G, G** G"2 are covariant constant with respect
to any metrical N-inear connection DI'(N).

Therefore, the equation DG =0, VX € X(T**M)is equivalent to g;j» = 9iiln =
¢9" = 0. The same property holds for the d-tensors G¥, G*1 G*.

The geometry of the (pseudo)—Riemannian space (T*?*M, G) can be studied by
means of a metrical N-linear connection.

Let IF be the natural almost contact structure determined by N and is given in
the section 8, Ch.9.

Theorem 11.3.3. The pair (G, IF) is a Riemannian almost contact structure de-
termined only by GH-metric ¢/ and by the nonlinear connection N.

Proof. In the adapted basis (4;, 8;, &) it follows that the equation
(3.3) G(FX,Y) = -G(FY, X), VX,Y € X(T**M)

is verified.
The 2-form associated to the structure (G, IF) is given by

(3.4) 8(X,Y) = G(FX,Y).

Since DxG =0, DxIF =0, we get that Dx6 = 0.
In the local adapted bass @ has the expression:

(3.4) 8 = g:;0y' Ada?.

Theorem 11.3.4. The 2-form é determines an almost presymplectic structure on
the manifold 7*2M. It is not an integrable structure if the metric g% depends on the
moments p;.

Indeed, 6 is a 2-form of rank 2n < 3n and for &ig?* # 0 the exterior diferential
of 6 does not vanish.

The last theorem suggests to consider another almost contact Riemannian struc-
ture on T*2M.

In order to do this, let us consider some new geometrical object fields on T*2M :

(3.5) P = gp;,

(3.6) 0; = gi;0".
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Let us define the F(T*2M)-linear mapping
F:X(T?M) — X(T"’M)
given in the local adapted basis by
(3.7) (5) = -8, I8,) =0, F(&) =6;, (i=1,...,n).

Theorem 11.3.5. The mapping IF has thefollowing properties:
1°. I is globally defined on T*2M.
2°. T is a tensor field of type (1, 1) on T*2M.
3. KelF=W,, ImIF =N ¢ W,.
4, rank”li‘” = 2n.
5o I 4+ IF = 0.

The proof is completely similar with the one of exactly like Theorem 9.8.2. The
mapping IF will be caled the (p)-almost contact structure determined by g¢* and
by N. The Nijenhuis tensor of the (p)—almost contact structure is

Np(X,Y) = F)[X, Y] + [FX, Y] - FFX, Y] - F[X,FY],

and the condition of normality of IF is as follows

(3.8) Np(X,Y) + id(dyi)(X, Y),=0, VX,V € X(T2M).

i=1
The relation (8.3) can be explicitely written in adapted basis.

Theorem 11.3.6. The pair (G, IF) is a Riemannian almost contact structure de-
termined by g% and by N.

Indeed, we have verified the property:
G(IFX,Y) = —-G(FY, X).
The 2-form associated to (G, IF) is

(3.9) #(X,Y)=GIFX,Y).
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In the adapted basis § is given by
(3.9) 6 = Sp;Adx’.

As we know, if the torsion 7;; = N;; — Nj; of the nonlinear connection vanishes

(Ch.9), then we have: ) )
0=0=dvw= dpi/\d"liz.

Hence for 7;; = 0, the 2-form 4 is canonical presymplectic structure. It does not
depend on the nonlinear connection N (see, Theorem 9.1.3).

Theorem 11.3.7. The associated 2-form é of the almost contact structure (G, IF')
has the properties:

1°. §is globally defined on T*2M.

2°. rankHéH = 2n.

3°. 8 depends byg" and by N.

4°. § defines an almost presymplectic structure on 7*2M.

5°. If thetorsion 7; of the nonlinear connection N vanishes, then 4 is canonical
presymplectic structure:

(3.9)" 6 = dw = dp;Adz’.
6°. # is covariant constant to any N-linear connection DI'(N).

The Riemannian amost contact space (T**M, G, ) will be caled the geomet-
rical model of the generalized Hamilton space GH®"™ = (M, g¥).

11.4 Examples of spaces GH®"

We shall consider a generalized Hamilton space of order two, GH®™ = (M, g"),
whose fundamental tensor is as follows:

(4.1) 97 (z,y,p) = e 2@¥PYI (g y),

where v;;(z,y) is the fundamental tensor of a Finsler space F™ = (M, F), 47 isits
contraviant tensor field and o : 7*2M — R is a smooth function.

In the particular case where & o = 0, and v;;(z,y) = v;;(z) is a Lorentz metric,
this structure was used for a constructive axiomatic theory of General Relativity by
R. Miron and R. Tavakol [121].
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If vi;(x,y) is alocaly Minkowski Finsler space and d'o = 0,then (4.1) gives a
class of a generalized P.L. Antonelli and H. Shimada metric [19].

In order to study the_GH("’)" gpaces with the metric (4.1) in the general case
when the d-vector field 8o does not vanish, we prove a the beginning that this
metric is not reducible to an H-metric.

Theorem 11.4.1. The generalized Hamilton space of order two with the metric
(4.1) is not reducible to an Hamilton space of order two.

Proof. Taking into account Proposition 11.1.1 issufficiently to provethat if do #0,
then the tensor field ¢k = %6kgij is not totally symmetric. g.ed.

From the formula (4.1), we deduce
Cik = — gk,

Consequently, C*#* is totally symmetric if and only if 6%¢ = 0.

Let us consider the Cartan nonlinear connection of the Fingler space £, with the
coefficients Nj(z,y). Thus, using Theorem 11.1.3, we can a priori take the nonlinear
connection N with the coefficients (1.7) as the nonlinear connection of the considered
space GH@n,

Proposition 11.4.1. The nonlinear connection N, with the coefficients (N*;, Ni;)
from the formulas (1.7) depend only on the GH-metric (4.1).

Now we can determine the metrical connection DT'(N) of the space GH®™ using
Theorem 11.2.3. This metrical N-linear connection will be called canonical.
It is not difficult to prove:

Theorem 11.4.2. The canonical metrical connection DT(N) of the space GH®",
with fundamental tensor field (4.1), has the coefficients:

Hjy, =F'jx +6,6¢0 + 6,8,0 — 717" 0:0,

Chp =C"jk +610k0 + 6,00 — Y7050,

Ci¥ = —(810kc + 65810 — v;,y*0°0),

0 0
where (F%j, C'j) is the Cartan metrical connection of the Finder space F™.
Now, applying the theory from the previous chapters and using Theorem 11.4.2,
we can develop the geometry of the spaces GH®", with the metric (4.1). For instant,
we can write the structure equations of the canonical connections (4.2), etc.
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Other important example suggested by the Relativistic Optics is given by the
following GH—metric of order two:
(4.3) 97(z,y,p) =17 (z,9) + m(x,—y)p'p’ , 0" =7"p;j,
where n%(z,y) > 1, on themanifold T*2M, and 4% (z,y) is contravariant tensor of a
fundamental tensor field ~;;(x,y) of a Finder space F™ = (M, F(z,y)).

In this case we can prove that GH®™ with the metric (4.3), is not reducible to
a Hamilton space of order two.

Taking into account the nonlinear connection N with coefficients (1.7) we can
determine, by means of Theorem 11.2.3, a canonical metrical connection DT'(N)
depending only by the considered space GH®",

As a final example, we can study by the previous methods "the Antonelli—
Shimada metric” defined in the preferential charts of an atlas on the manifold T*2M

by
(4.4) 97 (z,y,p) = 7@V (p),
where
¥ (p) = %3‘3’112(?),
(4.5)
HYp) = {(p)"+ -+ (p)"}7, m 2 3.

Finally, we remark that the theory exposed in this chapter will be useful in the next
chapters for study the geometry of Hamilton spaces of order two.



Chapter 12

Hamilton spaces of order 2

The theory of dual bundle (T*?M,#*?, M) mentioned in the last three Chapters
alows to study a natural extension to order two of the notion of Hamilton spaces
studied in the Chapters 4,5,6. A Hamilton space of order two is a pair H®" =
(M, H(x, y, p)) formed by a real, n-dimensional smooth manifold M and a regular
Hamiltonian function H : (z,y,p)eT**M — H(z,y,p) € R. The geometry of the
spaces H®” can be constructed step by step following the same ideas as in the
classica case of the spaces HM" = (M, H(x, p)), by using the geometry of manifold
T*2M endowed with an regular Hamiltonian H(x, y, p).

12.1 The spaces H®r

Let us consider again a differentiable manifold M, real and of dimension n and the
dual bundle T*2M of the 2-osculator bundle T%M.

Definition 12.1.1. A regular Hamilton of order two is afunction H : T*?M — R,

differentiableon 7*234 and continuous on the zero section of the projection 7*2:
T*2M — M, whose Hessian, with entries

(1.1) g9 (z,y,p) = % 88 H
is nondegenerate.
In other words, the following condition holds
1.1y rankllgij(x,y,p)‘\ =n, on T?M.

Moreover, since g*(z, y, p) being a d-tensor field, of type (2, 0), the condition (1.1)
has geometrical meaning.

283
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Of coursg, if the base manifold M is paracompact, then on T*2M there exist the
regular Hamiltonians.

The d-tensor ¢ is symmetric and contravariant. Its covariant d-tensor f|eId
will be denoted by g;;(z,y,p) and it is given by the elements of the matrix ”g”“
Hence we have:

(1.2) gijgjk = 6k

Definition 12.1.2. A Hamilton space of order two isapair H9" = (M, H(z,y,p)),
where H is aregular Hamiltonian having the property that the tensor field g (z, y, p)
has a constant signature on the manifold T*2 M.

As usually, H is called the fundamental function and ¢* fundamental tensor field
of the Hamilton space or order two, H®",

In the case when the fundamental tensor field g is positively defined, then the
condition (1.1)" is verified.

Theorem 12.1.1. If the manifold M is paracompact then always exists a regular
Hamiltonian H such that the pair (M, H) gives rise to a Hamilton space of order
two.

Proof. Let F™ = (M, F(z,y)) be a Finsler space having «;,(z, y) as fundamental
tensor. Then, the function defined on the manifold T*2M by

H(z,y,p) = av’(z,y)pipj, @ € RF

is aregular Hamiltonian or order two, and the pair H®» = (M, H(z,y,p)) isan Ha
milton space of order two. Its fundamental tensor is ¢%(z,y, p) = ay?(z,y). Obvi-
oudly, M being  paracompact, a Finder Space  F" =
=(M, F(x,y)) existsand therefore H(x, y, p) exists. g.ed.

One of the important d-tensor field derived from the fundamental function H of
the space H?" is;

(13) OO = 2 g = —i FHPH

Proposition 12.1.1. We have:

1° CY* is a totally symmetric d-tensor field.

2° C* vanishes, if and only if the fundamental tensor field ¢* does not depend
on the momenta p;.
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Other geometrical object fields which are entirely determined by means of the
Hamiltonian of order two, H(x, y, p), are the w;- and w,- coefficients of a metrical
connection, respectively.

Theorem 12.1.2. The d-tensor fields
. I . .
Clix = 3 g (3jgsk + OkGjs — 339j1c) )

(1.4) N S
Ol = 5 g (Pg™ + 0" — %)

have the following properties:

1° They depend only on the fundamental function H.
2° They are symmetric in the indices jk.
3 The formula

(1.5) Cl* = g;,C*
holds.

4° They are the coefficients of the w;- and w,- metrical connection. So we get:

(1.6) g, =0, g7 =0.

The proof is not difficult.

The curvature d-tensor fields Sy';x, S';* and S,%* expressed in formulae (6.4)",
Ch.10, depend only on the fundamental function H.

The w; and w,—vertical paths of the Hamilton space of order two are given by
Theorem 10.7.5, respectively. Namely

Theorem 12.1.3.

1° The w, -vertical paths of the space H®” in the point (z}) € M are characte-
rized by the system of differential equations

dzy'

ez

dy’ dy

dt dt =0

Tt = -’ITB, D = 0, + Ct]k(-TOa yao)
2° The wq-paths of the space H@" in the point (z}) € M are characterized by
the system of differential equations

d pl CJk( )dp] dpk =0.

.T—zo,y—o dt2 —_

0.P)3 &

The horizontal paths of the Hamilton space of order two will be studied after a
canonical nonlinear connection will be introduced.
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12.2 Canonical presymplectic structures and ca-
nonical Poisson structures

As we know on the total space T*2M of the dual of 2-osculator bundle there exist
different remarkable canonical structures and object fields. Namely:

(2.1) v = p,
(2.2) w = pids?,
(2.3) 6 = dw = dp;Adz?,

where 6 is a presymplectic structure on T*2M of rank 2n.
There exist, adso, the canonical Poisson structures { }, and { }: defined for any

f,9 € F(T*M) by
(2.4)

Each of these Poisson brackets are invariant with respect to changes of coor-
dinates on the manifold T*2M they are R-linear with respect to each argument,
skewsymmetric, satisfies the Jacobi identities and the mapping

{f, }a: F(T*M) - F(T**M)
is a derivation in algebra of the functions F(T*?M).

Proposition 12.2.1. The following identities hold:
10
{xi’xj}a = {yi)yj}a = {pi,pj}a = 07 (a = 07 1)7
(2.5) {z",¥}a = {¥',0i}a =0, (2=0,1),
{z*,pi}o = &, {¥',p;h = &}
2° For any H € F(T**M) we have:
OH

{z'\,H}o = "[E; {z,H}, =0,
) . oH
(2'6) {ylvH}O =0, {yl7H}1 = ap.
OH OH

{pi,H}o = ~ 55 {pi, H}1 = o
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Assuming that the manifold T*2M is endowed with a regular Hamiltonian H
such that H®" = (M, H) is an Hamilton space of order two, we get an Hamiltonian
system of order 1 given by the triple (T"2 M, H (x, y, p), 8) and we can treat it by the
classcd methods [cf. M. de Leon and Gotay [85]]. In this case, evidently only the
Poisson structure { }o will be considered.

Therefore we will study the induced canonical symplectic structures and the
induced Poisson structures on the submanifolds £, and £, of the manifold T**M,
where £, and X, will be described below.

Let us consider the bundle (T**M,7*,T*M) and its canonical section, oo :
(z,p) € T*M — (z,0,p) € T*2M. Let us denote by Ty = Imay. It follows that
T is a submanifold of the manifold T*2M. Let us denote the restriction of 6to the
submanifold %4 by 6, and let us remark that I, has the equation y* = 0, where
(z*,p;) are the coordinates of the points (z,p) € Z,.

Theorem 12.2.1. The pair (Xq,60) is a symplectic manifold.

Proof. Indeed,
(2.7) 8y = dp;Adz’
is a closed 2—form and rank||6|| = 2n = dimZ,. g.ed.

In a point v = (z,p) € % the tangent space T,¥, has the natural basis

0 0 . ; i
<%,a—pi)u, (¢ =1,...,n), and natural cobasis (dz*, dp;)..

Let us consider F(Zp)-module X(X,) and F(Zp)-module X*(X,) of tangent
vector fields to £, and of cotangent vector fields to ¥, respectively.
Then, thefollowing F(X,)-linear mapping

Sgo : X(Eo) — X*(Eo),
defined by
(2.8) Se,(X) = ixB0, ¥ X € X (o),

has the property:
28y S (1) = =i, 50 () -t

A glance at the formula (2.8)", gives.

Proposition 12.2.2. The mapping Sg, iS an isomorphism.
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Let us consider the space H®" = (M, H(z,y,p)) and denote Hy = H|z,. Then
the pair (M, Ho(z,p)) is a classca Hamilton space (see Ch. 5) having the funda-
. g 1 0
iy — - .
mental tensor field ¢*(z, 0, p) 2 Ipom;
The Proposition 12.2.2 shows that there exists a unique vector field Xy, €
€ X(%p), such that

(29) Sﬂo(XHo) = iXHOQ = —dHo

In locd basis, we get

(2.10) Xm=—5— 55— 50 2"

Theorem 12.2.2. The integral curves of the vector field Xy, are given by the
" ¥y —canonical equations’ :

dii  8Hy, dp;  0H,

2.11 or _ 9% o 0%
(2.11) dt ~ op; dt oz Y

For two functions f, g € F(X,), let Xy, Xy be the corresponding vector fields
given by ix By = —df, ix,00 = —dg.

Theorem 12.2.3. The following formula holds

(2.12) {f, 9} =60(Xs, X,).

Proof. Indeed, we have

HO(XI’Xy) = (ixfgo)(Xg) = Sﬂo(Xf)(Xy) = _df(Xg) =-X,f =
(2.13) _(90f 89 09 Of\ _
= (&; '3;—‘(%—, 51)—) = {f,g}o

Now, taking a canonical 2-form 8, on the fibres of the bundle (T*2M, 7*2, M) we
can obtain a similar relation for the Poisson structure { },.

Let &, be thefibre (z*2)~1(zy) C T*2M in the point zo € M. Then L, is an
immersed submanifold given by £, = {(z,y,p) € T**M | z = zp}. In a point v =

(z0,y, 2) € I, the natural basis of the tangent space 7,.%; is given by (6%1’5%)
and natural cobasis by (dy', dp). ‘
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We can prove, without difficulties, that the following expressions give rise to
geometrical object fields on the manifold E;:

wi = pidy,
(214) 01 = dpi/\dyz,
Gigh = 2L 0000 0f
"IN 3y Bp Byt o

Consequently, we get:

Theorem 12.2.4. The following properties hold:
1° &, is canonical symplectic structure on the manifold ;.
2° { }1 is a canonical Poisson structure onX;.

The relationship between these two canonical structures can be deduced by the
same techniques in the case of the pair of structures (6o, { }o)-
Indeed, the mapping
Sgl : X(El) — X*(Zl)

defined by
(215) Sgl (X) = ixgl, VX e X(El)

has the properties
! 3 — a _ 1
(2.15) Se, <8yi) = —dp;, S5, <8_p,) =dy'".

Proposition 12.2.3. Sy, isanisomorphism.

That means that there exists an unique vector field Xg, such that
(216) iXH101 = —dHl,
where H; : X; — R is the regular Hamiltonian, H;(y,p) = H(zo,y, D).
Localy, Xg, is given by
(217) XH1 = B A3 Aai A

and its integral curve are as follows

i d. dy‘_aHl_ dp,'_ 8H1
(218) TE W T 8p a0y
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These are called " the £;-canonical equations’ of the space H®™. Therefore, we can
state:

Theorem 12.2.5. The integral curve of the vector field Xg, are given by the %,
canonical equations (2.18).

Finally, we can prove:
Theorem 12.2.6. The following formula holds

{f,g}l = gl(Xf>Xg)a vfag € F(El)

The previous theory shows the intimate relations between symplectic structures
6, and the Poisson structure { }, on the manifolds &, (a = 0,1).

12.3 Lagrange spaces of order two

We shall prove the existence of a natural diffeomorphism between the Hamilton
space of order two, H®" = (M, H(z,y,p)) and the Lagrange spaces of order two
L™ = (M, L(z,y™,y®)). To this purpose, we shall briefly sketch the general
theory of the space L™ (see, §1,2, Ch.6, of the book [106]). The fundamental
function of the space L™ is a Lagrangian of order two, L : (z,yV,y®) € T°M —
L(z,y™,y@) € R, which is regular and the fundamental tensor field

oL

1
y M@y =z <
(31) aU(lB,y » Y ) - 2 ay(Z)zay(Z)J

has a constant signature.

On the manifold T2M there exist two distribution V; and V;. The distribution
V) is the vertical distribution of dimension 2n and V3 C V}, dimV, = n. Clearly,
dimM =n, T?M = 3n.

A transformation of local coordinates on T2M : (z*, y(1i, y@%) — (&, g1 ),
(i,j, h k...= 1 2,...,n) is given by the formula (1.1), Ch.6, for k = 2. Namely,
. ) b

Pt B~ § 1

=7z, ..., z"), det Ee #0,

s O
(3.2) gl = 327 y,

0 W o 5% (2)j
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where

aji 827(1):‘ 8@(2):’ 6g(l)z' 8?;(2)i

! .
(3.2) 0r  Ay(i ~ gy@i’ fzi Ayl

Of course, for every point u = (z, 3V, 4») € T*M the natural basis of the tangent
space T, (T*M) transforms as:

0 _ Q@J_ a9 +ag(1)j 0 oy 9
Ozt Ozt 0% ort  ayi Ort Oyds
o 3@(0)‘ 0 oy®i 9

(33) By — By By T By gy@s
a oy 9
By ay®i Hy@i
B f these formul that the vector fiel —2 0
y means of these formulae one can prove e vector fie 5T g

determine a local basis of the distribution V4, and

0 7] 0 7]
Ay’ gy gy@1 T gy @

is alocal basis of the vertical distribution V;. These distributions are integrable and
Vo C Vi, dimV; = 2n, dimV; = n.
Let us remark that there are two Liouville vector fields:

1 .0 2 0 .0
Wi 9 A i (2)i
(3.4) =y By =y Gy + 2y By

2
with the properties that 11“ belongs to the distribution V; and T belongs to the

1 2
distribution V4. The vector fields " and T" are linear independent.
There exists a 2-tangent structure J, on T?M, defined by

0 7] 5] 0 g .
38) J (5:5) = By’ J (ay(l)i) = @i’ J (ay(z)i) =0, G=1..n).

The following properties of the 2-tangent structure J hold:

1° Jis atensor field on T2M of type (1, 1).
2° Jis an integrable structure.

P ImJ =V, KerJ =V, J(V,) = Vs

4° rank||J|| = 2n.
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2 1 1
5 Jr=r, Jr=0.
6° J3=0.
A 2-semispray on T%M is a vector field Son T2M with the property

(3.6) JS=T.

Localy Sis given by

a3
By i ’

d
ay(l)i

(3.7) s=ymd 2y - 3G*(z,yM, y®)

=V ozt

where G* are the coefficients of S and they characterize the vector field S

A nonlinear connection N on themanifold T2M = Osc*M is a vector subbundle
N(T*M) of the tangent bundle T'(T2M) which, together with the vertical subbundle
V(T*M), give the Whitney sum:

TT’M = NT*M & VT?M.

Noticingthat J(Ng) = Ny, Ny = N, and that N is asubdistribution of the vertical
distribution Vi, we obtain the direct decomposition of linear spaces

(3.8) T.T?M = Ny(u) ® Ny (v) & Va(u), Yu € T?M.

An adapted basis to this direct decomposition is given by

) 4 0
where
) a .0 .0 é a .8
' O _ 9 i _ N , — i % .
(3.9) iz o ey B e sy T aymi T Y ag@n

The systems of functions { 1\; 7 (N ] } give the coefficients of the nonlinear connection
n @

N.
The adapted cobasis, which is the dual bass of (3.9),

(3.10) {dz?, 8y, 6y},
where

(3.10)' Syt = gy(Dig % tdz, 6y@F = dy@it % tdy+ é{ iz
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The newcoefficients M ;3, M ; of the nonlinear connection N that appear here are
7@

caled the dual coefficients of N. They are related with the primary coefficients

NJ,N by the formula:
ey

311 Mi‘zNi, Mz_ N:—n m
(3.11) m? w’ e’ <2) RN

Conversely, the previous formulae, uniquely determine j\g, (1\)/ as functions of g\/.)f, % .
1) (2 1
R. Miron [106] and I. Bucitaru [36], [37] showed that a 2-semispray with the
coefficients G¢, uniquely determines a nonlinear connection. The dual coefficients
given by Bucétaru are very smple:
G' G"

3.12 L= = L=
(3.12) {\1’{1 oy g‘)l T gy

Studying the variational problem for the regular Lagrangian of order 2, L(z,y), y®)
we can determine a canonical nonlinear connection of the Lagrange space of order
two, L@" = (M, L(z, y", y@)).

12.4 Variational problem in the spaces L(®"
Let us consider a Lagrange space of order two, L®" = (M, L(z,y™,y@)). If X €
€X(E), let us denote the operator of Lie derivation with respect to X by CLx.

1 2
Applying this operator with respect to the Liouville vector fields I', T', (2.4) we get
two important scalar fields determined by the Lagrangian L:

They are caled the main invariants of the space L))",

Let c: [0,1] = M be asmooth parameterized curve and assume Imc C U C M,
where U is a domain of aloca chart on the manifold M. The curve c is represented
by the equations z* = z'(t), t € [0,1]. The extension & of ¢ to the manifold T2M is

dz* @i _ 1 &’z

(4.2) ot =zi(t), yVi= E(t)’ Yy 5 3 (t), t€0,1].

The integral of action of the Lagrangian L(z,y",y®) along the curve c is defined
by

(4.3) I(c) =/01L (z(t), ‘2—‘:,% ‘;—tﬁ) dt
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It is known that if I(c) does not depend by the parameterization of the curve c

then }(L) =0, }(L) = L (Zermelo conditions). In this case rank||a;;|| < n.So, the
fundamental tensor of the space L(»" is singular. Consequently, the functional 1(c)
depends on the parametrization of the curve c.

Along the curve c, the following operators can be introduced:

g0 _d 0  1d& 95
U ort dt oy T 2 di? gy’
1 a d 0
(4.4) E, = _ay(l)i + a By’
2 1 9
=3 G

In the monograph [106], the following theorems are proved:

Theorem 12.4.1.
1° For any differentiable function é(t), ¢ € [0,1] we have

0 0 dd, 2
(4.5) E;(¢L)=¢ E; (L) + 7 B (L) + d_ti Ey(L).

2° %,»(L), (¢ =0,1,2) are d-covector fields.
dL  dzr* 0 d2 . 1 d* 1

Theorem 12.4.2. The variational problem on the integral of action I(c) leads to
the Euler—Lagrange equations

oL d 8L 1 & 3L ay _ 4ot

0
(4.6) Ei(L):=$—aW+§WW=0, Y

Taking into account of the Theorem 12.4.1 it follows that L do not vanishes

along with the integral curve of the Euler—Lagrange equations. Therefore, it intro-
duce the notion of (Hamiltonian) energy, [106]. However we point out that in the
case of the space L™ it will depend on the curve c: [0,1] = M.

Definition 12.4.1. Along the smooth curve c: [0,1] — M thefollowing functions

(4.7) E(L)=HL)-+ S HL)-L, E(L)=-~I(L)

DO =
&=



Ch.12. Hamilton spaces of order 2 295

are called the energy of order two and of order 1 of the Lagrange space L®™ =
(M, L), respectively.

In the monograph [106] it is proved:
Theorem 12.4.3. For any differentiable Lagrangian L(z,y",y®) the energy of
order two EC(L) is conserved along every solution curve ¢ of the Euler—Lagrange
equations %,- (L) =0.

2 1
Along the smooth curve c: [0,1] — M, the energies £.(L), and E.(L) can be
written in the form

2 dzt d*zt 1 dat
(4.8) E(L) = P(l)iﬂ +piF —L, (L) =p; ’
where
49 _ 0L 1 d 8L _ 1 oL
( . ) Py = 6y(1)1 - 5 E 8y(2)i’ D= 2 8y(2)z

are the Jacobi—Ostrogradski momenta.

Theorem 12.4.4. Along a smooth curve ¢ we have

dpay OL 0
@y 9t _ g

(4.10) - ozt
P oy = EiL
-~ P (L)

This property is useful in order to prove:

Theorem 12.4.5. Along each solution curve ¢ of the Euler—Lagrange equations
0
E; (L) =0, the following Hamilton equations hold:

2
BEZ,'C(L) _dzt 0E.(L) _dpqyi

. dt or dt
(4.11) ‘ip‘”‘ 7
JELL) _ Pzt BEL) _ dpi.
ap;  de2’ ayi T dt

From this reason EC(L) is called the Hamiltonian energy of the space L®".

Some of the previous results hold even in the case when L is not aregular Lagran-
gian. If L is the fundamental function of a Lagrange space of order 2, L®" = (M, L)
we can determine a canonical nonlinear connection N depending only on L.
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Indeed, we consider the Synge equation [106]:

1 &8t dr 1 d?z
Y 2T L3 22,2 22 2
(4.12) @E(L) = 2 + 3G ( s dﬁ) 0,

where

1 a oL i} oL oL
P | (m_~ (2ym _ .
(413)  3G' =3 a¥ {?/ e (3 @7 ) +2 FyOm (ay(z)J) By(l)j}

Thus, the canonical semispray of L™ is given as follows:

Theorem 12.4.6. Any Lagrange space L™ = (M, L) has a canonical semispray,
determined only by the fundamental function L. It is given by:

0 .0 : 0
1 @ 1) @y_Z
(4.14) § =1 )16 it 1c’?y(lﬁ (@y",y )ay(2)i’

where the coefficients G* are expressed in the formula (4.13).
Conseguently, we obtain [106]:

Theorem 12.4.7. For any Lagrange space L™ = (M, L) there exist the nonlinear
connections determined only by the fundamental function L. One of them is given
by the dual coefficients ({v,)f % (jg{ }) from the formulae (3.12), (4.13).

1

The nonlinear connection mentioned in the previous theorem will be caled ca
nonical for the space L(¥)".

12.5 Legendre mapping determined by a space
L(?)n

If a Lagrange space of order two, L®" = (M, L(x,y™,y®)) is given, then it de-
termines a local diffeomorphism ¢ : T2M —» T*2M, which preserves the fibres.
The mapping ¢ transforms the canonical semispray S of L& in the dual semispray
Se, where € = ¢!, and determines a nonlinear connection N* on T*?M. Siill, like
in the classical case, ¢ does not transform the regular Lagrangian L(z,y",y®)
in a regular Hamiltonian H(x, y, p). However, aformula of type (1.6), Ch.8 can be
introduced. We investigate these problems in the following.

If we denote z = y(@, the fundamental function L in L®™ will be written as
L(y®, ¢y 4@ and its fundamental tensor will be given by

0L

1
(a0 (1) 2y 2 .
au(y Y »y( )) - 9 6y(2)i6y(2)j
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Proposition 12.5.1. If L is the fundamental function of a Lagrange space of order
two, L®n then the following mapping ¢ : (¥, y",y®) € T°M — (z,y,p) €
T+2M, given by

It = y(O)i,
i o, (1)
(5.1) vy=9
1L
pl - 5 ay(z)li

is a local diffeomorphism which preserve the fibres.

Proof. The mapping ¢ is differentiable and its Jacobian has the determinant equal
to det ||a;;||, which do not vanish on T2M.

Of course, we have 72(y(®, y(1), 4P} = 7*2 0 (3@, y(1), ).

This diffeomorphism is called the Legendre mapping (or transformation).

We denote

oL

ay(z)i = (pi(y(O)a y(l)y y(Q))

(5.2) pi =

DO}

Clearly, ¢; is a d-covector field on L,
The local inverse diffeomorphism £ = ¢! is given by

YO = i,
(5.3) { Y=y,

The mapping £* has the same rule of transformation as the variables ¥ from (3.2),
with respect to a changing of local coordinates on T*?M.
The mappings ¢ and ¢ satisfy the conditions:

Eop=1y, pol=1y U= @)"'U), U=@*)"YU), UcCM.

We have the following identities

doi o
(5.4) a;5(y @, 4, y®) = ay((p2)j’ (@9, £(x,9,p)) = 3151
and
8o; 9€* Oy o€’ Opi

o0 _ais%; By = —aisa—y;; —By(m = Gy
08 _ _isles 08 0ps 08 _
OzJ oz’ oy Oyi’ Op;

(5.5)

il
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The differential . : T,(T?M) — Ty (T**M), of the diffeomorphism ¢ is expressed
in the natural basis as follows
0 _ 0 O 0
Oy 9zt Bzt Op,,’
0 a Odpy 0

oy " oy T oy Opm

Theorem 12.5.1. The mapping ¢ : T°M — T*M, (5.1), transforms the semispray

5 A . 0
) (2)i — 3 (1) @
in the dual semispray S; on T+2M:
.0 .0 d
5.7/ S = l—. 2 l__4 iA
(5.7) ¢ y3$'+§3y’+f5pi
which has the following coefficients
a ¢ T 8 ’ T 8
(5.7)" fi=—ais (%;y + 23—5,£ +3G (x,y,f(x,y,p))>-
Proof. If X € X(T2M) have the local expression
] ] . 0
— (o) (1) (2
X=X Gy + X EwOR + X 7@

then 5 9
— y(0p - (1) e
P X = XOMz,y, )5+ X (w,y,f)ayﬁ

i 0
+ (xom 8 | xm B9 | yom,
oz™ a

i
oy™

i

Consequently ¢..S = S, holds.

Corollary 12.5.1. The dual semispray S¢ (5.7)", determines on T*2M a nonlinear
connection with the coefficients:

(5.8) N, =8'f;, Ny =0f;.
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We have to ask ourselves if by means of the mapping ¢ we can transform aregular
Lagrangian L(y©®,y™, y®) in aregular Hamiltonian. Notice that y®* = ¢i(x,y,p)
is not a vector field. Therefore the product p,&(z,y,p)is not a scalar field as in the
classical case of the Hamilton spaces H(”" = (M, H(z,p)).

Let us fix a nonlinear connection N with the coefficients N Yz,y) on T'M C
C T*M. Then on T2M we get the d-vector field

A . 0 . .
(5.9) 2= @iy 2N }(y(o), yD)y Wi,

This d-vector field is transformed by ¢ in the following d-vector field on T*2M :

(5.9)' #B = gi(z,y,p) +% Jgfé(x,y)yf

Let us consider the following Hamiltonian:

(5.10) H(z,y,p) = 2pi5®* - L(z,y,£(z,9,p)).
Then we have:

Theorem 12.5.2. The Hamiltonian function H, (5.10), is the fundamental func-
tion of a Hamilton space H®" and its fundamental tensor field e®*(x, y, £(z,y, p)) is
the contravariant of the fundamental tensor field a;; of the space L™ = (M, L).

Proof. From the formula (5.10) we deduce
(5.10) —6JH 59

Therefore, we get

3 @i  g¢I i
70 % = a”(z,y,€(z,9,p))-

" 1j & = =

Consequently, the pair H®" = (M, H), (5.10), is an Hamilton space or order two.
g.ed.

The space H®" = (M, H), (5.10), is called the dual of the space L™®" = (M, L).
0
Of course, this dual depends on the choice of the nonlinear connection of N .

12.6 Legendre mapping determined by H®"

Now let us pay attention to the inverse problem: Being given a Hamilton space of
order two, H®" = (M, H(z,y, p)), let us determine its dual, i.e., a Lagrange space
of order two.
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In this case, we will start from H®" and try to determine a local diffeomorphism
of form (5.3) by means of the fundamental function H(x,y, p) of H®", But y@" is

not a vector field. Therefore we cannot define it only by %8‘H, which is a d-vector

field. Asin the previous section we assume that the nonlinear connection N, with

coefficients N *i(z,y), which does not depend on the momenta p;, is apriori given.
Conseguently,
) . 1 o . .
(6.1) # =y + 5 Ny,
is a d-vector field on T@. ~
The mapping &; : T*2M — T?M defined by

(6.2) y O =at, gV =, Y = (a,y,p),
where

i 1 ~; o . R
(6.2) &ile,y,p) = S{0'H(z,9,9)— N (2, 9)y’};

is the Legendre transformation determined by the pair (H(X, Y, p), N ;)

Theorem 12.6.1. The mapping given by (6.2), (6.2)", is a local diffeomorphism,
which preserves the fibresof T*?M and T2M.

Proof. The determinant of the Jacobian of ¢, is equal to det ||¢¥(z,v,p)|| and

™ =7ok.
The formula (6.1), (6.2), (6.2)" imply:
(6.3) &l = g7(z,y,p),
‘ N Y
(6.4) 2(2,9,) = 56'H(z,,).
Let us consider the inverse mapping ¢, of the Legendre transformation &; :
(6.5) 2t =y gt =y p = oy @,y W, y?).
It follows
01 _
(6.6) By@7 9i;(Z, ¥, 1)

In aregular Lagrangian it isinteresting to remark that the Hamiltonian H(x, y, p)
is transformed by &, exactly as in the classical case:

(6.7) L(z,y,y®) = 2p;2* — H(z,,p), pi = pui(z, ¥V, yD).
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Theorem 12.6.2. The Lagrangian L from (6.7) is a regular one. Its fundamental
tensor field is given by g;(z, ¥V, ¢1).

Proof. Because 6(9(2 = 6;3, it results % az—(L) e1i(z, y, y®) and from (6.6) we
1 0L
get 5 By @y 9i5(z,¥', 1) g.ed.

The space L@ = (M, L) with L given in (6.7) is caled the dual of the space
H®n,

12.7 Canonical nonlinear connection of the space
H(Z)n

The Lagrange space of order two, L®" = (M, L(z,y™,y®), with the fundamental
function

(7‘1) L(‘Iv ylyyz) = 2p'izi - H(‘T’y’p)’ b = (pli(ma y(l)vy(2))

is the dual of the Hamilton space of order two, H®"™ = (M, H(z,y, p)). ltscanonical
semispray

.0 .0 ) 0
= i (2)i — 3 1) 2
S=y i oa t W g — 3G @y ) gy
is transformed by the Legendre transformation £ in the canonical dual semispray
o 9 9 9
S, ya ,+2£16 - + fi(z, v, p)a

The relation between the coefficients Gt and f; is as follows
39%

awlz

B — 3G™(x, Y, &1)gmi» YV = Ei(z,y,p).

(7.2) fi=ytom TR 5 0

And since &; and ¢, are the inverse mappings, respectively, we have

Opui _ 08 Opu _ (431

ogm . Jiaggm’ Ggm T gym

Substituting in (7.2) we get

o0&

5 o
(7.2 Ly =k agr 2L

ot 3G (z,y,&)-
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The expression (4.13) of G'(z,y™", y?) give

. m O 0 1, 0
—3Gl(m7 y,é.l) 51 + 261 61 _gtm {

N8 661
" 3am 29 PO H — H) = }

Psphy By
The last formula and (7.2)" leads to
_ 1 0 NS agf
73) o= 3 | a0 ) -
Because & isin (6.2)", we have:

Theorem 12.7.1. Thecoefficients f; of the canonical semispray S, of the Hamilton
spaces H®® are given by:

0 T m
'ay—m‘ _H+p5 Nm(x)y)y

82—

(74) fj(z>yap) =

Finally, applying Theorem 9.5.2., we can formulate:

Theorem 12.7.2. The coefficients of the canonical nonlinear connection N of the
Hamilton space H®" are as follows:

(7.5)
: 1 8 1 & a
(P V) N e . I s s , m|
Remarks.
OH o
If — =0, Ni(z,vy) N']k(z‘)y then N coincideswith N .
ayz J

2° The torsion 7;; = N;; — N j; vanishes.
The Theorem 12.7.2 is important in applications.

12.8 Canonical metrical N connection of space
H(?)n

For a Hamilton space of order two, H®" = (M, H(z,y,p)) let us consider the
canonical nonlinear connection N determined in the previous section. We are going
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to investigate the N-linear connections which are metrical with respect to funda-
mental tensor field ¢g¥ of H? j.e.:

(8.1) gn=0, g°[, =0, g*|" =0
Considering the space H®" as a generalized space GH®" with the fundamental
tensor g% we can apply Theorems 11.2.1 and 11.2.2, one obtain:

Theorem 12.8.1. For a Hamilton space of order two, H®" = (M, H(z,y,p)) the
following properties hold:

1° There exists a unique N-connection CT(N) = (H'jx, C*,, Ci*¥) which satisfies
(8.1), as well as the conditions

(82) Hi]‘k = Hi/cj, Cijk = Cik]', C,'jk = C,;kj
2° The coefficients of DI'(N)} are given by the generalized Christoffel symbols:

Hljlc = 59”(6]'9516 + 6&:9].9 - 5sgjlc)7

(8.3) Clix = 59”(3jgsk + Okgjs — Os9;k),

CI]k — _§gis(a]gsk + akgjs _ asg]k)’

where the operators §; = 8;— N*;6;,+ N;x9* are constructed using the canonical
nonlinear connection N.

The connection CT(N) is called the metrical N-connectionof H®

Now, applying the theory from Ch.9, we can write the structure equations of the
metrical N-connection CT'(N), Ricci identities and Bianchi identities. The paral-
lelism theory as well as, the theory of the special curves, horizontal paths etc. can
be obtained.

We can conclude that the geometry of the second order Hamilton spaces, can be
constructed from the canonical connections N and CT'(V).

The geometrical model of the space H®" is determined the N-lift G, ((3. 1),
Ch.11) of the fundamental tensor ¢% and by the (p)-almost contact structure IF,
((3.7), Ch.11).

We obtain, without difficulties:

Theorem 12.8.2. The pair (G, TF) is a Riemannian almost contact structure de-
termined only by canonical nonlinear connection N and by fundamental function H
of the space H@™. If N is torsion free (i.e. N;, = Nj;), then its associated 2-form
6 is canonical presymplectic structure § = dp; A dz*.

The geometrical space H>" = (T*ZM, G, TF) is called the geometrical model of the
space H®™ = (M, H(z,y, p)). It can be used to study the main geometrical features
of the space H®m,
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12.9 TheHamilton spaces H®" of electr odynam-
ics
Let us consider the Hamilton spaces of order two, H®™ = (M, H(z,y,p)), with the
fundamental function
91) Hz,yp) = g7 0)pips - Zpdi(@,4) + s 4(5, 1) 47 (5, 1)95(5, )
. ¥, P mc.q » Y)DiPj m P ) me2 ) , ii\T, Y ),

where g;;(z,y) is the fundamental tensor of a Finsler space F™ = (M, F(z,y)),
A(z,y) is a vector field, on T*'M and m, c, e are the physica constants. The func-
tions g;;(z,y) can be considered as gravitational potential and A(z, y) the electro-
magnetic potentials.

In the classical theory of the electrodynamics H (x, p) is obtained from the known
Lagrangian of electrodynamics via Legendre transformation, [97], [105].

The fundamental tensor field of the space H®" is given by:

y 1 ..
17 — ——g¥
(9.2) 77 (2,9,9) = ——¢"(2,y)

It is homothetic to the fundamental tensor ¢*(z,y) of Finser space F™.

This remark leads to the fact that H®" = (M, H), (9.1), is the Hamilton space
of order two of the Electrodynamics.

The covariant tensor v;;(z,y, p) is given by

(9.2) %;(2,y,p) = megi;(z, y).
The tensor field C¥*, (1.3), vanishes. It follows:

(9.3) Ci* =0, C* =0.
The tensor C*;; from (1.4) reads:

) 1. . . .
(9.4) C'jr(z,y) = 59”(3jgsk + Okgsj — 0sGjk)-
Then, Theorem 12.1.3 leads to:

Theorem 12.9.1.

1° The w,-paths of space H®™ in the point z, € M are characterized by the
system of differential equations
d2yi

Izt = :Ef), pi=0, — + Cijk(-ro:y)

dy’ dy*
dt? =0

dt dt
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2° The w,-path of the space H®" in the point z, € M are characterized by the
system of differential equations

d2pi

a0

=z y'=0

Let N *(z, y) be the Cartan nonlinear connection of the Finsler space F™ and 2t

the d-vector field on T?M: L
7=y 2 N ;y".

Remember that the Christoffel symbols v';(z,y) of F™ and v'jxy/y* = ~i, gives

o . 10y o
(9.5) Nf:iﬁofo’ ¥y NL=v
Let us consider the functions
;1 ,
(9.6) & = S{0°H — o).

We obtain the Legendre transformation (6.2) determined by the Hamilton space
H®@n Then, it follows:

. 1.. . e .

1 — ZH — . . A?
(9.7) Mz,y,8§) = 50 H = 7p; ~ — A"
The dual space L&) = (M, L(z,yM,y@)) of the space H@" has the property
(9.8) L(z,y,61) =p0'H — H =~"pip; — %A’AJ%‘J',
and the canonical dual semispray Se, has the coefficients (7.4) given in our case by
9.9 129 H+~
(9.9) fi(z,y,p) = 3 3—111{_ + YooPi}-

Taking into account Theorem 12.7.2 we obtain the coefficients N"j and N;; of
the canonical nonlinear connection N of the space H®":

1 1 9 i i 1 & s
(9.10) Nj=3 @{—3 H+ v}, Ny = 3 W[_H+’Yoops]-

Therefore the coefficients N*; can be written:

. o ] . 1. ..
(9.10)’ Ny =N~ A5, A% = —28,0'H.
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Clearly A} is a d-tensor field of type (1,1).

The adapted basis (651 oy 66 ) to the distributions N, W, W, has the first

vector fields i of the form
ozt

o . o 0
Ni- Af)ay] +Nig
J

O
8
t
QD
g
|
~~

In other words:

0gi;
S o Iy Ap2Si |
sk e |ox* k oym + A oy™

(*) _6’7_1] mc 891] agl]
Therefore, the coefficients Hij;, of the canonical connection CT(N) of the space
H®r are given in the following

Theorem 12.9.2. The canonical metrical connection CT'(N) of the Hamilton space
H®n of eectrodynamics has the following coefficients

(911) Hijk = Fijk + Aijk) Cijh Cijk =0

where (F';, C'i) is Cartan metrical connection of the Finsler space F™ and A'j is
a d-tensor field expressed by

i — 1 magsk
(9.12) Aljy =g 59 (AJ By + A} F " gy

magjs Am%) .

Indeed, the last theorem follows from a straightforward calculus, using the for-
mula (*) and the expression of H*; from (8.3).

We remark that the geometry of the Hamilton spaces of electrodynamics H®
(9.1) can be developed by means of the canonical nonlinear connection N, (9. 10)
and on the canonical metrical connection CT(N), (9.11).



Chapter 13

Cartan spaces of order 2

The Hamilton spaces H®" = (M, H(z,y,p)) for which the fundamental function
H(X,y, p) is 2-homogeneous with respect to momenta p; form an interesting class of
Hamilton spaces of order two, called Cartan spaces or order two.

For these spaces it is important to determine the fundamental geometrical object
fields, as canonical nonlinear connections and canonical metrical N-connections.

13. C®"—_spaces

Definition 13.1.1. A Cartan space of order two is a pair C@" = (M, K(z,y,p)),
for which the following axioms hold:

1° Kisarea function on T*?M, differentiableon T*2M and continuous on zero
section of the projection n*2.

2° K> 0on T*2M.
3 K is positively 1-homogeneous with respect to momenta p;.

4° The Hessian of K2, with elements:

(1.1) 9 (z,y,p) = %3i3jK2

is positively defined on T*2M.

It follows that ¢* from (1.1) is contravariant of order two, symmetric and non-
degenerate d-tensor field. It is called fundamental (or metric) tensor of space C®".
K(x, y, p) is called fundamental function of C(3",

Let us start noticing:

307
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Theorem 13.1.1. If the base manifold M is paracompact, then there exist on T*2M
functions K such that the pair (M, K) is a Cartan space of order two.

Proof. The manifold M being paracompact, it follows that T*2M is paracompact,
too, and therefore there exists a rea function F on TM, which is fundamental for
the Finsler space F* = (M, F(z,y)). Let a;;(z,y) be the fundamental tensor of F™
and a¥(z,y) be its contravariant tensor. Obviously a% is positively defined. If we
consider the function

(1.2) K(z,y,p) = {a"(z,y)pip;}'/*,
then we obtain the fundamental function of a Cartan space of order two.  qg.ed.

The Cartan spaces C@" with fundamental function (1.2) are specia. They can
be characterized by the vanishing of the d-tensor field

(1.3) Cik = _ia'fajahxz

Proposition 13.1.2. For any Cartan spaces of order 2, we obtain:

1° The components g*(z,y, p) of the fundamental tensor are 0-homogeneous with

respect to Di.
J1oK:
2 Bp,- =9 P]

3 g9 (z,y, p)pip; = K*(2,y,p).
2 pCiik =0,

Let gi;(z,y,p) be the covariant tensor of ¢%(z,y, p).
A similar theorem with that given in Ch.12, can be formulated:

Theorem 13.1.2. For any Cartan space C(®" = (M, K) the following d-tensors

: 1. . . .
1.4) Clix = 59”(ajgsk + Ok9js — 0°9jk),
Ci]k — —Egis(ajg”“ + akg]s _ 8sg]k),
have the properties:

1° They are the w,— and wy—coefficients of a canonical metrical connection, i.e.

(1.5) 97|, =0, ¢'IF = 0.
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2° The following identities hold:

(L6) Ci* = g, O
(1.7) pil* = 6% = ok
(18) Sljk = Ci]k - Cik] = 0’ S,‘jk = C,‘jk — CikJ =0.

The proof is similar with that givenin §, Ch.5.
Let us consider a w,—vertical curve v : I — T*2M in the point z, € M (Ch.10).
Applying Theorem 10.7.5., we have:

Theorem 13.1.3.

1) The w,—vertical paths in the point z, € M of a Cartan space of order two,
C®n = (M, K) are characterized by the system of differential equations

d*y' dy’ dy*

dez +Cx(0,, )dt i

‘Ti = %, P = 0,
2) In the space C¥" = (M, K) the w,—paths in the point 2o € M are characterized
by the system:
d?p; ; dp; d
o — O, 0,p) 7L

T 0 i_ — =
:E_an y—oa -

at? P at T
13.2 Canonical presymplectic structure of space
C@n
The natural geometrical object fields on the manifolds T*2M, in the case of Cartan
space of order two, together with the fundamental function K(x, y, p) of space C(®»
give rise to some important properties, especialy in the case of canonical equations

(82, ch.12).
We have w = p;dz* and

(2.1) 6 = dw = dp; A dz*

is the canonical presymplectic structure.

The canonical Poisson structure {,}, and {,}; from (2.4), ch.12, can be adso
considered.

Remarking that

(2.2) H(z,y,p) = K*(z,y,p)

is a regular Hamiltonian, by means of Proposition 12.2.1, we get:
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Proposition 13.2.1. In a Cartan space C®" = (M, K) the following equations
hold:

; OK? OK?
{z}, K?} = Ay Ko =0, {pi K%)o = -2,
Op; ozt
(2.3) | o oz,
{2, K’} =0, {¢/,K*}h = Bp; {pi, K’} = o

Notice that the triple (T*?M, K*(z,y, p),6) is a Hamiltonian system.

Let us consider the canonical section of #*, given by oy : (z,p) € T*M —
(x,0,p) € T**M and £, = Imoy. Then ¥, is an (immersed) submanifold of the
manifold 7*2M and let us denote the restriction of 8 to & by 6,. We remark that
¥y has the equation y* = 0.

Theorem 12.2.1. affirmes that the pair (£, 8) is a symplectic manifold.

Therefore the mapping Sy, : X(Zy) — X*(Z,) defined by

(24) Sgo(X) = i)(ag, VX e X(Eo)

is an isomorphism.
We denote Ky = K\g,. Then we have

Proposition 13.2.2. The pair (M, K,) isa classical Cartan space.

Indeed, in this case, the definition from Ch.6 is satisfied. Its fundamental tensor
fidd is
1 8K}

ij =

We obtain, aso:
Theorem 13.2.1. There exists a unique vector field Xz € X'(Zo) with the property
(2.6) So(Xk2) = X, 0y = —dKZ.

In the local basis, the vector field Xg; has the expression

(2.7) Xh g - 220 =,

The integral curves of the vector field X determines the g-canonical equations
of the space C@*,
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Theorem 13.2.2. The Zy—canonical equations of the space C®" are as follows:

dt 0K dp 0K}

o dt - aw VT

(2.8)

Corollary 13.2.1. The equations (2.8) can be written in the form

dzt
dt

i _
dt

(2.9) = {K3.2'}o, {K3,m}, v =0.

Remark. It is clear that the Jacobi method, described in Section 2, ch.4, for
integration of the equations (2.8), can be used in this case.

Now, let X, be the fibre, in the pointio € M, of the bundle (T**M,=*, M).
Then ¥, is an immersed submanifold in T*2M.
Let us consider (cf. §2, ch.12) the following differential forms on X;:

(2.10) w = pidy’, 61 = dp; A dy,

and the Poisson bracket:
(2.11) {f,9}1=—i 2" a1 A

The relations between these canonical structures on the manifold ¥; can be studied
applying the same method as in the case of structures (o, 6o, K2).
If we denote K, = Kjg,, we get the following X,—canonical equations.

Theorem 13.2.3.

The X;—canonical equations of the Cartan space C@" = (M, K(z,y,p)) are the
following

dy' _ 0K} dp; 0K}

12 P = gl = — = :
(2.12) T g Op; ' dt oy

Taking into account the formula (2.3) we obtain

Coroallary 13.2.2. The equations (2.12) are equivalent to the system of equations

i i dy* i dp;
T = Ty, at = {Kf,y H, ’m = {Klz,Pi}-
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For the integration of the ¥;—canonical equations we can use the Jacobi method.
Let us try to determine a solution curve o(t) in thefibre %; a point zo € M of the
form

o _ o8
(2.13) o=z}, ¥ =4 (t), B l( ),
where S; € F(%,).
Substituting in (2.12) we get:

.y OK? as,
v =a =5 (a0, G000,
dpi _ &S, K> 9K?
dt  dyioy Op; Oyt

(2.14)

It follows from (2.14)
a5,
dK* (xo,y, 8y) ={K% K’} =0.
and therefore
(2.15) K? (zo,y, %‘%) = const.

By integration of (2.15), we can determine S; and from (2.14) we obtain the curve
o(t).

13.3 Canonical nonlinear connection of ¢~

We can associate the Hamilton space of order two, H®" = (M, K*(z,y,p)) to a
Cartan space of order two, C®" = (M, K(z,y,p)). Then the canonical nonlinear
connection N of the space H@" will be caled the canonical nonlinear connection
of the Cartan space C®". Therefore, we can apply the theory from the section 7 of
the previous chapter.

Let N be a fixed connection with the coefficients N ii(z,y). Thus, on T?M, we
have the vector field

(3.1) 7 =yPiy N L=, v)Y,
and we obtain the Legendre & mapping determined by C®" and by N:

(3.2) y O = g, gt =yt @ = £l(z,y,p),
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where
. 1. .. o . ;
(3.2) &(z,y,p) = 5{6’K2(x,y,p)— N'ij(z,y)y'}

It follows that (3.2), (3.2)' is a loca diffeomorphism which preserves the fibres of
T*2M and T?M.
From (3.1), (3.2) we obtain:

(3.3) o'¢] = g'(z,v,p),
(34) #(z,y,p) = %3"K2(w,y,p)-

Let ¢, be the inverse mapping of &;. Then it is of the form
(3.5) o=y % gt =y ™ b= oy @,y M, y®).
From (3.5) we get

Opy;
(3.6) W = gij(l‘, Y, 1)

The Lagrangian (6.7), determined from K% by means of Legendre transformation
&, is given by

(3.7) L(z, 'V, y?) = 2p:2* — K(z,y,p), pi = pu(z, vV, y?).

The formula (3.7) and the property of homogeneity of K2, with respect to momenta
pi, lead to the equation:

(3.8) L(z,y", &(z,,p)) = K*(z,y,p).
Indeed, from (3.4) and (3.7) it follows

L(z,y,&) = pd'K? — K* = K%
The canonical dual semispray of C® is

0
ya,

Theorems 12.7.1 and 12.7.2 imply:

7]
(39) So =g + Kl + v 5

1

Theorem 13.3.1. Thecanonical semispray S, has the coefficients

(3.10) fi(z,y,p) = ~K2(,y,0) + s N (=, 1)y™].

5 ol
2 Oyl
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Theorem 13.3.2. The coefficients of the canonical nonlinear connection N of the
Cartan space of order two, C™™ are given by:

(3.11)
1 0 4 o 1 9
Ny =1 2K N, "‘} Nyj= > = [—K2 o N g™
i=3 By][ OK '+ N'm(z,y)y" |, Nij = R +ps N'my
Remarks.

1° The coefficients of canonical nonlinear connection N depend on an a priori
given nonlinear connection N (N *;(z,y)). The previous theory is more simple
if N is the Cartan nonlinear connection of a Finder space F™ = (M, F(z,y)).

2° Thetorsion 7;; of the canonical nonlinear connection vanishes. In this case the
canonical presymplectic structure 8, (2.1), can be written in the form:
(3.12) 6 = ép; A do?,
where ép; = dp; — Nj;dz?.
3° Since dy* = dy* + N;dz?, Prop. 6.3, ch.9, we have:
Theorem 13.3.3. A horizontal curve on C®” s characterized by the system of
differential equations:

o
g

(3.13) ' =2'(t), dy' =0, e

where z* = zi(t), t € I, are apriori given.

13.4 Canonical metrical connection of space C®"

Let N be the canonical nonlinear connection N of the Cartan space of order two,

. N 6 o0 0
2)n i —
C (M, K(z,y,p)). The adapted basis to the distributions N, Wi, Wy is (51:" o Op;

and its dual basis is (dz*, 8y, ép;), where

b b, .0 0
¢ JU
N +N”aj’

(4.1) (Sj:dzi:@_ ia—y]»
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and
(4.1) Syt = dy* + N';d2?, 6p; = dp; — Njida’.
Now, using an already very known method, we can prove:

Theorem 13.4.1.

1) In a Cartan space of order two, C®®* = (M, K) there exists a unique N-linear
connection CT(N) = (H'jx, C*jx, CF) which verifies the following axioms:

1° N is the canonical nonlinear connection with coefficients (3.11).
2° CT(N) ismetrical with respect to fundamental tensor ¢* of space C?",

i.e
(4.2) 97k =0, g9, =0, gI"=0
3> The d-tensor of torsion T%;c, S*;x, Si?* vanish.

2) Thisconnection has the coefficients:

1.
Hiy = 5!]”(5jgsk + 0kGjs — 0595k)s
: 1, . .
(4.3) Cly = 591 (0i9sk + Okgjs — OsGijk),
Ci]k — _Egis(ajgak + akg]s _ asgjk).
The N-connection CT'(N), (4.3), is called the canonical metrical connection of
the space C(m.
Let us consider the covariant curvature tensors (6.5)', Ch.10 of CT'(N). Then,

applying the Ricci identities (see 9.7) to the covariant of fundamental tensor field,
gi; and taking into account the equations

(4.2) Gijik = 0, g5, =0, gijlk =0
we obtain:

Theorem 13.4.2. The tensors of curvature Rijkn, Pijen, Pijx™ and Sijen, Sije”, Sij*"

are skew—symmetric in the first two indices.

The (y)—deflection tensors of CT'(N) are given by (5.5)', ch.10, and (p)—deflection
of the same connection are
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Now, let us solve the problem of determination of a metrical N-linear connection
for which the p-deflection tensor A;; vanishes.

Theorem 13.4.3.

1) In a Cartan space C®™ = (M, K) there exists a unique N-linear connection
DI (N) = (H'j, C*jx, C7*) for which the following axioms hold:

1° A;; = 0 and the coefficients N ‘i(z,y) of the nonlinear connection
N(N %, N;;) aregiven apriori.
2° DT'(N) is metrical with respect to g, i.e. (4.2) holds.

2) 1° The coefficients (H*;x, C?j, Ci#*) of DI'(N) are given by (4.3).
2°. The coefficients V;; of the nonlinear connection N are expressed by:

1. 1. °
Ni]‘ = ’}’10]- - iamg,‘j (’Y:)nﬂ + 565K2- N :n) +
(4.5) h
1 o ° 6p o 691,
S (Nmg+ Nmg) P N9 |

where v, (z,y,p) arethe Christoffel symbols of g,;(x,y,p) and the index "0
means the contraction by p; or by p* = g¥p;.

Proof. If the nonlinear connection N (f{/ “i(2,y), Nij(z,y,p)) is known, then The-
orem 13.4.1 can be applied and it follows the existence and uniqueness of the coef-
ficients (H'j, Ciyx, Ci#*) from (4.3) which satisfy the axioms 2° and 3°. Let us
determine thecoefficients &;; of N in the condition of axiom 1°, i.e. A;; = 0.
Taking into account (4.4), A;; = 0 is equivalent to N;; = H™;p,. Since the
s 8 o, 0
- N 1j——-{ + N;

) .
operators — have the expressions 50 = B 5 i3,

dad
Gijlh = 0, leh =0 leads to

, the equations

1 ° o . o .
(6 H";j =A%, + 2 (N g5+ N 79i5)0mg"™+ N 7" 0mgij| —
4.6
1 . .
_5[(Nimgsj + ]\'fjmgi.s)amgh.9 + Nsmgmamgij]~
Thus N;, = p,H",; dlows to write:

1 o o . o . 1 .
(4.7) Ny =% + =[(N P*gsj+ N 7'9is)0mp°+ N 50mgis] — §N0m8mg1j-

[\]
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A new contraction by p’ = ¢’*p, leads to
1 °
Ng; = ’)’?0 + §6mK2 N :n

Substituting in the formula (4.7) we have the solution (4.5) of the equation A;; =0,

and the theorem is proved. g.ed.
For the canonical metrical connection CT(N), (4.3) the Ricci identities are given

in Theorem 10.6.1, taking into account the axiom 3°, i.e.:

(4.8) T =0, S =0, S7* =0.

The torsions are given by (6.3), (6.3)" and the curvature tensors are expressed by
(6.4) and (6.4)".

Theorem 10.6.3 gives some important identities for CI'(N), in which we take
into account (4.6) and (4.4).

13.5 Paralldism of vector fields. Structure equa-
tions of CT'(N)

Let us consider the canonical metrical connection CT(N), (4.3), and let v : [ —
T+*2M be asmooth parameterized curve as in section 7, Ch.10. ]
For a vector field X € X(T*?M) given in the adapted basis (&;, 8;, 0;) by
o . ) ..

(5.1 X =X+ X'0;, + X;0'
the covariant differential DX is expressed by:

o . . 1. L ..
(56.2) DX =(d X'+ X°wW')6; + (dX' + X°w',)0; + (dX, — X,w';)d",
where the 1-forms of connection w?, of the Cartan space of order two are:
(53) wij = Hijkd.’L‘k + C'ijk(Syk + C'jiképk.

Therefore, Theorem 10.7.1 gives the necessary and sufficient condition for the paral-
lelism of vector field X, (5.1) with respect to CT'(IV) along the parametrized curve

Y.
Theorem 10.7.2 states that the Cartan space C®" iswith the absolute parallelism
of vectors if, and only if, al d—tensors of curvature vanish:

Ri'j =0, Piljp =0, Bk =0,
Shijk =0, Shi]'k =0, Shijk =0
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We recall Theorem 10.7.3, also;

Theorem 13.5.1. A smooth parametrized curve y : I — T*2M is autoparallel
with respect to the canonical metrical connection CT(N) of Cartan space C®" if
and only if the system of differential equations (7.13), Ch.7, is verified.

Of course, a theorem of existence and uniqueness for the autoparallel curve one

can formulate without difficulties.
Taking into account Theorem 10.3.3, and (7.15), Ch.10, we get:

Theorem 13.5.2. The horizontal paths of the canonical metrical connection CT'(N)
of the space C®~ are characterized by the system of differential equations:
2,4 ) Y] k i .
A SN A A ]

TR T T g a -0

Finally, Theorem 10.7.5 has as consequence:

Theorem 13.5.3.
1° The wy—vertical paths of CT(N) in the point z, € M is characterized by the

system of differential equations

&Py dy’ dy*

zi = zf]a D= 0) +Cljk(x0ay7 )_ T

a2 dt dt
2° The wp—vertical paths of CT(N) in the point zo, € M is characterized by
i i dp, dp] dpk_
T = Iy y = O dt2 C ("z()’ ) dt dt -

Remark. We assume that the restrictions of the coefficients C*; to the zero section
of 7* : T2 M — M exist.

The structure equations of the canonical metrical connection CT'(N) of the Car-
tan space of order two, C®" = (M, K(z,y, p)) are given in the section 7 of Ch.7,
taking into account the particular properties of this connection.

So, we obtain:

Theorem 13.5.4. The canonical metrical connection CT(N) of the Cartan space
of order two, C®" = (M, K), has the following structure equations:

| )

d(dz*) — dz™ A w'y, = —Q,

. ),
(5.4) d(8y") — Sy™ Awiy = —Q,

d(dp;) + 6pm AwW™; = =)



Ch.13. Cartan spaces of order 2 319

and

(5.5) dw'; — W™ Aw'y = =5

(o). (1). X
where the 2-forms of torsion ©*, Q*,Q; and 2-forms of curvature €2; are given by
the formulae (8.6), ch.7, and (4.8).

The Bianchi identities of the connection CT(N) can be obtained taking the
exterior differential of the system of equations (5.4), (5.5) modulo the same system.

Remark. Using the structure equations, we can study, without major difficulties,
the theory of Cartan subspaces of order two in a Cartan space C?",

13.6 Riemannian almost contact structure of a
space CAr

Consider a Cartan space of order two, C®" = (M, K(z,y,p)) and its canonical
nonlinear connection N, with coefficients (N*;, Ny;) from (3.11). The adapted basis
(4, 3;, 0%) and its dual (dzt, &yt, 8p;) are determined by N.

The associated GH®™ = (M, g% (z, y, p)) space of C@" isuniquely determined.
Therefore, using the theory from section 3, ch.11, we can investigate the notion of
Riemannian almost contact structure of the space C@n.

We introduce the N-lift to 7*2M of the fundamental tensor G*(z,y, p) by:

(61) G= gijdl'i ® dl‘j + gijéyi ® éyj + gi’.épi ® (Spj,
which is defined in every point u* € T*2M.

Theorem 13.6.1.

1° G is a tensor field on the manifold T*2M, of type (0, 2), nonsingular depending
only on the fundamental function K of C®" and by the nonlinear connection

Nij(z,y).
2° The pair (T*2M, G) is a Riemannian space.
3’ The distributions N, Wy, W, are respectively orthogonal with respect to G.
Proof. Since ¢ and g;; are d-tensor fields, symmetric and positively defined, it

followsthat G has the properties 1°, 2° and 3°.
Applying Theorem 11.3.2, we deduce:
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Theorem 13.6.2. The tensor G is covariant constant with respect to canonical
metrical connection CT(N) of the space C@", i.e.

DG =0.

In other words, the canonical metrical connection CT'(N) is an N-linear metrical
connection with respect to the Riemannian structure G.

Let us consider the F (T72VM )-linear mapping
F: X(EsM) — X(E3M)
defined by
(6.2) F (&) = —g;&, F(5) =0, F(9') = g4,

Theorem 13.6.3. The mapping IF has the following properties:
° IF is globally defined on T*ZM.
2> I is a tensor field of type (L) on T*2M, ie.

(63) ]F = —g,«jéi ® d.’L‘j + giij ® 5]),‘.
¥ ke F=w, InF=NoW,.
4° rank”]F‘” = 2n.
50+ IF =0.
The proof is exactly like the case of Theorem 9.8.2.

Hence, IF is called the (p)-almost contact structure determined by ¢* and by N .

The Nijenhuis tens or M and the condition of normality of IF can be explicitely
written in adapted basis (see ch.11).

Now if we remark the tensor (6.3) and the fact that g;; and g% are covariant
constant with respect to the canonical metrical connection, it follows:

Theorem 13.6.4. The tensor field IF is covariant constant with respect to the
canonical metrical connection CT'(N), i.e.

DF =0.

Finally, let us notice that the pair (G, IF) has some remarkable properties.
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Theorem 13.6.5.

I* The pair (G,TF) is a Riemannian almost contact structure on the manifold
T*2M determined only by the space C®®™ and by the nonlinear connection

N ij(zv y)
2° The tensor fidds G and IF are covariant constant with respect to canonical
metrical connection CT'(N) of the space C®™.

3 The associated 2-form of the structure (G,TF) is the canonical presymplectic
structure on T*2M :
0= dp, A d.'Ei.

Indeed, we have G(FX,Y) = —G(FY, X), VX,Y € X(T**M) and 4(X,Y) =
G(IFX,Y). In adapted basis we get 8 = dp; A dz*. But the torsion ;; = Ny; — Ny
vanishes, hence as consequence # = dp; A dz*, and therefore Theorems 13.6.2 and
13.6.4 implies 2°, etc. .

The Riemannian amost contact space (T*?M, G, IF) is called the Riemannian
almost contact mode! of the Cartan space of order 2, C(d",

It is extremely useful in applications.
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